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Abstract

This thesis presents a series of investigations into various active vision algorithms. An exper-
imental method for evaluating active vision memory is proposed and used to demonstrate the
benefits of a novel memory variant called the WW-LSTM network. A method for training
active vision attention using classification gradients is proposed and a proof of concept of an
attentional spotlight algorithm is demonstrated to convert spatially arranged gradients into
coordinate space. The thesis makes a number of empirically supported recommendations as
to the structure of future active vision architectures.

Chapter 1 discusses the motivation behind pursuing active vision and lists the objectives set
out in this thesis. The chapter contains the thesis statement, a brief overview of the relevant
background and a list of the main contributions of this thesis to the literature.

Chapter 2 describes an investigation into the utility of the software retina algorithm within
the active vision paradigm. It discusses the initial research approach and motivations behind
studying the retina, as well as the results that prompted a shift in the focus of this thesis
away from the retina and onto active vision. The retina was found to slow down training to
an infeasible pace, and in a latter experiment it was found to perform worse than a simple
image cropping algorithm on an image classification task.

Chapter 3 contains a comprehensive and empirically supported literature review highlighting
a number of issues and knowledge gaps present within the relevant active vision literature.
The review found the literature to be incoherent due to inconsistent terminology and due to
the pursuit of disjointed approaches that do not reinforce each other. The literature was also
found to contain a large number of pressing knowledge gaps, some of which were demon-
strated experimentally. The literature review is accompanied by the proposal of an inves-
tigative framework devised to address the identified problems in the literature by structuring
future active vision research.

Chapter 4 investigated the means by which an active vision systems can collate the informa-
tion they obtain across multiple observations. This aspect of active vision is referred to as
memory. An experimental method for evaluating active vision memory in an interpretable



manner is devised and applied to the study of a novel approach to recurrent memory called
the WW-LSTM. The WW-LSTM is a parameter-efficient variant of the LSTM network that
outperformed all other recurrent memory variants that were evaluated on an image classifi-
cation task. Additionally, spatial concatenation in the input space was found to outperform
all recurrent memory variants, calling into question a commonly employed approach in the
active vision literature.

Chapter 5 contains an investigation into active vision attention, which is the means by which
the system decides where to look. Investigations contained therein demonstrate the benefits
of employing a curriculum for training attention that modifies sensor parameters, and present
an empirically backed argument in favour of implementing attention in a separate processing
stream from classification. The chapter closes with a proposal of a novel method for lever-
aging classification gradients in training attention; the method is called predictive attention,
and a first step in its pursuit is taken with a proof of concept demonstration of the hardcoded
attention spotlight algorithm. The spotlight is demonstrated to facilitate the localisation of a
hotspot in a modelled feature map via an optimisation process.

Chapter 6 concludes this thesis by re-stating its objectives and summarizing its key contribu-
tions. It closes with a discussion of recommended future work that can further advance our
understanding of active vision in deep learning.
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Chapter 1

Introduction

Abstract: The goal of this thesis is to advance the current understanding of active vision in

deep learning by developing and investigating deep learning active vision architectures using

foveated virtual sensors. The thesis aims to accomplish this by proposing a research frame-

work for investigating active vision and by investigating a number of different approaches to

active vision.

1.1 Thesis Statement

An overwhelming majority of computer vision systems in use today process images and
videos in a passive fashion, often by exhaustively scanning them in entirety using the convo-
lution operator. In contrast, animals observe their environments by actively selecting areas
to focus on. How can we enable deep learning vision systems to ’see’ by actively exploring

the scene? This thesis first grounds the above question with a research framework that eluci-
dates the various aspects of active vision; it then pursues the answer by investigating a series
of different algorithms focusing on an active vision system’s sensor, memory and attention.
The purpose of this thesis is to advance the current understanding of active vision in deep
learning by developing and investigating a deep learning active vision architecture.

1.2 Motivation

A vision system is said to be active if it modulates the captured signal by controlling the ge-
ometrical parameters of its visual sensor in order to improve its performance [4]. In contrast,
passive vision systems sample from the scene in a uniform fashion and do not intentionally
alter the geometry of their visual sensor to improve their performance. The vast majority
of approaches to vision in deep learning are passive, whereas in nature there are no known
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examples of passive vision. Therefore, the first motivation for the pursuit of active vision is
biomimetics, which is the idea of mimicking biological processes when solving technolog-
ical problems. The fact that many aspects of biological vision systems are still superior to
computer vision is sufficient motivation for biomimicry.

While a significant proportion of computer vision systems in use today processes disembod-
ied images that were captured by passive sensors with no capacity or need to interact with
their environments, the scope of computer vision goes well beyond that. Computer vision
is also a necessary tool in the development of autonomous robotic systems which have the
potential to revolutionize multiple aspects of our society. There are reasons to believe that
rejecting passive vision in favour of active vision is preferable, if not unavoidable, in the pur-
suit of autonomy in robotics and AI. Various robotic tasks, such as searching or navigating a
complex, real world environment, can involve processing vast amounts of visual information.
Robotic systems are frequently subject to various constraints, whether relating to the amount
of available computational power or the time available to complete their task, that necessi-
tate reducing the amount of visual information they process. For this reason they can rarely
afford to maintain and process an exhaustive model of their environment or to continuously
monitor a high-resolution 360 degree view of their surroundings, as would be warranted by
a passive vision system operating in an unconstrained environment. By enabling selective
and intelligent sampling from the environment, active vision has the potential to greatly re-
duce the amount of visual information that an autonomous agent has to process in order to
complete its tasks.

The author of this thesis believes that a significant amount of research efforts in deep learn-
ing are misdirected to developing solutions that excel on highly controlled research datasets
but struggle in less constrained, real-world settings. A field-wide switch to experimenting in
real-world environments is not a feasible solution as it would drastically reduce the volume
of vision research performed. Instead, imposing additional constraints on either the vision
system’s function or on the dataset used can bring the development setting of vision algo-
rithms closer to the real-world setting. Using an active vision system with a foveated sensor
and a limited field of view is one such set of constraints, which is why active vision has the
potential to lead to the development of vision systems that are more robust and more suitable
for real-world environments.

Most deep learning datasets include a strong human bias as they consist of images taken by
people concerned with the photographs’ aesthetic appeal. Such photographs tend to follow
the ”rule of thirds” [5], position clutter in the background and have the object of interest
viewed from a favourable angle. Datasets designed to avoid this bias [6] [7] [8] are scarce,
costly to collect and receive very little research attention. Active vision grants the system
control over how an object of interest is viewed, which is analogous to letting the system
imbue an input image with its own biases. The ability to add its own algorithmic bias could
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hypothetically improve the system’s invariance to human biases that are present in its training
data.

In summary, the pursuit of active vision is motivated by the performance of biological vision
systems, by the potential of active vision to reduce the volume of information processed by
autonomous agents, by its potential to lead to more robust vision systems without exper-
imenting in real-world environments, and by enabling vision systems to overcome human
biases present in the training data. These motivations are theoretical and verifying them
empirically is an appealing research objective; however, active vision in deep learning is too
immature and incoherent as a research field for such an investigation to be feasible within the
scope of this thesis. Instead, the following objectives were established to guide the research
conducted in this Ph.D.:

• To investigate the suitability of a retina-like biomimetic sensor for active vision sys-
tems.

• To establish and follow a research practice that can address the knowledge gap present
in the active vision literature.

• To produce foundational knowledge that can guide future active vision research.

• To investigate how does an active vision system collate the information that it obtains
across multiple observations.

• To investigate different approaches in enabling an active vision system to decide where
to look.

1.3 Background

1.3.1 The Software Retina

Although advancing active vision is the overarching objective of this thesis, the main focus
at the onset of this Ph.D. was the software retina. The software retina is a loosely biomimetic
algorithm for subsampling images in a space-variant manner. It consists of a sampling struc-
ture that aims to mimic the foveated distribution of retinal ganglion cells in the human eye,
with the input pixels corresponding to photoreceptors that fall within their receptive fields
[3]. Section 2.2.2 provides a more detailed description of the software retina algorithm.

The initial objective of this thesis was investigating the software retina by integrating it with
deep learning vision systems. One such integration, dubbed the cortical mapping, has been
described in the literature prior to the research carried out in this thesis [1]. The cortical
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Figure 1.1: Top: an input image. Bottom: a backprojection image that visualises the data
captured by the software retina. Taken from [1]. An explanation of the role of the image can
be found in Section 2.2.2.

mapping algorithm was inspired by the spatial transformation undergone by visual signals
as they travel from the retina to the primary visual cortex [2]. The goal of the mapping is to
address the fact that the software retina’s output format is not appropriate for processing with
the convolution operator; it does that by producing a spatially efficient and conformal pro-
jection of the data captured by the retina. More details about the cortical mapping algorithm
can be found in Section 2.2.3.

Investigating the software retina and the cortical mapping was motivated by their capacity to
produce a compact representation of a wide field of view, which can help reduce the com-
putational costs incurred by deep learning systems processing their data. Additionally, the
software retina presents itself as a potential platform for emulating numerous neural com-
putations that take place in animal retinas. More hypothetical motivations were involved in
driving this line of research; however, as the research conducted in this thesis has progressed
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Figure 1.2: A cortical image produced from the input image shown at the top of Figure 1.1.
Not to scale. Taken from [1]. An explanation of the significance of the cortical image can be
found in Section 2.2.3.

it was decided that shifting the focus away from the software retina and onto active vision
was necessary. Chapter 2 covers the rationale behind this decision.

1.3.2 Active Vision in Deep Learning

Within computer vision, research interest in active vision has been initiated by Aloimonos
et. al. [4] and Ballard [9]. Aloimonos et. al. have motivated active vision by showing that
various low-level visual problems, such as structure from motion, shape from shading, shape
from texture and shape from contours are more tractable with an active observer capable of
perceiving the object of interest from different viewpoints [4]. Ballard has argued for the
benefits of active vision with foveated gaze control, one of which is that various vision tasks
involving motion are simplified when using an exocentric coordinate frame, i.e. when the
observer is capable of locking their gaze onto a moving object and tracking it [9].

In spite of active vision being a relatively active research domain in the past, interest in it has
waned as interest in deep learning started growing circa 2012. As a result, literature focusing
on active vision in deep learning is difficult to come by. The literature also suffers from
numerous other issues that are discussed in more detail in Section 3.2.7. One such issue
is the scarcity of coherent and continuous research threads where successive publications
meaningfully advance prior work. Research focusing on the Recurrent Attention Model
(RAM) architecture represents an exception to this trend, as it is the most mature and actively
researched active vision deep learning architecture at the time of writing this thesis. The
architecture was initially proposed by Mnih et. al. [10]; however, various variants have been
developed and investigated since [11] [12] [13] [14] [15] [16]. All RAM variants follow the
same broad design and consists of a virtual sensor that crops out foveated image patches from
the scene and passes them to a feature extractor; these features are provided to a recurrent
network whose hidden state is used in image classification and in driving the virtual sensor
to further explore the scene. A more detailed description of the RAM architecture can be
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found in Section 3.2.2. As it is the most actively developed architecture in the literature, it
has been the architecture of choice for a majority of the experiments conducted in this thesis.

1.4 Active Vision Research Framework

The literature review in Section 3.2 together with the experiments in Section 3.3 identify
numerous shortcomings within the active vision in deep learning literature. Arguably, all
of these shortcomings can be reduced into two underlying problems: an incoherence across
the field and a large number of research and knowledge gaps pertaining to key issues. To
address these issues this thesis proposes an investigative framework for structuring active
vision research. The framework aims to coin standard terminology for use in active vision
research, to make future literature more coherent and easier to browse. It also strives to
promote a perspective on active vision that highlights numerous pressing knowledge gap
that the literature has previously failed to address.

The framework breaks down passive vision systems into two components: the feature extrac-
tor and the mechanism for using the extracted features to complete the system’s visual task.
The framework then defines an active vision system as complementing these two compo-
nents with three additional architectural requirements: a sampling structure that defines the
active agent’s local sampling strategy, an attention mechanism which implements the agent’s
global sampling strategy, and a memory mechanism that implements the agent’s strategy for
aggregating visual data collected across multiple observations. The research conducted in
Chapters 4 and 5 has been structured in accordance with the prescriptions produced by the
framework. A full description of the framework and a discussion of various interrelations
between the three aspects of active vision can be found in Section 3.4.

1.5 Contributions

The key contributions of this thesis towards advancing our understanding of active vision in
deep learning are:

• An investigation into the utility of the software retina algorithm within the active vision
paradigm that produced negative results, demotivating its pursuit and demonstrating
the necessity of researching active vision in a more structured manner and as a matter
of precedence.

• A comprehensive and empirically supported commentary on the issues with the rel-
evant active vision literature, accompanied by an investigative framework devised to
address the identified problems by guiding future active vision research.
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• An experimental method for evaluating active vision memory that enables producing
interpretable results without having to devise a solution to the problem of attention.

• A novel variant of the LSTM architecture, called the WW-LSTM, that functions as a
active vision recurrent memory mechanism that collates information obtained across
multiple observations.

• A number of empirically supported recommendations as to the structure of future ac-
tive vision architectures.

• An investigation into the hardcoded attention spotlight algorithm, that functions as a
stepping stone towards a novel method for training active vision attention with classi-
fication gradients.

All research code used to conduct the experiments described in this thesis can be found
at https://github.com/Pozimek/CUB-RAM. Research presented in this thesis has
also been described as a part of the following publication:

• Ozimek, P., Hristozova, N., Balog, L., & Siebert, J. P. (2019). A space-variant visual
pathway model for data efficient deep learning. Frontiers in cellular neuroscience, 13,
36.

1.6 Thesis Outline

The remainder of this thesis is organised in the following way:

• Chapter 2 introduces the software retina, reviews the retina-related literature and de-
scribes the exploratory research that has been conducted with the retina as its focus. It
also explains the motivation behind suspending the pursuit of the software retina.

• Chapter 3 reviews the literature relevant to active vision in deep learning, conducts
experiments that demonstrate the knowledge gap and proposes a research framework
to address the issues with the literature.

• Chapter 4 proposes an experimental approach to investigating active vision memory
and employs it to evaluate several recurrent memory variants.

• Chapter 5 investigates active vision attention by exploring a pair of research questions
and by proposing a novel method for training attention.

• Chapter 6 closes this thesis with conclusions and a discussion of future work.

https://github.com/Pozimek/CUB-RAM
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Chapter 2

Exploratory Work Using the Software
Retina

Abstract: The main investigations in this thesis focus on the pursuit and study of active

vision; however, the starting goals of this Ph.D. were different. This chapter opens with a

description of the initial research approach and motivations that focus on the software retina.

It then describes the function of the software retina and reviews the literature that is relevant

to it. Finally, the chapter describes the exploratory work done in accordance with the ini-

tial research approach, the problems encountered and how they prompted a revision of the

project scope that lead to the research framework described in Section 3.4. The exploratory

work consisted of developing a colour opponency model described in Section 2.3.2 and the

pilot study performed on the EPIC Kitchens dataset described in Section 2.4.

2.1 Motivation and Objectives

The primary goal at the beginning of the project was the development and investigation of
the software retina for deep learning vision systems. The software retina is a functional
model of the human retina’s foveated architecture that utilizes Gaussian receptive fields to
implement a space variant sampling strategy [3]. A complete technical description of the
software retina can be found in Section 2.2.2. In the context of deep learning it can be
understood as a virtual sensor that is driven around the input image as though it is exploring
a scene that spans beyond its field of view. It acts as a pre-processing step applied to all
image data passed to the neural network and it stands in stark contrast to the passive vision
paradigm, which is how conventional deep learning vision systems process image data by
uniformly processing the entire scene.

One of the main motivations for studying the software retina was investigating whether
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biomimetics, which is the practice of mimicking biological systems for solving human prob-
lems, can advance the state of computer vision literature. Deep learning algorithms are a
suitable match for the software retina owing to them being the state-of-the-art solution for a
wide range of vision problems that also is a biomimetic approach loosely inspired by how
the brain works. The retina was hypothesized to reduce the computational costs and data
requirements associated with deep learning. State-of-the-art architectures consist of 100s of
millions of parameters and can take over a hundred GFLOPs to complete a forward pass
[17]. This may not be a significant challenge for vision systems deployed in data centres
or the cloud; however, it does pose a problem for mobile and robotic architectures that are
subject to much more austere hardware constraints.

One motivating hypothesis was that utilizing foveated sampling, as implemented in the soft-

ware retina, has the potential to alleviate the computational costs of deep learning. Human

vision demonstrates that perceiving the complete object of interest in high resolution is not

required in order to recognize it; it is sufficient for us to fixate our foveae on key locations

of the object and only dedicate minimal computational resources associated with the periph-

eries of our vision to the less salient parts of the object. This implies that uniformly sampling

the entire scene in full resolution, as is commonly done in most deep learning vision systems

today, is a highly redundant approach in need of optimization.

The primary goal of this chapter is to investigate the software retina’s integration with deep
learning vision systems. In accordance with the pursuit of biomimetics, another aim was to
utilize the software retina as a platform for replicating other functions of biological retinas.
The plan for early research was to expand the functional capabilities of the retina so as
to enable more hypotheses to be tested later, once the retina was already deployed in an
deep learning environment suitable for rigorous investigation. The remainder of this chapter
explains why and how this approach has been revised.

2.2 Background

This section provides the context required for the exploratory work described in the remain-
der of the chapter. In order to ground the biomimetic theme of the software retina the first
part of this section covers the relevant aspects of mammalian vision systems. At the onset
of this project the software retina was at a very early stage of research and development as
only two prior projects advanced it: the work of Balasuriya [3] which conceived the software
retina and the work of Ozimek and Siebert [1] which investigated a rudimentary integration
of the retina with convolutional neural networks. The next part of this section will focus on
the first of these works and the software retina.

An integration between the software retina and deep learning is necessary and non-trivial,
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as the output data of the software retina is in a format that is not compatible with the con-
volution operator that forms the foundation of most deep learning vision systems. At the
time of writing the vision transformer architecture provides an alternative to the convolution
operator that is competitive with the state-of-the-art on a number of benchmarks [18]. Vision
transformers could therefore offer an alternative pathway for integrating the retina with deep
learning vision systems; however, they only became available quite late during this project
and thus could not be made a part of these investigations. The final part of this section
describes the retino-cortical transform, which implements the first integration between the
software retina and convolutional neural networks.

2.2.1 Biological Vision

In order to be perceived, any light entering the eyeball has to stimulate a layer of photore-
ceptor cells located at the rear of the eye. In humans these cells are arranged in a foveated
pattern, meaning that their distribution is the densest in the centre of the retina - dubbed the
fovea - and is progressively sparser towards the peripheries [19]. Curiously, in humans pho-
toreceptors are facing inwards towards our heads, so that any light that stimulates them first
passes through the other neuronal layers in the retina. There are two types of photoreceptor
cells: rods and cones. Rods are very light-sensitive and thus operate well in dim light but are
colour-blind. Cones require relatively intense light to activate and each cone is selectively
sensitive to either short, medium or long wavelength light [20].

As light stimulates photoreceptor cells they produce signals that are pre-processed by up to 4
different neuron types before leaving the retina along the optic nerve. These 4 neuron types
are the horizontal cells, bipolar cells, amacrine cells and retinal ganglion cells, each having
numerous subtypes, with the axons of the ganglion cells forming the optic nerve connecting
the eye with the brain. There are at least 18 different types of retinal ganglion cells present
in the primate retina with each one of them being functionally distinct and transmitting a
different type of signal. The functional characteristics of these different ganglion cells stem
from the horizontal, amacrine and bipolar cells that feed into them [21] [22]. These neu-
rons perform a wide range of functions, including but not limited to brightness constancy,
detecting approaching motion, motion extrapolation, discriminating the direction of texture
and object motion and anticipating signal periodicity [23].

The signals captured by different retinal ganglion cell species travel along their axons into the
primary visual cortex (V1). Along the way these signals undergo a spatial transformation;
the optic nerves from each eye cross in the optic chiasm where they are split into two parts,
each corresponding to one half of the animal’s visual field. The rearranged optic nerves
then travel through the lateral geniculate nucleus and arrive inside V1 in a log-polar-like
retinotopic mapping (Figure 2.1). Owing to evolutionary pressures on their vision systems,
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Figure 2.1: A generalized representation of the global retinotopic mapping inside V1, taken
from [2]

different animals have different distributions of photoreceptors and retinal ganglion cells that
in turn give rise to different retinotopic mappings in their visual cortices [2].

Colour opponency is a functional characteristic of biological vision that plays a significant
role in V1 but originates from within the retinal circuitry [24] [25]. Within much of the visual
system colour information is encoded in an opponent fashion where the lack of a colour-
sensitive neuron’s activation can code for another colour, as opposed to an absolute encoding
where the lack of a response would always mean a complete lack of stimulus. In other
words, opponent cells are activated by signals coming from cones sensitive to one colour and
suppressed by signals coming from cones sensitive to another. There are two known types
of colour opponent cells: single-opponent cells and double-opponent cells [24]. Single-
opponent cells simply exhibit colour opponent behaviour as previously described between
the colour pairs of red-green, blue-yellow and black-white. Double-opponent cells have
a response profile that is inverted between their receptive field’s centre and surround; the
colour that activates the cell in the centre of its receptive field suppresses it in its peripheries
and vice versa. Section 2.3.2 describes how the function of these cells was mimicked within
the software retina.

2.2.2 The Software Retina

The software retina is a structure and an associated algorithm for subsampling images in a
space-variant manner. Generating its structure only has to be done once and does not factor
into the algorithm’s runtime. The sampling structure aims to mimic the foveated distribution
of retinal ganglion cells in the human eye, with the input pixels corresponding to photore-
ceptors that fall within their receptive fields. It consists of a circular arrangement of point
locations (Figure 2.2) and their associated subsampling kernels (Figure 2.3). Each point lo-
cation defines the subpixel centre of a Gaussian kernel used to subsample from the input
image, whereas the local density of neighbouring points defines the kernel’s parameterisa-
tion. Originally the arrangement of point locations was generated using a self-similar neural
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Figure 2.2: Point locations defining the receptive field centres of the software retina.

network to ensure that no local discontinuities or distortions are present in the structure [26]
[3]; however, in theory it can also be produced using other algorithms such as logarithmic
spiral equations.

To subsample from the image the structure is centred on a user-defined fixation location,
the Gaussian kernels are multiplied with the pixels that they overlay and their responses are
summed together and returned in the image vector data structure [3]. The image vector is
an NxC tensor, where N is the number of receptive fields in the software retina and C is
the number of colour channels in the input image. Although each image vector value is
associated with a Gaussian kernel that has a known location, such explicit location encoding
is not compatible with the convolution operator and thus the integration of the software
retina with convolutional neural networks is not trivial. The visual data stored in the image
vector can be visualized by passing it back through the sampling structure onto an image
grid to produce a backprojected image (Figure 2.4). This visualisation can be used to help
diagnose any issues present in the generated sampling structure of the software retina. The
backprojected image can also be used as input to convolutional neural networks; however,
it would be difficult to motivate such a design choice as the computational overhead of the
software retina algorithm is quite significant while the hypothesized benefits of using the
backprojected image are difficult to devise.

The software retina has a number of hypothesized benefits when understood as a sampling al-
gorithm to be used in tandem with a transforming algorithm for presenting the captured data
to a convolutional neural network, such as the one described in Section 2.2.3. The retina and
any transforming algorithm used would impose their own computational overheads in a deep
learning system; however, the image vector is a compact representation of the input data that
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Figure 2.3: A visualisation of a small retina’s Gaussian receptive fields, taken from [3]

could enable a significant reduction in the computational cost of a neural network’s forward
pass if used with a transforming algorithm that preserves the compression. The compression
ratio of the image vector improves with the retina’s size, thus a large retina would stand a
chance of more than offsetting its own overheads by reducing the computational costs of any
neural network that utilizes its output.

The simplest alternative to the software retina that sub-samples from an input image in a
foveated manner consists of an algorithm that extracts overlapping patches at varying reso-
lutions [10]. The software retina is more computationally expensive in comparison; however,
its structure enables a smooth representation of visual features across multiple sampling fre-
quencies; it is effectively a continuous wide range bandpass filter while the approach utilizing
overlapping patches is a discrete, narrow and non-overlapping bandpass filter that is likely
to corrupt features present at the border of the foveal patch. Another benefit of the software
retina is that the receptive field structure enables using task-specific sampling distributions
that are different to the human foveation pattern as well as a spatial transformation of the
captured image such as the one described in 2.2.3 that may have its own advantages.

The receptive field structure also makes possible the selective mimicking of computations
that take place in the mammalian retina and give rise to different retinal ganglion cell types.
One example function that could be reproduced is that of the Y-type ganglion cells; they
are involved in detecting texture motion, i.e. when a regular pattern is translated across the
retina’s field-of-view, in a direction-insensitive but a velocity-sensitive manner [27]. These
cells are thought to play a role in the segmentation of moving objects [23]. A lot of the
neural circuitry in the retina appears to compute temporal features; the starburst amacrine
cells selectively inhibit bipolar cells depending on their temporal activations [28], while



2.2. Background 14

Figure 2.4: Top: an input image. Bottom: retinal backprojection image. Taken from [1].

the Object Motion Sensitive retinal ganglion cells detect differential motion, i.e. motion
that differs from the surrounding motion [29]. In theory a neural network could implicitly
learn to mimic these computations; however, neural network training is a highly stochastic
process and there is no guarantee for this to happen, thus hard-coding these early stage
vision computations into the vision system could be of value and would be a justified topic
of investigation in line with the project’s motivation. In practice these research ideas were
left as future work for reasons described in Section 2.3.2.

2.2.3 The Cortical Mapping

Realizing and evaluating the hypothesized benefits of the software retina in a deep learning
system is contingent upon an effective presentation of the data captured in the image vector.
At the onset of this project the cortical mapping algorithm introduced in [1] was the only
solution available for this task.
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This algorithm was inspired by the spatial transformation undergone by visual signals as
they travel from the retina to V1 [2] and its goal is to produce a structure capable of spatially
efficient and conformal projection of the data captured by the retina. Just like in the optic
nerve, the cortical mapping algorithm splits the receptive field structure of the software retina
into two halves along the vertical meridian. The two sets of point locations are then spatially
transformed according to formulas 2.1 and 2.2; they are shifted apart along the x-axis by
the α parameter and converted into the polar space. During the next step in generating the
structure each point location has a Gaussian kernel associated with it. As in the software
retina, these kernels are parameterized by the density of neighbouring points to ensure a
smooth and continuous representation of the visual signal; however, unlike in the software
retina they are not used to subsample from an image but rather to project the contents of the
image vector onto the image plane [1]. Finally, the two sets of point locations are rotated and
aligned along their foveal sides so as to minimize the amount of empty space present in the
resulting image.

Ycort =
√

(x+ α)2 + y2 (2.1)

Xcort = tan−1(
y

x+ α
) (2.2)

Figure 2.5 shows an example image produced by the cortical mapping from an input image
previously shown in Figure 2.4. The resulting image is of a lower resolution than the input
image, with the exact compression ratio depending on the size of the software retina and the
parameterization of the cortical mapping. The compression of this image format stems from
how a wide range of visual frequencies captured by the software retina is regularized and
represented in a narrow frequency range by expanding the densely sampled foveal region
and compressing the sparsely sampled peripheries.

