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Abstract

Ranking-based recommender systems are designed to generate a personalised ranking list of
items for a given user to address the information overload problem. An effective and efficient
ranking-based recommender system can benefit users by providing them with items of inter-
est as well as service providers by increasing their exposure and profits. Since more and more
users and providers of items have been increasingly interacting with online platforms, the un-
derlying recommendation algorithms are facing more challenges. For example, traditional col-
laborative filtering-based recommender systems cannot generate effective recommendations to
cold-start users due to the lack of sufficient interactions. In addition, although recommender
systems can leverage deep learning-based techniques to enhance their effectiveness, they are
not robust enough against variances in the models’ initialisations, which can degrade the users’
satisfaction. Furthermore, when incorporating these complex deep models, the training phases
of recommender systems become less efficient, which might slower the online platforms from
quickly capturing the users’ interests.

Graph representation learning includes techniques that can leverage graph-structured data
and generate latent representations for the nodes, graphs/sub-graphs and edges between nodes.
Since the user-item interaction matrix is in fact a bipartite graph, we can use these graph-
based techniques to leverage the interaction matrix and generate more effective node represen-
tations for the users and items. Therefore, this thesis aims to enhance the ranking-based recom-
mendations by proposing novel recommender systems based on graph representation learning.
In particular, this thesis uses heterogeneous graph representation learning, graph pre-training
and graph contrastive learning to improve the effectiveness of ranking-based recommendations
while alleviating the aforementioned cold-start problem as well as the low-robustness and low
training-efficiency issues.

To enhance the effectiveness of ranking-based recommendations and alleviate the cold-start

problem, we propose to use the heterogeneous graph representation learning technique to encode
the typical side information of the users and items, which are usually defined as the attributes of
users and the descriptions of items. For example, a user-item interaction matrix, social relations
are one of the most naturally available relations that can be used to enrich such an interaction
matrix. Therefore, we choose the social relations among different types of side information
to build the heterogeneous graph. We propose a novel recommender system, the Social-aware
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Gaussian Pre-trained model (SGP), which encodes the user social relations and interaction data
using the heterogeneous graph representation learning technique. Next, in the subsequent fine-
tuning stage, our SGP model adopts a Gaussian Mixture Model (GMM) to factorise these pre-
trained embeddings for further training. Our extensive experiments on three public datasets show
that SGP can alleviate the cold-start problem while also ensuring effective recommendations for
regular users.

To alleviate the low-robustness issue and enhance the recommendation effectiveness, we
propose to leverage multiple types of side information using the graph pre-training technique.
In particular, we aim to generalise the pre-training technique used by SGP for multiple types
of side information associated with both users and items. Specifically, we propose two novel
pre-training schemes, namely Single-P and Multi-P, to leverage side information such as the
ages and occupations of users and the textual reviews and categories of items. Instead of jointly
training with two objectives, our pre-training schemes first pre-train a representation model un-
der the users and items’ multi/single relational graphs constructed by their side information and
then fine-tune their embeddings under an existing general representation-based recommenda-
tion model. Extensive experiments on three public datasets show that the graph pre-training
technique can effectively enhance the effectiveness of ranking-based recommender systems and
alleviates the cold-start problem. In addition, our pre-training schemes can provide more ef-
fective initialisations for both the users and items; hence the robustness of fine-tuning models
namely MF, NCF, NGCF and LightGCN, can be improved.

Finally, to enhance the training efficiency of graph-based recommenders while ensuring their
effectiveness, we propose to use the graph contrastive learning technique to improve the tradi-
tional random negative sampling approach. In particular, we propose a dynamic negative sam-
pling (DNS) approach that leverages the graph contrastive learning technique to replace the
randomly sampled negative items with more informative negative items. Our experiments show
that DNS can improve the recommendation effectiveness of four competitive recommenders.
Next, we further propose a novel graph-based model, i.e. MLP-CGRec, that leverages a mul-
tiple sampling approach to enhance the training efficiency of the graph-based recommender
system. In particular, MLP-CGRec uses DNS to sample contrastive negative items and an effi-
cient graph-based sampling method to select pseudo-positive samples. Experimental results on
three public datasets show that MLP-CGRec can maintain competitive effectiveness and achieve
the best efficiency compared with state-of-the-art recommender systems.
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Chapter 1

Introduction

1.1 Motivation

With the development of an extreme number of web applications, users are increasingly inter-
ested in effective personalised recommendations (Lu et al., 2015; Zhang et al., 2019b). For
example, an increasing number of users enjoy online shopping through E-commerce platforms,
including the well-known Amazon (Leino and Räihä, 2007) and Alibaba (Wang et al., 2018b).
Given that the numbers of items available on those platforms is usually huge (Eksombatchai
et al., 2018), recommender systems are essential to help users filter out non-relevant items and
generate a ranking of items of interest. Similarly, users may also want to expand their so-
cial networks (Tang et al., 2013), where recommender systems can help users explore potential
social relations between them and other unconnected users. Traditional collaborative filtering-
based (Koren et al., 2022), content-based (Pazzani and Billsus, 2007) and hybrid recommender
systems (Thorat et al., 2015) aim to incorporate shallow embeddings and/or detailed descriptions
of users and items to generate recommendations when provided with historical interactions.
However, limited by the availability of explicit feedback from users, these traditional methods
cannot accurately predict explicit ratings (Rendle et al., 2009). In addition, traditional recom-
mender systems cannot represent the heterogeneous relations between different types of entities
including users, items and sometimes the extra side information. Specifically, side information
is generally defined as the descriptions of items and attributes of users. For example, the de-
scriptions of items include the textual reviews, categories, locations, while the users’ attributes
include the social relations, ages and occupations. Indeed, existing works (Hui et al., 2021;
Zhao and Guo, 2017) have demonstrated that side information can be leveraged to effectively
enhance the recommendation performance. Therefore, deep neural recommender systems (He
et al., 2017) have been attracting the community’s attention because of their strong representa-
tional ability to capture not only the interactions information but also the heterogeneous relations
among the side information.

Recently, graph representation learning has become a popular trend in different research do-
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mains (Jha et al., 2022; Sanchez-Gonzalez et al., 2018; Yi et al., 2022). Broadly speaking, graph
representation learning includes techniques that can leverage graph-structured data and gener-
ate latent representations for the nodes, graphs/sub-graphs and edges between nodes (Hamilton,
2020). In particular, well-known graph-based techniques include but are not limited to graph
neural networks (Kipf and Welling, 2017), graph contrastive learning (You et al., 2020), graph
pre-training (Hu et al., 2019), graph-based self-supervised learning (Wu et al., 2021) and graph
clustering (Pan and Kang, 2021). Among different techniques of graph representation learning,
graph neural networks (GNNs) (Zhou et al., 2020) are of particular interest to the recommen-
dation task. First, GNNs are models that are effective for graph-structure data, where the graph
contains nodes and edges for connecting different nodes. Given such input typed as graphs,
GNNs aim to learn representations for all nodes, where success is to learn low-dimensional
vectors that can be used to accurately predict the links between nodes. Recall that the task of
recommender systems is also to explore the complex relations between users and items. We
postulate that the target of GNNs naturally aligns with the target of recommender systems. In
the case of recommendation, the most basic graph will be a bipartite graph containing the users
and items’ nodes only with edges denoting their historical interactions (van den Berg et al.,
2017). Second, when incorporating different types of side information, existing recommender
systems have explored different types of regularisation methods (Ma et al., 2011). However,
those regularisation-based methods usually rely on extensive parameter-tuning methods such as
grid search to find the best parameters and performance. Different from these regularisation-
based models, graph-based recommender systems can leverage such side information by ex-
tending the bipartite graph to a heterogeneous graph (Zhang et al., 2019a), where different types
of side information could be represented as different types of relations between user-user, item-
item and user-item pairs. For example, social relations have been recognised as an important
source of recommender systems to infer users’ preferences (Ma et al., 2011; Yang et al., 2014).
Traditionally, social relations are leveraged by collaborative filtering-based approaches through
the regularisation, which gives a penalty to the model when it generates different predictions to
socially-related users. In the scenario of graph-based recommender systems, social relations are
leveraged by adding social edges between socially related users. Similar to social relations, other
side information can be used to categorise users and items. Therefore, the use of graph-based
recommender systems is a promising research direction for enhancing recommender systems by
better representing the user-item interaction information and exploring more complex relations
within side information.

Although effective, there are still a number of remaining challenges for existing graph-based
recommender systems (Gao et al., 2021; Wang et al., 2021b). Among these, the cold-start issue
has become a long-standing issue for recommendation tasks (Lam et al., 2008). Specifically, the
cold-start issue can be divided into the cold-start items issue and the cold-start users issue. In
general, cold-start users are those users who have fewer interactions (the threshold is usually
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defined as 10 interactions). Similarly, the cold-start items are those items that have fewer inter-
actions. In comparison, regular users/items are defined as users/items with more interactions.
The difference between regular and cold-start users lies in the number of historical interactions
they have made. Existing works have shown that recommender systems, especially those col-
laborative filtering (CF) based methods usually fail to generate an effective recommendation to
cold-start users (Park and Chu, 2009). This is because when there are enough historical interac-
tions, CF-based methods are able to effectively recognise the interests of users and hence better
recommend items-of-interest to these users. However, for cold-start users, CF-based methods
fail to find their similar users and items and thus cannot make an effective recommendation. This
problem has been stopping CF-based methods from delivering satisfactory recommendations to
users since the development of recommender systems. Even though graph-based recommender
systems can better aggregate information from the neighbourhoods of users and items (He et al.,
2020; Wang et al., 2019c), these cold-start users still suffer from less effective recommenda-
tions because they have fewer neighbours under the GNN scenario. This cold-start problem is
becoming more severe with the extreme development of e-commerce and other online applica-
tions, because when more and more users register and more and more items become available
on those applications, there will naturally be more cold-start users and items. Consequently,
such cold-start users might decide to leave these online platforms given that they cannot receive
satisfactory recommendations in the long run. Furthermore, suppliers may reconsider publish-
ing new items if the recommendation algorithm will not recommend cold-start items. A line
of research (Gantner et al., 2010; Liu et al., 2020; Puthiya Parambath and Chawla, 2020) inves-
tigated leveraging side information to enhance the cold-start recommendation. However, it is
still unclear how to incorporate side information of both users and items within the graph-based
recommender systems scenario.

Another challenge of graph-based recommender systems is their low robustness. The ro-
bustness of a deep neural network (DNN) is usually defined as the variance of their performance
when different initialisation of models are applied (Burke et al., 2015). Ideally, a model should
be robust enough to achieve similar performance when different initialisation are used. Specif-
ically, an ideal recommender system is expected to perform robustly so that when a wide range
of random seeds is used, the devised recommender systems can generate recommendations with
a stable level of satisfaction instead of observing a large variance. DNN-based recommender
systems have been reported to be less robust than those traditional models. Dacrema et al.
(2019) have shown that the performances of many DNN-based recommender systems are not
as good as reported. One of the main reasons for this low reproducibility is the low robustness
of DNN-based models. Specifically, DNN-based models usually comprise more than one DNN
module, where some random operations are included to increase their generalisability. Although
effective, many stochastic functions are hard to reproduce. In particular, some stochastic func-
tions, including the random edge/node dropout and graph perpetuations (Wu et al., 2021), might
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lead to the graph losing some essential edges or nodes. As a result, random seeds play an un-
expectedly important role in the final recommendation performance. This effect will, in turn,
increase the difficulty of deploying advanced recommendation algorithms in an industry setup.
Indeed, the performance of many models is not robust enough, they cannot be used to avoid an
unstable satisfaction of users. Many natural language processing models have proposed using
the pre-training framework to alleviate the low robustness issue (Devlin et al., 2018; Ma et al.,
2021; Reimers and Gurevych, 2019). However, it remains unclear how to leverage a pre-training
framework to improve the robustness of recommender systems. Specifically, many existing cor-
pora exist for training NLP models, such as Wikipedia. These existing corpora can be used to
train unsupervised language models to capture the abundant context of languages. However,
for recommender systems, there is no such existing corpus. Therefore, this challenge remains
unresolved.

Furthermore, existing graph-based recommender systems are usually computationally ex-
pensive and inefficient. To understand this issue, we first need to have a general idea of the over-
all architecture of graph-based recommender systems. First, following existing CF methods,
graph-based recommender systems initialise the embeddings of users and items with random
vectors. Second, to aggregate information from the graph neighbourhood, one or more graph
neural network(s) is needed to operate the message passing and neighbourhood aggregation
functions. To do so, we need not only the GNNs but also the adjacency matrix of the user-item
interaction matrix. This adjacency matrix will be multiplied by the users and items embedding
matrix to effectively obtain each node’s neighbours. In addition, to obtain multi-hop neigh-
bours, multiple layers of GNNs are usually needed. Although this aggregation process has been
demonstrated to be effective for the final recommendations, this multiplication between matri-
ces is indeed inefficient because the size of the adjacency matrix is relatively large. Specifically,
given a dataset with 1,000 users and 1,000 items, classic recommender systems might need
an embedding matrix E2000×d. However, graph-based recommender systems need this matrix
E2000×d and also an adjacency matrix E2000×2000. As a result, multiplying enormous matrices
may lead to the out-of-memory issue and a lower training efficiency. Given that graph-based
recommender systems consume large amount of GPU memory and training time, it can be prob-
lematic to adapt them as a practical recommendation algorithm. Therefore, existing works have
explored how to simplify the overall GNNs and enhance the efficiency. For example, SGC (Wu
et al., 2019a) has been proposed to simplify the GNNs by removing redundant neural operations.
However, most of the simplified GNNs (Fu and He, 2021; Wu et al., 2019a; Zhao et al., 2020b)
still cannot avoid the graph inference process, which is presumably the most time-consuming
operation. Hence, to further improve the efficiency of graph-based recommender systems, one
of the challenges is to avoid or largely reduce the graph inference process.

Enhancing the representational power of graph-based recommender systems is one of the
solutions to improve the graph-based recommender systems. Besides, improving the training
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framework has not been explored. Most of the existing graph-based recommender systems (He
et al., 2020; Mao et al., 2021; Wang et al., 2019c) adapted the basic Bayesian Personalised
Ranking (BPR) (Rendle et al., 2009) as their underlying backbone. Specifically, graph-based
recommender systems follow the basic setup of BPR and use the common training triplet con-
sisting of a user, a positive item and a sampled negative item. Each user has a limited amount
of positive items but a large amount of negative items. To form these triplets, negative items are
randomly sampled from each user’s pool of negative items. Though this random negative sam-
pling method is efficient, it may lead to the exposure bias (Khenissi et al., 2020) and the false
negative issue (Hariadi and Nurjanah, 2017). With randomly sampled negative items, it is possi-
ble that this user has never been exposed to these negative items. Therefore, it is unfair to assume
that this user will prefer a positive item to this unexposed item. Second, the negative items of
the training set is sampled without knowing the positive items in the test set. This may lead to
the false-negative issue when the sampled negative items for the training set is in fact a positive
item in the test set. This false-negative issue will largely degrade the final recommendation per-
formance (Liu et al., 2021b). To alleviate this issue, existing methods have attempted to leverage
the side information to avoid sampling unexposed or false negative items. For example, using
the geographical information can help a recommender system to sample venues from different
cities of a specific user to decrease the possibility of sampling false-negative items (Manotum-
ruksa et al., 2017). Another line of research (Yang et al., 2022; Zheng et al., 2020b) investigated
the popularity-based sampling method, where items are sampled based on their popularity i.e.,
the number of times they have been interacted by users. The intuition here is that if an item is
popular and it is not interacted by a user, then this popular item should be sampled as a negative
item because it is unlikely this user has not been exposed to this item. Even though these afore-
mentioned methods are effective, they are limited by the availability of side information. Indeed,
when there is no side information, it will be hard to sample negative items based on some prior
knowledge and assumption leading to the simple random sampling used by BPR. As mentioned
above, most of the existing graph-based recommender systems still use BPR as their backbone,
hence graph-based recommender systems are not superior to other recommender systems from
this specific perspective. Therefore, a more advanced negative sampling approach is needed for
graph-based recommender systems for a further enhanced performance.

1.2 Thesis Statement

This thesis states that the effectiveness of ranking-based recommender systems can be enhanced
by techniques from graph representation learning. Specifically, this thesis argues that by lever-
aging heterogeneous graph representation learning, graph pre-training and graph contrastive
learning methods, we could observe improvements in the overall ranking-based recommenda-
tions provided by the graph-based recommender systems while also alleviating their cold-start
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problem, low-robustness and low-efficiency issues. In particular, we hypothesise that we can
use the heterogeneous graph representation learning method to alleviate the cold-start prob-
lem while ensuring enhanced recommendations for regular users by leveraging social relations,
which are naturally available relations without any pre-processing. We also postulate that the
use of graph pre-training can generalise the sole use of social relations to the usage of multi-
ple types of side information, which allows to alleviate the low-robustness issue of graph-based
recommender systems and further improves the recommendation performance for both regular

and cold-start users. Finally, we postulate that advanced sampling approaches based on graph
contrastive learning can enhance the efficiency of graph-based recommender systems while re-
taining a competitive recommendation accuracy.

1.3 Contributions

The summary of our contributions is described below:

• Graph Social Recommendation To alleviate the cold-start issue mentioned in Section 1.2,
we start with building a heterogeneous graph to represent the user-item interaction infor-
mation and social relations between users. In fact, given a user-item interaction matrix,
social relations are one of the most naturally available relations that can be used to enrich
such an interaction matrix. Therefore, we choose the social relations among all different
types of side information, where most of them require unique pre-processing or feature
selection. In particular, we hypothesise that users tend to interact with items purchased
by their socially-related friends. Hence, social relations are essential side information that
can be used to infer the interests of users. Given that recommender systems usually fail to
generate accurate recommendations to cold-start users, we propose to alleviate this issue
by considering the social relations between users. Specifically, we propose to pre-train
the recommendation model not only with the interaction data but also with the social rela-
tions among users, thereby providing the recommender system with a better initialisation
compared with solely relying on the user interaction data. We propose a novel recom-
mendation model, the Social-aware Gaussian Pre-trained model (SGP), which encodes
the user social relations and interaction data at the pre-training stage in a Graph Neural
Network (GNN). Afterwards, in the subsequent fine-tuning stage, our SGP model adopts
a Gaussian Mixture Model (GMM) to factorise these pre-trained embeddings for further
training, thereby benefiting the cold-start users from these pre-built social relations. By
evaluating our SGP model on three real-world datasets, we aim to answer the research
question that: Can we use the GNN model to leverage the social relations and gener-
ate pre-trained embeddings for both users and items, thereby improving the overall and
cold-start recommendation performance?
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• Graph Pre-training Recommendation Despite that SGP also uses pre-training to encode
the additional social relations between users, it cannot take multiple types of side infor-
mation into consideration. Therefore, we aim to generalise such a pre-training technique
for multiple types of side information associated with both users and items. Specifically,
we propose two novel pre-training schemes, namely Single-P and Multi-P to leverage
the side information including the ages and occupations of users and the textual reviews
and categories of items, by pre-training embeddings of users and items using the multi-
relational (Multi-P) or single-relational (Single-P) graph neural network. Compared with
SGP, Single-P is a more generalised method that is capable of incorporating multiple types
of side information, where Single-P assigns the same level of importance to the same type
of side information. On the contrary, Multi-P can learn variable levels of importance to
the same type of side information shared by different nodes i.e., users or items, based on
the importance of this side information for each specific node. Instead of jointly training
with two objectives, our pre-training schemes first pre-train a representation model under
the users and items’ multi/single relational graphs constructed by their side information,
and then fine-tunes their embeddings under an existing general representation-based rec-
ommendation model. Our proposed multi-relational and single-relational graph neural
networks can generate effective embeddings, while capturing the heterogeneity from the
side information simultaneously, thereby improving the performance of the underlying
recommendation model. Besides, our pre-training schemes can provide more effective
initialisations for both the users and items such that the robustness of fine-tuning models
can be improved. We examine our pre-training schemes on three real-world datasets to an-
swer the research question that: Do our pre-trained models help existing recommendation
systems obtain better performances?

• Graph Contrastive Learning for Recommendation As discussed before, graph-based
recommenders suffer from ineffective negative items and low training efficiency. To al-
leviate these two issues, we first propose a novel scheme called Dynamic Negative Sam-
pling (DNS), which can dynamically explore contrastive negative items and generally
improve the recommendation performance of ranking-based RSs. Specifically, DNS uses
a similarity-based approach to sample items that are unlikely to be interacted with by a
user as his/her contrastive negative items. Therefore, recommender systems using DNS
benefit from gradually learning contrastive negative items along the training process. Fur-
thermore, we design a novel approach to measure the entropy among the distributions of
users and items. Using such an approach, we show how our DNS scheme for sampling
negative items can induce a higher information gain.

Second, to improve the efficiency of graph-based recommenders, we further propose a
novel model i.e., MLP-CGRec using a multiple sampling approach based on graph con-
trastive learning to sample both negative and positive samples. In relation to DNS pro-
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posed above, MLP-CGRec also uses graph contrastive learning to determine contrastive
negatives. However, we focus on improving the efficiency of graph-based recommender
systems by efficiently sampling the graph neighbours of both users and items to avoid
the message passing function of GNN, which is computationally expensive. In addition,
we propose a simple algorithm based on Multilayer Perceptron (MLP) for learning users
and items’ representations with extra non-linearity while lowering computational burden
compared with multi-layers GNNs.

By comparing our DNS scheme and MLP-CGRec model with existing sampling ap-
proaches, we aim to answer the research question that: Can we use the graph contrastive
learning method to enhance the training efficiency and obtain more informative negative
items for graph-based recommender systems?

• Integrated Graph-based Recommender Systems We have proposed different methods
to enhance the performance of graph-based recommender systems and alleviate the cold-

start problem, low-robustness and low-efficiency issues, where each method has its own
advantages. Therefore, it is interesting to investigate whether we can integrate different
proposed methods into one graph-based recommender system and retain the advantage
of each method. In particular, we integrate two pre-training schemes i.e., Single-P and
Multi-P with two sampling approaches i.e., DNS and the multiple sampling approach
used by MLP-CGRec. We do not consider the proposed SGP model as one of the options
to avoid repetition because it is a generalised version of Single-P. Additionally, we unify
the experimental setup used to evaluate our integrated models and all other baselines to
avoid the sampling bias, where we use the full negative items for evaluation instead of us-
ing the sampled metrics. Finally, we evaluate four integrated graph-based recommender
systems and we aim to answer the research question that: Can our integrated graph-based
recommender systems achieve enhanced recommendation performance and alleviate mul-
tiple issues simultaneously?

1.4 Origins of Material

Most of the material presented in this thesis is based on work considered by various international
conferences and journals:

• Chapter 3: We propose a heterogeneous graph pre-training technique to encode social
relations between users. Our proposed Social Graph Pre-training (SGP) model uses this
social pre-training technique and a Gaussian Mixture Model (GMM) to enhance the rec-
ommendation performance and benefit cold-start users. This work is under revision for
the IPM journal.
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• Chapter 4: We propose two pre-training schemes, namely the multi-relational and single-
relational graph pre-training schemes that can incorporate multiple types of side informa-
tion of both users and items. Both schemes can be pre-trained and easily fine-tuned to
enhance both the recommendation performance and robustness of a general recommender
system. This work is accepted by the TOIS journal.

• Chapter 5: We propose a graph-based dynamic negative sampling approach that provides
more informative negative items for pairwise recommender systems. In particular, with
these provided negative items, a pairwise recommender will gain higher entropy and en-
hanced recommendation performance. This work is considered by the TWeb journal.

• Chapter 6: We propose a graph-based recommender (MLP-CGRec) using an efficient
multiple sampling method to sample both negative items and positive samples (graph
neighbours). In particular, we use a Multilayer Perceptron (MLP) to enhance the rec-
ommendation performance without increasing the computational cost. This work was
published in SIGIR 2022 (Liu et al., 2022).

1.5 Thesis Outline

The remainder of this thesis is organised as follows:

• Chapter 2 describes the background of the recommendation task and graph representation
learning. First, we describe four popular taxonomies to categorise recommender systems.
Afterwards, we show the basic models of recommender systems, where we specifically
adopt the taxonomy of Collaborative filtering-based vs Content-based vs Hybrid Recom-
mendations to define the scope of this thesis. Then we focus on the offline evaluation
and its relevant metrics in the evaluation of recommender systems. Later in the chapter,
we introduce the graph representation learning and build the bridge between this learning
paradigm with the recommender systems.

• Chapter 3 introduces our proposed technique that incorporates the social relations between
users in the graph-based recommendation scenario. Our proposed Social-aware Gaussian
Pre-trained model (SGP) can encode the users’ social relations by using the graph pre-
training technique and a Gaussian Mixture Model. Afterwards, SGP adopts the pre-trained
embeddings for the fine-tuning to benefit cold-start users. We evaluate our proposed SGP
model on three public datasets. Our extensive experimental results compare SGP with 13
competitive baselines. In addition, we examine the recommendation performance of SGP
regarding both cold-start and regular users, respectively, to validate the hypothesis of our
proposed thesis.
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• Chapter 4 describes a more generalised approach than the proposed SGP model demon-
strated in Chapter 3. In this chapter, we propose two schemes i.e., single-relational
(Single-P) and multi-relational (Multi-P) graph pre-training schemes that are extended to
multiple types of side information instead of only focusing on the social relations. In par-
ticular, we evaluate the effectiveness of two proposed approaches on three public datasets
in comparison with state-of-the-art recommender systems.

• Chapter 5 introduces a dynamic negative sampling approach (DNS) to enhance the recom-
mendation performance of ranking-based recommender systems. In particular, inspired by
the graph contrastive learning, DNS aims to provide more informative negative items. We
conduct extensive experiments on three public datasets to compare the performance of
recommender systems with and without using DNS. In particular, we conduct an entropy-
based analysis to examine whether DNS can provide more informative negative items.

• In Chapter 6, an efficient graph contrastive recommender i.e., MLP-CGRec is proposed.
Our MLP-CGRec is based on an efficient graph neighbour sampling method with a Mul-
tilayer Perceptron (MLP). We conduct extensive experiments on three public datasets to
evaluate both the recommendation accuracy and efficiency of MLP-CGRec compared with
seven baselines. In particular, we measure the training time and memory consumption of
MLP-CGRec and seven baselines in order to consolidate our proposed thesis.

• Building on models/methods proposed in Chapters 3, 4, 5 and 6, we introduce four
integrated models, namely Single-P+DNS, Multi-P+DNS, Single-P+MLP-CGRec and
Multi-P+MLP-CGRec in Chapter 7. As mentioned before, Single-P is the generalised
version of SGP towards multiple types of side information. Hence, it is unnecessary to
build extra integrated models based on SGP. This chapter aims to investigate whether our
proposed models can be combined to achieve better effectiveness under a unified experi-
mental setup.

• Chapter 8 closes this thesis by highlighting the contributions and the conclusions of each
chapter. We also discuss some possible future directions for our research.

To sum up, this thesis focuses on two main research directions, namely recommender sys-
tems and graph representation learning. In particular, we aim to enhance ranking-based rec-
ommender systems in terms of their recommendation accuracy, robustness and efficiency by
incorporating different graph-based techniques. After we bridge the recommender systems and
graph representation learning (Chapter 2), we explore how to incorporate the social graph rec-
ommendation, where we use a heterogeneous graph to encode both social relations and user-item
interactions for the subsequent recommendation (Chapter 3). Building on this social graph rec-
ommendation approach (SGP), we further develop two more generalised pre-training schemes,
namely Single-P and Multi-P (Chapter 4). In comparison to SGP, Single-P and Multi-P are
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extended to different types of side information instead of only the social relations. Therefore,
the development from Chapter 3 to Chapter 4 can be interpreted as the process of generalising
the graph representation learning from incorporating a single type of relation (i.e., the social
relation) to multiple types of relations for the recommendation task. After investigating how
to incorporate more side information for recommendation, we pay attention to enhancing the
underlying negative sampling approach of recommender systems. Different with SGP, Single-P
and Multi-P, our proposed dynamic negative sampling approach (DNS) is a more generic sam-
pling approach that does not rely on the side information. Given that all recommender systems
proposed in this thesis use the most basic random sampling approach, we can further enhance
their effectiveness by developing integrated models. Similar to DNS, MLP-CGRec (Chapter 6)
also aims to incorporate more samples during the training of a recommender system. However,
instead of focusing on negative samples only, MLP-CGRec can leverage both positive and neg-
ative samples. Hence, the underlying sampling method of MLP-CGRec can also be used to
enhance the efficiency of the previously proposed models. Finally, in Chapter 7, we investigate
integrated model(s) that leverage one model among Single-P and Multi-P and one sampling
method from DNS and MLP-CGRec, such that this integrated model can benefit from each used
model/method.

11



Chapter 2

Background

In Chapter 1, we focused on the functionalities of the recommender systems and their limita-
tions. To alleviate those limitations including the cold-start, low expressive power and efficiency
issues as well as the lack of ability to incorporate the side information, we have proposed graph-
based techniques, including heterogeneous graph representation learning, graph pre-training and
graph contrastive learning in Section 1.3. In this chapter, we first provide an overview of the
recommendation task in general and then provide the basic notations and information of graph
representation learning that this thesis is built on. In general, we describe the existing tech-
niques, especially those deep learning-based models for graph data that our proposed method
relies on for modelling the complex structure of user-item interactions in a collaborative fil-
tering manner (Li and She, 2017). In particular, we first describe some classic recommender
approaches, including the collaborative filtering-based, content-based and hybrid approaches in
Section 2.1.1. Then we move towards describing the commonly-used evaluation methods and
metrics in Section 2.1.2. Afterwards, we focus on graph representation learning by first intro-
ducing some preliminaries of graph networks such as the graph data structure and graph-based
transformations, followed by the relation between the recommender systems and the recently
arisen Graph Neural Networks in Section 2.2.1. After that, we introduce the heterogeneous
graph representation learning, graph pre-training and graph contrastive learning, which are three
main building blocks for this thesis in Sections 2.2.2, 2.2.3 and 2.2.4 respectively.

2.1 Overview of Recommender Systems

Recommender systems are algorithms and techniques that provide some relief from the plethora
of choice faced by consumers. Given the rapid growth of information and items available on
the Web, users often need to select items aligned with their interests from countless products,
movies, or venues. As such, personalisation is an essential strategy for helping users to filter
out the large portion of non-relevant items so as to enhance the user experience. Therefore, rec-
ommender systems play a crucial and indispensable role in online applications and information
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Figure 2.1: Explicit and implicit feedback of users.

access systems in order to boost the profits of businesses and to facilitate the decision-making
process (Jannach et al., 2010; Ricci et al., 2015). In general, the list of recommended items are
generated based on the users’ historical interactions, the items’ features and some other addi-
tional information such as temporal (e.g., in sequence-aware recommender systems (Quadrana
et al., 2018)) or spatial (e.g., in Point-of-Interest (POI) recommender systems (Bobadilla et al.,
2013)) information.

With the emergence of online shopping, users can explicitly provide feedback whether they
like or dislike items/services recommended by the used platforms by providing ratings. How-
ever, due to privacy issues (Badsha et al., 2017), it has become difficult to fetch the explicit
feedback since users are not willing to explicitly rate items. As a result, most of the platforms
only have access to the users’ implicit feedback i.e., they only know that this user has interacted
with an item but do not know if this user appreciates this item or not. The difference between
the available data is used to categorise recommender systems into implicit recommendations

and explicit recommendations. Although for the scope of this thesis, we mainly focus on neural
recommender systems with implicit feedback, it is essential to introduce all commonly used tax-
onomies of recommender systems to give a better overview. We describe four of the taxonomies
in which the recommendation systems can be categorised.

• Explicit vs. Implicit Recommender systems: Explicit recommendation is also known as
rating prediction, where inputs are the ratings provided by users. The task of explicit
recommendation is therefore, given some ratings of users, to predict each user’s ratings
towards all other items. In comparison, the implicit recommendation is known as the
ranking-based recommendation, where inputs are implicit interaction records such as the
clicking records. The task of implicit recommendation is, given some interaction records
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Figure 2.2: An overview of matrix completion and sequential recommender systems.

of users, to generate the ranking of all items for each user, where the top-ranked items
should be the items of the users’ interests. Traditionally, the user-item interaction is rep-
resented as a matrix Rm∗n where m and n denote the number of users and items, respec-
tively. For explicit recommendation, rij of R indicates the observed rating feedback by
user i on item j (e.g., 1-5). In contrast, for implicit recommendation, rij of R is a binarised
value 0/1 indicating whether user i has interacted with item j or not. Figure 2.1 shows
two matrices to illustrate the difference between the implicit and explicit feedback.

• Sequential vs. Non-sequential Recommender systems: In sequential recommendation,
also known as the sequence-aware recommendation, the order of interactions matters (Quad-
rana et al., 2018). In contrast, the non-sequential recommendation can be interpreted as
the matrix completion, where the matrix is defined as the incomplete user-item feedback
matrix, and the task is to complete all of the unknown places in this matrix. In sequen-
tial recommendation, inputs are ordered sequences for each user and outputs are usually
predicted sequences of items that users are expected to click in order. In contrast, non-
sequential recommender systems take randomly ordered interactions as inputs and output
rankings of items for each user, where a higher ranking indicates a higher preference.
Indeed, sequence-aware recommender systems play an indispensable role in specific ap-
plications including the music, micro-video, grocery recommendation and community/in-
dividual trends detection (Hansen et al., 2020). Figure 2.2 illustrates the inputs, outputs
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and the overall framework of matrix completion and sequential recommender systems, re-
spectively. Since we are not investigating sequence-aware recommendation in this thesis,
we refer to this survey (Quadrana et al., 2018) for a more advanced overview.

• Collaborative filtering-based vs. Content-based vs. Hybrid Recommender systems: Col-
laborative filtering-based approaches are based on the assumption that users who like
similar items in the past will like similar items in the future. A key advantage of col-
laborative filtering-based approaches is that they do not rely on the description of items
and users (Burke et al., 2015; Thorat et al., 2015). Therefore, they are capable of accu-
rately recommending complex items such as movies without requiring an understanding
of the items themselves. However, collaborative filtering-based approaches often suffer
from the cold-start problem when users or items do not have enough historical interac-
tions (Liu et al., 2020; Park and Chu, 2009). Differently, content-based recommender
systems are based on descriptions of items and profiles of users. Specifically, content-
based approaches are suited to the situation when there is a known data on each item such
as its name, its categories and location. In comparison to collaborative filtering-based
approaches, content-based approaches do not rely on the historical interactions but they
cannot handle the cases when the users’ profiles or the items’ descriptions are not avail-
able. Nowadays, most of the recommender systems use a hybrid approach by combin-
ing collaborative filtering-based and content-based approaches. Usually, by unifying the
content-based capabilities with a collaborative filtering-based approach, a recommender
system can provide more accurate results and alleviate the cold-start and data sparsity
issues at the same time (Zhang et al., 2019c).

• Neural network-based vs Classic Recommender systems: Classic recommender systems
are those methods that do not involve any modern neural networks. Well-known classic
recommender systems include matrix factorisation (MF) (Koren et al., 2009) and Bayesian
Personalised Ranking (BPR) (Rendle et al., 2009). To model the interactions between
users and items, many linear and matrix completion approaches are used in classic recom-
mender systems. If the side information such as the reviews left by users and categories
of items, is involved, one or more regularisation(s) could be used to enhance the per-
formance. For example, a regularisation term can be used with an objective function to
increase the similarities between users and/or items sharing the same type of side infor-
mation. In comparison, neural network-based recommender systems specifically denote
those approaches incorporating one or more deep learning-based methods including the
Convolutional Neural Networks (CNN) (Yuan et al., 2019), Recurrent Neural Networks
(RNN) (Manotumruksa et al., 2018), Multilayer Perceptron (MLP) (He et al., 2017), Au-
toencoder (AE) (Liang et al., 2018), Deep Reinforcement Learning (DRL) (Xin et al.,
2020) and Graph Neural Networks (GNNs) (Kipf and Welling, 2017).
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Given that most users are less willing to share their explicit ratings, we will focus on implicit
feedback for all the experiments conducted in the following chapters. However, some classic
recommender systems based on explicit feedback such as matrix factorisation (Koren et al.,
2009) will also be introduced for the completeness. In addition, we aim to develop techniques
that can accurately generate a list of ranked items for users instead of a sequentially ordered
list of items. Therefore we will focus on introducing two basic collaborative filtering-based
approaches followed by the classic content-based and hybrid methods in the next section.

2.1.1 Basic Models for Recommender Systems

The basic models for recommender systems generally leverage two types of data to generate
effective recommendations to users, which are (1) the user-item interactions and (2) the con-
tent information about users or items i.e., known as the side information. As mentioned above,
the user-item interactions can be categorised into explicit interactions or implicit interactions.
For the side information, users can have their ages and occupations as their side information
and items can have textual descriptions, geographical locations, prices as their side information.
Approaches that only use the interactions are referred to as collaborative filtering-based recom-
mender systems whereas approaches that only uses descriptions are referred to as content-based
recommender systems and approaches that use both are referred to as hybrid recommender sys-
tems. In the following, these three categories of recommender systems will be described in
details.

2.1.1.1 Collaborative Filtering-based Recommender Systems

Collaborative filtering (CF)-based recommendation techniques assist users to make choices
based on the opinions of other people who share similar interests. CF-based approaches are
especially useful when no description of users and items are available. Well-known and effec-
tive example of a CF approach is Matrix Factorisation (MF) (Koren et al., 2009). Traditional
CF-based approaches assume that users who share similar interactions in the past will like sim-
ilar items in the future. In particular, an MF-based approach aims to decompose the user-item
interaction matrix R ∈ Rm×n into two lower dimensional matrices, namely the latent matrix
of users U ∈ Rm×d and the latent matrix of items V ∈ Rn×d, where d is the latent dimension
of users and items. Here, the underlying intuition is that the latent vector of a user is expected
to represent this user’s interests in a latent space and the latent vector of an item is expected to
represent the item’s characteristics. Then we can use the dot product to calculate the predicted
scores r̂ui of a user u on a target item i as follows:

r̂ui = eu ⊙ ei, (2.1)
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where eu and ei denote the latent vectors of user u and the target item i, respectively; ⊙ denotes
the dot product operation.

The objective of MF is to minimise the pointwise loss between the predicted rating r̂ui and
the observed rating r̂ui and hence the loss function of MF is defined as follows:

L(Θ) = min
Θ

1

2

m∑

u=1

n∑

i=1

Iui · (rui − r̂ui)
2 +

λ

2
∥Θ∥2F , (2.2)

where Iui is an indicator function that is 1 if user u has interacted with the item i, otherwise
0. λ is a constant value, which is used to control the strength of the regularisation term i.e.,
∥Θ∥2F . θ denotes all learnable parameters including the embeddings of users and items and the
regularisation, where ∥ · ∥2F denotes the Frobenius norm of a matrix. To optimise the objective
function and find an optimum solution, Stochastic Gradient Descent (SGD) (Ketkar, 2017) is
commonly applied until the convergence.

In addition to the formulation of the basic MF (Equation (2.2)), there are many other variants
shown to have better or more robust performances. Among these, the most generalised and
simplest variant is the one (Rendle et al., 2020) that incorporates no additional parameter but
the explicit regularisation of the users and items’ embeddings so that the objective function of
Equation (2.2) is modified as follows:

L(Θ) = min
Θ

1

2

m∑

u=1

n∑

i=1

Iui · (rui − r̂ui)
2 +

λ1

2
∥Θ∥2F +

λ2

2
∥U∥2F +

λ3

2
∥V∥2F , (2.3)

where U and V are the users and items’ embeddings and λ1, λ2 and λ3 control the global bias,
user bias and item bias, respectively. Although this modification does not help the model to
obtain more content information, it has been demonstrated to be effective for gradient descent-
based approaches (Paterek, 2007; Rendle et al., 2020).

While MF has been treated as the primary building block of many classic and deep learning-
based recommender systems, it is more suited to a rating prediction task. In practice, most of the
users only focus on the top-ranked items, instead of the whole item list. In addition, users are
generally unwilling to share their explicit ratings, making it more challenging to predict accu-
rate ratings given only binarised interactions. To alleviate this problem, another line of research
focusing on the ranking-based approaches has been proposed to leverage binarised interactions,
which is known as implicit feedback. In particular, Bayesian Personalised Ranking (BPR) (Ren-
dle et al., 2009) is a popular and widely implemented pairwise ranking-based approach that is
able to leverage more abundant implicit feedback to effectively generate the top-K recommen-
dations. BPR assumes that a user prefers an interacted item over the uninteracted ones. In
particular, for each user u ∈ U , BPR assumes that the probability that user u will interact with
an interacted item i is higher than the probability that this user u will interact a uninteracted item
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j, which can be mathematically expressed as follows:

L(θ) =
∏

u∈U

∏

i∈V+
u

∏

j∈V−
u

P (ĉui ≻ ĉuj|θ), (2.4)

where ĉui and ĉuj denote the probabilities that the user u interacts with the item i and item j,
respectively. Rendle et al. (2009) proposed a sigmoid function, σ(x) = 1

1+e−x , which is used to
approximate the probability function P (·). Therefore, the objective function of BPR is shown
as follows:

L(Θ) = argmax
Θ

∑

(u,i,j)∈Ds

ln (σ (x̂uij))− λ ∥θ∥2F , (2.5)

where Ds contains all pairs of users with their interacted items and sampled negative items; x̂uij

denotes the difference between two probabilities i.e., x̂uij = ĉui − ĉuj .
Since most of the items are negative items for each user, the amount of negative items, i.e.,

the number of j is enormous. If we consider all negative items, the training of BPR will be
computationally expensive. Hence, a sampling approach is usually adopted to alleviate this
issue. Random sampling, i.e., sampling one negative item for each user-positive item pair, is a
simple yet effective sampling approach. However, it may induce the exposure bias issue (Chen
et al., 2020b; Khenissi et al., 2020) since these randomly sampled negative items might have
never been presented to the user. Therefore, more effective negative sampling approaches can
be used to enhance BPR-based approaches (Hariadi and Nurjanah, 2017; Tran et al., 2019; Yang
et al., 2022).

Due to the simplicity of MF and BPR, many variants of such methods have been pro-
posed, including implicit matrix factorisation (Hu et al., 2008) and non-negative matrix fac-
torisation (Wang and Zhang, 2012). In fact, using the collaborative filtering method to capture
the interests of users and the characteristics of items is an essential concept when designing an
effective recommender system. Most deep learning-based approaches cannot succeed without
the building block of BPR. Therefore, we also use BPR and its deep learning-based variants as
important baselines in this thesis.

