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Abstract

Cancer is one of the primary causes of death worldwide. The hyperthermia cancer treatment
which is used nowadays is very harmful, because it destroys both tumorous and healthy cells at the
same time. Magnetic nanoparticles with different sizes and materials are used to improve cancer
hyperthermia and minimize its side effects by localizing the heat within the tumour only. These
particles destroy both the cancer and tumour cells by transforming the energy of the magnetic
field to heat. The purpose of this thesis is to study the heat distribution in the tumour, which
in turn helps to find the optimal hyperthermia treatment. Also, we aim to study the interaction
between the tumour and surrounding tissues.

In this thesis we derive new systems of homogenised partial differential equations (PDEs)
describing blood transport, delivery of nanoparticles, and heat transport to investigate cancer
hyperthermia driven by the application of the magnetic field applied to nanoparticles. We assume
that the particles are injected into the tumour vessels and then they extravasate to the tumour
interstitial space if they are sufficiently small to be transported through the pores of the vascular
walls. Otherwise, the adhesion between the particles and vessels’ wall is to be considered as
a primary transport mechanism, and the particles cannot be transported from the vessels to the
tumour interstitium. We study the influence of vessels’ geometry as the tumour vessels are not
regular and their tortuosity varies within the tumour. In addition, we investigate the effect of
various injection conditions on the temperature maps. The temperature should be above 42◦C
to destroy cancer cells but for at most two hours to avoid heating the surrounding healthy tissue.
We determine the best magnetic intensity, injection time, wall shear rate, and concentration of
nanoparticles to achieve the above-mentioned condition. To investigate the relation between the
tumour and the surrounding healthy tissue and the impact of the magnetic field on the fluid flow,
we derive a new system of homogenised differential equations which expresses the fluid flow of
the tumour that interacts with surrounding healthy tissue and influenced by a non-homogeneous
magnetic force. The latter is obtained starting from the previously derived differential equations
which in this context represents the mesoscale differential equations. We exemplify the results
for the case of a homogenous magnetic force that is applied in the direction of the mesoscale
cylindrical tumour region.
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Chapter 1

Introduction

1.1 Motivation

Cancer is one of the most relevant diseases that causes death. It is considered as a genetic disease
that develops due to unrestricted, fast, and random division of the cells. According to Uk cancer
research, the number of cancer cases was around 375,400 in 2016-2018 and the number of deaths
caused by cancer was around 167,200 in 2017-2019 [19]. These numbers are growing every
year due to the human life habit [18], and around 40% of people diagnosis with cancer in their
life [137]. Cancer hyperthermia treatment is an example of the strategies that are used to treat
cancer. We concentrate on this type of treatment because of different factors and benefits of
using it as discussed by Espinosa et al. [42]. First, the heat has an impact on the cell nucleus
and proteins as it can inhibit the DNA, RNA, protein synthesis, and chromosomal damage. Sec-
ondly, the response of healthy and tumour tissues to heat is different, because they have different
vascular structure. For example, the thermal dose of 45◦C at 30-60 min improves the blood
perfusion in the healthy cells which causes dissipation of heat and prevents extreme increasing
of temperature. On the other hand, the tumour is less responsive to the heat dissipation due to
its vasculature structure which is hyper-permeable, tortuous, and disorganized. Therefore, it is
possible to increase the temperature of the tumour without influencing the surrounding healthy
tissue. Thirdly, the hyperthermia can also break the collagen fibers which helps to improve the
distribution of chemotherapeutics. Finally, the recent researches show that the hyperthermia
treatment using nanoparticles can lead to cell death without macroscopic rise in temperature.
This can be explained as the high temperature increases within the lysosomes, leading to cell
death. This is very useful to be applied in apoptosis-resistant cancer cells. The most common
nanoparticles that are used in hyperthermia treatment are gold nanoparticles mediated by pho-
tothermal therapy, and magnetic nanoparticles mediated by magnetic field. In the case of gold
nanoparticles, the photothermal NIR (near-infra red) has limitation on the tumour depth that can
be reached [66]. Therefore, this strategy might not be efficient to kill malignant cells uniformly.
As a result, magnetic nanoparticles will be more appropriate to be used in the hyperthermia

1



CHAPTER 1. INTRODUCTION 2

treatment which is the one that we are studying in this research.

The biological system of the tumour consists of different components at different length
scales. The distance between the tumour vessels is very small in comparison with the size of the
tumour. The latter length is also small when we compare it with the whole tissue that consists
the tumour and healthy cells. A complete analysis and solution of such heterogeneous media is
very complicated and not easy to be solved in three dimensions. Therefore, the asymptotic ho-
mogenization technique can be used for porous media and it is applied here to combine different
scales together. This leads to the derivation of a new system of equations at a coarser scale based
on information at a finer scale. In this way the problem is simplified and can be solved in three
dimensions at a reduced computational cost.

In this thesis we discuss different models of cancer hyperthermia treatment using magnetic
nanoparticles which are obtined by means of multiscale homogenisation. To address the models,
we need to study the fluid flow, as well as particles and heat transport. The aim of this work can
be stated in different points as follows.

• Illustrating the distribution of the heat generated by magnetic nanoparticles in the tumour
tissue. Here, we assume that the nanoparticles can be transported between the tumour
vessels and interstitial compartments.

• Identifying the optimal values of different parameters that are related to vessels’ structure,
and particles and magnetic field properties to achieve the required hyperthermia treatment
by considering the adhesion between the particles and vessels wall.

• Determining the interaction between the tumour and surrounding healthy tissue. Here, we
primarily focus on the fluid flow, and provide a basis for future extensions for both drug
and heat transport.

The thesis is structured in chapters as described in the next section.

1.2 Thesis’ structure

In Chapter 1 we introduce the topic and we illustrate the motivation and background for con-
ducting the present analysis.

In Chapter 2 we focus on modelling of cancer hyperthermia driven by the application of
the magnetic field to magnetic nanoparticles. We assume that the particles are interacting with
the tumour environment by extravasating from the vessels into the interstitial space. We start
from Darcy’s and Stokes’ problems in the interstitial and fluid vessels compartments. Advec-
tion–diffusion of nanoparticles takes place in both compartments (as well as uptake in the tumour
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interstitium), and a heat source proportional to the concentration of nanoparticles drives heat dif-
fusion and convection in the system. The system under consideration is intrinsically multiscale.
The distance between adjacent vessels (the microscale) is much smaller than the average tumour
size (the macroscale). We then apply the asymptotic homogenisation technique to retain the
influence of the micro-structure on the tissue scale distribution of heat and particles. We derive
a new system of homogenised partial differential equations (PDEs) describing blood transport,
delivery of nanoparticles and heat transport. The new model comprises a double Darcy’s law,
coupled with two double advection–diffusion–reaction systems of PDEs describing fluid, par-
ticles and heat transport and mass, drug and heat exchange. The role of the micro-structure is
encoded in the coefficients of the model, which are to be computed solving appropriate periodic
problems. The structure of the microvessels coincides with the one implemented and discussed
in [103]. We show that the heat distribution is impaired by increasing vessels’ tortuosity and
that regularization of the micro-vessels can produce a significant increase (1–2 degrees) in the
maximum temperature. We quantify the impact of modifying the properties of the magnetic field
depending on the vessels’ tortuosity.

After we find how the heat is transported in the tumour, we aim to control the heat produc-
tion by finding the optimal hyperthermia treatment using magnetic nanoparticles. Therefore,
in Chapter 3, we describe a novel mathematical model for blood flow, delivery of large size of
nanoparticles, and heat transport in vascularised tumour tissue. The model, which is derived via
the asymptotic homogenization technique, provides a link between the macroscale behaviour of
the system and its underlying, tortuous micro-structure, as parameterised in Penta and Ambrosi
[103]. It consists of a double Darcy’s law, coupled with a double advection-diffusion-reaction
system describing heat transport, and an advection-diffusion-reaction equation for transport and
adhesion of particles. Particles are assumed sufficiently large and do not extravasate to the
tumour interstitial space but blood and heat can be exchanged between the two compartments.
Numerical simulations of the model are performed using a finite element method to investigate
cancer hyperthermia induced by the application of magnetic field applied to injected iron oxide
nanoparticles. Since tumour microvasculature is more tortuous than that of healthy tissue and
thus suboptimal in terms of fluid and drug transport, we study the influence of the vessels’
geometry on tumour temperature. Effective and safe hyperthermia treatment requires tumour
temperature within certain target range, generally estimated between 42◦ C and 46◦ C, for a
certain target duration, typically 0.5 h to 2 h. As temperature is difficult to measure in situ,
we use our model to determine the ranges of tortuosity of the microvessels, magnetic intensity,
injection time, wall shear stress rate, and concentration of nanoparticles required to achieve given
target conditions.

In the previous two models, we just focus on the tumour tissue only, but the tumour in
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reality interacts with surrounding tissues. Also, that will allow us to test the impact of the
optimal values that are founded in the previous chapter on the healthy cells. As a result, in
Chapter 4, new theoretical and numerical investigations are addressed to illustrate the fluid
flow interaction between the tumour and surrounding healthy tissue that are influenced by
inhomogeneous magnetic force. We start from the final macroscale fluid flow system of Al Sariri
and Penta [3] which is considered here as the mesoscale. Moreover, we combine the latter with
the fluid flow in porous media influenced by a body force as discussed by Penta et al. [106] to
find the final macroscale system. We have started with four equations that describe the fluid
pressures in the vessels and interstitial compartments of the tumour and healthy regions in the
mesoscale. However, we end up with two partial differential equations only in the macroscale
in which one equation combines the vessel’s fluid flow of both regions and the other on for
interstitial compartments. The influence of each region is encoded in the value of vessels’
permeability, hydraulic conductivity tensors, and the magnetic forces which can be obtained by
solving the mesoscale systems. We start solving the system by assuming that the magnetic force
is homogeneous and it is applied in the 𝑧-direction. The uniform magnetic force does not affect
the fluid pressures at the macroscale. However, the homogeneous magnetic force has an impact
on the fluid flow.

1.3 Background

1.3.1 Cancer

Tumours are cancerous tissues consisting of different cells which interact with each other by
heterotypic interaction i.e. involving both cancerous and non-cancerous cells and constituents.
Cancer arises from damages in DNA which causes mutations. These mutations later transform
the normal cells to the malignant ones. Also, the mutations increase the proliferation rate and
decrease the death rate of the malignant cell which help the tumour to grow faster than any other
cells. The initial size of the tumour is a few millimeters in diameter and it takes months or years
to exceed this size. The tumour cells receive nutrients from the surrounding. Therefore, the
cells which are close to the surrounding can get the nutrients, but the cells at the center are far
and cannot get adequate nutrients. As a result, tumour angiogenic factor (TAF) will be sent to
the surrounding to produce vessels capable of providing nutrients more uniformly in the inner
regions. When the TAF reaches the endothelial cells, the endothelial cell (EC) produces the
sprouts towards the tumour. These vascular connections help the tumour to get nutrients which
speed up its growing. Subsequently, the malignant cells spread in different parts of the body.

As a result, the cancer cells are characterised by different hallmarks which enable them to
develop and growth in the body. The cancer cells preserve the chronic proliferative signals and
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Figure 1.1: Image of vessels’ structure. The microscale representative capillary Ω𝑐 with Γ is
the curved surface of the capillary branches, while the periodic boundaries are 𝜕Ω𝑐/Γ. The
parameter 𝑟𝑐 is the capillary radius, 𝑙 is the one-sided branch length, 𝜔 is the vessels’ frequency,
𝐴 is the vessels’ amplitude, and 𝑠 is the local parametrisation of the spatial coordinate, such
that 0 < 𝑠 < 𝑙. This figure is reproduced from Penta and Ambrosi [103] with permission from
Elsevier.

avoid the suppressors gens which regulate cell duplication. While normal cells replication is lim-
ited, cancer cells can grow in an uncontrolled way thus producing the tumour mass. In addition,
tumours are capable of obtaining nutrients and oxygen from the angiogenic microvasculature.
Subsequently, the malignant cells spread in different parts of the body, as reported by Hanahan
and Weinberg [57].

The structure of the vascular networks in tumours

The geometry and functionalities of tumour vessels are different from healthy ones as they
are characterised by irregular diameter, leakiness, heterogeneous, abnormal branching pattern
[86], and tortuosity [59]. All of these factors play a role on the angiogenesis, tumor growth,
metastasis, and drug delivery. For the vessels’ leakiness, the size of vessels’ pores has been
reported as approximately 40− 200 nm [121] by means of electron microscopy measurements
for both brain and peripheral tumors, while using intra-vital fluorescence microscopy, the pores’
size for malignant brain was observed to range between 7− 100 nm, and for peripheral tumors
approximately between 200−1200 nm [62]. Penta and Ambrosi [103], and Mascheroni and Penta
[85] discussed the relation between vessels’ geometry (tortuosity) and fluid and drug transport.
They showed that the capillary hydraulic conductivity and diffusion of macromolecules are highly
impaired by tortuosity. They designed the structure of the microvessels as three interconnected
three-dimensional domains (see Figure 1.1), where the center line of each branch is defined by
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the function
𝑓 (𝑠) = 𝐴 sin(2𝜋𝜔𝑠/𝑙),

where A is the amplitude, 𝜔 is the spatial frequency, s is the local parametrisation along the
branch, and 𝑙 is branch length and we have 0 ≤ 𝑠 ≤ 𝑙, [103]. The tumour interstitium is the
domain which is complementary to vessels’ compartment in the cubic cell.
The geometry of the vessels changes by varying the spatial frequency 𝜔 and the amplitude 𝐴
(this latter is varied in fractions of the vessels radius 𝑟𝑐 which corresponds to the radius of the
interconnected cylinder at 𝜔 = 0, or, equivalently, the radius of each of the circular periodic faces
𝜕Ω \Γ).
Penta and Ambrosi [103] performed finite elements three-dimensional simulations of periodic
Stokes’ problems by varying the value of the amplitude and spatial frequency of this microstruc-
ture. In that work, they identify the tortuosity of the vessels with this couple of parameters 𝐴
and 𝜔, and the associated value of the parameters which are affected by these changes. The
parameters affected by changes in the tortuosity are the vessels volume portion, the intersti-
tium volume portion, the microvessels interface area, and the capillary hydraulic conductivity.
Mascheroni and Penta [85] used the microstructure conceived in [103] to obtain the value of
particles diffusivity at varying tortuosity, i.e. by varying the amplitude 𝐴 and spatial frequency
𝜔 along the center line.

In other contexts, the tortuosity of the vessels can be measured using metric distance which is
calculated by dividing the actual vessel path length by the linear distance between the endpoints
[125]. However, this method is less accurate with very high vessels frequency and the sum of
angles metrics (SOAM) can be used in this case. The latter measured by dividing the total angles
in the vessels’ curves by the sum of the path lengths as discussed by Bullitt et al. [17].

Therefore, to enhance the drugs or particles delivery in the tumours, we need to normalize
the vessels which can be achieved by varying vessels size, shape, and branching. Izumi et al.
[67], Jain [68] clarified that VEGF inhibitors, angiogenesis inhibitors, and even herceptin can be
used to normalize the tumour vessels. The vessels normalization decreases the leakiness of the
vessels and the resistance of blood flow which are caused by the vessels’ tortuosity and diameter.
As a result, normalizing the vessels structure improves the blood flow, and drug delivery in the
tumour [86].

Strategies for treating cancer

There are different types of cancer treatment and each of these strategies has advantages and
disadvantages side effects. For example, surgical treatment is used usually to remove large tu-
mour and cryosurgery (i.e. the technique of destroying a tumour by delivering an extremely cold
liquid) is used to treat precancerous or tumour which is not spread to different parts [136]. In
chemotherapy, the anti-cancer drug is administered the tumour as pills, injection, or applied on
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the skin. These chemotherapic methods unfortunately destroy both the healthy and the tumour
cells and cause many side effects like hair loss, vomiting, anemia, and many others. Also,
many researches suggest the use of gene therapy to treat cancer cells. This strategy is aimed at
inhibiting the angiogenesis process (i.e. the sprouting of new blood vessels) to stop the spreading
of the tumour [46].

Hyperthermia cancer treatment is an anti-cancer therapy in which the tumour is exposed to
high temperature causing cell death. The word hyperthermia comes from Greek, ’hyper’ which
means above or over, and ’thermo’, which means hot [130]. Hyperthermia is a type of cancer
treatment which damages the proteins and the structure of the tumour [148]. This strategy is
usually used together with radiation therapy or chemotherapy, because it can reach some cancer
cells which cannot be destroyed directly by the radiations alone. Hyperthermia treatment can
be applied locally or all over the body depending on the type of tumour, size, and location
[25, 26]. There exist three main types of hyperthermia treatments depending on the extent of
the application, that is, whole-body, regional and local [120]. The whole-body hyperthemia
involves heating the whole body using different heat sources such as radio-frequency waves,
microwaves, or ultrasound waves, but there are negative implications for the healthy cells. This
method is reported to be effective for melanoma [26]. Regional hyperthemia commonly used to
heat big selective area like an organ and it requires thermal perfusion during the therapy [43].
Local hyperthermia is the newest method and it is used to destroy the tumour in small selec-
tive area, but it requires a heat source produced from nanoparticles like magnetic nanoparticles
[45]. Hyperthemia efficiency for destroying cancer cells is related to the temperature that can be
reached in appropriate period of time during the treatment without affecting the healthy tissues.
At temperature more than 42.5◦C, the cancer cells have higher possibility to die and their rate of
death rises as the temperature increases [6, 92].

1.3.2 Nanoparticles

Nanoparticles are ultra-fine particles that were discovered in 20th century, and the scientific
description of the metal and optical properties of the nanoparticles was defined by Michael
Faraday in 1857 [133]. However, the accurate measurement and visualization of nanoparticles
was developed by Richard Adolf Zsigmondy in 1914 using dark field ultra-microscopy. These
particles can be categorized depending on their size, origin (i.e. can be nature or anthropogenic),
and their chemical composition (i.e. can be organic or inorganic). Nanoparticles are used to
improve different sensing devices due to their chemical and physical properties [82].
In 1950 and 1960 the first preliminary attempts to use nanoparticles in the context of drug delivery
were made depending on their chemical and physical properties [129]. The latter are related to
the materials used to make the particles, and the relevant examples include copper, zinc, titanium,
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magnesium, gold, alginate, and silver [58]. Nanoparticles have better penetration and low risk
comparing with any other drugs [87]. The nanocarriers (i.e. the drug delivery vectors) control the
releasing of medicine inside the tumour to avoid the toxicity in the surrounding. Nanoparticles
are able to remain in the blood without causing any toxicity. Their sizes should be big enough
to avoid the leakage in the blood and small enough to get away from the macrophages which
exist in the reticuloendothelial system (i.e. part of immune system). These particles also should
have a hydrophilic surface which prevents capturing them by the macrophages. Further, the
nanoparticles have the ability of doing the multifunctional job, so they can carry multiple drugs
at the same time [27]. Moreover, the shape of nanoparticles plays important role on their different
biological properties like drug delivery, deformability, biodistribution, uptake, and toxicity. For
example, the spherical nanoparticles is less toxic, faster, and more easily delivered to the tumour
in comparison with rode or fiber nanoparticles [24, 80]. Also, spherical nanoparticles can flow
through the vessels better than the non-spherical ones [75]. This is due to increased adhesion
between non-spherical nanoparticles and vessel walls.
There are two methods that are used to build the structure of nanoparticles which are bottom-
up approach, and top-down approach. The former is also called construction method which
means that the nanoparticles are made from simple substances like atoms which are converted to
clusters, and finally to nanoparticles [149]. The latter approach is the opposite, as a bulk material
like a complex molecule is destructed to smaller units which are used to make the nanoparticles
using different technique including laser ablation, and mechanical milling [41]. Different shapes
and sizes of nanoparticles can then be obtained by changing different parameters during the
nanoparticles synthesis process.

Delivery of nanoparticles

The nanoparticles are delivered to the tumour by two ways which are passive and targeting
deliver. In the passive case, the nanoparticles are injected into the vessels. Then, due to high
permeability of the tumour vessels (the pores of the vessels measuring approximately 600 nm),
the nanoparticles are transported from the vessels into the tumour interstitial compartment. After
that, the particles interact with the tissue and release the drugs. This approach minimizes the
toxicity and drug transport to the healthy vessels which possess very low permeability.

It was during the 19th century that Paul Ehrlish described the active process, which means
that the nanoparticles will be delivered to a specific area in the body [56]. In this approach,
the nanoparticles should be carried in nanocariers that have effective ligand and antigens that
can be targeted to the tumour only [139]. Once the particles ligand binds to the receptor on the
cell surface, the particles move inside the cell via the endosome (a membrane with a diameter
of approximately 500 nm, through which particles enter the cell). When the pH value of the
endosome is changed to acidic and lysosome (A membrane contains digestive enzyme) is active,
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Figure 1.2: A schematic of delivering the drugs by the nanoparticles into the tumour as discussed
by Cho et al. [27].

the lysosome destroys the nanocarriers. Subsequently, the drugs are released and proceeded to
cytoplasm (a substance located around nucleus of the cell). After that, the drugs targeted to
certain organ and the receptors returns to the surface of the cell to be bound with other ligands
[27], see Figure 1.2.

The production and types of nanoparticles

Nanoparticles are produced using different materials like proteins, polysaccharides (type of car-
bohydrates) and synthetic polymers (can be made in the industry using petroleum oil). The type
of the material that is used in nanoparticles production depends on the size of nanoparticles,
surface characteristic, degree of biodegradability (i.e. degradation of such material to small
substances), biocompatibility (i.e. beneficial response at certain situation), toxicity, and drug
release profile [90].

There are different types of nanoparticles, such as:

Silver nanoparticle which is used as antimicrobial agent because of its ability against bacteria,
viruses, and other micro-organisms. Also, this type of nanoparticles is used in textile industries,
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water treatment, and sun cream lotion [58].

Gold nanoparticle which is used to identify protein interaction, and different classes of bac-
teria. Also, it is used to detect presence of DNA in a sample, and cancer cells specially in cancer
diagnosis [58]. Gold nanoparticle is characterised by biocompatibility and it is used to improve
radiation therapy using different photon beams [153].

Alloy nanoparticle which is Ag-Au nanoparticle has very high electrical conductivity in
comparison with other nanoparticles [58].

Magnetic nanoparticle is widely used in cancer treatment, drug delivery, DNA analysis, mag-
netic resonance imagining (MRI), and cell sorting manipulation [58]. Magnetic nanoparticle
is characterised by biocompatibility and biodegradability and it converts the electromagnatic
energy to heat. However these particles can also be cleared very fast by immune system [66].

Carbon nanoparticle is used specifically for drug delivery, as they have the ability to recognize
the receptor on the surface of cancer cells. However, this nanoparticle can exhibit high levels of
toxicity [84].

Polymeric nanoparticle is nontoxic material and they are excellent in biodegradability and
biocompatibility, but it needs multisteps to maintain the drug benefits which require high cost
[84].

In this thesis we focus more on improving cancer hyperthermia treatment using magnetic
nanoparticles.

Magnetic nanoparticles

Magnetic nanoparticles are divided into metallic nanoparticles like Fe-Co, Fe-Ni, Fe-Pt, and Co-
Pt, and metal oxidation or Iron Oxides (Ferrites) like FeO, Fe2O3, and Fe3O4. Metal nanoparticles
are higher in magnetization but they are not stable and they are easy to be oxidized and that affects
their magnetization [55]. The materials like Fe, Ni, Co are used to produce most of magnetic
nanoparticles. The material Fe is ferromagnetic material and Fe-nanoparticles with size <20 nm
are called superparamagnetic. The Co-nanoparticles can be stored for one week without having
any oxidation. Few reports or researches dealt with the nickel nanoparticles and some studies
showed that their surface is easy to be oxidized to NiO.
The first time that the magnetic material is applied to organism is by Greek scientist and as-
tronomer, Thales of Miletus in 624–547 BC. In 1962, the first discussion of using magnetism
in biomedical and medical diagnosis was published. In 1970, the magnetism and magnetic
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resonance imagining (MRI) were used in reality in medicine for cancer treatment [134].

Magnetic nanoparticles are biocompatible and nontoxic material [84] and they are used
in medical application as they can induce particles rotation and motion which increase the
temperature of the tumour by using magnetic field. Magnetite (Fe2O4) and maghemite (Fe2O3)
are the most commonly used magnetic nanoparticles in various studies because of their low
toxicity and well-known metabolism pathways (i.e. how the nanoparticles interact with other
components) [143]. Magnetic nanoparticles is used to improve hyperthermia cancer treatment
as it localizes the heat into the tumour and minimize the side effects on the surrounding healthy
cells. Also, these particles are suitable for multi-functional treatment like theranostics which
means both the diagnosis and therapy treatments are combined together. This type of treatment
is more precise, fast on delivering drugs, and improves patients’ outcomes [84].
Despite the fact that magnetic nanoparticles can improve hyperthermia treatment in various
ways, the difficulties on controlling the distribution of its generated heat complicates achieving
the required temperature to destroy the tumour [119].
In this thesis we discuss about two different types of magnetic nanoparticles. In Chapter 2 we
focus on individual nanoparticles characterised by a very small size, so that they can be exchanged
across the vessels’ walls. In chapter 3 we consider bigger nanoparticles which are carried via the
vascular magnetic nanocarrier that cannot normally extravasate form the vessels to the interstitial
space. The Iron Oxide nanoparticles (IONPs) and Vascular magnetic nanoconstructs (VMNs)
discussed by the Authors in [94] represent relevant examples of the nanoparticle types we discuss
in Chapters 2 and 3, respectively.

Producing heat by magnetic nanoparticles

The fluid with magnetic nanoparticles can be injected into the tumour directly. A magnetic
field is applied, causing heat to be produced by four mechanisms, which are, hysteresis, eddy
current, Neel or Brownian relaxation, and frictional losses [45]. However, superparamagnetic
nanoparticles are dominated more by Neel (𝜏𝑁 ) and Brownian relaxation (𝜏𝐵) times which will
be used in this work. In this strategy, when the magnetic field is applied, the particles rotate
and vibrate around them selves (Neels relaxation) and around the fluid (Brownian relaxation)
[100]. Therefore, the temperature of cancer cell is increased more than the healthy cells by
approximately 2−3◦C [45]. Furthermore, the heat generated by Brownian relaxation influences
more the growth of the tumour when comparing with Neels as the heat generated by 𝜏𝐵 is more
than 𝜏𝑁 (𝜏𝐵 >> 𝜏𝑁 ) [124]. The performance of this strategy is affected by the properties of
nanoparticles, including their size, shape, and magnetic field properties, as well as the perfusion
of blood in the tissue [51, 127].

The hyperthermia treatment using magnetic nanoparticles depends on different features like
heating efficiency, targeting, and clearance of nanoparticles. Heating efficiency can be defined
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by specific absorption rate (SAR) which is in general can be expressed as done by Perigo et al.
[109]

SAR =
absorbed power

mass of nanoparticles
. (1.1)

There exist more sophisticated models to express the absorption rate as a function of the
magnetic field intensity, frequency, magnetisation, such as the one proposed in [8], namely:

SAR =
𝜋𝜇0𝐻

2
0 𝑓

𝜌𝑛
𝜒, (1.2)

where 𝜇0 = 4𝜋 · 10−7 N A−2 is the magnetic permeability, 𝐻0 is the magnetic field intensity, 𝑓
is the magnetic field frequency, 𝜒 is the magnetic field susceptibility, and 𝜌𝑛 is the density of
magnetic nanoparticles. The magnetic susceptibility 𝜒 depends on the magnetic field frequency,
volume of nanoparticles, and total relaxation time. Therefore, equation (1.2) can be written as
(3.12) in Chapter 3.

The formula (1.2) shows that SAR depends on the magnetic field features, such as the fre-
quency 𝑓 and the intensity 𝐻0. The nanoparticles’ structure (in terms of size and shape), as well
as the material, which affects magnetization and density also plays a role (see the more detailed
analysis of this formula in Chapter 3).
The product of field strength and frequency should not exceed a proper threshold 2− 5 · 109 A
m−1 s−1 [37], [54] and in some sources 5 ·108 A m−1 s−1 [97] to avoid harming the body [127].

There is direct relationship between the size and magnetization of nanoparticles. Small
magnetic nanoparticles have small surface and lower internal spin which decrease the magne-
tization of nanoparticles and consequently the value of SAR declines. Furthermore, the shape
of nanoparticles plays an important role on the magnetization and absorption power of nanopar-
ticles. Noh et al. [98] concluded that the cubic nanoparticles theoretically and experimentally
have more magnetization when comparing with the spherical ones. This is due to their different
geometry which affects their response to the applied magnetic field. Nanorods particles is better
than cubic and spherical nanoparticles with similar volume in hyperthermia efficiency due to
their high saturation magnetization and unidirectional shape anisotropy [35]. Furthermore, the
heating efficiency of nano-octopods is higher than the sphere, because of their shape anisotropy
[96].

The thesis focuses on spherical nanoparticles, as this is the shape which is most commonly
used in experiments.
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Challenges of using nanoparticles

Several studies have been conducted on nanoparticles both in vivo and in vitro, but few of them
are used in clinical experiments. This is due to the biological challenges which are related to
nanoparticles toxicity and degradation, distribution of heat, and few administration or penetration
routs [83]. For example, usually the nanoparticles are injected through the vessels which cause
elimination of the particles due to the plasma clearance and can not interact with the target site
[116]. However, there are different researches in vivo and in vitro showed that proper application
of magnetic field and magnetic nanoparticles can help in tackling this issue. In this case the
concentration of nanoparticles and the strength of magnetic field in human safe limit should
be taken into account [50]. Moreover, properties of the nanoparticles are focused on cells and
animals models, such that findings can not always be applied to humans in straight forward way
[122]. Furthermore, it is very difficult to control the nanoparticles predestination and their free
radicals (i.e. atoms with free electrons that are generated by nanoparticle surfaces can damage
DNA and proteins of any cell) in the body and that can affects negatively on the healthy cells,
lung, liver, and kidney. Also, 80% of nanoparticles can remain in blood for 84 days which
causes toxicity as shown in vivo and in vitro experiments [7]. In addition, safe dose of IONP in
oral administration causes vomiting, nausea, or flatulence [7]. Furthermore, the clinical trials
never use the nanoparticles as the first therapies, and they are used mostly for patients who have
drugs resistance [50]. By doing so, nanoparticles are less likely to affect the patients who will
receive treatment from nanoparticles. Finally, although several studies and models have shown
the impact of nanoparticles on immunotherapy in vitro and in vivo, that was never shown in
clinical trials [50].

1.3.3 The asymptotic homogenization method

In general, real-world physical systems are organised across multiple scales, as they consist
of different hierarchical levels of organization characterised by different properties, see Figure
1.3. As such, since it is very challenging, if not impossible in some cases, to resolve all the
microscale details (especially in three dimensions), homogenisation techniques prove to be very
useful to model multiphase, and multiphysics systems. Furthermore, experiment measurements
are typically performed at the coarser scales, and the difference between the various scales cannot
always be captured. Therefore, homogenisation techniques can be used to inform macroscale
models with relevant microscale information at a reduced computational cost.

The idea or the concept of homogenization was used long time ago. For example, Navier
(1821), and Poisson (1829) found a macroscopic elastic coefficients from the molecular model
[16]. Cauchy (1828) derived two coefficients of elastic model from more complex molecular
model. Then, to the best of our knowledge, the first idea of possibility changing the scales was
born in 1970s by Keller. However, the method is extremely improved in 1990s to treat different
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Figure 1.3: Example of multiscale method (Homogenization technique).

complex heterogeneity problems in various fields like engineering, life science, and biomechan-
ics [16]. The main aim of the homogenization is to model the tiny scales or the heterogenous
medium in large, continuous, and simpler medium.

In this thesis, the asymptotic homogenization technique is being used as it has been suc-
cessfully applied to a large variety of real world scenarios including previous investigations
related to fluid and drug transport in biological tissues and vascularised tumours, see, e.g.
[32, 85, 101, 102, 103, 105, 126]. Also, the domain of such physical problem can be split it to
small regions that have different modelling equations, and this is what we have it in all our work.
Now, in order to obtain the macroscopic equations in terms of microscopic description of the
problem, we need to follow different steps.

First, we can distinguish between the two scales in any model by assuming that these two
scales are well separated, and then the small parameter 𝜖 can be defined as

𝜖 =
𝑑

𝐿
<< 1, (1.3)

where 𝑑 represents the size of tiny scale, and 𝐿 is the size of the large scale.

Therefore, we can define two formally independent variables y (the local) and x (the global)
related by

y =
x
𝜖
. (1.4)

Secondly, we enforce periodicity with respect to the small scale variable y, and we assume
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that every unknown field can be represented in power series of 𝜖0 as

𝜐(x, 𝑡) ≡ 𝜐(𝜖) (x,y, 𝑡) =
∞∑︁
𝑙=0
𝜐(𝑙) (x,y, 𝑡)𝜖 𝑙 = 𝜐(0) (x,y, 𝑡) + 𝜖𝜐(1) (x,y, 𝑡) + 𝜖2𝜐(2) (x,y, 𝑡) + .... (1.5)

Also, the differential operators transform according to the chain rule as

∇→ ∇𝑥 +
1
𝜖
∇𝑦; ∇2 → 1

𝜖2∇
2
𝑦 +

2
𝜖
∇𝑦 · ∇𝑥 +∇2

𝑥 . (1.6)

Thirdly, we equate the same power of 𝜖 𝑙 , (𝑙 = 0,1,2, ...) to find suitable differential equations
in order to close the problem for the leading order variables 𝜐(0) . As we would like to obtain
a system defined at the large scale only, for fields which retain a dependence at the tiny scale
variable y, we can integrate them over the periodic cell

⟨𝜐⟩ = 1
|Ω𝑄 |

∫
Ω𝑄

𝜐(x,y, 𝑡) 𝑑𝑦, or (1.7)

⟨𝜐⟩ = 1
|Ω|

∫
Ω𝑄

𝜐(x,y, 𝑡) 𝑑𝑦, (1.8)

where |Ω| is the volume of the periodic cell, and Ω𝑄 is cell portion on which the integration is
performed, with corresponding volume |Ω𝑄 | . All the fields 𝜐(𝑙) , 𝑙 = 0,1, ... are supposed to be
y-periodic. The integration in equation (1.7) is used in Chapter 2 and 3, where the integration
in (1.8) is applied in Chapter 4 as it is more suitable in order to illustrate the results which are
shown in that context.
In particular, the cell volume portion |Ω𝑄 |, and the surface area 𝑆 are defined by

𝑆 =

∫
Γ

𝑑𝑆𝑦, (1.9)

|Ω𝑄 | =
∫
Ω𝑄

𝑑𝑉𝑦 . (1.10)

In our case we enforce macroscopic uniformity (the medium structure of the macroscale is
entirely periodic, i.e. the periodic cell is always the same for each point x of the macroscale
domain) such that 𝑆, |Ω| are constants. Analyses of non-macroscopically uniform structures is
beyond the scope of this work, however, they could be relevant in several contexts and alternative
approaches to deal with such heterogeneities can be found in Dalwadi and King [32], Penta et al.
[101, 102] and references therein.

The weakness of applying the homogenization technique is that there are many theoretical
results of homogenization without any supporting numerical simulation in the context of practical
applications. It is also essential to have a clear understanding of the interplay between the different
scales.
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1.3.4 Previous works

This section discusses different concepts that have been used and mentioned in this thesis such
as tumour fluid flow, particles transport, heat distribution, adhesion between the particles and
the vessels wall, and interplay between the tumour and surrounding tissues, as well as previous
papers that we have consulted.

Fluid flow

Studying the fluid flow plays an important role in tumour and metastasis growth, oxygen and
nutrient delivery, and drug delivery. Most of the drugs and nanoparticles are injected through the
vessels, then due to the vessels permeability, the nanoparticles cross the tumour interstitial space
to reach the cancer cells. However, due to the abnormal structure of the vessels discussed in
Section 1.3.1 and high interstitial fluid pressure, the extravasation of the drugs between the vessels
and tumour interstitium decreases. Analyses of the fluid dynamics via experiments are limited
by the equipment available in terms of scales and details that can be spatially resolved [89].
Mathematical modelling can therefore be very helpful in obtaining an improved understanding
of the fluid flow that takes place across multiple scales. The fluid flow in the tumour covers
the blood, lymph, and interstitial fluid. The interstitial flow can be considered laminar, and
can usually be determined by means of the Darcy’s law (i.e. the flow is proportional to the
pressure gradient). Lymphatic flow is also laminar and it also involves immune and cancer cells.
The Navier-Stokes’ equation is used to describe the lymphatic flow [48]. In general, the blood
consists of different elements like red blood cells, white blood cells, water, plasma, proteins,
organic molecules, and electrolytes. The blood is considered as Newtonian if the shear stress is
proportional to the shear rate, with the viscosity playing the role of a proportionality constant
[12]. The plasma represents 93% of the blood, and it is very often considered as a Newton
fluid. In general, the blood can be modeled as a purely Newtonian fluid if the radius of the
vessels is much bigger than the red cells, otherwise more refined models could be considered.
For example, Penta et al. [102] considered the blood as viscous fluid characterise by a spatially
varying viscosity.

