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Abstract 

The malaria burden is highest in African countries where more than 95% of 

deaths and cases occur. There was a consistent decline in malaria deaths and 

cases in Africa between 2000 and 2015 but progress has since stalled. Due to 

biological changes in vector populations, notably insecticide resistance and 

behavioral adaptations such as outdoor-biting, the primary vector control 

measures are no longer as successful as they once were. In recent years, 

mosquito species considered to be the primary vector of malaria, (e.g. 

Anopheles gambiae s.s) have declined, and even disappeared from some 

communities. In settings such as rural south-eastern Tanzania, the residual 

transmission is now being maintained by An. funestus followed by An. 

arabiensis.  

Currently, An. funestus mediates a high proportion of malaria transmission 

events in east and southern Africa. The resilience of this vector may be linked to 

its high insecticide resistance; though recent evidence suggests that it may also 

be capable of shifting its biting behaviors to avoid contact with insecticidal 

interventions. Yet, our ability to tackle this vector species is impeded by the 

limited knowledge of its basic ecology and population dynamics, the difficulties 

in colonizing it under laboratory conditions and the many uncertainties about 

appropriate surveillance approaches.  

The overall aim of this PhD project was to quantify the ecology of An. funestus 

mosquitoes in Tanzania and assess the implications of its key attributes for 

improved malaria control in settings such as Tanzania where the vector species 

dominates. The work involved the following steps: 1) quantifying the fitness and 

behavioral attributes of wild An. funestus and their offspring during repeated 

colonization attempts under standard laboratory conditions, 2) developing and 

validating a framework for predicting human biting exposures from different 

exposure-free sampling methods, 3) developing and testing a population 

dynamics model to describe the ecology of the wild An. funestus populations, 

and 4) assessing the generalizability of the population dynamics model and its 

ability to reconstruct missing data. 

To achieve the first objective, I attempted to colonize a local population of An. 

funestus s.s. from southeastern Tanzania and assessed the key barriers which 
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hinder laboratory establishment. Adult females (F0) from three wild An. funestus 

populations were brought into the laboratory for rearing. Their fecundity, and 

the development, survival, body size and mating success of their F1 offspring 

were measured to evaluate their fitness under laboratory conditions. While adult 

survival was relatively high, the mating success, poor hatching rate and poor 

larval survival and extended larval development periods were identified as key 

barriers to establishing a colony in the laboratory. Due to these factors, this 

colony was not sustained beyond the F1 generation in the laboratory, but the 

lessons were deployed for a subsequent and more successful colonization effort.  

To address the second objective, I analyzed data comparing the outdoor catch 

rates of An. funestus using six exposure-free trapping methods relative to the 

human landing catches (HLC), the gold standard method for estimating human 

exposures to mosquito bites. I tested different models for the relationship 

between HLC and other trapping methods while allowing flexibility for 

associations to be impacted by interspecific and intraspecific density 

dependence. This analysis indicated that that the association between catches in 

alternative traps and the HLC can best be explained by simple linear models; 

with minimal impact of intra and inter specific density dependence. A shiny app 

interface was developed to allow expanded use of this statistical calibration 

framework for future estimations of malaria vector biting risk in communities.  

For the third objective, I used the demographic parameters generated from the 

colonization attempt (described above) and published literature, to develop the 

first population dynamics model of wild An. funestus in Tanzania. I used a 

Bayesian framework to develop a state-space model and reconstruct the 

observed population dynamics of this species. I then used this model to assess 

the strength of evidence for intrinsic (density dependence) and extrinsic 

(environmental covariates) drivers of An. funestus population dynamics and how 

they drive seasonality in abundance and demographic variables (development 

periods and survival). This analysis indicated that density dependence has a 

minimal contribution on the overall dynamics of An. funestus in these settings. 

Daily larval and adult survival probabilities were marginally affected by changes 

in environmental covariates (temperature and rainfall), suggesting there is little 

seasonality in these fitness parameters. This study also revealed that An. 
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funestus may be essential for sustaining year-round malaria transmission in 

settings such as rural south-eastern Tanzania.  

Finally, I interrogated the generalizability and sensitivity of this modelling 

framework for An. funestus by assessing its ability to predict missing time series 

data. Here, I refitted the model to a single population and assessed any 

unexplained features of population dynamics which is causing the density 

dependence to have small contributions. I also omitted portions of the time 

series data to assess model prediction capability. For example I first removed 

25% and then 50% of the data, then reconstructed the missing sections. The 

single population model indicated that An. funestus demographic variables were 

much more sensitive to changes in environmental covariates compared to the 

preceding hierarchical model; suggesting that clear signals of environmental 

drivers may be lost by fitting the model to multiple populations that may have 

distinct drivers. The model was able to reconstruct the observed population 

trajectory poorly when 50% of the data was removed as compared to when 25% 

was removed. Overall, the model was only able to predict for the missing data if 

the training set included some representation of data from both dry and wet 

seasons.  

In conclusion, this PhD work contributes to a general understanding of the key 

barriers to colonization and the population dynamics of An. funestus. While An. 

funestus was not successfully colonised in this study, the lessons learned by 

documenting which fitness traits are impeded in the laboratory led to progress in 

further work at the Ifakara Health Institute, where a stable colony of An. 

funestus has now been established. Additionally, the model of An. funestus 

dynamics and demography developed here will underpin further research to 

evaluate and select optimal vector control packages for crashing these 

populations in southern Tanzania and other settings where they are the major 

source of residual malaria transmission.            
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1.0 Chapter 1: General Introduction 

1.0 Global burden 

In 2020, there were estimated to be around 241 million malaria cases and 

627,000 deaths worldwide; with the burden spread across 85 countries [1]. The 

malaria burden is highest in African countries (Sub-Saharan) where 96% of total 

deaths and 95% of the total global cases occur [1]. Despite a significant decrease 

in malaria deaths over the last two decades (2000-2020), with annual deaths 

falling from 896,000 to 627,000, the disease continues to pose a significant 

public health problem [1]. In Africa, there has been a consistent decline in 

malaria deaths between 2000 and 2015 [2], but since then progress has flattened 

with cases even rising in some countries [3]. Several factors have been 

attributed to this slowing and reversal of progress, including a lack of sufficient 

resources (i.e. funding), insecticide resistance etc. 

 

In combination, these factors are hindering progress towards elimination and 

control of malaria [4]. Overcoming this set back will require new funding and 

new tools to tackle malaria [5,6]. Recently a vaccine against malaria, 

RTS,S/AS01 (RTS,S), was approved for use by the World Health Organization 

(WHO) for the first time [7]. This vaccine was approved for use in children in 

places with moderate-to-high Plasmodium falciparum transmission [7]. This 

RTS,S is designed to target the sporozoites phase of the lifecycle. The vaccine is 

designed to prevent the parasite from infecting the liver, where it can mature, 

multiply, re-enter the bloodstream, and infect red blood cells, which can lead to 

disease symptoms [7]. While the availability of a vaccine marks an important 

step forward in the fight against malaria, this intervention is only partially 

protective give the modest efficacy of 30% [7,8] and will thus be insufficient on 

its own to eliminate malaria. Enhanced and expanded strategies for mosquito 

vector control, in combination with rapid diagnosis and treatment with effective 

artemisinin drug delivery, will be essential for further progress [2,9,10]. Current 

evidence indicates that malaria parasites are developing resistance to the 

artemisinin drug used for frontline treatment in Africa, which pose a challenge 

towards malaria control [11]. A range of new tools, including those targeting 



19 
 

mosquitoes and parasites, will be needed to overcome these current barriers and 

make further progress to elimination. 

1.1 Malaria biology and pathology 

Malaria is an infectious disease caused by protozoan parasites in the genus 

Plasmodium; of which Plasmodium malariae, P. vivax, P. ovale, P. knowlesi and 

P. falciparum cause most of the disease in humans [12]. The parasite which 

contributes the most morbidity and mortality in Africa is P. falciparum [13]. 

Female Anopheles mosquitoes are the vectors of malaria parasites and are 

widely distributed across the African continent [14,15]. Malaria is transmitted 

when a female Anopheles vector carrying Plasmodium parasites bites a person 

(host) while attempting to obtain a blood meal. Biting is obligatory in female 

Anopheles because they need vertebrate blood to develop eggs [16]. The 

parasite life cycle comprised of sexual stage that occurs in Anopheles mosquito 

vectors and an asexual stage that occurs inside vertebrates hosts [17]. When an 

infected female Anopheles mosquito bites a human, Plasmodium parasites in the 

form of sporozoites are injected into the blood stream. The parasite life cycle 

comprised of sexual stage that occurs in Anopheles mosquito vectors and an 

asexual stage that occurs inside vertebrates hosts [REF]. When a female 

Anopheles mosquito bites a human, Plasmodium parasites in the form of 

sporozoites are injected into the human dermis. The parasites then migrate to 

the liver through blood stream and invade the liver cells, hepatocytes. 

Sporozoites multiply asexually into merozoites in liver cells over the next 7 to 10 

days, with single sporozoites producing more than 40,000 merozoites per cell 

[REF]. The parasites are later released into the bloodstream as merozoites, 

where they attack red blood cells and subsequently differentiate through ring-

stage into trophozoites and eventually schizonts until the cells burst. Then they 

invade more blood cells causing fever each time the parasites break free and 

invade blood cells. Small fractions of these merozoites differentiate into 

gametocytes, which circulate in the peripheral bloodstream where they can 

infect mosquitoes during the next blood meal. Gametocytes mate sexually in the 

mosquito gut after which gametes transform into actively moving ookinetes that 

burrow through the mosquito’s midgut wall to form oocysts on the exterior 

surface. Inside the oocyst, thousands of active sporozoites develop. The oocyst 

eventually bursts, releasing sporozoites that travel to the mosquito’s salivary 
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glands. The cycle of human infection begins again when the mosquito bites 

another person during a subsequent blood meal [8]. Transmission can also occur 

through exposure to infected blood products and by congenital transmission [18]; 

however the majority of infections are due to mosquitoes.   

 

After being bitten by an infectious female Anopheles mosquito, symptoms of 

malaria can arise six to ten days later. This duration varies depending on the 

parasite species (for example, non-P. falciparum takes 15-16 days) [18] and 

other factors such as prophylactic use, host immunity or anti-plasmodial 

treatment [19] and around 10-11 days in non-immunes. A number of symptoms 

with ranging severity have been described; with most patients reporting feeling 

cold and sweating, fever and headache [18,20]. The most severe symptoms that 

can lead to deaths include respiratory distress, coma, cerebral malaria, acute 

renal failure and even anaemia. Some other patients will experience nausea, 

vomiting or stomach discomfort [18,20]. The severity of the disease varies with 

host age and immune status. The most affected groups by malaria transmission 

globally are children under the age of 59 months and pregnant women [1].  

 

1.2 Mosquito life cycle 

The mosquito life cycle consists of two distinct phases: a juvenile (larval) stage 

which is aquatic and a terrestrial adult stage. The survival and development of 

mosquitoes in both stages are highly dependent on environmental conditions. 

The life cycle begins when eggs are laid into aquatic habitats. These eggs hatch 

into larvae within 2-4 days depending on environmental conditions [21]. Larvae 

develop into pupae (pupation) within 8–15 days; with the length of this period 

varying between Anopheline species and in response to environmental conditions 

(i.e. Temperature) [22,23]. The insect juvenile hormone regulates the process of 

entering (pupation) and exiting (emergence) from the pupal stage. Mosquito 

pupae are highly active and non-feeding during this stage. The pupae stage in 

Anopheline mosquitos lasts 24–48 hours [24,25], a time interval mostly 

determined by temperature [26,27]. When the weather is warmer, adult 

emergence occurs faster than when the weather is cooler [28,29].  
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After emergence, adult males and females search for energy via sugar sources 

while female mosquitoes will also require one or two blood meals to trigger egg 

production after mating [30]. Mating usually occurs in the first 1-2 days after 

emergence, and usually before females take their first blood meal [31,32]. Many 

Anopheline mosquitoes mate naturally in aerial swarms [33,34] or, to a smaller 

extent inside houses [35,36]. Eurygamic species do not exhibit natural mating 

behaviour such as swarming in confined spaces such as laboratory cages, thus 

making them difficult to colonize [37–39] while stenogamous species exhibit 

mating behaviour in confined spaces, this include Anopheles gambiae sensu 

stricto. Several research centres around the world have tried to colonize 

eurygamic species with limited success. Anopheles funestus is one of the 

eurygamous species. This has resulted in a lack of knowledge about the 

fundamental biology and ecology of such species and consideration of their 

quantitative predictions about how they might respond to different vector 

control interventions.  

   

Adult female vectors usually take their first blood meal between 1-2 days after 

mating. This meal initiates the gonotrophic cycle, characterised by blood feed, 

blood meal digestion, egg development and finally oviposition. The length of this 

gonotrophic cycle varies among mosquito species and always depends on the 

access to blood hosts and ambient temperature [31,40]. When a host is 

available, Anopheles mosquito gonotrophic cycle length takes between 2-5 days 

[31,32,41]. Females will repeat this cycle until they die. The median lifespan of 

an adult mosquito in the wild population being approximately 10 days but with 

large variation between species and settings [41]. The survival and fecundity of 

adult mosquitoes are considered to be the most important factors for the 

stability of their populations (fecundity) and the force of malaria transmission 

(adult survival) [42–45]. 

  

The size and reproductive potential of adult mosquito populations are influenced 

by a range of environmental and intrinsic factors. Several factors during larval 

development have a large impact on the fitness of adult Anopheline mosquitoes 

[25,46]. The speed of larval development and survival through this period is 

highly dependent on temperature [23,25]. This relationship has a curvilinear 

nature, where survival will initially start to increase with temperature, then 
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decline sharply at hotter temperatures [47,48]. The speed of larval development 

and survival through this period is also affected by the presence of competitors 

or predators in larval habitats [49,50] as well as pathogens [51,52]. Intraspecific 

resource competition can also be a major cause of mortality during the larval 

development [22,45,48,53]. In general, there is a positive relationship between 

larval and adult abundance in the absence of intense resource competition and 

predation [54,55]. However, this relationship can be modified by density 

dependence as occurs when larvae compete for resources in aquatic habitats. 

This gives rise to negative density dependence, where larvae developing at 

higher densities often have slower development [26] and lower survival [56,57]. 

The effects of density during larval development can carry over to the adult 

stage; with adults developing from high density larval habitats often having 

reduced body size [58,59], survival [53,60], nutritional reserves and even mating 

success [61] compared to those from less crowded conditions. Cannibalism can 

also occur in larval habitats, with older larvae (fourth instar) eating younger 

larvae (first instar) [62,63]. Both intra-specific competition and predation during 

larval development influence the densities of adult mosquito populations [63]. In 

nature, some organisms are most likely to die due to senescence (old age), but it 

is hypothesized that most malaria vectors will be killed due to predation, 

diseases and other environmental hazards long before they reach old age  [64]. 

This is the case for many insect species including mosquitoes; whose adult 

mortality is independent of age [65].  

 

1.3 African malaria vectors  

In Africa the major vectors of malaria transmission are the Anopheles gambiae 

complex and An. funestus groups [66–68], which are widely distributed across 

different countries Figure 1.1 [14,66,68]. These two vector groups contribute to 

almost all the malaria transmission in Africa. Vectors belonging to the An. 

gambiae complex are generally the most abundant, and include 8 

morphologically identical species: An. gambiae sensu stricto, An. coluzzi, An. 

arabiensis, An. quadriannulatus, An. amharicus, An. melas, An. merus, and An. 

bwambwae [14,69,70]. Anopheles gambiae s.s. is commonly considered to be the 

most efficient malaria vector in this group, followed by An. arabiensis 

[14,71,72]. The higher efficiency of An. gambiae s.s is because it is more 
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anthropophilic than An. arabiensis; making it well suited to a human-specific 

pathogen. In many places these sister species are sympatric in larval habitats, 

with An. gambiae s.s. being more dominant in wetter settings, and An. 

arabiensis dominating in more arid environments [14,68,73,74]. They prefer 

breeding in shallow, small, and temporary larval habitats (i.e., puddles, hoof 

prints, tyre tracks, etc.), which are largely dependent on the rainfall [54]. The 

ecology of the An. gambiae complex has been extensively studied and described 

[66,67]. Within this group, An. gambiae s.s. has been most significantly 

impacted by Insecticide Treated Nets (ITNs) because of its greater tendency to 

feed on people indoors and during times they are using nets [75]. Consequently, 

this vector species has almost disappeared from some African settings where it 

used to be the dominant vector following sustained high coverage of ITNs 

[76,77]. Anopheles arabiensis has more flexible host choice than An. gambiae 

s.s, and often feeds on both human and livestock hosts [78,79], and can feed and 

rest outdoors as well as indoors [80]. These behaviours make An. arabiensis less 

susceptible to ITNs by reducing their contact with this intervention [81–83]. 

Detailed understanding of the ecology and behaviour of these species has 

enabled identification of more targeted approaches for each species (e.g. Cattle 

based vector control for An. arabiensis and new formulations for indoor 

insecticides for An. gambiae s.s). 

 

 

Figure 1.1: A global map of dominant vectors of malaria transmission [68]. 
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In contrast to An. gambiae s.l., relatively little is known about the ecology, 

behaviour and susceptibility of vectors within the An. funestus s.l group. 

Anopheles funestus s.l, 1900 is one of the most efficient vectors of malaria 

transmission world-wide [15]. This group includes at least 13 morphologically 

identical species: Anopheles aruni, Anopheles brucei, Anopheles confusus, An. 

funestus s.s., Anopheles funestus-like, Anopheles fuscivenosus, Anopheles 

leesoni, Anopheles longipalpis type A, Anopheles longipalpis type C, Anopheles 

parensisis, Anopheles rivulorum, Anopheles rivulorum-like, and Anopheles 

vaneedeni [66,84–86]. Only An. funestus s.s is considered to have a substantial 

role in malaria transmission due to its high vectorial capacity [87–89]. This 

vector has been largely neglected and is often considered a more minor vector 

of transmission than An. gambiae [67,90]. However, in recent years An. funestus 

there is increasing evidence to suggest this species is mediating a significant 

portion of the transmission in several African settings [89,90,92,93]. In 

particular, it has been highlighted as a major source of residual malaria 

transmission [91]. The transmission that remains in areas where high universal 

coverage with effective ITNs and/or IRS intervention has been achieved is 

defined as residual [93]. In contrast to the An. gambiae complex, An. funestus 

s.s. prefers permanent and semi-permanent larval habitats like swamps and 

large ponds [94,95]. These habitats are more likely to persist throughout the dry 

season and thus can sustain An. funestus s.s. populations and malaria 

transmission throughout the year [66,96]. These larval habitats can either be 

natural water bodies or artificial ones [54,97]. Anopheles funestus larvae are 

most abundant in aquatic habitats containing vegetation; as this feature is 

crucial for larvae survival [46,95]. This vector is also highly endophilic (feeding 

indoors) and anthropophilic (feeding on human beings) [98–100]. Although 

historically described as being an almost exclusive, late-night indoor biter, 

recent reports of An. funestus s.s  switching to bite outdoors or in the morning 

indicate this vector may be changing its behaviour to avoid indoor interventions 

such as ITNs and IRS or after unsuccessful feeding indoor [101–103]. Another 

challenge with An. funestus s.s. is the inability to rear this species in standard 

laboratory conditions; meaning that there are very few stable colonies of this 

species [104]. The lack of stable colonies makes it even harder to study and 

conduct detailed ecological studies on this mosquito species. This combination 
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of attributes has allowed An. funestus to thrive in areas where other vector 

species have been more effectively suppressed, and indicates that new and 

additional control approaches will be required to tackle it. Consequently, 

identification of optimal vector control strategies is more difficult for An. 

funestus s.l. than An. gambiae s.l.; given the considerably larger knowledge 

gaps on its basic biology and ecology.  

 

1.4 Vector Surveillance  

Mosquito vector surveillance is considered a crucial component of malaria 

control [105]. Several surveillance tools have been designed and used to study 

different aspects of malaria vector populations ranging from trapping methods 

that target different life history ages, and molecular methods for identification 

of vector species and their infection status [71,106,107]. Regular and long-term 

surveillance is required to understand human exposure to vector populations and 

the impact of interventions. One of the primary goals of vector surveillance is to 

estimate the human biting rate (HBR); defined as the number of mosquito bites 

a person would be expected to receive in specific times and places. The HBR is 

the most important indicator of human exposure, and often used as a proxy for  

transmission intensity [108–110]. Since the development of the Ross MacDonald 

model of malaria transmission, the HBR has been recognized as a crucial 

predictor of transmission intensity [44,65,111]. This indicator can be directly 

estimated by sampling the number of mosquitoes attempting to bite a person 

using a gold standard method (Human Landing Catches-HLC). To perform an HLC, 

researchers typically expose part of their body (e.g. their legs) and collect any 

mosquitoes that land on it and try to bite [112,113]. While this method produces 

the most direct estimates of human exposure [114–116], it has several 

limitations. First, it puts those doing the collections at risk of infection 

[112,117]. While in the case of malaria, this risk may be mitigated by provision 

of prophylaxis [112,117], there remains a risk of exposure to other mosquito 

borne-diseases (i.e. Dengue, Zika, Rift Valley Fever) that could be circulating in 

the area [118–120]. Additionally, this approach has logistical challenges of being 

highly labour intensive and variable; making it ill-suited for mass surveillance. 

Consequently, there is a long history of exploring alternative trapping methods 

to provide exposure-free estimates of the HBR. Ideally such trapping methods 
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should provide consistent estimates with the HLC to be appropriate for 

quantifying malaria transmission intensity in a given area. 

 

Several exposure-free traps have been developed and evaluated relative to the 

human landing catch in different African countries [114,121–125]. These studies 

have used various modelling and statistical approaches to estimate a single value 

[correction factor] which can be used to convert the catches by a given trap to 

HLCs [114,124,126]. The most notable and well evaluated trap for vector 

surveillance is the Centre for Disease and Control light trap (CDC-Light trap) 

[114,127]. This sampling tool was designed to be effective when sampling 

mosquitoes which prefer to bite human indoors [116,128,129]. The indoor bias of 

this trap leaves out mosquitoes which prefer to bite outdoors and on non-human 

hosts. Increased recognition of the importance of outdoor biting for residual 

transmission [130] necessitates development and evaluation of different outdoor 

traps for indirect estimation of HBR. 

  

A limitation of current work is that it has generally focussed on trap validation 

for An. gambiae s.l., and on indoor settings. It is often assumed that alternative 

traps will perform similarly well for An. gambiae s.l. and An. funestus, but this 

is rarely validated. Additionally, there is increasing evidence of Anopheles 

funestus, biting outdoors in areas of high, widespread usage of indoor 

interventions [89,101,102]. Given the growing recognition of the importance of 

outdoor exposure and transmission [77,101,131,132], for An. funestus and other 

vectors, there is a need to explicitly validate and expand range of the range of 

exposure-free sampling tools for exposure estimation of An. funestus HBR in 

outdoor settings.  

 

1.5 Population dynamics model of malaria vectors  

Numerous mathematical models have been developed and used for malaria 

control decision-making since Ross's original work [43,45,83,133–136]. 

Mathematical modelling has been used to simulate mosquito population 

dynamics and examine relationships between larval stages, adult mosquitoes and 

environmental covariates [133,137–140]. There are several examples of these 

models being used to explain vector population dynamics and the impact of 
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intervention at various resolutions [138–142]. These models have served to 

identify and explain the role of key environmental drivers such as precipitation 

and temperature on transmission through their impacts of mosquito population 

dynamics and transmission potential [29,79,143–146]. These meteorological 

variables are important explanatory variables of mosquito vector borne disease 

dynamics [140,147,148]. Additionally, annual cycles of rainfall can drive massive 

seasonal fluctuations in mosquito vector populations [47,149,150], which 

generally predict transmission dynamics. Rainfall is a key determinant of malaria 

transmission because it is directly linked to larval habitat availability and 

regulates the carrying capacity of the vector population [94,150–153]. 

Temperature also has a large influence on vector population dynamics and 

demography through its impacts on larval development, survival (adult and 

larvae) [47,154–156], and the length of gonotrophic cycles [154,157].   

Modelling can make a crucial contribution to understanding vector population 

dynamics through estimating values of demographics and fitness traits, and the 

impact of environmental variables [150,158,159]. Models of mosquito population 

dynamics have been used to address a range of fundamental and applied 

problems with respect to vector ecology and control [133,135,139,160,161], and 

to predict knock-on impacts for transmission [43,141,162]. While a large body of 

work has been based on theoretical models under simulated scenarios, 

increasingly models are developed to address setting-specific issues in Africa, 

with model frameworks adapted to fit the local ecological context and needs. 

There is a growing appreciation of the value of incorporating models to support 

decision making within national malaria control programmes [163–165]. Having a 

detailed understanding of the dynamics and stability of target vector populations 

within specific settings is an essential first step to support such localized use of 

modelling.  

 

Models of vector population dynamics can play a vital role in improving 

understanding of which additional interventions are likely to generate the most 

impact in particular ecological and epidemiological contexts. The impacts of a 

particular intervention approach may vary substantially between settings in 

relation to local vector ecology and resistance profiles. For example, differences 

in vector ecology and ambient environmental conditions between locations could 

alter the stability of vector populations and the effort needed to suppress or 
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destabilize them. A notable example of this could be differences in vector 

species. As reviewed above, the major African malaria vectors differ in several 

aspects of their ecology and behaviour that influence their environmental 

associations and seasonal dynamics [16,79,81,103,166–168]. Despite these 

differences, most models of African malaria vector population dynamics are 

based on parameters from An. gambiae s.l. [135,139,141,163,169]. There are 

few specific models of An. funestus dynamics because this species has been very 

difficult to study in the laboratory and only parts of its life cycle in the wild can 

be studied [24,170]. Given the unique ecology of An. funestus, and growing 

recognition of its importance in sustaining residual transmission, there is an 

urgent need to better understand the environmental drivers and determinants of 

its population stability.   

 

A range of different approaches have been used to model the dynamics of 

malaria vector populations. These include deterministic models that describe 

changes in vector populations as a result of pre-defined mechanistic functions 

and parameters [131,148,150,171–173]. While very useful to outline the general 

properties of mosquito populations, these dynamic models can be difficult to 

create when crucial parameter values are unknown. This is often the case with 

An. funestus populations where crucial data on demographic and fitness 

parameters in the wild are unknown [174]. State-space models (SSM) provide an 

alternative approach to indirectly estimate these parameters by fitting a 

population dynamics model to observed time series data [159,175,176]. SSMs 

have been widely used in different areas of ecology, wildlife management and 

conservation biology to reconstruct otherwise hidden aspects of population 

dynamics [159,177–179] and influence management decisions [180]. However, 

these models have so far had limited application in medical entomology. This 

modelling approach holds particular promise for investigation of vector species 

like An. funestus whose demography is more challenging to directly monitor. 

Here, such models could be used to estimate feasible demographic rates that 

could explain the observed dynamics [159,179]; thus generating information on 

key parameters that could be used to model response to control.  
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1.6 Vector control interventions 

Several vector control tools have been developed that target African malaria 

vectors [2,105,137,171,181–184]. These strategies can vary in the life history 

stages of the mosquito population they target (e.g. larvae versus adult) and their 

impact on mosquito population dynamics and malaria transmission [141]. The 

most widely used are Insecticide-Treated Nets (ITNS), Indoor Residual Spraying 

(IRS) and Larval Source Management (LSM) [2,91,105,137,185]. ITNs and IRS have 

been approved as core interventions by the WHO while LSM has been approved 

as complimentary intervention [105]. Vector control (IRS and ITNs) alone 

accounted for 78% of the total decline in malaria prevalence in African between 

2000-2015 [2,3]. Improved vector control and case management, urbanization, 

improved health care, and higher living conditions, have all contributed to these 

gains [2,3]. Other vector control interventions include house screening, auto-

dissemination of larvicides, space spraying, attractive target sugar baits, and 

genetically modified mosquitoes [181,186–189]. It is anticipated that vector 

control will continue to be a major component of malaria control and 

elimination strategies.  

 

Conventionally, ITNs are delivered through mass campaigns targeting pregnant 

women during routine visits to health facilities, or through school age children 

programs (i.e. School Net program SNP) and mass distribution in communities as 

part of the National Malaria Control Program (NMCP) strategy [105,190–192]. 

ITNs have the dual advantage of first offering physical protection to users when 

they are fully intact and without holes, and second by providing a community 

effect by killing adult mosquitoes that contact insecticides while trying to feed; 

thus reducing their population [193,194]. The effectiveness of ITNs is 

determined by their residual efficacy and physical integrity.  Consequently the 

WHO states that mass distribution should occur every three years based on ITN 

attrition projections. Furthermore, the effectiveness of the intervention is 

contingent on their consistent use during the transmission season. 

 

Indoor residual spraying (IRS) is spraying of prequalified residual pesticides onto 

potential mosquito resting surfaces like interior walls, eaves, and ceilings of 

homes or structures such as domestic animal shelters [105]. The sort of 
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insecticides deployed and the characteristics of the sprayed wall influences IRS 

efficacy [105,195]. The WHO recommends that IRS products must have a residual 

efficacy of at least 6 months on the sprayed surface before being listed as a 

prequalified product [196]. Unlike ITNs which target host seeking females, IRS 

impacts resting mosquitoes (both female and males). The effectiveness of IRS 

depends on the spraying performance, the coverage and susceptibility of the 

vectors to the insecticide used [105,197]. In most countries, IRS is deployed right 

before the rainy season in which malaria transmission is concentrated [198,199]. 

