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Abstract

We study algorithmic aspects of models in which a set of agents is to be organised into
coalitions of a fixed size. Such models can be viewed as a type of hedonic game, coalition
formation game, or multidimensional matching problem. We mostly consider models in
which coalitions have size three and are formalisms of Three-Dimensional Roommates (3DR).
Models of 3DR are characterised by a combination of the system by which agents have
preferences over coalitions, and the solution concept (e.g. stability). Since the computational
problems associated with 3DR are typically hard, we consider approximate solutions and
restricted cases, with the aim of characterising the boundary between tractable and intractable
variants.

Part of our contribution relates to two new models of 3DR, which involve two existing systems
of preferences called ℬ- and 𝒲-preferences. In each model, we consider the existence of
matchings that are stable. We show that the related decision problems are NP-complete and
devise approximation algorithms for corresponding optimisation problems.

In a model of 3DR with additively separable preferences, we investigate stable matchings
and envy-free matchings, for three successively weaker definitions of envy-freeness. We
consider restrictions on the agents’ preferences including symmetric, binary, and ternary
valuations. We identify dichotomies based on these restrictions and provide a comprehensive
complexity classification. Interestingly, we identify a general trend that, for successively
weaker solution concepts, existence and polynomial-time solvability hold under successively
weaker preference restrictions.

We also consider a variant of 3DR known as Three-Dimensional Stable Matching with Cyclic
preferences (3-DSM-CYC), which has been of independent interest. It was recently shown
that finding a stable matching is NP-hard, so we consider a related optimisation problem
and present an approximation algorithm based on serial dictatorship. We also consider a
situation in which the preferences of some agents are sufficiently similar to some master list,
and show that the approximation ratio of this algorithm can be improved in relation to a
specific similarity measure.

Finally, we consider a problem in graph theory that generalises the notion of assigning agents
to coalitions of a fixed size. Rather than organising a set of agents, the problem is to find a



maximum-cardinality set of 𝑟-cliques in an undirected graph subject to that set being either
vertex disjoint or edge disjoint, for a fixed integer 𝑟 ≥ 3. This general problem is known as the
𝐾𝑟-packing problem. Here we study the restriction of this problem in which the graph has a
fixed maximum degree Δ. It is known for 𝑟 = 3 that the vertex-disjoint (edge-disjoint) variant
is solvable in linear time if Δ = 3 (Δ = 4) but APX-hard if Δ ≥ 4 (Δ ≥ 5). We generalise
these results to an arbitrary but fixed 𝑟 ≥ 3, and provide a full complexity classification for
both the vertex- and edge-disjoint variants in graphs of maximum degree Δ, for all 𝑟 ≥ 3.
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1

Chapter 1

Introduction

1.1 About

In this thesis we study the algorithmic aspects of models in which agents form coalitions.

Sometimes, these models can be applied in practice. For example, consider a set of coopera-
tive robots that may form work teams in order to maximise their total efficiency (in terms of
some specific criteria). In such an application, research in this area can provide practical tools
and techniques to organise the robots in an optimal way [1]. Other models are less directly
applicable, but by studying them we can make insights into how autonomous agents, such as
humans, behave in the real world [2, 3]. Even purely abstract research involving agents that
form coalitions has led to interesting and sometimes unexpected theoretical results.

The models that we focus on involve a set of agents which is to be partitioned into disjoint
coalitions of a fixed size. We call such a partition a matching. For example, this might
represent a set of robot workers who will organise themselves into work teams, where each
work team contains three robots. We assume that each agent has preferences between the
possible coalitions that they might belong to. For example, it may be that for practical reasons
each robot can only evaluate its own individual efficiency in a specific work team. Each robot
therefore assigns a numerical score to each of the work teams it may belong to, where a
higher score indicates that a given robot is more effective in that work team. Alternatively,
such a model might represent a set of students in a class who must be assigned to pairs by
their teacher. Each student might list their classmates in order from the most preferred to
least preferred.

In these models, a central idea is the existence of a matching that satisfies some specific
criteria, or is somehow optimal. For example, for a specific set of robots, we might seek a
matching in which the sum of the individual robots’ efficiency scores is maximised. Alter-
natively, for a specific set of students we might ask whether it is possible to pair the students
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such that no two students both prefer each other to their respectively assigned partners. We
refer to these criteria as solution concepts. The solution concept in the latter example, which
involves a set of agents that may deviate away from their assigned coalitions, is a type of
stability. Stability is a central concept in the theory of coalition formation in general and this
thesis in particular.

The specific contribution of this thesis relates to the algorithmic aspects of these models. For
example, one of our new results is an algorithm that could be used to construct a matching of
robots into work teams that satisfies a type of stability. For a slightly different solution concept
we show that, for a given set of robots, a matching that satisfies that solution concept does
not necessarily exist. Furthermore, deciding whether a given set of robots can be matched in
such a way that satisfies that solution concept is NP-complete. In contrast, we show that if
the robots’ scores are all restricted in a certain way then such a matching must always exist,
and can be found by an efficient algorithm.

1.2 Thesis statement

Computational problems involving agents that form coalitions are generally NP-hard, and
in particular when those coalitions must have a fixed size. Nevertheless, there exist natural
models of fixed-size coalition formation in which optimal or near-optimal matchings can be
found using efficient algorithms.

1.3 Contribution

Our main contribution relates to a family of models of fixed-size coalition formation known
as Three-Dimensional Roommates (3DR). The defining characteristic of a model of 3DR
is that there are a set of 3𝑛 agents that must be partitioned into 𝑛 triples, which we call a
matching, and each agent has some kind of preference between the triples to which they may
belong. Working within the framework of 3DR, we systematically study a set of fixed-size
coalition formation problems.

Many real-world scenarios involve coalitions of restricted size, which provides a strong
rationale for our study [4]. We motivate our study of 3DR in particular with the fact that
results relating to coalitions of size three often generalise directly to problems involving other
restrictions on coalition size. Even when this is not the case, it may be that they at least give
an indication of what to expect in more general models. For this reason, much of the existing
research also focused specifically on models in which coalitions must have size three.
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We begin by reviewing the literature in and around coalition formation, including both models
involving restricted coalition sizes and models in which coalitions need not have a fixed size.
We tie related concepts and theory together from across computing science, economics, and
game theory.

In our first technical contribution, we consider a variant of 3DR known as Three-Dimensional
Stable Matching with Cyclic preferences (3-DSM-CYC), which has been of independent
interest. In 3-DSM-CYC, each agent has one of three types, sometimes termed man, woman,
and dog, which have a cyclic order. Any feasible triple must contain exactly one agent of each
type. There are 𝑛 agents of each type and each agent has a preference list only over the agents
of the next type. A matching is stable if there exists no triple 𝑡 in which each agent in 𝑡 prefers
the triple 𝑡 to their assigned triple in the matching. It was recently shown, contrary to previous
conjectures, that a given instance of 3-DSM-CYC need not contain a stable matching and that
the associated decision problem is NP-complete [5]. We thus consider the approximability
of a closely related optimisation problem, in which the objective is to construct a matching
that is, in terms of a specific measure, as stable as possible. To our knowledge, this work
is the first investigation into the approximability of 3-DSM-CYC. We first show that an
existing algorithm for another three-dimensional matching problem, which is closely related
to 3-DSM-CYC, can be used to construct a 9/4-approximation algorithm. Improving this
approximation, we then present a 6/5-approximation algorithm based on serial dictatorship.
We then consider a restriction of 3-DSM-CYC in which the preferences of all agents of at
least one type are in some way similar, using a specific similarity measure. Specifically,
we suppose the preference lists of all agents of at least one type are derived from a master
preference list and consider the maximum Kendall tau distance [6] between the master list
and the list of any agent of that type. We show that if this distance is sufficiently small then
as it is further reduced the approximation ratio decreases from 6/5 to 1.

Next, we define two new models of 3DR that involve so-called ℬ- and 𝒲-preferences, which
we name 3DR-B and 3DR-W. Using ℬ- (𝒲-) preferences, each agent has a strict preference
list over the other agents and compares two triples based only on the most-preferred (least-
preferred) member of each triple. We consider in both 3DR-B and 3DR-W the existence of
matchings that are stable. We first show that it is NP-complete to decide if a given instance
(of agents and preferences) of either model contains a stable matching. Interestingly, this
contrasts with the existence of polynomial-time algorithms in two analogous models in which
coalitions may have any size [7, 8]. For both 3DR-B and 3DR-W, we also consider a closely
related optimisation problem in which the objective is to construct a matching that is, in
terms of a specific measure, as stable as possible. We show that an existing result leads
to a 9/4-approximation algorithm in both models and a simple algorithm based on serial
dictatorship gives a 3/2-approximation for 3DR-B.

We then formalise a model of 3DR with additively separable preferences, which we call
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3DR-AS. In this model, each agent provides a numerical valuation of every other agent
and compares triples based on the sum of the valuations of the other two agents in each
triple. We investigate in 3DR-AS the existence of stable matchings as well as matchings
that are envy-free, meaning there exists no pair of agents where the one would prefer to
swap places with the other. In fact, we consider three successively weaker formalisms of this
notion, namely envy-freeness, weakly justified envy-freeness, and justified envy-freeness. We
consider the computational problems of deciding if such a matching exists, and constructing
one if so. In particular, we study these problems in a setting where the agents’ valuations
are restricted. We consider various restrictions involving binary, ternary, and symmetric
valuations. We provide a full complexity classification and identify dichotomies in terms of
these restrictions. Interestingly, we identify a general trend that shows, for successively weaker
solution concepts, existence and polynomial-time solvability hold under three successively
weaker restrictions on the agents’ preferences.

Building on our new result that any instance of 3DR-AS with binary and symmetric pref-
erences must contain a stable matching, we also consider a related optimisation problem in
which the objective is to construct a stable matching in such an instance with maximum utili-
tarian welfare, i.e. the total sum of agents’ valuations of their assigned partners is maximised.
We devise a 2-approximation algorithm for this optimisation problem.

Finally, we consider a problem in graph theory that generalises the notion of assigning agents
to coalitions of a fixed size. Rather than partitioning a set of agents, the problem is to find a
maximum-cardinality set of 𝑟-cliques in an undirected graph, subject to that set being either
vertex disjoint or edge disjoint, for a fixed integer 𝑟 ≥ 3. This general problem is known as
the 𝐾𝑟-packing problem. Here we study the restriction of this problem in which the graph
has a fixed maximum degree Δ. It is known for 𝑟 = 3 that the vertex-disjoint (edge-disjoint)
variant is solvable in linear time if Δ = 3 (Δ = 4) but APX-hard if Δ ≥ 4 (Δ ≥ 5) [9]. In
other words, there exists some fixed constants Y > 1 and Y′ > 1 such that no polynomial-time
Y-approximation algorithm exists for the vertex-disjoint variant if Δ ≥ 4; and no polynomial-
time Y′-approximation algorithm exists for the edge-disjoint variant if Δ ≥ 5. We generalise
these results to an arbitrary but fixed 𝑟 ≥ 3, and provide a full complexity classification
for both the vertex- and edge-disjoint variants in graphs of maximum degree Δ, for every
𝑟 ≥ 3. Specifically, we show that the vertex-disjoint problem is solvable in linear time if
Δ < 3𝑟/2− 1, solvable in polynomial time if Δ < 5𝑟/3− 1, and APX-hard if Δ ≥ ⌈5𝑟/3⌉ − 1.
We also show that if 𝑟 ≥ 6 then these implications also hold for the edge-disjoint problem. If
𝑟 < 6, then the edge-disjoint problem is solvable in linear time if Δ < 3𝑟/2 − 1, solvable in
polynomial time if Δ ≤ 2𝑟 − 2, and APX-hard if Δ > 2𝑟 − 2.
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1.4 Structure

The remainder of this thesis is structured as follows:

• In Chapter 2, we give an overview of literature involving coalition formation, hedonic
games, and fixed-size coalitions, setting the scene for our subsequent results.

• In Chapter 3, we introduce 3-DSM-CYC and present new results on the approximability
of a related optimisation problem, both in the general case and in a restriction of the
problem involving master lists.

• In Chapter 4, we define 3DR-B and present new results concerning the existence
of stable matchings in instances of 3DR-B and on the approximability of a related
optimisation problem.

• In Chapter 5, we define 3DR-W and present new results concerning the existence
of stable matchings in instances of 3DR-W and on the approximability of a related
optimisation problem.

• In Chapter 6, we define 3DR-AS and present new results concerning the existence of
stable matchings in 3DR-AS, under various restrictions on the agents’ valuations.

• In Chapter 7, we present new results concerning the existence of envy-free, weakly
justified envy-free, and justified envy-free matchings in instances of 3DR-AS, under
various restrictions on the agents’ valuations.

• In Chapter 8, we present new results on the complexity of the 𝐾𝑟-packing problem in
graphs of fixed maximum degree.

• In Chapter 9, we summarise the contribution of this thesis and discuss some directions
for future work.
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Chapter 2

Literature review

2.1 Introduction

Models involving agents that form coalitions appear in a variety of settings, and terminology
varies depending on the context and application. In this chapter we give an overview of the
existing models in which a set of agents is to be partitioned into disjoint coalitions based
somehow on the preferences of those agents, with a focus on models related to fixed-size
coalitions and in particular Three-Dimensional Roommates (3DR). We shall present models
that appear across the literature of computing science, economics, and game theory. For many
concepts, the notation and terminology used varies between fields, even when the underlying
concept is the same.

In Section 2.2, we cover models of coalition formation in which coalitions need not have a
fixed size. Models of this type are almost always defined as hedonic games, which are the
subject of a sizeable area of research. Many of the concepts and terminology associated
with hedonic games are also used in other models of coalition formation, some of which we
consider subsequently. For this reason we consider these models first.

In Section 2.3, we cover models of coalition formation in which a restriction exists on the
sizes of possible coalitions. In most of the existing models of this type, for example in the
Stable Roommates problem (SR), the restriction is that any feasible coalition has some fixed
size. The terminology used in the literature to refer to these models can vary. For the sake of
consistency, we standardise terminology. For example, we use the term “matching”, meaning
a set of coalitions, while other authors use the terms assignment [10] or partition [7] for a
similar purpose.
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2.2 Hedonic games and stable partitions

A well-studied model of coalition formation is the hedonic game. The defining characteristic
of a hedonic game is hedonic preferences. Generally speaking, hedonic preferences mean
that “every agent only cares about which agents are in its coalition, but does not care how
agents in other coalitions are grouped together” [11, 12]. This contrasts with other so-called
co-operative games that involve divisible goods, which are shared among the agents based on
the coalitions formed. The Handbook of Computational Social Choice [11] defines a hedonic
game as follows:

Definition 2.1 ([11]). Hedonic game

Let 𝑁 be a finite set of agents. A coalition is a non-empty subset of 𝑁 . Let N𝑖 = {𝑆 ⊆
𝑁 : 𝑖 ∈ 𝑆} be the set of all coalitions (subsets of 𝑁) that include agent 𝑖 ∈ 𝑁 . A coalition
partition 𝜋 is a partition of the agent set 𝑁 into disjoint coalitions. A hedonic game or
hedonic coalition formation game is a pair (N ,≿), where ≿ is a preference profile that
specifies for every agent 𝑖 ∈ 𝑁 a reflexive, complete, and transitive relation ≿𝑖 on N𝑖. We
call ≿𝑖 a preference relation.

An instance of a hedonic game is a specific set of agents and a preference profile ≿. The exact
representation of ≿ can vary. For example, one possibility is that for each agent 𝑖, ≿𝑖 is an
ordered list containing every possible coalition inN𝑖. For some partition 𝜋 and some agent 𝑖,
we denote by 𝜋(𝑖) the coalition containing 𝑖. For any two agents 𝑖 and 𝑗 , if 𝑗 ∈ 𝜋(𝑖) then we
say that 𝑖 is a partner of 𝑗 . For some agent 𝑖 and any two coalitions 𝑆 and 𝑇 in N𝑖, we write
𝑆 ∼𝑖 𝑇 if 𝑆 ≿𝑖 𝑇 and 𝑇 ≿𝑖 𝑆 and write 𝑆 ≻𝑖 𝑇 if 𝑆 ≿𝑖 𝑇 and 𝑇 �𝑖 𝑆. If 𝑆 ≿𝑖 𝑇 then we say that
𝑖 weakly prefers 𝑆 to 𝑇 . If 𝑆 ∼𝑖 𝑇 then we say that 𝑖 is indifferent between 𝑆 to 𝑇 . If 𝑆 ≻𝑖 𝑇
then we say that 𝑖 strictly prefers 𝑆 to 𝑇 . For some agent 𝑖 and any coalition 𝑆, if 𝑆 ≿𝑖 𝑇 for
any other coalition 𝑇 then we say that 𝑆 is one of 𝑖’s most-preferred coalitions. Each agent’s
preference between two coalition partitions depends only on their assigned coalition in each,
so for any agent 𝑖 and coalition partitions 𝜋 and 𝜋′, we write 𝜋 ≿𝑖 𝜋′ if 𝜋(𝑖) ≿𝑖 𝜋′(𝑖), 𝜋 ≻𝑖 𝜋′

if 𝜋(𝑖) ≻𝑖 𝜋′(𝑖), and 𝜋 ∼𝑖 𝜋′ if 𝜋(𝑖) ∼𝑖 𝜋′(𝑖).

In a given hedonic game, we may ask if there exists a coalition partition in which each agent
is satisfied. In formal terms, we may consider the existence of a coalition partition that meets
some fixed solution concept. One well-studied solution concept is individual rationality. We
say that coalition partition 𝜋 is individually rational if there exists no agent 𝑖 who strictly
prefers the individual coalition {𝑖} to 𝜋(𝑖). Some other relevant solution concepts are:

• Perfection. A coalition partition is perfect if each agent belongs to one of its most-
preferred coalitions [13]. This is a very strong solution concept and in general, a given
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hedonic game need not contain a perfect partition [11].

• Pareto optimality. Given coalition partitions 𝜋 and 𝜋′, we say 𝜋′ Pareto dominates 𝜋
if 𝜋′ ≿𝑖 𝜋 for each agent 𝑖 ∈ 𝑁 and there exists some agent 𝑗 ∈ 𝑁 where 𝜋′ ≻𝑗 𝜋.
A coalition partition 𝜋 is Pareto optimal if no coalition partition exists that Pareto
dominates 𝜋 [14].

• Core stability (also known as stability). We say coalition partition 𝜋 is core stable if
no set of agents 𝑆 ⊆ 𝑁 exists such that 𝑆 ≻𝑖 𝜋(𝑖) for each agent 𝑖 ∈ 𝑆. In other words,
no set of agents have a common incentive to deviate from the coalition partition and
form a new coalition. If such a set 𝑆 exists then we call it a blocking coalition.

• Envy-freeness. Suppose we are given some coalition partition 𝜋. If there exists some
pair of agents 𝑖, 𝑗 ∈ 𝑁 where 𝜋(𝑖) ≠ 𝜋( 𝑗) and 𝑖 strictly prefers (𝜋( 𝑗) \ { 𝑗}) ∪ {𝑖} to 𝜋(𝑖)
then we say that 𝑖 has envy for 𝑗 . We say that 𝜋 is envy-free if no such pair exists [15].

• Justified envy-freeness. Suppose we are given some coalition partition 𝜋. If there exists
some pair of agents 𝑖, 𝑗 ∈ 𝑁 where 𝑖 envies 𝑗 and (𝜋( 𝑗) \ { 𝑗}) ∪ 𝑖 ≻𝑘 𝜋( 𝑗) for each
agent 𝑘 ∈ 𝜋( 𝑗) \ { 𝑗}, then we say that 𝑖 has justified envy for 𝑗 . In other words, 𝑖 envies
𝑗 and each partner of 𝑗 in 𝜋 would be strictly better off if 𝑖 were to replace 𝑗 in 𝜋( 𝑗).
We say that 𝜋 is justified envy-free if no such pair exists [16].

• Weakly justified envy-freeness. Suppose we are given some coalition partition 𝜋. If
there exists some pair of agents 𝑖, 𝑗 ∈ 𝑁 where 𝑖 envies 𝑗 and (𝜋( 𝑗) \ { 𝑗}) ∪ 𝑖 ≿𝑘 𝜋( 𝑗)
for each agent 𝑘 ∈ 𝜋( 𝑗) \ { 𝑗}, then we say that 𝑖 has weakly justified envy for 𝑗 . In
other words, 𝑖 envies 𝑗 and each partner of 𝑗 in 𝜋 would be weakly better off if 𝑖 were to
replace 𝑗 in 𝜋( 𝑗). We say that 𝜋 is weakly justified envy-free if no such pair exists [16].

Some solution concepts generalise others. For example, by definition any coalition partition
that is core stable must also be individually rational, and any perfect partition must also satisfy
all of the other concepts that we have described. In fact, a remarkable hierarchy of solution
concepts exists [11, 15, 16]. Part of this hierarchy, involving the seven solution concepts
described so far, is illustrated in Figure 2.1.

A wide range of solution concepts have been proposed and studied in the setting of hedonic
games. Many (such as Pareto optimality) have roots in game theory and economics [11]. In a
well-cited 2013 article, Aziz et al. [15] considered a variety of solution concepts and applied
them to a specific type of hedonic game. One such concept is popularity. They defined a
popular partition 𝜋 as a partition in which for every alternative partition 𝜋′, the number of
agents that prefer 𝜋′ to 𝜋 is at least the number of agents that prefer 𝜋′ to 𝜋. We shall discuss
later (in Sections 2.3.2 and 2.3.4) some other research that involves popular partitions.
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perfect

Pareto optimal

core stable

individually rational

envy-free

weakly justified envy-free

justified envy-free

Figure 2.1: Part of the known hierarchy of solution concepts in hedonic games. In the
diagram, an arrow points from one concept to another if any partition that satisfies the former
must also satisfy the latter. Adapted from the Handbook of Computational Social Choice [11].

In some hedonic games, it is assumed that the agents’ preferences have some additional
structure, which dictates the representation of the preference profile ≿. For example, it may
be that a hedonic game models agents in the real world whose preference between coalitions
is based on some underlying preference over the agents themselves. The exact representation
of ≿ is also important when considering computational aspects of hedonic games.

The simplest system of preference representation is to suppose that each agent has a preference
list over the 2|𝑁 |−1 possible coalitions in N𝑖, in order from the most-preferred to the least-
preferred. This system is known as lists of coalitions (LCs) [17]. In the literature, unless
otherwise specified, it is usually assumed that agents provide LCs. Alternatively, agents
might list only the coalitions from the most-preferred to the individual coalition, which is
known as Individually Rational Lists of Coalitions (IRLCs) [17]. IRLCs might be used if the
solution concept implies individual rationality, since no agent 𝑖 need ever consider a coalition
partition less-preferred than the individual coalition {𝑖}.

LCs and IRLCs involve ordinal preferences, meaning that they describe a preference be-
tween alternatives but do not quantify the extent that one alternative may be preferred over
another [18]. If preferences do involve such a quantification then they are cardinal. For
example, we could assume that each agent 𝑖 assigns a numeric valuation to every possible
coalition in N𝑖.

For some applications LCs or IRLCs may not be practical since they require agents to list
up to 2|𝑁 |−1 possible coalitions. For example, consider a hedonic game model used by 50
cooperative robots [1]. Using LCs might involve each robot listing ∼5.6 × 1014 coalitions,
which is likely to be challenging in practice. In such an application, it might be better
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to assume that the agents’ preferences have a specific structure. For example, we could
assume that each agent has a preference list over the other (individual) agents. We say
that this representation is more succinct since each preference list has length |𝑁 | − 1. This
representation might also reflect a natural structure in the preferences of real people [19].

To formalise such a hedonic game, in which agents have preference lists over the other agents,
we must be able to infer from each agent’s preference list a preference over coalitions. One
way to do this systematically is to use a set extension rule. Set extension rules have been well
studied outside the context of coalition formation, both in general [20] and in other areas of
computational social choice, such as multi-winner voting [14]. A number of set extension
rules have been considered in the hedonic games literature, which we shall introduce shortly.

We first introduce some new notation. For an agent 𝑖 let 𝑃𝑖 be a preference list over other
(individual) agents. Thus, 𝑃𝑖 describes a strict weak order ≿𝑖 over 𝑁 \ {𝑖}. For any two agents
𝑗 and 𝑘 we say that 𝑖 prefers 𝑗 to 𝑘 , denoted by 𝑗 ≻𝑖 𝑘 , if 𝑗 precedes 𝑘 in 𝑃𝑖. It may be that
the preference list 𝑃𝑖 contains ties. A tie is a set of agents 𝑇 ⊆ 𝑁 \ {𝑖} where 𝑗 ∼𝑖 𝑘 for any
pair of agents 𝑗 , 𝑘 ∈ 𝑇 and, for any 𝑙 ∈ 𝑇 and 𝑚 ∈ 𝑁 \ (𝑇 ∪ {𝑖}), either 𝑙 ≻𝑖 𝑚 or 𝑚 ≻𝑖 𝑙.
If a preference list contains no ties then we say it is strict. Strict preference lists therefore
represent a total order. Given a set of agents 𝑆 and an agent 𝑖 where 𝑖 ∉ 𝑆, let 𝒲𝑖 (𝑆) be the
least-preferred agent in 𝑆 according to 𝑃𝑖 (or an arbitrary least-preferred agent if 𝑃𝑖 contains
ties). We define ℬ𝑖 (𝑆) analogously, as the most-preferred agent in 𝑆 according to 𝑃𝑖 (or an
arbitrary most-preferred agent if 𝑃𝑖 contains ties).

We now introduce two well-known set extension rules, in which an agent compares two
coalitions based on either the most-preferred or least-preferred agent in each coalition. Using
𝒲-preferences [8], each agent 𝑖 prefers some coalition 𝑆 to another coalition 𝑇 if 𝒲𝑖 (𝑆) ≻𝑖
𝒲𝑖 (𝑇), and is otherwise indifferent. A related set extension rule is ℬ-preferences [7], in
which 𝑖 prefers 𝑆 to𝑇 if ℬ𝑖 (𝑆) ≻𝑖 ℬ𝑖 (𝑇). Usually an additional rule is added, so that 𝑖 prefers
𝑆 to 𝑇 if either ℬ𝑖 (𝑆) ≻𝑖 ℬ𝑖 (𝑇), or ℬ𝑖 (𝑆) ∼𝑖 ℬ𝑖 (𝑇) and |𝑆 | < |𝑇 |. Hajduková [21] noted
the motivation for this additional rule: if there is no condition placed on the cardinalities of
𝑆 and 𝑇 then, given an arbitrary instance of a hedonic game using ℬ-preferences, the grand
coalition partition {𝑁} is a perfect partition.

Cechlárová and Hajduková [19] reason that a strong motivation for studying 𝒲- and ℬ-
preferences in hedonic games comes from more general work of Kannai and Peleg [22]
in social choice. Motivated by voting theory, Kannai and Peleg demonstrate that any set
extension rule that satisfies two natural axioms makes any agent 𝑖 indifferent between any
set 𝑆 and {ℬ𝑖 (𝑆),𝒲𝑖 (𝑆)}. Barberà, Bossert, and Pattanaik discuss this result and some
related work in Ranking Sets of Objects, Chapter 17 of the Handbook of Utility Theory [20].
It remains open whether Kannai and Peleg’s axiomatic result can be further applied to the
setting of hedonic games.
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Another popular system is additively separable preferences, which are the defining charac-
teristic of an Additively Separable Hedonic Game (ASHG) [23, 24]. Additively separable
preferences are a form of cardinal preferences and can be defined in terms of valuation
functions. Each agent 𝑖 has a valuation function 𝑣𝑖 ( 𝑗) : 𝑁 \ {𝑖} ↦→ R (where R is the set of
real numbers). Given an agent 𝑖 and a set of agents 𝑆 ⊆ 𝑁 , we say that agent 𝑖 has utility
𝑢𝑖 (𝑆) =

∑
𝑗∈𝑆\{𝑖} 𝑣𝑖 ( 𝑗) in 𝑆. For two coalitions 𝑆 and 𝑇 , we define 𝑆 ≻𝑖 𝑇 if 𝑢𝑖 (𝑆) > 𝑢𝑖 (𝑇)

and 𝑆 ∼𝑖 𝑇 if 𝑢𝑖 (𝑆) = 𝑢𝑖 (𝑇). Let 𝑢𝑖 (𝜋) be short for 𝑢𝑖 (𝜋(𝑖)). We also define the utilitarian
welfare of a partition 𝜋 as 𝑢(𝜋) = ∑

𝑖∈𝑁 𝑢𝑖 (𝜋). Various other measures related to “welfare”
have been defined in ASHGs [15]. Additively separable preferences generalise separable
preferences [21], which can be defined as a restriction of additively separable preferences
in which 𝑣𝑖 ( 𝑗) ∈ {−1, 0, 1} for any two agents 𝑖 and 𝑗 . We remark that a similar model to
an ASHG has been studied as a Weighted Graph Game [25]. It is also possible to define
other restrictions of additively separable preferences. For example, we say that valuations
are symmetric if 𝑣𝑖 ( 𝑗) = 𝑣𝑗 (𝑖) for any two agents 𝑖 and 𝑗 . We say that valuations are binary
(also termed simple [26]) if 𝑣𝑖 ( 𝑗) ∈ {0, 1}. Similarly, we say that valuations are ternary if
𝑣𝑖 ( 𝑗) ∈ {0, 1, 2}.

In a seminal 2002 article, Bogomolnaia and Jackson [27] focused on solution concepts in
AHSGs that involve the movement of individual agents away from their assigned coalitions
(such as individual rationality). They observed that, for some of these solution concepts,
if preferences are symmetric then a satisfactory partition must exist. The proof of this
observation follows from the fact that any agent’s movement (or deviation) produces a partition
with strictly higher utilitarian welfare. This type of proof has since been termed a “potential
function” argument [11]. Since 2002, similar arguments have since been used to show new
results in some other types of hedonic games [28].

In 2007, Huang [29] proposed a restricted variant of additively separable preferences called
Precedence by Ordinal Number (PON), which is related to Borda scores [11]. In PON, each
agent has an ordinal preference list, and 𝑣𝑖 ( 𝑗) is defined to be the rank, beginning from one,
of 𝑗 in the preference list of 𝑖.

Another variant of additively separable preferences is fractional preferences, in which the
utility of a coalition is based on the average valuation over all agents in that coalition. Aziz
et al. [26] presented an extensive survey of so-called Fractional Hedonic Games (FHGs) in
2019. We remark that if we require any feasible coalition to have a fixed size 𝑘 , then the
definitions of an ASHG and an FHG are effectively equivalent.

From an algorithmic perspective, there are three main computational problems associated
with a given model of a hedonic game. The first is a decision problem known as the existence
problem. For some fixed solution concept, it asks if a given instance of a hedonic game
contains a coalition partition meeting that concept. The second is the construction problem,
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which is the search problem of either finding a coalition partition that meets a given solution
concept or reporting that no such partition exists. The third is the verification problem. For
a fixed solution concept and fixed instance of a hedonic game, it asks if a given partition in
that instance meets that concept. These three problems are closely related. For example, if
the existence problem is NP-complete, for some model of a hedonic game, then it follows
immediately that the verification problem is solvable in polynomial time and the construction
problem is NP-hard.

The system of preference representation is particularly meaningful when considering these
computational problems. Consider the core-stablility existence problem for a model of a
hedonic game in which preferences are represented using IRLCs. Encoding the agents’
preferences requires 𝑂 (2|𝑁 |) space, but since they form part of the problem input it is
possible to scan every preference list in linear time with respect to the size of the input. This
observation means that the corresponding verification problem belongs to the complexity
class P. Ballester [30] showed that the corresponding existence problem is NP-hard and
thus NP-complete. In some cases, more succinct systems of preference representation lead
to coNP-complete verification problems [31] and ΣP

2 -complete (NPNP-complete) existence
problems [32, 33].

In research on the algorithmics of hedonic games, the goal is often to show that, for a given
preference representation and solution concept, the verification, existence, or construction
problems are either solvable in polynomial time or are computationally hard. For example,
in 2001 Cechlárová and Romero-Medina [7] considered the core-stability existence problem
in hedonic game models (referred to as the Stable Partition problem) using ℬ- and 𝒲-
preferences. They showed that for ℬ-preferences, a core stable partition must exist, and
can be found in polynomial time. Later, in 2004, Cechlárová and Hajduková considered
the analogous model using 𝒲-preferences. They showed that in that model, a core stable
partition may not exist, but that a polynomial-time algorithm exists that can either find a core
stable partition or report that none exist. Interestingly, even though the definitions of ℬ- and
𝒲-preferences are similar, the algorithms used in both settings are significantly different.

In 2004, Ballester [30] showed that the existence problem is NP-complete for a number of
hedonic games involving systems of preferences in which agents have preference lists over
all possible coalitions. In particular, he showed that in a hedonic game using LCs, the
core-stability existence problem is NP-complete.

In 2010, Sung and Dimitrov [34] studied the existence of core stable partitions in ASHGs.
They showed that an ASHG may not contain a core stable partition and that the existence
problem is strongly NP-hard, but left open the question of whether it belongs to NP. They
also presented hardness results relating to other solution concepts in ASHGs. In their
2011 paper, Aziz et al. [15] strengthened Sung and Dimitrov’s result, showing that the
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core stability existence problem is strongly NP-hard even when valuations are symmetric.
In 2013, Woeginger [32] resolved this open question and showed the existence problem is
ΣP

2 -complete.

In 2019, Gairing and Savani [35] considered certain solution concepts in ASHGs with
symmetric preferences, where for each solution concept a potential function argument can
be used to show that a satisfactory partition always exists. They observed that all of the
associated construction problems can be modelled as local search problems in the class PLS.
Notably, they showed that many are also PLS-complete. These results are interesting because
it is unlikely that any problem in PLS is NP-hard (which would imply NP = coNP), but it is
also believed that no PLS-complete problem can be solved in polynomial time [36].

In their 2019 article on FHGs, Aziz et al. [26] showed that a core stable partition may not exist
in a given FHG, even when valuations are binary and symmetric, and that the corresponding
existence problem is ΣP

2 -complete. They also presented some positive results for FHGs with
binary and symmetric preferences.

In their 2013 paper, Aziz et al. [15] considered the existence of envy-free partitions in ASHGs.
They noted that the singleton coalition partition {{𝛼1}, {𝛼2}, . . . , {𝛼|𝑁 |}} is trivially envy-
free and thus considered the existence of partitions that simultaneously satisfy envy-freeness
as well as other solution concepts. In 2018, Ueda [37] considered envy-freeness and justified
envy-freeness in a hedonic game model using LCs. He observed in this model that both
the singleton partition and the grand partition {𝑁} are also envy-free, although there exist
instances in which no “non-trivial” coalition partition is envy-free, and additional instances
in which no non-trivial partition is justified envy-free. He also observed that core stability
implies justified envy-freeness. In 2019, Barrot and Yokoo [16] noted Ueda’s observation
and continued exploring the existence of coalition partitions that satisfy a combination of
solution concepts, including envy-freeness, weakly justified envy-freeness, and justified envy-
freeness. As well as some non-existence results for ASHGs, they also considered other models
involving more general systems of preference representation. Notably, they presented results
relating to the existence of such coalition partitions in a setting in which preferences either
satisfy top responsiveness or bottom responsiveness, two restrictions already well-established
in the hedonic games literature.

2.3 Coalitions of restricted size

2.3.1 Two-dimensional matching and roommates

Historically, most of the research involving fixed-size coalitions relates to models in which
agents are to be paired into coalitions of size two. We call such models two-dimensional. The
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study of such models is closely related to the area of matching under preferences. In his 2013
book, Manlove [18] presents a broad survey of the literature of matching under preferences.
This area is also related to the concept of matching in graph theory [38].

A seminal model of two-dimensional matching under preferences was introduced in 1962 by
Gale and Shapley [39]. A set of applicants are applying individually to a set of colleges. Each
applicant produces a strict preference list of colleges from most-preferred to least-preferred.
Similarly, each college produces a strict preference list of students. Each college may offer
multiple places but each student must apply to exactly one college. The authors considered
how best to match applicants to college places. They asked if there exists an assignment of
students to college places such that no two applicants 𝛼 and 𝛽, assigned to colleges 𝐴 and 𝐵,
constitute a blocking pair, meaning that 𝛽 prefers 𝐴 to 𝐵, and 𝐴 prefers 𝛽 to 𝛼. They called
such an assignment a stable matching, and provided an efficient algorithm that can construct
a stable matching. Interestingly, they also showed that this algorithm is, in a sense, optimal
for the applicants: “every applicant is at least as well off under the assignment given . . . as
he would be under any other stable assignment”. Although this problem is stated in terms
of colleges and applicants, it is commonly referred to as the Hospitals-Residents problem
(HR) [18].

In the same paper, Gale and Shapley also considered the restriction of HR when hospitals
admit exactly one student. They proposed a heterosexual marriage metaphor involving a set
of 𝑛 men and 𝑛 women, who are to be matched into 𝑛 pairs. For this reason this problem
is known as the Stable Marriage problem (SM) [18]. They also described a third problem,
known as the Stable Roommates problem (SR), which can be defined as a generalisation of
SM. In SR, there exists a single set of agents, who have strict preference lists over all other
agents. The goal, as for SM, is to construct a matching in which no two agents prefer each
other to their respective assigned partners [40]. SR can thus be equivalently viewed as a
hedonic game in which agents provide LCs (see Section 2.2) and any feasible coalition has
size two. Gale and Shapley showed that, in contrast to HR (and SM), there exist instances
of SR that contain no stable matching. In 1976, Knuth [41, Problem 12] asked if a stable
matching can be found in polynomial time in a given instance of SR. This question was finally
resolved by Irving [40] in 1985 who presented a polynomial-time algorithm that can decide
if a given instance of SR contains a stable matching, and constructs one if so.

Since 1962, a multitude of research in economics and computing science has been influenced
by concepts and theory from Gale and Shapley. The 2012 Nobel prize in Economic Sciences
was awarded to Shapley and Roth [42] for their work on the theory and application of
matching under preferences. The citation describes Shapley’s theoretical research, including
the Gale-Shapley algorithm, and the practical work of Roth, who successfully applied this
theory to the assignment of doctors to hospital positions in the USA.
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Much research in the area of matching under preferences involves variants and generalisations
of HR, SM and SR [18]. For problems that involve preference lists, one natural generalisation
is to allow incomplete lists. In general terms this means that for each agent certain alternatives
in their preference list are unacceptable, meaning that in no feasible matching is any agent
assigned an unacceptable alternative. The variant of SM with incomplete lists is known as
SMI [18]. In SMI, incomplete preference lists characterise unacceptable pairs of men and
women. Thus, it may be impossible to produce a stable matching involving all men and all
women, so we generalise the definition of a stable marriage and allow agents to be unmatched,
meaning they have no partner in a given matching. A blocking pair now consists of a man 𝑚
and a woman 𝑤 that find each other acceptable, where: (1) either𝑚 is unmatched or𝑚 prefers
𝑤 to his partner, and (2) either 𝑤 is unmatched or 𝑤 prefers 𝑚 to her partner. The definition
of SRI is analogous. The introduction of incomplete preference lists in SMI and SRI, and in
other problems of matching under preferences, has generated significant interest [18].

2.3.2 Multidimensional matching of a multipartite agent set

In this section we focus on problem models that involve matching a multipartite set of agents.
An early model of this type was proposed in 1976 by Knuth [41, Problem 11], who asked if
SM can be extended to three sets, for example men, women and dogs. It is not immediately
clear how this should be done, and various different models have since been proposed. In all
of them, a feasible coalition must contain exactly one man, one woman, and one dog, and thus
have size three. We classify such models as three-dimensional. A close connection also exists
to the Three-Dimensional Matching and Partition into Triangles problems, which can both
be stated in terms of graph theory and do not involve agents with preferences. For general
information on Three-Dimensional Matching and Partition into Triangles we recommend
Garey and Johnson’s classic textbook [43].

An early formalism of Knuth’s idea was proposed by Alkan [44] in 1988. He proposed the
following model (we update the terminology and notation). There exists a set 𝑁 of 3𝑛 agents
and a preference list 𝑃𝛼𝑖 for each agent 𝛼𝑖 ∈ 𝑁 . Let 𝑃 be the collection of preference lists
𝑃𝛼𝑖 for each agent 𝛼𝑖. Each agent has one of three types, which are called man, woman, and
dog. There are 𝑛 agents of each type, and the agents of each type are labelled 𝑈 = {𝑢1, 𝑢2,

. . . , 𝑢𝑛},𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑛}, and 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛} respectively. A family is a 3-tuple
(𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 ) ∈ 𝑈 ×𝑊 ×𝐷. A matching is a set of families where each agent in 𝑁 is contained
in exactly one family. Given an agent 𝛼𝑖 and a matching 𝑀 , we denote by 𝑀 (𝛼𝑖) the family
in 𝑀 that contains 𝛼𝑖. Each agent’s preference list 𝑃𝛼𝑖 describes a strict order over every pair
of agents containing one agent of each of the other two types. In other words, each agent has
a strict preference over all possible coalitions that they may belong to. We say that each agent
𝑢𝑖 ∈ 𝑈 prefers a family (𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 ) to a family (𝑢𝑖, 𝑤𝑗 ′ , 𝑑𝑘 ′) if (𝑤𝑗 , 𝑑𝑘 ) precedes (𝑤𝑗 ′ , 𝑑𝑘 ′) in
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𝑃𝑢𝑖 . Analogous statements are true for each 𝑤𝑗 ∈ 𝑊 and each 𝑑𝑘 ∈ 𝐷. Given a matching 𝑀 ,
we say that a family 𝑓 is blocking if each agent 𝛼𝑖 in 𝑓 prefers their pair of partners in 𝑓 to
their pair of partners in 𝑀 (𝛼𝑖). A matching is stable if it does not contain a blocking family.
Alkan presented an example instance of this model that contains no stable matching.

Seemingly independently of Alkan, Ng and Hirschberg [10] defined the same model in 1991 as
the Three-Gender Stable Marriage problem (3GSM). They showed that, in contrast with (two-
dimensional) SM, it is NP-complete to decide if a given instance (𝑁, 𝑃) of 3GSM contains
a stable matching. Subramanian [45] provided an alternative proof of this result in 1994, in
a paper exploring an interesting relationship between certain stable matching problems and
the so-called Network Stability problem. As defined by Subramanian, a network is similar to
a circuit (defined in the standard way) except its underlying graph need not be acyclic. The
Network Stability problem asks if it possible to assign boolean values to the arcs in a given
network such that all gates are simultaneously satisfied. In his book, Manlove [18] reviews
Subramanian’s results, and also discusses some related subsequent results on the relationship
between stable matching and Network Stability.

In his 2007 paper, Huang [29] proposed a variant of 3GSM in which each agent 𝑢𝑖 has a strict
preference list over𝑊 and a strict preference list over 𝐷, and compares two pairs (𝑤𝑗 , 𝑑𝑘 ) and
(𝑤𝑗 ′ , 𝑑𝑘 ′) based on the sum of the ranks of 𝑤𝑗 , 𝑤𝑗 ′ , 𝑑𝑘 , and 𝑑𝑘 ′ in these lists. Huang called
this system Precedence by Ordinal Number (PON, which we also discussed in Section 2.2).
Huang also considered the restriction of 3GSM in which preferences are consistent. In this
system, each man 𝑢𝑖 has underlying strict preference lists, 𝑃𝑊𝑢𝑖 and 𝑃𝐷𝑢𝑖 , over the agents in 𝑊
and 𝐷 respectively. For any man 𝑢𝑖, the strict preference list 𝑃𝑢𝑖 , which is a total order over
pairs, must be a linear extension of the product order over 𝑊 × 𝐷 with respect to 𝑃𝑊𝑢𝑖 and
𝑃𝐷𝑢𝑖 . In other words, (𝑤𝑗 , 𝑑𝑘 ) ≻𝑖 (𝑤𝑗 ′ , 𝑑𝑘 ′) if and only if either (1) 𝑤𝑗 precedes 𝑤𝑗 ′ in 𝑃𝑊𝑢𝑖
and 𝑑𝑘 = 𝑑𝑘 ′ , (2) 𝑑𝑘 precedes 𝑑𝑘 ′ in 𝑃𝐷𝑢𝑖 and 𝑤𝑗 = 𝑤𝑗 ′ , or (3) 𝑤𝑗 precedes 𝑤𝑗 ′ in 𝑃𝑊𝑢𝑖 and 𝑑𝑘
precedes 𝑑𝑘 ′ in 𝑃𝐷𝑢𝑖 [18]. Similar statements are true for each woman, who has underlying
lists over the agents in 𝑈 and 𝐷, and each dog, who has two underlying lists over the agents
in𝑈 and𝑊 . Huang showed that, in a given instance of 3GSM in which preferences are either
consistent, or are additively separable and follow the PON restriction, a stable matching may
not exist and the associated decision problem is NP-complete. Noting that in the PON variant
agents may be indifferent between pairs of partners, he also proposed and studied a hierarchy
of solution concepts related to stability. In each of the solution concepts, some number of
agents in any blocking family 𝑓 need only be indifferent between 𝑓 and their assigned family.
He showed that the existence problems relating to so-called strongly-stable, super-stable, and
ultra-stable matchings in the PON system are all also NP-complete.

We remark that the idea of consistency is conceptually similar to the principle of monotonic
preferences (or synonymously, independence [20]), one of the axioms studied by Kannai
and Peleg [22] in 1984. It is also unclear whether Kannai and Peleg’s result (discussed in
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Section 2.2) can be related to the specific setting of 3GSM.

Another special case of 3GSM was proposed by Danilov [46], in 2003. In this model, each
man 𝑢𝑖 has an underlying preference list over the set of women 𝑊 and, in the preference list
𝑃𝑢𝑖 over𝑊 ×𝐷, the pair (𝑤𝑗 , 𝑑𝑘 ) precedes (𝑤𝑗 ′ , 𝑑𝑘 ′) only if 𝑤𝑗 precedes 𝑤𝑗 ′ in the underlying
list of 𝑢𝑖. Similarly, each woman 𝑤𝑗 has an underlying preference list over the set of men
𝑈, and in the preference list 𝑃𝑤𝑗

over 𝑈 × 𝐷, the pair (𝑢𝑖, 𝑑𝑘 ) precedes (𝑢𝑖′ , 𝑑𝑘 ′) only if 𝑢𝑖
precedes 𝑢𝑖′ in the underlying list of 𝑤𝑗 . No assumption is made about the preferences of the
agents in 𝐷. Danilov showed that, in this case, Gale and Shapley’s algorithm for SM can be
used to find a stable matching.

In 2004, Boros et al. [47] considered another model that can also be defined as a special
case of 3GSM. The authors noted that in Danilov’s model the preferences are acyclic, and
proposed a model with lexicographically cyclic preferences, in which the types have a cyclic
order in which𝑈 precedes𝑊 ,𝑊 precedes 𝐷, and 𝐷 precedes𝑈. In this model, each man 𝑢𝑖
has an underlying preference list over𝑊 × 𝐷, where (𝑤𝑗 , 𝑑𝑘 ) precedes (𝑤𝑗 ′ , 𝑑𝑘 ′) in 𝑃𝑢𝑖 only
if 𝑤𝑗 precedes 𝑤𝑗 ′ in the underlying list of 𝑢𝑖. Similarly, each woman 𝑤𝑗 has an underlying
preference list over the set of dogs 𝐷, and in the preference list 𝑃𝑤𝑗

over 𝑈 × 𝐷, the pair
(𝑢𝑖, 𝑑𝑘 ) precedes (𝑢𝑖′ , 𝑑𝑘 ′) only if 𝑑𝑘 precedes 𝑑𝑘 ′ in the underlying list of 𝑤𝑗 . Similarly, each
dog 𝑑𝑘 has an underlying preference list over the set of men𝑈, and in the preference list 𝑃𝑑𝑘
over 𝑈 ×𝑊 , the pair (𝑢𝑖, 𝑤𝑗 ) precedes (𝑢𝑖′ , 𝑤𝑗 ′) only if 𝑢𝑖 precedes 𝑢𝑖′ in the underlying list
of 𝑑𝑘 . Boros et al. showed that in this model a stable matching must exist if 𝑛 ≤ 2 but need
not exist if 𝑛 ≥ 3. They also proposed another model of purely cyclic preferences, which is
very closely related but not, strictly speaking, a special case of 3GSM (since agents may be
indifferent between families). This model has since been termed Three-Dimensional Stable
Matching with Cyclic preferences (3-DSM-CYC, sometimes 3DSM [48] or c3DSM [49]).

3-DSM-CYC can be defined identically to 3GSM except the preference list 𝑃𝑢𝑖 of each agent
𝑢𝑖 is over the individual agents in 𝑊 and is strict, the preference list 𝑃𝑤𝑗

of each agent 𝑤𝑗
is over the individual agents in 𝐷 and is strict, and the preference list 𝑃𝑑𝑘 of each agent 𝑑𝑘
is over the individual agents in 𝑈 and is strict. As in the model of Boros et al. [47], the
types have a cyclic order in which 𝑈 precedes 𝑊 , 𝑊 precedes 𝐷, and 𝐷 precedes 𝑈. In
3-DSM-CYC, each man 𝑢𝑖 ∈ 𝑈 prefers any pair (𝑤𝑗 , 𝑑𝑘 ) to any pair (𝑤𝑗 ′ , 𝑑𝑘 ′) if 𝑤𝑗 precedes
𝑤𝑗 ′ in 𝑃𝑢𝑖 , each woman 𝑤𝑗 ∈ 𝑊 prefers any pair (𝑢𝑖, 𝑑𝑘 ) to any pair (𝑢𝑖′ , 𝑑𝑘 ′) if 𝑑𝑘 precedes
𝑑𝑘 ′ in 𝑃𝑤𝑗

, and each dog 𝑑𝑘 ∈ 𝐷 prefers any pair (𝑢𝑖, 𝑤𝑗 ) to any pair (𝑢𝑖′ , 𝑤𝑗 ′) if 𝑢𝑖 precedes
𝑢𝑖′ in 𝑃𝑑𝑘 . A family 𝑓 is blocking if each agent 𝛼𝑖 in 𝑓 prefers the agent of the next type in 𝑓

to the agent of the next type in 𝑀 (𝛼𝑖) (with respect to the cyclic order).

Since 2004, 3-DSM-CYC has generated a great deal of interest, particularly in the area of
matching under preferences. In their 2004 paper, Boros et al. [47] showed that if 𝑛 = 3 then
a stable matching must exist, but left open the case for 𝑛 ≥ 4.



2.3. Coalitions of restricted size 18

In 2006, Eriksson et al. [50] extended this result to 𝑛 = 4. They conjectured that, based
on evidence from computer search, any instance (𝑁, 𝑃) of 3-DSM-CYC contains a stable
matching. Moreover, they conjectured that the minimum number of stable matchings over all
instances of size 𝑛 increases with 𝑛. In 2009, Biró and McDermid [48] studied two variants
of 3-DSM-CYC. One involved incomplete preference lists, which is known as 3-DSMI-CYC,
and the other involved complete preference lists with ties. They showed that for both variants
a stable matching may not exist and the associated decision problem is NP-complete. In 2018,
Escamocher and O’Sullivan [51] considered a restricted set of instances of 3-DSM-CYC in
which all agents of one type have the same master preference list. They showed that the
number of stable matchings in such an instance is exponential in 𝑛. They combined this
result with an empirical study, which indicated that such instances contain the fewest stable
matchings among all instances of the same size. They therefore conjectured that the number
of stable matchings in an arbitrary instance is in fact exponential in 𝑛. In 2019, Pashkovich
and Poirrier [49] extended the result of Eriksson et al. and showed that if 𝑛 = 5 then a
stable matching must exist. Pashkovich and Poirrier formulated instances of 3-DSM-CYC as
instances of the Satisfiability problem, and solved them using a SAT solver.

Generalisations of 3-DSM-CYC that involve more than three types have also been studied.
In 2016, Hofbauer [52] extended the result of Boros et al. [47] to show, for any 𝑘 ≥ 3, that
any instance of 𝑘-DSM-CYC in which there are at most 𝑘 + 1 agents of each type contains a
stable matching, which can be found in polynomial time.

Building on previous results involving incomplete preferences, Lam and Plaxton showed in
2019 that, contrary to all previous conjectures, for any 𝑘 ≥ 3 there exist a family of instances
of 𝑘-DSM-CYC that contain no stable matching, and the associated existence problem is
NP-complete [5]. We remark that for 𝑘 = 3, Lam and Plaxton identified an instance with
𝑛 = 90 that contains no stable matching.

Nevertheless, 𝑘-DSM-CYC, and 3-DSM-CYC in particular, have continued to attract atten-
tion. In 2020, Pittel [53] presented a probabilistic analysis of 𝑘-DSM-CYC, and showed
that the expected number of stable matchings in a random instance increases with 𝑛 as
(𝑛 log 𝑛)𝑘−1. In 2022, Lerner [54] made some interesting further discoveries. His main result
was an example instance of 3-DSMI-CYC in which 𝑛 = 3 that contains no stable matching,
and showed that this instance is minimal since any instance in which 𝑛 < 3 must contain a
stable matching. He also presented an instance of 3-DSM-CYC in which 𝑛 = 20 that contains
no stable matching, leaving the existence of a smaller instance with no stable matching as an
intriguing open problem.

Recently in 2022, Cseh and Peters [55] considered further solution concepts related to
popularity in the models of 3-DSMI-CYC and 3-DSM-CYC. They presented a number of
NP-hardness results related to 3-DSMI-CYC and, notably, a polynomial-time algorithm for
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a special case of 3-DSM-CYC that can find a so-called 𝐴 ∪ 𝐵-popular matching in a given
instance of 3-DSM-CYC. Also in 2022, Cseh et al. [56] presented a paper in which they
develop, and then analyse, a collection of Constraint Programming models for 3-DSM-
CYC. They also integrated models for problems involving fair matchings, for some common
definitions of fairness.

2.3.3 Multidimensional roommates

Just as 3GSM and 3-DSM-CYC generalise (two-dimensional) SM to three dimensions, other
models have been proposed that generalise SR to three (or more) dimensions. We classify
such models, in which the set of agents is homogenous, as models of Three-Dimensional
Roommates (3DR). Other models involve coalitions of a fixed size 𝑘 ≥ 3 and have been
referred to as multidimensional roommates.

As defined originally, (two-dimensional) SR could be viewed as a hedonic game in which
any feasible coalition has size two. The solution concept corresponds exactly to core stability
(although research on SR predates much of the research on hedonic games and core stability).
SR has since been generalised to higher dimensions which, in a similar way, correspond to
hedonic games.

The earliest known model of this type is the Three-Person Stable Assignment problem (3PSA),
which was proposed by Ng and Hirschberg [10] in 1991, as a counterpart to 3GSM. An
instance of 3PSA comprises a set 𝑁 of 3𝑛 agents and a strict preference list 𝑃𝛼𝑖 of each agent
𝛼𝑖 over all pairs of agents in 𝑁 \ {𝛼𝑖}. Note that in terms of hedonic games, this system of
preferences is equivalent to LCs (see Section 2.2). Let 𝑃 be the collection of preference lists
𝑃𝛼𝑖 for each agent 𝛼𝑖. A triple is an unordered set of three agents and that a matching is a
partition of 𝑁 into 𝑛 triples. Given an agent 𝛼𝑖 and a matching 𝑀 , we denote by 𝑀 (𝛼𝑖) the
triple in 𝑀 that contains 𝛼𝑖. For any agent 𝛼𝑖 and two triples 𝑟 and 𝑠, we say that 𝛼𝑖 prefers 𝑟
to 𝑠, denoted 𝑟 ≻𝛼𝑖 𝑠, if 𝑟 \ {𝛼𝑖} precedes 𝑠 \ {𝛼𝑖} in 𝑃𝛼𝑖 . Given a matching 𝑀 , we say that
a triple 𝑡 is blocking if each agent 𝛼𝑖 in 𝑡 prefers 𝑡 to 𝑀 (𝛼𝑖). A matching is stable if it does
not admit a blocking triple. Ng and Hirschberg proved that, as in the case of 3GSM, a given
instance (𝑁, 𝑃) of 3PSA may not contain a stable matching and the associated existence
problem is NP-complete. We remark that, unlike a general hedonic game, a blocking triple
has size three, so the verification problem for both variants is solvable in𝑂 ( |𝑁 |3) time so this
existence problem belong to NP.

As well as the aforementioned work on 3GSM, in his 2007 paper Huang [29] considered two
variants of 3PSA. In the first variant, he supposed that agents provide preference lists over pairs
of agents (i.e. agents have LCs) that are consistent. The definition of consistent preferences
in 3PSA is analogous to the definition of consistent in 3GSM (discussed in Section 2.3.2). In
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3PSA, we say that preferences are consistent in an instance of 3PSA if each agent 𝛼𝑖 has an
underlying strict preference list 𝑃′𝛼𝑖 over the agents in 𝑁 \ {𝛼𝑖}. For any agent 𝛼𝑖, the strict
preference list 𝑃𝛼𝑖 , which is a total order over pairs, must be a linear extension of the product
order over {{𝛼𝑗 , 𝛼𝑘 } : (𝛼𝑗 , 𝛼𝑘 ) ∈ (𝑁 \ {𝛼𝑖})2} with respect to 𝑃′𝛼𝑖 . In the second variant,
he considers additively separable preferences under a PON restriction (see Section 2.2). He
showed that, in a given instance of 3PSA in which the preferences are either consistent, or
are additively separable and follow the PON restriction, a stable matching may not exist
and the associated decision problem is NP-complete. As in the case of 3GSM, Huang also
showed that various existence problems relating to so-called strongly-stable, super-stable,
and ultra-stable matchings are NP-complete.

Later in 2007, Iwama et al. [57] considered another closely-related three-dimensional gen-
eralisation of SR. They also considered stable matchings characterised by the absence of a
blocking triple. They supposed that each agent 𝛼𝑖 has an strict preference list 𝑃𝛼𝑖 over all
agents in 𝑁 \ {𝛼𝑖}, and defined implicitly a set extension rule that is similar to consistent
preferences (as defined by Huang). In the model of Iwama et al., any agent 𝛼𝑖 prefers some
triple 𝑟 where 𝛼𝑖 ∈ 𝑟 to another triple 𝑠 where 𝛼𝑖 ∈ 𝑠 and 𝑠 ≠ 𝑟 if 𝑟 \ {𝛼𝑖} precedes 𝑠 \ {𝛼𝑖}
in the product order {{𝛼𝑗 , 𝛼𝑘 } : (𝛼𝑗 , 𝛼𝑘 ) ∈ (𝑁 \ {𝛼𝑖})2} with respect to 𝑃𝛼𝑖 . We remark
that, like ℬ and 𝒲-preferences, this rule defines a partial order over possible coalitions even
though each agent has a strict preference list over possible partners. Interestingly, this set
extensmion rule is almost identical to the construction of a so-called power-ordered set from
a partially ordered set as defined by Bossong and Schweigert [58] the previous year, in the
context of formalised decision making. In 2011, Delort, Spanjaard and Weng [59] applied
the aforementioned Bossong-Schweigert extension rule to the problem of committee forming,
which is closely related to hedonic games. In 2015, Lang et al. [60] applied a generalised
version of the Bossong-Schweigert rule to a model of a hedonic game.

In 2008, Iwama et al. [61] considered an optimisation problem using the same model as in
their 2007 paper, and showed that it was APX-hard.

In 2009, Arkin et al. [62] presented another variant of 3PSA called Geometric 3D-SR. In this
model, agents have additively separable preferences. The agents’ valuations are derived from
their relative positions in a metric space. The authors also defined a more general version
of stability, specific to additively separable preferences, called 𝛼-stability, in which an agent
prefers one pair to another pair if the sum of relative distances to the agents in the first pair is at
least 𝛼 times smaller than that of the second pair. The authors showed that a 2-stable matching
always exists and can be found in polynomial time. They also presented an instance in which
no (1-)stable matching exists but left open the complexity of the corresponding existence
problem. In 2013, Deineko and Woeginger [63] resolved this open question by showing that
this existence problem is NP-complete. In fact, Chen and Roy [64] later strengthened this
result (in 2022) to show that Geometric 𝑘D-SR is NP-complete even when the metric space
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is the Euclidean plane.

In 2014, Ostrovsky and Rosenbaum [65] revisited both 3GSM and 3PSA. For each model they
considered two related optimisation problems. The first, called Maximally Stable Matching
(MSM), involves finding a matching with the maximum number of non-blocking triples. The
second, called Maximum Stable Sub-matching (MSS), involves finding a sub-matching that
involves only a subset of the agents. The problem is to find a submatching of maximum size,
i.e. involving as many agents as possible, which is stable when considering only blocking
triples involving agents in the submatching. They showed, in the context of both 3GSM and
3PSA, that MSM and MSS are NP-hard to approximate within some fixed constant factor (i.e.
that they are APX-hard [66]). Positively, they also described a simple greedy algorithm that
returns constant factor approximations for both MSM and MSS for both 3GSM and 3PSA.

In 2020, Boehmer and Elkind [67] considered a number of different models of multidimen-
sional roommates. In each model they supposed that the agents have types and an agent’s
preference between two coalitions depends only on the proportion of agents of each type in
each coalition. They showed that, for a number of different solution concepts, the related ex-
istence problems are NP-hard, although also that many are solvable in linear time if the room
size is a fixed constant. Notably, they presented an integer programming-based algorithm
that can solve the stability existence problem in polynomial time.

Also in 2020, Bredereck et al. [68] considered two variations of multidimensional roommates
that involve either a master list or master poset, from which all the agents’ preference lists are
derived. In the case of a master list, each agent obtains their preference list by deleting from
the master list any pair that contains themselves. Surprisingly, the authors discovered that
a stable matching may not exist in this model even if all agents’ preference lists are derived
from a single master list. They presented two positive results relating to restrictions of the
problem involving a master poset, although they also showed, for either a master list or master
poset, that in general the stability existence problem is either NP-hard or W[1]-hard, in terms
of three well-motivated parameters.

2.3.4 Other models

Various other models have been proposed in the literature that involve coalitions of restricted,
but not necessarily fixed, size. For example, some problem models only require the size of
any feasible coalition to be within some lower and upper bound. In this section we review a
selection of such models.

In 2011, Aziz et al. [13] considered Pareto optimal coalition partitions, in a variety of hedonic
game variants. In one variant, which has since been termed a flatmate game, any coalition
must have size at most three. They showed that the Pareto optimality existence problem is
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NP-hard in this particular model. The authors also presented polynomial-time solvability
results in a model involving 𝒲-preferences and for a model in which the maximum size
of any coalition is two. In 2020, Brandt and Bullinger [69] presented a paper studying the
existence of popular partitions in a number of hedonic game variants, including flatmate
games. They applied a variety of preference structures and presenting results relating to
partitions that are popular, strongly popular, and mixed popular (a mixed popular partition
is in fact a distribution over coalition partitions).

In 2015, Wright and Vorobeychik [70] studied the Team formation problem, an instance of
which resembles an ASHG. Taking a game-theoretic approach, they assumed that agents act
competitively and strategically. They compared four different algorithms in terms of so-called
strategy-proofness, welfare, and fairness, focussing on experimental performance rather than
algorithmic complexity. Notably, their model includes constraints on the sizes of coalitions
with a lower and upper bound. Other research works, mostly in the fields of economics and
operations research, have since studied the Team formation problem [71].

In 2018, Sless et al. [4] proposed a model that can be viewed as a type of ASHG with
symmetric preferences. They argued that a strong practical motivation exists for considering
coalitions of restricted size, and thus focused on the existence of coalition partitions that
contain exactly 𝑘 coalitions, for some fixed 𝑘 ≥ 1. They presented a number of theoretical
and empirical results relating to this model. They showed, using a connection to the so-called
Min-𝑘-Cut problem, that the problem of finding a partition with maximum utilitarian welfare
can be solved in polynomial time in the restricted case in which 𝑘 is fixed and there are, in
a precise sense, relatively few negative edges. Otherwise, they showed that this construction
problem is NP-hard. They also presented a polynomial-time solvability result for a problem
in which a central organiser can add edges to the instance. Notably, they proposed a heuristic-
based procedure for the problem of finding a core stable partition that maximises utilitarian
welfare. They showed that this procedure performs well on instances derived from real-world
data from social networks.

In 2019, Cseh et al. [31] considered Pareto optimal matchings in a general model that is
comparable to a hedonic game. In this model there is a set of rooms with integer sizes, and
any coalition must be allocated to exactly one room where the size of the room is exactly
the size of the coalition. They studied two specific variants of this model, applying ℬ- and
𝒲-preferences. They showed if ℬ-preferences are used and the agents’ preference lists are
strict then a polynomial-time algorithm based on serial dictatorship can be used to construct
Pareto optimal matchings in polynomial time. They also showed that, in a number of other
circumstances, a Pareto optimal matching may not exist and that in many cases the associated
existence problems are either NP-hard or NP-complete.

In 2022, Li et al. [72], considered a model that can be viewed as a generalisation of multi-
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dimensional roommates with binary and symmetric additively separable preferences. Rather
than a fixing the size of a coalition, a partition of the set of 𝑛 agents must be balanced,
meaning the number of coalitions 𝑘 ≤ 𝑛 is fixed and ⌊𝑛/𝑘⌋ ≤ |𝑆 | ≤ ⌈𝑛/𝑘⌉ for any coalition
𝑆 in a feasible partition. They studied an approximation of envy-freeness, termed EF-𝑟, in
which the utility gained by any envious agent may be up to 𝑟 in a feasible partition, for some
fixed 𝑟 ≥ 0 (our definition of envy-freeness is thus EF-0). Interestingly, they applied results
from discrepancy theory to show that an approximate-envy free partition with a particular
fixed asymptotic bound must exist, and can be found in polynomial time. They also consid-
ered restricted sets of instances, such those in which the underlying structure is a tree. They
showed that in such an instance, an EF-1 partition must exist and can be found in polynomial
time. A coalition partition of 3𝑛 agents in which every coalition has size three is by definition
balanced, so some of the algorithmic results relating to approximate envy-free partitions [72,
Theorems 9 and 10] also apply in a more restricted model of 3DR with additively separable
preferences (such as the model that we define in Chapter 6).

Also in 2022, Bilò et al. [73] proposed another model, which can be viewed as a type of
ASHG. They analogized their model to a dinner party situation in which 𝑛 agents are assigned
to exactly 𝑘 tables. They argued that Nash stability and core stability might not make sense in
such a setting, since there is no free table. Instead, they considered three successively weaker
solution concepts involving two agents that swap places. In a partition that is strictly swap
stable, no two agents 𝛼𝑖, 𝛼𝑗 exist where if 𝛼𝑗 and 𝛼𝑗 swap places then the utilities of both agents
strictly increase. In a partition that is swap stable, no two agents 𝛼𝑖, 𝛼𝑗 exist where if 𝛼𝑗 and
𝛼𝑗 swap places then the utility of 𝛼𝑖 strictly increases and the utility of 𝛼𝑗 does not decrease.
In a partition 𝜋 that is swap stable under transferable utilities, no two agents 𝛼𝑖, 𝛼𝑗 exist
where if 𝛼𝑖 and 𝛼𝑗 swap places, in a new partition 𝜋′, then 𝑢𝛼𝑖 (𝜋′) +𝑢𝛼𝑗 (𝜋′) > 𝑢𝛼𝑖 (𝜋) +𝑢𝛼𝑗 (𝜋).
They remarked that a variation of these solution concepts had been previously studied in the
context of the Stable Marriage problem as exchange stability [74]. We remark here that envy-
freeness implies strict swap stability. In their paper, Bilò et al. show that for any of the three
concepts, a feasible partition must exist and can be found by iteratively executing improving
swaps from an arbitrary starting partition. Notably, they showed that the relevant existence
problem is PLS-complete in general but the iterative process converges in polynomial time if
preferences are binary. They also analysed the problem of maximising utilitarian welfare, and
the so-called price of anarchy, and price of stability, which are defined as follows. For any
of the three stability concepts, the price of anarchy (stability) is the worst- (best-)case ratio
between the utilitarian welfare of an arbitrary stable matching and the maximum possible
utilitarian welfare over all possible partitions.
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Chapter 3

Approximability of
Three-Dimensional Stable Matching
with Cyclic Preferences

3.1 Introduction

In this chapter we study the approximability of the Three-Dimensional Stable Matching
problem with Cyclic Preferences (3-DSM-CYC, also known as 3DSM [48] or c3DSM [49]).

As we saw in Chapter 2, the question of whether every instance of 3-DSM-CYC contains a
stable matching was open for several decades. It was only in 2019 that Lam and Plaxton [5]
showed that a given instance of 3-DSM-CYC need not contain a stable matching and that the
associated decision problem is NP-complete. A natural next step is to consider approximately
stable matchings, as we do here. To our knowledge, we present the first theoretical results on
the approximability of 3-DSM-CYC.

In this chapter we consider the optimisation problem of finding a matching with the maximum
number of non-blocking families, which we call the 3-DSM-CYC Maximally Stable Matching
problem (3-DSM-CYC-MSM).

We begin, in Section 3.2, by showing that an existing approximation algorithm for 3GSM-
MSM, which is a closely related problem, can be used to devise a 9/4-approximation algo-
rithm for 3-DSM-CYC-MSM (Theorem 3.1). We then show that a simple algorithm based
on serial dictatorship gives an improved approximation ratio of 6/5 (Theorem 3.2).

Next, in Section 3.3, we consider a situation in which there exists a master preference list
over all agents of one type, and quantify the similarity between the preference list of any
agent of the previous type and that master list, in terms of a specific distance metric. We
extend the approximation algorithm for 3-DSM-CYC-MSM and show that if the maximum
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distance is sufficiently small then as it is further reduced, the approximation ratio of the
algorithm decreases from 6/5 to 1 (Theorem 3.3). As a corollary, we show that if every agent
of one type has the same preference list then the algorithm returns a matching that is stable
(Corollary 3.1, which is also implied by a result of Escamocher and O’Sullivan [51]).

Finally, in Section 3.4, we recap on our results and discuss some directions for future work.

We proceed with some formal definitions and notation. An instance of 3-DSM-CYC com-
prises a set 𝑁 of 3𝑛 agents and a strict preference list for each agent𝛼𝑖, labelled 𝑃𝛼𝑖 . Each agent
in 𝑁 has one of three types, which we call man, woman, and dog. There are 𝑛 agents of each
type, and the agents of each type are labelled 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛}, 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑛},
and 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}. The types have a cyclic order in which 𝑊 follows 𝑈, 𝐷 follows
𝑊 , and𝑈 follows 𝐷. Each agent’s preference list 𝑃𝛼𝑖 describes a strict order all agents in the
next type. We say that an agent 𝛼𝑖 prefers 𝛽𝑗 to 𝛽𝑘 if 𝛽𝑗 precedes 𝛽𝑘 in the preference list 𝑃𝛼𝑖
of 𝛼𝑖. A family is a 3-tuple (𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 ) ∈ 𝑈 ×𝑊 × 𝐷. A matching is a set of families where
each agent in 𝑁 is contained in exactly one family. Given an agent 𝛼𝑖 and a matching 𝑀 , we
denote by 𝑀 (𝛼𝑖) the family in 𝑀 that contains 𝛼𝑖. Given a matching 𝑀 , we say that a family
𝑓 is blocking if each agent 𝛼𝑖 in 𝑓 prefers the agent of the next type in 𝑓 to the agent of the
next type in 𝑀 (𝛼𝑖). A matching is stable if it does not contain a blocking family. Let 𝑃 be the
collection of preference lists 𝑃𝛼𝑖 for each agent 𝛼𝑖. For any instance (𝑁, 𝑃) of 3-DSM-CYC
and any matching 𝑀 , we denote by bf(𝑀, (𝑁, 𝑃)) ⊆ 𝑈 ×𝑊 ×𝐷 the set of families that block
𝑀 in (𝑁, 𝑃). Conversely, we denote by nbf(𝑀, (𝑁, 𝑃)) = (𝑈 ×𝑊 × 𝐷) \ bf(𝑀, (𝑁, 𝑃)) the
set of families that do not block 𝑀 in (𝑁, 𝑃). When the instance in question is clear from
context, we simply write bf(𝑀) or nbf(𝑀). Formally, 3-DSM-CYC-MSM is the optimisation
variant of 3-DSM-CYC in which the objective is to maximise |nbf(𝑀, (𝑁, 𝑃)) |.

3.2 Unrestricted preferences

In this section we consider the approximability of 3-DSM-CYC-MSM in the general case.
We first apply an existing polynomial-time approximation algorithm for a related problem
and construct a polynomial-time 9/4-approximation algorithm. We then improve on this
result and show that a polynomial-time algorithm based on serial dictatorship constitutes a
6/5-approximation algorithm.

There is a close relationship between 3-DSM-CYC and the Three-Gender Stable Marriage
Problem (3GSM, introduced in Chapter 2). Recall that in 3-DSM-CYC, each agent has a
strict preference list over all agents of the next type, and compares two families based on the
relative rank of the two agents of the next type in each family. In 3GSM, each agent has
a strict preference list over all possible families that they belong to, and compares any two
families using on this preference list. Although neither problem is a strict generalisation of
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the other, we show that, given an instance (𝑁, 𝑃) of 3-DSM-CYC, it is possible to construct
an instance (𝑁, 𝑃′) of 3GSM with the same set of agents such that for any matching 𝑀 , if a
family blocks 𝑀 in (𝑁, 𝑃) then it also blocks 𝑀 in (𝑁, 𝑃′). From this result it follows that
an existing 9/4-approximation algorithm for 3GSM-MSM, which is defined analogously to
3-DSM-CYC-MSM, can be applied to construct a 9/4-approximation algorithm for 3-DSM-
CYC-MSM. The existing 9/4-approximation algorithm for 3GSM-MSM was presented by
Rosenbaum in 2016 [75] and is called Algorithm AMSM. It is an iterative greedy algorithm
which involves, in each iteration, selecting a family that once added to the matching, intersects
the maximum number of non-blocking families.

Theorem 3.1. There exists a polynomial-time 9/4-approximation algorithm for 3-DSM-CYC-
MSM.

Proof. The approximation algorithm for 3-DSM-CYC-MSM involves constructing a corre-
sponding instance of 3GSM-MSM, which has the same set of agents, and running Algo-
rithm AMSM [75].

We first describe how to construct, in polynomial time, a corresponding instance (𝑁, 𝑃′) of
3GSM such that |nbf(𝑀, (𝑁, 𝑃)) | ≥ |nbf(𝑀, (𝑁, 𝑃′)) | for any matching 𝑀 . For each agent
𝑢𝑖 in 𝑈 let 𝑃′𝑢𝑖 be the ordered list of tuples in 𝑊 × 𝐷 such that if 𝑤𝑗 precedes 𝑤𝑖 in 𝑃𝑢𝑖 then
every family containing 𝑤𝑗 appears before every family containing 𝑤𝑖. The relative order of
the families in 𝑃′𝑢𝑖 that contain the same agent in 𝑊 is arbitrary. Construct the preferences
of each agent in 𝑊 and 𝐷 symmetrically. Now, suppose 𝑀 is an arbitrary matching in
(𝑁, 𝑃) and (𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 ) is a family that blocks 𝑀 in (𝑁, 𝑃). We claim that this family also
blocks 𝑀 in (𝑁, 𝑃′). First, assume without loss of generality that 𝑀 (𝑢𝑖) = (𝑢𝑖, 𝑤𝑖, 𝑑𝑖). By
definition, it must be that 𝑤𝑗 appears before 𝑤𝑖 in 𝑃𝑢𝑖 . It follows by the construction of
𝑃′ that (𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 ) appears before (𝑢𝑖, 𝑤𝑖, 𝑑𝑖) in 𝑃′𝑢𝑖 and thus that (𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 ) also blocks
𝑀 in (𝑁, 𝑃′). It follows immediately that |bf(𝑀, (𝑁, 𝑃′)) | ≥ |bf(𝑀, (𝑁, 𝑃)) | and thus that
|nbf(𝑀, (𝑁, 𝑃)) | ≥ |nbf(𝑀, (𝑁, 𝑃′)) |, as required.

Since Rosenbaum’s [75] analysis of Algorithm AMSM shows that |nbf(𝑀, (𝑁, 𝑃′)) | ≥ 4𝑛3/9,
we can conclude that |nbf(𝑀, (𝑁, 𝑃)) | ≥ 4𝑛3/9. □

We now consider an algorithm for 3-DSM-CYC-MSM based on serial dictatorship, which
we call Algorithm cyclicSerialDictatorship, shown in Algorithm 3.1. In the context of
computational social choice, serial dictatorship refers to a type of iterative algorithm used
to assign resources to agents. Typically, in each iteration a dictator is selected who is then
assigned their most-preferred resource that is still available. The classical application of
serial dictatorship is for the problem of House allocation [11] but it has also been applied to
hedonic games [76] and problems involving coalitions of fixed size [31].
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The algorithm we present here for 3-DSM-CYC-MSM follows the pattern of serial dictator-
ship. First, an arbitrary yet-unmatched agent agent in 𝑈 is selected and labelled 𝑢𝑖. Next,
𝑢𝑖 selects their most-preferred yet-unmatched agent in 𝑊 which is labelled 𝑤𝑗 . Finally, 𝑤𝑗
selects their most-preferred yet-unmatched agent in 𝐷 which is labelled 𝑑𝑘 . The family
(𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 ) is then added to the matching. A similar algorithm was in fact used by Hofbauer
[52] in order to construct stable matchings in the setting of 𝑘-DSM-CYC where 𝑛 ≤ 𝑘 + 1.

Algorithm 3.1 Algorithm cyclicSerialDictatorship
Input: an instance (𝑁, 𝑃) of 3-DSM-CYC
Output: a matching 𝑀 in (𝑁, 𝑃)
𝑉 ← 𝑁

𝑀 ← ∅
while |𝑉 | > 0 do
𝑢𝑖 ← any agent in𝑈 ∩𝑉
𝑤𝑗 ← the most-preferred agent in𝑊 ∩𝑉 according to 𝑃𝑢𝑖
𝑑𝑘 ← the most-preferred agent in 𝐷 ∩𝑉 according to 𝑃𝑤𝑗

𝑀 ← 𝑀 ∪ {(𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 )}
𝑉 ← 𝑉 \ {𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 }

end while
return 𝑀

It is straightforward to show that Algorithm cyclicSerialDictatorship returns a matching 𝑀
in polynomial time. We now analyse its approximation ratio and show that our analysis is
tight. This involves placing an upper bound on the number of blocking families in a matching
𝑀 returned by the algorithm. To do this, we consider each family in 𝑀 in the order that
they were added to 𝑀 in the algorithm and count only the blocking families that intersect
that family and do not intersect any previous family. To simplify the analysis, without loss
of generality suppose the (𝑢1, 𝑤1, 𝑑1) was the first family added to 𝑀 , (𝑢2, 𝑤2, 𝑑2) was the
second family added to 𝑀 , and so on.

Theorem 3.2. There exists a polynomial-time 6/5-approximation algorithm for 3-DSM-CYC-
MSM.

Proof. There are exactly 𝑛 iterations of the while loop so it is straightforward to show that
the algorithm runs in polynomial time. For each 𝑖 where 1 ≤ 𝑖 ≤ 𝑛, let 𝐹𝑖 = (𝑢𝑖, 𝑤𝑖, 𝑑𝑖)
be the family added to 𝑀 in the 𝑖th iteration. Let 𝑈𝑖, 𝑊𝑖, and 𝐷𝑖 be the set of agents in
of 𝑈 ∩ 𝑉 , 𝑊 ∩ 𝑉 , and 𝐷 ∩ 𝑉 respectively at the start of the 𝑖th iteration. It follows that
𝑈𝑖 = {𝑢𝑖, 𝑢𝑖+1, . . . , 𝑢𝑛},𝑊𝑖 = {𝑤𝑖, 𝑤𝑖+1, . . . , 𝑤𝑛}, and 𝐷𝑖 = {𝑑𝑖, 𝑑𝑖+1, . . . , 𝑑𝑛}.

For each 𝑖 where 1 ≤ 𝑖 ≤ 𝑛, let 𝑆𝑖 be the set of families that block 𝑀 , have a non-empty
intersection with 𝐹𝑖, and have an empty intersection with 𝐹𝑗 for every 1 ≤ 𝑗 < 𝑖. It follows
that 𝑆𝑛 = ∅ since any family that blocks 𝑀 and intersects the final family 𝐹𝑛 must contain
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some agent not in 𝐹𝑛, which must belong to some previous family 𝐹𝑗 where 1 ≤ 𝑗 < 𝑛. We
can now define bf(𝑀) in terms of 𝑆𝑖:

bf(𝑀) =
𝑛−1⋃
𝑖=1

𝑆𝑖 .

By definition, the sets 𝑆𝑖 are pairwise disjoint so it follows that

|bf(𝑀) | =
𝑛−1∑︁
𝑖=1
|𝑆𝑖 | . (3.1)

We now place an upper bound on |𝑆𝑖 | for any 𝑖 where 1 ≤ 𝑖 ≤ 𝑛 − 1. For any such 𝑖,
consider the 𝑖th iteration of the while loop. By the algorithm, 𝑤𝑖 is the most-preferred agent
in 𝑊𝑖 according to 𝑃𝑢𝑖 . It follows that any family that blocks 𝑀 and contains 𝑢𝑖 must also
contain some agent in 𝑊 that has already been added to a family 𝐹𝑗 in 𝑀 where 𝑗 < 𝑖. By
the definition of 𝑆𝑖, it follows that no family in 𝑆𝑖 contains 𝑢𝑖. Similarly, since 𝑑𝑖 is the
most-preferred agent in 𝐷𝑖 according to 𝑃𝑤𝑖

, any family in 𝑆𝑖 that contains 𝑤𝑖 must also
contain some agent in 𝐷 that has already been added to a family 𝐹𝑗 in 𝑀 , where 𝑗 < 𝑖. It
follows similarly that no family in 𝑆𝑖 contains 𝑤𝑖.

It remains that every family in 𝑆𝑖 contains 𝑑𝑖. Consider an arbitrary family (𝑢𝑗 , 𝑤𝑘 , 𝑑𝑖) in 𝑆𝑖.
By the definition of 𝑆𝑖 it must be that 𝑗 > 𝑖 and 𝑘 > 𝑖. Note that for any choice of 𝑢𝑗 , by
assumption 𝑢𝑗 prefers 𝑤𝑘 to 𝑤𝑗 . It follows by the algorithm that 𝑤𝑘 ∉ 𝑊𝑗 and thus 𝑘 < 𝑗 .

In conclusion, we have shown that for any family (𝑢𝑗 , 𝑤𝑘 , 𝑑𝑖) ∈ 𝑆𝑖 it must be that 𝑖 < 𝑗 ≤ 𝑛
and 𝑖 < 𝑘 < 𝑗 . We can now count |𝑆𝑖 | by considering each possible value of 𝑗 , from 𝑖 + 1 to
𝑛 inclusive and each possible value of 𝑘 , of which there are 𝑗 − 𝑖 − 1. It follows that

|𝑆𝑖 | ≤
𝑛∑︁

𝑗=𝑖+1
( 𝑗 − 𝑖 − 1)

=
(𝑛 − 𝑖) (𝑛 − 𝑖 − 1)

2
. (3.2)

Now

|bf(𝑀) | =
𝑛−1∑︁
𝑖=1
|𝑆𝑖 | Equation 3.1

≤
𝑛−1∑︁
𝑖=1

(𝑛 − 𝑖) (𝑛 − 𝑖 − 1)
2

by Inequality 3.2

=
𝑛3

6
− 𝑛

2

2
+ 𝑛

3
. (3.3)
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Suppose 𝑀∗ is a matching in (𝑁, 𝑃) with the maximum number of non-blocking families.
The approximation ratio of the algorithm is thus

|nbf(𝑀∗) |
|nbf(𝑀) | ≤

𝑛3

|nbf(𝑀) |

=
𝑛3

𝑛3 − |bf(𝑀) |
by the definition of nbf

≤ 6𝑛2

5𝑛2 + 3𝑛 − 2
by Inequality 3.3

≤ 6
5

since 𝑛 ≥ 1.

□

It is desirable to show that the analysis is tight, for example by constructing an instance
(𝑁, 𝑃) such that there exists some execution of the algorithm that returns a matching 𝑀 for
which |nbf(𝑀∗) |/|nbf(𝑀) | = 6/5, where 𝑀∗ is some matching in (𝑁, 𝑃) with the maximum
number of non-blocking families. We show that this analysis is tight asymptotically, by
constructing an instance I𝑛 for some fixed 𝑛 ≥ 1, where the approximation ratio obtained by
Algorithm cyclicDicatorship on I𝑛 in the worst case is 6/5 − 𝑜(1).

The structure of the preferences of the agents in I𝑛 corresponds directly to the counting
argument used in the proof of Theorem 3.2. For any fixed 𝑛, construct I𝑛 as follows. Let
𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛},𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑛}, and 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}, and for each 𝑖 where
1 ≤ 𝑖 ≤ 𝑛 let

𝑃𝑢𝑖 : 𝑤1 𝑤2 . . . 𝑤𝑛

𝑃𝑤𝑖
: 𝑑1 𝑑2 . . . 𝑑𝑛

𝑃𝑑𝑖 : 𝑢𝑛 𝑢𝑛−1 . . . 𝑢1

In the algorithm the selection of each agent in 𝑈 ∩ 𝑉 is arbitrary, so suppose the algorithm
selects 𝑢1 in the first iteration, 𝑢2 in the second iteration, and so on. It follows that the
first family added to 𝑀 is (𝑢1, 𝑤1, 𝑑1) and 𝑉 = 𝑁 \ {𝑢1, 𝑤1, 𝑑1} at the start of the second
iteration. It then follows that the next family added to 𝑀 is (𝑢2, 𝑤2, 𝑑2). In general, in the
𝑖th iteration 𝑤𝑖 must be the most-preferred agent in 𝑊 ∩ 𝑉 according to 𝑃𝑢𝑖 and 𝑑𝑖 must be
the most-preferred agent in 𝐷 ∩ 𝑉 according to 𝑃𝑤𝑖

. It follows that the algorithm returns
𝑀 = {(𝑢1, 𝑤1, 𝑑1), (𝑢2, 𝑤2, 𝑑2), . . . , (𝑢𝑛, 𝑤𝑛, 𝑑𝑛)}. As in the proof of Theorem 3.2, for each
𝑖 where 1 ≤ 𝑖 ≤ 𝑛, let 𝐹𝑖 be the family (𝑢𝑖, 𝑤𝑖, 𝑑𝑖) selected in the 𝑖th iteration and let 𝑆𝑖 be the
set of families that block 𝑀 , have a non-empty intersection with 𝐹𝑖 and an empty intersection
with 𝐹𝑗 for every 1 ≤ 𝑗 < 𝑖. Note that as before, 𝑆𝑛 = ∅. As before, it can be shown that
for any 𝑖 where 1 ≤ 𝑖 ≤ 𝑛, no family in 𝑆𝑖 contains 𝑢𝑖 and no family in 𝑆𝑖 contains 𝑤𝑖. It
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remains that each family in 𝑆𝑖 contains 𝑑𝑖. Note that by the construction of I𝑛, 𝑑𝑖 prefers
to 𝑢𝑖 each agent 𝑢𝑗 where 𝑗 > 𝑖. Moreover, any such 𝑢𝑗 prefers to 𝑤𝑗 each agent 𝑤𝑘 where
𝑘 < 𝑗 , and any such 𝑤𝑘 prefers to 𝑑𝑘 each agent 𝑑𝑖 where 𝑖 < 𝑘 . It follows that 𝑆𝑖 contains
the family (𝑢𝑗 , 𝑤𝑘 , 𝑑𝑖) for each 𝑗 where 𝑖 < 𝑗 ≤ 𝑛 and each 𝑘 where 𝑖 < 𝑘 < 𝑗 . As in the
proof of Theorem 3.2, it is straightforward to show that no other families are contained in 𝑆𝑖.
It follows that since

𝑆𝑖 = {(𝑢𝑗 , 𝑤𝑘 , 𝑑𝑖) : 𝑖 < 𝑗 ≤ 𝑛 and 𝑖 < 𝑘 < 𝑗}

it must be that

|𝑆𝑖 | =
𝑛∑︁

𝑗=𝑖+1
( 𝑗 − 𝑖 − 1)

which shows that the upper bound on |𝑆𝑖 | shown in Inequality 3.2 in Theorem 3.2 is tight.
The same argument used in the proof of Theorem 3.2 then shows that

|nbf(𝑀) | = 5𝑛3

6
+ 𝑛

2

2
− 𝑛

3
. (3.4)

We now show that a stable matching exists in I𝑛. Let 𝑀∗ = {(𝑢𝑖, 𝑤𝑛−𝑖+1, 𝑑𝑛−𝑖+1) : 1 ≤ 𝑖 ≤ 𝑛}.
Suppose for a contradiction that 𝑀∗ is not stable and thus some family (𝑢𝑗 , 𝑤𝑘 , 𝑑𝑖) blocks 𝑀∗

in (𝑁, 𝑃). By the definition of a blocking family, 𝑢𝑗 prefers 𝑤𝑘 to 𝑤𝑛− 𝑗+1. By the preference
list of 𝑢𝑗 it follows that 𝑘 < 𝑛 − 𝑗 + 1. Similarly, since 𝑤𝑘 prefers 𝑑𝑖 to 𝑑𝑘 by the preference
list of 𝑤𝑘 it must be that 𝑖 < 𝑘 . Since 𝑘 < 𝑛− 𝑗 + 1 and 𝑖 < 𝑘 it follows that 𝑗 < 𝑛− 𝑖 + 1. By
the construction of 𝑃𝑑𝑖 , it follows that 𝑢𝑗 appears after 𝑢𝑛−𝑖+1 in 𝑃𝑑𝑖 . This is a contradiction
since by the definition of a blocking family 𝑑𝑖 must prefer 𝑢𝑗 to its assigned partner of the
next type, 𝑢𝑛−𝑖+1. It follows that 𝑀∗ is stable. Now

|nbf(𝑀∗) |
|nbf(𝑀) | =

𝑛3

|nbf(𝑀) | since 𝑀∗ is stable

=
6𝑛2

5𝑛2 + 3𝑛 − 2
by Equation 3.4

=
6
5
− 18𝑛 − 12

25𝑛2 + 15𝑛 − 10

=
6
5
− 𝑜(1)

which shows that the analysis is asymptotically tight.

Since all agents of the same type in I𝑛 had the same preference list, it was straightforward to
construct a stable matching. In the next section, we consider instances in which the preference
lists of all agents of at least one type are derived from a master list, and consider the problem
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of finding a matching with the maximum number of non-blocking families.

3.3 Preferences derived from a master list

In this section, we consider a situation in which the preference lists of all agents in at least one
of the sets 𝑈,𝑊, 𝐷 are in some way similar. Specifically, we consider a situation in which
there exists a master preference list over all agents of one type, and quantify the similarity
between the preference list of any agent of the previous type and that master list, in terms of a
specific distance metric. We extend Algorithm cyclicSerialDictatorship for this problem and
show that if this distance is sufficiently small then as the distance is reduced the approximation
ratio of the algorithm decreases from 6/5 to 1.

The assumption of a master list has been made in a number of problems involving matching
under preferences [18], including the multidimensional roommates problem [68]. In the
setting of 3-DSM-CYC, Escamocher and O’Sullivan [51] showed in 2018 that if all agents of
one type have the same preference list then the number of stable matchings in that instance
is exponential in 𝑛. In a paper on Constraint Programming models for 3-DSM-CYC, Cseh et
al. [56] showed that the serial dictatorship-style algorithm that we present here can also be
used to construct strongly stable matchings in 3-DSM-CYC.

Suppose hereafter that all agents of at least one type have preferences derived from a master
list. Without loss of generality, suppose the preference lists of all agents in 𝐷 are close to,
relative to a measure that will be defined, some master list �̂� over all agents in𝑈.