In images generated using the cortical mapping, translations correspond to a combination of
translations, rotations and scaling that depends on movement relative to the fixation point.
Radial translations scale the object, while translations about the fixation point rotate it. This
space-variant transformation possesses a number of hypothesized benefits to deep learning
vision systems, one of which stems from the decorrelation of noise from stable features
owing to this mapping being conformal [2]. A conformal mapping preserves the structure of
corner features but does not guarantee the same for other features and noise. This means that,
given a corner feature and a series of cortically mapped images sampled by a retina fixated on
different points around it, the feature will be represented in a consistent manner but the noise
around it will be transformed inconsistently. This decorrelation is hypothesized to accelerate
neural network training by helping the network focus on stable, corner-like features instead
of overfitting to noise. The cortical transform also effectively augments training data and
promotes scale and rotation invariance, as an object looks drastically different in the cortical
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image depending on its position relative to the fixation point. Figure 2.5 demonstrates this
effect by transforming the image shown in Figure 2.4.

Figure 2.5: A cortical image produced from the input image shown at the top of Figure 2.4.
Not to scale. Taken from [1].

The cortical mapping algorithm has undergone a pilot study in [1], where it was evaluated
against a carefully selected subset of the Imagenet dataset [30] on a simple convolutional
architecture. The purpose of that study was to demonstrate a proof of concept integration
between the software retina and convolutional neural networks, which explains why the au-
thors did not attempt to elaborate upon or investigate the mapping’s hypothesized benefits.
The experiments in [1] showed that the mapping enabled using the retina with convolutional
neural networks with a moderate reduction in their image classification performance. For
this reason during the first year of the project a more thorough investigation of the cortical
mapping was considered as a possible avenue for research; however, it was not pursued as
there were no ideas for meaningful and novel improvements to the mapping. Another possi-
ble research objective was to investigate a neural network layer that is capable of extracting
visual features from the image vector directly, bypassing the need to generate a convolution-
compatible image. Unfortunately, no such approach was found before the project’s objectives
have been revised.

2.3 Functional Expansions of the Retina

The first actioned research objective of this project was an expansion of the software retina’s
functional capabilities with a colour opponency model as well as a reproduction of the retinal
scale-space pyramid from [3]. The goal was to investigate these and other retinal functions
for any benefits to deep learning vision systems. In spite of these algorithms being investi-
gated in a limited fashion, they have been fully implemented as they were being worked on
in tandem with the specification of the retina experiments. This section details the algorithms
that have been used to expand the functional capabilities of the software retina together with
their corresponding limited investigations.
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2.3.1 Scale Space Pyramid

The retinal scale-space pyramid was described by [3] and has been fully reproduced for
this project’s purposes. The algorithm includes a Gaussian pyramid and a Difference-of-
Gaussians pyramid; both of these utilize successively coarser retina structures overlaid on
top of each other, with each structure subsampling directly from the image vector of the
structure below it. Including the retina structure that subsamples from the image, there are 4
levels in these pyramids. Each node in the successive pyramid levels has a Gaussian kernel
associated with it, with the σ parameter being scaled by the local node density as measured
by the mean distance to the 5 closest neighbours within the same level. The field-of-view
of each receptive field defines the maximum distance for subsampling from nodes in the
lower level retina structure, and it is defined as 2.4 ∗ σ. The Difference-of-Gaussians retinal
pyramid is computed by first computing two different retinal pyramids, one with narrow and
one with wide receptive fields as defined by the ratio between their base σ values, and then
subtracting their image vectors from each other.

All data subsampled by the 4 levels of retina structures is stored in an image vector format,
meaning that no backprojection algorithms that cast the data back to image space are nec-
essary to compute the pyramid and all computations are performed directly on the image
vector. A projection algorithm can still be used to visualize the visual data captured by the
retinal pyramid, as seen in Figure 2.6.

The lack of projection algorithms in the retinal pyramid combined with the compactness
of the image vector representation causes the retinal pyramid to have a very low mem-
ory footprint, as the image vector format is a much more compact representation of vi-
sual data than the pixel space. After sampling an input 926x926px image, a 4 level retina
pyramid stores only 50000 + 12500 + 3125 + 781 = 66, 406 values in the image vec-
tor representation. Projecting this representation would mean storing images containing
926 ∗ 926 + 463 ∗ 463 + 232 ∗ 232 + 116 ∗ 116 = 1, 139, 125 pixel values. In spite of
this compactness, it is not obvious how would one go about integrating the pyramid with
deep learning vision systems. The cortical mapping described in Section 2.2.3 could be used
as an integration with convolutional neural networks, but using it would mean forfeiting the
memory savings stemming from a compact image vector representation. A more efficient
integration was sought that would enable a neural network to efficiently compute local fea-
tures directly within the pyramid, but it was not found in time before the project’s goals were
revised.

The motivation behind implementing the image pyramid was that it would allow for the uti-
lization of conventional computer vision techniques that operate in the more compact and
efficient pyramidal scale space and, where applicable, enable a comparison of their efficacy
against functionally analogous biomimetic algorithms. Had a more efficient interface with
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Figure 2.6: Top: the source image. Bottom: backprojections of the resultant Gaussian (left
column) and Difference-of-Gaussians (right column) retinal pyramids.
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neural networks been devised, the pyramid would have become a part of the attention mod-
ule in the EPIC Kitchens investigations described in Section 2.4. The research plan included
integrating the retinal pyramid into the optical flow estimating neural architecture defined in
[31]) and feeding its output into the model’s attention module. This was hypothesized to en-
able the module to compensate for global head movements in egocentric vision settings and
to differentiate them from object motion and retina re-fixations. This plan was never realized;
the amount of work required to achieve this and other research goals was severely underesti-
mated and the EPIC Kitchens investigations were cut short before the retinal pyramid could
be utilized or investigated.

2.3.2 Colour Opponency Model

Figure 2.7: The single and double opponent retina cell model.

The colour opponency model introduced in this project is a functional model of single and
double-opponent retina cells described in section 2.2.1. It was described in [32] and is based
on the work of [33]. The motivating goal behind the model was to investigate whether a
space-variant colour space inspired by the human retina can benefit vision systems by pro-
moting invariance to illumination changes, colour constancy and improved colour contrast.
In this model the image pixels are treated as signals coming from the retina’s cone photore-
ceptors, the software retina’s receptive fields are treated as the intermediate neurons in the
retina that facilitate colour opponency, and the opponent image vector outputs are treated as
retinal ganglion and lateral geniculate nucleus cells, with each image vector channel corre-
sponding to a specific colour opponent cell species.

The algorithm implements the Marr-Hildreth difference of Gaussians operator [34] using two
separate retina structures: one implementing the centre Gaussian receptive field with σ =

0.93 and another one implementing the surround Gaussian receptive field with σ = 3 ∗ 0.93.
The value of 3 scaling the surround Gaussian was chosen based on physiological findings
regarding the structure of cat retinal ganglion cells [35]. The centre and surround retina
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Figure 2.8: Low contrast colour-blindness tests processed using the double-opponency
model. Left: Original images. centre: Retinal backprojections of the red-green double op-
ponent cells, coloured using a divergent colour map. Red indicates negative values, yellow
indicates values near zero, and green stands for positive values. Right: retinal backprojec-
tions of the blue-yellow double opponent cells, coloured using a divergent colour map. Red
indicates negative values, yellow indicates values near zero, and blue stands for positive val-
ues.

structures are each used to subsample from the input image after the algorithm supplements
the image’s RGB colour space with a yellow channel y = ((r + g)/2), resulting in a total of
8 image vector channels. These colour channels are used to model the outputs of four type-2
single opponent cell species: centre opponent r-g and b-y cells, and surround opponent g-r
and y-b cells. The single opponent outputs are in turn added together in a spatially opponent
manner to simulate two double opponent cell species: the red-green and the blue-yellow
cells. The relevant formulas can be found in Figure 2.7.

The centre receptive fields of in vivo type 2 single opponent cells are not perfectly balanced
with their surround receptive fields [24]. For this reason absolute stimuli generate a response
from the cell, guaranteeing that their encoding together with the differential stimuli of the
antagonistic fields. This feature is implemented by scaling the magnitude of the surround
receptive field’s response by k = 0.9 [33].

To qualitatively evaluate whether the colour opponency model can improve colour constancy
a set of Ishihara tests commonly used for identifying colour blindness [36] was provided as
input. Visualizing the modelled outputs of the double opponent cells has resulted in images
with an improved colour contrast which is especially apparent in the two most challenging
test images found, shown in Figure 2.8. The plan for quantitative evaluations was to inves-
tigate whether a deep learning vision system would benefit from using the simulated double
opponent cells’ output in classification tasks where colour constancy is a controlled variable
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used to increase task difficulty. The planned means of controlling colour was to use a syn-
thetic dataset where illumination parameters as well as the colours of the classified object
and the scene could be manipulated at will.

As mentioned before, the research objective of widening the functional capabilities of the
software retina was set aside before these investigations could be completed. This research
goal was deemed premature as no adequate experimental environment for rigorously eval-
uating the retina’s impact on deep learning vision systems could be found in the literature.
In addition to this, the biomimetic motives behind the colour opponency model were ques-
tioned by several publications. The findings in [37] [38] show that colour opponency features
emerge spontaneously in convolutional neural networks, and that hardcoding them inside the
retina would be redundant. In addition to this, [39] showed that colour processing is severely
limited at the peripheries of human vision in a way that complicates our understanding of
what is biomimetic colour processing; in their study subjects wearing VR headsets did not
notice a complete loss of colour in most of their field-of-view.

2.4 EPIC Kitchens Investigations

The lack of an adequate experimental environment for a rigorous evaluation of the software
retina in deep learning systems was identified as a critical knowledge gap; to address this
the focus of this thesis was shifted towards establishing such an experimental environment.
This section describes the devised research framework, the EPIC Kitchens dataset [40], the
motivations for using this dataset in investigating the software retina, and an architecture
inspired by the Recurrent Attention Model (RAM) [10] [11]; it also explains the reasons
why the research framework utilizing EPIC Kitchens was proposed, why it was set aside and
what has been learned from it.

2.4.1 EPIC Kitchens and the Selected Subset

A major objective guiding dataset choice was to devise a long-lasting and rigorous testbed
for a large number of potential future investigations of the software retina. As described in
Section 2.2.1, many of the computations that take place in biological retinas process motion
and temporal signals and reimplementing those computations within the software retina was
considered for future work. For this reason a video dataset that can enable extracting tem-
poral features was preferred to image datasets. The software retina’s and cortical mapping’s
compression ratios scale with the retina’s size, so a dataset consisting of high resolution
images that could support a large retina was also preferred in testing the retina’s memory
efficiency. Large image size also gives the retina more room for exploring the scene, while
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high resolution visual features can only be resolved if the retina fixates on the appropriate lo-
cation and thus support testing how well can a model control the retina. A rich feature space,
such as one present in natural images, would also improve the sensitivity of any tests for the
hypothesized scale and rotation invariant properties of the retina. Ideally, the structure of the
visual task associated with the dataset would also require the architecture to locate a specific
object within the scene as opposed to classifying the scene as a whole as that would further
support evaluating the fixations produced by the active vision system.

At the time of its publication the EPIC Kitchens dataset was the largest egocentric vision
dataset for action recognition from videos [40]. It consists of 55 hours of non-scripted record-
ings of the participants’ daily activities in 32 different kitchens. The videos were recorded
at a 1080p resolution with a GoPro camera mounted on the heads of the participants. All
videos are broken up into action segments, with each segment being labelled with a verb
and noun pair such as ’cut onion’ or ’open cupboard’. At the time of utilizing it the dataset
boasted a total of 125 verb classes, 331 noun classes and 39,594 action segments; however,
newer versions have different statistics.

Although the EPIC Kitchens dataset fulfilled all of the aforementioned requirements, its size
posed a significant challenge that could adversely impact the pace of the project. In response
to this a subset of the dataset was selected, enabling faster architecture development and an
easier interpretation of the model’s behaviour. All of the problems related to the dataset’s
format and the architecture’s development could be solved more quickly on a smaller subset,
and the resulting deep learning architecture could be scaled up by increasing its depth and
width if an evaluation on the full dataset was deemed necessary.

Figure 2.9: Statistics of the selected subset of EPIC Kitchens.

The selected subset consists of 5074 action segments with 19 unique activity classes made
up of 6 verb and 9 noun classes. More detailed subset statistics can be found in Figure 2.9.
There were several criteria involved in choosing the subset classes, the first of which was
their incidence in the dataset as many classes in the dataset had only a handful of associated
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action segments. Some of the classes were selected to pose a requirement on the vision sys-
tem of fixating the high resolution fovea on or close to the manipulated object; this included
visually similar noun class pairs, such as potato vs onion, as well as verb classes that require
differentiation between fine hand motions, such as peel vs cut. In order to provide an im-
proved understanding of the tested architectures’ temporal feature processing, verb classes
were selected that are temporal inversions of each other, such as open vs close, and take vs
put. The selected classes were split, with 20% of the samples going into the validation set
and the remaining 80% going into the training set.

2.4.2 The EPIC-RAM Architecture

As the primary focus of the project at the time was the software retina, it was desirable to
minimize the time spent on architecture search. Unfortunately no neural network architecture
was found in the literature that could be used in these investigations without significant revi-
sions, so an initial architecture was chosen with the intent of tailoring it to the project’s needs.
To be compatible with EPIC Kitchens the architecture had to be sufficiently large to be suited
for working with visually rich natural scenes, and it had to be capable of processing videos
while fixating at different locations throughout their duration. The latter requirement effec-
tively eliminated common action-recognition architectures such as ResNet (2+1)D [41] from
being integrated with the retina, as they relied on creating a tensor of stacked video frames
and processing it in a passive manner using spatiotemporal convolutions. This requirement
suggested recurrent architectures as likely candidates for investigating the software retina.

The software retina’s exploration of the scene could be either driven by a hard-coded, stand-
alone visual saliency algorithm, or it could be driven by an integral part of the neural network
architecture. The latter approach was deemed more desirable as designing a separate visual
saliency algorithm would require solving several challenging problems, one of which is im-
plementing an inhibition of return1 mechanism that differentiates between and accounts for
different sources of optical flow present in egocentric videos. In addition to this, the human
vision system is said to be closely integrated with other neural functions [43] making an
integrated solution not only more practical but also more biomimetically motivated.

The architecture selected to be the starting point for further development was the Recurrent
Attention Model [10] [11], hereby abbreviated as RAM. It uses an Elman RNN to aggregate
the visual information collected during multiple observations of the scene. To subsample
from the input image RAM uses a crude foveated sensor that crops out square, variable
resolution image patches. Visual features are extracted from these patches and combined
with the current fixation coordinates. This output is fed into the RNN which maintains a

1Inhibition of return is a mechanism for preventing the active vision system from repeatedly refixating on a
recently attended part of the scene. [42]
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hidden state representing the network’s understanding of its interaction with the scene. The
hidden state is used by 3 other networks to perform their respective functions: the locator
network parameterizes a probability distribution used to sample the coordinates of the next
fixation, the baseline network predicts the future reward of the locator network in order
to regularize its reward, and the action network outputs the predicted classification once
a pre-defined number of observations have been subsampled from the scene. The locator
network is trained solely using reinforcement learning, with the reward being regularized
using the baseline network’s prediction. The rest of the RAM architecture is trained solely
using gradients from the negative log-likelihood classification loss.

Figure 2.10: An overview of the EPIC-RAM architecture.

The RAM architecture fulfils all of the functional requirements needed to process videos
using the software retina. The crudely foveated image patches serving as its sensor can be
replaced with the software retina, and the RNN enables it to process sequences of video
frames. The location module is also a simple and integrated way for the architecture to
select new fixation locations. However, the RAM architecture has been originally developed
for and investigated on quite simple ’toy’ challenges such as the MNIST dataset [44] and the
SVHN dataset [45]. As a result it is not suitable out-of-the-box for processing high resolution
and visually rich real-world scenes.

The working name of the RAM architecture that has been adapted for the purposes of this
project is EPIC-RAM. Its high-level function is the same as that of RAM; however, it has
undergone a number of significant revisions. First, the resolution of RAM’s sensor patches
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was increased to 50x50px for the foveal patch and 100x100px downscaled to 50x50px for the
peripheral patch. This was done alongside downscaling the input images from 1920x1080px

to 456x256px in order to increase the field-of-view of the vision system and enabled it to
capture a sufficiently large part of the activity in its high resolution foveal patch. These sensor
and input parameters were selected to simplify and speed up the architecture’s development;
the plan was to parameterize the patch sensor to have a comparable field-of-view with that
of the software retina during its evaluation once the architecture is complete.

Figure 2.11: EPIC-RAM’s feature extraction network, dubbed the glimpse network, that
produces a feature vector gt which combines both visual and proprioceptive information.

A high-level overview of the EPIC-RAM architecture can be found in Figure 2.10. Borrow-
ing the terminology used by the authors of the RAM architecture, a singular observation of
the environment is referred to as a glimpse. A glimpse sensor is the algorithm used to sample
from the image, which in this case refers to cropping out overlapping image patches. The
glimpse network is a feature extraction network that combines visual features with propri-
oceptive information and outputs the glimpse vector (gt), which contains all of the features
extracted by the glimpse network at the current timestep. Given that the glimpse sensor out-
puts two images - a foveal and a peripheral image patch - two glimpse vectors are produced.
The fully connected layers that the RAM glimpse network uses to extract visual features
from image patches have been replaced by convolutional layers. This was necessary as fully
connected layers are not normally suitable for feature extraction from large image inputs due
to difficulty with training and their parameter cost. The adapted feature extraction architec-
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ture can be seen in Figure 2.11 The Elman RNN at the heart of the RAM architecture has also
been replaced with a convolutional LSTM [46] as processing the output of the feature ex-
traction module with a fully connected layer would cause a significant parameter overhead.
In Figure 2.10 ht refers to the LSTM’s hidden state at the current timestep, ht−1 refers to
the previous timestep’s hidden state, lt refers to the fixation coordinates chosen for the next
observation and at refers to the model’s classification output. To account for two compo-
nent labels of the activity classes consisting of a noun and a verb, the reinforcement learning
reward used to train the locator network was set to 0.5 for each correct label component.

Finally, inspired by the DRAM architecture [11], the EPIC-RAM architecture was modified
to utilize a two-stream approach, where the two image patches pass through the glimpse
network separately to produce two feature tensors that are passed to separate convolutional
LSTMs. The peripheral LSTM’s hidden state is passed to the locator, baseline and the clas-
sifier networks, whereas the foveal LSTM’s hidden state is only passed to the classifier and
the baseline networks. The motivation behind this design choice is that the problem of merg-
ing foveal and peripheral features is not trivial, and the locator network should only need
peripheral data in order to decide where to fixate next.

2.4.3 Experiments

As the planned investigations were going to utilize the selected subset of EPIC Kitchens
it was necessary to use that subset to evaluate a benchmark architecture that can act as a
reference point. This could also help identify and address any detrimental aspects of the
EPIC-RAM architecture that could confound retina evaluations. The selected benchmark
architecture is the R(2+1)D model [41], which is a variant of the popular ResNet architecture
[47] that has been tailored for action recognition. It is a passive vision system, so it cannot
be integrated with the software retina.

Both the R(2+1)D and the EPIC-RAM architectures were trained using the AdamW opti-
mizer [48] with a learning rate of 0.003. The loss used in classification was the negative
log-likelihood loss. Early stopping was employed to end the training process if validation
accuracy did not significantly improve for over 15 epochs. The input videos were spatially
downscaled to 456x256px and, in order to address excessively long action segments, they
were also temporally subsampled by a factor of 5 down to a maximum of 50 frames. Due
to memory constraints and other technical issues associated with the processing of variable
length sequences by a recurrent network the batch size was kept at 1 during both training and
validation.

Figures 2.12 and 2.13 show the results of training the EPIC-RAM architecture on the subset,
whereas Figures 2.14 and 2.15 show the results achieved by the benchmark architecture.
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Figure 2.12: Evaluation set confusion matrices from EPIC-RAM’s final training epoch. The
colours code for the absolute number of action segments. The values in the grid indicate the
proportion of the true class’ action segments predicted to belong to each listed class. Class
labels are sorted by their incidence in the dataset.

These are only preliminary results that were meant to guide further refinements of the EPIC-
RAM architecture in advance of integrating it with the software retina; however, further
experiments were deemed unnecessary as the focus of the project has shifted.

The EPIC-RAM architecture has demonstrated meaningful learning by achieving 30% ac-
curacy on the validation set. The resulting validation set confusion matrices in Figure 2.12
show that there was a significant degree of overfitting to the most prevalent classes in the
subset, both in the noun and the verb domains. Aside from the overfitting, the verb confu-
sion matrix shows that the model was easily confused between the verb class pairs that are
temporal inversions of each other: ’open’ vs ’close’, and ’put’ vs ’take’. The least prevalent
verb class, ’peel’, has been dismissed by the model almost entirely in favour of the visually
similar ’cut’.

The benchmark R(2+1)D architecture has not demonstrated any meaningful learning; as seen
in Figure 2.15 its validation loss has only increased throughout training and its validation
set confusion matrices in Figure 2.14 show that this architecture has overfitted to the most
prevalent classes. Although the failure of R(2+1)D and the relative success of EPIC-RAM
can be interpreted to suggest that the selected subset is too challenging for the benchmark
architecture and that the proposed network can tackle challenging visual tasks, these results
are only preliminary and have not been further validated with a reproduction. It is worth
noting that the restriction of batch size to 1 could have adversely affected R(2+1)D.

Training EPIC-RAM took several days due to the video format of the dataset, batch size
being restricted to 1 and the training taking 112 epochs to complete. Integrating the software
retina with the architecture was attempted, but the software retina increased the computa-
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Figure 2.13: Accuracy and loss plots of the EPIC-RAM architecture.

tional cost of EPIC-RAM’s forward pass and further slowed down training beyond a week.
The lack of a ready, retina-compatible architecture has already resulted in delaying retina
investigations. At this point the feasibility of pursuing the software retina was put into ques-
tion, as resolving these challenges was necessary for a rigorous evaluation of the retina, yet
it risked consuming too much time.

2.5 Discussion

This chapter presents the exploratory work that was carried out in the early stages of the
project and in doing so it describes the motivations for suspending the pursuit of the soft-
ware retina. Section 2.3 described expansions of the retina’s functional capabilities and the
underlying motivations, whereas Section 2.4 describes the development of an experimental
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Figure 2.14: Evaluation set confusion matrices from R(2+1)D’s final training epoch. The
colours code for the absolute number of action segments. The values in the grid indicate the
proportion of the true class’ action segments predicted to belong to each listed class. Class
labels are sorted by their incidence in the dataset.

framework for evaluating the software retina using the EPIC Kitchens dataset and a variant
of the Recurrent Attention Model architecture. At its outset the project had a positive outlook
on researching the software retina; it was incorrectly presumed that once the retina’s func-
tionalities are expanded it will be relatively straightforward to evaluate their contributions to
deep learning vision.

At first, investigating the expanded functional capabilities of the retina was postponed un-
til the completion of a retina-compatible deep learning environment. As this exploratory
work progressed and as more challenges associated with pursuing the software retina were
uncovered it gradually became apparent that investigating the retina cannot be tackled in a
sufficiently rigorous manner within the time constraints of this project. The motivations be-
hind evaluating colour opponency within the software retina were questioned by findings of
emergent colour opponency in deep learning systems [37] [38] as well as complications in
how the human vision system processes colour at the peripheries of its field-of-view [39].
The establishing of a rigorous research framework for evaluating the software retina and its
expansions was found to be not feasible within the time constraints of this project; as a result
investigating the software was abandoned entirely in favour of the active vision approach
described in Section 3.4.

The work presented in this chapter was instrumental in defining a productive and actionable
research programme that drove the investigations described in the following chapters. This
work was thus formative to this project, in spite of not yielding convincing empirical data.
Instead of advancing the initially posed research objectives this work questioned their fea-
sibility and motivated their revision. It was learned that any meaningful evaluation of the
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Figure 2.15: Accuracy and loss plots of the R(2+1)D architecture.

software retina’s impact on deep learning vision systems requires a mature - meaning well
understood and developed - active vision system together with established active vision re-
search practices, and that these are currently lacking within deep learning literature. Section
3.4 describes the proposed research framework that serves to aid in studying and developing
active vision systems.
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Chapter 3

Active Vision: Literature & Proposed
Framework

Abstract: Transitioning the focus of the thesis to active vision called for a new literature

survey together with a re-formulation of the guiding framework and the main objectives.

This chapter reviews the relevant active vision literature, uses several experiments to fur-

ther comment on its state and then proposes and discusses a framework for understanding

and studying active vision. When compiled together, the active vision literature reviewed in

Section 3.2 can be seen to lack cohesion as many of the published works pursue disjointed

approaches that do not reinforce each other. Section 3.3 describes experiments that demon-

strate pressing research gaps pertaining to key issues in the active vision literature. The lack

of cohesion and the research gaps are addressed in Section 3.4 with the proposal of an active

vision framework alongside arguments for its use in directing and organising future active

vision research.

3.1 Motivation and Objectives

The overarching objective of this project is to further the understanding of active vision
by developing and investigating a deep learning active vision architecture that can solve a
relatively simple visual task on a non-trivial dataset. In spite of rarely explicitly framing the
research in such terms, prior literature has already engaged with active vision in simplified
settings or using toy datasets. The goal this chapter is to support the main goal of this project
by clarifying the gap in the active vision literature and establishing a set of research practices
to guide active vision investigations.

Although the research focus of the project has shifted away from the software retina, many
of the underlying motivations have remained the same. The most significant motivation for



3.2. Literature Review 32

the pursuit of active vision that persisted from the software retina investigation is that of
biomimetics, or mimicking biological systems for the purpose of solving human problems.
There are arguably no known examples of passive vision in nature, as all visually endowed
animals actively explore their surroundings by reorienting their eyes, heads or entire bodies.1

In contrast, the vast majority of deep learning vision approaches are passive. The author be-
lieves that this is a fundamental issue that misdirects the research efforts within deep learning
to developing solutions that excel on highly controlled research datasets but struggle in less
constrained, real-world settings. A field-wide switch to experimenting in real-world envi-
ronments is one hypothetical solution to this issue; however, it would not be feasible as the
associated costs could drastically reduce the volume of research performed. Active vision
presents an opportunity for bringing the development setting of vision algorithms closer to
the real-world setting; it puts forward a set of requirements on the vision system’s function
with the aim of relaxing constraints on the type of problems that the system can solve and on
the environments that it can operate within.

3.2 Literature Review

3.2.1 Active Vision vs Visual Attention

A vision system is considered to be active if is capable of exploring its environment by
controlling the geometric parameters of its visual sensor [4]. Passive vision systems do not
have a narrow definition; they are simply said to be vision systems that are not active. Passive
vision has been previously associated with Marr’s paradigm of three stages of vision [50] due
to its emphasis on low-level and bottom-up visual processes that fully elaborate the visual
scene.

