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ABSTRACT

Increased left ventricular (LV) size and deformation of LV geometry are 

associated with LV dysfunction. Regional shape distortion (RSD), detected on 

two-dimensional echocardiography (2D-Echo) after acute myocardial infarction 

(Ml), is associated with poor outcome.

Two hypotheses were tested: i) early RSD of the asynergic infarct zone 

after Ml is followed by progressive global LV dilatation, remodelling towards a 

spheroidal shape, and more LV dysfunction; and ii) the progressive remodelling of 

LV geometry spans the phases of early infarction and healing and may be 

modified by early and prolonged therapies applied over the phases of infarction 

and healing.

A bench to bedside approach was used, with concurrent studies in a dog 

model of healing over 6 weeks after Ml and patients with first Ml's. Computer- 

assisted analysis of the 2D~Echo images with 3D reconstruction was used to 

quantify LV asynergy (akinesis + dyskinesis), LV volumes, LV ejection fraction, 

RSD bulge and global LV shape.

The animal studies showed that collagen deposition during healing after Ml 

increases progressively, reaching a plateau around 2 weeks, and deposition of 

collagen in already dilated infarct zones is followed by late thinning and further 

RSD associated with LV aneurysms. Importantly, serial 2D-Echo tracked the in- 

vivo changes in LV geometry and function and showed greater RSD and LV 

dysfunction with anterior than inferior Ml, and with transmural Ml than non

transmural Ml. Other studies showed: i) lower LV resistance to distension and 

rupture in infarcted hearts; ii) marked extracellular matrix (ECM) disruption and 

RSD in transmural Ml; iii) delayed effects on LV remodelling after infarct-limiting 

therapies given during acute Ml; iv) loss of beneficial effects of the vasodilator 

nitroglycerin (NTG) with hypotension induced by high doses during acute Ml; v) 

decreased wall stress by prolonged LV unloading after Ml, with nitrates (eccentric 

dosing) and angiotensin-converting enzyme (ACE) inhibitors, limited early RSD



and progressive LV remodelling and dysfunction; this effect was greater with 

therapy over 6-weeks than just over the first 2 weeks; vi) late reperfusion limited 

early RSD and adverse LV remodelling, and preserved ECM in the epicardial rim; 

vii) the resistance of the healed left ventricle to distension and rupture was further 

reduced by prolonged anti-inflammatory therapy (ibuprofen); viii) prolonged ACE 

inhibitor therapy decreases infarct collagen, which may be harmful under certain 

conditions.

The clinical studies with serial 2D-Echo showed that systematic 

tomographic imaging could provide quantitative data on regional and global LV 

geometry and function including the degree of RSD (depth, area, and volume). 

An early 2D-Echo not only provided diagnostic data on LV thrombi and 

complications of Ml, but the extent of LV asynergy on the initial 2D-Echo predicted 

outcome at 3 months and 1 year. Importantly, the degree of RSD on the initial 

2D“Echo predicted patients at high risk of adverse remodelling with infarct 

expansion, greater LV dysfunction, progressive LV dilatation, and poor outcome at 

1 year. Survivors of Ml with > 18% LV asynergy and significant RSD on a 

baseline 2D-Echo were at increased risk of topographic deterioration on exercise 

programs. Anti-inflammatory therapy after Ml resulted in more RSD and adverse 

remodelling. Short-term LV unloading with low-dose intravenous NTG therapy 

during the acute Ml, as well as prolonged nitrate (eccentric dosing) and captopril 

therapy during healing over 6 weeks after Ml, improved 2D-Echo indexes of LV 

geometry and function, decreased complications and improved outcome. Acute 

thrombolytic therapy also limited LV remodelling after Ml. In all these studies, the 

degree of RSD and severity of LV dysfunction were greater with anterior than 

inferior Ml, and with 0-wave than non-Q wave Ml.

In Conclusion, the overall results indicate that early RSD in the infarct zone leads 

to progressive global LV dilatation, LV dysfunction and poor outcome and the 

changes in LV geometry and function can be quantified by serial quantitative 2D- 

Echo imaging. Marked RSD is associated with early ECM disruption and 

aneurysm formation after transmural Ml. During healing, infarct zones may be 

thinned and dilated before the collagen plateau, and collagen deposition into 

these zones result in further RSD and chronic aneurysms. Prolonged anti- 

remodelling therapy during healing, with agents that decrease wall stress without 

damaging the ECM, or decreasing infarct collagen, or causing infarct thinning, or 

impairing healing, might be more effective for reducing RSD, LV aneurysm, global
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dilatation and poor outcome. The 2D-Echo measurement of RSD early after Ml 

might be potentially important for stratifying patients according to their topographic 

status and for the objective assessment of the effects of anti-remodelling 

strategies during healing after Ml.

IV



ACKNOWLEDGEMENTS
1 wish to express my gratitude to several individuals and agencies along the

road leading to the completion of this thesis:

1. Three teachers during my MBChB studies in Glasgow, namely Drs. Ross 

Lorimer, David McCall and Ian Hutton, who were my first models of clinician- 

scientists.

2. Dr. Robert S. Fraser, Chairman of Medicine, and Dr. Richard E. Rossall, 

Director of Cardiology, for offering me a Residency in Medicine and Cardiology 

at the University of Alberta Hospital in 1971, when I moved to Edmonton for 

family reasons and to pursue higher studies in Cardiology. It was Dr. Rossall 

and Dr. Fraser who introduced me to clinical follow-up studies after 

cardiovascular surgery during my postgraduate training in Edmonton (1971- 

1974). These led to my first publications in medical journals.

3. Dr. Simon J.K. Lee who, as my mentor during my formal research training in 

Edmonton (1974-1976), introduced me to invasive and non-invasive 

methodologies in Clinical Cardiology research, including cardiac 

catheterization and coronary angiography, M-mode echocardiography, 

precordial ST-segment mapping using electrocardiography (ECG), and 

exercise- and pacing-induced stress in patients with coronary artery disease. 

More importantly, Dr. Lee supported my studies on the protection of ischaemic 

myocardium using intravenous propranolol in patients with acute myocardial 

infarction (Ml) in the Coronary Care Unit (CCU). In these studies, I 

systematically applied state-of-the-art tools available at the time, such as 

haemodynamic recordings for arterial and pulmonary capillary wedge 

pressures, precordial ST-segment mapping for ischaemic injury, M-mode 

echocardiography for left ventricular (LV) dimensions and function, creatine 

kinase for infarct size, and continuous ECG monitoring for arrhythmias. These 

studies led to my first papers in Circulation, a major journal of the American 

Heart Association.

4. Drs Lewis C. Becker, Bernadine H. (Bulkley) Healy, Grover H. Hutchins and 

Myron L. Weisfeldt, for mentoring me during 3 additional years of training as a 

clinical research fellow and instructor at the Johns Hopkins Hospital (1976- 

1979). While there, I contributed to the development of a conscious canine 

model for assessing the effect of therapeutic interventions in early Ml and the 

concept of expressing infarct size relative to the size of the risk region. I



subsequently evaluated various therapies (e.g. indomethacin, ibuprofen, 

nitroglycerin, dipyridamole, prostaglandins and prostacyclin) in that model. 

Importantly, I collaborated with two colleagues, Drs Allan N. Lieberman and 

James L. Weiss, in applying two-dimensional echocardiography (2D-Echo) to 

assess myocardial infarct size in the canine model. These studies led to key 

publications in Circulation, Circulation Research and the American Journal of 

Cardiology. I also observed two colleagues, Drs Leland W. Eaton and Jay A. 

Erlebacher, apply 2D-Echo to assess infarct expansion at the bedside.

5. My mentors at the Johns Hopkins Hospital for teaching me two lessons: first, 

the clinician-scientist was but one individual in a larger group of researchers 

with diverse expertise, and second, applied, translational research involved to- 

and-fro activity between the bench and the bedside.

6. Dr. Rossall, Director, Division of Cardiology, the successive Chairs of Medicine 

(Drs R.S. Fraser. George D. Molnar and Brian J. Sproule), and the successive 

Deans of Medicine (Drs D.F. Cameron and R.S. Fraser) at the University of 

Alberta for their support, following my return to the University of Alberta 

Hospital in 1979, of my efforts to set up my research program and a 

postgraduate degree program in Cardiology.

7. Several collaborators at the University of Alberta Hospital for their advice, 

critiques, time and skills in the multidisciplinary research. Foremost among the 

collaborators were the successive CCU directors, Drs J. Wayne Warnica and 

Wayne J. Tymchak, who were supportive of my enrolling patients into the 

clinical studies. Also, Dr. Gordon E. Blinston provided advice regarding the 

information systems, computer programming and statistical methods 

throughout the research (1985-1992).

8. My mentors and professional friends, Drs Marc A. Pfeffer and Martin St. John 

Sutton, for their encouragement between 1986 and 1992, during my son’s 

prolonged illness with acute myeloid leukemia and his death after a failed bone 

marrow transplant at age 19.

9. Dr. Ross Lorimer, for letting me discuss the topic of the MD thesis with him in 

1985, and agreeing to act as adviser when the University of Glasgow approved 

the proposal for the thesis in 1990.

10. The University of Glasgow, for granting an extension following the delay in 

submission due to difficult personal circumstances.

VI



11. My peers, for their critiques of my presentations between 1985 and 1990, 

especially those on:
i) The long-term effects of early intravenous nitroglycerin (NTG) after acute 

Ml, at the American College of Cardiology meeting of March 1985, later 

published in Circulation in 1988.
ii) The effects of prolonged nitrate therapy over 6 weeks after Ml and follow- 

up to one year, at the American Heart Association meeting of 1987, with 

longer follow-up at the American College of Cardiology meeting of March 

1990.
iii) The effects of prolonged captopril therapy for 6 weeks after Ml in a dog 

model, at international meetings in 1986, 1987 and 1990, and the effects of 

prolonged captopril for 6 weeks after Ml with the follow-up for one year in 

humans, at plenary sessions of the European Congress of Cardiology and 

the American Heart Association meeting of 1990.

iv) The 2D-Echo approach for quantifying LV remodelling and function at the 

American College of Cardiology meeting of March 1990.

12.To several extramural granting agencies for partial funding of my salary at the 

University of Alberta Hospital. First, the Heart and Stroke Foundation of 

Canada (HSFC), Ottawa, Ontario and the provincial branch in Alberta (HSFA) 

provided awards as Fellow (1975-1978) and Senior Clinical investigator (1980- 

1986). Second, the Alberta Heritage Foundation for Medical Research 

(AHFMR) provided awards as Senior Scholar and Scientist (1986-1997). 

Third, the Medical Research Council of Canada (MRC), now the Canadian 

Institutes of Health Research (CIHR), Ottawa, Ontario provided a 

Distinguished Scientist award (1999-2004).

13.To these agencies for partial funding of the research projects, fellows, 

sonographers, nurse assistants, students and technicians in my laboratory.

14.To my fellows, sonographers, nurse assistants, students and technicians for 

their dedication.

Finally, I am indebted to my wife Catherine and daughter Bernadine, for

their patience, understanding and support throughout this project.

VII



DEDICATION

I would like to dedicate this work to 

Sunil Keith Jugdutt 

(1972-1992)

VIII



TABLE OF CONTENTS

1. INTRODUCTION

2. REVIEW OF BACKGROUND LITERATURE

2.1 Left ventricular geometry and function

2.2 Healing after acute myocardial infarction

2.3 Two-dimensional echocardiography after myocardial infarction and 

the recognition of infarct expansion

2.4 Changes in left ventricular geometry and function during healing 

after myocardial infarction

2.5 Effect of potential infarct-limiting therapies on healing and left 

ventricular geometry and function after myocardial infarction

2.5.1. Anti-inflammatory agents

2.5.2. Nitroglycerin, prostaglandins and ibuprofen

2.5.3. The RAAS and ACE inhibition

2.5.4. Reperfusion

2.5.5. Importance of collateral blood flow in remodelling and healing 

after Ml

2.5.6. Beta-adrenergic blockade and calcium channel blockade

2.5.7. Digoxin

2.6 Development of chronic animal model for studies of left ventricular 

remodelling during healing after myocardial infarction

2.7 Assessment of left ventricular geometry and function during healing 

after myocardial infarction

2.7.1. Assessment of infarct or scar size and remodelling in humans 

versus animals

2.7.2. Preliminary studies: validation of quantitative 2D-Echo for left 

ventricular remodelling and function

2.7.3. Assessment of global left ventricular shape and regional 

shape distortion

2.8 The concept of adverse remodelling after myocardial infarction and 

anti-remodelling therapy

2.9 Role of the extracellular collagen matrix during healing and left 

ventricular remodelling after myocardial infarction

2.9.1. MMP and TIMP balance in remodelling post-MI

ix



2.9.2. Effects of anti-remodelling therapies on the ECM and 

collagen

2.10 Epidemiology and relevance of ventricular remodelling after 

myocardial infarction

3. STATEMENT OF THE PROBLEM AND HYPOTHESES

3.1. The problem

3.2. Hypothesis

3.3. Objectives

4. METHODS AND PROCEDURES

4.1 Animal studies

4.1.1. Analysis of echocardiograms for remodelling and functional 

data
4.1.2. Post-mortem measurement of scar size and geometry

4.1.3. Sample size

4.2 Clinical studies

4.3. Statistics

5. RESULTS

5.1 Animal studies: natural history

5.1.1. Temporal changes in infarct collagen and left ventricular 

topography during heating after myocardial infarction in the 

dog
5.1.2. Two-dimensional echocardiographic characterization of 

topographic changes after transmural and non-transmural 

infarcts during healing after myocardial infarction in the dog

5.1.2.1. Transmurality

5.1.2.2. 0-wave and non-Q-wave Ml

5.1.2.3. Resistance to distention and rupture

5.2 Animal studies: modification by pharmacologic agents

5.2.1. Effect of infarct-limiting therapies on infarct collagen, LV 

geometry and LV function during healing after Ml in the dog



5.2.2. Effect of vasodilator-induced fiypotension on infarct size, 

collateral blood flow, and LV geometry and function in 7-day 

old anterior infarcts in dogs

5.2.3. Effect of prolonged vasodilator and anti-inflammatory 

treatment on LV remodelling and LV rupture threshold during 

healing after Ml in the dog

5.2.3.1. Effect of prolonged isosorbide dinitrate and ibuprofen 

on LV topography and rupture threshold during 

healing after Ml

5.2.3.2. Effect of prolonged 2-week versus 6-week nitrate 

therapy regimens on LV remodelling after Ml in the 

dog

5.2.3.3. Impact of LV unloading after late reperfusion of 

canine anterior Ml on remodelling and function using 

isosorbide-5-mononitrate

5.2.4. Effect of agents that decrease infarct collagen on LV 

remodelling during healing after Ml in the dog

5.2.4.1. Effect of long-term captopril therapy on LV 

remodelling and function during healing after Ml in 

the dog

5.2.4.2. Effect of enalapril on LV remodelling and function 

during healing after anterior Ml in the dog

5.2.4.3. Effect of combined captopril and isosorbide dinitrate 

during healing after Ml

5.2.4.4. Effect of captopril and enalapril on LV geometry, 

function and collagen during healing after anterior 

and inferior Ml in the dog

5.2.4.5. Effect of ACE-inhibition on infarct collagen deposition 

and remodelling during healing after transmural Ml in 

the dog

5.3 Clinical studies: validation and natural history

5.3.1. Preliminary clinical research studies: Feasibility and validation

5.3.1.1. Phase 1: Reproducibility and angiographic

correlation

5.3.1.2. Phase 2: Feasibility and detection of asynergy

XI



î

5.3.2. The natural history of LV asynergy in AMI by 2D-Echo.

5.3.3. Detailed analysis of 2D-Echo data and regional shape 

distortion

5.3.4. Regional shape distortion as a predictor of adverse 

remodelling after Ml

5.3.5. The effect of a cardiac rehabilitation program on 2D-Echo LV 

asynergy

5.3.6. Importance of early regional shape distortion in progressive 

LV dilatation after Ml

5.3.6.1 Progressive changes in regional and global LV 

dilatation during remodelling after Ml

5.3.6.2 Overestimation of infarct size on 2D-Echo due to 

RSD of the asynergic zone

5.3.6.3 Volume of RSD by 3D reconstruction of 2D-Echo 

images

5.4 Clinical studies: modification by pharmacological agents

5.4.1. The effect of short-term anti-inflammatory agents after acute 

Ml on LV geometry and function during healing

5.4.2. Therapeutic interventions in acute myocardial infarction

5.4.2.1. Preliminary study of NTG infusions during pacing- 

induced angina in the cardiac catheterization 

laboratory

5.4.2.2. Preliminary study of NTG infusions during acute Ml in 

the CCU

5.4.3. The effect of short-term NTG infusion therapy during acute Ml 

on LV geometry and function during healing after Ml and 

beyond

5.4.4. The effects of prolonged NTG therapy, given during infarction 

and healing phases after acute Mi, on LV geometry and 

function

5.4.5. The effects of prolonged NTG and captopril therapy, given 

during healing after acute Ml, on LV geometry and function

6. DISCUSSION

6.1 Major findings

xii



6.2 Caution with the use of anti-fibrotic agents after Ml

6.3 Protecting the ECM in the infarct zone after Ml

6.4 Merits and limitations

6.5 Advances pertinent to the thesis

6.5.1. RAAS-inhibition

6.5.1.1. ACE inhibitor Trials

6.5.1.2. ARB Trials

6.5.1.3. ELITE and CHARM

6.5.1.4. RESOLVD pilot study

6.5.1.5. OPTIMAAL

6.5.1.6. VALIANT

6.5.1.7. Val-HeFT

6.5.1.8. RALES and EPHESUS

6.5.1.9. RAAS-inhibition and prevention of LV remodelling in 

trials

6.5.1.10. Expanding the RAAS-inhibition paradigm

6.5.1.11. Summary and future directions

6.5.2. Nitrates and nitric oxide

6.5.2.1. Nitrates in myocardial infarction and heart failure

6.5.2.2. Mechanisms of nitrate action and tolerance

6.5.2.3. Biology of nitric oxide in the cardiovascular system

6.5.2.4. Hydralazine and prevention of nitrate tolerance

6.5.3. Novel concepts, approaches and technologies

6.5.3.1. Myocardial salvage and cardioprotection

6.5.3.2. Protecting the supporting extracellular matrix

6.5.3.3. Novel approaches and concepts

6.6 Conclusions

7. BIBLIOGRAPHY

8. APPENDIX: Volume 2. Original contributions and papers published as a result 

of the work, in order of citation in Volume 1

1. Jugdutt Bl, Cahn RL, Basualdo CA, Rossall RE. Measurement of left 
ventricular shape distortion. In, Ripley, KL, editor. Computers in Cardiology. 
Los Angeles: IEEE Computer Society Press, 1984:47-52. (citation # 19)

XIII



2. Jugdutt Bl, Michorowski BL. Role of infarction expansion in rupture of the 
ventricular septum after acute myocardial infarction. A Two-Dimensional 
Echocardiographic study. Clin Cardiol 1987;10:641-652. (citation # 20)

3. Jugdutt Bl. Identification of patients prone to infarct expansion by the 
degree of regional shape distortion on an early two-dimensional 
echocardiogram after myocardial infarction. A prospective study. Clin 
Cardiol 1990;13: 28-40. (citation # 21)

4. Jugdutt Bl. Prevention of ventricular emodeling post myocardial 
infarction: Timing and duration of therapy. Can J Cardiol 1993;9: 103-114. 
(citation # 22)

5. Jugdutt Bl. Ventricular remodeling postinfarction and the extracellular 
collagen matrix. When is enough enough? Circulation 2003; 108:1395-1403. 
(citation # 27)

6. Jugdutt Bl, Warnica JW. Intravenous nitroglycerin therapy to limit 
myocardial infarct size, expansion and complications: effect of timing, 
dosage and infarct location. Circulation 1988;78:906-919. (citation # 28)

7. Maidens JM, Blinston GE, Jugdutt Bl. Computer-assisted measurement of 
regional and global left ventricular shape distortion after myocardial 
infarction. In, Computers in Cardiology. Los Angeles: IEEE Computer 
Society Press, 1987:413-416. (citation # 33)

8. Jugdutt Bl, Michorowski BL, Kappagoda TC. Exercise training after 
anterior Q wave myocardial infarction: importance of regional left 
ventricular function and topography. J Am Coll Cardiol 1988;12: 362-372. 
(citation # 34)

9. Jugdutt Bl, Basualdo CA. Myocardial infarct expansion during 
indomethacin and ibuprofen therapy for symptomatic post-infarction 
pericarditis: Effect of other pharmacologic agents during early remodelling. 
Can J Cardiol. 1989;5:211-221. (citation # 35)

10. Johnston BJ, Blinston GE, Jugdutt Bl. Overestimation of myocardial infarct 
size on two-dimensional echocardiograms due to remodeling of the infarct 
zone. Can J Cardiol 1994;10:77-86. (citation # 36)

11. Jugdutt Bl. Prevention of ventricular remodeling after myocardial infarction 
and in congestive heart failure. Heart Failure Reviews 1996;1:115-129. 
(citation # 37)

12. Jugdutt Bl, Amy RW. Healing after myocardial infarction in the dog: 
changes in infarct hydroxyproline and topography. J Am Coll Cardiol 
1986;7:91-102. (citation # 41)

13. Jugdutt Bl, Khan Ml, Jugdutt SJ, Blinston GE. Impact of left ventricular 
unloading after late reperfusion of canine anterior myocardial infarction on

XIV



remodeling and function using isosorbide-5-mononitrate. Circulation 
1995;92:926-934. (citation # 48)

14. Jugdutt Bl. Effect of reperfusion on ventricular mass, topographiy and 
function during healing of anterior infarction. Am J Physiol 1997;272: 
H1205-1211. (citation #49)

15. Jugdutt Bl, Schwarz-Michorowski BL, Tymchak WJ, Burton JR. Prompt 
improvement of left ventricular function and topography with combined 
reperfusion and Intravenous nitroglycerin in acute myocardial infarction. 
Cardiology 1997;88:170-179. (citation # 50)

16. Jugdutt Bl. Delayed effects of early infarct-limiting therapies on healing 
after myocardial infarction. Circulation 1985;72:907-914. (citation # 55)

17. Michorowski B, Senaratne PJM, Jugdutt Bl. Myocardial infarct expansion. 
Cardiovasc Rev Rep 1987;8: 42-47. (citation # 63)

18. Michorowski B, Senaratne PJM, Jugdutt Bl. Deterring myocardial infarct 
expansion. Cardiovasc Rev Rep 1987;8: 55-62. (citation # 67)

19. Jugdutt Bl, Khan Ml. Impact of increased infarct transmurality on 
remodeling and function during healing after anterior myocardial infarction 
in the dog. Can J Physiol Pharmacol 1992;70:949-958. (citation # 73)

20. Jugdutt Bl, Tang SB, Khan Ml, Basualdo CA. Functional impact on 
remodeling during healing after non-Q-wave versus Q-wave anterior 
myocardial infarction in the dog. J Am Coll Cardiol 1992;20:722-731. 
(citation # 74)

21. Jugdutt Bl. Intravenous nitroglycerin unloading in acute myocardial 
infarction. Am J Cardiol. 1991 ;68:52D-63D. (citation # 100)

22. Jugdutt Bl. Effect of nitroglycerin and ibuprofen on left ventricular 
topography and rupture threshold during healing after myocardial infarction 
in the dog. Can J Physiol Pharmacol 1988;66:385-395. (citation # 102)

23. Jugdutt Bl, Khan Ml. Effect of prolonged nitrate therapy on left ventricular 
remodeling after canine acute myocardial infarction. Circulation 
1994;89:2297-2307. (citation # 103)

24. Jugdutt Bl, Michorowski BL, Tymchak WJ. Improved left ventricular 
function and topography by prolonged nitroglycerin therapy after acute 
myocardial infarction. Z Kardiol 1989;78: SuppI 2; 127-129. (citation #
105)

25. Jugdutt Bl, Tymchak W, Humen D, Gulamhusein S, Hales M. Prolonged 
nitroglycerin versus captopril therapy on remodeling after transmural 
myocardial infarction. (Abstract) Circulation 1990;82 (SuppI lll):lll-442. 
(citation # 108)

XV



26. Jugdutt Bl, Michorowski BL, Tymchak WJ. Improved left ventricular 
geometry and function by prolonged nitroglycerin therapy after acute 
myocardial infarction. In, Lewis BS and Kimchi A, editors. Chronic Heart 
Failure - Mechanisms and Management. I. Quality of Life, II Nitrate 
Therapy. New York: Springer-Verlag, 1990:266-271. (citation # 109)

27. Jugdutt Bl, Warnica JW. Tolerance with low dose intravenous nitroglycerin 
therapy in acute myocardial infarction. Am J Cardiol 1989;64:581-587. 
(citation #118)

28. Jugdutt Bl. Myocardial salvage by intravenous nitroglycerin in conscious
dogs: loss of beneficial effect with marked nitroglycerin-induced
hypotension. Circulation 1983;68:673-684. (citation # 122)

29. Jugdutt Bl, Michorowski BL, Khan Ml. Effect of long-term captopril therapy 
on left ventricular remodeling and function during healing of canine 
myocardial infarction. J Am Coll Cardiol 1992;19:713- 723. (citation #
126)

30. Jugdutt Bl, Khan Ml, Jugdutt SJ, Blinston GE. Effect of enalapril on 
ventricular remodeling and function during healing after anterior myocardial 
infarction in the dog. Circulation 1995;91:802-812. (citation # 127)

31. Jugdutt Bl. Effect of captopril and enalapril on left ventricular geometry, 
function and collagen during healing after anterior and inferior myocardial 
infarction in the dog. J Am Coll Cardiol 1995;25:1718-1725. (citation #
128)

32. Jugdutt Bl, Lucas A, Khan Ml. Effect of angiotensin-converting-enzyme 
inhibition on infarct collagen and remodeling during healing after transmural 
canine myocardial infarction. Can J Cardiology 1997;13:657-668. (citation # 
129)

33. Jugdutt Bl, Khan Ml, Jugdutt SJ, Blinston GE. Combined captopril and 
isosorbide dinitrate during healing after myocardial infarction. Effect on 
remodeling, function, mass and collagen. J Am Coll Cardiol 1995;25:1089- 
1096. (citation #131)

34. Jugdutt Bl. Different relations between infarct size and occluded bed size 
in barbiturate-anesthetized versus conscious dog. J Am Coll Cardiol 
1985;6:1035-1046. (citation # 227)

35. Jugdutt Bl. Difference in the relation between infarct and occluded bed in 
pentobarbital-anesthetized and conscious dogs. Can J Physiol Pharmacol 
1986;64:254-262. (citation # 228)

36. Jugdutt Bl, Sussex BA, Warnica JW, Rossall RE. Persistent reduction in 
left ventricular asynergy in patients with acute myocardial infarction by 
intravenous infusion of nitroglycerin. Circulation 1983;68:1264-1273. 
(citation # 232)

XVI



37. Jugdutt Bl. Intravenous nitroglycerin infusion in acute myocardial 
infarction: myocardial salvage. Cardiovasc Rev Rep 1984;5:1145-1163 
and Master Teacher Award 1990;11:53-67. (citation # 250)

38. Jugdutt Bl, Khan Ml, Johnston BJ, Jugdutt SJ, Blinston GE. Progressive
changes in regional and global left ventricular dilation during remodeling
post-myocardial infarction. (Abstract) J Am Coll Cardiol 1994;23:269A. 
(citation # 274)

39. Jugdutt Bl. Remodeling of the myocardium and potential targets in the
collagen degradation and synthesis pathways. Current Drug Targets,
Cardiovascular & Haematological Disorders 2003;3:27-56. (citation # 278)

40. Jugdutt Bl. Left ventricular rupture threshold during the healing phase after 
myocardial infarction in the dog. Can J Physiol Pharmacol 1987;65:307- 
316. (citation #283)

41. Jugdutt Bl, Balghith M. Diastolic dysfunction during remodeling after 
myocardial infarction: Natural history and effect of prolonged ACE inhibition 
and nitrate therapy. (Abstract) Circulation 2001;104:11-430. (citation#
298)

42. Balghith M, Jugdutt Bl. Assessment of diastolic dysfunction after acute 
myocardial infarction using Doppler Echocardiography. Can J Cardiol 
2002;18:69-77. (citation # 315)

43. Jugdutt Bl, Humen DP, Khan Ml, Schwarz-Michorowski BL. Effect of left 
ventricular unloading with captopril on remodelling and function during 
healing of anterior transmural myocardial infarction in the dog. Can J 
Cardiol 1992;8:151-163. (citation # 318)

44. Jugdutt Bl. Nitrates as anti-ischemic and cardioprotective agents. In: Singh 
BN, Dzau VJ, Vanhoutte P, Woosley RL, editors. Cardiovascular 
Pharmacology and Therapeutics. New York: Churchill Livingston, 1993:449- 
465. (citation # 333)

45. Jugdutt Bl. Angiotensin II receptor blockers. In M.H. Crawford, editor. 
1998 Cardiology Clinics Annual of Drug Therapy. Philadelphia: W.B. 
Saunders Publishers, 1998;Vol 2:1-17. (citation #363)

46. Jugdutt Bl. Nitric oxide and cardioprotection during ischemia-reperfusion. 
Heart Failure Reviews 2002;7:391-405. (citation # 433)

XVII



LIST OF TABLES

Table Description Page

1. Definitions 2

2. Temporal staging of left ventricular remodelling after
myocardial infarction: A guide for the timing of therapy 5

3. Determinants of myocardial infarct expansion and early
remodelling 10

4. Potential mechanisms for benefit with low dose intravenous
nitroglycerin therapy in acute myocardial infarction 17

5. Pathophysiology of congestive heart failure after myocardial
infarction 18

6. Potential mechanisms for benefit from ACE-inhibition therapy
after acute myocardial infarction 21

7. Potential pharmacological therapies for limiting remodelling
after acute myocardial infarction 45

8. Traditional and new primary shape distortion indices in
systole and diastole in the infarct group. 108

9. A. Initial patient data 112

B. Pertinent clinical findings and drugs during hospitalization 112

10. Changes in topographic and functional parameters 113

11. Indices of global and regional diastolic shape distortion 113

12. Ranking of echocardiographic parameters by ability to 
distinguish expanders from non-expanders using
multivariate analysis of variance 114

13. Comparison of computed and ellipse fitted volumes in
computer generated synthetic data. 125

14. Patient characteristics in the BNTG and placebo groups 133

15. A. Patient characteristics 137

B. Follow-up data (10 years: 1990-2000) 137

16. Trials of ACE inhibitors in heart failure and myocardial infarction 151

17. Trials of ARBs in heart failure and myocardial infarction 153

XVII!



LIST OF FIGURES

Figure Description Page

1. Effect of species on time to collagen plateau 4

2. Early and late stages of remodelling after canine
myocardial infarction 12

3. Rate of progression of necrosis in different species 24

4. Transmural infarction and aneurysm in the dog induced
by collateral obliteration 31

5. Systematic tomographic imaging protocol using
2D-Echocardiography 35

6. Histopathological and topographical changes during
InfarcT healing 37

7. Remodelling of infarct and non-infarct zones 44

8. Extracellular matrix disruption after myocardial infarction
and reperfusion 46

9. Tomographic 2D-Echo imaging for 3D-reconstruction 57

10. Quantitative analysis of echocardiographic images 58

11. Computer assisted quantification of LV global systolic and
diastolic function by 2D-Echo 60

12. Delineation of the anatomic boundaries of the occluded bed
or risk region 61

13. Actual computer map of the infarct, occluded bed and LV
ring at the papillary muscle level 62

14. Outputs from new computer software 63

15. Computerized topographic maps: Long-axis remodelling
(anterior Ml) 67

16. 2D-Echo evaluation of right ventricular infarction 69

17. Temporal changes in myocardial hydroxyproline 72

18. Infarct transmurality 75

19. Measurement of left ventricular rupture threshold 78

XIX



20. Transverse sections for measurement of infarct size,
expansion, thinning and bulging in anterior Mi 80

21. Determinants and therapeutic approaches in the
remodelling of infarct and non-infarct zones 82

22. Examples of infarcts in LV sections 85

23. Effect of captopril on remodelling post-infarction 93

24. Effect of ACE-inhibition on infarct collagen and remodelling 98

25. Schematic representations of four algorithms 101

26. Natural history of LV geometry in survivors of a first
anterior infarction over 3 months by 2D-Echo 104

27. Acute infarct expansion after anteroseptal Ml 106

28. Measurement of regional shape distortion after Ml 109

29. Regional shape distortion (RSD) and expanders 111

30. Discriminators of expanders and non-expanders by the
degree of RSD 115

31. Regional shape distortion and rupture of the ventricular
septum 116

32. Pilot study. Evidence of topographic deterioration with 
exercise during a low exercise cardiac rehabilitation
program 118

33. Overestimation of infarct size on 2D-Echo due to
remodelling of the Infarct zone 123

34. The regional shape distortion (RSD) algorithm 124

35. Beneficial effects of nitroglycerin therapy after acute Ml 131

36. Protocol and results of the ATAMl study on the prolonged
effects of nitrate therapy during healing after Ml 134

37. Effect of prolonged combination therapy versus
monotherapy with nitroglycerin/nitrate and captopril 138

38. The angiotensin system 143

39. Major cardiovascular effects of angiotensin II 150

XX



ABBREVIATIONS

2D

3D

99m-Tc

ACE

A-HeFT

AIRE

ALDH

ARBs

ATi

ATz
ATP

BNP

CATS

CCS

CCU

cGMP

CHARM

CK

CK-MB

CONSENSUS-

COX

CRP

CTGF

ECG

Echo

ECM

ELITE

eNOS

G-CSF

GISSI

two-dimensional 

three-dimensional 

99m-technetium 

angiotensin-converting enzyme 

African American Heart Failure Trial 

Acute Infarction Ramipril Efficacy 

aldehyde dehydrogenase 

angiotensin II type 1 receptor blocker 

angiotensin II type 1 receptor 

angiotensin II type 2 receptor 

adenosine triphosphate 

brain natriuretic peptide 

Captopril and Thrombolysis Study 

Chinese Captopril Study 

coronary care unit

cyclic guanosine 3' 5' monophosphate

Candesartan in Heart failure; Assessment of Reduction in

Mortality and morbidity

creatine kinase

CK-myocardial B fraction

Cooperative New Scandinavian Enalapril Survival Study

cyclooxygenase

C-reactive protein

connective tissue growth hormone

electrocardiography, electrocardiographic or electrocardio

gram
two-dimensional echocardiography, echocardiographic or

echocardiogram

extracellular matrix

Evaluation of Losartan in the Elderly

endothelial nitric oxide synthase

granulocyte-colony-stimulating factor

Gruppo Italiano per lo Studio della Sopravivvenza neir 

Infarcto Miocardico

xxi ill;



ABBREVIATIONS continued

HEART

HOPE

iNOS

ISDN

ISIS 4

ISMN

LAD

LCX

LV

Ml

MIAMI

MMP

MRI

NADPH

nNOS

NO

NOS

NSAID

NTG

NYHA

OHP

ONOO'

OPTIMAAL

PCI

PEACE

PG

PKC

PKCe

PTCA

RAAS

RSD

SD

Healing and Early Afterload Reducing Therapy 

Heart Outcomes Prevention Evaluation 

inducible nitric oxide synthase 

isosorbide dinitrate

Fourth International Study of Infarct Survival

isosorbide-5-mononitrate

left anterior descending

left circumflex

left ventricular

myocardial infarction

Metoprolol In Acute Myocardial Infarction

matrix metailo-proteinase

magnetic resonance imaging

nicotinamide adenine dinucleotide phosphate, reduced

neuronal nitric oxide synthase

nitric oxide

nitric oxide synthase

non-steroidal anti-inflammatory agents

nitroglycerin

New York Heart Association

hydroxyproline

peroxy nitrite

Optimal Therapy in Myocardial Infarction with the Angiotensin 

II Antagonist Losartan 

percutaneous coronary intervention

Prevention of Events With Angiotensin-Converting Enzyme

Inhibition

prostaglandin

protein kinase 0

protein kinase Os, epsilon isoform 

percutaneous transluminal coronary angioplasty 

renin-angiotensin-aldosterone system 

regional shape distortion 

standard deviation

XXII



ABBREVIATIONS continued

SEM

SMILE

SOLVD

SPECT

STEMl

TAM!

TGFp

TIMP

TI-201

TOSCA

t-PA

TRACE

TTC

Val-HeFT

VALIANT

VEGF

V-HeFT

standard error of the mean

Survival of Myocardial Infarction Long-term Evaluation

Studies of Left Ventricular Dysfunction

single-photon emission computed tomography

ST-segment elevation Ml

Transmural anterior myocardial infarction

tissue growth factor p

tissue inhibitor of matrix metaiioproteinase

thallium-201

Total Occlusion Study of Canada 

tissue plasminogen activator 

Trandolapril Cardiac Evaluation 

triphenyl tétrazolium chloride 

Valsartan Heart Failure Trial 

Valsartan In Acute Myocardial Infarction 

vascular endothelial growth factor

Veterans Administration Cooperative Vasodilator-Heart 

Failure Trial

.a;

XXIII



SUMMARY
Background. This dissertation summarizes studies carried out between 1980 

and 1988 on the modification of left ventricular (LV) geometry and function during 

healing after acute myocardial infarction (Ml). A review of pertinent knowledge 

before, during, and after 1980 places the work in perspective and covers the 

following topics: LV geometry and function after Ml; healing and remodelling; the 

application of two-dimensional echocardiography (2D-Echo) to quantify LV 

geometry and function and assess temporal changes; detection of early infarct 

expansion and regional shape distortion (RSD) of asynergic zones by 2D-Echo; 

the anti-remodelling effects of infarct-limiting therapies; the protective role of the 

extracellular matrix (ECM); the potential adverse effects of anti-remodelling 

therapies on the ECM in infarct zones; and the value of non-invasive quantitative 

2D-Echo imaging in assessing the effects of anti-remodelling therapies on 

regional and global LV geometry and function.

Hypotheses. Two main hypotheses were addressed: i) Ml results in early RSD 

followed by progressive global LV dilatation and a more spheroidal shape, and 

more LV dysfunction during and after healing; and ii) the remodelling of LV 

geometry and structure after Ml is a dynamic process that spans the early 

infarction and healing phases, and is largely driven by increased wall stress. 

Mechanical forces acting on the infarct and non-infarct zones, as well as other 

factors, play significant roles in the remodelling of these regions. Progressive 

remodelling occurring during and after healing impacts negatively on outcome and 

may be modified by early and prolonged therapies.

Methods and Results. A multidisciplinary bench to bedside approach was used, 

with concurrent studies in a chronic dog model of healing over 6 weeks after Ml 

and patients with a first Ml. Computer-assisted analysis of the 2D-Echo images 

with 3D reconstruction was used to quantify LV asynergy (akinesis + dyskinesis), 

LV volumes, LV ejection fraction, RSD in short-axis images using novel indices 

[such as the peak (Pk) and depth (ra) of the bulge], RSD in diastolic images, and 

global LV shape.

Animal studies. These showed that collagen deposition increases progressively 

during healing, reaching a plateau around 2 weeks, and is associated with

XXIV



significant remodelling such that collagen deposition in already expanded infarct 

zones and late thinning lead to permanent RSD associated with LV aneurysms. 

Importantly, serial 2D-Echo tracked the topographic and functional changes and 

showed greater RSD and dysfunction with anterior than inferior Ml, and with 

transmural than non-transmural Ml. Transmurai Ml showed marked ECM 

disruption and RSD. Infarct-limiting therapies, such as nitroglycerin (NTG) and 

the anti-inflammatory drug ibuprofen, produced delayed effects on LV remodelling. 

Vasodilator-induced hypotension during acute Ml paradoxically negated the 

beneficial effects on collateral blood flow, infarct size and LV geometry seen with 

low-dose NTG. Decreased wall stress by prolonged LV unloading with nitrates 

(eccentric dosing) and angiotensin-converting enzyme (ACE) inhibitors during 

healing after Ml limited RSD, progressive LV remodelling and dysfunction. 

Importantly, this effect was greater when given over 6 weeks than just over the 

first 2 weeks. Late reperfusion, made 2 hours post-occlusion, limited RSD, 

adverse LV remodelling and dysfunction during healing and this effect was 

enhanced by nitrates. The resistance of the healed left ventricle to distension and 

rupture, which was lower for infarcted than normal hearts, was further reduced by 

prolonged therapy with ibuprofen over 6 weeks but was preserved by prolonged 

nitrate. Prolonged ACE inhibitor therapy decreased infarct collagen. Combined 

captopril and nitrate therapy showed similar beneficial effects on LV remodelling 

as compared to monotherapy.

Clinical studies. Serial 2D-Echo studies showed that systematic tomographic 

imaging was feasible and provided reproducible diagnostic and quantitative data 

on regional and global LV geometry and function. Strong correlations were shown 

between 2D-Echo LV volumes and those by biplane LV angiography, LV asynergy 

as percent LV circumference or endocardial surface area and CK infarct size, and 

the degree of RSD and infarct expansion or ventricular septal rupture. An early 

2D-Echo detected thrombi and other complications. In follow-up studies after first 

anterior Ml’s, the extent of LV asynergy on the initial 2D-Echo predicted outcome 

at 3 months and 1 year. In a larger study, the degree of RSD on the initial 2D- 

Echo predicted patients likely to develop adverse remodelling with infarct 

expansion and greater LV dysfunction, in-hospital complications and deaths, 

progressive LV dilatation, and poor outcome at 1 year. In a study of Ml survivors 

started on exercise programs, those with > 18% LV asynergy and significant RSD
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were at increased risk of topographic deterioration. Indomethacin therapy for 

post-MI pericarditis resulted in more RSD and infarct expansion. 2D-Echo 

indexes of LV geometry and function correlated with decreased complications and 

improved outcome after short-term low-dose intravenous NTG therapy during the 

acute Ml, and prolonged nitrate (eccentric dosing) and captopril therapy during 

healing over 6 weeks after Ml. Acute thrombolytic therapy also limited 

remodelling. In all studies, the degree of RSD and severity of LV dysfunction 

were greater with anterior than inferior Ml, and with 0-wave than non-Q wave Ml. 

The degree of early RSD (area, depth or volume) correlated with the severity of 

subsequent LV dilatation and the degree of overestimation of regional LV 

dysfunction.

Conclusion. The overall results indicated that progressive topographical and 

functional changes occur during healing after Ml and can be quantified by serial 

2D-quantitative Echo. Early RSD that develops in the infarct zone leads to 

progressive global LV dilatation involving both the infarct and non-infarct zones 

and is associated with LV dysfunction and poor outcome. Importantly, RSD, LV 

dilatation and LV function can be measured by 2D-Echo. Marked RSD is 

associated with early ECM disruption and aneurysm formation after transmural Ml. 

Collagen deposition into thinned and dilated infarct zones during healing seems to 

result in permanent RSD found with chronic aneurysms. Prolonged therapy, with 

anti-remodelling agents that decrease wall stress but do not damage the ECM, or 

decrease infarct collagen, or cause infarct thinning, or impair healing, might be 

more effective for reducing RSD, LV aneurysm, global dilatation and poor 

outcome. The 2D-Echo measurement of RSD might be potentially important for 

assessing the effects of anti-remodelling strategies during healing after Ml.
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1. INTRODUCTION
This dissertation for the degree of MD is submitted in the form of an essay entitled 

‘Modification of left ventricular geometry and function during healing after 

acute myocardial infarction (Ml)’. The work was conducted at the University of 

Alberta Hospital between 1980 and 1988, following the completion of post

doctoral training and clinical fellowships In cardiovascular research at the 

University of Alberta Hospital (1974-1976) and the Johns Hopkins Hospital (1976- 

1979). In this essay, I have endeavoured to ‘show the relationship between the 

various published papers’ and abstracts relating to the topic, and ‘place the whole 

work critically into perspective with the general state of knowledge’ in this area of 

investigation.

2. REVIEW OF BACKGROUND LITERATURE
In order to place the work in perspective, the background knowledge section 

summarizes the pertinent findings from studies that I conducted on the subject 

during the period between 1980 and 1988 in my laboratory, and those in reports 

from other laboratories before 1980 and after 1988. I have highlighted the 

progress made in my field during the study period and the major advances made 

in subsequent years. For reference, I have included, in the bibliography, 

published papers and some pertinent abstracts of papers that have not yet been 

published.

