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Abstract

There are two main goals of this thesis. The first is developing our so-called ‘downsam-

pling’ procedure: an approximation technique for reproducing the likelihood function (in

simulation) in relatively short time, of the sort of signals we expect to observe with the

LISA Gravitational Wave (GW) detector, such as the inspiral part of binary black-hole

mergers. The procedure is tested on a variety of signals and shown to provide highly

accurate reproductions of the likelihood function up to a few thousand times faster than

our estimates of convergence time considering the fastest type of analysis one could per-

form (frequency domain, stationary noise) using all the data points.

The second goal is to understand the features and effectiveness of using multi-band

GW data in data analysis, in particular on expansion of the signal model to include an-

ticipated physical effects that modify the low-frequency part of the waveform, such as

acceleration and relativistic time-delays. In addition, we extend the model to cover two

well-knownmodified gravity theories, to test the assertion thatmulti-bandGWdata anal-

ysis will provide strong theory constraints. Since the degree to which the various time-

delays (which have their own parameter space) modify the waveform ranges from being

negligible to significant and essential to model, we devise a formalism for splitting the

time-delay parameter space into distinct regions that either fully model, ‘dimensionally

reduce’, or neglect the time-delays from the model. The advantages of doing this are that

one acquires posteriors that are considerably more informative, since the waveform is

not being ‘over-modelled’.

The posteriors we obtain confirmwhat one would expect to see (particularly in terms

of parameter degeneracies) after considering and comparing the effects on the GWphase

that arise from varying different combinations of parameters. In the fully modelled re-

gion, it is possible to recover well-constrained time-delay parameters (i.e., the Keplerian

orbital parameters, including supermassive black hole mass), but it is very difficult to
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derive general results about the expected behaviours of posteriors since the time-delay

functions are complicated functions of time. The behaviour of posteriors of the ‘param-

eter reduced’ models are far easier to predict and understand, but the new parameters

are relegated to nuisance parameters. The modified gravity theories we analyse are not

well-constrained simply by multi-band observations alone; very high SNR appears to be

themore important factor, but even then, different aspects of the nature of the waveform

modifications (depending on the theory) can lead to significant bias, or render the effects

too weak for GW astronomy to provide any useful constraints.

By inspecting one-parameter families of posterior distributions (treating the posteri-

ors as functions of some model parameter or signal property) and observing their struc-

tural evolution as that parameter is varied, we uncover and discuss some interesting fea-

tures and behaviours of the distributions. Topics for future study are highlighted and

include extensions and refinements of the waveform, population, and detector models,

further studies of the Kepler parameter space division scheme, and posterior sampling

issues to be addressed.
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Introduction

As a functional scientific pursuit, gravitationalwave (GW) astronomy is in its early stages.

With the first confirmed detection (and still one of the most widely used model exam-

ples) of a GW event occurring only a few years ago in late 2015 (named GW150914), this

relatively new endeavour received an enormous burst of energy and excitement, not to

mention financial support, and we are witnessing its burgeoning into a hugely popular

and influential field of research. The excitement is appropriate; the great potential of

using GWs to measure many physical phenomena and to understand nature in regimes

that would otherwise have remained mysterious (perhaps forever) suddenly became a

reality. Apart from this, the validity of our current best theory of gravity, general rela-

tivity (GR), to some degree relied on such detections; the existence of GWs is of course

predicted by the theory. Moreover, the GR waveform itself agreed with predictions to

within the error margins imposed by the detector [1]. Prior to this first direct detection,

evidence for GWs was scarce; perhaps the best hope of finding GWs was carried by ob-

servations of theHulse-Taylor binary system [2] discovered in 1974, which was shown to

contain a pulsar producing a signal consistent with an orbital decay, precisely matching

that expected due to the emission of GWs in GR. The detection of GW150914 proved that

the universe admits GWs, and thus that we have access to a means of further examining

theories of gravity and of matter fields, and probing extreme physical conditions and re-

gions of the universe, such as its earliest moments, strong gravity conditions, and indeed

the very properties of matter fields and of spacetime itself.

So far, we have detected ∼100 confirmed GW events with the Laser Interferometer

Gravitational-Wave Observatory (LIGO) and Virgo detectors [3] based on the ground.

Concepts and plans for future observatories and other novelmethods formeasuringGWs

abound, some of which will be detailed in this thesis. One detector of particular interest,

for a number of reasons, but not least because its mission is confirmed [4] is the Laser
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Interferometer Space Antenna (LISA), a space-borne observatory planned to launch and

commence operations in 2037. LISA will open up a new, low-frequency bandwidth to

observation, which promises to unveil exquisitely detailed recordings of low-frequency

GWs from high-mass systems, and to give unprecedented constraints on theories of grav-

ity, cosmology, conditions at the big-bang and topological defects. There is also scope to

measure, with a somewhat less clear but still very informative set of data, relatively low-

mass systems, allowing tests of a wide range of hypotheses including measuring the cos-

mic expansion rate, lensing studies and testing dark matter theories, binary formation

scenarios, informing galaxy structure models, as well as precision parameter estimation

of ‘ordinary’ binary systems, which will also help to constrain population models. For

the present investigation, this low-mass regime is the focus of the LISA dataset.

This thesis presents new results in the field of multi-band GW astronomy, making

precise some of the expectations of data analysis and parameter estimation in future

eras where detector networks consist of both ground, and space-based (high, and low-

frequency, respectively) GW detectors. Analysing LISA (compact binary) data is gener-

ally prohibitively computationally expensive (as shall be discussed in detail in this the-

sis) so previous studies (see Chapter 3 and references therein) have used approximation

techniques or formalisms to investigate these expectations1. In order to deal with this

problem here (and to examine the quality of approximation techniques already in use)

we first introduce a newmethod of approximation by which to, relatively rapidly, define

a posterior probability distribution in very close resemblance to that which we should

expect to derive from real LISA data, at least for the broad class of signals we are focused

on in this thesis (compact binary coalescences).

After introductory material in Chapters 1 & 2, the definition and testing of the down-

sampling procedure is presented in Chapter 3. The remaining original work details some

of themore notable findings that have been discovered by employing this tool, especially

in the context of multi-band GW astronomy. In particular, we investigate the compara-

tive feasibility of detector networks of various strain sensitivities in their abilities to con-

strain source parameters of a given signal. In Chapter 4, we begin to expand the param-
1It is probably worth briefly remarking that many problems presently being studied in the field of GW

astronomy, including those tackled in this thesis, are sufficiently highly structured that ‘simple’, closed-

form solutions of exact problems are rarely afforded, and we are more or less bound to the necessity of

investigating and solving those problems by numerical methods.
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eter space defining multi-band signals by considering a binary, modelled itself as a point

source emitter, in orbit around a supermassive black-hole. Supermassive black-holes are

generally to be found at the centres of galaxies, which cause the nearby environment

to become relatively crowded with stellar objects [5]; binaries are therefore expected to

form there and these signals may be present in the LISA dataset.

Additionally, we present results on the analysis of two modified gravity theories, to

test the claim that multi-band GW data analysis will provide particularly stringent tests

of General Relativity; the theoretical background is introduced in Chapter 5. Before we

examine the posteriors for these systems, an overview of the data analysis framework

and all of the adopted approximations/assumptions is given in Chapter 6. The results of

multi-band GW data analysis of non-accelerated/non-time-delayed systems is provided

with discussion in Chapter 7, with some interesting behaviour of posteriors pointed out.

Results for the time-delayed systems are given in Chapter 8, including confirmations of

the predictions of Chapter 4 on when these orbital parameters can be recovered from the

signal, when they cannot be recovered but must be modelled (at least approximately),

and when they can be neglected. A summary of the thesis is given in Chapter 9.
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Chapter1
VacuumWave Solutions in GR

1.1 Theoretical foundations

It was found soon after the development of GR in 1915 that the vacuum Einstein field

equations (EFEs) appeared to admit wave solutions for the metric [6, 7], referred to as

GWs. There is a complicated and interesting story behind these early attempts at for-

mulating a rigorous approach to understanding and confirming the existence of vacuum

waves, a nice account of which can be found in Ref. [8]. The diffeomorphism invariance

of the theory, not being so well understood at the time, caused a high degree of suspicion

regarding the authenticity of wavelike propagation of the gravitational field; for example,

one can often find a coordinate chart that comoves with the propagating waves in which

the spacetime appears to be flat, or, conversely, produce a ‘wavy’ coordinate system on

a flat spacetime, apparently demonstrating gravitational waves where in fact there are

none.

Determining the correct perspective for describing the physical reality of the wave

solution (with which to confirm or deny the existence of GWs) would require fresh in-

sights. In 1952, Choquet-Bruhat’s seminal work on the Cauchy problem in GR showed

that if one has some initial data set (ℋ, 𝑔̄,𝒦) and an embedding 𝑓 ∶ ℋ → ℳ, for (semi-

Riemannian) manifoldℳ with metric 𝑔, spacelike 3-manifold ℋ with induced metric

𝑔̄, and where 𝒦 is a smooth tensor field (the second fundamental form of 𝑓) onℋ that

satisfies the ‘vacuum constraint equations’ [9] (whereby the initial data set is said to be

a vacuum initial data set), then (ℳ, 𝑔) is its unique development, and is such that 𝑔 has
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1. VACUUMWAVE SOLUTIONS IN GR

vanishing Ricci curvature. That is, the (globally hyperbolic, and thus well-behaved) de-

velopment (ℳ, 𝑔) is a unique vacuum solution of the EFEs of which 𝑓(ℋ) is a Cauchy

surface [10]. Thus Choquet-Bruhat’s work was the first to demonstrate that local solu-

tions of vacuum spacetimes both exist and are unique; it follows immediately that GWs

are real physical phenomena in GR, in a setting in which the gravitational field propa-

gates at a finite speed [11]. This result was applicable to the local case of existence and

uniqueness, and was extended to the global case (where there exists a unique maximal

development) by Geroch and Choquet-Bruhat in 1969 [12]; Dafermos goes as far as refer-

ring to this theoremof uniqueness of the global development as the fundamental theorem

of General Relativity [13].

Pirani formulatedwave solutions in terms of the physicallymeasurable Riemann cur-

vature tensor in 1956 [14], finally removing remaining doubts about the existence of po-

tentially observable GWs that propagate at the speed of light in GR, that had persisted

after Einstein constructed rigorous cylindrical wave solutions in 1937 with his long-time

collaborator Rosen [15]. Pirani’s work was important for studying GWs because of this,

and because of the practical coordinate system that he used and thought experiment

posed, which showed test particles could physically be moved in space by the effect of

passing GWs [16]. We now understand this motion very well for planar waves, which in-

forms GW detector design as we shall see. The metric is a rank-2 symmetric tensor field,

which, for waves propagating at the speed of light, gives rise to two degrees of freedom

manifest in the two GW polarisations that shall also shortly be derived. These properties

of the metric give rise to the fact that, in a hypothetical quantum field theory for gravity,

the quanta known as gravitons are excitations of a (ordinarily massless) spin-2 field, de-

riving from the 𝜋-rotational symmetry of the polarisation states. The two polarisations

are conventionally called the “plus” and “cross” polarisations, since one can choose a par-

ticularly useful gauge in which the GW is decomposed into two independent parts, one

of which alternately dilates and contracts space in a “horizontal” and “vertical” direction

in a plane with normal vector in the direction of the wave (evoking a ‘plus’ pattern, +)

and the other which does so along the two ‘diagonals’ in that plane (evoking a ‘cross’

pattern, ×). The understanding of these components is often aided by portraying their

effects on a ring of test particles, as can be seen in Figures 1.1 and 1.2. We now step

through the modern derivation of the GR wave equation.
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1. VACUUMWAVE SOLUTIONS IN GR

1.2 Wave equation in GR

We now derive the wave equation in linearised gravity. The EFEs are (neglecting a pos-

sible cosmological constant):

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 𝜅𝑇𝜇𝜈 , (1.1)

where 𝑅𝜇𝜈 is the Ricci tensor, 𝑔𝜇𝜈 is themetric tensor, 𝑅 ≡ 𝑅𝜇𝜈𝑔𝜇𝜈 is the Ricci scalar, 𝑇𝜇𝜈 is

the stress-energy tensor, and 𝜅 is Einstein’s constant.

The Ricci tensor is the contraction 𝑅𝜇𝜈 ≡ 𝑅𝜎𝜇𝜎𝜈 of the Riemann tensor, 𝑅
𝜌
𝛼𝜎𝛽, which

is defined in terms of the Christoffel symbols (these are the Levi-Civita connection coeffi-

cients)

Γ𝜌𝛼𝛽 =
1

2
𝑔𝛿𝜌

(
𝜕𝛼𝑔𝛿𝛽 + 𝜕𝛽𝑔𝛿𝛼 − 𝜕𝛿𝑔𝛼𝛽

)
, (1.2)

as

𝑅𝜌𝛼𝜎𝛽 ≡ 𝜕𝜎Γ
𝜌
𝛼𝛽 − 𝜕𝛽Γ

𝜌
𝛼𝜎 + Γ𝛿𝛼𝛽Γ

𝜌
𝛿𝜎 − Γ𝛿𝛼𝜎Γ

𝜌
𝛿𝛽 . (1.3)

This rank-4 tensor field mediates parallel transport of data around the spacetime and

encodes local curvature by measuring the degree to which second covariant derivatives

fail to commute (i.e., deviate from flat spacetime).

The EFEs are a set of non-linear, second-order, hyperbolic partial differential equa-

tions in the metric (sourced, in general) and are notoriously extremely difficult to solve.

A pragmatic approach of finding vacuum GW solutions is to study their linearised form

by considering small perturbations from flat spacetime, which significantly reduces the

difficulty (we shall discuss how this simplification is often reasonable in realistic situa-

tions in the following subsections). A nice discussion of amore technically rigorous (less

prone to misinterpretations regarding the gauge invariance) viewpoint1 can be found in

Ref. [17]. We shall take a more pedestrian approach here since we only require a deriva-

tion of the linearised wave equations. We begin then by taking the deviation from flat

spacetime to be very small, where, given a basis, one may write the metric components

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 , (1.4)

where 𝜂𝜇𝜈 ≡ diag(−1, 1, 1, 1) is the metric on Minkowski spacetime, and the |ℎ𝜇𝜈| ≪ 1.

Thus any second-degree (or higher) terms in the metric and its derivatives only contain
1One can formulate solutions by considering a diffeomorphism and corresponding pull-back on tensors

between a physical spacetime and a background spacetime.
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1. VACUUMWAVE SOLUTIONS IN GR

relatively significant contributions at first-order in ℎ𝜇𝜈, i.e. the field equations shall be

effectively linearised, as we will see.

The connection coefficients are now given by

Γ𝜌𝛼𝛽 =
1

2
𝜂𝛿𝜌

(
𝜕𝛼ℎ𝛿𝛽 + 𝜕𝛽ℎ𝛿𝛼 − 𝜕𝛿ℎ𝛼𝛽

)
+ 𝒪(ℎ2) , (1.5)

and the Riemann tensor can be written

𝑅𝜌𝛼𝜎𝛽 ≡
1

2

(
𝜕𝛼𝜕𝜎ℎ

𝜌
𝛽 − 𝜕𝜌𝜕𝜎ℎ𝛼𝛽 + 𝜕𝜌𝜕𝛽ℎ𝛼𝜎 − 𝜕𝛼𝜕𝛽ℎ

𝜌
𝜎

)
+ 𝒪(ℎ2) . (1.6)

The Ricci tensor is then

𝑅𝜇𝜈 =
1

2

(
𝜕𝛼𝜕𝜇ℎ𝛼𝜈 + 𝜕𝛼𝜕𝜈ℎ𝛼𝜇 −□ℎ𝜇𝜈 − 𝜕𝜇𝜕𝜈ℎ

)
+ 𝒪(ℎ2) , (1.7)

where ℎ ≡ 𝜂𝜇𝜈ℎ𝜇𝜈 and □ = 𝜕𝜇𝜕𝜇 is the (flat space) d’Alembertian. The Ricci scalar

becomes

𝑅 = 𝜕𝜇𝜕𝜈ℎ𝜇𝜈 −□ℎ + 𝒪(ℎ2) , (1.8)

Bringing this all together into (1.1) and dropping𝒪(ℎ2) terms, we arrive at the ‘linearised

EFEs’, given by:

𝜕𝛼𝜕𝜇ℎ𝛼𝜈 + 𝜕𝛼𝜕𝜈ℎ𝛼𝜇 −□ℎ𝜇𝜈 − 𝜕𝜇𝜕𝜈ℎ − 𝜂𝜇𝜈𝜕𝛼𝜕𝛽ℎ𝛼𝛽 + 𝜂𝜇𝜈□ℎ = 2𝜅𝑇𝜇𝜈 . (1.9)

Let the trace-reversedmetric perturbation be defined as

ℎ̄𝜇𝜈 = ℎ𝜇𝜈 −
1

2
𝜂𝜇𝜈ℎ , (1.10)

so-called since ℎ = −ℎ̄, in terms of which equation (1.9) becomes

□ℎ̄𝜇𝜈 + 𝜂𝜇𝜈𝜕𝛼𝜕𝛽ℎ̄𝛼𝛽 − 𝜕𝛼𝜕𝜈ℎ̄𝜈𝛼 − 𝜕𝛼𝜕𝜇ℎ̄𝜈𝛼 = −2𝜅𝑇𝜇𝜈 . (1.11)

Now there is some residual gauge freedom (the choice of a coordinate system) that can

be put to very good use. First, note the tensor transformation law, which, for a tensor 𝑆

may be expressed as

𝑆𝜇𝜈(𝑥′) =
𝜕𝑥𝛼

𝜕𝑥′𝜇
𝜕𝑥𝛽

𝜕𝑥′𝜈
𝑆𝛼𝛽(𝑥) , (1.12)

and consider the coordinate transformation

𝑥𝜇 → 𝑥′𝜇 = 𝑥𝜇 + 𝜉𝜇(𝑥) , (1.13)
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1. VACUUMWAVE SOLUTIONS IN GR

for vector field 𝜉𝜇 with 𝒪(𝜉) ∼ 𝒪(ℎ), under which, to 𝒪(𝜉),

𝑔𝜇𝜈(𝑥) → 𝑔′𝜇𝜈(𝑥) ≡ 𝑔𝜇𝜈(𝑥′) = 𝑔𝜇𝜈(𝑥) − (𝜕𝜇𝜉𝜈 + 𝜕𝜈𝜉𝜇)

⇒ ℎ𝜇𝜈(𝑥) → ℎ𝜇𝜈(𝑥) − (𝜕𝜇𝜉𝜈 + 𝜕𝜈𝜉𝜇) , (1.14)

and thus the trace-reversed metric perturbation transforms as

ℎ̄𝜇𝜈(𝑥) → ℎ̄′𝜇𝜈(𝑥) ≡ ℎ̄𝜇𝜈(𝑥′) = ℎ̄𝜇𝜈(𝑥) − (𝜕𝜇𝜉𝜈 + 𝜕𝜈𝜉𝜇 − 𝜂𝜇𝜈𝜕𝜌𝜉𝜌) . (1.15)

We are now in a position to begin fixing the gauge. Note that

𝜕𝜈ℎ̄𝜇𝜈(𝑥) → (𝜕𝜈ℎ̄𝜇𝜈)′(𝑥) ≡ 𝜕𝜈ℎ̄𝜇𝜈(𝑥′) = 𝜕𝜈ℎ̄𝜇𝜈(𝑥) −□𝜉𝜇(𝑥) . (1.16)

The freedom in the vector field 𝜉 allows us to apply the de Donder gauge condition in the

new, primed coordinates: a choice of 𝜉 such that

(𝜕𝜈ℎ̄𝜇𝜈)′ = 0 , (1.17)

by fixing the□𝜉𝜇 = 𝜕𝜈ℎ̄𝜇𝜈. Thus expressing the linearised field equations (1.11) in the

new coordinates, gauge fixed using the de Donder condition leads to the simple set of

equations

□ℎ̄′𝜇𝜈 = −2𝜅𝑇′𝜇𝜈 , (1.18)

which has reduced the original ten degree of freedom (DOF)s in the EFEs to six. Thus

in vacuum, these equations reduce to

□ℎ̄′𝜇𝜈 = 0 , (1.19)

a set of wave equations for the gravitational field, describing waves propagating at the

speed of light.

For plane GWs, there is remaining gauge freedom that may be exploited to further

simplify the expression of the metric however, for a given GW propagation direction. To

do this, suppose now that the vector field

𝜉𝜇 = 𝜉1𝜇 + 𝜉2𝜇 , (1.20)

where the vector fields 𝜉1,2 are individually 𝒪(ℎ) and where□𝜉𝜇 = □𝜉1𝜇 = 𝜕𝜈ℎ̄𝜇𝜈, with

□𝜉2𝜇 = 0; the de Donder gauge condition still holds. The vector field 𝜉1 thus satisfies
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1. VACUUMWAVE SOLUTIONS IN GR

a wave equation sourced by the divergence of ℎ̄𝜇𝜈, and 𝜉2 satisfies an unsourced wave

equation. Now define

𝐴1,2
𝜇𝜈 ≡ 𝜕𝜇𝜉

1,2
𝜈 + 𝜕𝜈𝜉

1,2
𝜇 − 𝜂𝜇𝜈𝜕𝛼(𝜉1,2)𝛼 . (1.21)

Then inserting (1.20) and (1.21) into (1.15), we can write

ℎ̄′𝜇𝜈(𝑥) = ℎ̄𝜇𝜈(𝑥) − 𝐴1
𝜇𝜈(𝑥) − 𝐴2

𝜇𝜈(𝑥) . (1.22)

The (flat space) d’Alembertian and the partials 𝜕𝜈 commute, and since□𝜉2𝜇 = 0, we have

that

□𝐴2
𝜇𝜈 = 0 , (1.23)

so that (1.19) continue to hold. However, wemay now impose four further conditions on

ℎ̄′𝜇𝜈 using the four arbitrary components of 𝜉2. In particular, 𝜉2 can be chosen to set the

metric perturbation in the so-called transverse-traceless gauge, which shall be explained

in further detail after the following description of the transformation.

The first step in achieving this gauge is choosing 𝜉20 such that ℎ̄′𝜇𝜈 is traceless. Hence

we demand

0 = ℎ̄′ = 𝑔′𝜇𝜈ℎ̄′𝜇𝜈 = ℎ̄ − 𝐴1 + 𝐴2
00 −

𝑖∑

1,2,3

𝐴2
𝑖𝑖 + 𝒪(ℎ2)

⇒ 𝐴2
00 = 𝜕0𝜉20 −

𝑖∑

1,2,3

𝜕𝑖𝜉2𝑖 = 𝐴1 +
𝑖∑

1,2,3

𝐴2
𝑖𝑖 − ℎ̄ + 𝒪(ℎ2) . (1.24)

where 𝐴1 = 𝑔′𝜇𝜈𝐴1
𝜇𝜈. But note that

𝑖∑

1,2,3

𝐴2
𝑖𝑖 = 3𝜕0𝜉20 −

𝑖∑

1,2,3

𝜕𝑖𝜉2𝑖 , (1.25)

so that to 𝒪(ℎ) we have

−2𝜕0𝜉20 = 𝐴1 − ℎ̄

𝜉20 = − 1

2
∫ d𝑥0

(
𝐴1 − ℎ̄

)
. (1.26)

The next step is to choose the remaining 𝜉2𝑖 such that ℎ̄
′
0𝑖 = 0. Using (1.22), we set

0 = ℎ̄0𝑖 − 𝐴1
0𝑖 − 𝜕0𝜉2𝑖 − 𝜕𝑖𝜉20

⇒ 𝜉2𝑖 = ∫ d𝑥0
(
ℎ̄0𝑖 − 𝐴1

0𝑖 − 𝜕𝑖𝜉20
)
.
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1. VACUUMWAVE SOLUTIONS IN GR

After having demanded that ℎ̄′ = 0, we have ℎ̄′𝜇𝜈 = ℎ′𝜇𝜈, so from (1.17) we obtain

𝜕0ℎ′00 + 𝜕𝑖ℎ′0𝑖 = 𝜕0ℎ′00 = 0 , (1.27)

since we chose the 𝜉2𝑖 such that ℎ̄
′
0𝑖 = ℎ′0𝑖 = 0. Then ℎ′00 = const., which we can set equal

to zero for convenience because we are only interested in the time dependent part of the

solution (a non-zero valuewould correspond to the static Newtonian potential). We have

thus arrived at the transverse traceless (TT) gauge. Now that we have completed all the

coordinate transformations, let us drop the primes, and write the metric perturbation in

the TT gauge as ℎTT𝜇𝜈 . In this gauge, all of ℎ0𝜇 = 0, the trace ℎ = 0, and the de Donder

gauge condition reduces to 𝜕𝑖ℎ𝑖𝑗 = 0.

A useful set of solutions to equations (1.19) are the well-known plane wave solutions,

with which one can write the TT gauge metric perturbation as

ℎTT𝜇𝜈 (𝑥) = 𝑝𝜇𝜈(𝐤)𝑒𝑖𝑘𝛼𝑥
𝛼 , (1.28)

where the𝑝𝜇𝜈 are constants thatwe refer to as the polarisation tensor, which is dependent

on 𝑘𝜇 = (−𝜔, 𝐤), the wave vector, 𝜔 = |𝐤| =
√
𝛿𝑖𝑗𝑘𝑖𝑘𝑗 is the frequency of the wave, and

noting that we will take the real part in the end. Inserting those solutions into (1.19)

gives

0 = □ℎTT𝜇𝜈 = □𝑝𝜇𝜈(𝐤)𝑒𝑖𝑘𝛼𝑥
𝛼 = 𝜂𝜌𝜎𝜕𝜌𝜕𝜎𝑝𝜇𝜈𝑒𝑖𝑘𝛼𝑥

𝛼 = −𝑘𝜎𝑘𝜎ℎTT𝜇𝜈 , (1.29)

so that for any non-trivial solution where ℎTT𝜇𝜈 are not all everywhere zero, we must have

𝑘𝜎𝑘𝜎 = 0, that is, the wave vector 𝑘 is null and propagates at the speed of light.

Now if we choose, per convention, a wave vector 𝑘𝜇 = (𝜔, 0, 0, 1), i.e., a solution

of plane waves propagating along the ‘𝑧-axis’, then 𝑒𝑖𝑘𝛼𝑥𝛼 = 𝑒𝑖𝜔(𝑡−𝑧) and the condition

0 = 𝜕𝑗ℎTT𝑗𝑙 = −𝑖𝑘𝑗ℎTT𝑗𝑙 sets all of ℎ
TT
3𝜇 = 0. Then tracelessness and symmetry of ℎTT𝜇𝜈 allows

only two independent components of the polarisation tensor/metric perturbation that

we call ℎ+ and ℎ×, which, after taking the real part, reads

ℎTT𝜇𝜈 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 ℎ+ ℎ× 0

0 ℎ× −ℎ+ 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

cos (𝜔(𝑡 − 𝑧)) . (1.30)

The TT gauge metric perturbation solution for this particular wave vector therefore

has two DOFs only. In the linear regime, the gravitational field is decoupled from itself
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𝜔𝑡 = 𝜋∕2 𝜔𝑡 = 𝜋 𝜔𝑡 = 3𝜋∕2 𝜔𝑡 = 2𝜋

𝑥

𝑦

Figure 1.1: “Plus”-polarisation effect of a GWpropagating into the page on a ring of test particles for 𝑧 = 0

(for positive constant ℎ+).

and one is allowed to superpose other solutions, each with their own two DOFs and

polarisation tensors. Formultiple solutionswith the samewave vector, one can therefore

generate more interesting waveforms, for example, as one does with a Fourier series.

The TT gauge thus gives a particularly simple representation of a linearised plane wave

solution, in which the GW is a perturbation of the metric acting on space transversely to

its direction of propagation, and in which the perturbation is traceless.

We can now see wherefrom the ‘+’ and ‘×’ labelling convention arises by applying

the above metric perturbation to a ring of test particles resting in the 𝑥𝑦-plane at some

fixed 𝑧 as one varies 𝑡; we see that ℎTT𝑥𝑥 sinusoidally expands and contracts space in the

𝑥-direction over time, where ℎTT𝑦𝑦 simultaneously acts in the opposite manner on the 𝑦-

direction. This introduces a characteristic ‘plus’ type oscillation, as viewed in the 𝑥𝑦-

plane, to the ring of test particles as portrayed in Figure 1.1. For the off-diagonal com-

ponents on the other hand, the metric perturbation describes a simultaneous ‘shear’ of

the 𝑥-direction of space in the 𝑦-direction by ℎTT𝑥𝑦 along with a shear of the 𝑦-direction of

space in the 𝑥-direction by ℎTT𝑦𝑥 . The net result of the two oscillating shears is contraction

and expansion, like the ‘+’ mode, but rotated in the 𝑥𝑦-plane by an angle of 1

4
𝜋 as in

Figure 1.2

1.3 Sources of GWs

In GR, the metrics are solutions of the EFEs given in (1.1). Similarly, in linearised GR,

the metric perturbations are solutions of the linearised EFEs in (1.18). The EFEs are

a relationship between two objects defined on a spacetime: the metric tensor and the
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𝜔𝑡 = 𝜋∕2 𝜔𝑡 = 𝜋 𝜔𝑡 = 3𝜋∕2 𝜔𝑡 = 2𝜋

𝑥

𝑦

Figure 1.2: “Cross”-polarisation effect on ring of test particles at 𝑧 = 0.

stress-energy tensor. Ordinarily one takes some stress-energy tensor (defined perhaps

everywhere on the manifold or just on a Cauchy surface) then goes about trying to solve

for some (set of) solutions for the metric satisfying the EFEs. Conversely, one could

just as well choose a metric and see which, if any, stress-energy tensors satisfy the EFEs

(along with covariant energy conservation). In GW science we are of course interested

in those solutions that exhibit GWs. One of the things we would like to know is the part

of the solution that is well approximated by the linearised GRwave equations we derived

above, and in particular which is generated by some ‘localised’ source. The source of a

GW is generally meant to refer to a relatively isolated system of mass or curvature, in a

particular region of the universe in which the dynamics are not significantly affected by

conditions outside that region. In astronomy and astrophysics, one is often interested in

isolated systems that evolve on relatively short timescales, independent of ‘cosmic time’.

We shall now briefly describe ameans of generatingGWs bymass acceleration in Section

1.3.1, then point out a commonly used classification of GWs in Section 1.3.2.

1.3.1 GWs from accelerated mass

The EFEs were originally sought and found by Einstein with the intention of having the

spacetime curvature sourced by matter, but it has turned out that the vacuum part of

spacetime has a complicated life of its own. There are very interesting properties that

can be found in the pure vacuum region, notably the recent results of Christodoulou,

Klainerman, Rodnianski and others [18, 19] showing that, given certain initial vacuum

data, a closed, trapped surface can arise; this results in a gravitational curvature singular-

ity as a result of the singularity theorem of Penrose [20], i.e., formation of a black-hole.

In other words, those results say that starting purely from ‘GWs in vacuum’, the GWs
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can propagate such that they focus in a region (under certain constraints as detailed in

the references), whereby a black-hole can form directly out of the GWs. Non-charged

black-hole spacetimes are Kerr spacetimes, which take two parameters, which we call

themass and spin of the black-hole. From an outside observer’s viewpoint, a black-hole

formed fromGWs can, for all intents and purposes, appear completely indistinguishable

from one formed from the collapse of matter (although whether this is generally true

in fact depends on the so-called no-hair theorem; the idea that the only information an

astrophysically formed black-hole spacetime contains are the two aforementioned pa-

rameters), which the GW community are presently attempting tests of [21] and hope to

be able to shed more light on in the decades to come. Nevertheless, such black-holes

constitute isolated systems of curvature, and may comprise one or both members of a

pair of compact bodies that itself could be a source of GWs (see Section 1.3.2.1).

With this caveat pointed out, we will now focus on the more grounded and familiar

usage of the EFEs, which is considering an ordinary matter distribution as the source

of GWs. It is less enlightening to derive the dependence of the metric perturbation on

the mass distribution as it is to see the derivation of the metric perturbation itself, so we

refer the interested reader to [22] for those details and provide a brief summary here.

The sourced, linear EFEs are given in (1.18), with which one can deduce that the metric

perturbation is given by:

ℎ̄𝜇𝜈(𝑡, 𝐱) = 4 ∫ d3𝑥′
𝑇𝜇𝜈(𝑡 − |𝐱 − 𝐱′|, 𝐱′)

|𝐱 − 𝐱′|
, (1.31)

where𝑇𝜇𝜈 is taken to be the stress-energy tensor in theNewtonian limit, i.e. where the ve-

locity of matter particles/fluid elements 𝑣∕𝑐 ≪ 1, such that the linearised field equations

hold. For astrophysical sources, we can simplify this further by restricting valid solutions

to hold only in regions at large distances 𝑟 from the source, where |𝐱 − 𝐱′| ≈ |𝐱| = 𝑟.

Further recasting of the stress-energy tensor allows the above integrand to be written

in terms of a time derivative term, and some spatial divergence terms that can be seen

to vanish by applying the divergence theorem, taking the boundary of the integration

region outside of the source. One is then left with

ℎ̄𝑖𝑗(𝑡, 𝐱) = 2
𝑟
d2

d𝑡2
∫ d3𝑥′ 𝑇𝑡𝑡(𝑡 − 𝑟, 𝐱′)𝑥′𝑖𝑥′𝑗 . (1.32)

Defining the projection tensor

𝑃𝑖𝑗(𝐧) ≡ 𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗 , (1.33)
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where 𝐧 is the local direction of propagation, we can project the ℎ̄𝑖𝑗 onto the local TT

gauge. That is, we can write our wave vector 𝑘𝜇 = (𝜔, 𝐧), so that for propagation along

the 𝑧-axis, 𝐧 = (0, 0, 1). We obtain the TT gauge solution firstly by projecting perpendic-

ularly to 𝐧 to leave transverse components, thus

ℎ̄T𝑖𝑗 ≡ ℎ̄𝑘𝑙𝑃𝑖𝑘𝑃𝑗𝑙 , (1.34)

then ensuring the trace vanishes, thus

ℎTT𝑖𝑗 = ℎ̄TT𝑖𝑗 ≡ ℎ̄T𝑖𝑗 −
1

2
ℎ̄𝑘𝑙𝑃𝑖𝑗𝑃𝑘𝑙 = ℎ̄𝑘𝑙(𝑃𝑖𝑘𝑃𝑗𝑙 −

1

2
𝑃𝑖𝑗𝑃𝑘𝑙) . (1.35)

One often defines the second moment of the mass distribution from (1.32) as

𝐼𝑖𝑗(𝑡, 𝐱) ≡ ∫ d3𝑥′ 𝑇𝑡𝑡(𝑡 − 𝑟, 𝐱′)𝑥′𝑖𝑥′𝑗 , (1.36)

and the quadrupole moment tensor as

ℐ𝑖𝑗 ≡ 𝐼𝑖𝑗 −
1

3
𝛿𝑖𝑗𝐼 , (1.37)

where 𝐼 ≡ 𝐼𝑖𝑗𝛿𝑖𝑗. The TT gauge metric perturbation can then be written in terms of the

transverse traceless part of the quadrupole moment tensor as

ℎTT𝑖𝑗 (𝑡, 𝐱) =
2
𝑟
d2ℐ𝑘𝑙(𝑡 − 𝑟, 𝐱)

d𝑡2
[
𝑃𝑖𝑘(𝐧)𝑃𝑗𝑙(𝐧) −

1

2
𝑃𝑖𝑗(𝐧)𝑃𝑘𝑙(𝐧)

]
. (1.38)

This is the leading order term in the multipolar expansion of the TT gauge metric per-

turbation.

1.3.2 A GW classification formalism

It is helpful to begin to organise the study of GWs. One important step in doing this is

to invent some sort of classification formalism to categorise GWs, depending on general

properties of the waveform. Rather than trying to solve the overwhelming problem of

finding the solution for a part of the metric containing GWs that result from general ini-

tial conditions and subsequent dynamical evolution, restricting ourselves to working on

a particular ‘type’ of GW allows us to make some progress in, for instance, understand-

ing details of their production in astrophysical situations that are known to occur. Many

sources are simple enough that one can model them parametrically given a certain type

of GW. A common way to categorise is to consider GWs as belonging to one of the fol-

lowing four groups, which is somewhat oversimplified but is nonetheless a very useful

foundation.
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1.3.2.1 Compact binaries

It is certainly fair to say that the category of GWs that has so far received the majority

of attention in the scientific literature are those generated by a so-called compact binary

coalescence (CBC). Appropriately named, these GWs originate from a binary system (a

pair of stellar objects) where eachmember of the pair is compact in the ordinary sense of

being relatively small and very dense. When each object is a black hole (BH), a CBC is re-

ferred to as a black hole binary (BHB). The pair are assumed to be gravitationally bound

and orbiting their common centre of mass in a quasi-circular fashion. All binaries emit

gravitational radiation due to this orbital acceleration, however the compactness of the

members of CBCs allows for their close proximity (i.e. a small orbital radius) before they

‘merge’, and thus a far greater amplitude than one might otherwise see, allowing for eas-

ier detection. If the binary is truly isolated, this closeness is guaranteed; the acceleration

of one object due to the other generates GWs, the energy of which are taken from the

orbital energy (angular momentum) of the binary. The pair then fall closer together,

thus emitting higher energy GWs and falling inwards at a greater rate. This runaway

process of a CBC is referred to as the inspiral, which goes on emitting GWs with gradu-

ally ramping up frequency and amplitude (called a ‘chirp’) approximately until the pair

reach a proximity at which the pair no longer orbit, but instead plunge into each other,

becoming a single object. This very short duration plunge is known as the merger and

the resulting highly non-spherical object radiates a great deal of energy very rapidly as it

settles into a quasi-spherical state: often modelled as a perturbed, Kerr (spinning) black-

hole. The final stage, known as the ringdown, radiates away the perturbations, tending

towards a Kerr black-hole, where curvature acceleration vanishes and no more GWs are

emitted. The whole process is often referred to as inspiral-merger-ringdown (IMR). One

then talks about the IMRwaveform (see Figure 1.3) when discussing parameterised GWs

of CBCs, especially in the context of simulating waveforms. More detail on these wave-

forms is given in Section 1.4.1. Members of CBCs are ordinarily BHs, but other massive,

compact astrophysical objects may constitute one or both members of a binary system

emitting detectable GWs, including neutron stars, white dwarfs and other exotic objects,

such as quark stars [23] of various sorts.

The GW amplitude is proportional to the total mass of the binary, and inversely pro-

portional to the distance, as one can see from equation (1.38). Thus binaries that are
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Figure 1.3: An example gravitational wave of a binary black-hole merger, depicting all three stages of its

evolution: the inspiral, merger and ringdown.

more massive and closer to a detector are, on the whole, louder than the less massive

and more distant ones. The prevalence of these sources has secured them a category of

their own; so far, all of our detections of GW events have been sourced from CBCs.

The detectable part of the GW usually contains the portion of the IMR waveform oc-

curring at and aroundmergerwhere the amplitude and frequency are greatest. The latest

catalogue of GW events can be found in Ref. [24]. Often, the detectable portion of the

signal in ground based detectors (see Section 2.1) containing any useful information is of

short duration, lasting from a few seconds to perhaps a few tens of seconds. As a result,

these signals are sometimes placed in a category referred to as ‘transients’ (which itself

contains bursts, discussed in Section 1.3.2.3), although the inspiral part may in practice

last many millions of years. This point is pertinent for this thesis; we hope to see how

multi-band detector networks (see Section 6.1.2) can benefit inferences about the source

by obtaining and analysing signal from different regions of the GW.

Suppose the detector observes a binarywith a circular orbit atmerger, the loudest part

of the waveform. This occurs approximately when the orbital radius of the binary drops

to around the innermost stable circular orbit, 𝑟ISCO, of one of the objects; the radius within

which test particles can no longer stably orbit (circularly) and which then fall inwards

towards the object. Beyond this point, the high non-linearity of the EFEs dominates

over ‘weak field approximations’ of the orbit. Up to this point however, one can approx-

imate the orbit and the gravitational waveform using Newtonian and post-Newtonian

(PN) terms in expressions of those quantities that are written as terms of increasing or-
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ders of 𝑣2∕𝑐2, where 𝑣 is the characteristic speed of the binary [25]. One usually marks

the innermost stable circular orbit (ISCO) as the end of the inspiral and beginning of the

merger [26]. The PN approximation, truncated at some reasonable number of terms (see

Section 1.4.1), is generally accurate [27] until this point for systems consisting of compact

objects that do not deviate much from Newtonian systems (i.e. slowly moving with little

spin). Using a Kepler orbit approximation for the inspiral then, with orbital frequency

𝜔2
s = 𝐺𝑀∕𝑅3 and where 𝑅ISCO = 6𝐺𝑀∕𝑐2 ,where𝑀 is the mass of the object (total mass

of the binary) [26], the ISCO GW frequency can be estimated, where one finds that

(𝑓s)ISCO ≈ 2.2kHz (
𝑀⊙

𝑀 ) , (1.39)

where 𝑀⊙ is the solar mass unit. Note that the gravitational wave frequency 𝑓gw (the

measured signal) is related to the orbital frequency 𝑓s via 𝑓gw = 2𝑓s. The ISCO is com-

puted assuming a test particle of negligible mass orbiting a massive body, but under the

Newtonian approximation, the force between the bodies is the same if the mass were

shared amongst them, so we can approximate the above to be equivalent to the ISCO for

binaries of comparable mass, where we take𝑀 to be the total mass of the binary.

The current ground-based detectors are most sensitive to the frequency band from

around 20Hz to 5 kHz, so for binaries that merge in that band, this corresponds to a

total mass range of between around 0.8 to 200 solar masses. As mentioned, however,

the amplitude depends on the mass also, so the lower mass systems are harder to detect

(when comparing sources at the same distance). The future space-based detectors will

be sensitive to much lower frequencies. In particular, LISA will be most sensitive to the

band from around 1mHz to 100mHz, corresponding to CBCmergers in the mass range

from around 4×104 to 4×106 solar masses.

However, for the inspiral part of a CBC waveform, consider the lowest order part of

the post-Newtonian expression of the frequency (which dominates the frequency value

far from merger where the weak field approximation becomes accurate) [26]

𝑓gw(𝜏) ≈ 134Hz (
1.21𝑀⊙

ℳc
)
5∕8

(1 s𝜏 )
3∕8

, (1.40)

where 𝜏 = 𝑡c − 𝑡 is the time to coalescence, 𝑡c is the coalescence time, andℳc is a useful

reparameterisation of the binary component masses 𝑚1 and 𝑚2 that characterises the

‘chirping’ behaviour of the waveform in the inspiral stage, defined by

ℳc ≡
(𝑚1𝑚2)3∕5

(𝑚1 +𝑚2)1∕5
, (1.41)
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1. VACUUMWAVE SOLUTIONS IN GR

and is known as the chirp mass. As one increases the time to coalescence, the frequency

drops; since (1.40) is a reasonable approximation for all 𝜏 ≳ 𝜏
(
(𝑓gw)ISCO

)
each CBC thus

covers a wide frequency range (the lower bound depends on the formation scenarios,

see Section 4.2.1). Figure 1.4 shows such an earlier section (of the signal displayed in

Figure 1.3) only a few tenths of a second before merger. It is then possible that a low

frequency part of the inspiral of a CBC may be detected in space-based, low-frequency

detectors, and a high-frequency part of the same signalmay be detected in ground-based,

high-frequency detectors. CBCs are thus good examples ofmulti-bandGWsources, since

their signals appear in multiple detector bands, but whether a CBC is classed as ‘multi-

band’ does not have a strict classification formalism; it depends on the detector network

(see Chapter 2).

1.3.2.2 Continuous waves

Differentiating equation (1.40) with respect to 𝜏, one finds that 𝑓̇gw(𝜏) ∝ 𝜏−11∕8. As one

increases 𝜏 to look at earlier stages of the inspiral, one finds very soon that 𝑓̇gw(𝜏) → 0;

𝑓gw(𝜏) tends to more closely resemble a constant (over a given finite duration). Earlier

stages of the signal thus tend to become increasingly more manifestly sinusoidal. If one

takes an early enough segment of a given length of an inspiral and observes for a short

enough time, it is possible that one would be unable to detect any variation from an

ordinary sinusoidal wave. This is one example of a so-called continuous wave (CW).

Other possible sources of CWs include neutron star mountains. It is thought that
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Figure 1.4: An earlier section of the inspiral of the CBC merger shown in Figure 1.3. The waveform is

already rather slowly evolving just seconds before merger. The evolution is not obviously noticeable by

eye over this short duration; it resembles a ‘continuous’, sinusoidal wave.
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1. VACUUMWAVE SOLUTIONS IN GR

neutron stars (which have radii of around 11km) may have ‘mountains’: small bumps,

with heights above the surface on the order of millimetres, on the surfaces of the oth-

erwise highly spherically symmetric mass of neutron matter. As a neutron star with a

mountain rotates, the acceleration of the subtly asymmetric mass distribution generates

GWs at an extremely stable frequency; the energy loss of these systems to GWs is very

slow and causes little evolution of the state the source. Neutron star mountains are the

primary search target of CWs, since the current understanding is that they are the most

likely source of detectable CWs. There is also some interest in studying CWs from other

types of dense, exotic stars [28] such as quark stars. Neutron stars are also thought to be

able to generate CWs via oscillation processes [29].

1.3.2.3 Burst sources

The so-called burst signals are short duration, ‘unmodelled’ (of unknown waveform) be-

cause either the source itself is unknown, or perhaps that the waveform of a known

source is presently too difficult to reproduce and is not yet known. Potential sources

of bursts include (but not limited to) gamma ray burst (GRB) sources [30], supernovae

core collapse [31], collisions of cosmic strings [32], and hyperbolic encounters of com-

pact objects [33].

There is also work being done on considering interactions between black-holes and

cosmic strings [34]. Searching for unmodelled signals requires different sorts of methods

than those we shall consider here, since our focus is on IMR waveforms. Further details

on burst searches can be found in Ref. [35].
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Figure 1.5: A simple example of a possible burst GW. The waveforms are unmodelled and may derive

from collapsing supernovae, or cosmic string collisions, for example.
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1.3.2.4 Stochastic background

The (stochastic) gravitational wave background (GWB) is the ‘background noise’ of grav-

itational waves generated by all sources located exactly on the past light-cone [17] of the

detector, which are all linearly superposed, resulting in an essentially stochastic signal.

The sources that contribute are understood to be those quiet enough such that they can-

not be individually recognised from the cacophony of sources, but which together can

be expected to constitute a signal with specific statistical properties.

Sources are ordinarily categorised as being either of cosmological or astrophysical ori-

gin. Cosmological and astrophysical models therefore allow predictions of the statistical

properties of the GWB, measurements of which can then be used to place constraints on

the models [36].

Cosmologically, GWs are thought to originate from inflation [37] and other processes,

such as electroweak phase transitions [38], occurring at the big-bang; this part of the

GWB is analogous to the cosmic microwave background (CMB): the earliest electromag-

netic source of information in our universe. The astrophysical part of the GWB is the

superposed combination of all other sources (such as those described above); one might

think of this part as (weakly) analogous to the foreground effects that partially obscure

the CMB, though foreground GWs add to the GWB (since matter is weakly coupled to

gravity and does not impede propagation of GWs), whereas foreground matter obscura-

tions generally subtract from the CMB. GWs from primordial black-hole mergers are an

interesting potential source that may be said to lie on the boundary between of cosmo-

0 1 2 3 4
Time (s)

5.0

2.5

0.0

2.5

5.0

St
ra

in
 (

Hz
1

)

1e 24

Figure 1.6: An example stochastic GW background signal. Contributions to this signal can include back-

ground compact binary confusion noise, and GWs from early universe phase transitions.
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logical and astrophysical origin, since they can be technically thought of as astrophysical

objects, but originate from the big-bang and may well provide good constraints on the

conditions there [39].

1.4 BHB waveformmodels

Equation (1.38), describing the gravitational waveform sourced by non-relativistic mat-

ter, is derived from assuming that GR is the theory of gravity governing the relationship

between spacetime (themetric tensor) and energy (stress-energy tensor). However, given

a different theory embodied by a different set of equations governing that relationship,

one is likely (/certain) to arrive at a different gravitational waveform in the linear (/fully

non-linear) regime, given the same initial data. We shall indeed consider two other (one-

parameter families of) gravity theories in Chapters 5–8, examining how the waveform is

affected, and thus how the waveforms may be used as probes of these theories. The

theories are formulated such that as the parameters mediating the strength of the mod-

ifications go to zero, the theories reduce to GR, and thus one can measure the closeness

of fit of gravitational waveforms to those theory parameters to physically test them.

The ordinary EFEs on their own are extremely difficult to solve however, despite be-

ing the most simple, and indeed, the only 4-dimensional metric tensor theory of gravity

that can be derived from (the variation of) an action with at most second-order deriva-

tives of themetric: a consequence of Lovelock’s theorem, [40]. Themodified gravity theo-

ries considered later have therefore been used to derive waveforms in the small coupling

limit only (see Section 5.3); that is, the theories considered are assumed to be small devi-

ations fromGR. In that case, one can start with the framework used to derive waveforms

in GR (the so-called PN framework [41]) and include small corrections from the addi-

tional couplings to gravity defined by the theory [42] throughout the derivation of the PN

waveform. Ultimately, these corrections appear in the form of extra terms that arise at

specific PN orders in the waveform phase and amplitude, in addition to the ordinary GR

PN expansion terms. Hence we shall in this section briefly introduce some archetypal

(unmodified) GR waveform ‘approximants’ that have been developed and are in use by

the GW community (see [43] and references therein for details). Details of waveform

modifications we have modelled for this thesis are given in Section 4.2.
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1.4.1 Approximants

Gravitational waves from BHBs, despite the simplicity of solutions of single black-hole

spacetimes, are extremely difficult tomodel. This is due to the gravitational self-interactions

embodied by the highly non-linear nature of the EFEs. No neat, closed-form expres-

sion of the global solution of the metric is known, so we must solve the equations either

numerically, or by making approximations. Numerical solutions are so expensive (and

difficult to initialise) that it is not usually feasible to do parameter estimation (a com-

mon data analysis technique, see Section 2.3) with numerically generated waveforms,

although progress is being made in that area [44]. We are thus generally limited to using

waveform approximations, commonly referred to as approximants.

There are various ways one can go about formalising the framework within which

to generate approximants. The details are beyond the scope of this thesis, but we note

two prominent approximants. The spinning effective-one-body calibrated to numerical

relativity (SEOBNR) waveform is generated by transforming the relevant equations into

equations describing a single object [45, 46], and the phenomenological inspiral, merger

and ringdown (IMRphenom), which splices together portions of the waveform produced

using different methods; the early inspiral is written as a PN expansion, and the late

inspiral, merger and ringdown can be derived from numerical relativity solutions [47].

Black-hole perturbation theory is also often employed to model the ringdown, which,

since one can inspect sets of equations describing the solution (which is lacking in nu-

merical solutions) also offers interesting insights into the behaviour [48].

Approximants are of course not perfect waveform models. As such, one will always

have some systematic error. For the detection of GW150914, this error has been esti-

mated, and it is believed that the systematic error is less than the error that is present

due to the noise in the signal [49, 50]. One can expect that the PN expansions become

more accurate as one looks to earlier points of the signal; since the PN expands in terms

of orders of 𝑣2∕𝑐2, where 𝑣 is a characteristic speed of the binary, at earlier times one will

have lower speeds. This is confirmed by inspecting the differences between the TaylorT3

approximant and the numerical relativity waveforms in Ref. [27]. Indeed, the waveform

approximant of Ref. [27] (without the ‘twisting-up’ procedure required to model spin

precession) shall be implemented and employed to provide the results for this thesis.
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1.4.2 BHBmodel parameters

Kerr black-hole spacetimes are completely characterised by amass and a spin parameter.

Introducing another Kerr black-hole means that to specify the spacetime, one now has

to consider the relative positions, velocities and spin directions of both black-holes. This

can be done at some reference coordinate time, 𝑡0, when coordinates have been spec-

ified. If one assumes the black-holes are gravitationally bound, their relative positions

and velocities can be reparameterised as Keplerian parameter eccentricity at 𝑡0, and, since

the binary’s evolution is completely determined by its properties at 𝑡0, the time to coales-

cence. Thus there remain two mass, six spin and one eccentricity parameters that are

intrinsic to the binary [51]. The time to coalescence is coordinate/observer dependent (if

approximating the background spacetime to beMinkowski, i.e., no imprint of expansion

of space on the GW) and thus can be classed as extrinsic.

We do not observe theGW solution over the entire spacetime of course, and observers

are located essentially at a point in space, far from the source. The waveform appears

differently depending on this location and relative orientation, which we require further

extrinsic parameters to describe. These are: distance, phase, inclination, orientation

(polarisation), right ascension, declination, pericentre angle and coalescence time [51].

The commonly used effective spin and spin precession parameters, 𝜒ef f and 𝜒p, re-

spectively, are given by [51]

𝜒ef f ≡
𝜒∥
1 + 𝑞𝜒∥

2

1 + 𝑞

𝜒p ≡ max{𝜒⟂
1 , 𝜒

⟂
2 𝑞(3𝑞 + 4)∕(4𝑞 + 3)} ,

where 𝜒∥
𝑖 and 𝜒

⟂
𝑖 are, respectively, the parallel and perpendicular components of the 𝑖th

black-hole’s spin relative to the orbital angular momentum. These two parameters are

useful approximate reparameterisations of the six spin components of thewaveform, able

to capture the majority (but clearly not all, since there are fewer degrees of freedom, see

[52]) of the spin-precession effects of coalescing BHBs. More details on the IMR param-

eters detectable by LIGO can be found in Ref. [51]. See Table 1.1 for further details on

the reduced set of parameters we will use in our model. See Section 6.3.1 for discussion

on the effects on analysis of the omission of parameters from the model.

Note that all the parameters besides the sky position parameters (right ascension and

declination) directly affect the waveform that arrives at the detector, either through the
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intrinsic parameters that generate the GW, or the relative location and orientation of

the source on the sky. The sky parameters affect only the part of the waveform that is

measured by the detector, as they describe detector orientationwith respect to the incident

GW, on which the detector response depends. Thus, detectability of sky position itself is

detector dependent; one can better measure the location of short signals using multiple

detectors with different orientations (such as LIGO), or of long signals with detectors

that change spatial orientation or position (or both) as functions of time (such as LISA).

Name Symbol Units Range

Chirp Mass ℳc 𝑀⊙ [ℳc
min,ℳc

max]

Mass Ratio 𝑞 - (0, 1]

Effective Spin 𝜒ef f - [0, 1)

Luminosity Distance 𝑑L Mpc [𝑑L
max, 𝑑L

max]

Coalescence Phase 𝜙c rad [0, 2𝜋) (cyclic)

Inclination 𝜄 rad [0, 𝜋) (not cyclic)

Orientation 𝜓 rad [0, 𝜋) (not cyclic)

Right Ascension 𝛼⊕ rad [0, 2𝜋) (cyclic)

Declination 𝛿⊕ rad [−𝜋∕2, 𝜋∕2) (not cyclic)

Coalescence Time 𝑡c s [𝑡cmin, 𝑡cmax]

Table 1.1: Details of a subset of the BHB parameters. The constants ℳc
min, ℳc

max , 𝑑L
min, 𝑑L

max , 𝑡cmin

& 𝑡cmax depend on detector characteristics and operating time, and limits imposed by cosmological mod-

els/astrophysical processes. This subsetwill be used to define our BHB signalmodel. It is chosen to capture

the main dependencies of the waveform and as a partial simplification of the problem; we will later in-

troduce waveform modifications with extra parameters, increasing the difficulty of the problem. Omitted

parameters include spin precession and orbital eccentricity, see Section 6.3.1 for more discussion. A full

list of parameters can be found in Ref. [51].
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Chapter2
GWData & Analysis

GWs can be observed indirectly, by, for example, observing systems that evolve according

to predictions consistent with generation or interaction with GWs, such as Hulse-Taylor-

like pulsars [2] and pulsar timing arrays (GWs passing between a pulsar and Earth will

change the arrival time of pulses; the change in pulse arrival time froman array of pulsars

could be used to reconstruct GW source parameters, [53]). In big-bang cosmology, grav-

itational waves in the early universe would be indirectly observable as a manifestation

of ‘B-mode’ polarisation in the CMB.

We now live in the era of direct GW detection however, with instruments capable of

measuring the distortions in spacetime themselves, caused by passing GWs. Previous

attempts at building resonant bar detectors, large metal cylinders that resonate as GWs

transit, had unconfirmed effectiveness; despite initial claims of detections by Weber, his

inferences were not consistent with calculations of the maximum rate of energy loss by

mass to gravitational radiation conversion allowed for stability of galaxy structure, and

later observation attempts with higher quality resonant bar detectors were not able to

reproduce Weber’s claims [54]. LIGO, LISA and most other serious current conceptions

of GWdetectors with very high sensitivity are interferometers [55], whichwe introduce in

Section 2.1. It is essential to understand and properly treat inherentnoise in the detector’s

output, detailed in Section 2.2, which could otherwise be confused with signal data and

which directly informs parameter estimation, discussed in Section 2.3.
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2.1 Laser interferometers

Interferometers use the principle of superposition of electromagnetic (EM) fields that

results from the linearity of Maxwell’s equations. Superposition allows for the simplest

realisation of interference, as the electric and magnetic fields at some time and location

are simply given by the sum of values from different ‘wave-packets’ at that point. This

phenomenon is exploited in interferometers by splitting a coherent light beam into mul-

tiple beams with a beam splitter and sending those beams in different directions. The

beams are guided along a path by a set of mirrors and recombined at another location,

where interference patterns can arise. There are various possible configurations for such

a device. A simple interferometer design, on which LIGO [56] is based, is shown in Fig-

ure 2.1. Other (existing or planned) GW interferometers of this or similar type include

Virgo, Kagra, Einstein Telescope (ET), Cosmic Explorer (CE), DECi-hertz Interferometer

Gravitational wave Observatory (DECIGO), and others [55]. If the cavity length changes

in one arm differently to that in the other arm due to an incident GW (see Figures 1.1 &

1.2, considering the mirrors to be the test particles) one would observe an interference

pattern in the output at the photodetector, since the extra distance the light is required

to travel results in a phase offset between the beams where they are recombined.

One can then very precisely derive the proper distance between the mirrors and thus

the metric perturbation, since it is encoded in the phase difference in the light, ∆𝜙L,

which is computed from the interference observed at the photodetector. In the TT-gauge

(see Section 1.2), and when the GW frequency is much lower than the photon round trip

frequency in the cavity [57], the phase difference is given by

∆𝜙L(𝑡) = ℎTT11 (𝑡)
4𝜋𝐿
𝜆L

, (2.1)

where ℎTT11 = −ℎTT22 is the metric perturbation given in equation (1.38), 𝐿 is the length of

the cavity, and 𝜆L is the wavelength of the laser light. We can therefore scale the sensitiv-

ity to incoming GWs by increasing 𝐿 or decreasing 𝜆L. However, various sources of noise

and practical constraints prevent one from arbitrarily increasing 𝐿 and/or decreasing 𝜆L;

some of these noise sources are mentioned in Section 2.2.
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Figure 2.1: An equal arm laser interferometer schematic diagram. This is a vast simplification of the

LIGO detectors, with more detail available in Ref. [56]. The power recycling mirror increases the detector

sensitivity, as do the Fabry-Pérot cavities, which cause the light to spend more time in the arm, reflecting

back and forth multiple times and thus accruing more phase offset when the arm length changes due to a

passing GW. Figure adapted from source: IOP publishing.

2.1.1 Time-delay interferometry

In ground-based detectors, laser frequency noise (LFN), which results from the uncer-

tainty in the frequency of the laser light, can be relatively easily cancelled by having two

arms, where the second arm contains light that is 𝜋-radians out of phase with the light

in the first. When the beams are combined, the fields destructively interfere, resulting in

a ‘dark fringe’ at the photodetector, independent of laser frequency and thus its uncer-

tainty. However, space-based detectors consist of free falling base stations with different

and time-varying distances between the stations, as depicted in Figure 2.2. It is therefore

not possible to remove the LFN in such space-based detectors in the same way as is done
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in ground-based detectors.

Suppressing LFN in LISA can be achieved by the now well-established method of

time delay interferometry (TDI) [58]. This works by first obtaining time differences for

each arm (see Figure 2.2), each generated by interference of transmitted light with re-

turned light, then writing a linear combination of the phases that are artificially delayed

in such a way as to be completely independent of the LFN. This is essential since the

LFN is orders of magnitude louder than the expected signals and would otherwise com-

pletely drown out the signal [59]. However, to do this, we need to know the delays. In

2005, TDI ranging (TDIR) was proposed as a technique to achieve this, which minimises

the power in the combined output as a function of time-delays (derived from spacecraft

positions resulting from their orbits) for each TDI combination [60]. More recent work

shows promise in including the time-delays as parameters in a "global-fit" model [59],

in which one estimates the arm lengths as parameters, simultaneously with estimating

GW parameters (see Section 2.3).

Other space-based interferometers that require TDI approaches of suppressing LFN

include the TianQin and Taiji detectors [55]. We will not be modelling TDI in our simu-

lation of the LISA observatory.
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Figure 1: Light from a laser is split into two beams, each injected into an arm formed by pairs of free-
falling mirrors. Since the length of the two arms, 𝐿1 and 𝐿2, are different, now the light beams from the
two arms are not recombined at one photo detector. Instead each is separately made to interfere with the
light that is injected into the arms. Two distinct photo detectors are now used, and phase (or frequency)
fluctuations are then monitored and recorded there.

signal the frequency of the signal transmitted at time 𝑡, we also subtract the frequency fluctuations
𝐶(𝑡) with the net result shown in Eq. (3).

