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Abstract
This thesis is concerned with the statistical behaviour of elliptic curves over extension
fields. That is, if K/Q is a finite extension, we study the arithmetic of E/K as E
ranges in natural families of elliptic curves defined over Q. We study the statistical
properties of the action of the group Aut(K) on E(K) and on the p-Selmer groups
Selp(E/K) where p is a prime number.

We construct special generalised Selmer groups, and show that these are related
to certain representation-theoretic invariants of Selp(E/K). The sizes of these groups
are related to the cokernels of the norm maps over the completions of K, which we go
on to compute in several cases. In the statistical component of this thesis, we study
quadratic twist families of elliptic curves and the family of ‘all elliptic curves’.

For quadratic twist families we consider the behaviour over quadratic extensions.
Using methods similar to those of Heath-Brown [HB93,HB94] and of Fouvry–Klüners
[FK07], we determine the complete distribution of the 2-Selmer groups as Galois
modules. This also allows us to determine representation-theoretic properties for the
Mordell–Weil groups of 100% of twists.

For the family of all elliptic curves over Q, we consider the behaviour with respect
to a general finite Galois extension K/F . Writing G = Gal(K/F ), our first main result
is that the difference in dimension between Selp(E/K)G and Selp(E/F ) has bounded
average in this family. Using this we are able, with additional assumptions on K/F

and p, to bound the average dimension of Selp(E/K) and so the average rank of the
Mordell–Weil group E(K). Our methods also allow us to bound how often certain
Z[G]-lattices occur as summands of E(K), with additional assumptions on F . We
refine our results in the setting where K/Q is multiquadratic and p = 2, and prove
strong upper and lower bounds for the average dimension of the 2-Selmer group.
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Chapter 1

Introduction

This thesis sits at the intersection of arithmetic statistics, arithmetic geometry and rep-
resentation theory. In its modern form, arithmetic statistics began with work of Henri
Cohen and Hendrik W. Lenstra Jr. [CL84] in the early 1980’s on statistical properties
of class groups of quadratic number fields. Their work, in turn, was motivated by
investigations of Gauss some 200 years earlier. The basic philosophy of the area is
to study arithmetic objects in natural families, instead of individually, and determine
statistical results for properties of interest. Meanwhile, in arithmetic geometry, elliptic
curves present some of the most difficult and longest standing challenges in modern
number theory.

In this thesis we study elliptic curves defined over the rational numbers in natu-
ral families, and determine statistical results on their behaviour over higher number
fields. The results will describe representation-theoretic properties of their Mordell–
Weil groups and p-Selmer groups as Galois modules.

§ 1.1 | Context
In this thesis we will be concerned with quadratic twist families of elliptic curves, and
the family of ‘all elliptic curves’. This section will recall some results from the literature
regarding these families when we look at their behaviour over the rational numbers, in
order to give context to our results in the thesis.

§ 1.1.1 | Quadratic Twist Families

Quadratic twist families of elliptic curves are amongst the first for which statistical
results were proved.

Definition 1.1.1. Let E : y2 = f(x) be an elliptic curve defined over Q, and d be a
squarefree integer. Then the quadratic twist of E by d is the elliptic curve

Ed : dy2 = f(x).

Note that this curve becomes isomorphic to E over Q(
√
d).

The quadratic twist family associated to an elliptic curve is then the collection of
quadratic twists, indexed by squarefree integers d. This family comes with a natural
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ordering: we consider all Ed for |d| at most some positive real number X, estimate
statistical quantities of interest for this finite set of twists, and then take a limit as
X →∞.

In the 1990’s Heath-Brown [HB93,HB94] gave some initial results on the quadratic
twists of the congruent number curve. He obtained the distribution of dimF2 Sel2(Ed/Q)
as d varies in the set of odd squarefree integers. Heath-Brown’s results were then
extended by Kane [Kan13], building on earlier work of Swinnerton-Dyer [SD08]. The
main outcome was the following.

Theorem 1.1.2 ([Kan13, Theorem 3 and discussion following]). Write α0 = α1 = 0,
and for n ≥ 0

αn+2 = 2n∏n
j=1(2j − 1)∏∞j=0(1 + 2−j) .

Let E/Q be an elliptic curve with full 2-torsion and no cyclic 4-isogeny defined over
Q. Then for each r ≥ 0

lim
X→∞

#
{
|d| ≤ X : d squarefree,

dimF2 Sel2(Ed/Q)=r,

}
# {|d| ≤ X : d squarefree }

= αr.

Remark 1.1.3. This shows that for more than 99.9% of twists Ed of such a curve E, we
have dimF2 Sel2(Ed/Q) ≤ 6.

In general, the statistical behaviour of 2-Selmer groups in quadratic twist families
depends on the structure of the 2-torsion. Below we summarise some of the main
results for other quadratic twist families.

(A) If Gal(Q(E[2])/Q) = 0 then the works of Heath-Brown, Swinnerton-Dyer and
Kane mentioned above determine the distribution of the 2-Selmer group as in
Theorem 1.1.2, so long as E has no cyclic 4-isogeny;

(B) If Gal(Q(E[2])/Q) ∼= Z/2Z then Klagsbrun–Lemke Oliver [KLO16] showed that
for each fixed integer z ≥ 0, a proportion of at least 50% of twists Ed satisfy
dimF2 Sel2(Ed/Q) ≥ z. There are similar results for a slightly less general setting
proved earlier by Xiong–Zaharescu [XZ08].

(C) If Gal(Q(E[2])/Q) ∼= S3 then Klagsbrun–Mazur–Rubin [KMR14] determine the
distribution of dim Sel2(Ed/Q), albeit with respect to a different ordering on the
twists from the natural one we have discussed above.

Remark 1.1.4. There is also the very recent work of Smith, [Smi17, Smi22], which
determines the distribution of 2∞-Selmer groups in each of the twist families above, all
ordered in the natural way, as well as some other cases. This work is still very recent,
but is a huge step forward.

In this thesis we consider the family in (A), and study the 2-Selmer groups over
quadratic extensions. The results will, however, be closer in nature to the outcome in
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(B). There is an analogy explaining why this is the case, but we will not discuss it in
this thesis and instead direct the reader to our paper [MP22] for this.

§ 1.1.2 | The Family of All Elliptic Curves

We also study the family of ‘all elliptic curves’. For the duration of this thesis, we
introduce the following notation.

Notation 1.1.5. Let

E :=
{

(A,B) ∈ Z2 : gcd(A3,B2) is 12th-power free,
4A3+27B2 6=0

}
.

This set parametrises elliptic curves via the identification (A,B) ↔ EA,B : y2 = x3 +
Ax + B. It is well known, see e.g. [Sil09, III.1], that every elliptic curve defined over
the rational numbers is isomorphic to a unique curve parametrised by E . The natural
ordering on E is induced by the height: for (A,B) ∈ E , the height of EA,B is defined
to be max

{
|A|3 , B2

}
. For every positive real number X, we write E(X) for the finite

subset of E of curves which have height at most X. There is also the naïve height,
defined to be max

{
4 |A|3 , 27B2

}
, and we similarly define E ′(X) to be the set of curves

in E with naïve height at most X.

Very little was known about statistics for the family E until the groundbreaking
results of Bhargava–Shankar. In a series of papers from 2010–2013 they established
the following result.

Theorem 1.1.6 ([BS15a,BS15b,BS13]). Let p ∈ {2, 3, 5}, then

lim
X→∞

∑
(A,B)∈E ′(X) #Selp(EA,B/Q)

#E ′(X) = p+ 1

In fact their results are stronger: they can replace E with any ‘large family’. This
more general class of families includes those defined by finitely many congruence con-
ditions on the set E or indeed even some which are defined by infinitely many such
conditions – see Definition 7.4.7 for the definition. Initially the main corollary of in-
terest from the above result was that this shows that the average of rkE(Q) is finite.

Corollary 1.1.7 ([BS13, Theorem 3]). The average rank of elliptic curves is finite. In
fact,

lim sup
X→∞

∑
(A,B)∈E(X) rkEA,B(Q)

#E(X) < 0.885.

Shortly after, even preceding the final paper in the series of Bhargava–Shankar, a
heuristic of Poonen–Rains emerged which seeks to explain these averages conceptually.
In words: they note that the p-Selmer group is naturally an intersection of maximal
isotropic subgroups of an infinite dimensional quadratic Fp-space, and so model it as
such. One of the predictions arising from their model is the following.

Conjecture 1 ([PR12, Conjecture 1.1(b)]). Fix a prime number p. The average of
#Selp(EA,B/Q), as (A,B) ∈ E varies is p+ 1.
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The heuristic of Poonen–Rains agrees with the averages found by Bhargava–Shankar
in the cases p = 2, 3, 5. Moreover, the prediction obtained from their heuristic for
the second moment of #Sel2(E/Q) agrees with recent work of Bhargava–Shankar–
Swaminathan [BSS21]. These are all of the known statistical quantities related to the
heuristics and so, to date, the Poonen–Rains heuristics are uncontested.

In light of the ‘large family’ generality in which Theorem 1.1.6 holds, we expect the
average in Conjecture 1 to hold for any family of E/Q defined by a fixed finite number
of congruence conditions. We mark this as a hypothesis for later use below.

Hypothesis 1. Let Ẽ ⊆ E be a subset defined by finitely many congruence conditions,
and for every positive real number X write Ẽ(X) = E(X)∩ Ẽ. For each prime number
p, the average of #Selp(EA,B/Q) for (A,B) ∈ Ẽ(X) goes to p+ 1 as X →∞.

One of the main directions of this thesis is estimating analogous quantities to those
in Theorem 1.1.6, though in general our methods describe the dimension of the p-
Selmer group rather than its size, over extension fields. One input for our theorems
will be Theorem 1.1.6, and so in particular we can use the extension of the Poonen–
Rains heuristics in Hypothesis 1 to extend our results beyond the restricted setting in
which they can be proved at present. See §1.5.3 for more on this.

§ 1.2 | Main Results: Quadratic Twist Families
We now outline our main results for the family of quadratic twists of such E. This
is joint work with Adam Morgan [MP22]. We will be concerned with the statistical
behaviour of the groups Sel2(Ed/K), for a fixed elliptic curve E/Q with full 2-torsion,
as d varies in the set of squarefree integers.

The statistical work described here can be found in Part II (Chapter 4), with the
algebraic inputs being recalled at the start from Chapter 2.

§ 1.2.1 | Erdős–Kac for 2-Selmer

Our first result, strongly reminiscent of the Erdős–Kac theorem [EK40], shows that
dim Sel2(Ed/K) is normally distributed with mean log log |d| and variance 2 log log |d|.

Theorem 1.2.1 (Corollary 4.3.5). Let E/Q be an elliptic curve such that E[2] ⊆ E(Q),
and K/Q be a quadratic extension. For every z ∈ R we have

lim
X→∞

#
{
|d| ≤ X squarefree : dim Sel2(Ed/K)−log log |d|√

2 log log |d|
≤ z

}
# {|d| ≤ X squarefree } = 1√

2π

∫ z

−∞
e−t

2/2dt.

One immediate consequence is that, for any fixed real number z, the proportion of
|d| ≤ X for which dim Sel2(Ed/K) is smaller than z tends to 0 as X tends to infinity.
We present this as Corollary 4.2.12. By contrast recall that, if we assume that E has
no cyclic 4-isogeny defined over Q, for any fixed integer n ≥ 2 Theorem 1.1.2 shows
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that a positive proportion of twists Ed have dim Sel2(Ed/Q) equal to n. Thus Theo-
rem 1.2.1 shows that the groups Sel2(Ed/K) exhibit significantly different behaviour
to the corresponding groups over Q.

As a consequence of this discrepancy, we are able to show that, at least when E has
no cyclic 4-isogeny defined over Q, Theorem 1.2.1 remains true when dim Sel2(Ed/K) is
replaced by dimX(Ed/K)[2] in the statement. We present this alternative perspective
as Corollary 4.3.6.

§ 1.2.2 | Structural Results for 100% of Twists

The growth of the 2-Selmer group when passing from Q to a quadratic extension is ex-
plained by the Selmer structures in Chapter 2. For each twist Ed/Q, roughly speaking,
we identify a quotient of the invariant subgroup Sel2(Ed/K)Gal(K/Q) whose dimension
is controlled by purely local invariants. This is analogous to the situation for class
groups of quadratic fields where the dimension of the 2-torsion of the (narrow) class
group admits an explicit description via genus theory. In this setting, the definition of
this quotient appears in work of Kramer [Kra81].

In order to prove Theorem 1.2.1 we study, as d varies, the discrepancy between
the ‘systematic’ part of the 2-Selmer group Sel2(Ed/K) alluded to above, and the full
2-Selmer group. Ultimately, Theorem 1.2.1 is a consequence of the following result,
giving a precise description of the full 2-Selmer group for 100% of twists.

Theorem 1.2.2 (Corollary 4.3.4). Let E/Q be an elliptic curve with E[2] ⊆ E(Q),
and let K/Q be a quadratic extension. For 100% of squarefree d ordered by absolute
value, the Gal(K/Q)-action on Sel2(Ed/K) is trivial, and we have

dim Sel2(Ed/K) = −2 +
∑

v place of Q
dimEd(Qv)/NKw/QvEd(Kw). (1.1)

Here, in each summand, w is a choice of place extending v and NKw/Qv is the norm
map.

Remark 1.2.3. In §4.2 we study the behaviour of the right hand side of (1.1). Even
when E does not have all its 2-torsion defined over Q, we are still able to use this
to gain partial control of the Selmer groups Sel2(Ed/K) as d varies. In particular,
provided that Q(E[2]) ∩ K = Q we show in Corollary 4.2.12 that for any fixed real
number z, the dimension of Sel2(Ed/K) exceeds z for 100% of twists d.

Since the group Ed(K)/2Ed(K) sits inside Sel2(Ed/K), we can deduce some con-
sequences for Mordell–Weil groups from the above results. Specifically, for an elliptic
curve E/Q and squarefree integer d, define the Mordell–Weil lattice

Λ(Ed/Q) := Ed(Q)/Ed(Q)tors.

For a quadratic extension K/Q, write Λ(Ed/Q)χK for the Z[Gal(K/Q)]-module with
underlying abelian group Λ(Ed/Q) on which the generator of Gal(K/Q) acts as mul-
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tiplication by −1. We have the following result, giving a complete description of the
Galois module structure of Ed(K) for 100% of d.

Theorem 1.2.4 (Corollary 4.3.10). Let E/Q be an elliptic curve with E[2] ⊆ E(Q),
and K = Q(

√
θ)/Q be a quadratic extension. Then for 100% of squarefree d ordered

by absolute value, we have an isomorphism of Z[Gal(K/Q)]-modules

Ed(K) ∼= (Z/2Z)2 ⊕ Λ(Ed/Q) ⊕ Λ(Edθ/Q)χK , (1.2)

where here (Z/2Z)2 carries trivial Gal(K/Q)-action, and Λ(Edθ/Q)χK is the Galois
module defined above.

§ 1.2.3 | Prime twists of the congruent number curve

It is natural to ask if the description in Theorem 1.2.2 simply holds for all d. This is,
however, not the case: we provide infinitely many examples where the Galois action is
nontrivial in §4.6. Specifically, take E to be the congruent number curve:

E : y2 = x3 − x.

Further, we restrict to the setting where K = Q(
√
θ) is an imaginary quadratic ex-

tension of class number 1 in which 2 is inert. Alternatively put, we can assume
θ ∈ {−3,−11,−19,−43,−67,−163}. For a prime number p, via the classification of
F2[G]-modules ([Alp86, page 24], see also Lemma 2.2.12), we can define non-negative
integers e1(Ep/K) and e2(Ep/K) such that we have an F2[G]-module isomorphism

Sel2(Ep/K) ∼= F e1(Ep/K)
2 ⊕ F2[Gal(K/Q)]e2(Ep/K).

Theorem 1.2.5 (Theorem 4.6.7). Let E/Q be the congruent number curve, and K/Q
be an imaginary quadratic field with class number 1 in which 2 is inert. Then for each
pair (e1, e2) ∈ Z2

≥0, the natural density of prime numbers p for which e1(Ep/K) = e1

and e2(Ep/K) = e2 is as follows:

lim
X→∞

#
{
p ≤ X prime : e1(Ep/K)=e1 and

e2(Ep/K)=e2

}
# {p ≤ X prime} =



9/16 if (e1, e2) = (4, 0),

1/16 if (e1, e2) = (2, 2),

4/16 if (e1, e2) = (2, 1),

2/16 if (e1, e2) = (2, 0),

0 else.

In particular, the proportion of prime twists of the congruent number curve for which
the Gal(K/Q)-action on Sel2(Ep/K) is non-trivial is equal to 5/16.
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§ 1.3 | Main Results: All Elliptic Curves over Galois
Extensions

We now outline the main results in this thesis for the family of all elliptic curves, in
the sense defined in Notation 1.1.5. More precisely, for a fixed finite Galois extension
of a number field K/F and prime number p we study the behaviour of Selp(E/K) as a
Z[Gal(K/F )]-module, as E/Q varies according to height. These results are contained
in a preprint of the author [Pat21]. The main algebraic and geometric work can be
found in this thesis in Part I, and the statistical results are then proved in Part III
Chapter 5.

§ 1.3.1 | Average Ranks

Our first main result is the first known generalisation of Corollary 1.1.7 to average
ranks over extension fields. Firstly: by a multiquadratic number field, we will always
mean a finite Galois extension F/Q with Gal(F/Q) ∼= (Z/2Z)r for some r > 0; and
for a prime number p we say that a Galois field extension K/F is a p-extension if
Gal(K/F ) is a finite p-group.

Theorem 1.3.1. Let p ∈ {2, 3, 5}, F be either Q or a multiquadratic number field,
and K/F be a Galois p–extension. Then

lim sup
X→∞

∑
(A,B)∈E(X)

rkEA,B(K)

#E(X) � [K : Q]ω(∆K)

where the implied constant is absolute. Moreover, assuming Hypothesis 1 the same
conclusion holds (uniformly) over all prime numbers p.

Indeed we prove an explicit version of this result, see

Remark 1.3.2. There are stronger bounds in the case that K/Q is multiquadratic.
These are obtained from the results of Bhargava and Shankar by computing the av-
erage size of the 5–Selmer group of the Weil restrictions of our E/Q from K (see
Proposition 5.2.14).

Remark 1.3.3. The growth of our bound compares nicely with Iwasawa–theoretic con-
siderations in Zp–towers above F , as we discuss in §1.3.6.

§ 1.3.2 | The Explicit Bound

The explicit version of the bound in depends on certain constants Cp(K/F ), which we
will now introduce.

Definition 1.3.4. For each prime number p and finite Galois extension of number
fields K/F ,

Cp(K/F ) := 2ωF (6p∆K) + [F : Q] + δ2(p)r1(F ) + 2
∑

` prime
`-6p∆K

ωF (`)2`8 − `7 − 1
`10 − 1 ,
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where: δ2(p) = 1 if p = 2 and δ2(p) = 0 otherwise; for an integer n, ωF (n) is the
number of prime ideals of F which divide the ideal generated by n over the integers of
F ; r1(F ) is the number of real embeddings of F ; and ∆K is the discriminant of K.

Note that the asymptotic behaviour of Cp(K/F ) is estimated by

Cp(K/F )� [F : Q]ω(∆K)

with absolute implied constant. We prove the following explicit version of Theo-
rem 1.3.5.

Theorem 1.3.5. Let p ∈ {2, 3, 5}, F be either Q or a multiquadratic number field,
and K/F be a Galois p–extension. Then

lim sup
X→∞

∑
(A,B)∈E(X)

rkEA,B(K)

#E(X)

≤


[K : F ]C2(K/F ) + [K : Q]

(
C2(F/Q) + 37/2

28/3

)
if p = 2 and F 6= Q,

[K : F ]
(
Cp(K/F ) +

(
27
4

)5/6 p+1
p

[F : Q]
)

else,

Moreover, assuming Hypothesis 1 the same conclusion holds if p is any prime number.

Example 1.3.6. Theorem 1.3.5 implies that there are infinitely S3 number fields K
for which

lim sup
X→∞

∑
(A,B)∈E(X)

rkEA,B(K)

#E(X) < 65. (1.3)

Indeed, for each prime number ` take K` to be the splitting field of X3 − `. These are
cubic extensions of their shared quadratic subfield F = Q(ζ3), so we compute that if
` ≡ 2 mod 3 then C3(K`/F ) ≤ 8.44; thus (1.3) holds with K = K`.

Remark 1.3.7. Although we can often obtain uniform bounds for average ranks over
infinitely many extensions with Galois group isomorphic to some fixed G, we cannot
use these methods to obtain a bound which works for a positive proportion of such
extensions. Indeed, any sensible ordering of such extensions would see the number of
ramified primes grow, which in turn causes our bound to grow.

§ 1.3.3 | Galois Descent

Theorem 1.3.5 is proved by studying the statistical behaviour of the Galois fixed space
inside Selmer groups. For a finite Galois extension of number fields K/F and prime
number p, we study the failure of Galois descent from K to F for p-Selmer groups of
elliptic curves E/Q. That is, we examine the difference

dimFp Selp(E/K)G − dimFp Selp(E/F ), (1.4)

where G = Gal(K/F ). This difference between the fixed space and the Selmer group
over the base field comes in two flavours: “good” and “bad” characteristic.
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In the case that p - #G this difference is 0: the finite cohomology groups
H i(K/F,E(K)[p]) and their local analogues are trivial, so the inflation–restriction
exact sequence yields an isomorphism Selp(E/F ) ∼= Selp(E/K)G (see also §5.2 for
a more geometric explanation). In other words, Galois descent holds in the “good
characteristic” case.

The interesting case, that of so-called “bad characteristic”, is when p | #G. In fact,
in this case, Galois descent can fail to an arbitrary extent. Indeed, if E/Q is an elliptic
curve with E[2] ⊆ E(Q) and K/Q is a quadratic extension: for the fixed space, our
work with Morgan [MP22], specifically Theorems 1.2.1 and 1.2.2, shows that for every
fixed positive real number z, 100% of quadratic twists Ed of E have

dimF2 Sel2(Ed/K)G = dimF2 Sel2(Ed/K) > z;

however by Remark 1.1.3 more than 99.9% of quadratic twists Ed of E have

dimF2 Sel2(Ed/Q) ≤ 6.

In this latter proportion of twists, the difference (1.4) must be arbitrarily large.
The core statistical result in Chapter 5 shows that, despite this, in the family E the

failure of Galois descent is not typically large.

Theorem 1.3.8 (Theorem 5.3.8). Let p be a prime number, F be a number field and
K/F be a finite Galois extension. Writing G = Gal(K/F ), we have that

lim sup
X→∞

∑
(A,B)∈E(X)

∣∣∣dimFp Selp(EA,B/K)G − dimFp Selp(EA,B/F )
∣∣∣

#E(X) ≤ Cp(K/F ),

where Cp(K/F ) is the constant of Definition 1.3.4.

§ 1.3.4 | Selmer Ranks

In the case of a Galois p-extension, the p-Selmer group is a modular representation of
the Galois group. Appealing to the theory of such, we use Theorem 1.3.8 to bound the
average dimension of the full Selmer group, not just the Galois fixed space.

Theorem 1.3.9 (Corollary 5.4.2). Let p ∈ {2, 3, 5}, F be either Q or a multiquadratic
number field, and K/F be a Galois p–extension. Then

lim sup
X→∞

∑
(A,B)∈E(X)

dimFp Selp(EA,B/K)

#E(X)

≤


[K : F ]C2(K/F ) + [K : Q]

(
C2(F/Q) + 37/2

28/3

)
if p = 2 and F 6= Q,

[K : F ]
(
Cp(K/F ) +

(
27
4

)5/6 p+1
p

[F : Q]
)

else,

where Cp(K/F ) and Cp(F/Q) are the constants of Definition 1.3.4. Moreover, assum-
ing Hypothesis 1 the same conclusion holds if p is any prime number.
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It is from this result, and the usual inclusion E(K)/pE(K) ⊆ Selp(E/K), that we
obtain Theorem 1.3.5.

Example 1.3.10. The bounds obtained in Theorem 1.3.9 are often much larger than
the bound in Corollary 1.1.7. Let K/Q be the splitting field of x10−35x6 +130x4 +160,
so that the Galois group Gal(K/Q) is isomorphic to D10 the dihedral group of order
10. In this case, F = Q(

√
−10) is a multiquadratic field contained in K, and K/F

is a degree 5 extension, so we apply Theorem 1.3.9 with p = 5. We can compute that
C5(K/F ) ≤ 8.36, so the average dimension of 5-Selmer groups over K of elliptic curves
over Q is less than 101.

§ 1.3.5 | Mordell–Weil Lattices

We deduce some representation–theoretic information about Mordell-Weil lattices from
Theorem 1.3.8. For each elliptic curve E/Q and each number fieldK, we write Λ(E/K)
for the Mordell–Weil lattice:

Λ(E/K) = E(K)/E(K)tors.

For a finite Galois extension K/F , writing G = Gal(K/F ), Λ(E/K) is a Z-free Z[G]-
module. We refer to such modules as Z[G]-lattices. In Definition 5.5.2 we define the
multiplicity of a Z[G]-lattice Λ in Λ(E/K) to be the largest integer e = eΛ(K/F ;E)
such that Λe is isomorphic to a direct summand of Λ(E/K). We prove a bound for the
average of this multiplicity in certain cases.

Theorem 1.3.11 (Corollary 5.5.8). Let p ∈ {2, 3, 5}, F be either Q or a multiquadratic
number field, and K/F be a finite Galois extension. Writing G = Gal(K/F ), for every
Z[G]-lattice Λ such that dimFp(Λ/pΛ)G ≥ 1,

lim sup
X→∞

∑
(A,B)∈E(X)

eΛ(K/F ;EA,B)

#E(X)

≤ 1
dimFp(Λ/pΛ)G ·

C2(K/F ) + [F : Q]
(
C2(F/Q) + 37/2

28/3

)
if p = 2 and F 6= Q,

Cp(K/F ) +
(

27
4

)5/6 p+1
p

[F : Q] else,

where Cp(K/F ) and Cp(F/Q) are the constants of Definition 1.3.4. Moreover, assum-
ing Hypothesis 1 the same conclusion holds if p is any prime number.

Remark 1.3.12. For example, if G is a p-group then, by the orbit stabiliser theorem, for
every Z[G]-lattice Λ we have dimFp(Λ/pΛ)G ≥ 1. Of course, in this case these multi-
plicities can already be shown to be have bounded average by applying Theorem 1.3.5.

The following example, which is generalised in §5.5.3, demonstrates that Theo-
rem 1.3.11 is not just a formal consequence of Theorem 1.3.5.

Example 1.3.13. Let K/Q be a finite Galois extension with Galois group G ∼= F5oF×5 ,
for example the Galois closure of Q( 5

√
2).
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Let p / Z[ζ5] be the prime ideal lying over 5 in the ring of integers of the cyclo-
tomic field Q(ζ5), upon which a choice of generator of F5 acts by multiplication by ζ5

and F×5 acts as Gal(Q(ζ5)/Q). It is elementary to check that the actions above induce
the structure of a Z[G]–lattice on p. The action of every non-trivial normal subgroup
N ≤ G is without fixed points, so we cannot obtain bounds on the average multiplic-
ity of p in Mordell–Weil lattices by passing to lower Galois extensions and applying
Theorem 1.3.5. Since dimF5(p/5p)G = 1, we can, however, apply Theorem 1.3.11.