2.1. Left ventricular geometry and function

The left ventricle, the main pumping chamber of the beating heart, occupies a key 

position in the cardiovascular system as it generates the stroke output critical for 

survival. Since the 1960’s, left ventricular (LV) geometry, which refers to the 

shape, size and structure of the left ventricle, was becoming recognized as an 

important determinant of LV function (1). The normal LV geometry is considered 

to be a prolate ellipsoid, that is elliptical in the long-axis and circular in the short- 

axis (2). Deformation of LV geometry, with a departure from an ellipsoidal to a 

spheroidal configuration, was subsequently shown to be associated with LV 

dysfunction (3-5). Several authors suggested that changes in global LV shape 

and size might influence clinical outcome (1,4,6-12).

Studies since the mid 1970’s suggested that dramatic regional deformation 

of LV geometry may occur after acute myocardial infarction (Ml) (13-
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18,19[Appendix 1],20-22) and have a profound negative impact on LV function 

and outcome (20[Appendix 2],21 [Appendix 3]). Studies in the mid 1980’s 

indicated that these negative effects were evident on both the short-term and 

long-term (21,22;Appendix 4), and depended largely on the initial myocardial 

infarct size (21) as well as the subsequent processes of infarct healing and LV 

remodelling (22).

In general, the term remodelling refers to changes in structure and shape. 

The Oxford and Webster’s English dictionary definitions of “remodel” emphasize 

three-dimensional (3D) reconstruction and shape, while definitions of repair 

emphasize restoration of shape and function (Table 1).
T A B L E  1. D e fin it io n s

R em ode l

W ebste r’s dictionary: to a lte r the structure of; rem ake

The Oxford dictionary: to m ode l again or differently; to  reconstruct or reorganize  

(m odel n: representation in 3 d im ensions o f proposed structure; vb; fash ion , shape} 

R e p a ir

W ebster's d ictionary: vb: to restore, fix, renew, m ake good, mend, rem edy; 

n: rep lacem ent o f destroyed ce ils o r tissues by new  fo rm ations 

The Oxford dictionary; vb: to  restore to good condition a fter dam age or w ear, to  set 

right, to fix, renovate, refix

After Ml, LV remodelling refers to the changes in the geometry, shape, 

structure, architecture and topography of the infarcted left ventricle. Collective 

evidence, mostly over the last two decades, has strengthened the hypothesis that 

these LV remodelling changes after Ml have profound negative effects on LV 

function and survival (22-26,27[Appendix 5],28[Appendix 6],29,30). This has led 

to efforts to develop therapeutic strategies for limiting, preventing and even 

reversing adverse remodelling after Ml (22-30).

An important aspect of the assessment of therapeutic interventions to limit 

adverse remodelling is the ability to reliably quantify LV shape, size, structure and 

function in repeated studies before, during and after therapy (21,28-30). Since the 

early 1980’s, two-dimensional echocardiography (2D-Echo) has emerged as a 

practical tool for the non-invasive quantification of in-vivo LV remodelling and 

function after Ml in research studies at the bedside and in the laboratory (16,19- 

21,28-32,33[Appendix 7],34[Appendix 8],35[Appendix 9],36[Appendix 10],37). 

However, only a few of these studies have applied 2D-Echo with 3D 

reconstruction for quantifying LV size and regional dysfunction (21,28,30-34) or



2D-Echo for quantifying early regional shape distortion (RSD) of the infarct zone 

(13-16,31-36).

2.2. Healing after acute myocardial infarction

The healing process after acute Ml attempts to repair the damaged LV wall, 

preserve its integrity and restore function. Clearly, the healing process is not ideal 

since LV dysfunction usually persists. This topic has been previously reviewed 

(22,37[Appendix 11],38-40).

The collective evidence indicates that healing after Ml is a dynamic and 

time-dependent process (22,23). Pathophysiologically, it involves acute and 

chronic inflammation followed by collagen deposition and scar formation. 

Histopathological studies have shown an early inflammatory component after both 

animal and human Ml. Thus, early pathophysiological events in the occluded 

region during acute Ml closely resemble events during acute inflammation (40,41: 

Appendix 12). These include trapping of leucocyte and inflammatory cells, 

lysosomal membrane breakdown and release of lysosomal enzymes, cellular 

membrane breakdown, release of prostaglandins (PGs), red blood cell sludging, 

blood platelet trapping and aggregation leading to release of granular products, 

hemorrhage, oedema, myocardial tissue necrosis, and necrosis of intramyocardial 

blood vessels (38). The granular products, released by platelet aggregation into 

the ischaemic tissue, appear to lead to a vicious cycle of platelet plugging, 

vasoconstriction, thrombosis, increased vascular permeability, more tissue 

oedema and injury, and more necrosis, especially in the marginal zones of the 

infarcts.

In both animals and humans, acute inflammation is followed by chronic 

inflammation, connective tissue proliferation and collagen deposition until healing 

is completed by formation of a firm, contracted and inelastic scar (40,41). In 

humans, acute inflammation predominates in the first week, chronic inflammation 

in the second week, and collagen deposition from the third week onwards (40). 

The timing of these sequential events during healing might be highly pertinent 

when using agents that impair acute or chronic inflammation and collagen 

deposition during healing after Ml (Table 2) (22).

Evidence indicates that the duration of healing of the infarct zone after Ml 

differs among species (Figure 1), being longer in humans than dogs and rodents

(42). Thus, the interval from the onset of an Ml to the formation of the final scar
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s îun Ajej^iqv

(Naavnoo) woa



ranges between two and three weeks in rats (43), four and six weeks in dogs (41), 

and between six weeks and six months in humans depending on infarct size 

(40,44). The slower rate of healing in humans compared to dogs and rats is 

therefore pertinent when determining the optimal timing and duration of 

therapeutic interventions on the basis of animal data, so as to avoid confounding 

effects on healing.

TABLE 2. Tem poral staging o f left ventricular remodelling after myocardial 
infarction: A guide fo r the timing of therapy

Timing Pathophysiological process

early ; F irs t 2 4  hours A cu te  evo lu tion  and co m p le tio n  o f 
m yoca rd ia l in fa rc tion

Early: D a y  2 to  2  w e e ks H ea ling  be fo re  in fa rc t co llagen  p la teau

Late ; 3 to  6 w e e k s  
(up to  6 m o n th s )

H ea ling  a fte r in fa rc t co llagen  p la teau

V e ry  la te : A fte r  1 .5  m onths 
(up to  12 m o n th s )

Late  po s tin fa rc t hea ling

From Jugdutt (22[Appendix 2])

As noted above, several pathophysiological studies have documented that 

the rate of healing depends on infarct size, such that the larger the infarct, the 

slower the rate (40,41,43). The rate of healing also depends on cellular, 

metabolic and biochemical factors and the adequacy of nutrient blood flow 

(22,37,39). It follows that therapies that are likely to impair healing may need to 

be delayed for longer in patients with large Ml compared to those with small Ml.

The possibility that certain interventions may accelerate or delay healing 

also needs to be considered when applying therapy. Thus, reperfusion after Ml 

has been shown to be associated with decreased infarct size (45), more rapid 

healing (46) and less adverse remodelling in animals (47,48[Appendix 

13],49[Appendix 14]) and humans (50;Appendix 15).

Collective evidence indicates that LV remodelling and healing after Ml are 

highly dynamic processes that run in parallel (22,23) and significant regional 

remodelling of the infarct zone occurs during the healing phase (22). It follows 

that therapies that modify healing may significantly influence LV remodelling after 

Ml (22,23).

Several experimental studies in the early 1980’s addressed the hypothesis 

that administration of drugs that decrease the inflammatory response, collagen



deposition and collateral blood flow during healing after Ml may promote adverse 

LV remodelling. Thus, anti-inflammatory agents, such as glucocorticoids and non

steroidal anti-inflammatory drugs (NSAlDs) given during healing after Ml 

consistently induced more thinning of the infarct zone in the dog model (51-54). 

However, these agents did not significantly reduce the collagen content in the 

infarct scar (51-54). Importantly, the NSAIDs caused infarct zone thinning and 

expansion even in small infarcts in dogs (55:Appendix 16). Furthermore, these 

agents exerted different effects on infarct size and remodelling. Thus in the 

infarction phase, indomethacin was shown to increase (56) and ibuprofen to 

decrease (57) infarct size, while both agents increased remodelling of the infarct 

zone (52,54). Interestingly, aspirin did not cause infarct thinning or expansion 

(54), suggesting that it might be safe during healing after Ml. In contrast to 

studies with ibuprofen in the dog (54,55), one study of ibuprofen during healing 

after Ml in rats suggested it may increase infarct collagen by delaying proteolysis 

and, in that setting, did not cause significant infarct thinning (58). Moreover, in the 

clinical setting, therapy with ibuprofen or indomethacin for post-infarction 

pericarditis in patients resulted in enhanced infarct thinning and expansion, and 

increased prevalence of LV aneurysm (35).

2.3. Two-dimensional echocardiography after myocardial infarction and 

the recognition of infarct expansion

Following the introduction of 2D-Echo in the mid 1970’s, several investigators 

recognized the importance of RSDs following Ml and the importance of 

tomographic imaging in multiple planes (5). Others systematically applied 2D- 

Echo to study LV aneurysm (13), LV asynergy (14-17) and regional dilatation in 

acute Ml (18). The latter study led to the first description of clinically significant 

and often fatal myocardial infarct expansion after acute Ml (18).

However, Hutchins and Bulkley (now Healy) first described the pathological 

correlates of clinically significant and fatal infarct expansion after Ml in 1978 (59). 

They defined infarct expansion pathologically, as an increase in the proportion of 

the surface area of the left ventricle occupied by necrotic myocardium with 

concomitant thinning of the infarcted wall, dilatation of the LV cavity and distortion 

of LV topography that was not explained by new necrosis. They found that the 

majority of patients dying within 30 days of an acute Ml had infarct expansion. 

Thus, within six days of transmural (Q-wave) Ml, about 17% developed infarct
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extension with further new necrosis while about 59% developed infarct expansion 

but no new necrosis. This marked and fatal expansion was associated with 

abrupt or insidious disruption of necrotic myocytes where acute inflammatory cells 

were disintegrating. It was compared to an ‘intramural tearing of necrotic muscle’. 

Removal of necrotic cells or mural collapse did not appear to play a significant role 

during the early stages of healing.

In that study (59), Hutchins and Bulkley also graded the severity of infarct 

expansion pathologically. They compared the relative position of internal 

ventricular landmarks such as the papillary muscles and junctions of the right and 

LV free walls with the septum. They found that marked expansion tended to 

develop 5 days or more after acute Ml, and was more frequent with first infarctions 

that were large and transmural. They also found that wall thinning was greater 

with marked expansion in these large transmural infarcts but was less with small 

and subendocardial infarcts.

Clinically, infarct extension in that study was defined as the syndrome 

consisting of new ischaemic chest pain, ST-segment elevation on 

electrocardiography (EGG), rise in serum creatine kinase (CK) levels, and 

increasing congestive heart failure within 10 days of the indexed Ml. 

Pathologically, extension was defined as new necrosis around the area of 

previous acute infarction. However, of the 14 patients who were clinically 

diagnosed as having extension, only two (14%) had isolated extension while as 

many as nine patients (65%) had extension plus expansion, and 3 patients (21%) 

had isolated expansion.

More importantly in that study, the next clinical event associated with the 

syndrome of recurrent chest pain, worsening congestive heart failure, hypotension 

and ST-T wave changes after an acute Ml, was more likely to be due to infarct 

expansion than infarct extension. This fatal syndrome occurred in 70% of patients 

with marked morphologically defined expansion, in 38% with moderate expansion, 

but in none of the patients with mild expansion.

Several mechanisms for components of the clinical syndrome were 

postulated (59). The chest pain was explained by the acute dilatation of the LV 

wall and stretching of the overlying pericardium, which is often involved in the 

inflammatory process associated with transmural infarcts. Reflection of the 

expanded infarct surface area over a greater number of praecordial leads was 

suggested to explain new changes on ECG. A tearing of necrotic myocardium



and new necrosis secondary to adverse haemodynamic consequences of 

expansion (increased wall stress; increased myocardial oxygen demands and 

hypotension; decreased diastolic perfusion, ischaemia and infarction) was 

postulated to result in secondary elevation of serum CK levels or accelerate 

enzyme release.

Thus, this carefully conducted and small clinico-pathological study drew 

attention to the critical role of early infarct expansion in early remodelling after 

acute Ml and underscored the need to recognize significant infarct expansion 

clinically. Subsequent clinical studies using 2D-Echo confirmed that infarct 

expansion with marked acute LV dilatation was associated with moderate to large 

areas of myocardial necrosis and dyskinesis and resulted in acute congestive 

heart failure and hypotension (18,21,28,31,32). Several of these longitudinal 

clinical studies applied 2D-Echo to establish the central role of early infarct 

expansion in early and late stages of remodelling after acute Ml (21,28,31,32). 

Thus, these studies indicated that early infarct expansion in humans plays a role 

in acute LV enlargement (32), accelerated aneurysm formation (21), cardiac 

rupture (20,60), and progressive LV enlargement (31).

The early detection of infarct expansion therefore became important. 

Although several clinical features may lead one to suspect infarct expansion, 

definitive diagnosis has been difficult. Although praecordial ST-segment mapping 

on ECG permits the non-invasive diagnosis of infarct extension (61), it is not 

helpful in the diagnosis of infarct expansion. Several studies suggested that an 

early non-invasive diagnosis of infarct expansion can be made by means of 2D- 

Echo at the bedside (21).

Eaton et al. (18) first reported the recognition of regional LV dilatation or 

infarct expansion by serial 2D-Echo imaging over the first two weeks after anterior 

Q-wave Ml in 8 of 28 patients. They assessed infarct expansion on end-diastolic 

outlines of short-axis 2D-Echo images by means of a computer-aided semi

automated contouring system. They measured: i) the length of the infarct- 

containing segment between anterior and posterior papillary muscle markings; ii) 

the average thickness of the segments; and iii) the total LV circumference. They 

were able to make a retrospective diagnosis of expansion in 8 patients (29%) who 

showed evidence, between initial and final echocardiograms, of an increase in the 

infarct-containing segment length by 48% (range, 26% to 108%), marked infarct 

thinning by 26% (range 17% to 44%) and an increase in LV circumference by
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25%. These expanders represented a high-risk group and showed greater 

functional deterioration and higher eight-week mortality compared to non- 

expanders (50% versus 0%).

Subsequent studies with serial 2D-Echo after Ml (20,21,28,31,32,34,35) 

used two more variables to quantify infarct expansion on 2D-Echo: i) expansion 

index or ratio of the length of the infarct-containing endocardia! segment to the 

length of the non-infarct containing endocardial segment; ii) thinning ratio or ratio 

of the average thickness of the infarct zone to the average thickness of the non

infarct zone. In all these studies, the infarcted zone was defined as the zone 

containing asynergy, usually defined as akinesis plus dyskinesis. The relationship 

between asynergy and myocardial necrosis was established in an earlier study 

(62). Erlebacher et al. (31) found that at 10 to 21 days after Ml, an anterior infarct- 

containing segment length of more than 11.0 cm indicated anterior infarct 

expansion.

It is important to note that these five measurements allowed the diagnosis 

of expansion to be made after the event, or retrospectively, after repeated studies. 

There was still a need in the mid 1980’s to identify expanders on the initial 2D- 

Echo. My laboratory therefore attempted to quantify the regional diastolic bulge, 

or RSD, of asynergic zones on short-axis 2D-Echo images (19,20,21,34). In a 

large prospective study of 244 consecutive patients with a first Q-wave Ml, the 

degree of RSD on an early 2D-Echo within 2 days of the Ml was found to identify 

potential expanders (21). Specifically, 50 of 51 expanders, compared to 3 of 193 

non-expanders, had a peak regional shape distortion index (Pk) or depth of 

outward bulging (rj) of more than 10 mm on the initial 2D-Echo.

The ability to predict which patients are likely to develop infarct expansion 

on an initial 2D-Echo is of considerable clinical importance if timely therapy is to 

be applied to attenuate remodelling. The prospective evaluation of several 

predictive indexes has been a prime objective in my laboratory. In two recent 

large prospective clinical studies (28,35), prospective diagnosis of the infarct 

expansion syndrome was made possible, at 40 hours or more, when the acute 

event was associated with the following two sets of criteria:

i) clinical: acute hypotension (systolic blood pressure <90 mm Hg and 

peripheral hypoperfusion), LV failure with pulmonary congestion, evidence of 

LV dilatation with or without further chest pain, no new ECG changes of injury,



no significant new plasma CK elevation (<100 lU/L) suggesting new necrosis; 

and
ii) 2D-Echo: evidence of marked regional diastolic stretching (>25% increase in 

asynergy-containing endocardia! segment length), marked thinning (>25% 

decrease in thickness of asynergic wall), and dilatation (>25% increase In 

diameter, area and volume) compared to the initial recording.

In summary, acute infarct expansion is now recognized as the cornerstone 

of remodelling after Ml. The topic has been previously reviewed (63[Appendix 

17],64). The determinants of infarct expansion and early remodelling are 

summarized in Table 3. The overall findings suggest that, within the first few 

hours to days after an acute Ml, early remodelling with.expansion of the infarcted 

segment involves acute outward bulging of the infarct zone, with stretching, 

thinning and dilatation of that zone, resulting in RSD that can be detected on end- 

diastolic 2D-Echo images.

TABLE 3- Determ inants o f m yocardial in fa rc t expansion and early 

rem odelling

Physical characteristics o f the Infarct 

® Size of the infarction

* Transmuraiity of infarction 

« Location of Infarction

» Type of infarction

•  Age of infarction 
E fficacy o f the  healing processes

» Infiammatory response 

«> Collagen deposition 

® Collatéral circulation 

« Reperfusion
Mechanical forces {strength, duration and frequency o f application) 

e Intracavitary distending forces {Push)

Preload

Afterload

Wait stress (dimension dependent, Laplace effect)

® Intramural forces (Stretch and Pull)

Contractility 

Heart rate:

Treppe effect (increased contractility)

Increased frequency of contraction 

® External restraining forces 

Pericardium and fluid 

Pericardial pressure 

Extracardiac structures

"I

From Jugdutt (67[Appendix 18])
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2.4. Changes in left ventricular geometry and function during healing after 

myocardial infarction

It is well known that most acute infarcts bulge out during systole. In 1935, 

Tennant and Wiggers first reported systolic expansion of the cyanotic zone after

acute coronary artery ligation in the dog (65). However, with infarct expansion, 

outward bulging is also present in diastole, implying more profound shape 

deformation and architectural change in the left ventricle (41). Initially, the 

increase in cavity area, and therefore the diameter, is confined to the zone with 

regional bulging. Subsequently, further progressive remodelling takes place and 

the end-result is global LV cavity dilatation, with generalized increase in LV cavity 

area and diameter (21,28), and a more spherical LV shape (7-12).

Experimental studies suggested that the early thinning in the infarct zone is 

due to a slippage between muscle bundles so that the number of myocytes across 

the thickness of the infarct zone is reduced (66). It was reasonable to suggest 

that the necrotic myocardium during the early stage of healing after Ml, when 

inflammation is active, might be more susceptible to shape deformation due to 

distending intracavitary forces, such as high preload and afterload, and intramural 

traction, or pull, of the adjacent non-infarcted myocardium (63,67:Appendix 18).

It appears that RSD results in increased regional wall stress and the 

associated gradient in wall stress may drive the remodelling of LV shape in an

I

%

attempt to normalize wall stress, thereby resulting in the spherical LV shape. 

Several forces at work in every individual case, and at different stages of healing, 

appear to influence the final outcome.

Before 1980, it was known that infarcted hearts often underwent marked 

dilatation associated with dilated cardiomyopathies (7), lengthening of the non

infarct segment played a role in the late LV dilatation (7,68), and healed scars 

were less distensible and more resistant to deformation (69). However, the 

mechanisms were not known and it was not clear whether significant late 

remodelling of the infarct scar occurred consistently after the healing phase.

In the 1980’s, my laboratory proposed a sequence of changes during early 

and late stages of remodelling during healing after Ml (Figure 2). Theoretically, 

the early infarct expansion and RSD that develop after acute Ml initiate a vicious 

cycle of ineffective cardiac contraction, decreased systolic ejection, decreased 

cardiac output, increased systolic and diastolic volumes, which in turn lead to 

more LV enlargement, LV dysfunction, physical disability and death.
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Within the first few hours to days after acute Ml, the infarcted wall 

undergoes regional expansion, with stretching, thinning and dilatation; this results 

in early RSD, with outward bulging in diastole and ballooning in systole. The 

acute remodelling of LV shape and structure after acute Ml undergoes further 

alterations during subsequent healing and may, under certain conditions, trigger 

the vicious cycle of progressive global LV dilatation, LV failure, LV rupture, and 

death.
Major forces in the development of early infarct expansion and RSD 

include: i) physical characteristics of the infarct such as infarct size and location; ii) 

other factors relating to the efficacy of early healing such as cellular infiltration, 

fibroblast activity and collagen deposition, metabolism and nutrient collateral blood 

flow; and iii) haemodynamic factors, such as the magnitude, duration and 

frequency of mechanical forces acting on the infarct zone, such as afterload, 

preload, wall stress, heart rate and contractile pull of the adjacent normal 

myocardium (22,37,39,63) (Table 3).

During healing, collagen deposition into the already thinned and stretched 

infarct segment fixes or cements’ the early RSD, resulting in the permanent RSD 

associated with aneurysm formation (41). The permanent scars that develop in 

thinned infarct tend to be thin and weak, ballooning out during contraction, thereby 

leading to incomplete emptying of the pumping chamber and permanent disability.

Further late remodelling, with compaction of the infarct scar and 

lengthening and hypertrophy of the non-infarcted segment, may initially provide 

some some compensation but is eventually followed by LV dilatation and 

dysfunction.

Several studies have documented the importance of infarct size and 

location on the severity of infarct expansion and the degree of RSD. All 

pathologic studies have suggested that first, large and transmural infarcts are 

prone to expansion (18,59,60,70-72,73[Appendix 19],74[Appendix 20]). Clinical 

studies have confirmed that first, large, 'transmural’ or ‘Q-wave’ infarcts are prone 

to expand (21,28). The reason why nontransmural or subendocardial infarcts do 

not expand might be because the subepicardial rim of normal myocardium 

provides a buttress or scaffold that protects against the distending forces. Small 

infarcts, that tend to be subendocardial, are less likely to expand (21). The critical 

infarct size for expansion to occur was found to be 11% of the LV weight in the 

dog heart (70) and 17% in the rat heart (71). However, there was no strong
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correlation between infarct size and the degree of infarct expansion in these 

studies, suggesting that other factors are involved. In the rat model, infarct size 

was found to influence LV function (75), dilatation (76) and survival (77).

Although the frequency and severity of infarct expansion did not differ 

between anterior and posterior infarcts in the dog (70), all clinical studies indicate 

that topographic deterioration is greater with anterior infarcts (18, 20,21,28,78). In 

a clinico-pathologic study, Pirolo et al. (79) also found that patients with 

transmural infarction of the LV antero-apical area are more likely to develop 

expansion. This might be due to the fact that this region of the left ventricle is the 

thinnest, has the greatest curvature and is under more stress (1,80). The greater 

restraining effect of the posterior pericardium and adjacent extracardiac structures 

might explain why topographic deterioration is less with infarction at the inferior 

than the antero-apical location. Pirolo et al (79) also found in their study that 

hearts with prior LV hypertrophy are less prone to develop infarct expansion.

Other factors, such as prior collagen content, infarct age, the patient’s age, 

presence of multivessel disease, collateral reserve and concomitant drugs also 

appear to be important (63). The importance of nutrient flow during healing after 

acute Ml is becoming recognized. In antero-apical infarcts of fixed size and 

produced by left anterior descending (LAD) coronary artery ligation and collateral 

obliteration, expansion was more severe than with coronary ligation alone (73,74).

Factors that increased wall stress, such as hypertension (32) and exercise 

(34,81-83), were shown to increase expansion in animals and humans. An acute
: .

increase in afterload and wall stress with methoxamine was found to increase 

expansion in dogs (84). Conversely, an acute decrease in afterload and wall 

stress with intravenous nitroglycerin (NTG) and intra-aortic counterpulsation was 

shown to reduce LV dilatation in humans (85). Venodilatation, decreased blood 

volume and preload with long-term treatment with captopril, an angiotensin- 

converting enzyme (ACE) inhibitor, was shown to be an important mechanism for 

attenuation of LV dilatation in rats (86).

2.5. Effect of potential infarct-limiting therapies on healing and left
ventricular geometry and function after myocardial infarction

In the mid 1970’s, a major goal of therapy after Ml was to reduce infarct size

(87,88). Around the early 1980’s, several experimental studies using the rat

model of Ml showed a negative relation between myocardial infarct size and LV
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function (75), LV dilatation (76), and survival (77). However, those studies did not 

address infarct expansion or RSD or topographic changes during infarct healing. 

Early scepticism about infarct-limiting therapies and the potential for limiting 

remodelling was rooted mainly in the lack of robust in-vivo quantitative 

methodology.
Subsequent experimental and clinical studies over the 1980’s provided 

further evidence in support of the idea that infarct size is a major determinant of 

the degree of LV remodelling and dysfunction after Ml (18,21,26,34-36,60,70-75). 

Several of these studies assessed infarct expansion (21,34-36,60,70-75) or both 

infarct expansion and RSD (21,34-36,73,74), and many used 2D-Echo clinically 

(18,21,34-36,89) or in the dog model (70,73,74).
Three other clinical studies in the early 1980’s supported the idea that 

infarct size was a major determinant of outcome. First, one study confirmed that 

acute extension of infarct size is associated with a high mortality (90). Second, 

another study showed the 21 day mortality after acute Ml was higher with 

transmural than non-transmural Ml (23 % versus 10 %, P<0.01) and early infarct 

recurrence had an additional adverse effect on survival (91). Third, a study using 

equilibrium radio-nuclide angiocardiograms, confirmed that early functional 

aneurysms in patients after anterior Ml carries a high-risk of death within one year 

that is independent of LV ejection fraction and its absence identified a group with 

low mortality despite impaired ejection fraction (92).

Other studies documented early and late topographic changes after Ml in 

the rat model ex-vivo (93,94). One study addressed healing and repair after Ml in 

the rabbit model and suggested that LV rupture was more common 1-4 days after 

Ml and collagen content was a determinant of infarct stiffness and the resistance 

of the left ventricle to rupture (95). In a comparative study of healing after Ml in 

the dog and rat models, healing was shown to be more rapid and LV remodelling 

more severe in the rat than the dog (96).
In the mid 1980’s, a novel concept was that limitation of infarct size and 

preserving ventricular muscle might be the most effective means of limiting LV 

remodelling, dilatation and dysfunction, and thereby improving survival. I 

therefore embarked, as others did, on studies of the limitation of LV remodelling 

via limitation of infarct size. I pursued the hypothesis that therapy given during 

healing after Ml, using agents that decrease afterload, preload, chamber size, 

heart rate, contractility and wall stress without impairing healing, decreasing
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infarct collagen, or causing infarct thinning, might reduce the extent of RSD and 

thereby improve myocardial performance and have a positive impact on overall 

outcome. Furthermore, the potential beneficial effects of such agents on scar 

topography and collagen deposition might be expected to enhance the 

mechanical strength of the scar and thereby limit LV distension and aneurysm 

formation, and prevent LV rupture. However, on the basis of my findings in on

going studies of healing after Ml (55) and those from other laboratories (51-54), I 

considered it was pertinent to address the issue of potential effects of infarct- 

limiting therapies on the healing phase during which significant LV remodelling 

occurred.

By the mid 1980’s, three categories of infarct-limiting therapy were 

becoming available for testing: i) non-thrombolytic pharmacological therapy; ii) 

pharmacologically-mediated thrombolysis with or without coronary angioplasty; 

and iii) the combination of thrombolytic and non-thrombolytic therapies.

2.5.1. Anti-inflammatory agents
The effects of methyl prednisolone on infarct size have been controversial (51). 

However, methyl prednisolone delayed inflammation and disintegration of necrotic 

myocytes, decreased infarct collagen, and impaired healing after Ml in the rat

(43). It also caused infarct thinning, infarct expansion and LV dilatation despite a 

decreased infarct size in the rat model (97). Furthermore, short-term methyl 

prednisolone given after Ml in the dog induced marked infarct thinning and 

regional dilatation although collagen did not change (51).

As mentioned previously, the NSAID ibuprofen decreases infarct size (55) 

but also aggravates thinning and expansion during early healing of the infarct 

without altering the collagen content of the infarct scar (54). However, one study 

in the rat model, where ibuprofen was given at 1, 6 and 18 hours after Ml did not 

detect infarct thinning but found increased Infarct collagen (58). Since a 

randomized clinical study of the effect of Ibuprofen after Ml could not be ethically 

justified, the effects of ibuprofen and indomethacin (another NSAID) therapy on 

LV remodelling and function was studied In patients given these drugs for 

pericarditis associated with acute transmural Ml and both agents were shown to 

enhance LV aneurysm formation (35).
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2.5.2. Nitroglycerin, prostaglandins, and ibubrofen

Several therapies that are potentially infarct-limiting when given during the 

infarction phase over the first few hours after acute Ml, such as NTG (98) and 

prostacyclin or prostaglandin (PG) b (99), were shown to result in delayed 

beneficial effects on infarct collagen and LV geometry at 7 days post Ml in the dog 

model (55). In that study, ibuprofen given after acute Ml decreased infarct size 

and the infarct expansion index, did not decrease Infarct collagen, but induced 

infarct wall thinning (55). Interestingly, NTG therapy was associated with 

increased infarct collagen and no infarct expansion or thinning (55).

The effects of long-term NTG therapy (100[Appendlx 21], 101) during 

healing after Ml were subsequently tested in the dog. model (48,102[Appendix 

22],103[Appendix 23],) and in patients (104,105[Appendix 24], 106,107,108 

[Appendix 25],109[Appendix 26]). Briefly, these studies demonstrated beneficial 

effects of NTG on LV geometry and function as well as clinical outcome (104- 

109). The potential mechanisms of benefit with nitrates after Ml are summarized 

in Table 4.

TAB LE  4. P o te n tia l m e ch a n ism s  fo r  b e n e fit w ith  low -dose  in tra v e n o u s  

n itro g ly c e r in  th e ra p y  in acute  m yo ca rd ia l in fa rc tio n

1. improved haem odynam ics

Decreased preload; increased venous capacitance 

Decreased afterload and Impedance

2. improved flow  and perfusion

increased collateral blood flow

Decreased coronary artery spasm

Increased d iam eter o f epicardial arteries and stenoses

Increased endothelial relaxation factor activity

Increased prostacyclin activity

Decreased platelet adhesiveness and plateau plugs

Increased coronary vein and lym phatic flow

Increased removal o f noxious m etabolites of ischaemia

3. Decreased ischaem ic Injury and infarct size

4. Improved cardiac geom etry

Decreased cham ber size and wall stress 

Decreased deform ation forces 

Decreased regional dilatation and expansion 

Decreased global dilatation 

Decreased aneuysm  formation

5. improved regional and global ventricular performance

6. Decreased infarct related complications

7. Improved survival

::

Modified from Jugdutt (22[Appendix 4])
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2.5.3. The RAAS and ACE-inhibition
During the early 1980’s, interest in the role of the renin-angiotensin-aldosterone 

system (RAAS) in heart failure after Ml was increasing. Collective evidence 

indicated that cardiac failure from myocardial loss, or other causes, is associated 

with excessive rise in preload, systemic vascular resistance and afterload, heart 

rate, catecholamines and activation of the RAAS (110). This leads to angiotensin- 

mediated vasoconstriction and aldosterone-mediated sodium retention result 

(111). The end-result of significant myocardial loss is congestive heart failure 

(Table 5). Various factors in congestive heart failure lead to the release of renin, 

the rate-limiting enzyme for the generation of angiotensin II and aldosterone. 

Several compensatory mechanisms become activated in the very early stages of 

heart failure (Table 5).

TABLE 5. Pathophysiology of congestive heart failure after myocardial 

infarction

Special features

Loss of ventricu la r m ass 
Ischaem ia in ad jacen t regions 

A neurysm  (regional shape distortion)
- paradoxical systo lic  expansion
- d iasto lic expansion
- increased w all s tress 

increased wait stress in norm al muscle 
Decreased ven tricu la r com pliance 
G lobal ventricu la r d ila ta tion  
V entricu lar vo lum e overload hypertrophy

G enera l fe a tu re s  

Pressure overload 
Volum e overload 
Further loss of ven tricu la r muscle 
D ecreased systo lic  contractile  function 
Restricted d iasto lic filling

P o te n tia lly  d e le te r io u s  c o m p e n s a to ry  m e c h a n is m s  
Increase in ren in-angio tensin-a ldosterone 
Increase in c ircu lating catecholam ines 
increase in preload
Increase in system ic vascu lar resistance 
Increase in heart rate

It has been shown that neurohumoral activation is present after acute Ml 

(112,113), even in haemodynamically compensated patients (114). 

Neurohumoral activation results in increased vasoconstrictor activity and retention 

of sodium and water, due mainly to the effect of angiotensin II, norepinephrine and
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vasopressin (110,111). This is only partially counter-balanced by the vasodilator 

and natriuretic actions of atrial natriuretic peptide. Activation of the RAAS is the 

dominant feature of congestive heart failure. Angiotensin II contributes to the 

excessive rise in systemic vascular resistance, increased sympathetic outflow and 

increased levels of circulating catecholamines, and increased release of 

aldosterone which promotes more salt and water retention. Although 

compensatory mechanisms initially serve to maintain cardiac performance, they 

can potentially overshoot and produce deleterious effects, with excessive rise in 

preload, systemic vascular resistance and heart rate (115).

Although pharmacological inhibition of the RAAS may be produced at 

several points along the hormonal pathway (111), a practical and effective means 

of blocking the renin-angiotensin axis is by angiotensin-converting enzyme (ACE)- 

inhibition. ACE-inhibition was suggested for preventing the haemodynamic and 

metabolic changes, and thereby decreasing preload, afterload, and leading to 

improved cardiac output (111,116). I therefore pursued the hypothesis that ACE- 

inhibition might potentially limit infarct expansion, RSD, LV dilatation and 

aneurysm formation after Ml. Long-term treatment with ACE inhibitors might be 

more effective than NTG alone because of their combined metabolic and 

haemodynamic effects and the fact that continuous NTG administration might be 

complicated by nitrate tolerance (117,118:Appendix 27).

In the early 1980’s, ACE inhibitors, like captopril and enalapril, had been 

shown to effectively decrease preload and afterload, reduce cardiac size, and 

improve cardiac output in patients with severe and refractory heart failure 

(111,116). The ACE inhibitor captopril was also shown to reduce infarct size in 

rats (119). In 1985, Pfeffer et al. first reported the beneficial effects of 3 to 4 

months of captopril therapy, begun 2 and 21 days after Ml, on LV dilatation, 

cardiac output, and chamber stiffness after Ml in the rat (120). The groups with 

initiation of treatment at 2 and 21 days after Ml did not differ in that study (120). In 

a later study, Pfeffer et al. showed that captopril therapy prolonged survival in the 

rat model when begun 14 days after Ml, after the early healing phase was mostly 

over (76). However, infarct expansion, RSD and infarct collagen were not 

evaluated in those studies.
By 1988, two randomized, double-blind clinical trials reported the beneficial 

effects of prolonged captopril therapy after acute Ml, on LV size and function 

(29,30). First, Sharpe et al. (29) showed that captopril therapy (25 mg t.i.d.), in 60
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patients with one-week old Q-wave Ml but no heart failure prevented the increase 

in LV diastolic volume, reduced the LV systolic volume, increased stroke volume 

index, and improved LV ejection fraction after one month and up to one year by 

quantitative 2D-Echo. Second, Pfeffer et al. (30) showed that captopril therapy 

decreased LV diastolic volume, decreased filling pressure and increased exercise 

capacity during one year of follow-up in 59 patients with 11-day to 31-day old 

anterior Ml and radio-nuclide ejection fractions of 45% or less but no heart failure.

The subsequent ‘Survival and Ventricular Enlargement’ (SAVE) trial 

showed beneficial effects of prolonged captopril therapy, started between 3 and 

14 days (mean 11) after acute Ml, on mortality and morbidity after Ml (121). The 

effect on prolongation of survival in the patients with objective evidence of LV 

dysfunction on 2D-Echo was sustained for 3.5 years.
Because of fear that clinically significant vasodilator-induced hypotension 

during acute Ml might increase infarct size and potentially result in more infarct 

expansion, as reported with NTG from my laboratory (122:Appendix 28), ACE 

inhibitors were avoided in the very early stage of Ml. The relatively long half-lives 

of ACE inhibitors suggested the need for caution when used in that setting since 

timely withdrawal of the drug effect following a hypotensive event might not be 

possible. This possibility was expressed in the ‘Cooperative New Scandinavian 

Enalapril Survival Study II’ (CONSENSUS II) trial, where the ACE inhibitor was 

initiated intravenously on day 1 after Ml and followed by oral therapy for 6 months 

(123).
The subsequent Healing and Early Afterload Reducing Therapy’ (HEART) 

trial evaluated the effect of early (day 1 onwards) or delayed (day 14 onwards) 

ACE-inhibition with ramipril on LV enlargement by 2D-Echo in patients after acute 

anterior Q-wave Ml (124,125). In this study, LV enlargement on quantitative 2D- 

Echo was used as a surrogate marker for the risk of clinical events (125). The 

results showed that early ACE-inhibition attenuated LV remodelling, assessed by 

the LV area, and resulted in earlier recovery of LV ejection fraction (124). The 

HEART trial was terminated early, because the results of the concurrent trials 

evaluating early ACE inhibitor therapy begun within 24 hours after Ml indicated 

that substantial lives were saved by early therapy (124).
Meanwhile, studies from my laboratory in the canine model of relatively 

small Ml suggested that long-term ACE inhibitor therapy during healing after Ml 

limited LV remodelling and dysfunction (126[Appendix 29],127[Appendix 30],
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128:Appendix 31) but also decreased infarct collagen (127-129), which was 

harmful in some cases (129:Appendix 32). The beneficial effects of ACE- 

inhibition of LV geometry and function were also confirmed in patients during 

healing after Q-wave Ml (130). The combination of captopril and isosorbide 

dinitrate (ISDN) therapy during healing did not prevent the decrease in infarct 

collagen seen with captopril alone in the dog model (131:Appendix 33). In a 

parallel randomized double-blind clinical study that compared prolonged therapy 

with buccal nitrate (eccentric dosing, allowing a daily nitrate-free interval), oral 

captopril, or both given between 48 hours and 6 weeks after Q-wave Ml, all three 

active treatments preserved LV function and equally attenuated LV remodelling 

and LV aneurysm (108).
In all these studies from my laboratory, the evaluation of LV geometry 

included 3D-reconstruction and assessment of RSD and infarct expansion on 2D- 

Echo. In contrast, the evaluation of LV geometry by 2D-Echo in the large clinical 

trials were somewhat limited and did not include 3D reconstruction and 

assessment of RSD or infarct expansion (132). Nevertheless, the finding of 

decreased infarct collagen is difficult to reconcile (27,133) with the overwhelming 

evidence in favour of the use of ACE inhibitors after Ml (134). It is possible that 

pleiotropic effects of ACE inhibitors are involved in the overall benefits. The 

potential mechanisms of benefit from ACE inhibitors after Ml are summarized in 

Table 6. TABLE 6. Potential mechanisms for benefit from ACE-inhibition therapy after 
acute myocardial infarction

1. improved haemodynamics
Decreased preload: increased venous capacitance 

Decreased afterload and impedance

2. ACE-inhibition
Decreased renin-angiotensin-aldosterone system 

Decreased catecholamine secretion 

Decreased inotropic stimulation 
Decreased systemic vascular resistance 

Decreased vasoconstrictor tone 
Improved collateral blood flow 
Decreased heart rate 

Decreased salt retention

3. Kininase inhibition
4. Improved cardiac geometry

Decreased chamber size and wall stress 

Decreased deformation forces 
Decreased regional dilatation and expansion 

Decreased global ventricular dilatation
5. improved regional and global ventricular performance 

S. (improved survival)

Moditied Irom Jugdutt (22] Appendix 4J)
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The short-term trials of early ACE inhibitor therapy, initiated within 24 hours 

of Ml, included the ‘Fourth International Study of Infarct Survival’ (ISIS 4) study 

(135), the ‘Gruppo Italiano per lo Studio della Sopravivvenza nell’ Infarcto 

Miocardico’ (GISSI-3) study (136), the ‘Chinese Captopril Study’ (CCS-1) (137), 

and the ‘Survival of Myocardial Infarction Long-term Evaluation’ (SMILE) study

(138). In addition, the ‘Acute Infarction Ramipril Efficacy’ (AIRE) study initiated 

ACE inhibitor therapy 3 to 10 days after Ml in patients with congestive symptoms

(139) and the ‘Trandolapril Cardiac Evaluation’ (TRACE) study began ACE 

inhibitor therapy 2 to 7 days after Ml (140). The ‘Captopril and Thrombolysis 

Study’ (CATS) began the ACE inhibitor within 6 hours of Ml (141). Of note, 

although these trials were conducted in the thrombolytic era, the SMILE study 

patients did not receive thrombolytic therapy (138).

Previous trials of ACE inhibitors in heart failure, including the ‘Cooperative 

New Scandinavian Enalapril Survival Study’ (CONSENSUS-1) (142), the ‘Studies 

of Left Ventricular Dysfunction’ (SOLVD treatment) with enalapril (143), the 

Veterans Administration Cooperative Vasodilator-Heart Failure Trial’ (V-HeFT) 

(144) and SOLVD prevention trial with enalapril (145), were all beneficial but did 

not include detailed evaluation of regional infarct expansion, RSD or global LV 

shape on 2D-Echo.

2.5.4. Reperfusion
By the 1980’s, several key studies in the dog model had demonstrated that acute 

coronary artery occlusion renders myocardium in the distal coronary bed at risk of 

infarction (146-148), and a gradient of nutrient flow from the central to border 

regions and from the endocardium to the epicardium is a major determinant of 

infarct size (149). Biochemical abnormalities that ensue in the ischaemic zone, 

such as increased lactate, acidosis, ionic pump failure and adenosine 

triphosphate (ATP) depletion, were postulated to set in motion a chain of events 

that lead to rapid loss of cellular homeostasis and progression to cell death (150). 

The biochemical studies suggested that the march to cell death is modulated by 

the severity of ischaemia and the levels of calcium ions, reactive oxygen species 

and ATP (150).

In the dog model of reperfused Ml, Reimer et al. showed that necrosis 

marches from the endocardium to the epicardium as a wavefront between 40 

minutes and 3-6 hours post-occlusion, and the march can be interrupted by
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reperfusion (151). Furthermore, the transmural extent of necrosis in that study 

was 38% after 40 minutes, 57% after 3 hours, 71% after 6 hours and 85% after 24 

hours, suggesting that the therapeutic time window for myocardial salvage was 3- 

6 hours in the dog (151). These findings continue to provide the rationale for early 

reperfusion to reduce infarct size (152).

The timing of therapy has been shown to be a critical factor for salvage of 

muscle, geometry and function after Ml following permanent occlusion or post 

ischaemic reperfusion. It was recognized that the interval between the onset and 

completion of myocardial necrosis provides time for applying protective therapy to 

limit infarct size. Collective evidence suggests that this interval might be longer in 

humans than dogs or rodents (Figure 3). Thus, interventions applied 9 hours after 

coronary artery occlusion did not decrease infarct size in the dog model (153) 

while several studies in humans demonstrated salvage beyond 6 hours from the 

onset of Ml (28,154). For example, Flaherty et al. (154) demonstrated that NTG 

therapy, given within 10 hours (range 6 to 13.5) after Ml, improved thallium-201 

scintigrams in patients and suggested that the ‘cut-off for reversibility was about 

14 hours. In a subsequent study from my laboratory, NTG therapy given within 12 

hours of onset of Ml was associated with beneficial effects on clinical and 

laboratory parameters of myocardial necrosis and remodelling (28).