In the next section, another classic building block of recommender systems i.e., content-
based filtering will be described in details.

2.1.1.2 Content-based Recommender Systems

Content-based recommender systems directly analyse a set of descriptions of items previously
rated by a user to generate a profile containing the users’ interests based on their rated items.
The profile of a user is usually a structured representation of this user’s interests, which will be
leveraged to recommend new items. The process of recommendation is to compute the similarity
between the profiles of users and items. If a user’s interests are precisely reflected by his/her
profile, it is extremely convenient for a content-based recommender system to generate a list of
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relevant items for this user. The overall recommendation process is performed in three steps,
namely Content Analyser, Profile Learner and Filtering Component, each of which is handled
by a separate component (Pazzani and Billsus, 2007).

• Content Analyser: The descriptions of items are usually texts. Therefore, a content anal-
yser is needed to pre-process the input data and then extract structured information or
relations for the next step. The main responsibility of the component is to represent the
content of items obtained from a platform in a form suitable for the profile learner and
filtering components.

• Profile Learner: This module collects pre-processed data from the content analyser, in
order to construct the user profile (Muruganandam and Srininvasan, 2017). Usually, this
process is facilitated through machine learning or deep learning techniques that are able to
infer the users’ interests given the historical liked or disliked items. For example, the pro-
file learner of a content-based recommender system can implement a relevance feedback
method where positive and negative items are represented as vectors and the user profiles
are generated by aggregating such a feedback.

• Filtering Component: This module aims to explore the user profile to recommend items of
interest by matching the vector representation of a user’s profile against the representations
of all items. In this process, the matching is realised by computing some similarity metrics
between the vector representations of users and items.

In most content-based filtering systems, item descriptions are textual features crowd-sourced
from Web pages, emails, news articles or product descriptions. Unlike structured data with
explicit relations, there are no attributes with pre-defined values. Due to the ambiguity of the
natural language, a content analyser cannot learn an explicit profile representation for the users.
To alleviate this problem, some simple yet effective term weighting models can be used such as
Term Frequency-Inverse Document Frequency (TF-IDF) (Salton and Buckley, 1988).

To apply TF-IDF weighting in content-based recommendation, first let D = {d1, d2, ..., dN}
denote a set of corpus and T = {t1, t2, ..., tn} be the dictionary containing the set of words in
this corpus. To obtain a meaningful dictionary T , some standard natural language processing
methods, including tokenisation and stopwords removal should be applied. Each description
dj ∈ D is represented as a n−dimensional vector, so that dj = [w1j, w2j, ..., wnj], where wkj is
the weight for term tk in dj . To compute each weight tk for a given description dj , we can use
the following TF-IDF weighting function:

TF− IDF (tk, dj) = TF (tk, dj)︸ ︷︷ ︸
TF

· log N

nk︸ ︷︷ ︸
IDF

, (2.6)
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where N denotes the number of documents in the whole corpus, and nk is the number of de-
scriptions in the corpus, where the term tk occurs at least once. The term frequency i.e., TF in
Equation (2.6) is computed as:

TF (tk, dj) =
fk,j

maxz fz,j
, (2.7)

where the maximum is computed over the frequencies fz,j of all terms tz that occur in document
dj . There are different methods to compute the term frequency and inverse document frequency
scores, which are detailed in the existing literature (Salton and Buckley, 1988).

After obtaining the representation for each item, we can also obtain the vector representation
of each user by aggregating all weighted features that appear in the interacted items of this user.
Then, the cosine similarity can be used to compute the similarities between each user with all of
his/her candidate items given the vector representations eu and ei:

Cosine(eu, ei) =
eu · ei
∥eu∥∥ei∥

=

∑n
j=1 ei,keu,k√∑n

k=1 e
2
i,k

√∑n
k=1 e

2
u,k

, (2.8)

Although effective, content-based recommender systems have a natural limit on the amount
of associated features, whether automatically or manually extracted from the corpus. Also, do-
main knowledge is often needed to determine which features are essential (Wang et al., 2019b).
Therefore, they are commonly combined with the aforementioned collaborative filtering-based
approaches to make more effective recommendations. In particular, we use the cosine similar-
ities (Equation 2.8) between the social relational vectors of users to build the social graph in
Chapter 3. Besides, we use the TF-IDF weighting function (Equation 2.6) to select important
features from the reviews left by users in Chapter 4.

2.1.1.3 Hybrid Recommender Systems

Hybrid recommender systems combine two or more of the techniques to improve the overall
recommendation performance, usually to deal with the cold-start problem. For example, col-
laborative filtering-based approaches cannot handle new items and content-based approaches
cannot handle new users. Different types of hybrid recommendations include weighted, switch-
ing, mixed and feature-augmented recommender systems (Aggarwal et al., 2016). In this thesis,
we mainly focus on the feature-augmented recommender systems, where we aim to integrate
side information to enhance the recommendation performance.

2.1.2 Evaluation of Recommender Systems

The evaluation of a recommender system is essential to assess the quality of a designed recom-
mendation approach. Therefore, evaluating and comparing different recommendation methods
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have been an active research topic (Chen and Liu, 2017; Del Olmo and Gaudioso, 2008). For an
industry developer, it is a challenging task to select the most appropriate recommender system
among a large corpus of implemented methods. Furthermore, researchers who propose novel
recommender systems are also expected to compare the performance of their proposed method
against existing competitive recommender systems. In this section, we discuss how to compare
different recommender systems by using an appropriate evaluation method with one or more
evaluation metrics. In particular, we focus on the evaluation of offline algorithms, while user
studies and online evaluation e.g., A/B tests are not covered since they are not incorporated in
this thesis and cannot be conducted without a developed recommender system and a population
of real users.

2.1.2.1 Offline Evaluation Methodology

Offline evaluation aims to examine the performance of recommender systems in a setting when
historical user-item interactions are collected by real-world commercial platforms such as Ama-
zon and Yelp (Beel et al., 2013). Such historical interactions may also be associated with side
information such as the textual comments left by the users and the temporal information de-
termining when this interaction happened. Some side information may be considered when
evaluating a recommender system. For example, the timestamps of interactions can be used
to split the whole dataset chronologically so that the latest interactions are added into the test
set. Then, the evaluated recommender systems aim to recover the latest interactions given the
previous interactions. Using the interaction data and side information, the aim is to simulate
behaviours of users that interact with a recommender system by assuming that the behaviour of
the user when data is collected will be similar enough to the situation when the recommender
system is used. The offline evaluation is attractive to both research and industry communities
because they do not rely on a user study and thus allow researchers and developers to compare
different candidates at a relatively low cost than the online evaluation and user study.

There are different criteria for the offline evaluation of recommender systems. Below, we
make a list of commonly used criteria:

• Random Split: Given the user-item interaction matrix R, the random split method will
randomly divide the whole matrix into three portions, namely the training set Dtraining,
the test set Dtest and the validation set Dvalidation. Usually, Dtraining, Dtest and Dvalidation

contain 70%, 20% and 10% of randomly sampled data from R, respectively. To make sure
that each user can appear at least once in each set, a filtering operation that removes users
with fewer than 3 interactions is usually used.

• Leave-one-out Split: In this setup, the user-item interaction matrix R will also be divided
into the training, test and validation sets. However, different from the random split where
the amount of data contained in each set is pre-defined by a certain percentage, leave-
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one-out split only preserves one interaction in the test set and one in the validation set.
By doing so, more interactions from R can be preserved in Dtraining so that the evaluated
recommender systems are offered more data to learn the users’ behaviours.

• Chronological Split: A chronological split can only be applied when each interaction
comes with a timestamp. It is especially useful when evaluating sequential recommender
systems. Moreover, both the random and leave-one-out splits can be adapted to a chrono-
logical split. Taking the leave-one-out split method as an example, we can leave the most
recent and the second most recent interactions of each user in the test and validation sets,
respectively. Hence, we can better simulate the case when given the historical interactions
to predict the next item-of-interest, compared with the case when items in the test set are
randomly sampled.

In principle, we use the offline evaluation to select the best performing recommendation
algorithms from a large set of candidate algorithms. In addition, the offline evaluation can also
be beneficial when multiple hyper-parameters need to be tuned to search for the best parameters.
In this thesis, we evaluate the effectiveness of our proposed approaches and all baselines using
the offline evaluation due to its simplicity. In this thesis, we mainly use the leave-one-out split
(see Sections 3.4.2 and 4.5.3) and random split (see Sections 5.4.2 and 6.4) to evaluate our
proposed models. Given that we do not consider sequential recommendation, a chronological
split is not applicable without the timestamps of interactions. In the next section, we describe
various evaluation metrics that are widely used to evaluate the effectiveness of recommendation
systems.

2.1.2.2 Evaluation Metrics

To evaluate the effectiveness of a recommender system, different evaluation metrics have been
proposed. They can be generally categorised into rating-based metrics and ranking-based met-
rics. Specifically, rating-based metrics (e.g., Root Mean Square Error or Mean Absolute Error)
focus on measuring how accurately an evaluated recommender system is able to predict the rat-
ing values of each user towards items, while ranking-based metrics (e.g., Precision, Recall and
Normalised Discounted Cumulative Gain) focus on measuring how accurately an evaluated rec-
ommender system is able to rank a list of items. In addition to metrics focusing on the rating
accuracy, there are other aspects such as novelty (Castells et al., 2022), serendipity (Ge et al.,
2010), fairness (Beutel et al., 2019) and diversity (Kunaver and Požrl, 2017), which can be used
to evaluated a recommender system. However, within the scope of this thesis, we mainly focus
on improving the recommendation accuracy over existing models, hence we do not consider
metrics measuring the novelty in the evaluation. Below, we discuss all used metrics throughout
this thesis in details.

First, let rui be the value of the rating given by the user u on an item i, which is a data
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instance in the test set Dtest. Then we define r̂ui as the predicted rating given by a specific
trained recommender system. To evaluate a rating-based recommender system, two metrics i.e.,
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are commonly used, where
MAE and RMSE are defined as follows:

MAE =

∑
(ui)∈Dtest

|r̂ui − rui|
|Dtest|

(2.9)

RMSE =

√√√√
∑

(ui)∈Dtest

(r̂ui − rui)
2

|Dtest|
. (2.10)

Both the MAE and RMSE metrics measure the difference between the actual ratings and the
predicted ratings. However, unlike MAE, which simply adds up the absolute difference, RMSE
takes the sum of the square of the difference before the square root, which means that RMSE
gives a relatively high weight to large errors. Therefore, in a particular case when robustness
is critical, RMSE is more favourable since it has a lower tolerance to large errors. However,
RMSE tends to generate more misleading results than MAE since it cannot reflect average er-
rors (Willmott and Matsuura, 2005).

In contrast to metrics focusing on the rating prediction, the ranking-based metrics pay more
attention to the accuracy of the ranks of items. To evaluate ranking-based recommender systems,
metrics such as Precision, Recall, Mean Average Precision (MAP) and Normalised Discount
Cumulative Gain (NDCG) are commonly used.

Precision calculates the fraction of the recommended items that are relevant, while recall is
the fraction of relevant items recommended over the total amount of relevant items. The insight
of precision is that it judges how relevant the recommended items are, while the insight of recall
is that it determines how many relevant items are successfully exploited among the whole corpus
of relevant items. Similarly, precision and recall are binary metrics, and the higher they are, the
better. Usually a cut-off value K is typically pre-defined before calculating precision and recall
for each user, denoted as Precision@K and Recall@K:

Precision@K =

∑
i∈Ru

relu(i)

|Ru|
(2.11)

Recall @K =

∑
i∈Ru

relu(i)∑
i∈Vu

relu(i)
, (2.12)

where Ru and Vu denote the set of top-K recommendations of user u and all interacted items of
user u, respectively and relu(i) returns 1 if item i is relevant to user u, otherwise 0.

Both precision and recall defined above only count the number of relevant items but do not
take the position of relevant items among top-K recommended items into consideration. On the
contrary, MAP measures the mean of the Average Precision (AP) values over all users (Costa
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et al., 2007). Differing from precision and recall, relevant items ranked near the top of the
ranking contribute more than relevant items ranked near the bottom. MAP is calculated as
follows:

MAP =
∑

u∈U

∑K
k=1 Pre(R(u), k) · Rec(R(u), k)

|U| , (2.13)

where U is the set of users, k is a rank of the recommended item R(u) for user u, Pre(R(u), k)

is the precision at cut-off K and Rec(R(u), k) is the change in recall between rank 1 and k.
Although MAP can consider the ranking position of the relevant items, it is built upon a

binary relevance grade, hence MAP is not suitable to evaluate a recommender system when
there are multiple levels of relevance in the test set Dtest. It is common to use Normalised
Discount Cumulative Gain (NDCG) (Järvelin and Kekäläinen, 2002) when multiple relevance
grades are available:

NDCG =
DCG

IDCG
, (2.14)

where DCG and IDCG denote the Discount Cumulative Gain (DCG) and the ideal DCG, respec-
tively, where DCG is calculated as follows:

DCG =
K∑

i=1

2rel(i)

log2 i+ 1
, (2.15)

where rel(i) represents the ground-truth relevance score of the recommended item at the position
i, with rel(i) = 1 if the recommended item is relevant, otherwise rel(i) = 0.

Specifically, MAP NDCG and Recall are used in Sections 3.4.2, 4.5.3, 5.4.2, 6.4 and 7.3.
In this section, we have introduced a number of evaluation methods and metrics used in the
literature to evaluate recommender systems in an offline setup. In the next section, we describe
the graph representation learning (GRL) and components based on GRL such as heterogeneous
graph representation learning, graph pre-training and graph contrastive learning, which are es-
sential building blocks of this thesis.

2.2 Graph Representation Learning

Traditional deep learning-based models can only handle data in the Euclidean space. For exam-
ple, Convolution Neural Networks (CNNs) (Gu et al., 2018) can effectively learn features from
an image input, and Recurrent Neural Networks (RNNs) (Medsker and Jain, 1999) can incor-
porate sequence data. However, modelling data from a graph, where nodes are connected by
edges, is still challenging since CNNs and RNNs assume that data points positioned closely are
related to each other, which is not the case for graph data. Therefore, a new learning paradigm is
needed to handle data in the non-Euclidean space. In fact, representing data in the graph format
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is significant for different disciplines such as modelling physical systems (Sanchez-Gonzalez
et al., 2018), learning molecular representations (Atz et al., 2021), predicting protein-protein
interactions (Jha et al., 2022), classifying gene-disease relations (Yi et al., 2022) on predict-
ing social networks (Fan et al., 2019). To represent graph data, various graph neural networks
(GNNs) and different types of graph-based techniques have been proposed recently, which can
all be described as graph representation learning methods. In the following, we will explain the
motivations (see Section 1.1) of using graph representation learning to enhance recommender
systems.

First, the user-item interaction matrix R can be viewed as a non-Euclidean bipartite graph,
which cannot be handled by those neural networks designed for Euclidean data e.g., images.
The non-Euclidean nature of matrix R leads to a direct adaption of this matrix to a general GNN
without complicated pre-processing, where users and items in R can be regarded as two types
of nodes in a graph (van den Berg et al., 2017). Second, GNNs are well-known for their ef-
fective message passing and neighbourhood aggregation functions, which also align with the
assumption of collaborative filtering-based approaches. Recall that collaborative filtering-based
approaches assume users with similar purchase histories will prefer similar items. Since graph
representation learning (GRL), especially GNNs, can effectively aggregate information from
each node’s neighbour to itself (Gao et al., 2021), we are motivated to use GRL to enhance
the ability of collaborative filtering-based recommender systems to leverage the neighbourhood
information. Third, a typical user-item bipartite graph can be easily extended to a heteroge-
neous graph (Liu et al., 2020), which suits the need of recommender systems to encode different
types of relations among or between users and items. Finally, GRL has excellent extensibil-
ity (Wu et al., 2020c); hence, it can leverage many recently proposed techniques. For example,
pre-training (Qiu et al., 2020) and contrastive learning (You et al., 2020) methods can both be
incorporated by GRL. As a result, these advanced GRL methods can be further integrated to
enhance the recommender systems’ robustness, effectiveness and efficiency.

Next, we will describe the necessary preliminaries (Section 2.2.1) followed by heteroge-
neous graph representation learning (Section 2.2.2), graph pre-training (Section 2.2.3) and graph
contrastive learning (Section 2.2.4), which are the primary building components of this thesis.

2.2.1 Preliminaries

Graphs are a kind of data structure that can model a set of objects (nodes) and their relationships
(edges). Formally, a graph G = (V , E) is defined by a set of nodes V and a set of edges E
between these nodes. An edge (u, v) ∈ E denotes an ongoing relation from node u ∈ V to node
v ∈ V . For most cases in this thesis, we only consider simple graphs, which means that edges
are all undirected i.e., (u, v) ∈ E ↔ (v, u) ∈ E . For the case of heterogeneous graphs, there are
different types of nodes, meaning that the whole set of nodes can be divided into disjoint sets
i.e., V = V1 ∪ V2 ∪ . . . ∪ Vk, where Vi ∩ Vj = ∅, ∀i ̸= j. Therefore, a heterogeneous graph
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is defined as G = (V , E ,R), where R is the set of nodes’ types. In addition, nodes may have
associated features, which are also known as the attributes. We usually denote the features of all
nodes as a real-valued matrix X ∈ R|V |×m, where m is the number of features.

Besides the definitions of graphs, the adjacency matrix A ∈ R|V|×|V| is another vital concept
for graph data. Indeed, it is a general and convenient method to represent the graph, including
all nodes and edges. To represent a graph with an adjacency matrix, the nodes in the graph
are ordered following how the users and items are indexed in the recommendation scenario.
Afterwards, the edges are represented as entries in the adjacency matrix such that A[u, v] =

1 if (u, v) ∈ E and A[u, v] = 0 otherwise. A is commonly a symmetric matrix if and only if
when it contains only undirected edges. Unlike a dense embedding matrix, an adjacency matrix
is usually a sparse matrix that only indicates existing relations without encoding any other node-
node similarity information. However, it is a reasonable starting point for graph-based models
to explore the underlying relations and fetch the related nodes efficiently.

Building on the adjacency matrix A, a Laplacian matrix (Merris, 1994) is another matrix
representation of a graph. The most basic Laplacian matrix is defined as follows:

L = D−A, (2.16)

where A is the adjacency matrix defined above and D is the diagonal degree matrix.
Besides the basic unnormalised Laplacian, the normalised Laplacian and random-walk Lapla-

cian (Fouss et al., 2007) are both popular variants, defined as follows:

Lnorm = D− 1
2LD− 1

2

LRW = D−1L.
(2.17)

Both of these matrices have similar properties as the basic Laplacian, but they differ in how
they are normalised. Both variants can be incorporated in a GNN to encode different types of
structural information of a graph. For example, when nodes have an unbalanced number of
edges, Lnorm is usually used to decouple the influence of nodes with large number of edges.

Graph Neural Networks (GNNs) are effective models for graph data. Specifically, given a
graph G, a GNN firstly initialise each node with an embedding h. Then, the GNN will be trained
with the so-called UPDATE and AGGREGATE functions, where the UPDATE function aims to
pass incoming information from neighbours and the AGGREGATE function aims to aggregate
these information, where a general UPDATE function is defined as follows (Hamilton, 2020):

UPDATE
(
hu,mN (u)

)
= σ

(
Wself hu +Wneigh mN (u)

)
, (2.18)

where hu is the embedding of the node u andN (u) denotes the set of neighbours of node u; σ(·)
is an activation function e.g., a tanh or ReLU; W(k)

self ,W
(k)
neigh ∈ Rd(k)×d(k−1) denote two trainable
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parameter matrices and mN (u) is the aggregated information, defined as follows:

mN (u) =
∑

v∈N (u)

hv. (2.19)

By combing Equation (2.18) and Equation (2.19), the basic GNN (Kipf and Welling, 2017)
is defined as follows:

h(k)
u = σ


W

(k)
self h

(k−1)
u +W

(k)
neigh

∑

v∈N (u)

h(k−1)
v + b(k)


 , (2.20)

where k and b denote the k-th layer and bias term, respectively.
Similar to other deep neural networks, many GNNs use the Binary Cross-Entropy (known

as BCE) loss function (He et al., 2017) to compute the loss value and optimise the networks.

L = −
N∑

i=1

yi · log (ŷi) + (1− yi) · log (1− ŷi) , (2.21)

where yi is a ground truth value/label and ŷi is the predicted value.
We use Equation (2.20) and the BCE loss function (2.21) to describe the general function of

a GNN. To enhance the effectiveness of the basic GNN (Kipf and Welling, 2017) many other
variants of GNN such as SGC (Wu et al., 2019a) and HetGNN (Zhang et al., 2019a) have been
proposed with different UPDATE and AGGREGATE functions, which are detailed in (Zhou
et al., 2020). In the following three sections, we will cover the three main building components
of this thesis, namely heterogeneous graph representation learning, graph pre-training and graph
contrastive learning. In particular, we will introduce how to apply these techniques for the
ranking-based recommendation task.

2.2.2 Heterogeneous Graph Representation Learning

Although the basic GNN defined in the previous section is effective to leverage graphs with
a single type of nodes, it cannot handle the situation when the graph is heterogeneous. For
example, in the recommendation system scenario, we want to encode multiple types of relations
obtained from the side information of users and items. Broadly speaking, tasks that involve
different types or nodes and relations need heterogeneous graph representation learning.

A simple approach to incorporate heterogeneous nodes or edges is to directly update the
adjacency matrix A accordingly based on the multiple relations. For example, a modified variant
of adjacency matrix H ∈ R|V|×|V| is proposed in (Liu et al., 2020) to encode two additional types
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of relations by extending the original matrix:

H =

[
αS R

RT βC

]
, (2.22)

where α and β are two relation-based constant parameters controlling the importance of relations
contained in S and C ; R and RT are the bipartite graph with its transpose.

Then the corresponding Laplacian matrix of H is computed based on Equation (2.17) as
follows:

LH
norm = D− 1

2HD− 1
2 . (2.23)

Since H has the same size as A, the corresponding GNN i.e., HGNR (Liu et al., 2020) has
a similar efficiency to the basic GNN while being more effective for encoding more relations.
However, H is non-symmetrical, which might affect the effectiveness of message passing. Fur-
thermore, from Equation (2.22), we can see that this approach can only be applied to two addi-
tional relations. To address this issue, we propose a more generalised method using the social
graph pre-training method, which will be detailed in Chapter 3.

2.2.3 Graph Pre-training

Pre-training techniques have become standard practice in deep learning. They are used to encode
general information from a relatively large corpus of samples such as texts or images. After
a model is pre-trained, it can be fine-tuned for some related downstream tasks (Erhan et al.,
2010). For example, the BERT model if pre-trained on the Wikipedia dataset can be used for
the downstream textual and semantic classification tasks (Devlin et al., 2018). In the case of
GNNs, pre-training a GNN using the neighbourhood reconstruction loss is an effective strategy
to improve the performance on a downstream task. For example, we can pre-train a GNN to
reconstruct missing edges in the graph before fine-tuning on a node classification loss (Hao
et al., 2021a). In (Velickovic et al., 2019), Deep Graph Infomax (DGI) is proposed to maximise
the mutual information between node embeddings zu and graph embeddings zG . The objective
function of DGI is defined as follows:

L = −
∑

u∈Vtrain

EG log (D (zu, zG)) + γEG̃ log (1−D (z̃u, zG)) , (2.24)

where zu is the embedding of node u generated based on graph G, while z̃u denotes an embed-
ding of node u generated based on a corrupted graph G i.e., G̃. Here, D(·) is a discriminator
function, which is a neural network used to predict whether the node embedding comes from
the original graph G or from the corrupted graph G̃.

There are many approaches to corrupting a graph. For example, one can randomly modify
the features of nodes or randomly drop the existing edges. The underlying intuition here is
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that the GNN model should have the ability to distinguish between the original graph and its
corrupted counterpart (Hamilton et al., 2017b).

Although effective, existing graph pre-training techniques do not generalise to the recom-
mendation task (Meng et al., 2021). The main reason is that general graph pre-training tech-
niques treat those corrupted nodes as different views of the original nodes. However, in the rec-
ommendation scenario, a corrupted user (randomly dropping some of his/her interacted items)
cannot be simply interpreted as a different view in the graph learning task because other users’
interaction records may overlap with the corrupted one. Therefore, to generalise the graph pre-
training model for the recommendation task, in Chapter 4, we propose to pre-train a GNN using
the side information of users and items, then fine-tune the model with an existing recommender
system.

2.2.4 Graph Contrastive Learning

Contrastive learning is another emerging learning paradigm that has become popular for image
classification. Specifically, contrastive learning involves a set of techniques, including data aug-
mentation, self-supervised or discriminative functions and contrastive negative sampling that
can be used to learn the relations between positive and negative samples (Qiu et al., 2020; Yu
et al., 2022a). Here, we make a list of popular data augmentation techniques (Chopra et al.,
2005).

• Node dropout. This will randomly discard a certain percentage of nodes and their cor-
responding edges among the given graph G. Each node’s dropout rate follows a default
uniform distribution (or any other distribution).

• Edge dropout. This will modify the relations in a graph G by randomly adding or drop-
ping a certain percentage of edges.

• Feature masking. This method randomly masks out some features of nodes and the aim
is to recover the masked features based the remaining ones.

• Subgraph sampling. This method is based on the random walk technique given a graph
G. It assumes that the semantics of G can be largely preserved in its remaining structure.

Objective functions used by graph contrastive learning models are usually variants motivated
by the Noise Contrastive Estimation (NCE) or InfoNCE loss:

L = − log
exp (sim (zn,i, zn,j) /τ)∑N

n′=1,n′ ̸=n exp (sim (zn,i, zn′,j) /τ)
, (2.25)

where zn,i and zn,j denote two positive samples for the n-th graph in a batch. Besides, τ is a
constant hyperparameter.
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To incorporate the graph contrastive learning technique for enhanced recommendations, we
propose to leverage the contrastive negative sampling method to sample more informative neg-
ative items. After which, a contrastive objective function is used to leverage multiple negative
samples. Details of our proposed model will be presented in Chapter 5.

2.3 Conclusions

In this chapter, we have briefly introduced the important concepts and preliminaries of the
ranking-based recommender systems. First, we listed different taxonomies of recommender
systems, after which we focused on collaborative filtering-based, content-based and hybrid ap-
proaches. Then we introduced different evaluation methods of recommender systems, where we
detailed the offline evaluation paradigm used throughout this thesis.

Next, we explored graph representation learning (GRL) by first introducing its advantages
and bridging the relations between GRL and the recommendation task. Afterwards, we covered
some necessary preliminaries to understand GRL, including the definitions of graphs, graph
Laplacian and a basic Graph Neural Network. Finally, we introduced the three primary build-
ing components, namely heterogeneous graph representation learning, graph pre-training and
graph contrastive learning. Specifically, we will use these graph-based techniques to alleviate
the challenges mentioned in Section 1.1 and hence validate our proposed thesis statement (see
Section 1.2).

In the next chapter, we begin with our proposed recommender system that leverage the social
graph pre-training technique, where the graph containing user-item and user-user interactions is
a form of heterogeneous graph as described in Section 2.2.2.
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Chapter 3

Social Graph Recommendation

3.1 Introduction

In our thesis statement (see Section 1.2), we postulated that we can incorporate social relations
using heterogeneous graph representation learning in order to enhance the overall recommenda-
tion effectiveness. In Section 2.2, we also introduced how to construct the heterogeneous graph
and the corresponding adjacency matrix. Moreover, as argued in Chapter 1, the cold-start prob-
lem has been recognised as a long-standing issue of collaborative filtering-based approach. We
aim to propose a social graph recommender system that not only improves the overall recom-
mendation performance but also benefits cold-start users compared with classical models and
other deep learning-based models.

As introduced in Section 2.2.3, the pre-training technique has been commonly used to opti-
mise deep models by providing them with an effective initialisation (Erhan et al., 2010, 2009;
Van Engelen and Hoos, 2020). Such a pre-training technique has been shown to lead to state-
of-the-art performances when the pre-trained model is further fine-tuned to address downstream
Natural Language Processing (NLP) (Brown et al., 2020; Devlin et al., 2018; Edwards et al.,
2020; Zheng et al., 2020a) or information retrieval tasks (Chakraborty et al., 2020; Ma et al.,
2021; Meng et al., 2022). However, this effective technique has been less studied in recom-
mender systems possibly due to the limitations in the existing datasets. For example, in the NLP
tasks, one unsupervised deep language model can be pre-trained from unlabelled texts (e.g.,
Wikipedia) and fine-tuned for a supervised downstream task (Brown et al., 2020; Devlin et al.,
2018). In contrast, in the recommendation scenario, each dataset contains its specific infor-
mation about the corresponding users and items, but no other ground truth knowledge such as
Wikipedia could be leveraged from outside the dataset to help estimate the users’ preferences
and items’ attributes.

NCF (He et al., 2017) has been proposed to pre-train the recommendation model with a
Multi-Layer Perceptron (MLP) (Ramchoun et al., 2016). Although effective, the MLP module
does not consider other available auxiliary side information, such as the social relations among
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users (Wu et al., 2020a; Zhao et al., 2014) or the items’ timestamps (Li et al., 2020b; Song et al.,
2016), therefore the applied pre-training technique of NCF is limited in providing the cold-start

users with a better initialisation. Since the social relations among users have been shown to be
essential in enhancing the recommendation performance and alleviating the cold-start problem
introduced in Section 2.1, we propose to incorporate the social relations and the interaction data
at the pre-training stage so that a better initialisation can be obtained for those users who have
fewer interactions.

As we have introduced in Section 2.2, Graph Neural Networks (GNNs), a class of deep
learning models (Wu et al., 2020c; Zhou et al., 2020), have been used to aggregate the nodes’
information from their neighbourhoods so as to learn an overall structure from a given graph’s
type of data. Indeed, while GNNs have been previously exploited to enhance general recom-
mender systems (He et al., 2020; Wang et al., 2019c), they have only been recently studied un-
der the pre-training scheme (Hao et al., 2021a). In this chapter, we devise a novel Social-aware
Gaussian Pre-trained model (SGP), which leverages a graph pre-training technique to encode
the users’ social relations and attempts to search for a relative optimised solution based on the
learned social-aware initialisation during the fine-tuning stage. At the first stage, we pre-train a
light GNN model with additional social information to give users/items meaningful initialised
embeddings. Given the neighbourhood aggregation property of the GNN model, incorporating
the social relations enables socially-connected users to become closer in this latent space through
the aggregation process. Then, in the fine-tuning stage, we load the obtained pre-trained embed-
dings and re-train the model for further recommendations. The most straightforward approach
for leveraging these pre-trained embeddings and decoding the social information is to directly
reload them. However, it is essential to note that the interaction data, which will be used in the
second stage, has already been exploited at the pre-training stage. Therefore, the reuse of the
interaction data might cause the overfitting problem (Erhan et al., 2010). Hence, we propose
to distil the information from the pre-trained model so that we can later reconstruct meaningful
embeddings.

Since all embeddings can be viewed as probability distributions, an intuitive solution for
distilling information from those pre-trained embeddings is to follow existing works (He et al.,
2020; Rendle et al., 2020) and use Gaussian distributions to model the embeddings. Indeed, dif-
ferent from existing models (He et al., 2020; Wang et al., 2019c) which use the random initiali-
sation, we expect to need more complex distributions to capture prior knowledge from the pre-
training stage. Therefore, we propose to apply the Gaussian Mixture Model (GMM) (Reynolds,
2009), which assumes that all the data points are sampled from a mixture of a finite number
of Gaussian distributions. By leveraging this well-developed GMM, our proposed method is
devised to factorise those pre-trained embeddings into a finite number of Gaussian distributions,
where this number is pre-defined and each distribution could be viewed as a specific interest of
users or a particular characteristic of items.
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To summarise, this chapter makes the following contributions:
•We devise a two-stage end-to-end social pre-trained recommendation model, SGP, which uses
the GNN model to leverage social information. We show that SGP can achieve state-of-the-art
effectiveness on three real-world datasets of user-item interaction and social relations.
• We leverage the Gaussian Mixture Model to distil information from the pre-trained embed-
dings for the downstream recommendation task.
• Our proposed model is shown to significantly outperform 13 strong baselines from the litera-
ture, while being particularly useful for cold-start and extreme cold-start users (newly registered
users).

The remainder of this chapter is organised as follows. In Section 3.2, we position our work
in the literature. Section 3.3 introduces all relevant notions used in this chapter and formally
defines the detailed architecture of our SGP model. The experimental setup and the results of
our empirical experiments are presented in Sections 3.4 and 3.5, respectively, followed by the
conclusions of this chapter in Section 3.6.

3.2 Related Work

In the following, we discuss relevant pre-trained models (Section 3.2.1), graph-based recom-
mender systems (Section 3.2.2) as well as the data augmentation and cross-domain transferring
techniques used in recommendation (Section 3.2.3).

3.2.1 Pre-trained Models

The pre-training technique has become an emerging research topic especially in the field of NLP.
Pre-trained language models such as the BERT (Devlin et al., 2018) and the more recent GPT-
3 (Brown et al., 2020) models have demonstrated their robust performance on different down-
stream NLP tasks. Through pre-training, a language model can learn contextualised embeddings
for tokens from a large corpus of texts, so that these tokens can be reused for subsequent tasks
with enhanced performances. Such models can then be later fine-tuned for a new downstream
task, thereby enhancing the overall performance of the corresponding model and outperforming
other handcrafted models.

As mentioned in Section 3.1, the pre-training technique was also adopted in recommendation
models. Indeed, He et al. (2017) proposed the Neural Collaborative Filtering (NCF) model to in-
troduce a novel deep learning-based method to the recommender systems community, which has
attracted a substantial attention from researchers since then. The most important contribution
of the NCF model is that it successfully incorporates the multi-layer perceptron (MLP) module,
which can in theory effectively approximate various types of prediction functions (Sifaoui et al.,
2008). However, it is noticeable that this NCF model also uses a generalised matrix factori-
sation (GMF) module to generate pre-trained embeddings, which limits the NCF model from
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incorporating auxiliary information at the pre-training stage. To this end, we propose to use
instead the GNN technique to replace the MLP pre-trained module due to the former’s ability
of supporting the incorporation of heterogeneous relations such as the relations among users as
well as the users’ interaction data. Moreover, the GNN technique introduced in Section 2.2, has
been initially devised to implement the node classification and link prediction tasks. Therefore,
GNNs are expected to perform better than the GMF module on aggregating similar users and
items (Wang et al., 2018a). Hence, compared with the GMF module, when the GNN model is
used for the pre-training stage, the embeddings of the socially related users can be better aggre-
gated in closer proximity in the latent space. Apart from using the GMF module to pre-train on
the interaction data, Wen et al. (2018) introduced a linear pre-trained recommender using the
network embedding method. However, their proposed model failed to leverage the multi-hops
social relations (i.e., a friend’s friends), which can be seamlessly addressed by the GNN meth-
ods. A study by Hao et al. (2021a) is a more recent related work to ours, which tried to tackle the
cold-start problem by pre-training the recommendation model in a meta-learning setting. How-
ever, the contribution of their work is to use the fundamental structure of the interaction graph,
which is different from our research goal of using social information to obtain better initialised
users and items’ representations. In addition, existing works have leveraged other GNN pre-
training (see Equation (2.24)) and contrastive pre-training techniques for sequential (Li et al.,
2021; Xiao et al., 2021; Xie et al., 2020) and conversational (Wong et al., 2021) recommender
systems, respectively, which are distinct from our proposed recommender SGP.

3.2.2 Graph-based Recommendation

As mentioned in Section 2.2, GNNs have the so-called neighbourhood aggregation property,
which has been demonstrated to be effective in enhancing the performances of recommender
systems. Therefore, various graph-based recommenders (He et al., 2020; van den Berg et al.,
2017; Wang et al., 2019c; Ying et al., 2018; Yu et al., 2022b,c) have been proposed and they have
achieved state-of-the-art performances through the development of GNNs (Kipf and Welling,
2017; Xinyi and Chen, 2018; Zhang et al., 2019a). Since the user-item interaction data can
be intrinsically depicted as an interaction graph, the GNN technique and its variants have been
seamlessly applied in various recommender systems and achieved good performances. For ex-
ample, NGCF (Wang et al., 2019c), has been shown to outperform many competitive baselines
by incorporating a Graph Convolutional Network (GCN) to encode the collaborative signals
and to model the users’ and items’ embeddings. Building on NGCF, the LightGCN model (He
et al., 2020) further enhanced its recommendation performance by eliminating redundant neu-
ral components from NGCF. Recently, GF-CF (Shen et al., 2021) was proposed to further en-
hance the performance by incorporating a graph filtering method. However, GF-CF is not an
embedding-based model, hence it cannot be adapted to normal pre-training methods. In addi-
tion, Diffnet (Wu et al., 2020a) was proposed to encode the social relations between users. How-
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ever, it only considers the plain user-user social graph while ignoring the heterogeneous network
consisting of both the social relations and user-item interactions. Other variants of LightGCN
including SGL (Wu et al., 2021) and UltraGCN (Mao et al., 2021) have also achieved competi-
tive performances. However, they incorporate memory-consuming data augmentation methods
as described in Section 2.2.4, which will be more challenging if side information is also consid-
ered. Inspired by the generalisability of LightGCN and its good trade-off between effectiveness
and efficiency, we also adopt the simplified GCN (Wu et al., 2019a). Moreover, we incorporate
the social information into the embedding generation and updating process, which enables our
proposed SGP model to encode the social relations into the users’ embeddings. We will show
how this auxiliary social information benefits our model by allowing it to obtain a better model
initialisation thereby alleviating the cold-start problem.

3.2.3 Data Augmentation and Cross-Domain Recommendation

Data augmentation techniques were well developed in Recommender Systems before the emer-
gence of deep recommender systems (Zhang et al., 2019c). The classic hybrid models (Basu
et al., 1998; Cotter and Smyth, 2000; Melville et al., 2002) attracted attention by applying fea-

ture augmentation to combine content-based and collaborative filtering recommenders (see Sec-
tion 2.1.1.3). For example, a hybrid recommender might combine a one-hot encoding technique
with matrix factorisation, as performed by (Cotter and Smyth, 2000; Melville et al., 2002; Ning
and Karypis, 2011). These classic models were shown to deliver effective rating predictions in
different domains, such as in movie recommendations (Basu et al., 1998; Melville et al., 2002)
and TV recommendations (Cotter and Smyth, 2000). Although the classic hybrid models are
effective, as we have mentioned in Section 2.1, implicit feedback is increasingly becoming the
most commonly leveraged interaction data because users are typically less willing to give ex-
plicit feedback such as ratings (Rendle et al., 2009; Zhang et al., 2019c). Therefore, these hybrid
rating prediction models (Basu et al., 1998; Cotter and Smyth, 2000; Melville et al., 2002) are
becoming less popular compared with the ranking-based models such as the BPR model de-
scribed in Section 2.1.1.1 and its variants (Parambath et al., 2021; Wang et al., 2019c; Zhao
et al., 2014), which are designed to leverage the more abundant implicit feedback. According to
the taxonomy introduced in Section 2.1, our proposed SGP model can also be seen as a hybrid
recommender system, which augments users’ and items’ embeddings through the pre-training
technique. It differs from the aforementioned classic hybrid models in leveraging a graph neural
model, which models the complex relationships between users and their friends through multi-
hops neighbourhood aggregation.

On the other hand, cross-domain recommender systems have been proposed to extract or
transfer knowledge from a source domain to a target domain (Li and Tuzhilin, 2020; Man et al.,
2017; Manotumruksa et al., 2019; Tang et al., 2012; Wang et al., 2021c; Yu et al., 2022d).
There are two different categories of cross-domain recommender systems, namely overlap-
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ping (Farseev et al., 2017; Sanz-Cruzado et al., 2020; Tang et al., 2012) or non-overlapping (Man-
otumruksa et al., 2019; Yu et al., 2022d; Zhao et al., 2020a) recommenders, depending on
whether they have shared users and/or items between the source domain and target domain. Our
work is more related to the overlapping cross-domain models, since we also have shared users
between the target domain (recommendation) and the source domain (social network). Although
both our work and the overlapping cross-domain recommendation models have shared users, in
the cross-domain recommendation scenario, the actual tasks for both the target and source do-
mains are to make recommendations. In contrast, in our work, the social domain is only used to
supply auxiliary information. Therefore, we argue that it is not appropriate to compare our work
with those addressing the cross-domain recommendation.