Within computer vision, the interest in active vision has been initiated by the publications
of Aloimonos et. al. [4] and Ballard [9]. Aloimonos et. al. have motivated active vision
by showing that various low-level visual problems, such as structure from motion, shape
from shading, shape from texture and shape from contours are more tractable with an active
observer capable of perceiving the object of interest from different viewpoints [4]. Ballard
has argued for the benefits of active vision with foveated gaze control, one of which is that
various vision tasks involving motion are simplified when using an exocentric coordinate
frame, i.e. when the observer has locked their gaze onto a moving object to tracking it, which
is equivalent to using a location on the object as the origin of the observer’s coordinate space
[9].

1The box jellyfish can be argued to rely on passive vision due to an eye type that looks upwards irrespective
of the jellyfish’s orientation; however, the animal possesses more eyes that are active and is still capable of
exploring its environment by traversing it [49].
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Not all neural vision systems can be done justice by merely shoehorning them into the active
and passive categories. The concept of visual attention and the terminology that surrounds
it can help differentiate the characteristics and behaviours of different vision systems. How-
ever, an overview of the literature on visual attention and active vision shows that it is not
immediately obvious why some researchers choose one term over the other when describing
their work. Jayaraman et al. [13] state that active vision aims to sample new data, whereas
visual attention aims to selectively suppress or focus on parts of already available data. This
distinction is somewhat accurate within the scope of deep learning literature, but it does not
agree with prior psychophysics and vision literature which would define active vision as in-
corporating overt attention [51] [52] and the selective deployment of cognitive machinery
within the current field of view as covert attention [53]. Covert attention does not involve vi-
sual sensor action, whereas overt attention does. Moreover, some deep learning publications
such as that of Mnih et al. [10] describe active vision systems without ever referring to them
with the term “active vision“, opting for “visual attention“ instead. It appears that active
vision is the preferred term for researchers coming from a robotics background and for those
who are more familiar with psychophysics literature from prior decades. It also appears that
due to a recent surge in the number of highly impactful publications proposing covert atten-
tion approaches in deep learning, most notably Xu et al. [54], the deep learning community
has abandoned the more accurate terminology in favour of understanding all attention to be
covert.

Chun and Wolfe refer to attention as “a multifaceted term referring to a number of different
acts and loci of selection“ [55]. This is accurate, as there are at least three distinctions that can
help disambiguate visual attention. First, attentional processes can be divided into the pre-
attentive and the attentive stages [55]. Pre-attentive processes process the full field of view
in a highly parallelized manner, whereas attentive processes are more sequential and decide
on the information to be further processed. The next distinction lies between exogenous
and endogenous attention, which is also often termed bottom-up and top-down attention.
Exogenous, or bottom-up, attention is guided by external stimuli, whereas endogenous, or
top-down, attention is guided by a specific policy.

The final distinction lies between the aforementioned covert and overt attention. Overt atten-
tion is tied to the visual sensor and is thus constrained by its architecture. Covert attention
is deployed internally and thus it suffers from no such constraints; it can take any, even dis-
jointed, geometric form over the field of view. Within the scope of psychophysics covert
attention can be understood as a strictly pre-attentive process whose primary role is to pre-
process a peripheral area of the field of view before it is overtly attended by our gaze [53].
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3.2.2 Recurrent models of visual attention

The literature focused on the Recurrent Attention Model (RAM) architecture is the most
widely cited active vision literature in deep learning, in spite of most of it not using the
term “active vision“. In their seminal work, Mnih et. al. [10] have introduced the RAM
architecture that interacts with input images via a virtual, foveated, bandwidth-limited sensor
to classify hand-written digits in the MNIST dataset [56]. When given a specific image
location, the sensor extracts overlapping image patches at various resolutions and passes
them on to a glimpse network that serves the function of a feature extractor. The extracted
features are then passed to a recurrent neural network (RNN) which uses them to update its
internal hidden state, i.e. memory. The hidden state is the input of a location network whose
output determines the next location to be observed by the sensor. The whole process repeats
for a pre-specified number of iterations after which the hidden state is passed to a network
that outputs the final classification of the input image. The location network is trained using
reinforcement learning, whereas the rest of the model is trained using classification gradients.

This architectural design consisting of a feature extractor with a restricted field of view feed-
ing features into a recurrent network whose hidden state is used for downstream tasks was
adopted in numerous later publications. In a follow-up investigation, Ba et al. [11] extend
the RAM architecture to introduce the Deep Recurrent Attention Model (DRAM) that was
trained to read house numbers on the SVHN dataset [45]. Their main extension to RAM
was the introduction of two parallel processing streams, one for the foveal image patch and
one for the peripheral image patch, each with its own recurrent memory network. Other sig-
nificant modifications consisted of replacing the fully connected RNN that formed RAM’s
memory with a pair of LSTM networks [57] and introducing a context network that pro-
cesses a low-resolution view of the full image to initialize one of the LSTMs’ hidden state.
By having access to the entirety of the input image, the context network utilizes passive vi-
sion making the DRAM architecture violate the restrictions and principles of active vision.
Although strictly speaking DRAM is not an active vision architecture, both the novelties it
introduces as well as its means of incorporating passive vision exemplify some of the prob-
lems inherent to active vision; namely its sensitivity to starting conditions and the different
functional utilities of the visual data captured in the foveal and in the peripheral regions of
the sensor.

Further building on the DRAM architecture, Sermanet et al. [15] replace DRAM’s simple
feature extractor with a pretrained GoogLeNet [58] and train it on the Stanford Dogs dataset
[59]. Similarly to the DRAM architecture, this model bypasses the active visual sensor to
uniformly scan the full image to choose the first fixation location and thus incorporates pas-
sive vision. Additionally, the sensor used in this work has a really wide field of view, with the
lowest resolution image patch being as large as the input image and the half-resolution patch
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being half as large. Relaxing the constraints imposed on the vision task in such a manner
is effective if the goal is to maximize the model’s performance; however, it is not valuable
in the pursuit of active vision and learning where to look as it unrealistically trivializes the
problems inherent to active vision instead of solving them. The large field of view has also
caused their model to gain only negligible improvements in performance from making mul-
tiple observations of the input image, raising the question of why have the authors chosen
to pursue an architecture designed for processing multiple foveated observations in the first
place.

In a functional expansion on the RAM architecture, Li et al. [12] have accelerated their
architecture’s average processing time by introducing a module that enables it to decide
whether it should sample another observation from the image or complete its interaction
by outputting the predicted classification label. They evaluated their model on Stanford
Cars [60] and the CUB-200-2011 [61] datasets. Although they only reported a reduction in
processing time and do not report any gains in accuracy, their work describes and investigates
a number of training methods that can help tackle the problems associated with the RAM
architectures.

The work of Jayaraman et al. [13] [14] has introduced an unsupervised source of gradients
into an adapted version of the RAM architecture in the form of a LookAhead module. This
module is trained to predict the next hidden state of the RNN conditional on the current
hidden state, current sensor pose and next sensor motion. The authors hypothesized that
this improves their model’s classification performance by promoting the learning of stable
features that respond in a learnable and systematic way to sensor motion, but in spite of
achieving marginally improved accuracy on scene and object recognition tasks they showed
no evidence in support of this hypothesis. It is worth noting that these two publications are
the first in the research thread building on the RAM architecture to describe their problem
domain with the term “active vision“.

Although Cheng et al. [16] only gave scant mention to RAM in their work, their model
broadly follows the same architectural design. Just like Jayaraman et al. above, they referred
to their work with the term “active vision“. Unlike prior iterations of the RAM architecture
which primarily focused on 2D environments, their model is designed for exploring 3D en-
vironments. They introduced a geometry-aware recurrent network that extracts depth and
foreground object masks from RGB images, unprojects them together with the RGB image
into a 3D feature tensor and then transforms this tensor to align it with the model’s first obser-
vation and use it as input to a 3D convolutional GRU memory [62]. The GRU’s hidden state
is then fed into an encoder-decoder network to produce the model’s predicted reconstruction,
segmentation and classification. The policy network that controls the active camera is trained
used reinforcement learning and takes as input the GRU’s hidden state alongside the input
RGB image. Although this work did not present any substantially novel solutions to the



3.2. Literature Review 36

problem of overt attention in active vision, it introduced an elaborate functional expansion
to the architecture’s recurrent memory module, enabling it to aggregate observations from
multiple points in 3D space. This model’s use of the unprojection mechanism alongside the
3D feature transformation demonstrates the need for active vision systems to align and spa-
tially ’stitch together’ the information acquired during multiple observations from different
parts of the scene.

3.2.3 Datasets and Reinforcement Learning for Active Vision

Although not all literature on active vision in deep learning builds on the RAM architecture,
the vast majority of it also adopts some form of reinforcement learning to solve the problem
of choosing where to look. Ammirato et al. [6] produced a dataset that emulates an indoor
active vision setting and used reinforcement learning to train an agent that gradually refined
its viewing position and orientation in order to optimize its classification performance. Their
model does not accumulate evidence across multiple observations; instead it chooses discrete
actions that reorient and move the sensor to produce a more valuable observation that leads
to a better classification performance. The dataset introduced in their work only allows the
model to perform one discrete action from a small pre-defined set, thus restricting the model
from learning to freely explore its environment.

Malmir et al. [63] [64] have also introduced a dataset emulating active vision and trained
a reinforcement learning agent to solve its object recognition task. Their GERMS dataset
consists of video recordings of a robot performing give-and-take trials where the robot picks
up an object, rotates it to examine it, and returns it; it amounts to a viewsphere dataset with
each object having 6 grasping orientations viewed from a range of angles resulting from
being moved towards the robot’s camera and rotated 180 degrees. As a result, just like
with the dataset introduced by Ammirato et al., any model trained using this dataset will be
restricted to taking discrete actions instead of freely exploring a continuous scene. Such a
constrained mode of exploration is a significant limitation as it can prevent a system with a
narrow fovea from fixating on a key feature in the scene.

In other related works Gartner et al. [65] have used reinforcement learning to train an agent
to estimate the pose of humans standing within a dense camera rig. The rig amounts to a
viewsphere and it enables the agent to choose from 30 different viewpoints. Their model
fuses the multiple observations together, but it does not utilize a recurrent network. Cheng
et al. [66] utilize reinforcement learning to teach a robot to deal with occlusions by jointly
controlling its gripper and camera. They test multiple actor-critic architectures and use a
region proposal network to choose where to look, which is an inefficient and brute-force-like
approach when contrasted with the recurrent models of visual attention described in Section
3.2.2 that utilize their maintained memory state in choosing where to look. Mathe et al. [67]
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use a sequential reinforcement learning model for object detection, but both their setting
and architecture trivialize active vision. Their model has perfect memory, meaning it has
unrestricted access to its past observations. It also only selects out of a set of pre-proposed
image regions and once it fixates within one it adds the whole region to its memory.

3.2.4 Embodied AI

Just like active vision imposes its own set of problems and constraints on passive vision,
embodied AI complicates machine learning by imposing its own constraints on the learning
process. Smith et al. [68] introduced the embodiment hypothesis which draws facts from hu-
man babies’ development to argue that intelligence emerges during sensorimotor interaction
of an agent with its environment and that grounding the agent in a coherent and multi-domain
world is crucial for developing human-like intelligence. This concept is closely related to
active vision, to the point that embodied AI agents often utilize active vision when visually
exploring their environments at training time.

Yang et al. [69] introduce the task of embodied visual recognition, where an agent can
navigate a virtual 3D environment to perform a number of visual tasks. They develop the
Embodied Mask-RCNN architecture that enables the agent to move strategically in a way
that improves the process by which it learn visual recognition. In embodied AI agents always
operate in 3D environments, virtual or real-world, both at training and at test time, and tend
to make decisions solely based on egocentric perceptual inputs. As a result the structure of
the agent’s training phase becomes non-trivial as the agent now has to choose how to explore
its environment for learning purposes. This too is a case of active vision; however, here it is
being used to a different end than in the literature reviewed above.

Chaplot et al. [70] use active vision to devise an exploration policy for visual learning that
rewards mistakes; their method searches for areas that, when explored from different view-
points, lead to inconsistent predictions in order to maximize the useful corrective gradients
in the object detector. This approach is yet another way in which active vision can be utilized
at training time, but for this reason it is not particularly relevant to this thesis.

3.2.5 Active Inference and the Free Energy Principle

The free energy principle is an attempt at explaining how adapting systems such as the brain
resist collapsing into disorder; it states that all self-organizing systems must minimize their
free energy in order to remain at equilibrium with their environments and to prevent col-
lapsing into disorder [71]. Within the context of the brain, free energy is defined as an
information theory measure that is an upper bound on the surprise coming from sampling
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data [72]. Active inference is an application of the free energy principle to the brain and
to artificial neural networks; it postulates that the brain maintains a generative model of the
world that can predict the sensory data that it will receive in the future [73]. The relative
popularity of this theory has motivated some deep learning researchers to apply it to their
work. In their paper, the authors of the aforementioned DRAM architecture [11] show that
the standard REINFORCE learning rule used in their work and in that of Mnih et al. [10] is
equivalent to approximately optimizing the free energy.

Van de Maele et al. [74] show that their unsupervised generative model exhibits information-
seeking behaviour during next-best-view selection in a slightly trivial, simulated setting
where a robot arm is tasked with finding a block of a specific colour. The generative part of
their model is trained as an autoencoder that uses an in-hand camera’s prior observations to
predict observations from new viewpoints. The next view policy is selected by evaluating a
number of candidate policies and selecting one with the lowest expected free energy, i.e. the
lowest surprise. In a follow-up work, Van et al. [75] update their approach with a variational
auto-encoder and apply it to a subset of ShapeNet [76] and two other virtual environments;
however, the efficiency of their approach is still limited by the need to evaluate numerous
candidate viewpoints.

3.2.6 Other Relevant Literature

In a paper titled “Active Vision in the Era of Convolutional Neural Networks“ Gallos &
Ferrie [77] argue that calibrating a model’s outputs, i.e. ensuring that they estimate the
model’s confidence in its predictions, is necessary for temporal reasoning of active vision
systems. They also argue that calibration promotes view invariance, which in turn better
enables an active vision system to cope with unexpected and low-value observations. In their
literature review they describe how prior to the deep learning boom active vision literature
focused on utilizing uncertainty and errors in choosing the next best view, and how active
vision in deep learning has departed from that approach in favour of having the agent learn
where to look end-to-end using reinforcement learning. They incorporated uncertainty into
their own model by using MC-dropout [78] with a dataset of objects viewed from multiple
angles. Although their argument is principled and well-informed by past literature, their
experimental results do not provide very strong evidence in support of it as they do not show
significant improvements over their benchmarks.

Cheung et al. [79] use a recurrent neural network trained to perform a simple visual task that
involves using a visual sensor to search for and classify an object in a noisy scene. The visual
sensor is a learnable retinal sampling structure, meaning that the parameters of its receptive
fields are adjusted during training. They find that this setting gives rise to a foveated sampling
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pattern, providing more support to the idea of using foveation within active vision in deep
learning.

Lukanov et al. [80] describe an active vision system that utilizes both top-down and bottom-
up attention to drive a foveated sensor around an image. They efficiently encode the visual
data captured by their foveated sensor using Foveal Cartesian Geometry [81]. The limita-
tions of their system are that it is memory-free, restricting its capacity to solve tasks other
than image classification, and that it uses a simple mechanism for bottom-up attention which
is subject to a significant assumption. In this mechanism the next fixation is located at the
maximum of the channel-wise average of their CNN’s output feature maps; the authors as-
sume that high values in the feature maps correspond to salient areas of the scene. Their
top-down attention mechanism utilizes class activation maps [82], but it is limited by requir-
ing the user to select the target class for the model to search for.

In a paper that predates the current deep learning boom by more than two decades Schmid-
huber & Huber [83] describe an architecture for aligning an artificial fovea with a target
object. Aside from the artificial fovea, the architecture also consists of a controller network
that controls the fovea and a model network that predicts the future foveal view when given
the current view sampled by the fovea and its next action. The architecture is trained in two
phases, with the first phase being unsupervised and focusing on training the model network
using random fixations. In the second phase the difference between the model network’s
predicted view and the desired view is used to compute gradients to train the controller
network. This way the authors bypass the need for reinforcement learning by finding an
analogous substitute for backpropagating the gradients through the environment.

Monica & Aleotti [84] train a CNN for choosing the next best view in a 3D environment ex-
ploration task using a depth camera. They use an autoencoder to perform object completion
and infer the probability of voxel occupancy in unobserved areas and to create a probabilistic
map which is then used to guide the sensor.

The Saccader model introduced by Elsayed et al. [85] is a hard attention model that incorpo-
rates passive vision and is thus not a strict active vision model. It first selects multiple parts
of the image and computes sets of 2D features at different locations in parallel, and then uses
an attention model with a memory cell to select one of those locations as the center of the
next attention patch.

Fu et al. [86] propose a model that learns to iteratively zoom in on valuable areas within
its field of view. It is not an active vision problem but it is closely related to foveated active
vision as focusing the fovea on a part of the image is similar to zooming in on it. Their model
consists of an ensemble of networks that have a separate convolutional feature extractor and
classifier for each zoom scale, and a recurrent attention module in between each two scales
that is used to propose regions to zoom in on. Each attention module takes as input the
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encoded features from the coarser scale to choose an area within it for magnification that
will yield the image at the next scale.

Kyrkou [87] describes a feedforward network trained end-to-end to provide pan and tilt cam-
era control for target monitoring. His network does not utilize memory and utilizes bounding
boxes as labels for training the network to bypass the need for reinforcement learning.

3.2.7 Discussion

As the citation metrics are not conveniently available to the reader, it is worth noting that al-
though active vision models which do not aggregate information from multiple observations,
i.e. do not maintain a memory, have been described in the literature, they have received little
attention and have not been widely cited. The most cited and improved upon architectures
utilize a recurrent network to maintain a memory state and are described in Section 3.2.2.
Amongst all of the reviewed literature the recurrent models of visual attention represent the
most coherent and mature research thread, with many different research teams contributing
to it over the years. This is likely motivated by the fact that active vision systems without
memory are severely restricted in terms of their functionality as they can do little more than
select the next best view, which has limited applications and utility for complex vision tasks
such supporting an autonomous agent in navigating a real-world environment.

Overall, the active vision in deep learning literature is difficult to browse. The research
thread investigating recurrent models of visual attention stands out in part due to the lack
of similarly coherent research threads in the field. Many publications suffer from a lack of
adequate referencing, with one example being present in Jayaraman et al.’s work [13] [14];
the LookAhead module that is the core aspect of their contribution is not strictly novel as it
is only performing a part of the function of the model network from Schmidhuber & Huber’s
work [83]. Jayaraman et al. do not cite the latter’s work in either of their two publications
utilizing this module. The terminology used by different researchers to describe their work
is also inconsistent, making it less likely for those who are not yet familiar with active vision
to find all of the related publications. This is further compounded by the fact that research
pursuing attention in computer vision has a significant overlap with active vision and is
ignorant of the terminology used in physiological literature describing visual attention in
living beings.2 As a result there is a reduced likelihood of computer vision researchers
adopting active vision or any other biomimetic inspiration in their research, and interesting
potential projects such as mimicking the active vision of bees [88] [89] [90] for developing
autonomous aerial drones may never be pursued. The author of this thesis believes that

2As previously explained in Section 3.2.1, the term “attention“ is being used in deep learning as a catch-
all term that usually corresponds to the term “covert attention“ in physiological literature. Occasionally, deep
learning literature also refers to active vision as simply “visual attention“.
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a significant knowledge gap in the literature is the lack of a literature review aggregating
different active vision publications and establishing standard terminologies and taxonomies
for referring to different components of, problems in and approaches to active vision in deep
learning. This review and the research framework described in Section 3.4 aim to address
this knowledge gap.

When deciding on an approach for enabling their model to choose where to look, most re-
searchers in the reviewed literature have either opted for reinforcement learning or utilized
denser labels that include data on the salient locations in the training images. Both of these
approaches are simple, if not the simplest, ways of solving the problem of learning an at-
tention policy. Choosing the most simple solutions is an adequate research strategy when
dealing with problems that do not have much prior literature describing how to tackle it,
but as this literature review has shown, there is even an approach for training the attention
component of an active vision system without reinforcement learning that dates back to the
90s [83]. Instead of contributing novel solutions or building upon previously introduced
approaches to choosing where to look, most recent literature takes the safe approach and re-
hashes the same basic and simple ideas. There are many broader issues in the deep learning
publishing ecosystem that one could bring up to explain this; however, the author of this
thesis believes that this is because much of the relevant prior active vision literature is hard
to come by for reasons already mentioned above.

This observation is similar to that of Gallos & Ferrie [77], who criticised the field for aban-
doning the use of principled scientific methods for guiding the agent in favour of end-to-end
methods. Model-based approaches such as that of Schmidbuber & Huber [83] have not
been expanded upon within active vision literature; however, the methods explored under
the banners of active inference in Section 3.2.5 and embodied AI in Section 3.2.4 develop
novel approaches that are arguably more principled than relying on reinforcement learning
to solve everything. The author believes that a standard investigative method for evaluating
how well an agent chooses where to look in a way that is not confounded by its feature ex-
traction capabilities or sensor design would facilitate more research into novel algorithms for
choosing where to look.

A potentially confusing feature that has been a part of the active vision literature since the
term was first coined is that different researchers refer to different problems and aspects of
active vision with the same term. Aloimonos et al. [4] use the term to refer to an active
observer that samples images from different viewpoints, whereas much of the argumentation
presented in Ballard’s work [9] is agnostic of viewpoints and instead refers to the benefits
conferred by an active observer locking their gaze on a moving object. The novelty in the
active visual recognition method described by Cheng et al. [16] lies in the way they aggre-
gate information about a 3D scene from multiple observations, which is an entirely different
problem from next best view selection that makes up a significant proportion of active vision
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literature. There are many possible motivations and strategies for a visually endowed agent
to actively explore their surroundings; consequently, different visual tasks can pose different
requirements on active vision, which in turn can confer distinct benefits in each of those set-
tings. This complexity is not reflected in the literature and as a result many of the published
works pursue disjointed approaches that do not reinforce each other in spite of ultimately
striving for the same set of behaviours in vision systems.

While at first glance it may seem to be a simple task, choosing where to look can mean solv-
ing radically different lower level vision problems in completely different settings and for
different reasons. The objectives motivating active exploration vary, with most of the litera-
ture reviewed focusing on optimizing the sampled information for object or image recogni-
tion. In contrast the system described by Monica & Aleotti [84] aims to exhaustively explore
a 3D space, whereas the work of Chaplot et al. [70] done under the umbrella of embodied
AI focuses on an active exploration policy for training their agent.

A significant proportion of the active exploration in the human visual system exploits foveation
and can therefore be understood as a form of predicting high-frequency information content
of the blurry peripheries of our vision; this is in line with Findlay & Gilchrist’s [53] charac-
terisation of covert attention as a pre-processing step in active vision. In contrast, the active
vision datasets introduced by Ammirato et al. [6] and Malmir et al. [63] [64] focus on sam-
pling entirely new information and do not incorporate any form of foveation, thus framing
the problem of choosing where to look as predicting the completely unseen space beyond the
agent’s field of view. The former case using foveation is related to interpolation and super-
resolution algorithms, which recover high-resolution images from lower-resolution inputs;
whereas the latter case is more related to extrapolation and image in-painting algorithms,
which fill in unseen regions in input images. Both of these ways of understanding visual ex-
ploration fall under the umbrella of active vision, with each one being tailored to a different
visual setting, yet they have not been sufficiently differentiated in the literature and they do
not have standard means of being individually evaluated in deep learning systems.

In spite of often producing valuable insights, much of the work described in the literature
either does not strictly follow active vision requirements by employing a passive vision com-
ponent that does not have a limited field of view, or simplifies the task and the setting used
to evaluate the system. The active vision systems described by Li et al. [12] and Sermanet
et al. [15] use virtual sensors with very large fields of view, while the system proposed by
Mathe et al. [67] utilizes perfect memory. Ba et al. [11] and Elsayed et al. [85] employ
passive vision in their models and many other publications described in this review rely on
so-called toy datasets. All of these aforementioned design choices, while often intentional or
necessary, simplify active vision to the point of trivializing the associated problems instead
of advancing our understanding of how to solve them. The author believes that many of these
decisions are due to researchers prioritizing the pursuit of high benchmark scores as opposed
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to producing insights or enabling their systems to exhibit novel behaviours.

3.3 Pilot Experiments

3.3.1 Motivation and Objectives

The literary survey conducted above has uncovered several shortcomings in the literature, but
there are insights that can only be gained by experimentally evaluating the ideas presented
within the literature. A number of relevant questions have been omitted entirely in the liter-
ature, while some design choices have been presented without any supporting evidence. The
main goal of the experiments described in this section is to test how well solutions employed
in the literature hold up when deployed in a setting that is strictly tailored for evaluating
active vision. Additionally, the experiments aim to find out whether several questions that
were not explored in the literature matter, as well as to evaluate the software retina in a more
feasible setting than the EPIC-KITCHENS dataset

The first research question posed in this section asks about the optimal coordinate frame for
the active agent to operate in. Ballard [9] has argued for the benefits of using an exocentric
coordinate frame in a way that raises the question of whether the coordinate frame used by
the active vision agent has any influence on its performance, yet this line of thought has not
been explored any further in deep learning literature. The specific setting and use case that
Ballard was referring to cannot be reproduced with the chosen materials as Ballard’s use
of the term “exocentric coordinate frame“ referred to the active agent locking their vision
onto a moving object. Instead, in this section an exocentric coordinate frame is defined as
the absolute pixel coordinates in the input image, as the input image is considered to be
a substitute for the environment that the active vision system operates in. In contrast, an
egocentric coordinate frame is defined as coordinates relative to the agent’s current fixation
location and normalized by the sensor’s width. This formulation makes the agent agnostic as
to the global location of its fixation in the input image. The hypothesis associated with this
research question is that, if given the opportunity, the agent will exploit the image’s absolute
coordinates in a way that facilitates overfitting and prevents it from learning a generalizable
attention policy.

Mnih et al. [10] and Ba et al. [11] have provided their agents with proprioceptive data in
the form of their current fixation location. Investigating the impact of this design choice is
the next research objective in this section. Although the aforementioned researchers have
not motivated using proprioception, hypothetically it could be advantageous by enabling
the agent to encode past fixation locations in its memory and learn inhibition of return, i.e.
learn to avoid re-visiting previously seen parts of the scene. Another hypothetical benefit of
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proprioception is that it could facilitate more intelligent reasoning about features that have
been extracted from distant regions of the scene by exposing their relative locations.

Another research question asks about the impact of the agent’s visual sensor, specifically its
foveation and its field of view, on classification performance. Among other researchers Li et
al. [12] have given their agent a non-foveated sensor with a very wide field of view, which
hypothetically risks trivializing key problems associated with active vision. Maintaining a
constant sensor field of view has not been argued for in active vision literature. The author
believes this to be problematic, as the lack of this practice could complicate interpreting
research results if active vision agents’ performance is significantly affected by its field of
view. One of the research objectives in this section is to evaluate the performance of various
visual sensors, including the software retina.