We quantify the similarity between the preference list of each agent in 𝐷 to the master list
�̂�. Here we use the Kendall tau distance [6] (also known as bubblesort distance or Kemeny
distance [11]) two linear orders over some set 𝑆. For any two elements 𝑠𝑖, 𝑠𝑗 in 𝑆, we say
that (𝑠𝑖, 𝑠𝑗 ) is a discordant pair between 𝐿1 and 𝐿2 if 𝑠𝑖 ≻𝐿1 𝑠𝑗 and 𝑠𝑗 ≻𝐿2 𝑠𝑖. The Kendall
tau distance 𝜏(𝐿1, 𝐿2) between 𝐿1 and 𝐿2 is the number of discordant pairs between 𝐿1 and
𝐿2. The Kendall tau distance can be equivalently defined as the number of swaps made by
the bubblesort algorithm when sorting 𝐿1 according to the order of the elements in 𝐿2 (or
vice-versa) [6]. By definition, 0 ≤ 𝜏(𝐿1, 𝐿2) ≤

(𝑛
2
)

for any 𝐿1 and 𝐿2.

Suppose the maximum Kendall tau distance between �̂� and the preference list 𝑃𝑑𝑖 of any
agent 𝑑𝑖 ∈ 𝐷 is 𝑐.

Theorem 3.3. If 𝑐 ≤ 𝑛 then there exists a polynomial-time algorithm for 3-DSM-CYC-MSM
with approximation ratio 6/(6 − (3𝑑2 − 2𝑑3)), where 𝑑 = 𝑐/𝑛.

Proof. The algorithm is a variation of Algorithm cyclicSerialDictatorship. The only differ-
ence is that in each round, instead of selecting a dictator agent in 𝑈 arbitrarily, the most-
preferred yet-unmatched agent in 𝑈 is selected according to the master list �̂�. Intuitively, it
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follows that 𝑢𝑖 is among the most-preferred agents in the preference list of 𝑑𝑘 and thus the
number of blocking families that contain 𝑑𝑘 is minimised.

It is straightforward to show that this algorithm returns a matching 𝑀 in polynomial time.
Without loss of generality, assume that �̂� : 𝑢1 𝑢2 . . . 𝑢𝑛 and that (𝑢1, 𝑤1, 𝑑1) was the first
family added to 𝑀 , (𝑢2, 𝑤2, 𝑑2) was the second family added to 𝑀 , and so on.

For an arbitrary 𝑖 where 1 ≤ 𝑖 ≤ 𝑛 − 1, consider the 𝑖th iteration of the while loop. As before
in the proof of Theorem 3.2, it must be that each family in 𝑆𝑖 contains 𝑑𝑖. Also as before, for
any family (𝑢𝑗 , 𝑤𝑘 , 𝑑𝑖) in 𝑆𝑖 it must be that 𝑖 < 𝑗 ≤ 𝑛 and 𝑖 < 𝑘 < 𝑗 so

|𝑆𝑖 | ≤
𝑛∑︁

𝑗=𝑖+1
( 𝑗 − 𝑖 − 1)

=
(𝑛 − 𝑖) (𝑛 − 𝑖 − 1)

2
. (3.5)

We now show that because of the master list, if 𝑖 < 𝑛 − 𝑐 then the upper bound on |𝑆𝑖 | shown
in Inequality 3.5 can be improved. Consider an arbitrary 𝑖 where 1 ≤ 𝑖 < 𝑛 − 𝑐.

Consider some family (𝑢𝑗 , 𝑤𝑘 , 𝑑𝑖) in 𝑆𝑖. As before in the proof of Theorem 3.2 it must be
that 𝑖 < 𝑗 and 𝑖 < 𝑘 < 𝑗 .

Suppose for a contradiction that 𝑗 > 𝑖 + 𝑐 and thus that 𝑗 ≥ 𝑖 + 𝑐 + 1. We shall identify a
number of discordant pairs between 𝑃𝑑𝑖 and the master list �̂�. By assumption, the position
of 𝑢𝑖 in the master list �̂� is exactly 𝑖. Suppose 𝑖 is the position of 𝑢𝑖 in 𝑃𝑑𝑖 . It follows that the
number of discordant pairs between 𝑃𝑑𝑖 and �̂� that contain 𝑢𝑖 is at least |𝑖 − 𝑖 |. Similarly, the
number of discordant pairs between 𝑃𝑑𝑖 and �̂� that contain 𝑢𝑗 is at least | 𝑗 − 𝑗 | where 𝑗 is the
position of 𝑢𝑗 in 𝑃𝑑𝑖 . At most one discordant pair contains both 𝑢𝑗 and 𝑢𝑖 so the total number
of discordant pairs containing either 𝑢𝑗 or 𝑢𝑖 is at least

|𝑖 − 𝑖 | + | 𝑗 − 𝑗 | − 1 = |𝑖 − 𝑖 | + | 𝑗 − 𝑗 | − 1

≥ 𝑖 − 𝑖 + 𝑗 − 𝑗 − 1

≥ 𝑖 + 𝑐 − 𝑗 since 𝑗 ≥ 𝑖 + 𝑐 + 1

≥ 𝑐 + 1 since 𝑗 < 𝑖

which contradicts the definition of 𝑐 as the maximum number of discordant pairs between the
preference list of any agent in 𝐷 and the master list �̂�. It follows that 𝑗 ≤ 𝑖 + 𝑐. In conclusion,
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we have shown that 𝑖 < 𝑗 ≤ 𝑖 + 𝑐 and 𝑖 < 𝑘 < 𝑗 . It follows that, for any 𝑖 where 1 ≤ 𝑖 < 𝑛− 𝑐,

|𝑆𝑖 | ≤
𝑖+𝑐∑︁
𝑗=𝑖+1
( 𝑗 − 𝑖 − 1)

=
𝑐(𝑐 − 1)

2
. (3.6)

By Inequality 3.1,

|bf(𝑀) | =
𝑛−1∑︁
𝑖=1
|𝑆𝑖 | as before in the proof of Theorem 3.2

≤
𝑛−𝑐−1∑︁
𝑖=1

𝑐(𝑐 − 1)
2

+
𝑛−1∑︁
𝑖=𝑛−𝑐

(𝑛 − 𝑖) (𝑛 − 𝑖 − 1)
2

by Inequalities 3.5 and 3.6

=
1
2
𝑐(𝑛 − 𝑐 − 1) (𝑐 − 1) + 1

6
(𝑐3 − 𝑐) . (3.7)

Suppose 𝑀∗ is a matching in (𝑁, 𝑃) with the maximum number of non-blocking families.
By the definition of nbf,

|nbf(𝑀) | = 𝑛3 − |bf(𝑀) |

≥ 𝑛3 − 1
2
𝑐(𝑛 − 𝑐 − 1) (𝑐 − 1) − 1

6
(𝑐3 − 𝑐) by Inequality 3.7 (3.8)

so the approximation ratio is

|nbf(𝑀∗) |
|nbf(𝑀) | ≤

𝑛3

|nbf(𝑀) |

≤ 6𝑛3

6𝑛3 − 3𝑛𝑐2 + 2𝑐3 + 3𝑛𝑐 − 2𝑐
by Inequality 3.8

≤ 6𝑛3

6𝑛3 − 3𝑛𝑐2 + 2𝑐3 since 𝑛 ≥ 1

=
6𝑛3

6𝑛3 − 𝑐2(3𝑛 − 2𝑐)

=
6

6 − (3𝑑2 − 2𝑑3)
where 𝑑 = 𝑐/𝑛.

□

A consequence of Inequality 3.7 in the proof of Theorem 3.3 is the following corollary. This
corollary is also implied by Escamocher and O’Sullivan’s [51] result that the number of stable
matchings in such an instance of 3-DSM-CYC is exponential in 𝑛.
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Corollary 3.1. Any instance of 3-DSM-CYC contains a stable matching, which can be found
in polynomial time, if all agents of at least one type have the same preference list.

Proof. Assume without loss of generality that all agents in 𝐷 have the same preference
list. Suppose 𝑀 is a matching returned by the variant of Algorithm cyclicSerialDictatorship

described in Theorem 3.3. By Inequality 3.7 in the proof of Theorem 3.3, since 𝑐 = 0 it must
be that |bf(𝑀) | = 0 and thus that 𝑀 is stable. □

As before in the case of unrestricted preferences, we show that this analysis is tight asymp-
totically by constructing an instance I𝑛 for some fixed 𝑛 ≥ 1 where for any fixed 𝑐 ≤ 𝑛 the
approximation ratio obtained by the algorithm is 6/(6− (3𝑑2 − 2𝑑3)) − 𝑜(1), where 𝑑 = 𝑐/𝑛.

For any fixed 𝑛, construct I𝑛 as follows. Let 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛}, 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑛},
and 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}, and for each 𝑖 where 1 ≤ 𝑖 ≤ 𝑛 let

�̂� : 𝑢1 𝑢2 . . . 𝑢𝑛

and

𝑃𝑢𝑖 : 𝑤1 𝑤2 . . . 𝑤𝑛

𝑃𝑤𝑖
: 𝑑1 𝑑2 . . . 𝑑𝑛

To construct 𝑃𝑑𝑖 for each 𝑑𝑖 ∈ 𝐷, first construct 𝑃𝑑𝑖 : 𝑢1 𝑢2 . . . 𝑢𝑛. If 𝑖 ≤ 𝑛 − 𝑐 then shift 𝑢𝑖
in 𝑃𝑑𝑖 to the right by 𝑐 places so that it appears just after 𝑢𝑖+𝑐. If 𝑖 > 𝑛 − 𝑐 then shift 𝑢𝑖 in 𝑃𝑑𝑖
to the right by 𝑛 − 𝑖 places so that it appears last. Note that now 𝑑𝑖 prefers to 𝑢𝑖 any agent 𝑢𝑗
where either 𝑗 < 𝑖 or 𝑖 + 1 ≤ 𝑗 ≤ 𝑖 + 𝑐.

Notice that for any 𝑑𝑖 ∈ 𝐷 each discordant pair between �̂� and 𝑃𝑑𝑖 comprises (𝑢𝑖, 𝑢𝑖+ 𝑗 ) where
𝑗 ≤ 𝑐. It follows that there are exactly 𝑐 discordant pairs between �̂� and 𝑃𝑑𝑖 for each 𝑑𝑖.

It is straightforward to show that the algorithm returns a matching 𝑀 = {(𝑢1, 𝑤1, 𝑑1), (𝑢2,

𝑤2, 𝑑2), . . . , (𝑢𝑛, 𝑤𝑛, 𝑑𝑛)}. Let 𝐹𝑖 be the family (𝑢𝑖, 𝑤𝑖, 𝑑𝑖) selected in the 𝑖th iteration and let
𝑆𝑖 be the set of families that block 𝑀 , have a non-empty intersection with 𝐹𝑖 and an empty
intersection with 𝐹𝑗 for every 1 ≤ 𝑗 < 𝑖. Note that 𝑆𝑛 = ∅.

As before in the proof of Theorem 3.3, we consider two cases. First, suppose 𝑖 < 𝑛 − 𝑐. As
before, it can be shown that no family in 𝑆𝑖 contains 𝑢𝑖 and no family in 𝑆𝑖 contains 𝑤𝑖. It
follows that each family in 𝑆𝑖 contains 𝑑𝑖. As we noted, by the construction of I𝑛 it must be
that 𝑑𝑖 prefers to 𝑢𝑖 each agent 𝑢𝑗 where either 𝑗 < 𝑖 or 𝑖 + 1 ≤ 𝑗 ≤ 𝑖 + 𝑐. By the definition
of 𝑆𝑖 no family in 𝑆𝑖 contains any agent 𝑢𝑗 where 𝑗 < 𝑖 so it follows that any family in 𝑆𝑖
contains 𝑑𝑖 as well as some 𝑢𝑗 where 𝑖 + 1 ≤ 𝑗 ≤ 𝑖 + 𝑐. Moreover, any such 𝑢𝑗 prefers to 𝑤𝑗
each agent 𝑤𝑘 where 𝑘 < 𝑗 , and any such 𝑤𝑘 prefers to 𝑑𝑘 each agent 𝑑𝑖 where 𝑖 < 𝑘 . It
follows that 𝑆𝑖 contains the family (𝑢𝑗 , 𝑤𝑘 , 𝑑𝑖) for each 𝑗 where 𝑖 + 1 ≤ 𝑗 ≤ 𝑖 + 𝑐 and each 𝑘
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where 𝑖 < 𝑘 < 𝑗 . By the proof of Theorem 3.3, it is straightforward to show that no other
families are contained in 𝑆𝑖. It follows that

𝑆𝑖 = {(𝑢𝑗 , 𝑤𝑘 , 𝑑𝑖) : 𝑖 + 1 ≤ 𝑗 ≤ 𝑖 + 𝑐, 𝑖 < 𝑘 < 𝑗}

and thus that

|𝑆𝑖 | =
𝑖+𝑐∑︁
𝑗=𝑖+1
( 𝑗 − 𝑖 − 1) .

Second, suppose 𝑖 ≥ 𝑛 − 𝑐. It follows in this case that

|𝑆𝑖 | =
𝑛∑︁

𝑗=𝑖+1
( 𝑗 − 𝑖 − 1) .

It follows, as in the proof of Theorem 3.3, that

|bf(𝑀) | =
𝑛−𝑐−1∑︁
𝑖=1

𝑐(𝑐 − 1)
2

+
𝑛−1∑︁
𝑖=𝑛−𝑐

(𝑛 − 𝑖) (𝑛 − 𝑖 − 1)
2

=
1
2
𝑐(𝑛 − 𝑐 − 1) (𝑐 − 1) + 1

6
(𝑐3 − 𝑐)

which shows that the upper bound on |𝑆𝑖 | shown in Inequality 3.2 in Theorem 3.2 is tight. It
then follows that

|nbf(𝑀) | = 𝑛3 − 1
2
𝑐(𝑛 − 𝑐 − 1) (𝑐 − 1) − 1

6
(𝑐3 − 𝑐) . (3.9)

To see that at least one stable matching 𝑀∗ exists in I𝑛, consider a new instance I′𝑛 with sets
𝑈′, 𝑊′, and 𝐷′ constructed as for I𝑛 except permuting the types of the agents so that every
agent in 𝐷′ has the same preference list. It follows by Corollary 3.1 that I′𝑛 contains a stable
matching, which can be relabelled to reveal a stable matching 𝑀∗ in I𝑛.

Now

|nbf(𝑀∗) |
|nbf(𝑀) | =

𝑛3

|nbf(𝑀) | since 𝑀∗ is stable

=
6𝑛3

6𝑛3 − 3𝑛𝑐2 + 2𝑐3 + 3𝑛𝑐 − 2𝑐
by Equation 3.9
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=
6𝑛3

6𝑛3 − 3𝑛𝑐2 + 2𝑐3 −
18𝑐𝑛4 − 12𝑐𝑛3

36𝑛6 + (18𝑐 − 36𝑐2)𝑛4

+ (24𝑐3 − 12𝑐)𝑛3

+ (9𝑐4 − 9𝑐3)𝑛2

+ (6𝑐3 − 12𝑐5 + 6𝑐4)𝑛
+ 4𝑐6 − 4𝑐4

=
6𝑛3

6𝑛3 − 3𝑛𝑐2 + 2𝑐3 − 𝑜(1)

=
6

6 − (3𝑑2 − 2𝑑3)
− 𝑜(1) where 𝑑 = 𝑐/𝑛

which shows that the analysis is tight asymptotically.

3.4 Summary and open problems

In this chapter we considered the approximability of the 3-DSM-CYC Maximally Stable
Matching problem (3-DSM-CYC-MSM). We first presented a 9/4-approximation algorithm
based on an existing algorithm for 3GSM-MSM, which is a closely related problem [75]. We
then presented a 6/5-approximation algorithm based on serial dictatorship, and showed that
our analysis is tight asymptotically. Finally, we considered a situation in which the preference
lists of all agents of at least one type are derived from some master list, and modified the
aforementioned serial dictatorship algorithm for this setting. We considered the maximum
Kendall tau distance 𝑐 between any such agent’s list and the master list, and showed that if
𝑐 ≤ 𝑛 then the modified algorithm has an approximation ratio of 6/(6− (3𝑑2 − 2𝑑3)), where
𝑑 = 𝑐/𝑛, which is tight asymptotically.

As we saw in Chapter 2, the history of 3-DSM-CYC spans several decades and it continues
to generate interesting research. Given the recent result of Lam and Plaxton [5] (who showed
that stable matchings need not exist in general, and the associated decision problem is NP-
complete), it seems most natural to consider either the approximability of 3-DSM-CYC, as
we do here, or parameterised complexity.

In the optimisation version of 3-DSM-CYC that we studied here, the objective is to maximise
the number of non-blocking families. Of course, one could also define a complementary
problem in which the objective is to minimise the number of blocking families, which is
arguably more natural. In fact, similar optimisation problems, in which the objective involves
minimising the number of blocking coalitions, have been studied in relation to other problems
of matching under preferences [77, 78, 79]. Another possibility is to construct a sub-matching
of maximum cardinality such that no three agents in families in the sub-matching form a
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blocking family in the sub-matching. Rosenbaum [75] refers to the analogous problem for
3GSM as the 3G Maximum Stable Sub-matching problem (3G-MSS).

Although the definitions of the maximisation and minimisation variants of 3-DSM-CYC
are complementary, it seems as if the difficulty of characterising instances with no stable
matching makes tackling the latter variant more challenging.
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Chapter 4

Three-Dimensional Stable
Roommates with ℬ-preferences

4.1 Introduction

In this chapter we study a new model of fixed-size coalition formation, which we call the
Three-Dimensional Roommates withℬ-preferences (3DR-B). This model is closely related to
some of the existing models of Three-Dimensional Roommates (3DR) discussed in Chapter 2,
and in particular the Three-Person Stable Assignment problem (3PSA) [10] and the model of
Iwama et al. [57]. As in the model of Iwama et al., in 3DR-B each agent has a strict preference
list over all other agents. A specific set extension rule is then used to infer from each agent’s
preference list that agent’s preferences over coalitions. In 3DR-B, that set extension rule
is known as ℬ-preferences [19]. Using ℬ-preferences, any agent prefers some triple 𝑆 to
another triple 𝑇 if the most-preferred agent in 𝑆 is preferred to the most-preferred agent in 𝑇 .
In this chapter we consider in 3DR-B the existence of, and complexity of finding, matchings
that are stable.

We first show, in Section 4.2, that a given instance of 3DR-B may not contain a stable
matching and that the associated decision problem is NP-complete (Theorem 4.1). This
contrasts with an analogous model in which coalitions need not have a fixed size, in which
a stable matching must always exist and can be found in polynomial time [7]. It may seem
intuitive that the additional requirement of fixed-size coalitions makes this particular problem
harder to solve, and this result gives an example of a model in which that intuition holds. It
also leads to interesting directions for subsequent work, for example involving approximately
stable matchings, or alternative constraints on the size of feasible coalitions.

We then consider, in Section 4.3, a closely related optimisation problem in which the objective
is to construct a matching that is, in terms of a specific measure, as stable as possible. We begin
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by showing that an existing approximation algorithm for a different model of 3DR can be used
to devise a 9/4-approximation algorithm for the 3DR-B problem (Theorem 4.2). We then
show that a simple algorithm based on serial dictatorship gives an improved approximation
ratio of 3/2 (Theorem 4.3). Interestingly, this algorithm can be viewed as an adaptation of
the algorithm developed by Cechlárová and Romero-Medina [7] that can be used to construct
a stable matching in the analogous model in which coalitions need not have a fixed size.

Next, in Section 4.4, we consider the problem of identifying the smallest instance of 3DR-
B that contains no stable matching. We show that such an instance contains at least 9
(Theorem 4.4) and at most 15 agents (Theorem 4.5) but leave determining the precise number
of agents as an open problem.

Finally, in Section 4.5, we recap on our results and discuss some directions for future work.

We proceed with some formal definitions and notation. An instance of 3DR-B comprises a
set 𝑁 of 3𝑛 agents and a preference list of each agent 𝛼𝑖, labelled 𝑃𝛼𝑖 , that describes a strict
order over all agents in 𝑁 \ {𝛼𝑖}. We say that an agent 𝛼𝑖 prefers 𝛼𝑗 to 𝛼𝑘 , denoted 𝛼𝑗 ≻𝛼𝑖 𝛼𝑘 ,
if 𝛼𝑗 precedes 𝛼𝑘 in 𝑃𝛼𝑖 . A triple is an unordered set of three agents. In order to compare
triples, agents in an instance of 3DR-B use ℬ-preferences, which are defined as follows.
For any agent 𝛼𝑖 and set of agents 𝑆 ⊆ 𝑁 we denote by ℬ𝛼𝑖 (𝑆) the most-preferred agent in
𝑆 \ {𝛼𝑖} according to 𝛼𝑖. For any agent 𝛼𝑖 and any two triples 𝑟 and 𝑠, we say that 𝛼𝑖 prefers
𝑟 to 𝑠, denoted 𝑟 ≻𝛼𝑖 𝑠, if ℬ𝛼𝑖 (𝑟) ≻𝛼𝑖 ℬ𝛼𝑖 (𝑠). A matching is a partition of 𝑁 into 𝑛 triples.
Given an agent 𝛼𝑖 and a matching 𝑀 , we denote by 𝑀 (𝛼𝑖) the triple in 𝑀 that contains
𝛼𝑖. Given a matching 𝑀 , we say that a triple 𝑡 is blocking if each agent 𝛼𝑖 in 𝑡 prefers 𝑡 to
𝑀 (𝛼𝑖). A matching is stable if it does not contain a blocking triple. Let ℬ𝛼𝑖 (𝑀) be short for
ℬ𝛼𝑖 (𝑀 (𝛼𝑖)). Let 𝑃 be the collection of preference lists 𝑃𝛼𝑖 for each agent 𝛼𝑖. For any instance
(𝑁, 𝑃) of 3DR-B and any matching 𝑀 , we denote by bt(𝑀, (𝑁, 𝑃)) ⊆

(𝑁
3
)

the set of triples
that block 𝑀 in (𝑁, 𝑃). Conversely, we denote by nbt(𝑀, (𝑁, 𝑃)) =

(𝑁
3
)
\ bt(𝑀, (𝑁, 𝑃)) the

set of triples that do not block 𝑀 in (𝑁, 𝑃). When the instance in question is clear from
context, we simply write bt(𝑀) or nbt(𝑀).

4.2 Deciding existence

In this section we show that deciding if a given instance of 3DR-B contains a stable match-
ing is NP-complete. The reduction presented here is from the Three-Dimensional Stable
Matching problem with Cyclic preferences (3-DSM-CYC, defined in Chapter 3), which is
NP-complete [5].

Our reduction is similar to the reduction from 3GSM to the Three-Person Stable Assignment
problem (3PSA, defined in Chapter 2) used by Ng and Hirschberg [10]. Our reduction, like
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Ng and Hirschberg’s, is from a problem involving a multipartite set of agents (in their case,
3GSM) to a problem involving a homogenous set of agents (in their case, 3PSA). Informally,
the idea is to use the same set of agents in both problem instances but to design the preference
lists of the agents in the constructed instance in such a way that each triple in any stable
matching in the constructed instance must contain exactly one agent of each type. It is then
straightforward to show that a stable matching exists in the instance of the latter problem if
and only if a stable matching exists in the instance of the former problem. In fact, a similar
technique was also used to reduce from (two-dimensional) SM to (two-dimensional) SR by
Gusfield and Irving in 1989 [80, Lemma 4.1.1].

The reduction from 3-DSM-CYC to 3DR-B is as follows. Suppose (𝑁′, 𝑃′) is an arbitrary
instance of 3-DSM-CYC, in which the sets of agents of each type are labelled 𝑈,𝑊 , and 𝐷.
We shall construct an instance (𝑁, 𝑃) of 3DR-B. First construct three new ‘sentinel’ agents
𝑢0, 𝑤0, 𝑑0 in 𝑁 where:

𝑃𝑢0 : [ 𝑊 in arbitrary order ] 𝑤0 [ 𝐷 in arbitrary order ] 𝑑0 [ 𝑈 in arbitrary order ]
𝑃𝑤0 : [ 𝐷 in arbitrary order ] 𝑑0 [ 𝑈 in arbitrary order ] 𝑢0 [ 𝑊 in arbitrary order ]
𝑃𝑑0 : [ 𝑈 in arbitrary order ] 𝑢0 [ 𝑊 in arbitrary order ] 𝑤0 [ 𝐷 in arbitrary order ]

Next, add each agent in 𝑁′ = 𝑈 ∪𝑊 ∪ 𝐷 to 𝑁 and for each 𝑖 where 1 ≤ 𝑖 ≤ 𝑛 let:

𝑃𝑢𝑖 : [ 𝑃′𝑢𝑖 ] 𝑤0 [ 𝐷 in arbitrary order ] 𝑑0 [ 𝑈 \ {𝑢𝑖} in arbitrary order ] 𝑢0

𝑃𝑤𝑖
: [ 𝑃′𝑤𝑖

] 𝑑0 [ 𝑈 in arbitrary order ] 𝑢0 [ 𝑊 \ {𝑤𝑖} in arbitrary order ] 𝑤0

𝑃𝑑𝑖 : [ 𝑃′
𝑑𝑖
] 𝑢0 [ 𝑊 in arbitrary order ] 𝑤0 [ 𝐷 \ {𝑑𝑖} in arbitrary order ] 𝑑0

This completes the construction of (𝑁, 𝑃). Partition 𝑁 into three sets 𝑈′,𝑊′, 𝐷′ where
𝑈′ = 𝑈 ∪ {𝑢0}, 𝑊′ = 𝑊 ∪ {𝑤0}, and 𝐷′ = 𝐷 ∪ {𝑑0}. Note that in the constructed instance
(𝑁, 𝑃) of 3DR-B:

• Any agent in 𝑈′ prefers any agent in 𝑈′ to any agent in 𝑊′ and also prefers any agent
in𝑊′ to any agent in 𝐷′ (and similarly for any agent in𝑊′ or 𝐷′).

• For any agent in 𝑁 , 𝑢0 is the least-preferred agent in𝑈′, 𝑤0 is the least-preferred agent
in𝑊′ and 𝑑0 is the least-preferred agent in 𝐷′.

It is straightforward to show that this reduction can be performed in polynomial time. To
prove that the reduction is correct we show that the 3DR-B instance (𝑁, 𝑃) contains a stable
matching if and only if the 3-DSM-CYC instance (𝑁′, 𝑃′) contains a stable matching.

We first show that if the 3-DSM-CYC instance (𝑁′, 𝑃′) then the 3DR-B instance (𝑁, 𝑃)
contains a stable matching.
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Lemma 4.1. If (𝑁′, 𝑃′) contains a stable matching then (𝑁, 𝑃) contains a stable matching.

Proof. Suppose 𝑀′ is a stable matching in (𝑁′, 𝑃′). Let 𝑀 = {𝑢0, 𝑤0, 𝑑0} ∪ {{𝑢𝑖, 𝑤𝑗 ,
𝑑𝑘 } : (𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 ) ∈ 𝑀′}.

Towards a contradiction, suppose 𝑀 is not stable in (𝑁, 𝑃) and that {𝛼𝑖, 𝛼𝑗 , 𝛼𝑘 } blocks 𝑀
in (𝑁, 𝑃). It must be that either 𝛼𝑖 ∈ 𝑈′, 𝛼𝑖 ∈ 𝑊′, or 𝛼𝑖 ∈ 𝐷′. Assume without loss of
generality that 𝛼𝑖 ∈ 𝑈′. It follows that ℬ𝛼𝑖 (𝑀) ∈ 𝑊′ and thus either 𝛼𝑗 ∈ 𝑊′ or 𝛼𝑘 ∈ 𝑊′.
Suppose without loss of generality that 𝛼𝑗 ∈ 𝑊′. A similar argument then shows that 𝛼𝑘 ∈ 𝐷′

so we relabel {𝛼𝑖, 𝛼𝑗 , 𝛼𝑘 } as {𝑢𝑖′ , 𝑤𝑗 ′ , 𝑑𝑘 ′} where 𝑢𝑖′ ∈ 𝑈′, 𝑤𝑗 ′ ∈ 𝑊′, and 𝑑𝑘 ′ ∈ 𝐷′. Since
𝑤𝑗 ′ ≻𝑢𝑖′ ℬ𝑢𝑖′ (𝑀) and, by the construction of 𝑀′, ℬ𝑢𝑖′ (𝑀) ∈ 𝑊′, it must be that 𝑗 ′ ≠ 0. A
similar argument shows that 𝑘′ ≠ 0 and 𝑖′ ≠ 0. It then follows that the family (𝑢𝑖′ , 𝑤𝑗 ′ , 𝑑𝑘 ′)
blocks 𝑀 in (𝑁′, 𝑃′), which is a contradiction. □

We now show, using a sequence of lemmas, that if the 3DR-B instance (𝑁, 𝑃) contains a
stable matching then the 3-DSM-CYC instance (𝑁′, 𝑃′) contains a stable matching. The
complication here is that a triple in a stable matching in (𝑁, 𝑃) need not contain exactly one
agent in each of 𝑈′, 𝑊′, and 𝐷′. Nevertheless, we show that an arbitrary stable matching in
(𝑁, 𝑃) has a relatively constrained structure and can thus be modified such that each triple
contains exactly one agent from each of 𝑈, 𝑊 , 𝐷. It is then straightforward to construct a
stable matching in the 3-DSM-CYC instance (𝑁′, 𝑃′).

We say that a triple of three agents in 𝑁 is mixed if it does not contain exactly one agent in
each of 𝑈′, 𝑊′, and 𝐷′. Without loss of generality assume that the number of mixed triples
in 𝑀 is minimal.

Suppose 𝑋 is an arbitrary element of {𝑈′,𝑊′, 𝐷′}. Note that by definition, the number of
agents in 𝑋 in non-mixed triples in 𝑀 is 𝑛 − |𝑋 |. It follows that the number of agents in 𝑋 in
mixed triples in 𝑀 is |𝑋 | and thus the average number of agents in 𝑋 in each mixed triple in
𝑀 is |𝑋 |/|𝑋 | = 1.

Lemma 4.2. If (𝑁, 𝑃) contains a stable matching 𝑀 then no triple in 𝑀 contains three agents
in exactly one of𝑈′,𝑊′, and 𝐷′.

Proof. Assume without loss of generality that 𝑀 contains some mixed triple 𝑡1 = {𝑢𝑖1 , 𝑢𝑖2 ,
𝑢𝑖3} where 𝑢𝑖1 , 𝑢𝑖2 , 𝑢𝑖3 ∈ 𝑈′. Since 𝑡1 contains more agents in 𝑈′ than the average number
of agents in 𝑈′ in each mixed triple in 𝑀 , it follows that there exists some mixed triple
𝑡2 ∈ 𝑀 that contains fewer than the average number of agents in 𝑈′ in each mixed triple in
𝑀 . Since the average number of agents in 𝑈′ in each mixed triple in 𝑀 is 1 it must be that
𝑡2 contains no agent in 𝑈′. Consider the possible contents of 𝑡2. If either 𝑡2 = {𝑤𝑗1 , 𝑑𝑘1 , 𝑑𝑘2}
where 𝑤𝑗1 ∈ 𝑊′ and 𝑑𝑘1 , 𝑑𝑘2 ∈ 𝐷′, 𝑡2 = {𝑤𝑗1 , 𝑤𝑗2 , 𝑑𝑘1} where 𝑤𝑗1 , 𝑤𝑗2 ∈ 𝑊′ and 𝑑𝑘1 ∈ 𝐷′,
or 𝑡2 = {𝑑𝑘1 , 𝑑𝑘2 , 𝑑𝑘3} where 𝑑𝑘1 , 𝑑𝑘2 , 𝑑𝑘3 ∈ 𝐷′, then {𝑢𝑖1 , 𝑢𝑖2 , 𝑑𝑘1} blocks 𝑀′, which is a
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contradiction. If 𝑡2 = {𝑤𝑗1 , 𝑤𝑗2 , 𝑤𝑗3} where 𝑤𝑗1 , 𝑤𝑗2 , 𝑤𝑗3 ∈ 𝑊′ then {𝑤𝑗1 , 𝑤𝑗2 , 𝑢𝑖1} blocks 𝑀 ,
which is a contradiction. □

Lemma 4.3. Arbitrarily label𝑈′,𝑊′, 𝐷′ as 𝑋,𝑌, 𝑍 . If (𝑁, 𝑃) contains a stable matching 𝑀
that contains a mixed triple {𝑥𝑖1 , 𝑥𝑖2 , 𝑦𝑗1} where 𝑥𝑖1 , 𝑥𝑖2 ∈ 𝑋 and 𝑦𝑗1 ∈ 𝑌 then 𝑀 also contains
some mixed triple {𝑦𝑗2 , 𝑧𝑘1 , 𝑧𝑘2} where 𝑦𝑗2 ∈ 𝑌 and 𝑧𝑖1 , 𝑧𝑖2 ∈ 𝑍 .

Proof. Without loss of generality assume that 𝑋 = 𝑈′, 𝑌 = 𝑊′, and 𝑍 = 𝐷′. Suppose
for a contradiction that 𝑀 contains some mixed triple {𝑢𝑖1 , 𝑢𝑖2 , 𝑤𝑗1} where 𝑢𝑖1 , 𝑢𝑖2 ∈ 𝑈′ and
𝑤𝑗1 ∈ 𝑊′ and does not contain any triple {𝑤𝑗2 , 𝑑𝑘1 , 𝑑𝑘2} where 𝑤𝑗2 ∈ 𝑊′ and 𝑑𝑘1 , 𝑑𝑘2 ∈ 𝐷′.
Observe that {𝑢𝑖1 , 𝑢𝑖2 , 𝑤𝑗1} contains more agents in 𝑈′ than the average number of agents in
𝑈′ in each mixed triple in 𝑀 and fewer agents in 𝐷′ than the average number of agents in 𝐷′

in each mixed triple in 𝑀 . It follows that there exists some mixed triple 𝑡1 ∈ 𝑀 in which the
number of agents in𝑈′ is 0 and some mixed triple 𝑡2 ∈ 𝑀 in which the number of agents in 𝐷′

is at least 2. By Lemma 4.2, the number of agents in 𝑡2 in 𝐷′ is exactly 2. By assumption, no
triple {𝑤𝑗2 , 𝑑𝑘1 , 𝑑𝑘2} exists in 𝑀 so the only possibility is that 𝑡1 ≠ 𝑡2 and 𝑡1 = {𝑤𝑗3 , 𝑤𝑗4 , 𝑑𝑘3}
where 𝑤𝑗3 , 𝑤𝑗4 ∈ 𝑊′ and 𝑑𝑘3 ∈ 𝐷′ and 𝑡2 = {𝑑𝑘4 , 𝑑𝑘5 , 𝑢𝑖3} where 𝑑𝑘4 , 𝑑𝑘5 ∈ 𝐷′ and 𝑢𝑖3 ∈ 𝑈′.
Now {𝑢𝑖3 , 𝑤𝑗1 , 𝑑𝑘3} blocks 𝑀′, which is a contradiction. □

Lemma 4.4. If (𝑁, 𝑃) contains a stable matching 𝑀 then no triple in 𝑀 is mixed.

Proof. Assume for a contradiction that 𝑀 contains at least one mixed triple. By Lemma 4.2,
no triple contains three agents in any one of 𝑈′, 𝑊′, and 𝐷′. Assume then without loss
of generality that 𝑀 contains some mixed triple 𝑡1 = {𝑢𝑖1 , 𝑢𝑖2 , 𝑤𝑗1} where 𝑢𝑖1 , 𝑢𝑖2 ∈ 𝑈′ and
𝑤𝑗1 ∈ 𝑊′. By Lemma 4.3 it follows that there exists some other mixed triple {𝑤𝑗2 , 𝑑𝑘1 , 𝑑𝑘2}
in 𝑀 where 𝑤𝑗2 ∈ 𝑊′ and 𝑑𝑘1 , 𝑑𝑘2 ∈ 𝐷′.

We first claim that every mixed triple in 𝑀 either contains two agents in 𝑈′ and one agent
in 𝑊′ or contains two agents in 𝐷′ and one agent in 𝑊′. If not, by Lemma 4.3 there are two
possible cases: either 𝑀 contains two triples {𝑢𝑖3 , 𝑤𝑗3 , 𝑤𝑗4}, {𝑢𝑖4 , 𝑑𝑘3 , 𝑑𝑘4} or 𝑀 contains two
triples {𝑑𝑘3 , 𝑤𝑗3 , 𝑤𝑗4}, {𝑢𝑖3 , 𝑢𝑖4 , 𝑑𝑘4}, where in either case 𝑢𝑖3 , 𝑢𝑖4 ∈ 𝑈′, 𝑤𝑗3 , 𝑤𝑗4 ∈ 𝑊′, and
𝑑𝑘3 , 𝑑𝑘4 ∈ 𝐷′. In the former case, {𝑢𝑖4 , 𝑤𝑗3 , 𝑑𝑘1} blocks 𝑀 . In the latter case, {𝑢𝑖4 , 𝑤𝑗1 , 𝑑𝑘3}
blocks 𝑀 .

Now consider 𝑤0. If 𝑀 (𝑤0) is not mixed then 𝑀 (𝑤0) = {𝑢𝑖3 , 𝑤0, 𝑑𝑘3} where 𝑢𝑖3 ∈ 𝑈′ and
𝑑𝑘3 ∈ 𝐷′ and thus {𝑢𝑖3 , 𝑤𝑗1 , 𝑑𝑘1} blocks 𝑀 , which is a contradiction. It remains that 𝑀 (𝑤0)
is mixed. Since every mixed triple either contains two agents in 𝑈′ and one agent in 𝑊′ or
contains two agents in 𝐷′ and one agent in 𝑊′, without loss of generality assume that either
𝑗1 = 0 or 𝑗2 = 0. Suppose firstly that 𝑗2 = 0. It follows that {𝑑𝑘1 , 𝑑𝑘2 , 𝑤𝑗1} blocks 𝑀′, which
is a contradiction. It remains that 𝑗1 = 0. To show a contradiction, we now construct a new
matching �̂� in which the number of mixed triples in �̂� is strictly fewer than the number
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of mixed triples in 𝑀 . Consider 𝑃𝑤𝑗2
. It must be that either 𝑑𝑘1 ≻𝑤𝑗2

𝑑𝑘2 or 𝑑𝑘2 ≻𝑤𝑗2
𝑑𝑘1 .

Suppose without loss of generality that 𝑑𝑘1 ≻𝑤𝑗2
𝑑𝑘2 . Now consider

�̂� = (𝑀 \ {{𝑢𝑖1 , 𝑢𝑖2 , 𝑤𝑗1}, {𝑑𝑘1 , 𝑑𝑘2 , 𝑤𝑗2}}) ∪ {{𝑢𝑖1 , 𝑤0, 𝑑𝑘1}, {𝑢𝑖2 , 𝑤𝑗2 , 𝑑𝑘2}}

in which:

• ℬ𝑢𝑖1
(�̂�) = ℬ𝑢𝑖1

(𝑀) = 𝑤0

• ℬ𝑤0 (�̂�) = 𝑑𝑘1 and ℬ𝑤0 (𝑀) ∈ 𝑈′ and so �̂� ≻𝑤0 𝑀

• ℬ𝑑𝑘1
(�̂�) = 𝑢𝑖1 and ℬ𝑑𝑘1

(𝑀) ∈ 𝑊′ and so �̂� ≻𝑑𝑘1
𝑀

• ℬ𝑢𝑖2
(�̂�) = 𝑤𝑗2 ≻𝑢𝑖2 𝑤0 = ℬ𝑢𝑖2

(𝑀)

• ℬ𝑤𝑗2
(�̂�) = ℬ𝑤𝑗2

(𝑀) = 𝑑𝑘1

• ℬ𝑑𝑘2
(�̂�) = ℬ𝑑𝑘2

(𝑀) = 𝑤𝑗2 .

It follows that any triple that blocks �̂� in (𝑁, 𝑃) also blocks 𝑀 in (𝑁, 𝑃). Thus, since 𝑀
is stable, �̂� is also stable. The number of mixed triples in �̂� is exactly one fewer than in
𝑀 , which contradicts our assumption that 𝑀 is a stable matching in (𝑁, 𝑃) with the minimal
number of mixed triples. □

Lemma 4.5. If (𝑁, 𝑃) contains a stable matching then (𝑁, 𝑃) contains a stable matching �̂�
such that �̂� contains {𝑢0, 𝑤0, 𝑑0} and no triple in �̂� is mixed.

Proof. Let 𝑆 be the set of triples in 𝑀 that each contain at least one agent in {𝑢0, 𝑤0, 𝑑0}.
By definition, 1 ≤ |𝑆 | ≤ 3. If |𝑆 | = 1, then {𝑢0, 𝑤0, 𝑑0} ∈ 𝑀 so �̂� = 𝑀 . If |𝑆 | = 3
then by Lemma 4.4 it must be that 𝑆 = {{𝑢0, 𝑤𝑗1 , 𝑑𝑘1}, {𝑢𝑖2 , 𝑤0, 𝑑𝑘2}, {𝑢𝑖3 , 𝑤𝑗3 , 𝑑0}}, where
𝑢𝑖2 , 𝑢𝑖3 ∈ 𝑈′, 𝑤𝑗1 , 𝑤𝑗2 ∈ 𝑊′ and 𝑑𝑘1 , 𝑑𝑘2 ∈ 𝐷′. Now {𝑢𝑖2 , 𝑤𝑗3 , 𝑑𝑘1} blocks 𝑀 , which is a
contradiction. It remains that |𝑆 | = 2. By Lemma 4.4, no triple in 𝑀 is mixed, so there are
three possible cases: either 𝑆 = {{𝑢0, 𝑤0, 𝑑𝑘 }, {𝑢𝑖, 𝑤𝑗 , 𝑑0}}, 𝑆 = {{𝑢0, 𝑤𝑗 , 𝑑0}, {𝑢𝑖, 𝑤0, 𝑑𝑘 }},
or 𝑆 = {{𝑢0, 𝑤𝑗 , 𝑑𝑘 }, {𝑢𝑖, 𝑤0, 𝑑0}}, where in any case 𝑢𝑖 ∈ 𝑈′, 𝑤𝑗 ∈ 𝑊′, and 𝑑𝑗 ∈ 𝐷′. In any
case, let:

�̂� = (𝑀 \ 𝑆) ∪ {{𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 }, {𝑢0, 𝑤0, 𝑑0}} .

Now:

• either ℬ𝑢𝑖 (�̂�) ≻𝑢𝑖 ℬ𝑢𝑖 (𝑀) or ℬ𝑢𝑖 (�̂�) = ℬ𝑢𝑖 (𝑀)

• either ℬ𝑤𝑗
(�̂�) ≻𝑤𝑗

ℬ𝑤𝑗
(𝑀) or ℬ𝑤𝑗

(�̂�) = ℬ𝑤𝑗
(𝑀)
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• either ℬ𝑑𝑘 (�̂�) ≻𝑑𝑘 ℬ𝑑𝑘 (𝑀) or ℬ𝑑𝑘 (�̂�) = ℬ𝑑𝑘 (𝑀).

It follows that any triple that blocks �̂� in (𝑁, 𝑃) also blocks 𝑀 in (𝑁, 𝑃). Thus, since 𝑀 is
stable, �̂� is also stable. □

Lemma 4.6. If (𝑁, 𝑃) contains a stable matching then (𝑁′, 𝑃′) contains a stable matching.

Proof. By Lemma 4.5, there exists a stable matching �̂� that contains {𝑢0, 𝑤0, 𝑑0} in which
no triple is mixed. We claim that

𝑀′ = {(𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 ) : {𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 } ∈ �̂�}

is a stable matching in (𝑁′, 𝑃′). Suppose for a contradiction that the family (𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 )
blocks 𝑀′ in (𝑁′, 𝑃′). It follows that the triple {𝑢𝑖, 𝑤𝑗 , 𝑑𝑘 } blocks �̂� in (𝑁, 𝑃), which is a
contradiction. □

We have now shown that the 3DR-B instance (𝑁, 𝑃) contains a stable matching if and only if
the 3-DSM-CYC instance (𝑁′, 𝑃′) contains a stable matching. This shows that the reduction
is correct.

Theorem 4.1. Deciding if a given instance of 3DR-B contains a stable matching is NP-
complete.

Proof. This decision problem belongs to NP since the stability of a given matching 𝑀 can
be verified in polynomial time, as follows. For each triple 𝑟 ∈

(𝑁
3
)

consider each agent 𝛼𝑖 in
𝑟 compare ℬ𝛼𝑖 (𝑟) and ℬ𝛼𝑖 (𝑀) using 𝑃𝛼𝑖 . If at least one agent 𝛼𝑖 in each triple 𝑟 does not
prefer ℬ𝛼𝑖 (𝑟) to ℬ𝛼𝑖 (𝑀) then 𝑀 is stable.

We have presented a polynomial-time reduction from 3-DSM-CYC, which is NP-complete
[5]. Given an arbitrary instance (𝑁′, 𝑃′) of 3-DSM-CYC, the reduction constructs an instance
(𝑁, 𝑃) of 3DR-B. By use the reduction described to construct (𝑁, 𝑃). In Lemmas 4.1 and 4.6
we showed that (𝑁, 𝑃) contains a stable matching if and only if (𝑁′, 𝑃′) contains a stable
matching and thus that this decision problem is NP-hard. □

4.3 Approximation

The 3DR-B Maximally Stable Matching problem (3DR-B-MSM) is the following optimisation
problem: given an instance of 3DR-B, find a matching with the maximum number of non-
blocking triples. Formally, 3DR-B-MSM is a maximisation problem in which any instance
(𝑁, 𝑃) of 3DR-B-MSM is also instance of 3DR-B, a solution is a matching in (𝑁, 𝑃), and
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the measure is |nbt(𝑀, (𝑁, 𝑃)) |. We showed in Theorem 4.1 that deciding if an instance
of 3DR-B contains a matching with

(3𝑛
3
)

non-blocking triples is NP-complete, so it follows
that 3DR-B-MSM is NP-hard. In this section we present two approximation algorithms for
3DR-B-MSM. The first is a direct application of an existing result relating to 3PSA. The
second is a novel serial dictatorship-style algorithm.

There is a close relationship between 3DR-B and the Three-Person Stable Assignment prob-
lem (3PSA, introduced in Chapter 2). Recall that in 3DR-B, each agent has a strict preference
list over the other 3𝑛−1 agents. ℬ-preferences are then used to infer each agent’s preferences
over triples. In 3PSA, each agent instead has a strict preference list over the

(3𝑛−1
2

)
triples

that they may belong to. We show that, given an instance (𝑁, 𝑃) of 3DR-B, it is possible to
construct an instance (𝑁, 𝑃′) of 3PSA with the same set of agents such that for any matching
𝑀 , if a triple blocks 𝑀 in (𝑁, 𝑃) then it also blocks 𝑀 in (𝑁, 𝑃′). From this result it
follows that an existing 9/4-approximation algorithm for 3PSA-MSM [75], which is defined
analogously to 3DR-B-MSM, can be applied to construct a 9/4-approximation algorithm for
3DR-B-MSM. The existing 9/4-approximation algorithm for 3PSA-MSM was presented by
Rosenbaum in 2016 [75] and is called Algorithm ASA. It is an iterative greedy algorithm
which involves, in each iteration, selecting a triple that once added to the matching, intersects
the maximum number of non-blocking triples.

The design of our 9/4-approximation algorithm for 3DR-B-MSM, which makes use of the
relationship between 3PSA and 3DR-B, is essentially the same as the 9/4-approximation
algorithm that we described in Chapter 3 for 3-DSM-CYC-MSM. As we saw in Chapter 3,
the latter algorithm makes use of the analogous relationship between 3GSM and 3-DSM-CYC
(in fact, Algorithm AMSM is also essentially the same as Algorithm ASA [75]).

Theorem 4.2. There exists a polynomial-time 9/4-approximation algorithm for 3DR-B-MSM.

Proof. The approximation algorithm for 3DR-B-MSM involves constructing a corresponding
instance of 3PSA-MSM, which has the same set of agents, and running Algorithm ASA [75].

We first describe how to construct, in polynomial time, a corresponding instance (𝑁, 𝑃′)
of 3PSA such that |bt(𝑀, (𝑁, 𝑃)) | ≥ |bt(𝑀, (𝑁, 𝑃′)) | for any matching 𝑀 . For each agent
𝛼𝑖 ∈ 𝑁 , let 𝑃′𝛼𝑖 be the list of all 2-agent subsets of 𝑁 \ {𝛼𝑖} in lexicographic order with respect
to 𝑃𝛼𝑖 . Now, suppose 𝑀 is an arbitrary matching in (𝑁, 𝑃) and 𝑟 is a triple that blocks 𝑀 in
(𝑁, 𝑃). We will show that 𝑟 also blocks 𝑀 in (𝑁, 𝑃′). For any 𝛼𝑘 in 𝑟 it must be that ℬ𝛼𝑘 (𝑟)
precedes ℬ𝛼𝑘 (𝑀) in 𝑃𝛼𝑘 . By the construction of 𝑃′𝛼𝑘 as the lexicographic order of 𝑃𝛼𝑘 , it
must be that 𝑟 precedes 𝑀 (𝛼𝑘 ) in 𝑃′𝛼𝑘 and thus that 𝑟 also blocks 𝑀 in (𝑁, 𝑃′). It follows
that |bt(𝑀, (𝑁, 𝑃′)) | ≥ |bt(𝑀, (𝑁, 𝑃)) | and thus that |nbt(𝑀, (𝑁, 𝑃)) | ≥ |nbt(𝑀, (𝑁, 𝑃′)) |,
as required.
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Since Rosenbaum’s [75] analysis of Algorithm ASA shows that |nbt(𝑀, (𝑁, 𝑃′)) | ≥ 4
(3𝑛

3
)
/9,

we can conclude that |nbt(𝑀, (𝑁, 𝑃)) | ≥ 4
(3𝑛

3
)
/9. □

We now present an algorithm with an improved approximation ratio. This algorithm, called
Algorithm serialDictatorship, is based on serial dictatorship. In is a variation of Algo-
rithm cyclicSerialDictatorship that we presented for 3-DSM-CYC in Chapter 3. The accom-
panying analysis is loosely based on the analysis of Algorithm ASA given by Rosenbaum
[75].

Algorithm 4.1 Algorithm serialDictatorship
Input: an instance (𝑁, 𝑃) of 3DR-B
Output: a matching 𝑀 in (𝑁, 𝑃)
𝑈 ← 𝑁

𝑀 ← ∅
while |𝑈 | > 0 do
𝑑1 ← an arbitrary agent in𝑈
𝑑2 ←ℬ𝑑1 (𝑈)
𝑑3 ←ℬ𝑑2 (𝑈 \ {𝑑1})
𝑀 ← 𝑀 ∪ {{𝑑1, 𝑑2, 𝑑3}}
𝑈 ← 𝑈 \ {𝑑1, 𝑑2, 𝑑3}

end while
return 𝑀

It is straightforward to show that Algorithm serialDictatorship returns a matching 𝑀 in
polynomial time. We now analyse its approximation ratio in the same way we analysed the
approximation ratio of Algorithm cyclicSerialDictatorship for Theorem 3.2 in Chapter 3, and
show that our analysis is tight. We consider each triple in 𝑀 in the order that they were added
to 𝑀 in the algorithm and count only the blocking triples that intersect that triple and do not
intersect any previous triple.

Theorem 4.3. There exists a polynomial-time 3/2-approximation algorithm for 3DR-B-MSM.

Proof. Namely Algorithm serialDictatorship. By the pseudocode, there are 𝑛 iterations of
the while loop so it is straightforward to show that the algorithm runs in polynomial time.
For each 𝑖 where 1 ≤ 𝑖 ≤ 𝑛, let 𝑑𝑖1, 𝑑

𝑖
2, 𝑑

𝑖
3 be the agents labelled 𝑑1, 𝑑2, 𝑑3 respectively in that

iteration, 𝐷𝑖 = {𝑑𝑖1, 𝑑
𝑖
2, 𝑑

𝑖
3}, and𝑈𝑖 be the set of agents in𝑈 at the start of that iteration. Note

that by the algorithm, |𝑈𝑖 \ 𝐷𝑖 | = 3𝑛 − 3𝑖.

For each 𝑖 where 1 ≤ 𝑖 ≤ 𝑛, let 𝑆𝑖 be the set of triples that block 𝑀 , have a non-empty
intersection with 𝐷𝑖, and have an empty intersection with 𝐷𝑗 for every 𝑗 < 𝑖. It follows that
𝑆𝑛 = ∅ since any triple that blocks 𝑀 and intersects the final triple 𝐷𝑛 must contain some
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agent not in 𝐷𝑛, which must belong to some previous triple 𝐷𝑗 where 1 ≤ 𝑗 < 𝑛. We can
now define bt(𝑀) in terms of 𝑆𝑖:

bt(𝑀) =
𝑛−1⋃
𝑖=1

𝑆𝑖 .

By definition, the sets 𝑆𝑖 are pairwise disjoint so it follows that

|bt(𝑀) | =
𝑛−1∑︁
𝑖=1
|𝑆𝑖 | . (4.1)

We now place an upper bound on |𝑆𝑖 | for any 𝑖 where 1 ≤ 𝑖 ≤ 𝑛 − 1. For any such 𝑖, consider
the 𝑖th iteration of the while loop. By the algorithm, ℬ𝑑𝑖1

(𝑈𝑖) = 𝑑𝑖2. It follows that any triple
that blocks 𝑀 and contains 𝑑𝑖1 contains some agent in 𝑁 \ (𝑈𝑖 ∪ 𝐷𝑖) that has already been
added to some triple 𝐷𝑗 in 𝑀 where 𝑗 < 𝑖. Thus, no triple in 𝑆𝑖 contains 𝑑𝑖1. Similarly, by the
algorithm it must be that either ℬ𝑑𝑖2

(𝑈𝑖) = 𝑑𝑖3 or ℬ𝑑𝑖2
(𝑈𝑖) = 𝑑𝑖1, so any triple that blocks 𝑀

and contains 𝑑𝑖2 contains some agent in 𝑁 \ (𝑈𝑖 ∪ 𝐷𝑖), so likewise no triple in 𝑆𝑖 contains 𝑑𝑖2.
It follows that any triple in 𝑆𝑖 contains 𝑑𝑖3 and two other agents in 𝑁 . By the definition of 𝑆𝑖,
any triple in 𝑆𝑖 has an empty intersection with 𝐷𝑗 for any 𝑗 < 𝑖 so it must be that any triple
in 𝑆𝑖 contains 𝑑𝑖3 as well as two agents in𝑈𝑖 \ 𝐷𝑖. Since |𝑈𝑖 \ 𝐷𝑖 | = 3𝑛 − 3𝑖 it follows that

|𝑆𝑖 | ≤
(
3𝑛 − 3𝑖

2

)
. (4.2)

By definition,

|nbt(𝑀) | =
(
3𝑛
3

)
− |bt(𝑀) |

=

(
3𝑛
3

)
−
𝑛−1∑︁
𝑖=1
|𝑆𝑖 | by Equation 4.1

≥
(
3𝑛
3

)
−
𝑛−1∑︁
𝑖=1

(
3𝑛 − 3𝑖

2

)
by Inequality 4.2

= 3𝑛3 − 3𝑛2

2
− 𝑛

2
. (4.3)

Suppose 𝑀∗ is a matching in (𝑁, 𝑃) with the maximum number of non-blocking triples. The
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approximation ratio of the algorithm is thus

|nbt(𝑀∗) |
|nbt(𝑀) | ≤

(
3𝑛
3

)
1

|nbt(𝑀) | since |nbt(𝑀∗) | ≤
(3𝑛

3
)

≤ 9𝑛2 − 9𝑛 + 2
6𝑛2 − 3𝑛 − 1

by Inequality 4.3

≤ 3
2

since 𝑛 ≥ 1.

□

It is desirable to show that this analysis is tight, by constructing an instance (𝑁, 𝑃) of 3DR-B
and showing that there exists some execution of Algorithm serialDictatorship that returns
a matching 𝑀 for which |nbt(𝑀∗) |/|nbt(𝑀) | = 3/2, where 𝑀∗ is some matching in (𝑁,
𝑃) with the maximum number of non-blocking triples. We show that the analysis is tight
asymptotically, by constructing an instance I𝑛 of 3DR-B for some fixed 𝑛 ≥ 1, where the
approximation ratio obtained by Algorithm serialDictatorship on I𝑛 is 3/2− 𝑜(1) in the worst
case. The proof follows the same pattern as the analysis of Algorithm cyclicSerialDictatorship

in Chapter 3.

The structure of the preferences of the agents in I𝑛 corresponds directly to the counting
argument used in the proof of Theorem 4.3. For any fixed 𝑛, construct I𝑛 as follows. First,
let 𝑁 = {𝛼1, 𝛼2, . . . , 𝛼3𝑛}. Next, for each agent 𝛼𝑗 ∈ 𝑁 , construct 𝑃𝛼𝑗 so that it lists every
agent in 𝑁 \ {𝛼𝑗 } in ascending order of subscript. Finally, for each 𝑖 where 1 ≤ 𝑖 ≤ 𝑛, modify
𝑃𝛼3𝑖 by shifting 𝛼3𝑖−2 and 𝛼3𝑖−1 to the right so that 𝛼3𝑖−2 is the second-to-last agent in 𝑃𝛼𝑖 and
𝛼3𝑖−1 is the last agent in 𝑃𝛼𝑖 .

As in the proof of Theorem 4.3, for each 𝑖 where 1 ≤ 𝑖 ≤ 𝑛, let 𝑑𝑖1, 𝑑
𝑖
2, 𝑑

𝑖
3 be the agents

labelled 𝑑1, 𝑑2, 𝑑3 respectively in that iteration, 𝐷𝑖 = {𝑑𝑖1, 𝑑
𝑖
2, 𝑑

𝑖
3}, and𝑈𝑖 be the set of agents

in 𝑈 at the start of that iteration. Since the selection of agents in 𝑈 is arbitrary, suppose
𝑑𝑖1 = 𝛼1. It follows that 𝑑𝑖2 = 𝛼2 and 𝑑𝑖2 = 𝛼3 and thus 𝑈2 = 𝑁 \ {𝛼1, 𝛼2, 𝛼3}. Similarly, the
second triple chosen is 𝐷2 = {𝛼4, 𝛼5, 𝛼6}. In general, it follows that 𝑀 = {{𝛼1, 𝛼2, 𝛼3}, {𝛼4,

𝛼5, 𝛼6}, . . . , {𝛼3𝑛−2, 𝛼3𝑛−1, 𝛼3𝑛}} and 𝑈𝑖 =
⋃𝑛
𝑗=𝑖{𝛼3 𝑗−2, 𝛼3 𝑗−1, 𝛼3 𝑗 }. Note that now, for any

𝛼𝑘 ∈ 𝑁 , 𝛼𝑘 prefers to ℬ𝛼𝑘 (𝑀) any agent 𝛼3𝑖 where 3𝑖 < 𝑘 .

As in the proof of Theorem 4.3, for each 𝑖 where 1 ≤ 𝑖 ≤ 𝑛, let 𝑆𝑖 be the set of triples that
block 𝑀 , have a non-empty intersection with 𝐷𝑖, and have an empty intersection with 𝐷𝑗
for every 𝑗 < 𝑖. By definition it follows that 𝑆𝑖 ⊆

(𝑈𝑖

3
)

and 𝑆𝑛 = ∅. As in the proof of
Theorem 4.3, it can be shown that for any 𝑖 where 1 ≤ 𝑖 ≤ 𝑛, no triple in 𝑆𝑖 contains 𝛼3𝑖−2

and no triple in 𝑆𝑖 contains 𝛼3𝑖−1. It remains that each triple in 𝑆𝑖 contains 𝛼3𝑖 as well as two
agents in 𝑈𝑖 \ 𝐷𝑖, which we label 𝛼𝑘 and 𝛼𝑙 . Since 𝑈𝑖 \ 𝐷𝑖 =

⋃𝑛
𝑗=𝑖+1{𝛼3 𝑗−2, 𝛼3 𝑗−1, 𝛼3 𝑗 }, it

must be that 𝑘 ≥ 3𝑖 + 1 and 𝑙 ≥ 3𝑖 + 1. Since 𝑘 ≠ 𝑙 assume without loss of generality that
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𝑘 ≥ 3𝑖 + 2. It follows that ℬ𝛼3𝑖 ({𝛼𝑘 , 𝛼𝑙}) = 𝛼𝑘 precedes both 𝛼3𝑖−1 and 𝛼3𝑖−2 in 𝑃𝛼3𝑖 . As we
noted, since 3𝑖 < 𝑘 it must be that 𝛼3𝑖 precedes ℬ𝛼𝑘 (𝑀) in 𝑃𝛼𝑘 . Similarly, since 3𝑖 < 𝑙 it
must be that 𝛼3𝑖 precedes ℬ𝛼𝑙 (𝑀) in 𝑃𝛼𝑙 . It follows that the triple {𝛼3𝑖, 𝛼𝑘 , 𝛼𝑙} blocks 𝑀 and
hence also belongs to 𝑆𝑖. Since the selection of 𝛼𝑘 , 𝛼𝑙 as two agents in𝑈𝑖 \ 𝐷𝑖 was arbitrary
it follows that

𝑆𝑖 = {{𝛼3𝑖, 𝛼𝑘 , 𝛼𝑙} : 𝛼𝑘 , 𝛼𝑙 ∈ 𝑈𝑖 \ 𝐷𝑖} .

It follows immediately that

|𝑆𝑖 | =
(
3𝑛 − 3𝑖

2

)
which shows that the upper bound on |𝑆𝑖 | in Inequality 4.2 in Theorem 4.3 is tight. The same
argument used in the proof of Theorem 4.3 then shows that

|nbt(𝑀) | = 3𝑛3 − 3𝑛2

2
− 𝑛

2
. (4.4)

We now show that a stable matching exists in I𝑛. Let

𝑀∗ = {𝛼1, 𝛼2, 𝛼3𝑛} ∪
𝑛−1⋃
𝑖=1
{{𝛼3𝑖, 𝛼3𝑖+1, 𝛼3𝑖+2}} .

Note first that by the construction of 𝑀∗, ℬ𝛼2 (𝑀∗) = ℬ𝛼3𝑛 (𝑀∗) = 𝛼1, ℬ𝛼1 (𝑀∗) = 𝛼2.
Note also that for any 𝑖 where 1 ≤ 𝑖 ≤ 𝑛 − 1, ℬ𝛼3𝑖 (𝑀∗) = 𝛼3𝑖+1, ℬ𝛼3𝑖+1 (𝑀∗) = 𝛼3𝑖+2,
and ℬ𝛼3𝑖+2 (𝑀∗) = 𝛼3𝑖+1. It follows in general, by the construction of I𝑛, that for any two
agents 𝛼𝑗 and 𝛼𝑘 if 𝛼𝑘 precedes ℬ𝛼𝑗 (𝑀∗) in 𝑃𝛼𝑗 then 𝑘 < 𝑗 . Consider an arbitrary triple
{𝛼𝑖, 𝛼𝑗 , 𝛼𝑘 } ∈

(𝑁
3
)

where 𝑖 < 𝑗 < 𝑘 . It follows that ℬ𝛼𝑖 ({𝛼𝑗 , 𝛼𝑘 }) succeeds ℬ𝛼𝑖 (𝑀) in 𝑃𝛼𝑖
and thus that this triple does not block 𝑀∗. It follows that 𝑀∗ is stable. Now

|nbt(𝑀∗) |
|nbt(𝑀) | =

(
3𝑛
3

)
1

|nbt(𝑀) | since 𝑀∗ is stable

=
9𝑛2 − 9𝑛 + 2
6𝑛2 − 3𝑛 − 1

by Equation 4.4

=
3
2
− 𝑜(1)

which shows that the analysis is tight asymptotically.
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4.4 Towards a minimal “no” instance

As in the case of 3-DSM-CYC, it seems difficult to characterise instances of 3DR-B that do
not contain a stable matching. With respect to the respective existence problems, which are
decision problems, we call such instances “no” instances. A significant open question for
both 3-DSM-CYC and 3DR-B involves the minimal number of agents required to construct
such an instance. The smallest such instance of 3-DSM-CYC uses 60 agents (𝑛 = 20) [54].
In this section, we show that the smallest such instance of 3DR-B contains at least 9 and at
most 15 agents, but leave determining the precise number as an open problem.

We first show, in Theorem 4.4, that any instance of 3DR-B with at most 6 agents must contain
a stable matching. It follows that at least 9 agents are required to construct an instance of
3DR-B that contains no stable matching.

Theorem 4.4. In any instance (𝑁, 𝑃) of 3DR-B, if |𝑁 | ≤ 6 then (𝑁, 𝑃) contains a stable
matching.

Proof. If |𝑁 | = 3 then any matching is stable so suppose |𝑁 | = 6. Consider the directed
graph 𝐺 = (𝑁, 𝐴) where 𝑁 is the set of agents and (𝛼𝑖, 𝛼𝑗 ) ∈ 𝐴 if ℬ𝛼𝑖 (𝑁) = 𝛼𝑗 . We shall
analyse the structure of 𝐺 in a case analysis, and in each case identify a stable matching 𝑀 .
Since the out-degree of each agent in 𝐺 is 1, and by definition 𝐺 contains no self-loops, it
must be that each weakly connected component of 𝐺 contains at least two agents and at least
one directed cycle. If 𝐺 contains:

• Three components {𝛼1, 𝛼2}, {𝛼3, 𝛼4}, {𝛼5, 𝛼6}, each of size two, then 𝑀 = {{𝛼1, 𝛼2,

𝛼3}, {𝛼4, 𝛼5, 𝛼6}} is stable since ℬ𝛼𝑖 (𝑀) = ℬ𝛼𝑖 (𝑁) for each 𝑖 where 𝑖 ∈ {1, 2, 4, 5}.

• Two components {𝛼1, 𝛼2, 𝛼3}, {𝛼4, 𝛼5, 𝛼6} each of size three, then 𝑀 = {{𝛼1, 𝛼2, 𝛼3},
{𝛼4, 𝛼5, 𝛼6}} is stable since ℬ𝛼𝑖 (𝑀) = ℬ𝛼𝑖 (𝑁) for each 𝛼𝑖 ∈ 𝑁 .

• Two components {𝛼1, 𝛼2, 𝛼3, 𝛼4}, {𝛼5, 𝛼6} then there are two possible cases. In the
first, the longest directed cycle among {𝛼1, 𝛼2, 𝛼3, 𝛼4} contains two agents. In this
case, assume without loss of generality that this cycle is {𝛼1, 𝛼2} and that (𝛼3, 𝛼1) ∈ 𝐴.
Now 𝑀 = {{𝛼1, 𝛼2, 𝛼3}, {𝛼4, 𝛼5, 𝛼6}} is stable since ℬ𝛼𝑖 (𝑀) = ℬ𝛼𝑖 (𝑁) for each 𝑖
where 𝑖 ∈ {1, 2, 5, 6}. In the second, the longest directed cycle among {𝛼1, 𝛼2, 𝛼3, 𝛼4}
contains three or more agents. In this case, we may assume without loss of generality
that (𝛼1, 𝛼2) ∈ 𝐴 and (𝛼2, 𝛼3) ∈ 𝐴. Now 𝑀 = {{𝛼1, 𝛼2, 𝛼3}, {𝛼4, 𝛼5, 𝛼6}} is stable
since ℬ𝛼𝑖 (𝑀) = ℬ𝛼𝑖 (𝑁) for each 𝑖 where 𝑖 ∈ {1, 2, 5, 6}.

• One component {𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6}. If the longest directed cycle contains:
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– Six agents then 𝑀 = {{𝛼1, 𝛼2, 𝛼3}, {𝛼4, 𝛼5, 𝛼6}} is stable since ℬ𝛼𝑖 (𝑀) =

ℬ𝛼𝑖 (𝑁) for each 𝑖 where 𝑖 ∈ {1, 2, 4, 5}.

– Five agents then assume without loss of generality that this cycle is {𝛼1, 𝛼2, . . . ,

𝛼5}. Now 𝑀 = {{𝛼1, 𝛼2, 𝛼3}, {𝛼4, 𝛼5, 𝛼6}} is stable since ℬ𝛼𝑖 (𝑀) = ℬ𝛼𝑖 (𝑁) for
each 𝑖 where 𝑖 ∈ {1, 2, 4, 5}.

– Four agents then assume without loss of generality that this cycle is {𝛼1, 𝛼2, 𝛼3,

𝛼4} and that (𝛼5, 𝛼1) ∈ 𝐴. Consider ℬ𝛼6 (𝑁). If (𝛼6, 𝛼1) ∈ 𝐴 then 𝑀 = {{𝛼1, 𝛼5,

𝛼6}, {𝛼2, 𝛼3, 𝛼4}} is stable since ℬ𝛼𝑖 (𝑀) = ℬ𝛼𝑖 (𝑁) for each 𝑖 where 𝑖 ∈ {2, 3, 5,
6}. If either (𝛼6, 𝛼2) ∈ 𝐴 or (𝛼6, 𝛼3) ∈ 𝐴 then 𝑀 = {{𝛼1, 𝛼4, 𝛼5}, {𝛼2, 𝛼3, 𝛼6}}
is stable since ℬ𝛼𝑖 (𝑀) = ℬ𝛼𝑖 (𝑁) for each 𝑖 where 𝑖 ∈ {2, 4, 5, 6}. If (𝛼6, 𝛼4) ∈ 𝐴
then 𝑀 = {{𝛼1, 𝛼2, 𝛼5}, {𝛼3, 𝛼4, 𝛼6}} is stable since ℬ𝛼𝑖 (𝑀) = ℬ𝛼𝑖 (𝑁) for each
𝑖 where 𝑖 ∈ {1, 3, 5, 6}.

– Three agents then assume without loss of generality that this cycle is {𝛼1, 𝛼2, 𝛼3}.
Now 𝑀 = {{𝛼1, 𝛼2, 𝛼3}, {𝛼4, 𝛼5, 𝛼6}} is stable since ℬ𝛼𝑖 (𝑀) = ℬ𝛼𝑖 (𝑁) for each
𝑖 where 𝑖 ∈ {1, 2, 3} and {𝛼1, 𝛼2, 𝛼3} ∈ 𝑀 .

– Two agents then assume without loss of generality that this cycle is {𝛼1, 𝛼2} and
also that (𝛼3, 𝛼1) ∈ 𝐴. Now 𝑀 = {{𝛼1, 𝛼2, 𝛼3}, {𝛼4, 𝛼5, 𝛼6}} is stable since
ℬ𝛼𝑖 (𝑀) = ℬ𝛼𝑖 (𝑁) for each 𝑖 where 𝑖 ∈ {1, 2, 3} and {𝛼1, 𝛼2, 𝛼3} ∈ 𝑀 .

□

We now show, in Theorem 4.5, that there exists an instance of 3DR-B with 15 agents that
contains no stable matching. That instance, which we denote by (𝑁′, 𝑃′), is illustrated in
Figure 4.1 and can be constructed as follows. First, for each 𝑟 where 1 ≤ 𝑟 ≤ 3 construct a
set of five agents in 𝑁′ labelled𝑄𝑟 = {𝑞1

𝑟 , 𝑞
2
𝑟 , . . . , 𝑞

5
𝑟 }, which we refer to as a pentagadget. To

simplify the description of the valuations in each pentagadget, in what follows we write 𝑖 ⊕ 𝑦
to denote ((𝑖 + 𝑦 − 1) mod 5) + 1. For each 𝑟 where 1 ≤ 𝑟 ≤ 3 and each 𝑖 where 1 ≤ 𝑖 ≤ 5 let

𝑃𝑞𝑖𝑟 : 𝑞𝑖⊕1
𝑟 𝑞𝑖⊕2

𝑟 𝑞𝑖⊕3
𝑟 𝑞𝑖⊕4

𝑟 [ 𝑁′ \𝑄𝑟 in arbitrary order ]

Suppose 𝑀 is an arbitrary matching in (𝑁′, 𝑃′). We shall eventually show that 𝑀 is not
stable. For any agent 𝑞𝑖𝑟 ∈ 𝑁′, we say that 𝑞𝑖𝑟 is external if ℬ𝑞𝑖𝑟

(𝑀) ∉ 𝑄𝑟 .

Lemma 4.7. At least one pentagadget contains at least two external agents.

Proof. Since each pentagadget contains five agents it must be that 𝑄1 contains at least
one external agent. Without loss of generality assume that 𝑞1

1 is external. If 𝑄1 contains
two external agents, including 𝑞1

1, then the lemma statement holds, so suppose 𝑞1
1 is the
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𝑞2
1

𝑞1
1

𝑞5
1 𝑞4

1

𝑞3
1

𝑞2
2

𝑞1
2

𝑞5
2 𝑞4

2

𝑞3
2

𝑞2
3

𝑞1
3

𝑞5
3 𝑞4

3

𝑞3
3

Figure 4.1: A representation of the instance (𝑁′, 𝑃′) of 3DR-B that contains no stable
matching. An arrow exists from 𝑞𝑖𝑟 to 𝑞 𝑗𝑟 if ℬ𝑞𝑖𝑟

(𝑁′) = 𝑞 𝑗𝑟 .

only external agent in 𝑄1. It follows that {𝑞𝑖11 , 𝑞
𝑖2
1 , 𝑞

𝑗1
𝑟 }, {𝑞𝑖31 , 𝑞

𝑖4
1 , 𝑞

𝑘1
𝑠 } ∈ 𝑀 where {𝑖1, 𝑖2, 𝑖3,

𝑖4} = {2, 3, 4, 5}, 𝑟, 𝑠 ∈ {2, 3}, and 1 ≤ 𝑗1, 𝑘1 ≤ 5. If 𝑟 = 𝑠 then 𝑄𝑟 contains two external
agents, namely 𝑞 𝑗1𝑟 and 𝑞𝑘1

𝑟 , and thus the lemma statement holds, so suppose 𝑟 ≠ 𝑠. Assume
without loss of generality that 𝑞 𝑗1𝑟 = 𝑞1

2 and 𝑞𝑘1
𝑠 = 𝑞1

3.

By definition, 𝑞1
2 is external. If𝑄2 contains two external agents, including 𝑞1

2, then the lemma
statement holds, so suppose 𝑞1

2 is the only external agent in 𝑄2. It follows that {𝑞𝑙22 , 𝑞
𝑙3
2 , 𝑞

𝑗2
𝑡 },

{𝑞𝑙42 , 𝑞
𝑙5
2 , 𝑞

𝑘2
𝑢 } ∈ 𝑀 , where {𝑙2, 𝑙3, 𝑙4, 𝑙5} = {2, 3, 4, 5}, 𝑡, 𝑢 ∈ {1, 3}, and 1 ≤ 𝑗2, 𝑘2 ≤ 5. If

𝑡 = 𝑢 then𝑄𝑡 contains two external agents, namely 𝑞 𝑗2𝑡 and 𝑞𝑘2
𝑡 , and thus the lemma statement

holds, so it must be that 𝑡 ≠ 𝑢. Assume without loss of generality that 𝑡 = 1 and 𝑢 = 3. Now
𝑄3 contains two external agents, namely 𝑞1

3 and 𝑞𝑘2
3 , and thus the lemma statement holds. □

Theorem 4.5. There exists an instance of 3DR-B with 15 agents that contains no stable
matching.

Proof. Namely the instance (𝑁′, 𝑃′). Recall that 𝑀 is an arbitrary matching in (𝑁′, 𝑃′).
By Lemma 4.7, assume without loss of generality that 𝑄1 contains at least two external
agents, which we label 𝑞𝑖11 and 𝑞𝑖21 . By the symmetry of each pentagadget, without loss of
generality assume that 𝑖1 = 1 and either 𝑖2 = 2 or 𝑖2 = 3. In the former case, {𝑞1

1, 𝑞
2
1, 𝑞

5
1}

blocks 𝑀 , since 𝑞2
1 ≻𝑞1

1
ℬ𝑞1

1
(𝑀), ℬ𝑞2

1
({𝑞1

1, 𝑞
5
1}) ≻𝑞2

1
ℬ𝑞2

1
(𝑀), and 𝑞1

1 ≻𝑞5
1
ℬ𝑞5

1
(𝑀). In the

latter case, {𝑞1
1, 𝑞

2
1, 𝑞

3
1} blocks 𝑀 , since 𝑞2

1 ≻𝑞1
1
ℬ𝑞1

1
(𝑀), 𝑞3

1 ≻𝑞2
1
ℬ𝑞2

1
(𝑀), and ℬ𝑞3

1
({𝑞1

1,

𝑞2
1}) ≻𝑞3

1
ℬ𝑞3

1
(𝑀). □

4.5 Summary and open problems

In this chapter we studied a new formalism of 3DR, involvingℬ-preferences, which we called
3DR-B. We considered in 3DR-B the existence of, and complexity of finding, matchings that
are stable.
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Our first result was that a given instance of 3DR-B may not contain a stable matching and
that the associated decision problem is NP-complete. We then considered a closely related
optimisation problem, which we called 3DR-B-MSM, in which the objective is to construct, in
a given instance of 3DR-B, a matching with the maximum number of non-blocking triples. We
first devised a 9/4-approximation algorithm for 3DR-B-MSM based on an existing algorithm
for 3PSA-MSM, which is a closely related problem [75]. Improving upon this approximation,
we then presented a 3/2-approximation algorithm based on serial dictatorship, and showed
that our analysis is tight asymptotically. Finally, we considered the problem of identifying
the smallest instance of 3DR-B that contains no stable matching. We showed that such an
instance must have between 9 and 15 agents, inclusive.

We now present some open problems specifically involving stability in 3DR-B. More general
problems, involving solution concepts other than stability and other models of fixed-size
coalition formation, are discussed in Chapter 9.

An immediate open problem is to improve the bounds on the the smallest instance of 3DR-
B that contains no stable matching. We have shown in Section 4.4 that such an instance
contains at least 9 and at most 15 agents, but the precise number of agents remains open. To
fully resolve this open question, it will be necessary to either prove that every some fixed size
strictly greater than 6 contains a stable matching (as in the proof of Theorem 4.4), demonstrate
that some instance with between 9 and 12 agents contains no stable matching (in a similar
way to the proof of Theorem 4.5), or both.

In Chapter 3, we presented an approximation algorithm for a restriction of 3-DSM-CYC-MSM
in which the preferences of some agents were derived from a master list. We conjecture that
a similar algorithm also exists for a restriction of 3DR-B-MSM in which the preferences of
all agents are derived from a master list. In 2020, Bredereck et al. [68] considered a similar
situation for a multidimensional generalisation of 3GSM [10], and it may be that some of
their results or techniques can also be applied to 3DR-B.

A closely related objective is to estimate the probability that a random instance of 3DR-B
contains a stable matching. Pittel’s [53] probabilistic analysis of 𝑘-DSM-CYC and Pittel and
Irving’s [81] analysis of two-dimensional Stable Roommates (SR) are two possible starting
points. A hybrid of theoretical and empirical techniques might also be informative, as it
was in Escamocher and O’Sullivan’s [51] paper, which considered the same question in the
setting to 3-DSM-CYC.

As well as investigating the existence of an improved approximation algorithm for 3DR-
B-MSM, it might be possible to prove an inapproximability result for this problem. For
example, it would be very informative to prove that the approximation ratio of Algorithm se-

rialDictatorship is tight, by showing that no (3/2 − Y)-approximation algorithm exists for
3DR-B-MSM unless P = NP. Alternatively, it might be easier to prove the weaker result
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that 3DR-B-MSM is APX-hard, meaning that there exists some constant factor Y such that
no (1 + Y)-approximation algorithm exists for 3DR-B-MSM, unless P = NP [66]. A starting
point towards the latter result could be to modify the reduction of Iwama et al. [61] from
a variant of Maximum 3D Matching (Max 3DM) to an optimisation problem defined in a
related model of 3DR (which is described in Chapter 2). Another possibility is to adapt the
reduction of Rosenbaum [75] from Max 3DM to 3PSA-MSM.

Various alternative optimisation problems and measures can also be defined that relate to
stable matchings and 3DR-B. One possibility is to construct a sub-matching of maximum
cardinality such that no three agents in triples in the sub-matching form a blocking triple in
the sub-matching. Rosenbaum [75] refers to the analogous problem for 3PSA as the 3PSA
Maximum Stable Sub-matching problem (3PSA-MSS). A second possibility is to consider
𝛼-stability [62] (discussed in Chapter 2) in the setting of 3DR-B. For example, for some
fixed 𝛼 ≥ 1, we could say that a matching 𝑀 is 𝛼-stable if for any agent 𝛼𝑖 and any triple 𝑡
where 𝛼𝑖 ∈ 𝑡 the increase in rank in 𝑃𝛼𝑖 from ℬ(𝑀) to ℬ(𝑡) is at most 𝛼. We could also
then define an optimisation problem in which the objective is to find an 𝛼-stable matching
for a minimum such 𝛼. A third possibility is to define a complementary problem in which
the objective is to minimise the number of blocking triples, which is arguably more natural.
Similar optimisation problems, in which the objective is to minimise the number of blocking
pairs, have been studied in the context of (two-dimensional) Stable Roommates [78].
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Chapter 5

Three-Dimensional Stable
Roommates with 𝒲-preferences

5.1 Introduction

In this chapter we study another new model of fixed-size coalition formation, which we call the
Three-Dimensional Roommates with 𝒲-preferences (3DR-W). This model is in a sense dual
to the Three-Dimensional Roommates with ℬ-preferences (3DR-B), which we considered in
Chapter 4. As in 3DR-B, in 3DR-W each agent supplies a strict preference list over all other
agents and uses a set extension rule to compare coalitions. In 3DR-W, the set extension rule
used is known as 𝒲-preferences [8] and means that any agent prefers some triple 𝑆 to another
triple 𝑇 if the least-preferred agent in 𝑆 is more preferred than the least-preferred agent in 𝑇 .
In this chapter we consider in 3DR-W the existence of, and complexity of finding, matchings
that are stable.

We first show, in Section 5.2, that a given instance of 3DR-W may not contain a stable
matching and that the associated decision problem is NP-complete (Theorem 5.1). As in
the case of 3DR-B, this also contrasts with an analogous model involving 𝒲-preferences
in which coalitions need not have a fixed size, in which a stable matching must exist and
can be found in polynomial time [8]. It may seem intuitive that the additional requirement
of fixed-size coalitions makes this particular problem harder to solve, and this result gives
another example of a model in which that intuition holds.

We then consider, in Section 5.3, a closely related optimisation problem in which the objective
is to construct a matching that is, in terms of a specific measure, as stable as possible. We
show that an existing approximation algorithm for a different model of 3DR can be used to
devise a 9/4-approximation algorithm for this problem (Theorem 5.2).

Finally, in Section 5.4, we recap on our results and discuss some directions for future work.



5.2. Deciding existence 56

An instance of 3DR-W comprises a set 𝑁 of 3𝑛 agents and a preference list of each agent 𝛼𝑖,
labelled 𝑃𝛼𝑖 , that describes a strict order over all agents in 𝑁 \ {𝛼𝑖}. We say that an agent 𝛼𝑖
prefers 𝛼𝑗 to 𝛼𝑘 , denoted 𝛼𝑗 ≻𝛼𝑖 𝛼𝑘 , if 𝛼𝑗 precedes 𝛼𝑘 in 𝑃𝛼𝑖 . A triple is an unordered set of
three agents. In order to compare triples, agents in an instance of 3DR-W use 𝒲-preferences,
which are defined as follows. For any agent 𝛼𝑖 and set of agents 𝑆 ⊆ 𝑁 we denote by 𝒲𝛼𝑖 (𝑆)
the least-preferred agent in 𝑆 \ {𝛼𝑖} according to 𝛼𝑖. For any agent 𝛼𝑖 and any two triples 𝑟
and 𝑠, we say that 𝛼𝑖 prefers 𝑟 to 𝑠, denoted 𝑟 ≻𝛼𝑖 𝑠, if 𝒲𝛼𝑖 (𝑟) ≻𝛼𝑖 𝒲𝛼𝑖 (𝑠). A matching is
a partition of 𝑁 into 𝑛 triples. Given an agent 𝛼𝑖 and a matching 𝑀 , we denote by 𝑀 (𝛼𝑖)
the triple in 𝑀 that contains 𝛼𝑖. Given a matching 𝑀 , we say that a triple 𝑡 is blocking if
each agent 𝛼𝑖 in 𝑡 prefers 𝑡 to 𝑀 (𝛼𝑖). A matching is stable if it does not contain a blocking
triple. Let 𝒲𝛼𝑖 (𝑀) be short for 𝒲𝛼𝑖 (𝑀 (𝛼𝑖)). Let 𝑃 be the collection of preference lists 𝑃𝛼𝑖
for each agent 𝛼𝑖. For any instance (𝑁, 𝑃) of 3DR-W and any matching 𝑀 , we denote by
bt(𝑀, (𝑁, 𝑃)) ⊆

(𝑁
3
)

the set of triples that block 𝑀 in (𝑁, 𝑃). Conversely, we denote by
nbt(𝑀, (𝑁, 𝑃)) =

(𝑁
3
)
\ bt(𝑀, (𝑁, 𝑃)) the set of triples that do not block 𝑀 in (𝑁, 𝑃). When

the instance in question is clear from context, we simply write bt(𝑀) or nbt(𝑀).

5.2 Deciding existence

In this section we show that deciding if a given instance of 3DR-W contains a stable matching
is NP-complete. The reduction is from a restricted case of Partition Into Triangles (PIT,
Problem 5.1) [43].

Problem 5.1. Partition Into Triangles (PIT)

Input: a simple undirected graph 𝐺 = (𝑊, 𝐸) where |𝑊 | = 3𝑞 for some integer 𝑞
Question: Can the vertices of 𝐺 be partitioned into 𝑞 disjoint sets 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑞},
each set containing exactly three vertices, such that each 𝑋𝑝 = {𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 } ∈ 𝑊 where
1 ≤ 𝑝 ≤ 𝑞 is a triangle?

Given a graph simple undirected graph𝐺 = (𝑊, 𝐸), we say that a set of three vertices {𝑤𝑖, 𝑤𝑗 ,
𝑤𝑘 } is a triangle if {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 , {𝑤𝑖, 𝑤𝑘 } ∈ 𝐸 , and {𝑤𝑗 , 𝑤𝑘 } ∈ 𝐸 . Let T = {𝑇1, 𝑇2, . . . , 𝑇𝑚}
be the set of triangles in 𝐺. We reduce from the special case of PIT in which T has a system
of distinct representatives (SDR), that is, a set 𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝑚} of 𝑚 distinct vertices
where 𝑧𝑖 ∈ 𝑇𝑖 for each 𝑖 where 1 ≤ 𝑖 ≤ 𝑚. We refer to this restricted problem as PIT-SDR.
It can be verified that in the reduction shown by Garey and Johnson [43, Theorem 3.7] from
Exact Cover by Three-sets to PIT that the constructed graph admits an SDR1. It follows that

1In the reduction of Garey and Johnson, every triangle in 𝐺 is contained in exactly one subset gadget. For
each subset gadget 𝑐𝑖 ∈ 𝐶, the SDR contains the vertices labelled “𝑎𝑖 [1]”, “𝑎𝑖 [2]”, “𝑎𝑖 [4]“, “𝑎𝑖 [5]”, “𝑎𝑖 [7]”,
“𝑎𝑖 [8]”, and “𝑎𝑖 [6]”.
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PIT-SDR is NP-complete.

The reduction from PIT-SDR is as follows. Suppose 𝐺 = (𝑊, 𝐸) is an arbitrary graph. We
shall construct an instance (𝑁, 𝑃) of 3DR-W. For each vertex 𝑖 where 1 ≤ 𝑖 ≤ 3𝑞 construct a
set of seven agents 𝐻𝑖 = {ℎ1

𝑖
, ℎ2
𝑖
, . . . , ℎ7

𝑖
}, which we refer to as the 𝑖th heptagadget. Let 𝐻7 be

the set
⋃

1≤𝑖≤3𝑞 ℎ
7
𝑖
. We shall now construct the preferences of the agents in each heptagadget.

First, for each heptagadget 𝐻𝑖 construct the agents’ preferences as follows. Note that in the
following construction “. . . ” denotes all remaining agents in an arbitrary order.

ℎ1
𝑖

: ℎ3
𝑖
ℎ7
𝑖
ℎ4
𝑖
ℎ6
𝑖
ℎ2
𝑖
ℎ5
𝑖

. . .

ℎ2
𝑖

: ℎ7
𝑖
ℎ1
𝑖
ℎ3
𝑖
ℎ6
𝑖
ℎ4
𝑖
ℎ5
𝑖

. . .

ℎ3
𝑖

: ℎ4
𝑖
ℎ1
𝑖
ℎ7
𝑖
ℎ6
𝑖
ℎ2
𝑖
ℎ5
𝑖

. . .

ℎ4
𝑖

: ℎ6
𝑖
ℎ7
𝑖
ℎ1
𝑖
ℎ3
𝑖
ℎ2
𝑖
ℎ5
𝑖

. . .

ℎ5
𝑖

: ℎ7
𝑖
ℎ6
𝑖
ℎ1
𝑖
ℎ4
𝑖
ℎ2
𝑖
ℎ3
𝑖

. . .

ℎ6
𝑖

: ℎ1
𝑖
ℎ3
𝑖
ℎ7
𝑖
ℎ4
𝑖
ℎ2
𝑖
ℎ5
𝑖

. . .

ℎ7
𝑖

: ︸                                             ︷︷                                             ︸
proper part

[ ℎ7
𝑗
∈ (𝐻7 \ {ℎ7

𝑖
}) : {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 ] ℎ6

𝑖
ℎ4
𝑖
ℎ1
𝑖
ℎ3
𝑖
ℎ2
𝑖
ℎ5
𝑖

. . .

We now reorder the proper part of the preference list of each agent in 𝐻7. Our aim is to
ensure that for any three agents ℎ7

𝑖
, ℎ7
𝑗
, ℎ7

𝑘
∈ 𝐻7 if the three corresponding vertices 𝑤𝑖, 𝑤𝑗 , 𝑤𝑘

form a triangle in 𝐺 then one of the three agents is the least-preferred agent in the proper part
of the preference list of at least one of the other two agents. To do this, first identify the set of
triangles T = {𝑇1, 𝑇2, . . . , 𝑇𝑚} and then construct an SDR of T labelled 𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝑚}.
Note that 𝑍 can be constructed in polynomial time as a maximum matching in a bipartite
graph. Next, for each 𝑖 where 1 ≤ 𝑎 ≤ 𝑚 consider the triangle 𝑇𝑎 = {𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 } in 𝐺,
labelling the representative vertex 𝑧𝑎 in 𝑍 as 𝑤𝑖 and the other two vertices as 𝑤𝑗 and 𝑤𝑘
arbitrarily. Since {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 it must be that ℎ7

𝑗
appears in the proper part of 𝑃ℎ7

𝑖
. Reorder

the proper part of 𝑃ℎ7
𝑖

such that ℎ7
𝑗

is now the least-preferred agent in the proper part. Note
that by the definition of an SDR, no preference list is modified more than once and thus we
have achieved our aim. This completes the construction of (𝑁, 𝑃).

It is straightforward to show that this reduction can be performed in polynomial time. To
prove that the reduction is correct we show that a stable matching exists in the 3DR-W instance
(𝑁, 𝑃) if and only if a partition into triangles exists in the PIT-SDR instance 𝐺.

We first show that if the PIT-SDR instance 𝐺 contains a partition into triangles then the
3DR-W instance (𝑁, 𝑃) contains a stable matching.