The algorithm for canceling the laser noise in the Fourier domain suggested in [17] works as
follows. If we take an infinitely long Fourier transform of the data 𝑦1, the resulting expression of
𝑦1 in the Fourier domain becomes (see Eq. (3))

̃︀𝑦1(𝑓) = ̃︀𝐶(𝑓)
[︀
𝑒4𝜋𝑖𝑓𝐿1 − 1

]︀
+ ̃︀ℎ1(𝑓) + ̃︀𝑛1(𝑓). (5)

If the arm length 𝐿1 is known exactly, we can use the ̃︀𝑦1 data to estimate the laser frequency
fluctuations ̃︀𝐶(𝑓). This can be done by dividing ̃︀𝑦1 by the transfer function of the laser noise 𝐶
into the observable 𝑦1 itself. By then further multiplying ̃︀𝑦1/[𝑒4𝜋𝑖𝑓𝐿1 − 1] by the transfer function
of the laser noise into the other observable ̃︀𝑦2, i.e., [𝑒4𝜋𝑖𝑓𝐿2 − 1], and then subtract the resulting
expression from ̃︀𝑦2 one accomplishes the cancellation of the laser frequency fluctuations.

The problem with this procedure is the underlying assumption of being able to take an infinitely
long Fourier transform of the data. Even if one neglects the variation in time of the LISA arms, by
taking a finite-length Fourier transform of, say, 𝑦1(𝑡) over a time interval 𝑇 , the resulting transfer
function of the laser noise 𝐶 into 𝑦1 no longer will be equal to [𝑒4𝜋𝑖𝑓𝐿1 − 1]. This can be seen by
writing the expression of the finite length Fourier transform of 𝑦1 in the following way:

̃︀𝑦𝑇1 ≡
∫︁ +𝑇

−𝑇

𝑦1(𝑡) 𝑒
2𝜋𝑖𝑓𝑡 𝑑𝑡 =

∫︁ +∞

−∞
𝑦1(𝑡)𝐻(𝑡) 𝑒2𝜋𝑖𝑓𝑡 𝑑𝑡 , (6)

where we have denoted with 𝐻(𝑡) the function that is equal to 1 in the interval [−𝑇,+𝑇 ], and
zero everywhere else. Eq. (6) implies that the finite-length Fourier transform ̃︀𝑦𝑇1 of 𝑦1(𝑡) is equal
to the convolution in the Fourier domain of the infinitely long Fourier transform of 𝑦1(𝑡), ̃︀𝑦1, with
the Fourier transform of 𝐻(𝑡) [28] (i.e., the “Sinc Function” of width 1/𝑇 ). The key point here
is that we can no longer use the transfer function [𝑒4𝜋𝑖𝑓𝐿𝑖 − 1], 𝑖 = 1, 2, for estimating the laser

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2014-6

Figure 2.2: Example schematic diagram of time-delay interferometer (TDI). A laser beam is split into two

beams and directed into two arms of different lengths, 𝐿1 and 𝐿2. Each beam is made to interfere with the

injected light and recorded in its own photodetector (P.D). Figure source: [58].
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2.1.2 Detector response and antenna patterns

Single arm interferometers could (in principle) measure the projection onto the axis par-

allel to the arm of the expansion/contraction of space caused by passing GWs. Dual

arm detectors could measure spatial distortions projected onto the planes spanned by

the arms (LIGO does not achieve this exactly however, since the arm measurements are

combined to remove LFN as mentioned in Section 2.1.1, leading to blind spots, see, for

example, Ref. [61]).

Themetric perturbationmeasured by a detector is thus dependent on the relative po-

sition and orientation of the detector and source (and the subtleties of theworkings of the

detector). The part of the output of a detector, ℎout(𝑡), generated by metric perturbation

ℎTT𝑖𝑗 (𝑡) can be written [62]

ℎout(𝑡) = ℎ+(𝑡)𝐹+(𝑡) + ℎ×(𝑡)𝐹×(𝑡) , (2.2)

where 𝐹+(𝑡) = 𝐹+(𝑡; 𝜓, 𝛼⊕, 𝛿⊕) and 𝐹×(𝑡) = 𝐹×(𝑡; 𝜓, 𝛼⊕, 𝛿⊕) are the antenna pattern

functions, usually different for each detector; see Table 2.1 for references.

For our modelling of detector response in LIGO, we use the complete model as pro-

vided by lalsuite [63], which treats the problem properly. For modelling the LISA and

DECIGO detectors, we ignore the antenna patterns and use the sky-averaged sensitivity

[62]. This is acceptable for general simulation studies; these detectors have no (fixed)

blind spots because of the motions of the base stations through space and the long dura-

tions of the signals. Omission of the antenna patterns from the model can have an effect

on the sky localisation capabilities of the analysis of the detector output. This is a bigger

issue for DECIGO, with signals lasting on the order of days (see Table 7.2, for example);

the analyses would make more use of the changing spacecraft constellation configura-

tion and consequent changing signal arrival times. However, sincewewillmodelRoemer

delay (the large changing signal delay throughout a year as LISA and DECIGO orbit the

Sun; see Section 4.2.2.2) and signals will be present in LISA for multiple years where

the Roemer delay overwhelmingly dominates the time-delays, the effect of omitting the

LISA antenna patterns on the LISA sky localisation will be minimal.
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2.1.3 Basic overview of detectors

In this short section, we give a brief introduction to the detectors to be modelled and

whose data are to be analysed in the final chapters of this thesis. See Chapter 6 for more

general discussion on multi-band detector networks. To select the detectors to study, we

begin with the currently existing LIGO observatory and, since the LISA mission is con-

firmed, we ask: how would the results of the data analysis change if LISA were already

existing in the network prior to the LIGO detections? We then ask the same question of

DECIGO, despite its mission status being unconfirmed, since it straddles the frequency

band between LISA and LIGO and we may acquire a better understanding of, for in-

stance, how parameter covariances evolve as functions of frequency.

2.1.3.1 LIGO

LIGO consists of two laser interferometer GW detectors (see schematic in Figure 2.1),

based in the USA, one in Livingston and one in Hanford, separated by a distance of

3,002 km. Their arms are oriented at a relative angular offset so as to provide optimal

simultaneous sensitivity to a particular polarisation of GW. Whilst the arms are each

4 km long, the Fabry-Pérot cavities trap the laser light such that photons make around

300 round trips, accruing phase offset with each reflection before exiting the cavity, giv-

ing the arms an effective path length of 1,200 km.

2.1.3.2 LISA

LISA is a space-based, future GW detector with plans to commence operations in 2037.

It shall consist of a constellation of three spacecraft in tilted heliocentric orbits (with

respect to the Earth’s) trailing Earth at a mean distance of around 5×107 km, such that

the constellation maintains an equilateral triangular arrangement, with side lengths of

2.5×106 km. Due to the large distances between the spacecraft, laser interferometry is

not feasible; only a small fraction of the power of each laser beam is received, hence

TDI is required (see Section 2.1.1). Each spacecraft contains a free floating test mass and

surrounding housing that absorbs non-gravitational forces (such as solar radiation) using

small thrusters to keep the housing centred on the test mass. The required hardware,

such as lasers and communications devices, are attached to the housing.
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2.1.3.3 DECIGO

DECIGO is a proposed space-based detector, designed to be most sensitive in the deci-

hertz regime, plugging the gap between LISA and LIGO-like detectors; see Figure 2.3.

DECIGO will consist of four clusters of spacecraft, each of which, like LISA shall be a

group of three spacecraft in an equilateral triangular arrangement, following a heliocen-

tric orbit. However, the interferometer arms are proposed to be 1000 km long Fabry-Pérot

cavities. Two clusters will overlap in a regular hexagram configuration. The hexagram

and the remaining two clusters will then be positioned in an equilateral triangle forma-

tion with the Sun at the centre, to form the entire DECIGO constellation.

Detectors Shorthand PSD & antenna patterns

LISA 4 yr / LISA 10 yr Ls4/ Ls10 In Ref. [62]

LIGO Lg In Ref. [63]

DECIGO D In Ref. [64]

Table 2.1: References for details of GW detectors that feature in the results of Chapters 7 & 8.

2.2 Noise

Detectors are not perfect machines and do not operate in ideal environments. Various

physical effects deriving from electronic components and/or mechanical operations and

properties of the instrument, and perturbations directly from the environment introduce

an unwanted contribution of noise to the detector output, which must be appropriately

treated in order to acquire correct inferences from the data. From the instrumentation

side, the job is minimise noise in the output of a detector, and from the data character-

isation side, the job is to precisely statistically model the noise to facilitate the proper

treatment of the data.

We briefly introduce some noise sources in Section 2.2.1, and look at the statistical

properties of the noise in Section 2.2.2. We will consider the noise to be (weak-sense) sta-

tionary (meaning the noise sample correlations and noisemean are constant in time) and

Gaussian, however, note that these are not necessarily realistic assumptions for real de-

tector data; non-stationarity and non-Gaussianity are expected properties of LISA data.
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2.2.1 Sources

There are a multitude of noise sources in laser interferometers; some unique to a given

instrument, and some common in all laser interferometry. We have already mentioned

one common noise source: the laser frequency noise. As discussed however, this is able

to be effectively cancelled in both ground and space based observatories and thus does

not significantly contribute to the detector output, and for correct accounting of noise in

data analysis, only precise modelling of noise present in the detector output is required.

We give brief introductions to some LISA and LIGO noise sources here. More detail on

LISA noise sources can be found in Ref. [65], and on LIGO noise sources in Ref. [66].

2.2.1.1 LISA noise sources

• Galactic binary confusion noise: millions [67] of unresolvable galactic (i.e., in the

Milky Way) binaries are thought to be present in the LISA data, made up of white

dwarfs, neutron star, and stellar mass black-holes. Since the signals are not ex-

pected to be able to be teased out of the data, they constitute a source of noise.

• Acceleration noise: the LISA spacecraft shield and housing attempt to follow free-

falling test masses. However, various disturbances are experienced by the test

masses, such as cosmic ray deposition leading to electrostatic forces and Brown-

ian force by stray particles in the test-mass housing.

2.2.1.2 LIGO noise sources

• Seismic noise: this includes the Earth’s seismic activity, earthquakes, ocean waves,

and noise from human activity (by transportation or operation of heavymachinery

for example). This causes groundmovement at the LIGO sites and is the dominant

noise source at low frequencies.

• Thermal noise: themirrors/testmasses at LIGOare suspended on thin silica threads

that vibrate with thermal noise, causing the arm lengths to change. Thermal noise

is also introduced into the mirror coatings by heating from the laser.

• Quantumnoise: the twomain sources of quantumnoise are the so-called shot noise

and the radiation pressure noise. The shot noise is (Heisenberg’s) uncertainty of
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the arrival time of photons at the photodetector, and the radiation pressure noise

derives from the recoil of the mirrors from photon momentum transfer.

2.2.2 Power spectral density

The (one-sided) power spectral density (PSD), 𝑆n(𝑓), of the detector noise, 𝑛̃(𝑓), describes

the power of frequency components of the noise and can be defined as [68]

𝔼[𝑛̃(𝑓′)∗𝑛̃(𝑓)] = 1

2
𝛿(𝑓 − 𝑓′)𝑆n(𝑓) , (2.3)

where 𝔼 is the expectation value operator and 𝛿 is the Dirac delta function. If two noise

sources are independent and generated by distinct noise generating processes, P1 & P2,

generating noise 𝑛̃P1(𝑓) & 𝑛̃P2(𝑓), respectively, then the total noise can be written

𝑛̃(𝑓) = 𝑛̃P1(𝑓) + 𝑛̃P2(𝑓) . (2.4)

The total PSD is simply the sum of the PSDs of the two processes, since from equation

(2.3) we can write

𝔼[𝑛̃(𝑓′)∗𝑛̃(𝑓)] = 𝔼[(𝑛̃P1 + 𝑛̃P2)(𝑓
′)∗(𝑛̃P1 + 𝑛̃P2)(𝑓)]

= 𝔼[𝑛̃P1(𝑓
′)∗𝑛̃P1(𝑓) + 𝑛̃P1(𝑓

′)∗𝑛̃P2(𝑓) + 𝑛̃P2(𝑓
′)∗𝑛̃P1(𝑓) + 𝑛̃P2(𝑓

′)∗𝑛̃P2(𝑓)]

= 𝔼[𝑛̃P1(𝑓
′)∗𝑛̃P1(𝑓)] + 𝔼[𝑛̃P2(𝑓

′)∗𝑛̃P2(𝑓)]

= 1

2
𝛿(𝑓 − 𝑓′)

[
𝑆P1(𝑓) + 𝑆P2(𝑓)

]
,

since we have 𝔼[𝑛̃P1(𝑓′)∗𝑛̃P2(𝑓)] = 𝔼[𝑛̃P1(𝑓
′)∗]𝔼[𝑛̃P2(𝑓)] by independence, and where we

have assumed 𝔼[𝑛̃P1(𝑓
′)∗] = 𝔼[𝑛̃P2(𝑓)] = 0. Thus we can see that

𝑆n(𝑓) = 𝑆P1(𝑓) + 𝑆P2(𝑓) . (2.5)

This argument extends to any number of (independent) noise sources, where the total

PSD is the sum of the PSDs from different processes. In GW laser interferometers, as

for many other sorts of signal detectors, the noise processes often add together in such

a way as to produce a PSD ‘noise bucket’ or ‘sensitivity bucket’, with loud (relatively)

low and high frequency noise overpowering signals at those frequencies, and quiet mid-

frequency noise where the detector is sensitive to signals. Some approximate PSDs for

detectors relevant to this thesis are shown in Figure 2.3.

50



2. GW DATA & ANALYSIS

Figure 2.3: Approximate, sky averaged amplitude spectral densities (ASDs: the square root of the PSD)

for LISA, DECIGO, ET & LIGO, along with some typical example GW sources. Source: gwplotter.com

[68].

2.3 Parameter estimation

If a signal contains a waveform generated by some parameterised model, like that of our

BHBs in Section 1.4, we can estimate those generating parameters by Bayesian methods.

This section presents a slightly more in depth introduction than is usual, detailing and

deriving some essential results for the methods introduced in Chapter 3.

2.3.1 Bayesian inference

As is commonplace in GW data analysis, we use Bayesian inference methods to define

the posterior probability distribution of model parameters using Bayes’ theorem,

𝑝(𝜽 |d) =
𝑝(𝜽) 𝑝(d | 𝜽)

𝑝(𝐝)
, (2.6)

where 𝑝(𝜽) is called the prior probability of the parameters, written as the vector 𝜽,

𝑝(d | 𝜽) is the likelihood; the probability of obtaining data d given parameters 𝜽 and given

a waveform model, 𝑝(𝐝) is the evidence for the model given data d, and where the data
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is taken to be the sum, d = s + n, of the true signal, s = s(𝜽̂), and detector noise, n,

where 𝜽̂ is the vector of signal parameters. We ignore the evidence here as we shall not

be comparing different models; given data d, 𝑝(𝐝) is a constant, and we shall require

𝑝(𝜽 |d) up to proportionality only.

Wemay define our ownprior based on expectations derived fromothermeans; for the

present study we will generally choose uniform priors with a suitably chosen ‘window’

centred on the true parameters. The remaining factor to be determined is the likelihood

function. Assuming a Gaussian noise model, we can write the probability of some noise

realisation 𝐧, a vector of densities, occurring as

𝑝(𝐧) =
[
(2𝜋)𝑁 det(𝚺)

]−1∕2
exp

[
− 1

2
⟨𝐧 | 𝐧⟩

]
, (2.7)

where we call 𝚺 the (noise) covariance matrix, 𝑁 ≡ dim(𝐧), and where (⟨⋅|⋅⟩) is an inner

product: the inner product and noise covariance matrix will be defined in both the time

and frequency domains, and we will see how they are related in both continuous and

discrete formalisms.

2.3.2 Inner products and transformations

Let us first consider the frequency domain, discrete inner product. We suppose that the

individual frequency components of vector 𝐚̃ are independent so that ⟨𝐚̃𝑖 | 𝐚̃𝑗⟩ ∝ 𝛿𝑖𝑗. The

standard expression of the multivariate Gaussian probability distribution is obtained if

we define the inner product of a generally complex frequency domain noise vector, 𝐧̃, as

⟨𝐧̃ | 𝐧̃∗⟩ ≡ 𝐧̃T𝝈−2𝐧̃∗ , (2.8)

where 𝝈2 is the diagonal matrix (since we assume that the frequencies are uncorrelated)

that encodes the variance of each frequency bin. Substituting this into equation (2.7), and

making the identification 𝚺 ≡ 𝝈2, we obtain the usual expression for the joint probability

of finding each component of 𝐧̃ in its respective frequency bin:

𝑝(𝐧̃) = [
𝑁∏

𝑖=1

√
2𝜋 𝜎𝑖𝑖]

−1

exp
[
− 1

2
𝐧̃T𝝈−2𝐧̃∗

]
. (2.9)

Note that we define the (continuous) two-sided PSD, 𝑆two−sidedn (𝑓), of detector noise, 𝑛̃

𝔼[𝑛̃(𝑓′)∗𝑛̃(𝑓)] = 𝛿(𝑓 − 𝑓′)𝑆two−sidedn (𝑓) , (2.10)
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where again 𝔼 is the expectation value operator and 𝛿 is the Dirac delta function. The

discrete version of this can be written [69]

𝔼[𝐧̃𝑖𝐧̃∗𝑗 ] =
𝑁𝛿𝑖𝑗
∆𝑡 𝑆

two−sided
n (𝑓𝑖) = 2𝝈2𝑖𝑗 , (2.11)

where ∆𝑡 is the sampling interval. We have taken the mean to be zero, and the factor of

2 on the right-hand-side comes from individual contributions from real and imaginary

parts. Thus substituting for the variance matrix in the inner product, the discrete inner

product of two vectors 𝐚̃ & 𝐛̃may be written in terms of the PSD as

⟨𝐚̃ | 𝐛̃⟩ ≡ ℜ
∑

𝑖>0

2∆𝑡
𝑁

𝐚̃𝑖𝐛̃∗𝑖
1

2
𝑆n(𝑓𝑖)

= ℜ
∑

𝑖>0

4∆𝑓
𝑎̃(𝑓𝑖)𝑏̃∗(𝑓𝑖)
𝑆n(𝑓𝑖)

, (2.12)

since by taking the discrete Fourier Transform as an approximation of the continuous

Fourier Transform, we make the identification 𝐚̃𝑖 = 𝑎̃(𝑓𝑖)∕∆𝑡. The sum runs over the

positive frequency bins present with size ∆𝑓, the tilde ̃ denotes a Fourier Transform,

and ℜ returns the real part of its argument. One factor of 2 comes from the fact that

we are summing over positive frequency bins only, and another comes from using the

one-sided PSD, where 1

2
𝑆n(𝑓) ≡ 𝑆two−sidedn (𝑓) from equation (2.3).

Denoting the inner product of continuous functions with ⟨⋅, ⋅⟩, we will now see how

the continuous frequency domain inner product transforms to the continuous time do-

main inner product. The inner product of continuous functions clearly follows from the

above discrete version by taking ∆𝑓 → d𝑓 and writing the sum as an integral. Thus

⟨𝑎̃, 𝑏̃⟩ ≡ ℜ(4 ∫
∞

0
d𝑓

𝑎̃∗(𝑓)𝑏̃(𝑓)
𝑆n(𝑓)

) .

However, it will be useful for the following to rewrite the continuous frequency domain

inner product as

⟨𝑎̃, 𝑏̃⟩ = ∫
∞

−∞
d𝑓

1

2

[
𝑎̃∗(𝑓)𝑏̃(𝑓) + 𝑎̃(𝑓)𝑏̃∗(𝑓)

]

1

2
𝑆n(𝑓)

,

where it is implied that the real part of 𝑎̃∗𝑏̃ is even. Denoting the Fourier Transform by

ℱ, define a new function 𝜌−1(𝑡) (the reasons for this will become clear) by the relation

( 1
2
𝑆n
)−1

≡ ℱ{𝜌−1} . (2.13)

Then writing the spectra as Fourier Transforms of their respective signals, the first inte-
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gral term becomes

∫
∞

−∞
d𝑓

1

2
𝑎̃∗(𝑓)𝑏̃(𝑓)
1

2
𝑆n(𝑓)

= 1

2
∫

∞

−∞
d𝑓 ℱ{𝑎(𝑡)}∗ ⋅ ℱ{𝑏(𝑡)} ⋅ ℱ{𝜌−1(𝑡)}

= 1

2
∫

∞

−∞
d𝑓 ℱ{𝑎(−𝑡)} ⋅ ℱ{𝑏(𝑡)} ⋅ ℱ{𝜌−1(𝑡)}

= 1

2
∫

∞

−∞
d𝑓 ∫

∞

−∞
d𝑡 ∫

∞

−∞
d𝑡′ ∫

∞

−∞
d𝑡′′ 𝑎(−𝑡) ⋅ 𝑏(𝑡′) ⋅ 𝜌−1(𝑡′′) ⋅ 𝑒−2𝜋𝑖𝑓(𝑡+𝑡′+𝑡′′)

= 1

2
∫

∞

−∞
d𝑡 ∫

∞

−∞
d𝑡′ ∫

∞

−∞
d𝑡′′ 𝑎(−𝑡) ⋅ 𝑏(𝑡′) ⋅ 𝜌−1(𝑡′′) ⋅ 𝛿(𝑡 + 𝑡′ + 𝑡′′)

= 1

2
∫

∞

−∞
d𝑡 𝑎(𝑡) ∫

∞

−∞
d𝑡′ 𝑏(𝑡′) ⋅ 𝜌−1(𝑡 − 𝑡′) ,

where we used the fact that 𝑎(𝑡) is real in the second line. We have only computed the

first term of the ⟨𝑎̃, 𝑏̃⟩ integral above, however, 𝑎(𝑡) and 𝑏(𝑡) are easily interchangeable

throughout the preceding steps, so we find that

⟨𝑎̃, 𝑏̃⟩ ≡ ∫
∞

−∞
d𝑓

𝑎̃∗(𝑓)𝑏̃(𝑓) + 𝑎̃(𝑓)𝑏̃∗(𝑓)
𝑆𝑛(𝑓)

= ∫
∞

−∞
d𝑡 𝑎(𝑡) ∫

∞

−∞
d𝑡′ 𝑏(𝑡′) ⋅ 𝜌−1(𝑡 − 𝑡′)

≡ ⟨𝑎, 𝑏⟩ .

We now have both the frequency domain and time domain inner products of continuous

functions. Since real data is never continuous however, the familiar form of the time

domain inner product is the discrete version. Discretising the above

⟨𝑎, 𝑏⟩ = ∫
∞

−∞
d𝑡 𝑎(𝑡) ∫

∞

−∞
d𝑡′ 𝑏(𝑡′) ⋅ 𝜌−1(𝑡 − 𝑡′) ,→

𝑁∕2−1∑

𝑖=−𝑁∕2

∆𝑡 𝐚𝑖
𝑁∕2−1∑

𝑗=−𝑁∕2

∆𝑡 𝐛𝑗𝜌−1(𝑡𝑖 − 𝑡𝑗) ,

so that

⟨𝑎, 𝑏⟩ ,→ ⟨𝐚 | 𝐛⟩ = ∆𝑡2 𝐚𝑖𝜌−1𝑖𝑗 𝐛𝑗 , (2.14)

where the matrix 𝜌−1𝑖𝑗 ≡ 𝜌−1(𝑡𝑖 − 𝑡𝑗) and summation over repeated indices is implied in

the last step. Thus we have all desired conversions between frequency and time domain

samples presented in the different bases.

The time domain version of the posterior in (2.9) can also be derived via a matrix

basis transformation, specifically the (inverse) discrete Fourier transform (DFT) matrix,

under which the determinant of the covariance matrix is unchanged. That is, there is
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a DFT transformation matrix 𝐏, given by 𝑃𝑗𝑘 ≡ ∆𝑡 exp(−2𝜋𝑖𝑗𝑘∕𝑁), such that (intro-

ducing superscripts for the time domain, 𝚺td, and frequency domain, 𝚺fd, inner product

matrices)

(𝚺fd)−1 = 𝐏(𝚺td)−1𝐏−1 ,

where we have that

det(𝚺fd)−1 = det(𝐏) det(𝚺td)−1 det(𝐏−1) = det(𝚺td)−1 .

We can then replace
∏𝑁

𝑖=1 𝜎𝑖𝑖 =
√
det(𝚺fd) in (2.9) with

√
det(𝚺td). For the inner product

in the exponent in (2.9), note that 𝐏𝐏−1 = 1, so we can write

𝐧̃∗T(𝚺fd)−1𝐧̃ = (𝐧̃∗T𝐏)(𝐏−1(𝚺fd)−1𝐏)(𝐏−1𝐧̃) = 𝐧T(𝚺td)−1𝐧 = ⟨𝐧|𝐧⟩ , (2.15)

since 𝐏𝐧 = 𝐧̃, and 𝐏−1 = 𝐏∗ so that 𝐧̃∗T𝐏 = (𝐏−1𝐧̃)∗T. Comparing this with (2.14) gives

(Σtd)−1𝑖𝑗 = ∆𝑡2𝜌−1𝑖𝑗 . (2.16)

Given this transformation between domains, the origin of the discrete time domain in-

ner product is now clear. In the next sections we compute 𝚺td using the PSD directly.

To conclude the transformation of the likelihood in (2.9), we replace the inner product

with the time domain version to see that the likelihood of obtaining noise 𝐧 is, naturally,

independent of basis and may also be written

𝑝(𝐧̃) = 𝑝(𝐧) =
[
(2𝜋)𝑁 det(𝚺td)

]−1∕2
exp

[
− 1

2
𝐧T(𝚺td)−1𝐧

]
. (2.17)

Since the data is ordinarily written as 𝐝 = 𝐬 + 𝐧, we have that 𝐧 = 𝐝 − 𝐬, and may

think of 𝑝(𝐝 − 𝐡(𝜽)) as the likelihood that the remainder of the data left over, after sub-

tracting the model template 𝐡 with parameters 𝜽, can be accounted for completely as

detector noise. That is, when 𝐡(𝜽) = 𝐬, we have 𝑝(𝐝 − 𝐡) = 𝑝(𝐧). The likelihood is

thereby defined to be

𝑝(d | 𝜽) ≡ 𝑝(𝐝 − 𝐡(𝜽))

=
[
(2𝜋)𝑁 det(𝚺td)

]−1∕2
exp [− 1

2

(
𝐝 − 𝐡(𝜽)

)T
(𝚺td)−1

(
𝐝 − 𝐡(𝜽)

)
] , (2.18)

We will switch between the matrix product and standard inner product notation freely,

when convenient. The vector 𝐫(𝜽) ≡ 𝐝 − 𝐡(𝜽) will be referred to as the residual.
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2.3.3 Noise covariance matrix

The noise power generated by the detector as a function of frequency (the PSD) deter-

mines the degree to which any two samples in the time domain representation of the

noise are correlated with each other. In the current section and the next, we derive the

time-domain inner product operator (thematrix (𝚺td)−1) from the PSD to account for this

interdependence of the samples. It will be assumed that the noise iswide sense stationary

(WSS), that is, that its mean and covariance are time invariant.

A cross-covariance matrix of two vectors describes the covariance between elements

of the vectors. The 𝑖, 𝑗 element of the cross-covariance matrix 𝚺𝐗𝐘 is the covariance be-

tween the 𝑖th element of 𝐗 and the 𝑗th element of 𝐘. A cross-covariance matrix is called

an auto-covariance, or simply covariancematrixwhen describing the covariance between

different elements of the same vector. Our noise covariance matrix will be denoted here

as 𝚺, so that

𝚺 ≡ 𝚺𝐧𝐧 , (2.19)

where 𝐧 is a noise realisation. In terms of matrix elements, we define a cross-covariance

matrix as

Σ𝑖𝑗 ≡ cov[𝑋𝑖, 𝑌𝑗] = 𝔼[(𝑋𝑖 − 𝔼[𝑋𝑖])(𝑌𝑗 − 𝔼[𝑌𝑗])] , (2.20)

where 𝔼 is the expectation value operator. For vanishing mean of the noise, we have

Σ𝑖𝑗 = 𝔼[𝑛𝑖𝑛𝑗] ≡ 𝑅𝑖𝑗 , (2.21)

defining the autocorrelation matrix, 𝑅𝑖𝑗. Now since the noise is assumed to be WSS, the

expected value of the product of any two samples only depends on the time ‘lag’ between

the samples, i.e., 𝔼[𝑛𝑖𝑛𝑗] = 𝔼[𝑛𝑖+𝑐𝑛𝑗+𝑐] for any integer 𝑐. It will be useful to consider

𝑐 = −𝑖 where we have that

𝑅𝑖𝑗 = 𝔼[𝑛𝑖−𝑖𝑛𝑗−𝑖] = 𝔼[𝑛0𝑛𝑗−𝑖] . (2.22)

In this form, we can see the matrix is both Toeplitz and symmetric. It is clear that the

𝑖, 𝑗 element represents the expected value of noise correlations of time series samples

separated by the absolute time lag between the 𝑖th and 𝑗th sample. The first row, 𝑅0𝑖 =

𝔼[𝑛0𝑛𝑖], gives precisely the definition of the (discrete) autocorrelation function (ACF).

By theWiener-Khinchin theorem, the ACF is the Fourier Transform of the PSD. How-

ever, we must be careful in the GW data analysis world since, again, we most often use
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the one-sided PSD which introduces a factor of 2, such that the equation embodying the

Wiener-Khinchin theorem reads

𝑆n(𝑓) = 2 ∫
∞

−∞
d𝑡 𝑅(𝑡)𝑒−2𝜋𝑖𝑓𝑡 = 2ℱ{𝑅}(𝑓) . (2.23)

Thus given the PSDwe can easily compute𝚺, since it is defined by𝑅𝑖𝑗 = 𝑅(𝑡𝑖−𝑡𝑗). For

the inner product however, we require 𝚺−1. When𝑁=dim(𝐝) becomes large, numerical

inversion of the resulting 𝑁 × 𝑁 noise covariance matrix becomes very unwieldy. We

have devised a fast and accurate solution to this problem, which we now describe.

2.3.4 Inverting large autocorrelation matrices

Wewish to find thematrix𝚺−1 that satisfies𝚺𝚺−1=1. First, note that since𝚺 is symmetric

Toeplitz, so then must be 𝚺−1. In components, write

1𝑖𝑘 = Σ𝑖𝑗Σ−1𝑗𝑘 = Σ𝑖𝑗Σ−1𝑘𝑗 = Σ0𝑗Σ−1(𝑘−𝑖)𝑗 = 𝑅0𝑗𝑅−1(𝑘−𝑖)𝑗 , (2.24)

where summation over 𝑗 is implied by the repeated indices. It is clearer in the continuous

regime, where the above can be written

𝛿(𝑡 − 𝑡′) = ∫
∞

−∞
d𝜏 𝑅(𝑡 − 𝜏)𝑅(−1)(𝜏 − 𝑡′) = ∫

∞

−∞
d𝜏 𝑅(𝑡 − 𝑡′ − 𝜏)𝑅(−1)(𝜏) , (2.25)

where 𝛿 is the Dirac-delta function, 𝑅 is the ACF, known by the Wiener-Khinchin the-

orem, and where 𝑅(−1) is the function we seek, which we call the inverse autocorrelation

function. The second equation comes from setting 𝜏 − 𝑡′ → 𝜏 in the integral. Now define

𝑇≡𝑡 − 𝑡′ to obtain

𝛿(𝑇) = ∫
∞

−∞
d𝜏 𝑅(𝑇 − 𝜏)𝑅(−1)(𝜏) . (2.26)

This integral is precisely the form of a convolution (∗ operator) of 𝑅 with 𝑅(−1), so we can

write

𝛿(𝑡) = (𝑅 ∗ 𝑅(−1))(𝑡) . (2.27)

If ℱ denotes the Fourier Transform and ℱ−1 its inverse, then the convolution theorem

states that

ℱ{𝑅 ∗ 𝑅(−1)} = ℱ{𝑅} ⋅ ℱ{𝑅(−1)} , (2.28)

so that after Fourier transforming (2.27), using the convolution theorem, and some rear-

ranging, we obtain

𝑅(−1) = ℱ−1 {(ℱ{𝑅})
−1

} = ℱ−1 {
( 1
2
𝑆n
)−1

} , (2.29)
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where we substituted for the PSD from (2.23). The inverse ACF coincides with the def-

inition of the new function in (2.13), where 𝑅(−1) = 𝜌−1, from which it follows that the

inverse autocorrelation matrix 𝑅−1𝑖𝑗 is the time-domain inner product operator 𝜌−1𝑖𝑗 . The

discrete form of 𝑅(−1) is then related to the first row of (𝚺td)−1 by (2.16), which then sets

the whole matrix (since we already know it is symmetric Toeplitz), and we can quickly

compute (𝚺td)−1. A realistic realisation of the LISA PSD is shown in Fig 2.4, the inverse

ACF of that PSD is shown in Fig 2.5.

Aside: An algorithm for inversion of general Toeplitz matrices

As a brief aside, we point out an interesting result that follows from the method of

inverting symmetric Toeplitz matrices: that it is possible to extend this approach to

determine the inverses of general Toeplitz matrices. Suppose then that we wish to

determine the inverse of the general, non-symmetric Toeplitzmatrix𝐅. We can embed

𝐅 into a larger block matrix

𝐀 =
⎛
⎜
⎝

𝐄 𝐅

𝐆 𝐇

⎞
⎟
⎠
, (2.30)

which we define, by choice of 𝐄,𝐆,𝐇, to be symmetric Toeplitz. Then we require

𝐆 = 𝐅T ,

𝐄 = 𝐄T = 𝐇 ,

and where 𝐄 is chosen such that its entries are consistent with those of 𝐅 to make 𝐀

Toeplitz (note that the value on the leading diagonal can be chosen freely). I.e., for

𝐄 an 𝑛 × 𝑛 matrix: 𝐸𝑛𝑖 = 𝐺0(𝑖+1), for 𝑖 < 𝑛. Since 𝐀 is symmetric and Toeplitz, we

can apply the DFT method to find its inverse, 𝐀−1. However, it is also known that the

inverse of the block matrix 𝐀 defined by four ‘quadrant’ block matrices is equal to

𝐀−1 =
⎛
⎜
⎝

𝐄−𝟏 + 𝐄−𝟏𝐅𝐒−𝟏𝐆𝐄−𝟏 −𝐄−𝟏𝐅𝐒−𝟏

−𝐒−𝟏𝐆𝐄−𝟏 𝐒−𝟏
⎞
⎟
⎠
, (2.31)

where 𝐒 ≡ 𝐇 − 𝐆𝐄−𝟏𝐅 = 𝐄 − 𝐅T𝐄−𝟏𝐅 (see Schur complementation, [70]). Now, be-

cause 𝐀 is symmetric Toeplitz, then so is 𝐀−1, and so too are the upper left and lower

right quadrants of 𝐀−1. Indeed, these two leading diagonal quadrants must be equal.
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That is

𝐒−𝟏 = 𝐄−𝟏 + 𝐄−𝟏𝐅𝐒−𝟏𝐅T𝐄−𝟏 ,

which can be rearranged to give the inverse of our original matrix 𝐅, as

𝐅−𝟏 = 𝐒−𝟏𝐅T𝐄−𝟏(𝐄𝐒−𝟏 − 1)−𝟏 , (2.32)

wherewe also have that𝐄𝐒−𝟏 − 1 is symmetric Toeplitz, and can also be inverted using

the DFT method we previously described. Note that 𝐒−𝟏𝐅T𝐄−𝟏 is already given by the

negative of the lower left quadrant of𝐀−1, and 𝐒−1 by the upper left/lower right of𝐀−1.

So we have found that the inverse of any Toeplitz matrix 𝐅 can be obtained simply by

two DFTs and two matrix multiplications. Note that we have assumed invertibility of

𝐅; a test of invertibility of Toeplitz matrices is given in Ref. [71], where some special

case solutions of Toeplitz matrix inverses are also given. An iterative procedure for de-

termining the inverse of general Toeplitz matrices was proposed in Ref. [72], although

the approach presented here appears considerably simpler.
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Figure 2.4: A sample power spectral density (PSD) function for LISA. A detailed account of the origin of

the structure of this function (and the source code defining it) can be found in [62].
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Figure 2.5: The (one-sided) inverse autocorrelation function for the LISA PSD (shown in Fig 2.4). This

defines the continuous inner product operator and shows that samples separated by around≳140 seconds

are not significantly correlated in comparison to the zero time lag value.

2.4 Sampling

With the likelihood function in equation (2.18) and hence the posterior probability dis-

tribution in equation (2.6) defined, we would like to be able to analyse the posterior in

some way, perhaps finding the mean, or the variances/covariances of/between parame-

ters, for example. Due to the often highly intricate form of the posterior function, it is

generally exceedingly expensive to evaluate the posterior over a discrete lattice of points,

and it is generally not possible to write down short, simple expressions for the desired

quantities that are reasonably easy to compute.

The standard solution is to ‘draw a sample set’ (a discrete set of posterior samples)

from the posterior distribution such that the sample density is proportional to the true

(continuous) posterior distribution. This discrete set of points is then used as a repre-

sentation of the true posterior. However, doing this is not at all straightforward, since a

process devised to produce the random samples can only do so accurately if the posterior

distribution is already known. Various techniques exist for approximating the posterior

sample set however; algorithms that perform this task are known as samplers. There are

many variations on the details of the operations of different samplers. These are not so
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important to know for the particular aims of this thesis however, so we shall only briefly

describe basic notions of two sampling methods: MCMC sampling, and nested sampling.

2.4.1 Markov chain Monte-Carlo sampling

Markov chain Monte Carlo (MCMC) samplers use walkers (the algorithm that proposes,

tests and selects posterior samples) to generate chains (ordered sets) of posterior samples.

An example of the procedure is as follows:

1. A walker will first choose a random starting point, 𝜃0, in the parameter space, 𝚯,

and evaluate the posterior there, 𝑃(𝜃0): this point is set as the first element, 𝑐0 = 𝜃0,

in the ‘chain’, 𝒞 = {𝑐0}. Set 𝑖 = 1.

2. The walker proposes another random point, 𝜃𝑖, and evaluates the posterior, 𝑃(𝜃𝑖),

there. If 𝑃(𝜃𝑖) > 𝑃(𝜃𝑖−1), then 𝑐𝑖 = 𝜃𝑖. Otherwise, if 𝑃(𝜃𝑖)∕𝑃(𝜃𝑖−1) < 𝑈(0, 1), for

𝑈(0, 1) a uniform distribution between 0 and 1, then 𝑐𝑖 = 𝜃𝑖, else 𝑐𝑖 = 𝜃𝑖−1. Add 𝑐𝑖
to 𝒞.

3. Increment 𝑖. If 𝑖 < 𝑛, for 𝑛 some chosen chain length, go back to step 2, otherwise,

return chain 𝒞.

There are finer details about how new points are proposed and tested by the walker. For

example, points are usually proposed from a Gaussian centred on the previous point,

making ‘distant jumps’ unlikely and small steps likely (hence the name ‘walker’). The

design of these algorithms ensures that walkers tend towards higher probability regions

of the parameter space, which are explored in more detail. More importantly however,

since the probability of acceptance (after enough initial steps have beenmade) is roughly

equal to the ratio of probabilities between steps, the accepted points correctly sample the

posterior. Examples of MCMC samplers include: emcee [73], and Bilby_MCMC [74].

2.4.2 Nested sampling

Nested sampling is a method used for estimating the evidence (briefly mentioned in Sec-

tion 2.3.1) fromwhich one also obtains a set of posterior samples ‘for free’. Asmentioned

above, it is a difficult task to emulate drawing samples from a distribution when that dis-

tribution is not known. Nested sampling replaces this task with a series of simple tasks:

61



2. GW DATA & ANALYSIS

a series of successive, nested iso-likelihood contours (closed, (𝑛 − 1)-dimensional sur-

faces in an 𝑛-dimensional parameter space, of equal likelihood) are created at increasing

likelihood values. At each stage/level/contour, a new set of samples can be proposed

relatively straightforwardly; the proposal distribution is just the prior distribution, con-

strained within the bounds of (i.e., greater than) the current iso-likelihood value. One

then acquires consecutive sets of samples fromwithin each iso-likelihood contour, which

can be combined (using ‘weights’ associated with each region [75]) to reconstruct the

posterior. Examples of nested sampling samplers include: Nessai [76], CPNest [77],

and dynesty [78]. We use Nessai (with Bilby [79]) to provide all posteriors in Chapters

6, 7 & 8 (see Section 7.1).
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Chapter3
The Large Dataset Problem

3.1 Introduction

In order to perform explorative analyses of very large, purely simulated data sets, with

limited computing power and on manageable timescales, we investigate a means of re-

ducing computational costs without jeopardising the quality of results. Our approach

is to discard a number of data points and modify the properties of the remaining data,

or the methods used to analyse it, in order to compensate for the original information

content of interest. That is, we wish to ascertain the robustness, limitations and benefits

of what we call downsampling of the given data set, followed by making necessary mod-

ifications to fulfil the requirement that the results of, in particular, parameter estimation

(PE) analyses will be minimally affected. With this view, the task is an optimisation

problem. Using fewer data points means fewer numerical operations are required to

evaluate the likelihood function at a given point in the parameter space. We will see that

the consequence of this is a drastic reduction in the amount of time required to compute

the posterior probability distribution. The particular focus here is the study of ‘slowly

evolving’ GW signals that we expect to obtain from the LISA detector [80] (with special

emphasis on compact binary inspirals), but the methods employed here are general and

may be used with other datasets of signals that can be said to be slowly evolving in time.

We can loosely define a waveform as being slowly evolving over a time interval𝒮 if the

average value of the Fisher InformationMatrix (see Section 3.3.2) at time 𝑡 over ‘interme-

diate duration’ time intervals ℐ𝑡 (with a range of order ∼100 times the reciprocal of the
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Nyquist rate of the waveform in 𝒮) centred at 𝑡 is approximately constant for all 𝑡 ∈ 𝒮.

A definition of this sort is required in order to be able to classify sinusoidal waveforms as

being slowly evolving if their frequency and amplitude parameters are roughly constant,

despite their oscillating nature; their Fisher information matrices also oscillate as func-

tions of time, but taking the average value over intermediate time intervals ‘smooths out’

the oscillations.

To see why slow evolution is important, consider the simplest time-series signal that

is clearly slowly evolving: a constant signal. One could take time series samples from any

location; these would provide roughly equal information on that constant (depending on

noise). Conversely, consider a signal which has an instantaneous step from one constant

to another at a certain time; one should clearly classify this as not slowly evolving. To ac-

curately determine the location of the step, the time samples just before and after the step

would be preferred for optimal information on the location of the step. Downsampling

in this case does not necessarily fail, but it would at least require a carefully constructed,

signal-dependent setup to ensure the downsampled likelihood function is approximately

equal to the original likelihood function across the whole parameter space. We aim to

introduce a signal independent downsampling procedure, and thus we are restricted to

signals of slow time evolution.

The inspiral stage of BHBs may last millions of years before merger, where the vast

majority of the duration of GWemission constitutes a very slowly evolving signal of grad-

ually increasing amplitude and frequency (a characteristic ‘chirp’ [81]). The LISA detec-

torwill be sensitive to a good portion of the lower frequency (∼1–100mHz) part, andmay

be active for∼5–10 years [80]. For themost slowly evolving signals hovering near the up-

per frequency sensitivity of ∼100mHz throughout LISA’s lifetime, we may realistically

expect datasets consisting of ∼ 109 data points at the Nyquist rate.

Such a large dataset would require a great deal of computing resources for PE anal-

yses, but since for preparatory research the entire dataset (just meaning both the signal

and noise) is simulated, we have freedom to alter or redefine the signal and/or detector

model at will to suit our investigative requirements. In particular, that liberty is made

use of by the definition and application of the downsampling procedure that is the sub-

ject of this chapter. We shall therefore attempt to be comprehensive in the description

and provision of such a scheme, and it shall be shown to be able to accurately reproduce
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the results one can expect to obtain from a real-world analysis of a real-world dataset.

For real-world scenarios, this procedure is not applicable since we have no control of

either the signal or the noise. This procedure is only applicable in simulations and will

therefore serve only to provide experimental insight into which sorts of analyses of large

data sets could be the most fruitful, and the results we can expect to see when real-world

analyses are performed on the real-world dataset.

It is instructive to place thismethod and its results in the context of relatedworks that

employ other approaches in either making approximations, or in some other way speed

up the evaluation of PE analyses. Perhaps themost frequently employed formalism is the

Fisher information approximation; see for example [82, 83, 84, 85, 86, 87]. This formal-

ism provides a multivariate Gaussian approximation of the likelihood that gives a lower

bound in the standard error of the signal’s true parameters. This can be of some use, but

in many cases is a poor approximation of the posterior; for a detailed discussion on why

this is not generally reliable (except in some particular regimes), see [88, 89] and Section

6.2.1 for further details. Othermethods that are not approximations, but exploit common

properties of the waveforms under study by finding ways to cheaply produce waveform

templates include reduced order quadrature (ROQ) [90], heterodyning/relative binning

[91], and so-called adaptive frequency resolution [92]. Finally, another approximation

technique, perhaps most similar to that developed here, is Template-Interpolation [93].

This entails computing the frequency domain waveform, except in those parts which are

known to be roughly linear, and interpolating over those gaps in the waveform between

the points that are explicitly computed. We shall of course describe downsampling in de-

tail, but one quick way to see how downsampling differs from this is to see that (after the

original, complete dataset is used to inform the setup) the gaps in the data are fully dis-

carded, rather than ‘filled in’; the definitions of signal/noise/inner product operations,

or whatever else might be required, are modified such that the remaining datapoints

constrain the signal parameters just as well as the fully sampled dataset would have.

This chapter is structured as follows. In Section 3.2, we introduce the framework in

which to define the problem and useful results required for the analysis. We then define

and develop the downsampling procedure in Section 3.3, discussing some of the concepts

and problems that must be considered for a faithful reproduction of the LISA posterior.

The procedure defined in Section 3.3 is tested for accuracy experimentally in Section
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3.4, using two different measures of posterior convergence and lays out the convergence

criteria we have adopted. Section 3.5 presents the projected improvements in the rate of

evaluation of PE attained by downsampling.

3.2 Preliminaries

This section consists of a few details, results and definitions that are required to be clar-

ified before moving on to defining and testing the downsampling procedure. The mate-

rials presented here are extensions of the foundational results presented in Sections 2.2

& 2.3.

3.2.1 Whitening transformation matrix

We will require an operator that transforms vectors of correlated samples to vectors of

uncorrelated samples. The samemathematical techniques used to find the inverse auto-

correlation function we used in Section 2.3.4 can be employed to do this.

Consider representing a noise weighted (time domain) inner product of signals in

another basis in which each of the signal’s samples are entirely uncorrelated from each

other. The inner product matrix in this space is a diagonal matrix. Further suppose that

the matrix is the identity matrix, so that each sample contributes to the inner product

sum with equal weight. Since inner products remain invariant under basis transforma-

tions, we can define a transformed inner product of vectors 𝐚 and 𝐛 by

𝐚T𝚺−1𝐛 = 𝐚̄T1 𝐛̄ , (3.1)

for general time domain inner product matrix 𝚺−1, and where 𝐚̄ and 𝐛̄ are the ‘whitened’

representations of vectors 𝐚 and 𝐛. We shall solve this here by writing

𝐚T𝚺−1𝐛 = 𝐚T𝚺(−1∕2)𝚺(−1∕2)𝐛 = 𝐚T
(
𝚺(−1∕2)

)T
1𝚺(−1∕2)𝐛 , (3.2)

where 𝚺(−1∕2) is some matrix to be found, which we shall constrain to be symmetric

Toeplitz. We can then read off thewhitening transformation of the vector space, inwhich

𝚺−1 → 1 along with all vectors 𝐯 → 𝐯̄ = 𝚺(−1∕2)𝐯. Notice, we have that

𝚺−1 = 𝚺(−1∕2)𝚺(−1∕2) , (3.3)
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which in the continuous case can be written as

𝑅(−1)(𝑡−𝑡′) = ∫
∞

−∞
d𝜏 𝑅(−1∕2)(𝑡−𝜏)𝑅(−1∕2)(𝜏−𝑡′) = ∫

∞

−∞
d𝜏 𝑅(−1∕2)(𝑡−𝑡′−𝜏)𝑅(−1∕2)(𝜏) , (3.4)

where 𝑅(−1) is the inverse auto-correlation function we defined earlier in equation 2.29,

and 𝑅(−1∕2) shall be referred to either as the whitening function or decorrelation function

and is the function sought. Define 𝑇≡𝑡 − 𝑡′ so that

𝑅(−1)(𝑇) = ∫
∞

−∞
d𝜏 𝑅(−1∕2)(𝑇 − 𝜏)𝑅(−1∕2)(𝜏) = 𝑅(−1∕2) ∗ 𝑅(−1∕2)(𝑇) . (3.5)

The Fourier transform gives

ℱ{𝑅(−1)} = [ℱ{𝑅(−1∕2)}]
2

, (3.6)

so that

𝑅(−1∕2) = ℱ−1
{√
ℱ{𝑅(−1)}

}
. (3.7)

However, we know thatℱ{𝑅(−1)} = 2∕𝑆n, as in equation (2.29) for example, so we finally

write the whitening function as

𝑅(−1∕2) = ℱ−1 {
√
2∕𝑆n} , (3.8)

where the matrix version 𝑅(−1∕2)𝑖𝑗 ≡ 𝑅(−1∕2)(𝑡𝑖 − 𝑡𝑗). The whitening function for the LISA

PSD is shown in Figure 3.1. From (3.4) we can then write

𝑅−1𝑖𝑘 = 𝑅(−1∕2)𝑖𝑗 𝑅(−1∕2)𝑗𝑘 (3.9)

with which, using (2.16) and (3.3) we can find the whitening matrix, or decorrelation

matrix,

Σ(−1∕2)𝑖𝑗 = ∆𝑡𝑅(−1∕2)𝑖𝑗 . (3.10)

3.2.2 Data vector spaces

The inverse noise covariance matrix can be thought of as a metric in the space of data

vectors, 𝒟, giving rise to the notion of distance. The so-called Mahalanobis distance

between points in𝒟 represented by the position vectors𝐗,𝐘 (this interpretation is valid

when 𝚺 is constant) is given by

𝑑M(𝐗, 𝐘) =
√(

𝐗 − 𝐘
)T
𝚺−1

(
𝐗 − 𝐘

)
. (3.11)
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Figure 3.1: The (one-sided) whitening or decorrelation function, derived from the LISA PSD given in

Figure 2.4. This is defined in equation (3.8) and whitens (continuous) LISA noise via convolution.

The likelihood in (2.18) can thus be written

𝑝(d | 𝜽) =
[
(2𝜋)𝑁 det(𝚺)

]−1∕2
exp [− 1

2
𝑑M
(
𝐝, 𝐡(𝜽)

)2
] . (3.12)

Recall that what we are trying to achieve is retaining the form of the likelihood function

after discarding samples. This amounts to demanding that the Mahalanobis distance

is unchanged after the downsampling procedure (yet to be defined). Suppose we have

some initial (‘full’) dataset 𝐝f consisting of 𝑁f = dim(𝐝f ) samples, and a downsampled

dataset (a subset of the provided initial dataset) 𝐝s with 𝑁s=dim(𝐝s) samples. What we

would like, ideally, is to have

𝑝(𝐝s | 𝜽)
?
= 𝑝(𝐝f | 𝜽) ,

for all 𝜽, where ?
= indicates that we seek a definition 𝑝(𝐝s | 𝜽) that satisfies the above

equation. Aside from an inconsequential proportionality constant which can be ignored,

this means we require

𝑑M,s
(
𝐝s, 𝐡s(𝜽)

) ?
= 𝑑M,f

(
𝐝f , 𝐡f (𝜽)

)
, (3.13)

where the subscripts describe whether the object lives in the full data space, or the subset

data space.

Seemingly, this is a poorly defined and analytically impossible problem; it constitutes

an underdetermined system of equations. It is only possible to ensure the distances are
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equal by either redefining the signal model 𝐡s → 𝐡s
′ = 𝐡s

′(𝐝f , 𝐡f (𝜽)), or defining 𝑑M,s
with a covariance matrix 𝚺−1s = 𝚺−1s (𝐝f , 𝐡f (𝜽)), as a function of all of the original data.

This almost certainly increases the difficulty of the problem, and we must instead con-

sider approximation methods. These will be discussed in subsequent sections however,

the main point of this section is simply to introduce some of the geometric intuition be-

hind the data vector spaces that will be helpful for our definition of the downsampling

procedure.

Finally, consider the𝑁f dimensional (‘full’) data space,𝒟f , with itsmetric𝚺
−1
f . This is

provided by the detector model and data 𝐝f , and is considered fixed. The𝑁s dimensional

subset space,𝒟s, andmetric,𝚺
−1
s , can be considered ‘invented’, (perhaps the subset signal

model, 𝐡s, too) with the demand that (3.13) is satisfied, at least to some acceptable degree

of accuracy to be determined. As a first attempt for finding the form of 𝚺−1s , one may en-

visage simply deleting those rows and columns from 𝚺−1f corresponding to the samples

dropped in going from 𝐝f → 𝐝s, so that correlations between the remaining samples are

still accounted for in the resulting𝑁s ×𝑁s matrix 𝚺
−1
s . It is not strictly necessary to keep

account of sample correlations; our only aim is to satisfy (3.13) as closely as possible in

someway. Unfortunately however, wewill see that it is not so simple as naively choosing

a few time-series samples, since it turns out that to accurately reproduce a LISA likeli-

hood, with its implications of correlations between neighbouring time-domain samples,

one must first whiten (decorrelate) the residual before downsampling, or else equiva-

lently account for the correlations directly when computing the downsampled likelihood

(see Section 3.3.1.3 for more detail).

3.2.3 Note on time vs. frequency domain

It is appropriate to comment briefly on the choice of performing this study on time-

domain signals, rather than frequency domain. This is a significant point, as a great

deal of signal analysis, and particularly in the field of GW data analysis, is performed

in the frequency domain. A primary reason for this is that the inner product of vectors

is especially easy to calculate in the frequency domain due to the fact that samples are

uncorrelated there.

A guiding initial assumption was that samples remaining after downsampling would

be separated in time to such a high extent that any sample correlations could be com-
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pletely neglected. The initial guess of the form of 𝚺−1s suggested above would thus be

proportional to the identity matrix, to a very close approximation. We could then choose

𝚺−1s ∝ 1, and consider later revisions if required. Consequently, we expected no detri-

mental effects to the likelihood evaluation speed by working in the time domain. How-

ever we found (as described in Section 3.3.1.3) that first performing the whitening trans-

formation is required, increasing the number of data points at which the residualmust be

computed, and so the number of operations required to compute the inner product. This

hampers the evaluation time somewhat, but not so much as to render the time domain

approach ineffective.

Another advantage was expected from a time domain analysis over the frequency

domain: fewer samples were expected to be required to reproduce the likelihood func-

tion accurately. This is because, for the slowly evolving signals we are interested in, the

(Fisher) information in the time domain is far more uniformly distributed than it is in

the frequency domain. To retain a precise ratio of information on each parameter then,

it is expected that, while samples can be selected at random from the time series, either

the samples should have to be more carefully selected from the frequency series, so as

not to constrain some parameters toomuch, and others too little, or more samples would

have to be chosen.

In hindsight, this may not have made a great deal of difference since we are forced to

usemore samples for decorrelation in the time domain; the number of frequency domain

samples required may well be of a similar number. A frequency domain version of the

downsampling procedure would also be useful and will likely be developed. However,

there are still very useful benefits of the time domain version, especially, for example,

when a signal spans a highly non-uniform region of a PSD or if parameter information

is highly non-uniform in the frequency domain, and, perhaps more practically, from the

perspective of ease of producing (or modifying) time series models.

3.2.4 Divergences

We will require a measure of the amount by which two distributions differ. There are a

number of ways one can go about this (a P–P plot is one example) but perhaps the most

robust and meaningful are the measures known as divergences. There are different in-

terpretations of divergences between distributions. Consider, for instance, the Kullback-
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Liebler (KL) divergence, 𝐷KL(𝑃 || 𝑄), between (discrete) distributions 𝑃 and 𝑄. The KL

divergence is often thought of as being a measure of the (mean) extra information, mea-

sured in bits, required to describe the distribution 𝑃 using a code which is optimal for

encoding distribution 𝑄. Equivalently, more technically, it is the difference between the

self-information or entropy of 𝑃, given by

𝐻(𝑃) ≡ −
∑

𝑖∈ℐ

𝑃𝑖 log2 𝑃𝑖 ,

where ℐ is the set of possible outcomes and 𝑃𝑖 is the probability of outcome 𝑖, which

measures the average information conveyed about 𝑃 and by 𝑃, and the cross-entropy of

𝑃 and 𝑄, given by

𝐻(𝑃,𝑄) ≡ −
∑

𝑖∈ℐ

𝑃𝑖 log2𝑄𝑖 ,

which measures the average information conveyed about 𝑃, but carried by 𝑄. Thus if

𝑄 ≠ 𝑃, then one requires extra information to convey 𝑃 using 𝑄, but as 𝑄 → 𝑃, the

amount of extra information (i.e., the KL divergence) goes to zero. We can write the KL

divergence as

𝐷KL(𝑃 || 𝑄) = 𝐻(𝑃, 𝑄) − 𝐻(𝑃) .

Another useful interpretation is that, if we suppose 𝑄 is a sample distribution drawn

from 𝑃, then the KL divergence can be understood as the amount of surprise that 𝑄 was

drawn from 𝑃. The divergences also have formulations for continuous variables, the KL

divergence being written:

𝐷KL(𝑃(𝜽) || 𝑄(𝜽)) ≡ ∫
Θ
d𝑘𝜃 𝑃(𝜽) ln (

𝑃(𝜽)
𝑄(𝜽)

) , (3.14)

where we now write the distributions 𝑃 and 𝑄 as functions of the continuous variable 𝜽,

and where Θ is the space of possible outcomes (parameter space).

However, yet another useful interpretation, from the field of information geometry, is

that theKL divergence is a (generalised) distance in the space of distributions. TheKL di-

vergence is not a metric distance, since it is not symmetric in its arguments and does not

satisfy the axioms of a metric. This property reflects the notion that the first argument is

understood to be the ‘true’ distribution, and the second argument is, for example, a test

model, an approximation or sample set that diverges from the true distribution to some

degree, as implied by the discussion above. The Jensen-Shannon divergence remedies

this. It is a divergence that is symmetric in its arguments and which satisfies the metric
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axioms, and can thus be used to specify distance in the usual way, between two distri-

butions. The Jensen-Shannon (JS) divergence is defined in terms of the KL divergence

as:

𝐷JS

(
𝑃(𝜽)

|||||
||||| 𝑄(𝜽)

)
≡ 1

2
𝐷KL

(
𝑃
|||||
|||||
1

2
[𝑃 + 𝑄]

)
+ (𝑄 ↔ 𝑃) (3.15)

= 1

2
∫
Θ
d𝑘𝜃 𝑃 ln

⎛
⎜
⎝

𝑃
1

2
[𝑃 + 𝑄]

⎞
⎟
⎠
+ (𝑄 ↔ 𝑃)

= 1

2
∫
Θ
d𝑘𝜃 𝑃 ln 𝑃 + 𝑄 ln𝑄 − ∫

Θ
d𝑘𝜃 1

2
(𝑃 + 𝑄) ln 1

2
(𝑃 + 𝑄) ,

where the (𝑄 ↔ 𝑃) indicates a copy of the previous terms with 𝑃 and𝑄 switching places.

This divergence will be particularly useful since for the majority of our investigations we

shall not be in possession of ‘true’ posteriors (those defined using the complete dataset).

3.3 Defining a new likelihood function

3.3.1 Downsampling

Downsampling is simply the process by which a dataset, 𝐝s, say, consisting of𝑁s samples

is defined, by somemeans or another, as a subset of an original dataset 𝐝f which consists

of𝑁f > 𝑁s samples; thus 𝐝s ⊆ 𝐝f . For example, decimation is a well-known and common

method whereby every tenth sample is selected from some original ordered dataset, to

form a new dataset one tenth of the original’s size.

3.3.1.1 Downsampling schemes

After some preliminary investigation, there appears to be rather limited advantages (and

some disadvantages) to using specific downsampling (data sample selection) schemes.

This is, however, limited by our simple model which has the important property of being

slowly evolving. Some examples of possible schemes are:

• Uniform downsampling/‘decimation’ - taking every 𝑛th sample (𝑛 > 1),

• Random downsampling - selecting 𝑁s samples at random from the full dataset,

• Block downsampling - selecting blocks/chunks of given sizes from various regions

of the original datset,
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• Non-uniform probability density random sampling - selecting samples at random

with higher probability from certain regions of the original dataset. The probability

density could be determined by considering average signal-to-noise ratio or Fisher

Information contributions over short regions (for example),

• Combinations of the above methods.

One sample selection schememay allow recovery of the fully sampled posterior in fewer

samples than some other sampling scheme. However, attempts to optimise the down-

sampling procedure using specific schemes should likely need to be studied for each type

of model (even for each dataset considered); the efforts required for this will almost cer-

tainly outweigh any benefits and shall not be considered here.