An overwhelming majority of active vision research in deep learning utilizes reinforcement
learning for training the attention network. The dataset used in this section enables ablating
the attention network by guiding the model’s gaze onto areas of the image that ought to be
the most discriminative of the different image classes. This method will be used to evaluate
the effectiveness of reinforcement learning in producing an attention policy, as well as to
help clarify the relationships between the attention policy and the aspects of active vision
that are the focus of other research objectives, such as the agent’s coordinate frame.

3.3.2 Materials

All experiments in this section were conducted using Pytorch 1.10.0+cu102 on a PC running
Ubuntu 18.04 with a GeForce GTX 1080 Ti and an Intel Core i7-7700.

Caltech-UCSD Birds 200-2011

The dataset used in this section is the Caltech-UCSD Birds 200-2011 dataset [61], from here
on referred to as the Birds datset, and it has been chosen to succeed EPIC Kitchens as the
dataset of choice for the remainder of this dissertation. It is a relatively small dataset that
consists of 11788 photographs of 200 bird species, additionally labelled with anatomical part
locations. It is categorized as a fine-grained image classification dataset, as differentiating
between some of the bird species requires taking into account fine visual detail. This char-
acteristic makes the dataset uniquely suitable for evaluating foveated active vision systems,
as fixating on locations containing the key fine details should be a pre-requisite for correct
classification. Compared to EPIC Kitchens the dataset is smaller and much simpler while
still consisting of natural scenes, making it a much more appealing asset for this research.
An example image with anatomical part location labels from the Birds dataset can be seen in
Figure 3.1.
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Figure 3.1: An example image, with part and bounding box labels, from the Caltech-UCSD
Birds-200-2011 dataset, as seen on the dataset website.

Two other candidate datasets were considered for use in this project: the GERMS dataset
introduced by Malmir et al. [63] [64] and the dataset for evaluating active vision introduced
by Ammirato et al. [6], from here on referred to as the AV dataset. The Birds dataset only
enables an exploration of a 2D image, whereas the other two datasets explore 3D scenes;
the author believes that this is the only significant weakness of the Birds dataset. The Birds
dataset provides a setting in which the action space is effectively unrestricted, meaning that
an active vision agent can explore the image freely without any limits to or discretization
of its fixations beyond the limits imposed by the image boundaries and the discretization
imposed by the image pixels. In contrast, the GERMS and the AV datasets only allow the
model to select from a small set of discrete actions which trivializes the problem of choosing
where to look in a way that cannot be easily overcome with experimental design. The Birds
dataset does not impose such a restriction and its user can choose whether and how to restrict
the model’s action space.

The discretization of the model’s action space combined with the datasets forcing the model
to explore the scene by selecting new camera views complicates the evaluation of agents
with foveated sensors. To be able to fixate the high resolution fovea on any location in the
scene the agent would have to choose at each timestep whether to select a new view using
the physical sensor modelled by the dataset, or whether to move a virtual sensor within the
bounds of the current view, as is being done in the active vision setting employed in this
dissertation. Such a setup would introduce a redundancy that would not translate well to
real-world problems as it would be challenging to justify simultaneously employing two
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forms of active sensors; a virtual one and a physical one. In the author’s view virtual sensors
ought to only be employed in active vision systems either in research settings to emulate a
hardware sensor or in tandem with a high field of view camera that produces too much data
to be adequately processed with a passive system.

The Birds dataset is more visually rich and diverse than the GERMS dataset, which was
captured in very monotonous settings where the same robot arm in the same position is
executing the same motions in the same lighting conditions across all samples. At the same
time the Birds dataset is simpler than the AV dataset, which explores quite a large 3D scene
spanning multiple rooms.

The final strength of the Birds dataset relative to the other two candidate datasets is the fact
that it includes the birds’ anatomical part locations, which can be used to guide an active
vision agent to the key location in each image. This additional source of labels can be used
for ablating the model’s attention policy in order to evaluate its other components in isolation
without resorting to deploying them in a passive setting.

Modified Recurrent Attention Model

The active vision architecture selected for the experiments conducted in this section is based
on the Recurrent Attention Model, abbreviated as RAM, that was first introduced in the work
of Mnih et al. [10] and was expanded upon in the publications described in Section 3.2.2.
Out of all the variants described in that section, the devised architecture is most closely
related that of Li et al. [12]. The RAM architecture is the most studied and built upon design
in the literature. It is also easily extensible and is not subject to any inherent restrictions or
simplifications that would trivialize any aspect of active vision, making it the optimal choice
for this project.

Figure 3.2: Example images produced by the 3 sensor variants used in this section. Not to
scale. Left: the “large patch“ sensor. Middle: the “foveated patches“ sensor. Right: the
software retina.

All images input into the architecture are subsampled by a virtual sensor with a restricted
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field of view. The experiments in this section utilize three variants of the sensor, with one of
them being a software retina with 16,384 nodes, a field of view of 372px and a corresponding
cortical mapping. The other two sensor variants extract square patches out of the input image;
one variant crops out a full resolution patch that is 224px wide whereas the other one crops
out two foveated patches, with the foveal patch being 37px wide and the peripheral patch
being 370px wide downscaled by a factor of 10. Images produced by the three different
sensors can be seen in Figure 3.2.

Figure 3.3: A generic diagram of the modified recurrent attention model used in this sec-
tion. Colour coding corresponds to the colours used in Table 3.1. In the diagram t stands for
the current timestep, g is the glimpse tensor representing all of the captured visual and pro-
prioceptive features, h is the LSTM hidden state, b is the predicted reinforcement learning
reward, a is a tensor of classification scores and l is the fixation location. Multiple variants of
this architecture are trained, with the attention, baseline and proprioceptive networks being
occasionally ablated. The different variants are listed in Table 3.1.

Figure 3.3 visualizes the architecture used in this experiment. The visual data captured by
the sensor is passed to a modified ResNet18 feature extractor [47] which, in tandem with
the proprioceptive network, act as an equivalent of the original RAM’s glimpse network that
was previously described in Section 2.4.2. The output of the proprioceptive network is a
high dimensional embedding of the fixation coordinates that is combined with the features
extracted by the ResNet18 to produce the glimpse vector gt. The strides in the ResNet 18’s
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layer4.conv1 and layer4.downsample layers were set to 1 and its final fully connected layer
was removed. In the case of the two patch sensor each patch is passed through ResNet18 sep-
arately and the two outputs are concatenated along the channel dimension. Depending on the
experiment, the architecture may also utilize proprioceptive information in the form of the
last action taken by the attention policy module encoded by the x,y coordinates of the current
fixation point, denoted with lt−1. This information is processed by the proprioceptive net-
work, which consists of one fully connected layer with a ReLU activation that outputs a high
dimensional embedding the dimensions of which match the dimensions of the ResNet18’s
output, which is (1024,2,2) for the foveated patches sensor, (512,7,7) for the singular image
patch sensor and (512,9,12) for the software retina. These dimensions vary because the out-
put side of the convolution operations inside ResNet18 depends on the input size, which in
turn varies for each of the sensors used. The tensor produced by the proprioceptive network
is combined with the visual features extracted by ResNet18 via multiplication to produce
the glimpse vector gt; combining the two data streams in this manner was done at a lower
dimensionality in the DRAM paper [11], the authors of which claim to have taken the idea
from Larochelle & Hinton [91]. The resulting tensor is adaptively average pooled, collapsing
its spatial dimensions, before being passed to an LSTM network as gt.

The LSTM’s input size is equal to the channel dimension of the ResNet18’s output, and it has
1024 hidden units making up its hidden state, denoted with ht. At the first timestep its hidden
and memory states are both initialized to zeros. During every timestep the attention network
takes the LSTM’s hidden state as input and returns the next fixation coordinates (lt) together
with two values for the backpropagation of reinforcement learning loss which are omitted
from Figure 3.3 for simplicity. The attention network consists of two fully connected layers,
with their input and output sizes being (1024, 512) and (512, 2) respectively. The first layer
utilizes the ReLU activation function, and the output layer utilizes the the tanh activation
function. At training time, the attention module comes coupled with a baseline network that
serves to stabilize reinforcement learning. The baseline network is trained to predict the
reinforcement learning reward that the attention network is going to get; this prediction (bt)
is subtracted from the actual reward in order to reduce the variance of the attention network’s
loss.

Full details about the attention module’s training algorithm used in this section can be found
in the original RAM paper [10] as well as the DRAM paper [11]. Some experiments do
not utilize the attention module and instead use the anatomical part locations provided in
the Birds dataset. At the final timestep the LSTM’s hidden state is passed on to the classifier
module which consists of a single fully connected layer with the log softmax activation func-
tion that maps the 1024 unit LSTM hidden state to 200 classification scores for the current
image. In this section the model is set to execute for 3 timesteps per image. Exhaustive
architectural optimisation was not performed for the architecture employed in this section as
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maximizing classification accuracy on the Birds dataset was not necessary for answering the
research questions.

3.3.3 Methodology

As previously mentioned in Section 3.3.1, the research questions that the experiments in this
section aim to answer are:

1. What is the optimal coordinate frame for the active vision agent to operate in?

2. Does exposing the active vision agent to proprioceptive data in the form of the current
fixation coordinates improve its performance?

3. How will the active vision system be impacted by the use of a foveated sensor when
compared to an unfoveated high resolution visual sensor?

4. How does reinforcement learning compare to using hardcoded locations in fixating the
retina on valuable locations?

A total of 9 variants of the generic architecture shown in Figure 3.3 were trained. The
specifics of their architectural aspects were selected so as to enable achieving the research
objectives described in Section 3.3.1; they can be found in Table 3.1. The variant numbers
in that table correspond to the variant numbers used in figures in Section 3.3.4. Each variant
has been trained with three different random number generator (RNG) seeds - 1, 9, 919 - for
network weight initialization, except the software retina variant (#7) which was trained with
only one seed due to time constraints. Variants utilizing hardcoded fixation coordinates and
without proprioception (#5, #6, #7) do not take as input or output their fixation coordinates,
making the coordinate frame aspect not applicable to them.

To answer the research questions the relevant architectural variants will be compared against
each other by examining the loss and accuracy plots produced during training. Analyzing
plots is preferable to solely reporting the best results achieved during validation as interpret-
ing them is less vulnerable to outliers and they can provide more insight into the model’s
behaviour. The retina variant will also be compared against the others in terms of real time
taken for the completion of one epoch.

Each variant was trained using the same algorithm. The training and validation splits were
provided as part of the Birds dataset. The ResNet18 feature extractor was initialized with
weights resulting from training it on the ImageNet dataset [30]. The maximum training time
was set to 100 epochs; however, early stopping was triggered whenever validation accuracy
did not improve by at least 0.5% over the duration of 40 epochs. The batch size was set to



3.3. Pilot Experiments 50

Architectural Aspects
Egocentric Proprioception Hardcoded Fixations Sensor

#1 ✗ ✓ ✗ Foveated Patches
#2 ✗ ✓ ✓ Foveated Patches
#3 ✓ ✗ ✗ Large Patch
#4 ✓ ✗ ✗ Foveated Patches
#5 N/A ✗ ✓ Large Patch
#6 N/A ✗ ✓ Foveated Patches
#7 N/A ✗ ✓ Software Retina
#8 ✓ ✓ ✗ Foveated Patches
#9 ✓ ✓ ✓ Foveated Patches

Table 3.1: The architectural variants trained in this section. Colour coding corresponds with
the colours in Figure 3.3. Variants without egocentric coordinate frames use an exocentric
coordinate frame. Variants without hardcoded fixations use the attention network trained
with reinforcement learning. Only these 9 variants were required to answer the research
questions; other combinations of the four architectural aspects would not contribute to the
research objectives posed in this section.

16. The initial learning rate was set to 5.0e−3 and a scheduler was employed that cut the
learning rate in half every 10 epochs. The optimizer used was stochastic gradient descent
(SGD) with momentum set to 0.9 and weight decay set to 5.0e−3. There are three sources
of gradients during training: classification gradients that originate at the classifier network
and are backpropagated all the way to the input layer, reinforcement learning gradients that
are backpropagated only through the attention network, and baseline gradients that are back-
propagated only through the baseline network. The classification loss is computed using
negative log likelihood. Full details about the attention network’s training algorithm can be
found in the original RAM paper [10] as well as the DRAM paper [11].

All variants are set to execute three timesteps before classifying the input image. Variants
using the attention network will start at a random location in the image sampled from a
uniform distribution. Variants with ablated attention policy utilize hardcoded fixations to
fixate on three anatomical part locations: the birds’ eyes, the birds’ beaks and the birds’
tails. During training the order in which these locations are visited is randomized; however,
during validation it is not. Some samples from the Birds dataset are subject to occlusions, and
the occluded body parts are not labelled with their locations. In those cases these missing
locations are substituted for the locations of the approximately closest visible anatomical
part.

All hardcoded fixation locations have normal noise with σ = 4 applied to them; the locations
are then rounded to the nearest integer with a “round half to even“ caveat. In order to exert
finer control over the training process two separate RNG states are maintained: one for
applying noise to hardcoded fixation locations and shuffling their order during training, and
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one for selecting samples from the dataset. Both of those RNG states are seeded with the
value 303. The training and validation splits used were the ones provided as part of the Birds
dataset.

3.3.4 Results

Figure 3.4: Accuracies of recurrent attention models using different coordinate frames. Lines
represent mean values, shaded regions represent the standard deviation.

Figures 3.4 and 3.5 show how using an egocentric coordinate frame enables the model to
outperform a variant using an exocentric coordinate frame. Due to the sensitivity of active
vision to the starting conditions in image exploration, standard deviation has been calculated
only with respect to different network initialisation seeds. For this reason the shaded regions
representing the standard deviation are often narrower than expected in the loss and accuracy
plots in this and following sections. The exocentric model can be seen to overfit the training
set drastically; its classification accuracy at training time is much higher than that of the
egocentric model, but its validation accuracy is significantly lower. Their training losses are
not as divergent as their training accuracies; however, the validation loss of the exocentric
model can be seen to grow drastically. These results support the hypothesis put forward in
Section 3.3.1 which stated that exposing the model to absolute image coordinates will let it
exploit those coordinates to avoid learning a generalizable attention policy. The two variants
compared here are exposed to the coordinate frame via both proprioception and the attention
network, which makes discovering which interface is responsible for these results difficult.
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Figure 3.5: Losses of recurrent attention models using different coordinate frames. Lines
represent mean values, shaded regions represent the standard deviation.

It is worth noting that the loss plots of the egocentric coordinate frame are noisy. Further
results shown in Figures 3.8 and 3.9 suggest that this is caused by egocentric proprioception,
as ablating proprioception causes the effect to disappear. This is most likely due to the
fact that in these experiments classification gradients can travel into the attention from the
proprioception module through the fixation location. These gradients could be a source
of noise applied to the attention network weights; however, it is not clear why does the
exocentric coordinate frame not produce the same effect.

Figures 3.6 and 3.7 show how the training behaviour of the models changes when their
attention is ablated and replaced with anatomical part locations, as well as how a model
with no proprioception behaves in the same conditions. This helps clarify the effect of the
coordinate frame; the two frames result in effectively identical training behaviours which
suggests that the impact of the coordinate frame is contained to the attention module and that
the format of the data input into proprioception does not make a difference. Furthermore,
removing proprioception shows improved performance on both the training and validation
sets suggesting that proprioception is detrimental to the effectiveness of feature extraction,
likely by introducing noise into the architecture’s forward pass.

There is a significant gap in performance between models with ablated attention shown in
Figures 3.6 and 3.7 and the models using an attention network shown in Figures 3.4 and
3.5. All models using anatomical part locations approach 100% accuracy on the training set,
which is expected given the consistency of the visual input produced by each sample across
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Figure 3.6: Accuracies of models with ablated attention using different coordinate frames.
Lines represent mean values, shaded regions represent the standard deviation.

Figure 3.7: Losses of models with ablated attention using different coordinate frames. Lines
represent mean values, shaded regions represent the standard deviation.

epochs. The model variants utilizing the attention network perform significantly worse on
the validation set, in some cases even struggling to improve their performance relative to their
initialization. This demonstrates that reinforcement learning is not adequate for training an
attention policy for non-trivial active vision problems.
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Figure 3.8: Accuracies of egocentric models with and without proprioception. Lines repre-
sent mean values, shaded regions represent the standard deviation.

Figure 3.9: Losses of egocentric models with and without proprioception. Lines represent
mean values, shaded regions represent the standard deviation.

The result of enabling the attention network with an egocentric frame and evaluating the
impact of proprioception can be seen in Figures 3.8 and 3.9. A combination of the egocentric
frame, proprioception and the attention network appears to be the source of high variance
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in the model’s losses across different seeds; however, this could be due to re-running the
experiments with an insufficient number of seeds as the seeds used could have simply been
unfortunate for this variant. The accuracies of the proprioceptive model are not exhibiting
as much variance as its losses. This could be due to the model’s poor calibration, i.e. an
overconfidence in mistaken predictions and an underconfidence in correct predictions, as it
can affect the classification loss without a significant impact on classification accuracy.

Figure 3.8 shows that model variants without proprioception perform better on the validation
set but worse on the training set than model variants with proprioception. This does not occur
when the attention network is ablated as seen in Figure 3.6, suggesting that the proprioceptive
input is causing an overfitting of the attention network to the training set

Figure 3.10: Accuracies of proprioception-free models with and without foveation. Lines
represent mean values, shaded regions represent the standard deviation.

Figures 3.10 and 3.11 show the benefits of utilizing a sensor with a large full resolution field
of view alongside the attention network. Even though the validation losses are similar, the
validation accuracies of the two variants differ significantly, which could be due to a poor
calibration of the unfoveated variant relative to the foveated variant.

The performance of model variants using various visual sensors with ablated attention and
ablated proprioception can be seen in Figures 3.12 and 3.13. The software retina variant has
the worst performance out of all the variants plotted in these figures and it took the longest to
train: on average one of its epochs took 567.2 seconds to complete, whereas the non-retina
variants took approximately 75 seconds per epoch.
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Figure 3.11: Losses of proprioception-free models with and without foveation. Lines repre-
sent mean values, shaded regions represent the standard deviation.

Figure 3.12: Accuracies of models using various visual sensors with ablated attention and
ablated proprioception. Lines represent mean values, shaded regions represent the standard
deviation.

With hardcoded fixations the losses of models with a large patch and foveated patches are
no longer similar to each other, with the large patch model having half the validation loss of
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Figure 3.13: Losses of models using various visual sensors with ablated attention and ab-
lated proprioception. Lines represent mean values, shaded regions represent the standard
deviation.

the foveated patch model. The large patch model is almost 80% accurate on the validation
set, with the foveated patch model being around 50% accurate. This large gap shows that
there is significant work to be done on enabling the active vision architecture to effectively
utilize information from multiple observations in a way that is competitive with approaches
that utilize a large field of view.

3.3.5 Discussion

The experiments conducted in this section have provided insights about the state of active
vision in deep learning that go beyond what was uncovered in the literature review. The
results obtained regarding the sensor architecture, coordinate frames, proprioception and the
effectiveness of reinforcement learning are critical of the literature by demonstrating that
prior work has skipped past the fundamental groundwork that should have already been
conducted. Instead of addressing these issues and investigating individual aspects of active
vision, the literature focused on publishing papers about complete architectures that were
trained in an end-to-end fashion.

One observation that was made in the literature review focused on the tendency of researchers
to use simplified settings and solutions when evaluating active vision systems. The popu-
larity of reinforcement learning and the use of sensors with a wide field of view are two



3.3. Pilot Experiments 58

examples of this tendency; the results presented in this section suggest that the wide field
of view might have been used as a band-aid for masking the inadequacy of reinforcement
learning for the task of producing a suitable attention policy. In the experiments, variants
using reinforcement learning instead of hardcoded fixations (#1, #3, #4 and #8) have con-
sistently performed poorly, in some cases even failing to reduce validation loss beyond the
starting value in spite of becoming more accurate. The large patch sensor has greatly im-
proved model performance every time it was employed, but a foveated model guided to the
anatomical part locations performed better than a model that used the large patch sensor and
the attention network, showing that increasing sensor field of view is not enough to fully
compensate for the lack of a good attention policy. With an adequate attention policy the
performance gap between the large patch and the foveated patch sensors is hypothesized to
decrease as the model is allowed to make more fixations and collect more information about
the scene.

Investigating the impact of different coordinate frames came about as a result of reviewing
the work of Ballard [9] and realizing that absolute image coordinates may be abused by an
active agent in one of several ways. One way would be for it to learn human biases that
impact how are objects of interest framed in common computer vision datasets, such as the
rule of thirds [5]. Another way would be to correlate exocentric location data with training
images; the model could learn that when exposed to a certain background scenery it should
fixate on specific absolute locations that do not necessarily fall on the bird in order to best
discriminate the image class. In the experiments exocentric model variants have drastically
overfitted the training set at the expense of their validation performance, supporting the latter
hypothesis. This effect was found to be caused by the attention network and not the propri-
oceptive input, as ablating attention has caused models using the two coordinate frames to
perform equally well. This result gains additional weight due to the fact that the vast majority
of the reviewed literature has utilized exocentric coordinate frames.

Contrary to what was implicitly suggested in the literature proprioception was found to be
detrimental to classification performance, as shown in Figures 3.6 and 3.7. However, Figure
3.8 shows that proprioception has had a positive effect on training set accuracy when the
attention network was not ablated. It may be that proprioceptive input can be useful to
learning an effective attention policy; however, it appears that the learned policy does not
generalize to the validation set in the experimental setup used in this section. These results
suggest that a hypothetical way to preserve the potential positive effect of proprioception on
attention while suppressing detrimental effect on classification is to feed proprioceptive data
directly into the attention network instead of multiplying it with visual features and routing
it through the LSTM network; if true this would call into question the design decisions made
in prior literature that integrated proprioception with vision.
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3.4 The Active Vision Framework

The proposal of a framework for understanding and researching active vision in deep learning
is motivated by the numerous issues with active vision literature that were uncovered during
the experiments conducted in Section 3.3 and the literature review in Section 3.2. These
issues can be reduced into two underlying problems that the proposed framework seeks to
address: an incoherence across the field and a large number of research gaps pertaining to
key issues.

A major cause driving the fields’ lack of coherence is the frequent use of inconsistent termi-
nology between different publications. Sometimes different problems end up being tackled
under the same label, whereas on other occasions different terms are being used to refer to
the same problem or solution. As a result, in spite of the fact that they all ultimately strive
for enabling the same behaviours in vision, very few active vision research papers build on
top of each other’s achievements.

The experiments in this section have identified several gaps in the literature that have a high
potential for confounding active vision research. The literature did not account for the impact
of different coordinate frames and sensor fields of view, and only a few publications were
found that attempted to meaningfully improve on reinforcement learning for obtaining an at-
tention policy without resorting to passive vision. However, the author of this thesis believes
that the most pressing gap in the literature is the lack of promising attempts at introducing
mature, standard research practices that can help researchers produce insightful results. The
two datasets that were introduced specifically for active vision [63] [6] contribute little be-
sides simulating a setting that simulates visual exploration. There are no common methods
for a more granular evaluation of the different aspects of active vision, and as a result most
literature proposes and evaluates complete architectures without adequate ablations. Such
contributions do not produce much, if any, transferable knowledge and are hard to interpret
due to numerous confounding factors, further compounding on the fields’ incoherence and
disjointedness.

In a bid to improve the coherence of the field and help identify the gaps within it the pro-
posed framework introduces a structured way of reasoning about the different aspects of
active vision. It starts with the observation that in deep learning the vast majority of passive
vision systems can be reduced to consist of two main architectural elements: a “backbone“
feature extractor for producing a useful representation of the input data and a mechanism
for processing the extracted representation in a manner that is specific to the visual task at
hand. Some common “backbone“ feature extractors include the ResNet architectures [47],
GoogleNet [58] and ResNext [92]. A common mechanism for processing visual features in
image classification is a simple fully connected layer, but more complicated tasks such as
image segmentation tend to require more sophisticated solutions such as the architecture of
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Mask-RCNN [93].

Under the proposed framework active vision complements the two elements of passive vi-
sion systems with three additional architectural and functional requirements. These are an
attention mechanism, a sampling structure and a memory mechanism. The solutions to each
one of those requirements can be organized into further sub-categories either by the approach
they adopt or by the specific visual task that they are tailored for. The author believes that ac-
tive vision literature should be structured in a way that reflects this organisation and that this
could be achieved if publications maintained a narrow scope by explicitly focusing on indi-
vidual aspects of active vision while being more clear about the context that their research
exists in.

The sampling structure is the visual sensor that defines the active agent’s local sampling
strategy. Visual sensors can be either uniform or space variant, with foveation being the
most common form of a space variant sensor. The software retina described in Chapter 2 is a
relatively complex space-variant sampling structure, but there is very little research that pro-
duced useful knowledge for developing visual sensors in active vision and no research that
tackled the subject directly within deep learning. Due to their evolutionary adaptations dif-
ferent animals often have different arrangements of photoreceptors in their eyes, such as the
cat which does not have a fovea and instead has a slit-shaped region of higher photoreceptor
density [94]. This suggests that one possible avenue for future sensor-related research is the
pursuit of task-specific space-variant sensors, for example by learning them using methods
such as the one described by Cheung et al. [79].

The attention mechanism implements an active agent’s global sampling strategy and is
the means by which it chooses where to look. Solutions to attention can either be closely
integrated with the agent’s visual processing machinery or operate independently of it. Inde-
pendent approaches often require the user to implement solutions to task and domain specific
problems that integrated neural networks can implicitly learn to solve. Two examples of such
problems are inhibition of return, which is a means of ensuring that the agent does not re-
visit previously observed parts of the scene, and optical flow compensation, which involves
differentiating between agent-generated and exogenous optical flow in the visual field. There
are numerous objectives that attention in active vision can pursue and many of them impose
their own unique requirements. Some examples of vision tasks that require different types of
global sampling strategies are exhaustive exploration, recognition, target tracking and sam-
pling information for training another part of the architecture as was done in the publications
described in Section 3.2.4.

The memory mechanism implements an active agent’s strategy for aggregating visual data
collected across multiple observations. Memory can also be understood as a form spatio-
temporal attention. Memory-free active vision is possible; however, it represents a trivialized
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approach that is by definition extremely limited in its applications. The author of this thesis
believes that memory-free active vision is not worth investigating in this thesis since a major
motivation for the pursuit of active vision is enabling vision systems to advance the state of
active vision so as to solve less constrained problems in real-world-like settings. The limited
field of view of active vision sensors means that occasionally an object of interest will not
be observed in its entirety, and one function of memory is to ’stitch’ the whole object out
of fragmentary observations. An active agent can aggregate visual information at any point
in the architecture; it can do so in feature space immediately following the feature extractor,
at the network’s outputs by, for example, averaging its predictions, within the “backbone“
feature extractor or exogenously as in the NARX architecture [95]3.