IRS is recommended for application in high transmission areas, and ideally using 

a rotation of different insecticide classes to mitigate against resistance [105]. 

Due to the high cost and logistical challenges of implementing IRS, it is not as 

widely used in many countries as ITNs.  

 

Larval Source Management targets the aquatic stages of the mosquitoes. LSM 

works by preventing the completion of development of the immature stages 

(eggs, larvae and pupae), which stops the emergence of adults [200,201]. This 

can be achieved either through habitat elimination, biological control, and 

habitat modifications or treating them with a pesticide that kills larvae 

[202,203]. Deployment of LSM is usually recommended during the driest period 

of the year when there is no rain or flowing water which might dilute the level 

of insecticide used in larviciding [105,202,203]. LSM is considered cost-effective 

and generally recommended in urban settings where the breeding habitats are 

“fixed, few and findable” [105]. There is evidence that it may also be effective 

when deployed in the rural setting under specific circumstance [105,201,202]. In 

African countries, LSM is not widely used in many settings due to its logistical 

challenges. Despite widespread use and relatively high coverage of ITNs and IRS, 

malaria vector populations remain widespread and abundant throughout the 

African continent. Vector abundance and infection rates vary considerably in 

space and time, leading to high heterogeneity in malaria transmission between 

regions [109,166,204–206]. The existence of residual transmission presents a 

number of obstacles for malaria elimination. Tackling residual transmission will 

require understanding of the mechanism through which vector population 

persists and additional new interventions to better target them at different life 

stages.  
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Key challenges to current vector control approaches include insecticide 

resistance [204,207–209] and shifts in mosquito behaviour including increased 

outdoor and early evening/late morning biting in major malaria vectors 

[77,102,130,169]. Resistance to pyrethroids, the primary insecticide class used 

in ITNs, has been widely documented in multiple vector species across Africa 

[104,209–214]. These and other constraints mean that ITNs and IRS alone will not 

be sufficient to achieve malaria elimination in Africa [215]. More effective 

strategies are required that can better target the sources of residual 

transmission; including vector populations with diverse behaviour and resistance 

profiles. This could include either the implementation of new approaches or a 

more optimal combination of existing methods (ITNs, IRS, LSM, etc.). Given that 

both ITNs and IRS target indoor vector populations, they may not be sufficient to 

disrupt population stability where a considerable portion of target populations 

feed and rest outdoors. Greater success may be achieved through integration of 

interventions targeting vectors at different life cycle stages (larvae and adults) 

and with different behaviours (indoor versus outdoor, etc.). Detailed knowledge 

of the ecology and behaviour of An. gambiae s.l. can facilitate identification of 

which combination of approaches could most effectively disrupt populations of 

this vector. However, similar identification of optimal intervention approaches 

or combinations will be harder for An. funestus s.l. without a much better 

understanding of the key drivers of their population dynamics and stability.  

 

1.7 Research focus 

In Tanzania, there has been a significant reduction in the malaria transmission 

since the scaling-up of ITNs [1,3]. Recent reports from the Tanzania Malaria 

Indicator Survey (TMIS) show an overall reduction in (national) malaria 

prevalence from 16.9% in 2007 [216] to 7.3% in 2017 [217]; indicative of an 

average 55% drop in transmission. Despite progress, more effort is required to 

tackle residual transmission. In Tanzania, residual transmission has been 

associated with the increasing in insecticide resistance [88] and changes in biting 

and resting preferences of the current vectors of malaria transmission 

[77,79,88,89,91].   
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In some parts of East Africa including Tanzania, populations of the formerly 

prolific malaria vector An. gambiae s.s., have significantly diminished, or 

completely vanished following mass ITN distribution leaving An. arabiensis and 

An. funestus as the remaining sources of transmission [182,190,218,219]. This 

scenario occurred In the Kilombero Valley, where the relative abundance of An. 

gambiae (compared to An. arabiensis) fell from about 90% to nearly 10% 

between 1997 and 2009 [77]. Anopheles arabiensis is now the most numerically 

abundant vector in this area [89,103], however,  malaria infection rates are 

considerably higher in the co-occurring, lower density An. funestus populations. 

These An funestus populations account for the bulk of residual transmission 

(>85% of all infections) [88,89,91]. Studies show that An. funestus is not only 

widely resistant to pyrethroids in Tanzania [88,220,221], but may also have a 

survival advantage over An. arabiensis [100,222,223]. A difficulty with the 

surveillance of An. funestus is that although they are widespread, there is 

uncertainty about how well trapping methods can detect their relatively low 

density populations. There is a need to more rigorously validate existing and 

novel surveillance methods for An. funestus, particularly those used to detect 

“atypical” routes of exposure such as outdoor biting. Given the importance of 

An. funestus in Tanzania, there is a need to better understand how to colonize 

it, survey it, and assess its population dynamics and stability.  

 

1.8 Objectives and outline 

This thesis aims to strengthen knowledge on the ecology and population 

dynamics of An. funestus; the major vector of residual malaria transmission in 

Tanzania and other parts of Africa. The overall goal is to fill key knowledge gaps 

on its population dynamics as needed to predict the potential impact of 

different vector control interventions. The information used in this study was 

gathered through insectary and field surveys. Although all data collection 

occurred in the Kilombero Valley of south eastern Tanzania, the methodology 

developed is meant to provide baseline estimates for demographic parameters of 

An. funestus populations in other parts of Sub-Saharan Africa. 
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The objectives were: 

1. To quantify the fitness and behaviour of wild Anopheles funestus 

from Tanzania and their offspring during repeated colonization 

attempts under standard laboratory conditions. This objective is 

addressed in Chapter 2 which quantifies different fitness measures 

(survival, larval development period, mating, and body size) of An. 

funestus under laboratory conditions, with the aim of assessing barriers to 

successful colonization of this vector. This study also provided data on An. 

funestus demographic processes which provided prior values for the 

population dynamics models described in later chapters. The study 

described in this chapter has been peer reviewed and published in Malaria 

Journal [24]. 

 

2. To develop and validate a framework for predicting HLC-derived 

outdoor exposure rates from different exposure-free alternatives 

traps. This objective is addressed in Chapter 3 which describes a field-

based evaluation of different methods to predict the HBR of An. funestus 

in outdoor environments. This chapter also describes the development of 

a calibration tool which can be used to predict the number of An. 

funestus that would be expected in a standard Human Landing Catch 

(HLC) from the number collected by an alternative trap.  This study has 

already been published in the Parasites & Vectors Journal [224].      

 

3. To develop a population dynamics model that can be used to describe 

the ecology of the wild population of An. funestus. This objective is 

addressed in Chapter 4 which describes the development of a State-Space 

Model in a Bayesian framework to infer the drivers of wild An. funestus 

populations in Tanzania. This model is used to assess the contribution of 

environmental variables (temperature and rainfall) and density 

dependence to An. funestus population growth.  This framework has 

already been published in the Malaria Journal [153]. 

 

4. To assess the generalizability of this population dynamics model and 

its ability to reconstruct missing data. This objective addressed in 

Chapter 5 which critically re-examines the population dynamics model 
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developed in the previous chapter (Chapter 4) through investigation of all 

potential limitations to its generalizability. The investigation provides 

new insights into the potential existence of hidden demographic processes 

which may be influencing the overall dynamics of these populations.  

 

Chapter 6 provides a comprehensive discussion of all the previous chapters and 

their contributions to the overall objective of the PhD; a concise overview of 

general limitations, challenges, and suggestions for future work. 
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2.0 Chapter 2: Fitness characteristics of the malaria vector 

Anopheles funestus during an attempted laboratory 

colonization 

 

Published in Malaria Journal 2021: https://doi.org/10.1186/s12936-021-03677-3  

 

Abstract 

 

Background  

The malaria vector Anopheles funestus is increasingly recognized as a dominant 

vector of residual transmission in many African settings. Efforts to better 

understand its biology and control are significantly impeded by the difficulties of 

colonizing it under laboratory conditions. To identify key bottlenecks in 

colonization, this study compared the development and fitness characteristics of 

wild An. funestus from Tanzania (FUTAZ) and their F1 offspring during 

colonization attempts. The demography and reproductive success of wild FUTAZ 

offspring were compared to that of individuals from one of the only An. funestus 

strains that has been successfully colonized (FUMOZ, from Mozambique) under 

similar laboratory conditions. 

 

Methods 

Wild An. funestus (FUTAZ) were collected from three Tanzanian villages and 

maintained in an insectary at 70-85% RH, 25-27°C and 12hr:12hr photoperiod. 

Eggs from these females were used to establish three replicate F1 laboratory 

generations. Larval development, survival, fecundity, mating success, 

percentage pupation and wing length were measured in the F1 FUTAZ offspring 

and compared with wild FUTAZ and FUMOZ mosquitoes. 

 

Results 

Wild FUTAZ laid fewer eggs (64.1; 95%CI [63.2, 65.0]) than FUMOZ females (76.1; 

95%CI [73.3, 79.1]). Survival of F1-FUTAZ larvae under laboratory conditions was 

low, with an egg-to-pupae conversion rate of only 5.9% compared to 27.4% in 

FUMOZ. The median lifespan of F1-FUTAZ females (32 days) and males (33 days) 

https://doi.org/10.1186/s12936-021-03677-3


36 
 

was lower than FUMOZ (52 and 49 for females and males respectively). The 

proportion of female F1-FUTAZ inseminated under laboratory conditions (9%) was 

considerably lower than either FUMOZ (72%) or wild-caught FUTAZ females 

(92%). This resulted in almost no viable F2-FUTAZ eggs being produced. Wild 

FUTAZ body sizes (as estimated from wing size) were larger than that of lab 

reared F1-FUTAZ and FUMOZ.  

 

Conclusions 

This study indicates that poor larval survival, mating success, low fecundity and 

shorter survival under laboratory conditions all contribute to difficulties in 

colonizing of An. funestus. Future studies should focus on enhancing these 

aspects of An. funestus fitness in the laboratory, with the biggest barrier likely 

to be poor mating. 
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2.0 Background 

Malaria transmission in Africa is dominated by species in the Anopheles gambiae 

and Anopheles funestus species complexes. Control of these vectors has been 

the primary driver of malaria reduction since 2000 [2,217], and requires 

thorough understanding of their ecology, behaviours and transmission potential 

[45,58,62,103,116,225,226]. Laboratory colonies of An. gambiae sensu lato (s.l.) 

have been an invaluable resource for research by enabling experimental studies 

under controlled conditions. Such colonies have facilitated the characterization 

of insecticide resistance [209,227,228], genetics [229,230]), immunity [231,232] 

and key vector demographic profiles [59,109,233]. Mosquitoes generated from 

laboratory colonies are also extensively used for semi-field bioassays 

[58,81,135].  

 

In contrast to An. gambiae s.l., An. funestus s.l. has proven extremely difficult 

to colonize and maintain under laboratory conditions. The An. funestus species 

complex group consists of at least 13 known species: Anopheles aruni, Anopheles 

brucei, Anopheles confusus, Anopheles funestus sensu stricto (s.s.), Anopheles 

funestus-like, Anopheles fuscivenosus, Anopheles leesoni, Anopheles longipalpis 

type A, Anopheles longipalpis type C, Anopheles parensisis, Anopheles 

rivulorum, Anopheles rivulorum-like and Anopheles vaneedeni [66,84–86]. These 

species vary in vectorial capacity [87], with only An. funestus s.s. thought to 

play a significant role in malaria transmission [88,89]. Others, such as An. 

rivulorum, have been reported as minor vectors in Kenya [234] and Tanzania 

[235], as has An. vaneedeni in South Africa [236].  

 

Colonization of An. funestus s.s. has however been problematic. Only two strains 

have been successfully colonized from wild populations despite several 

attempts. Both strains were colonized at the Vector Control Reference 

Laboratory (VCRL) in the National Institute for Communicable Diseases, South 

Africa, from populations in Angola (FANG) and Mozambique (FUMOZ) [92,104]. 

The FUMOZ strain is also maintained at other laboratories worldwide, including 

in Cameroon, the UK [228], and in Tanzania (at the Ifakara Health Institute). 

Several attempts have been made to colonize new An. funestus strains [170] 

from wild populations, but methods used to establish FUMOZ and FANG have not 
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been successful elsewhere [237], including when attempted with the same wild 

populations where FUMOZ was originally derived (Coetzee, pers. commun.). This 

inability to repeatedly colonize and establish An. funestus in laboratories is 

responsible for the more limited understanding of the biology of this species 

compared to other vector species.  

 

Several factors may account for the difficulty of colonizing An. funestus. Chief 

amongst these is eurygamy the inability to mate in cage/confined space [37,38]. 

Eurygamic species are difficult to colonize because they do not exhibit natural 

mating behaviours, such as swarming [238], under insectary conditions 

[37,239,240]. Many Anopheles mosquitoes mate naturally in aerial swarms 

[33,34,241] or, to a smaller extent, indoors [35]. Whilst An. gambiae will mate 

readily in the laboratory [58], wild and F1 progeny of An. funestus rarely swarm 

inside cages. Although mating is hypothesized to be the main barrier to An. 

funestus colonization, other factors cannot be ruled out due to incomplete or 

absence of reporting on other aspects of their life history and fitness during 

attempted colonization. Therefore, it is crucial to comprehensively evaluate 

how all aspects of An. funestus life history, development and demography 

respond to standard methodologies for colonization to identify where 

modifications should be focused.     

 

To address these knowledge gaps, the fitness and behaviour of wild An. funestus 

from Tanzania and their offspring (defined as “FUTAZ”, i.e. An. funestus from 

Tanzania), were quantified during repeated colonization attempts under 

standard laboratory conditions. The first step to optimize the colonization 

process is to understand which aspects of An. funestus life-history and fitness 

are most impaired during colonization, and thus target modifications 

appropriately.  To assess this, detailed measurements of the fitness and life-

history of wild and F1 An. funestus were conducted during repeated laboratory 

colonization attempts. Fitness measures of individuals in this nascent colony 

were compared to those of a stable An. funestus colony (FUMOZ) to identify the 

key barriers that hinder successful colonization of this species. The term “fitness 

trait” refers to measures of mating success (insemination status), fecundity 

(number of eggs produced), adult body size and survival (larval and adult). 
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Insights gained will guide future research to overcome barriers to colonizing An. 

funestus, and also increase knowledge on this important vector and its control. 

 

2.1 Methods  

2.1.1 Study area 

Wild An. funestus adults were collected from three villages (Tulizamoyo, 

Ikwambi and Sululu) in Kilombero (8.1539ºS, 36.6870ºE) and Ulanga (8.3124ºS, 

36.6879ºE) districts in Tanzania (Figure 2.1). These villages were selected 

because of they have high density populations of An. funestus s.l, of which  >93% 

are known to be An. funestus s.s. [195]. Wild-caught females were transported 

to the Ifakara Health Institute and used in experiments at the Vector Biology & 

Control Laboratory, the “VectorSphere” (Figure 2.1).  

 

 

Figure 2.1: A map of study area showing the location of the villages where Anopheles 

funestus females (wild-FUTAZ) were sampled for colonization experiments. 
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2.1.2 Mosquito sampling 

Five houses were selected for mosquito collection in each village. Mosquito 

collections were conducted for one week in each village in 2019 (Tulizamoyo: 

17-23rd June; Ikwambi: 8-16th July and Sululu: 1-10th September). Due to 

collection logistics and space limitation in the VectorSphere, only one set of 

experiments (i.e. with mosquitoes from just one village) was done at a time. 

Trapping was done using CDC light traps [127,242] that were set from 6pm to 

6am for five consecutive nights per village (yielding ~200-300 female An. 

funestus s.l. per week). Light traps were fitted with larger catch bags to help 

keep mosquitoes alive without desiccation until morning. Every morning, live 

female An. funestus s.l. were aspirated from collection bags into netted cages 

(30 x 30 cm), provided with 10% glucose solution and brought to the 

VectorSphere for blood-feeding and further rearing. Inside the VectorSphere 

mosquitoes were kept under standard conditions of 70-85% RH, 25-27oC and a 

12hr: 12hr photoperiod.   

 

2.1.3 Laboratory maintenance and fitness measurements for FUTAZ 

mosquitoes  

In the VectorSphere, wild female of An. funestus s.l. were given an initial blood 

meal from a chicken for a maximum of 30 minutes (from 6:30pm) inside cages 

covered with dark cloth. After this meal, mosquitoes were left in the cage until 

the next morning when their feeding success was recorded by visual observation. 

Those with a distended, red abdomen were considered to be fully engorged and 

transferred into individual oviposition cups for egg laying (Figure 2.2). Cotton 

pads soaked in 10% glucose solution were placed onto the top netting over the 

cups for additional nutrition. After three days, a small amount of water (~5ml) 

was put in each cup to stimulate oviposition. Cups were then inspected daily to 

record if and when eggs were laid, and dead mosquitoes were removed. 

Mosquitoes that did not lay eggs after 12 days were killed by freezing for 10 

minutes and later dissected to assess insemination. The terminalia and last 

abdominal segment (segment IX) were cut-open in distilled water to expose the 

spermathecae. Slide mounts of spermathecae were inspected using a microscope 

at 400x magnification for presence of sperm (Figure. 2.3a&b).  
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F1 eggs from wild-caught An. funestus s.l. were identified to species-level based 

on their morphological characteristics [15]. Eggs were observed under a 

stereomicroscope, and sub-samples of emergent adults verified by PCR [243]. All 

eggs morphologically confirmed as belonging to An. funestus s.s. were retained 

for use in subsequent colonization and life history experiments and defined as 

F1-FUTAZ (Table 2.1). Here, all F1-FUTAZ eggs were pooled and redistributed 

into a series of 5L round plastic basins (30 cm diameter, filled to 3.3 cm with tap 

water, replaced every two days) at approximate densities of 400-600 eggs per 

basin and left to hatch. There were a total of 12 replicate basins set up for each 

of the 3 independent colonization experiments (1 per study village). From here 

onwards, the term An. funestus refers specifically to An. funestus s.s.  

 

 

Figure 2.2: Images of laboratory set-up for the colonization process:  

a) Series of wooden cages with oviposition cups, each contains a single fully-engorged 

Anopheles funestus female. Individual cups were used to measure the number of eggs 

laid by a single mosquito after full blood meal, b) Technician counting the number of 

eggs and measuring the wing sizes of individual mosquitoes which have laid eggs, c) 

Technician aspirating mosquitoes from the rearing cage using mouth aspirator and d) 

bowl contains eggs of Anopheles funestus. All experiment was done within the 

VectorSphere at Ifakara Health Institute.  

 

Larvae were fed daily with a pinch (approx. 0.36 grams) of a mixture of finely 

crushed dog biscuits and brewer’s yeast at a ratio of 3:1 [104]. Basins were 

checked daily to record egg hatching and larval survival. Pupae that emerged 
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over three consecutive days were recorded and retained for use in F1 adult 

mosquito fitness experiments. The female: male ratio of emerging F1 adults was 

recorded by looking at the genital lobe shape (i.e. at the end of the pupae 

abdominal segments just below the paddles) and also males tend to be smaller 

than females [188,244]. Pupae were placed in a single cage (30 x 30 cm) and 

monitored until emergence (1-2 days). A total of three cages were set up for 

each of the three independent colonization experiments. 

 

F1-FUTAZ females were offered their first human blood meal five days post-

emergence. Females from the FUMOZ colony whose fitness was compared to F1-

FUTAZ were also provided a human blood meal on the same day and time (see 

below). Females of both strains were provided with additional blood meals every 

five days. The rationale for blood feeding every 5 days was to estimate the 

survival under conditions where they had access to blood meals at a frequency 

similar to that expected in the wild. Studies indicate that the gonotrophic cycle 

length of An. funestus ranges between 2-5 days [31,32]; with 5 being selected 

here due to practical considerations. From the first blood meal onwards, cages 

were inspected daily to record and remove all dead mosquitoes. A total of three 

cages were used as replicates in each of the 3 independent colonization 

experiments. All dead females were dissected to assess insemination status. 

Random sub-samples of F1 females were selected after the second blood meal 

and moved into individual oviposition cups to measure their egg production.  

 

2.1.4 Laboratory maintenance and fitness measurements for FUMOZ 

mosquitoes 

In July 2018, eggs from the FUMOZ An. funestus colony were obtained from the 

VCRL laboratory in South Africa and used to establish a colony within the 

VectorSphere at Ifakara Health Institute in Tanzania. The founder FUMOZ colony 

at VCRL has been maintained since 2000 [104]. At IHI, the FUMOZ colony was 

maintained for four generations before starting these experiments. This colony 

was kept under the same insectary conditions (70-85% RH, 25-27oC and 12hr: 

12hr photoperiod) and same feeding regime as described above for F1-FUTAZ. In 

this study, the following fitness variables were measured in FUMOZ for 

comparison with FUTAZ: number of eggs laid per mosquito (fecundity), 
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proportion of eggs hatched, wing lengths, proportion of adult females 

inseminated, proportion of larvae survived (from 1st instar to pupation), larval 

development period, the proportion of pupae that emerged as adults, female: 

male sex ratio at pupae stage and number of days survived by adult both males 

and females. The definition of all fitness traits measured, and the colonies in 

which they were made were given in (Table 2.1).    

 

2.1.5 Mosquito wing size measurements 

The wing lengths of all female An. funestus (Wild FUTAZ, F1-FUTAZ and FUMOZ) 

were measured and used as a proxy for their body size. One wing was removed 

from each mosquito and placed onto a drop of water on a microscope slide. The 

wing lengths were measured using the micrometre ruler under a microscope 

(50mm micrometre scale in 0.1mm divisions, 70mm x 20mm x 3mm) [245]. 

Measurements were taken from the apical notch to the auxiliary margin, 

excluding the wing fringe (Figure 2.3d).     



Table 2.1: Descriptions of terms used and strains compared as used in this study 

Variable measured Strains compared Definition as used in this paper 

Fecundity Wild-FUTAZ vs. FUMOZ Number of eggs laid by a single female mosquito 

Wing size Wild-FUTAZ vs. F1-FUTAZ 

vs. FUMOZ 

Length (mm) of a wing from apical notch to the auxiliary margin  

% eggs hatched F1-FUTAZ vs. FUMOZ Number of eggs hatched as a percentage of the total number of 

eggs laid 

% Larvae survival F1-FUTAZ vs. FUMOZ Number of larvae pupating, as a percentage of all eggs produced 

per individual female 

Larval development period F1-FUTAZ vs. FUMOZ Number of days from 1st instar larvae to pupation 

Sex ratio F1-FUTAZ vs. FUMOZ Ration of the number of females to number of males as 

identified at the pupal stage 

% Adult emerging F1-FUTAZ vs. FUMOZ Number of adult emerged as a percentage of pupae stage 

% Female inseminated Wild-FUTAZ vs. F1-FUTAZ 

vs. FUMOZ 

Number of females found to be inseminated as a percentage of 

total dissected 

Adult survival rate F1-FUTAZ vs. FUMOZ Number of days survived by an adult mosquito in the laboratory 



 

Figure 2.3: Microscopic images of different parts of Anopheles funestus:  

showing the a) presence of the spermatozoa as the confirmation for insemination and b) 

absence of spermatozoa suggesting non-inseminated, c) Egg structure of the female 

Anopheles funestus s.s. as seen under microscope, a quick and cheap method of species 

distinction within Anopheles funestus group during colonization instead of standard 

Polymerase Chain Reaction (PCR) and d) the wing measurement under microscope 

showing the apical notch and the auxiliary margin. 

 

2.1.6 Statistical analysis 

Data analyses were conducted using the R statistical software version 3.5.0 

[246]. Mean values of these fitness traits were measured and compared between 

FUTAZ and FUMOZ (Table 2.1). Where possible, fitness traits (i.e. wing length 

and proportion inseminated) were also compared among the wild FUTAZ, F1-

FUTAZ and FUMOZ. Additional analysis was conducted to assess the relationship 

between female body size and fecundity (number of eggs produced) in wild 

FUTAZ and FUMOZ. It is known for other species that, the larger the body size 

the higher the number of eggs laid per female mosquitoes [247,248]. 

 

Generalized linear mixed models (GLMM) implemented in lme4 package [249] 

were used to estimate mean values of fitness traits in wild, F1-FUTAZ and FUMOZ 

strains. Fecundity (the number of eggs laid per mosquito) was modelled as 

following a Poisson distribution with wing length included in the model as a fixed 
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effect. Proportion data (here, emergence, insemination, larval survival and sex 

ratio) were modelled as binomial variates with strain used as fixed effects. Wing 

length and strain were also fit as fixed effects when assessing insemination 

rates. Wing length was modelled as a Gamma variate with an inverse link 

function, incorporating strain as fixed effect. In all the model fitting process, 

experimental replicates and villages were included as random effects. Tukey’s 

post-hoc tests were used to assess the means differences for different fitness 

measurements. 

  

Analysis of adult survival was conducted using a Cox proportional hazard model 

using the survival package [250] to assess the odds of mortality in males and 

females and of different strains (F1-FUTAZ vs. FUMOZ). Here, the response 

variable was the death occurring on each day of observation, while strain and 

sex were included as fixed explanatory variables. In the analysis of F1-FUTAZ, 

site of collection (village) was included as a random effect by fitting a frailty 

function [251,252] using a Gamma distribution. Separate analyses were 

performed for each strain except when the differences between strains were 

investigated. Log likelihood ratio tests (LRT) were used to test the significance 

of each variable of interest in all models. All figures were produced using 

ggplot2 [253] and survminer [254] R packages.  

 

2.2 Results 

A total of 1,130 adult females of the wild-FUTAZ strain were collected from the 

three different villages of Tulizamoyo (n=332); Ikwambi (n=425); Sululu (n=373). 

More than two-thirds (n=804) of these successfully fed when offered a chicken 

blood-meal in the insectary, of which 39% (n=316) laid eggs in the insectary.  

  

2.2.1 Mosquito wing lengths, mating status, fecundity and pupation 

Anopheles funestus wing lengths varied significantly between groups (χ2=14.97, 

p<0.001, Figure 2.4a). A Tukey’s post-hoc test showed that wild-collected FUTAZ 

were larger than lab reared F1-FUTAZ (z=3.23, p<0.01, Figure 2.4a) and FUMOZ 

(z=2.52, p<0.05, Figure 2.4a). There was no difference in wing lengths between 
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the two laboratory-reared strains, FUMOZ and F1-FUTAZ (z=1.43, p=0.303, Figure 

2.4a).  

 

 

Figure 2.4: Showing Anopheles funestus a) wing sizes; b) female inseminated, c) 

fecundity, d) eggs hatched, e) sex ratio, f) adult emerged for Wild-FUTAZ, F1-FUTAZ and 

FUMOZ strain. Error bars are 95%CI predicted from the GLMM.  

 

The wing lengths of F1-FUTAZ (χ2=10.4, p<0.01) but not FUMOZ (χ2=0.123, 

p=0.688) were positively associated with insemination status. Furthermore, the 

proportion inseminated varied significantly between strains (χ2=177.2, p<0.001, 

Figure 2.4b, Table 2.2), and the two generations of FUTAZ (χ2=172.3, p<0.001, 

Figure 2.4b, Table 2.2). Insemination was considerably lower in F1-FUTAZ (9%) 

compared to wild caught FUTAZ females (92%) and FUMOZ (72%; Figure 2.4b, 

Table 2.2).  
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Table 2.2: Relative odds (OR) and means of insemination, sex ratio, pupation and adult 

emergence for different strains of Anopheles funestus, number in brackets are 95% 

confidence intervals with their respective p-values. 

 

Fecundity varied between strains (χ2=66.54, p<0.001) with FUMOZ females 

producing significantly more eggs than wild-FUTAZ (Figure 2.4c, Table 2.3). 

FUMOZ clutch size ranged from 41-137 eggs while wild-FUTAZ clutch sizes ranged 

from 3-236 eggs. The proportion of eggs hatched into 1st instar larvae was 21% 

[95% CI; 10.8, 31.6] in F1-FUTAZ and 44% [35.2, 52.0] in FUMOZ (Figure 2.4d). No 

eggs were produced by F1-FUTAZ. The impact of wing length on fecundity varied 

between strains (χ2=62.57, p<0.001, Figure 2.5a).  

 

Table 2.3: Relative rate (RR) and means of fecundity for different strains of Anopheles 

funestus, number in brackets are 95% confidence intervals. 

Variable Strain Mean ± 2SE RR [95% CI] P-value 

Fecundity 
Wild-FUTAZ 64.1 ± 5.26 1  

FUMOZ 76.1 ± 7.61 0.84 0.81, 0.88] <0.001 

 

The median larval development period from 1st instar larvae to pupation was 22, 

IQR: 21-23 days in FUMOZ, and only 13, IQR: 11-14 days in F1-FUTAZ (Figure 

2.5b). Overall, the proportion of eggs surviving to pupation was 5.87% in F1-

FUTAZ and 27.4% in FUMOZ, reflecting significant variation between strains 

(χ2=11.28, p<0.001). The sex ratio (females: males) in pupae varied marginally 

between strains (χ2=3.89, p=0.049, Table 2.2 & Figure 2.4e), with a slightly 

Variable Strain Mean ± 2SE OR [95% CI] P-value 

% Insemination 

Wild-FUTAZ 91.5 ± 1.30 1  

F1-FUTAZ 9.2 ± 4.99 0.009 [0.004, 0.020] <0.001 

FUMOZ 72.0 ± 5.16 0.24 [0.13, 0.42] <0.001 

% Sex ratio 

(F/M) 

F1-FUTAZ 53 ± 4.0 1 
=0.049 

FUMOZ 50 ± 2.9 0.86 [0.74, 0.99] 

% Larval 

survival 

F1-FUTAZ 5.3 ± 3.5 1 
<0.001 

FUMOZ 27.4 ± 12.5 12.05 [4.27, 34.03] 

% Adult 

emergence 

F1-FUTAZ 88.8 ± 7.35 1 
=0.174 

FUMOZ 81.6 ± 8.90 0.66 [0.36, 1.20] 
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higher proportion of females in F1-FUTAZ compared to FUMOZ (Table 2.3). The 

proportion of adults that emerged from pupae was similar in F1-FUTAZ and 

FUMOZ (χ2=1.91, p=0.167, Figure 2.4f), with most adults emerging on the second 

day of pupation (Figure 2.5c). 