Navier-Stokes’ equation in absence of body forces can be summarized as,

𝜌

(
𝜕u𝑣
𝜕𝑡

+ (u𝑣 · ∇)u𝑣
)
= ∇ ·𝑇𝑛, (1.11)

where u𝑣 is the blood velocity, and 𝜌 is the fluid density. The left hand side of equation (1.11)
refers to the inertial force. The Cauchy stress tensor 𝑇𝑛 in the right hand side is defined as

𝑇𝑛 = −𝑝𝐼 +2𝜇
∇uv + (∇u𝑣)𝑇

2
, (1.12)

for the Newtonian fluid. The Navier-Stokes’ equation for an incompressible Newtonian fluid
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reduces to

𝜌

(
𝜕u𝑣
𝜕𝑡

+ (u𝑣 · ∇)u𝑣
)
= −∇𝑝𝑣 + 𝜇∇2u𝑣, (1.13)

where we have substituted the expression (1.12) in the balance (1.11) and accounted for the
incompressibility constraint

∇ ·uv = 0. (1.14)

Here, 𝜇 is the blood viscosity, 𝑝𝑣 is the pressure of the blood, and 𝜇∇2u𝑣 takes into account the
viscous character of the fluid.

The Reynolds number (Re) is the ratio between the inertial force and the viscous force which
is used to describe the turbulent of the fluid flow. If the Re is very small, we call it laminar flow
and if it is very high, then we call it turbulent flow. In the porous medium the inertial force is
very small and can be neglected as the fluid velocity is less than 10−4 m/s2.
There are many previous works that studied the fluid flow in the tumour. Penta et al. [102]
discussed the theoretical homogenized results of the fluid flow in microvascularized tumour.
They represented the tumour in three dimensions and divided it into two compartments, the
tumour vessels and the interstitium. They used Darcy’s law for the tumour interstitium and
Stokes’ equation ignoring the inertial and body forces for the blood flow. They also took into
account the interface between the two compartments. The final macroscale system described
double Darcy’s law for the fluid flow with fluid mass as source term. After that, Penta and Ambrosi
[103] computed the hydraulic conductivities by solving the cell problems at the microscale which
was used to find the pressures and velocities of the fluid in macroscale. They varied the vessels
geometry and investigated its impact on the fluid flow.
Zhan et al. [151] studied the influence of the tumour size and IFP on particles transport. The
IFP rises with increasing in tumour size. Also, the fluid flux from the vessels to the tumour
interstitium and per tumour volume (𝑉) is defined by the product of the permeability of the
vessels wall, density of the vessels, and the difference of vessels pressure and IFP. It has been
observed that the flux is lower when the tumor size is large, as the IFP and (𝑆/𝑉) are greater in
this case.
Jain et al. [70] found that the IFP can be declined by decreasing the surface area of the tumour to
the volume (𝑆/𝑉), vessels’ permeability (𝐿𝑝), tumour size (𝐿), and increasing tumour hydraulic
conductivity (𝜅) which is analyzed using

𝛼 = 𝐿

√︂
𝐿𝑝𝑆

𝜅𝑉
. (1.15)

Also, they have deduced that the interstitial fluid velocity is higher on the boundary of the tumour,
where the IFP is maximum at the center of the tumour.
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Particle transport

The mathematical modelling of particles delivery in the tumour is very complex due to the
tumour and vascular structures, and the interplay between the cellular factors and drug or
particles transport. The diffusion model is used to design the particles transport from more than
60 years ago. Fick’s law of diffusion in one dimension can be used to determine the concentration
of nanoparticles, see Peppas and Narasimhan [107]. The diffusion coefficient in this equation in
case of porous media depends on the porosity that reflects the volume of the pores and tortuosity
which design the structure of the pores.
Goodman et al. [52] discussed the penetration of nanoparticles in multicellular spheroids in vivo
and in vitro. Their model accounted for particle concentrations binding with receptors, binding
sites in tumours, and internalized particles. Also, they studied the influence of particles size
on particles delivery in the tumour. They concluded that the particles binding and size, and
tissue porosity are important features for designing the nanoparticles. For example, particles
with size 200 nm can not penetrate with spherical tumour, but particles with size 20-40 nm can
do that. Also, the penetration of nanoparticles can be improved by increasing the porosity of
the tissue. Steuperaert et al. [132] illustrated a 3D model for drug transport using advection-
diffusion-reaction equation. A reaction term reflects the sum of drug uptake by vessels and
tissues.

Penta et al. [102] modeled the drug concentration in the tumour vessels using advection-
diffusion equation and advection-diffusion-reaction equation for the interstitial compartment. As
the vessels wall is semi-permeable, they studied the mass flux between the two compartments
which depends on the difference of the concentrations, blood flux, permeability of the vessels
membrane, and the osmotic coefficient. They applied the homogenization technique and they
end up with double advection-diffusion-reaction equations, and with mass exchange between
them formally appearing as reaction and source terms in the model. Mascheroni and Penta [85]
used the results optained by Penta et al. [102], and Penta and Ambrosi [103] to derive the effec-
tive diffusivity tensors and they computed the concentration of the drugs with different vessels
tortuosity. Penta and Ambrosi [103], and Mascheroni and Penta [85] concluded that increased
vessel tortuosity reduced fluid transport, as well as convective and diffusive transport in tumours.

Heat convection

Nabil and Zunino [94], and Nabil et al. [95] discussed the hyperthermia cancer treatment using
magnetic nanoparticles of different sizes. Nabil et al. [95] modelled fluid, and nanoparti-
cles transport in the tumour vessels and interstitial compartments, where they studied the heat
convection in the tumour only as they assumed a constant temperature for the blood. They
represented the vessels in one dimension and tumour in three dimensions using embedded mul-
tiscale technique. They used Darcy’s law in three dimensions to express the fluid flow in the
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tissue and Stokes’ equation in one dimension for the blood flow. Also, the lymphatic drainage
was taken into account. For the particles transport, they studied the concentration of iron oxide
nanoparticles in the vasculature and tissue regions. They used advection-diffusion equation to
compute the concentration of nanoparticles in the vessels. The vessels wall was considered as
semi-permeable membrane and due to small size of the nanoparticles, the particles can diffuse
into the tumour tissue. They also studied the heat distribution in the tumour and they assumed
that the temperature of the blood is constant. They used convection-diffusion equation with heat
source that depends on the absorption rate and the average concentration of nanoparticles. The
Robin condition is used to express the heat flux on the boundary of the tissue. In order to solve
their problem, they assumed that the particles are injected for 40 min, and the tissue is exposed
to a magnetic field for 20 to 40 min, as they followed Johannsen et al. [71], Mornet et al. [91].
According to their results, the concentration of nanoparticles droped sharply after stopping the
injection of nanoparticles, and 50% of them are absorbed by the tumour. The temperature of the
tumour is increased by 2K and strictly decreases after 40 min.
Nabil and Zunino [94] assumed that iron oxide nanoparticles (ION) are carried inside the vascular
magnetic nanoconstructs (VMN). In this case, the particles are large and cannot be transported
through the vessels membrane. Therefore, advection-diffusion-reaction equation in one dimen-
sion is used to describe the concentration of ION and the adhesion between the particles and
vessels wall was taken into account. Also, they computed the density of nanoparticles on the
boundary of the vessels that depends on the adhesion rate. As for the temperature, they followed
their previous model except that the heat source depends on particle concentration and density
in the vessels since particles were not present in the tissues. The results were analyzed at four
different circulation times. They found that the concentration decreases and the density increases
at increasing the circulation time. After 40 minutes following the injection of the nanoparticles,
the magnetic field was applied, and at that time the temperature increased by 10-12 ◦C.
Cervadoro et al. [23] studied the hyperthermia cancer treatment using super iron oxide nanopar-
ticles. They were interested in finding the minimum hyperthermia temperature of >42◦C, and
the minimum thermal ablation of >50◦C for tumour tissue. They considered tumour as inner
region surrounded by healthy tissue as outer region and they determined the temperatures using
Pennes’ bioheat equation. Also, they assumed that the temperature maps depend on absorption
rate of the fluid and nanoparticles 𝑆𝐴𝑅. They deduced that the characteristics of nanoparticles
like size and shape, magnetic field properties like magnetic intensity and frequency, and blood
perfusion have an impact on 𝑆𝐴𝑅 which is the main factor to achieve the required temperature.
Moreover, they concluded that the concentration of nanoparticles does not affect 𝑆𝐴𝑅, but it
increases the temperature.
Saeedi et al. [117] investigated how the heat generated in the tumour and the cell death depend
on the position of magnetic nanoparticles inside the tissue using the experiment and computer
simulation. Also, they found that heating the tumour to 55◦C with an exposition to magnetic
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field for 30 min is the best set of conditions to destroy the tumour and with negligible influence
on the healthy tissues.
Salloum et al. [119] examined in vivo the impact of the blood flow and the amount of nanofluid
to approach the required temperature which is 43◦C. The experiment was applied on the rat limb
(tissue) by injecting the nanofluid for two times and applying the magnetic field 20 minutes after
injecting the nanoparticles. The blood perfusion is proportional to the density of the tissue and
blood flow rate, and inversely proportional to the mass of the tissue. Also, the value of 𝑆𝐴𝑅
in their case depends on the distance of nanoparticles from the injection site. They found that
under their experiment protocols, they can achieve the required temperature by increasing the
concentration of injected nanoparticles.

Adhesion phenomenon

Decuzzi and Ferrari [38] illustrated the adhesion between the nanoprticles and vessels wall with
different sizes and shapes. They found that oblate nanoparticles adhered to the vessels wall more
than spherical particles. Also, nanoparticle size and shape are affected by the density of receptors
and vessels shear stress ratio. Furthermore, the adhesion probability 𝑃𝑎 can be computed as
discussed by Piper et al. [110] using

𝑃𝑎 = 𝑚𝑟𝑚𝑙𝐾
0
𝐴𝐴𝑐𝑒𝑥𝑝

[
−𝜆𝑎 𝑓𝑎
𝐾𝐵𝑇

]
, (1.16)

where 𝑚𝑟 is the density of the receptors, 𝑚𝑙 is the density of the ligand, 𝐾0
𝐴

is constant, 𝐴𝑐 is the
interaction area between the particles and the substrate, 𝑓𝑎 is the force per ligand-receptors, 𝜆𝑎
is the length of legend-receptors, T is the temperature, and 𝐾𝐵 is Boltzman energy.
The adhesion phenomena affects the particles transport in the tumour specially in the case of
passive transport, as the particles are injected in the vessels. Nabil and Zunino [94] accounted
for the adhesion of large nanoparticles to vessels walls and calculated the adhesion rate using the
formula Π = 𝑃𝑎 |𝑊𝑆𝑅 |𝑝𝑑/2. Here, 𝑊𝑆𝑅 is the wall shear rate, 𝑝𝑑 is the particles diameter, and
they assumed that the adhesion propability 𝑃𝑎 is a constant. Also, they computed the density of
nanoparticles that adhered to the vessels wall by integrating Π and the particles’ concentration
over the time.

Interplay between the tumour and healthy tissues

Sefidgar et al. [123] studied the fluid flow and particle transport in vascularized tumours within
the healthy tissues using three approaches which are, neglecting the vessel network, a static
network with a constant radius for tumour vessels, and varying the vessel radius as a function of
metabolic stimuli. They found that the IFP is uniform in the first case, where it is heterogeneous
in the second and third cases. Also, they deduced that unorganised vessels network caused
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heterogeneous drug transport. Therefore, the drugs took long time to reach the entire region
of the tumour (around 27h). This is due to the low diffusion and negligible convection which
impaired the transport of the drugs. Therefore, continuous injection should be applied to improve
the distribution. Also, tumor boundaries showed the highest concentration.



Chapter 2

Multiscale modelling of nanoparticle
delivery and heat transport in vascularised
tumours

[This chapter is published as : Al Sariri, T., Penta, R., 2022. Multi-scale modelling of nanopar-
ticle delivery and heat transport in vascularised tumours. Mathematical Medicine and Biology.
https://doi.org/10.1093/imammb/dqac009].

2.1 Introduction

In this chapter we aim to describe the temperature maps related to hyperthermia cancer treatment
performed via magnetic nanoparticles transported by means of the passive mechanisms (i.e.
the formulation is applicable to particles which are sufficiently small to extravasate from the
vessels to the tumour). We account for the three-dimensional character of both the tumour and
the vessels, which are considered as two interacting domains as done by Mascheroni and Penta
[85], Penta and Ambrosi [103]. In the latter papers, the authors found that the vessels’ tortuosity
impaired the fluid and macromolecules drug flow in vascularised tumours. Herein, we extend
their results to cover the influence of geometrical tortuosity on heat transport in the context of
cancer hyperthermia. The vessels’ fluid flow is governed by the Stokes’ problem, while we assume
that the interstitial transport is described by the Darcy’s law. The governing equations describing
drug transport are of advection-diffusion type in the vessels and of advection-diffusion-reaction
type in the tumour interstitium. Diffusive and advective heat transport in both compartments is
likewise formally represented by a double advection-diffusion-reaction model. The vessel’s wall
is modeled as a porous semi-permeable membrane, so as to allow the interplay of fluid, mass,
and heat between compartments.

We address the sharp length scale that exists between the typical intercapillary distance and
the average tumour size by means of the asymptotic homogenisation technique, as summarised

22
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for example in the works by Bakhvalov and Panasenko [10], Cioranescu and Donato [29], Davit
et al. [36], Penta and Gerisch [104], Taffetani et al. [138]. Our macroscale results comprise a
double Darcy’s system of PDEs describing fluid transport within and between compartments, and
double advection-diffusion-reaction equations for both drug and heat transport. The influence
of the micro-structure appears in the hydraulic conductivities, particle diffusion coefficients, and
thermal conductivities which can be determined by solving appropriate periodic cell problems.
The macroscale system of partial differential equations is solved by finite elements in a spherical
coordinate setting. The results elucidate the role of tortuosity and absorption rate, as well as
their mutual interplay, on heat transport generated by nanoparticles in vascularised tumours.

This chapter is structured into different sections which are organised as follows. In Section
2.2 we describe the mathematical model by emphasising the main assumptions and underlying
physical phenomena. These include the differential equations for fluid flow, particle transport,
and heat convection in both the tumour vessels and the interstitial compartment. Also, we address
the fluid, drug, and heat exchange which takes place across the interface via setting up appropriate
interface conditions. In Section 2.3 the differential equations are formulated in non-dimensional
form. In Section 2.4 we apply the asymptotic homogenisation technique and derive the macro-
scale results. Then, we briefly discuss how the homogenised coefficients are determined on the
basis of a microstructure. In Section 2.5 the differential equations describing particle and heat
transport are written in spherical coordinates and supplemented by corresponding macroscale
initial and boundary conditions. In Section 2.6 the results obtained via numerical simulations
are illustrated and discussed. In Section 2.7 our methodology, model assumption, and results
are qualitatively compared with Nabil and Zunino [94]. In Section 2.8 concluding remarks are
presented.

2.2 Mathematical modeling

In this work, we address mathematical modelling of cancer hyperthermia therapy carried out
via nanoparticles delivery. We represent the vascularised tumor as a three-dimensional domain
Ω ⊆ R3. The tumour tissue comprises two regions. The interstitium is denoted here by Ω𝑡 and
the blood vessels’ network by Ω𝑣, such that Ω̄𝑡 ∪ Ω̄𝑣 = Ω̄.
The tumour system under consideration is multiscale in nature and the typical distance between

adjacent blood vessels 𝑑 ≈ (50− 100) 𝜇m is much smaller than the average size 𝐿 ≈ 0.5 cm of
the cancerous region, as reported by Penta et al. [102]. Therefore, we define the small parameter

𝜖 =
𝑑

𝐿
≪ 1. (2.1)

We are interested in describing heat transport and the subsequent temperature distribution which
is driven by nanoparticles which are considered as being transported as passive scalars (changing
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Figure 2.1: The description of the tumour compartments and the exchange of fluid, mass, and
heat between them. The symbols Ω𝑣 is the domain of the blood vessels, Ω𝑡 is the domain of the
tumour interstitium, and Γ is the interface between the two domains.

of particles concentration does not affect the fluid flow properties). Therefore, we can assume
that the delivery of nanoparticles is occurring via diffusion through both the vessels and the
interstitium, advection due to the fluid flow in both compartments, and extravasation across the
vessels’ walls. In the next section we illustrate the governing equations for fluid, drug, and heat
transport in both the vessels and the interstitial space.

All the variables in this model such as the pressure 𝑝, the concentration 𝑐, the velocity u, and
the temperature 𝑇 are functions of both x and 𝑡.

Figure 2.2: A schematic of the macroscale and the microscale difference. The microscale
(comprising the interstitial space and the vessels) on the right, and the macroscale domain,
where the difference between the tumour constituents are homogenised, on the left. This figure
is taken from Al Sariri and Penta [3].
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2.2.1 Interstitial fluid transport

The tumour interstitial region is represented as a non deformable and isotropic porous medium
governed by Darcy’s law:

u𝑡 = −𝜅∇𝑝𝑡 in Ω𝑡 , (2.2)

together with the incompressibility constraint

∇ ·u𝑡 = 0 in Ω𝑡 , (2.3)

where u𝑡 , 𝜅, and 𝑝𝑡 are the interstitial fluid velocity, conductivity, and pressure, respectively.
We refer to [105] for an analysis of asymptotic homogenisation for deformable porous media,

where the interstitial fluid velocity is replace by the interstitial fluid velocity relative to the
velocity of the solid porous matrix (which is here set to zero as the porous matrix is assumed to
be rigid).

2.2.2 Microvascular flow

The blood flowing in small capillaries is considered as an incompressible viscous fluid and it
is transported in the body through the vessels. Although non-Newtonian effects may become
relevant in small capillaries, we assume that the blood is a Newtonian fluid as a first approximation,
as done for example by Shipley and Chapman [126].

Therefore, as we are considering low Reynolds’ number flow, we assume that the blood
dynamics in the vessels can be described by Stokes’ problem (i.e. inertia is neglected), which,
in absence of body forces, reads

𝜇∇2u𝑣 = ∇𝑝𝑣 in Ω𝑣, (2.4a)

∇ ·u𝑣 = 0 in Ω𝑣, (2.4b)

where u𝑣, 𝜇, and 𝑝𝑣 are the fluid velocity, viscosity, and pressure in the blood vessels, respectively.

2.2.3 Transport of particles

We assume that the particles are injected through the vessels and due to their small sizes
and the permeability of the vessels membrane, the particles can be exchange between the two
compartments. Then, the particles can be absorbed by the tumour interstitial compartment, where
metabolic reactions are assumed to take place. The concentration dynamics of the particles in the
vessels 𝑐𝑣 can be described by the advection-diffusion equation in Ω𝑣. Absorption of particles
in the interstitial compartment is represented by a linear uptake term. Therefore, the governing



CHAPTER 2. MULTISCALE MODEL OF IONP DELIVERY AND HEAT TRANSPORT 26

equations for the interstitial and vessels concentrations 𝑐𝑡 and 𝑐𝑣, respectively, read

𝜕𝑐𝑣

𝜕𝑡
+∇ · (𝑐𝑣u𝑣 −𝐷𝑣∇𝑐𝑣) = 0 in Ω𝑣, (2.5a)

𝜕𝑐𝑡

𝜕𝑡
+∇ · (𝑐𝑡u𝑡 −𝐷𝑡∇𝑐𝑡) = −Λ𝑐𝑡 in Ω𝑡 , (2.5b)

where 𝐷𝑣, 𝐷𝑡 , and Λ are the particles’ diffusivities in the vessels and in the interstitium and the
uptake rate, respectively.

2.2.4 Heat convection in the tumour

The heat generated in the tumour is driven by application of a magnetic field which affects the
nanoparticles injected into the bloodstream. The magnetic field causes the rotation and vibration
of nanoparticles. These rotations generate the heat which produce an increase in the tumour
temperature [100].

The temperatures in the vessel 𝑇𝑣 and in the interstitium 𝑇𝑡 are determined by a system of
advection-diffusion equations. The heat generated by the magnetic field is represented by the
heat source 𝛼 𝑓 (𝑐𝑡,𝑣) and, for the sake of simplicity, here we assume

𝑓 (𝑐𝑣) = 𝑐𝑣, and 𝑓 (𝑐𝑡) = 𝑐𝑡 , (2.6)

where 𝑐𝑡,𝑣 is the nanoparticles concentration in the vessels or interstitial compartment. The
efficacy of the heat produced by the magnetic nanoparticles depends on the absorption rate 𝛼
[94]. The latter parameter is in turn related to magnetic field properties (such as intensity and
frequency) and particles’ shape, although such features are not explicitly taken into account in
the present work. The coupled system of partial differential equations then reads

𝜕𝑇𝑡

𝜕𝑡
+∇ · (𝑇𝑡u𝑡 −

𝐾𝑡

𝛾𝑡𝜌𝑡
∇𝑇𝑡) =

𝛼

𝛾𝑡𝜌𝑡
𝑐𝑡 in Ω𝑡 , (2.7a)

𝜕𝑇𝑣

𝜕𝑡
+∇ · (𝑇𝑣u𝑣 −

𝐾𝑣

𝛾𝑣𝜌𝑣
∇𝑇𝑣) =

𝛼

𝛾𝑣𝜌𝑣
𝑐𝑣 in Ω𝑣 . (2.7b)

Here, 𝐾𝑡 and 𝐾𝑣 are the thermal conductivities in the interstitium and in the vessels, respectively.
The parameters 𝜌𝑡 and 𝛾𝑡 are the tissue density and specific heat capacity, while 𝜌𝑣, 𝛾𝑣 are the
blood density and the blood specific heat capacity.
We believe here that the impact of the particles uptake rate via the tumour interstitium plays the
role via the advection-diffusion-reaction equation (2.5b).
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2.2.5 Interface conditions

The interface between the two domains is denoted by Γ = 𝜕Ω𝑣 ∩ 𝜕Ω𝑡 . The fluid flow across the
vessel is assumed to be continuous and depending on the pressures’ difference between the two
domains. We assume that the blood flux across the vessel wall is determined by Starling’s law,
i.e.

u𝑡 ·n = u𝑣 ·n = 𝐿𝑝 (𝑝𝑣 − 𝑝𝑡) on Γ. (2.8)

The vector n represents the unit outward vector normal to the vessels’ wall. The parameter 𝐿𝑝
represents the permeability of the blood vessels which reflects the leakage of the vessels’ wall.
In order to close the problem we need to specify a condition for the tangent component of the
blood velocity to account for slip over the porous interface. We assume a Beavers and Joseph
condition as done by Penta et al. [102], Shipley and Chapman [126], i.e.

u𝑣 · 𝜏𝑣 = −
√
𝑘

𝜑
[(n · ∇)u𝑣] · 𝜏𝑣 on Γ, (2.9)

where 𝜑 is a non-dimensional parameter which is related to the porous surface properties, and
𝜏𝑣 denotes both of the unit vectors tangent to the vessels’ walls. The parameter 𝑘 is the tissue
permeability, which is related to the hydraulic conductivity 𝜅 by the following relationship

𝜅 =
𝑘

𝜇
. (2.10)

The mass flux is assumed to be continuous and proportional to the particles’ concentration
difference between the vessels and tumour

(𝑐𝑣u𝑣 −𝐷𝑣∇𝑐𝑣) ·n = (𝑐𝑡u𝑡 −𝐷𝑡∇𝑐𝑡) ·n = 𝑃(𝑐𝑣 − 𝑐𝑡) on Γ, (2.11)

where 𝑃 is the diffusive membrane permeability. In this work, transvascular advection across the
vessels’ membrane, as investigated for instance by Mascheroni and Penta [85], is neglected for
the sake of simplicity, although the theoretical derivation that follows could be readily extended
to such contributions.

The heat flux is likewise expressed in terms of the temperature difference between the two
domains Ω𝑡 and Ω𝑣 as follows(

𝑇𝑣u𝑣 −
𝐾𝑣

𝛾𝑣𝜌𝑣
∇𝑇𝑣

)
·n =

𝛽

𝛾𝑣𝜌𝑣
(𝑇𝑣 −𝑇𝑡) on Γ, (2.12a)(

𝑇𝑡u𝑡 −
𝐾𝑡

𝛾𝑡𝜌𝑡
∇𝑇𝑡

)
·n =

𝛽

𝛾𝑡𝜌𝑡
(𝑇𝑣 −𝑇𝑡) on Γ, (2.12b)

where 𝛽 is the heat transfer coefficient, and (2.12a) and (2.12b) represent interface conditions for
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𝑇𝑣 and 𝑇𝑡 , respectively.

2.3 Non-dimensional form of the model

In this section we perform a non-dimensional analysis of the system of partial differential
equations (2.2)-(2.7b) supplemented with interface conditions (2.8)-(2.9) and (2.11-2.12b) as
follows:

u𝑧 =
𝐶𝑑2

𝜇
u′
𝑧, 𝑝𝑧 = 𝐶𝐿𝑝

′
𝑧, ∇ =

1
𝐿
∇′, 𝑡 =

𝐿𝜇

𝐶𝑑2 𝑡
′, 𝑐𝑧 = 𝐶𝑟𝑐

′
𝑧, 𝑇𝑧 = 𝑇𝑇

′
𝑧 . (2.13)

The index 𝑧 = 𝑣, 𝑡 denotes either the vessels or the tumour, while 𝐶𝑟 , 𝑇 , 𝐶, 𝑑, and 𝐿 are the
reference concentration, temperature, pressure gradient, inter-capillary distance, and average
tumour size, respectively.

By dropping the primes for the sake of simplicity of notation, the dimensionless partial
differential equations can be written as

𝜖2∇2u𝑣 = ∇𝑝𝑣 in Ω𝑣, (2.14a)

∇ ·u𝑣 = 0 in Ω𝑣, (2.14b)

u𝑡 = −𝜅∇𝑝𝑡 in Ω𝑡 , (2.14c)

∇ ·u𝑡 = 0 in Ω𝑡 , (2.14d)
𝜕𝑐𝑣

𝜕𝑡
+∇ · (𝑐𝑣u𝑣 − 𝐷̄𝑣∇𝑐𝑣) = 0 in Ω𝑣, (2.14e)

𝜕𝑐𝑡

𝜕𝑡
+∇ · (𝑐𝑡u𝑡 − 𝐷̄𝑡∇𝑐𝑡) = −Υ𝑐𝑡 in Ω𝑡 , (2.14f)

𝜕𝑇𝑣

𝜕𝑡
+∇ ·

(
𝑇𝑣u𝑣 − 𝐾̄𝑣∇𝑇𝑣

)
= 𝛼̄𝑣𝑐𝑣 in Ω𝑣, (2.14g)

𝜕𝑇𝑡

𝜕𝑡
+∇ ·

(
𝑇𝑡u𝑡 − 𝐾̄𝑡∇𝑇𝑡

)
= 𝛼̄𝑡𝑐𝑡 in Ω𝑡 , (2.14h)

with boundary conditions:

u𝑣 · 𝜏 = −𝜖 𝜑̄[(n · ∇)u𝑣] · 𝜏 on Γ, (2.15a)

u𝑣 ·n = 𝜖 𝐿̄ (𝑝𝑣 − 𝑝𝑡) on Γ, (2.15b)

u𝑡 ·n = 𝜖 𝐿̄ (𝑃𝑣 −𝑃𝑡) on Γ, (2.15c)

(𝑐𝑣u𝑣 −𝐷𝑣∇𝑐𝑣) ·n = 𝜖 𝑃̄(𝑐𝑣 − 𝑐𝑡) on Γ, (2.15d)

(𝑐𝑡u𝑡 − 𝐷̄𝑡∇𝑐𝑡) ·n = 𝜖 𝑃̄(𝑐𝑣 − 𝑐𝑡) on Γ, (2.15e)(
𝑇𝑣u𝑣 −𝐾𝑣∇𝑇𝑣

)
·n = 𝜖 𝛽𝑣 (𝑇𝑣 −𝑇𝑡) on Γ, (2.15f)(

𝑇𝑡u𝑡 − 𝐾̄𝑡∇𝑇𝑡
)
·n = 𝜖 𝛽𝑡 (𝑇𝑣 −𝑇𝑡) on Γ, (2.15g)
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where the primes have been dropped for the sake of simplicity.
The non-dimensional numbers are defined as

𝐿̄ =
𝐿𝑝𝐿

2𝜇

𝑑3 , 𝜅 =
𝜅𝜇

𝑑2 , 𝜑̄ =

√
𝜅

𝜑
, 𝑃̄ =

𝑃𝐿𝜇

𝐶𝑑3 , Υ =
Λ𝜇

𝐿𝐶𝑑2 , (2.16)

𝛼̄𝑣 =
𝛼𝐶𝑟𝐿𝜇

𝜌𝑣𝛾𝑣𝑇𝐶𝑑
2 , 𝛼̄𝑡 =

𝛼𝐶𝑟𝐿𝜇

𝜌𝑡𝛾𝑡𝑇𝐶𝑑
2 , 𝛽𝑣 =

𝛽𝐿𝜇

𝜌𝑣𝛾𝑣𝐶𝑑
3 , 𝛽𝑡 =

𝛽𝐿𝜇

𝜌𝑡𝛾𝑡𝐶𝑑
3 . (2.17)

Here, 𝜅 is the non-dimensional hydraulic conductivity. The coefficients Υ and 𝛼̄ are non-
dimensional uptake rate and absorption rate. The numbers 𝐿̄, 𝑝, 𝛽, and 𝜑̄ are the non-dimensional
vessels’ hydraulic and diffusive permeabilities, heat transfer coefficient, and Beavers and Joseph
coefficients, respectively. The non-dimensional diffusivities of the particles in the vessels and
the tumour are the reciprocal of their corresponding Peclet’s numbers, i.e.

𝐷̄𝑣 =
1
𝑃𝑒𝑣

, 𝐷̄𝑡 =
1
𝑃𝑒𝑡

, (2.18)

where
𝑃𝑒𝑣 =

𝐿𝐶𝑑2

𝐷𝑣𝜇
, 𝑃𝑒𝑡 =

𝐿𝐶𝑑2

𝐷𝑡𝜇
. (2.19)

The non-dimensional thermal conductivities are given by

𝐾̄𝑣 =
𝐾𝑣𝜇

𝜌𝑣𝛾𝑣𝐿𝐶𝑑
2 , 𝐾̄𝑡 =

𝐾𝑡𝜇

𝜌𝑡𝛾𝑡𝐿𝐶𝑑
2 . (2.20)

The 𝜖 scaling appearing on the right hand side of interface conditions equations (2.15b-2.15g)
is the appropriate one to ensure that blood, drug, and heat fluxes inside the tumour stays finite in
the limit 𝜖 → 0, as observed by Penta et al. [102]. Furthermore, we assume that the parameters
appearing in equations (2.16-2.20) are finite in the limit as 𝜖 approaches zero. This is done
consistently with the approach carried out by Penta et al. [102] and ensures that both drug
and thermal diffusivities, which are well-known to play a crucial role in the nanoparticles’
dynamics, are captured at leading order. There exist different scaling choices in the literature,
see, e.g., the work by Shipley and Chapman [126], where the authors perform the upscaling
of the equations describing fluid and drug transport in vascularised tumours and their choice
concerning distinguished limits of the Peclet’s numbers results in a suite of reaction-advection
models.

2.4 The asymptotic homogenisation method

The application of the multiscale method in our model is motivated by a large difference in sizes
between the inter-vessel distance and the tumour radius, as assumed by Penta et al. [102], Shipley
and Chapman [126]. In particular, we assume that these two scales are well separated, so that
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the small parameter 𝜖 defined in equation (2.1) is much smaller than 1. Therefore, we can define
two formally independent variables y (the microscale) and x (the macroscale) related by

y =
x
𝜖
. (2.21)

We assume that any variable in the model is y-periodic and can be written in terms of 𝜖 as

𝜐(x, 𝑡) ≡ 𝜐(𝜖) (x,y, 𝑡) =
∞∑︁
𝑙=0
𝜐(𝑙) (x,y, 𝑡)𝜖 𝑙 = 𝜐(0) (x,y, 𝑡) +𝜖𝜐(1) (x,y, 𝑡) +𝜖2𝜐(2) (x,y, 𝑡) + ... , (2.22)

where 𝜐 collectively represents any variable described in our model namely 𝑝𝑧, 𝑐𝑧, u𝑧, or 𝑇𝑧,
(with 𝑧 = 𝑣, 𝑡).
Also, the differential operators can be written using the chain rule as follows

∇→ ∇𝑥 +
1
𝜖
∇𝑦; ∇2 → 1

𝜖2∇𝑦 +
2
𝜖
∇𝑦 · ∇𝑥 +∇2

𝑥 . (2.23)

We apply the asymptotic homogenization technique to the model using equations (2.22)-(2.23) to
obtain new differential equations in power of 𝜖 . Then, we equate the same power of 𝜖 to find the
differential equations in the leading order terms 𝜐(0) . In order to create a complete macroscale
system, we have to integrate all variables that are microscale dependent over the periodic cell

⟨𝜐⟩𝑧 =
1

|Ω𝑧 |

∫
Ω𝑧

𝜐(x,y, 𝑡) 𝑑𝑦, 𝑧 = 𝑡, 𝑣, (2.24)

where |Ω𝑣 | and |Ω𝑡 | are the vessels and interstitial cell volume portions.

2.4.1 The upscaled governing equations for the vessels

The multiscale differential equations governing the fluid flow, particle, and heat transport in
the vessels can be obtained from equations (2.14a)-(2.14b), (2.14e), and (2.14g) with interface
conditions (2.15a), (2.15b), (2.15d), and (2.15f). We have, by enforcing equation (2.22)-(2.23)
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and multiplying each equation by a suitable power of 𝜖 :

𝜖∇2
𝑦u

(𝜖)
𝑣 +2𝜖2∇𝑦 · ∇𝑥u(𝜖)

𝑣 + 𝜖3∇2
𝑥u

(𝜖)
𝑣 = 𝜖∇𝑥 𝑝 (𝜖)𝑣 +∇𝑦𝑝 (𝜖)𝑣 in Ω𝑣, (2.25a)

𝜖∇𝑥 ·u(𝜖)
𝑣 +∇𝑦 ·u(𝜖)

𝑣 = 0 in Ω𝑣, (2.25b)

𝜖2 𝜕𝑐
(𝜖)
𝑣

𝜕𝑡
+∇𝑥 ·

(
𝜖2𝑐

(𝜖)
𝑣 u(𝜖)

𝑣 − 𝜖2𝐷̄𝑣∇𝑥𝑐(𝜖)𝑣 − 𝜖 𝐷̄𝑣∇𝑦𝑐(𝜖)𝑣
)
+

∇𝑦 ·
(
𝜖𝑐

(𝜖)
𝑣 u(𝜖)

𝑣 − 𝜖 𝐷̄𝑣∇𝑥𝑐(𝜖)𝑣 − 𝐷̄𝑣∇𝑦𝑐(𝜖)𝑣
)
= 0, in Ω𝑣, (2.25c)

𝜖2 𝜕𝑇
(𝜖)
𝑣

𝜕𝑡
+∇𝑥 ·

(
𝜖2𝑇

(𝜖)
𝑣 u(𝜖)

𝑣 − 𝜖2𝐾̄𝑣∇𝑥𝑇 (𝜖)
𝑣 − 𝜖𝐾̄𝑣∇𝑦𝑇 (𝜖)

𝑣

)
+

∇𝑦 ·
(
𝜖𝑇 𝜖𝑣 u(𝜖)

𝑣 − 𝜖𝐾̄𝑣∇𝑥𝑇 (𝜖)
𝑣 − 𝐾̄𝑣∇𝑦𝑇 (𝜖)

𝑣

)
= 𝛼̄𝑣𝑐

(𝜖)
𝑣 in Ω𝑣 . (2.25d)

The interface conditions are:

u(𝜖)
𝑣 ·n = 𝜖 𝐿̄

(
𝑝
(𝜖)
𝑣 − 𝑝 (𝜖)𝑡

)
on Γ, (2.26a)

u(𝜖)
𝑣 · 𝜏 = −𝜑̄

[
(n ·

(
𝜖∇𝑥 +∇𝑦

)
u(𝜖)
𝑣

]
· 𝜏 on Γ, (2.26b)

(𝜖𝑐(𝜖)𝑣 u(𝜖)
𝑣 − 𝜖 𝐷̄𝑣∇𝑥𝑐(𝜖)𝑣 − 𝐷̄𝑣∇𝑦𝑐(𝜖)𝑣 ) ·n = 𝜖2𝑃̄(𝑐(𝜖)𝑣 − 𝑐(𝜖)𝑡 ) on Γ, (2.26c)(

𝜖𝑇
(𝜖)
𝑣 u(𝜖)

𝑣 − 𝜖𝐾̄𝑣∇𝑥𝑇 (𝜖)
𝑣 − 𝐾̄𝑣∇𝑦𝑇 (𝜖)

𝑣

)
·n = 𝜖2𝛽𝑣

(
𝑇
(𝜖)
𝑣 −𝑇 (𝜖)

𝑡

)
on Γ. (2.26d)

We now equate the same coefficients for ascending powers of 𝜖 .
For 𝜖0 we obtain

∇𝑦𝑝 (0)𝑣 = 0 in Ω𝑣, (2.27a)

∇𝑦 ·u(0)
𝑣 = 0 in Ω𝑣, (2.27b)

u(0)
𝑣 ·n = 0 on Γ, (2.27c)

u(0)
𝑣 · 𝜏 = −𝜑̄[n · (∇𝑦u(0)

𝑣 )] · 𝜏 on Γ, (2.27d)

∇2
𝑦𝑐

(0)
𝑣 = 0 in Ω𝑣, (2.27e)(

∇𝑦𝑐(0)𝑣
)
·n = 0 on Γ, (2.27f)

∇2
𝑦𝑇

(0)
𝑣 = 0 in Ω𝑣 (2.27g)(

∇𝑦𝑇 (0)
𝑣

)
·n = 0 on Γ. (2.27h)
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For 𝜖1:

∇2
𝑦u

(0)
𝑣 = ∇𝑥 𝑝 (0)𝑣 +∇𝑦𝑝 (1)𝑣 in Ω𝑣, (2.28a)

∇𝑥 ·u(0)
𝑣 +∇𝑦 ·u(1)

𝑣 = 0 in Ω𝑣, (2.28b)

u(1)
𝑣 ·n = 𝐿̄

(
𝑝
(0)
𝑣 − 𝑝 (0)𝑡

)
on Γ, (2.28c)

u(1)
𝑣 · 𝜏 = −𝜑̄

[
n ·

(
∇𝑥u(0)

𝑣 +∇𝑦u(1)
𝑣

)]
· 𝜏 on Γ, (2.28d)

∇2
𝑦𝑐

(1)
𝑣 = 0 in Ω𝑣, (2.28e)(

∇𝑦𝑐(1)𝑣
)
·n = −

(
∇𝑥𝑐(0)𝑣

)
·n on Γ, (2.28f)

∇2
𝑦𝑇

(1)
𝑣 = 0 in Ω𝑣, (2.28g)(

∇𝑦𝑇 (1)
𝑣

)
·n = −

(
∇𝑥𝑇 (0)

𝑣

)
·n on Γ. (2.28h)

For 𝜖2

𝜕𝑐
(0)
𝑣

𝜕𝑡
+∇𝑥 ·

(
𝑐
(0)
𝑣 u(0)

𝑣 − 𝐷̄𝑣∇𝑥𝑐(0)𝑣 − 𝐷̄𝑣∇𝑦𝑐(1)𝑣
)
+

∇𝑦 ·
(
𝑐
(1)
𝑣 u(0)

𝑣 + 𝑐(0)𝑣 u(1)
𝑣 − 𝐷̄𝑣∇𝑥𝑐(1)𝑣 − 𝐷̄𝑣∇𝑦𝑐(2)𝑣

)
= 0 in Ω𝑣, (2.29a)(

𝑐
(1)
𝑣 u(0)

𝑣 + 𝑐(0)𝑣 u(1)
𝑣 − 𝐷̄𝑣∇𝑥𝑐(1)𝑣 − 𝐷̄𝑣∇𝑦𝑐(2)𝑣

)
·n = 𝑃̄(𝑐(0)𝑣 − 𝑐(0)𝑡 ) on Γ, (2.29b)

𝜕𝑇
(0)
𝑣

𝜕𝑡
+∇𝑥 ·

(
𝑇
(0)
𝑣 u(0)

𝑣 − 𝐾̄𝑣∇𝑥𝑇 (0)
𝑣 − 𝐾̄𝑣∇𝑦𝑇 (1)

𝑣

)
+

∇𝑦 ·
(
𝑇
(0)
𝑣 u(1)

𝑣 +𝑇 (1)
𝑣 u(0)

𝑣 − 𝐾̄𝑣∇𝑥𝑇 (1)
𝑣 − 𝐾̄𝑣∇𝑦𝑇 (2)

𝑣

)
= 𝛼̄𝑣𝑐

(0)
𝑣 in Ω𝑣, (2.29c)(

𝑇
(0)
𝑣 u(1)

𝑣 +𝑇 (1)
𝑣 u(0)

𝑣 − 𝐾̄𝑣∇𝑥𝑇 (1)
𝑣 − 𝐾̄𝑣∇𝑦𝑇 (2)

𝑣

)
·n = 𝛽𝑣

(
𝑇
(0)
𝑣 −𝑇 (0)

𝑡

)
on Γ. (2.29d)

Now, we determine the macroscale relationships for the leading order velocity and pressure
⟨u(0)
𝑣 ⟩𝑣 and 𝑝 (0)𝑣 .