Several factors may explain the slower march to necrosis in humans 

compared to smaller animals (Figure 3). These include: i) the larger heart size 

and the slower heart rate in humans; ii) a more gradual occlusion process, 

involving thrombus formation on long-standing atheromatous plaques and/or 

spasm, and often subtotal in humans compared to the sudden and complete total 

occlusion induced in animal experiments. Evidence in the early 1980’s suggested 

that the syndrome of severe chest pain associated with ECG changes signals the 

onset of the infarction process, and both occlusion and necrosis are not 

completed for several hours. This concept was supported by findings of the 

prolonged release of CK enzyme over 16 to 60 hours (155) and myoglobin over 2 

to 3 days (156), or prolonged ST-segment elevation for several days (157), or 

improvement in multiple clinical and laboratory indicators of infarction in patients 

given therapy later than 6 hours after onset of chest pain (154). Other possibilities 

were also considered: i) that slow enzyme or protein release might merely reflect 

poor perfusion of the central core of necrosis rather than continued cell death; and
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ii) that early therapy might prolong the interval to completion of necrosis by 

delaying its evolution, and this prolongation may be longer in man than dogs.

Although a slower march to necrosis might apply to permanent occlusion, 

subsequent data indicated that reperfusion, with thrombolytic therapy and/or 

percutaneous transluminal coronary angioplasty (PTCA), is most beneficial if 

performed very early (152). This led to the concept that other factors might be 

associated with the sudden restoration of flow to ischaemic myocardium by 

reperfusion. Thus, reperfusion may be associated with ‘myocardial stunning’ and 

reperfusion injury (158-162), resulting in mismatches between restoration of flow 

and salvage of muscle, LV geometry or LV function.

The mechanisms of reperfusion injury have been reviewed (158,163). 

Even successful reperfusion, that does not result in coagulative necrosis, may 

cause persistent mechanical dysfunction for 1 week or more. This delayed 

recovery of function, termed ‘myocardial stunning’, is associated with delayed 

recovery of adenosine triphosphate (ATP) (80% within 3 days). Other prolonged 

biochemical abnormalities include: increased oxygen-free radicals, calcium 

overload, interrupted creatine phosphate shuttle, cardiac sympathetic nerve 

dysfunction, and vascular ‘no reflow’. Reperfusion itself can cause paradoxical 

injury and ‘necrosis’ that is predominantly of the contraction band type and may be 

potentially reversible. Reperfusion also causes extracellular collagen matrix 

(ECM) disruption, which may lead to disruption of mechanical coupling and 

contribute to dysfunction (164-166).

Evidence in the early 1980’s suggested that late reperfusion, beyond 2 

hours and up to a maximum of 6 hours in the dog (151,162), and probably 14 

hours in humans (154), might result in significant reperfusion injury. Although late 

reperfusion results in persistent and prolonged mechanical dysfunction and ECM 

disruption (164-166), it still seemed to preserve LV geometry and limit acute 

expansion (47,167). Whether this beneficial effect might persist throughout the 

healing phase was controversial.

Three experimental studies in the rat model confirmed the benefits of very 

early reperfusion. First, late reperfusion made 2 hours post-occlusion did not limit 

infarct size or transmurality but reduced infarct expansion (47). Second, early 

reperfusion made 1 hour post-occlusion reduced infarct size and expansion while 

late reperfusion at 6 hours did not limit infarct size or expansion but accelerated 

healing (168). Third, late reperfusion made 6-8 hours post-occlusion did not limit
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infarct size as seen with early reperfusion after 1-2 hours but limited infarct 

expansion and accelerated healing, with more rapid removal of dead myofibrils 

and increased myocytolysis (46).

Eight studies in the dog model supported the idea of greater overall 

benefits with very early rather than late reperfusion. These studies were:

First, reperfusion made 2 hours after left circumflex (LCX) coronary artery 

occlusion was associated with decreased tissue loss but delayed improvement of 

regional LV function over 4 weeks (169).

Second, reperfusion made 3 hours after LAD or LCX coronary artery 

occlusion showed little evidence of myocardial salvage (170).

Third, LV function at 4 weeks improved with reperfusion made 2 hours 

after LAD occlusion but not with reperfusion made 4 hours after LAD occlusion 

despite similar infarct sizes in the two groups (171).

Fourth, reperfusion made 90-120 minutes after LCX occlusion resulted in 

late recovery of function and hypertrophy of salvaged cardiomyocytes in the 

border regions at 3 weeks (172).

Fifth, reperfusion made at 2 hours after LAD occlusion resulted in delayed 

recovery of global LV function without change in regional LV asynergy, attenuation 

of global and regional dilatation, less infarct expansion and thinning during healing 

over 6 weeks despite decreased infarct collagen (49).

Sixth, reperfusion made 6 hours after LCX occlusion did not decrease 

infarct or scar size but still increased the rate of healing over 6 weeks (173).

Seventh, reperfusion after 4 hours. In a mid-LAD and LCX branch 

occlusion model, was associated with significant intra-myocardial haemorrhage in 

necrotic areas, decreased early granulocyte response, suggesting impaired early 

healing, and no decrease in infarct size (174).

Eighth, very late reperfusion, made at 1 day or 7 days after completion of 

necrosis from an LAD occlusion, had no effect on infarct size, transmurality, 

collagen, haemorrhage, calcification or inflammation, suggesting that there was no 

effect on healing in that setting (175).

A study of the mechanical properties of the infarcted left ventricle following 

reperfusion, made 1-3 hours after coronary occlusion in the rabbit model, 

demonstrated that the reperfused scars had lower collagen content and lower 

tensile strength and ruptured more easily at high stresses (176). The late group in
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that study also showed lower collagen cross-linking density in the 3-week-old 

scars.

A clinical study assessed the effect of time to reperfusion on infarct size by 

imaging with thallium-201 (TI-201) single-photon emission computed tomography 

(SPECT) and LV function by LV angiography in patients with anterior Ml (177). 

Compared to non-reperfused patients, reperfusion decreased infarct size and 

improved global LV ejection fraction in early (within 3 hours of the onset of pain) 

and intermediate (3-6 hours) groups but not the late (>6 hours) group. 

Importantly, reperfusion limited LV dilatation in all three groups (177).

Several studies addressed the effect of adjunctive therapies after 

reperfusion. In the dog model of reperfusion made 4 hours after LAD occlusion 

for 2 hours, methyl prednisolone decreased infarct size but did not improve 

function on 2D-Echo (178).

In the dog model of reperfusion for 2 days after 90 minutes of LAD 

occlusion, the diffusible anti-oxidant and hydrogen peroxide scavenger N-(2- 

mercaptopropionyl)-glycine, given between 30 minutes and 4 hours after 

reperfusion, decreased infarct size (179). Data in a clinical study from my 

laboratory indicated that early and prolonged intravenous low-dose NTG therapy 

(>24 hours) during and after late reperfusion (at 4 hours) was associated with 

prompt improvement of LV function and a decrease in infarct expansion that 

persisted up to 6 months on serial 2D-Echo (50,180).

In the dog model, the oxygen free radical scavenger, superoxide 

dismutase, given for 1 hour from the time of reperfusion made at 90 minutes post

occlusion, reduced infarct size (159). In the same model, superoxide dismutase 

given for 2 hours from the time of reperfusion made 2 hours post-occlusion, 

reduced infarct size and infarct expansion and improved LV function beyond that 

achieved with reperfusion alone (181). The overall findings suggest that 

myocardial stunning and reperfusion injury can be prevented by early reperfusion 

and adjunctive therapy (182).

There is now general agreement that greatest success is achieved when 

reperfusion is established within 2 hours after Ml in humans (152). Although this 

is not always clinically possible, aggressive approaches to abbreviate the interval 

between the onset of pain and therapy have been beneficial (183). Reperfusion 

therapy alone, with coronary angioplasty and thrombolysis (184) or in combination 

with other pharmacological agents such as NTG (50), has been shown to limit
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infarct expansion. Thrombolytic therapy has already been shown to improve 

survival in both the GISSI trial (185) and the international ISIS-2 trial (186,187).

Recent studies in the rat model have suggested that early cell death after 

coronary occlusion involves apoptosis, a form of genetically programmed cell 

death, followed by necrosis (188). After reperfusion in the rat, early cell death has 

been suggested to also involve oncosis (cell swelling) together with nuclear 

changes seen with apoptosis (189). The topics of apoptotic and oncotic cell death 

in acute coronary syndromes have been reviewed (190). Imaging of apoptotic cell 

death after reperfused Ml has confirmed that very early cell death occurs within 

the 2-hour time window in mice (191) and within the 6-hour time window in 

patients (192,193). In one clinical study, 99m-technetium (99m-Tc)-labeled 

annexin-V uptake reflecting cardiomyocyte apoptosis increased between early 

(3.4 hours) and late (20.5 hours) on SPECT images, and 99m-Tc -sestamibi 

imaging at 6-8 weeks confirmed defects seen at the earlier annexin-V uptake sites

(192). In the other clinical study, 99m-Tc-sestamibi imaging showed perfusion 

defects that decreased in size between baseline and 5-19 day studies and all 

patients showed 99m-Tc-annexin-V-positive cardiomyocytes in the infarct zone

(193). The overall findings support the concept of reversible myocardial damage 

being present beyond 6 hours after the onset of Ml in humans.

After 1985, several laboratories applied imaging techniques to study LV 

remodelling after Ml in patients with or without reperfusion. Of eight reported 

studies, none addressed RSD and LV remodelling in a systematic fashion. These 

studies were:

First, a study of 30 patients receiving thrombolysis after a first Q-wave Ml 

(15 anterior, 15 inferior) showed, by serial M-mode echocardiography and LV 

angiography over 2 weeks, that early infarct expansion and global LV dilatation 

correlated with the extent of wall motion abnormality on the baseline study (194).

Second, a study of 54 patients with a first Ml (29 anterior, 25 inferior) and 

no thrombolysis, showed evidence of early LV dilatation which was more marked 

in anterior Ml, and LV diastolic dysfunction even in patients with preserved LV 

systolic function using serial blood pool radio-nuclide (99m-Tc) angiography over 

10 days (195).

Third, in a randomized study of 99 patients with acute Ml (50 placebo, 49 

captopril; 12 previous Ml; 76 with new Q waves; 59 anterior; 40 infero-posterior; 

no thrombolysis), serial 2D-Echo over 2 months documented evidence of early
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2.5.5. Importance of collateral blood flow in remodelling and healing after Ml

In the 1980’s, there was continuing controversy about the existence of intramural 

coronary collaterals in the normal human heart and their functional significance in 

patients with coronary artery disease (For review see Gregg, 202). Post-mortem 

studies (203,204) had demonstrated inter-coronary arterial collateral channels, 

measuring 20 to 350 pm and more prevalent in the endocardium, in both normal 

and diseased human hearts. Blumgart had pointed out that the majority of 

intramural collaterals were too small to be visualized on routine coronary 

angiography (205). It was postulated that chronic ischaemia stimulates the
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infarct expansion which was attenuated by captopril (196). However, that study 

did not show improvement of exercise capacity or attenuation of LV dilatation with 

captopril (196).

f

Fourth, a study of 56 patients with acute Ml using 2D-Echo over 6 months, 

confirmed that successful reperfusion preserves LV systolic volumes and regional 

function (197).

Fifth, a study of 14 patients with a first acute Ml (12 anterior, 2 inferior) and 

receiving reperfusion therapy with PTCA and rt-PA (recombinant tissue-type 

plasminogen activator) used 99m-Tc-sestamibi for measuring infarct size and 

electron beam computed tomographic imaging for LV volumes and function (198). 

This study showed significant LV dilatation over 1 year and correlation between 

infarct size and LV volume and function at 1 year (198).

Sixth, in a study of 233 patients with a first anterior Ml treated with 

thrombolysis, the baseline wall motion score index was shown to predict LV 

dilatation and mortality (199). The enzymatic infarct size, which is not available 

until 3 days after Ml, also predicted LV dilatation in that study (199).

Seventh, in a study of 53 patients after a first anterior Ml treated with 

PTCA, angiographic dye intensity in the myocardial risk area correlated with the 

reduction in LV volume (200).

Eighth, in a randomized study of 352 patients with anterior Q-wave Ml 

treated with reperfusion and the ACE inhibitor ramipril for 90 days, serial 2D-Echo 

confirmed myocardial stunning and delayed recovery and the predictive value of 

CK for functional recovery (201). This study noted that the baseline LV function 

was not a predictor of LV functional recovery after reperfusion (201).



development of collateral channels, thereby resulting in greater increase in their 

size in the subendocardium than subepicardium.
The pattern of collateral anastomoses in dogs is somewhat similar to that in 

human hearts with chronic coronary artery disease (203,205), but there are 

important differences. Dog hearts have a more abundant collateral supply and the 

network is predominantly sub-epicardial (204). Furthermore, the time required for 

inter-coronary collaterals to develop in man in response to ischaemia is not 

known. After abrupt coronary occlusion in dogs, there is a small collateral inflow 

which often doubles in the first 24 hours (206) and increases considerably during 

the first 4 days. In contrast, gradual coronary occlusion in the dog results in a 

large increase in collateral function within days (202,207). Thus, it was postulated 

that chronic ischaemia in man may stimulate enlargement of collaterals and 

development of muscle bundles in their walls within days to weeks (204), and 

blood flow via collaterals into ischaemic areas was possible (208).

In patients with Ml, the degree of collateral development and the amount of 

collateral reserve might differ depending on such factors as duration and severity 

of coronary artery disease, presence of multi-vessel involvement, type of 

occlusion and a history of previous angina pectoris and/or infarction. 

Characterization of coronary anatomy and collateral circulation before and after 

infarct-limiting therapy such as NTG have not been done for practical, ethical and 

technical reasons.
In the pig heart, collaterals are sparse (and concentrated toward the 

endocardium) so that infarcts are predominantly transmural (204). In a dog model 

of collateral obliteration and more LV aneurysms (Figure 4), the infarcts are 

consistently transmural and show greater LV remodelling (73,74).

Attenuation of remodelling might be greater in patients with developed 

collaterals and a patent infarct-related artery (209,210) during healing after Ml. 

Collaterals also appear to influence recovery of function after reperfusion (23). 

Thus, collaterals contribute flow not only for salvage of ischaemic myocardium, 

resulting in small subendocardial infarcts that are less prone to adverse LV 

remodelling, but also provide nutrient flow which likely promotes normal healing, 

thereby limiting remodelling. In the recent Total Occlusion Study of Canada 

(TOSCA), the restoration of flow in the non-acute occluded arteries resulted in a 

small improvement in LV regional and global function (211). However, the effects 

on LV remodelling or RSD were not assessed in that study.
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Figure 4. Transmural infarction and aneurysm in the dog 
induced by collateral obliteration.

A, B. Radiographs showing an LV apical aneurysm and patent coronary 
vessels by post-mortem arteriography. Note the avascular LV apex.

C, D. Transmural infarction produced by mid-LAD ligation (arrow), barium- 
gelatin-polymer injection into distal LAD, and running suture around 
the occluded bed. All myocardium within the ligated bed shows 
infarction, with no sparing.

Jugdutt (74[Appendix 20])
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2.5.6. Beta-adrenergic blockade and calcium channel blockade
Experimental (212) and clinical (213) studies in the mid 1970’s showed that beta- 

adrenergic blockade with propranolol after Ml decreased infarct size (212) and 

improved LV function (213). Beta-adrenergic blockade with metoprolol, given over 

the first 15 days after acute Ml in the large Metoprolol In Acute Myocardial 

Infarction (MIAMI) trial, showed positive effects on CK infarct size in patients 

treated within 7 hours but no survival benefit (214-216). Acute improvement in LV 

function with intravenous metoprolol after Ml was seen in patients with pre-formed 

collaterals to the infarct zone (217). In the dog model of Ml, intravenous 

metoprolol initiated before thrombolytic therapy, increased infarct limitation partly 

by increasing collateral flow (218). In the rat model, propranolol, given over 5 

weeks after Ml, decreased myocyte dimensions, and wall thicknesses, and 

increased LV dimensions (219).

In theory, decreased inotropism and heart rate with beta-adrenergic 

blockade would be expected to decrease the strength and frequency of the 

contractile pull of the non-infarct zone on the infarct zone and thereby reduce 

infarct expansion. However, this beneficial effect may be offset by any increase in 

LV volume secondary to decreased contractility.

The effect of beta-adrenergic blockade on LV function and topography by 

2D-Echo was studied in 63 Ml patients randomized to metoprolol (15 mg 

intravenously initially, given as 5 mg intravenously every 2 minutes for a total of 3 

injections, followed by 100 mg orally twice day trial for 15 days and maintenance 

for 90 days ) or placebo (220). Metoprolol decreased early rate-pressure product 

and CK infarct size, and persistently decreased LV asynergy and increased LV 

ejection fraction on serial 2D-Echo over 24 weeks (220). However, serial 2D- 

Echo revealed similar mean expansion index and thinning ratio in the two 

treatment groups (220). Thus, it is very likely that the beneficial effect of 

metoprolol on infarct size, rate-pressure product and contractile pull was offset by 

the effect on chamber size, which was similar to that in the placebo group.

The effect of the calcium-channel blocker nifedipine on LV function, infarct 

size and infarct expansion was studied in a prospective double-blind, placebo- 

controlled trial of 132 low-risk Ml patients randomized to nifedipine (120 mg/day) 

or placebo (89). The patients were treated within 12 hours of symptom onset and 

had initial LV ejection fractions more than 35% and clinical Killip classes of less 

than II. Therapy was continued for 6 weeks, and evaluations made before
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treatment and at 10 days. There was no effect on clinical outcome or infarct size 

with nifedipine, although mean blood pressure decreased by 10% over the 10 

days. However, nifedipine limited infarct expansion on 2D-Echo. In a study of 

424 patients with successful reperfusion, within 12 hours of symptoms of acute 

Ml, a possible survival benefit was shown with beta-adrenergic antagonist but not 

calcium-antagonist therapy taken before reperfusion (221).

2.5.7. Digoxln
In theory, prolonged inotropic stimulation and increased contractility of the non

infarct area after Ml would be expected to promote infarct expansion by increasing 

intra-mural traction on the infarct zone. The effect of digoxin therapy during 

healing over 6 weeks after Ml was therefore studied in the dog model of Ml (222). 

In this model of predominantly small infarcts, digoxin therapy increased infarct 

expansion, thinning and bulging as well as the frequency of LV aneurysms on 20- 

Echo (222). Digoxin also reduced global LV dilatation but preserved LV mass, 

global LV systolic function and infarct collagen (222).

2.6. Development of a chronic large animal model for studies of left 
ventricular remodelling during healing after myocardial infarction

Prior to 1980, there were no well-defined chronic large animal models for 

quantifying infarct size and remodelling or studying the long-term effects of 

interventions on LV function and remodelling during healing after Ml. Variability of 

coronary anatomy in dogs resulted in variable infarct size despite occlusions at a 

fixed anatomic site. Between 1976 and 1979, a chronic canine model was 

therefore developed for studying the effects of early interventions on the size of 

the infarct relative to that of the occluded bed 48 hours after LCX occlusion as well 

as regional collateral blood flow and haemodynamic variables (147). This model 

allowed the mapping of infarcts, occluded beds and regional blood flows from the 

base to apex of the left ventricle (147,149). The potential for pharmacological 

agents to modify the relation between the mass of the infarct and occluded bed 

was initially studied using vasodilators, such as NTG and prostaglandin (PG) 

inhibitors (which were also anti-inflammatory agents), in the conscious dog model 

(56,57,98,99). The end-points included haemodynamics, collateral blood flow and 

pathologic infarct size (56,57,98,99).
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The analysis of infarct size relative to occluded bed size at 2 days post Ml 

had at least 5 advantages (56,57,98,99,147). First, it provided a reliable baseline 

for studying the effect of therapies on infarct size. Second, it made allowance for 

the variation in coronary anatomy which leads to variation in infarct size despite 

occlusions made at a fixed site. Third, it allowed comparison of treatment groups 

using linear regressions showing the direct relation of infarct size to the occluded 

bed size. Fourth, it recognized the fact that no infarcts result with occluded beds 

smaller than 20% of the LV weight; this factor resulted in a dilution effect in 

studies that expressed the infarct weight in grams or as percent of LV weight, 

necessitating large numbers of dogs to detect significant differences with 

interventions. Fifth, It permitted the detection of increased or decreased infarct 

size using relatively small numbers of animals, by comparing the slopes of the 

linear regressions between infarct size and occluded bed size for treatment 

groups. Similar relationships between infarct size and occluded bed size were 

found in humans dying soon after acute Ml.

Post-mortem coronary arteriography had been used previously to visualize 

the coronary anatomy by Fulton in Glasgow (223) and Schaper in Mannheim 

(204). This technique was applied in the 2-day infarct model to measure the 

occluded bed size, which was defined as the boundary between the anatomic 

locations of epicardial and transmural vessels recorded on stereoscopic 

radiographs of transverse sections, after permanent opacification by a barium 

sulphate-gelatin mixture containing pigments (224). This method was shown to 

be reproducible and allowed the mapping of collateral blood flow relative to an 

anatomic reference base that was considered to remain fairly fixed over the first 

48 hours after Ml (225).

In 1980, I set up the first laboratory for studying LV function and 

remodelling after Ml at the University of Alberta. I introduced the chronic dog 

model that was developed at the Johns Hopkins Hospital (147) and adapted it for 

studying cardiac function and remodelling over several weeks after Ml rather than 

just 2 days (41,55). Since several studies suggested that anterior Ml had a worse 

prognosis that inferior Ml, I performed both LAD and LCX occlusions. Infarct size 

was quantified and topography was mapped using computerized planimetry 

(Hewlett Packard digitizer and computer, Seymour, Connecticut) (Figure 5). 

Regional myocardial blood flow was measured by the radioactive microsphere 

method using a flow program for multiple isotopes rather than just six (Tracor
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Northern 2250 gamma scintillation counter). Post-mortem coronary arteriography 

was used for quantifying the occluded bed size (Figure 6). Systematic 

pathological assessment of the post Ml hearts was carried out for infarction, 

cardiac dilatation, aneurysm formation, rupture, geometric variables and 

correlation with ante-mortem 2D-Echo imaging. Computer programs were 

developed (Hewlett Packard) for statistical analysis, the analysis of large volumes 

of haemodynamic, angiographic, pathological and CK infarct size, 2D-Echo, and 

clinical data.
The model of mid-LCX occlusions and 2-day infarcts was validated in a 

study of the effects of PGEi, PGE2 , and PGI2 (or prostacyclin) and drugs acting 

via apparently different mechanisms such as NTG and ibuprofen, on infarct size, 

collateral blood flow and post-infarction arrhythmias (226). Decreased infarct size 

as percent of the risk region was demonstrated with PGI2 , NTG, PGEi and 

ibuprofen but not with PGE2 . Interestingly, this beneficial effect was associated 

with decreased infarction arrhythmias and was more marked with PGI2 , NTG and 

PGEi, which also increased collateral blood flow, but was trivial with ibuprofen 

which did not increase flow. In addition, PGE2 exerted an anti-arrhythmic effect 

independent of beneficial effects on infarct size or flow (226).

The model was then modified by using i) artériographie injections distal and 

proximal to the occlusion site instead of relying on filling via collateral channels, 

and ii) 10 LV sections instead of 5, in order to reduce the error in marking the 

boundaries to 1±1 mm (SD). Collateral blood flows were mapped within the 

occluded bed from the base to apex of the heart. This approach allowed definition 

of a functional risk region based on regional blood flows.

Using this modified model, the effect of mid-LCX and mid-LAD occlusions on 

infarct size was studied in conscious and barbiturate-anesthetized dogs 

(227[Appendix 34],228[Appendix 35]). The results showed that for similar 

occluded bed sizes. I) LAD infarcts were larger than LCX infarcts (227,228), and 

ii) infarcts were larger for anesthetized compared to conscious dogs (227,228). 

The overall findings suggest that this effect was due to tachycardia in the 

anesthetized model (227,228). In a previous study, a single dose of thiopental to 

‘conscious’ dogs resulted in increased heart rate and bigger infarcts after LCX 

occlusions (229). Two conclusions were drawn from these studies. First, cardiac 

patients who receive barbiturate anesthesia and develop peri-operative Ml may be 

at increased risk for larger infarcts. Second, intervention studies should analyze
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Figure 6. Histopathological and topographical changes 
during infarct healing

A. A schematic of topographical changes from average maps of the 
transmural and non-transmural infarcts among those hearts for 
five selected time intervals.

B. The dynamic nature of histological changes in the infarct 
substrate during healing over 6 weeks in the dog model of 
myocardial infarction. Data from 194 canine hearts.

From Jugdutt {22[Appendix 4])
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infarct size data after LAD or LCX occlusions separately and pooling of infarct size 

data from anterior and inferior Ml should be avoided.

Subsequent studies tested various vasodilator therapies in the model of 

anterior Ml after LAD occlusion. The concern that excessive afterload reduction 

with vasodilator therapy after acute Ml might decrease perfusion pressure below a 

critical level and offset previously noted beneficial effects was first investigated. In 

the previous study, 6 hour intravenous infusion of the vasodilator NTG after LCX 

occlusion, in low-dose to decrease mean arterial pressure (an index of afterload) 

by less than 10% but not below 80 mm Hg, was demonstrated to decrease 

pathologic infarct size (98). This beneficial effect was associated with a marked 

increase in collateral blood flow and a marked decrease in LV filling pressure, an 

index of preload. In the new LAD occlusion model, collateral flow did not increase 

and no myocardial salvage was found when mean arterial pressure decreased by 

20% or more with higher NTG dosage (123), suggesting a narrow therapeutic 

margin for benefit with vasodilator therapy, such as intravenous NTG, in acute Ml. 

In the same conscious dog model, prolonged therapy after Ml with NTG 

(48,102,103), captopril and enalapril (126-129,131) were shown to further limit 

remodelling during healing after transmural Ml and improve LV function.

2.7. Assessment of left ventricular geometry and function during healing
after myocardial infarction

Since 1980, I focused studies in my laboratory on the natural history of LV 

geometry and function during healing after Ml using 2D-Echo and the effects of 

early infarct-limiting therapies on subsequent healing, LV geometry and LV 

function by 2D-Echo, and clinical outcome.

Since 2D-Echo provided tomographic images of the heart in real-time (230) 

and permitted repeated examinations to be made non-invasively, it became an 

effective tool for research studies in the early 1980’s. Between the mid 1970’s 

and the mid 1980’s, 2D-Echo was successfully applied to estimate regional LV 

function and LV asynergy (16,17,231,232:Appendix 36) despite some technical 

limitations (233), to estimate infarct size (62), to detect LV aneurysms (15,234), to 

detect post Ml complications (235), to measure LV volumes (236), to measure 

regional LV shape distortion (19,21,34), infarct expansion and remodelling in 

general (18,20,21,31,32), and LV hypertrophy (102,237).
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The relationship between LV asynergy on 2D-Echo and myocardial 

necrosis was validated in an earlier study in the dog model (62). The ability to 

quantify LV volumes by tomographic imaging using 2D-Echo was also validated in 

the dog model (238). Significant resolution of LV dyskinesis on 2D-Echo after 

LAD or LCX occlusion with normalization of transmural blood flow over 6 weeks 

was demonstrated in a small study of 13 dogs (239). This recovery of regional 

function was later ascribed to scar contraction during healing after Ml (240). 

Several studies applied 2D-Echo to measure the endocardial surface area of LV 

asynergy after Ml (21,28,34,36,241 -243) and demonstrated its expansion after Ml 

(244). Quantitative 2D-Echo was used to assess LV thrombi after Ml (245) and 

later to predict apical thrombus formation (246). The application of 2D-Echo to 

detect the viability of dysfunctional myocardium has been recently reviewed (247). 

Quantitative 2D-Echo has confirmed greater LV dilatation after anterior than 

inferior Ml (28) that was previously documented by echoventriculography (248). 

Quantitative 2D-Echo has also confirmed that LV ejection fraction may improve 

and the extent of LV asynergy may decrease in some survivors after Ml 

(21,28,34), as suggested in a previous study using gated blood pool scanning 

(249).

2.7.1. Assessment of infarct or scar size and remodelling in humans versus 

animals

In animal studies, direct ex-vivo demonstration of myocardial protection and 

reduction of ultimate necrosis and remodelling is possible. In contrast, clinical 

studies have had to rely on indirect methods that are often frustrating because of 

the lack of a single reliable standard for infarct size and difficulties in obtaining 

serial measurements before and after therapy. Multiple non-invasive techniques 

that permit serial measurements of different indicators of the extent of ischaemic 

injury have therefore been used to assess effects of therapy but each technique 

has its limitations (250:Appendix 37).

Because of the possibility that therapy merely delays the evolution of 

necrosis and prolongs the interval to its completion, assessment of infarct size 

needed to be repeated over several days to demonstrate persistent benefit. 

Quantitative 2D-Echo was therefore an attractive tool for quantifying LV geometry 

and function during healing after Ml in the dog model (102) and in patients

(21,28,34,35,132).
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2.7.2. Preliminary studies: validation of quantitative 2D-Echo for left 

ventricular remodelling and function
Although there was a paucity of information in the literature on the application of 

2D-Echo for repeated studies, beginning at the bedside in acutely ill or acute Ml 

patients in the early 1980’s, my laboratory validated the method in the first 500 

patients over the first 2 years and had performed over 1500 research studies by 

1985. As there was no standard protocol for quantifying wall motion abnormalities 

in acute Ml and to allow the application of repeated 2D-Echo imaging for 

assessing the effect of therapies in early Ml in 1980, a systematic approach for 

tomographic 2D-Echo imaging using a strict protocol (Figure 5), was applied both 

for studies at the bedside and in the laboratory (21,28,34,35). Against prevailing 

scepticism over the applicability of quantitative 2D-Echo in acute Ml studies, the 

necessary computer software programmes were developed for these studies in 

my laboratory (19-21,28,34,35,232). This innovative research approach in 

patients with acute Ml, while in the coronary care unit (CCU), revealed 

unsuspected complications on 2D-Echo imaging such as right ventricular 

infarction (251-253), LV thrombi and embolization (245), early RSD and infarct 

expansion (19-21,33-36), cardiac rupture (20), as well as large pericardial 

effusions and cardiac tamponade, and papillary muscle rupture.

The advantage of quantitative 2D-Echo studies using a strict systematic 

protocol, both for initial studies at the bedside and subsequent follow-up studies in 

the laboratory, with recording of patient positioning and angulation as well as 

transducer positions for repeated studies, has been confirmed in many 

laboratories (31,32,132). The ability to perform serial, non-invasive estimation of 

LV asynergy and RSD using quantitative 2D-Echo in experimental and clinical 

studies made it possible to objectively assess the effect of therapies on these 

parameters. Such studies contributed to the development of practical therapeutic 

strategies to preserve ischaemic myocardium as well as geometry and function in 

survivors, and thereby reduce morbidity and mortality post Ml (23). Systematic 

application of 2D-Echo in bedside studies in acute Ml patients between 1980 and 

1985 demonstrated the limitation of LV asynergy (232) and infarct expansion (28) 

by NTG.
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2.7.3. Assessment of global left ventricular shape and regional shape
distortion

The shape, size and structure of the normal left ventricle appear to reflect an 

adaptation to the dynamic requirements during systole and diastole. Adjustments 

ensure the optimal conversion of energy during contraction to the development of 

pressure and systolic ejection. Heart size has been shown to be directly related to 

its work load (254). Ventricular wall thickness is directly related to ventricular 

radius, and the ratio of wall thickness is directly related to systolic pressure (1). 

The Law of Laplace (255), which is crucial for understanding LV shape relative to 

LV load, states that wall stress (S) is proportional to pressure (P) and the radius of 

the curvature (r) for thin walled spheres. Thus, for wall thickness (t), the Law of 

Laplace states:

S = Pr /2t

Clearly, this only provides an approximation as the left ventricle is not a 

thin-walled sphere with uniform radius. Other investigators have modelled LV 

shape on a spheroid (256) or an ellipsoid (2,257), or on an egg shell with its top 

cut off (258), close to a truncated ellipsoid. More than 100 years ago, the LV wall 

was modelled on a curved membrane with two principal radii of curvature and a 

finite thickness (259). Modern cardiac imaging techniques, including 2D-Echo, 

support the idea of the normal LV shape being circular in the short-axis and close 

to a truncated ellipse in the long-axis (2).

It is important to note that mathematical models assume uniform LV shape 

and, often, uniform wall thickness as well. Calculations of LV wall stress are 

therefore flawed by over-simplified assumptions (260). Various mathematical 

approaches have been proposed for calculating wall stress (10,261,262). In 

pressure- and volume-overload hearts with LV dysfunction and LV dilatation, the 

transition from the normal ellipsoidal shape to a spheroidal shape represents an 

adaptation towards normalized wall stress (263-266). Global shape has been 

measured by a variety of indexes: the eccentricity index (267), Gibson index 

(268), shape-power index from Fourier analysis (269), curvature index based on 

quantitative regional curvature analysis (270), global LV shape index based on the 

ratio of major axis to minor LV axis at end-systole and end-diastole (271), a shape 

index based on the short- to long-axis ratio on 2D-Echo (265), a shape index 

based on width, length and area on 2D-Echo (266) and a sphericity index based
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on the long-axis length (12). Although these indexes were useful predictors, none 

involved left ventricles with marked regional shape distortions associated with Ml.

Numerous reports have described RSD of asynergic zones on end-diastolic 

short-axis and long-axis images on 2D-Echo, with further dilatation on end-systolic 

images (15-21,33-36,272). Several investigators have attempted to measure the 

areas and volumes of large chronic LV aneurysms on 2D-Echo. In patients with 

LV aneurysms, a residual myocardial index derived from 2D-Echo was shown to 

identify survivors after LV aneurysectomy (273).

I quantified RSD directly on short-axis 2D-Echo images in patients after Ml 

and showed that the degree of early diastolic RSD predicted subsequent outcome 

(21). In another study, I demonstrated that significant RSD preceded ventricular 

septal rupture after Ml (20). Importantly, the degree of RSD on the baseline 2D- 

Echo correlated with the degree of LV dilatation at follow-up, suggesting its role in 

progressive LV enlargement (274:Appendix 38). It is possible that increased wall 

stress in the border zone (275), especially in the presence of RSD, drives the 

progression to global LV dilatation and a global LV shape with normalized wall 

stress. Moreover, in 40 patients with LV dysfunction after anterior Ml, the 

sphericity index on LV angiography was elevated at a baseline study between 2 

and 4 weeks (12). In a study of 30 patients with anterior or inferior Ml from the 

SOLVD study (11 placebo, 19 enalapril), follow-up between about 1 year and 2 

years showed evidence of increased wall stress and progression of LV dilatation 

(276). In a subsequent study of 70 patients with anterior and inferior Ml, 

progressive dilatation was detected over 3 years after Ml (26). However, these 

studies did not assess RSD and the populations were fairly heterogeneous.

The collective evidence suggests that measurement of diastolic RSD in 

asynergic zones after acute Ml may identify a high-risk group of patients who 

might benefit from aggressive therapy.

2.8. The concept of adverse remodelling after myocardial infarction and

anti-remodelling therapy

The concept of infarct size limitation Implies existence of a functional border zone 

in the ischaemic region (88). In that concept, myocardium within the border zone 

is at jeopardy because of reduced flow but has sufficient flow for immediate 

survival. Subsequent increase in collateral flow, natural or drug-induced, provides
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for ultimate survival of this tissue. Flow In other areas is so low that necrosis 

results despite therapeutic efforts.

One major factor for survival of ischaemic myocardium is collateral flow, 

and this was confirmed in a previous study (149). It appears that during the early 

hours after coronary occlusion, there are varying amounts of normal, ischaemic 

and dead myocardial cells depending on a gradient of collateral flow from the 

peripheral to more central regions of the occluded bed (149). Other factors are 

also important, such as the myocardial oxygen demands and various cellular and 

metabolic factors (87). However, these are also linked to flow. Well-timed 

restoration of flow by reperfusion of the ischaemic myocardium may arrest the 

progression to necrosis (148). The timing of therapy is therefore critical and the 

early hours are of pivotal importance in therapeutic efforts to modify the extent of 

ultimate necrosis. This was also confirmed in experimental (153) and clinical 

(152) studies.

As discussed before. Ml is followed by adverse LV remodelling which 

contributes significantly to LV dilatation, LV dysfunction, disability and death (21- 

27). The aim of anti-remodelling therapy after Ml is therefore to prevent, limit, or 

reverse adverse structural remodelling and thereby interrupt the sequence of LV 

dilatation, LV dysfunction, disability and death (22).

As for the protection of ischaemic myocardium, the early hours are critical 

for therapy to limit early LV remodelling after Ml. The timing of anti-remodelling 

therapy after Ml may be staged to span the acute infarction phase, the healing 

phases, and the post-healing phase (Table 2) (22,37,39). Longitudinal studies 

have suggested that timing and duration of therapy are critical (22). Sequential 

changes during LV remodelling post Ml (Figure 6) span the phases of acute Ml, 

healing and repair over weeks to months (Figure 2), and beyond (22,23).

Since mechanical deformation forces and increased wall stress act on the 

infarct and non-infarct zones throughout these phases (Figure 7), thereby promo

ting progressive LV dilatation (22,23,277) and stimulating fibrosis (277,278: 

Appendix 39), early and prolonged anti-remodelling therapy is favoured. Some 

potential anti-remodelling therapies based on the determinants (Table 3) are listed 

(Table 7). Since several of the anti-remodelling therapies exert pleiotropic effects, 

some of which may potentially impact on the supporting ECM and infarct healing, 

the assessment of regional remodelling in the infarct zone throughout infarct 

healing after Ml, using such tools as 2D-Echo, is highly pertinent.
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TABLE 7. P oten tia l pha rm aco log ica l therap ies fo r  lim itin g  rem ode lling  a fte r 

acute m yoca rd ia l In farction

M echanism Therapeutic in te rven tion

Decrease infarct size Nitroglycerin, Reperfusion (thrombolysis 
and/or mechanical)

Decrease preioad Nitroglycerin, ACE inhibitors

Decrease afterload Nitroglycerin, nifedipine, ACE inhibitors

Decrease chamber size Nitroglycerin, ACE inhibitors

Decrease heart rate Beta-adrenergic blockers, 
calcium channel blockers

Decrease contractility Beta-adrenergic blockers, 
calcium channel blockers

Increase coilateral flow Nitroglycerin

Modi I led ironi Jugdutt (22 [Appendix 4J)

2.9. Role of the extracellular collagen matrix during healing and left 

ventricular remodelling after myocardial infarction

During the 1980’s, several investigators have drawn attention to the ECM (see 

27,277,278 for review). A large body of evidence supports the role of an 

organized, intricate network of ECM in mediating several important functions in 

the normal heart, including mechanical support, coupling of cardiomyocytes, 

mechanical strength and resistance to distension (279). During early healing after 

Ml, the loss of the 3D organization of the matrix (74,280), mediated by matrix 

metallo-proteinases (MMPs), was postulated to result in cardiomyocyte disarray 

(281), which might explain why cardiac ruptures occur spontaneously 

(282,283:Appendix 40) or during acute pressure loading (283), infarct distension 

(284), and early aneurysm formation (74). Several studies support the concept 

that ECM dissolution promotes dilatation (279,285-289). Loss of ECM 1-2 hours 

after Ml in the dog is associated with regional dilatation of the infarct zone (290). 

Several studies have linked extracellular strut rupture (Figure 8) and 

cardiomyocyte slippage to early infarct dilatation post infarction (66,73,74) and 

progressive global LV dilatation in heart failure (291). Others have linked collagen 

loss to cardiac rupture (292,293).
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2.9.1. MMP and TIMP balance m remodelling post Ml
During the early hours after Ml, ECM degradation, mediated by MMPs (294), 

follows early rapid activation of latent MMPs and exceeds synthesis. Since 

degradation occurs rapidly and synthesis slowly (0.56% per day in dog left 

ventricle), replacement after degradation is slow (295). This implies that the early 

ECM degradation results in a window of increased susceptibily for adverse 

remodelling that may last for weeks after the acute event, so that its prevention is 

imperative (277). Once activated, MMP-1 degrades fibrillar collagen into 

fragments, and MMP-2 and MMP-9 degrade these fragments into smaller 

fragments (294). Within hours of Ml in rats, collagen content decreases (165) and 

MMPs increase (296). The tissue inhibitors of MMPs (TIMPs), which neutralize 

MMPs, also increase after Ml (296). A balance between MMPs and TIMPs 

appears to be necessary for normal ECM remodelling and function (296).

Since replacement of the ECM after damage is slow, it is doubtful whether 

therapy targeted on MMP/TIMP balance, given after the damage in the acute setting 

of acute post-ischaemic reperfusion or reperfused Ml, can significantly reduce or 

reverse the early disruption of the ECM after acute ischaemia-reperfusion and 

thereby improve LV geometry and function.

The mechanical and other forces that alter regional and global shape and 

function during structural LV remodelling after Ml (Figure 7) have been reviewed 

(22,37,39). Sequential changes (e.g. matrix disruption, LV dilatation, hypertrophy 

and fibrosis) span the phases of acute injury and subsequent healing (Figure 6).

Since early expansion of the infarct zone contributes to regional dilatation 

and RSD that precede global dilatation (21), early anti-remodelling therapy is 

needed. Since mechanical forces (“push, pull and stretch”) that increase wall 

stress influence remodelling throughout its course (Figure 7) (22,28), it follows that 

therapy should be continued for a prolonged period.

Several studies over the 1980’s have shown that the in-vivo changes in LV 

remodelling and function during post Ml healing (22) and beyond can be tracked 

using 2D-Echo in-vivo (21,26,130,132). These studies indicated that timing and 

duration of therapy are critical (22). Susceptibility to deformation has been shown 

to depend on characteristics of the substrate, stage of healing, the status of the 

ECM and the pharmacological milieu (21,22,60,73,74,297). Transmural infarction 

is especially prone to expansion and rupture (64,78,81,87-89). Long-term studies 

that tracked in-vivo changes in LV remodelling using 2D-Echo have shown that
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therapy with overall beneficial effects on global LV remodelling could also modify 

infarct collagen matrix and infarct zone remodelling (103,126,127,129). In addition, 

these studies showed that therapy targeted at one mechanism might be unsuitable 

for another and produce potentially harmful effects, such as those seen with nitrates 

(122), ACE inhibitors (123,129,276), and anti-inflammatory agents (35). Clinical 

studies using 2D-Echo after Ml have shown progressive LV dilatation up to 1 year

(28,105,132), or 3 years (26), or 10 years (298:Appendix 41). In rats with 

moderate infarct size, LV dilatation, assessed ex-vivo, progressed over months 

(120,299).

After acute Ml, regional mural damage provides the basic substrate for 

remodelling by mechanical forces (Figure 7). Early reperfusion therapy, which 

effectively reduces the transmural extent of damage (148), also impacts positively on 

overall LV remodelling after Ml (22). Paradoxically, this occurs despite ECM 

damage (164-166). Moreover, morphological evidence of irreversible injury has 

been shown to increase between 5 and 90 or 180 minutes of post-ischaemic 

reperfusion in the dog model, suggesting that late reperfusion is less beneficial 

(162). Studies In the 1990’s have shown that apoptosis contributes significantly to 

cell death in early Ml (188) and reperfused Ml (189), suggesting that apoptosis may 

also contribute to acute LV dysfunction and remodelling (190). Apoptosis has 

recently been implicated in long-term LV remodelling after Ml (300).

Cumulative evidence also suggests that reperfusion injury associated with 

post-ischaemic coronary reperfusion involves damage to the ECM, besides 

calcium overload, oxygen free radicals, microvascular obstruction, neutrophil 

leucocytes and peroxynitrite (ONOO) (163). Thus, in the dog, myocardial stunning 

is associated with ECM disruption, complete loss of the collagen weave and 

increased MMP activity (164,165). In the pig model of 90 minutes of ischaemia 

and 90 minutes of reperfusion without infarction or inflammatory cell infiltration, 

MMP-9 increased and MMP-2 did not change (301). MMP-9 is also increased in 

the pig model of acute Ml (302). In other animal models, MMP-9 deletion (303) 

and MMP inhibition (304) were shown to limit global LV dilatation after Ml.