There are many potential ways in which the three aspects of the proposed framework can
influence each other. It is easy to deduce the hypothesis that when closely integrated at-
tention and memory mechanisms become mutually dependent; however, in some cases they
may also develop dependencies on the visual sensor used in their training. The experiment
results described in Section 3.3.4 demonstrated that a large sensor field of view trivializes the
problem of attention. Foveated sensors imply that the attention mechanism’s role is to pre-
dict high-frequency information content at the sensor’s blurry peripheries in order to decide
which area of the field of view is worth exploring with the fovea, whereas uniform sampling
structures imply exploration beyond the field of view. The former is related to the inter-
polation and super-resolution algorithms, whereas the latter is related to extrapolation and
in-painting algorithms. An implementation of memory with a mechanism for suppressing
inputs produced by low value observations can make the architecture more robust to an oth-
erwise inadequate attention mechanism; however, it is not clear whether such a mechanism
needs to be designed explicitly or whether its function emerges implicitly when using the
methods that are currently employed for active vision memory. Furthermore, in some cases
the presence of the memory mechanism may motivate including feature processing indepen-
dent of the ’backbone’ feature extractor, such as the decoder-encoder network that processes
the aggregated information in the work of Cheng et al. [16].

The close relationships between the three elements of the adopted framework have implica-
tions for active vision research. The efficacy of an attention mechanism can only be measured
with a memory mechanism already in place. If the representation produced by memory acts
as a bottleneck that imposes an upper bound on the agent’s task performance then producing
better fixations is not going to be reflected in commonly used performance metrics. This
concern is a strong argument for investigating solutions to active vision memory first before
moving on to the attention mechanism; however, the agent needs to fixate on different parts
of the scene in order to enable an evaluation of memory. A similar relationship exists be-
tween the visual sensor and the other two elements. This issue demonstrates the urgent need

3The NARX architecture has not been applied to active vision in deep learning.
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for evaluating each of the three elements of active vision in isolation. As a result being able
to ablate different parts of the system by replacing them with well-understood and simple
yet moderately performant solutions becomes a priority in active vision research. Attention
for recognition can be completely ablated if the most informative locations in each image
are known; although such data was present in the Birds dataset it is hard to come by sim-
ilarly well-labelled datasets. Memory is relatively simple to ablate, as it can be replaced
with approaches such as computing the mean of observations in feature space. The visual
sensors used in active vision research are too simple to warrant any ablation beyond resort-
ing to a uniform image patch in the cases when foveated patches are suspected to confound
experimental results.

3.5 Conclusion

This chapter presents the work that grounded the project in a new direction after transitioning
away from the software retina and onto active vision. The literature review in Section 3.2 has
uncovered multiple issues with active vision literature, some of which are a lack of coherent
and mature research threads, an overly holistic approach to architectural development and
inconsistent terminology.

Further problems were identified during the experiments described in Section 3.3 where a
number of questions ignored by the literature were investigated and found to be pressing
while some assumptions made in it were called into question. The importance of the coor-
dinate frame and the sensor field of view was highlighted, while reinforcement learning and
proprioception were shown to be ineffective.

All of those critical insights into the state of the literature have informed the proposal of a
framework for understanding and researching active vision that is described in Section 3.4.
The framework reduces passive vision architectures into two elements and appends three
additional components for active vision systems; it then discusses the interrelations between
them and explains the implications for active vision research. An argument is made for
the importance of granular, tightly scoped research and for using datasets that can support
ablating attention by including annotations for the most informative locations in the images.

The following two chapters of this dissertation follow the structure of the proposed frame-
work and explore active vision memory and active vision attention mechanisms. Visual
sensors for active visions are not explored beyond this point in the dissertation as Chapter 2
has already covered the subject in sufficient detail by focusing on the software retina.
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Chapter 4

Memory

Abstract: The research framework proposed in Section 3.4 argues that investigating memory

should take precedence during early-stage active vision research. This chapter pursues the

investigation of memory while following the previous chapter’s prescriptions. Section 4.2

argues that investigating active vision memory should consist of hardcoding, appraising

and sequencing single-use attention policies, whereas Section 4.3 implements those steps

for the Birds dataset. The sequenced attention policies are collectively appraised using

different methods in Section 4.4, revealing that a simple concatenation performs well as

an aggregation strategy. Section 4.5 introduces and investigates the concept of temporal

robustness, while Section 4.6 evaluates a number of different recurrent memory variants

and finds that they fall short of simple concatenation, calling into question a fundamental

assumption structuring much of active vision research in deep learning.

4.1 Motivation and Objectives

The main goal of the project is to advance the understanding of active vision through devel-
oping and investigating a deep learning active vision architecture. This chapter supports that
goal by investigating the issue of memory for active vision in accordance with the framework
proposed in the previous chapter.

One of the prescriptions of the proposed framework is to conduct tightly scoped and granular
research that focuses on individual aspects of active vision, i.e. sensors, attention and mem-
ory, as opposed to focusing on the development and description of complete architectures in
an end-to-end fashion. This recommendation is motivated by the fact that previous research
describing complete architectures struggle to produce transferable knowledge as their results
are produced using specific combinations of datasets, training methods, constraints, problem
definitions and architectural solutions that are rarely reproduced or investigated individually.
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This chapter aims to produce transferable knowledge about active vision by restricting its
scope solely to active vision memory. It explores different approaches to memory, including
different aggregation strategies and training methods. In order to further improve the quality
of knowledge produced, this chapter also demonstrates an investigative method for studying
active vision that improves the interpretability of memory’s function.

4.2 Controlling Observation Value

The experiments conducted in Section 3.3 have shown that reinforcement learning does not
enable the active vision system to produce high quality fixation locations for an image classi-
fication task. As high quality observations are necessary to test whether memory is acting as
a bottleneck on model’s performance, the model’s attention mechanism has to be ablated and
replaced with keypoint locations, which in the case of the Birds dataset are anatomical part
locations. Although using keypoint locations enables a more rigorous evaluation of memory,
it also raises a few concerns: does the order of fixations matter? If so, how to order the fix-
ations? How should each each fixation be described? This section explores these questions
and proposed a method for investigating different functional aspects of memory in active
vision systems.

As the available hardware resources are always finite, every active vision system’s memory
has to have a limited bandwidth. As a result, during prolonged interactions with a scene
the system is bound to reach a point where it has to choose between either preserving the
previously memorized information or writing the newly observed information into memory.
Determining the correct decision in this scenario requires insight into the relative contribu-
tion, or value, of the information stored in memory as compared to the information captured
in the new observation. The information that is more valuable to a successful completion of
the task at hand should be prioritized.

This tension between preserving memorized information and capturing new information
could hypothetically manifest itself in scenarios other than a prolonged interaction with the
scene. For example, if all of the scene’s valuable information was captured during the first
timestep then the system should ideally ignore all information captured during any subse-
quent observations in order to not corrupt the representation stored in its memory. Con-
versely, if the system has only been exposed to low value information before its final high
value observation then at the final timestep it should overwrite its memory contents with the
newly observed information. These scenarios demonstrate the importance of the observa-
tions’ relative values; they also suggest that controlling the order of the observations can be
used to gain additional insight into the functioning of the system’s memory.

The first step of the proposed method for evaluating memory by controlling observation
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value is the implementation of a number of hardcoded attention policies, each one capable
of generating a single observation location for every image in the dataset. “Hardcoded“ in
this case refers to a policy that is not learnable. In this project this is accomplished using
prioritized lists of the anatomical part locations that are provided with the Birds dataset, but
those policies can utilize non-learnable algorithms such as corner detection. The locations
produced by the different hardcoded attention policies should consist of as few duplicates and
have as little overlap as possible, since that can lead to the active vision model re-visiting
previously observed areas of the scene instead of sampling new information.

After their implementation, the policies are evaluated by measuring their contributions to the
successful completion of the active vision model’s visual task. This can be done by training
an appraisal model with the observations that the active vision system would be exposed to
if it utilized the attention policy being evaluated, i.e. observations processed by the same
visual sensor that is employed by the active vision system. The appraisal model is a passive
vision feedforward model trained to classify images resulting from a given attention policy.
Since each policy only produces one fixation per image the appraisal model does not need
to utilize active vision and has no need for recurrence, memory or any aggregation strat-
egy at this stage. The appraisal model’s peak classification accuracy on the validation set
is utilized as an estimate of the value of the fixation policy that was used to train it. The
true value of each hardcoded attention policy cannot be found in this manner as it would
require a perfect appraisal model capable of extracting all valuable information out of every
observation. Instead of finding the true value, the effective value of each hardcoded attention
policy can be estimated if the appraisal model consists of the active vision system’s feature
extractor appended with its mechanism for completing the visual task, i.e. a fully connected
layer for image classification. The term “effective“ in effective value refers to relativizing
the policies’ values to the active vision system’s architectural components, which is advanta-
geous as it prevents the system’s feature extraction component from confounding the results
of experiments that focus on memory.

The final step to the proposed method is to test specific functional aspects of the memory
mechanism under investigation by selecting the appropriate sequences of hardcoded attention
policies. This project identifies three functional aspects: preserving feature representations,
forgetting and ignoring. Memory’s capacity to preserve the representations produced by
the feature extractor should be tested by seeing if the active vision system’s performance
matches that of the appraisal model when using a high value policy.1 This functional aspect
of memory does not require any sequencing of attention policies, but it should be tested in the
high performance regime in order to test whether memory acts as a bottleneck to performance
even during single time step interactions. Memory’s ability to ignore refers to suppressing

1As a reminder, a high value attention policy is one that enabled the appraisal model to obtain a high
classification accuracy on the validation set.
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a low value input and preserving valuable memorized information; it can be stress-tested by
initializing the network with a location chosen by a high value policy and then observing
how many low value policies does it take for its performance to degrade below a pre-defined
threshold. Forgetting is memory’s ability to uptake a valuable observation at the expense of
memorized information that is of lesser value, and it can be tested by evaluating the network’s
performance with a number of low value attention policies followed by a high value policy; a
large gap between the resulting performance and the appraised score of the high value policy
would indicate the network’s lacking ability to forget.

It is easy to assume that only two hardcoded attention policies are required for a basic eval-
uation of forgetting and ignoring: a low value policy and a high value policy. Although a
[high, low] sequence would be adequate for testing ignoring, evaluating forgetting with a
[low, high] sequence would be prone to being confounded by the network’s ability to ignore,
as it may choose to never take up the first observation. This issue can be addressed by re-
placing the low value policy with one that provides medium value, as that will more likely
result in memory taking up some information in the first time step. As a result two hard-
coded attention policy sequences are required: [medium, high] for investigating forgetting,
and [high, low] for investigating ignoring. As the second policy in the first sequence and
the first policy in the second sequence are both high, the two sequences can be combined to
form a [medium, high, low] sequence, which, if evaluated at every time step, can be used to
simultaneously test both the forgetting and ignoring aspects of memory. Although more rig-
orous stress testing of the different aspects of memory can be achieved with multiple policy
sequences, only the [medium, high, low] sequence is used in this project in order to simplify
and accelerate experiments.

There exists a way to extend the proposed method and make it more rigorous. It involves
using an appraisal model capable of aggregating multiple observations in a single forward
pass; several such models are described and used in Section 4.4. The aggregating appraisal
model can be used to estimate the mutual information, or mutual value, between the different
attention policies by evaluating their combined values.

Suppose that we have two policies {p1, p2} with their respective individual values2 being
0.45 and 0.65, and that the aggregating appraisal model estimates their combined value to
be 0.72. This would indicate that 0.72 − 0.65 = 0.07 of p1’s value is unique as it has
only contributed that much of a performance improvement over just using p2. It would
also indicate that p1 shares 0.45 − 0.07 = 0.38 of its value with p2. This method can be
chained across multiple policies and used to control the redundancy between observations
in order to test memory’s ability to aggregate new information in different contexts, such as
with a nearly saturated memory or with a low value observation. Moreover, uncontrolled

2“Value“ meaning classification accuracy on the validation set from the appraisal model.
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information overlap has the potential to complicate evaluations of active vision memory’s
capacity to ignore, as discarding low value information is a distinct scenario from discarding
redundant information.

The proposed method for Controlling Observation Value, henceforth abbreviated with COV,
only applies to evaluating functional aspects of memory with respect to the system’s visual
task. Choosing where to look is likely to have unique requirements that need to be accounted
for, which is why this method is not adequate for evaluating the suitability of a memory
implementation for the learning of an active vision policy.

4.3 Selecting and Appraising Attention Policies

4.3.1 Motivation and Objectives

Section 4.2 has described the COV method for investigating memory in general terms,
whereas this section applies the first step of the method within the context of the Birds
dataset; this first step is the selection and appraisal of a number of hardcoded attention poli-
cies on the Birds dataset. Appraised attention policies are instrumental in conducting an
interpretable evaluation of memory as they enable an assessment of memory’s capacity to
preserve useful representations, ignore and forget. The objective of the experiments con-
ducted in this section is to provide the information needed to select a [medium, high, low]

hardcoded attention policy sequence that will be used in latter experiments in this chapter.
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4.3.2 Materials and Methodology

ID Anatomical Part Location
1 Back

2 Beak

3 Belly

4 Breast

5 Crown

6 Forehead

7 Left eye

8 Left leg

9 Left wing

10 Nape

11 Right eye

12 Right leg

13 Right wing

14 Tail

15 Throat

Table 4.1: The anatomical part locations and their respective IDs in the Birds dataset.

All experiments in this section were conducted using Pytorch 1.10.0+cu102 on a PC running
Ubuntu 18.04 with a GeForce GTX 1080 Ti and an Intel Core i7-7700. The visual task is
bird species classification on the Caltech-UCSD Birds 200-2011 dataset [61] that has been
previously described in Section 3.3.2.

The experiments consist of training an appraisal model on individual hardcoded attention
policies in order to attribute a value to each one, expressed in terms of peak validation ac-
curacy achieved during training. The appraisal model is a ResNet18 [47] that has been
pretrained on the Imagenet dataset [30], however its final fully connected layer has been re-
placed with a randomly initialized fully connected layer that has 200 output units with the
log softmax function applied to them. The inputs to the model are 37x37px foveal image
patches from the crude retina.

Training was set to run for up to 100 epochs, with early stopping set to end training if
validation accuracy did not improve for at least 0.5% over a period of 40 epochs. The batch
size was set to 16, the optimizer used was SGD with momentum set to 0.9 and weight decay
set to 5.0e−3. The classification loss is computed using negative log likelihood. The initial
learning rate was set to 5.0e−3 and a scheduler was employed that cut it in half every 10
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First Location Priorized Lists of Anatomical Part Locations
Left eye 7 11 6 5 15 10 2 4 3 1 9 13 8 12 14
Left leg 8 12 3 4 15 9 13 1 10 5 6 7 11 14 2
Breast 4 3 15 8 12 1 2 6 7 11 5 10 13 9 14
Beak 2 15 6 11 7 5 10 4 3 1 8 12 9 13 14
Tail 14 9 13 1 10 5 15 3 4 6 2 12 8 11 7

Table 4.2: The hardcoded attention policies consisting of prioritized lists of anatomical part
locations. Each policy is named by its first location, visible in the left-most column.

epochs. The RNG seed for data sampling was set to 303, whereas the seed for the other
aspects of training was set to 1, 9 and 9001.

Figure 4.1: Sample input images and their corresponding foveal images produced from the
selected [medium, high, low] attention policy sequence: [Beak, LeftEye, Tail].

All images in the Birds dataset are labelled with up to 15 anatomical part locations. The
names and the respective IDs of the different anatomical part locations can be found in Table
4.1. The reason some images do not have all 15 locations labelled is due to occlusions:
in cases where a body part was occluded the authors of the dataset decided to omit labels
instead of approximating the body part’s location. This makes individual part locations not
suitable as attention policies, as they would not produce any observations for many images.
Instead, the 5 hardcoded attention policies shown in Table 4.2 are devised; they consist of
prioritized lists of all possible anatomical part locations, making sure that an observation is
produced for every image. Each list starts with a different part location, and the locations
that follow it are approximately ordered by their anatomical distance to the first one. All part
locations have normal noise with std = 4 applied to them; the locations are then rounded
to the nearest integer with a “round half to even“ caveat. Each of the resulting policies is
henceforth referred to with the name of its first part location; they can be found in Table 4.2.
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Figure 4.2: Accuracies of the appraisal model when trained with different hardcoded atten-
tion policies. Lines represent mean values, shaded regions represent the standard deviation.

Figure 4.3: Losses of the appraisal model when trained with different hardcoded attention
policies. Lines represent mean values, shaded regions represent the standard deviation.
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4.3.3 Results and Discussion

All attention policies tested have led to the appraisal model approaching 100% accuracy on
the training set, as seen in Figure 4.2. The losses showed no anomalies and closely matched
the accuracies, as seen in Figure 4.3. The policies that were the closest to the birds’ heads,
i.e. left eye and beak, have proven to be the most valuable. This was most likely due to the
fact that birds’ heads contain the most discriminative features. Their tails and legs proved
to be the least valuable, which can probably be attributed in part to a lack of discriminative
features and in part due to the fact that it is rare for a photograph to be taken from an angle
that successfully captures any features present on a bird’s legs or tail. Table 4.3 shows
the values attributed to each attention policy, which correspond to the appraisal model’s
classification accuracy on the validation set. The attention policies [Beak, LeftEye, Tail]

were selected in order to produce a [medium, high, low] value policy sequence to be used
in latter experiments.

Attention Policy Name Value (peak validation accuracy)
Left eye 0.61

Left leg 0.14

Breast 0.26

Beak 0.41

Tail 0.12

Table 4.3: The appraised values for different attention policies.

4.4 Feedforward Aggregation Methods

4.4.1 Motivation and Objectives

The COV memory investigative method proposed in Section 4.2 together with the attention
policy values obtained in Section 4.3 can help evaluate memory’s ability to preserve feature
representations, as well as forget and ignore information that is not needed. One limitation
of the proposed method is that it does not measure memory’s ability to extract additional
features that exist across observations. In other words, it does not measure memory’s ability
to aggregate multiple observations in a way that effectively combines their values in a cu-
mulative manner instead of merely memorizing valuable information at the expense of less
valuable yet still useful information.

In order to address this gap, this section aims to provide points of reference that the different
memory implementations will be compared against. The experiments in this section evalu-
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ate a number of appraisal models that implement different feedforward aggregation methods.
These models serve as a means of appraising the combined value of the selected sequence of
attention policies. They are relatively simple solutions to the problem of memory that, admit-
tedly, are not always efficient for various reasons, but are nonetheless valuable in studying
active vision memory. The experiments conducted in this section aim to inform future active
vision memory development by reviewing different feedforward aggregation methods and
assessing their functional characteristics.

4.4.2 Materials and Methodology

All experiments in this section were conducted using Pytorch 1.10.0+cu102 on a PC running
Ubuntu 18.04 with a GeForce GTX 1080 Ti and an Intel Core i7-7700. The visual task is
bird species classification on the Caltech-UCSD Birds 200-2011 dataset [61] that has been
previously described in Section 3.3.2.

The experiments in this section compare 5 different feedforward aggregation strategies against
each other by measuring their losses and accuracies when trained with the [Beak, LeftEye, Tail]

sequence of attention policies. All of the strategies utilize broadly the same architecture that
was described in Section 4.3.2: a ResNet18 [47] that has been pretrained on the Imagenet
dataset [30] and that has a randomly initialized fully connected layer with 200 log softmax
output units.

Figure 4.4: A visualisation of two aggregation strategies using the [Beak, LeftEye, Tail]
sequence of attention policies. Left: original input image. Center: the input image produced
by the unmasking strategy. Right: the input image produced by the imagespace concatena-
tion strategy, scaled up for visibility.

The 5 aggregation strategies proposed in this section are unmasking, spatial concatenation,
feature averaging, output (softmax) averaging and output (pre-softmax) averaging. Under
unmasking the model receives as input the entire input image with all of the unobserved areas
masked out with 0s and with only three 37x37px areas shown unmasked in full resolution,
corresponding to the observations provided by the attention policies. This large input size
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does not lead to an explosion in the number of network parameters as an adaptive average
pooling layer is applied to the latent space prior to the fully connected layer. Prior to conduct-
ing the experiments the unmasking strategy was hypothesized to be superior as it expresses
the relative locations of the different observations made by each attention policy. The spatial

concatenation strategy refers to feeding the appraisal model with an input space concatena-
tion of the 37x37px image patches, resulting in a 37x111px input size. A visualisation of
the unmasking and imagespace concatenation strategies can be seen in Figure 4.4. Feature

averaging refers to combining multiple observations by averaging the latent space tensors
produced by the ResNet18 network before applying adaptive average pooling. The intuition
behind it is that the latent space tensors code for the presence of class-specific features in
the image, and averaging them will result in averaging the amount of evidence present for
each class. Both cases of output averaging refer to averaging the classification output of the
network, in one case prior to applying the log softmax activation function and in the second
case after its application.

The training parameters used in this section match those described in Section 4.3.2. The
maximum number of epochs was set to a 100, with early stopping set to trigger if validation
accuracy did not improve by 0.5% or more over 40 epochs. The batch size was set to 16,
the optimizer used was SGD with momentum set to 0.9 and weight decay set to 5.0e−3. The
classification loss used is negative log likelihood. The initial learning rate was set to 5.0e−3

and a scheduler reduced it by half every 10 epochs. The RNG seed for data sampling was
set to 303, and the seed for the other aspects of training was set to 1, 9 and 9001. All part
locations have normal noise with std = 4 applied to them; the locations are then rounded to
the nearest integer with a “round half to even“ caveat.
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4.4.3 Results and Discussion

Figure 4.5: Accuracies of the appraisal model when trained with different aggregation strate-
gies. Lines represent mean values, shaded regions represent the standard deviation.

Figure 4.6: Losses of the appraisal model when trained with different aggregation strategies.
Lines represent mean values, shaded regions represent the standard deviation.
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The spatial concatenation strategy has shown superior performance in terms of both its val-
idation accuracy and validation loss. This is likely due to the fact that with this strategy the
network utilized the large receptive field size of the deeper convolutional layers of ResNet18
to extract features from across multiple observations. The experiments conducted in this sec-
tion can be interpreted as testing the merging of multiple observations at different locations
in a feedforward classification model, and this result suggests that merging them in the image
space is preferable to doing so deeper in the model. Table 4.4 contains the peak validation
accuracies achieved by the different strategies; it shows that this spatial concatenation out-
performed the averaging strategies by 9-11%. One reason for its better performance could
be due to the fact that averaging multiple observations can be destructive to the information
that they contain individually.

Judging by validation accuracy alone, the unmasking strategy has the worst performance
out of all the strategies tested, however the loss plots show that output averaging after the
softmax activation function has resulted in a significantly worse validation loss. The poor
performance of unmasking is likely due to the fact that the input image is quite sparse, which
in turn leads to a sparse output of the convolutional feature extraction of ResNet18; this
sparsity can then cause the adaptive average pooling layer to output zeros or values with a
really low magnitude, causing numerical issues. The noisy outliers visible in epochs 15 to
20 in the loss and accuracy plots support the idea of numerical issues by suggesting instabil-
ities during training. Several possible ways of addressing this issue are regularizing or nor-
malizing the feature maps before applying adaptive average pooling, only applying average
pooling to non-zero values, or resorting to maxpooling, although maxpooling would result
in sparser gradient updates. The reason for the softmax output averaging strategy’s high val-
idation loss in spite of it having better validation accuracy is likely the poor calibration in
the network’s outputs, which can mean either over-confidence during incorrect predictions
or under-confidence during correct predictions. Pre-softmax and feature averaging strategies
have turned out to be roughly equivalent in their performance.

Aggregation Strategy Peak Validation Accuracy
Unmasking 0.49

Spatial Concatenation 0.71
Feature Averaging 0.62

Output (softmax) Averaging 0.60
Output (pre-softmax) Averaging 0.62

Table 4.4: Top validation accuracies for different aggregation strategies.

These results provide a valuable range of values that can be used as points of reference for
evaluating different recurrent memory implementations. They also suggest that the convo-
lution operator can be leveraged for extracting features across multiple observations if these
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are represented appropriately, and that care has to be taken to avoid causing numerical issues
within the feature space.

4.5 Temporal Robustness

4.5.1 Motivation and Objectives

The COV method for investigating memory described in Section 4.2 involves evaluating the
active vision system’s performance after being exposed to a varying number of observations.
This could be achieved with a single instance of the model if it was temporally robust. In
this thesis a model is considered temporally robust when its performance is not negatively
affected by changing the time step at which it produces a classification output. The literature
has not investigated any training methods that might be capable of guaranteeing such a func-
tional characteristic in sufficient depth. Curriculum learning and intermediate supervision
are two memory-specific training methods that hypothetically could help and that have been
touched upon in the investigation by Li et. al. [12]; however, as previously mentioned in
Section 3.2.2, their experimental setting trivialized active vision in a way that casts doubt
as to whether their results generalize to active vision problems. Moreover, an examination
of the GitHub repository linked in the abstract of the paper reveals that the authors have in-
stantiated a separate fully connected classification layer for each time step that their model
interacts with the scene. In spite of this being a significant aspect of their architecture that
impacts the transferability and implications of their approach, the authors did not describe it
in their publication.

Even if a different set of model weights has to be loaded at each timestep, the network’s
memory can still be evaluated in the same way with the assumption that the results produced
by the multiple instances approximate those that would be produced by a single instance
trained with the appropriate method. Searching for such a training method falls within the
scope of this project and is the focus of this section. An active vision model that is invariant
to the time step at which it produces a classification output is more temporally robust as it
can handle a wider variety of interaction scenarios. This section investigates a number of
different methods focused on memory function and the temporal aspect of active vision. The
objectives are to find out which of the tested methods is best for ensuring temporal robustness
and which one is suitable for investigating memory alongside the COV method.
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4.5.2 Materials and Methodology

All experiments in this section were conducted using Pytorch 1.10.0+cu102 on a PC running
Ubuntu 18.04 with a GeForce GTX 1080 Ti and an Intel Core i7-7700. The visual task is
bird species classification on the Caltech-UCSD Birds 200-2011 dataset [61] that has been
previously described in Section 3.3.2.

The experiments in this section compare 5 different approaches to ensuring temporal ro-
bustness. One of the objectives of this section is to find a method for ensuring temporal
robustness that is most suitable for use alongside the COV method, therefore some of the
approaches tested suffer from technical limitations that make them unsuitable for use out-
side of research. The different approaches are all applied to a modified recurrent attention
model that is a simplified variant of the model used in Section 3.3.2. The model utilizes a
single foveal 37x37px image patch as its sensor and a ResNet18 [47] pre-loaded with Im-
ageNet weights as its feature extractor, with its final fully connected layer removed. The
512 channel output of ResNet18’s adaptive average pooling layer feeds an LSTM network
that maintains hidden state and memory tensors, both of which are 512 units large and both
of which are initialized to zeros at the beginning of each interaction sequence. The hidden
state tensor is used as input to a fully connected classifier layer that has 200 log softmax
output units. Unlike the model in Section 3.3.2, this model does not include a proprioception
stream, an attention module or a baseline module.

The five approaches tested are single instance, curriculum learning, intermediate super-

vision, BN-LSTM, and multiple instances. Single instance corresponds to regular neural
network training, curriculum learning and intermediate supervision have been previously
used in a different setting by [12], BN-LSTM was described in [96] and [97], and multiple

instances has not been explored in prior literature. None of these methods have been previ-
ously evaluated with regards to their impact on temporal robustness, as this concept is only
being introduced in this chapter.