Lemma 5.1. If 𝐺 contains a partition into triangles then (𝑁, 𝑃) contains a stable matching.
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Proof. Suppose X = {𝑋1, 𝑋2, . . . , 𝑋𝑞} is a partition into triangles in 𝐺. For each triangle
𝑋𝑝 = {𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 } ∈ X construct in 𝑀 the triples {ℎ7

𝑖
, ℎ7
𝑗
, ℎ7

𝑘
}, {ℎ1

𝑖
, ℎ3
𝑖
, ℎ4
𝑖
}, {ℎ2

𝑖
, ℎ5
𝑖
, ℎ6
𝑖
},

{ℎ1
𝑗
, ℎ3
𝑗
, ℎ4
𝑗
}, {ℎ2

𝑗
, ℎ5
𝑗
, ℎ6
𝑗
}, {ℎ1

𝑘
, ℎ3

𝑘
, ℎ4

𝑘
} and {ℎ2

𝑘
, ℎ5

𝑘
, ℎ6

𝑘
}.

To show that 𝑀 is stable, we consider each agent in an arbitrary heptagadget 𝐻𝑖.

First, consider ℎ7
𝑖
. Suppose for a contradiction that ℎ7

𝑖
belongs to a triple that blocks 𝑀 .

By the construction of 𝑀 , 𝒲ℎ7
𝑖
(𝑀) belongs to the proper part of 𝑃ℎ7

𝑖
so it must be that this

blocking triple comprises three agents {ℎ7
𝑖
, ℎ7
𝑗
, ℎ7

𝑘
} where {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 and {𝑤𝑖, 𝑤𝑘 } ∈ 𝐸 . A

symmetric argument shows that ℎ7
𝑖

must appear in the proper part of 𝑃ℎ7
𝑗

and thus that {𝑤𝑖,
𝑤𝑗 , 𝑤𝑘 } is a triangle in 𝐺. Suppose the triangle {𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 } is labelled 𝑇𝑎 where 1 ≤ 𝑎 ≤ 𝑚
and assume without loss of generality that 𝑤𝑖 is the representative vertex 𝑧𝑎 in the SDR 𝑍

of T . It follows that {ℎ7
𝑖
, ℎ7
𝑗
, ℎ7

𝑘
} contains the least-preferred agent in the proper part of 𝑃ℎ7

𝑖
.

Assume without loss of generality that ℎ7
𝑗

is the least-preferred agent in the proper part of
𝑃ℎ7

𝑖
. This contradicts the fact that ℎ7

𝑗
must appear before 𝒲ℎ7

𝑖
(𝑀), which also belongs to the

proper part of 𝑃ℎ7
𝑖
. It remains that ℎ7

𝑖
does not belong to a triple that blocks 𝑀 .

Next, consider ℎ3
𝑖
. No triple is preferred by ℎ3

𝑖
to 𝑀 (ℎ3

𝑖
) so ℎ3

𝑖
does not belong to a blocking

triple. Similarly, the only triple that ℎ1
𝑖

prefers to 𝑀 (ℎ1
𝑖
) contains ℎ7

𝑖
, which we have shown

does not belong to a blocking triple. It follows that ℎ1
𝑖

also does not belong to a blocking
triple. Any triple ℎ4

𝑖
prefers to 𝑀 (ℎ4

𝑖
) and contains ℎ1

𝑖
or ℎ3

𝑖
is not blocking, and the only

triple that ℎ4
𝑖

prefers to 𝑀 (ℎ4
𝑖
) that contains neither ℎ1

𝑖
nor ℎ3

𝑖
is {ℎ4

𝑖
, ℎ6
𝑖
, ℎ7
𝑖
}. Since ℎ7

𝑖
does

not belong to a blocking triple it follows thus that ℎ4
𝑖

does not belong to a blocking triple.
Similarly, the only triples that ℎ2

𝑖
, ℎ5

𝑖
, and ℎ6

𝑖
prefer to 𝑀 (ℎ2

𝑖
), 𝑀 (ℎ5

𝑖
), and 𝑀 (ℎ6

𝑖
) contain

at least one of ℎ1
𝑖
, ℎ3

𝑖
, ℎ4

𝑖
, and ℎ7

𝑖
so are not blocking. It follows that neither ℎ2

𝑖
, ℎ5

𝑖
, nor ℎ6

𝑖

belong to blocking triples. □

We now show, using a sequence of lemmas, that if the 3DR-W instance (𝑁, 𝑃) contains a
stable matching then the PIT-SDR instance 𝐺 contains a partition into triangles.

In the reduction, for some matching 𝑀 we say that some agent ℎ𝑟
𝑖

is internal in 𝑀 if
𝑀 (ℎ𝑟

𝑖
) ⊂ 𝐻𝑖, some agent ℎ7

𝑖
∈ 𝐻7 is proper in 𝑀 if 𝒲ℎ7

𝑖
(𝑀) belongs to the proper part of

𝑃ℎ7
𝑖

and some agent ℎ𝑟
𝑖
∈ 𝑁 is external in 𝑀 if ℎ𝑟

𝑖
is neither proper nor internal. It follows

that every agent in 𝐻𝑖 is either proper, internal, or external in 𝑀 . We will eventually show
that in 𝑀 no agent is external and every agent in 𝐻7 is proper, from which the existence of a
partition into triangles is straightforward to show.

Lemma 5.2. If (𝑁, 𝑃) contains a stable matching 𝑀 then each heptagadget 𝐻𝑖 contains
exactly six agents that are internal in 𝑀 .

Proof. By definition, the number of internal agents in 𝑀 in 𝐻𝑖 is divisible by three. It follows
that if 𝐻𝑖 does not contain six agents that are internal in 𝑀 it contains at most three agents
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that are internal in 𝑀 . Suppose for a contradiction that 𝐻𝑖 contains at most three agents that
are internal in 𝑀 . Since by definition 𝐻𝑖 contains at most one proper agent in 𝑀 , namely
ℎ7
𝑖
, it follows that 𝐻𝑖 contains at least three agents that are external in 𝑀 , which we label ℎ𝑟

𝑖
,

ℎ𝑠
𝑖
, and ℎ𝑡

𝑖
. By the definition of an external agent it must be that 𝒲({ℎ𝑠

𝑖
, ℎ𝑡
𝑖
}) ≻ℎ𝑟

𝑖
𝒲ℎ𝑟

𝑖
(𝑀),

𝒲({ℎ𝑟
𝑖
, ℎ𝑡
𝑖
}) ≻ℎ𝑠

𝑖
𝒲ℎ𝑠

𝑖
(𝑀), and 𝒲({ℎ𝑟

𝑖
, ℎ𝑠
𝑖
}) ≻ℎ𝑡

𝑖
𝒲ℎ𝑡

𝑖
(𝑀). It follows that {ℎ𝑟

𝑖
, ℎ𝑠
𝑖
, ℎ𝑡
𝑖
} blocks

𝑀 , which is a contradiction. □

Lemma 5.3. If (𝑁, 𝑃) contains a stable matching 𝑀 then no agent in 𝑁 is external in 𝑀 .

Proof. Consider an arbitrary heptagadget𝐻𝑖, which by Lemma 5.2 contains exactly six agents
that are internal in 𝑀 . The remaining agent is either external or proper in 𝑀 . Suppose for a
contradiction that the remaining agent ℎ𝑟

𝑖
is external in 𝑀 . If 𝑟 ≠ 5 then it must be that ℎ5

𝑖
is

internal in 𝑀 and thus 𝑀 (ℎ5
𝑖
) = {ℎ5

𝑖
, ℎ𝑠
𝑖
, ℎ𝑡
𝑖
} where 𝑠, 𝑡 ∈ {1, 2, 3, 4, 6, 7}. Notice that by the

design of the constructed instance (𝑁, 𝑃), it must be that ℎ𝑟
𝑖
≻ℎ𝑠

𝑖
ℎ5
𝑖

and ℎ𝑟
𝑖
≻ℎ𝑡

𝑖
ℎ5
𝑖
. Moreover,

since ℎ𝑟
𝑖

is external in 𝑀 it follows that 𝒲ℎ𝑟
𝑖
({ℎ𝑠

𝑖
, ℎ𝑡
𝑖
}) ≻ℎ𝑟

𝑖
𝒲ℎ𝑟

𝑖
(𝑀) and thus {ℎ𝑟

𝑖
, ℎ𝑠
𝑖
, ℎ𝑡
𝑖
}

blocks 𝑀 , which is a contradiction. It remains that 𝑟 = 5. In this case we consider the two
triples in 𝑀 that contain the six agents in 𝐻𝑖 that are internal in 𝑀 . We enumerate the

(6
2
)
/2

possible such pairs of triples and show that in any case 𝑀 is not stable. Since all agents in
both triples belong to 𝐻𝑖, in the following table we shorten {ℎ𝑟

𝑖
, ℎ𝑠
𝑖
, ℎ𝑡
𝑖
} to {𝑟, 𝑠, 𝑡}.

triples in 𝑀 𝑀 is blocked by
{1, 2, 3}, {4, 6, 7} {1, 3, 6}
{1, 2, 4}, {3, 6, 7} {1, 3, 4}
{1, 2, 6}, {3, 4, 7} {1, 4, 6}
{1, 2, 7}, {3, 4, 6} {1, 3, 7}
{1, 3, 4}, {2, 6, 7} {4, 6, 7}
{1, 3, 6}, {2, 4, 7} {1, 3, 4}
{1, 3, 7}, {2, 4, 6} {4, 6, 7}
{1, 4, 6}, {2, 3, 7} {1, 3, 7}
{1, 4, 7}, {2, 3, 6} {4, 6, 7}
{1, 6, 7}, {2, 3, 4} {1, 3, 4}

□

We remark that from the proof of Lemma 5.3 it is straightforward to identify a (minimal)
instance of 3DR-W that contains no stable matching, by using six agents ℎ1

𝑖
, ℎ2

𝑖
, ℎ3

𝑖
, ℎ4

𝑖
, ℎ6

𝑖
,

and ℎ7
𝑖

from a single gadget 𝐻𝑖.

Lemma 5.4. If (𝑁, 𝑃) contains a stable matching then 𝐺 contains a partition into triangles.
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Proof. Suppose 𝑀 is a stable matching in (𝑁, 𝑃). Recall that |𝑁 | = 21𝑞. By Lemma 5.2,
there are 18𝑞 internal agents that by definition belong to 6𝑞 triples in𝑀 . By Lemma 5.3, none
of the remaining 3𝑞 agents are external and thus there are exactly 3𝑞 proper agents. It follows
that there are 𝑞 triples in 𝑀 that each contain three proper agents. By the construction of
the proper part of the preference list of each agent in 𝐻7, each of these 𝑞 triples corresponds
to a triangle in 𝐺. It follows that this set of 𝑞 triples corresponds directly to a partition into
triangles in 𝐺. □

We have now shown that the 3DR-W instance (𝑁, 𝑃) contains a stable matching if and only
if a partition into triangles exists in 𝐺. This shows that the reduction is correct.

Theorem 5.1. Deciding if a given instance of 3DR-W contains a stable matching is NP-
complete.

Proof. It is straightforward to show that this decision problem belongs to NP. We have
presented a polynomial-time reduction from a restricted version of Partition Into Triangles,
known as PIT-SDR, which we showed was NP-complete. Given an arbitrary instance 𝐺 of
PIT-SDR, the reduction constructs an instance (𝑁, 𝑃) of 3DR-W. Lemmas 5.1 and 5.4 shows
that (𝑁, 𝑃) contains a stable matching if and only if 𝐺 contains a partition into triangles and
thus that this decision problem is NP-hard. □

5.3 Approximation

The 3DR-W Maximally Stable Matching problem (3DR-W-MSM) is the following optimisa-
tion problem: given an instance of 3DR-W, find a matching with the largest possible number
of non-blocking triples. Formally, 3DR-W-MSM is a maximisation problem in which any
instance (𝑁, 𝑃) of 3DR-W-MSM is also instance of 3DR-W, a solution is a matching in
(𝑁, 𝑃), and the measure is |nbt(𝑀, (𝑁, 𝑃)) |. We showed in Theorem 5.1 that deciding if
an instance of 3DR-W contains a matching with

(3𝑛
3
)

non-blocking triples is NP-complete,
so it follows that 3DR-W-MSM is NP-hard. In this section we present a polynomial-time
algorithm that can approximate 3DR-W-MSM with an approximation ratio of 9/4.

The approximation algorithm is analogous to the corresponding algorithm we presented
before for 3DR-B-MSM in Theorem 4.2 in Chapter 4. As before, we show that it is possible
to construct an instance (𝑁, 𝑃′) of 3PSA with the same set of agents such that for any matching
𝑀 , if a triple blocks 𝑀 in (𝑁, 𝑃) then it also blocks 𝑀 in (𝑁, 𝑃′). We can then show, as
before, that the approximation ratio of the algorithm for 3DR-W-MSM is 9/4.

Theorem 5.2. There exists a polynomial-time 9/4-approximation algorithm for 3DR-W-
MSM.



5.4. Summary and open problems 61

Proof. The proof is analogous to Theorem 4.2 in Chapter 4, except (𝑁, 𝑃′) is constructed
such that for any agent 𝛼𝑖, 𝑃′𝛼𝑖 is the list of all 2-agent subsets of 𝑁 \ {𝛼𝑖} in colexicographic
order [38] with respect to 𝑃𝛼𝑖 . Suppose 𝑀 is an arbitrary matching in (𝑁, 𝑃) and 𝑟 is a triple
that blocks 𝑀 in (𝑁, 𝑃). We will show that 𝑟 also blocks 𝑀 in (𝑁, 𝑃′). For any 𝛼𝑘 in 𝑟 it
must be that 𝒲𝛼𝑘 (𝑟) ≻𝑃𝛼𝑘 𝒲𝛼𝑘 (𝑀). By the construction of 𝑃′𝛼𝑘 as the colexicographic order
of 𝑃𝛼𝑘 , it must be that 𝑟 ≻𝑃′𝛼𝑘 𝑀 (𝛼𝑘 ) and thus that 𝑟 also blocks 𝑀 in (𝑁, 𝑃′). It follows
that |bt(𝑀, (𝑁, 𝑃′)) | ≥ |bt(𝑀, (𝑁, 𝑃)) | and thus that |nbt(𝑀, (𝑁, 𝑃)) | ≥ |nbt(𝑀, (𝑁, 𝑃′)) |,
as required. □

5.4 Summary and open problems

In this chapter we formalised a new model of 3DR, involving𝒲-preferences, which we called
3DR-W. We considered in 3DR-W the existence of, and complexity of finding, matchings that
are stable.

We first showed that, as in the case of 3DR-B (see Chapter 4), a given instance of 3DR-W may
not contain a stable matching and the associated decision problem is NP-complete. Next, we
considered a closely related optimisation problem, which we called 3DR-W-MSM, in which
the objective is to construct, in a given instance of 3DR-B, a matching with the maximum
number of non-blocking triples. Finally, we presented a 9/4-approximation algorithm for
3DR-W-MSM built on an existing algorithm for 3PSA-MSM, which is a closely related
problem [75].

We now present some open problems specifically involving stability in 3DR-W. More general
problems, involving solution concepts other than stability and other models of fixed-size
coalition formation, are discussed in Chapter 9.

Although the definitions of 3DR-B and 3DR-W are similar, and the stability existence problem
is NP-complete in both models, it is unclear whether the two models are further related. For
example, in Chapter 4 we presented a 3/2-approximation algorithm for 3DR-B-MSM, but it
seems difficult to design such an algorithm for 3DR-W-MSM. One possible starting point is
Rosenbaum’s 9/4-approximation algorithm for 3PSA-MSM, Algorithm ASA. Another idea
is to adapt Irving’s [40] algorithm for (two-dimensional) Stable Roommates. In fact, Irving’s
algorithm is the basis of another polynomial-time algorithm for an analogous model involving
𝒲-preferences [8], in which coalitions need not have a fixed size.

Alternatively, it might be possible to prove an inapproximability result for 3DR-W-MSM. For
example, if one could show that no 3/2-approximation algorithm exists for 3DR-W-MSM,
unless P = NP, then a striking difference would be revealed between 3DR-B and 3DR-W. To
this end, it might be useful to consider the reductions of Iwama et al. [61] and Rosenbaum
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[75], which show that two optimisation problems that are defined in related models of 3DR
are both APX-hard (both results are discussed in Chapter 2).

It would be very informative to estimate the probability that a random instance of 3DR-W
contains a stable matching. In particular, if this probability could be compared between the
models of 3DR-B and 3DR-W. As we noted in Chapter 4, both 3-DSM-CYC [53] and two-
dimensional Stable Roommates (SR) [81] have been studied from a probabilistic perspective,
which are possible starting points. Alternatively, an empirical approach might be informative,
as it has been for 3-DSM-CYC [51]. In this direction, it might be useful to formulate the
problem of finding a stable matching in a given instance of 3DR-W as an integer programming
model.

Various other optimisation problems and measures can be defined in relation to stability and
3DR-W. In Chapter 4 we proposed some alternatives in the setting of 3DR-B, all of which
can be defined analogously for 3DR-W.
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Chapter 6

Three-Dimensional Stable
Roommates with Additively
Separable Preferences

6.1 Introduction

In this chapter we formalise a model of Three-Dimensional Roommates (3DR) involving ad-
ditively separable preferences, which we call 3DR-AS. We consider in 3DR-AS the existence
of, and complexity of finding, matchings that are stable, under three possible restrictions of
the agents’ preferences.

A strong motivation exists for a model of 3DR with additively separable preferences. The
first such model, of which 3DR-AS is a generalisation, was first proposed by Huang [29]
in 2007, who noted the natural definition and relative practicality of additively separable
preferences compared to other possible systems of preference representation. For example,
such a model could be applied to a social network graph involving a symmetric “friendship”
relation between users [4]. Another special case of 3DR-AS is Geometric 3D-SR [62] (see
Chapter 2). In a sense, all of these models can also be considered as a special type of additively
separable hedonic game [15, 34], which have received much attention in the literature (and
are also discussed in Chapter 2).

We begin in Section 6.2 with some preliminary definitions and results.

We then show, in Section 6.3, that any instance of 3DR-AS with binary and symmetric
preferences must contain a stable matching, and present a polynomial-time algorithm that
can construct a stable matching in a given such instance (Theorem 6.1). We then consider
the problem of finding a stable matching with maximum utilitarian welfare, given an instance
in which preferences are binary and symmetric. We show that this optimisation problem is
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NP-hard (Theorem 6.2) but also that the algorithm for constructing a stable matching in this
setting can be modified to yield a 2-approximation algorithm (Theorem 6.3).

Next, we complement the previous tractability results with two hardness results. The first,
shown in Section 6.4, is that a stable matching need not exist in general, and the associated
decision problem is NP-complete even when preferences are binary and not necessarily
symmetric (Theorem 6.4). The second, shown in Section 6.5, is that the same decision
problem is NP-complete even when preferences are ternary and symmetric (Theorem 6.5).

Finally, in Section 6.6, we recap on our contribution and discuss some directions for future
work.

6.2 Preliminaries

An instance of 3DR-AS comprises a set 𝑁 of 3𝑛 agents with additively separable preferences
over triples, which we define as follows. Each agent 𝛼𝑖 supplies a valuation function 𝑣𝛼𝑖 :
𝑁 \ {𝛼𝑖} ↦→ Z. Given agent 𝛼𝑖, let the utility of any set 𝑆 ⊆ 𝑁 be 𝑢𝛼𝑖 (𝑆) =

∑
𝛼𝑗∈𝑆\{𝛼𝑖} 𝑣𝛼𝑖 (𝛼𝑗 ).

A triple is an unordered set of three agents. We say that 𝛼𝑖 ∈ 𝑁 prefers some triple 𝑟 to
another triple 𝑠 if 𝑢𝛼𝑖 (𝑟) > 𝑢𝛼𝑖 (𝑠). A matching is a partition of 𝑁 into 𝑛 triples (note that
we shall slightly modify this definition in Section 6.3.1). Given an agent 𝛼𝑖 and a matching
𝑀 , we denote by 𝑀 (𝛼𝑖) the triple in 𝑀 that contains 𝛼𝑖. Given a matching 𝑀 , we say that a
triple 𝑡 is blocking if each agent 𝛼𝑖 in 𝑡 prefers 𝑡 to 𝑀 (𝛼𝑖). A matching is stable if it does not
contain a blocking triple. An agent’s preference between two matchings depends only on the
partners of that agent in each matching, so given a matching 𝑀 we let 𝑢𝛼𝑖 (𝑀) be short for
𝑢𝛼𝑖 (𝑀 (𝛼𝑖)). Formally, we represent an instance of 3DR-AS as a pair (𝑁,𝑉), where 𝑉 is the
collection of all agents’ valuation functions.

For any instance (𝑁,𝑉) of 3DR-AS and any matching 𝑀 in (𝑁,𝑉), for a set 𝑆 ⊆ 𝑁 of agents
we define the utilitarian welfare of 𝑆 as 𝑢𝑆 (𝑀) =

∑
𝛼𝑖∈𝑆 𝑢𝛼𝑖 (𝑀). Let 𝑢(𝑀) be short for

𝑢𝑁 (𝑀).

We also define three possible restrictions of agents’ preferences. We say that valuations are
binary, if 𝑣𝛼𝑖 (𝛼𝑗 ) ∈ {0, 1} for any 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 , ternary if 𝑣𝛼𝑖 (𝛼𝑗 ) ∈ {0, 1, 2} for any 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 ,
and symmetric if 𝑣𝛼𝑖 (𝛼𝑗 ) = 𝑣𝛼𝑗 (𝛼𝑖) for any 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 .

It is possible to consider an instance of 3DR-AS as a weighted directed graph, in which the
set of vertices is the set of agents and the weight of any arc from one agent to another is the
corresponding valuation. In particular, an instance of 3DR-AS with binary and symmetric
preferences corresponds directly to an undirected graph, which we shall refer to as the
underlying graph.
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By the definition of stability, if 𝑀 and 𝑀′ are matchings in some instance of 3DR-AS, 𝑀 is
stable, and 𝑢𝛼𝑖 (𝑀′) ≥ 𝑢𝛼𝑖 (𝑀) for any agent 𝛼𝑖 then it must follow that 𝑀′ is also stable. We
prove a related statement in Proposition 6.1.

Proposition 6.1. Given an instance (𝑁,𝑉) of 3DR-AS, suppose that 𝑀 and 𝑀′ are matchings
in (𝑁,𝑉). Any triple that blocks 𝑀′ but does not block 𝑀 contains at least one agent 𝛼𝑖 ∈ 𝑁
where 𝑢𝛼𝑖 (𝑀′) < 𝑢𝛼𝑖 (𝑀).

Proof. Suppose some triple {𝛼𝑖, 𝛼𝑗 , 𝛼𝑘 } blocks 𝑀′. By the definition of a blocking triple,
it must be that 𝑢𝛼𝑖 ({𝛼𝑗 , 𝛼𝑘 }) > 𝑢𝛼𝑖 (𝑀′), 𝑢𝛼𝑗 ({𝛼𝑖, 𝛼𝑘 }) > 𝑢𝛼𝑗 (𝑀′), and 𝑢𝛼𝑘 ({𝛼𝑖, 𝛼𝑗 }) >
𝑢𝛼𝑘 (𝑀′). Suppose for a contradiction that there exists no 𝛼𝑝 ∈ {𝛼𝑖, 𝛼𝑗 , 𝛼𝑘 } exists where
𝑢𝛼𝑝 (𝑀′) < 𝑢𝛼𝑝 (𝑀) and hence 𝑢𝛼𝑘𝑟 (𝑀

′) ≥ 𝑢𝛼𝑘𝑟 (𝑀) for 1 ≤ 𝑟 ≤ 3. It follows that 𝑢𝛼𝑖 ({𝛼𝑗 ,
𝛼𝑘 }) > 𝑢𝛼𝑖 (𝑀), 𝑢𝛼𝑗 ({𝛼𝑖, 𝛼𝑘 }) > 𝑢𝛼𝑗 (𝑀), and 𝑢𝛼𝑘 ({𝛼𝑖, 𝛼𝑗 }) > 𝑢𝛼𝑘 (𝑀) and thus that {𝛼𝑖, 𝛼𝑗 ,
𝛼𝑘 } also blocks 𝑀 , which is a contradiction. □

We also introduce some other notation. We denote by 𝐿 = ⟨𝑙1, 𝑙2, . . . , 𝑙 |𝐿 |⟩ an ordered list. If
𝐿 and 𝐿′ are lists then we denote by 𝐿 · 𝐿′ the concatenation of 𝐿′ to the end of 𝐿. We also
use standard set notation with lists, such as 𝑒 ∈ 𝐿.

6.3 Symmetric binary preferences

6.3.1 Finding a stable matching

6.3.1.1 Preliminaries

In this section we show that every such instance of 3DR-AS contains a stable matching,
which can be found in 𝑂 ( |𝑁 |3) time. We give a step-by-step constructive proof of this result
between Sections 6.3.1.2–6.3.1.5.

For technical purposes, in this section (Section 6.3.1) only, we make two relaxations to the
model described in Section 6.2. In fact, we prove a slightly more general result than required.
Firstly, we suppose an instance (𝑁,𝑉) of 3DR-AS may contain a number of agents that is
not necessarily divisible by three. Secondly, we define a matching only as a set of triples,
which does not necessarily partition 𝑁 . For any matching 𝑀 and any agent 𝛼𝑖, if no triple
in 𝑀 contains 𝛼𝑖 then we say that 𝛼𝑖 is unmatched in 𝑀 and write 𝑀 (𝛼𝑖) = ∅. All other
definitions and notation remain the same. Thus, in this section we show that any (relaxed)
instance of 3DR-AS contains a (relaxed) stable matching. Now, for any (relaxed) instance of
3DR-AS and (relaxed) stable matching 𝑀 , if the number of agents is divisible by three (and
thus the instance meets the original definition) then any unmatched agents may be arbitrarily
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matched into triples. It follows by Proposition 6.1 that the resulting (non-relaxed) matching
𝑀′ is stable in the (non-relaxed) instance, as required.

We also introduce a restricted type of (relaxed) matching called a 𝑃-matching. Recall that
by definition, 𝑀 (𝛼𝑝) = ∅ implies that 𝑢𝛼𝑝 (𝑀) = 0 for any 𝛼𝑝 ∈ 𝑁 in an arbitrary (relaxed)
matching 𝑀 . We say that a matching 𝑀 in (𝑁,𝑉) is a 𝑃-matching if 𝑀 (𝛼𝑝) ≠ ∅ implies
𝑢𝛼𝑝 (𝑀) > 0. A 𝑃-matching thus corresponds to a {𝐾3, 𝑃3}-packing in the underlying graph
[82]. Note that any triple in a 𝑃-matching 𝑀 must contain at least one agent with utility two.
A stable 𝑃-matching is a 𝑃-matching that is also stable. Our main result is that any instance
of 3DR-AS with binary and symmetric preferences contains a stable 𝑃-matching.

6.3.1.2 Removing triangles

In an instance (𝑁,𝑉) of 3DR-AS with binary and symmetric preferences, a triangle comprises
three agents 𝛼𝑚1 , 𝛼𝑚2 , 𝛼𝑚3 such that 𝑣𝛼𝑚1

(𝛼𝑚2) = 𝑣𝛼𝑚2
(𝛼𝑚3) = 𝑣𝛼𝑚3

(𝛼𝑚1) = 1. If (𝑁,𝑉)
contains no triangle then we say it is triangle-free. If (𝑁,𝑉) is not triangle-free then it can
be reduced, by successively removing triangles, until it is triangle-free. This operation is
our first step towards constructing a stable 𝑃-matching in (𝑁,𝑉). We formalise this result in
Lemma 6.1.

Lemma 6.1. Given an instance (𝑁,𝑉) of 3DR-AS with binary and symmetric preferences,
we can, in 𝑂 ( |𝑁 |3) time, identify an instance (𝑁′, 𝑉 ′) of 3DR-AS with binary and symmetric
preferences and a 𝑃-matching 𝑀△ such that (𝑁′, 𝑉 ′) is triangle-free, |𝑁′| ≤ |𝑁 |, and if 𝑀 is
a stable 𝑃-matching in (𝑁′, 𝑉 ′) then 𝑀′ = 𝑀 ∪ 𝑀△ is a stable 𝑃-matching in (𝑁,𝑉).

Proof. Construct 𝑀△ as a maximal triangle packing [83] in the underlying graph, in𝑂 ( |𝑁 |3)
time. Let 𝑁′ = 𝑁 \ ⋃𝑀△. Construct 𝑉 ′ accordingly. By definition, 𝑀△ is a 𝑃-matching,
(𝑁′, 𝑉 ′) is triangle-free, and |𝑁′| ≤ |𝑁 |.

Suppose 𝑀 is a stable 𝑃-matching in (𝑁′, 𝑉 ′). Consider 𝑀′ = 𝑀 ∪𝑀△. By definition, 𝑀′ is
a 𝑃-matching. Since each triple in 𝑀△ corresponds to a triangle, any agent in any triple in
𝑀△ must have utility two in 𝑀△ and thus does not belong to a triple that blocks 𝑀′ in (𝑁,𝑉).
If some triple blocks 𝑀′ in (𝑁,𝑉) then it must contain three agents in 𝑁′, and thus it must
also block 𝑀 in (𝑁′, 𝑉 ′), which is impossible. It follows that 𝑀′ is stable in (𝑁,𝑉). □

6.3.1.3 Repairing a 𝑃-matching in a triangle-free instance

In this section (Section 6.3.1.3), we consider instances of 3DR-AS that are triangle-free, and
in them define a special type of 𝑃-matching that is repairable.

We present Subroutine repair, shown in Algorithms 6.1 and 6.2 which, given a triangle-free
instance (𝑁,𝑉) and a repairable 𝑃-matching 𝑀 , constructs a new 𝑃-matching 𝑀′ that is
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𝛼𝑖

𝛼𝑗2

𝛼𝑗1
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. . .

𝑆3𝑑−2 𝑆3𝑑−1 𝑆3𝑑
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𝑆3𝑐−2 𝑆3𝑐−1 𝑆3𝑐 𝛼𝑤1

. . .

𝛼𝑧3

Figure 6.1: Agents and triples in 𝑀 before a new iteration of the while loop. Each vertex
represents an agent. An edge is present from agent 𝛼𝑖 to agent 𝛼𝑗 if 𝑣𝛼𝑖 (𝛼𝑗 ) = 1.

stable in (𝑁,𝑉). We shall see in the next section (Section 6.3.1.4) how this subroutine is
used in a more general subroutine that, given a triangle-free instance of 3DR-AS, returns a
𝑃-matching that is stable.

Given a triangle-free instance (𝑁,𝑉) and a 𝑃-matching 𝑀 , we say that 𝑀 is repairable if it
is not stable and there exists some 𝛼𝑖 ∈ 𝑁 such that 𝑢𝛼𝑖 (𝑀) = 0 and any triple that blocks
𝑀 comprises {𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗2} for some 𝛼𝑗1 , 𝛼𝑗2 ∈ 𝑁 where 𝑢𝛼𝑗1 (𝑀) = 1, 𝑢𝛼𝑗2 (𝑀) = 0, and
𝑣𝛼𝑖 (𝛼𝑗1) = 𝑣𝛼𝑗1 (𝛼𝑗2) = 1.

We now provide some intuition behind Subroutine repair and refer the reader to Figure 6.1.
Recall that the overall goal of the subroutine is to construct a 𝑃-matching 𝑀′ that is stable.
Since 𝑀 is repairable, our goal will be to modify 𝑀 in such a way that 𝑢𝛼𝑖 (𝑀′) ≥ 1 and no
triple blocks𝑀′ that did not also block𝑀 . By the definition of repairable, and Proposition 6.1,
it follows that the resulting 𝑃-matching 𝑀′ is stable. For example, one way to accomplish
this goal would be to construct 𝑀′ in such a way that 𝑢𝛼𝑖 (𝑀′) ≥ 1 and 𝑢𝛼𝑝 (𝑀′) ≥ 𝑢𝛼𝑝 (𝑀)
for any 𝛼𝑝 ∈ 𝑁 \ {𝛼𝑖}, from which it would follow by Proposition 6.1 that 𝑀′ is stable.

The subroutine begins by selecting some triple {𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗2} that blocks 𝑀 . The two agents
in 𝑀 (𝛼𝑗1) \ {𝛼𝑗1} are labelled 𝛼𝑗3 and 𝛼𝑗4 . In order to introduce the mechanism of Sub-
routine repair we consider two example cases in which it is possible to construct a stable
𝑃-matching.

First, suppose there exists some agent 𝛼𝑧1 where 𝑣𝛼𝑗3 (𝛼𝑧1) = 1 and 𝑢𝛼𝑧1 (𝑀) = 0. Construct
𝑀′ from 𝑀 by removing {𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3} and adding {𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗2} and {𝛼𝑗3 , 𝛼𝑗4 , 𝛼𝑧1}. Now
𝑢𝛼𝑖 (𝑀′) = 1 and 𝑢𝛼𝑝 (𝑀′) ≥ 𝑢𝛼𝑝 (𝑀) for any 𝛼𝑝 ∈ 𝑁 \ {𝛼𝑖}. It follows by Proposition 6.1 that
𝑀′ is stable. Second, suppose there exists no such 𝛼𝑧1 but there exists some agent 𝛼𝑧2 where
𝑣𝛼𝑗4 (𝛼𝑧2) = 1 and 𝑢𝛼𝑧2 (𝑀) = 0. In this case construct 𝑀′ from 𝑀 by removing {𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3}
and adding {𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗2} and {𝛼𝑗3 , 𝛼𝑗4 , 𝛼𝑧2}. Now 𝑢𝛼𝑖 (𝑀′) = 1 and 𝑢𝛼𝑝 (𝑀′) ≥ 𝑢𝛼𝑝 (𝑀) for
any 𝛼𝑝 ∈ 𝑁 \ {𝛼𝑖, 𝛼𝑗3}. It can be shown that 𝛼𝑗3 does not belong to a triple that blocks 𝑀′

since no 𝛼𝑧1 exists as described. It follows again by Proposition 6.1 that 𝑀′ is stable.

Generalising these example cases, Subroutine repair repair has two phases. In Phase 1, shown
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in Algorithm 6.1, it identifies some set of agents in the instance with a specific structure. In
Phase 2, shown in Algorithm 6.1, it modifies the triples of these agents in order to construct a
stable 𝑃-matching 𝑀′. Phase 1 involves the construction of a list of agents 𝑆, which initially
comprises ⟨𝛼𝑗1 , 𝛼𝑗3 , 𝛼𝑗4⟩. At any point in time, the list 𝑆 has length 3𝑐 for some 𝑐 ≥ 1 where
{𝑆3𝑐−2, 𝑆3𝑐−1, 𝑆3𝑐} ∈ 𝑀 and 𝑣𝑆𝑝 (𝑆𝑝+1) = 1 for any 𝑝 where 1 ≤ 𝑝 < 3𝑐. It follows that 𝑆
corresponds to a path in the underlying graph. In each iteration of the main loop, three agents
belonging to some triple in 𝑀 are appended to the end of 𝑆. The loop continues until 𝑆
satisfies at least one of six specific stopping conditions (shown in the first if/else statement).
We will show that eventually at least one of these stopping conditions must hold. After the
loop terminates, the subroutine enters Phase 2 and constructs 𝑀′. The exact construction of
𝑀′ depends on which stopping condition(s) caused the main loop to terminate. Two of these
conditions, and the corresponding constructions of 𝑀′, generalise the two example cases
(involving 𝛼𝑧1 and 𝛼𝑧2). The other four conditions, and the corresponding constructions of
𝑀′, relate to alternative cases in which it is possible to construct a stable 𝑃-matching 𝑀′.

The six stopping conditions correspond to seven possible constructions of 𝑀′, which are
labelled Construction 1–7. Each of the six stopping conditions corresponds to a single con-
struction except the first condition, which corresponds to two constructions (Construction 1
and Construction 3). Constructions 1 and 3 generalise the first example case (involving 𝛼𝑧1).
Construction 2 generalises the second example case (involving 𝛼𝑧2). Constructions 4–7 cor-
respond to alternative cases. Like in the two example cases, in each of Constructions 1–6 no
agent identified by the subroutine, including 𝛼𝑖, becomes unmatched in 𝑀′. This simplifies
the proof that 𝑀′ is stable in Constructions 1–6. The proof that 𝑀′ is stable in Construction 7
is more complicated. In Construction 7, the final agent in the list 𝑆, labelled 𝑆3𝑐, becomes
unmatched in 𝑀′. To prove that 𝑆3𝑐 does not then become part of a triple that blocks 𝑀′ we
must invoke on the fact that no stopping condition relating to previous constructions held in
any previous iteration of the main loop. In this way, the six stopping conditions and seven
corresponding constructions of 𝑀′ are somewhat hierarchical. For another example, the
proof that 𝑀′ is stable in Construction 4 relies on the fact that in no previous iteration did the
stopping condition relating to Constructions 1 and 3 hold. A similar reliance exists among
the proofs for the other constructions. This hierarchy helps demonstrate why the six stopping
conditions and seven constructions of 𝑀′ are both necessary and sufficient.

In order to prove the correctness and time complexity of Subroutine repair we use a number
of lemmas. The following lemma, Lemma 6.2, shows that the while loop in Subroutine repair

must terminate in 𝑂 ( |𝑁 |) time.

Lemma 6.2. The while loop in Subroutine repair terminates after at most ⌊(|𝑁 | − 2) / 3⌋
iterations.

Proof. By the pseudocode, any three agents {𝛼𝑤1 , 𝛼𝑤2 , 𝛼𝑤3} added to 𝑆 in a single iteration
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form a triple in 𝑀 . Just before the addition of ⟨𝛼𝑤1 , 𝛼𝑤2 , 𝛼𝑤3⟩ to 𝑆, it must be that 𝛼𝑤1 ∉ 𝑆.
It follows that 𝛼𝑤2 , 𝛼𝑤3 ∉ 𝑆, so in general 𝑆 contains any agent in 𝑁 at most once. Since
𝛼𝑖, 𝛼𝑗2 ∉ 𝑆 it follows that |𝑆 | ≤ |𝑁 | − 2 and thus the while loop terminates after at most
⌊(|𝑁 | − 2) / 3⌋ iterations. □

In Construction 3, the subroutine identifies some agent𝛼𝑧4 in 𝑁\{𝛼𝑖} such that 𝑣𝑆3𝑐−1 (𝛼𝑧4) = 1
and 𝑢𝛼𝑧4 (𝑀) = 0. Proposition 6.2 shows that such an agent must exist.

Proposition 6.2. In Construction 3 of Subroutine repair, some agent 𝛼𝑧4 in 𝑁 \{𝛼𝑖, 𝛼𝑗2} exists
where 𝑣𝑆3𝑐−2 (𝛼𝑧4) = 1 and 𝑢𝛼𝑧4 (𝑀) = 0.

Proof. Refer to Figure 6.2. We first claim that 𝑐 > 1. Suppose for a contradiction that 𝑐 = 1.
By the pseudocode, in Construction 3 it must be that 𝛼𝑧1 = 𝛼𝑗2 and 𝑣𝛼𝑧1 (𝑆3𝑐−1) = 1. Since
𝑐 = 1 it must be that 𝑆3𝑐−1 = 𝛼𝑗3 so the triple {𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3} forms a triangle in (𝑁,𝑉), which
contradicts the assumption that (𝑁,𝑉) is triangle-free.

Algorithm 6.1 Subroutine repair (Phase 1)
Input: a triangle-free instance (𝑁,𝑉) of 3DR-AS with binary and symmetric preferences

and a repairable 𝑃-matching 𝑀 in (𝑁,𝑉) (see Section 6.3.1.3) with some such 𝛼𝑖
Output: a stable 𝑃-matching 𝑀′ in (𝑁,𝑉)
{𝛼𝑗1 , 𝛼𝑗2} ← some 𝛼𝑗1 , 𝛼𝑗2 ∈ 𝑁 where {𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗2} blocks 𝑀 and 𝑢𝛼𝑗1 (𝑀) = 1
{𝛼𝑗3 , 𝛼𝑗4} ← 𝑀 (𝛼𝑗1) \ {𝛼 𝑗1} where 𝑢𝛼 𝑗3

(𝑀) = 2
𝑆 ← ⟨𝛼𝑗1 , 𝛼𝑗3 , 𝛼𝑗4⟩
𝑐 ← 1
𝑏 ← 0
𝛼𝑧1 , 𝛼𝑧2 , 𝛼𝑦1 , 𝛼𝑦2 , 𝛼𝑤1 ← ⊥
while true
𝛼𝑧1 ← some 𝛼𝑧1 ∈ 𝑁 \ {𝛼𝑖} where 𝑣𝛼𝑧1 (𝑆3𝑐−1) = 1 and 𝑢𝛼𝑧1 (𝑀) = 0, otherwise ⊥
𝛼𝑧2 ← some 𝛼𝑧2 ∈ 𝑁 \ {𝛼𝑖, 𝛼𝑗2} where 𝑣𝛼𝑧2 (𝑆3𝑐) = 1 and 𝑢𝛼𝑧2 (𝑀) = 0, otherwise ⊥
𝛼𝑦1 ← some 𝛼𝑦1 ∈ 𝑁 where 𝑣𝑆3𝑐 (𝛼𝑖) = 𝑣𝛼𝑦1

(𝛼𝑖) = 1 and 𝑢𝛼𝑦1
(𝑀) = 0, otherwise ⊥

𝛼𝑦2 ← some 𝛼𝑦2 ∈ 𝑁 where 𝑣𝑆3𝑐 (𝛼𝑗2) = 𝑣𝛼𝑦2
(𝛼𝑗2) = 1 and 𝑢𝛼𝑦2

(𝑀) = 0, otherwise ⊥
𝑏 ← some 1 ≤ 𝑏 < 𝑐 where 𝑣𝑆3𝑏 (𝛼𝑗2) = 𝑣𝑆3𝑐 (𝑆3𝑏) = 1 else 0
𝛼𝑤1 ← some 𝛼𝑤1 ∈ 𝑁 where 𝑣𝑆3𝑐 (𝛼𝑤1) = 1, 𝑢𝛼𝑤1

(𝑀) = 1 and 𝛼𝑤1 ∉ 𝑆 and there
exists some 𝛼𝑧3 ∈ 𝑁\{𝛼𝑖}where 𝑣𝛼𝑤1

(𝛼𝑧3) = 1 and 𝑢𝛼𝑧3 (𝑀) = 0, otherwise⊥
if 𝛼𝑧1 ≠ ⊥ or 𝛼𝑧2 ≠ ⊥ or 𝛼𝑦1 ≠ ⊥ or 𝛼𝑦2 ≠ ⊥ or 𝑏 > 0 or 𝛼𝑤1 = ⊥ then

break
else
{𝛼𝑤2 , 𝛼𝑤3} ← 𝑀 (𝛼𝑤1) \ {𝛼𝑤1} where 𝑢𝛼𝑤2

(𝑀) = 2
𝑆 ← 𝑆 · ⟨𝛼𝑤1 , 𝛼𝑤2 , 𝛼𝑤3⟩
𝑐 ← 𝑐 + 1

end if
end while

(continued in Phase 2)
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Algorithm 6.2 Subroutine repair (Phase 2)

(continued from Phase 1)

if 𝛼𝑧1 ≠ ⊥ and 𝛼𝑧1 ≠ 𝛼𝑗2 then
⊲ Construction 1
𝑀𝑆 ← {{𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗2}} ∪

⋃
1≤𝑑<𝑐

{{𝑆3𝑑−1, 𝑆3𝑑 , 𝑆3𝑑+1}} ∪ {{𝛼𝑧1 , 𝑆3𝑐−1, 𝑆3𝑐}}

else if 𝛼𝑧2 ≠ ⊥ then
⊲ Construction 2
𝑀𝑆 ← {{𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗2}} ∪

⋃
1≤𝑑<𝑐

{{𝑆3𝑑−1, 𝑆3𝑑 , 𝑆3𝑑+1}} ∪ {{𝑆3𝑐−1, 𝑆3𝑐, 𝛼𝑧2}}

else if 𝛼𝑧1 ≠ ⊥ and 𝛼𝑧1 = 𝛼𝑗2 then
⊲ Construction 3 (note that 𝛼𝑧4 must exist by Proposition 6.2)
𝛼𝑧4 ← some 𝛼𝑧4 ∈ 𝑁 \ {𝛼𝑖, 𝛼𝑗2} where 𝑣𝑆3𝑐−2 (𝛼𝑧4) = 1 and 𝑢𝛼𝑧4 (𝑀) = 0
𝑀𝑆 ← {{𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗3}}∪

⋃
1≤𝑑<𝑐−1

{{𝑆3𝑑 , 𝑆3𝑑+1, 𝑆3𝑑+2}}∪{{𝑆3𝑐−3, 𝑆3𝑐−2, 𝛼𝑧4}}∪{{𝑆3𝑐−1,

𝑆3𝑐, 𝛼𝑗2}}
else if 𝛼𝑦1 ≠ ⊥ then
⊲ Construction 4
𝑀𝑆 ← {{𝛼𝑗2 , 𝛼𝑗1 , 𝛼𝑗3}} ∪

⋃
1≤𝑑<𝑐

{{𝑆3𝑑 , 𝑆3𝑑+1, 𝑆3𝑑+2}} ∪ {{𝑆3𝑐, 𝛼𝑖, 𝛼𝑦1}}

else if 𝛼𝑦2 ≠ ⊥ then
⊲ Construction 5
𝑀𝑆 ← {{𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗3}} ∪

⋃
1≤𝑑<𝑐

{{𝑆3𝑑 , 𝑆3𝑑+1, 𝑆3𝑑+2}} ∪ {{𝑆3𝑐, 𝛼𝑗2 , 𝛼𝑦2}}

else if 𝑏 > 0 then
⊲ Construction 6 (note that 𝛼𝑧5 must exist by Proposition 6.3)
𝛼𝑧5 ← some 𝛼𝑧5 ∈ 𝑁 \ {𝛼𝑖, 𝛼𝑗2} where 𝑣𝑆3𝑏+1 (𝛼𝑧5) = 1 and 𝑢𝛼𝑧5 (𝑀) = 0
𝑀𝑆 ← {{𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗3}} ∪

⋃
1≤𝑑<𝑏

{{𝑆3𝑑 , 𝑆3𝑑+1, 𝑆3𝑑+2}} ∪ {{𝛼𝑧4 , 𝑆3𝑏+1, 𝑆3𝑏+2}} ∪⋃
𝑏+1≤𝑑<𝑐

{{𝑆3𝑑 , 𝑆3𝑑+1, 𝑆3𝑑+2}} ∪ {{𝑆3𝑐, 𝑆3𝑏, 𝛼𝑗2}}
else
⊲ Construction 7 (note that 𝛼𝑤1 = ⊥)
𝑀𝑆 ← {{𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗3}} ∪

⋃
1≤𝑑<𝑐

{{𝑆3𝑑 , 𝑆3𝑑+1, 𝑆3𝑑+2}}

end if
𝑀′← 𝑀𝑆 ∪ {𝑟 ∈ 𝑀 : 𝑟 ∩ 𝑆 = ∅}
return 𝑀′

Since 𝑐 > 1 it follows that 𝑐′ = 𝑐 − 1 is the value of 𝑐 in the second last iteration of the
while loop. Consider the second-to-last iteration of the while loop. In this iteration, the
subroutine identified some 𝛼𝑤1 = 𝑆3𝑐−2 where 𝑣𝑆3𝑐′ (𝛼𝑤1) = 1, 𝛼𝑤1 ∉ 𝑆 and there existed
some 𝛼𝑧3 ∈ 𝑁 \ {𝛼𝑖} where 𝑣𝛼𝑤1

(𝛼𝑧3) = 1 and 𝑢𝛼𝑧3 (𝑀) = 0. We shall identify the agent
labelled 𝛼𝑧3 in this iteration as 𝛼𝑧4 . It follows that 𝛼𝑧4 ≠ 𝛼𝑖, 𝑣𝑆3𝑐−2 (𝛼𝑧4) = 1, and 𝑢𝛼𝑧4 (𝑀) = 0.

We claim that in 𝛼𝑧4 ≠ 𝛼𝑗2 since otherwise the triple {𝛼𝑧4 , 𝑆3𝑐−1, 𝑆3𝑐−2} forms a triangle in (𝑁,
𝑉), which contradicts the fact that (𝑁,𝑉) is triangle-free. It follows that 𝛼𝑧4 ∈ 𝑁 \ {𝛼𝑖, 𝛼𝑗2},
which completes the proof. □
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Figure 6.2: The structure of 𝑀′ in Construction 3
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Figure 6.3: The structure of 𝑀′ in Construction 6

Likewise in Construction 6, the subroutine identifies some agent 𝛼𝑧5 in 𝑁 \ {𝛼𝑖, 𝛼𝑗2} exists
where 𝑣𝑆3𝑏+1 (𝛼𝑧5) = 1 and 𝑢𝛼𝑧5 (𝑀) = 0. Proposition 6.3 shows that such an agent must exist.

Proposition 6.3. In Construction 6 of Subroutine repair, some agent 𝛼𝑧5 in 𝑁 \{𝛼𝑖, 𝛼𝑗2} exists
where 𝑣𝑆3𝑏+1 (𝛼𝑧5) = 1 and 𝑢𝛼𝑧5 (𝑀) = 0.

Proof. Refer to Figure 6.3. Consider the final value of 𝑏 in the subroutine. By the definition
of 𝑏 and the pseudocode relating to Construction 6 it must be that 𝑏 < 𝑐.

Consider the 𝑏th iteration of the while loop. Since 𝑏 < 𝑐, it must be that this iteration was not
the final iteration. It follows that at the end of this iteration the subroutine identified some
agent 𝛼𝑤1 = 𝑆3𝑏+1 and then appended ⟨𝑆3𝑏+1, 𝑆3𝑏+2, 𝑆3𝑏+3⟩ to the end of 𝑆. It also follows
that, in this iteration, it also identified some agent 𝛼𝑤1 where there exists some 𝛼𝑧3 ∈ 𝑁 \ {𝛼𝑖}
such that 𝑣𝛼𝑤1

(𝛼𝑧3) = 1 and 𝑢𝛼𝑧3 (𝑀) = 0. We shall identify the agent labelled 𝛼𝑧3 in this
iteration as 𝛼𝑧5 . It follows that 𝛼𝑧5 ≠ 𝛼𝑖, 𝑣𝑆3𝑏+1 (𝛼𝑧5) = 1, and 𝑢𝛼𝑧5 (𝑀) = 0.

We claim that in 𝛼𝑧5 ≠ 𝛼𝑗2 . By the definition of 𝑏, it must be that 𝑣𝑆3𝑏 (𝛼𝑗2) = 1. Thus, if
𝛼𝑧5 = 𝛼𝑗2 then the triple {𝛼𝑧5 , 𝑆3𝑏+1, 𝑆3𝑏} forms a triangle in (𝑁,𝑉), which contradicts the
fact that (𝑁,𝑉) is triangle-free. It follows that 𝛼𝑧5 ∈ 𝑁 \ {𝛼𝑖, 𝛼𝑗2}, which completes the
proof. □

Lemma 6.3. Subroutine repair returns a 𝑃-matching.
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Figure 6.4: The structure of 𝑀′ in Construction 1

Proof. By the construction of 𝑀′ in Constructions 1–7 of 𝑀′, shown in Figures 6.4–6.8. □

In Lemmas 6.4, 6.5 and 6.6 we show that in no construction of 𝑀′ does there exist any agent
𝛼𝑔 where where 𝑢𝛼𝑔 (𝑀′) < 𝑢𝛼𝑔 (𝑀) and 𝛼𝑔 belongs to a triple that blocks 𝑀′. This fact will
help us show that 𝑀′ must be stable.

Lemma 6.4. In Constructions 1 and 3 of Subroutine repair, there exists no agent 𝛼𝑔 where
𝑢𝛼𝑔 (𝑀′) < 𝑢𝛼𝑔 (𝑀) and 𝛼𝑔 belongs to a triple that blocks 𝑀′.

Proof. Refer to Figures 6.2 and 6.4. Suppose for a contradiction that there exists some such
𝛼𝑔 ∈ 𝑁 . By the construction of 𝑀′ in Constructions 1 and 3, 𝑢𝛼𝑝 (𝑀′) ≥ 𝑢𝛼𝑝 (𝑀) for any
𝛼𝑝 ∈ 𝑁 \ 𝑆. It follows that 𝛼𝑔 ∈ 𝑆 and thus by the construction of 𝑀′ in Constructions 1 and
3 that 𝑢𝛼𝑔 (𝑀′) ≥ 1. Since 𝑢𝛼𝑔 (𝑀′) < 𝑢𝛼𝑔 (𝑀) by assumption it must be that 𝑢𝛼𝑔 (𝑀) = 2.
The only such agents in 𝑆 are labelled 𝑆3𝑑−1 for some 𝑑 where 1 ≤ 𝑑 ≤ 𝑐, so it must be that
𝛼𝑔 = 𝑆3𝑑−1 for some such 𝑑.

First consider 𝑆3𝑐−1. Since 𝑢𝑆3𝑐−1 (𝑀′) = 2 it follows that 𝑆3𝑐−1 does not belong to a triple
that blocks 𝑀′ and hence 𝛼𝑔 ≠ 𝑆3𝑐−1. It remains that 𝛼𝑔 = 𝑆3𝑑−1 where 1 ≤ 𝑑 < 𝑐. By
assumption, it must be that some triple {𝑆3𝑑−1, 𝛼𝑘1 , 𝛼𝑘2} blocks 𝑀′, where 𝛼𝑘1 , 𝛼𝑘2 ∈ 𝑁 .
Since 𝑢𝑆3𝑑−1 (𝑀′) = 1 it follows that 𝑢𝑆3𝑑−1 ({𝛼𝑘1 , 𝛼𝑘2}) = 2 and thus that 𝑣𝑆3𝑑−1 (𝛼𝑘1) =

𝑣𝑆3𝑑−1 (𝛼𝑘2) = 1. Consider 𝛼𝑘1 and 𝛼𝑘2 . Since (𝑁,𝑉) is triangle-free, it must be that
𝑣𝛼𝑘1
(𝛼𝑘2) = 0 and thus that 𝑢𝛼𝑘1

({𝑆3𝑑−1, 𝛼𝑘2}) = 𝑢𝛼𝑘2
({𝑆3𝑑−1, 𝛼𝑘1}) = 1. Since the triple

{𝑆3𝑑−1, 𝛼𝑘1 , 𝛼𝑘2} blocks 𝑀′ it follows that 𝑢𝛼𝑘1
(𝑀′) = 𝑢𝛼𝑘2

(𝑀′) = 0. By the construction
of 𝑀′, there exists no 𝛼𝑝 ∈ 𝑁 where 𝑢𝛼𝑝 (𝑀′) = 0 and 𝑢𝛼𝑝 (𝑀′) < 𝑢𝛼𝑝 (𝑀). It follows
that 𝑢𝛼𝑘1

(𝑀) = 𝑢𝛼𝑘2
(𝑀) = 0. Recall the 𝑑th iteration of the while loop. We have shown

that two agents 𝛼𝑘1 , 𝛼𝑘2 exist in that iteration such that 𝑣𝑆3𝑑−1 (𝛼𝑘1) = 𝑣𝑆3𝑑−1 (𝛼𝑘2) = 1 and
𝑢𝛼𝑘1
(𝑀) = 𝑢𝛼𝑘2

(𝑀) = 0. It follows that, in that iteration, there existed some 𝛼𝑧1 ∈ 𝑁 \ {𝛼𝑖}
where 𝑣𝛼𝑧1 (𝑆3𝑑−1) = 1 and 𝑢𝛼𝑧1 (𝑀) = 0, since either 𝛼𝑧1 = 𝛼𝑘1 or 𝛼𝑖 = 𝛼𝑘1 and 𝛼𝑧1 = 𝛼𝑘2 . In
that iteration, since 𝛼𝑧1 ≠ ⊥ the break condition held and the while loop terminated. This is
a contradiction since 𝑑 < 𝑐. □



6.3. Symmetric binary preferences 73

𝛼𝑖

𝛼𝑗2

𝛼𝑗1

𝛼𝑗3 𝛼𝑗4 𝑆4 𝑆5 𝑆6

. . .

𝑆3𝑑−2 𝑆3𝑑−1 𝑆3𝑑

. . .

𝑆3𝑐−1 𝑆3𝑐

𝛼𝑧2

Figure 6.5: The structure of 𝑀′ in Construction 2

𝛼𝑖

𝛼𝑗2

𝛼𝑗1

𝛼𝑗3

𝛼𝑗4

𝛼𝑦1

𝑆4 𝑆5 𝑆6

. . .

𝑆3𝑑−2 𝑆3𝑑−1 𝑆3𝑑

. . .

𝑆3𝑐−1 𝑆3𝑐

Figure 6.6: The structure of 𝑀′ in Construction 4

Lemma 6.5. In Constructions 2, 4, 5, and 6 of Subroutine repair, there exists no agent 𝛼𝑔
where 𝑢𝛼𝑔 (𝑀′) < 𝑢𝛼𝑔 (𝑀) and 𝛼𝑔 belongs to a triple that blocks 𝑀′.

Proof. Refer to Figures 6.3, 6.5, 6.6, and 6.7. Suppose for a contradiction that there exists
some such 𝛼𝑔 ∈ 𝑁 . By the construction of 𝑀′ in Constructions 2, 4, 5, and 6, 𝑢𝛼𝑝 (𝑀′) ≥
𝑢𝛼𝑝 (𝑀) for any 𝛼𝑝 ∈ 𝑁 \ 𝑆. It follows that 𝛼𝑔 ∈ 𝑆 and hence 𝑢𝛼𝑔 (𝑀′) ≥ 1. Since
𝑢𝛼𝑔 (𝑀′) < 𝑢𝛼𝑔 (𝑀) it must be that 𝑢𝛼𝑔 (𝑀) = 2. The only such agents in 𝑆 are labelled 𝑆3𝑑−1

for some 𝑑 where 1 ≤ 𝑑 ≤ 𝑐, so it must be that 𝛼𝑔 = 𝑆3𝑑−1 for some such 𝑑.

Consider 𝑆3𝑑−1 for 1 ≤ 𝑑 ≤ 𝑐. Note that in Constructions 2, 4, 5, and 6 it must be that
𝑢𝑆3𝑑−1 (𝑀) = 2 and 𝑢𝑆3𝑑−1 (𝑀′) = 1. By assumption, it must be that some triple {𝑆3𝑑−1,
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Figure 6.7: The structure of 𝑀′ in Construction 5
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Figure 6.8: The structure of 𝑀′ in Construction 7

𝛼𝑘1 , 𝛼𝑘2} blocks 𝑀′, where 𝛼𝑘1 , 𝛼𝑘2 ∈ 𝑁 . Since 𝑢𝑆3𝑑−1 (𝑀′) = 1 it follows that 𝑢𝑆3𝑑−1 ({𝛼𝑘1 ,

𝛼𝑘2}) = 2. Consider 𝛼𝑘1 and 𝛼𝑘2 . Since (𝑁,𝑉) is triangle-free, it must be that 𝑣𝛼𝑘1
(𝛼𝑘2) = 0

and thus that 𝑢𝛼𝑘1
({𝑆3𝑑−1, 𝛼𝑘2}) = 𝑢𝛼𝑘2

({𝑆3𝑑−1, 𝛼𝑘1}) = 1. It follows that 𝑢𝛼𝑘1
(𝑀′) =

𝑢𝛼𝑘2
(𝑀′) = 0. By the construction of 𝑀′, there exists no 𝛼𝑝 ∈ 𝑁 where 𝑢𝛼𝑝 (𝑀′) = 0 and

𝑢𝛼𝑝 (𝑀′) < 𝑢𝛼𝑝 (𝑀). It follows that 𝑢𝛼𝑘1
(𝑀) = 𝑢𝛼𝑘2

(𝑀) = 0. Recall the 𝑑th iteration of the
while loop. We have shown that two agents 𝛼𝑘1 , 𝛼𝑘2 exist where 𝑣𝑆3𝑑−1 (𝛼𝑘1) = 𝑣𝑆3𝑑−1 (𝛼𝑘2) = 1
and 𝑢𝛼𝑘1

(𝑀) = 𝑢𝛼𝑘2
(𝑀) = 0. It follows that, in that iteration, there existed some𝛼𝑧1 ∈ 𝑁\{𝛼𝑖}

where 𝑣𝛼𝑧1 (𝑆3𝑑−1) = 1 and 𝑢𝛼𝑧1 (𝑀) = 0, since either 𝛼𝑧1 = 𝛼𝑘1 or 𝛼𝑖 = 𝛼𝑘1 and 𝛼𝑧1 = 𝛼𝑘2 . In
that iteration, since 𝛼𝑧1 ≠ ⊥ the break condition must have held, the while loop terminated,
and the condition for either Construction 1 or Construction 3 was true. This is a contradiction
since by assumption the subroutine constructed 𝑀′ according to one of Constructions 2, 4,
5, or 6. □

Lemma 6.6. In Construction 7 of Subroutine repair, there exists no agent𝛼𝑔 where 𝑢𝛼𝑔 (𝑀′) <
𝑢𝛼𝑔 (𝑀) and 𝛼𝑔 belongs to a triple that blocks 𝑀′.

Proof. Refer to Figure 6.8. Suppose for a contradiction that there exists some such 𝛼𝑔.

First, consider any 𝛼𝑝 ∈ 𝑁 where 𝛼𝑝 ∉ 𝑆 ∪ {𝛼𝑗2 , 𝛼𝑖}. By the construction of 𝑀′, it can be
seen that 𝑀 (𝛼𝑝) = 𝑀′(𝛼𝑝) so 𝑢𝛼𝑝 (𝑀) = 𝑢𝛼𝑝 (𝑀′) and thus 𝛼𝑔 ∉ 𝑆 ∪ {𝛼𝑗2 , 𝛼𝑖}.

Next, consider 𝛼𝑖 and 𝛼𝑗2 . Since 𝑢𝛼𝑖 (𝑀) = 0 < 1 = 𝑢𝛼𝑖 (𝑀′) it follows that 𝛼𝑔 ≠ 𝛼𝑖. Similarly,
since 𝑢𝛼𝑗2 (𝑀) = 𝑢𝛼𝑗2 (𝑀

′) = 0 it follows that 𝛼𝑔 ≠ 𝛼𝑗2 .

It remains that 𝛼𝑔 ∈ 𝑆.

Consider any 𝑆3𝑑−2 where 1 ≤ 𝑑 ≤ 𝑐. By construction of 𝑀′ it follows that 𝑢𝑆3𝑑−2 (𝑀′) = 2
so 𝛼𝑝 ≠ 𝑆3𝑑−2 for any 𝑑 where 1 ≤ 𝑑 ≤ 𝑐.

Next, consider any 𝑆3𝑑−1 where 1 ≤ 𝑑 ≤ 𝑐. Suppose for a contradiction that 𝛼𝑔 = 𝑆3𝑑−1 where
1 ≤ 𝑑 ≤ 𝑐 and thus that some triple {𝑆3𝑑−1, 𝛼𝑘1 , 𝛼𝑘2} blocks 𝑀′ where 𝛼𝑘1 , 𝛼𝑘2 ∈ 𝑁 . Since
𝑢𝑆3𝑑−1 (𝑀′) = 1 it follows that 𝑢𝑆3𝑑−1 ({𝛼𝑘1 , 𝛼𝑘2}) = 2. Consider 𝛼𝑘1 and 𝛼𝑘2 . Since (𝑁,𝑉)
is triangle-free, it must be that 𝑣𝛼𝑘1

(𝛼𝑘2) = 0 and thus that 𝑢𝛼𝑘1
({𝑆3𝑑−1, 𝛼𝑘2}) = 𝑢𝛼𝑘2

({𝑆3𝑑−1,

𝛼𝑘1}) = 1. It follows that 𝑢𝛼𝑘1
(𝑀′) = 𝑢𝛼𝑘2

(𝑀′) = 0. By construction of 𝑀′ it can be seen
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that 𝑆3𝑐 is the only agent 𝛼𝑝 in 𝑁 where 𝑢𝛼𝑝 (𝑀′) = 0 and 𝑢𝛼𝑝 (𝑀′) < 𝑢𝛼𝑝 (𝑀). Since the
triple {𝑆3𝑑−1, 𝛼𝑘1 , 𝛼𝑘2} blocks 𝑀′ and 𝑢𝛼𝑘1

({𝑆3𝑑−1, 𝛼𝑘2}) = 𝑢𝛼𝑘2
({𝑆3𝑑−1, 𝛼𝑘1}) = 1 it follows

that either 𝑢𝛼𝑘1
(𝑀) = 0, 𝑢𝛼𝑘2

(𝑀) = 0, or both. Assume without loss of generality that
𝑢𝛼𝑘1
(𝑀) = 0. Since 𝑢𝛼𝑘1

(𝑀′) = 0 it follows that 𝛼𝑘1 ≠ 𝛼𝑖. Recall the 𝑑th iteration of the
while loop. Since 𝑣𝑆3𝑑−1 (𝛼𝑘1) = 1, 𝑢𝛼𝑘1

(𝑀) = 0, and 𝛼𝑘1 ≠ 𝛼𝑖, it follows that, in that iteration,
there existed some 𝛼𝑧1 ∈ 𝑁 \ {𝛼𝑖}, namely 𝛼𝑘1 , where 𝑣𝛼𝑧1 (𝑆3𝑑−1) = 1 and 𝑢𝛼𝑧1 (𝑀) = 0. In
that iteration, since 𝛼𝑧1 ≠ ⊥ the break condition must have held, the while loop terminated,
and either the condition for Construction 1 was true or the condition for Construction 3 was
true. This is a contradiction since by assumption the subroutine constructed 𝑀′ according to
Construction 7. It follows that 𝛼𝑔 ≠ 𝑆3𝑑−1 for any 𝑑 where 1 ≤ 𝑑 ≤ 𝑐.

Next, consider any 𝑆3𝑑 where 1 ≤ 𝑑 < 𝑐. By construction of 𝑀′ it follows that 𝑢𝑆3𝑑 (𝑀′) =
𝑢𝑆3𝑑 (𝑀) = 1 so 𝛼𝑔 ≠ 𝑆3𝑑 for any such 𝑑.

The only possibility is thus that 𝛼𝑔 = 𝑆3𝑐. By the definition of 𝛼𝑔, there exists some triple
{𝑆3𝑐, 𝛼𝑘1 , 𝛼𝑘2} that blocks 𝑀′, where 𝛼𝑘1 , 𝛼𝑘2 ∈ 𝑁 . Since 𝑢𝑆3𝑐 (𝑀′) = 0 it must be that either
𝑣𝑆3𝑐 (𝛼𝑘1) = 1, 𝑣𝑆3𝑐 (𝛼𝑘2) = 1, or both.

Firstly, suppose that both 𝑣𝑆3𝑐 (𝛼𝑘1) = 1 and 𝑣𝑆3𝑐 (𝛼𝑘2) = 1 so 𝑢𝑆3𝑐 ({𝛼𝑘1 , 𝛼𝑘2}) = 2. Since (𝑁,
𝑉) is triangle-free, it must be that 𝑣𝛼𝑘1

(𝛼𝑘2) = 0 and thus that 𝑢𝛼𝑘1
({𝑆3𝑐, 𝛼𝑘2}) = 𝑢𝛼𝑘2

({𝑆3𝑐,

𝛼𝑘1}) = 1. Since {𝑆3𝑐, 𝛼𝑘1 , 𝛼𝑘2} blocks 𝑀′ it must be that 𝑢𝛼𝑘1
(𝑀′) = 𝑢𝛼𝑘2

(𝑀′) = 0. By the
construction of 𝑀′ it can be seen that 𝑆3𝑐 is the only agent 𝛼𝑝 in 𝑁 where 𝑢𝛼𝑝 (𝑀′) = 0 and
𝑢𝛼𝑝 (𝑀′) < 𝑢𝛼𝑝 (𝑀). It follows that 𝑢𝛼𝑘1

(𝑀) = 𝑢𝛼𝑘2
(𝑀) = 0. Note that since 𝑢𝛼𝑖 (𝑀′) = 1 it

follows that 𝛼𝑘1 ≠ 𝛼𝑖 and 𝛼𝑘2 ≠ 𝛼𝑖. It follows that either 𝛼𝑘1 ∈ 𝑁 \ {𝛼𝑖, 𝛼𝑗2}, 𝛼𝑘2 ∈ 𝑁 \ {𝛼𝑖,
𝛼𝑗2}, or both. Without loss of generality assume that 𝛼𝑘1 ∈ 𝑁 \ {𝛼𝑖, 𝛼𝑗2}. In summary, after
the termination of the while loop there existed some 𝛼𝑧2 ∈ 𝑁 \ {𝛼𝑖, 𝛼𝑗2}, namely 𝛼𝑘1 , where
𝑣𝛼𝑧2 (𝑆3𝑐) = 1 and 𝑢𝛼𝑧2 (𝑀) = 0. Since 𝛼𝑧2 ≠ ⊥ the condition of Construction 2 holds, which
is a contradiction since, by assumption, the subroutine entered Construction 7.

Secondly, suppose either 𝑣𝑆3𝑐 (𝛼𝑘1) = 1 or 𝑣𝑆3𝑐 (𝛼𝑘2) = 1 but not both. Assume without
loss of generality that 𝑣𝑆3𝑐 (𝛼𝑘1) = 1 and 𝑣𝑆3𝑐 (𝛼𝑘2) = 0. It follows that 𝑢𝛼𝑘2

({𝑆3𝑐, 𝛼𝑘1}) = 1
and hence 𝑢𝛼𝑘2

(𝑀′) = 0. Since 𝑆3𝑐 is the only agent 𝛼𝑝 in 𝑁 where 𝑢𝛼𝑝 (𝑀′) = 0 and
𝑢𝛼𝑝 (𝑀′) < 𝑢𝛼𝑝 (𝑀), it follows that 𝑢𝛼𝑘2

(𝑀) = 0. It must be that 𝑣𝛼𝑘1
(𝛼𝑘2) = 1 since

𝑢𝛼𝑘2
({𝑆3𝑐, 𝛼𝑘1}) = 1 and 𝑣𝑆3𝑐 (𝛼𝑘2) = 0. In summary, since 𝑣𝑆3𝑐 (𝛼𝑘1) = 1 and 𝑣𝛼𝑘1

(𝛼𝑘2) = 1
it follows that 𝑢𝛼𝑘1

({𝑆3𝑐, 𝛼𝑘2}) = 2. It follows that either 𝑢𝛼𝑘1
(𝑀′) = 1 or 𝑢𝛼𝑘1

(𝑀′) = 0.
Suppose firstly that 𝑢𝛼𝑘1

(𝑀′) = 0. Since 𝑆3𝑐 is the only agent 𝛼𝑝 in 𝑁 where 𝑢𝛼𝑝 (𝑀′) = 0
and 𝑢𝛼𝑝 (𝑀′) < 𝑢𝛼𝑝 (𝑀) it follows that 𝑢𝛼𝑘1

(𝑀) = 0. There are now two possibilities.
Firstly, that 𝛼𝑘1 = 𝛼𝑗2 . Secondly, that 𝛼𝑘1 ≠ 𝛼𝑗2 . In the first possibility, since 𝛼𝑘1 = 𝛼𝑗2

then after the termination of the while loop there exists some 𝛼𝑦2 ∈ 𝑁 , namely 𝛼𝑘2 , where
𝑣𝛼𝑆3𝑐
(𝛼𝑗2) = 𝑣𝛼𝑦2

(𝛼𝑗2) = 1 and 𝑢𝛼𝑦2
(𝑀) = 0. In the algorithm, since 𝛼𝑦2 ≠ ⊥ the condition of

Construction 5 holds, which is a contradiction. In the second possibility, recall that 𝛼𝑘1 ≠ 𝛼𝑗2 .
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Since 𝑢𝛼𝑖 (𝑀′) = 1 it follows that 𝛼𝑖 ≠ 𝛼𝑘1 and hence there exists some 𝛼𝑧2 ∈ 𝑁 \ {𝛼𝑖, 𝛼𝑗2},
namely 𝛼𝑘1 , where 𝑣𝛼𝑧2 (𝑆3𝑐) = 1 and 𝑢𝛼𝑧2 (𝑀) = 0. It follows that after the termination of the
while loop 𝛼𝑧2 ≠ ⊥ and thus the condition of Construction 2 holds, which is a contradiction.
It remains that 𝑢𝛼𝑘1

(𝑀′) = 1. To recap, we have shown that 𝑣𝑆3𝑐 (𝛼𝑘1) = 𝑣𝛼𝑘1
(𝛼𝑘2) = 1,

𝑢𝛼𝑘2
(𝑀′) = 𝑢𝛼𝑘2

(𝑀) = 0, and 𝑢𝛼𝑘1
(𝑀′) = 1. This situation is illustrated in Figure 6.9.

. . .

𝑆3𝑐−2 𝑆3𝑐−1 𝑆3𝑐

𝛼𝑘1

. . .

𝛼𝑘2

Figure 6.9: A hypothetical blocking triple in 𝑀′ in Construction 7. In Lemma 6.6 we suppose
for a contradiction that some triple {𝑆3𝑐, 𝛼𝑘1 , 𝛼𝑘2} blocks 𝑀′ where 𝛼𝑘1 , 𝛼𝑘2 ∈ 𝑁 . We then
show that 𝑣𝑆3𝑐 (𝛼𝑘1) = 𝑣𝛼𝑘1

(𝛼𝑘2) = 1, 𝑢𝛼𝑘2
(𝑀′) = 𝑢𝛼𝑘2

(𝑀) = 0, and 𝑢𝛼𝑘1
(𝑀′) = 1. We then

show that this is a contradiction, and conclude that no such 𝛼𝑘1 , 𝛼𝑘2 exist. This shows that
𝑆3𝑐 does not belong to a triple that blocks 𝑀′.

By the condition of Construction 7, after the termination of the while loop it must have been
that 𝛼𝑤1 = ⊥. By the pseudocode, it follows that in the last iteration there existed no 𝛼𝑤1 ∈ 𝑁
where 𝑣𝑆3𝑐 (𝛼𝑤1) = 1, 𝑢𝛼𝑤1

(𝑀) = 1, 𝛼𝑤1 ∉ 𝑆, and that there existed some 𝛼𝑧3 ∈ 𝑁 \ {𝛼𝑖}
where 𝑣𝛼𝑧3 (𝛼𝑤1) = 1 and 𝑢𝛼𝑧3 (𝑀) = 0. If 𝑢𝛼𝑘1

(𝑀) = 1 and 𝛼𝑘1 ∉ 𝑆 then in the last iteration
there existed some such 𝛼𝑤1 and 𝛼𝑧3 , namely 𝛼𝑘1 and 𝛼𝑘2 , which is a contradiction. It follows
that either 𝑢𝛼𝑘1

(𝑀) ≠ 1, 𝛼𝑘1 ∈ 𝑆, or both.

Firstly suppose that 𝑢𝛼𝑘1
(𝑀) ≠ 1. Recall that 𝑢𝛼𝑘1

(𝑀′) = 1. By the construction of 𝑀′ in
Construction 7, 𝑢𝛼𝑝 (𝑀′) = 𝑢𝛼𝑝 (𝑀) for any 𝛼𝑝 ∈ 𝑁 \ (𝑆∪{𝛼𝑖}). It follows that 𝛼𝑘1 ∈ 𝑆∪{𝛼𝑖}.
By assumption, 𝛼𝑘1 ∉ 𝑆 so it must be that 𝛼𝑘1 = 𝛼𝑖. In this case, in the last iteration of the
while loop there existed some 𝛼𝑦1 ∈ 𝑁 , namely 𝛼𝑘2 , where 𝑣𝑆3𝑐 (𝛼𝑖) = 𝑣𝛼𝑖 (𝛼𝑦1) = 1 and
𝑢𝛼𝑦1
(𝑀) = 0. It follows that, in the last iteration, the subroutine enters Construction 4, which

is a contradiction.

It remains that 𝛼𝑘1 ∈ 𝑆. Recall that 𝑢𝛼𝑘1
(𝑀′) = 1. Since 𝑢𝑆3𝑑−2 (𝑀′) = 2 for any 𝑑 where

1 ≤ 𝑑 ≤ 𝑐 it follows that 𝛼𝑘1 ≠ 𝑆3𝑑−2 for any such 𝑑. It follows that either 𝛼𝑘1 = 𝑆3𝑑−1 or
𝛼𝑘1 = 𝑆3𝑑 for some 𝑑 where 1 ≤ 𝑑 ≤ 𝑐.

Suppose that 𝛼𝑘1 = 𝑆3𝑑−1 for some 𝑑 where 1 ≤ 𝑑 ≤ 𝑐. Recall the 𝑑th iteration of the
while loop. We have shown that in that iteration, there existed some 𝛼𝑧1 ∈ 𝑁 \ {𝛼𝑖}, namely
𝛼𝑘2 , where 𝑣𝛼𝑧1 (𝑆3𝑑−1) = 1 and 𝑢𝛼𝑧1 (𝑀) = 0. It follows that after the 𝑑th iteration of the
while loop, 𝛼𝑧1 ≠ ⊥ and thus that 𝑑 = 𝑐 and the subroutine entered either Construction 1 or
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Construction 3, which is a contradiction.

It now remains that 𝛼𝑘1 = 𝑆3𝑑 for some 𝑑 where 1 ≤ 𝑑 ≤ 𝑐. Recall that 𝑆3𝑐 ≠ 𝛼𝑘1 so 𝑑 < 𝑐.
Recall the 𝑑th iteration of the while loop. Since 𝑣𝑆3𝑑 (𝛼𝑘2) = 1, 𝑢𝛼𝑘2

(𝑀) = 0, and 𝛼𝑘2 ≠ 𝛼𝑖,
and 𝑢𝛼𝑖 (𝑀′) = 1, it follows that in that iteration there existed some 𝛼𝑧2 ∈ 𝑁 \ {𝛼𝑖}, namely
𝛼𝑘2 , where 𝑣𝛼𝑧2 (𝑆3𝑑) = 1 and 𝑢𝛼𝑧2 (𝑀) = 0. There are two possibilities. The first is that
𝛼𝑘2 ≠ 𝛼𝑗2 . The second is that 𝛼𝑘2 = 𝛼𝑗2 . Suppose first that 𝛼𝑘2 ≠ 𝛼𝑗2 . In this case there existed
some 𝛼𝑧2 ∈ 𝑁 \ {𝛼𝑖, 𝛼𝑗2}, namely 𝛼𝑘2 , where 𝑣𝛼𝑧2 (𝑆3𝑑) = 1 and 𝑢𝛼𝑧2 (𝑀) = 0. It follows
that, in that iteration, 𝛼𝑧2 ≠ ⊥ so the break condition held and the while loop terminated
after that iteration. This is a contradiction since 𝑑 < 𝑐. It remains that that 𝛼𝑘2 = 𝛼𝑗2 . It
follows that, in that iteration, there existed some index 𝑏, namely 𝑑, where 1 ≤ 𝑏 < 𝑐 and
𝑣𝑆3𝑏 (𝛼𝑗2) = 𝑣𝑆3𝑐 (𝑆3𝑏) = 1. It follows that, after the final iteration of the while loop, the
condition for Construction 6 was true, which is a contradiction. □

It is now relatively straightforward to show that 𝑀′ must be stable.

Lemma 6.7. Subroutine repair returns a stable 𝑃-matching 𝑀′.

Proof. By Lemma 6.2 the subroutine must eventually terminate. By Lemma 6.3 the subrou-
tine returns a 𝑃-matching.

Suppose 𝑀′ is a 𝑃-matching returned by the algorithm. By Lemmas 6.4, 6.5, and 6.6, in
Constructions 1–7, there exists no 𝛼𝑔 ∈ 𝑁 where 𝑢𝛼𝑔 (𝑀′) < 𝑢𝛼𝑔 (𝑀) and 𝛼𝑔 belongs to a
triple that blocks 𝑀′.

Suppose for a contradiction that 𝑀′ is not stable and some triple {𝛼𝑘1 , 𝛼𝑘2 , 𝛼𝑘3} blocks 𝑀′.
It follows that 𝑢𝛼𝑘𝑟 (𝑀

′) ≥ 𝑢𝛼𝑘𝑟 (𝑀) for 1 ≤ 𝑟 ≤ 3, otherwise some such 𝛼𝑔 exists. By
Proposition 6.1, it follows that {𝛼𝑘1 , 𝛼𝑘2 , 𝛼𝑘3} also blocks 𝑀 . By the definition of repairable,
any triple that blocks 𝑀 must contain 𝛼𝑖 so assume without loss of generality that 𝛼𝑘1 = 𝛼𝑖.

In Construction 4, 𝑢𝛼𝑖 (𝑀′) = 2 and thus 𝛼𝑖 does not belong to a triple that blocks 𝑀′, which
is a contradiction. It follows that 𝑀′ is stable in Construction 4.

In Constructions 1, 2, 3, 5, 6, and 7, it must be that 𝑢𝛼𝑖 (𝑀′) = 1. It follows that 𝑢𝛼𝑖 ({𝛼𝑘2 ,

𝛼𝑘3}) = 2 so 𝑣𝛼𝑖 (𝛼𝑘2) = 𝑣𝛼𝑖 (𝛼𝑘3) = 1. Since (𝑁,𝑉) is triangle-free, it must be that
𝑣𝛼𝑘2
(𝛼𝑘3) = 0 and thus that 𝑢𝛼𝑘2

({𝛼𝑖, 𝛼𝑘3}) = 𝑢𝛼𝑘3
({𝛼𝑖, 𝛼𝑘2}) = 1. Since {𝛼𝑖, 𝛼𝑘2 , 𝛼𝑘3} blocks

𝑀 , It follows that 𝑢𝛼𝑘2
(𝑀) = 𝑢𝛼𝑘3

(𝑀) = 0 and thus that {𝛼𝑖, 𝛼𝑘2 , 𝛼𝑘3} also blocks 𝑀 . It
follows that 𝑀 is not repairable, since there exists some triple {𝛼𝑖, 𝛼𝑘2 , 𝛼𝑘3} that blocks 𝑀
where 𝛼𝑘2 , 𝛼𝑘3 ∈ 𝑁 and 𝑢𝛼𝑘2

(𝑀) = 0, 𝑢𝛼𝑘3
(𝑀) = 0. This is a contradiction, so it follows that

𝑀′ is stable in Constructions 1, 2, 3, 5, 6, and 7. □

Lemma 6.8. Subroutine repair has running time 𝑂 ( |𝑁 |2).



6.3. Symmetric binary preferences 78

Proof. The pseudocode of Subroutine repair, shown in Algorithms 6.1 and 6.2, describes the
subroutine at a high level. To analyse the worst-case time complexity we describe a suitable
system of data structures, which we set up in a preprocessing step.

Suppose that (𝑁,𝑉) is stored such that, for a given 𝛼𝑝 ∈ 𝑁 , the subroutine can iterate through
the set {𝛼𝑞 ∈ 𝑁 : 𝑣𝛼𝑝 (𝛼𝑞) = 1} in 𝑂 ( |𝑁 |) time. Suppose that 𝑀 is stored such that the
subroutine can iterate through each triple in𝑂 ( |𝑁 |) time. For example, (𝑁,𝑉) could be stored
as a graph using adjacency lists and 𝑀 could be stored as a linked list. It follows that, given
three agents 𝛼ℎ1 , 𝛼ℎ2 , 𝛼ℎ3 ∈ 𝑁 the subroutine can compute 𝑢𝛼ℎ1

({𝛼ℎ2 , 𝛼ℎ3}), 𝑢𝛼ℎ2
({𝛼ℎ1 , 𝛼ℎ3}),

and 𝑢𝛼ℎ3
({𝛼ℎ1 , 𝛼ℎ2}) in 𝑂 ( |𝑁 |) time.

The preprocessing step involves constructing two lookup tables. Each lookup table contains
exactly |𝑁 | entries and is indexed by some 𝛼𝑝 ∈ 𝑁 . Each entry in each table contains some
integer less than or equal to |𝑁 |. It follows that finding an entry given its index requires
constant time. Each entry in 𝐿1 will contain either zero, one, or two. For each agent 𝛼𝑝 ∈ 𝑁 ,
the subroutine constructs 𝐿1 so that the 𝑝th entry contains 𝑢𝛼𝑝 (𝑀). By assumption, the
subroutine can compute 𝑢𝛼𝑝 (𝑀) for any 𝛼𝑝 ∈ 𝑁 in 𝑂 ( |𝑁 |) time. It follows that 𝐿1 can be
constructed in 𝑂 ( |𝑁 |2) time by iterating through 𝑀 and computing 𝑢𝛼ℎ1

(𝑀), 𝑢𝛼ℎ2
(𝑀), and

𝑢𝛼ℎ3
(𝑀) for each triple {𝛼ℎ1 , 𝛼ℎ2 , 𝛼ℎ3} ∈ 𝑀 . Since |𝑀 | = 𝑂 ( |𝑁 |) this step takes 𝑂 ( |𝑁 |2)

time. It follows that we can use 𝐿1 to look up 𝑢𝛼𝑝 (𝑀) for any 𝛼𝑝 ∈ 𝑁 in constant time.
Each entry in 𝐿2 contains either the label of some agent or ⊥. Construct 𝐿2 such that for any
𝛼𝑝 ∈ 𝑁 , the 𝑝th entry either contains some 𝛼𝑞 ∈ 𝑁 \ {𝛼𝑖} where 𝑣𝛼𝑝 (𝛼𝑞) = 1 and 𝑢𝛼𝑞 (𝑀) = 0
if it exists and otherwise ⊥. The subroutine will use 𝐿2 primarily in the body of the loop
to identify 𝛼𝑤1 , if it exists, using 𝑆3𝑐. The lookup table 𝐿2 can be constructed in 𝑂 ( |𝑁 |2)
time, as follows. For each 𝛼𝑝 ∈ 𝑁 , look up 𝑢𝛼𝑝 (𝑀) in 𝐿1. If 𝑢𝛼𝑝 (𝑀) = 0 then consider each
𝛼𝑞 ∈ 𝑁 where 𝑣𝛼𝑝 (𝛼𝑞) = 1 and 𝛼𝑞 ≠ 𝛼𝑖. If the 𝑞th entry of 𝐿2 is currently ⊥ then set that
entry to 𝛼𝑝.

The list 𝑆 can be stored using a linked list or any data structure in which a new element can
be appended to the end of 𝑆 in constant time and iterating through 𝑆 takes 𝑂 ( |𝑁 |) time. The
list 𝑆 will be supplemented with a lookup table 𝐿𝑆. For any 𝛼𝑝 ∈ 𝑁 , the table 𝐿𝑆 can be used
to test membership in 𝑆 and look up the position of any agent in 𝑆 in constant time. This is
possible because the only modification that the subroutine makes to 𝑆 is appending a single
agent to the end of 𝑆 in each iteration. As noted in Lemma 6.2, any agent is added to 𝑆 at
most than once. Like the tables 𝐿1 and 𝐿2, the table 𝐿𝑆 contains exactly |𝑁 | entries and is
indexed by each 𝛼𝑝 ∈ 𝑁 . Each entry in 𝐿𝑆 contains some integer position less than or equal
to |𝑆 |. Before the subroutine appends an element 𝛼𝑝 ∈ 𝑁 to the end of 𝑆, it can maintain 𝐿𝑆
in constant time by setting the 𝑝th entry to |𝑆 |.

The first step in the subroutine involves identifying agents 𝛼𝑗1 , 𝛼𝑗2 where {𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗2} blocks
𝑀 in (𝑁,𝑉) and 𝑢𝛼𝑗1 (𝑀) = 1 as follows. Given any 𝛼𝑗1 , 𝛼𝑗2 ∈ 𝑁 where 𝑢𝛼𝑗1 (𝑀) = 1,



6.3. Symmetric binary preferences 79

𝑢𝛼𝑗2 (𝑀) = 0 and 𝑣𝛼𝑖 (𝛼𝑗1) = 𝑣𝛼𝑖 (𝛼𝑗2) = 1, the triple {𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗2} blocks 𝑀 in (𝑁,𝑉). It
follows that some 𝛼𝑗1 , 𝛼𝑗2 ∈ 𝑁 can be found in 𝑂 ( |𝑁 |) time, as follows. Consider each agent
𝛼𝑝 for which 𝑣𝛼𝑖 (𝛼𝑝) = 1, and look up 𝑢𝛼𝑝 (𝑀) in 𝐿1. If 𝑢𝛼𝑝 (𝑀) = 1 then look up the 𝑝th

entry of 𝐿2. By the construction of 𝐿2, if this entry is not equal to ⊥ then it contains some
𝛼𝑞 ∈ 𝑁 \ {𝛼𝑖} where 𝑣𝛼𝑝 (𝛼𝑞) = 1 and 𝑢𝛼𝑞 (𝑀) = 0. In this case let 𝛼𝑗1 = 𝛼𝑝 and 𝛼𝑗2 = 𝛼𝑞.
Since 𝑀 is not stable in (𝑁,𝑉), by the condition of 𝑀 there must exist some such 𝛼𝑗1 , 𝛼𝑗2 .

The second step in the subroutine involves identifying agents 𝛼𝑗3 , 𝛼𝑗4 where 𝛼𝑗3 , 𝛼𝑗4 ∈ 𝑀 (𝛼𝑗1)\
{𝛼𝑗1} and 𝑢𝛼𝑗3 (𝑀) = 2. This can be done in 𝑂 ( |𝑁 |) time, as follows. Consider each triple in
𝑀 until 𝑀 (𝛼𝑗1) is found. This takes 𝑂 ( |𝑁 |) time. Use 𝐿1 to identify 𝛼𝑗3 and 𝛼𝑗4 .

The initialisation of 𝑆, 𝑐, 𝛼𝑧1 , 𝛼𝑧2 , 𝛼𝑦1 , 𝛼𝑦2 and 𝛼𝑤1 in the subroutine takes constant time.

Consider the while loop. By Lemma 6.2, there are at most ⌊(|𝑁 | −2) /3⌋ = 𝑂 ( |𝑁 |) iterations.
Setting up the lookup tables allows us to ensure that each iteration takes 𝑂 ( |𝑁 |) time. It
follows that the loop terminates in 𝑂 ( |𝑁 |2) time.

To identify 𝛼𝑧1 as described, first identify 𝑆3𝑐−1, in constant time. Consider each 𝛼𝑝 ∈ 𝑁 for
which 𝑣𝑆3𝑐−1 (𝛼𝑝) = 1. This takes𝑂 ( |𝑁 |) time. For each such 𝛼𝑝, if 𝛼𝑝 = 𝛼𝑖 then continue. If
𝛼𝑝 ≠ 𝛼𝑖 then look up 𝑢𝛼𝑝 (𝑀) in 𝐿1. If 𝑢𝛼𝑝 (𝑀) = 0 then set 𝛼𝑧1 = 𝛼𝑝. If no such 𝛼𝑝 is found
then no such 𝛼𝑧1 exists so set 𝛼𝑧1 = ⊥.

Similarly, to identify some 𝛼𝑧2 as described, first identify 𝑆3𝑐. Consider each 𝛼𝑙1 ∈ 𝑁 for
which 𝑣𝑆3𝑐 (𝛼𝑙1) = 1. This takes 𝑂 ( |𝑁 |) time. For each such 𝛼𝑙1 , if 𝛼𝑙1 = 𝛼𝑖 or 𝛼𝑙1 = 𝛼𝑗2 then
continue. If not, look up 𝑢𝛼𝑙1 (𝑀) in 𝐿1. If 𝑢𝛼𝑙1 (𝑀) = 0 then set 𝛼𝑧2 = 𝛼𝑙1 . If no such 𝛼𝑝 is
found then no such 𝛼𝑧2 exists so set 𝛼𝑧2 = ⊥.