Equation (2.27a) implies:
𝑝
(0)
𝑣 = 𝑝

(0)
𝑣 (x, 𝑡). (2.30)

This means that the leading order pressure in the vessels is y-constant.
Using equation (2.28a) from the 𝜖1 condition, together with (2.27b), (2.27c), and (2.27d) from
the 𝜖0 conditions, we obtain a Stokes’ type problem for u(0)

𝑣 and 𝑝 (1)𝑣 , that is

∇2
𝑦u

(0)
𝑣 = ∇𝑥 𝑝 (0)𝑣 +∇𝑦𝑝 (1)𝑣 in Ω𝑣,

∇𝑦 ·u(0)
𝑣 = 0 in Ω𝑣,

u(0)
𝑣 ·n = 0 on Γ,

u(0)
𝑣 · 𝜏 = −𝜑̄

[
(n · ∇𝑦)u(0)

𝑣

]
· 𝜏 on Γ.

(2.31)
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Exploiting linearity, the solutions for u(0)
𝑣 and 𝑝 (1)𝑣 can be formulated in terms of the following

ansatz

u(0)
𝑣 = −W(x,y)∇𝑥 𝑝 (0)𝑣 , (2.32a)

𝑝
(1)
𝑣 = −m(x,y)∇𝑥 𝑝 (0)𝑣 + 𝑝(x, 𝑡). (2.32b)

The auxiliary tensor W and the auxiliary vector m are the solution of the Stokes’ cell problem:

∇2
𝑦W𝑇 = ∇𝑦m− 𝐼 in Ω𝑣, (2.33a)

∇𝑦 ·W𝑇 = 0 in Ω𝑣, (2.33b)

W𝑇n = 0 on Γ, (2.33c)

W𝑇𝜏 = −𝜑̄[(∇𝑦W𝑇 )n]𝜏 on Γ. (2.33d)

Integrating (2.32a) over Ω𝑣 leads to the average leading order velocity in the vessels,

⟨u(0)
𝑣 ⟩𝑣 = −Y𝑣∇𝑥 𝑝 (0)𝑣 . (2.34)

Here,

Y𝑣 = ⟨W⟩𝑣 =
1

|Ω𝑣 |

∫
Ω𝑣

W𝑑𝑦. (2.35)

Equation (2.34) shows that the vessels’ fluid flow obeys Darcy’s law with hydraulic conductivity
tensor Y𝑣 given by relationship (2.35).

In order to find the equation for the leading order pressure leading term 𝑝
(0)
𝑣 , we take the

average of (2.28b) and make use of interface condition (2.28c), as well as the divergence theorem
with respect to y, as follows:

⟨∇𝑥 ·u(0)
𝑣 ⟩𝑣 + ⟨∇𝑦 ·u(1)

𝑣 ⟩𝑣 = 0, (2.36)

⟨∇𝑥 ·u(0)
𝑣 ⟩𝑣 = − 1

|Ω𝑣 |

∫
Γ

u(1)
𝑣 ·n𝑑𝑆𝑦, (2.37)

= − 1
|Ω𝑣 |

∫
Γ

𝐿̄ (𝑝 (0)𝑣 − 𝑝 (0)𝑡 )𝑑𝑆𝑦 . (2.38)

Therefore,
∇𝑥 · ⟨u(0)

𝑣 ⟩𝑣 = − 1
|Ω𝑣 |

∫
Γ

𝐿̄ (𝑝 (0)𝑣 − 𝑝 (0)𝑡 ) 𝑑𝑆𝑦 . (2.39)

Thus, by means of (2.34),

∇𝑥 · (Y𝑣∇𝑥 𝑝 (0)𝑣 ) = 1
|Ω𝑣 |

∫
Γ

𝐿̄ (𝑝 (0)𝑣 − 𝑝 (0)𝑡 ) 𝑑𝑆𝑦 . (2.40)
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Equation (2.40) is the macroscale governing equation for the leading order pressure 𝑝 (0)𝑣 .
The leading order concentration 𝑐

(0)
𝑣 can be found by using first equations (2.27e) and

(2.27f), from which we deduce that the zero-th order concentration in the vessels depends on the
macroscale only, i.e.

𝑐
(0)
𝑣 = 𝑐

(0)
𝑣 (x, 𝑡). (2.41)

We can formulate an ansatz for the solution 𝑐(1)𝑣 of problem (2.28e)-(2.28f) by exploiting linearity
as follows

𝑐
(1)
𝑣 = −a · ∇𝑥𝑐(0)𝑣 + 𝑐(x, 𝑡), (2.42)

where a(x,y) is an auxiliary vector and 𝑐 is an arbitrary y-constant function. The solution (2.42)
holds true provided that

∇2
𝑦a = 0 in Ω𝑣, (2.43a)

(∇𝑦a)n = n on Γ. (2.43b)

Integrating (2.29a) and using the divergence theorem with respect to y, and subsequently making
use of interface condition (2.29b) from equating the same power of 𝜖2 yields

𝜕𝑐
(0)
𝑣

𝜕𝑡
+∇𝑥 ·

(
𝑐
(0)
𝑣 ⟨u(0)

𝑣 ⟩𝑣 − 𝐷̄𝑣∇𝑥𝑐(0)𝑣 − 𝐷̄𝑣 ⟨∇𝑦𝑐(1)𝑣 ⟩𝑣
)
+ 1
|Ω𝑣 |

∫
Γ

𝑃̄(𝑐(0)𝑣 − 𝑐(0)𝑡 ) 𝑑𝑆𝑦 = 0, (2.44)

where the additional contribution over the boundary 𝜕Ω𝑣 \Γ vanishes due to y-periodicity.

Using the ansatz (2.42), we obtain:

𝜕𝑐
(0)
𝑣

𝜕𝑡
+∇𝑥 ·

(
𝑐
(0)
𝑣 ⟨u0

𝑣⟩ −F𝑣∇𝑥𝑐(0)𝑣
)
+ 1
|Ω𝑣 |

∫
Γ

𝑃̄

(
𝑐
(0)
𝑣 − 𝑐(0)𝑡

)
𝑑𝑆 = 0, (2.45)

where
F𝑣 = 𝐷̄𝑣 (𝐼 − ⟨(∇𝑦a)𝑇 ⟩𝑣) (2.46)

is the effective diffusivity tensor in the vessels, and 𝐷̄𝑣 is defined according to (2.18) and
(2.19). Equation (2.45) is an advection-diffusion-reaction equation for 𝑐(0)𝑣 and it describes the
macroscale drug dynamics in the vessels.

A macroscale equation for the heat transport in the vessels can be obtained by following the
same steps described above for particle transport. The solution of (2.27g) and (2.27h) is

𝑇
(0)
𝑣 = 𝑇

(0)
𝑣 (x, 𝑡). (2.47)

Therefore, 𝑇 (0)
𝑣 is y-constant.

The solution of the problem obtained by collecting (2.28g) and (2.28h) from the 𝜖1 condition
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can be formulated in terms of the following ansatz for 𝑇 (1)
𝑣 :

𝑇
(1)
𝑣 = −g · ∇𝑥𝑇 (0)

𝑣 (x, 𝑡) +𝑇 (x, 𝑡), (2.48)

where the auxiliary vector g is the solution of the following cell problem

∇2
𝑦g = 0 in Ω𝑣, (2.49a)

(∇𝑦g)n = n on Γ. (2.49b)

Integrating (2.29c) and exploiting (2.29d), and performing the same steps as equations (2.29a)
and (2.29b) we reach the following macroscale result

𝜕𝑇
(0)
𝑣

𝜕𝑡
+∇𝑥 ·

(
𝑇
(0)
𝑣 ⟨u(0)

𝑣 ⟩ −N𝑣∇𝑥𝑇 (0)
𝑣

)
+ 1
|Ω𝑣 |

𝛽𝑣

∫
Γ

(
𝑇
(0)
𝑣 −𝑇 (0)

𝑡

)
𝑑𝑆 = 𝛼̄𝑣𝑐

0
𝑣, (2.50)

with
N𝑣 = 𝐾̄𝑣 (𝐼 − ⟨(∇𝑦g)𝑇 ⟩𝑣), (2.51)

where N𝑣 is the heat conductivity tensor for the vessels’ compartment with 𝐾̄𝑣 is defined in (2.20).
The differential equation (2.50) is an advection-diffusion-reaction type equation describing the
behavior of the leading order temperature 𝑇 (0)

𝑣 at the macroscale.

2.4.2 The upscaled governing equations in the tumour interstitium

In order to provide the macroscale differential equations for fluid flow, particle transport, and
heat distribution related to the tumour interstitial compartment, we follow the same steps as in
the vessels’ case. The multi-scale equations (2.14c), (2.14d), (2.14f), (2.14h), with interface
conditions (2.15c), (2.15e), and (2.15g) can be expressed as:

𝜖u(𝜖)
𝑡 = −𝜖𝜅∇𝑥 𝑝 (𝜖)𝑡 − 𝜅∇𝑦𝑝 (𝜖)𝑡 in Ω𝑡 , (2.52a)

𝜖∇𝑥 ·u(𝜖)
𝑡 +∇𝑦 ·u(𝜖)

𝑡 = 0 in Ω𝑡 , (2.52b)

u(𝜖)
𝑡 ·n𝑡 = 𝜖 𝐿̄

(
𝑝
(𝜖)
𝑡 − 𝑝 (𝜖)𝑣

)
on Γ. (2.52c)

𝜖2 𝜕𝑐
(𝜖)
𝑡

𝜕𝑡
+∇𝑥 ·

(
𝜀2𝑐

(𝜖)
𝑡 u(𝜖)

𝑡 − 𝜖2𝐷̄𝑡∇𝑥𝑐(𝜖)𝑡 − 𝜖 𝐷̄𝑡∇𝑦𝑐(𝜖)𝑡
)
+

∇𝑦 ·
(
𝜖𝑐

(𝜖)
𝑡 u(𝜖)

𝑡 − 𝜖 𝐷̄𝑡∇𝑥𝑐(𝜖)𝑡 − 𝐷̄𝑡∇𝑦𝑐(𝜖)𝑡
)
= −𝜖2Υ𝑐

(𝜖)
𝑡 in Ω𝑡 , (2.53a)(

𝜖𝑐
(𝜖)
𝑡 u(𝜖)

𝑡 − 𝜖 𝐷̄𝑡∇𝑥𝑐(𝜖)𝑡 − 𝐷̄𝑡∇𝑦𝑐(𝜖)𝑡
)
·n𝑡 = 𝜖2𝑃̄

(
𝑐
(𝜖)
𝑡 − 𝑐(𝜖)𝑣

)
on Γ. (2.53b)
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𝜖2 𝜕𝑇
(𝜖)
𝑡

𝜕𝑡
+∇𝑥 ·

(
𝜖2𝑇

(𝜖)
𝑡 u(𝜖)

𝑡 − 𝜀2𝐾̄𝑡∇𝑥𝑇 (𝜖)
𝑡 − 𝜖𝐾̄𝑡∇𝑦𝑇 (𝜖)

𝑡

)
+

∇𝑦 ·
(
𝜖𝑇

(𝜖)
𝑡 u(𝜖)

𝑡 − 𝜖𝐾̄𝑡∇𝑥𝑇 (𝜖)
𝑡 − 𝐾̄𝑡∇𝑦𝑇 (𝜖)

𝑡

)
= 𝜖2𝛼̄𝑡𝑐

(𝜖)
𝑡 in Ω𝑡 , (2.54a)

(𝜖𝑇 (𝜖)
𝑡 u(𝜖)

𝑡 − 𝜖𝐾̄𝑡∇𝑥𝑇 (𝜖)
𝑡 − 𝐾̄𝑡∇𝑦𝑇 (𝜖)

𝑡 ) ·n𝑡 = 𝜖2𝛽𝑡

(
𝑇
(𝜖)
𝑡 −𝑇 (𝜖)

𝑣

)
on Γ. (2.54b)

Here, n𝑡 = −n is the unit vector normal to the interface pointing from the interstitial compartment
into the vessels’ one. Equating the same coefficient of 𝜖0 we obtain

∇𝑦𝑝 (0)𝑡 = 0 in Ω𝑡 , (2.55a)

∇𝑦 ·u(0)
𝑡 = 0 in Ω𝑡 , (2.55b)

u(0)
𝑡 ·n𝑡 = 0 on Γ, (2.55c)

∇2𝑐
(0)
𝑡 = 0 in Ω𝑡 , (2.55d)(

∇𝑦𝑐(0)𝑡
)
·n𝑡 = 0 on Γ, (2.55e)

∇2𝑇
(0)
𝑡 = 0 in Ω𝑡 , (2.55f)(

∇𝑦𝑇 (0)
𝑡

)
·n𝑡 = 0 on Γ, (2.55g)

while for 𝜖1

u(0)
𝑡 = −𝜅∇𝑥 𝑝 (0)𝑡 − 𝜅∇𝑦𝑝 (1)𝑡 in Ω𝑡 , (2.56a)

∇𝑥 ·u(0)
𝑡 +∇𝑦 ·u(1)

𝑡 = 0 in Ω𝑡 , (2.56b)

u(1)
𝑡 ·n𝑡 = 𝐿̄

(
𝑝
(0)
𝑡 − 𝑝 (0)𝑣

)
on Γ, (2.56c)

∇2𝑐
(0)
𝑡 = 0 in Ω𝑡 , (2.56d)(

∇𝑥𝑐(0)𝑡
)
·n𝑡 =

(
∇𝑦𝑐(1)𝑡

)
·n𝑡 on Γ, (2.56e)

∇2𝑇
(0)
𝑡 = 0 in Ω𝑡 , (2.56f)(

∇𝑥𝑇 (0)
𝑡

)
·n𝑡 =

(
∇𝑦𝑇 (1)

𝑡

)
·n𝑡 on Γ, (2.56g)
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Finally, for 𝜖2 we have

𝜕𝑐
(0)
𝑡

𝜕𝑡
+∇𝑥 ·

(
𝑐
(0)
𝑡 u(0)

𝑡 − 𝐷̄𝑡∇𝑥𝑐(0)𝑡 − 𝐷̄𝑡∇𝑦𝑐(1)𝑡
)
+

∇𝑦 ·
(
𝑐
(1)
𝑡 u(0)

𝑡 + 𝑐(0)𝑡 u(1)
𝑡 − 𝐷̄𝑡∇𝑥𝑐(1)𝑡 − 𝐷̄𝑡∇𝑦𝑐(2)𝑡

)
= −Υ𝑐(0)𝑡 in Ω𝑡 , (2.57a)(

𝑐
(1)
𝑡 u(0)

𝑡 + 𝑐(0)𝑡 u(1)
𝑡 − 𝐷̄𝑡∇𝑥𝑐(1)𝑡 − 𝐷̄𝑡∇𝑦𝑐(2)𝑡

)
·n𝑡 = 𝑃̄(𝑐(0)𝑡 − 𝑐(0)𝑣 ) on Γ, (2.57b)

𝜕𝑇
(0)
𝑡

𝜕𝑡
+∇𝑥 ·

(
𝑇
(0)
𝑡 u(0)

𝑡 − 𝐾̄𝑡∇𝑥𝑇 (0)
𝑡 − 𝐾̄𝑡∇𝑦𝑇 (1)

𝑡

)
+

∇𝑦 ·
(
𝑇
(0)
𝑡 u(1)

𝑡 +𝑇 (1)
𝑡 u(0)

𝑡 − 𝐾̄𝑡∇𝑥𝑐(1)𝑡 − 𝐾̄𝑡∇𝑦𝑇 (2)
𝑡

)
= 𝛼̄𝑡𝑐

(0)
𝑡 in Ω𝑡 , (2.57c)(

𝑇
(0)
𝑡 u(1)

𝑡 +𝑇 (1)
𝑡 u(0)

𝑡 − 𝐾̄𝑣∇𝑥𝑇 (1)
𝑡 − 𝐾̄𝑡∇𝑦𝑇 (2)

𝑡

)
·n𝑡 = 𝛽𝑡 (𝑇 (0)

𝑡 −𝑇 (0)
𝑣 ) on Γ. (2.57d)

Firstly, we find the macroscale equation of ⟨u(0)
𝑡 ⟩𝑡 in terms of 𝑝 (0)𝑡 . Equation (2.55a) leads to:

𝑝
(0)
𝑡 = 𝑝

(0)
𝑡 (x, 𝑡).

Therefore 𝑝 (0)𝑡 is y-constant. Substituting (2.56a) from the 𝜖1 conditions into (2.55b) and (2.55c)
obtained from the 𝜖0 conditions yields:

∇2
𝑦𝑝

(1)
𝑡 = 0 in Ω𝑡 , (2.58a)

∇𝑦𝑝 (1)𝑡 ·n𝑡 = −∇𝑥 𝑝 (0)𝑡 ·n𝑡 on Γ. (2.58b)

The solution 𝑝 (1)𝑡 is given by:

𝑝
(1)
𝑡 = −r(x,y) · ∇𝑥 𝑝 (0)𝑡 + 𝑝𝑡 (x, 𝑡), (2.59)

where the auxiliary vector r solves the cell problem

∇2
𝑦r = 0 in Ω𝑡 , (2.60a)

(∇𝑦r)n𝑡 = n𝑡 on Γ. (2.60b)

Applying the average integral over Ω𝑡 to (2.56a) and substituting (2.59), leads to

⟨u(0)
𝑡 ⟩𝑡 = − 𝜅

|Ω𝑡 |

∫
Ω𝑡

(
∇𝑥 𝑝 (0)𝑡 −∇𝑦

(
r · ∇𝑥 𝑝 (0)𝑡

))
𝑑𝑦 = − 𝜅

|Ω𝑡 |

∫
Ω𝑡

(
𝐼 − (∇𝑦r)𝑇

)
∇𝑥 𝑝 (0)𝑡 𝑑𝑦

= −𝜅Y𝑡∇𝑥 𝑝 (0)𝑡 , (2.61)

where

Y𝑡 = 𝐼 −
1

|Ω𝑡 |

∫
Ω𝑡

(∇𝑦r)𝑇𝑑𝑦. (2.62)
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Here, Y𝑡 is the fluid hydraulic conductivity tensor for intestitial compartment. Equation (2.61)
shows that the macroscale fluid flow in the tumor interstitium is also governed by Darcy’s law.

The macroscale equation governing the tumour interstitial pressure leading term 𝑝
(0)
𝑡 can be

found by taking the average over Ω𝑡 and applying the divergence theorem to (2.56b). Then using
(2.56c), we obtain:

∇𝑥 ·
(
𝜅Y𝑡∇𝑥 𝑝 (0)𝑡

)
=

𝐿̄

(
𝑝
(0)
𝑡 − 𝑝 (0)𝑣

)
|Ω𝑡 |

𝑆, (2.63)

where we exploited the fact that both 𝑝 (0)𝑡 and 𝑝 (0)𝑣 depend on the macroscale only and 𝑆 is the
microscale surface of the capillaries defined by

𝑆 =

∫
Γ

dS𝑦 . (2.64)

Secondly, we find the multiscale differential equation for particle concentration in the inter-
stitium. Equations (2.53a), and (2.53b) are formally identical to (2.25c) and (2.26c), when the
following analogies are made:

u𝑣 → u𝑡 , 𝑐𝑣 → 𝑐𝑡 , 𝐷̄𝑣 → 𝐷̄𝑡 ,
𝜕𝑐𝑣

𝜕𝑡
→ 𝜕𝑐𝑡

𝜕𝑡
+Υ𝑐𝑡 , |Ω𝑣 | → |Ω𝑡 |, and n → n𝑡 = −n.

(2.65)
The asymptotic homogenization procedures provides tumour interstitial macroscale differential
equation which is similar to (2.45);

𝜕𝑐
(0)
𝑡

𝜕𝑡
+∇𝑥 ·

(
𝑐
(0)
𝑡 ⟨u(0)

𝑡 ⟩𝑡 −F𝑡∇𝑥𝑐(0)𝑡
)
+ 𝑆

|Ω𝑡 |
𝑃̄

(
𝑐
(0)
𝑡 − 𝑐(0)𝑣

)
= −Υ𝑐(0)𝑡 , (2.66)

where we have observed that both 𝑐(0)𝑣 and 𝑐(0)𝑡 depend only on the macroscale x. Equation (2.66)
represents the macroscale advection-diffusion-reaction describing interstitial particles’ transport
with effective diffusivity tensor

F𝑡 = 𝐷̄𝑡 (𝐼 − ⟨(∇𝑦b)𝑇 ⟩𝑡), (2.67)

where 𝐷̄𝑡 is defined according to (2.18) and (2.19). The vector b solves the cell problem (2.43a)
and (2.43b) in tumour interstitial domain, which is

∇2
𝑦b = 0 in Ω𝑡 , (2.68a)

(∇𝑦b)n𝑡 = n𝑡 on Γ. (2.68b)

Finally, the differential equation for the leading order temperature in the interstitial compartment
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can be computed by following the above steps together with the following identifications:

u𝑣 → u𝑡 , 𝑇𝑣 → 𝑇𝑡 , 𝐾̄𝑣 → 𝐾̄𝑡 ,
𝜕𝑇𝑣

𝜕𝑡
→ 𝜕𝑇𝑡

𝜕𝑡
− 𝛼̄ 𝑓 (𝑐𝑡), |Ω𝑣 | → |Ω𝑡 |, and n → n𝑡 = −n.

(2.69)
Therefore, the multiscale advection-diffusion-reaction for the leading order temperature in the
interstitial compartment 𝑇 (0)

𝑡 reads

𝜕𝑇
(0)
𝑡

𝜕𝑡
+∇𝑥 ·

(
𝑇
(0)
𝑡 ⟨u(0)

𝑡 ⟩𝑡 −N𝑡∇𝑥𝑇 (0)
𝑡

)
+ 𝑆

|Ω𝑡 |
𝛽𝑡

(
𝑇
(0)
𝑡 −𝑇 (0)

𝑣

)
= 𝛼̄𝑡𝑐

(0)
𝑡 , (2.70)

with
N𝑡 = 𝐾̄𝑡 (𝐼 − ⟨(∇𝑦e)𝑇 ⟩𝑡) (2.71)

is the thermal conductivity tensor for interstitial compartment, and 𝐾̄𝑡 is defined in (2.20).
The vector e solves the cell problem given by (2.49a) and (2.49b), but in the interstitial cell
portion, that is:

∇2
𝑦e = 0 in Ω𝑡 , (2.72a)

(∇𝑦e)n𝑡 = n𝑡 on Γ. (2.72b)

2.4.3 The macroscale model obtained via asymptotic homogenisation

From the previous section, we obtain the macroscale differential equations for the zero-th order
pressures, velocities, concentrations, and temperatures 𝑝 (0)𝑡 , 𝑝 (0)𝑣 , ⟨u(0)

𝑡 ⟩𝑡 , ⟨u(0)
𝑣 ⟩𝑣, 𝑐(0)𝑡 , 𝑐(0)𝑣 , 𝑇 (0)

𝑡

and 𝑇 (0)
𝑣 . These can be summarized as follows

⟨u(0)
𝑣 ⟩𝑣 = −Y𝑣∇𝑥 𝑝 (0)𝑣 ,

⟨u(0)
𝑡 ⟩𝑡 = −𝜅Y𝑡∇𝑥 𝑝 (0)𝑡 ,

(2.73)


∇𝑥 ·

(
Y𝑣∇𝑥 𝑝 (0)𝑣

)
=
𝐿̄

(
𝑝
(0)
𝑣 −𝑝 (0)𝑡

)
|Ω𝑣 | 𝑆,

∇𝑥 ·
(
𝜅Y𝑡∇𝑥 𝑝 (0)𝑡

)
=
𝐿̄

(
𝑝
(0)
𝑡 −𝑝 (0)𝑣

)
|Ω𝑡 | 𝑆,

(2.74)


𝜕𝑐

(0)
𝑣

𝜕𝑡
+∇𝑥 ·

(
𝑐
(0)
𝑣 ⟨u(0)

𝑣 ⟩𝑣 −F𝑣∇𝑥𝑐(0)𝑣
)
+ 𝑆

|Ω𝑣 | 𝑃̄
(
𝑐
(0)
𝑣 − 𝑐(0)𝑡

)
= 0,

𝜕𝑐
(0)
𝑡

𝜕𝑡
+∇𝑥 ·

(
𝑐
(0)
𝑡 ⟨u(0)

𝑡 ⟩𝑡 −F𝑡∇𝑥𝑐(0)𝑡
)
+ 𝑆

|Ω𝑡 | 𝑃̄
(
𝑐
(0)
𝑡 − 𝑐(0)𝑣

)
= −Υ𝑐(0)𝑡 ,

(2.75)
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
𝜕𝑇

(0)
𝑣

𝜕𝑡
+∇𝑥 ·

(
𝑇
(0)
𝑣 ⟨u(0)

𝑣 ⟩𝑣 −N𝑣∇𝑥𝑇 (0)
𝑣

)
+ 𝑆

|Ω𝑣 | 𝛽𝑣
(
𝑇
(0)
𝑣 −𝑇 (0)

𝑡

)
= 𝛼̄𝑣𝑐

(0)
𝑣 ,

𝜕𝑇
(0)
𝑡

𝜕𝑡
+∇𝑥 ·

(
𝑇
(0)
𝑡 ⟨u(0)

𝑡 ⟩𝑡 −N𝑡∇𝑥𝑇 (0)
𝑡

)
+ 𝑆

|Ω𝑡 | 𝛽𝑡
(
𝑇
(0)
𝑡 −𝑇 (0)

𝑣

)
= 𝛼̄𝑡𝑐

(0)
𝑡 ,

(2.76)

where Y𝑣 (x), 𝜅Y𝑡 (x), F𝑣 (x), F𝑡 (x), N𝑣 (x), N𝑡 (x) are effective hydraulic, diffusion, and thermal
conductivity tensors in the vessels’ and interstitial compartments, respectively. Here, |Ω𝑣 |
denotes the vessel volume, |Ω𝑡 | is the interstitial volume, and 𝑆 is the vessels’ wall surface.

The system of equations (2.74) describes transport in a porous medium with mass transfer
between compartments. The leakage of the blood across the vessels is reflected in the mass
exchange between the two compartments which is proportional to the difference between the
leading order pressures.

The particles’ transport in the vessels’ and interstitial compartments depends on the fluid flow
and it is represented by the system of coupled advection-diffusion-reaction equations (2.75).

Similarly, the system of coupled advection-diffusion-reaction equations in (2.76) describes
the heat transport at the macroscale and the temperatures’ profiles depend on both fluid and
particles’ transport.

Moreover, the macroscale coefficients, namely hydraulic conductivity tensors, diffusion ten-
sors, and thermal conductivity tensors, can be determined by solving the cell problems (2.33a-
2.33d), (2.60a, 2.60b), (2.43a, 2.43b), (2.68a, 2.68b), (2.49a,2.49b), and (2.72a, 2.72b), respec-
tively.

For instance, the cell problems related to interstitial fluid flow, drug transport, and heat
transport, are to be closed by a further condition for uniqueness to be achieved (for example by
assuming the null cell average of the auxiliary variables in the cell), as illustrated by Cioranescu
and Donato [29], Penta et al. [102].

2.4.4 The effective coefficients and microscale cell problems

In order to close the system of PDEs at the macroscale, we need to compute the effective
coefficients by solving appropriate cell problems at the microscale. The differential problems
which are related to the hydraulic conductivity tensors are discussed by Penta and Ambrosi [103].
The authors solved the differential problems numerically and investigated the influence of the
vessels’ tortuosity on the hydraulic conductivity tensors. Mascheroni and Penta [85] extended the
analysis carried out by Penta and Ambrosi [103] to compute the effective diffusion coefficients
by solving the cell problems related to drug transport, i.e. finding the solution for the auxiliary
variables which are called a, and b in the present manuscript, c.f. (2.43a)- (2.43a), and (2.68a)-
(2.68a). They also varied the geometrical tortuosity and found its impact on the tensors F𝑣 and
F𝑡 . Changing the vessels’ shape or tortuosity implies changes in the interstitial and vessels’
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volumes. Both the vessels’ hydraulic conductivity and particles’ diffusivity are affected by the
vessels’ tortuosity. In particular, Penta and Ambrosi [103] show that the hydraulic conductivity
exhibits a nonlinear decreasing profile at increasing tortuosity, while Mascheroni and Penta [85]
show that also diffusion decreases as tortuosity increases, although to a lesser extent. In contrast,
the interstitial coefficients are not significantly affected by microscale changes in the geometry
under consideration. Penta and Ambrosi [103] solved the problem which corresponds to those
related to the interstitial fluid, drug, and thermal auxiliary variables r, b, and e in our work,
i.e. (2.60a)-(2.60b), (2.68a)-(2.68b), and (2.72a)-(2.72b), respectively. In particular, these latter
problems (2.60a)-(2.60b), (2.68a)-(2.68b), and (2.72a)-(2.72b) are equivalent, so the auxiliary
variables r, b, and e solve the same problem and

∇yr = ∇yb = ∇ye. (2.77)

Penta and Ambrosi [103] concluded that as long as the vessels’ volume fraction is much smaller
than the interstitial one, the influence of the microscale on the interstitial coefficients is negligible,
i.e. they observed that 〈

∇yr
〉
𝑡
=

〈
∇yb

〉
𝑡
=

〈
∇ye

〉
𝑡
≈ 0. (2.78)

As such, from now on we focus on the microscale cell problems in the vessels’ compartments
and account for (2.78), so that, by recalling the definitions (2.62), (2.67), and (2.71), we can
assume

Y𝑡 = I; F𝑡 = 𝐷̄𝑡 I; N𝑡 = 𝐾̄𝑡 I. (2.79)

By following Mascheroni and Penta [85], Penta and Ambrosi [103], we enforce invariance
with respect to the three orthogonal axes so that the auxiliary tensors in the vessels W, F𝑣, N𝑣

are proportional to the identity tensor.
In particular, for the diffusivity F𝑣 and thermal conductivity N𝑣, we have:

F𝑣 = 𝐷̃𝑣I, N𝑣 = 𝑁̃𝑣 𝐼 .

such that:

𝐷̃𝑣 = 𝐷̄𝑣

(
1−

〈
𝜕𝑎1
𝜕𝑦1

〉
𝑣

)
= 𝐷̄𝑣

(
1−

〈
𝜕𝑎2
𝜕𝑦2

〉
𝑣

)
= 𝐷̄𝑣

(
1−

〈
𝜕𝑎3
𝜕𝑦3

〉
𝑣

)
,

𝑁̃𝑣 = 𝐾̄𝑣

(
1−

〈
𝜕𝑔1
𝜕𝑦1

〉
𝑣

)
= 𝐾̄𝑣

(
1−

〈
𝜕𝑔2
𝜕𝑦2

〉
𝑣

)
= 𝐾̄𝑣

(
1−

〈
𝜕𝑔3
𝜕𝑦3

〉
𝑣

)
,

where we can further notice that a and g are actually the solution to the exact same cell problem
(2.43a-2.43b) or equivalently (2.49a-2.49b). This leads to the solution of a standard Laplace
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problem, which reads, for example for the component 𝑔1

∇2𝑔1 = 0 in Ω𝑣, (2.80a)

∇𝑔1 ·n = 𝑛1 on Γ, (2.80b)

supplemented by a further condition to ensure uniqueness, e.g.

⟨𝑔1⟩𝑣 = 0 in Ω𝑣 . (2.81)

The analysis that follows is carried out by varying the tortuosity of the microvessels according
to Penta and Ambrosi [103].

We exploit the solutions of the cell problem (2.80a-2.80b), which is solved by Mascheroni and
Penta [85], to investigate the role of tortuosity on the homogenised thermal conductivity 𝑁̃𝑣 by
varying the Amplitude and spatial frequency 𝜔. The profile of the relative thermal conductivity
(and diffusivity)

𝐷̃𝑣/𝐷̄𝑣 = 𝑁̃𝑣/𝐾̄𝑣 = 1−
〈
𝜕𝑎1
𝜕𝑦1

〉
𝑣

= 1−
〈
𝜕𝑔1
𝜕𝑦1

〉
𝑣

, (2.82)

which is based on the results reported by [85], is shown in Figure 2.3.
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Figure 2.3: The ratio between the homogenised and base vessels’ diffusive conductivities values.
The values of the parameters are taken from Table 2.2. This figure is plotted by Al Sariri and
Penta [3].