In transmural Ml without reperfusion, the concept that extensive early 

damage to the ECM (Figure 8) results in rapid aneurysm formation (285) was 

confirmed (Figure 4). Early inflammation and the cellular responses after acute Ml 

and reperfusion (297) were linked with increased MMPs and collagen degradation 

by others (294). That non-transmural damage achieved by early reperfusion (148)
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is associated with less ECM damage in the spared epicardial rim of the 

myocardium (Figure 8), less infarct expansion when made 2 hours post occlusion 

in dogs (49), and better overall long-term prognosis in humans (21,28) and dogs 

(73,74), were confirmed. However, myocardial stunning with persistent LV 

dysfunction is still a common clinical problem after reperfused Ml (50). Although 

late reperfusion produces several important overall benefits in animal models, 

including non-transmural damage, less infarct zone remodelling and less global 

dilatation (49), and accelerated healing (43), it also results in decreased infarct 

collagen (49). In reperfused infarcts in the rat, the density of collagen cross-links 

(168) is reduced and ECM disruption is greater than In non-reperfused Ml (160). 

Clinically, late reperfusion is associated with persistent LV dysfunction (305), 

earlier ruptures (282), and increased ruptures when made after 17 hours of onset 

of Ml (306). Thrombolytic therapy with streptokinase after Ml was also associated 

with decreased myocardial collagen (307).

2.9.2. Effects of anti-remodelling therapies on the ECM and coilagen
The aim of anti-remodelling therapy after Ml is to prevent and limit adverse 

remodelling, and thereby interrupt the sequence of LV dilatation, LV dysfunction, 

disability and death (22). An important aspect of this goal is to protect the ECM 

during remodelling after Ml (27,279).

However, several of the anti-remodelling strategies currently used after Ml 

exert pleiotropic effects that can potentially affect ECM turnover in both the infarct 

and non-infarct zones (27,278). Thus, ACE inhibitors, angiotensin II type 1 

receptor blockers (ARBs) and aldosterone blockers decrease ECM (278, 295) and 

the aldosterone blocker spironolactone decreases collagen turnover (308). 

Angiotensin receptor blockers (ARBs) also decrease proline-4-hydroxylase, the 

major enzyme involved in synthesis of collagen, the major protein of the ECM 

(27,278). As discussed above, reperfusion disrupts ECM (27,278), increases 

MMPs and collagen degradation (294), decreases infarct collagen (49), and 

decreases collagen cross-links (168). Unloading with the LV assist device (LVAD) 

results in a down-regulation of MMPs, increased TIMPs, decreased collagen 

damage and increased collagen cross-links (278). Beta-blockers decrease MMPs 

(278). Nitrates preserve IZ collagen and prevent the decrease in collagen after 

reperfusion (278). DIgitoxin increases proline-4-hydroxylase activity although 

digoxin does not alter IZ collagen (278). Endothelins increase collagen synthesis
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and decrease MMPs (278) while endothelin blockade impairs healing after Ml 

(309). Bradykinin increases MMPs and decreases collagen (278). Agents such 

as adenosine, which elevate cAMP, nitric oxide (NO) and cGMP, decrease fibrosis 

(278).

Several studies in the 1980's suggested potentially harmful effects of some 

post-MI therapies (26,35,49,122,123,129,278), supporting caveats against inducing 

very early hypotension with vasodilators (122,123), or impairing early healing with 

powerful anti-inflammatory drugs post Ml (35). Other studies demonstrated 

progressive LV enlargement over 1 year (21) or 3 years (26) despite optimal post- 

MI therapy, and morbidity and mortality remain high (310). In addition, cardiac 

rupture remains a major cause of death after reperfused Ml (311) and the number 

of post-MI patients needing LV assist devices or awaiting transplantation is 

increasing, suggesting that additional protection against LV dilatation, adverse ECM 

remodelling, lowering of infarct collagen, and impaired healing is needed.

2.10. Epidemiology and relevance of ventricular remodelling after
myocardial infarction

In 1970, acute Ml was the major cause of mortality and morbidity in North America 

(312). Without therapy, 40% of patients died in the first few hours of onset of 

symptoms, a further 20% in the first 30 days and another 10% within the first year. 

Pump failure, cardiogenic shock, and cardiac rupture were major causes of death 

within the first month. Congestive heart failure was a major cause of suffering and 

death in early survivors. Since these complications were directly related to total 

infarct size, therapeutic strategies in the mid 70's were aimed at limiting infarct 

size (88). Remodelling during healing in survivors of acute Ml received little 

attention.

During the mid 1980’s, it became increasingly clear that complications after 

acute Ml were not only related to the total infarct size but also, to a large extent, 

on the severity of LV remodelling, dilatation and shape deformation that took place 

during healing and beyond, and in turn adversely affected LV function and 

outcome (18,20,22,23, 59,63). It was hypothesized that the profound changes in 

LV architecture and structure that occurred during remodelling contributed to LV 

aneurysm formation and set the stage for congestive heart failure (41,102,283). 

Several studies indicated that the severity of topographic deterioration was greater 

for large, anterior transmural AMI (18,21,23,28,35,78). Cardiovascular research
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was therefore aimed at developing therapeutic strategies directed not only at 

salvaging LV muscle but also at preserving LV geometry and function, especially 

in high-risk patients with large, anterior transmural Ml. Two pharmacological 

therapies were suggested to be potentially promising for limiting remodelling after 

acute Ml, namely the vasodilator NTG (28) and the ACE inhibitor captopril (29,30).

In the mid 1980’s, coronary heart disease and congestive heart failure 

became recognized as major public health problems in North America. In the 

United States, coronary heart disease was responsible for more than 550,000 

deaths per year (313). This translated to at least 1 death per minute. In 

perspective, it exceeded deaths from all types of cancer combined, which 

amounted to less than 500,000 persons per year. Coronary heart disease also 

resulted in as many as 1.5 million heart attacks per year or 2.9 per minute.

By the late 1980’s, at least 5.4 million North Americans had symptomatic 

coronary disease. Nearly 2 million had congestive heart failure and approximately 

250,000 new cases were diagnosed each year (314). Direct and indirect costs in 

the United States exceeded 60 billion dollars per year. Despite a steady decrease 

in the incidence of coronary heart disease since the late 1960’s, deaths from 

coronary disease still exceeded those from cancer. In 1968 and 1982, death rates 

from the following were, respectively: cardiovascular diseases, 54.3 versus 

49.0%; coronary heart disease, 35.0 versus 27.9%; stroke, 11.0 versus 8.0%; 

cancer, 16.5 versus 21.9%. While the exact figures might be different in other 

countries, it became apparent that the application of potentially successful 

preventive therapy after Ml might have considerable impact on the work force and 

the cost of continuing health care.

By the 1990’s, it was apparent that limitation of LV remodelling after Ml was 

likely to have important world-wide epidemiological and public health implications 

(23). This approach offered the potential for prevention by reducing the risk from 

infarct-related complications, especially aneurysm formation and congestive heart 

failure. An ultimate goal of translational, pre-clinical and clinical research became 

the prevention of adverse LV remodelling and dysfunction after Ml. In theory, 

therapy to limit LV remodelling should improve LV function, increase survival and 

decrease morbidity after Ml. However, the objective application of therapy to limit 

remodelling and salvage function not only requires an understanding of the 

pathophysiology of the substrate being remodelled but also how it changes in 

composition during healing after Ml (24,25,27). Since the remodelling process is
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progressive, it follows that therapy should be applied throughout its duration. An 

important prerequisite is the availability of a reliable and readily available tool such 

as 2D-Echo for repeated non-invasive evaluations of LV geometry and function 

over time.

In the 2000’s, anti-remodelling therapy is still far from ideal, as progressive 

LV enlargement, morbidity and late mortality remain significant despite improved 

therapy. Post Ml survivors who develop heart failure and need LV assist devices 

and transplantation are increasing.
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3. STATEMENT OF THE PROBLEM AND HYPOTHESES
3.1. The problem
In the early 1980’s, myocardial Infarction (Ml) was recognized as a major killer 

world-wide. Left ventricular (LV) myocardial infarct size and cardiogenic shock 

were the major contributors to mortality and morbidity after Ml. Early deformation 

of LV geometry, associated with early expansion of the infarct zone, was 

becoming recognized as a major contributor to early mortality and morbidity after 

Ml. Subsequent LV enlargement, with a departure from the normal global 

ellipsoidal to a more spheroidal shape, was becoming recognized as a major 

contributor to persistent LV dysfunction and late mortality and morbidity after Ml. 

Potential new therapies were being targeted mainly on the reduction of infarct size 

but progress was hindered by the lack of a quantitative non-invasive method for 

assessing effects of therapy on regional and global LV geometry and dysfunction. 

2D-Echo was just emerging as a potential tool for assessing changes in LV 

geometry and function after Ml but imaging protocols and quantitative 

methodologies had not yet been defined. The importance of healing after Ml and 

harmful effects of potentially beneficial therapies on LV geometry and function 

were just becoming recognized but the underlying pathophysiological mechanisms 

were unclear and the role of the ECM was not fully appreciated.

3.2. Hypotheses:

i) Myocardial Infarction (Ml) results in early regional distortion of LV geometry 

and LV dysfunction during the early infarction phase. This early regional 

shape distortion (RSD) is followed by progressive global LV dilatation, 

development of a more spheroidal shape and more LV dysfunction during 

and after the subsequent healing phase.

ii) The remodelling of LV geometry and structure after Ml is a dynamic 

process that spans the early infarction and healing phases, and is largely 

driven by increased wall stress as a consequence of the RSD and 

increased LV size. Mechanical forces acting on the infarct and non-infarct 

zones during healing, and other factors, play a significant role in the 

remodelling of these regions. Progressive LV remodelling, during and after 

healing post Ml, impacts negatively on outcome after Ml and may be 

modified by early and prolonged anti-remodelling therapies applied during 

the phases of infarction and post-infarction healing.
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These can be more simply stated as follows: since early RSD and thinning 

and subsequent scar formation are gradual processes, prolonged LV unloading 

during the healing phase or reduction of the pounding of mechanical forces should 

reduce the degree of thinning and bulging until the scar is formed. This scar 

should be thicker, stronger, less deformed. Pumping action of the heart should 

improve.

Conversely, agents that impair healing and decrease or adversely modify 

infarct collagen and the ECM, cause thinning, increase preload and afterload, 

increase contractile pull of the non-infarcted segment, increase wall stress and 

heart rate might enhance adverse remodelling, increase RSD and decrease 

performance.

3.3. Objectives
The main goal, between 1980 and 1988, was to gain better understanding of 

pathophysiological mechanisms of LV remodelling during healing after Ml and 

determine the effects of potential anti-remodelling therapies using non-invasive 

quantitative 2D-Echo imaging. A secondary goal was to determine the effects of 

therapies on the ECM and possible accentuation of adverse remodelling during 

healing after Ml.

The proposed algorithm was as follows: 

salvage ischaemic myocardium and maintain normal healing preserve LV  

structure, geometry and sha pes  improve LV systolic squeeze improve 

outcome and survival.
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4. METHODS AND PROCEDURES
Due to the complex nature of the field of research, it was necessary to take a 

multidisciplinary approach, involving biochemistry, pharmacology, physiology, 

histopathology, computing, imaging, radiation physics and biomedical 

engineering.

A bench to bedside approach was used, with animal and human studies 

being carried out in parallel. Both sets of studies involved two phases:

• phase 1, focused on.validations and the natural history, and

# phase 2, focused on modification by pharmacological agents.

4.1. Animal studies

The studies were approved by the institutional animal welfare committee and 

conformed with the guiding principles of the American Physiological Society, the 

“Position of the American Heart Association on Research in Animal Use” as 

adopted by the Association on November 11, 1884, and the Canadian Council on 

Animal Care guidelines on the use of animals in research. Animals were 

purchased initially through the institutional Medical and Surgical Research 

Institute and later through the new institutional Health Sciences Laboratory Animal 

Services.

A previously validated chronic dog model (62,147) was modified for 

studying healing over 6 weeks after acute Ml and established, standard and 

published methods were used (41,48,49,55,102,103,122,126). Mongrel dogs (18- 

20 kg) were surgically instrumented under general anesthesia (intravenous sodium 

pentobarbital, 30 mg/kg; endotracheal intubation; ventilation with room air enriched 

with oxygen) and sterile thoracotomy. In studies performed after 1988, general 

anesthesia with isofluorane was used to avoid tachycardia associated with 

barbiturates (227,228).

Polyethylene catheters were inserted in the jugular vein, carotid artery and 

right and left atria, filled with heparinized saline, and the distal ends exteriorized 

behind the neck. An occluding snare was inserted around the mid-LAD or mid-LCX 

coronary artery and the chests closed. All animals were given 1 million units of 

penicillin and 1 gram of streptomycin intramuscularly and returned to their cages.

A warm blanket was used during recovery and supplementary antibiotics 

administered as necessary. Post-operative monitoring and follow-up care were 

carried out in the institutional animal facility and included regular clinical assessment,
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catheter care, haemodynamic and 2D-Echo recordings for assessing LV function 

and remodelling over 6 weeks.

The coronary artery snare was pulled in the sedated but conscious animals 2 

days after the surgical preparation. In reperfusion experiments, the snare was 

released 90- to 120 minutes post-occlusion, while still anesthetized before chest 

closure and by random allocation. With late reperfusion, infarct sizes in this model 

averaged 25 ± 3% (SEM) LV mass and 49 ± 6% occluded bed mass at 7 days.

Although high LAD and LCX occlusions were used in anesthetized animals 

for some experiments focused on infarct limitation in 2-day infarcts, mid-LAD or 

mid-LCX occlusions were used in subsequent long-term studies focused on 

remodelling during healing in survivors post Ml. This was necessary because the 

high occlusions were associated with greater mortality compared to mid-coronary 

occlusions (30 % versus 10 %). The risk regions with the mid-LAD or mid-LG 

occlusions averaged 25 % of the left ventricles.

Serial 2D-Echo (either Diasonics V3400 R, or Toshiba SSH-65A or Hewlett 

Packard Sonos 1000; 3.5 or 5 MHz transducer) was recorded in-vivo, using the 

established protocol for obtaining tomographic images (Figure 5) and techniques in 

the mildly sedated but conscious animals (Figure 9). Standard views included: 

parasternal long-axis; five parasternal short-axis from base to apex at mitral, chordal, 

mid-papillary, low-papillary and apical levels; the apical four- and two-chamber 

views. Recordings were made before surgery, at baseline before occlusion, and 

again post-occlusion and/or reperfusion for up to 7 weeks, with careful attention to 

transducer position and angulation.

Sterile echo-opaque beads were sutured on the anterior and posterior LV 

surfaces at 3 levels from base to apex for better 2D-Echo orientation and consistent 

imaging post Ml. Although 2D-Echo image analyses routinely used anatomic 

landmarks, such as the papillary muscle, to identify the levels for measuring infarct 

segment lengths and infarct wall thickness, and shape changes during remodelling 

(Figure 10), repeated comparisons of the same area was often difficult. The 

opaque beads were therefore useful for regional comparisons of serial 2D-Echo 

data post Ml in animal studies. Pilot serial 2D-Echo studies in 30 infarcted dogs 

with sutured epicardial beads confirmed consistent 2D-Echo imaging (103,283).

In studies after 1985, 2D-Echo guided pulsed Doppler recordings of the 

mitral inflow velocity at the level of the mitral annulus were made concurrently with
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A. REGIONAL SHAPE B. LV ASYNERGY

«ctuBÎ asynergic sBgrnsnt.Sa 
Area of 
' distortion, Ay

ideal

mitral

chordal

* = V >

mid-
papillary

low-
papillary

Area of ideal 
section* A;

C.
APICAL BULGE

D.
EXPANSION & THINNING

( area 
depth )

LV

EXPANSION INDEX = x/y THINNING RATIO r  a/b

Figure 10. Quantitative analysis of echocardiographic images

Computer assisted measurements of:
A. circumferential extent of asynergy (Si) and regional bulging;
B. endocardial surface area of LV asynergy and volume from 3D 

reconstruction;
C. bulge of the asynergic zone,LV apical view;
D. the expansion index (x/y) and thinning ratio (a/b) from the papillary 

short-axis.
From Jugdutt (21 [Appendix 3])
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2D-Echo recordings (315:Appendix 42), as previously described in the dog (316) 

from the apical-2 or -4 chamber view parallel to flow, with optimal definition of the 

spectral envelope and a sample volume size of 3 to 6 mL. Three to five cycles 

were manually digitized and averaged for peak velocities and integrals of the LV 

inflow in early and late diastole. The 4 main parameters were the rapid filling 

velocity (E), the atrial filling velocity (A) and the atrial filling fraction (E/A) and the 

deceleration time (DT) (Figure 11).

In all dogs, serial haemodynamics were recorded on a Gould Recorder 

(Cleveland, Ohio), as described previously (122,126), and included: right atrial 

pressure (index of right ventricular filling pressure and hydration), left atrial pressure 

(index of LV end-diastolic pressure or filling pressure); phasic and mean arterial 

pressures (index of afterload), and ECGs (for heart rate, rhythm, and evidence of 

ischaemic injury and infarction).

After the final recordings, the dogs were re-anesthetized. In order to study 

LV topography, the hearts were arrested in diastole (1 molar potassium chloride 

intravenously), removed, washed In normal saline, and filled with gelatin to 

preserve diastolic relations before formalin fixation (41). The hearts were 

sectioned systematically along the transverse axis from base to apex after formalin 

fixation in distension to preserve diastolic relations and at the same planes where 

2D-Echo images were obtained (41). Occluded bed size was measured by post

mortem coronary arteriography before formalin fixation (Figures 4 and 12).

Improved computerized planimetry techniques with recordings of all 

anatomic landmarks was used for more accurate definition of the location of 

infarcts and shape distortion, measurements of wall thickness (41) and correlation 

with 2D-Echo images (Figure 13). A successfully developed and validated 

computer program, executed on a Hewlett Packard 9835A computer and 9874A 

digitizer interfaced with a VAX 750 computer, was used for measuring RSD on LV 

short-axis 2D-Echo images (Figures 13 and 14 ) and similarly on pathologic 

transverse sections in the dog hearts.

Myocardial samples (100 to 200 mg) were taken from the infarct, border and 

non-infarct zones for assays of hydroxyproline (OHP), a marker of collagen content 

and histopathology (41), and immuno-histopathology for collagen subtypes I, III and 

IV (129), after making tracings of the weighed transverse sections, infarcts or scars, 

and occluded bed for computerized planimetry (Figure 13). Histology and
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SYSTOLIC FUNCTION 
Offline analysis (Disc method) versus automatic edge detection for volumes

DIASTOLIC FUNCTION 
Transmitral Doppler for E and A integrals

Normal E and A E and A equalization E and A reversal

Figure 11. Computer assisted quantification of LV global systolic 
and diastolic function by 2D-Echo

Upper panel: LV volumes (end-diastole shown) by the offline Disc 
method versus the automatic edge detection method for systolic and 
diastolic volumes and global LV ejection fraction. Lower panel: Typical 
recordings of transmitral Doppler velocity integrals for diastolic function. 
The early (E) amplitude exceeds the late atrial (A) amplitude in normals. 
The waves become equalized or reversed post Ml. In large Ml and 
severe diastolic dysfunction, the E wave is taller and the deceleration 
time (DT) is decreased (not shown).
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morphometric analysis was done on 5 mm slices from the middle of the occluded 

bed. Thin 5-pm sections taken in triplicate were stained with hematoxylin and 

eosin, Mallory’s stain, or Masson’s trichrome, respectively, and examined for 

infarction and collagen. The concentration of OHP, as mg/g of dry weight, was 

measured using spectroscopy, as described by Bergman and Loxley (317). 

Scanning electron microscopy for extracellular matrix evaluation was performed on 

fresh samples (74, Figure 8 ).

In animals undergoing reperfusion and sacrificed within 2 days, infarct size 

was measured using the triphenyl tétrazolium chloride (TTC) method and 

planimetry. Sections were incubated in TTC (1% in 0.09 molar phosphate buffered 

saline, pH 7.4) for 30 minutes at 37°C to delineate infarct tissue. In those animals, 

the LAD was re-occluded at the same site after final recordings and the left atrium 

injected with monastral blue to define the risk region.

Because infarcts in the dog are rarely 100% transmural, small transmural 

apical infarcts (< 25% LV mass) were produced by ligating the collateral feeders 

from the LCX into the bed below the standard mid-LAD ligation 

(73,74,31 B.Appendix 43). This results in marked remodelling with antero-apical 

aneurysm formation, avascularity and collagen matrix disruption (Figures 4 and 8 ). 

The finding lends support to the concepts that collateral flow protects ischaemic 

myocardium (203,204) and the ECM framework (279), ECM is disrupted during post- 

MI remodelling (284) thereby contributing to LV dysfunction (277) and shape 

deformation (22,73,74). Because healing takes 6  weeks in dogs and mortality from 

large infarcts is high over that time (about 35 %), we produced infarcts that are about 

25% LV for ensuring survival to 6  weeks. This modified model is closer to the 

"collateral-poor human model" (203,204) and shows more ECM disruption, regional 

bulging (RSD) and global LV dilatation than the standard model (73,74).

All data were coded for analysis and observers were blinded with respect to 

the details of the protocols and the treatment groups, as described in extensively 

published methods from my laboratory. Randomization into treatment groups was 

done by opening a sealed envelope that contained the pre-assigned group.

4.1.1. Analysis of echocardiograms for remodelling and functional data

As described previously (103,126), coded echocardiograms were analyzed double

blind on video playback (0.5 inch tapes) by two independent observers for standard 

in-vivo 2D-Echo parameters of mechanical function, such as regional LV asynergy
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and global LV ejection fraction, and topographic parameters such as expansion 

index, cavity areas, volumes, segment lengths, thinning ratios, and the area (Ad) 

and depth (rd) of RSD (Figures 10 and 14). Differences were resolved by 

consensus.

Briefly, endocardial and epicardial outlines of the LV images at end-diastole 

and end-systole were traced with a light pen (Diasonics CardioRevue Center), 

corrected over at least three consecutive cycles and copied on plastic overlays. 

Anatomic landmarks, such as papillary muscles and right and left ventricular 

junctions, were indicated on the tracings. Markings of asynergy, defined as akinesis 

(no systolic inward motion and thickening) or dyskinesis (systolic outward motion 

and thinning), or both, were made on each endocardial diastolic outline by careful 

visual assessment of motion and thickening on repeated video playbacks. 

Circumferential extents of asynergy on each short-axis view were then digitized and 

used to compute total endocardial surface area asynergy by a 3D reconstruction 

algorithm. Outlines from five short-axis and two long-axis views were also used to 

compute volumes by means of a modified Simpson's rule algorithm. Global ejection 

fraction was calculated as end-diastolic volume minus end-systolic volume divided 

by end-diastolic volume. The inter-observer error was less than 5% in marking 

asynergy, segment length, wall thickness and areas of outlines (103,126). As for 

post-mortem hearts, topographic measurements were made on end-diastolic 

outlines of short-axis images at the papillary level, and the expansion index (ratio of 

the lengths of the asynergy containing and the non-asynergy containing segments), 

thinning ratio (ratio of the average thicknesses of the asynergic and non-asynergic 

zones) and regional area ejection fraction (end-diastolic area minus end-systolic 

area divided by end-diastolic area) were computed.

The degree of regional bulging, or RSD, in the asynergic zone was 

characterized by its area (Ad) and depth (rd), as described previously 

(19,21,103,126,318). LV aneurysm was defined as the presence of a bulge in 

diastole and further bulging in systole. LV mass was calculated from the volume of 

myocardium (difference in volumes of epicardial and endocardial shells at end- 

diastole) multiplied by an assumed specific gravity of 1.05 g/ml (319). The LV mass 

and the RSD indices (Figures 10 and 14) for each set of 2D-Echo and heart-section 

outlines were compared using linear regression analysis. Wall thicknesses on 2D- 

Echo and heart sections were also compared at 5° angular intervals.
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4.1.2. Post-mortem measurement of scar size and geometry
As described previously (103,126), the risk region was measured on post-mortem 

coronary arteriograms. These were made by simultaneous pressure-controlled 

injections of the coronary arteries of fresh hearts with a mixture of barium sulfate and 

gelatin, followed by fixation of the hearts in distension (15 cm pressure head; 10% 

phosphate-buffered formalin solution or gelatin for 48 hours) to preserve diastolic 

proportions. Radiographs of the whole heart (in two perpendicular planes) and 

transverse sections (five equally spaced sections, 1-1.5 cm thick) were then made.

Boundaries of the risk region were then marked on section radiographs, by 

consensus, at the water-shed between the adjacent beds. The LV rings were 

weighed and outlines of the rings, occluded zones and infarct scars were made on 

plastic overlays. Computerized planimetry was then performed to measure infarct or 

scar size (masses and volumes of infarct, risk region, non-infarct myocardium) and 

ex-vivo topographic parameters, including "thinning" ratio (ratio of average thickness 

of infarcted wall to average thickness of the normal wall) and "expansion" index 

(ratio of endocardial lengths of infarct to non-infarct containing segments 

demarcated by papillary muscle landmarks) and generate average short-axis 

topographic maps for each treatment group (Figure 13).

Average maps of long-axis contours of the LV epicardium and endocardium 

were also made for each treatment group from digitized whole heart radiographs 

and direct measurements of the area and depth of the apical bulge or RSD (Figure 

15).

4.1.3. Sample size.
Calculation of sample sizes considering beta error was done for all remodelling 

experiments. Thus, defining a significant change in RSD as a 50% decrease, a 

doubly significant sample size (N) was calculated by Feinstein's method (320; 

Clinical Biostatistics, St. Louis, Mosby, 1977; p 329) as N=16 for a = 0.05 and (3= 

0.20. With N=16 in each group, a negative result would be associated with a 20% 

chance of falsely accepting the null hypothesis due to a sampling error. With this 

correction, n=10 for a = 0.05, (3 = 0.1. An increase in LV mass of greater than 7% 

was considered to be an indicator of significant LV hypertrophy (103,127,128,131). 

A mortality rate of 10% for mid-LAD occlusions was factored in.
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F igure  15. Computerized topographic maps: Long-axis remodeling ( anterior Ml ).

Postmortem maps of diastolic ventricular topography in the long-axis. 
Digitized epicardial and endocardial contours and average maps in the 
long-axis plane. Dots on the average contours indicate landmarks for 
quantifying the apical bulge. The maps show less apical bulging and 
smaller cavities in the enalapril group.

Jugdutt et al. (127[Appendlx 25])
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4.2. Clinical studies

All protocols were reviewed and approved by the institutional ethics committees 

and informed consents were obtained from all patients for the studies. The 

methodology for non-invasive assessment of regional and global LV function 

before and after therapy using 2D-Echo was developed in 3 stages:

First, the facility was developed for performing tomographic imaging by 

means of 2D-Echo in acutely ill Ml patients at the bedside in the COU and follow- 

up 2D-Echo recordings in the step-down cardiac recovery wards and the 2D-Echo 

Laboratory. Two 2D-Echo machines were acquired (Diasonics 3400) for the 

studies; one was dedicated for studies in the COU and the adjoining step-down 

ward and another for laboratory studies. The laboratory personnel in the early 

1980’s consisted of two sonographers, three fellows and a computer programmer.

Second, the methodology was developed for systematic 2D-Echo studies 

and computer-assisted quantification of right ventricular and LV asynergy (wall 

motion and wall thickening abnormalities), wall thicknesses, and LV shape at 

multiple short-axis levels from the base to the apex of the heart and multiple long- 

axis planes (251-253; Figures 10,14,16). As mentioned above, the computer 

software needed for the above was developed. Manually contoured LV 

endocardial and epicardial outlines were digitized for analysis using a Hewlett- 

Packard computer and digitizer as described for the animal studies. Computer 

programs were developed for measuring the circumferential extent and location of 

LV asynergy using a radial coordinate system (21) and for quantifying LV regional 

and global function (21,28,34,35).

Third, all 2D-Echo studies were performed systematically, according to a 

strict imaging protocol (Figure 5) to permit non-invasive evaluation of cardiac 

function and follow changes by repeated studies focused on LV remodelling and 

myocardial protection.

In addition, the following methodologies for the measurement of multiple 

indexes of infarct size were implemented:

i) Praecordial ST-segment and R/Q-wave mapping using EGG.

ii) Haemodynamic measurements of pulmonary capillary wedge pressure 

and cardiac output using the Swan-Ganz catheter with the 

thermodilution technique, and arterial blood pressure via arterial lines in 

the ecu .
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A. THE MODEL B. SHORT-AXIS VIEWS

1, MITRAL

RV

2. CHORDAL

Cl

C. SURFACE AREA AND 
VOLUME CALCULATION

LV

3. PAPILLARY

4. APICAL

Figure 16. 2D-Echo evaluation of right ventricular infarction

A. Right ventricle (RV) is a crescent shaped appendage attached to the more 
conical left ventricle (LV).
B. Extents of abnormal wall motion (AWM) in 4 short-axis sections {thick lines) 
were expressed as ratios of circumferences for LV (S/C^ to SJC^) and as 
ratios of the arc lengths for RV (S /̂L  ̂ to S3/L3). LV diameters (D̂  to D̂ ) and 
RV septal chord lengths (I., to IJ were measured.
C. Surface area of AWM (stippled) in endocardial shells was computed from 
AWM in 4 serial short-axis views at the mitral, chordal, papillary and apical 
levels. Long-axis lengths (h.,, h^) of RV and LV were measured in the apical 
4-chamber views and slices assumed to be of equal thickness. Total LV AWM 
area was computed for conical shapes. The RV was opened out into 2 
trapezoids and a triangle to compute the total RV AWM area. Volumes were 
computed from areas and thicknesses of sections.

Jugdutt et al. (253)
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iii) Serial CK and CK-MB enzyme assays for cumulative CK infarct and 

CK-MB-infarct sizes in gram-equivalents based on method of Shell and 

Sobel (321), using customized computer software (Hewlett Packard).

iv) Thallium-201 myocardial scintigraphy and other radio-nuclide cardiac 

imaging.
v) The procedure for preparation of NTG solutions for intravenous 

infusions in acute Ml in initial studies, before commercial preparations 

became available, using glass bottles, special tubings and infusion sets 

in the COU.
vi) Use of computer for rapid statistical analysis, analysis of large volumes 

of haemodynamic, angiographic, CK and 2D-Echo data.

4.3. Statistics
Data were analyzed in blinded fashion. Stringent methodology was used (320-322). 

The statistical tests included: 1) analysis of variance (univariate) for differences 

within and between separate or combined groups; 2 ) repeated measures analysis of 

variance with orthogonal contrast for comparing serial data within groups and a 

multigroup repeated measures design for overall differences between groups; 3) 

multiple comparisons analysis of variance and the Student Newman-Keuls test for 

the significance between placebo and separate or combined therapy groups; and 4) 

chi-square and Fisher's exact tests for the significance of difference in event 

frequency among groups. Results are presented as mean values ± standard 

deviation (SD) or standard error of the mean (SEM) as stated. Statistical 

significance was set at P < 0.05 (two-tailed).
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5. RESULTS

5.1. ANIMAL STUDIES: NATURAL HISTORY

5.1.1. Temporal changes in infarct collagen and left ventricular topography

during healing after myocardial infarction in the dog (41: Appendix 12)

Background; Healing after acute Ml takes places over weeks. Collagen 

deposition in expanded and thinned infarct segments during healing might 

contribute to permanent RSD associated with ventricular aneurysms. The 

changes in collagen content In the infarcted and non-infarcted zones during 

healing over 6  weeks after Ml were studied in 132 hearts of untreated or control 

dogs with LAD or LCX occlusions between 1980-1983 (41).

Methods/Results: Hydroxyproline (OHP) was used as a biochemical marker for 

collagen. Over the 6  weeks, OHP content did not change significantly in normal 

non-infarcted regions but increased progressively in infarct zones (Figure 17). The 

data indicated that, compared to the non-infarct zone, the increase in OHP content 

in infarct zones became detectable by 7 days [9.94 ± 0.67 (SEM) versus 4.38 ± 

0.18 mg/g dry weight, n=25, P<0.001] and peaked by 6  weeks (55.55 ± 3.27 versus 

4.06 ± 0.20 mg/g dry weight, n=17, P<0.001). In contrast, over the 6  weeks in 

sham-operated dogs and dogs with no infarcts, OHP content in the two regions 

remained normal and similar (4.41 ± 0.25 versus 4.06 ±0.18 mg/g dry weight, 

n=21, P=NS). The changes in OHP were similar for LAD and LCX infarcts.

Importantly, significant ex-vivo changes (P<0.05) in LV geometry 

accompanied the changes in infarct collagen and included increased LV cavity 

area (5.0 versus 3.9 cm^), endocardial circumference (8 . 8  versus 7.4 cm) and 

expansion index (1.21 versus 1.02) by 7 days, and decreased thinning ratio (0.71 

versus 0.98). Compared to 2-day infarcts, the infarct area decreased by 6  weeks 

(1.8 versus 3.4 cm^) and the non-infarcted length increased (6.9 versus 5.4 cm). 

The overall findings indicated that healing over 6  weeks in the dog model is 

associated with infarct expansion and LV dilatation within 7 days, before 

significant collagen deposition occurs, and this is followed by infarct scar 

contraction and thinning at 6  weeks.

The findings suggested that collagen deposition in already expanded and 

thinned infarct zones might explain the permanent RSD associated with LV 

aneurysms. The peak RSD index, Pk, for the infarct zone in the LV apical section 

at 6  weeks in that study, was significantly greater in infarcted than non-infarcted or
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the canine model. Stippled area indicates infarct.

From Jugdutt (41: Appendix 12)
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sham hearts (4.57 ± 0.06 versus 1.12 ± 0.04, n=21, P<0.001) and greater for LAD 

than LCX infarcts (5:62 ± 0.05 versus 2. 13 ± 0.06, P<0.05).

Relevance: In applying these results, it is Important to remember five points with 

respect to the duration of therapeutic interventions to modify remodelling In 

humans.

First, the infarcts in the dog model were not all 100 % transmural, although 

this was apparent at the LV apex for the posterior Ml after LCX occlusion shown in 

Figure 170.

Second, the duration of healing of the infarct zone after Ml, from the time 

of an acute coronary occlusion to formation of the.final scar, differs among 

species (Figure 1) and takes place over a period of two to three weeks in rats 

(43,96), four to six weeks in dogs (41,96) and between six weeks and six months 

in humans depending on infarct size (40,44). Thus, the slower rate of healing in 

humans compared to rats and dogs should be taken into consideration.

Third, the rate of healing also depends on infarct size (44), in addition to 

other cellular, metabolic and biochemical factors involved in the healing process. 

It was also apparent, in this study, that the time to the collagen plateau was longer 

with large than small infarcts.

Fourth, further late remodelling takes place after collagen deposition has 

plateaued. This involves compaction of the infarcted segment, hypertrophy of the 

non-infarcted segment, and global LV dilatation due mainly to dilatation of the 

non-infarct segment (41) as confirmed by others (71,72,93,94). As shown in 

Figure 17C, the infarct scar at 6  weeks shows evidence of both endocardial and 

epicardial RSD, suggesting that collagen deposition fixes the endocardial and 

epicardial RSD associated with early infarct expansion before the collagen 

plateau. A subsequent report has confirmed an acute increase in both 

endocardial and epicardial surface areas with infarct expansion (323). The early 

window after infarct expansion and before the collagen plateau leaves the infarct 

zone vulnerable to adverse remodelling.

Fifth, late thinning of the infarct zone, with compaction of the scar after 

collagen deposition has plateaued at about 3 weeks in the dog, is associated with 

increased LV chamber distensibility which appear to contribute further to LV 

chamber and aneurysmal dilatation (102,283). However, the subsequent normally 

healed scar is relatively less distensible and more resistant to deformation (69).
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This resistance to further stretch appears to be related to connective tissue cells 

entering the myocyte compartment and connecting disrupted myocyte fibers 

(324). Since the infarct scar has now been recognized as a living structure 

containing myofibroblasts with contractile ability (325), some infarct remodelling 

may continue for years beyond the initial healing phases. Several studies have 

confirmed that lengthening of the non-infarcted segment plays a major role in the 

late cavity dilatation (7,31,68,194). Progressive LV dilatation has also been 

correlated to infarct size and continues long after the healing process is completed 

(26,76,298,299). In the rat model, a further 30% increase in LV volume occurred 

between 3 weeks and 3 months (77).

5.1.2. Two-dimensional echocardiographic characterization of topographic 

changes after transmural and non-transmural infarcts during healing 

after myocardial infarction in the dog

5.1.2.1. Transmurality (73: Appendix 19)

Background: The subepicardial rim of spared myocardium after subendocardial 

Ml might protect against infarct remodelling whereas its absence in transmural Ml 

might allow unrestricted infarct bulging and thereby contribute to LV dysfunction.

Method/Results: The effect of infarct transmurality on adverse in-vivo and ex-vivo 

LV remodelling during healing over 6  weeks after Ml was studied systematically in 

the dog model (73). Serial topographic and functional parameters on 2D-Echo 

and haemodynamics as well as post-mortem topography were measured in dogs 

randomized to standard l_AD ligation (group 1) or a modified lower LAD ligation 

plus collateral obliteration to decrease collateral inflow and increase infarct 

transmurality (group 2). Compared to group 1 at 6  weeks, group 2 had similar 

infarct weight [5.5 ± 2.0 (SD) g versus 4.7 ± 2.9 g] and slightly less infarct collagen 

(36.1 ± 7.7 versus 43.1 ± 17.1 mg/g dry weight, P<0.05). In contrast, group 2 had 

greater transmurality (94.8 ± 6.7% versus 6 6 . 6  ± 23.7%, P<0.001) (Figure 18) and 

was associated with more necrosis relative to the area at risk (54.9 ± 11.5% 

versus 35.3 ± 17.4%, P<0.001), Q-waves (8 6 % versus 36%, %^=12.88, P<0.0005), 

infarct expansion, infarct thinning, regional bulging or RSD (depth: 0.96 ±0.15 

versus 0.57 ±0.14 cm, P<0.001, and LV dilatation. At 6  weeks on 2D-Echo, group 

2 showed more infarct expansion (2.59 ± 0.32 versus 2.30 ± 0.25, P<0.001), more 

late thinning (0.56 ±0.15 versus 0.72 ±0.13, P<0.001) and RSD in the short-axis
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(Figure 18), larger LV diastolic (82 ±10 versus 75 ± 11 mL, P<0.05) and systolic 

(53 ± 14 versus 42 ± 11 mL, P<0.05) volumes, and more LV apical aneurysms 

and RSD (Figure 18) in the long-axis, reflecting greater topographic deterioration. 

Group 2 also showed more LV thrombi (79% versus 55%, %^=2.70, P<0.01), 

ventricular arrhythmias, and deaths (36% versus 12%, P<0.001). Infarct 

transmurality correlated with the severity of LV remodelling and dysfunction.

Also in that study, mean left atrial pressure was higher in group 2 but heart 

rate and blood pressure were not significantly different. Collateral blood flow was 

less in all regions of the risk region for group 2, infarct center flows being 0.05 ± 

0.01 versus 0.29 ± 0.10 mL/min/g (P<0.001). Importantly in group 2, 6 6 % of the 

infarct expansion occurred by 2 days while 84% of the infarct thinning occurred 

late, after the second week. The ECGs showed a greater frequency of 

pathological Q-waves in group 2, the frequencies at 6  weeks being 33% versus 

0% (x^=10.18, P<0.005). Premature ventricular contractions at 2 days were more 

frequent in group 2, 63% versus 24% (%^=6.93, P<0.01). The Lown score of 

arrhythmias at 6  weeks was also greater for group 2 (1.8 ± 1.2 versus 0.5 ± 0.7, 

P<0.001). The overall findings indicated that infarct transmurality is a major 

determinant of LV remodelling and dysfunction during healing after Ml (73).

Relevance; Since Infarct transmurality is a major determinant of the severity of 

adverse LV remodelling and dysfunction during healing after anterior Ml, early 

therapeutic interventions aimed at decreasing transmurality might limit 

remodelling. Furthermore, stratification on the basis of initial infarct transmurality 

might be useful in selecting high-risk patients for aggressive anti-remodelling 

therapy during healing after Ml.

5.1.2.2. Q-wave and non-Q-wave Ml (74: Appendix 20)

Background: The presence of anterior Q waves on the EGG might identify a 

group at high risk for adverse LV remodelling and severe LV dysfunction after Ml.

Methods/Results: Whether LV remodelling is more severe after anterior Q-wave 

than non-Q-wave Ml was addressed in another report (74). This study confirmed 

that the Q-wave group had greater infarct transmurality (8 8 % versus 58%, 

P<0.001), higher left atrial pressures, more infarct expansion, more infarct 

thinning, greater LV dilatation, more LV apical bulging (depth of RSD: 4.9 versus
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1.9 mm, P<0.001), more LV asynergy (18% versus 7%, P<0.001), lower global 

ejection fraction (40% versus 48%, P<0.001), more LV apical aneurysms (82% 

versus 36%, P<0.001), more LV thrombus (64% versus 0%, P<0.Q005) and 

ventricular arrhythmias.

Importantly, this study provided insight into the relation between infarct 

transmurality and the presence of Q waves over 6  weeks after Ml (74). The 

presence of Q waves correlated with greater transmurality at 2  days (87% versus 

52%), 7 days (8 8 % versus 53%) and 6  weeks (8 8 % versus 15%). The values of 

transmurality that separated the Q-wave from the non-Q-wave group were close 

at the three time intervals and averaged 76.6%.

Relevance; The association of anterior Q waves on ECGs with greater infarct 

transmurality and more adverse LV remodelling and dysfunction during healing 

after Ml suggests that the finding of an anterior Q wave on the initial EGG might 

be used to select high-risk patients after Ml.

5.1.2 .3. Resistance to distension and rupture (283: Appendix 40) 

Background: Healing after Ml is associated with progressive EGM and collagen 

remodelling. These may lead to changes in the distensibility and mechanical 

strength of the infarcted LV. The LV rupture threshold might provide a global 

measure of the mechanical strength of the infarcted heart.

Methods/Results: The mechanical resistance of the infarcted left ventricle to 

rupture, or rupture threshold, was measured using the balloon technique (Figure 

19) between 1 and 2 days in 70 fresh post-mortem hearts from dogs with LAD 

occlusion (283). The rupture threshold in infarcted hearts was lower than in non- 

infarcted hearts (754 ± 223 (SD) mm Hg versus 1168 ± 165 mm Hg, P<0.001). 

Over 6  weeks after Ml, the rupture threshold did not change in non-infarcted 

hearts but decreased after 14 days in infarcted hearts, the average value being 

less between 21-42 days than 1-14 days (577 ± 140 versus 867 ±191 mm Hg, 

P<0.001). Passive LV stiffness before rupture also decreased after 14 days in 

infarcted hearts. Infarct OHP increased during healing and 2D-Echo confirmed 

evidence of early infarct expansion and late infarct thinning. The late decrease in 

rupture threshold and pre-rupture stiffness of the infarcted left ventricle and late
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scar thinning suggests there is a late decrease in the mechanical strength and 

resistance of the infarcted left ventricle to distension during healing after Ml.

Relevance: The time-dependent changes in collagen content (and remodelling) 

and LV structural remodelling during healing after Ml are associated with changes 

in global LV distensibility and resistance to rupture. High, “non-physiologic”, LV 

pressures like those in this study can develop during activities such as heavy 

lifting and snow shovelling.

The overall findings of the first two studies (73,74) underscore 5 points:

First, anterior Q-wave Ml is associated with greater infarct transmurality, 

LV remodelling and dysfunction in the dog model.

Second, transmural or Q-wave Ml does not simply imply more than 50% 

transmural extent as previously assumed but about 77%. This implies that Q- 

wave infarcts may also have a subepicardial buttress of 23% or less. This factor 

contributes to heterogeneity in clinical studies.

Third, subendocardial or non-Q-wave Ml may be buttressed by a more 

significant subepicardial rim than Q-wave Ml. While this may be an advantage in 

preventing infarct expansion (Figure 20), an increase in this area due to 

myocardial salvage after reperfusion therapy may not be reflected in improved 

regional function on 2D-Echo. This is because systolic thickening is due mainly to 

thickening of the endocardium and to a lesser extent to thickening of the mid

myocardium, but very little to thickening of the epicardium (326).