The scheme we opted for, which gives a good representation of the signal, is simply

to choose data samples at random from the available samples with uniform probability

density. Uniform (periodic/regular) downsampling will lead to aliasing, causing the pos-

terior to be a poor representation of the truth. By randomly sampling, this problem can

be mostly eliminated [94], so long as the number of samples used is not catastrophically

low, causing the structure of the posterior to break down.

3.3.1.2 Residuals and metrics

There are a number of ways to go about expressing the downsampled residual in terms

of the fully sampled residual. This depends on the desired resulting dimensionality of

the subset data space,𝒟s. First, consider the 𝑁s × 𝑁f matrix

𝐃 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0 0 … 0

0 0 1 0 0 0 0 0 … 0

0 0 0 0 0 1 0 0 … 0

0 0 0 0 0 0 1 0 … 0

0 0 0 0 0 0 0 0 … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 0 0 0 … 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.16)

which, acting on the left of the 𝑁f dimensional vector 𝐯 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, … , 𝑣𝑁f
)T pro-

duces the 𝑁s dimensional vector 𝐯′ = 𝐃𝐯 = (𝑣2, 𝑣3, 𝑣6, 𝑣7, … )T. Setting the Mahalanobis
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distances equal, as in (3.13), at least approximately, is equivalent to setting

𝐯′T𝚪−1s 𝐯′ ≈ 𝐯T𝚪−1f 𝐯 , (3.17)

for all 𝐯, where 𝚪−1s and 𝚪−1f are the metrics on the subspace and full data space respec-

tively. An exact solution for 𝚪−1s would necessarily be in terms of 𝐯, and using the entire

vector defeats the purpose. Ourmethodwill be tomake an initial guess of ametric on the

subspace 𝚪′
−1
s , and define the final metric 𝚪

−1
s = 𝚪−1s (𝚪

′
s) in terms of the initial guess in

some appropriate fashion, as shall be described in the following sections. Of course 𝚪′
−1
s

must be an𝑁s×𝑁smatrix, sowemight suppose, given that we are already downsampling

𝐯 using 𝐃, that

𝚪′
−1
s = 𝐃𝚪−1f 𝐃T . (3.18)

As an example, we will later try to find some constant 𝑚 to set 𝚪−1s = 𝑚𝚪′
−1
s , in which

case one may write

𝐯T𝚪−1f 𝐯 ≈ 𝐯′T𝚪−1s 𝐯′ = 𝑚𝐯T𝐃T𝐃𝚪−1f 𝐃T𝐃𝐯 . (3.19)

Note other equivalent ways of writing downsampling operations, in particular using a

square matrix 𝐒 to select samples from 𝐯, such that 𝐯′ remains 𝑁f -dimensional, i.e, the

identity matrix but with some diagonals set to zero, e.g.: 𝐒 = diag(0, 0, 1, 0, ..., 0). This is

equivalent to the above since such a matrix may be defined as 𝐒 = 𝐃T𝐃.

Another useful way to downsample, rather than thinking of downsampling as reduc-

ing the number of dimensions by projecting the data into a smaller space using 𝐃, is to

define an 𝑁f -dimensional vector, 𝐤 = (0, 1, 1, 0, 0, 1, 1, 0, … , 0), a sample selection vector,

and write 𝐯′ = 𝐯 ⊙ 𝐤, where ⊙ is the Hadamard (element-wise) product, then using

𝚪′s = 𝚪f as the inner product matrix. This retains the dimensionality and simply ‘deletes’

the data we do not intend to use; the usefulness of this approach will become apparent

in the next part.

3.3.1.3 Time domain sample correlations

The acceptable downsampling rate we expect is very high, meaning that remaining sam-

ples would be greatly separated in time. The correlations effectively vanish between the

remaining samples and can be ignored. Onemight therefore suppose one could treat the

remaining samples as a small dataset effectively produced by a detector with a white
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noise profile, and compute inner products quickly since the noise covariance matrix

would be diagonal. Whilst it is true that these samples are effectively not correlated with

each other, theywill, in the full LISA dataset, be highly correlatedwith their immediately

neighbouring samples. In the full LISA dataset analysis, these correlated neighbours are

of course not neglected, and inform the likelihood function.

Importantly, we must be aware that we do not want to produce the posterior that

some detector recording few, widely spaced, uncorrelated samples with very little noise

would define (although this in itself is a rather interesting concept); rather, we would

like to know and reproduce the posteriors that LISA in particular will define: we are of

course trying to recreate in particular the LISA PE environment. To faithfully reproduce

a LISA posterior by downsampling, wemust bemindful of correlations between samples

implied by the definition of the likelihood function, since they help to determine the

degree to which LISA is sensitive to deviations from a pure noise dataset. In other words,

since the likelihood function essentially tests the goodness of fit of the residual as detector

noise, the samples in the residual are always assumed to be noise only and as such are

assumed correlated as per the definition of the detector noise correlation function.

It is not obvious that neglecting correlations will cause a significant deviation from

the true posterior, but our posterior convergence validity tests showed that it is generally

unsafe to do so. Upon reflection, the effect is quite reasonable and may be explained

with a simple example. Consider estimating the phase of a dirac-comb signal of known

amplitude and frequency from a detector with a white noise profile (where the autocor-

relation function is a delta function). Now, compare this to estimating the phase of the

same signal measured by another detector with a noise profile such that immediately

neighbouring samples are highly anti-correlated; in this case, one has more freedom to

shift the phase from the truth by one sample without changing the Mahalanobis dis-

tance (and so the posterior) as much, since the residual in that case is more likely to be

attributable to noise only. Hence in the downsampled case, if one selects a sample with-

out considering how its value is affected by its neighbours, one will likely arrive at the

wrong conclusions about how it constrains the model parameters.

The above example showshowcorrelations cause the information in the time-domain

signal towhich the detector is sensitive to becomemixed between neighbouring samples.

In order to prevent this from impinging upon the Bayesian inference after downsam-
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pling, we must whiten, or in some other way decorrelate the data samples (for example,

frequency representations from fast Fourier transform (FFT)s often consist of uncorre-

lated samples).

Thus in fact the preceding prescription for downsampling given in Section 3.3.1.2

should only be carried out on uncorrelated data: since frequency domain data is naturally

uncorrelated, the task would be straightforward and safe (at least from the point of view

of sample correlations) to downsample frequency samples. In the time domain, wemust

first whiten residuals before downsampling. This simply means setting

𝐯 = 𝚺(−1∕2)𝐫 , (3.20)

where 𝐯 is the whitened residual, so that the inner product of time domain residuals can

be written

⟨𝐫 | 𝐫⟩ = 𝐫T𝚺−1𝐫 = (𝚺(−1∕2)𝐫)T𝚺(−1∕2)𝐫 = 𝐯T𝚪−1𝐯 , (3.21)

where the metric in the ‘whitened basis’ 𝚪−1 = 1.

Whitening time-domain signals via the matrix operation in (3.20) is generally ex-

tremely costly. However, due to being able to downsample our data to a high degree, a

fairly efficient algorithm is possible for computing only the required template samples

(to within some chosen degree of accuracy regarding the number of ‘significant’ neigh-

bouring samples, see Section 3.3.1.3.1 below) to produce the downsampled residual

𝐯 ⊙ 𝐤 = 𝚺(−1∕2)𝐫 ⊙ 𝐤 , (3.22)

where as before 𝐤 is a sample selection vector. Then, for example, if it can be shown that

the approximation method where we find the optimal noise reduction factor𝑚 given in

(3.19) is accurate, then we can write the approximate inner product as

⟨𝐫 | 𝐫⟩ ≈ 𝑚(𝚺(−1∕2)𝐫 ⊙ 𝐤)T(𝚺(−1∕2)𝐫 ⊙ 𝐤) . (3.23)

3.3.1.3.1 Maximum correlated samples

The downsampled residual defined in (3.22) requires an expensivematrixmultiplication

to evaluate. As we will see later, we are generally allowed a definition of 𝐤 that vastly

reduces the number of signal samples that are required to be calculated to compute 𝐯⊙𝐤.

However, for each ‘1’ in 𝐤 corresponding to a selected decorrelated sample, we are still

required to know a few more samples from 𝐫 (the ‘significantly correlated’ samples) to
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be able to perform the decorrelation and compute the element of 𝚺(−1∕2)𝐫 corresponding

to the relevant ‘1’ in 𝐤.

The number of elements of 𝐫 required to be computed for each ‘1’ in 𝐤 depends on

the LISA ACF. The ACF always tends to zero for large values of the time lag. Generally

however, an ACF tends to zero even for relatively small values of the time lag, so if we set

some level of precision beyond which correlations are ignored, the number of elements

of 𝐫 required to compute an element of 𝐯 ⊙ 𝐤 can be reduced significantly. For our

analysis, we used the level of accuracy given by:

Definition. The index of last element of the ACF with magnitude greater than 0.5%

of the value of the zeroth element of the ACF is an integer known as the (approximate

number of)maximum correlated samples (MCS), denotedℳ.

Any given signal has its own Nyquist rate. This determines the frequency bin/time

sample size, and so the resolution of the ACF, thus the MCS will be different for each

signal. If some system has an MCS of 2, then 5 elements of 𝐫 will be required to be

known for each ‘1’ in 𝐤: one corresponding to the ‘1’ in 𝐤, the two preceding samples

and the two succeeding samples. For example, if 𝑘76 = 1, then we are required to know

𝑟74, ..., 𝑟78 in order to accurately compute 𝑣76𝑁f
. In general, 2ℳ + 1 elements of 𝐫 must be

computed for each ‘1’ in 𝐤. This is approximate however: suppose also that 𝑘77 = 1, we

then need 𝑟75, ..., 𝑟79, but 𝑟75, ..., 𝑟78 will already have been found from the requirements

of having 𝑘76 = 1. We shall write the approximate total number of samples evaluated as

𝑁ℳ , which is given by

𝑁ℳ ≈ (2ℳ + 1)𝑁s . (3.24)

3.3.2 Likelihood approximation methods

As mentioned, a number of approaches have been considered for evaluating likelihood

functions of LISA-like signals quickly, either exactly or by approximation. These include

using ROQwaveform synthesis, using the Fisher information formalism, relative binning

or simply brute forcemethods using high performance computing clusters [95]. Another

approach to approximating the likelihood function we considered briefly, straddling the

realm of posterior sampling, is by Taylor expanding the likelihood at various points. The

original function can be reproduced, in principle, to an arbitrary degree of accuracy by

77



3. THE LARGE DATASET PROBLEM

including the appropriate number of terms, or by using few terms at multiple points,

covering small patches which can be glued together at appropriately chosen boundaries.

There are good reasons, however, as will be discussed, to expect downsampling to pro-

duce accurate results very quickly, as a relatively straightforward procedure, at the same

time as fitting into a well tested and understood data analysis pipelines, which it is sen-

sible to make use of and contribute to. To our knowledge, the downsampling techniques

we introduce here for PE have not previously been considered.

Asmentioned in Section 3.2.2, for reproducing the likelihood function via downsam-

pling, it is necessary to find methods to approximate the likelihood function: an exact

replica of some likelihood given a detector, data and a model would necessarily require

using all of the original data at each point in the parameter space, which is what we are

aiming to avoid. However, we dohave the data, detectormodel and signalmodel. Guided

by some of the approximation ideas discussed above, the direction we will take is to es-

sentially try to reshape the downsampled likelihood into the same form, correcting, or

compensating, for the variation in the distribution occurring from discarding samples

by matching the standardised moments (mean, variance, skewness, and so on) in part at

least, to those of the original likelihood.

For simplicity, let us consider posterior defined by data consisting of a signal and a

vanishing noise realisation. The first moment of the distribution is the location of the

maximum likelihood value, which is automatically conserved under downsampling; the

log likelihood function will always vanish at the true parameters given any selection of

data samples. The secondmoment of the distribution is thenwhat onemight consider as

the first-order contribution to the variation of the posterior from downsampling. This is

known as the parameter covariancematrix (PCM). Its inverse is well-known as the Fisher

information matrix (FIM), given by [96, 97]:

𝐹𝑖𝑗 ≡ [
𝜕ℎT

𝜕𝜃𝑖
𝚺−1 𝜕ℎ

𝜕𝜃𝑗
+ 1
2tr (𝚺

−1 𝜕𝚺
𝜕𝜃𝑖

𝚺−1 𝜕𝚺
𝜕𝜃𝑗

)]
𝜽=𝜽̂

, (3.25)

which is evaluated here at 𝜽̂, the maximum likelihood estimate. For stationary noise

(where 𝚺 is constant) this reduces to

𝐹𝑖𝑗 ≡ [
𝜕ℎT

𝜕𝜃𝑖
𝚺−1 𝜕ℎ

𝜕𝜃𝑗
]
𝜽=𝜽̂

. (3.26)

It is useful to abbreviate this, dropping the evaluation point instruction and taking this
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to be implied, writing

𝐹𝑖𝑗 = ℎ𝑘,𝑖𝚺
−1
𝑘𝑙 ℎ𝑙,𝑗 , (3.27)

where summing over repeated indices is assumed, and where we defined ℎ𝑘,𝑖 ≡
𝜕

𝜕𝜃𝑖
ℎ𝑘.

3.3.3 Exact preservation of Fisher information

We show here that the FIM (at the true parameters) can be preserved exactly after down-

sampling. This can be achieved by eithermodifying the signal model or the sample noise

covariance matrix (of remaining, pre-whitened samples). This technique should prove

particularly useful for likelihood functions that are exceedingly expensive to compute

and require a very large degree of downsampling, or for waveforms that evolve suffi-

ciently quickly. In such cases it is likely that the downsampling degrades the relative

abundance of Fisher information for each parameter pair. For the slowly evolving sig-

nals we will examine later however, we predict that this will not occur and a more basic

solution, with an accuracy similar to using this exact FIM preservationmethod, could be

adequate for our Bayesian inference goals: namely, computing a single noise reduction

factor to use as the ‘new detector’ model noise.

It may not always be possible to find solutions that exactly preserve the FIM; certain

pathological cases can occur in which a sampling choice renders the precise recovery of

Fisher information impossible. For example, if a certain signal contains more informa-

tion on some parameter 𝜽1 overall, and the subset choice contains only samples that have

more information on parameter 𝜽2, then no amount of signal/noise reweighting of those

samples will be able to compensate for lost Fisher information on 𝜽1 without overcom-

pensating for Fisher information on 𝜽2. This is unlikely, but if necessary can be avoided

in the initial sample selection stage.

Given an 𝑁f -dimensional data space and metric as the pair (𝒟f , 𝚺
−1
f ) with FIM 𝐹𝑖𝑗,

we suppose there exists an 𝑁s-dimensional data space and metric as the pair (𝒟s, 𝚺
−1
s )

with FIM 𝐹′
𝑖𝑗, such that

𝐹′
𝑖𝑗 = 𝐹𝑖𝑗 . (3.28)

For the FIM of the subset, where the noise covariance matrix is written 𝚺−1s , we have

𝐹′
𝑖𝑗 = ℎ𝑘,𝑖(Σ−1f )𝑘𝑙ℎ𝑙,𝑗

= ℎ̄′𝑘′,𝑖(Γ−1s )𝑘′𝑙′ℎ̄′𝑙′,𝑗 , (3.29)
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where primes indicate objects on the𝑁s-dimensional data subspace, and where the ℎ̄′𝑘′,𝑖
are the prewhitened model derivative vectors on 𝒟s. That is, given a downsampling

matrix 𝐃 such as the example in equation (3.16), we have

ℎ̄′𝑘′,𝑖 = 𝐷𝑘′𝑚(Σ
−1∕2
f )𝑚𝑘ℎ𝑘,𝑖 . (3.30)

The matrix 𝚪s is unknown at this point, the form of this is what we wish to ascertain

to satisfy equation (3.28). Thus let us further suppose that

𝐹′
𝑖𝑗 = (𝜔 ⊙ ℎ̄′)𝑘′,𝑖𝐐𝑘′𝑙′(𝜔 ⊙ ℎ̄′)𝑙′,𝑗 , (3.31)

where 𝜔 is a vector to be determined, and 𝐐 is some guess of sample covariance matrix.

Since the samples are prewhitened, we can choose𝐐 to be diagonal, and our Ansatz shall

be 𝐐 = 1. Note, however, that there may be some other 𝐐 that minimises the distance

between the original and downsampled posterior over the entire parameter space. With

our Ansatz, we can still set the FIMs equal, but the likelihood functions may diverge

faster (than the ‘optimal’ choice of 𝐐, which is not known) as one moves away from the

true parameters. Proceeding with the simple, 𝐐 = 1 case, we have that

(𝜔 ⊙ ℎ̄′)𝑘′,𝑖𝐐𝑘′𝑙′(𝜔 ⊙ ℎ̄′)𝑙′,𝑗 =
𝑁s∑

𝑘′=0

𝜔2
𝑘′ℎ̄

′
𝑘′,𝑖ℎ̄

′
𝑘′,𝑗 = (ℎ̄′)T,𝑖 ⋅ diag(𝜔

2
1, 𝜔

2
2, ..., 𝜔

2
𝑁s
) ⋅ (ℎ̄′),𝑗 , (3.32)

where we can easily read off, from equation (3.29), that

𝚪−1s = diag(𝜔2
1, 𝜔

2
2, ..., 𝜔

2
𝑁s
) . (3.33)

If the FIM is an 𝑛 × 𝑛 matrix, i.e. there are 𝑛 parameters in our model, then since

the FIM is symmetric, there will be 𝑛𝑏 = (𝑛2 + 𝑛)∕2 unique equations in (3.28) given

by combinations of the 𝑖, 𝑗 indices. We may define the weighting 𝜔 to be constrained to

have the form of a sum of 𝑛𝑏 basis functions, for example:

𝜔2
𝑘′ =

𝑛𝑏−1∑

𝑝=0

𝑎𝑝𝑡
𝑝
𝑘′ , (3.34)

where 𝑡 is the time, 𝑡𝑝𝑘′ is the 𝑘
′th time value raised to the 𝑝th power, and the 𝑎𝑝 are con-

stants. Thus we will have 𝑛𝑏 equations and 𝑛𝑏 unknowns (the 𝑎𝑝’s), and therefore we

have the set of 𝑛𝑏 simultaneous equations

𝐹𝑖𝑗 =
𝑁s∑

𝑘′=0

⎛
⎜
⎝

𝑛𝑏−1∑

𝑝=0

𝑎𝑝𝑡
𝑝
𝑘′ ℎ̄

′
𝑘′,𝑖ℎ̄

′
𝑘′,𝑗

⎞
⎟
⎠
=

𝑛𝑏−1∑

𝑝=0

𝑎𝑝
𝑁s∑

𝑘′=0

𝑡𝑝𝑘′ ℎ̄
′
𝑘′,𝑖ℎ̄

′
𝑘′,𝑗 . (3.35)
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which can be written in matrix form

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐹00
⋮

𝐹𝑖𝑗
⋮

𝐹𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(𝑡0 ⊙ ℎ̄′)T,0ℎ̄
′
,0 … (𝑡𝑝 ⊙ ℎ̄′)T,0ℎ̄

′
,0 … (𝑡𝑛 ⊙ ℎ̄′)T,0ℎ̄

′
,0

⋮ ⋮ ⋮

(𝑡0 ⊙ ℎ̄′)T,𝑖ℎ̄
′
,𝑗 … (𝑡𝑝 ⊙ ℎ̄′)T,𝑖ℎ̄

′
,𝑗 … (𝑡𝑛 ⊙ ℎ̄′)T,𝑖ℎ̄

′
,𝑗

⋮ ⋮ ⋮

(𝑡0 ⊙ ℎ̄′)T,𝑛ℎ̄′,𝑛 … (𝑡𝑝 ⊙ ℎ̄′)T,𝑛ℎ̄′,𝑛 … (𝑡𝑛 ⊙ ℎ̄′)T,𝑛ℎ̄′,𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎0
⋮

𝑎𝑝
⋮

𝑎𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.36)

for 𝑖 ≤ 𝑗 ≤ 𝑛 , and thereby, since we know the 𝐹𝑖𝑗 and we can compute all the matrix

elements, we can solve the above for the coefficients 𝑎𝑝, giving us the form of 𝚪−1s us-

ing (3.33) and (3.34). One might expect that if samples are chosen such that the Fisher

information is not precisely recoverable, as per our pathological example case discussed

above, then thismatrixwill be singular (althoughwe shall not attempt to prove this here).

If 𝐐 ≠ 1 however, one finds that upon expanding, the resulting equations in the

𝑎𝑝 are quadric equations. These are difficult to solve analytically, and the difficulty of

finding solutions quickly increases as the number of parameters of the model increases.

Numerical methods could be employed in this case, to find solutions for the coefficients

of the chosen basis function set in (3.34).

The ‘single noise reduction factor’ approach discussed in the next section is equiv-

alent to setting the FIMs approximately equal, with the assumption that 𝑎𝑝 ≈ 0 for

𝑝 > 0 and finding the 𝑎0 that minimises the variation in the FIMs. If a situation oc-

curs in which this single factor is not precise enough to recover lost information, which

could be expected when the Fisher information transmission rate changes significantly

on timescales similar to the average duration between time samples1, it is possible that

the solution described herewill bemore robust (an interesting case to consider, for exam-

ple, is extreme mass ratio inspirals in LISA; the rate of transmission of Fisher informa-

tion is far less uniform than slow evolution BHBs, and approximate FIM recovery using

a single factor may not be feasible).

3.3.4 An optimal noise reduction factor

As we have seen, setting even the first moments (the PCMs) of the distributions to be

equal turned out not to be a trivial task. Seeking to simplify this for the limited class of
1In other words, the signal cannot be said to be slowly evolving. We can define Fisher information

transmission rate as the time derivative of the expectation value of the Fisher information: 𝜕𝑡⟨𝐹𝑖𝑗(𝑡)⟩.
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signals of our interest, we proposed the conjecture that a single noise reweighting factor

applied to all remaining samples would be sufficient to recover the general structure of

the distribution, given enough samples remain to capture a fair representation of the

information content.

To introduce themotivation of this conjecture, consider the simplest time seriesmodel,

𝐡(𝜽)=const. Suppose the detector produces time series 𝐝=𝐬+𝐧, where𝐧 is a realisation

of the detector noise. Each sample contains a certain amount of information about (in

the form of a constraint on) the signal’s parameter. The amount of information present

is thus strongly dependent on inherent detector noise (i.e. greater noise⇒ less informa-

tion), and the parameter constraints are manifest in the likelihood function.

Assuming Gaussian noise, the log likelihood function (discarding a constant that is

of no consequence) of an ‘original’ (full) data set can be written as

𝓁f (𝐝f , 𝜽) ≡ − 1

2
𝐫Tfℂ

−1
f 𝐫f −

�����������:𝑑𝑖𝑠𝑐𝑎𝑟𝑑
1

2
ln
[
(2𝜋)𝑁f det(ℂf )

]
(3.37)

where 𝐫f = 𝐫f (𝜽) ≡ 𝐝f−𝝁f (𝜽), and𝝁f (𝜽) is the signalmodel function at 𝜽. Here dim(𝐝f ) =

dim(𝝁f ) = 𝑁f . The noise covariancematrixwill be denotedℂf . Forwhite noise,ℂf =1𝜎2f ,

where 𝜎f is the noise standard deviation. The data vector 𝐝f =𝐬f + 𝐧f , and suppose that

𝐬f =𝟏f ⋅ 𝜃̂, where 𝜃̂ is a constant. The model

𝝁f (𝜽) = 𝟏f ⋅ 𝜃𝐴 , 𝜽 = (𝜃𝐴) , 𝜃𝐴 ∈ ℝ ,

(i.e. 𝜽 is just a 1-dimensional parameter vector) then the log-likelihood function can be

written as

𝓁f (𝐡f , 𝜽) = − 1
2𝜎2f

(
𝜃̂2𝟏Tf𝟏f + 𝐧T

f𝐧f + 2𝜃̂𝟏Tf𝐧f − 2𝜃̂𝐧T
f𝝁f − 2𝜃̂𝟏Tf𝝁f + 𝝁T

f𝝁f
)

≈ − 1
2𝜎2f

(
����������:𝑑𝑖𝑠𝑐𝑎𝑟𝑑

𝑁f 𝜃̂2 +𝑁f < 𝐧2f > +
���������:≈0

2𝜃̂𝐧T
f𝟏f [1 − 𝜃𝐴] − 2𝜃̂𝟏Tf𝟏f ⋅ 𝜃𝐴 +𝑁f𝜃2𝐴)

≈ −
𝑁f

2𝜎2f
𝜃𝐴

(
𝜃𝐴 − 2𝜃̂

)
,

where we have discarded another constant and assumed that ⟨𝐧⟩ ≈ 0. Following the

same procedure for a downsampled dataset, we find that

𝓁s(𝐡s, 𝜽) ≈ −
𝑁s

2𝜎2s
𝜃𝐴

(
𝜃𝐴 − 2𝜃̂

)
,
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and thus, as we initially set out to do, we can set 𝓁f (𝐡f , 𝜽) ≈ 𝓁s(𝐡s, 𝜽) if we choose:

𝜎s = 𝜎f

√
𝑁s

𝑁f
,

to be the noise standard deviation on the downsampled dataset.

We can try to extend this sort of analysis to the signals and detector noise profile we

are interested in. However, it is particularly useful to have a more general result that is

model independent, to widen the scope of applicability. We therefore opt to simply raise

as a conjecture that in general cases of more realistic systems, the same principle will

still apply in practice; that one may downsample and modify the detector noise with a

single factor to compensate for lost information. We seek to verify this experimentally

using a simple GW model. The (model independent) noise reduction factor is required,

which is derived in the following section.

3.3.4.1 Deriving the optimal noise reduction factor

By approximating posteriors as Gaussian distributions and minimising their divergence

(of some type), we hope to find the approximate optimal noise reduction factor that re-

tains the shape of the likelihood function. In the high signal to noise ratio (SNR) limit,

where posteriors closely approximate Gaussians, this is a good approximation (if the

semi-axes of theGaussians arewell-aligned and proportionately similar). In otherwords,

it is expected that only the overall precision of the likelihood will be significantly affected

by downsampling. We suppose that, for our restricted class of signals of interest (LISA

inspiral only signals) this assumption will generally be highly accurate, details of the

results of testing this claim are given in Section 3.4.4. Since the parameter covariance

matrices (PCMs) can be used to describe the aspect ratio of a 𝑘-dimensional ellipsoid

representing the 1-sigma contour of the probability distribution [88], one might already

guess that if the two ellipsoids are similar in orientation and aspect ratio, then the noise

reduction factor required is the one that scales the ellipsoids to be equal in size. This

turns out to be trivially true; for completeness we work through some details in Section

3.3.4.1.1. Then for the more robust treatment in Section 3.3.4.1.2, we will also compute

the factor which accounts for the Gaussians being misaligned with respect to each other

and/or having unequal aspect ratios.
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3.3.4.1.1 Primitive method

Asmentioned, wemight consider performing an analysis under the assumption that the

PCMs/posteriors have the same orientation and aspect ratio. The FIMs would thus be

similar, too, differing only by a scaling factor. Then we simply note that the 𝑚 = 𝑚det

which minimises the KL divergence is the one that sets 𝑝s(𝜽) = 𝑝f (𝜽), where 𝑝s is the

posterior defined with the subset of the data and 𝑝f is the original posterior defined with

the full dataset, and thus𝑚det𝐅′s = 𝐅s = 𝐅f , since in that case, both𝑚det𝐅′s − 𝐅f = 0 and

ln
⎛
⎜
⎝
𝑚−𝑘∕2

det

√
√√√|𝐅′−1s |

|𝐅−1f |

⎞
⎟
⎠
= ln 1 = 0 (3.38)

by which (3.14) is easily shown to be

𝐷KL(𝑝f (𝜽) || 𝑝s(𝜽)) = 0 . (3.39)

This is a minimum since 𝐷KL(⋅||⋅) ≥ 0 always. We conjectured that only the precisions

differ between posteriors, such that the factor which sets the FIMs (almost) equal auto-

matically extends to the entire posteriors where the KL divergence between them van-

ishes. By (3.38), or since𝑚det𝐅′s = 𝐅f , we have

𝑚det =
𝑘
√

det 𝐅f
det 𝐅′s

. (3.40)

In this case, the optimal noise reduction factor is that factor which scales the 𝑘-

dimensional ellipsoids to be of the same volume; the factor𝑚det derived sets the determi-

nants of 𝐅𝑠 and 𝐅f equal. This is certainly reasonable. Of course if the PCMs were truly

aligned and similar, then rescaling such that any one particular component becomes

equal will scale the others similarly too.

3.3.4.1.2 General Gaussian approximations

Let Θ be the space of parameters 𝜽, and take 𝑘 to be the dimension of the parameter

space, 𝑘 = dim(Θ). Let (𝒟f , ℂ−1
f ) be the data space and inner product operator pair for

the full dataset (subscript f ). If the posterior defined on the parameter space, 𝑝f (𝜽), is

Gaussian, it can be written

𝑝f (𝜽) =
[
(2𝜋)𝑘|𝐅−1f |

]−1∕2
exp

[
− 1

2
𝚫T𝐅f𝚫

]
, (3.41)
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where 𝐅f is the FIM of the full dataset, |𝐅−1f | is the determinant of its inverse, 𝚫 ≡ 𝜽 − 𝜽̂

and 𝜽̂ is the location of the peak of the posterior. Suppose there also exists the space

(𝒟s,𝐌), with the posterior 𝑝′s(𝜽), and where 𝐅′s is the FIM in (𝒟s,𝐌), where𝐌 is some

Ansatz matrix (we will set this equal to 1 so that each sample is weighted equally). This

is the (unmodified) downsampled subspace, that is: 𝒟s ⊂ 𝒟f .

Finally, let (𝒟s, ℂ−1
s = 𝑚𝐌) be a data space and inner product operator pair for a

downsampled dataset, where 𝑚 is the constant we seek. Write the Gaussian posterior

similarly on this pair, 𝑝s(𝜽), as

𝑝s(𝜽) =
[
(2𝜋)𝑘|𝐅−1s |

]−1∕2
exp

[
− 1

2
𝚫T𝐅s𝚫

]
, (3.42)

where 𝐅s is the FIM of the downsampled dataset.

Ideally, we would minimise the JS divergence, since this is a well-known, symmetric

measure of distance between distributions and is impartial to either distribution, unlike

the KL divergence, which implies its first argument is the true distribution and its sec-

ond is a sample distribution. However, we are choosing our posterior to be a replacement

for the truth, not some sample distribution with minimal divergence from it, so we re-

quire a symmetric divergence measure. The JS divergence is defined in equation (3.15).

It contains the integral of the log of a sum and only special cases are able to be integrated

analytically. In order to avoid prioritisation of any given distribution, we shall attempt to

minimise another symmetric divergence known as the Jeffreys’-divergence instead, sim-

ply defined by

𝐷J

(
𝑝f
|||||
||||| 𝑝s

)
≡ 𝐷KL

(
𝑝f
|||||
||||| 𝑝s

)
+ (𝑝s ↔ 𝑝f ) . (3.43)

First however, we warm up by minimising the KL divergence, before moving on to the

Jeffreys’ divergence.

We have the unknown 𝑚 in (𝒟s, ℂ−1
s ), but (𝒟s,𝐌) and (𝒟f , ℂ−1

f ) are known com-

pletely. Using the Gaussian approximations, we write down the KL divergence to find
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the𝑚 that minimises the KL divergence between 𝑝s(𝜽) and 𝑝f (𝜽):

𝐷KL(𝑝f (𝜽) || 𝑝s(𝜽)) ≡ ∫
Θ
d𝑘𝜃 𝑝f (𝜽) ln (

𝑝f (𝜽)
𝑝s(𝜽)

)

= ∫
Θ
d𝑘𝜃 𝑝f (𝜽)

⎡
⎢
⎢
⎣

ln
⎛
⎜
⎝

√
√√√|𝐅s

−1|
|𝐅−1f |

⎞
⎟
⎠
+ 1

2
𝚫T(𝐅s − 𝐅f )𝚫

⎤
⎥
⎥
⎦

= ln
⎛
⎜
⎝
𝑚−𝑘∕2

√
√√√|𝐅′−1s |

|𝐅−1f |

⎞
⎟
⎠
+ 1

2
∫
Θ
d𝑘𝜃 𝑝f (𝜽) ⋅ 𝚫

T(𝑚𝐅′s − 𝐅f )𝚫 , (3.44)

since the integral of the posterior (which we take to be normalised) over parameter space

is equal to 1. In the last line, we also used the definition of the FIM in equation (3.27)

and ℂ−1
s =𝑚𝐌 to find that

𝐹s,𝑖𝑗 = ℎ𝑘,𝑖(ℂ−1
s )𝑘𝑙ℎ𝑙,𝑗 = 𝑚ℎ𝑘,𝑖𝑀𝑘𝑙ℎ𝑙,𝑗 = 𝑚𝐹′

s,𝑖𝑗 , (3.45)

or 𝐅s = 𝑚𝐅′s, from which we obtain

|𝐅s| = 𝑚𝑘|𝐅′s| . (3.46)

The KL divergence is a function of 𝑚, with the minimum being the 𝑚 at which the

derivative with respect to 𝑚 vanishes (it is clear, given our restriction to considering

Gaussians, that there will always be one extremum only, which is a minimum). The

minimum is given by the𝑚 = 𝑚KL solving
d

d𝑚
𝐷KL(𝑝f (𝜽) || 𝑝s(𝜽)) = 0, which is

𝑚KL = 𝑘 (∫
Θ
d𝑘𝜃 𝑝f (𝜽) ⋅ 𝚫

T𝐅′s𝚫)
−1

. (3.47)

To compute the integral, let us change coordinates first by a translation 𝜃𝜇 → 𝜃⋆𝜇 that

takes 𝜽̂ → 𝜽̂
⋆
= 𝟎, centering the peak of the posterior at the origin, so that𝚫 → 𝚫⋆ = 𝜽⋆.

Then perform a rotation 𝜃⋆𝜇 → 𝜃𝜇 such that 𝐅⋆f → 𝐅f , where the matrix 𝐅f is diagonal,

i.e., aligning the coordinate axes with the ellipsoid axes. We denote all objects in the final

coordinates with a tilde accent. Both transformations are unitary resulting in a Jacobian

determinant equal to 1, and if we further suppose that 𝚯 ∼ ℝ𝑘 then also 𝚯̃ ∼ ℝ𝑘, so we
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can write the integral in (3.47) as

∫
Θ
d𝑘𝜃 𝑝f (𝜽) ⋅ 𝚫

T𝐅′s𝚫 = ∫
Θ̃
d𝑘𝜃 𝑝f (𝜽̃) ⋅ 𝜽̃

T
𝐅′s𝜽̃

=
[
(2𝜋)𝑘 ||||𝐅

−1
f
||||
]−1∕2

∫
Θ̃
d𝑘𝜃 exp

[
− 1

2
𝜽̃
T
𝐅f 𝜽̃

]
⋅ 𝜽̃

T
𝐅′s𝜽̃

=
[
(2𝜋)𝑘 ||||𝐅

−1
f
||||
]−1∕2

∫
Θ̃
d𝑘𝜃 exp

⎡
⎢
⎣
− 1

2

𝑘∑

𝑙=1

𝐹f ,𝑙𝑙𝜃2𝑙
⎤
⎥
⎦

𝑘∑

𝑖,𝑗=1

𝜃𝑖𝐹′
s,𝑖𝑗𝜃𝑗

=
[
(2𝜋)𝑘 ||||𝐅

−1
f
||||
]−1∕2 𝑘∑

𝑖,𝑗=1

𝐹′
s,𝑖𝑗 ∫

Θ̃
d𝑘𝜃

𝑘∏

𝑙=1

exp
[
− 1

2
𝐹f ,𝑙𝑙𝜃2𝑙

]
𝜃𝑖𝜃𝑗 .

Noting the well-known integral formulas:

∫
∞

−∞
d𝑥 𝑒−𝑎𝑥2 =

√
𝜋∕𝑎 , ∫

∞

−∞
d𝑥 𝑥 𝑒−𝑎𝑥2 = 0 , ∫

∞

−∞
d𝑥 𝑥2 𝑒−𝑎𝑥2 =

√
2𝜋

(2𝑎)3∕2
,

(3.48)

we find that the only surviving terms in the 𝑖, 𝑗 sum are the 𝑖 = 𝑗 terms. The integral

becomes

∫
Θ
d𝑘𝜃 𝑝f (𝜽) ⋅ 𝚫

T𝐅′s𝚫 =
[
(2𝜋)𝑘 ||||𝐅

−1
f
||||
]−1∕2 𝑘∑

𝑖=1

𝐹′
s,𝑖𝑖 ∫

∞

−∞
d𝜃𝑖 𝜃2𝑖 𝑒

− 1
2
𝐹f ,𝑖𝑖𝜃2𝑖

∏

𝑗≠𝑖

∫
∞

−∞
d𝜃𝑗 𝑒

− 1
2
𝐹f ,𝑗𝑗𝜃2𝑗

=
[
(2𝜋)𝑘 ||||𝐅

−1
f
||||
]−1∕2 𝑘∑

𝑖=1

𝐹′
s,𝑖𝑖

√
2𝜋
𝐹3
f ,𝑖𝑖

∏

𝑗≠𝑖

√
2𝜋
𝐹f ,𝑗𝑗

=
𝑘∑

𝑖=1

𝐹′
s,𝑖𝑖

𝐹f ,𝑖𝑖
. (3.49)

If the matrix 𝐆 diagonalises 𝐅f , that is, if 𝐅f → 𝐅f = 𝐆−1𝐅f𝐆 for diagonal 𝐅f , then the

integral may be written

∫
Θ
d𝑘𝜃 𝑝f (𝜽) ⋅ 𝚫

T𝐅′s𝚫 =
𝑘∑

𝑖=1

𝐺−1
𝑖𝑗 𝐹

′
s,𝑗𝑙𝐺𝑙𝑖

𝐺−1
𝑖𝑗 𝐹f ,𝑗𝑙𝐺𝑙𝑖

, (3.50)

or for general symmetric matrices 𝐀 and 𝐁, and with 𝐏 diagonalising 𝐀, we have

∫
Θ
d𝑘𝜃 𝑒−

1
2
𝚫T𝐀𝚫 ⋅ 𝚫T𝐁𝚫 =

√
(2𝜋)𝑘
|𝐀|

𝑘∑

𝑖=1

𝑃−1𝑖𝑗 𝐵𝑗𝑙𝑃𝑙𝑖
𝑃−1𝑖𝑗 𝐴𝑗𝑙𝑃𝑙𝑖

. (3.51)

Therefore our factor𝑚KL, using (3.47) is

𝑚KL = 𝑘
⎛
⎜
⎝

𝑘∑

𝑖=1

𝐺−1
𝑖𝑗 𝐹

′
s,𝑗𝑙𝐺𝑙𝑖

𝐺−1
𝑖𝑗 𝐹f ,𝑗𝑙𝐺𝑙𝑖

⎞
⎟
⎠

−1

. (3.52)
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This in particularminimises𝐷KL(𝑝f || 𝑝s), which should benoted is not equal to𝐷KL(𝑝s || 𝑝f ):

the KL divergence not symmetric. Let us now minimise the symmetric Jeffreys’ diver-

gence. With equation (3.43), this can be written as

𝐷J(𝑝f || 𝑝s) ≡ ∫
Θ
d𝑘𝜃 [𝑝f − 𝑝s] ⋅ ln (

𝑝f
𝑝s
)

= ∫
Θ
d𝑘𝜃 [𝑝f − 𝑝s] ⋅

⎡
⎢
⎢
⎣

ln
⎛
⎜
⎝

√
√√√|𝐅s

−1|
|𝐅−1f |

⎞
⎟
⎠
+ 1

2
𝚫T(𝐅s − 𝐅f )𝚫

⎤
⎥
⎥
⎦

= 1

2
∫
Θ
d𝑘𝜃 [𝑝f − 𝑝s] ⋅ 𝚫

T(𝑚𝐅′s − 𝐅f )𝚫 , (3.53)

again since the integral of both𝑝f and𝑝s over thewhole spacemust be equal to 1. Writing

out 𝑝f and 𝑝s in full we have

𝐷J(𝑝f || 𝑝s) =
1

2
∫
Θ
d𝑘𝜃

⎡
⎢
⎣

√
|𝐅f |
(2𝜋)𝑘

𝑒−
1
2
𝚫T𝐅f𝚫 −

√
𝑚𝑘|𝐅′s|
(2𝜋)𝑘

𝑒−
1
2
𝑚𝚫T𝐅′s𝚫

⎤
⎥
⎦
⋅ 𝚫T(𝑚𝐅′s − 𝐅f )𝚫

= 𝐶 ∫
Θ
d𝑘𝜃 [𝐶′𝑒−

1
2
𝚫T𝐅f𝚫 −𝑚𝑘∕2𝑒−

1
2
𝑚𝚫T𝐅′s𝚫] ⋅ 𝚫T(𝑚𝐅′s − 𝐅f )𝚫 ,

where 𝐶 = 1

2

√
|𝐅′s|

(2𝜋)𝑘
and 𝐶′ =

√
|𝐅f |

|𝐅′s|
. Now differentiate with respect to𝑚:

d
d𝑚

𝐷J(𝑝f || 𝑝s) = 𝐶 ∫
Θ
d𝑘𝜃 [𝐶′𝑒−

1
2
𝚫T𝐅f𝚫 −𝑚𝑘∕2𝑒−

1
2
𝑚𝚫T𝐅′s𝚫] ⋅ 𝚫T𝐅′s𝚫

− [𝑘
2
𝑚𝑘∕2−1𝑒−

1
2
𝑚𝚫T𝐅′s𝚫 − 1

2
𝑚𝑘∕2𝚫T𝐅′s𝚫𝑒

− 1
2
𝑚𝚫T𝐅′s𝚫] ⋅ 𝚫T(𝑚𝐅′s − 𝐅f )𝚫

= 𝐶 ∫
Θ
d𝑘𝜃 𝐶′𝑒−

1
2
𝚫T𝐅f𝚫 ⋅ 𝚫T𝐅′s𝚫

−𝑚𝑘∕2𝑒−
1
2
𝑚𝚫T𝐅′s𝚫

{[
1 + 𝑘

2
− 1

2
𝑚𝚫T𝐅′s𝚫

]
⋅ 𝚫T𝐅′s𝚫

−
[ 𝑘

2𝑚
− 1

2
𝚫T𝐅′s𝚫

]
⋅ 𝚫T𝐅f𝚫

}

= 𝐶𝐶′ ∫
Θ
d𝑘𝜃 𝑒−

1
2
𝚫T𝐅f𝚫 ⋅ 𝚫T𝐅′s𝚫

− 𝐶𝑚𝑘∕2 ∫
Θ
d𝑘𝜃 𝑒−

1
2
𝑚𝚫T𝐅′s𝚫 ⋅ 𝚫T

([
1 + 𝑘

2

]
𝐅′s −

𝑘

2𝑚
𝐅f
)
𝚫

+ 1

2
𝐶𝑚𝑘∕2 ∫

Θ
d𝑘𝜃 𝑒−

1
2
𝑚𝚫T𝐅′s𝚫

{
𝑚(𝚫T𝐅′s𝚫)2 − 𝚫T𝐅′s𝚫 ⋅ 𝚫T𝐅f𝚫

}
.

(3.54)

The first two integrals of the last line are computed easily using (3.51) by making the

relevant matrix substitutions;

∫
Θ̄
d𝑘𝜃 𝑒−

1
2
𝚫T𝐅f𝚫 ⋅ 𝚫T𝐅′s𝚫 =

√
(2𝜋)𝑘
|𝐅f |

𝑘∑

𝑖=1

𝐷−1
f ,𝑖𝑗𝐹

′
s,𝑗𝑙𝐷f ,𝑙𝑖

𝐷−1
f ,𝑖𝑗𝐹f ,𝑗𝑙𝐷f ,𝑙𝑖

(3.55)
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for diagonal 𝐃−1
f 𝐅f𝐃f , and

∫
Θ
d𝑘𝜃 𝑒−

1
2
𝑚𝚫T𝐅′s𝚫 ⋅ 𝚫T

([
1 + 𝑘

2

]
𝐅′s −

𝑘

2𝑚
𝐅f
)
𝚫

=

√
(2𝜋)𝑘

|𝑚𝐅′s|

𝑘∑

𝑖=1

𝐷−1
s,𝑖𝑗

([
1 + 𝑘

2

]
𝐹′
s −

𝑘

2𝑚
𝐹f
)

𝑗𝑙
𝐷s,𝑙𝑖

𝐷−1
s,𝑖𝑗𝑚𝐹

′
s,𝑗𝑙𝐷s,𝑙𝑖

= 𝑘𝑚− 𝑘+4
2

√
(2𝜋)𝑘

|𝐅′s|

⎛
⎜
⎝

[
1 + 𝑘

2

]
𝑚 − 1

2

𝑘∑

𝑖=1

𝐷−1
s,𝑖𝑗𝐹f ,𝑗𝑙𝐷s,𝑙𝑖

𝐷−1
s,𝑖𝑗𝐹

′
s,𝑗𝑙𝐷s,𝑙𝑖

⎞
⎟
⎠

(3.56)

for diagonal 𝐃−1
s 𝐅′s𝐃s.

For the final integral in (3.54) we again diagonalise the matrix in the exponent to

make the integration simple. Similarly to howwe transformed earlier, with a translation

and a rotation, let us take 𝜃𝜇 → 𝜃̌𝜇 so that 𝐅′s → 𝐅̌′s where 𝐅̌′s is diagonal, and such that

𝚫̌ = 𝜽̌. Then we can rewrite the integral as

𝐼 = ∫
Θ
d𝑘𝜃 𝑒−

1
2
𝑚𝚫T𝐅′s𝚫

{
𝑚(𝚫T𝐅′s𝚫)2 − 𝚫T𝐅′s𝚫 ⋅ 𝚫T𝐅f𝚫

}

= ∫
Θ̌
d𝑘𝜃̌ 𝑒−

1
2
𝑚𝜽̌

T
𝐅̌′s𝜽̌

{
𝑚(𝜽̌

T
𝐅̌′s𝜽̌)2 − 𝜽̌

T
𝐅̌′s𝜽̌ ⋅ 𝜽̌

T
𝐅̌f 𝜽̌

}

= ∫
Θ̌
d𝑘𝜃̌ 𝑒−

1
2
𝑚𝜽̌

T
𝐅̌′s𝜽̌

⎧

⎨
⎩

𝑚
𝑘∑

𝑖=1

𝐹̌′
s,𝑖𝑖𝜃̌

2
𝑖

𝑘∑

𝑗=1

𝐹̌′
s,𝑗𝑗𝜃̌

2
𝑗 −

𝑘∑

𝑖=1

𝐹̌′
s,𝑖𝑖𝜃̌

2
𝑖

𝑘∑

𝑗=1

𝐹̌f ,𝑗𝑗𝜃̌2𝑗
⎫

⎬
⎭

= ∫
Θ̌
d𝑘𝜃̌ 𝑒−

1
2
𝑚𝜽̌

T
𝐅̌′s𝜽̌

𝑘∑

𝑖=1

𝐹̌′
s,𝑖𝑖𝜃̌

2
𝑖

𝑘∑

𝑗=1

(𝑚𝐹̌′
s,𝑗𝑗 − 𝐹̌f ,𝑗𝑗)𝜃̌2𝑗

=
𝑘∑

𝑖=1

𝐹̌′
s,𝑖𝑖

𝑘∑

𝑗=1

(𝑚𝐹̌′
s,𝑗𝑗 − 𝐹̌f ,𝑗𝑗) ∫

Θ̌
d𝑘𝜃̌

𝑘∏

𝑙=1

𝑒−
1
2
𝑚𝐹̌′s,𝑙𝑙 𝜃̌

2
𝑙 𝜃̌2𝑖 𝜃̌

2
𝑗

=
𝑘∑

𝑖=1

(𝑚(𝐹̌′
s,𝑖𝑖)

2 − 𝐹̌′
s,𝑖𝑖𝐹̌f ,𝑖𝑖) ∫

∞

−∞
d𝜃̌𝑖 𝑒

− 1
2
𝑚𝐹̌′s,𝑖𝑖 𝜃̌

2
𝑖 ⋅ 𝜃̌4𝑖

∏

𝑗≠𝑖

∫
∞

−∞
d𝑘𝜃̌ 𝑒−

1
2
𝑚𝐹̌′s,𝑗𝑗 𝜃̌

2
𝑗

+
𝑘∑

𝑖=1

𝐹̌′
s,𝑖𝑖

∑

𝑗≠𝑖

(𝑚𝐹̌′
s,𝑗𝑗 − 𝐹̌f ,𝑗𝑗)

∏

𝑙∈{𝑖,𝑗}

∫
∞

−∞
d𝜃̌𝑙 𝑒

− 1
2
𝑚𝐹̌′s,𝑙𝑙 𝜃̌

2
𝑙 ⋅ 𝜃̌2𝑙

∏

ℎ∉{𝑖,𝑗}

∫
∞

−∞
d𝜃̌ℎ 𝑒

− 1
2
𝑚𝐹̌′s,ℎℎ 𝜃̌

2
ℎ ,

where in the third line terms relating to the off-diagonal elements of 𝐅̌f drop out since

integrands of those terms are odd functions. In the last step, we split the sum into an

𝑖 = 𝑗 part (first line) and a 𝑖 ≠ 𝑗 part (second line) for the 𝜃̌2𝑖 𝜃̌
2
𝑗 factor in the integrand.

Along with (3.48) we require the following well-known identity

∫
∞

−∞
d𝑥 𝑥4𝑒−𝑎𝑥2 = 3

4

√
𝜋
𝑎5 . (3.57)
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Then we have that

𝐼 =
𝑘∑

𝑖=1

(𝑚(𝐹̌′
s,𝑖𝑖)

2 − 𝐹̌′
s,𝑖𝑖𝐹̌f ,𝑖𝑖)

3
4

√
√√√ 𝜋

( 1
2
𝑚𝐹̌′

s,𝑖𝑖)5
∏

𝑗≠𝑖

√
√√√ 𝜋

1

2
𝑚𝐹̌′

s,𝑗𝑗

+
𝑘∑

𝑖=1

𝐹̌′
s,𝑖𝑖

∑

𝑗≠𝑖

(𝑚𝐹̌′
s,𝑗𝑗 − 𝐹̌f ,𝑗𝑗)

∏

𝑙∈{𝑖,𝑗}

√
2𝜋

(𝑚𝐹̌′
s,𝑙𝑙)3

∏

ℎ∉{𝑖,𝑗}

√
√√√ 𝜋

1

2
𝑚𝐹̌′

s,ℎℎ

= 3𝑚− 𝑘+4
2

𝑘∑

𝑖=1

(𝑚(𝐹̌′
s,𝑖𝑖)

2 − 𝐹̌′
s,𝑖𝑖𝐹̌f ,𝑖𝑖)(𝐹̌

′
s,𝑖𝑖)

−2
𝑘∏

𝑗=1

√
2𝜋
𝐹̌′
s,𝑗𝑗

+𝑚− 𝑘+4
2

𝑘∑

𝑖=1

𝐹̌′
s,𝑖𝑖

∑

𝑗≠𝑖

(𝑚𝐹̌′
s,𝑗𝑗 − 𝐹̌f ,𝑗𝑗)

∏

𝑙∈{𝑖,𝑗}

(𝐹̌′
s,𝑙𝑙)

−1
𝑘∏

ℎ=1

√
2𝜋
𝐹̌′
s,ℎℎ

= 3𝑚− 𝑘+4
2

√
(2𝜋)𝑘

|𝐅̌′s|

𝑘∑

𝑖=1
(𝑚 −

𝐹̌f ,𝑖𝑖
𝐹̌′
s,𝑖𝑖

) + 𝑚− 𝑘+4
2

√
(2𝜋)𝑘

|𝐅̌′s|

𝑘∑

𝑖=1

∑

𝑗≠𝑖

⎛
⎜
⎝
𝑚 −

𝐹̌f ,𝑗𝑗
𝐹̌′
s,𝑗𝑗

⎞
⎟
⎠

= 𝑚− 𝑘+4
2

√
(2𝜋)𝑘

|𝐅̌′s|

⎡
⎢
⎣
2

𝑘∑

𝑖=1
(𝑚 −

𝐹̌f ,𝑖𝑖
𝐹̌′
s,𝑖𝑖

) + 𝑘
𝑘∑

𝑗=1

⎛
⎜
⎝
𝑚 −

𝐹̌f ,𝑗𝑗
𝐹̌′
s,𝑗𝑗

⎞
⎟
⎠

⎤
⎥
⎦

= 𝑚− 𝑘+4
2

√
(2𝜋)𝑘

|𝐅̌′s|

⎡
⎢
⎣
(2 + 𝑘)

⎛
⎜
⎝
𝑘𝑚 −

𝑘∑

𝑖=1

𝐹̌f ,𝑖𝑖
𝐹̌′
s,𝑖𝑖

⎞
⎟
⎠

⎤
⎥
⎦
. (3.58)

Substituting (3.55), (3.56), and (3.58) into (3.54), we have

d
d𝑚

𝐷J(𝑝f || 𝑝s) = 𝐶𝐶′

√
(2𝜋)𝑘
|𝐅f |

𝑘∑

𝑖=1

𝐷−1
f ,𝑖𝑗𝐹

′
s,𝑗𝑙𝐷f ,𝑙𝑖

𝐷−1
f ,𝑖𝑗𝐹f ,𝑗𝑙𝐷f ,𝑙𝑖

− 𝐶𝑚𝑘∕2𝑘𝑚− 𝑘+4
2

√
(2𝜋)𝑘

|𝐅′s|

⎛
⎜
⎝

[
1 + 𝑘

2

]
𝑚 − 1

2

𝑘∑

𝑖=1

𝐷−1
s,𝑖𝑗𝐹f ,𝑗𝑙𝐷s,𝑙𝑖

𝐷−1
s,𝑖𝑗𝐹

′
s,𝑗𝑙𝐷s,𝑙𝑖

⎞
⎟
⎠

+ 1

2
𝐶𝑚𝑘∕2𝑚− 𝑘+4

2

√
(2𝜋)𝑘

|𝐅̌′s|

⎡
⎢
⎣
(2 + 𝑘)

⎛
⎜
⎝
𝑘𝑚 −

𝑘∑

𝑖=1

𝐹̌f ,𝑖𝑖
𝐹̌′
s,𝑖𝑖

⎞
⎟
⎠

⎤
⎥
⎦

= 𝐶

√
(2𝜋)𝑘

|𝐅′s|

⎧

⎨
⎩

𝑘∑

𝑖=1

𝐷−1
f ,𝑖𝑗𝐹

′
s,𝑗𝑙𝐷f ,𝑙𝑖

𝐷−1
f ,𝑖𝑗𝐹f ,𝑗𝑙𝐷f ,𝑙𝑖

− 𝑘𝑚−2
⎛
⎜
⎝

[
1 + 𝑘

2

]
𝑚 − 1

2

𝑘∑

𝑖=1

𝐷−1
s,𝑖𝑗𝐹f ,𝑗𝑙𝐷s,𝑙𝑖

𝐷−1
s,𝑖𝑗𝐹

′
s,𝑗𝑙𝐷s,𝑙𝑖

⎞
⎟
⎠

+𝑚−2
⎡
⎢
⎣
(1 + 𝑘

2
)
⎛
⎜
⎝
𝑘𝑚 −

𝑘∑

𝑖=1

𝐹̌f ,𝑖𝑖
𝐹̌′
s,𝑖𝑖

⎞
⎟
⎠

⎤
⎥
⎦

⎫

⎬
⎭

= 1

2

⎡
⎢
⎣

𝑘∑

𝑖=1

𝐷−1
f ,𝑖𝑗𝐹

′
s,𝑗𝑙𝐷f ,𝑙𝑖

𝐷−1
f ,𝑖𝑗𝐹f ,𝑗𝑙𝐷f ,𝑙𝑖

−𝑚−2
𝑘∑

𝑖=1

𝐷−1
s,𝑖𝑗𝐹f ,𝑗𝑙𝐷s,𝑙𝑖

𝐷−1
s,𝑖𝑗𝐹

′
s,𝑗𝑙𝐷s,𝑙𝑖

⎤
⎥
⎦
.

We want the𝑚 = 𝑚J such that this derivative vanishes, so finally we see that the factor
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minimising the Jeffreys’ divergence is given by:

𝑚J =

√
√√√√

𝑘∑

𝑖=1

𝐷−1
s,𝑖𝑗𝐹f ,𝑗𝑙𝐷s,𝑙𝑖

𝐷−1
s,𝑖𝑗𝐹

′
s,𝑗𝑙𝐷s,𝑙𝑖

/
𝑘∑

𝑖=1

𝐷−1
f ,𝑖𝑗𝐹

′
s,𝑗𝑙𝐷f ,𝑙𝑖

𝐷−1
f ,𝑖𝑗𝐹f ,𝑗𝑙𝐷f ,𝑙𝑖

, (3.59)

where recall that𝐃s diagonalises 𝐅′s and𝐃f diagonalises 𝐅f . This is a sensible result; it is

similar to𝑚KL in form but clearly balanced between the distributions.

3.3.5 Summary

The downsampling procedurewe have devised, though not necessarily programmed pre-

cisely as described here for reasons of computational efficiency and/or algorithmic prac-

ticality, will consist of the following steps:

1. Compute the FIM of the full LISA posterior and 𝑅(−1∕2) ∼ 𝚺(−1∕2) from the PSD

2. Generate an 𝑁f -dimensional vector, 𝐤 = (0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, ...), containing

𝑁s 1’s and (𝑁f − 𝑁s) 0’s, randomly positioned (or equivalently, a matrix 𝐃 as in

(3.16))

3. Use 𝐤 to define the (whitened) 𝑁f -dimensional, downsampled residual; 𝐫̂𝑁f
=

𝚺(−1∕2)𝐫⊙𝐤. This seems somewhatmore natural to implement for efficient compu-

tation, given the whitening required. However, an 𝑁s-dimensional version, 𝐫̂𝑁s
=

𝐃𝚺(−1∕2)𝐫 is perhaps conceptually clearer for visualising the downsampling

4. Define a new inner product on residuals as we did in the right-hand-side of (3.23).

Using the 𝑚 calculated in (3.40) or (3.59), this should be approximately equal to

the left-hand-side of (3.23), for all 𝜽: ⟨𝐫(𝜽) | 𝐫(𝜽)⟩ ≈ 𝑚𝐫̂(𝜽)T𝐫̂(𝜽).

In practice, the two factors in (3.40) and (3.59) are generally numerically quite close to

each other for the example systems explored in Table 3.1, within roughly around 3%-5%.

The𝑚J computed in (3.59) accounts for general concentric Gaussians, and is thus more

stable against downsampling noise, however, this approach was discovered after having

produced results for the downsampling analysis using the𝑚KL in (3.40). The next section

tests downsampling by setting determinants of FIMs equal. This will provide a ceiling for

JS divergences computed in the following section to test the procedure; the𝑚J factor will

perform as well or better than this (since we will define good performance as minimal

Jeffreys’ divergence), and𝑚J will be used for the results in Chapters 6, 7 & 8.
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3.4 Testing the downsampling procedure

Intuitively, the fewer samples required to define a particular likelihood function, the

faster likelihood evaluation and PE convergence will be; recall faster PE convergence

is the sole reason for attempting downsampling. One can expect that if 𝑁s ≈ 𝑁f , for

example, dropping just a few samples from a dataset 𝐝f , with, say, dim(𝐝f ) ≈ 107, the

downsampled posterior would be hardly distinguishable from the LISA posterior; the

remaining data will still just as well constrain the likely parameters of the signal (if the

noise on the remaining samples is adjusted appropriately) but the speed improvement

would be slight, due to evaluating the signal model at slightly fewer points. As one dras-

tically decreases the number of samples to only a few however, one can expect the re-

maining data to fit other combinations of parameters, leading to the appearance of new

posterior modes; the posterior becomesmore highly structured. Consider decimation by

a degree such that the signal is sampled below its Nyquist frequency; aliasing should oc-

cur at this point. As mentioned, random sampling (as opposed to decimation) does very

well at ameliorating this problem. However, extremely low numbers of samples from

random downsampling can still cause a posterior to ‘break down’ (that is, to begin to

differ qualitatively from the truth by an unacceptable degree). What we would then like

to determine is: how can we quantify this breakdown of the qualitative structure of the

posterior, and what is the smallest number of samples required to faithfully reproduce

the true posterior, before breakdown occurs?

Changing dependencies of the posterior function (e.g. by downsampling) must ulti-

mately change the posterior to some degree. It is not obvious how to establish criteria for

when a dissimilarity may be declared ‘acceptable’; this could depend on the applications

of the analysis and what a researcher hopes to gain by studying a posterior. Fortunately,

somewhat paradoxically, it turns out that we can be spared from trying to formulate

some sort of hard boundary between ‘acceptable’ and ‘unacceptable’ (where the posterior

breaks down) by the inherent, well-known difficulty of evaluating posterior functions. As

discussed in Section 2.4, the difficulty means we must use certain algorithms (samplers)

to numerically approximate posterior functions. Because the results are approximations

that are acquired from processes employing some level of randomness, there is always

a degree of variation, or noise, present between them, defining a noise floor: we could
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not hope to achieve (measure) any less variation between the downsampled posteriors

than this, since the downsampled posteriors must also always be ‘discovered’ with these

approximation techniques. These similarity benchmarks are more concretely defined in

Section 3.4.3. For now, we note that the aim is to: find the lowest number of random sam-

ples used to define posteriors, such that variation between them remains indistinguishable

from the variation resulting from posterior approximation algorithms.