CHAPTER 2. MULTISCALE MODEL OF IONP DELIVERY AND HEAT TRANSPORT 43

2.5 The mathematical model for a spherical tumour

We assume that the vascularised tumour can be represented in spherical coordinates with radius
𝑅. Also, we presume that the symmetric tumour is isolated and it interacts with surrounding
environment through the vessels. Assuming radial symmetry, the model reads as follows:


𝜕𝑐

(0)
𝑣

𝜕𝑡
+ 1
𝑟2

𝜕
𝜕𝑟

(
𝑟2

(
𝑐
(0)
𝑣 ⟨𝑢(0)𝑣 ⟩𝑣 − 𝐷̃𝑣

𝜕𝑐
(0)
𝑣

𝜕𝑟

))
+ 𝑆

|Ω𝑣 | 𝑃̄
(
𝑐
(0)
𝑣 − 𝑐(0)𝑡

)
= 0 in Ω,

𝜕𝑇
(0)
𝑣

𝜕𝑡
+ 1
𝑟2

𝜕
𝜕𝑟

(
𝑟2

(
𝑇
(0)
𝑣 ⟨𝑢(0)𝑣 ⟩𝑣 − 𝑁̃𝑣 𝜕𝑇

(0)
𝑣

𝜕𝑟

))
+ 𝑆

|Ω𝑣 | 𝛽𝑣
(
𝑇
(0)
𝑣 −𝑇 (0)

𝑡

)
= 𝛼̄𝑣𝑐

(0)
𝑣 in Ω,

(2.83)



𝜕𝑐
(0)
𝑡

𝜕𝑡
+ 1
𝑟2

𝜕
𝜕𝑟

(
𝑟2

(
𝑐
(0)
𝑡 ⟨𝑢(0)𝑡 ⟩𝑡 − 𝐷̄𝑡

𝜕𝑐
(0)
𝑡

𝜕𝑟

))
+ 𝑆

|Ω𝑡 | 𝑃̄
(
𝑐
(0)
𝑡 − 𝑐(0)𝑣

)
= −Υ𝑐(0)𝑡 in Ω,

𝜕𝑇
(0)
𝑡

𝜕𝑡
+ 1
𝑟2

𝜕
𝜕𝑟

(
𝑟2

(
𝑇
(0)
𝑡 ⟨𝑢(0)𝑡 ⟩𝑡 − 𝐾̄𝑡 𝜕𝑇

(0)
𝑡

𝜕𝑟

))
+ 𝑆

|Ω𝑡 | 𝛽𝑡
(
𝑇
(0)
𝑡 −𝑇 (0)

𝑣

)
= 𝛼̄𝑡𝑐

(0)
𝑡 in Ω,

(2.84)

where 0 ≤ 𝑟 ≤ 𝑅 and 0 ≤ 𝑡 ≤ T , where T is the time interval under investigation.
The macroscale system describing the fluid transport (2.73-2.74) was solved analytically

when accounting for spherical symmetry by Penta and Ambrosi [103]. In this case, the system
to be solved reads (neglecting from now on the labelling indicating the leading order character
of every field (0) for the sake of simplicity of notation):

1
𝑟

𝑑2

𝑑𝑟2 (𝑟 𝑝𝑣) = 𝑀𝑣 (𝑝𝑣 − 𝑝𝑡) in Ω, (2.85a)

1
𝑟

𝑑2

𝑑𝑟2 (𝑟 𝑝𝑡) = −𝑀𝑡 (𝑝𝑣 − 𝑝𝑡) in Ω, (2.85b)

𝑢𝑣 (𝑟) = −𝐻𝑣
𝑑𝑝𝑣

𝑑𝑟
in Ω, (2.85c)

𝑢𝑡 (𝑟) = −𝐻̃𝑡
𝑑𝑝𝑡

𝑑𝑟
in Ω, (2.85d)

𝑑𝑝𝑣

𝑑𝑟
|𝑟=0 =

𝑑𝑝𝑡

𝑑𝑟
|𝑟=0 = 0, (2.85e)

𝑝𝑣 |𝑟=𝑅 = 𝑝𝑣 > 0, 𝑃𝑡 |𝑟=𝑅 = 0. (2.85f)

The above system of equation was solved by Penta and Ambrosi [103] by accounting for boundary
conditions which are consistent with Jain et al. [70] and references therein, i.e. those for an
isolated tumour with fluid flow driven by the difference between the vascular and the interstitial
pressures (the vascular pressure is actually considered constant in Jain et al. [70] and references
therein). In the above, 𝐻𝑣 is the vessels’ hydraulic conductivity parameter which, according to
Penta and Ambrosi [103], ranges from 2.20 · 10−4 for a regular microvasculature to 4.89 · 10−6
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for the most tortuous scenario, and satisfies:

Y𝑣 = 𝐻𝑣 𝐼, 𝐻𝑣 = ⟨W11⟩𝑣 = ⟨W22⟩𝑣 = ⟨W33⟩𝑣, (2.86)

The parameter 𝐻̃𝑡 = 𝜅𝐻𝑡 , where

Y𝑡 = 𝐻𝑡 𝐼, 𝐻𝑡 = ⟨Yt11⟩𝑡 = ⟨Yt22⟩𝑡 = ⟨Yt33⟩𝑡 , (2.87)

and 𝐻𝑡 = 1 in our case by means of (2.78).
The solutions of the system (2.85a)-(2.85f) derived by Penta and Ambrosi [103] are summarized
below.

𝑝𝑣 =
1

𝑀𝑣 +𝑀𝑡

(
𝑀𝑡 +

𝑀𝑣 sinh(𝛼̃𝑟)
𝑟 sinh(𝛼̃)

)
, (2.88a)

𝑝𝑡 =
𝑀𝑡

𝑀𝑣 +𝑀𝑡

(
1− sinh(𝛼̃𝑟)

𝑟 sinh(𝛼̃)

)
, (2.88b)

where 𝑟 = 𝑟/𝑅 (relative radius position), and

𝛼̃ = 𝑅
√︁
(𝑀𝑣 +𝑀𝑡), (2.89)

with
𝑀𝑣 =

𝐿̄𝑆

𝐻𝑣 |Ω𝑣 |
, 𝑀𝑡 =

𝐿̄𝑆

𝐻̃𝑡 |Ω𝑡 |
. (2.90)

2.5.1 Initial and boundary conditions

We assume that no particle is present in the whole system at 𝑡 = 0. Also, both the nanoparticles
and the heat fluxes must vanish in the tumour centre as a consequence of the radial symmetry
assumption. We assume a vessels’ bolus injection with clearance time 𝜍 at the boundary of the
macroscale domain, which means that the concentration of the particles declines exponentially
due to body elimination effects in the plasma, as shown by Chou et al. [28]. We also assume
the continuity of particles’ concentration at the boundary of the interstitial region. The initial
temperatures are set to be the standard vessels’ temperature 310.15K. Following the approach by
Nabil and Zunino [94], we impose Robin condition on the boundary of the tumour interstitium
to account for the heat transfer between the tumour and the vessels’ mediated by intermediate
layers of tissue [23, 72, 94, 117]. The initial and boundary conditions can be summarised as
follows. 

𝑐𝑡 |𝑡=0 = 𝑐𝑣 |𝑡=0 = 0,

(𝑢𝑣𝑐𝑣 − 𝐷̃𝑣
𝜕𝑐𝑣
𝜕𝑟

)
��
𝑟=0 = (𝑢𝑡𝑐𝑡 − 𝐷̄𝑡

𝜕𝑐𝑡
𝜕𝑟
)
��
𝑟=0 = 0,

𝑐𝑣 |𝑟=𝑅 = 𝑒−𝑡/𝜍 , 𝑐𝑡 |𝑟=𝑅 = 𝑐𝑣 .

(2.91)
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
𝑇𝑣 |𝑡=0 = 𝑇𝑡 |𝑡=0 = 1,

(𝑢𝑣𝑇𝑣 − 𝑁̃𝑣 𝜕𝑇𝑣𝜕𝑟 )
���
𝑟=0

= (𝑢𝑡𝑇𝑡 − 𝐾̄𝑡 𝜕𝑇𝑟𝜕𝑟 )
���
𝑟=0

= 0,

𝑇𝑣 |𝑟=𝑅 = 1, (𝑢𝑡𝑇𝑡 − 𝐾̄𝑡 𝜕𝑇𝑟𝜕𝑡 )
���
𝑟=𝑅

= 𝛽𝑡 (𝑇𝑣 −𝑇𝑡).

(2.92)

The finite element software Comsol Multiphysics is used to solve the model and the values of
the parameters are provided in Table 2.1.
In particular, both the drug and the heat transport systems (2.83)-(2.84) have been implemented
by means of the convection-diffusion module in coefficient form equipped with boundary and
initial conditions (2.91)-(2.92) and parameters taken from Table 2.1. The spatial discretization
is carried out by means of P2 elements, while for the discretization in time an implicit Backward
Differentiation Formula (BDF) method is embraced, similarly to Mascheroni and Penta [85].
Although the system is solved in non-dimensional form, the temperatures and the absorption rate
are shown in dimensional form in the plots to foster the Reader’s clarity in terms of comparison
against previous literature.

2.6 Results and discussion

Mascheroni and Penta [85] studied the macromolecules distribution in both the vessels and the
interstitial compartment using the advection-diffusion-reaction equations derived by Penta et al.
[102]. The reaction terms are related to the uptake of anti-cancer agents, as well as additional
contributions due to the upscaling of transvascular diffusion of particles. The authors presented
the result for a spherical tumour, and they discussed the impact of tortuosity on drug transport.

In the present work, we extend the works by Mascheroni and Penta [85], Penta et al. [102]
to heat transport and solve the resulting systems of PDEs to obtain the temperature maps which
are driven by nanoparticles’ transport in the contex of cancer hyperthermia. Although the drug
transport analysis carried out here differs from the one by Mascheroni and Penta [85] in terms of
the choice of parameters (which are related to nanoparticles and macromolecules, respectively),
as well as macroscale boundary conditions (we assume continuity of concentrations at the tu-
mour boundary as done by Penta and Ambrosi [103] here, while zero diffusive interstitial drug
flux is assumed by Mascheroni and Penta [85]), a qualitative comparison concerning the drug
transport problem is still possible, and provides a benchmark supporting the reliability of the
results presented here.

We commence by first presenting our results concerning the solution of the drug transport
problem and then show the results concerning temperatures maps against the relative radial
position at varying microvessels’ tortuosity and absorption rate.

The main results show that geometrical tortuosity can significantly impair heat transport
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Table 2.1: List of parameters and their values.

Symbols Parameter Value Unite Reference

𝜇 Blood viscosity 4×10−3 kg /(m s) [94]

𝐿𝑝 Vessels’ permeability 1.78×10−11 m/(Pa s) [85]

𝜅 Tumour hydraulic conductivity 2.1×10−13 m2 /(Pa s) [85]

𝐷𝑣 Diffusivity of the nanoparticles in the capillaries 3.3×10−10 m2/s [85]

𝐷𝑡 Diffusivity of the nanoparticles in the interstitium 1.0×10−11 m2/s [85]

𝐾𝑡 Thermal conductivity of the tumour 0.52 W/ (m K) [141]

𝐾𝑣 Thermal conductivity of the vessels 0.51 W /(m K) [141]

𝛽 Heat transfer coefficient 20 W /m2 K [94]

Λ Uptake Rate in the tumour 1.07×10−11 s−1 [85]

𝑝 Diffusive permeability of the membrane 1.7×10−7 m/s [85]

𝑑 Reference microscale 4.0×10−5 m [85]

𝐿 Reference macroscale 1.0×10−2 m [85]

C Reference pressure gradient 5×102 Pa/m [85], [126], [103]

𝜍 Reference plasma clearance time 432 s [85]

𝛼 Absorption rate 6×106 W/Kg [23]

𝛾𝑡 Tissue’s specific heat 3470 J/Kg K [94]

𝜌𝑡 Tissue’s density 1060 Kg/ m3 [94]

𝛾𝑣 Vessels’ specific heat 3617 J/Kg K [88]

𝜌𝑣 Vessels’ density 1050 Kg/ m3 [88]

𝐶𝑟 Reference concentration 100 mg/ml [37]

𝑇 Reference blood temperature 310.15 K

within the tumour and that a higher magnetic field can be required to reach a temperature which
is sufficiently high to kill tumour cells by cancer hyperthermia. We provide a detailed and more
quantitative description of the results below.

2.6.1 Particle transport

The results displayed in Figure 2.4 and Figure 2.5 are presented in terms of the leading order
concentrations in the tumour and the vessels against the non-dimensional radius within a chosen
period of time of 24 hours and 96 hours, respectively.

Figures 2.4 and 2.5 clearly show that the nanoparticles diffuse to the tumour center and the
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Figure 2.4: The distribution of nanoparticles in the tumour regions at time (6h-24h). The vessels
(a) and interstitial (b) particles distribution vs tumour radius - low uptake rate case (1.07×10−11

s−1). All other parameter values are as specified in Table 2.1. These figures are derived by
Al Sariri and Penta [3].

concentration profiles of both compartments are similar. This is due to vessels’ permeability and
the role played by the exchange of particles between the two compartments, which is proportional
to 𝑆

|Ω𝑣 | 𝑃̄
(
𝑐
(0)
𝑣 − 𝑐(0)𝑡

)
or 𝑆

|Ω𝑡 | 𝑃̄
(
𝑐
(0)
𝑡 − 𝑐(0)𝑣

)
. Given the physiological values of 𝑃̄, no significant

differences between 𝑐𝑣 and 𝑐𝑡 can be appreciated, in analogy with [85]. Also, the influence of
uptake rate does not play a prominent role here as its value is very small, see Table 2.1. Both
figures display that the concentration peak is reached close to the boundary. This is because the
dynamics is dictated by the bolus injection boundary conditions. As such, as there is a continuous
(but exponentially decreasing in time) drug supply, at earlier times there can be regions where
the concentration is higher than that at the boundary before diffusion and uptake take over.
Due to the assumption of drug delivered intravascularly via a bolus injection on the boundary,
the particles’ concentration decreases steadily after 6h (432) at r=R and reaches zero after two
days which cause the over all decline on the concentration. However, a fraction of the initial
concentration is still able to reach the tumour centre by the end of the time interval under
investigation. In the period of time (24h-72h), the particles’ concentration in the center increases
from 1% to approximately 7% of the initial concentration. After that, the concentration in the
center starts to decrease slightly, i.e. in the period (72h-96h). In addition, the concentration in
the last two days reaches a plateau when moving towards the center.

Nabil and Zunino [94] presented their result in a cubic symmetric setting and they found that
the particles concentration decreases with time. Moreover, the concentration of nanoparticles in
the vessels becomes almost uniform at the end of the circulation time they investigate, which is
48 hours.

Nanoparticles and in general drugs are eventually metabolised by tissue. This is done at a
specific rate, also referred to as the uptake rate, which depends on the properties of the tissue
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Figure 2.5: The distribution of nanoparticles in the tumour regions at time (24h-96h). The vessels
(a) and interstitial (b) particles distribution vs tumour radius - low uptake rate case (1.07×10−11

s−1). All other parameter values are as specified in Table 2.1. These figures are deduced by
Al Sariri and Penta [3].

and drugs at hand, as discussed by Tchoryk et al. [142]. Mascheroni and Penta [85] compared
two specific macromolecules characterised by different uptake rates, with order of magnitudes
varying from 10−11 𝑠−1 to 10−5 𝑠−1, as also mentioned by Weinberg et al. [146]. In Figure 2.6 we
show the influence of high tissue uptake rate on the particle distribution in vascularised tumours,
and we then increase the value of the uptake rate from 1.07 ·10−11 𝑠−1 (see Table 2.1) to 10−5 𝑠−1.

The concentrations in both compartments are decreasing and are approximately approaching
zero in the center for all periods of time. High uptake rate leads to fast washing out of the
particles, such that only few of them can reach the center of the tumour. The particles in this
case are metabolised very fast by the tumour before they are transported into the tumor center.
Also, we have similar profiles for both compartments here, even in the case of higher uptake
rates, because the influence of the vessels’ permeability is more significant than the uptake rate
given the high physiological values at hand. We would obtain different profiles if we significantly
decreased the permeability of the vessels. In this case, the impact of the uptake rate would play a
more prominent role in determining a difference between the homogenised concentration profiles.
However, the difference cannot be appreciated by making use of appropriate physiological values
of the relevant parameters at hand.

The concentrations profiles are qualitatively in agreement with Mascheroni and Penta [85]
and this is shown for the case of the most tortuous vessels’ network considered by Penta and
Ambrosi [103] and Mascheroni and Penta [85], that is 𝜔 = 3 and 𝐴 = 𝑟𝑐, see also Table 2.2 and
Figure 2.9.
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Figure 2.6: The nanoparticles delivery in the tumour with high uptake rate (1.07×10−5 s−1). All
other parameter values are as specified in Tables 2.1, and 2.2.The vessels (a) and interstitial (b)
particles distribution vs tumour radius. These figures are derived by Al Sariri and Penta [3].

2.6.2 Heat Transport

Table 2.2: The computational result for the non-dimensional vessels’ thermal conductivity with
different vessels tortuosity from the analysis by Penta and Ambrosi [103] and Mascheroni and
Penta [85]. The parameters 𝑟𝑐 is the radius of the vessels, 𝜔 is the frequency of the vessels, and
𝐴 is the vessels’ amplitude.

𝜔 A |Ω𝑣 | |Ω𝑡 | 𝑆 𝐻𝑣 𝐼 −
〈
𝜕𝑔1
𝜕𝑦1

〉
𝑣
= 𝐼 −

〈
𝜕𝑎1
𝜕𝑦1

〉
𝑣

0 0 8.1 ·10−2 6.149 2.30 2.20 ·10−4 3.6 ·10−1

1 𝑟𝑐 7.6 ·10−2 6.154 2.32 1.69 ·10−4 3.19 ·10−1

2 𝑟𝑐 6.9 ·10−2 6.162 2.57 6.24 ·10−5 2.13 ·10−1

3 0.75𝑟𝑐 6.8 ·10−2 6.162 2.82 2.02 ·10−5 1.59 ·10−1

3 𝑟𝑐 6.5 ·10−2 6.165 3.25 4.89 ·10−6 0.9 ·10−1

We now present the major results obtained by solving the full system of macroscale coupled
PDEs (2.83)-(2.84) by finite elements. The tortuosity of the microstructure is varied according
to the values reported by Penta and Ambrosi [103] and Mascheroni and Penta [85] corresponding
to five representative geometries, and the two extreme cases are shown in Figure 2.7. We have
observed that the temperature increases and reaches its maximum after one day, then starts to
decline and the maximum temperature varies with vessels tortuosity. As we have also remarked
in the introduction, increasing the tortuosity reduces fluid and particles convection within the
tumour, as show by Penta and Ambrosi [103] and Mascheroni and Penta [85]. As such, this
leads in turn to impaired heat convection driving a decline in temperatures. Therefore, the more
regular the vessels, the lower magnetic field intensity (which is here encoded in the absorption
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Figure 2.7: Temperature maps for the first 24h in both the vessels (a) and the interstitium (b)
vs radius-low uptake rate. All the parameters values are taken from Tables 2.1, and 2.2.These
figures are plotted by Al Sariri and Penta [3].

rate coefficient) is needed to reach the desired target temperature.

The plots showing the vessels’ and interstitial temperature maps are shown in Figures 2.7 and
2.8 at different times, for the first 24h and from day 1 (24h) to day 4 (96h), respectively. These
results are related to the most tortuous (i.e. corresponding to the case 𝜔 = 3, 𝐴 = 𝑟𝑐 reported
in Table 2) vessels’ microvasculature considered by Penta and Ambrosi [103], see Figure 2.9.
Figure 2.7 clearly shows that the temperature increases with time as it reaches its maximum after
24h. It then starts to decline steadily with time, because the concentration in the blood decreases
exponentially according to the bolus injection, cf. initial condition (2.91).

Also, for all period of times under investigation, the temperature in the center is higher than
the boundary, as the particles are transported towards the center. This can be explained by the
fact that heat trasport is driven by a significant diffusive component as opposed to drug transport,
which is mostly driven by convection instead (cf. thermal conductivities 𝐾𝑡 or 𝐾𝑣 vs the particles
diffusion coefficients 𝐷𝑣 or 𝐷𝑡 in Table 2.1. In fact, the non-dimensional diffusion coefficients
as defined in (2.18) are of order ≈ 10−4 to 10−5 as opposed to the non-dimensional thermal
conductivities which are of the order of ≈ 10−1 to unity). This explains the difference between
the drug concentration and temperature profiles, despite both phenomena being governed by
formally a similar set of advection-diffusion-reaction equations. In fact, the role of advection is
more prominent in driving drug transport rather than heat transport, as it can also be observed
by the more localised concentration peaks (cf. Figure 2.5), as opposed to the smoother and
more uniform heat transport process, which is reflected in the temperature profiles as per Figures
2.7 and 2.8. At 24h the temperature in the center is approximately 313K (39.8 ◦C) where in
the boundary it reaches the blood temperature (310.15K) which is prescribed via the boundary
condition. This is also in agreement with temperature profile previously reported in other works
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Figure 2.8: Temperature maps in both the vessels (a) and the interstitium (b) vs radius-(low
uptake rate) from day 1 (24h) to day 4 (96h). All the parameters values are taken from Tables
2.1, and 2.2. These figures are established by Al Sariri and Penta [3].

which address this problem using different modelling frameworks such as those by Bagaria and
Johnson [9], Dutz and Hergt [40], Golneshan and Lahonian [51].
Furthermore, the temperature maps for the tumor vessels and interstitial compartments are
similar because the heat convection strongly depends on the concentration, as well as the heat
transfer coefficients 𝛽𝑡 and 𝛽𝑣, whose physiological values are high enough to make the difference
between the two profiles negligible, as in the case of the drug concentration profiles.

Figure 2.9: The structural difference between the healthy and tumour vessels. The most tortuous
micro-vasculature (on the right) vs the regular one (on the left) as setup by [103]. This figure is
taken from [3].

The distribution of heat in the tumour is in agreement with Nabil and Zunino [94] as they
reported that the temperature in the center of the cube is higher than in the edges. However
Nabil and Zunino [94] found that the temperature increases with time (48h). This discrepancy is
related to our different set of boundary conditions. In our case we have an exponential decrease
in the particles’ concentration, which is directly proportional to the heat source related to the
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magnetic absorption rate, thus eventually causing a temperature decline over time.

2.6.3 The influence of absorption rate and vessels’ tortuosity on the heat
distribution

The previous analyses in Section 2.6.2 are related to tumour microvessels, which are most
tortuous and leaking vessels with (𝜔 = 3, 𝐴 = 𝑟𝑐) as opposed to the healthy ones (𝜔 = 0), see e.g.,
the works by Penta and Ambrosi [103], Shipley and Chapman [126], and Carmeliet and Jain
[20].

𝑇
𝑣

(K
)

Radius
Figure 2.10: The vessels’ temperature vs the radius r with different vessels’ structures at time
24h. All the parameters values are taken from Tables 2.1, and 2.2. This figure is plotted by
Al Sariri and Penta [3].

The structure of the vessels and their tortuosities are not uniform and they vary from one
point to another in the tumour mass, as described by Penta et al. [102]. Mascheroni and Penta
[85], Penta and Ambrosi [103] discussed the impact of the vessels’ geometry on fluid and drug
transport, respectively. They deduced that the vessels’ tortuosity leads to a relevant decrease in
both hydraulic and diffusivity properties of the vessels thus impairing fluid and drug convection
within the tumour. Here, we perform a parametric analysis by varying the tortuosity of the
vessels’ micro-structure and capture its effect on the temperature maps. We make use of the
setting which has been exploited by Penta et al. [102]. The data associated with the various
parameters involved are reported by Mascheroni and Penta [85], Penta and Ambrosi [103].
The results show that heat transport is impaired at increasing vessels’ tortuosity from the most
regular vessels characterised by 𝜔 = 0 (representing healthy vessels) to the most tortuous vessels
(representing tumour vessels at an advanced stage) with 𝜔 = 3, 𝐴 = 𝑟. The temperatures varies
between approximately 39.8◦C - 40.9◦C as we improve the regularity of the vessels. Also,
we have observed (see Figure 2.10) that the temperature decreases more remarkably from the
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Figure 2.11: (a) The vessels’ concentration or (b) temperature vs the radius r for a healthy
non-tortuous microstructure (𝜔 = 0) with low uptake rate. All the parameters values are taken
from Tables 2.1, and 2.2. These results are found by Al Sariri and Penta [3].

vasculature corresponding to 𝜔 = 3, 𝐴 = 0.75𝑟 and the most tortuous one (𝜔 = 3, 𝐴 = 𝑟). This is
ultimately related to impaired drug and fluid transport, and the latter (especially fluid convection)
decreases sharply when the microscale fluid profile is no longer parabolic, as show in Figure 2.9
and discussed by Penta and Ambrosi [103].

As the particles are transported smoothly in the healthy vessels and the concentration is high
even in the second day, the temperature reaches its maximum 41.5◦C after two days, see Figure
2.11. The difference in maximum temperatures between the regular vessels and most tortuous
ones is approximately 1.5 degrees.
The temperatures achieved with different tortuosities are very close to the medical and experi-
mental results which show that 42◦C is the appropriate temperature for hyperthermia treatment
and 43◦C - 44◦C for magnetic hyperthermia treatment, see also the works by Laurent et al.
[78], Ling-Yun et al. [81], Silva et al. [128].
Furthermore, the absorption rate (which is proportional to the magnetic field intensity) plays
important role on the heat distribution as it mediates the temperature increase which is cause
by the nanoparticles’ concentration. Therefore, we have varied the value of absorption rate 𝛼 at
increasing tortuosity to detect the impact of these variations on temperature maps. The absorp-
tion rate of magnetic nanoparticles is proportional to the square of the magnetic field intensity,
as well as its frequency. It also varies with respect to the nanoparticles size and material, and a
range of variation of four orders of magnitude, i.e. from 103 W/Kg to 107 W/Kg, as reported
by Cervadoro et al. [23].
We have observed a linear relationship between the absorption rate and the heat distribution for
each geometry under investigation, see Figure 2.12.

Compared to the values of hydraulic conductivity, diffusivity, and thermal conductivities
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Figure 2.12: Temperature maps vs normalised radius at increasing absorption rate for different
microvascular geometries after 24h. The various colors of the curves is related to different values
of magnetic absorption rate 𝛼. The parameters 𝜔 is the vessels’ frequency, 𝐴 is the amplitude of
the vessels, and 𝑟𝑐 is the radius of the vessels. All the parameters values are taken from Tables
2.1, and 2.2. These figures are established by Al Sariri and Penta [3].

for different vessels tortuosity, we observed that the temperature increases by 6% in the most
regular vessels when the absorption rate increases by one order of magnitude. However, the
temperature increases by 4.6% for the most tortuous vessels when the same change of absorption
rate is applied. Moreover, when the value of the absorption rate is 6 ·106 W/Kg, the temperature
difference between the tortuous and regular vessels is almost one degree, while the difference is
approximately two degrees when the value of absorption rate is 107 W/kg.
The absorption rate of nanoparticles can be varied in practice during experiments in order to
have the suitable temperature which is required to kill the cancer cells.
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2.7 The difference between our approach and the one by Nabil
and Zunino [94]

Nabil and Zunino [94] discussed the hyperthermia cancer treatment using iron oxide nanopaticles
(IONP) by primarily focussing on the adhesion mechanisms (so that excited particles do not
extravasate from the vessels to the tumour). However, this work is different from the one by
Nabil and Zunino [94] as here the tumour is modeled as a three-dimensional domain which
comprises the interstitial spaces and the vessels. The two domains are separated by an interface
which represents the vessels’ walls. Moreover, there are some differences between the two works
related to the macroscale geometry, computational technique and other concepts such as external
boundary conditions. For instance, Nabil and Zunino [94] represent the tumour at the macroscale
as a cube for the sake of simplifying the numerical computations. In contrast, we modelled the
vascularised tumour as a sphere as an analogy with the works by Penta et al. [102], Penta and
Ambrosi [103], Shipley and Chapman [126]. This geometry has significant implications on the
fluid and drug transport profile and also this particular shape is very convenient when comparing
results against experiments, as shown by Jain and Baxter [69]. In addition, the homogenization
technique adopted by Nabil and Zunino [94] relies on the immersed boundary method, as
illustrated by Cattaneo and Zunino [21, 22]. The vessels are dealt with as though they were one-
dimensional lines, nevertheless carrying relevant three-dimensional information via appropriate
singularities on the boundaries. Our new model retained the three-dimensional character of both
the vessels and the interstitial spaces, and asymptotic homogenisation is being used to perform
the upscaling and achieve computational feasibility. In this way, the geometrical differences
between the vessels and tumour are smoothed out on the macroscale. Moreover, in the present
work we encode information related to the fine scale structure of the individual compartments,
as well as the transport which is occurring across the vessels’ walls. The latter is reflected into
appropriate sources at the macroscopic scale. In the work by Nabil and Zunino [94], the interface
is not resolved as the vessels are immersed in the three dimensional tumour. However, in their
case information concerning fluid, drug, and heat transport across the interface is retained and
it appears likewise as a source in the resulting macroscale model. Furthermore, the vessels
temperature is constant in their work, but it varies in our work, as the vessels are represented by
a separate compartment in three dimensions which is described by its own governing equations.
In addition, Nabil and Zunino [94] consider different time steps which depend on the size of
nanoparticles. A 40 minutes time interval appropriate for very small nanoparticles and 12h, 24h,
and 48h for large ones which are called vascular magnetic nanoparticles (VMN). In our case,
we do not focus here on the size of nanoparticles and we focus on a 4 days time interval (and
highlight the dynamics which takes place during day 1 by means of 4 different time points at 6,
12, 18, and 24h). Finally, we have assumed microscale periodicity which is a limitation of the
present model. It allows us to deal with complicated and potentially tortuous microvessels which
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are often encountered when dealing with vascularised cancer, as shown by Jain et al. [70], Penta
et al. [102].

2.8 Concluding remarks

We have derived in the this chapter a new mathematical model which describes the heat transport
occurring in vascularised tumours due to magnetic nanoparticles delivered intravascularly, as
per current cancer hyperthermia protocols.

We have derived the results by means of the asymptotic homogenisation technique to obtain a
tissue-scale macroscopic description of the coupling between fluid, particles, and heat transport,
as well as their exchange across the vessels’ membranes.

The new coupled system comprises six partial differential equations describing both intersti-
tial and vascular pressures, concentrations of nanoparticles, and temperatures.

A double Darcy’s system describes fluid flow, while the concentration of nanoparticles and
heat transport are both governed by double advection-diffusion-reaction system of PDEs.

The impact of the micro-structure is reflected in the effective tensors of coefficients represent-
ing the hydraulic and thermal conductivities, as well as particles’ diffusion. These latter can be
computed by solving periodic cell problems where the geometry of the micro-vessels is clearly
resolved. The role of transvascular mass, heat, and particles transport and uptake appears in
suitable macroscale exchange terms which provide the coupling between the governing equations
in the vessels and the tumour.

We have solved the full model by means of finite elements, and we have observed that vessels’
tortuosity can impair heat transport within the tumour mass, so that regularization of the micro-
vessels can produce a significant (1-2 degrees) increase in the maximum temperature which is
reached in the tumour center under the same therapeutic conditions (which are here reflected
in the tumour absorption rate, which is in turn related to the magnetic field and nanoparticles’
properties). Furthermore, we have investigated the impact of a change in the absorption rate
for different micro-vessels’ geometries, and this analysis can pave the way for informed cancer
hyperthermia parameters depending on the geometry of the microvessels, which is ultimately
related to the tumour stage. For example, the heat distribution with absorption rate 107 fluctuates
between approximately 43.5 ◦C - 41.5 ◦C, which is aligned with the required temperature to
destroy cancer cells, as mentioned in Section 2.6.3.

In Chapter 2 we have studied the distribution of the heat for different tumour microstructures
and particles absorption rate property. However, the rationale behind employing magnetic
nanoparticles is to improve hyperthermia treatment by destroying the tumour without affecting
the surrounding healthy tissues. Therefore, the magnetic nanoparticles should kill the cancer
cells within safe conditions. As such, in the next Chapter, we investigate the optimal parameters
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related to the nanoparticles, vessels’ structure, and magnetic field to achieve safe hyperthermic
conditions (in terms of temperature and time) by using large size of nanoparticles that adhere to
the vessels’ wall.



Chapter 3

Optimal heat transport induced by
magnetic nanoparticle delivery in
vascularised tumours

[This chapter is published as : Al Sariri, T., Simitev, R.D. and Penta, R., 2022. Optimal
heat transport induced by magnetic nanoparticle delivery in vascularised tumours. Journal of
Theoretical Biology, p.111372.].

3.1 Introduction

Magnetic nanoparticles are increasingly being used for cancer hyperthermia treatment as they
can produce a heat source localised in the tumour region without significantly affecting the
surrounding healthy tissue, e.g. Colombo et al. [31], Das et al. [34].The main clinical determinants
of the efficacy of hyperthemia in destroying cancer cells are (a) the temperature achieved within
the tissue above normal body temperature and (b) the duration of time for which this abnormal
temperature is maintained. In the article we refer to these as “hyperthermic temperature” and
“hyperthermic duration” and they are also commonly known as hyperthermia “thermometric
parameters”. For the treatment to be effective but safe both the hyperthermic temperature and
the hyperthermic duration must be kept withing certain target ranges [2, 76]. The hyperthermic
temperature and duration depend on the properties of the nanoparticles employed, (e.g. shape,
density, magnetisation), the properties of the externally applied magnetic field (frequency and
intensity) and the properties of the tumour tissue as these affect blood perfusion (vascularisation,
tortuosity) as discussed by Shubitidze et al. [127] and Golneshan and Lahonian [51]. Direct in
situ measurements of hyperthermic temperature and duration are usually impossible and it is
the main goal of this work to estimate the values of these important clinical measures using a
newly-developed mathematical model of a vascularised tumour.

There is large uncertainty and variability in the estimates of safe and effective thermometric
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parameter values and ranges reported in the literature. One clinical study reports that hyper-
thermic temperature must be greater than 41◦C and must be maintained for a hyperthermic
duration of over 60 minutes [2]. Another study finds that approximately 90% of the cells can
be eradicated with hyperthermic temperature greater than 43◦C [13]. However, hyperthermic
temperature that is too large, e.g. larger than 43.5◦C or 44◦C, is found to increase the general
levels of cytotoxicity in the body [99]. Similarly, general levels of thermotolerance in the body
are found to limit hyperthermic duration to about 60 minutes [79]. In general, the thermometric
parameters cannot be expected to have single fixed values, rather the effects of a hyperthermia
treatment likely vary on a spectrum [14].

Even when target values of the hyperthermic temperature and duration are known with suf-
ficient accuracy, it remains a non-trivial task to fine-tune the parameters of a hyperthermia
treatment procedure so that these thermometric targets are achieved. It is usually very difficult to
measure temperature in situ within a tumour tissue non-invasively and even more so while treat-
ment is underway and as a consequence a variety of experimental and theoretical investigations
have been reported in the literature. Muela et al. [93] suggest optimal parameters for hyper-
thermia treatment by estimating the specific absorption rate (SAR) of biomineralized magnetite
nanoparticles by simulation of the dynamic hysteresis loops from the Landau–Liftshitz–Gilbert
equation which are then compared to experimental measurements in water and agarose gel.
Roohi et al. [114, 115] estimate the optimal location, dosage, duration time of injecting magnetic
nanoparticles employing a dual phase lag bioheat equation in conjunction with a mass transfer
model for magnetic particles and proceed by optimising the protocol using a simulated annealing
algorithm. Tang [140] use machine learning procedures and heuristic algorithms to predict
magnetic nanoparticle infusion in tumour tissue and then estimate the temperature field. Further
attempts in this direction are reported by Lang et al. [77], Saeedi et al. [117] and Cervadoro et al.
[23] to mention few recent ones.

The main advantage of this chapter lies in the development and use of a cutting-edge multiscale
mathematical model of a vascularised tumour. Both the hyperthermic temperature and duration
are influenced by the properties of the injected nano-particles (e.g. the diameter of the particles
and their shape), injection conditions, and, especially for vascularised tumours, by the structural
and functional characteristics of the microvessels, such as their geometrical arrangement and
wall shear rate. In particular, the geometrical properties of the tumour vascularisation are
well-known to significantly affect blood and drug transport in cancer [69, 70]. The role of
the microvessels’ geometry has been further elucidated and quantified by means of suitable
homogenisation approaches, which are capable of providing a link between the microscale,
where the distance between individual vessels can be clearly identified, and the macroscale of
the tissues, where experimental measurements are usually ultimately performed.

In this chapter, we extend the analysis carried out by Al Sariri and Penta [3] (previous Chapter)
to large nanoparticles, thus by starting from a new homogenised model which is derived by taking
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into account that nanoparticles cannot extravasate from the vessels into the tumour interstitium.
As such, the drug dynamics is present in the vessels’ only and we explicitly take into account
the role of particles adhesion. The specific absorption rate that determines heat generation
under applied magnetic field is computed using a Brownian and Neels relaxation formula.
The model allows to estimate the spatiotemporal distibution of temperature within the tumor
tissue and we use this to make accurate estimates of the hyperthermic temperature and duration
as functions of the parameters that describe nanoparticle properties (magnetic material, size),
microvasculature properties (tortuosity, hydraulic conductivity, thermal conductivity, adhesion
rate) and the properties of applied magnetic field (intensity and frequency). The chapter is
organized as follows. In Section 3.2, we describe the new homogenised model which describes
the interplay between fluid, nanoparticles, and heat transport in a vascularised tumour subjected
to the action of an applied magnetic field. The role of nanoparticles adhesion and a comparison
between this work and Al Sariri and Penta [3] is highlighted. In Section 3.3, we discuss the
results. In Section 3.3.1 we focus on both temporal and spatial temperature and nanoparticles’
concentration maps at varying tortuosity and for different nanoparticles’ material. In Section 3.3.2
we discuss the optimal heat transport parameters to achieve physiologically safe hyperthermic
temperature and duration. Finally, we discuss limitations of the model and further perspectives
in Section 3.4.

3.2 Mathematical modelling

The velocity of nanoparticles in the vessels is in general heterogeneous. The particles which
are closer to the walls of the vessels are slower than the others. This is due to the friction force
between the particles and the vessel membrane in a process which is known as adhesion. The
typical extravasation transport mechanism consists of nanoparticles being transported into the
tumour interstitium through the pores of the vessels (these are for example of the order of 40-
200 nm diameter for brain and peripheral tumour according to the analysis performed by Sarin
et al. [121] by means of electronic microscopy techniques). However, transport of nanoparticles
depends on the ratio between particle size and vessel wall pore size [135]. Nanoparticles with
diameter less than 10 nm can be easily filtered by the renal system and they can be captured
by spleen and liver if their size is greater than 200 nm. The optimal nanoparticle diameter is
therefore usually estimated to range from 20 to 200 nm, as discussed by Thomas et al. [144].
Here we study transport of large (80 nm diameter) spherical magnetic nanoparticles in three-
dimensional vascularised tumours. As such, we assume that nanoparticles adhere to vessel walls
and extravasation is ruled out. The tumour, which is identified with a three-dimensional domain
Ω, is assumed to comprise of two regions, namely, tumour vesselsΩ𝑣 and tumour interstitiumΩ𝑡 .
Therefore, vessel walls play the role of the interface between these two compartments, which is
here denoted by Γ = 𝜕Ω𝑣∩𝜕Ω𝑡 . The system is intrinsically multiscale due to the sharp difference
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Figure 3.1: A schematic diagram of hyperthermia cancer treatment using large size of magnetic
nanoparticles (MNP). The region Ω𝑣 is for the tumor vessels, Ω𝑡 is the tumour interstitium, and
Γ (the vessels’ wall) is the interface between the two regions.

between the average intercapillary distance 𝑑 and the size of the whole tumour tissue 𝐿, therefore
motivating the development of a multiscale modelling approach. In particular, we define a small
parameter 𝜖 which expresses these two characteristics lengths as

𝜖 =
𝑑

𝐿
. (3.1)

Next we illustrate the mathematical modelling assumptions which we embrace as a starting point
to describe transport of fluid, nanoparticles’ delivery and convection-diffusion of heat in the
context of cancer hyperthermia.