Our method does not allow us to bound the multiplicity of the lattice Z[ζ5] with the
analogous action of G: this lattice has no G-fixed space, so for every prime number p
we have that

(Z[ζ5]/pZ[ζ5])G ∼= H1(G,Z[ζ5])[p],

and one can easily compute that H1(G,Z[ζ5]) = 0. In particular, Theorem 1.3.11 does
not allow us to bound the average multiplicity of Q(ζ5) as an irreducible subrepresen-
tation inside of E(K)⊗Q.

§ 1.3.6 | Comparison to Iwasawa Theory

In Iwasawa theory, the growth of ranks of elliptic curves over Zp-towers of number
fields is studied; we now discuss our results in that context. For the duration of this
subsection, we fix a prime number p. If p ≥ 7 then we also assume Hypothesis 1.

The cyclotomic Zp–extension of a number field F is the unique subfield Fcyc ⊆⋃
n≥1 F (ζpn) such that Gal(Fcyc/F ) ∼= Zp. If F = Q then this is the only Zp-extension

by the Kronecker–Weber theorem. If F/Q is imaginary quadratic then the anticyclo-
tomic Zp-extension of F is the (unique) Zp-extension of F for which every intermediate
extension is dihedral over Q.

Average Rank Growth

We obtain asymptotic bounds for average rank growth in Zp–extensions of Q and of
multiquadratic fields.

Corollary 1.3.14. Let F be Q or a multiquadratic number field, and let F∞/F be a
Zp–extension. For each integer n ≥ 1, let Fn be the intermediate field F ⊆ Fn ⊆ F∞

such that Gal(Fn/F ) ∼= Z/pnZ. Then for every integer n ≥ 1

lim sup
X→∞

∑
(A,B)∈E(X)

rkEA,B(Fn)

#E(X) �F p
n,

where the implied constant is explicit and depends only on the choice of F .

Remark 1.3.15. Here we can ignore the ωQ(∆Fn) factors since Fn/F can only ramify at
primes above p (see e.g. [Was97b, Proposition 13.2]).

Cyclotomic Zp-Towers

A well known result of Kato and Rohrlich shows that the Mordell–Weil rank of an
elliptic curve is bounded in the cyclotomic Zp-extensions of abelian number fields.
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Theorem 1.3.16 ([Kat04, Roh84], see also [Gre01, Theorem 1.4]). For each elliptic
curve E/Q, and abelian number field F , there is an integer CE,Fcyc/F such that for all
subfields K ⊆ Fcyc we have

rk(E(K)) ≤ CE,Fcyc/F .

Currently there is no reason to expect CE,Fcyc/F to be uniformly bounded across all
E/Q – there is substantial debate regarding whether even rkE(Q) is uniformly bounded
(see [PPVW19, §3]). If F is Q or multiquadratic then our result in Corollary 1.3.14
suggests that these CE,F∞/F must not grow too quickly with the height of E. For
example, it cannot be the case that the curves of height at most X typically have CE
of order exp(X) and attain this maximum rank at low levels of the tower Fcyc/F .

Anticyclotomic Zp-Towers

We now consider the anticyclotomic extension of imaginary quadratic fields. The
growth number proposition [Maz84, §18] shows that if E/Q has good ordinary reduc-
tion at p, and the special fibre of the Néron model of E is geometrically connected at
each place where the extension F∞/F splits infinitely often, then for each intermediate
field Fn (as in Corollary 1.3.14), we must have

rkp(E/Fn) = a(E,F∞/F )pn +O (1) ,

where the implied constant and leading term a(E,F∞/F ) are independent of n, and
rkp(E/Fn) is the p∞-Selmer rank of E/Fn. Note that, subject to finiteness of the
Shafarevich–Tate group, we expect the p∞-Selmer rank to be precisely the rank of
E(Fn). The growth number conjecture of Mazur ([Maz84, §18 Growth Number Con-
jecture]) predicts that (for E/Q as in the growth number proposition):

a(E,F∞/F ) =


0 if wE = 1,

1 if wE = −1 and E does not have CM by F,

2 if wE = −1 and E has CM by F.

The condition wE = −1 is conjectured to hold for 50% of E/Q, and is known to hold
for at least 27.5% of E/Q by [BS13, Theorem 6]. The additional stipulations coming
from the growth number proposition are expected to also hold for a positive proportion
of curves, and 100% of E/Q do not have CM [Duk97]. In particular it is expected that
a(E,F∞/F ) = 1 for a positive proportion of E/Q, and so we should expect from this
conjecture and finiteness of the Shafarevich–Tate group that at least

lim sup
X→∞

∑
(A,B)∈E(X)

rkEA,B(Fn)

#E(X) � pn.

Corollary 1.3.14 shows that this is not just a lower bound but is the worst possible
asymptotic behaviour to be expected on average.
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§ 1.4 | Main Results: All Elliptic Curves over Mul-
tiquadratic Extensions

In the setting of multiquadratic extensions K/Q we are able to do substantially better
than the general setting described in §1.3. Indeed, we are able to obtain stronger
upper bounds for the average dimension, with comparably strong lower bounds on the
average dimension of the 2-Selmer group. This work will appear in a future article of
the author.

§ 1.4.1 | Bounds for Selmer Groups

Our results for 2-Selmer groups over multiquadratic extensions takes some notation to
set up.

Definition 1.4.1. Define the functions FS+ and S+ from the set of multiquadratic
extensions to R≥0 by

FS+(K) := lim sup
X→∞

∑
(A,B)∈E

dim Sel2(EA,B/K)Gal(K/Q)

#E(X) ,

S+(K) := lim sup
X→∞

∑
(A,B)∈E

dim Sel2(EA,B/K)

#E(X) ,

and similarly let FS−(K) and S−(K) be the liminfs for the above ratios. If FS+(K) =
FS−(K) then we denote the resulting value by FS(K), and similarly for S(K).

We obtain strong upper and lower bounds for FS+(K) and FS−(K) respectively,
which then give the following interesting corollary.

Theorem 1.4.2 (Theorem 6.5.6 and Corollary 6.5.8). Let K/Q be a multiquadratic
extension. Then

∑
v∈ΩQ
v-6

GK(v) ≤ FS−(K) ≤ FS+(K) ≤
∑
v∈ΩQ

GK(v) +
(27

4

)5/6

4
∏
v∈ΩQ
v-6

Lv(C (K))

 ,
where ΩQ is the set of places of Q, the function GK is defined in Definition 1.4.5, and
similarly the factors Lv(C (K)) are defined in Definition 6.5.3.

Further, assuming that K is a set of multiquadratic fields K in which 2 and 3 are
totally split and FS(K) exists, for each of the K ∈ K

FS(K) =
∑
v∈ΩQ

GK(v) +O

((46
48

)ω(∆K))
,

where the implied constant is independent of K.

We are, in fact, able to similarly obtain upper and lower bounds for S+(K) and
S−(K) respectively, though these are not as tight and do not give asymptotics as in
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Theorem 1.4.2. See Corollary 6.5.7. Restricting to quadratic fields we can do better,
firstly we can obtain a result on the Galois action on these Selmer groups in a similar
vein to what we prove for quadratic twists in Theorem 1.2.2.

Corollary 1.4.3 (Corollary 6.5.9). For each squarefree integer d,

lim sup
X→∞

#
{

(A,B) ∈ E(X) : Gal(Q(
√
d)/Q) acts nontrivially

on Sel2(EA,B/Q(
√
d))

}
#E(X) �

(46
48

)ω(d)
,

with constant independent of d.

Note that, unlike in quadratic twist families, we are unable to obtain that the Galois
action is trivial for 100% of curves! Indeed, as we will discuss in §1.4.3, computational
evidence suggests this action may be nontrivial for a positive proportion of elliptic
curves in E . We also obtain strong upper and lower bounds for the average dimension
of the 2-Selmer groups of elliptic curves over quadratic extension fields.

Theorem 1.4.4 (Theorem 6.5.11). Let d be a squarefree integer. Then if we write
K = Q(

√
d),

∑
v∈ΩQ
v-6

GK(v) ≤ S−(Q(
√
d)) ≤ S+(Q(

√
d)) ≤

∑
v∈ΩQ

GK(v) +
(27

4

)5/6

8
∏
v∈ΩQ
v-6

Lv(C (K))

 .

where the function GK is defined in Definition 1.4.5, and similarly the factors Lv(C (K))
are defined in Definition 6.5.3. Moreover, assuming that S(d) exists then we have for
all d ≡ 1 mod 24

S(d) =
∑
v∈ΩQ

GK(v) +O

((46
48

)ω(d))
.

§ 1.4.2 | The Constants and Asymptotic Behaviour

The function GK , for a multiquadratic field K, plays an important role above and so
we should now define it and discuss the associated asymptotic behaviour briefly.

Definition 1.4.5 (Definition 6.5.1). For each multiquadratic extension K/Q, define
the function

GK : ΩQ → R

as follows. We map each prime number ` ≥ 5 to

GK(`) =



`(`5+1)(`−1)(5`3+2`2+3)
6(`10−1)

if K/Q is ramified and
quadratic at `,

`(`−1)(3`7+3`6+3`5+`4+2`3+`2+3`+3)
3(`+1)(`10−1)

if K/Q is unramified and
quadratic at `,

`(`5+1)(10`5+4`4−7`3+5`2−12)
12(`10−1)(`+1) if K/Q is biquadratic at `,

0 if K/Q is totally split at `.
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For the remaining finite primes we define

GK(2) =

0 if K/Q is totally split at 2,

22+[K2:Q2] else;
GK(3) =

0 if K/Q is totally split at 3,

4 else.

We then send the infinite place to

GK(∞) =


7

10
√

27
if K is imaginary,

0 else.

In particular we note that the sum ∑
v∈ΩQ GK(v) converges and has size around

ω(∆K). Indeed for each prime number ` ≥ 5

GK(`) ≈

1 if K/Q is ramified at `;

1/p2 if K/Q is unramified at `.

Thus in the asymptotics, for example in Theorem 1.4.4 we get that S(d) behaves
asymptotically like ω(d) as d ≡ 1 mod 24 varies. This compares well with genus theory
for quadratic fields. Similarly, in Theorem 1.4.2, FS(K) behaves asymptotically in K
like ω(∆K) among the multiquadratic fields where 2 and 3 are totally split.

§ 1.4.3 | Limitations & Expectations

What’s Wrong with 2 and 3?

The bounds in Theorems 1.4.2 and 1.4.4 are tightest when 2 and 3 are split in the
associated (multi)quadratic field. When this condition is not met, the lower bound
ignores their contributions and their contribution to the upper bound is far larger than
for other primes. In fact the terms GK(2) and GK(3) are coarse approximations – it
should be possible to replace them with terms of a similar shape to the other GK(`)
(for ` ≥ 5 prime), and then remove the v - 6 condition from the lower bound. We now
outline what would be needed to do this.

For ` ≥ 5 prime, the rational number GK(`) is the average (over all E/Q) of the
local norm index E(Q`)/NK`/Q`E(K`) where K` is the completion of K at a choice of
place above `. The ‘correct’ term to have for GK(2) and GK(3) would be this average
for those primes. For every prime number `, the local norm index can be understood
in terms of ratios of Tamagawa numbers, with an additional ‘stretch factor’ occurring
at ` = 2 (see [KT82]). In order to do obtain the average, one would need to do a
detailed analysis of the outcomes of Tate’s algorithm [Sil94] for an elliptic curve of the
form y2 = x3 + Ax+ B locally at 2 and 3, as well as account for the behaviour of the
‘stretch factor’ at 2.

Nontriviality of the Galois Action

As we mention above, Corollary 1.4.3 shows that, for a typical quadratic field K, at
most a very small proportion of elliptic curves E/Q have nontrivial G = Gal(K/Q)
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action on Sel2(E/K). One then wonders: is this proportion positive or zero?
For every finite dimensional F2[G]-module M , there is a unique pair (e1, e2) ∈ Z2

≥0

such that
M ∼= Fe12 ⊕ F2[G]e2 , (1.5)

where F2 is the one-dimensional module (upon which G acts trivially) [Alp86, page
24]. Writing σ ∈ G for the nontrivial element, note that the norm element, NK/Q =
1 +σ ∈ Z[G], acts on M with image of dimension e2. Thus the dimension of the image
of NK/Q gives a measurement for how nontrivially G acts on M .

We prove Theorem 1.2.2 (and many of our results, see §1.5) by using a local approxi-
mation of the norm on the 2-Selmer group for each E/Q, which we call the corestriction
Selmer group and denote by SelC (K)(Q, E[2]). In a sense, this group contains the image
NK/QSel2(E/K). In Chapter 4 we show that the average size of the corestriction Selmer
group when E varies in quadratic twist families is 0, which gives that 100% of twists
have trivial Galois action in Theorem 1.2.2 by the above. However, in Chapter 7, we
find the average size of the corestriction Selmer group is positive in the family of all
elliptic curves.

In principal the norms from the Selmer group could still be trivial for 100% of
E, matching the situation for quadratic twists. However, computational experiments
(see Appendix B) seem to suggest that the image of the norms may have a positive
probability of being nontrivial as they seem to behave similarly to the corestriction
Selmer groups. This would mean that the Galois action can be nontrivial a positive
proportion of the time.

§ 1.5 | An Impressionistic Sketch of the Thesis
The thesis is divided into three parts: the first contains the general algebraic framework
used to prove our results; the second is where the statistical work for quadratic twist
families occurs; and the third is where the statistical work for the family of all elliptic
curves occurs. The material in Chapter 4 is joint work with Adam Morgan, as are any
dependencies from Chapter 2 which are clearly marked therein. The rest of Chapter 2,
and indeed the rest of Part I, along with Part III, consists of original work of the
author unless otherwise stated. Below is a diagram indicating the order of reading in
the thesis.

Ch.1

Ch.2 Ch.3

Ch.4 Ch.5 Ch.6

Ch.7

Part I

Part II Part III

Figure 1.1: Chapter dependency diagram
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There is a consistent algebraic approach underpinning the different statistical results
that we obtain in this thesis. In this section we will give a sketch of the arguments in
this thesis, and for the sake of exposition we will occasionally be imprecise. Wherever
the reader sees the symbol ∼ they should take this to mean that the mathematical
statement it is embedded in uses some poetic license. For the duration of this section,
letK/F be a finite Galois extension of number fields with Galois group G = Gal(K/F ),
and p be a prime number.

§ 1.5.1 | Part I

In Part I, Chapter 2 we construct ‘Selmer structures’ associated to elliptic curves E/F
which we call the (co)-restriction Selmer structures. Each structure imposes conditions
at every v ∈ ΩF on cohomology classes in H1(F,E[p]), and possesses an associated
‘Selmer group’ - the subgroup of cohomology classes obeying these local conditions at
every local place. The Selmer groups for our structures are denoted by

SelF (K)(F,E[p]), SelC (K)(F,E[p]) ≤ H1(F,E[p]),

where the former is called the restriction Selmer group and the latter the corestriction
Selmer group.

In Chapter 2 we determine some useful facts about these groups. The most useful
properties are the following.

(i) We have relations between these new Selmer groups and the usual p-Selmer group
over the base field:

SelC (K)(F,E[p]) ⊆ Selp(E/F ) ⊆ SelF (K)(F,E[p]).

(immediate from definitions, see (2.4))

(ii) The restriction Selmer group approximates (in a precise sense) the Galois fixed
space in the p-Selmer group over K:

SelF (K)(F,E[p]) ≈ Selp(E/K)G.

(Lemma 2.2.7 (2.3))

(iii) The corestriction Selmer group is, in a sense, the everywhere-local norm group,
and so bounds the image of the norm map acting on the p-Selmer group over K:(∑

σ∈G
σ

)
· Selp(E/K) ⊂∼ SelC (K)(F,E[p]).

(Lemma 2.2.7 (2.2))

(iv) The quantity

gp(K/F ;E) = dimFp SelF (K)(F,E[p])− dimFp SelC (K)(F,E[p])



CHAPTER 1. INTRODUCTION 18

is purely local, in that it is determined by the behaviour of E over all of the com-
pletions of F . More precisely, it depends on local norm indices (Definition 2.2.8
and Lemma 2.2.11). We call this quantity the genus theory of the p-Selmer group
(it will be defined properly later in the thesis).

In Chapter 3 we compute local norm indices in various settings. The aim here is
to determine enough of these indices to obtain statistical control of gp(K/F ;E) as E
varies in the families to be studied in Parts II and III.

§ 1.5.2 | Part II

In Part II we consider the setting where p = 2, F = Q and K/Q is a quadratic
extension, so that G has order 2, and we allow our elliptic curve to vary in the family
{Ed : d ∈ Z squarefree} of quadratic twists of a fixed elliptic curve E to obtain the
results in §1.2.

In order to motivate our approach: as in (1.5), there is a unique pair (e1, e2) =
(e1(d), e2(d)) ∈ Z2

≥0 such that

Sel2(Ed/K) ∼= Fe12 ⊕ F2[G]e2 , (1.6)

where F2 is considered to have trivial action of G and F2[G] is a free rank one module
over the group algebra [Alp86, page 24]. Moreover, if σ is the nontrivial element of G
then note that the image of the norm has dimension

dimF2(1 + σ) · Sel2(Ed/K) = e2. (1.7)

We use methods of Heath-Brown [HB93,HB94], as developed by Fouvry–Klüners
[FK07], to determine our key result: that if E[2] ⊆ E(Q) then

SelC (K)(Q, Ed[2]) = 0

for 100% of squarefree d. Thus, via (iii), and the decomposition of Sel2(Ed/K) above
we obtain that

Sel2(Ed/K) = Sel2(Ed/K)G (1.8)

for 100% of squarefree d. Moreover, (iv) then allows us to prove the rest of Theo-
rem 1.2.2.

Now, by (iv) and our key result above, we know that dim SelF (K)(Q, E[2]) is typi-
cally just the genus theory g2(K/Q;E). We prove that, as long asK∩Q(E[2]) = Q, the
genus theory quantity g2(K/Q;Ed) is asymptotically normally distributed as d varies
in a sense similar to the classical Erdős–Kac theorem. Combining with (ii) we can
move this distribution over to the fixed space Sel2(E/K)G, which by §1.2 is the whole
Selmer group 100% of the time, proving Theorem 1.2.1.

The Mordell–Weil decomposition result in Theorem 1.2.4 then follows from the fact
that (1.8) holds for 100% of d, by considering the possible images of the inclusion
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Ed(K)/2Ed(K) ⊆ Sel2(Ed/K).

§ 1.5.3 | Part III: The Failure of Galois Descent

We begin in Chapter 5 by considering the most general case: K/F is again a finite
Galois extension of a number field with Galois group G = Gal(K/F ), p is any prime
number, and we examine Selp(E/K) as E varies in the family E of all elliptic curves
defined over Q. The key result here is Theorem 1.3.8, that the failure of Galois descent,
i.e. the quantity ∣∣∣dimFp Selp(E/K)G − dimFp Selp(E/F )

∣∣∣ , (1.9)

has average value bounded by an explicit constant Cp(K/F ).
We prove Theorem 1.3.8 by using the inclusions in (i) and the relation (iv) to

bound (1.9) in terms of the genus theory gp(K/F ;E), which is determined by local
norm indices. We then use the computations in Chapter 3 (specifically §3.1) to gain
sufficient statistical control of the genus theory to show that it has bounded average,
giving the result.

Assume from this point on that G is a p-group. One can bound the dimension of
an Fp[G]-module M in terms of its fixed space MG. To give an impression of why this
is true: if we decompose M as a sum of indecomposable modules,

M ∼= M1 ⊕ · · · ⊕Mk,

then the orbit stabiliser theorem shows that each Mi must have a nontrivial element
fixed by G, and so is contributing to the fixed space MG. This argument is precisely
how one argues for G = Z/pZ. For general p-groups there could be infinitely many
indecomposable modules, and so we proceed by taking a Jordan–Hölder decomposition
of G and using each intermediate factor Z/pZ as above. This allows us to use the Galois
descent result above, when G is a p-group, to bound the average of dimFp Selp(E/K)
as

Avg dimFp Selp(E/K) ≤ [K : F ]
(
Avg dimFp Selp(E/F ) + Cp(K/F )

)
,

as stated precisely in Theorem 5.4.1. Of course, this leaves us with the problem of
studying the average dimension of the Selmer groups over F .

Remark 1.5.1. This result is specific to p-groups. If G is not a p-group, then it has at
least two conjugacy classes of elements with order coprime to p, meaning that there is at
least one simple Fp[G]-module which does not carry the trivial action of G [Alp86, I.3,
Theorem 2]. This module could appear as a summand in Selp(E/K), and contribute
arbitrarily often to the dimension without interacting with the fixed space.

Assume from this point on that F is Q or a multiquadratic number field. If p is odd
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then we can decompose

Selp(E/F ) =
[F :Q]⊕
i=1

Selp(EDi/Q),

where the set of Di that we are quadratic twisting by depends only on F . We then
use the work of Bhargava–Shankar in Theorem 1.1.6, or assume Hypothesis 1 if p > 5,
to bound the average of dimFp Selp(EDi/Q) for each Di and so bound the average of
dimFp Selp(E/F ) (see §5.2.3). Thus we obtain Theorem 1.3.9, and so Theorem 1.3.5.

Remark 1.5.2. One might wonder how much dependence there is on F being multi-
quadratic here. For a finite Galois extension F/Q one can (for all p - [F : Q]) similarly
decompose the p-Selmer group Selp(E/F ) into a sum of Selmer groups of ‘twists’ (over
Q) in the sense of [MRS07]. If F is multiquadratic then these twists are the quadratic
twists above, and since they are elliptic curves we are able to use the result of Bhargava–
Shankar. For other extensions, these twists are higher dimensional abelian varieties,
for which there is no corresponding result to replace the one of Bhargava–Shankar.

Returning to the setting where G is any group and F any number field, we can
deduce Theorem 1.3.11 similarly: we use the Galois descent theorem without substi-
tuting Selp(E/K) in place of Selp(E/K)G (so we do not need G to be a p-group) and
then use the above argument for multiquadratic fields to control the average dimension
of the Selmer group over the base field Selp(E/F ) when F is Q or multiquadratic.

§ 1.5.4 | Part III: 2-Selmer Groups over Multiquadratic Extensions

We continue our excursion with the family E in Chapters 6 and 7. In these chapters
we restrict to the setting F = Q and K/Q is a multiquadratic extension, so G is an
elementary abelian 2-group. The division of labour between the two chapters is easy
to state:

• Chapter 6 is focussed on obtaining the precise average for the genus theory
g2(K/Q;E);

• Chapter 7 is focussed on determining the average size of SelC (K)(Q, E[2]).

More precisely, in Chapter 6 we provide a general machinery for averaging certain
‘orderly’ sums of local constants over the family E . We then apply this machinery to
the genus theory, which we are able to completely understand for multiquadratic fields
by using the local norm index calculations of Chapter 3 (specifically §3.2). In §6.5
we state the main theorem from Chapter 7 on the average size of SelC (K)(Q, E[2]),
postponing the proof to Chapter 7. This tells us that SelC (K)(Q, E[2]) tends to have a
small positive average size for a general multiquadratic field K (see Theorem 7.7.13).
We combine this with the average of the genus theory to obtain strong upper and lower
bounds for the average dimension of the fixed space Selp(E/K)G via (ii) and (iv), which
are presented in Theorem 1.4.2.
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Remark 1.5.3. The average size of SelC (K)(Q, E[2]) here differs from similar results in
two ways. Firstly it is greater than 1, so E differs in behaviour from the quadratic twist
families in Chapter 4. Secondly, this average size is a product of certain local densities
which change depending on which ‘large family’ of elliptic curves we look at – differing
from the average of #Sel2(E/Q) which is independent of the choice of large family.

In Chapter 7 we use the ‘Bhargavology’ machinery found in the work of Bhargava–
Shankar [BS15a]. We repurpose their work on 2-Selmer groups to produce a machine
which computes the average size of Selmer groups for those Selmer structures which
‘behave well’. This notion is made precise in §7.5 by the definition of a 2-Selmer bundle.
We prove that the corestriction Selmer groups behave well in this sense, and so the
machine tells us the average size of SelC (K)(Q, E[2]) as E/Q varies.

If K is a quadratic field then we can decompose the Selmer group as we did in (1.6),
to derive more information. Specifically, (1.7) tells us that the dimension of the image
of the norm element on Sel2(E/K) measures how nontrivial its Gal(K/Q)-action is,
and (iii) tells us that this is bounded by the corestriction Selmer group which we have
shown to be typically rather small. This leads to Corollary 1.4.3 which shows that for
a general quadratic field K, the proportion of E/Q for which Sel2(E/K) is acted on
nontrivially by Gal(K/Q) is very small.

We finally obtain Theorem 1.4.4 from the fixed space result, since the average size
of the corestriction Selmer group (which controls the nontrivial action not accounted
for by that result) is small.

§ 1.6 | Notation and Conventions
We begin my fixing certain objects and notations, to allow for ease of exposition.

Galois Modules

For a field F of characteristic 0, we write F for a (fixed once and for all) algebraic
closure of F , and denote its absolute Galois group by GF = Gal(F/F ). By a GF -
module M we mean a discrete abelian group M on which GF acts continuously, and
for each i ≥ 0 we write H i(F,M) as a shorthand for the continuous cohomology groups
H i(GF ,M). If moreover M is p-torsion for some prime number p then we say that M
is an Fp[GF ]-module, and for V ⊆ H i(F,M) we write dim V for the Fp-dimension of
V . For such M , we define the dual of M to be

M∗ := Hom(M,µp),

where µp is the GF -module of pth roots of unity in F . This is an Fp[GF ]-module with
action given as follows: for σ ∈ GF , φ ∈M∗ and m ∈M ,

σφ(m) = σφ(σ−1m).
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For i ≥ 0, if L/F is a finite extension we denote the corresponding restriction and
corestriction maps by

resL/F : H i(F,M)→ H i(L,M)

and
corL/F : H i(L,M)→ H i(F,M),

respectively.
Moreover, if M is a GF -module and L/F is a finite Galois extension then there

is a natural action of Gal(L/F ) on the cohomology groups (for i ≥ 0) H i(L,M).
For i = 0 this is given by the usual action of GF on MGL , which factors through
GF/GL

∼= Gal(L/F ). For i ≥ 1, for each cocycle class [f ] ∈ H i(L,M) represented by
a continuous cocycle f : Gi

L → M , an element σ ∈ GF acts via σ · [f ] = [σ · f ] where
for (τ1, . . . , τi) ∈ Gi

L

σ · f(τ1, . . . , τi) = σf(σ−1τ1σ, . . . , σ
−1τiσ).

Number Fields

For a number field F , we write ΩF for the set of places of F and for each v ∈ ΩF

we write Fv for the completion of F at v. For each v ∈ ΩF we fix (once and for all)
an embedding F ↪→ F v, and so an inclusion GFv ⊆ GF . Thus each GF -module M is
naturally a GFv -module and moreover when v is non-archimedean (finite), we denote
by F nr

v the maximal unramified extension of Fv, and write

H1
nr(Fv,M) = ker

(
H1(Fv,M) res−→ H1(F nr

v ,M)
)

for the subgroup of unramified classes. We write OF for the ring of integers of F .

Elliptic Curves

For a number field F , an elliptic curve E/F and a finite place v ∈ ΩF , when we
describe the reduction type of E at v are implicitly referring to the type of E in the
Kodaira–Néron classification (see e.g. [Sil94, IV Theorem 8.2]).

