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Abstract
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by Lara Janiurek

The inference of the Hubble constant using gravitational wave data has allowed for a

new way for the expansion of the Universe to be probed. The use of dark sirens, which

are mergers of binary black hole systems, to measure the Hubble constant (H0) may

shed considerable light on the current Hubble tension. Galaxy redshift surveys are a

key ingredient for the application of these dark sirens in the measurement of H0. Most

binary black hole merger events are not expected to have an associated electromagnetic

counterpart, therefore measuring H0 using these sirens requires the identification of the

redshifts of potential host galaxies and marginalising over these host galaxy redshifts.

Photometric redshift surveys often contain significant statistical or systematic errors

which may impact adversely on the Hubble constant inference. Improving the perfor-

mance of dark sirens in the future observing runs of the LIGO Virgo KAGRA(LVK)

network requires a better understanding of the photometric redshift errors. The current

redshift values used by the LVK for cosmological inference are assumed to have an as-

sociated Gaussian error, however a true quantification of the redshift posteriors would

give a more accurate result in the overall inference of the H0. Spectroscopic redshifts

are difficult to obtain and many physical photometric techniques rely on cosmological

models that could potentially introduce bias into the redshift measurements. Machine

learning techniques are advantageous in that they don’t rely on assumed cosmological

models.

In this work, the random forest algorithm GALPRO is implemented to generate pho-

tometric redshift posteriors. It is initially calibrated using a truth dataset compiled by

Zhou et al. The initial calibration is successful and analysis suggests that the redshift

posterior distributions are largely non-Gaussian. This further reinforces the need for

a reliable method to generate redshift posteriors to better represent these photometric

errors in the inference of H0.
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Tests were run using the Zhou et al. dataset to determine how statistically similar the

training and testing datasets from a survey must be for GALPRO to be applicable. It

was found that the training and testing datasets must have similar redshift distributions

and overlap by at least 90% in the band ranges to give accurate results. GALPRO was

then trained using the Zhou et al. dataset and applied to a sample from the PanSTARRS

survey to explore if GALPRO could be trained using a trusted dataset and applied to

a general, new survey. It was shown that no matter how statistically equivalent the

two surveys were, GALPRO could not produce accurate redshift posteriors for the new

survey. The Zhou et al. and PanSTARRS surveys had very similar redshift distributions

and overlapped in each inputted band by over 90%. Despite this, application of the

algorithm still resulted in a catastrophic failure, indicating that there must be some

underlying fundamental difference between the two surveys that causes the program to

fail. This work serves as a cautionary tale in the application of random forests to new

surveys when generating photometric redshift posteriors.
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Chapter 1

Introduction and Theoretical

Foundations

1.1 The Expansion Of the Universe

It has been agreed upon for nearly a century that the Universe around us is expanding,

however the quest to measure the rate of such expansion is still ongoing. The first infer-

ence that the universe may be expanding came in 1912, from Vesto Slipher’s observations

that the light emitted from distant galaxies was redshifted, and that in fact all of his

observed spiral nebulae appeared to be receding from Earth [7]. This redshift was later

explained by the fractional increase in the wavelength of emitted light from an object,

due to the expansion of space through which the light is travelling [8].

In the early 1920s, Alexander Friedmann developed a theoretical prediction of the uni-

verse’s expansion using Einstein field equations. The first observational evidence of

expansion was published in 1924 by Kurt Lundmark as he worked on extragalactic dis-

tance measurements. Independently, in 1927, Georges Lemâıtre derived a theoretically

similar proof to Friedmann, alongside providing observational evidence indicating a lin-

ear relationship between the distance to a galaxy and its recessional velocity [9, 10].

In 1929, these finding were confirmed by the observations of Edwin Hubble. Hubble

focused on the measurement of distances out to extragalactic nebulae, which lead him to

examine the relationship between the distances of the nebulae and their radial velocities.

1
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Although his distance measurements were considerably underestimated, he still managed

to determine a roughly linear relationship between the estimated distance out to a galaxy

and its redshift. This relationship was later known as Hubble’s law, which states that

the larger the distance between a galaxy and the observer, the greater the recessional

velocity of that galaxy. Hubble determined the distance and redshift values for 46

galaxies, leading him to deduce a value of 500 km s−1 Mpc−1 for the Hubble constant

(H0). This is much greater than the currently accepted value, due to the distance

measurements used being considerably underestimated [11].

The scientific explanation for this observed redshift was yet to be clarified as many

physicists, including Hubble himself, had dismissed the work of Lemâıtre. However it

was later recognised that this redshift corresponds to the rate at which the universe

itself is expanding. These early, inaccurate measurements of H0 paved the way for

the accurate results we see today, where the associated uncertainty has been reduced

to a few percent [12, 13]. This has led to a fresh but challenging new problem, as

different values of the Hubble constant indicate inconsistent results. Early universe

measurements tend to infer lower values of H0 whereas late-time, local measurements

favour higher H0 values [14, 15]. The explanation for this tension is not yet certain,

with proposals generally falling into two groups, the first being that current estimations

contain some underlying systematic error. If the potential error is corrected for, current

results may align producing a single value of H0. The other possibility is that our

current cosmological model of the universe is incorrect and the evolution of the universe

with time is not correctly described. This would imply that new physics is required to

accurately describe our universe.

A measurement of H0 calls for two variables: the distance out to an object which is

caught in the Hubble flow, meaning that is recessional velocity is dominated by the

expansion of the universe, and a measurement of said velocity. For cosmologically small

distances, the redshift of the object is proportional to its recessional velocity. Deter-

mining accurate redshifts values for more distant galaxies poses a large problem when

measuring H0, which is discussed in great detail in later chapters. Obtaining accurate

distance measures also presents many challenges as determining cosmological distances

at varying scales calls for numerous methods of measurement. The cosmic distance lad-

der, seen in Figure 1.1, groups these various methods to measure cosmological distances

at different scales. Standard candles, which are astronomical objects with a known
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brightness, are a common tool used in distance measurements as their luminosity dis-

tance can be assessed using the object’s observed and intrinsic brightness. However, the

standard candle method does introduce some issues as it is difficult to know the object’s

intrinsic brightness with certainty. This brightness may potentially change, for example

with redshift, which would therefore introduce an inherent bias to the measurement.

Also, astronomical objects may seem fainter than they truly are, due to reasons such as

interstellar gas obstructing them, meaning any decrease in luminosity may not be solely

due to distance [16].

Figure 1.1: A diagram of the cosmic distance ladder. Figure credit: [1]

Gravitational waves, however, bypass many of these distant measurement issues due to

their intrinsic properties. These waves form during extreme astronomical events, which

cause ripples in the fabric of space-time. Examples of these events are compact binary

coalescences (CBC), including the merging of black holes or neutron stars. The GWs

formed by CBCs have a remarkable intrinsic property, as the luminosity distance out

to a GW event is inversely proportional to the amplitude of the wave as it is measured

on Earth. This is favourable, as no other form of calibration is required when taking

distance measurements using GW data, although the measurement does still contain

some uncertainty [17]. The GW sources are equivalent to standard candles in terms of

an indicator of distance, and are therefore referred to as standard sirens. This property

makes standard sirens an excellent tool in the measurement of H0 .

The first ever GW signal to be detected on Earth was observed by Advanced LIGO in

2015 [18]. But it wasn’t until 2017 when an extremely loud GW signal was detected with
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an electromagnetic (EM) counterpart, leading to the host galaxy being identified and

a direct measurement of H0 [18]. This measurement of H0 using the GW170817 BNS

event gave an uncertainty of around 15% which is far too inaccurate to determine which

previous H0 measurements it may agree with. In order for the required accuracy to be

achieved, we would need to observe many more similar events. However, the GW170817

was abnormally close by and well-localised, with the EM counterpart being identified

extremely quickly. The probability of detecting multiple of these nearby events with EM

counterparts is very low, and since then Virgo and Advanced LIGO have not observed

another event which was similarly loud with an EM counterpar [19].

To tackle this issue, the code gwcosmo was developed by Rachel Gray in 2020, which

is a software package used to estimate the Hubble parameter using gravitational wave

observations. gwcosmo takes the theory, first proposed by Shutz in 1986, which estimates

H0 using GW detections with no EM counterpart, and implements it using a Bayesian

framework that accounts for incomplete galaxy catalogues and selection effects. Typi-

cally, the EM counterpart of a GW signal would be used to determine the redshift of the

host galaxy, however gwcosmo allows for the redshift to be provided by galaxy catalogues

and the uncertainty relating to the true identity of the host galaxy can be marginalised

over. Many mock data analyses, alongside real measurements using Advanced LIGO

and Virgo data from the first three observing runs have been successful in combining

multiple GW detections to measure H0 [16].

With the upcoming fourth Advanced LIGO, Virgo and KAGRA observing run on the

horizon, there is hope of many more GW event detections and therefore further con-

straining measurements of H0. However, there is a lack of accurate redshifts describing

the host galaxies of the events, yet this redshift value is key in determining the Hubble

constant. Spectroscopic redshifts are difficult to obtain due to sparse spectral coverage

and limited signal-to-noise ratios, and many physical photometric techniques rely on

cosmological models which introduce inherent bias into the measurements. The current

redshift values used by Advanced LIGO for cosmological inference are assumed to have

an associated error which is Gaussian. If this assumption is incorrect, then the redshift

errors must be quantified to lead to better constraints on the H0 measurement. A true

quantification of the redshift posteriors would give a more accurate result in the overall

inference of H0.
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This thesis applies the software package GALPRO, developed by Sunil Mucesh in 2020

to generate photometric redshifts using machine learning techniques. The main goal of

this thesis is to determine whether GALPRO is applicable to new surveys containing

photometry data to generate reliable and accurate photometric redshifts for galaxies

where no spectroscopic data is available. These redshifts may then be used for the

quest to constrain H0 using GW events. Redshifts generated by machine learning do

not rely on cosmological models and therefore avoid any bias or artificial structures

introduced by these models. GALPRO is made up of a random forest algorithm which

can be trained using known photometry and spectroscopic redshifts to learn the mapping

between the two. Once the mapping is learnt, it can then be applied to galaxy surveys

where there is a lack of spectroscopic data to generate photometric redshifts. This

thesis explores how reliable the photometric redshift estimates may be when applying

the GALPRO software, trained on a specific dataset. By applying GALPRO to a new,

different survey which is separate to the one it was trained on, the accuracy of the results

can be determined, alongside any restrictions or limits on the software’s capability. The

photometric redshift posteriors are also assessed to determine whether the assumption

that the redshift errors can be modelled as Gaussian is valid. The ability to generate

reliable redshift estimates for surveys that lack spectroscopic data plays a key role in

further constraining H0 measurements, and this work assesses whether GALPRO may

be used to compute these redshifts.

The first chapter details the context of this work, while the second chapter introduces the

GALPRO software package and details its calibration and validation using known data

samples. The third chapter explores the application of GALPRO to an unknown survey

which only provides photometry data, and assesses its performance when encountering

new surveys which may contain galaxies with different properties than those it was

trained on. The goal of this work is to evaluate whether GALPRO can be reliably

applied to new surveys to generate photometric redshifts, which may then populate the

galaxy catalogues utilised by gwcosmo in the inference of H0.

1.1.1 The Standard Model of Cosmology

The standard model of cosmology follows the cosmological principle, which is the notion

that the universe is isotropic and homogeneous on a large scale. This implies that the
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density of matter through the universe is around the same no matter where you are,

and that it looks the same in all directions. The observation that all galaxies seem to

be receding away from Earth is compatible with the cosmological principle if indeed the

universe is expanding, as it means that no matter where you stand in the universe you

would observe the same thing.

Hubble and Lemâitre both independently came to the same conclusion, that a galaxy’s

recessional velocity from Earth is approximately proportional to the distance out to that

galaxy. This lead to the Hubble-Lemaitre law [10, 11], which is written as:

v = H0d (1.1)

with d being the proper distance from the observer to the object (Mpc). v is the

recessional velocity of the object (km s−1). H0 is a constant of proportionality, named

the Hubble constant, with units km s−1 Mpc−1.

Obviously, the expansion of the universe implies that the universe was in fact previously

much smaller than we see today, which is in agreement with the Big Bang theory.

The standard model of cosmology, the Λ-cold-dark-matter (ΛCDM) model, starts with

the Big Bang which happened around 13.8 billion years ago [20]. This was the birth

of the universe, where a point of singularity began an explosive expansion leading to

the universe being filled with cold dark matter and ordinary matter. As the universe

initially began to expand, it filled with photons and matter in a dense hot plasma [16].

A slight variation in the density of this plasma was caused by quantum fluctuations

which were amplified by Baryonic Acoustic Oscillations (BAO), similar to sound waves,

as small perturbations propagated through the plasma [21]. The universe began to

cool as it expanded, causing atoms to form. This meant that photons could now travel

through space and are no longer absorbed and re-emitted. This period in which light

and matter decoupled is known as recombination, and the photons at this time can still

be observed today as the Cosmic Microwave Background (CMB). The perturbations in

the plasma ceased to oscillate at this time, but still etched themselves on the distribution

of matter, which can be seen today as small variations in the CMB temperature. As

the universe further expands, the areas of over-density are contracted by gravity and

increase in temperature, inducing the formation of stars and galaxies. This then leads
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to the formation of the large scale structure of the universe, as galaxy clusters form and

are joined by filaments. This method of formation means that the imprint of the BAO

is still visible today through the web of matter in our universe [16].

The term cold dark matter refers to matter which is non-relativistic and does not interact

with photons. Gravity should, and would, slow or halt the expansion of the universe if

it weren’t for the cosmological constant, Λ, which specifies the presence of dark energy

in the universe [21]. This dark energy dominates as time progresses, and fights against

the force of gravity thus accelerating the expansion of the universe. It is important to

note the expansion of the universe does not cause the separation of gravitionally bound

objects, but expands the empty space around them [20].

Discussion of the expansion of the universe often calls for the introduction of a metric.

A metric is a mathematical description of the separation of events in space-time. The

Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is the most appropriate in this

case as it is applicable to a universe which obeys the cosmological principle. The Einstein

field equations of general relativity detail how the presence of matter affects the curvature

of space-time, and the exact solution to these equations is given by the FLRW [9, 10, 22–

27]. An important take away from the FLRW is that it includes a term which describes

how the spatial distance between two events may evolve with time. The metric may be

written as:

ds2 = −c2dt2 + a2(t)ds23 (1.2)

with ds2 being the space-time interval between two events, −c2dt2 represents the time

dependent part of the separation, and a(t)2 is a scale factor. a2(t)ds23 is the spatial part

of separation, which is dependent on the geometry of the universe and whether it is

assumed to be spherical, hyperbolic or flat.

An expanding universe may be described using comoving coordinates, bearing in mind

that every single point in the universe is moving away from each other. For now, we

note that we are not taking gravitionally bound objects into account. The comoving

coordinates expand as the universe expands, and a scale factor a(t) is used to describe

how the comoving coordinates translate to proper distance (the distance between two
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objects at a fixed time). The scale factor we see today, a(t0), is defined as 1. Generally

speaking, we can say:

d(t) = a(t)d0 (1.3)

with d(t) being the proper distance of two separated objects and d0 being the distance

at time t0.

Equation 1.3 can be easily rearranged to give the Hubble Lemaitre Law. Firstly, the

time derivative of each side is taken

ḋ(t) = ȧ(t)d0 (1.4)

It can be noted that Equation 1.3 can be rearranged as d0 = d(t)/a(t). This is substi-

tuted into Equation 1.4, giving

ḋ(t) =
ȧ(t)

a(t)
d(t) (1.5)

This now gives the Hubble-Lemaitre law, as ḋ(t) is the recessional velocity of an object

with respect to the observer, d(t) is the proper distance to object and ȧ(t)/a(t) represents

the Hubble parameter [16].

This is useful, but the FLRW is not able to describe how matter and energy may be

affected by the universe. However, the FLRW can be assumed while solving the Einstein

field equations, which produces the Friedmann equations [9, 22]. These equations do

describe how the scale factor a(t) may be affected by the geometry, pressure and density

of the universe. The Friedmann equations are written as

( ȧ
a

)2
=

8πG

3
ρ− kc2

a2
+

Λc2

3
(1.6)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
(1.7)
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Here, a is the scale factor as we use the shorthand notation for ease. ȧ is therefore the

time derivative of a, ρ represents the density of universe with p being the pressure, k

the curvature of the universe and Λ is the cosmological constant.

All three of the parameters, a, p and ρ evolve with time, while π, c, G and Λ remain

constant. The parameter k represents the curvature of the universe, which is indeed a

continuum.

There are two common choices for the values of a and k. Firstly, the value of k may

be equal to 1, 0 or -1, depending on whether the universe has spherical, flat or hyper-

bolic geometry respectively. The scale factor a is therefore rescaled to account for this.

Secondly, the more modern definition defines a = 1 and a positive value of k gives a

hyperspherical universe. If k is negative, then the universe is hyperbolic and k = 0 gives

a flat universe 3.1. These two definitions both describe the same physics, but the first

definition, where a is rescaled to account for the geometry of the universe, is used in this

derivation.

The Hubble parameter, H (or H(t)) by definition can be given as

H ≡
( ȧ
a

)
(1.8)

and the value of H at the current day is the Hubble constant, H0. To determine the

relationship between the Hubble constant, redshift and luminosity distance, one must

first introduce the density parameter, Ωm. This parameter describes the density of the

universe with respect to the density if the universe were flat and therefore having no

cosmological constant Λ, called the critical density. This can be defined by solving

Equation 1.6 with k and Λ = 0:

Ωm =
ρ

ρc
(1.9)

where

ρc ≡
3H2

8πG
(1.10)
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Coming back to Freidmann’s equation, Equation 1.6 and rearranging:

8πG

3H2
ρ− kc2

a2H2
+

Λc2

3H2
= 1 (1.11)

The curvature and dark energy density parameters may then be defined as

Ωk = − kc2

a2H2
and ΩΛ =

Λc2

3H2
(1.12)

Substituting Ωm and Equations 1.12 in Equation 1.11, we find

Ωm +Ωk +ΩΛ = 1 (1.13)

Since the Hubble parameter varies with time, the density parameters containing H are

also time dependant. The present day parameter values are defined as:

Ωk,0 = − kc2

a20H
2
0

= −kc2

H2
0

, ΩΛ,0 =
Λc2

3H2
0

and Ωm,0 = − ρ0
ρc,0

=
8πG

3H2
0

ρ0 (1.14)

If we now return to Equation 1.6, dividing through by H2
0 and using present day param-

eters leads to

H2

H2
0

=
ρ

ρ0
Ωm,0 +

1

a2
Ωk,0 +ΩΛ,0 (1.15)

Since the goal is to define the relationship between H0, distance and redshift, it is now

time to introduce cosmological redshift into the (literal and metaphorical) equation. The

cosmological redshift, z, depends only on the scale factor, following:

1 + z =
a(t0)

a(te)
(1.16)

with a(t0) being the size of the universe at the time the light from the object was

observed and a(te) being the size of the universe when light was emitted. This can be

easily converted to a present-day time scale as a(t) = 1/(1 + z).
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We can now use the present day relationship between the scale factor and redshift

alongside the present day density of the universe with respect to the density at time t,

ρ/ρ0 = 1/a(t)3, in Equation 1.15 to give:

E(z) =
H(z)

H0
=

√
Ωm,0(1 + z)3 +Ωk,0(1 + z)2 +ΩΛ,0 (1.17)

Where E(z) is the dimensionless Hubble parameter. Currently, measurements give

Ωm,0 ≈ 0.3, Ωk,0 ≈ 0 and ΩΛ,0 ≈ 0.7, which can be substituted into the above equation

[12]. It is broadly assumed the universe is close to or completely flat, meaning k = 0,

which also simplifies Equation 1.17.

Now, attention turns to the luminosity distance dL, and its relation to H0 and z. This

is the distance out to an object if the inverse square law is retained across the entire

universe, which of course is not true. If the universe is assumed to be flat, then the

luminosity distance is given in terms of the redshifted comoving distance, (1 + z)Dc.

From this, the relationship between dL, z and H0 can be written as:

dL =
c(1 + z)

H0

∫ z

0

dz′

E(z′)
(1.18)

The comoving volume Vc is also useful to define at this point. As the universe expands,

it is assumed that isotropy and homogeneity still stands and therefore matter has a

uniform comoving volume distribution. This however, isn’t entirely true due to galaxy

clustering but still holds when viewed on a large enough scale. How the comoving volume

changes with redshift is given by:

dVc

dz
=

c3

H3
0

1

E(z)

(∫ z

0

dz′

E(z′)

)2
(1.19)

The above equation would hold even if the distribution was not comoving. The depen-

dence on H0 can be dropped when normalised [16].

Focus is shifted back to the redshift of galaxies, z, which is given by:

z =
λobs − λemit

λemit
(1.20)
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with λemit being the redshift of light when emitted from object and λobs as the observed

redshift.

It can be assumed that the galaxy’s recessional velocity, v, is much much less than c and

we can approximate:

z ≈ v

c
(1.21)

This shows that for very small redshift values, v is directly proportional to z. At these

small redshift values it can also be assumed that the proper distance and luminosity

distance are of a very similar length, and so this finally leads to the Hubble relation:

cz ≈ H0dL (1.22)

It is important to remember here that z represents cosmological redshift and does not

account for peculiar motion. Any motion of the object which is not directly due to the

Hubble flow can often impact the measurement of redshift, particularly at low redshifts

where peculiar motion dominates.

Local H0 measurements are often made using Equation 1.22, as dL may be reliably mea-

sured using standard candles and z can be determined via spectroscopic or photometric

techniques. This method is advantageous in that it requires no further assumptions or

parameters, and was used in the first measurements of H0 by Hubble and Lemaitre.

Although these initial measurements contained severe measurement uncertainties due

to greatly inaccurate distance measurements, they paved the way for current value mea-

surements of H0 ≈ 70 km s−1 Mpc−1 [28]. However, there is still much tension arising

from today’s H0 measurements, which will be discussed in detail in the next section.

1.1.2 The Hubble Tension

Different types of observation have given rise to a tension in the measured values of H0.

Although the ΛCDM model encapsulates current observations well with regards to our

universe, early and late-time measurements of H0 result in differing H0 values. Early-

time measurements refer to measurements made at high redshifts, which looks back into
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the early universe and propagates forward to determine the current H0 value, whereas

late-time measurements make use of much lower redshifts to measure the current day

H0 value [14, 15]. Figure 1.2 demonstrates this tension in a graphical manner.

Figure 1.2: A graphical display of the tension between early and late time measure-
ments of the Hubble constant. Figure credit: [2]

The value of H0 can be determined using early-time measurements via the cosmic mi-

crowave background (CMB). The universe is not completely isotropic and homogeneous,

therefore the CMB is not completely uniform, but contains minor density fluctuations

as a result of early quantum fluctuations amplified by the BAO. When light and matter

decoupled at the epoch of recombination, photons could freely travel through the uni-

verse and fluctuations in the density of the plasma of the early universe was imprinted

on the structure of the universe, which birthed the large-scale structure of the universe

that we currently see.

The temperature fluctuations in the CMB, caused by the presence of quantum fluctua-

tions as the universe formed, have an angular dependence that can be used to determine
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the value of H0. Anisotropies in the CMB have been detected in measurements by both

the Planck collaboration and the Atacama Cosmology Telescope +Wilkinson Microwave

Anisotropy Probe, which gave values of H0 = 67.36 ± 0.54 km s−1 Mpc−1 and H0 =

67.6 ± 1.1 km s−1 Mpc−1 respectively [12, 29].