 

 

Figure 2.5: Anopheles funestus a) relationship between mosquito body sizes and 

number of eggs produced per Anopheles funestus mosquito, b) larvae period and c) 

adult emergence rate from pupae   

 

2.2.2 Adult survival 

The median survival of adult female F1-FUTAZ was 32 (IQR: 26, 40) and 33 days 

(IQR: 27, 41) for males (Figure 2.7a, Table 2.4). In FUMOZ, the median survival 

for females was 52 days (IQR: 39, 56) and 49 days (IQR: 42, 56) for males (Figure 

2.7b). There was no difference in the survival of males and females within either 

strain, F1-FUTAZ (p=0.468, Table 2.4) and FUMOZ (p=0.752, Table 2.4). However, 

restricting analysis to adult females, survival was significantly lower in F1-FUTAZ 

than FUMOZ (p<0.001, Table 2.3, Figure 2.7c). Likewise, adult male survival was 

significantly lower in F1-FUTAZ than FUMOZ (p<0.01, Table 2.4). 
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Figure 2.6: Survival curve for Anopheles funestus males and females:  a) Anopheles 

funestus (F1-FUTAZ) and b) Anopheles funestus (FUMOZ) when fed after every five days, 

c) females of both F1-FUTAZ and FUMOZ. Lines represent the survival function as 

estimated from fitting the Cox proportion hazard model and shaded area express 95% CI. 

Dotted grey horizontal and vertical lines show the median survival days. 

 

Table 2.4: Hazard Ratio and median values of the adult survival between males and 

females of the F1-FUTAZ and FUMOZ, associated p-values indicate the significance 

difference of sex and species on the number of days survived by F1-FUTAZ and FUMOZ 

strains. 

Strain Sex Median [IQR] HR [95% CI] P-value 

F1-FUTAZ 
Female 32 [26, 40] 1 

=0.468 
Male 33 [27, 41] 0.89 [0.65, 1.24] 

FUMOZ 
Female 52 [39, 56] 1 

=0.752 
Male 49 [42, 56] 1.11 [0.59, 2.06] 

Female 
FUMOZ 52 [39, 56] 1 

<0.001 
F1-FUTAZ 32 [26, 40] 2.63 [1.55, 4.46], 

Male 
FUMOZ 49 [42, 56] 1 

<0.01 
F1-FUTAZ 33 [27, 41] 2.05 [1.22, 3.45] 
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2.3 Discussion  

Limited understanding of mosquito biology and ecology poses a challenge for the 

development of effective vector control approaches. Laboratory colonization of 

target species provides an opportunity to address these knowledge gaps by 

facilitating detailed investigation of vector biology under controlled conditions 

where experimental manipulation is possible. Here the fitness traits of An. 

funestus during colonization attempts from a wild population in Tanzania were 

characterized to identify the bottlenecks that make this species so difficult to 

colonize. This is the first documentation of fitness constraints during attempted 

colonization of this species and the first report of attempted colonization of An. 

funestus from Tanzania.  

 

Consistent with most previous attempts, colonization of this wild An. funestus 

population proved unsuccessful with no offspring being produced from the F1 

generation. Several life history processes and demographic traits were identified 

as being impaired when FUTAZ were brought into the laboratory. First, the 

number of eggs laid by wild FUTAZ when brought in the insectary was lower than 

in the well-establish FUMOZ line, as were hatching rates, larval survival, mating 

success and adult female/male survival. F1-FUTAZ body sizes were slightly 

smaller compared to their maternal generation in the wild, but did not differ 

with the FUMOZ strain indicating this trait is unlikely to predict colonization 

success. Of all these fitness traits, the primary hurdles to colonization are likely 

to be the extremely low mating success and larval survival of F1 An. funestus in 

the laboratory. Until these fitness traits can be improved under laboratory 

conditions, the colonization of An. funestus is unlikely to be successful and 

repeatable.  

 

Eggs laid by wild-FUTAZ An. funestus had a low proportion of hatching compared 

to those of FUMOZ. In both strains, insemination rates were lower than 50%, 

indicating many were unviable eggs laid by non-inseminated females. Previous 

studies investigating the impact of different water sources used for larval 

rearing in an An. funestus colony (FUMOZ) indicated that their egg hatching rate 

can exceed 70% [222,255]; confirming hatch rates in this study were 

uncharacteristically low. It is known that females of other Anopheles species can 
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produce unviable eggs without successful mating, or after mating with sperm-

less males [256]. Therefore, poor hatching observed in the nascent strain 

(FUTAZ) here is likely due to the low mating success of An. funestus in captivity 

as has been previously documented in other Anopheles species [237], and low 

hatch rates. Low hatch rates could have been due to suboptimal temperatures in 

the laboratory relative to conditions in the field; which FUMOZ strain might have 

been well adapted to it but not FUTAZ [257].     

 

The  larval development period of F1-FUTAZ (11-14 days) was similar to that 

reported for An. funestus in other laboratory settings [222,255,258], but faster 

than FUMOZ development period (21-23 days) observed in this study. The 

duration of larval development in An. funestus (FUTAZ and FUMOZ) observed 

here were considerably longer than described for An. gambiae complex in the 

laboratory [259]. For example, life table analyses of An. gambiae indicate a 

larval development period from eclosion to adult emergence of about 11 days at 

27oC [32,48,52,259,260]. This extended larval development period for F1-FUTAZ 

results in a long estimated generation time of 30 – 33 days from eggs to first 

oviposition; which is higher than estimated for other African Anopheles species 

[255,261,262]. Other life table analyses performed on An. funestus colonies 

estimated a generation time of approximately 33 days in insecticide-resistant 

(FUMOZ) and susceptible strains (FANG) [222]. As a consequence of this 

extended period of larval development, egg to pupa survival was very low; 

approximately 6% for F1-FUTAZ and 27% for FUMOZ. Due to this long larval 

development and associated high larval mortality, very large numbers of eggs 

would be required generate modest numbers of adults in the laboratory. 

Therefore, the fitness and reproductive success of these resulting adults would 

have to be very high to yield a further generation.  

 

Analysis of wild FUTAZ adults and their F1 offspring indicate their fitness is 

reduced compared to that of a stable An. funestus colony (FUMOZ). Wild-FUTAZ 

An. funestus brought into the laboratory laid 16% fewer eggs than the FUMOZ 

colony, and the F1 generation of FUTAZ produced no viable eggs at all. A 

previous study measuring the fecundity of F1 An. funestus using Madagascan 

population reported that this species can lay and average of 56 to 108 eggs per 

mosquito in captivity [237], which corroborates with 65 and 76 eggs from wild-
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FUTAZ and FUMOZ, respectively, from the current study. The number of eggs 

here is consistent to that reported in resistant and susceptible An. funestus 

strains in the  laboratory, [222].  

 

Mosquito body size is often interpreted as a proxy of their fitness [61,263,264].  

Here, wild FUTAZ were somewhat larger in body size than F1-FUTAZ and FUMOZ. 

Consistent with the hypothesis of body size being an indicator of fitness, wing 

length was positively correlated with fecundity in the wild population of An. 

funestus (FUTAZ). However, the opposite was seen in the stable FUMOZ strain 

where wing size was negatively associated with fecundity. Thus, at least in this 

one stable laboratory colony, large body size in An. funestus was not a good 

indicator of reproductive success. Caution is required in extrapolating fitness 

differences based on An. funestus body size, particularly between field and 

laboratory strains. Although body size was higher in wild-FUTAZ than F1-FUTAZ, 

the latter strain was still bigger than the FUMOZ which had the highest 

fecundity.   

 

The mating success of An. funestus from these populations was extremely low in 

the laboratory, supporting hypothesis that mating is the key bottleneck for the 

colonization of this species. Compared to wild-FUTAZ, insemination rates in F1-

FUTAZ were extremely low (9.2% vs. 72%) and insufficient to establish a further 

F2-FUTAZ generation. This poor mating success is likely due eurygamy, the 

inability of some Anopheles species including An. funestus to initiate natural 

swarming behaviour in flight [265,266]. These findings match those of other 

studies documenting mating as the major obstacle for successful colonization of 

An. funestus [170,237,267]. To overcome this problem, techniques such as 

forced mating and exposing mosquitoes during sunset to induce swarming have 

been applied [268,269]. Other studies have experimented with the use of large 

cages to stimulate natural mating for Anopheles, and simulate sunset which may 

be crucial cue for mating [270,271]. However so far these methods have had 

little or no success over multiple attempts [104,170]. In the current study, no F2-

FUTAZ offspring were generated because none of the F1-FUTAZ laid viable eggs. 

Further research on how to induce mating behaviour in An. funestus, particularly 

using more realistic semi-field systems, would be of great value. Such studies 



54 
 

must focus on both females and males, to determine if males are unwilling to 

initiate swarming behaviour or not fit enough to do so.  

 

Analysis of adult mosquito survival indicated that the nascent Tanzania colony 

(F1-FUTAZ) had a reduced lifespan compared to stable An. funestus colony 

(FUMOZ). However adult survival in both cases was relatively high (32 median 

days for FUTAZ and 52 days for FUMOZ); with both strains living well beyond the 

minimum period required to produce eggs and transmit malaria. Another 

laboratory study conducted on FUMOZ where adult life span ranged from 39 to 

64 days [222]; again much higher than F1-FUTAZ here. The shorter life span of 

FUTAZ relative to FUMOZ may be a result of the stress from the change of 

environment, or lack of adaption to laboratory conditions. Nevertheless, this F1-

FUTAZ survived much longer compared to another competent vectors of malaria 

transmission, Anopheles arabiensis and An. gambiae s.s. in laboratory conditions 

[81]. Previous experiments on parity shows that the median survival of An. 

funestus  in the wild is much shorter, ranging from 7-10 days [41]. Thus, poor 

adult survival relative to the wild cannot explain the failure of colonization 

here. 

 

A potential limitation of my study is that the unfed An. funestus females were 

used to seed laboratory colonies, requiring me to blood feed them artificially (on 

chicken blood) in the laboratory to acquire eggs for the next generation. Thus, 

the mating status and age of the wild females used for colonization were 

uncertain and likely variable. An alternative would have been to collect only 

visibly blood fed females during field collections (these individuals would likely 

had fed on humans if caught inside houses), and used their eggs to generate the 

F1 generation. This was considered, but given the much lower abundance of 

blood fed An. funestus inside houses compared to the numbers of unfed females 

that can be obtained in CDC light traps; the latter approach was chosen to 

ensure sufficiently large samples were obtained for colonization experiments.  

These wild mosquitoes could not be provided with a human blood meal given 

their malaria infection status was unknown and they were not adapted to 

membrane feeding, thus chicken blood was provided. This variation in host blood 

source could have generated some differences in fitness between strains. 

However, this is unlikely given that previous studies indicate that human and 
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chicken blood meals generate similar egg production in other African malaria 

vector species under laboratory conditions (An. arabiensis and An. gambiae 

[78,81]). The F1 population, upon which the main fitness indicators were 

assessed, was fed on human blood. Further investigation is required to confirm 

whether An. funestus fitness is impacted by the type of host blood meals 

provided and whether there is an optimal diet for laboratory maintenance.    

 

2.4 Conclusions 

Laboratory colonies remain fundamental for research on the biology and control 

of mosquito vectors by providing a stable and standardized source of mosquitoes 

for experimental studies. This study provides additional evidence of the 

intractability of An. funestus to colonization. By quantifying a comprehensive 

range of fitness traits during unsuccessful attempts, this study generates insights 

into the most important barriers to colonization. Of the range of traits 

investigated, the primary barrier to colonization was identified as low mating 

success, compounded further by the slow development and poor survival of the 

small numbers of larvae produced. Additionally, both the fecundity and adult 

survival of An. funestus offspring from wild parents were reduced under 

laboratory conditions, but these impacts may have been relatively minor 

compared to the consequences of poor mating success and poor larval survival. 

This combination of fitness deficits presents a major challenge for successful 

colonization and mass rearing of An. funestus. To overcome this, future research 

should focus on enhancing the efficiency these life-cycle processes under 

insectary conditions. Additionally, the demographic rates estimated from wild 

and F1 FUTAZ will provide useful baseline information for understanding and 

modelling An. funestus population dynamics in general, and guiding further 

attempts to its colonization. 
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3.0 Chapter 3: A statistical calibration tool for methods used to 

sample outdoor-biting mosquitoes 

 

Published in Parasite & Vectors Journal 2022: https://doi.org/10.1186/s13071-

022-05403-7   

 

Abstract 

Background 

Methods for sampling outdoor-biting mosquitoes are urgently needed to 

improve surveillance of vector-borne diseases. Such tools could potentially 

replace the human landing catch (HLC), which, despite being the most direct 

option for measuring human exposure, raises significant ethical and logistical 

concerns. Several alternatives are under development but detailed evaluation 

still requires common frameworks for calibration relative to the HLC. The aim 

of this study was therefore to develop and validate a framework for predicting 

HLC-derived outdoor exposure rates from different exposure-free alternatives 

for African malaria (An. arabiensis and An. funestus) and filiariasis (Culex spp.) 

vectors.   

 

Methods 

I obtained mosquito abundance data (Anopheles arabiensis, Anopheles funestus 

and Culex sp.) from a year-long Tanzanian study comparing six outdoor traps 

and the HLC. The outdoor traps were: Suna Trap (SUN), BG Sentinel (BGS), M-

Trap (MTR), M-Trap + CDC (MTR-C), Ifakara Tent Trap-C (ITT-C) and Mosquito 

Magnet Trap (MMX). Four generalised linear models were developed within a 

Bayesian framework to investigate associations between traps and the HLC; 

considering intra- and inter-specific density dependence. The best model was 

used to create a calibration tool for predicting HLC-equivalents of each trap for 

each vector group. 

 

 

 

https://doi.org/10.1186/s13071-022-05403-7
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Results 

For An. arabiensis, SUN catches had the strongest correlation with HLC 

(R2=19.4), followed by BGS (R2=17.2), MTRC (R2=13.1). The least correlated was 

MMX (R2=2.5). For An. funestus, BGS had the strongest correlation with the HLC 

(R2=53.4), followed by MTRC (R2=37.4), MTR (R2=37.4). The least favoured was 

SUN (R2=14.5). For Culex mosquitoes, the traps most highly correlated with the 

HLC were MTR (R2=45.4) and MTRC (R2=44.2). In general, the association 

between the HLC and alternative trapping methods was the best described 

through a simple linear relationship. Only BGS in all the three species exhibit a 

non-linear relationship which is modified by intra and interspecies mosquito 

density. An interactive Shiny App calibration tool was developed for this and 

similar applications.  

Conclusion 

I successfully developed a calibration tool to assess the performance of 

outdoor-traps relative to this HLC to provide a framework for assessing human 

exposure. The performance of candidate traps relative to the HLC varied 

between mosquito taxa, thus there was no single optimal method. Though all 

the traps underestimated HLC catches (proxy for human-biting rates), it was 

possible to mathematically define their representativeness against HLC. 

Further studies should focus identifying traps that have the greatest 

consistency and representativeness relative to the HLC, as opposed to simply 

finding traps that catch the most mosquitoes. 
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3.0 Background 

Malaria control primarily relies on the use of Insecticide Treated Nets (ITNs) and 

Indoor Residual Spraying (IRS) [123,182,183,272]. LLINs and IRS provide 

protection by targeting mosquitoes that are host seeking or resting indoors. 

Wide-scale use of these tools has yielded significant progress but there are still 

challenges such as insecticide resistance [176,212,214,273] and outdoor-biting 

[77,89,90]. Drivers of outdoor-biting may include human behaviours [274–276], 

plasticity in mosquito behaviours (e.g. shifting from feeding indoors to 

outdoors) [16,79,103,212] and the effects of some indoor interventions 

[181,277]. Sampling mosquito populations is a core component of malaria 

surveillance activities [278], and it’s aims include determining when and where 

people are most at risk. For best results, this surveillance should consistently 

capture the key drivers of biting risk indoors and outdoors. Unfortunately, 

representative sampling of mosquito vectors remains a challenge; particularly in 

outdoor settings.  

The main entomological indicators assessed during vector surveillance include 

the Human Biting Rate (HBR) [103,279], sporozoite infection prevalence in 

mosquitoes [280,281], the Entomological Inoculation Rate (EIR) [88,279], time 

of exposure and proportion of exposure prevented by ITNs [108,109,124,282]. 

The HBR is a fundamental variable for estimating the transmission of malaria 

and other mosquito-borne diseases [65]. As defined in the Ross MacDonald 

model, the HBR is required for estimation of the reproductive rate (R0) of 

malaria. Both the HBR and sporozoite prevalence are required for estimation  

of EIR [65]; calculated as the number of infectious bites a person would be 

expected to receive in a given location over a given time period. The HBR and 

EIR are frequently used to estimate the impact of vector control interventions 

by highlighting how much they reduce exposure [76,93,182,279]. 

The Human Landing Catch (HLC) has been the gold standard for direct 

measurement of human exposure and other key entomological variables. 

However, this method has several limitations and ethical constraints 

[118,119,283–285] due to its requirement that human volunteers expose parts 

of their body (usually lower legs) to mosquitoes [129,282,286]. Due to this 

combination of ethical concerns and practical limitations, it is widely 
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recognized that alternative exposure-free methods for measuring the HBR are 

needed [121,122,282,286,287]. Alternatives such as CDC light traps are already 

widely used for sampling host-seeking mosquitoes indoors [114], but are 

unsuitable in outdoor settings. The urgency to identify suitable methods for 

measuring exposure outdoors is therefore greater [123,125,282,288], especially 

due to the growing recognition of the importance of outdoor exposure to 

residual transmission [77,93,274].  

To date, a number of alternative exposure-free methods have been 

independently developed and tested in different settings in Africa (e.g. [122–

124,282,286,288–291]). Some methods provide a good representation of vector 

species composition and their biting activities, but underestimate density (e.g. 

[123,287,288](. Others catch more mosquitoes than the HLC and thus 

overestimate typical human exposure (e.g. [122,292]). Finally there are some 

traps that are easy to implement, but which provide biased estimates of 

outdoor exposure by disproportionately sampling endophilic rather than 

exophilic species (e.g. [293]). These strengths and weaknesses suggest that 

different traps are optimal for different surveillance applications. 

Unfortunately, there are no standardized calibration methods to allow 

estimation of HLC-equivalent exposure from different outdoor sampling 

methods. Development of a standardized and validated calibration framework 

for such prediction would enable comparison of results from different studies 

and methods. Such a calibration tool would need to reflect the potential non-

linear relationship between trap counts and HLC values; meaning that no single 

conversion ‘value’ between methods may apply across the full range of 

mosquito densities or species.  

Several studies have indicated that trap performance relative to the HLC is 

density dependent [114,294]. However, density dependence is often considered 

in terms of “intraspecific” density (e.g. the baseline density of the target 

vector species [282,294]) but not the density of all mosquitoes, target vectors 

or not, that are attracted to the trap. However, the mechanisms that could 

give rise to intra-specific density dependence in trap performance could also 

generate dependence with the overall densities of all mosquitoes attracted to 

the trap; including other species not of interest. While such interspecific 

dependence on the wider mosquito community is plausible, this has not been 
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formally evaluated in trap evaluation studies. 

The overall aim of this study was to provide an extensive comparison of six 

exposure-free traps for 3 vectors (An. arabiensis, An. funestus and Culex sp. 

which is the common mosquito group and a vector of filiariasis in Tanzania). 

Specifically, I aimed to 1) identify valid and safe alternatives to the HLC for 

outdoor mosquito’ sampling that are exposure-free and do not rely on human 

participants, 2) assess of contribution of intra and interspecific mosquito 

density dependence to trap performance, and 3) develop an interactive 

calibration tool (in the form of a Shiny App) through which the number of a 

given species caught in an HLC can be predicted from catches made by 

alternative traps. 

 

3.1 Methods 

3.1.1 Study area and vector species 

Prior to the start of my PhD., a team from the Ifakara Health Institute carried 

out a mosquito trapping study in six adjacent villages in the Ulanga and 

Kilombero districts of south-eastern Tanzania, namely: Kivukoni (8.2135°S, 

36.6879°E), Minepa (8.2710°S, 36.6771°E), Mavimba (8.3124°S, 36.6771°E), 

Milola (8.3306°S, 36.6727°E), Igumbiro (8.3511°S, 36.6725°E) and Lupiro (8.385° 

S, 36.670°E). Data were collected over 12 months between 2015 and 2016. The 

valley has relatively high mosquito abundance which peaks at the end of the 

rainy season. The common vectors of malaria transmission are Anopheles 

arabiensis and Anopheles funestus [88,103,295]. Mosquitoes in the Culex genera 

are also highly abundant, with some species being potential vectors for 

arboviruses found in the study area [120,296].  

 

3.1.2 Data collection 

I was not involved in the design of this study or the field data collection, but the 

data were made available to me for analysis in my PhD. Mosquito sampling was 

carried out in both the wet and dry seasons, using six different traps for 

sampling outdoor-biting mosquitoes around human dwellings. The traps were: 

Mosquito Magnet trap (MMX) [297], BG-Sentinel trap (BGS) [298], Suna trap (SUN) 
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[123], Ifakara Tent Trap-C (ITT-C) [291], M-Trap (MTR) [299], M-Trap fitted with 

CDC Light trap (MTRC) (this study) and the Human Landing Catches (HLC) [123]. 

Most of these traps have been extensively described elsewhere except for the 

MRT fitted with a CDC light trap (MTR), which was adapted from the original 

exposure-free M-trap designed by Mwangungulu et al [299]. In this current study, 

the original MRT was divided into two compartments made of UV-resistant shade 

netting: one in which a human volunteer sat to attract mosquitoes and the other 

section in which mosquito are entered [299]. A CDC light trap was suspended 

inside the other section of the trap to attract more mosquitos to the light 

source.     

The traps were located at least 100m apart. Initial trap allocation was random, 

but their positions were switched over successive sampling nights in a Latin 

square design. This way each trap was used in each position once over a seven 

night cycle. After completion of each cycle, the study team moved to the next 

village so that one round of sampling in all six villages was completed over 42 

trap-nights. Six rounds of data collection were completed spanning the wettest 

and the driest periods of the year (252 trap nights between April 2015 and April 

2016). Mosquito sampling was done overnight from 6pm to 6am. The collected 

mosquitoes were morphologically sorted by taxa. A subsample of An. gambiae 

s.l. (n=1,405, 26% of total) were analysed by PCR [71] to assess sibling species 

composition within the complex.    

 

3.1.3 Model fitting 

The main goal of analyses was to create a calibration tool to evaluate outdoor 

mosquito traps and to validate the tool by comparing the performance of 

candidate trapping methods relative to HLC, the “gold standard”. In particular, I 

wanted to test the shape of the association curve linking the numbers of 

mosquitoes collected by each trap type with those collected by the HLC. First, I 

pooled all the hourly collections into a single collection cup per trap per night. 

Then, for each of the focus mosquito groups (Culex genera, An. arabiensis and 

An. funestus s.l), I modelled nightly HLC catches as a function of the catching 

rate of each alternative trap.  
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Four linear models were developed within a Bayesian model fitting framework to 

allow me to test for linear and non-linear associations through increasing the 

levels of complexity. The Bayesian approach allowed specific constraints on 

parameters based on biological plausibility, in the form of priors and uncertainty 

when converting the counts from alternative traps into HLC equivalent values in 

the form of full posteriors. 

For any given trap and mosquito group, I defined the response variable (𝑁𝑖) as 

the number of female mosquitoes on every 𝑖𝑡ℎ  sampling night. Preliminary 

investigation of data using Poisson likelihood showed over-dispersion for all the 

three mosquito groups. Final models did not account for other environmental 

covariates at specific trap locations (e.g. temperature, humidity). Initial analysis 

suggests that, environmental covariates did not improve model fitting. I 

accounted for the over-dispersion by using a negative binomial likelihood model 

formulated as a Gamma-Poisson mixture distribution [300]: 

𝑁𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜽𝒊 𝛌𝑖) 

with 

𝜽𝒊~𝐺𝑎𝑚𝑚𝑎(𝜏, 𝜏) 

Where the Poisson rate 𝛌𝒊 is defined by the shape of the relationship between 𝑁𝑖 

and the number of mosquitoes collected with the alternative trap (𝑛𝑖 , Table 3.1) 

and theta 𝜃𝑖 was drawn from a gamma distribution with parameter tau 𝜏 as rate 

and shape of 1.  

Since the algebraic form of this relationship is not known, I made three 

assumptions with specified mathematical definitions, as follows: 1) that the 

relationship must start at the origin (i.e. when HLC catches zero mosquitoes, the 

other traps will, on average also collect zero mosquitoes), 2) that the 

relationship is positive (i.e., no negative relationships between trap catches), 

and 3) that any given trap could potentially suffer from a density effect (i.e., 

the slope of the relationship is not constant and it can change according to the 

abundance of  mosquitoes, either just of the same mosquito group or of all 

mosquitoes).  
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To define 𝛌𝒊, I therefore formulated four possible scenarios to describe the 

relationship between HLCs and other trapping methods as summarized in Table 

3.1 and Figure 3.1. In Model 1, I considered a simple linear relationship between 

𝑁𝑖 and 𝑛𝑖 (Table 3.1, Figure 3.1A)1. In Model 2 I tested if the efficiency of the 

alternative trap was dependent on the density of the focal mosquito (e.g. “intra-

specific” density dependence) by adding a quadratic term 𝑛𝑖
2 (Table 3.1, Figure 

3.1B). In Model 3 I tested if the captures of a given group by a given trap were 

dependent on the abundance of the other taxonomic groups (e.g. “inter-

specific” density dependence) by adding, an interaction term between 𝑛𝑖 and 

the number of all the females from other mosquito groups collected with the 

same trap (𝑚𝑖) (Table 3.1, Figure 3.1C). Model 4 was similar to Model 3, but I 

considered all the other 𝐾𝑖 taxonomic groups separately. Therefore it included 

all the pair wise interaction terms between 𝑛𝑖 and the number of females of 

each 𝑘𝑡ℎ mosquito group (𝑠𝑘𝑖
) (Table 3.1, Figure 3.1D). My analysis mainly 

focused on three mosquito groups, but I collected a higher number of species 

hence 𝐾 > 3 (Table 3.2). 

Table 3.1: Description of models used to investigate the relationships between female 

mosquito catches by human landing catch and the alternative traps.  

Model Structure 

Model 1 log(𝛌𝑖) =  𝛽1𝑛𝑖 

Model 2 log(𝛌𝑖) =  𝛽1𝑛𝑖 +  𝛽2𝑛𝑖
2 

Model 3 log(𝛌𝑖) =  𝛽1𝑛𝑖 +  𝛽2𝑛𝑖𝑚𝑖 

Model 4 log(𝛌𝑖) =  𝛽1𝑛𝑖 +  ∑ 𝛽𝑘

𝐾

𝑘=1

𝑛𝑖𝑠𝑘𝑖
 

 

The analysis was performed in the statistical environment R version 4.0 [246], 

with Bayesian model fitting to the data done using the program JAGS [301] 

interfaced within R via the package rjags [302]. For parameters 𝛽1, 𝛽2 and 𝛽𝑘 I 

used a gamma prior (shape = 0.1, rate = 0.1). The prior for  𝛽1 was chosen to 

ensure a positive relationship between 𝑛𝑖 and 𝑁𝑖 and a positive effect of the 

                                            
1 Note that this relationship is not linear. See Chapter 7 (Addendum to chapter 3) for a corrected 
version of this analysis including model formulas as described in Table 3.1.  
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quadratic and the interaction terms for 𝛽2 and  𝛽𝑘. To achieve convergence, the 

models were run for up to 3 𝑥 104 iterations. Means of posterior distributions 

with corresponding credible intervals were obtained for each model 

coefficient  𝛽. I compared different models by their Deviance Information 

Criteria (DIC) and the goodness of fit of each model using pseudo 𝑅2 values. 

Models with the lowest DIC were selected as best.  

3.1.4 Interactive calibration tool 

I designed a lookup table (Table 3.3) containing means of posterior predictions 

for different combinations of mosquito taxa, trap types and models. This 

allowed me to predict the expected number of a given mosquito taxa from an 

HLC (with credible intervals) based on the number caught in the alternative 

traps. I also developed an interactive online tool, in the form of an R Shiny App 

[303] to facilitate these evaluations. This tool provides users with an interactive 

graphical user interface (GUI) to select the number of captured mosquitoes for a 

group of interest by trap type, and to explore the predicted number of 

mosquitoes caught in an HLC by method. 