We will often identify E with the set of points E(F ), and when describing Galois
module structure this will always be the notation. Moreover, for each positive integer
n, we write E[n] for the n–torsion subgroup of E.

If F is a non-archimedean local field, and E/F an elliptic curve, then we write
c(E/F ) for the associated Tamagawa number.

Quadratic twists

For a field F of characteristic 0, and for an element d of F×/F×2, we write χd for the
associated quadratic character. Thus χd is the function from GF to {±1} defined by,
for σ ∈ GF , the formula

χd(σ) = σ(
√
d)/
√
d.
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Given an abelian variety A over F we write Ad for the quadratic twist of A by d. That
is, Ad is an abelian variety over F , equipped with an F -isomorphism

ψd : A ∼−→ Ad (1.10)

such that for all σ in GF , ψ−1
d ψσd is multiplication by χd(σ) on A. In particular, A is

isomorphic to Ad over F (
√
d).

Arithmetic Functions

By an arithmetic function, we will mean a function f : Z\ {0} → C such that for each
n ∈ Z we have f(−n) = f(n). We denote by µ the Möbius function and by gcd the
greatest common divisor function, each extended from Z>0 to Z\ {0} by composition
with the archimedean absolute value. For arithmetic functions f and g, we denote by
f ∗ g the Dirichlet convolution of the two, i.e. for each n ∈ Z\ {0}

(f ∗ g)(n) :=
∑
d|n
f(d)g(n/d),

where the sum is over positive divisors of n. We say that an arithmetic function f is
multiplicative if for coprime integers m,n ∈ Z\0 we have that f(mn) = f(m)f(n).

For each prime number ` we write v` for the normalised valuation on Q`, i.e. the
unique valuation such that v`(`) = 1.

General Conventions

We write ∅ for the empty set, and define max ∅ to be 0, so that max is now defined on
every finite set of real numbers.
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Frequently Used Notation

We provide below a table for frequently used notation not mentioned above, indicating
where it is first defined for the readers convenience.

Notation Meaning Location
E Family of all elliptic curves over Q Notation 1.1.5

EA,B Elliptic curve corresponding to (A,B) ∈ E Notation 1.1.5
Ed Quadratic Twist of E by d Definition 1.1.1

C (K), C (K/F ;E) Corestriction Selmer structure Definition 2.2.1
F (K), F (K/F ;E) Restriction Selmer structure Definition 2.2.1

C (K)v, F (K)v Local groups at v for C (K) and F (K) Definition 2.2.1
SelC (K), SelF (K) Selmer groups for C (K) and F (K) Definition 2.1.3

ωF (n) Number of distinct primes of F dividing nOF Definition 1.3.4
∆E Discriminant of a fixed model of elliptic curve E §3.1

gp(K/F ;E) Genus theory part of Selp(E/K) Definition 2.2.8
T (K/F ;E) Tamagawa Ratio Definition 3.2.1
ιv(K/Q;E) Norm index modulo 2 for E at v from K Notation 6.0.1

ιmult
v (K/Q;A,B) ιv(K/Q;EA,B) for twisted multiplicative reduction Notation 6.3.5
ιaddv (K/Q;A,B) ιv(K/Q;EA,B) for other reduction types Notation 6.2.6

GK(v) Average of ιv(K/Q;E) over E Definition 6.5.1
Gmult
K (v) Average of ιmult

v (K/Q;A,B) over E Notation 6.3.1
GaddK (v) Average of ιaddv (K/Q;A,B) over E Notation 6.2.1

E` `-adic average Notation 6.1.7
Mψ Level for the function ψ Notation 6.1.7
E` minimal models for elliptic curves over Q` Notation 6.1.7
α Local constant Definition 6.1.9

Mα, Cα,Σα Level, bound and exceptional primes for α Definition 6.1.9
F Large family of elliptic curves Definition 7.4.7

Inv(F), Invv(F) Invariants of large family Notation 7.4.5
VR Binary quartic forms with coefficients in R Notation 7.2.1

H ′(E) Naive height of E Definition 7.4.1
H(f) Height of binary quartic form f Definition 7.4.9

Lv(C (K)) Factor for average size of SelC (K)(Q, E[2]) over E Definition 7.7.12

Table 1.1: Frequently used notation
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Part I

Algebraic Results



Chapter 2

Selmer Groups

The core algebraic objects of this thesis are Selmer structures. These are natural
generalisations of the data used to construct the usual n-Selmer groups of elliptic
curves, and come with associated Selmer groups. One way to think of n-Selmer groups
is that they consist of cohomology classes which ‘arise from points everywhere locally’;
in much the same way, Selmer structures prescribe local conditions (such as arising from
points on the curve) and their associated Selmer groups are made up of cohomology
classes which obey these prescribed conditions. These are introduced in §2.1, which is
background for the chapter.

In §2.2 we define the (co-)restriction Selmer structures, some novel Selmer structures
which generalise and reformulate an earlier construction of Kramer [Kra81], which we
show to capture certain representation-theoretic invariants of p-Selmer groups. These
results will then be applied later in the thesis in Parts II and III to reduce studying the
statistical behaviour of these representation-theoretic invariants to a study of certain
Selmer structures and associated data. We are able to produce our strongest results
for 2-Selmer groups over multiquadratic extensions, which we do in §2.3. We provide
an alternative description of the corestriction Selmer groups in this setting, in terms
of the usual Selmer groups of elliptic curves and of their quadratic twists.

For the duration of this chapter we let F be a number field, K/F be a finite Galois
extension and G := Gal(K/F ) be its Galois group. The material in §2.2 and §2.3
is original work of the author or joint work with Adam Morgan (and we note clearly
when the latter is the case), unless clearly noted otherwise.

§ 2.1 | Selmer Structures
We will now review the properties of Selmer structures and their associated Selmer
groups. More details on Selmer structures can be found in [Was97a,MR04] and the
references therein. Throughout this section, let p be any prime number.

For each place v ∈ ΩF and every Fp[GF ]–module M , we have the local Tate pairing

〈 , 〉v : H1(Fv,M)×H1(Fv,M∗) −→ H2(Fv,µp) = Br(Fv)[p] ↪→ Q/Z

given by the composition of cup-product and the local invariant map.
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Theorem 2.1.1 (Tate local duality). For each place v of F and every Fp[GF ]–module
M , the pairing 〈 , 〉v is non-degenerate. Moreover, for each non-archimedean place
v - p such that the inertia group IFv acts trivially on M , H1

nr(Fv,M) and H1
nr(Fv,M∗)

are orthogonal complements under this pairing.

Proof. See [NSW08, Corollary 7.2.6] for non-archimedean v and op. cit. Theorem
7.2.17 for archimedean v. The claim about the unramified subspaces is op. cit. Theo-
rem 7.2.15.

Example 2.1.2. Let p = 2, and consider M = µ2, which is self-dual. For each place
v of F , Kummer theory gives a canonical isomorphism H1(Fv,µ2) ∼= F×v /F

×2
v (and

we have the corresponding isomorphism globally also). For any non-archimedean place
v - 2 of F we have

H1
nr(Fv,µ2) = O×Fv/O

×2
Fv ⊆ F×v /F

×2
v .

The local Tate pairing
F×v /F

×2
v × F×v /F×2

v −→ Q/Z

is the Hilbert symbol (x, y) 7→ (x, y)v ∈ {±1} ∼= 1
2Z/Z (see e.g.[Har20, Example 9.11]).

We are now ready to define a central concept to the work in this thesis.

Definition 2.1.3. A Selmer structure L = {Lv}v for a finite Fp[GF ]-module M is a
collection of subgroups

Lv ⊆ H1(Fv,M),

one for each v ∈ ΩF , such that Lv = H1
nr(Fv,M) for all but finitely many v. The

associated Selmer group SelL (F,M) is defined by the exactness of the sequence

0→ SelL (F,M)→ H1(F,M)→
∏
v∈ΩF

H1(Fv,M)/Lv.

For each v ∈ ΩF we write L ∗
v for the orthogonal complement of Lv with respect to

the local Tate pairing, so that L ∗
v ⊆ H1(Fv,M∗). We then define the dual Selmer

structure L ∗ for M∗ by taking L ∗ = {L ∗
v }, and refer to SelL ∗(F,M∗) as the dual

Selmer group.

The following theorem describes the difference in dimension between a Selmer group
and its dual.

Theorem 2.1.4 (Greenberg–Wiles). Let L = {Lv}v be a Selmer structure for a finite
Fp[GF ]-module M . Then we have

dim SelL (F,M)− dim SelL ∗(F,M∗)
= dimMGF − dim(M∗)GF +

∑
v∈ΩF

(dim Lv − dimMGFv ).

Proof. This is [Wil95, Prop 5.1(b)]. See also [Was97a, Theorem 2].
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Remark 2.1.5. Note that if E/F is an elliptic curve, then E[p] is naturally an Fp[GF ]-
module and the Weil pairing induces an Fp[GF ]-isomorphism E[p] ∼= E[p]∗. Making
this identification, the local Tate pairing at a place v ∈ ΩF becomes an alternating
bilinear pairing on H1(Fv, E[p]), and the two global terms on the right hand side of
Theorem 2.1.4 cancel.

As an example, we recall the usual p-Selmer groups of elliptic curves in the language
of Selmer structures.

Definition 2.1.6. For each finite extension L/F , every place v ∈ ΩL, and each elliptic
curve E/Lv, we denote by Sv(L;E) the image of the coboundary map

δv : E(Lv)/pE(Lv) ↪→ H1(Lv, E[p]),

arising from the short exact sequence of GLv -modules

0 E[p] E E 0.p (2.1)

Note that if E is in fact defined over L then these local groups form a Selmer struc-
ture S (L) = S (L;E) = {Sv(L;E)}v. Note that the associated Selmer group is
SelS (L)(L,E[p]) = Selp(E/L), the classical p-Selmer group. We will often refer to the
local groups Sv(L;E) as Kummer images.

§ 2.2 | The (Co-)Restriction Selmer Structures
We now introduce the novel Selmer structures with which we will most often be oc-
cupied, and explain some elementary properties. As in the previous section, let p be
a prime number. In the case that p = 2, this can be found in earlier work of Kramer
[Kra81], see also the work of the author with Adam Morgan [MP22] where we rephrase
this case from Kramer in the language of Selmer groups. The general case is work of
the author [Pat21].

§ 2.2.1 | Definitions of the (Co-)Restriction Selmer Structures

Definition 2.2.1. For each elliptic curve E/F , each place v ∈ ΩF and any w ∈ ΩK

extending v, let

Fv(K/F ;E) := res−1
Kw/Fv

(Sw(K;E)) ≤ H1(Fv, E[p]).

Note that the definition does not depend on the choice of w as our extension is Galois.
We then have a Selmer structure F (K) = F (K/F ;E) = {Fv(K/F ;E)}v for E[p]
over F , and call this the restriction Selmer structure. We further define the Selmer
structure C (K) = C (K/F ;E) for E[p] to be the dual of F (K), denote the correspond-
ing local groups by Cv(K/F ;E), and call this (for reasons to be revealed shortly) the
corestriction Selmer structure.
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Of course, we ought to justify our assertion that these local groups do, in fact,
define Selmer structures. Before doing so, we provide a useful alternative description
of the corestriction Selmer structure, justifying its name.

Lemma 2.2.2. For every v ∈ ΩF , every elliptic curve E/Fv and every place w ∈ ΩK

extending v, the orthogonal complement (with respect to the local Tate pairing) of the
subgroup res−1

Kw/Fv
(Sv(E;Kw)) ≤ H1(Fv, E[p]) is precisely corKw/Fv(Sv(E;Kw)).

In particular, when E is defined over F , we have the identity

Cv(K/F ;E) = corKw/Fv(Sw(K;E)) ≤ H1(Fv, E[p]).

Proof. For v ∈ ΩF and w ∈ ΩK extending v, it follows from [Neu13, I.5.4] and [Neu13, II
Proposition 1.4(c) and Theorem 5.6] that resKw/Fv and corKw/Fv are adjoints with re-
spect to the local Tate pairings. By [PR12, Proposition 4.10], Sv(F ;E) and Sw(K;E)
are maximal isotropic subspaces of the corresponding cohomology groups with respect
to the Tate pairings. Thus we have inclusions

corKw/Fv(Sv(K;E)) ⊆
(
res−1

Kw/Fv
(Sv(K;E))

)∗
and

resKw/Fv
(
corKw/Fv(Sw(K;E))∗

)
⊆ Sw(K;E)∗ = Sw(K;E).

The result then follows.

Remark 2.2.3. In the case p = 2 this is already noted by Kramer in the paragraph
following Equation 10 in [Kra81].

Using this description it is easy to see that these define Selmer structures.

Lemma 2.2.4. Let E/F be an elliptic curve. Then the collections C (K) = C (K/F ;E)
and F (K) = F (K/F ;E) in Definition 2.2.1 are Selmer structures.

Proof. Note that for every v ∈ ΩF and every w ∈ ΩK extending it, by Lemma 2.2.2
and the compatibility of corestriction maps with connecting maps we have that

Cv(K/F ;E) = corKw/Fv(Sw(K;E)) = δ

(
NKw/FvE(Kw) + pE(Fv)

pE(Fv)

)
,

where δ : E(Fv)/pE(Fv)→ H1(Fv, E[p]) is the induced map arising from the connect-
ing map from the by multiplication by p short exact sequence for E. By [Maz72, Corol-
lary 4.4], if v is a place of good reduction for E which is unramified in K/F then
NKw/Fv : E(Kw)→ E(Fv) is surjective and so Cv(K/F ;E) = Sv(F ;E). It is then well
known that Sv(F ;E) = H1

nr(F,E[p]) so long as we additionally require that v - p (see,
e.g. [Sil09]). Thus Cv(K/F ;E) = H1

nr(F,E[p]) for all but finitely many places v ∈ ΩF .
The same statement holds for Fv(K/F ;E) since it is the dual structure to Cv(K/F ;E)
and for all but finitely many v ∈ ΩF the unramified classes H1

nr(Fv, E[p]) are self-dual
(see [PR12, Proposition 4.12 via Remark 4.11] for a more general statement).
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§ 2.2.2 | Properties of the (Co-)Restriction Selmer Groups

We now relate the Selmer groups SelF (K)(F,E[p]) and SelC (K)(F,E[p]) to specific rep-
resentation theoretic invariants of the Fp[G]-module Selp(E/F ).

Lemma 2.2.5. Let E/F be an elliptic curve. We have

SelF (K)(F,E[p]) = res−1
K/F (Selp(E/K)) .

Proof. This follows from the compatibility of local and global restriction maps.

Lemma 2.2.6. Let E/F be an elliptic curve. We have

corK/F (Selp(E/K)) ⊆ SelC (K)(F,E[p]).

Proof. This is immediate from Lemma 2.2.2

Lemma 2.2.7. Let E/F be an elliptic curve, and NK/F := ∑
g∈G g ∈ Z[G] be the norm

element. We have that

dim
(
NK/F · Selp(E/K)

)
≤ dim SelC (K)(F,E[p]), (2.2)

dim
(
Selp(E/K)G

)
= dim SelF (K)(F,E[p])− dimH1(K/F,E(K)[p]) + dim(im(τ)),

(2.3)

where τ : H1(K,E[p])→ H2(K/F,E(K)[p]) is the transgression map.

Proof. (2.2) is given by naturality of the corestriction map, which is induced by action
of NK/F . By Lemma 2.2.5, the inflation-restriction sequence yields an exact sequence

0 H1(K/F,E(K)[p]) SelF (K)(F,E[p]) Selp(E/K)G

H2(K/F,E(K)[p]).

inf res

τ

Thus (2.3) holds.

We now introduce the function that will bound the failure Galois descent in our
statistical results.

Definition 2.2.8. We define the genus theory of the p-Selmer group of an elliptic curve
E/F arising from the extension K/F to be

gp(K/F ;E) :=
∑
v∈ΩF

dimE(Fv)/
(
NKw/FvE(Kw) + pE(Fv)

)
,

where, in each summand, w ∈ ΩK is any place of K extending v.

Remark 2.2.9. This sum is well defined because only finitely many terms are ever
nonzero: by [Maz72, Corollary 4.4] the norm map surjects at primes which are both
unramified in the extension and of good reduction for the curve.
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We now have a simple lemma relating the local terms in the genus theory to the
objects we are already studying.

Lemma 2.2.10. Let v ∈ ΩF , E/Fv be an elliptic curve, and choose w ∈ ΩK extending
v. Then,

dim (E(Fv)/pE(Fv)) = dim corKw/Fv(Sw(K;E)) + dim E(Fv)(
NKw/FvE(Kw) + pE(Fv)

)
Proof. Note that corKw/Fv acts as the norm map NKw/Fv on points in E(Kw), so, via
the second isomorphism theorem,

corKw/Fv(Sw(K;E)) =
(
NKw/FvE(Kw) + pE(Fv)

)
/pE(Fv).

The claimed formula then follows from the natural short exact sequence

0 NKw/FvE(Kw)+pE(Fv)
pE(Fv)

E(Fv)
pE(Fv)

E(Fv)
(NKw/FvE(Kw)+pE(Fv)) 0 .

This, along with the Greenberg-Wiles theorem, then tells us the following.

Lemma 2.2.11. Let E/F be an elliptic curve. Then

dim SelF (K)(F,E[p])− dim SelC (K)(F,E[p]) = gp(K/F ;E),

and moreover,

0 ≤ dim SelF (K)(F,E[p])− dim Selp(E/F ) ≤ gp(K/F ;E).

Proof. For each v ∈ ΩF , the groups Cv = Cv(K/F ;E) and Fv = Fv(K/F ;E) are
orthogonal complements under the local Tate pairing. We therefore have dim Fv =
dimH1(Fv, E[p]) − dim Cv. Moreover, since Sv(F ;E) is maximal isotropic, we have
dimH1(Fv, E[p]) is equal to 2 dimE(Fv)/pE(Fv). Combining this with Lemma 2.2.2
and Lemma 2.2.10, we obtain

dim Fv = 2 dimE(Fv)/pE(Fv)− dim Cv

= dimE(Fv)/pE(Fv) + dimE(Fv)/
(
NKw/FvE(Kw) + pE(Fv)

)
.

It then follows from Theorem 2.1.4 that

dim SelF (K)(F,E[p])− dim SelC (K)(F,E[p]) =
∑
v∈ΩF

dim
(

E(Fv)
NKw/FvE(Kw) + pE(Fv)

)

+
∑
v∈ΩF

(
dim E(Fv)

pE(Fv)
− dimE(Fv)[p]

)

=gp(K/F ;E),
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where the last equality is obtained by applying Theorem 2.1.4 to the self-dual Selmer
structure S (E/F ), so the first equation in the lemma statement holds.

The second equation follows from the inclusions

SelC (K)(F,E[p]) ⊆ Selp(E/F ) ⊆ SelF (K)(F,E[p]), (2.4)

and so the result holds.

§ 2.2.3 | A Useful Lemma for p -Extensions

Here we provide a useful lemma for bounding the behaviour of Selp(E/K) using only
Selp(E/K)G when G is a p-group. Firstly, however, we will require the classification of
finite dimensional Fp[Z/pZ]-modules.

Lemma 2.2.12. Assume that G is a cyclic group of order p. The isomorphism
classes of finitely generated indecomposable Fp[G]-modules are represented precisely by
{Mk}pk=1, where M1 is the 1-dimensional vector space Fp with trivial G-action and Mk

is a non-split extension of Mk−1 by M1. Moreover, every Fp[G]-module is isomorphic
to a unique direct sum of these indecomposable modules.

Proof. By the orbit-stabiliser theorem we have that there is precisely one simple Fp[G]-
module, the trivial moduleM1. The result then follows from the Krull-Schmidt theorem
and the existence of Jordan normal form (see, for example, [Alp86, page 24]).

We can then use this as a base-case to prove the useful bound.

Lemma 2.2.13. Assume that G is a p-group, then for every finite dimensional Fp[G]-
module M we have an inequality

dimM ≤ (#G) · dimMG.

Proof. The case #G = 1 is trivial. Moreover the case #G = p is immediate from
Lemma 2.2.12: decompose M as a sum of indecomposable Fp[Z/pZ]-modules and then
note that each such module has a 1-dimensional fixed space and dimension at most
p = #G.

In general, if #G = pk for some k ≥ 1, then by the Jordan–Hölder theorem we can
select a chain of (maximal) normal subgroups

0 = G0 C G1 C · · · C Gk = G

where each successive quotient satisfies Gi+1/Gi
∼= Z/pZ. Now for each 0 ≤ i ≤ k − 1

we note that MGi is a finite dimensional Fp[Gi+1/Gi]-module and so by the case k = 1
above satisfies

dimMGi ≤ p dim(MGi)Gi+1 = p dimMGi+1 .

Then since MG0 = M and MGk = MG we have the result.
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§ 2.3 | (Co-)Restriction Selmer Structures for p = 2
We now consider a special case for the Selmer structures of §2.2: when p = 2. This
case is rather special in that the quadratic twists of a fixed elliptic curve E/F all have
isomorphic 2-torsion (as GF–modules). In this section we maintain the notation of the
previous section, but restrict to the case p = 2. The subsections §2.3.1, §2.3.2, and
§2.3.3 consist of original work of the author unless otherwise stated. The subsection
§2.3.4 consists of joint work with Adam Morgan.

We firstly explicate the isomorphism between the 2-torsion modules of quadratic
twists. Let L be a characteristic 0 field, and E/L be an elliptic curve. Recall that
for each θ ∈ L×/L×2 there is an L(

√
θ) isomorphism Eθ ∼= E, where the former is the

quadratic twist of E by θ. Explicitly, if we are given Weierstrass equations

E : y2 = x3 + Ax+B

Eθ : θy2 = x3 + Ax+B

then the map is

Eθ → E

(x, y) 7→ (x,
√
θy)

If θ is not the trivial class, then clearly this isomorphism maps the points of Eθ(L)
exactly to those of E(L(

√
θ)) which are acted on by −1 by Gal(L(

√
θ)/L), and so in

particular it restricts to an isomorphism of GL-modules ϕθ : Eθ[2] ∼= E[2].

§ 2.3.1 | Twisted Kummer Images

The map ϕθ gives rise to various twisted Kummer images locally, which will turn out to
define a Selmer structure and will turn out to be related to our (co-)restriction Selmer
groups in the previous section.

Definition 2.3.1. For each place v of F , each elliptic curve E/Fv and each θ ∈
F×v /F

×2
v , we write S (θ)

v (F ;E) for the associated twisted Kummer image. That is, the
image of

Eθ(Fv)/2Eθ(Fv) H1(Fv, Eθ[2]) H1(Fv, E[2]),δθ (ϕθ)∗
∼

where δθ is the usual connecting map from the short exact sequence induced by mul-
tiplication by 2 on Eθ. When θ is the trivial class, we will abbreviate Sv(F ;E) :=
S (1)
v (F ;E), since these groups are precisely those in Definition 2.1.6.

With respect to Tate local duality, these local groups are self-dual.

Lemma 2.3.2. For every place v of F , each elliptic curve E/Fv and each θ ∈ F×v /F×2
v ,

the twisted Kummer image S (θ)
v (F ;E) ⊆ H1(Fv, E[2]) is self-dual with respect to the

local Tate pairing.
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Proof. Note that since ϕθ is an Fv(
√
θ)-isomorphism, the Weil pairing on Eθ[2] is

preserved by ϕθ and so this follows from the case when θ is the trivial class which, in
turn, follows from Tate Duality [Tat63, Theorem 2.3].

We now note that these local groups do, in fact, define Selmer structures.

Proposition 2.3.3. For every elliptic curve E/F and each element θ ∈ F×/F×2, the
collection S (θ)(F ;E) :=

{
S (θ)
v (F ;E)

}
v∈ΩF

defines a Selmer structure for E[2].

Proof. The only thing which needs to be checked is that for all but finitely many
v ∈ ΩF , we have an equality S (θ)

v (F ;E) = H1
nr(Fv, E[2]).

Firstly, (see e.g. [Sil09]) for all but finitely many v ∈ ΩF we have two equalities

Sv(F ;E) = H1
nr(Fv, E[2]), S (θ)

v (F ;E) = ϕ∗θ
(
H1

nr(Fv, Eθ[2])
)
.

Assume that v is such a place. Compatibility of restriction maps shows that

ϕ∗θ
(
H1

nr(Fv, Eθ[2])
)
⊆ H1

nr(Fv, E[2]).

Since both H1
nr(Fv, E[2]) and H1

nr(Fv, Eθ[2]) are self-dual with respect to the (alter-
nating) local Tate pairings in H1(Fv, E[2]) and H1(Fv, Eθ[2]) respectively, we have
that their dimensions are half of those of the total spaces which are in turn iso-
morphic. Thus, since the two spaces of unramified classes have the same dimen-
sion, and ϕ∗θ is injective and maps one into the other, we must have that in fact
Sv(K/F ;E) = Sv(K/F ;E) = H1

nr(Fv, E[2]) for such v.

§ 2.3.2 | Multiquadratic Extensions: Local Theory

We now study some useful properties of the (co-)restriction Selmer groups in the situa-
tion that p = 2 and K/F is a multiquadratic extension. We will relate the local groups
to twisted Kummer images, which will later enable us to study the statistics of these
via Bhargavology.

Thus for the duration of this subsection only we take the following notation

Notation 2.3.4. Let v ∈ ΩF , and assume that w ∈ ΩK is a place extending v such
that Kw/Fv is multiquadratic. Let E/Fv be an elliptic curve with a fixed Weierstrass
equation

E : y2 = f(x),

whose discriminant we denote by ∆E.

We now prove some useful lemmata, before going on to provide the main proposition
for this subsection.

Lemma 2.3.5. Write Gv := Gal(Kw/Fv). Then exactly one of the following holds.

1. E(Kw)[2] = E(Fv)[2].
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2. ∆E ∈ K×2
w \F×2

v and, writing Hv = Gal(Kw/Fv(
√

∆E)), there is an isomorphism
of F2[Gv]–modules E(Kw)[2] ∼=F2[Gv ] F2[Gv/Hv].

Proof. The nontrivial 2-torsion points on E over the algebraic closure are precisely the
points which have x-coordinates which are roots of the cubic polynomial f(x). In partic-
ular, the only situation in which E(Fv)[2] 6= E(Kw)[2] must be when dimF2 E(Fv)[2] = 1
and dimF2 E(Kw)[2] = 2. In this latter case, the extra 2-torsion point is obtained over
the quadratic extension Fv(

√
∆E). Then Gv acts on E(Kw)[2] via the quotient Gv/Hv,

and this module must be 2-dimensional with a 1-dimensional fixed space and so (by
e.g. [Alp86, page 24]) there is precisely one isomorphism class of module to which it
can belong: that of F2[Gv/Hv].

Lemma 2.3.6. Let r ∈ Z≥1 be such that Kw/Fv has degree 2r, and say Kw =
Fv(
√
θ1, . . . ,

√
θr). If Fv(

√
∆E)/Fv is a quadratic extension contained in K, then addi-

tionally fix θ1 = ∆E. Writing Kw,i := Fv(
√
θi), we have that

H1(Kw/Fv, E(K)[2]) = ⊕ri=1 infi
(
H1 (Kw,i/Fv, E(Ki)[2])

)
where the direct sum here is the internal sum of F2-vector spaces, and

inf
i

: H1(Kw,i/Fv, E(Kw,i)[2])→ H1(Kw/Fv, E(Kw)[2])

denotes the usual inflation map from Kw,i to Kw.