To identify 𝛼𝑦1 as described, test if 𝑣𝑆3𝑐 (𝛼𝑖) = 1. This takes 𝑂 ( |𝑁 |) time. If 𝑣𝑆3𝑐 (𝛼𝑖) = 0
then no such 𝛼𝑦1 exists. If 𝑣𝑆3𝑐 (𝛼𝑖) = 1 then consider each 𝛼𝑝 ∈ 𝑁 for which 𝑣𝛼𝑖 (𝛼𝑝) = 1.
Note that 𝛼𝑝 ≠ 𝛼𝑗2 since otherwise 𝑣𝛼𝑗2 (𝛼𝑖) = 1, from which it follows that {𝛼𝑖, 𝛼𝑗1 , 𝛼𝑗2} is a
triangle in (𝑁,𝑉). Look up 𝑢𝛼𝑝 (𝑀) in 𝐿1. If 𝑢𝛼𝑝 (𝑀) = 0 then set 𝛼𝑦1 = 𝛼𝑝. If no such 𝛼𝑝
where 𝑢𝛼𝑙1 (𝑀) = 0 is found then no such 𝛼𝑦1 exists so set 𝛼𝑦1 = ⊥. The identification of 𝛼𝑦2 ,
if it exists, can be performed similarly in 𝑂 ( |𝑁 |) time.

To compute 1 ≤ 𝑏 < 𝑐 as described, if there exists some such 𝑆3𝑏 where 𝑣𝑆3𝑏 (𝛼𝑗2) =

𝑣𝑆3𝑐 (𝑆3𝑏) = 1, consider each 𝛼𝑝 ∈ 𝑁 for which 𝑣𝑆3𝑐 (𝛼𝑝) = 1. This takes 𝑂 ( |𝑁 |) time. For
each such 𝛼𝑝, determine its position 𝑏′ in 𝑆 if it belongs to 𝑆. If 𝛼𝑝 belongs to 𝑆 and 𝑏′ is
divisible by three and less than 𝑐 then set 𝑏 = 𝑏′. Otherwise, it must be that no such 𝑆3𝑏

exists so set 𝑏 = 0.

To identify some 𝛼𝑤1 as described, first identify 𝑆3𝑐 in constant time. Consider each 𝛼𝑝 ∈ 𝑁
for which 𝑣𝑆3𝑐 (𝛼𝑝) = 1. This takes 𝑂 ( |𝑁 |) time. For each such 𝛼𝑝, test if 𝛼𝑝 belongs to 𝑆
using 𝐿𝑆. If so, then continue. If not, then look up the 𝑝th entry in 𝐿2. If this entry is ⊥
then continue. If not, then suppose this entry is 𝛼𝑞. By the construction of 𝐿2, it follows that
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𝛼𝑞 ∈ 𝑁 \ {𝛼𝑖}, 𝑣𝛼𝑝 (𝛼𝑞) = 1 and 𝑢𝛼𝑞 (𝑀) = 0. Accordingly, set 𝛼𝑤1 to 𝛼𝑝 since the subroutine
has identified 𝛼𝑧3 = 𝛼𝑞 ∈ 𝑁 \ {𝛼𝑖} for which 𝑣𝛼𝑤1

(𝛼𝑧3) = 1 and 𝑢𝛼𝑧3 (𝑀) = 0.

Evaluating the break condition in the loop can be performed in constant time. If the break
condition is true then 𝛼𝑤1 exists. The identification of 𝛼𝑤2 and 𝛼𝑤3 can be accomplished in
𝑂 ( |𝑁 |) time, using the same process as for 𝛼𝑗3 and 𝛼𝑗4 . Adding three elements to 𝑆 requires
constant time.

Now consider the final if/else statement and the seven possible constructions of 𝑀′. In each
of the seven cases, 𝑀′ contains each triple in {𝑟 ∈ 𝑀 : 𝑆∩𝑟 = ∅}. This set can be constructed
in 𝑂 ( |𝑁 |) time by considering each triple in 𝑀 and the three corresponding entries in 𝐿𝑆. In
Constructions 3 and 6, the agents 𝛼𝑧4 and 𝛼𝑧5 can each be identified in 𝑂 ( |𝑁 |) time, using a
similar procedure as described for 𝛼𝑧1 in the loop body. The remaining triples in 𝑀′ can be
constructed after one scan of 𝑆 in 𝑂 ( |𝑁 |) time. □

Lemma 6.9. Subroutine repair returns a stable 𝑃-matching in 𝑂 ( |𝑁 |2) time.

Proof. By Lemmas 6.7 and 6.8. □

6.3.1.4 Finding a stable 𝑃-matching in a triangle-free instance

In the previous section, we presented Subroutine repair, which given a triangle-free instance
and a repairable 𝑃-matching in that instance, can construct a 𝑃-matching in that instance
that is stable. In this section we present Subroutine findStableInTriangleFree, which calls
Subroutine repair. Given a triangle-free instance, Subroutine findStableInTriangleFree can
find a 𝑃-matching in that instance that is stable.

Subroutine findStableInTriangleFree, shown in Algorithm 6.3, is recursive. The subroutine
first constructs a smaller instance (𝑁′, 𝑉 ′) from (𝑁,𝑉) by removing an arbitrary agent 𝛼𝑖. It
then uses a recursive call to construct a 𝑃-matching 𝑀 that is stable in the smaller instance
(𝑁′, 𝑉 ′). By Proposition 6.1, any triple that blocks 𝑀 in the larger instance (𝑁,𝑉) must either
contain 𝛼𝑖 or also block 𝑀 in the smaller instance (𝑁′, 𝑉 ′). There are three possible cases
involving types of triple that block 𝑀 in (𝑁′, 𝑉 ′). In two out of three cases, the subroutine
constructs 𝑀′ in a straightforward way by adding to 𝑀 a new triple that contains 𝛼𝑖 and
two agents that are unmatched in 𝑀 . In the third case, 𝑀 must be repairable. It follows by
Lemma 6.9 that Subroutine repair can be used to construct a 𝑃-matching that is stable in
(𝑁,𝑉).

In the following lemma we verify the correctness of Subroutine findStableInTriangleFree.

Lemma 6.10. Given a triangle-free instance (𝑁,𝑉), Subroutine findStableInTriangleFree

returns a stable 𝑃-matching in (𝑁,𝑉).
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Algorithm 6.3 Subroutine findStableInTriangleFree
Input: an instance (𝑁,𝑉) of 3DR-AS with binary and symmetric preferences that is triangle-
free
Output: a stable 𝑃-matching 𝑀′ in (𝑁,𝑉)

if |𝑁 | = 2 then
return ∅

end if
𝛼𝑖 ← an arbitrary agent in 𝑁
(𝑁′, 𝑉 ′) ← remove 𝛼𝑖 from (𝑁,𝑉)
𝑀 ← findStableInTriangleFree((𝑁′, 𝑉 ′))
if some 𝛼𝑙1 , 𝛼𝑙2 ∈ 𝑁 exist where 𝑢𝛼𝑙1 (𝑀) = 𝑢𝛼𝑙2 (𝑀) = 0 and 𝑣𝛼𝑖 (𝛼𝑙1) = 𝑣𝛼𝑖 (𝛼𝑙2) = 1 then

return 𝑀 ∪ {{𝛼𝑖, 𝛼𝑙1 , 𝛼𝑙2}}
else if some 𝛼𝑙3 , 𝛼𝑙4 ∈ 𝑁 exist where 𝑢𝛼𝑙3 (𝑀) = 𝑢𝛼𝑙4 (𝑀) = 0 and

𝑣𝛼𝑖 (𝛼𝑙3) = 𝑣𝛼𝑙3 (𝛼𝑙4) = 1 then
return 𝑀 ∪ {{𝛼𝑖, 𝛼𝑙3 , 𝛼𝑙4}}

else if some 𝛼𝑙5 , 𝛼𝑙6 ∈ 𝑁 exist where 𝑢𝛼𝑙5 (𝑀) = 1, 𝑢𝛼𝑙6 (𝑀) = 0,
and 𝑣𝛼𝑖 (𝛼𝑙5) = 𝑣𝛼𝑙5 (𝛼𝑙6) = 1 then

⊲ 𝑀 is repairable in (𝑁,𝑉) (see Section 6.3.1.3). Note that 𝛼𝑗1 = 𝛼𝑙5 and 𝛼𝑗2 = 𝛼𝑙6 .
return repair((𝑁,𝑉), 𝑀, 𝛼𝑖)

else
return 𝑀

end if

Proof. By strong induction on |𝑁 |. In the base case, suppose |𝑁 | ≤ 2. It follows by the
pseudocode that the subroutine returns ∅, which is a stable 𝑃-matching in (𝑁,𝑉).

We now show the inductive step. Consider the execution of the subroutine given some an
arbitrary instance (𝑁,𝑉). By the inductive hypothesis it follows that the subroutine returns
a stable 𝑃-matching 𝑀 in the smaller instance (𝑁′, 𝑉 ′), since |𝑁′| < |𝑁 |.

Consider the first branch of the if/else statement in Subroutine findStableInTriangleFree. By
construction, 𝑢𝛼𝑖 (𝑀′) = 2 and 𝑢𝛼𝑙1 (𝑀

′) = 𝑢𝛼𝑙2 (𝑀
′) = 1. Since 𝑀 is a 𝑃-matching, it follows

that the subroutine returns some 𝑃-matching 𝑀′. Since 𝑢𝛼𝑖 (𝑀′) = 2, no triple that contains
𝛼𝑖 blocks 𝑀′ in (𝑁,𝑉). By construction, 𝑢𝛼𝑝 (𝑀′) ≥ 𝑢𝛼𝑝 (𝑀) for any 𝛼𝑝 ∈ 𝑁 , so it follows
that any triple that blocks 𝑀′ in (𝑁,𝑉) also blocks 𝑀 in (𝑁′, 𝑉 ′). It follows that 𝑀′ is stable
in (𝑁,𝑉).

Consider the second branch of the if/else statement. By construction, 𝑢𝛼𝑙3 (𝑀
′) = 2 and

𝑢𝛼𝑖 (𝑀′) = 𝑢𝛼𝑙3
(𝑀′) = 1. Since 𝑀 is a 𝑃-matching, it follows that the subroutine returns

some 𝑃-matching 𝑀′. Suppose for a contradiction that some triple blocks 𝑀′ in (𝑁,𝑉). By
construction, 𝑢𝛼𝑝 (𝑀′) ≥ 𝑢𝛼𝑝 (𝑀) for any 𝛼𝑝 ∈ 𝑁 so any triple that blocks 𝑀′ in (𝑁,𝑉) must
contain 𝛼𝑖, for otherwise that triple blocks 𝑀 in (𝑁′, 𝑉 ′), which is a contradiction. Suppose
then that some triple {𝛼𝑖, 𝛼𝑘1 , 𝛼𝑘2} blocks𝑀′ in (𝑁,𝑉), where𝛼𝑘1 , 𝛼𝑘2 ∈ 𝑁′. By construction,
𝑢𝛼𝑖 (𝑀′) = 1 so it must be that 𝑢𝛼𝑖 ({𝛼𝑘1 , 𝛼𝑘2}) = 2 and thus that 𝑣𝛼𝑖 (𝛼𝑘1) = 𝑣𝛼𝑖 (𝛼𝑘2) = 1.
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Since (𝑁,𝑉) is triangle-free, it follows that 𝑣𝛼𝑘1
(𝛼𝑘2) = 0 and thus that 𝑢𝛼𝑘1

({𝛼𝑖, 𝛼𝑘2}) =
𝑢𝛼𝑘2
({𝛼𝑖, 𝛼𝑘1}) = 1. It then follows that 𝑢𝛼𝑘1

(𝑀′) = 𝑢𝛼𝑘2
(𝑀′) = 0. By the construction of

𝑀′ it must be that 𝑢𝛼𝑝 (𝑀′) ≥ 𝑢𝛼𝑝 (𝑀) for any 𝛼𝑝 ∈ 𝑁 so 𝑢𝛼𝑘1
(𝑀) = 𝑢𝛼𝑘2

(𝑀) = 0. This
contradicts the condition of the first branch of the if/else statement, since there exist two agents
𝛼𝑙1 and 𝛼𝑙2 , namely 𝛼𝑘1 , and 𝛼𝑘2 , where 𝑢𝛼𝑙1 (𝑀) = 𝑢𝛼𝑙2 (𝑀) = 0 and 𝑣𝛼𝑖 (𝛼𝑙1) = 𝑣𝛼𝑖 (𝛼𝑙2) = 1.

Consider the third branch of the if/else statement. It must be that the conditional expressions
in the first and second branches of the if/else statement do not hold. It follows from this that
any triple that blocks 𝑀 in (𝑁′, 𝑉 ′) comprises {𝛼𝑖, 𝛼𝑙5 , 𝛼𝑙6} where 𝛼𝑙5 , 𝛼𝑙6 ∈ 𝑁 , 𝑢𝛼𝑙5 (𝑀) = 1,
𝑢𝛼𝑙6
(𝑀) = 0, and 𝑣𝛼𝑖 (𝛼𝑙5) = 𝑣𝛼𝑙5 (𝛼𝑙6) = 1. Note that 𝑢𝛼𝑖 (𝑀) = 0 and thus 𝑀 is repairable

(defined in Section 6.3.1.3). By Lemma 6.9, Subroutine repair returns some 𝑃-matching 𝑀′

that is stable in (𝑁,𝑉).

Consider the fourth branch of the if/else statement. It must be that the conditional expressions
in the first, second, and third branches of the if/else statement do not hold. By construction,
𝑢𝛼𝑝 (𝑀′) = 𝑢𝛼𝑝 (𝑀) for any 𝛼𝑝 ∈ 𝑁 . It follows that any triple that blocks 𝑀′ in (𝑁,𝑉)
must contain 𝛼𝑖, for otherwise that triple also blocks 𝑀 in (𝑁′, 𝑉 ′), which is a contradiction.
Suppose for a contradiction that some triple {𝛼𝑖, 𝛼𝑘1 , 𝛼𝑘2} blocks 𝑀′ in (𝑁,𝑉).

Suppose firstly that 𝑢𝛼𝑖 ({𝛼𝑘1 , 𝛼𝑘2}) = 2. Since (𝑁,𝑉) is triangle-free, it follows that 𝑢𝛼𝑘1
({𝛼𝑖,

𝛼𝑘2}) = 𝑢𝛼𝑘2
({𝛼𝑖, 𝛼𝑘1}) = 1. It follows that 𝑢𝛼𝑘1

(𝑀′) = 𝑢𝛼𝑘2
(𝑀′) = 0. Since 𝑢𝛼𝑝 (𝑀′) ≥

𝑢𝛼𝑝 (𝑀) for any 𝛼𝑝 ∈ 𝑁 , it must be that 𝑢𝛼𝑘1
(𝑀) = 𝑢𝛼𝑘2

(𝑀) = 0. This contradicts the
condition of the first branch of the if/else statement.

Suppose secondly that 𝑢𝛼𝑖 ({𝛼𝑘1 , 𝛼𝑘2}) = 1. It must be that either 𝑢𝛼𝑘1
({𝛼𝑖, 𝛼𝑘2}) = 2 or

𝑢𝛼𝑘2
({𝛼𝑖, 𝛼𝑘1}) = 2. Suppose without loss of generality that 𝑢𝛼𝑘1

({𝛼𝑖, 𝛼𝑘2}) = 2. It follows
that 𝑣𝛼𝑘1

(𝛼𝑖) = 𝑣𝛼𝑘1
(𝛼𝑘2) = 1. There are two possibilities: either 𝑢𝛼𝑘1

(𝑀) = 1 or 𝑢𝛼𝑘1
(𝑀) = 0.

The first possibility implies that the conditional expression of the second if/else branch holds,
which is a contradiction. The second possibility implies that the conditional expression of
the third if/else branch holds, also a contradiction. □

We now consider the worst-case time complexity of Subroutine findStableInTriangleFree.

Lemma 6.11. Subroutine findStableInTriangleFree has running time 𝑂 ( |𝑁 |3).

Proof. Since Subroutine findStableInTriangleFree is recursive, and the recursive call involves
an instance (𝑁′, 𝑉 ′) where |𝑁′| = |𝑁 | − 1, it suffices to show that worst-case time complexity
of the subroutine excluding the recursive call is 𝑂 ( |𝑁 |2).

Suppose that the input (𝑁,𝑉) is given such that, for a given 𝛼𝑝 ∈ 𝑁 , the subroutine can iterate
through the set {𝛼𝑞 ∈ 𝑁 : 𝑣𝛼𝑝 (𝛼𝑞) = 1} in𝑂 ( |𝑁 |) time. For example, (𝑁,𝑉) could be stored
as a graph using adjacency lists. It follows that, given three agents 𝛼ℎ1 , 𝛼ℎ2 , 𝛼ℎ3 ∈ 𝑁 the
subroutine can compute 𝑢𝛼ℎ1

({𝛼ℎ2 , 𝛼ℎ3}), 𝑢𝛼ℎ2
({𝛼ℎ1 , 𝛼ℎ3}) and 𝑢𝛼ℎ3

({𝛼ℎ1 , 𝛼ℎ2}) in 𝑂 ( |𝑁 |)
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time. The subroutine will return a 𝑃-matching 𝑀′ stored as a linked list or similar data
structure that allows a triple to be appended to the end of list in constant time.

The constructed instance (𝑁′, 𝑉 ′) can be stored using adjacency lists or an equivalent data
structure. A straightforward procedure to identify 𝛼𝑖 and construct (𝑁′, 𝑉 ′) takes 𝑂 ( |𝑁 |)
time.

After this call, the subroutine can construct a supplementary lookup table 𝐿1, with exactly
|𝑁 | −1 entries indexed by each 𝛼𝑝 ∈ 𝑁′. Each entry will contain either zero, one, or two. For
each agent 𝛼𝑝 ∈ 𝑁 , the subroutine constructs 𝐿1 so that the 𝑝th entry contains 𝑢𝛼𝑝 (𝑀). By
assumption, the subroutine can compute 𝑢𝛼𝑝 (𝑀) for any 𝛼𝑝 ∈ 𝑁 in 𝑂 ( |𝑁 |) time. It follows
that 𝐿1 can be constructed in 𝑂 ( |𝑁 |2) time by iterating through 𝑀 and computing 𝑢𝛼ℎ1

(𝑀),
𝑢𝛼ℎ2
(𝑀), and 𝑢𝛼ℎ3

(𝑀) for each triple {𝛼ℎ1 , 𝛼ℎ2 , 𝛼ℎ3} ∈ 𝑀 . Since |𝑀 | = 𝑂 ( |𝑁 |) this step
takes 𝑂 ( |𝑁 |2) time. It follows that we can use 𝐿1 to look up 𝑢𝛼𝑝 (𝑀) for any 𝛼𝑝 ∈ 𝑁 in
constant time.

The construction of 𝐿1 allows the subroutine to identify some 𝛼𝑙1 and 𝛼𝑙2 ∈ 𝑁 where
𝑢𝛼𝑙1
(𝑀) = 𝑢𝛼𝑙2 (𝑀) = 0 and 𝑣𝛼𝑖 (𝛼𝑙1) = 𝑣𝛼𝑖 (𝛼𝑙2) = 1, if two such agents exist, in𝑂 ( |𝑁 |2) time.

One way to do this is to consider each pair {𝛼𝑙1 , 𝛼𝑙2} ∈
(𝑁

2
)

and look up 𝑢𝛼𝑙1 (𝑀) and 𝑢𝛼𝑙2 (𝑀)
in 𝐿1. Since 𝑀 is stored using a linked list or similar data structure, if such 𝛼𝑙1 , 𝛼𝑙2 ∈ 𝑁 exist
then𝑀′ can be constructed by adding the triple {𝛼𝑖, 𝛼𝑙1 , 𝛼𝑙2} to𝑀 , in constant time. Similarly,
the identification of 𝛼𝑙3 , 𝛼𝑙4 ∈ 𝑁 where 𝑢𝛼𝑙3 (𝑀) = 𝑢𝛼𝑙4 (𝑀) = 0 and 𝑣𝛼𝑖 (𝛼𝑙3) = 𝑣𝛼𝑙3 (𝛼𝑙4) = 1
can be performed in 𝑂 ( |𝑁 |2) time and the corresponding construction of 𝑀′ in constant
time. In the third branch of the if/else statement, the identification of 𝛼𝑙5 , 𝛼𝑙6 ∈ 𝑁 where
𝑢𝛼𝑙3
(𝑀) = 1, 𝑢𝛼𝑙4 (𝑀) = 0 and 𝑣𝛼𝑖 (𝛼𝑙3) = 𝑣𝛼𝑙3 (𝛼𝑙4) = 1 can be similarly performed in𝑂 ( |𝑁 |2)

time. By Lemma 6.8, the call to Subroutine repair also takes 𝑂 ( |𝑁 |2) time. □

6.3.1.5 Finding a stable 𝑃-matching in an arbitrary instance

In the previous section, we presented Subroutine findStableInTriangleFree, which given a
triangle-free instance can construct a 𝑃-matching in that instance that is stable. In this
section we present Algorithm findStable, which given an arbitrary instance of 3DR-AS can
construct a 𝑃-matching that is stable in that instance.

Algorithm findStable involves two steps, as follows. In the first step, it constructs a𝑃-matching
𝑀△ in (𝑁,𝑉) and a triangle-free instance (𝑁′, 𝑉 ′) where |𝑁′| ≤ |𝑁 | and if 𝑀 is a stable
𝑃-matching in (𝑁′, 𝑉 ′) then𝑀△∪𝑀 is a stable 𝑃-matching in (𝑁,𝑉). By Lemma 6.1, this can
be done in 𝑂 ( |𝑁 |3) time. In the second step, it calls Subroutine findStableInTriangleFree on
(𝑁′, 𝑉 ′) to construct a 𝑃-matching 𝑀′ that is stable in (𝑁′, 𝑉 ′). It then returns 𝑀′ = 𝑀 ∪𝑀△.

Theorem 6.1. Given an instance (𝑁,𝑉) of 3DR-AS with binary and symmetric preferences,
a stable 𝑃-matching, and hence a stable matching, must exist and can be found in 𝑂 ( |𝑁 |3)



6.3. Symmetric binary preferences 84

time.

Proof. By Lemma 6.1, the first step of the algorithm takes 𝑂 ( |𝑁 |3) time and (𝑁′, 𝑉 ′) is a
triangle-free instance where |𝑁′| ≤ |𝑁 | and if 𝑀 is a stable 𝑃-matching in (𝑁′, 𝑉 ′) then
𝑀△ ∪ 𝑀 is a stable 𝑃-matching in (𝑁,𝑉).

By Lemma 6.10, the 𝑃-matching 𝑀 returned by the call to Subroutine findStableInTriangle-

Free is stable in (𝑁′, 𝑉 ′). By Lemma 6.11, this call, which constitutes the second step of
Algorithm findStable, takes𝑂 ( |𝑁 |3) time. It follows that𝑀′ = 𝑀△∪𝑀 is a stable 𝑃-matching
in (𝑁,𝑉) and the worst-case time complexity of Algorithm findStable is 𝑂 ( |𝑁 |3). □

6.3.2 Maximising utilitarian welfare

We have shown that in an instance of 3DR-AS with binary and symmetric preferences, a
stable matching must exist and can be found in polynomial time. In this section we consider
a related optimisation problem, in which the goal is to find a stable matching with maximum
utilitarian welfare given an instance of 3DR-AS with binary and symmetric preferences. We
first show that this problem is NP-hard and then extend Algorithm findStable to devise a
2-approximation algorithm.

We formalise this optimisation problem as the 3DR-AS Stable Maximum Utilitarian Welfare
problem (3DR-AS-SMUW). It is straightforward to show that 3DR-AS-SMUW is NP-hard,
as follows.

Theorem 6.2. 3DR-AS-SMUW is NP-hard.

Proof. A direct reduction exists from PIT to the problem of deciding if a given instance of
3DR-AS-SMUW contains a stable matching 𝑀 with utilitarian welfare greater than or equal
to a given bound, as follows. Suppose 𝐺 = (𝑊, 𝐸) is an arbitrary undirected graph. First,
for each vertex 𝑤𝑖 in 𝑊 construct one agent 𝛼𝑖 in 𝑁 . Next, for any two agents 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 ,
let 𝑣𝛼𝑖 (𝛼𝑗 ) = 1 if {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 and 0 otherwise. It is straightforward to show that (𝑁,𝑉)
contains a stable matching with utilitarian welfare 2|𝑊 | if and only if 𝐺 contains a partition
into triangles. □

Note that the reduction from PIT to 3DR-AS-SMUW also shows that the problem of finding
a (not-necessarily stable) matching with maximum utilitarian welfare in a given instance of
3DR-AS is also NP-hard, even when preferences are binary and symmetric.

We now present an approximation algorithm for 3DR-AS-SMUW, which we call Algo-
rithm findStableUW, shown in Algorithm 6.4. We first provide some intuition regarding its
design and then prove that it is correct and analyse its approximation ratio.
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Algorithm 6.4 Algorithm findStableUW
Input: an instance (𝑁,𝑉) of 3DR-AS with binary and symmetric preferences
Output: a stable matching 𝑀 in (𝑁,𝑉)
𝑀1 ← findStable((𝑁,𝑉))
𝑈 ← agents in 𝑁 unmatched in 𝑀1
Q ← maximal2DMatching((𝑁,𝑉),𝑈)
if |Q| ≥ |𝑈 |/3 then
X ← any |𝑈 |/3 elements of Q

else
⊲ note that |𝑈 \⋃Q| > 2( |𝑈 |/3 − |Q|) since |𝑈 \⋃Q| = |𝑈 | − 2|Q|
W ← |𝑈 |/3 − |Q| pairs of agents chosen from the set of agents𝑈 \⋃Q
X ← Q ∪W

end if
𝑌 ← 𝑈 \⋃X
⊲ Suppose X = {𝑋1, 𝑋2, . . . , 𝑋|𝑈 |/3} and 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦 |𝑈 |/3}. Note that X is a set

of pairs of agents and 𝑌 is a set of individual agents.
𝑀2 ← {𝑋𝑖 ∪ {𝑦𝑖} : 1 ≤ 𝑖 ≤ |𝑈 |/3}
return 𝑀1 ∪ 𝑀2

At a high level, Algorithm findStableUW involves two phases. In the first phase, it calls
Algorithm findStable to construct a stable 𝑃-matching 𝑀1. In the second phase, it orders
the unmatched agents 𝑈 in 𝑀1 into triples such that utilitarian welfare of the agents in 𝑈 is
maximised. In order to do this, it constructs a maximal matching in the subgraph induced by
𝑈 and then orders the agents in 𝑈 to triples such that the number of triples that contain an
edge in the maximal matching is maximised.

It is straightforward to show that Algorithm findStableUW returns a matching𝑀 in polynomial
time. We now analyse its approximation ratio.

Suppose (𝑁,𝑉) is an arbitrary instance of 3DR-AS with binary and symmetric preferences, 𝑀
is a matching returned by Algorithm findStableUW given (𝑁,𝑉) and 𝑀∗ is a stable matching
with maximum utilitarian welfare in (𝑁,𝑉).

At a high level, the analysis involves placing a lower bound on the welfare in 𝑀 of the agents
in each triple apportioned by the triples in 𝑀∗. To do this, let 𝑇 (𝑦) be the triples in 𝑀 with
utilitarian welfare 𝑦 and 𝑇∗(𝑦) be the triples in 𝑀∗ with utilitarian welfare 𝑦, for some 𝑦 ≥ 0.
In fact, since preferences are binary and symmetric it must be that the utilitarian welfare of
any triple in (𝑁,𝑉) must be either 0, 2, 4, or 6. Thus, by definition

𝑀 = 𝑇 (6) ∪ 𝑇 (4) ∪ 𝑇 (2) ∪ 𝑇 (0) (6.1)
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and

𝑀∗ = 𝑇∗(6) ∪ 𝑇∗(4) ∪ 𝑇∗(2) ∪ 𝑇∗(0) . (6.2)

It follows that

𝑢(𝑀) = 6|𝑇 (6) | + 4|𝑇 (4) | + 2|𝑇 (2) | by Equation 6.1 (6.3)

and

𝑢(𝑀∗) = 6|𝑇∗(6) | + 4|𝑇∗(4) | + 2|𝑇∗(2) | by Equation 6.2. (6.4)

We first place a lower bound on |𝑇 (6) | in terms of |𝑇∗(6) |.

Lemma 6.12. |𝑇 (6) | ≥ |𝑇∗(6) |/3.

Proof. By the pseudocode of Algorithm findStable and the definition of Subroutine elim-

inateTriangles, 𝑇 (6) contains a maximal triangle packing in the underlying graph (𝑁, 𝐸).
Since by definition 𝑇∗(6) is also a maximal triangle packing in the same graph, it must be
that |𝑇 (6) | ≥ |𝑇∗(6) |/3. □

We now show that if no triple in 𝑀 has utilitarian welfare 0 then 2𝑢(𝑀) ≥ 𝑢(𝑀∗).

Lemma 6.13. If 𝑇 (0) = ∅ then 2𝑢(𝑀) ≥ 𝑢(𝑀∗).

Proof. First consider 𝑀∗. Now

2𝑢(𝑀) = 12|𝑇 (6) | + 8|𝑇 (4) | + 4|𝑇 (2) | by Equation 6.3

≥ 12|𝑇 (6) | + 4( |𝑇 (4) | + |𝑇 (2) |)
= 12|𝑇 (6) | + 4( |𝑀 | − |𝑇 (6) |) by Equation 6.1, since 𝑇 (0) = ∅
= 12|𝑇 (6) | + 4(𝑛 − |𝑇 (6) |) by definition, |𝑀 | = 𝑛
= 8|𝑇 (6) | + 4𝑛

≥ 8|𝑇∗(6) |
3

+ 4𝑛 by Lemma 6.12

≥ 2|𝑇∗(6) | + 4𝑛

= 6|𝑇∗(6) | − 4|𝑇∗(6) | + 4𝑛

= 6|𝑇∗(6) | + 4(𝑛 − |𝑇∗(6) |)
= 6|𝑇∗(6) | + 4( |𝑀∗ | − |𝑇∗(6) |)
= 6|𝑇∗(6) | + 4( |𝑇∗(4) | + |𝑇∗(2) | + |𝑇∗(0) |) by Equation 6.2
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= 6|𝑇∗(6) | + 4|𝑇∗(4) | + 4|𝑇∗(2) | since 𝑢(𝑇∗(0)) = 0

≥ 6|𝑇∗(6) | + 4|𝑇∗(4) | + 2|𝑇∗(2) |
= 𝑢(𝑀∗) by Equation 6.4.

□

We now consider the case when there exists at least one triple in 𝑇 (0). The existence of such
a triple allows us to deduce that |Q| < |𝑈 |/3 and thus that any two agents that form an edge
in the maximal matching Q must be assigned to the same triple in 𝑀 .

Lemma 6.14. If |𝑇 (0) | > 0 then |Q| < |𝑈 |/3.

Proof. We prove the contrapositive. Suppose |Q| ≥ |𝑈 |/3. By the pseudocode of Algo-
rithm findStableUW, X ⊆ Q is a set of pairs where 𝑣𝑥𝑖 (𝑥𝑗 ) = 1 for each pair {𝑥𝑖, 𝑥𝑗 } ∈ X. It
follows that each triple in 𝑀2 contains two agents 𝑥𝑖, 𝑥𝑗 for which 𝑣𝑥𝑖 (𝑥𝑗 ) = 1. It follows that
𝑢𝑡 (𝑀) ≥ 2 for any triple 𝑡 ∈ 𝑀2. Since 𝑀1 is a 𝑃-matching, by definition 𝑢𝑡 (𝑀) ≥ 2 for any
𝑡 ∈ 𝑀1 so it must be that |𝑇 (0) | = ∅. □

Lemma 6.15. If |𝑇 (0) | > 0 then 𝑢𝛼𝑝 (𝑀) ≥ 1 for any 𝛼𝑝 ∈
⋃Q.

Proof. Suppose |𝑇∗(0) | > 0. Consider an arbitrary 𝛼𝑝 ∈
⋃Q. It follows that some 𝛼𝑞 ∈ 𝑁

exists where {𝛼𝑝, 𝛼𝑞} ∈ Q and hence 𝑣𝛼𝑝 (𝛼𝑞) = 1, by the definition of Q.

By Lemma 6.14, |Q| < |𝑈 |/3. It follows that {𝛼𝑝, 𝛼𝑞} ∈ X. It follows that there exists some
𝑖 where 1 ≤ 𝑖 ≤ |𝑈 |/3 such that 𝑋𝑖 = {𝛼𝑝, 𝛼𝑞} and hence, by construction of 𝑀2, the triple
𝑋𝑖 ∪ {𝑦𝑖} belongs to 𝑀2. It follows that 𝛼𝑞 ∈ 𝑀2(𝛼𝑝) and hence 𝑢𝛼𝑝 (𝑀) ≥ 1. □

Lemma 6.16. If |𝑇 (0) | > 0 then for any 𝛼𝑟 , 𝛼𝑠 ∈ 𝑁 where 𝑣𝛼𝑟 (𝛼𝑠) = 1 it must be that
𝑢{𝛼𝑟 ,𝛼𝑠} (𝑀) ≥ 1.

Proof. Suppose for a contradiction that |𝑇 (0) | > 0 and that there exists some 𝛼𝑟 , 𝛼𝑠 ∈ 𝑁
where 𝑣𝛼𝑟 (𝛼𝑠) = 1 and 𝑢{𝛼𝑟 ,𝛼𝑠} (𝑀) = 0. It follows that 𝑢𝛼𝑟 (𝑀) = 𝑢𝛼𝑠 (𝑀) = 0. It follows by
Lemma 6.15 that 𝛼𝑟 ∉

⋃Q and 𝛼𝑠 ∉
⋃Q. It follows that Q′ = Q ∪ {𝛼𝑟 , 𝛼𝑠} is a disjoint set

of pairs of agents in𝑈 where 𝑣𝛼𝑝 (𝛼𝑞) = 1 for each pair {𝛼𝑝, 𝛼𝑞} ∈ Q′. Since |Q′| > |Q|, this
contradicts the maximality of Q (which is computed in Subroutine maximal2DMatching). □

Lemma 6.17. If |𝑇 (0) | > 0 then 𝑢𝑡 (𝑀) ≥ 3 for any 𝑡 ∈ 𝑇∗(6).

Proof. Suppose |𝑇 (0) | > 0. Consider an arbitrary {𝛼ℎ1 , 𝛼ℎ2 , 𝛼ℎ3} ∈ 𝑇∗(6). By definition,
𝑣𝛼ℎ1
(𝛼ℎ2) = 𝑣𝛼ℎ2

(𝛼ℎ3) = 𝑣𝛼ℎ3
(𝛼ℎ1) = 1. Since 𝑀 is a stable matching, the triple {𝛼ℎ1 , 𝛼ℎ2 ,

𝛼ℎ3} does not block 𝑀 . It follows that at least one of the following holds: 𝑢𝛼ℎ1
(𝑀) = 2,

𝑢𝛼ℎ2
(𝑀) = 2, or 𝑢𝛼ℎ3

(𝑀) = 2. Suppose without loss of generality that 𝑢𝛼ℎ1
(𝑀) = 2. By

Lemma 6.16, it must be that 𝑢{𝛼ℎ2 ,𝛼ℎ3 } (𝑀) ≥ 1. In total, 𝑢{𝛼ℎ1 ,𝛼ℎ2 ,𝛼ℎ3 } (𝑀) ≥ 3. □
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Lemma 6.18. If |𝑇 (0) | > 0 then 𝑢𝑡 (𝑀) ≥ 2 for any 𝑡 ∈ 𝑇∗(4).

Proof. Suppose |𝑇 (0) | > 0. Consider an arbitrary {𝛼ℎ1 , 𝛼ℎ2 , 𝛼ℎ3} ∈ 𝑇∗(4) where 𝑣𝛼ℎ1
(𝛼ℎ2) =

𝑣𝛼ℎ2
(𝛼ℎ3) = 1 and 𝑣𝛼ℎ1

(𝛼ℎ3) = 0. Suppose for a contradiction that 𝑢{𝛼ℎ1 ,𝛼ℎ2 ,𝛼ℎ3 } (𝑀) < 2.

If𝑢{𝛼ℎ1 ,𝛼ℎ2 ,𝛼ℎ3 } (𝑀) = 0, then {𝛼ℎ1 , 𝛼ℎ2 , 𝛼ℎ3} blocks𝑀 in (𝑁,𝑉). It must be that𝑢{𝛼ℎ1 ,𝛼ℎ2 ,𝛼ℎ3 } (𝑀) =
1. By Lemma 6.16, it must be that 𝑢{𝛼ℎ1 ,𝛼ℎ2 } (𝑀) ≥ 1 and also that 𝑢{𝛼ℎ2 ,𝛼ℎ3 } (𝑀) ≥ 1. It
follows that 𝑢𝛼ℎ1

(𝑀) = 𝑢𝛼ℎ3
(𝑀) = 0 and 𝑢𝛼ℎ2

(𝑀) = 1. In this case, {𝛼ℎ1 , 𝛼ℎ2 , 𝛼ℎ3} blocks
𝑀 in (𝑁,𝑉), which is a contradiction. It follows that 𝑢{𝛼ℎ1 ,𝛼ℎ2 ,𝛼ℎ3 } (𝑀) ≥ 2. □

Lemma 6.19. If |𝑇 (0) | > 0 then 𝑢𝑡 (𝑀) ≥ 1 for any 𝑡 ∈ 𝑇∗(2).

Proof. Suppose |𝑇 (0) | > 0. Consider an arbitrary {𝛼ℎ1 , 𝛼ℎ2 , 𝛼ℎ3} ∈ 𝑇∗(2) where 𝑣𝛼ℎ1
(𝛼ℎ2) =

1 and 𝑣𝛼ℎ1
(𝛼ℎ3) = 𝑣𝛼ℎ2

(𝛼ℎ3) = 0. By Lemma 6.16, it must be that 𝑢{𝛼ℎ1 ,𝛼ℎ2 } (𝑀) ≥ 1 and
hence 𝑢{𝛼ℎ1 ,𝛼ℎ2 ,𝛼ℎ3 } (𝑀) ≥ 1. □

We can now combine Lemmas 6.17, 6.18, and 6.19 to prove the approximation ratio of
Algorithm findStableUW.

Lemma 6.20. The approximation ratio of Algorithm findStableUW is 2.

Proof. If |𝑇 (0) | = 0 then by Lemma 6.13 it must be that 2𝑢(𝑀) ≥ 𝑢(𝑀∗). It remains to
consider the case in which |𝑇 (0) | > 0. In this case,

2𝑢(𝑀) = 2
∑︁
𝑡∈𝑀∗

𝑢𝑡 (𝑀)

= 2 ©«
∑︁

𝑡∈𝑇∗ (6)
𝑢𝑡 (𝑀) +

∑︁
𝑡∈𝑇∗ (4)

𝑢𝑡 (𝑀) +
∑︁

𝑡∈𝑇∗ (2)
𝑢𝑡 (𝑀) +

∑︁
𝑡∈𝑇∗ (0)

𝑢𝑡 (𝑀)ª®¬ by the definition of 𝑇∗

≥ 2
∑︁

𝑡∈𝑇∗ (6)
𝑢𝑡 (𝑀) + 2

∑︁
𝑡∈𝑇∗ (4)

𝑢𝑡 (𝑀) + 2
∑︁

𝑡∈𝑇∗ (2)
𝑢𝑡 (𝑀)

≥ 6|𝑇∗(6) | + 4|𝑇∗(4) | + 2|𝑇∗(2) | by Lemmas 6.17–6.19

= 𝑢(𝑀∗) .

□

Theorem 6.3. There exists a polynomial-time 2-approximation algorithm for 3DR-AS-
SMUW.

Proof. It is straightforward to show that Algorithm findStableUW returns a matching in
polynomial time. In Lemma 6.20 we show that the approximation ratio of this algorithm
is 2. □
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𝛼3

𝛼2𝛼1

Figure 6.10: An instance of 3DR-AS-SMUW in which 𝑢(𝑀∗) = 2𝑢(𝑀). The dashed
enclosure depicts 𝑀∗.

Recall that in Section 6.3.1.5, we showed that a stable matching exists in an instance of
3DR-AS even if the number of agents is not divisible by three and the definition of a matching
allows for at most two agents to be unmatched. We remark that it is straightforward to adapt
the proof in this section to show that Algorithm findStableUW has the same approximation
ratio even if the number of agents is not divisible by three and the definition of a matching
allows for agents to be unmatched.

It is straightforward to show that the analysis of Algorithm findStableUW is tight, which we
do as follows. Consider the instance of 3DR-AS shown in Figure 6.10, which has binary
and symmetric preferences. Algorithm findStableUW is bound to return 𝑀 = {{𝛼3, 𝛼5, 𝛼6}}
while 𝑀∗ = {{𝛼1, 𝛼2, 𝛼3}, {𝛼4, 𝛼5, 𝛼8}, {𝛼6, 𝛼7, 𝛼9}}. Since 𝑢(𝑀) = 6 and 𝑢(𝑀∗) = 12 it
follows that 𝑢(𝑀∗) = 2𝑢(𝑀) and thus that our analysis of Algorithm findStableUW is tight.
Interestingly, this particular instance also shows that any approximation algorithm with a
better performance ratio than 2 must not always begin, like Algorithm findStableUW does,
by selecting a maximal set of triangles.

6.4 Binary preferences

In this section we show that deciding if a given instance of 3DR-AS contains a stable matching
is NP-complete, even when preferences are binary (and not necessarily symmetric). The
reduction is from Partition Into Triangles (PIT, Problem 5.1).

The reduction, illustrated in Figure 6.11, is as follows. Unless otherwise specified assume
that 𝑣𝛼𝑖 (𝛼𝑗 ) = 0 for any 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 . For each 𝑖 where 1 ≤ 𝑖 ≤ 3𝑞 construct three agents
labelled 𝑎2𝑖, 𝑎2𝑖−1, and 𝑏𝑖. Let 𝑣𝑎2𝑖 (𝑎2𝑖−1) = 𝑣𝑎2𝑖 (𝑏𝑖) = 1, 𝑣𝑎2𝑖−1 (𝑎2𝑖) = 𝑣𝑎2𝑖−1 (𝑏𝑖) = 1, and
𝑣𝑏𝑖 (𝑎2𝑖) = 𝑣𝑏𝑖 (𝑎2𝑖−1) = 1. For each 𝑤𝑖, 𝑤𝑗 ∈ 𝑊 let 𝑣𝑏𝑖 (𝑏𝑗 ) = 1 if {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 and 0
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𝑝2
𝑟
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𝑟

𝑝5
𝑟 𝑝4

𝑟

𝑝3
𝑟 𝑏𝑖

𝑎2𝑖

𝑎2𝑖−1

. . .

𝑏𝑘

𝑏𝑗

Figure 6.11: The reduction from PIT to the problem of deciding if an instance of 3DR-AS
with binary preferences contains a stable matching. Each vertex represents an agent. An arc
is present from agent 𝛼𝑖 to agent 𝛼𝑗 if 𝑣𝛼𝑖 (𝛼𝑗 ) = 1. Depicted is some pentagadget 𝑃𝑟 and
some agents 𝑏𝑖, 𝑎2𝑖, and 𝑎2𝑖−1 where 1 ≤ 𝑖 ≤ 3𝑞 and 𝑁 (𝑤𝑖) = {𝑤𝑗 , 𝑤𝑘 , . . . }.

otherwise. Next, for each 𝑟 where 1 ≤ 𝑟 ≤ 6𝑞 construct a set of five agents 𝑃𝑟 = {𝑝1
𝑟 , 𝑝

2
𝑟 , . . . ,

𝑝5
𝑟 }, which we refer to as the 𝑟 th pentagadget. To simplify the description of the valuations

in each pentagadget, in this section we write 𝑖 ⊕ 𝑦 to denote ((𝑖 + 𝑦 − 1) mod 5) + 1. For
each 𝑖 where 1 ≤ 𝑖 ≤ 5 let 𝑣𝑝𝑖𝑟 (𝑝

𝑖⊕1
𝑟 ) = 𝑣𝑝𝑖⊕1

𝑟
(𝑝𝑖𝑟) = 1 and 𝑣𝑝𝑖𝑟 (𝑝

𝑖⊕2
𝑟 ) = 1. This completes the

construction of (𝑁,𝑉). Note that |𝑁 | = 39𝑞.

It is straightforward to show that this reduction can be performed in polynomial time. To
prove that the reduction is correct we show that the 3DR-AS instance (𝑁,𝑉) contains a stable
matching if and only if the PIT instance 𝐺 contains a partition into triangles.

We first show that if the PIT instance 𝐺 contains a partition into triangles then the 3DR-AS
instance (𝑁,𝑉) contains a stable matching.

Lemma 6.21. If𝐺 contains a partition into triangles then (𝑁,𝑉) contains a stable matching.

Proof. Suppose 𝐺 contains a partition into triangles 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑞}. We shall con-
struct a matching 𝑀 that is stable in (𝑁,𝑉). For each triangle 𝑋𝑝 = {𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 } ∈ 𝑊 , add
{𝑏𝑖, 𝑏𝑗 , 𝑏𝑘 } to 𝑀 . For each 𝑟 where 1 ≤ 𝑟 ≤ 6𝑞, add {𝑝1

𝑟 , 𝑝
2
𝑟 , 𝑝

3
𝑟 } to 𝑀 . This leaves agents

𝑎2𝑖 and 𝑎2𝑖−1 for each 1 ≤ 𝑖 ≤ 3𝑞 and agents 𝑝4
𝑟 and 𝑝5

𝑟 for each 0 ≤ 𝑟 ≤ 6𝑞. For each
1 ≤ 𝑖 ≤ 3𝑞, add to 𝑀 the triples {𝑎2𝑖, 𝑝

4
2𝑖, 𝑝

5
2𝑖}, {𝑎2𝑖−1, 𝑝

4
2𝑖−1, 𝑝

5
2𝑖−1}.

Since 𝑢𝑏𝑖 (𝑀) = 2 for each 1 ≤ 𝑖 ≤ 3𝑞 it follows that 𝑏𝑖 does not belong to a triple that blocks
𝑀 .

Suppose for a contradiction that some agent 𝑎2𝑖 where 1 ≤ 𝑖 ≤ 3𝑞 belongs to a triple 𝑡 that
blocks 𝑀 . We have shown that 𝑏𝑖 does not belong to a triple that blocks 𝑀 , so it must be that
𝑎2𝑖−1 ∈ 𝑡, otherwise 𝑢𝑎2𝑖 (𝑡) = 0, which is impossible. Suppose then that 𝑡 = {𝑎2𝑖, 𝑎2𝑖−1, 𝛼𝑗 }
where 𝛼𝑗 ∈ 𝑁 and 𝛼𝑗 ≠ 𝑏𝑖. Considering the design of the instance, for any such 𝛼𝑗 it must be
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that 𝑢𝛼𝑗 ({𝑎2𝑖, 𝑎2𝑖−1}) = 𝑢𝛼𝑗 (𝑡) = 0, which is a contradiction. A symmetric argument shows
that no 𝑎2𝑖−1 where 1 ≤ 𝑖 ≤ 3𝑞 belongs to a triple that blocks 𝑀 .

The remaining possibility is that some triple {𝑝𝑠1𝑟 , 𝑝𝑠2𝑟 , 𝑝𝑠3𝑟 } blocks 𝑀 where 1 ≤ 𝑟 ≤ 6𝑞. By
the construction of 𝑀 , 𝑢𝑝1

𝑟
(𝑀) = 𝑢𝑝2

𝑟
(𝑀) = 2, so neither 𝑝1

𝑟 nor 𝑝2
𝑟 blocks 𝑀 . It follows that

{𝑠1, 𝑠2, 𝑠3} = {3, 4, 5}, which is a contradiction since 𝑢𝑝5
𝑟
(𝑀) = 1 = 𝑢𝑝5

𝑟
({𝑝3

𝑟 , 𝑝
4
𝑟 }). □

We now show, using a sequence of lemmas, that if the 3DR-AS instance (𝑁,𝑉) contains a
stable matching then 𝐺 contains a partition into triangles.

We also introduce some new notation. For any set 𝑆 ⊆ 𝑁 let 𝜎(𝑆, 𝑁) be the number of triples
in 𝑁 that each contain at least one agent in 𝑆.

Lemma 6.22. If (𝑁,𝑉) contains a stable matching 𝑀 then 𝜎(𝑃𝑟 , 𝑀) = 2 for any 𝑟 where
1 ≤ 𝑟 ≤ 6𝑞.

Proof. By definition, 2 ≤ 𝜎(𝑃𝑟 , 𝑀) ≤ 5. Suppose for a contradiction that 𝜎(𝑃𝑟) ≥ 4. It
must be that at least three triples in 𝑀 contain exactly one agent in 𝑃𝑟 . Label these three
triples as 𝑀 (𝑝𝑠1𝑟 ), 𝑀 (𝑝𝑠2𝑟 ), and 𝑀 (𝑝𝑠3𝑟 ). It follows that 𝑢

𝑝
𝑠1
𝑟
(𝑀) = 𝑢

𝑝
𝑠2
𝑟
(𝑀) = 𝑢

𝑝
𝑠3
𝑟
(𝑀) = 0.

By the design of the reduction it must be that 𝑢
𝑝
𝑠1
𝑟
({𝑝𝑠2𝑟 , 𝑝𝑠3𝑟 }) ≥ 1, 𝑢

𝑝
𝑠2
𝑟
({𝑝𝑠1𝑟 , 𝑝𝑠3𝑟 }) ≥ 1, and

𝑢
𝑝
𝑠3
𝑟
({𝑝𝑠1𝑟 , 𝑝𝑠2𝑟 }) ≥ 1. Now {𝑝𝑠1𝑟 , 𝑝𝑠2𝑟 , 𝑝𝑠3𝑟 } blocks 𝑀 , which is a contradiction.

Suppose then, for a contradiction, that 𝜎(𝑃𝑟 , 𝑀) = 3. There are two possibilities. In the first,
two triples in 𝑀 each contain exactly two agents in 𝑃𝑟 and one triple in 𝑀 contains exactly
one agent in 𝑃𝑟 . In the second, two triples in 𝑀 each contain exactly one agent in 𝑃𝑟 and one
triple in 𝑀 contains exactly three agents in 𝑃𝑟 .

Suppose firstly that two triples in 𝑀 each contain exactly two agents in 𝑃𝑟 and one triple in
𝑀 contains exactly one agent in 𝑃𝑟 . Assume without loss of generality that 𝑝1

𝑟 is the agent
in the latter triple. It follows that 𝑢𝑝1

𝑟
(𝑀) = 0. By assumption, 𝑀 (𝑝4

𝑟 ) and 𝑀 (𝑝5
𝑟 ) each

contain exactly two agents in 𝑃𝑟 so it follows that 𝑢𝑝4
𝑟
(𝑀) ≤ 1 and 𝑢𝑝5

𝑟
(𝑀) ≤ 1. Now {𝑝1

𝑟 ,

𝑝4
𝑟 , 𝑝

5
𝑟 } blocks 𝑀 since 𝑢𝑝4

𝑟
({𝑝5

𝑟 , 𝑝
1
𝑟 }) = 𝑢𝑝5

𝑟
({𝑝1

𝑟 , 𝑝
4
𝑟 }) = 2 and 𝑢𝑝1

𝑟
({𝑝4

𝑟 , 𝑝
5
𝑟 }) = 1, which is

a contradiction.

It remains that two triples in 𝑀 each contain exactly one agent in 𝑃𝑟 and one triple in 𝑀
contains exactly three agents in 𝑃𝑟 . Suppose 𝑝𝑠1𝑟 and 𝑝𝑠2𝑟 are the two agents in the former
two triples. Excluding symmetries, there are two possible cases. In the first case, 𝑠1 = 1
and 𝑠2 = 2. It follows that {𝑝3

𝑟 , 𝑝
4
𝑟 , 𝑝

5
𝑟 } ∈ 𝑀 . Now {𝑝5

𝑟 , 𝑝
1
𝑟 , 𝑝

2
𝑟 } blocks 𝑀 since 𝑢𝑝5

𝑟
({𝑝1

𝑟 ,

𝑝2
𝑟 }) = 𝑢𝑝1

𝑟
({𝑝2

𝑟 , 𝑝
5
𝑟 }) = 2 and 𝑢𝑝2

𝑟
({𝑝1

𝑟 , 𝑝
5
𝑟 }) = 1, which is a contradiction. In the second

case, 𝑠1 = 1 and 𝑠2 = 3. It follows that {𝑝2
𝑟 , 𝑝

4
𝑟 , 𝑝

5
𝑟 } ∈ 𝑀 . Now {𝑝1

𝑟 , 𝑝
2
𝑟 , 𝑝

3
𝑟 } blocks 𝑀 since

𝑢𝑝1
𝑟
({𝑝2

𝑟 , 𝑝
3
𝑟 }) = 𝑢𝑝2

𝑟
({𝑝1

𝑟 , 𝑝
3
𝑟 }) = 2 and 𝑢𝑝3

𝑟
({𝑝1

𝑟 , 𝑝
2
𝑟 }) = 1, which is also a contradiction. □

Lemma 6.23. If (𝑁,𝑉) contains a stable matching 𝑀 then 𝑢𝑎𝑘 (𝑀) = 0 for each 1 ≤ 𝑘 ≤ 6𝑞.
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Proof. Suppose 𝑀 is a stable matching in (𝑁,𝑉). Consider an arbitrary pentagadget index
𝑟1 where 1 ≤ 𝑟1 ≤ 6𝑞. By Lemma 6.22, it must be that 𝜎(𝑃𝑟1 , 𝑀) = 2. It follows that one
triple in 𝑀 contains exactly three agents in 𝑃𝑟1 and another triple in 𝑀 contains exactly two
agents in 𝑃𝑟 as well as some third agent 𝛼ℎ. It follows that 𝑢𝛼ℎ (𝑀) = 0. We now show that
𝛼ℎ = 𝑎𝑘 where 1 ≤ 𝑘 ≤ 6𝑞.

By the design of the reduction, it must be that either 𝛼ℎ ∈ 𝑃𝑟2 where 1 ≤ 𝑟2 ≤ 6𝑞, 𝛼ℎ = 𝑏𝑗
where 1 ≤ 𝑗 ≤ 3𝑞, or 𝛼ℎ = 𝑎𝑘 where 1 ≤ 𝑘 ≤ 6𝑞.

Suppose firstly that 𝛼ℎ ∈ 𝑃𝑟 where 1 ≤ 𝑟2 ≤ 6𝑞. Label 𝛼ℎ = 𝑝𝑠𝑟2 where 1 ≤ 𝑠 ≤ 5. By the
definition of 𝛼ℎ = 𝑝𝑠𝑟2 , it must be that 𝑟1 ≠ 𝑟2. Since 𝑀 (𝑝𝑠𝑟2) contains 𝑝𝑠𝑟2 and two agents in
𝑃𝑟1 , by Lemma 6.22 the four agents in 𝑃𝑟2 \ {𝑝𝑠𝑟2} must belong to exactly one triple in 𝑀 ,
which is clearly a contradiction.

Suppose then that 𝛼ℎ = 𝑏𝑗 where 1 ≤ 𝑗 ≤ 3𝑞. Consider 𝑎2 𝑗 and 𝑎2 𝑗−1. Since 𝑎2 𝑗 ∉ 𝑀 (𝑏𝑗 )
and 𝑎2 𝑗−1 ∉ 𝑀 (𝑏𝑗 ) it must be that 𝑢𝑎2 𝑗 (𝑀) ≤ 1 and 𝑢𝑎2 𝑗−1 (𝑀) ≤ 1. Since 𝑢𝛼ℎ (𝑀) =
𝑢𝑏𝑗 (𝑀) = 0 it follows that {𝑏𝑗 , 𝑎2 𝑗 , 𝑎2 𝑗−1} blocks 𝑀 , since 𝑢𝑏𝑗 ({𝑎2 𝑗 , 𝑎2 𝑗−1}) = 𝑢𝑎2 𝑗 ({𝑏𝑗 ,
𝑎2 𝑗−1}) = 𝑢𝑎2 𝑗−1 ({𝑏𝑗 , 𝑎2 𝑗 }) = 2, which is a contradiction.

It remains that 𝛼ℎ = 𝑎𝑘 where 1 ≤ 𝑘 ≤ 6𝑞. Since the choice of 𝑟1 where 1 ≤ 𝑟1 ≤ 6𝑞
was arbitrary, there are exactly 6𝑞 choices of 𝛼ℎ. It follows that 𝑢𝑎𝑘 (𝑀) = 0 for every
1 ≤ 𝑘 ≤ 6𝑞. □

Lemma 6.24. If (𝑁,𝑉) contains a stable matching 𝑀 then 𝑢𝑏𝑖 (𝑀) = 2 for any 𝑖 where
1 ≤ 𝑖 ≤ 3𝑞.

Proof. Suppose for a contradiction that there exists some 1 ≤ 𝑖 ≤ 3𝑞 where 𝑢𝑏𝑖 (𝑀) < 2.
Lemma 6.23 shows that 𝑢2𝑖 (𝑀) = 𝑢𝑎2𝑖−1 (𝑀) = 0. Considering the valuation functions of 𝑎2𝑖,
𝑎2𝑖−1, and 𝑏𝑖, we can see that 𝑢𝑏𝑖 ({𝑎2𝑖, 𝑎2𝑖−1}) = 𝑢𝑎2𝑖 ({𝑏𝑖, 𝑎2𝑖−1}) = 𝑢𝑎2𝑖−1 ({𝑏𝑖, 𝑎2𝑖}) = 2.
Now {𝑏𝑖, 𝑎2𝑖, 𝑎2𝑖−1} blocks 𝑀 , which is a contradiction. □

Lemma 6.25. If (𝑁,𝑉) contains a stable matching 𝑀 then for any 𝑏𝑖 where 1 ≤ 𝑖 ≤ 3𝑞, the
triple 𝑀 (𝑏𝑖) comprises {𝑏𝑖, 𝑏𝑗 , 𝑏𝑘 } where 1 ≤ 𝑗 , 𝑘 ≤ 3𝑞 and {𝑤𝑖, 𝑤𝑗 }, {𝑤𝑖, 𝑤𝑘 } ∈ 𝐸 .

Proof. Lemma 6.24 shows that 𝑢𝑏𝑖 (𝑀) = 2. Suppose 𝑀 (𝑏𝑖) = {𝑏𝑖, 𝛼𝑘 , 𝛼𝑙} for some 𝛼𝑘 ,
𝛼𝑙 ∈ 𝑁 . Since 𝑢𝑏𝑖 (𝑀) = 2, it must be that 𝑣𝑏𝑖 (𝛼𝑘 ) = 1 and hence either 𝛼𝑘 = 𝑎2𝑖, 𝛼𝑘 = 𝑎2𝑖−1,
or 𝛼𝑘 = 𝑏𝑗 where 1 ≤ 𝑗 ≤ 3𝑞 where {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 . Suppose first that 𝛼𝑘 = 𝑎2𝑖. Since
𝑏𝑖 ∈ 𝑀 (𝑎2𝑖) it follows that 𝑢𝑎2𝑖 (𝑀) ≥ 1 which contradicts Lemma 6.23. A similar argument
shows that 𝛼𝑘 ≠ 𝑎2𝑖−1. It remains that 𝛼𝑘 = 𝑏𝑗 where 1 ≤ 𝑗 ≤ 3𝑞 such that {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 . The
same argument shows that 𝛼𝑙 = 𝑏𝑘 where 1 ≤ 𝑘 ≤ 3𝑞 where {𝑤𝑖, 𝑤𝑘 } ∈ 𝐸 . We have shown
that 𝑀 (𝑏𝑖) = {𝑏𝑖, 𝑏𝑗 , 𝑏𝑘 } for some 𝑗 , 𝑘 where 1 ≤ 𝑗 , 𝑘 ≤ 3𝑞 and {𝑤𝑖, 𝑤𝑗 }, {𝑤𝑖, 𝑤𝑘 } ∈ 𝐸 . □

Lemma 6.26. If (𝑁,𝑉) contains a stable matching then𝐺 contains a partition into triangles.
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Proof. Lemma 6.25 shows that for an arbitrary 𝑏𝑖 where 1 ≤ 𝑖 ≤ 3𝑞, 𝑀 (𝑏𝑖) comprises {𝑏𝑖, 𝑏𝑗 ,
𝑏𝑘 } where 1 ≤ 𝑗 , 𝑘 ≤ 3𝑞, {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 , and {𝑤𝑖, 𝑤𝑘 } ∈ 𝐸 . It follows that there are exactly 𝑞
triples in 𝑀 each containing three agents {𝑏𝑖, 𝑏𝑗 , 𝑏𝑘 }, where the three corresponding vertices
𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 are pairwise adjacent in 𝐺. From these triples of pairwise adjacent vertices, a
partition into triangles 𝑋 can be easily constructed. □

We have now shown that the 3DR-AS instance (𝑁,𝑉) contains a stable matching if and only
if the PIT instance 𝐺 contains a partition into triangles. This shows that the reduction is
correct.

Theorem 6.4. Deciding if a given instance of 3DR-AS contains a stable matching is NP-
complete, even when preferences are binary.

Proof. It is straightforward to show that this decision problem belongs to NP. We have
presented a polynomial-time reduction from Partition Into Triangles (PIT, Problem 5.1),
which is NP-complete [43]. Given an arbitrary instance 𝐺 of PIT, the reduction constructs
an instance (𝑁,𝑉) of 3DR-AS with binary preferences. Lemmas 6.21 and 6.26 show that
(𝑁,𝑉) contains a stable matching if and only if 𝐺 contains a partition into triangles and thus
that this decision problem is NP-hard. □

6.5 Symmetric ternary preferences

We saw in Section 6.4 that an instance (𝑁,𝑉) of 3DR-AS may not contain a stable matching,
and the associated decision problem is NP-complete, even when valuations are binary. It
follows that the decision problem for ternary valuations, i.e. 𝑣𝛼𝑖 (𝛼𝑗 ) ∈ {0, 1, 2} for each 𝛼𝑖,
𝛼𝑗 ∈ 𝑁 is also NP-complete. In contrast we saw in Section 6.3 that when valuations are binary
and symmetric a stable matching always exists and can be found in polynomial time. It is
natural to ask if this polynomial-time solvability also holds in the more general case of ternary
and symmetric valuations. We answer this question in the negative (assuming P = NP), and
show that deciding if a given instance of 3DR-AS contains a stable matching is NP-complete,
even when valuations are ternary and symmetric. We remark that a result of Deineko and
Woeginger [63] for Geometric 3D-SR (see Chapter 2) implies a weaker version of our result,
namely that if valuations are symmetric (but not necessarily ternary) then deciding if a given
instance of 3DR-AS contains a stable matching is NP-complete, even when valuations are
ternary and symmetric.

We present a polynomial-time reduction from Partition into Triangles (PIT, Problem 5.1),
which is similar to the reduction that we presented in Section 6.4 for the analogous decision
problem involving preferences that are binary but not necessarily symmetric. The main
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Figure 6.12: The reduction from PIT to the problem of deciding if an instance of 3DR-AS
with ternary preferences contains a stable matching. Each vertex represents an agent. A
single edge is present from agent 𝛼𝑖 to agent 𝛼𝑗 if 𝑣𝛼𝑖 (𝛼𝑗 ) = 1. A double edge is present from
𝛼𝑖 to 𝛼𝑗 if 𝑣𝛼𝑖 (𝛼𝑗 ) = 2. Depicted is some octogadget 𝐻𝑟 and some agents 𝑏𝑖, 𝑎2𝑖, and 𝑎2𝑖−1
where 1 ≤ 𝑖 ≤ 6𝑞 and 𝑁 (𝑤𝑖) = {𝑤𝑗 , 𝑤𝑘 , . . . }.

difference is in the design of the gadgets. Instead of “pentagadgets” we introduce a number of
“octogadgets”. Nevertheless, the purpose of the octogadgets is the same as the pentagadgets
in the previous reduction and the proof follows the same structure as before.

The reduction, illustrated in Figure 6.12, is as follows. Since valuations are symmetric in
(𝑁,𝑉), we shall usually specify valuations in one direction only. For example, instead of
writing “let 𝑣𝛼𝑖 (𝛼𝑗 ) = 𝑣𝛼𝑗 (𝛼𝑖) = 1” we write “let 𝑣𝛼𝑖 (𝛼𝑗 ) = 1”. Unless otherwise specified
assume that 𝑣𝛼𝑖 (𝛼𝑗 ) = 0 for any 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 . To simplify the description of the valuations in
the reduction, in this section we write 𝑖 ⊕ 𝑦 to denote ((𝑖 + 𝑦 − 1) mod 8) + 1.

For each 𝑖 where 1 ≤ 𝑖 ≤ 3𝑞 construct three agents labelled 𝑎2𝑖, 𝑎2𝑖−1, and 𝑏𝑖. Let
𝑣𝑎2𝑖 (𝑎2𝑖−1) = 𝑣𝑏𝑖 (𝑎2𝑖) = 𝑣𝑏𝑖 (𝑎2𝑖−1) = 1. For each 𝑤𝑖, 𝑤𝑗 ∈ 𝑊 let 𝑣𝑏𝑖 (𝑏𝑗 ) = 1 if {𝑤𝑖,
𝑤𝑗 } ∈ 𝐸 and 0 otherwise. Next, for each 𝑟 where 1 ≤ 𝑟 ≤ 6𝑞 construct a set of eight agents
𝐻𝑟 = {ℎ1

𝑟 , ℎ
2
𝑟 , . . . , ℎ

8
𝑟 }, which we refer to as the ℎth octogadget. For each 𝑖 and 𝑗 where

1 ≤ 𝑖, 𝑗 ≤ 8 let 𝑣ℎ𝑖𝑟 (ℎ
𝑗
𝑟 ) = 2 if both 𝑖 is odd and 𝑗 = 𝑖 ⊕ 1 otherwise 1. This completes the

construction of (𝑁,𝑉). Note that |𝑁 | = 57𝑞.

It is straightforward to show that the reduction runs in polynomial time. To prove that the
reduction is correct we show that the 3DR-AS instance (𝑁,𝑉) contains a stable matching if
and only if the PIT instance 𝐺 contains a partition into triangles.

We first show that if the PIT instance 𝐺 contains a partition into triangles then the 3DR-AS
instance (𝑁,𝑉) contains a stable matching.

Lemma 6.27. If𝐺 contains a partition into triangles then (𝑁,𝑉) contains a stable matching.
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Proof. Suppose 𝐺 contains a partition into triangles 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑞}. We shall con-
struct a matching 𝑀 that is stable in (𝑁,𝑉). For each triangle 𝑋𝑝 = {𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 } ∈ 𝑊 ,
add {𝑏𝑖, 𝑏𝑗 , 𝑏𝑘 } to 𝑀 . For each index 𝑟 where 1 ≤ 𝑟 ≤ 6𝑞 add the triples {ℎ1

𝑟 , ℎ
2
𝑟 , ℎ

3
𝑟 },

{ℎ4
𝑟 , ℎ

5
𝑟 , 𝑝

6
𝑟 }, {ℎ7

𝑟 , ℎ
8
𝑟 , 𝑎𝑟} to 𝑀 . Note that 𝑢ℎ𝑝𝑟 (𝑀) ≥ 2 for each 1 ≤ 𝑝 ≤ 8 by the design of

the octogadget 𝐻𝑟 .

Since 𝑢𝑏𝑖 (𝑀) = 2 for each 1 ≤ 𝑖 ≤ 3𝑞 it follows that 𝑏𝑖 does not belong to a triple that blocks
𝑀 .

Suppose for a contradiction that some agent 𝑎2𝑖 where 1 ≤ 𝑖 ≤ 3𝑞 belongs to a triple 𝑡 that
blocks 𝑀 . We have shown that 𝑏𝑖 does not belong to a triple that blocks 𝑀 , so it must be that
𝑎2𝑖−1 ∈ 𝑡, otherwise 𝑢𝑎2𝑖 (𝑡) = 0, which is impossible. Suppose then that 𝑡 = {𝑎2𝑖, 𝑎2𝑖−1, 𝛼𝑗 }
where 𝛼𝑗 ∈ 𝑁 and 𝛼𝑗 ≠ 𝑏𝑖. Considering the design of the instance, for any such 𝛼𝑗 it must be
that 𝑢𝛼𝑗 ({𝑎2𝑖, 𝑎2𝑖−1}) = 𝑢𝛼𝑗 (𝑡) = 0, which is a contradiction. A symmetric argument shows
that no 𝑎2𝑖−1 where 1 ≤ 𝑖 ≤ 3𝑞 belongs to a triple that blocks 𝑀 .

The only remaining possibility is that some triple {ℎ𝑠1𝑟 , ℎ𝑠2𝑟 , ℎ𝑠3𝑟 } blocks 𝑀 where 1 ≤ 𝑟 ≤ 6𝑞
and 1 ≤ 𝑠1, 𝑠2, 𝑠3 ≤ 8. Suppose for a contradiction that some such triple exists. We noted
earlier in this proof that 𝑢ℎ𝑝𝑟 (𝑀) ≥ 2 for each 1 ≤ 𝑝 ≤ 11 so it must be that 𝑢

ℎ
𝑠1
𝑟
({ℎ𝑠2𝑟 ,

ℎ
𝑠3
𝑟 }) ≥ 3, 𝑢

ℎ
𝑠2
𝑟
({ℎ𝑠1𝑟 , ℎ𝑠3𝑟 }) ≥ 3, and 𝑢

ℎ
𝑠3
𝑟
({ℎ𝑠1𝑟 , ℎ𝑠2𝑟 }) ≥ 3. Considering the valuations of the

agents in 𝐻𝑟 we can see that no such ℎ𝑠1𝑟 , ℎ𝑠2𝑟 , ℎ𝑠3𝑟 exist, which is a contradiction. □

We now show, using a sequence of lemmas, that if the 3DR-AS instance (𝑁,𝑉) contains a
stable matching then 𝐺 contains a partition into triangles.

Lemma 6.28. If (𝑁,𝑉) contains a stable matching 𝑀 then 𝑢ℎ𝑠𝑟 (𝑀) ≥ 1 for any 𝑟 and 𝑠 where
1 ≤ 𝑟 ≤ 6𝑞 and 1 ≤ 𝑠 ≤ 11.

Proof. Suppose for a contradiction that 𝑢
ℎ
𝑠1
𝑟
(𝑀) = 0 for some 1 ≤ 𝑟 ≤ 6𝑞 and 1 ≤ 𝑠1 ≤ 8.

Note that it must be that 𝑀 (ℎ𝑠1𝑟 ) contains exactly one agent, namely ℎ𝑠1𝑟 , in 𝐻𝑟 .

We claim that no triple in 𝑀 contains exactly two agents in 𝐻𝑟 . Suppose for a contradiction
that some such triple {ℎ𝑠2𝑟 , ℎ𝑠3𝑟 , 𝛼𝑖} exists where 1 ≤ 𝑠2, 𝑠3 ≤ 8 and 𝛼𝑖 ∉ 𝐻𝑟 . By the
construction of 𝐻𝑟 , it must be that 𝑢

ℎ
𝑠1
𝑟
({ℎ𝑠2𝑟 , ℎ𝑠3𝑟 }) ≥ 2. Since 𝛼𝑖 ∉ 𝐻𝑟 it must also be that

𝑣
ℎ
𝑠2
𝑟
(ℎ𝑠1𝑟 ) > 𝑣

ℎ
𝑠2
𝑟
(𝛼𝑖) and 𝑣

ℎ
𝑠3
𝑟
(ℎ𝑠1𝑟 ) > 𝑣

ℎ
𝑠3
𝑟
(𝛼𝑖) so 𝑢

ℎ
𝑠2
𝑟
({ℎ𝑠1𝑟 , ℎ𝑠3𝑟 }) > 𝑢ℎ𝑠2𝑟 (𝑀) and 𝑢

ℎ
𝑠3
𝑟
({ℎ𝑠1𝑟 ,

ℎ
𝑠2
𝑟 }) > 𝑢ℎ𝑠3𝑟 (𝑀). It follows that the triple {ℎ𝑠1𝑟 , ℎ𝑠2𝑟 , ℎ𝑠3𝑟 } blocks 𝑀 , which is a contradiction.

We now claim that at most two triples in 𝑀 contain exactly one agent in 𝐻𝑟 . Suppose three
or more triples in 𝑀 each contain exactly one agent in 𝐻𝑟 . It follows that these three agents
in 𝐻𝑟 each have utility zero in 𝑀 . By the construction of 𝐻𝑟 , these three agents block 𝑀 .

We have now established that no triple in 𝑀 contains exactly two agents in 𝐻𝑟 and at most
two triples in 𝑀 contain exactly one agent in 𝐻𝑟 . Since |𝐻𝑟 | = 8 the only possibility is that
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two triples in 𝑀 each contain exactly three agents in 𝐻𝑟 and two triples in 𝑀 each contain
exactly one agent in 𝐻𝑟 .

By the design of the octogadget 𝐻𝑟 there are four disjoint pairs of agents {ℎ𝑝1
𝑟 , ℎ

𝑝2
𝑟 } for which

𝑣
ℎ
𝑝1
𝑟
(ℎ𝑝2
𝑟 ) = 2. Since there are exactly two triples that contain three agents in𝐻𝑟 there exists at

least two disjoint pairs of agents {ℎ𝑝1
𝑟 , ℎ

𝑝2
𝑟 } and {ℎ𝑝3

𝑟 , ℎ
𝑝4
𝑟 } where 𝑣

ℎ
𝑝1
𝑟
(ℎ𝑝2
𝑟 ) = 𝑣ℎ𝑝3

𝑟
(ℎ𝑝4
𝑟 ) = 2

and 𝑀 (ℎ𝑝1
𝑟 ) ≠ 𝑀 (ℎ𝑝2

𝑟 ) and 𝑀 (ℎ𝑝3
𝑟 ) ≠ 𝑀 (ℎ𝑝4

𝑟 ). For example, if {ℎ3
𝑟 , ℎ

4
𝑟 , ℎ

5
𝑟 } ∈ 𝑀 and

{ℎ6
𝑟 , ℎ

7
𝑟 , ℎ

8
𝑟 } ∈ 𝑀 then {{ℎ𝑝1

𝑟 , ℎ
𝑝2
𝑟 }, {ℎ𝑝3

𝑟 , ℎ
𝑝4
𝑟 }} = {{ℎ1

𝑟 , ℎ
2
𝑟 }, {ℎ5

𝑟 , ℎ
6
𝑟 }}. Suppose without loss

of generality that {ℎ𝑝1
𝑟 , ℎ

𝑝2
𝑟 } does not contain ℎ𝑠1𝑟 . Since ℎ𝑝2

𝑟 ∉ 𝑀 (ℎ𝑝1
𝑟 ), by the design of

𝐻𝑟 it must be that 𝑢
ℎ
𝑝1
𝑟
≤ 2. Similarly, since ℎ𝑝1

𝑟 ∉ 𝑀 (ℎ𝑝2
𝑟 ) it must be that 𝑢

ℎ
𝑝2
𝑟
≤ 2. It

follows that the triple {ℎ𝑠1𝑟 , ℎ𝑝1
𝑟 , ℎ

𝑝2
𝑟 } blocks 𝑀 , since 𝑢

ℎ
𝑠1
𝑟
(𝑀) = 0 < 𝑢

ℎ
𝑠1
𝑟
({ℎ𝑝1

𝑟 , ℎ
𝑝2
𝑟 }) = 2,

𝑢
ℎ
𝑝1
𝑟
(𝑀) ≤ 2 < 𝑢

ℎ
𝑝1
𝑟
({ℎ𝑠1𝑟 , ℎ𝑝2

𝑟 }) = 3, and 𝑢
ℎ
𝑝2
𝑟
(𝑀) ≤ 2 < 𝑢

ℎ
𝑝2
𝑟
({ℎ𝑠1𝑟 , ℎ𝑝3

𝑟 }) = 3. This
contradicts the supposition that 𝑀 is stable. □

Lemma 6.29. If (𝑁,𝑉) contains a stable matching 𝑀 then 𝑢𝑎𝑘 (𝑀) = 0 for each 1 ≤ 𝑘 ≤ 6𝑞.

Proof. Consider some arbitrary octogadget 𝐻𝑟1 where 1 ≤ 𝑟1 ≤ 6𝑞. Since |𝐻𝑟1 | = 8 there
exists at least one triple in 𝑀 that contains some agent ℎ𝑠1𝑟1 where 1 ≤ 𝑠1 ≤ 8 and some
agent 𝛼𝑖 ∉ 𝐻𝑟1 . By Lemma 6.28, 𝑢

ℎ
𝑠1
𝑟1
(𝑀) ≥ 1, and it follows that 𝑀 (ℎ𝑠1𝑟1) = {ℎ

𝑠1
𝑟1 , ℎ

𝑠2
𝑟1 , 𝛼𝑖}

where 1 ≤ 𝑠2 ≤ 8 and 𝛼𝑖 ∈ 𝑁 . It must be that 𝛼𝑖 ∉ 𝐻𝑟2 for any 𝑟2 where 1 ≤ 𝑟2 ≤ 6𝑞, for
otherwise 𝑢𝛼𝑖 (𝑀) = 0, which contradicts Lemma 6.28. It remains that either 𝛼𝑖 = 𝑏𝑗 where
1 ≤ 𝑗 ≤ 3𝑞 or 𝛼𝑖 = 𝑎𝑘 where 1 ≤ 𝑘 ≤ 6𝑞. Note that by the design of the instance it follows
that 𝑢𝛼𝑖 (𝑀) = 0.

Suppose for a contradiction that 𝛼𝑖 = 𝑏𝑗 where 1 ≤ 𝑗 ≤ 3𝑞. It must also be that 𝑢𝑎2 𝑗 (𝑀) ≤ 1
and 𝑢𝑎2 𝑗−1 (𝑀) ≤ 1, since 𝑎2 𝑗 ∉ 𝑀 (𝑏𝑗 ) and 𝑎2 𝑗−1 ∉ 𝑀 (𝑏𝑗 ). We can now see that {𝑏𝑗 , 𝑎2 𝑗 ,

𝑎2 𝑗−1} blocks 𝑀 since 𝑢𝑏𝑗 (𝑀) = 0 < 𝑢𝑏𝑗 ({𝑎2 𝑗 , 𝑎2 𝑗−1}) = 2, 𝑢𝑎2 𝑗 (𝑀) ≤ 1 < 2 = 𝑢𝑎2 𝑗 ({𝑏𝑗 ,
𝑎2 𝑗−1}) and 𝑢𝑎2 𝑗−1 (𝑀) ≤ 1 < 2 = 𝑢𝑎2 𝑗−1 ({𝑏𝑗 , 𝑎2 𝑗 }). This contradicts the supposition that 𝑀
is stable. It remains that 𝛼𝑖 = 𝑎𝑘 where 1 ≤ 𝑘 ≤ 6𝑞. Recall that 𝑢𝛼𝑖 (𝑀) = 0. Since there are
6𝑞 octogadgets and the choice of 𝑟1 was arbitrary the only possibility is that 𝑢𝑎𝑘 (𝑀) = 0 for
every 1 ≤ 𝑘 ≤ 6𝑞. □

Lemma 6.30. If (𝑁,𝑉) contains a stable matching 𝑀 then 𝑢𝑏𝑖 (𝑀) = 2 for any 𝑖 where
1 ≤ 𝑖 ≤ 3𝑞.

Proof. Suppose for a contradiction that there exists some 1 ≤ 𝑖 ≤ 3𝑞 where 𝑢𝑏𝑖 (𝑀) < 2.
Lemma 6.29 shows that 𝑢2𝑖 (𝑀) = 𝑢𝑎2𝑖−1 (𝑀) = 0. Considering the valuation functions of 𝑎2𝑖,
𝑎2𝑖−1, and 𝑏𝑖, we can see that 𝑢𝑏𝑖 ({𝑎2𝑖, 𝑎2𝑖−1}) = 𝑢𝑎2𝑖 ({𝑏𝑖, 𝑎2𝑖−1}) = 𝑢𝑎2𝑖−1 ({𝑏𝑖, 𝑎2𝑖}) = 2.
The triple {𝑏𝑖, 𝑎2𝑖, 𝑎2𝑖−1} therefore blocks 𝑀 , which is a contradiction. □

Lemma 6.31. If (𝑁,𝑉) contains a stable matching 𝑀 then for any 𝑏𝑖 where 1 ≤ 𝑖 ≤ 3𝑞, the
triple 𝑀 (𝑏𝑖) comprises {𝑏𝑖, 𝑏𝑗 , 𝑏𝑘 } for some 1 ≤ 𝑗 , 𝑘 ≤ 3𝑞 where {𝑤𝑖, 𝑤𝑗 }, {𝑤𝑖, 𝑤𝑘 } ∈ 𝐸 .
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Proof. Lemma 6.30 shows that 𝑢𝑏𝑖 (𝑀) = 2. Suppose 𝑀 (𝑏𝑖) = {𝑏𝑖, 𝛼𝑘 , 𝛼𝑙} for some 𝛼𝑘 ,
𝛼𝑙 ∈ 𝑁 . Since 𝑢𝑏𝑖 (𝑀) = 2, it must be that 𝑣𝑏𝑖 (𝛼𝑘 ) = 1 and hence either 𝛼𝑘 = 𝑎2𝑖, 𝛼𝑘 = 𝑎2𝑖−1,
or 𝛼𝑘 = 𝑏𝑗 where 1 ≤ 𝑗 ≤ 3𝑞 where {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 . Suppose first that 𝛼𝑘 = 𝑎2𝑖. Since
𝑏𝑖 ∈ 𝑀 (𝑎2𝑖) it follows that 𝑢𝑎2𝑖 (𝑀) ≥ 1 which contradicts Lemma 6.29. A similar argument
shows that 𝛼𝑘 ≠ 𝑎2𝑖−1. It remains that 𝛼𝑘 = 𝑏𝑗 where 1 ≤ 𝑗 ≤ 3𝑞 such that {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 .
The same argument shows that 𝛼𝑙 = 𝑏𝑘 where 1 ≤ 𝑘 ≤ 3𝑞 and {𝑤𝑖, 𝑤𝑘 } ∈ 𝐸 . We have
shown that 𝑀 (𝑏𝑖) = {𝑏𝑖, 𝑏𝑗 , 𝑏𝑘 } where 1 ≤ 𝑗 , 𝑘 ≤ 3𝑞 and {𝑤𝑖, 𝑤𝑗 }, {𝑤𝑖, 𝑤𝑘 } ∈ 𝐸 . □

Lemma 6.32. If (𝑁,𝑉) contains a stable matching then𝐺 contains a partition into triangles.

Proof. Lemma 6.31 shows that for an arbitrary 𝑏𝑖 where 1 ≤ 𝑖 ≤ 3𝑞, 𝑀 (𝑏𝑖) comprises {𝑏𝑖, 𝑏𝑗 ,
𝑏𝑘 } where 1 ≤ 𝑗 , 𝑘 ≤ 3𝑞, {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 , and {𝑤𝑖, 𝑤𝑘 } ∈ 𝐸 . It follows that there are exactly 𝑞
triples in 𝑀 each containing three agents {𝑏𝑖, 𝑏𝑗 , 𝑏𝑘 }, where the three corresponding vertices
𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 are pairwise adjacent in 𝐺. From these triples of pairwise adjacent vertices, a
partition into triangles 𝑋 can be easily constructed. □

We have now shown that the 3DR-AS instance (𝑁,𝑉) contains a stable matching if and only
if the PIT instance 𝐺 contains a partition into triangles. This shows that the reduction is
correct.

Theorem 6.5. Deciding if a given instance of 3DR-AS contains a stable matching is NP-
complete, even when preferences are ternary and symmetric.

Proof. It is straightforward to show that this decision problem belongs to NP. We have
presented a polynomial-time reduction from Partition Into Triangles (PIT), which is NP-
complete [43]. Given an arbitrary instance 𝐺 of PIT, the reduction constructs an instance
(𝑁,𝑉) of 3DR-AS with ternary and symmetric preferences. Lemmas 6.27 and 6.32 show
that (𝑁,𝑉) contains a stable matching if and only if 𝐺 contains a partition into triangles and
thus that this decision problem is NP-hard. □

6.6 Summary and open problems

In this chapter we formalised a model of 3DR involving additively separable preferences,
which we called 3DR-AS. We considered in instances of 3DR-AS the existence of, and
complexity of finding, matchings that are stable, under three possible restrictions of the
agents’ valuations.

We first showed that any instance of 3DR-AS with binary and symmetric preferences contains
a stable matching, and presented a polynomial-time algorithm that can construct a stable
matching in such an instance. We then considered the problem of finding a stable matching
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with maximum utilitarian welfare, given an instance with binary and symmetric preferences.
We called this problem the 3DR-AS Stable Maximum Utilitarian Welfare problem (3DR-AS-
SMUW). We proved that 3DR-AS-SMUW is NP-hard, but showed that the algorithm for
constructing a stable matching in this setting can be modified to yield a 2-approximation
algorithm. We then complemented the previous tractability results with two hardness results.
The first is that a stable matching need not exist in general, and the associated decision
problem is NP-complete even when preferences are binary and not necessarily symmetric.
The second is that the same decision problem is NP-complete even when preferences are
ternary and symmetric.

Later, in Chapter 7, we shall combine some of the results from this chapter with other results
for 3DR-AS and present a comprehensive analysis of the existence and complexity of feasible
matchings in 3DR-AS under restricted preferences, for four related solution concepts. This
classification is shown in Table 7.1 in Chapter 7.

We now present some open problems specifically involving stability in 3DR-AS. More general
problems, involving solution concepts other than stability and other models of fixed-size
coalitions, are discussed in Chapter 9.

An immediate open problem is whether our results for binary preferences hold in a more
general setting in which 𝑣𝛼𝑖 (𝛼𝑗 ) ∈ {𝑎, 𝑏} for any non-negative integers 𝑎 and 𝑏 where 𝑎 < 𝑏,
and whether our results for ternary preferences hold when 𝑣𝛼𝑖 (𝛼𝑗 ) ∈ {𝑎, 𝑏, 𝑐} for any non-
negative integers 𝑎, 𝑏, and 𝑐 where 𝑎 < 𝑏 < 𝑐. We conjecture that both statements are true,
and that both the polynomial-time algorithm and NP-hardness reductions can be modified
accordingly.

As we noted in Section 6.3.2, any approximation algorithm for 3DR-AS-SMUW with ap-
proximation ratio strictly less than 2 must not always begin, like Algorithm findStableUW

does, by selecting a maximal set of triangles. While it would be very interesting to derive
such an algorithm, it would also be informative to derive an inapproximability result for
3DR-AS-SMUW. We conjecture that 3DR-AS-SMUW is APX-hard.

An open direction of work involves the price of anarchy and price of stability of 3DR-AS
[73]. In the setting of 3DR-AS, we could define the price of anarchy (stability) as the
worst- (best-)case ratio between the utilitarian welfare of an arbitrary stable matching and
the maximum possible utilitarian welfare over all matchings. Our example instance, shown
in Figure 6.10, thus shows that the price of anarchy is at least 2, even when preferences are
binary and symmetric.

It would be very interesting to identify other restrictions of 3DR-AS in which a stable
matching can be found in polynomial time. For example, a crucial part of the reduction
shown in Section 6.4 was the pentagadget, which corresponds to a unique type of regular
tournament graph [84]. It would be quite remarkable if, for example, every instance of 3DR-
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AS that does not contain a pentagadget contains a stable matching. As a starting point, we
conjecture that any instance corresponding to a directed acyclic graph must contain a stable
matching.

Continuing the connection to graph theory (discussed in Section 6.1), it might also be possible
to consider the problem of finding a stable matching in a given instance of 3DR-AS from the
perspective of the parameterised complexity with respect to a graph parameter. For example,
in the case of binary and symmetric preferences, one could consider the tree-width [85] of
the underlying graph.

As we noted for 3DR-B and 3DR-W (in Chapters 4 and 5), it would be very interesting to
estimate the probability that a random instance of 3DR-AS contains a stable matching, or
to estimate the same probability in a random instance of 3DR-AS with binary or ternary
preferences. It might be possible to use probabilistic techniques from graph theory, such as
the Erdős-Rényi model of a random graph. Alternatively an empirical approach might be
informative, for example by formulating the problem as an integer program [86].
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Chapter 7

Three-Dimensional Envy-Free
Roommates with Additively
Separable Preferences

7.1 Introduction

In the previous chapter we considered the existence of stable matchings in a model of Three-
Dimensional Roommates with additively separable preferences, called 3DR-AS. We showed
that in general, a stable matching may not exist in a given instance of 3DR-AS, and the
associated decision problem is NP-complete. We also showed that if the agents’ preferences
are sufficiently restricted then a stable matching must always exist, which can be found in
polynomial time. In this chapter we consider three alternative solution concepts, one of
which is a strictly weaker concept than stability. For each concept, we study the existence of
such matchings under different restrictions on the agents’ preferences, and the computational
complexity of the associated existence and construction problems (see Chapter 2). This
culminates in a full complexity classification, which includes for each of the three solution
concepts a dichotomy between polynomial-time solvability and NP-hardness.

The three solution concepts that we study all relate to matchings in which there exist no two
agents 𝛼𝑖 and 𝛼𝑗 where 𝛼𝑖 would prefer to swap with 𝛼𝑗 . In such a case we say that 𝛼𝑖 has
envy for 𝛼𝑗 . If a matching 𝑀 contains no agent with envy for another agent then we say
that it is envy-free. The other two solution concepts involve the other agents in the triple of
𝛼𝑗 , 𝑀 (𝛼𝑗 ). Informally, we say that 𝛼𝑖 has justified envy (abbreviated j-envy) for 𝛼𝑗 if 𝛼𝑖 has
envy for 𝛼𝑗 and each of the other agents in 𝑀 (𝛼𝑗 ) prefer 𝛼𝑖 to 𝛼𝑗 . We say that 𝛼𝑖 has weakly
justified envy (wj-envy) for 𝛼𝑗 if 𝛼𝑖 has envy for 𝛼𝑗 and each of the other agents in 𝑀 (𝛼𝑗 )
either prefers 𝛼𝑖 to 𝛼𝑗 or is indifferent. Formally, an agent 𝛼𝑖 has envy for another agent 𝛼𝑗 in
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a matching 𝑀 if 𝑢𝛼𝑖 (𝑀 (𝛼𝑗 ) \ {𝛼𝑗 }) > 𝑢𝛼𝑖 (𝑀). If 𝛼𝑖 has envy for 𝛼𝑗 and 𝑣𝛼𝑘 (𝛼𝑖) > 𝑣𝛼𝑘 (𝛼𝑗 )
for each 𝛼𝑘 ∈ 𝑀 (𝛼𝑗 ) \ {𝛼𝑗 } then we say that 𝛼𝑖 has j-envy for 𝛼𝑗 . If 𝑣𝛼𝑘 (𝛼𝑖) ≥ 𝑣𝛼𝑘 (𝛼𝑗 ) for
each 𝛼𝑘 ∈ 𝑀 (𝛼𝑗 ) \ {𝛼𝑗 } then we say that 𝛼𝑖 has wj-envy for 𝛼𝑗 . The definitions of j-envy-free
and wj-envy-free matchings are analogous.

These three solution concepts are hierarchical: by definition, any matching that is envy-free
is also wj-envy-free, and any matching that is wj-envy-free must also be j-envy-free. In
fact, they are also related to other solution concepts proposed in the literature. It is relatively
straightforward to show that any envy-free matching is also strictly swap stable [73]. It is also
straightforward to show that any stable matching is also j-envy-free. In fact, j-envy-freeness is
a strictly weaker concept than stability. With the results of Chapter 6 in mind, this observation
partly motivates our study of j-envy-freeness, since for example it would be interesting if a
strictly weaker restriction on the agents’ preferences than binary and symmetric valuations
(which guarantees the existence of a stable matching) is sufficient to guarantee the existence
of a j-envy-free matching.