This factor is compounded by the fact that restoration of flow to near 

normal levels in epicardial vessels may not achieve 1 0 0 % transmural reperfusion 

because of reperfusion injury associated with microvascuiar injury and “no reflow” 

(305). The mismatch between restoration of flow and recovery of function has 

been an active area of study in several laboratories since the mid 1980’s.

Contrast 2D-Echo has been applied to better define the area at risk and the role of 

microvascuiar injury (327-331).

Fourth, it follows from the first two studies (73,74) that a significant number 

of patients who have non-Q-wave or subendocardial Ml may be expected to have 

significant necrosis between 21% and 75% in transmural extent and significant 

akinesis and dyskinesis. Furthermore, as post-MI survivors show loss of Q-waves 

and heterogeneity in the severity of LV dysfunction over time on serial 2D-Echo 

(21,35,74,75), the timing of the measurements after Ml becomes pertinent.
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Figure 20. Transverse sections for measurement of infarct size, 
expansion, thinning and bulging in anterior Ml.

A, B. Transmural infarction produced by mid-LAD ligation (arrow), barium- 
gelatin-polymer injection into distal LAD, and running suture around the 
occluded bed. All myocardium within the occluded bed below the ligation 
shows transmural infarction, with no sparing.
C. Computer-generated LV endocardial and epicardial contours from 
radiographs in the long-axis plane for the infarction and sham groups. 
Group 1, standard LAD occlusion. Group 2, LAD occlusion with collateral 
obliteration and increased transmurality. Points on the average contours 
indicate landmarks for quantifying the bulge.

From Jugdutt et al. (318; Appendix 43)
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Fifth, the third study (283) suggests that the infarcted left ventricle after 6  

weeks is weaker than the non-infarcted left ventricle, and the resistance to 

distension is diminished. It follows that the healing heart is vulnerable even in the 

late phase of healing after the collagen plateau has been reached.

The overall findings suggest that the infarcted left ventricle is susceptible to 

early regional dilatation and RSD during the first 2 weeks after Ml, before the 

collagen plateau, and significant progressive dilatation involving both the infarct 

and the non-infarct segment in the later phase of healing, after the collagen 

plateau and in part due to late infarct scar thinning.

5.2. ANIMAL STUDIES ON MODIFICATION BY PHARMACOLOGICAL AGENTS

5.2.1. Effect of infarct-lim iting therapies on infarct collagen, LV geometry 

and LV function during healing after Ml in the dog (55: Appendix 16) 

Background: Before embarking on clinical studies, it was necessary to

determine whether infarct-limiting therapies (Table 7) applied during acute Ml 

might influence early healing after Ml. Effects of LV unloading with NTG and 

ACE-inhibition were first studied (Figure 21).

Methods/Results: The hypothesis that early short-term therapy with 3 infarct- 

limiting drugs, given only during the first 6  hours of acute Ml might produce 

persistent or delayed effects on LV remodelling during early infarct healing over 1 

week was tested in the dog model (55). Measurements of regional OHP content, 

wall thicknesses, segment lengths and infarct size were made at 7 days in left 

ventricles from 69 animals with LAD ligation and 7 sham animals. The animals 

were randomized after LAD occlusion to 6  hour infusions of intravenous saline 

(controls, n=29), NTG (low-dose to decrease mean arterial pressure by 10% but 

not below 80 mm Hg, n=13), PGI2 (low-dose, 1 0 % decrease in mean arterial 

pressure, n=13), or ibuprofen (low-dose, 4 mg/kg/hour, n=14). Infarct size, 

measured by computerized planimetry of weighed LV rings, was less in therapy 

groups compared to saline, as percent of occluded bed size (P<0.001) and as 

percent of the left ventricle (P<0.005). Infarct expansion was less with NTG and 

PGI2 compared to saline and ibuprofen. However, infarct thinning was greater 

with ibuprofen compared to the other groups. Thus, the ratios of the infarct to the 

normal wall thickness were similar for saline, NTG and PGI2 groups [0.92 ± 0.02
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Figure 21. Determinants and therapeutic approaches in the 
remodelling of infarct and non-infarct zones

Potential therapeutic approaches. IRA = infarct related artery, 
NIRA = non-infarct related artery. White arrows = intramural 
contractile pull, stipples arrows = intracavitary distending forces, 
dark arrows = restraining forces opposing distension.
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(SEM) versus 0.94 ± 0.02 versus 0.96 ± 0.01, respectively] but significantly lower 

in the ibuprofen group (0.80 ± 0.02, P<0.001). The OHP contents (mg/g dry 

weight) were higher (P<0.001) in the infarct than normal zones in all 4 groups 

(saline: 9.9 ± 0.7 versus 4.4 ± 0.2; NTG: 14.9 ± 1.9 versus 5.2 ± 0.3; PGI2 : 12.9 ± 

0.9 versus 5.3 ± 0.6; ibuprofen: 10.6 ±1.4 versus 4.2 ± 0.2), and higher with NTG 

compared to saline (14.9 ±1.9 versus 9.9 ± 0.7 mg/g, P<0.02). The degree of 

RSD measured on short-axis outlines of sections and long-axis radiographic 

outlines was less (P<0.001) with NTG and PGI2 compared to saline and ibuprofen. 

The rupture thresholds were less in ibuprofen than NTG or PGI2 or saline groups 

(397 ± 37 versus 720 ± 67 mm Hg, P<0.005). There was no difference among the 

NTG or PGI2 or control groups.

These results indicated that early therapy with NTG, PGI2 or ibuprofen 

reduced infarct size but did not reduce infarct collagen by 1 week. NTG increased 

infarct collagen while ibuprofen increased infarct thinning, and NTG and PGI2 

limited infarct expansion and RSD.

Relevance; The overall findings support the concept that the application of short

term infarct-limiting therapy during acute Ml may exert delayed, and sometimes 

unexpected effects and influence LV remodelling during the very early phase of 

healing, before significant collagen deposition. Appropriate therapies might have 

greater potential for limiting remodelling and aneurysm formation when 

administered early after Ml. This was subsequently confirmed in a study at the 

bedside (28: Appendix 6 ).

5.2.2. Effect of vasodilator-induced hypotension on infarct size, collateral 

blood flow, and LV geometry and function in 7-day old anterior 

infarcts in dogs (122: Appendix 28)
Background: The hypothesis that vasodilator therapy, previously shown to be 

beneficial in Ml in dogs (98) and humans (232: Appendix 36), might be 

deleterious and lead to adverse remodelling was tested in the dog model when 

given in excess (122). NTG therapy was delayed 2 hours post-occlusion to mimic 

the clinical scenario.

Methods/Results: The effect of NTG-induced decreases in mean arterial 

pressure on myocardial salvage was studied in 65 lightly sedated conscious dogs

83



that were randomized 2 hours after LAD occlusion to receive 4-hour intravenous 

infusions of saline (group 1, n=19), or NTG in doses to decrease mean arterial 

pressure by 10% (group 2, n=18), 25% (group 3, n=14), and 50% (group 4, n=14), 

respectively. At 7 days, infarct size and occluded bed size (post-mortem coronary 

arteriography) were measured in 41 dogs using computerized planimetry. Over 

the first 6  hours, regional blood flow was measured using 7 to 10 pm radioactive 

microspheres in 24 dogs (98). Compared to saline infusions in group 1, NTG 

infusions produced sustained reductions (P<0.001) in mean left atrial pressure 

and mean arterial pressure in all dogs, but heart rate was unchanged. The 

decreases in mean arterial pressure achieved in groups 2, 3, and 4 were 10% 

(range, 5% to 19%), 23% and 39%, respectively, with average levels of 96 (range, 

83 to 113), 83, and 64 mm Hg, respectively. Infarct size was significantly smaller 

(P<0.025) in group 2  compared to groups 1,3, or 4, expressed both as percent of 

the left ventricle (6 % versus 14% versus 13% versus 15%) and as percent of the 

occluded bed (13% versus 37% versus 34% versus 44%) (Figure 22). Myocardial 

salvage (expressed as percent of the occluded bed) with NTG correlated inversely 

with the percent of decrease in mean arterial pressure (r = -0.77, P<0.001). 

Collateral blood flow increased (P<0.005) throughout the occluded bed in group 2 

compared to group 1 but was unchanged in groups 3 and 4. In contrast, coronary 

vascular resistance decreased (P<0.025) in all NTG groups. These results 

suggested that perfusion pressure is an important determinant of myocardial 

salvage during vasodilator therapy such as NTG. An increase in the dose of NTG 

to decrease mean arterial pressure by more than 10%, and to levels below 96 mm 

Hg, might offset its potential for myocardial salvage in the dog.

Relevance; The overall findings suggest the need for a caveat on avoiding 

hypotension during vasodilator therapy after acute Ml. The paradoxical J-curve 

effect (Figure 22C), whereby reduction in perfusion pressure beyond a critical 

level leads to more necrosis instead of salvage, can occur with other vasodilators 

(100). In this study, marked NTG-induced hypotension negated the beneficial 

effects on infarct size and collateral blood flow (122). This underscores the need 

for extreme caution and titration of the drug to a suitable haemodynamic end-point 

in the setting of acute Ml. The risk is further amplified in the presence of 

multivessel disease and coronary vasodilators that can potentially cause ‘coronary 

artery steal'. The short half-life of intravenous NTG and its rapid onset and offset
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of action makes the drug suitable for use in acute Ml (250). Long-acting nitrate 

preparations, such as ISDN, may be problematic if hypotension develops during 

infusions in acute Ml.

5.2.3. Effect of prolonged vasodilator and anti-inflammatory treatment on LV 

remodelling and LV rupture threshold during healing after Ml In the 

dog
The hypothesis that prolonged therapy during healing after Ml significantly 

modifies LV geometry and function was addressed in 3 studies using the dog 

model (48,102,103).

5.2.3.1. Effect of prolonged isosorbide dinitrate and ibuprofen on LV
topography and rupture threshold during healing after Ml (102: 
Appendix 22)

Background: Short-term pharmacological interventions applied during healing 

after Ml might modify LV remodelling during healing and the mechanical 

resistance of the healed infarcted LV to distension and rupture threshold. 

Although acute administration of nitroglycerin and ibuprofen has been shown to 

reduce infarct size, prolonged treatment with ibuprofen was reported to produce 

adverse infarct remodelling (54).

Methods/Results: The effect of ISDN and ibuprofen, given between 2 and 7 days 

after LAD ligation, on the mechanical resistance of the infarcted left ventricle to 

rupture or the rupture threshold (balloon technique) and LV topography 

(computerized planimetry) and function (2D-Echo) at 7 days (n=32) and 42 days 

(n=34) post-ligation was studied in 6 6  dogs (102). The animals were randomly 

allocated to sham (no infarction, n=22) and infarction sub-groups (15 controls; 15 

ISDN, 30 mg b.i.d. orally at 08:00 and 14:00 hours, followed by 10 mL of water at 

2 2 : 0 0  hours so as to allow a washout period of about 1 2  hours and avoid 

development of nitrate tolerance (332); 14 ibuprofen, 200 mg t.i.d. orally). ISDN 

decreased mean arterial and left atrial pressures, decreased diastolic cross- 

sectional area, and improved LV systolic function, while ibuprofen increased 

diastolic area. Infarction subgroups showed infarct shrinkage and more infarct 

OHP at 6  weeks. Compared to sham animals, all infarct subgroups showed early 

expansion and thinning, with further marked late thinning in controls. ISDN

8 6



produced less expansion and thinning both at 1 and 6  weeks, while ibuprofen 

produced marked early thinning. Rupture threshold was less at 6  weeks than 1 

week with controls and ibuprofen but remained unchanged with ISDN. Passive 

pre-rupture stiffness was less at 6  weeks than 1 week with controls but remained 

unchanged with ISDN and ibuprofen.

The overall results indicated that reduced expansion and thinning with 

ISDN during the first week after Ml was associated with improved LV function, 

mechanical strength, and resistance to distension at 6  weeks.

Relevance: The finding of beneficial effects of short-term nitrate therapy, given 

using an eccentric dosing schedule and allowing a nitrate-free interval during the 

first week after Ml, on LV remodelling, LV function, mechanical strength and 

distensibility measured at 6  weeks supported the concept that short-term therapy 

may have long-term benefits. Another pertinent finding was that therapy given 

before infarct collagen reaches a plateau (before significant fibroblast activity 

develops) did not seem to lead to a detectable difference in the collagen content 

of the healed infarcts. This finding suggests that drugs that inhibit collagen 

synthesis may not significantly affect infarct collagen during that time window.

Erratum: An error appears in the title of this publication in reference #102 

(Appendix 22); 'nitroglycerin' should be ‘ISDN’ as stated in the text.

Both ISDN and NTG are denitrated to release NO (333: Appendix 44). 

While NTG is short-acting, ISDN is long-acting (334). ISDN is denitrated at a 

much slower rate than NTG (334). In fact, ISDN is a prodrug that is denitrated in 

the liver (first pass) to liberate NO, which then stimulates guanylyl cyclase leading 

to the conversion of cGMP (guanosine triphosphate to cyclic guanosine 3 ,5 - 

monophosphate) which causes vasodilatation. ISDN is metabolized to isosorbide 

2- and 5-mononitrrate. The latter is the primary metabolite that is commercially 

available as ISMN. NTG, on the other hand, is metabolized to 1,3- and 1,2- 

glyceryl dinitrate, which are active metabolites with lower potency than NTG (334). 

Inactive metabolites are also produced. Further metabolism yields glycerol and 

carbon dioxide. Unlike NTG, ISDN and ISMN do not cause spontaneous release 

of NO and are less effective in raising platelet cGMP (333,335,336).
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5.2.S.2. Effect of prolonged 2-week versus 6 -week nitrate therapy regimens 

on LV remodelling after Ml in the dog (103; Appendix 23)

Background; Although the beneficial effects of LV unloading with low-dose NTG 

in acute Ml (limitation of infarct size) (123) and ISDN during short-term therapy 

before the infarct collagen plateau (limitation of LV remodelling and dysfunction) 

(102) had been demonstrated, the effect of long-term nitrate throughout post-MI 

healing had not been determined. This study tested the hypothesis that long-term 

therapy, given throughout healing over 6  weeks after Ml, might be more beneficial 

than short-term therapy given over the first 2 weeks after Ml (103).

Methods/Results; The effect of prolonged nitrate therapy between 2 days and 6  

weeks during healing after Ml on serial parameters of LV remodelling (scar 

expansion, scar thinning, LV dilatation, and hypertrophy) and LV function 

(asynergy or akinesis plus dyskinesis and ejection fraction) by serial 2D-Echo, 

haemodynamics, post-mortem topography (computerized planimetry, geometric 

maps, and radiographs), and collagen content (OHP) was studied in 64 dogs. 

The animals were randomized 2 days after LAD ligation to various nitrate 

regimens (n=32) over the first 2 weeks: sub-group 1, 2% transdermal NTG at 8  

AM and 4 PM (n=6 ); sub-group 2, 2% transdermal NTG plus 2.6 mg of sustained 

release oral NTG at 8  AM, 3 PM, and 10 PM (n=5); sub-group 3, oral ISDN, 30 mg 

at 8  AM and 4 PM (n=11) or 6  weeks: sub-group 4, ISDN (n=10); and matching 

controls (n=32).

Nitrate therapy reduced left atrial pressure, mean arterial pressure, and the 

rate-pressure product compared to controls over the 6  weeks. Post-mortem scar 

mass and OHP were similar in control and nitrate groups. However, scar 

stretching and thinning, cavity dilatation, non-infarct wall hypertrophy, and apical 

bulging (RSD) were less with nitrates, especially in the long-term sub-group 4. In- 

vivo remodelling parameters between 2  days and 6  weeks after ligation showed 

that, compared to controls, nitrate therapy prevented further stretching of the 

asynergic segment, decreased the expansion index, decreased further scar 

thinning, prevented the increase in LV volumes, reduced the frequency of LV 

aneurysm, prevented the increase in LV mass, reduced the extent of asynergy, 

and improved ejection fraction. Although the beneficial effect on topography and 

function was seen in all nitrate sub-groups, the overall benefit was greater with
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long-term therapy over 6  weeks (sub-group 4) than short-term therapy confined to 

the first 2 weeks (sub-groups 1, 2, and 3).

The overall results indicated that prolonged nitrate therapy, in various 

regimens during healing after infarction, effectively reduced LV loading and 

prevented infarct thinning, further infarct expansion, progressive LV dilatation, and 

the increase in mass. These effects were associated with decreased LV asynergy 

and improved LV ejection fraction. The beneficial effects were greater with long

term therapy over 6  weeks than short-term therapy over the first 2  weeks. ■I

Relevance: The benefits of long-term nitrate therapy given in an eccentric dosing 

schedule in this study supported the concept that prolonged LV unloading can 

limit adverse LV remodelling and dysfunction after Ml. j

5.2.3.3. Impact of LV unloading after late reperfusion of canine anterior Ml 

on remodelling and function using isosorbide-5-mononitrate (48: 

Appendix 13)

Background: Late coronary artery reperfusion was being reported to result in a 

mismatch with delayed recovery of function despite re-established perfusion 

(158). However, late reperfusion was also reported to limit infarct expansion 

independent of reduction of infarct size (83). Whether prolonged LV unloading 

after late reperfusion might improve recovery of LV function and limit remodelling 

during healing after anterior Ml had not been determined.

Methods/Results: The hypothesis that late reperfusion combined with prolonged 

unloading with isosorbide-5-mononitrate (ISMN) might produce greater functional 

recovery and less remodelling than late reperfusion alone was tested in the dog 

model (48). The rationale was that late reperfusion during acute Ml results in 

delayed recovery of LV function and less remodelling, whereas LV unloading with 

nitrates Improves function and attenuates remodelling.

In-vivo LV function and topography (2D-Echo), post-mortem topography 

(planimetry), and collagen content (OHP) were measured in dogs that were 

randomized to reperfusion 2 hours after LAD ligation plus ISMN (n=12) or placebo 

(n=12) given as 25 mg intravenously over 4 hours followed by 50 mg q.i.d. for 6  

weeks. ISMN had been reported to be associated with less nitrate tolerance 

(337). Compared to placebo, the ISMN group had similar heart rate but lower left
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atrial pressure, mean arterial pressure, and rate-pressure products. Although in- 

vivo remodelling and functional parameters were similar in the two groups, by 6  

weeks the ISMN group had smaller (P<0.05) infarct and non-infarct segment 

lengths, ventricular volumes, and mass; less (P<0.001) asynergy; and greater 

(P<0.001) volume ejection fraction. More importantly, by 2 days, ejection fraction 

was 18% greater (P<0.025) and asynergy 26% less (P<0.05) with ISMN. At 6  

weeks, the ISMN group showed less (P<0.05) scar size, scar collagen, cavity 

dilatation, non-infarct wall thickness, and apical bulging than the placebo group. 

In another 4 dogs, ISMN given acutely produced less improvement in LV function 

and remodelling than prolonged ISMN.

The overall results suggested that late reperfusion of acute anterior Ml 

combined with prolonged ISMN unloading results in greater and earlier recovery 

of LV function and less remodelling than late reperfusion alone.

Relevance: Prolonged LV unloading with ISMN (once daily) after late reperfusion 

results in earlier recovery of LV function and less remodelling.

The overall findings of the three studies (48,102,103) underscore 3 

important points.

First, both the timing and duration of interventions after Ml are important. It 

is evident that certain factors such as mechanical forces are operative throughout 

the period after Ml (Figures 7 and 21). It follows that prolonged application of an 

appropriate intervention throughout healing might be more effective than early or 

late therapy alone. These principles have been tested and found to be true with 

agents that: i) reduce preload and afterload, such as NTG (48,102,103,104-109), 

and captopril or enalapril (108,126-131); ii) increase contractile pull, such as 

digoxin (2 2 2 ); and iii) decrease contractility and heart rate, such as metoprolol 

(220).

Second, therapy during the healing phase with an agent such as NTG, 

which does not decrease infarct collagen, does not cause thinning, but decreases 

preload and afterload, would be expected to reduce the extent of RSD and 

improve myocardial performance after acute Ml. The effect of prolonged NTG 

therapy during the healing phase in the studies described above confirm beneficial 

effects on LV geometry, RSD and LV function after Ml with or without reperfusion 

in the dog model (48,102,103).
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Third, the long-acting nitrate, ISDN, proved to be safe and produced 

benefits when given during the period after completion of Ml, between 2 days and 

7 weeks and allowing a daily nitrate-free interval. Thus, the ISDN was 

administered using an eccentric dosage schedule to avoid the development of 

nitrate tolerance (332). It is possible that the healing infarct is less susceptible to 

the harmful effects of hypotension than the acutely infarcting myocardium.

5.2.4. Effect o f agents that decrease infarct collagen on LV remodelling 

during healing after Ml in the dog

The hypothesis that prolonged therapy with ACE inhibitors, that produce LV 

unloading and inhibition of angiotensin II formation, might limit LV remodelling and 

dysfunction after Ml was tested in the dog model (126-129,131). The effect of 

ACE inhibitors on collagen synthesis was not known at the time that the studies 

were done in the mid 1980’s. This unexpected finding led to additional studies 

with ACE-inhibition.

5.2.4.1. Effect of long-term captopril therapy on LV remodelling and 

function during healing after Ml in the dog (126: Appendix 29) 

Background: The effect of prolonged LV unloading with an ACE inhibitor on LV 

remodelling, function and infarct collagen during healing after anterior Ml in the 

dog model had not been determined.

Methods/Results: The effect of long-term reduction of preload and afterload by 

captopril during healing after Ml on LV remodelling and function was studied in 30 

chronically instrumented dogs with LAD ligation (126). The animals were 

randomized 2 days after Ml to oral therapy with placebo (n=15) or captopril, 50 mg 

ti.d. (n=15), for 6  weeks. Serial haemodynamic as well as topographic and 

functional variables (2D-Echo) were measured over 6  weeks. Scar topography 

(planimetry), occluded bed size (coronary arteriography) and collagen (OHP) 

content were measured at 6  weeks. Between 2 days and 6  weeks, captopril 

decreased (P<0.001) mean arterial pressure and mean left atrial pressure more 

than placebo, but did not influence heart rate. Infarct scar mass, transmurality 

and collagen content at 6  weeks were similar in the two groups but scars showed 

less (P<0.001) thinning and expansion with captopril than with placebo. The 

infarct scar weights were consistent with small infarcts (control, 5.7 ± 2.7 g;
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captopril, 6.4 ± 3.5 g). Echocardiograms showed similar infarct expansion and 

thinning in the two groups at 2 days but less aneurysm with captopril at 6 weeks. 

Between 2 days and 6 weeks, the expansion index (infarct-/non-infarct-containing 

segment length) decreased (P<0.001) with captopril but increased (P<0.001) with 

placebo. Also, thinning ratio (infarct/normal wall thickness) decreased (P<0.001) 

with placebo but did not change (P=NS) with captopril. By 6 weeks, LV asynergy 

and volumes showed a greater decrease (P<0.01) and global ejection fraction a 

greater increase (P<0.05) with captopril.

The results suggested that captopril therapy during healing after canine 

anterior infarction limits LV remodelling and improves LV function in a dog model 

of small infarcts.

Similar benefit was seen with captopril in the canine model of small 

transmural Ml (318: Appendix 43). Transmural Ml was induced by mid-LAD 

ligation plus a circumferential running silk suture around the central cyanotic zone 

(not penetrating more than 50% of the LV wall thickness and not applied with 

excessive tension that might distort or tear the wall) and, as added precaution, 

ligation of visible collateral feeders (318). The captopril-induced attenuation of 

RSD in that study was dramatic in some hearts (Figure 23).

Relevance: The findings established that the ACE-inhibitor captopril limits LV 

remodelling and dysfunction in small transmural Ml. Beneficial effects of captopril 

on LV remodelling and survival were previously reported in rats with small and 

moderate Ml (75-77). Captopril in that study did not significantly decrease 

collagen in the infarct center region (126). Of note, the dose of captopril in that 

study decreased both afterload and preload (126).

S.2.4.2. Effect of enalapril on LV remodelling and function during healing 

after anterior Ml in the dog (127: Appendix 30)

Background: In view of the results of the CONSENSUS II study (123), the 

hypothesis that prolonged ACE-inhibition with enalapril might produce similar 

benefits as found with captopril (77) was tested. The effect of prolonged ACE- 

inhibition with enalapril, given in a dose that does not produce prolonged decrease 

in blood pressure, on LV remodelling, function and infarct collagen during healing 

after anterior Ml in the dog model had not been determined.
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Methods/Results; The effect of enalapril, during healing between 1 day and 6 

weeks after Ml, on in-vivo changes in LV size, shape, mass and function 

(asynergy, or akinesis and dyskinesis, and ejection fraction) as determined by 

serial 2D-Echo, haemodynamics, post-mortem topography (planimetered short- 

and long-axis ventricular contours), and collagen content (determined by levels of 

OHP) was measured in 25 instrumented dogs (127). The dogs were randomized 

1 day after LAD ligation to a control group (no treatment) and a group receiving 

oral enalapril (2.5 mg b.i.d.). Compared to controls, enalapril produced a 

sustained lowering of left atrial pressure but no difference in heart rate and mean 

blood pressure over the 6 weeks.

Also compared to controls, enalapril modified in-vivo remodelling 

parameters between 1 day and 6 weeks, with less elongation of the asynergy 

containing segment, lower expansion index (ratio of endocardial lengths of infarct 

to non-infarct containing segments demarcated by papillary muscle landmarks), 

less scar wall thinning, lower thinning ratio (ratio of average thickness of infarcted 

wall to average thickness of the normal wall), smaller LV volumes, less regional 

bulging and aneurysm frequency, prevention of the increase in LV mass, less total 

extent of asynergy, and higher LV volume ejection fraction.

At post-mortem examination, scar mass was similar in the two groups, but 

topographic maps with enalapril revealed less infarct bulging, flatter infarct scars 

and less non-infarct wall thickness. In addition, post-mortem collagen was similar 

in the non-infarct zones of the two groups but lower in the infarct zones of the 

dogs given enalapril.

The overall results indicated that prolonged enalapril therapy, in a dose that 

did not lower blood-pressure, during healing after anterior Ml produced prolonged 

reduction of LV preload in dogs. This diastolic unloading was associated with 

limitation of remodelling parameters (infarct expansion and thinning, progressive LV 

dilatation and hypertrophy, regional bulging), less total asynergy and improved LV 

ejection fraction. Although ACE-inhibition was associated with lower infarct collagen 

and altered scar topography, these effects did not impact negatively on overall 

remodelling and function in the model of small infarcts.

Relevance: The findings established that the ACE-inhibitor enalapril, in a dose 

that produced prolonged reduction of preload but not blood pressure, limited LV 

remodelling and dysfunction in small transmural Ml. However, beneficial effects of
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this non-blood-pressure lowering dose of enalapril on LV remodelling were 

associated with less infarct collagen and flatter scars (127). These findings 

suggested that the effects on collagen might be due to an inhibition of collagen at 

the tissue or cellular level.

5.2.4.3. Effect of combined captopril and isosorbide dinitrate during heaiing 

after Ml (131: Appendix 33)
Background; Because i) ACE-inhibition was suggested to decrease infarct 

collagen (127), ii) captopril can donate sulfhydryl radicals that are depleted during 

chronic nitrate therapy, iii) nitrates did not decrease infarct collagen (103), and iv) 

both nitrate and ACE-inhibition limit remodelling and exert local vascular effects, it 

was reasonable to suggest that the combination of a nitrate and captopril might be 

more beneficial than either given alone. The effect of prolonged ACE-inhibition 

and a nitrate on LV remodelling, function and infarct collagen during healing after 

anterior Ml in the dog model had not been determined.
The hypothesis that combination therapy with captopril and ISDN might be 

more beneficial than monotherapy in limiting LV remodelling and dysfunction during 

healing after Ml was therefore studied (131).

Methods/Results: In-vivo remodelling variables and function (2D-Echo),

haemodynamics, post-mortem topography (planimetry) and collagen (OHP) were 

measured in 48 chronically instrumented dogs that were randomized 2 days after 

lA D  ligation to 6 weeks of therapy with captopril, ISDN, captopril plus ISDN, or 

placebo. Compared to placebo, the three active therapies decreased blood 

pressure and left atrial pressure, limited infarct expansion, infarct thinning, non- 

infarct wall stretching and thickening, limited LV dilatation and the increase in LV 

mass, and decreased regional bulging, aneurysm frequency and LV dysfunction. 

However, the decrease in asynergy and increase in volume ejection fraction were 

less with captopril alone or captopril plus ISDN than ISDN alone. Infarct thinning 

and bulging at 6 weeks was also less with ISDN than captopril. Although initial LV 

asynergy, final scar sizes and non-infarct collagen at 6 weeks were similar among 

the groups, collagen in the center of the infarct scar was less with captopril or 

captopril plus ISDN compared to placebo and ISDN.

The results suggested that monotherapy with captopril or ISDN, or the 

combination improved all remodelling parameters but ISDN improved function more
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than captopril or captopril plus ISDN. Inhibition of infarct collagen content by 

captopril suggests that benefits with captopril represent a balance between positive 

and negative effects, and combination with ISDN might be advantageous.

Interestingly, the 6-week old scar weights in the four groups in this study 

(6.0 ±2.1 (SD) g, 4.0 ± 3.6 g, 5.9 ± 4.5 g and 4.8 ± 2.0) were all small (131) and 

similar to those in other studies with captopril (126,318).

Relevance: The overall findings supported the concept of added benefits of 

combination therapy and synergism between ACE-inhibitor and nitrate therapy 

with respect to LV function. However, the captopril-induced decrease in infarct 

collagen detected in this study was not attenuated by addition of the nitrate (131).

5.2.4.4. Effect of captopril and enalapril on LV geometry, function and 

collagen during healing after anterior and inferior Ml in the dog 

(128: Appendix 31)

Background: The effect of prolonged ACE-inhibition on LV remodelling, function 

and infarct collagen during healing after anterior and inferior Ml in the dog model 

had not been determined. The hypothesis that the beneficial effect of prolonged 

ACE inhibitor therapy on remodelling during healing after Ml might be greater in 

anterior than inferior infarction and with captopril than enalapril was tested in the dog 

(128). This was based on the findings that LV remodelling is more marked after 

anterior Ml (21,28,35) and enalapril decreased infarct collagen (127).

Methods/Results: The effect of 6 weeks of therapy with captopril (50 mg b.i.d.), 

enalapril (2.5 mg b.i.d.), or placebo on in-vivo parameters of LV remodelling, function 

and mass (2D-Echo), haemodynamic function, post-mortem topography (planimetry) 

and collagen (OHP) was studied in 36 instrumented dogs randomized to therapy 48 

hours after LAD or LCX occlusion. Compared to placebo, both captopril and 

enalapril decreased infarct expansion, infarct thinning, progressive LV dilatation, LV 

mass and asynergy, and infarct collagen in anterior and inferior infarction. Despite 

similar small scar sizes, the effects on remodelling and dysfunction were greater in 

anterior than inferior infarction. In addition, captopril produced greater attenuation of 

infarct expansion and LV enlargement, greater improvement in volume ejection 

fraction, and less decrease in infarct collagen than enalapril.
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Relevance; The overall results of that study (128) indicated, that on balance, 

captopril and enalapril attenuated LV remodelling and preserved function in small 

anterior and inferior infarction despite differences in the effects of the drugs on 

individual remodelling variables. The results also suggested that further studies 

were needed to determine whether inhibition of infarct collagen might be harmful, or 

differences between captopril and enalapril therapy might be important in large 

transmural infarctions.

5.2.4.S. Effect o f ACE-inhibition on infarct collagen deposition and 

remodelling during healing after transmural Ml in the dog (129: 

Appendix 32)

Background: The effects of the ACE-inhibitors captopril and enalapril on the 

temporal changes in infarct collagen during healing after transmural anterior Ml in 

the dog had not been determined. In view of the previous findings with captopril 

and enalapril in small and predominantly non-transmural Ml (127,128,131), this 

study focused on small but transmural anterior Ml.

The hypothesis that prolonged AC E-inhibition for 6 weeks after transmural 

Ml lowers the collagen content of infarct scars was studied in dogs (129). Since 

collagen deposition increases progressively during healing, the temporal changes 

in collagen content of the infarct zone with ACE-inhibition during healing over 6-7 

weeks and their possible relation to infarct remodelling was also addressed (129).

Methods/Results: Infarct collagen (OHP) content was measured over 6-7 weeks 

in dogs treated with captopril (50 mg b.i.d.), enalapril (2.5 mg b.i.d.) or placebo, 

beginning on day 2 after transmural anterior Ml or sham. In-vivo changes in the 

infarct and global LV remodelling, mass and function (2D-Echo) and 

haemodynamics among 6-week survivors were also measured. Compared to 

placebo over the 7 weeks, both inhibitors decreased infarct collagen (P<0.001). 

Among the 6-week survivors, both inhibitors lowered infarct collagen (P<0,001) 

and increased the collagen type 1/111 ratio, but preload was lower, increase in 

diastolic volume and mass were less, and systolic function improved. Although 

the doses of captopril (but not enalapril) decreased afterload, inhibition of infarct 

collagen was less, infarct bulging and global LV dilatation were less and systolic 

function was better with captopril than enalapril (Figure 24). Apical aneurysm 

frequency at 6 weeks was similar (P=0.9) for enalapril (13/18) and controls (31/40)
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but less with captopril (6/23) than controls = 6.9, P=0.0002) and less with 

captopril than enalapril = 13.9, P=0.0002). In all 3 Ml groups, deaths over the 

7 weeks correlated with greater infarct size, LV volume and dysfunction, and lower 

infarct collagen.

The overall findings suggested that ACE-inhibition suppresses the temporal 

increase in infarct collagen and attenuates infarct expansion, thinning and bulging, 

LV enlargement and aneurysm formation during healing after Ml.

Relevance; In light of the overwhelming evidence from clinical trials that ACE- 

inhibition decreases mortality in survivors after Ml (134), one must conclude that 

the benefits outweighed potential disadvantages in the study patients.

However, the effects of ACE-inhibition on collagen in the infarct zone 

during healing of transmural Ml observed in the last study (129), suggests the 

possibility that long-term inhibition of collagen deposition and hypertrophy may be 

excessive and allow more LV distension, dilatation and dysfunction. This may be 

especially true after large transmural Ml. The findings in this study may explain 

the persistent LV dysfunction after early ACE-inhibition observed in rats (338). 

However, large transmural Ml as found in rats could not be studied in the dog 

model for logistic reasons. Since the patient population with heart failure and 

marked cardiac enlargement has been increasing in the ACE inhibitor era, 

inhibition of collagen deposition may be an important factor to consider.

The dose of captopril and enalapril used in the canine model 

(126,127,129,131) deserves comment. As a general rule, doses of drugs used in 

animals should not be extrapolated to humans. The 50 mg BID dose of captopril 

in dogs weighing about 20 kilograms (126,129,131) translates to 5 mg/kg daily. 

This is higher, on a milligram per kilogram basis, than the final dose used in 

patients in the SAVE trial: escalation from 6.25 mg to 50 mg TID or 1.42 mg/kg for 

the 70 kg human (121). The 2.5 mg BID dose of enalapril used in the 

approximately 20 kg dogs (127,129) would translate to 0.25 mg/kg daily, which is 

similar to the final dose used in the SOLVD and CONSENSUS trials; escalation 

from 2.5 mg BID to 20 mg QD or 0.29 mg/kg for the 70 kg human (123,142, 

143,145). A major focus of the study was on the tissue effect of ACE-inhibition on 

infarct collagen. A higher dose of captopril relative to that used in humans was 

chosen so as to offset a possible bias against enalapril. Furthermore, a non

hypotensive dose of enalapril was used for the same reason.
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5.3. CLINICAL STUDIES: VALIDATION AND NATURAL HISTORY
5.3.1. Preliminary clinical research studies: Feasibility and validation
5.3.1.1. Phase 1: Reproducibility and angiographic correlation 

Background; Although 2D-Echo was an attractive clinical tool for the non- 

invasive assessment of the effect of pharmacological interventions on adverse LV 

remodelling and dysfunction in repeated studies on the long-term, this was a novel 

application and there was a paucity of data on feasibility and reproducibilty. 

Publications on these applications of 2D-Echo were just beginning to appear (15- 

17,230,231,235-238,241,242).

Methods/Results; The first priority was to determine the inter-observer and intra- 

observer variability in quantifying wall motion abnormalities and global function in 

human Ml by contouring endocardial outlines and marking asynergic boundaries. 

These errors were found to be minimal, between 5 and 10% depending on the 

level of training of the observers and whether or not hypokinesis was included or 

excluded. Asynergic areas at 48 hours in 89 patients post-MI correlated with peak 

serum CK levels (r=0.88, P<0.001), in agreement with a report from Visser et al. 

(231) and other publications from my laboratory (232; Appendix 36; 251-253).

Correlative studies of LV volumes by 2D-Echo and biplane LV angiography 

in 31 patients, using 4 models (Figure 25) and the modified Simpson’s rule, were 

in agreement with observations of others (236). Results of correlative studies of 

LV asynergy on 2D-Echo and biplane LV angiography in 30 patients were in 

agreement with those reported by Kisslo et al. (16) and Gibson et al. (339) using 

smaller groups of patients. Early correlative studies between LV asynergy and LV 

ejection fraction calculations in patients with remote Ml by LV angiography 

(biplane) and 2D-Echo were also done and published in several abstracts as well 

as papers (251-253). Inter-observer reproducibility of 2-Echo steered M-mode 

measurements in infarct patients, positioning the M-mode beam perpendicular to 

the region of interest, was reasonable (error < 5 %). Although 2D-Echo and LV 

biplane angiographic estimates of ejection fraction were very good (r=0.91 to 0.96, 

P<0.001), attempts at quantifying LV volumes using 2D-Echo in patients with Ml 

uncovered the major problem of RSD in diastole and becoming more marked in 

systole (21 ; Appendix 3). It therefore became necessary to quantify RSD after Ml 

(19; Appendix 1; 33; Appendix 7).
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Relevance: This essential first step confirmed published data from other 

laboratories and the reproducibility and limitations of 2D-Echo for the assessment 

of regional and global LV dysfunction and topography after Ml in my laboratory.

5.3.1.2. Phase 2: Feasibility and detection of asynergy 

Background: Although some publications had appeared (15-18,230) on the 

feasibility of assessing asynergy using quantitative 2D-Echo, and others were just 

appearing (231,235,236,241,242,339), it was necessary to establish my own 

expertise and database. The second priority was therefore to establish the 

feasibility of our systematic 2D-Echo imaging approach (Figure 5) in patients with 

ischaemic heart disease, including acute and remote Ml and other diseases. This 

was done in the 3500 consecutive patients who were studied between 1980 and 

1985 in my clinical adult 2D-Echo laboratory (book in preparation).

Methods/Results: Serial systematic tomographic images (in parasternal long- 

axis, apical 4-chamber and parasternal short-axis views at mitral, chordal and 

papillary muscle levels), which were adequate for detailed analysis of endocardial 

wall motion and visual assessment of systolic thickening, were obtained in 85% of 

the patients. Asynergy was subsequently defined as akinesis (no motion, no 

thickening) and/or dyskinesis (paradoxical motion and systolic thickening). 

Hypokinesis was not included on the basis of the findings in previous reports 

(62,233) and difficulty with accurate visual quantification of hypokinesis.

In a subsequent clinical research study (only abstracts presented), the 

predictive value of an early 2D-Echo in acute Ml, performed at 2 days by the 

bedside, was evaluated in 40 consecutive patients with a first Ml. On EGG, 31 

patients had transmural or Q-wave Ml and 9 had subendocardial or non-Q-wave 

Ml. The EGG location was inferior in 16, anterior in 20, posterior in 2 and 

uncertain in 2. The conclusions of that study were as follows:

i) The early 2D-Echo detected LV asynergy, defined as akinesis and/or

dyskinesis in all patients (100%).

ii) The location of LV asynergy on 2D-Echo agreed with the EGG location 

of acute Ml in all patients.

iii) Anterior LV asynergy in 4 of 21 patients was associated with apical right

ventricular asynergy, and posterior LV asynergy in 6 of 12 patients was

associated with right ventricular free wall asynergy.

1 0 2



iv) The early 2D-Echo detected LV thrombus in 13 of 21 patients with 

anterior LV asynergy and 2 of 16 patients with posterior LV asynergy, 

suggesting that thrombi are more frequent with anterior infarcts.

v) An estimate of the extent of LV asynergy, by summation of abnormal 

segment lengths as percent circumference (range 5-50%) from all 

short-axis views, correlated with peak CK levels (r=0.88, P<0.001).

vi) The location and extent of asynergy on 2D-Echo predicted early 

complications and detected late complications: acute ventricular septal 

defect in 2 patients; papillary muscle dysfunction in 3 patients or rupture 

in 1 patient; infarct extension in 3 patients and infarct expansion in 8 

patient.

Relevance; The overall findings indicated that serial 2D-Echo after Ml was 

feasible, provided reproducible diagnostic data in the early stages of infarction, 

and could detect unsuspected RV dysfunction and complications after acute Ml.

5.3.2. The natural history of LV asynergy after acute Ml by 2D-Echo 

Background: There was a paucity of data on the natural history of LV asynergy 

after Ml using 2D-Echo.

Methods/Results: Clinical and 2D-Echo data were collected on 89 consecutive 

patients with a first acute anterior Ml (only abstract presented). The 63 patients 

with adequate and quantitative initial 2D-Echo were entered in a longitudinal 1- 

year follow-up study. The echocardiograms were coded for double-blind, detailed 

analysis by two experienced observers (the author and a trained assistant).

On the basis of the extent of LV asynergy as percent of LV circumference 

on images at the papillary muscle level, and serial data over the first 3 months, the 

patients with first anterior infarcts could be classified into 3 groups (Figure 26):

1. Patients with a small area of LV asynergy initially had very small or no 

detectable asynergy at 3 months. These patients had subendocardial non- 

Q-wave infarcts on ECG and were in Killip class I on admission. They were 

in New York Heart Association (NYHA) functional class I at 3 months. 

These patients showed no regional or global LV dilatation.
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Figure 26. Natural history of LV geometry in survivors of a first 
anterior infarction over 3 months by 2D-Echo

Three main groups of patients after a first Q wave Ml on the basis of 
asynergy on the baseline study on day 2. Average LV outlines at 4 time 
intervals over 3 months are shown. Dark segments = asynergic zone 
(akinesis + dyskinesis).
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2. Patients with initial LV asynergic areas of 5-20% had persistent but slightly 

smaller areas of asynergy by 3 months, no significant change in LV cavity 

size or diastolic wall thinning. They had transmural or Q-wave infarcts on 

ECG and were in Killip class I to II on admission. At 3 months, they were in 

NYHA class l-ll. These patients showed very mild RSD and progressive 

LV dilatation.

3. Patients with initial LV asynergic areas of 20-30% had persistent asynergy 

at 3 months but showed significant dilatation in LV cavity size and wall 

thinning in diastole with paradoxical motion in systole. An example of 

expansion with 18% LV circumferential asynergy at the papillary level on 

the baseline 2D-Echo is shown (Figure 27). A proportion of these patients, 

especially those with >30% LV asynergy, had developed infarct expansion 

between days 6 and 10. All had been in Killip class lll-IV initially, with 

transmurai, Q-wave infarcts on ECG. They were in NYHA class III at 3 

months. These patients showed marked RSD and early aneurysm 

formation over the 3 months.

Relevance: The overall findings suggested that the extent of LV asynergy on an 

initial 2D-Echo in acute anterior Ml can predict outcome at 3 months and 1 year. 

This study first unmasked the problem of RSD in quantifying total LV asynergy 

and volumes in patients with moderate to large Ml.

5.3.3. Detailed analysis of 2D-Echo data and regional shape distortion (19: 
Appendix 1)

Background; Detailed analysis of 2D-Echo data was time consuming. However, 

the circumferential extent of LV asynergy in papillary and chordal short-axis 

sections and apical 4- and 2-chamber views could be quickly assessed at the 

bedside. Measurement of the extent of LV asynergy by manual contouring of 

these selected views could be made in 10 to 15 minutes.