Proof. If E(Fv)[2] = E(Kw)[2] then the Gal(Kw/Fv) action is trivial on E(Kw)[2], and
so the cohomology groups in the statement are just Hom(Gal(Kw/Fv), E(Kw)[2]) and
similarly for the Kw,i. Moreover the inflation maps are simply given by extension of
homomorphisms, and so the result is clear.

By Lemma 2.3.5, it remains to consider the case that ∆E ∈ K×2
w \F×2

v and
E(Kw)[2] ∼=F2[Gv ] F2[Gv/Hv] where

Gv := Gal(Kw/Fv) ≥ Gal(Kw/Kw,1) = Gal
(
Kw/Fv(

√
∆E)

)
=: Hv.

In this case we have a commutative diagram for each 2 ≤ i ≤ r

H1(Kw/Fv, E(Kw)[2]) H1(Kw/Kw,1, F2)

H1(Kw,i/Fv, E(Kw,i)[2]) H1(Kw,i ·Kw,1/Kw,1, F2),

∼

∼

infi infi

where the vertical maps are the natural inflation maps, the lower horizontal is induced
by the natural isomorphism Gal(Kw,i · Kw,1/Kw,1) ∼= Gal(Kw,i/Fv) and the fact that
E(Kw,i)[2] = E(Fv)[2] ∼= F2, and the top horizontal is the isomorphism of Shapiro’s
lemma (as in, for example, [Neu13, Theorem 4.19]). That this diagram commutes is
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clear from the definitions of the maps. Clearly (as in the previous case), we have

H1(Kw/Kw,1, F2) = ⊕ri=2 infi
(
H1(Kw,i ·Kw,1/Kw,1, F2)

)
,

since both are just groups of homomorphisms, and so in particular by the diagram
above

H1(Kw/Fv, E(Kw)[2]) ∼= ⊕ri=2 infi
(
H1(Kw,i/Fv, E(Kw,i)[2])

)
.

Noting that E(Kw)[2] ∼=F2[Gv ] F2[Gv/Hv] we have from Shapiro’s Lemma that

H1(Kw,1/Fv, E(Kw,1)[2]) = 0,

and so the result follows.

Lemma 2.3.7. Let δ : E(Kw)→ H1(Kw, E[2]) be the connecting map arising from the
multiplication by 2 exact sequence on E, and write S := ker(F×v /F×2

v → K×w /K
×2
w ). For

every point P ∈ E(Kw) such that δ(P ) ∈ im(resKw/Fv : H1(Fv, E[2])→ H1(Kw, E[2])),
there are points (Pθ) ∈

∏
θ∈S Eθ(Fv) such that

P =
∑
θ∈S

ϕθ(Pθ)

Proof. We will prove this by induction on r = dimF2 Gal(Kw/Fv). If r = 0 then
the claim is trivial. Assuming that r > 0, let M be an intermediate field such that
[Kw : M ] = 2 and write Kw = M(

√
θ) for some θ ∈ S. Let x ∈ H1(Fv, E[2]) be such

that δ(P ) = resKw/Fv(x). Observe that the commutative diagram

E(Kw) H1(Kw, E[2])

E(M) H1(M,E[2]),

δ

NKw/M
corKw/M

δ

shows that

δ(NKw/M(P )) = corKw/M ◦ resKw/M ◦ resM/Fv(x) = 2resM/Fv(x).

Since H1(M,E[2]) is a 2-torsion group we have that NKw/M(P ) ∈ ker(δ) = 2E(M),
so let Q ∈ E(M) be a point such that 2Q = NKw/M(P ). Let R := P − Q, and let
σ ∈ Gal(Kw/M) be the nontrivial element, and observe that

σ(R) = σ(P )−Q = NKw/M(P )− P −Q = Q− P = −R.

In particular R = ϕθ(Pθ) for some point Pθ ∈ Eθ(M). Now since Pθ and Q are both
points on elliptic curves satisfying the constraints above (and since ϕθ ◦ϕθ′ = ϕθθ′) but
with Kw/Fv replaced by the degree 2r−1 extension M/Fv, we conclude the result.

These lemmata then allow us to prove the following very useful result on the core-
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striction and the preimage under restriction of the Kummer image.

Proposition 2.3.8. Write S := ker(F×v /F×2
v → K×w /K

×2
w ). Then we have identities:

res−1
Kw/Fv

(Sw(K;E)) =
∑
θ∈S

S (θ)
v (F ;E),

corKw/Fv(Sw(K;E)) =
⋂
θ∈S

S (θ)
v (F ;E).

Proof. To ease notation, we write Fv := res−1
Kw/Fv

(Sw(K;E)) and
Cv := corKw/Fv(Sw(K;E)). Firstly we note that the property for Cv follows from that
of Fv, the fact that these two are dual with respect to the local Tate pairing and that
S (θ)
v (F ;E) is its own orthogonal complement (Lemma 2.3.2). The equality for the

Selmer group then follows from the equality for Cv.
It remains to prove the identity for Fv, which we now do. If θ ∈ S then it is easy

to see that the following diagram commutes:

Eθ(Fv) H1(Fv, Eθ[2]) H1(Fv, E[2])

E(Fv(
√
θ)) E(Kw) H1(Kw, E[2]),

δ

ϕθ

ϕ∗θ

resKw/Fv

δ

(2.5)

and so S (θ)
v (F ;E) ⊆ Fv.

It remains to prove the converse. Let x ∈ Fv, and choose P ∈ E(Kw) such that
δ(P ) = resKw/Fv(x). Note that by Lemma 2.3.7 we can write

P =
∑
θ∈S

ϕθ(Pθ)

for some points Pθ ∈ Eθ(Fv). Then by commutativity of (2.5) we have

resKw/Fv(x) = δ(P ) =
∑
θ∈S

δ ◦ ϕθ(Pθ)

= resKw/Fv

∑
θ∈S

ϕ∗θ ◦ δ(Pθ)
 ∈ resKw/Fv

∑
θ∈S

S (θ)
v (F ;E)

 .
It is then sufficient to prove that ker(resKw/Fv) ⊆

∑
θ∈S S θ

v (F ;E) when Kw/Fv is a
multiquadratic local extension, which we now do. Using the inflation-restriction exact
sequence, Lemma 2.3.6 and compatibility of inflation maps, there is an equality

ker(resKw/Fv) = im
(
inf : H1(Kw/Fv, E(Kw)[2])→ H1(Fv, E[2])

)
=
∑
θ∈S

im
(
inf : H1

(
Fv(
√
θ)/Fv, E(Fv(

√
θ))[2]

)
→ H1 (Fv, E[2])

)
=
∑
θ∈S

ker
(
resFv(

√
θ)/Fv

)
.
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By [Kra81, Lemma 3], for each θ ∈ S

ker
(
resFv(

√
θ/Fv)

)
⊆ Sv(E) + S (θ)

v (E),

and so the required result holds.

§ 2.3.3 | Multiquadratic Extensions: Global Theory

We now aim to use the local results of the previous subsection to describe the corestric-
tion Selmer groups in terms of twisted Kummer images. This will be especially useful
when we come to study the statistical behaviour of the corestriction Selmer group for
multiquadratic extensions – these twisted Kummer images will turn out to be accessible
for statistics.

Proposition 2.3.9. Assume that K/F is a multiquadratic extension and let E/F be an
elliptic curve. Let v ∈ ΩF and w ∈ ΩK be a place extending v, and S := ker(F×v /F×2

v →
K×w /K

×2
w ). Then

Fv(K/F ;E) =
∑
θ∈S

S (θ)
v (F ;E),

Cv(K/F ;E) =
⋂
θ∈S

S (θ)
v (F ;E).

Moreover,
SelC (K)(F,E[2]) =

⋂
θ∈F×/F×2

F (
√
θ)⊆K

(ϕθ)∗ (Sel2(Eθ/F ))

Proof. The first two identities follows from Proposition 2.3.8. The equality for the
Selmer group then follows from the equalities for the local groups {Cv(K/F : E)}v∈ΩF .

Remark 2.3.10. In the case that K/F is a quadratic extension, Proposition 2.3.9 was
shown by Kramer [Kra81, Proposition 7], the novelty here is in proving the local results
in the case of multiquadratic extensions.

§ 2.3.4 | Quadratic Extensions

We now restrict further to the case that p = 2 and K/F is a quadratic extension.
We will describe a strong relationship between the 2-Selmer group of E/K and the
(co-)restriction Selmer groups. This section consists of joint work with Adam Morgan
(see [MP22])

Lemma 2.3.11. (cf. [Kra81, Lemma 3]). Assume that K/F is a quadratic extension,
let v ∈ ΩF and let w ∈ ΩK be a place extending v. We have an exact sequence

0→ H1 (K/F,E(K)[2]) inf→ SelF (K)(F,E[2])
resK/F→ Sel2(E/K)

corK/F→ SelC (K)(F,E[2]).
(2.6)
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Proof. We first claim that the sequence

H1(F,E[2])
resK/F−→ H1(K,E[2])

corK/F−→ H1(F,E[2])

is exact. To see this, consider the exact sequence of GF–modules

0 −→ F2 −→ F2[G] ε−→ F2 −→ 0,

where ε is the augmentation map (sending ∑g∈G λgg to ∑g∈G λ) and GF acts on G via
the quotient map GF � G. Taking the tensor product over F2 with E[2], and then
taking Galois cohomology over F , gives an exact sequence of GF -modules

H1(F,E[2]) −→ H1(F,E[2]⊗F2 F2[G]) −→ H1(F,E[2]).

Using Shapiro’s Lemma to identify H1(F,E[2]⊗F2 F2[G]) with H1(K,E[2]) yields the
sought exact sequence.

Having shown the claim, the result follows by combining the inflation-restriction
exact sequence with Lemma 2.2.5 and Lemma 2.2.6.

Corollary 2.3.12. Assume that K/F is a quadratic extension. If SelC (K)(F,E[2]) = 0,
then all of the following hold.

(i) There is a short exact sequence

0 −→ H1(K/F,E(K)[2]) inf−→ SelF (K)(F,E[2])
resK/F−→ Sel2(E/K) −→ 0,

where the first map is inflation.

(ii) We have

dim Sel2(E/K) = g2(K/F ;E)− dim
(

E(F )[2]
NK/FE(K)[2]

)
.

(iii) The G-action on Sel2(E/K) is trivial.

Proof. (i): follows immediately from Lemma 2.3.11.
(ii): follows from (i) and Lemma 2.2.11 upon noting that, since Gal(K/F ) is cyclic,

we have
H1(K/F,E(K)[2]) ∼=

E(F )[2]
NK/F (E(K))[2] .

(See e.g. [AW67, Section 8] for the description of the cohomology of cyclic groups we
are using in the above.)

(iii): follows from (i) and the fact that the image of the restriction map from
H1(F,E[2]) to H1(K,E[2]) is contained in the invariant subspace H1(K,E[2])G.

For a similar result to Corollary 2.3.12 (ii) which holds when K/F is replaced by a
cyclic degree p extension for an odd prime p, see [Bra14, Theorem 1.2].
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Remark 2.3.13. Combining Lemma 2.2.11 with Lemma 2.3.11 allows one to recover
the formula for the rank of E/K given in [Kra81, Theorem 1]. In the second part of
that theorem, Kramer studies the group SelC (K)(F,E[2])/corK/F (Sel2(E/K)), which
he refers to as the everywhere local/global norms group, and shows that it carries a
non-degenerate alternating pairing given by the sum of the Cassels–Tate pairing on
Sel2(E/F ) and the pushforward (under ϕ∗θ) of the Cassels–Tate pairing on Sel2(Eθ/F )
(recall from Proposition 2.3.9 that SelC (K)(F,E[2]) = Sel2(E/F ) ∩ ϕ∗θ (Sel2(Eθ/F ))).
In particular, this quotient group has even dimension.

When SelC (K)(F,E[2]) is not necessarily trivial we still get a lower bound for the
dimension of the 2-Selmer group of E over K.

Lemma 2.3.14. Assume that K/F is a quadratic extension. Then we have

dimF2 Sel2(E/K) ≥ −2 +
∑
v∈ΩF

dimF2 E(Fv)/NKw/FvE(Kw).

Proof. From Lemma 2.3.11 and Lemma 2.2.11 we find

dimF2 Sel2(E/K) ≥ g2(K/F ;E)− dimF2 H
1(K/F,E(K)[2]).

Note the inequality
dimF2 H

1(K/F,E(K)[2]) ≤ 2,

which is a consequence of the explicit description of cohomology of cyclic groups. The
result then follows.



Chapter 3

Local Norm Indices

Our approach to studying the statistical behaviour of p-Selmer groups over Galois
extensions is to study the (co)-restriction Selmer groups and glimpse information about
the p-Selmer group from those via the results in §2.2.2. This will, via Lemma 2.2.11,
involve studying the genus theory of the p-Selmer group. The genus theory of the p-
Selmer group of an elliptic curve E defined over a number field F arising from a finite
Galois extension K/F is

gp(K/F ;E) :=
∑
v∈ΩF

dimFp E(Fv)/
(
NKw/FvE(Kw) + pE(Fv)

)
,

where in each summand, w ∈ ΩK is a choice of place extending v and NKw/Fv is the
norm map. In this chapter we study the summands in the genus theory: we compute
local norm indices of elliptic curves in various settings.

The main applications of these results will be in Parts II and III. In §3.1 we describe
the local norm index when v ∈ ΩF is unramified in K/F , showing, in particular, that
if E/Fv has Kodaira type I0 or I1 then the local norm index at v is trivial. This will
be vital in Chapter 5 as the places with these reduction type are very common, and
if the local norm index were nonzero then the average of the genus theory would grow
very quickly. In §3.2 we consider the local norm index at places v ∈ ΩF of residue
characteristic at least 5. We list a complete set of conditions on the coefficients of E
which determine the local norm index when K/F is a multiquadratic field and p = 2.
This will will ultimately allow us to compute the average of g2(K/F ;E) in Chapter 6
as E varies in the family of all elliptic curves.

The material in this chapter, unless clearly stated otherwise, is original work of the
author. We let F,OF , v be a finite extension of Q` for some prime number `, its ring
of integers and normalised valuation, respectively.

§ 3.1 | Multiplicative Reduction and Unramified Ex-
tensions

In this section we consider local norm indices over unramified extensions when the
elliptic curve in question has multiplicative reduction. Such places will turn out to be
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the ‘statistically significant’ places in families such as that of ‘all elliptic curves’ – see
Chapter 5 for more details, and for the main applications of the results here.

In this section, let E/F be an elliptic curve with multiplicative reduction. More-
over, let K/F be an unramified extension, let n be its degree and write NK/F =∑
g∈Gal(K/F ) g ∈ Z[Gal(K/F )] for the usual norm element. We perform some local

computations, extending results of Kramer [Kra81] in the case n = 2. Specifically,
we determine the norm index for such E using the Tate parametrisation (see e.g.
[Sil94, V§3-5]), the properties of which we recall below.

Recall from [Sil94, V Thms 3.1 and 5.3] that there is a unique element q ∈ OF
with v(q) > 0 such that E(F ) is isomorphic to F/qZ. We call q the Tate parameter
associated to E, and fix such an isomorphism and call it the Tate parametrisation.
Moreover, if E has split multiplicative reduction, then we may assume that the Tate
parametrisation is an isomorphism of GF -modules.

Let L/F be the unramified quadratic extension, for each extension M/F define

I(M) :=
{
x ∈ (M · L)× : N(M ·L)/M(x) ∈ qZ

}
,

I0(M) :=
{
x ∈ (M · L)× : N(M ·L)/M(x) = 1

}
.

If E has non-split multiplicative reduction, then the quadratic twist of E by L has
split multiplicative reduction, so we may assume that the Tate parametrisation is at
least an isomorphism of GL-modules. However, for a finite extension M/F which does
not contain L, by [Sil94, V Cor. 5.4] the Tate parametrisation over the compositum
M ·L yields an isomorphism between E(M) and I(M)/qZ. This isomorphism identifies
E0(M), the points of the connected component of the identity in the Néron model of
E, with I0(M)/qZ.

Lemma 3.1.1. If E/F has split multiplicative reduction, then the corresponding Tate
parameter q satisfies

v(q) = v(∆E),

where ∆E is a minimal discriminant for E/F .

Proof. By [Sil94, V Thm 3.1(b)] we have ∆E = q
∏
n≥1(1 − qn)24, so the result is

immediate.

Proposition 3.1.2. If E/F has split multiplicative reduction, then

E(F )/NK/FE(K) ∼= Z/ gcd(v(∆E), n)Z,

where ∆E is a minimal discriminant for E/F .

Proof. If E has Tate parameter q ∈ OF then, since the Tate parametrisation is defined
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over F , we have a commutative square

E(K) K×/qZ

E(F ) F×/qZ,

∼

NK/F NK/F

∼

and so
E(F )/NK/F (E(K)) ∼= F×/

(
NK/F (K×) · qZ

)
.

Since the extension K/F is unramified, local class field theory identifies the exact
sequence

0 qZ

qZ∩N(K×)
F×

NK/F (K×)
F×

(NK/F (K×)·qZ) 0,

with
0 〈v(q)〉 Z/nZ Z/ gcd(v(q), n)Z 0 .

The result now follows from Lemma 3.1.1.

Proposition 3.1.3. If E/F has non-split multiplicative reduction and n ∈ 2Z, then

#
(
E(F )/NK/FE(K)

)
=

2 if v(∆E) ∈ 2Z,

1 else.

Proof. E has split multiplicative reduction over the unramified quadratic extension
L/F , which is contained in K. Write τ ∈ Gal(K/F ) for the Frobenius element, so that
NK/F = ∑n−1

k=0 τ
k, and L/F is the fixed field of the group generated by τ 2. The Tate

parametrisation of E/K gives a commutative diagram

E(K) K×/qZ

E(F ) I(F )/qZ,

NK/F

∼

α

∼

where since the norm map NK/F factors through the field L over which the Tate
parametrisation is defined, the rightmost vertical map α is induced by the action of the
element ∑n−1

k=0 χL(τ k)τ k, where χL is the quadratic character cutting out the extension
L/F . Note that for x ∈ K×/qZ

α(x) =
n/2∏
k=1

τ 2k(x)
τ 2k+1(x) =

n/2∏
k=1

τ 2k
(

x

τ(x)

)
= NK/L

(
x

τ(x)

)
.

Thus, since by Hilbert’s theorem 90 we have{
x

τ(x) : x ∈ K×
}

= ker(NK/F : K× → F×),
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we obtain that

E(F )/NK/F (E(K)) ∼=
I(F )

NK/L(ker(NK/F )) · qZ

∼=
NL/F (L×) ∩ qZ

q2Z ,

where since the norm map is surjective on units in unramified extensions, in particular
ker(NL/F )∩I(F ) ⊆ NK/L(ker(NK/F )), the final isomorphism is just obtained by pushing
through the map NL/F . It is then clear that the size of this norm index is at most 2,
and is 2 precisely when q is a norm from L, which by local class field theory occurs
precisely when v(q) is even. The result then follows from Lemma 3.1.1.

Proposition 3.1.4. If E/F has non-split multiplicative reduction, and n is odd then

#
(
E(F )/NK/FE(K)

)
= 1.

Proof. Let χL be the character associated to the unramified quadratic extension L/F
and write Gal(K ·L/F ) = 〈τ : τ 2n = 1〉. Letting U denote units, we consider the map
f given by the composition

UK·L I0(K) E0(K),f̃ Q

where for u ∈ UK·L we set f̃(u) := u
τn(u) and Q is the Tate parametrisation map. By

Hilbert’s theorem 90 and the fact that the extension K · L/K is unramified, the map
f̃ is surjective and so since Q is also surjective we must have that f is a surjection.
Moreover for each u ∈ UK·L,

f(u) = Q

(
u

τn(u)

)
= Q(u)−Q (τn(u))
= Q(u)− χL(τn)τn (Q(u))
= Q(u) + τn (Q(u))
= NK·L/K(Q(u)).

Identifying NK/F = ∑n
k=0 τ

2k, we obtain a commutative square

UK·L E0(K)

UL E0(F ).

f

NK/F NK/F

f

In particular, the right hand vertical map is now a surjection since the left is by local
class field theory. This then means that E0(F ) = NK/FE0(K) ⊆ NK/FE(F ), so in
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particular we have a natural surjection

E(F )/E0(F )� E(F )/NK/FE(K).

Since E has non-split multiplicative reduction, so has Tamagawa number 1 or 2,
we must have that E(F )/NK/FE(K), which has odd order as it is a quotient of
E(F )/nE(F ), is trivial.

§ 3.2 | Multiquadratic Extensions
We will now compute local norm indices associated to elliptic curves over multi-
quadratic extensions. For the duration of this section we make the additional as-
sumption that the residue characteristic of F satisfies ` ≥ 5. In order to ensure clarity,
we will use vF , πF , kF for the normalised valuation on F , a choice of uniformiser (fixed
now and for the rest of the chapter) for F , and the residue field of F . Similarly, for
any finite extension K/F we will write vK , πK , kK for the same data associated to K.

§ 3.2.1 | The Tamagawa Ratio

We firstly define a Tamagawa ratio and describe its behaviour, which will have relevance
to the local norm index later on.

Definition 3.2.1. For every elliptic curve E/F , and every multiquadratic extension
K/F , we define the Tamagawa ratio

T (K/F ;E) :=
∏
d∈S c(Ed/F )
c(E/K)

where S = ker(F×/F×2 → K×/K×2).

We will now compute these ratios in all cases, postponing the explanation of their
utility to later.

Definition 3.2.2. For an elliptic curve E/F , a minimal integral model is a small
Weierstrass model

E : y2 = x3 + Ax+B

such that A,B ∈ OF and that either vF (A) < 4 or vF (B) < 6.

Proposition 3.2.3. Let K/F be the unramified quadratic extension. Let E/F be an
elliptic curve, and

E : y2 = x3 + Ax+B

be a minimal integral model. Then the Tamagawa ratio T (K/F ;E) is given by Ta-
ble 3.1.

Proof. For ease of notation, let K = F (
√
u). Note that minimal integral models for
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K/F an unramified quadratic extension, E/F an elliptic curve,
E : y2 = x3 + Ax+B a minimal integral model.

Kodaira Type of E/F Extra Condition T (K/F ;E)
I0 - 1

In>0
n even 2
n odd 1

II - 1
III - 2
IV - 1

I∗0
T 3 + Aπ−2

F T +Bπ−3
F has 3 roots in k×2

F 4
otherwise 1

I∗n>0

n even and −(27B2 + 4A3)π−(6+n)
F ∈ k×2

F 4
n even and −(27B2 + 4A3)π−(6+n)

F 6∈ k×2
F 1

n odd 2
IV ∗ - 1
III∗ - 2
II∗ - 1

Table 3.1: Tamagawa ratio for unramified quadratic extensions.

the other curves in the definition of T (K/F ;E) are given by

Eu/F : y2 = x3 + Au2x+Bu3,

E/K : y2 = x3 + Ax+B.

This then follows by a case analysis in Tate’s algorithm (see AppendixA). In particular,
note that the Kodaira types of E/F , E/K and Eu/F are all the same, and the only
change can be in the splitness conditions. We list the cases below.

• If E/F has type I0, II, or II∗, then the Tamagawa numbers in the ratio are all
1 and so T (K/F ;E) = 1.

• If E/F has type IV or IV ∗, then since u is nonsquare in kF , precisely one of E
or Eu has split subtype (see Appendix A) over F and the other is nonsplit, whilst
the type of E/K is automatically split. Thus T (K/F ;E) = 1.

• If E/F has type III or III∗ then T (K/F ;E) = 2.

• If E/F has type I∗0 then write PE(T ) := T 3 + Aπ−2
F T + Bπ−3

F ∈ kF [T ] and
PEu(T ) := T 3 + Au2π−2

F T + Bu3π−3
F ∈ kF [T ]. Note that there is a bijection

between the roots of PE and PEu given by α 7→ uα, and so

T (K/F ;E) = (1 + # {α ∈ kF : PE(α) = 0})2

(1 + # {α ∈ kK : PE(α) = 0}) .

If P is a product of linear factors over kF then immediately T (K/F ;E) = 4. If
P (T ) is irreducible over kF then it is also over kK (which is a quadratic extension
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of kF ), so T (K/F ;E) = 1. Finally if P (T ) is a product of a linear and quadratic
irreducible factor, then the quadratic factor splits over kK and so T (K/F ;E) = 1.

• If E/F has multiplicative reduction of type In, then precisely one of E/F or Eu/F
has split multiplicative reduction, with the other being nonsplit. Moreover, E/K
must have split reduction of type In. Thus T (K/F ;E) = 2 if n is even, and
T (K/F ;E) = 1 otherwise.

• If E/F has potentially multiplicative reduction of type I∗n, we break into cases
depending on the parity of n. If n is even, then either both E/F and Eu/F

have split I∗n reduction or both have nonsplit I∗n reduction. Moreover, E/K
necessarily has split I∗n reduction. Thus T (K/F ;E) = 4 if E/F is split (i.e.
−(27B2 + 4A3)/πn+6

F ∈ k×2
F ) and T (K/F ;E) = 1 otherwise. If, on the other

hand, n is odd, then it is clear that precisely one of E/F or Eu/F has split I∗n
reduction and the other must have nonsplit I∗n reduction. As in the even case, the
reduction type is necessarily split over K. Thus we have that T (K/F ;E) = 2.

Lemma 3.2.4. Let K = F (
√
θ) be a ramified quadratic extension. Let E/F be an

elliptic curve. The Kodaira types of Eθ/F and E/K are determined by that of E/F
and θ, and are listed in Table 3.2.

Kodaira Types
E/F Eθ/F E/K
In≥0 I∗n I2n
II IV ∗ IV
III III∗ I∗0
IV II∗ IV ∗

Table 3.2: Kodaira types of ramified twists of elliptic curves

Proof. Note that, since this is a ramified quadratic extension where the residue char-
acteristic is odd, vF (θ) is odd. This is then a simple check using Tate’s algorithm (see,
e.g., Appendix A).

Remark 3.2.5. Since the Kodaira types of E/K and Eθ/K are the same, and quadratic
twisting is an involution (on the level of isomorphism classes of curves), we need only
list each Kodaira type as either that of E/F or Eθ/F .

Proposition 3.2.6. Let K/F be a ramified quadratic extension. Let θ ∈ F be such
that K = F (

√
θ) and vF (θ) = 1. Let E/F be an elliptic curve, and

E : y2 = x3 + Ax+B

be a minimal integral model. Then the Tamagawa ratio T (K/F ;E) is given by Ta-
ble 3.3.
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K = F (
√
θ) a ramified quadratic extension, E/F an elliptic curve,
E : y2 = x3 + Ax+B a minimal integral model.