A strong motivation also exists for combining these three solution concepts with a setting of
fixed-size coalitions (and of size three). As we discussed in Chapter 2, in a model in which
coalitions have arbitrary size, such as a hedonic game, it can be trivial to construct partitions
that are envy-free by, for example, placing all agents into the grand coalition [16, 37].

We begin in Section 7.2 by showing that an arbitrary instance of 3DR-AS may not contain
an envy-free matching, even when preferences are binary and symmetric and the maximum
degree of the underlying graph is 2. We describe a polynomial-time algorithm for this
case that can either construct an envy-free matching or report that no such matching exists
(Theorem 7.1). We then contrast this result by showing that the corresponding existence
problem is NP-complete even when the maximum degree of the underlying graph is 3
(Theorem 7.2).

In Section 7.3, we identify a similar dichotomy for wj-envy-freeness. We first show that a
wj-envy-free matching may not exist, even when preferences are binary and symmetric and
the maximum degree of the underlying graph is 2. Notably, the set of instances of 3DR-AS
with maximum degree 2 that do not contain a wj-envy-free matching is a strict subset of
the set of instances with maximum degree 2 that do not contain an envy-free matching. We
describe a slightly more complex polynomial-time algorithm for this case, compared to the
corresponding algorithm in Section 7.2, that can either construct a wj-envy-free matching or
report that no such matching exists (Theorem 7.3). As for envy-freeness, we show that the
corresponding existence problem is also NP-complete even when the maximum degree of
the underlying graph is 3 (Theorem 7.4).

Next, in Section 7.4 we consider j-envy-freeness. We first remark that any stable matching is
also j-envy-free. We then show that if preferences are binary but not necessarily symmetric,
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a j-envy-free matching must exist and can be found in polynomial time (Theorem 7.5).
Significantly, this tractability result holds in a larger set of instances of 3DR-AS than the
corresponding result for stability, which we saw in Chapter 6. Nevertheless, we complement
this result with two hardness results. The first is that a given instance of 3DR-AS may not
contain a j-envy-free matching even when preferences are ternary but not symmetric, and
the associated existence problem is NP-complete (Theorem 7.6). The second is that a given
instance of 3DR-AS may not contain a j-envy-free matching even when preferences are non-
binary and symmetric, and the associated existence problem is NP-complete (Theorem 7.7).

Finally, in Section 7.5, we recap on our contribution and discuss some directions for future
work.

7.2 Envy-freeness

7.2.1 Symmetric binary preferences with maximum degree two

Our first result is a necessary and sufficient condition for the existence of an envy-free
matching in an instance (𝑁,𝑉) of 3DR-AS with binary and symmetric preferences and
maximum degree 2. Since preferences are binary and symmetric, in the following proof we
refer to the underlying graph (𝑁, 𝐸) of the instance (𝑁,𝑉). The underlying graph (𝑁, 𝐸) is
constructed such that {𝛼𝑖, 𝛼𝑗 } ∈ 𝐸 if and only if 𝑣𝛼𝑖 (𝛼𝑗 ) = 1, for any two agents 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 .

Lemma 7.1. Consider an instance of 3DR-AS with binary and symmetric preferences and
maximum degree 2. Let 𝑃 be the set of isolated agents, Q be the set of connected components
of size 3𝑘1 − 2 for any 𝑘1 > 1, and R be the set of connected components of size 3𝑘2 − 1 for
any 𝑘2 ≥ 1. An envy-free matching exists if and only if 2|Q| + |R| ≤ |𝑃 |.

Proof. Consider an arbitrary instance of 3DR-AS with binary and symmetric preferences,
represented by its underlying graph (𝑁, 𝐸). Let S be the set of connected components of
size 3𝑘3 for any 𝑘3 ≥ 1.

To show the first direction, suppose 2|Q| + |R| ≤ |𝑃 |. We shall construct a matching 𝑀 and
demonstrate that it is envy-free. First, observe that if any agent has utility 1 or more then that
agent is not envious, since the maximum degree of the underlying graph is 2.

Construct 𝑀 as follows. First, consider each 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠3𝑘3) in S. For each 𝑖 where
1 ≤ 𝑖 ≤ 𝑘3, add {𝑠3𝑖−2, 𝑠3𝑖−1, 𝑠3𝑖} to 𝑀 . It follows that each agent in 𝑆 has utility at least 1
and thus is not envious. Now consider each 𝑅 = (𝑟1, 𝑟2, . . . , 𝑟3𝑘2−1) in R. For each 𝑖 where
1 ≤ 𝑖 ≤ 𝑘2 − 1, add {𝑟3𝑖−2, 𝑟3𝑖−1𝑟3𝑖} to 𝑀 . Next, add {𝑟3𝑘2−2, 𝑟3𝑘2−1, 𝑝2|Q|+𝑖} to 𝑀 (recall
that |𝑃 | ≥ 2|Q| + |R|). It follows that each agent in 𝑅 is not envious. Now consider each
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𝑄 = (𝑞1, 𝑞2, . . . , 𝑞3𝑘1−2) in Q. For each 𝑖 where 1 ≤ 𝑖 ≤ 𝑘1 − 2, add {𝑞3𝑖−2, 𝑞3𝑖−1, 𝑞3𝑖} to 𝑀 .
Next, add to 𝑀 the triples {𝑞3𝑘1−5, 𝑞3𝑘1−4, 𝑝𝑖} and {𝑞3𝑘1−3, 𝑞3𝑘1−2, 𝑝2𝑖}. It follows that each
agent in 𝑄 has utility at least 1 and thus is not envious.

Finally, arbitrarily add the remaining agents in 𝑃 to triples in 𝑀 . Since these agents are
isolated they are not envious.

To show the second direction, suppose for a contradiction that (𝑁, 𝐸) has an envy-free
matching 𝑀 and 2|Q| + |R| > |𝑃 |. Since the degree of any agent in

⋃Q is at least 1, it must
be that the utility of each agent in

⋃Q is at least 1. Similarly, the utility of each agent in
⋃R

must also be at least 1. It follows that any agent in 𝑀 that has utility 0 belongs to 𝑃.

Now consider some 𝑄 ∈ Q. By definition, |𝑄 | = 3𝑘1 − 2 for some 𝑘1 > 1. It follows that
there exists two triples in 𝑀 that each contain exactly two agents in 𝑄 and some agent with
utility 0 in 𝑀 . Similarly, for each 𝑅 ∈ R there must exist at least one triple in 𝑀 that contains
exactly two agents in 𝑅 and some agent with utility 0 in 𝑀 . It follows that there are at least
2|Q| + |R| agents with utility 0 in 𝑀 . The only possibility is that there exists 2|Q| + |R| agents
in 𝑃, which is a contradiction. □

Theorem 7.1. Consider an instance of 3DR-AS with binary and symmetric preferences and
maximum degree 2. There exists an 𝑂 ( |𝑁 |)-time algorithm that can either find an envy-free
matching or report that no such matching exists.

Proof. Lemma 7.1 gives a necessary and sufficient condition for the existence of an envy-free
matching in (𝑁, 𝐸), based on the number of connected components of different sizes. Define
𝑃, Q, and R as before in Lemma 7.1. We outline a linear-time algorithm based on the
constructive proof in Lemma 7.1. The algorithm outputs either ⊥, if no envy-free matching
exists, or a labelling 𝜏 of each agent 𝛼𝑖 with some index 1 ≤ 𝜏(𝛼𝑖) ≤ 𝑛 that represents the
index of 𝑀 (𝛼𝑖) in some arbitrary ordering of the triples in an envy-free matching 𝑀 .

The algorithm has three phases. In the first phase, the algorithm constructs a stack 𝑃 that
contains all isolated agents in (𝑁, 𝐸). It also constructs a stack 𝑇 , which contains exactly one
agent per connected component of size two or more, such that if a connected component is
a path then 𝑇 contains one of its endpoints. The construction of 𝑇 can thus be performed in
linear time.

The algorithm now enters the second phase, which is as follows. The algorithm maintains a
counter 𝑟 to track the label of the agent last labelled. Initially, 𝑟 = 1. The algorithm pops an
unmarked agent 𝑚𝑖 from the stack 𝑇 and marks 𝜏(𝑚𝑖) = 1. It sets a counter 𝑐 to 1, which
will track the size of the connected component that contains 𝑚𝑖. It then identifies successive
adjacent agents and labels each one with 𝑟 , incrementing 𝑟 by one every third agent, following
the path or cycle in the underlying graph. The successive agents are therefore marked 1, 1,
1, 2, 2, 2, 3, 3, 3 . . . . The counter 𝑐 is updated to ensure that 𝑐 is the size of this connected
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component. Eventually, either some agent with degree 1 or some previously labelled agent
is discovered. In this case, there are three possibilities.

The first possibility is that 𝑐 = 3𝑘3 for some 𝑘3 ≥ 1. In this case the algorithm pops some
yet unlabelled 𝑚𝑖 from the stack 𝑇 and repeats the above process.

The second possibility is that 𝑐 = 3𝑘2 − 1 for some 𝑘2 ≥ 1. In this case the algorithm pops
some isolated agent 𝑝𝑖 from the stack 𝑃 and labels 𝜏(𝑝𝑖) = 𝑟. If the stack 𝑃 is empty then
it must be that 2|Q| + |R| > |𝑃 | and thus the algorithm returns ⊥. The algorithm then pops
some yet unlabelled 𝑚𝑖 from the stack 𝑇 and repeats the above process.

The third possibility is that 𝑐 = 3𝑘1 − 2 for some 𝑘1 > 1. In this case it must be that exactly
one agent 𝛼𝑗 has been marked with 𝑟. The algorithm identifies the last agent 𝛼𝑙 that was
labelled with 𝑟 −1, which must be adjacent to 𝛼𝑗 . It relabels 𝜏(𝛼𝑙) = 𝑟. It follows that exactly
two adjacent agents are labelled with 𝑟 − 1 and exactly two adjacent agents are labelled with
𝑟. The algorithm then pops two isolated agents 𝑝𝑔, 𝑝ℎ from the stack 𝑃 and labels 𝜏(𝑝𝑔) = 𝑟
and 𝜏(𝑝ℎ) = 𝑟 − 1. If |𝑃 | < 2 then it must be that 2|Q| + |R| > |𝑃 | and thus the algorithm
returns ⊥. The algorithm then pops some yet-unlabelled 𝑚𝑖 from the stack 𝑇 and repeats the
above process.

In the third phase, since the algorithm has not yet returned ⊥, it must be that each agent with
degree 1 or more has been labelled and therefore assigned to some triple in 𝑀 . The algorithm
arbitrarily assigns the remaining agents in 𝑃 to triples in 𝑀 by popping successive agents 𝑝𝑖
from the stack 𝑃 and labelling 𝜏(𝑝𝑖) = 𝑟, incrementing 𝑟 every third agent. □

7.2.2 Symmetric binary preferences with maximum degree three

We now consider instances of 3DR-AS with binary and symmetric preferences in which the
maximum degree of the underlying graph is 3. In contrast with Theorem 7.1, we show that
deciding if a given instance of 3DR-AS contains an envy-free matching is NP-complete, even
when preferences are binary and symmetric and the maximum degree is 3.

We present a polynomial-time reduction from a variant of Exact Satisfiability (XSAT) [43].
An instance of XSAT is a boolean formula in conjunctive normal form (CNF). We write
𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚} to represent such a formula as the set of its clauses. We represent each
clause 𝑐𝑟 ∈ 𝐶 as a set of literals. Each literal is either an occurrence of a single variable
or its negation. Given a formula, we write 𝑋 to mean the set of variables contained in the
formula. A truth assignment 𝑓 : 𝑋 ↦→ {true, false} is an assignment of values to the set
of variables. We say that an exact model is a truth assignment to the variables such that
each clause contains exactly one true literal (and therefore exactly two false literals). Given
an instance 𝐶, if an exact model exists then we say that 𝐶 is exactly satisfiable. Deciding
if an instance 𝐶 of XSAT is exactly satisfiable is NP-complete [87] even when each clause
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𝑤2
𝑖
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𝑟
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𝑟
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𝑟

𝑑5
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𝑟

𝑑6
𝑟 𝑑7

𝑟

Figure 7.1: The reduction from X3SAT=3
+ to the problem of deciding if a given instance of

3DR-AS contains an envy-free matching. A variable gadget 𝑊𝑖 and clause gadget 𝐷𝑟 are
represented as undirected graphs.

contains exactly three literals. Porschen et al. [88, Lemma 5] show that this problem remains
NP-complete even for the restricted case every literal is positive and each variable occurs in
exactly three clauses, which they denote by 3-CNF3

+-XSAT. We shall refer to this variant as
X3SAT=3

+ (Problem 7.1). Note that in this problem |𝑋 | = 𝑚.

Problem 7.1. X3SAT=3
+

Input: a boolean formula in conjunctive normal form, represented as a set of clauses
𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚}, in which every literal is positive and each variable occurs in exactly
three clauses
Question: Is 𝐶 exactly satisfiable?

The reduction, illustrated in Figure 7.1, is as follows. Suppose 𝐶 is an arbitrary instance of
X3SAT=3

+ . We shall construct an instance (𝑁, 𝐸) of 3DR-AS.

For each variable 𝑥𝑖 ∈ 𝑋 , there are three corresponding literals in three different clauses. For
each such 𝑥𝑖, arbitrarily label each of these literals as the first, second, and third occurrences
of 𝑥𝑖. For each variable 𝑥𝑖 ∈ 𝑋 construct a set of three agents 𝑊𝑖 = {𝑤1

𝑖
, 𝑤2

𝑖
, 𝑤3

𝑖
}, which we

refer to as the 𝑖th variable gadget. Add the edges {𝑤1
𝑖
, 𝑤2

𝑖
}, {𝑤2

𝑖
, 𝑤3

𝑖
}, and {𝑤3

𝑖
, 𝑤1

𝑖
} to 𝐸 .

Next, for each clause 𝑐𝑟 ∈ 𝐶 construct a set of eight agents 𝐷𝑟 = {𝑑1
𝑟 , 𝑑

2
𝑟 , . . . , 𝑑

8
𝑟 }, which

we refer to as the 𝑟 th clause gadget. Add the edges {𝑑1
𝑟 , 𝑑

4
𝑟 }, {𝑑2

𝑟 , 𝑑
5
𝑟 }, {𝑑3

𝑟 , 𝑑
8
𝑟 }, {𝑑4

𝑟 , 𝑑
6
𝑟 },

{𝑑4
𝑟 , 𝑑

7
𝑟 }, {𝑑5

𝑟 , 𝑑
6
𝑟 }, {𝑑5

𝑟 , 𝑑
7
𝑟 }, {𝑑8

𝑟 , 𝑑
6
𝑟 }, and {𝑑8

𝑟 , 𝑑
7
𝑟 }. Next, we shall connect the variable and

clause gadgets. Consider each clause 𝑐𝑟 = {𝑥𝑖, 𝑥𝑗 , 𝑥𝑘 }. If 𝑐𝑟 contains the first occurrence of
𝑥𝑖 then add the edge {𝑑1

𝑟 , 𝑤
1
𝑖
}. Alternatively, if 𝑐𝑟 contains the second occurrence of 𝑥𝑖 then

add the edge {𝑑1
𝑟 , 𝑤

2
𝑖
}. Alternatively, if 𝑐𝑟 contains the third occurrence of 𝑥𝑖 then add the

edge {𝑑1
𝑟 , 𝑤

3
𝑖
}. Similarly, add an edge between 𝑑3

𝑟 and an agent in𝑊𝑗 depending on the index
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of the occurrence of 𝑥𝑗 in the clause 𝑐𝑟 . Finally, add an edge between 𝑑4
𝑟 and an agent in

𝑊𝑘 depending on the index of the occurrence of 𝑥𝑘 in the clause 𝑐𝑟 . We say that the clause
gadget 𝐷𝑟 is adjacent to the variable gadgets𝑊𝑖,𝑊𝑗 , and𝑊𝑘 , and vice-versa.

This completes the construction of (𝑁, 𝐸). Note that each agent in a variable gadget has
degree 3, the agents 𝑑4

𝑟 , 𝑑
5
𝑟 , 𝑑

6
𝑟 , 𝑑

7
𝑟 and 𝑑8

𝑟 for each 1 ≤ 𝑟 ≤ 𝑚 have degree 3, and the agents
𝑑1
𝑟 , 𝑑

2
𝑟 , 𝑑

3
𝑟 for each 1 ≤ 𝑟 ≤ 𝑚 have degree 2. It follows that the maximum degree of (𝑁, 𝐸)

is 3.

It is straightforward to show that this reduction can be performed in polynomial time. To
prove that the reduction is correct we show that the 3DR-AS instance (𝑁, 𝐸) contains an
envy-free matching if and only if the X3SAT=3

+ instance 𝐶 is exactly satisfiable.

We first prove some preliminary results. Recall that for any set of agents 𝑆 ⊆ 𝑁 , 𝜎(𝑆, 𝑁)
denotes the number of triples in 𝑁 that each contain at least one agent in 𝑆.

Lemma 7.2. Suppose 𝑀 is a matching in (𝑁, 𝐸). If 𝑢𝛼𝑖 (𝑀) = 1 and 𝜎(𝑁 (𝛼𝑖), 𝑀) = deg(𝛼𝑖)
then 𝛼𝑖 is not envious in 𝑀 .

Proof. Suppose, to the contrary, that 𝛼𝑖 envies some 𝛼𝑗 ∈ 𝑁 . Then 𝑢𝛼𝑖 (𝑀 (𝛼𝑗 ) \ {𝛼𝑗 }) = 2. It
follows that two agents in 𝑁 (𝛼𝑖) belong to the same triple,𝑀 (𝛼𝑗 ), so𝜎(𝑁 (𝛼𝑖), 𝑀) < deg(𝛼𝑖),
which is a contradiction. □

Lemma 7.3. Suppose 𝑀 is a matching in (𝑁, 𝐸). If 𝑢𝛼𝑖 (𝑀) = 0 then 𝛼𝑖 is envious in 𝑀 .

Proof. Note that by construction of (𝑁, 𝐸), each agent has degree at least one. Suppose
then, for a contradiction, that there exists some 𝛼𝑖 ∈ 𝑁 where 𝑢𝛼𝑖 (𝑀) = 0. There must exist
some 𝛼𝑗 where {𝛼𝑖, 𝛼𝑗 } ∈ 𝐸 , so it follows that 𝛼𝑖 envies both agents in 𝑀 (𝛼𝑗 ), which is a
contradiction. □

We now show that if the X3SAT=3
+ instance 𝐶 is exactly satisfiable then the 3DR-AS instance

(𝑁, 𝐸) contains an envy-free matching.

Lemma 7.4. If 𝐶 is exactly satisfiable then (𝑁, 𝐸) contains an envy-free matching.

Proof. Suppose 𝑓 is an exact model of 𝐶. We shall construct a matching 𝑀 that is envy-
free. For each 𝑥𝑖 in 𝑋 where 𝑓 (𝑥𝑖) is false, add {𝑤1

𝑖
, 𝑤2

𝑖
, 𝑤3

𝑖
} to 𝑀 . Next, consider each

clause 𝑐𝑟 = {𝑥𝑖, 𝑥𝑗 , 𝑥𝑘 } and the corresponding clause gadget 𝐷𝑟 , labelling 𝑖, 𝑗 , 𝑘 such that𝑊𝑖

contains an agent adjacent to 𝑑1
𝑟 , 𝑊𝑗 contains an agent adjacent to 𝑑2

𝑟 , and 𝑊𝑘 contains an
agent adjacent to 𝑑3

𝑟 . There are three cases: 𝑓 (𝑥𝑖) is true while both 𝑓 (𝑥𝑗 ) and 𝑓 (𝑥𝑘 ) are
false, 𝑓 (𝑥𝑗 ) is true while both 𝑓 (𝑥𝑖) and 𝑓 (𝑥𝑘 ) are false, and 𝑓 (𝑥𝑘 ) is true while both 𝑓 (𝑥𝑖)
and 𝑓 (𝑥𝑗 ) are false. In the first case, suppose 𝑐𝑟 contains the 𝑢th occurrence of 𝑥𝑖. Add the
triples {𝑤𝑢

𝑖
, 𝑑1
𝑟 , 𝑑

4
𝑟 }, {𝑑2

𝑟 , 𝑑
5
𝑟 , 𝑑

7
𝑟 }, and {𝑑3

𝑟 , 𝑑
6
𝑟 , 𝑑

8
𝑟 }. The constructions in the second and third
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cases are symmetric: in the second case, suppose 𝑐𝑟 contains the 𝑢th occurrence of 𝑥𝑗 . Add
the triples {𝑤𝑢

𝑗
, 𝑑2
𝑟 , 𝑑

5
𝑟 }, {𝑑1

𝑟 , 𝑑
4
𝑟 , 𝑑

6
𝑟 }, and {𝑑3

𝑟 , 𝑑
7
𝑟 , 𝑑

8
𝑟 }. In the third case, suppose 𝑐𝑟 contains

the 𝑢th occurrence of 𝑥𝑘 . Add the triples {𝑤𝑢
𝑘
, 𝑑3
𝑟 , 𝑑

8
𝑟 }, {𝑑1

𝑟 , 𝑑
4
𝑟 , 𝑑

6
𝑟 }, and {𝑑2

𝑟 , 𝑑
5
𝑟 , 𝑑

7
𝑟 }.

Now for any variable gadget 𝑊𝑖 either 𝜎(𝑊𝑖, 𝑀) = 1 or 𝜎(𝑊𝑖, 𝑀) = 3. For each clause
gadget 𝐷𝑟 , there exist two triples in 𝑀 that each contain three agents in 𝐷𝑟 and one triple in
𝑀 that contains two agents in 𝐷𝑟 and one agent in some variable gadget. There are therefore
three kinds of triple in 𝑀: those triples that contain three agents belonging to the same
variable gadget; those triples that contain one agent in some variable gadget and two agents
in a clause gadget; and those triples that contain three agents in the same clause gadget. We
shall show that no triple of each kind contains an envious agent.

First, consider some triple 𝑡 ∈ 𝑀 where 𝑡 = 𝑊𝑖 for some variable gadget𝑊𝑖. Since each agent
in 𝑡 has utility 2, no agent in 𝑡 is envious.

Second, consider some triple 𝑡 ∈ 𝑀 that contains one agent 𝑤𝑎
𝑖

in some variable gadget 𝑊𝑖

and two agents in some clause gadget 𝐷𝑟 . By the construction of 𝑀 , either the triple contains
{𝑤𝑢

𝑖
, 𝑑1
𝑟 , 𝑑

4
𝑟 }, {𝑤𝑎𝑖 , 𝑑2

𝑟 , 𝑑
5
𝑟 }, or {𝑤𝑎

𝑖
, 𝑑3
𝑟 , 𝑑

8
𝑟 }. Suppose the triple contains {𝑤𝑎

𝑖
, 𝑑1
𝑟 , 𝑑

4
𝑟 }. Since

𝑢𝑑1
𝑟
(𝑀) = 2 clearly 𝑑1

𝑟 is not envious. By construction, 𝜎(𝑊𝑖, 𝑀) = 3 so since 𝑢𝑤𝑎
𝑖
(𝑀) ≥ 1

it follows by Lemma 7.2 that 𝑤𝑢
𝑖
= 𝑎 is also not envious. Similarly, since 𝑀 (𝑑6

𝑟 ) ≠ 𝑀 (𝑑7
𝑟 ) it

follows that 𝜎(𝑁 (𝑑4
𝑟 ), 𝑀) = 3 so, by Lemma 7.2, 𝑑4

𝑟 is also not envious. The proof in the two
remaining cases, in which the triple comprises {𝑤𝑎

𝑖
, 𝑑2
𝑟 , 𝑑

5
𝑟 } or {𝑤𝑎

𝑖
, 𝑑3
𝑟 , 𝑑

8
𝑟 }, is symmetric.

Third, consider some triple 𝑡 ∈ 𝑀 where 𝑡 ⊂ 𝐷𝑟 for some clause gadget 𝐷𝑟 . There are four
cases: either 𝑡 = {𝑑1

𝑟 , 𝑑
4
𝑟 , 𝑑

6
𝑟 }, 𝑡 = {𝑑2

𝑟 , 𝑑
5
𝑟 , 𝑑

7
𝑟 }, 𝑡 = {𝑑3

𝑟 , 𝑑
6
𝑟 , 𝑑

8
𝑟 }, or 𝑡 = {𝑑3

𝑟 , 𝑑
7
𝑟 , 𝑑

8
𝑟 }. Suppose

𝑡 = {𝑑1
𝑟 , 𝑑

4
𝑟 , 𝑑

6
𝑟 }. Since 𝜎(𝑁 (𝑑1

𝑟 ), 𝑀) = 2 and 𝑢𝑑1
𝑟
(𝑀) = 1 by Lemma 7.2 𝑑1

𝑟 is not envious.
Since 𝑀 (𝑑5

𝑟 ) ≠ 𝑀 (𝑑8
𝑟 ), it must be that 𝜎(𝑁 (𝑑6

𝑟 ), 𝑀) = 3 so since 𝑢𝑑6
𝑟
(𝑀) = 1, by Lemma 7.2

𝑑6
𝑟 is not envious. Since 𝑢𝑑4

𝑟
(𝑀) = 2, 𝑑4

𝑟 is also not envious. The proof in the three remaining
cases, in which 𝑡 = {𝑑2

𝑟 , 𝑑
5
𝑟 , 𝑑

7
𝑟 }, 𝑡 = {𝑑3

𝑟 , 𝑑
6
𝑟 , 𝑑

8
𝑟 }, or 𝑡 = {𝑑3

𝑟 , 𝑑
7
𝑟 , 𝑑

8
𝑟 }, is symmetric. It follows

that no agent in 𝑡 is envious. □

We now show that if the 3DR-AS instance (𝑁, 𝐸) contains an envy-free matching then the
X3SAT=3

+ instance 𝐶 is exactly satisfiable.

Lemma 7.5. If (𝑁, 𝐸) contains an envy-free matching 𝑀 then for any variable gadget 𝑊𝑖,
either 𝜎(𝑊𝑖, 𝑀) = 1 or 𝜎(𝑊𝑖, 𝑀) = 3.

Proof. Since |𝑊𝑖 | = 3, clearly 1 ≤ 𝜎(𝑊𝑖, 𝑀) ≤ 3. Suppose for a contradiction that 𝜎(𝑊𝑖,

𝑀) = 2. It must be that some triple in 𝑀 contains exactly two agents in 𝑊𝑖 and some third
agent, which we label 𝛼𝑗 . Label the remaining agent in the variable gadget 𝑤𝑎

𝑖
. Since the

maximum degree of the instance is three, it must be that 𝑢𝑤𝑎
𝑖
(𝑀) ≤ 1. It follows that 𝑤𝑎

𝑖

envies 𝛼𝑗 since 𝑢𝑤𝑎
𝑖
(𝑀 (𝛼𝑗 ) \ {𝛼𝑗 }) = 2. □
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Lemma 7.6. If (𝑁, 𝐸) contains an envy-free matching then 𝐶 is exactly satisfiable.

Proof. Suppose 𝑀 is an envy-free matching in (𝑁, 𝐸). By Lemma 7.5, for any variable
gadget 𝑊𝑖 either 𝜎(𝑊𝑖, 𝑀) = 1 or 𝜎(𝑊𝑖, 𝑀) = 3. Construct a truth assignment 𝑓 in 𝐶 by
setting 𝑓 (𝑥𝑖) to be true if 𝜎(𝑊𝑖, 𝑀) = 3 and false otherwise. Each variable 𝑥𝑖 corresponds
to exactly one variable gadget 𝑊𝑖 so it follows that 𝑓 is a valid truth assignment. By the
construction of (𝑁, 𝐸), each clause 𝑐𝑟 corresponds to exactly one clause gadget 𝐷𝑟 . Each
clause gadget is adjacent to three variable gadgets that correspond to the three variables in
that clause. To show that 𝑓 is an exact model of 𝐶, it is sufficient to show that for each
clause gadget 𝐷𝑟 there exists exactly one variable gadget 𝑊𝑖 such that 𝐷𝑟 is adjacent to 𝑊𝑖

and 𝜎(𝑊𝑖, 𝑀) = 3.

Consider an arbitrary clause gadget 𝐷𝑟 and the corresponding clause 𝑐𝑟 = {𝑥𝑖, 𝑥𝑗 , 𝑥𝑘 },
labelling 𝑖, 𝑗 , 𝑘 such that 𝑑1

𝑟 is adjacent to some agent in 𝑊𝑖, 𝑑2
𝑟 is adjacent to some agent in

𝑊𝑗 and 𝑑3
𝑟 is adjacent to some agent in𝑊𝑘 . We shall show that a contradiction exists if either

𝐷𝑟 is adjacent to two variable gadgets 𝑊𝑖,𝑊𝑗 where 𝜎(𝑊𝑖, 𝑀) = 𝜎(𝑊𝑗 , 𝑀) = 3 or 𝐷𝑟 is
adjacent to three variable gadgets𝑊𝑖,𝑊𝑗 ,𝑊𝑘 where𝜎(𝑊𝑖, 𝑀) = 𝜎(𝑊𝑗 , 𝑀) = 𝜎(𝑊𝑘 , 𝑀) = 1.
The remaining possibility is that 𝐷𝑟 is adjacent to exactly one variable gadget𝑊𝑖 where𝜎(𝑊𝑖,

𝑀) = 3 and exactly two variable gadgets𝑊𝑗 ,𝑊𝑘 where 𝜎(𝑊𝑗 , 𝑀) = 𝜎(𝑊𝑘 , 𝑀) = 1.

First, suppose that 𝐷𝑟 is adjacent to two variable gadgets 𝑊𝑖 and 𝑊𝑗 where 𝜎(𝑊𝑖, 𝑀) = 3
and 𝜎(𝑊𝑗 , 𝑀) = 3. Suppose 𝑐𝑟 contains the 𝑎th occurrence of 𝑥𝑖 and the 𝑏th occurrence of 𝑥𝑗 .
Consider 𝑀 (𝑤𝑎

𝑖
). By Lemma 7.3, no agent has utility 0 in 𝑀 , so either {𝑑1

𝑟 , 𝑑
4
𝑟 } ∈ 𝑀 (𝑤𝑎𝑖 ),

{𝑑2
𝑟 , 𝑑

5
𝑟 } ∈ 𝑀 (𝑤𝑎𝑖 ), or {𝑑3

𝑟 , 𝑑
8
𝑟 } ∈ 𝑀 (𝑤𝑎𝑖 ). Similarly, either {𝑑1

𝑟 , 𝑑
4
𝑟 } ∈ 𝑀 (𝑤𝑏𝑗 ), {𝑑2

𝑟 , 𝑑
5
𝑟 } ∈

𝑀 (𝑤𝑏
𝑗
), or {𝑑3

𝑟 , 𝑑
8
𝑟 } ∈ 𝑀 (𝑤𝑏𝑗 ). By the symmetry of the clause gadget, assume without loss

of generality that {𝑑1
𝑟 , 𝑑

4
𝑟 } ∈ 𝑀 (𝑤𝑎𝑖 ) and {𝑑2

𝑟 , 𝑑
5
𝑟 } ∈ 𝑀 (𝑤𝑏𝑗 ). Consider 𝑑6

𝑟 , 𝑑
7
𝑟 and 𝑑8

𝑟 . Since
no agent has utility 0, the only possibility is that {𝑑6

𝑟 , 𝑑
7
𝑟 , 𝑑

8
𝑟 } ∈ 𝑀 . It then follows that 𝑑4

𝑟

envies 𝑑8
𝑟 , since 𝑢𝑑4

𝑟
(𝑀) = 1 and 𝑢𝑑4

𝑟
({𝑑6

𝑟 , 𝑑
7
𝑟 }) = 2, which is a contradiction.

Second, suppose that 𝐷𝑟 is adjacent to three variable gadgets 𝑊𝑖,𝑊𝑗 ,𝑊𝑘 where 𝜎(𝑊𝑖,

𝑀) = 𝜎(𝑊𝑗 , 𝑀) = 𝜎(𝑊𝑘 , 𝑀) = 1. Since |𝐷𝑟 | = 8, there exists triple in 𝑀 that contains
some agent 𝑑𝑎𝑟 ∈ 𝐷𝑟 as well as some agent 𝛼𝑝 ∉ 𝐷𝑟 . It follows that either 𝑢𝑑𝑎𝑟 (𝑀) = 0 or
𝑢𝛼𝑝 (𝑀) = 0, which contradicts Lemma 7.3. □

We have now shown that the 3DR-AS instance (𝑁, 𝐸) contains an envy-free matching if and
only if the X3SAT=3

+ instance𝐶 is exactly satisfiable. This shows that the reduction is correct.

Theorem 7.2. Deciding if a given instance of 3DR-AS contains an envy-free matching is
NP-complete, even when preferences are binary and symmetric and the underlying graph has
maximum degree 3.
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Proof. It is straightforward to show that this decision problem belongs to NP, since for any
two agents 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 we can test if 𝛼𝑖 envies 𝛼𝑗 in constant time.

We have presented a polynomial-time reduction from X3SAT=3
+ , which is NP-complete [88].

Given an arbitrary instance 𝐶 of X3SAT=3
+ , the reduction constructs an instance (𝑁, 𝐸) of

3DR-AS with binary and symmetric preferences and maximum degree 3. Lemmas 7.4 and 7.6
show that (𝑁, 𝐸) contains an envy-free matching if and only if 𝐶 is exactly satisfiable and
thus that this decision problem is NP-hard. □

7.3 Weakly justified envy-freeness

7.3.1 Symmetric binary preferences with maximum degree two

We begin by defining a class of instances of 3DR-AS,I★, such that membership in the class is
a necessary and sufficient condition for the non-existence of a wj-envy-free matching, among
instances of 3DR-AS with binary and symmetric preferences and maximum degree 2.

Definition 7.1. I★

An instance of 3DR-AS belongs to I★ if and only if the underlying graph comprises a set
of disjoint 4-cycles and a single isolated agent.

We now show, using a sequence of lemmas, that any instance of 3DR-AS that belongs to I★

does not contain a wj-envy-free matching. Consider an instance of 3DR-AS with binary and
symmetric preferences that belongs to I★ and label the underlying graph (�̂�, �̂�). Suppose
�̂� is an arbitrary matching in (�̂�, �̂�).

Lemma 7.7. For any 4-cycle 𝑅 in (�̂�, �̂�), if some triple in �̂� contains three agents in 𝑅 then
�̂� is not wj-envy-free.

Proof. Suppose 𝑅 = (𝑟1, 𝑟2, 𝑟3, 𝑟4). By definition, {𝑟1, 𝑟2}, {𝑟2, 𝑟3}, {𝑟3, 𝑟4}, {𝑟4, 𝑟1} ∈ 𝐸 .
Without loss of generality we need only consider the case when {𝑟1, 𝑟2, 𝑟3} ∈ �̂� . In
this case it must be that 𝑟4 has wj-envy for 𝑟2 since 𝑢𝑟4 (�̂�) = 0 < 2 = 𝑢𝑟4 ({𝑟1, 𝑟3}),
𝑣𝑟1 (𝑟2) = 1 ≤ 1 = 𝑣𝑟1 (𝑟4), and 𝑣𝑟3 (𝑟2) = 1 ≤ 1 = 𝑣𝑟3 (𝑟4). □

Lemma 7.8. For any three distinct connected components𝐶1, 𝐶2, 𝐶3 in (�̂�, �̂�), if some triple
in �̂� contains one agent in each of 𝐶1, 𝐶2, and 𝐶3 then �̂� is not wj-envy-free.

Proof. Suppose some such triple in �̂� exists. By the construction of (�̂�, �̂�), it must be that at
least two of𝐶1,𝐶2, and𝐶3 are 4-cycles. Assume without loss of generality that𝐶1 and𝐶2 are
4-cycles, so label 𝐶1 as 𝑅1 = (𝑟1

1 , 𝑟
2
1 , 𝑟

3
1 , 𝑟

4
1) and 𝐶2 as 𝑅2 = (𝑟1

2 , 𝑟
2
2 , 𝑟

3
2 , 𝑟

4
3). We may further
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assume that this triple is {𝑟1
1 , 𝑟

1
2 , 𝑐

1
3} where 𝑟1

1 ∈ 𝐶1, 𝑟1
2 ∈ 𝐶2, and 𝑐1

3 ∈ 𝐶3. Note that {𝑟1
1 ,

𝑐1
3} ∉ 𝐸 and {𝑟1

2 , 𝑐
1
3} ∉ 𝐸 . Now consider 𝑅1. If 𝑢𝑟2

1
(�̂�) = 0 then 𝑟2

1 has wj-envy for 𝑐1
3 since

𝑢𝑟2
1
(�̂�) = 0 < 1 = 𝑢𝑟2

1
({𝑟1

1 , 𝑟
1
2}), 𝑣𝑟1

1
(𝑐1

3) = 0 ≤ 1 = 𝑣𝑟1
1
(𝑟2

1), and 𝑣𝑟1
2
(𝑐1

3) = 0 ≤ 0 = 𝑣𝑟1
2
(𝑟2

1).
It follows that 𝑢𝑟2

1
(�̂�) ≥ 1 so it must be that �̂� (𝑟2

1) contains 𝑟3
1 . A symmetric argument

shows that 𝑢𝑟4
1
(�̂�) ≥ 1 and thus that �̂� (𝑟2

1) must also contain 𝑟3
1 . Now �̂� (𝑟2

1) = {𝑟
2
1 , 𝑟

3
1 , 𝑟

4
1}

so by Lemma 7.7 it follows that �̂� is not wj-envy-free. □

Lemma 7.9. For any triple 𝑡 ∈ �̂� , if �̂� is wj-envy-free then the agents in 𝑡 belong to exactly
two connected components in (�̂�, �̂�).

Proof. Since 𝑡 is a triple, the agents in 𝑡 belong to either 1, 2, or 3 connected components. If
�̂� is wj-envy-free, then by Lemmas 7.7 and 7.8 the agents in 𝑡 do not belong to either 1 or 3
connected components in (�̂�, �̂�). □

Recall that for any set of agents 𝑆 ⊆ 𝑁 , 𝜎(𝑆, 𝑁) denotes the number of triples in 𝑁 that each
contain at least one agent in 𝑆.

Lemma 7.10. For any 4-cycle 𝑅 in (�̂�, �̂�), if �̂� is wj-envy-free then 𝜎(𝑅, �̂�) ∈ {2, 4}.

Proof. By definition, 2 ≤ 𝜎(𝑅, �̂�) ≤ 4 for any 4-cycle 𝑅 in (�̂�, �̂�). It suffices to show that
if �̂� is wj-envy-free then 𝜎(𝑅, �̂�) ≠ 3 for any such 𝑅. Suppose then, for a contradiction,
that �̂� is wj-envy-free and there exists some 4-cycle 𝑅 in (�̂�, �̂�) where 𝜎(𝑅, �̂�) = 3. Label
𝑅 = (𝑟1, 𝑟2, 𝑟3, 𝑟4). Since 𝜎(𝑅, �̂�) = 3 there must exist one triple in �̂� that contains exactly
two agents in 𝑅 and two triples in �̂� that each contain exactly one agent in 𝑅. Label the
former triple {𝑟𝑖1 , 𝑟𝑖2 , 𝛼𝑗1} and the latter two triples {𝑟𝑖3 , 𝛼𝑗2 , 𝛼𝑗3} and {𝑟𝑖4 , 𝛼𝑗4 , 𝛼𝑗5}, where
𝛼𝑗1 , 𝛼𝑗2 , . . . , 𝛼𝑗5 ∈ 𝑁 \ 𝑅. Since 𝑅 is a 4-cycle it must be that {𝑟𝑖1 , 𝛼𝑗1} ∉ 𝐸 and {𝑟𝑖2 , 𝛼𝑗1} ∉ 𝐸 .
Similarly, {𝑟𝑖3 , 𝛼𝑗2} ∉ 𝐸 and {𝑟𝑖3 , 𝛼𝑗3} ∉ 𝐸 . It must also be that either {𝑟𝑖3 , 𝑟𝑖1} ∈ 𝐸 or {𝑟𝑖3 ,
𝑟𝑖2} ∈ 𝐸 . We can now see that 𝑟𝑖3 has wj-envy for 𝛼𝑗1 since 𝑢𝑟𝑖3 (�̂�) = 0 < 1 ≤ 𝑢𝑟𝑖3 ({𝑟𝑖1 , 𝑟𝑖2}),
𝑣𝑟𝑖1 (𝛼𝑗1) = 0 ≤ 𝑣𝑟𝑖1 (𝑟𝑖3), and 𝑣𝑟𝑖2 (𝛼𝑗1) = 0 ≤ 𝑣𝑟𝑖2 (𝑟𝑖3). □

Lemma 7.11. If an instance of 3DR-AS belongs to I★ then it does not contain a wj-envy-free
matching.

Proof. We considered an arbitrary instance of 3DR-AS that belongs to I★ in which the
preferences are binary and symmetric and its underlying graph (�̂�, �̂�). We also supposed �̂�
is an arbitrary matching of (�̂�, �̂�).

Suppose for a contradiction that �̂� is wj-envy-free. Construct a graph (C, Γ) where C is
the set of connected components in (�̂�, �̂�) and Γ is constructed as follows. For any triple
𝑡 ∈ �̂� , it must be that the agents in 𝑡 belong to exactly two connected components in (�̂�, �̂�)
(Lemma 7.9). For each triple 𝑡 ∈ �̂� identify the two such connected components 𝐶𝑖, 𝐶𝑗 in
(�̂�, �̂�) and add the edge {𝐶𝑖, 𝐶𝑗 } to Γ. By the design of (�̂�, �̂�), there exists exactly one
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connected component in (�̂�, �̂�) that is not a 4-cycle, which contains exactly one agent. Label
this component 𝐶1. Label the remaining connected components in (�̂�, �̂�), which are all
4-cycles, as 𝐶2, 𝐶3, . . . , 𝐶|C|. Since |𝐶1 | = 1 it must be that exactly one triple in �̂� contains
the agent in 𝐶1 so the degree of vertex 𝐶1 in the graph (C, Γ) is 1. Consider the 4-cycles
𝐶2, 𝐶3, . . . , 𝐶|C|. By Lemma 7.10, it must be that 𝜎(𝐶𝑖, �̂�) ∈ {2, 4} for each such 4-cycle
𝐶𝑖 (where 2 ≤ 𝑖 ≤ |C|). It follows that the degree of each vertex 𝐶𝑖 in C where 2 ≤ 𝑖 ≤ |C|
is either 2 or 4. It follows that the sum of the degrees of all vertices in C is odd, which is
impossible. □

Building on Lemma 7.11, we present Algorithm wjPathsCycles, shown in Algorithm 7.5.
Given an instance of 3DR-AS with binary and symmetric preferences and maximum degree
2, this algorithm either returns a wj-envy-free matching 𝑀 or reports that (𝑁, 𝐸) belongs to
I★. With Lemma 7.11, this establishes the fact that I★ is a necessary and sufficient condition
for the non-existence of a wj-envy-free matching in instances of 3DR-AS with with binary
and symmetric preferences and maximum degree 2.

In some respects the approach taken by Algorithm wjPathsCycles is straightforward. For ex-
ample, paths or cycles that contain a number of agents divisible by 3 are broken up into triples
of three successively adjacent agents. Other paths and cycles, except 4-cycles, are broken up
in a similar fashion leaving one or two surplus agents per connected component. More care is
required in the assignment of the agents in 4-cycles to triples. The 12 agents in three 4-cycles
can be assigned to four triples in a relatively straightforward way that ensures no agent is
wj-envied in some resulting matching. The main complexity of Algorithm wjPathsCycles

stems from the case when the number of 4-cycles is not divisible by 3.

Algorithm wjPathsCycles contains calls to five subroutines, which are presented separately in
order to simplify the overall presentation. Four of the subroutines take as input some agents
in (𝑁, 𝐸) and constructs a set of triples containing some or all of the agents in that set. The
final subroutine is a helper function used to shorten the pseudocode of the main algorithm.

The first subroutine is Subroutine nonC4Components, shown in Algorithm 7.1. This subrou-
tine takes as input a set of connected components C in (𝑁, 𝐸), none of which are 4-cycles.
It returns a pair (𝑇, 𝑆) where 𝑇 is a set of triples of agents and 𝑆 is a set of agents. For
each component in C, the corresponding set of triples in 𝑇 is constructed in a straightforward
way by breaking up the component into triples of three successively adjacent agents. This
procedure leaves remaining at most two agents from each component, which are then added
to 𝑆. It follows that the maximum degree of the subgraph induced by 𝑆 in (𝑁, 𝐸) is 1.

Lemma 7.12. Suppose C is some set of connected components in (𝑁, 𝐸) that are not 4-cycles.
Suppose (𝑇, 𝑆) is returned by a call nonC4Components(C) and 𝑀 is a matching in (𝑁, 𝐸).
For any agent 𝑐𝑖 ∈

⋃
𝑇 , if 𝑀 (𝑐𝑖) ∈ 𝑇 then 𝑐𝑖 is not wj-envious in 𝑀 .
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Algorithm 7.1 Subroutine nonC4Components
Input: a set of connected components C that are not 4-cycles
Output: a pair (𝑇, 𝑆) where 𝑇 is a set of triples of agents in 𝐶 and 𝑆 is a set of agents
𝑇 ← ∅
for each connected component 𝐶 in C, labelling 𝐶 = (𝑐1, 𝑐2, . . . , 𝑐 |𝐶 |) do

for 𝑖 = 1 to ⌊|𝐶 |/3⌋ do
𝑇 ← 𝑇 ∪ {{𝑐3𝑖−2, 𝑐3𝑖−1, 𝑐3𝑖}}

end for
end for
𝑆 ← ⋃C \⋃𝑇

return (𝑇, 𝑆)

Proof. Suppose 𝑐𝑖 ∈
⋃
𝑇 belongs to some connected component𝐶 ∈ C, which must not be a

4-cycle. By the construction of 𝑇 in Subroutine nonC4Components, it must be that the triple
in 𝑇 that contains 𝑐𝑖 either contains 𝑐𝑖−1 or 𝑐𝑖+1. Since 𝑀 (𝑐𝑖) ∈ 𝑇 by assumption, it follows
that 𝑢𝑐𝑖 (𝑀) ≥ 1. If 𝑐𝑖 has wj-envy in 𝑀 then it must be that two agents not in 𝑀 (𝑐𝑖) are
adjacent to 𝑐𝑖 in (𝑁, 𝐸). Since 𝑢𝑐𝑖 (𝑀) ≥ 1 it follows that 𝑐𝑖 has degree 3 in (𝑁, 𝐸), which is
a contradiction. □

Lemma 7.13. Suppose C is a set of connected components in (𝑁, 𝐸) that are not 4-cycles.
Suppose (𝑇, 𝑆) is returned by a call nonC4Components(C) and 𝑀 is a matching in (𝑁, 𝐸).
For any agent 𝑐𝑗 ∈

⋃
𝑇 , if 𝑀 (𝑐𝑗 ) ∈ 𝑇 then 𝑐𝑗 is not wj-envied in 𝑀 .

Proof. Suppose for a contradiction that some 𝑐𝑗 ∈
⋃
𝑇 where 𝑀 (𝑐𝑗 ) ∈ 𝑇 is wj-envied in 𝑀 .

Consider the pseudocode of Subroutine nonC4Components. Let 𝑖 = ⌈ 𝑗/3⌉. It must be that
the triple 𝑡 = {𝑐3𝑖−2, 𝑐3𝑖−1, 𝑐3𝑖}, which contains 𝑐𝑗 , was added to 𝑇 in the 𝑖th iteration of the
inner for loop, in the particular iteration of the outer for loop in which component 𝐶 was
identified. Note that {𝑐3𝑖−2, 𝑐3𝑖−1} ∈ 𝐸 and {𝑐3𝑖−1, 𝑐3𝑖} ∈ 𝐸 , by definition. There are now
three possibilities: 𝑗 = 3𝑖 − 2, 𝑗 = 3𝑖 − 1, and 𝑗 = 3𝑖.

Suppose either 𝑗 = 3𝑖 − 2 or 𝑗 = 3𝑖. Since 𝛼𝑘 has wj-envy for 𝑐𝑗 it must be that 𝑣𝑐3𝑖−1 (𝛼𝑘 ) ≥
𝑣𝑐3𝑖−1 (𝑐𝑗 ) = 1. It follows that 𝑣𝑐3𝑖−1 (𝛼𝑘 ) = 𝑣𝑐3𝑖−1 (𝑐3𝑖−2) = 𝑣𝑐3𝑖−1 (𝑐3𝑖) = 1 and thus that 𝑐3𝑖−1

has degree 3 in (𝑁, 𝐸), which is a contradiction.

Suppose then that 𝑗 = 3𝑖 − 1. Since 𝛼𝑘 has wj-envy for 𝑐𝑗 it must be that 𝑣𝑐3𝑖−2 (𝛼𝑘 ) ≥
𝑣𝑐3𝑖−2 (𝑐3𝑖−1) = 1 and 𝑣𝑐3𝑖 (𝛼𝑘 ) ≥ 𝑣𝑐3𝑖 (𝑐3𝑖−1) = 1. It follows that 𝑣𝑐3𝑖−2 (𝛼𝑘 ) = 𝑣𝑐3𝑖 (𝛼𝑘 ) = 1.
The only possibility is that 𝐶 is a 4-cycle comprising (𝑐3𝑖−2, 𝑐3𝑖−1, 𝑐3𝑖, 𝛼𝑘 ), which contradicts
the statement of the lemma. □

Lemma 7.14. Subroutine nonC4Components terminates in 𝑂 ( |⋃C|) time and returns a
pair (𝑇, 𝑆) where

⋃C = 𝑆 ∪⋃
𝑇 .
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Proof. There are |C| iterations of the outer for loop. In each iteration of the outer loop,
some connected component 𝐶 is identified, and the number of iterations of the inner for loop
is 𝑂 ( |𝐶 |). It follows that the total number of iterations of the inner for loop is 𝑂 ( |⋃C|).
In each iteration of the inner loop, a set of three agents is added to a set 𝑇 , which can be
performed in constant time, using an appropriate data structure for 𝑇 . In each iteration of the
outer loop, at most two agents are added to 𝑆, which can also be performed in constant time.
It follows that the running time of Subroutine nonC4Components is 𝑂 ( |⋃C|).
By the pseudocode, it is straightforward to show that

⋃C = 𝑆 ∪⋃
𝑇 . □

The second subroutine is Subroutine oneC4TwoSingles, shown in Algorithm 7.2. This
subroutine takes as input three connected components in (𝑁, 𝐸). The first, 𝑅, is a 4-cycle in
(𝑁, 𝐸). The second and third, 𝑤1 and 𝑤2, are other agents in (𝑁, 𝐸). It returns two triples
in 𝐶, each of which contains two agents in 𝑅 and either 𝑤1 or 𝑤2.

Algorithm 7.2 Subroutine oneC4TwoSingles
Input: a 4-cycle 𝑅 = (𝑟1, 𝑟2, 𝑟3, 𝑟4) and two other agents 𝑤1, 𝑤2
Output: a set of two triples

return {{𝑤1, 𝑟1, 𝑟2}, {𝑤2, 𝑟3, 𝑟4}}

Lemma 7.15. Consider an arbitrary 4-cycle 𝑅 and two other arbitrary agents 𝑤1, 𝑤2 in
(𝑁, 𝐸). Suppose 𝑇 is returned by a call oneC4TwoSingles(𝑅, 𝑤1, 𝑤2). If 𝑀 is a matching in
(𝑁, 𝐸) where 𝑇 ⊆ 𝑀 then no agent in 𝑅 ∪ {𝑤1, 𝑤2} is wj-envied in 𝑀 .

Proof. By the design of Subroutine oneC4TwoSingles, it must be that𝑇 = {{𝑤1, 𝑟1, 𝑟2}, {𝑤2,

𝑟3, 𝑟4}}, for some labelling of 𝑅 where 𝑅 = (𝑟1, 𝑟2, 𝑟3, 𝑟4). Suppose for a contradiction that
some agent 𝛼𝑘 ∈ 𝑁 has wj-envy for some agent in 𝑅∪ {𝑤1, 𝑤2}. By symmetry, we need only
consider two cases: either 𝛼𝑘 has wj-envy for 𝑟1 or 𝛼𝑘 has wj-envy for 𝑤1.

If 𝛼𝑘 has wj-envy for 𝑟1 then consider 𝑟2. Since 𝑟2 ∈ 𝑀 (𝑟1) it must be that 𝑣𝑟2 (𝛼𝑘 ) ≥
𝑣𝑟2 (𝑟1) = 1 and thus that 𝑣𝑟2 (𝛼𝑘 ) = 1. The only possibility is that 𝛼𝑘 = 𝑟3. This is a
contradiction since 𝑢𝑟3 (𝑀) = 1 = 𝑢𝑟3 ({𝑟1, 𝑤2}), so 𝑟3 does not have wj-envy for 𝑟1.

If 𝛼𝑘 has wj-envy for 𝑤1 then it must be that 𝑢𝛼𝑘 ({𝑟1, 𝑟2}) ≥ 1. The only possibility is that
either 𝛼𝑘 = 𝑟3 or 𝛼𝑘 = 𝑟4. Since 𝑢𝑟3 (𝑀) = 1 = 𝑢𝑟3 ({𝑟1, 𝑟2}) and 𝑢𝑟4 (𝑀) = 1 = 𝑢𝑟4 ({𝑟1, 𝑟2})
it follows that neither 𝑟3 nor 𝑟4 have wj-envy for 𝑤1, which is a contradiction. □

Lemma 7.16. Subroutine oneC4TwoSingles terminates in constant time.

Proof. A suitable choice of data structure for 𝑀 allows the asymptotic running time of this
subroutine to be 𝑂 (1). □
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The third subroutine is Subroutine multipleOfThreeC4s, shown in Algorithm 7.3. It takes
as input a set R of 4-cycles in (𝑁, 𝐸), where the number of 4-cycles is 3𝑞 for some integer
𝑞 ≥ 1. It returns 4𝑞 triples, each of which contains two agents in one 4-cycle and one agent
in a different 4-cycle. The agents in each 4-cycle are assigned to either two or four triples.

Algorithm 7.3 Subroutine multipleOfThreeC4s

Input: a set R of 4-cycles in (𝑁, 𝐸), where |R | = 3𝑞, labelled 𝑅1, 𝑅2, . . . , 𝑅3𝑞 where
𝑅𝑖 = (𝑟1

𝑖
, 𝑟2
𝑖
, 𝑟3
𝑖
, 𝑟4
𝑖
)

Output: a set 𝑇 of 4𝑞 triples
𝑇 ← ∅
for 𝑑 = 1 to 𝑞 do
𝑇 ← 𝑇 ∪ {{𝑟1

3𝑑−2, 𝑟
2
3𝑑−2, 𝑟

1
3𝑑−1}, {𝑟

3
3𝑑−2, 𝑟

4
3𝑑−2, 𝑟

4
3𝑑−1},

{𝑟2
3𝑑−1, 𝑟

1
3𝑑 , 𝑟

2
3𝑑}, {𝑟

3
3𝑑−1, 𝑟

3
3𝑑 , 𝑟

4
3𝑑}}

end for
return 𝑇

Lemma 7.17. Consider an arbitrary set R of 4-cycles in (𝑁, 𝐸) where |R | = 3𝑞 for some
𝑞 ≥ 1. Suppose 𝑇 is returned by a call multipleOfThreeC4s(R). If 𝑀 is a matching in (𝑁, 𝐸)
where 𝑇 ⊆ 𝑀 then no agent in

⋃R is wj-envied in 𝑀 .

Proof. Suppose to the contrary that some agent in
⋃R is wj-envied in 𝑀 . By the design of

Subroutine multipleOfThreeC4s it must be that some such agent was labelled 𝑟𝑖
𝑗

for some 𝑖
where 1 ≤ 𝑖 ≤ 4 and 𝑗 where 1 ≤ 𝑗 ≤ 3𝑞. By the pseudocode of this subroutine, it must
be that some triple containing 𝑟 𝑗

𝑖
was added to 𝑇 in the 𝑑′th iteration of the for loop, where

𝑑′ = ⌈ 𝑗/3⌉. We show that no agent in any of the four triples added to 𝑇 in this iteration is
wj-envied.

In fact, by the symmetric construction of the four triples in 𝑇 in this 𝑑′th iteration of the loop,
it suffices to consider only the triple {𝑟1

3𝑑′−2, 𝑟
2
3𝑑′−2, 𝑟

1
3𝑑′−1}.

Suppose first that some agent 𝛼𝑘 ∈ 𝑁 has wj-envy for 𝑟1
3𝑑′−2. Since 𝑣𝑟2

3𝑑′−2
(𝑟1

3𝑑′−2) = 1 it must
be that 𝑣𝑟2

3𝑑′−2
(𝛼𝑘 ) = 1. The only possibility is that 𝛼𝑘 = 𝑟3

3𝑑′−2. This is a contradiction since,
by construction, 𝑀 (𝑟3

3𝑑′−2) = {𝑟
3
3𝑑′−2, 𝑟

4
3𝑑′−2, 𝑟

4
3𝑑′−1} so 𝑢𝑟3

3𝑑′−2
(𝑀) = 1 = 𝑢𝑟3

3𝑑′−2
({𝑟2

3𝑑′−2,

𝑟1
3𝑑′−1}) and thus 𝑟3

3𝑑′−2 does not have wj-envy for 𝑟1
3𝑑′−2. A symmetric argument shows

that if some 𝛼𝑘 has wj-envy for 𝑟2
3𝑑′−2 then it must be that 𝛼𝑘 = 𝑟4

3𝑑′−2, which leads to a
contradiction since 𝑢𝑟4

3𝑑′−2
(𝑀) = 1.

Suppose finally that that some agent𝛼𝑘 ∈ 𝑁 has wj-envy for 𝑟1
3𝑑′−1. It follows that 𝑢𝛼𝑘 ({𝑟1

3𝑑′−2,

𝑟2
3𝑑′−2}) ≥ 1 so either 𝛼𝑘 = 𝑟3

3𝑑′−2 or 𝛼𝑘 = 𝑟4
3𝑑′−2. If 𝛼𝑘 = 𝑟3

3𝑑′−2 then by construction
𝑀 (𝑟3

3𝑑′−2) = {𝑟3
3𝑑′−2, 𝑟

4
3𝑑′−2, 𝑟

4
3𝑑′−1} and thus 𝑢𝑟3

3𝑑′−2
(𝑀) = 1. Since 𝑢𝑟3

3𝑑′−2
(𝑀) = 1 =

𝑢𝑟3
3𝑑′−2
({𝑟1

3𝑑′−2, 𝑟
2
3𝑑′−2}) it follows that 𝑟3

3𝑑′−2 does not in fact wj-envy 𝑟1
3𝑑′−1, which is a

contradiction. A similar argument applies if 𝛼𝑘 = 𝑟4
3𝑑′−2. □
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Lemma 7.18. Subroutine multipleOfThreeC4s terminates in 𝑂 ( |R|) time.

Proof. Consider the for loop in the subroutine. In each iteration, four triples are added to 𝑇 ,
which can be performed in constant time. Since there are exactly 𝑞 iterations it follows that
the running time of this subroutine is 𝑂 ( |R|). □

The fourth subroutine is Subroutine configureSurplusAgents, shown in Algorithm 7.4. It
takes as input a set of agents 𝑆 ⊆ 𝑁 of agents where |𝑆 | is divisible by three and the subgraph
induced by 𝑆 in (𝑁, 𝐸) has maximum degree 1. It returns a set 𝑇 of |𝑆 |/3 triples. In
the context of Algorithm wjPathsCycles, this subroutine will be called with a subset of the
surplus agents in the second element of the tuple returned by Subroutine nonC4Components.
We remark that Subroutine configureSurplusAgents is essentially the same procedure as one
used in Algorithm findStableUW, shown in Algorithm 6.4 in Chapter 6.

Algorithm 7.4 Subroutine configureSurplusAgents

Input: a set 𝑆 ⊆ 𝑁 of agents where |𝑆 | is divisible by three and the maximum degree of the
subgraph induced by 𝑆 in (𝑁, 𝐸) is 1

Output: a set of |𝑆 |/3 triples
𝑃← the set of agents with degree 0 in the subgraph induced by 𝑆 in (𝑁, 𝐸), labelling

𝑃 = {𝑝1, 𝑝2, . . . , 𝑝 |𝑃 |}
Q ← a set containing each pair of agents {𝑞𝑖, 𝑞𝑗 } ⊂ 𝑆 where {𝑞𝑖, 𝑞𝑗 } ∈ 𝐸 , labelling

Q = {𝑄1, 𝑄2, . . . , 𝑄 |Q|}
X ← ∅
if |Q| ≥ |𝑆 |/3 then
X ← {𝑞1, 𝑞2, . . . , 𝑞 |𝑆 |/3}

else
⊲ note that |𝑃 | > 2( |𝑆 |/3 − |𝑄 |) since by definition |𝑃 | = |𝑆 | − 2|Q|
W ← {{𝑝𝑖, 𝑝2𝑖} : 1 ≤ 𝑖 ≤ |𝑆 |/3 − |𝑄 |}
X ← Q ∪W

end if
𝑌 ← 𝑆 \⋃X
⊲ Suppose X = {𝑋1, 𝑋2, . . . , 𝑋|𝑆 |/3} and 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦 |𝑆 |/3}. Note that X is a set

of pairs of agents and 𝑌 is a set of individual agents.
return {𝑋𝑖 ∪ {𝑦𝑖} : 1 ≤ 𝑖 ≤ |𝑆 |/3}

Lemma 7.19. Consider an arbitrary set 𝑆 ⊆ 𝑁 where 3 divides 𝑆 and the maximum
degree of the subgraph induced by 𝑆 in (𝑁, 𝐸) is 1. Suppose 𝑇 is returned by a call
configureSurplusAgents(𝑆). If 𝑀 is a matching in (𝑁, 𝐸) where 𝑇 ⊆ 𝑀 then no agent in 𝑆
has wj-envy in 𝑀 for any other agent in 𝑆.

Proof. From the pseudocode, it is straightforward to show that Subroutine configureSur-

plusAgents is bound to terminate and must return a set 𝑇 of disjoint triples where
⋃
𝑇 = 𝑆.
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Suppose for a contradiction that some agent 𝛼𝑗1 ∈ 𝑆 has wj-envy for an agent 𝛼𝑘1 ∈ 𝑆 where
𝑀 (𝛼𝑗1) = {𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3} and 𝑀 (𝛼𝑘1) = {𝛼𝑘1 , 𝛼𝑘2 , 𝛼𝑘3}. It follows that 𝑢𝛼𝑗1 ({𝛼𝑘2 , 𝛼𝑘3}) ≥ 1.
Without loss of generality assume that 𝑣𝛼𝑗1 (𝛼𝑘2) = 1, or equivalently that {𝛼𝑗1 , 𝛼𝑘2} ∈ 𝐸 . By
the definition of Q, it must be that {𝛼𝑗1 , 𝛼𝑘2} ∈ Q.

Note that if |Q| < |𝑆 |/3 then, by the pseudocode, for every {𝑞𝑎, 𝑞𝑏} ∈ Q it must be that
𝑞𝑎 ∈ 𝑀 (𝑞𝑏). Since {𝛼𝑗1 , 𝛼𝑘2} ∈ Q and 𝛼𝑗1 ∉ 𝑀 (𝛼𝑘2) it follows that |Q| ≥ |𝑆 |/3.

By the pseudocode, for each triple 𝑟 ∈ 𝑇 there exists some pair {𝑞𝑎, 𝑞𝑏} ∈ Q where {𝑞𝑎,
𝑞𝑏} ⊂ 𝑟. SinceQ is agent-disjoint (and we established that {𝛼𝑗1 , 𝛼𝑘2} ∈ Q) the only possibility
is that {𝛼𝑘1 , 𝛼𝑘3} ∈ Q. By the definition of Q it must be that 𝑣𝛼𝑘1

(𝛼𝑘3) = 1. Since 𝛼𝑗1 has
wj-envy for 𝛼𝑘1 it must be that 𝑣𝛼𝑘3

(𝛼𝑗1) ≥ 𝑣𝛼𝑘3
(𝛼𝑘1) so it follows that 𝑣𝛼𝑘3

(𝛼𝑗1) = 1. Now
{𝛼𝑘3 , 𝛼𝑘1} ∈ 𝐸 and {𝛼𝑘3 , 𝛼𝑗1} ∈ 𝐸 so 𝛼𝑘3 has degree 2 in the subgraph induced by 𝑆 in
(𝑁, 𝐸), which is a contradiction. □

Lemma 7.20. Subroutine configureSurplusAgents terminates in 𝑂 ( |𝑆 |) time.

Proof. The sets of pairs X andW, the set of agents 𝑌 , and the returned set of triples 𝑇 can
all be constructed in 𝑂 ( |𝑆 |) time. □

The fifth subroutine is Subroutine pickLowDegree. This subroutine takes as input a set 𝑆 and
integer 𝑘 ≥ 1, such that the maximum degree of the subgraph induced by 𝑆 in (𝑁, 𝐸) is 1. It
returns a set of 𝑘 agents in 𝑆 such that the sum of the degrees of the agents returned in the
subgraph induced by 𝑆 in (𝑁, 𝐸) is minimised. Since the maximum degree of the subgraph
induced by 𝑆 in (𝑁, 𝐸) is 1, this subroutine can be implemented to run in 𝑂 ( |𝑁 |) time.

We now present Algorithm wjPathsCycles, shown in Algorithm 7.5. The overall strategy of
this algorithm is as follows. First Subroutine nonC4Components is used to break up connected
components that are not 4-cycles into a set of triples 𝑇 , in which each triple contains three
successively adjacent agents, and a set 𝑆 of surplus agents. The algorithm then constructs a
set R of all 4-cycles in (𝑁, 𝐸). If |R | is divisible by three, Subroutine multipleOfThreeC4s

is called and all agents in
⋃R, i.e. all agents belonging to 4-cycles, are assigned to triples

in 𝑀 . If |R | is not divisible by three then there are two cases. In the first, the instance is
identified as belonging to I★. In the second, a set of surplus agents in 𝑆 are used to assign
the agents belonging to either one or two 4-cycles to triples in 𝑀 . This set is chosen using
Subroutine pickLowDegree, which (as we shall see later) ensures that no agent in this set will
be wj-envious in 𝑀 . Next, the remaining 4-cycles (the number of which is divisible by three)
are then added to triples in𝑀 using Subroutine multipleOfThreeC4s. The final step (in the case
in which the instance does not belong to I★) is a call to Subroutine configureSurplusAgents

and the assignment of all remaining agents in 𝑆 to triples in 𝑀 .

Proposition 7.1. In Algorithm wjPathsCycles, 𝑆∪⋃
𝑇 is the set of agents that do not belong

to 4-cycles in (𝑁, 𝐸).
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Algorithm 7.5 Algorithm wjPathsCycles

Input: an instance (𝑁, 𝐸) of 3DR-AS with binary and symmetric preferences and maximum
degree 2

Output: either a wj-envy-free matching 𝑀 or “belongs to I★”
𝑀 ← ∅; 𝑇 ← ∅; 𝑆 ← ∅
C ← the set of all connected components in (𝑁, 𝐸) that are not 4-cycles
(𝑇, 𝑆) ← nonC4Components(C)
R ← the set of 4-cycles in (𝑁, 𝐸), labelling R = {𝑅1, 𝑅2, . . . , 𝑅|R |}
𝑙 ← 0
if |R | mod 3 = 2 then

if |𝑆 | ≥ 4 then
{𝑤1, 𝑤2, 𝑤3, 𝑤4} ← pickLowDegree(𝑆, 4)
𝑆 ← 𝑆 \ {𝑤1, 𝑤2, 𝑤3, 𝑤4}
𝑇 ← 𝑇

else if |𝑇 | ≥ 1 then
⊲ note that |𝑆 | = 1 by Proposition 7.2
𝑤1 ← the agent in 𝑆
𝑡 ← some triple in 𝑇
{𝑤2, 𝑤3, 𝑤4} ← 𝑡

𝑆 ← ∅
𝑇 ← 𝑇 \ 𝑡

else
return “(𝑁, 𝐸) belongs to I★”

end if
𝑀 ← 𝑀 ∪ oneC4TwoSingles(𝑅1, 𝑤1, 𝑤2) ∪ oneC4TwoSingles(𝑅2, 𝑤3, 𝑤4)
𝑙 ← 2

else if |R | mod 3 = 1 then
⊲ note that |𝑆 | ≥ 2 by Proposition 7.3
{𝑤1, 𝑤2} ← pickLowDegree(𝑆, 2)
𝑆 ← 𝑆 \ {𝑤1, 𝑤2}
𝑇 ← 𝑇

𝑀 ← 𝑀 ∪ oneC4TwoSingles(𝑅1, 𝑤1, 𝑤2)
𝑙 ← 1

else
⊲ it must be that |R | mod 3 = 0
𝑆 ← 𝑆

𝑇 ← 𝑇

end if
⊲ it must be that 3 divides ( |R| − 𝑙)
R′← {𝑅𝑙+1, 𝑅𝑙+2, . . . , 𝑅|R |}
𝑀 ← 𝑀 ∪multipleOfThreeC4s(R′) ∪ 𝑇 ∪ configureSurplusAgents(𝑆)
return 𝑀
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Proof. This follows immediately by Lemma 7.14. □

We first prove two propositions that show that, in two specific cases, 𝑆 is large enough to
extract the number of agents required.

Proposition 7.2. In Algorithm wjPathsCycles, after initialising R, if |R | mod 3 = 2 and
|𝑆 | < 4 then |𝑆 | = 1.

Proof. Suppose |R | mod 3 = 2 and |𝑆 | < 4 after initialising R. Then there exists some
constant 𝑘1 ≥ 0 such that |R | = 3𝑘1 + 2, so the number of agents in 𝑁 that belong to 4-cycles
is 4|R | = 12𝑘1 + 8. It follows that the number of agents in 𝑁 that do not belong to 4-cycles
is 3𝑛 − 12𝑘1 − 8. Since (3𝑛 − 12𝑘1 − 8) mod 3 = 1 there exists some constant 𝑘2 ≥ 0 such
that the number of agents in 𝑁 that do not belong to 4-cycles is 3𝑘2 + 1. By Proposition 7.1,
𝑆 ∪⋃

𝑇 is the set of agents that do not belong to 4-cycles. Since |𝑆 ∪⋃
𝑇 | = 3𝑘2 + 1, 𝑇 is a

set of disjoint triples, and |𝑆 | < 4, it must be that 𝑘2 = 0 and |𝑆 | = 1. □

Proposition 7.3. In Algorithm wjPathsCycles, after initialising R, if |R | mod 3 = 1 then
|𝑆 | ≥ 2.

Proof. Suppose |R | mod 3 = 1 after initialising R. Then there exists some constant 𝑘1 ≥ 0
such that |R | = 3𝑘1+1, so the number of agents in 𝑁 that belong to 4-cycles is 4|R | = 12𝑘1+4.
It follows that the number of agents in 𝑁 that do not belong to 4-cycles is 3𝑛 − 12𝑘1 − 4.
Since (3𝑛 − 12𝑘1 − 4) mod 3 = 2 there exists some constant 𝑘2 ≥ 0 where the number of
agents in 𝑁 that do not belong to 4-cycles is 3𝑘2 + 2. By Proposition 7.1, 𝑆 ∪⋃

𝑇 is the set
of agents that do not belong to 4-cycles. Since |𝑆 ∪⋃

𝑇 | = 3𝑘2 + 2 and 𝑇 is a set of disjoint
triples it must be that |𝑆 | ≥ 2. □

We now show that Algorithm wjPathsCycles is bound to terminate and has a linear running
time with respect to the number of agents.

Lemma 7.21. Algorithm wjPathsCycles terminates in 𝑂 ( |𝑁 |) time.

Proof. The pseudocode describes the algorithm at a high level. To analyse the worst-case
asymptotic time complexity we describe one possible system of data structures and analyse
the algorithm with respect to the number of basic operations on these data structures. We
begin the analysis at the start of the pseudocode.

The initialisation of 𝑀 , 𝑇 and 𝑆 can be performed in constant time. The set of connected
components C that are not 4-cycles can be identified in𝑂 ( |𝑁 |) time using breadth-first search,
since the maximum degree of (𝑁, 𝐸) is two.

By Lemma 7.14, the call to Subroutine nonC4Components takes 𝑂 ( |⋃C|) = 𝑂 ( |𝑁 |) time.
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Like C, the set of connected components R that are 4-cycles can be constructed in 𝑂 ( |𝑁 |)
time. Each nested branch of the if/else statement involves removing a constant number of
elements from 𝑆, at most two calls to Subroutine oneC4TwoSingles (which has constant
running time by Lemma 7.18), and an assignment to 𝑇 and 𝑆 (which can be performed in
𝑂 ( |𝑁 |) time). It follows that the total running time of the if/else statement is 𝑂 ( |𝑁 |).

By Lemma 7.18, Subroutine multipleOfThreeC4s has 𝑂 ( |R|) = 𝑂 ( |𝑁 |) running time. By
Lemma 7.20, Subroutine configureSurplusAgents has 𝑂 ( |𝑆 |) = 𝑂 ( |𝑁 |) running time. It
follows that the asymptotic worst-case running time of Algorithm wjPathsCycles is 𝑂 ( |𝑁 |).

□

Having established that Algorithm wjPathsCycles is bound to terminate, we prove its cor-
rectness using a sequence of lemmas. First we show that if (𝑁, 𝐸) belongs to I★ then the
algorithm correctly identifies it as such.

Lemma 7.22. If (𝑁, 𝐸) belongs toI★ then Algorithm wjPathsCycles returns “(𝑁, 𝐸) belongs
to I★”.

Proof. Suppose (𝑁, 𝐸) belongs to I★. In the algorithm, the set of connected components
C that are not 4-cycles contains exactly one element 𝐶1 where 𝐶1 contains a single agent 𝑐1

in (𝑁, 𝐸). By Lemma 7.14, Subroutine nonC4Components must return (∅, {𝑐1}) so 𝑇 = ∅
and 𝑆 = {𝑐1}. Consider the outermost if/else statement in the algorithm. By Definition 7.1,
it must be that 3𝑛 = 4|R | + 1 so 4|R | + 1 mod 3 = 0. This implies that 4|R | + 4 mod 3 = 0
so 4( |R| + 1) mod 3 = 0. It follows that that |R | + 1 mod 3 = 0 and thus that |R | mod 3 = 2.
It follows that the algorithm enters the first branch of the outermost if/else statement. Since
|𝑆 | = 1 < 4 and 𝑇 = ∅ the algorithm must then return “(𝑁, 𝐸) belongs to I★”. □

We now consider the case in which (𝑁, 𝐸) does not belong to I★. We first show that in this
case Algorithm wjPathsCycles returns a matching.

Lemma 7.23. If (𝑁, 𝐸) does not belong to I★ then Algorithm wjPathsCycles returns a
matching 𝑀 .

Proof. Consider an arbitrary connected component 𝐶 in (𝑁, 𝐸). We show that each agent in
𝐶 is added to exactly one triple in 𝑀 .

Suppose 𝐶 is not a 4-cycle. By the design of Algorithm wjPathsCycles, exactly one call is
made to Subroutine nonC4 with argument 𝐶. Consider an arbitrary agent 𝑐𝑖 ∈ 𝐶. There
are two cases: either 𝑖 ≤ ⌊|𝐶 |/3⌋ or 𝑖 > ⌊|𝐶 |/3⌋. In the former case, exactly one triple
containing 𝑐𝑖 is added to 𝑇 in Subroutine nonC4, which is then added to 𝑀 in the main
algorithm. In the latter case, 𝑐𝑖 is eventually added to 𝑆. We can see from the pseudocode of
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Subroutine configureSurplusAgents that 𝑐𝑖 is therefore eventually added to exactly one triple
in 𝑀 .

Suppose 𝐶 is a 4-cycle, so by definition 𝐶 ∈ R. If 𝐶 ∈ R′ then each agent in 𝐶 is added to
exactly one triple in 𝑀 in some call to Subroutine multipleOfThreeC4s. If 𝐶 ∉ R′ then some
call to Subroutine oneC4TwoSingles was made with the first argument equal to 𝐶 and the
returned set of two triples was then added to 𝑀 . It follows that each agent in each 4-cycle is
added to exactly one triple in 𝑀 . □

We now show that if (𝑁, 𝐸) does not belong to I★ then the algorithm returns a matching
𝑀 that is wj-envy-free. In the next four lemmas we consider subsets of 𝑁 and show that
in each subset no agent is wj-envied in 𝑀 . The results of these lemmas are then combined
in Lemma 7.28, in which we show that if the algorithm returns a matching 𝑀 then 𝑀 is
wj-envy-free.

Lemma 7.24. If Algorithm wjPathsCycles returns a matching 𝑀 then no agent in
⋃
𝑇 is

wj-envied in 𝑀 .

Proof. Suppose Algorithm wjPathsCycles has returned some matching 𝑀 . Consider an arbi-
trary triple 𝑡 ∈ 𝑇 . By the pseudocode of Algorithm wjPathsCycles there are two possibilities:
either 𝑡 ∈ 𝑇 or 𝑡 was labelled 𝑡. If 𝑡 ∈ 𝑇 then by Lemma 7.13 no agent in 𝑡 is wj-envied in 𝑀 .
Suppose then that 𝑡 was labelled 𝑡. By the pseudocode of Algorithm wjPathsCycles, for any
agent 𝑐𝑖 in 𝑡 it must be that some call was made to Subroutine oneC4TwoSingles in which the
second or third argument was equal to 𝑐𝑖 and then the two triples returned by the subroutine
were added to 𝑀 . By Lemma 7.15, it follows that no agent in 𝑡 is wj-envied in 𝑀 . □

Lemma 7.25. If Algorithm wjPathsCycles returns a matching 𝑀 then no agent in 𝑆 is
wj-envied in 𝑀 .

Proof. Suppose Algorithm wjPathsCycles has returned some matching 𝑀 in which some
agent 𝛼𝑖 ∈ 𝑁 has wj-envy for some 𝑠𝑗1 ∈ 𝑆. By the pseudocode, it must be that 𝑀 (𝑠𝑗1)
contains three agents in 𝑆 so we label 𝑀 (𝑠𝑗1) = {𝑠𝑗1 , 𝑠𝑗2 , 𝑠𝑗3}. Note that since |𝑆 | > 0 it must
be that 𝑇 = 𝑇 .

Since 𝛼𝑖 has wj-envy for 𝑠𝑗1 it must be that 𝑢𝛼𝑖 ({𝑠𝑗2 , 𝑠𝑗3}) ≥ 1 so without loss of generality
assume that {𝛼𝑖, 𝑠𝑗2} ∈ 𝐸 . We now consider two possibilities: 𝛼𝑖 ∈ 𝑆 and 𝛼𝑖 ∉ 𝑆.

First, suppose 𝛼𝑖 ∈ 𝑆. If 𝛼𝑖 ∈ 𝑆 then Lemma 7.19 is contradicted, so it must be that 𝛼𝑖 ∈ 𝑆 \𝑆.
By the pseudocode, 𝛼𝑖 was labelled either 𝑤1, 𝑤2, 𝑤3 or 𝑤4 during algorithm execution and
must belong to some set of agents returned by a call to Subroutine pickLowDegree. Since
{𝛼𝑖, 𝑠𝑗2} ⊂ 𝑆 the degree of 𝛼𝑖 in the subgraph induced by 𝑆 in (𝑁, 𝐸) is 1. By the definition
of Subroutine pickLowDegree it must be that the degree of each agent in 𝑆 is also 1. With this
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in mind, consider the call configureSurplusAgents(𝑆). It must be that |Q| = |𝑆 |/2. It follows
that X ⊂ Q. By the pseudocode of Subroutine configureSurplusAgents, We shall consider
the values of the variables in Subroutine configureRemainingAgents inside this call. It must
be that for each triple in the set of triples returned by this subroutine contains two agents that
are adjacent in (𝑁, 𝐸). If {𝑠𝑗2 , 𝑠𝑗1} ∈ 𝐸 or {𝑠𝑗2 , 𝑠𝑗3} ∈ 𝐸 then the degree of 𝑠𝑗2 in the subgraph
induced by 𝑆 in (𝑁, 𝐸) is 2, which is a contradiction. It remains that {𝑠𝑗1 , 𝑠𝑗3} ∈ 𝐸 . Since 𝑤𝑘
has wj-envy for 𝑠𝑗1 it must be that 𝑣𝑠𝑗3 (𝑠𝑘1) ≥ 𝑣𝑠𝑗3 (𝑠𝑗1) = 1. It follows that 𝑠𝑗3 has degree 2 in
the subgraph induced by 𝑆 in (𝑁, 𝐸), which is a contradiction.

Second, suppose 𝛼𝑖 ∉ 𝑆. Since {𝛼𝑖, 𝑠𝑗2} ∈ 𝐸 , by the pseudocode of Algorithm wjPathsCycles

it must be that 𝛼𝑖 belongs to the same connected component in (𝑁, 𝐸) as 𝑠𝑗2 . Since 𝑠𝑗2 ∈ 𝑆
it must be that the connected component that contains 𝛼𝑖 and 𝑠𝑗2 is not a 4-cycle and belongs
to C. Since 𝛼𝑖 ∉ 𝑆 it must also be that 𝑀 (𝛼𝑖) ∈ 𝑇 . Since 𝑇 = 𝑇 it follows that 𝑀 (𝛼𝑖) ∈ 𝑇 .
Lemma 7.12 now implies that 𝛼𝑖 is not wj-envious in 𝑀 , which is a contradiction. □

Lemma 7.26. If Algorithm wjPathsCycles returns a matching 𝑀 then no agent in 𝑆 is
wj-envied in 𝑀 .

Proof. Suppose Algorithm wjPathsCycles has returned some matching 𝑀 . Consider an
arbitrary agent 𝑠𝑖 ∈ 𝑆. If 𝑠𝑖 ∈ 𝑆 then by Lemma 7.25 it must be that 𝑠𝑖 is not wj-envied in 𝑀 .

Suppose then that 𝑠𝑖 ∉ 𝑆. There are three cases: either |R | mod 3 = 2, |𝑆 | ≥ 4, and 𝑠𝑖 was
labelled 𝑤1, 𝑤2, 𝑤3, or 𝑤4; |R | mod 3 = 2, |𝑇 | ≥ 1, and 𝑠𝑖 was labelled 𝑤1; or |R | mod 3 = 1
and 𝑠𝑖 was labelled either 𝑤1 or 𝑤2. In each of the three cases, some call was then made to
Subroutine oneC4TwoSingles in which the second or third argument was equal to 𝑠𝑖 and then
two triples returned by the subroutine were added to 𝑀 . By Lemma 7.15 it follows that 𝑠𝑖 is
not wj-envied in 𝑀 . □

Lemma 7.27. If Algorithm wjPathsCycles returns a matching 𝑀 then no agent in
⋃R, i.e.

in some 4-cycle in (𝑁, 𝐸), is wj-envied in 𝑀 .

Proof. Consider an arbitrary 𝑅𝑗 ∈ R where 1 ≤ 𝑗 ≤ |R|. We show that no agent in 𝑅𝑗 is
wj-envied in 𝑀 . In this case, let 𝑙′ be the final value assigned to the variable 𝑙 before the
algorithm terminated. There are two possibilities: either 𝑗 > 𝑙′ or 𝑗 ≤ 𝑙′.

Suppose 𝑗 > 𝑙′. It must be that 𝑅𝑗 ∈ R′, by the construction ofR′ in Algorithm wjPathsCycles.
By Lemma 7.17 it follows that no agent in 𝑅𝑗 is wj-envied in 𝑀 .

Suppose 𝑗 ≤ 𝑙′. By the design of Algorithm wjPathsCycles there are two possibilities: either
|R | mod 3 = 2 and 𝑙′ = 2, or |R | mod 3 = 1 and 𝑙′ = 1. In either case, by the pseudocode
of Algorithm wjPathsCycles it must be that some call to Subroutine oneC4TwoSingles was
made with the first argument equal to 𝑅𝑗 and the returned set of two triples was then added
to 𝑀 . It follows by Lemma 7.15 that no agent in 𝑅𝑗 is wj-envied in 𝑀 . □
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Lemma 7.28. If (𝑁, 𝐸) does not belong to I★ then Algorithm wjPathsCycles returns a
matching 𝑀 that is wj-envy-free.

Proof. By definition, C∪R is the set of all connected components in (𝑁, 𝐸). By Lemma 7.23,
Algorithm wjPathsCycles returns a matching 𝑀 in 𝑁 . By Proposition 7.1, the set of agents⋃C = 𝑆 ∪⋃

𝑇 . By Lemma 7.24, no agent in
⋃
𝑇 is wj-envied in 𝑀 . By Lemma 7.26, no

agent in 𝑆 is wj-envied in 𝑀 . By Lemma 7.27, no agent in
⋃R is wj-envied in 𝑀 . □

We now prove our main theorem on wj-envy-free matchings and instances with binary and
symmetric preferences and maximum degree 2.

Theorem 7.3. Consider an instance of 3DR-AS with binary and symmetric preferences and
maximum degree 2. There exists an 𝑂 ( |𝑁 |)-time algorithm that can either find a wj-envy-
free matching in the instance or report that the instance belongs to I★, and thus contains no
wj-envy-free matching.

Proof. Lemma 7.21 shows that Algorithm wjPathsCycles terminates in 𝑂 ( |𝑁 |) time. Lem-
mas 7.22 and 7.28 establish the correctness of this algorithm and show that the algorithm
either returns a wj-envy-free matching or reports that “(𝑁, 𝐸) belongs to I★”. In the latter
case, Lemma 7.11 shows that the supplied instance contains no wj-envy-free matching. □

7.3.2 Symmetric binary preferences with maximum degree three

As before in Theorem 7.2, in this section we consider instances of 3DR-AS with binary
and symmetric preferences and maximum degree 3. Here we show that, in contrast with
Theorem 7.3, deciding if a given instance of 3DR-AS contains a wj-envy-free matching is
NP-complete, even when preferences are binary and symmetric and the maximum degree is
3.

As before in Section 7.2.2, we reduce from X3SAT=3
+ (Problem 7.1). Here we assume that

the number of clauses 𝑚 satisfies 𝑚 = 4𝑙 for some 𝑙 ≥ 1. We can show that the wj-envy-free
existence problem remains NP-complete under this restriction as follows. Construct four
distinct copies of the set of variables 𝑋 (𝐶) and formula 𝐶. Let the constructed formula 𝐶′ be
the union of the four copies of 𝐶. It is straightforward to show that 𝐶′ is exactly satisfiable
if and only if each of the four copies is exactly satisfiable, which is true if and only if the
original formula 𝐶 is exactly satisfiable.

The main difference between this reduction and the reduction for the 3DR-AS envy-free
decision problem is in the second direction, in which we show that 𝐶 is exactly satisfiable if
a wj-envy-free matching 𝑀 exists in the constructed instance (𝑁, 𝐸). Here we associate true
literals with variable gadgets that belong to one triple (rather than three) and false literals
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𝑤1
𝑖

𝑤2
𝑖

𝑤3
𝑖

𝑑1
𝑟

𝑑2
𝑟 𝑑3

𝑟

𝑑4
𝑟

𝑔4𝑖−1

𝑔4𝑖−2 𝑔4𝑖−3

𝑔4𝑖

Figure 7.2: The reduction from X3SAT=3
+ to the problem of deciding if a given instance of

3DR-AS contains an wj-envy-free matching. A variable gadget 𝑊𝑖, clause gadget 𝐷𝑟 , and
garbage collector gadget 𝐺𝑖 are represented as undirected graphs.

with variable gadgets that belong to three triples (rather than one). Another difference is
that we construct a number of garbage collector gadgets. We will show that there is only
one possible configuration of the triples of agents in the garbage collector gadgets in a
wj-envy-free matching.

The reduction, illustrated in Figure 7.2, is as follows. Suppose 𝐶 is an arbitrary instance of
X3SAT=3

+ . We shall construct an instance (𝑁, 𝐸) of 3DR-AS.

For each variable 𝑥𝑖 ∈ 𝑋 (𝐶) construct a set of three agents𝑊𝑖 = {𝑤1
𝑖
, 𝑤2

𝑖
, 𝑤3

𝑖
}, which we refer

to as the 𝑖th variable gadget. Add the edges {𝑤1
𝑖
, 𝑤2

𝑖
}, {𝑤2

𝑖
, 𝑤3

𝑖
}, and {𝑤3

𝑖
, 𝑤1

𝑖
} to 𝐸 . Next, for

each clause 𝑐𝑟 in 𝐶 construct a set of four agents 𝐷𝑟 = {𝑑1
𝑟 , 𝑑

2
𝑟 , 𝑑

3
𝑟 , 𝑑

4
𝑟 }, which we refer to as

the 𝑟 th clause gadget. Add the edges {𝑑1
𝑟 , 𝑑

4
𝑟 }, {𝑑2

𝑟 , 𝑑
4
𝑟 }, and {𝑑3

𝑟 , 𝑑
4
𝑟 }. Recall that 3 divides

𝑚 and 𝑚 = 4𝑙 for some integer 𝑙 > 1. Construct a set of 12𝑙 agents labelled 𝑔1, 𝑔2, . . . , 𝑔12𝑙 .
For any 𝑖 where 1 ≤ 𝑖 ≤ 3𝑙, we shall refer to 𝐺𝑖 = {𝑔4𝑖−3, 𝑔4𝑖−2, 𝑔4𝑖−1, 𝑔4𝑖} as the 𝑖th garbage
collector gadget. For each 1 ≤ 𝑖 ≤ 3𝑙, add the edges {𝑔4𝑖, 𝑔4𝑖−1}, {𝑔4𝑖, 𝑔4𝑖−2}, and {𝑔4𝑖, 𝑔4𝑖−3}
to 𝐸 . Note that each garbage collector gadget 𝐺𝑖 is an isolated claw 𝐾1,3. We shall connect
the variable and clause gadgets are connected in the way as the reduction in Section 7.2.2.
Consider each clause 𝑐𝑟 = {𝑥𝑖, 𝑥𝑗 , 𝑥𝑘 }. If 𝑐𝑟 contains the 𝑗 th occurrence of 𝑥𝑖 then add the
edge {𝑑1

𝑟 , 𝑤
𝑗

𝑖
}. Similarly, add an edge between 𝑑2

𝑟 and an agent in𝑊𝑗 depending on the index
of the occurrence of 𝑥𝑗 in the clause 𝑐𝑟 and an edge between 𝑑3

𝑟 and an agent in𝑊𝑘 depending
on the index of the occurrence of 𝑥𝑘 in the clause 𝑐𝑟 .

This completes the construction of (𝑁, 𝐸). Note that each agent in a variable gadget has
degree 3, 𝑑1

𝑟 , 𝑑
2
𝑟 , 𝑑

3
𝑟 for each 1 ≤ 𝑟 ≤ 𝑚 have degree 2, 𝑑4

𝑟 for each 1 ≤ 𝑟 ≤ 𝑚 has degree 3,
𝑔𝑖 where 1 ≤ 𝑖 ≤ 12𝑙 and 𝑖 is not divisible by four has degree 1, and 𝑔𝑗 where 1 ≤ 𝑗 ≤ 12𝑙
and 𝑗 is divisible by four has degree 3. It follows that the maximum degree of (𝑁, 𝐸) is 3.

It is straightforward to show that this reduction can be performed in polynomial time. To
prove that the reduction is correct we show that the 3DR-AS instance (𝑁, 𝐸) contains a
wj-envy-free matching if and only if the X3SAT=3

+ instance 𝐶 is exactly satisfiable.
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We first show that if the X3SAT=3
+ instance 𝐶 is exactly satisfiable then the 3DR-AS instance

(𝑁, 𝐸) contains a wj-envy-free matching.

Lemma 7.29. If 𝐶 is exactly satisfiable then (𝑁, 𝐸) contains a wj-envy-free matching.