The sound horizon, rs, is defined as the distance that sound waves would have travelled

in the period of time before recombination. Both CMB anisotropies and theory produce

agreeing values of rs. From the sound horizon, a length scale may be determined and this

length scale will change with time as the universe expands. Measuring the variance of this

length scale allows for a determination of the rate of expansion. Studying the clustering

of galaxies leads to low redshift BAO measurements, which allow for a joint constraint

on rs and H0, however CMB or Big Bang Nucleosynethsis (BBN) measurements are

required to break degeneracy. BBN and CMB measurements of H0 are independent but

both results agree nicely with the Planck value and others [30, 31].

Type 1a supernovae can be used to produce late-time H0 measurements as their intrinsic

luminosities can be found from their light curves, meaning they act as standard candles.

Cepheid variable stars of known distances may be used to calibrate type 1a supernovae by

measuring the distance between type 1as and Cepheid variables using parallax estimates

and identifying the two object’s host galaxy. The Supernovae H0 Equation of State of

Dark energy (SH0ES) collaboration produced a measurement of H0 in 2019 by surveying

70 cepheids contained in the host galaxy of Type 1a supernovae. This gave a value of H0

= 74.03 ± 1.42 km s−1 Mpc−1 [32]. After recalibrating the distances out to the cephied,

an improved measurement of H0 = 74.2 ± 1.3 km s−1 Mpc−1 was published. The Planck

2018 result, which assumes ΛCDM, differs from this late-time measurement by a value

of 4.2σ, demonstrating the tension between early and late-time measurements.

There have been many more late-time measurements such as the Maser Cosmology

Project which used distances out to megamaser-hosting galaxies, giving a result of H0

= 73.9 ± 3.0 km s−1 Mpc−1 [33]. The HOLiCOW collaboration measured a value of

H0 = 73.3 +1.7
−1.8 km s−1 Mpc−1 [13] using 6 gravitationally lensed quasars, producing

a value which is independent of the cosmic distance ladder yet agrees with the SH0ES

measurement. Other measurements include a method which calibrates the distance to

the type 1a supernovae using the tip of the red giant branch, which gave a H0 value that

sits in the centre of the tension region [34]. However, once this method was reproduced
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by a separate research group, the measured value was much higher and agreed with

other late-time measurements [35].

It is clear in the results outlined above that there exists a strong disconnect between early

and late time measurements, and currently there is no sufficient explanation for this.

There are two main hypotheses that may explain this tension. Firstly, the systematics

in the measurements may introduce bias to the measured value. In the case of late-

time measurements, many observations are usually combined to give a single H0 value

and the physics behind certain astronomical events is not well known. However, we

currently have some late-time H0 measurements that are independent of the cosmic

distance ladder that still tend towards a higher value and we are not presently aware of

a singular systematic in said ladder that could be accountable for this discrepancy.

Secondly, the ΛCDM model that is currently used to describe our universe may not be

completely correct. The H0 value derived by Planck using the CMB uses highly precise

measurements with a decreased risk of any systematic error being introduced. However,

due to the H0 inference being model specific, if the ΛCDM model is incorrect then this

measurement tension may be due to a breakdown in our cosmological model and not

systematic effects. This would lead to the exploration of new physics to explain the

Hubble tension. Any previous modifications to the ΛCDM model that may explain or

reduce this tension tend to bring about tensions in other areas of cosmology. Examples of

these possible modifications include modified gravity, non-zero curvature and dynamical

dark energy explanations [36–41]. All of these methods do reduce the Hubble tension,

however this usually favours broadening the H0 posterior and not actually changing the

central value.

It is widely agreed upon by many cosmologists that the ΛCDM model describes our uni-

verse very well but doesn’t explain the full picture, much like Newton’s theory of gravity

in relation to Einstein’s theory of relativity. It seems as though we may have reached

the limit of this cosmological model, as demonstrated by the Hubble tension, however

only time will tell if this is correct. The use of gravitational waves as a cosmological

measure may give insight on this issue.
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1.1.3 Gravitational Waves as standard sirens

As a result of his General Theory of Relativity published in 1915, Einstein was the

first to predict GWs the following year in 1916 [42, 43]. His field equations described

how space-time behaves when mass is present, which concluded that an accelerating

mass would perturb space-time and cause ripples to form that spread outwards from the

accelerating mass, travelling at the speed of light. It was highly debated whether these

GWs actually exist until the 1950s, when it was shown by Pirani that GWs were not an

artifact of the coordinate system but do in fact exist [44].

In the 1980s, indirect evidence of GWs came from the orbital decay of binary pulsars,

however GWs had no direct evidence until 2015 [45]. Almost 100 years after they were

first predicted, the Advanced LIGO detectors observed a signal from a binary black hole

merger event, roughly 440 Mpc away [46]. GW observations from a CBC provide a

good measure of cosmological distance independent of the distance ladder, making them

extremely useful for astrophysical purposes.

GWs create strain as they distort space-time, in a way that is perpendicular to their

direction of propagation. This is the basis of how GWs are detected using laser interfer-

ometers. GWs have the property of polarisation, which may be split into plus-polarised

and cross-polarised components, h+ and h×.

The properties of the GW source and the orientation of the source with respect to the

observer are encoded in the strain of the GW signal, which is measured using a GW

interferometer. The plus-polarised strain component is given as a function of time,

assuming the quadrupole approximation [47]:

h+(t) =
2Mz

dL

(
1 + cos2(i)

)
(πMzf)

2/3cos(Θ + Ψ) (1.23)

h+(t) =
2Mz

dL

(
1 + cos2(i)

)( 5

256

Mz

(T − t)

) 1
4

cos

(
− 2

(
(T − t)

5Mz

) 5
8

+Ψ

)
(1.24)

with dL being the luminosity distance between the observer and the source, and assuming

c = G = 1. The inclination of the binary pair relative to the observer is given as i, and

f is the time-varying frequency of the signal. The phase of the signal at time T = t
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is represented by Ψ, with T being the exact time of coalescene of the binary pair. Mz

represents the redshifted chirp mass of the source:

Mz = (1 + z)
(m1m2)

3
5

(m1 +m2)
1
5

(1.25)

with z being the redshift of the binary system with respect to the observer and m1 and

m2 being the primary and secondary masses of the system.

The cross-polarisation can be written as:

h×(t) =
4Mz

dL
cos(i)(πMzf)

2/3sin(Θ + Ψ) (1.26)

h× =
4Mz

dL
cos(i)

(
5

256

Mz

(T − t)

) 1
4

sin

(
− 2

(
(T − t)

5Mz

) 5
8

+Ψ

)
(1.27)

Both equations 1.24 and 1.27 demonstrate that the GW strain is inversely proportional

to the luminosity distance of the source.

The GW strain can be given as a linear combination of the cross and plus polarisation

components:

h(t) = F+h+ + F×h× (1.28)

with F+ and F× being the antenna response function of the interferometer. These

factors depend on the source’s sky position with respect to the detector and also the

polarisation of the GW [48]. The detector-frame (redshifted) mass of the CBC and

its distance relative to the detector can then be determined as the frequency and the

frequency evolution over time will break the degeneracy between dL and Mz. Any

uncertainty arising due to the inclination may be marginalised over, giving a luminosity

distance measurement that accounts for the inclination uncertainty.

The use of multiple detectors to measure a single GW is advantageous in that it lowers

the signal to noise ratio and also provides a means to partially break the inclination and

distance degeneracy, giving a tighter constrain on dL [49]. The measurement of the sky
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localisation of an event, Ω, is also improved when using multiple interferometers because

of the time delay of the GW at each detector [50].

The GW signal does contain some redshift information, however it is is degenerate with

the source-frame mass and only appears in the Mz parameter. This is important to note,

as it calls for either a method to break the degeneracy or, more feasibly, an independent

method to measure the redshift of the GW source. To accurately measure H0, GW

signals provide us with an excellent distance measurement, but the need for reliable and

accurate redshift estimates of the GW source is still required. This is discussed in much

greater detail in later sections.

1.1.4 Cosmology using Gravitational Waves

The first proposal outlining the use of GWs to measure H0 was given in 1986 by Schutz

[51]. He described two separate ways to do this using BNS merger events. The first

method describes an event which has a well localised sky location, meaning its EM

counterpart can be measured and can be unmistakably linked to the host galaxy. The

host galaxy’s redshift can then be identified and a measurement of H0 can be taken using

the distance estimate from the merger event. However, if the EM counterpart cannot

be identified, then the second method treats every single galaxy that falls within the

localisation volume as a possible host. Since the galaxies that lie within the localisation

volume are randomly distributed, any measurement of H0 using these galaxy redshift

estimates and the distance estimates from the merger event would statistically average

out, while the true host redshift would give the ’real’ H0 measurement.

A Bayesian derivation of Schutz’s methods as outlined above was given by Del Pozzo in

2012, which included both the EM counterpart and galaxy catalogue cases [52]. However,

this derivation did not include the situation where the catalogue does not account for

all of the galaxies within the localisation volume, meaning that the true host may not

even be contained in the catalogue for all events. This calls for a methodology which

expresses the likelihood of a GW event with a host that is not present in the galaxy

catalogue to ensure an unbiased measurement of H0.

BNS merger events are extraordinarily violent, and alongside GWs they also release

powerful EM emission across a wide range of wavelengths which is known as a kilonova
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[53, 54]. Evidence also suggests that these BNS events also produce short gamma-ray

bursts (GRBs), giving off bright flashes of gamma rays which last up to 2 seconds [55].

A GW event may have its location pin-pointed in the sky by the observation of a short

GRB or a kilonova with an associated GW signal, meaning that the host galaxy could be

easily identified and therefore its redshift can be found and used to estimate H0 [56–59].

The merger event, GW170817, was revolutionary in that it was the first BNS merger

detected by the Advanced Ligo and Virgo detectors with an observed EM counterpart.

It was detected on the 17th of August 2017 [18], with the GW signal being measured first

and then 1.7 seconds later, a GRB was observed. An immense observational campaign

began, with many telescopes all around the world observing across the range of the EM

spectrum leading to an initial distance estimate of 40 Mpc, localised within 31 deg2

on the sky. The host galaxy, NGC4993, was then identified after many observations

of the BNS’s optical transient [60, 61]. The first ever measurement of H0 using GW

standard sirens was made using the EM and GW information, giving a value of H0 =

70+12
−8 km s−1 Mpc−1 [19]. Due to the event’s strong EM counterpart, it is an excellent

demonstration of the use of GW standard sirens for cosmological exploration, and will

always be pivotal moment for GW cosmology.

Obviously, there is still a significant associated error with this measurement no matter

how liberated it is from the cosmic distance ladder. The peculiar motions had a great

impact on the redshift measurement of the event due to it being so nearby. Many

have addressed this issue, for instance [19], and much work has gone into exploring

how the peculiar velocities impact the final H0 measurement [62, 63]. This highlights a

considerable need for reliable galaxy redshifts estimates, not only when using the galaxy

catalogue method but even when there is an EM counterpart observed. Attention has

also been placed on how the luminosity distance could be further constrained by breaking

the dL-inclination degeneracy using the information provided from the EM counterpart

on GW170817’s inclination, which would further constrain H0 [64].

Thus far, GW170817 is the only GW event observed with an associated EM counterpart

as measured by LIGO and Virgo. However, there is a high probability of a future detec-

tion with a similar EM counterpart, which would lead to further constraint on H0 using

this method. It has been estimated that O(100) GW events with associated counterparts
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would have to be measured to produce a H0 value with around 1% uncertainty [65, 66],

allowing for comparison with early and late time measurements.

The galaxy catalogue method was then the main cause for concern as it may be applied to

any GW event confirmed by LIGO and Virgo, including previously measured observing

runs 1-3 (O1-3) mergers. A paper, [65], published in 2018 explored the use of BNSs to

constrain H0 with no observed counterpart which assumed that galaxy catalogues were

complete. They also outlined the prospect of using well-localised BBHs for the same

thing. Although these forecasts assumed that the catalogues contained all potential host

galaxies, a method was described which used a completeness fraction as a weight for the

GW likelihoods as to whether the host could be found inside or outside the catalogue,

thus accounting for an incomplete galaxy survey. The GW170817 event was then used

as a test for this methodology if, hypothetically, the EM counterpart was not observed.

A fully Bayesian methodology was independently derived in [67], which used standard

sirens to determine H0 in the situation of an incomplete galaxy catalogue, modelling the

restriction of the galaxy surveys using a magnitude threshold. After rigorous assessment

using mock data anaylsis (MDAs), this method was successful in achieving an unbiased

measurement H0 with incomplete galaxy surveys.

Advanced LIGO and Virgo published their first GW transient catalogue containing

eleven detections, ten BBHs and one BNS [68]. One particular BBH, GW170814, had a

localisation volume which was contained within a dense cluster of galaxies and therefore

was very informative, leading to the Dark Energy Survey (DES) collaboration, alongside

with the LIGO and Virgo collaborations, to produce a H0 value from the lone dark siren.

The LIGO and Virgo collaborations also produced a H0 measurement using all of the

O1 and O2 events and methodology from [67] and public surveys, to give the first H0

value using a combination of many events, as H0 = 68.7+17.0
7.8 km s−1 Mpc−1 [69].

Since then, the third observing LIGO and Virgo run has led to many more GW events

being recorded [70], however the GW170817 event is still the only observation with a

measured EM counterpart. This means that the elusive 1% uncertainty of the H0 value

is out of sight for now, highlighting the need for analyses that do not require EM coun-

terparts. The future constraint of H0 calls for the development of cosmological analysis

using the much more abundant dark sirens. Dark siren events can be observed out to

much greater distances due to the mass of BBHs being much larger than BNSs, which
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opens the door for cosmological inference beyond that of just the H0 parameter. This

calls for the development of catalogue methods, which in turn requires a development

of redshift estimate methods contained within said catalogues.

The degeneracy between the source-frame mass and redshift may be broken for GWs

using methods that don’t rely on either counterparts and galaxy surveys. For a BNS

merger event, the phase evolution of the merger is dependent on tidal effects between

the two masses, which can be used to break this degeneracy [71]. Also, the BNS is

required to have a redshift which translates the detector-frame mass to the range of

acceptable source-frame masses [72–74], and due to a narrow mass distribution allowed

for the BNS, the degeneracy may be somewhat broken. However, the observation of the

GW190425 event is an example of an exceptionally heavy BNS system which somewhat

weakens this argument [75]. Similarly, the mass-redshift degeneracy may also be broken

for BBHs using the sharp features in their mass distributions. This could lead to a

competitive H0 measurement with O(10,000) BBH detections [76].

A key takeaway of this section is that events which lack much catalogue support can

be somewhat uninformative, yet the population of these events overall provides useful

information when inferring cosmological parameters. Current and future developments

relating to GW cosmology are exciting, with the increasing sensitivity of detectors with

every observing run, leading to higher SNRs and an increasing number of detections. An

addition to the GW detector network in time for the fourth observing run, the KAGRA

detector in Japan, will give rise to more coincident detections of GWs, thus increasing

the SNR and giving better localisation of the event. This increased localisation will not

only reduce the number of potential hosts for dark sirens, meaning their contribution

will be more informative to the measurement of H0, but will also increase the likelihood

of identifying any associated EM counterparts with bright sirens.

Now, attention will turn to gwcosmo, a code which implements Schutz’s methodology

for using galaxy catalogues in conjunction with dark siren events to give H0 estimates.

This method has and will be used to measure H0 using galaxy catalogues methods and

is a key component for cosmological inference for the upcoming fourth observing run.

An outline of this code will be given in the following section to provide context as to why

producing reliable and accurate photometric redshift estimates and their corresponding

errors is imperative in the inference of H0.
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1.2 gwcosmo

The code gwcosmo uses a Bayesian framework to combine many GW events, and is able

to consider both when an associated EM counterpart is observed for each event, and

when there is not, calling for the use of galaxy catalogues to fill in any missing red-

shift information. The code has been rigorously testing using both mock data analysis

(MDAs) [67] and using data from previous observing runs [16]. It has also been inde-

pendently tested in [77], whereby gwcosmo was implemented to measure H0 using the

GW190814 and GW170817 events, giving a value of H0 = 70+29.0
−18.0 km s−1 Mpc−1 . With

the approaching fourth observing run, it is hoped that gwcosmo can be applied to new

GW signal measurements to further constrain the measured value of H0 thus potentially

shedding light on the Hubble tension issue.

The entirety of the methodology and mathematical expressions described in this section

has been derived originally in [16] and so the following section can be entirely credited

to this work.

1.2.1 Bayesian Framework

Firstly, the Bayesian framework used to combine the information from many GW signals

resulting in a H0 measurement is introduced. The situation in which there is an EM

counterpart observed in not discussed here, as the scenario where there is no EM coun-

terpart and the galaxy catalogue method is used is the one which is pertinent to this

work. This thesis focuses on reliable methods to generate photometric redshifts which

may be used to populate these galaxy catalogues of potential host galaxies, therefore

the EM counterpart method is, although interesting, not relevant.

Parameters used in the discussion below are listed in Table 1.1. From Ndet GW events,

the posterior probability on H0 can be given as:

p(H0|{xGW }, {DGW }, I) ∝ p(H0|I)p(Ndet|H0I)

Ndet∏
i

p(xGWi|DGWi, H0, I) (1.29)
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Parameter Definition

H0 Hubble constant

Ndet number of events detected during observation period

xGW the GW data associated w some GW source s

DGW denotes that the GW signal was detected (ie. xGW passed some detection statistic threshold)

g denotes that galaxy is (G) or is not (̃G) contained within galaxy catalog

xEM EM data associated w EM counterpart

DEM denotes the EM counterpart was detected (ie. xEM passed some threshold)

I additional info not explicitly stated eg. underlying cosmological model

Table 1.1: A summary of the parameters used in the discussion of the Bayesian
methodology.

with xGW being the set of GW data which corresponds to Ndet detections. xGWi must

have passed some given threshold and been officially detected as an event, which is

represented by DGWi. The prior on H0 is given by p(H0|I). Over the observational

period, the probability of detecting Ndet events for a given H0 value is p(Ndet|H0, I).

This is dependent on the intrinsic rate of events within the source frame, R = ∂Ns
∂V ∂T ,

with Ns being the number of sources [16]. The units of R are the number of events

per unit comoving volume per unit time, as measured in the observer frame. Ndet =

R⟨V T ⟩ denotes the number of expected detections, with ⟨V T ⟩ being the average of the

observation time multiplied by the surveyed comoving volume. The H0 dependence is

removed by selecting the prior on the rate, p(R|I) ∝ 1/R. Any other terms left factorise

to give individual likelihoods for each GW event [16]. A single GW event, labelled i, may

then be expressed by the following, where we omit the i subscript for ease of notation:

p(xGW |DGW , H0, I) =
p(DGW |xGW , H0, I)p(xGW |H0, I)

p(DGW |H0, I)

=
p(xGW |H0, I)

p(DGW |H0, I)

(1.30)

Here, p(DGW |xGW , H0, I) = 1 due to the fact that any analysis is only performed when

xGW has passed some defined detection threshold. During this analysis, it is assumed

that every event has passed this threshold and therefore can be deemed as a detected

event. To calculate p(DGW |H0, I), all realisations of the detectable GW event must be

integrated over [16]. The integral must therefore be performed over all values of xGW

that exceed the detection threshold, as so far for which p(DGW |xGW , H0, I) = 1. This

then gives:
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p(DGW |H0, I) =

∫
p(DGW |xGW , H0, I)p(xGW |H0, I)dxGW

=

∫ xGWdet

p(xGW |H0, I)dxGW

(1.31)

This calls for information on the detector configuration, detection threshold, sensitivity

and the GW source population [16].

1.2.1.1 The Galaxy Catalogue Method

As previously stated, this work focuses on the use of the galaxy catalogue method to

calculate H0, as this is the method which performs analysis using EM information pro-

vided by galaxy surveys. This gives context for the requirement of reliable photometric

redshift estimates, as these surveys must be accurate and preferably complete to give

the best constraint on the final H0 value. The apparent magnitudes in multiple bands

and the sky location of the galaxies are also provided by the catalogues. The GW event

may not be contained within the galaxy catalogue, and this possibility must also be con-

sidered in this analysis. A single GW event can be expressed in terms of its likelihood,

which marginalises over both the cases where the host galaxy is in the galaxy catalogue,

and when it is not, which is represented by G and G̃ respectively:

p(xGW |DGW , H0, I) =
∑

g=G,G̃

p(xGW |g,DGW , H0, I)p(g|DGW , H0, I) (1.32)

p(xGW |DGW , H0, I) = p(xGW |G,DGW , H0, I)p(G|DGW , H0, I)+

= (xGW |G̃,DGW , H0, I)p(G̃|DGW , H0, I)

(1.33)

When the host galaxy can be found within the catalogue, (G), then any EM information

can be used to modify the sky location, magnitude and galaxy redshift priors. However,

in the case where the host galaxy is not contained within the catalogue, the term G̃

includes information on the limits of the galaxy survey [16]. The catalogue is firstly

modelled as having an apparent magnitude threshold, so that the observed apparent
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magnitude of any given galaxy will determine whether or not it is included in the cata-

logue. A detailed derivation of the terms in Equation 1.33 can be found in [16], however

only the relevant component of the derivation is described below which pertains to the

redshift and its associated uncertainty.

When considering the redshift in the likelihoods of a GW event, the prior on the potential

host galaxies is the focus and not the prior on all the galaxies in the survey. For host

galaxies of a GW event, the redshift, absolute magnitude, apparent magnitude (m) and

sky location prior may be expressed as:

p(z,Ω,M,m|s,H0, I) = p(m|z,Ω,M, s,H0, I)p(z,Ω,M |s,H0, I)

= p(m|z,Ω,M, s,H0, I)p(z|s, I)p(Ω|I)p(M |s,H0, I)
(1.34)

with z, Ω and M , the absolute magnitude, is assumed to be conditionally independent

given s, H0 [16]. The s term here denotes that a GW signal has been emitted. The m

term may be directly found if z, M and H0 are known.

p(z,Ω,M,m|s,H0, I) = δ(m−m(z,M,H0))p(z|s, I)p(Ω|I)p(M |s,H0, I)

= δ(m−m(z,M,H0))
p(s|z, I)p(z|I)

p(s|I)
p(Ω|I)p(s|M, I)p(M |H0, I)

p(s|H0, I)

(1.35)

The p(s|H0, I) and p(s|I) terms cancel out, meaning their exact form can be dismissed.

Ω has no dependence on s if it is assumed that the universe is isotropic, meaning that no

one sky location is more likely to contain a GW event than any other, so the equation

does not contain a p(s|Ω, I) term [16].

The probability that a GW event is hosted by a galaxy with magnitude M is given by

p(s|M, I), given by:

p(s|M, I) ∝


L(M), if GW hosting is proportional to luminosity

constant, if GW hosting is independent to luminosity

(1.36)
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The merger rate is dependent on redshift, which is represented by the term p(s|z, I):

p(s|z, I) ∝


1

1+zR(z), if rate evolves with redshift

1
1+z , if rate does not evolve with redshift

(1.37)

Due to the time delay between the emission of the GW signal and its observation on

Earth, the factor 1/(1 + z) is present in the above as the universe has expanded in the

time between the GW being emitted and observed. The term converts between the

source and detector frames even if the intrinsic merger rates of the CBCs are constant

with time and therefore independent of redshift [16].