3.2.1 Fluid flow

We consider the blood as an incompressible viscous fluid modelled by the following Stokes’
problem

𝜇∇2u𝑣 = ∇𝑝𝑣 in Ω𝑣, (3.2a)

∇ ·u𝑣 = 0 in Ω𝑣, (3.2b)

where u𝑣 and 𝑝𝑣 are the blood velocity and pressure in the capillaries, while 𝜇 is the blood
viscosity.
We assume that the tumour interstitium is an isotropic porous medium, so that interstitial fluid
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flow can be described by Darcy’s law

u𝑡 = −𝜅∇𝑝𝑡 in Ω𝑡 , (3.3a)

∇ ·u𝑡 = 0 in Ω𝑡 . (3.3b)

Here, u𝑡 and 𝑝𝑡 are the fluid velocity and pressure in the tumour interstitium, and 𝜅 is the tissue
conductivity.
The fluid is supplied continuously through the vessels’ membrane and the flow relies on the
pressure differences between the two regions, so that the flux continuity condition across the
interface Γ reads

u𝑡 ·n = u𝑣 ·n = 𝐿𝑝 (𝑝𝑣 − 𝑝𝑡) on Γ. (3.4)

The above relationship is also known as Starling’s law in the biophysical literature, and in general
states that the fluid flux is proportional to the difference between the interstitial and vascular
pressure, as well as the difference between the oncotic pressures in those compartments. However,
following [102], we are here neglecting the oncotic pressure contribution by considering that this
pressure jump is often negligible for most tumour types, as reported for example in [70].
We specify the tangential components of the fluid flowing in the vessels by means of a Beavers
and Joseph condition which accounts for the slip over a porous surface as discussed for example
by Penta et al. [102], Shipley and Chapman [126]

u𝑣 · 𝜏𝑣 = −
√
𝜅

𝜑
[(n · ∇)u𝑣] · 𝜏𝑣 on Γ. (3.5)

Here, u𝑡 , u𝑣, and 𝑝𝑣, 𝑝𝑡 are the interstitial and capillary velocities and pressures, respectively,
𝐿𝑝 is the permeability of membrane, 𝜏𝑣 collectively denotes both of the unit vector tangent to
the vessels’ wall, 𝜅 is tissue conductivity, 𝜑 is a non-dimensional parameter encoding structural
properties of the membrane, and n is the unit outward vector normal to the vessels’ wall.

3.2.2 Advection, diffusion, and adehsion of nanoparticles

The concentration of magnetic nanopaticles 𝑐𝑣 which is delivered intravascularly is governed by
the following advection-diffusion equation

𝜕𝑐𝑣

𝜕𝑡
+∇ · (𝑐𝑣u𝑣 −𝐷𝑣∇𝑐𝑣) = 0 in Ω𝑣, (3.6)

where the parameter 𝐷𝑣 is the diffusivity of the particles. Mass transport in the vessels is affected
by particles’ size and shape [65].

The adhesion between nanoparticles with different sizes and shapes and the vessels wall
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was discussed by [38]. The adhesion probability depends directly on the receptors and ligands
densities, and the interaction area between the particle and the substrate. The Authors of the
latter work found that oblate nanoparticles adhere to the vessels wall more than the spherical
particles. Furthermore, the optimal size and shape for nanoparticles are influenced by the ratio
between the density of the receptors and vessels’ shear stress.

Here, we focus on spherical nanoparticles with size grater than the vessels’ pore size, so that
we explicitly take into account the adhesion between the particles and vessels’ wall. We model
the latter by means of the following interface condition

(𝑐𝑣u𝑣 −𝐷𝑣∇𝑐𝑣) ·n = Π𝑐𝑣 on Γ. (3.7)

Following the analysis carried out by [94], we assume that

Π = 𝑧 |𝜉 | 𝑝𝑑
2
, (3.8)

where 𝑧 is the adhesion probability, |𝜉 | is the wall shear rate, and 𝑝𝑑 is the diameter of the
particle. The density of nanoparticles Ψ adhering to the vessels’ wall is computed by

𝑑Ψ

𝑑𝑡
= Π𝑐𝑣 in Ω𝑣 . (3.9)

Here, the density Ψ physically represents the density of nanoparticle on the vascular wall.
However, we here follow the approach embraced by [94], in that the role of adhesion is encoded
in the parameter Π but Ψ is directly related to the integral in time of the actual concentration 𝑐𝑣,
and as such is defined inΩ rather than solely on Γ. This assumption can be considered admissible
as long as the radius of the capillary is very small in comparison with the other characteristic
lengths of the system.

3.2.3 Heat convection and diffusion

The heat generated within the tumour vessels and in the tumour interstitium is due to the magnetic
field which is applied after injecting the nanoparticles. The field causes rotation and vibrations
of the particles around themselves and around the field.

We use the Brownian and Neels relaxation formula to identify the absorption rate which is
directly related to the heat distribution in the tumour tissue.

Heat transport in both the vessels (𝑇𝑣) and the tumour interstitial (𝑇𝑡) space are then described
by a coupled system of heat convection-diffusion equations. We assume that there exists a volume
heat source in the vessels which is proportional to both the concentration of nanoparticles 𝑐𝑣
and the density of those adhering to the walls 𝜓, with proportionality constant given by the
absorption rate 𝛼. In addition, we account for the heat exchanged between the vessels and the
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interstitial compartment. Finally, we also consider the influence of a given volume source in the
interstitial space in order to fully capture the influence of the heat generated by the magnetic
nanoparticles under the influence of an applied magnetic field. In this case, as the heat and
(vascular) drug transport problems are decoupled, we assume that such a source is proportional
to the absorption rate 𝛼 and to a given function R which is in turn intended to be related to the
average concentration of nanoparticles that are generating the heat which then plays a role in the
whole tissue. The resulting governing equations can be written as

𝛾𝑡𝜌𝑡

[
𝜕𝑇𝑡

𝜕𝑡
+∇ · (𝑇𝑡u𝑡 −

𝐾𝑡

𝛾𝑡𝜌𝑡
∇𝑇𝑡)

]
= 𝛼R in Ω𝑡 , (3.10a)

𝛾𝑣𝜌𝑣

[
𝜕𝑇𝑣

𝜕𝑡
+∇ · (𝑇𝑣u𝑣 −

𝐾𝑣

𝛾𝑣𝜌𝑣
∇𝑇𝑣)

]
= 𝛼 (𝜓 + 𝑐𝑣) in Ω𝑣, (3.10b)

where 𝐾𝑣, 𝐾𝑡 , 𝛾𝑣, 𝛾𝑡 , and 𝜌𝑣, 𝜌𝑡 are the vessels and interstitial heat conductivities, specific heat
capacities, and compartment densities, respectively. The parameter 𝜓 = Ψ

𝐿
has the dimensions

of a concentration and represents an effective concentration of particles due to adhesion. The
model can be derived for a generic given volume source R, so that we shall specify its functional
form when introducing the solution of the macroscale model at a later stage.

We assume that heat can be exchanged between the tumour and the vessels, such that the heat
flux across the membrane is proportional to the difference between the temperatures in the two
compartments, as follows(

𝑇𝑣u𝑣 −
𝐾𝑣

𝛾𝑣𝜌𝑣
∇𝑇𝑣

)
·n =

𝛽

𝛾𝑣𝜌𝑣
(𝑇𝑣 −𝑇𝑡) on Γ, (3.11a)(

𝑇𝑡u𝑡 −
𝐾𝑡

𝛾𝑡𝜌𝑡
∇𝑇𝑡

)
·n =

𝛽

𝛾𝑡𝜌𝑡
(𝑇𝑡 −𝑇𝑣) on Γ, (3.11b)

where 𝛽 is the heat transfer coefficient.
The heat generated by magnetic nanoparticles strongly depend on the absorption rate𝛼, which

depends on particles’ size, shape, material, as well as magnetic field properties, i.e. intensity
and frequency. According to Avolio et al. [8], the parameter 𝛼 is defined as

𝛼 =
𝜇2

0𝜋 𝑓 𝐻
2
0𝑀

2
𝑑
𝑉

3𝜌𝑛𝐾𝐵𝑇
2𝜋 𝑓 𝜏eff

1+ (2𝜋 𝑓 𝜏eff)2 , (3.12)

where 𝜇0 is the magnetic permeability, 𝑀𝑑 is the magnetization of nanoparticles, 𝐾𝐵 is Boltz-
mann’s constant, 𝑇 is the temperature, 𝑓 is the field frequency, 𝐻0 is the field intensity, and 𝜏eff

is the overall relaxation time which can be defined as

1
𝜏eff

=
1
𝜏N

+ 1
𝜏B
, (3.13)
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with
𝜏N = 𝜏0𝑒

𝑘𝑖𝑉

𝐾B𝑇 , 𝜏B =
3𝜂𝑉H
𝐾B𝑇

. (3.14)

Here, 𝜏0 is Larmor’s time constant, 𝑘𝑖 is the magnetic anisotropy constant, 𝜂 is nanoparticles’
carrier liquid viscosity, and 𝑉𝐻 is the hydrodynamic volume which is computed by Torres et al.
[145] using

𝑉𝐻 = 𝜋
(𝑝𝑑 + 𝛿)3

6
, (3.15)

where 𝛿 = 2 nm.
Also, the parameter 𝜌𝑛 in equation (3.12) is the density of injected nanoparticles and it is different
from Ψ which represents the density of particles adhering to the vessels wall.

Remark (Current model vs [3]). Al Sariri and Penta [3] discussed the hyperthermia cancer
treatment using magnetic nanoparticles which can extravasate across the vessels’ walls. Therein,
the concentration of nanoparticles was then studied in both regions of the tumour tissue by means
of advection-diffusion equations. The authors assumed that the particles could be uptaken by
tumour interstitium after having been delivered intravascularly, such that

𝜕𝑐𝑣

𝜕𝑡
+∇ · (𝑐𝑣u𝑣 −𝐷𝑣∇𝑐𝑣) = 0 in Ω𝑣, (3.16a)

𝜕𝑐𝑡

𝜕𝑡
+∇ · (𝑐𝑡u𝑡 −𝐷𝑡∇𝑐𝑡) = −Λ𝑐𝑡 in Ω𝑡 , (3.16b)

where the parameter Λ denoted the uptake rate in the tumour interstitium. In addition, they
accounted for transvascular transport of nanoparticles via the following interface conditions

(𝑐𝑣u𝑣 −𝐷𝑣∇𝑐𝑣) ·n = (𝑐𝑡u𝑡 −𝐷𝑡∇𝑐𝑡) ·n (3.17)

= 𝑃(𝑐𝑣 − 𝑐𝑡) on Γ, (3.18)

where 𝑃 represents the diffusive permeability of the vessels’ membranes. The differential equa-
tions governing heat transport by Al Sariri and Penta [3] is analogous to that describe by the
system (3.10a)-(3.10b) with interface conditions (3.11a)-(3.11b), however the absorption rate
𝛼 was considered as a single, constant parameter, and its value was taken from Cervadoro
et al. [23]. Also, the heat source of the system (3.10a)-(3.10b) did not depend on the density of
adhering particles Ψ, as Al Sariri and Penta [3] considered transport of small nanoparticles
and therefore ignored nanoparticles’ adhesion.

Next we perform a non-dimensional analysis of the model, which will then be upscaled by
means of the asymptotic homogenisation technique.
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3.2.4 Non-dimensionalisation of the model

We rewrite the system of equations (3.2a)-(3.7), (3.9), and (3.10a)-(3.11b) in non-dimensional
form by using the change of variables

𝑐𝑣 = 𝐶𝑟𝑐
′
𝑣, R = 𝐶𝑟R′, u𝑣 =

𝐶𝑑2

𝜇
u′
𝑣, 𝑡 =

𝐿𝜇

𝐶𝑑2 𝑡
′, (3.19)

∇ =
1
𝐿
∇′, 𝑝 = 𝐶𝐿𝑝′, 𝑇 = 𝑋𝑇 ′, Ψ = 𝐿𝐶𝑟Ψ

′, (3.20)

where𝐶𝑟 is the reference of concentration,𝐶 is pressure gradient, 𝑋 is the reference temperature,
𝑑 is the distance between capillaries, and 𝐿 is the average size of the tumour. The corresponding
non-dimensional system of PDEs, after having neglected the primes for the sake of simplicity of
notation, can be written as

u𝑡 = −𝜅∇𝑝𝑡 in Ω𝑡 , (3.21a)

∇ ·u𝑡 = 0 in Ω𝑡 , (3.21b)

𝜖2∇2u𝑣 = ∇𝑝𝑣 in Ω𝑣, (3.21c)

∇ ·u𝑣 = 0 in Ω𝑣, (3.21d)
𝜕𝑐𝑣

𝜕𝑡
+∇ · (𝑐𝑣u𝑣 − 𝐷̄𝑣∇𝑐𝑣) = 0 in Ω𝑣, (3.21e)

𝑑Ψ

𝑑𝑡
= Π̄1𝑐𝑣 in Ω𝑣, (3.21f)[

𝜕𝑇𝑡

𝜕𝑡
+∇ · (𝑇𝑡u𝑡 − 𝐾̄𝑡∇𝑇𝑡)

]
= 𝛼̄𝑡R in Ω𝑡 , (3.21g)[

𝜕𝑇𝑣

𝜕𝑡
+∇ · (𝑇𝑣u𝑣 − 𝐾̄𝑣∇𝑇𝑣)

]
= 𝛼̄𝑣 (𝜓 + 𝑐𝑣) in Ω𝑣, (3.21h)

with boundary conditions

u𝑡 ·n = u𝑣 ·n = 𝐿̄𝑝 (𝑝𝑣 − 𝑝𝑡) on Γ, (3.22a)

u𝑡 · 𝜏 = −𝜖 𝜑̄[(n · ∇)u𝑡] · 𝜏 on Γ, (3.22b)

(𝑐𝑣u𝑣 − 𝐷̄𝑣∇𝑐𝑣) ·n = 𝜖Π̄𝑐𝑣 on Γ, (3.22c)(
𝑇𝑣u𝑣 − 𝐾̄𝑣∇𝑇𝑣

)
·n = 𝜖 𝛽𝑣 (𝑇𝑣 −𝑇𝑡) on Γ, (3.22d)(

𝑇𝑡u𝑡 − 𝐾̄𝑡∇𝑇𝑡
)
·n𝑡 = 𝜖 𝛽𝑡 (𝑇𝑡 −𝑇𝑣) on Γ. (3.22e)
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The non-dimensional numbers are defined as follows

𝜅 =
𝜅𝜇

𝑑2 , Π̄ =
Π𝐿

𝑈𝑑
, Π̄1 =

Π𝜇

𝐶𝑑2 , 𝐿̄𝑝 =
𝐿𝑝𝐿𝜇

𝑑2 , 𝜑̄ =

√
𝜅

𝜑𝑑
, (3.23a)

𝛽𝑣 =
𝛽𝐿𝜇

𝐶𝑑3𝛾𝑣𝜌𝑣
, 𝛽𝑡 =

𝛽𝐿𝜇

𝐶𝑑3𝛾𝑡𝜌𝑡
, (3.23b)

𝛼̄𝑡 =
𝛼𝐶𝑟𝐿𝜇

𝑋𝐶𝑑2𝛾𝑡𝜌𝑡
, 𝛼̄𝑣 =

𝛼𝐶𝑟𝐿𝜇

𝑋𝐶𝑑2𝛾𝑣𝜌𝑣
, (3.23c)

while the non-dimensional diffusivities and heat conductivities for the vessels and tumour inter-
sitium are given by

𝐷̄𝑣 =
𝐷𝑣𝜇

𝐿𝐶𝑑2 , 𝐾̄𝑣 =
𝐾𝑣𝜇

𝜌𝑣𝛾𝑣𝐿𝐶𝑑
2 , 𝐾̄𝑡 =

𝐾𝑡𝜇

𝜌𝑡𝛾𝑡𝐿𝐶𝑑
2 . (3.24)

3.2.5 The homogenised model

The homogenised model can be derived by applying the asymptotic (periodic) homogenisation
technique as discussed by Al Sariri and Penta [3], Penta et al. [102], Shipley and Chapman [126]
to our system. We first decouple spatial variations by introducing a microscale y, which is related
to the macroscale x by

y =
x
𝜖
, (3.25)

where 𝜖 now plays the role of an asymptotic parameter. We further assume that any variable 𝑞
in the system is y-periodic and can be written in power series of 𝜖 as follows

𝑞(x, 𝑡) = 𝑞(x,y, 𝑡) =
∞∑︁
𝑙=0
𝑞 (𝑙) (x,y, 𝑡)𝜖 𝑙 =

𝑞 (0) (x,y, 𝑡) + 𝜖𝑞 (1) (x,y, 𝑡) + 𝜖2𝑞 (2) (x,y, 𝑡) + ... (3.26)

The differential operators transform according to the chain rule as

∇ −→ ∇𝑥 +
1
𝜖
∇𝑦, ∇2 −→ ∇2

𝑥 +
2
𝜖
∇𝑥∇𝑦 +

1
𝜖2∇

2
𝑦 . (3.27)

Using (3.26), we apply the asymptotic homogenisation technique by expressing all the fields in
terms of power series of 𝜖 and accounting for the chain rule (3.27). This leads to a multiscale
system of PDEs, where we can then equate the same powers of 𝜖 in order to obtain a number
of differential conditions which can be used to close a system of PDEs for the leading (zero-th)
order fields, or their cell average, defined by

⟨𝑞⟩ 𝑗 =
1

|Ω 𝑗 |

∫
Ω 𝑗

𝑞(x,y, 𝑡)𝑑𝑦. (3.28)
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Here, 𝑗 can be either 𝑣 or 𝑡 and |Ω 𝑗 | denotes the vessels (interstitial) cell volume portion. The
derivation of the model is carried out as in Al Sariri and Penta [3] by taking into account the
differences highlighted in the Remark discussed in Section 3.2.3.

The macroscale differential equations describing velocities and pressures are analogous to
those reported by Al Sariri and Penta [3] (Chapter 2) and read〈

u(0)
𝑣

〉
𝑣
= −Y𝑣∇𝑥 𝑝 (0)𝑣 , (3.29a)〈

u(0)
𝑡

〉
𝑡
= −𝜅Y𝑡∇𝑥 𝑝 (0)𝑡 , (3.29b)

∇𝑥 ·
(
Y𝑣∇𝑥 𝑝 (0)𝑣

)
=

𝐿̄

(
𝑝
(0)
𝑣 − 𝑝 (0)𝑡

)
|Ω𝑣 |

𝑆, (3.29c)

∇𝑥 ·
(
𝜅Y𝑡∇𝑥 𝑝 (0)𝑡

)
=

𝐿̄

(
𝑝
(0)
𝑡 − 𝑝 (0)𝑣

)
|Ω𝑡 |

𝑆, (3.29d)

where 𝑆 is the surface of the microvessels. These differential equations show that the velocities
in both compartments obey Darcy’s law and the fluid flow depends on the pressure difference
between them. The effective tensors Y𝑡 and Y𝑣 are defined as

Y𝑣 =
1

|Ω𝑣 |

∫
Ω𝑣

W𝑑𝑦, Y𝑡 = 𝐼 −
〈(
∇𝑦r

)𝑇 〉
𝑣
. (3.30)

For the homogenization process related to the concentration, we have that equation (3.6) is
analogous to equation (2.14e) from Chapter 2, however the interface condition on Γ (3.22c) is
different from (2.15d). Therefore, by applying the same upscaling method as described in 2, the
macroscale differential equation for the concentration of nanoparticles 𝑐(0)𝑣 reads

𝜕𝑐
(0)
𝑣

𝜕𝑡
+∇𝑥 ·

(
𝑐
(0)
𝑣

〈
u(0)
𝑣

〉
𝑣
−F𝑣∇𝑥𝑐(0)𝑣

)
+ 𝑆

|Ω𝑣 |
Π̄𝑐

(0)
𝑣 = 0, (3.31)

with 𝑐(0)𝑣 is y−constant as investigated in Chapter 2, and the diffusivity tensor F𝑣 is

F𝑣 = 𝐷̄𝑣

(
𝐼 −

〈(
∇𝑦a

)𝑇 〉
𝑣

)
. (3.32)

Here, 𝐷̄𝑣 is defined in (3.24).
Equation (3.21f) shows that the density Ψ(0) is the integral in terms of 𝑐(0)𝑣 (which is y−constant).
Therefore, Ψ(0) is also y-constant, and the macroscale differential equation of the nanoparticles’
density Ψ̄(0) is the governed by the same equation at leading order, i.e.

𝑑Ψ(0)

𝑑𝑡
= Π̄1𝑐

(0)
𝑣 , (3.33)

with Π̄1 is defined according to (3.23a).
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Finally, the temperatures 𝑇 (0)
𝑡 and 𝑇 (0)

𝑣 of both compartments at the macro-scale are represented
by advection-diffusion-reaction equations

𝜕𝑇
(0)
𝑣

𝜕𝑡
+∇𝑥 ·

(
𝑇
(0)
𝑣

〈
u(0)
𝑣

〉
𝑣
−N𝑣∇𝑥𝑇 (0)

𝑣

)
+

𝑆

|Ω𝑣 |
𝛽𝑣

(
𝑇
(0)
𝑣 −𝑇 (0)

𝑡

)
= 𝛼̄𝑣

(
𝜓 (0) + 𝑐(0)𝑣

)
, (3.34a)

𝜕𝑇
(0)
𝑡

𝜕𝑡
+∇𝑥 ·

(
𝑇
(0)
𝑡

〈
u(0)
𝑡

〉
𝑡
−N𝑡∇𝑥𝑇 (0)

𝑡

)
+

𝑆

|Ω𝑡 |
𝛽𝑡

(
𝑇
(0)
𝑡 −𝑇 (0)

𝑣

)
= 𝛼̄𝑡R (0) . (3.34b)

The effective thermal conductivities N𝑣 and N𝑡 are expressed as:

N𝑣 = 𝐾̄𝑣

(
𝐼 −

〈(
∇𝑦g

)𝑇 〉
𝑣

)
, N𝑡 = 𝐾̄𝑡

(
𝐼 −

〈(
∇𝑦e

)𝑇 〉
𝑡

)
, (3.35)

where 𝐾̄𝑣 and 𝐾̄𝑡 are defined in (3.24). The auxiliary tensor W, and the auxiliary variables r, a,
g, and e solve the microscale cell problems which are described in details by Al Sariri and Penta
[3]. The numerical solutions of these problems are illustrated in [103] and [85].

The difference between the work carried out by Al Sariri and Penta [3] and the present work
resides in the different heat sources which appear in equations (3.34a) and (3.34b). These latter
also depend on adhesion, which is in turn dictated by equations (3.31-3.33). Here, the drug
dynamics depends on adhesion, as shown by the reaction term in equation (3.31) and by the
macroscale evolution equation (3.33). This is not the case in the works by Mascheroni and
Penta [85] and Al Sariri and Penta [3], where drug transport is governed by a double system
of advection-diffusion-reaction equations driven by transvascular exchange of particles which
arises as a direct consequence of extravasation, which is herein neglected. In the remainder of
this work, we assume that the leading order heat source R (0) is related to the heat generated by
the interaction between the nanoparticles and the magnetic field in the vessels. We can capture
the volumetric character of the heat generated by the vessels as a heat source in the tumour tissue
by assuming a simple constitutive law for R (0) of the form

R (0) = 𝑐(0)𝑣 +𝜓 (0) , (3.36)

which is analogous to that present in the vessels and represents an admissible choice as 𝑐(0)𝑣 and
𝜓 (0) do not depend on the microscale variable y and are defined in the whole macroscale domain.

3.2.6 The homogenised model in radial symmetry

The vascularized tumour is represented by a sphere of radius 𝑅. We assume that the tumour
is isolated and all external forces are neglected. The radial component of fluid velocities and
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Figure 3.2: A schematic description of the boundary condition related to the concentration of
nanoparticles. The parameters 𝑐𝑣 is the nanoparticles concentration in the tumour vessels, 𝑐𝑛 is
the injected concentration of nanoparticles, and 𝜎 is the duration time of injection.

pressures are those obtained by Penta and Ambrosi [103]. The system of equations in spherical
coordinates, by considering the leading order term for all variables (and neglecting the superscript
(0) for the sake of simplicity of notation) reads

𝜕𝑐𝑣

𝜕𝑡
+ 1
𝑟2
𝜕

𝜕𝑟

(
𝑟2

(
𝑐𝑣 ⟨u𝑣⟩𝑣 −F𝑣

𝜕𝑐𝑣

𝜕𝑟

))
+

𝑆

|Ω𝑣 |
Π̄𝑐𝑣 = 0 in Ω𝑣, (3.37a)

𝑑Ψ

𝑑𝑡
= Π̄1𝑐𝑣 in Ω𝑣, (3.37b)

𝜕𝑇𝑣

𝜕𝑡
+ 1
𝑟2
𝜕

𝜕𝑟

(
𝑟2

(
𝑇𝑣 ⟨u𝑣⟩𝑣 −N𝑣

𝜕𝑇𝑣

𝜕𝑟

))
+

𝑆

|Ω𝑣 |
𝛽𝑣 (𝑇𝑡 −𝑇𝑣) = 𝛼̄𝑣 (𝑐𝑣 +𝜓) in Ω𝑣, (3.37c)

𝜕𝑇𝑡

𝜕𝑡
+ 1
𝑟2
𝜕

𝜕𝑟

(
𝑟2

(
𝑇𝑡 ⟨u𝑡⟩𝑡 −N𝑡

𝜕𝑇𝑡

𝜕𝑟

))
+

𝑆

|Ω𝑡 |
𝛽𝑡 (𝑇𝑣 −𝑇𝑡) = 𝛼̄𝑡 (𝑐𝑣 +𝜓) in Ω𝑡 . (3.37d)

All variables depend on 𝑟 and 𝑡, where 0 ≤ 𝑟 ≤ 𝑅 and 0 ≤ 𝑡 ≤ T .
To close the problem, we need to prescribe the initial and boundary conditions. We assumed
zero concentration and due to the spherical symmetry, we consider zero flux of nanoparticles’
concentration at the center of the tumour. We assume that the particles are delivered intravascu-
larly for a time 𝜎 which means that the concentration is 𝑐𝑛 during this time and zero after that,
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see Figure 3.2.

𝑐𝑣 |𝑡=0 = 0, (3.38a)(
u𝑣𝑐𝑣 − 𝐷̄𝑣𝜕𝑟𝑐𝑣

) ��
𝑟=0 = 0, (3.38b)

𝑐𝑣 |𝑟=𝑅 =


𝑐𝑛 𝑡 < 𝜎,

0 𝑡 > 𝜎.
(3.38c)

Concerning heat transport, we set initial (𝑡 = 0) temperatures in both compartments to the standard
blood temperature. In terms of boundary conditions, we consider zero heat flux at 𝑟 = 0. On
the tumour boundary, We prescribe the homogenised temperature in the vessels to coincide with
the standard blood temperature, while we consider a Robin condition for the tumour temperature
𝑟 = 𝑅, to account for the heat transport between the tumour intestitial and vessels compartments
mediated by intermediate layer of external tissue, as in [3, 94]. Initial and boundary conditions
for the heat transport system of equations are given below.

𝑇𝑣 |𝑡=0 = 𝑇𝑡 |𝑡=0 = 1, (3.39a)(
u𝑣𝑇𝑣 − 𝐾̄𝑣

𝜕𝑇𝑣

𝜕𝑡

) ���
𝑟=0

=

(
u𝑡𝑇𝑡 − 𝐾̄𝑡

𝜕𝑇𝑡

𝜕𝑡

) ���
𝑟=0

= 0, (3.39b)

𝑇𝑣 |𝑟=𝑅 = 1,
(
u𝑡𝑇𝑡 − 𝐾̄𝑡

𝜕𝑇𝑡

𝜕𝑡

) ���
𝑟=𝑅

= 𝛽𝑡 (𝑇𝑣 −𝑇𝑡). (3.39c)

In this manuscript, we are consistent with the boundary conditions utilised in [3, 94]. Our set
of conditions represents a situation where the nanoparticles are first injected for a period of
time, cf. (3.38c), and then the magnetic field is subsequently applied, so that the temperatures
distributions are then driven by heat sources which depend on the absorption rate and concentra-
tion of nanoparticles, cf. (3.34a-3.34b), and the heat transport problem is then closed by initial
conditions (3.39a) and boundary conditions (3.39b-3.39c). The present problem at hand is very
rich, and that future investigations on the subject could also focus on different initial and/or
boundary conditions.

The hydraulic conductivity, diffusivity, and thermal conductivity coefficients are computed
as discussed by Al Sariri and Penta [3], based on the microscale simulations performed by
Mascheroni and Penta [85], Penta and Ambrosi [103]. The resulting values are then injected in
our macroscale system of PDEs, and we use the values of the parameters in Table 3.1 to solve
the model and present the results.

3.3 Results and Discussion

Penta and Ambrosi [103] discussed the solution of the fluid flow system (3.29a)-(3.29d) and
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Table 3.1: The values of model’s parameters.

Symbol Parameter Value Unit Reference

𝜏0 Larmor time constant 10−9 s [37]

𝑘𝑖 magnetic anisotropy constant 1.1 ·104 J/ m3 [47]

𝐾𝐵 Boltzmann’s constant 1.38 ·10−23 J/K [47]

𝜂 nanoparticles’ carrier liquid viscosity 2.94 ·10−4 Kg/m s [145]

𝑧 Adhesion probability 1.5×10−4 non [94]

𝜇 Blood viscosity 4×10−3 Pa s [94]

𝐿𝑝 vessel hydraulic Permeability 1.78×10−11 m/Pa s [85]

𝜅 Tumour hydraulic conductivity 2.1×10−13 m2/Pa s [85]

𝐷𝑣 The diffusivity of nano-particles in the capillaries 3.3×10−10 m2/s [85]

𝐷𝑡 The diffusivity of nano-particles in the tissue 1.0×10−11 m2/s [85]

𝐾𝑡 Thermal conductivity at tissue 0.52 W/m K [141]

𝐾𝑣 Thermal conductivity at vessel 0.51 W/m K [141]

𝛽 Heat transfer coefficient 20 W /m2 K [94]

𝑝 membrane permeability related to drug 1.7×10−7 m/s [85]

𝑑 Reference micro-scale 4.0×10−5 m [85]

𝐿 Reference macro-scale 1.0×10−2 m [85]

C Reference pressure gradient 5×102 Pa/m [85]

𝛾𝑡 tissue-specific heat 3470 J/Kg K [94]

𝜌𝑡 tissue density 1060 Kg/ m3 [94]

𝛾𝑣 vessels-specific heat 3617 J/Kg K [88]

𝜌𝑣 vessels density 1050 Kg/ m3 [88]

𝐶𝑟 concentration reference 1 mg/ml [37]
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they determined the radial components of the velocities and pressures which were used to find
the particles’ concentration and heat convection as investigated by Mascheroni and Penta [85],
and Al Sariri and Penta [3]. The authors of the mentioned works studied the influence of the
geometry of the micro-vessels on the distribution of the particles and they concluded that vessels’
tortuosity impairs the transport of fluid [103], particles [85], and heat [3].

Here, the differential equations (3.37a)-(3.37d), equipped with initial and boundary condi-
tions (3.38a)-(3.38c), and (3.39a)-(3.39c), are solved via the finite element software COMSOL
Multiphysics as in [3]. The plots illustrating spatio-temporal temperatures and concentration
profiles in Section 3.3.1 are generated using COMSOL Multiphysics, while Python is used to
generate the plots related to the parametric analysis discussed in Section 3.3.2.

Remark (Presentation of the results). While we solve the model in non-dimensional form, results
in terms of temperatures and concentrations are presented by referring to their corresponding
dimensional values in the plots in order to foster the Reader’s understanding. In particular,
temperatures are expressed in degree Kelvin (𝐾), and concentrations in 𝑚𝑔/𝑚𝑙 (or, equivalently
𝐾𝑔/𝑚3)1. The non-dimensional time unit in this work can be computed by means of relationship
(3.20) and corresponds to 50 seconds. This applies when we discuss conditions related to time
intervals in dimensional form in the following sections. For example, it means that an injection
time of 50 minutes corresponds to 60 non-dimensional time units. The radius and the time are
expressed in non-dimensional form in the following sections. Therefore, the non-dimensional
radius ranges from 0 to 1, while the chosen time interval is from 0 to 1000, which corresponds
to a time interval of 5 ·104 seconds (≈ 13.88 hours).

3.3.1 The role of vessels’ tortuosity

We commence by investigating the role of the microvascular tortuosity on the concentration
of nanoparticles in Section 3.3.1 and on the resulting temperature maps in Section 3.3.1. The
results are shown in terms of vessels’ concentration 𝑐𝑣, density Ψ, and tumour temperature 𝑇𝑡 vs
relative radius of the homogenized tumour or time. We have conducted the analysis by labelling
the microstructures at varying tortuosities with the index 𝜆. The latter actually corresponds to a
specific couple of spatial frequency 𝜔 and amplitude 𝐴, as specified in Table 3.2, and are those
used in [3, 85, 103] to parametrise the tumour microvessels. Each of these couple of parameters
determine a different microstructure, with their associated vessels surface and corresponding cell
volume portion. Given that we are focussing on the microvasculature considered by Penta and
Ambrosi [103], invariance with respect to mutual orthogonal axis applies. As such, the effective
hydraulic conductivities, as well as drug and thermal diffusivities, are isotropic and their values
at varying tortuosities are listed in Table 3.2. These are denoted by 𝐻𝑣 = ⟨W11⟩ = ⟨W22⟩ = ⟨W33⟩

1In this latter case no rescaling is needed as the reference concentration is 1𝑚𝑔/𝑚𝑙.
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Table 3.2: Particle diffusivity and thermal conductivity values for various vessel geometry. The
parameter 𝜆 is a label for tortuosity, 𝜔 is the vessels’ frequency, 𝐴 is the amplitude of the vessels,
and 𝑟𝑐 is the radius of the vessels.

𝜆 𝜔 A |Ω𝑣 | |Ω𝑡 | 𝑆 𝐻𝑣 1−
〈
𝜕𝑎,𝑔

𝜕𝑦1

〉
𝑣

0 0 0 8.1 ·10−2 6.149 2.30 2.20 ·10−4 3.6 ·10−1

0.5 1 0.5𝑟𝑐 7.9 ·10−2 6.151 2.30 2.06 ·10−4 3.53 ·10−1

1 1 𝑟𝑐 7.6 ·10−2 6.154 2.32 1.69 ·10−4 3.19 ·10−1

1.5 2 0.5 𝑟𝑐 7.6 ·10−2 6.154 2.33 1.63·10−4 3.18 ·10−1

2 2 𝑟𝑐 6.9 ·10−2 6.161 2.57 6.24 ·10−5 2.13 ·10−1

2.5 3 0.5 𝑟𝑐 7.2 ·10−2 6.158 2.53 7.71·10−5 2.47·10−1

3 3 𝑟𝑐 6.5 ·10−2 6.165 3.25 4.89 ·10−6 0.9 ·10−1

for the hydraulic conductivity, whereas the homogenised thermal and drug diffusivities are to be
computed by simply multiplying their corresponding non-dimensional values by the correction
factor herein denoted by 1−

〈
𝜕𝑎,𝑔

𝜕𝑦1

〉
𝑣
, which was computed for the considered microstructures by

Mascheroni and Penta [85]. We also assume that, given the low vascular density, the interstitial
hydraulic conductivity and thermal diffusivities are unaffected by the homogenisation process,
as justified in [103].

Concentration of nanoparticles

The result of the differential equations (3.37a)-(3.37b) with initial and boundary conditions
(3.38a)-(3.38c), is the homogenised concentration of particles in the vessels, which reflects
the effective behaviour of the nanoparticles delivered intravascularly in a macroscale spherical
tumour.

A concentration of 50 mg/ml of mangnetic nanoparticles is injected for a time 𝜎 = 50
minutes. Figure 3.3 shows the concentration of nanoparticles at different times both during and
after injection. It is clear that during the injection phase, the concentration on the boundary
of the tumour is very high but cannot influence regions far from the boundary. When we stop
injecting the nanoparticles at 𝑡 > 50 minutes, the particles start to diffuse more toward the tumour
centre. Also, in all cases highlighted in Figure 3.3, it is clear that tortuosity has a negative impact
of nanoparticles transport, although intermediate values of the tortuosity may lead to optimal
concentration peaks post injection, as in case of Figure 3.3c, where the highest concentration
peak is reached at 𝜆 = 2 and after injection at 𝑡 = 2h. The vessels with tortuosity 𝜆 = 0 and 𝜆 = 1
correspond to approximately similar concentration of nanoparticles profiles, and the maximum
is reached approximately after 6 hours, see Figure 3.4. In contrast, the concentration is very low
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Figure 3.3: The concentration of nanoparticles 𝑐𝑣 as a function of tumour radius 𝑟 for various
values of vessels’ tortuosity as specified in the legends and for time moment (a) 𝑡 = 20 minutes
(b) 𝑡 = 50 minutes (c) 𝑡 = 2 hours and (d) 𝑡 = 5 hours. All other parameter values are as specified
in Table 3.1 and Table 3.2 except for the parameters 𝜎 = 50 minutes, and 𝑐𝑛 = 50 mg/ml.

for the most tortuous vessels at 𝜆 = 3. This is because the nanoparticles are advected by the fluid
and for very high tortuosity the fluid flow is dramatically impaired and no longer characterised
by a parabolic profile. This ultimately causes a sharp decline in the hydraulic conductivity of
the vessels, as explained by Penta and Ambrosi [103]. These obtained profiles are in qualitative
agreement with those obtained by Mascheroni and Penta [85] and [3]. However, there are
discrepancies between our results and previous results in terms of the amount of concentration
and the time that it takes for the nanoparticles to reach the center due to the difference in boundary
conditions and the presence of adhesion which is neglected in [3].

