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Abstract 

People living with HIV are more likely to suffer from respiratory tract infections, 

including bacterial pneumonia, which can occur either on its own or as a 

secondary infection following respiratory viral infections. The nasopharynx is 

home to a microbial community collectively referred to as the nasopharyngeal 

microbiome (NPM). Many potential pathogens are carried asymptomatically in 

the nasopharynx in a proportion of the population, but their overgrowth and 

spread to the lungs can cause pneumonia. Therefore, the NPM can either repel 

pathogens or act as a reservoir for them to proliferate and spread to the lungs. 

We proposed that there may be differences in the NPM of HIV-infected and HIV-

uninfected individuals, and that this might contribute to the increased risk of 

bacterial pneumonia associated with HIV infection. 

   

To characterise the NPM, we carried out DNA and RNA shotgun sequencing on 

nasopharyngeal swab samples and processed them through a custom 

metagenomics pipeline that calculated the relative abundance of microbial 

species in each sample. We analysed the NPM of 10 HIV-infected individuals 

(cases) and 6 HIV uninfected-individuals (controls) at 3 timepoints: baseline, 1 

month and 9 months. This study represented the first attempt to study the NPM 

in HIV-infected individuals. 

 

Analysis with PERMANOVA showed that on average, NPM composition was 

significantly different depending on HIV status. We found that the relative 

abundance of the genera Cutibacterium and Pahexavirus were significantly 

lower in cases than controls, and that this was driven by bacteriophages from 

the Pahexavirus genus and their bacterial host Cutibacterium acnes. Diversity 

analysis identified that the NPM of cases was less stable over time, had lower 

viral richness and higher bacterial evenness. These diversity measurements could 

all be at least partially attributed to differing abundance of Pahexavirus and 

Cutibacterium between cases and controls. We proposed that C. acnes might act 

as an immunomodulator in the NPM, however this would require further study to 

confirm.  
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This study also served as a proof of concept of using shotgun metagenomics to 

profile the NPM, where the microbial community is much less dense than in the 

gut. Contaminant human sequences were a major issue for the DNA and RNA 

datasets that limited the scope of our analysis, even when steps were taken to 

deplete human sequences prior to sequencing. The compositional nature of 

sequence data also caused issues for analysis. The detection and quantification 

of relationships between microbes can be improved by quantifying the absolute 

abundances of microbes, instead of using their relative abundances. We 

proposed steps that future studies could take to further reduce human 

contamination and to quantify the absolute abundances of microbial species in 

their samples. 
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1 Introduction 

1.1 An introduction to the microbiome 

Our bodies are colonised by trillions of microorganisms: bacteria, viruses, fungi, 

archaea, and protists that live on almost every surface of the body including the 

skin, gut and respiratory tract. Collectively these organisms are referred to as 

the microbiome/microbiota and their set of genomes, the metagenome. There is 

an increasing body of data linking the human microbiome to health and disease 

(Man, de Steenhuijsen Piters and Bogaert, 2017; Wang et al., 2017; Gilbert et 

al., 2018). In health, the microbiome contributes to the normal physiological 

function of the host. It can provide supplementary metabolic functions to the 

host, is essential for proper immune system development, and can resist the 

colonisation of host tissues by pathogens (Barr et al., 2013; Buffie and Pamer, 

2013; Rooks and Garrett, 2016; Oliphant and Allen-Vercoe, 2019). Alterations in 

the species composition of the microbiota can result from a myriad of host and 

environmental factors including but not limited to: age, sex, diet, pollution, host 

genetics, disease, antibiotics and drugs (Frank et al., 2007; Turnbaugh et al., 

2008; Kau et al., 2011; Yatsunenko et al., 2012; Jašarević, Morrison and Bale, 

2016; Langdon, Crook and Dantas, 2016; Bailey et al., 2020; Weersma, 

Zhernakova and Fu, 2020). Microbiota alterations can result in dysbiosis, broadly 

defined as an imbalance between neutral/beneficial and harmful/pathogenic 

organisms (DeGruttola et al., 2016).  

The gut microbiota play a key role in host metabolism by providing additional 

metabolic pathways that are not encoded within the host genome. For example, 

the human gut microbiota to degrade otherwise indigestible plant 

polysaccharides, producing short-chain fatty acids (SCFAs) which can be 

metabolised by the host increased energy extraction from the diet (Gill et al., 

2006). The gut microbiota also contains the relevant metabolic pathways to 

synthesise vitamins and essential amino acids that humans are unable to produce 

themselves (Gill et al., 2006). Studies in both mice and humans have shown that 

the diet of an individual influences the composition of the gut microbiota 

(Turnbaugh et al., 2009; Ussar et al., 2015). Differences in the microbiota of 

lean and obese individuals have also been reported (Turnbaugh et al., 2006). 
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The microbiota of obese mice displays increased energy extraction from the 

diet, demonstrated by showing that germ-free mice displayed additional weight 

gain and adipose tissue content when receiving a microbiota transplant from 

obese mice compared lean mice (Turnbaugh et al., 2006; Ridaura et al., 2013).  

The microbiota also plays an essential role in normal immune development 

through providing molecular cues, in the form of metabolites and surface 

antigens, that are required for the fine tuning of the immune response (Rooks 

and Garrett, 2016). Germ free animals display severe immune defects and higher 

susceptibility to infection (Rooks and Garrett, 2016). A similar effect has also 

been observed in antibiotic-treated mice which display an impaired antiviral 

response to Influenza A infection without the activation of immune receptor 

TLR5 by commensal bacteria (Pfeiffer and Virgin, 2016). The relationship 

between the immune system and the microbiota is dynamic and multifactorial. 

Dietary, pathogen and commensal-derived antigens constantly interact with host 

receptors and complex molecular pathways integrate these signals to form a 

coordinated host response that tolerates commensals and excludes pathogens 

(Zhang et al., 2020) (Figure 1-1). Regulating appropriate responses to this 

enormous array of antigens represents a significant challenge and failure to do 

so can lead to infection, allergy, metabolic syndromes or inflammation (Belkaid 

and Hand, 2014). An example of this can be seen in patients with Crohn’s 

disease, whose gut microbiota show increased populations of inflammatory 

commensals, such as adherent-invasive Escherichia coli, and decreases in 

bacteria belonging to class Clostridia, which produce anti-inflammatory SCFAs 

(Belkaid and Hand, 2014). It has been proposed that dysregulated immune 

responses lead to the proliferation of pro-inflammatory commensals that are 

adapted to survive under immune stress, forming a positive feedback loop 

whereby these commensals invoke further inflammation and microbiome 

alteration (Belkaid and Hand, 2014). 
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Figure 1-1 An overview of the interplay between the microbiome and host immunity.  

Reprinted (with permission) from Zhang X, Chen B di, Zhao L dan, Li H. The Gut Microbiota: 

Emerging Evidence in Autoimmune Diseases. Trends Mol Med. 2020 Sep 1;26(9):862–73.  

The presence of the microbiota protects hosts from colonisation by pathogens, 

this activity has been termed colonisation resistance (Van der Waaij, Berghuis-de 

Vries and Lekkerkerk-van der Wees, 1971). Part of this effect occurs indirectly 

because of immunomodulation by the microbiota, termed immune-mediated 

colonisation resistance, that enhances the ability of the immune system to 

destroy pathogenic invaders. Colonisation resistance also results from direct 

interactions between members of the microbiota and invaders, including 

competition for nutrients and the production of inhibitory molecules that target 

invaders (Buffie and Pamer, 2013). Bacteriophage also contribute to colonisation 

resistance by adhering to host mucosal surfaces and protecting underlying host 

cells from bacterial infection (Barr et al., 2013). Changes in the microbiome of 

an individual can alter the colonisation resistance of a host. For example; 

antibiotic treatment results in reduced diversity of the gut microbiota, leading 

to an increase in free metabolites such as sialic acid or lactate that can enable 

the invasion of the pathogens Clostridium difficile and Salmonella Typhimurium 

(Ng et al., 2013). 
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1.2 The respiratory microbiome: structure, function and 

roles in health and disease 

Most microbiome research to date has focussed on the gut. However, there is a 

growing appreciation that the respiratory tract microbiota are highly relevant to 

human health and disease, particularly in the context of respiratory infections 

and inflammatory disorders, such as chronic obstructive pulmonary disease 

(COPD) and asthma (Dickson et al., 2016; Schenck, Surette and Bowdish, 2016; 

Cleary and Clarke, 2017; Krause et al., 2017; Man, de Steenhuijsen Piters and 

Bogaert, 2017; Zhou et al., 2019). The respiratory tract is a complex organ 

system that contains multiple anatomical structures which each have their own 

role in facilitating respiration through gas-exchange of oxygen and carbon 

dioxide. Broadly speaking, the respiratory tract can be broken down into two 

sections, upper respiratory tract (URT) and lower respiratory tract (LRT). The 

URT contains the nasal cavity, nasopharynx and oropharynx and is primarily 

responsible for the inhalation, humidification of air and the filtering of 

microbes. The LRT consists of the trachea and the lungs, the trachea transports 

air between the URT and the lungs where gas exchange takes place. Each of 

these sites has a distinct microbiota that varies in both density and composition 

due to their unique physiology and environmental conditions including 

temperature, pH and oxygen content (Figure 1-2). 

 

 

Figure 1-2 An overview of the anatomy of the respiratory tract, as well as the physiological 

and microbial differences that exist between separate sites. Reprinted (with permission) 

from Man WH, de Steenhuijsen Piters WAA, Bogaert D. The microbiota of the respiratory 

tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017 Mar 20;15(5):259–70. 
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Although these sites are physically remote from one another, a significant level 

of microbial migration occurs between them, microbes pass through the URT and 

can enter the lung via the inhalation of air, dispersal along mucous membranes 

in nasal secretions and saliva, or through the inhalation of oropharyngeal 

contents (microaspiration) (Dickson et al., 2015; Schenck, Surette and Bowdish, 

2016). Microbial clearance in the lungs transports bacteria back to the URT, 

clearance occurs through coughing and via the mucociliary escalator, where 

microbes are trapped in mucous are transported upwards by the beating of cilia 

(Dickson et al., 2016). Migration of microbes is a key determinant of the 

respiratory microbiome, the microbial composition of the lung microbiome in 

adults has been found to be primarily determined by the migration and 

elimination of microbes from the oropharynx, rather than expansion of microbial 

populations inside the lung (Bassis et al., 2015; Dickson et al., 2015). 

In contrast to the oropharynx, the nasopharyngeal microbiome (NPM) is not a 

major determinant of the lung microbiome in health (Bassis et al., 2015). 

However it can act as an important reservoir for populations of potential 

pathogens to expand and spread to infect the lungs (Man, de Steenhuijsen Piters 

and Bogaert, 2017). The most common and abundant genera found in the adult 

NPM to date are Staphylococcus, Haemophilus, Streptococcus, 

Sphingobacterium, Prevotella, Bifidobacterium, Rothia, Propionibacterium, 

Dolosigranulum, Corynebacterium and Moraxella (Cremers et al., 2014; Stearns 

et al., 2015). Not all of these genera will necessary be present at once. There 

are numerous host and environmental factors that affect NPM composition and 

multiple distinct metagenomic profiles have already been described with varying 

proportions of these genera (Cremers et al., 2014). Key pathogenic species that 

can be found in the NPM include Staphylococcus aureus, Streptococcus 

pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Neisseria 

meningitidis (Schenck, Surette and Bowdish, 2016; Cleary and Clarke, 2017; 

Man, de Steenhuijsen Piters and Bogaert, 2017; Hanada et al., 2018). These 

species are known as pathobionts or potential pathogens, because they are 

carried asymptomatically in a proportion of the population but are capable of 

acutely infecting their host if the conditions are right, such as if host immunity 

wanes or a perturbation to the microbiome allowed them to overgrow (Schenck, 

Surette and Bowdish, 2016; Cleary and Clarke, 2017; Hanada et al., 2018).  
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Ecological interactions between resident species of the NPM can be important 

factors in determining whether populations of potential pathogens can be 

prevented from establishing or maintained at safe levels (colonisation 

resistance), or whether they can overgrow and cause infections. Pathogenic 

species can engage in co-operative behaviour with one another, S. pneumoniae, 

H. influenzae and M. catarrhalis use shared quorum-sensing systems to create 

polyspecies biofilms that increase their resistance to antibiotics (Armbruster et 

al., 2010; Perez et al., 2014). Pathogens can also exclude one another, S. 

pneumoniae excludes S. aureus through the production of hydrogen-peroxide 

which trigger lysis of S. aureus through prophage-induction (Selva et al., 2009). 

Resident commensals can protect the host from pathobionts, Corynebacterium 

and Dolosigranulum species have been found to engage in competition and 

exclusion of S. aureus in the nasal microbiome (Yan et al., 2013; Liu et al., 

2015). Further study of the ecological interactions that are beneficial to 

commensals or restrictive to pathogens species is an exciting avenue for future 

research and could enable the use of exciting new microbiome interventions 

such as probiotics or phage therapy treatments to maintain microbiome health 

(Cleary and Clarke, 2017). 

In health, the microbiota of the adult lung closely resembles that of the 

oropharynx, with the most abundant genera being Prevotella, Veionella and 

Streptococcus. Bacterial lower respiratory tract infections (LRTIs) occur when a 

bacterial pathogen is successful in colonising the URT and spreading to the lungs 

(Man, de Steenhuijsen Piters and Bogaert, 2017). Viral LRTI’s may also originate 

as upper respiratory tract infections (URTIs) that spread to the lung, but some 

respiratory viruses can also directly bind to and infect the lung after being 

inhaled from the environment (van Riel et al., 2006).  