1.2.1.2 Likelihood when the host is in the galaxy catalogue

By expanding Equation 1.30, the likelihood of GW data when the host is contained

within the galaxy survey can be expressed by marginalising over the redshift, absolute

and apparent magnitudes and the sky location:

p(xGW |G,DGW , s,H0, I) =
p(xGW |G, s,H0, I)

p(DGW |G, s,H0, I)
(1.38)

Since xGW is independent of G, m and M , the numerator can be expanded and the

above equation can be written as

p(xGW |G, s,H0, I) =

∫∫∫∫
p(xGW |z,Ω, s,H0, I)p(z,Ω,M,m|G, s,H0, I)dzdΩdMdm

(1.39)

G being on the right hand side of this equation specifies that z, m, M and Ω are

given by the galaxy catalogue, with any uncertainties being ignored for now [16]. The

absolute magnitude can be easily calculated using m, z, H0 and M , leading to further

factorisation:

p(xGW |G, s,H0, I) =
p(s|z,M(z,m,H0), I)δ(M −M(z,m,H0))p(z,Ω,m|G, I)

p(s|G,H0, I)
(1.40)
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Ω has been dropped from the right side of the p(s|z,M(z,m,H0), I) term, and the

dependence of s onm andH0 has been recognised to only enter through their relationship

with M [16]. Equation 1.39 may now be integrated over absolute magnitude to give:

p(xGW |G, s,H0, I) =
1

p(s|G,H0, I)

∫∫∫
p(xGW |z,M(z,m,H0), I)×p(z,Ω,m|G, I)dzdΩdm

(1.41)

Henceforth, the prior on z, m and Ω for all of the galaxies within the catalogue is

given by p(z,Ω,m|G, I), whereas p(xGW |z,M(z,m,H0), I) denotes the probability that

galaxy with z and M values would host a GW source [16]. It may be assumed that all

of the galaxies within the survey can be approximated as delta functions on z, m and

Ω, meaning the integral may be converted into a sum of the number of galaxies, N , in

the survey:

p(xGW |G, s,H0, I) =
1

p(s|G,H0, I)

1

N

N∑
i=1

p(xGW |zi,Ωi, s,H0, I)p(s|zi,M(zi,mi, H0), I)

=
1

p(s|G,H0, I)

1

N

N∑
i=1

p(xGW |zi,Ωi, s,H0, I)
p(zi,M(zi,mi, H0)|s, I)p(s|I)

p(zi,M(zi,mi, H0)|I)

=
1

p(s|G,H0, I)

1

N

N∑
i=1

p(xGW |zi,Ωi, s,H0, I)
p(zi|s, I)p(M(zi,mi, H0)|zi, s, I)p(s|I)

p(zi|I)p(M(zi,mi, H0)|zi, I)
(1.42)

The application of Bayes theorem to the terms p(zi|s, I) and p(M(zi,mi, H0)|zi, s, I) pro-

duces the following equation [16]. Henceforth, the dependence of p(M(zi,mi, H0)|zi, s, I)

on zi is contained in the M(zi,mi, H0) term by definition, meaning that zi may be re-

moved from the right hand side.

p(xGW |G, s,H0, I) =
1

p(s|G,H0, I)

1

N

N∑
i=1

p(xGW |zi,Ωi, s,H0, I)

× p(s|zi, I)p(zi|I)p(s|M(zi,mi, H0), I)p(M(zi,mi, H0)|I)p(s|I)
p(s|I)p(s|I)p(zi|I)p(M(zi,mi, H0)|I)

=
1

p(s|G,H0, I)p(s|I)
1

N

N∑
i=1

p(xGW |zi,Ωi, s,H0, I)p(s|zi, I)p(s|M(zi,mi, H0, I))

(1.43)
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Most of the terms have now cancelled, and the term 1/p(s|I) can be brought outside of

the sum.

Now, we may return to Equation 1.38 and focus on the denominator. The p(DGW |G, s,H0, I)

term is expanded by marginalising over z, Ω, m and M which gives a similar term to

Equation 1.43 but with p(DGW |zi,Ωi, s,H0, I) instead of p(xGW |zi,Ωi, s,H0, I). This is

subsituted into Equation 1.43 alongside Equation 1.38 to produce the likelihood for the

case where the host galaxy is in the catalogue. Here, the factors p(s|G,H0, I) and p(s|I)

cancel, giving:

p(xGW |G, s,H0, I) =

∑N
i=1 p(xGW |zi,Ωi, s,H0, I)p(s|zi, I)p(s|M(zi,mi, H0), I)∑N
i=1 p(DGW |zi,Ωi, s,H0, I)p(s|zi, I)p(s|M(zi,mi, H0), I)

(1.44)

The above equation is suitable for a very simplistic case, where galaxies found in the

catalogue are delta-function-like and contain no uncertainties [16]. However, this is typi-

cally not the case, as most surveys contain uncertainties with redshift uncertainties being

particularly significant. In the situation where redshift errors are provided (whereby the

redshift distribution of the ith galaxy is given as p(zi|I)), they may be included as:,

p(xGW |G, s,H0, I) =
∑N

i=1

∫
p(xGW |zi,Ωi,s,H0,I)p(s|zi,I)p(s|M(zi,mi,H0),I)p(zi|I)dzi∑N

i=1

∫
p(DGW |zi,Ωi,s,H0,I)p(s|zi,I)p(s|M(zi,mi,H0),I)p(zi|I)dzi

(1.45)

This means that the uncertainty associated with the redshift of each galaxy is marginalised

over [16].

The above equation describes the likelihood of the GW data in the situation where the

host galaxy is contained within the galaxy survey. Differing H0 values cause the galaxies

to ’pick out’ different parts of the likelihood. Depending on how well the galaxy’s redshift

is consistent with the luminosity distance of the GW event will determine how much

that galaxy contributes to the final H0 value. This is also weighted by the astrophysical

properties of the galaxy, as this determines how likely it is to host a GW event. For

more detail on the derivation of Equation 1.32 and how the probability of the host being

inside or outside the catalogue is evaluated see [16]. The key take away from this section
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is that the likelihood of a GW event detection depends on the redshift and its associated

uncertainty, which are both marginalised over.

1.2.1.3 Implementation

The previous paragraphs discussed the derivation involved to use galaxy catalogues to

make a measurement of H0 when the exact host galaxy is unknown. The following

subsection details how this is actually implemented in the gwcosmo code to provide

more context for the importance of accurate galaxy redshifts in the quest to constrain

H0.

When using GW detection for cosmological inference, more often than not the event

undergoes parameter estimation, giving posterior samples which cover many parameters

such as inclination, sky location and luminosity distance [16]. Here we note that the

posterior samples have already had a prior applied in their generation. Beginning with:

p(xGW |dL(z,H0),Ω, I) =
p(dL,Ω|xGW , I)p(xGW |I)

π(dL|I)π(Ω|I)
(1.46)

Where p(dL,Ω|xGW , I) denotes the posterior samples on dL and Ω for the event xGW .

The p(xGW |I) term can be disregarded as a normalisation constant as it does not depend

on H0. The priors on dL and Ω are given by π(dL|I) and π(Ω|I) and were used during

the parameter estimation of xGW [16].

The equation is expanded to separate dL and Ω:

p(xGW |dL(z,H0),Ω, I) =
p(dL|Ω, xGW , I)p(Ω|xGW , I)p(xGW |I)

π(dL|I)π(Ω, I)

≈ p(dL|xGW , I)p(Ω|xGW , I)p(xGW |I)
π(dL|I)π(Ω, I)

(1.47)

p(dL|xGW , I) is used to generate the dL posterior samples, however this function needs

to be smoothed. This is done by using kernal density estimation (KDE) to generate a

1-dimensional function over dL, fKDE(dL) ≈ p(dL|xGW , I) so that the function can be

integrated over M and z and be evaluated at delta-like-function galaxies [16].
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The p(Ω|xGW , I) term is evaluated using skymaps rather than represented by a KDE on

the RA and declination posterior samples. These coordinates are spherical in nature,

meaning that issues could potentially arise when analysing events that cross the prior

boundary for RA and wrap around (for example, 2π to 0). The skymaps are advanta-

geous, as they avoid this issue and contain the 2d GW sky probability, split in equally

sized pixels [16]. These pixels are equivalent to p(Ω|xGW , I). When integrated over the

whole sky, this gives:

∫
p(Ω|xGW , I) =

Npix∑
k=1

P (k|xGW , I) = 1 (1.48)

Ωi lies within a pixel k, and the probability contained within said pixel is given byP (k|xGW , I).

The probability density at sky location Ωi can be expressed as:

p(Ωi|xGW , I) = P (kΩi |xGW , I)
Npix

4π
(1.49)

with P (kΩi |xGW , I) being the probability contained within the pixel that Ωi can be

found in.

The desired final equation for p(xGW |z,Ω, H0, I) to be implemented by gwcosmo requires

the acknowledgment that any normalisation constant of the GW likelihood is unimpor-

tant on the condition that is does not depend on H0, z or Ω [16]. This constant is

the same as that present in Equation 1.45, meaning the term p(xGW |z,Ω, H0, I) can be

expressed as:

p(xGW |z,Ω, H0, I) ≈ C
fKDE(dL
π(dL

p(Ω|xGW , I)

π(Ω|I)
(1.50)

with C being some function that is constant with respect to H0.

However, a quantification of the redshift uncertainty still needs to be included in the

code. Galaxy catalogues often provide redshift uncertainties which contribute to the

overall H0 measurement error, which regularly come in the form of photometric esti-

mates, as spectroscopic values are much harder to obtain. This is discussed in great

detail in the following sections. Large surveys call for photometric estimates which usu-

ally have significant associated uncertainties. Photometric redshifts also tend to decrease
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in reliability out to larger redshifts, and risks some particular structure or bias being

introduced to the catalogue. The true structure present is due to galaxy clustering,

yet the redshift estimates could introduce some other structure. In general, catalogues

provide a mean value of the redshift and some error, normally a 1σ value or the upper

and lower 1σ bounds in the case of an asymmetric distribution. When gwcosmo has

previously been used, it has been assumed that the redshift uncertainty distribution is

Gaussian, due to the lack of detailed catalogue information. Assuming a Gaussian distri-

bution does blur out any particular structure introduced by the redshift estimates, but

a true quantification of the redshift posteriors gives a more accurate result in the overall

inference of H0 [16]. If posterior samples are available then they can be directly used

for a Monte Carlo marginalisation over the redshift uncertainty. A method of accurately

generating photometric redshift posterior samples would allow this marginalisation to

be performed for all galaxies in the catalogue, therefore increasing the precision and

accuracy of any results. Currently, gwcosmo has been applied to O2 data using 6 GW

signals (GW150914, GW151226, GW170104, GW170608, GW170809 and GW170814)

to give a value of H0 = 68.8+15.9
−7.8 km s−1 Mpc−1 [16]. This result is still far from the

desired 1% uncertainty, however many advancements over the last year within the LIGO

cosmology team will seek to achieve to a smaller uncertainty, including the availability

of accurate photometric redshift posteriors.

Now that the use of redshift in cosmological inference has been broadly discussed and it

is clear that there is a need for accurate redshift estimates and posteriors in the quest to

constrain H0, it is now time to turn attention to how these redshifts and their associated

errors may be acquired to populate galaxy surveys.



Chapter 2

Determining Galaxy Redshifts

2.1 Redshift

Before being able to infer meaningful cosmological parameters from astronomical sources,

the redshift of the source must first be acquired in the process of building a galaxy sur-

vey. In the previous section, the motivation to obtain accurate photometric redshift

posteriors to feed into the gwcosmo code was detailed. The light emitted from an object

is redshifted as the object’s spectrum is displaced towards longer wavelengths. The three

primary astronomical and cosmological reasons behind this redshift are: gravitational

redshift, whereby the emitted photons move towards an object in flatter spacetime and

therefore a weaker gravitational potential, which causes them to increase in wavelength.

Secondly, the relativistic Doppler effect is the lengthening in the wavelength of light due

to the source receding from the observer. This phenomenon is attributed to special rela-

tivity and time dilation [78]. The final cause of electromagnetic redshift is cosmological

redshift, which occurs as photons travel through expanding space. As the universe itself

expands, the light emitted from the source is shifted to longer wavelengths as it travels

through expanding space. This redshift is therefore due to the expansion of space itself

and is not caused by the motion of an object or observer [79]. The further the object

is from the observer, the higher the redshift and the greater its recessional velocity, as

described by the Hubble Law. It is possible for photons to be redshifted by both cosmo-

logical redshift and Doppler shift; for example, a distant binary star. The cosmological

redshift would be due to the expansion of space and be dependant on the distance from

the earth to the binary system, and the Doppler shift would be caused by the individual

32
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motions of the stars in the binary. The current work focuses on measuring cosmological

parameters such as the Hubble constant and so the term redshift will henceforth describe

cosmological redshift.

The redshift of extragalactic objects is a difficult property to measure, and may be

determined via spectroscopy or photometry. Spectroscopic redshifts are advantageous in

that they introduce much less random and systematic error than photometric techniques,

however they are much harder to measure [80]. Spectrometry requires the distinct

electromagnetic spectral energy distribution (SED) of each galaxy to determine the

redshift, which is made up of a continuum and emission/absorption lines. The SED is

redshifted by the expansion of the Universe to longer wavelengths by the relation:

λem =
λobs

1 + z
(2.1)

Where z is the redshift measured, λem is the original wavelength of the spectral feature

and λobs is the observed wavelength we measure [81].

Figure 2.1: Four different galactic spectra from the 2dF Galaxy Redshift Surveys with
the differing redshifts of the galaxies. Demonstrating the redshift of the Hα emission

lines. Figure credit: [3]

Figure 2.1 shows the galactic spectra of four galaxies taken from the 2dF Galaxy Redshift

Survey, with redshifts of 0.000, 0.0067, 0.103 and 0.246. The red arrows indicate the

Hα spectral feature on each galactic spectra. These lines are more prominent in the

z = 0.067 and 0.103 spectra, suggesting that these galaxies are actively forming [3]. As

can clearly be seen in the image, the Hα spectral feature is shifted beyond the rest frame
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value of 6563 Åas the redshift increases from zero. The difference in values between rest

frame Hα wavelength and the redshifted wavelength can be inserted into Equation 2.1

to determine the redshift of the galaxies. This is a general example of how the redshift

of a galaxy may be determined using spectroscopic techniques.

Spectroscopic redshifts are much more accurate, however these are often hard to obtain

and therefore more expensive than other photometric redshift techniques. Difficulty in

spectroscopic redshift estimations arise when determining characteristic features in the

spectra and quantifying how much these features have been shifted. Even if the SED has

a good signal-to-noise ratio, only a small percent of sources detected by deep imaging

surveys have a sufficient resolution to give meaningful emission/absorption spectra [82].

Characteristic features in the SED also include the Balmer break below 4000 Å, which

is accredited to the absorption of photons that are more energetic than the Balmer

limit; and the Lyman break below 1216 Å, due to the fact that radiation above the

Lyman limit of 912 Åis almost completely absorbed by the intergalactic medium along

the line of sight [83]. Using broad filters to measure the flux of an object gives a sparse

sampling of the SED which constrains the continuum shape and allows for identification

of broad features such as the Balmer and Lyman breaks, which may then be used to

calculate the photometric redshift. These distinctive features may be identified in the

SED and used to measure the redshift of the object by measuring how much the breaks

have been shifted in wavelength. Absorption and emission spectra analysis gives rise

to accurate spectroscopic redshifts, whilst photometric analysis produces low resolution

redshift estimates. Due to the multi-object spectrographs limited spectral coverage and

limited SNR in spectra for faint objects, spectroscopic redshifts may only be determined

for up to 50-70% of deep galaxy surveys [79].

2.1.1 Methods for Estimating Photometric Redshift

Due to spectroscopic techniques being expensive and difficult to determine for many

galaxies, attention has been turned to focus on photometric redshift methods. Photo-

metric redshift techniques measure the redshift by observing the brightness of galaxies

observed through broadband photometric filters and making use of information about

how features in the galaxy spectra move through those filters, and so change the relative

brightness of the galaxy in the different bands. Photometric redshifts are advantageous
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in that they allow for the derivation of redshift estimates for any source identified by an

imaging survey, however the precision of the redshift inference is lowered by a factor of

10-100 times compared to a low-resolution spectrograph. This lack of precision is due to

photometric filters being sensitive to wavelength range and relying on cosmological as-

sumptions and assumptions on the nature of the spectrum at the source [79]. The use of

photometric redshift surveys in cosmological inference calls for the accurate assessment

of photometric redshift performance, which requires deep spectroscopic samples that

highlight the complimentary aspects of photometric and spectroscopic redshift surveys

[83].

Photometric methods have long been a popular method of redshift determination, with

the first instance being accredited to Baum in 1962. He developed a technique using

a photometer and 9 bandpasses to observe the SED of 6 elliptical galaxies and com-

pared this to other known elliptical galaxy SED distributions. From this, he was able

to derive the difference between the energy distributions and therefore the redshift of

the galaxies. These measurements were fairly accurate, however they were dependant

on a large 4000 Å break feature and so were only applicable to spectral galaxies [84].

The CfA Redshift Survey was the first systematic survey of its kind in 1977, measuring

the photometric redshifts of around 2200 galaxies. Since the spectrum of each galaxy

was measured one at a time, early redshift surveys were very limited in size. Once

multi-slit and fibre-optic spectrographs became available in the early 90s, many spectra

may be observed at once and the size of redshift surveys increased dramatically. The

Hubble Deep Field (HDF) observations, published in 1996, led to peaked interest in

photometric redshift techniques as the data was ideal for photometric redshift applica-

tions, as it contained very deep multiband information spanning the visible range [85].

This provided a huge advancement in high redshift Universe studies, and lead to many

attempts in increasing the robustness of photometric redshift techniques. Due to its

depth, it is impossible to measure spectra for the majority of the galaxies in the survey.

Since then, many spectroscopic and photometric redshift surveys have been published

using HDF objects, which advanced the development of photometric techniques. These

catalogs include Lanzetta, Yahil, Fernandez-Soto (1996), Sawicki, Lin, Yee (1997),

Wang, Bahcall, Turner (1998), Lanzetta, Yahil (1999) and Furusawa et al. (2000)

[83]. Photometric redshifts are also extremely useful in the identification of incorrect

spectroscopic redshifts, which was made apparent using the HDF catalog. By plotting
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the photometric versus spectroscopic redshift for many galaxies contained in the HDF

data, it was observed that some discordances were due to mistakes associated with the

spectroscopic redshifts themselves [79]. The DEEP2 Galaxy Redshift Survey is currently

densest and highest-precision redshift catalogue to date out to z ≈ 1, which covers 2.8

deg2 and contains over 50,000 galaxies [86].

The core principles of photometric redshift techniques lies in mapping between a range

of colours (or fluxes) and redshift. Comparing the mapping with observed fluxes of

a studied source leads to the redshift Probability Distribution Function (PDF) which

finally gives the redshift solution. Mapping may be performed by a multitude of methods,

including using machine learning methods, where a representative training sample is

used with known redshift and photometry, or using template-fitting methods, whereby

the redshift-colours mapping is based upon previous scientific knowledge. The use of

additional priors improves the performance of both methods [83].

Figure 2.2: The spectrum of the star Vega (α-Lyr) at three different redshifts. The
SDSS ugriz filters are shown in gray for reference. Figure credit: [4]

By localising the spectral fingerprint of a particular element or process, the photometric

redshift of an object can be estimated. This shift of the spectrum, due to the expansion

of the universe as the light is travelling to the observer, means that identical sources at

different redshift values will have a different colour through each filter. Figure 2.2 shows
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the spectrum of the α-Lyr star at three different redshift values. It is clear from the

image that at a redshift of 0.0, the spectrum is bright in the u and g bands and much

dimmer in the i and z filters. As the redshift increases, the spectrum shifts through the

bands. Once the star has reached a redshift of z = 0.8, it is much brighter in the i and

z bands and very dim in the g and r bands. This shift in spectral features into different

observed wavelength bands provides the basis of photometric redshift techniques [4].

This same methodology may be applied to galaxy spectra.

2.1.1.1 Physically motivated methods

Template fitting methods are a popular method of estimating photometric redshifts as

they can be easily and quickly applied to new data. This method compares known galaxy

SEDs with those derived from templates at different redshifts to pinpoint spectral fea-

tures and thus generate redshift estimates. Template methods are generally reliable,

however like most photometric techniques they require a representative sample of spec-

troscopic data. Uncertainties arise due to colour-redshift degeneracies, incorrect fitting

of colours or magnitudes to the template spectra and other measurement issues [82].

In order to apply the photometric redshift technique, one must first isolate the wave-

length position of the redshifted spectral features. As a spectral break is caused by the

rapid increase in continuum flux from the blue to red part of the SED, it may be identi-

fied by observing the flux through adjacent filters which are selected to encompass key

features at the redshift range of interest. It is vital to ensure that the multi-wavelength

coverage is broad enough to limit the risk of photometric redshift degeneracies, which is

done by combining a range of several colours of filters [87].

The mapping between the redshift and observed flux is easily predicted for astronomical

objects by accounting for the physical processes regulating the light emission. This

means that the SED templates must be defined by scientific theory or observations.

Stellar population synthesis models provide the basis for theoretical models, however

these templates rely heavily on astrophysical assumptions [80]. Observational templates

are drawn from observed galaxy spectra over an entire wavelength range. The quality

of the photometric redshift is dependant on both the type of template and their optimal

coverage of the colour-redshift space. The reliance on astrophysical and cosmological
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assumptions makes physically driven photometric methods unfavourable, as we cannot

be sure of the accuracy of our assumptions.

Templates should also consider nebular emission lines emitted by HII regions, which

may contribute to the improvement of photometric redshift accuracy by a factor of 2.5

[83]. Dust attenuation reddens the SED continuum as the dust residing in the inter-

stellar medium absorbs and scatters light, mainly affecting the UV section of the SED.

This must be accounted for by modelling the dust attenuation as free parameters when

computing photometric redshift template-fitting codes to ensure redshift values are ac-

curate for z > 1 [80]. Dust from the Milky Way also attenuate light along the line of

sight, however this is usually corrected for by galaxy catalogs using dust extinction maps

and may be disregarded in template-fitting codes. Modelled fluxes are then made by

integrating the redshifted templates through filter transmission curves. Charged Couple

Device transmission, the optics of the telescope, the efficiency of the filter curves and

the impact of the Earth’s atmosphere may all modify the light distribution and tend

to be integrated into a single transmission curve and stored within the code libraries.

One should note that this discussion applies to the modelling of extra-galactic sources,

however stellar templates must also be considered in template fitting as we cannot auto-

matically assume the Galactic nature of the studied sources. Usually, stellar templates

are fitted independently and the galactic nature of the source is decided a posteriori [79].

Currently, there are many succesful template fitting algorithms, such as (e.g. Beńıtez

2000; Bolzonella, Miralles Pelló 2000; Csabai et al. 2003; Ilbert et al. 2006; Feldmann

et al. 2006; Assef et al. 2010) which either use empirical (e.g. Coleman, Wu Weedman

1980; Assef et al. 2010) or synthetic spectral templates (e.g. Bruzual Charlot 2003)

[83].