In Section 3.4.1 we discuss some further background on posterior estimators and

noise, other posterior noise sources, and limitations of the experimental approach we

take (as mentioned previously, we answer the question of finding the approximate opti-

mal downsampling rate by experiment). In Section 3.4.2 we introduce useful quantifiers

with which similarities of posterior functions can be measured. We have mentioned al-

ready that Section 3.4.3 poses the convergence criteria, and finally in Section 3.4.4 we

present the model and systems used for testing, and the results of the analysis.

3.4.1 Posterior distribution noise sources

Weprovide a brief description of noise sources present in posterior distribution estimates

derived by applying samplers to noisy data. Note that these are just conceptual introduc-

tions and the mathematical representations will be presented in Section 3.4.3.

3.4.1.1 Sampler noise

It generally takes an inordinate amount of effort to evaluate the posterior over a lattice

to any useful degree of accuracy in a parameter space greater than two dimensions, and

posterior estimators called samplers are used to explore the parameter space, building

an approximate representation of the function until convergence criteria are met instead

(see Section 2.4). The posterior estimates produced by samplers can generally vary to

a small degree from sampler settings, but rather significantly between different sam-

plers, and by the random processes that samplers use to explore the parameter space.

We tested the MCMC sampler emcee [73] and nested samplers CPnest [77] and Nessai

[76] to ensure these issues are not limited to the main sampler we chose to perform the

main analysis with: Nessai. Using the same sampler with the same settings to produce

multiple posterior estimates from the same data, the only source of variation present will

be that which results from the sampler’s inherent randomness. This shall be referred to
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as sampler noise and is unavoidable. Because of this, the sampler noise will constitute

the ‘noise floor’.

3.4.1.2 Downsampling data sample selection noise

Each data sample will generally contain different information in the form of constraints

on the model parameters. If 𝑁s samples are selected from an original set of 𝑁f samples,

where 𝑁s ≫ 1 (and the signal model is slowly evolving) then the selection will be likely

to be a good representative sample of the information present in the full dataset. How-

ever, there will of course be some variations on the parameter constraints depending on

the precise selection of the 𝑁s samples. Thus, different manifestations of the likelihood

function (by which is meant ‘different definitions of’, from the different random sample

choices/different realisations of 𝐤 or 𝐃) will exhibit some degree of variation, which we

shall refer to as downsampling noise.

As𝑁s becomes smaller, the selection of samples becomes less likely to contain a good

representation of the information present in the original dataset. We might then expect

there to be, roughly, some number of samples below which the downsampled posterior

fails to accurately represent the true posterior.

3.4.1.3 Physical noise

Real data contains detector noise. Different realisations of detector noise tend to shift

the position of the maximum likelihood estimate (MLE), resulting in different poste-

rior distributions. If we try to compare posteriors generated using different noise real-

isations, we will see a significant difference due to this MLE offset. This would inter-

fere with our judgement of the amount of downsampling noise and efficacy of down-

sampling, which we seek to quantify. By using a zero detector noise realisation, we

effectively find the average posterior of many posteriors produced using different ran-

dom detector noise realisations [95, 98], that is, it is in some sense the expected poste-

rior distribution (the PSD/noise matrix itself remains unchanged). Hence we shall use a

zero detector noise realisation, to give a fair basis for analysing the results on downsam-

pling noise.
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3.4.2 Determining closeness of distributions

The JS Divergence provides a measure of distance between distributions particularly

well-suited for our problem (see discussion in Section 3.2.4). As mentioned however,

the posterior distributions themselves are computationally expensive. For high dimen-

sional parameter spaces, the JS divergence is vastly more expensive still; it first requires

the posteriors to be known, then needs to perform further mathematical operations as

per its definition. We must resort to approximation techniques.

3.4.2.1 Combined distance between marginal distributions

Consider using the JS divergence of marginalised distributions. Marginalisation is cer-

tainly not ideal; as it is a projection, information is lost. However it can still be useful

as a measure to show when variations between the profiles of posteriors become very

small, and thus point to convergence. A great benefit is that JS divergences between

1-dimensional distributions are inexpensive to compute. One has an infinite choice of

ways inwhich to project a distributionwith≥ 2 dimensions into 1-dimension (by param-

eter mixing). We are generally interested in the unmixed model parameter constraints

however, so it is sensible to choose the projections that are the marginalisations onto the

usual, unmixed model parameters.

Since the JS divergence can be used to define a metric and thus a distance, we can

combine distances of these marginalisations to form a new distance. We can then define

a metric between distributions 𝑝, 𝑞 as:

𝑑JS(𝑝, 𝑞) ≡
√
𝐷JS(𝑝 || 𝑞) . (3.60)

Let us now define a generalised Pythagorean distance function

𝑑JS(𝑝, 𝑞) ≡

√
√√√√1

𝑘

𝑘∑

𝑖=1

𝑑2JS (𝑂𝑖(𝑝), 𝑂𝑖(𝑞)) (3.61)

where the operator

𝑂𝑖(𝑝) ≡ ∫
ℝ𝑘−1

𝑝(𝜽) d𝜃1...d𝜃𝑖−1d𝜃𝑖+1...d𝜃𝑘−1 (3.62)

projects the distribution 𝑝 onto the 𝑖th parameter axis. The function 𝑑JS satisfies the re-

quirements of a metric and thus is a metric. If we square the newmetric to define a new
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divergence 𝐷JS, we will have that

𝐷JS(𝑝 || 𝑞) ≡
1
𝑘

𝑘∑

𝑖=1

𝐷JS
(
𝑂𝑖(𝑝) || 𝑂𝑖(𝑞)

)
. (3.63)

The range of 𝐷JS is [0, 1], the factor of 1∕𝑘 introduced above thus ensures that the range

of 𝐷JS is [0, 1] also. We shall refer to this divergence, which will be instrumental for

indicating the convergence of downsampled posteriors, as the combined marginalised

Jenson-Shannon (CMJS) divergence.

3.4.3 Convergence criteria

Weare nowalmost ready to propose criteriawithwhich to determine theminimumnum-

ber of samples required for the downsampled posterior to be an accurate representation

of the true posterior. Recall that we have two types of posterior noise to consider: sam-

pler noise and downsampling noise. Note that henceforth we will treat ‘sampler noise’

as equivalent to and synonymous with the ‘noise floor’. Recall our aim is to find when

the posterior, as a function of the number of samples, converges to a stable solution to an

accuracy determined by the noise floor. It has not yet been determined how to quantify

noise between distributions, however. We shall do this now.

3.4.3.1 Noisy posterior distributions

With the JS divergence as a measure of distance between distributions, we can begin to

characterise some basic statistical properties of the variation in the closeness of distribu-

tions, arising from some particular noisy process (i.e. the sampler’s internal operations,

or the random downsampling). Call the mean of a set of divergences, 𝑋, 𝜇[𝑋], and the

standard deviation 𝜎[𝑋].

We now define two one-parameter (parameterised by 𝑁s) families of sets of diver-

gences, the statistical properties of which we should expect to have certain behaviours

when the posteriors, as functions of 𝑁s, stabilise:

1. For each number 𝑁s of samples used to define a posterior, if we generate 𝐾 pos-

terior estimations, then we can form a population of
(𝐾
2

)
pairs (‘𝐾 choose 2’) of

estimates, and thus a set of
(𝐾
2

)
JS divergences. We can then define the mean and
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standard deviation of the noise floor distance sets𝑋f l as functions of𝑁s, 𝜇[𝑋f l(𝑁s)]

and 𝜎[𝑋f l(𝑁s)], respectively, where

𝑋f l(𝑁s) =
⋃

𝑖<𝑗≤𝐾

𝐷JS

(
𝑝𝑖f l(𝑁s)

|||||
||||| 𝑝

𝑗
f l(𝑁s)

)
, (3.64)

where 𝑝𝑖f l is the 𝑖
th of the 𝐾 estimate posteriors, all derived from the exact same

data set (i.e. using only one instance of 𝐤 or 𝐃).

If the posterior (estimates) stabilise at some 𝑁s, then the means and standard de-

viations of the downsampling noise sets, defined similarly as

𝑋ds(𝑁s) =
⋃

𝑖<𝑗≤𝐾

𝐷JS

(
𝑝𝑖ds(𝑁s)

|||||
||||| 𝑝

𝑗
ds(𝑁s)

)
, (3.65)

where now each posterior estimate, 𝑝𝑖ds, is derived from a different random selec-

tion of data points (i.e. 𝐾 unique instances of 𝐤 or 𝐃), should behave in the same

way as those of the noise floor.

2. We can also find the average distance of a set of posterior distributions from a test

distribution. Whereas the first family of sets can be said, in a sense, to be ‘boot-

strapped’, the use of a test distribution provides a sort of anchor from which to

compare divergences. Let us then define the further sets

𝑌f l(𝑁s) =
⋃

𝑖≤𝐾

𝐷JS

(
𝑝𝑖f l(𝑁s)

|||||
||||| 𝑞
)
, (3.66)

and

𝑌ds(𝑁s) =
⋃

𝑖≤𝐾

𝐷JS

(
𝑝𝑖ds(𝑁s)

|||||
||||| 𝑞
)
, (3.67)

where 𝑝𝑖f l and 𝑝
𝑖
ds are the same posteriors as those used in (3.64) and (3.65) respec-

tively, and 𝑞 is some test distribution.

If the posterior (estimates) stabilise at some 𝑁s, then the means and standard de-

viations of the downsampling noise, defined similarly, should behave in the same

way as those of the noise floor.

What we hope to show is that, as𝑁s is increased, downsampling noise becomes indis-

tinguishable from sampler noise at a certain𝑁s and is thus independent of𝑁s (i.e. when

choosing different samples is indistinguishable from choosingmore samples). This does
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not necessarily tell us that the posterior has truly converged of course, only that it is vary-

ing with data sample selection, on average, by the same amount for each selection. To

address this, we can demand as a further criterion that the downsampled FIM has con-

verged on, and is approximately equal to the true FIM. Since the FIMs are independent

of sampler noise (and can be compared comprehensively, without losing information

through marginalisation) this reassures us that the variation is indeed small; it is not

likely for the general structure of the posterior to have not yet stabilised but for the FIM

to exhibit little variation, so the posterior noise can in the most part be attributed to sam-

pler noise. For very low sampler noise, we shall consider it very highly unlikely that

both the FIMs have converged and the downsampling noise has stabilised (the means

are approximately constant) for the downsampled posterior to have not yet accurately

converged to the true posterior. In the case of high sampler noise however, imposing the

condition that the standard deviation of the downsampling noise must be of the order of

that of the sampler noise ensures that the variations are of similar magnitude and thus

not likely to be from a changing structure of the posterior.

3.4.3.2 Summary

We have introduced conditions above, which, together, will constitute our criteria for

accepting that a posterior has accurately converged to the truth at a certain 𝑁s. Thus,

the smallest𝑁s for which all of the following conditions are met shall be considered the

optimal downsampling rate:

1. 𝜇[𝑋ds(𝑁s)] ≈ 𝜇[𝑋f l(𝑁s)] ≈ const.,

2. 𝜇[𝑌ds(𝑁s)] ≈ 𝜇[𝑌f l(𝑁s)] ≈ const.,

3. 𝜎[𝑋ds(𝑁s)] ≈ 𝜎[𝑋f l(𝑁s)] ≈ const.,

4. 𝜎[𝑌ds(𝑁s)] ≈ 𝜎[𝑌f l(𝑁s)] ≈ const.,

5. 𝐅s(𝑁s) ≈ 𝐅f .

3.4.4 The distances evaluated

For experimentally probing the optimum downsampling rate, we defined a set of 12 dif-

ferent BHB systems to use as a testbed for the downsampling procedure. The GWmodel

used is a simplified version of the presently known best accuracy GW waveforms; for

approximants of waveforms expressed in post-Newtonian (PN) expansions, of which the
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# 𝑁LISA 𝑁Nyq SNR Dur. 𝑡endc 𝑚1 𝑚2 𝑑 𝜄 𝜙 Free parameters

- - - y y 𝑀⊙ 𝑀⊙ Mpc rad rad

1 1.58×108 3.04×106 5.89 0.5 0.1 148 27 230 𝜋/4 0.1 ℳc, 𝑞, 𝑡c, 𝑑

2 3.15×108 3.66×106 8.27 1 0.2 246 37 594 0 0.4 ℳc, 𝑞, 𝑡c, 𝑑, 𝜄

3 3.15×109 2.08×107 9.08 10 0.5 195 83.5 1182 𝜋/3 𝜋/2 𝑞, 𝑡c, 𝑑, 𝜄, 𝜙

4 1.58×109 7.69×106 8.29 5 0.4 300 183.5 1835 𝜋/2.1 𝜋/3 ℳc, 𝑞, 𝑡c, 𝑑, 𝜄, 𝜙

5 1.89×109 5.65×106 12.55 6 0.4 700 380 4688 𝜋/5 𝜋/7 ℳc, 𝑞, 𝑡c, 𝑑, 𝜄, 𝜙

6 9.47×108 2.37×107 8.22 3 0.1 46 33.5 203 𝜋/4 0.1 ℳc, 𝑞, 𝑡c, 𝑑

7 1.89×109 3.65×107 35.88 6 0.1 148 27 115 𝜋/4 0.1 ℳc, 𝑞, 𝑡c, 𝑑

8 3.15×108 1.95×106 24.16 1 0.2 246 237 814 0 0.4 ℳc, 𝑞, 𝑡c, 𝑑, 𝜄

9 1.58×109 3.94×107 10.30 5 0.1 46 33.5 203 𝜋/4 0.1 ℳc, 𝑞, 𝑡c, 𝑑

10 3.15×108 3.66×106 16.54 1 0.2 246 37 297 0 0.4 ℳc, 𝑞, 𝑡c, 𝑑, 𝜄

11 9.47×108 2.37×107 16.44 3 0.1 46 33.5 101 𝜋/4 0.1 ℳc, 𝑞, 𝑡c, 𝑑

12 1.58×109 3.94×107 20.61 5 0.1 46 33.5 101 𝜋/4 0.1 ℳc, 𝑞, 𝑡c, 𝑑

Table 3.1: A list of the black-hole binary systems used to test the downsampling procedure. From left

to right, the columns describe: BHB system number/label, number of LISA samples supposing a 10Hz

sampling frequency, the signal’s number of Nyquist samples (the minimum uniform sample rate number

of samples required to recover the signal without aliasing), the SNR, signal duration (years), time between

end of signal and BHB coalescence (years), primary mass (𝑀⊙), secondary mass (𝑀⊙), distance (Mpc,

no-redshift), inclination angle (rad), phase (rad), free model parameters.

highest order known is 3.5PN, we use a GW phase of 3.5PN and up to the 0.5PN order

term in the expansion of the waveform amplitude. We used systems of between four and

six free parameters; details of the BHB systems (which can all be said to be slowly evolv-

ing by inspection of their Fisher information matrices as functions of time) are given in

Table 3.1. Recall that the downsampling procedure has been developed for, and should

be applicable to general slowly evolving signal models. Besides the requirement of slow

evolution, the procedure is model independent and may be readily applied to more so-

phisticated models with more parameters.

We produced the two sets of posteriors, 𝑝𝑖f l and 𝑝
𝑖
ds, used to define the distance sets in

Eqns (3.64)-(3.67), such that they each contained𝐾=10 posterior estimates. These were

generated with Bilby [79] & Nessai [76], where our downsampled likelihood function
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3. THE LARGE DATASET PROBLEM

defined the posteriors, using 𝑁s(𝑛) = ⌊2𝑛∕2 + 1

2
⌋ samples, where 8 ≤ 𝑛 ≤ 26 and where

⌊𝑥 + 1

2
⌋ rounds 𝑥 to its nearest integer (the number of waveform data points required

to compute the inner product is actually greater than this; 𝑁s is the number of decorre-

lated samples that define the likelihood, see Section 3.3.1.3 for details). That is, sample

selection vectors 𝐤 were defined containing 𝑁s 1’s (and 𝑁f − 𝑁s 0’s), where 𝑁s is taken

from

𝔑 = {16, 23, 32, 45, 64, ..., 8192} . (3.68)

Altogether, producing a posterior for each system specified in Table 3.1, for each𝑁s ∈

𝔑, for each 𝑖 ∈ {1, ..., 𝐾}, and for each of 𝑝𝑖f l and 𝑝
𝑖
ds, resulted in 4,560 unique posterior

estimations. For each BHB system, the 𝑞 test distribution used in Eqns (3.66), (3.67)

is taken to be 𝑝1f l(𝑁s = 8192), 𝑝1ds(𝑁s = 8192), respectively. The means and standard

deviations of the sets defined in (3.64)–(3.67) were plotted and studied; a selection of

these is shown in Figure 3.2. Considerable variation in the statistics remained, likely

due to a low number of pairs of distributions. Perhaps a better approach would have

been to define fewer BHB testbed systems and instead choosing, say, 𝐾 = 25. Then the

population size of distances/distribution pairs would have been
(25
2

)
= 300 rather than

the
(10
2

)
= 45 pairswe used. Nevertheless, we saw excellent agreementwith expectations.

This small population is especially evident in System 9 of Figure 3.2, which indicates

an outlier in the sampler noise at 512 samples, where the sampler appears to find another

posterior mode. An outlying posterior estimate in the sampler + downsampling noise

indicated at 1448 samples appears to have done the same, and it is likely that the posterior

is in fact being represented faithfully in the downsampled space and the noise is due

primarily to sampler noise. A larger population of distances would have ‘smoothed out’

such artefacts of sampler noise.

Another interesting observation of Figure 3.2 is that the noise floor (solid blue line) is

often higher than the sampler and downsampling noise. This is of course not generally

the case (for the other BHB systems not shown) but this feature also suggests that the

population sizes are too small. Despite this however, it was still quite clear from the

study of the plots that the first four criteria given in Section 3.4.3.2 are already met at the

𝑁s = 256 mark. In fact, convergence for 9 of the 12 systems occurs after only 𝑁s=128.

However, this very low number can perhaps be explained in part by the fact that each

sample’s value is indeed informed by its 2ℳ neighbours; all systems here have an MCS
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Figure 3.2: A selection of plots of themeans and standard deviations of the sets of combined, marginalised

JS divergences (CMJS divergences), 𝐷JS, as functions of 𝑁s. The top axis shows the fraction of the sig-

nal’s number of Nyquist samples that were required to be computed to evaluate the posteriors. The solid

(/dashed) blue line shows the ‘anchored’ distance mean (/standard deviation) of the noise floor, the or-

ange lines show the anchored downsampling and sampler noise. Similarly, the blue circles (/crosses)

show non-anchored means (/standard deviations) of sampler noise, whereas the orange marks show the

same for downsampling and sampler noise. The spikes in System 9 just demonstrate non-convergence of

the sampler, which (fortunately) occurred once in each type of posterior.

of around 5, so that𝑁s=128 corresponds to requiring roughly𝑁ℳ ∼ 1400 signal samples

to be known to inform the strain values of the 128 decorrelated samples.

Unfortunately, there does not appear to be any particularly clear pattern or rule for de-

termining specific signal dependent optimal downsampling rates; the convergence point

does not seem to strongly depend on SNR, number of free parameters, Nyquist number

of samples or signal length. However, visual inspection of the posteriors seems to in-

dicate that posteriors that are already ‘nice’, i.e., with simple, smooth contours tend to

require fewer samples than those that appear irregular and with poorly constrained pa-
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Figure 3.3: Downsampled posteriors of System 11 (Table 3.1) converge as the number of samples is in-

creased. Only posteriors with 𝑁s ≤ 181 have been included to prevent a congested plot. There is perhaps

zero discernible difference in these posteriors after𝑁s = 128. At low𝑁s, we can clearly see a ‘breakdown’

in the posterior, the few samples remaining being unable to constrain the parameters in the same way as

the higher𝑁s posteriors. System 11 allows for the clearest version of this plot, note however that all other

BHB test systems showed the same behaviour.

rameters. As a visual example of posterior convergence, we have attempted to show how

the posterior of System 11 converges as the number of samples is increased in Figure 3.3.

We also studied how the FIMs converged to the true FIM defined by the full dataset,

as per the fifth convergence criterion. In Figure 3.4 it is shown how the FIM of System 2

converges as𝑁s is increased. Similar plots for all the BHB systemswe considered showed

the same result: the (critical elements of the) FIMs converged to ≲ 3% of the true FIM

after around𝑁s = 29 = 512. Again, since this always occurs at the same𝑁s, independent
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of the signal, there is unfortunately no obvious specific signal based reason or rule to be

inferred.
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Figure 3.4: The lower triangular part of the FIM of System 2 (with 𝑁f ≈ 3.5 × 106). Mean and standard

deviation of 50 downsampling selections/realisations of 𝐅s are shown in blue for each 𝑁s ∈ 𝔑. The diag-

onal FIM values are generally the most important, which we can see already agree with the full LISA FIM

after around 29 = 512 samples. Note that at very low samples, the Fisher information on the diagonals is

overestimated. This is likely because (thinking of the FIM as the inverse PCM that describes the 5-ellipsoid

that captures the shape of the peak of the likelihood) minimising the (CMJS) divergence is equivalent to

maximising the overlap of the ellipsoids; if they are poorly aligned with dissimilar aspect ratios, then the

downsampled ellipsoid should be made smaller to fit inside the true ellipsoid, smaller ellipsoids being

equivalent to higher information. The 𝑦-axis scale is missing for clarity, but the dashed lines above and

below the true Fisher information values in red show the upper and lower 5% intervals, respectively (i.e.

1.05 × 𝐹f𝑖𝑗 and 0.95 × 𝐹
f
𝑖𝑗 respectively). Also note that the off-diagonals in 𝑑 and 𝜄 are quite insignificant; if

one reparameterises this matrix so that the diagonals are equal to 1 for example (divide the 𝑖th row and 𝑖th

column by the square root of the 𝑖th diagonal) one finds that these off-diagonals are approximately zero,

where being out by a few orders of magnitude is still approximately zero and thus still correctly represents

the true FIM.

Finally, as we shall see in the following Section (in Figure 3.5) the fastest PE comple-

tion time occurs for those posteriors defined using 𝑁s = 256. The relationship between

PE completion time and number of samples is of course not linear, as we shall discuss
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in further detail, but empirically we have gained strong evidence that, for slowly evolv-

ing signal models and according to the convergence criteria we set out in Section 3.4.3.2,

the optimal downsampling number of samples (independent of the signal duration) is

approximately equal to 512.

3.5 Speed comparison and further remarks

3.5.1 Posterior estimate evaluation times

For each BHB test system we defined in Table 3.1 and for each 𝑁s ∈ 𝔑, we produced

20 posterior estimates (recall we used 𝐾 = 10 for each posterior type, 𝑝𝑖f l and 𝑝
𝑖
ds). The

averages of each of those sets of 20 evaluation times are plotted in Figure 3.5. There is

clearly a drop in evaluation time as the number of samples is dropped from 213 to around

28, for all BHB systems. For most systems, continuing to drop the number of samples

shows starkly that evaluation time begins to increase again, this is almost certainly be-

cause the posteriors begin to qualitatively break down, the number and/or irregularity

of posterior modes increases, and the sampler has a more difficult landscape to navi-

gate. Roughly after the point at which the posterior stabilises, increasing the number of

samples only increases the amount of data sample evaluations required to compute the

likelihood, obviously (by definition) without affecting the likelihood, thus the posterior

evaluation time should increase roughly linearly with increasing 𝑁s. We see in Figure

3.5 that this is indeed the case, where a line of best fit is drawn through those average

times for which 𝑁s ≥ 𝑁s(min(PE time)). Write the linear average PE time model

𝑇(𝑁s) = 𝑎𝑁s + 𝑐

≡ 𝑏(2ℳ + 1)𝑁s + 𝑐 ≈ 𝑏𝑁ℳ(𝑁s) + 𝑐 , (3.69)

using (3.24), so that

𝑏 = 𝑎(2ℳ + 1)−1 ,

where 𝑇 is the average evaluation time, 𝑎 is the line’s gradient and 𝑐 is a constant time

offset that is attributed to the ‘overheads’ of the sampler (internal processes such as ini-

tialisation, computing the Fisher matrix, normalising flow transformations in the case of

Nessai, etc.).
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Figure 3.5: The average convergence times for all BHB systems defined in Table 3.1. The relationship is

strongly linear after 𝑁s ≳ 28 since the posterior has stabilised and is at its simplest; for 𝑁s ≲ 28, poste-

rior estimation time increases as the number of samples decreases, very likely due to the structure of the

posterior breaking down, becoming highly multi-modal and more difficult for the sampler to explore.

The linear model of posterior evaluation time can be used to estimate the time it

would take to evaluate the posterior using all the samples (when𝑁ℳ = 𝑁Nyq) fromwhich

we can roughly gauge the amount of time saved by employing our downsampling proce-

dure. Simulated analyses of LISA data are often done in the frequency domain because of

the great simplicity of computing the inner product that is afforded by the independence

of the data samples in the frequency domain. The comparison of evaluation times shall

not be especially precise because of this (the number of numerical operations required

to compute signal templates will differ slightly between time domain and frequency do-

main signal models). Furthermore, the time domain analysis we have undertaken here

requires a few more simple mathematical operations (see Section 3.3.1.3) in the form of

element-wise products. It is reasonable to assume the cost of these operations are quite

negligible in relation to the cost of evaluating the signal at the required points however,

and particularly if one usesmore realistic GW signalmodels definedmore precisely, con-
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# 𝑁Nyq ℳ 𝑎 𝑏 𝑐 ∆𝑇ℳ ∆𝑇𝑁s
∆𝑇ℳ∕∆𝑇𝑁s

1 3.04×106 5 3.08×10−3 2.80×10−4 5.18 852.14 1.54 553.57

2 3.66×106 5 3.69×10−3 3.36×10−4 9.93 1229.43 1.85 665.74

3 2.08×107 5 1.24×10−3 1.13×10−4 0.83 2347.10 0.62 3787.27

4 7.69×106 5 4.41×10−3 4.01×10−4 6.75 3081.46 2.21 1397.48

5 6.51×105 4 5.96×10−3 6.62×10−4 8.95 431.06 2.98 144.71

6 2.37×107 6 1.45×10−3 1.11×10−4 1.89 2636.23 0.72 3639.11

7 3.65×107 5 4.08×10−4 3.71×10−5 0.28 1355.24 0.20 6642.85

8 1.95×106 5 1.54×10−3 1.40×10−4 1.34 272.63 0.77 354.82

9 3.94×107 6 1.88×10−3 1.45×10−4 2.43 5698.05 0.94 6065.19

10 3.66×106 5 3.26×10−3 2.96×10−4 6.62 1085.55 1.63 665.74

11 2.37×107 6 1.31×10−3 1.01×10−4 1.31 2384.35 0.66 3639.11

12 3.94×107 6 1.54×10−3 1.18×10−4 2.23 4664.40 0.77 6065.19

Table 3.2: Details of the linear best fit model of posterior evaluation times. From left to right, the columns

show: BHB system number (see Table 3.1), number of Nyquist samples for signal, maximum correlated

neighbouring samples (see Section 3.3.1.3), the three constants in Equations (3.69), the estimated original

posterior evaluation time minus the overhead time (hours), ∆𝑇ℳ = ∆𝑇(𝑁ℳ =𝑁Nyq) as defined below in

Equation (3.70), the average downsampled posterior (using𝑁s=500) evaluation timeminus the overhead

time (hours), ∆𝑇𝑁s = ∆𝑇(𝑁s=500) and finally the ratio of these times (this is the approximate increase of

the posterior evaluation rate, after disregarding the constant overheads).

sisting ofmanymore terms in the expression of the strainmodel, ℎ(𝑡). With these caveats

mentioned, we can see, in Table 3.2, the linear PE evaluation time model parameters,

along with the comparison between the expected evaluation time of the original poste-

rior with the downsampled posterior.

Note that in Table 3.2 we use the definition

∆𝑇 ≡ 𝑇 − 𝑐 , (3.70)

so that, as well as comparing the estimated evaluation times of the original and down-

sampled posteriors (minus overheads) which of course is of particular interest, we can

also see that the quotient is simply given by

∆𝑇(𝑁1)
∆𝑇(𝑁2)

=
𝑎𝑁1

𝑎𝑁2
=
𝑁1

𝑁2
, (3.71)
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and is independent of the slope. The increase in rates are thus equal for systems 2 & 10,

6 & 11, and 9 & 12 since this estimate is obtained from the definition of the linear model.

3.5.2 Discussion

The evaluation rate increases are significant, as can be seen in the rightmost column of

Table 3.2; the posteriors for the signals we considered are produced from between 144 to

6642 times faster (System 5 and 7, respectively) than the estimated time of completion

of the original posteriors defined with 𝑁f samples. Importantly, the posteriors undergo

very little distortion after downsampling, so we have produced strong empirical evidence

here that the downsampling procedure is a successful approach to cheaply reproducing

the likelihood function in simulated environments, and is robust in doing so, at least for

the specific types of signal we have tested here.

This speed up certainly comes primarily from the much faster likelihood evaluation

times, which is consistent with (3.71) and the linear evaluation timemodel as a function

of number of samples. Thus for more intricate signal models with likelihood functions

that are generally more costly to compute, the approximation techniques like the one

expounded here, and others, such as ROQ, become essential tools for experimentation in

the PE environment with LISA-like signals that are prohibitively expensive to compute.

Indeed it will probably become worth investigating whether and how these techniques

can be combined, to produce an evenmore rapid feedback arena for studyingCBC signals

and their various waveform modifications in LISA.

We have shown that our example signals have been successful subjects of the down-

sampling procedure defined in this work, and that we should expect to be able to rely

on posteriors generated using the procedure as accurate reproductions of the original

posterior, as much as we can rely on posteriors recreated using the posterior samples

returned by a sampler. However, it must be stressed that this has only been tested, and

is only expected to produce very accurate results for the cases of slow evolution signals;

it is plausible for the accuracy to drop when signals depend on some parameter whose

average information changes significantly on timescales roughly of order of the average

time between samples, or faster.

The overlaid posterior plots (one of which is shown in Fig. 3.3) for all of our signals

appear to converge after around only 200 samples, and indeed this would be consistent
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in general with the CJMS distance convergences, some of which are shown in Fig. 3.2.

As a result, it may seem reasonable to suppose convergence could be taken to be sooner

than 𝑁s = 29 = 512. However, these apparently earlier convergences are likely due to

losing some of the detail of the posterior structure by performing themarginalisations for

the CMJS distances and in generating the corner plots. The fact that the FIMs converge

later than the CMJS distances and corner plots reinforces this view, and we should be

cautious to trust the various marginalisation convergences without support from else-

where, such as the converged FIMs. The FIMs contain information, albeit in a small,

localised region, on all of the parameters simultaneously. Whilst the accuracy is likely

already more than high enough anyway using around 500 samples for most applications

(for example, considering the other posterior noise sources), recall that one can always

choose to define the likelihood function using more samples as further assurance the

accuracy will be very high.

This does prompt further interest in the approach previously mentioned in Section

3.3.3. That is, to downsample the dataset, then set the resulting FIM equal to the FIM

of the full dataset. However, due to the uneven weighting given to the different data

samples in this approach, which tightens up the approximation of the primary mode

of the posterior, it is possible that secondary modes might be adversely affected more

using this approach than they otherwise would. Thismethodmight therefore be suitable

for other certain types of signal analysis problem, particularly, for example, where it is

known that the PCM is a reasonable approximation of the posterior. It may be possible to

extend themethod of Section 3.3.3 however, by also choosing a few random points in the

parameter space and allowing the reweighting function a higher degree polynomial that

could be solved for, such that the likelihoods also agree exactly at those random points.

Or onemight perhaps consider setting higher order central moments of the distributions

to be equal, i.e., the higher dimensional analogues of the distribution’s skew, kurtosis.
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Chapter4
The Low-Frequency Landscape

In this chapter, we work towards understanding and modelling waveformmodifications

of BHBs in galactic and modified gravity environments. We hope this can be later used

to make progress in discovering the astronomy and physics potential of these sources, at

which point the requirements and scope of the model for the analysis of LISA data will

be updated. By use of the downsampling procedure explicated in the previous chapter,

we will analyse data in the time-domain, where it is more straightforward to define the

model; one can simply evolve a system forward in time given some initial conditions (to

reproduce arbitrary time-delays in the frequency-domain, complicated frequency mod-

ulations are often required to be computed). Recently, progress has been made with

frequency-domainmodelling of BHBs in galactic orbits however, as in Ref. [99], by mak-

ing simplifying assumptions (taking galactic orbits to be circular) that allow one to an-

alytically derive the frequency modulations. Nevertheless, our time-domain version is

particularly useful in easily allowing inclusion of additional physical effects that may be

more difficult to derive in the frequency-domain, for example, eccentric orbits and peri-

astron precession, and sub-leading order relativistic time-delays, which will be described

in more detail in due course.

Additionally, to preempt the data analysis problems that naturally arise when the di-

mensionality of the parameter space becomes large (which occurs in particular for long

duration signals with waveforms generated by CBCs in orbit around supermassive black-

holes, see 4.2.2.1 below), we will investigate the potential of lower dimensional ‘wave-

form (modification) approximants’. These approximants will be defined for the modifi-
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cations to the standard BHB waveform that arise due to the orbital motion of the BHB

around a central mass and further relativistic effects in Section 4.2.4, and tested in Sec-

tion 8.5.

If there are inconsistencies between the true physical waveform and our approxi-

mants, then, given they are small enough, our simulations should still accurately repro-

duce the posterior one would obtain by a ‘correct’ analysis (one free of modelling errors

and oversights) of real-world data. Our model templates are used to search for a simu-

lated injected signal which is itself produced using the model we will define. However,

larger discrepancies might result in an unreliable posterior by, for example, incorrectly

inferring parameter interdependencies, or showing that more information exists on a

given parameter than one has in reality, so even in this early investigative stage one

should try to accurately reproduce the signal (and detector) models, and be very clear

about when and where they are valid. Later, in Section 6.3, we will present a list of such

approximations, omissions and assumptions, with brief discussion on potential effects

on the posteriors.

4.1 Waveforms and modifiers

This section aims to briefly introduce some fundamental physical and astrophysical ef-

fects that can modify the GW of an inspiralling BHB, and also to give an idea of the vast-

ness of the range of concepts that need to be considered before one can be confident about

the models that will be used to analyse the LISA data. There exist relatively comprehen-

sive resources in the literature, appearing generally as compilations of short descriptions

and studies of selections of these effects, often with derivations of the approximate im-

pact on the waveform one can expect. These will be referenced where appropriate, as the

effects are discussed.

One can attempt a categorisation of the various effects, as we shall here, although

there is often significant overlap of certain effects between categories so this is rather

imprecise, but has some use for a big picture view of the modelling landscape. We divide

effects into: essential GR effects (‘known-knowns’), potential astrophysical environmen-

tal effects andmodified gravity waveformmodifications (‘known-unknowns’) and other,

unknown, unmodelled effects (‘unknown-unknowns’).
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4.1.1 Known-knowns

This category describes the ‘known’ physics (some foundations are assumed as certain-

ties, i.e., GR and the existence of triple BH systems) that may significantly affect the

waveform, such as relativistic effects and effects that derive from known astrophysical

scenarios. We will suppose that a BHB may be in proximity of some other mass, in a

3-body system (see Section 4.2.1 below). Some effects we should consider include:

• Hubble expansion, [100]. The stretching or redshift of the waveform during propa-

gation due to the expansion of space.

• Peculiar motion of GW emitter’s host galaxy, [100].

• Line-of-sightmotion due to emitter’s orbit of largemass, leading to an evolvingRoe-

mer delay: the time-of-arrival delay of a signal due to a changing relative distance

between the source and the detector from orbital motion. There are Roemer delays

from Earth’s orbit around the Sun and from the GW emitter’s orbit around its host

galaxy’s centre. See Section 4.2.2.2.

• Periastron precession. See Section 4.2.2.3.

• Relativistic time dilation. See Section 4.2.2.4.

• Relativistic beaming, [101]. The emissions of an object in relative motion are fo-

cused towards the direction of motion.

• Gravitational lensing, [102]. PlaneGWwavefronts undergo focusingwhen imping-

ing upon the ‘gravitational lens’ that is the localised spacetime curvature arising

from clumps of mass, such as galaxies.

• Tidal deformation of binaries/eccentricity excitation, due to proximity of binary to

a supermassive BH, [103].

• Kozai-Lidov mechanism, [104]. For certain special cases of 3-body gravitating sys-

tems, in particular amain binary with a third, more distant orbiting body, the third

body’s inclination with respect to the orbital plane of the central binary is corre-

lated with its eccentricity, and these parameters can ‘exchange’ periodically, mod-

ifying the GW emission of the main binary. The ‘outer orbit’ between the inner

binary and third body may also contribute directly detectable GWs.
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4.1.2 Known-unknowns

This category covers physical scenarios thatmay give rise toGWs forwhichwe either lack

a model, or for which we may not know the framework in which to derive the model.

Generally, these sorts of concerns include: the comprehensivemass distribution (with its

initial conditions); the gravitational waveform as a function of that distribution (where

we are now dropping the assumption that GR is correct); other proposed physical mech-

anisms; or a combination of these things. We know that we don’t always know how,

whether we should in general, or when in particular, to model these effects. The details

are becoming ever more clear as researchers study the various scenarios and refine ex-

pectations. However, there will exist cases where significant doubts remain about the

correctness of the model. Some of these physical effects (the below is vastly condensed

list of those we can consider) include:

• Emission or propagation environmentalmatter effects –Accretion onto BHB compo-

nents, [105, 106]; Weak/micro lensing (BHBs located in dense star clusters), [107,

108]; Dynamical friction, [105].

• Matter field effects – Matter field interactions at point of GW generation, for exam-

ple, from the axion field, [109].

• Modified gravity theories – Scalar/vectorGWmodes, [110]; Extra dimensions, [110];

Higher-order gravity and order dependent matter couplings, [110].

4.1.3 Unknown-unknowns

The true waveformsmay well be influenced by physics not yet known or conceptualised.

The waveforms (or modifications thereof) are thus themselves strictly unmodelled (see

also discussion on unmodelled ‘burst’ waveforms Section 1.3.2.3). This could be gener-

ated by, for example, the truemechanisms and interplay ofmatter and gravity (supposing

it has not yet been recognised), or new, not yet consideredmatter fields, for example. We

may also suffer from mistakes in our model derivations.
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4.2 Establishing a foundational signal model

From the previous discussion on waveformmodifiers, expected and speculated, the real-

ity of the vast potential complexity of the model is easy to see. However, as shown in Ref.

[105], the actual modifications of the gravitational waveforms from the various physical

and environmental effects are largely negligible for the majority of expected scenarios.

We intend to reproduce and study the major modifiers of long duration signals that are

expected to be entirely necessary for accurate signal modelling in the first instance. Since

perhaps most (depending on the main binary formation scenarios) of the CBC signals in

LISA are expected to be generated from binaries undergoing detectable local accelera-

tions, which can cause very large phase modulations as we will later see, this aspect of

waveform modelling will be prioritised.

It has already been confirmed that the expansion of the Universe and the peculiar

motions of galaxies have no directly measurable imprint on GWs for the presently con-

ceptualised detector networks [100]. The changing relative position of a GW emitter (a

binary) due to its orbit about the centre of mass of a galaxy can however lead to major

modifications of the observedwaveform. The following subsections describe the physical

sources and derive the major components of the model modifications.

4.2.1 Binary formation scenarios

There are two main formation scenarios for BHBs: formation in the field, and formation

in dense star clusters (see Figure 4.1), though these channels alone have already been

found to be insufficient to account for the GW observations to date [111] and a finer

formation model is required. However, the extra detail in formationmodelling still gen-

erally derives from these two main channels [111], so the precise details do not affect

thewaveformmodelling requirements1 (which is what we are presently concerned with)

since we can still say that binaries either derive dynamically or in the field.

Formation of BHBs in the field, which covers the disk (if one exists) and halo, oth-

erwise referred to as formation ‘in isolation’, occurs when the individual components
1Unless, for example, those models say something such as that 3-body sources dominate GW events

where interactions from a third body disrupts the waveform of the ‘close binary’ on timescales less than

the LISAmission duration, which would of course strongly inform the waveformmodelling requirements.
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Globular Clusters

Central Bulge

Halo

Disk

Figure 4.1: Simplified structure of a typical spiral galaxy (‘side’ view), left, with zoomed in inset (from

Beckmann& Shrader (2012), [112]) of nucleus, right. The disk and halo constitute the fieldwhere binaries

form ‘in isolation’, and the globular clusters, central bulge [113] and nuclear star clusters constitute dense

star clusters, where binaries form ‘dynamically’ [114]. Binariesmay also form dynamically in the accretion

disk (inset; note the accretion disk, right, is distinct from the disk of the galaxy, left). Elliptical galaxies do

not have a disk.
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of massive stellar binaries in the field evolve into black-holes. Dynamical formation of

BHBs, on the other hand, occurs via sequential interactions of massive stars or stellar

remnants inside the high density, dynamical environment of star clusters [115]. Binaries

from each formation scenario are therefore expected to have different properties; for ex-

ample, field binaries are expected to have very low eccentricities (because of the isolated

environment allowing their orbit to slowly circularise without interference), compared

to those formed in dense clusters (because they form rather chaotically from close en-

counters with other dense objects). The statistics of many GW event observations will

allow us to discriminate between competing formation models [116].

The high density star clusters include globular cluster (GC)s and nuclear star cluster

(NSC), where the latter (depending on the specific galaxy properties) resides in the cen-

tral bulge, which also hosts the supermassive black hole (SMBH), as depicted in Figure

4.1. Increasingly more massive BHs are thought likely to arise from successive, ‘hierar-

chical’ mergers of progenitor BHs [114]. In the smaller globular clusters (103–105𝑀⊙),

we can expect mergers of low-mass binaries that comprise of direct stellar remnants, but

these clusters are not likely to host BHs more massive than around 100𝑀⊙; when the di-

rect stellar remnant binaries merge, they receive a gravitational kick, often large enough

to escape the GC’s relatively small escape velocity [114]. TheNSC, on the other hand, are

generally much more massive (106–108𝑀⊙), with higher escape velocities that are more

difficult for the resultant, post-merger BHs to escape from, and can therefore go on to

form hierarchical, more massive BHBs. SMBHs may have an accretion disk, a disk of gas

and dust that can fall and accrete onto the SMBH. These disks can also host BHBs, and

there is good support for the recent GW event GW190521 to have originated from such

an environment [117].

We can therefore expectmoremassive BHBs to reside in the central bulge, where they

undergo considerable accelerations. A study of NSC in Ref. [118] shows that NSC have

‘effective radii’ (fromwithin which half of the NSC electromagnetic emissions originate)

of around 3.3+7.0−1.9 pc, and that they are generally highly elliptical [118]. Although ellip-

ticity does not necessarily directly translate to high eccentricity stellar orbits around the

central mass, more highly eccentric orbital motion is clearly likely. Furthermore, since

hierarchical remnant BHs receive essentially random kicks, the orbits of binaries they

go on to form will likely span a broad range of eccentricities. We shall therefore work

115



4. THE LOW-FREQUENCY LANDSCAPE

towards producing a model that describes eccentric orbits.

4.2.2 Orbits & time-delays

In this section we describe and derive the major fundamental and necessary properties

of orbital motion and themain contributors to the gravitational waveformmodifications.

4.2.2.1 Orbital parameters

The standard parameterisations of the orientations of elliptical orbits in astronomy are

the well-known (‘Keplerian’) orbital elements [119]. Three of this set of six parameters

describe the size, shape, and a reference point of an elliptical orbit, and the remainder

are Euler angles, which define rigid, 3D spatial rotations, and thus may describe a Kepler

orbit in a reference frame different to the standard source frame of the orbit. However,

a transformation of the usual Euler angles commonly known as the Tait-Bryan angles

(used heavily in aviation) in their extrinsic form (where rotation axes are not themselves

Figure 4.2: A graphical representation of the 3D rotation angles used to specify the orientation of the

Kepler path of a CBC’s orbit around a central mass. The Tait-Bryan or ‘aircraft principal axes’ have been

implemented as this allows for a useful simplification of the parameter space without loss of generality:

with the aircraft pointing along the line-of-sight from detector to source, the ‘roll’ parameter is not coupled

to the GW and can be ignored. This formalism is used for being very simple and intuitive for the problem

at hand. The depiction of the elliptical orbit in the 𝛼-𝛾 plane with focus at the origin shows the source

frame orientation of the orbit.
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Name Symbol Units Range Prior

Pitch 𝛼 rad [0, 𝜋] (not cyclic) Sine

Yaw 𝛽 rad [0, 2𝜋) (cyclic) Uniform

Semi-major Axis 𝑎 pc (𝑓(𝑀∙, 𝑒), 𝑎max] Pop. Model

SMBHMass 𝑀SMBH 106𝑀⊙ [𝑀min
SMBH,𝑀

max
SMBH] Pop. Model

Eccentricity 𝑒 - [0, 1) Pop. Model

Initial Eccentric Anomaly 𝐸0 rad [0, 2𝜋) (cyclic) Uniform

Table 4.1: Details of the Keplerian elements. The ‘Pop. Model’ prior indicates that the prior could be

derived from population models, we will use uniform priors here. The lower limit of the semi-major axis

is some function of the SMBH mass and the orbital eccentricity which is a bound for stable orbits. For

simplicitywewill ignore details of thoseGR effects thatmake an orbit unstable and just ensure that an orbit

does not traverse the SMBH event horizon, thus 𝑓(𝑀∙, 𝑒) = 𝑅∙,Schw+𝑦, where 𝑅∙,Schw is the Schwarzschild

radius of the SMBH and 𝑦 is the distance from the centre of the ellipse to the SMBH. The constants 𝑎max ,

𝑀min
SMBH &𝑀max

SMBH are also determined by astrophysical models.

rotated), are particularly useful for the current purposes from the point of view of ease

of modelling, as shall become clear in the following sections.

The orientation formalism depicted in Figure 4.2 puts the line-of-sight to the GW

source along the 𝛾-axis (that is, in the direction of travel of the aircraft). Then since the

background spacetime of the SMBH is taken to be spherically symmetric, a single ‘roll’

will not affect the specific time-delay modifications of the waveform that we shall be

modelling here; rolling of the source frame is equivalent to the ‘inverse roll’ of the detec-

tor frame. But rolling of the detector frame is itself equivalent to changing the polarisa-

tion angle of an unmodified, ordinary BHB. Thus the roll parameter (𝛾) can be absorbed

into the BHB polarisation parameter (𝜓). Similarly, for non-accelerating BHBs, a single

(instantaneous) ‘yaw’ can be absorbed into the BHB phase, and a single ‘pitch’ can be

absorbed into the BHB inclination. In general however, one must consider orbital mo-

tion where these operations result in variable time dependent time-delays which cannot

be disregarded. Note that the disregard of the roll parameter is not possible if in orbit

around a spinning SMBHwhere the SMBH spin is significantly imprinted onto the BHB

waveform during propagation, or if a spinning SMBH transfers angular momentum onto

the BHB during waveform generation; the detector response to polarisation is in that

case not completely degenerate with these finer waveform modifiers.
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The transformation between the orbital elements 𝑖, Ω and 𝜔 (inclination, longitude

of the ascending node, and argument of periapsis, respectively) can be found by consider-

ing, in the usual way, a decomposition of the 3D Euler rotation matrices as a product of

matrices that rotate the frame around 3 separate axes [120]. For example, as per [120],

the 3D Euler intrinsic rotation matrix 𝐑in
313 can be written as

𝐑in
313(𝜔, 𝑖, Ω) = 𝐑in

3 (𝜔)𝐑
in
1 (𝑖)𝐑

in
3 (Ω) , (4.1)

for rotation matrices 𝐑in
𝑘 that are responsible for rotating around the ‘new 𝑥𝑘-axis’ (the

frame orientation one obtains after all previous rotations).

Another valid set of Euler rotations is the aforementioned Tait-Bryan sequence with

extrinsic 3D rotation matrix given by ordered combination of 2D rotations

𝐑ex
123(𝛼, 𝛽, 𝛾) = 𝐑ex

1 (𝛾)𝐑
ex
2 (𝛽)𝐑

ex
3 (𝛼) , (4.2)

where the matrix 𝐑ex
𝑘 is responsible for rotating around ‘fixed 𝑥𝑘-axis’. Note that in this

formulation, the last (or leftmost, for left-acting rotation operators of column vectors)

single axis rotation is the roll 𝐑ex
1 (⋅), which can be ignored as per the preceding discus-

sion. For reference, the axes in Figure 4.2 have corresponding indices 𝛼 ∼ 𝑥3, 𝛽 ∼ 𝑥2,

𝛾 ∼ 𝑥1.

It is however still important to know the relationship between the different sets of an-

gles; we should knowwhat the intrinsic orbital elements (the standard parameterisations

in use in astronomy) are, in terms of the extrinsic Tait-Bryan angles we have employed.

To find the relationship, first note that the action of 𝐑in
313 on an arbitrary vector 𝐯 given

some (𝜔, 𝑖, Ω), must give precisely the same vector as that resulting from the action of

𝐑ex
123 on 𝐯, for the unknown (𝛼, 𝛽, 𝛾); the matrices are equivalent:

𝐑in
313(𝜔, 𝑖, Ω) = 𝐑ex

123(𝛼, 𝛽, 𝛾) . (4.3)

We could compute the dependencies of (𝜔, 𝑖, Ω) on (𝛼, 𝛽, 𝛾) directly from the components

of thismatrix. There is a useful relationship, however, between the intrinsic and extrinsic

axis rotations: a sequence of 𝑛 intrinsic rotations about axes 𝑥′𝑘1 , 𝑥
′′
𝑘2
, ..., 𝑥(𝑛)𝑘𝑛

, where 𝑘𝑗 ∈

(1, 2, 3) and the primes denote successive coordinate frames, by angles 𝜃1, ..., 𝜃𝑛 (that is,

successive rotations by 𝐑in
𝑘𝑗
(𝜃𝑗) matrices for 𝑗 ∈ 1..𝑛) is equivalent to a corresponding

sequence of 𝑛 extrinsic rotations in reverse order, about axes 𝑥𝑘𝑛 , 𝑥𝑘𝑛−1 , ..., 𝑥𝑘1 by angles

𝜃𝑛, ..., 𝜃1 (that is, successive rotations by 𝐑ex
𝑘𝑗
(𝜃𝑗)matrices for 𝑗 ∈ 𝑛..1) [121].
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Thus 𝐑in
313(𝜔, 𝑖, Ω) = 𝐑ex

313(Ω, 𝑖, 𝜔). Now 𝐑ex
313 and 𝐑

ex
123 are given in Ref. [120], along

with the required conversion between the different sets of angles, so from Ref. [120]

⎛
⎜
⎜
⎜
⎝

Ω

𝑖

𝜔

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

arctan2(− sin 𝛽, sin 𝛼 cos 𝛽)

arccos(cos 𝛼 cos 𝛽)

arctan2(cos 𝛼 sin 𝛽 cos 𝛾 + sin 𝛼 sin 𝛾, − cos 𝛼 sin 𝛽 sin 𝛾 + sin 𝛼 cos 𝛾)

⎞
⎟
⎟
⎟
⎠

(4.4)

where arctan2 is the ‘2 argument arctangent’ function.

4.2.2.2 Roemer delay

Here we model the line-of-sight velocity of a BHB due to its orbit around a SMBH. We

assume a Keplerian (elliptical, Newtonian) orbit here, and will add the approximate pe-

riastron precession modification arising from GR in the following section. We write 𝑎, 𝑏

and 𝑒 for the semi-major, semi-minor axes, and eccentricity respectively, which satisfy

𝑏 = 𝑎
√
1 − 𝑒2 .

The so-calledmean anomaly and eccentric anomaly, denoted𝖬 and𝐸, parameterise time

and polar angle respectively, where we set𝖬0=𝖬(𝑡0) and 𝐸0=𝐸(𝑡0), for an initial time 𝑡0,

which we generally take to be the instant an observation begins, i.e., the first time stamp

of the LISA signal. They are given by [122]

𝐸 = 𝖬 +
∞∑

𝑛=1

2
𝑛𝐽𝑛(𝑛𝑒) sin(𝑛𝖬) (4.5)

and we reiterate that the 𝑒 here is eccentricity (and not Euler’s constant), and

𝖬 =
√

𝐺𝑀SMBH

𝑎3
(𝑡 − 𝑡Peri) (4.6)

where𝑀SMBH is the total mass of the SMBH, 𝑡Peri is the time at periapsis and 𝐺 is New-

ton’s gravitational constant. The 𝐽𝑛 are Bessel functions of the first kind. In Euclidean

coordinates in the source frame, the position of the BHB has the non-zero components

𝑥src = 𝑎(cos 𝐸 − 𝑒) , (4.7)

and

𝑧src = 𝑏 sin 𝐸 . (4.8)
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With rotation matrix 𝐑, and writing the source frame position as the vector 𝐏src ≡

(𝑥src, 0, 𝑧src)𝑇, the observer frame position will be given by the vector

𝐏obs = 𝐑𝐏src . (4.9)

We will be interested in the line-of-sight coordinate (our 𝐳̂ direction) and total relative

velocity of the BHB, denoted 𝑣. The 𝑧-coordinate is given by

𝑧obs = 𝐏obs ⋅ 𝐳̂ , (4.10)

The change in travel time of the GW due to its changing relative distance to the ob-

server results in an effective changing time of arrival of the waveform. Primarily, this

provides a modulation in the phase of the signal (and a negligible change in the ampli-

tude). The observed waveform from this Roemer delay alone then is simply given by a

time-shift of the source waveform

ℎobs(𝑡) ≡ ℎsrc(𝑡′(𝑡)) , (4.11)

where the shifted time, 𝑡′, is given by

𝑡′(𝑡) = 𝑡 − 𝑧obs(𝑡)∕𝑐 , (4.12)

since it takes time 𝑧obs∕𝑐 for the GW to traverse the extra distance.

The orbital motion has so far been considered in a Newtonian gravity framework, so

the velocity of the BHB does not yet contain relativistic corrections (nor have effects on

ℎsrc been considered that arise from proximity to the SMBH). These effects, including

relativistic corrections to the orbit, can be substantial in the environments being consid-

ered, we describe how they enter into the model in the following subsections.

4.2.2.3 Periastron precession

To derive the precisemotion of the binary around a SMBH, which wemodel as a test par-

ticle orbiting a central mass, an exact solution of the fully non-linear geodesic equations

with metric given by the EFEs (Schwarzschild or Kerr) is required. The full treatment

of the problem is highly non-trivial, but in the interests of producing accurate parameter

estimation results, we would like to include some GR trajectory corrections, since some

extra information on the SMBH parameters are encoded in these corrections. However,
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we will resort to the simple approximation of geodesics, with trajectories described by a

periastron precession [123], well-known in the study of the Kepler orbit problem in GR.

For weakly precessing systems (where gravity is relatively weak), the apsidal preces-

sion over one full orbit of the binary around the SMBH is given by [123]

∆𝜑 ≈
6𝜋𝐺(𝑀SMBH +𝑀)

𝑐2𝑎(1 − 𝑒2)
, (4.13)

where𝑀SMBH is the mass of the SMBH,𝑀 is the total mass of the binary, 𝑎 is the semi-

major axis of the binary’s orbit and 𝑒 is its eccentricity.

At first approximation, the periapsis precesses at a constant rate (independent of the

position of the binary with respect to the SMBH) i.e., that 𝜑̇ = const. Using this approx-

imation, we have that 𝑇𝜑̇ = ∆𝜑, where 𝑇 is the period of the orbit, given by

𝑇 = 2𝜋

√
𝑎3

𝐺𝑀SMBH
, (4.14)

so the rate of precession of the periapsis is, taking𝑀SMBH ≫𝑀

𝜑̇ ≈
6𝜋𝐺(𝑀SMBH +𝑀)
𝑐2𝑎(1 − 𝑒2)𝑇

≈ 3
𝑐2(1 − 𝑒2)

(𝐺𝑀SMBH)
3∕2

𝑎5∕2
. (4.15)

This is a good approximation for roughly circular orbits. However, most of the preces-

sion occurs in the part of the orbit closest to the SMBH [123] (i.e., the rate of precession

is proximity dependent), so for highly elliptical orbits this simplification can be expected

to break down.

The precession of the orbit revolves around the SMBH. However, when the origin

of coordinates in which the Kepler orbit is defined is at the centre of the ellipse traced

out by 𝐏src(𝑡) ≡ (𝑥src, 0, 𝑧src)𝑇, we must first translate the coordinates such that 𝐏src(𝑡) is

definedwith respect to the SMBH, then rotate as per (4.15) before performing the inverse

translation. Thus the matrix describing the precession is given by

𝒫 = 𝒯−1ℛ𝒯 , (4.16)

which operates on the vector (𝐏src(𝑡), 1), where𝒯 andℛ are, respectively, the translation

and rotation matrices, given by

𝒯 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 −𝑦

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, ℛ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

cos 𝜑 0 sin 𝜑 0

0 1 0 0

− sin 𝜑 0 cos 𝜑 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (4.17)
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where 𝑦 is the distance from the centre of the ellipse to the SMBH. We have

𝒫 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

cos 𝜑 0 sin 𝜑 𝑦(1 − cos 𝜑)

0 1 0 0

− sin 𝜑 0 cos 𝜑 𝑦 sin 𝜑

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(4.18)

with 𝑦2 = 𝑎2 − 𝑏2, where 𝑎, 𝑏 are the semi-major and semi-minor axes, and 𝜑 is found

from integrating (4.15):

𝜑 ≈ 3𝑡
𝑐2(1 − 𝑒2)

(𝐺𝑀SMBH)
3∕2

𝑎5∕2
+ 𝐶 , (4.19)

where 𝐶 is a constant that can be set to zero without loss of generality; this is related to

the initial periastron angle at the beginning of the observation and can be absorbed into

the initial eccentric anomaly, 𝐸0.

Now, writing the precessed position vector as 𝐏src(𝑡), (where the bar in general

indicates precession modified quantities) we have that

diag(𝐏src(𝑡), 1) = 𝒫 ⋅ diag(𝐏src(𝑡), 1) , (4.20)

we rotate this into the observer’s displacement in the sameway we did for equation (4.9),

so finally the observed, precessed displacement, 𝐏obs, is given by

𝐏obs = 𝐑𝐏src . (4.21)

Following the steps in the previous section we also then have

𝑧obs = 𝐏obs ⋅ 𝐳̂ , (4.22)

𝑡
′
(𝑡) = 𝑡 − 𝑧obs(𝑡)∕𝑐 , (4.23)

again since it takes time 𝑧obs(𝑡)∕𝑐 for the GW to traverse the extra distance; the periastron

precession of the orbit just leads to a correction in the position, and so a correctedRoemer

delay. We can write the Roemer delay as

∆𝑡Roemer = 𝑡
′
(𝑡) − 𝑡 = 𝑧obs(𝑡)∕𝑐 . (4.24)

4.2.2.4 Relativistic time dilation

Approximating the SMBH as a Schwarzschild black-hole, the proper time interval along

a curve is given by the line-element

𝑐2d𝜏2src = (1 −
2𝐺𝑀SMBH

𝑐2𝑟
) 𝑐2d𝑡2 − (1 −

2𝐺𝑀SMBH

𝑐2𝑟
)
−1

d𝑟2 − 𝑟2d𝜃2 − 𝑟2 sin2 𝜃 d𝜙2 . (4.25)
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We can always align the coordinates with the orbit direction such that the binary does

not move in the 𝜙-direction, so that d𝜙 = 0. The proper time interval is then

d𝜏src = [(1 −
2𝐺𝑀SMBH

𝑐2𝑟
) − (1 −

2𝐺𝑀SMBH

𝑐2𝑟
)
−1

( d𝑟
𝑐 d𝑡

)
2

− (𝑟 d𝜃
𝑐 d𝑡

)
2

]
1∕2

d𝑡 . (4.26)

The 𝑟-𝜃 plane here coincides with the 𝑥-𝑧 plane used in the previous section for setting

up the Kepler orbits. The d𝑟∕d𝑡 and d𝜃∕d𝑡 terms can then be computed using (4.7) and

(4.8), since

𝑟 =
√
𝑥2src + 𝑧2src = 𝑎(1 − 𝑒 cos 𝐸) , and 𝜃 = cos−1(𝑥src∕𝑟) . (4.27)

Take the detector to be at spatial infinity, where the coordinate time interval, d𝑡, is

equal to the detector’s proper time interval, d𝜏obs. Then we integrate the above to obtain

the proper time measured in the source frame, 𝜏src, as a function of the detector time, 𝑡:

𝜏src(𝑡) = ∫
𝑡

𝑡0

d𝑡′
√

(1 −
2𝐺𝑀SMBH

𝑐2𝑟(𝑡′)
) − (1 −

2𝐺𝑀SMBH

𝑐2𝑟(𝑡′)
)
−1

(
d𝑟(𝑡′)
𝑐 d𝑡′

)
2

− (
𝑟(𝑡′) d𝜃(𝑡′)

𝑐 d𝑡′
)
2

.