 

Figure 3.1: Illustration of models used to investigate the relationship between number 

of female mosquitoes collected with human landing catch and six alternative traps. 

𝑁: Number of female mosquitoes collected with human landing catch; 𝑛: number of 

female mosquitoes collected with a given alternative trap; 𝑚: pooled female 
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mosquitoes of all the other species collected with the same alternative trap of 𝑛; 𝑠1, 

𝑠2 and 𝑠3: number of female mosquitoes of each of the other 𝐾 species, where 𝐾 refers 

to all the species collected I developed the focus one (here 𝐾 = 3). Model 1 considers a 

simple linear relationship with 𝑛 (A). Model 2 considers a quadratic term 𝑛2  (B). Model 

3 includes an interaction term between n and the number of all the females of the 

other species collected with the same trap (𝑚) (C). Model 4 considers all the pairwise 

interaction between n and 𝑠1, 𝑠2and 𝑠3 (D).  

3.2 Results 

The statistical correlations between HLCs and other trapping methods for each 

of the three mosquito groups are summarized in Table 3.2. The fit of models 

varied between trap types and mosquito group, with correlations with the HLC 

(R2 values) ranging from 0.8% - 53.4% (Table 3.2). The strength and nature of 

associations (Models 1-4) varied considerably between mosquito groups and 

traps; thus no one single model was best in all cases. I provide an example of a 

prediction table (Table 3.3) which describes how mosquito abundance in a HLC 

can be estimated from catches made by the alternative traps (using model 1, 

with intervals grouped by 10). Other models (model 2-4) outputs/predictions can 

be easily retrieved from the Shiny App tool. Environmental covariates 

(temperature and humidity) were dropped during the initial model fitting 

process as they were not improving the goodness of fit of the model (Model 1-4). 
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Table 3.2: Summary of all other mosquitoes collected for each trap type including the 

Human Landing Catches (HLC) 

Species HLC SUN BGS ITT-C MMX MTRC MTR 

Anopheles arabiensis 5282 1187 531 615 370 2125 1454 

Anopheles funestus 226 66 40 76 37 115 115 

Anopheles coustani 670 1216 207 3 444 564 314 

Anopheles pharoensis 101 906 82 0 69 103 76 

Anopheles squamosus 56 196 49 1 99 145 127 

Anopheles wellcomi 16 3 3 0 9 72 25 

Anopheles ziemani 204 1368 183 0 269 340 156 

Culex sp. 7191 3666 3709 4970 1018 7710 6645 

Mansonia sp. 2101 4527 1001 111 1961 2314 1273 

Aedes aegypti 20 2 5 2 30 7 5 

Coquellitidia 240 84 117 14 56 127 229 

 

 

Figure 3.2: Expected number of female Culex spp. mosquitoes collected with HLC (y-

axis), given the number of females collected with alternative traps (x-axis). Continuous 

line is the prediction of a Gamma-Poisson model assuming a linear relationship; dashed 

lines are 95% credible intervals. 

 

 



67 
 

 

 

Figure 3.3: Expected number of female Anopheles arabiensis mosquitoes collected with 

HLC (y-axis), given the number of females collected with alternative traps (x-axis). 

Continuous line is the prediction of a Gamma-Poisson model assuming a linear 

relationship; dashed lines are 95% credible intervals. 
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Figure 3.4: Expected number of female Anopheles funestus mosquitoes collected with 

HLC (y-axis), given the number of females collected with alternative traps (x-axis). 

Continuous line is the prediction of a Gamma-Poisson model assuming a linear 

relationship; dashed lines are 95% credible intervals. 

 

3.2.1 Anopheles arabiensis 

In most of the models, trap catches of An. arabiensis were only weakly 

correlated with HLC counts (Table. 3.2b). SUN was the only alternative trap 

where the correlation with the HLC was consistently 17% or more (R2>17). For 

this trap, the relationship with HLC catches was best described by Model 4 

(R2=19.4, Table 3.2b), which incorporates both intra- and interspecific density 

dependence. The DIC values however did not vary much between models of 

differing complexity (ΔDIC = 1.32, Table 3.2b). Overall, SUN consistently 

underestimated HLC catches (for example 100 mosquitoes collected with SUN 

corresponded to 194 [CIs: 142-257]; Table 3.3b, Figure 3.3).  
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Table 3.3: Summary (R2 and DIC values) of models used to investigate the relationship between the numbers of female mosquitoes collected with 

human landing catch (HLC) and the six alternative outdoor traps. See Table 1 for description of models. 

Species and 
Model 

SUN BGS ITT-C MMX MTRC MTR 
R2 DIC ΔDIC R2 DIC ΔDIC R2 DIC ΔDIC R2 DIC ΔDIC R2 DIC ΔDIC R2 DIC ΔDIC 

a) Culex                   

 Model 1 27.3 1026.6 2.36 25.1 1038.3 0.00 19.0 769.3 5.07 12.4 841.0 12.50 44.7 1236.5 7.95 44.2 1174.7 6.00 
 Model 2 27.1 1025.3 1.05 25.1 1045.2 6.88 19.2 770.2 5.88 12.8 838.7 10.27 44.8 1236.1 7.62 44.2 1177.1 8.42 
 Model 3 27.2 1027.5 3.25 24.9 1040.6 2.32 19.4 769.1 4.78 12.8 828.5 0.00 44.7 1228.5 0.00 44.2 1168.7 0.00 
 Model 4  28.1 1024.3 0.00 25.5 1044.5 6.23 21.9 764.3 0.00 15.9 835.5 7.03 45.4 1235.8 7.29 43.8 1172.5 3.77 

b)An. arabiensis                   

 Model 1 17.4 780.3 0.00 10.8 549.6 0.61 9.3 534.7 6.37 0.8 383.9 3.51 13.1 991.6 4.43 11.3 1077.6 12.95 
 Model 2 17.5 780.3 0.03 10.8 549.0 0.00 9.4 528.3 0.00 0.4 382.8 2.46 10.0 1000.8 13.68 11.3 1073.0 8.37 
 Model 3 17.4 782.5 2.21 10.7 550.9 1.89 10.4 534.5 6.17 1.4 385.8 5.42 13.1 987.1 0.00 11.3 1070.5 5.84 
 Model 4 19.4 781.6 1.32 17.2 551.2 2.19 11.8 530.6 2.30 2.5 380.3 0.00 12.7 990.5 3.39 11.1 1064.6 0.00 

c) An. funestus                   

 Model 1 14.6 76.5 2.79 46.6 52.9 0.00 33.9 111.5 0.00 31.8 40.9 0.62 32.6 151.1 1.43 36.8 120.0 0.00 
 Model 2 14.5 77.0 3.30 50.2 53.7 0.78 33.6 112.5 0.97 30.6 40.3 0.00 32.4 149.6 0.00 36.6 120.6 0.56 
 Model 3 14.5 76.0 2.29 52.6 53.4 0.50 34.3 112.4 0.87 30.6 40.7 0.35 33.4 151.2 1.53 36.3 122.5 2.45 
 Model 4 16.2 73.7 0.00 53.4 53.8 0.87 34.3 112.2 0.69 30.0 40.4 0.09 37.4 152.8 3.13 37.4 120.7 0.65 

SUN: Suna trap, BGS: BG-Sentinel trap, ITT-C: Ifakara Tent Trap version C, MMX: Mosquito Magnet trap, MTRC: M-trap combined with CDC Light, 

MTR: M-trap;  
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BGS was the only trap where R2 values substantially increased with model 

complexity. Here, the most complex model (Model 4), which incorporated intra- 

and interspecific density dependence had an R2 value of 17.2% (Table 3.2b). For 

all other trap types, correlations with the HLC were best explained by the 

simplest linear relationship (Model 1). Collections from BGS also underestimated 

the number of mosquitoes caught by HLC, and to a larger extent than the SUN 

(e.g. 100 mosquitoes caught by BGS is equivalent to 423 [CIs: 268-629] by HLC; 

Table 3.3b, Figure 3.3).    

The MMX trap had the poorest correlation and was least representative of the 

HLC (R2 values: 0.8 - 2.5%); particularly at low densities where it often failed to 

capture any individuals. This trap therefore also significantly underestimated the 

catches relative to HLC (for example 100 catches of MMX is equivalent to 325 

[CIs: 187-504]; Table 3.3b, Figure 3.3).   

 

3.2.2 Anopheles funestus 

There were no major differences between the alternative models when 

describing associations between HLC and the other traps for collecting An. 

funestus. Thus on the basis of parsimony, I concluded that the simple linear 

model (Model 1) was sufficient to describe these relationships. BGS was the most 

highly correlated with the HLC (R2 ranged from 46.6% to 53.4%) in An. funestus. 

The highest R2 value was from the most complex model (Model 4). However, 

similar to An. arabiensis, the BGS underestimated the number of An. funestus 

caught by HLC (Table 3.3c). On the other hand, MTR, MTRC, ITT-C and MMX traps 

were only moderately correlated with HLC (R2 values ranging from 30.0 to 

37.4%), and SUN was the worst performing trap for this species (Table 3.2c). 

In general, predictions obtained with all An. funestus trap models (Models 1-4, 

for all trap types) were characterized by very large credible intervals (Figure 

3.4), meaning that there was insufficient precision to define a useful calibration 

factor. This large uncertainty amount HLC equivalent of trap catches was 

particularly pronounced at higher An. funestus densities. 
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Table 3.4: Predicted values for estimating the expected mosquito catches by human landing catch and alternative traps, according to the linear 

model (Model 1). Numbers in the first column refer to the mosquitoes collected with a given trap. To obtain the estimate of the equivalent number 

that one would collect with HLC, refer to the column corresponding to the trap itself. Numbers in brackets are (95% credible intervals). 

  Expected HLC 

 Collected SUN BGS ITT-C MMX MTRC MTR 

a) Culex spp. 10 10 (9-11) 11 (10-12) 8 (8-9) 25 (22-30) 9 (8-9) 9 (9-10) 

20 20 (18-23) 23 (20-25) 16 (14-18) 68 (54-83) 17 (16-19) 19 (17-20) 

30 30 (26-35) 35 (30-39) 23 (20-26) 120 (94-150) 25 (23-28) 27 (25-30) 

40 41 (35-47) 47 (40-54) 30 (26-35) 179 (137-230) 33 (30-37) 36 (33-40) 

50 51 (43-59) 59 (49-68) 37 (32-43) 246 (185-320) 41 (37-46) 45 (40-51) 

60 61 (51-72) 71 (59-83) 44 (37-51) 318 (236-418) 49 (44-55) 54 (48-61) 

70 71 (59-84) 83 (69-98) 51 (43-59) 395 (290-525) 56 (50-63) 63 (55-71) 

80 81 (68-97) 96 (79-114) 57 (48-68) 476 (347-639) 64 (57-72) 72 (63-81) 

90 92 (76-110) 108 (89-129) 64 (53-76) 562 (406-760) 72 (63-81) 80 (70-91) 

100 102 (84-123) 121 (99-145) 70 (59-84) 652 (467-888) 79 (70-90) 89 (77-102) 

b) An. arabiensis 10 14 (12-16) 20 (16-25) 20 (17-24) 18 (14-22) 13 (11-14) 16 (14-18) 

20 31 (25-37) 51 (38-66) 50 (39-64) 43 (30-57) 27 (23-32) 36 (31-43) 

30 49 (39-60) 87 (62-117) 86 (63-112) 71 (48-99) 43 (36-51) 59 (49-71) 

40 68 (53-85) 126 (88-175) 125 (90-166) 102 (66-146) 59 (48-70) 84 (68-102) 

50 88 (67-111) 170 (115-239) 168 (118-227) 135 (85-198) 75 (61-91) 109 (88-135) 
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   Expected HLC      

Collected SUN BGS ITT-C MMX MTRC MTR 

b) An. arabiensis 60 108 (82-139) 216 (144-308) 213 (147-292) 170 (105-253) 92 (74-112) 136 (108-170) 

70 129 (97-167) 264 (174-382) 261 (178-361) 207 (125-311) 109 (87-134) 164 (129-207) 

80 150 (112-196) 315 (204-460) 311 (209-435) 245 (145-373) 127 (100-157) 192 (150-244) 

90 172 (127-226) 368 (235-543) 363 (241-512) 284 (166-437) 144 (114-179) 222 (172-283) 

100 194 (142-257) 423 (268-629) 417 (275-592) 325 (187-504) 162 (127-203) 251 (194-323) 

c) An. funestus 10 2 (1-7) 22 (3-67) 7 (3-13) 5 (1-16) 10 (5-16) 7 (3-11) 

20 3 (1-12) 63 (4-237) 12 (3-28) 9 (1-35) 19 (8-37) 12 (5-23) 

30 3 (1-17) 118 (4-497) 17 (4-44) 13 (1-58) 29 (10-60) 17 (6-36) 

40 4 (1-21) 185 (5-840) 22 (4-60) 17 (1-81) 39 (12-85) 22 (6-48) 

50 4 (1-26) 263 (5-1262) 27 (5-77) 21 (1-106) 49 (14-111) 26 (7-61) 

60 5 (1-30) 352 (6-1760) 32 (5-95) 26 (1-131) 59 (16-139) 31 (8-74) 

70 5 (1-34) 452 (6-2332) 37 (6-113) 30 (1-158) 69 (18-167) 35 (9-86) 

80 6 (1-38) 561 (6-2975) 42 (6-131) 34 (1-185) 79 (20-196) 40 (9-99) 

90 6 (1-42) 679 (7-3689) 47 (6-149) 38 (1-213) 89 (21-226) 44 (10-113) 

100 7 (1-46) 807 (7-4471) 51 (6-167) 43 (1-242) 99 (23-256) 49 (10-126) 
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In that sense, the trap that resulted in (relatively) narrower prediction was the 

MTR, where for 100 mosquitoes collected, the model would estimate 49 HLC-

equivalent, with CIs ranging between 10 and 126 (Table 3.3c). 

 

3.2.3 Culex species 

Overall, there were moderately higher correlations between the alternative 

traps and HLC for Culex catches than for the Anopheles groups (Table 3.2). 

There was however no major differences between the tested models (based on 

ΔDIC estimates), thus the simplest linear model was adopted based simply on 

being the thriftiest. Full details of all models are presented in Table 3.2a. 

Catches from MTRC and MTR traps had the highest correlations with HLCs (R2 

values ranging between 44.2% and 45.4%). On the other hand, MMX and ITT-C 

were the worst performing traps, and significantly underestimated the HLC 

catches (Table 3.2a, Figure 3.2). 

 

3.2.4 Interactive calibration tool 

To support detailed assessment and comparison of these and any future trap 

types for outdoor-sampling, I developed an interactive calibration tool 

incorporating the key parameters as identified in the analysis above. This tool is 

designed with simple user interfaces to simplify model inputs and outputs. For 

example, reporting full conversion tables for the Model 3 and 4, which include 

density dependence, would be challenging since the associated interaction terms 

would require every possible combination of mosquito group, trap types and 

catch range. To get estimates according to these models, readers can use the 

interactive online tool, which is available as an R Shiny App. The coefficients of 

these models will be updated regularly as additional data are gathered. This tool 

may be expanded to cover additional geographic regions and mosquito species 

not currently captures. The tool is hosted by an online server of the “Boyd Orr 

Centre for Population and Ecosystem Health” (University of Glasgow), and it is 

freely available at https://boydorr.gla.ac.uk/lucanelli/trapcalibration/. 

 

https://boydorr.gla.ac.uk/lucanelli/trapcalibration/
https://boydorr.gla.ac.uk/lucanelli/trapcalibration/


74 
 

3.3 Discussion 

Despite the growing importance of outdoor-biting mosquitoes and their role in 

malaria transmission in different settings, there are limited methods for 

sampling outdoors. Human Landing Catches remain common and are sometimes 

considered as the gold standard, but there are multiple ethical, cost and 

logistical concerns limiting their application [112,117]. Multiple alternative tools 

have therefore been tested as potential HLC replacements in different settings 

(e.g. [114,115,121,124,287,291,293]). While most efforts have focused on 

finding an alternative that catches as many mosquitoes as HLC, it is now 

recognized that what matters more is how representative the catches from any 

specific trap are relative to HLC catches. It means therefore that efforts to 

improve surveillance methods should include not just new traps, but also a 

statistical tool for assessing their representativeness.     

In this study, I therefore developed and validated a statistical framework for 

predicting credible intervals of HLC-derived exposure rates based on catches 

from multiple exposure-free alternatives. I have provided extensive comparison 

and corrections factors for the different trapping methods, as well as evidence 

for the most representative alternative to the HLC. Furthermore, I have 

translated the results of my modelling approach into an easy-to-use interactive 

calibration tool, which generates the expected means and credible intervals of 

nightly human biting rates (using HLC as a proxy) based on inputs of other trap 

catches.  

Of several trapping methods that have been proposed for outdoor mosquito 

sampling of malaria vectors; only a few have been calibrated relative to the HLC 

(e.g. [114]); and even fewer in outdoor setting (e.g. [282,288]). These traps 

provide disparate levels of efficacy relative to HLC, but rely primarily on two 

mutually inclusive principles; i) substituting human subjects by human odours 

and a carbon dioxide source (e.g. [182,289]); or ii) designing traps that protect 

human volunteers from bites with physical barriers (e.g. [124,287,288,299]). 

Many studies have assessed the correlations between mosquito abundance as 

estimated from the HLC and an alternative (e.g. [122,123,242,286–

288,291,294,304], but only a few provide the relevant quantitative estimates of 

“accuracy” (i.e. how close the estimates are to HLC) and precision (i.e. how 
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variable the estimates are) [122,286–288,291]. Furthermore, to my knowledge 

none have provided an explicit calibration tool to facilitate rapid predictions of 

mosquito counts from an alternative trap into an HLC-equivalent. Such a 

calibration tool would need to reflect the potential non-linear relationship 

between trap counts and HLC values; meaning that no single conversion “value” 

between methods may apply across the full range of mosquito densities. This 

hypothesis is backed-up by a multi-country study which evaluated the limitations 

of CDC light traps for estimating exposure to African malaria vectors indoors 

after observing non-linearity in its association with HLC [114].  

In general, the overall measure for goodness of fit (R2) for models predicting HLC 

counts was highest in An. funestus, followed by Culex species and An. 

arabiensis. Despite the higher value of R2 in An. funestus, the wider credible 

intervals were probably due to the much small sample sizes of this species (total 

mosquito caught with HLC: An. funestus = 226, An. arabiensis = 5282, Culex = 

7191); although there could also have been affected by other ecological features 

that were not directly captured with this study (e.g. other environmental 

conditions apart from humidity and temperature). During the model fitting 

exercise, temperature and humidity were excluded. The proportion of An. 

funestus in the study area compared to other species such as An. arabiensis and 

Culex has been historically low [88,89,103] though this species carries a 

significant amount of infection compared to other commonly known malaria 

vectors [88]. Study shows that they do bite outdoors in appreciable numbers but 

hard to relate trap counts from other methods to HLC equivalents for this 

species because of very high variability in data. 

The performance of some alternative traps in comparison to the HLC has been 

shown to be density dependent in several investigations (e.g. [114,294]). 

However, such density dependent impacts are usually only considered in terms 

of "intra-specific" dependencies, such as the baseline density of the target 

vector species [282,294], overlooking the larger mosquito community. However, 

the same mechanisms that cause intra-specific density dependence in trap 

performance may also cause dependence on the overall densities of all mosquito 

species lured to the trap, including species that aren't of public health 

importance. While such reliance on the wider mosquito community is plausible, 

it has yet to be tested in trap evaluation studies. This study and the calibration 
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tool that I developed therefore also included a robust assessment of how density 

dependence may play a role. Model 3 and 4 included these variables and will 

allow users to incorporate these as covariates when predicting outdoor-biting 

rates in their settings of interest.  

Overall, this study found little evidence that the relative performance of the 

trapping methods investigated here is modified by the density of the target 

mosquito taxa or other members of the mosquito community. Models that 

incorporated intra or inter specific density dependence in trap performance did 

not yield any substantial improvements over those assuming simple linear 

relationship between mosquito counts in the HLC and alternative method. This 

indicates that neither intra nor interspecific density dependence has a large 

impact on the relative efficiency of the alternative traps tested here. This was 

generally the case with exception of BGS and SUN trap which shows signs of both 

intra and interspecific density dependencies.  Given the wide range of trap 

catches, the calibration tool I developed here allows users to incorporate such 

density dependence effects (both within and between species) and to examine if 

these are applicable in their settings. Previously, (intraspecific) density 

dependence has been detected in the performance of some trapping methods 

[288,291,292]. However, evidence of density dependence in trap performance 

can be variable even for the same trapping method. For example, studies 

investigating the performance of the Mosquito Electrocuting Trap relative to the 

HLC have detected density dependence in some cases [114,124], but not others 

[288].  

One limitation of this study is that while the HLC is broadly considered the gold 

standard for collecting host seeking mosquitoes both indoors and outdoors, I only 

focused on traps for outdoor sampling. Although I compared a large number of 

trap types commonly used in Africa settings, other traps may perform differently 

and potentially better than some of the candidates investigated here 

[124,287,288]. Additional studies including other alternative traps for indoor and 

outdoor use would be of further value; with the calibration tool developed here 

providing a useful framework for their evaluation and comparison. Based on the 

results presented here, I recommend that for whatever trap used, the users 

should generate credible estimates of what the human biting rates (as estimated 

from HLC) could be.  Due to the potential variation in trap performance between 
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different ecological settings and mosquito species, I do not yet recommend any 

one specific trap as the best replacement for the HLC. Instead, I recommend 

that users consider and define the statistical relationships between a 

prospective trap and the HLC when planning surveillance and interpreting 

results. The interactive conversion tool I have developed here can be used for 

that purpose and is now available online as a Shiny App interface.  

 

3.4 Conclusion 

Methods for sampling outdoor-biting mosquitoes are urgently needed to improve 

surveillance of vector-borne diseases. Even if an alternative trap does not catch 

as many mosquitoes as the HLC, it is desirable to define the statistical 

relationship between them so that credible ranges of actual biting risk can be 

predicted in units of HLC equivalents. In this study, I successfully evaluated six 

different outdoor traps and developed a calibration tool to assess their 

performance relative to the HLC. This tool was validated using data from year-

round field collections and enabled a framework for predicting HLC-derived 

exposure rates representative of individual human biting risk. The tool 

incorporates multiple models, including two that allow assessment of effects of 

both inter and intra-specific density dependence of the performance of 

candidate traps. In the specific field trials from which data was obtained here, 

density-dependence between and within mosquito species influenced the 

performance of only one trap, BGS, but not any others. An interactive Shiny App 

calibration tool was developed for this and similar applications. I conclude that 

this calibration approach provides a valuable framework for assessing human 

exposure from different outdoor trapping methods. As the performance of 

candidate traps relative to the HLC varied between mosquito taxa, there was no 

single optimum. While all the candidate traps underestimated HLC catches, and 

thus human-biting rates. Further studies of trapping methods and associated 

evaluation criteria should focus on consistency and representativeness as 

opposed to simply finding traps that catches as many mosquitoes as HLC.    

 

 

https://boydorr.gla.ac.uk/lucanelli/trapcalibration/
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4.0 Chapter 4: Using Bayesian state-space models to understand 

the population dynamics of the dominant malaria vector, 

Anopheles funestus in rural Tanzania 

 

Published in Malaria Journal 2022: https://doi.org/10.1186/s12936-022-04189-4 

 

Abstract 

Background 

It is often assumed that the population dynamics of the malaria vector 

Anopheles funestus, its role in malaria transmission and the way it responds to 

interventions are similar to the more extensively characterized Anopheles 

gambiae.  However, An. funestus has several unique ecological features that 

could generate distinct transmission dynamics and responsiveness to 

interventions. The objectives of this work were to develop a model which will:  

1) reconstruct the population dynamics, survival, and fecundity of wild An. 

funestus populations in southern Tanzania, 2) quantify impacts of density 

dependence on the dynamics, and 3) assess seasonal fluctuations in An. funestus 

demography. Through quantifying the population dynamics of An. funestus, this 

model will enable analysis of how their stability and response to interventions 

may differ from that of An. gambiae sensu lato.  

 

Methods 

A Bayesian State Space Model (SSM) based on mosquito life history was fitted to 

time series data on the abundance of female An. funestus sensu stricto 

collected over 2 years in southern Tanzania. Prior values of fitness and 

demography were incorporated from empirical data on larval development, 

adult survival and fecundity from laboratory-reared first generation progeny of 

wild caught An. funestus. The model was structured to allow larval and adult 

fitness traits to vary seasonally in response to environmental covariates (i.e. 

temperature and rainfall), and for density dependency in larvae. The effects of 

density dependence and seasonality were measured through counterfactual 

examination of model fit with or without these covariates. 

 

https://doi.org/10.1186/s12936-022-04189-4
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Results 

The model accurately reconstructed the seasonal population dynamics of An. 

funestus and generated biologically-plausible values of their survival, larval 

development and fecundity in the wild. This model suggests that daily An. 

funestus survival and fecundity values annual were highly variable across the 

year, but did not show consistent seasonal trends in association with rainfall or 

temperature. While the model fit was somewhat improved by inclusion of 

density dependence, this was a relatively minor effect and suggests that this 

process is not as important for An. funestus as it is for An. gambiae populations. 

 

Conclusion 

The model's ability to accurately reconstruct the dynamics and demography of 

An. funestus could potentially be useful in simulating the response of these 

populations to vector control techniques deployed separately or in combination. 

The observed and simulated dynamics also suggests that An. funestus could be 

playing a role in year-round malaria transmission. 
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4.1 Background 

Anopheles funestus is one of the major malaria vectors in Africa and is widely 

distributed across the continent [66,68]. With the exception of Anopheles 

gambiae sensu stricto (s.s.), the species appears to have higher vectorial 

capacity than other members of the Anopheles gambiae complex 

[77,88,89,104,305,306]. Anopheles funestus makes a higher contribution to 

transmission than An. gambiae sensu lato (s.l.) in numerous parts in sub-Saharan 

Africa [88,109,204,207,307]; particularly in settings where An. gambiae 

abundance has plummeted due to either effective indoor-based vector control 

interventions [76,185] or environmental change. It is hypothesized that An. 

funestus persistence despite the recent scale-up of insecticide–treated nets may 

have been facilitated by their earlier development of strong physiological 

resistance [91].  

 

Anopheles funestus is typically grouped with An. gambiae s.l. when modelling 

transmission and formulating policies for malaria vector control [9,198,308]. The 

lack of explicit consideration of An. funestus ecology and transmission potential 

may be partially due to this species having been relatively neglected compared 

to An. gambiae. Comparatively the ecology of An. funestus s.l. is less well 

understood, and it is much more difficult to maintain under insectary or semi-

field conditions ([24], Chapter 2). However, this species has several unique 

ecological features, such as its different larval habitat and dry season 

persistence [95], that could give rise to distinct population dynamics and 

differentiate its response to core and supplementary interventions. For example, 

An. funestus prefers larger aquatic habitats that are semi-permanent or 

permanent throughout the year, and contain clear water with some emergent 

vegetation [95]. This differs from An. gambiae s.s. which generally prefer small 

temporary habitats, such as puddles, ditches or animal hoof prints [54,95], or 

An. arabiensis, which can breed extensively in rice fields and other sunlit open 

pools [66]. The use of more permanent larval habitats means that An. funestus 

has greater persistence through the driest periods of the year compared to An. 

gambiae [103], whose habitats evaporate quickly in the absence of rainfall 

[54,309]. This ecological feature means that the seasonal phenology of An. 

funestus and its response to aquatic microclimate differs from An. gambiae 
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[54,96,103]; and could thus generate differential response to seasonally-

targeted interventions, such as Indoor Residual Spraying (IRS) and larviciding. 

 

Differential use of aquatic habitats may also impact the relative importance of 

key intrinsic drivers of mosquito population dynamics such as density 

dependence. Density dependence in malaria vectors occurs during larval 

development as a product of competition for space and nutritional resources 

[59,310]. In space-limited habitats, high larval densities can influence larval 

development rates and survival, but also subsequent adult fitness traits such as 

body size, survival, fecundity and mating success [53,57,61,311]. While there is 

evidence that density dependence is an important driver of An. gambiae 

population dynamics [59], the relative importance of this process for An. 

funestus is unknown. Given that larval crowding and competition are less likely 

within the larger habitats preferred by An. funestus, density dependence is 

hypothesised to be less pronounced for this vector species. Quantifying the 

strength of density dependence is important to inform the ease with which 

vector populations can be suppressed and how quickly they can recover 

[57,310,312].  