2.1.1.2 Data driven methods

The increasing number of multi-wavelength surveys and public access to well tested pho-

tometric redshift codes have made photometric techniques popular, and comparison with

spectroscopic redshift surveys out to very faint galaxies provides reassuring confidence

[87]. Photometric redshifts are used in a range of scientific applications, such as the

search for primordial galaxies, cluster identification, exploring the relationship between
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galaxy properties and their dark energy halos and, of course, for inference of cosmolog-

ical parameters such as the Hubble constant. They may also be used in weak lensing

tomography, which requires less stringent photometric redshift precision in comparison

to studying galaxy evolution [83].

Photometric redshifts may also be determined using data driven approaches, which is

advantageous in that they don’t rely on physical models. Machine Learning (ML) is a

popular method whereby ML algorithms take training samples and learn the mapping

between colour and redshift. This may be done by supervised learning, which calls for

reliable spectroscopic redshift data samples and photometry, or unsupervised learning

which only requires photometry. ML photometric redshift estimations are performed by

finding a function which maps between the multi-dimensional photometry space and the

training sample’s redshift values. This learned function is then used to perform function

approximation, whereby the photometry of a source with unknown redshift is localised in

the multi-dimensional photometry space and paired with a corresponding redshift value

or probability distribution. Supervised ML methods are interpolative in their nature,

and so the space of photometric properties of the sample for which predictions will be

made must be well sampled by the training data to ensure the algorithm does not lose

accuracy [87]. ML methods have been chosen over template fitting as they consistently

out-perform template fitting estimations [83].

Random Forests (RF) and Neutral Networks (NN) are two commonly used supervised

ML algorithms. RFs make use of decision trees to group the training sample’s properties

into cells, which are defined to minimise the spectroscopic redshift dispersion of the data

in each cell. Each cell is then assigned the average value of the spectroscopic redshift.

The photometric properties of a source sample may then be passed through each tree

and averaged over to give a predicted redshift value. The theory behind RF algorithms

is explored in detail in Section 2.9. NNs perform complex non-linear matrix transfor-

mations of the input properties to provide an output [88]. The output, for example,

redshift, is defined by the user and training data is used to tune the transformations to

minimise the residuals between the true and predicted redshift values. Deep Machine

Learning (DML) is based upon NNs, but uses thousands of neurons hidden in each

layer. It may be used to estimate photometric redshifts directly from galaxy images

which avoids having to compute photometric redshifts from catalogs which use different

surveys and therefore may use different measures. ML techniques to determine redshift
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were first implemented in 1995 then further developed in 1997, which used a training

sample to find a mapping between colours and redshift using a polynomial function [82].

This process has much been improved upon, with more recent algorithms including NNs

made by Collister and Lahav (2004) and Oyaizu et al. (2008), Quasi-Newton Algorithms

(e.g. Cavuoti et al. 2012), and support vector machines (e.g. Wadadekar 2005). In 2016,

Beck et al. utilised machine learning methods to compute photometric redshifts using

local linear regression for over 2 million galaxies in the SDSS Data Release 12 catalogue

[89]. However, many of these algorithms are not publicly available and moreover, only

provide redshift point estimates and not the elusive redshift PDFs [82]. The DELIGHT

machine learning algorithm is a ML algorithm which avoids the need for a representative

spectroscopic training sample by using a large collection of latent SED templates along-

side a template SED library which is used as a guide for mapping the model. However,

this algorithm parameterises all PDFs as a simple Gaussian, which may introduce much

bias as the Gaussian parameterisation may not be able to capture the intricacy of the

redshift posterior [90].

Supervised ML demands both spectroscopic redshifts and photometry as training data,

so naturally the quality of the training data dictates the precision of the output. Galax-

ies with high redshifts or faint luminosities do not have as much accurate spectroscopic

support, and so alternative methods are necessary to predict their photometric red-

shifts. Unsupervised ML doesn’t require spectroscopic redshifts as a basis for training.

Instead, it identifies similar objects by performing clustering in the input data space.

Although these methods don’t require representative training data, unsupervised tech-

niques must be further developed before producing competitively accurate photometric

estimates. Both supervised and unsupervised photometric redshift ML methods can pro-

duce PDFs, with varying levels of sophistication. The most basic method is performed

by sampling randomly from values and their associated errors for each input parame-

ter, and associating the normalised distribution of predictions as a PDF. Many physical

photometric methods only produce redshift point estimates, however PDFs have become

increasingly important in the complete characterisation of redshift uncertainties [87].

Data augmentation, feature importance and anomaly detection techniques allow ML

methods to identify problematic data, allowing the algorithm to extrapolate further

than when just provided with a training sample [88]. ML may also consider additional
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information in its calculations, such as a prior (eg, reweighting the training data) which

will further improve on photometric redshift estimates.

2.1.2 Random Forests

Random forest algorithms are a supervised ML technique made up of an ensemble of

decision trees to make a prediction. The trees make a series of decisions based upon

yes/no questions, splitting up data into two groups at each step until some defined

threshold is reached. The first RF algorithm was developed by Tin Kam Hi in 1995.

In the following decades the algorithm has been advanced by Adele Cutler and Leo

Breiman, who went on to trademark the term ’Random Forests’ in 2006 [91, 92]. Random

forest techniques, much like the one implemented in this work, were first used to predict

photometric redshifts in 2008 by Carliles et al. They used a sub-sample of the SDSS

Data Release 6 to predict redshifts using a regression tree package in R. This work

provided evidence that the RF technique is more than suitable for photometric redshift

estimations, as their results were comparable to many other ML methods. This was

then extended by Kind and Brunner (2013) [82], and then Sunil Mucesh (2021) [93],

who developed RF algorithms which compute photometric redshift PDFs and point

estimates using decision trees. A simplified diagram which visually represents the basic

process of an RF algorithm can be seen in Figure 2.3.

Figure 2.3: A demonstration of a simple random forest algorithm. Figure credit: [5].
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The decision tree is made up of the root node, which determines the first split, a series of

decision nodes which define the following splits, and the leaf nodes which describes the

final groups. Each split groups the data with increasingly similar properties, with the

leaf node then containing a small subsample of the data with very similar properties. At

each step in the Random Forest process, all possible splits are assessed in all dimensions

of the input feature space. Data is divided in such a manner that the average values of

the target variable are representative of the groups [82].

The decision tree can then be built and the leaf node will contain new data which gives a

prediction in the form of the mean of this node. The decision tree method is popular due

to its simplicity, however it is susceptible to overfitting, as its performance is based solely

on the training data provided. The RF methodology accounts for this by combining

multiple decision trees and making adjustments. An example of these adjustments would

be feature bagging, which introduces randomness by using only a subset of the training

data and features when building the decision trees. Feature bagging is beneficial in

that it allows the RFs to be better suited when making predictions on data it has not

previously encountered. A trade-off between minimal variance and a low bias is achieved

by this combination of decision trees and feature bagging [88].

The process of building an RF is as follows:

1. Randomly sample from training data with replacement to generate bootstrapped

data.

2. Construct a decision tree by selecting a random subset of input features using the

bootstrapped data.

3. The process is repeated to create multiple decision trees, which make up the ’for-

est’.

The mean of all the values predicted by the trees are then collated. The RFs require

parameters to be set before the ML process may begin, which are termed hyperparam-

eters. The hyperparameters may be tuned to optimise the RFs performance and are

defined as [93]:

• n estimators - The RFs effectiveness is determined by the number of decision trees

used to construct it, with each tree being built using a subset of training data. If
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the number of trees used is too little, it is likely that the training data will not

give complete coverage. However, an increase in number of trees comes at a cost of

computational time. A successful trade-off must be reached between the training

time and performance in order to optimise the RF.

• max features - The flexibility of the RF is determined by the correlation between

the individual decision trees, which in turn is controlled by the maximum number

of features considered at each step when building the trees. The maximum number

of features that is generally sufficient to build each tree is
√
N , with N being the

total number of input features.

• max depth - The maximum depth parameter describes the number of levels in the

decision tree. This dictates how coarsely or finely the training data are grouped.

A depth which is too low or too high may lead to under or over-fitting respectively.

It essentially acts as a stopping criterion, as it essentially represents the depth of

each tree in the forest and determines how many times each tree is allowed to split.

2.1.2.1 Introducing spatial information

Redshifts may also be estimated using the correlation of source positions, as galaxies

tend to reside in large scale structures and are therefore not randomly distributed in

space. The spectroscopic redshift of a reference sample may be used to determine the

redshift distribution of an unknown sample by maximising the spatial cross-correlation

signal between the two. This method is mainly used in weak lensing applications to

estimate mean photometric redshifts of selected samples, which requires the unknown

sample to be preselected in a narrow redshift range. If the sample of preselected galaxies

is narrow enough, individual redshift measurements may even be possible [87].

Another photometric redshift measurement method uses the cosmic web to derive the

estimated redshift from the product of the density field, cosmic web and colours. This

method calls for an accurate characterisation of void regions, clusters and filaments

throughout the sky area of interest as well as accurate photometric redshifts (better

than 1%) from colours. This is required in order to avoid the association between

photometric redshift and the wrong cosmic web structure. Redshift estimates with an

accuracy of 10−5 − 10−4 were possible for 3% of the SDSS multicolour catalog [83].
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The decision to use ML or template fitting to measure photometric redshifts highly

depends on the scientific application and the quality of spectroscopic redshift samples

available for training. ML is favoured in cases where there is sufficient spectroscopic

redshift support whereas template fitting code is useful when, for example, studying

galaxy populations with limited spectroscopic coverage. When accounting for biases,

template-fitting methods may also be used to model uncertainties in the absolute cali-

bration [88]. However ML algorithms are insensitive to photometry biases depending on

magnitude or colours, meaning they’re favourable when limiting biases over a large area

that is well supported by spectroscopic data. ML is also favourable in the fact that it is

computationally much faster than template-fitting and can easily accommodate a much

greater volume of data [87]. Many template fitting and spatial techniques only provide

point estimates of redshifts, so for the purposes of this work it seems that ML methods

are most appropriate to generate redshift PDFs for cosmological inference. Supervised

ML methods are preferential as they tend to have much greater accuracy, however the

level of representation of training data when using supervised ML may become an issue.

2.1.2.2 State of the art

The accuracy of the photometric redshift result is determined by the type of the redshift

code. However, it is also independently affected by the quality of the input data and

wavelength coverage.

The CANDLES survey provides some of the deepest photometric redshift samples avail-

able with the precision, σzp (See Section 3.1.2 for thorough definition) increasing from

8% to 28% between H < 24 and 26 < H < 28. Medium band data with filter widths of

400 Åhave provided a breakthrough in precision in the last 10 years by improving SED

resolution [94]. The first survey which produced a photometric redshift catalogue using

medium band imaging was COMBO-17, which gave a bright source σzp of 0.02 for bright

sources. The ALHAMBRA, COSMOS and SHARDS surveys further improved this pre-

cision to 0.01 out to redshifts of z ≈ 1.5 by using deeper medium-band photometry and

utilising emission bands into their templates [83].

Photometric redshift studies that extend beyond the redshift desert, following the Lyman

break (z > 8) and the Balmer break (1.6 < z < 4), have been made possible by the

increase in sensitivity of near-infrared detectors. The identification of galaxies across
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thousands of deg2 has been made possible using photometric redshifts, with the DES

survey reaching out to z ≈ 24 over 5000 deg2. This survey has an expected photometric

redshift accuracy of 0.08 [83].

Conducting photometric redshift surveys which cover a large sky area presents many

challenges, including acquiring spectroscopic training samples which are homogeneously

distributed over the whole sky area, or the calibration of photometric noise precision

over large observational periods with varying sky conditions. The potential degradation

of instrument quality may also affect the calibration of photometric noise. The way in

which the photometry is actually extracted from an image may also pose difficulties.

The SExtractor is commonly used in source extraction, however one must be careful to

ensure that the region within which the galaxy flux is measured is small enough that

the SNR of faint sources isn’t compromised [82].

2.1.2.3 The Future of Redshift Techniques

The quality and availability of spectroscopic surveys greatly impacts the evolution of

photometric redshift methods. The future is bright for the next generation of spectro-

scopic surveys, such as the HSC imaging survey which will use the multi-object Prime

Focus Spectrograph to gather redshift data over a wavelength range of 3800-13000 Å

for millions of galaxies at 0.8 < z < 6. The Euclid survey will be published along-

side spectroscopy performed by the NISP instrument, which hopes to conduct slitless

spectroscopy for over 50 million galaxies at 0.7 < z < 2 [83].

A new generation of imaging surveys dedicated to cosmological study will be published

over the next decade. The DES Survey covers 5000 deg2 in 5 bands from 300 million

sources, which is the largest galaxy survey currently available [86], and this number of

galaxies is on track to increase by a factor of 10 in the next generation. The LSST,

which is due to begin operating in 2023 plans to cover 18000 deg2 of the sky and record

data from 4 billion sources over the next 10 years [83]. The increase in volume of these

imaging surveys does pose a computational problem when determining photometric red-

shifts, as it will increase the demand on computational power needed for calculations and

the storage of the PDFs will become difficult over such a large sky area. For example,

the LSST survey requires band-to-band calibration errors less then 0.005 mag, with the
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variation across the sky being no more than 0.01 mag. It is essential that this calibra-

tion is maintained to ensure homogeneous performance, however much computational

power is needed to compute photometric redshifts and store the PDFs to the required

quality. The LSST also hopes to repeat observations of each sky location over 10 years

in up to 6 bands, which would make the variable Universe more accessible, with mea-

surements in the a band breaking degeneracy between high and low redshift solutions.

Multi wavelength coverage is vital when defining the redshift range of interest so further

advancements in photometric redshift will be driven by the Euclid survey, which will

use three filters between 9200-20000 Å. These filters should ensure precise photometric

redshifts for z > 1.3, however the survey will require backing from ground based data in

optical wavelengths. The PAU and J-PAS surveys are the first two cosmological imaging

surveys to be performed using medium bands. J-PAS plans to cover 8500 deg2 with 54

narrow band filters, which will study 300 million galaxies with a photometric redshift

error of 0.3%. The James Web Space Telescope was launched in 2021, and contains an

efficient near-infrared NIRCAM camera, which will lead to a new burst of activity with

surveys being conducted up to magAB 30− 31 and produce photometric redshifts up to

z ≈ 20 [87]. .

This advancement in spectroscopic surveys, alongside steps forward in ML and template

fitting techniques will provide a huge leap forward in future photometric redshift mea-

surements. In the context of measuring cosmological parameters using GW data, this

evolution of redshift techniques will decrease associated measurement uncertainties and

contribute to revealing the solution to the Hubble tension issue.

The next chapters will explore whether these ML algorithms can be applied to galaxy

surveys, and whether the RF may be trained on a sample from one galaxy catalogue and

then applied to another catalogue which potentially may not be statistically equivalent.

If it is possible to train the RF with a known spectroscopic sample and apply it to any

general photometry data then this method would be a very useful tool in the generation

of accurate photometric redshifts. Not only this, but the current assumption that the

redshift uncertainties are Gaussian is accurate can be assessed using the RF algorithm.

If this is not the case, then the availability of individual galaxy redshift posteriors is key

in quantifying these errors, leading to more precise cosmological inference.



Chapter 3

GALPRO Calibration

3.1 GALPRO

Section 2.1 explored different photometric redshift estimation techniques and highlighted

that supervised ML softwares appear to be the most appropriate option for this work,

due to their accuracy and ability to produce redshift PDFs. In the following section

the software GALPRO is selected as the supervised ML algorithm used for redshift

PDF estimation and more insight is provided into how GALPRO works and how its

performance may be assessed. This calibration and assessment of performance using

known training and testing samples acts as a sanity check before GALPRO may be

applied to new surveys and its limits are explored.

GALPRO is a Python software package, developed in 2020, which may be used to

compute galaxy properties such as redshift, star formation rate, stellar mass, etc. It

utilises a RF algorithm to form a supervised ML program [93]. RFs may be used for the

regression or classification of large datasets, and here GALPRO is used for regression

purposes to compute the photometric redshift of galaxies.

GALPRO has previously been used to compute photometric redshifts for the DESI

Legacy survey [6]. The training sample provided by Zhou et al. (2021) used to generate

these redshifts is the same as that used in this thesis, indicating that the package and

training sample are trusted by the wider scientific community and further motivating its

use in this work. Other motivation for this methodology includes the paper published

in 2021 by Palmese et al. which uses GW signals from the first three LIGO/Virgo

47
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observing runs to constrain H0 to a value of 72.77+11.0
−7.55 km s−1 Mpc−1 [95]. Here, they

used the galaxy catalogue method and populated the surveys with redshifts generated by

GALPRO using the same training sample compiled by Zhou et al. as that used for the

DESI Legacy survey. This further enforces that applying GALPRO using this training

sample is applicable for computing redshifts to constrain H0 using dark standard sirens.

Since this Zhou et al. sample has been previously successfully used with GALPRO, it

is an obvious choice to initially calibrate GALPRO and explore its functions, which is

detailed in the following sections. More detailed information on the training data used

is provided in Section 3.2.1.

3.1.1 GALPRO Random forests

In the case of estimating photometric redshifts, the RF algorithm determines a function

which maps between the spectroscopic redshift values of the training sample and the

multi-dimensional photometry space, ie. the fluxes and colours of each galaxy. It samples

a random subset of the training data, which comprises fluxes, colours and spectroscopic

redshifts, to build the decision trees. Every cell in the decision tree is then successively

assigned an average spectroscopic redshift value. A photometric redshift estimate may

then be made by inputting the photometric properties of a galaxy, in this case the flux

and colours, and passing these properties through each tree. An average is then taken

over all of the obtained redshifts to produce the final photometric redshift estimation of

the individual galaxy [6].

GALPRO uses regression trees, which is a type of prediction tree that produces a con-

tinuous prediction, in this case, a photometric redshift PDF. The colours of galaxies are

used as input variables to find the probability that an object may or may not lie in a

specific redshift bin. Initially, the first node contains all of the data in the sample, which

then splits recursively in such a way that maximises the information about the desired

variable. The optimal dimension of these splits is determined by the minimisation of

the sum of the squared colour errors. For node T , this is shown by [82]:

S(T ) =
∑

m∈values(M)

∑
i∈m

(
zi − ẑm

)
(3.1)
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where zi are the target variable values, in this case redshift, ẑm is the prediction model

used, and m are the possible values of the dimension M . When using the arithmetic

mean, ẑm = 1
nm

∑
i∈m zi, with nm being the members on branch m, we are able to

rewrite equation 3.1 as:

S(T ) =
∑

m∈values(M)

nmVm (3.2)

with Vm being the variance of the estimator ẑm.

The point estimates and PDFs generated by GALPRO implement a similar method

to Kind and Brunner (2013) [82], in which photometry is perturbed by summing the

flux from each band to a random value from a Gaussian distribution. The standard

deviation of this distribution is assigned using the photometric error. This only applies

to the fluxes, as the morphological parameters do not have an associated error.

GALPRO builds 50 individual decision trees in the RF, using the methodology described

above, with each tree returning a photometric redshift estimate for a galaxy [6]. The tree

is built by splitting the nodes as it follows equation 3.2, leaving every terminal leaf with

only a few sources to be used for prediction. At each node, all dimensions are scanned

to result in a split which minimises S(T ), and the dimension, M , and thus the minimum

result is chosen as the splitting direction. Once a threshold in S is reached, the splitting

ceases and a result may be determined. These estimates are then perturbed 20 times,

resulting in an RF which spans the whole spectroscopic range. The photometric redshift

point estimate and its associated error is determined by the mean and standard deviation

of the resulting (50 × 20) estimates from each tree. The set of estimates given by all the

trees and perturbations are then converted to a given resolution and normalised to the

total number of objects returned, resulting in the redshift PDF estimate of the galaxy

[93].

GALPRO has already been used to successfully generate photometric redshift estimates

that are accurate enough to be included in the DESI Legacy survey [6]. This provides

reassuring confidence that GALPRO can give reliable results when trained using spec-

troscopic data from the same survey. However, this thesis hopes to determine whether

GALPRO can be trained using a specific sample of training data and then applied to
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a brand new survey which contains no spectroscopic data and still produce accurate

redshift estimates.

3.1.2 Point Estimate Performance Assessment

It is vital to thoroughly characterise the photometric redshift performance for every

catalogue of interest. This is usually done by comparing the photometric redshift point

prediction (eg. mean or mode of a PDF, zphot) and the spectroscopic redshift (zspec).

Note that any spectroscopic redshift values used in ML training or prior construction

should be discarded from the validation sample.

Assessing photometric redshift point estimate performances usually entails measuring

the following:

• Precision (σNMAD): This describes the 68
th percentile width of the bias distribution

about the median, and is defined as either the standard deviation of (zphot −

zspec)/(1 + zspec) or 1.48 × median(|zphot − zspec|)/(1 + zspec).

• Bias: This describes the average separation between the true and predicted red-

shifts and is defined as ⟨zphot − zspec⟩

• Outliers fraction: Gives the fraction of anomalous sources with unexpectedly large

error values, defined by |zphot − zspec|/(1 + zspec) > 0.15

These measures are not unique, but they are commonly used to allow for easy comparison

between galaxy surveys. The direct comparison between photometric and spectroscopic

redshifts as a way to assess photometric redshift performance is less informative if the

spectroscopic redshift coverage isn’t fully representative of the redshift coverage of the

photometric samples. In this case, one must define a statistical mapping between the

photometric parameter space covered by the two samples. If a region of photometric

space doesn’t have great spectroscopic support, alternative methods may be utilised to

determine photometric redshift performances. The galaxy closed pairs technique is an

example of this, in which the fact that neighbouring galaxies have a high probability of

being associated and therefore having similar redshifts is used[93].
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3.1.3 PDF Performance Assessment

Determining the full photometric redshift PDF performance often highlights the need

for more training samples or templates, or sub-optimal redshift prediction routines. The

under-estimation of photometric uncertainties is a common problem when dealing with

PDFs, as this causes the PDF peak to be too narrow. Usually, PDFs are validated by

ensuring that 1% of the spectroscopic redshift lies within the first percentile of their

CDFs and so on. [90].

GALPRO is designed such that it generates joint posterior distributions by default (See

Section 3.2.3.2) and it must be specified in the code that there is only one target variable,

the photometric redshift. Most literature detailing the use of GALPRO, including from

the creator of the software (See [93], [95]) refers to the PDFs of a single target variable,

as opposed to joint posteriors, as ’marginal’ PDFs and for continuity this work will do

the same.

The probability integral transform (PIT) is an extremely useful tool for validation, as

it indicates if any bias has been introduced to the PDFs. The PIT is used to assess

probabilistic calibration and is defined as the cumulative distribution function (CDF),

evaluated at the true redshift:

PIT =

∫ ỹ

−∞
f(y)dy (3.3)

Here, f(y) represents the redshift PDF and ỹ is the ’true’ redshift value [93].