Over the 198D’s, my laboratory used: i) multiple to and fro video playbacks,

ii) manual contouring of endocardial outlines and digitization using the HP 

digitizer, rather than the light pen system on the Varian system, iii) visual 

assessment of systolic thickening, as done by Gibson et al. (339), together with 

measurements of regional thicknesses on adequate images. It is important to
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remember that in 1981, when this work began, commercial systems for analysis of 

2D-Echo images were not available for off-line analysis of 2D-Echo images.

Methods/Results: As a first step towards more rapid analysis of 2D-Echo images, 

with the assistance of a computer assistant working in my laboratory and in 

consultation with the Information Systems, I explored the feasibility of acquiring 

digital images via the video recordings of the Varian system. I realized that a 

time-base corrector, a video-digitizer and software development were needed. 

These were implemented between 1984 and 1985. Digital images from selected 

patients were initially acquired via the digital RS-232 output port of the Varian 

system. Storage of a single frame on computer took 3 minutes (4800 BAUD), 

which was impractical from a therapeutic viewpoint although useful data could be 

obtained. Images were stored on floppy discs for additional processing on a 

larger computer (Computer Sciences). Subsequently, a Grinnel system with a 

frame-grabber was tested and found to be time consuming.

Manually contoured short-axis images were used for quantifying RSD (19; 

Figure 10) and wall thickness after Ml (Figure 14). Transformation of ‘manual 

contours’ into the computer-generated graphical representation facilitated storage 

of large volumes of data on videotapes and rapid acquisition of meaningful data 

for comparison with subsequent studies.

The characterization of RSD on diastolic short-axis 2D-Echo images (19), 

using the traditional index (P /̂4tcA), with perimeter (P) and area (A), as described 

by Holt and Marjoram (340), yielded similar values for distorted LV outlines from 

patients with Ml and normal outlines from controls (1.042 versus 1.047, P=NS). In 

contrast, the 5 new indices of shape distortion, after the excision of the distorted 

segment (Figure 28), were markedly sensitive in detecting shape distortion of the 

asynergic regions in end-diastolic contours as well as greater distortion in end- 

systole (Table 8 , Figure 28). The new indices include the peak (P )̂ of the angular 

distribution and the first four moments (Mi, M2 , M3 and M4) of the distance 

distribution between the risk segment of LV asynergy and the computed ideal 

segment of a circle (19). These new RSD indices at end-diastole in infarct 

patients compared to normals were as follows: Pk, 6.0 versus 0.7 mm, P<0.001; 

Mi (average), 3.8 versus 1.0 mm, P<0.001; M2 (variance), 20.0 versus 0 mm^, 

P<0.025; Ms (skewness), -216.8 versus 0 mm^, P<0.025; M4 (kurtosis), 19576.0 

versus 0 mm"̂ , P<0.05.
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TABLE 8. Traditional and new primary shape distortion indices in 
systole and diastole in the infarct group*

Parameter Diastole Systol e P value

P^/4wA 1.0402
+ 0,0266

1.0811 
1  0,0591

< 0,001

(mm) 4,447 
1  4.300

9,0175 
±  6.580

< 0.001

(mm) 2,556 
±  2.438

6,697 
1  4.307

< 0.001

#2 (mm )̂ 4.1053 
1  7,6071

13,8832 
+ 20.2275

< 0,001

Mg (mm3) .1,2304 
1 14.518

-23.787 
1  59.307

< 0.005

(mm )̂ 129.550
±  39.324

1050,200 
±  2851.000

< 0,025

Values as mean f  standard deviation, 
* H 58 sections

Relevance: Three points need emphasis:

First, in this method, RSD is measured directly and is applicable to Ml at 

any location. The expansion index, which is based on the ratio of infarct to non

infarct segment lengths, gives very different (reciprocal) values for anterior and 

posterior Ml. In addition, it depends on anatomic landmarks that may shift with 

expansion after infarction of antero-septal, infero-septal or postero-lateral regions.

Second, the distorted asynergic segment is replaced by a derived risk 

segment, which is a more accurate measure of the original segment of the LV wall 

that underwent infarction. The alternative approach of deriving the mass of the 

asynergic segment from its area required clear definition of both endocardial and 

epicardial borders. The epicardial border was less adequately visualized on 2D- 

Echo systems in the 1980’s.

Third, in subsequent studies, the derived risk segment was used to 

compute LV asynergy, and the distorted native segment to quantify infarct 

expansion and RSD. Since the derivation of the new indices of RSD was time- 

consuming using the developed computer system, the depth and area of the RSD 

were used in later studies and found to be more practical.

1 0 8
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5.3.4. Regional shape distortion as a predictor of adverse remodelling after
Ml (20: Appendix 2; 21: Appendix 3)

Background: Early detection of potential expanders (patients who develop 

clinically significant infarct expansion with acute regional LV dilatation and LV 

failure but no additional necrosis) after Ml (18) is necessary in order to apply 

preventive therapy. Although stretching and thinning of the infarct segment had 

been used as measures of infarct expansion on 2D-Echo (18,31,32), direct 

measurement of RSD or dilatation of the infarct zone had only just been attempted 

in my laboratory (19,20). The hypothesis that the degree of RSD on an early 2D- 

Echo after acute Ml may allow identification of patients prone to infarct expansion 

was therefore tested (21).

Methods/Results: To determine whether the degree of RSD or dilatation on early 

2D-Echo after acute Ml can identify potential expanders, serial clinical and 20- 

Echo data were studied prospectively in 244 consecutive patients with a first Q- 

wave Ml (Tables 9A, 9B). Initial (mean 2 days) and final (mean 10 days) 

echocardiograms were compared for regional LV asynergy (Figure 10), RSD 

(Figure 29) and conventional indices of expansion (Figure 11) measured on 

endocardial diastolic outlines of mid-LV short-axis sections.

Analysis of clinical and 2D-Echo data revealed 51 expanders and 193 non

expanders (Tables 9A, 98, 10, 11). Expanders showed greater LV dysfunction 

and more In-hospital deaths (27% versus 8%, P<0.001) compared to non

expanders (Table 98). Conventional indices of expansion showed more marked 

increase between initial and final 2D-Echo in expanders, but initial indices were 

not predictive. In contrast, the new RSD index Pk, a measure of outward bulge 

(Figure 29D), was markedly greater in expanders than non-expanders on both 

initial (16.5 versus 2.4 mm, P<0.001) and final echo (Table 11). Furthermore, 

expanders with > 30% increase in Pk (to 21 mm) developed rupture of the 

ventricular septum (n=10) or free wall (n=2). Also, 50 of 51 expanders compared 

to 3 of 193 non-expanders had a Pk > 10 mm on the initial echo. A simpler index, 

the depth of RSD (ry), provided similar discrimination as Pk (Table 12, Figure 30). 

The overall findings suggested that the degree of diastolic RSD on an early 2D- 

Echo after acute Ml can identify potential expanders.

The relation between RSD and rupture of the ventricular septum was 

demonstrated in a parallel study (20: Appendix 2; Figure 31).

110



A —

m ro

UJ îfi

to (0

a

1 1
s i

II
(Ü H—
B o
O  (Dro 2

t l  
"  %

II
-  m --5

s■D
c

O" dj
c/5 >\

i f;#

0) 0) 0)£
^  CO 
0) Q.

^ .1  
CSJ c

c/5 O

iiit
^  m

It
CO (U

IÎ
i l

co
3

ll
I s

II

E §

II
E .52

o i/5

I
I I  

S sc  c
^  S 
s i

I f(D U 
^  II
E o

CO

■O
Q.

Q .

O )
05

C T3

05

Q .

Q .

O )

S'S iÜllî
d  <  CÛ d  Q.

O )
u_

111

CN

I
m



Table 9A. Initial patient data

Characteristic
Expanders

(n=^51)
Nonexpanders

(n-193) p Value

Age (yr) 60±12 57±14 NS
Sex (% male) 73% 78% NS
Body stiiface area (m^j 1.9±0.2 l,9±0 .2 NS
History o f hypencnsion Cn) 13 (25%) 42 (22%) NS
Kistor>' o f angina (n) 17 (33%) NS
Anterior M i (n) 31 (61%) 109 (56%) NS
Heart rate (beata/min) 82 ±20 77 ±20 NS
Systolic BP tmmHg) 129 ±25 NS
Diastolic BP (mmHg) 83±17 &5±15 NS
Mean BP (mrnHg) 9 8 ± I9 99±1? NS
RPF (tnmHg xbeats/min X lOB 8.0±2.2 7,8±2.6 NS
Killip class score 2,1x0.8 !.8±0 .7 0.025
EST: anterior M l (mV) ll .4 ± 7 .0 8 .l±5 .0 &W5
EST: inferior M I (rnV) 7,0±5.0 3.0±3.0 & W I
Peak CK level (lU/l) 2445 ±1574 175611412 0.01
CK infarct size (gEq) 72 ±60 43±30 0.005
Total asynergy (%) 29±7 20 ±9 O.tXH
Ejection fraction (%) 34 ±9 43±9 0.001

AhhnMüîiom: BP-blood piessure; CK -  creatine kinase; Ml-niyocapdia! infatelion; E f 
rale % mean blood pressure product.

T-.sum of ST-segment ekvt tions; RPF-heart

Table 9B. Pertinent clinical findings and drugs during hospitalization

Parameter
Expanders

(n -5 1 )
Nonexpanders 

(n = 193) p Value

In-hospital deaths (n) 14 (27%) 15 (8%) 0,001
Maximum K illip  score 3.3 ±0.8 2.2±0 .9 0.001

Asynergy at 10 days (%) 25±8 W ^9 0,001
Ejection fraction at 10 days {%) 42±10 47 + 8 0.005
Infarct extension (ti) 17 (9% ) NS
Cardiogenic shock (n) 10 (20%) 0.001
Cardiac arrest (n) 7 (14%) 16 (8%) NS
Free wall rupture (n) 0 NS
Ventricular septal rupture (o) 10 (20%) 0 0.0W5
Congestive failure (n) 37 (73%) 70 (36%) 0.0005
Pericarditis (ii) 24 (47%) 20 (10%) 0.0005
Drugs

Indomethacin (n) 19 (37%) 27 (14%) 0.000.5
Ibuprofen (n) 9 (18%) 22 01% ) NS
Prediii.sotie (n) 0 NS
Nitroglycerin, oral/paste (n) 40 (78%) 164 (85%) NS
Captopril (n) 5 (10%) 0 0,0005
Beta-blocker (n) 20 (39%) 65 (34%) NS
Calcium-blocker (n) 9 (18%) 31 (16%) NS
Diuretic (n) 39 (76%) 95 (49%) 0.001
Inotrope (n) 30 (59 %0 65 (34%) 0,005
Amiurrhythrnic (n) 38 (75%) 125 (65%) NS
Anticoagulant (n) 49 (96%) 161 (83%) 0.05
Antiplatelet drug (n) 8 (16%) 28 (15%) NS

1 1 2
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TABLE 10. Changes in topographic and functional parameters
Expanders (n=51) Nonexpanders (n =  193)

Initial Firtai Initial Final

ASL (cm)
Anterior M I 10.4±3.0" 16.0+4.0*' 9.9 ±1 .7 “ 10.5+2.1
Inferior M I 6.7 ±0 .9 “ 9.8±3,0*’ 6.9 +1.2" 7.8+1 ,6

NASL (cm)
Anterior MI 7,0±1.3“ 7.9+1.1 6 .8 + 1 .2 6.9+1.3
Inferior M I 9 .6±1.8“ 10,7+2.0 9.6+1.5 9.8+1.7

Expansion intlex
Anterior M I 1.50±0.36“ 2.28+0.43*’ 1.48+0.30 1.53+0.30
Inferior M l 0 .70±0 ,!1 " 1.01+0.46*’ 0.73+0.12“ 0.81+0,17

Thinning ratio
Anterior M I 0.76±0.1S” 0.51 ±0.15'’ 0.76+0.19" 0 ,6 8 + 0 .2 1

Inferior Ml 0 ,7 4 ± 0 . i r 0.46+0.14*’ 0.74+0.14" 0.63+0.17
A ll 0.75±0.14" 0,49+0,14*’ 0.75+0.17" 0.66+0.19

LV ID p (mm)
55±5“ '’Anterior 58+7*’ 50+6" 52+5

Inferior 53^7»,i 58+9*’ 50+6" 54+8
A ll S4±6“ '*' 58 + 8 " 50+6“ 53+9

LVEDV (cmb
Anterior 126±40" 165+61*’ 127+38" 138+38
Inferior 117±44“ 168+78" 120+36" 131+36
A ll 122±4I" 166+6?" 124+37" 135+37

LV asynergy {%)
2 9±8 “ -''Anterior M I 24+9" 20+9" 18 + 9

Inferior Ml 2 9±7 “ -*’ 25+6" 21+9" 19 + 8
A ll 2 9 j . 7 a.fc 25 +  8 " 20+ 9“ 18+9

L V E F {%)
33 +  10“ *’Anterior M I 41 +  12" 42 + 8 " 47 + 8

Inferior MI 36+7“ -*’ 45+6 43+10“ 47 + 8
A ll 3 4±9 “ -*’ 42 + 10" 43+9" 47+8

"p<0 .05 , significance of difference comparing date at 2 and 10 days within groups (ANOVA).
*’p:S0.05, significance of difference comparing expander with nonexpander groups at coircspondittg times.
Abbrev ia iiom : ASL = infarct-containing segment lengtit; NASL=non-infarct-containing segment length; LV==ieft ventricular;
LVEF=left ventricular ejection fraction; LV ID p= le ft ventricular internal diastolic dimension; L V E D V v e n t r ic u la r  end-diastolic
volume.

TABLE 11. Indices of global and regional diastolic shape distortion

Expanders Nonexpanders
Parameter Timing (n=51) (n=193) p Value

Traditional global shape indc.'t
P /̂4 trA a 1.06+0.08 1.03+0.08 0.025

b 1.06+0.09 1,03+0.03 0.025
Regional shape distortion indices

Peak distortion, Pj, (mm) a 16.5+6.1“ 2.4±2,6“ 0.001
b 5.7+6.1 34+4.9 0 .0 0 1

Ml, Average (mm) a 1 0 .8  + 1 0 .6 " 1 ,6 + 1 .6 " 0.003
b 4.S+5.6 2.3±4.4 0.005

Mj, Variance (ntm^) 50.7 + 111" 1.9+3.9" 0.025
b 19.9+57 3.7 ±9.2 0.05

Mj. Skewness (mm') a -21.2+78.8 -1 .1  ±4.7 NS
b -65.3+421.6 -11.0+114.4 NS

M,,, Kuitosis (ntnr*) a 2531 ±8795 35 + 122 0.05
b 1047+3443 260 + 2165 NS

Nonnalized distortion, iV q 0.71+0.34" 0.09+0.10“ 0 .0 0 1

b 0.21+0.24 0.13+0.18 0.05
Idea! area, A; (cm9 a 21.4+7.0" 22.2+7.8 NS

b 24.8+12,6 22.6+7.7 NS
Area of distortion, A;, (cm’ ) 5.3±2.6" 0.9 ±1.2" 0 .0 0 1

b 2.3+2.8 1.2 + 1 .7 0 ,0 1

Area ratio, A,i/A| a 0.28+0.16" 0.05+0.13 0 ,0 0 1

b 0 . 1 0 + 0 .1 2 0.06+0.14 0.05
Actual asynergic segment, s, (cm) 5.6+2.6 4.4 ± 2.0 0.005

b 5.6±2.7 4.6+4.Ô NS
Depth of distortion, r^ (mm) a 16.6+7.3" 2.3+2.B" 0 .0 0 1

b S.8+5.7 3.1+4.4 0.005

“p<0.05, significance of difference between initial (a) and final (b) echocardiograms.
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TABLE 12. Ranking of echocardiographîc parameters by ability to 
distinguish expanders from non-expanders using 
multivariate analysis of variance

F value

Overall discrimination
F ratio Fo,05 (20,223) =  56.8I
Critical F ratio F0 0 5  (20,200)= L62

Univariate discrimination
Peak distortion, 603 .14̂ ^
Normalized distortion, Pĵ /q 485.20''
Depth of distortion, 483.34"
Area of distortion, A j ' 315.44"
M l, Average 120.95"
Area ratio, A^j/A] 110.94"
Infarct-containing segment length 59.77"
Total LV asynergy 48.77"
Mz, Variance 38.87"
Global LV ejection fraction 36.16"
Global shape index, P /̂4?rA 25.71"
M 4, Kurtosis 15.71"
M 3, Skewness 1 2 .8 8 "
Actual asynergic segment, 12.45"
Perimeter, P 10.06"
Long-axis height, h 1 . 6 6

ideal asynergic segment, S; 0.55
Expansion index 0.31
LV end-diastolic volume 0.18
Thinning ratio 0.04

Critical F ratio Fo.05 (1 ,200)=  3.89

‘'Strongest discriminators; level of F test set at 95 % confidence
limits (p<D.05).

Jugdutt 21 : Appendix 3
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Figure 30. Discriminators of expanders and non-expanders by the
degree of RSD

1. Four highest ranking discrim inators of expanders (E) and non-expanders (NE).
2. Discrim inators of expanders (E) and non-expanders (NE) in anterior and inferior Ml

subgroups. Dotted lines and arrow Indicate cutoff values. P,̂  and in mm, Â , in cm^.
Jugdutt (21 : Appendix 3)

115



CM

' h t

E

t
<i>
tf>

JS
3

O
(/)
a

c
0
r
1
0)
C L
COmC
(/)
75c
O

'S’
oc

m

£
3
O)
iZ

| 8  
O) ̂
5 ^111 

0) <D —
C  tom ro

C

g 
0)
£

o
£
3
Q .

S p
" Uc 
(0

f  Q- ro

1%:
m 5f ^0.0)05 
m > 3
5 | t

il
ro

ISi
t s !
il i
0) c  ■pop
ro I  P

CD

I I :
ro .ro 0)

iiio -o TOllî3 — t: *- p TO
V)

p oP tr
o

i i i0) TO TO > (/) P 
P P TO11̂ ■ O -ü

i
î l

I
I
B
$

1
%
Q .
TO

_Ç

2 
3 
O.
a
1
0)p

CN
X
"2

I
o
(N

TO 
1
I

I i i

i!
TO

TO TO
E E2 p

TO 2 
3

c

"O _
1  O) 9- > c

TO UJ
TO Q 
0. CM

I
P  TO
Q 
C/D CC
E
CD 
C
g
pc  
2. 
S 
a

I
I

■̂ i

ps-î :p p
-ITO Q .

i lp TO
*0 
P

t) p
TO %
TO I
P  ^  

JC C
C
0

1.cp
2 -  TO
P  $  
P  P

I"

P

P

Eo TO

5i13 TO 

1 °

116



Relevance: Three points need emphasis:

First, the early detection of RSD might permit rational therapy for limiting 

adverse LV remodelling after Ml and the objective assessment of the effects of 

therapy during healing after Ml.

Second, a practical estimate of early RSD or diastolic bulging using the 

depth of distortion, ra, might be useful in clinical studies to assess the efficacy of 

interventions.

Third, it may be possible to stratify patients on the basis of their 

topographic status after Ml using RSD on 2D-Echo, in addition to their clinical and 

haemodynamic profiles.

5.3.5. The effect of a cardiac rehabilitation programme on 2D-Echo LV 

asynergy and RSD (34: Appendix 8)
Background: Enthusiasm about cardiac rehabilitation early after Ml coincided 

with the introduction of various exercise programs in many clinics. However, the 

effects on LV remodelling, infarct topography and RSD in high-risk patients with 

anterior Q-wave Ml undergoing exercise training had not been determined.

Methods/Results: A prospective pilot study was undertaken to determine the 

effect of a cardiac rehabilitation programme on LV asynergy by 2D-Echo in 20 

patients surviving acute Ml (10 subendocardial, 10 transmural). Resting 2D-Echo 

and exercise testing were done before and at the end of the program (6 weeks 

and 3 months). The rehabilitation programme, was conducted under the 

supervision of the director of the cardiac rehabilitation and exercise laboratory. 

The programme consisted of a 10-minute voluntary exercise at home (jogging) 

and participation in a group (volleyball once a week). At the beginning of the 

program, LV asynergy ranged between 5-15% in the subendocardial group versus 

16-30% in the transmural group. After 3 months, 16 patients had improved 

exercise tolerance: 10 patients with subendocardial Ml and 6 patients with 

transmural Ml had initial LV asynergy between 16 and 24%. However, 4 patients 

with initial LV asynergy between 25 and 30% were in NYHA class II on 

medications (digoxin and diuretic) showed evidence of regional LV dilatation 

(Figure 32). The findings suggested that 2D-Echo might be useful in the selection 

and follow-up of patients on the post-infarction rehabilitation program.
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A subsequent prospective study was therefore undertaken to determine 

whether the extent of LV dysfunction and degree of RSD might predict outcome in 

survivors of moderate anterior Q-wave Ml who underwent exercise training 15 

weeks after Ml (34). Left ventricular function and RSD were measured by 2D- 

Echo before and after 12 weeks of the low level exercise programme in 13 

patients with Ml (begun 15 weeks post Ml) and 12 weeks apart in 24 matched Ml 

patients without training (controls). The exercised Ml patients were stratified on 

the basis of the response to exercise. Compared to baseline, the NYHA 

functional class score at the end of exercise training increased from 2.25 to 2.67 

(P<0.005) in 6 patients (group 2) but did not change in 7 (group 1). Further 

discrimination of groups 1 and 2 was provided by an initial asynergy (akinesis or 

dyskinesis, or both) < 18% or > 18%. Compared to group 1, group 2 had greater 

initial asynergy (32 versus 6%, P<0.001), expansion index (asynergic/normal 

endocardial segment length; 1.8 versus 1.6, P<0.025), and peak RSD index (12.2 

versus 1.0 mm, P<0.005) but lower LV ejection fraction (43 versus 59%, P<0.05) 

and thinning ratio (asynergic/normal wall thickness: 0.61 versus 0.74, P<0.05).

These variables did not change with training in group 1. However, in group 

2, training caused significant increase in asynergy (from 32 to 40%, P<0.05), 

expansion index (from 1.8 to 2.0, P<0.01) and peak RSD (from 12.2 to 20.9 mm, 

P<0.05) associated with a decrease in thinning ratio (from 0.61 to 0.51, P<0.001) 

and ejection fraction (from 43 to 30%, P<0.005). Initial values for these variables 

were similar for corresponding control groups but did not change over the 12 

weeks. Thus, patients with > 18% LV asynergy on the initial 2D-Echo showed 

more RSD, expansion and thinning before exercise training and developed further 

functional and topographic deterioration with training.

Relevance: These studies suggest that survivors of Ml may be stratified before 

starting exercise programs on the basis of LV asynergy and RSD on a screening 

2D-Echo. Patients with Q-wave Ml, LV asynergy greater than 18% and 

significant RSD might be at risk of topographic deterioration during exercise 

training.

In a large study in the reperfusion era, Giannuzzi et al reported that 

exercise training, initiated 4-8 weeks after anterior Q-wave Ml and continued for 6 

months, did not appear to cause further LV dilatation or dysfunction (341). in 

contrast, a study in rats showed that endurance training after large Ml results in
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more adverse remodelling with severe global LV dilatation, LV shape distortion, 

and scar thinning, and decreased survival (342). The reasons for the disparate 

findings are not clear. It is possible that reperfusion played a role in Giannuzzi’s 

study (341). Moreover, none of those studies evaluated infarct expansion or RSD.

5.3.6. importance of early regional shape distortion in progressive LV
dilatation after Ml

5.3.6.1. Progressive changes in regional and global LV dilatation during 

remodelling after Ml 
Background; There was a paucity of data on the relation between early RSD and 

late global LV dilatation after Ml.

Methods/Results; To determine the relation between early bulging of the 

asynergic zone and late global LV dilatation after Ml, serial 2D-Echo studies from 

800 patients with a first Q-wave Ml, between 1980 and 1988, were analyzed 

(274). Four shape algorithms (rocket, bullet, grenade, spaceship) were 

systematically applied for calculating LV endocardial surface area, area of LV 

asynergy (akinesis + dyskinesis) and volumes from 4 short-axis and one base to 

apex image (Figure 25), with special attention being given to regional diastolic 

bulging (274; Appendix 38; only abstract presented; book chapter in preparation).

Analyses were done by 2 observers who were blinded to patient data. 

Areas and volumes computed using the 4 algorithms differed by < 6% and 11%, 

respectively. Results from the first 2D-Echo in 43 patients (28 anterior, 15 inferior) 

with CK infarct size data and 11 normal controls showed no difference in CK 

infarct size (45 versus 44 g-Eq) and mean LV asynergy 31% versus 37% surface 

area) for anterior and inferior Ml. In contrast, mean LV surface area (133 versus 

94 cm^, P<0.001) and mean LV volume (155 versus 92 mL, P<0.001) were 

greater for anterior than inferior Ml. The controls had no LV asynergy and normal 

mean LV volumes (111 mL) and surface area (124 cm^).

Despite similar infarct size and asynergy on the initial 2D-Echo post-MI, the 

surface areas and volumes were greater in anterior than inferior groups indicating 

marked remodelling in the anterior but not the inferior group. Importantly, serial 

2D-Echo revealed a progressive decrease in the bulge as global LV dilatation 

developed over 6 weeks and I year. The smoother LV outline of the dilated

1 2 0



ventricles after anterior Ml was associated with increased sphericity, remodelling 

of apical shape from a gothic to a roman arch, and global thinning.

Relevance; This study underscores the important role of early RSD in 

subsequent global LV dilatation in survivors of moderately sized Ml and more 

severe remodelling after anterior Ml. Since estimates of infarct size from LV 

dysfunction by 2D-Echo tend to summate circumferential extents on diastolic 

short-axis images without attention to regional bulging, this important aspect of the 

pathophysiology of LV remodelling post-MI may be overlooked. Improved 2D- 

Echo systems with harmonic imaging allow changes in regional and global 

dilatation as well as dysfunction to be more easily appreciated and quantified. In 

addition, LV opacification with injection of Echo-contrast material may be used to 

enhance endocardial deformation at the LV apex in difficult cases.

5.3.6.2. Overestimation of infarct size on 2D-Echo due to RSD of the 

asynergic zone (36: Appendix 10)
Background: On 2D-Echo imaging, the infarcted area is detected by the extent of 

regional LV asynergy, and infarct expansion results in an increase (‘expansion’) of 

the asynergic area and dilatation. Since estimation of infarct size is based on the 

circumferential extent or surface area of LV asynergy, outward bulging of the 

infarct zone might be expected to result in overestimation of infarct size by 2D- 

Echo.

The effect of early RSD or bulging of infarct zones due to infarct expansion 

on estimates of regional LV dysfunction and infarct size by 2D-Echo imaging was 

therefore studied (36).

Methods/Results: Quantitative 2D-Echo’s from patients with a first Q-wave Ml 

and CK infarct size data, and normal subjects, were subjected to detailed analysis 

of regional LV dysfunction and RSD in short-axis images. Regional LV asynergy 

(akinesis and dyskinesis) and RSD indices [e.g. peak (Pk)/radius (n)] were 

measured on endocardial diastolic outlines of short-axis images in 43 post-MI 

patients (28 anterior and 15 inferior, 5.9 hours after onset of symptoms) and 11 

normal subjects (controls). In the infarction group, the endocardial surface area of 

asynergy was calculated by 3D-reconstruction of the images and infarct size from 

serial CK blood levels.
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Diastolic bulging of asynergic zones was found in all infarction patients. 

The RSD indices characterizing the area between the ‘actual’ bulging asynergic 

segment and the derived ‘ideal’ circular segment (excluding the bulge) on indexed 

sections were greater in infarct than control groups (Pk/n 0.31 ± 0.23 versus 0.03 ± 

0.02, P<0.001) and greater in anterior than inferior infarction sub-groups (Pk/ri 

0.39 versus 0.16, P<0.001). Importantly, the degree of RSD correlated with 

overestimation of asynergy (r=0.89, P<0.001) (Figure 33), and the relation 

between infarct size and total ‘ideal’ asynergy showed a leftward shift from that 

with ‘actual’ asynergy.

Relevance: Early regional diastolic bulging of the infarct zone results in

overestimation of regional ventricular dysfunction, especially when assessing 

effects of therapy on infarct size, remodelling and dysfunction using tomographic 

imaging.

5.3.6 .3. Volume of RSD by 3D reconstruction of 2D-Echo images (33: 
Appendix 7)

Background; Several laboratories, including mine, were interested in 3D- 

reconstruction of 2D-Echo images. These algorithms were tested for volumes and 

the surface area of LV asynergy in my laboratory (Figure 25). The volume of LV 

global RSD may be estimated using 3D-reconstruction.

Methods/Results: The hypothesis that 3D reconstruction of 2D-Echo images can 

be used to estimate the volume of RSD was therefore tested (33). Accepted 

models of LV geometry that assume circular endocardial outlines in the short-axis 

and elliptical outlines in the long-axis give erroneous estimates of regional and 

global LV asynergy and LV volume in the presence of RSD after acute Ml.

However, LV models reconstructed on computer from digitized 2D-Echo 

images in which the distorted segments have been excised and replaced with 

ideal circular (or elliptical) segments give improved correlation between total LV 

asynergy and CK infarct size (Figure 34). The distortion can be quantified and 

normalized to allow comparisons among treatment populations. RSD indices 

[area of distortion (Ad), peak distortion (Pk), depth (ra)] measured on 2D-Echo 

images, and global RSD parameters (volume of distortion) measured on 3D 

reconstructions allow correction of infarct size estimates based on the endocardial
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Figure 33. Overestimation of infarct size on 2D-Echo due to 
remodelling of the infarct zone

A. Actual and ideal left ventricular (LV) asynergy
B. Relation between the degree of distortion and the degree of 

overestimation of asynergy. SEE = standard error of estimate.
From Johnston and Jugdutt (36: Append ix 10)
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area of LV asynergy (Figure 34).

This approach was applied to 39 subjects (28 with a first Q-wave anterior 

Ml; 11 normal controls). 2D-Echo’s were recorded at a mean of 7 days post-MI. 

The computed and fitted volumes were in close agreement (Table 13, Figure 34).

This approach was applied to 39 subjects (28 with a first Q-wave anterior 

Ml; 11 normal controls). 2D-Echo’s were recorded at a mean of 7 days post-MI. 

The computed and fitted volumes were in close agreement (Table 13, Figure 37).

Relevance: The approach can be applied to compute the volume of RSD from 

various forms of tomographic cardiac imaging.

Other approaches have been proposed previously and are more 

cumbersome (343).

TABLE 13. Comparison of computed and ellipse fitted volumes in computer 
generated synthetic data

Volume
Model # compLited e llipse  f i t % difference

Actual (D istorted)

1 88.6 8A9 -0.80
2 476.2 474.0 -0.45
3 82,3 8 L 8 -0.55
4 232,0 230.4 -0,69
5 78.4 7A8 -0.78

Ideal

1 84.8 86.3 +1.74
2 452,4 460.4 + 1,77
3 75.1 7^^ +L39
4 211,5 215.3 +1.76
5 74,5 76.0 +2.05

Jugdu tt (33: Append ix 7)
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5.4. CLINICAL STUDIES: MODIFICATION BY PHARMACOLOGICAL

AGENTS

5.4.1. The effect of short-term anti-inflammatory therapies after acute Ml on

LV geometry and function during early healing (35: Appendix 9) 

Background; The fact that acute infarct expansion and pericarditis are both 

common complications of high-risk patients with transmural or Q-wave Ml 

provided the opportunity to the assess the effects of two NSAIDs, that were 

commonly prescribed for pericarditis, on LV remodelling.

Methods/Results: Evidence of acute infarct expansion on serial 2D-Echo and the 

frequency of the acute infarct expansion syndrome occurring at 2 days or more 

after a first Q-wave Ml were therefore studied in 221 consecutive patients (100 

anterior, 121 inferior) (35).

Patients with symptomatic pericarditis were treated with indomethacin 

(group 1, n=73) or ibuprofen (group 2, n=49) and those without symptomatic 

pericarditis received neither drug (group 3, n=99). The patients were followed for 

1 year.

The overall frequency of the acute infarct expansion syndrome was 13%, 

and 69% of these were among the pericarditis groups. The infarct expansion 

syndrome was significantly more frequent in group 1 (22%) than group 2 (8%) 

(P<0.05) or group 3 (9%) (P<0.025).

Serial 2D-Echo (day 2, day 10) revealed more expansion with greater 

percentage increase in the infarct containing segment length in group 1 than 

groups 2 or 3 (18% versus 9% versus 9%, P<0.005). However, the decreases in 

infarct segment thickness were similar in group 1 (24%) and group 2 (25%) but 

greater (P<0.001) than in group 3 (7%).

Despite similar infarct size and infarct thinning in groups 1 and 2, the 

degree of infarct expansion on 2D-Echo was greater and the infarct expansion 

syndrome more frequent in group 1. However, when allowance was made for the 

potential protective effect of prior use of intravenous NTG and concomitant use of 

nifedipine, indomethacin and ibuprofen had similar effects on expansion.

The frequency of LV aneurysms was greater with indomethacin (group 1) 

than in groups 2 or 3 (33% versus 20% versus 17%, = 6.09, P<0.05). RSD

was also more marked in group 1 patients.
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Relevance: The overall findings suggested that indomethacin or ibuprofen should 

be used with caution after Q-wave infarction so as to avoid further infarct 

expansion. The fact that short-term use of other drugs might modify infarct 

remodelling should be considered in studies attempting to assess efficacy of one 

particular drug.

The possibility exists that the difference in remodelling in that study may 

have reflected the fact that patients with pericarditis had larger transmural infarcts 

than those without symptoms of pericarditis. Thus, although all patients had 

transmural or Q-wave Ml, the CK infarct size was larger (P < 0.05) in patients 

receiving indomethacin (51.2 g-Eq) and ibuprofen (52.4 g-Eq) compared to the 

non-pericarditis group. Magnetic resonance imaging which allows the 

measurement of infarct transmuratity may help to resolve the problem. Although 

new cyclo-oxygenase-2 (COX-2) inhibitors may be an alternative to NSAIDs for 

the treatment of pericardial pain, they have recently received increased publicity 

for increasing cardiovascular events.

5.4.2. Therapeutic interventions in acute myocardial infarction

Initial studies focused on LV unloading after Ml using low-dose intravenous NTG. 

Patients with angina were studied before embarking on studies in acute Ml.

5.4 2.1. Preliminary study of NTG infusions during pacing-induced angina in 

the cardiac catheterization laboratory 

Background. There was a paucity of data on the effect of low-dose NTG infusion 

on LV asynergy assessed by 2D-Echo.

Methods/Results; To determine whether a 10 minute intravenous NTG infusion 

would decrease LV asynergy induced by atrial pacing in patients with chronic 

stable angina (< 6 months duration and no LV asynergy on a resting baseline 2D- 

Echo), asynergy was measured after atrial pacing to the angina threshold, or a 

maximum rate of 150 bpm, on biplane LV angiograms after 10 minute infusions of 

saline and again after 10 minute infusions of NTG (n=10).

NTG was infused in doses of 35 to 200 pg/min, to produce a detectable 

decrease in mean arterial pressure by 5%. In a control group, the second infusion 

also consisted of saline (control, n=10). In all patients receiving NTG, the LV 

filling pressure and pulmonary vascular resistance decreased before a decrease
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in systemic vascular resistance was detected. Angiographic LV asynergy after 

NTG was less or absent compared to saline infusions. There was no 

improvement in LV asynergy in the control group. The improvement after NTG 

appeared to be related to i) decreased filling pressure, ii) decrease LV size (and 

wall stress), iii) the mild decrease in afterload (< 5%), and iv) possibly improved 

collateral blood flow.

Analysis of haemodynamic recordings, the time course of changes in LV 

filling pressure, arterial pressure, cardiac indices and vascular resistances, 

suggested that LV filling pressure might be a better guide for therapy in Ml. In 

these studies, 2D-Echo recorded simultaneously as the LV angiograms confirmed 

the effects on LV asynergy. Similar effects were found in 6 patients given 

prostacyclin (PGI2 , gift from Upjohn). No significant RSD was detected in these 

patients.

The dose of NTG required to produce a 5-10% reduction in mean systolic 

blood pressure (but not below 100 mm Hg) varied widely in patients after acute 

Ml, the range being 35 pg/min to 180 pg/min. Some patients were resistant to 

dropping arterial pressure despite high doses, while others were very sensitive in 

that respect. The pulmonary capillary wedge pressure decreased promptly in all 

patients.

Relevance: The findings of these preliminary studies (data not published) 

provided the basis for low-dose NTG infusions in subsequent studies.

S.4.2.2. Preliminary study of short-term low-dose NTG infusions during 

acute Ml in the CCU (232: Appendix 36)

Background: Whether acute short-term low-dose NTG infusions in acute Ml 

decreased measures of infarct size and LV asynergy on 2D-Echo had not been 

determined.

Methods/Results: Twenty-two patients with a first acute anterior Ml and no 

contraindications were randomized between control and NTG therapy over 2 days 

(232). All patients had complete haemodynamic monitoring, praecordial ST- 

segment mapping, CK-MB and serial 2D-Echo studies (days 1, 2 ,4  and 10). 

Haemodynamic measurements and cardiac index improved in all despite a 5% 

reduction in mean arterial pressure. The LV filling pressure decreased markedly
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from a mean of 18 mm Hg to 5 mm Hg. The sum of ST segment elevations (or 

1ST) on 16 lead praecordial maps decreased sharply. Cumulative CK infarct size 

also decreased. Four short-axis 2D-Echo views were analyzed. The extent of LV 

asynergy decreased in all. LV chamber size also decreased. The incidence of 

arrhythmias and complications over the acute phase were less in these NTG 

treated patients. The decrease in LV asynergy on 2D-Echo was persistent at 10 

days (232).

Relevance; In that study (232), early low-dose NTG infusion for 39 hours after 

acute Ml decreased LV asynergy, infarct size and complications. Retrospective 

analysis suggested that NTG also decreased RSD. The study also underscored 

the effect of the acute decrease in volume during NTG therapy on the assessment 

of RSD and infarct expansion. Additionally, the study led to the recognition of 

RSD with dilatation, stretching and thinning of the infarcted segment but no 

clinically evident ‘infarct expansion’. This suggested that pathologic expansion of 

the infarcted segment was common, and that there might be a threshold beyond 

which acute dilatation, aneurysm and/or rupture occur.

5.4.3. The effect of short-term NTG infusion therapy during acute Mi on LV 

geometry and function during healing after Ml and beyond (28: 

Append ix 6)

Background: Until 1988, eight randomized clinical trials had clearly shown that 

low-dose intravenous NTG in acute Ml i) improves haemodynamics, ii) decreases 

CK infarct size, iii) Is more beneficial in early Ml, iv) decreases LV asynergy, v) 

decreases remodelling, and vi) decreases other infarct related complications 

including mortality. These early studies of short-term low-dose intravenous NTG 

in acute Ml have been reviewed (100[Appendix 21],101,250[Appendix 37]). The 

effect of low-dose NTG infusion after a first Q-wave Ml on measures of infarct 

size, infarct-related complications, and LV asynergy and remodelling on 2D-Echo 

had not been studied.

Methods/Results: The effect of timing, dosage and infarct location on the 

response to intravenous NTG therapy during acute Ml was therefore studied in 

310 patients: 154 NTG, 156 controls (28).

Several points in this study (28) need emphasis.
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First, it was a prospective single-blinded study of 310 patients with acute 

Ml randomized to NTG or placebo. NTG was titrated to lower mean blood 

pressure by 10% in normotensives and 30% in hypertensives (but not below 80 

mm Hg) and was maintained for a mean of 39 hours. Measurements included 

clinical variables, CK infarct size, and indexes of LV function and expansion on 

2D-Echo.

Compared to placebo, NTG: i) reduced overall CK infarct size [41 versus 

55 g-Eq (gram-equivalent), P<0.001] and in both anterior (44 versus 58 g-Eq, 

P<0.05) and inferior infarction (39 versus 53 g-Eq, P<0.025) sub-groups, with 

greater benefit if given early (< 4 hours) and if average mean blood pressure was 

above 80 mm Hg in the first 12 hours; ii) decreased regional LV dysfunction, 

improved LV ejection fraction and decreased infarct expansion and thinning 

(Figure 35); iii) improved clinical functional status and haemodynamics; iv) 

decreased in-hospital complications, including the infarct expansion syndrome 

(2% versus 15%, P<0.0005), cardiogenic shock (5% versus 15%, P<0.005), LV 

thrombus (5% versus 22%, P<0.0005), and infarct extension (11% versus 22%, 

P<0.025): and v) decreased mortality in the acute anterior infarction sub-group, in- 

hospital (14% versus 26%, P<0.01), at 3 months (16% versus 28%, P<0.025) and 

at one-year (21% versus 31%, P<0.05).

Second, in that study (28), short-term NTG therapy after Ml decreased 

both the frequency of clinically significant expansion (as manifested by the clinical 

syndrome and marked evidence on 2D-Echo) and purely echocardiographic 

expansion itself (2D-Echo measurements of infarct stretching, thinning and RSD). 

NTG therapy also decreased LV size.

Third, nitrate tolerance was detected in less than 25% of patients but did 

not result in significant loss of efficacy (28,118).

Fourth, these findings support the concept that the application of 

appropriate expansion-limiting therapy in the very early phase of healing, during 

and after Ml, and before significant collagen deposition, might have greater 

potential for limiting remodelling and aneurysm formation (28,118).

Fifth, the greatest benefit from low-dose NTG was seen in the early sub

group with mean arterial pressure >80 mm Hg and > 30% improvement in EST, 

LV asynergy and LV ejection fraction during the early stages of therapy, 

regardless of the infarct location.
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Relevance: This study (28) was the largest randomized trial of low-dose

intravenous NTG in acute Ml. It established that early and prolonged (> 48 hours) 

low-dose NTG infusions can be given safely to patients with Ml to limit infarct size 

and also to improve LV function and geometry. Both infarct expansion and 

mortality were reduced in the high-risk group with Q-wave anterior Ml (Figure 35). 

A meta-analysis of the pooled data from all 9 studies confirmed that NTG therapy 

decreased mortality, with a 35% reduction in the odds of death ratio (2P<0.001) 

(344).

5.4.4. The effects of prolonged NTG therapy, given during acute infarction

and healing phases after acute Ml, on LV geometry and function

(105[Appendix 24],109[Appendix 26])

Background: Following the demonstration of the benefits of that low-dose 

intravenous NTG infusion, given over the first 48 hours after acute Ml, on infarct 

size and LV remodelling, the next logical step was to study the effect of this 

intervention applied during the entire healing phase after Ml. There was no 

published data on LV remodelling during the entire healing phase at the time.

Methods/Results: The hypothesis that prolonged NTG therapy, given throughout 

the infarction and healing phases after acute Ml, may further limit deterioration of 

LV topography, reduce infarct expansion, improve LV function, and prevent 

aneurysm formation was therefore tested as the next step (104-107,109). 

Whether the beneficial effects persisted up to one year after therapy was also 

studied (106,107).

Briefly, to determine whether the effect of prolonged NTG therapy (low- 

dose infusion for the first 48 hours followed by buccal NTG for 6 weeks) versus 

placebo was studied in 43 patients with a first acute anterior Q-wave Ml (Table 14, 

Figure 36). Buccal NTG (1-3 mg) was given every five hours with a daily 8-hour 

washout period to avoid the development of vascular tolerance. Left ventricular 

function and topography were assessed by serial 2D-Echo over 12 weeks. 

Prolonged NTG therapy decreased infarct expansion, thinning and RSD, improved 

haemodynamics, decreased LV volume and asynergy, and increased LV ejection 

fraction compared to placebo.
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The overall findings suggested that prolonged LV unloading with low-dose 

NTG limited LV remodelling and improved LV function and clinical parameters 

when initiated early after Ml (data not fully published; book chapter in preparation).