 

1.3 HIV infection and the respiratory tract 

Approximately 38 million people worldwide are living with HIV and it is a leading 

cause of morbidity and mortality (Vos et al., 2020; ‘Global HIV & AIDS statistics 

— Fact sheet’, 2022). Left untreated, HIV-infection causes the progressive loss of 
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CD4+ T cells (CD4) over time and ultimately leads to acquired immunodeficiency 

syndrome (AIDS), defined when the CD4 count drops below 200 cells/μl blood 

(Deeks et al., 2015). Antiretroviral therapy (ART) is a highly effective treatment 

that can suppress HIV replication and prevent CD4 depletion, however only 68% 

of current HIV cases worldwide are virally suppressed (‘Global HIV & AIDS 

statistics — Fact sheet’, 2022). Furthermore, it can take several years of ART for 

CD4 counts to recover and 33% of patients with low CD4 counts at the beginning 

of ART never fully returned to healthy CD4 levels after 7 years of treatment (Lok 

et al., 2010). Therefore, even in the age of ART there are many people living 

with HIV (PLHIV) who are immunocompromised and at increased risk of 

infection.  

 

Opportunistic infections are infections which rarely occur in immunocompetent 

individuals, a weakened immune system provides an opportunity for an infection 

that would otherwise be unsuccessful. HIV-infected individuals are at a higher 

risk of both common and opportunistic infections (Justiz Vaillant and Naik, 

2022). Tuberculosis (TB) is an opportunistic respiratory infection, caused by the 

bacterium Mycobacterium tuberculosis, and is the leading cause of death among 

PLHIV (WHO: Tuberculosis & HIV, 2020). TB is extremely common in PLHIV in 

sub-Saharan Africa and can infect people even in the early stages of HIV; the risk 

of infection increases as CD4 count decreases below 500 cells/μl blood (Lawn et 

al., 2009), although ART has been shown to significantly decrease TB risk (Lawn, 

Bekker and Wood, 2005). In Sub-Saharan Africa, bacterial pneumonia incidence 

is 10-20x higher in HIV-infected adults than the general population and influenza 

incidence is 3x higher (Feikin et al., 2004; Ho et al., 2018). A study of 

hospitalised adults in Malawi found 78.4% of hospitalised pneumonia cases 

occurred in HIV-infected patients (Aston et al., 2019). HIV prevalence also drives 

the aetiology of pneumonia: pneumonia aetiology is dominated by influenza and 

rhinovirus in the US, whereas Mycobacterium tuberculosis and Streptococcus 

pneumoniae are the most common cause of pneumonia in sub-Saharan Africa 

(Scott et al., 2000; Jain et al., 2015; Aston et al., 2019).  

Few studies have looked at respiratory viral infections in PLHIV, however several  

relatively new studies have demonstrated a greater risk of influenza infection in 

HIV-infected individuals (Cohen et al., 2013; Ho et al., 2018). A common 
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complication of respiratory viral diseases, including influenza, are secondary 

bacterial infections that occur during or after the primary infection and cause 

pneumonia (Smith and McCullers, 2014). HIV-infected individuals are also at a 

greater risk of contracting secondary infections, HIV-positive patients 

hospitalised with influenza were found to be at a higher risk of pneumococcal 

secondary infection (Cohen et al., 2013). Respiratory viral infections enable 

secondary infections either by strain/species specific interactions or more 

generally by damaging the respiratory epithelium which: breaches the 

physiological barrier to bacterial invasion, impairs bacterial clearance by cilia 

and exposes bacterial adhesion sites such as laminin and collagen (Smith and 

McCullers, 2014). Many species responsible for respiratory secondary infections, 

such as Streptococcus pneumoniae and Staphylococcus aureus, are present 

asymptomatically in the nasopharyngeal microbiome (NPM) but can infect the 

host given the right conditions (McCullers, 2014; Man, de Steenhuijsen Piters and 

Bogaert, 2017). If the NPM microbiome of HIV-infected individuals was different 

compared to HIV-uninfected individuals, for example by having higher carriage 

of pathobionts, this could contribute to the increased risk of pneumonia 

associated with HIV infection. 

There are few studies comparing the respiratory microbiome between PLHIV and 

the general population and most have been carried out by the Lung HIV 

Microbiome Project (LHMP). The focus of the LHMP was on understanding how 

the HIV-infected lung microbiome might relate to non-infectious pulmonary 

conditions, such as chronic obstructive pulmonary disease (COPD), which occur 

more frequently in HIV-infected individuals, even those undergoing ART (Twigg, 

Weinstock and Knox, 2017). It was proposed that immunological defects in the 

lung associated with ART-treated or untreated HIV-infection, including CD4:CD8 

T-cell imbalance and its associated inflammation, might lead microbiome 

changes (Twigg, Weinstock and Knox, 2017). In well HIV-infected adults with 

healthy CD4 counts >600 cells/μl, there were no major differences in the lung 

microbiome compared to healthy controls (Beck et al., 2015; Cribbs et al., 

2016). A later study in US adults found that lung microbiome richness and 

evenness were lower in advanced stage HIV-infected individuals compared to 

healthy controls, meaning that there were fewer species total, and a small 

number of species tended to dominate the microbial population (Twigg et al., 
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2016). Additionally, there was significantly greater dispersion of samples 

collected from HIV-infected individuals than those from healthy controls (ie. 

HIV-infected samples are more different to each other than HIV-uninfected 

samples) (Twigg et al., 2016).  

 

The increased dispersion seen in the HIV-infected lung microbiome is an example 

of the Anna Karenina Principle (AKP). The AKP applied to microbiomes states 

that when the host has a reduced ability to regulate its microbiome, changes in 

community composition become largely stochastic and can result in microbiomes 

from the same group being highly dispersed (Zaneveld, McMinds and Vega 

Thurber, 2017). Heterogeneity in the lung microbiome of HIV-infected 

individuals would complicate specific microbiome altering-treatments as there 

would be fewer targets (organisms) that are shared between individuals. Indeed, 

the researchers found that only Streptococcus was significantly more abundant 

in HIV-infected individuals compared to healthy controls (Twigg et al., 2016). 

However, treatment with ART for 1 year reduced the observed differences in 

alpha richness, evenness and beta diversity dispersion between samples (Twigg 

et al., 2016).  

 

The researchers were able to find 16 taxa that were significantly more abundant 

in the 1-year ART group compared to healthy controls, including Streptococcus, 

Veionella and Prevotella species (Twigg et al., 2016). Prevotella and Veionella 

commonly reside in the oral microbiome and enter the lung by microaspiration 

and might be important for the risk of COPD, as they have previously been linked 

to chronic lung inflammation via increased lung neutrophil and lymphocyte 

counts, as well as increased nitric oxide levels (Segal et al., 2013). As previously 

discussed, Streptococcus species are clinically relevant to respiratory tract 

infections either on its own or as a secondary infection. A separate study into 

the lung mycobiome found that Pneumocystis jirovecii and Ceriporia lacerata, 

were overrepresented in HIV-infected adults undergoing ART and with relatively 

high CD4 counts (median 599 cells/μl) (Cui et al., 2015). As these samples were 

collected from asymptomatic individuals, the carriage of these pathogens does 

not indicate an active infection, instead it represents a risk of opportunistic 

infection in the future.  
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1.4 Preparing and sequencing microbiome samples 

Microbiome studies traditionally make use of molecular techniques and next-

generation sequencing (NGS) technology to determine which microbes are 

present, and in what proportions, for a given sample.  

The first stage of sample processing involves isolating the microbial DNA/RNA of 

interest from the rest of the sample, so that it can be sequenced. At this stage it 

is important to enrich your samples for the organisms of interest by filtering out 

organisms that aren’t to be studied, such as host cells, prior to sequencing 

(Thurber et al., 2009). Human genomes are very large compared to most 

microbial/viral genomes and can therefore make up a disproportionately large 

amount of sequencing data (Thurber et al., 2009). This is particularly relevant 

for samples that have low microbial density, such as those taken from the 

respiratory tract (Nelson et al., 2019). Centrifugation can be an effective 

method for filtering out specific types of cells based on density. For instance, 

centrifugation at 5000g can be used to pellet eukaryotic cells (Nelson et al., 

2019). Eukaryotic/human cells can also be lysed with detergents or chaotropic 

agents (Nelson et al., 2019). Once a sample is enriched, nucleic acid extractions 

can be carried out. Depending on the goal of the study, researchers may choose 

to DNAse/RNAse treat their samples prior to nucleic acid extractions; this 

degrades extracellular nucleic acids, such as those from extracellular virions, 

dead microbes or host cells that have been purposefully lysed (Thurber et al., 

2009). Nucleic acid extraction is then carried out by mechanical/chemical lysis 

of the remaining cells, followed by the separation of nucleic acids from cellular 

debris using spin columns or magnetic beads that bind nucleic acids (Ali et al., 

2017). At this point it can be beneficial to further deplete host DNA using 

antibody depletion kits, which specifically bind methylated epitopes in 

eukaryotic DNA (Nelson et al., 2019).   

Once nucleic acids have been extracted, they can be prepared for sequencing. 

Microbiome studies usually follow one of two approaches: amplicon-based 

sequencing or shotgun sequencing. Amplicon-based sequencing involves the 

amplification and sequencing of DNA from specific marker genes. Common 

amplicons include the 16s ribosomal RNA (rRNA) gene in bacteria/archaea and 
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18s rRNA gene in fungi, these genes have common regions meaning that it can be 

targeted for PCR amplification, but also contains hypervariable regions that can 

be used to determine its phylogeny (Jovel et al., 2016; Banos et al., 2018). After 

sequencing the amplicons, the sequences can be clustered into operational 

taxonomic units (OTUs) based on sequence similarity, taxonomy is then assigned 

by matching OTU sequences against reference databases (Knight et al., 2018). 

Shotgun sequencing involves the untargeted sequencing of DNA or RNA in a 

sample, as opposed to specific amplicons, these sequences can then be classified 

to create taxonomic profiles like in 16s rRNA sequencing. Shotgun sequencing 

can also be used to assemble metagenomes, analyse community-encoded 

functions and investigate transcriptional activity of the community through 

transcriptomics (Knight et al., 2018), but these are beyond the scope of our 

study.  

There are advantages and drawbacks to both sequencing approaches. 16s rRNA 

sequencing is cheaper than shotgun sequencing, has better established pipelines 

and is better at dealing with low biomass/host contamination issues (Knight et 

al., 2018). However it is restricted to bacteria and archaea, taxonomic 

resolution is restricted to genus-level, and the sequences provides no 

information about the gene-encoded functions of the community (Knight et al., 

2018). Conversely, shotgun sequencing allows identification of taxa at the 

species level and enables researchers to profile entire microbial communities, 

not just bacteria (Jovel et al., 2016). Although shotgun sequencing is more 

expensive, has less established protocols for downstream analysis, and can suffer 

from host contamination issues, we opted for this approach in our study as 

species-level classification is important for our study. We also need to be able to 

differentiate between harmless commensals and potential pathogens from the 

same genera. Additionally, we wanted to analyse species from every kingdom as 

there is a growing appreciation that non-bacterial components of the 

microbiome have a key role in human health (Norman, Handley and Virgin, 2014; 

Pfeiffer and Virgin, 2016; Quince et al., 2017) 



  12 

 

Figure 1-3 Diagrammatic overview of shotgun metagenomics vs amplicon sequencing. 

Reprinted (with permission) from the Happy Belly Bioinformatics github page 

(https://astrobiomike.github.io/misc/amplicon_and_metagen) 

 

1.5 Processing metagenomic data from shotgun 

sequencing 

1.5.1 Host read removal and sequence classification 

Shotgun sequencing generates millions of short reads which need to be classified 

to determine microbial community composition. At this stage it is common to 

identify and remove any reads that originate from host DNA prior to classifying 

the remaining microbial reads, this can be done rapidly using tools such as 

bowtie2 to align all reads in the dataset against the host genome and remove 

those that successfully map (Knight et al., 2018). After host read removal, the 

remaining microbial reads need to be classified. Many approaches are available, 

but they can be broadly grouped into two categories: assembly-based 

approaches and reference-based (assembly-free) approaches (Quince et al., 
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2017). Figure 1-4 gives an overview of the steps to produce, process and analyse 

a metagenomic dataset, however it doesn’t show steps for human contaminant 

removal and relative abundance calculations that we added to our study. 

 

 

Figure 1-4 Procedural flowchart of data collection and analysis in shotgun metagenomics 

Reprinted (with permission) from Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 

Shotgun metagenomics, from sampling to analysis. Nat Biotechnol. 2017 Sep 12;35(9):833–

44  

 

Assembly-based approaches involve the de novo assembly of the reads into 

species-level contigs (Quince et al., 2017). For all but the most abundant species 

in a sample, these contigs will usually be small genomic fragments, rather than 

full genomes, due to limited sequencing depth, repetitive sequences and strain-

level variation (Alneberg et al., 2014). Incomplete contigs from the same species 

can be grouped together by binning approaches; this is usually done in a 

reference-free manner because many microbial species are not present in 

reference databases (Quince et al., 2017). For example, CONCOCT groups 

contigs into species bins by leveraging the fact that contigs belonging to the 

same species should have a) similar k-mer frequencies and b) correlated read-

depth coverage across multiple samples (Alneberg et al., 2014). Once binning is 
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complete, the reads can be classified by aligning them against the binned 

contigs. 