The spectroscopic redshifts should be random draws from their respective distributions,

meaning that the CDF of the estimated photometric redshift, evaluated at the spec-

troscopic redshift, would not have a preferred value but will be uniformly distributed

between 0 and 1. The PIT plot demonstrates how uniform the CDF accumulation is

compared to an expected uniform PIT from 0 to 1. If the PIT values are from a uniform

distribution then percentile of the CDF, 2% of the galaxies will have their ‘true’ redshifts

found within the second percentile of their CDF, and so on. If the PIT is not uniform,

then the ’true’ redshifts are not random draws from their respective distributions, in-

dicating some bias present in the redshift PDFs [6]. The shape of the PIT contains

valuable information regarding the marginal PDFs. The PIT distribution will display a
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convex shape if the marginal PDFs are too broad, as less objects will have true redshifts

within the tails of their PDF. Conversely, if the PIT is a concave shape, the PDFs are

overly narrow and many objects contain the true redshift within the tail of the PDF.

The PIT distribution must be uniform in order for the marginal PDFs to be valid,

although a uniform PIT may also contain some bias [96]. This calls for another method

of validation to ensure that no bias is present in the PDFs.

The equality of the true and predicted redshift distributions may be assessed using

marginal calibration. This entails comparing the true empirical CDF (G̃I) with the

average predictive CDF (F̂I):

F̂I(y) =
1

n

n∑
i=1

Fi(y) (3.4)

G̃I(y) =
1

n
1{ỹi ≤ y} (3.5)

Where n represents the number of test galaxies, Fi is the predicted CDF and ỹi is the

galaxy’s true redshift. The 1 is an indicator function which may be defined as:

1{ỹi ≤ y} =


1 if True

0 if False

(3.6)

To accurately describe the redshift PDFs as ’marginally calibrated’, the average pre-

dictive and true empirical PDFs must be completely or almost equal. The marginal

calibration plots shown in future sections of this work represent the difference between

the average predictive and true empirical PDFs at regular intervals. If this variation is

greater than 0.01 then the PDFs are considered not marginally calibrated.

Quantile-quantile (Q-Q) plots may be used to visually assess the uniformity of the PIT

distributions, which highlights any deviations. The quantiles of the PIT plot and a

uniform standard distribution (U(0,1)) are plotted against one another to demonstrate

any deviation between the PIT and a uniform distribution. If the quantiles match

perfectly, then the two distributions are identical and lie along the diagonal. GALPRO

is able to produce PIT plots which also show the quantile deviation. The plot also shows



GALPRO Calibration 53

the value of each metric test (defined in Section 3.1.3.1) and percentage of catastrophic

outliers. In this case, a catastrophic outlier is defined as a galaxy for which the true

spectroscopic redshift is completely outside the support of its marginal PDF [83].

3.1.3.1 Uniformity of the Probability Integral Transform

There are many methods of qualitatively measuring the uniformity of the PIT, such

as the Kullback–Leibler divergence, Kolmogorov–Smirnov test and Cramér-von Mises

tests [93]. These metric tests all determine the similarity between the PIT and U(0,1)

in slightly different ways and are very useful in quantifying how much the posteriors

deviate from a Gaussian distribution.

The KL divergence is defined as:

KL ≡
∫ ∞

−∞
p(x)log

p(x)

q(x)
dx (3.7)

where p(x) is the the reference U(0,1) and q(x) is the target PIT.[97].

The KS test determines the maximum distance between the CDF, F (x), of the reference

distribution and the empirical distribution function, Fn(x), which is defined as:

KS ≡ supx|Fn(x)− F (x)| (3.8)

with supx being the supremum of the set of distances. This test takes into account any

random noise present in the PDF [98]. The closer the KS test value is to zero, the more

uniform the PDFs from 0 to 1.

The CvM test is much like the KS test, however it is more sensitive to the edges of the

distribution and is defined as [99]:

CvM ≡
∫ ∞

−∞
(Fn(x)− F (x))2dF (x) (3.9)

Where F (x) represents the uniform reference distribution U[0,1].
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All of these tests result in a value of zero if there is a perfect match between the two

distributions. The larger the absolute value of each test, the larger the deviation of the

PIT from a uniform distribution.

The marginal calibration may also be assessed graphically by plotting the difference

between true empirical and average predictive redshift CDFs. If the marginal calibration

is successful, there should be only minor fluctuations about the zero line [6]. Using the

PIT, the individual galaxy PDFs may be probabilistically and marginally calibrated to

ensure that the PDFs are valid and may then be used for cosmological inference.

However, it is imperative at this point to acknowledge that these metrics are far from

perfect when assessing individual redshift PDFs. In the absence of true redshift pos-

terior samples, it is obviously difficult to establish metrics which evaluate the PDF

performance, which remains an ongoing issue in the scientific community [90].

The redshift posterior distributions generated by GALPRO could potentially provide

much more detailed information than previously used by the gwcosmo code, which would

lead to better constraints on H0.

3.2 Results

3.2.1 Redshift Truth Table

GALPRO requires a training dataset, describing the photometry of the galaxies and

their spectroscopic redshifts, and also a ’truth’ dataset to assess calibration. The truth

dataset contains the flux and colours of the galaxies, which is used by GALPRO to

predict their photometric redshifts and generate redshift PDFs for each galaxy in the

subset. Once all of the objects in the truth dataset have been assigned a photometric

redshift point estimate, the spectroscopic redshift of each truth galaxy can be compared

to the photometric values to assess the performance of the RF mapping.

GALPRO firstly requires a ’truth table’ of detailed and reliable spectroscopic and pho-

tometric redshifts for training and validation purposes.

The sample used to train the RF algorithm was compiled by Zhou et al. [6], which

includes data from the 2dFLenS, DEEP2, COSMOS15, AGES, GAMADR3, Oz-DES,
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Survey Full Dataset Downsampled dataset

BOSS 678 370 224 345

SDSS 449 386 186 666

WiggleZ 122 907 47 334

GAMA 109 790 55 990

COSMOS2015 53 973 53972

VIPERS 44 175 44 175

eBOSS 23 549 23 459

DEEP2 15 994 15 994

AGES 11 235 11 235

2dFLenS 8102 8102

VVDS 5490 5490

OzDES 1407 1407

Table 3.1: The number of objects from each survey used in the truth dataset [6].

SDSS DR14, VIPERS, VVDS and WiggleZ surveys [93]. The RF takes input features

of r-band magnitude, r − z, g − r, z - W1 and W1 −W2 colours. It also requires the

ratio between the semi-minor and semi-major axes, the half light radius, and a model

weight, which assesses how well a galaxy is fit by an exponential light profile versus a de

Vaucouleurs profile [95]. Soo et al (2017) found that including these three morphological

parameters significantly reduces the outlier fraction and scatter of the test sample when

training a RF algorithm on grz photometry. Table 3.1 shows the number of objects

from each survey in the dataset. All of the imaging catalogues used overlap with the

DECaLS catalogue footprint and already have K corrections applied [100], [6].

The majority of the galaxies in the truth dataset are taken from the SDSS, BOSS,

GAMA and WiggleZ surveys, which are limited to shallow magnitudes and apply colour

selections. This causes sharp peaks in the redshift distribution which can introduce

systematic bias as a result of the non-uniform training sample, as the RF algorithm

may favour redshift estimates that are over-represented in the truth dataset. To avoid

this, galaxies from the four surveys are downsampled to create a more uniform training

dataset. This is done by firstly determining the object density in the 2D r-band magni-

tude space versus redshift, using bin sizes of ∆rmag = 0.01 and ∆Z = 0.01. Each survey

is assigned a different threshold for the target number of galaxies contained within the

rmag-redshift bins, which are 20, 70, 400 and 400 for the WiggleZ, GAMA, BOSS and

SDSS catalogues respectively. To preserve an accurate sampling of galaxies over the full
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luminosity range, the objects are downsampled randomly until the rmag-redshift den-

sity reaches the threshold level. This method also ensures that the rare most luminous

objects are preserved in the sample. This downsampled dataset will now be referred to

as the truth catalogue. A plot of the redshift distribution of the full truth dataset and

the downsampled truth dataset prepared by Zhou et al. can be seen in Figure 3.1. The

truth table sample contains galaxies out to a maximum redshift of 4.29, however the

number of galaxies with redshifts above 1.5 is very small.

Figure 3.1: Redshift distribution of the redshift truth data set. N(z) gives the total
number of objects in each z = 0.02 bin. The SDSS and BOSS surveys contribute to
the sharp peaks at z = 0.1 and z = 0.5 respectively. These peaks are downsampled to

avoid bias. Figure credit: [6]

The truth table contains some fainter galaxies with fluxes in the grz bands being nega-

tive, which causes their magnitudes to be undefined. This is accounted for by converting

the fluxes in luptitudes (µ), using the formula:

µ = µ0 − a sinh−1
( f
2b

)
(3.10)

with µ0 = m0 − 2.5 log b. a = 2.5 loge, where m0 is the zero point magnitude, f is the

flux and b is an arbitrary softening parameter [93]. The associated errors in each flux,

σmu are also converted as follows:

σµ = a
(σf
f

)
(3.11)
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with σf being the error given on the flux. Converting the objects’ flux to luptitudes

removes the need to discard galaxies with a negative flux, thus avoiding introducing

another selection effect.

To increase the performance of the algorithm, the RF hyperparameters (discussed in

Section 2.1.2) may be tuned. Following results described in [93], which used the same

truth sample as this text, the optimal hyperparameters are found to be:

• n estimators: 100

• max features: auto

• max depth: none

• min samples leaf: 1

• min samples split: 2

• max leaf nodes: none

• min impurity decrease: 0.0

• min impurity split: none weight fraction leaf: 0.0

This selection of hyperparameters allows the decision trees to be fully grown, meaning the

training data may no longer be split. The choice of max features being auto guarantees

that the RF algorithm has a sufficient amount of prior information, which is essential

as we are only using a small number of photometric bands.

3.2.2 Applying GALPRO using the Zhou et al. Dataset

This section uses the above described truth table to calibrate GALPRO and explore its

functions, before it is applied to any new survey. Since the sample, compiled by Zhou

et al, has been previously used in [93] and [6], it is an excellent choice for training and

testing as it is known to perform satisfactorily.

The g − r, r − z, z − W1,W1 − W2 luptitudes and their associated errors are used as

input variables for GALPRO, alongside the previously mentioned half-light radius, axis

ratio, model weight and the spectroscopic redshift. Once the Zhou et al. truth table
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has been converted to contain these parameters it is then randomly split, with 90% of

the data being used to train the RF algorithm, and 10% being used for testing and

validation. GALPRO takes 4 input arrays, xtrain and xtest, which contains the luptitudes

and parameters of the training and testing samples, and ytrain and ytest, containing the

corresponding spectroscopic redshifts (the target variables). The hyperparameters are

set to those described in Section 3.2.1.

The run-time of GALPRO is dependent on the size of the training and testing samples

and here, the training sample contains around 2.7 million objects and the testing sample

contains around 300,000 objects. Both the training and calibration of GALPRO using

samples of this size requires a large amount of memory usage and initially GALPRO was

implemented using the University of Glasgow WIAY cluster. However, since memory

usage is restricted to a certain threshold on this cluster, GALPRO continuously failed

to run as it required much more computational power than was available. This posed

a large problem and an attempt to use a dataloader to input the training and testing

arrays to GALPRO was undertaken. However, it seemed that it wasn’t the size of the

samples that was the issue, but the large dimensions of the arrays created by the RF

while it is training that was using a large amount of memory. After over a month

of deliberations and attempts to reduce memory usage, access to the LIGO Caltech

cluster was granted. This cluster has 1.5 Terabytes of memory and 72 CPU, so any

issues regarding memory storage is completely avoided. Training GALPRO does require

a large amount of computational power, but once trained, the RF stores the model.

This means that GALPRO only needs to be trained once and then this model is saved

and can be applied to any testing dataset. The calibration process performed on the

testing sample also requires a lot of computational power, and using a testing sample

of around 300,000, the process takes roughly 6 hours. This is larger than the time

required for training with a sample of around 3 million objects, which usually takes 3

hours. The full calibration process produces redshift point estimates, PDFs, the PIT,

marginal calibration and spectroscopic versus photometric redshift plots. GALPRO

can also produce kendall calibration plots (see [93]), however these are used to assess

the calibration of the joint posterior distributions, which aren’t particularly relevant to

this work. The production and storage of the redshift PDFs and point estimates only

takes a short while, around 20 minutes in total, while the marginal and probabilistic

calibration takes up the majority of the 6 hour period. This long calibration time may
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seem impractical, but it is worth noting that this calibration only needs to be run once

using a representative subsample of the testing data to ensure accurate results. Then,

GALPRO can be applied to the entire testing sample and ran in a way which only

produces the redshift PDFs, thus reducing the run-time significantly. The entirety of

this work was performed on the LIGO Caltech LDAS-pcdev6 cluster remotely.

3.2.2.1 Redshift Point Estimate Results

Analysis was run by inputting the above described arrays into GALPRO. The photo-

metric redshift point estimates are generated for every galaxy in the testing sample,

which is given by an average of all the predictions from all of the decision trees in the

RF model. The scatter of the distribution is also used to quantify the photometric

redshift estimation performance, which is represented using the σNMAD and describes

the observed scatter between predicted photometric redshifts and their corresponding

spectroscopic (i.e. true) values (see Section 3.1.2).

Figure 3.2: The spectroscopic versus photometric redshift point estimate plot pro-
duced when GALPRO is trained using a randomly sampled dataset containing 90% of

the Zhou et al. dataset and tested using the other 10%.
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The plot, shown in Figure 3.2, has a good correlation between spectroscopic and pho-

tometric values, and generally follows the diagonal. It gives a σNMAD value of 0.029,

which is relatively low indicating that the scatter has a strong correlation. As we reach

out to larger values of z, it can be seen that GALPRO tends to underestimate z values

above zspec ≥ 1.5. Since the truth table doesn’t contain many objects at these high

redshifts, the mapping between the flux and these redshift values obviously isn’t cor-

rectly learnt due to there being fewer representative objects at this range in the training

dataset. This is to be expected, as the RF will not perform as well in areas that are

lacking representative training data, highlighting the need for the training and testing

samples to have a similar range of redshift distribution. The contours of the scatter plot

represents the iso-proportions of the density, with 50% of the data-points lying withint

the largest contour line. Overall, the photometric redshift point estimates are generally

accurate, however the redshift posterior PDFs are of more interest to this thesis.

3.2.3 Posterior Distributions

3.2.3.1 Marginal Posteriors

The LIGO team, when implementing gwcosmo, currently assume that any photometric

redshifts used to measure the Hubble constant have an associated error that is generally

Gaussian. When determining whether this assumption is valid, a photometric redshift

posterior is much more informative than an individual point estimate. The posterior

shows the probability of the estimated redshift value, and so the shape of the posterior

directly relates to the assumed shape of the error distribution.

GALPRO produces the marginal PDFs of the photometric redshifts for each galaxy in

the testing sample. These PDFs are automatically stored by GALPRO in a specified

file. An example of a redshift PDF, randomly selected from the testing sample is shown

in Figure 3.3. The predicted photometric redshift value, given by the black dashed line,

is the median of the PDF.
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Figure 3.3: An example of a redshift PDF generated by GALPRO when trained and
tested using the Zhou et al. truth sample.

The photometric redshift estimate predicted by GALPRO for this galaxy and the real,

spectroscopic value can be seen on the plot. More detail on the 68th percentile region

can be found later in Section 3.3. The RF generates PDF coordinate values and then

uses kernel density estimation to plot the smooth PDF that can be seen in the figure.

As previously stated, the computational cost of generating the PDF is actually not very

high, which is beneficial when applying GALPRO to large photometry surveys.

3.2.3.2 Joint Posterior Distributions

The GALPRO package is also able to generate multivariate posterior distribution func-

tions on-the-fly for its individual galaxy redshift estimates. This is implemented by

using the RF algorithm to predict both the photometric redshift and rest frame r-band

absolute magnitudes simultaneously. The redshifts and magnitudes may then be used to

plot joint PDFs for each galaxy in the testing sample. This work focuses on the gener-

ation of photometric redshift PDFs, so the joint posterior distributions are not entirely

relevant or useful for this thesis. However, the exploration of GALPRO’s functions is in-

teresting nonetheless and could be relevant to future work, hence why this small section

is included.

The algorithm creates joint PDFs by creating a single model to predict both variables.

The algorithm is much like that for an RF predicting a single variable, however now

the average loss function (Equation 3.1) is minimised at each step. The z̃i and z̃m now
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represent the vector of target variables and means. The scales of the target variables

must first be transformed to be within similar ranges so that the variance of one variable

does not dominate. The algorithm groups galaxies in an n-dimensional space according

to the values of the input features and then minimises the loss function of these clusters.

The leaf nodes then eventually contain the the r-band magnitudes and stellar masses

of similar galaxies, which are determined simultaneously to preserve the correlation

between the properties. The test galaxy properties may then be run through all of the

decision trees to generate new photometric redshift and r-band magnitude estimates

using the mean of all the predicted values.

The joint PDFs may be generated using GALPRO by simply adding the desired target

feature to the ytrain and ytest arrays. Here, the r-band magnitude was used as both an

input in the x arrays and a target variable in the y arrays. The purpose of this is to both

generate joint PDF plots and to assess how well GALPRO can predict properties, as

having this magnitude in both the x and y arrays should lead to the GALPRO r-band

magnitude predictions being almost identical to the true values. Any deviation from

this would indicate that the RF algorithm has failed to learn the correct mapping.

Figure 3.4: An example of a joint redshift and r-band magnitude PDF generated by
GALPRO when trained and tested using the Zhou et al. truth sample.

An example of a joint PDF produced by GALPRO can be seen in Figure 3.4, which

was randomly chosen from the testing sample. The marginal PDFs of the redshift and
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r-band magnitude can be seen on the graph, alongside the true and predicted values of

both variables. As expected, the predicted r-band magnitude value is identical to the

real value, as this magnitude is both an input and a target variable. This reassures

that GALPRO is performing correctly, as these values should be identical since it has

already been fed the r-band magnitudes. The green circles represent the redshift and

r-band magnitude values in the leaf nodes that are representative of the test galaxies.

Kendal calibration is used to assess the performance of these PDFs.

The joint PDFs are not directly useful in the quest to generate redshift PDFs to be used

in the constraint of H0, and so no more detail will be discussed in this work. However,

more detail of the production and validation of these plots can be found in [93]. Although

not relevant to this work, these plots are rather aesthetically pleasing!

3.2.4 Marginal Calibration

The marginal calibration plot represents the difference between the average predictive

and true empirical CDFs of redshift, at regular intervals. The marginal calibration plot

produced when GALPRO is trained and tested using the Zhou et al. truth sample (as

described above) can be seen in Figure 3.5. There are negligible fluctuations about the

zero line with a peak around 0.0015. Any fluctuation greater than 0.01 indicates that

PDFs are not marginally calibrated. This demonstrates that the PDFs generated using

this testing sample are successfully marginally calibrated.

Figure 3.5: The marginal calibration plot generated by GALPRO when trained and
tested using the Zhou et al. truth sample.
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3.2.5 PIT

The validation of individual redshift PDFs is not possible due to the true distributions

not being available, therefore the marginal PDFs must be validated as a whole. This

validation is conducted by GALPRO using framework developed by [101]. The paper

introduces three modes of calibration; exceedance, probabilistic and marginal calibra-

tion. These methods may be interpreted as characterising the statistical consistency

between the distributions and the truth. The sharpness of the predictive distributions is

defined as the concentration of predictive distributions, which is solely a property of the

distributions, and may be maximised subject to calibration to validate the PDFs. This

maximisation is the basis of the validation methods, however GALPRO focuses on the

calibration to validate the PDFs rather than the sharpness. Section 3.1.1 has already

detailed this assessment, which is used in this thesis to determine the accuracy of the

generated PDFs.

The PIT produced by GALPRO when trained and tested using 90% and 10% of the

Zhou et al. truth sample respectively can be seen in Figure 3.6.

Figure 3.6: The probability integral transform produced by GALPRO using the Zhou
et al. truth sample for training and testing.

The outlier fraction is given as 1.18% which is very reasonable, and the KLD and KST

tests give values of 0.007 and 0.023 respectively. These values are close to zero, showing

that the PIT is fairly uniform. The Q-Q plot represents the quantiles of a uniform

distribution using the black dashed diagonal line, and the quantiles of the results are

given as the blue line. The blue line doesn’t deviate greatly from the black dashed line,
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further demonstrating that the PIT is fairly uniform. However the CvM test gives a

value of 24.332, which is reflective of the fact that the PIT is slightly convex.

3.2.5.1 Improving probabilistic calibration

Although the PIT is fairly uniform, this slight convex shape indicates that the marginal

PDFs are somewhat overly broad. To improve the probabilistic calibration of the PDFs,

the minimum number of samples that must be present in a leaf node (min samples leaf)

is increased from 1 to 3 and 5. Figures 3.7, 3.8 and 3.9 show the results produced by

GALPRO with min samples leaf = 3. It was found that increasing the minimum

number of samples in the leaf node to 3 improved results slightly, with the outlier

fraction reducing to 0.51% and the CvM test reducing to 21.055. The σNMAD of the

scatter plot also reduces by 0.001. When min leaf is increased to 5 however, the results

deteriorate and the PIT becomes less uniform (See Appendix A.1). For the rest of this

thesis, the min samples leaf hyperparameter will be set to 3.

Figure 3.7: The spectroscopic versus photometric redshift plot produced by GALPRO
when trained and tested using the Zhou et al. truth dataset with min samples leaf =

3.
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Figure 3.8: The PIT plot produced by GALPRO when trained and tested using the
Zhou et al. truth dataset with min samples leaf = 3.

Figure 3.9: The marginal calibration plot produced by GALPRO when trained and
tested using the Zhou et al. truth dataset with min samples leaf = 3.

Increasing the min samples leaf was successful in the attempt to slightly improve prob-

abilistic calibration, but there is a second option which may further improve the unifor-

mity of the PIT. This involves augmenting the training data by scattering the galaxies.

The scattering is performed on the photometry in accordance with the photometric er-

rors. Each galaxy has its magnitudes scattered by adding on a randomly selected value

from a Gaussian distribution with a mean of 0 and a standard deviation of 1, multiplied

by the photometric error, following:

S = M + (Z × σ) (3.12)

Where S is the scattered magnitude, M is the observed magnitude, σ is the associated

photometric error and Z is the value randomly selected from the Gaussian distribution.
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These magnitudes are scattered in each filter and then the scattered colours are com-

puted. The photometric errors associated with these scattered galaxies remain the same

and are not scattered.

This scattering process essentially creates mock ”observed” magnitudes, meaning the

value we might have observed in a parallel universe, or more mundanely if we’d simply

observed the galaxy on a different date so that a different, random number of photons

arrived from the galaxy. Each galaxy in the training set is scattered five times and

the testing dataset is scattered once for consistency. GALPRO was again run with a

randomly selected 90% sample used for training and the other 10% for testing, The

resulting PIT plot can be seen in Figure 3.10. This plot shows a small improvement in

the PIT as the CvM value has slightly decreased and the outlier percentage has decreased

by nearly 1%. The marginal calibration remains the same and the scatter is very similar

to the previous analysis with no scattering of the photometry (See Appendix A.2).

Figure 3.10: The PIT plot generated by GALPRO when trained and tested using the
Zhou et al. truth sample where the photometry has been scattered.