(4.28)

We define the Einstein delay, ∆𝑡Einstein, to be the difference between the proper time

at source, 𝜏src, and the proper time at the detector, 𝜏obs = 𝑡:

∆𝑡Einstein(𝑡) ≡ 𝑡 − 𝜏src(𝑡) . (4.29)

4.2.2.5 Shapiro delay

The Shapiro delay describes the propagation delay caused by the decreased ‘coordinate

velocity’ of light (or, equivalently, due to the ‘extra’ physical distance light must travel)

due to spacetime curvature caused by nearby mass. The ‘one-way’ trip Shapiro delay is

given by (adapted from [124])

∆𝑡 ≈
2𝐺𝑀SMBH

𝑐3 (ln [
𝑧𝑝 + (𝑧2𝑝 + 𝑟20)

1∕2

−𝑧𝑒 + (𝑧2𝑒 + 𝑟20)1∕2
] −

1
2 [

𝑧𝑝
(𝑧2𝑝 + 𝑟20)1∕2

+
𝑧𝑒

(𝑧2𝑒 + 𝑟20)1∕2
]) , (4.30)

to first order in the Schwarzschild radius 𝑟𝑠 = 2𝐺𝑀SMBH∕𝑐2. Here, 𝑧𝑝, 𝑧𝑒 and 𝑟0 are,

respectively, the distance between the orbiting body and periastron (the point of closest

approach of the null path to the SMBH), the distance “along the line of flight" between

observer and periastron, and the impact parameter; the distance from the gravitating

body’s centre to periastron. See Appendix B for more details. Note that

𝑧𝑝 = |𝑧obs| .
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Orbit 𝛼 (rad) 𝛽 (rad) 𝛾 (rad) 𝑎 (pc) 𝑀SMBH (𝑀⊙) 𝑒 𝐸0 (rad)

1 0.2 0.2 0.3 9.8 × 10−3 4 × 106 0.1435 1.14

2 0.05 0.9 0.3 6 × 10−3 4 × 106 0.5 2.974

3 1.2 𝜋 0.3 9.8 × 10−3 4 × 107 0.0 0.33

Table 4.2: The Keplerian elements for our example systems, as depicted in Figure 4.3.

Using equation (4.30), which describes the delay for emissions from the far-side of the

mass, we derive a general Shapiro delay (to first order in the Schwarzschild radius) for

emissions from anywhere around the central mass in Appendix B. Defining 𝜖 ≡ 𝑟20∕𝑧
2
𝑝,

the far-side (FS) Shapiro delay can be written:

∆𝑡FS ≈
2𝐺𝑀
𝑐3 (ln [

1 + (1 + 𝜖)1∕2

𝑧𝑝𝜖
] −

1
2(1 + 𝜖)1∕2

) , (4.31)

and the near-side (NS) Shapiro delay is found to be

∆𝑡NS ≈
2𝐺𝑀
𝑐3 (ln [

(1 + 𝜖)3∕2 − (1 + 𝜖)
𝑧𝑝𝜖2

] +
1

2(1 + 𝜖)1∕2
) . (4.32)

We have that

∆𝑡Shapiro =
⎧

⎨
⎩

∆𝑡FS for 𝑧obs ≥ 0 ,

∆𝑡NS for 𝑧obs < 0 .
(4.33)

Section 6.3 discusses important shortcomings of this approximate formulation, which is

appropriate on solar system scales, but which must be addressed in modelling the time-

delays on galactic (SMBH) scales.

4.2.3 Summary and examples

We have computed the most obvious and crucial contributions to the time-delays. Some

approximations, omissions and simplifications have beenmade, which are not necessar-

ily valid, and there are some possible oversights that would be unacceptable in a real-

world data analysis setting; the relevant particulars are given in Section 6.3 however,

since that section deals in detail with shortcomings in the various modelling stages and

lays out the scope of validity in which the results of the following chapters are derived.

Some example orbits, which we use quite extensively in our tests of, for example,

parameter estimation and defining time-delay approximants, are defined in Table 4.2
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and are depicted in Figure 4.3. The various contributions to the time-delays for these

example orbits are shown in Figure 4.4. We finally note that our modified signal simply

derives from evaluating the waveform at a delayed time given by the total time-delay,

𝑡tot(𝑡), written as

𝑡tot(𝑡) = 𝑡 − ∆𝑡Einstein − ∆𝑡Shapiro − ∆𝑡Roemer , (4.34)

where the various terms are defined in equations (4.29), (4.33) and (4.24). One can see

the terms are simply additive since each delay function we have derived returns some

extra delay that is dependent on the (relative) position of the binary, which is always

parameterised by the coordinate time 𝑡, so the order in which they are applied does not

matter. The waveform with modelled time-delays is given by

ℎtot(𝑡) = ℎ(𝑡tot(𝑡)) . (4.35)

Finally, note that since we are modelling a source undergoing time-delay modifica-

tion and that there exists a mass-redshift degeneracy, we require a ‘reference chirpmass’.

At any time, we can (in principle) infer an instantaneous chirp mass: what the chirp

mass appears to be if one neglects line-of-sight velocity (and other time-delays). Since

the time-delays change in time, one must be careful in handling this, especially when

working with long duration signals and spanning multiple frequency bands. Consider

a signal in LISA from a binary accelerating away from the observer. The instantaneous
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Figure 4.3: Depiction of the example orbits with Keplerian elements given in Table 4.2. Each orbit has an

additional rotation around 𝛾 by 0.3 radians, affecting the top down view but not the line-of-sight distance

or the time dilations. Note we take the distance parameter 𝑑 now as the distance to the SMBH, not the

binary (the change in amplitude will be negligible and is ignored). The offset from that distance is denoted

∆𝑑.
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Figure 4.4: The line-of-sight acceleration along with the various contributions to the time-delays that

constitute the waveform modification, for the example orbits with Kepler parameters given in Table 4.2

and depictions in Figure 4.3. The total time offset plot has been omitted here since the Roemer delay dom-

inates the delays; the total time offsets are not visually distinguishable from the Roemer delay plot. One

can however see that the other time-delays are highly significant waveform modifiers for these particular

example orbits. The various time-delays are in general highly non-trivial. Note that the Einstein delay is a

cumulative rather than instantaneous delay, since the BHB’s evolution is effectively permanently ‘slowed’

to distant observers, rather than instantaneously shifted, as effected by the Shapiro and Roemer delays.
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chirp mass will appear to increase if acceleration is not modelled. For continuing accel-

eration, the chirp mass continues to appear to increase until the merger occurs in LIGO.

Thus searching for a fixed source frame chirp mass signal in LISA and the same source

frame chirp mass in LIGO will be incorrectly modelled; the time-delay modelling must

be continued consistently across the whole signal. We choose to use the instantaneous

chirp mass at coalescence (in LIGO) as the reference chirp mass. One must then com-

pute the redshift (from all time-delays) at 𝑡c and update the source frame chirp mass to

reflect this for each waveform template. Note then that in PE, we are searching over the

reference chirp mass parameter, rather than source frame chirp mass.

4.2.4 Reduced dimensionality time-delay approximants

Wewill see in Section 8.4 that the posteriors defined by the six Keplerian elements can be

finely structured, generally consisting of a thin mode(s) containing the probability (the

probability is tightly ‘condensed’ around a five-dimensional hypersurface), and thus can

be difficult for samplers to explore. However, we expect thatmeasurable time-delays can

be accurately described by fewer degrees of freedom (than these six Keplerian elements)

in large regions of the orbital element parameter space, which we will denote by 𝒦,

particularly when the BHB is (for example) far from the SMBH, when acceleration and

the other time-delays are approximately constant or linear. In such regions, one could say

there is effectively a new space of detectable parameters of a lower dimensionality: for

example, for two precisely correlated parameters there is only one degree of freedom, or

when a parameter becomes so weakly coupled to the signal it may be possible to simply

omit it. More technically, we could define maps from 𝒦 to new spaces of detectable

parameters, 𝒦′
𝑝, say, such that 𝑝 = dim(𝒦′

𝑝) < 6. However, for brevity, we shan’t be

rigorous with definitions of maps, coordinates and spaces in this section; our interest in

these regions is rudimentary and without opportunity for confusion.

To aid in the parameter estimation and sampling part of the analysis process then, we

can consider dividing the parameter space into regions inwhich the effects of some of the

parameters are negligibly coupled to the signal, or become completely degenerate with

another parameter, and which thus have effectively fewer dimensions. There are many

ways one could go about approaching such a division. Here, we shall perform a simple

preliminary investigation, providing rough outlines of the boundaries between regions.

127



4. THE LOW-FREQUENCY LANDSCAPE

Note that if andwhen one can describe the time-delays using a reduced set of parameters,

it is often the case that there is little information on the original six Keplerian element

parameters. Since they do not conveymuch information but are nevertheless required to

be included in the model, they can generally be considered as nuisance parameters (un-

less further information is known about the source from other observations that already

constrain the priors on𝒦).

To do this, it will be helpful to declare a single quantity that will be responsible for

the various time-delays, then we can find the approximation of that quantity that may

be defined by some model of fewer parameters. Any constant velocity of the BHB is

entirely undetectable, since there is an exact degeneracy between instantaneous line-of-

sight velocity and chirpmass (a line-of-sight velocity also changes the distance over time

of course, which affects the amplitude, but this is negligible). A line-of-sight accelera-

tion, however, is measurable in principle. For this reason, it will be useful to suppose

the collected time-delays all derive from a fictitious line-of-sight acceleration, which we

will call the ‘ascribed acceleration’. For total time-delay∆𝑡tot(𝑡), the ascribed line-of-sight

distance 𝑑 is simply

𝑑 = 𝑐∆𝑡tot (4.36)

so that the ascribed acceleration 𝒶̌ (we use the symbol𝒶 for acceleration, rather than 𝑎,

which is reserved for the semi-major axis, and the check ̌ to denote ‘ascribed’) is

𝒶̌ ≡ 𝑐 d
2

d𝑡2
∆𝑡tot . (4.37)

Denote the best fit polynomial approximation of order𝑛, of the function 𝒶̌ over the signal

by 𝑃bf𝑛 (𝒶̌):

𝑃bf𝑛 (𝒶̌) ≡
𝑛∑

𝑘=0

𝑏𝑛𝑡𝑛 , (4.38)

where the 𝑏𝑛 are constant coefficients that define the best fit (by least squares) curve.

Now we can evaluate the difference, or error between the ascribed acceleration and its

best 𝑛th degree polynomial approximation at a given point in the parameter space; if the

difference is small, the approximation is good (we will see how small the difference is

required to be, in e.g. equation (4.43), below). We want to know this difference over the

duration of a given signal rather than at an instant, so define the integrated (ascribed)

acceleration difference (IAD) by

𝐼𝑛 = ∫
signal

d𝑡 |𝒶̌ − 𝑃bf𝑛 (𝒶̌)| . (4.39)

128



4. THE LOW-FREQUENCY LANDSCAPE

Using standard polynomials is a sensible choice; another set of basis functions could

of course have been chosen with which to construct the time-delay. Since we are inter-

ested in how the waveform modifiers might affect the PE results for the ordinary LIGO

parameters, one could choose as acceleration basis functions (the derivatives of) the var-

ious terms in the PN expansion of the phase. In that case, altering the amplitude of a par-

ticular PN termwill alter the apparent information on the corresponding CBC parameter

ordinarily encoded in that PN term. However, there is no reason to expect (indeed it is

extremely unlikely) that external waveformmodifiers uncoupled from the generation of

the waveform at source (such as the time-delays we are considering) will have precisely

the same effect as, say, a higher total spin over the signal duration. The standard poly-

nomials, on the other hand, are acquired from Taylor expansions, and thus for minor

deviations, particularly those which are constant over the duration of the signal, may be

verywell approximated by low-order, ordinary polynomials. We are therefore reasonably

well justified in using what is an effectively arbitrary but simple and ubiquitous basis.

We can now consider asking which points in𝒦 have ascribed accelerations that are

indistinguishable from polynomial accelerations of degree 𝑛. Let us take a look at the

IADs for the example orbits in Figure 4.3, taking the semi-major axis as a free parameter;

the results are shown in Figure 4.5 for signal lengths of 10 years. As one increases the

semi-major axis and so the orbital period, the 10 year section of the orbit covered by the

signal becomes increasingly more similar to a straight line trajectory. We are interested

in when the ascribed acceleration becomes indistinguishable from a polynomial. We

will therefore compute the points at which best fit polynomial accelerations of degree 𝑛

become (in)distinguishable from the ascribed accelerations, and set these as the region

boundary points.

Before one can say whether the polynomial approximants are indistinguishable from

the true modification, it must first be understood how one can go about saying when

some waveform modification produces a measurable effect. It is reasonable to say that

an effect is measurable if it shifts the primary posterior mode by a ‘significant amount’:

of order of one standard deviation of any of the posterior’s marginal distributions; such a

shift is clearly detectable. Since the chirp mass is precisely correlated with line-of-sight

velocity, the chirp mass marginal will provide good insight into when the acceleration is

measurable. The chirp mass appears at leading PN order in the waveform’s phase. The
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Figure 4.5: Total integrated difference between true time-delay and best fit polynomial (of order 𝑛) ap-

proximations to the delay for fixed duration signals (10 years) as a function of ‘size of orbit’ (parameterised

by semi-major axis). The black dashed line at 3m s−1 delimits the point at which the difference in the ac-

celerationmodels is actually detectable as found in equation (4.43): at and below this line, the IAD is small

enough that the orbit is indistinguishable from the polynomial approximation, thus this gives impetus for

finding regions of the Kepler parameter space where we can approximate the time-delay model. One can

find out the degree of polynomial required to describe the (measurable) time-delays at a given semi-major

axis by locating the curve intersecting the black line immediately to the left of the given semi-major axis.

We can see here that for our example orbits with semi-major axes approximately greater than 2 pc, a con-

stant (𝑛 = 0) acceleration is sufficient, for orbits with semi-major axes approximately greater than 0.2 pc,

one requires a linear (𝑛 = 1) acceleration, and for 0.1 pc, one requires a quadratic (𝑛 = 2) acceleration.

Beyond this however, even polynomials of degree 15 (included only for the sake of interest) are not able

to significantly reduce the semi-major axis: clearly the original six Keplerian elements should be used for

such systems.
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phase can be tracked very precisely and thus the likelihood can drop significantly for

slight mismatches in the phase. For a signal consisting of𝒩c cycles, the mismatch in the

chirp mass, ∆ℳc, between the true value and the template value gives a rough, order of

magnitude estimate of the chirp mass standard deviation and is given by (adapted from

Ref. [26])
|||||||
∆ℳc

ℳc

|||||||
∼ 1
𝒩c

. (4.40)

Suppose that a CBC starts with a velocity of 𝑣0 = 0, and after time 𝑇obs of constant ac-

celeration has a velocity of 𝑣1. The initial instantaneous chirp mass is ℳc,0, and the

final instantaneous chirp mass isℳc,1 = ℳc,0(1 + 𝑧1), where 𝑧1 = 𝑣1∕𝑐 is the redshift

of the signal at the end of the signal. Then if we take the chirp mass mismatch to be

∆ℳc = ℳc,1 −ℳc,0, we have that

|𝑣1| ∼
𝑐
𝒩c

, (4.41)

so that, since 𝑣1 = 𝒶𝑇obs, where 𝒶 is the acceleration and 𝑇obs is the duration of the

signal, we find that the detectable velocity shift is

|𝒶| ∼ 𝑐
𝒩c𝑇obs

. (4.42)

For stellar origin BHBs in LISA, when 𝑇obs ∼ 10 years, we ordinarily have up to

around ten million cycles in band. Thus one should expect that accelerations of around

|𝒶| ≳ 10−7 ms−2 are measurable. Anything less will not have any significant effect on

the posterior, and anything greater must be taken into account in the model. For a signal

duration of 5 years, both 𝑇obs and 𝒩c are halved (if we assume the signal is approxi-

mately monochromatic), meaning a 4× greater acceleration is required to be detectable.

Themaximum instantaneous line-of-sight acceleration for a circular orbit (which always

occurs when the SMBH, BHB, and observer are collinear) is shown for a range of SMBH

masses and semi-major axes in Figure 4.6.

Now we can also say, roughly, that for any difference between ascribed acceleration

and a polynomial approximation that is less than this detectable value (when integrated

over the signal), one cannot distinguish between the accelerationmodels andmay just as

well use the polynomial approximation. Taking the difference between ascribed accel-

eration and polynomial acceleration to be approximately constant over the signal, dis-

tinguishability between the models occurs, for a 10 year signal for stellar origin BHBs
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when

𝐼10 y𝑛 = ∫
signal(10 yr)

d𝑡 10−7 ms−2 ≈ 3ms−1 , (4.43)

and for a 5 year signal when

𝐼5 y𝑛 = ∫
signal(5 yr)

d𝑡 4 × 10−7 ms−2 ≈ 6ms−1 . (4.44)
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Figure 4.6: Acceleration phase diagram for circular

orbits and neglecting relativistic time-delays, where

observer, emitter, and centralmass all lie on a straight

line. The hashed region shows the semi-major axes

and SMBH mass pairs that produce accelerations

large enough that (for a 10 year signal) one is required

to include acceleration in the gravitational waveform

model.

The 10 year IADof 3m s−1 is shown in Fig-

ure 4.5 (the horizontal black dashed line).

However, note that, as per the discussion

in Ref. [26], the mismatch in chirp mass is

not quite as strongly detectable as deduced

above, since the spin information is some-

what correlated with the mass and thus,

absent of knowledge of the spins, the error

in the chirp mass is increased by approxi-

mately a factor of 10. Propagating this fac-

tor through the above yields a measurable

IAD of around 𝐼10 y𝑛 = 30m s−1.

Themore crucial purpose of Figure 4.5

is to show when it is safe to model the en-

tire set of time-delays as a polynomial ac-

celeration of degree 𝑛. Thus one should

err on the side of caution and set the ac-

ceptable error (i.e., the IAD) to be some-

what lower than that calculated. We can

see that, for a 10 year signal, time-delays can be taken as constant line-of-sight accelera-

tionswhen the semi-major axis is around 1 parsec. If the semi-major axis is around 0.1 pc,

then at least a linear (first degree polynomial) acceleration is required, and a quadratic

acceleration has very little benefit over a linear one; in fact, for polynomial approxima-

tions, linear acceleration appears to be very efficient as even up to degree 15 polynomi-

als cannot reduce the IAD much more than linear polynomials. For semi-major axes

below 0.1pc, it appears likely that the full set of Keplerian elements are rather generally

required to correctly model the time-delays. Note however that only three orbits were
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Semi-major axis = 0.1 pc Semi-major axis = 1 pc

Orbit 𝐴 𝐵 𝐴 𝐵

1 +1.58 × 10−03 −6.57 × 10−13 +5.02 × 10−05 −6.61 × 10−16

2 −7.72 × 10−03 −2.58 × 10−14 −2.45 × 10−04 −2.05 × 10−17

3 +1.69 × 10−04 +2.04 × 10−13 +1.68 × 10−06 +6.60 × 10−17

Table 4.3: The coefficients, as defined in equation (4.45), for best fit linear approximations to the ascribed

accelerations of the three example orbits of Figure 4.3 with modified semi-major axes. Units are [𝐴] =

m s−2 and [𝐵] = m s−3. In Chapter 8, Figure 8.16, the posteriors for Orbit 1 are generated given the fully

modelled time-delay waveform in the data, and analysed using a linear model; the parameter estimated

values of𝐴 and 𝐵 from the data are indeed very close to these values of the best fit polynomial coefficients

(for both semi-major axes).

studied here and that no simple, general conclusion can yet be drawn about how pre-

cisely to divide the parameter space into distinct regions of different dimensionalities

and different time-delay model approximants. For reference, note that the best fit linear

acceleration coefficients for the example orbits set at semi-major axes of 0.1 pc and 1 pc

are given in Table 4.3, for accelerations defined by

𝒶̌ ≈ 𝑃bf1 (𝒶̌) ≡ 𝐴 + 𝐵𝑡 . (4.45)

It would be instructive to at least derive some approximate boundaries for the divi-

sion of the parameter space however, in terms of which regions require all six Keplerian

elements and which regions are able to approximate the time-delays by various poly-

nomials. Clearly, for BHBs very close to the SMBH where the time-delays are compli-

cated functions, the six Kepler parameters are required. Indeed therewill be some region

𝒦6 ⊂ 𝒦 in which all six Kepler parameters are required to describe the ascribed accel-

eration. This obviously contains all points for which the semi-major axis 𝑎 ∼ 0, and so

we can call this the ‘central’ region. As one moves ‘out’ from a point in this region (in-

creasing 𝑎) one will eventually reach a point at which fewer parameters are required to

describe the time-delays (although of course the dimensionality dim(𝒦) = 6 of𝒦 itself

does not change there). These points shall constitute the boundary, 𝜕𝒦6, of𝒦6. For our

scheme, we will choose to divide 𝒦 into four regions: the central region, 𝒦6; a region

describing the ascribed acceleration as a polynomial of degree 1 (linear acceleration),

𝒦𝑃bf1
; a region describing the acceleration as a polynomial of degree 0 (constant acceler-
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ation),𝒦𝑃bf0
; and finally a region that does not include acceleration as a parameter (zero

acceleration),𝒦𝑃zero .

One may find these boundaries by thinking of them as isosurfaces of constant IAD

and setting the relevant constraints on equation (4.39), like those we found, for example,

in equation (4.43) and equation (4.44). That is, if one is interested in the boundary 𝜕𝒦6

between the central region 𝒦6 and the degree 1 polynomial region for a 10 year signal

(of stellar origin order chirp mass)𝒦𝑃bf1
, then this is given by all points 𝑝 ∈ 𝒦 such that

𝐼1(𝑝) = ∫
signal

d𝑡 |𝒶̌(𝑝, 𝑡) − 𝑃bf1 (𝒶̌(𝑝, 𝑡))| = 3m s−1 . (4.46)

One can write explicitly

𝜕𝒦6 =
{
𝑝 ∈ 𝒦 ∶ 𝐼1(𝑝) = 3m s−1

}
,

where the region itself is given by

𝒦6 =
{
𝑝 ∈ 𝒦 ∶ 𝐼1(𝑝) ≥ 3m s−1

}
.

For completeness, the other regions per our scheme can be written as

𝒦𝑃bf1
=
{
𝑝 ∈ 𝒦 ∶ 𝐼0(𝑝) ≥ 3m s−1, 𝐼1(𝑝) < 3m s−1

}

𝒦𝑃bf0
=
{
𝑝 ∈ 𝒦 ∶ 𝐼zero(𝑝) ≥ 3m s−1, 𝐼0(𝑝) < 3m s−1

}

𝒦𝑃bfzero =
{
𝑝 ∈ 𝒦 ∶ 𝐼zero(𝑝) < 3m s−1

}
,

and where we have that

𝒦 = 𝒦6 ∪𝒦𝑃bf1
∪𝒦𝑃bf0

∪𝒦𝑃zero .

These regions are rather difficult to conceptualise (and to compute) given a general

eccentric orbit and considering the complete definition of 𝒶̌ (and of 𝑃bf1 (𝒶̌), for which

one can use polynomial regression when considering discrete samples, as was done for

producing Figure 4.5). The difficulty is also apparent from the irregularity of the example

IAD curves shown in Figure 4.5. We can however make some approximations that will

allow us a rough but comprehensible picture of where the boundaries lie between the

various regions we have defined. The first approximation is to restrict our attention to

circular orbits only, then 𝑒 = 0 and we are dealing with a 5-dimensional slice through

𝒦6. This allows us to combine 𝐸0 and 𝛽 into a single parameter; recall that in Section

4.2.2.1 we saw that a 3D Euler rotationmade up of a chain of extrinsic 2D rotations is the
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same as a chain of instrinsic 2D rotations of the same angles but in reverse order. Thus

if we have an extrinsic rotation matrix defined by angles 𝛼 and 𝛽, we may write it as

𝐑ex
12(𝛼, 𝛽) = 𝐑ex

1 (𝛽)𝐑
ex
2 (𝛼) = 𝐑in

2 (𝛼)𝐑
in
1 (𝛽) . (4.47)

However, since we are just dealing with a circular orbit, the initial eccentric anomaly,

𝐸0, by equation (4.5), reduces to a rotation around the orbital axis by an initial reference

angle and can be defined by matrix 𝐑in
1 (𝐸0), acting in precisely the same way as the 𝛽

rotation. It can therefore be absorbed into 𝛽; since the matrices are left-acting rotation

operators, then acting with matrix 𝐑ex
12(𝛼, 𝛽) on the left of 𝐑in

1 (𝐸0) gives

𝐑ex
12(𝛼, 𝛽)𝐑

in
1 (𝐸0) = 𝐑in

2 (𝛼)𝐑
in
1 (𝛽)𝐑

in
1 (𝐸0)

= 𝐑in
2 (𝛼)𝐑

in
1 (𝛽 + 𝐸0)

= 𝐑ex
12(𝛼, 𝛽 + 𝐸0) . (4.48)

The parameter space has thus reduced from the 6-parameter set (𝛼, 𝛽, 𝑎,𝑀SMBH, 𝑒, 𝐸0) to

the 4-parameter set (𝛼, 𝑎,𝑀SMBH, 𝐸′
0), where we have defined 𝐸′

0 ≡ 𝛽 + 𝐸0.

The second approximation (which is not well substantiated) is to declare the Ein-

stein and Shapiro delays to be negligible and ignore them. This drastically simplifies the

definition of 𝒶̌ at the cost becoming less accurate. This approach to finding 𝜕𝒦6 may

only be applied safely in those regions where both 𝜕2𝑡∆𝑡Shap and 𝜕2𝑡∆𝑡Einstein are also well

approximated as linear functions (linear because 𝐼1 is defined with respect to a linear

polynomial). When the orbit is circular, ∆𝑡Einstein is precisely a linear function, so that

𝜕2𝑡∆𝑡Einstein = 0, but one only needs to glance at Figure 4.4 and equation (B.7) to see that

it is not straightforward to locate those points in𝒦 in which the Shapiro delay is approx-

imately linear, even for circular orbits. Alternatively, one could place safe constraints on

𝜕𝒦6 by demanding that the total contribution to the IAD from ∆𝑡Shap be negligible. The

integral of 𝜕2𝑡∆𝑡FS (the ascribed-acceleration of the ‘far-side’ Shapiro delay), for example,

is given by:

d
d𝑡
∆𝑡FS =

2𝐺𝑀
𝑐3

⎛
⎜
⎝
𝜖̇

3

2
(1 + 𝜖)1∕2 − 1

(1 + 𝜖)3∕2 − (1 + 𝜖)
−
𝑧̇𝑝
𝑧𝑝

− 2𝜖̇𝜖 −
𝜖̇
4(1 + 𝜖)−3∕2

⎞
⎟
⎠
, (4.49)

where, 𝜖(𝑡) ≡ 𝑟0(𝑡)2∕𝑧𝑝(𝑡)2, where 𝑟0 is the impact parameter and 𝑧𝑝 is the magnitude of

the line-of-sight distance from the SMBH to the binary (see Appendix B). With this, the
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individual contribution of the Shapiro delay to the IAD can be computed. If this is neg-

ligible, then it may be ignored and one can proceed to check that the IAD defined solely

by the Roemer delay (i.e., assuming that ∆𝑡tot = ∆𝑡Roemer) meets the relevant criteria, as

in equation (4.46), to determine whether 𝑝 ∈ 𝒦𝑃bf1
or 𝑝 ∈ 𝒦6.

For this initial study, the GR components of the delay shall simply be neglected, since

we only aim to acquire a rough sense of the structure of the boundaries of the various

regions. In any case, our time-delay model is incomplete (see Section 6.3). Whilst our

estimate shall not be especially accurate, it shall be a useful first step in acquiring a sense

of the degree of waveform deformation to expect given the orbital parameters. For an

accurate division of the parameter space with fully modelled time-delays, which should

be used with the real LISA dataset, a full numerical search for the boundaries defined

by equation (4.46) should be performed, taking into account all possible GR time-delay

effects and environmental waveform modifiers.

We make very rough approximations of the definition of the IAD in Appendix A in

order to be able to produce closed form equations of the isosurfaces defining the bound-

aries between our defined regions. The boundary 𝜕𝒦6 (separating 𝒦6 and 𝒦𝑃1) is ap-

proximately given by equation (A.8):

3m s−1 ≈ 8𝜋2

𝑇2
𝑎 cos(𝛼) [25𝜋𝑇 cos(𝐸′

1∕2) y
2 + sin(𝐸′

1∕2)5 y +
𝑇
2𝜋

(
cos(𝐸′

1) − cos(𝐸′
1∕2)

)
] .

Then 𝜕𝒦𝑃1 (separating𝒦𝑃1 and𝒦𝑃0) is approximately given by equation (A.11):

3m s−1 ≈ 8𝜋2

𝑇2
𝑎 cos(𝛼) (sin(𝐸′

1∕2) ⋅ 5 y +
𝑇
2𝜋

[
cos(𝐸′

1∕2) − cos(𝐸′
0)
]
) .

Finally, the boundary 𝜕𝒦𝑃0 (separating 𝒦𝑃0 and 𝒦𝑃zero) is approximately given by equa-

tion (A.12):

3m s−1 ≈ 4𝜋
𝑇 𝑎 cos(𝛼)

[
cos(𝐸′

1∕2) − cos(𝐸′
1)
]
.

The ranges of application of the different acceleration models with boundaries given

by the constraint equations (A.8), (A.11) and (A.12) are shown in Figure 4.7. Of course if

one uses a different set of acceleration models (rather than standard polynomials) then

these regions would be defined by different isosurface constraint equations. The results

of employing these various time-delay remodellings in parameter estimation are shown

and discussed in Section 8.5.
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Figure 4.7: A slice through the reducedKeplerian element parameter space𝒦 (circular orbits with 𝐸0 and

𝛽 combined), with (𝑒, 𝛼, 𝐸′1∕2) = (0, 𝜋∕4, 𝜋∕4), showing the various regions we have defined: 𝒦6,𝒦𝑃1 ,𝒦𝑃0

and𝒦𝑃zero , and their approximate boundaries, which accurately describe the line-of-sight accelerations (as

far as can be detected) using 6, 2, 1 and 0 parameter models, respectively. The regions are defined by very

rough approximations (as detailed in Appendix A) to the time-delays, however, with our fiducial orbital

system in Chapter 8, when using the fully-modelled time-delays we find very good agreement with this

approximation. This lends support to the notion of time-delay models that incrementally approximate the

fully modelled time-delay, and which are applicable at different regions of the Kepler parameter space.

The lines of constant 𝑇 show that for the same period, the Kepler parameters are required/better detected

for more massive SMBHs.
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Chapter5
Quadratic Gravity Theories

In modern field theory, the EFEs can be obtained by applying the stationary action prin-

ciple to the Einstein-Hilbert action, given by

𝒮EH = ∫
ℳ
d4𝑥

√
−𝑔 ( 12𝜅𝑅 + ℒ𝑚) , (5.1)

where 𝑔 is the determinant of the metric 𝑔𝜇𝜈,ℳ is the spacetime manifold, ℒ𝑚 is a suit-

ablematter Lagrangian, and𝑅 and 𝜅 are, as before, the Ricci scalar andEinstein constant,

respectively.

However, there exists significant interest in alternative gravity theories, in large part

since this is a potential avenue to explore for the explanation of the phenomena presently

attributed primarily to dark matter and dark energy. There is also huge effort directed at

the quantisation of gravity, as this is widely believed to be the best approach to unifying

the fundamental forces. Any contending theory of gravity must at least comply with the

following criteria; that is, a new theory must:

1. be consistent with all existing measurements and tests of gravity,

2. predict deviations where GR has not been tightly constrained,

3. admit a well-posed initial value problem (the physics should make sense as a clas-

sical field theory; for example, evolving some initial data should not lead to un-

physical solutions).

Additionally, it is desirable for a theory to be amenable to testing and hence to be solvable

(at least perturbatively), for example, we would like to be able to derive its GW solutions.
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5. QUADRATIC GRAVITY THEORIES

There are few known theories that fulfil these criteria, but two in particular are well-

studied and hold some promise. These are the so-called Einstein-dilaton Gauss-Bonnet

gravity and Dynamical Chern-Simons gravity. These theories both feature scalar fields

coupled to gravity. Their field equations are acquired by variation of their respective

actions.

5.1 Einstein-dilaton Gauss-Bonnet

The so-called Gauss-Bonnett (GB) gravities are theories of gravity which are of interest

due to their simple algebraic and geometric properties and definitions. From a classical

point of view, they are the only theories with field equations of at most second deriva-

tives in the metric [125]. This is because the particular combination of terms leads to

a cancellation of higher-order derivatives in their equations of motion. A corollary of

the Chern-Gauss-Bonnet theorem is that, on a manifoldℳ of dimension 4, one has the

following identity

𝜒(ℳ) = 1
8𝜋2

∫
ℳ
d4𝑥

√
−𝑔 𝒢 ,

[126] where 𝜒(ℳ) is the topological invariant known as the Euler-Poincaré characteristic

ofℳ and the GB term (in 4 dimensions)

𝒢 ≡ 𝑅2 − 4𝑅𝜇𝜈𝑅𝜇𝜈 + 𝑅𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌𝜎 . (5.2)

There is an obvious appeal in considering somehow combining the Euler-Poincaré char-

acteristic with the gravitational action. However, in 4 dimensions the GB term is a total

derivative, so that by Stokes’ theorem its integralmay be rewritten as a surface term, then

(formanifolds without boundary) its contribution to the action identically vanishes. The

manifolds are indeed usually considered to be without boundary or are otherwise sup-

plemented with a counter term to cancel any boundary terms that are introduced (for

example, the Gibbons-Hawking-York term is added to the action for deriving GR from a

manifold with boundary [127]), since variation of the action with respect to the metric

induces boundary terms that are not well-defined and would cause the stationary action

principle to break down [127]. Therefore, the GB gravities are considered higher dimen-

sional theories only, since only there does the addition of the GB term to the action result

in some change to the equations of motion.
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In order to acquire extra dynamics beyond GR in the 4-dimensional case, one can

couple the GB term to a new scalar field 𝜗EdGB(𝑥) (called the dilaton). The resulting

theory is called Einstein-dilaton Gauss-Bonnett (EdGB) gravity, and its action is written

[128]

𝒮EdGB = ∫
ℳ
d4𝑥

√
−𝑔

(
𝜅̄𝑅 + 𝛼EdGB𝜗EdGB𝒢 − 1

2
(∇𝜗EdGB)2

)
, (5.3)

where 𝛼EdGB is a coupling constant andwhere it is implied that this applies to the vacuum

region only, such that ℒ𝑚 = 0. To keep things slightly tidier, the constant factor of 𝑅 in

the action is often written in the literature as 𝜅̄ ≡ 1

2𝜅
= (16𝜋)−1, where the 𝜅 here is the

dimensionless Einstein constant.

5.2 Dynamical Chern-Simons

The so-called Chern-Simons theories are powerful 3-dimensional topological quantum

gauge theories that have found applications inmany areas of physics. They allowdifficult

problems of quantum theories to be expressed as purely topological questions that can

be explicitly answered [129]. In parallel, it is known that (2+1)-dimensional gravity is

always locally flat and has no propagating degrees of freedom (or GWs) i.e., the curvature

is constant [130]. It is therefore a topological theory and indeed it has a Chern-Simons

formulation, at least perturbatively (Witten remarked that there may be technical rea-

sons for the duality to fail in the non-perturbative setting [131]). Nevertheless, the idea

of being able to formulate gravity as a topological theory is still very enticing, since plac-

ing questions of geometry on an equal topological footing to those of quantum theories

may allow a formulation of quantum gravity, and has thus led to significant efforts to

formulate a working example.

The Chern-Simons theories are defined via the stationary action principle, where the

action is the integral of the Chern-Simons 3-form. One of the earliest attempts to define a

theory with local gravitational degrees of freedom as, or in regard to, a topological theory

is the 3-dimensional Chern-Simons gravity theory [132]. This is technically misnamed

however, since it is amodification of the Einstein-Hilbert action in 3-dimensions by addi-

tion of the Chern-Simons 3-form, and not the pure topological Chern-Simons theory. Its

extension to 4 dimensions was presented around 20 years later in 2003 [133]. Although

these modified GR theories are not strictly Chern-Simons, they turn out to have surpris-
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ing features that derive from and connect various physical theories (see [134]) which

motivate their continued study.

To make these theories dynamical Chern-Simons (dCS), the coupling constant for

the so-called Pontryagin term, ⋆𝑅𝑅, that is added to the Einstein-Hilbert action for the

4-dimensional theory [134] is promoted to a scalar field 𝛼dCS → 𝛼dCS𝜗dCS(𝑥), where

⋆𝑅𝑅 ≡ 𝑅𝜇𝜈𝜌𝜎 ⋆𝑅𝜇𝜈𝜌𝜎 ,

and where ⋆𝑅𝜇𝜈𝜌𝜎 = 1

2
𝜖𝜇𝜈𝛼𝛽𝑅 𝜌𝜎

𝛼𝛽 is the dual of the Riemann tensor and 𝜖𝜇𝜈𝛼𝛽 is the

(totally-antisymmetric) Levi-Civita symbol. The 4-dimensional dCS gravity action then

reads [128]

𝒮dCS = ∫
ℳ
d4𝑥

√
−𝑔

(
𝜅̄𝑅 + 1

4
𝛼dCS𝜗dCS ⋆𝑅𝑅 −

1

2
(∇𝜗dCS)2

)
. (5.4)

5.3 Small deviations From GR

In this section we briefly introduce the formalism for deriving solutions of the equations

of motion for the modified gravity theories assuming small deviations from GR. We pro-

vide a summary of the main results required to define modifications to GWs that arise

from non-vanishing couplings of the relevant scalar field to gravity, defined in equations

(5.3) and (5.4). The full details of the derivations are lengthy and can be found in Refs.

[135, 136] and references therein. The modified GWs themselves shall be discussed in

the following section.

One can compare the actions in equations (5.3) and (5.4) to the most general (effec-

tive) quadratic gravity action given in Equation (1) of [136]

𝒮(ef f ) ≡ ∫
ℳ
d4𝑥

√
−𝑔

(
𝜅̄𝑅 + 𝛼1𝑓1(𝜗)𝑅2 + 𝛼2𝑓2(𝜗)𝑅𝜇𝜈𝑅𝜇𝜈 + 𝛼3𝑓3(𝜗)𝑅𝜇𝜈𝛿𝜎𝑅𝜇𝜈𝛿𝜎

+ 𝛼4𝑓4(𝜗)𝑅𝜇𝜈𝛿𝜎 ⋆𝑅𝜇𝜈𝛿𝜎 −
𝜐
2

[
(∇𝜗)2 + 2𝑉(𝜗)

]
+ ℒ𝑚

)
, (5.5)

to see that the EdGB action, from equations (5.2) and (5.3), is given by setting

𝛼1𝑓1 = − 1

4
𝛼2𝑓2 = 𝛼3𝑓3 = 𝛼EdGB𝜗EdGB ,

𝛼4𝑓4 = 0 ,
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and comparing to equation (5.4), the dCS action is given by setting

𝛼1𝑓1 = 𝛼2𝑓2 = 𝛼3𝑓3 = 0 ,

𝛼4𝑓4 =
1

4
𝛼dCS𝜗dCS ,

where for both theories, 𝜐 = 1 and 𝑉 = 0.

Then it is shown in [136] that the metric deformation one acquires is actually pro-

portional to 𝜉𝑖 ≡ 𝛼2𝑖 ∕𝜅̄, rather than the 𝛼𝑖 one might initially have surmised by observing

the definition of the actions, since it is this quantity which scales the solutions. On di-

mensional grounds, since a perturbation parameter should be dimensionless, the proper

dimensionless perturbation parametermust be appropriately rescaled, which is achieved

using the mass of the system (the only available scale) so as to be finally defined by [136]

𝜁𝑖 ≡ 𝜉𝑖∕𝑚4 = 𝛼2𝑖 ∕(𝜅̄𝑚
4) = 16𝜋𝛼2𝑖 ∕𝑚

4 , (5.6)

where𝑚 is the total mass of the system.

The quadratic gravity metrics can be written as a decomposition into a background

metric that satisfies theEFEs, plus a perturbation due to the contribution from the quadratic

gravity terms. The metric is written as an expansion [135] in powers of the perturbation

parameter, 𝜁, though it should be emphasized that the parameter itself is not necessarily

required to be small; since each 𝜁𝑛 multiplies a power of the metric perturbation (ℎ𝜇𝜈)𝑛

in the equations of motion, higher orders in 𝜁 can be ignored when one assumes the

relevant scalar field is weakly coupled to gravity and higher order metric perturbations

are negligible. The parameter then also acts as a book-keeping parameter since it keeps

track of the order of the metric perturbation. For this reason, the small coupling approx-

imation can be obtained by demanding that 𝜁 < 1 [128].

5.4 Schematic frequency domain waveform

As in [128], we can write the GW signal in the frequency domain as

ℎ̃(𝑓) = 𝐴(𝑓) exp (𝑖𝜙(𝑓)) , (5.7)

where the modified phase 𝜙 can be written as

𝜙(𝑓) = 𝜙GR(𝑓) + 𝛽𝑢𝑏 , (5.8)
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where 𝜙GR is the GR phase, and the second term contains contributions from the effects

of modified gravity theories, where 𝑢 ≡ (𝜋ℳ𝑓)1∕3. Here, 𝛽 is the amplitude coefficient,

a function of the component masses and spins [128]. The exponent 𝑏 is related to the PN

order 𝑝PN by 𝑝PN = (𝑏 + 5)∕2 [110], and for the different modified gravity theories, takes

the values

𝑏dCS = −1 , and 𝑏EdGB = −7 . (5.9)

The leading order dCS term comes in at 2PN and the leading order EdGB term comes in

at−1PN. The amplitude coefficients for the two theories, 𝛽dCS and 𝛽EdGB, can be found in

[128] and are reproduced here to see the dependence of the modified gravity parameters

on the masses and spins. We have

𝛽dCS =
𝜁dCS

𝜂14∕5𝑚2
[ 15075114688 (𝑚

2
2𝜒

2
1 −

350
201𝑚1𝑚2𝜒1𝜒2 +𝑚2

1𝜒
2
2)

− 5
8192(𝑚1𝑠dCS2 −𝑚2𝑠dCS1 )2] , (5.10)

and

𝛽EdGB = − 5
7168

𝜁EdGB
𝜂18∕5

(𝑚2
1𝑠
EdGB
2 −𝑚2

2𝑠
EdGB
1 )2

𝑚4 , (5.11)

where𝑚 = 𝑚1+𝑚2 is the total mass and the dimensionless spin parameters are given by

𝜒𝑖 =
𝑆𝑖 ⋅ 𝐿̂
𝑚2

𝑖

. (5.12)

Here, the 𝑆𝑖 is the (dimensionless) spin angular momentum vector of the 𝑖th black-hole

and 𝐿̂ is the orbital angular momentum of the binary. We also have the charges 𝑠dCS,EdGB𝑖

of the respective scalar fields [137] sourced by the 𝑖th black-hole, which are given by

𝑠dCS𝑖 =
2 + 2𝜒4

𝑖 − 2𝜍𝑖 − 𝜒2
𝑖 (3 − 2𝜍𝑖)

2𝜒3
𝑖

, (5.13)

and

𝑠EdGB𝑖 =
2𝜍𝑖(1 − 𝜍𝑖)

𝜒2
𝑖

, (5.14)

where 𝜍𝑖 =
√
1 − 𝜒2

𝑖 . In our analysis, these parameters are somewhat simplified by our

decision to study a model with a single spin component, i.e. setting 𝜒1 = 𝜒2, fromwhich

we can see that 𝜍1 = 𝜍2 and 𝑠dCS,EdGB1 = 𝑠dCS,EdGB2 . From equations (5.10) and (5.13), one

finds that there is no extra dCS modification to the GR waveform when BHs have zero

spin. For EdGB gravity, one can see from equations (5.11) and (5.14) that there is no
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Figure 5.1: The modified gravity 𝛽-parameter phase diagram for EdGB and dCS gravity. These plots are

derived from equations (5.10) and (5.11) given 𝜁EdGB,dCS = 1. Note that the modified gravity parameters

are independent of mass scaling. The EdGB parameter is largely independent of effective (aligned) spin,

whereas the dCS gravity dependence on effective (aligned) spin strongly depends on themass ratio. If data

contains a GR signal (i.e., with 𝜁 = 0), then 𝛽 = 0. But 𝛽 = 0 can also be achieved in EdGB gravity if 𝑞 = 1,

and in dCS gravity if 𝜒1 = 𝜒2 = 0. In Chapter 7, we will see that this can be a significant source of bias in

parameter estimation for EdGB gravity.

EdGB modification to the GR waveform when the spins and masses are precisely equal.

Ideal sources of GWs for tests of these modified gravity theories are therefore generally

black-holes with large spins forming binaries with highly asymmetricmasses (see Figure

5.1). Due to how the amplitude of the modification scales with the mass as in equation

(5.6), it is also more beneficial for constraining these gravity theories (at a given SNR) to

observe GWs emitted from low-mass binaries.

5.5 Phase shifted Fourier waveforms in time domain

Wenowhave themodified gravitywaveforms in the frequency domain, butwewould like

to include these modifications in the time domain model to be able to include the effects

in a complete time-evolving model, exhibiting both acceleration and modified gravity

effects simultaneously. In this section we will use geometric units where 𝐺 = 𝑐 = 1.

Start by writing the frequency-domain waveform model as

ℎ̃(𝑓) = ℎ̃GR(𝑓) ⋅ 𝑒𝑖𝛽𝑢
𝑏 . (5.15)

144



5. QUADRATIC GRAVITY THEORIES

Then the time-domain model is given by the inverse Fourier-Transform:

ℎ(𝑡) = ℱ−1
{
ℎ̃
}
(𝑡)

= ℱ−1
{
ℎ̃GR ⋅ 𝑒𝑖𝛽𝑢

𝑏
}
(𝑡)

=
⟨
ℱ−1

{
ℎ̃GR

}
∗ ℱ−1

{
𝑒𝑖𝛽𝑢𝑏

} ⟩
(𝑡)

=
⟨
ℎGR(𝑡) ∗ ∫

∞

−∞
d𝑓 𝑒𝑖𝛽𝑢𝑏𝑒2𝜋𝑖𝑓𝑡

⟩
(𝑡) ,

where ∗ is the convolution operator and we use the notation ⟨⋅ ∗ ⋅⟩(𝑡), to emphasize the

dependencies of the convolved functions and the resultant function, and the third line

follows from the convolution theorem. By the definition of convolution

ℎ(𝑡) = ∫
∞

−∞
d𝜏 ℎGR(𝑡 − 𝜏) ∫

∞

−∞
d𝑓 𝑒𝑖𝛽𝑢𝑏+2𝜋𝑖𝑓𝜏 . (5.16)

It will be convenient to introduce a constant 𝑘, which may take on an arbitrary value,

and with which we make the following definitions:

𝐵 ≡ 𝑏∕3 , 𝑓 ≡ (
𝛽
𝑘
)

1
𝐵

𝜋ℳc𝑓 , 𝜏̂ ≡ 2
ℳc

(𝑘
𝛽
)

1
𝐵 𝜏
𝑘
. (5.17)

Then we can make the relevant substitutions to partially rewrite the integrals

ℎ(𝑡) = 𝑘
2𝜋 ∫

∞

−∞
d𝜏̂ ℎGR(𝑡 − 𝜏) ∫

∞

−∞
d𝑓 𝑒𝑖𝑘(𝑓𝐵+𝜏̂𝑓) . (5.18)

The choice of constant 𝑘 of course does not alter ℎ(𝑡), however, if 𝑘 ≫ 1, then we can

use the stationary phase approximation (SPA) to evaluate the 𝑓 integral. In order to be

able to apply the SPA, there must be an extremum of the phase function, which we write

here as

𝐺(𝑓) ≡ 𝑓𝐵 + 𝜏̂𝑓 , (5.19)

with respect to 𝑓, i.e., its derivative must vanish somewhere. We therefore demand that

𝐵 ≠ 0, 𝐵 ≠ 1. Note also that 𝑓𝐵 can takemultiple values, depending on the value of 𝑓 and

𝐵: theremay exist non-zero imaginary components of 𝑓𝐵, so it should be understood that

we require the purely real solution be used if it exists (otherwise, the phase modification

factor 𝑒𝑖𝛽𝑢𝑏 also modifies the amplitude).

The points of stationary phase, which we denote 𝑓0 = 𝑓0(𝜏̂), occur where

0 = 𝐺′(𝑓) = 𝐵𝑓𝐵−10 + 𝜏̂

⇒ 𝑓0 = (−𝜏̂𝐵 )
1

𝐵−1
, (5.20)
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and thus if there is no (real) solution for a given 𝐵 and 𝜏̂, then the phase has no stationary

point and the 𝑓 integral evaluates to zero. We must also ensure that validity of SPA

continues for 𝐵 < 1 as 𝜏̂ → 0; in this case too, there is no stationary point of the phase

and the integral evaluates to zero.

Now for some 𝐵 and 𝜏̂, Taylor expanding the phase function around a (stationary)

point 𝑓0 = 𝑓0(𝜏̂) gives:

𝐺(𝑓) = 𝐺(𝑓0) + 𝐺′(𝑓0)(𝑓 − 𝑓0) +
1

2
𝐺′′(𝑓0)(𝑓 − 𝑓0)2 + ... . (5.21)

Recall, however, that the first derivative vanishes there, so we write the integral as

ℎ(𝑡) = 𝑘
2𝜋 ∫

∞

−∞
d𝜏̂ ℎGR(𝑡 − 𝜏) ∫

∞

−∞
d𝑓 𝑒𝑖𝑘(𝐺(𝑓0)+

1
2
𝐺′′(𝑓0)(𝑓−𝑓0)2+...) . (5.22)

It is emphasized again that 𝑓0 = 𝑓0(𝜏̂), so that as one sweeps through the 𝜏̂ integral,

the stationary point of the phase (if one exists) is ‘picked out’ of the real line in each 𝑓

integral. Now as 𝑘 → ∞, we can drop higher order terms in the phase and write this as

ℎ(𝑡) = 𝑘
2𝜋 ∫

∞

−∞
d𝜏̂ ℎGR(𝑡 − 𝜏) 𝑒𝑖𝑘𝐺(𝑓0) ∫

∞

−∞
d𝑓 𝑒𝑖

𝑘
2
𝐺′′(𝑓0)(𝑓−𝑓0)2 . (5.23)

If we define 𝑠 ≡
√

𝑘

2
𝐺′′(𝑓0(𝜏̂))(𝑓 − 𝑓0), we can see that this integral is a well-known

standard result, ∫ ∞
−∞ d𝑠 𝑒

𝑖𝑠2 =
√
𝜋𝑒𝑖𝜋∕4, so that we have

∫
∞

−∞
d𝑓 𝑒𝑖

𝑘
2
𝐺′′(𝑓0)(𝑓−𝑓0)2 =

(𝑘
2
𝐺′′(𝑓0)

)−1∕2
∫

∞

−∞
d𝑠 𝑒𝑖𝑠2

=
(𝑘
2
𝐵(𝐵 − 1)𝑓𝐵−20

)−1∕2√
𝜋𝑒𝑖𝜋∕4 ,

since 𝐺′′(𝑓) = 𝐵(𝐵 − 1)𝑓𝐵−2. Thus we now have that

ℎ(𝑡) =
√

𝑘
2𝜋𝑒

𝑖𝜋∕4 ∫
∞

−∞
d𝜏̂ ℎGR(𝑡 − 𝜏) 𝑒𝑖𝑘𝐺(𝑓0)

(
𝐵(𝐵 − 1)𝑓𝐵−20

)−1∕2

= (𝐵(𝐵 − 1))−1∕2
√

𝑘
2𝜋𝑒

𝑖𝜋∕4 ∫
∞

−∞
d𝜏̂ 𝐴GR(𝑡 − 𝜏)𝑓1−𝐵∕20 𝑒𝑖𝜙GR(𝑡−𝜏)+𝑖𝑘𝐺(𝑓0) ,

since the time-domain waveform can be written in the form

ℎGR(𝑡) = 𝐴GR(𝑡) 𝑒𝑖𝜙GR(𝑡) . (5.24)

At this point let us revert back to the original variables with equations (5.17) for better

readability. Note that we still write the stationary points with the zero subscript 0, i.e.,

𝑓0 → 𝑓0. Then equation (5.20) becomes

𝑓0 = (𝜋ℳc)−1 (
−2𝜏
𝐵𝛽ℳc

)
1

𝐵−1
. (5.25)
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We also have that

𝑓1−𝐵∕2 d𝜏̂ = 2
ℳc

(𝛽𝑘)−1∕2(𝜋ℳc𝑓)1−𝐵∕2 d𝜏 ,

so that

ℎ(𝑡) = (2𝜋𝛽𝐵(𝐵 − 1))−1∕2
2𝑒𝑖𝜋∕4

ℳc
∫

∞

−∞
d𝜏 𝐴GR(𝑡 − 𝜏)(𝜋ℳc𝑓0)1−𝐵∕2 𝑒𝑖𝜙GR(𝑡−𝜏)+𝑖𝛽(𝜋ℳc𝑓0)𝐵+2𝜋𝑖𝑓0𝜏

= 𝐶 ∫
∞

−∞
d𝜏

𝐴GR(𝑡 − 𝜏)

𝑓𝐵∕2−10

exp
{
𝑖
(
𝜙GR(𝑡 − 𝜏) + 𝛽(𝜋ℳc𝑓0)𝐵 + 2𝜋𝑓0𝜏

)}
, (5.26)

where we defined 𝐶 ≡ 𝑒𝑖𝜋∕4
√

2𝜋

𝛽𝐵(𝐵−1)(𝜋ℳc)𝐵
. Substituting for 𝑓0 from equation (5.25)

yields

ℎ(𝑡) = 𝐶 ∫
∞

−∞
d𝜏

𝐴GR(𝑡 − 𝜏)

𝑓𝐵∕2−10 (𝜏)
exp {𝑖𝐹(𝑡 − 𝜏, 𝜏)} , (5.27)

where

𝐹(𝑡 − 𝜏, 𝜏) ≡ 𝜙GR(𝑡 − 𝜏) + 𝛽 ( −2𝜏
𝐵𝛽ℳc

)
𝐵
𝐵−1

+ 2𝜏
ℳc

( −2𝜏
𝐵𝛽ℳc

)
1

𝐵−1

= 𝜙GR(𝑡 − 𝜏) + 𝐷𝜏
𝐵
𝐵−1 ,

and where 𝐷 ≡ 2
(𝐵−1

𝐵

)
( −2

𝛽𝐵ℳ𝐵
c
)

1
𝐵−1
.

The integral in equation (5.27) is still a convolution, which, being symmetric in its

arguments, allows one to exchange 𝑡 − 𝜏 ←→ 𝜏. Doing so above, the waveform becomes

ℎ(𝑡) = 𝐶 ∫
∞

−∞
d𝜏

𝐴GR(𝜏)

𝑓𝐵∕2−10 (𝑡 − 𝜏)
exp {𝑖𝐹(𝜏, 𝑡 − 𝜏)} . (5.28)

To compute this integral, we can perform a second application of the SPA. We are not

afforded the same level of rigour as we had for the first integral, where we introduced

the constant 𝑘, which could take the phase to arbitrarily high rates of oscillation; if we

do this sort of change of variables here with 𝜏, then the amplitude part of the integrand is

also able to vary at these arbitrarily high rates, where the SPA could break down. How-

ever, the SPA is known to be remarkably accurate in many such situations (despite the

SPA having been developed for application in asymptotic limits [138]) including in our

particular case of gravitational waveforms from compact binaries (see, e.g., [139]) since it

is known that the amplitude is very slowly evolving in comparison to the cycle duration.

The stationary point of this phase for a given 𝑡 occurs at the 𝜏0 such that 𝐹̇(𝜏, 𝑡−𝜏)|𝜏0 =

0, where the dot denotes differentiation with respect to 𝜏. We have

𝐹̇(𝜏, 𝑡 − 𝜏) = 2𝜋𝑓GR(𝜏) −
𝐵𝐷
𝐵 − 1(𝑡 − 𝜏)

1
𝐵−1 . (5.29)
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Thus the stationary point is the 𝜏0 = 𝜏0(𝑡) satisfying

𝑡 = 𝜏0 + (2𝜋𝑓GR(𝜏0)
𝐵 − 1
𝐵𝐷 )

𝐵−1

, (5.30)

or on substituting for 𝐷:

𝑡 = 𝜏0 −
𝐵𝛽[𝜋ℳc𝑓GR(𝜏0)]𝐵

2𝜋𝑓GR(𝜏0)

= 𝜏0 −
1

2
𝐵𝛽ℳc[𝜋ℳc𝑓GR(𝜏0)]𝐵−1 . (5.31)

Now to apply the SPA to equation (5.28), we Taylor expand the phase function around

that stationary point, which then reads

𝐹(𝜏, 𝑡 − 𝜏) = 𝐹(𝜏0, 𝑡 − 𝜏0) + 𝐹̇(𝜏0, 𝑡 − 𝜏0)(𝜏 − 𝜏0) +
1

2
𝐹̈(𝜏0, 𝑡 − 𝜏0)(𝜏 − 𝜏0)2 + ... , (5.32)

where 𝐹̇ = 0 and

𝐹̈(𝜏, 𝑡 − 𝜏) = 2𝜋𝑓̇GR(𝜏) +
2

𝐵 − 1 (
−2

𝛽𝐵ℳ𝐵
c
)

1
𝐵−1

(𝑡 − 𝜏)
1

𝐵−1
−1 . (5.33)

Then we can write

ℎ(𝑡) = 𝐶 ∫
∞

−∞
d𝜏

𝐴GR(𝜏0)

𝑓𝐵∕2−10 (𝑡 − 𝜏0)
exp

{
𝑖
(
𝐹(𝜏0, 𝑡 − 𝜏0) +

1

2
𝐹̈(𝜏0, 𝑡 − 𝜏0)(𝜏 − 𝜏0)2

)}

= 𝐶
𝐴GR(𝜏0)

𝑓𝐵∕2−10 (𝑡 − 𝜏0)
𝑒𝑖𝐹(𝜏0,𝑡−𝜏0) ∫

∞

−∞
d𝜏 𝑒

𝑖
2
𝐹̈(𝜏0,𝑡−𝜏0)(𝜏−𝜏0)2 ,

where we have assumed the amplitude over the small region around the point of sta-

tionary phase can be approximated as a constant, and hence can be taken outside the

integral.

In the same fashion as the evaluation of the 𝑓 integral, to evaluate the 𝜏 integral,

define 𝑟 ≡
√

1

2
𝐹̈(𝜏0, 𝑡 − 𝜏0)(𝜏 − 𝜏0), and use the well-known standard result ∫

∞
−∞ d𝑟 𝑒

𝑖𝑟2 =
√
𝜋𝑒𝑖𝜋∕4 for

∫
∞

−∞
d𝜏 𝑒𝑖

1
2
𝐹̈(𝜏0,𝑡−𝜏0)(𝜏−𝜏0)2 =

( 1
2
𝐹̈(𝜏0, 𝑡 − 𝜏0)

)−1∕2√
𝜋𝑒𝑖𝜋∕4 .

Then

ℎ(𝑡) = 𝐶
𝐴GR(𝜏0)

𝑓𝐵∕2−10 (𝑡 − 𝜏0)

( 1
2
𝐹̈(𝜏0, 𝑡 − 𝜏0)

)−1∕2√
𝜋𝑒𝑖𝜋∕4 𝑒𝑖𝜙GR(𝜏0)+𝑖𝐷(𝑡−𝜏0)

𝐵
𝐵−1 ,
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where recall 𝐷 ≡ 2
(𝐵−1

𝐵

)
( −2

𝛽𝐵ℳ𝐵
c
)

1
𝐵−1

and of course 𝜏0 = 𝜏0(𝑡) defined in equation (5.31).