Kodaira Type of E/F Extra Condition(s) T (K/F ;E)

I0

T 3 + AT +B has no roots in kF 1
T 3 + AT +B has 1 root in kF 2
T 3 + AT +B has 3 roots in kF 4

I∗0

T 3 + Aθ−2T +Bθ−3 has no roots in kF 1
T 3 + Aθ−2T +Bθ−3 has 1 root in kF 2
T 3 + Aθ−2T +Bθ−3 has 3 roots in kF 4

I2n>0

6B ∈ k×2
F

−(27B2 + 4A3)θ−2n ∈ k×2
F 2

−(27B2 + 4A3)θ−2n 6∈ k×2
F 1

6B 6∈ k×2
F

−(27B2 + 4A3)θ−2n ∈ k×2
F 4

−(27B2 + 4A3)θ−2n 6∈ k×2
F 2

I∗2n>0

6Bθ−3 ∈ k×2
F

−(27B2 + 4A3)θ−2n−6 ∈ k×2
F 2

−(27B2 + 4A3)θ−2n−6 6∈ k×2
F 1

6Bθ−3 6∈ k×2
F

−(27B2 + 4A3)θ−2n−6 ∈ k×2
F 4

−(27B2 + 4A3)θ−2n−6 6∈ k×2
F 2

I2n+1
6B(27B2 + 4A3)θ−2n−1 ∈ k×2

F 2
6B(27B2 + 4A3)θ−2n−1 6∈ k×2

F 1

I∗2n+1
6B(27B2 + 4A3)θ−2n−10 ∈ k×2

F 2
6B(27B2 + 4A3)θ−2n−10 6∈ k×2

F 1
II, II∗, IV , IV ∗ - 1

III
−Aθ−1 6∈ k×2

F 2
−Aθ−1 ∈ k×2

F 1

III∗
−Aθ−3 6∈ k×2

F 2
−Aθ−3 ∈ k×2

F 1

Table 3.3: Tamagawa ratio for ramified quadratic extensions.

Proof. This will follow from a case analysis and Tate’s algorithm, using Lemma 3.2.4.
If E/F has Kodaira type In≥0, II, III or IV then minimal integral models for the
other curves in the definition of T (K/F ;E) are given by

Eθ/F : y2 = x3 + Aθ2x+Bθ3,

E/K : y2 = x3 + Ax+B.

Otherwise E/F has Kodaira type I∗n≥0, II∗, III∗ or IV ∗, and so minimal integral
models for the other curves in the definition of T (K/F ;E) are given by

Eθ/F : y2 = x3 + Aθ−2x+Bθ−3,

E/K : y2 = x3 + Aθ−2x+Bθ−3.

With these models in mind, we now perform the case analysis. The uniformisers that
we use for Tate’s algorithm over F and K will be πF = θ and πK =

√
θ respectively.

• If E/F has type I0 reduction, then Eθ/F has type I∗0 and E/K has type I0.
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Thus, by Appendix A we have

T (K/F ;E) = 1 + #
{
α ∈ kF : α3 + Aα +B = 0

}
.

The case that E/F has reduction type I∗0 is similar.

• If E/F has reduction type In for some n > 0 then by Lemma 3.2.4 Eθ/F has
type I∗n and E/K has type I2n. Moreover, the reduction type of E/F is split if
and only if that of E/K is split (the residue fields satisfy kF = kK). Thus by
Appendix A we have

c(E/F )
c(E/K) =


1/2 if E/F has split reduction,

1/2 if n is odd and E/F has nonsplit reduction,

1 else.

The result in this case then follows by computing the Tamagawa number c(Eθ/F ),
as is shown in Appendix A.

The argument when E/F has type I∗n reduction is similar, swapping the roles of
E and Eθ.

• If E/F has reduction type II, then Eθ/F has reduction type IV ∗ and E/K has
type IV . The splitting conditions for E/K and Eθ/F are equivalent (each is split
if and only if Bθ−1 ∈ k×2

F ), and so in particular one notes that T (K/F ;E) =
1. Similarly, the cases where E/F has reduction type IV ∗, IV or II∗ give
T (K/F ;E) = 1.

• If E/F has reduction type III then Eθ/F has reduction type III∗ and E/K has
type I∗0 . Moreover vK(A) = 2, vK(B) ≥ 4, so via Tate’s algorithm Appendix A
we have

T (K/F ;E) = 4
1 + # {α ∈ kK : α3 + (A/θ)α = 0} .

so the result is as required. Again, the proof for E/F of type III∗ is similar by
interchanging the roles of E and Eθ above.

Having treated the case of each possible reduction type of E/F , the proof is complete.

Since F has odd residue characteristic, there is precisely one multiquadratic exten-
sion which is not accounted for by Tables 3.1 and 3.3: the unique biquadratic extension.
We now provide the result there.

Proposition 3.2.7. Let K/F be the biquadratic extension. Write K = F (
√
u,
√
θ),

where u is a nonsquare unit in the integers of F and vF (θ) is odd. Let E/F be an
elliptic curve, and

E : y2 = x3 + Ax+B



CHAPTER 3. LOCAL NORM INDICES 51

be a minimal integral model. Then the Tamagawa ratio T (K/F ;E) is given by Ta-
ble 3.4.

Proof. It is easy to see from the definition of the Tamagawa ratio that there is an
equality

T (K/F ;E) = T (F (
√
u)/F ;E) · T (F (

√
u)/F ;Eθ) · T (K/F (

√
u);E).

Note that the reduction type of Eθ/F can be obtained from that of E/F by applying
Lemma 3.2.4, and that the Kodaira type of E/F (

√
u) is the same as that of E/F (with

potential changes to splitting conditions). Thus we can compute all of the terms on
the right hand side of this equality by Propositions 3.2.3 and 3.2.6, which provides the
entries seen in Table 3.4.

K/F the biquadratic extension, E/F an elliptic curve,
E : y2 = x3 + Ax+B a minimal integral model.

Kodaira Type of E/F Extra Condition(s) T (K/F ;E)

I0

T 3 + AT +B has no roots in kF 1
T 3 + AT +B has 1 root in kF 4
T 3 + AT +B has 3 roots in kF 16

I∗0

T 3 + Aθ−2T +Bθ−3 has no roots in kF 1
T 3 + Aθ−2T +Bθ−3 has 1 root in kF 4
T 3 + Aθ−2T +Bθ−3 has 3 roots in kF 16

In
n even and −(27B2 + 4A3)θ−n ∈ k×2

F 16
otherwise 4

I∗n
n even and −(27B2 + 4A3)θ−n−6 ∈ k×2

F 16
otherwise 4

II, II∗, IV , IV ∗ 1
III, III∗ 8

Table 3.4: Tamagawa ratio for the biquadratic extension of F .

§ 3.2.2 | Local Norm Index

We now justify our interest in the Tamagawa ratio above. It turns out to in fact be
the local norm index.

Proposition 3.2.8. Let K/F be a multiquadratic extension. For every elliptic curve
E/F we have

#E(F )/NK/FE(K) = T (K/F ;E).

Proof. To ease notation we write G := Gal(K/F ), and X := Hom(G,F2). We write
χ0 ∈ X for the trivial homomorphism, and for each χ ∈ X we write Z(χ) for the Z[G]-
module which is isomorphic to Z as an abelian group and on which σ ∈ G acts by
multiplication by χ(σ). We will simply write Z for Zχ0 .
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Consider the maps of Z[G]-modules given by

φ : Z[G]→
⊕
χ∈X

Z(χ)

∑
σ

aσσ 7→
(∑
σ∈G

aσχ(σ)
)
χ∈X

,

and

φ̂ :
⊕
χ∈X

Z(χ) → Z[G]

(bχ)χ∈X 7→
∑
χ∈X

bχ
∑
σ∈G

χ(σ)σ.

Both φ ◦ φ̂ and φ̂ ◦φ are multiplication by #G on the respective modules. Thus we
have a commutative diagram of Z[G]-modules with exact rows given by:

0 ⊕
χ∈X\{χ0}

Z(χ) Z[G] Z 0

0 ⊕
χ∈X\{χ0}

Z(χ) ⊕
χ∈X

Z(χ) Z 0,

φ̂

[#G]

N

φ

where the map N : ∑ aσσ 7→
∑
aσ is given by action of the norm element of Z[G], and

the maps on the bottom row are the natural inclusion and projection. Via the twisting
formalism of [MRS07, Lemma 1.3, Lemma 2.3, Prop 4.1, Example 1.5(ii)], this gives
rise to a commutative diagram of abelian varieties with exact rows

0 ⊕
d∈S\{1}

Ed ResK/FE E 0

0 ⊕
d∈S\{1}

Ed
⊕
d∈S

Ed E 0,

φ̂

[#G]

N

φ (3.1)

where ResK/FE is the Weil restriction, and we abuse notation by reusing φ, φ̂ for now
the corresponding isogenies of abelian varieties induced by the module maps above.
Explicitly, on F -points the the map N acts on ResK/FE(F ) = E(K) as the norm map
NK/F . Taking F -points above, noting that since the bottom right map is projection it
remains surjective on F -points, we obtain a short exact sequence

0 ⊕
d∈S\{1}

Ed(F )
(#G)Ed(F )

⊕
d∈S

Ed(F )

φ(ResK/FE(F ))
E(F )

NK/FE(K) 0. (3.2)

Using a result of Schaefer [Sch96, Lemma 3.8], we can describe the order of the central
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term:

#

⊕
d∈S

Ed(F )

φ(ResK/FE(F )) = |φ′(0)|F
∏
d∈S c(Ed/F )

#ResK/FE(F )[φ] · c(ResK/FE/F ) , (3.3)

where |φ′(0)|F is the normalised absolute value of the determinant of the Jacobian ma-
trix of partials of φ evaluated near 0. An elementary diagram chase in (3.1), using that
the rightmost vertical map is equality, we obtain that ResK/FE[φ] ∼= ⊕d∈S\{1}Ed[#G].
Moreover, by [Lor11, 3.19] we have that c(ResK/FE/F ) = c(E/K), and so from (3.3)
and (3.2) we obtain

# E(F )
NK/FE(K) =

 ∏
d∈S\{1}

# Ed(F )
(#G)Ed(F )

#Ed(F )[#G]

 |φ′(0)|F
∏
d∈S c(Ed/F )

c(E/K)

= |φ′(0)|F T (K/F ;E),

where the second equality uses that the residue characteristic is odd and each Ed(F )
contains a finite index subgroup isomorphic to the integers of F (see, e.g., [Sil09, VII
Proposition 6.3]).

It remains to show that |φ′(0)|F = 1, which we now do. Note that NK/FE(K) ⊇
(#G)E(F ), and so the order of the norm index is a power of two, and the computations
of Propositions 3.2.3, 3.2.6 and 3.2.7 show that T (K/F ;E) is also a power of 2. On
the other hand, |φ′(0)|F is an integer power of the residue characteristic, which is odd,
and so must be 1 in order for the displayed equation above to hold, concluding the
proof.

Note that we are not actually making use of the norm index all of the time, but
in fact the norm index modulo 2 which is the object appearing in the genus theory
formula (see Definition 2.2.8) g2(K/F ;E). For quadratic extensions there is nothing
to distinguish, but for biquadratic we have to be more careful.

Proposition 3.2.9. Let K/F be a quadratic extension. Let E/F be an elliptic curve,
and

E : y2 = x3 + Ax+B

be a minimal integral model. Then we have an equality

#E(F )/
(
NK/FE(K) + 2E(F )

)
= T (K/F ;E)

and so the norm index modulo 2 is given by: Table 3.1 if K/F is unramified; or
Table 3.3 if K/F is ramified.

Proof. Clearly E(F )/NK/FE(K) is [K : F ] = 2-torsion and so this follows from Propo-
sition 3.2.8 and: if K/F is unramified Proposition 3.2.3 or if K/F is ramified then
Proposition 3.2.6.

For the biquadratic case we must be more careful. First we will need a helpful
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lemma which is true in far more generality than it is presented but we will only require
it in our present setting.

Lemma 3.2.10. Let E/F be an elliptic curve. Then there is an isomorphism of groups

E(F )[4] ∼= E(F )/4E(F ).

Proof. There is a finite index subgroup, arising from the filtration by formal groups, of
E(F ) which is isomorphic to the additive group of integers OF of F (see e.g. [Sil09, VII
Prop. 6.3]). We will name this subgroup E1(F ), and note that (since the residue
characteristic of F is coprime to 4) we have E1(F ) = 4E1(F ) ⊆ 4E(F ). Since E1(F )
has finite index in E(F ), we certainly have an isomorphism

E(F )
E1(F ) [4] ∼=

E(F )
E1(F )

4 E(F )
E1(F )

. (3.4)

Now consider the commutative diagram

0 E1(F ) E(F ) E(F )/E1(F ) 0

0 E1(F ) E(F ) E(F )/E1(F ) 0.

×4 ×4 ×4

An application of the snake lemma, using the fact that multiplication by 4 is bijective
on E1(F ) ∼= OF , provides isomorphisms

E(F )[4] ∼=
E(F )
E1(F ) [4] E(F )/4E(F ) ∼=

E(F )
E1(F )

4 E(F )
E1(F )

.

Combining these with (3.4) we obtain the result.

We can now deduce the required norm index modulo 2 from the Tamagawa ratio.

Proposition 3.2.11. Let K/F be the biquadratic extension. Write K = F (
√
u,
√
θ),

where u is a nonsquare unit in the integers of F and vF (θ) is odd. Let E/F be an
elliptic curve, and

E : y2 = x3 + Ax+B

be a minimal integral model. Then the norm index modulo 2, # E(F )
(NK/FE(K)+2E(F )) , is

given by Table 3.5.

Proof. Note firstly that, by Lemma 3.2.10 and the fact that 4E(F ) ⊆ NK/FE(K), we
can identify E(F )/NK/FE(K) as a quotient of a subgroup of the abelian group (Z/4Z)2.
Considering Proposition 3.2.8 it is then clear that whenever T (K/F ;E) = 1, 2, 8, 16
then #

(
E(F )/NK/FE(K) + 2E(F )

)
= 1, 2, 4, 4 respectively. Using Proposition 3.2.7

we can then fill in all of the cases aside from those for which T (K/F ;E) = 4, in which
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K/F the biquadratic extension, E/F an elliptic curve,
E : y2 = x3 + Ax+B a minimal integral model.

Kodaira Type of E/F Extra Condition(s) # E(F )
NK/FE(K)+2E(F )

I0

T 3 + AT +B has no roots in kF 1
T 3 + AT +B has 1 root in kF 2
T 3 + AT +B has 3 roots in kF 4

I∗0

T 3 + Aθ−2T +Bθ−3 has no roots in kF 1
T 3 + Aθ−2T +Bθ−3 has 1 root in kF 2
T 3 + Aθ−2T +Bθ−3 has 3 roots in kF 4

In
n even and −(27B2 + 4A3)θ−n ∈ k×2

F 4
otherwise 2

I∗n
n even and −(27B2 + 4A3)θ−n−6 ∈ k×2

F 4
otherwise 2

II, II∗, IV , IV ∗ 1
III, III∗ 4

Table 3.5: Norm index modulo 2 from the biquadratic extension of F .

case we have two possibilities:

E(F )/NK/FE(K) ∼=

Z/4Z or

Z/2Z× Z/2Z,

and these have different sizes modulo 2. The cases when T (K/F ;E) = 4 are when

1. E has Kodaira type In>0 or I∗n>0, and the discriminant of the minimal integral
model (∆E = −(27B2 + 4A3)) satisfies ∆E 6∈ F×2; or

2. E has Kodaira type I0 and T 3 + AT +B has 1 root in kF ; or

3. E has Kodaira type I∗0 and T 3 + Aθ−2T +Bθ−3 has 1 root in kF .

Before we deal with each of these cases, note that it is enough to show that E(F ) does
not have full 2-torsion (i.e. E(F )[2] 6∼= (Z/2Z)2) Indeed by Lemma 3.2.10 we would
have E(F )/4E(F ) ∼= E(F )[4] ⊆ Z/4Z and since E(F )/NK/FE(K) is a quotient of this
group we obtain

E(F )/NK/FE(K) ∼= Z/4Z,

which would imply the remaining results in the table.
For case 1: the discriminant is nonsquare and as this is also the discriminant of

the cubic polynomial f(T ) = T 3 + AT + B (whose roots give the 2-torsion points on
E), we must have that the Galois group of f is not a subgroup of A3 so in particular
contains an order 2 element. Thus E(F )[2] cannot be full.

For case 2 note that if E(F ) has full 2-torsion then since we have good reduction
so would the reduced curve (and so we would have 3 roots, not 1 over kF ). Similarly,
for case 3, note that there is a bijection between the roots of T 3 +AT +B over F and
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those of T 3 + Aθ−2T + Bθ−3 (namely send α 7→ θ−1α) and so again we cannot have
full 2-torsion as then we’d have 4 roots in kF and not 1.
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Part II

Quadratic Twist Families



Chapter 4

Quadratic Twists of Elliptic Curves

This chapter is concerned with joint work with Adam Morgan [MP22]. For the rest
of the chapter we fix a quadratic extension K/Q. Write K = Q(

√
θ) for a squarefree

integer θ, and write G = Gal(K/Q). Moreover we fix an elliptic curve E/Q. At this
point we make no assumption on the 2-torsion of E, in later sections we will reduce to
the case of full 2-torsion but we shall be clear when this occurs.

We study the statistical behaviour of the 2-Selmer groups of quadratic twists of
E, i.e. Sel2(Ed/K) as d varies in the set of squarefree integers. We begin, in §4.1,
by recalling the necessary results from Chapter 2 for this chapter. Then in §4.2 we
describe the average of g2(K/Q;Ed) as d varies, and show that this function usually
has a normal distribution in a similar sense to the classical Erdős–Kac theorem. In
§4.3, assuming a claim that if E has full 2-torsion then SelC (K)(Q, Ed[2]) = 0 for 100%
of d, we go on to prove the main results of this section, as stated in §1.4,

§4.4 and §4.5 are then dedicated to the proof of the claim that if E has full 2-torsion
then the Selmer groups SelC (K)(Q, Ed[2]) vanish for 100% of d. To do this we draw
on analytic techniques developed by Heath-Brown [HB93,HB94]. That work takes as
a point of departure the explicit description of 2-Selmer groups of elliptic curves with
full 2-torsion provided by 2-descent. In §4.4 we similarly give an explicit description
of SelC (K)(Q, Ed[2]) as a subgroup of (Q×/Q×2)2.

In §4.5 we opt to replace SelC (K)(Q, Ed[2]) with a certain subgroup Sd of Q×/Q×2

(see Definition 4.5.4) whose vanishing implies the vanishing of SelC (K)(Q, Ed[2]), but
which admits a simpler explicit description. In §4.5.5 we give a formula for the order of
Sd as a sum of Jacobi symbols in a form which can be treated by the analytic tools of
Heath-Brown mentioned above. The passage from SelC (K)(Q, Ed[2]) to Sd causes the
resulting analysis to be much closer to that carried out by Fouvry–Klüners in [FK07]
to determine the distribution of 4-ranks of class groups of quadratic fields. In §4.6 we
provide an example of a thin family of quadratic twists for which the Galois action on
Sel2(Ed/K) is nontrivial, as claimed in §1.2.3.
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§ 4.1 | 2-Selmer Groups over Quadratic Extensions
Denote by Sel2(E/K) the 2-Selmer group of E/K. The conjugation action of G on
H1(K,E[2]) makes Sel2(E/K) into an F2[G]-module.

The structure of Sel2(E/K) has been studied by Kramer in [Kra81]. In this section,
since it will be useful for what follows, we give a reinterpretation of part of this work
in the language of Selmer structures (see also work of Mazur–Rubin [MR07,MR10] for
a similar perspective). The results in this section can be adapted in a straightforward
way to general quadratic extensions of number fields (and this is the setting in which
Kramer proves his results). However, we stick to quadratic extensions of Q since this
is the setting in which all of our counting is to be carried out.

We begin by gathering what we will use about SelC (K)(Q, E[2]) from Chapter 2.

Proposition 4.1.1. The following properties hold for the Selmer structure C (K).

(i) For each place v of Q we have

Cv(K/Q;E) = corKw/Qv(S (E/Kw)) ≤ H1(Qv, E[2]),

where w is any choice of place of K extending v.

(ii) For each place v of Q we moreover have

Cv(K/Q;E) = δv(NKw/QvE(Kw)) = Sv(Q;E) ∩S (θ)
v (Q;E),

where δv : E(Qv)/2E(Qv) ↪→ H1(Qv, E[2]) is the coboundary map arising from
the Kummer sequence (2.1).

(iii) Globally we have SelC (K)(Q, E[2]) = Sel2(E/Q)∩ϕ∗θ (Sel2(Eθ/Q)). Moreover, we
have

corK/Q (Sel2(E/K)) ⊆ SelC (K)(Q, E[2]).

Proof. (i): This is Lemma 2.2.2.
(ii): The first equality follows from the fact that the coboundary maps arising from

the respective Kummer sequences (2.1) over Kw and Qv commute with corestriction.
The second equality follows from Proposition 2.3.9.

(iii): The claim that SelC (K)(Q, E[2]) = Sel2(E/Q)∩Sel2(Eθ/Q) follows from Propo-
sition 2.3.9. The inclusion follows from Lemma 2.2.6 and compatibility of the local and
global corestriction maps.

We may use the Greenberg–Wiles formula (Theorem 2.1.4) to determine the differ-
ence between the dimensions of SelF (K)(Q, E[2]) and SelC (K)(Q, E[2]).

Lemma 4.1.2. We have

dim SelF (K)(Q, E[2])− dim SelC (K)(Q, E[2]) = g2(K/Q;E),
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where the right hand side is defined in Definition 2.2.8.

Proof. This is Lemma 2.2.11 in the case p = 2, F = Q and K/Q quadratic.

We also have the following results, relating the (co)restriction Selmer groups to the
2-Selmer group over K.

Lemma 4.1.3. Assume that K/F is a quadratic extension. Then we have

dimF2 Sel2(E/K) ≥ −2 +
∑
v∈ΩF

dimF2 E(Fv)/NKw/FvE(Kw).

Proof. This is Lemma 2.3.14 when F = Q.

Corollary 4.1.4. If SelC (K)(Q, E[2]) = 0, then all of the following hold.

(i) There is a short exact sequence

0 −→ H1(K/Q, E(K)[2]) inf−→ SelF (K)(Q, E[2])
resK/Q−→ Sel2(E/K) −→ 0,

where the first map is inflation.

(ii) We have

dim Sel2(E/K) = g2(K/Q;E)− dim
(

E(Q)[2]
NK/QE(K)[2]

)
.

(iii) The G-action on Sel2(E/K) is trivial.

Proof. This is Corollary 2.3.12 when F = Q.

§ 4.2 | Quadratic Twists and a Distribution Result
Recall that K = Q(

√
θ)/Q is a quadratic extension, G = Gal(K/Q) and E/Q is an

elliptic curve. We now consider the effect of replacing E/Q by its quadratic twist
Ed/Q, for a squarefree integer d. We denote by Fd and Cd the Selmer structures of
Definition 2.2.1 with local conditions Fv(K/Q;Ed) and Cv(K/Q;Ed) respectively. We
have associated Selmer groups SelFd

(Q, Ed[2]) and SelCd(Q, Ed[2]). For a squarefree
integer d we write χd : GQ → {±1} for the associated quadratic character defined by

χd(σ) = σ(
√
d)/
√
d.

§ 4.2.1 | The Cokernel of the Local Norm Map

It turns out that the cokernel of the local norm map varies in a predictable way as we
vary d. First, we fix some notation.

Notation 4.2.1. Fix a choice Σ of a finite set of places of Q containing the real place,
2, all primes which ramify in K/Q, and all primes at which E has bad reduction.
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We begin with the following observation.

Lemma 4.2.2. Let p /∈ Σ be a prime divisor of d. Then Ed(Qnr
p ) has no points of

exact order 4. In particular, the same is true of Ed(Qp).

Proof. By assumption, E has good reduction at p so that E[4] is unramified at p. Thus
any element σ in the inertia group Ip acts on Ed[4] by multiplication by χd(σ). Since
χd is ramified at p by assumption, the restriction of χd to Ip is non-trivial and one has

Ed[4]Ip = {P ∈ Ed[4] | P = −P} = Ed[2],

giving the result.

Lemma 4.2.3. Let d be a squarefree integer, let p /∈ Σ be a prime, and let p be a prime
of K lying over p. Then

dimEd(Qp)/NKp/QpEd(Kp) =

2 p | d, p inert in K/Q, dimE(Qp)[2] = 2,

0 otherwise.

Proof. If p splits in K, then the local extension Kp/Qp is trivial, so that NKp/Qp is the
identity map on Ed(Qp).

Next, suppose that p - d. Since also p /∈ Σ, Ed has good reduction at p, and Kp/Qp

is unramified. It follows from [Maz72, Corollary 4.4] that NKw/Qp is surjective, giving
the result.

Now suppose that p | d and p is inert in K/Q. In particular, the local extension
Kp/Qp is unramified of degree 2. Lemma 4.2.2 and a dimension count then show
that the horizontal maps (induced by the inclusion of Ed(Kp)[2] into Ed(Kp)) in the
commutative square

Ed(Kp)[2] Ed(Kp)/2Ed(Kp)

Ed(Qp)[2] Ed(Qp)/2Ed(Qp),

∼

NKp/Qp NKp/Qp

∼

are isomorphisms. Let σ denote the non-trivial element of Gal(Kp/Qp). Since −1 acts
trivially on Ed(Kp)[2], we have a short exact sequence

0→ Ed(Qp)[2] −→ Ed(Kp)[2] 1+σ−→ NKp/Qp (Ed(Kp)[2])→ 0.

We thus have

dimEd(Qp)/NKp/QpEd(Kp) = dimEd(Qp)[2]/NKp/Qp (Ed(Kp)[2])
= 2 dimEd(Qp)[2]− dimEd(Kp)[2]
= 2 dimE(Qp)[2]− dimE(Kp)[2].

It remains to break into cases according to dimE(Qp)[2] = 0, 1, 2. If dimE(Qp)[2] 6= 1
then dimE(Qp)[2] = dimE(Kp)[2] since the 2-torsion is either already full over Qp
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or given by the splitting of an irreducible cubic. In the case that dimE(Qp)[2] = 1,
noting that since E has good reduction at p, Qp(E[2])/Qp is unramified, we have
dimE(Kp)[2] = 2, completing the proof.

Remark 4.2.4. If p 6= 3 then this could also be deduced from the tables in §3.2, however
since we have not treated 3 there and it can be done here with no extra effort then we
leave in the proof above.

Remark 4.2.5. At primes p ∈ Σ the cokernel of the local norm map is more complicated
and depends on the reduction type of Ed/Qp. See [Kra81] or [KT82] for more details.
However, since the isomorphism class of Ed over Qp depends only on the class of d in
Q×p /Q×2

p , the same is true of the cokernel of the local norm map.

To ease notation in what follows, we make the following definition.

Notation 4.2.6. For a squarefree integer d, write

g(d) := g2(K/Q;Ed)

where for a place v of Q, we denote by w a choice of extension of v to K. Further,
write

ωE,K(d) := #
{
p | d :

p 6∈Σ
p inert in K/Q
dimE(Qp)[2]=2

}
.

Note that by Lemma 4.1.3, the function g(d)−2 gives a lower bound for dim Sel2(Ed/K).

Proposition 4.2.7. As d varies in squarefree integers, we have

g(d) = 2ωE,K(d) +O(1)

where the implied constant depends only on the initial curve E and the quadratic field
K.

Proof. Since the places in Σ contribute O(1) to g(d), we may ignore them. The result
now follows from Lemma 4.2.3.

§ 4.2.2 | The Distribution of g(d)

Notation 4.2.8. Let δE,K be the natural density of primes p such that ωE,K(p) = 1.