Under single instance the modified recurrent attention model is trained once on the full se-
quence of hardcoded attention policies before being evaluated three times, once at every time
step of the policy sequence, meaning after having observed [medium], [medium, high], and
[medium, high, low]. This approach is the simplest and has the advantage of not requiring
a prolonged training process or multiple model instances, but it has no explicit mechanism
for ensuring temporal robustness. The author’s hypothesis is that the single instance ap-
proach will fail to achieve temporal robustness because the LSTM’s hidden state and
memory tensors are produced by a network with a different effective depth at every
time step. This can cause these tensors to have different distributions with different proper-
ties that the fully connected classifier network can not handle due to only having been trained
on memory tensors produced after three time steps.
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Curriculum learning aims to alleviate this problem by gradually increasing the number of
time steps during training; this is achieved by training a randomly initialized model with one
time step, using the resulting model weights to initialize training with two time steps, and
then initializing the three time step training run with the final weights of the previous two
time step run. It can be understood as training a deeper network on top of the weights of a
shallower one. The hypothesis motivating the use of the curriculum learning method is
that the lower time step functionality might persist through further training owing to
the curriculum initialization scheme, improving temporal robustness. The method could
be further fine-tuned by only selectively preserving different parts of the model across time
steps, but this approach is left for future work.

The intermediate supervision approach refers to training a single instance of the recurrent at-
tention model on the full policy sequence, requiring it to output a classification at every time
step and including all of the resulting classification outputs in the loss function. This is also
known as the greedy loss approach. The hypothesis motivating intermediate supervision
is that the multiple sources of classification gradients will result in the model hosting
multiple subnetworks, each one specialized in classifying at a different time step.

BN-LSTM refers to applying the single instance approach to a batch normalized LSTM [97]
[96], which is an LSTM variant with a separate batchnorm layer applied to its memory
tensors at every time step. The motivating hypothesis behind using the BN-LSTM is that
the batchnorm layers might help regularize the LSTM’s memory tensors across time,
neutralising the negative effect of variable effective depth and making the intermediate
time step tensor more suitable for the fully connected classifier layer.

Multiple instances refers to the previously mentioned idea of training a separate model in-
stance for each time step in the policy sequence. The hypothesis motivating the use of
this approach for research is that the results will approximate those that would be pro-
duced by a single instance trained with the appropriate method, if such a method exists.
This method is not suitable for ensuring temporal robustness in non-research settings due to
the need to load different model weights. The five approaches listed were not evaluated in
tandem with each other.

In these experiments, the available observations were shuffled during training so as to not
bias the network to associate inputs at specific values with specific time steps, i.e. to prevent
the model from always expecting a high value observation at t = 2. At validation time the
observations were kept in the [medium, high, low] order, although the full sequence was
only available during the third run. Besides that, the training parameters used match those
used during previous experiments in Section 4.3.2 and Section 4.4.2. The maximum number
of epochs was set to 100, with early stopping set to trigger if validation accuracy did not
improve by 0.5% or more over 40 epochs. The batch size was set to 16, the optimizer used



4.5. Temporal Robustness 79

was SGD with momentum set to 0.9 and weight decay set to 5.0e−3. The classification
loss used is negative log likelihood, with the intermediate supervision variant computing an
average of the loss across time steps. For this reason the loss produced by this variant is
significantly different from that of the other variants. The initial learning rate was set to
5.0e−3 and a scheduler reduced it by half every 10 epochs. The RNG seed for data sampling
was set to 303, and the seed for the other aspects of training was set to 9001. All part
locations have normal noise with std = 4 applied to them; the locations are then rounded to
the nearest integer with a “round half to even“ caveat.

4.5.3 Results and Discussion

Figure 4.7: Best validation losses of models using different approaches for promoting tem-
poral robustness. Each data point represents the best result achieved over all training epochs
with the model trained on a different policy sequence. A latter review of this work revealed
that a superior approach in this figure would involve taking the mean of N best performing
epochs. Such an analysis would prove more robust to noisy classification losses.

Figures 4.7 and 4.8 show the policy sequence plots that visualize the results of evaluating the
different approaches with the selected attention policy sequence. It is worth noting that the
loss of the intermediate supervision approach is computed slightly differently than the other
losses on the plot, as it is the average of the losses resulting from the model’s classifications
at every time step. Both of the plots also only include the validation values and omit the
training values as the training values would not be informative due to the best values being
selected for each of the three data points. The accuracy plot also includes the individual
policy values and the highest appraised combined value for reference.
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Although an attempt could be made at interpreting these policy sequence plots to gain in-
sights into memory’s functional aspects other than temporal robustness, such as ignoring
and forgetting, this analysis is instead done in Section 4.6.3. The reason for this is that
only one RNG seed was used in this section, whereas Section 4.6.3 utilizes multiple RNG
seeds and compares several memory variants against each other, which lends itself to a better
contextualized analysis.

Figure 4.8: Best validation losses of models using different approaches for promoting tem-
poral robustness. Each data point represents the best result achieved during a training run
with the model trained on a different policy sequence. The plot also includes the individual
policy values obtained in Section 4.3.3 and their peak combined value obtained during ex-
periments in Section 4.4.3

The multiple instances approach proved to be the best in terms of both its validation accu-
racy and loss, and is thus the recommended approach for future investigations. It is not a
desirable approach for non-research uses, so it should only be used as a point of reference
during further development of active vision memory. By far the worst approach was cur-

riculum learning, suggesting that random network weight initialisation is preferable as there
are likely little to no features learned during prior training runs that should be preserved for
future runs.

The single instance approach is the simplest approach in this experiment, and besides mul-
tiple instances the only approach that manages to partially improve on it is intermediate

supervision. With only the first policy the intermediate supervision approach was equal in
both its loss and accuracy to the multiple instances approach; with two policies it improved
on the single instance approach slightly, but with all of the policies its performance fell sig-
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nificantly. The reason behind this trade-off between the network’s performance at the first
and the final time steps is likely due to two factors, the first one being that the gradients
become weaker as the model’s effective depth increases at higher time steps, allowing the
gradients from the first time step to dominate. The second reason could be that during the
first time step LSTM’s memory and hidden state tensors are both zero, and the gradients
coming from classification produced at this timestep bias memory towards taking up the ob-
served information at the expense of considering memory contents, as these are blank and
the corresponding LSTM gates receive no gradient update. The intermediate supervision ap-
proach looks the most promising, and a few hypothetical ways of improving its performance
could be to initialize memory values randomly at the beginning of each interaction sequence,
boost the gradients coming from latter time steps, and exclude the classification made during
the first time step from supervision. The BN-LSTM approach performed comparably well to
the single instance approach, showing significant gains with only the first policy and small
losses at latter time steps.

These results are yet another example of how the results described in the literature, in this
case Li et. al. [12], do not generalize to more strict active vision settings. However, one
potential future investigation is to borrow the aspect of their approach that they have not
described in their publication and see whether using a separate fully connected classifier
layer for every time step of the network can improve temporal robustness. Combinations of
these different approaches should also be tested as they may exhibit synergistic effects.

4.6 Recurrent Memory Variants

4.6.1 Motivation and Objectives

Previous sections have completed all of the preparations needed for comparing different
memory variants against each other using the COV method. Section 4.3 has appraised sev-
eral hardcoded attention policies and combined them into a sequence that acts as a controlled
substitute for the attention module; Section 4.4 has evaluated different feedforward aggrega-
tion strategies to estimate the combined value of the chosen attention policy sequence; and
Section 4.5 has addressed the question of temporal robustness and selected an approach for
training the model alongside the COV method. The objective of this section is to make use
of the materials prepared in the aforementioned sections and to employ the COV method to
evaluate several recurrent memory variants.

Although this has not been discussed previously, the results in Sections 4.4.3 and 4.5.3 reveal
that the spatial concatenation strategy for combining multiple observations is superior to
the LSTM recurrent memory variant. This casts doubt on a fundamental assumption that
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structured much of prior active vision research in deep learning, as it questions whether
using recurrent memory to aggregate the output of a feature extractor is the right approach.
The experiments in this section are aim to find out whether a recurrent memory variant can
achieve performance comparable to that of the spatial concatenation aggregation strategy, so
as to either motivate or demotivate future research into alternatives to employing recurrent
memory in the way the recurrent attention models do.

A secondary objective of this section is to investigate a novel data structure called the
WhereWhat matrix, abbreviated with WW. The motivation behind it was to create and inves-
tigate a data structure that supports the separation between the content of the image and the
location of said content in the image, analogously to the division of the human visual system
into the dorsal “where‘ and ventral “what“ streams [98]. This data structure was designed
to support future attempts at implementing a dorsal stream for investigating active vision
attention; however, these investigations were not conducted in this project and were instead
left for future work.

4.6.2 Materials and Methodology

All experiments in this section were conducted using Pytorch 1.10.0+cu102 on a PC running
Ubuntu 18.04 with a GeForce GTX 1080 Ti and an Intel Core i7-7700. The visual task is
bird species classification on the Caltech-UCSD Birds 200-2011 dataset [61] that has been
previously described in Section 3.3.2.

The experiments in this section compare four variants of recurrent memory, with two variants
operating on input that is of a novel data structure. All aspects of the architecture are kept
constant between the different variants tested, aside from the memory network, the operation
processing feature maps before passing them to the memory network, and the input size of
the fully connected classifier network. As during previous experiments, all models utilize a
single 37x37px image patch as the sensor and a ResNet18 [47] pre-loaded with ImageNet
weights [30] as the feature extractor. All of the variants remove ResNet18’s fully connected
layer and the two variants testing the novel data structure replace the preceding adaptive
average pooling operation with a novel operation that is described below. The output of the
feature extractor feeds the recurrent memory variant, the hidden state of which is used as
input to a fully connected classifier layer that has 200 log softmax output units.
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Figure 4.9: A diagram representing the modified recurrent attention model when using the
WW memory variants. The memory hidden state tensor h is also a WW matrix. The variable
a is the output classification scores and variable l is the image location that the network is
fixating upon.
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The four recurrent memory variants tested are the RNN, the LSTM, the WW-LSTM and the
WW-RNN. The gated recurrent unit [62] has not been tested; it can be understood as a com-
promise between the simple Elman RNN and the more complex LSTM and thus there is no
reason to believe it should behave significantly different from these two memory variants.
The LSTM network [57] matches the architecture used in Section 4.5, whereas the RNN

variant implements a simple Elman recurrent neural network [99] with the tanh activation
function applied to both the hidden state and the output of the network; both of these vari-
ants have their hidden and memory tensor sizes set to 512, which also equals their input
size.

Figure 4.10: Colour-coded diagrams depicting the WW operation applied to a 4x3x3 feature
map with W = 6 distributions. The distributions scan the feature maps across the channel
dimension and their products with the feature maps are spatially summed to produce the WW
matrix. Left: a unique colour has been applied to each distribution in the WW operation’s
weight tensor; the corresponding rows in the output WW matrix have been colour coded to
match. Right: a unique colour has been applied to each channel in the input feature map;
the corresponding columns in the output WW matrix have been colour coded to match.

The WW prefix in the WW-LSTM and WW-RNN memory variants refers to a novel data
structure called the WhereWhat matrix. The matrix is produced out of unpooled feature
maps, which in this case is a ResNet18. In a manner similar to how the convolution opera-
tor slides a kernel with a restricted receptive field across the spatial dimensions of an image
input and sums the product of its coefficients and the input image, the WW matrix is pro-
duced by sliding a weight tensor across the channel dimension of a feature map input and by
summing the product of the weight tensor’s coefficients and the input features. The weight
tensor of the WW operation has a user-defined number of channels, denoted with W , and a
set of spatial dimensions equal to the spatial dimensions of the input feature maps; its shape
is (width, height,W ) whereas the shape of the input is (channels, height, width). The re-
sulting WW matrix has a shape of (channels,W ), which is where the “WhereWhat“ name
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comes from; the “what“ refers to the channels dimension that corresponds to the convolu-
tional feature channels of the input, describing the content of the image. The “where“ refers
to the W dimension that corresponds to global spatial distributions of the input, describing
where in the field of view are the features located. Figure 4.10 depicts a diagram that uses
colour-coding to provide an intuitive understanding of the WW matrix and the operation
used to produce it. In this section the W parameter is set to 10.

Figure 4.11: A diagram depicting the similarity between WhereMix and WhatMix operations
and the 1x1 convolution operation when applied to a 6x4 WW matrix.

One way to understand the WW operation is to view it as a series of W learnable pooling
kernels that reduce each feature map of a pre-defined size down to a single value; with W = 1

its output size would be equal to that of an adaptive average pooling layer. Alternatively, the
WW operation can be understood as a mean of implementing an inductive bias of channel-
invariant global feature extraction, just like the convolution operator implements an inductive
bias of spatially invariant local feature extraction. The resulting WW matrix can have one
of three operations performed on it: it can be flattened and passed to a fully connected
layer, or it can be “mixed“ along one of its two dimensions with either a WhereMix or a
WhatMix. A WhereMix refers to scanning the WW matrix with a (1,Win,Wout) kernel
along its first channels dimension, summing the product of its coefficients and the matrix
elements. A WhatMix refers to scanning the WW matrix with a (channels, 1, channelsout)

kernel along its second W dimension. Each of the mixing operations can be implemented
using a 1x1 convolution applied to either canonically oriented or a transposed view of the
WW matrix. Figure 4.11 visualizes how the two mixing operations can be implemented with
1x1 convolutions, whereas the code shown in Listing 4.1 implements the WW operation and
the two mixing operations.
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Listing 4.1: A code excerpt showing an implementation of the WhatMix, WhereMix and the
WW operations.

import torch

import torch.nn as nn

class WW_module(nn.Module):

"""

Operation for producing a WW matrix. Expected input shape: (B,

channels, height, width)

Args

- in_shape: input feature maps dimensions, excl. batch dim

- out_channels: W dim (num of distributions)"""

def __init__(self, in_shape, out_channels):

super(WW_module, self).__init__()

self.W = nn.Parameter(torch.FloatTensor(torch.Size(

(1,1,) + in_shape[1:] + (out_channels,))))

torch.nn.init.xavier_uniform_(self.W)

def forward(self, x):

x = x[..., None] * self.W

return x.sum(dim=(2,3))

class WhatMix(nn.Module):

def __init__(self, in_shape, out_shape, bias=True):

super(WhatMix, self).__init__()

self.conv = nn.Conv1d(in_shape[0], out_shape[0], 1, bias=bias)

def forward(self, x):

return self.conv(x)

class WhereMix(nn.Module):

def __init__(self, in_shape, out_shape, bias=True):

super(WhereMix, self).__init__()

self.conv = nn.Conv1d(in_shape[1], out_shape[1], 1, bias=bias)

def forward(self, x):

x = self.conv(x.transpose(1,2))

return x.transpose(1,2) #revert to original orientation
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The hypothesis motivating the use of the WW data structure is that it will introduce a useful
inductive bias into the data processing stream by encoding information about global spatial
distributions in the feature maps. In this section only the WhereMix operation has been used
as it introduces a much lower parameter count. The fully connected layers in the RNN and
in the LSTM’s gates have been replaced with the WhereMix operation for these networks’
WW variants. The hidden and memory tensors of the WW-LSTM and the WW-RNN networks
are all WW matrices that are flattened before being passed to the fully connected classifier
network. This results in a much larger parameter count, but it is significantly off-set by
the use of the parameter-efficient WhereMix inside the network. The total model parameter
counts in this section are 12,201,592 for the WW-LSTM variant, 12,200,972 for the WW-RNN

variant, 13,378,312 for the LSTM variant and 11,804,424 for the RNN variant. In the WW
variants the majority of parameters are held by the classifier network that has to process
a very large hidden state tensor with a fully connected network, whereas the majority of
parameters in the non-WW variants are held by the memory networks. No other changes are
made to the WW variants of the LSTM and the Elman RNN networks besides replacing the
fully connected layers with WhereMixes and changing the memory and hidden tensors’ data
structure.

The 4 model variants were each trained on the [medium], [medium, high], and [medium,

high, low] policy sequences, with each training run being repeated over 3 different RNG
seeds: 1, 9 and 9001 resulting in a total of 36 training runs. Unlike in previous experiments,
this time the RNG seed used in the data sampler was also varied so as to increase the vari-
ability between runs. The maximum number of training epochs was set to a 100, with early
stopping triggering if validation accuracy did not improve after 40 epochs. The batch size
was set to 16, the optimizer used was SGD with momentum set to 0.9 and weight decay set
to 5.0e−3. The initial learning rate was set to 5.0e−3 and a scheduler cut it in half every 10
epochs. All part locations had normal noise with std = 4 applied to them using a separate
RNG seed.

4.6.3 Results and Discussion

Figures 4.12 and 4.13 show that the different memory variants have performances that are
clustered together based on their underlying data structures, with the WW variants peforming
similarly to each other and better than the non-WW memory variants. The WW variants ex-
hibit significantly lower training losses, suggesting that these models enjoy more expressive
power and a greater ability to fit the data. This could be either due to the WW matrix and its
operations contributing useful inductive biases, or it could be due to the increased size of the
hidden state tensor and the fully connected classifier layer. In terms of validation accuracy
all variants perform similarly well with the [medium] and [medium, high] sequences, with
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the WW-LSTM edges out the competition.

Figure 4.12: Best losses of modified recurrent attention models using different memory vari-
ants. Each data point represents the best result achieved during a training run with the model
trained on a different policy sequence. Lines represent mean values, shaded regions repre-
sent the standard deviation.

With the full policy sequence the WW variants do noticeably better than the vanilla RNN
and LSTM. The non-WW memory variants see a performance decrease between the two
time step and the three time step sequences, whereas the WW variants see gains instead.
This could be due to the WW operations improving memory’s ability to ignore the low
value observation; however, the mechanism by which this could be happening is not clear
and clarifying it is left for future work. Out of all the variants tested the LSTM appears
the worst, as it has a low performance and the highest parameter count. The WW variants
have comparable parameter counts to the RNN and perform significantly better on the full
sequence.

All of the variants tested appear capable of forgetting lower value information in the face
of a high value observation and of combining information across observations, as their per-
formance at [medium, high] is consistently higher than that of the individual policy’s value.
However, there is still a considerable gap in performance between the spatial concatenation
strategy and the best performing variant. These results show that although the novel sug-
gested data format offers a significant improvement to recurrent active vision memory, it
is not enough to overcome a much simpler aggregation strategy. It is likely that the mem-
ory data format has to preserve spatial information of each observation in order to beat this
benchmark.
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Figure 4.13: Best validation accuracies of modified recurrent attention models using different
memory variants. Each data point represents the best result achieved during a training run
with the model trained on a different policy sequence. Lines represent mean values, shaded
regions represent the standard deviation.

The operation that constructs the WW matrix is strictly speaking an extension of feature
extraction, although it compels a different structure for the LSTM as using fully connected
layers at its gates would cause a large parameter count that would significantly complicate
training. This warrants re-appraising the individual and combined hardcoded attention poli-
cies with an appraisal model that utilizes the WW operation; however, that is left for future
work. It is also worth noting that no extensive hyperparameter search was conducted on
the WW variants. The WW variants should be tested against un-pooled vanilla memory vari-
ants, as their low training losses raise the possibility of these variants’ improved performance
being a result of a larger hidden state tensor and a wider fully connected classifier layer.

4.7 Conclusion

This chapter presents active vision research that was conducted in a granular and tightly
scoped manner, in line with the prescriptions laid out in Chapter 3. A novel method for
investigating memory without relying on a learnable attention mechanism was laid out in
Section 4.2; it argued that hardcoded attention policies can be appraised and used to control
the value of each observation the system makes and that this can provide useful insight into
memory’s functional characteristics.

Section 4.3 implemented the aforementioned method by hardcoding, appraising and se-
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quencing a number of attention policies for the Birds dataset. Section 4.4 used the sequenced
policies to collectively evaluate them; it has revealed that concatenating the observations in
input space performs really well as an aggregation strategy. The concept of temporal robust-
ness has been introduced and evaluated in Section 4.5, filling in the final gap of the proposed
method for investigating memory.

Section 4.6 evaluated a number of different recurrent memory variants, two of which con-
sisted of a novel data structure - the WhereWhat matrix - and two operations specifically
tailored to processing it. Memory variants utilizing the novel data structure performed sig-
nificantly better than those that without it, but it wasn’t enough to close the performance gap
between recurrent memory and the spatial concatenation strategy.

This chapter presents an argument for using the COV method and for collectively appraising
the attention policy sequence in active vision memory research. Temporal robustness was
shown to be a relevant concern for memory that has no adequate solutions described in the
literature. The results call into question a fundamental assumption that structured much of
active vision research in deep learning; they do so by motivating the pursuit of approaches
to active vision memory that are different to the Recurrent Attention Model architecture that
was described in Section 3.2.2. The results suggest that an approach which shares functional
characteristics with the spatial concatenation strategy might be preferable. A memory im-
plementation different than the spatial concatenation strategy is highly desirable as it does
not translate to more complex vision tasks, such as segmentation or object detection, in a
straightforward manner. Based on the experiments conducted in this section the author be-
lieves that an effective memory implementation must preserve spatial information in its data
format so as to facilitate further feature extraction.
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Chapter 5

Attention

Abstract: The previous chapters of this thesis have established an active vision framework,

investigated active vision memory and covered the software retina sensor. This chapter ex-

plores a number of questions focusing on the last remaining aspect of active vision: atten-

tion. Section 5.2 introduces a training curriculum for attention and demonstrates its benefits.

Section 5.3 looks at the impact of the peripheral sensor image on classification and provides

evidence suggesting that active vision systems might benefit from utilizing a two stream ar-

chitecture. Section 5.4 proposes predictive attention, which is an alternative to using rein-

forcement learning for obtaining an attention policy. Finally, section 5.4.3 demonstrates the

feasibility of using the hardcoded attention spotlight as a functional component of predictive

attention.

5.1 Motivation and Objectives

The overarching goal of this thesis is to advance the understanding of active vision in deep
learning through developing and investigating an active vision architecture. To that end, this
chapter explores the central problem of active vision: attention, or the means by which an
active vision system decides where to look.

Active vision attention can be developed either as an integral part of the vision system’s neu-
ral network architecture, or in the form of a stand-alone algorithm. The integrated approach
is the one that was employed in this chapter. This was motivated by the fact that developing
a stand-alone algorithm is the more challenging option which would likely require designing
features by hand instead of leveraging deep learning. Additionally, active vision attention
needs a form of memory in order to perform functions such as inhibition of return which,
if implemented separately from the neural network vision components, would require dupli-
cating much of the functionality already present in the system.
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The experiments conducted in Section 3.3 have shown that reinforcement learning alone is
not sufficient for enabling the active vision system to choose where to look in an effective
manner. There is a breadth of reinforcement learning literature that could be employed in
trying to improve on these results, while literature focused on integrated approaches that
do not employ reinforcement learning is scarce. This chapter focuses on addressing this
knowledge gap by investigating alternatives to reinforcement learning in developing active
vision attention. The results obtained so far are sufficient in motivating the pursuit of novel
approaches for training active vision attention, and this thesis has a better chance at produc-
ing a novel contribution by addressing a fundamental knowledge gap rather than by trying
to integrate and improve upon the already mature and well-studied body of reinforcement
learning literature.

The RAM architecture has been previously described in the literature review in Section 3.2.2
as the most mature and most commonly used architecture for active vision in deep learning,
and it has been used extensively throughout this thesis. However, the results in Sections 4.4.3
and 4.6.3 showed that a simple spatial concatenation in the input space is a superior approach
to memory in terms of classification performance. This is strong evidence in favour of sup-
planting the RAM architecture with a system that uses a different memory mechanism alto-
gether. As developing and investigating a novel memory mechanism is left for future work,
the specifics of its implementation are not known at this point in time. This complicates
researching active vision attention, as the specifics of the attention mechanism’s implemen-
tation are dependant on the model’s architecture. In addition, researching and developing
complete attention mechanisms using the RAM architecture as a platform risks producing
results with limited generalizability.

This chapter addresses these concerns in several ways. Firstly, it explores research questions
that are to a significant degree invariant to the implementation details of the attention mecha-
nism. Secondly, it performs experiments using two models that utilize significantly different
memory mechanisms. Lastly, it proposes a novel attention mechanism and investigates one
of its aspects independently of any active vision model or memory mechanism.

5.2 Curriculum Learning

5.2.1 Motivation and Objectives

Curriculum learning for memory has been previously investigated by Li et. al. [12]. Al-
though the results in Section 4.5.3 have found that curriculum learning for memory hinders
performance in an active vision setting, the question of curriculum learning for attention re-
mains unaddressed. As curriculum learning is a data-centric approach that is invariant to the
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internal workings of the model, it is an appealing subject of study for producing results that
can generalize to future active vision architectures.

The objective of the experiments conducted in this section is to find out whether varying
sensor parameters throughout training can improve an architecture’s learned attention policy,
as measured by its classification performance. The sensor will be parameterized to have a
large field of view that gets progressively narrower throughout training. The motivating
hypothesis is that a visual sensor with a larger field of view will make the attention task
easier by being more forgiving of inaccurate fixations and by enabling the extraction of more
visual information from the scene. The gradual scaling of the task’s difficulty will allow the
attention module to first learn simple policies and refine them as the curriculum progresses,
resulting in improved performance relative to regular training.

It is worth noting that the exact opposite happens during human development: due to be-
ing unable to focus on distant objects infants start out with bad eyesight that progressively
becomes better [100]. This might have a similar curriculum-like effect on their vision that
initially simplifies the attention task by forcing the infant to focus on motion and large-scale
features, and only later gradually increasing the amount of information they have to process.

5.2.2 Materials and Methodology

All experiments in this section were conducted using Pytorch 1.10.0+cu102 on a PC running
Ubuntu 18.04 with a GeForce GTX 1080 Ti and an Intel Core i7-7700. The visual task is
bird species classification on the Caltech-UCSD Birds 200-2011 dataset [61] that has been
previously described in Section 3.3.2.

Stage Epochs Patch Size Peripheral Patch Scaling Factor
#1 1-25 148x148px 2.5
#2 26-50 111x111px 3.333
#3 51-75 74x74px 5.0
#4 76-100 37x37px 10.0

Table 5.1: The details of each attention curriculum stage. Note that the size of the peripheral
patch before rescaling is kept at a constant 370x370px, meaning that the scaling factor is
indicative of the peripheral patch’s acuity.

The experiments in this section compare models trained with and without an attention cur-
riculum that comprises of modifying the models’ sensor parameters. In all cases the models’
attention modules are trained using reinforcement learning; full details about the reinforce-
ment learning algorithm used can be found in the original RAM paper [10] as well as the
DRAM paper [11]. Models trained without the attention curriculum utilize a sensor that
extracts two overlapping patches out of the input image: a foveal patch of 37x37px and a
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peripheral patch consisting of a 370x370px image patch that has been downscaled to match
the foveal patch’s dimensions. Note that this is not the sensor configuration that has been
used in the experiments in Chapter 4 as in that chapter the sensor consisted of only the sin-
gular, foveal patch. Models trained with the attention curriculum also utilize a sensor with
two patches, with the foveal patch changing as the curriculum progresses and the peripheral
patch always being a 370x370px patch that is rescaled down to match the dimensions of the
foveal patch. Unlike the previously investigated memory curriculum which used the model
weights from a previous training run as the initialization of the new model weights, the atten-
tion curriculum is executed during a single training run, with each of its four stages having a
pre-defined duration (N = 25) in the number of training epochs. Table 5.1 shows the sensor
parameters and the epochs during which they are applied. Note that the parameters at the
final stage of the curriculum match those of the non-curriculum sensor. As the curriculum
progresses, the field of view of the foveal patch narrows and the peripheral patch effective
resolution decreases.