To summarise, the marginal redshift PDFs produced by GALPRO when testing and

training using the scattered Zhou et al. dataset are both probabilistically and marginally

calibrated, giving confidence that they are valid. Henceforth, any reference to the use

of the Zhou et al. dataset being used for testing or training will refer to the Zhou

et al. truth dataset with min leaf sample set to 3, with the photometry scattered as

described above and the hyperparameters described in Section 3.2.1, as this produces

the optimal results with the most uniform PIT plot. The following section explores the

errors associated with the photometric redshifts, and whether the current assumption

in the application of gwcosmo that these errors are Gaussian is valid.
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3.3 68th Percentile Region

It is currently assumed by the LVK Collaboration that photometric redshift errors input

to gwcosmo follow a normal distribution, which take a symmetric and unimodal shape. If

X is a random, normal variable then the probability distribution of X may be described

by a Gaussian curve as:

F (x) =
1

σ
√
2π

e−
1
2
(x−µ

σ
)2 (3.13)

with µ being the mean and σ as the standard deviation from the mean. The 1σ confi-

dence interval encapsulates the area of the graph for which approximately 68% of the

population should fall within. This may be mathematically expressed as:

F (µ− 1σ ≤ X ≤ µ+ 1σ) ≈ 68.27% (3.14)

For a normal distribution, the probability function and therefore the 68th credible region

is symmetric. It has been assumed thus far in most gravitational wave analyses that the

photometric redshift error is indeed Gaussian and so has a symmetric 68th confidence

region. How the code gwcosmo utilises these photometric errors is described in Section

1.2.

The analysis performed by GALPRO using the Zhou et al. scattered training and

testing samples, described in the above sections, has the ability to produce individual

photometric redshift PDFs for each galaxy in the testing sample. This is very useful,

as it allows for the assessment of the 68th credible region of each redshift posterior to

be evaluated. The quantiles are determined using NumPy package percentile, which

takes a set of posteriors and returns an array containing the quantile values for each

distribution. In this case, the photometric redshift posteriors were inputted to the code

and the package returned the 16th and 84th quantile of each posterior, which is the

bounds of the 68% credible region.

Figure 3.11 is a randomly selected example of a photometric redshift PDF chosen from

the analysis run in Section 3.2.5.1. It can be clearly seen by inspection alone that the

PDF is non-Gaussian and does not have symmetric 68th percentile errors.
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Figure 3.11: The photometric redshift PDF of a randomly selected galaxies from the
Zhou et al. testing subsample.

A quantification of just how non-Gaussian the redshift PDFs are is required before

making the assumption that the associated photometric errors generally do not follow

a Gaussian distribution. This is done by applying the D’Agostino’s K-squared test to

each of the redshift posteriors in the testing sample. This test is designed to establish

whether a function comes from a normally distributed population. When applied to the

redshift PDFs generated from the Zhou et al. testing sample containing 101945 galaxies,

it was found that 78241 galaxies had a non-Gaussian redshift PDF and 23704 were found

to follow the Gaussian distribution. This demonstrates that the majority of the galaxies

in the testing sample has redshift PDFs that did not follow a normal distribution.

The Zhou et al. truth sample is relatively representative of the redshift range and

type of galaxies that would be analysed by the gwcosmo code, which are shown to have

a generally non-Gaussian behaviour. This means that an inference of H0 using this

methodology may increase in accuracy if the redshift errors inputted to the program are

precise, and not generalised to follow a normal distribution. This implies that GALPRO

could be extremely useful in generating accurate photometric redshift PDFs that can

be used to thoroughly characterise the associated errors that are inputted to gwcosmo.

However, the accuracy and precision of GALPRO must be rigorously tested before it

can be reliably used to generate these PDFs.

GALPRO has been successfully implemented using the Zhou et al. truth table to gen-

erate marginally and probabilistically calibrated redshift PDFs, which have been used
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to probe the GALPRO functions and examine current LIGO assumptions. The fol-

lowing chapter explores whether GALPRO can be trained using the Zhou et al. truth

dataset and applied to a new, unknown survey to generate accurate photometric PDFs.

The PDFs generated by GALPRO may only be used alongside gwcosmo to measure the

Hubble constant if the following analysis produces reliable results.



Chapter 4

Applying GALPRO to a New

Survey

Chapter 3 demonstrated that GALPRO can be successfully trained using a dataset contain-

ing certain input parameters and then applied to a second dataset from the same survey

to generate photometric redshift estimates and posteriors which can be marginally and

probabilistically calibrated to provide reliable results. This is a useful sanity check, how-

ever it is hoped that GALPRO may now be applied to a completely new survey that doesn’t

necessarily contain spectroscopic data with which to directly calibrate the photometric

redshifts, but that the photometric redshifts derived would still have equally reliable

PDFs. The following chapter explores the application of GALPRO, trained using the

previously described dataset, to a new survey and discusses the limitations or restric-

tions involved in this process. Essentially, therefore, this chapter investigates whether

GALPRO is a suitable choice for the generation of redshift PDFs when applied to an

unknown survey, and if these PDFs are reliable enough to be included in the inference

of H0 using gravitational wave data.

4.1 Applying GALPRO to the PanSTARRS Survey

The aim of this thesis is determine if GALPRO can be reliably used to generate pho-

tometric redshifts when applied to a brand new galaxy catalogue with no spectroscopic

calibrating data. From the fourth LIGO observing run and beyond, it is hoped to

71
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add much more galaxy redshift data from various new catalogues, which can be used

alongside new GW data to constrain H0. However, these catalogues may contain few

spectroscopic redshifts, so it is important to have an accurate method to generate pho-

tometric redshifts for the galaxies they contain.

Here, the Panoramic Survey Telescope and Rapid Response System (PanSTARRS) sur-

vey is used to fill the role of a ’new’ survey which hypothetically has no spectroscopic

data. In fact, the PanSTARRS survey has been cross-matched to provide a large sample

of spectroscopic redshifts which are used for validation [89], however it is used here as

an example of an artificial survey which doesn′t provide spectroscopic data, much like

any catalogues that may become available in the future. The PanSTARRS telescope

is located in Hawaii and accurately measures photometry of known objects by survey-

ing for variable objects using telescopes, cameras and a large computer system. The

latest PanSTARRS release is the largest volume of astronomical data ever published,

and the ability to apply an RF algorithm to this very large catalogue would be advanta-

geous for cosmological inference due to such a large number of objects gaining associated

photometric redshift values.

The main aim of the PanSTARRS survey is to observe objects that are near to the

Earth which may pose the threat of impact events, meaning the survey is relatively

shallow. A sample of around 2 million galaxies included in the PanSTARRS survey

have cross-matched spectroscopic redshifts, unlike the hypothetical new surveys, which is

advantageous in that these spectroscopic redshifts can be used to assess the performance

of the applied RF. In the previous chapter it was shown that the Desi Legacy sample

compiled by Zhou et al. (2012) can be used to successfully train GALPRO and when

tested with a sub-sample of its own data, can produce accurate photometric redshift

estimates and PDFs. This makes the Zhou et al. sample an excellent choice of training

data to determine whether or not the redshifts obtained by applying the trained RF to

a new survey are accurate enough to be useful. Due to the PanSTARRS survey focusing

on near-Earth objects, it is shallower than the Zhou et al. training sample, meaning the

range of the redshifts and photometry bands differs slightly between the two catalogues.

How this range difference affects the application of the RF algorithm will be explored

in the following sections.

Before applying GALPRO, trained using the Zhou et al. dataset, to the PanSTARRS
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(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure 4.1: GALPRO results when trained and tested using the randomly selected
90% and 10% of the Zhou et al dataset respectively with the morphological parameters

omitted from the training data arrays.

survey, it must first be ensured that both datasets have consistent variables. The

PanSTARRS survey does contain the g, r, z, W1 and W2 magnitudes and their as-

sociated errors, however it does not contain the half light radius, model weight and axis

ratio. This means that these morphological parameters must also be removed from the

Zhou et al. training sample in order for GALPRO to be tested using the PanSTARRS

data. To ensure that the removal of these three parameters from the training sample

doesn’t dramatically affect the RF algorithm itself, GALPRO was run in an identical

manner as Section 3.2.2, but with these three columns omitted from the training data
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that was used to generate the RF. GALPRO was run using the Zhou et al. sample with

these three columns removed and 90% of the data randomly selected for training and

10% randomly selected for testing, as before. As shown in Figure 4.1, the removal of

these columns only gives a very minor change in results. The scatter value only increases

by 0.01 and the percentage of catastrophic outliers increases by 0.06%. Interestingly, the

KLD, KST and CvM tests all decrease in value when the three parameters are removed

which indicates that less bias has been introduced. This may be due to the fitting of

the RF algorithm, as too many parameters can cause overfitting of the PDFs. It can

be seen that the removal of the morphological parameters from the training and testing

samples does not introduce any significant change or error in the outputted photometric

redshifts. This reassures that omitting the three parameters from the Zhou et al. sample

still leaves a sufficiently rich and diverse training dataset to be applied to other, new

surveys, with negligible impact on the results.

Now, focus turns to applying the GALPRO-generated RF to the ‘new’ PanSTARRS

survey. However, before the algorithm can be applied to the PanSTARRS survey, cor-

rections must be applied to ensure that the training and testing datasets have compatible

photometric band corrections and magnitude systems. These corrections are described

in the following sections and then the RF algorithm is applied and analysis is performed.

4.1.1 Photometric Band Corrections

It may be expected that the RF algorithm, trained using one survey, cannot be straight-

forwardly applied to a new survey and give good results. There might exist some un-

derlying differences in how the data for the two surveys are defined and calculated that

need to be addressed. For example, it became apparent that the PanSTARRS survey

defines the g, r and z bands slightly differently from the Zhou et al. survey meaning that

the photometric systems are not consistent. The photometric bands are therefore not

equivalent between the two surveys, also resulting in slightly different photometric band

corrections and meaning that the data do not have statistically equivalent properties.

This is not only true for the PanSTARRS and Zhou et al. training and testing sam-

ples, but any two surveys used to successfully train the RF and produce results must

have compatible photometric systems and, consequently, compatible band corrections.

The Zhou et al. dataset was compiled using the Desi Legacy Survey, which already
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has the band corrections applied and provides the following equations to convert the

PanSTARRS photometric bands to the Desi Legacy Survey band definitions [100].

The g, r and z bands usually are converted from the PanSTARRS band definition to the

Zhou et al. definition using the below equations [102]:

gZhou = gPan + 0.00062 + 0.03604(g − i)Pan + 0.01028(g − i)2Pan − 0.00613(g − i)3Pan

rZhou = rPan + 0.00495 + 0.08435(g − i)Pan + 0.03222(g − i)2Pan − 0.01140(g − i)3Pan

zZhou = zPan + 0.02583 + 0.07690(g − i)Pan + 0.02824(g − i)2Pan − 0.00898(g − i)3Pan

The PanSTARRS photometric bands had been converted to the same definition as the

Zhou et al. sample, however the magnitude systems of the two surveys must now be

taken into account before any analysis can be performed.

4.1.2 Ensuring Compatible Magnitude Systems

A comparison between the Zhou et al and PanSTARRS photometric bands is necessary

to ensure that the two surveys have compatible magnitude systems. Figure 4.2 shows

the CDFs of the population distributions in the g, r, z,W1 and W2 bands for both the

PanSTARRS and Zhou et al. datasets. The KS test, as previously described in Section

3.1.1, is performed to quantify the difference between the two CDFs for each band. This

provides a good measurement of how different or similar the CDFs are. The larger the

value of the KST statistic, the smaller the probability that the null hypothesis, that the

two CDFs are sampled from the same underlying distribution, is true.

Firstly, the g, r and z bands have very similar CDFs, which is reflected in the low KST

scores of 0.041, 0,065 and 0.084 respectively. The distributions of each band can be seen

for both surveys in Figure 4.4. Therefore, the distributions of g,r and z band photometry

have consistent range and shape in both the PanSTARRS and Zhou et al samples.

The W1 and W2 bands, however show a significant difference in their distributions, as

characterised by their KST results being at least an order of magnitude larger than the

other bands. The W1 band gives a KST value of 0.826, and the W2 has a score of 0.878
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Figure 4.2: The CDFs of each photometry band in the PanSTARRS and Zhou et
al. datasets. It is very clear that the W1 and W2 bands have significantly different
distributions between the two surveys compared to the other photometry bands. Each

plot also shows the KST statistic of the two CDFs for each band.

Figure 4.3: The cumulative distribution functions of the redshift distributions of the
PanSTARRS and Zhou et al. datasets. The plots demonstrate the similarity in the two

redshift distributions and the KST statitistic is shown on the plot.

which is significantly larger than the KST values of the g, r and z bands. It is clear that

the W1 and W2 bands are not statistically equivalent between both surveys and have

very different ranges due to PanSTARRS being a shallower survey, meaning the W2
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Figure 4.4: The W1 and W2 bands of the PanSTARRS and Zhou et al datasets.

band of the PanSTARRS survey is considerably brighter than the Zhou et al. survey.

This discrepancy between the W1 and W2 bands of the two samples made it apparent

that the W bands were defined by two different magnitude systems.

The PanSTARRS survey defined the W bands using the vega system, whereas the Zhou

et al sample. defined these bands using the ab system [100]. It is extremely simple to con-

vert between the two magnitudes, yet this conversion could potentially be the difference

between a successful or unsuccessful application of the RF therefore it is imperative to

ensure both the training and testing samples have compatible magnitude systems. The

following equations allow for the conversion of the vega system w magnitudes to the ab

system [103]:

mab = mvega +∆m (4.1)

with

∆m =


2.699 for the W1 band

3.339 for the W2 band

(4.2)
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Where mab is the ab magnitude, mvega is the vega magnitude.

From a glance at the distributions of the W bands from each survey (Figure 4.4) it

appears that in each W band, the two surveys have very similar shapes yet are shifted

by a value of around three. This difference in the definition of the two magnitudes seems

responsible for this discrepancy. Once the PanSTARRS W bands were converted from

the vega to ab system, the CDFs of the W bands can again be compared. These CDFs

are shown in Figure 4.5. It is clear from the two CDFs that the W bands are much

more statistically equivalent as their CDFs are clearly more similar. The W1 bands give

a KST statistic of 0.1114 and the W2 band gives a result of 0.1105. This conversion

to compatible magnitude systems has halved the KST statistic, producing compatible

and much more similar W distributions. However, the W bands still do give larger KST

statistics than the other g, r and z bands.

Figure 4.5: The CDFs of the W1 and W2 bands from the PanSTARRS dataset with
K corrections applied and the magnitudes converted from the ab to vega system.

With the photometric band and magnitude system corrections applied, the two sur-

veys are now ready to be used by the RF algorithm. GALPRO is to be trained using

the full Zhou et al. dataset described in Section 3.2.5.1. A testing set was then gen-

erated, comprising of a randomly selected sub-sample of 200,000 PanSTARRS objects

for which there were spectroscopic redshifts available. Although the PanSTARRS sur-

vey does contain photometric redshift values, they are significantly inaccurate and any

comparison between the redshift estimates produced by GALPRO and the photometric
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estimates given by the survey would not be useful or appropriate for calibration. The

hyperparameters used in this computation are the same as those described in Section 3.

(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure 4.6: GALPRO results when trained using the Zhou et al sample and tested
using the PanSTARRS dataset with k corrections applied and the W magnitudes con-

verted to a compatible system.

It was hoped that the corrections applied to the PanSTARRS survey eliminated any

statistical difference between the two surveys that may be responsible for the failure of

the RF algorithm. However, as shown in Figure 4.6, it is clear that there is still some

issue present in the training and testing datasets that means the learnt RF algorithm

cannot be applied to both datasets. The spectroscopic versus photometric redshift plot

does present some rough correlation, however the scatter is large with a σNMAD value

of 0.060. The PIT plot demonstrates that the redshift PDFs are not probabilistically

calibrated with a very large CvM score of 2300.603. The PIT plot is extremely not

uniform and displayed a hugely concave shape, meaning the redshift PDFs cannot be

considered accurate.
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This establishes that there must exist some discrepancy between the two samples that

means that the mapping between the photometry and redshifts learned by the RF is

not transferable between the two. The W bands have been corrected to give compatible

magnitude systems, however the KST statistic of the W bands is still much larger

than that of the other bands, meaning the two surveys are statistically similar, however

a difference in their statistical properties is still present. The statistical equivalence

between the two samples may determine how successful the RF application is, which is

explored in the following sections. It is key to remember that the PanSTARRS survey

is acting here like a completely new survey, for spectroscopic redshifts for testing may

not be available.

4.1.3 Comparing Photometric Properties of the DESI and PanSTARRS

Surveys

Before exploring how the overlap in the range of the photometry of the DESI and

PanSTARRS survey affects the application of GALPRO, the photometric properties of

two surveys may be compared. Table 4.1 displays some basic photometric properties of

the two surveys, including the number of galaxies in each survey and the mean magnitude

value of each band. This table also includes the magnitude completeness limit of each

band for both surveys. The magnitude completeness limit involves determining up to

what apparent magnitude the data are consistent with all galaxies being observable.

The completeness test code ROBUST [104], which was developed in the early 2000s, is

applied to both the DESI and PanSTARRS datasets to obtain the limits. This code

takes both the spectroscopic redshift and magnitudes of a band for all of the galaxies in

the survey and computes the completeness limit of that band using a statistical model

[104].

As shown in Table 4.1, the DESI catalogue sample has a slightly greater magnitude

completeness limit in each band. This is to be expected, as the PanSTARRS survey is

shallower than the DESI survey, and so will be complete out to a lower limit. However,

the difference between the completeness limits for each band is relatively small, indi-

cating that there isn’t a significant difference in the magnitude completeness of the two

surveys.
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Properties DESI Survey PanSTARRS Survey

Magnitude completeness limit of R band 22.36 22.29
Magnitude completeness limit of G band 23.65 22.27
Magnitude completeness limit of Z band 21.32 21.27

Number of galaxies in survey 3,005,969 2,110,042
Mean R band magnitude 19.5167 19.4975
Mean G band magnitude 20.7776 20.9074
Mean Z band magnitude 18.4699 18.5272
Mean W1 band magnitude 17.9147 17.9224
Mean W2 band magnitude 18.4160 18.4471
Mean spectroscopic redshift 0.4336 0.4139

Table 4.1: Photometric properties of the DESI and PanSTARRS survey samples.

The photometry of the PanSTARRS and DESI catalogues may also be compared by

analysing the common galaxies between the two surveys. The surveys are firstly cross-

matched using the right ascension and declination of each galaxy. These two variables

are compared for every galaxy in the two surveys, and identified as a common galaxy

if both the right ascension and declination match to two decimal places. Due to the

cross-matching process taking a very large amount of computational time, the surveys

are randomly sampled to form sub-samples, of half a million galaxies each. The random

sampling ensures that the sub-samples are completely representative of the complete

surveys. Once the cross-matching process is complete, the identified common galaxies

have their r, z and g apparent magnitudes in each band plotted, with the DESI mag-

nitude on the x-axis and the PanSTARRS given magnitude on the y-axis. These plots

can be seen in Figure 4.7.

It can be seen in these figures that there appears to be a very large discrepancy between

the magnitudes given by the two surveys, although the right ascension and declination

are the same. The R-squared fit quantifies how independent the two variables are and

is shown on each plot. An R-squared value of 1 would indicate that the two surveys

generally agree and quote similar magnitudes for the common galaxies. However, the r, g

and z bands all have very small R-squared values, of 0.020, 0.014 and 0.021 respectively.

It is very clear from the plots that these surveys contain extremely different photometry

values for galaxies with the same sky coordinates. This is very peculiar, as similar sky

coordinates should ensure rather similar magnitude values. Tables 4.3 and 4.2 show

a very small subsample of the cross-matched data from the DESI and PanSTARRS

survey. These tables list the right ascension, declination, r, g and z band magnitudes for
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(a) R band plot

(b) G band plot

(c) Z band plot

Figure 4.7: PanStarrs versus DESI photometry for galaxies in common.
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the cross-matches samples, with each row detailing a single common galaxy. It is clear

that the right ascension and declination of the common galaxies are matched correctly,

however the two surveys quote very different magnitude values for the ’same’ galaxy.

Indeed, some of the magnitudes for the common galaxies differ by a rather large amount.

The plots above show that even some of these common galaxies have differing quoted

band values by an order of magnitude. This is rather unexpected and must be due the

way in which the two surveys are compiled.

RA Dec R mag G mag Z mag

209.16 2.92 18.036 19.438 17.303
0.45 -1.16 20.296 22.153 19.328

161.61 9.6 19.441 21.606 18.385
18.55 19.39 18.752 20.528 17.916
175.7 51.64 17.219 18.201 16.642
220.32 25.31 19.554 21.589 18.575

Table 4.2: The right ascension, declination and band magnitudes of a subsample of
the cross-matched DESI galaxies.

RA Dec R mag G mag Z mag

209.16 2.92 17.353 18.425 16.605
0.45 -1.16 17.838 18.706 17.187

161.61 9.6 20.57 22.49 19.104
18.55 19.39 20.575 22.468 19.022
175.7 51.64 20.241 22.102 18.949
220.32 25.31 17.38 18.788 16.613

Table 4.3: The right ascension, declination and band magnitudes of a subsample of
the cross-matched PanSTARRS galaxies.

The residuals of these common galaxies are presented in Figure 4.8. Here, the x-axis

shows the magnitudes of each band given by the DESI survey and the y-axis gives the

difference between the magnitude values for each common galaxy (MagnitudePanSTARRS

- MagnitudeDESI). This serves as a way to assess whether there is some pattern in the

residuals. For every band, these plots show a higher positive difference between the two

surveys at lower magnitudes, which tends to zero around a DESI magnitude value of 18,

and then the residual becomes more negative as it moves towards higher magnitudes.

This is further reinforced by Figure 4.9, which shows histogram plots that quantify the

residuals. Here, the absolute mean residual over a magnitude range of 1 is calculated

and plotted versus the DESI survey magnitudes. It also demonstrates that the residuals

are much greater at lower magnitudes and then tend towards zero mid way through the
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(a) R band plot

(b) G band plot

(c) Z band plot

Figure 4.8: Scatter of the residuals (DESI - PanSTARRS) of the PanStarrs versus
DESI photometry for galaxies in common.
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(a) R band plot

(b) G band plot

(c) Z band plot

Figure 4.9: Histogram plot of the mean residual of (DESI-PanSTARRS) for common
galaxies between the two surveys.
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range. The mean residuals then increase in size at larger magnitudes, however their

absolute mean value is much less than that of lower magnitudes.

This demonstrates that perhaps there is some systematic difference present in the two

photometric surveys. The residual plots show that for smaller values, the PanSTARRS

survey quotes much larger magnitudes than the DESI survey in every band. Around

mid-way through the magnitude range this difference tends to zero. Then, as we move

to larger values, the DESI Survey then provides larger magnitude values for the same

galaxy. The reason for this remains unclear, however this systematic pattern present

in the differing magnitude values provided for galaxies with the same sky location is

concerning. GALPRO requires only photometry and spectroscopic redshifts as input

variables, and so the following sections and application of the algorithm may provide

insight into whether this difference significantly impacts performance.

4.2 How does the overlap in photometry range affect the

performance of the RF?