Working back through all substitutions

ℎ(𝑡) = 𝑒𝑖𝜋∕4
√

2𝜋
𝛽𝐵(𝐵 − 1)(𝜋ℳc)𝐵

𝐴GR(𝜏0)
⎛
⎜
⎝
(𝜋ℳc)−1 (

2(𝜏0 − 𝑡)
𝐵𝛽ℳc

)

1
𝐵−1⎞
⎟
⎠

1−𝐵∕2

×
( 1
2
𝐹̈(𝜏0, 𝑡 − 𝜏0)

)−1∕2√
𝜋𝑒𝑖𝜋∕4 𝑒𝑖𝜙GR(𝜏0)+𝑖𝐷(𝑡−𝜏0)

𝐵
𝐵−1

= 2𝜋𝑒𝑖𝜋∕2𝐴GR(𝜏0)𝑓GR(𝜏0)1−𝐵∕2 𝑒𝑖𝜙GR(𝜏0)+𝑖𝐷(𝑡−𝜏0)
𝐵
𝐵−1

[
𝛽𝐵(𝐵 − 1)(𝜋ℳc)𝐵𝐹̈(𝜏0, 𝑡 − 𝜏0)

]−1∕2

= 2𝜋𝑖𝐴GR(𝜏0)𝑓GR(𝜏0) 𝑒𝑖𝜙GR(𝜏0)+𝑖𝐷(𝑡−𝜏0)
𝐵
𝐵−1

[
𝛽𝐵(𝐵 − 1)(𝜋ℳc𝑓GR(𝜏0))𝐵

]−1∕2

×
⎛
⎜
⎜
⎝

2𝜋𝑓̇GR(𝜏0) +
2

𝐵 − 1 (
−2

𝛽𝐵ℳ𝐵
c
)

1
𝐵−1

[− 1

2
𝐵𝛽ℳc(𝜋ℳc𝑓GR(𝜏0))𝐵−1]

1
𝐵−1

−1
⎞
⎟
⎟
⎠

−1∕2

= 2𝜋𝑖𝐴GR(𝜏0)𝑓GR(𝜏0) 𝑒𝑖𝜙GR(𝜏0)+𝑖𝐷(𝑡−𝜏0)
𝐵
𝐵−1

[
𝛽𝐵(𝐵 − 1)(𝜋ℳc𝑓GR(𝜏0))𝐵

]−1∕2

× [2𝜋𝑓̇GR(𝜏0) +
2

𝐵 − 1 (
−2
𝛽𝐵

) (𝜋ℳc𝑓GR(𝜏0))−𝐵(𝜋𝑓GR(𝜏0))2]
−1∕2

= 2𝜋𝑖𝐴GR(𝜏0)𝑓GR(𝜏0) 𝑒𝑖𝜙GR(𝜏0)+𝑖𝐷(𝑡−𝜏0)
𝐵
𝐵−1

×
[
2𝜋𝛽𝐵(𝐵 − 1)(𝜋ℳc𝑓GR(𝜏0))𝐵𝑓̇GR(𝜏0) − 4(𝜋𝑓GR(𝜏0))2

]−1∕2

= 2𝜋𝐴GR(𝜏0)𝑓GR(𝜏0) 𝑒𝑖𝜙GR(𝜏0)+𝑖𝐷(𝑡−𝜏0)
𝐵
𝐵−1

×
[
4(𝜋𝑓GR(𝜏0))2 − 2𝜋𝛽𝐵(𝐵 − 1)(𝜋ℳc𝑓GR(𝜏0))𝐵𝑓̇GR(𝜏0)

]−1∕2
,

wherewe substituted for𝐶 and 𝑓0 in the first line, used equation (5.31) to substitute 𝑡−𝜏0
and repositioned terms in the second line, substituted for 𝐹̈ in the third line, rearranged

in the fourth and fifth lines, and took aminus sign outside the square root in the last line

giving us another imaginary unit. Thus finally we have that:

ℎ(𝑡) = ±𝐴GR(𝜏0) [1 −
𝛽
2𝜋𝐵(𝐵 − 1)(𝜋ℳc)𝐵𝑓𝐵−2GR (𝜏0)𝑓̇GR(𝜏0)]

−1∕2

× 𝑒𝑖𝜙GR(𝜏0)−𝑖𝛽(𝐵−1)[𝜋ℳc𝑓GR(𝜏0)]𝐵 , (5.34)

where we explicitly write the positive/negative options from the square root, and where

𝜏0(𝑡) is defined in equation (5.31). This solution appears to be reasonable since if one
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takes 𝛽 → 0, then we can see from equation (5.31) that 𝜏0 → 𝑡 so that

ℎ(𝑡)𝛽→0 → ±𝐴GR(𝑡) 𝑒𝑖𝜙GR(𝑡) = ±ℎGR(𝑡) ,

and the GR waveform is recovered (taking the positive solution). Equation (5.34) is the

general solution of the phase and amplitudemodifications of a time-domain signal of the

form 𝐴td𝑒𝑖𝜓td that arise from the transform of a phase modified Fourier domain signal of

the form 𝐴fd𝑒𝑖𝜓fd .

Recall we discussed that the amplitude modifications are often ignored, and that we

shall do so here in ourmodel too, since phase is by far the dominantmeasurable property

of the waveform. We will therefore write our approximate model as

ℎ(𝑡) = 𝐴GR(𝜏0)𝑒𝑖𝜙GR(𝜏0)−𝑖𝛽(𝐵−1)[𝜋ℳc𝑓GR(𝜏0)]𝐵 . (5.35)

Now we must find 𝜏0 = 𝜏0(𝑡) for when 𝛽 ≠ 0. The solution of equation (5.31) (and

indeed whether an exact one can be found) depends on the precise form of 𝑓GR . Equa-

tion (5.31) could well be transcendental, for example, since we have not yet defined 𝑓GR,

though the case for GWwaveforms is generally that the frequency function is written as

a PN-expansion, which is a truncated power series (i.e., a polynomial) in powers of 𝜏−1∕8c ,

where 𝜏c is the time to coalescence. For example, the waveformmodel we employ (from

[27]) gives the GR frequency (eqn. 6b of [27]) as

2𝜋𝑓GR = 𝜔GR(𝑡) =
1
8

𝑁∑

𝑘=0

𝜔̂𝑘𝜃𝑘+3 , (5.36)

where 𝜃(𝑡) = [𝜂𝜏c∕(5𝑀)]−1∕8, 𝜂 = 𝑚1𝑚2∕𝑀2 is the symmetric mass ratio,𝑀 = 𝑚1 + 𝑚2

is the total mass, 𝑁∕2 is the ‘PN-order’, 𝜏c = 𝑡c − 𝑡 is the time to coalescence, 𝑡c is the

coalescence time and the 𝜔̂𝑘 are PN term coefficients. Even so, it is still perhaps more

efficient to numerically approximate the solution by iterationmethods rather than trying

to find zeros of the polynomial. Rearranging equation (5.31) as

𝜏0 = 𝑡 + 1

2
𝐵𝛽ℳc[𝜋ℳc𝑓GR(𝜏0)]𝐵−1 , (5.37)

then defining an iterative approximation of 𝜏0 as 𝜏†𝑛, one has

𝜏†𝑛+1 ≡ 𝑡 + 1

2
𝐵𝛽ℳc[𝜋ℳc𝑓GR(𝜏

†
𝑛)]𝐵−1 , (5.38)

so that one approaches equation (5.37) in the limit of large 𝑛, that is, 𝜏†𝑛 → 𝜏0 as 𝑛 → ∞.

The iteration procedure of course induces a computational cost. In practice it is often
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observed that these sorts of sequences converge quickly, however this must be solved for

each value of 𝑡 present in the signal, and recall that signals in LISA can consist of up to

a billion samples.

One alternative approach is to suppose that the GR relation for CBCs [140]

𝑓̇GR ≈
96
5 𝜋

8∕3 (
𝐺ℳc

𝑐3
)
5∕3

𝑓11∕3GR , (5.39)

approximately holds and is accurate far frommerger. We can integrate this to find 𝑓GR =

𝑓GR(𝑇), where we use the stand-in variable 𝑇 for the argument to avoid confusion with

𝑡 in (5.31) which should be treated as a constant there. Then continuing with the use of

geometric units, 𝐺 = 𝑐 = 1, for compatibility with the previous section, we obtain

𝑓GR(𝑇) =
1
𝜋 ( 5

256
1

𝑡c − 𝑇)
3∕8

ℳ−5∕8
c . (5.40)

Substituting into (5.31), we have that

𝜏0 = 𝑡 + 1

2
𝐵𝛽ℳc (

5ℳc

256
1

𝑡c − 𝜏0
)
3(𝐵−1)∕8

⇒ (𝜏0 − 𝑡)3(1−𝐵)∕8 (𝜏0 − 𝑡c) = − 1

2
𝐵𝛽ℳc (

5ℳc

256 ) . (5.41)

This can then be solved exactly for 𝑏dCS = −1, with solution

𝜏0 =
1

2
(±𝑝

√
4(𝑡c − 𝑡) + 𝑝2 + 2𝑡 − 𝑝2) , (5.42)

where 𝑝 ≡ 1

2
𝐵𝛽ℳc

( 5ℳc

256

)
. However, there is still no formulaic solution for 𝑏EdGB = −7.

Finally, we will pursue the small parameter approximation, taking 𝛽 to be a small

parameter and Taylor expanding in 𝛽. In one sense, equations like (5.37) can be viewed

as being circularly defined, or as an infinite recurrence relation. The iteration procedure

outlined above is essentially a truncation of this recurrence relation, nesting the equation

inside itself a finite number of times with some initial guess. In the small 𝛽 limit, we are

essentially taking the first step of the sequence (𝜏0 ≈ 𝜏†0) by writing

𝜏0 = 𝑡 + 1

2𝜋
𝐵𝛽(𝜋ℳc)𝐵

{
𝑓GR

(
𝑡 + 1

2𝜋
𝐵𝛽(𝜋ℳc)𝐵[𝑓GR(𝜏0)]𝐵−1

)}𝐵−1

= 𝑡 + 1

2𝜋
𝐵𝛽(𝜋ℳc)𝐵

{
𝑓GR(𝑡) +

1

2𝜋
𝐵𝛽(𝜋ℳc)𝐵[𝑓GR(𝜏0)]𝐵−1𝑓̇GR(𝑡) + 𝒪(𝛽2)

}𝐵−1

= 𝑡 + 1

2
𝐵𝛽ℳc(𝜋ℳc𝑓GR(𝑡))𝐵−1

{
1 + 1

2𝜋
𝐵𝛽(𝜋ℳc)𝐵[𝑓GR(𝜏0)]𝐵−2𝑓̇GR(𝑡) + 𝒪(𝛽2)

}𝐵−1

≈ 𝑡 + 1

2
𝐵𝛽ℳc(𝜋ℳc𝑓GR(𝑡))𝐵−1

{
1 + 1

2𝜋
𝐵(𝐵 − 1)𝛽(𝜋ℳc)𝐵[𝑓GR(𝜏0)]𝐵−2𝑓̇GR(𝑡) + 𝒪(𝛽2)

}

≈ 𝑡 + 1

2
𝐵𝛽ℳc[𝜋ℳc𝑓GR(𝑡)]𝐵−1 + 𝒪(𝛽2) , (5.43)
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then dropping the 𝒪(𝛽) terms. Now, to 𝒪(𝛽) in the phase, we have that

𝜙GR(𝜏0) = 𝜙GR(𝑡 +
1

2
𝐵𝛽ℳc[𝜋ℳc𝑓GR(𝑡)]𝐵−1)

= 𝜙GR(𝑡) +
1

2
𝐵𝛽ℳc[𝜋ℳc𝑓GR(𝑡)]𝐵−1 × 2𝜋𝑓GR(𝑡)

= 𝜙GR(𝑡) + 𝐵𝛽[𝜋ℳc𝑓GR(𝑡)]𝐵 , (5.44)

in which case equation (5.35), to 𝒪(1) in the amplitude, becomes

ℎ(𝑡) = 𝐴GR(𝑡) ⋅ 𝑒𝑖𝜙GR(𝑡)+𝑖𝛽𝑢
𝑏
GR = ℎGR(𝑡) ⋅ 𝑒𝑖𝛽𝑢

𝑏
GR , (5.45)

where recall 𝑢𝑏GR = (𝜋ℳc𝑓GR)𝐵 and 𝐵 ≡ 𝑏∕3. We shall take equation (5.45) as our

modified gravity waveform and perform our analyses with this model.

5.5.1 Validity of time-domain approximants

InRef. [128], the upper bound on theEdGB coupling constantwas found by analysing six

GW events (chosen specifically for their capacity to constrain EdGB and dCS gravity) to

be approximately
√
𝛼EdGB ≲ 1.7 km (at 90% credibility). The dCS parameter could not be

constrained further than previously existing constraints, and remains at
√
𝛼dCS ≲ 8.5 km.

Consider, as examples, the 2 fiducial CBCs that we will later study in detail in Chapters 7

& 8; a ‘low-mass’ and a ‘high-mass’ system (see Table 7.1). For these systems, by equation

(5.6), the constraints translate to the dimensionless quadratic gravity parameters as

|𝜁low−massEdGB | ≲ 3.62 × 10−6

|𝜁high-massEdGB | ≲ 1.92 × 10−9

|𝜁low−massdCS | ≲ 2.27 × 10−3

|𝜁high-massdCS | ≲ 1.20 × 10−6 .

Given the mass and spin parameters of the fiducial systems, from equations (5.10) and

(5.11) we find that

|𝛽low−massEdGB | ≲ 3.57 × 10−9

|𝛽high-massEdGB | ≲ 2.41 × 10−12

|𝛽low−massdCS | ≲ 1.12 × 10−4

|𝛽high-massdCS | ≲ 6.19 × 10−8 .

These 𝛽 values are indeed mostly small, and (perhaps with the exception of the low-

mass dCS value) could be said to satisfy the requirement that 𝛽 ≪ 1 that is necessary

to obtain the modified gravity waveform as in equation (5.45). It has been mentioned

a number of times already that the measurement is very sensitive to phase, so one can-

not be too careful when approximating the phase or its argument. This is most certainly
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true for real-world data analysis, and strongly desired in simulations if one wishes to

reproduce posteriors to high accuracy. For simulated settings, where the goal is, for ex-

ample, to acquire some general properties of the structure of the posterior, a modicum

of leniency is sometimes permissible (since the signal is generated by the model), how-

ever, it should be stressed that the posteriors we acquire can only be representative of

the modified gravity model provided by [128] if the majority of the probability for the

𝛽EdGB,dCS parameter is contained within a small 𝛽EdGB,dCS limit (centred at zero), translat-

ing directly to requiring that 𝜁EdGB,dCS ≪ 1. This can now be relatively strongly assured

in practice using these results from Ref. [128] as prior bounds on 𝜁EdGB,dCS for future

Bayesian PE.

We shall see the results in Chapters 7 & 8: our findings reflect those of [128], as we

show that the EdGB gravity parameter can be very accurately measured with some de-

tector combinations we consider, since the perturbative regime (small 𝛽 approximation)

is enough to strongly constrain it. On the other hand, the dCS gravity parameter is poorly

constrained: the posteriors “overflow” the small 𝛽 limit and more detailed understand-

ing and modelling of the waveform is required before any posteriors defined by the dCS

GW model can be trusted. For our particular model approximant, the results primarily

mean that our derivation via the small 𝛽dCS limit is not applicable in our PE context, since

we will find non-vanishing likelihood at relatively large 𝛽dCS values.

In the broader context, this also seeds concern that the currently known dCS wave-

formmay not be precise enough to be able constrain dCS gravity withGWmeasurements

even using DECIGO, which can yield SNRs in the tens of thousands. A better knowledge

of thewaveformwill increase our chances of constraining dCS gravity, since, as explained

in [128], higher-order PN terms can only decrease degeneracies between the dCS param-

eter and other parameters, and thus serve only to improve constraints of it; by omitting

the higher-order quadratic gravity terms, one acquires a lower bound in the parameter

constraints. It is presently unclear how well each of these extra terms will perform in

further constraining the dCS parameter as they are not yet known. If 𝛽dCS ≈ 0, the extra

terms may ultimately not be required when extremely sensitive future ground-based de-

tectors (as yet not conceptualised) observe ideal compact binaries, capturing the strong

gravity regimemergerwhere dCSmodifications are greatest. For the time-domainmodel

in particular, as a result of the very high SNRs one might achieve, these observations
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could constrain the dCS parameter to a high enough degree for the parameter estima-

tion results to constrain all the probability of 𝛽dCS within bounds of the small parameter

limit, where the 𝒪(𝛽2dCS) terms can be ignored.

5.6 Acceleration/modified gravity bias

It is understood that acceleration of a BHB and other environmental matter effects, such

as accretion, can be partially degenerate with modified gravity parameters [99]. We will

show here how this degeneracy arises, and provide some more useful general results for

later discussion.

Integrating equation (5.36) for the phase, we obtain

𝜙GR(𝑡) = 𝜙0 +
5𝑀
𝜂

⎛
⎜
⎜
⎝

𝜔̂5 ln(𝜏c) +
𝑁∕2∑

𝑘=0
𝑘≠5

𝜔̂𝑘
5 − 𝑘

𝜃𝑘−5
⎞
⎟
⎟
⎠

, (5.46)

where recall 𝜃(𝑡) = [𝜂𝜏c∕(5𝑀)]−1∕8, 𝜂 is the symmetric mass ratio, 𝑀 is the total mass,

𝑁∕2 is the PN-order, 𝜏c = 𝑡c − 𝑡 is the time to coalescence and the 𝜔̂𝑘 are PN term

coefficients (given in [27]). The above is the GR phase. The EdGB modification, for

example, comes in at PN-order−1; this would appear as a new term in the sum over 𝑘 at

𝑘 = −2. That is, we would have a new term in the phase proportional to 𝜃−7. To confirm

the frequency domain modification modifies the time-domain waveform appropriately

in PN terms, we can inspect the phase of ourwaveform approximation in equation (5.45):

𝜙(𝑡) = 𝜙GR(𝑡) + 𝛽𝑢𝑏GR , (5.47)

where 𝑢𝑏GR = (𝜋ℳc𝑓GR)𝑏∕3. Using (5.40), this becomes

𝜙(𝑡) = 𝜙GR(𝑡) + 𝛽 ( 5
256

ℳc

𝜏c
)
𝑏∕8

= 𝜙GR(𝑡) + 𝛽 (
ℳc

256
𝜂
𝑀)

𝑏∕8

𝜃𝑏 , (5.48)

and so clearly we have agreement that the new term in the phase is proportional to 𝜃−7

for EdGB modifications, since 𝑏EdGB = −7.

Any physical effect that modifies the phase across the signal in a similar way can

cause the signal to appear as though generated by EdGB gravity if not accounted for in

the model. Such biases for some modified gravity theories are indeed to be expected for
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those signals generated by, for example, binaries undergoing acceleration relative to the

observer [99].

For the most simple acceleration model, that of constant acceleration, which we

model by modifying the detector time, the new detector time can be written

𝑡 → 𝑡acc(𝑡) = 𝑡 + 𝑡0 +
𝑣0
𝑐 𝑡 +

𝑎
2𝑐 𝑡

2 , (5.49)

for constants 𝑡0, 𝑣0, 𝑎. Using 𝑡 = 𝑡c − 𝜏c and expanding the 𝑡2 term, then ignoring the

constants, since they can be absorbed into the reference time, and the (extra) terms linear

in 𝑡, since they describe a constant velocity which can be absorbed into the chirp mass,

the phase of a constantly accelerated binary can be written

𝜙(𝑡) → 𝜙acc(𝑡) ≡ 𝜙(𝑡acc) = 𝜙(𝑡 + 𝑎𝜏2c∕(2𝑐)) . (5.50)

If 𝑎 ≪ 1, we can write this as

𝜙acc(𝑡) = 𝜙(𝑡) + 𝜋𝑎
𝑐 𝜏2c𝑓GR

= 𝜙(𝑡) + 𝑎
𝑐 (

5
256)

3∕8

ℳ−5∕8
c 𝜏13∕8c , (5.51)

using (5.40). The extra term in the phase due to constant acceleration is proportional to

𝜏13∕8c , itself proportional to 𝜃−13. Then, since the exponent 𝑏 (of 𝜃) is related to the PN

order 𝑝PN by 𝑝PN = (𝑏 + 5)∕2 and 𝑏acc = −13, we have that 𝑝acc = −4. More generally,

a term in the perturbative time modification proportional to 𝜏𝑛 gives a term in the phase

proportional to 𝜏𝑛−3∕8 with 𝑝PN = −4(1 + 𝑛).

Perturbatively at least, the constant acceleration is therefore exactly degenerate with,

for example, macroscopic extra dimensions models and the time varying 𝐺 model [110],

which both enter the waveform at−4PN. It is stressed that this does not necessarily hold

exactly in the non-perturbative regime. For example, for accelerations, we can produce

a very accurate model just by determining 𝑡acc, and this will affect all terms in the PN-

expansion in the same way (we modify the waveform in propagation by taking 𝑡 → 𝑡acc;

this transformation is applied to all terms), but different modified gravity theories gen-

erally introduce the various higher-order PN-terms with different coefficients (modifica-

tions in generation), breaking the exact degeneracies.

The 𝑝-PN term (𝑝 ≠ 5∕2) has a time dependence ∝ 𝜏(5−2𝑝)∕8c , so that terms of PN

order 𝑝 < 5∕2 dominate as 𝜏c → ∞ and terms of PN order 𝑝 > 5∕2 dominate as 𝜏c → 0.
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One might expect that the high magnitude powers of 𝜏c respectively dominate strongly

enough for 𝜏c ≫ 1 and 𝜏c ≪ 1 that the different PN terms are generally not strongly

correlated. However, we will see in Chapter 8 that acceleration effects at −4PN, which

at first seems quite distinct from the −1PN contribution of EdGB gravity, is still able to

cause strong EdGB bias when the acceleration is not modelled, and vice versa.
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Chapter6
Analysis Framework Details

In this short chapter, we finalise and bring together the modelling and signal analysis

results of the previous chapters, pointing out important properties of the data analysis

framework and issues to be aware of in sampling, and making clear the shortcomings of

the model we are using. So far, we have primarily dealt with low-frequency band mod-

elling and analysis methods, which we now bring into a complete multi-band analysis

framework that simultaneously includes high-frequency band data. We further empha-

sise simplifying choices and analytical methods (i.e., the neglected and marginalising

parameters) that we will employ, and some features of the physics that should be borne

in mind when making conclusions based on results obtained. It is hoped this will pro-

vide a helpful overview of the scope and limitations of the results presented in the final

chapters.

6.1 Multi-band data analysis

Multi-band data analysis is simply the analysis of a signal generated by a single source

that is present in multiple frequency bands (intervals of the frequency domain) defined

by distinct detectors in a network. A waveform might smoothly pass through bands, for

example, the chirping inspiral of a binary which sweeps from low to high frequencies,

or a source might emit waves that can be decomposed into different frequencies such

that different frequency components are contained within separate frequency bands. A

possible source of the latter type could be the harmonic overtones one finds in the ring-
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down of a CBC merger, with different harmonics present in different frequency bands.

This thesis is concerned exclusively with the chirping BHBs, with a primary goal being

to elucidate reasonable expectations of multi-band GW data analysis.

It is hoped that the chirping behaviour of BHBs can be exploited; since different

amounts of information on, and correlations between parameters are carried by the sig-

nal through different frequency bands, it is expected that the combination of data from

multiple frequency bands will help to: better constrain poorly constrained parameters,

break parameter degeneracies and test GR (with or without modelling alternatives to

GR; a merger time in LIGO inconsistent with the predictions of GR based on the ex-

pected merger time from LISA could suggest a rate of energy loss to GWs inconsistent

with GR [141]). Multi-band data may be particularly useful for testing modified gravity

theories [110] by constraining negative PN orders in the waveform (see Section 5.6), as

well as potentially being able to detect the low-frequency waveform modifiers we men-

tioned in Chapter 4. It has been shown that multi-band observations may number in

the hundreds [142] for signals individually resolvable in LISA, and that, using future

ground-based detectors to look back at what will be ‘historical’ LISA data, the number

of multi-band detections could be increased by a factor of ≳ 4 [85].

6.1.1 Multi-band detector networks

In part because of simplicity and familiarity, we have chosen three detectors to use for the

analyses presented in Chapters 7 & 8. They are: LISA, DECIGO, and LIGO (see Section

2.1), and themulti-band networks shall consist of all (appropriate) combinations of these

detectors. This choice is because the LISAmission is confirmed, LIGO is operational and

its successors will operate at roughly the same band (although with lower noise floor),

and DECIGO, which is a rather speculative mission at this stage, is intended to ‘plug

the gap’ of frequencies between LISA and LIGO (see Figure 2.3). The very high SNRs

one obtains from DECIGO make it somewhat of an unfair comparison of observing at

the given frequency range. However, we will see that DECIGO is necessary for making

any progress in constraining some parameters, and point out some interesting features

of including this detector in a network.
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6.1.2 Multi-band parameter estimation

By probability rules, the probability of two independent events, 𝐴 and 𝐵, with probabil-

ities 𝑃(𝐴) and 𝑃(𝐵), both occurring is

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) ⋅ 𝑃(𝐵) . (6.1)

This is also true for continuous variables, so since the noise in one detector is indepen-

dent from the noise in another detector, the joint probability of datasets d𝑖 observed by

detectors with data probabilities 𝑝𝑖(d𝑖|𝜽)

𝑝(d1, ...,d𝑛 | 𝜽) =
𝑛∏

𝑖=1

𝑝𝑖(d𝑖 | 𝜽) (6.2)

and the posterior probability of 𝜽, from Bayes’ theorem equation (2.6), is just

𝑝(𝜽 |d1, ...,d𝑛) =
𝑝(𝜽) 𝑝(d1, ...,d𝑛 | 𝜽)

𝑝(d1, ...,d𝑛)
. (6.3)

This is simple enough, but how should we use this in practice? This depends on the re-

search goals and the means by which one ‘knows’, or is ‘in possession of’, the likelihood

function. For example, if one intends to perform large numbers of comparisons of pos-

teriors from different detector networks, it would be useful to evaluate the likelihoods

from each detector given some signal and store them as scalar functions (since the eval-

uations can be very computationally costly). Then the scalar functions can bemultiplied

together (then normalised) as required for the desired multi-detector network posterior.

However, obtaining the scalar functions is not straightforward. Two commonmeans

of obtaining (approximations of) them are by evaluation directly over a lattice of points

defined on the parameter space, or by using sampling methods to obtain samples with

a local sample density at a point approximating the scalar value of the posterior. One

can then obtain the scalar using techniques such as kernel density estimate (KDE), then,

converting and storing this as a scalar would additionally require some sort of lattice rep-

resentation, so that multiplying posteriors together can be done pointwise on the lattice.

When the parameter space dimensionality becomes even moderately high (around

three parameters), to maintain a reasonable detail (i.e., resolution of the lattice) the di-

rect lattice evaluation approach quickly becomes computationally intractable. The KDE

approach, on the other hand, becomes unreliable and depends upon careful manual cal-

ibration of the KDE settings for each posterior. Thus, for high-dimensional problems, we
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are rather limited in how we can go about producing multi-band posteriors; for accurate

representation of the posteriors, wemust evaluate the posterior by sampling from the joint

likelihood of the multiple datasets from the detectors in the desired network.

6.2 Exploring the framework

Initial experimentation with the analysis framework brought to light a number of in-

teresting issues and features. We point out the more important ones here (some issues

do not need to be raised, for example, sampler configuration settings which have since

become default settings of the sampler package).

6.2.1 Comparison of a posterior with its PCM approximation

Recall from Section 3.3.2 that the parameter covariance matrix (PCM) at the injection

values is the inverse of the Fisher matrix there. It defines an ellipsoid with a boundary

that coincideswith the 1-sigma isoprobability contour of theGaussian that is the leading-

order Taylor expansion of the posterior (at the injection values). Because of the simple

definition and ease of computation and study of the PCM, it is very often used as an

approximation of the posterior, which is then used to infer PE expectations, particularly

in place of posteriors that are very expensive to compute, such as LISA posteriors.

Figure 6.1 shows a posterior of a reduced parameter model superimposed on top of

its PCM posterior. We include this to illustrate that the PCM can often be a poor repre-

sentation of the true posterior; the variances and covariances are not in close agreement,

and higher-order structure is of course completely absent from the PCM. The example in

Figure 6.1 is in fact not such a pathological example and shows roughly order of magni-

tude agreement of variances, which is generally considered a reasonable gauge of the true

posterior [88]. However, these differences can grow significantly when the SNR drops,

the number of free parameters increases, or when one combines two PCM posteriors (as

in multi-band parameter estimation). It can also be difficult to accurately compute the

FIM in the first place, for instance, in cases where extremely thin modes exist, since one

defines the FIM by computing numerical derivatives (of either the likelihood itself or the

waveform). The following chapters therefore rely on results derived from the accurate

posteriors derived using the downsampling procedure given in Chapter 3.
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Figure 6.1: Comparison of the posterior approximated by the parameter covariance matrix (PCM: the

inverse of the Fisher information matrix) and the true posterior for an example binary system, with injec-

tion parameters given by the green lines. The posterior is marginalised over polarisation 𝜓 and with other

parameters fixed, generated by a ‘high-mass’ (Table 7.1) binary observed by LISA (10 years) only. In this

particular example, the one-parameter marginals arguably show fair agreement to order-of-magnitude.

However, other example systems were found that clearly show that the PCM approximation can be a poor

representation of the one-parametermarginalisations. We can see the PCM can be a poor tool for assessing

parameter covariances, since some covariances are almost opposite in some cases. For precision analyses

as we strive for in Chapters 7 & 8, one should not rely on Fisher information approximations.
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6.2.2 Threshold SNRs

The performance of LISA in providing useful contributions to parameter constraints is

strongly dependent on the signal’s SNR in LISA, and on the number of parameters and

their ability to affect change upon the ‘number of templates’ required for the ‘template

bank’ that is used in parameter estimation1 [143]. One might have hoped to acquire bet-

ter results from stellar order binaries in LISA by, say, neglecting higher-order spin param-

eters from parameter estimation (as we shall do, see Section 6.2.3) since at early stages

in the inspiral the orbit more closely resembles a Newtonian orbit, where higher-order

GR effects are less prevalent. The reasons would be to reduce the number of parame-

ters, hoping that a signal might more easily be found despite searching with an incorrect

model (with some parameters fixed). However, those parameters that do not affect the

signal too much (and so can be fixed/omitted more leniently) are precisely the ones that

do notmuch affect the SNR detection threshold. Thus, in general, we should fully model

(but not over-model, see Sections 4.2.4 & 8.5; it is beneficial to optimise the number of

templates and avoid duplicates).

6.2.3 The large dimensionality/sampling problem

Despite the use of our downsampling procedure to speed up the evaluation of the LISA

likelihood, an initial assumption of aligned spins gives a posterior in which the two re-

maining spin parameters (the magnitudes) form a thin mode in the spin-spin space, ap-

pearing to cause a significant impact on the convergence time. Additionally, the large

dimensionality of the parameter space resulted in convergence times too long for the

large set of systems for which we anticipated producing posteriors in Chapters 7 & 8.

6.2.3.1 Reduced spin parameter model

For the former problem, to speed up parameter estimation, we simply opt to reduce the

model by assuming only spin aligned, equal spin black-holes, yielding binaries with a
1One way to think of this is by considering the following: if a new parameter is introduced that, over

the allowed range (i.e., its priors), defines waveforms that are not similar to the existing waveforms (i.e.,

those existing in the template bank) then the number of templates must significantly increase; if, on the

other hand, the waveforms defined by the new parameter has little or no effect on the waveform, then the

number of templates rises marginally or not at all.
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single spin component,𝜒ef f (see Section 6.3.1 formore details). This is the spin parameter

most strongly coupled to the signal in the early inspiral stage of theGW. The higher-order

spin parameters appear in the waveform in the higher-order PN terms, and thus couple

more strongly towardsmerger as one enters the highly non-linear regime ofGR; at earlier

stages of the inspiral, the binary orbit approaches a Newtonian orbit where GR effects

become less important. One can therefore expect that LISA will not strongly constrain

the higher order spin effects. Omitting (fixing) the spin precession, 𝜒p, increases the PE

convergence speed by around a factor of two.

6.2.3.2 Numerical marginalisation of phase in time-domain

For the latter problem, we can remove uninteresting (or nuisance) parameters from the

parameter space by marginalisation. The coalescence phase is one such parameter. The

phase marginalised probability is given by

𝑝′(𝜽′ |d) = ∫
2𝜋

0
d𝜙c 𝑝(𝜽 |d) = ∫

2𝜋

0
d𝜙c

𝑝(𝜽) 𝑝(d | 𝜽)
𝑝(𝐝)

, (6.4)

where 𝜽′ is the tuple of parameters excluding the coalescence phase, 𝜙c. If the prior on

𝜙c is (2𝜋)−1, then the prior on 𝜽 can be written

𝑝(𝜽) =
𝑝′(𝜽′)
2𝜋 ,

where 𝑝′(𝜽′) is the prior on 𝜽′. Thus

𝑝′(𝜽′ |d) =
𝑝′(𝜽′)
𝑝(𝐝)

∫
2𝜋

0
d𝜙c

𝑝(d | 𝜽)
2𝜋 . (6.5)

Therefore, one can obtain themarginal probability simply by substituting amarginalised

likelihood. Now since we can write the waveform in the form ℎ(𝑡) = 𝐴(𝑡) cos(𝜙(𝑡) +𝜙c),

then from equation (2.18) we have that

𝑝(d | 𝜽) =
[
(2𝜋)𝑁 det(𝚺)

]−1∕2
exp [− 1

2

(
𝐝 − 𝐡(𝜽)

)T
𝚺−1

(
𝐝 − 𝐡(𝜽)

)
]

=
[
(2𝜋)𝑁 det(𝚺)

]−1∕2
exp [− 1

2

(
𝐝 − 𝐀cos(𝝓′ + 𝜙c)

)T
𝚺−1

(
𝐝 − 𝐀cos(𝝓′ + 𝜙c)] ,

163



6. ANALYSIS FRAMEWORK DETAILS

where 𝝓′ = 𝝓′(𝜽′). By trigonometric identities, we have
(
𝐝 − 𝐡(𝜽)

)T
𝚺−1

(
𝐝 − 𝐡(𝜽)

)
=
(
𝐝 − 𝐀cos(𝝓′) cos(𝜙c) + 𝐀 sin(𝝓′) sin(𝜙c)

)T

× 𝚺−1
(
𝐝 − 𝐀cos(𝝓′) cos(𝜙c) + 𝐀 sin(𝝓′) sin(𝜙c)

)

= 𝐴 cos2(𝜙c) + 𝐵 cos(𝜙c) sin(𝜙c) + 𝐶 cos(𝜙c)

+ 𝐷 sin2(𝜙c) + 𝐸 sin(𝜙c) + 𝐹 ,

where

𝐴 =
(
𝐀cos(𝝓′)

)T
𝚺−1𝐀cos(𝝓′)

𝐵 = −2
(
𝐀 cos(𝝓′)

)T
𝚺−1𝐀sin(𝝓′)

𝐶 = −2𝐝T𝚺−1𝐀cos(𝝓′)

𝐷 =
(
𝐀 sin(𝝓′)

)T
𝚺−1𝐀sin(𝝓′)

𝐸 = 2𝐝T𝚺−1𝐀sin(𝝓′)

𝐹 = 𝐝T𝚺−1𝐝 .

Then the marginalised likelihood is

∫
2𝜋

0
d𝜙c

𝑝(d | 𝜽)
2𝜋 = ∫

2𝜋

0
d𝜙c

𝑒−
1
2 (𝐴 cos2(𝜙c)+𝐵 cos(𝜙c) sin(𝜙c)+𝐶 cos(𝜙c)+𝐷 sin

2(𝜙c)+𝐸 sin(𝜙c)+𝐹)

2𝜋 [(2𝜋)𝑁 det(𝚺)]1∕2
. (6.6)

There does not appear to be a straightforward method to obtain a closed form expres-

sion of this integral, but a numerical integration can be achieved easily and performed

very cheaply, as we shall show. The computationally expensive part is in evaluating 𝝓′.

There is a moderately expensive operation in computing inner products in the defini-

tion of the constants (given some 𝜽′) 𝐴 to 𝐹. However, notice that all the constants are

easily computed by various inner products of the vectors 𝚺(−1∕2)𝐝, 𝚺(−1∕2)𝐀sin(𝝓′), and

𝚺(−1∕2)𝐀cos(𝝓′), so only these three matrix operations are required, and the downsam-

pling significantly reduces the cost of these matrix operations. For many likelihood eval-

uations, store the sines and cosines (and their squares) of a range of 𝜙c values in memory

so as not to reevaluate them on each likelihood function call.

One can now approximate the integral by a discrete sum. We tested the numerically

‘pre-marginalised’ posteriors against ‘post-marginalised’ posteriors (that is, we acquired

the full posterior from the non-marginalised model, and marginalised this) and found

that the number of terms in the sum must be decreased to around 20 before the approx-

imation begins to fail. The likelihood evaluation time only begins to increase noticeably

(by a few percent) when the number of terms in the sum reaches around 104. We used 103

terms, giving an accurate marginalised likelihood with negligible likelihood evaluation

time increase. The PE convergence time, however, with the phase parameter removed,

is significantly decreased by a factor of around three.
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Figure 6.2: Anexample of the difference in the convergence of a sampler. Here, two attemptsweremade at

running the sampler Nessai on precisely the same posterior, but with different ‘seeds’ which initialise the

(pseudo-)random processes involved in sampling. Posteriors were defined using the ‘low-mass’ system

from Table 7.1 using LISA+LIGO. The first attempt failed to locate the posterior mode with maximum

likelihood (returning instead a LIGO posterior distorted by extra LISA data which it failed to find fitting

parameters for, see discussion on Figure 7.2 for details on this phenomenon). The second attempt suc-

ceeded in fitting the model to the data. In simulations at least, one can avoid this failure by choosing tight

priors.
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6.2.4 Real-world data analysis: selection of priors

It is prudent to point out problems one may encounter in the analysis of real-world LISA

data. Figure 6.2 shows superimposed resulting sets of posterior samples from running

a sampler twice on precisely the same data. Due to the random nature of the sampler’s

path of exploration of the posterior (and the finite time allowance for exploration) it is

partly to chance whether the primary mode will be found. One can clearly see the first

attempt at evaluating the posterior in Figure 6.2 was unsuccessful in locating the injected

parameters, whereas the second attempt succeeded. The selection of priors plays a large

part in determining whether the primary mode will be located; the sampler is ‘searching

for a needle in an 𝑛-dimensional haystack’. This becomes very difficult when 𝑛 is large;

tighter priors ameliorates this issue.

6.3 Modelling caveats

Finally, we must point out some of the shortcomings of our assumptions and models,

with which the results of Chapters 7 & 8 are produced. These are either in the form

of missing (or fixed) parameters which are not searched over in parameter estimation,

and thus lead to the posteriors we obtain being slices through what would be considered

the ‘true’ posterior, or an incomplete modelling of the physical system (both in defining

the waveform and the detector), which can potentially lead to unrepresentative results.

These caveats are besides the long list of possible deformations of thewaveform thatwere

mentioned in Section 4.1.

An important modelling simplification employed in this thesis is that there is only

one BHB signal present in the data. This is of course highly unrealistic; there will be

many overlapping BHB inspiral signals in LISA (as well as other signals such as mergers

of SMBHs) andmany BHBmergers/ringdowns in future ground-based detectors such as

CE and ET, and our multi-band data analysis results are derived without the problem of

matching a LISA inspiral with the correct LIGO merger. CE, for example, is expected to

observe up to thousands of BHBmergers per day (on the order of onemerger per second).

Depending on themodel and signal, LISA’s error on any given inspiral’s coalescence time

ranges from seconds to hours or more, thus there shall be multiple CE mergers with

coalescence times compatible with a LISA inspiral coalescence time.
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However, manymergers should be ruled out by sky position constraints alone, which

will be strong enough from both detectors to disentangle the signals. Ultimately, one

must simply perform a many-signal (a GW signal consisting of 𝑛 > 1 BHBs) PE analysis

on the data, whichmay ormay not be able to pair up a given inspiral with its correspond-

ing merger. If the network also contained DECIGO however, then one could track the

signal all the way through inspiral to merger.

A further limitation of note is that all of our simulated signals will leave LISA around

one month before merger. For a given detectable BHB signal in LISA however, the

merger may take place up to decades after the inspiral leaves the LISA band, in which

case the constraints on the coalescence time from LISA are considerably weakened. In

those intervening decades, whilst somemodified gravity theories may have already been

highly constrained, the possibility of using GWs to study nuclear galactic structure us-

ing BHBs will continue to rest solely with LISA and other low-frequency observatories,

and of course continuing to gain more precise knowledge on the contents of the LISA

data will continue to improve PE of every detectable source, gradually improving LISA

science many years after its mission.

6.3.1 Missing parameters

6.3.1.1 Spin parameters

One of the standard parameters of BHBs (see Section 1.4.2) that is not included in our

model for the sake of simplicity and which has already been mentioned is the spin pre-

cession parameter. Whilst the effective spin is often well-constrained, the spin preces-

sion is usually much less well-constrained [24]. Occasionally, a parameter can be poorly

constrained due to very weak coupling to the signal, in which case one may be justified

in ignoring its effects. However, this is generally not the cause of poor constraints of a

parameter, for example, highly correlated parameters can lead to poor constraints. It is

also worth remarking that the spin-spin coupling enters the waveform at 2PN [26], the

same as the leading-order dCS contribution, so one should also expect significant cor-

relation between the spin and dCS parameters. Omission of spin precession, therefore,

limits the scope of validity of the results presented here, and shall need to be dealt with

appropriately in future work.
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6.3.1.2 Eccentricity

Furthermore, the BHB model should account for orbital eccentricity. This is especially

true in the lower frequency parts of the signal; as one progresses through the chirping

signal increasing time and frequency, eccentric BHB orbits tend to ‘circularise’ since the

points of closest approach of elliptical orbits have the highest accelerations and strongly

dissipate (via GW radiation) orbital angularmomentum there, periodically, such that the

orbit becomes (quasi-)circular. Early on in the signal, significant eccentricities may be

present. The eccentricity is thought to be strongly dependent on the formation scenarios

of the binaries [116].

High eccentricities generally decrease the instantaneous SNR at a given frequency,

and it has been shown that the eccentricities that can be reasonably expected are high

enough to have a significant impact on the detection rate of binaries in LISA [144]. Whilst

this (absence of detections) can be useful to some degree for constraining formation sce-

narios, the eccentricity can be expected to severely limit the prospects of multi-band GW

astronomy of stellar-origin BHBs with LISA, and is therefore another important missing

aspect of the model that limits the results presented in this thesis and should be consid-

ered in future work. At the same time as eccentricity decreasing the SNR, it may increase

the SNR detection threshold (see Section 6.2.2) further hampering detection efforts.

6.3.1.3 SMBH spin

We have also omitted the SMBH spin, which may imprint significantly upon the GW if

the periapsis of the line-of-sight of the GW approaches the SMBH closely enough. GWs

follow null geodesics, which, for those close to the event horizon of Kerr black-holes, can

undergo large diversions as compared to the Schwarzschild case. The frame-dragging ef-

fect from the spin of an SMBHmay also directly modify the orientation and eccentricity

of binaries in close orbit [145], as well, indeed, as its position/orbital path, making sig-

nificant imprints on the evolution of the binary, and thus the GW.
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6.3.2 Omitted physical effects

6.3.2.1 Hubble expansion

We have employed a Minkowski universe model here for clarity. The GW model in an

expanding universe exhibiting redshifting phenomena is acquired by simply replacing

the GWmodel’s chirp massℳc and distance 𝑑 by, respectively, the redshifted chirp mass

ℳc,z = ℳc(1+𝑧) and the luminosity distance, 𝑑L = 𝑑(1+𝑧), where 𝑧 is the redshift [146].

See Section 6.3.3 for details on redshifted GR time-delay modified waveforms.

6.3.2.2 Shapiro and geometric time-delay

Second order Shapiro delay effects can become significant on SMBH scales, and in gen-

eral in dealing with black-holes, rather than extended bodies such as the Sun. The first

and second order terms in 𝑟𝑠 of the Shapiro delay, where 𝑟𝑠 is the Schwarzschild radius,

can be interpreted as the ‘variable [coordinate] speed of the light ray’, whereas the second

is due to the change in path length [124]. The latter is also known as the geometric time-

delay. It is most noticeable that the second order terms in 𝑟𝑠 are in fact of 𝒪( 𝑟2𝑠
𝑐𝑟0
) [124],

where 𝑟0 is the impact parameter (see Section 4.2.2.5), so that as 𝑟0 → 𝑟𝑠, the second

order terms tend towards having similar magnitudes as the first order terms. Also note

that, for example, our example Orbit #3 in Table 4.2 gives a second order Shapiro delay

term 𝒪( 𝑟2𝑠
𝑐𝑟0
) ∼ 4 × 10−2 s (at the largest 𝑟0). The order of magnitude of the second order

terms is inversely proportional to 𝑟0, so as the orbit progresses and 𝑟0 decreases from its

maximum, the order of magnitude of second order Shapiro delay will increase, and thus

potentially significant time-delay terms will be present.

6.3.3 Redshift and mass/distance scale degeneracy

The peculiar motion of the binary in relation to the SMBH of its host galaxy is encoded

in the waveform and is in principle measurable. However, the host galaxy has its own

peculiar motion and Hubble recession, and associated redshift, and this remains degen-

erate with the mass and distance scale (local to the source) as we shall show here. This

remaining redshift can be written as a Roemer delay. We ignore the Hubble redshift here

for clarity and work in flat spacetime but the results here will hold for Hubble redshift
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also. Including the peculiar velocity time-delay ∆𝑡pec = 𝑣∥𝑡∕𝑐 = 𝑧𝑡, where 𝑣∥ = 𝑐𝑧 is

the line-of-sight velocity of the galaxy and 𝑧 is the redshift, with the total time-delay we

derived in equation (4.34), we obtain the new (redshifted) observer time

𝑡tot,pec = 𝑡tot − ∆𝑡pec

⇒ (1 + 𝑧)𝑡tot,pec = 𝑡tot (6.7)

⇒ 𝑡tot,pec =
𝜏src − ∆𝑡Shapiro − ∆𝑡Roemer

1 + 𝑧 ,

where we used equations (4.34) and (4.29).

If 𝜏 describes the local rate of evolution of a binary of chirp massℳc, then 𝜏∕(1 + 𝑧)

describes the observed evolution of either a binary recessing at velocity 𝑐𝑧 or instead a

binary with chirp mass (1 + 𝑧)ℳc by the mass-redshift degeneracy. Consequently, we

have that

ℎ(𝜏∕(1 + 𝑧),ℳc) = ℎ(𝜏,ℳc(1 + 𝑧)) . (6.8)

That is, the (unmodified) waveform is invariant under simultaneous transformations

𝜏 → 𝜏′ = 𝜏(1 + 𝑧)

ℳc →ℳ′
c = ℳc(1 + 𝑧) .

But it is also true that the time-delay modified waveform remains invariant under the

additional transformations of the SMBHmass and semi-major axis

𝑀SMBH → 𝑀′
SMBH = 𝑀SMBH(1 + 𝑧)

𝑎 → 𝑎′ = 𝑎(1 + 𝑧) .

To see this, apply the above four transformations simultaneously to the redshifted wave-

form:

ℎ(𝑡tot,pec(𝑀SMBH, 𝑎),ℳc) = ℎ (
𝜏src − ∆𝑡Shapiro(𝑀SMBH, 𝑎) − ∆𝑡Roemer(𝑀SMBH, 𝑎)

1 + 𝑧 ,ℳc)

→ ℎ (
𝜏′src − ∆𝑡Shapiro(𝑀′

SMBH, 𝑎
′) − ∆𝑡Roemer(𝑀′

SMBH, 𝑎
′)

1 + 𝑧 ,ℳ′
c) .

(6.9)

The proper time is in fact dependent on𝑀SMBH and on 𝑎 (since 𝑟 depends on 𝑎), but one

can see in equation (4.29) that since 𝑎 → 𝑎′ and hence 𝑟 → 𝑟(1 + 𝑧) (and performing a
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change of variable 𝑡′ → 𝑡′(1 + 𝑧) in the integral), then the factors of (1 + 𝑧) cancel out of

the square root. Thus one is left with

𝜏′src
1 + 𝑧 =

𝜏src(1 + 𝑧)
1 + 𝑧 = 𝜏src .

The Shapiro delay term, using the Shapiro delay equation (4.30) is then simply

∆𝑡Shapiro(𝑀′
SMBH, 𝑎

′)
1 + 𝑧 = ∆𝑡Shapiro(𝑀SMBH, 𝑎) ,

and the Roemer delay (with periastron precession) term can be seen in the defining Roe-

mer delay and periastron precession equations (4.6)–(4.8) and (4.14)–(4.15), to be given

by
∆𝑡Roemer(𝑀′

SMBH, 𝑎
′)

1 + 𝑧 = ∆𝑡Roemer(𝑀SMBH, 𝑎) ,

since the factors of (1+ 𝑧) cancel out. Putting this all together in equation (6.9), we have

that

ℎ(𝑡tot,pec(𝑀SMBH, 𝑎),ℳc) → ℎ
(
𝜏src − ∆𝑡Shapiro(𝑀SMBH, 𝑎) − ∆𝑡Roemer(𝑀SMBH, 𝑎),ℳ′

c
)

= ℎ (𝑡tot(𝑀SMBH, 𝑎),ℳc(1 + 𝑧))

= ℎ
(
𝑡tot,pec(𝑀SMBH, 𝑎),ℳc

)
,

where we used the usual mass-redshift degeneracy, equation (6.8), and equation (6.7) in

the last line. Therefore the waveform is invariant under the four simultaneous transfor-

mations given above, and thus a peculiar velocity (and/or cosmological redshift) for or-

biting binaries is degeneratewith both themass&distance scales at the source: positively

redshifted signals will appear to derive from heavier binaries around heavier SMBHs on

wider orbits, and vice versa.
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Chapter7
Multi-band GWAstronomy Part I:

Isolated Binaries

One might say the ‘first-order’ effects of multi-band GW astronomy are those observed

when, for example, extending the LIGO bandmodel down to lower frequency bands (or,

conversely, extending a LISA band analysis to include LIGO band data) with the assump-

tion that no waveform modifiers from environmental influences or modifications of GR

come into play, in either the generation or propagation of the GW across the spectrum

of the waveform. That is, supposing ordinary GR and supposing the GW emitter is in an

otherwise empty universe. When the GW emitter is a CBC, we will refer to this as an

isolated GR binary. We shall also study binaries in the EdGB and dCS gravity theories,

and refer to these as (isolated) EdGB and dCS binaries.

To gain an understanding of the capabilities, advantages and potential problems that

might be encountered in multi-band detector network data analysis for GW astronomy,

we explore both the determination of source parameters for mission specification detec-

tors, and the general behaviour of posterior probability distributions as functions of some

parameter, some property of the signal, or detector network. The present and following

chapters shall present an aggregate of results of various specific investigations. As our

‘base systems’ (fiducial BHB systems that provide a starting point and which will un-

dergo some modifications) we take a ‘low-mass’ and a ‘high-mass’ binary, very roughly

similar to GW150914 and GW190521, respectively, whose details are provided in Table

7.1 (see Table 1.1 for description of these parameters).
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Parameter Units Low mass High mass

Chirp Mass (ℳc) 𝑀⊙ 30.4 200

Mass Ratio (𝑞) - 0.82 0.80

Luminosity Distance (𝑑L) Mpc 410 3000

Effective Spin (𝜒ef f ) - 0.32 0.32

Inclination (𝜄) rad 0.68 0.68

Orientation (𝜓) rad 0.659 0.659

Right Ascension (𝛼⊕) rad 1.375 1.375

Declination (𝛿⊕) rad -0.7108 -0.7108

Quadratic Gravity Parameter (𝜁EdGB,dCS) - 0.0 0.0

Time until coalescence at

LISA decommission time (𝜏f )
y 0.1 0.1

Table 7.1: The parameters of the ‘low-mass’ and ‘high-mass’ fiducial BHBs. Recall that the phase (𝜙) will

be marginalised and is therefore omitted above. We also omit the coalescence time, 𝑡c since it is simply a

reference value and not of great interest. We are operating in aMinkowski universe, but for completeness,

note that 410 Mpc is around 1.3 billion light years, which, with Hubble parameter 𝐻 ≈ 70 km/s/Mpc,

corresponds to redshift 𝑧 ≈ 0.1, and 3000 Mpc is approximately 10 billion light years, or redshift 𝑧 ≈ 0.7.

There is somewhat of an imbalance between these systems in that we choose to study

the low-mass binary given a 4 year observing time with LISA, whereas the signal of the

high-mass system is given 10 years in LISA. The reason for giving the high-mass system

a 10 year LISA signal (and setting it at a higher distance) is to have a roughly similar

exchange of the LISA SNR of the high-mass system (∼13.8, see Table 7.2) and LIGO SNR

of the low-mass system (∼14.5, see Table 7.5). Since, for example, we know that LISA can

constrain the chirp mass very well, and LIGO can constrain the coalescence time very

well, the hope is to acquire additional insight into how the strength of constraints on

different parameters given by the different frequency bands affects the overall posterior

structure.

The parameters of our fiducial systems are fairly typical, perhaps with the exception

of the effective spin, 𝜒ef f , which is towards the higher magnitude of spin as compared

to the present catalogue of detections [24] to aid in investigating the modified gravity

theories (recall that the higher spin systems carrymore information onmodified gravity),
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and of course the chirp mass of the high-mass system, which is very high as compared

to the catalogued events. Such high-mass merger events are not expected at very high

rates, for example, reference [147] estimates the rate of mergers of ∼ 200𝑀⊙ total mass

systems (with 𝑞 = 1, 𝜒ef f = 0.8) binaries at 0.056Gpc−3 y−1. LISA is of course sensitive

to the inspiral part however, not the merger, and so the probability of detecting such a

binary is far greater with LISA in principle, even if one does have to wait some decades,

say, for the merger to appear in ground based observatories. Our high-mass binary is

even more massive than this however, the individual masses are around ∼ 250𝑀⊙ and

∼ 200𝑀⊙; the LIGO SNR of such high-mass systems does not reach the standard SNR

threshold [85] of∼ 8 required to confirm detection, so if such events were occurring they

would not be observed by LIGO alone.

7.1 Data analysis pipeline

All of the posteriors produced for analysis in this and the following chapter are defined

with a zero-noise realisation. This is so that the posteriors themselves are not unneces-

sarily noisy (since the noise effects are not presently of interest) and will not consist of

scatter that could confuse the qualitative aspects of the posterior behaviour that we wish

to determine. They are produced using Nessai v0.4.1 [76] as discussed in Section 6.2.3,

whichwe found to be themost robust and consistent sampler, and potentially the fastest,

against CPNest, dynesty, Bilby_MCMC& emcee. We used Bilby [79] to handle the details

of producing the posterior samples via Nessai, and using a multi (where appropriate)

detector likelihood function as detailed in Section 6.1.2 with phase marginalisation as

described in Section 6.2.3.2.

For LISA signals, we used a downsampled likelihood functionwith 500 samples as de-

fined in Chapter 3. For DECIGO signals, we also used a downsampled likelihood func-

tion but with 1000 samples, since the waveform less strictly fits the requirement of being

‘slowly evolving’. Downsampling DECIGO signals was not formally tested, however, we

noted extremely consistent results throughout many undocumented initial tests of pro-

ducing posteriors. The DECIGOwaveforms are much shorter, but still fit in many cycles

(𝒩c ≳ 104) due to the higher frequency there. The signals for LISA and DECIGO are

defined by the TaylorT3 waveform Ref. [27] and the PSDs informing the likelihood are
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given in Section 2.2. The LIGO signal model (we used IMRPhenomC) and likelihood func-

tion are provided by lalsuite [63].

We ran the code producing each posterior on the Hawk supercomputer based at

Cardiff University, UK. Processors are either 2.4GHz with 20 cores, or 2.5GHz with 32

cores. Occasionally we used multiple cores, but always when PE convergence times are

discussed, the posteriors being referred to were produced using a single core.

7.2 ‘Low-mass’ binary

GW150914 is an excellent example of a favourable GW event for LIGO (which made this

very first confirmed detection all the more spectacular). The masses were such that the

merger occurred towards the higher frequency end of the PSD ‘bucket’ (see Figure 2.3).

It was also relatively close, making it quite loud; we will see this is necessary in order for

the LISA part to be able to contribute to parameter estimation. In part because of these

features, which both lead to a high SNR, and because GW150914 is so familiar, it is a

good example system to study with additional consideration of the lower frequency part

of the waveform in the context of multi-band data analysis.

The different detector network configurations and the signal properties for each net-

work are given in Table 7.2, where the number of cycles in band can be estimated, as per

[146], using

𝒩cyc =
1

32𝜋8∕3
(
𝐺ℳc

𝑐3
)
−5∕3 (

𝑓−5∕3min − 𝑓−5∕3max

)
. (7.1)

7.2.1 GR binary

Using the standard set of binary parameters (recall we use a slightly reduced set, see

Section 6.2.3) we first determine the parameter constraints afforded by the different de-

tectors and detector networks that are being considered (see Table 7.2). To do this, we

introduce a type of plot that will be frequently used during this and the following chap-

ters that is useful for visually comparing parameter constraints between networks. Two

quantities are required for these plots: the standard deviations of the marginal distribu-

tions for each posterior, which essentially describes the precision (low standard deviation

⇔ high precision), and what we refer to as the precision to accuracy ratio (PAR) which is
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Detector

Network
SNR

Total Spanned

Observed Duration
𝑓min 𝑓max

Total Spanned

Cycles

Ls4 3.1 4 y 16.2mHz 65.5mHz ∼ 3.0 × 106

Ls10 5.7 10 y 11.6mHz 65.5mHz ∼ 5.6 × 106

Lg 14.5 ∼ 3 s ∼20Hz ∼350Hz 𝒪(100)

Ls4,Lg 14.8 4.1 y 16.2mHz ∼350Hz ∼ 3.4 × 106

Ls10,Lg 15.6 10.1 y 11.6mHz ∼350Hz ∼ 6.0 × 106

D 10,575.3 11.8 days 0.1Hz 13.95Hz ∼ 1.6 × 105

D,Lg 10,575.3 11.8 days 0.1Hz ∼350Hz ∼ 1.6 × 105

Ls4,D 10,575.3 4.1 y 16.2mHz 13.95Hz ∼ 3.4 × 106

Ls4,D,Lg 10,575.3 4.1 y 16.2mHz ∼350Hz ∼ 3.4 × 106

Table 7.2: Details of the ‘low-mass’, isolated fiducial system signal in the various detector networks. Recall

the detector shorthands in the leftmost column from Table 2.1.

useful for highlighting bias. Define the PAR for the average posterior (i.e., that obtained

by using a zero-noise realisation in the data) for the 𝑖th parameter as:

PAR𝜃𝑖 ≡
∆𝜃𝑖
𝜎𝜃𝑖

, (7.2)

where 𝜎𝜃𝑖 is the standard deviation of the 𝑖
th parameter’s marginal, and ∆𝜃𝑖 is the mis-

match, the difference between the marginal’s mean value and the true injection value

(low mismatch ⇔ high accuracy). Thus for a PAR of less than 1, the parameter marginal

is more accurate than it is precise: the truth is within 1 standard deviation of the mean.

For a PAR greater than 1, the marginal is more inaccurate than it is precise: the truth

is not within 1 standard deviation of the mean. In this latter case, the posterior cannot

be relied upon to constrain that parameter; this is a case of bias. This occurs rarely, but

for those cases in which the PAR is greater than 1, the markers on the plot will be high-

lighted in red, as in, for example, Figure 7.3. The PAR is an indicator of bias rather than

a strict threshold, and can be less meaningful for, for instance, cyclic parameters or pa-

rameters that have symmetric modes, and can be ignored for parameters that are to be

marginalised.

The standard deviations for the average (zero-noise) low-mass GR binary posteriors

for the different detector networks are given in Table 7.3, and the PARs are given in Table
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Detectors 𝜎ℳc
𝜎𝑞 𝜎𝜒ef f 𝜎𝑑 𝜎𝜃𝑗𝑛 𝜎𝜓 𝜎𝑡c 𝜎𝛼⊕ 𝜎𝛿⊕

Ls4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Lg 9.4×10−1 1.6×10−1 7.8×10−2 137 0.494 0.941 5.4×10−3 1.7×10+0 5.7×10−1

Ls4,Lg 1.6×10−4 1.1×10−1 8.6×10−3 83.1 0.259 0.898 3.0×10−4 9.1×10−3 1.3×10−2

D 2.9×10−6 1.7×10−3 3.5×10−5 78.8 0.75 0.905 9.4×10−5 1.5×10−6 1.8×10−6

D,Lg 2.7×10−6 1.7×10−3 2.9×10−5 54.2 0.243 0.911 1.3×10−4 1.4×10−6 1.5×10−6

Ls4,D 2.8×10−6 1.8×10−3 2.8×10−5 77.9 0.744 0.907 1.6×10−4 1.6×10−6 1.6×10−6

Ls4,D,Lg 2.3×10−6 1.4×10−3 2.5×10−5 53.7 0.239 0.895 1.2×10−4 1.2×10−6 1.6×10−6

Table 7.3: Standard deviations of the marginals of posteriors from zero-noise realisation data, for the

different detector networks, using the isolated low-mass system. The∞ values are where the (uniform)

prior is returned (i.e., there is little/no information on the parameter, due to low SNRand/orweak coupling

of the parameter to the model).

Detectors PARℳc
PAR𝑞 PAR𝜒ef f PAR𝑑 PAR𝜃𝑗𝑛 PAR𝜓 PAR𝑡c PAR𝛼⊕ PAR𝛿⊕

Ls4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Lg 3.0×10−1 5.2×10−1 2.7×10−1 0.621 0.92 0.842 5.2×10−2 6.0×10−1 7.3×10−1

Ls4,Lg 1.4×10−1 5.6×10−2 2.9×10−1 0.297 0.149 0.72 1.0×10−1 1.2×10−2 2.5×10−1

D 5.3×10−4 6.8×10−3 2.0×10−3 0.684 1.17 0.702 5.1×10−3 2.5×10−2 2.9×10−2

D,Lg 6.1×10−3 1.4×10−3 6.4×10−3 0.124 0.186 0.7 1.4×10−3 1.2×10−2 8.0×10−3

Ls4,D 1.4×10−2 1.9×10−2 1.6×10−2 0.703 1.2 0.725 6.5×10−3 1.3×10−2 1.5×10−2

Ls4,D,Lg 4.4×10−3 1.7×10−5 3.2×10−3 0.081 0.142 0.69 5.1×10−3 1.8×10−2 6.6×10−3

Table 7.4: The ‘precision-to-accuracy’ ratios (PARs) for themarginals of the low-mass, isolated GR binary.

There is little evidence of bias here; generally the PAR is less than 1 (aside from some of the cyclic parame-

ters, for which the PAR does not holdmuchmeaning). For all subsequent signal studies, the precision and

accuracy shall instead be presented as marginal precision and accuracy (MPA) plots, where the markers

for parameters with PAR>1 shall be displayed in red (black otherwise), as in Figure 7.3, for example.
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7.4. The corresponding marginal precision and accuracy (MPA) plot is shown in Figure

7.1, confirming the expectation that the addition of LISA to LIGO strongly affects con-

straints of the chirp mass, effective spin and sky position. The mass ratio is no more

precise, but around a factor of 5 more accurate (since all posteriors produced here are

done so using a zero noise realisation it is appropriate to talk about accuracy). Surpris-

ingly, LISA improves the coalescence time standard deviation by around a factor of 10;

this appears to be due to the suppression of a secondary mode across a broad streak on

the sky localisation in the LIGO posterior, which allows for a spread of probability in

𝑡c. When DECIGO is included in the detector network, again as expected, almost all

parameters become far more tightly constrained. The distance 𝑑 is very strongly cor-

related with the orientation however, since these parameters both strongly inform the

amplitude, they thus do not acquire particularly strong restrictions by including DE-

CIGO. However, since sky position is well constrained by DECIGO, we can expect far

better chances of host galaxy identification, with the possibility of luminosity distance

then being given by galaxy catalogues, or being optically measurable [148].