The possible values of δE,K may be computed by applying the Chebotarev density
theorem to the extension K(E[2])/Q and are given by the following table:

Gal(Q(E[2])/Q) {1} Z/2Z
K 6=Q(E[2])

Z/2Z
K=Q(E[2]) Z/3Z S3

K 6⊆Q(E[2])
S3

K⊆Q(E[2])

δE,K 1/2 1/4 0 1/6 1/12 0

In the following result of Erdős–Kac type, we determine the asymptotic distribution
of the function g(d) when the 2-torsion field of E does not interact with K. Since
dim Sel2(Ed/K) ≥ g(d) − 2 by Lemma 4.1.3, this shows that dim Sel2(Ed/K) is (in a
precise sense) typically at least as large as a constant times log log(d).
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Proposition 4.2.9. Suppose that Q(E[2]) ∩K = Q. Further, for a squarefree integer
d write

µ(d) := 2δE,K log log |d| and σ(d) :=
√

4δE,K log log |d|.

Then the quantity
g(d)− µ(d)

σ(d)
follows a standard normal distribution. That is, for all z ∈ R we have

lim
X→∞

#
{
|d| ≤ X squarefree : g(d)−µ(d)

σ(d) ≤ z
}

# {|d| ≤ X squarefree} = 1√
2π

∫ z

−∞
e−t

2/2dt.

Proof. Let γ(d) := 2ωE,K(d). Since by Proposition 4.2.7 this differs from g(d) by
a bounded amount, it is enough to prove the same assertion with g replaced by γ.
Moreover, since this function satisfies γ(d) = γ(−d), it is enough to prove that γ has
this distribution on the positive squarefree integers. We will do this by combining
the method of moments with [GS07, Prop. 4]. Specifically, in the notation of that
proposition, take

A := {d squarefree : 1 ≤ d ≤ X}

and
P :=

{
p prime : p ≤ Xε(X)

}
for a function ε(X) = o(1) to be chosen later. Further, let γP be the strongly additive
function which agrees with γ for p ∈ P , and takes the value 0 on primes p 6∈ P . Note
that, still using the notation of [GS07, Prop. 4] we can take

h(d) =
∏
p|d

p

p+ 1 , rd � d
√
X, x = 6X

π2 +O(
√
X), and M = 2,

along with
µP(γ) =

∑
p∈P

2ωE,K(p) 1
p+ 1

and
σP(γ)2 =

∑
p∈P

4ωE,K(p) p

(p+ 1)2 .

Using the explicit form of the Chebotarev density theorem given in [LO77], standard
arguments give

µP(γ) = 2δE,K log log(X)+O(log ε(X)) and σP(γ)2 = 4δE,K log log(X)+O(log ε(X)).

Taking X sufficiently large in the conclusion of [GS07, Prop. 4] shows that for any
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k ≥ 0 we have

1
#A

∑
d∈A

(γP(d)− µP(γ))k= (k − 1)!!σP(γ)k +Ok

(
σP(γ)k−2 + log log(X)kX2kε(X)−1/2

)
k even,

�k σP(γ)k−1 + log log(X)kX2kε(X)−1/2 k odd.

In particular, the kth moments of (γP − µP(γ))/σP(γ) converge to those of a normal
random variable with mean 0 and variance 1. Note that for n ≤ X we have

γ(n)− γP(n) ≤ 2#
{
p | n : p > Xε(X)

}
≤ log(n)
ε(X) log(X) ≤ ε(X)−1.

Induction on k (cf. [GS07, Deduction of Theorem 1]) now shows that, taking ε(X) =
log log log(X)−1, we have

1
#A

∑
d∈A

(γ(d)− 2δE,K log log(X))k = 1
#A

∑
d∈A

(γP(d)− µP(γ))k + o(log log(X)k/2).

Thus the kth moments of (γ−2δE,K log log(X))/
√

4δE,K log log(X) converge asX →∞
to those of the standard normal distribution. It then follows from [Bil95, Theorem 30.2,
Example 30.1] that γ becomes normally distributed with mean 2δE,K log log(X) and
variance 4δE,K log log(X) in the limit X →∞, i.e.

lim
X→∞

#
{
|d| ≤ X squarefree : g(d)−δE,K log log(X)√

4δE,K log log(X)
≤ z

}
# {|d| ≤ X squarefree} = 1√

2π

∫ z

−∞
e−t

2/2dt.

The result now follows.

Remark 4.2.10. In the last step of the proof we have used the standard result that a
function f becomes normal as X →∞ with mean µ(X) := C0 log log(X) and variance
σ2(X) := C1 log log(X) for some constants C0, C1 > 0 if and only if the function
(f(d)− µ(d))/σ(d) becomes normal as X →∞ with mean 0 and variance 1. This can
be proved directly.

Remark 4.2.11. In the case that K ⊆ Q(E[2]), the function γ(d) in the proof of Propo-
sition 4.2.9 is 0. In particular, by Proposition 4.2.7, we have that the kth moments of
g(d) are bounded.

We have the following basic corollary showing that, for 100% of d, dim Sel2(Ed/K)
is larger than any fixed integer whenever the 2-torsion of E field does not interact
with K. This is in stark contrast with the situation for the Selmer groups Sel2(Ed/Q),
whose distribution is determined by Kane in [Kan13, Thm. 3].

Corollary 4.2.12. If K ∩Q(E[2]) = Q, then for any z ∈ R we have

lim
X→∞

# {|d| ≤ X squarefree : dim(Sel2(Ed/K)) ≤ z}
# {|d| ≤ X squarefree} = 0.
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Proof. By Lemma 4.1.3 we have dim Sel2(Ed/K) ≥ g(d) − 2. The result now follows
from Proposition 4.2.9.

§ 4.3 | Main Results
Recall that K = Q(

√
θ)/Q is a quadratic extension with G = Gal(K/Q). From this

section onwards, we make the restriction that our choice of elliptic curve E/Q has
E[2] ⊆ E(Q).

For a squarefree integer d, a consequence of Lemmas 2.3.11 and 4.1.2 is that, roughly
speaking, the auxiliary Selmer group SelC (K)(Q, Ed[2]) controls the discrepancy between
dim Sel2(Ed/K) and the function g(d) of Notation 4.2.6. Thus to improve on Proposi-
tion 4.2.9 and gain full control of the Selmer groups Sel2(Ed/K) as d varies, it suffices
to control these auxiliary groups. We achieve this under the assumption that all 2-
torsion of E is defined over Q. Specifically, across Sections 4.4 and 4.5 we will prove
that, under this assumption, the Selmer group SelC (K)(Q, Ed[2]) is trivial for 100% of
d. That is:

Theorem 4.3.1. We have

lim
X→∞

#{d squarefree : |d| < X, SelC (K)(Q, Ed[2]) = 0}
#{d squarefree : |d| < X}

= 1.

Remark 4.3.2. We will in fact show that the number of squarefree d with |d| < X

for which SelC (K)(Q, Ed[2]) 6= 0 is � X log(X)−0.0394. See Theorem 4.5.1. It is likely
that with more work this bound could be improved significantly, however we have not
attempted to do so.

Remark 4.3.3. By Proposition 4.1.1 we have

SelC (K)(Q, Ed[2]) = Sel2(Ed/Q) ∩ Sel2(Edθ/Q)

where the intersection is taken inside H1(Q, E[2]). Thus Theorem 4.3.1 shows that for
100% of squarefree d, the groups Sel2(Ed/Q) and Sel2(Edθ/Q) share only the identity
element.

Before embarking on the proof, we use the results of previous sections to draw
several consequences of this theorem.

§ 4.3.1 | Statistical Results for 2-Selmer Groups

An immediate consequence of Theorem 4.3.1 is that the conclusion of Corollary 4.1.4
holds for 100% of squarefree d when we have full 2-torsion.

Corollary 4.3.4. For 100% of squarefree d (ordered by absolute value), the Gal(K/Q)-
action on Sel2(Ed/K) is trivial, and we have

dim Sel2(Ed/K) = −2 +
∑

v place of Q
dimEd(Qv)/NKw/QvEd(Kw). (4.1)
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As a consequence, we can upgrade Proposition 4.2.9 to the following Erdős–Kac
type result determining the distribution of the full 2-Selmer group.

Corollary 4.3.5. The quantity

dim Sel2(Ed/K)− log log |d|√
2 log log |d|

follows a standard normal distribution. That is, for every z ∈ R we have

lim
X→∞

#
{
|d| ≤ X squarefree : dim Sel2(Ed/K)−log log |d|√

2 log log |d|
≤ z

}
# {|d| ≤ X squarefree } = 1√

2π

∫ z

−∞
e−t

2/2dt.

Proof. By Corollary 4.3.4, amongst all squarefree integers d with |d| < X, outside a
set of cardinality o(X) we have

dim Sel2(Ed/K) = −2 +
∑

v place of Q
dimEd(Qv)/NKw/QvEd(Kw) = g(d)− 2.

The result now follows from Proposition 4.2.9 noting that since E[2] ⊆ E(Q), we have
that δE,K = 1/2.

§ 4.3.2 | Statistical Results for Shafarevich–Tate Groups

A consequence of Corollary 4.3.5 is that dim Sel2(Ed/K) typically has size around
log log |d|. By contrast, the dimensions of the 2-Selmer groups of the Ed over Q are
known to be bounded on average thanks to a result of Kane [Kan13, Thm. 3]. In
particular, the majority of dim Sel2(Ed/K) is attributable to the Shafarevich–Tate
group. Formalising this observation allows us to prove the analogue of Corollary 4.3.5
for Shafarevich–Tate groups also.

Corollary 4.3.6. Assume that E has no cyclic 4-isogeny defined over Q. Then the
quantity

dimX(Ed/K)[2]− log log |d|√
2 log log |d|

follows a standard normal distribution. That is, for all z ∈ R we have

lim
X→∞

#
{
|d| ≤ X squarefree : dimX(Ed/K)[2]−log log |d|√

2 log log |d|
≤ z

}
# {|d| ≤ X squarefree} = 1√

2π

∫ z

−∞
e−t

2/2dt.

Proof. Since dimX(Ed/K)[2] ≤ dim Sel2(Ed/K) for all d, by Corollary 4.3.5 we need
only show that the limit in the statement (or more precisely the limit superior of the
left hand side of the statement) is bounded above by Φ(z) = 1√

2π
∫ z
−∞ e

−t2/2dt.
This follows from Corollary 4.3.5 thanks to [Kan13, Thm. 3], which gives adequate

control of the Mordell–Weil component of Sel2(Ed/K). First, for any squarefree integer
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d, the standard short exact sequence

0 −→ Ed(K)/2Ed(K) −→ Sel2(Ed/K) −→X(Ed/K)[2] −→ 0

gives
dimX(Ed/K)[2] = dim Sel2(Ed/K)− dimEd(K)/2Ed(K).

Since K = Q(
√
θ) and dimEd(K)[2] = 2 we have

dimEd(K)/2Ed(K) = 2 + rk(Ed/Q) + rk(Edθ/Q),

giving the equality

dimX(Ed/K)[2] = dim Sel2(Ed/K)− rk(Ed/Q)− rk(Edθ/Q)− 2.

Now fix a real number z and a positive real number M . Partitioning into cases
according to

rk(Ed/Q) + rk(Edθ/Q) ≤M or rk(Ed/Q) + rk(Edθ/Q) > M

we find

#
|d| ≤ X squarefree : dimX(Ed/K)[2]− log log |d|√

2 log log |d|
≤ z


≤ #

|d| ≤ X squarefree : dim Sel2(Ed/K)− log log |d|√
2 log log |d|

≤ z + M + 2√
2 log log |d|


+ #

|d| ≤ X squarefree : Sel2(Ed/Q) > M/2


+ #
|d| ≤ X squarefree : Sel2((Eθ)d/Q) > M/2

.
Dividing through by the number of squarefree integers d with |d| ≤ X, taking the
limsup X → ∞, and applying Kane’s theorem [Kan13, Thm. 3] to both E and Eθ

(since E has no cyclic 4-isogeny defined over Q the same is true for Eθ, allowing
us to apply Kane’s result without further assumptions), we find as a consequence of
Corollary 4.3.5 that

lim sup
X→∞

#
{
|d| ≤ X squarefree : dimX(Ed/K)[2]−log log |d|√

2 log log |d|
≤ z

}
# {|d| ≤ X squarefree} ≤ Φ(z) + 2

∑
r≥M/2

αr,

where the αr are defined in Kane’s Theorem 2. Since the αr determine a probability
distribution on the set of r ∈ Z≥0, taking the limit M →∞ gives the result.

Remark 4.3.7. It seems reasonable to expect that Corollary 4.3.6 remains true without
the assumption that E has no cyclic 4-isogeny defined over Q. However, since no
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analogue of Kane’s result is known in this setting we have not been able to prove this.

§ 4.3.3 | Statistical Results for Mordell–Weil Groups

We now give some consequences for the Mordell–Weil groups of the Ed/K. We begin
with the following algebraic results. Write G = Gal(K/Q). Recall that the Mordell–
Weil lattice of Ed over a number field F is the free abelian group

Λ(Ed/F ) := Ed(F )/Ed(F )tors.

We will, in particular, be interested in the structure of Λ(Ed/K) as a Z[G]-lattice.
For a G-module M , we denote by M(−1) the G-module which is isomorphic to M

as an abelian group but with G-action twisted by multiplication by −1. That is, the
new G-action of the generator σ of G is given by

m 7−→ −σ(m).

Lemma 4.3.8. If SelC (K)(Q, Ed[2]) = 0 then there is an isomorphism of Z[G]-modules

Λ(Ed/K) ∼= Λ(Ed/Q)⊕ Λ(Edθ/Q)(−1).

Proof. By [CR81, Theorem 34.31], there exist unique a, b, c ∈ Z≥0 such that

Λ(Ed/K) ∼= Za ⊕ Z(−1)b ⊕ Z[G]c,

where Z denotes a rank 1 free Z-module with trivial G-action. Note that we have an
inclusion of G-modules

Λ(Ed/K)/2Λ(Ed/K) ⊆ Sel2(Ed/K)/δ(Ed[2]).

The right hand side has trivial G-action, as follows from the vanishing of
SelC (K)(Q, Ed[2]) combined with Corollary 4.1.4 (iii). Thus Λ(Ed/K)/2Λ(Ed/K) has
trivial G-action also. Thus, c = 0. Via the natural K-isomorphism Ed ∼= Edθ, we can
identify the points of Ed(K) on which the generator of G acts as multiplication by −1
with Edθ(Q). The result follows.

Proposition 4.3.9. Suppose we have Ed(K)tors = Ed[2] and SelCd(Q, Ed[2]) = 0. Then
there is an isomorphism of Z[G]-modules

Ed(K) ∼= F2
2 ⊕ Λ(Ed/Q)⊕ Λ(Edθ/Q)(−1).

Proof. By Lemma 4.3.8 we must have

Λ(Ed/K) ∼= Λ(Ed/Q)⊕ Λ(Edθ/Q)(−1). (4.2)

As a consequence, take B to be a Z-basis for Λ(Ed/K) such that for all v ∈ B we have
σ(v) ∈ {v,−v}. Let B̃ be a lift of B to Ed(K). Note that Ed(K)/2Ed(K) has a basis
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comprising of the images of the elements of B̃ and two linearly independent vectors
from the submodule Ed(K)tors = Ed[2] ∼= F2

2.
For each v ∈ B̃, we have σ(v) = ±v+u for some u ∈ Ed[2]. Since SelCd(Q, Ed[2]) = 0,

the G-action on Ed(K)/2Ed(K) is trivial by Corollary 4.1.4(iii). In particular ±v+u =
σ(v) ≡ v in Ed(K)/2Ed(K), and so u ∈ 2Ed(K). Since Ed(K) has no 4–torsion, u = 0
and so σ(v) = ±v. Thus the morphism of abelian groups Λ(Ed/K)→ Ed(K) induced
by the lift B̃ of B is one of Z[G]–modules, so we have

Ed(K) ∼= Ed[2]⊕ Λ(Ed/K).

The result then follows from (4.2).

Corollary 4.3.10. For 100% of squarefree d, there is an isomorphism of Z[G]-modules

Ed(K) ∼= F2
2 ⊕ Λ(Ed/Q)⊕ Λ(Edθ/Q)(−1). (4.3)

More precisely, we have

lim
X→∞

#{d squarefree | |d| < X, (4.3) holds}
#{d squarefree | |d| < X}

= 1.

Proof. Note that for each odd prime p, at most 2 quadratic twists of E have rational p-
torsion (otherwise E would have at least 3 dimensional p-torsion over a multiquadratic
extension, which is impossible). In particular, for each odd prime p, only finitely many
twists of E can have p-torsion over K. Consequently, by Mazur’s torsion theorem
[Maz77, Theorem 8], amongst squarefree integers d with |d| < X, outwith a finite
set of d we have Ed(K)tors ⊆ E[2∞]. Moreover, by Lemma 4.2.2, only finitely many
quadratic twists have a point of order 4. The result now follows from Theorem 4.5.1
and Proposition 4.3.9.

§ 4.4 | Explicit Local Conditions for Full 2-Torsion
In this section we make preparations for the proof of Theorem 4.3.1 by making the
results of §4.1 explicit in the case that E has full rational 2-torsion.

Recall that K = Q(
√
θ)/Q is a quadratic extension and E/Q is a fixed elliptic curve

with E[2] ⊆ E(Q). Further, we fix a Weierstrass equation

E/Q : y2 = (x− a1)(x− a2)(x− a3) (4.4)

for E where, without loss of generality, a1, a2, a3 ∈ Z. Set α = a1 − a2, β = a1 − a3,
and γ = a2 − a3. Note that the primes of bad reduction for E all divide 2αβγ, and
that E[2] = {O,P1, P2, P3} where Pi = (ai, 0).

As in Notation 4.2.1 we fix a finite set Σ of places of Q containing the real place, the
prime 2, all primes which ramify in K/Q, and all primes at which E has bad reduction.
Note in particular that Σ contains all primes dividing 2αβγ.
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§ 4.4.1 | Quadratic Twists

Let d be a squarefree integer. The quadratic twist Ed/Q is given by the Weierstrass
equation

Ed : y2 = (x− da1)(x− da2)(x− da3).

We have Ed[2] = {O,P1,d, P2,d, P3,d} where Pi,d = (dai, 0).
The following lemma describes the local conditions Cv(K/Q;Ed) of Definition 2.2.1

at primes p /∈ Σ. For a place v of Q, we denote by δd,v : Ed(Qv)/2Ed(Qv) ↪→
H1(Qv, Ed[2]) the coboundary map associated to the sequence (2.1) with F = Q.

Lemma 4.4.1. Let p be a prime with p /∈ Σ. Then

(i) if p - d, we have

Cp(K/Q;Ed) = Sp(Q;Ed) = H1
nr(Qp, Ed[2]),

(ii) if p | d is split in K/Q, we have

Cp(K/Q;Ed) = Sp(Q;Ed) = δd,p(Ed[2]),

(iii) if p | d is inert in K/Q, we have

Cp(K/Q;Ed) = 0.

Proof. Let p be a prime of K lying over p. (i): By Lemma 4.2.3 we have an equality
NKp/QpEd(Kp) = Ed(Qp). The first equality in Proposition 4.1.1(ii) thus gives

C (Ed/Qp) = δp(Ed(Qp)) = S (Ed/Qp).

The second equality follows from the fact that p is odd and Ed has good reduction at
p.

(ii): when p splits in K/Q the local extension Kp/Qp is trivial, so C (Ed/Qp) =
S (Ed/Qp) by definition. For the second equality, since p - 2∞, dim S (Ed/Qp) =
dimEd[2]. In particular, it suffices to show that the restriction of δd,p to Ed[2] is
injective, which follows from Lemma 4.2.2.

(iii): by Lemma 4.2.3 and the fact that E has full 2-torsion, it follows from a
dimension count that NKp/QpE(Kp) = 2E(Qp). The result now follows from Proposi-
tion 4.1.1.

Remark 4.4.2. Taking orthogonal complements, the above result also determines the
local groups F (Ed/Qp) for p /∈ Σ.

§ 4.4.2 | Explicit Local Conditions

We now use the fact that Ed has full rational 2-torsion to give an explicit description
of SelC (K)(Q, Ed[2]) as a subgroup of (Q×/Q×2)2.



CHAPTER 4. QUADRATIC TWISTS OF ELLIPTIC CURVES 72

Let λi,d : Ed[2]→ µ2 be the map P 7→ (P, Pi,d)e2 , where ( , )e2 : Ed[2]×Ed[2]→ µ2

is the Weil pairing. This induces an isomorphism

(λ1,d, λ2,d) : Ed[2] ∼−→ µ2 × µ2.

Via this map, we identify H1(Q, Ed[2]) with H1(Q,µ2)⊕H1(Q,µ2) = (Q×/Q×2)2 (cf.
Example 2.1.2). We similarly identify H1(Qv, Ed[2]) with (Q×v /Q×2

v )2 for each place v
of Q. In this description, for each place v of Q, the local Tate pairing

〈 , 〉v : H1(Qv, Ed[2])×H1(Qv, Ed[2])→ Q/Z

becomes the pairing (Q×v /Q×2
v )2 × (Q×v /Q×2

v )2 → 1
2Z/Z ∼= µ2 given by

((x1, x2), (y1, y2)) 7→ (x1, y2)v(x2, y1)v, (4.5)

where ( , )v denotes the quadratic Hilbert symbol. The Kummer map

δd,v : Ed(Qv)/2Ed(Qv) ↪→ H1(Qv, Ed[2]),

then becomes the map

(x, y) 7−→


(x− da1, x− da2) x /∈ {da1, da2},

(αβ, dα) (x, y) = (da1, 0),

(−dα,−αγ) (x, y) = (da2, 0).

(4.6)

See, for example, [Sil09, Proposition X.1.4].

§ 4.4.3 | The Group SelC (K)(Q, Ed[2])

We now define a further Selmer structure, whose associated Selmer group contains
SelC (K)(Q, Ed[2]) as a subgroup, and which admits a cleaner explicit description.

Definition 4.4.3. Define the Selmer structure C̃d for Ed[2] (viewed as a GQ-module)
via the local conditions

C̃d,v =

Cv(K/Q;Ed) v /∈ Σ,

H1(Qv, E[2]) v ∈ Σ.

Denote by SelC̃d(Q, Ed[2]) the associated Selmer group.

Note that by construction, Sel
C̃d

(Q, Ed[2]) contains SelC (K)(Q, Ed[2]) as a subgroup.
In particular, if Sel

C̃d
(Q, Ed[2]) is trivial, then so is SelC (K)(Q, Ed[2]). The advantage

of considering Sel
C̃d

(Q, Ed[2]) is that now Lemma 4.4.1 describes all non-trivial Selmer
conditions.

Notation 4.4.4. Write N for the squarefree product of all (finite) primes p ∈ Σ.
Further, write d = ad′d′′, where d′ is the product of all primes p | d such that both
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p /∈ Σ and p splits in K/Q, and d′′ is the product of all primes p | d such that both
p /∈ Σ and p is inert in K/Q.

For d ∈ Z squarefree, we identify H1(Q, Ed[2]) with (Q×/Q×2)2 as in §4.4.2, and
further identify (Q×/Q×2)2 with the set of pairs of squarefree integers. For a prime p
and an integer n coprime to p, we write

(
n
p

)
for the Legendre symbol taking value 1 if

n is a square modulo p, and −1 else.

Proposition 4.4.5. With the notation and identifications of Notation 4.4.4, the Selmer
group Sel

C̃d
(Q, Ed[2]) consists of pairs (x1, x2) of squarefree integers such that the fol-

lowing conditions all hold:

(i) we have xi | Nd′ for i = 1, 2,

(ii) we have
(
xi
p

)
= 1 for all p | d′′ and for i = 1, 2,

(iii) for all p | d′ we have

(x1, dα)p(x2, αβ)p = 1 = (x1,−αγ)p(x2,−dα)p.

Proof. By Lemma 4.4.1 and the definition of the local groups C̃ (Ed/Qv), we have
C̃ (Ed/Qp) = 0 for all primes p with p /∈ Σ such that both p | d and p is inert in K/Q,
and C̃ (Ed/Qp) = H1

nr(Qp, Ed[2]) for each prime p such that both p /∈ Σ and p - d.
These conditions are equivalent to conditions (i) and (ii) in the statement. Since in the
definition of Sel

C̃d
(Q, Ed[2]) there are no conditions imposed at primes p ∈ Σ, in light

of Lemma 4.4.1(ii) it suffices to show that condition (iii) is equivalent to the condition
that

(x1, x2) ∈ Sp(Q;Ed) = δd,p(Ed[2])

for each prime p | d such that both p /∈ Σ and p splits in K/Q. Since Sp(Q;Ed) is
its own orthogonal complement under the local Tate pairing, (x1, x2) is in Sp(Q;Ed) if
and only if it pairs trivially with each element of δd,p(Ed[2]). Now Pd,1 = (da1, 0) and
Pd,2 = (da2, 0) is a basis for Ed[2], and by (4.6) we have

δd,p(Pd,1) = (αβ, dα) ∈
(
Q×p /Q×2

p

)2
and δd,p(Pd,2) = (−dα,−αγ) ∈

(
Q×p /Q×2

p

)2
.

By (4.5), (x1, x2) pairs trivially with both of these elements under the local Tate pairing
at p if and only if

(x1, dα)p(x2, αβ)p = 1 = (x1,−αγ)p(x2,−dα)p.

The result follows.
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§ 4.5 | Proof of Theorem 4.3.1
Recall that K = Q(

√
θ)/Q is a quadratic extension with Galois group G, and E/Q is

an elliptic curve over Q with E[2] ⊆ E(Q), and given by a Weierstrass equation

E/Q : y2 = (x− a1)(x− a2)(x− a3) (4.7)

for a1, a2, a3 ∈ Z. Recall also that we have defined integers α = a1 − a2, β = a1 − a3,
and γ = a2− a3, and that the integer N is taken to be the product of all primes in the
set Σ of Notation 4.2.1.

The aim of this section is to prove Theorem 4.3.1. Specifically, we will show the
following, strictly stronger, result.

Theorem 4.5.1. We have

#{d squarefree : |d| < X, SelC (K)(Q, Ed[2]) 6= 0} � X log(X)−0.0394.

In particular

lim
X→∞

#{d squarefree : |d| < X, SelC (K)(Q, Ed[2]) = 0}
#{d squarefree : |d| < X}

= 1.

§ 4.5.1 | First Reduction

In order to prove Theorem 4.5.1 it suffices to replace SelC (K)(Q, Ed[2]) with the slightly
larger group Sel

C̃d
(Q, Ed[2]) (cf. Definition 4.4.3) in place of SelC (K)(Q, Ed[2]), since the

latter is a subgroup of the former. We begin by defining a further group Sd determined
by simpler local conditions. Specifically, we wish to ‘decouple’ the variables x1 and x2

appearing in Proposition 4.4.5. We first introduce some notation.

Notation 4.5.2. We introduce the following 3 sets of primes:

P0 := {p /∈ Σ, p split in K/Q, and p non-split Q(
√
αβ)/Q},

P1 := {p /∈ Σ, p split in K/Q, and p split in Q(
√
αβ)/Q},

P2 := {p /∈ Σ, p inert in K/Q}.

(If αβ is a square in Q we take P0 := ∅ and P1 the collection of primes not in Σ which
split in K/Q.) Note that the sets Σ,P0,P1 and P2 give a partition of the set of all
primes into 4 pairwise disjoint subsets.

For i = 0, 1, 2, we define Fi to be the set of positive squarefree integers n all of
whose prime factors lie in Pi. Note that for i 6= j we have Fi ∩ Fj = {1}. We write
Fi · Fj for the collection of squarefree integers n which can be written as a product
n = ninj for some ni ∈ Fi and nj ∈ Fj. Note that such a decomposition is necessarily
unique.
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Remark 4.5.3. Note that provided Q(
√
αβ) * K, P0 and P1 have Dirichlet density

1/4, and P2 has density 1/2. If Q(
√
αβ) ⊆ K then P0 = ∅ and P1 and P2 both have

Dirichlet density 1/2.