 

Reference-based approaches, also referred to as taxonomic classifiers, involve 

the direct classification of reads using reference databases (Piro, Matschkowski 

and Renard, 2017). Taxonomic classifiers can be further broken into two 

categories, taxonomic binners and taxonomic profilers (Piro, Matschkowski and 

Renard, 2017; Sczyrba et al., 2017). Binners attempt to classify every read to 

the most likely organism in a reference database, usually by sequence alignment 

or through compositional information, such as k-mer matching (Piro, 

Matschkowski and Renard, 2017; Quince et al., 2017). Taxonomic profilers 

estimate the relative abundances of taxa rather than assigning individual reads 

(Piro, Matschkowski and Renard, 2017; Sczyrba et al., 2017; Meyer et al., 2019), 

they usually follow a marker-based approach, such as in MetaPhlan2 (Truong et 

al., 2015) or mOTUs2 (Milanese et al., 2019), where reads are aligned against a 

database of taxonomically informative ‘marker genes’. Taxon relative 

abundances are then calculated from the hits to marker sequences, this 

contrasts with taxonomic binners which calculate the proportion of all reads 

mapping to each taxon (Piro, Matschkowski and Renard, 2017; Sczyrba et al., 

2017; Meyer et al., 2019). Relative abundances can be estimated from the 

output of taxonomic binners, which is discussed later in the section. 

 

In general, assembly-based methods are useful for high-confidence 

classifications and for identifying previously unclassified organisms (Quince et 

al., 2017), but suffer from several drawbacks. Firstly, these methods are 

computationally expensive, which can be prohibitive for very large datasets 

(Quince et al., 2017), whereas reference-based methods can be very efficient 

and fast (Menzel, Ng and Krogh, 2016). Secondly, assembly-based methods may 

end up grouping closely related species together into chimeric contigs (Ayling, 

Clark and Leggett, 2019). Finally, these methods struggle to identify low-

abundance species as there are often insufficient number of reads present to 

assemble contigs for these species (Quince et al., 2017). Marker-based 

taxonomic profilers also have problems detecting low-abundance taxa, as the 

reads are only aligned against reference databases of marker sequences, rather 
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than whole genome sequences, so rare taxa (that have low genome coverage) 

may not be detected (McIntyre et al., 2017).  

 

Taxonomic binners provide much better recovery of low-abundance taxa because 

they use more extensive reference databases, resulting in many more reads 

being classified. A downside to this approach is that many taxonomic binners 

suffer from high rates of false-positives due to a) a higher number of reads being 

classified and b) attempting to classify reads originating from genomic regions 

that are conserved across multiple species (Piro, Matschkowski and Renard, 

2017). Some taxonomic binners employ least-common ancestor (LCA) methods 

that attempt to limit false-positives by assigning ambiguous reads that could 

match multiple taxa at a higher taxonomic level (Wood and Salzberg, 2014; 

Menzel, Ng and Krogh, 2016). 

  

1.5.2 Accounting for uneven sequencing depth between samples 

The number of reads obtained from a sequencing run can vary between samples, 

and this can affect downstream diversity estimates because as sequencing depth 

increases, more species are discovered (until a saturation point is reached) 

(Weiss et al., 2017; Zaheer et al., 2018). As a result, samples with lower 

sequencing depth can appear less diverse. It is therefore important to account 

for this effect before any meaningful comparison between samples can be drawn 

(Goodrich et al., 2014; McMurdie and Holmes, 2014; Weiss et al., 2017). The 

traditional normalisation approach is called rarefying, where for each sample an 

equal number of reads are sub-sampled without replacement (Goodrich et al., 

2014; Weiss et al., 2017). This often leads to difficult trade-offs between the 

inclusion of more samples or retaining a higher sequencing depth, and whatever 

decision is made results in a loss of data (Goodrich et al., 2014; Weiss et al., 

2017). Rarefying has been criticised for two major reasons: firstly, it discards 

potentially useful data. Second, sequencing data is inherently compositional, 

species/OTU read counts do not represent the absolute abundances, rather they 

represent the proportions of reads relative to each other. Rarefying does not 

treat the data as compositional and this leads to a theoretical increase in false-

positive errors when testing for the differential abundance of taxa between 

groups (McMurdie and Holmes, 2014; Gloor et al., 2017). Various other data 
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normalisation methods have been suggested, these involve transformations that 

account for compositionality of the data without the loss of data (Weiss et al., 

2017). More recently, tests on simulated data found that rarefying performed 

equally as well as other data transformations for differential abundance testing 

(Weiss et al., 2017). Furthermore, rarefying has been identified as the only 

approach that was able to fully account for uneven sequencing depth, especially 

those with large library sizes (Weiss et al., 2017; McKnight et al., 2019). For this 

reason, rarefying remains the simplest and most robust method. 

 

1.5.3 Calculating Relative abundances 

As discussed in section 1.5.1, taxonomic binners classify each read individually, 

meaning the output is the total number (or proportion) of reads in each sample 

that were assigned to each taxon. The proportion of reads assigned to a taxon is 

distinct from its relative abundance because the likelihood of a read from a 

genome being sequenced increases with genome size (Nayfach and Pollard, 

2016), creating a bias towards the sequencing of organisms with larger genomes. 

The relative abundance of each taxon (taxonomic profile) can thus be estimated 

as the total number of reads mapping to that taxon, divided by its genome size 

(McIntyre et al., 2017; Piro, Matschkowski and Renard, 2017; LaPierre et al., 

2019). Unfortunately, calculating relative abundances in this way does come 

with some complications. In a metagenomic sample, the number of reads that 

map to a genome depend not only on its size, but also its size relative to the 

average genome size of all other genomes present (Nayfach and Pollard, 2016). 

Consequently, abundances can be correctly estimated when all genome sizes are 

known, but unclassified genomes with unknown length can skew results. To 

complicate matters further, many classifiers assign ambiguous reads at the 

taxonomic level of the LCA (e.g. genus) to avoid incorrect assignment (Menzel, 

Ng and Krogh, 2016; Wood, Lu and Langmead, 2019). Obviously a genus does not 

have a genome size, so an estimate must be made. Finally, deciding on the 

genome size to assign, even at species level, can be difficult because there may 

be multiple genome assemblies to choose from. While this process is by no 

means straightforward, it is essential to determine the true proportions of the 

species that are present in microbiome samples, rather than simply using the 

proportions of reads. 
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1.6 Microbiome analysis 

A very common approach is differential abundance or “biomarker” testing, the 

identification of taxa whose abundance differs between groups. This can be 

challenging because microbiome datasets often have few replicates and 

hundreds or thousands of taxa, many of which are absent in most samples (data 

sparsity) (Knight et al., 2018). Most importantly, microbiome data are 

compositional, reflecting the relative proportions of taxa rather than their 

absolute abundances (Gloor et al., 2017; Weiss et al., 2017; Knight et al., 2018). 

Consequently, an increase in the relative abundance of one taxa must result in 

the decrease of others (such that their total sum is always 1) which does not 

necessarily reflect what is happening with their true abundances. Many tools 

have been developed to tackle some of these issues over the years, including 

DESeq2 (Love, Huber and Anders, 2014) and ANCOM (Mandal et al., 2015) which 

are both very popular. More recently MaAasLin2 (Mallick et al., 2021) was 

released, a highly customisable tool that is designed to overcome the difficulties 

associated with detecting differential abundance in sequencing data. Various log 

and log-like transformations can be chosen which accounts for compositionality 

in the data by linearising the associations between taxa. Minimum prevalence 

and abundance testing can be used to control i) sparsity of the dataset and ii) 

the number of tests being performed. There is also a choice of models including 

mixed models allow the use of cross-sectional and longitudinal samples to be 

used. 

Alpha diversity measures are a simple way of characterising microbiome features 

based on the presence and abundance of taxa. Alpha diversity metrics measure 

properties of a single sample, such as richness: the number of species present, 

or evenness: how evenly distributed the abundance of species present are. Non-

microbial ecosystems with a low richness and/or low evenness are more 

vulnerable to invasion (Levine and D’Antonio, 1999). Similar patterns have been 

observed in the gut microbiome, where reduced alpha-diversity results in more 

free metabolites, which facilitates pathogenic invasion (Gillis, Hughes, Spiga, 

Winter, Zhu, Carvalho, et al., 2018; Herren and Baym, 2018).  
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Beta diversity metrics are a valuable technique for the pairwise comparison of 

samples, a commonly used metric is Bray-Curtis dissimilarity (BCD). BCD 

represents the differences in abundance of hundreds or thousands of species as a 

single metric, ranging from 0 (nothing in common) to 1 (identical species and 

abundances), that can be used to compare samples (Wagner et al., 2018). In this 

way, each sample in a dataset can be compared with every other sample and 

their differences can be represented as a pairwise BCD matrix. Beta diversity 

matrices can be used alongside ordination methods such as principal coordinates 

analysis (PCoA), which condenses all of the compositional differences between 

many samples into a single ordination plot on a 2- or 3-dimensional axis that 

enables researchers to see if samples group by relevant characteristics (McKnight 

et al., 2019). Beta diversity matrices can also be used with statistical tools such 

as Permutational Multivariate Analysis of Variance (PERMANOVA), which 

statistically test for differences in microbiome composition associated with 

sample metadata (Anderson, 2017). Longitudinal samples can be compared with 

beta diversity metrics to investigate how the microbiome changes over time. 

This is relevant because disease-associated microbiomes can be more unstable in 

response to external perturbations such as antibiotics, immunosuppression or 

invasion by pathogens (Zaneveld, McMinds and Vega Thurber, 2017).  

1.7 Aims of the study 

Our study aims to compare the nasopharyngeal microbiomes of 10 HIV-infected 

individuals vs. 6 HIV-uninfected controls over time. We will utilise shotgun 

sequencing of DNA and RNA samples to capture microbiome species from all 

kingdoms. We will include samples at 3 timepoints (0, 1 & 9 Months) from each 

participant to measure how the microbial community of the nasopharynx 

changes over time, in both HIV-infected and HIV-uninfected individuals. We 

hypothesise that the NPM differs between HIV-infected and HIV-uninfected 

individuals and that this might contribute to the increased susceptibility of HIV-

infected individuals to secondary bacterial infections.  

First, we will characterise the taxonomic composition and diversity of the 

nasopharynx in HIV-infected and HIV-uninfected individuals, identifying major 

taxa and also looking specifically at the abundances of common URT pathobionts 
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and HIV-associated pathogens. We will use biomarker identification tools to 

search for taxa that are differentially abundant between these groups. 

PERMANOVA will be used to determine whether HIV infection or other host or 

environmental factors are associated with significant changes to the overall 

composition of the nasopharyngeal microbiome. Finally, we will measure 

longitudinal changes in community composition using BCD and investigate 

whether HIV-infection leads to changes in the temporal stability of the 

nasopharyngeal microbiome. 

To our knowledge, this study represents the first attempt to characterise the 

nasopharyngeal microbiome of HIV-infected individuals. The nasopharynx can 

either repel pathogens or act as a reservoir, so determining how the 

nasopharyngeal microbial community differs by HIV status could help us 

understand whether it is implicated in primary or secondary bacterial lung 

infections which are more common in PLHIV. This work is also significant as a 

proof of concept; to our knowledge, when we began the project there had been 

no published work which used shotgun sequencing to characterise the 

nasopharyngeal microbiome.  
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2 Materials and Methods 

2.1 Study design and sample Collection 

Nasopharyngeal swab samples had been previously collected as part of a 

previous cohort study that investigated the effect of HIV status on the incidence 

of influenza-like illness (ILI). The study was carried out between April 2013 and 

March 2015 at the Queen Elizabeth Central Hospital in Blantyre district, Malawi. 

It consisted of 608 Malawian adults and included HIV-infected and HIV-

uninfected individuals who gave paired oropharyngeal and nasopharyngeal 

samples at routine bimonthly visits or when they experienced an ILI episode.  

The protocol for sample collection was as follows: expose the nostrils by 

applying gentle upwards pressure to the tip of the nose, insert a flocked 

nasopharyngeal swab along the floor of the nose until it reaches the posterior 

pharynx, leave the swab for 5 seconds and then withdraw it in a rotating motion, 

place the swab into a universal transport medium tube and frozen at -70°C. The 

chosen samples for this study were transported to the University of Glasgow on 

dry ice and stored at -70°C. 

2.2 Sample Selection 

The overall aim of this study was to investigate the effect of HIV status on the 

human nasopharyngeal microbiome. All samples that were taken within 30 days 

of the participant taking antibiotics or suffering an ILI episode were discarded as 

this would affect microbiome composition.  

Using longitudinal samples was deemed to be important because i) more samples 

increases the probability of detecting real differences between individuals, as 

microbiome composition can change with time and each sample only represents 

a snapshot, and ii) longitudinal sampling enables the detection of how the 

microbiome changes with time and whether HIV status affect this. Most of the 

tools available for longitudinal microbiome analysis require samples that are 

taken at regular timepoints. However, not all of the samples from the study 

were available, and some patients weren’t able to attend all of their bimonthly 

visits.  We therefore searched the available data for potential subsets that i) 
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contained longitudinal samples taken at the same time intervals and ii) 

contained enough participants for downstream analysis. This dataset was chosen 

by analysing the number of cases and controls with sufficient longitudinal 

samples for all possible combinations of the following variables i) total number 

of timepoints(2-9), ii) timepoint range(0-24 months) and iii) permitted deviance 

of the sample date from the exact timepoint(0-14 days). A subset of the data 

was identified that consisted of 19 cases and 10 controls which all had 3 

timepoints, baseline, 1 month and 9 months with a maximum deviance of each 

sample from the timepoint of 10 days. 