It is particularly enlightening to focus on the LISA+LIGO network and consider the

behaviour of the posterior as one slowly increases the sensitivity of LISA (from ‘zero

sensitivity’). That is, we will ‘override’ the LISA PSD, defining a new detector with PSD

given by

𝑆′n(𝑓) = 𝑆n(𝑓) × (
𝜌opt
𝜌∗

)
2

, (7.3)

where 𝑆n(𝑓) is the original PSD, 𝜌opt is the injected signal’s SNR inLISA given the original

PSD, and 𝜌∗ is some target SNRof the signal: the SNRof the signal given the newdetector

PSD. Then, as a function of the target SNR 𝜌∗ (the new PSD is not strictly defined for

𝜌∗ = 0, so note that we take 𝜌 → 0 where necessary) we produce the posteriors using

LISA(𝜌∗)+LIGO and plot their marginals in Figure 7.2.

This highlights some interesting features of the behaviour of the multi-band poste-

rior. Firstly, we seewhere the LISA part begins to contribute to the parameter constraints

and the process of the LISA posterior ‘freezing out’. Observe that the chirp mass (and ef-

fective spin, which is fairly strongly correlatedwith chirpmass) freezes out first in Figure

7.2, when 𝜌∗ = 2.0. The chirp mass governs the leading-order contribution to the GW

frequency [27], thus asking what the primary frequency component (the frequency with

largest amplitude) of the LISA signal is, is similar to asking what the chirp mass is. This
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Figure 7.1: The MPA plots for the low-mass, isolated GR binary. Immediately we notice that DECIGO

dominates the parameter constraints, and that there is not much additional help in constraining parame-

ters from the other detectors for a network including DECIGO, aside from the distance. There are a few

curious features: in particular, the coalescence time is better constrained by DECIGO alone, rather than

when cooperating with other detectors. This could be due to intricacies in the interplay of the likelihoods

from different detectors (see discussion of Figure 6.2 & Figure 7.2). We are working with noisy processes,

however, and subtle results like this could be accounted for by sampler noise or downsampling noise. The

LISA plot is omitted since the signal is not detected.

is despite the fact that the frequency is chirping, since: we have a strong constraint on

the temporal location of the LISA signal in the inspiral from the knowledge of coales-

cence time from LIGO, and the leading-order time derivative of the frequency, 𝑓̇ = 𝑓̇(𝑡),

is already fixed by the instantaneous frequency and the chirp mass, as given in equation

(5.39). Expressed another way, consider one particular time sample in the LISA signal,

with time 𝑡1. Since we know 𝑡c from LIGO, then by integrating (5.39), 𝑓(𝑡1) is a function

ofℳc, and by (5.39), 𝑓̇(𝑡1) is a function of 𝑓(𝑡1) andℳc (and so ultimately just ofℳc),

hence given 𝑡c, ℳc and 𝑓(𝑡), then 𝑓̇(𝑡) is completely determined. Given a coalescence
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Figure 7.2: Marginals of the (zero-noise) posterior as a function of the SNR in LISA, 𝜌∗, for the low-mass

system in LISA𝜌∗+LIGO. Each row is a set of histograms displaying marginals of a posterior, obtained by

binning the posterior samples appropriately. The columns therefore show the evolutions of parameter

marginals, as the posteriors are defined with, in this example, increasing LISA SNR. The red lines show

the injection parameters. At 𝜌∗ = 0, the posterior is equal to the LIGO only posterior. We surmise that,

due to the ‘incorrect’ LIGO marginal on the orientation, 𝜓, the primary, ‘correct’ posterior mode in LISA

containing the signal parameters is suppressed (note that the LIGO posterior can be thought of as a prior

for LISA). Thus as one increases 𝜌∗, the LISA signalmust be accounted for in someway, and this appears to

be achieved by the visible shifts in the distance, coalescence time, and sky parameters. The chirpmass and

effective spin (which strongly inform the primary frequency component of the signal) freeze outwhen𝜌∗ ≈

2 as the LISA signal becomes loud enough to override the LIGO suppression, and the other parameters are

located as 𝜌∗ ≈ 2.5.
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time, the instantaneous frequency and its derivative at another earlier time are entirely

dependent on chirp mass. But the frequency at all other times is determined by an in-

stantaneous frequency at any one given time, therefore, asking what the instantaneous

frequency at a time 𝑡1 is, to repeat the original claim, is the same as asking what the chirp

mass is (given that 𝑡c is known).

Now because the two aforementioned questions are similar, it is reasonable to apply

the arguments of Bretthorst [94] on the resolving power of the primary frequency com-

ponent of a signal to the resolving power of the chirp mass. Bretthorst lays out a number

of conditions required in order to make his arguments about resolving the frequency,

which are not met with our data, but the situation here nevertheless remains roughly

similar. The conclusion reached by Bretthorst is that:

"[...] if you have sufficient signal-to-noise for signal detection more data are

important for resolution; otherwise more signal-to-noise will detect the sig-

nal with less data."

This is because the evidence of a (single frequency component) signal (i.e., claiming a

detection) strongly depends on the SNR, whereas the constraints on the error estimate

depend more strongly on the number of samples and duration of the signal. We see

this sort of behaviour in Figure 7.2; an increase in SNR is required until the point of

detection, at which point there is a very rapid change in 𝜎 (since the ‘height’ of the peak

of the posterior is similar to the exponential of 𝜌2∗, see Ref. [94]), and after which we see

that 𝜎 ∼ 1∕
√
𝜌∗.

Secondly, we notice further interesting features of Figure 7.2: the posterior appears

to ‘become worse’ as the SNR increases, at very low SNRs in LISA. The LISA signal is

too quiet for the LISA posterior mode containing the injection parameters to contain a

significant enough proportion of the probability to have noticeable impact on the multi-

band posterior. The marginal of the orientation, 𝜓, remains roughly constant until 𝜌∗ =

2.5, equal to the LIGO only marginal (where 𝜌∗ = 0). As the SNR is increased, and

while the LISA signal still provides insufficient information, it appears that the gradual

shift in the other parameters away from the truth is required to account for the extra

signal power, whilst the LIGO posterior is providing strong constraints on the values of

𝜓, that is, until the LISA signal becomes strong enough to supersede LIGO’s preference

at 𝜌∗ = 2.5. This is an important feature to be aware of in real-world analysis.
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7.2.2 Quadratic gravity

In this section we will investigate the effect on the posterior of introducing the quadratic

gravity coupling constants 𝜁EdGB,dCS as free parameters. Recall that in our derivation of

the quadratic gravity GW model, we adopted the small 𝛽 approximation. As per [128],

the quadratic gravity models presented are valid in the small coupling approximation:

this occurs when 𝜁EdGB,dCS < 1, however, we obtained the waveform in equation (5.45)

by the small parameter limit, demanding that 𝛽EdGB,dCS ≪ 1 and thus that 𝜁EdGB,dCS ≪ 1.

We therefore require posteriors in which all of the probability for the parameter 𝜁EdGB,dCS
is contained within a small region centred at zero in order for the posterior to have been

evaluated within the valid range for the approximant.

7.2.2.1 Einstein-dilaton Gauss-Bonnet

We now produce and examine the precision and accuracy plots for marginals given the

EdGB gravitymodel with parameters given in Table 7.1. This is shown in Figure 7.3. One

immediate feature of interest to point out is that the coalescence time constraint appears

to improve by adding this extra parameter. We will notice this particular phenomenon

recurring when considering acceleration parameters, too: as per Section 5.6, recall that

the EdGB parameter and a constant acceleration are correlated, so that some non-zero

EdGB coupling can be confusedwith a non-zero acceleration. A ‘one-off’, small improve-

ment in a given posterior should not cause too much furrowing of the brow since noisy

processes are employed for obtaining these posteriors and some variance is expected,

however this improvement appears to be a consistent feature across the set of results.

This is somewhat unusual as one ordinarily expects all parameters to either retain the

same or acquire larger error when introducing an extra parameter, amounting to more

uncertainty in the constraints from the extra freedom in the model. However, it is also

very easy to imagine a probability distribution,𝒟, fromwhich a new distribution defined

by marginalising, 𝒟′
m, can have lower variance than one defined by taking a ‘slice’, 𝒟′

s.

Consider, for example, that𝒟 is a unit disk of uniformprobability, centred at the origin of

the 𝑥, 𝑦-plane (and zero probability outside of the disk). The 𝑦 = 0 slice,𝒟′
s, yields a top-

hat function, whereas the marginal over 𝑦,𝒟′
m, is given by 2

√
1 − 𝑥2 (both zero outside

of the range from -1 to 1) the latter thus clearly having lower variance despite having
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been more obviously obtained from a higher dimensional posterior. It is possible that a

similar situation is occurring with the coalescence time from the inclusion of the extra

EdGB gravity parameter (with𝒟′
s corresponding to the ‘GR-only’model with 𝜁EdGB ∶= 0,

and𝒟′
m corresponding to the free 𝜁EdGB model).

We can also see from Figure 7.3 that, in general, there are tight constraints on 𝜁EdGB,

particularly fromDECIGO.Note that the posterior railed up against uniformprior bounds

for 𝜁EdGB in detector network Ls4,Lg. The posteriors are particularly troublesome to plot

(see Figure 7.4); the 𝜁EdGB parametermarginal appears as a ‘spike’ at the injection param-

eter that drops away to a non-zero ‘platform’, but as one increases the (uniform) prior

bounds, the platform remains at some non-zero constant. Thus in continuing to widen

the priors, there eventually becomes relatively very little probability left in the spike. The

majority of probability resides in the platformand the posterior slowly begins to resemble

the prior (whilst simultaneously causing significant sampling difficulty resulting in very

long waits for convergence). However, in Section 5.5.1 we discussed the fact that we can

place reasonably stringent priors on 𝜁EdGB from the results of Ref. [128] (the
√
𝛼EdGB pa-

rameter is assumed common between all GW events). Recall that the constraints placed

on the dimensionless parameter for this system of 𝜁low−massEdGB ≲ +3.62 × 10−6. The poste-

rior we used is therefore similar, but not entirely in keeping with that which would have

been obtained given more appropriate priors.

Using only DECIGO, the constraints are strong enough from just one observation to

give an improvement on the results from Ref. [128] by a factor of 10. Using LISA along-

side DECIGO improves the DECIGO constraints by a further factor of 10. This is despite

the fact that generally observing around the merger (in the highly-non-linear regime) is

best for constraining higher-order gravity theories, and can be credited to the extremely

high sensitivity of DECIGO. Its ability to pin down parameters strongly suppresses sub-

sidiary modes in the posterior, such as those obvious in Figure 7.4. The analysis of data

from other detectors, such as LISA, is prevented from returning strongly biased regions

of likelihood since they are essentially excluded. It appears that DECIGO removes the

‘platform’, at which point the ‘spike’ in the 𝜁EdGB parameter becomes highly effective at

constraining the parameter.

It is clear from Figure 7.4 where the PAR𝑞 > 1 in Figure 7.3 comes from: the ‘plat-

form’ of 𝜁EdGB, which containsmost of the probability, corresponds to the region at 𝑞 → 1,
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Figure 7.3: TheMPAplots for the low-mass, isolatedEdGBbinary. The posterior in 𝜁EdGB railed up against

the uniform prior bounds for LISA+LIGO (see Figure 7.4), however, the priors are not unreasonable since

they are roughly equal to those constraints given by Ref. [128]. The the GR model MPA plots (i.e., Figure

7.1) are replicated (green), to show how the constraints vary by the extension of the model. The red mark

points out where the PAR is greater than 1, indicating bias (see Figure 7.5 for more information on this).

Interestingly, we see that adding the free 𝜁EdGB parameter generally decreases the standard deviation on 𝑡c;

one usually expects all parameters to become less well constrained by extending the model, but this can

however be explained by intricacies of the distribution, as explained in Section 7.2.2.1.
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Figure 7.4: Corner-plot for low-mass EdGB binary in LISA+LIGO, marginalised to (ℳc, 𝑞, 𝜒ef f , 𝜁EdGB).

The 𝜁EdGB constraints come from LISA only, as the quadratic gravity modifications are not modelled here

in LIGO. The injected value of 𝜁EdGB is zero, thus the waveform is a purely GR waveform and does not

include negative PN terms in the phase. There is strong preference for positive only PN terms in the

phase. Since EdGB gravity enters the waveform at −1PN, we find a sharp peak at 𝜁EdGB = 0, however,

one obtains a waveform with positive only PN terms in the phase when 𝛽EdGB = 0, which can be achieved

either by 𝜁EdGB = 0, or by having 𝑞 = 1 (see Figure 5.1). This is why a strong bias for 𝑞 = 1 is evident.
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where a strong bias is introduced. Due to our restriction to aligned spin systems, equation

(5.11) shows that the EdGB modifications vanish identically when 𝑞 = 1, thus at 𝑞 = 1,

the −1PN EdGB term vanishes from the waveform and the remaining (non-negative

only) PN terms for the GR signal are accounted for by the remaining free parameters

which thus undergo a shift from the true parameters, given the incorrect 𝑞 ≈ 1. This ex-

plains the platform in 𝜁EdGB (when 𝑞 = 1, 𝜁EdGB is completely decoupled from the wave-

form, so the uniform prior on 𝜁EdGB is returned).

In Figure 7.5, we plot the LISA+LIGO marginals as a function of LISA SNR, 𝜌∗. We

have wider priors on 𝜁EdGB here, and again we reiterate that EdGB is not modelled for the

LIGO part; all the EdGB information comes from LISA. We see a few distinct transitions

as 𝜌∗ is increased. The first occurs at 𝜌∗ ≈ 4, where the LISA signal initially emerges in

the posterior, prior to which its presence affects the posterior with similar behaviour as

that we saw in Figure 7.2. The strong preference for 𝑞 = 1 starts to weaken at 𝜌∗ ≈ 30,

where the platform on 𝜁EdGB starts to drop significantly. Finally, for LISA SNRs in the

hundreds (where the LIGO contribution becomes insignificant) we begin to see more

erratic behaviour (note in these plots the range on 𝜁EdGB is much tighter).

This is likely due, in part at least, to sampling issues. As depicted in Figure 7.6, the

heavily marginalised posterior for which 𝜌∗ = 300, we can see that the 𝜁EdGB parameter

generally forms an ‘L’-shaped distribution, as viewed from the various biaxial projec-

tions. This mode is very thin with a sharp turn/corner, which may be difficult for some

samplers to handle. In particular, since Nessai tries to learn iso-likelihood contours and

generate a map to a standard Gaussian distribution (within which it is easy to propose

new samples), it is possible that a difficulty occurs in ‘turning the corner’ and following

the contours (especially in high dimensions) and that only one of the arms of the ‘L’ are

converged upon. This is one example situation in which significant problems may occur

in sampling and which have the potential to cause the return of unreliable posteriors.

Such large LISA SNRs are not reasonable for stellar order binaries at cosmological

distance of course. However, there may very well exist lighter binaries in DECIGO with

similar SNRs and numbers of cycles, and which thus provide posteriors with the same

sort of structure, leading to these sampling problems. This issue must be addressed at

the sampler level, since given the vast size of the LISA and DECIGO datasets, it is not

practical to, for example, rerun the sampler many times to ensure the convergence is
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Figure 7.5: Detailed evolution of the low-mass EdGB binary in LISA(4 year)+LIGO, as a function of the

LISA SNR. Firstly, notice that the extension of the model with another parameter increases the LISA SNR

detection threshold to 𝜌∗ ≈ 4 (compare to Figure 7.1). The bias remains in the parameters (particularly in

𝑞) however, until 𝜌∗ reaches the hundreds. At 𝜌∗ ≈ 400, we see the primary mode (containing the correct

𝑞) begin to appear, from which point there appears to be an issue with sampling, which is made clear in

Figure 7.6, where it appears that one or the other ‘arms’ of the L-shapedmodes are selected by the sampler.

Around 𝜌∗ ≈ 900, the SNR finally appears high enough to overcome both bias and sampling issues.
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Figure 7.6: As in Figure 7.4, this is the corner-plot for the low-mass EdGB binary in LISA+LIGO,

marginalised onto (ℳc, 𝑞, 𝜒ef f , 𝜁EdGB), but with LISA SNR 𝜌∗ = 300. Here we can see more detail of the

bias and the probable cause of sampling issues, with a posterior mode which is both very thin and with a

sharp turn. The chirp mass parameterℳ′
c ≡ ℳc − ℳ̂c, where ℳ̂c = 30.4𝑀⊙ is the injection parameter.
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reliable. Note that it remains possible that a more complete waveform model with sub-

leading order PN terms in 𝜁EdGB will break the 𝑞 → 1 bias.

Finally, we point out that whilst (this single detection in) the LISA+LIGO network

is not able to strongly constrain EdGB gravity, the inclusion of DECIGO in the network

brings the standard deviation to𝜎𝜁EdGB ≈ 2×10−8, corresponding to improving the current

constraint on the (dimensionful) coupling parameter of
√
𝛼EdGB ≲ 1.7 km to

√
𝛼EdGB ≲

0.77 km at 90% confidence. The multiple systems we can expect to observe (including

‘golden’ sources) will improve this further.

7.2.2.2 Dynamical Chern-Simons

The analysis of the dCS modified gravity posteriors is more straightforward than that of

the EdGB gravity case; the structure of the posterior is considerably simpler, with even

the standard LISA+LIGO network producing a ‘nice’, roughly Gaussian structure. The

form of 𝛽dCS in equation (5.10) in terms of themasses and spins of the binary components

makes it less susceptible to allowing biased results in the way the EdGB parameter does,

as we saw in the previous section. This is in part because 𝛽dCS → 0 as 𝜒ef f → 0 (see

Figure 5.1) but unlike the mass ratio, 𝑞, which is usually not so well constrained, the

effective spin, 𝜒ef f , can be well constrained (as in Figure 7.1, for instance), suppressing

the potential biased preference of 𝜒ef f → 0 for highly-spinning systems with 𝛽dCS ≈ 0.

However, perhapsmore crucially, the dCSmodification enters the phase at 2PN. The 2PN

GR phase coefficient is defined in terms of the masses and spins, so the 2PN dCS phase

term effectively modifies this coefficient and can more freely mix with the masses and

spins. One can indeed see in Figure 7.8 that including 𝜁dCS as a free parameter generally

increases the standard deviations of the masses and spins. The EdGB term, on the other

hand, enters the phase at−1PNwhich has no GR counterpart, its strict absence from the

phase (as per the injected values) is therefore both more prominent, and more limited in

ways available to account for it.

In Figure 7.7, the marginals as functions of the LISA SNR again shows the same be-

haviour for very low SNRs, until the signal is loud enough to begin dominating the LIGO

likelihood. At that point however, as the LISA constraints become apparent, we see that

𝜁dCS itself is not strongly constrained (note the total range of ∼400 for 𝜁dCS in the fig-

ure). The standard deviation holds roughly constant at a value of ∼30 (see Figure 7.8) as

189



7. MULTI-BAND GW ASTRONOMY PART I:
ISOLATED BINARIES

0
c q eff d jn tc ra dec dCS

1
2
3
4
5
6
7
8
9

10
4.4e+0 7.2e-1 4.7e-1 1.3e+3 2.2e+0 3.1e+0 3.8e-2 1.8e-1 2.5e+0 4.e+2

LI
SA

 S
NR

Figure 7.7: Marginals of the posterior for the low-mass dCS binary in LISA+LIGOas a function of the SNR

in LISA. We can see similar behaviour as that evident in Figure 7.2; the ‘correct’ posterior mode freezes

out as the SNR in LISA approaches 𝜌∗ ≈ 3. The SNR detection threshold is less than for the EdGB gravity

extension, indicating that the dCS parameter has a weaker effect on the number of waveform templates

than EdGB does.

𝜌∗ → 10. This does not comply with the small coupling approximation which demands

that 𝜁 < 1 and therefore these posteriors are not usable.

This is not the case when DECIGO enters the network however; we see in Figure 7.8

that there exist posteriors for which 𝜎𝜁dCS < 1 and some of these posteriors are valid. With

DECIGO on its own, we have 𝜎𝜁dCS ≈ 1, where quite clearly there will exist samples in

the posterior for which 𝜁dCS > 1, however, in conjunction with another detector, we have

that 𝜎𝜁dCS ≲ 0.3 and the posterior samples mostly quite comfortably sit within the small

coupling approximation limit. This is unfortunately not at all stringent enough (with this

single observation), however, to improve the current constraints of
√
𝛼dCS ≲ 8.5 km; we

instead find that
√
𝛼dCS ≲ 47.4 km at 90% confidence. To do better than the current best

constraint, one would require (at 1-sigma) that 𝜎𝜁dCS ≲ 2.27 × 10−3 from this binary, us-

ing equation (5.6). Thus constraining the dCS parameter with low-mass binaries would

require either a large number of detections with a detector network including DECIGO

(around 104𝑘2 to reach 𝑘-sigma), or more sensitive ground-based detectors to capture

their merger in fine detail, where the modification to the waveform is greatest.
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Figure 7.8: Marginal precision and accuracy plots for the low-mass dCS binary. Extending the GR model

to dCSmost significantly reduces the constraints one can place on the effective spin. Themass constraints

are slightly weakened, and other parameters unaffected. This is to be expected by the dependence on the

𝛽dCS phase modification coefficient, given by equation 5.10, which is a function of the masses and spins.
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Detector

Network
SNR

Total Spanned

Observed Duration
𝑓min 𝑓max

Total Spanned

Cycles

Ls10 13.8 10 y 3.6mHz 20.2mHz ∼ 1.7 × 106

Ls4 10.2 4 y 5.0mHz 20.2mHz ∼ 9.3 × 105

Lg 6.3 ∼ 5 s ∼ 10Hz ∼ 20Hz 𝒪(10)

Ls10,Lg 15.2 10.1 y 3.6mHz ∼ 20Hz ∼ 1.8 × 106

D 6,579.1 0.52 days 0.1Hz 4.39Hz ∼ 7.0 × 103

D,Lg 6,579.1 0.52 days 0.1Hz ∼ 20Hz ∼ 7.0 × 103

Ls10,D 6,579.1 10.1 y 3.6mHz 4.39Hz ∼ 1.8 × 106

Ls10,D,Lg 6,579.1 10.1 y 3.6mHz ∼ 20Hz ∼ 1.8 × 106

Table 7.5: Details of the ‘high-mass’, isolated GR fiducial system signal in the various detector networks.

Recall the detector shorthands in the leftmost column from Table 2.1.

7.3 ‘High-mass’ binary

Wenow investigate the behaviours and benefits of posteriors defined by detections of our

fiducial high-mass binary, details of which can be found in Table 7.1. The merger of an

inspiralling binary occurs roughly at the ISCO, given by (adapted from [146])

𝑓ISCO ≈ 4.4 kHz (
𝑀⊙

𝑚 ) , (7.4)

where𝑚 is the total mass, and which for our high-mass system is thus equal to 𝑓ISCO ≈

10Hz. This just barely enters the LIGO band, so LIGO only really captures the ringdown

of this signal. Note thatwe cut off theDECIGO signal a few seconds before ISCO, in order

the ensure that the waveform approximant used is always valid, since the time-domain

inspiral approximants blow up as 𝜏 → 𝜏c. Using equation (7.1) and detector properties,

Table 7.5 shows the details of this signal in the various detector networks.

7.3.1 GR binary

As in the previous section, we compute the posteriors for the standard GR, high-mass

binary over all the detector network combinations, and plot their parameter-wise stan-

dard deviations in Figure 7.9. Wementioned already that only the end of the merger and
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Figure 7.9: The MPA plots for the high-mass, isolated GR binary. Again, networks containing DECIGO

dominate the parameter constraints. For the high-mass system with significant SNR in LISA, we now see

that including LISA along with DECIGO makes a large contribution to the masses, spin and coalescence

time constraints. The LIGO SNR is low (∼ 6) and does not pass the detection threshold (the PARs>1

therefore are not alarming). However, there is considerable gain in the coalescence time and spin by

adding LIGO to LISA.

the ringdown is caught by LIGO, due to the low-frequency at merger. The LIGO SNR is

accordingly low, at around ∼ 6.3. This is why the LIGO posterior in Figure 7.9 is gen-

erally very wide, and even in the zero-noise realisation case has mean samples values

offset from the true parameters by greater than 1-sigma (i.e., with PARs greater than 1).

It is still a useful addition to LISA however, primarily due to the constraints it gives on

the coalescence time, which selects the small region of chirpmass and effective spin that

is compatible, reducing the deviation on chirp mass by a factor of a few, and on spin by

around a factor of 10.

Generally speaking however, expectations are confirmed as it is evident that LIGO

has a marginal role to play for very high-mass systems. The main comparison of interest
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for the high-mass systems is between LISA, DECIGO, and the network of both of these

detectors. Clearly, DECIGO is equal to or outperforms LISA for every parameter. Adding

LISA to DECIGO does however provide significant improvements onℳc, 𝑞, 𝜒ef f & 𝑡c; by

inspecting the corner plots we note that clear (anti-)correlations of (ℳc, 𝜒ef f ), (ℳc, 𝑡c),

(𝑞, 𝜒ef f ) & (𝑞, 𝑡c) in LISA become correlated in the opposite sense in DECIGO.

7.3.2 Quadratic gravity

In the same form as in the previous section, we analyse the high-mass system but allow-

ing as free parameters 𝜁EdGB,dCS. Recall the quadratic gravity modifications are not being

modelled in LIGO here, however, since there is actually very little information in LIGO

for the high-mass system, the posteriors obtained here shall more accurately represent

the true posteriors.

7.3.2.1 Einstein-dilaton Gauss-Bonnet

The EdGBMPAplots are shown in Figure 7.10. The LIGO-only and LISA-only posteriors

are omitted since the signals are not found and very little information is returned. The

LISA+LIGO posterior, however, does return some useful information despite suffering

from the same bias we saw in Section 7.2.2.1 for the low-mass (EdGB) case: with the

injection value at 𝜁EdGB = 0, there is a vanishing −1PN term in the signal, but this can

also be achieved when 𝑞 = 1. A mass ratio of 𝑞 → 1 is therefore preferred, and other

parameters, in particular the chirpmass, are offset to account for that preference. Besides

these parameters however, the LISA+LIGOposterior is not heavily changed from theGR

base model posterior (the green lines in Figure 7.10).

In terms of networks that includeDECIGO, the SNR is again so high that this bias dis-

appears. For the networks including both DECIGO and LISA, there is a very clear, large

increase in the standard deviations ofℳc, 𝜒ef f & 𝑡c, which, by inspecting the corner plots,

are found to be strongly positively correlated with 𝜁EdGB, and 𝑞 which is strongly nega-

tively correlated. All detector networks shown in Figure 7.10 on detecting this high-mass

binary produce posteriors consistent with the small coupling approximation, however,

even the strongest constraint on 𝜎𝜁EdGB given by all three detectors (Ls10,D,Lg) translates

to a constraint on the dimensionful coupling parameter of
√
𝛼EdGB ≲ 7.5 km at 90% cer-

tainty. This is roughly 10× the value we obtained from the low-mass binary, even though
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Figure 7.10: The MPA plots for the high-mass, isolated EdGB binary. The same bias we observed in

the low-mass system persists here, and very high SNRs (e.g., those provided by DECIGO) are required to

suppress the 𝑞 → 1 tendency. See Figures 7.3, 7.5 and 7.6 for comparison and more detail on the 𝜁EdGB–𝑞

bias. The green marks are duplicates of the GR MPA plots in Figure 7.9, to see how the EdGB extension

affects the uncertainties in the other parameters.

𝜎𝜁EdGB is roughly the same between the high and lowmass binaries. The difference is due

to the fact that
√
𝛼EdGB scales with the mass of the system, as shown in equation (5.6),

and this is why lowmass binaries are generally farmore useful for constraining quadratic

gravity theories than higher mass counterparts.

7.3.2.2 Dynamical Chern-Simons

The high-mass dCS MPA plots are shown in Figure 7.11. Again, we can see in Figure

7.11 that including 𝜁dCS as a free parameter has little effect on the location parameters

but significant degeneracies with the masses and spins are clear, as one would expect by

the dependencies of 𝛽dCS. Of the detector networks studied here, the 𝜁dCS constraints are

not strong enough to place the vast majority of the posterior samples inside the small
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Figure 7.11: TheMPAplots for the high-mass, isolated dCSbinary. LISA clearly plays a farmore important

role for the high-mass system, and its ability to constrain themasses and spin parameters (when the signal

can be detected) are more greatly affected by extending the model to dCS gravity than for the low-mass

system, due to the masses and spin dependence of the dCS parameter.

coupling approximation limit, 𝜁dCS < 1, with 𝜎𝜁dCS ≈ 0.6.

However, supposing these posteriors were valid, this standard deviation would trans-

late to a constraint on the dimensionful coupling parameter of
√
𝛼dCS ≲ 371.7 km at 90%

confidence. This is around a factor of 8 worse than the bound provided by the low-mass

system of 47.4 km. In order to improve on the currently existing best constraints from

GWobservations then, one clearly requires a vast number of favourable (lowmass, highly

asymmetric mass, high spin, high SNR) BHB events. The outlook for tightly constrain-

ing dCS gravity with stellar-order binary GWs therefore does not appear to be good, even

for best case future scenarios in which DECIGO plays a part. This is unfortunate, since

strong constraints using other methods prove difficult to obtain and using GWs has been

called a ‘last resort’ [149].
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7.4 Prospects for multi-band GW data analysis

7.4.1 Population models, detection rates

Evaluating an estimated detection rate involves two steps. First, assume a model of the

universe that predicts a distribution of BHBs per (comoving) volume. Then, take a detec-

tor network configuration and detection statistic (i.e., a threshold SNR) and with it, in-

tegrate over the distribution those regions that constitute a positive detection. The equa-

tion describing this estimate is derived in Ref. [150] and estimations for the LISA+LIGO

network computed: a 4 year (10 year) LISA mission duration should result in roughly

5–30 (35–170) multi-band detections given an SNR detection threshold of 4. Recall that

in Section 7.2.1 we found that the chirp mass begun to ‘freeze out’ in LISA already at

SNR 𝜌∗ ≈ 2. There was a significant impact on other parameters, which, we surmised,

arose from strong LIGO constraints on the orientation, delaying the full freeze out until

𝜌∗ ≈ 2.5 (Figure 7.2).

However, these posteriors were produced using a reduced parametermodel, omitting

sub-leading order spin and eccentricity parameters (along with additional time-delay

parameters as we shall investigate in the next chapter, which can often be necessary to

model and requiringmultiple parameters). Introducing this extra freedom is tantamount

to requiring a higher SNR threshold, depending of course on how strongly this freedom

can affect waveform templates (see Section 6.2.2). We saw this sort of effect occurring in

small part as we extended our model, albeit in a different direction, when we introduced

extra freedom by including the quadratic gravity parameters. By adding the dCS param-

eter, the signal froze out at 𝜌∗ ≈ 3 (see Figure 7.7). By adding the EdGB parameter, the

signal appeared to freeze out (though with a strong bias) at 𝜌∗ ≈ 4 (Figure 7.5).

It might therefore seem likely that we would have to rely solely on very heavy BHBs

for multi-band GW data analysis with a LISA+LIGO like detector network; recall that in

Table 7.2 the low-mass system observed even for 10 years in LISA gives an SNR of ∼5.7.

However, we note the recent work in Ref. [151] in which fully modelled (17 parameter,

including eccentricity) BHB waveforms and the LISA detector model are given a very

thorough treatment and analysis of signals present in LISA (only) data reported. The

authors found that signals were generally recovered very well, even finding good poste-
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riors for signals with SNRs as low as 5.7. This successful recovery of signals in LISA alone

bodes well for multi-band detection of BHB signals. Moreover, the strongly constrained

posteriors from future ground-based, and space-based deci-hertz detectors used as priors

can bring down the SNR detection threshold for other detectors even more, bolstering

the possibility of digging into the LISA noise for low-frequency information at low SNRs

(see Section 8.1.2).

7.4.2 Detector network summary

In this section there will be continual reference to the marginal PAR plots, which we

point to once here, in Figures 7.1, 7.3, 7.8, 7.9, 7.10 & 7.11, to avoid repetition.

We also talk about source localisation; we approximate the 90% confidence sky local-

isation volume, 𝑉, by supposing that the 90% confidence iso-contour of sky position (the

distance and sky coordinates) is roughly given by an ellipsoid, with its semi-axes given

by the 90% (approximately 1.65 standard deviations) bounds on each of the parameters.

Then we have

𝑉 ≈ 4𝜋
3 1.65 𝜎𝑑 𝑑2 sin(1.65 𝜎𝛼⊕) sin(1.65 𝜎𝛿⊕) cos(𝛿⊕) , (7.5)

where we have written the right ascension (ra) as 𝛼⊕ and the declination (dec) as 𝛿⊕.

7.4.2.1 LISA

The low-mass binary signal searched for using a 4 year LISA signal (with SNR∼3.1) did

not yield a detection. The 10 year observation of the high-mass system (SNR∼13.8) pro-

vided excellent constraints with the GR analysis, which, for all parameters aside from

the sky position, closely matched those provided by DECIGO (SNR∼6600).

The sky localisation volume for the high-mass binary in LISA 𝑉 ≈ 1.28 × 104Mpc3,

corresponding to hundreds of potential host galaxies [152]. This binary is located at a

distance of 3000Mpc; for the same system at 1000Mpc, the number of potential host

galaxies from LISA alone drops down into the tens. If the host galaxy can be confidently

located, one can acquire a redshiftmeasurement of the galaxy, at once breaking themass-

redshift degeneracy and obtaining a constraint on the Hubble constant.

When searching for EdGBmodifications, the constraints on all parameters aremostly

unchanged beside the mass ratio, which acquires a strong bias. The constraints on 𝜁EdGB
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itself are poor since the posterior rails up against the prior, due to the presence of the

platform of probability in its marginal as first discussed in detail in Section 7.2.2.1. The

dCS parameter is ‘nice’ in that it is not strongly correlated with other parameters, how-

ever, its impact on the gravitational waveform is not great enough to improve the current

best constraints.

7.4.2.2 DECIGO

DECIGO is by far the most sensitive detector of those considered here. The SNRs are

generally extremely high, leading to tightly constrained posteriors which closely approx-

imate Gaussian distributions. The sky localisation is excellent; with equation (7.5) we

have for the low-mass system that 𝑉 ≈ 10−5Mpc3, corresponding to 10−7 potential host

galaxies, meaning that it is very highly likely to be able to locate the host galaxy. For

the high-mass system (at 3000Mpc) we have that 𝑉 ≈ 5 × 10−4, again giving excellent

chance of host galaxy location (overlooking the technical details regarding making such

a host galaxy redshift observation). Thus DECIGO on its own, in principle, appears to

be sensitive enough to many GW events occurring across a large fraction of the history

of the universe that it will be able to place useful constraints on the expansion history

of the universe (i.e., a time dependent Hubble parameter). The EdGB parameter is well-

constrained with DECIGO and bias is not noticeable when this parameter is included.

The dCS parameter, on the other hand, cannot be constrained well enough to improve

current best constraints, nor even to comply with the small coupling approximation.

7.4.2.3 LIGO

The vast majority of GW data analysis research to date has been focused on LIGO and its

data, and its strengths and limitations are already well understood. It does not feature

heavily here outside of considering it as part of a detector network and the posteriors in

the above plots are mainly included for comparison between the different networks.

7.4.2.4 LISA & LIGO

Wehave found, albeit with significantmodel simplifications, that LISA is able to enhance

the posterior given by LIGO for signals of very low LISA SNR ∼3 (see Figures 7.2 & 7.7

for GR& dCSmodels, respectively). Evenwith the problematic bias that arises due to the
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structure of the EdGB modification in equation (5.11), the EdGB gravity model search

(with a reasonable prior) clearly finds a signal when LISA SNR ∼4. This is despite the

fact that the EdGB parameter enters the phase at −1PN and therefore corresponds to

an entirely new term in the phase; it is a good example of a newly introduced param-

eter that drastically increases the number of templates in the template bank which is

usually expected to significantly increase the SNR detection threshold (see Section 6.2.2

for details). We saw in Figure 7.5 that in order to overcome the bias in the LISA poste-

rior introduced by the EdGB parameter, the SNR must be increased to around 𝜌∗ ∼ 500

(see Figure 7.5). These SNRs at this sort of mass range are almost entirely certain not

to occur, however, it is likely that with strong EdGB constraints from third generation

ground-based detectors, the majority of the platform of probability we saw in the EdGB

marginal, along with the associated bias, will be strongly suppressed.

7.4.2.5 LISA & DECIGO

For low-mass binaries, there is no noticeable improvement in the posteriors by adding

LISA to DECIGO, aside from, interestingly, on the introduction of the quadratic gravity

parameters. In the case of introducing new parameters, the variances generally increase,

but LISA somewhat inhibits that increase with the information it provides on themasses

and spins. For high-mass systems spanning LISA&DECIGO, the situation is different as

constraints are significantly enhanced on masses and spins by adding LISA to DECIGO.

The greatest benefit of this detector pair is in constraining quadratic gravity parameters

themselves, with the EdGB parameter being constrained to better than 3 orders of mag-

nitude (the EdGB-mass ratio bias is strongly present in the high-mass LISA signal, which

is essentially removed by DECIGO) compared to DECIGO alone. The dCS parameter is

still too poorly constrained for the small coupling approximation to be valid.

7.4.2.6 DECIGO & LIGO

If the DECIGOmission is confirmed, there will be little more help that LIGO (the partic-

ular model we have used) can offer, due mainly to the vast discrepancy in SNRs between

the detectors. There is, however, a significant improvement in the standard deviation of

the distance for the low-mass system by a factor ∼3, which can be particularly useful for

localisation and host galaxy identification. Recall that our LIGOmodel does not include
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quadratic gravity modifications, and that the modifications are greatest at merger; this is

somewhat of a shortcoming of the present study. The situation will be vastly improved

with third-generation ground-based detectors, too, such as the Einstein Telescope, which

will have a much higher sensitivity than our LIGO model.

7.4.2.7 LISA, DECIGO & LIGO

In general, the results of the three-detector network are not surprisingly very similar

to those of the LISA+DECIGO network, due to the relatively tiny SNR in LIGO with

similar frequency band to DECIGO. The exception is a small but useful contribution to

the constraints on the distance (for the low-mass system) one acquires from including

LIGO alongside DECIGO.

7.4.3 Outlook

Clearly, DECIGO dominates in terms of providing parameter constraints for the wave-

form model we have considered in this chapter. It is also crucial for avoiding the bias

observed when including the EdGB parameter in the model. Since the status of DE-

CIGO is as of yet unconfirmed however, it is pragmatic to be more concerned with the

LISA+LIGOnetwork. For this network, using the reduced parameter GRmodel we have

employed for binaries (known to be isolated) can dramatically improve the parameter

constraints that one acquires from LIGO only, where we can see the beginnings of pre-

cision GW astronomy coming to fruition. But we must be cautious in including the very

low SNR LISA signals along with the LIGO analysis; as we saw in Figure 7.1, a signifi-

cant bias in multiple parameters is observed before the primary mode originating from

theLISAdata freezes out. Further investigation into this behaviour is required to confirm

the cause (we surmised that the posterior on the orientation from LIGO suppressed the

mode containing the true parameters too much, until the LISA SNR was large enough

to overcome the LIGO constraints) to evaluate its impact in the fully modelled case, and

to work out precisely when it is safe to trust the results of the multi-band data analysis.

We have also found that none of the detector networks used can provide usable con-

straints on the dCS parameter. It is conceivable that detectors such as the Einstein Tele-

scope will observe particular ‘golden sources’ at relatively high SNR to provide better

constraints for dCS gravity, and this seems to be the best hope for the foreseeable future
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for dCS constraints using GWs. However, given the detector networks under considera-

tion in this thesis, wewill exclude the dCSmodel for the remainder of our investigations.
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Chapter8
Multi-band GWAstronomy Part II:

Binaries in Galactic Orbits

The next extensions of the GW model to be considered are the varying time-delays that

modify the waveform due to the motion of the source and its background geometry.

These were introduced in Chapter 4, along with approximants of these time-delays that

require either one or two parameters to describe, rather than the full set of six Keplerian

elements required in general. The ‘high-mass binary’ is used for the majority of the in-

vestigations in this chapter; we are often strictly limited to using higher mass systems,

since the SNRs of the lower mass binaries can be too low to make a detection in LISA,

even in the case of effectively having a strongly constrained prior (and thus lower SNR

detection threshold) provided by DECIGO. However, it is reasonable to expect these sort

of signals to exist in the LISA data, as discussed in Chapter 4.

In this chapter, the expectations about the effects of low-frequency waveform mod-

ifiers on multi-band GW data analysis introduced in Chapter 4, and the concepts and

simplifications introduced there, are verified by experiment and shown to be useful aids

for analysis. Over the course of the chapter, we will see that the structure and proper-

ties of posteriors for signals with small time-delays is rather simple. A constant or linear

acceleration, for example, entering the phase at large negative PN order(s), is not easily

interchangeable with (combinations of) the non-negative PN terms in the GR isolated

binary waveform, and thus there is very little correlation between the parameters. How-

ever, for large (and highly non-linear) time-delays, the variation of the posterior structure
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as a function of the injection parameters is highly intricate: one can already expect that

predicting correlations of Keplerian and intrinsic binary parameters by, for example, try-

ing to match effects of the time-delays (as exemplified in Figure 4.4) with PN terms in

the phase of the binary’s waveform is a highly non-trivial task. We verify this through

examples, showing that for those systems with significant time-delays, it is very difficult

to predict how a specific system will behave, and that, in general, one must resort to

running simulations for each system to know the details of the behaviour.

This chapter examines properties of posteriors of the same fiducial systems that were

studied in Chapter 7 (see Table 7.1) and is structured as follows. We look at the low-

mass binary in Section 8.1, and confirm the estimated detectability of (constant) acceler-

ation, then examine the MPA plots for models of constant and linear accelerations. The

same analysis for the high-mass binary is given in Section 8.2. We analyse the posteriors

of the fully modelled Kepler orbiting high-mass binary in Section 8.3 generated by the

LISA+LIGO network. In Section 8.4, we investigate retrieving the Keplerian elements

only, using a ‘known carrier signal’. The time-delay approximants and their regions of

validity as explored in Section 4.2.4 are tested in Section 8.5. We show the results of

simultaneously allowing a free (constant) acceleration parameter and EdGB gravity pa-

rameter in Section 8.6.

8.1 ‘Low-mass’ binary with acceleration

In Chapter 7, we analysed ‘isolated binaries’ using a waveform model for both the in-

jected signal and the waveform search templates, where the binary was assumed to be

in a flat background geometry, i.e., with no non-linear time-delay modifications arising

from the relative position of the binary. Although this may sometimes be an accurate

approximation, we cannot know whether it is appropriate to use that model before hav-

ing analysed the data. It is instructive, therefore, to ascertain the magnitudes of these

non-linear components of the time-delays at which it becomes necessary to include the

relevant parameters in themodel. Onemight say this occurswhen the posterior becomes

‘significantly disrupted’, or when the parameter becomes ‘measurable’. In Section 4.2.4,

we declared this point to be when one of the mean values of the parameter marginals is

offset by 1 standard deviation.
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Figure 8.1: Marginals of the posterior of the low-mass system in LISA(4 year)+LIGO as a function of (con-

stant) line-of-sight acceleration of the binary. The signal is generated by an accelerating binary, but the

model used for defining the posterior does not include acceleration. We can thus observe the acceleration

at which the posterior begins to break down, or, indeed, the acceleration at which (line-of-sight) accelera-

tion must be included in the model. We observe perturbations of the posterior at acceleration magnitudes

of around 10−6ms−2, and a strong breakdown with acceleration magnitudes of 10−5ms−2.

The simple, constantNewtonian line-of-sight acceleration,𝒶, corresponds to a quadratic

time-delay, which we expect to be measurable at the𝒶 that satisfies equation (4.42). For

our low-mass binary in LISA+LIGO, with the signal details given in Table 7.2, the esti-

mated detectable acceleration is

|𝒶| ≈ 6.8 × 10−7ms−2 . (8.1)

The posterior evolution plot showing the parameter marginals as functions of the un-

modelled constant acceleration is shown in Figure 8.1. We can see that the marginals

become disrupted slightly at |𝒶| = 10−6ms−2 and significantly at |𝒶| = 10−5ms−2.

This is around a factor of 10 higher than our estimate in equation (8.1). However,

recall from Section 4.2.4 that (as discussed in Ref. [26]) measurable offsets in the chirp

mass are around a factor of 10 greater than one might at first conclude; when spin is in-

cluded as a free parameter, the degeneracywith chirpmass and spinwidens themarginal

by roughly a factor of 10. We omitted this extra factor of 10 from our equation (4.42) to err

on the side of caution in our parameter space division scheme. With this factor included,

we have a modified estimated detectable acceleration of

|𝒶ℳc∶𝜒ef f | ≈ 6.8 × 10−6ms−2 . (8.2)
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There is indeed excellent agreement between this value and the results in Figure 8.1. This

bolsters our assertion that an IAD of 𝐼 ≈ 3m s−1 makes a reasonable (if conservative)

bound for the different regions of the Keplerian element parameter space, as given, for

example, in equation (4.46).

8.1.1 Constant acceleration

We now produce and examine the MPA plots for our low-mass binary with constant ac-

celeration as a free parameter. These are shown in Figure 8.2. The LIGO only and LISA

only posteriors are omitted since clearly acceleration is not detectable in LIGO alone,

and the LISA SNR is too low for a signal to be found without the help of other detec-

tors. In comparison to the posteriors with fixed/unmodelled acceleration (green lines

in Figure 8.2), notice that the parameter standard deviations for those networks includ-

ing LISA hardly evolve; there is little freedom provided by other parameters to account

for acceleration (recall constant acceleration enters the waveform at −4PN, see Section

5.6). This is with the exception of the coalescence time, which displays the same pecu-

liar behaviour we observed in Section 7.2.2.1 by the inclusion of the EdGB parameter;

the coalescence time constraints improve by including constant acceleration as a free pa-

rameter. As before, the reasons for this are presently not clear, however, the effect may

be due to fine details of the structure of the posterior; see Section 7.2.2.1 for discussion

and an example of a potential cause for this behaviour.

Those networks containing LISA strongly constrain the acceleration, as expected

(when the signal can be located). Observe that LISA+LIGO constrains the acceleration

at 1-sigma to the same degree as expected in equation (8.2). The very high SNR of DE-

CIGO overrides the rudimentary expectations leading to equation (4.42) however. With

the signal properties in DECIGO from Table 7.2, we would expect that accelerations of

|𝒶| ≳ 1.8 × 10−3ms−2 are required in order to have a measurable impact. Clearly this is

not the case, and this is because our estimate of theminimum expected acceleration does

not take into consideration the SNR, which strongly informs the posterior; one could in-

deed measure arbitrarily small accelerations if one were allowed to have arbitrarily high

SNRs.

There is a strong positive correlation of the acceleration with the chirp mass and ef-

fective spin, and negative correlation with the mass ratio in DECIGO. In LISA however,
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there is no such clear correlation. This is reasonable considering the durations of the

signals; thinking of the acceleration as the −4PN term in the phase, the modification to

the waveform takes time to accrue. Over long time periods, it is difficult to mistake a

−4PN term with another PN term (recall that, perturbatively at least, a 𝑝-PN term cor-

responds to a 𝜏(5−2𝑝)∕8 term in the phase), but over relatively short intervals it becomes

easier for (combinations of) other PN terms to mimic the −4PN term. The conjunction

of LISA with the DECIGO posterior accordingly subdues correlations between these pa-

rameters.
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Figure 8.2: TheMPAplots for the low-mass, constantly acceleratedGRbinary. LISAalone does not feature

as the signal is not detected, and LIGO is omitted since it does not detect acceleration. DECIGO is able to

constrain acceleration rather well despite the relatively short signal duration due to the high SNR. When

LISA detects the signal, the acceleration constraints are strong, as to be expected, since the acceleration

over long duration signals builds up significant phase offset. The green marks are a duplicate of the non-

accelerating signal models, as in Figure 7.1. Interestingly, we see that on expanding the model to include

acceleration, coalescence time is improved. We saw the same effect on coalescence time by extending

the model to EdGB gravity in Chapter 7, and surmise that this could be due to similar intricacies of the

distribution as described in Section 7.2.2.1.
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8.1.2 Linear acceleration

In a gradual extension of the model, we now include a second acceleration parameter

to model acceleration as a linear function of time. The MPA plots are given in Figure

8.4. Immediately we notice that the addition of the 4 year LISA signal to LIGO fails to

locate the signal in LISA; the increase in the number of templates caused by introducing

another parameter and a new term in the phase at −8PN (see Sections 5.6 & 6.2.2) in-

creases the LISA SNR threshold for this multi-band analysis beyond the SNR of the LISA

signal. For this reason, we have increased the duration of the signal to 10 years in LISA

for the LISA+LIGO analysis, in order to have a posterior for comparison defined by a

network that does not include DECIGO. However, one does not need to increase the du-

ration of the LISA signal when DECIGO forms part of the network; the strong parameter

constraints of DECIGO make it easier to dig into the LISA noise.

The DECIGO+LIGO posterior does not feature because the posteriors demonstrate

0.4 0.0 0.4

A

8

0

8

B

1e 10

8 0 8

B
1e 10

Figure 8.3: The corner plot of the posterior for the low-mass system given the linear accelerationmodel in

DECIGO+LIGO, marginalised onto the parameters, (𝐴, 𝐵). The two acceleration parameters are strongly

degenerate (within the prior ranges) due to the short signal length which does not allow for much phase

offset to accrue, and thus does not allowmuch information on acceleration to be captured. The signals are

present in DECIGO for up to a few days, so the rate of change of acceleration must be very high in order

for acceleration to be measurably different between the start and the end of the DECIGO signal; DECIGO

is realistically only generally capable of determining one acceleration parameter.
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Figure 8.4: Marginal precision and accuracy plots for the low-mass, linearly accelerated GR binary. Ex-

tending the model to include a second acceleration parameter raises the LISA(4 year) SNR detection

threshold such that the signal cannot be located in LISA(4 year)+LIGO.We instead display results from the

LISA(10 year)+LIGO posterior, which is able to constrain acceleration extremely well, as expected when

the signal is located with LISA. We also omit DECIGO since only one acceleration parameter is measur-

able in DECIGO alone (see Figure 8.3). The introduction of the second acceleration parameter apparently

severely impacts the sky position, however, this is not realistic since the motion of the LISA and DECIGO

spacecraft has not been fully modelled, and these motions are expected to help to constrain the sky posi-

tion; the timescale of the induced modulations of the waveform from this motion will be not at all, or very

weakly, degenerate with acceleration of the source. Again, coalescence time is improved by including 𝐴

and 𝐵, see caption of Figure 8.2 for discussion.
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the fact that only one acceleration parameter can be picked out; this is clear in Figure

8.3 showing that parameters 𝐴 & 𝐵 are strongly degenerate over this prior range. Note

the prior ranges on 𝐴 & 𝐵 are large as compared to the constraints shown in Figure 8.4

provided by LISA, and already with this range the posterior takes a considerably long

time to converge, likely due to this extremely thin mode. It is likely that only a constant

acceleration is detectable in DECIGO for the majority of sources despite the very large

SNR, due to the signal’s short duration of 11.8 days. For non-linear acceleration to be

detectable, it must be of a very large (relative) amplitude to change the acceleration con-

siderably in a few days. For many sources, it is reasonable to say that DECIGO is able

to measure the approximately ‘instantaneous’ acceleration of the source in the DECIGO

band. In Figure 8.4 we can see that the chirp mass constraints suffer slightly from the

inclusion of the acceleration parameters, and the sky position constraints fromDECIGO

are almost completely lost. However, the detector modelling only includes a Roemer de-

lay which, for a short signal duration, can be easily understood as being absorbed into

the source acceleration parameters. A proper modelling of the ‘tumbling’ motion of the

DECIGO spacecraft, which may happen on the order of a day, should help to break this

degeneracy, restoring good sky localisation.

8.2 ‘High-mass’ binary with acceleration

We will now use the high-mass binary to verify the estimate of the expected detectable

(constant) acceleration. With the signal properties from Table 7.5 and equation (4.42),

we would prudently include acceleration in the model of the high-mass system with 10

years in LISA for |𝒶| ≳ 5.2×10−7ms−2. Again, we expect to detect accelerations a factor

of 10 greater that this, at |𝒶ℳc∶𝜒ef f | ≳ 5.2 × 10−6ms−2, due to mass-spin degeneracy [26].

This expectation again is decidedly consistent with the results we obtained, shown in

Figure 8.5.

8.2.1 Constant acceleration

The same analysis of extending the model to include a constant acceleration parameter

is repeated here, for the high-mass system. We display theMPA plots in Figure 8.6. LISA

on its own is able to easily locate the signal and constrain the acceleration, and performs
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around two times better than the low-mass system in relation tomulti-detector networks

(i.e., adding another detector for the high-mass system helps to constrain the accelera-

tion half as much as adding another detector to the low-mass system), which is simply

accounted for due to the high-mass signal being observed for around 2.5 times longer

than the low-mass system.

DECIGO on its own constrains the low-mass acceleration around 500 times better

than the high-mass system. But notice we also have that the expected detectable acceler-

ation for the high-mass system in DECIGO is |𝒶ℳc∶𝜒ef f | ≳ 0.95m s−2. The ratio of this to

the expected detectable acceleration of the low-mass system (in DECIGO alone) as com-

puted above is ∼ 530. Thus, although equation (4.42) breaks down for very high SNRs

where the SNR dominates control of the variance, the relative expected detectabilities of

the accelerations of different binary systems (at some given SNR) still appears to remain

accurate, as one might have anticipated. As we saw for the low-mass system in Section

8.1.1, for the high-mass system in DECIGO there is a fairly strong positive correlation

of the acceleration with the chirp mass and effective spin, and negative correlation with

the mass ratio. There are no such clear correlations in LISA.
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Figure 8.5: Marginals of the posterior of the high-mass system in LISA(10 year)+LIGO as a function of

(constant) line-of-sight acceleration of the binary. The signal is generated by an accelerating binary, but

the model used for defining the posterior does not include acceleration (see also Figure 8.1). We observe

perturbations of the posterior at acceleration magnitudes of around 10−6ms−2, and a strong breakdown

with acceleration magnitudes of 10−5ms−2.
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Figure 8.6: Marginal precision and accuracy plots for the high-mass, constantly accelerated GR binary.

LIGO is omitted since acceleration is not measurable there. Including acceleration parameter𝐴 increases

the uncertainty on masses by around a factor of a few, but with very little effect on other parameter con-

straints.

8.2.2 Linear acceleration

Finally, for the high-mass systems with linear acceleration, the MPA plots are shown in

Figure 8.7. DECIGO alone again is clearly only sensitive to one acceleration parameter

on examination of the posteriors. Marginalised onto the𝐴&𝐵 parameters, the posteriors

show precisely the same degeneracy as that demonstrated in Figure 8.3, thus DECIGO is

omitted from Figure 8.7. Indeed, independent measurement of the two acceleration pa-

rameters is absolutely dependent on the presence of LISA in the network. Notice that, in

all networks, there is very little impact on the parameter constraints caused by including

the two acceleration parameters (besides the chirp mass, which is anyway very strongly

constrained and degenerate with a constant line-of-sight velocity; these extremely pre-

cise details of the chirp mass are not so interesting). This is a fortunate state of affairs
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for the purposes of other scientific pursuits such as localisation (for Hubble parameter

measurement) and population studies.
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Figure 8.7: Marginal precision and accuracy plots for the high-mass, linearly accelerated GR binary. For

the high-mass system, the acceleration parameters are informed by LISAwith high enough SNR to prevent

the posteriors from losing toomuch precisionwhen introducing newparameters (compare to the low-mass

example, Figure 8.4).

8.3 Complete time-delay model

Nowwefinally use the fullymodelledwaveform (as perChapter 4 and the caveats pointed

out in Chapter 6) of a binary in orbit around a supermassive, Schwarzschild black-hole.

The set of results here is limited because of the lack of appropriate priors and the time

required to evaluate the posteriors. With priors set too wide, one faces a great sampling

difficulty as the sampler appears to struggle to locate the primarymode, and convergence
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time is vastly too long1. However, one must wait for the posterior to see if the priors had

been set too narrowly. Using the Fisher information matrix to approximate the range

was unfortunately not reliable (see Section 6.2.1).

We note that the PE convergence times for the non-accelerating models are fast in

general due to the use of the downsampling procedure explicated in Chapter 3. On in-

troducing the extra Keplerian elements, the PE convergence time slowed considerably.

The reason for this unfortunately remains elusive; the likelihood evaluation times were

onlymoderately affected by the extra parameters, and aswewill see, the posteriors them-

selves are not particularly irregular. The state and progress of the sampler seemed nor-

mal throughout the runs and inspection of the likelihood values of the returned posterior

samples appeared to describe a smooth function as one would expect. The dimensional-

ity of the parameter space is certainly a factor, but the slow convergence persisted even

on fixing some or all of the parameters of the binary and reducing PE to the six Kepler

parameters only. We would of course like to fully understand this, but at present we

cannot report further on this here.

With long PE convergence times, the range of results suffered. However, we arrived

at three complete, well-formed posteriors for this section, shown in Figure 8.8 and Fig-

ure 8.9, which display posteriors for two systems we refer to as the ‘nearby’ system and

the ‘distant’ system, respectively. The final posterior of the nearby system took 16.3 days

to converge. This is considered slow, especially since we are using the downsampling

procedure of Chapter 3. Previous attempts of the nearby system posterior took up to 36

days to complete. The final posterior of the LISA+LIGO distant system took 5.5 days

to converge, with previous attempts taking up to 22 days, and this system with the in-

clusion of DECIGO took∼10 days. The convergence times could be reduced in a limited

way by ‘parallelising’ the likelihood evaluations (spreading the computational work over

multiple processors). It is interesting to observe that, very roughly speaking, increasing

the number of time-delay parameters to 𝑛 from zero (𝑛 > 0) increases the number of

Nessai’s likelihood evaluations and rejected samples by a factor of ∼ 𝑛 + 1 (with any

model; constant or linear acceleration, or Kepler time-delays).
1Different samplers were tested for speed. Although dynesty converged relatively quickly, results were

poor in thatmultiple runs on the samedata returned inconsistent posteriors and did not locate the injection

parameters. We continued using Nessai, which, despite being significantly slower, appears to be highly

consistent. This strongly suggests that the posteriors obtained for the results presented here are accurate.
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System 𝛼 (rad) 𝛽 (rad) 𝑇 (y) 𝑀SMBH (𝑀⊙) 𝑒 𝐸0 (rad) 𝑑 (Mpc)

Nearby 0.2 0.2 10.4 4 × 106 0.1435 1.14 400

Distant 𝜋∕2 0.2 10.0 4 × 106 0.1435 1.14 3000

Table 8.1: Updates to Keplerian and distance parameters for two distinct variations (nearby and distant)

of the ‘Orbit 1’ example orbit of Table 4.2.

The nearby and distant systems share the same injection parameters besides the dis-

tance, 𝑑, inclination of the outer orbit, 𝛼, and a slightly different outer orbital period, 𝑇.

For the BHB itself, we use our fiducial high-mass system. The parameters of the outer

orbit are amendments of our ‘Orbit 1’ example, from Table 4.2. The Kepler parameters

and distance are clarified in Table 8.1.

For both systems, around one full outer orbit is captured by a 10-year LISA mission.

We mentioned already that signals contain more information on the Kepler parame-

ters for certain injection parameter values: shorter orbital periods, for example. Then

𝑇 ≈ 10 y ensures the Keplerian parameters are reasonably well constrained; see Sec-

tion 8.4 for further details. The SNR scales inversely with distance, so while the SNR

of the distant system is ∼15 in LISA+LIGO, the SNR of the nearby system is ∼110. We

thus have a fair range of system properties. Unfortunately, it is not possible to use the

low-mass system, since we already saw in Section 8.1.2 that more than one acceleration

parameter renders the signal undetectable in LISA+LIGO. Although DECIGO is able to

lower the LISA SNR detection threshold enough for multi-band analyses with two accel-

eration parameters to locate the low-mass system signal and constrain parameters, it is

not presently knownwhether DECIGOwould provide enough help to do the same given

freedom of all six Keplerian elements. Our early attempts at doing so suggest that this is

not possible.

8.3.1 Nearby system

For the nearby system in Figure 8.8, we find generally excellent constraints on all pa-

rameters. However, some very strong degeneracies remain in the Keplerian parameters,

namely between all three of the𝛼, 𝛽 and𝑀SMBH parameters. This can be understood intu-

itively by considering the Roemer delay, whereby simultaneously increasing the SMBH
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Figure 8.8: Corner plot of fully modelled high-mass system on ‘nearby’ variant of ‘example orbit 1’ (see

Table 8.1), marginalised over orientation, 𝜓, produced with LISA(10 year)+LIGO. The primed parameters

are translated injected parameters with easy to read labels defined such that the injection primed param-

eters, as per Table 7.1 (aside from 𝑇′ defined by 𝑇′ = 𝑇 − 10.4 y) are equal to zero. The nearby system

distance is 𝑑 = 400Mpc, giving a LISA SNR of ∼ 100 and LIGO SNR ∼ 40. The resolution is very good

across the parameter space; the source parameters are recovered well, despite the strong correlation be-

tween 𝛼, 𝛽 and𝑀SMBH. However, the information on the Kepler parameters is strongly dependent on the

source parameters, particularly the period/number of orbits observed by the detector.
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mass and the inclination, and (for this particular system) decreasing the ‘yaw’ results

in a similar line-of-sight acceleration as one obtains from the injection parameters. The

degeneracy is also reinforced by the sinusoidal priors on the inclination, 𝛼, giving prefer-

ence to values of 𝛼 towards 𝜋∕2. The GR effects of the gravitational and Shapiro delays,

and the periastron precession help to break the degeneracies however. Recall from Sec-

tion 6.3 that the modelling of GR effects is incomplete and thus often (including in this

case) the constraints can be expected to be tighter for the complete model.