}
Social network S

Interaction matrix R
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l = 1
<latexit sha1_base64="x8VPrWYAiQPLeBA+syZk0aPUEyY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ8OKxgmkLbSib7aZdutmE3YlQQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6ZSGHTdb6e0tr6xuVXeruzs7u0fVA+PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDfz209cG5GoR5ykPIjpUIlIMIpW8iW5JV6/WnPr7hxklXgFqUGBZr/61RskLIu5QiapMV3PTTHIqUbBJJ9WepnhKWVjOuRdSxWNuQny+bFTcmaVAYkSbUshmau/J3IaGzOJQ9sZUxyZZW8m/ud1M4xuglyoNEOu2GJRlEmCCZl9TgZCc4ZyYgllWthbCRtRTRnafCo2BG/55VXSuqh7V/XLh8tawy3iKMMJnMI5eHANDbiHJvjAQMAzvMKbo5wX5935WLSWnGLmGP7A+fwBb6mNvQ==</latexit>

l = 1
<latexit sha1_base64="Beqsko5m9MzJcVnmFnc4qzYxPfE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUS9CwYvHCqYttKFstpt26WYTdidCKf0NXjwo4tUf5M1/47bNQVsfDDzem2FmXphKYdB1v53CxubW9k5xt7S3f3B4VD4+aZkk04z7LJGJ7oTUcCkU91Gg5J1UcxqHkrfD8d3cbz9xbUSiHnGS8iCmQyUiwShayZfkltT65YpbdRcg68TLSQVyNPvlr94gYVnMFTJJjel6borBlGoUTPJZqZcZnlI2pkPetVTRmJtgujh2Ri6sMiBRom0pJAv198SUxsZM4tB2xhRHZtWbi/953Qyjm2AqVJohV2y5KMokwYTMPycDoTlDObGEMi3srYSNqKYMbT4lG4K3+vI6adWq3lW1/lCvNNw8jiKcwTlcggfX0IB7aIIPDAQ8wyu8Ocp5cd6dj2VrwclnTuEPnM8fcS2Nvg==</latexit>

l = 2
<latexit sha1_base64="Beqsko5m9MzJcVnmFnc4qzYxPfE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUS9CwYvHCqYttKFstpt26WYTdidCKf0NXjwo4tUf5M1/47bNQVsfDDzem2FmXphKYdB1v53CxubW9k5xt7S3f3B4VD4+aZkk04z7LJGJ7oTUcCkU91Gg5J1UcxqHkrfD8d3cbz9xbUSiHnGS8iCmQyUiwShayZfkltT65YpbdRcg68TLSQVyNPvlr94gYVnMFTJJjel6borBlGoUTPJZqZcZnlI2pkPetVTRmJtgujh2Ri6sMiBRom0pJAv198SUxsZM4tB2xhRHZtWbi/953Qyjm2AqVJohV2y5KMokwYTMPycDoTlDObGEMi3srYSNqKYMbT4lG4K3+vI6adWq3lW1/lCvNNw8jiKcwTlcggfX0IB7aIIPDAQ8wyu8Ocp5cd6dj2VrwclnTuEPnM8fcS2Nvg==</latexit>

l = 2
<latexit sha1_base64="mnYIVwjZt3/pIU5ZlEXmyd6Tn0Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qBeh4MVjBdMW2lA220m7dLMJuxuhlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0wF18Z1v53C2vrG5lZxu7Szu7d/UD48auokUwx9lohEtUOqUXCJvuFGYDtVSONQYCsc3c381hMqzRP5aMYpBjEdSB5xRo2VfEFuyWWvXHGr7hxklXg5qUCORq/81e0nLItRGiao1h3PTU0wocpwJnBa6mYaU8pGdIAdSyWNUQeT+bFTcmaVPokSZUsaMld/T0xorPU4Dm1nTM1QL3sz8T+vk5noJphwmWYGJVssijJBTEJmn5M+V8iMGFtCmeL2VsKGVFFmbD4lG4K3/PIqaV5Uvatq7aFWqbt5HEU4gVM4Bw+uoQ730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/crGNvw==</latexit>

l = 3
<latexit sha1_base64="mnYIVwjZt3/pIU5ZlEXmyd6Tn0Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qBeh4MVjBdMW2lA220m7dLMJuxuhlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0wF18Z1v53C2vrG5lZxu7Szu7d/UD48auokUwx9lohEtUOqUXCJvuFGYDtVSONQYCsc3c381hMqzRP5aMYpBjEdSB5xRo2VfEFuyWWvXHGr7hxklXg5qUCORq/81e0nLItRGiao1h3PTU0wocpwJnBa6mYaU8pGdIAdSyWNUQeT+bFTcmaVPokSZUsaMld/T0xorPU4Dm1nTM1QL3sz8T+vk5noJphwmWYGJVssijJBTEJmn5M+V8iMGFtCmeL2VsKGVFFmbD4lG4K3/PIqaV5Uvatq7aFWqbt5HEU4gVM4Bw+uoQ730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/crGNvw==</latexit>

l = 3

<latexit sha1_base64="GutE1tgy0r5Ibzo+adBN4yji2sw=">AAACE3icbVDLSsNAFJ34rPUVdekmWARxURIp6sJFwY3LivYBTQiT6aQdOpOEmRuhhPyDG3/FjQtF3Lpx5984abPQ1gvDHM65l3vuCRLOFNj2t7G0vLK6tl7ZqG5ube/smnv7HRWnktA2iXksewFWlLOItoEBp71EUiwCTrvB+LrQuw9UKhZH9zBJqCfwMGIhIxg05ZunLqch9N0g5gM1EfrLXIFhJEV2l+d+ppjIXcmGI/B8s2bX7WlZi8ApQQ2V1fLNL3cQk1TQCAjHSvUdOwEvwxIY4TSvuqmiCSZjPKR9DSMsqPKy6U25dayZgRXGUr8IrCn7eyLDQhWGdWfhV81rBfmf1k8hvPQyFiUp0IjMFoUptyC2ioCsAZOUAJ9ogIlk2qtFRlhiAjrGqg7BmT95EXTO6s55vXHbqDWvyjgq6BAdoRPkoAvURDeohdqIoEf0jF7Rm/FkvBjvxsesdckoZw7QnzI+fwCmSJ/m</latexit>

[Ssim]
<latexit sha1_base64="GutE1tgy0r5Ibzo+adBN4yji2sw=">AAACE3icbVDLSsNAFJ34rPUVdekmWARxURIp6sJFwY3LivYBTQiT6aQdOpOEmRuhhPyDG3/FjQtF3Lpx5984abPQ1gvDHM65l3vuCRLOFNj2t7G0vLK6tl7ZqG5ube/smnv7HRWnktA2iXksewFWlLOItoEBp71EUiwCTrvB+LrQuw9UKhZH9zBJqCfwMGIhIxg05ZunLqch9N0g5gM1EfrLXIFhJEV2l+d+ppjIXcmGI/B8s2bX7WlZi8ApQQ2V1fLNL3cQk1TQCAjHSvUdOwEvwxIY4TSvuqmiCSZjPKR9DSMsqPKy6U25dayZgRXGUr8IrCn7eyLDQhWGdWfhV81rBfmf1k8hvPQyFiUp0IjMFoUptyC2ioCsAZOUAJ9ogIlk2qtFRlhiAjrGqg7BmT95EXTO6s55vXHbqDWvyjgq6BAdoRPkoAvURDeohdqIoEf0jF7Rm/FkvBjvxsesdckoZw7QnzI+fwCmSJ/m</latexit>

[Ssim]

<latexit sha1_base64="SAGn2UbTPHSTHWIpTdDkQU2UThg=">AAACFXicbVDLSsNAFJ3UV62vqEs3wSK4kJJIURcuCiK4rGAfkMQwmUzaoZMHMzdCCfkJN/6KGxeKuBXc+TdO2i609cIwh3Pu5Z57/JQzCab5rVWWlldW16rrtY3Nre0dfXevK5NMENohCU9E38eSchbTDjDgtJ8KiiOf054/uir13gMVkiXxHYxT6kZ4ELOQEQyK8vQTh9MQbMdPeCDHkfpyJ8IwFFF+XRRenhX3uVk4gg2G4Hp63WyYkzIWgTUDdTSrtqd/OUFCsojGQDiW0rbMFNwcC2CE06LmZJKmmIzwgNoKxjii0s0nVxXGkWICI0yEejEYE/b3RI4jWVpWnaVjOa+V5H+anUF44eYsTjOgMZkuCjNuQGKUERkBE5QAHyuAiWDKq0GGWGACKsiaCsGaP3kRdE8b1lmjedusty5ncVTRATpEx8hC56iFblAbdRBBj+gZvaI37Ul70d61j2lrRZvN7KM/pX3+AAtloJ4=</latexit>⇥
E0

u

⇤<latexit sha1_base64="SAGn2UbTPHSTHWIpTdDkQU2UThg=">AAACFXicbVDLSsNAFJ3UV62vqEs3wSK4kJJIURcuCiK4rGAfkMQwmUzaoZMHMzdCCfkJN/6KGxeKuBXc+TdO2i609cIwh3Pu5Z57/JQzCab5rVWWlldW16rrtY3Nre0dfXevK5NMENohCU9E38eSchbTDjDgtJ8KiiOf054/uir13gMVkiXxHYxT6kZ4ELOQEQyK8vQTh9MQbMdPeCDHkfpyJ8IwFFF+XRRenhX3uVk4gg2G4Hp63WyYkzIWgTUDdTSrtqd/OUFCsojGQDiW0rbMFNwcC2CE06LmZJKmmIzwgNoKxjii0s0nVxXGkWICI0yEejEYE/b3RI4jWVpWnaVjOa+V5H+anUF44eYsTjOgMZkuCjNuQGKUERkBE5QAHyuAiWDKq0GGWGACKsiaCsGaP3kRdE8b1lmjedusty5ncVTRATpEx8hC56iFblAbdRBBj+gZvaI37Ul70d61j2lrRZvN7KM/pX3+AAtloJ4=</latexit>⇥
E0

u

⇤
<latexit sha1_base64="N9OiTXu04NYCpuMXyzTErrEZcVs=">AAACE3icbVDLSsNAFJ34rPUVdekmWARxURIp6sJFQQSXFewDkhAmk0k7dPJg5kYoIf/gxl9x40IRt27c+TdO2iy09cIwh3PunTn3+ClnEkzzW1taXlldW69t1De3tnd29b39nkwyQWiXJDwRAx9LyllMu8CA00EqKI58Tvv++LrU+w9USJbE9zBJqRvhYcxCRjAoytNPHU5DsB0/4YGcROrKnQjDSET5TVF4uXqscAQbjsD19IbZNKdlLAKrAg1UVcfTv5wgIVlEYyAcS2lbZgpujgUwwmlRdzJJU0zGeEhtBWMcUenm050K41gxgREmQp0YjCn7eyLHkSwNq87Sr5zXSvI/zc4gvHRzFqcZ0JjMPgozbkBilAEZAROUAJ8ogIlgyqtBRlhgAirGugrBml95EfTOmtZ5s3XXarSvqjhq6BAdoRNkoQvURreog7qIoEf0jF7Rm/akvWjv2sesdUmrZg7Qn9I+fwCNKZ/W</latexit>

[Epre]
<latexit sha1_base64="N9OiTXu04NYCpuMXyzTErrEZcVs=">AAACE3icbVDLSsNAFJ34rPUVdekmWARxURIp6sJFQQSXFewDkhAmk0k7dPJg5kYoIf/gxl9x40IRt27c+TdO2iy09cIwh3PunTn3+ClnEkzzW1taXlldW69t1De3tnd29b39nkwyQWiXJDwRAx9LyllMu8CA00EqKI58Tvv++LrU+w9USJbE9zBJqRvhYcxCRjAoytNPHU5DsB0/4YGcROrKnQjDSET5TVF4uXqscAQbjsD19IbZNKdlLAKrAg1UVcfTv5wgIVlEYyAcS2lbZgpujgUwwmlRdzJJU0zGeEhtBWMcUenm050K41gxgREmQp0YjCn7eyLHkSwNq87Sr5zXSvI/zc4gvHRzFqcZ0JjMPgozbkBilAEZAROUAJ8ogIlgyqtBRlhgAirGugrBml95EfTOmtZ5s3XXarSvqjhq6BAdoRNkoQvURreog7qIoEf0jF7Rm/akvWjv2sesdUmrZg7Qn9I+fwCNKZ/W</latexit>

[Epre]
<latexit sha1_base64="Ebxnsvlj8FRDY6GarBpaNDHmXGo=">AAACFXicbVDLSsNAFJ3UV62vqEs3wSK4kJJIURcuCiK4rGAfkMQwmUzaoZMHMzdCCfkJN/6KGxeKuBXc+TdO2i609cIwh3Pu5Z57/JQzCab5rVWWlldW16rrtY3Nre0dfXevK5NMENohCU9E38eSchbTDjDgtJ8KiiOf054/uir13gMVkiXxHYxT6kZ4ELOQEQyK8vQTh9MQbMdPeCDHkfpyJ8IwFFF+XRRezor73CwcwQZDcD29bjbMSRmLwJqBOppV29O/nCAhWURjIBxLaVtmCm6OBTDCaVFzMklTTEZ4QG0FYxxR6eaTqwrjSDGBESZCvRiMCft7IseRLC2rztKxnNdK8j/NziC8cHMWpxnQmEwXhRk3IDHKiIyACUqAjxXARDDl1SBDLDABFWRNhWDNn7wIuqcN66zRvG3WW5ezOKroAB2iY2Shc9RCN6iNOoigR/SMXtGb9qS9aO/ax7S1os1m9tGf0j5/APiWoJI=</latexit>⇥
E0

i

⇤<latexit sha1_base64="Ebxnsvlj8FRDY6GarBpaNDHmXGo=">AAACFXicbVDLSsNAFJ3UV62vqEs3wSK4kJJIURcuCiK4rGAfkMQwmUzaoZMHMzdCCfkJN/6KGxeKuBXc+TdO2i609cIwh3Pu5Z57/JQzCab5rVWWlldW16rrtY3Nre0dfXevK5NMENohCU9E38eSchbTDjDgtJ8KiiOf054/uir13gMVkiXxHYxT6kZ4ELOQEQyK8vQTh9MQbMdPeCDHkfpyJ8IwFFF+XRRezor73CwcwQZDcD29bjbMSRmLwJqBOppV29O/nCAhWURjIBxLaVtmCm6OBTDCaVFzMklTTEZ4QG0FYxxR6eaTqwrjSDGBESZCvRiMCft7IseRLC2rztKxnNdK8j/NziC8cHMWpxnQmEwXhRk3IDHKiIyACUqAjxXARDDl1SBDLDABFWRNhWDNn7wIuqcN66zRvG3WW5ezOKroAB2iY2Shc9RCN6iNOoigR/SMXtGb9qS9aO/ax7S1os1m9tGf0j5/APiWoJI=</latexit>⇥
E0

i

⇤
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<latexit sha1_base64="1G4XyuFCeJMlj9TRNkt0Ti2+MQA=">AAACF3icbVDLSsQwFE19juOr6tJNcBBcDa2IuhEGRHA5gqPCtJQ0k84E06Qkt8JQ+hdu/BU3LhRxqzv/xnSmC18XQg7n3ss958SZ4AY879OZmZ2bX1hsLDWXV1bX1t2NzSujck1Zjyqh9E1MDBNcsh5wEOwm04yksWDX8e1p1b++Y9pwJS9hnLEwJUPJE04JWCpy24FgCfRxECsxMOPUfkWQEhjptDgry6jQjCpZ4kDz4QjCyG15bW9S+C/wa9BCdXUj9yMYKJqnTAIVxJi+72UQFkQDp4KVzSA3LCP0lgxZ30JJUmbCYuKrxLuWGeBEafsk4An7faMgqak028lKsvndq8j/ev0ckuOw4DLLgUk6PZTkAoPCVUh4wK1tEGMLCNXcasV0RDShYKNs2hD835b/gqv9tn/YPrg4aHVO6jgaaBvtoD3koyPUQeeoi3qIonv0iJ7Ri/PgPDmvztt0dMapd7bQj3LevwD5/6EP</latexit>

[Erecon]
<latexit sha1_base64="1G4XyuFCeJMlj9TRNkt0Ti2+MQA=">AAACF3icbVDLSsQwFE19juOr6tJNcBBcDa2IuhEGRHA5gqPCtJQ0k84E06Qkt8JQ+hdu/BU3LhRxqzv/xnSmC18XQg7n3ss958SZ4AY879OZmZ2bX1hsLDWXV1bX1t2NzSujck1Zjyqh9E1MDBNcsh5wEOwm04yksWDX8e1p1b++Y9pwJS9hnLEwJUPJE04JWCpy24FgCfRxECsxMOPUfkWQEhjptDgry6jQjCpZ4kDz4QjCyG15bW9S+C/wa9BCdXUj9yMYKJqnTAIVxJi+72UQFkQDp4KVzSA3LCP0lgxZ30JJUmbCYuKrxLuWGeBEafsk4An7faMgqak028lKsvndq8j/ev0ckuOw4DLLgUk6PZTkAoPCVUh4wK1tEGMLCNXcasV0RDShYKNs2hD835b/gqv9tn/YPrg4aHVO6jgaaBvtoD3koyPUQeeoi3qIonv0iJ7Ri/PgPDmvztt0dMapd7bQj3LevwD5/6EP</latexit>

[Erecon]
<latexit sha1_base64="9y3Vm+dCe/8XjlvzQsbbBFf6rL0=">AAACFXicbVDLSsNAFJ34rPUVdelmsAgupCRS1I1QEMFlBfuAJoTJdNIOnTyYuRFKyE+48VfcuFDEreDOv3HSZqGtF4Y5nHPvzLnHTwRXYFnfxtLyyuraemWjurm1vbNr7u13VJxKyto0FrHs+UQxwSPWBg6C9RLJSOgL1vXH14XefWBS8Ti6h0nC3JAMIx5wSkBTnnnqCBZAHzt+LAZqEuorc0ICIxlmN3nuZfq1HDuSD0fgembNqlvTwovALkENldXyzC9nENM0ZBFQQZTq21YCbkYkcCpYXnVSxRJCx2TI+hpGJGTKzaZb5fhYMwMcxFKfCPCU/T2RkVAVjnVnYVjNawX5n9ZPIbh0Mx4lKbCIzj4KUoEhxkVEeMAloyAmGhAqufaK6YhIQkEHWdUh2PMrL4LOWd0+rzfuGrXmVRlHBR2iI3SCbHSBmugWtVAbUfSIntErejOejBfj3fiYtS4Z5cwB+lPG5w9PwKAr</latexit>

[Epre]
<latexit sha1_base64="9y3Vm+dCe/8XjlvzQsbbBFf6rL0=">AAACFXicbVDLSsNAFJ34rPUVdelmsAgupCRS1I1QEMFlBfuAJoTJdNIOnTyYuRFKyE+48VfcuFDEreDOv3HSZqGtF4Y5nHPvzLnHTwRXYFnfxtLyyuraemWjurm1vbNr7u13VJxKyto0FrHs+UQxwSPWBg6C9RLJSOgL1vXH14XefWBS8Ti6h0nC3JAMIx5wSkBTnnnqCBZAHzt+LAZqEuorc0ICIxlmN3nuZfq1HDuSD0fgembNqlvTwovALkENldXyzC9nENM0ZBFQQZTq21YCbkYkcCpYXnVSxRJCx2TI+hpGJGTKzaZb5fhYMwMcxFKfCPCU/T2RkVAVjnVnYVjNawX5n9ZPIbh0Mx4lKbCIzj4KUoEhxkVEeMAloyAmGhAqufaK6YhIQkEHWdUh2PMrL4LOWd0+rzfuGrXmVRlHBR2iI3SCbHSBmugWtVAbUfSIntErejOejBfj3fiYtS4Z5cwB+lPG5w9PwKAr</latexit>

[Epre]

<latexit sha1_base64="qnhAi1nz7z415oQFqihnoqqRgCQ=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0XoqiRS1I1QcOOygn1AEspkMmmHTh7M3Agl9Bfc+CtuXCji1p07/8ZJm4W2Hhju4dx7mXOPnwquwLK+jcra+sbmVnW7trO7t39gHh71VJJJyro0EYkc+EQxwWPWBQ6CDVLJSOQL1vcnN0W//8Ck4kl8D9OUeREZxTzklICWhmbDFSwEB7t+IgI1jXTJ3YjAWEa6ZrMZdiUfjcEbmnWrac2BV4ldkjoq0RmaX26Q0CxiMVBBlHJsKwUvJxI4FWxWczPFUkInZMQcTWMSMeXl84tm+EwrAQ4TqV8MeK7+3shJpAq3erIwq5Z7hfhfz8kgvPJyHqcZsJguPgozgSHBRTw44JJREFNNCJVce8V0TCShoEOs6RDs5ZNXSe+8aV80W3etevu6jKOKTtApaiAbXaI2ukUd1EUUPaJn9IrejCfjxXg3PhajFaPcOUZ/YHz+APh1nl4=</latexit>

[µ]
<latexit sha1_base64="qnhAi1nz7z415oQFqihnoqqRgCQ=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0XoqiRS1I1QcOOygn1AEspkMmmHTh7M3Agl9Bfc+CtuXCji1p07/8ZJm4W2Hhju4dx7mXOPnwquwLK+jcra+sbmVnW7trO7t39gHh71VJJJyro0EYkc+EQxwWPWBQ6CDVLJSOQL1vcnN0W//8Ck4kl8D9OUeREZxTzklICWhmbDFSwEB7t+IgI1jXTJ3YjAWEa6ZrMZdiUfjcEbmnWrac2BV4ldkjoq0RmaX26Q0CxiMVBBlHJsKwUvJxI4FWxWczPFUkInZMQcTWMSMeXl84tm+EwrAQ4TqV8MeK7+3shJpAq3erIwq5Z7hfhfz8kgvPJyHqcZsJguPgozgSHBRTw44JJREFNNCJVce8V0TCShoEOs6RDs5ZNXSe+8aV80W3etevu6jKOKTtApaiAbXaI2ukUd1EUUPaJn9IrejCfjxXg3PhajFaPcOUZ/YHz+APh1nl4=</latexit>

[µ]
<latexit sha1_base64="iSnaIBvKdQQ1gmJVV/WdaJMsr0Y=">AAACFHicbVDLSsNAFJ3UV62vqks3g0UQhJJIUTdCwY3LCvYBSSiT6SQdOpOEmRuhhH6EG3/FjQtF3Lpw5984abvQ1gvDHM65l3vuCVLBNdj2t1VaWV1b3yhvVra2d3b3qvsHHZ1kirI2TUSiegHRTPCYtYGDYL1UMSIDwbrB6KbQuw9MaZ7E9zBOmS9JFPOQUwKG6lfPPMFCcLEXJGKgx9J8uScJDJXMPc0jSSYT7CkeDcHvV2t23Z4WXgbOHNTQvFr96pc3SGgmWQxUEK1dx07Bz4kCTgWbVLxMs5TQEYmYa2BMJNN+Pj1qgk8MM8BhosyLAU/Z3xM5kbowbDoLv3pRK8j/NDeD8MrPeZxmwGI6WxRmAkOCi4TwgCtGQYwNIFRx4xXTIVGEgsmxYkJwFk9eBp3zunNRb9w1as3reRxldISO0Sly0CVqolvUQm1E0SN6Rq/ozXqyXqx362PWWrLmM4foT1mfP2Vmn6s=</latexit>
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Fine-tuning Stage

Figure 3.1: An illustration of our SGP model, where the pre-training stage and the fine-tuning
stage are located above and below, respectively.
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Table 3.1: Main Notations Used in this chapter.

Notation Description
R the matrix of implicit feedback data
U , I the sets of users and items
S the social network matrix of all users

Ssim the social similarity matrix of all users
E the embedding matrix

Epre the pre-trained embedding matrix
Erecon the reconstructed embedding matrix

e the embedding vector
L the Laplacian matrix
W the learnable weight matrix
µ, σ the mean and standard deviation of an embedding
µ, σ the mean and standard deviation matrices of an embedding matrix
ζ the loss

M , N the number of users and the number of items
k the number of Gaussian distribution
Θ the trainable model parameters
λ the controlling factor of the L2 regularisation

yui, ŷui the observed interaction and the predicted interaction
N the normal distribution
I the identity matrix

3.3 Model Architecture

Our proposed SGP model consists of two main stages: (1) a social-aware pre-training stage,
where a multi-layer GNN is employed to generate the pre-trained embeddings and (2) an infor-
mation distillation stage, where we incorporate the Gaussian Mixture Model (GMM) to distil
information from the pre-trained embeddings for the subsequent model’s training and genera-
tion of recommendations. In the following, we first define some preliminaries in Section 3.3.1.
Next, Section 3.3.2 describes how to incorporate the social relations and a light GNN model to
propagate the social information into users’ and items’ embeddings. Finally, in Section 3.3.3,
we demonstrate how to employ the GMM to distil the social information from those pre-trained
embeddings for the subsequent training and the production of final recommendations. To clearly
illustrate our model, Figure 3.1 depicts the overall structure of our proposed SGP model, where
the upper and bottom regions describe the pre-training and fine-tuning stages, respectively.

3.3.1 Preliminaries

In this section, we introduce the notations used across this chapter. Throughout this chapter,
we use calligraphy typeface alphabets to denote sets (e.g., U is the set of users). Matrices and
vectors are denoted by bold letters with uppercase letters representing matrices and lowercase
letters representing vectors. In Table 3.1, we summarise main notations used in this article for a
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fast reference.
As introduced in Section 2.1, our task is to highly rank relevant items for each user given

their historical interactions. Specifically, in this chapter, we consider social network information
as an important source for improving the recommendation performance, especially when a user
does not have enough interactions with items. Therefore, in addition to the implicit feedback
R introduced in Section 2.1.1.1, we set S ∈ {0, 1}M×M be the user-user social network matrix,
where the content of S represents the presence of social connections between each pair of users
and M denotes the number of users.

3.3.2 The Pre-training Stage

A GNN model can leverage the nodes’ information and their corresponding relational infor-
mation in a graph by effectively aggregating information from each node’s neighbours. In the
recommendation scenario, each node represents either a user or an item. Therefore, suppose that
only the interaction information is given, then each user node’s neighbours could correspond to
those items that have been interacted with by this user ( and vice-versa for an item node). On
the other hand, when the social network information is also available, then the user’s neighbours
can be his/her interacted items or friends. This friendship information is also important for the
recommender system, because users are more likely to interact with those items that have been
previously interacted with by their social neighbours (Yang et al., 2014). Hence, the users’ avail-
able social relations provide useful insights for inferring their interests and predicting the items
that they will interact with.

To effectively propagate the friends’ information into each user who is socially connected,
we firstly initialise each user with a randomised embedding vector eu to represent his/her inter-
ests. Similarly, we can assign each item with a randomised embedding vector ei. We set Eu

to be the embedding matrix containing all latent vectors of users and Ei to be the embedding
matrix for all items. A graph neural network (GNN) can be employed here to aggregate the
users’ social information for each user node. By stacking multi-layers GNNs, we can propagate
high-order connectivities of social relations from multi-hop neighbours. In our case, we use the
most commonly used 3-layers GNNs to capture reasonable depths in the social connectivities
while avoiding the possible over-smoothing effect of the GNN.

To use multi-layers GNNs (Wu et al., 2019a), we rely on the Laplacian matrix L defined
by Equation (2.16), so that the information propagation and convolution functions described in
Section 2.2.1 can be executed effectively in a matrix multiplication form. Different from the
NGCF (Wang et al., 2019c) model, which only tries to encode the interaction signal into both
the users’ and items’ embeddings, our model focuses on the social information propagation in
the pre-training stage. Furthermore, to further improve the Diffnet++ model (Wu et al., 2020a),
which only incorporates the plain social relation links, our model pre-computes the cosine sim-
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ilarity between each user’s social relation vector1. These vectors constitute one-dimensional
binarised vectors indicating the social links between users. Therefore, building on this advanced
user-user social similarity graph Ssim, the GNN function can better classify similar users. Given
the user-user social graph S ∈ {0, 1}M×M , we can pre-compute the social similarity graph Ssim

as follows:

Ssim =
( S · ST

√
diag(S · ST)

)T

· 1√
diag(S · ST)

(3.1)

where T represents the transpose of a matrix and diag() computes the diagonal matrix of the
corresponding matrix. Entries of Ssim are set to 0 if the corresponding user has no social re-
lationships in S. Given the similarity graph Ssim, we can derive its corresponding Laplacian
matrix Lsim follows:

Lsim = diag(Ssim)
− 1

2 · Ssim · diag(Ssim)
1
2 (3.2)

With the Laplacian matrix Lsim, we can present the embedding updating function of our pro-
posed SGP model:

E(l)
u = ϕ

(
(Lsim + I) · E(l−1)

u ·W(l)
)

(3.3)

where I is the identity matrix, ϕ(·) is the LeakyReLU (Maas et al., 2013) function (also used in
other graph-based recommenders (van den Berg et al., 2017; Wang et al., 2019c)) and W is a
trainable weight matrix.

Starting from a randomly initialised E0
u, we stack 3 layers of the GNNs given in Equa-

tion (3.3) and update the embeddings for each user correspondingly. Following the LightGCN
model, we discard those redundant neural components from the variant of GCN used in NGCF.
Indeed, the self-connection setup, i.e., adding the dot product of an embedding with itself into
Equation (3.3), was initially proposed in (Wang et al., 2019c) to keep each node’s original in-
formation and to avoid being possibly overloaded with information from the nodes’ neighbours.
However, this self-connection was later demonstrated in (He et al., 2020) to bring no benefit to
recommendation performance; instead, it will reduce the training efficiency. Hence, we choose
to also remove this redundant part in our embedding updating function following the existing
work (He et al., 2020).

We follow the GNN technique proposed in the aforementioned LightGCN model to update
and aggregate the users’ embeddings. However, different from LightGCN, which uses the GNN
to incorporate the interaction data, we only incorporate the social information propagation. Sim-
ilar with other graph-based recommendation models (Hamilton et al., 2017a; Mao et al., 2021;
Wang et al., 2019c; Wu et al., 2020a), we keep the interaction data as the ground truth for su-
pervising the pre-training of our model. At each training epoch, Equation (3.3) is invoked to

1 We use the cosine similarity because it can be efficiently computed for our sparse user-user matrix. In addi-
tion, the similarities between social relation vectors do not need estimating the magnitude, hence other similarity
measures - e.g., the dot product or the Euclidean similarities, may not be appropriate.
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Algorithm 1: The pre-training stage
Input: Interaction matrix R; Social network matrix S
Output: Pre-trained embedding Epre.
Initialise embeddings E0 and other learnable parameters Θ;
Compute Lsim according to Equation (3.1) & (3.2);
while early stopped do

ζBCE = 0;
for each training instance in S do

Propagate social information according to Equation (3.3);
end
for each training instance in R do

Compute epoch loss∇ζ according to Equation (3.4);
end
ζBCE ← ζBCE +∇ζ;
Update Θ, E;

end

perform the social aggregation, after which we use the binary cross-entropy (BCE) loss intro-
duced in Section 2.2.1 as the objective function:

ζBCE = −
∑

(u,i)∈R

yui · log (ŷui) + (1− yui) · log (1− ŷui) + λ ∥Θ∥2 (3.4)

where yui is the observed interaction, ŷui is the predicted interaction, which is a dot product
of the item embedding and the user embedding obtained from Equation (3.3), while Θ =

{{El
u,E

l
i,W

l}3l=1} denotes all trainable model parameters and λ controls the L2 regularisation
strength to prevent overfitting.

As a result, our pre-trained embeddings Epre can be obtained by minimising the objective
function in Equation (3.4). For a better understanding, the training framework of our pre-training
stage is summarised in Algorithm 1.

3.3.3 The Fine-tuning Stage

After detailing the pre-training stage (Section 3.3.3.1), we first present the information distil-
lation stage, where we describe how to use the Gaussian Mixture Model to distil hierarchical
relations from the pre-trained embeddings Epre. Then, we demonstrate how to use the recon-
structed embeddings Erecon for the final recommendations (Section 3.3.3.2). Similar with the
previous section, we summarise the training framework of the fine-tuning stage in Algorithm 2.
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Algorithm 2: The fine-tuning process
Input: Rating matrix R; Pre-trained embedding Epre; Pre-defined integer k.
Output: The recommended list for each user.
Inherit Epre for initialising embeddings;
Use GMM to factorise Epre according to Equation (3.6).
Randomly sample from k Gaussian distributions;
Generate reconstructed embeddings Erecon according to Equation (3.7).
Initialise other learnable parameters Θ̂;
while not convergent do

ζBCE = 0;
for each training instance in R do

Compute epoch loss∇ζ according to Equation (3.4);
end
ζBCE ← ζBCE +∇ζ;
Update Θ̂, Erecon;

end
Do recommendation to find the recommended list based on the trained
embeddings according to Equation (3.8);

3.3.3.1 Information Distillation Stage

By using Equation (3.4) for the pre-training and Equation (3.3) for the social aggregation, we
aim to encode social information into our pre-trained embeddings Epre. The latter constitutes
the obtained embedding matrix from optimising Equation (3.4). However, it is not obvious
how these pre-trained embeddings can be reused. Since we have already used the interaction
data as the ground truth during the pre-training stage , directly reloading these embeddings is
likely to cause either an overfitting or a marginal improvement. Therefore, in the information
distillation stage, we propose to distil information from these pre-trained embeddings. Next, we
concatenate these distilled information at the tail of a randomly initialised embedding to add
more generalisation to the final embeddings.

Before extracting useful information from the pre-trained embeddings, we propose to model
each user’s or item’s latent vector as a multi-Gaussian distribution. This is consistent with the
implementation details of existing works (He et al., 2020; Rendle et al., 2009, 2020; Wang et al.,
2019c). Indeed, the matrix factorisation technique introduced in Section 2.1.1.1, can be inter-
preted as the search for the best fitted distribution for the users and items in a latent space.
This is why in most implementations (He et al., 2020; Rendle et al., 2020), the embeddings are
initialised with a Gaussian distribution with a given mean (µ) and standard deviation (σ) e.g.,
µ = 0 and σ2 = 0.1. As discussed in Section 3.1, we expect the pre-training stage to cap-
ture hierarchical relations between users and items (Devlin et al., 2018; Reimers and Gurevych,
2019). However, a standard Gaussian distribution cannot represent these learned complex rela-
tions from the pre-trained embeddings Epre, because its low representational power (Reynolds,
2009) limits its ability to convey the users’ different preferences and their complex social rela-
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tions, thereby potentially leading to an information loss. Hence, a mixture model is needed to
leverage the possible multivariate Gaussian distributions learned from the pre-training stage and
to avoid any possible information loss.

With the aforementioned proposal, we employ a well-developed statistical analysis tool,
the Gaussian Mixture Model (GMM) (Reynolds, 2009), which can effectively decompose a
multivariate Gaussian distribution into multiple (i.e., k) Gaussian distributions, where k is pre-
defined. Since we assume that all users’ and items’ embeddings correspond to combinations
of Gaussian distributions, we can extract meaningful information from these embeddings by
analysing each pair of (µ, σ), as these represent each user’s most important preferences or each
item’s most important characteristics.

As a result, we use the following equation to decompose the embeddings obtained from the
pre-training stage in Section 3.3.2:

p(e′u) =
k∑

i=1

Wi · N (eu|µi, σi) (3.5)

where W is a weight matrix representing the importance of each decomposed distribution, e′u
is the predicted user embedding and eu is the original user embedding; k is an integer number,
which defines how many Gaussian distributions should be obtained by decomposing the original
embedding. A similar equation can also be applied to an item’s embedding vector.

From the Epre, we use the following equation to calculate all pairs of µ and σ:

µ,σ = GMM(Epre, k) (3.6)

where µ and σ are two matrices consisting of all (µ ,σ) pairs for each user and item.
After employing the GMM to those pre-trained embeddings, we obtain k pairs of µ and σ for

each user and item, from which we have enough prior knowledge to reconstruct the embeddings
containing the social information encoded at the pre-training stage. For each user or item, we
use the obtained (µ ,σ) pairs to generate k Gaussian distributions, where we randomly sample
the same number of elements from each distribution to reconstruct socially-aware embeddings.
After that, we obtain the reconstructed embeddings Erecon as follows:

Erecon = N (µ,σ2) (3.7)

where µ and σ are both obtained from Equation (3.6).

3.3.3.2 Model Training and Recommendation

After obtaining the reconstructed embeddings Erecon, we use again the BCE loss function (see
Equation (2.21)) to train the model but, this time, the model is initialised with Erecon instead
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of a random matrix. We concatenate the reconstructed embeddings Erecon with the randomly
initialised embeddings to represent the users’ preferences and items’ characteristics. Therefore,
the model is less likely to fall into the same relative optimised solution within the pre-training
stage. To recommend items of interests to a user, we compute the dot product of the concate-
nated trained embeddings of this user with the trained embeddings of all items in the corpus.
Hence, our proposed Social-aware Gaussian Pre-trained model (SGP) is devised to predict the
interaction ŷui between user u and item i as follows:

ŷui = (eu−recon ∥ eu−rand)⊙ (ei−recon ∥ ei−rand) (3.8)

where ∥ denotes the concatenation and ⊙ is the dot product. The obtained list of scores are then
used to identify the items that a given user will be interested to interact with.

3.4 Datasets and Experimental Setup

To evaluate our proposed SGP model, we perform experiments on three public datasets: Library-
thing2, Epinions3 and Yelp3. These datasets are widely used in the recommender systems com-
munity. Librarything is a book review dataset, Epinions is a general customer review dataset,
while Yelp is a venue check-in dataset. Table 3.2 provides the statistics of the three used datasets.
In the following, we aim to address the following research questions:
RQ3.1. Can we use the GNN model to leverage the social information and generate pre-trained
embeddings for both users and items, thereby improving the overall recommendation perfor-
mance?
RQ3.2. Can we employ the Gaussian Mixture Model to distil information from the pre-trained
embeddings and further enhance the recommendation performance?
RQ3.3 Does our SGP model help in alleviating the cold-start problem, especially for those
extreme cold-start users?
RQ3.4. What is the impact of using the social relations on the pre-training stage of our SGP
model?
RQ3.5. How do the embeddings dimension and different ranking cut-offs affect the recommen-
dation performances of the pre-trained recommenders?

In the following, we describe the 13 baselines used to evaluate the performance of SGP
(Section 3.4.1), the used evaluation methodology and the corresponding experimental setup
(Section 3.4.2).

3.4.1 Baselines

We compare the performance of our SGP model to classical strong non-neural baselines, as well

2 http://cseweb.ucsd.edu/∼jmcauley/datasets.html 3 https://www.yelp.com/dataset
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Table 3.2: Statistics of datasets.

Librarything Epinions Yelp
Users 60,243 114,738 215,471
Items 200,422 34,577 93,379

Interactions 930,053 110,671 1,506,039
Social edges 110,637 150,859 1,397,180

Interaction density(%) 0.008 0.003 0.007
Social density(%) 0.003 0.001 0.003

as existing state-of-the-art neural models:

• MF (Rendle et al., 2020). This is the conventional matrix factorisation model, which can
be optimised by the Bayesian personalised ranking (BPR (Rendle et al., 2009)) or the BCE
losses. The regularisation includes the user bias, the item bias and the global bias. Details
of this baseline can be found in Equation (2.2).

• SBPR (Zhao et al., 2014). SBPR is a classic model, which adds the social regularisation
to the matrix factorisation method.

• UserKNN and ItemKNN (Sarwar et al., 2001). Two neighbourhood-based models using
collaborative user-user or item-item similarities.

• SLIM (Ning and Karypis, 2011). This is an effective and efficient linear model with a
sparse aggregation method.

• NCF (He et al., 2017). The method is a CF model, which uses a generalised matrix
factorisation method to generate pre-trained embeddings. A MLP module is also used in
NCF to capture the nonlinear features from the interactions.

• NGCF (Wang et al., 2019c). NGCF is devised to employ a multi-layer GCN (see Sec-
tion 2.2.1) on top of the user-item interaction graph to propagate the collaborative signal
across multi-hops user-item neighbourhoods.

• LightGCN (He et al., 2020). Building on NGCF, LightGCN has fewer redundant neural
components compared with the original NGCF model, which makes it more efficient and
effective.

• UltraGCN (Mao et al., 2021). UltraGCN is a more efficient GNN-based recommender. It
gains higher efficiency than LightGCN by skipping the message passing via a constraint
loss.

• SGL (Wu et al., 2021). SGL leverages the self-supervised learning and graph contrastive
learning methods to generate augmented views for nodes to enhance the model’s robust-
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ness and accuracy. In particular, the graph contrastive learning method has been intro-
duced in Section 2.2.4.

• VAE-CF (Liang et al., 2018). A state-of-the-art variational autoencoder-based collabora-
tive filtering recommender system.

• GraphRec (Fan et al., 2019). This is the first GNN-based social recommendation method,
which models both user-item and user-user interactions.

• Diffnet++ (Wu et al., 2020a). This method is a graph-based deep learning recommender
system, which uses the additional social links to enrich the user-item bipartite graph and
improve the recommendation performance.

3.4.2 Evaluation Methodology

Following the offline evaluation methods described in Section 2.1.2.1, we use a leave-one-out
evaluation strategy to split the interactions of each dataset into training, validation and testing
sets. To speed up the evaluation, we adopt the sampled metrics (He et al., 2017; Rendle et al.,
2020; Wang et al., 2019c), which randomly sample a small set of the non-interactive items as
negative items (rather than take all the non-interactive items as negatives) of the validation and
testing sets, and evaluate the metric performance on this smaller set. Here, we sample 100
negative items for each user in the testing sets for evaluation (He et al., 2017; Rendle et al.,
2020). However, different from prior works (He et al., 2017; Rendle et al., 2020) that only use
one oracle testing set per dataset with the sampled negative items, we construct 10 different
testing sets with different sampled negative items for each dataset using different random seeds,
in order to reduce the evaluation bias on some specific testing negatives (Krichene and Rendle,
2022). Hence, the reported performance of each run is based on the average of the 10 testing
sets.

In order to answer RQ3.1 and validate the hypothesis of our proposed thesis (see Sec-
tion 1.2), we compare our SGP model with all baselines in terms of different metrics intro-
duced in Section 2.1.2.2, including Normalised Discounted Cumulative Gain@10 (NDCG),
Recall@10 and Mean Average Precision@10 (MAP). We also compare the SGP model with
both its pre-training and fine-tuning stages to a variant where only the pre-training stage is used
(called SGP (Pre-training)), so as to address RQ3.2.

To answer RQ3.3, we further examine the ability of our proposed SGP model to alleviate
the cold-start problem introduced in Section 2.1, especially for those users who newly regis-
tered on the sites. In particular, we first compare the performances of our SGP model to the best
performing baseline across different groups of users who have less than {5, 10, 15, 20} interac-
tions, respectively. Second, to simulate the extreme cold-start situation when a user starts using
an app that was suggested by his/her friends, we select those users who have social relations but
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less than five interactions. We define these users as the extreme cold-start4 users and we remove
all their interactions, so that the situation of newly registered users (no historical interaction) is
simulated. Hence, through this defined extreme cold-start setup, we aim to recommend relevant
items to those newly registered users solely based on their social relations.

In order to tackle RQ3.4, we conduct an ablation study to determine the effect of the so-
cial relations in our proposed SGP model and the Diffnet++ model. In this ablation study, we
randomly drop {20%,40%,60%,80%} of social relations from both models and measure the re-
sulting recommendation performance across the three used datasets, in order to determine if
the performance improvements are indeed gained from the social-aware pre-training. Finally,
to answer RQ3.5, we provide a detailed analysis on the largest dataset (i.e., Yelp) to evaluate
the performances of SGP and LightGCN on different embedding dimensions and different cut-
offs for the recommended items. In addition, in order to directly observe the effect of social
relations in the latent space, we use the t-distributed stochastic neighbour embedding (t-SNE)
technique (Van der Maaten and Hinton, 2008) to visualise the final embeddings obtained by our
SGP model, in comparison to the embeddings obtained by a classic MF model.