Definition 4.5.4. For d a squarefree integer, define the subgroup Sd of Q×/Q×2 as
follows. First, write (uniquely) d = ad0d1d2 where a | N , d0 ∈ F0, d1 ∈ F1, and
d2 ∈ F2. Now define Sd to be the set of squarefree integers

Sd :=
{
x sq. free :

x|Nd0d1,

(xp)=1 for all p|d2,

(x,dα)p=1 for all p|d1.

}
.

We allow x to be either positive or negative.

Lemma 4.5.5. If a pair of squarefree integers (x1, x2) is in Sel
C̃d

(Q, Ed[2]), then x1 ∈
Sd.

Proof. Immediate from Proposition 4.4.5, noting that for p | d1, since p is split in
Q(
√
αβ)/Q by assumption, the condition (x1, dα)p(x2, αβ)p = 1 is equivalent to having

(x1, dα)p = 1.

We will show the following. As explained below, this is sufficient to prove Theo-
rem 4.5.1.

Theorem 4.5.6. We have

#{d squarefree | |d| < X, Sd 6= 0} � Xlog(X)−0.0394.

Proof of Theorem 4.5.1 assuming Theorem 4.5.6. By Combining Theorem 4.5.6 with
Lemma 4.5.5 we obtain that the x1-coordinate of any element of Sel

C̃d
(Q, Ed[2]) is

trivial for 100% of squarefree d. By symmetry, the same must then be true of the
x2-coordinate since we can relabel a1 and a2 in the equation (4.4) for our elliptic
curve in order to interchange the roles of x1 and x2. This shows the limit statement
of Theorem 4.5.1, and running the same argument but keeping track of error terms
proves the general result.

We now begin preparations for the proof of Theorem 4.5.6.

§ 4.5.2 | Notation and Preparations

Notation 4.5.7. Given a positive integer n we write ω(n) for the number of distinct
prime factors of n. For i = 0, 1, 2 we write ωi(n) for the number of distinct prime
factors of n which lie in Pi. We denote by µ the Möbius function.

We will use frequently the following lemma controlling generalised divisor sums.

Lemma 4.5.8. Let a0, a1, and a2 be non-negative real numbers. Then we have

∑
X−Y <n≤X
n sq. free

a
ω0(n)
0 a

ω1(n)
1 a

ω2(n)
2 �

Y log(X)
a0
4 +a1

4 +a2
2 −1 Q(

√
αβ) * K,

Y log(X)
a1
2 +a2

2 −1 Q(
√
αβ) ⊆ K,
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uniformly for 2 ≤ Xexp(−
√

log(X)) ≤ Y ≤ X.

Proof. This follows from a (significantly more general) result of Shiu [Shi80]. Define
the multiplicative function f : Z>0 → R≥0 by setting, for any k ≥ 1, f(pk) = ai for
p ∈ Pi (i = 0, 1, 2), and taking f(p) = 1 for p ∈ Σ. We then wish to bound the sum∑
X−Y <n≤X f(n). It follows from Remark 4.5.3, and the explicit form of the Chebotarev

density theorem given in [LO77], that we have

∑
p≤X

f(p)
p

=


(
a0
4 + a1

4 + a2
2

)
log log(X) +O (1) if Q(

√
αβ) ( K,(

a1
2 + a2

2

)
log log(X) +O (1) if Q(

√
αβ) ⊆ K.

The result now follows from [Shi80, Theorem 1] (the conditions (i) and (ii) needed for
that theorem follow in our setting from well known bounds on the divisor function).

§ 4.5.3 | Reduction to Computing a Weighted Average

In order to prove Theorem 4.5.6 we will compute bounds for a certain weighted average
of #(Sd \ {1}). Specifically will we prove:

Proposition 4.5.9. For any 1 < γ < 7/8 +
√

17/8 = 1.3903..., we have
∑

|d|<X, d sq. free
γω2(d)−ω0(d)(#Sd − 1) = o(X). (4.8)

Moreover, for γ = 1/4 +
√

17/4 the left hand side of (4.8) is � Xlog(X)−0.0394.

We begin by showing that this is sufficient to prove Theorem 4.5.6.

Proof of Theorem 4.5.6 assuming Proposition 4.5.9. We first show that the weights are
at least 1 for 100% of squarefree d. That is, we claim that

#{d squarefree
∣∣∣ |d| ≤ X, ω0(d) ≥ ω2(d)} � X log(X)−0.042.

To see this, fixing any λ > 1 we have

#{d squarefree
∣∣∣ |d| ≤ X, ω0(d) ≥ ω2(d)} ≤ 2

∑
1≤d≤X

λω0(d)−ω2(d).

By Lemma 4.5.8 the right hand side is� X log(X)λ/4+1/(2λ)−3/4. Optimising over λ we
find that when λ =

√
2 the exponent is 1/

√
2− 3/4 < −0.042, giving the claim.

Now fix 1 < γ < 7/8 +
√

17/8. By the claim we have

#
{
|d| ≤ X

∣∣∣ Sd 6= 0
}
≤ #

{
|d| ≤ X

∣∣∣ ω0(d) ≥ ω2(d)
}

+

#
{
|d| ≤ X

∣∣∣ Sd 6= 0, ω2(d) > ω0(d)
}

� X log(X)−0.042 +
∑
|d|≤X

γω2(d)−ω0(d)(#Sd − 1)

where above d is implicitly taken squarefree. The result now follows from Proposi-
tion 4.5.9.
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Remark 4.5.10. The reason for the introduction of the weight γ is that, in passing
from the group SelC (K)(Q, Ed[2]) to the group Sd, we have thrown away the Selmer
conditions coming from primes in P0 in favour of reducing the number of variables
involved. This leads to twists having an abnormally large number of prime factors
lying in P0 contributing a disproportionate amount to the average size of Sd. The
weight γ is introduced to compensate for this.

§ 4.5.4 | Strategy of the Proof of Proposition 4.5.9

The proof of Proposition 4.5.9 follows closely the argument of [FK07, §5], which has its
origins in the work of Heath-Brown [HB93,HB94]. There, Fouvry–Klüners determine
asymptotics for the moments of 4-ranks of class groups of quadratic fields. Our first
step is to express the sum in Proposition 4.5.9 as a sum of Jacobi symbols. We do this
in Lemma 4.5.12 below, using ideas from [FK07, Lemma 16]. The resulting sum, given
in (4.13), is structurally similar to the one in [FK07, Lemma 17]. We then adapt the
techniques used by Fouvry–Klüners to bound this sum. There are a couple of points at
which the argument we give diverges from that of Fouvry–Klüners. First, whilst they
compute higher moments of the sizes of class groups, we need only compute a (weighted
version of) the first moment of the size of Sd. Thus the intricate study of ‘maximal
unlinked subsets’ undertaken in [FK07, §5.6] can be avoided. On the other had, the
variables Di in [FK07, §5] are allowed to vary over all positive squarefree integers,
whilst ours are constrained to lie in the thin families Fj. This necessitates changes
to the argument in Fouvry–Klüners’ first and fourth families, which correspond to our
‘remaining families’ and ‘third family’ respectively, below.

§ 4.5.5 | Expressing the Sum in Terms of Jacobi Symbols

We now begin preparations for the proof of Proposition 4.5.9 by expressing the relevant
sum in terms of Jacobi symbols. We first define the following sums which will be
ubiquitous in what follows.

Definition 4.5.11. Let λ and η be squarefree divisors (either positive or negative) of
N . For a tuple (Di)0≤i≤7 of coprime positive integers, write

Jη,λ((Di)0≤i≤7) :=
(
η

D2

)(
λ

D4

)(
λ

D6

)(
D4

D2

)(
D2

D4

)(
D6

D2

)(
D2

D6

)

×
(
D1

D2

)(
D5

D2

)(
D7

D2

)(
D0

D4

)(
D3

D4

)(
D0

D6

)(
D3

D6

)
.

Now for any real number X > 1, and any positive real γ, define

Sγ(λ, η,X) :=
∑

D0,D1∈F0
D2,D3,D4,D5∈F1

D6,D7∈F2∏
i
Di≤X

Di coprime

γ−ω(D0D1)2−ω(D2D3D4D5)(2/γ)−ω(D6D7)Jη,λ((Di)0≤i≤7),

with the additional condition that, if λ = 1, then not all of D0, D2 and D3 are equal
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to 1 in the range of summation.

Lemma 4.5.12. For any positive real number γ we have
∑

|d|<X, d sq. free
γω2(d)−ω0(d)(#Sd − 1) =

∑
a|N

∑
xN |N
Sγ(xN ,−axNα,X/a) (4.9)

where the right hand sums run over both positive and negative divisors of N .

Proof. Fix d squarefree. As in Definition 4.5.4 we write d = ad0d1d2 where di ∈ Fi for
i = 0, 1, 2, so that

Sd =
{
x sq. free :

x|Nd0d1,

(xp)=1 for all p|d2,

(x,dα)p=1 for all p|d1.

}
.

Now fix x | Nd0d1 and note that we have

2−ω(d2) ∑
z2|d2

(
x

z2

)
= 2−ω(d2) ∏

p|d2

(
1 +

(
x

p

))
=

1
(
x
p

)
= 1 for all p | d2

0 else,
(4.10)

where in the sum above z2 runs over all positive divisors of d2.
To deal with the conditions at primes dividing d1, we write x uniquely as x = xNx0x1

where xN | N (and may be negative) x0 | d0 and x1 | d1. Say d0 = x0y0 and d1 = x1y1.
Then for p | d1, we have (noting that d1 and α are coprime and that all p | d1 are odd)

(x, dα)p =


(
x
p

)
p | y1

(x,−xdα)p =
(
−axNy0y1d2α

p

)
p | x1.

Thus, similarly to (4.10), we have

2−ω(x1y1) ∑
w1|x1
z1|y1

(
x

z1

)(−axNy0y1d2α

w1

)
=

1 (x, dα)p = 1 for all p | d1

0 else.
(4.11)

We now multiply (4.10) and (4.11), write d2 = z2z
′
2, x1 = w1w

′
1, and y1 = z1z

′
1, and

sum over all x = xNx0x1 dividing Nd0d1 to find that #Sd is equal to

∑
xN |N

∑
x0y0=d0

w1w′1z1z
′
1=d1

z2z′2=d2

2−ω(w1w′1z1z
′
1z2z

′
2)
(
xNx0w1w

′
1

z2

)(
xNx0w1w

′
1

z1

)(
−axNy0z1z

′
1z2z

′
2α

w1

)

where xN may be negative but all other variables are positive and coprime. Note
that we necessarily have x0, y0 ∈ F0, w1, w

′
1, z1, z

′
1 ∈ F1 and z2, z

′
2 ∈ F2, so that

in particular ω0(d) = ω(x0y0) and ω2(d) = ω(z2z
′
2). Moreover, the identity element

in Sd corresponds to xN = x0 = w1 = w′1 = 1, so that restricting the range of
summation so that not all of these variables are 1 counts #Sd−1 instead. To conclude
we sum the resulting expression for #Sd − 1 over all squarefree d = ad0d1d2 with
|d| ≤ X, weighted by γω2(d)−ω0(d), and relabel variables (x0, y0, w1, w

′
1, z1, z

′
1, z2, z

′
2) =

(D0, D1, D2, D3, D4, D5, D6, D7).
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Remark 4.5.13. The proof above shows that the reason for excluding the terms where
λ = D0 = D2 = D3 = 1 in the definition of Sγ(λ, η,X) above is to remove the identity
element of Sd from the count.

Now fix 1 < γ < 7/8 +
√

17/8 as in the statement of Proposition 4.5.9 . In light of
Lemma 4.5.12 we want to study the sums Sγ(λ, η,X).

Definition 4.5.14. As a book-keeping device, we define the function Φ(i, j) (0 ≤ i 6=
j ≤ 7) by setting Φ(i, j) = 1 if the Jacobi symbol

(
Di
Dj

)
appears in the definition of

Jη,λ((Di)0≤i≤7), and 0 else. We say that two indices i and j are linked if Φ(i, j) +
Φ(j, i) = 1.

Note that the sets of linked indices are

{1, 2}, {2, 5}, {2, 7}, {0, 4}, {3, 4}, {0, 6}, {3, 6}. (4.12)

Notation 4.5.15. To write the sums Sγ(λ, η,X) in a manageable way, set µi to be
1 if

(
η
Di

)
appears in Jη,λ((Di)0≤i≤7) and 0 else, and set νi to be 1 if

(
λ
Di

)
appears in

Jη,λ((Di)0≤i≤7) and 0 else. Further, define

κi :=


γ i = 0, 1

2 i = 2, 3, 4, 5
2
γ

i = 6, 7.

Finally, we let D(X) denote the set of tuples of pairwise coprime positive integers
(D0, ..., D7) such that all of the following hold:

• we have D0, D1 ∈ F0, D2, D3, D4, D5 ∈ F1, and D6, D7 ∈ F2,

• we have ∏7
i=0Di ≤ X,

• if λ = 1, then D0, D2 and D3 are not all 1.

We thus write

Sγ(λ, η,X) =
∑

(Di)∈D(X)

∏
i

κ
−ω(Di)
i

∏
i

(
η

Di

)µi ( λ

Di

)νi ∏
i 6=j

(
Di

Dj

)Φ(i,j)

. (4.13)

We also define ni (0 ≤ i ≤ 7) so that theDi are required to lie in Fni (e.g. n0 = n1 = 0).

§ 4.5.6 | Bounds on the Sums Sγ(λ, η,X)

Proposition 4.5.16. For any 1 < γ < 7/8+
√

17/8, and for any (positive or negative)
divisors λ and η of N , we have Sγ(λ, η,X) = o(X). Moreover, when γ = 1/4 +

√
17/4

we have
Sγ(λ, η,X)� X log(X)−0.0394.

It’s immediate from Lemma 4.5.12 that Proposition 4.5.16 implies Proposition 4.5.9
and so, via Theorem 4.5.6, we obtain Theorem 4.5.1. The rest of the section is occupied
with the proof of Proposition 4.5.16.
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The contribution from D0, D2, D3 = 1 and λ = θ

Recall that K = Q(
√
θ) for some squarefree integer θ (necessarily dividing N). We

first show that the contribution to Sγ(θ, η,X) coming from D0 = D2 = D3 = 1 is
negligible, since leaving this in would prevent a uniform argument at a later point.
Note that when D0 = D2 = D3 = 1 all Jacobi symbols appearing in (4.13) are equal
to 1 except those that involve λ = θ. Moreover, since elements of F2 are products of
primes inert in K, any n ∈ F2 has

(
θ
n

)
= µ(n). On the other hand, we similarly have(

θ
n

)
= 1 for all n ∈ F1. Consequently, the contribution to Sγ(θ, η,X) from tuples with

D0 = D2 = D3 = 1 is given by
∑

(Di)∈D(X)
D0,D2,D3=1

µ(D6)
∏

i 6=0,2,3
κ
−ω(Di)
i =

∑
r∈F0·F1
r≤X

γ−ω0(r) ∑
n∈F2
n≤X/r

γω(n) ∑
m|n

µ(m). (4.14)

In the above, to pass from the left hand side to the right hand side we have set
r = D1D4D5 and n = D6D7, noting that e.g. given r ∈ F0 · F1 there are 2ω1(r) ways
or writing r as a product D1D4D5 where D1 ∈ F0 and D4, D5 ∈ F1, and that this
multiplicity cancels the contribution of κ−ω(D4)

4 κ
−ω(D5)
5 . Now since ∑m|n µ(m) is equal

to 0 if n > 1, and 1 if n = 1, we find

|RHS of (4.14)| =
∑

r∈F0·F1
r≤X

γ−ω0(r) � X log(X)−1/2 (4.15)

where for the bound we are using Lemma 4.5.8.

Number of prime factors of the variables

We now show that the contribution coming from Di with a large number of prime
factors is negligible. This will be important for dealing with our third family below.
Set Ω = 4e · (log log(X) + B0) with B0 as in [FK07, Lemma 11], and let Σ1 be the
contribution to Sγ(λ, η,X) from the tuples (Di) ∈ D(X) satisfying

ω(Di) ≥ Ω for some 0 ≤ i ≤ 7. (4.16)

Writing n = ∏
iDi we have

|Σ1| �
∑
n≤X
ω(n)≥Ω

2ω0(n)4ω1(n)2ω2(n)

γω0(n)2ω1(n)(2/γ)ω2(n)µ
2(n)

�
∑
n≤X
ω(n)≥Ω

µ2(n)2ω(n).

Applying the Cauchy–Schwarz inequality and arguing using [HR00, Lemma A] as
in [FK07, §5.3] (paragraph above Equation (30)) we find Σ1 � X log(X)−1.
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Ranges of the variables

We now divide the ranges of summation into intervals, and treat these intervals sepa-
rately. Specifically, we set

∆ := 1 + 1
log(X)2 (4.17)

and divide the ranges of the variables into intervals [∆n,∆n+1] for n = 0, 1, 2, ..., noting
that 1 is the only integer in the n = 0 interval. For i = 0, ..., 7 we let Ai denote a number
of the form ∆n with 1 ≤ ∆n ≤ X, let A = (Ai)0≤i≤7, and define

Sγ(λ, η,X,A) =
∑

(Di)∈D ′(X)
Ai≤Di≤∆A

∏
i

κ
−ω(Di)
i

∏
i

(
η

Di

)µi ( λ

Di

)νi ∏
i 6=j

(
Di

Dj

)Φ(i,j)

, (4.18)

where, in light of there being negligible contribution from Di with a large number of
prime factors, and (4.15), we define D ′(X) to be the subset of D(X) consisting of
tuples (Di)i such that ω(Di) ≤ Ω for each i, and such that, if λ = θ, then not all of
D0, D2 and D3 are equal to 1. Since for α small positive we have log(1 + α) ≈ α, for
X large log(X)/ log(∆) ≈ log(X)3, so there are order log(X)24 expressions (4.18) as A
varies.

Following [FK07, §5.4] we split the collection of all A into families and treat each
in turn.

First family: ∏iAi large.

In order to exploit oscillations of the Jacobi symbols it will be necessary to allow the
variables Di to range (essentially) freely in the interval [Ai,∆Ai]. To this end, we first
deal with the case where the product of the Ai is large, where the condition ΠiDi ≤ X

is relevant. Specifically, the first family of the A is defined by the condition
∏

0≤i≤7
Ai ≥ ∆−8X. (4.19)

The argument here is essentially identical to that occurring between Equations (33)
and (34) of [FK07]: we have

∑
A satisfies (4.19)

|Sγ(λ, η,X,A)| ≤
∑

A satisfies (4.19)

∑
(Di)∈D ′(X)
Ai≤Di≤∆Ai

∏
i

κ
−ω(Di)
i

≤
∑

∆−8X≤n≤X
2ω(n)

� (1−∆−8)X log(X)
� X log(X)−1

where for the last inequality we are using that

1−∆−8 = 1− (1 + log(X)−2)−8 = 1− (1− 8 log(X)−2 +O(log(X)−4))� log(X)−2.
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Note that if A does not satisfy (4.19) then the condition ∏
iDi ≤ X is made

automatic by the restrictions on the intervals the Di lie in, and may henceforth be
dropped.

Second family: two large factors corresponding to linked indices

We introduce the parameter X† := log(X)78, and consider the A such that
∏

0≤k≤7
Ak ≤ ∆−8X, and there exist linked indices i 6= j with Ai, Aj ≥ X†. (4.20)

Here the argument is almost identical to that given between Equations (40) and (42) in
[FK07], ultimately relying on a result of Heath-Brown exploiting double oscillations of
characters [HB95, Corollary 4]. For such A, since i and j are linked we have (swapping
i and j if necessary)

|Sγ(λ, η,X,A)|

�
∑

Ak≤Dk≤∆Ak
k 6=i,j

∏
k 6=i,j

κ
−ω(Dk)
k

∣∣∣ ∑
1≤Di≤∆Ai
1≤Dj≤∆Aj

f(Di; (Dk)k 6=i,j)g(Dj; (Dk)k 6=i,j)
(
Di

Dj

) ∣∣∣,
where in the inner sum Di and Dj are odd coprime integers with no further constraints,

f(Di; (Dk)k 6=i,j) = 1Di∈Fni ,
Di≥Ai,
ω(Di)≤Ω

· κ−ω(Di)
i

(
η

Di

)µi ( λ

Di

)νi ∏
k 6=i,j

(
Di

Dk

)Φ(i,k) (Dk

Di

)Φ(k,i)

and g(Dj; (Dk)k 6=i,j) is defined in the same way but with i and j switched. The coef-
ficients f(Di; (Dk)k 6=i,j) and g(Dj; (Dk)k 6=i,j) are complex numbers with absolute value
< 1, so applying [FK07, Lemma 15] (with ε = 1/6) to the inner sum above gives

|Sγ(λ, η,X,A)| � AiAj
log(X)26

∑
Ak≤Dk≤∆Ak

k 6=i,j

∏
k 6=i,j

κ
−ω(Dk)
k ≤ AiAj

log(X)26

∑
n≤∆6

∏
k 6=i,j Ak

2ω(n).

(4.21)
Since ∏iAi ≤ ∆−8X this gives

|Sγ(λ, η,X,A)| � X

log(X)25 . (4.22)

Summing over each of the � log(X)24 possibilities for A we find
∑

A satisfies (4.20)
|Sγ(λ, η,X,A)| � X log(X)−1. (4.23)

Third family: one large and one small factor corresponding to linked indices

We introduce a further parameter X‡ = exp(log(X)ε) for fixed ε > 0 (to be chosen
later). Note that for X sufficiently large we have X‡ > X†. The family of A we now
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consider is given by

Neither (4.19) nor (4.20) hold, and ∃ i 6= j linked with 1 < Aj < X† and Ai ≥ X‡.

(4.24)
This section of the argument corresponds to the treatment of Fouvry–Klüners fourth

family [FK07, Equations (43) to (47)], and we similarly obtain cancellation from the
Siegel–Walfisz theorem. However, the conditions that the Di lie in the thin families
Fni necessitate some changes and the resulting argument is modelled on [FK10, §7.5].

Fix such an A. In the definition of Sγ(λ, η,X,A) we group all terms involving Di.
Since η and λ divide N , for fixed (Dk)k 6=i there is a Dirichlet character χi,(Dk)k 6=i modulo
4N with(

η

Di

)µi ( λ

Di

)νj ∏
k 6=i

(
Di

Dk

)Φ(i,k) (Dk

Di

)Φ(k,i)
= χi,(Dk)k 6=i(Di)

∏
k 6=i

(
Di

Dk

)Φ(i,k)+Φ(k,i)
(4.25)

where in the above we are using quadratic reciprocity for Jacobi symbols. From the
definition of linked indices, writing d := d((Dk)k 6=i) = ∏

k linked to iDk (which is at least
3 by assumption), we have

|Sγ(λ, η,X,A)| ≤
∑

Ak≤Dk≤∆Ak
k 6=i

∏
k 6=i

κ
−ω(Dk)
k

∣∣∣∣∣∣
∑

Ai≤Di≤∆Ai
κ
−ω(Di)
i χi,(Dk)k 6=i(Di)

(
Di

d

)∣∣∣∣∣∣ (4.26)

where in the inner sum Di is in Fni and is coprime to the Dk in the outer sum, and
ω(Di) ≤ Ω. Now d is odd and coprime to N so

Di 7→ χi,(Dk)k 6=i(Di)
(
Di

d

)
is a primitive Dirichlet character modulo q for some q divisible by d, and dividing 4Nd.
In particular, 3 ≤ q � (∆X†)7 since (4.20) does not hold.

Replacing the inner sum in (4.26) with its maximum possible value we have

|Sγ(λ, η,X,A)| � X

∆Ai
·max
a,χ,q

∣∣∣ ∑
Ai≤Di≤∆Ai

(a,Di)=1
Di∈Fni , ω(Di)≤Ω

κ
−ω(Di)
i χ(Di)

∣∣∣, (4.27)

where the maximum is taken over all 1 ≤ a ≤ X, all 3 ≤ q � (∆X†)7 which contain at
least one prime factor coprime to N , and all primitive Dirichlet characters χ modulo q.
Here the condition (a,Di) = 1 takes care of the coprimality of Di with the remaining
Dk . We now partition the inner sum according to the number 1 ≤ l ≤ Ω of prime
factors of Di, write Di = np where p is the largest prime factor of Di, and denote by
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P+(n) the largest prime factor of the remaining integer n, giving

max
a,χ,q

∣∣∣ ∑
Ai≤Di≤∆Ai

(a,Di)=1
Di∈Fni , ω(Di)≤Ω

κ
−ω(Di)
i χ(Di)

∣∣∣ ≤ ∑
1≤l≤Ω

∑
n

ω(n)=l−1

max
a,χ,q

∣∣∣ ∑
max(P+(n),Ai/n)<p<∆Ai/n

(a,p)=1
p∈Pni

χ(p)
∣∣∣,

(4.28)

where we allow n to range over arbitrary positive integers with l − 1 factors. To treat
the innermost sum, first note that we can drop the condition (a, p) = 1 at the expense
of adding

|
∑
p|a

1Pni (p)χ(p)| ≤ ω(a)� log(X)

to its value. Next, since K/Q and Q(
√
αβ)/Q ramify only at primes dividing N , a

prime p is in Pni if and only if p (mod 4N) lies in a certain subset of (Z/4NZ)×. In
particular we may express the indicator function 1Pi as a finite sum∑

s asχs where each
χs is a Dirichlet character modulo 4N , and the as are real numbers. Since the modulus
q of any χ appearing in (4.28) contains at least one prime not dividing N (coming from
Dj), each χsχ is a primitive Dirichlet character modulo q′ for some 3 ≤ q′ � (∆X†)7

also. By the triangle inequality and [FK07, Lemma 13] (a consequence of the Siegel–
Walfisz theorem) we conclude that for all constants A > 0 we have

max
a,χ,q

∣∣∣ ∑
max(P+(n),Ai/n)<p<∆Ai/n

(a,p)=1
p∈Pni

χ(p)
∣∣∣� max

a,χ,q

∣∣∣ ∑
max(P+(n),Ai/n)<p<∆Ai/n

χ(p)
∣∣∣+ log(X)

(4.29)

�A (X†)4 · ∆Ai
n
· log(Ai/n)−A + log(X).

Now n has at most Ω prime factors, so the sum on the left of (4.29) is non-empty
only if n ≤ ∆A1−1/Ω

i , in which case

log(Ai/n)−A � log(A1/Ω
i )−A �

( 1
Ω log(X)ε

)−A
� log(X)−εA.

We now insert this into (4.29), and insert the result into (4.28) and finally (4.27), to
find

|Sγ(λ, η,X,A)| �A
X

∆Ai
·

∑
1≤n≤∆A1−1/Ω

i

[
(X†)4 · ∆Ai

n
· log(X)−εA + log(X)

]

�A X log(X)1−εA(X†)4 + X log(X)1

(X‡)1/Ω .

Summing over the � log(X)24 possibilities for A and recalling that Ω � log log(X),
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we find ∑
A satisfies (4.24)

|Sγ(λ, η,X,A)| � X log(X)−1

provided A is chosen large enough (compared to ε).

Remaining families

We now consider those A such that

None of (4.19), (4.20), or (4.24) hold. (4.30)

Here the argument deviates significantly from that in [FK07]. Fix such an A, and
define

IA := {0 ≤ i ≤ 7 | Ai ≥ X‡}.