We then looked into the participant metadata and identified the important 

factors that might affect NPM composition such as age, sex, HIV-status, CD4+ 

counts, asthma, chronic lung disease, smoking status, smoking history, previous 

tuberculosis, previous pneumonia, cooking fuel and number of children under 5 

years in the household. We were able to select a subset of 10 cases and 6 

controls who did not report a history of asthma or chronic lung disease, and 

were lifelong non-smokers, which allowed us to remove these variables from the 

analysis. We were unable to fully remove the factors of enrolment age, sex, 

previous tuberculosis, previous pneumonia, type of cooking fuel used and 

children under 5 in the household.  

 

Figure 2-1 Diagrammatic flow chart showing the study cohort and sampling. 
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Table 1 - Participant metadata including Sex, Age, Children under 5 in the household, 

principal cooking fuel/energy source and medical history by HIV status

 Characteristic 

Participants, No./Total(%) 

HIV infected (n=10) HIV uninfected (n=6) 

Female sex 7 (70%) 5 (83.3%)  

Age, mean 36.8 34.9 

Children under 5 in the household 

0 4 (40% 3 (50%) 

1 5 (50%) 3 (50%) 

2 1 (10%) 0 (0%) 

Principal cooking fuel/energy source  

Firewood 3 (30%) 2 (33.3%) 

Charcoal 7 (70%) 4 (66.7%) 

Medical history 

Previous tuberculosis infection 2 (20%) 0 (0%) 

Previous pneumonia 1 (10%) 0 (0%) 

 

 

2.3 DNA Extraction, sample preparation and sequencing 

Nucleic Acid extraction, library preparation and sequencing were carried out by 

Lily Tong and Chris Davis at the MRC-University of Glasgow Centre for Virus 

Research. 

Briefly, up to 500 µl samples (nasopharyngeal swabs stored in viral transport 

medium) were slowly defrosted on ice and then centrifuged at 5000g for 1 

minute to spin down human cells and debris (Thurber et al., 2009). 50µl nucleic 

acid (both RNA and DNA) from each sample was extracted using the eMAG 

nucleic acid extraction platform and stored at -70°C. The nucleic acid of each 

sample was divided into 2 parts, which were processed for DNA and RNA 

sequencing respectively.  

To reduce human genomic DNA contamination within the nucleic acid extraction, 

NEBNext Microbiome DNA Enrichment Kit (NEB, E2612) was used to remove CpG-
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methylated host DNA prior to library preparation (Feehery et al., 2013). The DNA 

was then sheared into proximal 350 base pair fragments by sonication (Covaris 

Sonicator LE220), and uniquely indexing tagged with NEBNext Multiplex Oligos 

for Illumina (New England Bio-Labs). KAPA LTP Library Preparation Kit 

(Roche7961880001) is used for this process. Libraries were then sequenced on 

Illumina NextSeq500 platform with paired ends for 2 x 150 base pair reads. A 

high output cartridge Kit v2.5 (300 Cycles) was used (Illumina 20024908). 

2.4 Processing of the sequencing data 

2.4.1 Adapter Trimming and Quality Filtering 

Trimmomatic v0.39 (Bolger, Lohse and Usadel, 2014) was used to clip Illumina 

adaptor sequences and trim regions of low quality from the reads by performing 

sliding window trimming with a window size of 4 and a required average phred 

quality score of 28. Reads were discarded if their total length was less than 20 

after trimming. The mate-pairs of reads that were discarded are retained as 

orphan reads for downstream analysis. 

2.4.2 Identification and removal of host reads prior to taxonomic 

classification 

Even after steps to reduce human contamination prior to sequencing, we still 

observed a high proportion of sequenced reads were of human origin. Human 

DNA contamination is a specific challenge to profiling the microbiota of the 

respiratory tract due to their low density (Man, de Steenhuijsen Piters and 

Bogaert, 2017), coupled with their relatively tiny genomes relative to human 

hosts. We therefore implemented a rigorous two-stage approach to human read 

removal using the alignment tools bowtie2 (Langmead and Salzberg, 2012) and 

SNAP (Zaharia et al., 2011); in a benchmark comparison by Bush et al. this was 

the highest-performing method for the detection of human reads in microbial 

datasets (Bush et al., 2020). After initial trimming/filtering, the remaining 

paired-end and orphan reads were aligned against the human genome GRCh38 

(Schneider et al., 2016) using bowtie2 (v2.3.1) on default settings; reads that 

successfully mapped onto GRCh38 were filtered from the dataset. The remaining 
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reads were then aligned against the newly completed CHM13 (Nurk et al., 2022) 

human genome using SNAP (v1.0.18). For paired-end reads, if a single mate of a 

mate-pair could be aligned to the human genome, the entire read was 

considered human and discarded. Multiple human genome assemblies were 

chosen to increase the sensitivity of human read detection. Further filtering of 

human reads also occurred during (section 2.4.3) and after the taxonomic 

classification stage (section 2.4.4). 

2.4.3 Taxonomic classification of reads 

Sequencing reads that did not align to the human genome represent the DNA 

component of the nasopharyngeal microbiome. These reads were extracted using 

Samtools (v1.9) (Li et al., 2009). The reads for each sample were then grouped 

into one file and formatted for classification by Kraken2 (v2.1.2) (Wood, Lu and 

Langmead, 2019), enabling Kraken2 to classify the paired-end and orphaned 

reads from each sample together. The read-merger.pl script (provided on 

Kraken2 github page) was used to concatenate each read pair into a single read 

sequence separated by an N character, the orphaned reads were then appended 

to the end of this file. Kraken2 classifies reads by computing a set of k-mers 

from each read and matching them to the lowest common ancestor of the 

genomes in the database that contain that k-mer (Wood and Salzberg, 2014). 

Kraken2 was run with default settings using the PlusPF database (Wood, Lu and 

Langmead, 2019) which contains k-mer profiles from all archaeal, viral, plasmid, 

human, protist and fungal sequences in the NCBI RefSeq database (O’Leary et 

al., 2016).  

Kraken2 was selected for taxonomic classification in our study for several 

reasons: Kraken2 is a taxonomic binner, meaning it will attempt to classify every 

read that has been sequenced, which is preferable to marker-based or assembly-

based classification methods for samples with low read counts, as in our dataset. 

Kraken2 outperforms similar tools in both processing speed and memory usage 

(Wood, Lu and Langmead, 2019), these would be unfeasible to run with the 

limited computational resources available. Kraken2 allows the use of custom 

databases which is not possible with some comparable tools. Including human 

sequences in the classification database allows Kraken2 to correctly classify 
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human reads that have escaped the bowtie2/SNAP filtering stages, preventing 

these reads from being misclassified as microbial. 

2.4.4 Post-classification removal of human reads 

Taxonomic binners, including Kraken2 which was implemented in our pipeline, 

make use of reference databases to classify sequences (Quince et al., 2017). 

Contamination in reference databases is a well-known issue, including human 

contamination of microbial reference sequences and microbial contamination of 

human reference sequences (Breitwieser et al., 2019; Steinegger and Salzberg, 

2020). The consequence of reference database contamination is the 

misclassification of reads when the classifier matches a read to a mislabeled 

sequence in the reference database, which can result in either i) a read of 

microbial origin being classified as human and is excluded, or ii) a read of human 

origin being classified as microbial, and is retained in the microbial dataset. Any 

human reads that leaked into the microbial dataset this way would be classified 

as the microbial taxa which contains the contaminated/mislabeled sequences in 

the database, which we have termed “contaminant taxa”.  

We reasoned that any contaminant taxa would be highly conserved across all 

samples, because every sample contains human DNA in high abundance. 

Therefore, we compiled a list of 232 taxa (as classified by Kraken2) which were 

present in more than 80% of samples. We then used MegaBLAST (Morgulis et al., 

2008) to re-classify a randomised subset of 500 reads that had been assigned to 

each taxa by Kraken2, using the NCBI non-redundant nucleotide database (nr/nt) 

(NCBI Resource Coordinators, 2018) as a reference, and manually curated the 

results to identify any taxa that contained a large number of human reads. 

MegaBLAST is widely considered to be the gold-standard in metagenomic 

sequence classification (Bazinet et al., 2018); it is the most sensitive and highest 

performing method. However, it is usually unfeasible to run MegaBLAST on large 

metagenomics datasets containing millions of reads as it is too computationally 

expensive (Ye et al., 2019). Using MegaBLAST, we identified and removed 3 

contaminant taxa (Eukayota, Toxoplasma gondii ME49 and Fusarium 

pseudograminearum CS3096) from our Kraken2 classified dataset that totaled 

10,045 reads, of which more than 80% were of human and non-microbial origin.  



  26 

To measure our ability to detect and remove human contamination from our 

dataset prior to, during and post-taxonomic classification, we once again used 

MegaBLAST using nr/nt as a reference database to classify a random subset of 

1000 reads from each sample prior to any filtering and after all filtering had 

taken place. Prior to any filtering, human reads comprised 43978/48000 (91.62%) 

of the total reads in the sample. After all filtering had taken place, there were 

3247/48000 (6.76%) human reads that remained. We therefore estimate a total 

human contamination level of 6.76% in our dataset that we were unable to 

remove. 

2.4.5 Rarefaction curves and rarefying samples 

As previously discussed, the sequencing depth of a microbiome sample affects 

key diversity metrics and its ability to be compared to other samples, therefore 

microbiome studies need to implement a normalization approach to account for 

uneven sequencing depth across samples (McMurdie and Holmes, 2014; Weiss et 

al., 2017). Rarefication was chosen as the normalization method for our study, 

where each sample is artificially subsampled to an even sequencing depth, and 

all samples with lower sequencing depth are removed. Rarefying involves a 

trade-off between the sequencing depth chosen and the number of samples that 

are retained.  

Rarefaction curves are used to measure the effect of sequencing depth on 

sample characteristics. The alpha_rarefaction function from the diversity plugin 

for the QIIME2  microbiome bioinformatics platform (Bolyen et al., 2018) was 

used to generate rarefaction curves. Curves were generated by simulating 

subsets of each sample at a sequencing read depth of 0-20,000 reads at 1000 

read intervals and calculating the following alpha diversity metrics for each 

interval: species richness, Shannon index and Pielou’s evenness. Once an 

appropriate sequencing depth cut-off had been chosen, the rarefy function in 

QIIME2 was used to rarefy the samples. 

2.4.6 Generating taxonomic profiles 

The total number (or proportion) of reads assigned to a taxon is distinct from its 

relative abundance because the likelihood of a read from a genome being 
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sequenced increases with genome size (Nayfach and Pollard, 2016), creating a 

bias towards the sequencing of larger genomes. The relative abundance of each 

taxon can thus be estimated as the total number of reads mapping to that taxon, 

divided by its genome size, followed by rescaling of the genome-size normalised 

read counts so that their sum is equal to 1 (McIntyre et al., 2017; Piro, 

Matschkowski and Renard, 2017; LaPierre et al., 2019). We calculated genome 

sizes for the taxa in our dataset using the NCBI Microbial Genomes database 

(NCBI Resource Coordinators, 2018). After calculating genome-size normalised 

read counts for each taxon, we then filtered reads that had been classified at 

the genus level or above (14.7% of total reads) and grouped the remaining taxa 

at the species level, the genome-normalised read counts were then converted to 

relative abundance by scaling them so that the total sum of taxa in each sample 

is equal to 1.  

The output format of the taxonomic profile is a table where rows represent 

species, columns represent samples and cell values are the relative abundances 

of species in a sample. In addition to the taxonomic profile for the whole 

microbiome, we created a subset of taxonomic profiles for the different 

fractions of the microbiome split by superkingdom. These taxonomic profiles 

that were used for downstream analysis were: microbiome (all species), 

bacteriome (bacterial species only), virome (viral species only), eukaryome 

(eukaryote species only), archaeome (archaeal species only).  

2.5 Microbiome analysis 

2.5.1 Taxonomic composition visualisation 

To give a broad overview of the species composition of the nasopharyngeal 

microbiome, an averaged taxonomic profile for cases and controls was created 

by taking the mean relative abundance of species of all the samples in these 

groups. These averaged taxonomic profiles were then loaded into Krona (Ondov, 

Bergman and Phillippy, 2011) to generate interactive reports, still images of 

these reports are included in the results section. 
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2.5.2 Alpha diversity 

2.5.2.1 Alpha diversity metrics 

For each sample, we calculated the richness as the number of observed species. 

We also calculated Pielou’s evenness to quantify how equally distributed the 

taxa are based on their relative abundance.  Species richness and Pielou’s 

evenness metrics used were calculated using the diversity plugin for the QIIME2 

(Bolyen et al., 2018). 

2.5.2.2 Modelling alpha diversity  

To determine whether participant characteristics had any impact on alpha 

diversity metrics, ordinary least-square (OLS) linear regression models were 

produced to model the mean richness or evenness from all of a participants 

samples as a function of their HIV status, enrolment age and type of cooking fuel 

used. Models were created in python using the OLS function in the statsmodel 

package (Seabold and Perktold, 2010). 

2.5.3 Beta diversity 

2.5.3.1 Beta diversity metrics 

The Bray-Curtis dissimilarity (BCD) between each pair of samples was calculated 

using the QIIME2 diversity plugin and used to generate pairwise dissimilarity 

matrices that were used for sample ordination, modelling longitudinal beta 

diversity, testing for differences in group dispersions/centroids and differential 

abundance analysis. 