The two models used in these experiments consist of a modified RAM architecture with
the WW-LSTM (defined in Section 4.6.2 as its memory mechanism and a model utilizing
spatial concatenation (an expanded version of the spatial concatenation aggregation method
defined in Section 4.4.2) as its memory mechanism. For simplicity these two models are
referred to as WW-LSTM and SpaCat respectively. The use of two different models for this
evaluation is motivated by the aim of producing results that are more generalizable to future
active vision architectures, as previously discussed results have motivated the development
of a system to supplant the RAM architecture. Both models were set to execute 5 time steps
of interaction with the scene. The WW-LSTM model is almost identical to the architecture
that has been previously described in Section 4.6.2 and was shown in Figure 4.9. The main
difference is that here the output of the WW-LSTM’s memory feeds into two additional
modules: the attention module that determines the next fixation location and the baseline
module used to regularize reinforcement learning. Additionally, the WW-LSTM model in
this section combines the features extracted from the foveal and peripheral image patches by
concatenating their respective WW matrices along the ’where’ dimension.

The SpaCat model’s architecture can be seen in Figure 5.2. It is similar to the WW-LSTM
model as it consists of the same ResNet18 feature extractor and broadly the same attention,
classifier and baseline modules; however, this model aggregates the observations it makes
in the image space, using spatial concatenation. The SpaCat model takes advantage of the
matching dimensions of the peripheral and foveal patches by concatenating them together
vertically to form a single observation image; the different observation images produced at
each timestep are then concatenated horizontally. Figure 5.1 shows the structure of the input
to the SpaCat model. The output of the SpaCat model’s feature extractor passes through a
WW operation before being used as input to the classifier, attention and baseline modules.
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Figure 5.1: A labelled visualisation of the input format of the SpaCat model at the fifth and
final time step, without an attention curriculum. The uniformly gray regions represent zero
padding.

Unlike with recurrent memory mechanisms, the SpaCat model’s memory representation does
not maintain constant dimensions across time: as the model makes more observations it
concatenates more observation images to its input, which in turn grows the size of the feature
map produced by the feature extractor. This is problematic for two reasons, with the first one
being that during long interaction sequences the input might consume an excessive amount
of memory. The other problem is that if no global pooling is used then the size of the feature
extractor’s output will vary with the model’s time step, preventing downstream modules from
using its output directly as conventional fully connected layers expect an input of a fixed size.
In this section this problem is alleviated by padding the SpaCat model’s input with zeros to
always match the shape it would have by the final time step. Additionally, it was found that
the WW operation causes training instabilities and exploding gradients when used in tandem
with large feature maps; to address this the initialization for the WW operation’s weights
was changed to He initialization [101] and a ReLU activation function was applied to the
operation’s output.

In all cases the models were trained for 100 epochs, with no early stopping employed. The
starting learning rate was set to 5.0e−3. The feature extractor used was ResNet18 without
the final average pooling and fully connected layers. The optimizer used was SGD with
momentum set to 0.9 and weight decay set to 5.0e−3. The learning rate scheduler was set
to halve the learning rate if the validation accuracy did not improve by at least 1% over 5
epochs; however, for curriculum learning the internal variables of the scheduler were reset at
the beginning of each curriculum stage. The batch size was set to 16 and the RNG seeds used
were 1, 9 and 9001. Aside from changing the sensor parameters and resetting the learning
rate scheduler’s internal state, the start of a new curriculum stage also replaced the WW
operation weights with new ones; this was necessitated by the fact that the dimensions of
the feature maps produced varied with the curriculum stages, so new weights with updated
dimensions had to be initialized. The attention module consisted of two fully connected
layers, with their input and output sizes being (1024, 512) and (512, 2) respectively. The
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Figure 5.2: A diagram representing the SpaCat active vision model.

first layer utilized the ReLU activation function, and the output layer utilized the the tanh

activation function. The attention module came coupled with a baseline module that predicts
the reinforcement learning reward it is going to get in order to reduce the variance of its loss.



5.2. Curriculum Learning 97

Figure 5.3: Losses of a RAM model utilizing WW-LSTM when trained with and without
attention curriculum. Lines represent mean values, shaded regions represent the standard
deviation.

5.2.3 Results and Discussion

The WW-LSTM losses shown in Figure 5.3 show that even though curriculum learning pro-
vided some benefits, it was not enough to redeem reinforcement learning by preventing the
validation loss from rising throughout training. Interestingly enough, the validation loss for
the curriculum variant has been rising in tandem with the non-curriculum variant up until the
final stage of the curriculum, where it dropped significantly; one explanation for this could
be that the sensor became too narrow to capture the features that the network was previously
overfitting to, which is supported by the massive spike in the training loss that occurred at
the same time. The validation and training accuracies of the curriculum-trained WW-LSTM
model, shown in Figure 5.4, are much more correlated than the models’ losses. Both vali-
dation and training accuracies fall at every stage of the curriculum, and the final validation
accuracies of the curriculum and non-curriculum variants are effectively the same. These
results suggest that the proposed attention curriculum has the potential to influence the WW-
LSTM model’s overfitting, but it does not appear to have an effect on its final performance
in terms of classification accuracy at validation time.

The losses for the SpaCat model shown in Figure 5.5 show a slightly different effect to that
seen in the loss plot of the WW-LSTM model. The validation loss can also be seen to de-
crease at the final stage of the curriculum, but not to the same extent. The SpaCat model
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Figure 5.4: Accuracies of a RAM model utilizing WW-LSTM when trained with and without
attention curriculum. Lines represent mean values, shaded regions represent the standard
deviation.

Figure 5.5: Losses of a spatial concatenation model when trained with and without attention
curriculum. Lines represent mean values, shaded regions represent the standard deviation.
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Figure 5.6: Accuracies of a spatial concatenation model when trained with and without
attention curriculum. Lines represent mean values, shaded regions represent the standard
deviation.

trained without curriculum learning has had its validation loss rise, but the curriculum vari-
ant’s loss remained nearly constant between the start and the end of training. The proposed
attention curriculum has reduced the SpaCat model’s overfitting to a much greater extent
than it has for the WW-LSTM model. The accuracy plot in Figure 5.6 shows that the atten-
tion curriculum variant’s validation accuracy is slightly higher and that it has not fully settled
by the end of training, suggesting that the model would have likely benefited from extending
the final curriculum stage.

Overall these results motivate a further exploration of attention curriculum learning as the
method has the potential to reduce overfitting across different active vision architectures with
different memory mechanisms. There is nothing about these results suggesting that this ef-
fect might generalize to methods other than reinforcement learning, but at the same time any
hypothetical reasons as to why it should not generalize are not immediately obvious. It is
worth noting that many details of the curriculum implementation, such as utilizing cosine an-
nealing or other cyclic learning rate schedules, were not explored and that there is significant
potential for optimising the proposed approach. One hypothetical aspect of this experiment
that could be confounding these results is that the raw volume of visual information used in
training the feature extractor is much bigger for the curriculum-trained models. This might
have led to better feature extractor performance, but it is not very likely as prior results in
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Section 3.3.4 have shown that models with a larger field of view are more likely to overfit
the training data; nonetheless, this could be addressed in future work by using a pre-trained
feature extractor with frozen weights.

5.3 Foveal and Peripheral Vision

5.3.1 Motivation and Objectives

A foveated visual sensor presents itself as a potentially useful tool in developing an active vi-
sion system’s attention mechanism, as its low resolution peripheral view enables evaluating
a large area of the scene for potentially interesting regions using relatively little computa-
tional resource. However, the impact of the peripheral view on the system’s classification
performance is not clear. Prior results in Section 3.3.4 have shown that a sensor with a wider
field of view can perform worse than one with a narrow field of view if it fails to fixate on
valuable parts of the scene. At the same time there is the possibility that a low resolution
peripheral view could promote overfitting to the training data as it may contain global image
statistics that are sample-specific yet not informative of the bird species in the image. This
raises the question of whether the peripheral patch can be detrimental or simply unnecessary
to an active vision system’s classification performance.

The objective of this section’s experiments is to investigate the peripheral view’s impact
on classification performance. Although this experiment does not directly investigate the
issue of learning an attention policy, it aims to inform an architectural decision that will
have a significant impact on the development of active vision attention. In all two-patch
experiments conducted thus far in this dissertation the foveal and peripheral image patches
were processed in a single, unified stream that feed information to both the classifier and the
attention mechanism. The experiments in this section will inform whether the foveal and
peripheral data should be instead processed in two separate streams. As the results obtained
in the previous chapter suggest that recurrent memory is not the optimal solution for active
vision memory, the experiments in this section will be conducted using both the recurrent
WW-LSTM architecture introduced in Section 4.6.2 and the SpaCat architecture introduced
in Section 4.4.2.

5.3.2 Materials and Methodology

All experiments in this section were conducted using Pytorch 1.10.0+cu102 on a PC running
Ubuntu 18.04 with a GeForce GTX 1080 Ti and an Intel Core i7-7700. The visual task is
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bird species classification on the Caltech-UCSD Birds 200-2011 dataset [61] that has been
previously described in Section 3.3.2.

The experiments in this section compare models trained with two different sensor configura-
tions: one using only the foveal patch and another configuration using the peripheral patch
together with the foveal patch. The foveal patch dimensions are 37x37px and it does not
involve rescaling the cropped out image content, whereas the peripheral patch extracts a
370x370px area of the image and downscales it ten-fold to match the foveal patch’s dimen-
sions. In order to isolate the influence of learnable attention on classification results and to
produce results representative of using an effective attention policy, all models trained in this
section utilize the [medium, high, low] hardcoded attention policy sequence that was previ-
ously described in Section 4.3. As memory is not the focus of the evaluation in this section,
the COV method previously described in Section 4.2 has not been employed.

The two models used in these experiments consist of the WW-LSTM and the SpaCat archi-
tectures previously described in Section 5.2.2. As the models utilize the [medium, high, low]

policy sequence they are set to execute 3 time steps of interaction with the scene and their
attention and baseline modules are disabled. The RNG seeds used are 1, 9 and 9001. The
maximum number of training epochs was set to a 100, with early stopping triggering if vali-
dation accuracy did not improve by at least 1% within 40 epochs. The batch size was set to
16, the optimizer used was SGD with momentum set to 0.9 and weight decay set to 5.0e−3.
The initial learning rate was set to 5.0e−3 and a scheduler cut it in half every 10 epochs. All
fixation locations had normal noise with std = 4 applied to them using a separate RNG seed.

5.3.3 Results and Discussion

Figures 5.7 and 5.8 show that all models have obtained comparable performance on the
validation set aside from the WW-LSTM variant utilizing both the foveal and peripheral
patches, which performed worse in terms of both validation accuracy and validation loss.
That variant has also fitted the training set the fastest out of all the variants tested; its training
loss is the first to approach 0 and its training accuracy is the first to approach 100%. This
suggests that the foveal+peripheral WW-LSTM variant has performed relatively poorly due
to overfitting facilitated by the peripheral patch.

The invariance of the SpaCat model’s performance to the presence of the peripheral patch
suggests that spatial concatenation in the input space supports ignoring overfitting features
present in the periphery; this is most likely facilitated by the peripheral patch always occu-
pying the same location in the observation image, enabling the feature extractor to reliably
learn to ignore its contents at the level of its convolutional weights. In contrast, the WW-
LSTM model merges the foveal and peripheral data after feature extraction, leaving much
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Figure 5.7: Accuracies obtained by the WW-LSTM and SpaCat models, with and without the
peripheral sensor patch. Lines represent mean values, shaded regions represent the standard
deviation.

less network depth to selectively suppress the peripheral data. This result suggests that if
the peripheral and foveal images are to be fused then an early fusion is preferable; this is an
insight that is similar to that found in Chapter 4 where spatial concatenation of multiple ob-
servations in the input space was found to outperform recurrent memory in the latent space.
A broader insight might be drawn from this to say that these results support the leveraging of
the feature extractor architecture in processing data present in disparate views of the scene.

The peripheral patch does not appear to have provided value to the classification task in any
of the test cases, and has proven to be detrimental in one case. This result motivates the
pursuit of active vision architectures that employ two separate processing streams: a foveal
stream for classification and, as the hypothetical benefits to feeding the attention mechanism
with foveal information are not clear, a peripheral stream for attention. This is in line with
prior findings in physiological vision research in the work of Clayden et. al. [102]. Fur-
ther questions are raised regarding memory and feature extraction, namely whether attention
needs visual memory or whether a form of memory that consolidates proprioceptive informa-
tion in the form of past fixation locations would suffice, and whether a shape-biased feature
extractor would confer benefits over texture-biased CNNs [103], but investigating these is
left for future work. The performance gap between the WW-LSTM and the SpaCat model
that was previously observed in Chapter 4 is not present in the results for the foveal-only
variants; this is most likely due to the SpaCat architecture being different from the spatial
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Figure 5.8: Losses obtained by the WW-LSTM and SpaCat models, with and without the
peripheral sensor patch. Lines represent mean values, shaded regions represent the standard
deviation.

concatenation architecture used in Section 4.4 as SpaCat’s classification performance is no-
tably lower.

5.4 Predictive Attention

5.4.1 Introduction

In a paper that predates the current deep learning boom by more than two decades Schmidhu-
ber & Huber [83] describe an architecture for aligning an artificial fovea with a target object.
The authors use a model network, i.e. a network that models the environment dynamics, as
a substitute for backpropagating gradients through the environment in order to bypass the
need for reinforcement learning. The model network takes as input the current environment
state and the action to be taken by the architecture, meaning a view of the scene and the next
fixation location, to predict the state of the environment after completing the action. The
model network is trained in an unsupervised manner using random fixations. The difference
between the model network’s predicted view and the desired view is then used to compute
gradients for training the controller network that guides the artificial fovea to the desired
location at test time.
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Although the work of Schmidhuber & Huber [83] only solves a toy active vision problem,
the model-based approach presents itself as an opportunity for training active vision atten-
tion without resorting to reinforcement learning. Other model-based approaches have seen
significant use in reinforcement learning for robotic control, yet there have been no investi-
gations into utilizing such an approach for learning an active vision policy in deep learning.
The most closely related approach within active vision literature is that of Jayaraman et. al.
[13] who repurposed the model network, dubbed in their approach as the predictive mod-
ule, to provide an additional, unsupervised source of gradients for training a part of their
architecture.

Motivated by the poor results produced by reinforcement learning in Section 3.3, this section
proposes the pursuit of learning an active vision attention policy using a mechanism for
modelling the visual scene. Within this thesis, this approach is referred to as predictive
attention. The goal of proposing predictive attention is to provide a research direction that
guides future investigations towards an alternative to reinforcement learning.

5.4.2 Proposal and Discussion

The heart of predictive attention is the idea of using a modelling mechanism as a means of
getting classification loss to produce gradients for training an attention policy. The approach
described in the work of Schmidhuber & Huber [83] cannot be directly transposed onto con-
temporary deep learning vision systems because the problem tackled by that approach was
too simple; it did not involve classification as it only focused on aligning a virtual sensor, and
it utilized a simple, synthetic dataset. In addition, their architecture did not incorporate a fea-
ture extractor, and therefore did not utilize any latent spaces that complicate the development
of predictive attention.

Figure 5.9 shows a conceptual starting point for predictive attention and explains the core
idea behind it; it is not a complete representation of the proposed approach, but rather a sim-
plified example used in the way of opening a discussion. In this architecture sketch, as sug-
gested by the results from Section 5.3.3, the classification stream only utilizes information
extracted from the foveal patch. The peripheral patch meanwhile is passed to the attention
mechanism and, alongside the fixation coordinates produced by the attention mechanism,
to the modelling mechanism. The modelling mechanism has been pre-trained to predict the
foveal view at the specified coordinates using the peripheral view. The predicted foveal view
is passed to the classifier, the output of which is then compared against a target to compute
predictive attention loss. This loss is used to backpropagate gradients through the modelling
mechanism all the way back to the attention mechanism. In this formulation, during the pre-
dictive attention backward pass, the modelling mechanism’s weights are frozen, i.e. they are
not updated.
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Figure 5.9: Diagrams showing a simplified overview of predictive attention. The sensor, fea-
ture extraction and memory have been omitted for simplicity. Red corresponds foveal view
information, blue corresponds to peripheral view information, green corresponds to infor-
mation pertaining to the next foveal view. x, y represents fixation coordinates, at represents
classification output, while pat represents a predictive attention classification output. Top:
the organisation of the architecture at inference time. The peripheral view drives the attention
mechanism to produce the next fixation location, while the foveal view drives classification.
Bottom: the organisation of the architecture’s predictive attention components at training
time. The peripheral view drives both the attention and the modelling mechanisms. The pre-
dicted next foveal view, represented as the green diamond, is used as input to the classifier
to produce a classification of what the stream predicts that it will see. This classification is
instrumental in training the attention mechanism.

This simple example helps explain how predictive attention is intended to train an atten-
tion policy with classification loss. It also helps outline some of the issues that need to be
addressed in the pursuit of predictive attention, the first one being the problem of the classi-
fier’s input domain. In the example shown in Figure 5.9, the output domain of the modelling
mechanism is the same as the input domain of the classifier. This implies that the classifier
has to have been trained before the modelling network’s training commenced, which further
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implies that the classifier must have been trained without an attention policy as, after all,
training an attention policy requires predictive attention. In other words, the different parts
of this architecture are subject to circular dependencies during training. One hypothetical
way to address this issue is to train this architecture in multiple phases, starting with an
unsupervised bootstrapping phase that can train one of the necessary components indepen-
dently of the others. Another way is to structure the backwards pass in such a way that all of
the different parts of the architecture can be trained simultaneously.

Figure 5.10: A diagram showing the decomposition of predictive attention into its functional
parts: soft selection, feature prediction and domain translation. ’Soft’ refers to the ability of
gradients to be backpropagated through the soft selection mechanism. There is no immedi-
ately obvious theoretical constraint on where to apply soft selection within the decomposed
approach. x, y represents fixation coordinates, while pat represents a predictive attention
classification output.

The second issue related to predictive attention involves the modelling mechanism’s forward
pass, as it can be either structured in an end-to-end fashion or in a decomposed manner. Both
the model network of Schmidhuber & Huber [83] and the predictive module of Jayaraman et.
al. [13] are end-to-end approaches that utilize a fully connected layer which maps directly
from an environment state and an action to a new environment state. The example shown at
the bottom of Figure 5.9 also represents an end-to-end approach. The alternative is to split
the modelling mechanism into multiple functional steps. These steps are: using the input
coordinates to select an area in the peripheral view, predicting the content of the selected area
as though it was viewed via the foveal region of the sensor, and representing that prediction
in the latent space that is used as the classifier input. The first step of selecting an area of the
peripheral view is elaborated upon in the next section (5.4.3). The second step, predicting the
contents of the selected area as though they were viewed by the fovea, is closely related to
image super resolution approaches as it predicts high frequency content from a low resolution
representation. However, one significant difference is that the modelling mechanism is not
expected to fully reconstruct all of the high resolution details but only those that are relevant
to classification. The final step, of representing the predicted contents in the input domain of
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the classifier, can be either accomplished implicitly as a part of the previous step or explicitly
as a latent space translation task. This decomposition of predictive attention is visualized in
Figure 5.10.

The third and final issue highlighted by the above example is the fact that designing the
backward pass of predictive attention, which details how classification gradients are used to
train an attention mechanism, is an open ended problem that can be approached in a number
of different ways. Three example approaches to its design are discussed alongside other
future work in Section 6.2.2.

Listing the challenges inherent to predictive attention makes it clear that within the scope of
this thesis it can only be pursued in a limited manner, as its development will be subject to
several dependencies with the active vision architecture that it will be integrated with. The
most notable dependency between predictive attention and the active vision system involves
the input domain of the classifier, as the classifier always follows the memory mechanism
which is subject to change since the results from Sections 4.4.3 and 4.6.3 have suggested the
superiority of a simple spatial concatenation over the RAM architecture. The most feasible
way for this thesis to contribute to the pursuit of predictive attention is to decompose the
modelling mechanism’s function and investigate one part of it in isolation. The following
section investigates an approach for implementing the first functional step of the modelling
mechanism: soft selection.

5.4.3 Hardcoded Attention Spotlight

Motivation and Objectives

The main objective of soft selection is to enable backpropagation from a latent feature space
to x,y coordinate space so that the gradients which encode a desired change to the predicted
foveal view can be translated into gradients that express a desired change in the input fixation
coordinates. A simple ’hard crop’ would not be acceptable, as it would completely mask
out all regions of the peripheral view other than the region immediately surrounding the
specified coordinates; if the information contained in those regions is not exposed to latter
parts of the architecture then it would be impossible for backpropagation gradients to express
a preference for information contained within those regions.

The proposed method for implementing soft selection for decomposed predictive attention
is called the hardcoded attention spotlight, abbreviated to HAS. ’Hardcoded’ refers to the
fact that this method is not learnable. HAS can be thought of as an interface between the
classification and attention streams in active vision, which is an essential component for
developing decomposed predictive attention approaches. The role of the HAS algorithm is
to produce an attention matrix to be multiplied with an input peripheral image or feature
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map. The attention matrix needs to fulfil a number of requirements in order to enable its use
in predictive attention. It needs to:

1. Predominantly highlight information in the area around specified coordinates in the
peripheral view. This is necessary to select the input information within the field of
view that corresponds to the next fixation location.

2. Partially inhibit, but not completely eliminate information from the rest of the periph-
eral view.

3. Span the full peripheral view no matter the specified coordinates.

4. Facilitate appropriate backpropagation.

(a) Be a form of ’soft attention’, i.e. enable backpropagation into the specified coor-
dinates.

(b) Not be excessively flat; the matrix has to provide a gradient across the spatial
dimensions of the input.

(c) Not be discontinuous or excessively sharp. This is necessary to avoid getting
stuck in a local minima.

Algorithm Overview

The HAS algorithm presented in this section is a proof-of-concept prototype; it has not
been tested within a predictive attention system. Listing 5.1 contains a code excerpt that
shows how the HAS algorithm computes an attention matrix. The attention matrix consists
of the support component that facilitates backpropagation overlaid with the spotlight which
amplifies the information around the fixation point. The attention matrix contains values
between 0 and 1, and is of the same spatial dimensions as the input image. What follows is
first a brief overview and then a more detailed breakdown of the HAS algorithm.

To fulfil requirements 2,3 and 4 listed above, the HAS algorithm uses a Gaussian function
as an infinite support in the attention matrix. This support Gaussian is necessary to maintain
a smooth, spatial gradient at regions that are distant from the specified coordinates. The
Gaussian function is differentiable, enabling backpropagation gradients to flow back into the
coordinates that were used in its computation. To fulfil the first requirement listed above,
constant values are added to the fixation area of the attention matrix. These values constitute
the ’spotlight’ of the attention matrix, as they serve to emphasize the area around the fixation
location. The reason for these values being constants is that by not being derived from the co-
ordinates, they are discarded during differentiation and do not contribute to backpropagation
gradients.
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Computation of the attention matrix by the HAS algorithm can be broken down into three
major steps: computing a distance matrix, computing the support Gaussian, and finally
adding the constant ’spotlight’ values. Comments in the code shown in Listing 5.1 clarify
which step is addressed by each block of code.

1. Given x,y coordinates and the desired size of the matrix, compute the distance matrix.
Each pixel in the distance matrix contains its distance to the specified coordinates.

(a) When using Pytorch: if the specified coordinates are to be optimised via back-
propagation, instantiate them as an instance of nn.Parameter.

(b) Create two matrices, xd containing its own x indices and yd with its own y in-
dices.

(c) Subtract the corresponding coordinate values from the xd and yd matrices.

(d) Use the Pythagorean theorem to compute the distances of each matrix entry to
the specified coordinates.

(e) Clamp the distance matrix to prevent zero values.

2. Use the Gaussian function with the parameters specified in Listing 5.1 to compute the
support component of the attention matrix.

3. Add the constant ’spotlight’ values to the matrix. In Listing 5.1 the constants were
chosen to approximate 1 when summed with the support values.

Using and computing the distance matrix using the method specified above is crucial in
facilitating the backpropagation of gradients from an input image or a feature map and into
a pair of coordinates. Listing 5.1 shows only one example parameterisation of the HAS
attention matrix. It is worth noting that, in line with what is represented in Figure 5.10, the
attention matrix produced by the HAS algorithm can be applied anywhere in the predictive
attention stream, from the input pixel space up to the classifier’s input.

Listing 5.1: A code excerpt showing how to produce the Hardcoded Attention Spotlight
attention matrix at specified fixation coordinates.

import torch

import torch.nn as nn

import numpy as np

### STEP 1: Compute distance matrix

support_size = (9, 9) #size of the HAS matrix
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#spotlight fixation coordinates

x, y = nn.Parameter(torch.tensor([4.0,4.0]))

B = torch.arange(support_size[0]).repeat(support_size[1],1)

xd = B - x

yd = B.T - y

distance_matrix = torch.sqrt((xd**2 + yd**2).clamp(min=1e-6))

### STEP 2: Use distance matrix to compute support Gaussian

def modGaussian(tensor, a, f, c):

return a * torch.exp(-(tensor**f)/(2*c**2))

amplitude = 0.98 # amplitude of the spotlight

spotlight = modGaussian(distance_matrix, 1 - amplitude, 2, 10)

### STEP 3: Add constant values

def int_round(n):

"""Round to nearest integer and cast to int."""

if n - np.floor(np.abs(n)) < 0.5:

return int(np.floor(n))

return int(np.ceil(n))

#Compute spotlight coordinates

width = 3 # pixel width of the spotlight area

from_y, to_y = int_round(y.item()) - width//2, \

int_round(y.item()) + 1 + width//2

from_x, to_x = int_round(x.item()) - width//2, \

int_round(x.item()) + 1 + width//2

#add spotlight to matrix

spotlight[from_y:to_y, from_x:to_x] += amplitude

Materials and Methodology

To demonstrate the feasibility of the HAS algorithm an experiment was devised which aims
to emulate its use with an input feature map when deployed as part of a predictive attention
system. The experiment’s objective is to test whether the spotlight can be guided to a desired
location in the emulated feature map by iteratively updating its fixation coordinates using



5.4. Predictive Attention 111

backpropagation.

A scene was initialized which serves to mimic a noisy feature map; it consists of a tensor
with shape (37,37) filled with random numbers from a normal distribution with mean 0 and
variance 1. A 3x3 area of the scene centered around x, y = [1, 1] is designated to be the
hotspot, with its values set to 40.