All models are implemented using the Beta-RecSys open source framework (Meng et al.,
2020). We use the Adam (Kingma and Ba, 2015) optimiser for all the neural network models’
optimisations. To tune all hyper-parameters, we apply a grid search on the validation set, where
the learning rate is tuned in {10−2, 10−3, 10−4}; the latent dimension in {32, 64, 128} and the L2

normalisation in {10−2, ..., 10−5}. The node dropout technique is used in the NGCF, LightGCN,
UltraGCN and GraphRec models as well as our proposed SGP model. The dropout ratios vary
amongst {0.3, 0.4, ..., 0.8} as suggested in (van den Berg et al., 2017). To control how many
Gaussian distributions are extracted from the pre-trained embeddings, we vary the number of
pre-defined multivariate Gaussian distributions k in Equation (3.5) in {2, 4, 6, 8, 10}. Note that
due to the limit of the latent dimension, further increases in the k value might result in less
data extracted from each pre-trained embedding. We conduct the paired t-test with the Holm-
Bonferroni correction to examine if the performance difference between a baseline and SGP is
significant. For each k value, we run our SGP model for 50 times with different random seeds
and we plot the results on the three datasets as a box plot, where we illustrate not only the mean
values but also the variance across different random seeds. For a fair comparison with (He
et al., 2020, 2017; Wang et al., 2019c; Wu et al., 2020a), we set the number of neural network
layers of the models including NCF, NGCF, Diffnet++, LightGCN, UltraGCN, SGL , GraphRec
and SGP to three. For the non-neural models, namely SBPR, MF, UserKNN, ItemKNN and
SLIM, we tune them within the same range of learning rates and L2 normalisations used for the
neural baselines, while for the rest of parameters we follow the same implementation details as
suggested in (Dacrema et al., 2019).

4 We sampled users with less than 5 interactions for the simulation because at least 3 interactions are needed for
the train/valid/test set, and in order to keep enough users in the evaluation pool.
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Table 3.3: Performances of SGP and other baselines on the three used datasets. All metrics are
computed at rank cutoff 10. The best and second best performances are highlighted in boldface
and underlined, respectively; * denotes a significant difference between the performance of SGP
and that of the baselines according to the paired t-test with the Holm-Bonferroni correction for
p < 0.01. The ’Social’ column indicates whether a model uses social relations or not.

Social Epinions Librarything Yelp
NDCG Recall MAP NDCG Recall MAP NDCG Recall MAP

NCF ✗ 0.0819∗ 0.1662∗ 0.0585∗ 0.3132∗ 0.4971∗ 0.2304∗ 0.2504∗ 0.4109∗ 0.1908∗

NGCF ✗ 0.0816∗ 0.1668∗ 0.0589∗ 0.2974∗ 0.4894∗ 0.2498∗ 0.2378∗ 0.3904∗ 0.1794∗

LightGCN ✗ 0.0830∗ 0.1723∗ 0.0615∗ 0.3310∗ 0.5081∗ 0.2484∗ 0.2735∗ 0.4304∗ 0.2194∗

UltraGCN ✗ 0.0825∗ 0.1700∗ 0.0603∗ 0.3313∗ 0.5083∗ 0.2480∗ 0.2598∗ 0.4002∗ 0.2011∗

SGL ✗ 0.0831∗ 0.1720∗ 0.0610∗ 0.3216∗ 0.4982∗ 0.2417∗ 0.2632∗ 0.4100∗ 0.2098∗

VAE-CF ✗ 0.0710∗ 0.1424∗ 0.0475∗ 0.3003∗ 0.4934∗ 0.2302∗ 0.2100∗ 0.3715∗ 0.1639∗

Diffnet++ ✓ 0.0819∗ 0.1678∗ 0.0549∗ 0.3011∗ 0.4873∗ 0.2259∗ 0.2589∗ 0.4184∗ 0.1988∗

GraphRec ✓ 0.0810∗ 0.1661∗ 0.0527∗ 0.2997∗ 0.4807∗ 0.2248∗ 0.2478∗ 0.4097∗ 0.1901∗

SBPR ✓ 0.0791∗ 0.1571∗ 0.0509∗ 0.2997∗ 0.4931∗ 0.2300∗ 0.2398∗ 0.3937∗ 0.1808∗

MF ✗ 0.0720∗ 0.1481∗ 0.0484∗ 0.2903∗ 0.4893∗ 0.2291∗ 0.2011∗ 0.3348∗ 0.1698∗

UserKNN ✗ 0.0752∗ 0.1678∗ 0.0497∗ 0.3123∗ 0.4987∗ 0.2345∗ 0.2297∗ 0.3797∗ 0.1758∗

ItemKNN ✗ 0.0743∗ 0.1667∗ 0.0486∗ 0.2977∗ 0.4872∗ 0.2139∗ 0.2238∗ 0.3709∗ 0.1712∗

SLIM ✗ 0.0719∗ 0.1522∗ 0.0497∗ 0.2918∗ 0.4821∗ 0.2298∗ 0.2098∗ 0.3407∗ 0.1766∗

SGP (Pre-training) ✓ 0.0725 0.1498 0.0497 0.2953 0.4913 0.2284 0.2201 0.3897 0.1798
SGP ✓ 0.0876 0.1794 0.0657 0.3569 0.5431 0.2647 0.2972 0.4631 0.2347

%Improv. 5.5 4.1 6.8 7.8 6.9 6.0 8.7 7.6 7.0

3.5 Results Analysis

In this section, we report the experimental results and answer our five research questions in turn.

3.5.1 RQ3.1: Pre-trained Recommendation Performances

In order to answer RQ3.1, we use Table 3.3 to report the overall performance of our SGP model
in comparison to 13 other baselines and the pre-training stage (the first stage only of the SGP
model) in terms of 3 different metrics, namely NDCG, Recall and MAP. Comparing the perfor-
mance of SGP (Pre-training) with other baselines, we can conclude that the pre-training stage
itself cannot outperform all baselines. However, through the information distillation stage when
we use randomly initialised embeddings concatenated with Multivariate Gaussian distributions
extracted from the pre-trained embeddings, our SGP model achieves the best performance, con-
stantly and significantly (according to the paired t-test with Holm-Bonferroni correction with
p < 0.01) outperforming all other baselines in terms of all metrics on three used datasets.
These results demonstrate that solely employing the GNN model with the available social rela-
tions is not sufficient to enhance the recommendation performance. This is likely because the
social information should not be considered equally to the interaction information, since the
interaction information makes the actual ground truth when inferring the users’ main prefer-
ences and next items of interest. By reusing these pre-trained embeddings concatenated with
randomly initialised embeddings, our SGP model can markedly and significantly enhance the
recommendation performance. It is of note that the performances of all the evaluated models
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on the Epinions dataset are lower than on the Librarything and Yelp datasets. However, these
performances are in line with those reported in the literature (e.g., NDCG@10 ≈ 0.3 on the Li-
brarything dataset (Mauro et al., 2019; Palumbo et al., 2018; Valcarce et al., 2019); NDCG@10
< 0.1 on the Epinions dataset (Abdollahpouri et al., 2019)). These differences may be explained
by the differing densities of user-item interactions in the used datasets (see Table 3.2). In addi-
tion, by comparing other graph-based models, we observe that those more recent models such
as SGL and UltraGCN do sometimes outperform the LightGCN model. However, LightGCN
remains the second-best performing model since it has achieved second-best performances for
most of the times as shown in Table 3.3. This observation is probably related to our used data
split, where we use 10 different testing sets to avoid the oracle testing set. In other words, our
results imply that those more recent graph-based models have not achieved robust and constant
enough improvement over the LightGCN model, which demonstrates the necessity of address-
ing the low-efficiency issue as mentioned in our proposed thesis statement (see Section 1.2).
As a consequence, we will use LightGCN as the main model to be compared with SGP in Sec-
tions 3.5.3 & 3.5.5. Overall, in answer to RQ3.1, we can conclude that using the GNN model to
leverage the social relations and generate pre-trained embeddings can improve the recommenda-
tion performance compared with SGP (Pre-training) and 13 competitive (neural and non-neural)
baselines.

3.5.2 RQ3.2: GMM Information Distillation

To address RQ3.2, we show a box plot of our SGP model on the 3 used datasets across different
number of pre-defined multivariate Gaussian distributions, k, in terms of NDCG@10, where
for each k value, the model is trained and evaluated 50 times with different random seeds. In
Figure 3.2, the max and min values for each set of experiments are shown as two bars at the top
and bottom of each box, respectively. The mean value of each set of experiments is shown as
an orange line lying in the middle of each box. We also report the best mean for each dataset in
Table 3.3 (i.e., k = 6 for the Epinions dataset and k = 8 for the Librarything and Yelp datasets ).
Figure 3.2 shows that our SGP model only achieves better performances when k is larger than 4,
whereas for all datasets when k = 2 or 4, the SGP model has a lower performance than several
baselines. This can be explained by the fact that the users’ preferences are hard to be estimated
with simple distributions. Indeed, usually the users’ preferences are formed by combinations of
distributions, which cannot be easily factorised with 2 to 4 factors. Therefore, a small number
of Gaussian distributions is not sufficient enough to represent the users’ preferences. However,
we also observe a performance degradation when k is too large. This is likely because the
latent dimension has a limited size (usually up to a few hundreds), while each reconstructed
embedding is a sample from the multiple extracted Gaussian distributions. Therefore, when k

becomes larger, elements sampled from each distribution become fewer, thereby leading to a
loss in the accuracy of the representation of its intended original factor. For example, when the
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Figure 3.2: Max/Min/Mean values of NDCG@10 for SGP on 3 datasets with different number
of Gaussian distributions.

Table 3.4: NDCG@10 performances of our SGP model in comparison to the LightGCN baseline
across different user groups where n is the number of users’ interactions; * denotes a significant
difference versus LightGCN (paired t-test, p<0.01).

NDCG@10
Dataset Model n=5 n=10 n=15 n=20 n=all

Epinions
SGP 0.0763∗ 0.0812∗ 0.0857∗ 0.0864∗ 0.0876∗

LightGCN 0.0708 0.0751 0.0810 0.0818 0.0830
%Improv. 7.77 8.12 5.80 5.62 5.50

Librarything
SGP 0.3014∗ 0.3354∗ 0.3410∗ 0.3554∗ 0.3569∗

LightGCN 0.2631 0.2821 0.3101 0.3275 0.3310
%Improv. 14.5 15.9 9.96 8.52 7.80

Yelp
SGP 0.1987∗ 0.2435∗ 0.2669∗ 0.2848∗ 0.2972∗

LightGCN 0.1671 0.2086 0.2381 0.2590 0.2735
%Improv. 18.9 16.7 12.1 9.97 8.71

latent dimension is 100, if k = 10 is applied, only 10 elements are sampled from each Gaussian
distribution. Moreover, when k is larger, the performance of our SGP model is relatively stable.
This demonstrates that our SGP model is effective in distilling information from the pre-trained
embeddings given that enough Gaussian distributions are employed i.e., when k is sufficiently
large, the model stabilises and shows less variance. In answer to RQ2, we can conclude that the
GMM can be used to effectively distil information from the pre-trained embeddings. We also
suggest preferable k values, which can be used to enhance the recommendation performance.
In addition, we consolidate the hypothesis in our thesis statement by showing that heterogeneous
graph representation learning can effectively encode the social relations among users.

3.5.3 RQ3.3: Cold-start Performances

To address RQ3.3, in Table 3.4, we examine the performance of our SGP model for different
groups of users who have less than {5, 10, 15, 20} interactions, respectively, in comparison to
the best baseline, LightGCN, in terms of NDCG@10. From the table, we note that our SGP
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Table 3.5: Performances of SGP (Pre-training) on the extreme cold-start users in comparison
with the random and popularity-based baselines. In the table, SGP is the only approach where
interactions are used. * and ↑ denote significant differences compared to the random and popu-
larity baselines, respectively (paired t-test, p<0.01).

Epinions Librarything Yelp
NDCG Recall MAP NDCG Recall MAP NDCG Recall MAP

Random 0.0676 0.1334 0.0403 0.0998 0.1938 0.0707 0.0887 0.1806 0.0615
Popularity 0.0712 0.1448 0.0423 0.1693 0.3011 0.1082 0.1937 0.3219 0.1287

SGP 0.0870∗↑ 0.1691∗↑ 0.0589∗↑ 0.3324∗↑ 0.5134∗↑ 0.2958∗↑ 0.2972∗↑ 0.4631∗↑ 0.2347∗↑

SGP (Pre-training) 0.0728∗↑ 0.1583∗↑ 0.0450∗↑ 0.2029∗↑ 0.3360∗↑ 0.1382∗↑ 0.2279∗↑ 0.3469∗↑ 0.1488∗↑

model overall significantly outperforms LighGCN according to the paired t-test with p < 0.01,
while users with less than 10 interactions particularly benefit from our model compared with the
other groups of users. Overall, it is reasonable to observe that cold-start users benefit more from
our model because when their interaction information is too sparse, incorporating more social
information will likely enable the SGP model to predict their possible unknown preferences.
However, users with sufficient interactions tend to have their preferences accurately captured
by the recommender systems, therefore adding more social relations may not be beneficial for
them. Indeed, from Table 3.4, we observe that there is a clear decrease in the reported percent-
age improvement when we consider the group of users who have less than 10 interactions in
comparison to those users who have more than 15 interactions.

Table 3.5 shows a comparison of our SGP model with a random recommender and a
popularity-based recommender for the extreme cold-start users case. The random and popularity-
based recommenders are two commonly used baselines (Noia et al., 2016) when no interaction
data is available. Here, we aim to simulate the situation when users register to an App or a Web
service following the suggestions of their friends. In this case, the model only knows about
the users’ friends while it does not have access to the historical interactions. Instead of mak-
ing random recommendations or only recommending popular items, our SGP model generates
embeddings by constructing multivariate Gaussian distributions by evenly sampling elements
from their friends’ embeddings, which is also produced by the pre-training stage of our SGP
model. By comparing our proposed SGP model with its first pre-training stage only (denoted by
SGP (Pre-training)) with both baselines and the full SGP model for the extreme cold-start users,
we find that SGP (Pre-training) significantly outperforms both the random and the popularity-
based recommenders. On the other hand, it is reasonable and natural that when no interac-
tions are observed and no training is conducted, SGP (Pre-training) is far worse than the full
SGP model. However, SGP (Pre-training) significantly outperforms both the random and the
popularity-based recommenders on the Librarything and Yelp datasets and is comparable to the
results of SGP on the Epinions dataset. Overall, in answer to RQ3.3, we can conclude that our
proposed method SGP is effective at tackling the cold-start problem and is particularly useful in
alleviating the practical extreme cold-start issue. Furthermore, we validate the hypothesis in our
proposed thesis statement that graph representation learning can alleviate the cold-start problem
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while ensuring effective recommendations for regular users.

3.5.4 RQ3.4: Impact of Social Relations

In order to determine the effect of social relations and to answer RQ3.4, we conduct an ablation
study where we randomly dropout different proportions of social relations. Figure 3.3 shows
how the performance of our SGP model and that of the Diffnet++ model are affected when dif-
ferent proportions of social relations are randomly masked out. From this figure, we can clearly
observe a trend that the more social relations are masked during the pre-training, the more the
recommendation performances of SGP and Diffnet++ are degraded across three datasets. This
trend reveals that the social relations do indeed help the SGP model to achieve a better pre-
training thereby enhancing the final recommendation performance. However, we also observe
some variance in the performance on the Epinions dataset, compared with the consistent decline
of performance on the Librarything and Yelp datasets. This is because the raw data of the Epin-
ions dataset provides bidirectional social relations i.e., both the ‘trust’ and ‘trustedby’ relations
are given. Since our current SGP model cannot distinguish between these bidirectional relations,
for the sake of simplicity, we unify these two types of relations as one unidirectional social net-
work to fit our implementation. Although unifying the bidirectional relations does bring an
overall performance improvement to SGP over other baselines, this unifying method itself is
not optimal and can possibly induce noise, because the social influences are not bidirectionally
equal. Therefore, from our conducted ablation study, in answer to RQ3.4, we can conclude
that using the social relations on the pre-training stage can help enhance the recommendation
performance of our SGP model. Furthermore, we postulate that the performance can be further
enhanced by enabling our current SGP model to distinguish among bidirectional social relations.
In particular, through this ablation study, we gain more confidence in our proposed statement
because we further justify that the improvements in effectiveness brought by our SGP model
come from incorporating social relations using heterogeneous graph representation learning.
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Figure 3.3: An ablation study of performances of SGP and Diffnet++ (different proportions of
social relations are masked out).
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Figure 3.4: The performances comparison between SGP and LightGCN over different dimen-
sions and different cut-offs on the Yelp dataset.

3.5.5 RQ3.5: Hyperparameter Analysis

In this section, we aim to answer RQ3.5 by examining how the performance of SGP and that
of the second-best baseline LightGCN are affected by different recommendation cut-offs and
embedding dimensions. First, we plot when the different number of items are recommended
to users in Figure 3.4a. From this figure, we can observe that our SGP model consistently
outperforms LightGCN across different cut-offs. Specifically, SGP mainly surpasses LightGCN
for larger cut-offs (i.e., when cut-offs ≥ 10). This is due to the fact that we regard social
relations as side information, and they are only leveraged during the pre-training stage. Hence,
those items that are easy to be predicted will be preserved as top-ranked items, while social
relations play an important role in obtaining more accurate tailed items. As a result, users will
benefit more from our proposed SGP model when the top-ranked items are unsatisfactory for
them. Figure 3.4b shows how the NDCG@10 measure is affected when different embedding
dimensions are applied to SGP and LightGCN. This figure demonstrates that our SGP can bring
consistent improvements over the baseline for different embedding dimensions. To conclude
on RQ3.5, our SGP model can constantly outperform the strong baseline i.e., LightGCN when
different hyperparameters are applied. In addition, we further consolidate our proposed thesis
statement by showing the consistent improvements of SGP over LightGCN.

3.5.6 Embedding Visualisation

In this section, we aim to analyse how our SGP model affects the users’ embeddings in the latent
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space, compared to the embeddings obtained from a classic MF model5 (see Section 2.1.1.1) that
does not encapsulate social relations. We visualise all users’ embeddings of the Librarything
dataset6, trained by the SGP model in comparison with embeddings trained by the MF model
using the t-distributed stochastic neighbour embedding (t-SNE) approach. Figure 3.5(a) shows
the t-SNE for MF, while Figure 3.5(b) provides the t-SNE for SGP. In both plots, we highlight
three anchor users (represented as yellow/green/red dots), along with their corresponding friends
(triangles) and their target items ( stars). Both the green and orange anchor users are fortunate
to have their friends close to their target items, hence, these two anchor users are pulled closer
to their target items, as shown in Figure 3.5(b). In contrast, in Figure 3.5 (a), these two anchor
users are clustered far apart from their target items by MF, due to the fact that social relations
are not considered by MF. For the red user’s case, he/she has a dissimilar friend, who is located
relatively far away from the target item and his/her friends. Our SGP model can still handle this
case by relocating the red user to the space between this dissimilar friend and two other similar
friends, thereby bringing this user closer to the target item. Through the provided three examples
of users, we illustrated different situations where users might possibly benefit from our SGP
model, thereby improving the recommendation performances as observed in the reported results
across three datasets. Furthermore, we use this detailed case study to obtain more insights into
how heterogeneous graph representation learning benefits the recommendation hence further
supporting our proposed thesis statement.

3.6 Conclusions

In the proposed thesis statement, we postulated that we can use heterogeneous graph represen-
tation learning to alleviate the cold-start problem while ensuring enhanced recommendations
for regular users by leveraging social relations. Therefore, in this chapter, we explored how to
leverage graph representation learning to generate pre-trained embeddings using the existing so-
cial relations among users. Next, we used the Gaussian Mixture Model to carefully extract prior
knowledge contained in those pre-trained embeddings for subsequent fine-tuning and recom-
mendations. Our proposed Social-aware Gaussian Pre-trained (SGP) model can significantly
outperform competitive baselines (according to the paired t-test with the Holm-Bonferroni cor-
rection for p < 0.01), as demonstrated by the extensive experiments conducted on three public
datasets (see Table 3.3). Furthermore, a detailed user analysis in Section 3.5.3 showed that by
incorporating the social relations, users who have less than 10 interactions especially benefit

5 The MF model is chosen because it is also an embedding-based method and is not socially aware, and therefore
can offer us a clear comparison between a social-aware model and a non-social model. 6 The Librarything dataset
is a less sparse dataset with a higher or equal social density compared to the Epinions and Yelp datasets therefore,
for illustration purposes, we have more users to choose from. However, note that we do nevertheless observe similar
trends on the Epinions and Yelp datasets, hence for space constraints, we only visualise the Librarything dataset
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Figure 3.5: The t-SNE plot of all users’ embeddings of the Librarything dataset obtained from
the MF model (a) and our SGP model (b), where the red dot represents an anchor user, the red
triangles are this user’s friends and the red start is the target item. The similar configuration is
also applied to another two users with their corresponding friends and target items, which are
plotted with the colour of green and orange, respectively.

from our SGP model, suggesting that SGP can effectively alleviate the cold-start problem intro-
duced in Section 1.1. Moreover, we showed that our SGP model can practically serve extreme

cold-start users with reasonable recommendations when it only knows about the friend’s pref-
erences of these newly registered users. Finally, we used an ablation study in Section 3.5.4
to examine the effect of social relations on our proposed model and a hyperparameter analysis
to study the effects of different cut-offs and embedding dimensions, followed by the visuali-
sation of the generated embeddings to further illustrate how our proposed model could benefit
recommendations.

Therefore, we can conclude that we have validated the hypothesis of our proposed thesis
statement in Section 1.2, namely by capturing the user-user social relation using heterogeneous
graph representation learning, a graph-based recommender system can achieve an enhanced
performance and benefit cold-start users. The possible limitation of our SGP model is linked to
the risk of the leakage of sensitive personal information. For instance, one could use a social
network graph as an attack vector to expose sensitive information of public figures. Hence,
our SGP model should be used with careful consideration if applied to a real application. The
success of this chapter raises the question of whether we can generalise the incorporation of
social relations to other side information in a graph-based recommender system. Therefore, in
Chapter 4, we will explore how to incorporate multiple side information in a more generalised
graph pre-training manner.
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Chapter 4

Graph Pre-training for Recommendations

4.1 Introduction

In Chapter 3, we validated the hypothesis in our proposed thesis statement (Section 1.2) that
by incorporating heterogeneous graph representation learning to leverage the social relations,
we can alleviate the cold-start problem and improve the overall recommendation effectiveness.
The promising performance of our proposed social-aware graph-based recommender system
motivates us to further progress their development. Indeed, the effectiveness of social relations in
graph-based recommender system poses the follow-up question: can other side information be

used to improve the effectiveness of graph-based recommender systems? The intuition that social
relations can benefit graph-based recommender systems is based on the assumption introduced
in Section 1.1 that socially related users might have similar interaction behaviours. A difference
between the social relations and other side information of users and items is that social relations
can directly link two users, while other side information is usually regarded as the labels or
attributes of users/items. Hence, in the scenario of graph-based recommender systems, the social
relations can be directly used while other side information may need pre-processing. Although
other side information cannot directly link two users, we can still use different types of side
information to categorise users into different clusters/groups; hence we assume that users from
the same cluster behave similarly. Similarly, we can also categorise different types of items into
different groups following how we use the side information to categorise users. Therefore, it
is promising to investigate how to leverage multiple types of side information for graph-based
recommender systems.

As mentioned in Section 1.5, in this chapter we tackle a more generalised problem (lever-
aging multiple types of side information) than only leveraging social relations as in Chapter 3
(social relation only). Recall that we have discussed (Section 2.2.2) the limitation of the classic
bipartite graph, which can only be extended with two additional relations besides the user-item
interactions. Therefore, a simple additive solution is not applicable if we want to leverage more
than two types of side information. To tackle this problem, in this chapter, we introduce a novel
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pre-training scheme to leverage multiple side information in this chapter.
As mentioned in Section 2.1, the goal of recommender systems is to assist users in filtering

out non-relevant information and selecting a personalised set of interesting items to maximise
the users’ satisfaction. Modern recommendation models achieve this goal by learning repre-
sentation vectors (i.e., embeddings) of the two entities (i.e., users and items) that capture the
users’ interests and items’ attractiveness (Zhang et al., 2019b, 2017), so that the learned embed-
dings can be used to accurately predict which items a user might choose in the future, e.g., by
computing the dot product of the users’ and items’ embeddings (see Equation (2.1)). Typically,
recommendation models are collaborative as described in Section 2.1.1.1, learning the users’
interests and items’ attractiveness through users’ ratings, clicking or other side information. For
example, the NGCF model leverages the high-order connectivity between users and items (i.e.,
the interaction signal in the user-item interactive graph as defined in Section 2.2) to enhance
the recommendation performance. However, user-item interactions are typically sparse (Rendle
et al., 2009). Therefore, a number of side information-aware recommendation models (Chen
and de Rijke, 2018; Liu et al., 2019b; Vasile et al., 2016) have been designed to alleviate the
sparsity issue by integrating the rich side information of users and items such as the users’ age
groups and the items’ textual descriptions. Such side information about entities can be used to
learn more relations between users and items to further enhance the recommendation perfor-
mance. For instance, movies with the same features (e.g., same genres and actors) may attract
similar users, and such feature relations between movies are a type of knowledge within the side
information of movies.

To leverage the side information associated with users and items, many approaches have
been proposed, most of which follow the conventional integration scheme, which encodes the
side information simultaneously with the training of user-item interactions (Chen and de Rijke,
2018; Ning and Karypis, 2012; Park et al., 2013). These integration-based approaches normally
optimise a loss function consisting of two components, i.e., the recommendation loss and one
(or even more) additional side information-aware loss(es), where a hyperparameter is usually
used to control the importance of each loss component (Chen and de Rijke, 2018; Liu et al.,
2019b; Wang et al., 2019b; Zhao and Guo, 2017). It is often difficult to find one single ade-
quate solution to optimise all of the loss components since different tasks might conflict with
each others (Lin et al., 2019). For example, if two users share an interest in the same type of
side information but without having a similar purchase behaviour, the two loss components may
have different optimisation directions, making the combined loss hard to optimise and requiring
a trade-off between the two objectives. However, it requires tremendous efforts to tune one (or
more) hyperparameter(s) to find a good trade-off solution between the two objectives (Liu et al.,
2019b; Zhao and Guo, 2017), and they may fall into a scenario where the two loss components
strongly conflict during training, resulting in reduced effectiveness (Lin et al., 2019). Moreover,
entity side information is typically heterogeneous, meaning that it may consist of many different

56



20 60 100 140 180
0.03

0.04

0.05

0.06

ND
CG

@
10

MF (Epinions)
mean
median

20 60 100 140 1800.60

0.61

0.62

MF (Foursquare)

mean
median

20 60 100 140 180
Latent dimension

0.05

0.06

0.07

0.08

ND
CG

@
10

LightGCN (Epinions)
mean
median

20 60 100 140 180
Latent dimension

0.50

0.55

0.60

0.65

LightGCN (Foursquare)

mean
median

Figure 4.1: Box-and-whisker diagrams for the NDCG performances of the MF (Rendle et al.,
2020) and LightGCN (He et al., 2020) models on the Epinions and Foursquare datasets.

feature types (e.g., age, gender and education level) and be represented by different data types
(e.g., binary-values, categorical-values or real-values). These types of side information usu-
ally play different roles when contributing to the generation of each entity’s representation and
need to be jointly modelled to capture their heterogeneous semantics. However, existing side
information-aware models usually use one or more fixed hyperparameter(s) (Liu et al., 2020,
2019b) to control the importance of all different types of side information. Alternatively, they
follow the paradigm of multi-task learning by using a constant value to balance the sum of the
main loss and the side information-aware loss (Li et al., 2020a; Wang et al., 2019a), thereby
leading to a lack of generalisation and/or reduced performance robustness.

Furthermore, while there have been many powerful neural network-based recommendation
models as mentioned in Section 2.1 (He et al., 2020, 2017; Wang et al., 2019c), most of these
models are unable to give stable recommendation results. Indeed, as we can see from Fig-
ure 4.1, with the different random initialisation of the model’s parameters, high variances can
be observed in the performances of both a conventional model (i.e., MF (Rendle et al., 2020)
as defined by Equation (2.2) in Section 2.1.1) and the graph-based model (i.e., LightGCN (He
et al., 2020)) as defined by Equation (3.4) over different embedding dimensions in both the
Epinions and Foursquare datasets, demonstrating the lack of stability of these models. In this
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chapter, we argue that a better initialisation of the model’s parameters encapsulating the entity
side information could alleviate the low-robustness issue introduced in Section 1.1, and allows
the underlying recommendation model to find a stable local optimal recommendation solution.

To address the aforementioned low-robustness issue and enhance the overall recommenda-
tion effectiveness, we propose a novel pre-training scheme for leveraging the side information
in recommender systems, namely, we first pre-train the embeddings of entities using their side
information, and then fine-tune the pre-trained embeddings using an existing recommendation
model. Specifically, we explore two types of graph-structured data to capture the interdepen-
dent relationships among the entities, and propose two pre-training models using the graph
pre-training technique introduced in Section 2.2.3, namely, the Single-P model and the Multi-
P model. The Single-P model learns the entity embeddings on single-relational graphs using
Graph Convolutional Networks (Kipf and Welling, 2017), while the Multi-P model learns en-
tity embeddings on multi-relational graphs using Composition-based Multi-Relational Graph
Convolutional Networks (Vashishth et al., 2020). With the expressive power of GNNs that re-
cursively propagate messages and aggregate features over neighbours, our pre-training models
are able to encode more relations from the side information of users and items. Note that our
proposed pre-training scheme is a general framework to pre-train entity embeddings with side in-
formation in recommender systems. Once these embeddings are obtained, they can be applied to
existing general representation-based recommenders to enhance their effectiveness and stability.
We deploy our pre-trained embeddings into four existing representative general recommender
models, i.e., MF (Koren et al., 2009), NCF(He et al., 2017), NGCF (Wang et al., 2019c) and
LightGCN (He et al., 2020), to validate the effectiveness of our proposed pre-training scheme.

The contributions of this chapter can be summarised as follows1:
(1) We introduce a novel pre-training scheme for leveraging side information by first pre-

training the entity embeddings using entity side information and then fine-tuning them using an
existing recommender model.

(2) We propose two pre-training models using graph neural networks, namely, the Single-P
and the Multi-P models, which learn entity embeddings based on the single-relational and the
multi-relational graphs, respectively, where both types of graphs are constructed from the entity
side information. Both of our models can be deployed to fine-tune and enhance existing general
representation-based recommender systems.

(3) An extensive empirical evaluation of our pre-training model – through the fine-tuning
of four existing recommender models on three real-world datasets – shows that our pre-training
scheme can significantly enhance those four models in terms of both the recommendation per-
formance and the model stability.

The remainder of this chapter is organised as follows. In Section 4.2, we further position
our work in the literature. Section 4.3 introduces some additional notions specifically used in

1 Our source code is available at https://github.com/pretrain/pretrain.
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this chapter and formally defines the task. Section 4.4 describes our pre-training scheme and
details the two proposed pre-training models. The experimental setup and the results of our
empirical experiments are presented in Section 4.5 and Section 4.6 respectively, followed by the
conclusions in Section 4.7.

4.2 Side Information for Recommender Systems

In this section, we give a brief introduction to how existing recommender systems leverage side
information.

As we have discussed in Sections 2.1.1.2 and 2.1.1.3 , side information is commonly used to
alleviate the cold-start issue in different recommendation scenarios. Indeed, before the preva-
lence of deep neural network-based recommendation methods, there have been many variants
of the Matrix Factorisation-based methods, such as the sparse linear methods with side infor-
mation (SSLIM) (Ning and Karypis, 2012) and the hierarchical Bayesian matrix factorisation
method (Park et al., 2013), which adopt the integration scheme that incorporates the entity side
information by combining the recommendation loss function with an extra side information-
aware loss. Even in recent years, this line of research still pervades many works in the liter-
ature. For example, xLightFM (Jiang et al., 2021) was proposed to tackle the high memory-
consumption issue of factorisation machine (Rendle, 2010) and its variants (Cheng et al., 2016;
Guo et al., 2017) by using the quantization-based (Lian et al., 2020b) and neural architecture
search (Pham et al., 2018) method. Moreover, the HIRE model proposed by Liu et al. (2019b)
uses a weighted matrix factorisation to encode both flat and hierarchical forms of side informa-
tion into the users’ and items’ representations, while combining the recommendation loss and
two side information-aware losses. Although the HIRE model can effectively incorporate two
types of features, it requires different objectives for different types of features. Another line
of research examined the integration of side information using deep neural networks, such as
the stacked denoising auto-encoder (Wang et al., 2015) and the marginalised denoising auto-
encoder (Li et al., 2015). More recently, many recommendation models have explored using
Variational auto-encoders (VAEs) (Pang et al., 2019; Wu et al., 2020b; Xie et al., 2021), which
jointly encode user ratings and side information during the training, in order to overcome the
(often) high-dimensionality of side information. However, most of these methods only consider
one type of relation from the entity features, namely they treat all the feature columns equally,
thereby ignoring the variance in the feature types’ importance to the recommendation perfor-
mance. Moreover, most of the existing methods (Hui et al., 2021; Jiang et al., 2021; Liu et al.,
2019b; Rendle, 2010) adopt the integration scheme, which needs a trade-off between the rec-
ommendation loss function and the side information-aware loss, thereby restricting the model
design and making it hard to deploy into other more effective general recommender systems.
Instead, in this chapter, we propose a general scheme for pre-training entity embeddings us-
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ing the entity side information, such that these embeddings can be fine-tuned by an existing
representation-based recommender system.

4.3 Preliminaries

In this section, we introduce the notations of single-relational and multi-relational graphs, which
are only used in this chapter.

To facilitate the description of graph neural networks, we use V to denote the set of nodes in
a graph. If the graph contains only one type of edges, then we call it a single-graph, or simply a
graph; while a graph containing multiple edge types is normally called a multi-graph. Differing
from the basic graph defined in Section 2.2.1, a graph containing node features is denoted as
G = (V , E ,X), where E is a tuple set with (u, v) ∈ E being an edge between nodes u, v ∈ V
and X ∈ R|V|×d is the d-dimensional feature metric of nodes. Then we denote a multi-graph G ′
by G ′ = (V , E ′,R,X), whereR is the set of edge types, each edge (u, v, r) ∈ E ′ represents that
the relation r ∈ R exists from node u to v.
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Figure 4.2: An overview of our graph neural pre-training/fine-tuning scheme. Our pre-training
model constructs relational graphs based on the feature of entities, and pre-trains the embeddings
of entities by using Multi-P or Single-P.

We use Fu and Fv to denote the feature matrices of the users and items, respectively. We
later show that these types of features can be transformed into feature edges in multi-graphs.
Then, the corresponding recommendation task is to learn a model θ:

Fu,Fv,R
θ−→ U ,V . (4.1)
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4.4 Methodology

We first introduce our pre-training scheme for recommender systems (Section 4.4.1), and de-
tail two pre-training models, namely Single-P for single-graph pre-training (Section 4.4.2) and
Multi-P for multi-graph pre-training (Section 4.4.3). We then describe the fine-tuning process
using the existing recommender models (Section 4.4.6) and further elaborate on connections
between our scheme and the existing works in Section 4.4.7.

4.4.1 The Pre-training Scheme for Recommendation

In this chapter, we argue that a suitable initialisation of the entity embeddings encapsulating the
entity side information is critical to help recommenders learn a stable and enhanced local opti-
mal solution for the existing recommender systems. We propose to learn such an initialisation
of entity embeddings by exploiting knowledge from the entity side information. To this end,
we propose a general pre-training scheme for leveraging the entity side information using graph
neural networks. The overall scheme is illustrated in Figure 4.2. Our pre-training scheme con-
sists of two processes: pre-training and fine-tuning. During pre-training, a graph neural network
is used to learn an initialisation of the entity embeddings based on both the side information of
users and items (i.e., Fu and Fv) and the feedback matrix R. On the other hand, in the fine-

tuning process, an existing recommendation model leverages the pre-trained embeddings as an
embedding initialisation and fine-tunes these embeddings by using the feedback matrix R only.

In order to learn the user-item preferences from the interactions between users and items,
many recent models, such as NGCF (Wang et al., 2019c) and LightGCN (He et al., 2020),
have explored encoding the collaborative signals from the graph-structure interactions, show-
ing promising performances. However, these methods only investigate the interactions between
users and items, ignoring the heterogeneous relations among multiple types of side information.
To capture such heterogeneous relations, we are motivated by the graph pre-training method
(see Section 2.2.3) to generate the pre-trained entity representations using the side information
of both the users and items, so that the independent knowledge of each type of entities can be
captured from the entity relations. Hence, extracting the relations from the entity side informa-
tion is a crucial step for the pre-training process, since it determines how much information we
can obtain from the entity features and how important such information can help to improve a
recommendation model. To extract user-user and item-item relationships from their entity fea-
tures (i.e., the users’ and items’ respective features), we propose to build two different types of
feature graphs, i.e., the single-relational graphs and the multi-relational graphs, by construct-
ing both the homogeneous and heterogeneous links between the entity pairs, respectively. We
then explore how entity relations from various entity features affect the recommendation perfor-
mance.
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Figure 4.3: An illustration describing the input features, single-relational graphs and output
entity embeddings of Single-P.

4.4.2 Pre-training on Single-Graphs

We construct two single-graphs, i.e., Gu and Gv, from the features of users and items respectively,
by considering the similarities between users and items as the homogeneous edges, and calculate
the edge weights using the cosine similarities between each pair of entities. For example, we
construct a user single-graph Gu = (Vu, Eu,Au,Xu) by taking all the users as the set of nodes
Vu and all the user pairs as the set of edges Eu in the graph. For each (i, j) ∈ Eu, we calculate
the edge weight Aij using the cosine similarity of their feature vectors (i.e., Fui

and Fuj
):

Aij =
Fui ·Fuj

∥Fui∥∥Fuj ∥
. Xu ∈ Rn×d is an initial node feature matrix of the graph, the values of which

are initialised from the uniform distribution U(−0.01, 0.01). In the following, we only describe
the encoding process for the user single-graph Gu, since the item single-graph Gv is constructed
and processed in a similar fashion.

The Single-P model. To obtain the pre-trained embeddings of entities (i.e., users and items)
and to exploit the potential correlation among entities based on their single-graphs, three GCN
layers (Kipf and Welling, 2017) are applied to encode the entity embeddings according to their
relations. The key point of GCN is to propagate the feature information through neighbour-
hoods of nodes in each iteration during training. The detailed framework of the Single-P model
is illustrated in Figure 4.3. Based on the basic GNN model defined by Equation (2.20) (see
Section 2.2.1), the GCN model adopts the following propagation rule:

H(l)
u = σ

(
ÂuH

(l−1)
u W (l−1)

u

)
, (4.2)

where Âu = D̃− 1
2 (Au + I)D̃− 1

2 is the symmetric normalised adjacency matrix2, W (l)
u is the

2 D̃ is defined as D̃ii =
∑

j(Au + I)ij , where I is the identity matrix.
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weight matrix of the lth layer, and σ(·) denotes an activation function (e.g., the ReLU function).
H

(l)
u is the hidden node representation in the lth layer with H

(0)
u = Xu. As mentioned earlier in

this section, we use the uniform distribution to initialise Xu, which means that H(0)
u also starts

with this uniform distribution. In particular, we initialise the entity embeddings using the entity
side information by training over the side information encapsulated in A instead of directly
incorporating an initial embedding consisting of the entity side information. Detailed methods
to compute the adjacency matrix Âu and the corresponding diagonal matrix D̂ are defined by
Equation (2.16) and Equation (2.17) in Section 2.2.1.

To facilitate the later description of our proposed model, Equation (4.2) can also be formu-
lated in the message passing form (Vashishth et al., 2020):

H(l)
ui

= σ


 ∑

(ui,uj)∈Eu∪(ui,ui)

W (l−1)
u H(l−1)

uj


 , (4.3)

where W
(l−1)
u is the layer-wise parameter and here we only consider the undirected relation

and the self-loop relation. The final output embeddings of the maximum depth in the GCN
layers, i.e., U = H

(l)
u , are the pre-training embeddings to be fed into the pre-training loss

function. Similarly, the item embeddings are obtained by V = H
(l)
v , which is aligned with

Equation (4.3).

Item Multi-graph
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Figure 4.4: An illustration describing the input features, multi-relational graphs and output entity
embeddings of Multi-P.
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4.4.3 Pre-training on Multi-Graphs

In the existing side information-aware models (Chen and de Rijke, 2018; Li et al., 2015), differ-
ent types of features associated with users and items contribute equally to the latent relationships
between entities. However, in the real-world scenario, the features of users and items are typ-
ically heterogeneous, with different types of features having different usefulness for enhancing
a recommender’s performance. For example, users are normally associated with different types
of features (e.g., age, gender and education level), which clearly characterise different aspects
of the users’ preferences (Liu et al., 2019b). To distinguish the importance of different feature
types, we pre-train the entity embeddings through message propagation over the different feature
types of the entities by using a multi-graph neural network (Vashishth et al., 2020).

Since the entity features can be real-valued, we first need to categorise such real-valued
features into some groups, such that all the features of entities are sparsely categorised. Next, we
can regard each feature category value as an edge type, and create an edge of this type between
a pair of entities if they share the same feature value. In particular, to extract the heterogeneous
relations between entities, we construct two multi-graphs for the users and items, i.e., G ′

u and
G ′
v, respectively. For example, to construct the user multi-graph G ′

u = (Vu, E ′
u,Ru,Xu), we

take all the users as the set of nodes Vu, and the feature category values as the set of relations
Ru in the graph. For any pairs of nodes i, j ∈ Vu, we create an edge if the two users share
the same feature category value (e.g., if both are in the age group 25-35). Xu is set to be the
random initialised user embeddings. The item multi-graph G ′

v is constructed in a similar fashion.
Figure 4.4 illustrates the overall framework of the Multi-P model including how to obtain the
pre-trained embeddings and how to initialise the fine-tuning recommender.
The Multi-P model. Given a multi-graph, e.g., the user multi-graph G ′

u = (Vu, E ′
u,Ru,Xu), we

first extend E ′
u andRu with the corresponding inverse edges and relations:

Êu =E ′

u ∪
{(

v, u, r−1
)
| (u, v, r) ∈ E ′

u

}
∪ {(u, u,⊤) | u ∈ Vu),

R̂u =Ru ∪Rinv
u ∪ {⊤}, (4.4)

where Rinv
u = {r−1 | r ∈ Ru} denotes the inverse relations (i.e., (v, u, r−1) = (u, v, r)) and ⊤

indicates the self-loop. Then, inspired by Composition-GCN (Vashishth et al., 2020), the node
embeddings are propagated through edges based on the following propagation rule:

H(l)
ui

= σ


 ∑

(ui,uj ,r)∈Êu

W
(l−1)
λ(r) ϕ

(
H(l−1)

uj
,Z(l−1)

r

)

 , (4.5)

where l is layer number, Zr =
∑b

k=1 αkrBk is the relation embedding with {B1,B2, . . . ,Bb}
being a set of learnable basis vectors and αkr is the basis-specific learnable scalar weight. b is a
hyperparameter corresponding to the number of basis vectors. ϕ(·) is the composition operator
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defined as: ϕ (es, er) = es − er, which is inspired by the TransE model (Bordes et al., 2013).
W

(l−1)
λ(r) ∈ Rd1×d0 is a relation-type specific parameter, where Wλ(r) are given below:

Wλ(r) =





WO, r ∈ Ru

WI , r ∈ Rinv
u

WS, r = ⊤ (self − loop)

(4.6)

where WO, WI and WS are all trainable weights.
Then the output embeddings of the final layer are taken as pre-training embeddings (i.e.,

U = H
(l)
u ). In the next section, we adapt the Binary Cross-Entropy (BCE) loss (see Sec-

tion 2.2.1), which is defined in in Equation (2.21) for our pre-training task. The item embeddings
are obtained similarly to Equation (4.5).