2.5.3.2 Sample ordination 

To visualise the compositional differences among all of our samples 

simultaneously, a principal coordinate analysis (PCoA) was carried out using the 

QIIME2 diversity plugin. The subsequent PCoA matrix was visualised using the 

emperor plugin for QIIME2. 
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2.5.3.3 Modelling longitudinal beta diversity 

To assess the stability of microbiome over time in our participants, and how host 

or environmental factors might affect this, we extracted the BCD between all 

longitudinal sample pairs for each participant. An OLS linear regression model 

was then fit to model these longitudinal BCD measurements as a function of 

participant age, HIV status and the type of cooking fuel used. Models were 

created in Python using the OLS function in the statsmodel package (Seabold and 

Perktold, 2010). 

2.5.3.4 Testing group dispersions/centroids with PERMDISP/PERMANOVA 

Permutational analysis of variance (PERMANOVA) (Anderson, 2017) was used to 

test for the effect of participant metadata on microbiome composition. Briefly, 

the BCD matrix is converted into principal coordinate space and OLS regression 

models are fit to determine whether the centroids of test groups are different. 

We generated a pairwise BCD matrix for each participant using the average 

species composition across all of their available samples. We then implemented 

PERMANOVA on the participant BCD matrix using the adonis2 function of the 

vegan (v2.6-2) package in R (Oksanen J. et  al., 2022). We initially tested for the 

effects of all participant metadata (sex, enrolment age, cooking fuel, HIV status, 

number of children under 5 in the household, past history of pneumonia and 

tuberculosis) but later reduced this to HIV status, cooking fuel and enrolment 

age. 

The betadisper function from the Vegan (v2.6-2) package in R was used to carry 

out Permutational analysis of multivariate dispersions (PERMDISP), which 

measures the dispersion of samples in different groups. For all the samples in 

each group, the BCD matrix is converted into principal coordinate space and a 

centroid is generated, the dispersion of the group is then measured as the 

average distance between each sample and the group centroid. A pseudo-F 

statistic is calculated that represents the difference in dispersion of the two 

groups, a significance value is then obtained by randomly permuting the group 

labels for a set number of iterations, re-calculating group dispersions and then 

observing the proportion of permutations where the pseudo-F statistic is greater 

than between the real groups. 
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2.5.3.5 Differential abundance analysis 

The MaAsLin2 R package (Mallick et al., 2021) was used to test for the 

differential abundance of species by participant age, HIV status and type of 

cooking fuel used. MaAsLin2 allows the use of multiple types of models, data 

transformations and normalisations to suit the requirements of the study. We ran 

MaAsLin2 as a linear mixed-effects model without any normalisations or 

transformations to the data, as these are designed to address uneven sampling 

depth, which has already been done for our data. We used all of the available 

samples with the participant ID being included as a random effect and 

participant age, HIV status and type of cooking fuel used as fixed effects.  
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3 Results 

3.1 Sequencing depth normalisation 

After filtering out species with non-RNA genomes from the RNA dataset, the 

remaining read counts from the identified species were very low (Table 2) so we 

opted to continue solely with the analysis of the DNA dataset. To account for 

highly uneven sequencing depth in our DNA samples (Table 2), we chose to 

rarefy our samples to a standard sequencing depth. Rarefaction curves were 

created to investigate the relationship between sequencing depth, key diversity 

metrics and the number of samples retained (Figure 3-1).  Pielou’s evenness 

index plateaued at the first sequencing depth interval of 1000 reads and very 

gradually declined as depth increased. Observed species richness increases 

rapidly at lower sequencing depth, with the rate of species discovery decreasing 

as sequencing depth increases. However there was still a steady increase in 

species discovery even at the maximum sequencing depth of 20,000 reads. 

 

  

Figure 3-1. Rarefaction curves indicating the Pielou’s evenness index (left) or observed 

species richness (right) of the samples in our dataset at varying sequencing depths. 
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Table 2 - Sample metadata  including HIV status (HIV), CD4+ counts (CD4), enrolment age 

(enrage),  sex, previous tuberculosis infection (pasttb), previous pneumonia infection (pastpn), type 

of fuel used for cooking (cook), children under 5 years old in the household (und5) and the number 

of reads classified at the species level for the DNA and RNA samples. Rows highlighted in yellow 

represent DNA samples that were filtered out because they had fewer species-level reads than the 

chosen rarefication depth of 4026 reads. 

Patient 
ID HIV CD4 enrage sex 

pastt
b pastpn cook und5 

Sample 
ID 

Species 
reads 
(DNA) 

Species 
reads 
(RNA) 

Case1 Y 411 31.21 F N Y Charcoal 0 Case1-1 6754 14 

 

Case1-2 33240 2 

Case1-3 477561 25 

Case2 Y 357 37.63 M N N Charcoal 0 Case2-1 4084 28 

 

Case2-2 40524 107 

Case2-3 37161 4 

Case3 Y 407 49.08 M N N Firewood 2 Case3-1 7085 26 

 

Case3-2 632414 33 

Case3-3 479013 27 

Case4 Y 216 28.85 F N N Charcoal 1 Case4-1 50273 79 

 

Case4-2 1877 496 

Case4-3 62764 42 

Case5 Y 465 49.89 M N N Firewood 0 Case5-1 28547 13 

 

Case5-2 128098 32 

Case5-3 17251 19 

Case6 Y 508 47.3 F N N Charcoal 1 Case6-1 4499 11 

 

Case6-2 21461 13 

Case6-3 235 478 

Case7 Y 326 37.28 F Y Y Charcoal 0 Case7-1 33460 9 

 

Case7-2 24530 95 

Case7-3 88728 30 

Case8 Y 403 30.09 F N N Charcoal 1 Case8-1 4724 34 

 

Case8-2 6150 29 

Case8-3 705 27 

Case9 Y 340 31.1 F N N Firewood 1 Case9-1 47482 64 

 

Case9-2 218520 1 

Case9-3 54975 20 

Case10 Y 329 25.63 F N N Charcoal 1 Case10-1 9889 18 

 

Case10-2 45354 23 

Case10-3 11842 48 

Ctrl1 N   32.1 F N N Charcoal 1 Ctrl1-1 4026 55 

 

Ctrl1-2 1065 20 

Ctrl1-3 1334 57 

Ctrl2 N   22.73 M N N Firewood 0 Ctrl2-1 26629 54 

 

Ctrl2-2 252 18 

Ctrl2-3 331495 35 

Ctrl3 N   32.88 F N N Charcoal 1 Ctrl3-1 19839 9 

 

Ctrl3-2 4842 4374 

Ctrl3-3 49296 43 

Ctrl4 N   37.65 F N N Firewood 0 Ctrl4-1 23120 27 

 

Ctrl4-2 48179 226 

Ctrl4-3 102339 150 

Ctrl5 N   35.13 F N N Charcoal 1 Ctrl5-1 109417 8 

 

Ctrl5-2 299618 1 

Ctrl5-3 599043 19 

Ctrl6 N   48.8 F N N Charcoal 0 Ctrl6-1 2500 93 

 

Ctrl6-2 368976 354 

Ctrl6-3 705314 31 
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We chose a cut-off value of 4026 reads for our rarefication depth as it 

represented a good trade-off between sample retention and dataset size for 

downstream analysis. At 4026 reads, Pielou’s evenness index has largely 

stabilised and around 500-800 microbial species can already be detected in most 

samples (Figure 3-1). At the cut-off value of 4026 reads, 7 samples were 

removed from downstream analysis (Table 2). Ordination of the samples 

revealed that they grouped tightly together based on the number of reads they 

contained prior to rarefication, demonstrating that sequencing depth has a large 

effect on sample composition and as a result needs to be normalised prior to 

analysis (Figure 3-2a). After rarefication, the samples no longer cluster together 

based on original sequencing depth, indicating that rarefication removed this 

effect (Figure 3-2b).  

 

  

b) 

4026 

705314 

40524 

4026 

705314 

40524 

a) 

Figure 3-2. Principal coordinate analysis showing the ordination of samples by 

microbial composition before rarefication (a) or after rarefication (b). Samples are 

coloured according to the number of reads they contained prior to rarefication.  
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3.2 Overview of taxonomic composition 

As part of the metagenomic pipeline, we calculated the relative abundance of 

each species by applying a transformation to the rarefied read counts. This 

transformation considers the genome size of the species in question, as the 

likelihood of sequencing a read from a given genome increases with its size. To 

determine the effect of the relative abundance calculations on our data, we 

visualised the composition of the four superkingdoms in our dataset using 

relative read proportions and the newly calculated relative abundances (Figure 

3-3). Prior to any relative abundance calculations, bacteria dominated the 

dataset, with over 94% of the reads being classified as bacterial in 40/41 

samples. The relative abundance calculations had a dramatic effect on the 

relative proportion of the viral superkingdom. Viral relative abundances were 

much higher than their relative read proportions, which is to be expected as 

viruses have tiny genomes relative to bacteria and eukaryotes in our dataset. 

Interestingly, there was a large amount of variance in viral relative abundance 

between samples, and viral relative abundance appeared to be much higher in 

controls compared to HIV-infected cases. 

 

Next, we investigated the composition of the NPM at multiple taxonomic levels 

for cases and controls. Krona reports were used to visualise the mean relative 

abundance of taxa across all case samples or all control samples. Archaea and 

eukaryotes were underrepresented in both cases and controls, with viruses and 

C
Case Control 

C
Case Control 

Figure 3-3. Stacked bar plots showing the relative read proportion (left) and relative abundance 

(right) of each superkingdom per sample.  
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bacteria accounting for over 99% of the microbial population (Figure 3-4). As 

noted previously, mean viral relative abundance was higher in controls than 

cases (43% vs 9%). The overwhelming majority of the viruses detected in the 

cases and controls belong to the order Caudoviricetes, which consists of tailed 

bacteriophage (Figure 3-5). The genus Pahexavirus made up 96% of the 

bacteriophage in controls and 56% in cases, within this genus we identified 40 

unique species that all infect the bacterium Cutibacterium acnes 

(Supplementary Table 1). We also detected several other phage species that 

were shared in cases and controls. While bacterial relative abundance was lower 

in controls than cases (57% vs 90%), the taxonomic composition of the 

bacteriome was similar for both groups (Figure 3-6). Major bacterial genera 

included Corynebacterium, Cutibacterium, Staphylococcus, Kocuria, 

Micrococcus, Janibacter, Nocardioides and Paracoccus. Most of these genera 

were present in very similar proportions when averaged across cases and 

controls. The largest differences in mean relative abundance were in the genera 

Cutibacterium (18% of bacteria in controls, 7% in cases) and Staphylococcus (3% 

of bacteria in controls, 8% in cases). The mean relative abundance of C. acnes 

was much higher in controls than cases (14% of bacteria vs 5%), whereas 

Staphylococcus warneri and Staphylococcus aureus were more abundant in cases 

than controls (Supplementary Table 2). 

In most samples there were 9 major genera which accounted for 60% or more of 

the total microbial population in the sample. However, the relative proportions 

of these genera varied considerably between individuals and within-individuals 

over time (Figure 3-7). Of these major genera, Corynebacterium, 

Cutibacterium, Kocuria, Micrococcus, Janibacter, Nocardioides and Paracoccus 

were detected in all samples, Staphylococcus was detected in 40/41 samples and 

Pahexavirus was detected in 25/41 samples (Table 3). Some samples were 

dominated by one or a few genera, while others had much more evenly 

distributed populations. Corynebacterium, Pahexavirus and Staphylococcus were 

among the most variable genera which dominated (>20% relative abundance) 

some samples but were much rarer or not present in others. Corynebacterium 

and Staphylococcus were dominant in a higher proportion of case samples than 

control samples. Pahexavirus was found in 5/6 controls and was present in all 

samples analysed for 4/6 controls, it tended to dominate the microbial 
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population in controls but not cases, and its abundance was closely associated 

with its bacterial host Cutibacterium.  

Table 3 - Frequency of detection for 9 major genera in cases and controls  

Genus 
Case samples 
(n=27) 

Control Samples 
(n=14) 

Corynebacterium 27 (100%) 14 (100%) 

Cutibacterium 27 (100%) 14 (100%) 

Janibacter 27 (100%) 14 (100%) 

Kocuria 27 (100%) 14 (100%) 

Micrococcus 27 (100%) 14 (100%) 

Nocardioides 27 (100%) 14 (100%) 

Pahexavirus 14 (52%) 11 (79%) 

Paracoccus 27 (100%) 14 (100%) 

Staphylococcus 26 (96%) 14 (100%) 
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Figure 3-4. Krona reports showing the mean taxonomic composition of the microbiome of cases (left) and controls (right).  
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Figure 3-5. Krona reports showing the mean taxonomic composition of the virome for cases (left) and controls (right)   
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Figure 3-6. Krona reports showing the mean taxonomic composition of the bacteriome for cases (left) and controls (right)  
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Control Case 

Figure 3-7. Stacked bar plots showing the relative abundance of 9 major genera in each sample. Samples are ordered longitudinally by patient and grouped by HIV status. 
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We searched for the presence of pathogens commonly associated with HIV-

infection that could potentially be detected in the nasopharynx including: 

Microbacterium tuberculosis, Cryptococcus neoformans, Cryptosporidium spp., 

Histoplasma capsulatum, Pneumocystis jirovecii, Herpes simplex virus and 

Human cytomegalovirus (CMV) (‘CDC: AIDS and Opportunistic Infections’, 2021). 