When plotting histograms of the photometry for the individual bands in the PanSTARRS

and Zhou et al. datasets, it becomes apparent that the range and distribution of the

data are not consistent between the two surveys. This is expected as the PanSTARRS

survey is shallower than the Zhou et al. sample, and these conflicting shapes/ranges may

be the reason why the RF cannot be successfully applied to the PanSTARRS sample

when trained on the Zhou et al. dataset. The main question explored in this section

is how similar the properties of the two survey datasets have to be in order for the RF

trained using the first survey to be applicable to the second survey. It is recognised in

the previous section that having the same input variables may not be enough, but the

range or distribution of those input variables may have to be similar or even identical.

It is noted again here that the PanSTARRS and Zhou datasets are just two examples of

general surveys which could be used to carry out a similar investigation, i.e. to determine

how similar any two surveys may have to be for GALPRO trained on one survey to be

successfully applicable to the other survey.

To achieve accurate photometric redshift estimates for the PanSTARRS survey using

GALPRO trained on the Zhou et al. sample, some constraints may need to be placed
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on the range of the photometric variables for the bands used in the testing and training

samples. We might expect, for example, that these constraints will require overlapping

ranges in the specified bands, in order to provide a sufficiently representative training

sample. The purpose of this next section, therefore, is to understand how similar the

properties of the two survey datasets need to be in order to produce reliable results, ie.

how much overlap is required in the range and shape of each band in the training and

testing samples to give accurate redshift estimates.

One way to quantify this is to take the Zhou et al. sample, which we know gives

calibrated results with little error, and artificially split it, as though it is two different

surveys. When the Zhou survey is split into two different subsamples, one may be used

for training and the other for testing to simulate the situation of having two distinctly

different photometric surveys. The overlap between the testing and training ’surveys’

ranges may then be varied, from the most extreme case with no overlap in range, to a

complete match in range, which allows us to assess how statistically equivalent the two

general surveys must be to give reliable results. This provides an excellent stress test

for when a trained RF can be applied to a new survey with differing distributions of

photometry bands.

4.2.1 Case 1: Surveys 1 and 2 are statistically equivalent

To examine how the overlap of luminosity functions affects the redshift results, the Zhou

et al. sample is split randomly in half. One half of the randomly sampled Zhou subset

will be referred to as ’Survey 1’ and the other half as ’Survey 2’. Since these two surveys

were randomly selected from the same dataset, they should have identical ranges and

shapes in every band. This case represents GALPRO being applied to a new survey

which is statistically equivalent to the training survey. Firstly, Survey 1 is used as the

training sample and Survey 2 is used as the testing sample. Then, for reassurance,

Survey 2 is used as the training sample and the trained RF is applied to Survey 1.

The r band magnitude ranges and redshift distributions of both surveys are seen in

Figure 4.10 to demonstrate that these two surveys are indeed statistically equivalent.

Each survey contains 1502983 galaxies, and initially Survey 1 is used to train GALPRO

and Survey 2 is used for testing. Due to the probabilistic calibration process being

computationally expensive, a subsample of 150,000 is randomly sampled from Survey 2
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Figure 4.10: The r-band magnitude and redshift distributions of the training and
testing samples with 100% overlap, meaning they have statistically identical distribu-

tions.

for testing purposes. Once the analysis has run, the roles are reversed and Survey 2 is

used for training while a randomly selected subsample of 150,000 galaxies from Survey

1 is used for testing. This acts as a sanity check to ensure that both ’Surveys’ give the

same results to reassure the validity of these tests.

Figures 4.11 and 4.12 show the spectroscopic versus photometric redshift, PIT and

marginal calibration plots for when Survey 1 is used for testing and Survey 2 for training

and vice versa. As expected, these two tests produce accurate redshift estimates with a

uniform PIT as the training and testing samples are statistically equivalent and have no

underlying difference in features. Both spectroscopic versus photometric redshift plots

give a σNMAD value of 0.025 and follow a good correlation with a slight increase in

scatter as the redshift value increases. This is to be expected, as described in Section

3.2.2.1. Both cases give good marginal calibration plots with little variation around the

zero line. The outlier fraction, KLD and CvM tests only vary between the two cases

by an insignificantly small percentage which can be attributed to the random sampling

of the datasets. Overall, there, the results obtained for Case 1 were as expected, as

the randomly sampled ’surveys’ with equivalent statistical distributions gave accurate

redshift estimates and behaved identically when trained using Survey 1 and tested using
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(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure 4.11: GALPRO results when trained using Survey 1 and tested using Survey 2
with 100% overlap, meaning the testing and training samples have statistically identical

distributions.

Survey 2 and vice versa. This is reassuring and allows for the following investigation of

how the overlap in range and distribution affects the application of the RF.

4.2.2 Case 2: Surveys 1 and 2 have minimal statistical equivalence

Case 2 explores how the RF algorithm performs in the extreme case where Survey 1

and Survey 2 have no overlapping range and therefore don’t have the same statistical

distribution. This is done by splitting the Zhou et al. truth dataset in half, but this

time finding the median of the r-band magnitude range and taking Survey 1 to include

all of the galaxies with r ≤ rmedian and Survey 2 to include all of the galaxies with

r ≥ rmedian. The r-band magnitude is chosen for the splitting process as it has the

largest range of all the bands which makes it easier to visualise the plots and also gives
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(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure 4.12: GALPRO results when trained using Survey 2 and tested using Survey
1 with 100% overlap.

the greatest difference in ranges between the two surveys. Figure 4.13 shows the redshift

and r-band magnitude distributions of Survey 1 and Survey 2. Survey 1 was then used

as the training sample and a randomly selected subset 150,000 galaxies from Survey 2

was used for testing, as before in Case 1.

The spectroscopic versus photometric redshift, PIT and marginal calibration plots for

Case 2 are shown in Figure 4.14. Unsurprisingly, this test gave very inaccurate results

with the PIT plot indicating a large amount of bias introduced. The PIT plot is catas-

trophically non-uniform and has a CvM value of 5157.074. The very steep gradient

indicates that the redshift PDFs contain a huge bias. The marginal calibration plot

peaks at a value of 0.2, which is much greater than Case 1 and shows that the results

are not marginally calibrated. The scatter plot showed no correlation between spectro-

scopic and photometric redshift, and has a sharp photometric redshift cut off around z
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Figure 4.13: The r-band magnitude and redshift distributions of the training and
testing samples with 0% overlap. The left-hand plots show Survey 1, while the right

hand-plots show Survey 2.

= 0.75. This is interesting, as the redshift distribution plot of Survey 1 cuts off around z

= 0.6, while Survey 2 contains objects with mainly z = 0.5-1.5. This demonstrates that

the RF learns the mapping between photometry and redshift within the redshift range

of the training sample and will not estimate photometric redshifts outside of this red-

shift range. When a new survey that contains redshifts outside of the training redshift

range is used for testing, the RF fails to predict values outside of the training redshift

range. This is a very important takeaway from this test, as any future use of GALPRO

and potentially other RF algorithms for photometric redshift estimation must have a

representative training sample with a large redshift distribution. This is discouraging,

as it suggests that it may not be possible to apply GALPRO to a general, new photo-

metric survey that has no spectroscopic redshift information since the redshift range of

the testing and training datasets may be insufficiently similar.

4.2.3 Case 3: Varying the statistical equivalence between Surveys 1

and 2

It was shown in the previous subsection that GALPRO cannot be successfully applied to

two datasets with significantly differing distributions of redshift and r-band magnitudes.
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(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure 4.14: GALPRO results when trained using Survey 1 and tested using Survey
2 with 0% overlap.

This is due to the RF not having representative training data to learn the mapping

between the photometry and redshifts over these different ranges. These next tests are

used to determine how much overlap is required between the training and testing samples

for GALPRO to be successfully applied. This is implemented by training using Survey

1, which is restricted to cover a certain range in the r-band magnitude distribution, and

testing using Survey 2 which is also restricted to certain r-band magnitude range. These

surveys are restricted in such a way that gives 90%, 80% and 70% overlap between the

two survey distributions to assess how this degree of overlap affects the application of

GALPRO. For example, for the 80% overlap test the galaxies are split such that all of

the galaxies included in the 80% range area centered on rmean are randomly sampled so

that half are contained in Survey 1 and the other half in Survey 2. This is done by:
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• Identifying the 80% overlap region as the range that lies between the 10% (r10)

and 90% (r90) percentile in the CDF of the r-band magnitude distribution.

• Construct Survey 1 by sampling X1 galaxies from the 80% overlap region, between

r10 and r90, and the remaining Y1 galaxies with r < r10. Construct Survey 2 by

sampling X2 galaxies from the 80% overlap region, between r10 and r90, and the

remaining Y2 galaxies with r > r90

Then Survey 1 is assigned all of the galaxies below this 80% overlap range and Survey

2 contains all those above the overlap range. Obviously, for the 90% and 70% overlap

tests, the above method is used to construct the surveys but with the appropriate Survey

1 and 2 will contain 1502983 galaxies, and 150,000 galaxies from Survey 2 are randomly

sampled and used for testing. This allows for the establishment of some baseline as to

how similar the two surveys must be for GALPRO to produce accurate photometric

redshift estimates.

4.2.3.1 90% Overlap

Firstly, the training and testing samples are split such that Survey 1 and Survey 2 have

a 90% overlap region. The two r-band magnitude and redshift distributions can be seen

in Figure 4.15. Although similar, the redshift distributions of the two datasets indicate

there is still a difference in the depth and shape of the redshifts included in each survey.

GALPRO was then trained using Survey 1 and tested using Survey 2 using the same

settings as all of the previous tests.

The spectroscopic versus photometric redshift scatter plot, PIT and marginal calibration

plots can be seen in Figure 4.16. The PIT produced by this test is generally uniform

however it contains a small dip downward as it moves towards the lower values. The

Q-Q plots do not show a large difference between the U(0,1) values and results from

this test, however the gradient of the PIT indicates some bias has been introduced. The

outlier fraction, KLD and KST tests gives reasonable values, however the CvM test

gives a value of 50.347 meaning a bias is most certainly present in the results. The

marginal calibration plot peaks at an order of magnitude larger than Case 1, and only

oscillates above the zero line instead of randomly oscillating about the zero line. This
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Figure 4.15: The r-band magnitude and redshift distributions of the training and
testing samples with 90% overlap. The training dsitributions are shown on the left and

the testing on the right.

shows that the PDFs are not completely marginally calibrated as the plot peaks around

0.01, whereas a value of less than 0.005 is required for successful marginal calibration.

The photometric versus spectroscopic redshift plot gives a value of σNMAD = 0.029,

which is reasonable; however, the plot itself shows that some bias has obviously been

introduced. There is some correlation between the photometric and spectroscopic red-

shifts in the range 0.5 < z < 1, however out to larger z values, GALPRO underestimates

the photometric redshifts quite significantly. Due to the r-band magnitude cut-off, the

training sample contains little to no galaxies with a redshift greater than 0.9 whereas

the testing sample reaches out to a redshift of 1.5. The severe underestimation of photo-

metric redshifts out to these higher values demonstrates that GALPRO may only learn

the mapping between the fluxes and redshift for the given training sample and does not

seem able to extrapolate the mapping out to higher/lower redshift values. Not only the

range, but also the shape of the redshift distributions of the testing and training sam-

ples seem to affect results. For z < 0.5, the redshift values produced by GALPRO are

slightly overestimated. The training sample contains many more galaxies with redshift

values in the range 0 < z < 0.4 compared to the testing sample, which explains why

there is an overestimate of photometric values around this redshift range. The testing
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(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure 4.16: GALPRO results when trained using Survey 1 and tested using Survey
2 with 90% overlap.

sample does contain galaxies at lower redshifts; however, the shape of the two redshift

distributions for z < 0.5 is different, which leads to the underestimation of the photo-

metric redshifts and introduced bias into the results. This further demonstrates that

the results produced by GALPRO are affected by the shape of the redshift distribution,

as at these low redshifts, the two samples have the same range but a different shape.

The overlap in r-band magnitudes between the two samples is 90%, which is very high,

giving little reassurance for the 80% and 70% overlap tests, as a decrease in overlap will

surely further deteriorate results. We investigate this further in the next sections.

4.2.3.2 80% Overlap

Now, the training and testing samples are split such that Survey 1 and Survey 2 have

an 80% overlap region, with Figure 4.17 showing the r-band magnitude and redshift
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distributions of the two surveys. The redshift distributions of the two surveys have very

differing ranges and shapes, with Survey 1 containing a large amount of galaxies with

redshifts in the range 0.25 < z < 0.75 and reaching out to 0.75 redshift. On the other

hand, Survey 2 contains galaxies with a redshift range out to z < 1.5 and only has a

much smaller number of low redshift galaxies. Following the previous test using the 90%

overlap samples, it is expected that the redshift estimates will contain more bias and

be less accurate, as the training and testing samples have less overlap in their variables.

GALPRO was then trained using Survey 1 and tested using Survey 2, with the same

settings as all of the previous tests.

Figure 4.17: The r-band magnitude and redshift distributions of the training and
testing samples with 80% overlap.

The spectroscopic versus photometric redshift scatter plot, PIT and marginal calibration

plot can be seen in Figure 4.18. The PIT plot again shows bias has been introduced to

the PDFs as it has a steeper gradient than the 90% overlap test. The outlier fraction

has increased as the overlap percentage decreases and the CvM test gives a value of

571.027, indicating that probabilistic calibration has not been successful. The Q-Q plot

deviates further from the U(0,1) distribution and the large gradient of the plot shows

that the results are far from perfect. The marginal calibration plot again only oscillates

in one direction out to 0.04 meaning that the PDFs are not marginally calibrated. This

value is four times larger than the 90% overlap test, meaning that both the marginal and
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(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure 4.18: GALPRO results when trained using Survey 1 and tested using Survey
2 with 80% overlap.

probabilistic calibration have decreased significantly as the overlap percentage decreases

by 10%.

The photometric versus spectroscopic redshift plot gives a value of σNMAD = 0.036,

meaning that the scatter has worsened as the overlap has decreased. There is little

correlation between the photometric and spectroscopic redshifts and the plot is starting

to behave more like Case 2, where there is 0% overlap. Again, out to large spectroscopic

values, the photometric redshift estimates are very inaccurate and GALPRO fails to

predict any estimates larger than a redshift of around 1. The training sample doesn’t

contain galaxies with a redshift greater than around 0.8, yet the testing sample contains

galaxies out to a redshift of 3.5 with the majority lying in the 0.5 < z < 1.5 region. This

again confirms that GALPRO is unable to successfully extrapolate the learnt mapping

out to redshifts beyond those that are contained in the training sample. Even in the
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areas where the training and testing samples have an overlapping redshift range, the

results are considerably more inaccurate than the previous 90% overlap test. As the

two surveys have differing redshift distribution shapes within the overlapping ranges,

the mapping between the fluxes and redshift is not successfully learned for Survey 1 and

applied to Survey 2, which is evident in the inaccurate redshift estimates produced for

0.4 < zspec < 0.6. This is disheartening, as it seems that not only does the range of the

two r-band magnitude distributions have to be very similar for each survey, but also the

shapes of the redshift distributions must be similar within an overlapping range. The

two surveys having an r-band magnitude overlap of 80% is relatively generous, as this

is not dissimilar to the sort of overlap two new, real surveys may have, however the RF

does not perform to a satisfactory standard.

4.2.3.3 70% Overlap

Figure 4.19: The r-band magnitude and redshift distributions of the training and
testing samples with 70% overlap.

Finally, the training and testing samples are split so that they have a 70% overlap in

the r-band magnitude, which can be seen graphically in Figure 4.19, alongside the two

survey’s redshift distributions. It is expected that this test will produce very inaccurate

results containing a large bias, however the interest is in how much the reliability of

the results deteriorate with overlap percentage. Survey 1 is again used for training and
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Survey 2 for testing. The r-band magnitudes have a 70% overlap, which produces very

dissimilar redshift distributions between the two surveys. These two distributions are

opposing in that Survey 1 contains many galaxies with redshifts around 0-0.2 and then

dips between 0.3-0.5 and peaks again just after a redshift of 0.5, cutting off at around

0.75. Survey 2 contains few lower redshift galaxies but has a large peak around a redshift

of 0.5 and trails out to a redshift of 1.5. Survey 1 was used for training and Survey 2

for testing.

(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure 4.20: GALPRO results when trained using Survey 1 and tested using Survey
2 with 70% overlap.

As expected, this test produced highly inaccurate redshift estimates, which are seen

in Figure 4.20. The PIT shows catastrophic bias was introduced with a very steep

gradient and a CvM value of 3079.051. It appears that with each 10% overlap increment

decreased, the CvM value increases by a power of ten. The Q-Q plot deviated greatly

from the uniform distribution and this plot shows that probabilistic calibration was
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not successful. The marginal calibration peaks around 0.15, which is much greater

than the 80% overlap test, and only oscillates above the zero line, again showing that

marginal calibration was not successful. The spectroscopic versus photometric redshift

plot shows highly inaccurate results with little to no correlation and a value of σNMAD

of 0.05. GALPRO fails to predict any photometric redshift value greater than around

0.75, which correlates with the cut-off in redshift of the training sample. This again

reinforces the fact that GALPRO may only predict redshift values within the limits

of the training sample. The decrease in overlap by 10% has deteriorated the accuracy

in redshift estimates and calibration by a significant amount and demonstrates that

even a small overlap decrease can greatly affect the performance of the RF. Although a

70% overlap in r-band magnitude range doesn’t seem like a large difference in the flux

distributions, it is clear that this difference is enough to cause a complete failure in the

RF algorithm and lead to inaccurate and unreliable results.

4.2.4 Case 4: Survey 1 has a larger statistical range than Survey 2

Case 3 explored how the overlap of the r-band magnitudes of the training and testing

samples affected the application of the RF algorithm. This test is similar, and splits

the Zhou et al. dataset into two new ’surveys’, Survey 1 and Survey 2, each containing

1502983 galaxies. However, now Survey 1 contains randomly sampled galaxies over

the full range of the r-band magnitude while Survey 2 is restricted. Firstly Survey 2 is

restricted to only contain galaxies below the rmean of the Zhou et al dataset. The r-band

magnitudes and redshift distributions of Survey 1 and Survey 2 can be seen in Figure

4.22. Survey 1 is used for testing and Survey 2 for training and GALPRO is run using

the same settings as all previous tests. This test is similar to those in Case 3, however

now the entirety of the range and shape of the Survey 2 overlaps with Survey 1.

The results of this test are shown in Figure 4.21. The marginal calibration plot oscillates

about the zero line out to a maximum of around 0.001 which shows that marginal

calibration was successful. The PIT plot has an outlier fraction of 0.27% and the KLD

and KST tests give values close to zero. The CvM test has a value of 36.939 which shows

some deviation from the uniform distribution and the PIT is slightly convex showing

that the PDFs are overly narrow, however these results are much better than the 80%

and 70% overlap tests. The photometric versus spectroscopic scatter plot shows a good
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(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure 4.21: GALPRO results when trained using the entire r-band magnitude range
and testing is restricted to below rmean.

correlation between the true and estimated redshift values with no outstanding tendency

to under or overestimate at a particular redshift value.

This test is repeated, with Survey 1 still spanning the entirety of the r-band magnitude

range but now Survey 2 is restricted to only contain galaxies with an r-band magnitude

above rmean. The r-band magnitude distributions of the two surveys are shown in Figure

4.23. GALPRO is applied again using Survey 1 for training and Survey 2 for testing.

The results of this test are shown in Figure 4.24. The marginal calibration plot oscillates

about the zero line with a maximum of 0.001, again showing that marginal calibration

was successful. The PIT is very uniform, with an outlier fraction of 0.39% and KLD and

KST tests close to zero. The CvM value is 8.674 and the Q-Q plot shows a very close

match between the results and the uniform PIT graph. In comparison to the previous

result where the testing sample is restricted to galaxies below the rmean value, this PIT
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Figure 4.22: The r-band magnitude and redshift distributions of the training and
testing samples, where the training sample covers the whole range and the testing

sample is restricted to below rmean.

Figure 4.23: The r-band magnitude and redshift distributions of the training and
testing samples, where the training sample covers the whole range and the testing

sample is restricted to above rmean.

is only slightly more uniform and also doesn’t show any issues with the PDFs. This may

be due to the r-band magnitude distribution, as Survey 1 contains more galaxies above

rmean, and so the training sample is more representative at the higher r-band magnitude
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(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure 4.24: GALPRO results when trained using the entire r-band magnitude range
and testing is restricted to above rmean.

range, giving more accurate results. The scatter plot shows a good correlation between

spectroscopic and photometric redshift, which underestimates redshifts as it moves out

to higher redshift values. This is to be expected as it follows the same trend as Section

3.2.2.1.

Overall, it seems that if the range of the photometry of the training sample is as large,

or larger, than the range of the testing sample, the RF produces probabilistically and

marginally calibrated results to a satisfactory degree of accuracy. This means that the

testing sample may only have to overlap with the training sample by 50% to generate

accurate results, provided that the training sample range completely covers the range of

the testing sample. Case 3 demonstrated that a decrease in overlap between the training

and testing sample ranges decreases the quality of the results. However Case 4 indicates

that it is the fraction of the testing sample that isn’t covered by the range of the training
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sample that causes the degradation of the results and not just a difference in the range

values of the data. It also appears that whether the testing sample range corresponds

to the lower or higher end of the training sample range doesn’t affect the outcome and

still provides satisfactory results. Interestingly, this case performs much better than

the previous cases with 90/80/70% overlap. This may be due to the range and more

importantly, the shape of the redshift distributions. In the previous cases, the redshift

distributions have mostly overlapped in range with the testing sample reaching out to

slightly deeper redshifts than the training sample. This still caused a large introduction

of bias and inaccurate redshift estimates, even in areas of overlapping redshift. However,

it is key to note that in these areas of overlap, the redshift distributions had different

shapes due to the way in which the sampling was performed. Since the previous results

showed a large amount of inaccuracy in these areas where the redshift range was the

same but the shape was different, it can be deduced that not only the range but also the

shape of the redshift distributions must be the same to achieve accuracy. In this case,

the redshift distribution of the testing sample is identical to the training sample over a

restricted range, giving much more accurate results. This indicates that the shape of

the redshift distribution must be similar or identical for the RF to perform well.

4.2.5 Overlap Tests Conclusion

The aim of Section 4.2 was to establish how a difference in the range and shape of the

variables of two surveys affects the application of GALPRO. It is clear from the above

results that as the percentage overlap of the r-band magnitude decreases between the

testing and training surveys, the results become increasingly inaccurate. A 90% overlap

in r-band magnitudes causes the RF to contain a small amount of bias, as shown in the

PIT plot. This bias only increases as overlap decreases, which indicates that GALPRO

may not be suitable for the estimation of photometric redshifts when applied to a ’new’

survey of unknown depth and range. It is important to note that it is not the general

difference in overlap percentage that introduces bias to the results, but specifically the

percentage of the testing sample range that isn’t covered by the training sample. It seems

that the depth and properties of the training and testing surveys must be very similar

for the RF to be applied and give trustworthy results, which is not usually possible when

dealing with new catalogues.
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As the overlap percentage decreases, the maximum redshift of the training sample de-

creases and the resulting predicted photometric estimates are limited to this maximum

redshift. This demonstrates that GALPRO cannot extrapolate the mapping it has learnt

between fluxes and redshift outside of the redshift range of the training sample. This

means that any future use of GALPRO to predict photometric redshifts must be cau-

tious to that fact that the RF can only predict within its learnt range. If GALPRO is

trained using a certain training sample, any new, unknown survey must have redshift

and colour distributions within the same range. This is obviously an issue, as the aim of

this work is to apply GALPRO to a new survey which doesn’t have associated redshift

values, yet if this new survey had redshift values outside of the training dataset range,

it would be unsuccessful. Due to this, GALPRO may not be suitable for generating

redshift PDFs and point estimates for new photometry surveys, as we would be unsure

as to whether the training sample is representative of the testing sample with regards

to its flux and redshift distributions.