Proof. Suppose 𝑓 is an exact model in 𝐶. We shall construct a matching 𝑀 in (𝑁, 𝐸) that
is wj-envy-free. For each variable 𝑥𝑖 in 𝑋 (𝐶) where 𝑓 (𝑥𝑖) is true, add {𝑤1

𝑖
, 𝑤2

𝑖
, 𝑤3

𝑖
} to 𝑀 .

Next, consider each clause 𝑐𝑟 = {𝑥𝑖, 𝑥𝑗 , 𝑥𝑘 } and the corresponding clause gadget 𝐷𝑟 , labelling
𝑖, 𝑗 , 𝑘 such that 𝑊𝑖 contains an agent adjacent to 𝑑1

𝑟 , 𝑊𝑗 contains an agent adjacent to 𝑑2
𝑟 ,

and 𝑊𝑘 contains an agent adjacent to 𝑑3
𝑟 . There are three cases: 𝑓 (𝑥𝑖) is true while both

𝑓 (𝑥𝑗 ) and 𝑓 (𝑥𝑘 ) are false, 𝑓 (𝑥𝑗 ) is true while both 𝑓 (𝑥𝑖) and 𝑓 (𝑥𝑘 ) are false, and 𝑓 (𝑥𝑘 )
is true while both 𝑓 (𝑥𝑖) and 𝑓 (𝑥𝑗 ) are false. In the first case, suppose 𝑐𝑟 contains the 𝑎th

occurrence of 𝑥𝑗 and the 𝑏th occurrence of 𝑥𝑘 . Add the triples {𝑑1
𝑟 , 𝑑

4
𝑟 , 𝑔3𝑟}, {𝑑2

𝑟 , 𝑤
𝑎
𝑗
, 𝑔3𝑟−1},

and {𝑑3
𝑟 , 𝑤

𝑏
𝑘
, 𝑔3𝑟−2}. The constructions in the second and third cases are symmetric: in the

second case, suppose 𝑐𝑟 contains the 𝑎th occurrence of 𝑥𝑖 and the 𝑏th occurrence of 𝑥𝑘 . Add
the triples {𝑑2

𝑟 , 𝑑
4
𝑟 , 𝑔3𝑟}, {𝑑1

𝑟 , 𝑤
𝑎
𝑖
, 𝑔3𝑟−1}, and {𝑑3

𝑟 , 𝑤
𝑏
𝑘
, 𝑔3𝑟−2}. In the third case, suppose 𝑐𝑟

contains the 𝑎th occurrence of 𝑥𝑖 and the 𝑏th occurrence of 𝑥𝑗 . Add the triples {𝑑3
𝑟 , 𝑑

4
𝑟 , 𝑔3𝑟},

{𝑑1
𝑟 , 𝑤

𝑎
𝑖
, 𝑔3𝑟−1}, and {𝑑2

𝑟 , 𝑤
𝑏
𝑗
, 𝑔3𝑟−2}.

Note that for any triple 𝑡 ∈ 𝑀 , either 𝑡 = 𝑊𝑖 for some variable gadget 𝑊𝑖; 𝑡 = {𝑑4
𝑟 , 𝑑

𝑎
𝑟 , 𝑔3𝑟}

where 1 ≤ 𝑟 ≤ 𝑚 and 1 ≤ 𝑎 ≤ 3; or 𝑡 = {𝑑𝑎𝑟 , 𝑤𝑏𝑖 , 𝑔𝑗 } where 1 ≤ 𝑖, 𝑟 ≤ 𝑚, 1 ≤ 𝑎, 𝑏 ≤ 3 and
1 ≤ 𝑗 ≤ 12𝑙 where 𝑗 is not divisible by three. We shall show that in each case 𝑡 does not
contain an agent with wj-envy.

First, consider some triple 𝑡 ∈ 𝑀 where 𝑡 = 𝑊𝑖 for some variable gadget𝑊𝑖. Since each agent
in 𝑡 has utility 2, no agent in 𝑡 is envious.

Second, consider some triple 𝑡 ∈ 𝑀 where 𝑡 = {𝑑4
𝑟 , 𝑑

𝑎
𝑟 , 𝑔3𝑟}, 1 ≤ 𝑟 ≤ 𝑚, and 1 ≤ 𝑎 ≤ 3.

Since 𝑀 (𝑑1
𝑟 ) ≠ 𝑀 (𝑑2

𝑟 ), 𝑀 (𝑑1
𝑟 ) ≠ 𝑀 (𝑑3

𝑟 ), and 𝑀 (𝑑2
𝑟 ) ≠ 𝑀 (𝑑3

𝑟 ), it must be that 𝜎(𝑁 (𝑑4
𝑟 ),

𝑀) = 3. Since 𝑢𝑑4
𝑟
(𝑀) = 1, it follows by Lemma 7.2 that 𝑑4

𝑟 is not envious. Similarly,
since 𝑀 (𝑑𝑎𝑟 ) = {𝑑4

𝑟 , 𝑑
𝑎
𝑟 , 𝑔3𝑟} it follows that 𝜎(𝑁 (𝑑𝑎𝑟 ), 𝑀) = 2 so since 𝑢𝑑𝑎𝑟 (𝑀) = 1 by

Lemma 7.2 it must be that 𝑑𝑎𝑟 is also not envious. Suppose for a contradiction that 𝑔3𝑟

wj-envies some agent 𝛼𝑗 . It must be that 𝑢𝑔3𝑟 (𝑀 (𝛼𝑗 ) \ {𝛼𝑗 }) ≥ 1 so 𝑀 (𝛼𝑗 ) contains some
𝑔𝑞 where {𝑔3𝑟 , 𝑔𝑞} ∈ 𝐸 . Let 𝑀 (𝛼𝑗 ) = {𝛼𝑗 , 𝑔𝑞, 𝛼𝑘 }. By construction of 𝑀 , it must be that
𝛼𝑗 , 𝛼𝑘 ⊂ 𝐷𝑠 where 1 ≤ 𝑠 ≤ 𝑚 and 𝑢𝛼𝑗 (𝑀) = 𝑢𝛼𝑘 (𝑀) = 1. It follows that {𝛼𝑘 , 𝑔𝑞} ∉ 𝐸 so
𝑢𝛼𝑘 (𝑀) < 𝑢𝛼𝑘 ({𝑔𝑞, 𝑔3𝑟}), which contradicts the supposition that 𝑔3𝑟 wj-envies 𝛼𝑗 .

Third, consider some triple 𝑡 ∈ 𝑀 where 𝑡 = {𝑑𝑎𝑟 , 𝑤𝑏𝑖 , 𝑔𝑗 }, 1 ≤ 𝑖, 𝑟 ≤ 𝑚, 𝑎 ∈ {1, 2, 3}, 𝑏 ∈ {1,
2, 3} and 1 ≤ 𝑗 ≤ 12𝑙 where 𝑗 is not divisible by three. By construction, 𝜎(𝑁 (𝑤𝑏

𝑖
), 𝑀) = 3

so by Lemma 7.2 𝑤𝑏
𝑖

is not envious. Similarly, since 𝑀 (𝑑𝑎𝑟 ) = {𝑑𝑎𝑟 , 𝑤𝑏𝑖 , 𝑔𝑗 } it follows that
𝜎(𝑁 (𝑑𝑎𝑟 ), 𝑀) = 2 so since 𝑢𝑑𝑎𝑟 (𝑀) = 1 by Lemma 7.2 it must be that 𝑑𝑎𝑟 is also not envious.
As before, suppose for a contradiction that 𝑔𝑗 wj-envies some agent 𝛼𝑘 . It must be that
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𝑢𝑔𝑗 (𝑀 (𝛼𝑘 ) \ {𝛼𝑘 }) ≥ 1 so 𝑀 (𝛼𝑘 ) contains some 𝑔𝑞 where {𝑔𝑗 , 𝑔𝑞} ∈ 𝐸 . Let 𝑀 (𝛼𝑘 ) = {𝛼𝑘 ,
𝑔𝑞, 𝛼ℎ}. By construction of 𝑀 , it must be that 𝛼𝑘 , 𝛼ℎ ⊂ 𝐷𝑠 for some 𝑠 where 1 ≤ 𝑠 ≤ 𝑚
and 𝑢𝛼𝑘 (𝑀) = 𝑢𝛼ℎ (𝑀) = 1. It follows that {𝛼ℎ, 𝑔𝑞} ∉ 𝐸 so 𝑢𝛼ℎ (𝑀) < 𝑢𝛼ℎ ({𝑔𝑞, 𝑔𝑗 }), which
contradicts the supposition that 𝑔𝑗 wj-envies 𝛼𝑘 . □

We now show, using a sequence of lemmas, that if the 3DR-AS instance (𝑁, 𝐸) contains an
wj-envy-free matching then the X3SAT=3

+ instance 𝐶 is exactly satisfiable.

Lemma 7.30. If (𝑁, 𝐸) contains an envy-free matching 𝑀 then for any variable gadget 𝑊𝑖,
either 𝜎(𝑊𝑖, 𝑀) = 1 or 𝜎(𝑊𝑖, 𝑀) = 3.

Proof. The proof is similar to Lemma 7.5. If some triple in 𝑀 contains exactly two agents
in𝑊𝑖 then the third agent in𝑊𝑖 is wj-envious. □

Lemma 7.31. If (𝑁, 𝐸) contains an envy-free matching 𝑀 then 𝑢𝑔𝑖 (𝑀) = 0 for any 𝑖 where
1 ≤ 𝑖 ≤ 12𝑙.

Proof. Suppose 𝑀 is a wj-envy-free matching. By construction, the structure of 𝐺𝑖 for each
1 ≤ 𝑖 ≤ 3𝑙 is identical, so to simplify the proof we assume, without loss of generality, that
𝑖 = 1 and 𝐺𝑖 = {𝑔1, 𝑔2, 𝑔3, 𝑔4}. We shall prove that 𝜎(𝐺1, 𝑀) = 4, from which it follows
directly that 𝑢𝑔1 (𝑀) = 𝑢𝑔2 (𝑀) = 𝑢𝑔3 (𝑀) = 𝑢𝑔4 (𝑀) = 0. Since |𝐺1 | = 4 clearly 𝜎(𝐺1,

𝑀) ≤ 4. Suppose for a contradiction that 𝜎(𝐺1, 𝑀) ≤ 3. Then there exists two agents
𝑔𝑎, 𝑔𝑏 ∈ 𝐺1 where 𝑔𝑎 ∈ 𝑀 (𝑔𝑏). Label the third agent in 𝑀 (𝑔𝑏) as 𝛼𝑗 . By symmetry, we need
only consider two cases. In the first case, 𝑎 = 1 and 𝑏 = 4. In the second case, 𝑎 = 1 and
𝑏 = 2. We will show that in both cases it is relatively straightforward to identify an envious
agent, which is a contradiction.

First, suppose 𝑎 = 1 and 𝑏 = 4. Since {𝑔1, 𝑔4} ⊂ 𝑀 (𝑔4), by construction it must be that
either 𝑢𝑔2 (𝑀) = 0 or 𝑢𝑔3 (𝑀) = 0. Assume without loss of generality that 𝑢𝑔2 (𝑀) = 0. It
follows that 𝑔2 wj-envies 𝑔1, since 𝑢𝑔4 ({𝑔1, 𝛼𝑗 }) = 𝑢𝑔4 ({𝑔2, 𝛼𝑗 }) and, by construction of 𝐺1,
𝑢𝛼𝑗 ({𝑔4, 𝑔1}) = 𝑢𝛼𝑗 ({𝑔4, 𝑔2}).

Second, suppose 𝑎 = 1 and 𝑏 = 2. There are two cases: 𝑔4 = 𝛼𝑗 or 𝑔4 ≠ 𝛼𝑗 . If 𝑔4 = 𝛼𝑗 then
𝑔3 wj-envies 𝑔2, since 𝑢𝑔1 ({𝑔2, 𝑔4}) = 𝑢𝑔1 ({𝑔3, 𝑔4}) and 𝑢𝑔4 ({𝑔1, 𝑔2}) = 𝑢𝑔4 ({𝑔2, 𝑔3}). If
𝑔4 ≠ 𝛼𝑗 then 𝑢𝑔4 (𝑀) ≤ 1 so 𝑔4 wj-envies 𝛼𝑗 , since 𝑢𝑔4 ({𝑔1, 𝑔2}) = 2, 𝑢𝑔1 (𝑀) = 𝑢𝑔2 (𝑀) = 0,
and 𝑢𝑔1 ({𝑔2, 𝑔4}) = 𝑢𝑔2 ({𝑔1, 𝑔4}) = 1. □

Lemma 7.32. If (𝑁, 𝐸) contains an envy-free matching 𝑀 then 𝑀 (𝑔𝑖) = {𝑔𝑖, 𝛼𝑎, 𝛼𝑏} where
{𝛼𝑎, 𝛼𝑏} ∈ 𝐸 for any 1 ≤ 𝑖 ≤ 12𝑙.

Proof. Suppose 𝑀 is a wj-envy-free matching. Consider an arbitrary 𝑔𝑖 where 1 ≤ 𝑖 ≤ 12𝑙.
Let 𝑔𝑗 be some agent for which {𝑔𝑖, 𝑔𝑗 } ∈ 𝐸 . By Lemma 7.31, 𝑢𝑔𝑖 (𝑀) = 𝑢𝑔𝑗 (𝑀) = 0. It
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remains to show {𝛼𝑎, 𝛼𝑏} ∈ 𝐸 . Suppose for a contradiction that {𝛼𝑎, 𝛼𝑏} ∉ 𝐸 . It follows
that 𝑢𝛼𝑎 (𝑀) = 𝑢𝛼𝑏 (𝑀) = 𝑢𝑔𝑖 (𝑀) = 0. Now 𝑔𝑗 wj-envies 𝛼𝑎, since 𝑢𝑔𝑗 ({𝑔𝑖, 𝛼𝑏}) = 1,
𝑢𝛼𝑏 ({𝑔𝑗 , 𝑔𝑖}) = 𝑢𝛼𝑏 (𝑀), and 𝑢𝑔𝑖 ({𝑔𝑗 , 𝛼𝑏}) = 1, which is a contradiction. □

Lemma 7.33. Suppose (𝑁, 𝐸) contains a wj-envy-free matching 𝑀 . For each 1 ≤ 𝑟 ≤ 𝑚,
there exist exactly three triples 𝑡1, 𝑡2, 𝑡3 that each contains one agent in 𝐺 and at least one
agent 𝑑𝑤𝑟 ∈ 𝐷𝑟 where 𝑢𝑑𝑤𝑟 (𝑀) = 1.

Proof. By Lemma 7.32, 𝑀 (𝑔𝑖) = {𝑔𝑖, 𝛼𝑎, 𝛼𝑏} where {𝛼𝑎, 𝛼𝑏} ∈ 𝐸 for any 𝑖 where 1 ≤ 𝑖 ≤
12𝑙. It follows that there exists 12𝑙 triples in 𝑀 of the form {𝑔𝑖, 𝛼𝑎, 𝛼𝑏} where {𝛼𝑎, 𝛼𝑏} ∈ 𝐸 .
Let 𝑇 be this set of triples. Since {𝛼𝑎, 𝛼𝑏} ∈ 𝐸 , it must be that 𝑢𝛼𝑎 (𝑀) = 𝑢𝛼𝑏 (𝑀) = 1. It
follows that 𝛼𝑎 ∉ 𝐺 and 𝛼𝑏 ∉ 𝐺. It must be that for any {𝑔𝑖, 𝛼𝑎, 𝛼𝑏} ∈ 𝑇 there exists some
1 ≤ 𝑟 ≤ 𝑚 where either 𝛼𝑎 ∈ 𝐷𝑟 or 𝛼𝑏 ∈ 𝐷𝑟 , for otherwise the only possibility is that
{𝛼𝑎, 𝛼𝑏} ⊂ 𝑊𝑖 for some variable gadget 𝑊𝑖, which would contradict Lemma 7.30. We have
now shown that each 𝑡 ∈ 𝑇 comprises {𝑔𝑖, 𝑑𝑤𝑟 , 𝛼𝑏} where 𝑢𝑑𝑤𝑟 (𝑀) = 𝑢𝛼𝑏 (𝑀) = 1 for some
1 ≤ 𝑟 ≤ 𝑚, 1 ≤ 𝑤 ≤ 4 and 𝛼𝑏 ∈ 𝑁 . It remains to show that for a given 𝑟, there exist exactly
three triples in 𝑇 where each triple contains at least one agent in 𝐷𝑟 .

Suppose for a contradiction that there exists some 1 ≤ 𝑟 ≤ 𝑚 where the number of triples
in 𝑇 that contain an agent in 𝐷𝑟 is not three. Recall that |𝑇 | = 12𝑙, 𝑚 = 4𝑙, and each 𝑡 ∈ 𝑇
contains at least one agent 𝑑𝑤𝑟 where 1 ≤ 𝑟 ≤ 𝑚 and 1 ≤ 𝑤 ≤ 4. A counting argument shows
that there must exist some 1 ≤ 𝑠 ≤ 𝑚 where there are at least four triples 𝑡1, 𝑡2, 𝑡3, 𝑡4 ∈ 𝑇
that each contain at least one agent in 𝐷𝑠. Without loss of generality, it must be that 𝑑1

𝑠 ∈ 𝑡1,
𝑑2
𝑠 ∈ 𝑡2, 𝑑3

𝑠 ∈ 𝑡3, and 𝑑4
𝑠 ∈ 𝑡4. Since we have previously established that 𝑢𝑑4

𝑠
(𝑀) = 1 this leads

to a contradiction since 𝑁 (𝑑4
𝑠 ) = {𝑑1

𝑠 , 𝑑
2
𝑠 , 𝑑

3
𝑠 } but 𝑑1

𝑠 ∉ 𝑡4, 𝑑2
𝑠 ∉ 𝑡4, and 𝑑3

𝑠 ∉ 𝑡4. It follows that
for each 1 ≤ 𝑟 ≤ 𝑚, there exists exactly three triples in 𝑇 where each triple contains at least
one agent in 𝐷𝑟 . □

Lemma 7.34. If (𝑁, 𝐸) contains an envy-free matching then 𝐶 is exactly satisfiable.

Proof. Suppose 𝑀 is a wj-envy-free matching in (𝑁, 𝐸). By Lemma 7.30, for any variable
gadget 𝑊𝑖 either 𝜎(𝑊𝑖, 𝑀) = 1 or 𝜎(𝑊𝑖, 𝑀) = 3. Construct a truth assignment 𝑓 in 𝐶 by
setting 𝑓 (𝑥𝑖) to be true if 𝜎(𝑊𝑖, 𝑀) = 1 and false otherwise. Each variable 𝑥𝑖 corresponds
to exactly one variable gadget 𝑊𝑖 so it follows that 𝑓 is a valid truth assignment. By the
construction of (𝑁, 𝐸), each clause 𝑐𝑟 corresponds to exactly one clause gadget 𝐷𝑟 . Each
clause gadget is adjacent to three variable gadgets that correspond to the three variables in
that clause. To show that 𝑓 is an exact model of 𝐶, it is sufficient to show that for each
clause gadget 𝐷𝑟 there exists exactly one variable gadget 𝑊𝑖 such that 𝐷𝑟 is adjacent to 𝑊𝑖

and 𝜎(𝑊𝑖, 𝑀) = 1.

Consider an arbitrary clause gadget 𝐷𝑟 and the corresponding clause 𝑐𝑟 = {𝑥𝑖, 𝑥𝑗 , 𝑥𝑘 },
labelling 𝑖, 𝑗 , 𝑘 such that 𝑑1

𝑟 is adjacent to some agent 𝑤𝑎1
𝑖
∈ 𝑊𝑖, 𝑑2

𝑟 is adjacent to some
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agent 𝑤𝑎2
𝑗
∈ 𝑊𝑗 and 𝑑3

𝑟 is adjacent to some agent 𝑤𝑎3
𝑘
∈ 𝑊𝑘 . By Lemma 7.33, there

exists exactly three triples 𝑡1, 𝑡2, 𝑡3 such that 𝑡1 contains one agent 𝑔ℎ1 ∈ 𝐺 and at least one
agent 𝑑𝑏1

𝑟 ∈ 𝐷𝑟 where 𝑢
𝑑
𝑏1
𝑟
(𝑀) = 1; 𝑡2 contains one agent 𝑔ℎ2 ∈ 𝐺 and at least one agent

𝑑
𝑏2
𝑟 ∈ 𝐷𝑟 where 𝑢

𝑑
𝑏2
𝑟
(𝑀) = 1; and 𝑡3 contains one agent in 𝑔ℎ3 ∈ 𝐺 and at least one agent

𝑑
𝑏3
𝑟 ∈ 𝐷𝑟 where 𝑢

𝑑
𝑏3
𝑟

(𝑀) = 1. Consider 𝑑4
𝑟 . If 𝑢𝑑4

𝑟
(𝑀) = 0 then {𝑏1, 𝑏2, 𝑏3} = {1, 2, 3}

so without loss of generality we may assume that 𝑡1 = {𝑑1
𝑟 , 𝑤

𝑎1
𝑖
, 𝑔ℎ1}, 𝑡2 = {𝑑2

𝑟 , 𝑤
𝑎2
𝑗
, 𝑔ℎ2},

and 𝑡3 = {𝑑3
𝑟 , 𝑤

𝑎3
𝑘
, 𝑔ℎ3}. In this configuration 𝑑4

𝑟 wj-envies 𝑤𝑎1
𝑖

since 𝑢𝑑4
𝑟
({𝑑1

𝑟 , 𝑔ℎ1}) = 1,
𝑢𝑑1

𝑟
({𝑑4

𝑟 , 𝑔ℎ1}) = 𝑢𝑑1
𝑟
(𝑀), and 𝑢𝑔ℎ1

({𝑑4
𝑟 , 𝑑

1
𝑟 }) = 𝑢𝑔ℎ1

(𝑀) = 0. It follows that 𝑢𝑑4
𝑟
(𝑀) > 0.

Recalling our earlier observation (in this proof) on the contents of 𝑡1, 𝑡2, and 𝑡3 it must be
that 𝑢𝑑4

𝑟
(𝑀) < 2 and so 𝑢𝑑4

𝑟
(𝑀) = 1. There are three possible cases: either 𝑑1

𝑟 ∈ 𝑀 (𝑑4
𝑟 ),

𝑑2
𝑟 ∈ 𝑀 (𝑑4

𝑟 ), or 𝑑3
𝑟 ∈ 𝑀 (𝑑4

𝑟 ). By the symmetry of the clause gadget, we describe only the
case in which 𝑑1

𝑟 ∈ 𝑀 (𝑑4
𝑟 ). Without loss of generality we may assume that 𝑡1 = {𝑑1

𝑟 , 𝑑
4
𝑟 , 𝑔

1
ℎ
}.

Furthermore, we may assume that 𝑡2 = {𝑑2
𝑟 , 𝑤

𝑎2
𝑗
, 𝑔ℎ2} and 𝑡3 = {𝑑3

𝑟 , 𝑤
𝑎3
𝑘
, 𝑔ℎ3}. Consider 𝑤𝑎1

𝑖
.

If 𝑢
𝑤
𝑎1
𝑖
(𝑀) = 0 then 𝑤𝑎1

𝑖
wj-envies 𝑑4

𝑟 , since 𝑢
𝑤
𝑎1
𝑖
({𝑑1

𝑟 , 𝑔ℎ1}) = 1, 𝑢𝑑1
𝑟
({𝑤𝑎1

𝑖
, 𝑔ℎ1}) = 𝑢𝑑1

𝑟
(𝑀),

and 𝑢𝑔ℎ1
({𝑤𝑎1

𝑖
, 𝑑1
𝑟 }) = 𝑢𝑔ℎ1

(𝑀) = 0. It must be that 𝑢
𝑤
𝑎1
𝑖
(𝑀) > 0. If 𝑢

𝑤
𝑎1
𝑖
(𝑀) = 1 then

Lemma 7.30 is contradicted. It follows that 𝑢
𝑤
𝑎1
𝑖
(𝑀) = 2 and thus 𝜎(𝑊𝑖, 𝑀) = 1. Now

consider 𝑤𝑎2
𝑗

and 𝑤𝑎3
𝑘

. Since 𝑢
𝑤
𝑎2
𝑗
(𝑀) = 1 it must be that 𝜎(𝑊𝑗 , 𝑀) = 3. Similarly, since

𝑢
𝑤
𝑎3
𝑘

(𝑀) = 1 it must be that 𝜎(𝑊𝑘 , 𝑀) = 3. To recap, after we supposed that 𝑑1
𝑟 ∈ 𝑀 (𝑑4

𝑟 ),
we showed that 𝜎(𝑊𝑖, 𝑀) = 1 and 𝜎(𝑊𝑗 , 𝑀) = 𝜎(𝑊𝑘 , 𝑀) = 3, as required. The cases in
which 𝑑2

𝑟 ∈ 𝑀 (𝑑4
𝑟 ) or 𝑑3

𝑟 ∈ 𝑀 (𝑑4
𝑟 ) are symmetric. □

We have now shown that the 3DR-AS instance (𝑁, 𝐸) contains a wj-envy-free matching if
and only if the X3SAT=3

+ instance 𝐶 is exactly satisfiable. This shows that the reduction is
correct.

Theorem 7.4. Deciding if a given instance of 3DR-AS contains a wj-envy-free matching is
NP-complete, even when preferences are binary and symmetric and maximum degree is 3.

Proof. It is straightforward to show that this decision problem belongs to NP, since for any
two agents 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 we can test if 𝛼𝑖 wj-envies 𝛼𝑗 in constant time.

We have presented a polynomial-time reduction from X3SAT=3
+ , which is NP-complete [88].

Given an arbitrary instance 𝐶 of X3SAT=3
+ , the reduction constructs an instance (𝑁, 𝐸) of

3DR-AS with binary and symmetric preferences and maximum degree 3. Lemmas 7.29
and 7.34 show that (𝑁, 𝐸) contains a wj-envy-free matching if and only if 𝐶 is exactly
satisfiable and thus that this decision problem is NP-hard. □
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7.4 Justified envy-freeness

7.4.1 Binary preferences

It is straightforward to show that if a matching is stable then it is j-envy-free. A corollary is
that if we are given an instance of 3DR-AS in which preferences are binary and symmetric
then we can find a j-envy-free matching by finding a stable matching, which, as we showed in
Chapter 6, is bound to exist and can be found in polynomial time (Theorem 6.1 in Chapter 6).
We state this corollary as Observation 7.1.

Observation 7.1. Given an instance of 3DR-AS with binary and symmetric preferences, a
j-envy-free matching always exists and can be found in 𝑂 ( |𝑁 |3) time.

We showed in Chapter 6 that when preferences are binary but not necessarily symmetric,
a stable matching need not exist and the associated decision problem is NP-complete. In
contrast, we show that a j-envy-free matching is bound to exist and can be found in polynomial
time.

Theorem 7.5. Given an instance of 3DR-AS with binary preferences, a j-envy-free matching
must exist and can be found in 𝑂 ( |𝑁 |3) time.

Proof. Suppose (𝑁,𝑉) is an instance of 3DR-AS with binary preferences. We describe an
𝑂 ( |𝑁 |3)-time algorithm that can construct a j-envy-free matching 𝑀 in (𝑁,𝑉), as follows.

First, the algorithm constructs from (𝑁,𝑉) another instance (𝑁,𝑉 ′) of 3DR-AS, which has
binary and symmetric preferences, by deleting asymmetric arcs. Next, the algorithm calls
Algorithm findStableUW, shown in Algorithm 6.4, in Chapter 6, on the instance (𝑁,𝑉 ′) to
construct a matching 𝑀 , which is returned.

Since (𝑁,𝑉 ′) can be constructed in 𝑂 ( |𝑁 |2) time, and the worst-case time complexity of
Algorithm findStableUW is 𝑂 ( |𝑁 |3) (by Theorem 6.3 in Chapter 6), the worst-case time
complexity of this algorithm is also 𝑂 ( |𝑁 |3).

It remains to show that 𝑀 is j-envy-free in (𝑁,𝑉). In the proof, which follows, we refer
to the variables and subroutines in Algorithm findStableUW. We shall also write 𝑣 in the
context of the instance (𝑁,𝑉 ′), which has binary preferences, and write v′ in the context of
the instance (𝑁,𝑉), which has binary and symmetric preferences. Similarly, we shall use
𝑢′𝛼𝑖 (𝑀) to denote 𝑢′𝛼𝑖 (𝑆) =

∑
𝛼𝑗∈𝑆\{𝛼𝑖} v

′
𝛼𝑖 (𝛼𝑗 ) for some set of agents 𝑆 ⊆ 𝑁 .

Note that by the design of Algorithm findStableUW, 𝑀 meets the following condition: if
there exists a pair of agents 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 where v′𝛼𝑖 (𝛼𝑗 ) = 1 and 𝑢′𝛼𝑖 (𝑀) = 𝑢

′
𝛼𝑗
(𝑀) = 0 then no

triple contains three agents each with utility 0 in 𝑀 .
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For a contradiction, suppose there exists some 𝛼𝑖1 ∈ 𝑁 where 𝛼𝑖1 has j-envy in 𝑀 for some
𝛼𝑗1 ∈ 𝑁 \ {𝛼𝑖1}.

Let 𝑀 (𝛼𝑖1) = {𝛼𝑖1 , 𝛼𝑖2 , 𝛼𝑖3} and 𝑀 (𝛼𝑗1) = {𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3}. Since 𝛼𝑖1 has j-envy for 𝛼𝑗1 it must
be that 𝑢𝛼𝑖1 ({𝛼𝑗2 , 𝛼𝑗3}) > 0 so either 𝑣𝛼𝑖1 (𝛼𝑗2) = 1, 𝑣𝛼𝑖1 (𝛼𝑗3) = 1, or both. Assume without
loss of generality that 𝑣𝛼𝑖1 (𝛼𝑗2) = 1. Note that it must also be that 𝑢𝛼𝑗2 ({𝛼𝑖1 , 𝛼𝑗3}) > 𝑢𝛼𝑗2 (𝑀)
and 𝑢𝛼𝑗3 ({𝛼𝑖1 , 𝛼𝑗2}) > 𝑢𝛼𝑗3 (𝑀). It follows that 𝑣𝛼𝑗2 (𝛼𝑖1) > 𝑣𝛼𝑗2 (𝛼𝑗1) and 𝑣𝛼𝑗3 (𝛼𝑖1) > 𝑣𝛼𝑗3 (𝛼𝑗1).
Since preferences are binary, it must be that 𝑣𝛼𝑗2 (𝛼𝑖1) = 𝑣𝛼𝑗3 (𝛼𝑖1) = 1 and 𝑣𝛼𝑗2 (𝛼𝑗1) =

𝑣𝛼𝑗3 (𝛼𝑗1) = 0. It follows by the construction of (𝑁,𝑉 ′) that v′𝛼𝑗2 (𝛼𝑗1) = v′𝛼𝑗3 (𝛼𝑗1) = 0. Since
𝑣𝛼𝑖1 (𝛼𝑗2) = 1 and 𝑣𝛼𝑗2 (𝛼𝑖1) = 1 it also follows that v′𝛼𝑖1 (𝛼𝑗2) = 1.

We first claim that {𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3} ∉ 𝑀1. Since 𝑣𝛼𝑗2 (𝛼𝑗1) = 𝑣𝛼𝑗3 (𝛼𝑗1) = 0, it follows that
v′𝛼𝑗2 (𝛼𝑗1) = v′𝛼𝑗3 (𝛼𝑗1) = 0 and thus that 𝑢′𝛼𝑗1 (𝑀1) = 0. Since 𝑀1 is a 𝑃-matching, no triple in
𝑀1 contains an agent with utility 0, which shows that {𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3} ∉ 𝑀1 as required.

Note that it follows that {𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3} ⊆ 𝑈 and thus that 𝑢′𝛼𝑗2 (𝑀1) = 𝑢′𝛼𝑗3 (𝑀1) = 0.

Next, we claim that 𝑢′𝛼𝑖1 (𝑀) = 0. Since 𝛼𝑖1 envies 𝛼𝑗1 in (𝑁,𝑉) it must be that 𝑢𝛼𝑖1 (𝑀) < 2
and thus that 𝑢′𝛼𝑖1 (𝑀) < 2. It remains that 𝑢′𝛼𝑖1 (𝑀) ∈ {0, 1}. Suppose for a contradiction that
𝑢′𝛼𝑖1
(𝑀) = 1 and without loss of generality that v′𝛼𝑖1 (𝛼𝑖2) = 1. It follows that 𝑣𝛼𝑖1 (𝛼𝑖2) = 1

and thus that 𝑢𝛼𝑖1 (𝑀) ≥ 1. In fact, since 𝛼𝑖1 has j-envy for 𝛼𝑗1 it must be that 𝑢𝛼𝑖1 (𝑀) = 1.
Moreover, since 𝑢𝛼𝑖1 ({𝛼𝑗2 , 𝛼𝑗3}) > 𝑢𝛼𝑖1 (𝑀) = 1, it must be that 𝑣𝛼𝑖1 (𝛼𝑗2) = 𝑣𝛼𝑖1 (𝛼𝑗3) = 1.
Recall that since 𝛼𝑖1 has justified envy for 𝛼𝑗1 , it must be that 𝑣𝛼𝑗2 (𝛼𝑗1) = 𝑣𝛼𝑗3 (𝛼𝑗1) = 0 and
𝑣𝛼𝑗2 (𝛼𝑖1) = 𝑣𝛼𝑗3 (𝛼𝑖1) = 1. We have now shown that v′𝛼𝑗2 (𝛼𝑖1) = v′𝛼𝑗3 (𝛼𝑖1) = 1. Recall
our earlier note that 𝑢′𝛼𝑗2 (𝑀1) = 𝑢′𝛼𝑗3

(𝑀1) = 0. Now, the triple {𝛼𝑖1 , 𝛼𝑗2 , 𝛼𝑗3} blocks 𝑀1 in
(𝑁,𝑉 ′), since 𝑢′𝛼𝑖1 (𝑀1) = 1 < 2 = 𝑢′𝛼𝑖1

({𝛼𝑗2 , 𝛼𝑗3}), 𝑢′𝛼𝑗2 (𝑀1) = 0 < 1 ≤ 𝑢′𝛼𝑗2 ({𝛼𝑖1 , 𝛼𝑗3}),
and 𝑢′𝛼𝑗3 (𝑀1) = 0 < 1 ≤ 𝑢′𝛼𝑗3

({𝛼𝑖1 , 𝛼𝑗2}). Since 𝑀1 is a stable matching in (𝑁,𝑉 ′), by
the correctness of Algorithm findStableUW (shown in Theorem 6.3 in Chapter 6) this is a
contradiction. It remains that 𝑢′𝛼𝑖1 (𝑀) = 0, as required.

Note that since 𝑀1 is a 𝑃-matching and 𝑢′𝛼𝑖1 (𝑀) = 0 it must be that 𝛼𝑖1 is unmatched in 𝑀1

so 𝛼𝑖1 ∈ 𝑈.

We finally claim that v′𝛼𝑗2 (𝛼𝑗3) = 0. Suppose for a contradiction that v′𝛼𝑗2 (𝛼𝑗3) = 1. We
established earlier that 𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3 are unmatched in 𝑀1 so 𝑢′𝛼𝑗2 (𝑀1) = 𝑢′𝛼𝑗3

(𝑀1) = 0. We
also established that 𝑢′𝛼𝑖1 (𝑀) = 0 and thus that 𝑢′𝛼𝑖1 (𝑀1) = 0. Recall also that, by assumption,
v′𝛼𝑖1 (𝛼𝑗2) = 1, so since v′𝛼𝑗2 (𝛼𝑗3) = 1 it now follows that {𝛼𝑖1 , 𝛼𝑗2 , 𝛼𝑗3} blocks 𝑀1 in (𝑁,𝑉 ′),
which is a contradiction since 𝑀1 is stable in (𝑁,𝑉 ′). It remains that v′𝛼𝑗2 (𝛼𝑗3) = 0, as
required.

Since v′𝛼𝑗1 (𝛼𝑗3) = 0, v′𝛼𝑗2 (𝛼𝑗1) = 0, and v′𝛼𝑗2 (𝛼𝑗3) = 0 it follows that 𝑢′𝛼𝑗1 (𝑀) = 𝑢′𝛼𝑗2
(𝑀) =

𝑢′𝛼𝑗3
(𝑀) = 0. This violates our stated condition on 𝑀 , since there exists a pair of agents 𝛼𝑖1 ,

𝛼𝑗2 ∈ 𝑁 where v′𝛼𝑖1 (𝛼𝑗2) and 𝑢′𝛼𝑖1 (𝑀) = 𝑢
′
𝛼𝑗2
(𝑀) = 0, but each agent in the triple {𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3}

has utility 0 in 𝑀 , which is a contradiction. □
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7.4.2 Ternary preferences

A natural next step would be to ask if the polynomial-time algorithm described in Theorem 7.5
can be extended to the setting in which preferences are ternary, i.e. 𝑣𝛼𝑖 (𝛼𝑗 ) ∈ {0, 1, 2}. We
show that, assuming P ≠ NP, this is not the case, and the problem of deciding if a given
instance of 3DR-AS contains a j-envy-free matching is NP-complete, even when preferences
are ternary.

We present a polynomial-time reduction from a special case of Directed Triangle Packing
(DTP, Problem 7.2).

Problem 7.2. Directed Triangle Packing (DTP)
Input: a simple directed graph 𝐺 = (𝑊, 𝐴) where 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤3𝑞} for some
integer 𝑞
Question: Can the vertices of 𝐺 be partitioned into 𝑞 disjoint sets 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑞},
each set containing exactly three vertices, such that each 𝑋𝑝 = {𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 } in 𝑋 is a
directed 3-cycle, i.e. the arcs (𝑤𝑖, 𝑤𝑗 ), (𝑤𝑗 , 𝑤𝑘 ), and (𝑤𝑘 , 𝑤𝑖) belong to 𝐴?

We claim that DTP is NP-complete, even when 𝐺 is antisymmetric (i.e. it contains no
bidirectional arcs). As noted by Cechlárová, Fleiner, and Manlove [89], the proof of this
claim can be obtained using a simple modification to the reduction presented by Garey and
Johnson for Partition Into Triangles [43, Theorem 3.7]. It is this restricted variant of DTP,
in which 𝐺 is antisymmetric, that we reduce from to show that deciding if a given instance
of 3DR-AS with ternary (but not necessarily symmetric) preferences contains a j-envy-free
matching.

We shall first describe the reduction from DTP in detail and then provide some intuition with
respect to its design.

The reduction, shown in Figure 7.3, is as follows. Suppose𝐺 = (𝑊, 𝐴) is an arbitrary instance
of DTP. We shall construct an instance (𝑁,𝑉) of 3DR-AS. Unless otherwise specified, assume
that 𝑣𝛼𝑖 (𝛼𝑗 ) = 0 for any 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 . To simplify the description of the valuations in the
reduction, in this section we write 𝑖 ⊕ 𝑦 to denote ((𝑖 + 𝑦 − 1) mod 5) + 1.

First construct a set of five agents 𝐻 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5}. For each 𝑖 where 1 ≤ 𝑖 ≤ 5 let
𝑣ℎ𝑖 (ℎ𝑖⊕1) = 𝑣ℎ𝑖⊕1 (ℎ𝑖) = 1, 𝑣ℎ𝑖 (ℎ𝑖⊕3) = 1, and 𝑣ℎ𝑖 (ℎ𝑖⊕2) = 2. Next, construct a set 𝐿 = {𝑙1,
𝑙2, 𝑙3, 𝑙4} of four agents. Let 𝑣𝑙1 (𝑙2) = 𝑣𝑙2 (𝑙1) = 𝑣𝑙3 (𝑙4) = 𝑣𝑙4 (𝑙3) = 2 and 𝑣𝑙1 (𝑙3) = 𝑣𝑙1 (𝑙4) =
𝑣𝑙2 (𝑙3) = 𝑣𝑙2 (𝑙4) = 𝑣𝑙3 (𝑙1) = 𝑣𝑙3 (𝑙2) = 𝑣𝑙4 (𝑙1) = 𝑣𝑙4 (𝑙2) = 1. Next, construct a set 𝐶 = {𝑐1, 𝑐2,

. . . , 𝑐3𝑞} of 3𝑞 agents. For each 𝑖 where 1 ≤ 𝑖 ≤ 3𝑞 let 𝑣𝑐𝑖 (𝑙3) = 𝑣𝑙3 (𝑐𝑖) = 𝑣𝑙4 (𝑐𝑖) = 1 and
𝑣𝑐𝑖 (𝑙4) = 2. For each 𝑖 and 𝑗 where 1 ≤ 𝑖, 𝑗 ≤ 3𝑞 let 𝑣𝑐𝑖 (𝑐𝑗 ) = 2 if (𝑤𝑖, 𝑤𝑗 ) ∈ 𝐴 otherwise 1.
This completes the construction of (𝑁,𝑉). Note that the structure of the valuations among
the agents in 𝐶 reflects the directed graph 𝐺.
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ℎ4ℎ5
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𝑙1 𝑙3

𝑙2 𝑙4

𝑐1, 𝑐2, . . . , 𝑐3𝑞

Figure 7.3: The reduction from DTP to the problem of deciding if a given instance of 3DR-AS
with ternary preferences contains a j-envy-free matching

We make some remarks on the design of the constructed instance. The design of 𝐻 is derived
from a particular instance that contains no j-envy-free matching. This instance comprises 𝐻
as well as a single isolated agent 𝛼𝑧, where 𝑣𝛼𝑧 (ℎ𝑖) = 𝑣ℎ𝑖 (𝛼𝑧) = 0 for each 𝑖 where 1 ≤ 𝑖 ≤ 5.
In fact, the proof that this instance contains no j-envy-free matching can be directly derived
from the proof of a lemma that appears later in this section (Lemma 7.37).

It is straightforward to show that the reduction runs in polynomial time. To prove that the
reduction is correct we show that the 3DR-AS instance (𝑁,𝑉) contains a j-envy-free matching
if and only if the DTP instance 𝐺 contains a directed triangle packing.

We first show that if the DTP instance𝐺 contains a directed triangle packing then the 3DR-AS
instance (𝑁,𝑉) contains a j-envy-free matching.

Lemma 7.35. If 𝐺 contains a directed triangle packing then (𝑁,𝑉) contains a j-envy-free
matching.

Proof. Suppose 𝐺 contains a directed triangle packing 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑞}. We shall
construct a matching 𝑀 that is j-envy-free. First, add {ℎ1, ℎ2, ℎ3}, {ℎ4, 𝑙1, 𝑙2}, and {ℎ5, 𝑙3, 𝑙4}
to 𝑀 . Next, for each directed 3-cycle 𝑋𝑝 = {𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 } in 𝑋 , add {𝑐𝑖, 𝑐𝑗 , 𝑐𝑘 } to 𝑀 .

Suppose for a contradiction that some agent 𝛼𝑗 exists where 𝛼𝑗 has j-envy for some other
agent 𝛼𝑘1 where 𝑀 (𝛼𝑘1) = {𝛼𝑘1 , 𝛼𝑘2 , 𝛼𝑘3}. Since 𝑁 = 𝐻 ∪ 𝐿 ∪ 𝐶 it must be that either
𝛼𝑘1 ∈ 𝐻, 𝛼𝑘1 ∈ 𝐿, or 𝛼𝑘1 ∈ 𝐶. We show that each case leads to a contradiction. It follows
that no such 𝛼𝑗 exists and thus that 𝑀 is j-envy-free.

• Suppose 𝛼𝑘1 ∈ 𝐻. By the construction of 𝑀 there are two possibilities: either
𝛼𝑘1 ∈ {ℎ1, ℎ2, ℎ3} or 𝛼𝑘1 ∈ {ℎ4, ℎ5}.
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– Suppose firstly that 𝛼𝑘1 ∈ {ℎ4, ℎ5} then by the construction of 𝑀 either {𝛼𝑘2 ,

𝛼𝑘3} = {𝑙1, 𝑙2} or {𝛼𝑘2 , 𝛼𝑘3} = {𝑙3, 𝑙4}. Note that 𝑢𝑙1 (𝑀) = 𝑢𝑙2 (𝑀) = 𝑢𝑙3 (𝑀) =
𝑢𝑙4 (𝑀) = 2. Since 𝑢𝑙1 ({𝑙3, 𝑙4}) = 2 and 𝑢𝑙2 ({𝑙3, 𝑙4}) = 2, neither 𝑙1 nor 𝑙2 has
j-envy for 𝛼𝑘1 , so 𝛼𝑗 ∉ {𝑙1, 𝑙2}. Similarly, since 𝑢𝑙3 ({𝑙1, 𝑙2}) = 2 and 𝑢𝑙4 ({𝑙1,
𝑙2}) = 2 neither 𝑙3 nor 𝑙4 has j-envy for 𝛼𝑘1 , so 𝛼𝑗 ∉ {𝑙3, 𝑙4}. Since 𝑢𝑐𝑖 (𝑀) = 3,
𝑢𝑐𝑖 ({𝑙1, 𝑙2}) = 0, and 𝑢𝑐𝑖 ({𝑙1, 𝑙2}) = 2 for any 𝑖 where 1 ≤ 𝑖 ≤ 3𝑞, it must be
no agent in 𝐶 has j-envy for 𝛼𝑘1 , so 𝛼𝑗 ∉ 𝐶. It remains that 𝛼𝑗 ∈ 𝐻. Since this
implies 𝑣𝑙1 (𝛼𝑗 ) = 𝑣𝑙2 (𝛼𝑗 ) = 𝑣𝑙3 (𝛼𝑗 ) = 𝑣𝑙4 (𝛼𝑗 ) = 0 it follows that 𝛼𝑗 does not have
j-envy for 𝛼𝑘1 and thus that 𝛼𝑘1 ∉ {ℎ4, ℎ5}.

– Suppose then that 𝛼𝑘1 ∈ {ℎ1, ℎ2, ℎ3}. Since 𝛼𝑗 has j-envy for 𝛼𝑘1 it must be that
𝑣𝛼𝑗 (𝛼𝑘2) ≥ 1 so it follows that 𝛼𝑗 ∈ {ℎ4, ℎ5}. If 𝛼𝑘1 = ℎ1 and 𝛼𝑗 = ℎ4 then
we reach a contradiction since ℎ4 has j-envy for ℎ1 but 𝑣ℎ3 (ℎ1) = 1 = 𝑣ℎ3 (ℎ4).
Similarly, if 𝛼𝑘1 = ℎ1 and 𝛼𝑗 = ℎ5 then we reach a contradiction since 𝑣ℎ2 (ℎ1) =
1 = 𝑣ℎ2 (ℎ5). If 𝛼𝑘1 = ℎ2 or 𝛼𝑘1 = ℎ3 then we also reach a contradiction since
𝑣ℎ1 (ℎ4) = 𝑣ℎ1 (ℎ5) = 1 = 𝑣ℎ1 (ℎ2) < 2 = 𝑣ℎ1 (ℎ3).

• Suppose 𝛼𝑘1 ∈ 𝐶. By the construction of 𝑀 it must be that 𝛼𝑘2 ∈ 𝐶 and 𝛼𝑘3 ∈ 𝐶
so we label 𝛼𝑘1 = 𝑐𝑖1 , 𝛼𝑘2 = 𝑐𝑖2 , and 𝛼𝑘3 = 𝑐𝑖3 . By the construction of (𝑁,𝑉) in the
reduction it follows that 𝑣𝑐𝑖2 (𝑐𝑖1) ≥ 1 and 𝑣𝑐𝑖3 (𝑐𝑖1) ≥ 1. Since 𝛼𝑗 has j-envy for 𝑐𝑖1
it follows then that 𝑣𝑐𝑖2 (𝛼𝑗 ) = 2 and 𝑣𝑐𝑖3 (𝛼𝑗 ) = 2. By the construction of the instance
there are two possibilities: either 𝛼𝑗 = 𝑙4 or 𝛼𝑗 ∈ 𝐶. If 𝛼𝑗 = 𝑙4 then 𝑢𝑙4 ({𝑐𝑖2 , 𝑐𝑖3}) = 2
which is a contradiction since by assumption 𝑙4 has j-envy for 𝑐𝑖1 but 𝑢𝑙4 (𝑀) = 2. If
𝛼𝑗 ∈ 𝐶 then label 𝛼𝑗 = 𝑐𝑖4 . Since 𝑣𝑐𝑖2 (𝑐𝑖4) = 2 and 𝑣𝑐𝑖3 (𝑐𝑖4) = 2, by the construction
of 𝐶 it must be that (𝑤𝑖2 , 𝑤𝑖4) ∈ 𝐴 and (𝑤𝑖3 , 𝑤𝑖4) ∈ 𝐴, where the vertices 𝑤𝑖2 , 𝑤𝑖3 , 𝑤𝑖4
are the vertices in𝑊 that correspond respectively to the agents 𝑐𝑖2 , 𝑐𝑖3 , 𝑐𝑖4 in 𝐶. Since
𝐺 is antisymmetric, it follows that (𝑤𝑖4 , 𝑤𝑖2) ∉ 𝐴 and (𝑤𝑖4 , 𝑤𝑖3) ∉ 𝐴 so it must be that
𝑣𝑐𝑖4 (𝑐𝑖2) = 𝑣𝑐𝑖4 (𝑐𝑖3) = 1. This is also a contradiction since by assumption 𝑐𝑖4 has j-envy
for 𝑐𝑖1 but 𝑢𝑐𝑖4 ({𝑐𝑖2 , 𝑐𝑖3}) = 2 and by the construction of 𝑀 it must be that 𝑢𝑐𝑖4 (𝑀) = 3.

• Suppose 𝛼𝑘1 ∈ 𝐿. It must be that 𝛼𝑘1 = 𝑙𝑖1 , 𝛼𝑘2 = 𝑙𝑖2 , and 𝛼𝑘3 = ℎ𝑖3 , for some 𝑖1, 𝑖2
where 1 ≤ 𝑖1, 𝑖2 ≤ 4 and 𝑖3 ∈ {4, 5}. If 𝛼𝑗 ∈ 𝐻 then it must be that 𝑣𝑙𝑖2 (𝛼𝑗 ) = 0
which contradicts the supposition that 𝛼𝑗 has j-envy for 𝑙𝑖1 . Otherwise, if 𝛼𝑗 ∉ 𝐻 then
𝑣ℎ𝑖3 (𝛼𝑗 ) = 0, which also contradicts the supposition that 𝛼𝑗 has j-envy for 𝑙𝑖1 .

□

We now show that if the 3DR-AS instance (𝑁,𝑉) contains a j-envy-free matching then the
DTP instance 𝐺 contains a directed triangle packing.

Lemma 7.36. If (𝑁,𝑉) contains a j-envy-free matching 𝑀 then 𝜎(𝐻, 𝑀) ≥ 3.
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Proof. Since |𝐻 | = 5 it must be that 𝜎(𝐻, 𝑀) ≥ 2. Suppose for a contradiction that 𝜎(𝐻,
𝑀) = 2. It must be that one triple in 𝑀 contains three agents in 𝐻 and one triple in 𝑀

contains two agents in 𝐻. Suppose the former triple is {ℎ𝑖1 , ℎ𝑖2 , ℎ𝑖3} and the latter triple is
{ℎ𝑖4 , ℎ𝑖5 , 𝛼𝑗 }, where 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖5 ≤ 5 and 𝛼𝑗 ∈ 𝑁 \ 𝐻. There are five symmetries in 𝐻
and

(5
2
)
= 10 possible assignments of {ℎ𝑖4 , ℎ𝑖5} to two agents in 𝐻, so we need only consider

the two assignments 𝑖4 = 1, 𝑖5 = 2 and 𝑖4 = 1, 𝑖5 = 3, which are not symmetric. If 𝑖4 = 1
and 𝑖5 = 2 then it remains that {𝑖1, 𝑖2, 𝑖3} = {3, 4, 5}. In this case, ℎ5 has j-envy for 𝛼𝑗 since
𝑢ℎ5 (𝑀) = 2 < 3 ≤ 𝑢ℎ5 ({ℎ1, ℎ2}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ1 (ℎ5), and 𝑣ℎ2 (𝛼𝑗 ) = 0 < 1 =

𝑣ℎ2 (ℎ5). If 𝑖4 = 1 and 𝑖5 = 3 then it remains that {𝑖1, 𝑖2, 𝑖3} = {2, 4, 5}. In this case, ℎ4

has j-envy for 𝛼𝑗 since 𝑢ℎ4 (𝑀) = 2 < 3 ≤ 𝑢ℎ4 ({ℎ1, ℎ3}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ1 (ℎ4), and
𝑣ℎ3 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ3 (ℎ4). □

Lemma 7.37. If (𝑁,𝑉) contains a j-envy-free matching 𝑀 then at least two triples in 𝑀
each contain exactly one agent in 𝐻.

Proof. By Lemma 7.36, 𝜎(𝐻, 𝑀) ≥ 3. If, contrary to the lemma statement, at most one
triple in 𝑀 contains exactly one agent in 𝐻 then it must be that two triples in 𝑀 each
contain two agents in 𝐻 and one triple in 𝑀 contains exactly one agent in 𝐻. Suppose
one of the two former triples is {ℎ𝑖1 , ℎ𝑖2 , 𝛼𝑗1} and the latter triple is {ℎ𝑖3 , 𝛼𝑗2 , 𝛼𝑗3}, where
1 ≤ 𝑖1, 𝑖2, 𝑖3 ≤ 5 and 𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3 ∈ 𝑁 \ 𝐻. By the construction of the instance it must
be that 𝑣ℎ𝑖1 (𝛼𝑗1) = 𝑣ℎ𝑖2 (𝛼𝑗1) = 0, 𝑣ℎ𝑖1 (ℎ𝑖3) ≥ 1 and 𝑣ℎ𝑖2 (ℎ𝑖3) ≥ 1. It follows that ℎ𝑖3 has
j-envy for 𝛼𝑗1 since 𝑢ℎ𝑖3 (𝑀) = 0 < 2 ≤ 𝑢ℎ𝑖3 ({ℎ𝑖1 , ℎ𝑖2}), 𝑣ℎ𝑖1 (𝛼𝑗 ) = 0 < 1 ≤ 𝑣ℎ𝑖1 (ℎ𝑖3), and
𝑣ℎ𝑖2 (𝛼𝑗 ) = 0 < 1 ≤ 𝑣ℎ𝑖2 (ℎ𝑖3). This contradicts the supposition that 𝑀 is j-envy-free. □

We have shown in Lemma 7.37 that if (𝑁,𝑉) contains a j-envy-free matching 𝑀 then at least
two triples in 𝑀 each contain exactly one agent in 𝐻. Suppose 𝑡𝛽, 𝑡𝛾 ∈ 𝑀 are two such triples
and 𝑡𝛽 = {ℎ𝑎1 , 𝛼𝑏1 , 𝛼𝑏2} and 𝑡𝛾 = {ℎ𝑎2 , 𝛼𝑏3 , 𝛼𝑏4}.

Lemma 7.38. If (𝑁,𝑉) contains a j-envy-free matching then {𝛼𝑏1 , 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4} = 𝐿.

Proof. Suppose for a contradiction that {𝛼𝑏1 , 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4} ≠ 𝐿.

By definition, {𝛼𝑏1 , 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4} ∩ 𝐻 = ∅ and {𝛼𝑏1 , 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4} ≠ 𝐿 it must be that at
least one agent in {𝛼𝑏1 , 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4} belongs to 𝐶. Assume without loss of generality that
𝛼𝑏1 ∈ 𝐶.

Note that by construction of the instance, the valuation of any agent not in 𝐻 for any other
agent not in 𝐻 is at least 1.

Since 𝛼𝑏2 ∉ 𝐻, it must be that 𝑢𝛼𝑏2
(𝑀) = 𝑣𝛼𝑏2

(𝛼𝑏1). By the design of the instance, since
𝛼𝑏2 ∉ 𝐻 and 𝛼𝑏1 ∉ 𝐻 it must be that 𝑣𝛼𝑏2

(𝛼𝑏1) ∈ {1, 2}. We consider each possibility of
𝑢𝛼𝑏2
(𝑀) = 𝑣𝛼𝑏2

(𝛼𝑏1).
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Firstly, suppose 𝑢𝛼𝑏2
(𝑀) = 1. As noted earlier in this proof, since 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4 ∈ 𝑁 \ 𝐻 it

must be that 𝑣𝛼𝑏2
(𝛼𝑏3) ≥ 1 and 𝑣𝛼𝑏2

(𝛼𝑏4) ≥ 1. It follows that 𝛼𝑏2 has j-envy for ℎ𝑎2 , since
𝑢𝛼𝑏2
(𝑀) = 1 < 2 ≤ 𝑢𝛼𝑏2

({𝛼𝑏3 , 𝛼𝑏4}), 𝑣𝛼𝑏3
(ℎ𝑎2) = 0 < 1 ≤ 𝑣𝛼𝑏3

(𝛼𝑏2), and 𝑣𝛼𝑏4
(ℎ𝑎2) = 0 <

1 ≤ 𝑣𝛼𝑏4
(𝛼𝑏2). This contradicts the supposition that 𝑀 is j-envy-free.

Suppose then that 𝑢𝛼𝑏2
(𝑀) = 2, so 𝑣𝛼𝑏2

(𝛼𝑏1) = 2. Since 𝛼𝑏1 ∈ 𝐶 by assumption, by the design
of the instance it must be 𝛼𝑏2 ∈ 𝐶. For the remainder of this lemma only, label 𝛼𝑏1 = 𝑐𝑖1 and
𝛼𝑏2 = 𝑐𝑖2 . Since 𝑣𝑐𝑖2 (𝑐𝑖1) = 2 it follows that (𝑤𝑖2 , 𝑤𝑖1) ∈ 𝐴. Since 𝐺 is antisymmetric it must
be that (𝑤𝑖1 , 𝑤𝑖2) ∉ 𝐴 and thus that 𝑣𝑐𝑖1 (𝑐𝑖2) = 1. Since 𝑀 (𝑐𝑖1) = {𝑐𝑖1 , 𝑐𝑖2 , ℎ𝑎1} it follows that
𝑢𝑐𝑖1 (𝑀) = 𝑣𝑐𝑖1 (𝑐𝑖2) = 1. Now 𝛼𝑏1 has j-envy for ℎ𝑎2 , since 𝑢𝛼𝑏1

(𝑀) = 1 < 2 ≤ 𝑢𝛼𝑏1
({𝛼𝑏3 ,

𝛼𝑏4}), 𝑣𝛼𝑏3
(ℎ𝑎2) = 0 < 1 ≤ 𝑣𝛼𝑏3

(𝛼𝑏1), and 𝑣𝛼𝑏4
(ℎ𝑎2) = 0 < 1 ≤ 𝑣𝛼𝑏4

(𝛼𝑏1). This contradicts
the supposition that 𝑀 is j-envy-free. □

Lemma 7.39. If (𝑁,𝑉) contains a j-envy-free matching then {{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1,
𝑙2}, {𝑙3, 𝑙4}}.

Proof. By Lemma 7.38, {𝛼𝑏1 , 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4} = 𝐿. There are now three possibilities: first that
{{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1, 𝑙3}, {𝑙2, 𝑙4}}, second that {{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1,
𝑙4}, {𝑙2, 𝑙3}}, and third that {{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1, 𝑙2}, {𝑙3, 𝑙4}}.

First suppose {{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1, 𝑙3}, {𝑙2, 𝑙4}}. Without loss of generality assume
that 𝛼𝑏1 = 𝑙1. Now 𝑙1 has j-envy for ℎ𝑎2 since 𝑢𝑙1 ({ℎ𝑎1 , 𝑙3}) = 1 < 3 = 𝑢𝑙1 ({𝑙2, 𝑙4}),
𝑣𝑙2 (ℎ𝑎2) = 0 < 2 = 𝑣𝑙2 (𝑙1), and 𝑣𝑙4 (ℎ𝑎2) = 0 < 1 = 𝑣𝑙4 (𝑙1).

Second suppose {{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1, 𝑙4}, {𝑙2, 𝑙3}}. Without loss of generality
assume that 𝛼𝑏1 = 𝑙1. As before, 𝑙1 has j-envy for ℎ𝑎2 since 𝑢𝑙1 ({ℎ𝑎1 , 𝑙4}) = 1 < 3 = 𝑢𝑙1 ({𝑙2,
𝑙3}), 𝑣𝑙2 (ℎ𝑎2) = 0 < 2 = 𝑣𝑙2 (𝑙1), and 𝑣𝑙3 (ℎ𝑎2) = 0 < 1 = 𝑣𝑙3 (𝑙1).

It remains that {{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1, 𝑙2}, {𝑙3, 𝑙4}}. □

By Lemma 7.39, either {𝛼𝑏1 , 𝛼𝑏2} = {𝑙1, 𝑙2} or {𝛼𝑏1 , 𝛼𝑏2} = {𝑙3, 𝑙4}. Without loss of
generality assume that {𝛼𝑏1 , 𝛼𝑏2} = {𝑙3, 𝑙4}.

Lemma 7.40. If (𝑁,𝑉) contains a j-envy-free matching 𝑀 then 𝑢𝑐𝑖 (𝑀) ≥ 3 for each 𝑖 where
1 ≤ 𝑖 ≤ 3𝑞.

Proof. Suppose to the contrary that some 1 ≤ 𝑖 ≤ 3𝑞 exists where 𝑢𝑐𝑖 (𝑀) < 3. Then 𝑐𝑖
has j-envy for ℎ𝑎1 since 𝑢𝑐𝑖 (𝑀) ≤ 2 < 3 = 𝑢𝑐𝑖 ({𝑙3, 𝑙4}), 𝑣𝑙3 (ℎ𝑎1) = 0 < 1 = 𝑣𝑙3 (𝑐𝑖), and
𝑣𝑙4 (ℎ𝑎1) = 0 < 1 = 𝑣𝑙4 (𝑐𝑖). This contradicts our supposition that 𝑀 is j-envy-free. □

Lemma 7.41. If (𝑁,𝑉) contains a j-envy-free matching𝑀 then𝐺 contains a directed triangle
packing.
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Proof. Suppose (𝑁,𝑉) contains a j-envy-free matching𝑀 . Lemma 7.40 shows that 𝑢𝑐𝑖 (𝑀) ≥
3 for each 𝑖 where 1 ≤ 𝑖 ≤ 3𝑞. By construction, it follows that 𝑀 (𝑐𝑖) contains two agents
𝑐𝑗 , 𝑐𝑘 such that 𝑣𝑐𝑖 (𝑐𝑗 ) ≥ 1 and 𝑣𝑐𝑖 (𝑐𝑘 ) = 2. Hence 𝑐𝑘 corresponds to a vertex 𝑤𝑘 ∈ 𝑊 where
(𝑤𝑖, 𝑤𝑘 ) ∈ 𝐴 and, since 𝐺 is antisymmetric, (𝑤𝑘 , 𝑤𝑖) ∉ 𝐴. Since 𝑐𝑖 was chosen arbitrarily
it follows that {𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 } is a directed 3-cycle in 𝐺. It follows thus that there are exactly 𝑞
triples in 𝑀 each containing three agents {𝑐𝑖, 𝑐𝑗 , 𝑐𝑘 } where the three corresponding vertices
{𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 } form a directed 3-cycle in 𝐺. From these triples a directed triangle packing 𝑋
can be easily constructed. □

We have now shown that the 3DR-AS instance (𝑁,𝑉) contains a j-envy-free matching if and
only if the DTP instance𝐺 contains a directed triangle packing. This shows that the reduction
is correct.

Theorem 7.6. Deciding if a given instance of 3DR-AS contains a j-envy-free matching is
NP-complete, even when preferences are ternary.

Proof. It is straightforward to show that this decision problem belongs to NP, since for any
two agents 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 we can test if 𝛼𝑖 j-envies 𝛼𝑗 in constant time.

We have presented a polynomial-time reduction from a restricted version of Directed Triangle
Packing (DTP), which is NP-complete [89]. Given a directed antisymmetric graph 𝐺, the
reduction constructs an instance (𝑁,𝑉) of 3DR-AS with ternary preferences. Lemmas 7.35
and 7.41 show that (𝑁,𝑉) contains a j-envy-free matching if and only if𝐺 contains a directed
triangle packing and thus that this decision problem is NP-hard. □

7.4.3 Symmetric non-binary preferences

From Theorems 7.5 and 7.6, a natural question arises: is it the symmetry of agents’ preferences
that guarantees the existence of a j-envy-free matching? In this section we show that this
is not the case, and a j-envy-free matching may not exist even when agents’ preferences are
symmetric, and the associated existence problem is NP-complete. We remark, however, that
the instances shown that do not contain j-envy-free matchings are relatively contrived and
involve non-negative integer valuations up to 6. We leave open the case in which preferences
are symmetric and the maximum valuation is strictly less than 6.

To show that this existence problem is NP-complete, we present a polynomial-time reduction
from Partition into Triangles (PIT, Problem 5.1), which is NP-complete [43]. This reduction
is similar to the reduction we presented in Section 7.4.2 for the analogous problem involving
ternary preferences that are not (necessarily) symmetric. Note that section we reduced from
Directed Triangle Packing (DTP, Problem 7.2) but here we reduce from PIT.
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We describe the reduction in detail and then provide some intuition with respect to its design.
The reduction, illustrated in Figure 7.4, is as follows. Suppose 𝐺 is an arbitrary instance
of PIT. We shall construct an instance (𝑁,𝑉) of 3DR-AS with symmetric preferences and
maximum valuation 6. Since valuations are symmetric in (𝑁,𝑉), we shall usually specify
valuations in one direction only. For example, instead of writing “let 𝑣𝛼𝑖 (𝛼𝑗 ) = 𝑣𝛼𝑗 (𝛼𝑖) = 1”
we write “let 𝑣𝛼𝑖 (𝛼𝑗 ) = 1”. Unless otherwise specified assume that 𝑣𝛼𝑖 (𝛼𝑗 ) = 0 for any
𝛼𝑖, 𝛼𝑗 ∈ 𝑁 . To simplify the description of the valuations in the reduction, in this section we
write 𝑖 ⊕ 𝑦 to denote ((𝑖 + 𝑦 − 2) mod 10) + 2.

First, construct a set of eleven agents 𝐻 = {ℎ1, ℎ2, . . . , ℎ11}. For each 𝑖 where 2 ≤ 𝑖 ≤ 11 let
𝑣ℎ1 (ℎ𝑖) = 2. For each 𝑖 where 2 ≤ 𝑖 ≤ 11, let:

• 𝑣ℎ𝑖 (ℎ𝑖⊕1) = 4 if 𝑖 is even otherwise 5

• 𝑣ℎ𝑖 (ℎ𝑖⊕2) = 6 if 𝑖 is even otherwise 3

• 𝑣ℎ𝑖 (ℎ𝑖⊕3) = 1

• 𝑣ℎ𝑖 (ℎ𝑖⊕4) = 1

• 𝑣ℎ𝑖 (ℎ𝑖⊕5) = 3.

Next, construct a set of four agents 𝐿 = {𝑙1, 𝑙2, 𝑙3, 𝑙4}. Let 𝑣𝑙1 (𝑙2) = 𝑣𝑙3 (𝑙4) = 2 and
𝑣𝑙1 (𝑙3) = 𝑣𝑙1 (𝑙4) = 𝑣𝑙2 (𝑙3) = 𝑣𝑙2 (𝑙4) = 1.

Next, construct a set of 3𝑞 agents 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐3𝑞}. Let 𝑣𝑐𝑖 (𝑙𝑟) = 3 for each 𝑖 and 𝑟
where 1 ≤ 𝑖 ≤ 3𝑞 and 1 ≤ 𝑟 ≤ 4. For each 𝑖 and 𝑗 where 1 ≤ 𝑖, 𝑗 ≤ 3𝑞 let 𝑣𝑐𝑖 (𝑐𝑗 ) = 3 if
{𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 otherwise 2. This completes the construction of (𝑁,𝑉). Note that the structure
of the valuations among the agents in 𝐶 reflects the graph 𝐺.

We make some remarks on the design of the constructed instance. Like before, in the
reduction presented in Section 7.4.2, the design of 𝐻 is derived from a particular instance
that contains no j-envy-free matching. This instance comprises 𝐻 as well as a single isolated
agent 𝛼𝑧, where 𝑣𝛼𝑧 (ℎ𝑖) = 0 for each 𝑖 where 1 ≤ 𝑖 ≤ 11. In fact, the proof that this instance
contains no j-envy-free matching can be directly derived from the proofs of lemmas appearing
later in this section (Lemmas 7.44–7.48). These proofs involve lengthy case analyses, and
we leave open the problem of finding a more intuitive or succinct argument (see Section 7.5
for more discussion on this).

It is straightforward to show that the reduction runs in polynomial time. To prove that the
reduction is correct we show that the 3DR-AS instance (𝑁,𝑉) contains a j-envy-free matching
if and only if the PIT instance 𝐺 contains a partition into triangles.

We first show that if the PIT instance 𝐺 contains a partition into triangles then the 3DR-AS
instance (𝑁,𝑉) contains a j-envy-free matching.
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𝑐1, 𝑐2, . . . , 𝑐3𝑞

𝑙1 𝑙2

𝑙3 𝑙4

Figure 7.4: The reduction from PIT to the problem of deciding if an instance of 3DR-AS
with symmetric preferences contains a j-envy-free matching. Valuation colour key: red - 6,
green - 5, blue - 4, black - 3, purple - 2, grey - 1.

Lemma 7.42. If 𝐺 contains a partition into triangles then (𝑁,𝑉) contains a j-envy-free
matching.

Proof. Suppose 𝐺 contains a partition into triangles 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑞}. We shall con-
struct a matching 𝑀 in (𝑁,𝑉) that is j-envy-free. First, add {ℎ2, ℎ10, ℎ11}, {ℎ5, ℎ6, ℎ8},
{ℎ1, ℎ9, ℎ4}, {ℎ3, 𝑙1, 𝑙2} and {ℎ7, 𝑙3, 𝑙4} to 𝑀 . Next, for each triangle 𝑋𝑝 = {𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 } in 𝑋 ,
add {𝑐𝑖, 𝑐𝑗 , 𝑐𝑘 } to 𝑀 .

Suppose for a contradiction that some agent 𝛼𝑗 exists where 𝛼𝑗 has j-envy for some other
agent 𝛼𝑘1 where 𝑀 (𝛼𝑘1) = {𝛼𝑘1 , 𝛼𝑘2 , 𝛼𝑘3}. Since 𝑁 = 𝐻 ∪ 𝐿 ∪ 𝐶 it must be that either
𝛼𝑘1 ∈ 𝐻, 𝛼𝑘1 ∈ 𝐿, or 𝛼𝑘1 ∈ 𝐶. We show that each case leads to a contradiction. It follows
that no such 𝛼𝑗 exists and thus that 𝑀 is j-envy-free.

• Suppose 𝛼𝑘1 ∈ 𝐻. Either 𝛼𝑘1 ∈ {ℎ3, ℎ7} or 𝛼𝑘1 ∈ 𝐻 \ {ℎ3, ℎ7}.

– Suppose 𝛼𝑘1 ∈ {ℎ3, ℎ7}. Then it must be that either {𝛼𝑘2 , 𝛼𝑘3} = {𝑙1, 𝑙2} or {𝛼𝑘2 ,

𝛼𝑘3} = {𝑙3, 𝑙4}. Suppose firstly that {𝛼𝑘2 , 𝛼𝑘3} = {𝑙1, 𝑙2}. We can see immediately
that 𝛼𝑗 ∉ 𝐻 since otherwise 𝑢𝛼𝑗 ({𝑙1, 𝑙2}) = 0. It must also be that 𝛼𝑗 ∉ 𝐶, since
𝑢𝑐𝑎 ({𝑙1, 𝑙2}) = 6 = 𝑢𝑐𝑎 (𝑀) for any 𝑐𝑎 ∈ 𝐶. Similarly, 𝑢𝑙3 ({𝑙1, 𝑙2}) = 2 = 𝑢𝑙3 (𝑀)
and 𝑢𝑙4 ({𝑙1, 𝑙2}) = 2 = 𝑢𝑙4 (𝑀) so 𝛼𝑗 ≠ 𝑙3 and 𝛼𝑗 ≠ 𝑙4. This shows 𝛼𝑗 ∉ 𝐿. We
have shown that 𝛼𝑗 ∉ 𝐻, 𝛼𝑗 ∉ 𝐶, and 𝛼𝑗 ∉ 𝐿, which is a contradiction. The
proof for the case in which {𝛼𝑘2 , 𝛼𝑘3} = {𝑙3, 𝑙4} is symmetric and also leads to a
contradiction.
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– Suppose 𝛼𝑘1 ∈ 𝐻 \ {ℎ3, ℎ7}. If 𝛼𝑘1 = ℎ1 then {𝛼𝑘2 , 𝛼𝑘3} = {ℎ4, ℎ9} so it must
be that 𝑣ℎ4 (𝛼𝑗 ) > 2 = 𝑣ℎ4 (ℎ1) and 𝑣ℎ9 (𝛼𝑗 ) > 2 = 𝑣ℎ9 (ℎ1), which is impossible
by the design of 𝐻. The proof for every other assignment of 𝛼𝑘1 is similar: if
𝛼𝑘1 = ℎ2 then 𝑣ℎ11 (𝛼𝑗 ) > 5, which is impossible. If 𝛼𝑘1 = ℎ4 then 𝑣ℎ1 (𝛼𝑗 ) > 2,
which is impossible. If 𝛼𝑘1 = ℎ5 then 𝑣ℎ6 (𝛼𝑗 ) > 5 and 𝑣ℎ8 (𝛼𝑗 ) > 1, which is
impossible. If 𝛼𝑘1 = ℎ6 then 𝑣ℎ8 (𝛼𝑗 ) > 6, which is impossible. If 𝛼𝑘1 = ℎ8

then 𝑣ℎ6 (𝛼𝑗 ) > 6, which is impossible. If 𝛼𝑘1 = ℎ9 then 𝑣ℎ1 (𝛼𝑗 ) > 2, which is
impossible. If 𝛼𝑘1 = ℎ10 then 𝑣ℎ2 (𝛼𝑗 ) > 6, which is impossible. If 𝛼𝑘1 = ℎ11 then
𝑣ℎ2 (𝛼𝑗 ) > 5 and 𝑣ℎ10 (𝛼𝑗 ) > 4, which is impossible.

• Suppose 𝛼𝑘1 ∈ 𝐶. By construction, it must be that 𝛼𝑘1 = 𝑐𝑖1 , 𝛼𝑘2 = 𝑐𝑖2 , and 𝛼𝑘3 = 𝑐𝑖3

where {𝑐𝑖1 , 𝑐𝑖2 , 𝑐𝑖3} ⊆ 𝐶, where the corresponding vertices {𝑤𝑖1 , 𝑤𝑖2 , 𝑤𝑖3} in 𝐺 are a
triangle. It follows that 𝑣𝑐𝑖2 (𝑐𝑖1) = 3. By assumption, 𝛼𝑗 has j-envy for 𝑐𝑖1 so it must
be that 𝑣𝑐𝑖2 (𝛼𝑗 ) > 𝑣𝑐𝑖2 (𝑐𝑖1) = 3, which is impossible by the design of 𝐶.

• Suppose 𝛼𝑘1 ∈ 𝐿. It must be that 𝛼𝑘1 = 𝑙𝑖1 for some 𝑖1 where 1 ≤ 𝑖1 ≤ 4, 𝛼𝑘2 = 𝑙𝑖2 for
some 𝑖2 where 1 ≤ 𝑖2 ≤ 4 and 𝛼𝑘3 = ℎ𝑖3 where 𝑖3 ∈ {3, 7}. If 𝛼𝑗 ∈ 𝐻 then 𝑣𝑙𝑖2 (𝛼𝑗 ) = 0
which contradicts the supposition that 𝛼𝑗 has j-envy for 𝑙𝑖1 . Otherwise, if 𝛼𝑗 ∉ 𝐻 then
𝑣ℎ𝑖3 (𝛼𝑗 ) = 0, which also contradicts the supposition that 𝛼𝑗 has j-envy for 𝑙𝑖1 .

□

We now show that if the 3DR-AS instance (𝑁,𝑉) contains a j-envy-free matching then the
PIT instance 𝐺 contains a partition into triangles.

In the first part of this proof (up to and including Lemma 7.48) we focus on 𝐻. To begin,
we define two possible configurations of 𝐻 in an arbitrary j-envy-free matching 𝑀 . If some
triple 𝑡 ∈ 𝑀 contains exactly one agent in 𝐻 then we say that 𝐻 has an open configuration
in 𝑀 . Otherwise, we say that 𝐻 has a closed configuration in 𝑀 . We shall eventually show,
in Lemma 7.48, that the only possible configuration of 𝐻 in 𝑀 is an open configuration. In
Lemmas 7.43–7.47 we prove a sequence of intermediary results.

Lemma 7.43. If (𝑁,𝑉) contains a j-envy-free matching 𝑀 then no triples 𝑡1, 𝑡2 in 𝑀 exist
such that 𝑡1 contains exactly two agents in 𝐻 and 𝑡2 contains exactly one agent in 𝐻.

Proof. Suppose for a contradiction that some such 𝑡1, 𝑡2 ∈ 𝑀 exist. Suppose 𝑡1 = {ℎ𝑖1 , ℎ𝑖2 ,
𝛼𝑗1} and 𝑡2 = {ℎ𝑖3 , 𝛼𝑗2 , 𝛼𝑗3} where 1 ≤ 𝑖1, 𝑖2, 𝑖3 ≤ 11 and 𝛼𝑗1 , 𝛼𝑗2 , 𝛼𝑗3 ∈ 𝑁 \ 𝐻. Now ℎ𝑖3 has
j-envy for 𝛼𝑗1 since 𝑢ℎ𝑖3 (𝑀) = 0 < 2 ≤ 𝑢ℎ𝑖3 ({ℎ𝑖1 , ℎ𝑖2}), 𝑣ℎ𝑖1 (𝛼𝑗1) = 0 < 1 ≤ 𝑣ℎ𝑖1 (ℎ𝑖3) and
𝑣ℎ𝑖2 (𝛼𝑗1) = 0 < 1 ≤ 𝑣ℎ𝑖2 (ℎ𝑖3). This contradicts our supposition that 𝑀 is j-envy-free. □

Lemma 7.44. If (𝑁,𝑉) contains a j-envy-free matching 𝑀 , 𝜎(𝐻, 𝑀) = 4, and 𝑢ℎ1 (𝑀) < 4
then 𝐻 has an open configuration in 𝑀 .
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Proof. Suppose to the contrary that 𝜎(𝐻, 𝑀) = 4, 𝑢ℎ1 (𝑀) < 4, and 𝐻 has a closed con-
figuration in 𝑀 . Since 𝜎(𝐻, 𝑀) = 4 it must be that three triples in 𝑀 each contain exactly
three agents in 𝐻 and one triple in 𝑀 contains exactly two agents in 𝐻. Suppose then that
𝑡1, 𝑡2, 𝑡3 ∈ 𝑀 each contain exactly three agents in 𝐻 and 𝑡4 ∈ 𝑀 contains exactly two agents
in 𝐻. Since 𝑢ℎ1 (𝑀) < 4 by assumption, by the design of 𝐻 it follows that 𝑀 (ℎ1) contains
at most one agent in 𝐻 \ {ℎ1} and therefore ℎ1 ∈ 𝑡4. It follows that 𝑡4 = {ℎ1, ℎ𝑖1 , 𝛼𝑗 } where
2 ≤ 𝑖1 ≤ 11 and 𝛼𝑗 ∈ 𝑁 \ 𝐻. We use a case analysis to prove a contradiction occurs for each
possible assignment of 𝑖1.

• Suppose first 𝑖1 = 2. If 𝑢ℎ4 (𝑀) ≤ 7 then ℎ4 has j-envy for 𝛼𝑗 , since 𝑢ℎ4 (𝑀) ≤ 7 < 8 =

𝑢ℎ4 ({ℎ1, ℎ2}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 2 = 𝑣ℎ1 (ℎ4), and 𝑣ℎ2 (𝛼𝑗 ) = 0 < 6 = 𝑣ℎ2 (ℎ4). It follows
that 𝑢ℎ4 (𝑀) ≥ 8. By the assumptions regarding the structure of 𝑀 , it must be that
𝑀 (ℎ4) contains three agents in 𝐻. Since 𝑡4 = {ℎ1, ℎ2, 𝛼𝑗 } it must be that 𝑀 (ℎ4) = {ℎ4,

ℎ𝑖2 , ℎ𝑖3} where {𝑖2, 𝑖3} ⊂ {3, 5, 6, 7, 8, 9, 10, 11}. Recall that 𝑣ℎ4 (ℎ3) = 5, 𝑣ℎ4 (ℎ5) = 4,
𝑣ℎ4 (ℎ6) = 6, 𝑣ℎ4 (ℎ7) = 1, 𝑣ℎ4 (ℎ8) = 1, 𝑣ℎ4 (ℎ9) = 3, 𝑣ℎ4 (ℎ10) = 1, and 𝑣ℎ4 (ℎ11) = 1.
Since we established 𝑢ℎ4 (𝑀) ≥ 8 it follows that there are 5 possibilities: {𝑖2, 𝑖3} = {3,
9}, {𝑖2, 𝑖3} = {3, 5}, {𝑖2, 𝑖3} = {3, 6}, {𝑖2, 𝑖3} = {5, 6}, and {𝑖2, 𝑖3} = {6, 9}, which we
shall now consider.

– Suppose {𝑖2, 𝑖3} = {3, 9}. It follows that ℎ2 has j-envy for ℎ9, since 𝑢ℎ2 (𝑀) = 2 <
10 = 𝑢ℎ2 ({ℎ3, ℎ4}), 𝑣ℎ3 (ℎ9) = 1 < 4 = 𝑣ℎ3 (ℎ2), and 𝑣ℎ4 (ℎ9) = 3 < 6 = 𝑣ℎ4 (ℎ2).
This contradicts the supposition that 𝑀 is j-envy-free.

– Suppose {𝑖2, 𝑖3} = {3, 5}. It follows that ℎ2 has j-envy for ℎ5, since 𝑢ℎ2 (𝑀) = 2 <
10 = 𝑢ℎ2 ({ℎ3, ℎ4}), 𝑣ℎ3 (ℎ5) = 3 < 4 = 𝑣ℎ3 (ℎ2), and 𝑣ℎ4 (ℎ5) = 4 < 6 = 𝑣ℎ4 (ℎ2).

– Suppose {𝑖2, 𝑖3} = {3, 6}. Consider ℎ11. If 𝑢ℎ11 (𝑀) ≤ 6 then ℎ11 has j-envy
for 𝛼𝑗 , since 𝑢ℎ11 (𝑀) ≤ 6 < 7 = 𝑢ℎ11 ({ℎ1, ℎ2}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 2 = 𝑣ℎ1 (ℎ11),
and 𝑣ℎ2 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ2 (ℎ11). It follows that 𝑢ℎ11 (𝑀) ≥ 7. We have
established that ℎ2 ∉ 𝑀 (ℎ11), ℎ3 ∉ 𝑀 (ℎ11), and ℎ6 ∉ 𝑀 (ℎ11) so, by the design
of 𝐻, it must be that 𝑀 (ℎ11) = {ℎ9, ℎ10, ℎ11}. Now ℎ2 has j-envy for ℎ9,
since 𝑢ℎ2 (𝑀) = 2 < 11 = 𝑢ℎ2 ({ℎ10, ℎ11}), 𝑣ℎ10 (ℎ9) = 5 < 6 = 𝑣ℎ10 (ℎ2), and
𝑣ℎ11 (ℎ9) = 3 < 5 = 𝑣ℎ11 (ℎ2).

– Suppose {𝑖2, 𝑖3} = {5, 6}. Consider ℎ3. If 𝑢ℎ3 (𝑀) ≤ 5 then ℎ3 has j-envy for
𝛼𝑗 , since 𝑢ℎ3 (𝑀) ≤ 5 < 6 = 𝑢ℎ3 ({ℎ1, ℎ2}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 2 = 𝑣ℎ1 (ℎ3), and
𝑣ℎ2 (𝛼𝑗 ) = 0 < 4 = 𝑣ℎ2 (ℎ3). It follows that 𝑢ℎ3 (𝑀) ≥ 6. We have established that
ℎ2 ∉ 𝑀 (ℎ3), ℎ4 ∉ 𝑀 (ℎ3), and ℎ5 ∉ 𝑀 (ℎ3) so, by the design of 𝐻, it must be
that 𝑀 (ℎ3) = {ℎ3, ℎ8, ℎ11}. Now ℎ11 has j-envy for 𝛼𝑗 , since 𝑢ℎ11 (𝑀) = 4 < 7 =

𝑢ℎ11 ({ℎ1, ℎ2}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 2 = 𝑣ℎ1 (ℎ11), and 𝑣ℎ2 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ2 (ℎ11).

– Suppose {𝑖2, 𝑖3} = {6, 9}. Consider ℎ11. If 𝑢ℎ11 (𝑀) ≤ 6 then ℎ11 has j-envy
for 𝛼𝑗 , since 𝑢ℎ11 (𝑀) ≤ 6 < 7 = 𝑢ℎ11 ({ℎ1, ℎ2}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 2 = 𝑣ℎ1 (ℎ11),
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and 𝑣ℎ2 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ2 (ℎ11). It follows that 𝑢ℎ11 (𝑀) ≥ 7. We have
established that ℎ2 ∉ 𝑀 (ℎ11), ℎ6 ∉ 𝑀 (ℎ11), and ℎ9 ∉ 𝑀 (ℎ11) so, by the design
of 𝐻, it must be that 𝑀 (ℎ11) = {ℎ3, ℎ10, ℎ11}. Now ℎ2 has j-envy for ℎ10,
since 𝑢ℎ2 (𝑀) = 2 < 9 = 𝑢ℎ2 ({ℎ3, ℎ11}), 𝑣ℎ3 (ℎ10) = 1 < 4 = 𝑣ℎ3 (ℎ2), and
𝑣ℎ11 (ℎ10) = 4 < 5 = 𝑣ℎ11 (ℎ2).

• Suppose next 𝑖1 = 3. If 𝑢ℎ4 (𝑀) ≤ 6 then ℎ4 has j-envy for 𝛼𝑗 , since 𝑢ℎ4 (𝑀) ≤ 6 < 7 =

𝑢ℎ4 ({ℎ1, ℎ3}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 2 = 𝑣ℎ1 (ℎ4), and 𝑣ℎ3 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ3 (ℎ4). It follows
that 𝑢ℎ4 (𝑀) ≥ 7. Since 𝑀 (ℎ4) ≠ 𝑡4 it must be that 𝑀 (ℎ4) = {ℎ4, ℎ𝑖2 , ℎ𝑖3} where
{𝑖2, 𝑖3} ⊂ {2, 5, 6, 7, 8, 9, 10, 11}. Recall that 𝑣ℎ4 (ℎ2) = 6, 𝑣ℎ4 (ℎ5) = 4, 𝑣ℎ4 (ℎ6) = 6,
𝑣ℎ4 (ℎ7) = 1, 𝑣ℎ4 (ℎ8) = 1, 𝑣ℎ4 (ℎ9) = 3, 𝑣ℎ4 (ℎ10) = 1, and 𝑣ℎ4 (ℎ11) = 1. Since we
established 𝑢ℎ4 (𝑀) ≥ 7 it follows that there are 14 possibilities: {𝑖2, 𝑖3} = {2, 5},
{𝑖2, 𝑖3} = {2, 6}, {𝑖2, 𝑖3} = {2, 7}, {𝑖2, 𝑖3} = {2, 8}, {𝑖2, 𝑖3} = {2, 9}, {𝑖2, 𝑖3} = {2, 10},
{𝑖2, 𝑖3} = {2, 11}, {𝑖2, 𝑖3} = {5, 6}, {𝑖2, 𝑖3} = {5, 9}, {𝑖2, 𝑖3} = {6, 7}, {𝑖2, 𝑖3} = {6, 8},
{𝑖2, 𝑖3} = {6, 9}, {𝑖2, 𝑖3} = {6, 10}, and {𝑖2, 𝑖3} = {6, 11}, which we shall now consider.

– Suppose {𝑖2, 𝑖3} = {2, 5}. It follows that ℎ3 has j-envy for ℎ5, since 𝑢ℎ3 (𝑀) = 2 <
9 = 𝑢ℎ3 ({ℎ2, ℎ4}), 𝑣ℎ2 (ℎ5) = 1 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ4 (ℎ5) = 4 < 5 = 𝑣ℎ4 (ℎ3).

– Suppose {𝑖2, 𝑖3} = {2, 6}. If 𝑢ℎ5 (𝑀) ≤ 4 then ℎ5 has j-envy for 𝛼𝑗 , since
𝑢ℎ5 (𝑀) ≤ 4 < 5 = 𝑢ℎ5 ({ℎ1, ℎ3}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 2 = 𝑣ℎ1 (ℎ5), and 𝑣ℎ3 (𝛼𝑗 ) = 0 <
3 = 𝑣ℎ3 (ℎ5). It follows that 𝑢ℎ5 (𝑀) ≥ 5. We have established that ℎ3 ∉ 𝑀 (ℎ5),
ℎ4 ∉ 𝑀 (ℎ5), and ℎ6 ∉ 𝑀 (ℎ5) so, by the design of 𝐻, it must be that 𝑀 (ℎ5) = {ℎ5,

ℎ7, ℎ10}. It remains that 𝑀 (ℎ11) = {ℎ8, ℎ9, ℎ11}. Now ℎ11 has j-envy for 𝛼𝑗 ,
since 𝑢ℎ11 (𝑀) = 4 < 5 = 𝑢ℎ11 ({ℎ1, ℎ3}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 2 = 𝑣ℎ1 (ℎ11), and
𝑣ℎ3 (𝛼𝑗 ) = 0 < 3 = 𝑣ℎ3 (ℎ11).

– Suppose {𝑖2, 𝑖3} = {2, 7}. It follows that ℎ3 has j-envy for ℎ7, since 𝑢ℎ3 (𝑀) = 2 <
9 = 𝑢ℎ3 ({ℎ2, ℎ4}), 𝑣ℎ2 (ℎ7) = 3 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ4 (ℎ7) = 1 < 5 = 𝑣ℎ4 (ℎ3).

– Suppose {𝑖2, 𝑖3} = {2, 8}. It follows that ℎ3 has j-envy for ℎ8, since 𝑢ℎ3 (𝑀) = 2 <
9 = 𝑢ℎ3 ({ℎ2, ℎ4}), 𝑣ℎ2 (ℎ8) = 1 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ4 (ℎ8) = 1 < 5 = 𝑣ℎ4 (ℎ3).

– Suppose {𝑖2, 𝑖3} = {2, 9}. It follows that ℎ3 has j-envy for ℎ9, since 𝑢ℎ3 (𝑀) = 2 <
9 = 𝑢ℎ3 ({ℎ2, ℎ4}), 𝑣ℎ2 (ℎ9) = 1 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ4 (ℎ9) = 3 < 5 = 𝑣ℎ4 (ℎ3).