 

Models of vector population dynamics and their response to interventions must 

be parameterised by reliable estimates of their demography and fitness. For 

vectors in the An. gambiae complex, such estimates are often acquired from 

insectary and semi-field studies (e.g. [78,81,135,176,225,313]) as well as field 

studies. Similar data has been difficult to obtain for An. funestus because of its 

poorly understood ecology and the difficulties of creating laboratory colonies; 

which so far has been achieved on only two occasions [24,207,222]. State-space 

models (SSM) provide an alternative approach to indirectly estimate these 

parameters by fitting a population dynamics model to observed time series data 

[159,175]. These models are widely used in other fields of ecology and 

conservation biology to investigate the population dynamics of other animals 

[159,180] and guide management decisions [180]. However, these models have 

so far had limited update in medical entomology. Given data on population 

fluctuations are available, these models can infer and estimate plausible 

demographic rates that could generate the observed dynamics [179].  
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SSMs are time-series models that distinguish between two stochastic 

components, namely, the process (i.e. biological) which captures sequential 

dependencies between population components (e.g. eggs, larvae, pupae), and 

an observation component which captures and corrects for biases and 

imprecisions in the data-collection process. Prior knowledge of model 

parameters is used to bolster the information content of the time series data 

with existing expert or laboratory data and uncertainty in estimates. Population 

projections are then quantified on the basis of posterior probability distributions 

for parameters and population states. SSMs have recently been used to elucidate 

the dynamics and impacts of interventions on malaria vectors in laboratory and 

semi field populations [135,176], but have not yet been applied to estimate An. 

funestus vector demographics in the wild. Here, an innovative SSM application 

was developed to describe the dynamics of wild An. funestus populations in 

Tanzania, and use it to assess extrinsic (environmental) and intrinsic (density 

dependent) drivers of their fitness and demography for the first time. Empirical 

data from laboratory experiments on An. funestus colonization (Chapter 2, [24]) 

were incorporated together with published literature and the wild population 

data to develop an SSM. Time series field data collected in 2015 [88] and 2018 in 

southern Tanzania, and corresponding environmental information were used to 

validate the model. Specific aims were: 1) to accurately reconstruct the 

population dynamics, survival and fecundity of wild An. funestus populations in 

southern Tanzania, 2) assess the impact of density dependence on the dynamics, 

and 3) to identify and quantify seasonal variations in An. funestus abundance 

and demography. 

 

4.2 Methods 

4.2.1 Time series data on wild An. funestus populations 

Indoor densities of female An. funestus s.l. adults were recorded over 12 months 

of entomological surveys conducted in three villages (Tulizamoyo, Ikwambi and 

Sululu) in Kilombero (8.1539ºS, 36.6870ºE) and Ulanga (8.3124ºS, 36.6879ºE) 

districts, south-eastern Tanzania from June 2018 to May 2019 (Figure 4.1). The 

villages were selected because of the high abundance of An. funestus s.l. within 

which An. funestus s.s. is the dominant sibling species (93%) [1]. Annual rainfall 
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was 1200mm-1800mm, and temperature, 20 oC-32 oC. CDC Light traps [129] were 

used to sample host-seeking mosquitoes from 6pm to 6am for 5 days per week, 4 

weeks a month for 12 months in 10-15 houses per village (repeated collection 

from the same households). The houses were randomly selected and consent 

obtained from household heads. The mosquitoes were sorted by taxa and sex, 

and females further classified as unfed, blood-fed or gravid. Daily climatic data 

(rainfall and temperature) were obtained from a weather station, approximately 

~20km from the farthest village.  

 

 

Figure 4.1: A map depicting the locations of various study villages where mosquito 

sampling was carried out in 2015–2016 and 2018–2019. 

 

To complement this, additional data on An. funestus were extracted from a 2015 

dataset from three other villages in Ulanga district (Mavimba, Minepa and 

Kivukoni) (Figure 4.1) [88]. These data were collected five days per week for a 

period of 12 months. This data allowed me to fit the model simultaneously to 

multiple time series so that it could learn hierarchically from An. funestus 

trajectories enfolding in different years and locations. This additional data has 

previously been described elsewhere and used to demonstrate the 

epidemiological dominance of An. funestus, which now contributes >85% of all 
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malaria infections in the region [88]. Here, time series data collected in 2015 

was aggregated and considered as “population 1” and collection in 2018/2019 

was considered as “population 2”   

 

4.2.2 Prior information on life-history and gonotrophic cycle stages 

Female An. funestus adults collected from the same three villages in 2018 were 

maintained in insectary conditions for one generation to estimate baseline 

fitness traits as already described in Chapter 2 and Ngowo et al. [24]. Data 

collected from this 1st-generation laboratory progeny included: a) proportion of 

eggs that hatched into larvae, larvae that transitioned to pupae, and of pupae 

that emerged into adults, b) the length of the transition periods (days) between 

life stages :(i) eggs to 1st instar larvae, (ii) 1st instar larvae to pupae, and (iii) 

pupae to unfed adult female (one day post emergence), c) transition period of 

adult females between three different stages of their gonotrophic cycle, i.e. 

unfed, blood-fed and gravid.  

 

The gonotrophic cycle starts with ‘unfed’ females who transition to ‘blood-fed’ 

after obtaining a blood meal. In the wild, the first gonotrophic cycle usually 

starts after unfed females have mated [31]; which is assumed to happen soon 

after emergence. In insectary experiments, females had access to males 

immediately on emergence. As the blood meal is digested, blood-fed females 

transition into the ‘gravid’ state during which eggs develop. Gravid females then 

oviposit their eggs into aquatic habitats and return to the ‘unfed’ stage with the 

cycle begins again (Figure 4.2). In the wild, the rate of transition between these 

gonotrophic stages is governed by both intrinsic and extrinsic environmental 

conditions including the availability of blood-meals and oviposition sites [157]. In 

the insectary, the first blood-meal (arm-feeding) was offered 5 days post 

emergence to ensure individuals had sufficient time for mating.  

 

Per capita fecundity was defined as the number of eggs laid per fully bloodfed 

adult female. The rate of surviving between life-history stages or gonotrophic 

stages were calculated as the inverse of the number of days required to transit 

from one stage to the next: 

 𝑠𝑚 = (𝑗𝑚)1/𝑟                                                             (1)  
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Here, 𝑚 is the life cycle stage, 𝑗 is proportion survived as the percentage of the 

total from preceding life stage, 𝑟 is the average number of days it took to transit 

from one life stage to another, and  𝑠 is the daily rate of survival within the 

stage (Table 4.1).  

 

 

Figure 4.2: Schematic representation of the state-space population model showing 

different life stages compartment (circles) and flows (arrows) of Anopheles funestus.    

Abundance data were only available for unfed, blood-fed and gravid stages. The model 

assumes that once a gravid mosquito has laid eggs, they return to the unfed stage. The 

annotations are described in Table 4.1. The model incorporates six life stages (eggs, 

larvae, pupae, unfed, bloodfed and gravid) of An. funestus. 

 

4.2.3 Biological process components of the Bayesian SSMs 

Daily survival: The daily survival of larval stages was assumed to be the same 

for all instar stages. Adult survival was assumed to be the same for unfed, blood-

fed and gravid females. Survival probabilities (𝑠𝑙, 𝑠𝑎, 𝑠𝑓 , 𝑠𝑣) were linked to their 

covariates through a logit transformation of linear predictors (here, subscripts 

 𝑙, 𝑎, 𝑓, 𝑣  refer to larvae, unfed, blood-fed and gravid, respectively). Pupal (𝑆𝑝) 

and egg (𝑆𝑒) survival probabilities were considered to be independent of any 
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climatic and density-dependent covariates, and were treated as a binomial 

distribution, with baseline rates assigned priors as described in eq. 16-17.  

 

A range of covariates hypothesized to be associated with the demography of An. 

funestus were incorporated to allow baseline larval and adult survival to vary 

with environmental conditions. Rainfall (current and 1 week-lagged) and 

temperature were incorporated into the larval survival model. Rainfall regulates 

the availability and permanence of aquatic habitats, thus influencing both 

survival and carrying capacity of larval habitats [62]. Density dependence was 

incorporated into the model of larval survival [59] to assess whether this could 

improve the fit of the adult population dynamics model. Additionally, the speed 

of larval development was modelled as a function of temperature based on its 

known importance [25,26]. The daily survival of larvae was thus defined as a 

function of daily rainfall (current and lagged), daily temperature and density 

dependence. The daily survival rates (lowercase 𝑠𝑙(𝑡)) of larvae were estimated 

through a logit transformation of linear predictors (uppercase 𝑆𝑙(𝑡)). 

 

𝑠𝑙(𝑡)  =
exp(𝑆𝑙(𝑡))

1 + exp(𝑆𝑙(𝑡))
                                               (2)  

 

Specifically,  𝑆𝑙(𝑡) is written as a function of both intrinsic and extrinsic drivers: 

 

𝑆𝑙(𝑡) = 𝛽0 − 𝛽1𝑅(𝑡−1) − 𝛽2𝐷(𝑡−1) (1 −
𝛽3𝑄(𝑡−1)

max(𝑄)
) +  𝛽4𝑇(𝑡−1) −  𝛽5𝑇(𝑡−1)

2 +  𝜀𝑙,𝑡     (3) 

 

𝜀𝑙 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0,   𝜎𝑙,𝑡)                                               (4) 

 

Here,  𝛽0  is the baseline daily larval survival on the linear scale. A survival 

probability prior was assigned under zero rainfall and average temperature (i.e. 

27°C) and then calculated the intercept of 𝛽0 to reflect this prior information. 

When there is no effect of any environmental covariates prior takes values 

between 0.80-1, Table 4.1. The coefficient 𝛽1 quantifies the effect of current 

rainfall (𝑅); with the envisioned scenario being that higher 𝑅 (i.e. flooding) 

tends to wash away larvae hence reducing the baseline survival [314]. This 𝛽1 

was defined by an informative gamma prior with shape = 5.382 and rate of 46.4 
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(Table 4.2) which permits anything from no rain effects to 100% mortality. The 

coefficient 𝛽2 quantifies the effect of larval density at time 𝑡 on larval survival. 

A monotonic negative relationship was assumed based on the biologically-

plausible hypothesis that larval survival is reduced at high larval density because 

of resource competition and intraspecific cannibalism [53,63]. This coefficient 

𝛽2 was defined by an informative gamma prior with shape of 0.5 and rate of 1 

(Table 4.2), which allows the impact of density to range from no effect to 

complete annihilation.  

 

The term inside brackets in Eq. (3) represents the fact that density dependence 

needs to be modulated by the availability of larval habitat. The availability of 

suitable aquatic habitats for oviposition will increase with rainfall; thus 

potentially reducing the crowding of larvae into the remaining habitats that 

persist during the dry season. This hypothesis has been supported for An. 

gambiae s.l., where their seasonal population dynamics can be explained by 

models incorporating a rainfall-dependent carrying capacity [59]. Here, the 

coefficient 𝛽3 was a proportion that captures the potential interaction between 

larval habitat availability (defined as the cumulative rainfall (Q) over the past 

week) and larval density (𝐷). When rain in the recent week has been the 

maximum observed (i.e. 𝑄 = max (𝑄)), then (1 −
𝛽3𝑄(𝑡−1)

max(𝑄)
) would be the smallest 

amount of density dependency experienced by An. funestus. The prior 

distribution for 𝛽3 was defined by an upward-biased beta prior with mean 0.9 

and variance of 0.01 allowing 𝛽3 to have positive impact on larvae survival. 

 

Additional covariates were incorporated to assess the role of temperature on 

larval survival (via the coefficients 𝛽4,  𝛽5). The parameter 𝛽4 captures the 

potentially positive effects of temperature on daily larval survival, which were 

defined by an uninformative gamma prior with mean of 1 and variance of 0.1 

considering 27°C as the optimal temperature (𝜌) for maximum survival [315]. 

This prior allows temperature to vary from having no impact, to high positive 

impact on larval survival. Alternatively, the relationship between larval survival 

and temperature may be characterized by survival being reduced at low or very 

high temperature, and peaking in the middle [47]. The coefficient  𝛽5 was 

incorporated to capture this potential curvilinear relationship but was 
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dependent on 𝛽4, to ensure that the optimum temperature was fixed at 27°C, 

(𝛽5 =
𝛽4

2𝜌
). The prior of 𝛽4 allowed extreme temperatures values away from the 

optimum to range from having no effect to generating 100% mortality. The 

parameter 𝜀𝑙 is capturing the unexplained stochasticity associated with larval 

survival. This error term was defined by a normal prior with mean of 0 and a 

precision 𝜎𝑙 from a gamma distribution with both shape and rate of 10. 

 

The linear predictors for survival of unfed, blood-fed, gravid 

(uppercase  𝑆𝑎(𝑡), 𝑆𝑓(𝑡), 𝑆𝑣(𝑡)) and daily probabilities of survival 

(lowercase 𝑠𝑎(𝑡),  𝑠𝑓(𝑡),  𝑠𝑣(𝑡)) were structured similarly to eq 3. The daily 

survival probabilities of adult stages were thus defined as the functions of daily 

temperature; such that an increase in temperature would result in an increase in 

the survival of all three adults stages and reduction in survival when 

temperature become lethal [103,316]. The biological relationship between adult 

survival and temperature was assumed to be curvilinear [103,316,317]. 

 

𝑆𝑎(𝑡) = 𝜑0 + 𝜑1𝑇(𝑡−1)  −  𝜑2𝑇(𝑡−1)
2 +  𝜀𝑎,𝑡                                              (5) 

 

𝑆𝑓(𝑡) = 𝜃0 + 𝜃1𝑇(𝑡−1)  −  𝜃2𝑇(𝑡−1)
2  +  𝜀𝑓,𝑡                                                (6) 

 

𝑆𝑣(𝑡) = 𝛼0 + 𝛼1𝑇(𝑡−1)  −  𝛼2𝑇(𝑡−1)
2 + 𝜀𝑣,𝑡                                              (7) 

 

𝜀𝑡∗ ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0,   𝜎𝑡∗)                                                                           (8)    

 

Here, 𝜑0,  𝜃0,   and  𝛼0 refer to the baseline survival of unfed, blood-fed and 

gravid females respectively on a linear scale, under fixed temperature 

conditions of 27 ± 2°C (insectary standard under which An. funestus have 

maximum survival [47,317]), and assumes no blood meal limitation. The positive 

impact of temperature on all three life stages was represented by the 

coefficients 𝜑1,  𝜃1 and 𝛼1 with an uninformative gamma prior with mean 12.5 

and variance of 6.25. The coefficients  𝜑2,  𝜃2 and 𝛼2 correspond to the 

curvilinear effect of temperature on the survival of all three adult stages with 

their priors derived from the ratio between the linear coefficient and twice 
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optimum temperature. This formulation ensured that the optimum temperature 

is fixed at (27°C). The stochastic terms 𝜀𝑎,  𝜀𝑓 , 𝜀𝑣 capture unexplained variation 

associated with survival during the distinct gonotrophic stages. These error 

terms (𝜀∗) were defined by normal priors with mean of 0 and a precision 𝜎∗ from 

a gamma distribution with both shape and rate of 10 for unfed, blood-fed and 

gravid females.   

  

Development between stages: The daily development probability from one life 

stage to the next was defined as the reciprocal of the development time (days) 

between the stages (assuming that all development times take longer than a 

day). An increase in temperature was assumed to reduce the development 

period of larvae [26,316,318,319]. 

 

𝑙(𝑡) =
exp(𝐿(𝑡))

1 + exp(𝐿(𝑡))
                                                                           (9)  

 

Specifically, 𝐿(𝑡)  is written as the function of temperature covariates: 

 

 𝐿(𝑡) =  𝐶0 + 𝐶1𝑇(𝑡−1)                                                                          (10) 

 

Here 𝐶0 is the baseline daily development period on a linear scale defined by an 

informative beta prior with range defined in eq 16-17 (Table 4.1). The 

coefficient 𝐶1 explains the positive effect of temperature on larval development 

period, with its prior values derived from an uninformative gamma prior with 

mean 0.001 and standard deviation 0.001.  

 

The development time for other life history stages (eggs and pupae) and the 

time between gonotrophic stages were assumed to be independent of 

temperature and other environmental covariates. The numbers of individuals 

(𝒦𝑚) graduating from one stage to the next each day were modelled as a 

binomial process Eq 11.  

 

𝒦𝑚(𝑡)~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟𝑚,  𝒲𝑚−1(𝑡))                                                              (11) 
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Here 𝑟𝑚 is a development rate as defined in eq 11 for 𝑚 stage, with assigned 

informative prior values as described through a generic prior in eq 16-17. 

Parameter 𝒲𝑚−1(𝑡) refers to the number surviving the preceding life stage.    

 

Fecundity: The number of eggs laid at each time step was drawn from a Poisson 

distribution whose rate was the product of per-capita fecundity (number of eggs 

laid by blood-fed An. funestus under insectary conditions (𝑏0), a penalized rate 

for the egg survival (𝑠𝑒), the number of gravid mosquitoes (𝑉(𝑡−1)) and ratio of 

females-males (assumed to be 0.5) as assessed at the pupae stage [24].  

 

𝑏𝑡 =  exp (𝑏0 +   𝜀𝑏,𝑡)                                                                                      (12) 

 

𝐵(𝑡)~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(0.5𝑏𝑡𝑠𝑒𝑉(𝑡−1) )                                                                      (13) 

 

The error term 𝜀𝑏 was defined as a normal process with mean of 0 and a 

precision from a vague gamma prior with both shape and rate of 10. 

 

4.2.4 Observation-derived components of the Bayesian SSMs 

Observations of the abundance of adults (unfed, bloodfed, gravid) 𝐴 at time 𝑡 

were modelled as a normal distribution with varying daily means ā determined 

by the biological model and a precision  𝜏 representing observation error. A fixed 

coefficient of variation (𝜉) for the daily observation process was assumed and 

assigned an uninformative prior with values between 0.1-0.9 (Table 4.1). The 

CDC light trap typically samples mosquitoes from populations of unknown size, 

for which the daily catch rates are difficult to quantify independently. A 

parameter 𝜗 was therefore incorporated both into the precision 𝜏 and daily 

varying means to account for an observed weekly periodicity in adult abundance, 

which was otherwise hard to interpret. The weekly periodicity observed here 

was a consistent reduction in the catches between the first day of weekly 

collection and the last day. This parameter was allowed to vary both by day of 

the week 𝑗 and between the two populations 𝑘 (2015 and 2018-19 datasets). The 

𝜗 values were derived from a logit function  exp(𝜌) /(1 + exp(𝜌)), with 𝜌 defined 

from the uninformative normal prior with mean and standard deviation of 0 and 
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10 respectively. Therefore precision 𝜏 can be written as 
1

(𝜉𝑡ā𝑡𝜗𝑗𝑘)2 for all the adult 

stages. Thereafter, the observation abundance was estimated as follows:  

 

𝐴(𝑡) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (ā𝑡𝜗𝑗𝑘 ,
1

(𝜉𝑡ā𝑡𝜗𝑗𝑘)2
)                                          (14) 

 

Trap bias: The trapping method (CDC Light traps) primarily targets unfed host-

seeking mosquitoes [129]. Blood fed and gravid mosquitoes are assumed to no 

longer host-seek, and represent a small proportion (~0.5-3%) of the females 

caught in CDC traps [88,103]). To account for these biases in sampling, a new 

parameter of “trap-biasness” 𝜔 was added in the observation model for both 

precision 𝜏 and varying daily means ā𝜂. The prior values for 𝜔  were estimated 

from independent studies from the same locations [88,195], and ranged from 

0.05-0.15 (Table 4.1), with variations between the two life stages 𝜂. Therefore, 

the observation model for blood-fed and gravid (𝐴𝜂) was rewritten by modifying 

eq 14 as follows 

 

𝐴𝜂(𝑡) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (ā𝜂𝑡𝜗𝑗𝑘𝜔𝜂 ,
1

(𝜉𝑡ā𝜂𝑡𝜗𝑗𝑘𝜔𝜂)2
)                                          (15) 

 

Prior distributions: Since this model contains a large number of parameters, use 

of un-bounded informative priors restricted model convergence and mixing. I 

therefore opted for bounded and rescaled beta distributions of the informative 

priors [320]: 

 

      𝑌~𝐵𝑒𝑡𝑎 (5, 5)                                                                                         (16)       

 

𝑋 = 𝑋𝑚𝑖𝑛 + 𝑌(𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛)                                                                 (17) 

 

Here 𝑌 is a dummy variable that takes values in the interval [0, 1] with mean of 

0.5 and standard deviation of 0.15, selected to provide low likelihood at the 

extremes of its range, 0 and 1. The values of 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 define the range of 

the parameter of interest as dictated by the prior information. Since the 

information on priors was provided in form of mean (𝜇) and standard deviation 
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(𝜎), these rescaling values were defined as  𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥 =  𝜇 ± 2𝜎. Survival, 

development period, trap-biasness, variability in daily catches and fecundity 

parameters were all assigned priors according to Eq. 17.    

 

4.2.5 Model selection, model fitting and outputs 

Model fitting was done using the R statistical software version 4.0.5 [246]. 

Population models were fitted using a Markov Chain and Monte Carlo sampling 

(MCMC) algorithm via the JAGS software [301] interfaced to R via the runjags 

package [302] (code provided in Appendix 4). To achieve convergence, the 

model with 6 chains was run in parallel for 105 samples with a burn-in of  105, 

keeping every 10th iteration for memory-saving reasons. Convergence was 

assessed by visual investigation of the trace plots, prior-posterior distribution 

using the coda package [321], effective sample sizes and the Gelman Rubin 

diagnostic [322]. Model comparisons were done using the deviance information 

criterion (DIC) [323], and the ones with the lowest DIC selected as the most 

preferred. The predicted and observed densities of An. funestus adult females 

were plotted to evaluate consistent prediction biases visually. Posterior means 

and 95% credible intervals for the key survival parameters, development period, 

density dependence, environmental covariates (temperature and rainfall) and 

fecundity were also reported to reveal different dynamical aspects of the 

system. 

 

4.3 Results 

4.3.1 Population trajectories and seasonal trends 

A Bayesian state-space model was used to describe the dynamics of wild 

populations of An. funestus. The full results, including summaries of posterior 

means for all the fitness and demographic parameters are reported in Table 4.1. 

The most parsimonious model (model-7, Table 4.3) included density 

dependence, and temperature and rainfall (current and lagged) impacts on 

larval survival, and the effect of temperature on the larval development period. 

The only covariate that was not retained in the “model-7” was temperature 

impacts on adult survival. This model satisfactorily reconstructed the population 
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dynamics of An. funestus in the study villages, with all environmental covariate 

relaxation applied based on DIC selection. Population trajectories were 

estimated for all six An. funestus life history and gonotrophic stages after 

accounting for potential impacts of environmental covariates and density 

dependence (Figure 4.3).  

 

These trajectories reflect the annual trend in abundance spanning in periods 

from low or no rainfall to high rainfall. All trajectories show a relatively high 

abundance of An. funestus right after the rainy season (May-June), followed by 

reduced but sustained abundance during the dry period (August-October) for all 

the life stages. After accounting for observation biases during sampling, the 

observed abundance of unfed, gravid and blood-fed groups largely falls within 

the credible intervals of the predicted values (Figure 4.4). 

 

4.3.2 Survival and fecundity 

Estimated An. funestus larval survival trajectories demonstrate substantial mean 

variability during the two seasons, with no clear pattern of seasonality (Figures 

4.5a and 4.5b, Table 4.1) due large credible intervals. Similarly, the survival 

trajectories of the adult stages (all gonotrophic states) were variable throughout 

the year, with daily survival rate ranging from 0.2 to 1.0 and not consistently 

differing between wet and dry seasons (Figures 4.5c to 4.5h, Table 4.1). Per 

capita fecundity was estimated to be between 75 and 81 eggs per female An. 

funestus (Table 4.1). While the abundance of this species fluctuated seasonally, 

per capita fecundity remained consistent throughout the year (Figures 4.5k and 

4.5l). 

 

Temperature was an important predictor of larval survival with a curvilinear 

relationship (ΔDIC = 138, Table 4.3, Figure 4.6b). Temperature also had a 

positive monotonic relationship on the larval development rate (ΔDIC = 336, 

Table 4.3, Figure 4.6a); with the larval development period estimated to last 

about 16 days on average. 
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Table 4.1: Priors as used in the state-space population models of Anopheles funestus and the estimated posteriors mean and 95% credible intervals. 

Day (𝑑−1) was considered as a unit of time in this modelling development. 

Parameter Prior distribution Posterior distribution 

Notation Description Type Source Mean 95-percentiles Mean 95-percentiles 

𝑠𝑒 Eggs daily survival rate Beta This study 0.794 [0.619, 1] 0.789 [0.776, 0.804] 

𝜆 Eggs development rate (𝑑−1) Beta This study 0.5 [0.4, 0.6] 0.499 [0.485, 0.514] 

𝛽0 Baseline larval daily survival Beta This study 0.923 [0.801, 1] 0.950 [0.943, 0.956] 

𝐶0 Baseline larval development rate (𝑑−1) Beta This study 0.063 [0.055, 0.071] 0.063 [0.062, 0.064] 

𝑠𝑝 Pupae daily survival rate Beta This study 0.941 [0.874, 1] 0.944 [0.930, 0.950] 

𝑝𝑟 Pupae development rate (𝑑−1) Beta This study 0.522 [0.253, 0.792] 0.525 [0.506, 0.546] 

𝜑0 Baseline unfed daily survival Beta This study 0.935 [0.877, 0.992] 0.937 [0.933, 0.941] 

𝑎𝑟 Unfed development rate (𝑑−1) Beta This study 0.20 [0.19, 0.21] 0.200 [0.198, 0.201] 

𝜃0   Baseline blood-fed daily survival Beta This study 0.807 [0.654, 0.961] 0.810 [0.799, 0.820] 

𝑓𝑟 Blood-fed development rate (𝑑−1) Beta This study 0.25 [0.05, 0.45] 0.269 [0.256, 0.280] 

𝛼0 Baseline gravid daily survival Beta This study 0.904 [0.848, 0.961] 0.903 [0.899, 0.907] 

𝑣𝑟 Gravid development rate (𝑑−1) Beta This study 0.333 [0.133, 0.533] 0.311 [0.297, 0.324] 

𝑏0 No. eggs/female (Per capita fecundity) Beta This study 80 [60, 100] 78 [75, 81] 

𝜉 Coefficient of variability 
Beta 

Uninformative 

prior 
0.5 [0.1, 0.9] 0.79 [0.810, 0.825] 
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Parameter Prior distribution Posterior distribution 

Notation Description Type Source Mean 95-percentiles Mean 95-percentiles 

𝜔𝜂=𝑓 Coefficient of “Trap biasness” for the 

blood-fed  
Beta 

Msugupakyula 

et al. [195] and 

Kaindoa  et al. 

[88] 

0.1 [0.05, 0.15] 0.122 [0.117, 0.127] 

𝜔𝜂=𝑣 Coefficient of “Trap biasness” for the 

gravid 
 0.505*𝜔𝑓 [0.025,0.076] 0.062 [0.059, 0.064] 
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Figure 4.3: Reconstruction of the abundance trajectories for all the six life-stages. The 

red line indicates the mean posterior values and the respective 95% confidence intervals 

are shown in “sky-blue”. Left column (a,c,e,g,i,k) is data collected from June 2018 to 

May 2019 and right column (b,d,f,h,j,l) is data collected from Jan-Dec 2015. The grey 

area indicates the period with rainfall.   
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Additionally, daily rainfall (flooding) was estimated to be an important driver for 

of dynamics of An. funestus by reducing larval survival (ΔDIC = 5605, Table 4.3, 

Figure 4.6c) with a negative monotonic relationship. 

 

 

Figure 4.4: Observed vs. model estimated values for the three adult stages with data 

collected using CDC light trap both in June 2018 –May 2019 (left column- a,c,d) and Jan-

Dec 2015 (right column- b,d,e). Red lines are the model estimated trajectories with 

“sky-blue” showing their 95% credible intervals. The blue circles are the observed 

values from the Light trap catches. Grey areas are the periods with rainfalls episodes.  

 

4.3.3 Effects of density dependence 

Density dependence was the only intrinsic feature incorporated in this dynamic 

model of An. funestus. The model was able to converge efficiently without 

crashing when density dependency was removed, suggesting this process plays a 

detectable but relatively minor role population regulation when compared with 

extrinsic factors (ΔDIC = 222, Table 4.3, Figure 4.6e). To verify this, a simulation 
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was run and discovered that the estimated density dependence was actually 

quite low (this was detailed described in the next Chapter 5). The model fitting 

process also suggested an interaction parameter (𝛽3) between larvae density (𝐷) 

and one week cumulative rainfall before sampling day (𝑄) contributes to An. 

funestus dynamics by positively increasing larval survival (ΔDIC = 38, Table 4.3, 

Figure 4.6d).  

 

Figure 4.5: Reconstruction of the survival trajectories for all the four stages (larvae, 

unfed, bloodfed, and gravid) which were affected by the environmental covariates. The 

two bottom rows show the larval development period and fecundity trends. Left column 

(a,c,e,g,i,k) is trajectories from June 2018 to May 2019 and right column (b,d,f,h,j,l) is 

from Jan-Dec 2015. Grey area is the period with rainfall. Y-axis shows the survival rates 

of different life stages and the bottom row (k&l) shows per-capita fecundity   
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Figure 4.6: Relationship between environmental covariates and fitness parameters as 

estimated from the SSMs of population dynamic of Anopheles funestus. The predictions 

were produced from a posterior value.   
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Table 4.2: Priors for the intrinsic and extrinsic drivers of the population dynamic as used in the state-space model of Anopheles funestus and the 

estimated posteriors mean and 95% credible intervals. 