The only HIV-related pathogen we identified CMV, which was detected in at 

least 1 sample from 5/10 cases and not in any of the 6 controls (Figure 3-8).  We 

also measured the abundance of common URT pathobionts whose overgrowth 

can lead to URT and LRT infections including: Staphylococcus aureus, 

Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis and 

Neisseria meningitidis. Relative abundance of pathobionts was low across all 

samples apart from Case8-1 where S. aureus constituted 60% of total bacterial 

abundance in the sample. 

Figure 3-8. Horizontal bar plots showing (left) The relative abundance of HIV-associated 

pathogens in our samples and (right) Relative bacterial abundance of common URT pathogens in 

our samples. 
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3.3 Factors affecting microbiome composition 

We used PERMANOVA to test the hypothesis that HIV-infected adults would 

significantly differ in NPM compared to healthy controls (Table 4). Initially we 

ran PERMANOVA with all the available participant metadata as explanatory 

variables, but this led to too much partitioning of the data to identify any 

significant associations. There was also collinearity between HIV status and past 

history of pneumonia/TB, as well as sex and cooking fuel (Table 2). We 

therefore re-ran PERMANOVA using HIV-status, type of cooking fuel used and 

enrolment age as explanatory variables as these were the predictors with the 

highest F-scores in the first test. With these parameters, HIV-status was found to 

be a significant predictor of microbiome composition. The type of cooking fuel 

used was borderline significant as a predictor of microbiome composition 

(p<0.1),but was a significant predictor of bacteriome composition(p<0.05). We 

also tested the dispersion of sample composition by HIV-status and type of 

cooking fuel using PERMDISP, neither factor had a significant effect on group 

dispersion (Figure 3-9). 

Table 4 – PERMANOVA results showing factors that affect microbiome composition 

with degrees of freedom (Df), effect size(F) and statistical significance (Pr>F) using different 

models. Statistical significance: (.) designates a Pr>F of less than 0.1 and (*) less than 0.05

 Model Factor Df F Pr>F 

All explanatory variables sex 1 0.570 0.833 

 cook 1 1.130 0.328 

 enrage 1 0.873 0.516 

 und5 1 0.696 0.696 

 pasttb 1 0.458 0.885 

 pastpn 1 0.499 0.916 

 hiv 1 1.419 0.189 

     
HIV, cooking fuel and enrolment age hiv 1 2.378 0.027(*) 

 cook 1 1.8461 0.072(.) 

 enrage 1 1.0411 0.3687 

     
HIV, cooking fuel and enrolment age (bacteriome) hiv 1 1.047 0.354 

 cook 1 2.299 0.035(*) 

 enrage 1 1.191 0.2685 
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3.4 Alpha diversity analysis   

We used multivariate regression to study the relationship between participant 

characteristics and the richness or evenness of their microbiome and its 

compartments (bacteriome, virome, eukaryome and archaeome). We were 

unable to detect an effect of cooking fuel, HIV status or enrolment age on 

overall species richness or evenness (Table 5). In the viral species richness 

model we observed a highly significant association between viral species richness 

and HIV status, with controls having 15 more viral species on average after 

accounting for other explanatory factors (p<0.01). For the bacterial evenness 

model, HIV status was a borderline significant predictor of bacterial evenness 

with controls having 10.9% lower bacterial evenness on average after accounting 

for other explanatory factors (p<0.1). These differences can be seen in the 

richness and evenness plots below (Figure 3-10). 

 

 

  

Figure 3-9. Principal Coordinate Analysis plots showing the dispersion of samples by type of 

cooking fuel used (left) and HIV-status (right). Statistical significance is labelled above the plot. 
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Table 5 – Alpha diversity multivariate regression model results showing the coefficients, standard 

errors, t-statistic and statistical significance (P>|t|) of test factors. Statistical significance: (.) 

designates a P>|t| of less than 0.1, (*) less than 0.05, (**) less than 0.01 

 Model Factor Coef. Std.Err. t P>|t| 

All species richness Intercept 775.612 141.059 5.498  

 cook[T.Firewood] -18.349 68.201 -0.269 0.792 

 Hiv[T.control] -0.273 64.835 -0.004 0.997 

 enrage -3.618 3.826 -0.946 0.363 

      
Viral species richness  Intercept 26.445 10.083 2.623  

 cook[T.Firewood] 7.428 4.875 1.524 0.154 

 Hiv[T.control] 15.319 4.635 3.305 0.006(**) 

 enrage -0.28 0.274 -1.025 0.325 

      
All species evenness  Intercept 0.552 0.128 4.319  

 hiv[T.control] -0.068 0.057 -1.185 0.259 

 cook[T.Firewood] 0.021 0.06 0.353 0.73 

 enrage -0.001 0.003 -0.26 0.8 

      
Bacterial species evenness Intercept 0.589 0.116 5.076  

 hiv[T.control] -0.109 0.052 -2.094 0.058(.) 

 cook[T.Firewood] -0.006 0.055 -0.116 0.909 

 enrage -0.002 0.003 -0.556 0.588 

 

 

 



  45 

Figure 3-10. (a) Stacked bar plot of overall species richness per sample coloured by superkingdom 

(b) Pielou’s evenness index for the bacteriome of each sample, grouped by individual. 

 

3.5 Longitudinal beta diversity analysis 

Multivariate linear regression models were used to determine whether 

participant characteristics had any effect on the stability of their microbiome 

over time. We modelled the Bray-Curtis dissimilarity (BCD) between all possible 

longitudinal sample pairings. We used the time between samples and participant 

HIV status, type of cooking fuel used and enrolment age as explanatory variables 

(Table 6). For the all-species model, cooking fuel and time between samples 

 

 

Control Case 

a) 

b) 

Case Control 
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were significant predictors of BCD (p<0.05), whereas HIV status was borderline 

significant(p<0.1). BCD between samples was lower in controls than cases and 

those who used firewood instead of charcoal, and increased time between 

sampling led to increased BCD. For the virome model, HIV status and cooking 

fuel were both significant predictors (p<0.05) of BCD between sample pairs, but 

longer time between sampling was not associated with larger BCD between 

sample pairs. 

Table 6 - Multivariate regression models of longitudinal beta diversity results showing the 

coefficients, standard errors, t-statistic and statistical significance (P>|t|) of each factors. Statistical 

significance: (.) designates a P>|t| of less than 0.1, (*) less than 0.05, (**) less than 0.01 

Model Factor Coef. Std.Err. t P>|t| 

Longitudinal Bray-Curtis: All species Intercept 0.726 0.118 6.134 0 

 hiv[T.control] -0.09 0.048 -1.869 0.072(.) 

 cook[T.Firewood] -0.17 0.05 -3.404 0.002(**) 

 Time_difference[T.8.0] 0.16 0.055 2.917 0.007(**) 

 Time_difference[T.9.0] 0.129 0.054 2.376 0.024(*) 

 enrage -0.004 0.003 -1.322 0.196 

      

Longitudinal Bray-Curtis: Viral species Intercept 0.825 0.206 4.008 0.001 

 hiv[T.control] -0.208 0.081 -2.567 0.017(*) 

 cook[T.Firewood] -0.243 0.086 -2.837 0.009(**) 

 Time_difference[T.8.0] -0.128 0.096 -1.328 0.197 

 Time_difference[T.9.0] 0.033 0.095 0.345 0.733 

 enrage 0.004 0.006 0.661 0.515 
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3.6 Differential abundance analysis 

We carried out differential abundance testing using MaAsLin2 to identify taxa 

that were differentially abundant between groups (Table 7). Due to our low 

number of participants (6 cases vs 10 controls), any effect size would need to be 

large to achieve statistical significance. As the number of statistical tests 

increases, the minimum detectable effect size decreases because a multiple 

testing correction is applied for each test to control the false discovery rate. We 

therefore opted to limit the number of statistical tests being carried out by 

restricting the groups analysed to HIV status and cooking fuel, and limiting the 

taxa analysed to the 9 major genera identified in Section 3.2. Micrococcus 

abundance was associated with cooking fuel, average relative abundance of 

Micrococcus was 3.8% lower in those who used firewood(q<0.05). For HIV status, 

Pahexavirus relative abundance was 33.1% lower in cases on average (q<0.05), 

and Nocardioides abundance was 0.9% higher on average(q<0.1).  We also did 

differential abundance testing of the major bacterial genera using their relative 

bacterial abundance. Using relative bacterial abundances negates the effect of 

Pahexavirus relative abundance, which is much higher in controls, on the 

Figure 3-11. Box plots showing the distribution of BCD values by sample grouping for (top) the 

all-species model, and (bottom) the virome model. 
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relative abundance of bacterial genera and therefore improves sensitivity to 

detect differential abundance of bacterial genera. When testing in this way, we 

found that relative bacterial abundance of Cutibacterium was significantly 

higher in controls than cases and Corynebacterium was more abundant in those 

who used firewood as fuel (Table 8). 

Table 7 – MaAasLin2 results showing the differential abundance of 9 major genera according to 

HIV status and type of cooking fuel used. Results show the coefficients (coef), standard error 

(stderr), statistical significance (pval) and statistical significance after Benjamini-Hochberg 

procedure to correct for multiple testing (qval).  Statistical significance: (.) designates a qval of less 

than 0.1 and (*) less than 0.05 

Genus metadata value coef stderr pval qval 

Micrococcus cook Firewood -0.038 0.01 0.001 0.014(*) 

Corynebacterium cook Firewood 0.208 0.095 0.048 0.173 

Janibacter cook Firewood -0.018 0.009 0.067 0.201 

Kocuria cook Firewood -0.03 0.016 0.11 0.247 

Nocardioides cook Firewood -0.006 0.003 0.104 0.247 

Pahexavirus cook Firewood 0.149 0.1 0.158 0.259 

Paracoccus cook Firewood -0.014 0.009 0.139 0.259 

Staphylococcus cook Firewood -0.058 0.036 0.146 0.259 

Cutibacterium cook Firewood -0.009 0.028 0.763 0.763 

Pahexavirus HIV Case -0.331 0.096 0.004 0.039(*) 

Nocardioides HIV Case 0.009 0.003 0.012 0.073(.) 

Micrococcus HIV Case 0.024 0.01 0.028 0.126 

Staphylococcus HIV Case 0.052 0.036 0.185 0.277 

Corynebacterium HIV Case 0.124 0.094 0.21 0.283 

Cutibacterium HIV Case -0.035 0.028 0.22 0.283 

Janibacter HIV Case 0.01 0.009 0.276 0.331 

Paracoccus HIV Case 0.008 0.009 0.338 0.381 

Kocuria HIV Case 0.008 0.016 0.642 0.679 
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Table 8 - MaAasLin2 results (bacterial abundance data) showing the bacterial differential 

abundance of 9 major bacterial genera according to HIV status and type of cooking fuel used. 

Results show the coefficients (coef), standard error (stderr), statistical significance (pval) and 

statistical significance after Benjamini-Hochberg procedure to correct for multiple testing (qval).  

Statistical significance: (.) designates a qval of less than 0.1 and (*) less than 0.05 

Genus metadata value coef stderr pval qval 

Corynebacterium cook Firewood 0.293 0.084 0.001 0.011(*) 

Micrococcus cook Firewood -0.04 0.012 0.002 0.012(*) 

Janibacter cook Firewood -0.017 0.01 0.087 0.252 

Microbacterium cook Firewood -0.008 0.005 0.097 0.252 

Kocuria cook Firewood -0.03 0.014 0.078 0.252 

Staphylococcus cook Firewood -0.075 0.044 0.098 0.252 

Paracoccus cook Firewood -0.016 0.01 0.129 0.291 

Nocardioides cook Firewood -0.003 0.004 0.46 0.755 

Cutibacterium cook Firewood 0.02 0.038 0.594 0.755 

Cutibacterium HIV Case -0.141 0.038 0.001 0.011(*) 

Paracoccus HIV Case 0.004 0.01 0.705 0.755 

Corynebacterium HIV Case 0.031 0.084 0.713 0.755 

Janibacter HIV Case 0.005 0.01 0.594 0.755 

Microbacterium HIV Case 0.003 0.005 0.581 0.755 

Micrococcus HIV Case 0.005 0.012 0.688 0.755 

Nocardioides HIV Case 0.002 0.004 0.587 0.755 

Staphylococcus HIV Case 0.035 0.044 0.437 0.755 

Kocuria HIV Case 0 0.014 0.976 0.976 
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4 Discussion 

The study captured and compared the nasopharyngeal microbiomes of 10 HIV-

infected individuals against 6 HIV-uninfected controls using shotgun sequencing 

of DNA and RNA samples. We characterised the nasopharyngeal microbiome by 

processing the sequencing data to create taxonomic profiles representing the 

relative abundance of each species in our samples. Nasopharyngeal microbiome 

composition was compared between cases and controls, and we also attempted 

to measure the impact of other variables including participant age, sex, cooking 

fuel, children under 5 in the household and medical history of respiratory 

infections. 

4.1 Taxonomic composition of the nasopharyngeal 

microbiome 

This work was a pilot study of using shotgun metagenomics to characterise the 

nasopharyngeal microbiome. In the absence of a known ground truth to validate 

our results against, comparing what we have found against published 16s rRNA 

studies can help us validate whether our results make sense. The major bacterial 

genera that we detected were Corynebacterium, Cutibacterium, 

Staphylococcus, Kocuria, Micrococcus, Janibacter, Nocardioides and Paracoccus 

(Figure 3-6). Our results differ from a previous characterisation of the NPM in 

Canadian adults using 16s rRNA sequencing (Stearns et al., 2015), which were 

primarily dominated by Staphylococcus, Rothia, Streptococcus and Veionella. 