TABLE 14. Patient characteristics in the BNTG and placebo groups

P a ram e ter BNTG G roup Placebo G roup P

(n=23) (n=20) Value

Sex 20 M, 5 F 20 M, 5 F NS

Age (yr) 5 9 + 1 0 57 ± 7 NS

Body surface area (m^) 1.9 ± 0 .2 1.9 ± 0 .2 NS

Pain to adm iss ion 1 0 + 1 3 1 0 ±  14 NS

Adm. to  first 2D-Echo (h) 2 4 + 1 8 2 2 ±  18 NS

Pain to NTG infus ions (h) 1 2 + 1 5 1 2 ±  14 NS

Dose: Average (|ig/min) 71 + 5 3 77 ± 6 5 NS

Range (|ig/min) 5 -2 3 2 1 0 -2 2 0 NS

Duration o f NTG infusion (h) 61 + 19 66 ± 2 9 NS

H istory of:

Hypertens ion (n) 7 8 NS

Heart fa ilure (n) 0 0 NS

Infarction (n) 0 0 NS

2-day BP (mmHg):

systo lic 111 + 13 1 1 5 ± 1 7 NS

d iastolic 74 + 9 7 4 ± 1 1 NS

mean 8 7 + 1 0 8 8 ±  12 NS

2-day HR (bpm) 8 4 + 1 0 8 7 ±  10 NS

2-day RPP

(mmHg x bpm x 10^) 7 .6 +  1.5 8.0 ± 1.9 NS

Adm iss ion K illip Class 2 .2 +  0.3 2.1 ± 0 .2 NS

Creatine kinase:

Peak (lU/L) 2583 +1664 2 1 7 4 ± 1791 NS

Infarct s ize (g-Eq) 52 + 60 46 ± 3 3 NS

NYHA at: 24 weeks 1.3 ± 0 .4 1.8 ± 0 .6 0.005

52 weeks 1.4 ± 0 .5 2.0 ± 0 .3 0.001

Deaths at 52 weeks 0 0 NS

A b b re v ia tio n s : BNTG, buccal n itrate; BP, blood pressure; bpm, beats per m inute;

F, female; M, male; RPP, rate pressure product; NYHA, New York Heart Association.
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Relevance: Four points need emphasis. First, the beneficial effects of prolonged 

NTG therapy on early and late remodelling in that study suggested that therapy 

may have interrupted the vicious cycle leading to LV aneurysm, LV dilatation and 

congestive heart failure.

Second, low-dose intravenous NTG therapy was rapidly becoming routine 

therapy for the management of acute Ml (345). Although NTG is widely used for 

the treatment of angina (346), low-dose NTG was proposed for the limitation of 

infarct size and early remodelling (28) and not for the relief of continuing chest 

pain as in unstable angina where high doses are used.

Third, although prolonged nitrate therapy for angina, especially at high 

doses, is associated with the development of nitrate tolerance (117), tolerance 

was not significant with low-dose NTG after Ml (118: Appendix 27).

Fourth, since tolerance during chronic nitrate therapy for angina can be 

partially combated by intermittent or eccentric dosing and new formulations that 

permit a low nitrate interval beyond the first 48 hours (337), an eccentric regimen 

was used in this study. This precaution was also justified by the mechanisms that 

were proposed for tolerance at the time, namely: i) a cellular mechanism involving 

depletion of sulfhydryl groups or alteration of the guanylyl cyclase pathway (117), 

and ii) a systemic mechanism, whereby haemodynamic changes trigger off a 

counter-regulatory neurohumoral activation with stimulation of the renin- 

angiotensin pathway and fluid retention (346). Importantly, the eccentric NTG 

dosing regimen used in that study was associated with beneficial anti-remodelling 

effects.

5.4.5. The effects of prolonged NTG and captoprii therapy, given during

healing after acute Ml, on LV geometry and function (108: Appendix

25;298: Appendix 41)

Background: On the basis of data available in the mid-1980 s, two major

approaches could be formulated to combination therapy for the limitation of 

remodelling after Ml. The firs t approach was to use low-dose intravenous NTG 

acutely followed by either prolonged nitrate or prolonged AGE-inhibition therapy. 

The second approach was to use a combination of nitrate and an ACE inhibitor 

in the chronic therapy phase. In theory, sulfhydryl-containing ACE inhibitors such 

captoprii could donate these groups as well as block neurohumoral activation, and 

thereby reduce nitrate tolerance. The combination of ACE inhibitors with
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vasodilators such as nitrates in the management of congestive heart failure had 

already been suggested to be effective in inhibiting vasodilator-induced 

vasoconstriction (346). It should be noted that although chronic continuous nitrate 

therapy resulted in tolerance with attenuation of the anti-anginal effect, eccentric 

dosing was believed to provide protection against painful ischaemia (337).

Several significant advances brought nitrates into prominence in the late 

1980’s. Endothelium-derived relaxing factor (EDRF), one of the most active 

endogenous vasodilators (347), was identified as nitric oxide (NO) by Palmer et al. 

in 1987 (348) and proposed to represent endogenous nitrate. Nitrates were 

thought of as NO donors. It was proposed that NO might also act as a free radical 

scavenger and explain the beneficial effect of NTG during reperfusion. However, 

Myers et al. (326) suggested that the vasorelaxant property of EDRF more closely 

resembled S-nitroso-cysteine than NO.

Methods/Results: As the logical next step, the hypothesis that prolonged anti

remodelling therapy with acute NTG over 48 hours followed by the combination of 

NTG and captoprii, might be more beneficial than monotherapy with NTG or 

captoprii was tested in patients after Transmural Acute Ml or TAMI (108: 

Appendix 25;298:Appendix 41).

Between 1989 and 1991, 160 consecutive patients who were admitted to 

the CCU with a potential first anterior or inferior TAMI and were treated with 

standard therapy consisting of thrombolysis followed by intravenous low-dose 

NTG infusion for 48 hours, and had an adequate 2D-Echo and evidence of Q- 

wave Ml on ECGs at 48 hours were entered into the prospective, double-blind, 

placebo-controlled randomized study (Figure 37).

A factorial design (n=20/cell) was used and the patients with anterior 

(ATAMI) or inferior (ITAMI) TAMI were started on 6 weeks of oral placebo, 

captoprii (25 mg t.i.d.), NTG (buccal 3 mg t.i.d., 5-hourly with an 8-hour washout) 

or NTG+captopril. The patients were followed for 1 year after therapy, with serial 

complete quantitative 2D-Echo. The 2D-Echo remodelling indices at 2 days, 6 

weeks, 6 months, and 1 year as well as serial clinical data (complications, 

cardiovascular events and other drugs as per questionnaire) and ECGs were 

recorded (Figure 37).

At randomization, the demographic and clinical data for the 4 groups were 

similar (Table 15A). Average values were: 88% male gender; age 57 years;
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TABLE 15 A. PATIENT CHARACTERISTICS (Mean ± SEM)

P A R A M E T E R P L  (n=40 ) C L  (n= 4 0 ) N G  (n= 4 0 ) C L + N G  (n -4 0 )

Sex (% Male) 96 91 76 88

A ge (Years) 59±2 57±2 53±2 57±2

W e igh t (kg) 81 ±2 81±2 82±2 84±2

ES A  (M^) 1.9±0.02 1.9±0.02 1.9±0.02 1.9±0.02

A n te r io r  (%) 50 50 50 50

K illip  C lass: A d m iss io n 1.6±0.08 1.7±0.06 1.7±0.09 1.7±0.08

K illip  C lass: Day 2 2.1 ±0.03 2.2±0.03 2.1 ±0.05 2.2±0.03

Peak CK (lU /L) 2060±233 2767±303 2138±218 2756±332

CK In fa rc t S ize (gEq) 44±7 57±9 42±7 67±11

T h ro m b o lys is  (%) 43 43 52 55

S ys to lic  BP (mm Hg) 103±2 108±3 110±2 108±3

D ia s to lic  BP (m m Hg) 67±2 69±2 70±2 69±2

Mean BP (m m Hg) 79±2 82±2 83±1 83±2

Heart Rate (bpm ) 77±2 78±2 72±2 77±3

RPP (m m H gxbpm xIO ^) 6.1 ±0.2 6.4±0.3 6.0±0.2 6.3±0.2

NTG In fus ion  (%) 100 100 100 100

Dose (m g/m in ) 75±9 68±9 77±10 71±8

Past Hx: H ype rtens ion  (%) 25 27 30 28

Past Hx: In fa rc tio n  (%) 0 0 0 0

Past Hx: Heart Failure  (%) 0 0 0 0

P = NS fo r  a il co m p a r ison s

A b b re v ia tio n s : BP, blood pressure; BSA, body surface area; CK, creatine kinase; CL, captoprii; 
Hx, history; NG, nitrate; PL, placebo; RPP, rate pressure product

TABLE 15 B. FOLLOW-UP DATA (10 years: 1990-2000)

ATAMI Group (n =  80) ITAMI Group (n =  80)
PL CL NG NG+CL A L L  %) PL CL NG NG+CL A L L  (%)

PTCA 7 8 7 3 25 (31) 8 8 3 10 29 (36)

Rec Ml 0 1 1 2 4 (5 ) 2 2 0 2 6 (8 )

CHF 5 2 1 4 12 (15 ) 1 1 1 3 6 (8 )*

CABG 3 2 4 4 13 (16 ) 7 3 5 7 22 (28)*

Death 4 3 2 6 15 (19 ) 0 1 0 1 2 (3 )*

HTx 0 1 0 0 1 (1) 0 0 0 0 0 (0 )

ACE-i^ 3 3 2 5 1 3 (16 ) 3 1 3 4 11 (14)

BB 3 6 4 3 1 6 (20 ) 6 7 4 9 26 (33)*

Abbreviations: ACE-I, ACE-inhibito r; BB, beta blocker; CABG, coronary artery bypass graft; CHF, 
congestive heart failure; CL, captoprii; HTx, history; NG, nitrate; PL, placebo; PTCA, percutaneous 
translum inal coronary intervention; Rec Ml, recurrent Ml.
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A. PROTOCOL
Consecutive patients with potential first TAMI 

Admission to CCU

Factorial Design

ATAMI

ITAMI

intravenous Nitroglycerin 
for 48 h/ Tl^ombolysis

TAMI on ECG (Q-wave) at 48h

Randomized 

1̂  /  >  \

Clinical Data 
Serial CK/CK-MB 
ECG
ECHOyOOPPLER

Placebo 
n = 20

Captoprii 
n = 20

Nitrate 
n =20

Captoprii
+

Nitrate 
n = 20

Placebo 
n = 20

Captoprii 
n = 20

Nitrate 
n = 20

Captoprii
+

Nitrate
..... ............

Captoprii 
25 mg t.i.d. oral 

Nitrate
3 mg t.i.d. buccal

6 weeksFoIlow-up 
on Therapy*r i|'

6 Months & 1 Year 
Follow-Up After Therapy* 

Annual Follow-up for 10 years

Clinical Data 
Serial CK/CK-MB 
ECG
ECHO/DOPPLER

9 2

B . INFARCT EXPANSION 
IV NG R,

150

PSO.01 «
100

PLACEBO 
— NITRATE (NG)

— CAPTOPRIL
NG+CAPTOPRIL

Figure 37. Effect of prolonged 
combination therapy versus 
monotherapy with nitroglycerin 
/nitrate and captoprii.

A. Protocol, B. Infarct expansion,
C. End-diastolic volume, D. LV 
ejection fraction.

Jugdutt et al. (108; Appendix 25, 
315: Appendix 42)

60

I
I
I
a 2»

0
138

c . END- DIASTOLIC VOLUME

IV NG Rx

nn

p là 0.01

J— //— L_//«-----1
INITIAL DAY 2 24

“V -
35 62

WEEKS

D. EJECTION FRACTION
IV NG R„.̂   Illl̂

p à 0.01

INITIAL DAY 2
WEEKS



weight 82 kg; 50% ATAMI; Killip class 2.1 ± 0.03; peak CK 2430 lU/L; CK infarct 

size 53 ± 8 g-Eq; thrombolytics 48%; mean blood pressure 82 ± 2 mm Hg. 

Compared to the placebo group, all active therapy groups showed preservation of 

global LV ejection fraction and limitation of remodelling (as assessed by the infarct 

expansion index, wall thinning ratio, RSD, and diastolic and systolic volumes) 

between 6 weeks and 1 year (Figure 37). Follow-up data at 10 years (Table 15B) 

showed that most of these patients survived 10 years (book chapter in 

preparation).

The sample sizes in the cells of the factorial template were carefully 

calculated for the 2D-Echo end-points on the basis of previous 2D-Echo data in 

my laboratory which was dedicated to research on remodelling after Ml in humans 

(19-21,28,33-36,50,104-107,109,118,130,180,220,232,245,251-253,274,298) and 

the dog model (48,55,62,73,74,96,103,126-129,131,181,222,283,318,319).

Feinstein's method was used (320) for calculation of sample size considering beta 

error (322). Defining a significant change for in-vivo LV function as a 25% 

increase in ejection fraction, or 25% improvement in remodeling parameters (LV 

end-diastolic volume), a doubly significant sample size (N) calculated after 

correcting for the chance of falsely accepting the null hypothesis due to sampling 

error, was n = 6 for a  = 0.05, p = 0.1. This was trebled to allow for inter-observer 

error and other factors.

Relevance: Monotherapy and combination therapy with NTG (eccentric dosing) 

and captoprii, given during healing after transmural Ml, produced similar anti- 

remodelling effects which persisted up to one year. It is clear from the 

pathophysiologic determinants of remodelling (Figure 7; Table 3) and the stages 

of remodelling (Figure 6; Table 2) that therapy applied very early and throughout 

the early phase of healing before collagen deposition, and continued throughout 

the late phase of healing and beyond, might result in greater benefits in the 

absence of negative factors. Potential therapies, reviewed previously (67; Figure 

21), included nitrates, ACE inhibitors and beta-blockers and were included in 

management guidelines (345). While the beneficial effects of long-term therapy 

with ACE inhibitors in post-MI survivors are established (27), long-term therapy 

with nitrates is not recommended in post-MI survivors.
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6. DISCUSSION

The period between 1980 and 1988, during which the studies outlined in this 

thesis were conducted and/or initiated, were exciting years in the development of 

the novel concepts of adverse remodelling after Ml and its potential modification 

by anti-remodelling strategies. Importantly, that period witnessed the development 

of 2D-Echo as a powerful tool for the assessment of the dynamic changes in LV 

geometry and function after Ml and the effects of potential therapeutic 

interventions. The studies have contributed to knowledge of the pathophysiology 

of healing and gross mechanisms of LV remodelling after Ml (21,22) that triggered 

several clinical trials of potential anti-remodelling agents post-MI (23).

Rapid progress and developments during that period (1980-1988) made 

changes in the initial objectives and approaches necessary, with several to-and- 

fro leaps from bench to bedside research. Three landmark advances during that 

period triggered changes in the protocols for studies in this thesis. The first was 

the discovery that coronary thrombosis was the major culprit causing acute 

coronary occlusion in Ml (349), which led to the use of widespread early 

thrombolytic therapy. The second was the discovery that LV unloading and 

inhibition of the renin-angiotensin pathway with ACE-inhibition limited progressive 

LV dilatation after Ml (77), which led to the widespread use of ACE inhibitors after 

Ml. The third was the discovery that reperfusion induced damage to the ECM 

(164), which rekindled previous interest in the role of the ECM (277) and collagen 

in cardiac remodelling (277,295) and also led to the concept of anti-fibrotic therapy 

in cardiovascular disease (295), with implications for Ml.

6.1. Major findings

There are five major findings stemming from the studies in this thesis that are 

pertinent to the topic of ‘modification of LV geometry and function during healing 

after acute Ml’ and might have profound therapeutic implications still pertinent in the 

2000’s.

First, the LV remodelling process is complex, involving multiple 

determinants and diverse mechanisms that are potentially modifiable (21,28,37,39, 

50,103,126), and quantitative 2D-Echo and 3D reconstruction can be applied to 

measure the in-vivo regional and global structural, geometric and functional changes 

associated with LV remodelling post-MI (19-22,28,34,67,102,103,283). The
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sequence of acute Ml followed by early regional and subsequent progressive global 

LV dilatation and progressive LV dysfunction suggested that bad remodelling 

outweighs the good, a concept that is now generally accepted.

Second, LV remodelling and infarct healing are dynamic processes that 

progress in parallel over time (22) and the effects of interventions on LV 

remodelling during healing after Ml can be tracked by serial quantitative 2D-Echo.

The studies showed that remodelling spans phases of infarction and healing, 

before and after infarct collagen deposition reaches a plateau, to scar formation 

(22,39,41,55) and anti-remodelling therapies can influence healing (22). The results 

supported the concept that organized collagen deposition and scar formation in the 

infarct zone and cardiomyocyte hypertrophy in the non-infarct zone are important for 

preserving structural and functional integrity after Ml, especially since 

cardiomyocyte regeneration is insufficient to compensate for its loss. Studies 

of the rupture threshold indicated that the left ventricle after Ml is mechanically 

weaker and more susceptible to distension (102,283). The results also indicated 

that therapy targeted at one mechanism or phase might be unsuitable for another 

and have unexpected effects that might be potentially deleterious (22). This was 

illustrated in the studies with NTG (122), anti-inflammatory agents (35,102), and ACE 

inhibitors (127-129,131).

Third, ECM and collagen deposition in the infarct zone protect against LV 

remodelling (41,74,279,284,291) and interventions that disrupt the ECM or decrease 

IZ collagen may promote adverse remodelling.

Since early reperfusion causes ECM disruption (164) and late reperfusion 

after 2 hours of occlusion causes more structural disruption of ECM than permanent 

occlusion (160), induces myocardial stunning and reperfusion injury whereby 

salvage of muscle and geometry might not salvage function (158,159,161), the 

possibility of another double-edged sword was a concern. However, the overall 

benefits of early reperfusion are undeniable and late reperfusion was shown to limit 

acute expansion in dogs and limit RSD on 2D-Echo despite slightly lower infarct 

collagen (49). Late reperfusion also accelerates healing (46) which appears to be 

beneficial. Taken together, the final outcome of reperfusion appears to depend 

on a balance of effects. Importantly, NTG infusion after late reperfusion resulted in 

earlier recruitment of LV function and preserved LV geometry in patients after Ml 

(50).
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Since angiotensin li mediates remodelling and failure (350) and stimulates 

fibroblast proliferation, ECM and collagen deposition, myocyte hypertrophy and 

fibrosis, thereby leading to increased resistance to LV distension, hypertrophic 

remodelling and impaired diastolic function (295), decreased angiotensin II formation 

with ACE-inhibition was expected to decrease ECM and collagen deposition, and 

decrease hypertrophy. A subsequent report showed decreased collagen with ACE- 

inhibition after Ml in rats (351). Captoprii was found to limit LV dysfunction and 

hypertrophy in patients with anterior Q-wave Ml (130). Clearly ACE inhibitor-induced 

limitation of LV dilatation, hypertrophy and heart failure is beneficial.

However, the possibility that early ACE-inhibition after Ml might decrease 

ECM and collagen deposition in the infarct zone and thereby promote infarct 

expansion, regional and global LV distension, impair IZ healing and act as a 

double-edged sword, was actively pursued. Although the ACE inhibitors were 

found to markedly decrease collagen in the infarct zone (127,128,129,131) and to 

a lesser extent in the non-infarct zone (129), and showed increased RSD on ex- 

vivo LV sections and in-vivo quantitative 2D-Echo in some studies, overall 

beneficial effects on global LV remodelling and function were found in survivors 

with small to moderate Ml (108,130,298). Since late coronary reperfusion can 

damage ECM (160), whether reperfusion and ACE-inhibition might potentially 

result in double jeopardy raised concern. However, this was not found to be the 

case in survivors with small to moderate Ml (108,130,298). Another study found 

that ACE inhibitors given early after reperfusion were beneficial (352), although RSD 

and detailed data on remodelling were not available.

Other researchers have shown that ACE inhibitors (338) and ARBs (353) 

block collagen deposition in the non-infarct zone in rats. Since ACE inhibitors also 

block bradykininase (354) (Figure 38), thereby increasing bradykinin, PGI2 and 

NO which contribute to LV unloading, anti-trophic and other pleiotropic effects, the 

final outcome may represent a balance of effects. The recent finding that 

volume overload in dogs, where chymase dominates over ACE, results in loss of the 

collagen weave that is not attenuated by ACE-inhibition (355), suggests that 

chymase-induced ECM degradation (356) may be an important factor during ACE- 

inhibition.
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Although acute administration intravenous low-dose NTG for 48 hours was 

effective in reducing infarct size and LV remodelling and dysfunction after Ml (28), 

and prolonged NTG in eccentric dosing during healing after Ml also limited LV 

remodelling and dysfunction (104-109) without decreasing infarct collagen or 

impairing healing (55,102,103,131), large clinical trials did not show a significant 

survival benefit (135-137). This negative result may have been due to the use of 

long-acting nitrates such as ISDN acutely, use of higher doses acutely often to 

control chest pain, continuous oral dosing subsequently resulting in the development 

of tolerance, and the administration of nitrates to other groups resulting in flawed 

statistics. A subsequent study showed benefit with prolonged transdermal NTG 

patch therapy (357).

Fourth, infarct size and transmurality are major determinants of adverse 

early and late remodelling after Ml. Moderate transmural Ml was shown to induce 

marked RSD and adverse remodelling after Ml in the dog and patients. In 

addition, infarct location influenced the severity of early remodelling whereby the 

degree of RSD and severity of LV dysfunction was greater with anterior than 

inferior Ml.

In the 1970’s, limitation of infarct size was the therapeutic strategy of 

choice for reducing cardiovascular deaths because pump failure was directly 

related to infarct size (312). By the late 1980’s, the increasing use of thrombolytic 

agents with or without PTCA, beta-blockers and nitrates had decreased early 

post-MI deaths to nearly 7% (28,121,134-141). The improved therapies increased 

the number of survivors but many still remain at risk of further adverse LV 

remodelling and its consequences (22). These include infarct expansion and 

thinning, LV aneurysm, LV dilatation, LV rupture, heart failure, LV volume 

overload, LV hypertrophy, arrhythmias and death.

Several studies in the 1980’s, including those presented in this thesis, 

indicated that acute infarct expansion, LV dilatation, LV dysfunction, disability and 

death are directly related to infarct size and infarct transmurality (21-23,28,88). 

The 2D-Echo studies of Ml in the dog and humans indicated that infarcting tissue 

undergoes early remodelling, with an expansion (stretching, thinning, and bulging) 

that sets the stage fo r further adverse LV remodelling (21,28,34,35,102,103, 

127-131,283). In dogs, LV unloading with nitrates over the first 6 weeks produced 

greater benefit on LV dilatation and LV mass than over the first 2 weeks (103). 

Early and prolonged anti-remodelling therapy after Ml therefore seems to be
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a logical therapeutic strategy (22). Because patients with large anterior 

transmural (or Q-wave) Ml are at highest risk for early expansion and LV 

remodelling (18,21 -23,28,34,35,67,78,102,283), this high-risk anterior Ml group 

should be targeted fo r therapy.

Studies with different pulses of anti-remodelling agents, such as captoprii 

(22,23,121,126,132,134-141,145,318) and nitrates (28,55,102,103,318,357) in 

dog and human Ml, support the idea that salvage of geometry, function and 

lives might be greater with exposure to LV unloading throughout healing 

post-MI. ACE inhibitor trials after Ml showed a further small decrease in mortality 

(< 7%) and morbidity in selected patients (121,125,134-141,145). Comparison of 

captoprii and nitrate in dogs showed benefit on LV dilatation, mass and function with 

both agents, but infarct collagen was less with captoprii and thinning less with nitrate 

(131). Also in dogs, enalapril decreased infarct collagen more than captoprii (129) 

and made the scars flatter (131). This finding suggested that all ACE inhibitors were 

not equal.

There is general agreement that hypotension should be avoided when using 

vasodilators for LV unloading during Ml (28,122,123). A paradoxical J-curve effect 

was demonstrated with high doses of NTG (100,122). This may also be important 

for salvage of muscle and healthy healing after Ml. The concept that a border zone 

is potentially salvageable if flow is restored (149), or oxygen demands are 

decreased, or cellular and metabolic factors are improved (87), is still pertinent since 

early therapy is needed to optimize myocardial salvage during Ml (153) and 

attenuate early expansion (22,23,67).

The negative results of the CONSENSUS II trial (123), the lack of early 

separation of survival curves in other trials with ACE inhibitors (121,135,136), the 

persistent LV dysfunction after early captoprii in rats (338), and the persistent 

mortality after captoprii in rats with large Ml (77), might have been related to 

negative effects of early ACE-inhibition on blood pressure and collagen and ECM 

deposition in the infarct zone (55,354,358).

Fifth, the timing of anti-remodelling therapy relative to the infarct collagen 

plateau is an important factor for outcome during healing after Ml.

The progressive and dynamic nature of the remodelling process during 

healing after Ml suggests that timing and duration of therapy is important (22,338). 

The remodelling substrate also changes drastically during healing. The results 

presented in this thesis suggested that early and prolonged therapy should be used
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(21). Early short-term therapy was shown to exert profound late effects on 

remodelling via effects on infarct size and early healing (28,55,103). Several reports 

in the 1990’s indicated disease progression while on ACE-inhibition and favoured 

prolonged therapy beyond healing (26). Others suggested higher doses of ACE 

inhibitors.

The pathophysiological data presented in this thesis suggest that anti- 

remodelling therapy, applied before and after the infarct collagen plateaus, may 

produce different outcomes by modifying the determinants of remodelling and/or the 

substrate (22), such as the infarct size, healing process, deformation forces, LV 

loading conditions and wall tension. It may also modify the process during very early 

(first 24 h) and early remodelling (first 2 weeks) before infarct collagen plateaus, and 

late remodelling (3 to 6 weeks) after infarct collagen plateaus in dogs. Processes 

occurring before the collagen plateau include ECM degradation, infarct expansion, 

myocyte slippage, inflammation and fibroblast proliferation. After the collagen 

plateau, processes include compaction of infarct collagen, scar thinning, 

hypertrophy, formation of connections between collagen fibrils in the infarct and 

myocytes in the non-infarct zones (284) and fibroblast transformation to 

myofibroblasts containing actin filaments that mediate scar contraction (359).

6.2. Caution with the use of anti-fibrotic agents after Ml

The aim of anti-fibrotic therapy is to inhibit or reverse cardiac fibrosis and its 

adverse effects on LV function (278). Potential approaches have been reviewed 

elsewhere (278). Anti-fibrotic therapy may be beneficial for non-infarcted hearts 

with chronic LV pressure overload (278) and possibly for ischaemic 

cardiomyopathy and the non-infarct zone after remote Ml (360). However, caution 

might be advisable in idiopathic dilated cardiomyopathy without Ml, because of the 

altered MMP/TIMP balance with increased MMPs and decreased TIMPs, and 

reduced cross-linking (277). Collective evidence emerging from experimental and 

clinical studies using anti-remodelling strategies after Ml suggest that careful 

attention should also be given to timing, especially because anti-fibrotic agents 

exert global actions that can affect both the infarct and non-infarct zones. 

Experimental data on the temporal evolution of healing and ECM remodelling (22, 

278,291) suggest that these agents could potentially enhance adverse ECM 

remodelling in the infarct zone during the highly vulnerable periods of very early
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and early stages of healing after Ml. It might also be prudent to exercise caution 

during the phase beyond scar formation (27).

6.3. Protecting the ECM in the infarct zone after Ml

There is now consensus that LV remodelling after Mi contributes significantly to LV 

dilatation and dysfunction, disability and death (23). Two paradigms, pertinent to 

anti-remodelling therapy, have evolved over the last 3 decades (27). The first 

paradigm, that LV remodelling is a major mechanism for disability and death 

(22,23) has received a great deal of attention. In contrast, paradigm 2, that 

remodelling of the ECM plays a major role in LV remodelling (277,278,291,293), 

whereby decrease, disruption and/or defective composition of the ECM promote 

LV dilatation and rupture (277-279,293) has received little attention. This is 

despite acknowledgement that myocardial collagen and the supporting ECM play 

protective roles in adverse LV remodelling during healing after Ml (22,23,41,73,74, 

129,164,277,294,295,308,) and should be preserved (22,23,27).

Many clinical trials have shown that ACE inhibitors with or without 

aldosterone antagonists, ARBs, beta-adrenergic blockers or reperfusion improve 

outcome in survivors of Ml (134,308,361). However, the antl-fibrotic action of 

ACE inhibitors, aldosterone antagonists and ARBs on ECM in the infarct zone and 

non-infarct zone (277,278,295,308) and the reperfusion-induced damage to the 

ECM in the infarct zone (164,278,293) still need to be reconciled with the benefits 

(49,134,308,361). Although growth hormone was shown to stimulate post-MI 

repair, increase IZ scar collagen and reduce LV aneurysm formation (278), such 

approaches have not been actively pursued. Strategies to protect the ECM after 

Ml, especially in the infarct zone, might further limit post-MI morbidity and 

mortality. Several factors could be targeted (27,278). In contrast to global 

approaches that target both the infarct and non-infarct zones with systemic 

delivery of adjunctive agents, regional strategies couid be applied to 

seiectiveiy protect the infarct zone against adverse ECM remodelling. 

Monitoring using protein markers could be systematically applied to detect 

potentially adverse ECM remodelling during therapy (27,278). In addition, on the 

basis of the results presented in this thesis, monitoring of the RSD and other LV 

remodeliing indices by sériai 2D-Echo may be helpful.
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6.4. Merits and lim itations

There are several merits of the studies described in this thesis. A major strength 

is that the studies spanned the eras before and after the introduction of 

reperfusion therapy. They contain valuable data on moderate and large 

transmural Ml that are less often seen in the 2000's. However, a significant 

number of patients still do not benefit from early reperfusion and optimal therapy 

as suggested in the latest ACC/AHA management guidelines (362), and present 

with large transmural Ml or ST-elevation Ml (STEMI), cardiogenic shock and 

significant RSD on 2D-Echo. Many patients receiving reperfusion therapy show 

RSD on endocardial contours and sub-epicardial aneurysms.

The results provide improved understanding of the pathophysiological 

mechanisms of LV remodelling during healing after Ml. They also provide the 

rationale for the timing of anti-remodelling therapy. Importantly, they indicate that 

the effects of anti-remodelling therapy may be objectively assessed using non- 

invasive quantitative 2D-Echo imaging. 2D-Echo may also be used to stratify 

patients according to their topographic status and select high-risk patients for 

aggressive therapy.

As with all studies, there were several limitations in the research studies 

described in this thesis, but four deserve mention. First, it was necessary to 

select patients with a first Ml for evaluation by 2D-Echo. Second, the 2D-Echo 

methods need to be applied in large clinical trials of potential anti-remodelling 

therapies. However, this has not been possible to date due to the lack of funds 

and support from the pharmaceutical industry, although the data from the studies 

were made available to the executive committees of several megatrials (23). 

Third, the computer software for the rapid analysis of quantitative 2D-Echo for the 

remodelling indices including RSD needs to be converted for general use. Despite 

the ability of 2D-Echo to provide quantitative data of robust remodelling indices, 

several trials have used areas to assess benefit (132), and have not taken 

advantage of the full potential of 2D-Echo imaging (125). Fourth, we focused on 

gross mechanisms of remodelling of LV shape and function between 1980 and 

1988. Further studies are needed to address the biology of remodelling involving 

cells, proteins and molecules (27,190, 278).
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6.5. Advances pertinent to the thesis
To place the thesis in perspective with current knowledge, it is necessary to 

consider pertinent advances that have impacted current strategies to limit, prevent 

or reverse remodelling after Ml over nearly two decades. These advances may 

be considered under 3 headings: i) RAAS-inhibition; ii) nitrates and nitric oxide; 

and iii) novel concepts, approaches and technologies.

6.5.1. RAAS-inhibition
As mentioned previously, survivors of Ml are at risk for death and disability. This 

is largely due to infarct-related complications such as adverse LV remodelling with 

progressive LV dilatation, dysfunction, heart failure, hypertrophy, and arrhythmias. 

Since heart failure is the end result of adverse remodelling among post-MI 

survivors and this group is increasing as a result of improved therapies for acute 

Ml, the frequency of heart failure is also increasing. Finding improved therapies 

for heart failure in chronic Ml is therefore an important goal (27).

The pertinent aspects of RAAS-inhibition in post-MI remodelling have been 

reviewed (363). As discussed before (pages 18-22, section 2.5.3.), angiotensin II, 

the primary effector molecule of the RAAS, is a major contributor to post-MI 

complications. Cumulative evidence indicates that angiotensin II is produced in 

both the circulation and tissues via ACE and non-ACE pathways (Figure 38), and 

has important physiological as well as pathophysiological actions, such as 

activation of other neurohumoral agonists including norepinephrine, aldosterone, 

endothelin and vasopressin that can be harmful (Figure 39). Although angiotensin 

II acts on both the angiotensin II type 1 (ATi) and type 2 (AT2 ) receptors 

(363,364), most of Its effects are mediated through the ATi receptor (350). 

However, under certain conditions such as Ml, healing post Ml, heart failure, 

myocardial hypertrophy and vascular injury, the ATg receptor is up-regulated and 

may mediate some important cardiovascular effects of angiotensin II (363).

6 .5.1.1. ACE inhibitor Trials
The original rationale for using ACE inhibitors was to inhibit ACE and thereby 

decrease angiotensin II formation (Figure 38a). This was supported by 

experimental studies in rats showing that chronic captopril therapy reduced LV 

dysfunction, LV remodelling and mortality in chronic Ml (120).
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Over the last two and a half decades, several randomized clinical trials 

have established ACE inhibitors for the treatment of Ml, heart failure, and 

hypertension. Several trials (Table 16) showed that ACE inhibitors improve the 

survival of patients with Mi (121,122,125,134,135,137-139,365, 366) and heart 

failure (122,142,143,145). The ACE inhibitor trials showed a survival benefit in 

over 100,000 patients with acute (367) and chronic (368) Ml. The greatest 

benefits were found in the high-risk patients with LV dysfunction (369). ACE 

inhibitors in the SAVE (121,368), AIRE (139) and TRACE (365) trials reduced all

cause mortality, non-fatal cardiovascular events such as hospitalization for heart 

failure and recurrent Ml, providing strong evidence that ACE inhibitors reduce 

mortality and morbidity in post-MI survivors.

TABLE 16. Trials of ACE inhibitors in heart failure and myocardial infarction

Year

(Reference)

Trial Number of 

patients

ACE-inhibitor Disease

1987 142) CONSENSUS 253 Enalapril HF

1991 143) SOLVD, symptomatic 2,569 Enalapril HF

1992 145) SOLVD, asymptomatic 4,228 Enalapril HF

1992 123) CONSENSUS 11 6,090 Enalapril Ml

1992 121) SAVE 512 Captopril Ml

1993 139) AIRE 2,006 Ramipril Ml

1994 136) GISSI-3 19,394 Lisinopril Ml

1995 135) ISIS-4 58,050 Captopril Ml

1995 140,365) TRACE 6,676 Trandolapril Ml

1995 137) CCS-1 13,634 Captopril Ml

1995 138) SMILE 1,556 Zofenopril Ml

1996 366) GISSI-3 19,394 Lisinopril Ml

1997 124,125) HEART 352 Ramipril Ml

Abbreviations: HF, heart failure; Ml, myocardial infarction. Other abbreviations 

as in the text and Abbreviation List (pages xxi to xxiii).
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6.5.1.2. ARB Triais
The rationale for using ARBs w as that they provide specific and selective 

blockade of angiotensin II at the A T i receptor. In view  of the previously 

established benefits of A C E  inhibitors, three other reasons w ere subsequently put 

forward for using an ARB. These included: i) more com plete blockade of the 

effects of angiotensin 11 derived from all sources; ii) absence of inhibition of 

kininase II or increase in bradykinin which cause side-effects associated with AC E  

inhibitors, such as cough, angio-oedem a, and hypotension; and iii) unopposed 

stimulation of the A T 2 receptor that m ay augm ent its beneficial effects (Figure 39).

Subsequent studies revealed that the cardioprotective effects of A C E- 

inhibition are not only related to blockade of angiotensin II formation via ACE but 

also the inhibition of breakdown of bradykinin via kininase II activity (Figure 38b). 

Thus during ACE-inhibition, the am ount of angiotensin II presented to ATi and 

A T 2 receptors is decreased, at least initially, so that decreased A T i and A T 2 

effects would be expected. However, the increase in bradykinin stimulates NO, 

P G I2 , EDHF, and tissue-thromboplastin activator (t-PA), thereby contributing to 

the vasodilatation, cardiovascular protection and other favourable vascular effects 

associated with ACE-inhibition (370). O f note, increased bradykinin during A C E- 

inhibition may also contribute to the hypotensive effect o f A C E  inhibitors.

In contrast, the cardioprotective effect of ARBs is mediated largely by A T i 

blockade and only partly via A T 2 receptor activation and via release of kinins and 

stimulation of kinin Bi and B2 receptors (371 ,372 ) or direct A T 2-mediated signaling 

via protein kinase C (PKCe), NO, and cG M P  (373-375) (Figure 38b). Evidence to 

date suggests that this bradykinin-dependent protective pathway involving NO and 

PG I2 is quantitatively greater with A C E  inhibitors than A R B s.

The finding that angiotensin II levels persist during long-term therapy with 

A C E  inhibitors (376,377) drew attention to the fact that A C E  inhibitors do not block 

the formation of angiotensin II from angiotensin I via chym ase or other non-ACE  

enzymes, or that from angiotensinogen via non-renin pathways (Figure 38). This 

finding promoted the idea that the combination of an A C E  inhibitor and an ARB  

may achieve more complete blockade of the deleterious effects of angiotensin II 

and produce greater benefits. Som e support for this concept was provided by 

experimental (378) and clinical (379) studies in heart failure.
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Over the last nearly two decades, several randomized clinical trials (Table  

17) have investigated the benefits of blocking the effects of angiotensin II via the  

A Ti receptor using selective A Ti receptor blockers (ARBs) in patients with Ml 

(380,381), heart failure (382-387), and hypertension (388-390). Because ARBs  

w ere introduced after A C E inhibitors had been shown to be beneficial, it becam e  

necessary to dem onstrate that ARBs w ere either superior to A C E  inhibitors or 

equally effective in patients who were intolerant to A C E  inhibitors and receiving 

other background therapies rather than relative to a true placebo group.

TA B L E  17. T ria ls  o f A R B s in heart fa ilu re  and m yocard ial in farctio n

Y ear

(R eference)

Tria l 1N um ber of 

patien ts

A R B D isease

1997 (382) ELITE 722 Losartan HF

1999 (392) R E S O LVD 768 Candesartan HF

2000  (383) ELITE II 3 ,152 Losartan HF

2001 (361) V a l-H eF T 5,010 Valsartan HF

2002 (380) O PTIM A A L 5,477 Losartan Ml

2003  (384) CHA RM -O verall 7,601 Candesartan HF

2003  (385) CHA RM -A dded 2,548 Candesartan HF

2003  (386) C H  ARM-Alternative 2 ,028 Candesartan HF

2003  (387) C H  ARM -Preserved 3,023 Candesartan HF

2003  (381) V A LIA N T 14,703 Valsartan Ml

A b b rev ia tio n s : H F, heart failure; Ml, myocardial infarction. Other abbreviations 

as in the text and Abbreviation List (pages xxi to xxiii).

6 .5 .1 .3 . E L IT E  and C H A R M

In the evaluation of ‘tosartan in the elderly' (ELITE) study of chronic heart failure 

patients (382), losartan showed an unexpected reduction in the secondary end

point of all-cause mortality by 46%  relative to captopril. Although the study was  

small and not designed to assess mortality, this effect was felt to be due primarily 

to a reduction in sudden cardiac death. However, the ELITE II heart failure trial
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(383), which was designed to assess superiority of losartan over captopril in 

reducing mortality, showed similar survival rates.

In the large candesartan in heart failure assessm ent of reduction in 

mortality and morbidity’ (C H A R M ) trials (384-387 ), the ARB candesartan improved 

cardiovascular death or heart failure hospitalization in patients taking A C E  

inhibitors as well as those intolerant to A C E  inhibitors. Importantly, compared to 

placebo in patients not receiving AC E inhibitors, candesartan reduced the  

composite primary end-point of cardiovascular death or admission for heart failure 

(P =0.001) although overall mortality did not improve (P =0 .11) (386). In a sub

study of patients with low LV  ejection fraction (< 40% ) in the C H A R M  trial, 

candesartan reduced all-cause mortality, cardiovascular death and heart failure 

hospitalizations (391).

6.5.1.4. RESOLVD pilot study
In the ‘randomized evaluation of strategies for left ventricular dysfunction’ 

(R ESO LVD ) pilot study, candesartan w as compared to enalapril and the  

combination (392). This small study suggested that combined therapy more 

effectively prevented LV remodelling than monotherapy. However, the study was  

prematurely terminated because of an early trend in increased mortality and heart 

failure hospitalization (secondary end-point) in the candesartan and combined 

therapy groups (392).

6.5.1.5. OPTIMAAL
In the ‘optimal therapy in myocardial infarction with the angiotensin II antagonist 

losartan’ (O PTIM AAL) trial (380), which was designed to test for superiority of an 

ARB on survival and other major cardiovascular outcomes in high-risk post-MI 

heart failure patients with captopril as comparator, losartan did not show  

superiority over captopril. Cardiovascular death was clearly less with captopril 

(P=0.035) while other outcomes were similar in the two groups. However, a non

significant trend favoured captopril for the primary end-point o f all-cause mortality 

(P =0.069) but did not satisfy the criteria for non-inferiority.

6.5.1.6. VALIANT
In the ‘valsartan in acute myocardial infarction trial, (VALIANT) (381), which was  

designed to assess superiority of the A RB valsartan over the A C E  inhibitor
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captopril as comparator on top of background therapy, the efficacy and safety of 

long-term treatment with valsartan, captopril and their combination was compared  

in 14,703  high-risk patients with Ml and LV systolic dysfunction (ejection fraction < 

40% ) and/or heart failure (381). The patient selection matched that in the SAVE, 

A IR E and TRAC E studies. The patients were randomized 0.5 to 10 days after 

acute Ml and followed for a median period of 24 .7  months. There w as no 

difference in the primary end-point of all-cause mortality. Comparing valsartan  

with captopril, the upper limit of one-sided 97.5%  confidence interval was within 

the pre-specified margin for non-inferiority for mortality (P =0.004) and the 

composite end-point of fatal and non-fatal events (P <0.001). Thus, valsartan was  

non-inferior to captopril. However, adverse events w ere greater with the 

combination of valsartan and captopril. Valsartan monotherapy was associated  

with more hypotension and renal dysfunction, and captopril monotherapy with 

cough, rash and taste disturbance.

This study established quite conclusively that valsartan was as effective as 

captopril in reducing mortality in high-risk patients after Ml. However, the authors 

also performed a statistical comparison of the VA LIA N T results with those of 

SAVE, A IR E  and TR A C E  using an imputed placebo, and showed that the 25%  

risk reduction in all-cause mortality in VALIANT was comparable to those in the  

AC E inhibitor trials.

T h e  finding that the  valsartan plus captopril combination increased adverse  

events including hypotension underscores the need for careful monitoring of blood 

pressure when combining RAAS inhibitors after Ml and supports the caveat 

regarding vasodilator-induced hypotension in acute Ml.

An interesting finding in VA LIA N T was the disproportionately high rates of 

heart failure, re-infarction, and stroke which accounted for more than 50%  of the 

early mortality (381). In a sub-study (393), 21.5%  of the 14,703 patients were  

elderly (age > 75 years) and their outcomes remained poor. In fact, with 

increasing age in 4 sub-groups, the 3-year mortality quadrupled, composite end

points doubled, and heart failure admissions tripled. Adverse events from 

captopril and valsartan, or both, w ere also more common in the elderly. In 

another sub-study (394), 1.5%  of patients with post-MI heart failure developed  

stroke and the stroke victims had greater in-hospital mortality (27.2 versus 6 .5% , 

P <0.001) and more frequently had atrial fibrillation.
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6.5.1.7. V a l-H eF T

In V al-H eFT  (361), which randomized 5 ,010 patients with heart failure to  treatm ent 

with valsartan or placebo on top of standard therapy consisting of A C E  inhibitors 

(93% ), digoxin (67% ), beta-blockers (35% ), and the aldosterone blocker 

spironolactone (5% ), valsartan did not reduce the primary end-point o f all-cause  

mortality. However, valsartan reduced the composite end-point of mortality and 

morbidity, improved clinical signs and symptoms of heart failure, and decreased  

heart failure hospitalizations.