Parameter Prior distribution Posterior distribution 

Notation Description Type Source Mean sd Mean 95-percentiles 

𝛽1 Linear coefficient for rainfall on larvae 

survival rate 
Gamma 

Uninformative 

prior 
0.1 0.05 0.01681 [0.00604, 0.0308] 

𝛽2 Density dependent coefficient for 

larvae on larvae survival rate 
Gamma 

Uninformative 

prior 
0.5 0.7 1.0283e-4 [1.0e-4, 1.1205e-4] 

𝛽3 Coefficient  of interaction between 

larvae and rainfall on larvae survival 
Beta 

Upward-Biased 

prior 
0.9 0.1 0.9601 [0.80810, 0.99999] 

𝛽4 Linear coefficient for temperature on 

larvae survival rate 
Gamma 

Uninformative 

prior 
1 0.316 0.487 [0.203, 0.806] 

𝛽5 Quadratic coefficient for temperature 

on larvae survival rate 
 

a function of  

𝛽4  
𝛽5 =

𝛽4

2 ∗ 𝜌
 -0.00902 [-0.01492,-0.00376] 

𝐶1 Linear coefficient for temperature on 

larvae development rate 
Gamma 

Uninformative 

prior 
0.001 0.001 5.362e-4 [2.51e-8, 2.311e-3] 

𝜑1 Linear coefficient for temperature on 

unfed, survival rate 
Gamma 

Uninformative 

prior 

 

1 
0.316 0.074 [0.068, 0.081] 

𝜑2 Quadratic coefficient for temperature 

on unfed survival rate 
Gamma 

a function of  

𝜑1 
𝜑2 =

𝜑1

2 ∗ 𝜌
 -1.378e-3 [-1.50e-3, -1.26e-3] 
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Parameter Prior distribution Posterior distribution 

Notation Description Type Source Mean sd Mean 95-percentiles 

 𝜃1 Linear coefficient for temperature on 

bloodfed survival rate 
Gamma 

Uninformative 

prior 

 

1 
0.316 0.074 [0.068, 0.081] 

 𝜃2 Quadratic coefficient for temperature 

on bloodfed survival rate 
Gamma 

a function of  

 𝜃1 
 𝜃2 =

 𝜃1

2 ∗ 𝜌
 -1.378e-3 [-1.50e-3, -1.26e-3] 

𝛼1 Linear coefficient for temperature on 

gravid survival rate 
Gamma 

Uninformative 

prior 
1 0.316 0.074 [0.068, 0.081] 

𝛼2 Quadratic coefficient for temperature 

on gravid survival rate 
Gamma 

a function of  

𝛼1 
𝛼2 =

𝛼1

2 ∗ 𝜌
 -1.378e-3 [-1.50e-3, -1.26e-3] 
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Table 4.3: Model selection: Description of all models fitted with and without environmental covariates and their corresponding delta-Deviance 

Information Criterion ΔDIC  

Model Removed covariate(s) Fitness measure 
Penalized 

Deviance (pD)/DIC 
ΔpD/DIC 

Model 1-Full None 35500 25339 

Model 2 Temperature Larval survival 10555 394 

Model 3 Rainfall Larval survival 10277 116 

Model 4 One week cummulative rainfall*density dependency Larval survival 11886 1725 

Model 5 Density dependency Larval survival 11011 850 

Model 6 Temperature Larval development period 10873 712 

Model 7^ Temperature Adult survival 10161 0 

Model 8 Model 7 – Temperature Larval survival 10299 138 

Model 9 Model 7 – Rainfall Larval survival 15766 5605 

Model 10 Model 7 - 1 week rainfall:density dependency Larval survival 10199 38 

Model 11 Model 7 - Density dependency Larval survival 10383 222 

Model 12 Model 7 - Temperature Larval development 10497 336 

^ The best model (lowest DIC/Penalized Deviance) value-model-7 followed by model-10. Model 8-12 consists of model-7 minus one more 

environmental covariate. Model 4 involved the removal of the interaction term.    
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Figure 4.7: Goodness of fit: Observed versus predicted unfed, bloodfed and gravid 

densities across all populations. Adjusted R-squared, intercept and slope values are 

from a linear model of the predicted against observed values. Dotted lines correspond 

to 1:1 line. Left column (a,c,d) is data collected from June 2018 to May 2019 and right 

column (b,d,e) is data from Jan-Dec 2015.  
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4.4 Discussion  

A state-space model (SSM) was developed and fit to field and laboratory data to 

accurately reconstruct the population dynamics of wild population of An. 

funestus from Tanzania. The SSM inferred the trajectories of multiple life-cycle 

and gonotrophic stages of wild An. funestus females. This allowed the 

reconstruction of the observed trajectories of larvae and adult females for wild 

An. funestus in Tanzania for the first time. This analysis indicated that the 

dynamics of An. funestus were best explained in a model that included density 

dependency, temperature (curvilinear relationship), daily rainfall (negative 

monotonic relationship), an interaction between larvae density and one week 

cumulative rainfall before sampling on larval survival. Temperature effect on 

the larval development rate (positive monotonic relationship) was also used to 

describe the model. In contrast, model fit was not improved by incorporating 

temperature dependency into adult survival (all gonotrophic stages). Anopheles 

funestus abundance vary seasonally between wet (highest abundance) and dry 

periods (lowest abundance); but demographics rates (i.e. survivals, fecundity 

and development period) did not show a clear seasonal pattern after accounting 

for the impact of environmental covariates and density dependence. These 

results are very useful for generating hypotheses about the nature and relative 

magnitude of drivers of An. funestus population dynamics in the wild. This 

model can be extended to include a component on malaria dynamics in humans; 

or to compare the efficacy and effectiveness of different interventions in 

combination or singly. This would allow more sophisticated evaluation of the 

suitability of An. funestus-specific interventions; including prediction of the 

potential combined effect of strategies that act at different life-cycle stages 

and/or target different demographic processes (e.g. survival versus fecundity).  

 

Extrinsic covariates such as rainfall and temperature were all hypothesised to be 

the main drivers for the dynamics of this vector species. This study supports the 

hypothesis that rainfall is a significant driver of the population dynamics of wild 

An. funestus. Overall, the abundance of all life stages was relatively higher in 

rainy compared to dry periods of the year as previously documented 

[79,103,223,324]. Rainfall covariates were directly included in the larval survival 

model since it is the only stage on which rainfall was hypothesized to have a 
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significant impact. Daily larval survival as estimated by the SSM showed high 

variability both within seasons and across the year. There was support for a 

monotonic association between rainfall and larval survival; characterized as 

reduction in larval survival during periods of heavy rainfall. In previous studies, 

Anopheles funestus abundance has been shown to be positively associated with 

the cumulative lagged rainfall [103]. Here one week cumulative rainfall was 

included in the model to account for its effect on larval survival. In this work, an 

interaction between one week cumulative lagged rainfall and larval density 

shows an increase in the larval survival. Similar to other vectors of malaria 

transmission such as An. gambiae, rainfall has always been considered as the 

main factor regulating the dynamics [27,62,103,325]. In contrast to An. gambiae 

abundance which peaks much earlier in the rainy season, An. funestus on the 

other hand peaks at the very end of the rainy season.  

 

The SSM also provided support for the hypothesis that temperature is an 

important driver of An. funestus dynamics; although the nature of temperature 

effects was complex and variable between life history stages. For example, 

temperature was associated with both larval survival and development, but not 

adult survival or fecundity. Furthermore the estimated impacts of temperature 

on larval ecology were complex; with the SSM suggesting a curvilinear 

relationship with survival but a positive monotonic impact with the larval 

development rate. These findings validate the prior studies that demonstrated 

that temperature had a curvilinear influence on Anopheles larval survival, with a 

rise in temperature above/below the optimum lowering survival [26,48,60]. The 

larval development period of An. gambiae is temperature dependent [48,318]; 

thus this model incorporated a positive monotonic effect such that development 

period is shorter when temperature is high and just below maximum threshold 

for larval development [23,48]. In this work, indeed temperature has been 

shown to speed up the development rate of the larvae to pupation. In the final 

model the effect of temperature on the survival of adult females (all 

gonotrophic stages) was not found to be an important across the range of values 

observed, and was thus removed during the model selection process. 

 

Little is known about the effect of density dependence on An. funestus due to 

its ecology and reliance on the large semi-permanent and permanent breeding 
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habitats [54,95]. However, density dependence is already well-known to be an 

important driver for dynamic of other malaria vectors like An. gambiae 

[53,57,59,61,312,324,326] and other non-malaria vectors like Aedes aegypti 

[327,328]. Here the SSM fit better when density dependence of larval survival 

was included, however the relative magnitude of this process was quite small 

and thus likely to have minor impact on the overall dynamics of An. funestus 

populations. These findings suggest that An. funestus populations are likely to be 

regulated more by extrinsic than intrinsic processes; and corroborate the original 

hypothesis that density dependence may have a weaker regulatory role in this 

species than on those that use smaller, less permanent habitats (e.g. An. 

gambiae s.s.). The larger and more permanent habitat used by An. funestus 

(e.g. [95,329]) can likely sustain higher resources and thus reduce competition. 

This is among of the first report documenting the role of density dependence on 

the dynamics of the wild populations of An. funestus. A recent laboratory study 

on the effect of larval density on the life history traits of An. funestus shows 

that increasing larval density lengthens the larval development period [330].  

Now that colonies are becoming more feasible, more thorough investigation on 

the role of density dependence in the dynamic of An. funestus is prerequisite. 

 

In addition to highlighting potential drivers of An. funestus populations, the SSM 

here generated plausible estimates of key demographic and life-history 

processes in the wild. This model estimated that An. funestus larvae takes an 

average of 15.6-16.1 days to grow from first instar larvae to pupae; which is 

relatively long compared to the other major vectors in the An. gambiae complex 

(9-11 days  [60,318]). This apparently longer development period of An. funestus 

may be a product of their adaptation to more permanent, year-round breeding 

habitats that are unlikely to dry up; thus reducing selection for rapid 

development. The SSM estimated that the daily survival rate of wild An. funestus 

larvae could be as high as 0.95, compared to the 0.83 [0.80, 0.86] mean daily 

survival rate of other African malaria vectors like An. gambiae [60,174]. This 

also matches observations from insectary experiments conducted by myself 

(Chapter 2 [24]) and others [100,222] in which An. funestus larvae have higher 

survival than An. gambiae. Given the apparently higher larval survival in An. 

funestus than in An. gambiae, these findings suggest that more lethal 
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intervention may be required to control An. funestus both at larvae and adult 

stages. 

 

The impact of any vector control largely depends on the ecology of the specific 

vector species. Differences in ecology between An. gambiae and An. funestus 

are likely to affect the relative impact of interventions. For instance, An. 

gambiae prefer breeding in small and temporary habitats which dry up quickly 

when there is no rainfall; in contrast to the larger and more permanent aquatic 

habitats of An. funestus. This makes An. funestus habitats more likely to be 

"few, fixed, and findable" and thus  suitable for targeting for larviciding [95]; 

particularly during the dry season. However treating large habitats such as rivers 

or bigger ponds could also pose logistical challenges. The persistence of An. 

funestus throughout the year even during the driest periods suggest this vector is 

less seasonal compared to An. gambiae s.l., which experiences much more 

dramatic “boom and bust” dynamics in relation to seasonal rains [88,103,223]. 

This model suggests that An. funestus is likely responsible for year-round malaria 

transmission, while other vector species that rely on temporary aquatic habitats 

only be a substantial source of transmission during the rainy season.  

 

Models of vector population dynamics can provide a useful guide for the 

selection of optimal vector control strategies; particular through enabling more 

focal investigation of the benefits of seasonal or spatial targeting and use of 

combined versus single interventions. Despite its complexity, this population 

dynamics model provides a useful framework for investigation of the stability of 

An. funestus populations. With additional data, this model can be further 

refined to include additional modifications related to vector ecology and 

behaviour that may impact intervention (e.g. host choice and its impacts on 

fitness, predation during larval or adult phase and spatial components). Such 

further elucidation may increase the predictive accuracy of this SSM (Figure 4.7) 

in specific contexts, but even the more general framework developed here has 

flexibility to introduce stage-specific mortality effects expected from different 

types of vector control [135,176,308]. For example, this framework could be 

used to model the impact of combined interventions including those that target 

adult females (insecticide-treated nets (ITNs), IRS) and larviciding; and 

assessment of how mortality varies with different coverage [135,308]. It can also 
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be used to investigate the possible response of vector population to climate 

change anticipated in Tanzania and other African countries. An important 

limitation of this study is lack of knowledge on what percentage of the An. 

funestus mosquito population is sampled by the trap, which is important for 

understanding the relative magnitude of demographic stochasticity in modelled 

dynamics. This highlights the need to explicitly incorporate this source of 

uncertainty into vector and transmission dynamics; including the need for 

further calibration and standardization of the efficiency and biases associated 

with particular mosquito trapping methods (e.g. Chapter 3). 

 

4.5 Conclusions 

This study used Bayesian State Space Models (SSM) parameterized with empirical 

data to quantify key demographic and fitness processes underpinning the 

population dynamics of An. funestus in Tanzania. This is the first use of SSM to 

understand the population dynamic of the wild vector of residual malaria 

transmission, An. funestus in Tanzania. The model identified that both 

environmental covariates (i.e. rainfall and temperature) and density dependence 

influence An. funestus and can contribute to observed patterns of seasonality; 

although the magnitude of density dependent effects was much smaller than 

that of environmental factors. The ability of this model to accurately 

reconstruct the seasonal dynamics and demography of An. funestus indicates its 

value for simulating the response of these populations to vectors control 

measures applied either individually or in combination. Finally, this model also 

highlights the clear importance of accounting for regional and daily observation 

biases when modelling mosquito population dynamics. 
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5.0 Chapter 5: Density dependence and demography alone 

cannot explain explosive dynamics in Anopheles funestus 

 

Abstract 

 

Background: Population dynamics models are regularly used to understand the 

ecology of vectors of malaria transmission and how these vectors respond to 

varying environmental conditions. Recently, I developed the first State-Space 

Model to describe the population dynamics of the Anopheles funestus malaria 

vector in southern Tanzania (Chapter 4). While this model was able to 

adequately reconstruct the observed dynamics of these populations and detect 

associations with climatic variables, there was uncertainty about its 

generalizability and ability to predict missing data. This was mainly driven by 

the following shortcomings 1) the detection of weak relationship between 

demographic parameters and environmental covariates, 2) the difficulty with 

fitting the model simultaneously to two different populations (Chapter 4) and 3) 

the model had not been tested under conditions of prediction (i.e. by removing 

data and validating). Here, I addressed three issues through model fitting and 

simulation exercises. First, I examined whether inferences about the relative 

importance of intrinsic and extrinsic population drivers derived from the 

hierarchical model were representative of individual populations. Second, by 

investigating the ability of the model to capture key features of population rises 

and declines, I assessed the potential existence of additional, unexplained 

drivers of dynamics. Third, I examined the ability of the model to predict An. 

funestus population dynamics outside of the seasons on which it was 

parameterized. By quantifying the prediction shortfalls of this model, it is 

possible to derive insights into An. funestus population dynamics and the 

potential existence of regulatory forces beyond known demographic and density 

dependent processes.   

 

Methods: A Bayesian State Space Model (SSM) based on An. funestus life history 

was refitted to time series data from one of the two female populations on 

which the original hierarchical SSM model was developed (Chapter 4). To address 

these shortcomings I tried to see how much of the data could be accounted for 
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as signals and not noise by i) creating a focused model fit to one of the two 

populations, ii) increasing the flexibility of the density dependence formulation 

in the model, and iii) testing the predictive performance of the model under 

data removal condition. Here, the ability of the model to predict dynamics over 

different seasons was evaluated by removing a segment (i.e., 25%, 50%) of the 

time series data used in fitting and observing the impact on reconstructed 

trajectories.  

  

Results: In general, the dynamics of the local An. funestus population were 

much better described by the single population SSM model than the hierarchical 

model generated from two populations. The ability of flexible forms of density 

dependence to account for observed dynamics remains minimal, suggesting the 

presence of additional factors regulating the dynamics. Model fitting to a single 

population revealed a stronger association between demographic processes and 

environmental drivers. The model was able to reconstruct missing time series 

data as long as some data from both wet and dry seasons was included in initial 

fitting.  

 

Conclusion: This single population model's ability to explain the response of 

demographic processes to environmental covariates indicates its value in 

simulating the response of An. funestus populations to vector control. However, 

need to specify the model to single-village level before strong environmental 

links were revealed indicates that these relationships may be spatially non-

stationary. The difficulty of capturing sustained troughs and explosive peaks 

purely via flexible density dependent modules indicates the need for additional 

currently missing biological processes (i.e., aestivation or diapause) in the life-

history of the mosquitoes. The overarching importance of seasonality in 

capturing environmental and intrinsic population regulation was underlined by 

data-removal experiments which showed dramatic loss of predictive power when 

the model did not have access to information from both the wet and dry 

seasons. 
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5.1 Background 

Models have been widely used to understand the dynamics of populations and 

how they interact with their surroundings [331,332]. In the context of infectious 

diseases, mathematical models have served as powerful, explanatory and 

predictive tools for identifying the intrinsic and extrinsic determinants of 

mosquito vector  populations [43,44] and forecasting the knock-on effects for 

transmission in the face of global climate change [9,43,333–338]. The size of the 

mosquito population, which is highly dependent on the availability of aquatic 

larval habitats, is one of the predictors of malaria transmission [339]. 

Consequently, extensive effort has been devoted to developing models that can 

predict the abundance and seasonal dynamics of mosquito vector populations 

[161,166,324], and other life-history and demographic rates of direct relevance 

to transmission (e.g. adult survival [24,40,133,161]).   

 

Vector-borne diseases are known to be highly sensitive to environmental 

conditions [47,62,103,340]. A range of biotic and abiotic variables are strongly 

associated with the distribution and transmission intensity of vector-borne 

diseases [150,167,206,339], and drive the abundance, seasonal dynamics and 

demography of mosquito population [166,341–343]. Most models of mosquito 

dynamics are parameterized using mean values of demographic rates or 

environmental conditions from a limited number of well characterized 

laboratory or wild populations [150,279,344]. Use of such mean values likely 

dampen out heterogeneities under diverse environmental conditions, and thus 

may give rise to predictions that are poorly representative of specific scenarios 

or ecological settings of interest. While models using mean or non-random 

parameter values still hold great value for analysis of general population trends 

and responses, they may not be appropriate for providing more targeted, 

setting-specific information. While limitations with model generalizability are 

generally recognized [345]; the magnitude of these problems are rarely 

quantified. Formal assessment of the generalizability of model predictions on 

drivers of population dynamics in other areas or time periods from which model 

parameters were derived is a useful first step to assess their applicability.  
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A desired requirement of mosquito population models is the ability to predict 

dynamics across a full range of seasonal variation. In the case of malaria in 

Africa, mosquito vector populations undergo substantial seasonal variation in 

response to changes to micro-climatic factors such as temperature in and rainfall 

[79,153,346]. Seasonal changes in the environmental conditions that impact 

vector populations have a significant impact on malaria transmission; with 

incidence peaking during wet warm months when mosquito densities may be 

more than 100-fold higher than dry periods [88,99,166,347]. Another desirable 

feature of a mosquito population model is ability to predict the relative 

contribution of extrinsic and intrinsic factors to dynamics, such that inferences 

can be extrapolated to different populations beyond which the model was 

parameterized on. For example, density dependence is often an important 

intrinsic driver of population growth [22,59,61,326], and has been implicated in 

the population dynamics of the African malaria vector An. gambiae s.l. 

[326,348]. Here, density dependence arises through resource competition during 

larval development which impacts larval and adult survival, and hence overall 

abundance [46–49]. However, little is known about whether the relative 

importance of this process varies between populations; and how that influences 

the generalizability of inferences arising from models of one mosquito 

population to another. 

 

Recently, Ngowo et al developed the first hierarchical state-space population 

dynamics model of An. funestus; a major vector of residual malaria transmission 

in the southern Tanzania (Chapter 4 [153]). This detailed biological model 

encapsulated the full life cycle of mosquitoes and was fit to data from two time-

series data (referred here and in Chapter 4 as two populations) in southern 

Tanzania. Data from different populations were used to ensure that spurious 

features of the data from one population would be eliminated. This hierarchical 

model was used to assess the relative importance of extrinsic (temperature and 

rainfall) and intrinsic (density dependence) to population dynamics (Chapter 4). 

In this hierarchical model I have specified known facets of An. funestus life-

history into a detailed population model incorporating the based on laboratory 

and published literature into parameter priors. I also allowed a mixture between 

process stochasticity and observation error and fitted the model to multiple time 

series of integrated population data while recognising latent variables. Given 
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these steps, any residual disagreement of the model with the data is informative 

about what aspect of the model is specific to each population (for example, the 

strength of seasonal patterns and the absolute abundances sampled) and what 

aspect of the model is insufficient (for example the density dependence). 

The rationale for re-fitting the hierarchical model to a single population was to 

explore the limitations of the observation model. In doing so, emphasis was on 

whether there was only a weak relationship detected between demography and 

population regulation, which would indicate that the observation model was 

assigning much of the fluctuations to noise and not signals. I also assessed how 

hard it was to fit the model simultaneously to two different populations, in 

terms of whether the observation models required for that exercise required 

many differences between the subpopulations. Finally the model was tested 

under conditions of prediction by removing portions of the time series dataset 

during fitting and validating.   

These model fitting and simulating analysis exercises allowed me to address the 

following aims: First, I examined whether inferences about the relative 

importance of intrinsic and extrinsic population drivers derived from the 

hierarchical model were representative of an individual population. Second, by 

investigating the ability of the model to capture key features of population rises 

and declines, I assessed the potential existence of additional, unexplained 

drivers of dynamics. Third, I examined the ability of the model to predict An. 

funestus population dynamics outside of the seasons on which it was 

parameterized. In combination, this will enhance understanding of An. funestus 

population dynamics through investigation of the strengths and limitations to 

current model generalizability. This can facilitate development of a more robust 

population dynamics model that could be used to guide selection of optimal 

packages of vector control interventions for An. funestus in specific settings. 

 

5.2 Methods 

5.2.1 Population dynamic model 

A hierarchical State-Space population model (SSM) of An. funestus dynamics was 

developed by Ngowo et al (Chapter 4, [153]) to investigate extrinsic and intrinsic 
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drivers of populations in southern Tanzania, and to assess observational 

uncertainty. This model was developed in the JAGS [301] platform using a State-

Space approach in a Bayesian framework. In brief, the model used daily time 

series data on the abundance of adult An. funestus females collected in 2015 

[88] and 2018/19 from two populations respectively for model fitting and 

validation. Prior information on maximum survival (adult and larval) and larval 

development rates were derived from a mixture of laboratory experiment 

performed on F1 An. funestus in an insectary [24] and other published literature 

[88,195]. This model was structured to consider four mosquito life history stages 

(eggs, larvae, pupae, adult female), with the adult stage being further 

subdivided into the physiological stages of unfed, blood-fed and gravid.  

This population model also incorporated microclimatic data on temperature and 

rainfall on a daily average scale. Rainfall and temperature were prioritized as 

the primary environmental covariates in the model given their strong, known 

impacts on mosquito populations. Further explanation and justification of the 

choice of these covariates is given in Chapter 4 (methods section).  

In the current work, I re-fitted the model with the same prior information to one 

of the two time series data (i.e. 2018/2019 time series data). To address the 

first aim, the joint posterior parameter values generated from this single 

population model were used to plot the responses of demographic values across 

the full range of observed environmental covariates to assess and investigate, a) 

the relationship estimated between rainfall and larval survival rate, and b) the 

relationship between temperature and larval and adult survival. Here, I 

examined whether the associations estimated from the single population 

response were consistent with those inferred by the hierarchical model (Chapter 

4). To address the second aim, I increased the flexibility of the density 

dependence formulation in the model. This process allowed observation of 

volatility in the system and any factors which can be causing population 

decline/increase beyond density dependence and demographic parameters. To 

address the third aim, I tested the model predictive performance under data 

removal conditions. Specifically, I refitted the current single population model 

under two scenarios: the first being using 75% of the time series data to predict 

the remaining 25%. This 75% cut across both the wet and dry seasons, such that 

the model could learn from observed dynamics during both periods of the 
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year. In the second scenario, 50% of the data the time series data were used to 

predict the remaining 50%. The latter did not allow the model to learn from both 

seasons, as a large part of the wet season dataset was removed. 

 

5.2.2 Model fitting and diagnosis 

The state-space model with all environmental covariates was fit using a Markov 

Chain-Monte Carlo (MCMC) algorithm via the JAGS software [301] interfaced to R 

via the runjags package [302]. A model with 3 chains was run in parallel for 105 

samples and a burn-in of 105, thinning every 10𝑡ℎ iteration. Two single 

population dynamic models were refitted with missing time series data (i.e. 25% 

and 50%) and their prediction capability was assessed visually by looking at the 

proportion of curve within the credible intervals. Convergence was assessed by 

visual inspection of the trace plots and prior-posterior distribution using the 

coda package [321], effective sample size and the Gelman Rubin diagnostics 

[322]. Posterior means and 95% credible intervals for the environmental 

covariates and density dependence were reported. The differences between 

posterior means were estimated using a Bayesian t-test [349] implemented using 

BayesFactor Package [350] 

 

5.3 Results 

5.3.1 Generalizability of inferences from a single population and hierarchical 

model 

By re-fitting the hierarchical model of An. funestus dynamics (Chapter 4) to a 

single population, I assessed generalizability of inferences about the role of 

environmental covariates and density dependence. The full summaries of the 

posterior means for all the environmental covariates evaluated in the single 

population model are reported in Table 5.1. The model reconstructed the 

dynamics of the single An. funestus population very well (Figure 5.1). Population 

trajectories (abundances, survivals) were reconstructed for each of the six life 

stages together with fecundity (Figure 5.1) after consideration of the impact of 

environmental covariates. Temporal values for larval development periods were 

reconstructed, and showed no clear variation between the dry and wet season 
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(Figure 5.2). There was no noticeable contrast between the seasonal trend in 

An. funestus abundance as estimated in the hierarchical model and single 

population model (Figure 5.1 and Figure 4.3). The population trajectories 

produced by both models predicted a clear seasonal pattern characterized by 

sustained low abundance of An. funestus throughout the dry season, which rose 

to a peak within several weeks after the onset of rains (Figure 5.1).  

 

 

Figure 5.1: Reconstruction of the abundance trajectories of the six mosquito life-

stages; a) eggs, b) larvae, c) pupae, d) unfed, e) bloodfed and f) gravid from the SSM 

fitted to a single population. The red line indicates the mean posterior values and the 

respective 95% credible intervals are shown in “sky-blue”. The grey-shaded region 

indicates periods with rainfall. Time step “0” refers to the start of data collection June 

2018 and ending May 2019. 

  

In the single population model, demographic parameters such as adult survival 

(all gonotrophic stages) were highly sensitive to temperature; with values 

dropping notably outside the optimum value (27°C) (Figure 5.3). In contrast, 

adult survival was estimated to be less temperature-dependent in the 
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hierarchical model, and hence removed from the final model during model 

selection. 

 

To highlight these differences, in the hierarchical model (before model 

selection), the daily survival of adults (all stages) was estimated to vary no more 

than 2% across a range from 20°C – 32°C. In contrast, the single population 

model estimated a 4.5-fold difference in adult daily survival across the range 

from 20°C – 32 °C (Figure 5.3); with a low of 0.21 at 20°C; compared to 0.937 at 

the 27°C optimal. 
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Table 5.1: Posterior means for the intrinsic and extrinsic drivers of the population dynamic as estimated by the state space model in [153] and the 

refitted single population model for Anopheles funestus and their respective means and 95% credible intervals. 

Parameter Multiple population Single population 

Notation¥ Description Mean 95-percentiles Mean 95-percentiles 

𝛽1 Linear coefficient for rainfall on larvae survival 0.01681 [0.00604, 0.0308] 0.07634*   [0.04172,  0.10681] 

𝛽2 Density dependent coefficient for larvae on larvae survival 0.0001028 [1.0e-4, 1.1205e-4] 0.000123  [1.0e-4  4.990e-4] 

𝛽3 Coefficient  of interaction between larvae and rainfall on 

larvae survival 
0.9601 [0.80810, 0.99999] 0.9468    [0.7309,  1.00] 

𝛽4 Linear coefficient for temperature on larvae survival 0.487 [0.203, 0.806] 0.3157  [0.11703,  0.5941] 

𝛽5 Quadratic coefficient for temperature on larvae survival -0.00902 [-0.01492, -0.00376] -0.00585 [-0.0110, -0.00217] 

𝐶1 Linear coefficient for temperature on larvae development 

period 
5.362e-4 [2.51e-8, 2.311e-3] 4.9724e-4   [5.097e-8, 2.16e-3] 

𝜑1 Linear coefficient for temperature on unfed, survival 0.074 [0.068, 0.081] 4.1033*  [1.8274,  5.0408] 

𝜑2 Quadratic coefficient for temperature on unfed survival -0.00138 [-0.0015, -0.00126] -0.07598*  [-0.0933, -0.0338] 

 𝜃1 Linear coefficient for temperature on bloodfed survival 0.074 [0.068, 0.081] 4.1033*  [1.8274,  5.0408] 

 𝜃2 Quadratic coefficient for temperature on bloodfed survival -0.00138 [-0.0015, -0.00126] -0.07598*  [-0.0933, -0.0338] 

𝛼1 Linear coefficient for temperature on gravid survival 0.074 [0.068, 0.081] 4.1033*  [1.8274,  5.0408] 

𝛼2 Quadratic coefficient for temperature on gravid survival -0.00138 [-0.0015, -0.00126] -0.07598*  [-0.0933, -0.0338] 

* Coefficients of environmental covariates that differ between the two types of model structure highlighted in orange (Bayesian t-test was used) 

¥ Notations' meaning and the modelling equations should be referred to in the previous chapter (Chapter 4).  
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Figure 5.2: The survival trajectories of An. funestus from a wild population in Tanzania as 

estimated by the SSM model for the four life stages; a) larvae, b) unfed, c) blood-fed and 

d) gravid mosquitoes. The bottom row shows; e) larval development rate and f) fecundity 

trends over time. The red line indicates the mean posterior values and the respective 95% 

credible intervals are shown in “sky-blue”. The grey shaded region indicates periods with 

rainfall. Time step “0” refers to the start of data collection June 2018 and ending May 

2019. 