Although Staphylococcus were identified in both studies, the average abundance 

was much higher in the Canadian study (~40% vs ~5%). 16s rRNA sequencing has 

also been used to characterise the NPM of healthy adults in the UK and the 

Netherlands (Cremers et al., 2014; Haak et al., 2022). These studies had more 

similar results to each other with major taxa, including Corynebacterium, 

Dolosigranulum, and Staphylococcus. Few of the major genera that we found in 

our study were also detected in the others: the UK study identified Kocuria, 

Micrococcus and Cutibacterium, while the Netherlands study found Paracoccus, 

Moraxella and Cutibacterium. It is clear from these studies that NPM 

composition varies dramatically between individuals and between studies, 

indicating that there are many factors that influence the NPM, including the 
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country of testing. It is therefore not surprising to find that the NPM of Malawian 

adults differs from those tested in the UK, Netherlands, and Canada. Identifying 

taxa that are shared between our study and other studies does lend some 

credibility to our results, however. 

Using PERMANOVA we demonstrated that on average, the NPM composition of 

individuals was significantly different based on the type of cooking fuel they 

used and by their HIV status (Table 4). We found that on average, the viral 

portion of the microbiome was much higher in controls than cases, and this 

appeared to be driven by an expansion of many bacteriophage species in the 

Pahexavirus genus (Figure 3-5). All Pahexavirus spp. that were detected infect 

the bacterium Cutibacterium acnes (Supplementary Table 1). Our differential 

abundance testing showed statistically significant association between HIV status 

and Pahexavirus relative abundance, but not Cutibacterium relative abundance 

(Table 7). However, when we performed relative abundance testing using only 

bacterial species, we were able to detect a statistically significant association 

between HIV status and Cutibacterium relative abundance (Table 8); the 

reasons underlying this are discussed in depth in section 4.4. The differences 

observed in Cutibacterium abundance was primarily in the species 

Cutibacterium acnes, which made up on average 14% of mean bacterial relative 

abundance in controls and only 5% in cases (Supplementary Table 2).  

C. acnes (previously Propionibacterium acnes) is best known as a resident of the 

human skin microbiome. While it is mostly non-pathogenic, it can illicit strong 

immune responses and has been implicated in the inflammatory skin condition 

Acne Vulgaris (Taylor, Gonzalez and Porter, 2011). Very little is known about the 

clinical relevance of C. acnes in the upper respiratory tract (URT), however it 

has been associated with pro-inflammatory responses and the formation of 

granuloma in the lungs (Werner et al., 2017). Inactivated C. acnes is currently 

used in equine medicine as an immune modulator to activate respiratory 

macrophages. Intravenous injection of inactivated C. acnes is used either as a 

prophylactic treatment or to treat respiratory diseases alongside antibiotics (Vail 

et al., 1990; Paillot, 2013). While little is known about the clinical relevance of 

C. acnes in the URT, the role of the microbiome in priming the immune system 

against pathogens has previously been established (Abt et al., 2012; Belkaid and 

Hand, 2014; Pfeiffer and Virgin, 2016; Man, de Steenhuijsen Piters and Bogaert, 
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2017). C. acnes has been shown to be immunogenic in the skin and lungs, if this 

were also the case in the URT it’s possible that C. acnes might play an important 

role in microbiota-mediated immune modulation. In this scenario, the decrease 

in C. acnes population that we observed in the nasopharynx of HIV-infected 

individuals might make them further susceptible to respiratory infections, 

although this hypothesis would require further research to test. 

4.2 Alpha diversity analysis 

We found that mean viral species richness was significantly higher in controls vs. 

cases (Figure 3-10a) and that this was driven by the presence of more 

Pahexavirus species, as control samples with high viral richness also have 

expanded Pahexavirus populations (Figure 3-7). Bacterial species evenness was 

11% lower on average in HIV-uninfected individuals (p=0.053) (Figure 3-10b) and 

this may partially result from the increased dominance of Cutibacterium acnes 

that we observed in these samples. Contrasting with our findings in the 

nasopharynx, Twigg et al. found a reduction of bacterial evenness in the lung 

microbiome of HIV-infected individuals, however this finding was in individuals 

with more advanced HIV-infection than in our study (Twigg et al., 2016). Low 

evenness is observed when one or a few taxa tend to dominate the microbial 

population, which potentially poses a risk of infection to the host depending on 

the pathogenicity of the taxa that dominates. There was increased domination 

of the genus Streptococcus in the lung microbiome of HIV-infected individuals, 

which might lead to increased risk of infection by S. pneumoniae (Twigg et al., 

2016). Conversely, in the nasopharynx of controls we observed increased 

dominance of C. acnes, which hasn’t been implicated as a pathogen of the URT 

and therefore unlikely to pose an infection risk.  

Measures of alpha diversity in the microbiome have been proposed to affect 

resilience to invasion, stability and have also been correlated with disease status 

(Levine and D’Antonio, 1999; Gillis, Hughes, Spiga, Winter, Zhu, de Carvalho, et 

al., 2018; Herren and Baym, 2018). Our findings highlight that alpha diversity 

measures can be a useful tool for identifying differences in microbial populations 

between test groups. However, it is important to place these findings within the 
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appropriate biological context by considering which specific microbes drive 

alpha diversity changes and how they are relevant to the research in question.  

4.3 Longitudinal changes and beta diversity analysis 

Our results clearly show that an individual’s NPM microbiome composition varies 

significantly over time. Few other studies have characterised longitudinal NPM 

samples. Allen et al. used 16s rRNA to characterise the nasopharyngeal 

bacteriome over time in health and in response to rhinovirus challenge (Allen et 

al., 2014). We are unable to directly compare our measurements of NPM stability 

with theirs as we have used different beta diversity metrics to measure the 

differences between samples. However our findings are broadly similar in that 

the taxonomic composition of longitudinal samples varies widely with time.  

As expected, we found that samples taken 8 or 9 months apart were significantly 

more different than samples taken 1 month apart (Figure 3-11), showing that 

the NPM composition is likely to drift further with time but that this relationship 

is not linear. We also found that the Bray-Curtis dissimilarity (BCD) between 

longitudinal sample pairs was higher in cases than controls (9% coefficient, 

p=0.072) (Table 6). This represents a relative instability of the microbiome in 

HIV-infected individuals compared to healthy controls. In the virome we 

identified an even stronger association between HIV status and stability (20.8% 

coefficient, p=0.017). This observation is likely explained by the differential 

abundance of Pahexavirus in cases and controls. In most control samples, the 

virome is dominated by large, relatively stable populations of Pahexavirus which 

reduces the BCD between samples, however these are not there in most case 

samples (Figure 3-7).  

4.4 Relative abundance data and the ‘curse of 

compositionality’ 

We identified many bacteriophages, belonging to the Pahexavirus genus, which 

infect Cutibacterium acnes in our study. We were able to detect a statistically 

significant association between HIV status and Pahexavirus relative abundance, 

but no association was found between HIV status and Cutibacterium relative 
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abundance. Cutibacterium makes up a larger proportion of the bacterial 

population in controls compared to cases (18% vs 7%), but this difference is less 

pronounced when considering the whole microbial population (10% vs 7%) 

(Figure 3-6). This is because the bacterial portion of the microbiome is much 

lower in controls than cases (57% vs 90%), which is primarily driven by 

differences in Pahexavirus abundance between these groups (Figure 3-4). 

Differential abundance analysis using only bacteria finds a highly significant 

association between HIV status and Cutibacterium abundance (Table 8). We 

therefore propose that the difference in relative abundance of Pahexavirus 

between cases and controls was so large that it actually masked other 

differences between the samples.  

The proposed masking of compositional differences between cases and controls 

by Pahexavirus is an example of what is referred to as ‘the curse of 

compositionality’, a technical issue that can make biomarker testing very 

difficult (Weiss et al., 2016; Knight et al., 2018). The ‘curse’ is that for 

compositional data: the measured abundance of each taxon is related to the 

measured abundance of all other taxa, therefore an increase in the relative 

abundance of one taxon must result in the decrease in the relative abundance of 

others. To place this in the context of our data, the simplest scenario is that the 

absolute abundance of Pahexavirus has increased by more than other species, 

pushing down their relative abundance. In this case it would be safe to conclude 

that the absolute abundance of Cutibacterium had also increased. However, we 

can’t know this for sure because another possible, albeit more unlikely, scenario 

is that the absolute abundance of Pahexavirus is equal in cases and controls but 

the absolute abundance of the other taxa are lower in cases. To summarise, a 

key limitation of relative abundance is that it cannot be used to determine 

whether a particular taxon is more or less abundant, or quantify the amount of 

change, between two samples (Barlow, Bogatyrev and Ismagilov, 2020).  

Quantifying microbiomes by absolute abundance would make differential 

abundance testing more sensitive and robust, as well as improving our 

understanding of which taxa are positively or negatively associated with test 

variables. It would also enable the identification of changes that affect total 

microbial abundance but don’t affect the relative proportions of taxa, an effect 

that has already been observed in the gut microbiome of mice following a 
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ketogenic diet (Barlow, Bogatyrev and Ismagilov, 2020). Spike-ins are one way of 

estimating absolute abundances, where a known concentration of specific 

DNA/RNA is added to a sample that provides a known reference point around 

which to convert relative abundances to absolutes (Barlow, Bogatyrev and 

Ismagilov, 2020). We initially tried to use DNA spike-ins with our data, however 

we couldn’t detect them after sequencing, highlighting a technical difficulty in 

choosing an appropriate concentration of DNA for the spike-in. 

4.5 Types of cooking fuel used and their effect on the 

microbiome 

The combustion of biomass fuels for cooking and heating, including firewood and 

charcoal, produces particulate matter that is referred to as Household Air 

Pollution (HAP) (Torres-Duque et al., 2008). HAP is associated with the risk of 

chronic obstructive pulmonary disease (COPD) in women and pneumonia in 

children (Smith, Mehta and Maeusezahl-feuz, 2004). 16s rRNA profiling of the 

lung microbiome in Malawian adults found that exposure to HAP was associated 

with increased abundance of Neisseria and Streptococcus (Rylance et al., 2016). 

In the nasopharynx of Ghanaian infants, HAP from cooking fires (compared to gas 

stoves) was associated with higher prevalence of potential pathogens 

Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis 

(Carrión et al., 2019). No studies to date have compared the effects of firewood 

vs charcoal use on the respiratory microbiome. Charcoal burning is cleaner than 

firewood, particulate matter concentrations are 90% lower in houses using 

charcoal than those using open fires (Bailis, Ezzati and Kammen, 2003).  

Our results show that longitudinal NPM composition is more stable in individuals 

using firewood as fuel rather than charcoal (Figure 3-11). This result seems 

counterintuitive as we expected that high HAP associated with firewood might 

lead to dysbiosis and instability of the NPM. However there is a high level of 

collinearity between sex and cooking fuel usage in our data (3/4 men use 

firewood and 10/12 women use charcoal) (Table 2). In Ethiopia and Uganda, 

women are exposed to 5-10x the amount of HAP than men because they spend 

more time indoors and more time cooking than men (Okello, Devereux and 

Semple, 2018). It is therefore difficult to attribute any of the changes in 
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composition or stability that we observed to the usage of firewood or charcoal as 

these changes could also result from differences in sex and the degree of 

exposure to cooking fuel. 

4.6 Issues with RNA samples 

The number of reads in the RNA dataset associated with species that have RNA 

genomes (RNA viruses) was very low, so we opted to focus our analysis on the 

DNA samples.  Despite using a sequencing depth of 10 million reads, we found 

fewer than 100 reads from RNA viruses in most of our samples. 94.25% of the 

total sequenced reads were human, 3.09% were bacterial, 2.54% were 

unclassified, 0.10% were non-human eukaryotes and 0.02% were viral 

(Supplementary Table 3). Of the viral reads, less than 8% came from RNA 

viruses. As the vast majority of the RNA reads sequenced were of human origin, 

the crucial improvement for future studies would be more efficient removal of 

human cells and RNAs prior to sequencing, which is discussed in section 4.7. 

Nevertheless, even with effective removal of human contamination, viruses only 

make up 0.35% of microbial RNA reads. Many microbial RNA reads will be from 

bacterial/eukaryote ribosomal RNA (rRNA) and messenger RNA (mRNA). rRNA 

depletion kits have previously been used in metagenomics to improve RNA virus 

recovery (Manso, Bibby and Mbisa, 2017; Fitzpatrick et al., 2021), but this is an 

expensive additional step and did not improve RNA virus recovery in our limited 

tests (data not shown), so we opted not to include this step for our samples.  

Our poor recovery of RNA viruses demonstrates that a successful characterisation 

of the RNA microbiome of the respiratory tract would require additional steps to 

enrich for viruses or better deplete non-viral RNAs. Samples can be enriched for 

viruses by Tangential-flow filtering, where a fine mesh is used to physically filter 

out cells (Thurber et al., 2009). Ultracentrifugation can also be used to separate 

cells from viruses (Vibin et al., 2018). It may also be necessary to amplify the 

remaining viral RNAs after extraction, as the yield may not actually be high 

enough for a sequencing run, however this can also introduce bias (Thurber et 

al., 2009). Taken together, these steps could drastically improve RNA virus 

recovery, but they will also introduce biases. Some viruses can be lost during 
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filtering steps due to their size/shape (Thurber et al., 2009). Furthermore, any 

intracellular viruses will be lost when cells are filtered. 