The sky localisation volume of the nearby system is ∼ 2.3Mpc−3 (90% confidence)

corresponding to ∼ 0.02 potential host galaxies [152] for the binary, and thus there is a

high probability of a host galaxy identification. Such a GW observation with host galaxy

identification would be an excellent result; if we are also able to infer constraints on the

galaxy’s viewing angle [153], then we can update the priors on the Kepler orbit orien-

tation and reanalyse the GW data to obtain an updated posterior. Moreover, with host

galaxy identification and SMBH mass constraints, galaxy property (total stellar mass,

luminosity) [154] and NSC property correlations [118] with the SMBHmass may be ob-

served or tested, aiding in the pursuit of understanding galaxy structure and formation.

If one is able to deduce the location of the binary in its host galaxy (i.e., the semi-major

axis), these observations will also directly and strongly inform binary formation scenar-

ios [111].

By searching over the Keplerian elements at low-frequencies, one also removes a

large factor of the mass-redshift degeneracy: the peculiar velocity of the BHB in rela-

tion to the SMBH. This cannot be measured with LIGO mergers alone, but it is already

encoded in the Keplerian parameters and thus can be measured by LISA in principle

(and in practice, as we have seen, with our nearby and distant fiducial systems). The

host galaxy’s SMBH and BHBs mass, and the BHBs outer-orbit semi-major axis are de-

generate with the redshift (see Section 6.3.3).

8.3.2 Distant system

Considering themoderate SNR of the distant system in LISA+LIGO of∼15 and the large

dimensionality of the parameter space (16 parameters in our reduced model) the poste-

rior we obtain in Figure 8.9 is surprisingly precise. Aside from the chirp mass, which

exhibits strong correlations with 𝑀SMBH, 𝛼 & 𝛽, there is very little correlation between
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Figure 8.9: Corner plot of high-mass system on ‘distant’ variant of ‘example orbit 1’ (see Table 8.1),

marginalised over 𝜓: with LISA(10 year)+LIGO (red) and including DECIGO (blue). LISA SNR ∼ 14,

LIGO SNR ∼ 6 and DECIGO SNR ∼ 6600. The main benefit of including DECIGO here is constraining 𝑞,

𝜒ef f , 𝑡c; Kepler parameters are better constrained by factors ≲ 2. Nevertheless, one still has good recovery

of the source parameters. Aside from distance, the only major difference between the nearby (Figure 8.8)

and distant systems is pitch, 𝛼, of the Kepler orbit. This is enough to significantly change the structure of

the posterior, leaving no hint of general correlations (with the exception ofℳc) between intrinsic binary

parameters and Keplerian parameters.
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the standard binary parameters and the Keplerian parameters (correlations depend on

the injected signal parameters, so this is not to be expected in general). When the effects

of changing two different parameters modify the waveform in very different ways (for ex-

ample, compare the effective spin whichmanifests in the binary’s phase as a polynomial

in 𝜏c, in equation (5.46), to the functional form of the time-delays as shown in Figure 4.4

that encode the SMBH mass) then one can expect those parameters to be highly non-

correlated. Hence, in part, the precision we observe in Figure 8.9 can be put down to the

fact that the injected parameters (in particular a small semi-major axis) make for a signal

model particularly well-suited for defining a precise posterior. Another way to see this

is to consider Fisher information: certain injection parameters yield signals with more

Fisher information/precision on certain parameters. For larger semi-major axis, where

the time-delay modifications become weaker, the precision can be expected to weaken

(and it does, see, for example, Figure 8.13).

The localisation volume is almost exactly the same as for the isolated high-mass sys-

tem, which, as mentioned in Section 7.4.2.1 is roughly 𝑉 ≈ 1.28 × 104Mpc3, and corre-

sponds to hundreds of potential host galaxies [152]. The likelihood of host galaxy iden-

tification appears poor, but as with the results discussed in Section 8.1.2, this posterior

derives from an incomplete detector model that does not account for detector motion,

which should help break degeneracies with the sky parameters and better locate the

source. Recall this system is at a distance of 3000Mpc (∼ 1010 ly); there is a good pos-

sibility of observing a similar system at a smaller distance (and with correspondingly

higher SNR and better sky localisation). Finally, observe that the Keplerian parameters

𝑇, 𝑒, and𝑀SMBH are individually well-constrained, so such GW systems would prove to

be excellent probes of galactic structure and for testing binary formation models.

8.4 Carrier signals modified at low-frequencies

In this section we investigate the possibility of using future deci-hertz and ground-based

detectors to very strongly constrain the ‘standard’ binary parameters (the masses, spins,

location, orientation and eccentricity), with which we acquire precise knowledge of the

earlier part of thewaveform present in LISA as generated by the source, andwhich hence

may be referred to as a ‘carrier’ signal, carrying modulations caused by the environment
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of the emitting binary. These modulations can be used to probe the host environment

of the GW emitter. Given the high SNRs that would be provided by a combination of

DECIGO and other third-generation ground-based detectors like ET, this investigation

approximates a plausible future analysis scenario. Note that while the distance is not

particularly strongly constrained by DECIGO networks, as one can see in Figure 8.6 for

example, thewaveform itself is known very precisely; there is strong degeneracy between

the distance and inclination-angle since these both strongly affect the amplitude, but the
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Figure 8.10: Comparison of the ‘confirmed future detector network’, i.e., LISA+LIGO, Kepler parameter

posterior (i.e., the posterior in Figure 8.9 marginalised onto the Kepler parameters, red) with a poten-

tial future network with an extremely high SNR in ground-based detectors that fix the ‘carrier wave’ (we

approximate all ground-based detector measurable parameters by a delta function), measuring Kepler pa-

rameters by LISA (green). It is possible to acquire orders of magnitude improvements on some Kepler

parameters by improvements in ground-based detectors alone.
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amplitude itself is very well constrained: the carrier wave (including at earlier times, i.e.,

in the LISA band) is thus knowable, in principle, to high accuracy.
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Figure 8.11: Superimposed posteriors (marginalised over period) of systems with ground-based detector

measurable parameter posteriors approximated as a delta function, for orbits of various periods. For a 10

year signal, the 5, 10 and 20 years periods capture 2, 1 and 0.5 full orbits, respectively. This demonstrates

how signals with shorter periods carry more information on the Kepler parameters, as well as the strong

and intricate dependence of the structure of the posterior on the source parameters.

The improvements this makes to the Keplerian elements posterior is shown in Fig-

ure 8.10, in a direct comparison to the LISA+LIGO posterior marginalised over the non-

Kepler parameters. Of particular importance are the SMBH mass, eccentricity and pe-

riod (or semi-major axis), which are better constrained roughly by factors of 10, 2 and 2,

respectively, since these parameters inform the populationmodels and formation scenar-

ios. If the host galaxy is located, the angular parameters 𝛼 & 𝛽 can be used to constrain
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the viewing angle.

In fact, we can likely do significantly better than this. Recall that DECIGO is still

strongly sensitive to an ‘instantaneous’ acceleration (a single acceleration parameter, see

Figure 8.3), thus, as well as knowing the carrier wave, we shall also know its accelera-

tion at a given ‘instant’. This has not been included in the model generating the known

carrier wave posterior in Figure 8.10; all the acceleration is assumed only measured by

LISA. We can interpret this extra constraint as essentially selecting a thin ‘slice’ through

the posterior in Figure 8.10 of those parameter values consistent with the instantaneous

acceleration measured by DECIGO. This could potentially lead to a much tighter con-

straint on the Kepler orbit parameters.
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Figure 8.12: Marginal precision and accuracy plots for LISA posteriors of Kepler parameters (from known

carrier wave signals) for different values of ‘pitch’, 𝛼. The red points (with PAR>1) for 𝛼 = 0 are to be

expected, since the prior on 𝛼 is sinusoidal and excludes the injected 𝛼 = 0. The other parameters are

fixed as ‘Example Orbit 1’ (see Table 4.2): these are not averages over orientations so we cannot draw

general conclusions, however, this provides amodicumof evidence suggesting that the errors on theKepler

parameters are only weakly dependent on the pitch.
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Figure 8.11 gives an example of posteriors as a function of the Kepler orbital period,

and shows just how great a difference in parameter constraints is given by binaries in

close orbits around the SMBH for a given signal length (the important factors in con-

straining the parameters, however, are the number of orbits captured by the signal and

the SMBH mass, see Figure 4.7). It also demonstrates how vastly varied the (zero noise

realisation) posteriors are, as functions of the source parameters.

Using our high-mass system as the carrier signal, MPA plots are shown for the same

orbit (with period 𝑇 = 10 y) for varying inclination angles 𝛼 in Figure 8.12. Generally

speaking, as well as smaller values of the semi-major axis, 𝑎, (or equivalently the period,

𝑇) describing a more rapidly changing time-delay, so does a smaller outer orbit incli-

nation angle, 𝛼 (see Section 4.2.2). However, whilst not much is yet known about the

prior on 𝑎 (or 𝑇) since this depends on population models, the prior on 𝛼 is sin(𝛼), fol-

lowing the assumption of isotropy. Thus, the parameter constraints one acquires from

the posterior do not simply reflect the degree to which the waveform depends on 𝛼, as

the prior also contributes. For our fiducial system and its variations shown in Figure 8.12

then, there is indeed not as great a variability in parameter constraints as onemight have

initially supposed.

8.5 Approximating the time-delays

In Section 4.2.4 we discussed the possibility of describing the Kepler orbit and associated

GR time-delays by a reduced parameter model (RPM). In particular, we divided the Ke-

pler parameter space𝒦 into four regions, each of which consisting of those points of the

parameter space where the true time-delays (over a fixed signal duration) either must be

fully modelled (𝒦6), or for which a polynomial approximation of the time-delay is in-

distinguishable from the true time-delay (𝒦𝑃1 ,𝒦𝑃0 ,𝒦𝑃zero). We will put these time-delay

approximants to the test here, by using LISA datasets defined using the full time-delay

signal model, but searching for the signal using the various approximants we have de-

fined. We will use our high-mass fiducial BHBwith the ‘Orbit 1’ Kepler orbit of Table 4.2

(with varied semi-major axis) observed by LISA+LIGO. In Figure 4.7 we can see that the

boundaries between the regions of validity of the various approximants are intersected

by a line of decreasing semi-major axis. We therefore produce posteriors defined by our
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Figure 8.13: Marginals of the posteriors produced with fully modelled time-delay data and model (cor-

responding to region 𝒦6; see Section 4.2.4), marginalised over semi-major axis 𝑎 and other parameters

for clarity. We use the high-mass system and Example Orbit 1 (see Table 4.2). Notice that the variance of

the chirp mass increases as the semi-major axis decreases already by 100 pc, despite unreasonably tight

uniform priors on the Keplerian elements and chirp mass (the tight 𝛽 and𝑀SMBH constraints at small 𝑎

are likely due to having tight priors onℳc and are not realistic). The unreasonable priors were required in

order to acquire results in a practical time. More appropriate (wider) priors would only further decrease

parameter constraints however, thus it is reasonable to state that the constraints on the intrinsic binary

parameters start to degrade at around 100 pc.

different model approximants as functions of the semi-major axis to find the point at

which they break down, and compare this to predictions.

We first produce the posteriors and plot the marginals of the fully modelled search

in Figure 8.13. One might say this is the ‘correct’ or exact approach, since the signal

is generated by the same model as the templates that are used in the search. It is very

important to point out that all posteriors that rail up against the bounds in the follow-

ing figures are railing up against the priors. This is especially important in Figure 8.13,

since the priors on the Keplerian elements are unreasonably tight, artificially making

the posteriors far too constrained. This was necessary due to the long PE convergence

times (see previous section for more details). The posteriors cover all 16 parameters of

our fully modelled signal and were marginalised over some parameters for clarity. De-

spite the very tight priors (especially on the Kepler parameters) we can still see behaviour

pertinent to our investigation; the chirp mass constraints begin to degrade as the semi-

major axis decreases. This occurs at around 𝑎 ∼ 100 pc. With more appropriate priors,

we would see greater degradation. Note that the improvement in the constraints on 𝛽

and𝑀SMBH as 𝑎 decreases is in large part a product of the tight priors onℳc: the posteri-

ors are not reliable. To summarise, we have lower-bounds in Figure 8.13 on, for example,
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the standard deviations of themarginals. The truemarginals should bewider, yet we still

see that chirp mass constraints degrade at 𝑎 ∼ 100 pc. Therefore we can also expect that

with more appropriate priors the chirp mass constraints degrade at 𝑎 ≳ 100 pc.

We now generate the data with the fully modelled time-delays, but search for signals

using an unmodified signal model (i.e., not modelling time-delays). The result is shown

in Figure 8.14, and we can see immediately that the posteriors maintain their structure

down to 𝑎 ∼ 10 pc, and indeed only showing the beginnings of variation at 𝑎 ∼ 1 pc; the

unmodelled time-delay analysis in this respect appears to significantly outperform the

fully modelled analysis, even with its tight priors. This highlights the potential effective-

ness, for the purposes of PE, of devising and using an optimal model.
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Figure 8.14: Marginals of the posteriors produced with fully modelled time-delay data but with no time-

delays present in the templatemodel for parameter estimation (corresponding to region𝒦𝑃zero ; see Section

4.2.4). We use the high-mass system and Example Orbit 1 (see Table 4.2). There is noticeable variation

appearing as the semi-major axis decreases to around 𝑎 = 1 pc. One can acquire better precision and

accuracy on the intrinsic binary parameters than using the fully modelled time-delay model (as in Figure

8.13), thus one could use the simpler model for more intrinsic binary parameter information until the

semi-major axis is approximately 1–10 pc. This is broadly consistent with Figure 4.7, where we see that

𝜕𝒦𝑃0(𝑀SMBH = 4 × 106𝑀⊙) ≈ 5 pc.

Ultimately, one requires a model selection analysis to compare the performance of

the differentmodels. Unfortunately, since a proper treatment ofmodel selection requires

posteriors we do not currently possess, this falls beyond the scope of this thesis2. How-

ever, whilst the non-acceleratedmodel demonstrably performs well (to minimum values
2Although Nessai approximates the evidence of the data given a model (required to compute a Bayes

factor) as part of the process of nested sampling (see Section 2.4.2), it only evaluates the integral within

the prior ranges supplied, and not over the whole parameter space as is required in the definition of the

evidence. The evidences returned are thus not suitable for model selection, especially between models

with different parameters.
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Figure 8.15: Marginals of the posteriors producedwith fullymodelled time-delay data, with time-delays in

parameter estimation modelled as constant accelerations (corresponding to region𝒦𝑃bf0
). The breakdown

in the posterior occurs at around 0.04 pc, again consistent with Figure 4.7 which has 𝜕𝒦𝑃1(𝑀SMBH =

4 × 106𝑀⊙) ≈ 0.25 pc.
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Figure 8.16: Marginals of the posteriors produced with fully modelled time-delay data, with time-delays

in parameter estimation modelled as linear accelerations (corresponding to region𝒦𝑃bf1
). The breakdown

in the posterior occurs at around 0.01 pc, again consistent with Figure 4.7 which has 𝜕𝒦𝑃6(𝑀SMBH =

4 × 106𝑀⊙) ≈ 0.06 pc.

of 𝑎), we can only know that it performswell due to having full knowledge of the injected

signal. Further, clearly we already knowwhat the correct model is, so for computing the

Bayes factor, say, the prior odds are absolutely dominated, yielding a probability of 1 that

the full Kepler time-delay model is correct. But we are interested in models that can

reproduce the waveform indistinguishably from the true model in as few parameters as

possible in order to minimise the posterior evaluation effort and maximise the informa-

tion on the binary parameters (by removing degeneracies with the Kepler parameters).

In practice, by examining Figure 8.14, this appears to be feasible. We note that mod-

els that cannot accurately reproduce the waveform will have poor fits to the data and

correspondingly lower maximum likelihood values. This provides an easily accessible

measure of goodness of fit of a model; maximum log likelihood values for the evaluated

posteriors are shown in Table 8.2.
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Themarginals of posteriors generated by searchingwith a constant accelerationmodel

are plotted in Figure 8.15, where the posterior appears to start breaking down at around

𝑎 ∼ 0.06 pc, and the marginals of posteriors generated by searching with a linear ac-

celeration model are plotted in Figure 8.16, with posteriors breaking down at around

𝑎 ∼ 0.01 pc. The maximum log likelihoods found by the sampler for these posteriors are

shown in Table 8.2. Therefore in practice we have been able to dig a little deeper into

Number of time-delay model parameters

𝑎 (pc) 6 (control) 0 1 2

1 × 10−2 -4.32 -24.10 – -32.17

2 × 10−2 – – -46.54 -5.02

3 × 10−2 – – -15.46 -4.50

4 × 10−2 – – -8.73 -4.68

5 × 10−2 – – -4.79 -4.29

6 × 10−2 – – -4.24 -4.27

7 × 10−2 – – -4.25 -4.44

8 × 10−2 – – -3.88 -4.44

9 × 10−2 – – -4.22 -4.36

1 × 10−1 -4.19 -76.29 -4.40 -4.22

1 × 100 -4.16 -4.30 – –

1 × 101 -4.21 -4.18 – –

1 × 102 -4.16 -4.38 – –

1 × 103 -4.10 – – –

1 × 104 -4.16 – – –

Table 8.2: Maximum log likelihoods sampled by Nessai for all time-delay models. The ‘control’, or fully

modelled time-delays described by the six Keplerian parameters have very similarmaximum log likelihood

values (recall we are using zero noise realisations) for any semi-major axis, 𝑎, as the sampler is always able

to closely match the injected signal with a model template. The approximants, on the other hand, are able

to match the signal accurately over a limited region of the parameter space. As one decreases 𝑎, there

are quite clear jumps in the maximum log likelihoods to lower values, where the model cannot very well

match the injected signal (red numbers). The jumps correlate strongly with the visual break-downs in the

posterior marginals in Figures 8.14–8.16. Some peculiar values are highlighted (light blue background);

these log likelihood values are unexpectedly high, the reasons for which are not clear, but may be an

artefact of the downsampling procedure being employed.
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smaller semi-major axes than those suggested in Figure 4.5 (we can allow IADs up to

30m s−1 rather than the 3m s−1 plotted, due the mass-spin degeneracy as mentioned in

Ref. [26]). We cannot make a direct comparison to Figure 4.7 since the alignments of the

SMBH, binary and observer are slightly different between the systems analysed in that

figure and the results evaluated in this section, but there is a good order of magnitude

agreement in the range of validity of the various approximants. Thus it appears, from

the results of this preliminary investigation, that one can acquire better binary parame-

ter constraints by using the time-delay approximants for the corresponding regions𝒦6,

𝒦𝑃bf1
,𝒦𝑃bf0

&𝒦𝑃zero .

8.6 Modified gravity with acceleration

For our final posterior analysis, we include both a single (constant) acceleration param-

eter and the EdGB modified gravity parameter as free parameters of the model. The

high-mass fiducial system is used as the base binary and the signal is observed by the

5 0 5

A
1e 6

2.5

0.0

Ed
GB

1e 6

2.5 0.0

EdGB 1e 6

Figure 8.17: Corner plot of the high-mass, isolated GR binary posterior, generated with model search-

ing simultaneously over a constant acceleration, 𝐴, and EdGB gravity, 𝜁EdGB, marginalised onto the 𝐴–

𝜁EdGB plane, using LISA+LIGO+DECIGO (recall that DECIGO is required to provide useful constraints

on 𝜁EdGB; see, for example, Section 7.2.2.1). There is strong negative correlation for small values of 𝐴 and

𝜁EdGB, highlighting the importance of correctly accounting for acceleration in modelling; one may other-

wise arrive at incorrect conclusions about EdGB gravity (or other modified gravity theories: see Section

8.6).
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LISA+DECIGO+LIGO network with its very high SNR ∼ 6600, noted in Table 7.5. We

mentioned the potential degeneracy between the acceleration and modified gravity pa-

rameters in Section 5.6 and this is borne out clearly in Figure 8.17: themarginalisation of

the posterior onto the 𝐴–𝜁EdGB parameter axes; we observe a strong negative correlation

between the constant acceleration and EdGB parameters. Note that for this posterior, the

sky position was overconstrained in the priors and is therefore roughly consistent with

a signal originating from a binary with the host galaxy having been identified. Thus, if

one neglects modelling acceleration when it is not known that acceleration is negligible,

one risks obtaining a false positive result for EdGB gravity, and vice versa.

8.7 Discussion

The majority of results presented in this chapter derive from the high-mass fiducial sys-

tem; the high-mass GW sources are potentially rich sources of information for both prob-

ing galactic environments and testing alternative theories of gravity. We have seen in

Figure 8.9 that even for relatively distant sources, one is able to obtain quite impres-

sive constraints on the Keplerian elements using planned future detector networks (i.e.,

LISA+LIGO, where LIGO shall be superseded by more sensitive ground-based GW ob-

servatories). However, those constraints are heavily dependent on the actual orbital pa-

rameters themselves, so an element of good fortune is required to observe such ideal or

‘golden’ signals carrying abundant information. One can expect the Keplerian elements

to be generally well-constrained when the orbital period is of order the signal duration

as demonstrated in Figure 8.11 (aside from some special cases, such as when the axis

of rotation of a circular orbit coincides with our line-of-sight to the galaxy) since small

changes in the parameters are not as easily absorbed into other parameters as when one

only sees a small fraction of the orbit, that is, when the period 𝑇 ≲ 𝑇obs, where 𝑇obs is

the signal duration. By equation (4.14), we are then limited, roughly, to acquiring strong

constraints on the Keplerian elements by

𝑎 ≲ (
𝐺𝑀SMBH𝑇2obs

4𝜋2 )
1∕3

. (8.3)

so that for a given 𝑀SMBH, there is an approximate upper limit on the semi-major axis

of the orbit, which may lead to SMBH mass dependent time-delay model selection ef-
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fects which should be taken into consideration when using the constraints on the Kepler

parameters to inform galaxy structure models. One also obtains an approximate maxi-

mum SMBH mass for which Kepler parameters of an orbiting binary can be measured

for a given signal duration, by taking the shortest orbital period to occur at the ISCO ra-

dius of the SMBH, defined by 𝑅ISCO = 6𝐺𝑀∕𝑐2 [26]. Substituting this for the semi-major

axis, we require

𝑀SMBH ≲ (
𝑐
√
6
)
3
𝑇obs
2𝜋𝐺

≈ 6.9 × 1011𝑀⊙ ,

for measuring Kepler parameters of 10 year signals. No known SMBH is as massive,

so this limit does not rule out potential ability to measure BHB time-delays from any

galaxy. Since binaries at small semi-major axes may reside in accretion disks, binaries

on eccentric orbits of SMBHsmay also provide potential to probe the accretion disk den-

sity profile, allowing one to test various models via model selection analyses. For orbital

periods 𝑇 ≳ 𝑇obs, the time-delay parameters tend towards becoming nuisance parame-

ters that somewhat spoil our PE analyses; we shall be limited in the conclusions we can

draw from these detections about the environments of galaxies with lower mass SMBHs,

or from BHBs with wider orbits. However, we saw that the time-delay approximants

introduced in Section 4.2.4 can minimise the degree to which posteriors are ‘degraded’

(whilst simultaneously speeding up the PE process due to the lower dimensionality) as

a result of removing degeneracies between the Kepler and the binary parameters.

For the high-mass systems, the low SNR in LIGO does not pass the detection thresh-

old for LIGO alone of SNR∼ 8. However, future ground-based detectors, in particular

ET, scheduled to commence operations in 2035 with a 50 year lifetime, and thus operat-

ing at an appropriate time to capture mergers of the inspirals in LISA, should bring the

noise floor LIGO currently provides down by a factor of a few, and with more sensitivity

to lower frequencies. Thiswill greatly increase the SNR of our high-mass fiducial system,

making it easily detectable in ET alone. This is important since the parameter space for

time-delayed systems is extremely large, particularly considering searching for coales-

cence times within a few decades, making it difficult to find signals in LISA alone. With

a detection in ET, one will know that the signal exists in LISA and searches (using the

ET posterior as a prior for LISA) using the various time-delay models will be tractable.

Without an ET detection, one may have a troublesome time locating a signal in LISA,

since the priors on the coalescence time are strictly unbounded.
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Analysing signals of low-mass systems is clearly more difficult due to the very low

SNRs one can expect in LISA.We saw that, for a 4 year LISA signal in a detector network

with LIGO, only a constant acceleration model yielded a detection. If a second acceler-

ation parameter is modelled, the LISA SNR detection threshold increases such that the

signal can no longer be found in LISA (although a 10 year LISA mission successfully lo-

cates the signal). Supposing a low-mass signal’s time-delays require a linear acceleration

(that a constant acceleration model is not suitable), then it would not be detected at all

in a 4 year LISA signal using any model. However, with a merger detected in LIGO, we

know that the signal must be present in LISA. Then a non-detection itself can be help-

ful; for a detection in LIGO, one has two possibilities: a detection in LISA, in which case

both the eccentricity and acceleration are likely low, thus preferring field formation of

the binary, or non-detection in LISA, where the eccentricity [144] and/or acceleration

are likely non-negligible, thus preferring dynamical formation.

Including DECIGO in the network obviously significantly strengthens all parame-

ter constraints, either directly, or by lowering SNR detection thresholds. The effects of

DECIGO on posteriors for time-delayed signals is similar to that we saw for the poste-

riors of isolated binaries in the previous chapter, with good sky localisation and host

galaxy identification potential for binaries, given they are close enough. However, in the

fullymodelled time-delay posterior, although theKepler parameters are significantly im-

proved, there is a trade-off in that the sky localisation constraints are degraded. Being

that the signal only exists in DECIGO for ∼ 0.52 days (see Table 7.5), the detector’s mo-

tion, modelled as being stationary in Earth’s reference frame, can easily be degenerate

with Kepler parameters that replicate the time-delays on the source side, rather than

the detector side. Properly modelling DECIGO and its base station’s motions may help

break those degeneracies however (although the details of the DECIGO spacecraft, and

the mission itself, are not yet confirmed), and without much of an effect on the other

parameter constraints, due to the very high SNR.
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Chapter9
Final Remarks and Outlook

Multi-band GW data analysis has far-reaching potential applications and benefits for as-

tronomy, cosmology and fundamental physics. A primary aim of this thesis has been to

make progress in revealing features of the posterior probability distributions of multi-

band signals, and the expectations one can reasonably hold about future multi-band de-

tector network data analysis.

As preparation for our envisaged analyses of long-duration LISA signals (i.e., those

with very large datasets), we first had to bypass the bottleneck of computing time and

resources at the parameter estimation stage. We proposed and tested a procedure ap-

plicable to simulations of the real-world data analysis setting to drastically decrease the

computing time required to produce posteriors. This was achieved in Chapter 3 and

found to be effective, reducing the likelihood evaluation times and thus PE convergence

times by factors of hundreds to thousands (as compared to our estimates of the frequency

domain likelihood evaluation times) whilst reproducing the likelihood function to high

accuracy. This relatively fast approach to estimating posteriors allowed for large-scale

analyses, such as high dimensional PE and detailed inquiry of parameterised families of

posteriors, for example, defining and evaluating posteriors as functions of the detector

noise amplitude (equivalently, signal SNR), or of one of themodel’s injection parameters,

as we did throughout Chapters 7 & 8.

Although this downsampling procedure is fast and accurate, the scope of its validity is

not very well understood; it was developed for and tested on signals that are slowly evolv-

ing, a property that was only ever loosely defined. Moreover, the reasons determining
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the optimal downsampling rate (or optimum number of samples) are unclear. Further

investigations to clear up these issuesmay prove to be enlightening and reassuring, espe-

cially in terms of allowing for more general applications. However, for our BHB systems,

the performance of the results of applying the downsampling procedure were extremely

consistent throughout all of the analyses presented in this thesis, including for the high

dimensional (15 dimensional) LISA posteriors. As far as the study of slowly evolving

waveforms in LISA goes (for data containing a signal from a single source), there does

not presently appear to be any pressing requirements or practical advantages for further

investigations of these features and dependencies of the downsampling procedure.

Wehave investigatedmodelling expectations and requirements for long-duration (the

lower-frequency part of low to intermediate mass BHBs) binary signals, detectable, in

principle, by LISA. As soon as one includes the inspiral part of a CBC observed by LISA

in the analysis of the merger observed by LIGO, the number of potential detectable envi-

ronmental effects jumps from zero to many; the mergers in LIGO last seconds and arise

from a small spacetime region with an effectively constant background geometry (as if

emitted from a single point), whereas the inspiral signals in LISA lasting a few years are

emitted along a curve through spacetime. This extra dimension provides space for sig-

nificant waveform modifications to enter the waveform; we gave a short introduction to

the variety of such modifiers in Section 4.1.

Although it is important to develop a comprehensive understanding of the interplay

of these effects, we are rather limited in scope in the present work by the vast scale of the

fully modelled problem. We focused on the standard (first-order) GR time-delays that

arise from a binary set in a background Schwarzschild geometry (with important caveats

pointed out in Section 6.3) as these are themost significant waveformmodifiers for some

of the GW sources we expect to observe both with LISA and ground-based observatories.

Since multi-band GW astronomy is touted as being a particularly useful tool for testing

gravity theories, we also included the EdGB and dCS modified gravity parameters to ex-

amine their posteriors and test this assertion.

Our initial set of investigations looked into the isolated binary or ‘first-order’ appli-

cations of multi-band GW data analysis to CBCs, which exclude the GR and orbital mo-

tion time-delays. We confirmed that GW150914-like binaries in (4-year) LISA data, with

SNRs of around 4, sit on or near the detection threshold. If the SNR is high enough,
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one can achieve orders of magnitude improvement on the masses, spins and sky local-

isation, which, with knowledge of host galaxy redshift, could lead to improvements in

the estimate of the Hubble parameter (although many sources need to be observed at

a given distance to alleviate the problem of peculiar motion of the source). However,

many sources are likely to be too quiet for multi-band detection, especially if there is ap-

preciable eccentricity, since this decreases the SNR significantly. We should hope for an

extended LISA mission duration of 10 years to maximise detections.

Unexpected behaviour of the posteriors at very low LISA SNR (SNR below the de-

tection threshold) was discovered in the LISA+LIGO network. The posteriors seem to

‘become worse’ by including the low SNR LISA signal. It appears that this is due to the

‘incorrect’ posterior on the binary’s orientation from LIGO, with strong bias for values

away from the truth. This overpowers and suppresses the primary posterior mode of

LISA, forcing a secondary mode of LISA to become more dominant, preferring values of

time, distance and sky position away from the truth. This is an interesting result that re-

quires a further investigation into when, or even if, it is reasonable to rely on results that

derive from LISA signals with SNRs at and below (or even near) the detection threshold.

We found thatmodified gravity parameters are particularly troublesome for networks

comprising the currently confirmed future detectors, including LISA and LIGO(-like)

detectors. The leading order PN term of the EdGB parameter in the phase depends on

the properties of the binary components in such a way that the modification vanishes

when the component masses and spins are equal. Thus a GR waveform analysed with

an EdGB model gives a strong bias to 𝑞 = 1. Vastly increasing the SNR, or, equivalently,

including DECIGO in the network, strongly suppresses this tendency of 𝑞 → 1 however,

simultaneously suppressing the 𝜁EdGB prior that appears in the posterior when 𝑞 → 1

(the prior permeates through to the posterior when 𝑞 = 1 since 𝜁EdGB is uncoupled from

the signal there). Sub-leading order PN terms in 𝜁EdGB might alleviate this bias as they

should likely retain a presence in the waveform when 𝑞 = 1. The outlook for constrain-

ing EdGB gravity therefore depends far more strongly on SNR than detections in mul-

tiple frequency bands, so for the foreseeable future, unless a detector such as DECIGO

is approved, these constraints shall likely rest with the future planned ground-based de-

tectors. Unfortunately, dCS is even harder to constrain, as we found no improvements

to the currently existing constraints even using DECIGO. However, it is very likely that
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sub-leading order PN terms in the dCSwaveformwill helpmatterswhen they are known.

Introducing additional modifications in the form of time-delays to the model, with

the simplest (detectable) time-delay being (equivalent to) a constant acceleration, we saw

that the LISA+LIGO network was able to recover the parameters well. However, with

a linear acceleration, the LISA SNR threshold for the LISA+LIGO network rose above

the LISA signal SNR for our low-mass fiducial system, and the signal became unrecov-

erable. One must either use a 10 year LISA signal to recover linear acceleration, or else

one can include DECIGO in the network to reduce the SNR detection threshold. For

the low-mass binary undergoing small line-of-sight accelerations with magnitudes less

than around 10−6ms−2 with a 4-year observation period in LISA, the acceleration can

be safely neglected. It then follows that, for the LISA+LIGO network, given a detection

in LIGO and inferring the LISA SNR for ranges of eccentricities and accelerations, the

detection itself (or non-detection) of the signal in LISA can be used to inform formation

scenarios. One can think of this as mitigation of selection effects in LISA via detections

of the mergers in LIGO.

The full extension of the model to the six-parameter (six Keplerian elements) time-

delay clearly also requires significant SNR in LISA, since introducing further parameters

generally increases the SNR detection threshold. We should therefore not expect to be

able to find signals in LISA of a low-mass system with the LISA+LIGO network unless

at very close range. However, the higher mass systems (we primarily studied a 10 year

LISA signal, but at large distance) of course far more often have SNRs which clearly

sit comfortably over the detection threshold. They therefore constrain the constant and

linear acceleration, and the fully extended time-delay models easily, although with the

important caveat that the ability to constrain the Keplerian parameters strongly depends

on the source parameters of the system.

In terms of testing binary formation scenarios and galactic structure, the overall situ-

ation is fortunate in the sense that the proposed scenarios, favouring low-mass binaries

forming both in the field and dynamically, and high-mass binaries only forming through

hierarchical mergers in dynamical environments, generally align with the detectability

expectations of the time-delay parameters across the mass range. Thus, prospects for

discriminating between scenarios are bolstered if the currently expected scenarios are

roughly correct. Moreover, high-mass BHBs are thought to form via BHs migrating to

235



9. FINAL REMARKS AND OUTLOOK

AGN discs, at which place the time-delays are considerable and Kepler parameters more

readily measurable. If this picture is correct, the prospects of observing GWs that can be

used as probes of the Kepler parameters, and thus the AGN disc region are improved.

We also found that, for certain regions of the Kepler parameter space, one can signifi-

cantly enhance the intrinsic binary parameter constraints by using low-order polynomial

approximants to describe the time-delays. The true time-delay imprinted upon a GW

may be very well approximated by, say, a quadratic or cubic in time, requiring only one

or two parameters to describe (since linear modifications in time are not detectable). By

substituting the Kepler model for an approximant, one already benefits from the smaller

dimensionality of the parameter space, but degeneracies of the intrinsic binary param-

eters with the Kepler parameters are also removed. Although the approximant param-

eters are essentially nuisance parameters, one obtains better constraints on the binary’s

parameters whose useful information is still embedded in the signal. Further work on

model comparison and selection is required to determine how well the performance of

these approximants can be known; it is clear to us which models perform well since we

know the injection parameters, but we must of course be able to determine the model

and its parameters of an unknown signal. There are potentially more natural and better

basis functions with which to define a (truncated) series for expanding the time-delays,

for example, Chebyshev polynomials, which may more readily describe the arcs of the

orbits, and some investigation of this may be useful.

The combination of efficient samplingmethods and vast reduction in likelihood eval-

uation time (using the downsampling procedure explicated in Chapter 3) drastically de-

creases the posterior convergence time. Even so, some of the posteriors produced took up

to weeks to converge. Despite our efforts, we were unable to solve this problem; the pos-

teriors appeared as ‘nice’, smooth functions, as one would expect and which can be seen

by inspecting the likelihood values at the returned posterior sample locations (as well as

by ‘manually’ inspecting the likelihood function), and there does not appear to be any

modelling errors in the code. However, the number of likelihood evaluations required by

the sampler increased far more than might be reasonably expected when increasing the

number of free parameters in the model (especially on adding multiple Kepler parame-

ters). Posteriors produced using 9 intrinsic binary parameters completed in a few hours,

with around 5×105 likelihood evaluations, whereas the 15 parameter model required up
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to as much as ∼40 days and 2 × 108 likelihood evaluations. This could be simply due to

the difficult shape of posteriors and high dimensionality, however, this unresolved issue,

likely to do with sampling, requires further investigation.

A shortcoming of the results presented here is that themerger of our fiducial systems

always occurs soon after the signal has left the LISA band. This is of course generally

not the case, and there could be decades between a detectable signal in LISA andmerger

observed on the ground. Such multi-band detections would essentially yield decades

long observation periods, able (in principle) to provide stronger constraints on both the

intrinsic binary parameters and the Kepler parameters; small changes in the parameters

will accumulate, leading to greater modifications over longer periods of time. However,

for a given signal, a greater period between observed inspiral and merger significantly

weakens the possibility of correctly identifying the inspiral’s corresponding merger sig-

nal, since both the average instantaneous SNR and the coalescence time information

decreases as one goes to earlier times in the inspiral.

The BHB science case for the space-based detectors has been somewhat clarified by

the results presented here. If one is interested in galactic nucleus structure and dynamics

then LISA is preferred, as we have seen one can successfully recover the Kepler parame-

ters of high-mass binaries in NSCs. If one is instead interested in very precise measure-

ments of the ‘isolated binary’ parameters, then DECIGO should be preferred, although

it can still measure a constant acceleration and thus constrain formation scenarios to

some degree. Of course BHBs are not the only GW source of interest; a primary target of

LISA, for example, is merging SMBHs, which on its own is highly compelling. For BHB

science, ideally we would have a detector network consisting of all possible detectors,

with LISA launched first, and DECIGO and other ground-based detectors set to be in

operation as the LISA mission comes to an end, optimised to capture as many full IMR

sequences as possible.

From the seemingly endless set of possibilities for both astrophysical GW sources

and future detector network scenarios that can be dreamt up and investigated, we have

named and tested a few. It has been demonstrated that there is great potential in multi-

band gravitational wave astronomy if the right sources are present, potentially simulta-

neously providing insights into galactic structure, cosmology and fundamental physics.

There is still a great deal of work to go in developing and testing the GW models, and
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then whittling down those models, essentially by placing priors on them, derived from

studying galactic structure, binary formation scenarios and dense star cluster dynamics.

We have also seen that parameter estimation can be aidedwith ‘optimisedmodelling’,

but that there remain aspects of the analysis and modelling, and subtle properties of the

posteriors that require careful examination and better understanding. The LISA data

analysis (and hence multi-band analysis) task that remains is immense, but the overall

picture is becoming clearer, and we still have over a decade until the LISA spacecraft

launch and a further few years of data collection before multi-band GW astronomy be-

comes a reality. During this period we can be sure to expect new advances in computing,

approaches to analysis, and an extensive knowledge of gravitational waveforms to be de-

veloped, aswe prepare to enter another newphase in our understanding of theUniverse.

238



AppendixA
Closed-form approximations of IADs

We shall compute very rough approximations of IADs, as defined in equation (4.39). We

ignore all GR contributions to the time-delay and restrict attention to circular orbits only,

so that ∆𝑡tot = ∆𝑡Roemer = 𝑑Roemer∕𝑐, where ∆𝑡Roemer = ∆𝑡Roemer(𝑡, 𝛼, 𝑎,𝑀SMBH, 𝐸′
0). The

circular orbit defines a sinusoidal line-of-sight distance with a period given by Kepler’s

third law of

𝑇 =

√
4𝜋2𝑎3
𝐺𝑀SMBH

, (A.1)

with amplitude (maximal line-of-sight distance from the SMBH) 𝑎, multiplied by a factor

of cos(𝛼) due to the orbit’s inclination 𝛼. The line-of-sight distance (from the SMBH

distance) is thus given by

𝑑(𝑡) = −𝑎 cos(𝛼) sin(𝐸′
0 + 2𝜋𝑡∕𝑇) , (A.2)

and line-of-sight acceleration is thus

𝒶(𝑡) = d2𝑑
d𝑡2

= 4𝜋2

𝑇2
𝑎 cos(𝛼) sin(𝐸′

0 + 2𝜋𝑡∕𝑇) . (A.3)

The section of the orbit we observe of which acceleration we approximate as a first order

polynomial begins at time 𝑡 = 0 and lasts 10 years. Now, rather than computing 𝑃bf1 (𝒶)

precisely, wewill make a rudimentary approximation of it, 𝑃app1 (𝒶), defined to be the line

tangent to𝒶 at the half-way point of the signal (i.e., 5 years through a 10 year signal) as

illustrated in FigureA.1; the blue line shows this linear approximation of the acceleration

over the signal. We have further defined 𝐸′
1∕2 = 𝐸′

0 + 2𝜋 5 y

𝑇
as the ‘mid-signal’ eccentric
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Figure A.1: An example of a full period of line-of-sight acceleration of a circular orbit (black curve), and

an observed section between 𝐸0 and 𝐸1, where acceleration is approximated by the blue line.

anomaly, and 𝐸′
1 = 𝐸′

0 + 2𝜋 10 y

𝑇
as the ‘final’ eccentric anomaly. The equation for our

linear approximation, 𝑃app1 (𝒶) is

𝑃app1 (𝒶) = d𝒶
d𝑡

|||||||𝑡=5 y
(𝑡 − 5 y) + 𝒶(5 y)

= 4𝜋2

𝑇2
𝑎 cos(𝛼) [2𝜋𝑇 cos(𝐸′

1∕2) ⋅ (𝑡 − 5 y) + sin(𝐸′
1∕2)] . (A.4)

Since it would be very useful to dispose of the requirement for the absolute value op-

eration in the integral, we demand further restrictions. Firstly, in order for the integrated

difference between the sinusoidal acceleration and linear approximation not to always

vanish when 𝐸′
1∕2 = 0 (difference between 2 odd functions), we shall compute the dif-

ference for one half of the signal only, for example, in Figure A.1, just the solid blue line

and not the dashed blue line, and compare this to half of the IAD required, that is, for

example, taking roughly half of each side of equation (4.46) to produce the new criterion

𝐼app,half sig1 = ∫
𝑡(𝐸′1)

𝑡(𝐸′1∕2)
d𝑡 |𝒶̌(𝑡) − 𝑃app1 (𝒶̌(𝑡))| ≈ 1.5m s−1 . (A.5)

However, one can then imagine situations in which the signal length is of order 𝑇;

the integrated difference (without taking the absolute value) of the curve and the solid

blue line in Figure A.2a, for example, may well evaluate to around zero, which would

clearly be a poor estimate of the IAD. Taking advantage of the symmetry properties of

the sine function and the problem at hand, we can just restrict the allowed values of 𝐸′
1∕2

to being between 0 < 𝐸′
1∕2 < 𝜋∕2, as per Figure A.2b and simultaneously restricting the
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FigureA.2: An example of a situation in which the integral of the difference between the acceleration and

a linear approximation (without taking the absolute value) fails to accurately approximate the IAD (left)

and an example of a linear approximation to acceleration given the restricted range of parameters (right):

0 ≤ 𝐸′1∕2 < 𝜋∕2, and 𝐸′1 − 𝐸′1∕2 < 𝜋∕2 (right).

signal length such that 𝐸′
1 − 𝐸′

1∕2 < 𝜋∕2. We can then write the integral as

𝐼app,half sig1 = ∫
𝑡(𝐸′1)

𝑡(𝐸′1∕2)
d𝑡 𝑃app1 (𝒶̌(𝑡)) − 𝒶̌(𝑡) ≈ 1.5m s−1 , (A.6)

which, finally, can easily be computed analytically.

We can expect that the many assumptions and approximations made here shall ren-

der this approach rather inaccurate as compared to the fully modelled numerical analy-

sis. However, since the linear approximations are not true lines of best fit, the IAD will

be greater in general and the criteria thus stronger; there is less danger of concluding

that only two parameters are required for points that should in fact be within𝒦6. Most

importantly however, we are now able to derive some relationships that provide, in a

comprehensible way, an approximation of the surface 𝜕𝒦6, so that we have some idea of

when we must use the full six orbital elements in our parameter estimation of a signal.

The approximate form of equation (4.46) shall be written

𝐼app1 ≡ ∫
𝑡(𝐸′1)

𝑡(𝐸′1∕2)
d𝑡 𝑃app1 (𝒶(𝑡)) − 𝒶(𝑡) = 1.5m s−1 . (A.7)

Substituting equations (A.3) and (A.4) and integrating, the condition for which using a
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Figure A.3: The shaded regions show, for various values of 𝐸′1∕2, the combinations of semi-major axis

and SMBH mass that result in an approximate IAD (for half of a 10 year signal) of less than 1.5m s−1 for

𝛼 = 𝜋∕4. There is little dependence on 𝐸′1∕2 due to the fact that, in this range, the periods are on the

order of hundreds to thousands of years; a 10 year signal represents a very small section of that orbit, the

observed acceleration over which thus being approximately linear irrespective of initial position. There

is good agreement with the suggestion from the example systems in Figure 4.5, where linear acceleration

models can be used when the observed fraction of orbit is between 10−2 to 10−3; for 10 year signals, this

corresponds to periods of 103 to 104 years.

linear approximation to describe the acceleration for a 10 year signal may be written

1.5m s−1 ≥ 4𝜋2

𝑇2
𝑎 cos(𝛼) ∫

𝑡(𝐸′1)

𝑡(𝐸′1∕2)
d𝑡 𝐶(𝑡 − 5 y) + sin(𝐸′

1∕2) − sin(𝐸′
0 + 2𝜋𝑡∕𝑇)

= 4𝜋2

𝑇2
𝑎 cos(𝛼) [𝐶( 1

2
𝑡2 − 5𝑡 y) + sin(𝐸′

1∕2)𝑡 +
𝑇
2𝜋 cos(𝐸′

0 + 2𝜋𝑡∕𝑇)]
10 y

5 y

= 4𝜋2

𝑇2
𝑎 cos(𝛼) [25𝜋𝑇 cos(𝐸′

1∕2) y
2 + sin(𝐸′

1∕2)5 y +
𝑇
2𝜋

(
cos(𝐸′

1) − cos(𝐸′
1∕2)

)
] ,

(A.8)

where 𝐶 = 2𝜋

𝑇
cos(𝐸′

1∕2). Figure A.3 gives a depiction of regions (shaded) in which the

linear model of acceleration is safe to use. For orbits with parameters outside of these

regions, the accelerations must be described using the six Keplerian elements. Note,

however, that we have erred on the side of caution at every step (apart from, of course,

ignoring the GR elements of the time-delays); the true 𝒦6 is likely to be a significantly

smaller region.

The estimates we have derived and shown in Figure A.3 are well into the ‘safe’ region
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Figure A.4: An example of a constant approximation to acceleration; the integrated difference over the

dashed blue line gives a poor representation of the IAD, so use the first half of the signal over the given

restricted range, 0 ≤ 𝐸′1∕2 < 𝜋∕2 (solid blue line).

(only as far as ignoring GR time-delay contributions) and perhaps too conservative if one

compares those results to the example orbits considered in Figure 4.5. There, one can

see that linear approximations of the (ascribed) accelerations for all three systems are

appropriate when the observed fraction is anything less than 10−3, which, for a 10 year

signal, corresponds to a period of 𝑇 = 104 y; the red dashed line in Figure A.3.

It is of course much easier to compute the IAD for zeroth order polynomials (𝑃0 =

const.) and for the zero polynomial (𝑃zero = 0), and to evaluate them precisely or esti-

mate them with a higher degree of accuracy. The best-fit constant for a function over

an interval is its average value, which can be computed by dividing its integral by the

interval range. Thus, using equation (A.3), we have

𝑃bf0 = 1
10 y ∫signal

d𝑡 𝒶(𝑡) = 1
10 y ∫signal

d𝑡 4𝜋
2

𝑇2
𝑎 cos(𝛼) sin(𝐸′

0 + 2𝜋𝑡∕𝑇) . (A.9)

However, we still have the problem of finding general analytic solutions of the IAD, since

the integrand contains an absolute value. We again therefore roughly approximate 𝑃0,

setting this equal the value of𝒶 at the mid-point, 𝐸′
1∕2 of the signal

𝑃app0 (𝒶) = 𝒶(𝑡(𝐸′
1∕2)) , (A.10)

then evaluate the difference over the first half of the signal subject to the constraints

0 ≤ 𝐸′
1∕2 < 𝜋∕2, and 𝐸′

1−𝐸
′
1∕2 < 𝜋∕2. That is, similar to equation (A.5), we take the limit
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to be

1.5m s−1 ≈ 𝐼app,half sig0 ≡ ∫
𝑡(𝐸′1∕2)

𝑡(𝐸′0)
d𝑡 𝑃app0 (𝒶̌) − 𝒶̌(𝑡)

= 4𝜋2

𝑇2
𝑎 cos(𝛼) [sin(𝐸′

1∕2)𝑡 +
𝑇
2𝜋 cos(𝐸′

0 + 2𝜋𝑡∕𝑇)]
5 y

0 y

= 4𝜋2

𝑇2
𝑎 cos(𝛼) (sin(𝐸′

1∕2) ⋅ 5 y +
𝑇
2𝜋

[
cos(𝐸′

1∕2) − cos(𝐸′
0)
]
) . (A.11)

See Figure A.4 for an example of this approximation.

The approximation of the zero acceleration IAD condition, given the same range con-

straints on 𝐸′
1 − 𝐸′

0 and 𝑇 as above, should use the second half of the signal (so that the

integrand never changes sign) and is given by

1.5m s−1 ≈ 𝐼app,half sigzero ≡ ∫
𝑡(𝐸′1)

𝑡(𝐸′1∕2)
d𝑡 𝒶̌(𝑡)

= 2𝜋
𝑇 𝑎 cos(𝛼)

[
cos(𝐸′

1∕2) − cos(𝐸′
1)
]
. (A.12)

The ranges of application of the different acceleration models with boundaries given

by the constraint equations (A.8), (A.11) and (A.12) are shown in Figure 4.7. Of course if

one uses a different set of acceleration models (rather than standard polynomials) then

these regions would be enclosed by boundaries defined by different isosurface constraint

equations.

244



AppendixB
Shapiro Delay

Shapiro delay, the relativistic time-delay arising due from the extra propagation distance

due to curvature of spacetime, is formulated in approximate form by considering the

situation pictured in Figure B.1, for null rays propagating between emitter and observer.

Figure B.1: Shapiro’s original problem.

The (one-way) Shapiro delay was computed by Shapiro to be [124] the quantity given in

equation (4.30):

∆𝑡 ≈
2𝐺𝑀SMBH

𝑐3 (ln [
𝑧𝑝 + (𝑧2𝑝 + 𝑟20)

1∕2

−𝑧𝑒 + (𝑧2𝑒 + 𝑟20)1∕2
] −

1
2 [

𝑧𝑝
(𝑧2𝑝 + 𝑟20)1∕2

+
𝑧𝑒

(𝑧2𝑒 + 𝑟20)1∕2
]) , (B.1)

to first order in the Schwarzschild radius 𝑟𝑠 = 2𝐺𝑀SMBH∕𝑐2, where 𝑧𝑝, 𝑧𝑒 and 𝑟0 are,

respectively, the distance between the orbiting body and periastron, the distance “along

the line of flight" between observer and periastron, and the impact parameter.

Figure B.2: Time-delay due to situation of emitter on ‘near-side’ of SMBH.

However, we will also be interested in the travel time-delay caused by proximity to

mass for full orbits of the emitter, including the situation in which the emitter is between

the massive object and the observer, as in Fig.B.2
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We can use the framework already derived by Shapiro by considering breaking up

the path described in the original problem, Fig. B.1, into two parts: the Fig.B.2 part of

the trajectory, and the difference between the two, illustrated in Fig.B.3. That is, Fig. B.1

is equal to Fig. B.3 plus B.2.

Figure B.3: Path difference between near-side and far-side position.

Thepath of the original problemand that of the difference are both described by Shapiro’s

framework, which we can use to calculate the time-delay from the path when emitter

is on the near-side (NS) of the massive object, by subtracting the ‘difference’ from the

‘original’.

We use three symbols to keep track of the different delays. For Shapiro’s original

setup, with emitter on the far-side (FS) as in Fig.B.1, we call the time-delay ∆𝑡FS, for

the case with emitter on the near-side as in Fig.B.2, we call the time-delay ∆𝑡NS, and for

the difference between these delays as in Fig.B.3, we write the Shapiro delay difference

between these paths as

∆𝑡dif f = ∆𝑡FS − ∆𝑡NS . (B.2)

Using (4.33) and the fact that, for ∆𝑡dif f we have 𝑟𝑝 = 𝑟𝑒 ⇒ 𝑧𝑝 = 𝑧𝑒, then

∆𝑡dif f ≈
2𝐺𝑀
𝑐3 (ln [

𝑧𝑝 + (𝑧2𝑝 + 𝑟20)
1∕2

−𝑧𝑝 + (𝑧2𝑝 + 𝑟20)1∕2
] −

𝑧𝑝
(𝑧2𝑝 + 𝑟20)1∕2

)

≈ 2𝐺𝑀
𝑐3 (ln [

𝑧2𝑝 + 2𝑧𝑝(𝑧2𝑝 + 𝑟20)
1∕2

𝑧2𝑝 + 𝑟20
+ 1] −

𝑧𝑝
(𝑧2𝑝 + 𝑟20)1∕2

)

≈ 2𝐺𝑀
𝑐3 (ln [

1 + 2(1 + 𝜖)1∕2

1 + 𝜖 + 1] −
1

(1 + 𝜖)1∕2
)

≈ 2𝐺𝑀
𝑐3

(ln [ 1
1 + 𝜖 +

2
(1 + 𝜖)1∕2

+ 1] − 1
(1 + 𝜖)1∕2

)

≈ 2𝐺𝑀
𝑐3 (ln [

1
(1 + 𝜖)1∕2

+ 1]
2

− 1
(1 + 𝜖)1∕2

) , (B.3)

where 𝜖 ≡ 𝑟20∕𝑧
2
𝑝.

Now we should also take the ∆𝑡FS in the limit as 𝑧𝑒 →∞, a commonly made approx-

imation assuming Earth is far from the source, which simplifies the equation. In that
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case we have

(𝑧2𝑒 + 𝑟20)
1∕2 = 𝑧𝑒 + 𝑟20∕2𝑧𝑒

so that

∆𝑡FS ≈
2𝐺𝑀
𝑐3 (ln [

𝑧𝑝 + (𝑧2𝑝 + 𝑟20)
1∕2

−𝑧𝑒 + 𝑧𝑒 + 𝑟20∕2𝑧𝑒
] −

1
2 [

𝑧𝑝
(𝑧2𝑝 + 𝑟20)1∕2

+
𝑧𝑒

𝑧𝑒 + 𝑟20∕2𝑧𝑒
])

≈ 2𝐺𝑀
𝑐3 (ln [2𝑧𝑒

𝑧𝑝 + (𝑧2𝑝 + 𝑟20)
1∕2

𝑟20
] −

1
2 [

𝑧𝑝
(𝑧2𝑝 + 𝑟20)1∕2

+ 1]) .

We can see that the logarithm diverges as 𝑧𝑒 → ∞. This is due to the nature of gravity’s

long range and occurs from the mathematical procedure of taking the limit (additional

small time-delays accrue as one moves to infinity, still, an infinite sum of increasingly

smaller time-delays may be infinite). Fortunately we can easily get around this techni-

cality, since we are only sensitive to changing Shapiro delays, thus we can simply omit

the constants from the above relation, which then reads

∆𝑡FS ≈
2𝐺𝑀
𝑐3 (ln [

𝑧𝑝 + (𝑧2𝑝 + 𝑟20)
1∕2

𝑟20
] −

𝑧𝑝
2(𝑧2𝑝 + 𝑟20)1∕2

)

≈ 2𝐺𝑀
𝑐3 (ln [

1 + (1 + 𝑟20∕𝑧
2
𝑝)1∕2

𝑟20∕𝑧𝑝
] −

1
2(1 + 𝑟20∕𝑧

2
𝑝)1∕2

)

≈ 2𝐺𝑀
𝑐3 (ln [

1 + (1 + 𝜖)1∕2

𝑧𝑝𝜖
] −

1
2(1 + 𝜖)1∕2

) . (B.4)
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We can use these expressions to find the ∆𝑡NS delay, which is

∆𝑡NS = ∆𝑡FS − ∆𝑡dif f

≈ 2𝐺𝑀
𝑐3 (ln [

1 + (1 + 𝜖)1∕2

𝑧𝑝𝜖
] −

1
2(1 + 𝜖)1∕2

− ln [ 1
(1 + 𝜖)1∕2

+ 1]
2

+ 1
(1 + 𝜖)1∕2

)

≈ 2𝐺𝑀
𝑐3 (ln [

1 + (1 + 𝜖)1∕2

𝑧𝑝𝜖
] + ln [ 1 + 𝜖

2 + 2(1 + 𝜖)1∕2 + 𝜖
] + 1

2(1 + 𝜖)1∕2
)

≈ 2𝐺𝑀
𝑐3

⎛
⎜
⎜
⎝

ln
⎡
⎢
⎢
⎣

1
2𝑧𝑝𝜖

1 + (1 + 𝜖)1∕2 + 1

2
𝜖 + 1

2
𝜖 + 𝜖(1 + 𝜖)1∕2

1 + (1 + 𝜖)1∕2 + 1

2
𝜖

⎤
⎥
⎥
⎦

+ 1
2(1 + 𝜖)1∕2

⎞
⎟
⎟
⎠

≈ 2𝐺𝑀
𝑐3

⎛
⎜
⎜
⎝

ln
⎡
⎢
⎢
⎣

1
2𝑧𝑝𝜖

⎛
⎜
⎝
1 +

1

2
𝜖 + 𝜖(1 + 𝜖)1∕2

1 + (1 + 𝜖)1∕2 + 1

2
𝜖

⎞
⎟
⎠

⎤
⎥
⎥
⎦

+ 1
2(1 + 𝜖)1∕2

⎞
⎟
⎟
⎠

≈ 2𝐺𝑀
𝑐3

⎛
⎜
⎜
⎝

ln
⎡
⎢
⎢
⎣

1
2𝑧𝑝𝜖

⎛
⎜
⎝
1 +

( 1
2
𝜖 + 𝜖(1 + 𝜖)1∕2)(1 − (1 + 𝜖)1∕2 + 1

2
𝜖)

(1 + (1 + 𝜖)1∕2 + 1

2
𝜖)(1 − (1 + 𝜖)1∕2 + 1

2
𝜖)

⎞
⎟
⎠

⎤
⎥
⎥
⎦

+ 1
2(1 + 𝜖)1∕2

⎞
⎟
⎟
⎠

≈ 2𝐺𝑀
𝑐3

⎛
⎜
⎜
⎝

ln
⎡
⎢
⎢
⎣

1
2𝑧𝑝𝜖

⎛
⎜
⎝
1 +

1

2
𝜖(−1 − 3

2
𝜖 + (1 + 𝜖)3∕2)
1

4
𝜖2

⎞
⎟
⎠

⎤
⎥
⎥
⎦

+ 1
2(1 + 𝜖)1∕2

⎞
⎟
⎟
⎠

≈ 2𝐺𝑀
𝑐3 (ln [

1
2𝑧𝑝𝜖

(1 +
−2 − 3𝜖 + 2(1 + 𝜖)3∕2

𝜖 )] +
1

2(1 + 𝜖)1∕2
)

≈ 2𝐺𝑀
𝑐3 (ln [

(1 + 𝜖)3∕2 − (1 + 𝜖)
𝑧𝑝𝜖2

] +
1

2(1 + 𝜖)1∕2
) . (B.5)

The 𝑧𝑝 and 𝑟0 are functions of time and determined by the position of the emitter in

relation to the central mass and the observer. We already found these in fact in (4.10)

and (4.27) where we have

𝑧𝑝 = |𝑧obs| and 𝑟0 =
√
𝑟2src − 𝑧2𝑝 . (B.6)

We need to know when to use ∆𝑡NS or ∆𝑡FS; the sign of 𝑧obs indicates whether the

emitter is on the near-side or far-side of the central mass. Also note that as 𝑧𝑝 → 0,

𝜖 → ∞, where both ∆𝑡NS and ∆𝑡FS tend to

−2𝐺𝑀
𝑐3

ln 𝑟0 .

Thus we can write
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∆𝑡Shap =
⎧

⎨
⎩

∆𝑡FS for 𝑧obs ≥ 0 ,

∆𝑡NS for 𝑧obs < 0 .
(B.7)

Finally, we define the ‘delayed time’ as the Shapiro delayed coordinate time,

𝑡Shap(𝑡)≡𝑡 + ∆𝑡Shap .

Recall from the discussion above (B.4) that we discarded an infinite constant from taking

𝑧𝑒 → ∞. Since the observer is not at an infinite distance, note that this Shapiro time is

an accurate approximation up to an additive constant. The time dilated evolution of the

binary itself is dealt with in the modelling of the gravitational redshift; the Shapiro delay

accounts for the signal propagation time only and not the source evolution.
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