 

Larval survival was not strongly associated with temperature or cumulative weekly 

rainfall in either the single or hierarchical model (Figure 5.3). However, larval 

survival was estimated to be strongly negatively associated with daily rainfall in 

the single population but not in the hierarchical model. In the single population 

model, daily larval survival was estimated to be less than 5% when daily rainfall 

reaches >50mm (Figure 5.3); compared to ~ 85% in the hierarchical model (Figure 

4.6).  
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The importance of microclimatic variables was emphasized in this single-

population model, indicating that there were stark differences between the two 

populations that the hierarchical parameters were not enough to capture; hence a 

muted response was estimated (Figure 5.3). Much of the goodness of fit of the 

single population model was due to the ability of the observation part of the model 

to assign variation in the data to noise, rather than signal. 

 

 

Figure 5.3: The influence of environmental covariates on the demographic parameters as 

estimated from the single population dynamics model of wild An. funestus.  

 

5.3.2 Unexplained drivers of population dynamics 

By constraining the density dependence parameter, it was possible to explore 

hidden mechanism which might contributes to population growth beyond density 

dependence and demographic parameters. In both models (single vs. hierarchical), 

the density dependence parameters were being reduced to low values which 
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suggests that observation uncertainty during data collection might be creating 

additional instability in the system. Also, there was evidence of hidden processes 

accelerating population growth that the model was only able to account for by 

diminishing density dependence. Both models (Figure 5.1 and Figure 4.3) show a 

slight increase in the abundance of the adult (unfed, bloodfed, gravid) mosquitos 

several weeks after the first rain event after a long period of dryness. The single 

population model suggests that density dependence was unable to explain the 

persistently low values and the rapid explosive increases simultaneously (Table 

5.1). This is similar to the findings of the original hierarchical model, with no 

difference in the density dependence values from the original hierarchical model 

even after constraining the prior values for the density dependence parameters. 

 

5.3.3 Ability of the model to predict missing seasonal data  

Here, I assessed the ability of the single population model to predict a portion of 

missing seasonal data through visual inspection of the credible intervals of the 

population abundance trajectories. This indicated that the model with constrained 

density dependence can reliably reconstruct up to 25% of missing time series data 

(spanning wet and dry season) with sensible credible intervals (Figure 5.4). 

However, when the proportion of missing data was increased from 25% to 50% 

(incorporating largely dry season); the model lost its prediction capability as 

evidenced by increasing levels of uncertainty around predicted abundance 

trajectories (Figure 5.5). The high level of uncertainty in the 50% part of the 

missing data was mainly driven by the low value of the density dependence 

parameter which was unable to keep the population from exploding.  
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Figure 5.4: Abundance trajectories showing the prediction of the 25% missing data at the 

end. The vertical red dotted lines corresponds to missing data (25%) which were removed 

during model fitting and allow the model to predict. The red line indicates the mean 

posterior values and the respective 95% credible intervals are shown in “sky-blue”. The 

grey shaded region indicates periods with rainfall. Time step “0” refers to the start of 

data collection June 2018 and ending May 2019. 
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Figure 5.5: Abundance trajectories showing the prediction of the 50% missing data at the 

end. The vertical red dotted lines corresponds to missing data (50%) which were removed 

during model fitting and allow the model to predict. The red line indicates the mean 

posterior values and the respective 95% credible intervals are shown in “sky-blue”. The 

grey shaded region indicates period with rainfall. Time step “0” refers to the start of data 

collection June 2018 and ending May 2019. 
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Figure 5.6: Observed vs. model estimated values for the three adult stages with data 

collected using CDC light trap both in June 2018 –May 2019. Red lines are the model 

estimated trajectories with “sky-blue” showing their 95% credible intervals. The blue 

circles are the observed values from the Light trap catches. Grey areas are the periods 

with rainfalls episodes. Time step “0” refers to the start of data collection June 2018 and 

ending May 2019. 

 

5.4 Discussion  

I re-examined the previously developed SSM model for the population dynamics of 

the wild population of An. funestus (Chapter 4, [153]) by fitting it to a single 

population. This analysis suggests that the reconstructed seasonal population 

trajectories of An. funestus were broadly similar in main features in hierarchical 

and single population model. In both cases, An. funestus were predicted to remain 

stable at low densities across the dry season, and start to rise several weeks after 

the first rains, with a peak occurring at the start of the dry season. The 

contribution of density dependence remained minimal in the single population 

model, but was sufficient to be retained by the model. I had to constrain the 

density dependency parameter in all the models. This requirement to constrain 

density dependence in the model suggests the existence of observation uncertainty 

during data collection which creates additional volatility in the system, and/or the 
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presence of a missing regulatory process that was accelerating population growth; 

which the model was only able to account for by diminishing density dependence.  

In contrast to findings obtained for the Hierarchical model, An. funestus 

demographic parameters in the single population model were more responsive to 

environmental covariates. Demographic effects of covariates were much stronger 

in the single population model compared to hierarchical model. The hierarchical 

model assumed that parameters describing the response of demographic variables 

to micro-climatic conditions were the same in all populations. Releasing the model 

to fit to only one population resulted in a shift from muted to strong responses of 

environmental covariates. This implies that the response of An. funestus 

demography to environmental conditions may be diverse and vary between 

populations. For example, larval survival varied by 78% and 85% respectively along 

the range of variation in temperature and rainfall covariates considered in 

simulations. The SSMs are great in modelling population dynamics models but can 

be used with caution as may underestimate the role of environmental drivers when 

fitted over multiple populations. 

This model was able to predict seasonal abundance trends relatively well when 25% 

of data were missing, but struggled when this was increased to 50%. The single 

population model was thus quite robust to missing data as long as the data 

included in fitting contained some representation from the dry and wet seasons. 

This indicates that the model can predict only if it learns from both wet and dry 

seasons. This model can be expanded to include other aspects of human malaria 

dynamics, or it can be used to simulate the efficacy and effectiveness of various 

interventions individually or in combination. This would allow more sophisticated 

evaluation of An. funestus specific intervention in different target areas. 

In general, most of the population dynamics models previously developed for 

African malaria vectors have not accounted for biological processes beyond 

traditionally life history processes of births and death. Other processes such as 

aestivation, diapause or mosquito migration (e.g. [351,352]) could lead to changes 

in vector population abundance beyond what can be attributed to these life history 

processes. For example, aestivation is a process through which mosquitoes may 

become temporarily ‘dormant” by concealing and restricting their flight activities 
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until the onset of first rain [151,353,354]. In the current An. funestus population 

dynamic model, I speculate that such additional factors could play an important 

role in population regulation beyond the current minimal role of density 

dependence. This hypothesis is based on the observation that in the absence of 

explicit incorporation of processes like aestivation/diapause into this model, the 

density dependency parameter was penalised by having its value reduced to 

account for the missing factors.  

A successful mosquito dynamics model should be able to satisfactorily capture key 

features of population trajectories as a result of known life history and 

development processes. For example, in a closed population, changes in adult 

mosquito abundance are expected to follow those of larval abundance, with a lag 

period characteristic of typical larval development periods. If unexplained rises 

and declines are evident, this may suggest additional biological processes are 

missing from the model; including deviation from the assumption of a closed 

population. For example, some studies have shown that seasonal aestivation and 

migration of adult mosquitoes has a strong influence on the overall dynamics of 

An. arabiensis [351,354]. This was detected through a signature in a population 

model that showed vector densities rose far quicker at the start of the wet season 

than could be explained by the time required for egg-larval-adult transition [351]. 

Study on non Anopheline species shows that, Aedes aegypti species eggs can 

survive the dry soil for more than two months [355–357] contrary to Anopheles eggs 

which survive less than 15 days [358]. With the dry period of more than two 

months in most of African countries which are malaria endemic, the only possible 

survival mechanism for adult mosquitoes is through aestivation [45]. Similar 

unexpected changes in population size beyond what can be explained by 

reproduction and mortality could be due to pulses in dispersal into or out of 

populations [100,359]. Additionally, it is possible for habitat composition to affect 

one demographic rate in one place but a different one in another. For example, 

the two time series data used in the hierarchical model contain differed in mean 

population abundance suggesting that abundance varies with geographical 

location. A life history-based model that fails to capture key feature of population 

dynamics can serve a useful purpose in highlighting the existence of additional 

regulatory factors. With additional data on aestivation, mosquito migration or 
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diapause this model can be further extended to incorporate all these 

environmentally driven aspects of the mosquito ecology. This may further increase 

the predictive accuracy of this SSM and generalizability in the assessment of stage-

specific impact expected from different vector control measures. 

 

5.5 Conclusion: 

Using a novel parsimonious framework, the effect of rainfall, temperature, and 

density-dependence was investigated on more geographically restricted population 

of An. funestus s.l. (considered as ‘one population’) from southern Tanzania. The 

single population framework developed here could allow for a more robust analysis 

and evaluation of various vector control interventions, as well as their integration 

into malaria transmission models, in the future. This model's ability to explain the 

response of demographic parameters to environmental covariates indicates its 

value in simulating the response of this An. funestus population to vector control 

measures used individually or in combination. In this regard, the developed 

paradigm is a significant step forward; however it also identifies critical research 

gaps beyond demographic processes (i.e. aestivation or diapause) that must be 

addressed if we are to gain a better understanding of the ecology and population 

dynamics of this vector species. Furthermore, future models should include spatial 

elements to capture the diversity and presence of any source of heterogeneity in 

multiple populations. 

 

 

 

 

 

 

 

 

 

 



128 
 

6.0 Chapter 6: General Discussion  

6.1 Overview of the main findings 

The overall goal of this thesis was to contribute to a general foundation of 

improving knowledge on the ecology and surveillance of Anopheles funestus, a 

major vector of residual malaria transmission in many settings in Africa. It is hoped 

that information gained through this work will aid the campaign against malaria by 

improving vector control strategies in Tanzania and other settings where An. 

funestus is the major source of transmission. Malaria transmission remains high in 

Tanzania; hence this work will contribute important knowledge on how to exploit 

the ecology of An. funestus to further progress towards elimination. This general 

discussion will provide a brief summary of key findings from each of my specific 

objectives, discuss relevant challenges and limitations of this study, and highlight 

key implications for vector control and malaria elimination.   

 

6.1.1 Fitness characteristics and colonization barriers 

Extensive investigation and characterization of the biology of any malaria vector 

requires a stable laboratory colony. The lack of colonies from locally 

representative An. funestus populations creates a gap in terms of how to tackle 

transmission mediated by this vector in Tanzania. For example, assessment and 

monitoring of insecticide-based interventions requires carrying out bioassays on 

mosquitoes. Semi-field systems are often been used as the first step to study the 

behavior and response to intervention for any malaria vectors before the field 

trials. Most phase 1 intervention trials on An. gambiae were conducted in 

controlled laboratory settings, enabled by the existence of stable insectary 

colonies  [196,360]. However, similar evaluations for An. funestus have been 

limited by the difficulty of establishing stable colonies under lab or semi-field 

settings. Consequently although An. funestus is a major vector in Tanzania, it has 

not been possible to evaluate the efficacy of different vector control intervention 

or trapping methods for local populations of this species under standardized (lab or 

semi-field) conditions. 
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Here, I evaluated key barriers associated with the colonization of this malaria 

vector species in the laboratory environment. I attempted to colonize this species 

by collecting wild mosquitos (F0) from three villages in the rural part of south-

eastern Tanzania and rearing them in the laboratory. This showed that the fitness 

characteristics (i.e. mating, fecundity) of F1 offspring in the laboratory were 

impaired relative to that of a stable An. funestus colony (FUMOZ). Mating was the 

biggest barrier to establishing further filial generations; with <10% of F1 females 

were able to mate in the laboratory whereas 92% of wild F0 were mated. This 

resulted in very few viable eggs being produced despite the relatively large 

number of F1 females, which were insufficient to generate a further filial 

generation. This low mating success is consistent with the known eurygamy of this 

species [38,39]. Other aspects of An. funestus development and fitness in the 

laboratory were also impaired. Notably, the very long larval development period 

(2-3 weeks) observed for An. funestus in the laboratory led to a low probability of 

survival to adulthood.  The larval development period for An. funestus in the lab 

was considerably longer than reported for other African vector species (e.g. An. 

gambiae sl. 9-11days). Although my attempts to colonize a Tanzanian An. funestus 

population were not successful, they provided general knowledge on the major 

barriers to colonization (e.g. mating) and help focus investigation on how to 

overcome them. 

 

6.1.2 Surveillance methods of outdoor vectors of malaria transmission  

Surveillance of vector populations is of great importance for assessing the 

effectiveness of interventions and monitoring the behavior of mosquito species in a 

given setting. The most important entomological indicator of malaria transmission 

is the entomological inoculation rate (EIR) [361]; calculated as the product of 

mosquito biting and infection rates. Human landing catches (HLCs) are the gold 

standard for estimating biting rates and the EIR in both indoor and outdoor 

environments. However, this method is increasingly restricted due to ethical 

concerns arising from the exposure of collectors to potentially infected mosquito 

bites. Whereas several exposure-free alternatives to the HLC have been evaluated 

for An. gambiae s.l. (HLC); there is less understanding of which methods are best 
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for An. funestus; particularly in outdoor settings. A trap evaluation study 

comparing the performance of HLC and six exposure-free alternative traps for 

outdoor settings was conducted in places where both An. gambiae s.l. and An. 

funestus are found. Here, I analyse the data and generate associations between 

the alternative traps and HLC. These associations were later used to develop a 

calibration tool for predicting the number of mosquitoes collected by HLC if 

someone were to use one of the alternative trap evaluated.  

Relationships between collections made by the HLC and alternative methods may 

not accurately reflect their association across more diverse ecological contexts. If 

we wish to not only evaluate how an exposure-free trap performs relative to the 

HLC, but allow the ‘HLC’-equivalent exposure rate to be predicted from it, it is 

necessary to identify which type of mathematical relationship (linear or non-

linear) best describes their association. Here, a statistical calibration tool was 

developed under a Bayesian framework in the form of a Shiny App interface for its 

interrogation. The tool developed here provides predicted mean values for each 

alternative traps and their credible intervals which can be used to obtain 

estimates relative to HLC. Results suggest that trap performance is less affected 

by population baseline density (intra-specific) for all the species, though these 

findings tend to differ when the same alternative traps are evaluated in a different 

environment [124,288].  

This analysis provided little evidence that the relative performance of mosquito 

traps is modified by the density of the target vector of other mosquito species in 

the environment. Trap catches varied between species and between model 

configurations, so no specific model or trap is ‘best’ for all vector species. The tool 

developed here warrants further evaluation of different alternative traps to 

consider how representative and consistent they are compared to the HLC or other 

collection methods. 

 

6.1.3 Drivers of population dynamics of wild Anopheles funestus 

Chapter 4 describes an innovative state-space population dynamics model of wild 

An. funestus in Tanzania. Population dynamics model have been frequently used to 
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understand the dynamics of the African malaria vectors in the An. gambiae 

complex [150,158,362]. Similar models have been difficult to develop and 

parameterize for An. funestus due to the limited knowledge of their fitness and 

demography. Consequently, the response of An. funestus to environmental factors 

and interventions is often inferred from population dynamics models derived for 

An. gambiae s.l.  

Here, I used data collected during attempts to colonize An. funestus (Chapter 2) 

and additional data from the literature as the prior information to develop a 

biological process model of An. funestus population dynamics. The specification of 

this model allowed An. funestus dynamics to be influenced by both intrinsic 

(density dependence) and extrinsic drivers (environmental covariates). Population 

abundance time-series data were used to inform the observation process model 

(collections from CDC light trap). CDC light traps are designed to capture 

mosquitoes that are looking for a blood meal (host seeking), but also occasionally 

catch gravid and bloodfed mosquitoes. Consequently the observation model 

attempted to account for trap bias in collections of bloodfed and gravid 

mosquitoes. Further work is needed to assess the proportion of the population; 

whether unfed, gravid and bloodfed, that is sampled in CDC and other trapping 

methods. Such information will refine the observation model and accuracy of 

resultant demographic predictions. 

In examining environmental covariates of An. funestus dynamics, I focused on 

temperature and rainfalls given these are known to be key drivers of mosquito 

fitness and demography. Additionally, the impact of intrinsic drivers was addressed 

through consideration of density dependence arising at the larval stage. The 

potential contribution of environmental covariates to vector dynamics was 

assessed through a removal strategy and see what the model would predict. The 

resultant model was able to reconstruct the abundance trajectories for all An. 

funestus life stages and gonotrophic stages. Notably, the relatively low 

uncertainties around these trajectories indicate the model was a reasonable fit to 

the data. These trajectories show that An. funestus densities are generally higher 

during the rainy period; with numbers peaking towards the end of the wet season. 

Notably, although An. funestus densities were low during the dry season, they 
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persisted throughout the full duration of this period. In contrast, An. gambiae s.s. 

and An. arabiensis had almost no captures during the driest period. During the dry 

season, the estimated mean values for An. funestus were quite low but sufficient 

to keep the population going until the first rain. The survival trajectories of larvae 

and adult stages were similar across seasons; indicating this species is relatively 

resilient to temperature and rainfall extremes. The ability of this vector to survive 

the driest part of the year indicates it plays a crucial role in sustaining malaria 

transmission throughout the rest of the year. Targeting An. funestus during the dry 

season could thus be a key to disrupting transmission during its most vulnerable 

point.  

This modelling framework suggests that density dependence may be present in An. 

funestus populations, but makes a relatively minimal contribution to their 

dynamics. I hypothesised that there is an additional feature in the dynamics that 

regulates the population by lowering density dependence parameters. This was 

further evaluated in Chapter 5. Whether this is due to the nature of the breeding 

habitat or not, it warrants further investigation in the laboratory or semi-field 

systems. This species depends much on the presence of large and semi/permanent 

larval habitats such as rivers and large water reservoirs [54,341]. Rainfall (one 

week lagged cumulative) plays a crucial role in creating these habitats, and was 

positively associated with larval survival when the density dependence was taken 

into consideration.  

 

6.1.4 Generalizability of population dynamics models 

Chapter 5 describes a series of simulation exercises performed with the novel SSM 

model developed in Chapter 4; to explore its generalizability and ability to predict 

missing data. A key focus was on examining the generalizability of inferences 

drawn about the drivers of An. funestus dynamics from the original hierarchical 

model, by re-fitting it to a single population. Environmental covariates are key 

drivers of many mosquito populations, but if these are not well captured during 

the model development it might result in model misspecifications. The density 

dependence parameters were estimated to be small in both types of models fitted. 

Most of the demographic parameters were the same for both the hierarchical and 
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single population model except for the adult survival. Specifically, the survival of 

all the gonotrophic stages was very sensitive to changes in environmental 

covariates (i.e. temperature) in the single population model but not the 

hierarchical one.  

In a further step, I evaluated the model’s ability to reconstruct annual An. 

funestus population dynamics when different proportions of data from the annual 

time series were missing (25% and 50%). When model predictions were tested 

under a data removal strategy, the model was able to reconstruct up to 25% of the 

missing data with sensible credible intervals. However when half of the data (50%) 

was removed, the model’s ability to reconstruct An. funestus dynamics was highly 

reduced by increasing the level of uncertainty around the predicted mean 

abundance. The model was able to predict the missing segment in the trajectories 

if it learns from both wet and dry seasons. Finally, I was able to test various 

features other than density dependence parameters that could be contributing to 

population regulation by increasing or decreasing the flexibility of the density 

dependence priors in the single population model. Even with high level of 

flexibility in density dependence priors, the model was suggesting small 

contribution of this parameter in regulating the dynamics. Given that the density 

dependence parameter was minimized regardless of the flexibility in the prior 

values, this implies that additional features might be driving the dynamic by 

reducing the density dependence’s contribution to the overall dynamics. The 

difficultly of capturing sustained troughs and peaks purely via flexible density 

dependence indicates the need for additional currently missing biological 

processes (i.e. aestivation, diapause or migration) in the life-history of the 

mosquitoes.  

 

6.2 Questions arising 

This work generated several questions which warrant further investigation. First, 

why is the mating success of An. funestus so poor in the laboratory? This biological 

process is poorly understood in eurygamic species. Stable colonies will only be 

achieved through a significant improvement in the mating process under laboratory 

conditions. How could this be achieved? One option would be to facilitate 
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swarming behavior in more natural semi-field setups where wild adult mosquitos 

could be released and thoroughly examined. Establishment of colonies could also 

be assisted by modelling to predict the initial size of wild populations to achieve 

successive filial generations, and set targets for the required mating percentage to 

reach the first filial and the subsequent generation. Future research on mating can 

look at these issues in order to have a better understanding of the colonization 

process. While I was unable to establish An. funestus colony in this study, 

colleagues at IHI have subsequently had success in rearing a Tanzanian An. 

funestus strain up to 26 (F26)generations in the laboratory (Hape et al, in prep). 

This work has evaluated the performance of a number of exposure-free traps for 

measuring host seeking An. funestus in outdoor settings. Notably, all of these gave 

an underestimation of biting density relative to the HLC gold standard. 

Unfortunately, An. funestus abundance is quite low in the current study site; 

hence, calibrating any additional trap against An. funestus will need more 

extensive sampling to reach over longer periods of time to generate sufficient 

sample sizes and statistical power to robustly characterize their relationships with 

the HLC. Regarding the statistical technique developed in this study, considerable 

effort should be invested into designing sensitive traps which can work in areas of 

low density vector populations. More investigation into how to improve the luring 

mechanism is recommended. 

Modelling malaria vectors like An. funestus requires detailed understanding of how 

environmental covariates drive their dynamics. Several environmental variables 

expected to be of importance (temperature, rainfall) were explored during the 

model development process to assess their association with An. funestus dynamics. 

This produced some counterintuitive results. For example, demographic 

parameters (adult and larval survival) did not appear to be very sensitive to 

varying temperatures and rainfall in the hierarchical model; despite the well-

known impact of these covariates on vector population dynamics and fitness 

[40,363]. The apparent low sensitivity to these environmental variables may be a 

genuine ecological property of these populations within this particular study site, 

or the result of high stochasticity in the mosquito data used to inform the model; 

generating too much noise to detect clear signals of these parameters. This raises 
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further questions about the sources of stochasticity in mosquito catch data. For 

example, how much impact does the presence or movement of human in the 

sample houses have on An. funestus catch rates? It is known that this species is 

highly endophagic and anthropophilic in nature. Thus the presence of humans will 

ultimately attract mosquitoes into houses for feeding. Previous work on the same 

study area shows that the number of people in the sampled houses was positively 

correlated with the number of mosquitoes sampled [295]. In this work, I did not 

consider the variations in the number of occupancy in each sampled houses.  

Another unexplained feature of the mosquito surveillance data used in modelling 

was its apparent periodicity. The model developed here made use of daily time 

series data from mosquito surveillance that was made from Monday to Friday over 

one year period skipping weekends. The unexpected feature of this data was an 

apparent weekly periodicity; with catches appearing to decrease throughout the 

sampling week. The possible biological or environmental reason for this is 

unknown. One possibility is that An. funestus population within a household is 

limited, and gets progressively depleted by trapping with daily catches 

replenishing over weekend break. There is evidence which suggests “mass 

trapping” in houses can reduce the size of mosquitoes population and maybe 

malaria transmission [364]. In this case, a potential concern that would arise is 

whether mosquito populations might keep decreasing even if there was no 

weekend break. Would this be a potential mechanism to estimate the population 

size via removal sampling as previously documented by Service [365]?   

 

6.3 Implications of the findings 

6.3.1  Anopheles funestus colonization bottlenecks  

To address ongoing residual malaria transmission, a comprehensive ecological 

understanding of all vectors that play a role in transmission is required. This study 

provides the first documentation of attempts to colonise An. funestus in Tanzania. 

It laid a foundation for continuing efforts in Tanzania to colonise this species, 

which have recently been successful (Hape et al, in prep). By studying all the 

barriers to colonization outlined in the second chapter, another team of scientists 
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at IHI has managed to reach 26 (F26) laboratory generations of An. funestus from a 

local population (Hape et al, in prep). Learning from my experience, this team 

changed strategy to not just collect maternal population (F0) at a single point; 

instead they repeatedly collect wild females over several weeks and months and 

cumulatively add them into the same laboratory founder population cages. This 

meant that much larger numbers of females (>2000) were present in each of 

multiple laboratory cages. This generated substantially larger founder populations 

than available for my experiments (Chapter 2 [24]). Similar to my observation, the 

initial mating success in these larger laboratory population was very low over first 

few generations. However, the larger size of these founder populations proved 

sufficient to generate enough offspring even with low mating success to seed 

further generations. Eventually, this strain started to adapt to the laboratory 

conditions, leading to a rise in mating success after 4-5 generations and 

establishment of a stable line (Hape et al, in prep).  

 

6.3.2 Reliability of the mosquito sampling tools 

The trapping evaluation I conducted has several implications for improving the 

surveillance of An. funestus, particularly in outdoor settings. I found that trap 

catches for An. funestus were independent of the abundance of other mosquito 

species in the area. This implies that there is no saturation effect in trap 

performance; at least across the range of densities surveyed here. In general, the 

relationship between the HLC and other trapping methods could be described by a 

simple linear relationship. Also this work demonstrated that there can be a 

considerable number of An. funestus host seeking in outdoor environments. While 

these An. funestus populations were relatively low density (compared to other 

vectors), the high infection rates of this vector (e.g. ~85%, [88]) means that the 

number host seeking outdoors contribute to residual transmission. Outdoor 

exposure to An. funestus is usually ignored in conventional surveillance activities, 

with only indoor sampling conducted. This focus on indoor sampling must change if 

we want to better quantify and tackle residual transmission. Given that people in 

this study area are clearly exposed to An. funestus, trapping methods are required 

that can reflect outdoor exposure as estimated by the HLC. Here, no trap was 
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extremely highly correlated with the HLC for An. funestus outdoors; however the 

two best candidates were the M-Trap (MTR) and M-trap with additional CDC (MTRC) 

inside. Therefore, if someone were to use either of these traps to sample outside 

biting mosquitos, the predicted mean values from this calibration method could be 

used to calculate the human biting rate as estimated by the HLC. Before making a 

decision on which outdoor trap to use, the Shinny App interface may be used to 

explore the possible range of values and how wide the credible intervals for 

different methods. 

 

6.3.3 Model parameterization and validation 

When modelling mosquito population dynamics, not all data or parameter 

uncertainty can be accounted for in the model development process. In general, 

population dynamic models address only four aspects of population change (i.e., 

mortality, birth, immigration and emigration). In mosquitoes, all these 

demographic process could be influenced either by vector control intervention 

currently in place or changes in environmental conditions [40,363]. Malaria vector 

species vary in their response to environmental variability [363],  thus 

necessitating development of species-specific models.  

A wider insight from this work is into application of stochastic State-Space Models 

for analyzing the dynamics and demography of wild vector populations. SSMs have 

been used in many fields of ecology but rarely used to study the dynamics of 

malaria vectors [332,366]. These SSMs account for two distinct types of 

stochasticity: sampling imprecision and biological variation. In general, combining 

these two stochastic processes yields better estimates of ecological quantities of 

interest than modelling only one stochastic source directly. An advantage of this 

approach is its ability to indirectly estimate the otherwise hidden demographic 

rates and processes that could plausibly generate the observed dynamics. Many of 

these demographic rates are very difficult to directly estimate in the field 

(fecundity, daily survival etc.), thus this approach provides a useful alternative. 

Population trajectories reconstructed by these models could be used to identify 

seasonality in abundance and the underlying demographic rates that give rise to it 

(survival, fecundity, and larval development rates). However, the mosquito 
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collection devices used (i.e., traps) and human errors during processing (i.e. 

counting) can have a significant impact on the quality of observation data. Careful 

consideration and adjustment of trapping methodology and processing thus may 

improve the general applicability and reliability of these types of dynamic models.  

 

6.3.4 Selection of optimal vector control package  

The potential impact of vector control intervention can be estimated from its 

impacts on vector demography and fitness parameters. A realistic population 

dynamics model enables the impacts of these intervention effects on the size and 

stability of a vector species to be predicted. With further development, the 

modelling framework developed here can be used to evaluate the anticipated 

response of An. funestus to various vector control interventions, either individually 

or in combination. Uniquely, this framework could enable identification of optimal 

environmental conditions or times of the year to deploy interventions for maximum 

impact. Rainfall patterns play a big role in intervention deployment strategies like 

IRS and LSM. For example LSM is applied during the driest period when the habitats 

are fixed and few [95,137,163] unlike IRS which is applied during the transmission 

seasons [367,368]. This framework can be used to simulate standard and variable 

seasonal implementation of these and other interventions, to identify which 

optimal package can generates the maximum negative impact on An. funestus 

survival. Despite its complexity, this framework may be expanded in the future to 

accommodate additional ecological and behavioral processes that may impact An. 

funestus dynamics such as host choice, oviposition behavior, and processes such as 

migration, diapause or aestivation.   