A  post-hoc analysis of the combined end-point revealed that valsartan had 

a favourable effect in patients who did not receive A C E  inhibitors or beta-blockers, 

but an adverse effect in the 30%  of patients who received the combination of 

valsartan, A C E inhibitor and beta-blocker (361). In a sub-study of V a l-H eF T  

(395), valsartan improved LV size and ejection fraction in all groups except those 

taking valsartan together with an A C E  inhibitor and a beta-blocker.

However, this negative finding with triple therapy differs from those of the 

CHARM  trials (384-387) and should not detract from the important benefits in Val- 

HeFT. For example, valsartan decreased mortality by 33%  (P =0 .017) and the 

combined end-point by 44%  (P <0 .001) in patients not taking ACE inhibitors, (395), 

supporting the use of valsartan as an alternative in patients intolerant to A C E  

inhibitors. Valsartan also improved the secondary end-points in V a l-H eF T .

Sub-studies of V al-H eFT  provided further support for RAAS-inhibition. In 

one sub-study (396), the addition of valsartan on top of background therapy for 

heart failure including beta-blockers and AC E inhibitors, was associated with a 

37%  reduction in atrial fibrillation, which has been linked to adverse atrial 

remodelling and poor clinical outcome. In another sub-study (397), valsartan  

reduced levels of brain natriuretic peptide (BNP) and plasma norepinephrine, 

which have been linked to poor outcome. Another sub-study showed that 

valsartan reduced aldosterone in all sub-groups despite different outcomes (398). 

In yet another sub-study, valsartan decreased plasm a aldosterone and 

norepinephrine in chronic heart failure patients, and those receiving 4  w eeks of 

standard ACE inhibitor therapy had “physiologically active levels of angiotensin II” 

which did not rise with co-administration of valsartan (399).

156



6.5.1.8. RALES and EPHESUS
The rationale for using aldosterone blockade in heart failure is two-fold. First, 

angiotensin II stimulates the re lease of aldosterone (Figure 39), thereby activating 

the mineralo-corticoid receptor. Second, activation of the mineralo-corticoid 

receptor persists despite the use o f A C E inhibitors, ARBs and beta-blockers (400).

Apart from increasing sodium retention and potassium loss, aldosterone 

causes myocardial and vascular fibrosis, vascular dam age and baroreceptor 

dysfunction, and inhibits myocardial norepinephrine uptake (400). Aldosterone 

also generates oxygen free radicals and aldosterone blockade decreases vascular 

N ADPH oxidase activity and reactive oxygen species, and improves availability of 

N O  and endothelial function (400). Aldosterone blockade has been shown to limit 

LV remodelling, fibrosis, M M P  activation and angiogenesis in the coronary 

embolization model of heart failure in dogs (401), and limit collagen synthesis and 

LV remodelling as assessed by LV  volumes on 2D-Echo in post-MI patients (402).

Two large trials have shown that aldosterone blockade reduces total 

mortality and hospitalization for heart failure in post-MI patients with LV systolic 

dysfunction (310). In the ‘random ized aldactone evaluation study’ (RALES), 1,663  

patients with chronic heart failure (LV ejection fraction < 35% ) received the  

aldosterone blocker spironolactone or placebo on top of background therapy with 

an AC E inhibitor, diuretic, digoxin and beta-blocker (403), This trial w as  

prematurely term inated due to the  finding of a 30%  reduction in all-cause mortality 

(P<0.001). In the ‘epierenone post acute Ml efficacy and survival study’ 

(E P H E SU S), 6 ,642  patients with acute Ml, LV ejection fraction < 40%  and heart 

failure were randomized to receive the selective aldosterone blocker, epierenone  

or placebo on top of optimal background therapy (310). Epierenone reduced all

cause mortality by 15 % (P = 0 .008 ) and cardiovascular mortality by 17% (P =

0.005). Although serious hyperkalem ia increased by 1% and 1.6%, respectively, 

in these studies, this did not result in deaths.

In a sub-study of R A LES  (308), spironolactone was associated with 

increased levels of markers of cardiac fibrosis or collagen synthesis, suggesting 

that limitation of excessive EC M  turnover m ay have contributed to the benefits. In 

a sub-study of E P H E S U S  (404), epierenone begun at a mean of 7 .3  days after 

acute Ml was shown to reduce the 30-day all-cause mortality, supporting the  

initiation of epierenone in hospital.
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6.5.1.9. RAAS-inhibition and prevention of LV remodelling in trials
The discovery that LV remodelling leads to progressive LV dilatation, a m ajor 

determinant of post-MI survival and outcome that can be limited by R A A S- 

inhibition, represented a major paradigm shift that triggered several large  

randomized clinical trials. Despite these trials, however, there is to date (January  

2006) a paucity of comprehensive data on effects of anti-remodelling agents on 

regional and global changes in topography, structure and function using 2D -E cho  

or other cardiac imaging modalities. Som e reasons for this discrepancy have  

been the lack of funding and rapid methods for quantification.

Several post-MI trials, such as SAVE and HEART, used 2D-Echo evidence  

of a decrease in LV size (dimensions, areas, volumes) and increase in LV ejection  

fraction to support the beneficial effect of AC E inhibitors on LV remodelling 

(121,124 ,125 ,132 ,405). Thus, in a sub-study of SAVE (512  patients), 2D -Echo  

measures of LV cavity areas and the change in cavity area w ere shown to be  

predictors of adverse cardiovascular events and captopril decreased these areas  

and improved outcome (132). In HEART (312 patients), 2D -Echo measures of LV  

cavity area and volume ejection fraction improved with ramipril (125).

In a recently published sub-study of VALIANT (610 patients), 2D-Echo data  

showed similar changes in LV volume, ejection fraction, combined cavity areas, 

and infarct segment length over 20 months in groups receiving an ARB, A C E  

inhibitor or both (406). Importantly, baseline measures of LV  volume, ejection  

fraction, and infarct segment length predicted outcome. To  date (January 2 0 0 6 ) 

and to the best of the author’s knowledge, no 2D -Echo data on post-MI LV  

structural remodelling from RALES or E PH ES U S  have been published.

Several heart failure trials have reported beneficial effects of therapy on LV  

structural remodelling. In the Vasodilator-heart failure trials’ (V -H eFT) I and II 

(407), the mitral E-point septal separation (EPSS), LV  internal diameter in systole 

(LVIDs), and the systolic radius to wall thickness ratio (R s/TH s) on 2D -Echo  

steered M-mode Echo in 642  patients w ere shown to predict mortality and reflect 

treatment effects In heart failure. These A C E  inhibitor studies supported the use  

of the combination of a decrease in LV size and an increase in LV ejection fraction 

as a marker of regression of LV remodelling.

In V al-H eFT sub-studies (395,408), ARBs w ere suggested to limit adverse  

LV remodelling in heart failure on the basis of LV internal dimensions (2D -Echo  

steered M-mode Echo) and volume ejection fraction. Thus, in 5 ,010  patients with
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m oderate heart failure, valsartan added to an ACE inhibitor or beta-blocker was  

associated with improvement in LV size and function but this benefit was not 

found in patients taking valsartan and both A C E  inhibitor and beta-blocker (395). 

Also in V al-H eFT, patients with the most LV dilatation (LV end-diastolic dimension 

> 7 .5  cm) and worse ejection fraction (less than 22% ) benefited the most from the  

anti-remodelling effect of valsartan (408).

In RESO LVD , data on LV volum es and ejection fraction using radionuclide 

angiography in 768 patients with heart failure showed that the combination of 

candesartan and enalapril more effectively prevented LV remodelling (392).

To date (January 2006) and to the best of the author’s knowldege, no 2D - 

Echo data on LV structural remodelling in heart failure from sub-studies of 

C H A R M  in heart failure have been published.

6.5.1.10. Expanding the RAAS-inhibition paradigm
In addition to infarct-related complications and progressive LV remodelling 

(27 ,37 ,247), post-MI survivors are at risk for further vascular remodelling, 

progressive atherosclerosis, myocardial ischaemia, recurrent Ml, restenosis after 

coronary artery bypass surgery, metabolic syndrome and type II diabetes meilitus, 

peripheral artery disease, ventricular arrhythmias, ventricular dyssynchrony, atrial 

fibrillation and stroke. This risk may be partly due to genetic factors and continued 

exposure to the cardiovascular risk factors so that comprehensive secondary 

prevention is an important aspect of long-term therapy in survivors of Ml.

Fifteen years ago, the treatm ent and prevention arms of SO LVD  

established that RAAS-inhibition with the A C E  inhibitor enalapril offers protection 

against the development and progression of heart failure (143,145). Collective 

evidence from H O P E -TO O  (409), the extension of the Heart outcomes protection 

evaluation’ (H O P E ) study (410), the 12 year extension of prevention SO LVD  or 

S O LVD  follow-up’ (X -S O LV D ) study (411), the ‘extension of the A IR E ’ (A IREX) 

study (412), the losartan intervention for end-point reduction in hypertension’ 

(L IFE ) study (413) and its sub-study (414), suggest that prolonged RAAS- 

inhibition with A C E inhibitors and ARB s can effectively prolong life expectancy  

(415).
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6.5.1.11. Summary and future directions {
The totality of the evidence, from randomized clinical trials to 2005, supports the 

use RAAS-inhibition in post-MI survivors, with A C E  inhibitors as first line therapy 

and ARBs and aldosterone antagonists as proven life-saving alternatives or add

ons. For patients intolerant to A C E  inhibitors, results of trials support the use of 

valsartan and candesartan for post-MI and heart failure patients, respectively. 

Other potential indications for RAAS-inhibition include: i) limiting LV  and atrial 

remodelling in Ml survivors; ii) preventing atrial fibrillation and stroke, especially in 

Ml survivors; iii) improving blood pressure control, cardiovascular protection and 

outcomes in hypertensive patients with LV hypertrophy; iv) reducing new onset 

diabetes and insulin resistance; v) preventing progression of atherosclerosis and 

its complications. Aggressive measures, including comprehensive RAAS- 

inhibition with A C E  inhibitors, ARBs and aldosterone antagonists or on top of 

approved background therapies, may be needed for reducing risk in high-risk 

patients who do not achieve treatm ent targets recommended by evidence-based  

guidelines.

6.5.2. Nitrates and nitric oxide
Nitrates have formed part of cardiovascular therapeutics eversince Sir Lauder 

Brunton used amyl nitrate for therapy of angina pectoris in 1867. Nearly 12 

decades later, work by Furchgott, Palmer, Ignarro, Moncada and others clarified 

that nitrates w ere NO donors and NO  was the biological m essenger that causes 

dilatation of coronary arteries. It w as proposed that activation of N O  synthase 

(N O S ) leads to synthesis of endogenous NO from L-arginine w hereas organic 

nitrates release NO via intracellular bioconversion. In that concept, NO  then 

activates guanylyl cyclase, thereby increasing intracellular cG M P which mediates 

smooth muscle relaxation. In 1998, Nobel Prizes in Medicine w ere awarded to 

Furchgott, Ignarro and Murad for the discovery of N O  as a signalling molecule in 

the cardiovascular system.

6.5.2.1. Nitrates in myocardial infarction and heart failure
The story of nitrates and NO  is fraught with reports of both beneficial and 

deleterious effects (416,417). The  evidence for the anti-ischaemic and 

cardioprotective effects of nitrates and the pathobiology of NO  have been 

reviewed (38 ,100,101,333 ,418) and discussed (pages 17; 130-139) in this thesis.
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In 1888, Stewart (419) first reported a case of nitrate tolerance in a patient 

who needed 20  grains of N TG  to achieve the sam e decrease in blood pressure as 

induced by an initial dose of 1 /100  grain, representing a 2000-fold increase. In 

1932, Prodger (420) w arned that too much nitrate resulted in hypotension. 

Currently, there is consensus that short-term nitrates are effective for the 

treatment of myocardial ischaemia and acute Ml (100 ,101 ,333 ,418 ) but efficacy is 

markedly reduced with long-term nitrates due to the development of tolerance  

(333). This nitrate tolerance is partly related to continuous dosing, high dosage  

and potency of the preparation.

Experimentally, nitrate given in low dose and eccentric dosing with a 

nitrate-free interval has been shown to be beneficial after Ml (48,103). Clinically, 

chronic nitrate in low dose w as shown to be effective in one published trial 

(357,421), one published study presented in this thesis (105-107 ,109) and one 

unpublished study described in this thesis (109 ,298 ). In all these studies, the 

nitrates improved LV function and prevented remodelling post Ml (105-109,298). 

Also clinically, low-dose intravenous NTG infusion for 48  hours in high-risk 

patients reduced LV dysfunction, acute infarct expansion, subsequent adverse LV 

remodelling, infarct-related complications and one-year mortality after acute Ml 

(28). This effect w as dose, blood pressure and preparation sensitive 

(28,118,122). A  m eta-analysis of various random ized clinical trials in M l using 

different nitrate preparations confirmed the benefits (344).

However, subsequent comparison of various nitrates and ACE inhibitors 

after Ml in large trials did not show significant lasting benefit (135-137), probably 

because of hypotension and nitrate tolerance. In addition, a study of 1,002  

patients with ‘healed’ Ml (> 7 days post Ml) treated with long-term sublingual or 

intravenous ISDN as well as N TG  showed an increase in cardiac events (422). A  

meta-analysis suggested that nitrates might be harmful post Ml (423). In a study 

of transdermal NTG in patients with angina pectoris, NTG reduced anginal attacks 

but did not prevent silent ischaem ia (424). In the ‘transderm-nitro trial’ of chronic 

angina, some patients experienced increased angina during the patch-off intervals 

(425). Collectively, these studies suggest that the long-term nitrates as primary 

therapy after Ml and a daily nitrate-free interval might not be prudent.

6.5 2.2. Mechanisms of nitrate action and tolerance
Our understanding of nitrate action and tolerance has increased over the last
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decade (see 426  for review). In the prevalent NTG /N O  hypothesis, NTG-induced  

vascular relaxation is due, in sequence, to activation of soluble guanylyl cyclase, 

increase in cGM P, activation of cGM P-dependent protein kinases and/or cyclic 

nucleotide-gated ion channels (427). NTG and other nitrates appear to share the 

same signalling pathway as NO generated via NOS. Although NTG bioconversion 

appears to be essential for cG M P formation, precisely how NTG  activates  

guanylyl cyclase remains controversial.

The  studies that favoured the N TG /N O  hypothesis used very high NTG  

concentrations. Recent studies from M unzel’s group (426) suggest that NTG  

activates the guanylyl cyclase/c-GM P protein kinase pathway independently of 

bioconversion to NO. Importantly, different activation pathways seem  to be 

involved for low (therapeutic) and high (pharmacological) concentrations of NTG. 

The pathway used at the low anti-ischaemic and vasodilating concentrations 

generates low amounts of NO. At the low concentrations, the biotransformation of 

NTG appears to involve the mitochondrial isoform of aldehyde dehydrogenase 

(ALDH-2) (428). In contrast, high doses of high potency nitrates, such as NTG , 

and low potency nitrates, such as ISDN and ISM N, generate higher and 

m easurable amounts of NO (426). Recently, M oncada’s group used confocal 

microscopy to observe endothelium-synthesized NO and suggested that high 

concentrations of NTG do not release free NO, so that the action of NTG m ay not 

be related to its bioconversion to NO but rather to a different species that does not 

inhibit oxygen consumption by vascular mitochondria (429). The authors 

speculated that this may explain ‘the long clinical success’ of NTG (429).

M unzel’s group has made various major contributions to the understanding 

of nitrate tolerance (426). Until a decade ago, two mechanisms of nitrate 

tolerance w ere recognized: i) neurohumoral counter-regulation, or

‘pseudotolerance’, associated with short-term treatment and involving increased  

intravascular volume and levels of catecholamines, vasopressin, renin, 

angiotensin 11, and aldosterone; and ii) vascular or intrinsic tolerance, associated 

with chronic treatment and involving increased sensitivity to receptor-dependent 

vasoconstrictors such as endothelin-1 and big endothelin-1, which activate protein 

kinase C (PK C ). Subsequently proposed mechanisms include increased activity 

of phosphodiesterase 1A1, desensitization of soluble guanylyl cyclase, increased  

production of reactive oxygen species, and impairment of nitrate 

biotransformation. Sydow in M unzel’s group proposed another mechanism
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involving NTG-induced mitochondrial production on reactive oxygen species and 

inhibition of A LD H -2  (which bioactivates NTG) (430). A  major contributor to 

vascular tolerance is superoxide (O 2 ), a physiologically reactive free radical. 

Increased vascular superoxide reacts with vascular N O  to form peroxynitrite 

(O NG O *), which in turn leads to uncoupling of NO S and inhibition of soluble 

guanylyl cyclase and PG I2  synthase. Although N O  interacts readily with 

superoxide, providing detoxification, the resulting peroxynitrite may dam age blood 

vessels and oxidize lipids. This oxidative stress hypothesis may explain why anti

oxidants reduce nitrate tolerance.

6.5.2.3. Biology of nitric oxide in the cardiovascular system
This topic has been reviewed (416-418). Nitric oxide (N O  or NO) is a ubiquitous 

molecule that can have beneficial and deleterious effects depending on 

conditions. In nature, NO is a poisonous gas that is formed by oxidation of 

ammonia and is generated by incomplete combustion of gasoline in exhausts. In 

physiologic solutions, NO has a short half-life. In tissues, N O  is a physiological 

regulator that plays key roles in signal transduction and cytotoxicity and 

participates in physiological functions, such as vasodilation, neurotransmission, 

and elimination of pathogens. Being an uncharged molecule, NO diffuses freely 

across cell membranes. NO  also plays a major role in the pathophysiology of 

several diseases in the cardiovascular and other systems.

The biological actions of N O  in the cardiovascular system are quite 

complex. Since N O  is a free radical with an unpaired electron in the t t  molecular 

orbital, this electronic configuration imparts high reactivity to the molecule. 

Collective evidence indicates that N O  acts by several mechanisms, including 

activation of soluble guanylyl cyclase, S-nitrosylation of thiols, and formation of 

peroxynitrite.

W hether NO  is cytotoxic or cytoprotective depends on the form of delivery 

or transport and the quantity. Three NOSs have been cloned. Constitutive 

endothelial eN O S  and neuronal nN O S release small am ounts of NO transiently 

while inducible iN O S releases large amounts for prolonged periods. NO is 

protective in small amounts but toxic in excess. Low dose N O  increases cardiac 

contractility while high dose NO  reduces contractility. Increased angiotensin II 

inactivates NO, forms peroxynitrite and produces cardiotoxicity. N O  produces 

post-translational modification of several effector molecules. S-nitrosylation may
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be key in regulating myocardial performance and vascular tone.

The  interaction between NO and superoxide, referred to as the nitroso- 

redox balance, plays a critical role in cardiovascular disease. Physiologically, the  

levels and location of NO and the production of superoxide are balanced within 

the cell. This facilitates post-translational modification of the effector proteins. 

Pathophysiologically, as in heart failure, the level and location of N O  synthesis 

and excessive superoxide production result in interruption of effector signalling, 

leading to vasoconstriction, decreased contractility, cellular dysfunction and cell 

injury or cell death. Increased angiotensin II after ischaemia-reperfusion may 

contribute to injury by inactivating NO and forming peroxynitrite. Therapies that 

enhance NO bioavailability by increasing eN O S may be beneficial after 

ischaemia-reperfusion. This may explain the reports of beneficial effects of low- 

dose intravenous N TG  (50) and A C E inhibitors (352) or ARBs (373-375) in 

reperfused acute M l.

Genetic mouse models of NO S deletion and over-expression have been  

studied. In rats, eN O S  expression is decreased after Ml. In mice, eN O S  deletion 

is associated with increased mortality and over-expression with improved survival 

and limitation of LV  dysfunction and remodelling after Ml. In 2005, nNO S  

deficiency in mice w as also reported to increase mortality and remodelling (431) 

and functional deterioration (432) after Ml.

Several studies have underscored the cardioprotective role of NO in 

coronary artery disease, ischaemic preconditioning, ischaemia-reperfusion and 

heart failure (see 4 3 3  for review: A ppend ix  46). After ischaemia-reperfusion, low 

levels o f NO are beneficial but high levels are harmful and contribute to 

reperfusion injury. Thus, reperfusion of ischaemic myocardium triggers the  

release of oxygen free radicals and a cascade involving endothelial dysfunction, 

decreased eN O S  and eNO S-derived NO, neutrophil activation, increased 

cytokines, further increase in oxygen free radicals, increased iNO S and high 

levels of iNOS-derived NO, increased peroxynitrite, and cellular injury.

6 .5 .2 .4 . H yd ra laz in e  and prevention  o f n itrate  to lerance

Agents with anti-oxidant properties might prevent nitrate tolerance (426). 

Potential agents include A C E  inhibitors, ARBs, statins, L-arginine, tetra- 

hydrobiopterin (BH4, co-factor for eN O S), ascorbic acid, ebselen and uric acid
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(which decrease mitochondrial production of reactive oxygen species and 

preserve A LDH -2), and hydralazine.

Hydralazine interacts favourably with nitrates in several ways. It not only 

inhibits superoxide production but also iNO S and cyclo-oxygenase-2 (C O X-2). It 

is also pro-angiogenic. The  rationale proposed for combining ISDN and 

hydralazine is that ISDN stimulates the NO  pathway (eN O S) while hydralazine 

inhibits superoxide production and iNOS, so that together they m ay restore the 

balance between NO  and superoxide production.

Experimentally, hydralazine combined with ISDN was shown to prevent 

nitrate tolerance and improve mortality (434). The combination also improved 

mortality in patients with heart failure (144). In the recent African-Am erican heart 

failure trial’ (A -HeFT), the addition of ISDN and hydralazine on top of standard 

therapy increased survival in the African-Americans with advanced heart failure

(435). This beneficial effect of hydralazine appears to involve its anti-oxidant 

properties, with inhibition of the activation of membrane-bound NADH oxidase

(436) and inhibition of superoxide generation. The venodilatory effect of nitrate 

complements the arteriolar dilatory effect of hydralazine (86, 437 ). A  sub-study of 

A -H eFT  showed that the fixed-dose combination of ISDN and hydralazine reduced 

hospitalizations and was cost-effective in African-Americans (438). Another sub

study underscored the importance of considering ethnicity in clinical trials (439).

In sum m ary, studies presented in this thesis illustrate the general principle 

that ventricular unloading therapy yields maximal benefit when it is begun very 

early and is prolonged, spans the infarct-healing process and extends beyond. 

The overall evidence to date does not favour long-term nitrates. However, the 

combination with hydralazine is beneficial in African-Americans. The caveat 

concerning avoidance of hypotension and the paradoxical J-curve effect with early 

unloading therapy after Ml still applies (100 ,122 ,123 , 440). Irrespective of the 

therapeutic approach that is selected, outcome depends critically on the timing 

and duration of therapy, and attention to the pathological processes.

6.5.3. Novel concepts , ap p ro ach es  and te c h n o lo g ie s

New knowledge of the biology of remodelling after Ml underscores its complexity 

and the participation of various molecules, including cytokines, growth factors and 

hormones as well as various cellular responses and signalling pathways (27,278). 

Numerous new therapies are being proposed to modify and modulate these
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processes in efforts to optim ize outcome. New approaches to limit remodelling 

after Ml include application of novel pharmacological interventions that target the  

dam aged myocardium, the  supporting ECM or both.

6 .5 .3 .1 . M yocard ia l sa lv ag e  and  card ioprotection

Advances w ere made in five major areas.

First, improved reperfusion strategies, with thrombolytic and anti-platelet 

agents and percutaneous coronary intervention (PCI), have impacted positively on 

outcome post Ml. However, despite extensively documented overall benefits of 

reperfusion, A C E  inhibitors, beta-blockers, statins, aspirin, ARBs and aldosterone  

antagonists after Ml, cardiac enlargem ent and heart failure remain problematic 

(441), especially in survivors of ST-segm ent elevation Ml (STEM I) (442). A  

challenge after reperfused STEM ! is reperfusion injury, with myocardial stunning 

and persistent LV dysfunction, inflammation and cellular responses linked with 

healing, increased M M Ps, EC M  dam age, decreased Infarct collagen, decreased  

density of collagen cross-links, increased ruptures, necrosis and apoptosis, and 

no-reflow (27 ,442,443). Adjunctive therapies to protect against early ECM  

dam age and decrease reperfusion injury in STEM I are therefore being studied. 

Combining regional therapy with a selective MM P inhibitor and an ARB during PCI 

plus stenting and abcixim ab very early after STEM I, might provide the opportunity 

to preserve more myocardium and ECM , and thereby improve outcome.

S econd , novel drugs aimed at protecting the ischaemic myocardium have  

been developed for potential clinical application. One approach involves the use 

of metabolic modulators. Perhexiline, an anti-anginal drug that augments glucose 

metabolism by blocking mitochondrial free fatty acid uptake, has been shown to 

improve peak exercise oxygen consumption, LV ejection fraction, other measures  

of function, and skeletal muscle energetics in patients with heart failure (444). 

W hether metabolic modulators might improve remodelling needs study.

T h ird , stem cell therapy aimed at myocardial regeneration is being 

developed to repair injured hearts. In one report in 2005 (445), the granulocyte- 

colony-stimulating factor (G -C S F ) was given after reperfusion (primary PC I/ 

stenting and abciximab) in patients with acute STEM I. G -CSF mediates 

mobilization of CD34+ m ononuclear blood stem cells (M N C ^‘̂ '̂̂ )̂. The  patients 

showed improvement in metabolism (^^F-deoxyglucose uptake) in the infarct
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zone, and LV ejection fraction and decrease in LV diastolic dimension on Echo, 

suggesting prevention of remodelling.

Fourth, inhibitors of apoptosis or programmed cell death (1 9 0 ) may 

prevent more myocardium and prevent remodelling. Until recently, cardiologists 

endorsed the dogma that the heart is terminally differentiated with no regenerative  

capacity and opposed the concept of apoptosis (446). Evidence from 

experimental and clinical studies indicate that cardiomyocyte cell death early after 

the onset of acute Ml involves apoptosis followed by necrosis (188 ,190 ,447 ). In 

addition, low-grade apoptosis contributes to LV remodelling in chronic M l (448). 

The application of confocal microscopy (449), the use of biochemical markers 

(449), and the application of in-vivo imaging techniques for apoptosis using 

annexin-V (450,451) have advanced apoptosis research (190). Importantly, early 

interventions have been shown to prevent necrosis (452) as well as apoptosis 

(453,454) after acute ischaemia or ischaemia-reperfusion and long-term  

interventions have been shown to prevent apoptosis and adverse remodelling 

(455,456). Although these interventions involved RAAS inhibitors (4 5 4 ,4 56 ) and 

broad-spectrum caspase inhibitors (453,456), more selective anti-apoptotic agents 

are being developed. It might therefore be possible to target early apoptosis and 

necrosis in acute Ml as well as long-term apoptosis in chronic Ml, and quantify the 

effects using in-vivo imaging of apoptosis in studies aimed at preventing post-MI 

remodelling.

Fifth, therapies targeted at cytokines and the inflammatory process have 

been tested. Agents such as tumor necrosis factor-o (TN F-a) antagonists and 

endothelin antagonists were studied in clinical trials of heart failure and found not 

to be beneficial despite their benefit in experimental studies (457). Recently, large 

randomized clinical trials of C O X -2  inhibitors (rofecoxib, celecoxib, and 

valdecoxib) for various indications confirmed cardiovascular toxicity (458 ,459 ).

6 .5 .3 .2 . P ro tecting  the su p p o rtin g  ex trace llu la r m atrix

Several approaches have been proposed.

First, MMP-inhibition is aimed at preventing E C M  damage. The rationales

(27,278) include: I) the ECM  plays a critical role in both early and late LV 

remodelling after Ml; ii) activation of M M Ps that degrade the ECM  has been linked 

to adverse LV remodelling; iii) a fine balance between M M Ps and T IM P s  is 

essential for maintaining ECM integrity and optimal structural support; and iv)
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selective M M P inhibitors are becoming available. The inflammatory and healing 

responses elicited by acute Ml involve inflammatory, fibroblast and vascular cells 

as well as growth factors, bioactive proteins and cytokines. In addition, a sharp 

rise in M M P above that of T IM P  drives rapid ECM  degradation, myocyte slippage 

and acute infarct expansion (early remodelling). Subsequently, M M P and T IM P  

levels subside but chronically higher M M P  than T IM P in some hearts favour 

continued matrix degradation, thereby contributing to progressive, global LV  

dilatation. In contrast, higher T IM P  than M M P  levels and activities in remote Ml 

contribute to increased ECM  deposition and interstitial fibrosis. Release of growth 

factors (such as TG F-p ) (460) and cytokines (including angiotensin II, TN F-a  and 

interleukin-10) (443) into the interstitial space seem to modulate M M P/T IM P  

expression and EC M  degradation or interstitial fibrosis.

To date, over 20  M M Ps and 4  T IM P s have been described (27). MM Ps are  

synthesized by m any cells in a latent form (pro-M M P) and activated by proteolytic 

cleavage or conformational changes. Several MMPs, including M M P-2 and M M P- 

9, are associated with adverse LV  remodelling after Ml. Substrates for M M P-2  

and M M P-9 include the three major collagen types I, II, and III that are involved in 

scar formation and fibrosis during healing after Ml. However, the M M P-2 is 

constitutive while M M P -9  is inducible (461). In brief ischaemia-reperfusion, where  

inflammatory cells are absent, the major source of increased myocardial M M P-2  

appears to be the myocyte. In contrast, the major source of increased myocardial 

M M P-9 during reperfused Ml, w here  inflammation is enhanced, is the neutrophil 

and most likely involves M M P -9  induction. M M P-2 Is the main M M P reported 

increased in rodents (462), w hereas M M P -9 is the M M P reported increased in 

dogs with reperfused Ml (461), suggesting differences among species.

All T IM P s may bind and inactivate M M Ps, including M M P-2 and M M P-9. 

Decreased T lM P -3  is associated with adverse remodelling in human heart failure 

(463). Experimental studies using genetic mice or other models have implicated 

M M P  activation in adverse remodelling after Ml (303,304 ,464-468). For example, 

targeted deletion of M M P-9 attenuated LV dilation after Ml in mice (303,464). 

Broad-spectrum MMP-inhibition limited late infarct expansion after Ml in dogs 

(467). Data in M M P -2  and M M P -9  knock-out mice suggest that high M M P-2  

and/or M M P -9 contribute to LV rupture after Ml (464,469,470).

The recent P R E M IE R  trial, using the broad-spectrum MMP-inhibitor PG - 

116,800 that was designed to target M M P -13  and MM Ps 2, 3, 8, 9, and 14, did not
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show limitation of LV remodelling in patients after S TEM I (471). However, 

potential confounders in that study included late initiation of therapy with PCI 

within 29 hours and oral P G -1 16800 within 48 hours, background therapies with 

potential pleiotropic effects in both treatm ent arms, and the lack of selective M M P  

inhibition. This study did not measure RSD.

Second, other drugs used after Ml may exert pleiotropic effects on 

M M P /T IM P  balance. For example, RAAS-inhibition which induces cardio- 

protection in reperfused Ml m ay improve the M M P /T IM P  balance. In the dog 

model of reperfusion after prolonged ischaemia, valsartan given 30 minutes 

before ischaemia normalized the balance between M M P-9 and T IM P-3, improved  

LV contractile function, and limited acute infarct remodelling and infarct size (461). 

In the sam e model, valsartan reversed the changes in metabolic, functional and  

structural proteins induced by post-ischemic reperfusion (472,473). These studies 

suggest that the ARB valsartan not only limits reperfusion injury but also improves 

remodelling by matrix modulation.

Th ird , supporting structures have been targeted in an attempt to decrease  

the regional bulging and global dilatation after Ml by applying external restraint

(22 ,39 ,278). Some experimental studies have used a mesh over the infarct zone. 

The A corn ’ cardiac support device, designed to provide diastolic support to the  

heart and thereby decrease LV diastolic wall stress and limit LV dilatation, has  

been shown to be effective in animal models of heart failure as well as patients 

with heart failure (474).

Fourth, alternative approaches have been targeted at improving ventricular 

function and limiting dilatation. These include ventricular reduction surgery 

(Batista procedure) (475), dynamic cardiomyoplasty (476), and implantation of 

pacing devices to control electrical/mechanical asynchrony and produce 

resynchronization (477). O f these, cardiac resynchronization is the only approach  

that is widely used in heart failure.

Fifth, cardiac tissue engineering is an innovative approach for creating a  

muscle patch and is undergoing investigation (478). Several scaffolds, 

cardiomyocyte-populated gelatin and alginate gelatin grafts have been tested in 

animals. It is being combined with stem cell transplantation enhanced with growth 

factors and angiogenic factors to achieve myocardial regeneration.

Sixth, local drug or gene delivery that separately target the infarct and non

infarct zones is undergoing evaluation. G ene therapy using various growth factors
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such as the vascular endothelial growth factor (VEG F) has been studied, with some 

favourable effects reported on angiogenesis and ventricular function although 

controversy exists.

6 .5 .3 .3 . Novel ap p ro ac h e s  and c o n ce p ts

Four major points need to be considered.

First, markers of immune reactions, collagen turnover, and MM Ps can be 

used to monitor adverse EC M  and cardiac remodelling. Since post-MI survivors 

who develop heart failure on therapy have a 10-fold greater risk of dying (441), a  

plasma marker that can identify those a t high risk of adverse LV remodelling 

would be useful. Currently available surrogate markers of adverse outcome after 

Ml include BNP (479), C-reactive protein (C R P ) (480) and TN F-a  (481). M M Ps  

and T IM P S  have been proposed. Thus, increased plasma M M P-9 after Ml is a  

fairly consistent finding (4 8 2 ) that may reflect a spillover. Several studies have  

documented increased plasm a M M P-9 (483,484), or both M M P-9 and M M P-2  

levels (485,486), after acute (483 ,485 ,486 ) and remote (484) Ml, increased 

plasma M M P-9  in acute coronary syndromes including Ml (482,485), and 

increased plasma M M P -9  in heart failure (487,488). In one study, both plasma 

M M P-9 and TIM P-1 w ere  increased in acute Ml (482). Importantly, Squire et al 

(486) found that after M l, plasma M M P -9  levels correlated with LV dysfunction 

whereas plasma M M P -2  correlated inversely with LV volumes. Squire (486) also 

found that M M P-9 levels did not differ for anterior and inferior Ml whereas M M P -2  

levels were higher in anterior Ml and T IM P -1  levels were higher in inferior Ml. In 

one study that measured plasma M M P  levels serially over 6 months after Ml, 

increases in M M P-9 and T IM P-1 were most marked in moderate to large Ml (483). 

In another study, M M P -9  correlated with cardiovascular risk (489). A  potential 

confounder in acute Ml studies is that increased plasma M M P-9 also correlated  

with plaque rupture (482 ,485 ). In remote M l, plasma M M P-9 was a predictor of Ml 

but also reflected inflammation and atherosclerosis progression (484).

In a broader perspective, plasma markers of collagen turnover (307,490- 

494) or the connective tissue growth factor (C TG F) gene can be used to monitor 

anti-fibrotic effects of drugs (495). Other proteins and cells can be used to monitor 

the effects of drugs on inflammation and healing (496). Markers of immune 

reactions (497), adverse remodelling (498), phenotypes of responders to AC E
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inhibitors and beta-blockers (499,500), and pharmacogenomic (501) approaches 

can all be applied to further improve outcome of survivors after Ml.

S econd, several novel imaging techniques are applicable for clinical 

studies of post-MI remodelling. Improved Echo imaging techniques include tissue 

Doppler Imaging for diastolic function, tissue characterization imaging, myocardial 

strain and strain rate imaging based on Doppler, myocardial contrast imaging for 

perfusion/function mismatch, and 3D-Echo (502). Recently, speckle tracking for 

LV torsion (or twist) and LV systolic function w as reported (503). Magnetic  

resonance imaging (M R I) tagging is also available but its use has been limited by 

its cost and complexity. It uses more transverse tomographic sections than is 

possible with 2D-Echo and the images are superior. . The combination of data  

from first-pass and delayed contrast-enhanced imaging can predict functional 

recovery in reperfused Ml (504). However, MRI cannot be easily applied to study 

high-risk patients with acute Ml although it is well suited for studies of post-MI 

survivors. M M P-targeted radio-tracers have been developed for imaging the 

localization of M M P activation and tracking M M P-m ediated remodelling post Ml 

(505). Imaging of apoptosis is also being evaluated (450,451).

Th ird , polypharmacy is common in post-MI and heart failure patients. The  

use of RAAS inhibitors on top of background therapy increases the possibility of 

interactions. The pleiotropic effects of the drugs are becoming important. 

Experimental studies suggest that combination therapy is often more beneficial 

than monotherapy. In atrial pacing-induced heart failure in the pig, the 

combination of valsartan and the endothelin blocker bosentan resulted in additive 

beneficial effects on loading, neurohumoral activity and LV performance (506). In 

the rat model of post-MI heart failure, the combination of valsartan and the AC E  

inhibitor fosinopril resulted in suppression of histopathological changes associated 

with remodelling, such as normalization of collagen I, m acrophages and 

myofibroblasts (507).

Although the effects of A C E  inhibitors and ARBs on LV structural 

remodelling in post-MI survivors initially em phasized the haemodynamic  

m echanism (decreased blood pressure, preload and afterload and wall stress), 

the importance of the non-haemodynamic mechanism (‘beyond decreasing blood 

pressure ) involving inhibition of angiotensin ll-induced growth, hypertrophy and 

apoptosis was later appreciated (27 ,508,509). A T 2 receptor stimulation was  

suggested to explain vasculoprotective effects of RAAS-inhibition with AC E
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inhibitors and ARBs (372). In both dog and rat models of post-ischaemic 

reperfusion, ARB-induced cardioprotection was associated with enhanced A T2  

receptor expression (510,511). However, evidence suggests that AT2 receptor 

stimulation may enhance acute ischaemia-reperfusion injury under certain 

conditions (512,513), and promote cardiac hypertrophy and vascular fibrosis, and 

reduce neo-vascularization in ischemic tissues (514). These negative effects of 

A T 2 stimulation may explain why ARBs are not found to be superior to A C E  

inhibitors in clinical trials.

A  potential source of concern with the combination of AG E inhibitors, ARBs  

and aldosterone antagonists, is that they both very effectively decrease collagen 

and interstitial fibrosis. Although the anti-fibrotic effect of RAAS-inhibition results 

in improvement of LV diastolic function that m ay be beneficial in patients with 

post-Ml hypertrophy and interstitial fibrosis, the possibility remains that over- 

aggressive reduction in collagen matrix may increase LV distensibility on the long

term and contribute to deterioration, especially in patients with large transmural Ml 

(27). In 2005), a new mechanism for the anti-fibrotic effect of A C E inhibitors was 

identified. This involves the inhibition of the hydrolysis of N-acetyl-seryl-aspartyl- 

lysyl- proline (Ac-SDKP), resulting in decreased cardiac cell proliferation (possibly 

fibroblasts), inflammatory cell infiltration, expression of transforming growth factor- 

P (TGF-(3), activation of Sm ad2 (the mediator of effects of TG F-p ) and collagen 

deposition (515). Further studies linking markers o f ECM  and LV remodelling are  

therefore needed.

Fourth, it has been suggested that attention to differences in genetics, 

RAAS/ACE polymorphisms, race and age m ay further improve outcome in Ml 

survivors. Pharmacogenetics and identification of the phenotypes of responders to 

A C E inhibitors (and beta-blockers) may be applied to select high-risk sub-groups. 

For example, AC E gene polymorphism is associated with higher levels of 

angiotensin II (516) and increased risk of cardiovascular disease (517) and Ml 

(518). Several trials suggested that A C E gene polymorphism might influence the 

response to A C E  inhibitors, with carriers of the D D  genotype being associated 

with a more favourable effect, but controversy persists since chronic ACE inhibitor 

therapy increases angiotensin II levels. However, the A C E ID polymorphism is 

associated with higher ACE activity that may result in more favourable response 

to ACE inhibitors. In one study, only quinapril (not the A RB losartan, the calcium  

channel blocker amlodipine, or enalapril) w as associated with a significant
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improvement in brachial artery flow-mediated vasodilatation and this effect w as  

related to the presence of A C E  ID and II genotypes (519). In another study, A C E  

inhibitors did not increase re-stenosis after coronary stenting in patients with the  

AC E DD phenotype, irrespective of their tissue ACE affinity (520).

Recently, RAAS gene polymorphisms were linked to non-familial structural 

atrial fibrillation, providing further rationale for RAAS-inhibition with A C E inhibitors 

and ARBs to suppress atrial fibrillation in survivors of Ml (521). RAAS-inhibition 

and genetics needs further study.

W hether pharmacotherapy should be based on racial background is 

controversial. The response to heart failure therapy is suboptimal in African- 

American patients (361,522-524), possibly due to a relative resistance to A C E  

inhibitors secondary to low renin (522). The A -H eFT (435) suggested that the  

ethnic background might influence the response to therapy with ISDN and 

hydralazine (439). Differences In response to RAAS-inhibition due to race needs  

further study.

6.6. Conclusions
The potential for preventing aneurysm formation and progressive LV dilatation and  

dysfunction after acute Ml, by pharmacological limitation of early RSD and infarct 

expansion, is an exciting and achievable goal. The improved understanding of the  

early and late phases of the healing process after Ml and the concurrent adverse  

ventricular remodelling process will permit the design of more rational therapy to 

prevent topographic deterioration and congestive heart failure. The early  

prediction of patients at high risk for infarct expansion, by measuring R SD  and 

other robust remodelling indices using non-invasive imaging with 2D -Echo or 

other imaging modalities, such as M RI, will permit earlier intervention.

Collective evidence suggests that successful myocardial reperfusion 

therapy prevents transmural or 0 -w a v e  infarction and acute expansion, and 

subsequent prolonged pharmacotherapy provides additional benefit. Since late 

reperfusion can experimentally reduce expansion and thinning, adjunctive 

therapies m ay widen the window for salvaging LV shape and function. Clearly 

current pharmacotherapy after Ml is not ideal, since ventricles continue to enlarge  

and the number of patients with LV dysfunction waiting for transplantation has not 

decreased.
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The overall results of the studies in this thesis indicate that, after an acute 

Ml, progressive regional and global changes in ventricular topography occur 

throughout the healing phase over a period of several w eeks. This remodelling, 

which is most marked with large transmural and anterior infarction, involves a 

sequence of early remodelling with expansion of the infarcted zone (stretching, 

thinning, regional dilatation), collagen deposition into the  already thinned and 

stretched infarct segments, followed by further late remodelling with more infarct 

wall thinning, aneurysm formation with a firm inelastic scar, and further 

progressive dilatation of the non-infarct segment. The early  regional remodelling 

initiates a vicious cycle of LV dysfunction, decreased cardiac output, more cardiac 

dilatation, cardiac failure, neurohumoral activation and decreased survival. Major 

factors influencing remodelling include infarct size and transmurality, afterload, 

preload, wall stress, contractile function of adjacent normal myocardium, collateral 

blood flow and the healing process itself.

Pharmacological therapy, with intravenous low-dose NTG in the early 

phase followed by prolonged therapy with nitrates (eccentric dosing) or ACE  

inhibitors were effective for limiting LV regional remodelling, limiting global 

dilatation, preserving function and potentially improving survival after Ml. 

Thrombolytic therapy also limited remodelling but only preserved muscle and 

function If performed very early. N TG  and A C E  inhibitors appeared to be effective 

as adjunctive therapy after reperfusion, although subsequent large clinical trials 

over the last decade only showed significant survival benefit with A C E  inhibitors. 

The measurement of RSD and other indices of LV remodelling by quantitative 2D - 

Echo might be potentially important for assessing the effects of anti-remodelling 

strategies on the infarct zone during healing after Ml and identifying patients at 

high risk for LV aneurysm and rupture. The relation of E C M  disruption to RSD, as 

unmasked in the studies using 2D-Echo, m ay be applied for assessing future anti

remodelling therapies. Other imaging modalities such as M RI may be applied to 

detect RSD in future.
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