The HAS algorithm was set to produce attention matrices equal in size to the dimensions of
the scene. The amplitude of the support Gaussian was set to 0.2 and its variance to 10. It
was initialized at coordinates x, y = [36.0, 36.0], which is at the opposite end of the scene to
the hotspot. This coordinate set-up was chosen for this dissertation as forcing the spotlight
to traverse diagonally across the entire scene is the most adversarial configuration possible.

An SGD optimizer was initialized with learning rate set to 0.06 and with the HAS coordinates
as the only parameters for optimisation. The loss function was set to be the negative of the
spatial sum of a multiplication of the scene with the HAS attention matrix, meaning that the
optimizer was set to modify the HAS fixation coordinates in a way that maximizes the sum of
the values captured by the attention map. The hypothesis is that thanks to SGD optimisation
the HAS fixation coordinates would gradually shift towards the hotspot coordinates at x, y =

[1, 1] due to the hotspot’s high values. The optimisation process was performed iteratively,
with three stopping conditions: the number of iteration reaching 50 000, the loss being the
same for 2 iterations in a row and the HAS coordinates reaching a distance equal to or less
than 0.925 to the hotspot location. The first two stop conditions correspond to failures due to
veering off course and getting stuck in a local minima respectively; the third stop condition
corresponds to success.

In this experiment the constant ’spotlight’ values were not added to the attention matrices. If
they were used they would have been ignored during differentiation and would not influence
the optimisation process; however, they would add excess noise to the resulting loss plots.
The RNG seeds used were 1, 3, 6, 9, 919, 9001, 12345, 42, 1337 and 1984. The values
logged at each iteration are the distance between the hotspot and HAS coordinates as well
as the change in loss relative to the first loss value. The reason for logging change in loss
instead of loss itself is that due to the stochastic nature of the experiment the starting and
ending losses vary drastically between different RNG seeds, and logging change in loss
allows for presenting results that are more regularized.

Results and Discussion

In 7 out of 10 times the optimisation process has completed successfully, with the HAS
coordinates approaching the hotspot location in under 30000 iterations in every case. Figure
5.13 visualizes progress snapshots of one such successful optimisation process. No run has
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Figure 5.11: The losses obtained throughout optimising HAS fixation coordinates with dif-
ferent RNG seeds.

Figure 5.12: The distances between HAS and the hotspot throughout optimising HAS fixa-
tion coordinates with different RNG seeds.

been terminated due to HAS getting stuck in a local minima; however, during preliminary
experiments a local minima relatively near - up to 5px away - the hotspot would occasionally
result in HAS getting stuck. Increasing the standard deviation parameter eliminated this



5.4. Predictive Attention 113

Figure 5.13: A visualisation of the optimisation process conducted in the experiment with
RNG seed set to 9001. Top row images: products of multiplying the scene and the HAS
attention matrices. Bottom row images: the HAS attention matrices. Bottom text: the
timestep, loss and the HAS coordinates corresponding to the images in each column.

Figure 5.14: A visualisation of the optimisation process conducted in the experiment with
RNG seed set to 3. In this run HAS failed to approach the hotspot and instead veered off the
scene. Top row images: products of multiplying the scene and the HAS attention matrices.
Bottom row images: the HAS attention matrices. Bottom text: the timestep, loss and the
HAS coordinates corresponding to the images in each column.

occurrence.

In 3 out of 10 cases the optimisation process has veered off and has resulted in HAS escaping
the coordinate bounds of the scene. Figure 5.14 visualizes progress snapshots of one such
unsuccessful optimisation process; it shows how only a fragment of the support Gaussian
is visible in the scene due to the spotlight being focused beyond the scene’s boundaries.
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This outcome was due to the local gradient around the initialisation point favouring moving
away from the scene, which in turn was likely due to the presence of significant negative
values between the starting HAS location and the center of the scene. The gradient signal
from the negative values likely overpowered the gradient signal coming from the hotspot,
leading backpropagation to guide HAS in the opposite direction to the one desired. This
behaviour did not occur if the HAS coordinates were initialized closer to the center of the
scene. Considering the adversarial configuration of the hotspot location and the initial HAS
coordinates, this is a rare edge case that does not need to be addressed as it would not be
likely to affect the function of a predictive attention system.

The results shown in this section have demonstrated the feasibility of using the HAS as
a soft crop mechanism within a predictive attention system. The prototype works within
the specified experimental conditions; however, in a predictive attention system the HAS
attention matrix would be applied to input that contains numerous input channels, and its
objective function would not be as simple as fixating on a hotspot area. Any hypothetical
issues that could arise in such a setting are not immediately obvious, and thus investigating
HAS in a more complex setting is left for future work.

5.5 Conclusion

This chapter presents active vision research investigating several approaches regarding the
attention mechanism that enables an active vision system to choose where to look. Care was
taken to conduct research that can generalize to future active vision architectures due to the
findings in Chapter 4 questioning the use of the RAM architecture. Section 5.2 evaluated a
training curriculum for attention and found it beneficial in reducing the active vision systems’
overfitting.

Section 5.3 looked at the influence of peripheral vision on the system’s classification perfor-
mance. By demonstrating no benefit and occasional detriment of including peripheral vision
in the classification stream, the results provide a motivation for the pursuit of two stream ar-
chitectures for active vision: a peripheral attention stream and a foveal classification stream.
The results in this section have also provided further evidence in support of fusing multiple
observations prior to feature extraction.

Section 5.4 has proposed and discussed predictive attention, which is a method for training
an attention policy designed to supplant reinforcement learning. The proposed method in-
troduces a model of the environment that enables using classification gradients in training
attention. Several possible approaches to structuring such a modelling mechanism were dis-
cussed. Section 5.4.3 investigated one functional aspect of predictive attention by evaluating
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the hardcoded attention spotlight, which is a method for soft cropping a region from the pe-
ripheral view in a way that enables gradients to be backpropagated into the crop coordinates
and the attention mechanism that produced them.

This chapter concludes the investigations into active vision that were conducted as part of
this thesis. Due to the numerous outstanding questions pertaining to active vision memory
and the broader architecture of the active vision system, no complete solutions to attention
were investigated. Instead, this chapter focused on producing knowledge that can support
and guide future research into active vision attention.
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Chapter 6

Conclusions

Abstract: This chapter summarizes the research conducted in this thesis by enumerating the

main contributions to the literature. It closes with a recommendation of future work that can

further advance our understanding of active vision in deep learning.

6.1 Contributions

At the beginning of this thesis, in Chapter 1, the following five objectives were established
to guide the research conducted in this Ph.D.:

1. To investigate the suitability of a retina-like biomimetic sensor for active vision sys-
tems.

2. To establish and follow a research practice that can address the knowledge gap present
in the active vision literature.

3. To produce foundational knowledge that can guide future active vision research.

4. To investigate how does an active vision system collate the information that it obtains
across multiple observations.

5. To investigate different approaches in enabling an active vision system to decide where
to look.

The following sections summarize this thesis by outlining its major contributions and dis-
cussing how they address the five objectives listed above.
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6.1.1 An Investigation and a Demotivation of the Software Retina

Chapter 2 describes the research efforts undertaken with respect to the software retina. It
opens with an explanation of the initial objectives guiding its pursuit, which were to expand
the retina’s functional capabilities by selectively replicating the computations that take place
in animal retinas and visual cortices, and to develop an adequate experimental environment
for a rigorous evaluation of the software retina. The retina’s functional capabilities were
expanded with a reproduction of the retinal scale space pyramid previously described by
Balasuriya [3] and a retinal colour opponency model that was described in Ozimek et. al.
[32]. An experimental environment for evaluating the software retina has been devised, using
a subset of the EPIC Kitchens dataset [40] and a modified Recurrent Attention Model [10]
architecture.

In order to validate the function of the modified RAM architecture, it was first evaluated on
the EPIC Kitchens egocentric activity recognition task without using the retina. The architec-
ture demonstrated meaningful learning and performed favourably compared to a benchmark;
however, when the software retina was integrated with the architecture it slowed the training
process down to an unacceptable pace. This was caused by a number of factors, including
the computational overheads introduced by the retina, its inefficient integration with the deep
learning ecosystem and the technical challenges associated with processing a video dataset
in an active vision setting. As rapid architectural revisions and evaluations were deemed
necessary to conduct an adequate volume of research, a decision was made to shift the focus
of the thesis away from the retina and to instead focus on active vision.

The software retina has been re-visited in one experiment in Section 3.3, where it was inte-
grated with an active vision architecture using the cortical mapping [1]. Unlike in the EPIC
Kitchens setting, the computational load of this experimental setting has been sufficiently
low to allow a simple evaluation. The retina was evaluated on an image classification task
on the Birds dataset and has been shown to be inferior as an active vision sensor when com-
pared to cropping out square patches from the input image; it performed significantly worse
in terms of classification accuracy and it increased training time by a factor of 7.56.

The research described above has addressed the first objective set out in this thesis by demon-
strating that the software retina is currently not suitable for active vision systems.

6.1.2 A Demonstration of Knowledge Gaps and a Framework
Proposal

A change in the focus of the thesis warranted a re-formulation of its goals and motivations,
as well as a new literature survey. Chapter 3 contains a comprehensive commentary on the
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active vision in deep learning literature and its shortcomings, together with experiments that
exemplify its numerous knowledge gaps. The review of the literature has found it difficult to
browse; some publications suffer from a lack of adequate referencing and most researchers
failed to use accurate terminology to describe their work. The inconsistent terminology made
the review especially challenging, as a significant proportion of the relevant publications did
not even refer to their own work with the term “active vision“. Meanwhile, many researchers
who did refer to their work as “active vision“ have at times ended up tackling entirely differ-
ent problems. An over-reliance on utilizing simple approaches to tackling research problems
and a scarcity of publications that meaningfully contribute to prior active vision literature
were identified as the primary causes for numerous knowledge gaps. Finally, the review un-
covered that a lot of the work described in the literature simplified the active vision setting
to the point of trivializing the associated problems instead of advancing our understanding
of how to solve them.

The experiments accompanying the literature review were conducted with the goal of demon-
strating the knowledge gaps in the literature in a practical manner. The Birds dataset [61]
was selected as the most suitable dataset for the investigations due to the fine-grained nature
of the bird species classification task and the utility of the dataset’s anatomical part location
labels. Once again, the Recurrent Attention Model was used as the active vision architec-
ture of choice. The research questions were deliberately selected to highlight gaps in how
different methods were described in the literature. The results turned out to be critical of
the literature, as the findings pointed out fundamental issues that ought to already have been
explored in the literature. It was found that proprioception is detrimental to the system’s
classification performance, that absolute image coordinates cause the system to overfit the
training data, that reinforcement learning is inadequate for learning an attention policy and
that visual sensors with larger fields of view can alleviate but not completely compensate for
a poor attention policy.

The literature review and the experiments that demonstrated its gaps culminated in the pro-
posal of an investigative framework for structuring active vision research. The framework
breaks down passive vision systems into two components: the feature extractor and the mech-
anism for using the extracted features to complete the system’s visual task. The framework
then defines an active vision system as complementing these two components with three ad-
ditional architectural requirements: a sampling structure that defines the active agent’s local
sampling strategy, an attention mechanism which implements the agent’s global sampling
strategy, and a memory mechanism that implements the agent’s strategy for aggregating vi-
sual data collected across multiple observations. All research that followed Chapter 3 has
been guided by this framework.

The research described above addressed the second objective set out in this thesis by propos-
ing an investigative framework for researching active vision and by making sure that this
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framework is informed by the shortcomings present in the existing literature. Arguably, it
also contributed towards the third objective by guiding future active vision research.

6.1.3 Active Vision Memory Investigations

Following the recommendations laid out in the proposed active vision framework, Chapter
4 investigated active vision memory. It opened with a discussion of the problem of investi-
gating an individual aspect of active vision in isolation, without having complete solutions
to other components of active vision. The lack of a suitable learnable attention mechanism
presented itself as a challenge, as the system’s ability to make high quality observations was
seen as a necessity for testing the function of memory in the high performance regime. In re-
sponse, an experimental method was devised, which involves controlling observation values
to produce interpretable results about the function of active vision memory.

Applying the method for controlling observation values required the selection and appraisal
of hardcoded attention policies that consisted of sequenced anatomical part locations. The
part locations were provided as part of the Birds dataset. The concept of temporal robustness
was established and investigated using several different approaches. A number of feedfor-
ward and recurrent memory mechanisms were investigated, and a novel recurrent memory
mechanism called the WW-LSTM has demonstrated the best classification performance at
a favourable parameter cost when compared to other recurrent variants. However, it was
also discovered that a simple spatial concatenation of the different observation images in the
input space was sufficient to outperform all recurrent memory variants. This result put into
question one of the core ideas behind the RAM architecture, which is placing a recurrent
memory mechanism after feature extraction.

The research described above addressed the second objective set out in this thesis by devising
an experimental method for evaluating active vision memory without the need for a learnable
attention mechanism. It has also addressed the fourth research objective by applying the
aforementioned method and investigating different approaches to active vision memory, most
notably the WW-LSTM and the spatial concatenation method.

6.1.4 Informing Future Active Vision System Design

Producing knowledge that can generalize to other research settings and that can inform fu-
ture active vision investigations has been a priority throughout this thesis. As a result, the
contributions that support this objective are scattered throughout different chapters.

The experiments conducted in Chapter 3 provided evidence supporting various different ac-
tive vision design choices. An egocentric coordinate frame was found to be preferable to



6.1. Contributions 120

an exocentric one as it drastically reduces overfitting to the point of improving validation
performance. Proprioception was found to be detrimental to the system’s performance when
using hardcoded attention policies and when training attention with reinforcement learning.
Simple sensors consisting of overlapping image patches were found to be superior to the
software retina in terms of their impact on classification performance and training speed.

Chapter 4 informed future active vision system design by providing evidence suggesting that
a memory mechanism located within or prior to the feature extractor has the potential to
outperform the RAM architecture, which at the time of writing this thesis is the staple ac-
tive vision architecture. Additionally, curriculum learning for memory was shown to have a
significant negative impact on model’s performance. Although curriculum learning showed
negative results for memory, in Chapter 5 an attention curriculum has demonstrated a re-
duction in overfitting. The attention curriculum starts with a sensor that has a large foveal
sensor patch and a relatively sharp peripheral patch, only to gradually reduce the foveal field
of view and the peripheral acuity throughout training.

The research described above addressed the third objective set out in this thesis by produc-
ing empirically backed arguments in favour of various methods for active vision, such as:
utilizing a two-stream architecture that separates classification and attention, collating mul-
tiple observations in a manner similar to input-space spatial concatenation, and utilizing an
attention curriculum that varies sensor parameters throughout training.

6.1.5 Reinforcement Learning, Predictive Attention and the HAS
algorithm

Section 3.3 found that models using reinforcement learning to learn where to look obtained
only a fraction of the validation performance that models with hardcoded attention policies
reached. At the same time, the literature survey in Section 3.2 found that most active vi-
sion research utilized reinforcement learning for attention and did not pursue an alternative
approach.

The aim of Section 5.4 was to respond to the uncovered inadequacy of reinforcement learn-
ing. This section proposed and took the first step towards developing an alternative approach
for training attention in an active vision system. The proposed alternative is called predictive
attention, and it aims to leverage classification gradients in training attention. The first step
in its pursuit was an investigation into the hardcoded attention spotlight (HAS) algorithm,
which is a prototype algorithm enabling the backpropagation of gradients from attention-
modulated feature maps into fixation coordinates.

To investigate the HAS algorithm, a scene was instantiated that models a noisy feature map.
A hotspot was placed in a corner of the feature map, and an optimisation process was es-
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tablished which aimed to guide the HAS fixation location onto the hotspot by maximizing
the sum of the values captured by the HAS attention matrix. The role of this experiment
was to provide a proof of concept for the HAS’s suitability for deployment in a predictive
attention system, where it would be used to translate classification gradients into updates to
the system’s attention policy. The results were positive, with only a fraction of test runs in
an adversarial edge case failing to optimize the fixation location onto the hotspot.

The research described above addressed the fifth objective set out in this thesis by demon-
strating the inadequacy of reinforcement learning for training an attention policy and by
taking the first step in the pursuit of a novel approached aimed at supplanting reinforcement
learning in active vision.

6.2 Future Work

This section proposes several investigations that, if undertaken, would meaningfully build
upon the contributions presented in this thesis. As previously argued in the proposed research
framework, the author of this thesis believes that mature solutions to active vision attention
and memory are necessary for a rigorous investigation of active vision sensors; therefore, no
future work focusing on sensors is proposed in this section.

6.2.1 Memory

Spatial Concatenation-Inspired Memory

The undermining of the Recurrent Attention Model’s (RAM) position as the architecture of
choice for active vision was an unexpected result. Although the proposed research frame-
work has argued in favour of conducting tightly scoped research that either focuses on in-
dividual aspects of active vision or their interrelations, the development of a complete ar-
chitecture that can supplant RAM should be a long term field-wide objective. Memory is
central to active vision architectures, and is thus a critical component of developing novel,
complete approaches. Spatial concatenation in the input space has demonstrated desirable
performance as a memory mechanism, but it also exhibits undesirable characteristics such as
dynamic memory tensor size and a relatively high memory footprint. Devising an architec-
ture capable of leveraging the desirable aspects of spatial concatenation while overcoming
its shortcomings would be the immediate next research objective for the author of this the-
sis if this line of research were to continue. A promising starting point for the pursuit of
such a system would be investigating the potential of the NARX architecture [95] to be used
as a recurrent memory mechanism that operates within the input space of the active vision
system.
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Residual Recurrent Memory

It has been previously argued in the literature that the ResNet architecture is equivalent to
a special case of a recurrent network [104]. This argument can motivate the pursuit of a
memory mechanism that is closely integrated with the active vision system’s feature extrac-
tor. Such a solution would represent a compromise between RAM’s approach to locating
memory in the latent space and aggregating it in the input space as is done in spatial concate-
nation. One way of achieving this would be to insert recurrent memory modules, such as the
convolutional LSTM [46], at the skip connections in residual learning architectures.

Further Study of Temporal Robustness

Section 4.5 has introduced the concept of temporal robustness and argued in favour of its
relevance for active vision systems. Further investigations into this concept are necessary in
order to enable the design of flexible active vision systems that can operate within dynamic
computational time. Such investigations should be conducted alongside the development of
novel memory mechanisms, and should attempt to reproduce the method deployed by Li et.
al. [12] that utilized a separate classifier for each time step.

6.2.2 Attention

Dorsal Stream: a Shape Biased Feature Extractor

Dorsal stream, also known as the “where“ pathway, is the neural pathway that is involved in
spatio-visual reasoning [98]. The results of experiments conducted in Section 5.3 motivate
the design of a separate stream for processing attention in active vision. The study of such a
stream could benefit from drawing inspiration from the organisation and function of the dor-
sal stream in animal vision systems. A key question that ought to be investigated is whether
the feature extraction architectures that excel at image classification are suitable for attention.
Literature has shown that contemporary CNNs are biased towards texture and that additional
methods need to be employed to bias them towards shape [103]; this raises the possibility
of developing a feature extractor with an inductive bias towards shape and evaluating its im-
pact on active vision attention. Other questions to explore include augmenting attention with
the WW operations that were described in Section 4.6.2, as well as investigating the role of
memory and proprioception in attention.
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QKV Active Vision Attention

Vaswani et. al. [105] popularized the Query-Key-Value (QKV) attention module in deep
learning by introducing the Transformer architecture. This module has not been evaluated in
an active vision setting; however, Mott et. al. [106] have used it to implement soft, spatial
attention in a recurrent setting. Their approach demonstrates the feasibility of embedding
QKV attention in a recurrent architecture, which could motivate the use of QKV attention in
active vision attention. The structure of this module has the hypothetical potential to result in
a more interpretable form of active vision attention, as the query tensor could be understood
as an expression of what the model is looking for at a given time step.

Further Study of Attention Curriculum Learning

The attention curriculum described in Section 5.2 demonstrated promising results, but it has
not been thoroughly optimised. Further study is warranted, investigating approaches such as
using a cyclic learning rate scheduler, smoothly altering sensor parameters throughout the
curriculum and extending the final curriculum stage. In addition, a more rigorous evaluation
should be conducted that freezes feature extractor weights in order to distinguish how much
of the performance improvement stems from the curriculum’s impact on attention as opposed
to its impact on feature extraction.

Predictive Attention

Evaluating the hardcoded attention spotlight in a more complex setting is the next logical
step in the development of decomposed predictive attention. Such a setting can consist of
an optimisation task guided by image classification loss rather than the summation loss that
was described in Section 5.4.3; this would enable evaluating the efficacy of using HAS with
real feature maps as opposed to simulated ones, as well as investigating the feasibility of
applying HAS attention maps to the system’s input space instead of the latent space.

When deployed in a more complex setting, the HAS parameterisation shown in Section 5.4.3
could result in a support Gaussian with an amplitude that is too high in the non-spotlight
areas away from the specified coordinates. Future work should include investigating this
possibility and searching for optimal HAS parameters. As it is a computationally cheap
operation, its parameters can be computed at inference time in order to tailor the attention
matrix to the input peripheral view; however, investigating this is left for future work.

The next research objective following a further investigation of HAS is developing a mod-
elling mechanism capable of working alongside HAS to predict the foveal view at the next
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fixation location. Once such a mechanism is developed, the focus should shift to inves-
tigating different approaches to structuring the backward pass of predictive attention. Al-
ternatively, the backward pass can be investigated if a novel active vision architecture and
memory mechanism are devised, together with a suitable end-to-end predictive modelling
mechanism.

The backward pass of predictive attention is an open-ended problem that can be structured
in multiple different ways. What follows is a discussion of three proposed ways of solving
this problem; note that this is not an exhaustive list.

The first method, dubbed the imaginary approach, is the most similar to the example shown
in Figure 5.9 in Section 5.4.2 as it involves treating the predictive attention stream as an
“imaginary“ forward pass that runs independently from the real forward pass. As with the
simplified example, the modelling mechanism predicts the foveal view using the next fix-
ation coordinates and the peripheral view. The predicted foveal view is then passed to the
classifier and this imaginary classification is compared against the real ground truth label of
the image. The imaginary classification loss is then used to backpropagate gradients through
the classifier, modelling mechanism and the fixation coordinates all the way into the attention
mechanism. This approach is similar to that employed in the World Models paper published
by Ha and Schmidhuber [107], where a model of the environment is used to train an agent’s
control policy.

The second method, dubbed the energy-based approach, does not utilize predictive atten-
tion gradients to learn an attention policy but instead uses them as the attention policy itself.
Several researchers in deep learning use the term “energy“ to refer to utilizing backprop-
agation at inference time in order to optimize a variable produced by or stored within the
architecture [108], in contrast to using loss for optimizing the architecture’s weights at train-
ing time. In this approach, the attention mechanism is replaced with a proposal network
whose role is to suggest fixation coordinates that are only an initial estimate of the next
viewing location. At the same time the classifier is upgraded to output a value representing
its confidence in its prediction. As with the other approaches, the coordinates are passed to
the modelling mechanism together with the peripheral view to predict a foveal view that is
then passed to the classifier. The classifier’s confidence output is used to compute energy
for predictive attention; the energy is then used to backpropagate gradients into the proposed
coordinates. The gradients update the coordinates so as to maximize the classifier’s confi-
dence in its prediction. Depending on the computational constraints imposed on the task,
this approach can evaluate multiple initial fixation locations in parallel, finally selecting the
fixation that results in the lowest energy cost. It is worth noting that calibrating the classi-
fier’s outputs enables it to produce a confidence metric, and that Gallos and Ferrie [77] have
previously argued for the importance of calibrating outputs in active vision systems.
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The final proposed method is dubbed the desire-led approach, or the loss-energy hybrid
approach, and it more closely integrates the backward pass of predictive attention with the
architecture’s regular forward pass. In this approach the coordinates and the peripheral view
are passed to the modelling mechanism to produce a prediction of the foveal view at the
specified coordinates; however, in this case the predicted foveal view is not passed to the
classifier. Instead, a copy of the true foveal view that the architecture has observed is passed
to the classifier; the resulting classification output is compared against the image’s ground
truth label to produce classification energy1. This energy is then used to repeatedly back-
propagate gradients into the copied foveal view, updating it until it results in the correct
classification output when passed back into the classifier. The resulting updated foveal view
is the desired view, and it is used as the ground truth label that the predicted foveal view is
compared against to compute predictive attention loss. The loss is backpropagated through
the modelling mechanism and into the attention module.

6.2.3 Complex Visual Tasks

Image classification is one of the simplest visual tasks that are being actively researched in
deep learning, as it only demands the architecture to output an N-way decision, with N being
equal to the number of classes. This can be contrasted with object detection and segmenta-
tion, both of which are tasks that demand space-variant output that describes the entirety of
the visual scene. In their widely cited publication that introduced the R-CNN architecture,
Girshick et al. [109] claim that they “bridge the gap between image classification and object
detection“. This terminology is very valuable to guiding future active vision research, as no
such approaches for bridging this gap have been formulated that are applicable to active vi-
sion. The R-CNN and the sliding window approaches that preceded it are antithetical to the
active vision paradigm due to how strongly ingrained they are in the passive vision paradigm.
Although currently this research direction might still be premature, future research should
aim to develop mechanisms for active vision systems to complete visual tasks that require
more complex outputs than classification.

1Energy is equivalent to loss that is being utilized during inference time, therefore what is meant by classi-
fication energy is classification loss that was repurposed to optimize a variable produced by the model rather
than its weights.
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Glossary of Selected Terms

appraisal model

A feedforward passive vision architecture trained to perform image classification, used
to appraise attention policies. When trained with an attention policy, the model’s clas-
sification accuracy on the validation set is used to assign a value to the attention policy.
Ideally, the appraisal model’s architecture is as similar to the active vision model as
possible to make the appraised values specific to the active vision model under study.
, 65, 66, 68, 70–74, 89

attention policy

An algorithm that when provided with an image returns a singular fixation point. These
can be combined to produce an attention policy sequence and produce multiple fixation
points per image. , 63, 65–73, 77, 79, 81, 89, 90

egocentric

Within this dissertation an egocentric coordinate frame is one with the point of the
active agent’s first fixation as its origin. , 43, 50–52, 54

energy

A term commonly used in deep learning to refer to a value that is being optimized
at inference time, as opposed to the loss function which is optimized only at training
time. Energy optimisation is relevant to active vision attention as it can be utilized
to obtain fixation coordinates without training a network that reliably produces good
fixations with its forward pass. 124, 125

exocentric

Within this dissertation an exocentric coordinate frame is the input image’s absolute
coordinate frame, with the top-left of the image being the origin. , 43, 50–52, 58

glimpse network

A module in the Recurrent Attention Model architectures responsible for extracting all
features from the visual and proprioceptive input obtained at the current time step. ,



Glossary 127

25, 26, 34, 47

image vector

A data structure containing colour intensity information that is associated with the
receptive fields of a software retina, retinal image pyramid or a cortical mapping. The
image vector is of shape (C,N) where C stands for the number of colour channels and
N stands for the number of receptive fields. 12–17, 19, 20

SpaCat

A feedforward active vision architecture with a memory mechanism that concatenates
observations in image space. Stands in contrast to the Recurrent Attention Model
architectures that maintain a latent memory tensor with an RNN. 94–97, 99–103
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