4.4.4 Pre-training Loss

For most graph neural networks, the embeddings can be learned by the reconstruction of the
graph structure or the labels of the corresponding entities (Kipf and Welling, 2017). Therefore,
for both our Single-P and Multi-P models, we pre-train the user and item embeddings with a
rating/interaction-based loss, in order to encapsulate the potential information between entities
for recommendation. Specifically, with the embeddings of both users and items learned from
the multi-relational or single-relation graphs, we construct our pre-training loss using the Binary
Cross-Entropy (BCE) loss function introduced in Section 2.2.1:

LPT = −
∑

Ri,j∈R

Ri,j · log
(
R̂i,j

)
+ (1−Ri,j) · log

(
1− R̂i,j

)
+ η ∥Θ∥2 , (4.7)

where R̂i,j is the predicted score calculated by the embedding dot product R̂i,j = U tr
i · Vj , Θ

denotes all parameter embeddings and η denotes the regularisation weight. Two explicit entity
biases are also used for calculating the scores, following (Rendle et al., 2020).

4.4.5 Complexity Analysis

The complexity of our pre-training scheme highly depends on the complexity of the underly-
ing graph neural models. For example, our proposed Single-P method holds a complexity of
O (ld|E|+ ld2|V|) (Kipf and Welling, 2017), which is the same as the GCN model. The com-
plexity of our Multi-P model is O ((ld2 + bd+ b|R|)|E|), which is similar to the complexity of
the Composition-GCN model (Vashishth et al., 2020), where l denotes the number of layers, b
is the number of learnable basis vectors, d is the embedding dimension, and |R| is the number
of relation types. The number of edges |E| in the entity graphs (multi-graphs) typically accounts
for the largest complexity in the Multi-P model, and if the entities contain dense features, the
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number of edges |E| could be much larger than the number of interactions (e.g., the generated
user multi-relational feature graph of the MovieLens-1M dataset contains around 2.7 million
edges). Some variants of these neural models, such as FastGCN (Chen et al., 2018) and Clus-
terGCN (Chiang et al., 2019), might enhance the efficiency of our pre-training scheme but at
the possible cost of reducing effectiveness. Once the entity embeddings are pre-trained, they
can be reused and fine-tuned by many existing recommenders to enhance their effectiveness and
stability.

4.4.6 Fine-tuning with Existing Recommenders

Most of the modern recommenders are trained based on gradient-based optimisation methods,
which usually obtain locally-optimal solutions. Due to the non-convexity of their objective
functions, parameter initialisation plays an important role for the convergence and performances
of these recommendation models (Ebesu et al., 2018; He et al., 2017). Most of the existing
recommendation models initialise their embeddings using a uniform distribution (Wan et al.,
2018), a normal distribution (Rendle et al., 2020) or the Xavier uniform distribution (He et al.,
2020; Wang et al., 2019c). Due to the randomness of the generated embeddings and the lack of
prior knowledge, these models often fall into some poor locally-optimal solutions, resulting in
high instabilities, as illustrated in Figure 4.1.

To address this issue, we propose to initialise the entity embeddings of an existing rec-
ommendation model from the output embeddings of our one of pre-training models, then we
further fine-tune these embeddings with the recommendation model’s own optimiser. Specif-
ically, we first pre-train both the embeddings of users and items by our proposed Multi-P or
Single-P models until convergence, then feed these pre-trained embeddings into an existing rec-
ommendation model as the parameter initialisation to train the recommendation model with the
interactions/ratings only. The training frameworks of the pre-training and fine-tuning processes
are summarised in Algorithm 3 and Algorithm 4, respectively. During the fine-tuning stage,
the training objective is chosen depending on the underlying base model. For example, in this
chapter, we integrate our pre-trained embeddings into four recommender systems that have been
described in Section 3.4.1, i.e., MF, NCF NGCF and LightGCN. Two training objective func-
tions are used in these models, i.e., the BCE loss and the Bayesian Personalised Ranking (BPR)
loss. Specifically, the MF, NGCF and LightGCN models optimise the pairwise BPR loss (see
Section 2.1.1.1), which is formulated as follows:

LFT = −
∑

lnσ(R̂i,j − R̂i,z) + η ∥Θ∥2 , (4.8)

while the NCF model is trained based on the BCE loss:

LFT = −
∑

Ri,j · log
(
R̂i,j

)
+ (1−Ri,j) · log

(
1− R̂i,j

)
+ η ∥Θ∥2 , (4.9)
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where R̂i,j denotes the predicted scores for the observed interactions, and R̂i,z denotes the
predicted scores for the unobserved interactions.

Algorithm 3: The pre-training process
Input: Rating matrix R; Feature matrices Fu and Fv; Multi-graphs G ′

u and G ′
v or

Single-graphs Gu and Gv.
Output: Pre-trained embeddings Û , V̂ .
Initialise embeddings U , V and other learnable parameters Θ;
while not early-stopped do
LPT = 0;
for each training instance in Gu and Gv (or G ′

u and G ′
v) do

Propagate information according to Equation (4.5);
end
for each training instance in R do

Compute epoch loss∇L according to Equation (4.7);
end
LPT ←LPT + ∇L;
Update Θ, U , V ;

end

Algorithm 4: The fine-tuning process
Input: Rating matrix R; Pre-trained embeddings Û , V̂ ; A general recommender q.
Output: The recommended list S for each user.
Inherit Û V̂ to initialise q;
Initialise other learnable parameters Θ̂;
while not early-stopped do
LFT = 0;
for each training instance in R do

Compute epoch loss∇L according to Equation (4.8) or Equation (4.9);
end
LFT ←LFT +∇L;
Update Θ̂, Û , V̂ ;

end
Do recommendation to find the recommended list S based on Û and V̂ ;

4.4.7 Discussion

The idea of pre-training embeddings for recommender systems has already been investigated in
the literature. For example, to avoid saddle points and poorly performing local minima, both
NCF (He et al., 2017) and CMN (Ebesu et al., 2018) apply the Generalised Matrix Factorisation
(GMF) as a pre-training model to initialise the embedding weights of users and items. For
both cases, the applied GMF function is a generalised version of the MF model defined in
Section 2.1.1.1 (Equation (2.2)). In particular, the embedding vectors of users and items in
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GMF are simply obtained by training from the weighted output of the embedding dot product
using the interaction matrix:

R̂u,v = Wσ (Uu ⊙ VV ) , (4.10)

where ⊙ denotes the element-wise product of vectors, σ is an activation function and W is the
trainable parameter. However, these models are unable to leverage the relations from the hetero-
geneous entity features. We note that our pre-training model using the graph neural network can
be seen as a generalisation of the GMF model, since our Multi-P model can be reduced to the
GMF model by removing all the links of the constructed multi-graphs and setting the maximum
depth of the multi-graph neural network to be 1. More recently, Hao et al. (2021b) exploited how
to use GNN to conduct pre-training for downstream tasks, inspired by the GNN pre-training (Hu
et al., 2020a). However, their proposed models only leverage the graph structure, which lacks
the ability to incorporate heterogeneous side information about the entities, compared with our
proposed scheme.

In relation to the graph-based recommender systems, the most relevant works to our Multi-
P model is the Multi-GCCF model (Sun et al., 2019), which, similarly, considers the user-
to-user and item-to-item relations as graphs and uses a graph convolution network to train the
embeddings of the two entities. However, the entity graphs in Multi-GCCF are constructed from
the rating/click matrix, rather than from the entity side information. Hence, the heterogeneous
relations from the entity side information cannot be captured by the Multi-GCCF model.

4.5 Experimental Setup

In this section, we first introduce the research questions that we aim to answer in this chapter
(Section 4.5.1). Next, we present the datasets used for conducting the experiments as well as
the relevant pre-processing procedures to prepare the datasets including all interaction data and
different types of side information (Section 4.5.2). Finally, we present the experimental settings
and describe the used baselines (section 4.5.3).

4.5.1 Research Questions

We aim to answer the following research questions:
RQ4.1. Do our pre-trained models help existing recommendation systems obtain better perfor-
mances?
RQ4.2. Do our pre-trained models outperform the existing state-of-the-art recommenders that
use side information?
RQ4.3. Are the performance improvements gained through our pre-training models due to the
multiple types of side information?
RQ4.4. Does the pre-training process help to improve the stability of the existing models?

68



RQ4.5. Does the pre-training process help to alleviate the classical cold-start problem?
RQ4.6. How do the embeddings dimension and different ranking cut-offs affect the recommen-
dation performances of the pre-trained recommenders?

Table 4.1: Statistics of the datasets.

Dataset # Users # Items # Interactions # User/Item Features

Foursquare 2,060 2,876 27,149 2,108/47
MovieLens-1M 6,040 3,704 1,000,209 21/18

4.5.2 Datasets

To evaluate the effectiveness of our introduced pre-training scheme, we use three datasets,
namely Foursquare, MovieLens-1M, and Epinions. We do not use the Librarything and Yelp
datasets (see Table 3.2) because they lack different types of side information for building the
single-relational and multi-relational graphs. Table 4.1 shows the statistics of the Foursquare and
MovieLens-1M datasets and the statistic of the Epinions dataset can be found in Table 3.2. For
the MovieLens-1M dataset, the users’ features (i.e., side information) are “gender”, “age” and
“occupation”, while the items’ features are the 18 different genres. For the Foursquare dataset,
we use the tags provided by online users as features for the restaurants, while we represent each
user as a bag-of-words feature vector from his/her own reviews (stopwords are removed). Sim-
ilarly, for the Epinions dataset, we represent both users and items with bag-of-words feature
vectors from their associated reviews with stopwords removed, selecting the 10 most frequent
words to represent both users and items. Among the three datasets, there is only one real-
valued feature, namely ages in the MovieLens-1M dataset, which needs to be pre-processed into
one-hot representations by a categorisation operation. Specifically, the users’ age feature in the
MovieLens-1M dataset is categorised into 8 age groups, each with a step of 10 years. Then a
one-hot vector is used to represent the users’ age feature. Below, we summarise how to con-
struct the single-relational graph and the multi-relational graph for our proposed Multi-P and
Single-P models, respectively.
Single-relational graph construction. To construct a single-relation graph for Single-P, we
first need to build the one-hot vectors for each user and item. Taking the MovieLens-1M dataset
as an example, we know that there are 18 different genres for all movies; therefore, each movie
is represented as a binary vector of size 1×18. If one movie is labelled as a comedy movie, its
vector will have 1 at the corresponding column of “comedy” and 0 elsewhere if no other labels
are given. Hence, the feature matrix Fv of the MovieLens-1M dataset has a size of 3704×18.
Next, we compute cosine similarities between each pair of the users’ one-hot vectors or each
pair of the items’ one-hot vectors so that we obtain cosine similarities between each user pair
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and each item pair. Such a single relational graph will have a size of 3704×3704 containing all
similarity values. Finally, this single-relational graph can be used as an input for the proposed
Single-P model. We follow a similar procedure to compute the single-relational graph for users.

Multi-relational graph construction. To construct a multi-relational graph for Multi-P, we
also follow a similar procedure to build the one-hot vectors for each user and item so as to
compute the feature matrices Fv and Fu. Instead of using the cosine similarity to capture the
similarity values between each pair of entities, the input of Multi-P is a series of graphs, where
each graph contains all entities possessing one specific type of side information. Therefore, if
we take again the MovieLens-1M dataset as an example, the input of Multi-P for items will be
18 different graphs, where each graph has a size of m × m. Here, the value of m depends on
how many entities are involved in the multi-relational graph.

4.5.3 Experimental Settings

Following the leave-one-out splitting used in Section 3.4.2, we split the interactions of each
dataset into training, validation and 10 different testing sets. Three ranking evaluation metrics,
namely the Normalised Discounted Cumulative Gain (NDCG), Recall and Mean Average Pre-
cision (MAP) metrics, are applied for evaluating the performances of our evaluated models.
Detailed definitions of all used evaluation metrics can be found in Section 2.1.2.2.

We evaluate the effectiveness of our pre-training scheme by comparing it with ten existing
state-of-the-art recommendation models. Among the baselines, four are general (representation-
based) recommender systems, which are also used for the subsequent fine-tuning. Specifically,
these four baselines i.e., MF, NCF, NGCF and LightGCN, have been described in Section 3.4.1.

Differing from these four general recommenders, the other three baselines can be categorised
as recommender systems that incorporate content information (Section 2.1.1.3). These baselines
use an integration scheme to incorporate the side information of both users and items:

• HIRE (Liu et al., 2019b): This is a side information-aware recommendation model, which
combines the flat and hierarchical side information to alleviate the challenge brought by the
heterogeneity of the side information.

• cVAE (Chen and de Rijke, 2018): cVAE is a side information-aware recommendation model
that uses the variational auto-encoder to encode the entity side information into entities for
enhancing the performance.

• SSLIM (Ning and Karypis, 2012): This is a classical sparse linear recommender, which can
use both the users and items’ side information. In particular, we choose the binary represen-
tation to remain consistent with our feature representations.
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In addition, we incorporate three other baselines, which use different methods to enhance
their corresponding graph-based recommenders:

• SGL (Wu et al., 2021): As described in Section 3.4.1, SGL uses self-supervised learning, in-
cluding the node dropout, edge dropout and random walk augmentation techniques to generate
multiple representations of users and items based on the structure of the graph.

• PT-GNN (Hao et al., 2021b)3: PT-GNN uses the pre-training technique of the GNN model
to enhance the embeddings of the cold-start users or items, which is similar to the technique
introduced in Section 2.2.3. The pre-training task of PT-GNN consists in directly reconstruct-
ing the cold-start user/item embeddings by mimicking the meta-learning setting via episode-
based training (Vinyals et al., 2016). In (Hao et al., 2021b), many state-of-the-art baseline
models (including LightGCN (He et al., 2020), GraphSAGE (Hamilton et al., 2017a) and
GAT (Veličković et al., 2018)) have been shown to be enhanced by PT-GNN. We choose the
variant using GraphSAGE as one of our baselines due to its competitive overall performance.
In the following, for simplicity, we use PT-GNN to denote the variant using GraphSAGE.

• SimGCL (Yu et al., 2022a): This is a recently proposed graph contrastive recommender with
a high effectiveness and flexibility. SimGCL can enhance the contrastive representations of
users and items by introducing a regulated noise sampled from the uniform distribution instead
of relying on those graph augmentation techniques introduced in Section 2.2.4.

Furthermore, we compare our proposed pre-training scheme with variants, consisting of pre-
training only and multi-task learning:

• Single-P (pre. only) & Multi-P (pre. only): These two models only use the users and items’
embeddings learned during the Single-P or Multi-P pre-training stages to make recommenda-
tions. By comparing these two variants with the models pre-trained by our proposed scheme,
we can directly observe the obtained improvements of using pre-training and fine-tuning to-
gether.

• MTL+Single-P & MTL+Multi-P: These two variants use multi-task learning to train Single-P or
Multi-P together with a baseline recommender, instead of following our proposed scheme.
These two variants use LPT + β ∗ LFT as the overall training loss, where β is a constant
and the detailed equations of LPT and LFT can be found in Section 4.4.3 and Section 4.4.6,
respectively.

We apply our two pre-training models on the four existing widely used representation-based
baselines, namely MF, NCF, NGCF and LightGCN. We use Single-P and Multi-P to denote the
two pre-training models, respectively. MF+Multi-P stands for a model, pre-trained by Multi-P
and fine-tuned with MF.
3 In (Hao et al., 2021b), no explicit name has been given for the proposed graph pre-training model. For simplicity,
we use PT-GNN to denote the model.
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We adopt the Adam (Kingma and Ba, 2015) optimiser in both Multi-P and Single-P as well
as the four representation-based baselines. To determine the values of all hyperparameters, we
randomly sample one interaction for each user as the validation set and tune the hyperparam-
eters on it for all of the models. In particular, we tune the pre-training models (i.e., Multi-P
and Single-P) by varying the learning rate in {10−2, 10−3, 10−4} and the regularisation weight
η in {10−2, ..., 10−5}. The learning rates of the baseline models are also tuned according to the
suggested ranges from the original papers. The depths for all GNNs of the graph-based rec-
ommenders (i.e., NGCF, LightGCN, SGL and SimGCL) and the pre-training models are kept
to 3 with each layer having a size of 64, while the dropout ratios of all GNNs vary among
{0.3, 0.4, ..., 0.8} as suggested in the existing literature (He et al., 2020). We set the maximum
number of training epochs to 500; the batch size to 1000 and the latent dimension to 64 for
all models. Moreover, we use an early stopping strategy, i.e., we apply a premature stopping
if NDCG@10 on the validation data does not increase for 50 successive epochs. Note that the
embedding dimension d is a hyperparameter for both the pre-training models and the fine-tuning
models (i.e., the baseline models). For a fair comparison, we set this hyperparameter to 64, since
most of our experimental models can almost achieve their best performances for this dimension
size across our three datasets. To make a fair comparison between our proposed scheme and
those three baselines, i.e., HIRE, cVAE and SSLIM, which also incorporate the side information
of both users and items, we train the baselines using the same side information used by our pro-
posed scheme for pre-training. For our Multi-P model, the number of learnable basis vectors b
is set to 10, which is empirically tuned from the set {5, 7, 10, 20} by using the validation set for
all datasets.4 For those two multi-task learning model variants, i.e., MTL+Single-P & MTL+Multi-P,
we tune the hyperparameter β among {0.1, 0.5, 1} following (Wu et al., 2021).

4.6 Results and Analysis

In this section, we report the results obtained from four main experiments aimed at answering
the research questions listed in Section 4.5.1. In particular, we first address RQ4.1 by analysing
whether both Single-P and Multi-P can help to improve the four existing representative recom-
menders. Then, we further compare the performances of these models with three competitive
recommenders, which incorporate different graph-based techniques and three recommenders
that leverage both the users’ and items’ side information (RQ4.2). We provide an ablation study
where we randomly drop {20%, 40%, 60%, 80%} of the entity features during the pre-training
process in order to seek an answer to RQ4.3. To answer RQ4.4, we conduct experiments over
different random seeds, and analyse the standard deviations of these models’ performances. To

4 Note that a more thorough tuning of this parameter may further improve the recommendation performances, but
we did not observe a clear performance trend over different b values in our experiments, and under this setting we
have already obtained excellent performances that can be used to draw our conclusions.
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address RQ4.5, we conduct an analysis, where we compare the best observed performing pre-
trained models (i.e., LightGCN+Single-P and LightGCN+Multi-P) with PT-GNN and LightGCN
across different groups of users to examine whether our proposed scheme can help to alleviate
the cold-start problem. Finally, to answer RQ4.6, we provide a detailed analysis of the perfor-
mances of the pre-training models on different embedding dimensions and different cut-offs for
the recommended items.
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Figure 4.5: Performance comparison of the four selected existing recommenders with the
Single-P and Multi-P pre-training processes. We use ∗ to denote a significant difference be-
tween the performances of the baselines and their pre-trained variants, according to the paired
t-test with the Holm-Bonferroni correction for p<0.01.

4.6.1 Effectiveness of Pre-training

To validate the effectiveness of our pre-training scheme, we compare the performances of the
four selected recommender models (i.e., MF, NCF, NGCF and LightGCN) with their pre-trained
variants under the pre-training processes defined by our Multi-P and Single-P schemes. Fig-
ure 4.5 reports the recommendation performances comparison in terms of the NDCG, Recall
and MAP metrics at a rank cut-off of 10. From Figure 4.5, we can clearly observe that, over
the three used datasets, all the selected 4 recommender models exhibit significantly improved
performances when Multi-P is applied. Moreover, we can also see that a baseline pre-trained
with our Multi-P scheme can always outperform the baseline pre-trained with Single-P. This
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Table 4.2: Performance comparison of recommenders with side information. The best and
second best performances are marked in boldface or underlined, respectively. We use ∗ to denote
a significant difference between the performances of the side information-aware baselines and
the best proposed model i.e., LightGCN+Multi-P, according to the paired t-test with the Holm-
Bonferroni correction for p < 0.01.

Model
Foursquare MovieLens-1M Epinions

NDCG MAP NDCG MAP NDCG MAP

HIRE 0.5232∗ 0.4575∗ 0.0997∗ 0.0692∗ 0.0667∗ 0.0518∗

cVAE 0.5326∗ 0.4438∗ 0.0678∗ 0.0453∗ 0.0532∗ 0.0410∗

SSLIM 0.5894∗ 0.4691∗ 0.0655∗ 0.0441∗ 0.0533∗ 0.0401∗

SGL 0.6051∗ 0.5691∗ 0.0739∗ 0.0485∗ 0.0710∗ 0.0484∗

PT-GNN 0.6048∗ 0.5687∗ 0.0755∗ 0.0501∗ 0.0697∗ 0.0503∗

SimGCL 0.6121∗ 0.5891∗ 0.0758∗ 0.0541∗ 0.0723∗ 0.0481∗

MF+Single-P 0.6206 0.5901 0.0979 0.0646 0.0527 0.0434
MF+Multi-P 0.6249 0.5944 0.1019 0.0718 0.0587 0.0498
NGCF+Single-P 0.6016 0.5683 0.0713 0.0450 0.0708 0.0454
NGCF+Multi-P 0.6138 0.5844 0.0752 0.0461 0.0719 0.0485
LightGCN+Single-P 0.6162 0.5940 0.0952 0.0631 0.0717 0.0594
LightGCN+Multi-P 0.6364 0.6089 0.1068 0.0689 0.0792 0.0623
NCF+Single-P 0.5677 0.4939 0.0870 0.0551 0.0620 0.0531
NCF+Multi-P 0.6021 0.5340 0.0913 0.0584 0.0691 0.0583
Single-P (pre. only) 0.5758 0.5093 0.0700 0.0431 0.0517 0.0421
Multi-P (pre. only) 0.5912 0.5235 0.0812 0.0481 0.0601 0.0510
MTL+Single-P 0.6012 0.5093 0.0725 0.0453 0.0522 0.0431
MTL+Multi-P 0.6100 0.5337 0.0810 0.0482 0.0615 0.0530

is somewhat expected, as Multi-P is trained using the multi-graphs constructed from the enti-
ties’ side information. Therefore, Multi-P is capable of capturing the heterogeneous relations
between entities within the side information, in contrast to Single-P, which can only leverage
the similarity between each feature vector.

To conclude on RQ4.1, we have shown that our proposed Multi-P model can effectively
leverage different types of users and items’ side information, thereby enhancing the existing
representation-based recommenders with significant performance improvements, consistent across
the three used datasets, three measures and four baselines. Therefore, based on the consistent
performance improvements achieved by the graph pre-training technique, we can consolidate
the hypothesis in our proposed thesis statement.

4.6.2 Effectiveness of Integrating Side Information

Having shown that our proposed Multi-P is effective at enhancing the performances of the
existing recommenders through the leveraging of side information, we next examine whether
these recommenders with our pre-training scheme perform better than the existing state-of-
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the-art models. To answer this, we further compare the pre-trained models (i.e., MF+Multi-P,
NCF+Multi-P,NGCF+Multi-P and LightGCN+Multi-P) with their corresponding baselines pre-trained
with Single-P as well as three state-of-the-art recommenders where both side information of
users and items are used. Table 4.2 reports the recommendation performances in terms of the
NDCG and MAP metrics at rank cut-off 10 for each model across all three datasets. From Ta-
ble 4.2, we observe that although the relative performance ranking of systems is different across
the used datasets, the three baselines (i.e., HIRE, cVAE and SSLIM) do not achieve the highest
performances on any of the used datasets. Specifically, the LightGCN+Multi-P model performs
the best on both the Epinions and Foursquare datasets, outperforming the NDCG@10 score of
the HIRE side information-aware baseline by 18.7% (0.0667→ 0.0792) and 21.6% (0.5232→
0.6364), respectively. For the MovieLens-1M dataset, MF+Multi-P achieves the best performance
on the MAP metric, outperforming the HIRE model by 3.76% (0.0692→ 0.0718). Furthermore,
we compare the pre-trained models with four variants that also use side information: Single-P
(pre. only), Multi-P (pre. only), MTL+Single-P and MTL+Multi-P. Recall that Single-P (pre. only)
and Multi-P (pre. only) are two variants that only use the pre-training models without fine-
tuning; MTL+Single-P and MTL+Multi-P are two variants that use multi-task learning to train the
models. From Table 4.2, we find that the variants using multi-task learning always outperform
the two pre-training only variants. However, none of these variants can reach the best or sec-
ond best performances on all three used datasets, further demonstrating our proposed scheme’s
superiority. We also notice that models pre-trained by our proposed scheme cannot consistently
outperform the pre-training only variant. For example, the NCF+Single-P model is less effective
than the pre-training only variant Single-P (pre. only) on the Foursquare dataset. This suggests
that the performance of Single-P has decreased after being fine-tuned by the NCF model. Such
an observation is related to the well-known issue of training a deep neural network with a warm
restart (Loshchilov and Hutter, 2016) when a pre-trained model cannot even achieve the previous
local optima during the fine-tuning process.

In addition to comparing our proposed scheme with side information-based baselines, we
incorporate another three baselines, which use different graph-based methods to enhance the
recommendation performance instead of relying on side information. Specifically, the SGL
model uses the graph self-supervised learning method, PT-GNN uses the graph pre-training
method, and SimGCL uses the graph contrastive learning method. By comparing the SGL,
PT-GNN and SimGCL models with our proposed scheme in Table 4.2, we observe that our
proposed scheme can achieve the best performances for all cases in terms of NDCG@10. This
observation shows that using our proposed pre-training scheme to integrate side information
outperforms baselines that use other competitive graph-based techniques.

Overall, to answer RQ4.2, we have shown that the four selected representative recommen-
dation models with our Multi-P pre-training scheme can outperform the other three baseline
models that also leverage the side information using the integration scheme on all the three used
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Table 4.3: Standard deviations (denoted std.) and means of the NDCG@10 performances over
50 random seeds. Lower standard deviation (in bold) means a better stability.

Model
Foursquare Epinions

std. mean std. mean

MF 0.0197 0.5163 0.0127 0.0501
MF+Single-P 0.0046 0.6206 0.0049 0.0527
MF+Multi-P 0.0029 0.6249 0.0043 0.0587
NGCF 0.0237 0.5162 0.0108 0.0681
NGCF+Single-P 0.0053 0.6016 0.0042 0.0708
NGCF+Multi-P 0.0044 0.6138 0.0038 0.0719
LightGCN 0.0209 0.5365 0.0092 0.0706
LightGCN+Single-P 0.0050 0.6262 0.0039 0.0717
LightGCN+Multi-P 0.0039 0.6264 0.0031 0.0792
NCF 0.0283 0.4621 0.0159 0.0591
NCF+Single-P 0.0091 0.5777 0.0079 0.0620
NCF+Multi-P 0.0086 0.6021 0.0064 0.0691

datasets. Therefore, since our pre-trained models can outperform not only general baselines but
also baselines using the side information, we become more confident in our proposed statement
that the graph pre-training technique can enhance the performance of recommender systems.

4.6.3 Ablation Study of Side Information

Having observed that all the evaluated existing baseline models are significantly improved by
our pre-training scheme, we now check whether these improvements are actually the result of
using the heterogeneous relations among the multiple types of side information, captured by our
pre-training models (RQ4.3). To answer this question, we conduct an ablation study to examine
the effect of randomly removing entity features, thereby revealing the connection between the
performance improvements and the side information. Specifically, we randomly drop different
proportions ({20%, 40%, 60%, 80%}) of entity features during the pre-training process, and
evaluate the recommendation performances of the fine-tuned models given these pre-trained
embeddings. Figure 4.6 reports the obtained results. From Figure 4.6, we can see that all the
NDCG@10 performances of all the fine-tuned models decrease as the features dropout ratio
increases from 0% (i.e., no dropped features) to 80% (80% of features are dropped) in all the
three datasets. This result suggests that randomly dropping entity features does hurt the overall
recommendation performance. This result also suggests that the performance improvements are
indeed gained from the entity features and our Single-P. In addition, Multi-P models are able
to accurately capture the heterogeneous relations from the multiple types of side information,
which validates the hypothesis in our thesis statement.
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Figure 4.6: Results of the baselines deploying the Multi-P and Single-P models over different
dropout ratio of entity features.

4.6.4 Stability Analysis

In the previous sections, we have demonstrated the general applicability and effectiveness of
our introduced pre-training scheme. To address RQ4.4, we calculate the standard deviations
of the NDCG@10 performances of the baseline models (i.e., MF, NCF, NGCF and LightGCN)
and their enhanced variants by our Multi-P and Single-P models. To avoid repetition, we only
present the experimental results on the Foursquare and Epinions datasets (see Table 4.3) be-
cause similar results are observed on the MovieLens dataset. From the table, we observe that
Multi-P markedly improves the performances and stabilities of all the used baselines, with
much smaller observed standard deviations in each paired comparison of a baseline model with
and without the use of the pre-training scheme. Noticeably, although less effective than our
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Multi-P model, the Single-P model can also bring a marked stability enhancement to all base-
lines, which demonstrates the superiority of the graph pre-training scheme for recommender
systems. To conclude, our proposed pre-training scheme can enhance the performance of each
of the representation-based recommender systems as well as their stability, thereby alleviating
the low-robustness issue introduced in Section 1.1 and observed in Figure 4.1. Therefore, our
stability analysis consolidate the postulation in our proposed thesis statement by showing that
the graph pre-training technique can be used to enhance the recommendation performance and
address the low-robustness issue at the same time.

4.6.5 Cold-start Analysis

To answer RQ4.5, we evaluate the performances of LightGCN, PT-GNN, LightGCN+Single-P

and LightGCN+Multi-P on the Foursquare and Epinions datasets5 over different groups of users,
respectively. Specifically, following existing work (Huang et al., 2021a; Liu et al., 2020), we
consider that the cold-start users are those users with fewer than 10 interactions and the regular

users are those users with more than 10 interactions. In Table 4.4, we report the NDCG@10
performances of the overall (i.e., all users included), cold-start (i.e., cold-start users only) and
regular groups (i.e., regular users only) using all the evaluated models, respectively. In partic-
ular, we specifically choose PT-GNN as a baseline since it is especially designed to improve
the cold-start recommendation (Hao et al., 2021b). In addition, we choose LightGCN and
its two pre-trained variants LightGCN+Single-P and LightGCN+Multi-P for their excellent overall
performances as shown in Table 4.2. From Table 4.4, we observe that our LightGCN+Single-P

and LightGCN+Multi-P models consistently outperform the original LightGCN model and the
pre-training baseline, i.e., PT-GNN, on both used datasets across different groups of users. It is
worth noting that although PT-GNN markedly outperforms the LightGCN baseline for the cold-

start users on the Foursquare dataset (0.5117 → 0.5334) and on the Epinions dataset (0.0532
→ 0.0603), the improvements for the regular users are relatively marginal, especially for the
Foursquare dataset, where NDCG@10 is only improved from 0.6238 to 0.6239. On the con-
trary, our proposed scheme can boost the recommendation performance for different groups of
users instead of only focusing on the cold-start users. The reason why our proposed scheme can
consistently improve the performance of the original model is that we use abundant side infor-
mation to construct the relational graphs. Since the side information is available for different
groups of users (sometimes the regular users have even more attributes), in general our proposed
scheme can enhance the representations of users. In comparison, PT-GNN relies on the interac-
tion graph to construct the embeddings of the cold-start users, which might only benefit these
cold-start users instead of all users.
5 We only use the Foursquare and Epinions datasets because the MovieLens-1M dataset has only users with more
than 20 interactions. However, typically, users with more than 20 interactions can hardly be called as cold-start
users.
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Table 4.4: NDCG@10 performances of our proposed scheme and those of the baselines across
different groups of users on the two used datasets.

Model
Foursquare Epinions

Overall Cold-start Regular Overall Cold-start Regular

LightGCN 0.6012 0.5117 0.6238 0.0611 0.0532 0.0673
PT-GNN 0.6048 0.5334 0.6239 0.0697 0.0603 0.0700
LightGCN+Single-P 0.6162 0.5458 0.6397 0.0717 0.0653 0.0731
LightGCN+Multi-P 0.6364 0.5529 0.6458 0.0792 0.0701 0.0802

To conclude, we have shown that our proposed scheme is able to alleviate the cold-start

problem, while still ensuring an effective recommendation for all other users in comparison to
strong baselines. In addition, we further validate our proposed thesis statement by demonstrating
that the graph pre-training technique can alleviate the cold-start problem when incorporating
different types of side information.

4.6.6 Hyperparameter Analysis

Finally, to answer RQ4.6, we study how the embedding dimension affects the recommendation
performance. Figure 4.7 shows the performance comparison results of our pre-trained models
(i.e., LightGCN+Single-P, NCF+Single-P, NCF+Multi-P and LightGCN+Multi-P) with their baselines
(i.e., LightGCN and NCF). From Figure 4.7, we observe that the size of the embedding dimen-
sion does affect the final recommendation performances of all these evaluated models. We can
also observe that when the size of the latent dimensions is ≤40, all three models show relatively
poor performances, which can be further boosted when the dimension size increases; almost
all the models’ performances reach their highest points when the dimensions are between 60
to 80. Recall that, for a fair comparison, we fixed the embedding dimension to 64 for all the
implemented models, which can be further justified from these obtained results. Moreover,
Figure 4.7 demonstrates that our pre-training scheme can bring consistent improvements to the
exiting models across different embedding dimensions. We also plot the performances evaluated
by NDCG over different cut-offs (k) of the items ranking in Figure 4.8. We can also see that both
LightGCN+Multi-P and NCF+Multi-P consistently improve over their baseline models for different
cut-offs. In particular, we see that even for some low rank cut-offs (e.g., k = {1, 3, 5}) or for
deep cut-offs (e.g., k = 50) our Multi-P model can still enhance the LightGCN and NCF mod-
els with a marked improvement, which means that our per-training scheme can help improve
the recommendation performance under different circumstances when different amount of items
(i.e., cut-off values) are chosen to be exposed to the users. Therefore, this hyperparameter anal-
ysis consolidates our proposed thesis statement by showing that the improvements brought by
the graph pre-training technique are consistent under different circumstances.
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Figure 4.7: The performance comparison over different dimensions on the Foursquare dataset.
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Figure 4.8: The performance comparison over different cut-off values on the Foursquare dataset.

4.7 Conclusions

In this chapter, we introduced a novel pre-training scheme for recommender systems to leverage
the entity side information in a general manner. In particular, we proposed two models for pre-
training the entity representations to leverage multiple types of side information, based on the
graphs constructed from the entity side information. In answer to RQ4.1 and RQ4.4, the exten-
sive evaluation of our pre-training scheme with the fine-tuning of four existing representation-
based recommenders showed that effectively pre-training the embeddings with both the users
and items’ side information improved these existing models in terms of both effectiveness (al-
ways significantly, see Figure 4.5) and stability (see Table 4.3). Furthermore, compared to the
existing state-of-the-art recommender baselines, which integrate the same side information, our
Multi-P model exhibited up to 7% improvement in NDCG@10 for the MovieLens-1M dataset,
21% improvement on the Foursquare dataset and 48.6% improvement on the Epinions dataset
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(see Table 4.2). In addition, our Multi-P model consistently and significantly outperformed
recent baselines that incorporate self-supervised learning, graph contrastive learning or graph
pre-training techniques. Moreover, we have also shown through an in-depth analysis that by
leveraging the side information through pre-training, our Single-P and Multi-P models can suc-
cessfully alleviate the classical cold-start problem while ensuring effective recommendations
for all other users (see Table 4.4). We also showed that the Multi-P model, pre-trained using
multi-graphs, can always outperform the Single-P model, which suggests that more information
is captured through the use multi-graphs. Our pre-training scheme provides a general framework
for leveraging side information, which can be used to enhance a general representation-based
recommendation model.

In summary, we have validated the hypothesis in our proposed thesis statement in Sec-
tion 1.2, namely, by leveraging the graph pre-training to incorporate multiple side information,
a graph-based recommender system can achieve enhanced performance and alleviate the cold-

start problem as well as the low-robustness issue. In particular, we tackled a more generalised
problem in this chapter compared with the SGP model proposed in Chapter 3, where only the
social relations are incorporated. Specifically, our proposed Single-P scheme can be regarded as
an extension of our SGP model (Chapter 1.2) towards the scenario of multiple side information.
In addition, the Multi-P scheme is more advanced than Single-P given that it can capture the
multi-relations from the graph.

In the next chapter, we aim to tackle the issue of less effective negative items mentioned in
Section 1.1. Specifically, we focus on using the graph contrastive learning technique to improve
the graph-based recommender systems from the sampling perspective. In particular, first, we
will investigate how to sample more informative negative items in Chapter 5. Then we will
focus on combining additional positive and negative samples in Chapter 6.
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Chapter 5

Graph Contrastive Negative Sampling for
Recommendations

5.1 Introduction

In Chapter 4, we proposed two pre-training schemes namely, Single-P and Multi-P the effec-
tiveness of which validated our hypothesis in the proposed thesis statement (Section 1.2) that
the recommendation performance can be enhanced by leveraging multiple side information us-
ing the graph pre-training technique. However, users are becoming less willing to share their
personal information due to privacy issues, making it challenging and risky to solely rely on such
side information (Badsha et al., 2016; Wang et al., 2021a). To tackle this issue, contrastive learn-
ing (Chopra et al., 2005; Robinson et al., 2020) is a commonly used technique for its promising
performance. As we have mentioned in Section 2.2.4, we can leverage the graph contrastive
learning technique to generate or sample more informative samples in the training process. In
particular, graph contrastive learning can be used to generate more informative negative items
to improve the recommendation performance. Therefore, in this chapter, we aim to study how
to leverage the graph contrastive learning technique to sample more informative negative items
to enhance the randomly sampled (user, positive item, negative item) triplets such that the final
recommendation performance of ranking-based models can be improved.

As introduced in Section 2.1, under the training and optimisation process of BPR (see Equa-
tion 2.5), each input instance is formed as a triplet consisting of one user and a pair of positive &
negative items, where the negative items are randomly sampled from the whole corpus of each
user’s uninteracted with items (i.e., random Negative Sampling (NS)). Ideally, all negative items
need be used to construct the training triplets. However, given that users only interact with a few
items, it is infeasible to pair each (user, positive item) with all negative items (Wang et al., 2020).
Hence, BPR and its variants use the random negative sampling approach to assign a single neg-
ative item to each (user, positive item) pair. Although efficient, the random negative sampling
approach lacks the ability to search for more informative negative items, which are important
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for an enhanced recommendation performance (Chuang et al., 2020). Specifically, we consider
those items that are unlikely to be interacted with by a user as the informative negative items
for this user. Furthermore, the random negative sampling approach might induce false-negatives
and the so-called exposure bias (Khenissi et al., 2020) as described in Section 2.1.1.1. To allevi-
ate the issues of the random negative sampling approach, some recent works have been proposed
to modify the sampling strategy by considering the items’ popularity (Zheng et al., 2020b) or the
items’ side information (Khenissi et al., 2020; Manotumruksa et al., 2017) (e.g., geographical
locations, tags). However, these negative sampling approaches are either less effective or heav-
ily rely on conditional items selection based on sparse categorisation of items Ding et al. (2019).
Due to the fact that the categorisations of items are not always available, those negative sampling
approaches cannot be deployed in general interaction datasets. Therefore, a more generalised
negative sampling approach that does not rely on side information is highly desirable.

To alleviate the difficulty of choosing appropriate negative items without side information,
we aim to incorporate the embeddings learned by a general recommender system. Given that the
performance of a recommender system is expected to increase along the training process before
saturation, one can become more and more confident that the lower-ranked items generated by
the trained model are less likely to be interacted with by each user. Specifically, with the learned
embeddings generated after each training epoch, we can better predict which item is an informa-
tive negative item in comparison to randomly sampled items. Hence, our underlying intuition
is that dynamically sampling negative items using the learned embeddings during the training
process can help general recommender systems to fetch more informative negative samples.

Based on the aforementioned idea, in this chapter, we propose a general sampling scheme,
called Dynamic Negative Sampling (DNS). Our DNS scheme can dynamically select negative
items solely based the embeddings of users and items learned during the training of a general
recommender without requiring any side information nor any extra data preprocessing. Further-
more, to leverage these additional negative items sampled at each checkpoint, our DNS scheme
also includes an objective function motivated by the Information Noise Contrastive Estimation
(InfoNCE) loss (Oord et al., 2018), a contrastive loss function originally devised to push mul-
tiple negative samples away from the positive sample. Based on information theory (Carter,
2007), we know that a distribution with a higher entropy contains richer information. To further
motivate our proposed DNS scheme, we directly inspect the dynamic change of information
during the training by introducing an entropy measure. Specifically, we use the proposed mea-
sure to approximate the information contained in different groups of negative items in order to
compare the informativeness of random negative items with the dynamically sampled ones.

To summarise, this chapter makes the following contributions:
• We propose a dynamic negative sampling (DNS) scheme, which can dynamically select the
negative items and improve the recommendation performance of general recommender systems.
•We propose a novel contrastive objective function inspired by InfoNCE to work collaboratively
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within the DNS scheme in order to leverage multiple negative items.
• We propose an entropy measure to observe the change of information by approximating the
dynamic information gain obtained from negative samples.

5.2 Negative Sampling in Recommender Systems

In this section, we briefly position our work in the context of negative sampling approaches as
well as recommender systems building on advanced negative sampling approaches.