As the overlap percentage increases to 70%, even the galaxies with overlapping r-band

magnitudes have inaccurate photometric predictions indicating that not only the range

but also the shape of the variables must be similar or even identical to produce ac-

curate results. As the overlap percentage decreases, the redshift distributions become

increasingly dissimilar in shape, meaning that the mapping between the fluxes and red-

shift learnt by the RF are not applicable to both surveys. Case 4 demonstrates that

GALPRO can be reliably applied when the testing sample has r-band magnitude ranges

that are contained within the range of the testing sample, and reinforced that the RF

may only produce accurate predictions when the redshift distributions of the testing and

training samples are similar.

When applying GALPRO to an unknown survey, one can not always be certain that

the new survey has spectroscopic redshifts contained within the ranges of the training

sample due to the nature of the survey being unknown. However, it is possible to test

the compatibility of the photometry of the new survey with the training data, meaning

the application of GALPRO to a new survey is certainly feasible. Nevertheless, caution

must be taken when applying the RF to new surveys, as training and testing samples

must be statistically equivalent to produce accurate, reliable results.
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4.3 Applying GALPRO to the PanSTARRS survey with

statistically equivalent samples

Section 4.2 established that the training and testing datasets to which GALPRO is

applied must be statistically equivalent in order to produce accurate photometric red-

shift estimates and PDFs that are marginally and probabilistically calibrated. Now

attention turns back to the computation of redshift PDFs for the previously described

PanSTARRS catalogue, to investigate further the question of whether GALPRO is ap-

plicable to this survey when trained using the full Zhou et al. dataset. As previously

shown in Section 4.1, the RF, trained using the Zhou et al. dataset, cannot be straight-

forwardly applied to the PanSTARRS sample and accurate results produced. The aim

of this section is to explore whether, taking into account the conclusions drawn from

Section 4.2, any restrictions can be applied to the PanSTARRS data that can improve

the redshift PDF results obtained for PanSTARRS.

The previous section made it clear that the two surveys must overlap by 90% to produce

accurate and calibrated redshift estimates. The CDFs of the training and testing samples

using the in the 90% overlap test gave KST statistics of around 0.2 for each of the bands.

It is expected that if any two surveys have photometry such that all of the bands have

at least the required 90% overlap in range, then a satisfactory results will be produced.

When comparing theW1 andW2 bands from the PanSTARRS and Zhou et al. datasets,

they KST statistics give values of around 1, and the other photometry bands produce

even smaller results. It is clear that the PanSTARRS and Zhou et al. surveys overlap by

over the required 90% in all of the photometric bands, meaning that the RF should be

successful when trained using the Zhou et al. dataset and tested using the PanSTARRS

survey. This indicates that there may be some underlying difference between the two

surveys that cause the learnt mapping between the photometry and redshifts of one

survey to be inapplicable to the other.

Firstly, it is useful to examine the spectroscopic redshift distributions of the two samples,

shown in Figure 4.25. From these plots it is clear that the two datasets have similar

redshift distributions, both with peaks around z = 0.2 and z = 0.7. They also both

contain a smaller peak around z = 0.5, however the PanSTARRS sample has a deeper

minimum at z = 0.25 and a steeper tail off at around z = 1. The Zhou sample reaches
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Figure 4.25: The redshift distributions of the PanSTARRS and Zhou et al. datasets.
The plots demonstrate the similarity in the two redshift distributions.

higher redshifts of around z = 1.5 with a more gradual decline in population at these high

redshifts. Despite these minor differences, the redshift distributions of the two samples

are generally very similar, with the CDFs of both distributions being shown in Figure

4.3. It is clear from this plot that the two redshift distributions are very similar amd have

a KST statistic of 0.0527. This means that the Zhou et al. and PanSTARRS datasets

have more similar redshift distributions than the 90% overlap case considered in Section

4.2.3.1, which had a KST statistic of 0.198. Hence it seems unlikely that the shape of

the redshift distribution in the PanSTARRS is contributing to the unsatisfactory results

obtained for the photometric redshifts derived with GALPRO.

Despite the PanSTARRS and Zhou et al. datasets overlapping by over the required 90%

in each photometry band, some discrepancy between the two surveys is causing the RF

algorithm to fail. In theory, the two surveys should have enough statistical equivalence

for the RF algorithm to be successful. Although all of the bands show over 90% overlap,

the W bands still present less statistical similarities than the other bands, as shown

by their larger KST statistic values. One final test to explore how this difference in

photometry affects the application of the RF is to remove the W bands altogether from

the analysis leaving only the g, r, z photometry, as these bands are almost completely

equivalent between the two surveys.

As described in Section 3.2.5.1, GALPRO requires 4 inputted arrays, two of which

contain the spectroscopic redshifts of the galaxies for the training and testing datasets.

The other two arrays contain the r, g− r, r− z, z−W1, W1−W2 and their associated

error columns for the testing and training datasets. These two arrays therefore have

the shape [10,N] with N being the number of galaxies in each dataset. To eliminate any

statistical difference between the two datasets, the columns containing any W1 and W2
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values were removed, with the goal of hopefully leading to more accurate and calibrated

results. This means that the z−W1, W1−W2 and associated errors columns should be

removed from both the training and testing input arrays, leaving them with the shape

[6,N].

(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure 4.26: GALPRO results when trained and tested using the Zhou et al. dataset
with the W1 and W2 columns omitted.

Obviously, the removal of these columns from the input arrays may affect the per-

formance of the RF algorithm. How this removal affects the RF performance can be

quantified using the Zhou et al dataset, which was done before applying this method to

the PanSTARRS dataset to avoid the introduction of any other bias to the RF. Firstly,

the Zhou et al. dataset is randomly sampled so that 150,000 galaxies are selected for

testing and the rest for training, in the exact same manner as Section 3.2.1. The GAL-

PRO settings/sampling/sample sizing is identical to those used in Section 3.2.5.1, which

is already known to be successful and produce reliable redshift results. However, now

the z −W1, W1 −W2 and their associated error columns are removed from both the
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testing and training input arrays. The PIT, marginal calibration and spectroscopic

versus photometric redshift estimate plots produced in this case can be seen in Figure

4.26. The PIT is very uniform, with excellent KST, KLD, CvM and outlier fraction

results. The Q-Q plots show an almost identical match between the results and the

U(0,1) distribution. The marginal calibration plot oscillates about the zero line with a

maximum of around 0.0012. These plots both show that the PDFs are marginally and

probabilistically calibrated and don’t show any bias introduced. The scatter plot also

shows a strong correlation between the spectroscopic and photometric values and has a

value of σNMAD = 0.035, and is very similar to the scatter plot produced when the W

columns are included (Section 3.2.2.1). This is encouraging, as the removal of the W

columns does not appear to affect the performance of the RF.

With this reassurance, it is now time to apply GALPRO, trained using the Zhou et

al dataset, to the PanSTARRS sample with the W columns removed from both the

testing and training arrays. It is noted here that the PanSTARRS sample used has the

K corrections applied, as described in Section 4.1.1. As before, the z −W1, W1−W2

and their associated error columns are removed from the Zhou et al. training array

and the PanSTARRS testing array. The hope is that the removal of the W columns

will eliminate any significant statistical difference between the two samples, leading

to accurate photometric redshift estimates and PDFs being produced for the galaxies

in the PanSTARRS sample. GALPRO was run with the above inputs and the same

hyperparameters described in Section 3.2.1.

The PIT, marginal calibration and spectroscopic versus photometric redshift estimate

plots produced by this test can be seen in Figure 4.27. Unfortunately, the results show

that the RF was not successfully applied to the PanSTARRS testing sample. The PIT is

extremely concavity, indicating that the PDFs are overly narrow by a significant amount.

The CvM test gives a value of 2193.374 which reflects this concave, and the Q-Q plot

deviates greatly from the uniform distribution. The marginal calibration does oscillate

about the zero line, but in a very smooth manner and peaks at around 0.06, meaning

marginal calibration has not been successful. The spectroscopic versus photometric

redshift plot does follow the diagonal, unlike previous unsuccessful tests where there is

no correlation between the spectroscopic and photometric values. However, the scatter

either side of the diagonal is significant and gives a σNMAD value of 0.068. There is

no significant cut off in the scatter plot as the redshift range of the training sample
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(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure 4.27: GALPRO results when trained using the Zhou et al. dataset and tested
with the PanSTARRS sample with the W1 and W2 columns omitted.

encapsulates the redshift range of the PanSTARRS sample. This scatter does not have

a strong enough correlation for the photometric estimates to be defined as accurate, and

the PIT and marginal calibration graphs show that the PDFs are not probabilistically

or marginally calibrated.

These results are discouraging, as it seems that GALPRO may not be trained on the

Zhou et al. dataset and applied to the PanSTARRS sample, no matter how statistically

equivalent the two are. The overlap tests, described in Section 4.2, show that a discrep-

ancy in the range of the photometry bands introduced a bias to the PDFs, as shown by

the gradient present in the PIT plot. Here, the PIT does not have a uniform gradient but

is a concave shape, meaning that the PDFs are overly narrow by a significant amount.

Since the PIT here is concave and not a gradient, this shows that the inaccuracy is not

related to the overlap (or lack thereof) of the bands introducing a bias.
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Both surveys have very similar redshift distributions and this final test assured that

they also had consistent photometric bands, which should have been enough to produce

reliable results, as demonstrated in Section 4.2. GALPRO only requires the photometry

and spectroscopic redshifts of the two surveys as input variables, and all of these variables

have been assessed for consistency, yet the RF algorithm still doesn’t give accurate

results. Any obvious statistical difference between the two surveys, such as the differing

K-corrections or magnitude definitions, has been dealt with accordingly which points

towards only one conclusion: There is some underlying statistical difference between the

Zhou et al. and PanSTARRS datasets, causing the mapping between the fluxes and

redshifts to differ between the two surveys. The catastrophic deviation of the PIT from

the uniform indicates that there is not some small issue regarding miss-calibration but an

underlying inherent difference between the surveys. This difference may be attributed to

the fact that the common galaxies provided by both surveys with the same sky location

give different magnitude values.

It is important to remember here that the PanSTARRS and Zhou surveys act as two

general surveys, one with known spectroscopic data and one only containing photometry.

This serves as a cautionary tale, as it demonstrates that no matter how statistically

equivalent the two surveys may be, there can exist some underlying difference that

means that an RF is not applicable for the estimation of photometric redshift PDFs.

One must proceed with great caution when hoping to apply an RF to two different

surveys, as no matter how similar they may be, the results can be far from perfect. The

range in band magnitudes and redshift appear very similar, however the two surveys

differ as the galaxies with the same sky location do not give the same magnitude values.

This may be the reason behind the catastrophic failure of the algorithm. When applying

GALPRO to a new, unseen survey, one cannot be certain that the surveys do not contain

systematic differences, and so a more malleable software may be required to perform this

task. GALPRO may not be a suitable choice for the generation of redshift PDFs to be

included in the inference of H0 using gravitational wave data, as even after thorough

evaluation the PDFs cannot be considered as reliable. This inference of H0 may be

pivotal in the world of cosmology and any contributing factors in its measurement must

have an assured accuracy and reliability before being used in the measurement process.

Unfortunately, GALPRO cannot provide this reliability and therefore should not be

considered as choice for the generation of redshift PDFs for this purpose.
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Conclusion

The goal of this work has been to investigate an RF-based approach, GALPRO, to esti-

mate photometric redshifts from galaxy survey data, and to evaluate whether GALPRO

can be reliably applied to new surveys containing only photometry, i.e. without spec-

troscopic redshifts that can be used directly for testing. Photometric redshifts derived

in this way may then be used to populate the galaxy catalogues utilised by the software

gwcosmo in the inference of the Hubble constant. The intention was that GALPRO may

be trained using a trusted dataset and applied to an unknown survey to compute redshift

PDFs that may then be used alongside GW data to make a constraining measurement

of H0.

However, it was found GALPRO could not be successfully applied to new catalogues

when trained on a trusted dataset as the mapping learnt between the colours and red-

shift of that trusted dataset could not be applied to a new catalogue, despite having

verified the statistical similarity of the two, because the mapping learnt between the

colours and redshifts for the trusted dataset was found not to be applicable to the new

catalogue. Thus, even when the statistical equivalence of the GALPRO input data has

been demonstrated, there may still exist some inherent difference between the two sur-

veys that causes the application of GALPRO to the new survey to fail. From this, it

can be concluded that GALPRO may not be reliable when applied to a new survey,

and should not be implemented in the gwcosmo analysis pipeline unless spectroscopic

training data is available for each new survey under consideration.
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GALPRO was initially calibrated using a known, trustworthy sample containing around

3 million objects compiled by Zhou et al. to produce marginally and probabilistically

calibrated redshift PDFs between 0 < z < 1.5. The sample was split randomly such

that 90% is used for training and the other 10% for testing. The spectroscopic versus

photometric redshift plot demonstrated a strong correlation between photometric and

true values, indicating that the estimates were indeed reliable. Above a spectroscopic

redshift value of around z = 1.5, GALPRO tended to underestimate the photometric

values as the training sample did not contain as many objects at higher redshifts. This

highlights the need for representative training samples when using an RF algorithm for

predictions. The calibration and performance of the redshifts is assessed using the prob-

ability integral transforms (PIT) of the redshift PDFs and it was found that the outlier

percentage and uniformity of the PIT improved as the photometry of the training sample

is scattered. This scattered sample produced accurate and reliable redshift PDFs which

could then be used as a trustworthy training sample to explore if GALPRO could be ap-

plied to new, unknown photometry surveys. The software GALPRO is advantageous in

that it can produce photometric redshift posterior distributions alongside redshift point

estimates, which many ML softwares are incapable of doing. The computational expense

of training the algorithm and calibrating the PDFs is quite high, however once this has

been executed, the expense of generating the redshift PDFs is much more reasonable.

The sample described above generated reliable redshift PDFs over a redshift range which

is representative of the type of galaxies used to infer H0 from GW dark sirens. This al-

lowed for the assessment of whether the current assumption implemented in the gwcosmo

code, that photometric redshift estimate errors can be assumed as Gaussian, is valid.

The redshift posteriors computed using the above testing sample were each evaluated

using the D’Agostino’s K-squared test to determine how non-Gaussian the PDFs are.

It was found that out of 101945 galaxies, 78241 galaxies had a non-Gaussian redshift

PDF and 23704 were found to follow the Gaussian distribution. This demonstrates that

the majority of the galaxies in the testing sample have redshift PDFs that do not follow

a normal distribution. This highlights the need for accurate redshift PDF generation

to populate galaxy surveys, as the current assumption that the errors are Gaussian is

obviously not satisfied. A more accurate representation of the redshift posteriors in fu-

ture galaxy surveys used for GW cosmology analyses could lead to less biased and more

accurate results in the overall inference of H0.
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The above results make it clear that there is a need for methodology to accurately gen-

erate photometric redshift PDFs and calls for these methods to be applicable to new,

unknown surveys that only contain photometry data in order for it to be useful. To

assess how well the random forest works for new surveys for which we only have pho-

tometry available, the PanSTARRS galaxy catalogue was chosen as the testing sample

and acted as a ’new’ survey. The PanSTARRS catalogue does have a subsample of

objects with cross-matched spectroscopic redshifts, which are selected as the testing

sample for validation purposes. The PanSTARRS survey acts as a sanity check and is

used to represent other examples of redshift surveys for which we only have photometry

available.

It was carefully checked that the PanSTARRS and Zhou et al samples had consistent

ranges and distributions of data, including compatible K corrections and magnitude

definitions. Despite these checks, however, when the Zhou et al. sample is used for

training and the PanSTARRS for testing, the results showed general inaccuracy and

unsuccessful calibration. This indicates that there is some residual difference between

the statistical properties of the two surveys, meaning that the mapping learnt between

the colours and redshifts of the Zhou et al. sample is not applicable to the PanSTARRS

sample. The two surveys were cross-matched by sky location and it was found that

common galaxies have largely differing band magnitudes between the two samples. This

is alarming, however it demonstrates that generally, two photometric surveys may con-

tain systematic differences. GALPRO is perhaps not malleable enough to cope with the

difference between the two surveys, which should be taken in account with it’s use.

To explore how statistically equivalent the training and testing samples must be in order

for the RF to be applicable, the Zhou et al. sample was used as a means to gauge how

much overlap of statistical properties is needed for GALPRO to give reliable results.

The sample was split in half to form two artificial ’new’ surveys with varying degrees of

overlap in the r-band magnitude range. Analysis was run to determine how the overlap

in colour bands affects the performance of the algorithm.

It was found that even if the two surveys overlapped in the r-band magnitude range by

90%, the results contained a small amount of bias in comparison to the initial calibration

tests. As the overlap percentage decreased to 80% and 70%, the accuracy of results

deteriorated dramatically. An overlap of 70% in the r-band magnitude range showed
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little to no correlation between photometric and spectroscopic values and a catastrophic

failure of the probabilistic calibration of the PDFs. The tests also indicated that not

only the range of colour bands, but also the shape of the redshift distributions must be

very similar for the RF to be applicable between the two surveys. This demonstrates

that GALPRO may not be suitable for the estimation of photometric redshifts when

applied to a ’new’ survey of unknown (but likely greater) depth and range. The depth

and properties of the training and testing surveys must be almost identical for the RF

trained on one survey to be applied to the other survey and give robust and accurate

results, which is not usually possible when dealing with unknown catalogues. The tests

also show that GALPRO is unable to predict redshift estimates greater than those of

the maximum redshift of the training sample. This demonstrates that GALPRO cannot

extrapolate the mapping it has learnt between fluxes and redshift outside of the redshift

range of the training sample. This means that any future use of GALPRO to predict

photometric redshifts must take account of the fact that the RF can only predict within

its learnt range.

It was demonstrated that the PanSTARRS and Zhou et al. samples overlapped in

each photometry band and in redshift distribution by over the required 90%, meaning

there should be no reason why the mapping between the photometry and redshift would

differ between the two samples. The inputs from the two surveys were now almost

completely statistically equivalent, with the ranges in all colour bands and redshift

distribution having over 90% overlap. The above described tests demonstrated that

this overlap should in principle be sufficient to generate accurate redshift estimates.

However, when GALPRO was trained using the reliable Zhou sample and tested using

the PanSTARRS survey, the results still showed large amounts of inaccuracy in the

derived photometric redshifts. The photometric estimate versus spectroscopic redshift

plot showed a relatively large scatter indicating that the estimates were not accurate.

The PIT was catastrophically non-uniform, showing that the redshift PDFs were much

too narrow to be considered accurate.

Although the statistical equivalence of the relevant GALPRO data for each survey was

verified, GALPRO was still unable to generate accurate and reliable results when applied

to a new survey. This work, therefore, serves as a cautionary tale about the dangers

of applying RF algorithms to new, unknown galaxy surveys. Even if the two surveys
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appear to be statistically almost equivalent, in terms of the variables with which GAL-

PRO constructs the mapping from photometry to redshifts, there may still exist some

underlying, fundamental difference between the two surveys that is not apparent in the

photometry or spectroscopic redshift distributions of the surveys. Although a thorough

evaluation of the photometric and spectroscopic distributions has been performed, there

exists some unknown, elementary difference between these two samples that hinders the

performance of the RF.

Hence, in conclusion, GALPRO is shown to be potentially unsuitable for generating

estimates of photometric redshifts and their PDFs from new surveys. It may be useful

in the case where a catalogue is nearly complete, yet is missing some spectroscopic values,

as it has been shown that GALPRO can be reliable when trained and tested using the

same survey. However, it is clear here that the algorithm is unable to extrapolate the

learnt mapping between the colours and redshift for new surveys or even redshift values

beyond which it has been trained on. This acts as a warning, not only for GALPRO but

also the future use of any RF algorithm to generate photometric redshifts to be used in

astronomical analysis.

In the broader context of the inference of H0 using gravitational data, it is clear that

there is still a need for an accurate method to estimate redshift posteriors which can

be used in the measurement of H0. This work has made it apparent that the current

assumption that the redshift errors are Gaussian is inaccurate and to obtain a better

constraint on H0 will require moving beyond the Gaussian assumption to a more precise

description of the redshift PDF for each galaxy. However, it seems that GALPRO is

not ideally suited for this purpose as it cannot produce reliable photometric PDFs when

applied to a new survey that differs from the training dataset, even when restrictions

are applied to the input data to ensure statistical equivalence. The PanSTARRS survey,

which is to be used in the upcoming fourth LVK observational period, does contain some

spectroscopic redshift data and so there is not an urgent need for photometric redshift

generation techniques. However, future observational runs and new photometry surveys

will call for accurate, calibrated photometric techniques to populate galaxy catalogues

and further constrain H0.

For now, the LVK collaboration will continue to use both spectroscopic data and search

for other ways in which we can access information about non-Gaussian PDFs, as this
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work has made it clear than in general, photometric redshifts are not Gaussian. A true

assessment of the photometric error would of course lead to a more accurate inference

of H0, however for the time being, this assumption will do. Future work may include

exploring the application of other ML algorithms, such as neural networks, for the

purpose of generating redshift PDFs that can quantify the non-Gaussian photometric

errors to lead to a further constraint of H0. It could also be useful for the fundamental,

underlying difference between the two surveys that made GALPRO inapplicable to be

identified. As previously stated, the issue was not in fact the photometry or redshift

values/range. Some rigorous test that identifies this difference may not only be useful

to the application of RF algorithms to galaxy surveys but could give deeper insight into

the use of galaxy catalogues as a whole.

Although the application of GALPRO was unsuccessful for this purpose, there is a bright

future ahead for new and exciting photometric methods and an ever brighter future for

cosmology as a whole. Further constraints of the Hubble constant may bring about new

physics entirely or at least shed light on the systematics involved in the measurement

process of our universe around us. Either way, the constraint of H0 will bring us one step

closer to understanding our universe. In the great words of Plato, ”Astronomy compels

the soul to look upward, and leads us from this world to another”.
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Appendix

(a) Spectroscopic versus Photometric redshift plot

(b) PIT plot

(c) Marginal Calibration plot

Figure A.1: The PIT, marginal calibration and spectroscopic versus photometric
redshift plots produced by GALPRO when trained and tested using the Zhou et al.

truth dataset with min leaf sample = 5.
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Figure A.2: The marginal calibration and spectroscopic versus photometric redshift
plots produced by GALPRO when trained and tested using the Zhou et al. truth

dataset with the photometry scattered.

Figure A.3: The g-band distributions of the PanSTARRS and Zhou et al. surveys
which are used to compute the cumulative distributions functions.

Figure A.4: The r-band distributions of the PanSTARRS and Zhou et al. surveys
which are used to compute the cumulative distributions functions.
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Figure A.5: The z-band distributions of the PanSTARRS and Zhou et al. surveys
which are used to compute the cumulative distributions functions.

Figure A.6: The CDFs of the g, r, z,W1 and W2 bands for the training and testing
surveys used in the 90% overlap tests.
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