– Suppose {𝑖2, 𝑖3} = {2, 10}. If 𝑢ℎ11 (𝑀) ≤ 4 then ℎ11 has j-envy for 𝛼𝑗 , since
𝑢ℎ11 (𝑀) ≤ 4 < 5 = 𝑢ℎ5 ({ℎ1, ℎ3}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 2 = 𝑣ℎ1 (ℎ11), and 𝑣ℎ3 (𝛼𝑗 ) =
0 < 3 = 𝑣ℎ3 (ℎ11). It follows that 𝑢ℎ11 (𝑀) ≥ 5. We have established that
ℎ2 ∉ 𝑀 (ℎ11), ℎ3 ∉ 𝑀 (ℎ11), and ℎ10 ∉ 𝑀 (ℎ11) so, by the design of 𝐻, it must
be that 𝑀 (ℎ11) = {ℎ6, ℎ9, ℎ11}. Since ℎ5 ∉ 𝑡4, it must be that 𝑀 (ℎ5) contains
three agents in 𝐻 and thus 𝑀 (ℎ5) = {ℎ5, ℎ7, ℎ8}. Now ℎ6 has j-envy for ℎ5,
since 𝑢ℎ6 (𝑀) = 4 < 10 = 𝑢ℎ6 ({ℎ7, ℎ8}), 𝑣ℎ7 (ℎ5) = 3 < 4 = 𝑣ℎ7 (ℎ6), and
𝑣ℎ8 (ℎ5) = 1 < 6 = 𝑣ℎ8 (ℎ6).
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– Suppose {𝑖2, 𝑖3} = {2, 11}. If 𝑢ℎ5 (𝑀) ≤ 4 then ℎ5 has j-envy for 𝛼𝑗 , since
𝑢ℎ5 (𝑀) ≤ 4 < 5 = 𝑢ℎ5 ({ℎ1, ℎ3}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 2 = 𝑣ℎ1 (ℎ5), and 𝑣ℎ3 (𝛼𝑗 ) = 0 <
3 = 𝑣ℎ3 (ℎ5). It follows that 𝑢ℎ5 (𝑀) ≥ 5. We have established that ℎ3 ∉ 𝑀 (ℎ5)
and ℎ4 ∉ 𝑀 (ℎ5) so, by the design of 𝐻, there are three possibilities: either
𝑀 (ℎ5) = {ℎ5, ℎ6, ℎ7}, 𝑀 (ℎ5) = {ℎ5, ℎ6, ℎ10}, or 𝑀 (ℎ5) = {ℎ5, ℎ7, ℎ10}.

∗ If 𝑀 (ℎ5) = {ℎ5, ℎ6, ℎ7} then ℎ4 has j-envy for ℎ7, since 𝑢ℎ4 (𝑀) = 7 < 10 =

𝑢ℎ4 ({ℎ5, ℎ6}), 𝑣ℎ5 (ℎ7) = 3 < 4 = 𝑣ℎ5 (ℎ4), and 𝑣ℎ6 (ℎ7) = 4 < 6 = 𝑣ℎ6 (ℎ4).
∗ If𝑀 (ℎ5) = {ℎ5, ℎ6, ℎ10} then ℎ4 has j-envy for ℎ10, since 𝑢ℎ4 (𝑀) = 7 < 10 =

𝑢ℎ4 ({ℎ5, ℎ6}), 𝑣ℎ5 (ℎ10) = 3 < 4 = 𝑣ℎ5 (ℎ4), and 𝑣ℎ6 (ℎ10) = 1 < 6 = 𝑣ℎ6 (ℎ4).
∗ If 𝑀 (ℎ5) = {ℎ5, ℎ7, ℎ10} then it remains that 𝑀 (ℎ6) = {ℎ6, ℎ8, ℎ9}. Now ℎ6

has j-envy for ℎ10, since 𝑢ℎ6 (𝑀) = 7 < 9 = 𝑢ℎ6 ({ℎ5, ℎ7}), 𝑣ℎ5 (ℎ10) = 3 <
5 = 𝑣ℎ5 (ℎ6), and 𝑣ℎ7 (ℎ10) = 1 < 4 = 𝑣ℎ7 (ℎ6).

– Suppose {𝑖2, 𝑖3} = {5, 6}. If 𝑢ℎ2 (𝑀) ≤ 5 then ℎ2 has j-envy for 𝛼𝑗 , since
𝑢ℎ2 (𝑀) ≤ 5 < 6 = 𝑢ℎ2 ({ℎ1, ℎ3}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 2 = 𝑣ℎ1 (ℎ2), and 𝑣ℎ3 (𝛼𝑗 ) = 0 <
4 = 𝑣ℎ3 (ℎ2). It follows that 𝑢ℎ2 (𝑀) ≥ 6. Since ℎ2 ∉ 𝑡4 it must be that 𝑀 (ℎ2)
contains three agents in 𝐻. Since 𝑡4 = {ℎ1, ℎ3, 𝛼𝑗 } and 𝑀 (ℎ4) = {ℎ4, ℎ5, ℎ6}
it follows that 𝑀 (ℎ2) = {ℎ2, ℎ𝑖4 , ℎ𝑖5} where {𝑖4, 𝑖5} ⊂ {7, 8, 9, 10, 11}. Recall
that 𝑣ℎ2 (ℎ7) = 3, 𝑣ℎ2 (ℎ8) = 1, 𝑣ℎ2 (ℎ9) = 1, 𝑣ℎ2 (ℎ10) = 6, and 𝑣ℎ2 (ℎ11) = 5.
Since we established 𝑢ℎ2 (𝑀) ≥ 6 it follows that there are 7 possibilities: {ℎ𝑖4 ,
ℎ𝑖5} = {7, 10}, {ℎ𝑖4 , ℎ𝑖5} = {7, 11}, {ℎ𝑖4 , ℎ𝑖5} = {8, 10}, {ℎ𝑖4 , ℎ𝑖5} = {8, 11},
{ℎ𝑖4 , ℎ𝑖5} = {9, 10}, {ℎ𝑖4 , ℎ𝑖5} = {9, 11}, and {ℎ𝑖4 , ℎ𝑖5} = {10, 11}, which we
shall now consider.

∗ If {ℎ𝑖4 , ℎ𝑖5} = {7, 10} then it remains that 𝑀 (ℎ11) = {ℎ8, ℎ9, ℎ11}. Now ℎ11

has j-envy for ℎ7, since 𝑢ℎ11 (𝑀) = 4 < 9 = 𝑢ℎ11 ({ℎ2, ℎ10}), 𝑣ℎ2 (ℎ7) = 3 <
5 = 𝑣ℎ2 (ℎ11), and 𝑣ℎ10 (ℎ7) = 1 < 4 = 𝑣ℎ10 (ℎ11).

∗ If {ℎ𝑖4 , ℎ𝑖5} = {7, 11} then ℎ3 has j-envy for ℎ7, since 𝑢ℎ3 (𝑀) = 2 < 7 =

𝑢ℎ3 ({ℎ2, ℎ11}), 𝑣ℎ2 (ℎ7) = 3 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ11 (ℎ7) = 1 < 3 = 𝑣ℎ11 (ℎ3).
∗ If {ℎ𝑖4 , ℎ𝑖5} = {8, 10} then it remains that 𝑀 (ℎ7) = {ℎ7, ℎ9, ℎ11}. Now ℎ8

has j-envy for ℎ11, since 𝑢ℎ8 (𝑀) = 7 < 9 = 𝑢ℎ8 ({ℎ7, ℎ9}), 𝑣ℎ7 (ℎ11) = 1 <
5 = 𝑣ℎ7 (ℎ8), and 𝑣ℎ9 (ℎ11) = 3 < 4 = 𝑣ℎ9 (ℎ8).

∗ If {ℎ𝑖4 , ℎ𝑖5} = {8, 11} then ℎ3 has j-envy for ℎ8, since 𝑢ℎ3 (𝑀) = 2 < 7 =

𝑢ℎ3 ({ℎ2, ℎ11}), 𝑣ℎ2 (ℎ8) = 1 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ11 (ℎ8) = 1 < 3 = 𝑣ℎ11 (ℎ3).
∗ If {ℎ𝑖4 , ℎ𝑖5} = {9, 10} then it remains that 𝑀 (ℎ7) = {ℎ7, ℎ8, ℎ11}. Now ℎ9

has j-envy for ℎ11, since 𝑢ℎ9 (𝑀) = 6 < 7 = 𝑢ℎ9 ({ℎ7, ℎ8}), 𝑣ℎ7 (ℎ11) = 1 <
3 = 𝑣ℎ7 (ℎ9), and 𝑣ℎ8 (ℎ11) = 1 < 4 = 𝑣ℎ8 (ℎ9).

∗ If {ℎ𝑖4 , ℎ𝑖5} = {9, 11} then it remains that 𝑀 (ℎ10) = {ℎ7, ℎ8, ℎ10}. Now ℎ10

has j-envy for ℎ9, since 𝑢ℎ10 (𝑀) = 7 < 10 = 𝑢ℎ10 ({ℎ2, ℎ11}), 𝑣ℎ2 (ℎ9) = 1 <
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6 = 𝑣ℎ2 (ℎ10), and 𝑣ℎ11 (ℎ9) = 3 < 4 = 𝑣ℎ11 (ℎ10).
∗ If {ℎ𝑖4 , ℎ𝑖5} = {10, 11} then it remains that 𝑀 (ℎ7) = {ℎ7, ℎ8, ℎ9}. Now ℎ10

has j-envy for ℎ7, since 𝑢ℎ10 (𝑀) = 10 < 11 = 𝑢ℎ10 ({ℎ8, ℎ9}), 𝑣ℎ8 (ℎ7) = 5 <
6 = 𝑣ℎ8 (ℎ10), and 𝑣ℎ9 (ℎ7) = 3 < 5 = 𝑣ℎ9 (ℎ10).

– Suppose {𝑖2, 𝑖3} = {5, 9}. It follows that ℎ3 has j-envy for ℎ9, since 𝑢ℎ3 (𝑀) = 2 <
8 = 𝑢ℎ3 ({ℎ4, ℎ5}), 𝑣ℎ4 (ℎ9) = 3 < 5 = 𝑣ℎ4 (ℎ3), and 𝑣ℎ5 (ℎ9) = 1 < 3 = 𝑣ℎ5 (ℎ3).

– Suppose {𝑖2, 𝑖3} = {6, 7}. Consider ℎ5. Since ℎ3 ∉ 𝑀 (ℎ5), ℎ4 ∉ 𝑀 (ℎ5),
ℎ6 ∉ 𝑀 (ℎ5), and ℎ7 ∉ 𝑀 (ℎ5) by the design of 𝐻 it must be that 𝑢ℎ5 (𝑀) ≤ 4.
It follows that ℎ5 has j-envy for ℎ7, since 𝑢ℎ5 (𝑀) ≤ 4 < 9 = 𝑢ℎ5 ({ℎ4, ℎ6}),
𝑣ℎ4 (ℎ7) = 1 < 4 = 𝑣ℎ4 (ℎ5), and 𝑣ℎ6 (ℎ7) = 4 < 5 = 𝑣ℎ6 (ℎ5).

– Suppose {𝑖2, 𝑖3} = {6, 8}. Consider ℎ5. If 𝑢ℎ5 (𝑀) ≤ 4 then ℎ5 has j-envy for
𝛼𝑗 , since 𝑢ℎ5 (𝑀) ≤ 4 < 5 = 𝑢ℎ2 ({ℎ1, ℎ3}), 𝑣ℎ1 (𝛼𝑗 ) = 0 < 2 = 𝑣ℎ1 (ℎ5), and
𝑣ℎ3 (𝛼𝑗 ) = 0 < 3 = 𝑣ℎ3 (ℎ5). It follows that 𝑢ℎ5 (𝑀) ≥ 5. Since ℎ3 ∉ 𝑀 (ℎ5),
ℎ4 ∉ 𝑀 (ℎ5), and ℎ6 ∉ 𝑀 (ℎ5), the only possibility is that 𝑀 (ℎ5) = {ℎ5, ℎ7,

ℎ10}. It remains that 𝑀 (ℎ2) = {ℎ2, ℎ9, ℎ11}. Now ℎ10 has j-envy for ℎ9, since
𝑢ℎ10 (𝑀) = 4 < 10 = 𝑢ℎ10 ({ℎ2, ℎ11}), 𝑣ℎ2 (ℎ9) = 1 < 6 = 𝑣ℎ2 (ℎ10), and 𝑣ℎ11 (ℎ9) =
3 < 4 = 𝑣ℎ11 (ℎ10).

– Suppose {𝑖2, 𝑖3} = {6, 9}. Consider ℎ5. Since ℎ3 ∉ 𝑀 (ℎ5), ℎ4 ∉ 𝑀 (ℎ5), and
ℎ6 ∉ 𝑀 (ℎ5) by the design of 𝐻 it must be that 𝑢ℎ5 (𝑀) ≤ 6. It follows that ℎ5 has
j-envy for ℎ9, since 𝑢ℎ5 (𝑀) ≤ 6 < 9 = 𝑢ℎ5 ({ℎ4, ℎ6}), 𝑣ℎ4 (ℎ9) = 3 < 4 = 𝑣ℎ4 (ℎ5),
and 𝑣ℎ6 (ℎ9) = 1 < 5 = 𝑣ℎ6 (ℎ5).

– Suppose {𝑖2, 𝑖3} = {6, 10}. Consider ℎ5. Since ℎ3 ∉ 𝑀 (ℎ5), ℎ4 ∉ 𝑀 (ℎ5),
ℎ6 ∉ 𝑀 (ℎ5), and ℎ10 ∉ 𝑀 (ℎ5) by the design of 𝐻 it must be that 𝑢ℎ5 (𝑀) ≤ 4.
It follows that ℎ5 has j-envy for ℎ10, since 𝑢ℎ5 (𝑀) ≤ 4 < 9 = 𝑢ℎ5 ({ℎ4, ℎ6}),
𝑣ℎ4 (ℎ10) = 1 < 4 = 𝑣ℎ4 (ℎ5), and 𝑣ℎ6 (ℎ10) = 1 < 5 = 𝑣ℎ6 (ℎ5).

– Suppose {𝑖2, 𝑖3} = {6, 11}. Consider ℎ5. Since ℎ3 ∉ 𝑀 (ℎ5), ℎ4 ∉ 𝑀 (ℎ5), and
ℎ6 ∉ 𝑀 (ℎ5) by the design of𝐻 it must be that 𝑢ℎ5 (𝑀) ≤ 6. It follows that ℎ5 has j-
envy for ℎ11, since 𝑢ℎ5 (𝑀) ≤ 6 < 9 = 𝑢ℎ5 ({ℎ4, ℎ6}), 𝑣ℎ4 (ℎ11) = 1 < 4 = 𝑣ℎ4 (ℎ5),
and 𝑣ℎ6 (ℎ11) = 3 < 5 = 𝑣ℎ6 (ℎ5).

□

Lemma 7.45. If (𝑁,𝑉) contains a j-envy-free matching 𝑀 , 𝜎(𝐻, 𝑀) = 4, and 𝑢ℎ1 (𝑀) = 4
then 𝐻 has an open configuration in 𝑀 .

Proof. Suppose to the contrary that 𝜎(𝐻, 𝑀) = 4, 𝑢ℎ1 (𝑀) = 4, and 𝐻 has an open configu-
ration in 𝑀 . Since 𝜎(𝐻, 𝑀) = 4 it must be that three triples in 𝑀 each contain exactly three
agents in 𝐻 and one triple in 𝑀 contains exactly two agents in 𝐻. Suppose 𝑡1, 𝑡2, 𝑡3 ∈ 𝑀



7.4. Justified envy-freeness 143

each contain exactly three agents in 𝐻 and 𝑡4 ∈ 𝑀 contains exactly two agents in 𝐻. Since
𝑢ℎ1 (𝑀) = 4, by the design of 𝐻 it follows that 𝑀 (ℎ1) contains two agents in 𝐻 \ {ℎ1} and
therefore ℎ1 ∉ 𝑡4. It follows that 𝑡4 = {ℎ𝑖1 , ℎ𝑖2 , 𝛼𝑗 }where 2 ≤ 𝑖1, 𝑖2 ≤ 11 and 𝛼𝑗 ∈ (𝑁 \𝐻). We
use a case analysis to prove a contradiction occurs for each possible assignment of {ℎ𝑖1 , ℎ𝑖2}
where 2 ≤ 𝑖1, 𝑖2 ≤ 11.

As before, in the proof of Lemma 7.44, the symmetries of 𝐻 allow us to shorten the
case analysis. Recall that the structure of the valuations between agents 𝐻 \ {ℎ1} has five
symmetries. It follows that for any possible assignment of {𝑖1, 𝑖2} there exist in total five
symmetric assignments, where the case analysis for one assignment is symmetric to the case
analysis for the other four assignments. Since there are

(10
2
)
= 45 possible assignments

of {𝑖1, 𝑖2} where 2 ≤ 𝑖1, 𝑖2 ≤ 11 and five symmetries we need only consider the nine
assignments {2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 7}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, of which no
two are symmetric.

• Suppose {𝑖1, 𝑖2} = {2, 3}. Since ℎ2 ∉ 𝑀 (ℎ4) and ℎ3 ∉ 𝑀 (ℎ4) it must be that 𝑢ℎ4 (𝑀) ≤
10. It follows that ℎ4 has j-envy for 𝛼𝑗 since 𝑢ℎ4 (𝑀) ≤ 10 < 12 = 𝑢ℎ4 ({ℎ2, ℎ3}),
𝑣ℎ2 (𝛼𝑗 ) = 0 < 6 = 𝑣ℎ2 (ℎ4), and 𝑣ℎ3 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ3 (ℎ4). This contradicts the
supposition that 𝑀 is j-envy-free. The following proofs concerning other possible
assignments of {𝑖1, 𝑖2} are similar in technique although in some cases we must make
further deductions about the utilities of agents in 𝐻.

• Suppose {𝑖1, 𝑖2} = {2, 4}. Since ℎ2 ∉ 𝑀 (ℎ3) and ℎ4 ∉ 𝑀 (ℎ3) it follows that 𝑢ℎ3 (𝑀) ≤
6. It then follows that ℎ3 has j-envy for 𝛼𝑗 since 𝑢ℎ3 (𝑀) ≤ 6 < 9 = 𝑢ℎ3 ({ℎ2, ℎ4}),
𝑣ℎ2 (𝛼𝑗 ) = 0 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ4 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ4 (ℎ3).

• Suppose {𝑖1, 𝑖2} = {2, 5}. If 𝑢ℎ4 (𝑀) ≤ 9 then ℎ4 has j-envy for 𝛼𝑗 , since 𝑢ℎ4 (𝑀) ≤
9 < 10 = 𝑢ℎ4 ({ℎ2, ℎ5}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 6 = 𝑣ℎ2 (ℎ4), and 𝑣ℎ5 (𝛼𝑗 ) = 0 < 4 = 𝑣ℎ5 (ℎ4). It
follows that 𝑢ℎ4 (𝑀) ≥ 10. The only possibility is that 𝑀 (ℎ4) = {ℎ3, ℎ4, ℎ6}. Now ℎ3

has j-envy for 𝛼𝑗 since 𝑢ℎ3 (𝑀) = 6 < 7 = 𝑢ℎ3 ({ℎ2, ℎ5}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 4 = 𝑣ℎ2 (ℎ3),
and 𝑣ℎ5 (𝛼𝑗 ) = 0 < 3 = 𝑣ℎ5 (ℎ3).

• Suppose {𝑖1, 𝑖2} = {2, 6}. Since ℎ2 ∉ 𝑀 (ℎ4) and ℎ6 ∉ 𝑀 (ℎ4) it follows that 𝑢ℎ4 (𝑀) ≤
9. Now ℎ4 has j-envy for 𝛼𝑗 since 𝑢ℎ4 (𝑀) ≤ 9 < 12 = 𝑢ℎ4 ({ℎ2, ℎ6}), 𝑣ℎ2 (𝛼𝑗 ) = 0 <
6 = 𝑣ℎ2 (ℎ4), and 𝑣ℎ6 (𝛼𝑗 ) = 0 < 6 = 𝑣ℎ6 (ℎ4).

• Suppose {𝑖1, 𝑖2} = {2, 7}. If 𝑢ℎ4 (𝑀) ≤ 6 then ℎ4 has j-envy for 𝛼𝑗 , since 𝑢ℎ4 (𝑀) ≤
6 < 7 = 𝑢ℎ4 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 6 = 𝑣ℎ2 (ℎ4), and 𝑣ℎ7 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ7 (ℎ4). It
follows that 𝑢ℎ4 (𝑀) ≥ 7. By the design of𝐻, it follows that𝑀 (ℎ4) contains three agents
in 𝐻. Since 𝑡4 = {ℎ2, ℎ7, 𝛼𝑗 } it follows that 𝑀 (ℎ4) = {ℎ4, ℎ𝑖3 , ℎ𝑖4} where {𝑖3, 𝑖4} ⊂ {1,
3, 5, 6, 8, 9, 10, 11}. Recall that 𝑣ℎ4 (ℎ1) = 2, 𝑣ℎ4 (ℎ3) = 5, 𝑣ℎ4 (ℎ5) = 4, 𝑣ℎ4 (ℎ6) = 6,
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𝑣ℎ4 (ℎ8) = 1, 𝑣ℎ4 (ℎ9) = 3, 𝑣ℎ4 (ℎ10) = 1, and 𝑣ℎ4 (ℎ11) = 1. Since we established
𝑢ℎ4 (𝑀) ≥ 7 it follows that there are 11 possibilities: {𝑖3, 𝑖4} = {1, 3}, {𝑖3, 𝑖4} = {1, 6},
{𝑖3, 𝑖4} = {3, 5}, {𝑖3, 𝑖4} = {3, 6}, {𝑖3, 𝑖4} = {3, 9}, {𝑖3, 𝑖4} = {5, 6}, {𝑖3, 𝑖4} = {5, 9},
{𝑖3, 𝑖4} = {6, 8}, {𝑖3, 𝑖4} = {6, 9}, {𝑖3, 𝑖4} = {6, 10}, and {𝑖3, 𝑖4} = {6, 11}, which we
shall now consider.

– Suppose {𝑖3, 𝑖4} = {1, 3}. It follows that ℎ2 has j-envy for ℎ1 since 𝑢ℎ2 (𝑀) = 3 <
10 = 𝑢ℎ2 ({ℎ3, ℎ4}), 𝑣ℎ3 (ℎ1) = 2 < 4 = 𝑣ℎ3 (ℎ2), and 𝑣ℎ4 (ℎ1) = 2 < 6 = 𝑣ℎ4 (ℎ2).

– Suppose {𝑖3, 𝑖4} = {1, 6}. Consider ℎ5. It must be that 𝑢ℎ5 (𝑀) ≤ 6. Now ℎ5 has
j-envy for ℎ1 since 𝑢ℎ5 (𝑀) ≤ 6 < 9 = 𝑢ℎ5 ({ℎ4, ℎ6}), 𝑣ℎ4 (ℎ1) = 2 < 4 = 𝑣ℎ4 (ℎ5),
and 𝑣ℎ6 (ℎ1) = 2 < 5 = 𝑣ℎ6 (ℎ5).

– Suppose {𝑖3, 𝑖4} = {3, 5}. It follows that ℎ2 has j-envy for ℎ5 since 𝑢ℎ2 (𝑀) = 3 <
10 = 𝑢ℎ2 ({ℎ3, ℎ4}), 𝑣ℎ3 (ℎ5) = 3 < 4 = 𝑣ℎ3 (ℎ2), and 𝑣ℎ4 (ℎ5) = 4 < 6 = 𝑣ℎ4 (ℎ2).

– Suppose {𝑖3, 𝑖4} = {3, 6}. In this case, consider 𝑀 (ℎ1). Since ℎ1 ∉ 𝑡4 it
follows that 𝑀 (ℎ1) contains three agents in 𝐻. Suppose 𝑀 (ℎ1) = {ℎ1, ℎ𝑖5 , ℎ𝑖6}
where 2 ≤ 𝑖5, 𝑖6 ≤ 11. Since we have established 𝑀 (ℎ2) = {ℎ2, ℎ7, 𝛼𝑗 } and
𝑀 (ℎ4) = {ℎ3, ℎ4, ℎ6} it follows that {ℎ𝑖5 , ℎ𝑖6} ⊂ {5, 8, 9, 10, 11}. Thus there are(5
2
)
= 10 possible assignments of {ℎ𝑖5 , ℎ𝑖6}, which we shall now consider.

∗ If {ℎ𝑖5 , ℎ𝑖6} = {5, 8} then ℎ7 has j-envy for ℎ1 since 𝑢ℎ7 (𝑀) = 3 < 8 =

𝑢ℎ7 ({ℎ5, ℎ8}), 𝑣ℎ5 (ℎ1) = 2 < 3 = 𝑣ℎ5 (ℎ7), and 𝑣ℎ8 (ℎ1) = 2 < 5 = 𝑣ℎ8 (ℎ7).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {5, 9} then ℎ7 has j-envy for ℎ1 since 𝑢ℎ7 (𝑀) = 3 < 6 =

𝑢ℎ7 ({ℎ5, ℎ9}), 𝑣ℎ5 (ℎ1) = 2 < 3 = 𝑣ℎ5 (ℎ7), and 𝑣ℎ9 (ℎ1) = 2 < 3 = 𝑣ℎ9 (ℎ7).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {5, 10} then 𝑢ℎ10 (𝑀) = 5. It follows that ℎ10 has j-envy for 𝛼𝑗

since 𝑢ℎ10 (𝑀) = 5 < 7 = 𝑢ℎ10 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 6 = 𝑣ℎ2 (ℎ10), and
𝑣ℎ7 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ7 (ℎ10).

∗ If {ℎ𝑖5 , ℎ𝑖6} = {5, 11} then 𝑢ℎ11 (𝑀) = 3. It follows that ℎ11 has j-envy for 𝛼𝑗
since 𝑢ℎ11 (𝑀) = 3 < 6 = 𝑢ℎ11 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ2 (ℎ11), and
𝑣ℎ7 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ7 (ℎ11).

∗ If {ℎ𝑖5 , ℎ𝑖6} = {8, 9} then ℎ7 has j-envy for ℎ1 since 𝑢ℎ7 (𝑀) = 3 < 8 =

𝑢ℎ7 ({ℎ8, ℎ9}), 𝑣ℎ8 (ℎ1) = 2 < 5 = 𝑣ℎ8 (ℎ7), and 𝑣ℎ9 (ℎ1) = 2 < 3 = 𝑣ℎ9 (ℎ7).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {8, 10} then it remains that 𝑀 (ℎ9) = {ℎ5, ℎ9, ℎ11} and thus
𝑢ℎ9 (𝑀) = 𝑢{ℎ5,ℎ11} = 4. It follows that ℎ9 has j-envy for ℎ1 since 𝑢ℎ9 (𝑀) =
4 < 9 = 𝑢ℎ9 ({ℎ8, ℎ10}), 𝑣ℎ8 (ℎ1) = 2 < 4 = 𝑣ℎ8 (ℎ9), and 𝑣ℎ10 (ℎ1) = 2 < 5 =

𝑣ℎ10 (ℎ9).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {8, 11} then 𝑢ℎ11 (𝑀) = 3. It follows that ℎ11 has j-envy for 𝛼𝑗

since 𝑢ℎ11 (𝑀) = 3 < 6 = 𝑢ℎ11 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ2 (ℎ11), and
𝑣ℎ7 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ7 (ℎ11).
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∗ If {ℎ𝑖5 , ℎ𝑖6} = {9, 10} then it remains that 𝑀 (ℎ9) = {ℎ5, ℎ8, ℎ11} and thus
𝑢ℎ11 (𝑀) = 𝑢{ℎ5,ℎ8} = 2. It follows that ℎ11 has j-envy for 𝛼𝑗 since 𝑢ℎ11 (𝑀) =
2 < 6 = 𝑢ℎ11 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ2 (ℎ11), and 𝑣ℎ7 (𝛼𝑗 ) = 0 < 1 =

𝑣ℎ7 (ℎ11).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {9, 11} then 𝑢ℎ11 (𝑀) = 5. It follows that ℎ11 has j-envy for 𝛼𝑗

since 𝑢ℎ11 (𝑀) = 5 < 6 = 𝑢ℎ11 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ2 (ℎ11), and
𝑣ℎ7 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ7 (ℎ11).

∗ If {ℎ𝑖5 , ℎ𝑖6} = {10, 11} then ℎ2 has j-envy for ℎ1 since 𝑢ℎ2 (𝑀) = 3 < 11 =

𝑢ℎ2 ({ℎ10, ℎ11}), 𝑣ℎ10 (ℎ1) = 2 < 6 = 𝑣ℎ10 (ℎ2), and 𝑣ℎ11 (ℎ1) = 2 < 5 =

𝑣ℎ11 (ℎ2).

– Suppose {𝑖3, 𝑖4} = {3, 9}. It follows that ℎ2 has j-envy for ℎ9 since 𝑢ℎ2 (𝑀) = 3 <
10 = 𝑢ℎ2 ({ℎ3, ℎ4}), 𝑣ℎ3 (ℎ9) = 1 < 4 = 𝑣ℎ3 (ℎ2), and 𝑣ℎ4 (ℎ9) = 3 < 6 = 𝑣ℎ4 (ℎ2).

– Suppose {𝑖3, 𝑖4} = {5, 6}. Consider ℎ3. If 𝑢ℎ3 (𝑀) ≤ 4 then ℎ3 has j-envy for
𝛼𝑗 , since 𝑢ℎ3 (𝑀) ≤ 4 < 5 = 𝑢ℎ3 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 4 = 𝑣ℎ2 (ℎ3), and
𝑣ℎ7 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ7 (ℎ3). It follows that 𝑢ℎ3 (𝑀) ≥ 5. We have established
that ℎ4 ∉ 𝑀 (ℎ3), ℎ5 ∉ 𝑀 (ℎ3) and ℎ2 ∉ 𝑀 (ℎ3) so, by the design of 𝐻, there
are three possibilities: either 𝑀 (ℎ3) = {ℎ1, ℎ3, ℎ8}, 𝑀 (ℎ3) = {ℎ1, ℎ3, ℎ11}, or
𝑀 (ℎ3) = {ℎ3, ℎ8, ℎ11}.

∗ If 𝑀 (ℎ3) = {ℎ1, ℎ3, ℎ8} then 𝑢ℎ8 (𝑀) = 5. It follows that ℎ8 has j-envy for
𝛼𝑗 , since 𝑢ℎ8 (𝑀) = 5 < 6 = 𝑢ℎ8 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ2 (ℎ8), and
𝑣ℎ7 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ7 (ℎ8).

∗ If 𝑀 (ℎ3) = {ℎ1, ℎ3, ℎ11} then 𝑢ℎ11 (𝑀) = 5. It follows that ℎ11 has j-envy for
𝛼𝑗 , since 𝑢ℎ11 (𝑀) = 5 < 6 = 𝑢ℎ11 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ2 (ℎ11),
and 𝑣ℎ7 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ7 (ℎ11).

∗ If 𝑀 (ℎ3) = {ℎ3, ℎ8, ℎ11} then 𝑢ℎ8 (𝑀) = 4. It follows that ℎ8 has j-envy for
𝛼𝑗 , since 𝑢ℎ8 (𝑀) = 4 < 6 = 𝑢ℎ8 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ2 (ℎ8), and
𝑣ℎ7 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ7 (ℎ8).

– Suppose {𝑖3, 𝑖4} = {5, 9}. Consider ℎ6. It must be that 𝑢ℎ6 (𝑀) ≤ 9. Now ℎ6 has j-
envy for ℎ9 since 𝑢ℎ6 (𝑀) ≤ 9 < 11 = 𝑢ℎ6 ({ℎ4, ℎ5}), 𝑣ℎ4 (ℎ9) = 3 < 6 = 𝑣ℎ4 (ℎ6),
and 𝑣ℎ5 (ℎ9) = 1 < 5 = 𝑣ℎ5 (ℎ6).

– Suppose {𝑖3, 𝑖4} = {6, 8}. Consider ℎ10. If 𝑢ℎ10 (𝑀) ≤ 6 then ℎ10 has j-envy for
𝛼𝑗 , since 𝑢ℎ10 (𝑀) ≤ 6 < 7 = 𝑢ℎ10 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 6 = 𝑣ℎ2 (ℎ10), and
𝑣ℎ7 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ7 (ℎ10). It follows that 𝑢ℎ10 (𝑀) ≥ 7. We have established that
ℎ2 ∉ 𝑀 (ℎ10) and ℎ8 ∉ 𝑀 (ℎ10) so, by the design of 𝐻, there are four possibilities:
either 𝑀 (ℎ10) = {ℎ1, ℎ9, ℎ10}, 𝑀 (ℎ10) = {ℎ5, ℎ9, ℎ10}, 𝑀 (ℎ10) = {ℎ5, ℎ10, ℎ11},
or 𝑀 (ℎ3) = {ℎ9, ℎ10, ℎ11}.
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∗ If𝑀 (ℎ10) = {ℎ1, ℎ9, ℎ10} then ℎ8 has j-envy for ℎ1, since 𝑢ℎ8 (𝑀) = 7 < 10 =

𝑢ℎ8 ({ℎ9, ℎ10}), 𝑣ℎ9 (ℎ1) = 2 < 4 = 𝑣ℎ9 (ℎ8), and 𝑣ℎ10 (ℎ1) = 2 < 6 = 𝑣ℎ10 (ℎ8).
∗ If𝑀 (ℎ10) = {ℎ5, ℎ9, ℎ10} then ℎ8 has j-envy for ℎ5, since 𝑢ℎ8 (𝑀) = 7 < 10 =

𝑢ℎ8 ({ℎ9, ℎ10}), 𝑣ℎ9 (ℎ5) = 1 < 4 = 𝑣ℎ9 (ℎ8), and 𝑣ℎ10 (ℎ5) = 3 < 6 = 𝑣ℎ10 (ℎ8).
∗ If 𝑀 (ℎ10) = {ℎ5, ℎ10, ℎ11} then 𝑢ℎ11 (𝑀) = 5. It follows that ℎ11 has j-envy

for 𝛼𝑗 , since 𝑢ℎ11 (𝑀) = 5 < 6 = 𝑢ℎ11 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ2 (ℎ11),
and 𝑣ℎ7 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ7 (ℎ11).

∗ If 𝑀 (ℎ3) = {ℎ9, ℎ10, ℎ11} then ℎ8 has j-envy for ℎ11, since 𝑢ℎ8 (𝑀) = 7 <
10 = 𝑢ℎ8 ({ℎ9, ℎ10}), 𝑣ℎ9 (ℎ11) = 3 < 4 = 𝑣ℎ9 (ℎ8), and 𝑣ℎ10 (ℎ11) = 4 < 6 =

𝑣ℎ10 (ℎ8).

– Suppose {𝑖3, 𝑖4} = {6, 9}. It must be that 𝑢ℎ5 (𝑀) ≤ 6. Now ℎ5 has j-envy for
ℎ9 since 𝑢ℎ5 (𝑀) ≤ 6 < 9 = 𝑢ℎ5 ({ℎ4, ℎ6}), 𝑣ℎ4 (ℎ9) = 3 < 4 = 𝑣ℎ4 (ℎ5), and
𝑣ℎ6 (ℎ9) = 1 < 5 = 𝑣ℎ6 (ℎ5).

– Suppose {𝑖3, 𝑖4} = {6, 10}. It must be that 𝑢ℎ5 (𝑀) ≤ 5. Now ℎ5 has j-envy for
ℎ10 since 𝑢ℎ5 (𝑀) ≤ 5 < 9 = 𝑢ℎ5 ({ℎ4, ℎ6}), 𝑣ℎ4 (ℎ10) = 1 < 4 = 𝑣ℎ4 (ℎ5), and
𝑣ℎ6 (ℎ10) = 1 < 5 = 𝑣ℎ6 (ℎ5).

– Suppose {𝑖3, 𝑖4} = {6, 11}. It must be that 𝑢ℎ5 (𝑀) ≤ 6. Now ℎ5 has j-envy for
ℎ11 since 𝑢ℎ5 (𝑀) ≤ 6 < 9 = 𝑢ℎ5 ({ℎ4, ℎ6}), 𝑣ℎ4 (ℎ11) = 1 < 4 = 𝑣ℎ4 (ℎ5), and
𝑣ℎ6 (ℎ11) = 3 < 5 = 𝑣ℎ6 (ℎ5).

• Suppose {𝑖1, 𝑖2} = {3, 4}. If 𝑢ℎ2 (𝑀) ≤ 9 then ℎ2 has j-envy for 𝛼𝑗 , since 𝑢ℎ2 (𝑀) ≤
9 < 10 = 𝑢ℎ2 ({ℎ3, ℎ4}), 𝑣ℎ3 (𝛼𝑗 ) = 0 < 4 = 𝑣ℎ3 (ℎ2), and 𝑣ℎ4 (𝛼𝑗 ) = 0 < 6 = 𝑣ℎ4 (ℎ2). It
follows that 𝑢ℎ2 (𝑀) ≥ 10. The only possibility is that 𝑀 (ℎ2) = {ℎ2, ℎ10, ℎ11}. Now
consider ℎ5. If 𝑢ℎ5 (𝑀) ≤ 6 then ℎ5 has j-envy for 𝛼𝑗 , since 𝑢ℎ5 (𝑀) ≤ 6 < 7 = 𝑢ℎ5 ({ℎ3,

ℎ4}), 𝑣ℎ3 (𝛼𝑗 ) = 0 < 3 = 𝑣ℎ3 (ℎ5), and 𝑣ℎ4 (𝛼𝑗 ) = 0 < 4 = 𝑣ℎ4 (ℎ5). It follows that
𝑢ℎ5 (𝑀) ≥ 7. Since we have established 𝑀 (ℎ2) = {ℎ2, ℎ10, ℎ11} and 𝑡4 = {ℎ3, ℎ4, 𝛼𝑗 },
there are just two possibilities: either 𝑀 (ℎ5) = {ℎ1, ℎ5, ℎ6} or 𝑀 (ℎ5) = {ℎ5, ℎ6, ℎ7}.

– If 𝑀 (ℎ5) = {ℎ1, ℎ5, ℎ6} then ℎ4 has j-envy for ℎ1 since 𝑢ℎ4 (𝑀) = 5 < 10 =

𝑢ℎ4 ({ℎ5, ℎ6}), 𝑣ℎ5 (ℎ1) = 2 < 4 = 𝑣ℎ5 (ℎ4), and 𝑣ℎ6 (ℎ1) = 2 < 6 = 𝑣ℎ6 (ℎ4).

– If 𝑀 (ℎ5) = {ℎ5, ℎ6, ℎ7} then ℎ4 has j-envy for ℎ7 since 𝑢ℎ4 (𝑀) = 5 < 10 =

𝑢ℎ4 ({ℎ5, ℎ6}), 𝑣ℎ5 (ℎ7) = 3 < 4 = 𝑣ℎ5 (ℎ4), and 𝑣ℎ6 (ℎ7) = 4 < 6 = 𝑣ℎ6 (ℎ4).

• Suppose {𝑖1, 𝑖2} = {3, 5}. If 𝑢ℎ4 (𝑀) ≤ 8 then ℎ4 has j-envy for 𝛼𝑗 , since 𝑢ℎ4 (𝑀) ≤
8 < 9 = 𝑢ℎ4 ({ℎ3, ℎ5}), 𝑣ℎ3 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ3 (ℎ4), and 𝑣ℎ5 (𝛼𝑗 ) = 0 < 4 = 𝑣ℎ5 (ℎ4). It
follows that 𝑢ℎ4 (𝑀) ≥ 9. There are three possibilities: either 𝑀 (ℎ4) = {ℎ2, ℎ4, ℎ6},
𝑀 (ℎ4) = {ℎ2, ℎ4, ℎ9}, or 𝑀 (ℎ4) = {ℎ4, ℎ6, ℎ9}.
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– Suppose 𝑀 (ℎ4) = {ℎ2, ℎ4, ℎ6}. In this case, consider 𝑀 (ℎ1). Since ℎ1 ∉ 𝑡4 it
follows that 𝑀 (ℎ1) contains three agents in 𝐻. Suppose 𝑀 (ℎ1) = {ℎ1, ℎ𝑖5 , ℎ𝑖6}
where 1 ≤ 𝑖5, 𝑖6 ≤ 11. Since we have established 𝑀 (ℎ3) = {ℎ3, ℎ5, 𝛼𝑗 } and
𝑀 (ℎ2) = {ℎ2, ℎ4, ℎ6} it follows that {ℎ𝑖5 , ℎ𝑖6} ⊂ {7, 8, 9, 10, 11}. Thus there are(5
2
)
= 10 possible assignments of {ℎ𝑖5 , ℎ𝑖6}, which we shall now consider.

∗ If {ℎ𝑖5 , ℎ𝑖6} = {7, 8} then ℎ6 has j-envy for ℎ1, since 𝑢ℎ6 (𝑀) = 7 < 10 =

𝑢ℎ6 ({ℎ7, ℎ8}), 𝑣ℎ7 (ℎ1) = 2 < 4 = 𝑣ℎ7 (ℎ6), and 𝑣ℎ8 (ℎ1) = 2 < 6 = 𝑣ℎ8 (ℎ6).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {7, 9} then it remains that 𝑀 (ℎ8) = {ℎ8, ℎ10, ℎ11}. It follows

that ℎ8 has j-envy for ℎ1, since 𝑢ℎ8 (𝑀) = 7 < 9 = 𝑢ℎ8 ({ℎ7, ℎ9}), 𝑣ℎ7 (ℎ1) =
2 < 5 = 𝑣ℎ7 (ℎ8), and 𝑣ℎ9 (ℎ1) = 2 < 4 = 𝑣ℎ9 (ℎ8).

∗ If {ℎ𝑖5 , ℎ𝑖6} = {7, 10} then ℎ7 has j-envy for 𝛼𝑗 , since 𝑢ℎ7 (𝑀) = 3 < 4 =

𝑢ℎ7 ({ℎ3, ℎ5}), 𝑣ℎ3 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ3 (ℎ7), and 𝑣ℎ5 (𝛼𝑗 ) = 0 < 3 = 𝑣ℎ5 (ℎ7).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {7, 11} then ℎ7 has j-envy for 𝛼𝑗 , since 𝑢ℎ7 (𝑀) = 3 < 4 =

𝑢ℎ7 ({ℎ3, ℎ5}), 𝑣ℎ3 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ3 (ℎ7), and 𝑣ℎ5 (𝛼𝑗 ) = 0 < 3 = 𝑣ℎ5 (ℎ7).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {8, 9} then it remains that 𝑀 (ℎ7) = {ℎ7, ℎ10, ℎ11}. It follows

that ℎ7 has j-envy for ℎ1, since 𝑢ℎ7 (𝑀) = 2 < 8 = 𝑢ℎ7 ({ℎ8, ℎ9}), 𝑣ℎ8 (ℎ1) =
2 < 5 = 𝑣ℎ8 (ℎ7), and 𝑣ℎ9 (ℎ1) = 2 < 3 = 𝑣ℎ9 (ℎ7).

∗ If {ℎ𝑖5 , ℎ𝑖6} = {8, 10} then it remains that 𝑀 (ℎ9) = {ℎ7, ℎ9, ℎ11}. It follows
that ℎ9 has j-envy for ℎ1, since 𝑢ℎ9 (𝑀) = 6 < 9 = 𝑢ℎ9 ({ℎ8, ℎ10}), 𝑣ℎ8 (ℎ1) =
2 < 4 = 𝑣ℎ8 (ℎ9), and 𝑣ℎ10 (ℎ1) = 2 < 5 = 𝑣ℎ10 (ℎ9).

∗ If {ℎ𝑖5 , ℎ𝑖6} = {8, 11} then ℎ11 has j-envy for 𝛼𝑗 , since 𝑢ℎ11 (𝑀) = 3 < 4 =

𝑢ℎ11 ({ℎ3, ℎ5}), 𝑣ℎ3 (𝛼𝑗 ) = 0 < 3 = 𝑣ℎ3 (ℎ11), and 𝑣ℎ5 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ5 (ℎ11).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {9, 10} then it remains that 𝑀 (ℎ11) = {ℎ7, ℎ8, ℎ11}. It fol-

lows that ℎ11 has j-envy for ℎ1, since 𝑢ℎ11 (𝑀) = 2 < 7 = 𝑢ℎ11 ({ℎ9, ℎ10}),
𝑣ℎ9 (ℎ1) = 2 < 3 = 𝑣ℎ9 (ℎ11), and 𝑣ℎ10 (ℎ1) = 2 < 4 = 𝑣ℎ10 (ℎ11).

∗ If {ℎ𝑖5 , ℎ𝑖6} = {9, 11} then it remains that 𝑀 (ℎ10) = {ℎ7, ℎ8, ℎ10}. It fol-
lows that ℎ10 has j-envy for ℎ1, since 𝑢ℎ10 (𝑀) = 7 < 9 = 𝑢ℎ10 ({ℎ9, ℎ11}),
𝑣ℎ9 (ℎ1) = 2 < 5 = 𝑣ℎ9 (ℎ10), and 𝑣ℎ11 (ℎ1) = 2 < 4 = 𝑣ℎ11 (ℎ10).

∗ If {ℎ𝑖5 , ℎ𝑖6} = {10, 11} then ℎ2 has j-envy for ℎ1, since 𝑢ℎ2 (𝑀) = 7 < 11 =

𝑢ℎ2 ({ℎ10, ℎ11}), 𝑣ℎ10 (ℎ1) = 2 < 6 = 𝑣ℎ10 (ℎ2), and 𝑣ℎ11 (ℎ1) = 2 < 5 =

𝑣ℎ11 (ℎ2).

– Suppose 𝑀 (ℎ4) = {ℎ2, ℎ4, ℎ9}. It follows that ℎ3 has j-envy for ℎ9, since
𝑢ℎ3 (𝑀) = 3 < 9 = 𝑢ℎ3 ({ℎ2, ℎ4}), 𝑣ℎ2 (ℎ9) = 1 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ4 (ℎ9) = 3 <
5 = 𝑣ℎ4 (ℎ3).

– Suppose 𝑀 (ℎ4) = {ℎ4, ℎ6, ℎ9}. It follows that ℎ5 has j-envy for ℎ9, since
𝑢ℎ5 (𝑀) = 3 < 9 = 𝑢ℎ5 ({ℎ4, ℎ6}), 𝑣ℎ4 (ℎ9) = 3 < 4 = 𝑣ℎ4 (ℎ5), and 𝑣ℎ6 (ℎ9) = 1 <
5 = 𝑣ℎ6 (ℎ5).
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• Suppose {𝑖1, 𝑖2} = {3, 6}. It must be that 𝑢ℎ4 (𝑀) ≤ 10. It follows that ℎ4 has j-envy
for 𝛼𝑗 since 𝑢ℎ4 (𝑀) ≤ 10 < 11 = 𝑢ℎ4 ({ℎ3, ℎ6}), 𝑣ℎ3 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ3 (ℎ4), and
𝑣ℎ6 (𝛼𝑗 ) = 0 < 6 = 𝑣ℎ6 (ℎ4).

• Suppose {𝑖1, 𝑖2} = {3, 7}. If 𝑢ℎ8 (𝑀) ≤ 7 then ℎ8 has j-envy for 𝛼𝑗 , since 𝑢ℎ8 (𝑀) ≤
7 < 8 = 𝑢ℎ8 ({ℎ3, ℎ7}), 𝑣ℎ3 (𝛼𝑗 ) = 0 < 3 = 𝑣ℎ3 (ℎ8), and 𝑣ℎ7 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ7 (ℎ8).
It follows that 𝑢ℎ8 (𝑀) ≥ 8. By the design of 𝐻, it follows that 𝑀 (ℎ8) contains three
agents in 𝐻. Since 𝑡4 = {ℎ3, ℎ7, 𝛼𝑗 } it must be that 𝑀 (ℎ8) = {ℎ8, ℎ𝑖3 , ℎ𝑖4} where
{𝑖3, 𝑖4} ⊂ {1, 2, 4, 5, 6, 9, 10, 11}. Recall that 𝑣ℎ8 (ℎ1) = 2, 𝑣ℎ8 (ℎ2) = 1, 𝑣ℎ8 (ℎ4) = 1,
𝑣ℎ8 (ℎ5) = 1, 𝑣ℎ8 (ℎ6) = 6, 𝑣ℎ8 (ℎ9) = 4, 𝑣ℎ8 (ℎ10) = 6, and 𝑣ℎ8 (ℎ11) = 1. Since we
established 𝑢ℎ8 (𝑀) ≥ 8 it follows that there are five possibilities: {𝑖3, 𝑖4} = {1, 6},
{𝑖3, 𝑖4} = {1, 10}, {𝑖3, 𝑖4} = {6, 9}, {𝑖3, 𝑖4} = {6, 10}, and {𝑖3, 𝑖4} = {9, 10}, which we
shall now consider.

– Suppose {𝑖3, 𝑖4} = {1, 6}. It follows that ℎ7 has j-envy for ℎ1, since 𝑢ℎ7 (𝑀) = 1 <
9 = 𝑢ℎ7 ({ℎ6, ℎ8}), 𝑣ℎ6 (ℎ1) = 2 < 4 = 𝑣ℎ6 (ℎ7), and 𝑣ℎ8 (ℎ1) = 2 < 5 = 𝑣ℎ8 (ℎ7).

– Suppose {𝑖3, 𝑖4} = {1, 10}. Consider ℎ9. It follows that 𝑢ℎ9 (𝑀) ≤ 6. Now ℎ9

has j-envy for ℎ1, since 𝑢ℎ9 (𝑀) ≤ 6 < 9 = 𝑢ℎ9 ({ℎ8, ℎ10}), 𝑣ℎ8 (ℎ1) = 2 < 4 =

𝑣ℎ8 (ℎ9), and 𝑣ℎ10 (ℎ1) = 2 < 5 = 𝑣ℎ10 (ℎ9).

– Suppose {𝑖3, 𝑖4} = {6, 9}. It follows that ℎ7 has j-envy for ℎ9, since 𝑢ℎ7 (𝑀) = 1 <
9 = 𝑢ℎ7 ({ℎ6, ℎ8}), 𝑣ℎ6 (ℎ9) = 1 < 4 = 𝑣ℎ6 (ℎ7), and 𝑣ℎ8 (ℎ9) = 4 < 5 = 𝑣ℎ8 (ℎ7).

– Suppose {𝑖3, 𝑖4} = {6, 10}. In this case, consider 𝑀 (ℎ1). Since ℎ1 ∉ 𝑡4 it
follows that 𝑀 (ℎ1) contains three agents in 𝐻. Suppose 𝑀 (ℎ1) = {ℎ1, ℎ𝑖5 , ℎ𝑖6}
where 2 ≤ 𝑖5, 𝑖6 ≤ 11. Since we have established 𝑀 (ℎ3) = {ℎ3, ℎ7, 𝛼𝑗 } and
𝑀 (ℎ6) = {ℎ6, ℎ8, ℎ10} it follows that {ℎ𝑖5 , ℎ𝑖6} ⊂ {2, 4, 5, 9, 11}. Thus there are(5
2
)
= 10 possible assignments of {ℎ𝑖5 , ℎ𝑖6}, which we shall now consider.

∗ If {ℎ𝑖5 , ℎ𝑖6} = {2, 4} then ℎ3 has j-envy for ℎ1, since 𝑢ℎ3 (𝑀) = 1 < 9 =

𝑢ℎ3 ({ℎ2, ℎ4}), 𝑣ℎ2 (ℎ1) = 2 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ4 (ℎ1) = 2 < 5 = 𝑣ℎ4 (ℎ3).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {2, 5} then ℎ3 has j-envy for ℎ1, since 𝑢ℎ3 (𝑀) = 1 < 7 =

𝑢ℎ3 ({ℎ2, ℎ5}), 𝑣ℎ2 (ℎ1) = 2 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ5 (ℎ1) = 2 < 3 = 𝑣ℎ5 (ℎ3).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {2, 9} then it remains that 𝑀 (ℎ11) = {ℎ4, ℎ5, ℎ11}. Now ℎ3

has j-envy for ℎ11, since 𝑢ℎ3 (𝑀) = 1 < 8 = 𝑢ℎ3 ({ℎ4, ℎ5}), 𝑣ℎ4 (ℎ11) = 1 <
5 = 𝑣ℎ4 (ℎ3), and 𝑣ℎ5 (ℎ11) = 1 < 3 = 𝑣ℎ5 (ℎ3).

∗ If {ℎ𝑖5 , ℎ𝑖6} = {2, 11} then ℎ3 has j-envy for ℎ1, since 𝑢ℎ3 (𝑀) = 1 < 7 =

𝑢ℎ3 ({ℎ2, ℎ11}), 𝑣ℎ2 (ℎ1) = 2 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ11 (ℎ1) = 2 < 3 = 𝑣ℎ11 (ℎ3).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {4, 5} then ℎ3 has j-envy for ℎ1, since 𝑢ℎ3 (𝑀) = 1 < 8 =

𝑢ℎ3 ({ℎ5, ℎ5}), 𝑣ℎ4 (ℎ1) = 2 < 5 = 𝑣ℎ4 (ℎ3), and 𝑣ℎ5 (ℎ1) = 2 < 3 = 𝑣ℎ5 (ℎ3).
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∗ If {ℎ𝑖5 , ℎ𝑖6} = {4, 9} then ℎ4 has j-envy for 𝛼𝑗 , since 𝑢ℎ4 (𝑀) = 5 < 6 =

𝑢ℎ4 ({ℎ3, ℎ7}), 𝑣ℎ3 (𝛼𝑗 ) = 0 < 5 = 𝑣ℎ3 (ℎ4), and 𝑣ℎ7 (𝛼𝑗 ) = 0 < 1 = 𝑣ℎ7 (ℎ4).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {4, 11} then ℎ3 has j-envy for ℎ1, since 𝑢ℎ3 (𝑀) = 1 < 8 =

𝑢ℎ3 ({ℎ4, ℎ11}), 𝑣ℎ4 (ℎ1) = 2 < 5 = 𝑣ℎ4 (ℎ3), and 𝑣ℎ11 (ℎ1) = 2 < 3 = 𝑣ℎ11 (ℎ3).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {5, 9} then ℎ5 has j-envy for 𝛼𝑗 , since 𝑢ℎ5 (𝑀) = 3 < 6 =

𝑢ℎ5 ({ℎ3, ℎ7}), 𝑣ℎ3 (𝛼𝑗 ) = 0 < 3 = 𝑣ℎ3 (ℎ5), and 𝑣ℎ7 (𝛼𝑗 ) = 0 < 3 = 𝑣ℎ7 (ℎ5).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {5, 11} then ℎ3 has j-envy for ℎ1, since 𝑢ℎ3 (𝑀) = 1 < 6 =

𝑢ℎ3 ({ℎ5, ℎ11}), 𝑣ℎ5 (ℎ1) = 2 < 3 = 𝑣ℎ5 (ℎ3), and 𝑣ℎ11 (ℎ1) = 2 < 3 = 𝑣ℎ11 (ℎ3).
∗ If {ℎ𝑖5 , ℎ𝑖6} = {9, 11} then ℎ10 has j-envy for ℎ1, since 𝑢ℎ10 (𝑀) = 7 <

9 = 𝑢ℎ10 ({ℎ9, ℎ11}), 𝑣ℎ9 (ℎ1) = 2 < 5 = 𝑣ℎ9 (ℎ10), and 𝑣ℎ11 (ℎ1) = 2 < 4 =

𝑣ℎ11 (ℎ10).

– Suppose {𝑖3, 𝑖4} = {9, 10}. Consider ℎ2. If 𝑢ℎ2 (𝑀) ≤ 6 then ℎ2 has j-envy for
𝛼𝑗 , since 𝑢ℎ2 (𝑀) ≤ 6 < 7 = 𝑢ℎ2 ({ℎ3, ℎ7}), 𝑣ℎ3 (𝛼𝑗 ) = 0 < 4 = 𝑣ℎ3 (ℎ2), and
𝑣ℎ7 (𝛼𝑗 ) = 0 < 3 = 𝑣ℎ7 (ℎ2). It follows that 𝑢ℎ2 (𝑀) ≥ 7. We have established
that ℎ3 ∉ 𝑀 (ℎ2), ℎ7 ∉ 𝑀 (ℎ2), and ℎ10 ∉ 𝑀 (ℎ2) so, by the design of 𝐻, there
are three possibilities: either 𝑀 (ℎ2) = {ℎ1, ℎ2, ℎ4}, 𝑀 (ℎ2) = {ℎ1, ℎ2, ℎ11}, or
𝑀 (ℎ2) = {ℎ2, ℎ4, ℎ11}.

∗ If 𝑀 (ℎ2) = {ℎ1, ℎ2, ℎ4} then ℎ3 has j-envy for ℎ1, since 𝑢ℎ3 (𝑀) = 1 < 9 =

𝑢ℎ3 ({ℎ2, ℎ4}), 𝑣ℎ2 (ℎ1) = 2 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ4 (ℎ1) = 2 < 5 = 𝑣ℎ4 (ℎ3).
∗ If 𝑀 (ℎ2) = {ℎ1, ℎ2, ℎ11} then ℎ3 has j-envy for ℎ1, since 𝑢ℎ3 (𝑀) = 1 < 7 =

𝑢ℎ3 ({ℎ2, ℎ11}), 𝑣ℎ2 (ℎ1) = 2 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ11 (ℎ1) = 2 < 3 = 𝑣ℎ11 (ℎ3).
∗ If 𝑀 (ℎ2) = {ℎ2, ℎ4, ℎ11} then it remains that 𝑀 (ℎ1) = {ℎ1, ℎ5, ℎ6}. Now ℎ7

has j-envy for ℎ1, since 𝑢ℎ7 (𝑀) = 1 < 7 = 𝑢ℎ7 ({ℎ5, ℎ6}), 𝑣ℎ5 (ℎ1) = 2 < 3 =

𝑣ℎ5 (ℎ7), and 𝑣ℎ6 (ℎ1) = 2 < 4 = 𝑣ℎ6 (ℎ7).

□

Lemma 7.46. If (𝑁,𝑉) contains a j-envy-free matching 𝑀 and 𝜎(𝐻, 𝑀) = 4 then 𝐻 has an
open configuration in 𝑀 .

Proof. Suppose 𝜎(𝐻, 𝑀) = 4. Consider 𝑢ℎ1 (𝑀). By the design of 𝐻, it must be that
2 ≤ 𝑢ℎ1 (𝑀) ≤ 4. If 𝑢ℎ1 (𝑀) < 4 then Lemma 7.44 shows that 𝐻 has an open configuration
in 𝑀 . If 𝑢ℎ1 (𝑀) = 4 then Lemma 7.45 shows that 𝐻 has an open configuration in 𝑀 . □

Lemma 7.47. If (𝑁,𝑉) contains a j-envy-free matching 𝑀 and 𝜎(𝐻, 𝑀) = 5 then 𝐻 has an
open configuration in 𝑀 .

Proof. Suppose, to the contrary, that 𝜎(𝐻, 𝑀) = 5 and 𝐻 has a closed configuration in 𝑀 .
Then it must be that four triples in 𝑀 each contain exactly two agents in 𝐻 and one triple
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in 𝑀 contains exactly three agents in 𝐻. Suppose 𝑡1, 𝑡2, 𝑡3, 𝑡4 ∈ 𝑀 each contain exactly two
agents in 𝐻 and 𝑡5 ∈ 𝑀 contains exactly three agents in 𝐻, where 𝑡1 = {ℎ𝑖1 , ℎ𝑖2 , 𝛼𝑗1} where
1 ≤ 𝑖1, 𝑖2 ≤ 11 and 𝛼𝑗1 ∈ 𝑁 \𝐻. We use a case analysis on 𝑣ℎ𝑖1 (ℎ𝑖2) to prove a contradiction.
Note that by the design of 𝐻 it must be that 1 ≤ 𝑣ℎ𝑖1 (ℎ𝑖2) ≤ 6.

• Suppose 𝑣ℎ𝑖1 (ℎ𝑖2) = 6. By the symmetry of 𝐻, assume without loss of generality that
{𝑖1, 𝑖2} = {2, 4}. It follows that 𝑢ℎ3 (𝑀) ≤ 6. Now ℎ3 has j-envy for 𝛼𝑗1 since 𝑢ℎ3 (𝑀) ≤
6 < 9 = 𝑢ℎ3 ({ℎ2, ℎ4}), 𝑣ℎ2 (𝛼𝑗1) = 0 < 4 = 𝑣ℎ2 (ℎ3), and 𝑣ℎ4 (𝛼𝑗1) = 0 < 5 = 𝑣ℎ4 (ℎ3).
This contradicts the supposition that 𝑀 is j-envy-free. We shall use a similar technique
to prove a contradiction when considering the other cases of 𝑣ℎ𝑖1 (ℎ𝑖2).

• Suppose 𝑣ℎ𝑖1 (ℎ𝑖2) = 5. Assume without loss of generality that {𝑖1, 𝑖2} = {3, 4}. If
𝑢ℎ2 (𝑀) ≤ 9 then ℎ2 has j-envy for 𝛼𝑗1 since 𝑢ℎ2 (𝑀) ≤ 9 < 10 = 𝑢ℎ2 ({ℎ3, ℎ4}),
𝑣ℎ3 (𝛼𝑗1) = 0 < 4 = 𝑣ℎ3 (ℎ2), and 𝑣ℎ4 (𝛼𝑗1) = 0 < 6 = 𝑣ℎ4 (ℎ2). It follows that
𝑢ℎ2 (𝑀) ≥ 10. The only possibility is that 𝑀 (ℎ2) = {ℎ2, ℎ10, ℎ11}. It must be that
𝑀 (ℎ2) = 𝑡5. We now consider ℎ6. Since ℎ6 ∉ 𝑡5 it must be that either ℎ6 ∈ 𝑡2,
ℎ6 ∈ 𝑡3, or ℎ6 ∈ 𝑡4. Assume without loss of generality that ℎ6 ∈ 𝑡2 and that 𝑡2 = {ℎ6,

ℎ𝑖3 , 𝛼𝑗2} where 1 ≤ 𝑖3 ≤ 11 and 𝛼𝑗2 ∈ 𝑁 \ 𝐻. If 𝑢ℎ6 (𝑀) ≤ 6 then ℎ6 has j-envy
for 𝛼𝑗1 since 𝑢ℎ6 (𝑀) ≤ 6 < 7 = 𝑢ℎ6 ({ℎ3, ℎ4}), 𝑣ℎ3 (𝛼𝑗1) = 0 < 1 = 𝑣ℎ3 (ℎ6), and
𝑣ℎ4 (𝛼𝑗1) = 0 < 6 = 𝑣ℎ4 (ℎ6). It follows that 𝑢ℎ6 (𝑀) ≥ 7. Since 𝑣ℎ6 (𝛼𝑗2) = 0 it follows
that 𝑣ℎ6 (ℎ𝑖3) = 𝑢ℎ6 (𝑀) ≥ 7, which is a contradiction.

• Suppose 𝑣ℎ𝑖1 (ℎ𝑖2) = 4. Assume without loss of generality that {𝑖1, 𝑖2} = {2, 3}.
If 𝑢ℎ4 (𝑀) ≤ 10 then ℎ4 has j-envy for 𝛼𝑗1 since 𝑢ℎ4 (𝑀) ≤ 10 < 11 = 𝑢ℎ4 ({ℎ2,

ℎ3}), 𝑣ℎ2 (𝛼𝑗1) = 0 < 6 = 𝑣ℎ2 (ℎ4), and 𝑣ℎ3 (𝛼𝑗1) = 0 < 5 = 𝑣ℎ3 (ℎ4). It follows that
𝑢ℎ4 (𝑀) ≥ 11 which, since ℎ2 ∉ 𝑀 (ℎ4), is impossible. This contradicts our supposition
that 𝑣ℎ𝑖1 (ℎ𝑖2) = 4.

• Suppose 𝑣ℎ𝑖1 (ℎ𝑖2) = 3. We assume without loss of generality that either {𝑖1, 𝑖2} = {3,
11} or {𝑖1, 𝑖2} = {2, 7}.

– Suppose {𝑖1, 𝑖2} = {3, 11}. If 𝑢ℎ2 (𝑀) ≤ 8 then ℎ2 has j-envy for 𝛼𝑗1 since
𝑢ℎ2 (𝑀) ≤ 8 < 9 = 𝑢ℎ2 ({ℎ3, ℎ11}), 𝑣ℎ3 (𝛼𝑗1) = 0 < 4 = 𝑣ℎ3 (ℎ2), and 𝑣ℎ11 (𝛼𝑗1) =
0 < 5 = 𝑣ℎ11 (ℎ2). It follows that 𝑢ℎ2 (𝑀) ≥ 9. By the design of 𝐻, it follows
that 𝑀 (ℎ2) = 𝑡5. Now consider ℎ1. Since ℎ1 ∉ 𝑡5 it must be that either ℎ1 ∈ 𝑡2,
ℎ1 ∈ 𝑡3, or ℎ1 ∈ 𝑡4. Assume without loss of generality that ℎ1 ∈ 𝑡2 and that
𝑡2 = {ℎ1, ℎ𝑖3 , 𝛼𝑗2} where 1 ≤ 𝑖3 ≤ 11 and 𝛼𝑗2 ∈ 𝑁 \ 𝐻. Since 𝑣ℎ1 (𝛼𝑗2) = 0 it
follows that 𝑢ℎ1 (𝑀) = 𝑣ℎ1 (ℎ𝑖3). By the design of 𝐻, it must be that 𝑣ℎ1 (ℎ𝑖3) = 2
so 𝑢ℎ1 (𝑀) = 2. Now ℎ1 has j-envy for 𝛼𝑗1 , since 𝑢ℎ1 (𝑀) = 2 < 4 = 𝑢ℎ1 ({ℎ3,

ℎ11}), 𝑣ℎ3 (𝛼𝑗1) = 0 < 2 = 𝑣ℎ3 (ℎ1), and 𝑣ℎ11 (𝛼𝑗1) = 0 < 2 = 𝑣ℎ11 (ℎ1). This is a
contradiction.
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– Suppose {𝑖1, 𝑖2} = {2, 7}. Consider ℎ1. As before, if 𝑢ℎ1 (𝑀) ≤ 3 then ℎ1 has j-
envy for 𝛼𝑗1 , since 𝑢ℎ1 (𝑀) ≤ 3 < 4 = 𝑢ℎ1 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗1) = 0 < 2 = 𝑣ℎ2 (ℎ1),
and 𝑣ℎ7 (𝛼𝑗1) = 0 < 2 = 𝑣ℎ7 (ℎ1). It follows that 𝑢ℎ1 (𝑀) ≥ 4. By the design
of 𝐻, it must be that 𝑀 (ℎ1) = {ℎ1, ℎ𝑖3 , ℎ𝑖4} where 2 ≤ 𝑖3, 𝑖4 ≤ 11. It follows
that 𝑀 (ℎ1) = 𝑡5. Now consider ℎ4. If 𝑢ℎ4 (𝑀) ≤ 6 then ℎ4 has j-envy for
𝛼𝑗1 , since 𝑢ℎ4 (𝑀) ≤ 6 < 7 = 𝑢ℎ1 ({ℎ2, ℎ7}), 𝑣ℎ2 (𝛼𝑗1) = 0 < 6 = 𝑣ℎ2 (ℎ4), and
𝑣ℎ7 (𝛼𝑗1) = 0 < 1 = 𝑣ℎ7 (ℎ4). It follows that 𝑢ℎ4 (𝑀) ≥ 7 so, similarly, 𝑀 (ℎ4) must
contain three agents in 𝐻 and thus ℎ4 ∈ 𝑡5. Assume without loss of generality
that ℎ4 = ℎ𝑖3 so 𝑡5 = {ℎ1, ℎ4, ℎ𝑖4}. Since 𝑢ℎ4 (𝑀) ≥ 7 and 𝑣ℎ4 (ℎ1) = 2 it must
be that 𝑣ℎ4 (ℎ𝑖4) ≥ 5 and thus that either 𝑖4 = 3 or 𝑖4 = 6. Consider ℎ10. If
𝑢ℎ10 (𝑀) ≤ 6 then ℎ10 has j-envy for 𝛼𝑗1 , since 𝑢ℎ10 (𝑀) ≤ 6 < 7 = 𝑢ℎ10 ({ℎ2, ℎ7}),
𝑣ℎ2 (𝛼𝑗1) = 0 < 6 = 𝑣ℎ2 (ℎ10), and 𝑣ℎ7 (𝛼𝑗1) = 0 < 1 = 𝑣ℎ7 (ℎ10). It follows
that 𝑢ℎ10 (𝑀) ≥ 7. Since ℎ10 ∉ 𝑡5 it must be that either ℎ10 ∈ 𝑡2, ℎ10 ∈ 𝑡3, or
ℎ10 ∈ 𝑡4. Assume without loss of generality that ℎ10 ∈ 𝑡2 and that 𝑡2 = {ℎ10, ℎ𝑖5 ,

𝛼𝑗2} where 1 ≤ 𝑖5 ≤ 11 and 𝛼𝑗2 ∈ 𝑁 \ 𝐻. Since 𝑣ℎ10 (𝛼𝑗2) = 0 it follows that
𝑣ℎ10 (ℎ𝑖5) = 𝑢ℎ10 (𝑀) ≥ 7, which is a contradiction.

• Suppose 𝑣ℎ𝑖1 (ℎ𝑖2) = 2. It follows that either 𝑖1 = 1 or 𝑖2 = 1. Assume without loss
of generality that 𝑖1 = 1. Note that 2 ≤ 𝑖2 ≤ 11. Consider ℎ𝑖2 . Note that since
𝑣ℎ𝑖2 (𝛼𝑗1) = 0 it must be that 𝑢ℎ𝑖2 (𝑀) = 𝑣ℎ𝑖2 (ℎ1) = 2. By the design of 𝐻, for each
possible assignment of 𝑖2, namely 2 ≤ 𝑖2 ≤ 11, there exist five agents ℎ𝑖3 , ℎ𝑖4 , ℎ𝑖5 , ℎ𝑖6 ,
ℎ𝑖7 such that 𝑣ℎ𝑖2 (ℎ𝑖𝑘 ) > 2 for 3 ≤ 𝑘 ≤ 7. A counting argument shows that at least
one of these five agents does not belong to 𝑡5 and hence must belong to either 𝑡2, 𝑡3,
or 𝑡4. Assume without loss of generality that ℎ𝑖3 ∈ 𝑡2 and 𝑡2 = {ℎ𝑖3 , ℎ𝑖8 , 𝛼𝑗2} where
2 ≤ 𝑖8 ≤ 11 and 𝛼𝑗2 ∈ 𝑁 \ 𝐻. Recall that 𝑣ℎ𝑖2 (ℎ𝑖3) > 2. By the design of 𝐻 it follows
that 𝑢ℎ𝑖2 ({ℎ𝑖3 , ℎ𝑖8}) > 3. Now ℎ𝑖2 has j-envy for 𝛼𝑗2 since 𝑢ℎ𝑖2 (𝑀) = 2 < 3 < 𝑢ℎ𝑖2 ({ℎ𝑖3 ,
ℎ𝑖8}), 𝑣ℎ𝑖3 (𝛼𝑗2) = 0 < 1 ≤ 𝑣ℎ𝑖3 (ℎ𝑖2), and 𝑣ℎ𝑖8 (𝛼𝑗2) = 0 < 1 ≤ 𝑣ℎ𝑖8 (ℎ𝑖2).

• Suppose 𝑣ℎ𝑖1 (ℎ𝑖2) = 1. Without loss of generality we assume that either {𝑖1, 𝑖2} = {2, 5}
or {𝑖1, 𝑖2} = {2, 6}.

– Suppose {𝑖1, 𝑖2} = {2, 5}. If 𝑢ℎ4 (𝑀) ≤ 9 then ℎ4 has j-envy for 𝛼𝑗1 , since
𝑢ℎ4 (𝑀) ≤ 9 < 10 = 𝑢ℎ4 ({ℎ2, ℎ5}), 𝑣ℎ2 (𝛼𝑗1) = 0 < 6 = 𝑣ℎ2 (ℎ4), and 𝑣ℎ5 (𝛼𝑗1) =
0 < 4 = 𝑣ℎ5 (ℎ4). It follows that 𝑢ℎ4 (𝑀) ≥ 10. The only possibility is that
𝑀 (ℎ4) = {ℎ3, ℎ4, ℎ6} and hence 𝑀 (ℎ4) = 𝑡5. Consider ℎ1. If 𝑢ℎ1 (𝑀) ≤ 3 then
ℎ1 has j-envy for 𝛼𝑗1 , since 𝑢ℎ1 (𝑀) ≤ 3 < 4 = 𝑢ℎ1 ({ℎ2, ℎ5}), 𝑣ℎ2 (𝛼𝑗1) = 0 <

2 = 𝑣ℎ2 (ℎ1), and 𝑣ℎ5 (𝛼𝑗1) = 0 < 2 = 𝑣ℎ5 (ℎ1). It follows that 𝑢ℎ1 (𝑀) ≥ 4. By
the design of 𝐻, it follows that 𝑀 (ℎ1) must contain three agents in 𝐻, which is a
contradiction since ℎ1 ∉ 𝑡5.

– Suppose {𝑖1, 𝑖2} = {2, 6}. It follows that 𝑢ℎ4 (𝑀) ≤ 9 so ℎ4 has j-envy for 𝛼𝑗1
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since 𝑢ℎ4 (𝑀) ≤ 9 < 12 = 𝑢ℎ4 ({ℎ2, ℎ6}), 𝑣ℎ2 (𝛼𝑗1) = 0 < 6 = 𝑣ℎ2 (ℎ4), and
𝑣ℎ6 (𝛼𝑗1) = 0 < 6 = 𝑣ℎ6 (ℎ4).

□

Lemma 7.48. If (𝑁,𝑉) contains a j-envy-free matching 𝑀 then 𝐻 has an open configuration
in 𝑀 .

Proof. By definition, 4 ≤ 𝜎(𝐻, 𝑀) ≤ 11. If 𝜎(𝐻, 𝑀) ≤ 5 then 𝐻 has an open configuration
in 𝑀 , by Lemmas 7.46 and 7.47. If 6 ≤ 𝜎(𝐻, 𝑀) ≤ 11 then, by a counting argument, at
least one triple in 𝑀 must contain exactly one agent in 𝐻. In other words, 𝐻 has an open
configuration in 𝑀 . □

We have shown, in Lemma 7.48, that if (𝑁,𝑉) contains a j-envy-free matching 𝑀 then 𝐻 has
an open configuration in 𝑀 . By definition, some triple 𝑡𝛽 in 𝑀 contains exactly one agent in
𝐻. Since |𝐻 | = 11, if 𝑡𝛽 is the only triple in 𝑀 to contain exactly one agent in 𝐻 then there
must exist some triple in 𝑀 that contains exactly two agents in 𝐻. By Lemma 7.43, this is a
contradiction. It follows that at least two triples in 𝑀 exist that each contain exactly one agent
in𝐻. Suppose 𝑡𝛽, 𝑡𝛾 ∈ 𝑀 are two such triples and 𝑡𝛽 = {ℎ𝑎1 , 𝛼𝑏1 , 𝛼𝑏2} and 𝑡𝛾 = {ℎ𝑎2 , 𝛼𝑏3 , 𝛼𝑏4}.

Lemma 7.49. If (𝑁,𝑉) contains a j-envy-free matching then {𝛼𝑏1 , 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4} = 𝐿.

Proof. Suppose for a contradiction that {𝛼𝑏1 , 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4} ≠ 𝐿.

By definition, {𝛼𝑏1 , 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4} ∩ 𝐻 = ∅ and {𝛼𝑏1 , 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4} ≠ 𝐿 it must be that at
least one agent in {𝛼𝑏1 , 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4} belongs to 𝐶. Assume without loss of generality that
𝛼𝑏1 ∈ 𝐶.

We have already shown that 𝑡𝛽 contains exactly one agent in 𝐻. Since 𝑣𝛼𝑏1
(ℎ𝑎1) = 0, by

the design of the instance it must be that 𝑢𝛼𝑏1
(𝑀) = 𝑣𝛼𝑏1

(𝛼𝑏2) ≤ 3. By the design of the
instance 𝑣𝛼𝑏1

(𝛼𝑏3) ≥ 2 and 𝑣𝛼𝑏1
(𝛼𝑏4) ≥ 2 so 𝑢𝛼𝑏1

({𝛼𝑏3 , 𝛼𝑏4}) ≥ 4. Now 𝛼𝑏1 has j-envy
for ℎ𝑎2 since 𝑢𝛼𝑏1

(𝑀) ≤ 3 < 4 ≤ 𝑢𝛼𝑏1
({𝛼𝑏3 , 𝛼𝑏4}), 𝑣𝛼𝑏3

(ℎ𝑎2) = 0 < 2 ≤ 𝑣𝛼𝑏3
(𝛼𝑏1), and

𝑣𝛼𝑏4
(ℎ𝑎2) = 0 < 2 ≤ 𝑣𝛼𝑏4

(𝛼𝑏1). □

Lemma 7.50. If (𝑁,𝑉) contains a j-envy-free matching then {{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1,
𝑙2}, {𝑙3, 𝑙4}}.

Proof. By Lemma 7.49, {𝛼𝑏1 , 𝛼𝑏2 , 𝛼𝑏3 , 𝛼𝑏4} = 𝐿. There are now three possibilities: first that
{{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1, 𝑙3}, {𝑙2, 𝑙4}}, second that {{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1,
𝑙4}, {𝑙2, 𝑙3}}, and third that {{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1, 𝑙2}, {𝑙3, 𝑙4}}.

First suppose {{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1, 𝑙3}, {𝑙2, 𝑙4}}. Now 𝑙1 has j-envy for ℎ𝑎2 since
𝑢𝑙1 ({ℎ𝑎1 , 𝑙3}) = 1 < 3 ≤ 𝑢𝑙1 ({𝑙2, 𝑙4}), 𝑣𝑙2 (ℎ𝑎2) = 0 < 2 = 𝑣𝑙2 (𝑙1), and 𝑣𝑙4 (ℎ𝑎2) = 0 < 1 ≤
𝑣𝑙4 (𝑙1).
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Second suppose {{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1, 𝑙4}, {𝑙2, 𝑙3}}. As before, 𝑙1 has j-envy for
ℎ𝑎2 since 𝑢𝑙1 ({ℎ𝑎1 , 𝑙4}) = 1 < 3 ≤ 𝑢𝑙1 ({𝑙2, 𝑙3}), 𝑣𝑙2 (ℎ𝑎2) = 0 < 2 = 𝑣𝑙2 (𝑙1), and 𝑣𝑙3 (ℎ𝑎2) =
0 < 1 ≤ 𝑣𝑙3 (𝑙1).

It remains that {{𝛼𝑏1 , 𝛼𝑏2}, {𝛼𝑏3 , 𝛼𝑏4}} = {{𝑙1, 𝑙2}, {𝑙3, 𝑙4}}. □

By Lemma 7.50, either {𝛼𝑏1 , 𝛼𝑏2} = {𝑙1, 𝑙2} or {𝛼𝑏1 , 𝛼𝑏2} = {𝑙3, 𝑙4}. Without loss of
generality assume that {𝛼𝑏1 , 𝛼𝑏2} = {𝑙1, 𝑙2}.

Lemma 7.51. If (𝑁,𝑉) contains a j-envy-free matching then 𝑢𝑐𝑖 (𝑀) = 6 for each 𝑖 where
1 ≤ 𝑖 ≤ 3𝑞.

Proof. Suppose to the contrary that some 1 ≤ 𝑖 ≤ 3𝑞 exists where 𝑢𝑐𝑖 (𝑀) < 6. Then 𝑐𝑖
has j-envy for ℎ𝑎1 since 𝑢𝑐𝑖 (𝑀) ≤ 5 < 6 ≤ 𝑢𝑐𝑖 ({𝑙1, 𝑙2}), 𝑣𝑙1 (ℎ𝑎1) = 0 < 3 = 𝑣𝑙1 (𝑐𝑖), and
𝑣𝑙2 (ℎ𝑎1) = 0 < 3 = 𝑣𝑙2 (𝑐𝑖). This contradicts our supposition that 𝑀 is j-envy-free. □

Lemma 7.52. If (𝑁,𝑉) contains a j-envy-free matching then 𝐺 contains a partition into
triangles.

Proof. Suppose (𝑁,𝑉) contains a j-envy-free partition into triangles 𝑀 . Lemma 7.51 shows
that 𝑢𝑐𝑖 (𝑀) = 6 for each 𝑖 where 1 ≤ 𝑖 ≤ 3𝑞. By construction, it follows that 𝑀 (𝑐𝑖) contains
two agents 𝑐𝑗 , 𝑐𝑘 such that 𝑣𝑐𝑖 (𝑐𝑗 ) = 𝑣𝑐𝑖 (𝑐𝑘 ) = 3. By construction, 𝑐𝑗 and 𝑐𝑘 therefore
correspond to vertices 𝑤𝑗 , 𝑤𝑘 ∈ 𝑊 where {𝑤𝑖, 𝑤𝑗 } ∈ 𝐸 and {𝑤𝑖, 𝑤𝑘 } ∈ 𝐸 . It follows thus
that there are exactly 𝑞 triples in 𝑀 each containing three agents {𝑐𝑖, 𝑐𝑗 , 𝑐𝑘 }, where the three
corresponding vertices 𝑤𝑖, 𝑤𝑗 , 𝑤𝑘 are pairwise adjacent in 𝐺. From these triples a partition
into triangles 𝑋 can be easily constructed. □

We have now shown that the 3DR-AS instance (𝑁,𝑉) contains a j-envy-free matching if and
only if the PIT instance 𝐺 contains a partition into triangles. This shows that the reduction
is correct.

Theorem 7.7. Deciding if a given instance of 3DR-AS contains a j-envy-free matching is
NP-complete, even when preferences are symmetric and the maximum possible valuation is 6.

Proof. It is straightforward to show that this decision problem belongs to NP, since for any
two agents 𝛼𝑖, 𝛼𝑗 ∈ 𝑁 we can test if 𝛼𝑖 j-envies 𝛼𝑗 in constant time.

We have presented a polynomial-time reduction from Partition Into Triangles (PIT, Prob-
lem 5.1), which is NP-complete [43]. Given a graph 𝐺, the reduction constructs an instance
(𝑁,𝑉) of 3DR-AS with symmetric preferences in which the maximum valuation is 6. Lem-
mas 7.42 and 7.52 show that (𝑁,𝑉) contains a j-envy-free matching if and only if 𝐺 contains
a partition into triangles and thus that this decision problem is NP-hard. □
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7.5 Summary and open problems

In this chapter we considered the existence of envy-free, wj-envy-free, and j-envy-free match-
ings in 3DR-AS and the complexity of the associated decision and construction problems.
For each of the three solution concepts, we considered various restrictions on the agents’
valuations.

We first showed that an arbitrary instance of 3DR-AS may not contain an envy-free matching,
even when preferences are binary and symmetric and the maximum degree of the underlying
graph is 2. We described a polynomial-time algorithm for this case that can, in a given
instance of 3DR-AS, either construct an envy-free matching or report that no such matching
exists. We then contrasted this result by showing that the corresponding existence problem
is NP-complete even when the maximum degree of the underlying graph is 3.

Next, we considered wj-envy-freeness. Our results for wj-envy-freeness were similar to those
for envy-freeness. We first showed that, as in the case of envy-freeness, a wj-envy-free
matching may not exist even when preferences are binary and symmetric and the maximum
degree of the underlying graph is 2. We described a slightly more complex polynomial-time
algorithm for this case, compared to the corresponding algorithm for envy-freeness, which
either constructs a wj-envy-free matching or reports that no such matching exists. We also
showed that the corresponding existence problem is NP-complete even when the maximum
degree of the underlying graph is 3.

We then considered j-envy-freeness. We showed that if preferences are binary but not
necessarily symmetric, a j-envy-free matching must exist and can be found in polynomial
time. We then considered two restrictions of 3DR-AS, in which valuations are ternary but
not symmetric, and non-binary and symmetric. In both restrictions, we showed that a given
instance of 3DR-AS may not contain a j-envy-free matching and the associated existence
problem is NP-complete.

We summarise our new existence and complexity results in Table 7.1, which also includes
the corresponding results for stability from Chapter 6. In the table, for a given solution
concept and preference restriction, “must exist?” refers to whether an arbitrary such instance
of 3DR-AS must contain a matching that satisfies that solution concept, and “search” refers
to the complexity class of the associated construction problem. From this table (and the
associated theorems) we can identify a general trend in our results that for successively
weaker solution concepts, existence and polynomial-time solvability hold under successively
weaker restrictions on the agents’ preferences.

We now present some open problems specifically involving envy-freeness, wj-envy-freeness,
and j-envy-freeness in 3DR-AS. More general problems, involving solution concepts that do
not involve envy and other models of fixed-size coalitions, are discussed in Chapter 9.
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input settings results
solution concept preference restriction must exist? search Theorem

stability binary and symmetric ✓ P 6.1
” binary ✗ NP-h. 6.4
” ternary and symmetric ✗ NP-h. 6.5

envy binary and symmetric, Δ = 2 ✗ P 7.1
” binary and symmetric, Δ = 3 ✗ NP-h. 7.2

weakly justified envy binary and symmetric, Δ = 2 ✗ P 7.3
” binary and symmetric, Δ = 3 ✗ NP-h. 7.4

justified envy binary and symmetric ✓ P Obs. 7.1
” binary ✓ P 7.5
” ternary ✗ NP-h. 7.6
” symmetric and 0 ≤ 𝑣𝑖 ( 𝑗) ≤ 6 ✗ NP-h. 7.7

Table 7.1: Our complexity results for 3DR-AS (from Chapters 6 and 7). In restrictions
involving binary and symmetric preferences,Δ refers to the maximum degree of the underlying
graph.

The immediate open problem relates to j-envy-freeness and preferences that are ternary and
symmetric. Specifically, it would be interesting to resolve the computational complexity
of the problem of deciding if a given instance 3DR-AS with ternary preferences contains
j-envy-free matching. The first step in this direction would be to determine whether every
instance of 3DR-AS with ternary preferences contains a j-envy-free matching.

In Theorem 7.7 we showed that there exist instances of 3DR-AS with symmetric preferences
that do not contain a j-envy-free matching. The proof involved a gadget 𝐻 from which
such an instance can be directly derived, by adding a single “isolated” agent. This specific
instance was discovered by sequential search, using an integer programming [86] model to test
candidate solutions (similar techniques have been used in the context of hedonic games [90]).
In order to reduce the search space, certain assumptions were made about the design of the
instance, such as the existence of an isolated agent (an “undesired guest” [27, 39]). Although
this technique was effective, it is hard to provide any intuition as to why this specific instance
contains no j-envy-free matching. It is also open whether this instance is minimal, or if a
smaller instance of 3DR-AS exists, with fewer than 12 agents, that contains no j-envy-free
matching.

As we noted in Chapter 6, another open problem is whether our results apply to a setting
involving more general definitions of binary and ternary. For example, whether our results
for binary preferences hold in a more general setting in which 𝑣𝛼𝑖 (𝛼𝑗 ) ∈ {𝑎, 𝑏} for any
non-negative integers 𝑎 and 𝑏 where 𝑎 < 𝑏.

As we also noted in Chapter 6, it might be interesting to identify other restrictions of 3DR-AS
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in which an envy-free, wj-envy-free or j-envy-free matching can be found in polynomial
time. The gadgets used in our reductions are highly regular and it might be that there exist
interesting classes of instances that must contain a stable matching. Alternatively, we could
study these problems from the perspective of parameterised complexity. For example, in
the case of binary and symmetric preferences, one could consider the tree-width [85] of the
instance.

It might be also interesting to estimate the probability that a random instance of 3DR-AS
contains an envy-free, wj-envy-free, or j-envy-free matching, or to estimate the same proba-
bility in a random instance of 3DR-AS with binary or ternary preferences. Our complexity
results indicate that, among instances with binary and symmetric preferences and maximum
degree 2, the set of instances that contain a j-envy-free matching (i.e. all instances) is larger
than the set of instances that contain a wj-envy-free matching, which is in turn larger than the
set of instances that contain an envy-free matching. We conjecture that, in a general instance
of 3DR-AS, the probability that a given instance contains an envy-free matching is smaller
than the probability that it contains a wj-envy-free matching, which is in turn smaller than the
probability that it contains a j-envy-free matching. In this direction, it might be possible to
apply probabilistic techniques from graph theory, such as the Erdős-Rényi model of a random
graph. Of course, the probabilistic events in which agents have envy for other agents are not
independent, which complicates the analysis. Alternatively an empirical approach might be
informative, for example by formulating the problem as an integer program [86].
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Chapter 8

The 𝐾𝑟-packing Problem in bounded
degree graphs

8.1 Introduction

8.1.1 Background

In this chapter we consider two problems related to clique packings in undirected graphs. In
particular, finding a maximum-cardinality set of 𝑟-cliques, for some fixed 𝑟 ≥ 3, subject to
the cliques in that set being either vertex disjoint or edge disjoint. We refer to such a set as a
𝐾𝑟-packing, and to the two problems as the Vertex-Disjoint 𝐾𝑟-Packing Problem (VDK𝑟) and
the Edge-Disjoint 𝐾𝑟-Packing Problem (EDK𝑟). Note that 𝑟 is a fixed constant and does not
form part of the problem input. If 𝑟 is not fixed then both problems generalise the well-studied
problem of finding a clique of a given size [43].

Most existing research relating to either vertex- or edge-disjoint 𝐾𝑟-packings covers either
more restricted or more general cases. Two well-known special cases of 𝐾𝑟-packing are
VDK2, also known as two-dimensional matching; and VDK3, for which an associated decision
problem is known as Partition Into Triangles (PIT, Problem 5.1).

VDK2 is a central problem of graph theory and algorithmics. A classical result is that a
maximum-cardinality two-dimensional matching can be found in polynomial time [91, 92].
VDK3 and its associated decision problem have also been the subject of much research.
In 1975, Karp [93] noted that PIT, i.e. deciding if a give graph contains a 𝐾3-packing
of cardinality |𝑉 |/3, was NP-complete. In this chapter we call such a 𝐾𝑟-packing, with
cardinality |𝑉 |/𝑟, perfect, although it is sometimes known as a 𝐾𝑟-factor [94].

In 2002, Caprara and Rizzi [9] considered VDK3 and EDK3 in the setting of a fixed maximum
degree Δ. They showed that VDK3 is solvable in polynomial time if Δ = 3 and APX-hard
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even when Δ = 4, and EDK3 is solvable in polynomial time if Δ = 4 and APX-hard even
when Δ = 5. They also showed that VDK3 is NP-hard for planar graphs even when Δ = 4 and
EDK3 is NP-hard for planar graphs with Δ = 5. In 2013, van Rooĳ et al. [95] established an
equivalence between VDK3 when Δ = 4 and Exact 3-Satisfiability (X3SAT). They then used
this equivalence to devise an 𝑂 (1.02220𝑛)-time algorithm for PIT (i.e. the perfect VDK3

decision problem) when Δ = 4.

The approximability of VDK3 and EDK3 has also been of interest. In 1989, Hurkens and
Schrĳver [96] presented a new result relating to Systems of Distinct Representatives, which
they used to construct an algorithm, based on “local improvement”, for a class of packing
problems that includes VDK𝑟 and EDK𝑟 . Specifically, for either VDK𝑟 or EDK𝑟 and for
any fixed constant Y > 0, Hurkens and Schrĳver identify a polynomial-time (𝑟/2 + Y)-
approximation algorithm. In 1995, Halldórsson [97] presented an alternative proof of this
result and considered algorithms based on local improvement for other types of packing
problems. In 2005, Manić and Wakabayashi [98] described approximation algorithms that
improve on this approximation ratio for the restricted cases of VDK3 in which Δ = 4, and
EDK3 in which Δ = 5. They also presented a linear-time algorithm for VDK3 on so-called
indifference graphs.

A generalisation of VDK𝑟 is Vertex-Disjoint 𝐻-Packing (also called Vertex-Disjoint 𝐺-
Packing), where 𝐻 is an arbitrary but fixed undirected graph. In 1982, Takamizawa et al.
[99] showed that an optimisation problem related to Vertex-Disjoint 𝐻-Packing is solvable
in polynomial time on a subclass of planar graphs known as series-parallel graphs. In
1983, Kirkpatrick and Hell [82] reviewed the literature of Vertex-Disjoint 𝐻-Packing and
classify the complexity of an array of packing problems, some of which generalise VDK𝑟 . In
particular, they showed that if 𝐻 contain any connected component with three vertices then
the perfect vertex-disjoint 𝐻-packing decision problem is NP-complete. Pantel’s 1999 thesis
provides a comprehensive survey of 𝐻-packing [100].