Negative sampling (NS) approaches are widely applied in pairwise and listwise learning
recommendation models to sample negative items for (user, positive item) pairs. As argued in
Section 2.1.1.1, most of the items have not been interacted with by each user and hence many
items are negative items for each user. Therefore, negative sampling is the process of selecting a
portion of negative items from the whole corpus of the user’s uninteracted with items. In general,
there are mainly two types of negative sampling approaches, namely heuristic (Manotumruksa
et al., 2017; Rendle et al., 2009) and model-based negative sampling approaches (Zhang et al.,
2013). The heuristic negative sampling approaches set the sampling distribution according to
some prior knowledge (Manotumruksa et al., 2017) or heuristic assumption (Rendle et al., 2009),
while the model-based negative sampling approaches are based on the embeddings learned from
models (Zhang et al., 2013). Since our proposed DNS scheme only leverages the learned em-
beddings, we classify it as a model-based approach.

Among different types of model-based negative sampling approaches, generative adversar-
ial networks (GAN)-based approaches (Lian et al., 2020a; Park and Chang, 2019; Wang et al.,
2017; Yu et al., 2020) have been shown to be effective. However, training an adversarial net-
work is often time-consuming, making it hard to efficiently deliver precise recommendations to
users (Bowles et al., 2018). Another model-based negative sampling approach, known as dy-
namic negative sampling (Ding et al., 2019; Wang et al., 2020), uses the embeddings learned
during the dynamic training of a recommendation system. Similar to Zhang et al. (2013),
our proposed scheme includes a dynamic negative sampling approach to update negative items.
However, different from existing work (Wang et al., 2020; Zhang et al., 2013), which used dy-
namic negative sampling iteratively after each epoch, our DNS scheme is only activated after a
number of epochs, to improve the efficiency of the dynamic negative sampling approaches. In
addition, most of the existing works use in-batch negatives (Karpukhin et al., 2020; Yih et al.,
2011), meaning that their negative samples are selected from each training batch instead of being
selected from all available samples. This in-batch negative sampling requires lower computa-
tional cost but it is suboptimal in terms of the effectiveness compared with sampling the global
negatives from all available samples (Xiong et al., 2020). Hence, differently from those nega-
tive sampling approaches using the less effective in-batch negatives (Karpukhin et al., 2020; Yih
et al., 2011), our proposed DNS scheme leverages the global negative items, meaning that we
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search among all negative items of each user instead of searching in a single batch of data.

5.3 Methodology

In this section, we first define contrastive recommendation and its relationship with BPR (Sec-
tion 5.3.1), followed by our dynamic negative sampling (DNS) approach (Section 5.3.2). Finally,
we demonstrate how to incorporate our proposed scheme and objective function for a general
recommender system (Section 5.3.3). To provide a clear overview of our proposed scheme,
we use Figure 5.1 to illustrate the architecture of DNS in comparison with BPR (Rendle et al.,
2009). The task definition and notations are the same as in Chapter 3.

BPR Contrastive RS
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Figure 5.1: Comparison of our proposed DNS scheme with BPR.

5.3.1 Contrastive Recommendation

Contrastive recommenders (Liu et al., 2021b; Wu et al., 2021; Yu et al., 2022a) are designed to
learn contrastive representations for users and items such that the distance between users and
their positive items are minimised while the distance between users and their negative items
are maximised. Among existing contrastive recommenders, InfoNCE is the most commonly
adopted objective function (Chen et al., 2020c). In general, contrastive recommenders adapt the
original InfoNCE loss (Equation (2.25)) by replacing the image samples with the user and posi-
tive/negative samples, where the adapted objective function is shown in the following equation:

LInfoNCE = −log
exp

(
sim(eu, ei+u )/τ

)

exp
(
sim(eu, ei+u )/τ

)
+
∑j

1 exp
(
sim(eu, ei−u )/τ

) , (5.1)
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where sim(·) is a similarity measure and τ is a constant denoting the temperature parameter;
eu, ei+u and ei−u represent the embeddings of user u and his/her interacted and uninteracted with
items, respectively.

In Equation (5.1), we note that there are j different negative samples. In the existing litera-
ture (Liu et al., 2021b; Zhou et al., 2021), such negative samples are obtained by leveraging dif-
ferent data augmentation methods introduced in Section 2.2.4. For example, graph perturbations
have been used to sample negative samples from the multi-hop graph neighbourhood (Liu et al.,
2021b). In addition, the node dropout, edge dropout, and random walk approaches have also
been used to generate negative samples (Wu et al., 2021). Given that existing contrastive rec-
ommender systems generally follow a similar loss function, we can conclude that the approach
used to generate the negative samples is the underlying factor in differentiating contrastive rec-
ommenders.

Indeed, we can bridge the BPR pairwise ranking approach (see Section 2.1.1.1) with con-
trastive recommenders by defining the objective function of BPR in a similar fashion. For ex-
ample, given each training instance of BPR constructed as:

Du := {
〈
i+u , i

−
u

〉
|i+u ∈ I+u ∧ i−u ∈ I \ I+u }, (5.2)

a BPR recommender optimises the following objective function, which is similar to Equa-
tion (2.5):

LBPR =
∑

(u,i+,i−)∈D

−log
exp(eu · ei+u )

exp(eu · ei−u ) + exp(eu · ei+u )
, (5.3)

where λ is the regularisation parameter; and θ represents all parameter embeddings in the trained
model.

By comparing Equation (5.1) and Equation (5.3), we notice that there are two main differ-
ences: (1) BPR uses exp(·) to model the interaction between users and items while the InfoNCE
loss uses exp(·) together with a similarity measure; (2) in the BPR setup, only a static randomly
sampled negative item is incorporated for each training instance, while for contrastive recom-
menders, multiple negative items are incorporated. A detailed comparison between BPR with
a contrastive recommender is illustrated in Figure 5.1. Since both approaches aim to repel neg-
ative items away from users and positive items, we can consider a contrastive recommender as
a more generalised extension of BPR with additional negative items. The difference between
contrastive recommenders and BPR is that contrastive recommenders use different data aug-
mentation methods to create or search for more informative negative samples.

Interestingly, a recent study (Yu et al., 2022a) has theoretically demonstrated that the exist-
ing data augmentation methods, which are used by contrastive recommenders cannot provide
robust performance improvements. In their study, Yu et al. (2022a) showed that the data aug-
mentation methods, including node dropout and random walk, cannot significantly improve the
performance of a contrastive recommender, with the variant without augmentations sometimes
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performing better. Although those data augmentation methods can effectively create different
variants of embeddings (known as different views in contrastive learning) to serve as contrastive
negatives, these variants are still rooted in the same user/item. Hence, the whole process can
only be treated as static because they keep a constant sampling distribution across the training
process.

Therefore, to further progress the development of contrastive recommenders, we propose
to sample contrastive negative items dynamically. During the dynamic sampling process, we
expect the model to gradually learn which negative items are more informative than random
negative items. Thus, our contrastive negative items are updated accordingly during this learning
process. In the following section, we formally define our proposed Dynamic Negative Sampling
(DNS) scheme by detailing how to search for contrastive negative items and the subsequent loss
function.

5.3.2 Dynamic Negative Sampling

As mentioned in Section 5.1, using the static approach (e.g., the one used in BPR) to randomly
sample negative items might lead to an increase of false-negatives and can result in the exposure
bias issue. We propose to use a dynamic approach instead of the typical static one and its
variants (He et al., 2020; Manotumruksa et al., 2017).

The amount of each user u’s negative items (i.e. |I \ I+u |) is large since |I| ≫ |I+u |. This
shows why a sampling strategy is required to handle the huge amount of negative items because
otherwise the size of the training set D will become a bottleneck. Although the random sam-
pling strategy adopted by the pairwise ranking approach is simple and generally effective, these
randomly sampled items can accidentally hurt the recommendation performance. For example,
those randomly sampled negative items might actually be positive items in the test set, since the
sampling is suppose to be conducted solely based on the training set D. These false-negative
items will likely degrade the recommendation performance. In addition, users might be paired
with those negative items that have not been exposed to them. This might introduce a bias
against unpopular items by assuming that they are not preferred by users.

To alleviate the aforementioned issues of the random negative sampling, we devise a novel
dynamic negative sampling scheme, abbreviated as DNS. Our DNS scheme can sample con-
trastive negative items and reduce the false-negatives simultaneously. Specifically, the DNS
scheme can automatically update negative items at each checkpoint, solely relying on our pro-
posed similarity-based method defined by Equation (5.4), without any side information about
the users and items.

Following existing contrastive models (Chen et al., 2020c,d; Robinson et al., 2020; Xiong
et al., 2020), we use the cosine similarity to measure the similarity between each user and his/her
negative items. In the field of computer vision and natural language processing, a negative sam-
ple is usually defined as a contrastive negative when it has a high similarity score with the
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targeted image/sentence. This is a commonly used definition for most of the contrastive mod-
els (Chen et al., 2020c; Robinson et al., 2020). Distinctively, our DNS scheme defines con-
trastive negative items as those items, which have lower similarity scores with the target user
because items with higher similarity scores are likely to be the items of the user’s interest. As
a consequence, using the exact definition of hard negatives from other fields might actually
increase the false-negatives in a recommender system framework instead of benefiting the rep-
resentation learning and the prediction performance. Our choice of dissimilar negative items
will be further justified in the subsequent experiments (see Section 5.5.1). We use the following
equation to search for the contrastive negative items:

i−u
′ ∈ ftopk

(
− cos(eu,EI−u

)
)
, (5.4)

where i−u
′ denotes the contrastive negative item for user u; ftopk(·) means that k elements with

higher similarity scores will be selected ; cos(·) is the cosine similarity; and EI−u
is the embed-

ding table containing the embeddings of all negative items for user u.
After sampling k contrastive negative items for each user, our DNS scheme will randomly

assign one or more i−u
′ for each user. Note that if a user has m positive items in the training set

D, m contrastive negative items i−u
′ will be assigned to this user correspondingly. Therefore,

the new training set D′ will have the same number of training instances as the original set D
but with the sampled negative items in each instance.

For training the recommender, we propose to leverage both statically and dynamically sam-
pled negative items to combine the benefit of both the static and dynamic negatives during con-
trastive learning. In particular, our contrastive recommender aims to optimise the following
objective function:

Lcon =
∑

(u,i+,i−,i−′)∈D′

−log
fs(eu, ei+u )

fs(eu, ei−u ) + fs(eu, ei−u
′) + fs(eu, ei+u )

, (5.5)

where fs = exp(cos(·)/τ) and τ is a constant denoting the temperature parameter (Oord et al.,
2018); the cosine similarity cos(·) can also be replaced by other similarity measures but as men-
tioned below Equation (5.4), we use cos(·) following the default setup of contrastive learning;
eu, ei+u and ei−u have been defined under Equation (5.1), while e

i−u
′ is the embedding of a con-

trastive item.
By using the contrastive objective function Lcon, we aim to repel not only the static negative

items but also the contrastive negative items away from each user and his/her corresponding
positive items in the latent space. Indeed, by comparing Equation (5.5) and Equation (5.3), we
can also interpret Lcon as an extended version of LBPR, where LBPR is dedicated to leverage the
single negative case.

Since retrieving contrastive negative items will lead to a lower efficiency, we only update
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contrastive negative items iteratively after a fixed number of epochs to accelerate the overall
training process. Specifically, we retrieve k contrastive negative items for each user at every
checkpoint. Next, these updated contrastive negative items will be stored and used during the
following n epochs till the next checkpoint. In addition, contrastive negative items from the
previous checkpoints are dropped for the memory-efficiency reason. Indeed, they are no longer
required.

5.3.3 Model Prediction

When incorporating the proposed DNS scheme into a general model, an existing recommender
system still retains its original model initialisation and no additional data pre-processing is re-
quired. Our DNS scheme is activated only at each checkpoint during the training process ac-
cording to a pre-defined update interval, which is an integer. Therefore, our proposed scheme
is straightforward enough to be incorporated by general recommender systems. Furthermore,
our contrastive objective function Lcon does not change the prediction layer, hence no extra
modification is required for the recommendation generation. In particular, for our used gen-
eral recommender systems, namely BPR (Rendle et al., 2009), LightGCN (He et al., 2020),
SGL (Wu et al., 2021) and SimGCL (Yu et al., 2022a), we still use the dot product (BPR) or the
dot product with their corresponding activation layers (LightGCN, SGL and SimGCL) as their
prediction functions. We have described the BPR, LightGCN and SGL models in Section 3.4.1,
while SimGCL was introduced in Section 4.5.3. In particular, we use SGL and SimGCL to re-
place NGCF (Wang et al., 2019c) and NCF (He et al., 2017) due to their better performance, as
shown in Table 4.2.

5.3.4 Entropy Analysis

As mentioned in Section 5.1, we aim to show the benefit of our proposed scheme from the per-
spective of information theory. In information theory, entropy is the measure of a variable’s
average level of uncertainty or its informational value (Carter, 2007). In fact, entropy is strongly
related to many critical concepts in deep learning. For example, the cross-entropy loss (Martinez
and Stiefelhagen, 2018; Zhang and Sabuncu, 2018) is widely used for classification tasks. More-
over, information bottleneck (Tishby et al., 2000), mutual information (Kraskov et al., 2004) and
Kullback-Leibler divergence (Hershey and Olsen, 2007) can all be considered as a comparison
of entropy between the observed and predicted distributions.

In this section, we aim to determine the informational value of the negative items sampled by
DNS for a recommender system. In particular, to show the added-value of our DNS scheme, we
need to compute such an informational value and compare the value of DNS-sampled negative
items against randomly sampled negative items. Therefore, inspired by information theory, we
leverage the entropy measure. Since the embeddings of users and items are of the same length
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and trained in the same latent space, we can roughly assume that they are sampled from the same
distribution. Thus, to measure the entropy of a certain group of items and users, we propose to
merge the embeddings of these users and items and compute the entropy as follows:

H = −
sum

(
σ(concat(Eu,Ei)) · log(σ(concat(Eu,Ei)))

)

d
, (5.6)

where σ(·) is the softmax function used to normalise all embeddings to positive values to avoid
computing a log of negative values; concat(·) stands for the concatenation operation of em-
beddings; and d is the latent dimension of the users and items’ embeddings i.e. Eu and Ei,
respectively.

Using Equation (5.6), we can compute the entropy of the users and items’ embeddings.
Our proposed entropy measure aims to approximate the information or uncertainty encapsulated
in the sampled negative items. To validate our measure, we also examine it along with the
performances of the examined models on the validation set during training. In principle, when
the entropy measure saturates, the validation performance should also stabilise because there is
no more information to be learned.

Table 5.1: Statistics of the Amazon-Instant-Video dataset.

Amazon
Users 21,596
Items 11,167
Interactions 2,092,329
Density 0.868%

5.4 Datasets and Experimental Setup

We use three public datasets, i.e. Yelp, MovieLens-1M and Amazon-Instant-Video1, to evaluate
our proposed DNS scheme, where Yelp and MovieLens-1M have been used before and their
statistics can be found in Table 3.2 and Table 4.1, respectively. Amazon-Instant-Video is the
Amazon review dataset containing the interactions between the users and instant videos. We
choose this new dataset to examine whether our proposed scheme can be applied to a larger
dataset, where the Amazon-Instant-Video dataset is almost ×2 larger than the largest dataset
(i.e., Yelp) used in Section 3.4 and Section 4.5. Table 5.1 provides the statistics of the Amazon-
Instant-Video dataset. For the rest of the chapter, we use ‘MovieLens’ and ‘Amazon’ as short-
hands for ‘MovieLens-1M’ and ‘Amazon-Instant-Video’, respectively. We aim to answer the
following research questions:

1 https://jmcauley.ucsd.edu/data/amazon/
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RQ5.1 Do dissimilar negative items lead to a lower false-negative rate and enhanced recommendation
performances?

RQ5.2 Can our proposed DNS scheme generally improve the recommendation performances for ex-
isting embedding-based recommender systems and outperform state-of-the-art negative sampling-
enhanced approaches?

RQ5.3 How do the introduced hyperparameters affect the effectiveness of DNS?

RQ5.4 Can negative items sampled by DNS provide a higher information gain than those random
ones according to our proposed entropy measure?

In the next sections, we present four general baselines and two state-of-the-art NS-enhanced
approaches that we use to evaluate the performance of our proposed DNS scheme, followed by
the used evaluation methodology, and the corresponding experimental setup.

5.4.1 Baselines

We evaluate the effectiveness of our DNS scheme on four general recommendation models and
two NS-enhanced approaches. Specifically, four general recommenders include BPR, Light-
GCN, SGL and SimGCL, where BPR, LightGCN and SGL were introduced and used as base-
lines in Section 3.4.1. In addition, details of SimGCL (Yu et al., 2022a) can be found in Sec-
tion 4.5.3.

Furthermore, we compare DNS with two other state-of-the-art NS-enhanced approaches to
demonstrate the superiority of our proposed scheme:

• MixGCF (Huang et al., 2021b): MixGCF is a recent general negative sampling (NS) ap-
proach that can be directly used to train GNN-based recommender systems. It creates syn-
thetic negative samples through the idea of neighbourhood mixing. Among all of its variants
combined with LightGCN, NGCF and PinSage, the LightGCN variant consistently outper-
forms the other two variants on all of the benchmark datasets with a large margin (at least
40% in terms of the recall@20 measure). Therefore, we only compare DNS with the best
variant (i.e. MixGCF+LightGCN) and we use MixGCF to denote this best variant for the rest
of the chapter.

• PRIS (Lian et al., 2020a): Personalised Ranking loss based on Importance Sampling (PRIS) is
an effective recommender system for items recommendation. It incorporates a novel negative
sampling approach based on importance sampling, where PRIS can assign larger weights to
more informative negative items.
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5.4.2 Evaluation Methodology

Following the commonly used evaluation setup for these datasets (He et al., 2020; Wu et al.,
2021), we split each dataset into a training set, validation set and test set with a ratio of 8:1:1.
Similar to Section 3.4.2, we construct 10 different testing sets with different sampled negative
items for each dataset using different random seeds. This allows to reduce the evaluation bias on
some specific testing negatives (Krichene and Rendle, 2022). For a fair comparison, we keep the
batch size as 1000 for all models and each model is trained by up-to 500 epochs unless it is early-
stopped when the validation performance does not increase for 50 successive epochs. To tune all
hyperparameters, we apply a grid search, where the learning rate is tuned in {10−2, 10−3, 10−4};
the latent dimension in {32, 64, 128} and the L2 normalisation in {10−2, 10−3, 10−4, 10−5}.

To answer RQ5.1, recall that in Section 5.3.2 we defined the dissimilar negative items to be
the contrastive negative items. Similarly, we can also follow ANCE (Xiong et al., 2020) and
other contrastive models to define a similar negative item as a contrastive sample, which is com-
monly known as the hard negative. In addition, we also include a naive baseline sampler that
dynamically samples random negative items. To justify our choice of dissimilar negatives, we
compare the recommendation performance of DNS when adopting different types of negative
items, namely dynamic dissimilar negatives, dynamic similar negatives and dynamic random
negatives. Furthermore, we calculate the corresponding false-negative rates for all the afore-
mentioned three cases, to further illustrate why choosing the dynamic dissimilar negatives is
more appropriate in the recommendation scenario. The false-negative rate is computed by di-
viding the number of training instances whose negative items are false negatives according to
the testing set, by the total number of training instances.

To answer RQ5.2, we need to validate the effectiveness of our proposed DNS scheme over
two groups of comparative experiments, namely comparing our DNS-enhanced recommenders
with their corresponding baseline recommenders and comparing our DNS-enhanced recom-
menders with other NS-enhanced recommenders. Three metrics (NDCG@10, Recall@10 and
MAP@10) are applied to evaluate the effectiveness of all evaluated models and baselines. De-
tails of these metrics have been introduced in Section 2.1.2.2.

Note that our DNS scheme contains two new hyperparameters, i.e. n and k, which are the up-
date interval and the number of retrieved negative items at each checkpoint, respectively. To an-
swer RQ5.3, we tune n and k from {1, 5, 10, 20, 30, 40, 50} and {10, 50, 100, 150, 200, 250, 300},
respectively. We evaluate the recommendation performance of the BPR model with our DNS
scheme. When n = 1, the trained model will have its negative items refreshed after every epoch
and we denote this case as the exhaustive update.

Finally, to answer RQ5.4, after each training epoch, we calculate the entropy measure of
BPR and BPRDNS, respectively. For a fair comparison, we explicitly measure the entropy of
contrastive negative items only for BPRDNS to exclude the possible bias of having additional
negative items over BPR. Meanwhile, we report the NDCG@10 performance of these two mod-
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els in the same plot to demonstrate the validity of our proposed measure. For the latter case, we
disable the early-stopping strategy to illustrate the whole training curve.

For both RQ5.3 and RQ5.4, we only show the results of BPR and BPRDNS but we note that
the experiments with other baselines result in the same conclusions. Moreover, for RQ5.4, we
need to report the validation performance iteratively after every epoch, which is time-consuming
if deep neural models are used. Therefore, we also choose these two models for both efficiency
reason and conciseness, since they sufficiently illustrate the added-value of our proposed DNS
scheme.

5.5 Results Analysis

Table 5.2: Performances and false-negative rates of BPR when using a static random sampler
and three dynamic samplers on the three used datasets. The NDCG metric is computed at rank
cutoff 10. F-N rate denotes the false-negative rate and * denotes a significant difference between
the performance of the dynamic dissimilar sampler and that of other samplers according to the
paired t-test with the Holm-Bonferroni correction for p <0.01. The best result and the lowest
F-N rate are highlighted in bold.

Sampler MovieLens Yelp Amazon
F-N Rate (%) NDCG F-N (%) Rate NDCG F-N Rate (%) NDCG

Static random sampler 0.5139 0.2805∗ 0.1289 0.0887∗ 0.6001 0.0834∗

Dynamic random sampler 0.5125 0.2910∗ 0.1201 0.0889∗ 0.604 0.0820∗

Dynamic similar sampler 1.0562 0.2013∗ 0.2884 0.0656∗ 1.1796 0.0633∗

Dynamic dissimilar sampler 0.4853 0.3394 0.1033 0.1513 0.5787 0.1092

In this section, we report the experimental results and answer our four research questions.

5.5.1 Contrastive Negative Items

In order to answer RQ5.1, we compare three possible dynamic negative samplers with the static
random sampler i.e., a plain BPR on the three used datasets. First, from Table 5.2, we find that
there is no noticeable difference between the static random negative sampler and the dynamic
random negative sampler in terms of the false-negative rate and NDCG@10. This suggests that
solely refreshing negatives will not help in decreasing the false-negative rate and improving
the recommendation performance. Second, by comparing the static random sampler and the
dynamic similar sampler, we observe a significant performance decrease when using the simi-
lar negative sampler across all datasets. Furthermore, the false-negative rate is almost doubled
on each dataset when the dynamic similar negative sampler is used, compared with the static
BPR. This is because the dynamic similar negative sampler always selects highly ranked neg-
ative items during the training process. Although these highly ranked negative items might be
the typical hard negatives, they are more likely to be the users’ interacted with items, which
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leads to a higher false-negative rate. Alternatively, the dynamic similar negative sampler will
sample some interesting items to the users that have not been presented to them yet, leading
to an exposure bias. Therefore, as argued in Section 5.3.2, sampling negative items with high
similarity scores is not appropriate for recommender systems and it can hurt the recommenda-
tion performance by boosting the false-negative rate. On the contrary, the dynamic dissimilar
negative sampler, which is used by DNS can consistently and significantly outperform all other
negative samplers across all used datasets with a lower false-negative rate.

As a summary, our reported results suggest that contrastive negative items should be defined
as those negative items with lower similarity scores with users, which indeed corroborates our
choice of dynamic dissimilar negative sampler for DNS as discussed in Section 5.3.2. In an-
swer to RQ5.1, dissimilar negative items do lead to a lower false-negative rate and enhanced
recommendation performances. Furthermore, the reported results guide us to consolidate our
proposed thesis statement by revealing that the contrastive negative sampling approach should
select dissimilar negative items.

Table 5.3: Performances of two advanced NS-based baselines and four general recommenders
with their DNS variants on the three used datasets. All metrics are computed at rank cutoff at
10. The best result is highlighted in bold and the largest percentage improvement is underlined;
* denotes a significant difference between the performance of a DNS variant and that of the
baseline, while † denotes a significant difference among the four DNS-based models, according
to the paired t-test with the Holm-Bonferroni correction for p <0.01.

MovieLens Yelp Amazon

NDCG Recall MAP NDCG Recall MAP NDCG Recall MAP
PRIS 0.3298∗ 0.2301∗ 0.1105∗ 0.2205∗ 0.2897∗ 0.1214∗ 0.2578∗ 0.3806∗ 0.1970∗

MixGCF 0.3300∗ 0.2351∗ 0.1179∗ 0.2100∗ 0.2705∗ 0.1104∗ 0.2308∗ 0.3698∗ 0.1806∗

BPR 0.2805∗ 0.1917∗ 0.0886∗ 0.1230∗ 0.1683∗ 0.0600∗ 0.0834∗ 0.1632∗ 0.0526∗

BPRDNS 0.3394† 0.2281† 0.1090† 0.1513† 0.2019† 0.0726† 0.1092† 0.2089† 0.0678†

Improvement 20.9% 19.0% 23.0% 23.0% 20.1% 21.0% 30.9% 28.0% 28.9%
LightGCN 0.3425∗ 0.2504∗ 0.1252∗ 0.2285∗ 0.3067∗ 0.1255∗ 0.2599∗ 0.4111∗ 0.1980∗

LightGCNDNS 0.3938† 0.2905† 0.1488† 0.2696† 0.3690† 0.1472† 0.3119† 0.4805† 0.2356†

Improvement 15.0% 16.1% 18.8% 18.0% 20.3% 17.3% 20.0% 16.9% 18.9%
SGL 0.3575∗ 0.2716∗ 0.1366∗ 0.2198∗ 0.2867∗ 0.1204∗ 0.2664∗ 0.3983∗ 0.2092∗

SGLDNS 0.3942† 0.3042† 0.1537† 0.2528† 0.3340† 0.1360† 0.3143† 0.4680† 0.2489†

Improvement 10.3% 12.0% 12.5% 15.1% 16.5% 12.9% 18.1% 17.5% 19.0%
SimGCL 0.3505∗ 0.2689∗ 0.1301∗ 0.2328∗ 0.3278∗ 0.1298∗ 0.2754∗ 0.4229∗ 0.2187∗

SimGCLDNS 0.3870† 0.2998† 0.1496† 0.2707† 0.3731† 0.1467† 0.3175† 0.4910† 0.2524†

Improvement 10.4% 11.5% 15.0% 16.3% 13.5% 13.0% 15.3% 16.1% 15.4%

5.5.2 Effectiveness of DNS

Table 5.3 shows that our four used baselines are improved with large performance margins
compared to their DNS variants across all used metrics and datasets. This shows that our pro-
posed DNS scheme can remarkably improve the recommendation performance of the general
recommender systems. Noticeably, our BPRDNS model can even outperform both NS-enhanced
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approaches (MixGCF, PRIS) on the MovieLens dataset. This suggests that the performance
of a classic non-neural embedding-based recommender system can be largely boosted and can
even outperform state-of-the-art neural recommenders when negative items of high quality are
provided. Among all DNS-based models, the SimGCLDNS variant is shown to achieve the best
performance for the majority of cases. We also find that a better performing general recom-
mender usually gives a better DNS variant. For example, SGL performs the best among all
general recommenders on the MovieLens dataset, while SimGCL performs the best on the Yelp
and Amazon datasets. As a result, their DNS variants achieve the overall best performances on
the various datasets. This is expected because a better performing general recommender can also
provide negative items that are unlikely to be interacted with by users with a higher probability,
compared with those worse performing baseline recommenders.

Overall, in answer to RQ5.2, our results show that our proposed DNS scheme can gen-
erally improve the recommendation performances of four embedding-based general recom-
menders with a large margin. Meanwhile, most of our DNS-based recommenders can out-
perform strong baselines including MixGCF and PRIS, which use other advanced negative sam-
pling approaches. Therefore, our results support our hypothesis in the proposed thesis statement
that graph contrastive learning can be leveraged to enhance the effectiveness of recommender
systems.
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Figure 5.2: NDCG@10 performances of the BPRDNS model over (a) different update intervals
(n) and (b) different number of retrieved negative items (k) on three used datasets.
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5.5.3 Hyperparameter Analysis

To answer RQ5.3, recall that our proposed DNS scheme introduces two hyperparameters, namely
the update interval (n) and the number of retrieved negative items (k), where n defines how
frequently DNS will be activated to update the negative items and k controls the number of
negative items to be retrieved for each user. We plot these two hyperparameters versus the
NDCG@10 performance of the BPRDNS model on three used datasets, where n varies from
{1, 5, 10, 20, 30, 40, 50} and k is tuned within {10, 50, 100, 150, 200, 250, 300}. We choose the
maximum of n as 50 because as mentioned in Section 5.4.2, we train all models with an early-
stopping strategy, where each model will be early-stopped if its validation performance is not
improved within 50 successive epochs. Hence, DNS might not be activated at all when n is
larger than 50. k is tuned with a maximum of 300 because when the number of retrieved neg-
ative items is too large, these sampled negative items will tend to be the same as the random
items. From Figure 5.2 (a), we can see that at the exhaustive update i.e., n=1, BPRDNS will
underperfom the plain BPR model for all datasets (NDCG@10=0.2479, 0.0987 and 0.0611 for
the MovieLens, Yelp and Amazon datasets, respectively). This indicates that updating negative
items too frequently will in turn hurt the recommendation performance of the general recom-
mender. Indeed, training recommender systems on a relatively large dataset almost always takes
more than 1 epoch to converge, hence this performance decline is due to the updating of the
negative items with a high frequency. We also find that BPRDNS peaks at n= 5, 10 and 20 for
the MovieLens, Yelp and Amazon datasets, respectively. BPRDNS peaks with a large n value on
the Amazon dataset because the Amazon dataset has far more interactions than the other two
datasets (e.g., about 4.5× size of the Yelp dataset), hence the longer convergence period is also
expected, which means a frequent update is not desired. From Figure 5.2 (b), we find that sam-
pling between 50 to 150 contrastive negative items help the BPRDNS model to achieve the best
performance on the three used datasets. When only 10 contrastive negative items are sampled,
DNS is likely to cause repeated samples. For example, if a user has more than 10 interactions
in the training set, repeated samples are unavoidable since only 10 contrastive negative items
are selected. These repeated samples might degrade the recommendation performance. On the
other hand, if a large amount of negative items are sampled, these sampled items tend to become
as informative as those randomly sampled negative items. For example, when the top 1,000 neg-
ative items are sampled by DNS, the probability that each item is selected is 1

1000
= 0.001. This

is not substantially larger than randomly sampling negative items from the MovieLens dataset
(3,533 items in total) if we exclude all positive items. Furthermore, the effectiveness of DNS
lies in that it can explore the users’ actual negative items and estimate what these users dislike.
Therefore, sampling from a large pool of negative items is not far from a random guess since
not many users have a large amount of items they dislike.

Our hyperparameter analysis consolidates our proposed thesis statement by showing that
using graph contrastive learning to sample contrastive negative items can consistently improve
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the effectiveness of a general ranking-based recommender systems i.e., BPR.

5.5.4 Entropy Analysis

To answer RQ5.4, we plot the entropy measure of the contrastive negative items against the ran-
dom negative items together with the performances of BPR and BPRDNS on the validation set.
First, we want to examine the validity of our proposed measure. We hypothesise that entropy
can approximate the amount of information contained in the embeddings. From Figure 5.3, we
can observe that when the entropy of the two models stabilises after epoch 50, the validation
performances also stop fluctuating. The proposed measure is not an instant indicator because
although we can approximate the level of information, it still takes a few more epochs to learn
the information thoroughly. To summarise, our proposed entropy measure can generally approx-
imate the level of information contained in the embeddings. After examining the validity of our
proposed measure, we can compare the entropy of BPR and BPRDNS shown as green and orange
lines, respectively, in Figure 5.3. The figure clearly shows that the contrastive negative items
provided by our DNS scheme continuously contain more information than the random nega-
tive items when using the entropy measure. Furthermore, the smoother entropy line of BPRDNS

(green) indicates that our DNS scheme also provides a more constant information input, which
is beneficial for a faster convergence, as suggested by Zhao et al. (2021).

In answer to RQ5.4, we can conclude that our proposed entropy measure can generally
approximate the level of information contained in the embeddings. Finally, our results show that
the contrastive negative items sampled by our proposed DNS scheme indeed do provide a higher
information gain than those random negative items. Therefore, this entropy analysis helps us to
consolidate our hypothesis in the thesis statement by demonstrating that DNS can provide more
informative negative items indicated by the information gain.

5.6 Conclusions

In this chapter, we proposed DNS, a dynamic negative sampling scheme for contrastive recom-
mender systems, which can be deployed in many existing general recommender systems to im-
prove their effectiveness. In particular, DNS can dynamically sample contrastive negative items
at each checkpoint solely based on the cosine similarity scores between the users and items’
embeddings without using any side information. Besides, we proposed a contrastive objective
function to leverage these sampled negative items. This objective function is able to enhance the
effectiveness of general recommenders. To answer RQ5.1, we first examined different types of
negative samplers in Section 5.5.1, where results showed that the dynamic dissimilar sampler is
the best-performing one. In order to answer RQ5.2, we conducted an extensive evaluation of the
DNS-based models on three datasets in comparison to six baselines showing that our proposed
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Figure 5.3: Entropy comparisons of BPRDNS and BPR on the MovieLens-1M dataset.

scheme can generally improve the performance of four general recommenders and can signifi-
cantly outperform two strong baselines using different advanced negative sampling approaches.
Specifically, our DNS scheme can improve the performance of a general recommender by up-to
30.9% in terms of the NDCG@10 metric (see Table 5.3). Afterwards, we conducted a detailed
hyperparameter analysis in Section 5.5.3 to examine the effects of our introduced hyperparame-
ters (RQ5.3). In Section 5.5.4, we found that using DNS to provide contrastive negative items
can bring a continuously higher and more constant information gain (RQ5.4).

In summary, we have validated the hypothesis of our proposed thesis statement in Sec-
tion 1.2, namely that graph contrastive learning can enhance the effectiveness of graph-based
recommender systems. The contribution of this chapter can be differentiated from the contribu-
tions of Chapters 3 & 4 because DNS improves the recommendation effectiveness by leveraging
a more effective negative sampling approach while the previous two chapters focused on how
to effectively incorporate the side information. The next chapter will still centre on graph con-
trastive learning but it will also concentrate more on sampling both pseudo-positive and negative
samples simultaneously in order to enhance the efficiency of graph-based recommender systems.
Furthermore, in the next chapter, we will additionally focus on the efficiency of a graph-based
recommender system .
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Chapter 6

Contrastive Multiple Sampling for Graph
Recommendations

6.1 Introduction

In Chapter 5, we proposed a dynamic negative sampling approach that effectively samples neg-
ative items to be paired with a user and his/her positive items. The extensive experiments in
Section 5.5.2 and the entropy-based analysis in Section 5.5.4 have demonstrated that our pro-
posed approach can generally improve the recommendation performance of 4 ranking-based
general recommenders. In this chapter, we further explore how to use graph contrastive learning
to improve the efficiency of graph-based recommender systems. In particular, we are interested
in whether positive samples can benefit graph-based recommender systems.

In an undirected graph G as defined in Section 2.2.1, a node n linked with a node v is defined
as the 1-hop neighbour of node v. At the same time, the 1-hop neighbours of node n excluding
node v, are defined as the 2-hop neighbours of node v. Similarly, the n-hop neighbours of a
node are defined as the 1-hop neighbours of the (n − 1)-hop neighbours of the targeted node.
In particularly, those neighbours including the 1-hop and multi-hop neighbours, are considered
as positive samples of the target node in the scenario of graph representation learning (Deffer-
rard et al., 2016). Indeed, graph neural networks benefit from the message passing mechanism
introduced in Section 2.2.1. Motivated by this graph-based intuition, we propose to consider
the multi-hop neighbours of the users and items in an interaction matrix as positive samples in
the recommendation scenario. In particular, we define these multi-hop neighbours as pseudo-
positive samples to differentiate from the real positive samples i.e., the positive items as indi-
cated by the users. Therefore, our research aim in this chapter is to propose a more effective
sampling approach that samples both pseudo-positive and negative samples to enhance the rec-
ommendation performance. In particular, we focus on alleviating the low-efficiency issue of
the graph-based recommender systems mentioned in Section 1.2. Moreover, in this chapter, we
will propose a multiple sampler that reuses the dynamic negative sampling method proposed in
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Chapter 5.
As explained in Section 2.2.1, the advantages of applying a GNN, especially multi-layer

or heterogeneous GNNs, for the recommendation task lie in two pivotal functions, namely
neighbourhood aggregation and message passing. By applying a neighbourhood aggregation
function, the interactive information between users and items can be captured in their repre-
sentations through message passing over the edges of a user-item bipartite graph. In addition,
stacking multiple layers of GNNs can help recommender systems pass a message over multi-
hop neighbours. However, the neighbourhood aggregation and message passing of the existing
graph-based recommender systems heavily rely on the pre-computed adjacency matrix A of the
user-item bipartite graph (see Section 2.2), which is time- and memory-consuming to compute.
Although A is normally sparse, many epochs of iterative matrix multiplications and gradient
updates over the concatenation of the users and items’ embeddings is still inefficient, especially
when multiple stacked layers of GNNs are applied (He et al., 2020; Wang et al., 2019c) We
argue that the inefficiency of the existing graph-based recommender systems is mainly caused
by the matrix multiplications over unnecessary neighbours. Indeed, some frequently interacted
items would be aggregated to most users, causing more time- and memory-consumption. Given
that the effectiveness gained by the graph-based recommender systems is attributed to neigh-
bourhood aggregation and message passing (Gao et al., 2021), the challenge here is to exploit
a more efficient manner to perform similar functionalities without using the full neighbourhood
graph convolution.

In this chapter, we propose a Multilayer Perceptron (MLP) based Contrastive Graph Rec-
ommender, abbreviated as MLP-CGRec, which uses an MLP-Mixer (Tolstikhin et al., 2021) to
encode the users and items’ representations and to conduct efficient contrastive learning. The
key idea of our approach is that, instead of aggregating and passing a message over all the neigh-
bours, we sample each user and item’s neighbours to form each pseudo-positive pair. Our pro-
posed MLP-CGRec offers multiple pseudo-positive samples, which will lead to an unbalanced
number of pseudo-positive and negative items because the (user, positive item, negative item)
triplet will be expanded by these pseudo-positive samples. Instead of sampling more random
negative items, we reuse the DNS method proposed in Chapter 5, which uses an approximate
nearest neighbour search method to efficiently sample an equal amount of contrastive negative
items to rebalance learning.

To summarise, this chapter makes the following contributions

• We incorporate a contrastive loss and a novel graph sampling method to simplify the neigh-

bourhood aggregation and message passing of graph-based recommender systems.

• We employ an efficient MLP-based learning algorithm to enhance the expressive power and
recommendation accuracy.

• We conduct extensive experiments on three public datasets, and show that our proposed MLP-
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CGRec can achieve a high efficiency in terms of both the memory and time consumption
compared with state-of-the-art graph-based recommender systems without a significant loss
of effectiveness.

6.2 Multilayer Perceptron-based Models

This section briefly introduces recent progress in MLP-based models. In particular, we position
our proposed model among the existing MLP-based recommender systems.

In principle, an MLP architecture could be regarded as a universal approximator (Kratsios,
2021; Pinkus, 1999). Recently, MLPs have attracted attention in the field of computer vision and
other classification tasks with more general, efficient and effective architectures. For example,
the Graph-MLP (Hu et al., 2021) method is proposed to perform similar functions with GNNs
without explicit message passing. The high efficiency and competitive performance of Graph-
MLP on the node classification task suggest that the classic message passing and neighbourhood
aggregation in GNNs may not be necessary to convey information from neighbours. In addition,
MLP-Mixer (Tolstikhin et al., 2021) is a novel all-MLP architecture for the image classification
task. The simple design and competitive accuracy of MLP-Mixer bring us to pay attention to the
trade-off between a simple design and an effective but complicated design based on convolution
or self-attention. Other simple yet effective MLP-based models, including ResMLP (Touvron
et al., 2021), gMLP (Liu et al., 2021a) have been proposed for the image classification task,
motivating us to design an MLP-based model for the recommendation task. Although the MLP
module has been leveraged in many recommender systems (Deng et al., 2019; Lu et al., 2018;
Zhang et al., 2019b), it is limited as an alternative to the prediction layer, i.e., the dot prod-
uct function and the idea is to use the MLP module to learn the non-linear relations between
users and items. Different from existing MLP-based recommenders, our proposed MLP-CGRec
model extends existing work from only modelling the relations between users and items to learn-
ing non-linear multi-hop relations from neighbours in order to learn enhanced representations
of the users and items. By doing so, we can benefit from the simple architecture of MLP and its
universal representational power.

6.3 Methodology

In this section, we present the details of our proposed MLP-CGRec model. Specifically, in
Section 6.3.1, we detail how we sample pseudo-positive samples in an efficient manner. In
Section 6.3.2, we present how to speed up the negative sampling approach. In Section 6.3.3
we present how to adapt the MLP-Mixer model for our recommendation task followed by our
proposed objective function in Section 6.3.4. The task definition and preliminaries have already
been introduced in Section 3.3.1.
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6.3.1 Graph Neighbourhood Construction

From the user-item interaction matrix R, we have introduced how to obtain its corresponding
adjacency matrix A(M+N)×(M+N) in Section 2.2.1. The elements of A indicate whether the
pairs of users and items are adjacent or not in the interaction graph. In the existing graph-based
recommender systems, the multi-hop graph embeddings of users and items are usually computed
by:

E(l+1) = (D− 1
2AD− 1

2 )E(l) (6.1)

where E(l) contains the embeddings of all users and items at the l-th layer of the GNN, and D is
the diagonal degree matrix of A.

Starting from the initial embeddings E(0), we compute Equation (6.1) for (l − 1) times to
obtain the l-hop embeddings. Although the adjacency matrix and the diagonal degree matrix are
both sparse, the users and items’ embeddings are however dense and the whole process not only
involves the matrix multiplication but also the iterative gradient update for the GNNs at each
training epoch. This is why existing graph-based recommender systems have a relatively unsat-
isfactory training efficiency. To avoid this costly operation, we derive how to use the adjacency
matrix to explore the l-hop neighbours by raising A to the power of l below with an induction
process:

Lemma 6.3.1. The (i, j)th entry a
(l)
ij of Al, where A is the adjacency matrix of R, counts the

number of walks of length l having the start and end nodes i and j, respectively.