 

It’s also worth considering whether the benefit of sequencing RNA viruses 

outweighs the cost for the study in question. The price of preparing and 

sequencing DNA and RNA samples is similar, but the DNA samples contain 

information about populations of bacteria, archaea, eukaryotes, and DNA viruses 

whereas the RNA samples only measure RNA viral populations and their 

abundances can’t be directly compared to microbial populations from DNA 

samples. Previous 16s rRNA sequencing studies in the respiratory tract 

microbiome have also used multiplex PCR to analyse the presence/absence of 

respiratory viruses (Teo et al., 2015; Haak et al., 2022). Using multiplex PCR to 

confirm the presence/absence of clinically relevant RNA viruses might be a much 

more cost-effective solution than shotgun RNA sequencing. 

 

4.7 The feasibility of shotgun metagenomics in the 

respiratory tract  

The nasopharynx has a relatively low microbial density (Man, de Steenhuijsen 

Piters and Bogaert, 2017), so we knew that host contamination would be a 

significant issue if we didn’t take steps to deplete human DNA from our samples 

prior to sequencing. We attempted to deplete human cells and DNA from the 

sample in 2 stages. Prior to DNA extraction, we centrifuged samples at 5000g for 

1 minutes to pellet eukaryotic cells and separated the supernatant (Nelson et 

al., 2019). After DNA extraction, we used the NEBNext Microbiome DNA 

Enrichment Kit to remove CpG-methylated host DNA prior to library preparation 

(Feehery et al., 2013). 

 

Despite the steps we took to reduce human contamination, 98.2% of the reads 

we sequenced were of human origin (Supplementary Table 4). 1.17% of all 

reads were microbial and classified at the species level with an average of 

114595 reads per sample. However, the number of species-level microbial reads 

varied drastically by sample, ranging from 235 to 705314 reads (Table 2). 

Consequently, when normalising for sequencing depth in our samples, we had to 
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rarefy samples to a very low read count of 4026; while this did make our samples 

comparable it also resulted in a large loss of data for downstream analysis.  

 

The rarefaction curves that we generated show that by rarefying our samples, 

we fail to detect hundreds of microbial species (Figure 3-1). Furthermore, our 

detection is biased against viruses. Viral genomes can be hundreds or thousands 

of times smaller than microbes, meaning there is less viral DNA per single 

replicating unit so they must be present at higher densities than other microbes 

to meet our detection threshold. For example: viruses made up 0.39% of 

nonhuman reads in our dataset but they accounted for 43% of the total relative 

abundance in controls and 9% in cases (Figure 3-4). Overall we detected very 

few viral species in our samples, viral detection could be improved by recovering 

more microbial reads through more effectively removing human DNA prior to 

sequencing. This is supported by the observation that average viral richness was 

doubled in our unrarefied samples compared to the rarefied samples we used for 

analysis (Supplementary Table 5). 

 

While human reads dominated all the samples, there were drastic differences in 

the number of species-level microbial reads per sample. The source of this 

variation is unclear, one possibility is that the proportions of human and 

microbial reads reflect true differences in the absolute abundance of the 

nasopharyngeal microbiome. In reality this is unlikely to be the only factor, we 

observed differences in the human:microbial read ratio of up to 100-fold in 

samples taken 1 month apart in the same individuals. This extreme level of 

variation would not be expected in such a short time and in the absence of a 

major microbiome perturbation, such as antibiotic usage or URT infection, which 

were actively tracked as part of the study. Another possible factor is variation in 

technique during collection of the nasopharyngeal swab, this hasn’t been tested 

for shotgun sequencing, but swabbing technique did not significantly affect 

nasopharyngeal samples used for 16s rRNA sequencing or PCR (Akmatov et al., 

2017; Kinloch et al., 2020). Sample storage is another factor that could 

contribute to a higher ratio of human:microbial reads, DNA/RNA degradation can 

be observed in frozen samples that thawed for as little as 1 hour (Cardona et al., 

2012). Repeated freeze-thaw cycles can also affect the DNA of microbes 

differently, eukaryotic cells were robust to freeze-thaw cycles whereas DNA 
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degradation was observed in gram-negative bacteria (Poulsen et al., 2021). 

While we took great care to keep our samples frozen, the samples used in our 

study were originally stored in Malawi from a previous study and the number of 

freeze-thaw cycles is unknown. Samples also had to be transported from Malawi 

to the UK over 2 days on dry ice, therefore a degree of sample thawing and DNA 

degradation is a possibility.  

 

While we can’t pinpoint exactly why some samples have a higher proportion of 

human reads than others, there was an extremely high level of human 

contamination across all samples. Taking further steps to reduce the amount of 

human DNA/RNA in our samples would i) prevent wasted sequencing effort on 

human reads, ii) improve our ability to detect species with low abundance 

and/or small genomes and iii) make our overall microbiome characterisations 

more accurate. A significant source of human DNA/RNA in microbiome samples is 

extracellular (Nelson et al., 2019). In our protocol we opted not to DNAse/RNAse 

treat our samples prior to nucleic acid extraction as this can degrade some 

viruses (Thurber et al., 2009). In hindsight we would recommend degrading 

extracellular nucleic acids prior to nucleic acid extraction. There are several 

commercial kits available for human DNA depletion including MolYsis and 

benzonase1 that involve the targeted lysis of eukaryotic cells and endonuclease 

degradation of extracellular DNA (Nelson et al., 2019). Further testing would be 

required to see how well these kits improve host depletion when used in 

combination with the NEBNext Microbiome DNA Enrichment Kit that we deployed 

in our study. 

 

4.8 Future Directions 

Our small pilot study used shotgun metagenomics to compare the NPM of HIV-

infected and HIV-uninfected adults. We successfully deployed DNA shotgun 

sequencing in the nasopharynx and identified compositional differences in the 

NPM associated with HIV status, however our study had several limitations. First, 

an overwhelming majority of sequencing reads were of human origin and the 

number of microbial reads recovered varied widely between samples. Our 

analysis was therefore conducted at a much shallower sequencing depth than 

planned, reducing our ability to detect species present at lower abundances 
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and/or those with smaller genomes, particularly viruses. Second, the 

compositional nature of sequencing data makes it difficult to detect 

relationships between microbes and sample metadata. It also restricted any 

conclusions to be about the relative abundances of taxa between groups, not 

their true abundances. Finally, due to limited sample size and the presence of 

multiple variables that could affect NPM composition, we could only perform 

limited testing and detect relationships with very large effect sizes.  

We believe our finding that the NPM differs by HIV status shows that this is a 

promising area for further research. Future studies should be able to expand 

upon our findings if they are able to i) further deplete human contamination, ii) 

quantify absolute microbial abundances and iii) increase sample size. 
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Appendix 1 

Supplementary Table 1 – Pahexavirus bacteriophage species identified in our samples and their 

bacterial hosts as annotated in the Virus-Host database (Mihara et al., 2016).  

 

Virus name Virus tax id Other names Host name 

Pahexavirus ATCC29399BC 1229794 Propionibacterium phage ATCC29399B_C Cutibacterium acnes 

Pahexavirus P100A 1229790 Propionibacterium phage P100_A Cutibacterium acnes 

Pahexavirus P100D 1229789 Propionibacterium phage P100D Cutibacterium acnes 

Pahexavirus P144 1229784 Propionibacterium phage P14 Cutibacterium acnes 

Pahexavirus P91 1229782 Propionibacterium phage P9.1 Cutibacterium acnes 

Pahexavirus PA6 376758 Propionibacterium phage PA6 Cutibacterium acnes 

Pahexavirus PAD20 504501 Propionibacterium phage PAD20 Cutibacterium acnes 

Pahexavirus PAS50 504553 Propionibacterium phage PAS50 Cutibacterium acnes 

Pahexavirus PHL025M00 1500799 Propionibacterium phage PHL025M00 Cutibacterium acnes 

Pahexavirus PHL041M10 1500801 Propionibacterium phage PHL041M10 Cutibacterium acnes 

Pahexavirus PHL060L00 1235647 Propionibacterium phage PHL060L00 Cutibacterium acnes 

Pahexavirus PHL070N00 1500807 Propionibacterium phage PHL070N00 Cutibacterium acnes 

Pahexavirus PHL071N05 1235650 Propionibacterium phage PHL071N05 Cutibacterium acnes 

Pahexavirus PHL092M00 1500813 Propionibacterium phage PHL092M00 Cutibacterium acnes 

Pahexavirus PHL095N00 1500814 Propionibacterium phage PHL095N00 Cutibacterium acnes 

Pahexavirus PHL114L00 1235656 Propionibacterium phage PHL114L00 Cutibacterium acnes 

Pahexavirus PHL114L00 1500815 Propionibacterium phage PHL114N00 Cutibacterium acnes 

Pahexavirus PHL116M00 1500816 Propionibacterium phage PHL116M00 Cutibacterium acnes 

Pahexavirus PHL116M00 1500817 Propionibacterium phage PHL116M10 Cutibacterium acnes 

Pahexavirus PHL132N00 1500820 Propionibacterium phage PHL132N00 Cutibacterium acnes 

Pahexavirus PHL141N00 1500821 Propionibacterium phage PHL141N00 Cutibacterium acnes 

Pahexavirus PHL152M00 1500825 Propionibacterium phage PHL152M00 Cutibacterium acnes 

Pahexavirus PHL171M01 1500827 Propionibacterium phage PHL171M01 Cutibacterium acnes 

Pahexavirus PHL179M00 1500828 Propionibacterium phage PHL179M00 Cutibacterium acnes 

Pahexavirus PHL199M00 1500830 Propionibacterium phage PHL199M00 Cutibacterium acnes 

Pahexavirus PHL301M00 1500831 Propionibacterium phage PHL301M00 Cutibacterium acnes 

Pahexavirus SKKY 1655020 Propionibacterium phage SKKY Cutibacterium acnes 

Pahexavirus attacne 1655012  Cutibacterium acnes 

Pahexavirus lauchelly 1655015  Cutibacterium acnes 

Pahexavirus ouroboros 1655017  Cutibacterium acnes 

Pahexavirus P11 1229792  Cutibacterium acnes 

Pahexavirus procrass1 1655019  Cutibacterium acnes 

Pahexavirus solid 1655021  Cutibacterium acnes 

Pahexavirus stormborn 1655022  Cutibacterium acnes 

Pahexavirus wizzo 1655023  Cutibacterium acnes 

unclassified Pahexavirus 1654740  Cutibacterium acnes 

unclassified Pahexavirus 1654780  Cutibacterium acnes 

unclassified Pahexavirus 1747271  Cutibacterium acnes 

unclassified Pahexavirus 1690805  Cutibacterium acnes 



   62 

Appendix 2 

Supplementary Table 2 – The bacterial relative abundance and total relative abundance of the top 

10 most abundant bacterial species in cases and controls. 

 

Relative abundance 
(bacterial species) 

Relative abundance 
(all species) 

Bacterial species Case Control Case Control 

Corynebacterium segmentosum 0.198 0.206 0.183 0.135 

Cutibacterium acnes 0.052 0.173 0.045 0.081 

Micrococcus luteus 0.055 0.05 0.051 0.027 

Corynebacterium propinquum 0.059 0.012 0.054 0.009 

Staphylococcus warneri 0.046 0.032 0.040 0.012 

Cutibacterium granulosum 0.021 0.036 0.019 0.017 

Corynebacterium macginleyi 0.026 0.024 0.024 0.017 

Kocuria palustris 0.022 0.025 0.019 0.017 

Corynebacterium tuberculostearicum 0.014 0.039 0.012 0.017 

Staphylococcus aureus 0.023 0.000 0.021 0.000 
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Appendix 3 

Supplementary Table 3 – Summary of read classifications for the RNA sequencing dataset 

Classification Reads 
Mean reads 
per sample 

Percentage of 
nonhuman reads 

Percentage of 
total reads 

Total 480000000 10000000  100 

Human 452387892 9424748  94.25 

Non-human 27612108 575252 100 5.75 

Unclassified 12178458 253718 44.11 2.54 

Microbial  15433650 321534 55.89 3.22 

 Archaea 8227 171 0.03 0 

 Bacteria 14847414 309321 53.77 3.09 

 Eukaryotes 474605 9888 1.72 0.1 

 Viruses 95983 2000 0.35 0.02 

 RNA Viruses 7421 155 0.03 0 



   64 

Appendix 4 

Supplementary Table 4 – Summary of read classifications for the DNA sequencing dataset 

 

 

 

Classification Reads 
Mean reads 
per sample 

Percentage of 
nonhuman reads 

Percentage of 
total reads 

Total 480000000 10000000  100 

Human 471493781 9822787  98.23 

Non-human 8506219 177213 100 1.77 

Unclassified 2617897 54540 30.78 0.55 

Microbial  5888322 122673 69.22 1.23 

 Archaea 5353 112 0.06 0 

 Bacteria 5768679 120181 67.82 1.2 

 Eukaryotes 81042 1688 0.95 0.02 

 Viruses 33248 693 0.39 0.01 
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Appendix 5 

Supplementary Table 5 – Average species richness of each microbial superkingdom for cases 

and controls in the rarefied data and unrarefied data. 

 
 Richness (Rarefied data) Richness (Raw data) 

Superkingdom Case Control All Case Control All 

Archaea 0 0 0 0 0 0 

Bacteria 620 585 608 1211 1330 1252 

Eukaryote 4 5 4 11 13 11 

Virus 3 21 9 11 33 19 
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