The restriction of 𝐻-packing to 𝐾𝑟-packing has received comparatively less attention in
the literature. In 1998, Dahlhaus and Karpinski [101] proved that a perfect vertex-disjoint
𝐾𝑟-packing can be found in polynomial time, if it exists, in chordal and strongly chordal
graphs. In 2001, Guruswami et al. [94] showed that, for any 𝑟 ≥ 3, the VDK𝑟 decision
problem is NP-complete for chordal graphs, planar graphs (assuming 𝑟 < 5), line graphs,
and total graphs. Their NP-completeness result involving 𝐾𝑟-packing on chordal graphs, for
any 𝑟 ≥ 3, resolved an open question of Dahlhaus and Karpinski. Guruswami et al. also
described polynomial-time algorithms for VDK3 and the perfect VDK𝑟 decision problem on
split graphs, and VDK𝑟 on cographs. Their result for cographs was later extended by Pedrotti
and de Mello [102] for so-called 𝑃4-sparse graphs.

From the converse perspective of graphs with a fixed minimum degree, Hajnal and Szemerèdi
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[103] proved in 1970 that if the minimum degree of a graph is greater than or equal to
(1 − 1/𝑟) |𝑉 | then a perfect vertex-disjoint 𝐾𝑟-packing must exist. Kierstead and Kostochka
[104] later generalised this result to show that, in this case, such a packing can be constructed
in polynomial time. A growing area of research work studies the existence of perfect 𝐾𝑟- and
𝐻-packings with respect to conditions involving vertex degree [105, 106].

8.1.2 Our contribution

In 2002, Caprara and Rizzi [9] showed that VDK3 is solvable in polynomial time if Δ = 3
and APX-hard if Δ = 4; and EDK3 is solvable in polynomial time if Δ = 4 and APX-hard if
Δ = 5. In this chapter we extend some of their techniques in order to generalise their results
and fully classify the complexity of both VDK𝑟 and EDK𝑟 for any Δ ≥ 1 and any fixed 𝑟 ≥ 3.
We summarise this classification in Table 8.1.

is solvable in
linear time if polynomial time if is APX-hard if

VDK𝑟 Δ < 3𝑟/2 − 1 Δ < 5𝑟/3 − 1 Δ ≥ ⌈5𝑟/3⌉ − 1

EDK𝑟 Δ < 3𝑟/2 − 1
{
Δ ≤ 2𝑟 − 2 if 𝑟 ≤ 5

{
Δ > 2𝑟 − 2 if 𝑟 ≤ 5

Δ < 5𝑟/3 − 1 otherwise Δ ≥ ⌈5𝑟/3⌉ − 1 otherwise

Table 8.1: Our complexity results for VDK𝑟 and EDK𝑟

In the next section, Section 8.1.3, we define some additional notation and make an observation
on the coincidence of vertex- and edge-disjoint 𝐾𝑟-packings.

In Section 8.2, we consider the case when Δ < 3𝑟/2 − 1. We show that in this case, any
maximal vertex- or edge-disjoint 𝐾𝑟-packing is also maximum (Theorem 8.1), and devise a
linear-time algorithm for VDK𝑟 and EDK𝑟 in this setting (Theorem 8.2 and Corollary 8.1).

In Section 8.3, we present our solvability results, showing that VDK𝑟 can be solved in
polynomial time if Δ < 5𝑟/3− 1 (Theorem 8.3); and EDK𝑟 can be solved in polynomial time
if either 𝑟 ≤ 5 and Δ ≤ 2𝑟 − 2 (Theorem 8.5), or 𝑟 ≥ 6 and Δ < 5𝑟/3 − 1 (Theorem 8.4).
Our proof uses a similar technique to that of Caprara and Rizzi’s [9], which involves finding
a maximum independent set in a graph that represents the intersection of 𝐾𝑟s.

In Section 8.4, we show that our solvability results are in a sense best possible, unless P ≠ NP.
Specifically, we show that VDK𝑟 is APX-hard if Δ ≥ ⌈5𝑟/3⌉ − 1 (Theorem 8.6); and EDK𝑟

is APX-hard if either 𝑟 ≤ 5 and Δ > 2𝑟 − 2 (Theorem 8.8), or 𝑟 ≥ 6 and Δ ≥ ⌈5𝑟/3⌉ − 1
(Theorem 8.7). In other words, we prove that there exists some fixed constants Y > 1
and Y′ > 1 such that no polynomial-time Y-approximation algorithm exists for VDK𝑟 if
Δ ≥ ⌈5𝑟/3⌉ − 1; and no polynomial-time Y′-approximation algorithm exists for EDK𝑟 if
either 𝑟 ≤ 5 and Δ > 2𝑟 − 2, or 𝑟 ≥ 6 and Δ ≥ ⌈5𝑟/3⌉ − 1.
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In Section 8.5 we recap on our results and consider directions for future work.

8.1.3 Preliminaries

In this section we first clarify our terminology and notation and then make a preliminary
observation on the coincidence of vertex- and edge-disjoint 𝐾𝑟-packings.

Let 𝐺 = (𝑉, 𝐸) be a simple undirected graph. We denote the closed neighbourhood of some
vertex 𝑣 ∈ 𝑉 as 𝑁𝐺 [𝑣] = 𝑁𝐺 (𝑣) ∪ {𝑣}. We denote by deg𝐺 (𝑣) = |𝑁𝐺 [𝑣] | − 1 the degree of
𝑣 in 𝐺 and by Δ(𝐺) = max𝑣∈𝑉 deg𝐺 (𝑣) the maximum degree of 𝐺. If the graph in question
is clear from context then we just write Δ. If deg𝐺 (𝑣) = 𝛿 for all 𝑣 ∈ 𝑉 then we say that 𝐺 is
𝛿-regular. For any subset of vertices𝑈 ⊆ 𝑉 , we denote by 𝐺 [𝑈] the subgraph of 𝐺 induced
by 𝑈. Let 𝐾𝑟 denote a clique of size 𝑟, for some integer 𝑟 ≥ 1, and 𝐾𝐺𝑟 be the set of 𝐾𝑟s in
𝐺. We say that 𝑇 is a 𝐾𝑟-packing in 𝐺 if 𝑇 ⊆ 𝐾𝐺𝑟 . The cardinality of a 𝐾𝑟-packing is the
number of 𝐾𝑟s that it contains. We say that a 𝐾𝑟-packing 𝑇 is vertex disjoint if any two 𝐾𝑟s
in 𝑇 have no vertex in common and edge disjoint if any two 𝐾𝑟s in 𝑇 intersect by at most
one vertex. The Vertex-Disjoint 𝐾𝑟-Packing Problem (VDK𝑟) is the following optimisation
problem: given a simple undirected graph 𝐺, find a vertex-disjoint 𝐾𝑟-packing of maximum
cardinality. The Edge-Disjoint 𝐾𝑟-Packing Problem (EDK𝑟) is defined analogously.

If 𝐺 contains four vertices 𝑣𝑖, 𝑣𝑗1 , 𝑣𝑗2 , 𝑣𝑗3 where {𝑣𝑖, 𝑣𝑗𝑎} ∈ 𝐸 for each 𝑎 ∈ {1, 2, 3}, {𝑣𝑗1 ,
𝑣𝑗2} ∉ 𝐸 , {𝑣𝑗1 , 𝑣𝑗3} ∉ 𝐸 , and {𝑣𝑗2 , 𝑣𝑗3} ∉ 𝐸 , then we say that these four vertices form a claw.
Otherwise, we say that 𝐺 is claw-free. For example, line graphs are claw-free [107].

For any maximisation problem 𝑃, instance 𝐼 of 𝑃, and feasible solution 𝑆 of 𝐼, let m𝑃 (𝐼, 𝑆)
denote the measure of 𝑆. Let opt𝑃 (𝐼) = max𝑆∈F (𝐼) m𝑃 (𝐼, 𝑆), where F (𝐼) is the set of feasible
solutions of 𝐼.

For technical purposes we define the 𝐾𝑟-vertex intersection graphK𝐺
𝑟 = (𝐾𝐺𝑟 , 𝐸K𝐺

𝑟
) of 𝐺, in

which {𝑈,𝑊} ∈ 𝐸K𝐺
𝑟

if |𝑈 ∩𝑊 | ≥ 1 for any 𝑈,𝑊 ∈ 𝐾𝐺𝑟 . Similarly, we define the 𝐾𝑟-edge
intersection graph K′𝐺𝑟 = (𝐾𝐺𝑟 , 𝐸K′𝐺𝑟 ) of 𝐺 in which {𝑈,𝑊} ∈ 𝐸K′𝐺𝑟 if |𝑈 ∩𝑊 | ≥ 2 for any
𝑈,𝑊 ∈ 𝐾𝐺𝑟 . We now make a preliminary observation.

Observation 8.1. If Δ < 2𝑟 − 2 then any edge-disjoint 𝐾𝑟-packing is also vertex disjoint.

Proof. Any two 𝐾𝑟s in𝐺 that share at least one vertex must in fact share at least two vertices,
otherwise that vertex has degree at least 2𝑟 − 2 in 𝐺. □

8.2 Linear-time solvability

In this section we present Algorithm greedyCliques, which can solve VDK𝑟 and EDK𝑟 in
linear time if Δ < 3𝑟/2 − 1. This algorithm generalises an algorithm of van Rooĳ et al. [95]
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that can solve VDK3 in linear time.

The key insight is that if Δ < 3𝑟/2 − 1 then any maximal vertex-disjoint 𝐾𝑟-packing is also a
maximum vertex-disjoint 𝐾𝑟-packing. The proof of this is stated in Theorem 8.1, which we
prove using a sequence of lemmas. In what follows, suppose 𝐺 is a simple undirected graph
in which Δ(𝐺) < 3𝑟/2 − 1.

Lemma 8.1. For any𝑈1,𝑈2 ∈ 𝐾𝐺𝑟 , if {𝑈1,𝑈2} ∈ 𝐸K𝐺
𝑟

then |𝑈1 ∩𝑈2 | > 𝑟/2.

Proof. Consider any𝑈1,𝑈2 ∈ 𝐾𝐺𝑟 where {𝑈1,𝑈2} ∈ 𝐸K𝐺
𝑟

. By definition of K𝐺
𝑟 , there exists

at least one 𝑢 ∈ 𝑉 where 𝑢 ∈ 𝑈1 ∩𝑈2. Since 3𝑟/2 − 1 > Δ ≥ deg𝐺 (𝑢) ≥ |𝑈1 ∪𝑈2 | − 1 =

|𝑈1 | + |𝑈2 | − |𝑈1∩𝑈2 | −1 = 2𝑟 − |𝑈1∩𝑈2 | −1 it follows that |𝑈1∩𝑈2 | > 2𝑟 −3𝑟/2 = 𝑟/2. □

Lemma 8.2. K𝐺
𝑟 is a disjoint union of cliques (i.e. a cluster graph [108]).

Proof. It suffices to show that for any three vertices 𝑈𝑖,𝑈𝑗 ,𝑈𝑘 ∈ 𝐾𝐺𝑟 , if {𝑈𝑖,𝑈𝑗 } ∈ 𝐸K𝐺
𝑟

and
{𝑈𝑗 ,𝑈𝑘 } ∈ 𝐸K𝐺

𝑟
then {𝑈𝑖,𝑈𝑘 } ∈ 𝐸K𝐺

𝑟
. Consider some such 𝑈𝑖,𝑈𝑗 ,𝑈𝑘 . If {𝑈𝑖,𝑈𝑗 } ∈ 𝐸K𝐺

𝑟

and {𝑈𝑗 ,𝑈𝑘 } ∈ 𝐸K𝐺
𝑟

then by Lemma 8.1 it must be that |𝑈𝑖 ∩𝑈𝑗 | > 𝑟/2 and |𝑈𝑗 ∩𝑈𝑘 | > 𝑟/2.
Since |𝑈𝑗 | = 𝑟 it follows that |𝑈𝑖 ∩𝑈𝑘 | > 0 and thus that {𝑈𝑖,𝑈𝑘 } ∈ 𝐸K𝐺

𝑟
. □

Theorem 8.1. If 𝑇 is a maximal vertex-disjoint 𝐾𝑟-packing then 𝑇 is a maximum vertex-
disjoint 𝐾𝑟-packing.

Proof. Suppose 𝑇 is a maximal vertex-disjoint 𝐾𝑟-packing in 𝐺, which by definition corre-
sponds to a maximal independent set in K𝐺

𝑟 . Since K𝐺
𝑟 is the disjoint union of cliques (by

Lemma 8.2), any two maximal independent sets inK𝐺
𝑟 have the same cardinality so 𝑇 is also

maximum. □

We have shown in Theorem 8.1 that any maximal vertex-disjoint 𝐾𝑟-packing is also a maxi-
mum vertex-disjoint 𝐾𝑟-packing. It follows immediately that VDK𝑟 can be solved in𝑂 ( |𝑉 |𝑟)
time by constructing the 𝐾𝑟-vertex intersection graphK𝐺

𝑟 and greedily selecting an indepen-
dent set. In fact, the explicit construction of K𝐺

𝑟 can be avoided by exploring 𝐺 and greedily
selecting 𝐾𝑟s. We present Algorithm greedyCliques, shown in Algorithm 8.1, and show that
it requires 𝑂 ( |𝑉 |) time.

Lemma 8.3. Algorithm greedyCliques requires 𝑂 ( |𝑉 |) time.

Proof. In any iteration of the outermost while loop, either 𝑣 and its incident edges are removed
from 𝐺 or a set of vertices 𝐾 where 𝑣 ∈ 𝐾 and incident edges are removed. It follows that
the algorithm terminates after at most |𝑉 | iterations of this loop. It remains to show that one
iteration of the loop can be performed in constant time.
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Algorithm 8.1 Algorithm greedyCliques
Input: a fixed 𝑟 ≥ 3, a simple undirected graph 𝐺 = (𝑉, 𝐸) where Δ(𝐺) < 3𝑟/2 − 1
Output: a maximum 𝐾𝑟-packing 𝑇
𝑇 ← ∅
while |𝑉 | > 0 do
𝑣 ← any element of 𝑉
if deg𝐺 (𝑣) ≥ 𝑟 − 1 then
𝐾 ← ∅
for each subset𝑊 of 𝑁𝐺 (𝑣) of size 𝑟 − 1 do

if 𝐺 [𝑊] has
(𝑟−1

2
)

edges then
⊲ so𝑊 is a clique of size 𝑟 − 1 in 𝐺
𝐾 ← 𝑊 ∪ {𝑣}

end if
end for
if 𝐾 ≠ ∅ then
𝐺 ← 𝐺 [𝑉 \ 𝐾]
𝑇 ← 𝑇 ∪ {{𝐾}}

else
𝐺 ← 𝐺 [𝑉 \ {𝑣}]

end if
else
𝐺 ← 𝐺 [𝑉 \ {𝑣}]

end if
end while
return 𝑇

In each iteration, either deg𝐺 (𝑣) ≥ 𝑟 − 1 or deg𝐺 (𝑣) < 𝑟 − 1. Computing deg𝐺 (𝑣) requires
𝑂 (𝑟) time, since Δ < 3𝑟/2−1. Consider the first branch of the outermost if statement. There
are

(
Δ
𝑟−1

)
<

(3𝑟/2−1
𝑟−1

)
= 𝑂 (2𝑟) iterations of the for loop. In each iteration, the algorithm tests

if 𝐺 [𝑊] contains
(𝑟−1

2
)

edges. This can be performed in 𝑂 (𝑟2) time. Removing 𝐾 from 𝐺

and adding 𝐾 to 𝑇 , if 𝐾 ≠ ∅, can be done in 𝑂 (𝑟2) time. In both the else branch in which
𝐾 = ∅ and the second branch of the outermost if statement, 𝑣 can be removed from 𝐺 in
𝑂 (𝑟) time. □

Theorem 8.2. If Δ < 3𝑟/2 − 1 then VDK𝑟 can be solved in linear time.

Proof. By Lemma 8.3, Algorithm greedyCliques terminates in 𝑂 (2𝑟 |𝑉 |) time. By Theo-
rem 8.1, it suffices to show that it returns a maximal vertex-disjoint 𝐾𝑟-packing 𝑇 in 𝐺.
Suppose 𝐾′ is an arbitrary 𝐾𝑟 in 𝐺. We show that either 𝐾′ is added to 𝑇 or at least one
vertex in 𝐾′ belongs to some other 𝐾𝑟 in 𝑇 . By the pseudocode, the algorithm removes at
least one vertex in each iteration of the while loop, which ends once there are no remaining
vertices. Consider the first iteration of the while loop in which a vertex 𝑣 in 𝐾′ is removed.
Let 𝐺′ be the subgraph of 𝐺 at the beginning of this iteration. It must be that every vertex of
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𝐾′ is present in 𝐺′, including 𝑣. Moreover, it must be that deg𝐺′ (𝑣) ≥ 𝑟 − 1. It follows that
𝑣 was not deleted from 𝐺′ by the second branch of the outermost if statement. Similarly, 𝑣
cannot have been deleted from 𝐺′ by the second branch of the innermost if statement, since 𝑣
belongs to 𝐾′, which is a clique of size 𝑟 in𝐺′. The only possibility is thus that 𝑣 was deleted
from 𝐺′ as a result of 𝑣 being part of a clique 𝐾′′ of size 𝑟 in 𝐺′, where 𝐾′′ was then added
to 𝑇 . □

Corollary 8.1. If Δ < 3𝑟/2−1 then Algorithm greedyCliques can solve EDK𝑟 in linear time.

Proof. Since Δ < 3𝑟/2−1 < 2𝑟 −2, by Observation 8.1 any edge-disjoint 𝐾𝑟-packing is also
vertex-disjoint. It follows that any vertex-disjoint 𝐾𝑟-packing by Algorithm greedyCliquesis
also a maximum edge-disjoint 𝐾𝑟-packing. □

8.3 Polynomial-time solvability

8.3.1 Vertex-disjoint packing

In this section we show that VDK𝑟 is solvable in polynomial time if Δ < 5𝑟/3− 1. The proof
involves finding an independent set in the 𝐾𝑟-vertex intersection graph K𝐺

𝑟 . We build on the
technique of Caprara and Rizzi [9] and show that if Δ(𝐺) < 5𝑟/3 − 1 then K𝐺

𝑟 is claw-free.
It follows that a a maximum independent set inK𝐺

𝑟 can be found in polynomial time (a result
of Minty [107] and Sbihi [109]), which corresponds directly to a maximum vertex-disjoint
𝐾𝑟-packing.

In his paper on claw-free graphs, Minty [107] remarked that an algorithm to find a maxi-
mum cardinality matching, or vertex-disjoint 𝐾2-packing, can be used to find a maximum
independent set in a line graph (the 𝐾2 vertex-intersection graph). Here, like Caprara and
Rizzi [9], we make use of the converse relationship, that if the corresponding intersection
graph is claw-free then VDK𝑟 and EDK𝑟 can be solved in polynomial time. A general rela-
tionship between packing problems and independent sets in intersection graphs is also noted
by Kann [110].

In what follows, suppose Δ(𝐺) < 5𝑟/3 − 1. In Lemma 8.4 we place a lower bound on the
size of the intersection of two non-vertex intersecting 𝐾𝑟s in 𝐺.

Lemma 8.4. |𝑈𝑖 ∩𝑈𝑗 | > 𝑟/3 for any {𝑈𝑖,𝑈𝑗 } ∈ 𝐸K𝐺
𝑟

.

Proof. Consider an arbitrary vertex 𝑢𝑙 ∈ |𝑈𝑖 ∩ 𝑈𝑗 |. By definition, 𝑢𝑙 is adjacent to each
vertex in 𝑈𝑖 ∪ 𝑈𝑗 . By the principle of inclusion-exclusion, |𝑈𝑖 ∪ 𝑈𝑗 | = 2𝑟 − |𝑈𝑖 ∩ 𝑈𝑗 | so
deg𝐺 (𝑢𝑙) ≥ 2𝑟 − |𝑈𝑖 ∩ 𝑈𝑗 | − 1. Since deg𝐺 (𝑢𝑙) ≤ Δ(𝐺) < 5𝑟/3 − 1, it must be that
2𝑟 − |𝑈𝑖 ∩𝑈𝑗 | − 1 < 5𝑟/3 − 1. Rearranging gives |𝑈𝑖 ∩𝑈𝑗 | > 𝑟/3. □
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Lemma 8.5. K𝐺
𝑟 is claw-free.

Proof. Consider some𝑈𝑖,𝑈𝑗1 ,𝑈𝑗2 ,𝑈𝑗3 ∈ 𝐾𝐺𝑟 exist where {𝑈𝑖,𝑈𝑗𝑎} ∈ 𝐸K𝐺
𝑟

for each 𝑎 ∈ {1, 2,
3}. By Lemma 8.4, it must be that |𝑈𝑖 ∩𝑈𝑗1 | > 𝑟/3, |𝑈𝑖 ∩𝑈𝑗2 | > 𝑟/3, and |𝑈𝑖 ∩𝑈𝑗3 | > 𝑟/3.
Since |𝑈𝑖 | = 𝑟 it follows by the pigeonhole principle that either𝑈𝑗1 ∩𝑈𝑗2 ≠ ∅,𝑈𝑗2 ∩𝑈𝑗3 ≠ ∅,
or𝑈𝑗1 ∩𝑈𝑗3 ≠ ∅ and thus {𝑈𝑖,𝑈𝑗1 ,𝑈𝑗2 ,𝑈𝑗3} is not a claw in K𝐺

𝑟 . □

Theorem 8.3. If Δ(𝐺) < 5𝑟/3 − 1 then VDK𝑟 can be solved in polynomial time.

Proof. First, construct the 𝐾𝑟-vertex intersection graph K𝐺
𝑟 = (𝐾𝐺𝑟 , 𝐸K𝐺

𝑟
). The set 𝐾𝐺𝑟 can

be constructed in 𝑂 (
( |𝑉 |
𝑟

)
) = 𝑂 ( |𝑉 |𝑟) by considering every possible set of 𝑟 vertices in 𝑉 .

The set 𝐸K𝐺
𝑟

can then be constructed in 𝑂 ( |𝑉 |2𝑟) time. Next, find a maximum independent
set in K𝐺

𝑟 , which can be accomplished using Minty’s algorithm (other algorithms have since
been developed with improved worst-case time complexity [111]). □

We remark that Minty’s algorithm also extends to the problem in which the vertices are
weighted and the goal is to find an independent set of maximum total weight [112]. It might
be interesting to study a weighted generalisation of VDK𝑟 , in which a weight function exists
on either the vertices or edges of the graph, and see if this approach can be used to derive
other polynomial-time solvability results.

8.3.2 Edge-disjoint packing

In this section we consider EDK𝑟 . Using Theorem 8.3 and Observation 8.1 it is straightforward
to show by that if 𝑟 ≥ 4 then EDK𝑟 can be solved in polynomial time. We state this result as
Theorem 8.4.

Theorem 8.4. If 𝑟 ≥ 4 and Δ(𝐺) < 5𝑟/3 − 1 then EDK𝑟 can be solved in polynomial time.

Proof. If 𝑟 > 3 and Δ(𝐺) < 5𝑟/3−1 then we can find a maximum vertex-disjoint 𝐾𝑟-packing
in polynomial time by Theorem 8.3. Such a packing is also a is also a maximum edge-disjoint
𝐾𝑟-packing, by Observation 8.1. □

We now show that this upper bound on Δ(𝐺) can be improved if 𝑟 ∈ {4, 5}. The key insight
in this case is that if 𝑟 ∈ {4, 5} and Δ ≤ 2𝑟 − 2 then the 𝐾𝑟-edge intersection graph K′𝐺𝑟 is
claw-free.

Lemma 8.6. If 𝑟 ∈ {4, 5} and Δ(𝐺) ≤ 2𝑟 − 2 then the 𝐾𝑟-edge intersection graph K′𝐺𝑟 is
claw-free.
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Proof. Suppose 𝑈𝑖,𝑈𝑗1 ,𝑈𝑗2 ,𝑈𝑗3 ∈ 𝐾𝐺𝑟 exist where {𝑈𝑖,𝑈𝑗𝑎} ∈ 𝐸K′𝐺𝑟 for each 𝑎 ∈ {1, 2, 3}.
Suppose for a contradiction that𝑈𝑖,𝑈𝑗1 ,𝑈𝑗2 ,𝑈𝑗3 is a claw inK′𝐺𝑟 , i.e. |𝑈𝑗𝑎 ∩𝑈𝑗𝑏 | < 2 for each
𝑎, 𝑏 ∈ {1, 2, 3}. By the definition of 𝐸K′𝐺𝑟 , it follows that |𝑈𝑖 ∩ 𝑈𝑗𝑎 | ≥ 2 for each 𝑎 ∈ {1,
2, 3}. Since |𝑈𝑖 | = 𝑟 ≤ 5, we assume without loss of generality that |𝑈𝑖 ∩ 𝑈𝑗1 ∩ 𝑈𝑗2 | ≥ 1.
Furthermore, it must be that |𝑈𝑖 ∩ 𝑈𝑗1 ∩ 𝑈𝑗2 | = 1, otherwise |𝑈𝑗1 ∩ 𝑈𝑗2 | > 1 which is a
contradiction. Let 𝑣𝑟 be the single vertex in 𝑈𝑖 ∩𝑈𝑗1 ∩𝑈𝑗2 . Since 𝑈𝑗1 and 𝑈𝑗2 are 𝐾𝑟s in 𝐺
and deg𝐺 (𝑣𝑟) ≤ 2𝑟 − 2 it must be that 𝑁𝐺 [𝑣𝑟] = 𝑈𝑗1 ∪𝑈𝑗2 . Since 𝑈𝑖 is also a 𝐾𝑟 it follows
that𝑈𝑖 ⊂ 𝑈𝑗1 ∪𝑈𝑗2 .

Now consider 𝑈𝑖 ∩𝑈𝑗1 and 𝑈𝑖 ∩𝑈𝑗2 . If |𝑈𝑖 ∩𝑈𝑗1 | + |𝑈𝑖 ∩𝑈𝑗2 | ≥ 𝑟 + 2 then since |𝑈𝑖 | = 𝑟 it
follows that |𝑈𝑗1∩𝑈𝑗2 | ≥ 2 which is a contradiction. It follows that |𝑈𝑖∩𝑈𝑗1 |+ |𝑈𝑖∩𝑈𝑗2 | ≤ 𝑟+1
and either |𝑈𝑖 ∩𝑈𝑗1 | ≤ (𝑟 + 1)/2 or |𝑈𝑖 ∩𝑈𝑗2 | ≤ (𝑟 + 1)/2. Assume without loss of generality
that |𝑈𝑖 ∩𝑈𝑗1 | ≤ (𝑟 + 1)/2.

Now consider 𝑈𝑗3 . Since 𝑈𝑖,𝑈𝑗1 ,𝑈𝑗2 ,𝑈𝑗3 is a claw in K′𝐺𝑟 , it must be that |𝑈𝑗3 ∩ 𝑈𝑖 | ≥ 2,
|𝑈𝑗3 ∩ 𝑈𝑗1 | ≤ 1, and |𝑈𝑗3 ∩ 𝑈𝑗2 | ≤ 1. Since 𝑈𝑖 ⊂ 𝑈𝑗1 ∪ 𝑈𝑗2 , the only possibility is that
|𝑈𝑗3 ∩𝑈𝑖 | = 2, |𝑈𝑗3 ∩𝑈𝑖 ∩𝑈𝑗2 | = 1 and |𝑈𝑗3 ∩𝑈𝑖 ∩𝑈𝑗1 | = 1.

Let 𝑣𝑠 be the single vertex in 𝑈𝑖 ∩𝑈𝑗1 ∩𝑈𝑗3 . Since 𝑈𝑖, 𝑈𝑗1 , and 𝑈𝑗3 are 𝐾𝑟s in 𝐺 it follows
that 𝑣𝑠 is adjacent to every other vertex in𝑈𝑗3 ∪𝑈𝑖 ∪𝑈𝑗1 so

deg𝐺 (𝑣𝑠) ≥ |𝑈𝑖 ∪𝑈𝑗1 ∪𝑈𝑗3 | − 1

= 3𝑟 − |𝑈𝑖 ∩𝑈𝑗1 | − |𝑈𝑖 ∩𝑈𝑗3 | − |𝑈𝑗1 ∩𝑈𝑗3 | + |𝑈𝑖 ∩𝑈𝑗1 ∩𝑈𝑗3 | − 1 .

Recall that since𝑈𝑖,𝑈𝑗1 ,𝑈𝑗2 ,𝑈𝑗3 is a claw inK′𝐺𝑟 , |𝑈𝑗1 ∩𝑈𝑗3 | ≤ 1. We deduced earlier in this
proof that |𝑈𝑖∩𝑈𝑗1 | ≤ (𝑟 +1)/2, |𝑈𝑖∩𝑈𝑗3 | = 2, and |𝑈𝑗3∩𝑈𝑖∩𝑈𝑗1 | = 1. Since 𝑟 ≥ 4 it follows
that deg𝐺 (𝑣𝑠) ≥ (5𝑟 − 7)/2 > 2𝑟 − 2, which contradicts the fact that Δ(𝐺) ≤ 2𝑟 − 2. □

Theorem 8.5. If 𝑟 ≤ 5 and Δ ≤ 2𝑟 − 2 then EDK𝑟 can be solved in polynomial time.

Proof. Caprara and Rizzi [9] prove the case when 𝑟 = 3 and Δ ≤ 4. If 𝑟 ∈ {4, 5} and
Δ(𝐺) ≤ 2𝑟 − 2 then Lemma 8.6 shows that the 𝐾𝑟-edge intersection graph K′𝐺𝑟 is claw-free.
It follows that a maximum edge-disjoint 𝐾𝑟-packing can be found in polynomial time by
constructing K′𝐺𝑟 , in 𝑂 (

( |𝑉 |
2𝑟

)
) time, and finding in it a maximum independent set, which can

also be accomplished in time polynomial in the size of K′𝐺𝑟 [111]. □
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8.4 APX-hardness

8.4.1 Vertex-disjoint packing

We show that if Δ ≥ ⌈5𝑟/3⌉ − 1 then VDK𝑟 is APX-hard. In other words, there exists
some fixed constant Y > 0 such that no polynomial-time Y-approximation algorithm exists
for VDK𝑟 , unless P = NP. To do this, we use an 𝐿-reduction [113], which is a type of
approximability-preserving reduction. An 𝐿-reduction from an optimisation problem 𝐴 to
another optimisation problem 𝐵 implies that if 𝐵 admits a polynomial-time approximation
scheme, then so does 𝐴.

We reduce from the problem of finding a Maximum Independent Set (MIS) in graphs that
are 3-regular and are triangle-free, which we refer to as MIS-3-TF (Problem 8.1).

Problem 8.1. Maximum Independent Set in 3-regular Triangle-Free graphs (MIS-3-TF)

Instance: an undirected graph 𝐺 = (𝑉, 𝐸) that is 3-regular and triangle-free
Solution: a set 𝑆 ⊆ 𝑉 such that {𝑣𝑖, 𝑣𝑗 } ∉ 𝐸 for any 𝑣𝑖, 𝑣𝑗 ∈ 𝑆
Measure: |𝑆 |

Berman and Karpinski [114] show that MIS-3-TF is APX-hard, providing an explicit lower
bound on the approximation ratio (specifically, they showed that it is NP-hard to approximate
MIS-3-TF within 140/139 − Y, for any Y > 0).

The reduction from MIS-3-TF is as follows. Our goal is to construct a new graph𝐺′ = (𝑉 ′, 𝐸′)
where each 𝐾𝑟 in 𝐺′ corresponds to exactly one vertex in𝑉 and each vertex in 𝑉 corresponds
to exactly one 𝐾𝑟 in 𝐺′. For any two adjacent vertices in 𝐺, the intersection of the two
corresponding 𝐾𝑟s in 𝐺′ will contain exactly ⌊𝑟/3⌋ vertices.

To do this, first construct a set of |𝑉 | disjoint 𝐾𝑟s in 𝐺′, labelled U = {𝑈1,𝑈2, . . . ,𝑈|𝑉 |}
where 𝑈𝑖 = {𝑢1

𝑖
, 𝑢2
𝑖
, . . . , 𝑢𝑟

𝑖
}. Next, consider each edge {𝑣𝑖, 𝑣𝑗 } ∈ 𝐸 . let 𝑈′

𝑖
= {𝑢𝑎1

𝑖
, 𝑢
𝑎2
𝑖
, . . . ,

𝑢
𝑎⌊𝑟/3⌋
𝑖
} be any set of ⌊𝑟/3⌋ vertices in 𝑈𝑖 with degree 𝑟 − 1 and 𝑈′

𝑗
= {𝑢𝑏1

𝑗
, 𝑢
𝑏2
𝑗
, . . . , 𝑢

𝑏⌊𝑟/3⌋
𝑗
}

be any set of ⌊𝑟/3⌋ vertices in 𝑈𝑗 with degree 𝑟 − 1. For each 𝑞 from 1 to ⌊𝑟/3⌋ inclusive,
identify 𝑢𝑎𝑞

𝑖
and 𝑢𝑏𝑞

𝑗
to create a single vertex labelled 𝑢𝑎𝑞

𝑖 𝑗
. Label𝑈′

𝑗
= 𝑈′

𝑖
as𝑊𝑖 𝑗 .

Finally, for each vertex 𝑣𝑖 ∈ 𝑉 let 𝑋𝑖 be the set of (at least 𝑟 mod 3) vertices in𝑈𝑖 with degree
𝑟 − 1. Note that any vertex in 𝐺′ either belongs to some set 𝑊𝑖 𝑗 where {𝑣𝑖, 𝑣𝑗 } ∈ 𝐸 or some
set 𝑋𝑖 where 𝑣𝑖 ∈ 𝑉 .

We first show that the set of 𝐾𝑟s in 𝐺′ isU.

Lemma 8.7. U = 𝐾𝐺
′

𝑟 .
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Proof. By definition, U ⊆ 𝐾𝐺
′

𝑟 so it remains to show that each 𝐾𝑟 in 𝐺′ belongs to U.
Suppose 𝐾 is an arbitrary 𝐾𝑟 in 𝐺′. By definition, any vertex in any set 𝑋𝑖 has degree 𝑟 − 1
in 𝐺′ and thus belongs to exactly one 𝐾𝑟 in 𝐺′, namely 𝑈𝑖, which belongs to 𝐾𝐺′𝑟 . The only
other possibility is that each vertex in 𝐾 belongs to some set 𝑊𝑖 𝑗 where 1 ≤ 𝑖, 𝑗 ≤ |𝑉 |.
Since |𝑊𝑖 𝑗 | = ⌊𝑟/3⌋ it must be that either there exist three sets 𝑊𝑖1, 𝑗1 ,𝑊𝑖2, 𝑗2 ,𝑊𝑖3, 𝑗3 where
1 ≤ 𝑖1, 𝑖2, . . . , 𝑗3 ≤ |𝑉 | and 𝐾 ⊆ 𝑊𝑖1, 𝑗1 ∪𝑊𝑖2, 𝑗2 ∪𝑊𝑖3, 𝑗3 , or there exist four sets𝑊𝑖1, 𝑗1 ,𝑊𝑖2, 𝑗2 ,

𝑊𝑖3, 𝑗3 ,𝑊𝑖4, 𝑗4 where 1 ≤ 𝑖1, 𝑖2, . . . , 𝑗4 ≤ |𝑉 | and 𝐾 ⊆ 𝑊𝑖1, 𝑗1 ∪𝑊𝑖2, 𝑗2 ∪𝑊𝑖3, 𝑗3 ∪𝑊𝑖4, 𝑗4 . In the
latter case, we may assume without loss of generality that {𝑖1, 𝑗1} ∩ {𝑖2, 𝑗2} = ∅. By the
construction of 𝐺′ it follows that no edge exists between any vertex in 𝑊𝑖1, 𝑗1 and any vertex
in 𝑊𝑖2, 𝑗2 which contradicts the supposition that 𝐾 is a 𝐾𝑟 in 𝐺′. It remains that there exist
three sets𝑊𝑖1, 𝑗1 ,𝑊𝑖2, 𝑗2 ,𝑊𝑖3, 𝑗3 where 𝐾 ⊆ 𝑊𝑖1, 𝑗1 ∪𝑊𝑖2, 𝑗2 ∪𝑊𝑖3, 𝑗3 and 1 ≤ 𝑖1, 𝑖2, . . . , 𝑗3 ≤ |𝑉 |.

By construction, the closed neighbourhood of any vertex in 𝑊𝑖1, 𝑗1 is 𝑈𝑖1 ∪𝑈𝑗1 so since 𝐾 is
a 𝐾𝑟 , without loss of generality assume that 𝑖1 ∈ {𝑖2, 𝑗2} and 𝑗1 ∈ {𝑖3, 𝑗3}. A symmetric
argument shows that 𝑖2 ∈ {𝑖1, 𝑗1} and 𝑗2 ∈ {𝑖3, 𝑗3}, and 𝑖3 ∈ {𝑖1, 𝑗1} and 𝑗3 ∈ {𝑖2, 𝑗2}.
By symmetry, we need only consider the two cases, in which 𝑖1 = 𝑖2 = 𝑖3 and in which
𝐾 = 𝑊𝑖1,𝑖2 ∪𝑊𝑖2,𝑖3 ∪𝑊𝑖3,𝑖1 . In the former case, 𝐾 must be labelled 𝑈𝑖1 and thus belongs to
𝐾𝐺𝑟 . In the latter case, by the construction of 𝐺′ the three vertices {𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3} in 𝐺 form a
triangle, which is a contradiction. □

Lemma 8.8. Δ(𝐺′) = ⌈5𝑟/3⌉ − 1.

Proof. By definition, any vertex in 𝑋𝑖 has degree 𝑟 − 1. Any vertex in 𝑊𝑖 𝑗 has degree
|𝑈𝑖 | + |𝑈𝑗 | − |𝑊𝑖 𝑗 | − 1 = 2𝑟 − ⌊𝑟/3⌋ − 1, for any 1 ≤ 𝑖, 𝑗 ≤ |𝑉 |. □

Theorem 8.6. For any simple undirected graph 𝐺′, if Δ(𝐺′) ≥ ⌈5𝑟/3⌉ − 1 then VDK𝑟 is
APX-hard.

Proof. We first show that a vertex-disjoint 𝐾𝑟-packing of size 𝐵 exists in 𝐺′ if and only if an
independent set of size 𝐵 exists in 𝐺. By Lemma 8.7, any 𝑈𝑖,𝑈𝑗 ∈ 𝐾𝐺𝑟 that are not vertex
disjoint in 𝐺′ correspond to two vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 , which by the design of the reduction
must be adjacent. Conversely, for any two 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 where {𝑣𝑖, 𝑣𝑗 } ∈ 𝐸 , by the design of
the reduction it must be that the two corresponding 𝐾𝑟s, 𝑈𝑖,𝑈𝑗 ∈ 𝐾𝐺𝑟 are not vertex disjoint
in 𝐺′. It follows that, for any graph 𝐺, optMIS-3-TF(𝐺) = optVDK𝑟

(𝐺′). Moreover, for any
vertex-disjoint 𝐾𝑟-packing𝑇 in𝐺′, there exists a corresponding independent set 𝑆 in𝐺 where
|𝑆 | = |𝑇 |, and thus that mMIS-3-TF(𝐺, 𝑆) = mVDK𝑟

(𝐺′, 𝑇).

It follows that reduction from MIS-3-TF to VDK𝑟 is an 𝐿-reduction with 𝛼 = 𝛽 = 1 (also
called a strict reduction [113]) and thus that VDK𝑟 is APX-hard even whenΔ(𝐺) = ⌈5𝑟/3⌉−1
(shown in Lemma 8.8). To show that VDK𝑟 is APX-hard even when Δ(𝐺) ≥ ⌈5𝑟/3⌉ − 1, one
can add to 𝐺′ a disconnected star. □
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8.4.2 Edge-disjoint packing

8.4.2.1 Edge-disjoint 𝐾𝑟-packing when 𝑟 ≥ 6

If 𝑟 ≥ 6 and Δ = ⌈5𝑟/3⌉ − 1 then it must be that Δ < 2𝑟 − 2, so by Observation 8.1, any
edge-disjoint 𝐾𝑟-packing is also vertex disjoint. It follows by Theorem 8.6 that EDK𝑟 is
APX-hard for any 𝑟 ≥ 6 even when Δ = ⌈5𝑟/3⌉ −1. We generalise this result in Theorem 8.7.

Theorem 8.7. If 𝑟 ≥ 6 and Δ ≥ ⌈5𝑟/3⌉ − 1 then EDK𝑟 is APX-hard.

Proof. Suppose Δ = ⌈5𝑟/3⌉ − 1. By definition, any vertex-disjoint 𝐾𝑟-packing is also edge
disjoint. Since 𝑟 ≥ 6 it follows that Δ = ⌈5𝑟/3⌉ − 1 < 2𝑟 − 2 so by Observation 8.1,
any edge-disjoint 𝐾𝑟-packing is also vertex disjoint. We have shown that an edge-disjoint
𝐾𝑟-packing of size 𝐵 exists in 𝐺 if and only if a vertex-disjoint 𝐾𝑟-packing of size 𝐵 exists in
𝐺. This fact constitutes an 𝐿-reduction with 𝛼 = 𝛽 = 1 from the restricted case of VDK𝑟 in
which Δ = ⌈5𝑟/3⌉ − 1. The lemma follows by Theorem 8.6. As in the proof of Theorem 8.6,
to show that EDK𝑟 is APX-hard if 𝑟 ≥ 6 even when Δ(𝐺) ≥ ⌈5𝑟/3⌉ − 1, one can add to 𝐺′ a
disconnected star. □

8.4.2.2 Edge-disjoint 𝐾4-packing

We present an 𝐿-reduction from a variant of the Maximum Satisfiability problem to EDK4

when Δ = 7, by extending the 𝐿-reduction of Caprara and Rizzi [9] for EDK3 when Δ = 5.

An instance of Maximum Satisfiability is a boolean formula 𝜙 in conjunctive normal form
with clauses𝐶 and variable set 𝑋 . Each clause contains a set of literals. Each literal is formed
by either a variable or its negation. A truth assignment 𝔣 is a function 𝔣 : 𝑋 ↦→ {true, false}.
A clause is satisfied by 𝔣 if any of its literals are true. The goal is to find a truth assignment
that satisfies the maximum number of clauses. We reduce from the special case of Maximum
Satisfiability in which each clause contains at most two literals and each variable occurs in at
most three clauses. We shall refer to this special case as Max 2SAT≤3 (Problem 8.2).

Problem 8.2. Max 2SAT≤3

Instance: a boolean formula 𝜙 in conjunctive normal form, represented as a set of clauses
𝐶 = {𝑐1, 𝑐2, . . . , 𝑐 |𝐶 |} and a set of variables 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥 |𝑋 |}, in which each clause
contains at most two literals and each variable occurs in at most three clauses
Solution: a truth assignment 𝔣 : 𝑋 ↦→ {true, false}
Measure: the number of clauses in 𝜙 satisfied by 𝔣
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Figure 8.1: The reduction from Max 2SAT≤3 to EDK4

Let 𝑚𝑖 be the number of occurrences of variable 𝑥𝑖 in 𝜙 for each variable 𝑥𝑖 ∈ 𝑋 . We assume
that 2 ≤ 𝑚𝑖 ≤ 3 for each 𝑥𝑖 ∈ 𝑋 , since if some variable 𝑥𝑖 occurs in exactly one clause it can
be set to the value satisfying that clause. Max 2SAT≤3 is APX-hard [66].

Given an instance 𝜙 of Max 2SAT≤3, we construct a graph 𝐺 such that a truth assignment for
𝜙 exists that satisfies at least 𝑘 clauses if and only if there exists an edge-disjoint𝐾4-packing of
size at least

∑|𝑋 |
𝑖=1 3𝑚𝑖 + 𝑘 . As in the case of the reduction presented for EDK3 by Caprara and

Rizzi, the reduction here is one of local replacement [43]. As they remark, the construction
and connection of variable and clause gadgets is a standard technique when reducing from
variants of Maximum Satisfiability. The reduction, shown in Figure 8.1, is as follows.

For each variable 𝑥𝑖, construct a variable gadget of 10𝑚𝑖 vertices, labelled 𝑅𝑖 = {𝑎 𝑗𝑖 , 𝑏
𝑗

𝑖
, 𝑐

𝑗

𝑖
,

𝑑
𝑗

𝑖
, 𝑒

𝑗

𝑖
, ℎ

𝑗

𝑖
, 𝑢

𝑗

𝑖
, 𝑣

𝑗

𝑖
, 𝑤

𝑗

𝑖
, 𝑦

𝑗

𝑖
} for each 𝑗 where 1 ≤ 𝑗 ≤ 𝑚𝑖. For each 𝑗 where 1 ≤ 𝑗 ≤ 𝑚𝑖, add

an edge (if it does not exist already) between each pair of vertices in {𝑎 𝑗
𝑖
, 𝑏

𝑗

𝑖
, 𝑢

𝑗

𝑖
, 𝑣

𝑗

𝑖
}; {𝑎 𝑗

𝑖
,

𝑏
𝑗

𝑖
, 𝑐

𝑗

𝑖
, 𝑣

𝑗

𝑖
}; {𝑐 𝑗

𝑖
, 𝑣

𝑗

𝑖
, 𝑑

𝑗

𝑖
, 𝑤

𝑗

𝑖
}; {𝑑 𝑗

𝑖
, 𝑤

𝑗

𝑖
, 𝑒

𝑗

𝑖
, 𝑦

𝑗

𝑖
}; {𝑑 𝑗

𝑖
, 𝑒

𝑗

𝑖
, ℎ

𝑗

𝑖
, 𝑦

𝑗

𝑖
}; and finally {ℎ 𝑗

𝑖
, 𝑎

𝑗+1
𝑖
, 𝑦

𝑗

𝑖
, 𝑢

𝑗+1
𝑖
}

if 𝑗 < 𝑚𝑖 and otherwise {ℎ 𝑗
𝑖
, 𝑎1
𝑖
, 𝑦

𝑗

𝑖
, 𝑢1
𝑖
}.

We shall refer to {𝑎 𝑗
𝑖
, 𝑏

𝑗

𝑖
, 𝑢

𝑗

𝑖
, 𝑣

𝑗

𝑖
}, {𝑐 𝑗

𝑖
, 𝑣

𝑗

𝑖
, 𝑑

𝑗

𝑖
, 𝑤

𝑗

𝑖
}, and {𝑑 𝑗

𝑖
, 𝑒

𝑗

𝑖
, ℎ

𝑗

𝑖
, 𝑦

𝑗

𝑖
} as the even 𝐾4s in 𝑅𝑖,

and {𝑎 𝑗
𝑖
, 𝑏

𝑗

𝑖
, 𝑐

𝑗

𝑖
, 𝑣

𝑗

𝑖
}, {𝑑 𝑗

𝑖
, 𝑤

𝑗

𝑖
, 𝑒

𝑗

𝑖
, 𝑦

𝑗

𝑖
}, and {ℎ 𝑗

𝑖
, 𝑎

𝑗+1
𝑖
, 𝑦

𝑗

𝑖
, 𝑢

𝑗+1
𝑖
} (and {ℎ 𝑗

𝑖
, 𝑎1
𝑖
, 𝑦

𝑗

𝑖
, 𝑢1
𝑖
}) as the odd

𝐾4s in 𝑅𝑖. Note that at this point in construction, deg𝐺 (𝑎
𝑗

𝑖
) = deg𝐺 (𝑣

𝑗

𝑖
) = deg𝐺 (𝑑

𝑗

𝑖
) =

deg𝐺 (𝑦
𝑗

𝑖
) = 6, deg𝐺 (𝑢

𝑗

𝑖
) = deg𝐺 (𝑐

𝑗

𝑖
) = deg𝐺 (𝑤

𝑗

𝑖
) = deg𝐺 (ℎ

𝑗

𝑖
) = 5, and deg𝐺 (𝑏

𝑗

𝑖
) =

deg𝐺 (𝑒
𝑗

𝑖
) = 4 for each 𝑗 where 1 ≤ 𝑗 ≤ 𝑚𝑖.

We shall now construct the clause gadgets. For each clause 𝑐𝑟 , construct a clause gadget of
5 vertices labelled 𝑆𝑟 = {𝑠1𝑟 , 𝑡1𝑟 , 𝑠2𝑟 , 𝑡2𝑟 , 𝑤𝑟}. Add an edge (if it does not exist already) between
each pair of vertices in {𝑠1𝑟 , 𝑡1𝑟 , 𝑠2𝑟 , 𝑤𝑟} and {𝑠1𝑟 , 𝑠2𝑟 , 𝑡2𝑟 , 𝑤𝑟}. We shall refer to {𝑠1𝑟 , 𝑡1𝑟 , 𝑠2𝑟 , 𝑤𝑟}
and {𝑠1𝑟 , 𝑠2𝑟 , 𝑡2𝑟 , 𝑤𝑟} as 𝑃𝑟

𝑖
and 𝑃𝑟

𝑗
supposing the variables of the first and second literals in 𝑐𝑟
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are 𝑥𝑖 and 𝑥𝑗 . Note that at this point in construction, deg𝐺 (𝑠1𝑟 ) = deg𝐺 (𝑠2𝑟 ) = deg𝐺 (𝑤𝑟) = 4
and deg𝐺 (𝑡1𝑟 ) = deg𝐺 (𝑡2𝑟 ) = 3.

We shall now connect the variable and clause gadgets. For each clause 𝑐𝑟 , suppose 𝑥𝑖 is
the variable of some literal in 𝑐𝑟 where 𝑐𝑟 contains the 𝑗 th occurrence of 𝑥𝑖 in 𝜙. If 𝑥𝑖 is
the first literal in 𝑐𝑟 and occurs positively in 𝑐𝑟 then identify 𝑏 𝑗

𝑖
and 𝑠1𝑟 , and 𝑐 𝑗

𝑖
and 𝑡1𝑟 . We

shall hereafter refer to the first identified vertex as either 𝑏 𝑗
𝑖

or 𝑠1𝑟 and the second identified
vertex as either 𝑐 𝑗

𝑖
or 𝑡1𝑟 . Note that now deg𝐺 (𝑏

𝑗

𝑖
) = deg𝐺 (𝑐

𝑗

𝑖
) = 7. Similarly, if 𝑥𝑖 is the

first literal in 𝑐𝑟 and occurs negatively in 𝑐𝑟 then identify 𝑒 𝑗
𝑖

and 𝑠1𝑟 , and ℎ 𝑗
𝑖

and 𝑡1𝑟 . In this
case deg𝐺 (𝑒

𝑗

𝑖
) = deg𝐺 (ℎ

𝑗

𝑖
) = 7. If 𝑥𝑖 is the second literal in 𝑐𝑟 and occurs positively in 𝑐𝑟

then identify 𝑏 𝑗
𝑖

and 𝑠2𝑟 , and 𝑐 𝑗
𝑖

and 𝑡2𝑟 . Similarly, if 𝑥𝑖 is the second literal in 𝑐𝑟 and occurs
negatively in 𝑐𝑟 then identify 𝑒 𝑗

𝑖
and 𝑠2𝑟 , and ℎ 𝑗

𝑖
and 𝑡2𝑟 . This completes the construction of 𝐺.

Observe that Δ = 7.

It is straightforward that the reduction can be performed in polynomial time. We now prove
that the reduction is correct in the first direction. By construction, no 𝐾4 exists in 𝐺 that
contains at least one vertex in a variable gadget and at least one vertex in a clause gadget.
Thus, we shall say that some 𝐾4 is in a variable or clause gadget if it is a strict subset of that
gadget.

Lemma 8.9. If a truth assignment 𝔣 for 𝜙 satisfies at least 𝑘 clauses then an edge-disjoint
𝐾4-packing 𝑇 exists in 𝐺 where |𝑇 | ≥ ∑|𝑋 |

𝑖=1 3𝑚𝑖 + 𝑘 .

Proof. Suppose 𝔣 is a truth assignment for 𝜙 that satisfies at least 𝑘 clauses. We shall construct
an edge-disjoint 𝐾4-packing 𝑇 where |𝑇 | ≥ ∑|𝑋 |

𝑖=1 3𝑚𝑖 + 𝑘 .

For each variable 𝑥𝑖, if 𝔣(𝑥𝑖) is true then add the set of even 𝐾4s in 𝑅𝑖 to 𝑇 . Similarly, if 𝔣(𝑥𝑖)
is false then add the set of odd 𝐾4s in 𝑅𝑖 to 𝑇 . Now |𝑇 | = ∑|𝑋 |

𝑖=1 3𝑚𝑖. For each clause gadget 𝑐𝑟
that is satisfied by 𝔣, it must be that there exists some variable 𝑥𝑖 where either 𝔣(𝑥𝑖) is true and
𝑥𝑖 occurs positively in 𝑐𝑟 or 𝔣(𝑥𝑖) is false and 𝑥𝑖 occurs negatively in 𝑐𝑟 . In either case, add 𝑃𝑟

𝑖

to 𝑇 . Now, 𝑇 contains exactly
∑|𝑋 |
𝑖=1 3𝑚𝑖 𝐾4s in variable gadgets and at least 𝑘 𝐾4s in clause

gadgets. It remains to show that 𝑇 is edge disjoint. By the construction of 𝐺, any two 𝐾4s
in 𝑇 in the same variable gadget are edge disjoint. Consider an arbitrary 𝑃𝑖𝑟 in some clause
gadget 𝑐𝑟 that belongs to 𝑇 . It must be that either 𝔣(𝑥𝑖) is true and 𝑥𝑖 occurs positively in 𝑐𝑟
or 𝔣(𝑥𝑖) is false and 𝑥𝑖 occurs negatively in 𝑐𝑟 . In the former case, 𝑇 contains the set of even
𝐾4s in 𝑅𝑖 so since 𝑃𝑟

𝑖
∩𝑅𝑖 = {𝑏 𝑗𝑖 , 𝑐

𝑗

𝑖
} where 1 ≤ 𝑗 ≤ 3 it follows that 𝑇 is edge disjoint. In the

latter case, 𝑇 contains the set of odd 𝐾4s in 𝑅𝑖 so since 𝑃𝑟
𝑖
∩ 𝑅𝑖 = {𝑒 𝑗𝑖 , ℎ

𝑗

𝑖
} where 1 ≤ 𝑗 ≤ 3

it also follows that 𝑇 is edge disjoint. □

We now prove that the reduction is correct in the second direction. We say that some edge-
disjoint 𝐾4-packing 𝑇 in 𝐺 is canonical if for any variable gadget 𝑅𝑖, 𝑇 contains either the
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set of even 𝐾4s in 𝑅𝑖 or the set of odd 𝐾4s in 𝑅𝑖. By the construction of 𝐺, no edge-disjoint
𝐾4-packing can contain all even 𝐾4s and all odd 𝐾4s.

We first show that for any variable gadget 𝑅𝑖 and edge-disjoint 𝐾𝑟-packing 𝑇 , if 𝑇 neither
contains all even 𝐾4s in 𝑅𝑖 nor all odd 𝐾4s in 𝑅𝑖 then the number of 𝐾4s in 𝑇 is at most
3𝑚𝑖 − 1.

Proposition 8.1. Suppose 𝑇 is an arbitrary edge-disjoint 𝐾4-packing in 𝐺. For any variable
gadget 𝑅𝑖, if 𝑇 neither contains all even 𝐾4s in 𝑅𝑖 nor all odd 𝐾4s in 𝑅𝑖 then the number of
𝐾4s in 𝑇 is at most 3𝑚𝑖 − 1.

Proof. By the construction of 𝐺, each even 𝐾4 in 𝑅𝑖 intersects exactly two odd 𝐾4s in 𝑅𝑖 by
at least two vertices and each odd 𝐾4 in 𝑅𝑖 intersects exactly two even 𝐾4s in 𝑅𝑖 by at least
two vertices.

It follows that the 𝐾4-edge intersection graph K′𝐺𝑟 contains a cycle of 6𝑚𝑖 vertices corre-
sponding to the 6𝑚𝑖 𝐾4s in 𝑅𝑖. It then follows that any edge-disjoint 𝐾4-packing that contains
3𝑚𝑖 𝐾4s in 𝑅𝑖 corresponds to an independent set of size 3𝑚𝑖 inK′𝐺𝑟 , and thus is either the set
of even 𝐾4s in 𝑅𝑖 or the set of odd 𝐾4s in 𝑅𝑖. Since 𝑇 neither contains all even 𝐾4s in 𝑅𝑖 nor
all odd 𝐾4s in 𝑅𝑖 it follows that |𝑇 | < 3𝑚𝑖. □

We can now prove that for any edge-disjoint 𝐾4-packing in 𝐺 that is not canonical, there
exists a canonical edge-disjoint 𝐾4-packing in 𝐺 of at least the same cardinality.

Lemma 8.10. If 𝑇 is an edge-disjoint 𝐾4-packing then there exists a canonical edge-disjoint
𝐾4-packing 𝑇 ′ where |𝑇 ′| ≥ |𝑇 |.

Proof. If 𝑇 is already canonical then let 𝑇 ′ = 𝑇 . Otherwise, by the definition of canonical,
there must exist at least one variable gadget 𝑖 such that 𝑇 neither contains all even 𝐾4s in 𝑅𝑖
nor all odd 𝐾4s in 𝑅𝑖. For any such 𝑖 where 1 ≤ 𝑖 ≤ |𝑋 |, we show how to modify 𝑇 to ensure
that it either contains the set of even 𝐾4s in 𝑅𝑖 or the set of odd 𝐾4s in 𝑅𝑖 and the cardinality
of 𝑇 does not decrease. It follows that there exists a canonical edge-disjoint 𝐾4-packing 𝑇 ′

where |𝑇 ′| ≥ |𝑇 |.

By Proposition 8.1, the number of 𝐾4s in 𝑅𝑖 in 𝑇 is at most 3𝑚𝑖 − 1.

Suppose the variable 𝑥𝑖 corresponding to 𝑅𝑖 occurs in clauses 𝑐𝑟1 , 𝑐𝑟2 , . . . , 𝑐𝑟𝑚𝑖
, corresponding

to the sets 𝑃𝑟1
𝑖
, 𝑃

𝑟2
𝑖
, . . . , 𝑃

𝑟𝑚𝑖

𝑖
. It must be that either at most one 𝐾4 in {𝑃𝑟1

𝑖
, 𝑃

𝑟2
𝑖
, . . . , 𝑃

𝑟𝑚𝑖

𝑖
}

exists in 𝑇 where the corresponding occurrence of 𝑥𝑖 is positive; or at most one 𝐾4 in {𝑃𝑟1
𝑖
,

𝑃
𝑟2
𝑖
, . . . , 𝑃

𝑟𝑚𝑖

𝑖
} exists in 𝑇 where the corresponding occurrence of 𝑥𝑖 is negative. Suppose

the former case is true. Remove the 𝐾4 in {𝑃𝑟1
𝑖
, 𝑃

𝑟2
𝑖
, . . . , 𝑃

𝑟𝑚𝑖

𝑖
} in 𝑇 where the corresponding

occurrence of 𝑥𝑖 is positive. Next, remove any even 𝐾4s in 𝑅𝑖 in 𝑇 and add the set of odd
𝐾4s in 𝑅𝑖 not already in 𝑇 . The number of 𝐾4s in 𝑅𝑖 in 𝑇 is now 3𝑚𝑖 so since at most one
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𝐾4 was removed, which was not in 𝑅𝑖, it follows that the cardinality of 𝑇 has not decreased.
To see that 𝑇 is still edge-disjoint, observe that any 𝐾4 in {𝑃𝑟1

𝑖
, 𝑃

𝑟2
𝑖
, . . . , 𝑃

𝑟𝑚𝑖

𝑖
} in 𝑇 intersects

any odd 𝐾4 in 𝑅𝑖 by at most one vertex. The construction and proof in the latter case are
symmetric. □

Lemma 8.11. If 𝑇 is an edge-disjoint 𝐾4-packing where |𝑇 | = ∑|𝑋 |
𝑖=1 3𝑚𝑖 + 𝑘 for some integer

𝑘 ≥ 1 then exists a truth assignment 𝔣 that satisfies at least 𝑘 clauses.

Proof. Assume by Lemma 8.10 that𝑇 is canonical. It follows that𝑇 contains exactly
∑|𝑋 |
𝑖=1 3𝑚𝑖

𝐾4s in variable gadgets and at least 𝑘 𝐾4s in clause gadgets. For each variable 𝑥𝑖, set 𝔣(𝑥𝑖) to
be true if 𝑇 contains all even 𝐾4s in 𝑅𝑖 and false otherwise. Now consider each clause gadget
𝑐𝑟 where 𝑆𝑟 contains some 𝐾4 in 𝑇 , denoted 𝑃𝑟

𝑖
. Suppose 𝑥𝑖 occurs positively in 𝑐𝑟 . It follows

that 𝑃𝑟
𝑖

contains 𝑏 𝑗
𝑖
, 𝑐

𝑗

𝑖
for some 𝑗 where 1 ≤ 𝑗 ≤ 3. Since 𝑇 is canonical and edge-disjoint it

follows that 𝑇 contains the set of even 𝐾4s in 𝑅𝑖. By the construction of 𝔣 it follows that 𝔣(𝑥𝑖)
is true and thus 𝑐𝑟 is satisfied. The proof for when 𝑥𝑖 occurs negatively in 𝑐𝑟 is symmetric. It
follows that at least 𝑘 clauses are satisfied by 𝔣. □

Lemma 8.12. If 𝑟 = 4 and Δ = 7 then EDK𝑟 is APX-hard.

Proof. We shall describe an 𝐿-reduction from Max 2SAT≤3 (which is APX-hard [66]) to
EDK4 whenΔ = 7, using the definition of Crescenzi [113]. An 𝐿-reduction from optimisation
problem 𝑄 to an optimisation problem 𝑃 shows that if there exists a (1 + 𝛿)-approximation
algorithm for 𝑃 then there exists a (1+𝛼𝛽𝛿)-approximation algorithm for𝑄. For compactness
we abbreviate Max 2SAT≤3 when appearing in a subscript to M2S3.

An 𝐿-reduction is characterised by a pair ( 𝑓 , 𝑔) of functions that can be computed in poly-
nomial time. Here, 𝑓 is the reduction described at the start of the start of this section
(Section 8.4.2.2) in which an instance 𝐺 of EDK4 is constructed from an arbitrary instance
𝜙 of Max 2SAT≤3. It is straightforward to show that 𝑓 can be computed in polynomial time.

The function 𝑔 is described by Lemma 8.11. For any instance 𝜙 of Max 2SAT≤3 and edge-
disjoint 𝐾4-packing in 𝑓 (𝜙), 𝑔 computes a truth assignment 𝔣 for 𝜙. It is also straightforward
to show that 𝑔 can be computed in polynomial time.

To show that 𝑓 , 𝑔 constitute a valid 𝐿-reduction, we must show that there exists fixed constants
𝛼, 𝛽 such that for any instance 𝜙 of Max 2SAT≤3,

optEDK4
( 𝑓 (𝜙)) ≤ 𝛼optM2S3(𝜙)

and that for any instance 𝜙 and any edge-disjoint 𝐾4-packing 𝑇 in 𝑓 (𝜙),

optM2S3(𝜙) −mM2S3(𝜙, 𝑔(𝜙,𝑇)) ≤ 𝛽(optEDK4
( 𝑓 (𝜙)) −mEDK4 ( 𝑓 (𝜙), 𝑇)) .
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We shall now demonstrate the existence of some such 𝛼 and 𝛽. Recall that in the instance
of Max 2SAT≤3, 𝑋 is the set of variables, 𝐶 is the set of clauses, and 𝑚𝑖 is the number of
occurrences of each variable 𝑥𝑖. Note that by the definition of Max 2SAT≤3,

∑|𝑋 |
𝑖=1𝑚𝑖 is the

total number of literals, which must be at most 2|𝐶 |. Note also that for any instance 𝜙 of Max
2SAT≤3, it must be that optM2S3(𝜙) ≥ |𝐶 |/2. This is because a truth assignment satisfying
|𝐶 |/2 clauses can be found using a greedy algorithm that in each step assigns a truth value to
a variable occurring in the maximum number of clauses [115]. We can now show that

optEDK4
( 𝑓 (𝜙)) ≤

|𝑋 |∑︁
𝑖=1

3𝑚𝑖 + optM2S3(𝜙) by Lemma 8.11

= 3
|𝑋 |∑︁
𝑖=1

𝑚𝑖 + optM2S3(𝜙)

≤ 6|𝐶 | + optM2S3(𝜙) since 2|𝐶 | ≥ ∑|𝑋 |
𝑖=1𝑚𝑖

≤ 13optM2S3(𝜙) since optM2S3(𝜙) ≥ |𝐶 |/2

so 𝛼 = 13. We can also show that for any instance 𝜙 and any edge-disjoint 𝐾4-packing 𝑇 in
𝑓 (𝜙),

optM2S3(𝜙) −mM2S3(𝜙, 𝑔(𝜙,𝑇)) ≤ optM2S3(𝜙) −
(
|𝑇 | −

|𝑋 |∑︁
𝑖=1

3𝑚𝑖

)
by Lemma 8.11

=

|𝑋 |∑︁
𝑖=1

3𝑚𝑖 + optM2S3(𝜙) − |𝑇 |

≤ optEDK4
( 𝑓 (𝜙)) − |𝑇 | by Lemma 8.9

= optEDK4
( 𝑓 (𝜙)) −mEDK4 ( 𝑓 (𝜙), 𝑇)

since mEDK4 ( 𝑓 (𝜙), 𝑇) = |𝑇 |, which shows that 𝛽 = 1. □

8.4.2.3 Edge-disjoint 𝐾5-packing

In this section we show that EDK5 is APX-hard even when Δ = 9. The proof uses an
𝐿-reduction that follows the same pattern as the one shown in Section 8.4.2.2 for EDK4,
extending the 𝐿-reduction of Caprara and Rizzi [9]. The reduction, shown in Figure 8.2,
is as follows. As before, we reduce from Max 2SAT≤3 (Problem 8.2) and construct a set
of variable and clause gadgets. For each variable 𝑥𝑖, construct a variable gadget of 8𝑚𝑖
vertices, labelled 𝑅𝑖 = {𝑎 𝑗𝑖 , 𝑏

𝑗

𝑖
, 𝑐

𝑗

𝑖
, 𝑑

𝑗

𝑖
, 𝑒

𝑗

𝑖
, ℎ

𝑗

𝑖
, 𝑢

𝑗

𝑖
, 𝑣

𝑗

𝑖
} for each 𝑗 where 1 ≤ 𝑗 ≤ 𝑚𝑖. For

each 𝑗 where 1 ≤ 𝑗 ≤ 𝑚𝑖, add an edge (if it does not exist already) between each pair
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𝑣
𝑗

𝑖
𝑐
𝑗

𝑖

𝑢
𝑗+1
𝑖

ℎ
𝑗

𝑖

𝑑
𝑗

𝑖

𝑏
𝑗

𝑖𝑢
𝑗

𝑖

𝑒
𝑗

𝑖

𝑎
𝑗

𝑖

𝑎
𝑗+1
𝑖𝑒

𝑗+1
𝑖

𝑏
𝑗+1
𝑖

𝑠1𝑟

𝑡1𝑟

𝑤1
𝑟

𝑤2
𝑟

𝑤3
𝑟

𝑤4
𝑟

𝑠2𝑟

𝑡2𝑟

Figure 8.2: The reduction from Max 2SAT≤3 to EDK5

of vertices in {𝑎 𝑗
𝑖
, 𝑏

𝑗

𝑖
, 𝑒

𝑗

𝑖
, 𝑢

𝑗

𝑖
, 𝑣

𝑗

𝑖
}; {𝑏 𝑗

𝑖
, 𝑐

𝑗

𝑖
, 𝑒

𝑗

𝑖
, ℎ

𝑗

𝑖
, 𝑣

𝑗

𝑖
}; and finally {𝑐 𝑗

𝑖
, 𝑑

𝑗

𝑖
, ℎ

𝑗

𝑖
, 𝑣

𝑗

𝑖
, 𝑢

𝑗+1
𝑖
} and

{𝑑 𝑗
𝑖
, 𝑎

𝑗+1
𝑖
, ℎ

𝑗

𝑖
, 𝑒

𝑗+1
𝑖
, 𝑢

𝑗+1
𝑖
} if 𝑗 < 𝑚𝑖, otherwise {𝑐 𝑗

𝑖
, 𝑑

𝑗

𝑖
, ℎ

𝑗

𝑖
, 𝑣

𝑗

𝑖
, 𝑢1
𝑖
} and {𝑑 𝑗

𝑖
, 𝑎1
𝑖
, ℎ

𝑗

𝑖
, 𝑒1
𝑖
, 𝑢1
𝑖
}. We

shall refer to {𝑎 𝑗
𝑖
, 𝑏

𝑗

𝑖
, 𝑒

𝑗

𝑖
, 𝑢

𝑗

𝑖
, 𝑣

𝑗

𝑖
} and {𝑐 𝑗

𝑖
, 𝑑

𝑗

𝑖
, ℎ

𝑗

𝑖
, 𝑣

𝑗

𝑖
, 𝑢

𝑗+1
𝑖
} (and {𝑐 𝑗

𝑖
, 𝑑

𝑗

𝑖
, ℎ

𝑗

𝑖
, 𝑣

𝑗

𝑖
, 𝑢1
𝑖
}) as odd

𝐾5s in 𝑅𝑖, and {𝑏 𝑗
𝑖
, 𝑐

𝑗

𝑖
, 𝑒

𝑗

𝑖
, ℎ

𝑗

𝑖
, 𝑣

𝑗

𝑖
} and {𝑑 𝑗

𝑖
, 𝑎

𝑗+1
𝑖
, ℎ

𝑗

𝑖
, 𝑒

𝑗+1
𝑖
, 𝑢

𝑗+1
𝑖
} (and {𝑑 𝑗

𝑖
, 𝑎1
𝑖
, ℎ

𝑗

𝑖
, 𝑒1
𝑖
, 𝑢1
𝑖
}) as

even 𝐾5s in 𝑅𝑖. At this point deg𝐺 (𝑎
𝑗

𝑖
) = deg𝐺 (𝑏

𝑗

𝑖
) = deg𝐺 (𝑐

𝑗

𝑖
) = deg𝐺 (𝑑

𝑗

𝑖
) = 6 and

deg𝐺 (𝑒
𝑗

𝑖
) = deg𝐺 (ℎ

𝑗

𝑖
) = deg𝐺 (𝑢

𝑗

𝑖
) = deg𝐺 (𝑣

𝑗

𝑖
) = 8 for any 𝑗 where 1 ≤ 𝑗 ≤ 𝑚𝑖.

We shall now construct the clause gadgets. For each clause 𝑐𝑟 , construct a clause gadget
of 7 vertices labelled 𝑆𝑟 = {𝑠1𝑟 , 𝑡1𝑟 , 𝑠2𝑟 , 𝑡2𝑟 , 𝑤1

𝑟 , 𝑤
2
𝑟 , 𝑤

3
𝑟 , 𝑤

4
𝑟 }. Add an edge (if it does not exist

already) between each pair of vertices in {𝑠1𝑟 , 𝑡1𝑟 , 𝑤1
𝑟 , 𝑤

2
𝑟 , 𝑤

3
𝑟 } and {𝑠2𝑟 , 𝑡2𝑟 , 𝑤2

𝑟 , 𝑤
3
𝑟 , 𝑤

4
𝑟 }. Label

{𝑠1𝑟 , 𝑡1𝑟 , 𝑤1
𝑟 , 𝑤

2
𝑟 , 𝑤

3
𝑟 } and {𝑠2𝑟 , 𝑡2𝑟 , 𝑤2

𝑟 , 𝑤
3
𝑟 , 𝑤

4
𝑟 } as 𝑃𝑟

𝑖
and 𝑃𝑟

𝑗
, where the variables of the literals

in 𝑐𝑟 are 𝑥𝑖 and 𝑥𝑗 .

The connection of variable and clause gadgets follows the same pattern as for EDK4. For each
clause 𝑐𝑟 , suppose 𝑥𝑖 is the variable of some literal in 𝑐𝑟 where 𝑐𝑟 contains the 𝑗 th occurrence
of 𝑥𝑖 in 𝜙. If 𝑥𝑖 is the first literal in 𝑐𝑟 and occurs positively in 𝑐𝑟 then identify 𝑎 𝑗

𝑖
and 𝑠1𝑟 , and

𝑏
𝑗

𝑖
and 𝑡1𝑟 . Now deg𝐺 (𝑎

𝑗

𝑖
) = deg𝐺 (𝑏

𝑗

𝑖
) = 9. Similarly, if 𝑥𝑖 is the first literal in 𝑐𝑟 and occurs
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negatively in 𝑐𝑟 then identify 𝑏 𝑗
𝑖

and 𝑠1𝑟 , and 𝑐 𝑗
𝑖

and 𝑡1𝑟 . If 𝑥𝑖 is the second literal in 𝑐𝑟 and
occurs positively in 𝑐𝑟 then identify 𝑎 𝑗

𝑖
and 𝑠2𝑟 , and 𝑏 𝑗

𝑖
and 𝑡2𝑟 . If 𝑥𝑖 is the second literal in 𝑐𝑟

and occurs negatively in 𝑐𝑟 then identify 𝑏 𝑗
𝑖

and 𝑠2𝑟 , and 𝑐 𝑗
𝑖

and 𝑡2𝑟 . Now Δ = 9.

As before, the reduction can be performed in polynomial time. We now prove correctness in
the first direction.

Lemma 8.13. If a truth assignment 𝔣 for 𝜙 satisfies at least 𝑘 clauses then an edge-disjoint
𝐾5-packing 𝑇 exists in 𝐺 where |𝑇 | ≥ ∑|𝑋 |

𝑖=1 2𝑚𝑖 + 𝑘 .

Proof. Suppose 𝔣 is a truth assignment for 𝜙 that satisfies at least 𝑘 clauses. We shall construct
an edge-disjoint 𝐾5-packing𝑇 where |𝑇 | ≥ ∑|𝑋 |

𝑖=1 2𝑚𝑖+ 𝑘 . For each variable 𝑥𝑖, add to𝑇 the set
of even 𝐾5s in 𝑅𝑖 if 𝔣(𝑥𝑖) is true and otherwise the set of odd 𝐾5s in 𝑅𝑖. Now |𝑇 | = ∑|𝑋 |

𝑖=1 3𝑚𝑖.
For each clause 𝑐𝑟 satisfied by 𝔣, it must be that there exists some variable 𝑥𝑖 where 𝔣(𝑥𝑖) is
true and 𝑥𝑖 occurs positively in 𝑐𝑟 , or there exists some variable 𝑥𝑖 where 𝔣(𝑥𝑖) is false and 𝑥𝑖
occurs negatively in 𝑐𝑟 . As before, in either case add 𝑃𝑟

𝑖
to 𝑇 . Now |𝑇 | = ∑|𝑋 |

𝑖=1 2𝑚𝑖 + 𝑘 . The
proof that 𝑇 is edge disjoint is analogous to the proof in Lemma 8.9. □

We now prove the second direction. Like before, we say that some edge-disjoint 𝐾5-packing
𝑇 in 𝐺 is canonical if for any 𝑅𝑖, 𝑇 contains either the set of even 𝐾5s in 𝑅𝑖 or the set of odd
𝐾5s in 𝑅𝑖.

Lemma 8.14. If 𝑇 is an edge-disjoint 𝐾5-packing then there exists a canonical edge-disjoint
𝐾5-packing 𝑇 ′ where |𝑇 ′| ≥ |𝑇 |.

Proof. The proof is analogous to the proof of Lemma 8.10. Here we describe the modification
of a single variable gadget 𝑅𝑖 where 𝑇 neither contains all even 𝐾5s nor all odd 𝐾5s in 𝑅𝑖. It
must be that the number of 𝐾5s in 𝑅𝑖 in 𝑇 is at most 2𝑚𝑖 − 1.

Suppose 𝑥𝑖 occurs in clauses 𝑐𝑟1 , 𝑐𝑟2 , . . . , 𝑐𝑟𝑚𝑖
, corresponding to the sets 𝑃𝑟1

𝑖
, 𝑃

𝑟2
𝑖
, . . . , 𝑃

𝑟𝑚𝑖

𝑖
. It

must be that either at most one 𝐾5 in {𝑃𝑟1
𝑖
, 𝑃

𝑟2
𝑖
, . . . , 𝑃

𝑟𝑚𝑖

𝑖
} exists in 𝑇 where the corresponding

occurrence of 𝑥𝑖 is positive, or at most one 𝐾5 in {𝑃𝑟1
𝑖
, 𝑃

𝑟2
𝑖
, . . . , 𝑃

𝑟𝑚𝑖

𝑖
} exists in 𝑇 where the

corresponding occurrence of 𝑥𝑖 is negative. In the former case, remove the 𝐾5 in {𝑃𝑟1
𝑖
, 𝑃

𝑟2
𝑖
,

. . . , 𝑃
𝑟𝑚𝑖

𝑖
} where the corresponding occurrence of 𝑥𝑖 is positive as well as any even 𝐾5s in 𝑅𝑖

in 𝑇 , then add the set of odd 𝐾5s not already in 𝑇 . The number of 𝐾5s in 𝑅𝑖 is now 2𝑚𝑖 so
since at most one 𝐾5 was removed, which was not in 𝑅𝑖, it follows that the cardinality of𝑇 has
not decreased. To see that 𝑇 is still edge-disjoint, observe that any 𝐾5 in {𝑃𝑟1

𝑖
, 𝑃

𝑟2
𝑖
, . . . , 𝑃

𝑟𝑚𝑖

𝑖
}

in 𝑇 intersects any odd 𝐾5 by at most one vertex. The construction and proof in the latter
case is symmetric. □

Lemma 8.15. If 𝑇 is an edge-disjoint 𝐾5-packing where |𝑇 | = ∑|𝑋 |
𝑖=1 2𝑚𝑖 + 𝑘 for some integer

𝑘 ≥ 1 then exists a truth assignment 𝔣 that satisfies at least 𝑘 clauses.
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Proof. Assume by Lemma 8.14 that𝑇 is canonical. It follows that𝑇 contains exactly
∑|𝑋 |
𝑖=1 2𝑚𝑖

𝐾5s in variable gadgets and at least 𝑘 𝐾5s in clause gadgets. For each variable 𝑥𝑖, set 𝔣(𝑥𝑖) to
be true if 𝑇 contains all even 𝐾5s in 𝑅𝑖 and false otherwise. Now consider each clause gadget
𝑐𝑟 where 𝑆𝑟 contains some 𝐾5 in 𝑇 , which we label 𝑃𝑟

𝑖
. Suppose 𝑥𝑖 occurs positively in 𝑐𝑟 .

It follows that 𝑃𝑟
𝑖

contains 𝑎 𝑗
𝑖
, 𝑏

𝑗

𝑖
for some 𝑗 where 1 ≤ 𝑗 ≤ 3. Since 𝑇 is edge disjoint it

follows that 𝑇 contains the even 𝐾5s in 𝑅𝑖. By the construction of 𝔣 it follows that 𝔣(𝑥𝑖) is true
and thus 𝑐𝑟 is satisfied. The proof when 𝑥𝑖 occurs negatively in 𝑐𝑟 is symmetric. It follows
thus that at least 𝑘 clauses are satisfied by 𝔣. □

Lemma 8.16. If 𝑟 = 5 and Δ = 9 then EDK𝑟 is APX-hard.

Proof. The reduction described runs in polynomial time, and Lemma 8.15 shows how to
construct a truth assignment 𝔣 that satisfies 𝑘 clauses given an edge-disjoint 𝐾5-packing of
cardinality

∑|𝑋 |
𝑖=1 3𝑚𝑖 + 𝑘 where 𝑘 ≥ 1. By Lemmas 8.13 and 8.15, in the reduction a truth

assignment 𝔣 for 𝜙 exists that satisfies at least 𝑘 clauses if and only if there exists an edge-
disjoint 𝐾5-packing of size at least

∑|𝑋 |
𝑖=1 3𝑚𝑖 + 𝑘 . This reduction is thus an 𝐿-reduction with

𝛼 = 9 and 𝛽 = 1. □

We now combine Lemmas 8.12 and 8.12 with the existing result of Caprara and Rizzi [9] in
Theorem 8.8.

Theorem 8.8. If 𝑟 ≤ 5 and Δ > 2𝑟 − 2 then EDK𝑟 is APX-hard.

Proof. Caprara and Rizzi [9] prove the case when 𝑟 = 3 and Δ = 5. In Lemma 8.12 we prove
the case when 𝑟 = 4 and Δ = 7. In Lemma 8.16 we prove the case when 𝑟 = 5 and Δ = 9. □

8.5 Summary and future work

To recap, we considered the problem of finding a maximum-cardinality 𝐾𝑟-packing in an
undirected graph of fixed maximum degree Δ, subject to the set of selected 𝐾𝑟s being either
vertex disjoint (VDK𝑟) or edge disjoint (EDK𝑟). It is known that VDK3 is solvable in
linear time if Δ = 3 but APX-hard if Δ ≥ 4, and EDK3 is solvable in linear time if Δ = 4
but APX-hard if Δ ≥ 5 [9]. We generalised these results and presented a full complexity
classification for both VDK𝑟 and EDK𝑟 . We first showed that VDK𝑟 is solvable in linear time
if Δ < 3𝑟/2 − 1 (Theorem 8.2), solvable in polynomial time if Δ < 5𝑟/3 − 1 (Theorem 8.3),
and APX-hard if Δ ≥ ⌈5𝑟/3⌉ − 1 (Theorem 8.6).

We also showed that if 𝑟 ≥ 6 then EDK𝑟 is also solvable in linear time if Δ < 3𝑟/2 − 1,
solvable in polynomial time if Δ < 5𝑟/3− 1, and APX-hard if Δ ≥ ⌈5𝑟/3⌉ − 1. If 𝑟 ≤ 5, then
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EDK𝑟 is solvable in linear time if Δ < 3𝑟/2 − 1, solvable in polynomial time if Δ ≤ 2𝑟 − 2,
and APX-hard if Δ > 2𝑟 − 2.

Some of our polynomial-time algorithms involved finding a maximum independent set in
a corresponding intersection graph. In each case, we showed that this intersection graph
was claw-free, from which it follows that a maximum independent set in the intersection
graph can be found in polynomial time [107, 109]. As we noted in Section 8.3.1, in a more
general setting in which graph vertices have weights, it is possible to find an independent
set of maximum weight [107, 112]. It might be interesting to use this result to derive
polynomial-time algorithms for weighted versions of VDK𝑟 and EDK𝑟 .

Another direction for future work is to generalise other known results for VDK3 and EDK3

to VDK𝑟 and EDK𝑟 where 𝑟 ≥ 3. For example, Manić and Wakabayashi [98] showed that
the known approximation ratio of (3/2 + Y) for VDK3 and EDK3 with can be improved upon
in the restricted settings where Δ = 4 and Δ = 5, respectively. It might be possible to show
a similar improvement of the corresponding approximation ratio for VDK𝑟 and EDK𝑟 (of
𝑟/2 + Y, as discussed in Section 8.1) in the setting of an arbitrary fixed maximum degree.
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Chapter 9

Conclusion

In this chapter we recap on the contribution of this thesis and discuss some future work
relating to 3DR as well as more general problems of coalition formation.

Our main contribution related to Three-Dimensional Roommates (3DR). For two models
involving ℬ- and 𝒲-preferences (3DR-B and 3DR-W), we considered the existence of
matchings that are stable. We first showed that both associated existence problems are NP-
complete. Next, in each model we considered the optimisation problem in which the objective
is to construct a matching with the maximum number of non-blocking triples. We showed
that an existing result led to a 9/4-approximation algorithm in both models and a simple
algorithm based on serial dictatorship led to a 3/2-approximation in 3DR-B.

In a model of 3DR with additively separable preferences (3DR-AS), we studied stable and
envy-free matchings, for three successively weaker definitions of envy-freeness. We con-
sidered various restrictions on the agents’ valuations and gave a comprehensive complexity
classification based on these restrictions. Interestingly, we identified a general trend that
shows, for successively weaker solution concepts, either existence or polynomial-time solv-
ability holds under successively weaker preference restrictions. Building on our new result
that any instance of 3DR-AS with binary and symmetric preferences must contain a stable
matching, we also developed a 2-approximation algorithm for the problem of finding a stable
matching with maximum utilitarian welfare in such an instance.

We also presented new results relating to Three-Dimensional Stable Matching with Cyclic
Preferences (3-DSM-CYC). In particular, we considered the optimisation problem of finding
a matching with the maximum number of non-blocking families. We first presented two
different approximation algorithms for this problem in the general case. We then considered
a situation in which the preferences of some agents are sufficiently similar to some master
list, and showed that the approximation ratio of one algorithm can be improved in relation to
a particular similarity measure (specifically the Kendall tau distance [6]).
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Finally, we considered a general problem in graph theory that generalises the notion of
assigning agents to coalitions of a fixed size, known as the 𝐾𝑟-packing problem. In particular,
we studied the restricted case of this problem in which the graph has a fixed maximum degree
Δ. It is known for 𝑟 = 3 that the vertex-disjoint (edge-disjoint) variant is solvable in linear
time if Δ = 3 (Δ = 4) but APX-hard if Δ ≥ 4 (Δ ≥ 5). We generalised these results to an
arbitrary but fixed 𝑟 ≥ 3, and provided a full complexity classification for both the vertex-
and edge-disjoint variants in graphs of maximum degree Δ, for all 𝑟 ≥ 3.

At the end of each chapter of this thesis we summarised our new results in detail and discussed
some closely related angles of possible future work. We shall now discuss some more general
directions for future work related to both 3DR and the wider topic of coalition formation.

An immediate open question is to what extent our results relating to 3DR generalise to
problems of multidimensional roommates and more general models of coalition formation.
We conjecture that our NP-completeness reductions relating to 3DR-B, 3DR-W, and 3DR-AS
can all be generalised to a model of 𝑘-dimensional roommates (𝑘DR) where 𝑘 ≥ 3. We
also conjecture that our approximation algorithms for 3-DSM-CYC and 3DR-B can also be
generalised, without too much extra work, to 𝑘-DSM-CYC and 𝑘DR-B, where 𝑘 ≥ 3, with
the same approximation ratios. In our opinion the most interesting question here concerns
our polynomial-time algorithm for the restriction of 3DR-AS in which preferences are binary
and symmetric. It is unclear if either a similar algorithm exists for the same restriction in
4DR-AS or if instances of 4DR-AS exist that do not contain a stable matching.

In Chapter 3, we devised a 9/4-approximation algorithm for 3-DSM-CYC-MSM, which in-
volved first constructing a corresponding instance of 3GSM and then using Rosenbaum’s [75]
9/4-approximation algorithm for 3GSM-MSM to find a matching with at least 9𝑛3/4 non-
blocking families. We also proved similar results in Chapters 4 and 5 for 3DR-B-MSM
and 3DR-W-MSM respectively, making use of Rosenbaum’s algorithm for 3PSA-MSM. We
believe that this approach can be easily generalised to other optimisation problems in variants
of either 3GSM or 3PSA. Specifically, we believe that this approach can be generalised for
any such variant in which each agent’s preference over triples can be expressed as a poset. It
follows that a linear extension of each agent’s preferences exists, which was the central com-
ponent of our proofs for 3-DSM-CYC-MSM, 3DR-B-MSM, and 3DR-W-MSM. For example,
we believe that it will be straightforward to identify, along these lines, a 9/4-approximation
algorithm for the corresponding problem in the model of 3DR proposed by Iwama et al. [57]
in 2007.

We saw in Chapters 4 and 5 that deciding if a given instance of 3DR-B or 3DR-W contains
a stable matching is NP-complete, which contrasts with the analogous models in which
coalitions need not have a fixed size, wherein a stable matching is bound to exist and can be
found in polynomial time [7, 8]. It seems intuitive that the added restriction of fixed coalition
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size makes both problems somehow harder to solve. It would be interesting to identify other
problem models that exhibit a similar behaviour, or identify models that counter this intuition.
In this direction, one could also explore other restrictions of coalition size, such as flatmate
games [69] or lower and upper bounds.

Many existing works relating to fixed-size coalition formation, and in particular those in-
volving multidimensional roommates, propose new models and study related problems in a
relatively ad-hoc way. In this thesis we used the common framework of 3DR to formalise
three related models of fixed-size coalition formation, and in each one studied the existence
of, and complexity of finding, feasible matchings. This approach allowed us to compare anal-
ogous results between problems that relate to different systems of preference representation
and different solution concepts. For example, we noted in Chapter 5 that it seems difficult
to construct an approximation algorithm for 3DR-W-MSM with the same performance guar-
antee as the algorithm for 3DR-B-MSM. We believe that such a systematic approach helps
us explore the interplay between the system of preference representation, solution concept,
and coalition size, both in the setting of 3DR as well as in more general models of coalition
formation.

As we saw in Chapter 2 (and in Figure 2.1) a multitude of solution concepts and systems
of preference representation have been explored in the setting of hedonic games (in which
coalitions generally need not have a fixed size) [11]. It remains open to what extent many
of these systems and concepts can be transposed either to 3DR or other models involving
coalitions of a restricted size. For example, as noted by Bilò et al. [73], it seems unclear
whether Nash stability, which involves the individual deviation of agents, can be meaningfully
defined in some models of fixed-size coalitions. More generally, it would be interesting to
see to what extent the hierarchy of solution concepts defined in the setting of hedonic
games [11, 15, 16] (which we discussed in Chapter 2) can be redefined in a model involving
fixed-size coalitions.



GLOSSARY OF ABBREVIATIONS 181

Glossary of abbreviations

3DR Three-Dimensional Roommates . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3DR-AS Three-Dimensional Roommates with Additively Separable preferences . . . 63

3DR-AS-SMUW 3DR-AS Stable Maximum Utilitarian Welfare problem . . . . . . . 98

3DR-B Three-Dimensional Roommates with ℬ-preferences . . . . . . . . . . . . . 38

3DR-B-MSM 3DR-B Maximally Stable Matching problem . . . . . . . . . . . . . . 44

3DR-W Three-Dimensional Roommates with 𝒲-preferences . . . . . . . . . . . . . 55

3DR-W-MSM 3DR-W Maximally Stable Matching problem . . . . . . . . . . . . . 60

3-DSM-CYC Three-Dimensional Stable Matching with Cyclic preferences . . . . . . 24

3-DSM-CYC-MSM 3-DSM-CYC Maximally Stable Matching problem . . . . . . . 24

3GSM Three-Gender Stable Marriage problem . . . . . . . . . . . . . . . . . . . . 16

3PSA Three-Person Stable Assignment problem . . . . . . . . . . . . . . . . . . . . 19

ASHG Additively Separable Hedonic Game . . . . . . . . . . . . . . . . . . . . . . 11

DTP Directed Triangle Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

EDK𝑟 Edge-Disjoint 𝐾𝑟-packing problem . . . . . . . . . . . . . . . . . . . . . . . 160

IRLC Individually Rational Lists of Coalitions . . . . . . . . . . . . . . . . . . . . . 9

LC Lists of Coalitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Max 2SAT≤3 a restriction of Maximum Satisfiability . . . . . . . . . . . . . . . . 168

MIS-3-TF Maximum Independent Set in 3-regular Triangle-Free graphs . . . . . . 166

PIT Partition into Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

SDR System of Distinct Representatives . . . . . . . . . . . . . . . . . . . . . . . . 56

SM Stable Marriage problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

SR Stable Roommates problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

VDK𝑟 Vertex-Disjoint 𝐾𝑟-packing problem . . . . . . . . . . . . . . . . . . . . . . 160

X3SAT=3
+ a restriction of Exact 3-Satisfiability . . . . . . . . . . . . . . . . . . . . 105
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