Mascheroni and Penta [85] and Al Sariri and Penta [3] dealt with drug delivered by a bolus
injection accounting for an exponential decline in the concentration of nanoparticles due to
plasma clearance, therefore, they observed a slower drug dynamics. In our case, the injected
concentration of nanoparticles on the boundary of the tumour drops to zero directly after 50
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Figure 3.4: The concentration of nanoparticles vs time, and the density of nanoparticles that
adhering the vessels’ wall vs radius of tumour. (a) Instantaneous concentration of nanoparticles
𝑐𝑣 at the center of tumour 𝑟 = 0 as a function of time for various values of vessel tortuosity as
specified in the figure legends. (b) Instantaneous density of nanoparticles Ψ that adher to the
wall of the vessels as a function of tumour radius for different tortuosity of the vessels. In both
panels time moment is 𝑡 = 6 hours. All other parameters are as specified in Table 3.1 and Table
3.2 except 𝜎 = 50 minutes, and 𝑐𝑛 = 50 mg/ml.

minutes, and so the drug can reach the tumour centre regions by diffusive transport after a few
hours post-injection.

We chose an injection time of 50 minutes to be consistent with the experiment performed
by Famiani et al. [44], and we also test different injection times in the course of the parametric
analysis in Section 3.3.2.

We conclude this section by discussing the role of the density of nanoparticles Ψ adhering
to the vessels’ walls. Its maximum is reached close to the domain boundary, and it depends on
the tortuosity of the vessels, see Figure 3.4. Moreover, if we compare the profile of 𝑐𝑣 and Ψ

with different vessels’ tortuosity, we can see that the peak in the case of Ψ, as well as 𝑐𝑣 (50
minutes-2 hours) post-injection, is reached at 𝜆 = 2. This is because, while tortuosity impairs
fluid convection, the adhesion of nanoparticles is supposed to increase at increasing tortuosity
due to the friction between the particles and the vessels. Therefore, we suggest that, while
tortuosity is in general negatively affecting nanoparticles’ transport as in [85] and [3], whenever
adhesion is taken into account, less regularization of the vessels’ may be required to achieve
optimal nanoparticles’ transport. However, at 𝜆 = 3, transport still drops dramatically, as in this
case the increase in nanoparticle adhesion is not sufficient the counterbalance the drop in fluid,
and hence nanoparticles advection.
Finally, we also wish to remark that the concentration is prescribed as a time-dependent boundary
(rather than initial) condition and injected over a period of time, such that there exists a transient
period before the drug is cleared off when localised regions in space can develop where the
concentration exceeds the boundary value. This can be seen by observing the concentration



CHAPTER 3. OPTIMAL HYPERTHERMIC CONDITION IN VASCULAR TUMOURS 77

Table 3.3: Properties of magnetic nanoparticles.

Material 𝑀𝑑 (KA/m) 𝜌𝑛 (Kg/m3) Reference

Fe3 O4 446 5180 [73]

fcc Fe Pt 1140 15200 [73]

Ba Fe2 O4 380 5280 [73]

Ni Fe 301 5380 [97]

profile in Figure 3.3b at 𝜆 = 2. This phenomenon typically happens when the time is still
comparable to the injection time 𝜎. For a shorter period of time the concentration delivered to
the system is typically not sufficient for this to occur. For a time much longer than the injection
time the concentration is already significantly lower than the boundary value being prescribed
during the injection time.

Temperature maps

The differential equations (3.37c)-(3.37d) with boundary and initial conditions (3.39a)-(3.39c)
are used to find the heat maps for a vascularized tumour. As mentioned in Section 3.2.3, the
hyperthermia effectiveness depends on the absorption rate 𝛼, which is in turn affected by both
the properties of the magnetic field, such as intensity and frequency, as well as the properties of
the magnetic nanoparticles. Abenojar et al. [1] found that theoretically and experimentally the
absorption rate of cubic nanoparticles is higher than the spherical nanoparticles and nano-rods
are better than cubic and spherical nanoparticles [35]. However, for the sake of simplicity,
in this work we focus on spherical particles and we show that cancer hyperthermia can be
improved by changing nanoparticles’ material, size, concentration, and also the injection duration
time. Varying the material of nanoparticles requires to change their magnetization 𝑀𝑑 and
their density 𝜌𝑛, see Table 3.3. The parameter 𝑀𝑑 is more relevant than others in the way
it affects the absorption rate 𝛼 as the latter is proportional to the square of 𝑀𝑑 and inversely
proportional to 𝜌. Figure 3.5b shows that Iron-Platinum (FePt) responds with higher temperature
changes when compared with other materials typically considered in this context. Usually the
magnetization of metallic nanoparticles like Iron-Platinum (FePt), Iron-Cobalt (FeCo), Cobalt-
platinum (CoPt) is higher than the oxidation nanoparticles like Iron-Oxide (FeO), Maghemite
(Fe2O3), and Magnetite (Fe3O4), but the former are not stable [55]. As such, in the present
work we concentrate more on magnetite nanoparticles, as appropriate for application of cancer
hyperhermia to human tissues [60]. Figure 3.5a shows the temperature profile arising from
injection of magnetite nanoparticles with different vessels’ tortuosity. The concentration of
particles drives heat transport from the boundary towards the tumour center. Convection-
diffusion of heat then causes the temperature to raise from the standard blood temperature, which
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Figure 3.5: The temperature maps with different particles material that adhere to the vessels’
wall and vessels’ tortuosity. (a) Instantaneous tumour temperature 𝑇𝑡 at time 𝑡 = 2 h as a function
of tumour radius 𝑟 for Fe3O4 nanoparticles and various values of vessel tortuosity as specified in
the figure legend. (b) Local tumour temperature 𝑇𝑡 at the center of the tumour 𝑟 = 0 as a function
of time for various types of nanoparticles materials as specified in the figure legends and for
vessels with tortuosity 𝜆 = 1. All other parameter values are as specified in Table 3.1 and Table
3.2 except for the parameters 𝐻0 = 10 KA, 𝑓 = 300 KHZ, 𝜎 = 50 minutes, and 𝑐𝑛 = 100 mg/ml.

is prescribed at the tumour boundary, to higher values. Microvascular tortuosity is associated
with a reduce increase in temperature, in agreement with previous findings reported for heat
transport driven by small nanoparticles discussed by Al Sariri and Penta [3]. Moreover, the
temperature increases and approaches its maximum after approximately 2.5h, then it starts to
decrease as the overall concentration declines, see Figure 3.5b.

The remainder of this section is devoted to a parameteric analysis which is performed to
determine the optimal set of parameters (including injection conditions, magnetic field properties,
nanoparticles’ diameter, microvessels’ tortuosity, wall shear rate) which is required to reach a
physiologically safe target hyperthermic temperature and duration.

3.3.2 A parametric study of hyperthemic temperature and duration

The ranges in which the hyperthemic temperature and duration take safe and effective values
depend strongly on the pathophysiology of the tumour tissue under treatment. For this reason,
the published literature gives various estimates of these quantities – see the Introduction of
this chapter for further discussion. Table 3.4 summarizes values of the target hyperthermic
temperature and duration suggested in several clinical and experimental investigations. Based
on the data in Table 3.4, we assume that the safe and effective values for the hyperthermic
temperature are in the range [42◦,46◦]C and the safe and effective hyperthermic duration has
values in the range [0.5,2] hours. Below these intervals hyperthermia treatment does not induce
sufficiently strong sensitization to radiotherapy and chemotherapy or lead to significant direct
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Table 3.4: Estimates for the hyperthermic temperature and duration available from the published
literature.

Temperature (◦C) duration (minutes) Reference

44 30 [74]

42.5 60 [108]

41.5 120 [118]

42 30 [100]

41 60 [39]

47 30 [61]

thermal ablation of cancer cells. Above these intervals undesirable damage to healthy tissue
occurs.

Figure 3.6 demonstrates how the value of the hyperthermic duration is computed from the
numerical results of our model. A typical example of the temperature profile as a function
of time in the center of the tumour (𝑟 = 0) is shown in the figure for fixed values of the
model parameters. Initially, the temperature increases monotonically and eventually reaches the
hyperthermic temperature, 𝑇𝑡 = 42◦C, after an initial transient time as shown by the horizontal
green line in Figure 3.6. The temperature continues to increase further until it reaches a single
global maximum 𝑇max and decreases monotonically after that until it eventually drops below the
hyperthermic temperature. The hyperthermic duration is defined and computed as the difference
between the moment in time when the temperature decreases below the hyperthermic temperature
of 42◦C and the moment in time when the temperature first exceeds this value. These moments
are indicated in Figure 3.6 by vertical red lines. The hyperthermic duration is denoted by 𝜏 for
the remainder of this section.

Figure 3.7a shows a 3D plot of the hyperthermic duration 𝜏 as a function of the intensity
of the applied magnetic field 𝐻0 and the nanoparticle injection duration 𝜎 for all other model
parameters fixed at constant values. For small values of 𝐻0 and 𝜎 the hyperthermic duration
is zero as the 𝑇max has not yet exceeded the hyperthermic temperature of 42◦C. As the values
of 𝐻0 and 𝜎 are increased, either separately or simultaneously, the hyperthermic temperature
of 42◦C is eventually exceeded and a non-vanishing value of the hyperthermic duration 𝜏 is
recorded and continue to increase monotonically with increase of both 𝐻0 and 𝜎. The range of
safe and effective hyperthermic duration values are then the values on the surface 𝜏(𝐻0,𝜎) that
are located between the iso-contour lines 𝜏 = 0.5h and 𝜏 = 2h. These isolines are shown by a red
solid curve and a red dashed curve in the plot of Figure 3.7a. Figure 3.7b shows a similar surface
plot of the maximal (in time) temperature at the centre of the tumor 𝑟 = 0 as a function of 𝐻0 and
𝜎 for all other model parameters fixed at constant values again. The surface is monotonically
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Figure 3.6: A figure describing the computation of hyperthermic temperature and time in the
present work. The temperature 𝑇𝑡 at the middle of the tumour (𝑟 = 0) as a function of time in
the case of vessels with tortuosity 𝜆 = 1 and all other parameter values are as in Table 3.1 except
𝐻0 = 10 KA, 𝑓 = 300 KHZ, 𝜎 = 50 minutes, 𝑐𝑛 = 100 mg/ml, 𝜉 = 15, and 𝑝𝑑 = 80 nm. The two
vertical red lines indicate the hyperthermic duration 𝜏 - the time interval for which the tumour
temperature profile exceeds the hyperthermic temperature 𝑇𝑡 = 42◦ C shown with a horizontal
green line.

increasing, and the safe and effective range of temperature values is the one located between the
iso-contours 𝑇max = 42◦C and 𝑇max = 46◦C. These iso-contours are shown by green dash-dotted
and green dotted lines in the Figure. Figure 3.7c shows the projections of the safe and effective
iso-contour lines 𝜏 = 0.5h and 𝜏 = 2h determined from Figure 3.7a and the safe and effective
iso-contour lines 𝑇max = 42◦C and 𝑇max = 46◦C determined from Figure 3.7b onto the coordinate
plane (𝐻0,𝜎) that they all have in common. For successful hyperthermia treatment both the
hyperthermic temperature and the hyperthermic duration must be within their safe and effective
ranges. Hence, we conclude that for fixed other parameter values, the values of the intensity of
the applied magnetic field 𝐻0 and the nanoparticle injection duration 𝜎 must be chosen within
the intersection of the two regions thus determined. The resulting estimate of safe and effective
values (𝐻0,𝜎) are shown as a shaded region in Figure 3.7c.

The procedure described in relation to Figure 3.7 can be applied similarly to other pairs of
model parameters. Figure 3.8 shows the regions of safe and effective hyperthermia treatment in
the parameter planes (𝐻0, 𝑐𝑛), (𝐻0, 𝑝𝑑), (𝜉,𝐻0), and (𝜆,𝐻0), where 𝜆 is tortuosity of the vessels,
𝑝𝑑 is the diameter of namoparticles, 𝜉 is the wall shear rate, 𝑐𝑛 is the injected concentration of
particles at the boundary and 𝐻0 is the magnetic field intensity. The latter is used as a common
axis in order to make easier to cross-reference further parameter pairs. Figures 3.7c and 3.8
constitute a major result of our analysis. They may be used to design and optimise hyperthermia
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procedures. Figure 3.8d shows that the vessels with tortuosity index between 0 and 1 reach the
required temperature with much lower magnetic intensity in comparison with those structures
characterise by higher tortuosity. However, this is not the case for tortuosity index 𝜆 2.5. This is
because this particular index is associated with hydraulic conductivity 𝐻𝑣 which is higher than
that at tortuosity index 2, see Table 3.2. In all other cases, the higher the tortuosity index, the
lower the vessels hydraulic conductivity.

Further discussion of these results is included in the next section.
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Figure 3.7: Computation of the hyperthemic time and temperature, and optimal values of
magnetic field intensity and injection time. Surfaces of the hyperthermic duration 𝜏(𝐻0,𝜎) in
(a) and the maximal temperature at the centre of the tumour 𝑇𝑚𝑎𝑥 (𝐻0,𝜎) in (b) both shown as
functions of magnetic field intensity and nanoparticle injection duration. The two red lines in
(a) show the range of durations for safe and effective treatment between 𝜏 = 0.5 h and 𝜏 = 2 h.
Similarly the two green lines indicate the range of safe and effective hyperthermic temperature
range 42− 46◦C. Panel (c) shows the projections of these safe and effective isocontours onto
the (𝐻0,𝜎) plane and the shaded region being the intesection where both the hyperthermic
temperature and duration are within the target ranges. All other parameter values are kept fixed
at values specified in Table 3.1 except 𝑓 = 300 KHZ, 𝜎 = 50 minutes, 𝑐𝑛 = 100 mg/ml, 𝜉 = 15,
𝑝𝑑 = 80 nm.

3.4 Concluding remarks

In the third chapter, we have solved a new system of homogenised PDEs which models cancer
hyperthermia in solid tumours driven by magnetic heating of large nanoparticles. The model
is obtained by applying the asymptotic homogenisation technique, as done in the recent work
proposed by Al Sariri and Penta [3] (previous chapter), where the role of microvascular tortuosity
on heat transport driven by small nanoparticles is investigated.

The resulting governing equations in this work describe fluid transport and its exchange
between the interstitial tumour space and the micro-vessels, as well as nanoparticles transport.
The latter is assumed to occur solely in the vessels to which particles can adhere, as opposed to
the work by Al Sariri and Penta [3], where extravasation of small nanoparticles was taken into
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Figure 3.8: Regions of safe and effective hyperthermia treatment in the parameter space of the
model. The regions are constructed as described in the caption of Figure 3.7 and are as follows
(a) (𝐻0, 𝑐𝑛), (b) (𝐻0, 𝑝𝑑), (c) (𝜉,𝐻0), and (d) (𝜆,𝐻0). In each panel, all parameters except the
ones on the axes are kept fixed at values specified in Table 3.1 and 𝑓 = 300 KHZ, 𝜎 = 50 minutes,
𝑐𝑛 = 100 mg/ml, 𝜉 = 15, 𝑝𝑑 = 80 nm. The particles’ diameter on the ordinate in figure (b) is in
nm.

account, and adhesion ignored. We have performed a parametric analysis to study the role of
nanoparticles and applied magnetic field properties, as well as micro-vessels tortuosity, on the
temperature reached as a consequence of cancer hyperthermia (hyperthermic temperature), as
well as the duration for which this latter is maintained (hyperthermic duration).

This way, we have identified the optimal cancer hyperthermia parameters for safe and effective
hyperthermic temperature and duration conditions (herein identified in 42−46◦𝐶 for 30 minutes
to 2 hours). The main results of our analysis are shown in Figures 3.7 and 3.8 in terms of
particles’ diameter, magnetic field intensity, vessels’ shear rate, injection conditions (injected
concentration and duration), as well as microvascular tortuosity.

According to our results, both the injected concentration of nanoparticles, and the time during
which they are administrated, play a prominent role in reaching the desired hyperthermic condi-
tions. The safe magnetic field intensity to be applied increases monotonically with decreasing
injection time and duration, as expected.
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The role of particles’ diameter in the investigated range only weakly affects the safe range
of magnetic intensity. On the other hand, we find that the properties of the microvessels play a
crucial role in determining the hyperthermic conditions of the system.

Increasing the wall shear rate requires a corresponding increase in magnetic field intensity,
although such an increase exhibits a sublinear profile. This may be due to the fact that, on the one
hand, the wall shear rate determines an increase in the particles’ density adhering to the vessels’
walls and hence an increase in the heat source directly related to adhesion. On the other hand, an
increase of the adhesion also translates in particle absorption at the macroscopic scale, so that,
in turn, part of the nanoparticles flowing in the vessels are uptaken thus causing a net decrease
in the heat source, as the latter also depend on the actual concentration of nanoparticles. In the
scenario at hand, the latter phenomenon overtakes the former, as the concentration affects the
heat source more than the density of nanoparticles adhering to the vessels, thus justifying the
obtained profile.

The role of microvessels tortuosity is in agreement with the findings reported by Al Sariri
and Penta [3], in that in general, regularisation of the tumour microstructure leads to an overall
improvement in fluid, drug, and ultimately heat transport. However, high concentration peaks can
be reached for intermediate values of the tortuosity, due to the fact that increasing the geometrical
complexity of the vessels’ leads to consequences which can potentially lead to opposite effects
on the drug and heat dynamics.

In fact, an increased tortuosity leads to larger vessel surface, which leads to an increase in
adhesion, and, at the same time, to impaired (reduce) fluid, drug, and heat convection. However,
the importance of geometric regularisation in enhancing anti-cancer therapies based on drug
transport for vascularised tumours is evident also in this current work and in agreement with
the works developed by Mascheroni and Penta [85], Al Sariri and Penta [3], and Al Sariri et al. [4].

In the previous two chapters, we study the impact of the magnetic field on the heat distribution
only. However, the magnetic field influences the fluid and particles’ transport as well. We
investigated the role that an applied magnetic field has on a ferrofluid [106]. A relevant example
is indeed a fluid that contains a suspension of magnetic nanoparticles. Moreover, in those
chapters, we studied the models related to vascularized tumour only, without taking into account
the surrounding healthy tissues. Therefore, in the next chapter we discuss about the magnetic
force influence on the fluid flow, and we consider that the tumour is surrounded by non-cancerous
tissue, see also [112].



Chapter 4

Multiscale homogenisation of the role of an
applied magnetic field on the fluid flowing
in heterogeneous cancerous tissues

4.1 Introduction

In the previous two chapters, we investigated the influence of an applied magnetic field on tem-
perature maps in tumours. As the nanoparticles are suspended in the fluid, the latter can be
considered as a ferrofluid which percolates through the cancerous tissue. Therefore, it is also
important to take into account how the magnetic force affects the fluid flow, which is an aspect
that often neglected in the current literature. The biomagnetic fluid dynamic (BFM) is a science
that studies the impact of magnetic force on the fluid flow [5]. Nanoparticles can also reach the
healthy tissue. As such, the objective of this chapter is the study of the fluid flowing in a tissue
which is comprising both healthy and cancerous regions when subjected to the application of a
nonhomogeneous force, which is herein identified with a magnetic force.
The asymptotic homogenization technique is used to address the scale difference of tumour and
healthy regions. This technique has been used since the late 70s. The starting point typically is
a microscale PDEs system. As a result of upscaling process, we obtain a system of governing
equations describing the macroscopic behaviour of the system. Usually microscale is very com-
plex and the homogenization technique reduces its complexity by transforming the equations to
macroscale and taking into account the advantages and the information of the small scale. This
method is used in different porous medium using two scales like in [3, 102, 126] and many other
works. Sometimes two-scale homogenization is not enough to describe the heterogeneities and
hierarchical layers or domains of such problems. For example, Bensoussan et al. [11] derived
multiple scales of homogenization on the basis of the original homogenization method. There
are various works focusing on developing three scales of homogenization technique in different
fields. Ramírez-Torres et al. [113] studied three scales of composite material which consists of

84
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two hierarchical levels using two different scaling parameters 𝜖1 and 𝜖2. Further computations
in multiple scales are studied by Hornung [63], Guan et al. [53], and Yang et al. [150].
Penta et al. [106] derived the homogenized model for the fluid flow by taking into account three
different scales which are pore, fine, and coarse scales and considering the inhomogeneous body
force applied to the fluid. They have started with two Darcy’s law in fine scale describing the fluid
flow in two different porous media that interplay with each other. Applying the homogenization
technique, they end up with one Darcy’s law in macroscale and the impact of the fine scales
appeared in the effective hydraulic tensors and the resulting forces which can be determined by
solving appropriate cell problems.

Here, we study the fluid flow in the vessels and interstitial compartments of the tumour
and healthy regions by using Darcy’s law that are derived by Mascheroni and Penta [85], Penta
et al. [102], Shipley and Chapman [126], and Al Sariri and Penta [3]. The latter derived the
macroscale differential equations for the pressures and velocities of vascularized tumour. They
have started with Stokes’ problem that expresses the fluid flow in the vessels and Darcy’s law
in the case of the tissue. A double Darcy’s models with mass exchange between compartments
holds at macroscale. As a result, we start from the final macroscale PDE system of Al Sariri and
Penta [3], and we consider it as the mesoscale. Also, we follow Penta et al. [106] to account for
the impact of magnetic forces in the fluid flow. Using the homogenization technique, we derive
the macroscale differential equations that combine the two regions together, and the influences
of each domain are reflected in the vessels’ permeabilities, tensors of hydraulic conductivity, as
well as the homogenized magnetic forces.

This chapter is organized as follows. In Section 4.2, we discuss about the mathematical
modelling of the problem. In Section 4.3, we derive the mesoscale differential equation of the
new model which is constructed from the nondimensional homogenized differential equations
that are taken from Al Sariri and Penta [3]. In Section 4.4, we nondimensionalize the new system.
We explain briefly the homogenization method steps which are applied in this work to derive
the final macroscale system in Section 4.5. The solutions of the mesoscale and the macroscale
systems are derived in Sections 4.6, and 4.7, respectively. We conclude and discuss the general
results in Section 4.8.

4.2 Mathematical modelling

In chemotherapy treatment and thermal ablation, both healthy and tumour tissues are being
destroyed as they are adjacent to each other. Therefore, the aim of using magnetic nanoparticles
is to reduce the negative side effects on the surrounding healthy cells. The heat tolerance of
malignant cell is less than the healthy one [147]. Therefore, the goal is to find the optimal
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increase in temperature to destroy cancer cells but not damaging the healthy tissues.

Figure 4.1: The three levels of homogenization that describe the interaction between the healthy
and tumour cells. The volume portion Ω𝐻𝑣 denotes the healthy vessels, Ω𝐻𝑡 is the healthy
interstitium, Ω𝑇𝑣 is the tumour vessels, and Ω𝑇𝑡 is the tumour interstitium.

The present work studies the fluid flow in two dimensional domain that considers the tumour
heterogeneities inside the healthy tissue and we take into account the impact of the magnetic
force in both regions. The fluid flow in each domain is studied in two compartments which are
the vessels and interstitium. In order to address the scale difference between the various regions,
we use the asymptotic homogenization technique. This method can be applied to our model by
using three different hierarchical levels of organization which are, the macroscale, the mesoscale,
and the microscale. The macroscale is the general uniform tissue that comprises all regions in
one domain. At the mesoscale the tissue is divided into two domains which are the tumour
heterogeneities Ω𝑇 and healthy region Ω𝐻 . The interface between the two regions is denoted
by Γ𝑚. Zooming more to each region at the mesoscale, leads to different structures of the two
domains in the microscale level. Each domain consists of vessels and interstitial compartments,
see Figure 4.1.
On one hand, the ratio between the radius of the vessel (𝑑 ≈ 50−100𝜇m) and the average scale
of the tumour (𝐿 ≈ 0.1 cm), is given by

𝜖 =
𝑑

𝐿
<< 1. (4.1)

On the other hand, the ratio between the average size of the tumour 𝐿 and the average size of the
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whole tissue (comprising both the healthy and the tumour region) (𝐿𝑚 ≈ 1 cm) is

𝜀 =
𝐿

𝐿𝑚
< 1. (4.2)

Here, we find the homogenized differential equations that expresses the fluid flow influenced by
an inhomogeneous magnetic force in the tumour that overlaps with surrounding healthy tissue.

4.3 The derivation of fluid flow in mesoscale

Penta et al. [102], Shipley and Chapman [126] and Al Sariri and Penta [3] studied the fluid flow
of the tumour vessels and interstitial compartments. They considered the tumour tissue as a
porous media governed by Darcy’s law in microscale

u𝑡 = −𝜅∇𝑝𝑡 in Ω𝑡 , (4.3a)

∇ ·u𝑡 = 0 in Ω𝑡 , (4.3b)

where they used Stokes’ problem to express the blood flow in the vessels as

𝜇∇2u𝑣 = ∇𝑝𝑣 in Ω𝑣, (4.4a)

∇ ·u𝑣 = 0 in Ω𝑣 . (4.4b)

They assumed a continuous blood flow through the semi permeable vessels’ membrane given by
Starling’s law

u𝑡 ·n = u𝑣 ·n = 𝐿 (𝑝𝑡 − 𝑝𝑣) on Γ. (4.5)

Here, Γ represent the interface between the vessel and interstitial compartments (vessels’ wall), 𝑝
stands for the fluid pressure, u is the fluid velocity, 𝜇 is the blood viscosity, and 𝜅 is tissue hydraulic
conductivity. The indices 𝑣, and 𝑡 denote the vessels and tumour interstitial compartments,
respectively.
The asymptotic homogenization technique (multiscale) is applied in the model due to the large
difference in scales that exists between the vessels’ distances (microscale) and average size of
the tumour (macroscale). The parameters of the system are upscaled at macroscale and the
impact of the microscale is encoded in the hydraulic conductivity tensors of the system. The
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final macroscale system consist of double Darcy’s law and it can be summarised as

u𝑣 = −Y𝑣∇𝑥 𝑝𝑣, (4.6a)

u𝑡 = −𝜅Y𝑡∇𝑥 𝑝𝑡 . (4.6b)

∇ ·u𝑣 =
𝑆

|Ω𝑣 |
𝐿̄𝑝 (𝑝𝑣 − 𝑝𝑡), (4.6c)

∇ ·u𝑡 =
𝑆

|Ω𝑡 |
𝐿̄𝑝 (𝑝𝑡 − 𝑝𝑣), (4.6d)

Here, Y𝑣 (x) and Y𝑡 (x) are the effective hydraulic conductivity tensors, 𝑆 is the vessels’ wall
surface, |Ω𝑣,𝑡 | is the vessels/interstitial volumes, 𝐿̄𝑝 is the non-dimensional vessels’ permeability,
and 𝜅 is non-dimensional hydraulic conductivity of the tissue.

4.3.1 The influence of the magnetic force on the fluid flow

Usually, a constant body force is taken into account when discussing about the fluid flow in
certain media. In this case, the body force solely affects the resulting fluid profile, but not the
pressure distribution in the medium. However, when we are talking about the porous medium,
then the force generally varies in space. Therefore, Penta et al. [106] studied the impact of an
inhomogeneous body force in the fluid flow of two porous media interacting with each other.
They used double Darcy’s law to express the fluid flow in both regions at the fine scale and they
applied the homogenization technique to upscale the problem at the macroscale. The novelty of
their work appears in the macroscale of the system as they declared that the forces in macroscale
are not just the average of the forces in fine scale, but also other extra terms that reflects the
structures and information of the fine scale with the hydraulic conductivity tensors.

In this work, we investigate theoretically the influence of non homogeneous magnetic field
force on the vessels and interstitium of the tumour and healthy tissues. To do so, we assume
that the fluid flow in both compartments are driven by an external volume load which should be
related to the inhomogeneous force of applied magnetic field 𝑓 , following Penta et al. [106]. The
system of equations can be written as

u𝑣 = −Y𝑣 (∇𝑝𝑣 + 𝑓𝑣), (4.7a)

u𝑡 = −𝜅Y𝑡 (∇𝑝𝑡 + 𝑓𝑡). (4.7b)

Then, by taking the divergence of the velocities in equations (4.7a) and (4.7b), and using equations
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(4.6c) and (4.6d), we obtain

∇ · (Y𝑣∇𝑝𝑣) =
𝑆

|Ω𝑣 |
𝐿̄𝑝 (𝑝𝑣 − 𝑝𝑡) +∇ · 𝑓𝑣, (4.8a)

∇ · (𝜅Y𝑡∇𝑝𝑡) =
𝑆

|Ω𝑡 |
𝐿̄𝑝 (𝑝𝑡 − 𝑝𝑣) +∇ · 𝑓𝑡 . (4.8b)

In the present work, we start from (4.7a-4.7b) and (4.8a-4.8b) which means that we embrace the
mesoscale as a starting point in this new model, and we find the resulting macroscale system of
PDEs by means of the following road-map.
(i) Re-write the system in dimensional form.
(ii) Generalize the equations for the healthy region and take into account the magnetic force
applied to the fluid.
(iii) Find the non-dimensional system of PDEs.
(iv) Using the homogenization technique, we find the macroscale governing equations.

4.3.2 The dimensional form of the model

The differential equations (4.7a-4.7b) and (4.8a-4.8b) are in non-dimensional form as they are
derived due to the scales’ difference between the distance of the vessels and the average size of
the tumour. To reuse this system in the present model and expand it to cover the relation and the
variation of scales’ sizes between the tumour and surrounding healthy region in mesoscale, we
transform it to dimensional form. Subsequently, we find the appropriate dimension-less system.
The transformation of the variables from non-dimensional to dimensional form is described as

𝑝 =
𝑝𝐷

𝐶𝐿
, ∇ = 𝐿∇𝐷 , 𝜅 =

𝜅𝐷𝜇

𝑑2 , 𝐿̄𝑝 =
𝐿𝐷𝑝 𝜇𝐿

2

𝑑3 , 𝑓 =
1
𝐶
𝑓 𝐷 , u =

𝜇

𝐶𝑑2 u𝐷 , (4.9)

where 𝐶 is the pressure reference, 𝐿 is the tumour length scale, 𝑑 is the destance between the
vessels, and 𝜇 is the blood viscosity.
The dimensional differential equation for the vessels and interstitial fluid pressure compartments
can be written by applying (4.9) in the differential equations (4.7a-4.7b) and (4.8a-4.8b). The
dimensional form of the fluid pressure in the tumour interstitial compartment (4.8b) is derived
as

𝜇𝐿2

𝐶𝐿𝑑2∇
𝐷
𝑥 ·

(
𝜅𝐷Y𝑡∇𝐷𝑥 𝑝𝐷𝑡

)
=

𝑆

|Ω𝑡 |
𝐿𝐷𝑝 𝜇𝐿

2

𝑑3𝐶𝐿

(
𝑝𝐷𝑡 − 𝑝𝐷𝑣

)
+ 𝐿𝜇

𝐶𝑑2∇
𝐷
𝑥 · (−𝜅𝐷Y𝑡 𝑓 𝐷𝑡 ), (4.10)

∇𝐷𝑥 ·
(
Y𝐷𝑡 ∇𝐷𝑥 𝑝𝐷𝑡

)
=

(
𝑆

|Ω𝑡 |
1
𝑑

)
𝐿𝐷𝑝

(
𝑝𝐷𝑡 − 𝑝𝐷𝑣

)
+∇𝐷𝑥 · 𝑓 𝐷𝑡 , (4.11)
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and we use the same steps for the vessel compartment (4.8a),

𝐿2

𝐶𝐿
∇𝐷𝑥 · (Y𝑣∇𝐷𝑥 𝑝𝐷𝑣 ) =

𝑆

|Ω𝑣 |
𝐿𝑝𝜇𝐿

2

𝑑3𝐶𝐿
(𝑝𝐷𝑣 − 𝑝𝐷𝑡 ) +

𝐿

𝐶
∇𝐷𝑥 · (−Y𝑣 𝑓 𝐷𝑣 ), (4.12)

∇𝐷𝑥 ·
(
Y𝐷𝑣 ∇𝐷𝑥 𝑝𝐷𝑣

)
=

(
𝑆

|Ω𝑣 |
1
𝑑

)
𝐿𝐷𝑝

(
𝑝𝐷𝑣 − 𝑝𝐷𝑡

)
+∇𝐷𝑥 · 𝑓 𝐷𝑣 . (4.13)

The dimensional blood velocity (4.7a) can be found as

𝜇

𝐶𝑑2 u𝐷𝑣 = −Y𝑣𝐿
𝐶𝐿

∇𝐷𝑥 𝑝𝐷𝑣 −
Y𝑣 𝑓 𝐷𝑣
𝐶

, (4.14)

u𝐷𝑣 = −Y𝐷𝑣 ∇𝐷𝑥 · 𝑝𝐷𝑣 + 𝑓 𝐷𝑣 , (4.15)

and the dimensional fluid flow in the tumour interstitial compartment (4.7b) is obtained as

𝜇

𝐶𝑑2 u𝐷𝑡 = −𝜅
𝐷Y𝑡𝜇𝐿
𝐶𝐿𝑑2 ∇𝐷𝑥 𝑝𝐷𝑣 −

𝜇𝜅𝐷Y𝑡 𝑓 𝐷𝑡
𝐶𝑑2 , (4.16)

u𝐷𝑡 = −Y𝐷𝑡 ∇𝐷𝑥 · 𝑝𝐷𝑡 + 𝑓 𝐷𝑡 , (4.17)

where Y𝐷𝑡 = 𝜅𝐷Y𝑡 , Y𝐷𝑣 = 𝑑2

𝜇
Y𝑣, 𝑓 𝐷𝑡 = −𝜅Y𝐷𝑡 𝑓 𝐷𝑡 , and 𝑓 𝐷𝑣 = −Y𝐷𝑣 𝑓 𝐷𝑣 . The letter D denotes the

dimensional variables and parameters.

4.3.3 The fluid flow for the tumour and healthy cells with magnetic force

We can generalize equations (4.11), (4.13), (4.15), and (4.17) to describe the fluid flow in the
healthy region when the magnetic field is applied to the whole tissue as

∇𝑥 · (K𝐻∇𝑥 𝑝𝐻) =
(

𝑆

|Ω𝐻𝑣 |𝑑

)
𝐿𝐻 (𝑝𝐻 −𝑔𝐻) −∇𝑥 ·

(
K𝐻 𝑓ℎ

)
in Ω𝐻 , (4.18a)

∇𝑥 · (K𝑇∇𝑥 𝑝𝑇 ) =
(

𝑆

|Ω𝑇𝑣 |𝑑

)
𝐿𝑇 (𝑝𝑇 −𝑔𝑇 ) −∇𝑥 ·

(
K𝑇 𝑓𝑡

)
in Ω𝑇 , (4.18b)

∇𝑥 · (E𝐻∇𝑥𝑔𝐻) =
(

𝑆

|Ω𝐻𝑡 |𝑑

)
𝐿𝐻 (𝑔𝐻 − 𝑝𝐻) −∇𝑥 ·

(
E𝐻 𝑓ℎ

)
in Ω𝐻 , (4.18c)

∇𝑥 · (E𝑇∇𝑥𝑔𝑇 ) =
(

𝑆

|Ω𝑇𝑡 |𝑑

)
𝐿𝑇 (𝑔𝑇 − 𝑝𝑇 ) −∇𝑥 ·

(
E𝑇 𝑓𝑡

)
in Ω𝑇 , (4.18d)

u𝐻 = −K𝐻
(
∇𝑝𝐻 + 𝑓ℎ

)
in Ω𝐻 , (4.18e)

u𝑇 = −K𝑇
(
∇𝑝𝑇 + 𝑓𝑡

)
in Ω𝑇 , (4.18f)

v𝐻 = −E𝐻
(
∇𝑔𝐻 + 𝑓ℎ

)
in Ω𝐻 , (4.18g)

v𝑇 = −E𝑇
(
∇𝑔𝑇 + 𝑓𝑡

)
in Ω𝑇 , (4.18h)
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with boundary conditions

𝑝𝑇 = 𝑝𝐻 on Γ𝑚, (4.19a)

𝑔𝑇 = 𝑔𝐻 on Γ𝑚, (4.19b)(
−K𝑇∇𝑥 𝑝𝑇 −K𝑇 𝑓𝑡

)
·n =

(
−K𝐻∇𝑥 𝑝𝐻 −K𝐻 𝑓ℎ

)
·n on Γ𝑚, (4.19c)(

−E𝐻∇𝑥𝑔𝐻 −E𝐻 𝑓ℎ
)
·n =

(
−E𝑇∇𝑥𝑔𝑇 −E𝑇 𝑓𝑡

)
·n on Γ𝑚, (4.19d)

where, K𝐻,𝑇 = 𝑑2

𝜇
K̄𝐻,𝑇 , and K̄𝐻,𝑇 is non dimensional form.

The variables 𝑝𝐻,𝑇 , 𝑔𝐻,𝑇 , 𝑢𝐻,𝑇 , and 𝑣𝐻,𝑇 are the vessels’ fluid pressures, interstitial fluid pres-
sures, blood velocities, interstitial fluid velocities for healthy/tumour region, respectively. The
parameter |Ω𝐻𝑣 | is the domain of the vessels’ healthy region, |Ω𝑇𝑣 | is the domain of the vessels
in tumour region, |Ω𝐻𝑡 | is the domain of interstitial compartment in healthy region, and |Ω𝑇𝑡 | is
the domain of interstitial compartments for the tumour region. The parameters 𝐿𝐻,𝑇 , K𝐻,𝑇 , and
E𝐻,𝑇 are the vessels permeabilities, the effective vessels’ hydraulic conductivity, and the effective
interstitial hydraulic conductivities for the healthy/tumour region, respectively. The magnetic
forces of the healthy and tumour vessels are represented by 𝑓ℎ and 𝑓𝑡 , respectively.