Proof. Base case: When l = 1, Al = A, and there is a walk between node i and j if and only
if aij=1, thus the result holds. Induction step: Assume the proposition holds for l = n and
consider the case when l = n+ 1, i.e., the matrix An+1 = AnA. From the induction hypothesis,
the value of (i, j) of the matrix An is the count of walks of length n from i to j. Now, the number
of walks of length n+1 between node i and node j equals the number of walks of length n from
node i to each node v, which is adjacent to node j. Therefore, the number of walks of length
n + 1 from node i to node j, i.e., the (i, j)th entry of An+1, is the non-zero entries of A, which
corresponds exactly to the first neighbours of v. Thus the result holds for l = n + 1 as well.
Conclusion: By the principle of induction, Lemma 6.3.1 is true for all l ∈ Z+.

From the induction above, we can draw the conclusion that the l-hop neighbours of R can be
obtained by raising A to the power of l. For example, we can refer to the u-th row of the matrix
A2 to find user u’s 2-hop neighbours. Therefore, by pre-defining how many neighbourhoods we
would like to use, we can pre-compute the corresponding graph neighbourhood matrices. For
the most commonly adopted case in graph-based recommender systems (He et al., 2020; Wang
et al., 2019c), where 3-hop neighbours are included, we can pre-compute A2 and A3 of R for
the subsequent sampling.

With the graph neighbourhood construction method, we obtain pseudo-positive samples in
the recommendation scenario but without a balanced number of negative samples, which might
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lead to the over-repelling of some negative samples from other data points during learning (Chen
et al., 2021). For example, the embedding of a negative item is usually repelled from the em-
beddings of the user and the corresponding positive item in the latent space. Now that more
pseudo-positive samples are obtained, the embedding of this negative item will be repelled from
the embeddings of user and multiple positive samples, which is unbalanced. Therefore, in the
next section, we describe how to use the contrastive negative sampling approach in Section 6.3.2
to select negative samples to balance the number of pseudo-positive and negative samples.

6.3.2 Contrastive Negative Sampling

Given that typical training triplets (u, i+, i−) are extended to a training instance with multiple
pseudo-positive samples, we need to obtain more negative samples to balance the number of
positive and negative samples. Similar to how we get the randomly sampled negative item i.e.,
i−, the most straightforward way is to randomly sample more negative items. However, inspired
by the effectiveness of our dynamic negative sampling approach (DNS) proposed in Chapter 5,
we decide to reuse this approach to sample negatives for MLP-CGRec.

To further increase the training efficiency, we adopt Faiss (Johnson et al., 2019), the fast
neighbour search library, to reduce the search time. Given the number of users and items in
the used datasets, we follow the advice in (Johnson et al., 2019) to use the flat indexes and the
brute-force search 1 to avoid an accuracy loss. In particular, we select those negative items with
lower similarity scores to avoid the false-negative items. As the recommendation effectiveness
increases along the model training, we can become more confident that the target users are un-
likely to prefer items with lower similarity scores, which will benefit the subsequent contrastive
training.

6.3.3 MLP-based Learning

Although the graph neighbourhood construction method proposed in Section 6.3.1 and con-
trastive negative sampling (Section 6.3.2) are efficient, the model’s expressive power is lim-
ited without a nonlinear activation. Recently, some advanced variants of Multilayer Perceptron
(MLP) (Liu et al., 2021a; Tolstikhin et al., 2021; Touvron et al., 2021) have been proposed for
more efficient deep model training. Inspired by their high efficiency and competitive accuracy
on the image classification and natural language processing tasks, we propose to adopt MLP-
Mixer to enhance our model’s expressive power without a high computational cost. Our MLP
module is defined as:

En+1 = En +W2σ
(
W1LayerNorm(En)

)
(6.2)

1 Using flat indexes and the brute-force search is mathematically the same with the commonly used exact search.
However, the overall search process is accelerated by optimising the General Matrix Multiply (GEMM) routines in
the cuBLAS library for the GPU acceleration.
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where En+1 contains the embeddings for all users and items at the n + 1 epoch; σ(·) is the
GELU (Hendrycks and Gimpel, 2016) activation; W1 and W2 are trainable weight matrices;
and LayerNorm(·) denotes the layer normalisation (Ba et al., 2016), which is used to enhance
the training stability.

In Equation (6.2), we use a self-addition loop i.e., adding the original En to En+1, which
is inspired by the tying parameter technique in MLP-Mixer (Tolstikhin et al., 2021). The self-
addition loop can help the model to preserve the information from the previous epoch and avoid
overfitting. To justify our choice, we also implement a variant without the self-addition loop,
which is identical to the MLP architecture used by the Graph-MLP model. We term this variant
as plain MLP and we will compare our model to this plain MLP in an ablation study.

6.3.4 Contrastive Training of MLP-CGRec

Contrastive learning introduced in Section 2.2.4 aims to encourage similar pairs to stay close
to each other while dissimilar ones are far apart in the latent space (Chen et al., 2020d; Chopra
et al., 2005). In a contrastive recommendation scenario (Wu et al., 2019b; Zhou et al., 2021), we
target learning representations for users and items, where interacted users and items stay closer
in the learnt space. Inspired by the performance of InfoNCE loss (see Equation (2.25)), our
proposed MLP-CGRec model uses the objective function as follows:

L =
∑
−log

fs(eu, ei+u ) +
∑n

2 fs(eu, en+)

fs(eu, ei+u ) + fs(eu, ei−u ) +
∑n

2 fs(eu, ei−con)
(6.3)

where fs(·) = ecos(·); i+u , n+, i−u and i−con denote a positive item, a n-hop neighbour (i.e., a
pseudo-positive sample), a random negative item and a contrastive negative item of user u,
respectively; n determines how many hops of neighbours to incorporate.

With Equation (6.3), we aim to encourage users to stay closer with their positive items and
pseudo-positive samples while maximising the distance between users with their random and
contrastive negative items. To predict each user’s preferred items, we use the dot products
between the embeddings of users and items to compute the corresponding probabilities of inter-
actions.

6.4 Datasets and Experimental Setup

We use the same datasets (i.e., MovieLens, Yelp and Amazon) as used in Section 5.4 to evaluate
our proposed MLP-CGRec model and all used baselines. In the following, we aim to answer the
following research questions:
RQ6.1. Can MLP-CGRec achieve higher efficiency compared with the existing graph-based
recommender systems without significantly degrading its recommendation effectiveness?
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RQ6.2. What is the impact of these pseudo-positive samples?
RQ6.3. What is the impact of the MLP-based learning method?

To answer RQ6.1, we compare our MLP-CGRec model with the following baselines: BPR,
NCF, NGCF, LightGCN, UltraGCN, SGL (Wu et al., 2021) and MixGCF (Huang et al., 2021b).
The detailed descriptions of BPR, NCF, NGCF, LightGCN, UltraGCN and SGL can be found
in Section 3.4.1, while MixGCF has been described in Section 5.4.1. In particular, BPR and
NCF are standard baselines; NGCF, LightGCN, UltraGCN and SGL are effective graph-based
baselines; and MixGCF is a recent baseline based on an advanced sampling method. In this
chapter, to avoid repetition, we do not consider the dynamic negative sampling approach pro-
posed in Chapter 5 as a baseline since we will systematically compare the combinations of DNS,
MLP-CGRec and other proposed models in Section 7.1.

Since the training efficiency and effectiveness are both critical in our study, we compare
our MLP-CGRec with all baselines in terms of Normalised Discounted Cumulative Gain@10
(NDCG), Hit Ratio@10 (HR), max memory consumption, average epoch time and total train-
ing time, where the max memory consumption is monitored by Tensorboard2. Following Sec-
tion 5.4.2, we split each dataset into a training set, validation set and test set with a ratio of 8:1:1.
In addition, we construct 10 different testing sets with different sampled negative items for each
dataset using different random seeds. Hence, the reported performance of each run is based on
the average of the 10 testing sets. For a fair comparison, we conduct all experiments on the same
machine with a GeForce RTX 2080Ti GPU. For significance testing, we apply a two one-sided
equivalence test (TOST) (Liu et al., 2019a; MacAvaney et al., 2020; Mackenzie et al., 2018;
Mohammad et al., 2018). The purpose of the TOST test is to examine if MLP-CGRec is signif-
icantly equivalent to a baseline with the acceptable range of inequality being ±5%. We define
success as outperforming a baseline in terms of effectiveness and efficiency or outperforming a
baseline in terms of efficiency while not significantly decreasing its effectiveness.

To answer RQ6.2, we compare the following variants of MLP-CGRec: (i) 2-hop neighbours
with contrastive negative items and (ii) 3-hop neighbours with contrastive negative items. Hence,
we can clearly examine the effect of each type of neighbours. Recall that contrastive negative
items are sampled only when multi-hop neighbours are incorporated hence we can neglect the
condition when only contrastive negative items are sampled. To answer RQ6.3, we use an
ablation study to examine the effectiveness of the proposed MLP-CGRec model when: (i) the
MLP module is not applied; (ii) a plain MLP is applied; (iii) the proposed MLP-mixer is applied.

The latent dimension and batch size are fixed to 64 and 1000, respectively, for all models.
For each dataset, we use 20% of the interactions as a test set; of the remaining, we use 10% as
a validation set, and the remainder for training. For the trainable matrices W1 and W2 used in
MLP-CGRec, we closely follow the implementation details in (Tolstikhin et al., 2021) and set
W1 and W2 to 32, which is half of the input latent dimension. For the ftop−k function, we em-
pirically set k to 100 according to our early stage experiments. To tune all hyper-parameters, we
2 https://www.tensorflow.org/tensorboard
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apply a grid search, where the learning rate is tuned in {10−2, 10−3, 10−4}; and the L2 normal-
isation in {10−1, 10−2, ..., 10−5}. The range of node dropout ratio for NGCF, SGL, LightGCN
and UltraGCN can be found in Section 3.4.2. We use 3-hop neighbours in MLP-CGRec follow-
ing other graph-based recommender systems (He et al., 2020; Wang et al., 2019c).

6.5 Results

In this section, we report the experimental results and answer our three research questions.

6.5.1 Effectiveness and Efficiency

Table 6.1 reports the overall performances of our MLP-CGRec model and all other baselines.
The results in Table 6.1 show that MLP-CGRec achieves a competitive performance on all these
used datasets. On MovieLens, although LightGCN and SGL slightly outperform our MLP-
CGRec model, both models do not surpass MLP-CGRec by a significant difference according
to the TOST (two one-sided test). In particular, our model generally performs better on larger
datasets than on smaller datasets. For example, MLP-CGRec achieves the second-best and the
best performance on the larger Yelp and Amazon datasets in terms of NDCG@10, respectively.
This observation is consistent with the findings in (Hu et al., 2021; Tolstikhin et al., 2021),
where both the Graph-MLP and MLP-Mixer models only outperform state-of-the-art models on
larger datasets for both node and image classification tasks. We notice that SGL and UltraGCN
do not always outperform LightGCN as reported by Mao et al. (2021) and Wu et al. (2021). This
is due to the difference in the experimental setup where we additionally use 10 different testing
sets to reduce the evaluation bias. Therefore, our results further demonstrate the promising
generalisability of a simple MLP-based learning architecture, whose scalability is better than
complicated networks. Furthermore, our proposed MLP-CGRec model consistently achieves the
best training efficiency among all neural recommenders in terms of GPU memory consumption
and training time. We owe this high efficiency of MLP-CGRec to the simple design of the
MLP module and the neighbourhood construction, which can be accomplished quickly using
the sparse matrix multiplication. Therefore, in answer to RQ6.1, we conclude that our MLP-
CGRec model can achieve competitive recommendation effectiveness with a higher efficiency
compared with existing graph-based recommender systems.

6.5.2 Impacts of Samples and Components

Figure 6.1 plots the NDCG@10 performances of all different variants of MLP-CGRec on all
used datasets. In order to answer RQ6.2, we compare the variants of MLP-CGRec without
using encoders over different hops of neighbours (green bars). Here, 1-hop neighbours are
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Table 6.1: Experimental results of MLP-CGRec and other baselines on the three used datasets
w.r.t. HR@10, NDCG@10, max GPU memory consumption (gigabytes), average epoch time
(seconds) and total training time (minutes). The best effectiveness is highlighted in bold and the
second best result is highlighted with underline. * denotes a significant difference compared to
the result of MLP-CGRec using the TOST (two one-sided test) with p<0.05.

MovieLens
NDCG HR Memory Epoch Time Training Time

BPR 0.2031∗ 0.1274∗ 2.91 45.8 61.2
NCF 0.2114∗ 0.1398∗ 3.88 58.7 100.5

NGCF 0.2517∗ 0.1665∗ 4.13 65.7 161.0
LightGCN 0.3303 0.2329 3.96 59.8 118.5
UltraGCN 0.2646∗ 0.1862∗ 3.98 61.3 147.5
MixGCF 0.2737∗ 0.1989∗ 4.38 60.3 132.2

SGL 0.3116 0.2260 4.08 69.3 135.6
MLP-CGRec 0.3004 0.2176 3.01 48.2 78.5

Diff (%) -6.02 -6.57 -24.0 -19.4 -33.7
Yelp

NDCG HR Memory Epoch Time Training Time

BPR 0.1221∗ 0.1520∗ 5.42 84.5 96.7
NCF 0.1330∗ 0.1598∗ 6.07 98.9 123.3

NGCF 0.1420∗ 0.1736∗ 7.64 112.4 168.6
LightGCN 0.2233 0.2597 6.43 102.3 136.6
UltraGCN 0.2111 0.2619 6.70 108.9 166.8
MixGCF 0.2003∗ 0.2378∗ 6.91 107.8 158.4

SGL 0.1673∗ 0.2098∗ 6.61 101.9 145.8
MLP-CGRec 0.2164 0.2501 5.71 91.3 121.2

Diff (%) -3.09 -4.51 -11.2 -10.1 -12.7
Amazon

NDCG HR Memory Epoch Time Training Time

BPR 0.0745∗ 0.1138∗ 5.78 95.1 147.6
NCF 0.1093∗ 0.1678∗ 6.31 132.2 188.5

NGCF 0.1297∗ 0.1927∗ 7.91 168.9 241.4
LightGCN 0.1519 0.2177 7.01 149.2 206.0
UltraGCN 0.1302∗ 0.2021∗ 7.11 145.2 208.2
MixGCF 0.1403∗ 0.2107 8.03 143.9 211.4

SGL 0.1581 0.2201 6.58 151.5 184.8
MLP-CGRec 0.1593 0.2190 5.90 101.3 152.2

Diff (%) +4.87 -0.50 -10.3 -33.1 -17.6
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Figure 6.1: Comparison between different variants of MLP-CGRec, where the green bars are
variants with multiple neighbours, orange bars are variants with different MLPs and the red bar
is the final MLP-CGRec model.

neglected because they are already included in the interaction graph. By comparing the perfor-
mances of variants with 2-hop and 3-hop neighbours, we find that the 3-hop neighbours bring
more gains over the 2-hop neighbours, which means that users sharing one interacted item may
not necessarily share the same overall interests. This explains why the 3-hop neighbourhood
aggregation becomes the most common setup of the graph-based recommender systems. There-
fore, in answer to RQ6.2, we can conclude that both types of pseudo-positive samples i.e., 2-hop
and 3-hop neighbours, can improve the effectiveness of a graph-based recommender system.

In answer to RQ6.3, we compare the effectiveness of different variants of MLP-CGRec,
which use different MLP-based approaches including the plain MLP and the MLP-Mixer. Fig-
ure 6.1 shows that the variant of MLP-CGRec using the MLP-Mixer constantly outperforms the
one with a plain MLP and the plain MLP surpasses the one with no MLP on all datasets. This ob-
servation justifies our choice of incorporating the MLP architecture inspired by the MLP-Mixer
as our representation learning module. Lastly, none of the variants can outperform MLP-CGRec,
which means the integration of all proposed modules can achieve the best performance.

6.6 Conclusions

In this chapter, we proposed MLP-CGRec, an MLP-based recommender that uses a neighbour-
hood construction method and a contrastive objective to replace the classic neighbourhood ag-
gregation and message passing to achieve a competitive recommendation effectiveness with up
to 33.7% running time reduction (see Table 6.1). Our proposed MLP-CGRec model has been
shown to achieve the best efficiency and a comparable effectiveness with state-of-the-art graph-
based and contrastive baselines on three public datasets, namely MovieLens, Yelp and Amazon.
Furthermore, our ablation study (see Figure 6.1) reveals the effects of the different proposed
modules. In particular, we found that the proposed MLP-Mixer is more effective than the plain
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MLP and that 3-hop neighbours are more effective than 2-hop neighbours (see Figure 6.1).
To summarise, we further validated the hypothesis of our proposed thesis statement in Sec-

tion 1.2 that using graph contrastive learning to select both the contrastive negative items sam-
pled by DNS and the pseudo-positive samples, can alleviate the low-efficiency issue of graph-
based recommender systems. Differing from the dynamic negative sampling approach pro-
posed in Chapter 5, MLP-CGRec relies on a multiple sampling approach that incorporates both
pseudo-positive and negative samples. Specifically, although MLP-CGRec does not consis-
tently outperform all baselines in terms of the recommendation effectiveness, it alleviates the
low-efficiency issue of graph-based recommender systems which has not been studied in Chap-
ter 5.

In the next chapter, we will investigate how to combine the various techniques and ap-
proaches proposed in this chapter as well as Chapters 3, 4 and 5. Specifically, we will first
recall all our proposed approaches and list all possible combinations. Next, we will present
how to combine different approaches followed by the corresponding experiments. Finally, we
will report if some of the incorporated techniques , namely heterogeneous graph representation
learning (Chapter 3), graph pre-training (Chapter 4) and graph contrastive learning (Chapters 5
and 6), can be combined such that the integrated model can provide better recommendations.
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Chapter 7

Integrated Graph Recommender Systems

7.1 Introduction

In the previous chapters, we have presented all of the essential building blocks for our thesis
statement proposed in Section 1.2. In particular, we first proposed the Social Graph Pre-training
(SGP) model (Chapter 3) by leveraging heterogeneous graph representation learning to encode
the user’s social relations and enhance the final recommendations. Next, we presented two pre-
training schemes, namely Single-P and Multi-P in Chapter 4, where both schemes have been
shown to be effective after the fine-tuning of general recommender systems. Finally, we pro-
posed dynamic negative sampling (DNS) and the MLP-CGRec model to provide more effective
negative items in Chapter 5 and efficient pseudo-positive samples in Chapter 6, respectively.

Although our proposed approaches/models/schemes have been devised to enhance the ef-
fectiveness, robustness and efficiency of ranking-based recommender systems, different compo-
nents have different advantages. For example, the proposed SGP model and the two pre-training
schemes, i.e., Single-P and Multi-P can improve both the effectiveness and robustness of the
recommendation as well as alleviate the cold-start problem. In addition, DNS can enhance the
effectiveness of general recommenders by providing more informative negative items instead of
relying on the side information. Moreover, MLP-CGRec as proposed in Chapter 6, can reduce
the training computational cost and memory consumption of the graph-based recommenders.
However, at this stage, it is unclear if our proposed approaches can be integrated into one model
such that this integrated model can have more comprehensive abilities. Therefore, in this chap-
ter, we investigate which proposed approaches can be combined and how such integrated models
perform compared with their components. To have a better understanding on the focus of each
proposed approach, we split the overall recommendation framework into three different phases,
namely the Pre-processing, Model Training and Evaluation phases. Specifically, we regard all
of the steps before the actual training of a recommender system as the Pre-processing phase.
For the case of a two-phase training i.e., pre-training + fine-tuning, we treat the pre-training
stage as the Pre-processing, while the fine-tuning is treated as the Model Training. Furthermore,
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Figure 7.1: An overview of the recommendation framework.

the Evaluation phase includes different evaluation strategies such as the leave-one-out (see Sec-
tions 3.4.2 and 4.5.3) and random splitting (see Sections 5.4.2 and 6.4) evaluations. We use
Figure 7.1 to visualise the focus of each of our proposed approaches. In principle, approaches
that focus on the same phase can only be substituted by each other. In Section 7.2, we show the
evaluated combinations in details.

In addition, the experimental setups used across different chapters are not unified, which also
explains why some baselines performed differently on the same dataset. For example, we used a
leave-one-out strategy to evaluate the SGP model (Chapter 3) and the two pre-training schemes
(Chapter 4). On the other hand, we used the random split method to assess DNS (Chapter 5) and
the MLP-CGRec model (Chapter 6). Although there is no particular advantage of one evaluation
method over another, it is difficult to compare different models and techniques without a fair and
unified evaluation. Therefore, we adapt a unified setup to evaluate all the combinations of our
proposed methods. Last but not least, we used 10 different testing sets to evaluate all of our
models in order to reduce the evaluation bias on some specific testing negatives. Although our
evaluation method is fairer than those only using one testing set, Krichene and Rendle (2022)
have recently argued that the sampled metrics are still inconsistent. Specifically, to speed up
the evaluation step, existing recommender systems (He et al., 2020, 2017; Wang et al., 2019c)
are usually evaluated based on a sampled testing set where only a certain amount of negative
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Figure 7.2: An overview of 4 possible combinations between different methods.

items are sampled and used. Although the evaluation efficiency is improved, it can induce an
evaluation bias by accidentally sampling some easy negatives or omitting some hard negatives
in the testing set Krichene and Rendle (2022). For the case of ranking-based recommender
systems, easy negatives are defined as those items commonly placed at the tail of a ranking list
and hard negatives are defined as those items commonly placed at the head of a ranking list by
recommender systems. Therefore, to alleviate such an evaluation bias when the testing set is
sampled in this chapter, we also use the full set of negative items.

This chapter is structured as follows: Section 7.2 presents all possible combinations of the
proposed approaches; Section 7.3 describes our unified experimental setup; Section 7.4 and
Section 7.5 present the experimental results and conclusions, respectively.

7.2 Method

In this section, we aim to study the different combinations of our proposed approaches among
the SGP model, the Single-P/Multi-P schemes, the dynamic negative sampling approach and
the MLP-CGRec model. As mentioned in Section 7.1, only models that address different phases
can be combined. For example, one model can only use one pre-training scheme; hence the
pre-training methods of SGP and Single-P/Multi-P cannot be integrated into one model. Simi-
larly, one model can only have one sampling approach i.e., either DNS or the multiple sampling
approach used by MLP-CGRec. Furthermore, as mentioned in Section 1.3, Single-P is regarded
as a generalised version of SGP on the social relations. Therefore, to avoid unnecessary and re-
dundant combinations, we can skip the SGP model when choosing components to be combined
with other approaches. In Figure 7.2, we summarise 4 different possible combinations that will
be examined in this chapter. In the following two sections, we will discuss how to combine the
pre-training scheme with each sampling approach.
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7.2.1 Pre-training with Dynamic Negative Sampling

As shown in Figure 7.2, the Single-P and Multi-P schemes can be combined with the dynamic
negative sampling method. Specifically, we aim to incorporate the side information of both users
and items using Single-P or Multi-P. Afterwards, we use the pre-trained embeddings obtained
from Single-P or Multi-P to initialise the fine-tuning model, where this fine-tuning model is
trained with more informative negative items sampled by DNS.

More specifically, we first obtain the pre-trained embeddings of users (Û ) and items (
V̂ ) from Equation (4.3) (Single-P) or from Equation (4.5) (Multi-P). Next, we use Light-
GCN (Equation 3.4) as the fine-tuning model for its consistently good performance on different
datasets and under different evaluation methods as shown in Chapters 3, 4, 5, 6. After being
initialised by Û , V̂ , LightGCN is trained with more informative negative items obtained from
DNS. Details on how to use DNS to sample informative negative items can be found in Sec-
tion 5.3.2 (e.g., Equation (5.4) and Equation (5.5)). In particular, we illustrate the configuration
of this integrated model that uses either Single-P or Multi-P for pre-training and DNS for sam-
pling in Figure 7.3.
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7.2.2 Pre-training with Multiple Sampling

Similarly, the Single-P and Multi-P schemes can be combined with the multiple sampling ap-
proach used by the MLP-CGRec model. After obtaining the pre-trained embeddings of users
(Û ) and items ( V̂ ), we use LightGCN for the fine-tuning again. Differing from the integrated
model proposed in Section 7.2.1, pre-training with multiple sampling requests both negative
and pseudo-positive samples. Specifically, these pseudo-positive samples are defined as graph
neighbours in Section 6.3.1. Recall that these pseudo-positive samples are selected using the
graph neighbourhood construction method introduced in Section 6.3.1. Furthermore, the neg-
ative samples are defined as contrastive negative items, where we use DNS to sample these
negative items.

In the next section, we describe how we design experiments to evaluate these four different
integrated models.

7.3 Experiments

To evaluate the effectiveness of our integrated models, we use the same three datasets as we
have used in Chapter 4, namely Foursquare, MovieLens-1M and Epinions. This is because
our pre-training schemes rely on multiple types of side information to generate the pre-trained
embeddings. Table 4.1 showed the statistics of all used datasets. The pre-processing of each
dataset has been described in Section 4.5.2. In addition, we follow the same graph construction
process to build the single-relational and multi-relational graphs as mentioned in Section 4.5.2.

Since we aim to examine different abilities of our integrated models, we need to compare
them with baselines from different perspectives. Hence, in addition to the baselines used in
Chapter 4, we also add the MixGCF (Huang et al., 2021c) and PRIS (Lian et al., 2020a) models
from Chapter 5 and UltraGCN (Mao et al., 2021) from Chapter 6 as baselines. Following the
most recent work by Krichene and Rendle (2022), we split each dataset into a training set, vali-
dation set and testing set with a ratio of 8:1:1. However, differently from the multiple testing sets
used in all previous chapters, this testing set contains the whole corpus of negative items. There-
fore, we aim to rank the ground-truth item(s) against all negative items of each user instead of
ranking the ground-truth item(s) against a portion of randomly sampled negative items. In par-
ticular, we use NDCG@10 and MAP@10 to measure the effectiveness of all proposed models
and baselines. In addition, we evaluate the recommendation effectiveness of the four integrated
models and their constituent approaches proposed in previous chapters across different groups
of users. Next, we report the robustness of the examined models by applying different initialisa-
tions followed by a training efficiency comparison where we report the memory consumption,
average/total training epoch time of the examined models.

In the following, we aim to answer the following research questions:
RQ7.1. Do the integrated models outperform models that they are built on as well as other
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baselines in terms of the recommendation effectiveness?
RQ7.2. Do the integrated models retain the abilities of the models that they are built on in
alleviating the cold-start problem as well as the low-robustness and low-efficiency issues?

7.4 Results

In this section, we report the experimental results and answer our two aforementioned research
questions.

7.4.1 Effectiveness of the Integrated Models

Table 7.1 reports the NDCG@10 and MAP@10 measures of four integrated models compared
with all baselines and the best performing proposed model from each chapter. For example,
in Table 4.2, LightGCN+Single-P and LightGCN+Multi-P are observed to be the best performing
models for each pre-training scheme. From Table 7.1, we observe that Multi-P+DNS achieves
the best effectiveness on the Foursquare and MovieLens datasets and the second best on the
Epinions dataset in terms of the MAP metric. This suggests that our proposed models/schemes
can be integrated to further improve the recommendation effectiveness. At the same time, if
we compare the four integrated models, we find that Single-P+DNS and Single-P+multiple
sampling underperform Multi-P+DNS and Multi-P+multiple sampling, respectively. Indeed,
since the integrated models using the multiple sampling approach (Single-P+multiple sampling
and Multi-P+multiple sampling) always underperform the ones using DNS (Single-P+DNS and
Multi-P+DNS), we can conclude that the multiple sampling approach is less effective than DNS
in terms of the recommendation effectiveness. This is reasonable since the multiple sampling
approach used by MLP-CGRec has been proposed to improve the training efficiency of graph-
based recommendation as mentioned in Section 6.3.1. Specifically, we improve the efficiency
by using only sampled positive neighbours leading to a sacrifice in effectiveness. By comparing
the integrated models with LightGCNDNS and MLP-CGRec, we find that incorporating the pre-
trained embeddings can further enhance these two models i.e., LightGCNDNS and MLP-CGRec,
that use our proposed sampling approaches.

Therefore, in answer to RQ7.1, we can conclude that an integrated model can outperform its
corresponding pre-trained model and sampling-based model. In particular, the combination of
Multi-P (Chapter 4) with that the dynamic negative sampling approach (Chapter 5) can achieve
the best effectiveness on the Foursquare and MovieLens datasets and significantly outperform
the used baselines as well as the other integrated models. This conclusion consolidates the
hypothesis of our proposed thesis by further improving the effectiveness of graph-based recom-
mender systems using a combination of our proposed approaches.
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Table 7.1: An effectiveness comparison of the integrated models with all baselines. The best
and second best effectiveness are marked in boldface or underlined, respectively. We use ∗ to
denote a significant difference between the best performing model and the rest, according to the
paired t-test with the Holm-Bonferroni correction for p < 0.01. In addition, we use † to denote a
significant difference between the best performing integrated model and other integrated models,
according to the paired t-test with the Holm-Bonferroni correction for p < 0.01.

Model
Foursquare MovieLens-1M Epinions

NDCG MAP NDCG MAP NDCG MAP

HIRE 0.4932∗ 0.4275∗ 0.0967∗ 0.0563∗ 0.0636∗ 0.0488∗

cVAE 0.5026∗ 0.4138∗ 0.0648∗ 0.0425∗ 0.0501∗ 0.0382∗

SSLIM 0.5586∗ 0.4371∗ 0.0627∗ 0.0413∗ 0.0501∗ 0.0371∗

SGL 0.5762∗ 0.5381∗ 0.0708∗ 0.0455∗ 0.0682∗ 0.0451∗

PT-GNN 0.5738∗ 0.5377∗ 0.0728∗ 0.0471∗ 0.0663∗ 0.0473∗

SimGCL 0.5831∗ 0.5541∗ 0.0723∗ 0.0511∗ 0.0697∗ 0.0452∗

MF 0.5006∗ 0.4701∗ 0.0619∗ 0.0446∗ 0.0527∗ 0.0384∗

NGCF 0.5138∗ 0.4844∗ 0.0652∗ 0.0491∗ 0.0639∗ 0.0435∗

LightGCN 0.5362∗ 0.5040∗ 0.0692∗ 0.0501∗ 0.0677∗ 0.0464∗

NCF 0.5107∗ 0.4899∗ 0.0630∗ 0.0481∗ 0.0590∗ 0.0401∗

MixGCF 0.5421∗ 0.5291∗ 0.0708∗ 0.0503∗ 0.0653∗ 0.0422∗

PRIS 0.5621∗ 0.5291∗ 0.0688∗ 0.0491∗ 0.0623∗ 0.0431∗

UltraGCN 0.5321∗ 0.5091∗ 0.0638∗ 0.0481∗ 0.0603∗ 0.0453∗

LightGCN+Single-P 0.6162∗ 0.5840∗ 0.0952∗ 0.0631∗ 0.0717∗ 0.0594∗

LightGCN+Multi-P 0.6264 0.6089∗ 0.1068∗ 0.0689∗ 0.0792 0.0623
LightGCNDNS 0.6182∗ 0.5940∗ 0.0902∗ 0.0619∗ 0.0728∗ 0.0603∗

MLP-CGRec 0.5228∗ 0.4897∗ 0.0618∗ 0.0473∗ 0.0593∗ 0.0449∗

Single-P+DNS 0.6259∗† 0.5937∗† 0.0901∗† 0.0642∗† 0.0744∗† 0.0603∗

Single-P+multiple sampling 0.5981∗† 0.5463∗† 0.0714∗† 0.0466∗† 0.0633∗† 0.0442∗†

Multi-P+DNS 0.6478 0.6271 0.1128 0.0708 0.0800 0.0613
Multi-P+multiple sampling 0.6002∗† 0.5669∗† 0.0901∗† 0.0613∗† 0.0645∗† 0.0472∗†

7.4.2 Detailed Performances of the Integrated Models

In Table 7.2, we report the effectiveness of the four integrated models and their constituent
approaches across different groups of users on the Foursquare and Epinions datasets. We do not
report the results for the MovieLens-1M dataset because as we have mentioned in Section 4.6.5,
the MovieLens-1M dataset has only users with more than 20 interactions, while typically users
with more than 20 interactions can hardly be called as cold-start users. From Table 7.2, we find
that Multi-P+DNS almost significantly outperforms all other models across different groups of
users. At the same time, Single-P+DNS can also outperform LightGCN+Single-P. Therefore,
we can conclude that by incorporating the DNS approach, the recommendation effectiveness of
a pre-trained recommender can be further improved for both the regular and cold-start users.
However, we notice that the improvement of Multi-P+DNS over LightGCNMulti-P on the cold-

start users is relatively marginal (Foursquare: 0.5829→0.5907). On the Epinions dataset, Multi-
P+DNS does not outperform LightGCNMulti-P regarding the recommendation effectiveness for
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Table 7.2: NDCG@10 performances of four integrated approaches and our proposed models
across different groups of users on the two used datasets. We use ∗ to denote a significant
difference between the best performing model i.e., Multi-P+DNS, and the rest, according to the
paired t-test with the Holm-Bonferroni correction for p < 0.01.

Model
Foursquare Epinions

Overall Cold-start Regular Overall Cold-start Regular

LightGCN 0.5362∗ 0.5117∗ 0.5538∗ 0.0677∗ 0.0532∗ 0.0683∗

LightGCN+Single-P 0.6162∗ 0.5458∗ 0.6397∗ 0.0717∗ 0.0653∗ 0.0731∗

LightGCN+Multi-P 0.6364∗ 0.5839∗ 0.6458∗ 0.0792∗ 0.0701 0.0802∗

LightGCNDNS 0.6182∗ 0.5829∗ 0.6397∗ 0.0728∗ 0.0658∗ 0.0732∗

MLP-CGRec 0.5228∗ 0.5409∗ 0.5458∗ 0.0593∗ 0.0561∗ 0.0602∗

Single-P+DNS 0.6259∗ 0.5748∗ 0.6338∗ 0.0744∗ 0.0677∗ 0.0798∗

Single-P+multiple sampling 0.5981∗ 0.5534∗ 0.6139∗ 0.0633∗ 0.0603∗ 0.0700∗

Multi-P+DNS 0.6478 0.5907 0.6597 0.0800 0.0699 0.0811
Multi-P+multiple sampling 0.6002∗ 0.5539∗ 0.6208∗ 0.0645∗ 0.0625∗ 0.0728∗

Table 7.3: Standard deviations (denoted std.) and means of the NDCG@10 performances over
50 random seeds. A lower standard deviation indicates a better stability. The best and second
best values are marked in boldface or underlined, respectively

Model
Foursquare Epinions MovieLens-1M

std. mean std. mean std. mean

LightGCN 0.0209 0.5365 0.0092 0.0657 0.0232 0.0692
LightGCN+Single-P 0.0050 0.6262 0.0039 0.0711 0.0089 0.0952
LightGCN+Multi-P 0.0039 0.6264 0.0031 0.0780 0.0041 0.1068
LightGCNDNS 0.0189 0.6163 0.0089 0.0700 0.0200 0.0902
MLP-CGRec 0.0227 0.5289 0.0156 0.0586 0.0212 0.0618
Single-P+DNS 0.0089 0.6237 0.0069 0.0734 0.0123 0.0901
Single-P+multiple sampling 0.0153 0.5883 0.0089 0.0630 0.0195 0.0714
Multi-P+DNS 0.0077 0.6378 0.0054 0.0792 0.0101 0.1128
Multi-P+multiple sampling 0.0129 0.6082 0.0097 0.0637 0.0153 0.0901

the cold-start users. This observation reveals that these sampling approaches cannot help the
cold-start recommendation. This is because our proposed sampling approaches relies on the
learned embeddings; hence poor representations of the cold-start users and items lead to less
informative samples. As a result, the corresponding integrated models cannot largely improve
the recommendation effectiveness for cold-start users, compared with the original pre-trained
models i.e., Single-P and Multi-P.

In Table 7.3, we analyse the standard deviations and average NDCG@10 measure of the
four integrated models and other baselines over 50 random seeds. In this table, a lower standard
deviation indicates a higher robustness against different random seeds i.e., different initialisa-
tions. We observe that our integrated models cannot provide more robust recommendations
compared with LightGCN+Single-P and LightGCN+Multi-P. We explain this observation from the
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standard deviations of LightGCNDNS and MLP-CGRec as follows. On the used datasets, two
sampling-based models i.e., LightGCNDNS and MLP-CGRec, exhibit a worse robustness com-
pared with those two pre-trained models. In fact, LightGCNDNS and MLP-CGRec are equally
or even less robust than the base model LightGCN. Given different initialisations, sampling-
based models might select different positive neighbours or negative items, which may lead to
a higher variance of the final recommendation effectiveness. As a result, these sampling meth-
ods will degrade the robustness of our integrated models. Although integrated models cannot
achieve the best robustness, we find that Single-P+DNS and Multi-P+DNS are more robust
than LightGCNDNS; Single-P+multiple sampling and Multi-P+multiple sampling are also more
robust than MLP-CGRec. This observation suggests that we can improve the robustness of
sampling-based models by incorporating the pre-trained embeddings. In addition, our proposed
integrated models are all indeed more robust than the LightGCN model. Therefore, we can con-
clude that by combing the graph pre-training and graph-based sampling methods, the integrated
models can achieve a higher robustness compared with the model based on a classic graph neural
network i.e., LightGCN, but they are less robust than our proposed pre-training models.

Finally, we monitor and report the maximum memory consumption, average epoch time
and total training time of the four integrated models and the used baselines in Table 7.4. From
this table, we find that MLP-CGRec is the most efficient model among our proposed models
across different metrics, while all the integrated models exhibit a larger memory consumption
and longer training periods. This is also expected because all the integrated models include two
training phases i.e., the pre-training and fine-tuning phases. Therefore, all the integrated models
have doubled the total training time. In addition, the maximum memory consumption of the
integrated models usually occurs during the pre-training phase leading to a higher consumption
than MLP-CGRec. Therefore, we can conclude that the integrated models cannot provide a
higher efficiency in terms of both the memory consumption and training time.

In answer to RQ7.2, our integrated models, especially Multi-P+DNS can achieve an effec-
tive cold-start recommendation while ensuring the recommendation effectiveness for regular

users. Although different combinations cannot achieve the best robustness, we can use the pre-
trained embeddings to enhance the robustness of the sampling-based models. It is of note that
the integrated models are more robust than a standard baseline i.e LightGCN. Last but not least,
we cannot further improve the efficiency of our proposed models by combining a pre-training
scheme with a sampling-based approach.

In summary, we can use the integrated models to further boost the recommendation effec-
tiveness of the graph-based recommender systems as well as alleviate the cold-start problem.
However, the integrated models are less robust than our proposed models i.e., LightGCNMulti-P

and LightGCNSingle-P. Furthermore, the training efficiency of the integrated models is also lower
than our proposed MLP-CGRec model.
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Table 7.4: Efficiencies comparison of four integrated models with baselines, where Memory,
Epoch, Total denote the maximum memory consumption (gigabyte), average epoch time (sec-
ond) and total training time (minute). The best and second best efficiencies are marked in bold-
face or underlined, respectively.

Foursquare
Memory Epoch Total

LightGCN 2.91 48.2 78.5
LightGCN+Single-P 3.88 58.7 100.5
LightGCN+Multi-P 4.13 65.7 161.0

LightGCNDNS 3.96 75.8 118.5
MLP-CGRec 2.51 45.8 61.2

Single-P+DNS 4.05 63.9 194.6
Single-P+multiple sampling 3.26 50.2 208.0

Multi-P+DNS 4.39 70.9 287.3
Multi-P+multiple sampling 3.91 60.2 210.3

Epinions
Memory Epoch Total

LightGCN 5.42 54.5 96.7
LightGCN+Single-P 6.07 58.9 123.3
LightGCN+Multi-P 7.64 68.4 168.6

LightGCNDNS 6.43 75.3 136.6
MLP-CGRec 5.03 48.9 90.8

Single-P+DNS 6.18 76.9 266.4
Single-P+multiple sampling 5.87 52.3 212.5

Multi-P+DNS 7.78 82.8 313.6
Multi-P+multiple sampling 7.02 60.5 289.3

MovieLens-1M
Memory Epoch Total

LightGCN 8.92 58.8 152.7
LightGCN+Single-P 10.28 60.12 189.3
LightGCN+Multi-P 15.96 61.78 203.9

LightGCNDNS 9.98 78.52 166.6
MLP-CGRec 6.39 49.21 110.8

Single-P+DNS 10.28 78.92 336.5
Single-P+multiple sampling 10.28 55.23 296.4

Multi-P+DNS 15.96 79.77 343.9
Multi-P+multiple sampling 15.96 58.97 309.3
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7.5 Conclusions

In this chapter, we studied how to combine our proposed models and schemes from the previ-
ous chapters. Specifically, we proposed four integrated models consisting of the combinations
between two pre-training schemes (Chapter 4) and two sampling-based methods (Chapter 5 and
Chapter 6). After presenting each integrated model in Section 7.2, we evaluated the recommen-
dation effectiveness of the integrated models compared with our own models from the previous
chapters as well as 13 competitive baselines. In particular, we used a unified evaluation method
to calculate the effectiveness of all examined models, where we used the full set of negative
items in the testing set.

To answer RQ7.1, we compared the recommendation effectiveness of our integrated models
and all other baselines. Extensive results showed that Multi-P+DNS constantly and significantly
outperform all baselines and other integrated models on the three used datasets (Table 7.1). In
particular, Multi-P+DNS also improves the NDCG measure of its constituent components i.e.,
LightGCN+Multi-P and LightGCNDNS on the Foursquare dataset by 3.4% and 4.9%, respectively,
demonstrating that our proposed models can be combined to achieve a better recommendation.
To answer RQ7.2, we first compared the recommendation effectiveness of the integrated models
and baselines across different group of users. Table 7.2 showed that Multi-P+DNS can main-
tain the effective cold-start recommendation of the pre-trained models and ensure an enhanced
recommendation effectiveness for the regular users. Afterwards, we compared the robustness
(Table 7.3) and efficiency (Table 7.4) of all evaluated models. The detailed results showed that
our integrated models cannot achieve a higher robustness nor a higher efficiency compared with
our models proposed in the previous chapters. In this chapter, we further consolidated our pro-
posed thesis statement (Section 1.2) by integrating different techniques of graph representation
learning instead of leveraging only one single technique. Although we cannot further enhance
the robustness and efficiency of graph-based recommenders by combining our proposed meth-
ods, Multi-P+DNS has been shown promising for the graph-based recommendation. In the next
chapter, we will close this thesis by summarising the results and conclusions of each chapter and
discussing possible future directions uncovered by this work.
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Chapter 8

Conclusions and Future Work

8.1 Contributions and Conclusions

This thesis addressed the challenges of incorporating graph representation learning to make
effective ranking-based recommendations and alleviate the cold-start problem as well as the
issues of low robustness and low training efficiency of graph-based recommender systems.