 

6.4 Limitations of the study 

This study provides a detailed understanding of the ecology and the drivers of the 

dynamics of An. funestus in the wild population. As described in the previous 

chapters, there are several limitations associated with different parts of this work; 

of which a few general ones will be highlighted here. Firstly, several of the direct 

estimates of An. funestus fitness and demography used in my modeling work were 



139 
 

derived from an unstable population. Specifically, many of the fitness parameters 

that served as prior values for my population dynamics model were derived from 

unsuccessful attempts to colonize An. funestus in the lab (Chapter 2). Here, 

detailed individual measurements of larval development time, larval and adult 

survival, and fecundity were measured from cohorts of F0 females brought into the 

lab and their F1 offspring. Given these individuals were not maintained past the 

second filial generations in the lab, their fitness values may have been impaired 

and thus unrepresentative of likely values in the wild. Additionally, F0 were fed on 

the blood of an unnatural host in the insectary (chickens) to produce eggs for the 

next generation. The subsequent fecundity and survival of An. funestus after 

feeding on this host may not be reflective of their fitness after human feeding. 

Lyimo et al have shown that, fecundity and survival are not impaired when An. 

arabiensis is not fed on their natural host [78,81]. Also the age and mating status 

of the F0 An. funestus females could not be estimated at capture, and may have 

introduced another source of variability. It is known that mosquitoes need several 

generations to adapt to insectary conditions [58,170], whereas I only had data for 

the first two generations due to poor mating success. This does not necessarily 

mean that all the fitness estimates derived from these adapting mosquitoes are 

unrealistic. For example their survival rates were relatively high and consistent 

with values estimated by Okoye et al [222,330]. The mean values generated here, 

were later used in the Bayesian framework with a wider prior range to make sure 

the model priors were not unnecessary precise and influential. Certainly, further 

model development using either fitness parameters from a stable An. funestus 

colony, or as directly estimated in the field, would be useful.  

Secondly, the calibration tool developed here to predict human landing catch 

(HLC) - equivalent values from alternative exposure-free traps was only done for 

outdoor collections. Thus, we do not yet have a similar tool for calibration of 

indoor traps. Given that the majority of An. funestus bites still occur indoors, 

expanding this framework to indoor settings is a priority. Human landing catches 

are the gold standard for sampling host seeking mosquito both indoors and 

outdoors. In my analysis of outdoor sampling, some traps provided estimates with 

very wide credible intervals; with this not being due to poor fitting but rather very 

low numbers of An. funestus at the time of sampling. Anopheles funestus are 
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found at relatively low abundance in the study area. Further evaluation of this 

type of calibration approach in areas with higher An. funestus densities is needed 

to refine the calibration tool and make it more generalizable to data from 

different settings. 

In addition to the previous issues mentioned, another important limitation of the 

population dynamics modelling work was its reliance on data from one sampling 

method, the CDC light trap, which is specifically targeted host seeking mosquitoes 

(unfed). This method is not effective for sampling other adult female life stages 

(i.e. blood-fed and gravid), but since sampling effort needs to be standardized for 

this type of modelling, I had to introduce a parameter in the observation model to 

account for trap bias. This meant that estimates of the abundance of blood fed 

and gravid females were derived from an inefficient method, and are likely to be 

less robust than those for unfed. Additionally, there are limitations with using CDC 

light traps to infer population abundance trends, even of unfed females. It is 

uncertain what proportion of the mosquito population, whether unfed, blood fed 

or gravid, and are sampled in a single CDC trap. This could potentially be explored 

in semi-field experiments where the number of individuals caught in a CDC trap 

from a population of known size could be estimated.   

 

6.5 Further work 

Ecological studies of An. funestus must continue if we are to control residual 

malaria transmission in African countries where the disease stills a public health 

problem. The barriers to colonization and possible solutions are described in 

Chapter 2, which also offers a full overview of the mating process in captivity. 

Currently there is an ongoing colonization process which started after my work was 

completed. Several generations have been maintained in Tanzania's ongoing effort, 

in addition to the one filial generation created through this work. When the colony 

is stable, this will aid in the estimation of demographic parameters and used in 

testing new traps, different insecticides formulation, spatial repellents to 

genetically modified mosquitoes. 
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The use of modelling to understand the dynamics of the local population of An. 

funestus species in Tanzania was demonstrated in Chapters 4 and 5. The role of 

modelling can change to address different questions at each step of its 

development process. The population model established here, for example, was 

first used to illustrate how environmental variables and intrinsic factors (density 

dependence) influence An. funestus dynamics and to estimate their demographic 

and fitness parameters in the wild. The next step will be to utilize the same model 

to look into the effects of different vector control interventions on adult survival 

and reproduction, and the resultant impact on population size and stability. As I 

have access to the whole range of posterior means generated by this model (i.e., 

100,000 samples), I will be able to minimize the degree of uncertainty while 

simulating multiple intervention options. With additional data, this population 

dynamic model will be expanded to include other potential regulatory processes 

that I hypothesized could be present in Chapter 5 (i.e. mosquito aestivation, 

diapause, and migration). I will also explore developing this SSM into a meta-

populations model which could be used to describe different, connected 

subpopulations of An. funestus across a landscape. Technically, the modelling 

framework's computational efficiency will have to be optimized to allow for low 

uncertainty in observational data collection, which will eventually lead to more 

robust prediction. At the same time, regular high quality data collection is critical 

for both decision-making and the validation of the population model used to select 

optimal intervention packages.  

 

6.6 Conclusions 

The work presented here covers several aspects of An. funestus ecology that are 

critical to understanding the species’ stability and response to interventions. This 

work covers the colonisation process, vector surveillance, and modelling of 

population dynamics of An. funestus in Tanzania. The findings here will greatly 

contribute to a general understanding of An. funestus ecology, how this vector 

responds to environmental covariates, and colonisation barriers. Knowledge on An. 

funestus biology will continue to be impeded until the barriers with getting them 

to mate in the lab are overcome. The role of outdoor biting is often neglected in 
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An. funestus, but could be a key component of residual transmission. Until 

recently, we did not have a reliable alternative to HLC that is effective for 

sampling An. funestus outdoors. Population dynamics model confirms relative 

stability of demographic rates throughout the seasonal cycle of extreme 

temperature and rainfalls. The findings will also help future modelling efforts 

which aim at selecting the optimal vector control intervention package which can 

disrupt the survival of An. funestus. As a result, any additional efforts in Tanzania 

aimed at An. funestus could result in the eradication of malaria. 
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7.0 Chapter 7: Addendum of Chapter 3 

7.1 Rationale 

The main aim of this addendum is to correct for the error found in chapter 3. In 

the original chapter3, I modelled the mosquito catches by alternative traps using a 

mixture of gamma-Poison distribution with a log-link function. The choice of “log” 

violates the linearity assumption as “log” tends to plateau at high numbers. This 

means the simple linear model assumption is violated because the “log” function 

will not hold a linear relationship when there is a high number of mosquito 

catches.  

In order to address this issue, I have restructured the negative binomial model by 

using an “identity-link” function instead of the “log-link” function. This will allow 

me to accurately assess the relationship between HLC and alternative traps 

catches, as the “identity-link” function does not violate the linearity assumption. 

In addition to this, I have also changed the prior specification to match the current 

model structure and assumptions.  

This modification to the original model will help to provide more accurate and 

reliable results, and will allow for a better understanding of the relationship 

between HLC and different alternative traps catches. The use of the identity-link 

function in place of the log-link function will ensure that the model is able to 

capture full range of possible outcomes as hypothesized in chapter 3 (i.e. intra-

specific or inter-specific density dependencies). By carefully considering the 

choice of link functions and adjusting the model structure, updating all tables and 

figures as needed, I am confident that the revised model will be able to provide 

more accurate and reliable results.  

 

7.2 Model fitting 

The main goal of the analyses was to create a calibration tool to evaluate outdoor 

mosquito traps and to validate the tool by comparing the performance of 

candidate trapping methods relative to HLC, the “gold standard”. In particular, I 
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wanted to test the shape of the association curve linking the numbers of 

mosquitoes collected by each trap type with those collected by the HLC. First, I 

pooled all the hourly collections into a single collection cup per trap per night. 

Then, for each of the focus mosquito groups (Culex genera, Anopheles funestus s.l 

and Anopheles arabiensis), I modelled nightly HLC catches as a function of the 

catching rate of each alternative trap. 

Four linear models were developed within a Bayesian model fitting framework to 

allow me to test for linear and non-linear associations through increasing levels of 

complexity. The Bayesian approach allowed specific constraints on parameters 

based on biological plausibility, in the form of priors and uncertainty when 

converting the counts from alternative traps into HLC equivalent values in the form 

of full posteriors.  

For any given trap and mosquito group, I defined the response variable (𝑁𝑖)  as the 

number of female mosquitoes on every 𝑖𝑡ℎ sampling night. The final model did not 

account for other environmental covariates at specific trap location (e.g. 

temperature, humidity). Initial analyses suggest that, environmental covariates did 

not improve model fitting. I fitted the model following a negative binomial 

distribution using “identity-link” function with parameter 𝑝𝑖  and 𝑟 such that; 

𝑁𝑖  ~ 𝑁𝑒𝑔𝐵𝑖𝑛 (𝑝𝑖, 𝑟) 

𝑝𝑖 =  
𝑟

𝑟 + 𝜆𝑖
 

Where 𝜆𝑖 is defined by the shape of the relationship between 𝑁𝑖 and the number of 

mosquitoes collected with the alternative trap 𝑛𝑖 (Table 7.1). Since the algebraic 

form of this relationship is not known, I made three assumptions with specific 

mathematical definitions, as follows; 1) that the relationship must start at the 

origin (i.e. when HLC catches zero mosquitoes, the alternative traps will, on 

average also collect zero mosquitoes), 2) that the relationship is positive (i.e., no 

negative relationships between trap catches), and 3) that any given trap could 

potentially suffer from a density effect (i.e., the slope of the relationship Is not 

constant and it can change according to the abundance of mosquitoes, either just 

of the same mosquito group or of all mosquitoes).  
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To define 𝜆𝑖, I therefore formulated four possible scenarios to describe the 

relationship between HLCs and other trapping methods as summarized in Table 

6.1. In model 1, I considered a simple linear relationship between 𝑁𝑖 and 𝑛𝑖 (Table 

6.1). In model 2, I tested if the efficiency of the alternative trap was dependent on 

the density of the focal mosquito (e.g. intra-specific density dependence) by 

adding a quadratic term 𝑛𝑖
2 (Table 6.1). In model 3, I tested if the captures of a 

given group by a given trap were dependent on the abundance of the other 

taxonomic group (e.g. “inter-specific” density dependence) by adding, an 

interaction term between 𝑛𝑖 and the number of all the females from other 

mosquito groups collected with the same trap (𝑚𝑖) (Table 6.1). Model 4 was similar 

to Model 3, but I considered all the other 𝐾𝑖 taxonomic groups separately. 

Therefore it included all the pair wise interaction terms between 𝑛𝑖 and the 

number of females of each 𝑘𝑡ℎ mosquito group (𝑠𝑘𝑖
) (Table 7.1). My analysis mainly 

focused on three mosquito groups, but I collected a higher number of species 

hence 𝐾 > 3).  

 

Table 7.1:  Description of models used to investigate the relationships between female 

mosquito catches by human landing catch and alternative traps.  

Model Structure 

Model 1 𝜆𝑖 =  𝛽
1

𝑛𝑖 

Model 2 𝜆𝑖 =   𝛽
1

𝑛𝑖 +  𝛽
2

𝑛𝑖
2 

Model 3 𝜆𝑖 =  𝛽
1

𝑛𝑖 +  𝛽
2

𝑛𝑖𝑚𝑖 

Model 4 𝜆𝑖 =   𝛽
1

𝑛𝑖 +  ∑ 𝛽
𝑘

𝐾

𝑘=1

𝑛𝑖𝑠𝑘𝑖
 

 

This analysis was performed in the statistical environment R, version 4.0 [246], 

with Bayesian model fitting to the data done using the program JAGS [301] 

interfaced within R via the package rjags [302]. For parameters 𝛽1, 𝛽2 and 𝛽𝑘 I used 

gamma prior (shape = 0.1, rate = 0.1). The prior for the size 𝑟 was defined from 

uniform distribution (min = 0, max = 105). The prior for 𝛽1 was chosen to ensure a 

positive relationship between 𝑛𝑖 and 𝑁𝑖 and a positive effect of the quadratic and 
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the interaction terms for 𝛽2 and 𝛽𝑘. To achieve convergence, the models were run 

for up to 3 𝑥 104 iterations. Means of posterior distributions with corresponding 

credible intervals were obtained for each model coefficient 𝛽. I compared 

different models by their Deviance Information Criteria (DIC). To further validate 

the results, the data was randomly divided into two sets: training set (75%) and a 

test set (25%). The root-mean-square error (RMSE) was then calculated for each 

model as the average prediction error on the test set. This allowed us to assess the 

performance of each model on unseen data and determine which model was the 

most accurate and reliable  

 

7.3 Interactive calibration tool 

I designed a look-up table (Table 7.3) containing means of posterior predictions for 

different combinations of mosquito taxa, trap types and models. This allowed me 

to predict the expected number of a given mosquito taxa from an HLC (with 

credible intervals) based on the number caught in the alternative traps. I also 

developed an interactive online tool, in the form of an R Shiny App [303] to 

facilitate these evaluations. This tool provides users with an interactive graphical 

user interface (GUI) to select the number of captured mosquitoes for a group of 

interest by trap type, and to explore the predicted number of mosquitoes caught 

in an HLC by method.  

 

7.4. Results summary 

Following the reanalysis of the data using the negative binomial distribution with 

identity-link function rather than the Poisson with log-link as was previously done 

in chapter 3, we have made the following key observations: 

 Out of the four models that were fitted to the six different traps used for 

the development of the calibration tool, the simple linear model is still the 

one that was the most preferred. Among all the models, as previously 

mentioned in Chapter 3, there were no big differences in deviance 

explained for Anopheles funestus and Anopheles arabiensis (Table 7.3). 
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 Across the range of mosquito catches, there is no saturation effect or non-

linearity as it was hypothesized in model 2 (Table 7.2). This means there is 

no evidence of intra-specific density dependence. This is similar with model 

3 which assess the effect of other females mosquitoes caught by specific 

trap. There was no clear evidence of inter-specific density dependence for 

all the six alternative traps and all the three species (Table 7.3). This was 

also clearly shown by the 𝛽2 coefficient which is very small for all the 

models.  

 

 Anopheles funestus poor calibrations were mainly affected by the very low 

catches for all the alternative traps. The wider credible intervals were 

mainly driven by very low catches of this mosquito species. 

 

 All figures (Figure 7.1, Figure 7.2 and Figure 7.3) and the lock-up tables 

(Table 7.4) were produced based on the simplest linear model (Mode 1). 
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Table 7.2: Coefficients of each parameter (𝛽1, 𝛽2) used to explain the relationship between HLC catches and alternative traps for all the 

four models.  

Species 𝛽 SUN BGS ITT-C MMX MTRC MTR 

a) Culex spp.  

Model 1 
        

𝛽1 4.34 [3.54, 5.37] 4.78 [3.85, 5.94] 2.97 [2.33, 3.75] 10.95 [8.93, 13.47] 2.26 [1.92, 2.67] 2.00 [1.68, 2.37] 

Model 2 
𝛽1 4.35 [3.54, 5.34] 4.79 [3.83, 5.91] 2.98 [2.32, 3.76] 10.97 [8.91, 13.47] 2.25 [1.90, 2.67] 1.99 [1.68, 2.38] 

𝛽2 2.3e-4 [0.0, 0.002] 1.8e-4 [0.0, 0.002] 1.3e04 [0.0, 0.001] 1.3e-3 [0.0, 0.01] 4.8e-5 [0.0, 5.1e-5] 2.8e-5 [0.0, 2.6e-4] 

Model 3 
𝛽1 4.32 [3.54, 5.33] 4.78 [3.86, 5.92] 2.98 [2.32, 3.81] 10.96 [8.80, 13.61] 2.26 [1.90, 2.68] 1.99 [1.67, 2.34] 

𝛽2 2.1e-4 [0.0, 0.002] 8.4e-4 [0.0, 0.01] 5.5e-4 [0.0, 0.05] 3.5e-3 [0.0, 0.023] 8.7e-4 [0.0, 8.8e-4] 6.0e-4 [0.0, 0.01] 

Model 4  
𝛽1 4.22 [3.39, 5.19] 4.56 [3.68, 5.66] 2.95 [2.31, 3.79] 10.78 [8.81, 13.35] 2.12 [1.73, 2.57] 1.93 [1.63, 2.30] 

𝛽2 NA NA NA NA NA NA 

b) An. arabiensis  

Model 1 
       

𝛽1 9.97 [7.92, 12.52] 12.98 [9.89, 16.77] 12.25 [9.43, 16.13] 13.83 [9.88, 19.31] 6.65 [5.39, 8.26] 7.41 [6.25, 8.88] 

Model 2 
𝛽1 10.01 [7.90, 12.59] 12.97 [9.97, 17.06] 12.27 [9.27, 16.12] 13.76 [10.05, 19.03] 6.67 [5.42, 8.19] 7.41 [6.23, 8.79] 

𝛽2 0.004 [0.0, 0.04] 2.5e-4 [0.0, 0.002] 6.2e-4 [0.00, 0.007] 0.004 [0.0, 0.04] 8.2e-4 [0.0, 0.006] 3.2e-4 [0.0, 0.003] 

Model 3 
𝛽1 9.98 [7.89, 12.45] 12.98 [9.93, 17.14] 11.59 [7.70, 15.85] 13.73 [9.59, 19.03] 6.66 [5.34, 8.19] 7.39 [6.02, 8.83] 

𝛽2 2.4e-4 [0.0, 0.002] 3.7e-4 [0.0, 0.003] 0.02 [0.00, 0.14] 4.3e-3 [0.0, 0.04] 1.41e-4 [0.0, 0.001] 2.8e-4 [0.0, 0.03] 

Model 4  
𝛽1 9.97 [7.81, 12.49] 10.96 [7.48, 15.35] 11.47 [7.65, 15.79] 11.07 [7.09, 16.58] 5.97 [3.91, 7.96] 7.30 [6.04, 8.82] 

𝛽2 NA NA NA NA NA NA 

c) An. funestus  

Model 1 
       

𝛽1 4.83 [2.44, 9.36] 2.23 [1.56, 2.99] 1.66 [1.04, 2.59] 2.73 [1.28, 5.45] 2.20 [1.54, 3.19] 1.99 [1.21, 3.08] 

Model 2 
𝛽1 4.77 [2.38, 9.01] 2.23 [1.57, 2.99] 1.62 [0.99, 2.56] 2.72 [1.25, 5.57] 2.21 [1.52, 3.14] 1.99 [1.25, 3.13] 

𝛽2 0.007 [0.0, 0.08] 0.009 [0.0, 0.09] 0.03 [0.0, 0.19] 0.006 [0.0, 0.06] 0.003 [0.0, 0.03] 0.003 [0.0, 0.03] 

Model 3 
𝛽1 4.85 [2.40, 9.16] 2.23 [1.59, 3.02] 1.64 [1.03, 2.52] 2.71 [1.25, 5.46] 2.19 [1.50, 3.14] 1.97 [1.25, 3.10] 

𝛽2 2.1e-4 [0.0, 0.002] 1.3e-4 [0.0, 0.001] 1.6e-4 [0.0, 0.002] 6.2e-4 [0.0, 0.01] 1.3e-4 [0.0, 0.001] 6.4e-5 [0.0, 8.5e-4] 

Model 4  
𝛽1 4.27 [1.43, 9.46] 2.01 [1.17, 2.90] 0.94 [0.69, 1.22] 0.11 [0.0, 0.79] 2.15 [1.42, 3.22] 1.59 [0.001, 2.96] 

𝛽2 NA NA NA NA NA NA 

*NA = Individual interaction between species of interest (i.e. An. funestus, An. arabiensis and Culex spp.) and each of 8 females species 

captured during the study period. This generates 8 different values of 𝛽2 for the most complex model (model 4)
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Table 7.3: Summary (DIC and RMSE values) of models used to investigate the relationship between the numbers of female mosquitoes 

collected with human landing catch (HLC) and the six alternative outdoor traps. See Table 6.1 for description and models formulation. 

Species and Model 
SUN BGS ITT-C MMX MTRC MTR 

 DIC ΔDIC RMSE  DIC ΔDIC RMSE  DIC ΔDIC RMSE  DIC ΔDIC RMSE  DIC ΔDIC RMSE  DIC ΔDIC RMSE 

a) Culex                         

 Model 1  1437.9 0.12 129.2  1490.2 1.65 150.4  1099.5 0.04 203.3  1167.9 0.00 120.6  1699.4 0.10 107.7  1612.9 2.22 81.6 
 Model 2  1438.2 0.44 130.3  1490.6 2.03 150.8  1099.6 0.22 207.6  1168.2 0.29 122.1  1699.3 0.03 109.6  1612.9 2.29 86.4 
 Model 3  1437.7 0.00 129.4  1490.2 1.61 151.4  1099.5 0.08 202.6  1168.4 0.51 122.5  1699.3 0.00 108.0  1612.7 1.99 84.7 
 Model 4   1437.9 0.18 138.6  1488.6 0.00 177.1  1099.4 0.00 205.9  1168.7 0.79 121.7  1699.5 0.20 117.7  1610.7 0.00 86.5 

b)An. arabiensis     
    

    
    

    
    

 Model 1  1009.1 0.00 174.0  767.8 0.00 153.9  757.6 0.00 158.1  544.7 0.67 178.7  1415.3 0.00 140.1  1437.6 0.09 99.6 
 Model 2  1100.1 1.06 177.1  768.0 0.22 155.7  757.9 0.25 159.4  544.4 0.38 178.2  1415.7 0.37 140.2  1437.6 0.14 100.6 
 Model 3  1099.6 0.54 177.0  768.1 0.28 155.3  757.8 0.22 153.8  544.8 0.77 180.8  1415.6 0.31 141.3  1437.5 0.00 100.1 
 Model 4  1101.4 2.35 184.1  768.1 0.33 156.3  758.1 0.48 150.8  543.9 0.00 275.9  1417.4 2.11 154.4  1438.3 0.86 101.2 

c) An. funestus    
 

 
  

 
 

  
 

 
  

 
 

  
 

 
  

 

 Model 1  90.1 0.00 9.41  61.6 0.21 3.83  118.3 11.9 2.41  44.6 0.00 4.15  155.0 0.00 7.63  132.7 0.27 4.47 
 Model 2  90.5 0.39 10.25  61.8 0.38 3.85  119.3 12.8 2.43  44.6 0.01 4.22  155.1 0.08 7.69  132.6 0.18 4.61 
 Model 3  90.4 0.24 10.67  61.4 0.00 3.83  118.4 11.9 2.41  45.9 1.29 4.14  155.3 0.33 7.65  132.5 0.00 4.58 
 Model 4  91.8 1.69 10.86  62.7 1.26 2.87  106.5 0.00 2.41  56.6 12.0 1.33  156.9 1.86 12.9  134.6 2.18 11.21 

SUN: Suna trap, BGS: BG-Sentinel trap, ITT-C: Ifakara Tent Trap version C, MMX: Mosquito Magnet trap, MTRC: M-trap combined with CDC 

Light, MTR: M-trap;  

 

 

 

 

 

 

 



150 
 

Table 7.4: Predicted values for estimating the expected mosquito catches by human landing catch and alternative traps, according to the 

linear model (Model 1). Numbers in the first column refer to the mosquitoes collected with a given trap. To obtain the estimate of the 

equivalent number that one would collect with HLC, refer to the column corresponding to the trap itself. Numbers in brackets are (95% 

credible intervals). 

  Expected HLC 

 Collected SUN BGS ITT-C MMX MTRC MTR 

a) Culex spp. 10 43 (35-54) 48 (39-59) 30 (23-37) 110 (89-134) 23 (19-27) 20 (17-24) 

20 87 (71-107) 96 (77-119) 59 (47-75) 219 (179-269) 45 (38-53) 40 (34-47) 

30 130 (106-161) 143 (116-178) 89 (70-112) 329 (268-403) 68 (57-80) 60 (51-71) 

40 174 (142-215) 191 (154-238) 119 (93-150) 438 (357-538) 90 (77-107) 80 (67-95) 

50 217 (177-269) 239 (193-297) 149 (116-187) 548 (446-672) 113 (96-134) 100 (84-119) 

60 260 (213-322) 287 (231-356) 178 (140-225) 657 (536-806) 136 (115-160) 120 (101-142) 

70 304 (248-376) 335 (270-416) 208 (163-262) 767 (625-941) 158 (134-187) 140 (118-166) 

80 347 (284-430) 382 (308-475) 238 (186-300) 876 (714-1075) 181 (153-214) 160 (135-190) 

90 391 (319-484) 430 (347-535) 267 (210-337) 986 (804-1209) 204 (172-241) 180 (152-213) 

100 434 (354-537) 478 (385-594) 297 (233-375) 1095 (893-1344) 226 (192-267) 200 (168-237) 

b) An. arabiensis 10 100 (79-125) 130 (99-168) 122 (94-161) 138 (99-193) 67 (54-83) 74 (62-89) 

20 199 (158-250) 260 (198-335) 245 (189-323) 277 (198-386) 133 (108-165) 148 (125-178) 

30 299 (237-376) 390 (297-503) 367 (283-484) 415 (296-579) 200 (162-248) 222 (187-266) 

40 399 (317-501) 519 (396-671) 490 (377-645) 553 (395-773) 266 (215-331) 297 (250-355) 

50 498 (396-626) 649 (495-839) 612 (471-807) 691 (494-966) 333 (269-413) 371 (312-444) 

 60 598 (475-751) 779 (594-1006) 735 (566-968) 830 (593-1159) 399 (323-496) 445 (375-533) 
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70 698 (554-877) 909 (693-1174) 857 (660-1129) 968 (692-1352) 466 (377-579) 519 (437-621) 

80 798 (633-1002) 1039 (792-1342) 980 (754-1291) 1106 (791-1545) 532 (431-661) 593 (500-710) 

90 897 (712-1127) 1169 (891-1510) 1102 (848-1452) 1244 (889-1738) 599 (485-744) 667 (562-799) 

100 997 (792-1252) 1298 (990-1677) 1225 (943-1613) 1383 (988-1931) 665 (539-826) 741 (625-888) 

c) An. funestus 10 48 (24-94) 22 (16-30) 17 (10-26) 27 (13-54) 22 (15-32) 20 (12-31) 

20 97 (49-187) 45 (31-60) 33 (21-52) 55 (26-109) 44 (31-64) 40 (24-62) 

30 145 (73-281) 67 (47-90) 50 (31-78) 82 (38-163) 66 (46-96) 60 (36-93) 

40 193 (98-374) 89 (62-120) 66 (41-104) 109 (51-218) 88 (62-128) 79 (49-123) 

50 241 (122-468) 112 (78-150) 83 (52-130) 136 (64-272) 110 (77-160) 99 (61-154) 

60 290 (146-561) 134 (94-180) 100 (62-156) 164 (77-327) 132 (93-191) 119 (73-185) 

70 338 (171-655) 156 (109-210) 116 (73-182) 191 (90-381) 154 (108-223) 139 (85-216) 

80 386 (195-748) 178 (125-240) 133 (83-208) 218 (103-436) 176 (123-255) 159 (97-247) 

90 434 (220-842) 201 (140-269) 149 (93-234) 246 (115-490) 198 (139-287) 179 (109-278) 

100 483 (244-936) 223 (156-299) 166 (104-260) 273 (128-545) 220 (154-319) 199 (121-308) 
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Figure 7.1: Expected number of female Culex spp. mosquitoes collected with HLC (y-

axis), given the number of females collected with alternative traps (x-axis). Continuous 

line is the prediction of a normal distribution model assuming a linear relationship; 

dashed lines are 95% credible intervals and black circles are the actual observed values. 
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Figure 7.2: Expected number of female Anopheles arabiensis mosquitoes collected with 

HLC (y-axis), given the number of females collected with alternative traps (x-axis). 

Continuous line is the prediction of a normal distribution model assuming a linear 

relationship; dashed lines are 95% credible intervals and black circles are the actual 

observed values. 
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Figure 7.3: Expected number of female Anopheles funestus mosquitoes collected with 

HLC (y-axis), given the number of females collected with alternative traps (x-axis). 

Continuous line is the prediction of a normal distribution model assuming a linear 

relationship; dashed lines are 95% credible intervals and black circles are the actual 

observed values. 

 

 

7.5 Conclusion 

After reanalyzing the data, it became clear that there were no substantial 

differences between the two model fitting techniques within the catch range 

values. The current approach remains valid, as it was primary implemented to 

address errors in the previous one. It was not possible to identify a single model 

which performs better for all the species and all the alternative traps. As a 

result, I selected the most parsimonious model (i.e. model 1) which is the simple 

linear model. All figures and tables were created based on the simple linear 

model. Overall, I believe that the revised version of the work represent a 

significant improvement over the original chapter 3.  
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8.0 Appendices 

8.1 Appendix 1: Shiny App Interfaces  

8.1.1 Shiny App dashboard showing one example of a linear relationship (model 

1) between HLC and an alternative trap (i.e., MTC) for Culex spp 
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8.1.2 Shiny App dashboard showing one example of a saturation effect (model 

2) between HLC and an alternative trap (i.e., MTC) for Culex spp  
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8.1.3 Shiny App dashboard showing one example of a model which account for 

other species (model 3) between HLC and an alternative trap (i.e., MTC) 

for Culex spp 
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