4.4 Non-dimensional form of the model

We find the dimensionless equations of the system by performing a change of variables as follow,

𝑋 = 𝐿𝑚𝑋
′, 𝑝𝑄 = 𝐶𝐿𝑚𝑝

′
𝑄 , 𝑔𝑄 = 𝐶𝐿𝑚𝑔

′
𝑄 , u𝑄 =

𝐶𝑑2

𝜇
u′
𝑄 , v𝑄 =

𝐶𝑑2

𝜇
v′𝑄 , 𝑓𝑄 = 𝐶 𝑓 ′𝑄 ,

(4.20)

where, 𝑄 is 𝐻 or 𝑇 .
By neglecting all the primes for the sake of simplicity, the non-dimensional differential equations
can be written as
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∇𝑥 · (K̄𝐻∇𝑥 𝑝𝐻) = 𝐿̄𝐻𝑣 (𝑝𝐻 −𝑔𝐻) +∇𝑥 · 𝑓𝐻 in Ω𝐻 , (4.21a)

∇𝑥 · (K̄𝑇∇𝑥 𝑝𝑇 ) = 𝐿̄𝑇𝑣 (𝑝𝑇 −𝑔𝑇 ) +∇𝑥 · 𝑓𝑇 in Ω𝑇 , (4.21b)

∇𝑥 · (Ē𝐻∇𝑥𝑔𝐻) = 𝐿̄𝐻𝑡 (𝑔𝐻 − 𝑝𝐻) +∇𝑥 · 𝑓𝐻 in Ω𝐻 , (4.21c)

∇𝑥 · (Ē𝑇∇𝑥𝑔𝑇 ) = 𝐿̄𝑇𝑡 (𝑔𝑇 − 𝑝𝑇 ) +∇𝑥 · 𝑓𝑇 in Ω𝑇 , (4.21d)

𝑝𝑇 = 𝑝𝐻 on Γ𝑚, (4.21e)

𝑔𝑇 = 𝑔𝐻 on Γ𝑚, (4.21f)

(−K̄𝑇∇𝑥 𝑝𝑇 + 𝑓𝑇 ) ·n = (−K̄𝐻∇𝑥 𝑝𝐻 + 𝑓𝐻) ·n on Γ𝑚, (4.21g)

(−Ē𝐻∇𝑥𝑔𝐻 + 𝑓𝐻) ·n = (−Ē𝑇∇𝑥𝑔𝑇 + 𝑓𝑇 ) ·n on Γ𝑚, (4.21h)

with

𝐿̄𝐻𝑣 = 𝐿𝐻
𝑆𝐻𝐿

2
𝑚𝜇

𝑑3 |Ω𝐻𝑣 |
, 𝐿̄𝑇𝑣 = 𝐿𝑇

𝑆𝑇𝐿
2
𝑚𝜇

𝑑3 |Ω𝑇𝑣 |
, (4.22)

𝐿̄𝐻𝑡 = 𝐿𝐻
𝑆𝐻𝐿

2
𝑚𝜇

𝑑3 |Ω𝐻𝑡 |
, 𝐿̄𝑇𝑡 = 𝐿𝑇

𝑆𝑇𝐿
2
𝑚𝜇

𝑑3 |Ω𝑇𝑡 |
, (4.23)

Ē𝐻 =
𝜇

𝑑2 𝜅𝐻E𝐻 , Ē𝑇 =
𝜇

𝑑2 𝜅𝑇E𝑇 . (4.24)

The nonhomogeneous magnetic forces are defined as

𝑓𝐻 = −K̄𝐻 𝑓ℎ, 𝑓𝑇 = −K̄𝑇 𝑓𝑡 , (4.25)

𝑓𝐻 = −Ē𝐻 𝑓ℎ, 𝑓𝑇 = −Ē𝑇 𝑓𝑡 . (4.26)

Furthermore, the fluid velocities can be written in non-dimensional form as Darcy’s law driven
by inhomogeneous magnetic forces

u𝐻 = −K̄𝐻∇𝑥 𝑝𝐻 + 𝑓𝐻 in Ω𝐻 , (4.27a)

u𝑇 = −K̄𝑇∇𝑥 𝑝𝑇 + 𝑓𝑇 in Ω𝑇 , (4.27b)

v𝐻 = −Ē𝐻∇𝑥𝑔𝐻 + 𝑓𝐻 in Ω𝐻 , (4.27c)

v𝑇 = −Ē𝑇∇𝑥𝑔𝑇 + 𝑓𝑇 in Ω𝑇 , (4.27d)

where u is the fluid velocity in the vessels and v is the fluid velocity in the interstitial space.
Also, the indices 𝐻 and 𝑇 are for the healthy and tumour regions, respectively.
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4.5 Model derivation via the asymptotic homogenisation tech-
nique

The application of a multiscale approach is motivated by the difference in scales between 𝐿𝑚
which represents the size of the whole domain, and the mesoscale 𝐿 that describes the average
distance between cancerous regions and their ratio is defined as in equation (4.2).
Every field is considered as a function of the two independent variables y which represents the
mesoscale, while x is the macroscale variable. The relation between these two is given by

y =
x
𝜀
. (4.28)

Also, we assume the y-periodicity for the mesoscale and every variable can be written in power
series of 𝜀 as

𝜈(x) = 𝜈(x,y) =
∞∑︁
𝑙=0
𝜈𝑙 (x,y)𝜀𝑙 = 𝜈(0) (x,y) + 𝜈(1) (x,y)𝜀1 + 𝜈(2) (x,y)𝜀2 + ..., (4.29)

where 𝜈 can be any variable in the model, such as u𝐻,𝑇 , v𝐻,𝑇 , 𝑝𝐻,𝑇 , 𝑔𝐻,𝑇 , 𝑓𝐻,𝑇 , and 𝑓𝐻,𝑇 .
As all the fields in the resulting macroscale model should be depending on the macroscale
variable only, we also define the integral average over the periodic cell as

⟨·⟩ = 1
|Ω|

∫
|Ω𝑄 |

· 𝑑y, 𝑄 = 𝐻,𝑇. (4.30)

Here, |Ω𝐻 |, |Ω𝑇 | are the healthy and tumour cell volume portion, and |Ω| is the volume of the
periodic cell.
We apply the asymptotic homogenisation technique to obtain a new system of PDEs in terms of
the leading order fields. The information at the finer scale (which is mesoscale in this case) is
encoded in the parameters of the resulting zero-th order model.

4.5.1 The asymptotic homogenisation steps

The multiscale differential equations for the fluid flow of the healthy and tumour regions in
the vessels and interstitial compartments (4.21a)-(4.21d), with the interface conditions (4.21e)-
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(4.21h) can be written using the power series (4.29) as

𝜀2∇𝑥 ·
(
K̄𝐻∇𝑥 𝑝𝜀𝐻

)
+ 𝜀∇𝑥 ·

(
K̄𝐻∇𝑦𝑝𝜀𝐻

)
+ 𝜀∇𝑦 ·

(
K̄𝐻∇𝑥 𝑝𝜀𝐻

)
+

∇𝑦 ·
(
K̄𝐻∇𝑦𝑝𝜀𝐻

)
= 𝜀2 𝐿̄𝐻 (𝑝𝜀𝐻 −𝑔𝜀𝐻) + 𝜀

2∇𝑥 · 𝑓 𝜀𝐻 + 𝜀∇𝑦 · 𝑓 𝜀𝐻 in Ω𝐻 , (4.31a)

𝜀2∇𝑥 ·
(
K̄𝑇∇𝑥 𝑝𝜀𝑇

)
+ 𝜀∇𝑥 ·

(
K̄𝑇∇𝑦𝑝𝜀𝑇

)
+ 𝜀∇𝑦 ·

(
K̄𝑇∇𝑥 𝑝𝜀𝑇

)
+

∇𝑦 ·
(
K̄𝑇∇𝑦𝑝𝜀𝑇

)
= 𝜀2 𝐿̄𝑇 (𝑝𝜀𝑇 −𝑔

𝜀
𝑇 ) + 𝜀

2∇𝑥 · 𝑓 𝜀𝑇 + 𝜀∇𝑦 · 𝑓 𝜀𝑇 in Ω𝑇 , (4.31b)

𝜀2∇𝑥 ·
(
Ē𝐻∇𝑥𝑔𝜀𝐻

)
+ 𝜀∇𝑥 ·

(
Ē𝐻∇𝑦 · 𝑔𝜀𝐻

)
+ 𝜀∇𝑦 ·

(
Ē𝐻∇𝑥𝑔𝜀𝐻

)
+

∇𝑦 ·
(
Ē𝐻∇𝑦𝑔𝜀𝐻

)
= 𝜀2 𝐿̄𝐻𝑡 (𝑔𝜀𝐻 − 𝑝𝜀𝐻) + 𝜀

2∇𝑥 · 𝑓 𝜀𝐻 + 𝜀∇𝑦 · 𝑓 𝜀𝐻 in Ω𝐻 , (4.31c)

𝜀2∇𝑥 ·
(
Ē𝑇∇𝑥𝑔𝜀𝑇

)
+ 𝜀∇𝑥 ·

(
Ē𝑇∇𝑦𝑔𝜀𝑇

)
+ 𝜀∇𝑦 ·

(
Ē𝑇∇𝑥𝑔𝜀𝑇

)
+

∇𝑦 ·
(
Ē𝑇∇𝑦𝑔𝜀𝑇

)
= 𝜀2 𝐿̄𝑇𝑡 (𝑔𝜀𝑇 − 𝑝

𝜀
𝑇 ) + 𝜀

2∇𝑥 · 𝑓 𝜀𝑇 + 𝜀∇𝑦 · 𝑓 𝜀𝑇 in Ω𝑇 , (4.31d)

𝑝𝜀𝑇 = 𝑝
𝜀
𝐻 on Γ𝑚, (4.31e)

𝑔𝜀𝑇 = 𝑔
𝜀
𝐻 on Γ𝑚, (4.31f)(

−𝜀K̄𝑇∇𝑥 𝑝𝜀𝑇 − K̄𝑇∇𝑦𝑝𝜀𝑇 + 𝜀 𝑓
𝜀
𝑇

)
·n =(

−𝜀K̄𝐻∇𝑥 𝑝𝜀𝐻 − K̄𝐻∇𝑦𝑝𝜀𝐻 + 𝜀 𝑓 𝜀𝐻
)
·n on Γ𝑚, (4.31g)(

−𝜀Ē𝑇∇𝑥𝑔𝜀𝑇 − Ē𝑇∇𝑦𝑔𝜀𝑇 + 𝜀 𝑓
𝜀
𝑇

)
·n =(

−𝜀Ē𝐻∇𝑥𝑔𝜀𝐻 − Ē𝐻∇𝑦𝑔𝜀𝐻 + 𝜀 𝑓 𝜀𝐻
)
·n on Γ𝑚, (4.31h)

and the multiscale for the fluid velocities (4.27a-4.27d) are

𝜀u𝜀𝐻 = −𝜀K̄𝐻∇𝑥 𝑝𝜀𝐻 − K̄𝐻∇𝑦𝑝𝜀𝐻 + 𝜀 𝑓 𝜀𝐻 in Ω𝐻 , (4.32a)

𝜀u𝜀𝑇 = −𝜀K̄𝑇∇𝑥 𝑝𝜀𝑇 − K̄𝑇∇𝑦𝑝𝜀𝑇 + 𝜀 𝑓
𝜀
𝑇 in Ω𝑇 , (4.32b)

𝜀v𝜀𝐻 = −𝜀Ē𝐻∇𝑥𝑔𝜀𝐻 − Ē𝐻∇𝑦𝑔𝜀𝐻 + 𝜀 𝑓 𝜀𝐻 in Ω𝐻 , (4.32c)

𝜀v𝜀𝑇 = −𝜀Ē𝑇∇𝑥𝑔𝜀𝑡 − Ē𝑇∇𝑦𝑔𝜀𝑇 + 𝜀 𝑓
𝜀
𝑇 in Ω𝑇 . (4.32d)
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Equating the system for 𝜀0 gives

∇𝑦 ·
(
K̄𝐻∇𝑦𝑝 (0)𝐻

)
= 0 in Ω𝐻 , (4.33a)

∇𝑦 ·
(
K̄𝑇∇𝑦𝑝 (0)𝑇

)
= 0 in Ω𝑇 , (4.33b)

∇𝑦 ·
(
Ē𝐻∇𝑦𝑔(0)𝐻

)
= 0 in Ω𝐻 , (4.33c)

∇𝑦 ·
(
Ē𝑇∇𝑦𝑔(0)𝑇

)
= 0 in Ω𝑇 , (4.33d)

K̄𝐻∇𝑦𝑝 (0)𝐻 = 0 in Ω𝐻 , (4.33e)

K̄𝑇∇𝑦𝑝 (0)𝑇 = 0 in Ω𝑇 , (4.33f)

Ē𝐻∇𝑦𝑔(0)𝐻 = 0 in Ω𝐻 , (4.33g)

Ē𝑇∇𝑦𝑔(0)𝑇
= 0 in Ω𝑇 , (4.33h)

𝑝
(0)
𝑇

= 𝑝
(0)
𝐻

on Γ𝑚, (4.33i)

𝑔
(0)
𝑇

= 𝑔
(0)
𝐻

on Γ𝑚, (4.33j)(
K̄𝑇∇𝑦𝑝 (0)𝑇

)
·n =

(
K̄𝐻∇𝑦𝑝 (0)𝐻

)
·n on Γ𝑚, (4.33k)(

Ē𝑇∇𝑦𝑔(0)𝑇

)
·n =

(
Ē𝐻∇𝑦𝑔(0)𝐻

)
·n on Γ𝑚 . (4.33l)

For 𝜀1

∇𝑦 ·
(
K̄𝐻∇𝑥 𝑝 (0)𝐻

)
+∇𝑦 ·

(
K̄𝐻∇𝑦𝑝 (1)𝐻

)
= ∇𝑦 · 𝑓 (0)𝐻

in Ω𝐻 , (4.34a)

∇𝑦 ·
(
K̄𝑇∇𝑥 𝑝 (0)𝑇

)
+∇𝑦 ·

(
K̄𝑇∇𝑦𝑝 (1)𝑇

)
= ∇𝑦 · 𝑓 (0)𝑇

in Ω𝑇 , (4.34b)

∇𝑦 ·
(
Ē𝐻∇𝑥𝑔(0)𝐻

)
+∇𝑦 ·

(
Ē𝐻∇𝑦𝑔(1)𝐻

)
= ∇𝑦 · 𝑓 (0)𝐻

in Ω𝐻 , (4.34c)

∇𝑦 ·
(
Ē𝑇∇𝑥𝑔(0)𝑇

)
+∇𝑦 ·

(
Ē𝑇∇𝑦𝑔(1)𝑇

)
= ∇𝑦 · 𝑓 (0)𝑇

in Ω𝑇 , (4.34d)

u(0)
𝐻

= −K̄𝐻∇𝑥 𝑝 (0)𝐻 − K̄𝐻∇𝑦𝑝 (1)𝐻 + 𝑓 (0)
𝐻

in Ω𝐻 , (4.34e)

u(0)
𝑇

= −K̄𝑇∇𝑥 𝑝 (0)𝑇 − K̄𝑇∇𝑦𝑝 (1)𝑇 + 𝑓 (0)
𝑇

in Ω𝑇 , (4.34f)

v(0)
𝐻

= −Ē𝐻∇𝑥𝑔(0)𝐻 − Ē𝐻∇𝑦𝑔(1)𝐻 + 𝑓 (0)
𝐻

in Ω𝐻 , (4.34g)

v(0)
𝑇

= −Ē𝑇∇𝑥𝑔(0)𝑇
− Ē𝑇∇𝑦𝑔(1)𝑇

+ 𝑓 (0)
𝑇

in Ω𝑇 , (4.34h)

𝑝
(1)
𝐻

= 𝑝
(1)
𝑇

on Γ𝑚, (4.34i)

𝑔
(1)
𝐻

= 𝑔
(1)
𝑇

on Γ𝑚, (4.34j)(
−K̄𝐻∇𝑥 𝑝 (0)𝐻 − K̄𝐻∇𝑦𝑝 (1)𝐻 + 𝑓 (0)

𝐻

)
·n =(

−K̄𝑇∇𝑥 𝑝 (0)𝑇 − K̄𝑇∇𝑦𝑝 (1)𝑇 + 𝑓 (0)
𝑇

)
·n on Γ𝑚, (4.34k)(

−Ē𝐻∇𝑥𝑔(0)𝐻 − Ē𝐻∇𝑦𝑔(1)𝐻 + 𝑓 (0)
𝐻

)
·n =(

−Ē𝑇∇𝑥𝑔(0)𝑇
− Ē𝑇∇𝑦𝑔(1)𝑇

+ 𝑓 (0)
𝑇

)
·n on Γ𝑚 . (4.34l)
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For 𝜀2

∇𝑥 ·
(
K̄𝐻∇𝑥 𝑝 (0)𝐻

)
+∇𝑥 ·

(
K̄𝐻∇𝑦𝑝 (1)𝐻

)
+∇𝑦 ·

(
K̄𝐻∇𝑥 𝑝 (1)𝐻

)
+

∇𝑦 ·
(
K̄𝐻∇𝑦𝑝 (2)𝐻

)
= ∇𝑥 · 𝑓 (0)𝐻

+∇𝑦 · 𝑓 (1)𝐻
+ 𝐿̄𝐻𝑣

(
𝑝
(0)
𝐻

−𝑔(0)
𝐻

)
in Ω𝐻 , (4.35a)

∇𝑥 ·
(
K̄𝑇∇𝑥 𝑝 (0)𝑇

)
+∇𝑥 ·

(
K̄𝑇∇𝑦𝑝 (1)𝑇

)
+∇𝑦 ·

(
K̄𝑇∇𝑥 𝑝 (1)𝑇

)
+

∇𝑦 ·
(
K̄𝑇∇𝑦𝑝 (2)𝑇

)
= ∇𝑥 · 𝑓 (0)𝑇

+∇𝑦 · 𝑓 (1)𝑇
+ 𝐿̄𝑇𝑣

(
𝑝
(0)
𝑇

−𝑔(0)
𝑇

)
in Ω𝑇 , (4.35b)

∇𝑥 ·
(
Ē𝐻∇𝑥𝑔(0)𝐻

)
+∇𝑥 ·

(
Ē𝐻∇𝑦𝑔(1)𝐻

)
+∇𝑦 ·

(
Ē𝐻∇𝑥𝑔(1)𝐻

)
+

∇𝑦 ·
(
Ē𝐻∇𝑦𝑔(2)𝐻

)
= ∇𝑥 · 𝑓 (0)𝐻

+∇𝑦 · 𝑓 (1)𝐻
+ 𝐿̄𝐻𝑡

(
𝑔
(0)
𝐻

− 𝑝 (0)
𝐻

)
in Ω𝐻 , (4.35c)

∇𝑥 ·
(
Ē𝑇∇𝑥𝑔(0)𝑇

)
+∇𝑥 ·

(
Ē𝑇∇𝑦𝑔(1)𝑇

)
+∇𝑦 ·

(
Ē𝑇∇𝑥𝑔(1)𝑇

)
+

∇𝑦 ·
(
𝐸𝑇∇𝑦𝑔(2)𝑇

)
= ∇𝑥 · 𝑓 (0)𝑇

+∇𝑦 · 𝑓 (1)𝑇
+ 𝐿̄𝑇𝑡

(
𝑔
(0)
𝑇

− 𝑝 (0)
𝑇

)
in Ω𝑇 , (4.35d)

𝑝
(2)
𝐻

= 𝑝
(2)
𝑇

on Γ𝑚, (4.35e)

𝑔
(2)
𝐻

= 𝑔
(2)
𝑇

on Γ𝑚, (4.35f)(
−K̄𝐻∇𝑥 𝑝 (1)𝐻 − K̄𝐻∇𝑦𝑝 (2)𝐻 + 𝑓 (1)

𝐻

)
·n =(

−K̄𝑇∇𝑥 𝑝 (1)𝑇 − K̄𝑇∇𝑦𝑝 (2)𝑇 + 𝑓 (1)
𝑇

)
·n on Γ𝑚, (4.35g)(

−Ē𝐻∇𝑥𝑔(1)𝐻 − Ē𝐻∇𝑦𝑔(2)𝐻 + 𝑓 (1)
𝐻

)
·n =(

−Ē𝑇∇𝑥𝑔(1)𝑇
− Ē𝑇∇𝑦𝑔(2)𝑇

+ 𝑓 (1)
𝑇

)
·n on Γ𝑚 . (4.35h)

Remark. Equations (4.35a)-(4.35d), and (4.35g)-(4.35h) include order one forces 𝑓 (1)
𝐻,𝑇

, and 𝑓 (1)
𝐻,𝑇

.
This is the most general scenario in case the forces also admit a power series representation,
which could be the case when they are themselves given as a result of multiscale system of PDEs.
However, when the forces are just given functions, it is possible to assume that 𝑓𝐻,𝑡 = 𝑓

(0)
𝐻,𝑡

, and
𝑓𝐻,𝑇 = 𝑓

(0)
𝐻,𝑇

only.

Now, using equations (4.33a)-(4.33h) with boundary conditions (4.33k)-(4.33l) and assuming
that K̄𝐻,𝑇 , and Ē𝐻,𝑇 are symmetric positive definite matrices, implies

𝑝
(0)
𝐻

= 𝑝
(0)
𝐻

(x), (4.36a)

𝑝
(0)
𝑇

= 𝑝
(0)
𝑇

(x), (4.36b)

𝑔
(0)
𝐻

= 𝑔
(0)
𝐻

(x), (4.36c)

𝑔
(0)
𝑇

= 𝑔
(0)
𝑇

(x). (4.36d)
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The boundary conditions (4.33i)-(4.33j) lead to,

𝑝
(0)
𝐻

(x) = 𝑝 (0)
𝑇

(x) = 𝑝 (0) (x), (4.37a)

𝑔
(0)
𝐻

(x) = 𝑔(0)
𝑇

(x) = 𝑔(0) (x). (4.37b)

The periodic cell problem of the first order pressures 𝑝 (1)
𝐻,𝑇

, and 𝑔(1)
𝐻,𝑇

and leading order velocities
u(0)
𝐻,𝑇

, and v(0)
𝐻,𝑇

in mesoscale (4.34a)- (4.34h) and (4.34k)- (4.34l) depend on the leading order of
the inhomogeneous magnetic forces 𝑓 (0)

𝐻,𝑇
, and 𝑓 (0)

𝐻,𝑇
and on their gradients ∇𝑦 · 𝑓 (0)𝐻,𝑇

, and ∇𝑦 · 𝑓 (0)𝐻,𝑇
.

However, if the force is continuous on the interface Γ𝑚, then we no longer have the forces terms
in (4.34a-4.34d).

In order to prove well-posedness [30] of the periodic problems (4.34a)- (4.34d) supplemented
by the interface conditions (4.34i)- (4.34l), we can re-write that system using (4.34e)-(4.34h) as

∇𝑦 ·u(0)
𝐻

= 0 in Ω𝐻 , (4.38a)

∇𝑦 ·u(0)
𝑇

= 0 in Ω𝑇 , (4.38b)

∇𝑦 ·v(0)
𝐻

= 0 in Ω𝐻 , (4.38c)

∇𝑦 ·v(0)
𝐻

= 0 in Ω𝑇 , (4.38d)

u(0)
𝐻

·n = u(0)
𝑇

·n on Γ𝑚, (4.38e)

v(0)
𝐻

·n = v(0)
𝑇

·n on Γ𝑚 . (4.38f)

Now, we integrate (4.38a)-(4.38b) over the periodic cell and we sum them. Then, we apply the
boundary condition (4.38e), to get∫

Ω𝐻

∇𝑦 ·u(0)
𝐻
𝑑𝑦 +

∫
Ω𝑇

∇𝑦 ·u(0)
𝑇
𝑑𝑦 =

∫
𝜕Ω𝐻

u(0)
𝐻

·n 𝑑𝑆 +
∫
𝜕Ω𝑇

u(0)
𝑇

·n 𝑑𝑆 =∫
𝜕Ω𝐻/Γ𝑚

u(0)
𝐻

·n𝜕Ω𝐻/Γ𝑚 𝑑𝑆 +
∫
𝜕Ω𝑇/Γ𝑚

u(0)
𝑇

·n𝜕Ω𝑇/Γ𝑚 𝑑𝑆+∫
Γ𝑚

u(0)
𝐻

·n 𝑑𝑆−
∫
Γ𝑚

u(0)
𝑇

·n 𝑑𝑆 = 0, (4.39)

with
n𝜕Ω𝑇 = −n𝜕Ω𝐻 = −n on Γ𝑚 . (4.40)

Thus proving the compatibility condition.
We have considered in equation (4.39) that the contributions on the periodic boundary 𝜕Ω𝐻/Γ
canceled out due to y-periodicity and used interface condition (4.38e).
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We do the same steps with (4.38c)-(4.38d) using the boundary condition (4.38f), as follows∫
Ω𝐻

∇𝑦 ·v(0)
𝐻
𝑑𝑦 +

∫
Ω𝑇

∇𝑦 ·v(0)
𝑇
𝑑𝑦 =

∫
𝜕Ω𝐻

v(0)
𝐻

·n 𝑑𝑆 +
∫
𝜕Ω𝑇

v(0)
𝑇

·n 𝑑𝑆 =∫
𝜕Ω𝐻/Γ𝑚

v(0)
𝐻

·n𝜕Ω𝐻/Γ𝑚 𝑑𝑆 +
∫
𝜕Ω𝑇/Γ𝑚

v(0)
𝑇

·n𝜕Ω𝑇/Γ𝑚 𝑑𝑆+∫
Γ𝑚

v(0)
𝐻

·n 𝑑𝑆−
∫
Γ𝑚

v(0)
𝑇

·n 𝑑𝑆 = 0. (4.41)

The solutions of (4.34a)-(4.34d) with interface conditions (4.34i)-(4.34l) as ∇𝑥 𝑝 (0) and ∇𝑥𝑔(0)

are y-constant, can be expressed by linearity as

𝑝
(1)
𝐻

= −m𝐻 (x,y) · ∇𝑥 𝑝 (0) + 𝑝1(x,y), (4.42a)

𝑝
(1)
𝑇

= −m𝑇 (x,y) · ∇𝑥 𝑝 (0) + 𝑝2(x,y), (4.42b)

𝑔
(1)
𝐻

= −c𝐻 (x,y), ·∇𝑥𝑔(0) + 𝑔̃1(x,y), (4.42c)

𝑔
(1)
𝑇

= −c𝑇 (x,y), ·∇𝑥𝑔(0) + 𝑔̃2(x,y). (4.42d)

Therefore, (4.42a-4.42d) are the solutions of the cell problems (4.34a)-(4.34d) with boundary
conditions (4.34i)-(4.34l) provided that the auxiliary vectors m𝐻 , m𝑇 , c𝐻 , and c𝑇 solve the
following system of y-periodic PDEs

∇𝑦 ·
(
∇𝑦m𝐻K̄𝑇𝐻

)
= ∇𝑦 · K̄𝑇𝐻 in Ω𝐻 , (4.43a)

∇𝑦 ·
(
∇𝑦m𝑇 K̄𝑇𝑇

)
= ∇𝑦 · K̄𝑇𝑇 in Ω𝑇 , (4.43b)

∇𝑦 ·
(
∇𝑦c𝐻Ē𝑇𝐻

)
= ∇𝑦 · Ē𝑇𝐻 in Ω𝐻 , (4.43c)

∇𝑦 ·
(
∇𝑦c𝑇 Ē𝑇𝑇

)
= ∇𝑦 · Ē𝑇𝑇 in Ω𝑇 , (4.43d)(

K̄𝑇∇𝑦m𝐻 − K̄𝐻∇𝑦m𝑇

)
·n =

(
K̄𝐻 − K̄𝑇

)
·n on Γ𝑚, (4.43e)(

Ē𝑇∇𝑦c𝐻 − Ē𝐻∇𝑦c𝑇
)
·n =

(
Ē𝐻 − Ē𝑇

)
·n on Γ𝑚, (4.43f)

m𝐻 = m𝑇 on Γ𝑚, (4.43g)

c𝐻 = c𝑇 on Γ𝑚, (4.43h)

with periodic boundary conditions on 𝜕Ω.
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The cell problems for the auxiliary scalars 𝑝1, 𝑝2, 𝑔̃1, and 𝑔̃2 can be written as

∇𝑦 ·
(
K̄𝐻∇𝑦𝑝1

)
= ∇𝑦 · 𝑓 (0)𝐻

in Ω𝐻 , (4.44a)

∇𝑦 ·
(
K̄𝑇∇𝑦𝑝2

)
= ∇𝑦 · 𝑓 (0)𝑇

in Ω𝑇 , (4.44b)

∇𝑦 ·
(
Ē𝐻∇𝑦 𝑔̃1

)
= ∇𝑦 · 𝑓 (0)𝐻

in Ω𝐻 , (4.44c)

∇𝑦 ·
(
Ē𝑇∇𝑦 𝑔̃2

)
= ∇𝑦 · 𝑓 (0)𝑇

in Ω𝑇 , (4.44d)(
K̄𝑇∇𝑦𝑝2 − K̄𝐻∇𝑦𝑝1

)
·n =

(
𝑓
(0)
𝑇

− 𝑓 (0)
𝐻

)
·n on Γ𝑚, (4.44e)(

Ē𝑇∇𝑦 𝑔̃2 − Ē𝐻∇𝑦 𝑔̃1
)
·n =

(
𝑓
(0)
𝑇

− 𝑓 (0)
𝐻

)
·n on Γ𝑚, (4.44f)

𝑝1 = 𝑝2 on Γ𝑚, (4.44g)

𝑔̃1 = 𝑔̃2 on Γ𝑚 . (4.44h)

The auxiliary scalars equations (4.44a-4.44h) have solution equal to the solution of auxiliary vec-
tors (4.43a-4.43h) when the external forces are microscopically uniform and continuous across
the interface. As such, the problem (4.44a)-(4.44h) is irrelevant in this case.

Now, in order to derive the final macroscale system, we integrate the equations (4.35a)-(4.35d)
over the periodic cell which implies

∇𝑥 ·
(
⟨K̄𝐻⟩Ω𝐻∇𝑥 𝑝 (0)

)
+∇𝑥 ·

〈
K̄𝐻∇𝑦𝑝 (1)𝐻

〉
Ω𝐻

−∇𝑥 ·
〈
𝑓
(0)
𝐻

〉
Ω𝐻

=

𝐿̄𝐻𝑣

(
𝑝 (0) −𝑔(0)

)
+
〈
∇𝑦

(
K̄𝐻∇𝑥 𝑝 (1)𝐻 + K̄𝐻∇𝑦𝑝 (2)𝐻 + 𝑓 (1)

𝐻

)〉
Ω𝐻

in Ω𝐻 , (4.45a)

∇𝑥 ·
(
⟨K̄𝑇 ⟩Ω𝑇∇𝑥 𝑝 (0)

)
+∇𝑥 ·

〈
K̄𝑇∇𝑦𝑝 (1)𝑇

〉
Ω𝑇

−∇𝑥 ·
〈
𝑓
(0)
𝑇

〉
Ω𝑇

=

𝐿̄𝑇𝑣

(
𝑝 (0) −𝑔(0)

)
+
〈
∇𝑦

(
K̄𝑇∇𝑥 𝑝 (1)𝑇 + K̄𝑇∇𝑦𝑝 (2)𝑇 + 𝑓 (1)

𝑇

)〉
Ω𝑇

in Ω𝑇 , (4.45b)

∇𝑥 ·
(
⟨Ē𝐻⟩Ω𝐻∇𝑥𝑔(0)

)
+∇𝑥 ·

〈
Ē𝐻∇𝑦𝑔(1)𝐻

〉
Ω𝐻

−∇𝑥 ·
〈
𝑓
(0)
𝐻

〉
Ω𝐻

=

𝐿̄𝐻𝑡

(
𝑔(0) − 𝑝 (0)

)
+
〈
∇𝑦

(
Ē𝐻∇𝑥𝑔(1)𝐻 + Ē𝐻∇𝑦𝑔(2)𝐻 + 𝑓 (1)

𝐻

)〉
Ω𝐻

in Ω𝐻 , (4.45c)

∇𝑥 ·
(
⟨Ē𝑇 ⟩Ω𝑇∇𝑥𝑔(0)

)
+∇𝑥 ·

〈
Ē𝑇∇𝑦𝑔(1)𝑇

〉
Ω𝑇

−∇𝑥 ·
〈
𝑓
(0)
𝑇

〉
Ω𝑇

=

𝐿̄𝑇𝑡

(
𝑔(0) −𝑔(0)

)
+
〈
∇𝑦

(
Ē𝑇∇𝑥𝑔(1)𝑇

+ Ē𝑇∇𝑦𝑔(2)𝑇
+ 𝑓 (1)

𝑇

)〉
Ω𝑇

in Ω𝑇 . (4.45d)

Summing equations (4.45a) with (4.45b) and equations (4.45c) with (4.45d) together, and make
the use of the interface conditions (4.35g-4.35h) as well as applying the divergence theorem with
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respect to y lead to

∇𝑥 ·
( (
⟨K̄𝐻⟩Ω𝐻 + ⟨K̄𝑇 ⟩Ω𝑇

)
∇𝑥 𝑝 (0)

)
+∇𝑥 ·

〈
K̄𝐻∇𝑦𝑝 (1)𝐻

〉
Ω𝐻

+∇𝑥 ·
〈
K̄𝑇∇𝑦𝑝 (1)𝑇

〉
Ω𝑇

= ∇𝑥 · ⟨ 𝑓 (0)𝐻
⟩Ω𝐻 +∇𝑥 · ⟨ 𝑓

(0)
𝑇

⟩Ω𝑇 +
(
𝐿̄𝐻𝑣 + 𝐿̄𝑇𝑣

) (
𝑝 (0) −𝑔(0)

)
, (4.46a)

∇𝑥 ·
( (
⟨Ē𝐻⟩Ω𝐻 + ⟨Ē𝑇 ⟩Ω𝑇

)
∇𝑥𝑔(0)

)
+∇𝑥 ·

〈
Ē𝐻∇𝑦𝑔(1)𝐻

〉
Ω𝐻

+∇𝑥 ·
〈
Ē𝑇∇𝑦𝑔(1)𝑇

〉
Ω𝑇

= ∇𝑥 · ⟨ 𝑓 (0)𝐻
⟩Ω𝐻 +∇𝑥 · ⟨ 𝑓

(0)
𝑇

⟩Ω𝑇 +
(
𝐿̄𝐻𝑡 + 𝐿̄𝑇𝑡

) (
𝑔(0) − 𝑝 (0)

)
. (4.46b)

Substituting (4.42a)- (4.42d) in the system, yields

∇𝑥 ·
((
⟨K̄𝐻⟩Ω𝐻 + ⟨K̄𝑇 ⟩Ω𝑇 −

〈
K̄𝐻 (∇𝑦m𝐻)𝑇

〉
Ω𝐻

−
〈
K̄𝑇 (∇𝑦m𝑇 )𝑇

〉
Ω𝑇

)
∇𝑥 𝑝 (0)

)
=

∇𝑥 · ⟨ 𝑓 (0)𝐻
⟩Ω𝐻 +∇𝑥 · ⟨ 𝑓

(0)
𝑇

⟩Ω𝑇 −∇𝑥 ·
〈
K̄𝐻∇𝑦𝑝1

〉
Ω𝐻

−∇𝑥 ·
〈
K̄𝑇∇𝑦𝑝2

〉
Ω𝑇

+(
𝐿̄𝐻𝑣 + 𝐿̄𝑇𝑣

) (
𝑝 (0) −𝑔(0)

)
, (4.47a)

∇𝑥 ·
((
⟨Ē𝐻⟩Ω𝐻 + ⟨Ē𝑇 ⟩Ω𝑇 −

〈
Ē𝐻 (∇𝑦c𝐻)𝑇

〉
Ω𝐻

−
〈
K̄𝑇 (∇𝑦c𝑇 )𝑇

〉
Ω𝑇

)
∇𝑥𝑔(0)

)
=

∇𝑥 · ⟨ 𝑓 (0)𝐻
⟩Ω𝐻 +∇𝑥 · ⟨ 𝑓

(0)
𝑇

⟩Ω𝑇 −∇𝑥 ·
〈
Ē𝐻∇𝑦 𝑔̃1

〉
Ω𝐻

−∇𝑥 ·
〈
Ē𝑇∇𝑦 𝑔̃2

〉
Ω𝑇

+
(
𝐿̄𝐻𝑡 + 𝐿̄𝑇𝑡

) (
𝑔(0) − 𝑝 (0)

)
. (4.47b)

These equations can be written as

∇𝑥 ·
(
D̄∇𝑥 𝑝 (0)

)
= 𝐹̄1 +

(
𝐿̄𝐻𝑣 + 𝐿̄𝑇𝑣

) (
𝑝 (0) −𝑔(0)

)
, (4.48a)

∇𝑥 ·
(
Ḡ∇𝑥𝑔(0)

)
= 𝐹̄2 +

(
𝐿̄𝐻𝑡 + 𝐿̄𝑇𝑡

) (
𝑔(0) − 𝑝 (0)