Specifically, we postulated that by using the heterogeneous graph representation learning,
graph pre-training and graph contrastive learning techniques, we can enhance the ranking-based
recommendations provided by graph-based recommender systems. In Section 1.1, we argued
that existing graph-based recommender systems have the following challenges:

• C1: Graph-based recommender systems cannot learn the heterogeneous relations between
users and items, especially when side information e.g., social relations between users, are
available.

• C2: When multiple types of side information are available, graph-based recommender sys-
tems struggle to incorporate them simultaneously.

• C3: Graph-based recommender systems still use the randomly sampled negative items for the
pairwise learning, which are not informative.

• C4: Graph-based recommender systems consume extensive GPU computational power and
training time, leading to an unsatisfactory training efficiency.

To address the four challenges above, we have proposed various models/schemes all through
this thesis. Below, we will describe our main contributions and conclusions in addressing these
challenges:

• Conclusion 1: Effective Recommendations Using the Heterogeneous Graph Represen-
tation Learning: To address C1, we explored how to leverage graph representation learn-
ing to capture the heterogeneous relations between users and items, including the user-item
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interactions and user-user social relations (see Chapter 3). In particular, we leveraged the
heterogeneous graph technique to generate pre-trained embeddings using the social relations
among users (Section 3.3.2). Next, we used the Gaussian Mixture Model (GMM) to de-
code the obtained initialisations from the pre-trained embeddings (Section 3.3.3.1). Finally,
a graph-based model was used as the fine-tuning model to rank items for each user (Sec-
tion 3.3.3.2). Extensive experimental results on three public datasets (Table 3.3) showed that
our proposed Social-aware Gaussian Pre-trained Model significantly outperformed state-of-
the-art baselines. Furthermore, the detailed user analyses in Tables 3.4 and 3.5 demonstrated
that SGP is effective to address the cold-start problem.

• Conclusion 2: Enhanced Recommendations by Graph Pre-training: To address C2, we
introduced two pre-training schemes, namely Single-P and Multi-P to enhance the effective-
ness of representation-based recommender systems. In particular, we built single-relational
and multi-relational graphs for Single-P and Multi-P, respectively, to capture the multiple
types of relations between users and items (see Section 4.5.2). Compared with the afore-
mentioned SGP model, Single-P and Multi-P can leverage multiple types of side information
instead of relying on the social relations only. The extensive evaluation of our pre-training
schemes showed that effectively pre-training the embeddings of both the users and items can
significantly improve the recommendation effectiveness of existing recommender systems,
namely NCF, MF, NGCF and LightGCN (see Figure 4.5). In addition, after pre-training by
our proposed schemes, four existing models exhibited a higher robustness against different ini-
tialisations i.e., variable random seeds (see Table 4.3). Moreover, an in-depth analysis across
different groups of users showed that by leveraging the side information through pre-training,
our Single-P and Multi-P schemes can successfully alleviate the cold-start problem while
ensuring effective recommendations for regular users.

• Conclusion 3: Improved Ranking-based Recommendation by Graph Contrastive Nega-
tive Sampling: We proposed a dynamic negative sampling (DNS) scheme to provide more in-
formative negative samples for ranking-based recommender systems (see Chapter 5). Specif-
ically, to address C3, DNS dynamically samples contrastive negative items after each train-
ing epoch solely based on the similarity scores between the users and items’ latent embed-
dings without using any side information. In addition, we proposed a novel objective function
(Equation (5.5)) to leverage those additionally sampled negative samples. Extensive experi-
mental results showed that DNS can generally improve the performance of four ranking-based
recommenders and can significantly outperform two strong baselines using different advanced
negative sampling approaches (see Table 5.3). Furthermore, our entropy-based analysis indi-
cates that DNS improves general ranking-based recommenders by providing contrastive nega-
tive items with s higher information gain compared with the randomly sampled negative items
(see Figure 5.3.)
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• Conclusion 4: Efficient Graph-based Recommender Systems by Contrastive Multiple
Sampling: We proposed MLP-CGRec, an MLP-based recommender that uses a neighbour-
hood construction method and a contrastive objective function to replace the neighbourhood
aggregation and the message passing of graph-based recommenders (see Chapter 6). In or-
der to address C4, our neighbourhood construction method efficiently selects pseudo-positive
samples i.e., the multi-hop positive neighbours of both the users and items to avoid the com-
putationally expensive graph operations. In addition, we used our novel objective function
to incorporate these pseudo-positive samples and contrastive negative items. The difference
between the sampling methods of DNS (Chapter 5) and MLP-CGRec is that DNS only sam-
ples negative items while MLP-CGRec samples both positive and negative samples thereby
achieving higher efficiency. In addition, an efficiency gain is obtained by avoiding the incor-
poration of all multi-hop neighbours and the multi-layer message passing. The experimental
results in Table 6.1 showed that MLP-CGRec can effectively mitigate the low-efficiency issue
of graph-based recommenders by reducing the GPU memory consumption and training time.

• Conclusion 5: Combined Effectiveness by Integrating Multiple Graph-based Compo-
nents: We investigated whether we can combine the different models/schemes proposed in
Chapters 3-6 to achieve integrated models that retain the benefits of each incorporated com-
ponent. We first split the overall recommendation framework into three phases and listed four
possible combinations in Section 7.2 (see Figure 7.2). Specifically, we can combine Single-P
with DNS, Single-P with MLP-CGRec, Multi-P with DNS and Multi-P with MLP-CGRec.
Next, we evaluated these four integrated models in comparison to 13 baselines in Section 7.3.
Table 7.1 showed that Multi-P+DNS can significantly outperform competitive baselines as
well as our own proposed models across three public datasets. In addition, we observed that
Multi-P+DNS benefited cold-start users and ensured improved recommendation effectiveness
for the regular users as reported in Table 7.2. However, none of the integrated models provided
an enhanced robustness compared with our pre-trained models including LightGCN+Multi-P.
Furthermore, the integrated models are less efficient than MLP-CGRec because all the inte-
grated models include a pre-training scheme, which costs more GPU memory consumption
and training time.

Next, based on the results from Chapters 3 to 7, we now validate our thesis statement pro-
posed in Section 1.2. Our thesis stated that we can enhance the effectiveness of the ranking-
based recommender system by leveraging graph representation learning. Specifically, graph
representation learning includes heterogeneous graph learning, graph pre-training and graph
contrastive learning. Furthermore, we argued that we could use these techniques to alleviate the
cold-start problem as well as the low-robustness and low-efficiency issues. In the following,
we discuss the corresponding experimental results and observations that validate our proposed
thesis statement.
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• Claim 1: By leveraging heterogeneous graph representation learning, a graph-based recom-

mender system can achieve an enhanced performance and benefit cold-start users. Our exper-
iments in Chapter 3 validated this claim by showing that our proposed Social-aware Gaussian
Pre-trained (SGP) model can significantly outperform 13 baselines (see Table 3.3). In partic-
ular, SGP leverages heterogeneous graph representation learning to encode the heterogeneous
relations including the user-item interaction and user-user social relations to provide effective
initialisations for both the users and items. Table 3.4 and Table 3.5 showed that SGP can also
effectively alleviate the cold-start problem.

• Claim 2: The graph pre-training technique can be used to provide an enhanced recommen-

dation effectiveness with a higher robustness. We argue that we have validated this claim in
Chapter 4, where we proposed two pre-training schemes, namely Single-P and Multi-P. In
particular, our proposed schemes can incorporate multiple types of side information to gener-
ate the users and items’ pre-trained embeddings (see Sections 4.4.2 and 4.4.3). Afterwards,
these pre-trained embeddings can be fine-tuned by existing ranking-based recommender sys-
tems. Experimental results in Figure 4.5 demonstrated that both pre-training schemes can
improve the effectiveness of four existing recommenders including MF, NGCF, LightGCN
and NCF. In addition, Table 4.2 and Table 4.3 showed that our pre-trained models signifi-
cantly outperformed 10 state-of-the-art baselines and exhibited a higher robustness against
different initialisations.

• Claim 3: By leveraging the graph contrastive learning technique, graph-based recommenders

can obtain an improved recommendation effectiveness and a higher training efficiency. This
claim has been validated in Chapter 5 and Chapter 6, where we proposed two contrastive sam-
pling methods. First, dynamic negative sampling (DNS) is proposed in Chapter 5 to provide
more informative negative items for ranking-based recommender systems. With these negative
items sampled by DNS, the effectiveness of four existing models, namely BPR, LightGCN,
SGL and SimGCL, are improved, as shown in Table 5.3. Second, in Chapter 6 we proposed
an MLP-based graph recommender i.e., MLP-CGRec that incorporated the multiple sampling
method consisting of DNS and a pseudo-positive sampler. Compared with DNS, MLP-CGRec
has been shown to be more efficient since it can efficiently select pseudo-positive samples to
avoid the redundant multi-layer message passing of graph neural networks (see Section 6.3.1).
Indeed, the experimental results in Table 6.1 showed that MLP-CGRec remained the most ef-
ficient model among the tested graph-based recommenders and achieved competitive recom-
mendation effectiveness.

In summary, we have validated each of the claims of our thesis statement in Section 1.2. We
have showed that we can improve the effectiveness of ranking-based recommender systems us-
ing heterogeneous graph learning, graph pre-training and graph contrastive learning techniques.
In particular, these techniques mentioned above can enhance the effectiveness of graph-based
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recommender systems and alleviate the cold-start problem as well as the low-robustness and
low-efficiency issues. Furthermore, by combining the graph pre-training (Multi-P) and graph
contrastive learning (DNS) techniques, we can further boost the effectiveness of the graph-based
recommender systems. Next, we describe some future research directions for graph-based rec-
ommender systems in Section 8.2.

8.2 Directions for Future Work

In this section, we discuss possible future directions that could further benefit the applications
of graph representation learning in the recommendation scenario.

Alleviate the sparsity issue of side information: In Chapter 3 and Chapter 4, we have
shown how to incorporate heterogeneous relations between users and items using heterogeneous
graph representation learning. Results have shown that the cold-start users especially benefited
from those additional social relations because they can be used to infer the interests of users
or the characteristics of items. However, due to privacy issues (Jeckmans et al., 2013), many
users are not willing to share their personal details. For example, some users may set their so-
cial relations to be unavailable to the third party recommendation services. Therefore, inferring
the attributes of users or the entities of items is an interesting topic to investigate and can en-
hance recommendation based on side information. Rossi et al. (2021) have proposed a feature
propagation method for graph data with missing node features. Hence, it could be promising to
apply this feature propagation method to alleviate the sparsity issue of side information in the
recommendation scenario.

Incorporate other types of graph neural networks to model the user-item interactions:
Across Chapters 3 to 7, we have only leveraged classic node-node type of graph neural net-
works, which can be regarded as variants of Graph Neural Networks (GNNs) (Kipf and Welling,
2017). However, these graph neural networks may suffer from the over-smoothing (Chen et al.,
2020a) and over-squashing issues (Topping et al., 2021). Specifically, the over-smoothing issue
refers to the situation when the embeddings of the connected nodes become indistinguishable,
while the over-squashing issue refers to when information cannot be effectively propagated be-
yond 3-4 layers. This over-smoothing issue will affect those users and items whose amount of
interactions is more than the average. Moreover, this over-squashing issue will stop graph-based
recommenders for capturing the long-range dependency. There are many recent graph-based
models that can avoid those issues. For example, it is interesting to investigate different types
of graph neural networks for recommendation, where candidates include a hyper-graph net-
work (Bai et al., 2021), a hyperbolic graph neural network (Sun et al., 2021) and a Lorentzian
graph neural network (Zhang et al., 2021).

Use graph representation learning methods to enhance sequential recommendation: In
the scope of this thesis, we only studied ranking-based recommender systems and did not apply
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the graph-based method for sequential recommendation. However, sequential recommendation
also plays an essential role in many online platforms, particularly video and music recommen-
dation platforms because users of such platforms commonly interact with videos/music in se-
quences (Quadrana et al., 2018). Although graph-based methods are known to be effective for
predicting links between nodes, they usually cannot capture the long-range dependency and are
computationally expensive for sequential inputs. Therefore, graph-based methods are less fre-
quently applied for the sequential recommendation task. Recently, the combination of graph
neural networks and transformers is becoming popular (Hu et al., 2020b; Rampášek et al., 2022;
Yun et al., 2019). These graph transformer models can efficiently leverage sequential inputs
and capture the long-range dependency. Therefore, we will consider investigating sequential
recommendation using graph transformer networks in future work.

8.3 Concluding Remarks

This thesis has addressed a challenging task: the ranking-based recommendation task. In partic-
ular, this thesis contributed to developing the ranking-based recommendation task by incorpo-
rating graph representation learning. Specifically, we have shown that heterogeneous graph rep-
resentation learning, graph pre-training and graph contrastive learning can effectively enhance
the effectiveness of ranking-based recommender systems and alleviate the cold-start problem as
well as the low-robustness and low-efficiency issues. However, there are still exciting topics and
complex challenges in this research field, some of which have been highlighted in Section 8.2.
This thesis have provided a concrete motivation and the cornerstone for further exploring these
research directions in the future. We believe that using graph representation learning to represent
users and items will continue to benefit the future development of the recommendation field.

126



Bibliography

Abdollahpouri, H., Burke, R., and Mobasher, B. (2019). Managing popularity bias in recom-
mender systems with personalized re-ranking. In Proceedings of AAAI.

Aggarwal, C. C. et al. (2016). Recommender systems, volume 1. Springer.

Atz, K., Grisoni, F., and Schneider, G. (2021). Geometric deep learning on molecular represen-
tations. Nature Machine Intelligence, 3(12):1023–1032.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. In Proc. of Deep Learning

Symposium.

Badsha, S., Yi, X., and Khalil, I. (2016). A practical privacy-preserving recommender system.
Data Science and Engineering, 1(3):161–177.

Badsha, S., Yi, X., Khalil, I., and Bertino, E. (2017). Privacy preserving user-based recom-
mender system. In 2017 IEEE 37th international conference on Distributed Computing Sys-

tems (ICDCS), pages 1074–1083. IEEE.

Bai, S., Zhang, F., and Torr, P. H. (2021). Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637.

Basu, C., Hirsh, H., Cohen, W., et al. (1998). Recommendation as classification: Using social
and content-based information in recommendation. In Proceedings of AAAI.

Beel, J., Genzmehr, M., Langer, S., Nürnberger, A., and Gipp, B. (2013). A comparative anal-
ysis of offline and online evaluations and discussion of research paper recommender system
evaluation. In Proceedings of the international workshop on reproducibility and replication

in recommender systems evaluation, pages 7–14.

Beutel, A., Chen, J., Doshi, T., Qian, H., Wei, L., Wu, Y., Heldt, L., Zhao, Z., Hong, L., Chi,
E. H., et al. (2019). Fairness in recommendation ranking through pairwise comparisons. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pages 2212–2220.

127



Bobadilla, J., Ortega, F., Hernando, A., and Gutiérrez, A. (2013). Recommender systems survey.
Knowledge-based systems, 46:109–132.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. (2013). Translat-
ing embeddings for modeling multi-relational data. In Conference on Neural Information

Processing Systems, pages 1–9.

Bowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R., Hammers, A., Dickie, D. A., Hernán-
dez, M. V., Wardlaw, J., and Rueckert, D. (2018). Gan augmentation: Augmenting training
data using generative adversarial networks. arXiv preprint arXiv:1810.10863.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners. In Proceedings

of NeurIPS.

Burke, R., O’Mahony, M. P., and Hurley, N. J. (2015). Robust collaborative recommendation.
In Recommender systems handbook, pages 961–995. Springer.

Carter, T. (2007). An introduction to information theory and entropy. Complex systems summer

school, Santa Fe.

Castells, P., Hurley, N., and Vargas, S. (2022). Novelty and diversity in recommender systems.
In Recommender systems handbook, pages 603–646. Springer.

Chakraborty, S., Bisong, E., Bhatt, S., Wagner, T., Elliott, R., and Mosconi, F. (2020). Biomed-
bert: A pre-trained biomedical language model for qa and ir. In Proceedings of COLING.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X. (2020a). Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In Proceedings

of the AAAI Conference on Artificial Intelligence, pages 3438–3445.

Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., and He, X. (2020b). Bias and debias in
recommender system: A survey and future directions. arXiv preprint arXiv:2010.03240.

Chen, J., Ma, T., and Xiao, C. (2018). Fastgcn: Fast learning with graph convolutional networks
via importance sampling. In International Conference on Learning Representations.

Chen, M. and Liu, P. (2017). Performance evaluation of recommender systems. International

Journal of Performability Engineering, 13(8):1246.

128



Chen, S., Niu, G., Gong, C., Li, J., Yang, J., and Sugiyama, M. (2021). Large-margin contrastive
learning with distance polarization regularizer. In Proc. of ICML.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020c). A simple framework for con-
trastive learning of visual representations. In Proceedings of ICML.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and Hinton, G. (2020d). Big self-supervised
models are strong semi-supervised learners. In Proceedings of NeurIPS.

Chen, Y. and de Rijke, M. (2018). A collective variational autoencoder for top-n recommenda-
tion with side information. In Deep Learning for Recommender Systems, pages 3–9.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Cor-
rado, G., Chai, W., Ispir, M., et al. (2016). Wide & deep learning for recommender systems.
In Workshop on Deep Learning for Recommender Systems, pages 7–10.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J. (2019). Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages 257–266.

Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric discriminatively,
with application to face verification. In Proc. of CVPR.

Chuang, C.-Y., Robinson, J., Yen-Chen, L., Torralba, A., and Jegelka, S. (2020). Debiased
contrastive learning. In Proceedings of NeurIPS.

Costa, E., Lorena, A., Carvalho, A., and Freitas, A. (2007). A review of performance evaluation
measures for hierarchical classifiers. In Evaluation methods for machine learning II: Papers

from the AAAI-2007 workshop, pages 1–6.

Cotter, P. and Smyth, B. (2000). Ptv: Intelligent personalised tv guides. In Proceedings of AAAI.

Dacrema, M. F., Cremonesi, P., and Jannach, D. (2019). Are we really making much progress?
a worrying analysis of recent neural recommendation approaches. In Proceedings of the 13th

ACM conference on recommender systems, pages 101–109.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing

systems, 29.

Del Olmo, F. H. and Gaudioso, E. (2008). Evaluation of recommender systems: A new approach.
Expert Systems with Applications, 35(3):790–804.

129



Deng, Z.-H., Huang, L., Wang, C.-D., Lai, J.-H., and Philip, S. Y. (2019). Deepcf: A unified
framework of representation learning and matching function learning in recommender system.
In Proceedings of the AAAI Conference on Artificial Intelligence, pages 61–68.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Ding, J., Quan, Y., He, X., Li, Y., and Jin, D. (2019). Reinforced negative sampling for recom-
mendation with exposure data. In Proceedings of IJCAI.

Ebesu, T., Shen, B., and Fang, Y. (2018). Collaborative memory network for recommendation
systems. In SIGIR Conference on Research and Development in Information Retrieval, pages
515–524.

Edwards, A., Camacho-Collados, J., De Ribaupierre, H., and Preece, A. (2020). Go simple and
pre-train on domain-specific corpora: On the role of training data for text classification. In
Proceedings of COLING.

Eksombatchai, C., Jindal, P., Liu, J. Z., Liu, Y., Sharma, R., Sugnet, C., Ulrich, M., and
Leskovec, J. (2018). Pixie: A system for recommending 3+ billion items to 200+ million
users in real-time. In Proceedings of the 2018 world wide web conference, pages 1775–1784.

Erhan, D., Courville, A., Bengio, Y., and Vincent, P. (2010). Why does unsupervised pre-training
help deep learning? In Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics, pages 201–208.

Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., and Vincent, P. (2009). The difficulty of
training deep architectures and the effect of unsupervised pre-training. In Proceedings of

AISTATS.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and Yin, D. (2019). Graph neural networks
for social recommendation. In The ACM Web Conference 2019, pages 417–426.

Farseev, A., Samborskii, I., Filchenkov, A., and Chua, T.-S. (2017). Cross-domain recommen-
dation via clustering on multi-layer graphs. In Proceedings of SIGIR.

Fouss, F., Pirotte, A., Renders, J.-M., and Saerens, M. (2007). Random-walk computation of
similarities between nodes of a graph with application to collaborative recommendation. IEEE

Transactions on knowledge and data engineering, 19(3):355–369.

Fu, D. and He, J. (2021). Sdg: A simplified and dynamic graph neural network. In Proceedings

of the 44th International ACM SIGIR Conference on Research and Development in Informa-

tion Retrieval, pages 2273–2277.

130



Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., and Schmidt-Thieme, L. (2010). Learn-
ing attribute-to-feature mappings for cold-start recommendations. In Proceedings of ICDM.

Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., Quan, Y., Chang, J., Jin, D., He, X.,
et al. (2021). Graph neural networks for recommender systems: Challenges, methods, and
directions. ACM Transactions on Information Systems, 1.

Ge, M., Delgado-Battenfeld, C., and Jannach, D. (2010). Beyond accuracy: evaluating recom-
mender systems by coverage and serendipity. In Proceedings of the fourth ACM conference

on Recommender systems, pages 257–260.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G.,
Cai, J., et al. (2018). Recent advances in convolutional neural networks. Pattern recognition,
77:354–377.

Guo, H., Tang, R., Ye, Y., Li, Z., and He, X. (2017). Deepfm: A factorization-machine based
neural network for ctr prediction. In International Joint Conference on Artificial Intelligence,
pages 1725–1731.

Hamilton, W., Ying, Z., and Leskovec, J. (2017a). Inductive representation learning on large
graphs. In Conference on Neural Information Processing Systems, pages 1024–1034.

Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on Artifical Intelli-

gence and Machine Learning, 14(3):1–159.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017b). Representation learning on graphs: Meth-
ods and applications. arXiv preprint arXiv:1709.05584.

Hansen, C., Hansen, C., Maystre, L., Mehrotra, R., Brost, B., Tomasi, F., and Lalmas, M.
(2020). Contextual and sequential user embeddings for large-scale music recommendation.
In Fourteenth ACM conference on recommender systems, pages 53–62.

Hao, B., Zhang, J., Yin, H., Li, C., and Chen, H. (2021a). Pre-training graph neural networks
for cold-start users and items representation. In Proceedings of WSDM.

Hao, B., Zhang, J., Yin, H., Li, C., and Chen, H. (2021b). Pre-training graph neural networks
for cold-start users and items representation. In International Conference on Web Search and

Data Mining, pages 265–273.

Hariadi, A. I. and Nurjanah, D. (2017). Hybrid attribute and personality based recommender
system for book recommendation. In Proceedings of ICoDSE.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and Wang, M. (2020). Lightgcn: Simplifying and
powering graph convolution network for recommendation. In SIGIR Conference on Research

and Development in Information Retrieval, pages 639–648.

131



He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017). Neural collaborative
filtering. In Web Conference, pages 173–182.

Hendrycks, D. and Gimpel, K. (2016). Gaussian error linear units (gelus). arXiv preprint

arXiv:1606.08415.

Hershey, J. R. and Olsen, P. A. (2007). Approximating the Kullback Leibler divergence between
Gaussian mixture models. In Proceedings of ICASSP.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V., and Leskovec, J. (2019). Strategies
for pre-training graph neural networks. arXiv preprint arXiv:1905.12265.

Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets.
In Proc. of IEEE International Conference on Data Mining, pages 263–272.

Hu, Y., You, H., Wang, Z., Wang, Z., Zhou, E., and Gao, Y. (2021). Graph-mlp: node classifica-
tion without message passing in graph. arXiv preprint arXiv:2106.04051.

Hu, Z., Dong, Y., Wang, K., Chang, K.-W., and Sun, Y. (2020a). Gpt-gnn: Generative pre-
training of graph neural networks. In SIGKDD International Conference on Knowledge Dis-

covery & Data Mining.

Hu, Z., Dong, Y., Wang, K., and Sun, Y. (2020b). Heterogeneous graph transformer. In Pro-

ceedings of The Web Conference 2020, pages 2704–2710.

Huang, C., Xu, H., Xu, Y., Dai, P., Xiao, L., Lu, M., Bo, L., Xing, H., Lai, X., and Ye, Y.
(2021a). Knowledge-aware coupled graph neural network for social recommendation. In
AAAI Conference on Artificial Intelligence, pages 4115–4122.

Huang, T., Dong, Y., Ding, M., Yang, Z., Feng, W., Wang, X., and Tang, J. (2021b). Mixgcf:
An improved training method for graph neural network-based recommender systems. In Pro-

ceedings of SIGKDD.

Huang, T., Dong, Y., Ding, M., Yang, Z., Feng, W., Wang, X., and Tang, J. (2021c). Mixgcf: An
improved training method for graph neural network-based recommender systems. In SIGKDD

Conference on Knowledge Discovery & Data Mining, pages 665–674.

Hui, B., Yan, D., and Ku, W.-S. (2021). Node-polysemy aware recommendation by matrix
completion with side information. In IEEE International Conference on Big Data, pages
636–642.

Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010). Recommender systems: an

introduction. Cambridge University Press.

132



Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir techniques. ACM

Transactions on Information Systems (TOIS), 20(4):422–446.

Jeckmans, A. J., Beye, M., Erkin, Z., Hartel, P., Lagendijk, R. L., and Tang, Q. (2013). Privacy
in recommender systems. In Social media retrieval, pages 263–281. Springer.

Jha, K., Saha, S., and Singh, H. (2022). Prediction of protein–protein interaction using graph
neural networks. Scientific Reports, 12(1):1–12.

Jiang, G., Wang, H., Chen, J., Wang, H., Lian, D., and Chen, E. (2021). xlightfm: Extremely
memory-efficient factorization machine. In SIGIR Conference on Research and Development

in Information Retrieval, pages 337–346.

Johnson, J., Douze, M., and Jégou, H. (2019). Billion-scale similarity search with gpus. IEEE

Transactions on Big Data, 7.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., and Yih, W.-T.
(2020). Dense passage retrieval for open-domain question answering. In Proceedings of

EMNLP.

Ketkar, N. (2017). Stochastic gradient descent. In Deep learning with Python, pages 113–132.
Springer.

Khenissi, S., Mariem, B., and Nasraoui, O. (2020). Theoretical modeling of the iterative prop-
erties of user discovery in a collaborative filtering recommender system. In Proceedings of

RecSys.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In International

Conference on Learning Representations.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37.

Koren, Y., Rendle, S., and Bell, R. (2022). Advances in collaborative filtering. Recommender

systems handbook, pages 91–142.

Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating mutual information. Physical

review E, 69(6).

Kratsios, A. (2021). The universal approximation property. Annals of Mathematics and Artificial

Intelligence, 89(5):435–469.

133



Krichene, W. and Rendle, S. (2022). On sampled metrics for item recommendation. Communi-

cations of the ACM, 65(7):75–83.

Kunaver, M. and Požrl, T. (2017). Diversity in recommender systems–a survey. Knowledge-

based systems, 123:154–162.

Lam, X. N., Vu, T., Le, T. D., and Duong, A. D. (2008). Addressing cold-start problem in
recommendation systems. In Proceedings of the 2nd international conference on Ubiquitous

information management and communication, pages 208–211.

Leino, J. and Räihä, K.-J. (2007). Case amazon: ratings and reviews as part of recommendations.
In Proceedings of the 2007 ACM conference on Recommender systems, pages 137–140.

Li, H., Wang, Y., Lyu, Z., and Shi, J. (2020a). Multi-task learning for recommendation over het-
erogeneous information network. IEEE Transactions on Knowledge and Data Engineering,
34:789 – 802.

Li, J., Wang, Y., and McAuley, J. (2020b). Time interval aware self-attention for sequential
recommendation. In Proceedings of WSDM.

Li, P. and Tuzhilin, A. (2020). Ddtcdr: Deep dual transfer cross domain recommendation. In
Proceedings of WSDM.

Li, S., Kawale, J., and Fu, Y. (2015). Deep collaborative filtering via marginalized denoising
auto-encoder. In Conference on Information & Knowledge Management, pages 811–820.

Li, X., Liu, Z., Guo, S., Liu, Z., Peng, H., Philip, S. Y., and Achan, K. (2021). Pre-training
recommender systems via reinforced attentive multi-relational graph neural network. In Pro-

ceedings of IEEE BigData.

Li, X. and She, J. (2017). Collaborative variational autoencoder for recommender systems. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pages 305–314.

Lian, D., Liu, Q., and Chen, E. (2020a). Personalized ranking with importance sampling. In
Proceedings of WWW.

Lian, D., Wang, H., Liu, Z., Lian, J., Chen, E., and Xie, X. (2020b). Lightrec: A memory and
search-efficient recommender system. In Web Conference, pages 695–705.

Liang, D., Krishnan, R. G., Hoffman, M. D., and Jebara, T. (2018). Variational autoencoders for
collaborative filtering. In Proceedings of WWW.

Lin, X., Zhen, H.-L., Li, Z., Zhang, Q.-F., and Kwong, S. (2019). Pareto multi-task learning.
Advances in neural information processing systems, 32.

134



Liu, B., Craswell, N., Lu, X., Kurland, O., and Culpepper, J. S. (2019a). A comparative analysis
of human and automatic query variants. In Proc. of SIGIR.

Liu, H., Dai, Z., So, D. R., and Le, Q. V. (2021a). Pay attention to mlps. In Proc. of NeurIPS.

Liu, S., Ounis, I., and Macdonald, C. (2022). An mlp-based algorithm for efficient contrastive
graph recommendations. In Proceedings of the 45th International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 2431–2436.

Liu, S., Ounis, I., Macdonald, C., and Meng, Z. (2020). A heterogeneous graph neural model
for cold-start recommendation. In SIGIR Conference on Research and Development in Infor-

mation Retrieval, pages 2029–2032.

Liu, T., Wang, Z., Tang, J., Yang, S., Huang, G. Y., and Liu, Z. (2019b). Recommender systems
with heterogeneous side information. In Web Conference, pages 3027–3033.

Liu, Z., Ma, Y., Ouyang, Y., and Xiong, Z. (2021b). Contrastive learning for recommender
system. arXiv preprint arXiv:2101.01317.

Loshchilov, I. and Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations.

Lu, J., Wu, D., Mao, M., Wang, W., and Zhang, G. (2015). Recommender system application
developments: a survey. Decision Support Systems, 74:12–32.

Lu, S., Chen, H., Zhou, X., Wang, B., Wang, H., and Hong, Q. (2018). Graph-based collabora-
tive filtering with mlp. Mathematical Problems in Engineering, 2018.

Ma, H., Zhou, D., Liu, C., Lyu, M. R., and King, I. (2011). Recommender systems with social
regularization. In Proceedings of WSDM.

Ma, X., Guo, J., Zhang, R., Fan, Y., Ji, X., and Cheng, X. (2021). Prop: Pre-training with
representative words prediction for ad-hoc retrieval. In Proceedings of WSDM.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve neural
network acoustic models. In Proceedings of ICML.

MacAvaney, S., Nardini, F. M., Perego, R., Tonellotto, N., Goharian, N., and Frieder, O. (2020).
Efficient document re-ranking for transformers by precomputing term representations. In
Proc. of SIGIR.

Mackenzie, J., Culpepper, J. S., Blanco, R., Crane, M., Clarke, C. L., and Lin, J. (2018). Query
driven algorithm selection in early stage retrieval. In Proc. of WSDM.

135



Man, T., Shen, H., Jin, X., and Cheng, X. (2017). Cross-domain recommendation: An embed-
ding and mapping approach. In Proceedings of IJCAI.

Manotumruksa, J., Macdonald, C., and Ounis, I. (2017). A personalised ranking framework
with multiple sampling criteria for venue recommendation. In Proceedings of CIKM.

Manotumruksa, J., Macdonald, C., and Ounis, I. (2018). A contextual attention recurrent archi-
tecture for context-aware venue recommendation. In Proceedings of SIGIR.

Manotumruksa, J., Rafailidis, D., Macdonald, C., and Ounis, I. (2019). On cross-domain transfer
in venue recommendation. In Proceedings of ECIR.

Mao, K., Zhu, J., Xiao, X., Lu, B., Wang, Z., and He, X. (2021). Ultragcn: Ultra simplifica-
tion of graph convolutional networks for recommendation. In Conference on Information &

Knowledge Management, pages 1253–1262.

Martinez, M. and Stiefelhagen, R. (2018). Taming the cross entropy loss. In Proceedings of

DAGM.

Mauro, N., Ardissono, L., and Hu, Z. F. (2019). Multi-faceted trust-based collaborative filtering.
In Proceedings of UMAP.

Medsker, L. and Jain, L. C. (1999). Recurrent neural networks: design and applications. CRC
press.

Melville, P., Mooney, R. J., and Nagarajan, R. (2002). Content-boosted collaborative filtering
for improved recommendations. In Proceedings of AAAI.

Meng, Z., Liu, F., Shareghi, E., Su, Y., Collins, C., and Collier, N. (2022). Rewire-then-probe:
A contrastive recipe for probing biomedical knowledge of pre-trained language models. In
Proceedings of ACL.

Meng, Z., Liu, S., Macdonald, C., and Ounis, I. (2021). Graph neural pre-training for enhancing
recommendations using side information. arXiv preprint arXiv:2107.03936.

Meng, Z., McCreadie, R., Macdonald, C., Ounis, I., Liu, S., Wu, Y., Wang, X., Liang, S.,
Liang, Y., Zeng, G., et al. (2020). Beta-rec: Build, evaluate and tune automated recommender
systems. In Proceedings of the 14th ACM Conference on Recommender Systems, pages 588–
590.

Merris, R. (1994). Laplacian matrices of graphs: a survey. Linear algebra and its applications,
197:143–176.

Mohammad, H. R., Xu, K., Callan, J., and Culpepper, J. S. (2018). Dynamic shard cutoff
prediction for selective search. In Proc. of SIGIR.

136



Muruganandam, S. and Srininvasan, N. (2017). Personalised e-learning system using learner
profile ontology and sequential pattern mining-based recommendation. Int. J. Bus. Intell.

Data Min., 12(1):78–93.

Ning, X. and Karypis, G. (2011). Slim: Sparse linear methods for top-n recommender systems.
In Proceedings of ICDM.

Ning, X. and Karypis, G. (2012). Sparse linear methods with side information for top-n recom-
mendations. In Recommender Systems Conference, pages 155–162.

Noia, T. D., Ostuni, V. C., Tomeo, P., and Sciascio, E. D. (2016). Sprank: Semantic path-based
ranking for top-n recommendations using linked open data. ACM Transactions on Intelligent

Systems and Technology, 8.

Oord, A. v. d., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Palumbo, E., Rizzo, G., Troncy, R., Baralis, E., Osella, M., and Ferro, E. (2018). Translational
models for item recommendation. In Proceedings of ESWC.

Pan, E. and Kang, Z. (2021). Multi-view contrastive graph clustering. In Conference on Neural

Information Processing Systems.

Pang, B., Yang, M., and Wang, C. (2019). A novel top-n recommendation approach based on
conditional variational auto-encoder. In Pacific-Asia Conference on Knowledge Discovery &

Data Mining, pages 357–368.

Parambath, S. P., Anagnostopoulos, C., Murray-Smith, R., MacAvaney, S., et al. (2021). Max-
utility based arm selection strategy for sequential query recommendations. In Asian Confer-

ence on Machine Learning, pages 564–579. PMLR.

Park, D. H. and Chang, Y. (2019). Adversarial sampling and training for semi-supervised infor-
mation retrieval. In Proceedings of WWW.

Park, S., Kim, Y.-D., and Choi, S. (2013). Hierarchical bayesian matrix factorization with side
information. In International Joint Conference on Artificial Intelligence, pages 1593–1599.

Park, S.-T. and Chu, W. (2009). Pairwise preference regression for cold-start recommendation.
In Proceedings of the third ACM conference on Recommender systems, pages 21–28.

Paterek, A. (2007). Improving regularized singular value decomposition for collaborative filter-
ing. In Proceedings of KDD cup and workshop, volume 2007, pages 5–8.

Pazzani, M. J. and Billsus, D. (2007). Content-based recommendation systems. In The adaptive

web, pages 325–341. Springer.

137



Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). Efficient neural architecture search
via parameters sharing. In International conference on machine learning, pages 4095–4104.

Pinkus, A. (1999). Approximation theory of the mlp model in neural networks. Acta numerica,
8:143–195.

Puthiya Parambath, S. A. and Chawla, S. (2020). Simple and effective neural-free soft-cluster
embeddings for item cold-start recommendations. Data Mining and Knowledge Discovery,
34(5):1560–1588.

Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M., Wang, K., and Tang, J. (2020). Gcc:
Graph contrastive coding for graph neural network pre-training. In SIGKDD International

Conference on Knowledge Discovery & Data Mining, pages 1150–1160.

Quadrana, M., Cremonesi, P., and Jannach, D. (2018). Sequence-aware recommender systems.
ACM Computing Surveys (CSUR), 51(4):1–36.

Ramchoun, H., Idrissi, M. A. J., Ghanou, Y., and Ettaouil, M. (2016). Multilayer perceptron:
Architecture optimization and training. Journal of Interactive Multimedia and Artificial In-

telligence, 4.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., and Beaini, D. (2022). Recipe
for a general, powerful, scalable graph transformer. arXiv preprint arXiv:2205.12454.

Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using Siamese
BERT-networks. In Proceedings of EMNLP.

Rendle, S. (2010). Factorization machines. In IEEE International conference on data mining,
pages 995–1000.

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2009). Bpr: Bayesian
personalized ranking from implicit feedback. In Conference on Uncertainty in Artificial In-

telligence, pages 452–461.

Rendle, S., Krichene, W., Zhang, L., and Anderson, J. (2020). Neural collaborative filtering vs.
matrix factorization revisited. In Recommender Systems Conference, page 240–248.

Reynolds, D. A. (2009). Gaussian mixture models. Encyclopedia of biometrics, 741.

Ricci, F., Rokach, L., and Shapira, B. (2015). Recommender systems: introduction and chal-
lenges. In Recommender systems handbook, pages 1–34. Springer.

Robinson, J. D., Chuang, C.-Y., Sra, S., and Jegelka, S. (2020). Contrastive learning with hard
negative samples. In Proceedings of ICLR.

138



Rossi, E., Kenlay, H., Gorinova, M. I., Chamberlain, B. P., Dong, X., and Bronstein, M. (2021).
On the unreasonable effectiveness of feature propagation in learning on graphs with missing
node features. arXiv preprint arXiv:2111.12128.

Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. In-

formation processing & management, 24(5):513–523.

Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T., Merel, J., Riedmiller, M., Hadsell, R., and
Battaglia, P. (2018). Graph networks as learnable physics engines for inference and control.
In International Conference on Machine Learning, pages 4470–4479. PMLR.

Sanz-Cruzado, J., Castells, P., Macdonald, C., and Ounis, I. (2020). Effective contact recom-
mendation in social networks by adaptation of information retrieval models. Information

Processing & Management, 57(5).

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collaborative filtering
recommendation algorithms. In Proceedings of WWW.

Shen, Y., Wu, Y., Zhang, Y., Shan, C., Zhang, J., Letaief, B. K., and Li, D. (2021). How powerful
is graph convolution for recommendation? In Conference on Information & Knowledge

Management, pages 1619–1629.

Sifaoui, A., Abdelkrim, A., and Benrejeb, M. (2008). On the use of neural network as a universal
approximator. Int. J. Sci. Tech. Control Comput. Eng, 2:386–399.

Song, Y., Elkahky, A. M., and He, X. (2016). Multi-rate deep learning for temporal recommen-
dation. In Proceedings of SIGIR.

Sun, J., Zhang, Y., Ma, C., Coates, M., Guo, H., Tang, R., and He, X. (2019). Multi-graph
convolution collaborative filtering. In IEEE International Conference on Data Mining, pages
1306–1311.

Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., and Philip, S. Y. (2021). Hyperbolic
variational graph neural network for modeling dynamic graphs. In Proceedings of the AAAI

Conference on Artificial Intelligence, pages 4375–4383.

Tang, J., Hu, X., and Liu, H. (2013). Social recommendation: a review. Social Network Analysis

and Mining, 3(4):1113–1133.

Tang, J., Wu, S., Sun, J., and Su, H. (2012). Cross-domain collaboration recommendation. In
Proceedings of SIGKDD.

Thorat, P. B., Goudar, R. M., and Barve, S. (2015). Survey on collaborative filtering, content-
based filtering and hybrid recommendation system. International Journal of Computer Ap-

plications, 110(4):31–36.

139



Tishby, N., Pereira, F. C., and Bialek, W. (2000). The information bottleneck method. arXiv

preprint physics/0004057.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Key-
sers, D., Uszkoreit, J., Lucic, M., et al. (2021). Mlp-mixer: An all-mlp architecture for vision.
In Proc. of NeurIPS.

Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong, X., and Bronstein, M. M. (2021).
Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint

arXiv:2111.14522.

Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-Nouby, A., Grave, E., Izacard, G., Joulin,
A., Synnaeve, G., Verbeek, J., et al. (2021). Resmlp: Feedforward networks for image classi-
fication with data-efficient training. arXiv preprint arXiv:2105.03404.

Tran, V.-A., Hennequin, R., Royo-Letelier, J., and Moussallam, M. (2019). Improving collabo-
rative metric learning with efficient negative sampling. In Proceedings of SIGIR.

Valcarce, D., Landin, A., Parapar, J., and Barreiro, Á. (2019). Collaborative filtering embeddings
for memory-based recommender systems. Engineering Applications of Artificial Intelligence,
85.

van den Berg, R., Kipf, T. N., and Welling, M. (2017). Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine

Learning Research, 9.

Van Engelen, J. E. and Hoos, H. H. (2020). A survey on semi-supervised learning. Machine

Learning, 109(2).

Vashishth, S., Sanyal, S., Nitin, V., and Talukdar, P. (2020). Composition-based multi-relational
graph convolutional networks. In International Conference on Learning Representations.

Vasile, F., Smirnova, E., and Conneau, A. (2016). Meta-prod2vec: Product embeddings using
side-information for recommendation. In Recommender Systems Conference, pages 225–232.
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