)
, (4.48b)

where

D̄ = ⟨K̄𝐻⟩Ω𝐻 + ⟨K̄𝑇 ⟩Ω𝑇 −
〈
K̄𝐻 (∇𝑦m𝐻)𝑇

〉
Ω𝐻

−
〈
K̄𝑇 (∇𝑦m𝑇 )𝑇

〉
Ω𝑇
, (4.49a)

Ḡ = ⟨Ē𝐻⟩Ω𝐻 + ⟨Ē𝑇 ⟩Ω𝑇 −
〈
Ē𝐻 (∇𝑦c𝐻)𝑇

〉
Ω𝐻

−
〈
Ē𝑇 (∇𝑦c𝑇 )𝑇

〉
Ω𝑇
, (4.49b)

𝐹̄1 = ∇𝑥 · ⟨ 𝑓 (0)𝐻
⟩Ω𝐻 +∇𝑥 · ⟨ 𝑓

(0)
𝑇

⟩Ω𝑇 −∇𝑥 ·
〈
K̄𝐻∇𝑦𝑝1

〉
Ω𝐻

−∇𝑥 ·
〈
K̄𝑇∇𝑦𝑝2

〉
Ω𝑇
, (4.49c)

𝐹̄2 = ∇𝑥 · ⟨ 𝑓 (0)𝐻
⟩Ω𝐻 +∇𝑥 · ⟨ 𝑓

(0)
𝑇

⟩Ω𝑇 −∇𝑥 ·
〈
Ē𝐻∇𝑦 𝑔̃1

〉
Ω𝐻

−∇𝑥 ·
〈
Ē𝑇∇𝑦 𝑔̃2

〉
Ω𝑇
. (4.49d)

Equations (4.48a) and (4.48b) are the macroscale differential equations in terms of the leading
order pressures. We have started with four differential equations at mesoscale representing the
fluid flow in the vessels and intestitial compartments for the tumour and healthy domains. After
having applied the asymptotic homogenisation technique, we obtain two differential equations
at macroscale which encode the role of both regions and take the form of a double Darcy’s fluid
transport model with mass exchange between vessels and interstitial compartment mediated by
an average vessels’ permeability and driven by appropriate volume loads. On the one hand,
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it is no longer necessary to resolve the geometrical difference between cancerous and healthy
region to solve the macroscale model. On the other hand, the influence of the mesoscale
where such differences are relevant, is encoded in the effective hydraulic conductivity tensors
(4.49a)-(4.49d) which can be determined using (4.43a-4.43h), and (4.44a-4.44h). In particular,
the role of geometric configuration and relative volume fraction of the healthy and tumour
domains can be investigated by solely focusing on a single periodic cell rather than on the whole
domain. Moreover, herein the magnetic forces 𝑓𝐻,𝑇 , and 𝑓𝐻,𝑇 are incorporating the mesoscale
and macroscale contributions. If they are defined with K̄𝐻,𝑇 , and Ē𝐻,𝑇 in mesoscale only which
means that they are y-dependent only, then 𝐹̄1 and 𝐹̄2 will reduce to zero. In this case, the final
macroscale differential equations for the fluid flow using homogeneous body forces are written
as,

∇𝑥 ·
(
D̄∇𝑥 𝑝 (0)

)
=

(
𝐿̄𝐻𝑣 + 𝐿̄𝑇𝑣

) (
𝑝 (0) −𝑔(0)

)
, (4.50a)

∇𝑥 ·
(
Ḡ∇𝑥𝑔(0)

)
=

(
𝐿̄𝐻𝑡 + 𝐿̄𝑇𝑡

) (
𝑔(0) − 𝑝 (0)

)
. (4.50b)

To find the leading order velocities, we integrate (4.34e)-(4.34h) and substitute the ansatz
for the order one pressures (4.42a)-(4.42d). Then we take the sum of (4.34e) with (4.34f), and
(4.34g) with (4.34h) to obtain〈

u(0)
𝐻

〉
Ω𝐻

+
〈
u(0)
𝑇

〉
Ω𝑇

= −⟨K̄𝐻⟩Ω𝐻∇𝑥 𝑝 (0) +
〈
K̄𝐻

( (
∇𝑦m𝐻

)
∇𝑥 𝑝 (0)

)〉
Ω𝐻

−〈
K̄𝐻

(
∇𝑦𝑝1

)〉
Ω𝐻

+ ⟨ 𝑓 (0)
𝐻

⟩Ω𝐻 − ⟨K̄𝑇 ⟩Ω𝑇∇𝑥 𝑝 (0) +
〈
K̄𝑇

( (
∇𝑦m𝑇

)
∇𝑥 𝑝 (0)

)〉
Ω𝑇

−〈
K̄𝑇

(
∇𝑦𝑝2

)〉
Ω𝑇

+ ⟨ 𝑓 (0)
𝑇

⟩Ω𝑇 , (4.51a)〈
v(0)
𝐻

〉
Ω𝐻

+
〈
v(0)
𝑇

〉
Ω𝑇

= −⟨E𝐻⟩Ω𝐻∇𝑥𝑔(0) +
〈
Ē𝐻

( (
∇𝑦c𝐻

)
∇𝑥𝑔(0)

)〉
Ω𝐻

−〈
Ē𝐻

(
∇𝑦 𝑔̃1

)〉
Ω𝐻

+ ⟨ 𝑓 (0)
𝐻

⟩Ω𝐻 − ⟨Ē𝑇 ⟩Ω𝑇∇𝑥𝑔(0) +
〈
Ē𝑇

( (
∇𝑦c𝑇

)
∇𝑥𝑔(0)

)〉
Ω𝑇

−〈
Ē𝑇

(
∇𝑦 𝑔̃2

)〉
Ω𝑇

+ ⟨ 𝑓 (0)
𝑇

⟩Ω𝑇 . (4.51b)

These imply 〈
u(0)
𝐻

〉
Ω𝐻

+
〈
u(0)
𝑇

〉
Ω𝑇

= u𝐴 = −D̄∇𝑥 𝑝 (0) + 𝐹̃𝑝, (4.52a)〈
v(0)
𝐻

〉
Ω𝐻

+
〈
v(0)
𝑇

〉
Ω𝑇

= v𝐴 = −Ḡ∇𝑥𝑔(0) + 𝐹̃𝑔, (4.52b)

where

𝐹̃𝑝 = ⟨ 𝑓 (0)
𝐻

⟩Ω𝐻 + ⟨ 𝑓
(0)
𝑇

⟩Ω𝑇 −
〈
K̄𝐻

(
∇𝑦𝑝1

)〉
Ω𝐻

−
〈
K̄𝑇

(
∇𝑦𝑝2

)〉
Ω𝑇
, (4.53a)

𝐹̃𝑔 = ⟨ 𝑓 (0)
𝐻

⟩Ω𝐻 + ⟨ 𝑓
(0)
𝑇

⟩Ω𝑇 −
〈
Ē𝐻

(
∇𝑦 𝑔̃1

)〉
Ω𝐻

−
〈
Ē𝑇

(
∇𝑦 𝑔̃2

)〉
Ω𝑇
. (4.53b)
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These equations show that the magnetic forces at macroscale depend on the magnetic forces and
the hydraulic conductivity at mesoscale.
By taking the gradient of (4.52a), and (4.52b) and substituting (4.48a)-(4.48b), and (4.49c)-
(4.49d), implies

∇𝑥 · 𝐹̃𝑝 = 𝐹̄1, (4.54a)

∇𝑥 · 𝐹̃𝑔 = 𝐹̄2, (4.54b)

∇𝑥 ·u𝐴 = −
(
𝐿̄𝐻𝑣 + 𝐿̄𝑇𝑣

) (
𝑝 (0) −𝑔(0)

)
, (4.54c)

∇𝑥 ·v𝐴 = −
(
𝐿̄𝐻𝑡 + 𝐿̄𝑇𝑡

) (
𝑔(0) − 𝑝 (0)

)
. (4.54d)

This shows that equations (4.48a), and (4.48b) obey Darcy’s law at macroscale. Moreover,
whenever the forces 𝑓 (0)

𝐻,𝑇
, and 𝑓

(0)
𝐻,𝑇

are defined at mesoscale only or macroscale only, then 𝐹̃𝑝,
and 𝐹̃𝑔 will not reduce to zero so the average leading order velocities (4.52a) and (4.52b) will of
course affected also by homogeneous and in particular constant volume forces.
In the next sections, we aim to find the solution of the macroscale model in the simplified case
of a uniform applied force.

4.6 The solution of the mesoscale cell problems

In order to solve the final PDE system at the macroscale with homogeneous magnetic forces
(4.50a-4.50b), we need to find the effective tensors D̄, and Ḡ by solving the cell problems
(4.43a)-(4.43d), with boundary conditions (4.43e)-(4.43h). In the case of uniform magnetic
force, the gradient of the homogeneous forces in the right hand side of the auxiliary scalars cell
problems (4.44a-4.44h) approach zero. Therefore, the auxiliary scalars 𝑝1, 𝑝2, 𝑔̃1, and 𝑔̃2 are
defined as

∇𝑦 ·
(
K̄𝐻∇𝑦𝑝1

)
= 0 in Ω𝐻 , (4.55a)

∇𝑦 ·
(
K̄𝑇∇𝑦𝑝2

)
= 0 in Ω𝑇 , (4.55b)

∇𝑦 ·
(
Ē𝐻∇𝑦 𝑔̃1

)
= 0 in Ω𝐻 , (4.55c)

∇𝑦 ·
(
Ē𝑇∇𝑦 𝑔̃2

)
= 0 in Ω𝑇 , (4.55d)(

K̄𝑇∇𝑦𝑝2 − K̄𝐻∇𝑦𝑝1
)
·n =

(
(K̄𝐻 − K̄𝑇 ) 𝑓

)
·n on Γ𝑚, (4.55e)(

Ē𝑇∇𝑦 𝑔̃2 − Ē𝐻∇𝑦 𝑔̃1
)
·n =

(
(Ē𝐻 − Ē𝑇 ) 𝑓

)
·n on Γ𝑚, (4.55f)

𝑝1 = 𝑝2 on Γ𝑚, (4.55g)

𝑔̃1 = 𝑔̃2 on Γ𝑚 . (4.55h)
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Table 4.1: The value of the parameters.

Symbol Parameter Value Unite Reference

K𝐻 The hydraulic conductivity of the healthy vessel 2.2×10−4 m2/Pas [103]

K𝑇 The hydraulic conductivity of the tumour vessel 4.8×10−6 m2/Pas [103]

𝜅𝐻 The hydraulic conductivity of the healthy tissue 6.4×10−12 m2/Pas [152]

𝜅𝑇 The hydraulic conductivity of the tumour tissue 3.1×10−12 m2/Pas [152]

𝐿𝐻 The hydraulic vessels’ permeability of healthy region 2.7×10−12 m/Pas [123]

𝐿𝑇 The hydraulic vessels’ permeability of tumour region 2.1×10−11 m/Pas [123]

𝜇 The blood viscosity 4×10−4 Pa s [3]

|Ω𝐻𝑣 | Domain of healthy vessels 8.1×10−2 [103]

|Ω𝐻𝑡 | Domain of tumour vessels 6.5×10−2 [103]

|Ω𝐻𝑡 | Domain of healthy interstitium 6.165 [103]

|Ω𝑇𝑡 | Domain of tumour interstitium 6.165 [103]

𝑆𝐻 The healthy vessels’ surface 2.30 [103]

𝑆𝑇 The tumour vessels’ surface 3.25 [103]

Here, we have assumed that the applied forces are uniform and equal in the whole tissue as such
𝑓ℎ = 𝑓𝑡 = 𝑓 . The system of equations (4.55a-4.55h) can be solve by defining the scalars 𝑝1, 𝑝2,
𝑔̃1, and 𝑔̃2 in term of the vector function 𝑓 as

𝑝1 = r1 · 𝑓 , (4.56a)

𝑝2 = r2 · 𝑓 , (4.56b)

𝑔̃1 = s1 · 𝑓 , (4.56c)

𝑔̃2 = s2 · 𝑓 . (4.56d)
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Substituting equations (4.56a)-(4.56d) in the system of equations (4.55a-4.55h) leads to the
system for m𝐻 , m𝑇 , c𝐻 , and c𝑇 equations which is given by

∇𝑦 ·
(
∇𝑦m𝐻K̄𝑇𝐻

)
= 0 in Ω𝐻 , (4.57a)

∇𝑦 ·
(
∇𝑦m𝑇 K̄𝑇𝑇

)
= 0 in Ω𝑇 , (4.57b)

∇𝑦 ·
(
∇𝑦c𝐻Ē𝑇𝐻

)
= 0 in Ω𝐻 , (4.57c)

∇𝑦 ·
(
∇𝑦c𝑇 Ē𝑇𝑇

)
= 0 in Ω𝑇 , (4.57d)(

K̄𝑇∇𝑦m𝑇 − K̄𝐻∇𝑦m𝐻

)
·n =

(
K̄𝐻 − K̄𝑇

)
·n on Γ𝑚, (4.57e)(

Ē𝑇∇𝑦c𝑇 − Ē𝐻∇𝑦c𝐻
)
·n =

(
Ē𝐻 − Ē𝑇

)
·n on Γ𝑚, (4.57f)

m𝐻 = m𝑇 on Γ𝑚, (4.57g)

c𝐻 = c𝑇 on Γ𝑚, (4.57h)

supplemented by periodic conditions on the boundary of the cell 𝜕Ω. As such, we can identify the
vectors r1, r2, s1, and s2 with m𝐻 , m𝑇 , c𝐻 , and c𝑇 , respectively. Also, the hydraulic conductivities
K̄𝐻 , K̄𝑇 , Ē𝐻 , Ē𝐻 are assumed to be constants and defined using Table 4.1, and with E𝐻 , and E𝑇
are approximately 1 as found by Penta and Ambrosi [103].
The cell problems (4.57a)-(4.57d) with boundary conditions (4.57e)-(4.57h) can be written in
component-wise as:

𝜕

𝜕𝑦𝑖

(
𝐾̄𝐻𝑖𝑙

𝜕𝑚𝐻
𝑗

𝜕𝑦𝑙

)
= 0 in Ω𝐻 , (4.58a)

𝜕

𝜕𝑦𝑖

(
𝐾̄𝑇𝑖𝑙

𝜕𝑚𝑇
𝑗

𝜕𝑦𝑙

)
= 0 in Ω𝑇 , (4.58b)

𝜕

𝜕𝑦𝑖

(
𝐸̄𝐻𝑖𝑙

𝜕𝑐𝐻
𝑗

𝜕𝑦𝑙

)
= 0 in Ω𝐻 , (4.58c)

𝜕

𝜕𝑦𝑖

(
𝐸̄𝑇𝑖𝑙

𝜕𝑐𝑇
𝑗

𝜕𝑦𝑙

)
= 0 in Ω𝑇 , (4.58d)(

𝐾̄𝑇𝑖𝑙

𝜕𝑚𝑇
𝑗

𝜕𝑦𝑙
− 𝐾̄𝐻𝑖𝑙

𝜕𝑚𝐻
𝑗

𝜕𝑦𝑙

)
𝑛𝑖 =

(
𝐾̄𝐻𝑖 𝑗 − 𝐾̄𝑇𝑖 𝑗

)
𝑛𝑖 = (𝐾̄𝐻 − 𝐾̄𝑇 )𝑛 𝑗 on Γ𝑚, (4.58e)(

𝐸̄𝑇𝑖𝑙

𝜕𝑐𝑇
𝑗

𝜕𝑦 𝑗
− 𝐸̄𝐻𝑖𝑙

𝜕𝑐𝐻
𝑗

𝜕𝑦 𝑗

)
𝑛𝑖 =

(
𝐸̄𝐻𝑖 𝑗 − 𝐸̄𝑇𝑖 𝑗

)
𝑛𝑖 = (𝐸̄𝐻 − 𝐸̄𝑇 )𝑛 𝑗 on Γ𝑚, (4.58f)

𝑚𝐻
𝑗 = 𝑚𝑇𝑗 on Γ𝑚, (4.58g)

𝑐𝐻𝑗 = 𝑐𝑇𝑗 on Γ𝑚, (4.58h)
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(a) (b)

Figure 4.2: The solution of the auxiliary vectors at the mesoscale. (a) The solution of the
auxiliary vectors m𝐻 , and m𝑇 for 𝑛1 component, (b) The solution of the auxiliary vectors c𝐻 , and
c𝑇 for 𝑛1 component. In all cases, the radius of the tumour is 0.5. The values of the parameters
that are used to plot the figures are taken from Table 4.1.

where 𝑖, 𝑗 , 𝑙 = 1..3 are the size of dimensional space.
In Equations (4.58e-4.58f), the hydraulic tensors 𝐾̄𝐻

𝑖 𝑗
, 𝐾̄𝑇

𝑖 𝑗
, 𝐸̄𝐻

𝑖 𝑗
, and 𝐸̄𝑇

𝑖 𝑗
are assumed to be

isotropic. To solve the system (4.58a-4.58h), we consider the healthy cell as a cube with
cylindrical fiber in the middle that represents the tumour region as done by Franks et al. [49]. The
component of the normal vector in the z-direction (which is the one aligned with the cylindrical
fiber) is zero, therefore we can solve the cell problems in the plane which is orthogonal to the fiber
direction. The differential problem (4.58a-4.58h) translates into two scalar differential problems
for 𝑗 = 1 and 𝑗 = 2. In the simplest possible case, the 2D can be represented by a circle with
radius 0 < 𝑟 < 1 (tumour region) inside a square with length equal one (healthy region). The
boundary of the circle is the interface between the two regions and it is represented by Γ𝑚.
The solutions of the system (4.58a-4.58d), with boundary conditions (4.58e-4.58h) and periodic
conditions are given in Figure 4.2.

We can have variation of the vertical and horizontal colors depends on the normal vector
component which is either 𝑛1 or 𝑛2 in the two dimensions.

4.7 The homogenised solution at the macroscale

Now, we solve the macroscale differential equations (4.50a-4.50b), and (4.52a-4.52b) to find the
vessels’ and interstitial pressures and velocities with uniform magnetic force. The homogeneous
magnetic force does not affect the fluid pressures in both of the compartments as mentioned in
Section 4.5.1, but it has an impact on the fluid velocity. The definition of the forces 𝐹̃𝑝, and 𝐹̃𝑔
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in equations (4.52a-4.52b) can be written as

𝐹̃𝑝 = −⟨K̄𝐻 𝑓 (0)⟩Ω𝐻 − ⟨K̄𝑇 𝑓 (0)⟩Ω𝑇 − ⟨K̄𝐻 (∇m𝐻)𝑇 𝑓 (0)⟩Ω𝐻−
⟨K̄𝑇 (∇m𝑇 )𝑇 𝑓 (0)⟩Ω𝑇 , (4.59a)

𝐹̃𝑔 = −⟨Ē𝐻 𝑓 (0)⟩Ω𝐻 − ⟨Ē𝑇 𝑓 (0)⟩Ω𝑇 − ⟨Ē𝐻 (∇c𝐻)𝑇 𝑓 (0)⟩Ω𝐻−
⟨Ē𝑇 (∇c𝑇 )𝑇 𝑓 (0)⟩Ω𝑇 . (4.59b)

Therefore, the forces 𝐹̃𝑝, and 𝐹̃𝑔 are defined as

𝐹̃𝑝 = −D̄ 𝑓 (0) , (4.60a)

𝐹̃𝑔 = −Ḡ 𝑓 (0) . (4.60b)

The differential equations (4.50a-4.50b), (4.52a-4.52b), and (4.60a-4.60b) rely on the values
of the hydraulic tensors D̄, and Ḡ which can be found using the solution of the cell problems
(4.57a-4.57h) as found in the previous section and equations (4.49a)-(4.49b). Therefore, the
hydraulic conductivity tensors D̄, and Ḡ are computed as

D̄ =
1
|Ω|

∫
Ω𝐻

K̄𝐻𝑑y+ 1
|Ω|

∫
Ω𝑇

K̄𝑇𝑑y− 1
|Ω|

∫
Ω𝐻

K̄𝐻 (∇𝑦m𝐻)𝑇𝑑y−

1
|Ω|

∫
Ω𝑇

K̄𝐻 (∇𝑦m𝑇 )𝑇𝑑y, (4.61a)

Ḡ =
1
|Ω|

∫
Ω𝐻

Ē𝐻𝑑y+ 1
|Ω|

∫
Ω𝑇

Ē𝑇𝑑y− 1
|Ω|

∫
Ω𝐻

Ē𝐻 (∇𝑦c𝐻)𝑇𝑑y−

1
|Ω|

∫
Ω𝑇

K̄𝐻 (∇𝑦c𝑇 )𝑇𝑑y. (4.61b)

Since K̄𝐻 , K̄𝑇 , Ē𝐻 , and Ē𝑇 and constants, then equations (4.61a) and (4.61b) read

D̄ = K̄𝐻 ( |Ω𝐻 |) + K̄𝑇 ( |Ω𝑇 |) − K̄𝐻
∫
Ω𝐻

∇𝑦m𝐻 𝑑y− K̄𝑇
∫
Ω𝑇

∇𝑦m𝑇 𝑑y, (4.62a)

Ḡ = Ē𝐻 ( |Ω𝐻 |) + Ē𝑇 ( |Ω𝑇 |) − Ē𝐻
∫
Ω𝐻

∇𝑦c𝐻 𝑑y− Ē𝑇
∫
Ω𝑇

∇𝑦c𝑇 𝑑y. (4.62b)

Here, |Ω| = |Ω𝐻 | + |Ω𝑇 | = 1.
The integral of the vectors’ gradients are computed using the solution of the cell problems
(4.57a-4.57h). Also, changing the radius of the tumour leads to different values of auxiliary
vectors which consequently changes the value of the hydraulic conductivity tensors D̄ and Ḡ and
that shows the impact of mesoscale on the macroscale.
Table 4.2 displays the values of D̄, and Ḡ in three axis. We can notice that the values of the
hydraulic tensors in the 𝑥- and 𝑦-axis are similar, where the 𝑧-axis has different values. This is
due to the cell problems at mesoscale which are computed in two dimensions only. Therefore,
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the values of hydraulic tensors in z-axis with different tumour area are found using

D̄𝑧−𝑎𝑥𝑖𝑠 = ⟨K̄𝐻⟩Ω𝐻 + ⟨K̄𝑇 ⟩Ω𝑇 , (4.63a)

Ḡ𝑧−𝑎𝑥𝑖𝑠 = ⟨Ē𝐻⟩Ω𝐻 + ⟨Ē𝑇 ⟩Ω𝑇 . (4.63b)

Thereafter, the values of the hydraulic tensors D̄, and Ḡ are injected in the differential equations
(4.50a-4.50b).

Table 4.2: The components of the vessels and interstitial hydraulic conductivities D̄, and Ḡ for
the whole tissue which combines the tumour and healthy tissues along x, y, and z.

Area of the tumour D̄ in x and y D̄ in z Ḡ in x and y Ḡ in z

0.5 1.49×10−4 1.124×10−4 1.80×10−6 1.90×10−6

0.4 1.704×10−4 1.34×10−4 1.94×10−6 2.03×10−6

0.3 1.89×10−4 1.55×10−4 2.078×10−6 2.164×10−6

0.2 2.04×10−4 1.77×10−4 2.23×10−6 2.30×10−6

0.1 2.15×10−4 1.98×10−4 2.39×10−6 2.43×10−6

Now to solve the differential equations (4.50a-4.50b), we represented the whole tissue at
macroscale as a sphere with a spherical necrotic core (𝑟 = 0.05) at the center of the whole region.
This means that the macroscale domain equations are solved for a normalised radius 𝑟 between
0.05 and 1. The differential equations (4.50a-4.50b) are supplemented by zero flux at the center,
and with arterial pressure equal to 15.6 mmHg [123, 131] and zero interstitial pressure on the
boundary of the tumour. Furthermore, we assume that the uniform magnetic force is applied
in the 𝑧-direction of the whole tissue and its magnitude is proportional to the total amount of
magnetic nanoparticles and their susceptibility. Therefore, the magnetic force is computed using
Hoshino et al. [64]

𝐹𝑚𝑎𝑔 = 𝑁
4𝜋𝑅3

𝑓

3
𝛿𝜒 𝑓

2𝜇0
∇𝐻2

0 , (4.64)

where 𝑅 𝑓 is the radius of the magnetic nanoparticles, 𝛿𝜒 𝑓 = 5 (SI) is the susceptibility of magnetic
nanoparticles, 𝐻0 is the magnetic field intensity and the value of ∇𝐻2

0 is within the range (10-70)
T2/m, 𝑁 is the number of magnetic nanoparticles, and the magnetic permeability 𝜇0 = 4𝜋×10−7

T·m·A−1.
The force in the present work is the magnetic force per unit cell volume which is equal to
1.99×107 −1.39×108 Pa/m within the range of ∇𝐻2

0 using equation (4.64).
We use the finite elements software COMSOL Multiphysics to solve the problem (4.50a-4.50b)
with the conditions that are mentioned before. Using the pressures’ solution, we compute the
velocities using equations (4.52a-4.52b), and (4.60a-4.60b). Figure 4.3 shows the pressures and
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fluid flow direction (arrow lines) of the vessel and interstitial compartments, and the difference
of the pressures at the macroscale with different tumour sizes.

Jain and Baxter [69] investigated the interstitial fluid pressure and the velocity of the spherical
tumour embedded in healthy tissue using Darcy’s equation and the results were confirmed
experimentally by Boucher et al. [15]. Jain and Baxter [69] declared that the interstitial fluid
pressure of the tumour (IFP) is higher in the center when comparing it with the periphery of the
tumour. High IFP of the tumour leads to the non uniform extravasation of the fluid between the
tumour and the vessels. Also, the interstitial pressure on the tumour periphery is approximately
equal to the healthy tissue and this cause a reduced fluid convection within the tumour. At the
same time, the fluid is moving from the center to the periphery, thus transporting tumour growth
factors which can lead to metastasis. For cancer treatment, we need the IFP to decline in order
to improve the fluid convection within the tumour. Jain and Baxter [69] showed that decreasing
tumour radius or increasing the tissue hydraulic conductivity, yield to better convection of the
fluid. However, increasing the vessels’ permeability damps the pressure gradient on the vessels’
wall and that will decrease the convection within the tumour. The permeability 𝐿̄𝑇 can be
increased by increasing the vessels’ surface 𝑆 or increasing the radius of the vessels pores.

In the present work, we have both the tumour and the healthy tissues homogenized in one
spherical region in the macroscale with a small necrotic core. However, the influence of each
region is encoded in different parameters like the vessels’ permeability 𝐿̄𝐻 and 𝐿̄𝑇 , the magnetic
forces 𝐹̃𝑝 and 𝐹̃𝑔, and the hydraulic conductivities D̄ and Ḡ which are determined using the
solutions of the differential equations at the mesoscale. The results of the interstitial fluid
pressure and velocity shown in Figure 4.3 are qualitatively in agreement with the results obtained
by Jain and Baxter [69]. Moreover, Jain and Baxter [69] addressed the exchange of the fluid
between the interstitial compartment and the vessels, however they did not study the fluid dynamic
in the microvascular region. Herein, we investigate the microvascular fluid flow, and Figure 4.3
clearly shows that the vascular pressure 𝑝 is higher at the boundary and the convection of the
blood is directed inward. We obtain higher value of vessels hydraulic conductivity D̄ with lower
size of tumour and higher pressure in the center. These results are in agreement with Penta and
Ambrosi [103] who discussed about the microscopic pressure and velocity with different vessels’
tortuosity in the tumour region only. Furthermore, the difference of the pressures between the
two compartments, see Figure 4.4, is higher at the boundary than in the center, because in our
model the vessels hydraulic conductivity D̄ is bigger than the interstitial hydraulic conductivity
Ḡ. Moreover, the difference of the pressures (𝑝 − 𝑔) decrease by increasing the tumour radius
which impairs the fluid flow.

The homogeneous magnetic force that is applied in the 𝑧-direction of the domain changes
the fluid flow in both compartments, specially when the magnetic field intensity is ∇𝐻2

0 = 70
T2/m, see Figure 4.5. These results show the impact of the magnetic force on the orientation of
the fluid flow which can be used to control nanoparticles delivery to the tumour by controlling
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its direction. Therefore, this can help to avoid transporting the magnetic nanoparticles to the
healthy tissue. Moreover, the impact of the magnetic field on fluid flow is more pronounced for
tumours charecterized by smaller radius.

4.8 Concluding remarks

In this chapter we derive a new system of homogenized differential equations which expresses
the fluid flow of the tumour that interacts with surrounding healthy tissue under the influence of
a magnetic force. The model starts with four Darcy’s equations at mesoscale that represent the
fluid flow in the vessels and interstitial compartments of the tumour and healthy regions. The
differential equations at mesoscale are derived from the final macroscale differential equations
taken from Al Sariri and Penta [3], and the fine scale of Penta et al. [106]. The final macroscale
differential equations of the present model are given by two Darcy’s law only, which combine
the two regions together and address the mass exchange between them. As such, we have one
differential equation describing the fluid flow in the vessels and the other one for the interstitial
compartment. The influence of each region can be observed in the vessels’ permeability, magnetic
forces, and the hydraulic conductivity tensors that are defined in equations (4.49a-4.49d) and can
be determined by solving the cell problems at the mesoscale. A divergence of nonhomogeneous
magnetic forces affects the differential equations for the pressures. The homogenization steps are
discussed in Section 4.5, and the final macroscale differential equations are defined by (4.48a-
4.48b). In addition, the formulas of the new nonhomogeneous magnetic forces at the macroscale
depend not only on the integral of the forces, but also on the mesoscale solution as in equations
(4.49c-4.49d), and (4.53a-4.53b).
For the simplest case, we solve the final macroscale systems by assuming that a uniform magnetic
force is applied in the whole tissue. The constant magnetic force affects the fluid velocities, but
not the fluid pressures. The results of the interstitial pressure and velocity are in agreement
with the findings reported by Jain and Baxter [69]. However, the present work presents the
computations for the tumour and healthy regions which are homogenized in one tissue, while
in Jain and Baxter [69] the regions are separated from each other. The magnetic force changes
substantially the fluid flow in the tissue compartments.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: The pressures maps of the vessels’ and interstitial compartments and the the fluid
flow orientation with different tumour size. Figures (a), (c), and (e) are the fluid flow of the
vessels in macroscale with tumors area 0.1, 0.3, and 0.5, respectively. Figures (b), (d), and (f)
are the fluid flow of the interstitial compartments in macroscale with tumour area 0.1, 0.3, and
0.5, respectively. The magnetic field intensity is 10 T2/m, other parameters are taken from Table
4.1 and Table 4.2.
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(a) (b)

(c)

Figure 4.4: The pressure difference of the vessels and interstitial compartments with different
tumour radius (a) 0.1 (b) 0.3 (c) 0.5. The values of the parameters are specified in Table 4.1 and
Table 4.2.
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(a) (b)

(c) (d)

Figure 4.5: The pressures maps with magnetic force applying on the z-direction. (a) The pressure
maps for the vessels for tumour with size 0.1, (b) The pressure maps for the vessels for tumour
with size 0.5, and (c) The pressure maps for the interstitial region for tumour with size 0.1, (d)
The pressure maps for the interstitial region for tumour with size 0.5, and ∇𝐻2

0 = 70 T2/m. All
other parameters are specified in Table 4.1 and Table 4.2
.



Chapter 5

Conclusion

This thesis investigates different models to describe the hyperthermia cancer treatment using
magnetic nanoparticles. The asymptotic homogenization technique is used to address the scale
difference of various regions in the models. We conclude this thesis by summarizing the most
important theoretical and numerical results that are illustrated in Chapters 2, 3, and 4. Then we
suggest various ideas to improve the models.

5.1 Conclusion summary

We began this thesis by introducing a review of the literature which plays a role in providing a
basis for deriving and solving the new models.
In Chapter 2, we have investigated the model of the fluid, mass, and heat transport in the
microvascular tumour. The tumour region is divided into two compartments which are the
tumour vessels and the interstitium. We have taken into account the transvascular exchange of
fluid, particles, and heat between the two regions. Also, the particles can be uptaken by the
tumour interstitial region. The role of the magnetic field is encoded in a suitable source of
heat generated in the tumour and proportional to the concentration of nanoparticles and on the
absorption rate 𝛼. This latter parameter encodes in turn the properties of the applied magnetic
field such as its intensity. Due to the big difference in sizes between the two compartments,
we use the homogenization technique to upscale the problem from the microscale (vessels’
distance) to the macroscale (tumour size). The solution of the microscale differential equations
and the solution of the fluid flow at the macroscale are taken from Penta and Ambrosi [103],
and Mascheroni and Penta [85]. Therefore, the results of this chapter are focused on describing
the macroscale particles and heat distribution in the tumour. The major result is that the heat
convection is impaired by the increasing vessels’ tortuosity. Also, there is direct relationship
between the temperature maps and the absorption rate of magnetic nanoparticles.

In Chapter 3, we have focused more on achieving the appropriate cancer hyperthermia
treatment by minimizing the negative side effects on the surrounding. Also, we study various
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types of magnetic nanoparticles characterised by different sizes, materials, and concentration.
We assume that nanoparticles with size grater than the vessels’ pore size are injected into the
tumour vessels. Consequently, the particles are not being transported from the vessels to the
tumour interstitial compartments while adhesion between the particles and vessels’ wall plays
a major role in the drug dynamics. However, transport of fluid and heat still occurs in both
compartments and are exchanged across the vessels’ walls. Moreover, we define the absorption
rate 𝛼 using Brownian and Neels equation. To solve the final macroscale system, we presume
that the particles are injected with a given concentration at the boundary of the tumour with
values informed by relevant bio-medical literature works. The results show that the adhesion
plays important rule on the density of nanoparticles adhering the vessels’ wall and on the
concentration of nanoparticles closer to the edge of the tumour. We illustrate the optimal values
of different parameters in the model related to the particles properties such as diameter and
concentration, vessels tortuosity, wall shear rate, and the magnetic field intensity and frequency
to obtain the required hyperthermic conditions to safely destroy the tumour cells.

In Chapter 4, we have extended our study to investigate the interplay between the tumour
and surrounding tissues. We have focused on deriving the fluid flow of the tumour surrounded
by healthy tissue and affected by inhomogeneous magnetic force. We have started from the final
macroscale results of the previous chapters and have linked it with the model discussed by Penta
et al. [106]. Both the healthy and the tumour regions are divided into two compartments which
are the vessels and interstitium. However, the scale separation which motivates the employment
of the homogenisation technique is between the average distance between two adjacent cancerous
regions and the overall tissue size. We have begun with four equations that describe the fluid
pressures and other four equations for the fluid velocity in the vessels and interstitial compartments
of each region at the mesoscale. The final result comprises just two macroscale equations which
describe the fluid pressure of the vessels’ and tumour at a global tissue scale level. The first
one combines the vessels pressures of both regions, and the second one holds for the interstitial
compartment, and similarly for the fluid velocities. The impact of the tumour and healthy regions
is encoded in the vessels’ permeability, the magnetic forces, and hydraulic conductivity tensors
which are solving appropriate cell problems at the mesoscale. To get the general idea about the
influence of magnetic force in the fluid flow, we find the numerical solution of the mesoscale
cell problems, as well as the macroscale solution for the case of a homogeneous magnetic force
and assuming that the cancer heterogeneities can be approximated as cylindrical fibers (so that
the mesoscale cell problems can be solved in two dimensions). A uniform magnetic force has
no effect on the fluid pressures, but it still has an impact on the fluid flow which is discussed in
Chapter 4.



CHAPTER 5. CONCLUSION 115

5.2 Future work

These analysis are open for improvement and further developments.

• We have chosen to present the results by means of a spherical coordinate setting as this
has enabled us to deduce the results which can be readily compared against the current lit-
erature. However, our finite element computational platform can be generalised to generic
macroscale geometries depending on the actual tumour shape at hand.

• This work could also be generalised to include nonlinear heat sources and nonlinear drug
uptake, as, given the current scaling assumptions, relevant modifications would only ap-
pear at leading order. Different boundary and initial conditions could also be taken into
account depending on the interplay between the tumour mass and the surrounding and on
the specific clinical injections conditions at hand.

• The new models have been derived by considering the same distinguished limit as in
Mascheroni and Penta [85], Penta et al. [102] in terms of Peclet numbers and non-
dimensional thermal hydraulic conductivities. Alternative distinguished limits, which
would result in purely convective heat and drug transport contributions at leading order
could be considered (see, e.g. Shipley and Chapman [126] when these are investigated for
macromolecules transport).

• An interesting further development of this work also resides in a comprehensive analysis
of admissible distinguished limits that exist for this system, with particular reference to
particles’ uptake, and diffusion phenomena occurring in different regions of the domain
under consideration, see, e.g. Dalwadi et al. [33], Ptashnyk and Roose [111], respectively.

• We have assumed that the tumour does not deform, while of course tissue deformations
and growth take place (see also [101, 105] where homogenised models for avascular ap-
positional growth and fluid transport in deformable vascular tumours are investigated) and
can determine significant consequences on drug transport.

• In addition, in this work we have considered a constant wall shear rate for the sake of
simplicity, while this is indeed depending on the microscale fluid transport in the vessels.
Incorporating the latter could lead to a more realistic description of the influence of adhe-
sion on nanoparticles transport and on its consequences on heat transport. This way, more
realistic predictions could be made concerning the necessary geometric regularisation that
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should be carried out to achieve safe hyperthermic conditions.

• The next natural step is to parameterise the microstructure by means of realistic medical
images. This way, given a set of experimental and physiological conditions at hand, our
findings can pave the way for the design of patient-specific diagnostic tool to improve the
efficacy of current anti-cancer therapies.

• The model derived in Chapter 4 should be extended to address the particles and heat
transport in the cancerous regions interplaying with the healthy ones under the influence
of a magnetic field in the context of cancer hyperthermia.
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