Recalling that X‡ > X† (for sufficiently large X), it follows from the conditions on A
that

• IA is unlinked,

• if j /∈ IA is linked to an element of IA then Aj = 1 (so in particular, if Dj is such
that Aj ≤ Dj ≤ ∆Aj, then Dj = 1).

We begin by discarding as many options for IA as we can simply using the trivial
bound

|Sγ(λ, η,X,A)| ≤
∑

(Di)∈D ′(X)
Ai≤Di≤∆Ai

∏
i

κ
−ω(Di)
i . (4.31)

Specifically, let I be any (possibly empty) set of unlinked indices, and let i0 = |I ∩
{0, 1}|, i1 = |{2, 3, 4, 5} ∩ I|, and i2 = |I ∩ {6, 7}|. Then

∑
A satisfies (4.30)

IA=I

|Sγ(λ, η,X,A)| ≤
∑

n≤(∆X‡)8

2ω(n) ∑
m≤X/n

i
ω0(m)
0
γω0(m) ·

i
ω1(m)
1

2ω1(m) ·
i
ω2(m)
2

(2/γ)ω2(m) . (4.32)

Here in the above sum, if ij = 0 then we interpret iωj(m)
j as being equal to 1 when

m has no prime factors in Pj. The right hand side is derived from the left by setting
n = ∏

i/∈I Di and m = ∏
i∈I Di. To treat the sum on the right hand side of (4.32) we

apply Lemma 4.5.8. Here the argument diverges according to whether Q(
√
αβ) ⊆ K

or not. Since the former, somewhat degenerate, case is easier we make the following
assumption, consigning the case Q(

√
αβ) ⊆ K to Remark 4.5.19.

Assumption 4.5.17. Assume henceforth that Q(
√
αβ) * K.
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Applying Lemma 4.5.8 to the right hand side of (4.32) we obtain

∑
A satisfies (4.30)

IA=I

Sγ(λ, η,X,A) �
∑

n≤(∆X‡)8

2ω(n)X

n
log(X/n)i0/(4γ)+i1/8+γi2/4−1

� X log(X)i0/(4γ)+i1/8+γi2/4−1 ∑
n≤(∆X‡)8

2ω(n)

n

� X log(X)i0/(4γ)+i1/8+γi2/4−1+2ε

with the last � following from the bound ∑
n≤Y

2ω(n)

n
� log(Y )2 (to prove this e.g.

square the bound ∑n≤Y
1
n
� log(Y )). We now study the exponent i0/(4γ) + i1/8 +

γi2/4− 1 + 2ε as we vary over unlinked sets I. Note that I is contained in one of the
maximal unlinked sets of indices

I1 := {2, 4, 6}, I2 := {0, 2, 3}, I3 := {0, 1, 3, 5, 7}, I4 := {1, 4, 5, 6, 7}.

We then have (recall that we’ve fixed 1 < γ < 7/8 +
√

17/8):

• I ⊆ I1. Here i0 = 0, i1 ≤ 2, i2 ≤ 1 so that

i0/(4γ) + i1/8 + γi2/4− 1 + 2ε ≤ −1/4 + 2ε.

• I ⊆ I2. Here i0 ≤ 1, i1 ≤ 2 and i2 = 0 so that

i0/(4γ) + i1/8 + γi2/4− 1 + 2ε ≤ −1/2 + 2ε.

• I ⊆ I3. Here i0 ≤ 2, i1 ≤ 2 and i2 ≤ 1. Then

i0/(4γ) + i1/8 + γi2/4− 1 + 2ε ≤ 1/(2γ) + γ/4− 3/4 + 2ε = (γ − 1)(γ − 2)
4γ + 2ε.

Note that as 1 < γ < 2 this is strictly negative for sufficiently small ε.

• I ( I4. Since I is properly contained in I4 we have i0 ≤ 1, i1 ≤ 2, i2 ≤ 2, and at
least one of these inequalities is strict. This leads to 3 cases. First assume that
i0 = 0. Then

i0/(4γ) + i1/8 + γi2/4− 1 + 2ε ≤ γ/2− 3/4 + 2ε.

This is strictly negative for sufficiently small ε > 0 since γ < 3/2. Next, assume
that i1 ≤ 1. Then

i0/(4γ) + i1/8 + γi2/4− 1 + 2ε ≤ 1/(4γ) + γ/2− 7/8 + 2ε = 4γ2 − 7γ + 2
8γ + 2ε.

The numerator has roots at γ = 7/8 ±
√

17/8 ≈ 0.36, 1.39. This is strictly
negative for sufficiently small ε > 0 since γ < 7/8+

√
17/8 (which is why we have
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chosen this upper bound on γ). The final case is when i2 ≤ 1 where we have

i0/(4γ) + i1/8 + γi2/4− 1 + 2ε ≤ 1/(4γ) + γ/4− 3/4 + 2ε = γ2 − 3γ + 1
4γ + 2ε.

In the range considered, the function γ2−3γ+1
4γ is always less that its value at e.g.

2, where it is equal to −1/8.

In conclusion, for all unlinked sets I 6= {1, 4, 5, 6, 7}, choosing ε sufficiently small, we
have ∑

A satisfies (4.30)
IA=I

|Sγ(λ, η,X,A)| � X log(X)−rγ (4.33)

for some rγ > 0, provided that 1 < γ < 7/8 +
√

17/8.

Remark 4.5.18. Optimising the exponent rγ over 1 < γ < 7/8 +
√

17/8, we find that
the best uniform upper bound for i0/(4γ) + i1/8 + γi2/4− 1 + 2ε as we range over all
unlinked sets I 6= {1, 4, 5, 6, 7} is obtained when (γ−1)(γ−2)/4γ = (4γ2−7γ+2)/8γ,
which yields γ = 1/4 +

√
17/4. At this choice of γ we have

i0/(4γ) + i1/8 + γi2/4− 1 + 2ε = 1
16(3
√

17− 13) + 2ε = 2ε− 0.0394...

Completing the argument

Finally, it remains to consider A satisfying (4.30) such that IA = {1, 4, 5, 6, 7}. Since
IA is a maximal unlinked subset, the assumptions on A force A0 = A2 = A3 = 1 so
that also D0 = D2 = D3 = 1. Note that the definition of D ′(X) then excludes λ = 1
or λ = θ. Putting D0 = D2 = D3 = 1 into the definition of Sγ(λ, η,X,A) we find

Sγ(λ, η,X,A) =
∑

(Di)∈D ′(X)
Ai≤Di≤∆A

(
λ

D4

)(
λ

D6

)∏
i

κ
−ω(Di)
i , (4.34)

where A4, A6 ≥ X‡ by assumption. We get cancellation in this sum via the Siegel–
Walfisz theorem as in our third family, although unlike the previous case we must be
careful of potential interaction between the conditions defining the sets Fi and the
Dirichlet characters appearing. Specifically, arguing as in our third family, we find

|Sγ(λ, η,X,A)| � X log(X)
∆A6

max
1≤a≤X

∣∣∣ ∑
A6≤D6≤∆A6

(a,D6)=1

κ
−ω(D6)
6

(
λ

D6

) ∣∣∣
and that the inner sum satisfies

∣∣∣ ∑
A6≤D6≤∆A6

(a,D6)=1

κ
−ω(D6)
6

(
λ

D6

) ∣∣∣ ≤ ∑
1≤l≤Ω

∑
n

ω(n)=l−1

∣∣∣ ∑
max(P+(n),A6/n)<p<∆A6/n

(a,p)=1
p∈P3

(
λ

p

) ∣∣∣. (4.35)
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As before we may remove the condition (a, p) = 1 at the expense of an acceptable error
term. To treat the condition that p ∈ P2, recall that P2 is the set of primes coprime
to N which are inert in K/Q. In particular, the indicator function 1P2(p) is given by
1
2(1 −

(
θ
p

)
). Inserting this into the sum, we may apply [FK07, Lemma 13] as in our

third family since λ 6= 1, θ means that both D 7→
(
λ
D

)
and D 7→

(
λθ
D

)
are non-principal.

Continuing to argue as in our third family yields

∑
A satisfies (4.30)
IA={1,4,5,6,7}

|Sγ(λ, η,X,A)| � X log(X)−1, (4.36)

which completes the proof of Proposition 4.5.16.

Remark 4.5.19. Suppose instead (of Assumption 4.5.17) we have Q(
√
αβ) ⊆ K. This

time applying Lemma 4.5.8 to the right hand side of (4.32) gives the bound
∑

A satisfies (4.30)
IA=I

Sγ(λ, η,X,A)� X log(X)i1/4+i2γ/4−1+2ε.

Splitting into cases according to which maximal unlinked subset I is contained in, one
finds that in the first 3 cases, namely I ⊆ Ii for i = 1, 2, 3, the exponent satisfies

i1/4 + i2γ/4− 1 + 2ε ≤ −1/8 + 2ε

provided γ < 3/2. In the final case where I ⊆ I4, we note that Q(
√
αβ) ⊆ K forces

F0 = ∅, so that D1 (and also D0) is necessarily equal to 1. Thus I ⊆ {4, 5, 6, 7}. Now
provided I 6= {4, 5, 6, 7}, the exponent is strictly negative (for sufficiently small ε) for
γ < 3/2, and is e.g. equal to (

√
17 − 5)/8 = −0.1096... if one takes γ = 1/4 +

√
17/4

as in Remark 4.5.18. We are thus left to deal with the case I = {4, 5, 6, 7}. This forces
D2 = D3 = 1 (since they are both linked to elements of I), in addition to D0 = D1 = 1.
One may conclude as we did for the third family.

§ 4.6 | Prime Twists with Nontrivial Action
In this section we provide an example of a thin subfamily of quadratic twists for which
the statistical behaviour of the 2-Selmer group differs from that of the family of all
twists. In particular, there is a non-trivial Galois action in a positive proportion of cases
so that, by Corollary 4.1.4, SelC (K)(Q, Ed[2]) is non-trivial for a positive proportion of
d in our thin subfamily.

We restrict our quadratic field K = Q(
√
θ) to be an imaginary quadratic number

field which has class number 1 and in which 2 is inert (so −θ ∈ {3, 11, 19, 43, 67, 163}).
Write OK for the ring of integers of K, and note that the only prime which ramifies in
K is −θ. We take

E : y2 = x3 − x = x(x− 1)(x+ 1),

to be the congruent number curve. This has good reduction away from 2. Taking
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p - 2θ to be a rational prime, we will explicitly describe the group Sel2(Ep/K) as a
G = Gal(K/Q)-module.

For a place v of K, we will identify the local Kummer images Sv(Ep/K) of Defi-
nition 2.1.6 with their image under the 2-descent map (4.6) (in our case, a1 = 0, a2 =
1, a3 = −1), so that

Sv(Ep/K) ⊆ K×v /K
×2
v ×K×v /K×2

v .

We view the Selmer group Sel2(Ep/K) as a subgroup of K×/K×2 similarly, noting that
this identification respects the G-action.

For a vector space V and v1, . . . , vn ∈ V we write 〈v1, v2, ..., vn〉 for the subspace
generated by v1, . . . , vn.

§ 4.6.1 | 2-Descent

Our primary goal is to characterise the groups Sel2(Ep/K) for p prime, which we do
via 2-Descent. We first begin by identifying the local Kummer images at each prime.

Lemma 4.6.1. Let p - 2θ be a prime, and let v be a place of K. Then the local Kummer
image at v for Ep is given by:

(i) If v | ∞ then
Sv(Ep/K) = 0.

(ii) If v - 2p then
Sv(Ep/K) = 〈(1, u), (u, 1)〉

where u is any nonsquare unit in Kv.

(iii) If v | p, then
Sv(Ep/K) = 〈(−1,−p), (p, 2)〉 .

(iv) If v = 2 and ζ ∈ K2 is a primitive third root of unity, then

S2(Ep/K) = 〈T1, T2, T3, T4〉

where

T1 := (−1,−p) , T3 := (ζ + 3, ζ + 3(1 + p)) ,
T2 := (1, 2) , T4 := (1, 4ζ + 5) .

Proof. Since K is imaginary, if v | ∞ the group H1(Kv, E[2]) is trivial and so (i) holds.
Lemma 4.4.1 then provides (ii) as p 6∈ Σ. In order to prove (iii), it is enough to note
that by Lemma 4.2.2, since dim Sv(Ep/K) = 2, Sv(Ep/K) = δv(Ep[2]).

For v = 2, note firstly that dim((K×2 /K×2
2 )2) = 8, so since Sp(Ep/K) is self-dual

with respect to the local Tate pairing (see Lemma 2.3.2) we have dim S2(Ep/K) = 4.
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Let x3 = −(ζ + 3)/3 and x4 = −(3ζ + 2)/3. It is elementary to compute that

x3
3 − p2x3 ≡ −3ζ mod 8 x3

4 − p2x4 ≡ ζ2 mod 8.

Since −3, ζ and ζ are all square in K2, by Hensel’s lemma each x3
i − p2xi is then also a

square in K2. In particular, there are y3, y4 in K2 such that Pi = (xi, yi) lies in Ep(K2)
for i = 3, 4. We then have δ2(P3) = T3 since −3 is square in K2 and moreover

δ2(P4) = (3ζ + 2, 3ζ + 2 + 3p) .

Moreover, the space generated by the δ2(P ) for P ∈ Ep[2] is 〈(p, 2), (−1,−p)〉. Since
K2/Q2 is unramified of degree 2, p is congruent to ±1 modulo K×2

2 , so this space is
spanned by T1 and T2. One then checks that

T1 · T2 · T4 = δ2(P4)

inside (K×2 /K×2
2 )2, so that T4 is in S2(Ep/K). Since T1, T2, T3 and T4 are readily

checked to be linearly independent, the result follows.

In the case that p is split in K/Q, we will need to understand the image of the
primes over p in the localisation at 2, for which we will use the following result. As in
Lemma 4.6.1, p - 2θ is a prime, and we denote by ζ a fixed primitive 3rd root of unity
in K2. For x in K we denote its conjugate under the action of G as x.

Lemma 4.6.2. Suppose that p splits in K/Q, and write p = εε for some ε ∈ OK.
Then in K×2 we have

ε ≡ ±(ζ + 2− p) (mod K×2
2 ).

(Since −1 is not a square in K2, precisely one of these two possibilities occurs.)

Proof. The ring of integers of K2 is Z2[ζ] and by Hensel’s lemma, an element of Z2[ζ3]×

is a square if and only if it is a square modulo 8. Now using the fact that both 5 and
ζ = ζ4 are squares in K2, we find that any element of Z2[ζ]×/Z2[ζ]×2 can be written
uniquely in the form a ± ζ for some a ∈ {±1,±5} (in this representation, the trivial
class is −1−ζ = ζ2). Now writing ε (mod K×2

2 ) in this form we find that, in K×2 /K×2
2 ,

we have
p = NK2/Q2(ε) = (a± ζ)(a± ζ2) = 2∓ a.

Thus a ≡ ±(2− p) (mod 8) and the result follows.

We are now ready to describe the Selmer groups. In the statement, all isomorphisms
are as F2[G]-modules.

Proposition 4.6.3. Let p be an odd prime not dividing θ. Then

(i) If p is inert in K/Q we have

Sel2(Ep/K) ∼= F4
2.
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(ii) If p is split in K/Q and ε ∈ OK has norm p, we have

Sel2(Ep/K) ∼=



F2
2 ⊕ F2[G] p ≡ 5, 7 (mod 8),

F2
2 p ≡ 3 (mod 8),

F2
2 ⊕ F2[G]2 p ≡ 1 (mod 8) and ε ∈ K×2

ε ,

F4
2 p ≡ 1 (mod 8) and ε 6∈ K×2

ε .

Proof. Let p 6= 2 be inert in K/Q. Since Ep has good reduction outside 2 and p, the
2-Selmer elements are units outside 2, p. As K has class number 1 we thus want to
find all ai, bi ∈ {0, 1} for which

((−1)a12a2pa3 , (−1)b12b2pb3) (4.37)

lies in both of the local groups Sp(Ep/K) and S2(Ep/K) described in Lemma 4.6.1. As
Kp/Qp is unramified of degree 2, both −1 and 2 are squares in Kp. Thus all elements
of the form (4.37) lie in Sp(Ep/K). We now apply the Selmer conditions at 2. Since p
is odd we have p ≡ ±1 (mod K×2

2 ). Consequently, a global element of the form (4.37)
which lies in Sel2(Ep/K) necessarily maps to the subspace of S2(Ep/K) generated by
T1 = (−1,−p) and T2 = (1, 2). Restricting to elements of the form (4.37) which do
map to this space gives

Sel2(Ep/K) =
〈
(p, 2), (−1,−p), (1, (−1)δp), ((−1)δp, 1)

〉 ∼= F4
2

where δ = 1 if p 6∈ K×2
2 and δ = 0 otherwise.

Now suppose p splits in K/Q, and fix ε ∈ K× such that εε = p. As above, the
2-Selmer elements are unramified outside {2, ε, ε}, so we want to find all ai, bi ∈ {0, 1}
for which

((−1)a12a2εa3εa4 , (−1)b12b2εb3εb4) (4.38)

lies in each of the groups Sε(Ep/K), Sε(Ep/K) and S2(Ep/K) described in Lemma
4.6.1. This is an elementary computation, which we do by treating each possibility for
p (mod 8) separately. We repeat the local Kummer images from Lemma 4.6.1:

S2(Ep/K) = 〈(−1,−p) , (1, 2) , (ζ + 3, ζ + 3(1 + p)) , (1, 4ζ + 5)〉
Sε(Ep/K) = 〈(−1,−εε), (εε, 2)〉 ,

Sε(Ep) = 〈(−1,−εε), (εε, 2)〉 .

We now break into cases.
p ≡ −1 (mod 8) : Here −1 is nonsquare in Kε. Replacing ε with −ε if necessary,

we assume ε ∈ K×2
ε . Note also that 2 is a square in Kε. By symmetry, this gives

2, ε ∈ K×2
ε . The elements of the form (4.38) which lie in Sε(Ep/K) are then those of

the shape (
(−1)a12a2εa3εa4 , (−ε)a12b2εb4

)
.
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Reducing further to those that satisfy the conditions of Sε(Ep) we are left with elements
of the shape (

(−1)a12a2εa3εa4 , (−εε)a12b2
)
. (4.39)

Finally, as p ≡ −1 (mod 8) we have

S2(Ep/K) = 〈(−1, 1) , (1, 2) , (ζ + 3, 1) , (1, 4ζ + 5)〉 .

Since the first coordinate of each of these basis vectors has valuation 0, we must have
a2 = 0. Further, Lemma 4.6.2 gives ε ≡ ±(ζ+2−p) ≡ ±(ζ+3) in K×2 /K×2

2 , and since
εε = p ≡ −1 (mod K×2

2 ) we have ε ≡ ∓(ζ + 3). It follows that each of the elements

(ε, 1), (ε, 1), (1, 2), (−1,−εε)

are in Sel2(Ep/K). Since each element of the form (4.39) with a2 = 0 can be written
as a linear combination of these Selmer elements, we have

Sel2(Ep/K) = 〈(1, 2), (−1,−εε), (ε, 1), (εε, 1)〉
∼= F2

2 ⊕ F2[G].

p ≡ 3 (mod 8) : Again, −1 is nonsquare inKε so we assume ε ∈ K×2
ε . Additionally,

2 is nonsquare in Kε, hence −2 is a square. With ε and ε swapped this all remains
true.

The elements of the form (4.38) which lie in Sε(Ep/K) are thus those of the shape(
(−2)a2εa4(−1)b3εa3 , (−2)b2εb4(−1)a3(−ε)b3

)
.

Reducing further to those that satisfy the conditions of Sε(Ep) we are left with(
(−2)a2(−1)b3(εε)a3 , (−2)b2(−εε)b3(−1)a3

)
. (4.40)

Finally, we apply the conditions at 2. By Lemma 4.6.2 we have ε ≡ ±(ζ − 1)
(mod K×2

2 ). As p ≡ 3 (mod 8) we have

S2(Ep/K) = 〈(−1, 1) , (1, 2) , (ζ + 3, ζ + 4) , (1, 4ζ + 5)〉 .

Since the first coordinate of each basis element is a unit, we must have a2 = 0. Con-
sidering the second coordinate, and noting that εε ≡ −1 (mod K×2

2 ), we find a3 = b2.
This leaves a 2-dimensional space of candidate Selmer elements. However, since the el-
ements (p, 2) and (−1,−p) (which correspond to the 2-torsion points) lie in the Selmer
group, we have

Sel2(Ep/K) = 〈(−1,−p), (p, 2)〉
∼= F2

2.
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p ≡ 5 (mod 8) : Here −1 is square in both Kε and Kε, and 2 is a nonsquare unit
in both Kε and Kε. We now split into two cases according to whether ε is in (K×ε )2.
To capture this, we fix

δ =

1 ε 6∈ K×2
ε

0 else.

Note that if ε 6∈ K×2
ε then we necessarily have 2 ≡ ε (mod K×2

ε ). Acting by Gal(K/Q),
we see that ε is in (K×ε )2 if and only if ε is in (K×ε )2.

The elements of the form (4.38) which lie in Sε(Ep/K) are thus those of the shape(
(−1)a1(2δε)a4(2δε)a3 , (−1)b1(2δε)b42a3(2δε)b3

)
.

Reducing further to those that lie in Sε(Ep) forces a3 = a4, leaving those of the shape(
(−1)a1(εε)a3 , (−1)b1(2δε)b42a3(2δε)b3

)
. (4.41)

Finally, we apply the conditions at 2. By Lemma 4.6.2 we have ε ≡ ±(ζ−3) ≡ ∓(4ζ+5)
(mod K×2

2 ). Moreover, as p ≡ 5 (mod 8) we have

S2(Ep/K) = 〈(−1,−1) , (1, 2) , (ζ + 3, ζ + 2) , (1, 4ζ + 5)〉 .

Since εε = p ≡ 1 (mod K×2
2 ), we have ε ≡ ε ≡ ∓(4ζ + 5). Thus the elements

(−1,−1), (εε, 2), (1,∓2δε), (1,∓2δε)

all lie in ∈ Sel2(E/K), and are visibly linearly independent. Noting that (1,−1) is not
in S2(Ep/K), we conclude that

Sel2(Ep/K) =
〈
(−1,−1), (εε, 2), (1,∓2δε), (1,∓2δε)

〉
∼= F2

2 ⊕ F2[G].

p ≡ 1 (mod 8) : Here both −1 and 2 are squares in both Kε and Kε. As before,
set

δ =

1 ε 6∈ K×2
ε

0 else.

The elements of the form (4.38) which lie in Sε(Ep/K) are those of the shape(
(−1)a12a2(εεδ)c1ε(1−δ)c2 , (−1)b12b2(εεδ)d1ε(1−δ)d2

)
, (4.42)

for some c1, c2, d1, d2 in {0, 1}. For either value of δ these elements all lie in Sε(Ep).
Finally, we apply the conditions at 2. By Lemma 4.6.2 we have

ε ≡ ±(−ζ − 1) ≡ ±ζ2 ≡ ±1 (mod K×2
2 ),
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and as εε = p with have ε ≡ ε (mod K×2
2 ). Moreover, with p ≡ 1 (mod 8) we have

S2(Ep/K) = 〈(−1,−1) , (1, 2) , (ζ + 3, ζ + 6) , (1, 4ζ + 5)〉 .

As the first coordinate of each of these basis elements has trivial valuation, we have
a2 = 0.

Suppose that δ = 1. Then we see that an element of the form(4.42) is in the Selmer
group if and only if, in addition to a2 = 0, we have a1 = b1. Thus we find

Sel2(Ep/K) = 〈(−1,−1), (1, 2), (1, εε), (εε, 1)〉
∼= F4

2.

Now suppose that δ = 0. Setting a2 = 0 in (4.42) leaves a 7-dimensional space
of candidate Selmer elements. Further, one readily checks that (−1, 1), which has the
form (4.42) for a1 = 1 and all other variables 0, is not in S2(Ep/K). Thus Sel2(Ep/K)
is at most 6 dimensional. However, using the fact that ε ≡ ε ≡ ±1 (mod K×2

2 ), one
readily checks that the 6 linearly independent elements

{(−1,−1), (1, 2), (1,±ε), (±ε, 1), (1,±ε), (±ε, 1)},

each of which are of the form (4.42), map to S2(Ep/K) after localising at 2. Thus,

Sel2(Ep/K) = 〈(−1,−1), (1, 2), (1,±ε), (±ε, 1), (1,±ε), (±ε, 1)〉
∼= F2

2 ⊕ F2[G]2.

This completes the proof.

Remark 4.6.4. The proof of part (i) shows that the conditions at inert primes impose
no restrictions. Using this observation, one sees similarly that if d is odd and divisible
only by inert primes, then

Sel2(Ed/K) ∼= F2+2ω(d)
2 .

This gives a concrete instance of the growth of Sel2(Ed/K) seen also in e.g. Proposi-
tion 4.2.7.

§ 4.6.2 | Statistics

Here we use Rédei symbols alongside the Chebotarev density theorem to determine
the statistical behaviour of Sel2(Ep/K) from Proposition 4.6.3. We refer the reader to
[Ste18] for definitions concerning Rédei symbols.

Lemma 4.6.5. Let p ≡ 1 (mod 8) be a prime which splits in K/Q, and let ε ∈ OK
have norm p. Then ε ∈ (K×ε )2 if and only if the Rédei symbol [θ,−θ, p] is trivial.

Proof. Note that−1 is a square inKε since p ≡ 1 (mod 8). In particular, the statement
is unchanged upon replacing ε with −ε. By Lemma 4.6.2 we may thus assume that we
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have
ε ≡ −(ζ + 1) = ζ2 ≡ 1 (mod K×2

2 ).

Now consider the diagram of fields

F = Q(
√
θ,
√
ε,
√
ε)

K(
√
ε) L = Q(

√
θ,
√
p)

K = Q(
√
θ) K ′ = Q(

√
θp)

Q

Since ε ramifies in L/K, we see that ε ∈ (K×ε )2 if and only if the unique prime of L
lying over ε splits in F/L. Let p denote the unique prime of K ′ lying over p. Since
p splits in K/Q, we see that p splits in L/K ′. Further, ε ramifies in L/K and hence
has even valuation (either 0 or 2) at any prime p′ | p of L. In particular, the extension
F = L(

√
ε)/L is unramified at such p′. Thus F/K ′ is unramified at p. We now conclude

that ε ∈ (K×ε )2 if and only if the Artin symbol
(
F/K′

p

)
is trivial. Before relating this

to a Rédei symbol, it will be useful to prove the following two claims.
Claim 1: The field F/K ′ is everywhere unramified. That F ′/K ′ is unramified

at primes not dividing 2pθ is clear, and we have already shown that the unique prime
of K ′ dividing p is unramified in F ′/K ′. For primes over 2 note that K and K ′ are
unramified at 2, and so L/Q is unramified at 2 also. Further, having chosen ε to be
a square in K2, the extension K(

√
ε)/K is split at 2. Thus, as the compositum of

K(
√
ε) and L, the full extension F/Q is unramified at 2. Now note that ` = −θ is an

odd prime. Since p has trivial l-adic valuation, the extension F = K ′(√p,
√
ε)/K ′ is

unramified at (the unique prime of K ′ over) l. This proves the claim.
Claim 2: For each prime q, the Hilbert symbols (p, θ)q and (p, p)q are

trivial. By assumption, p is a norm from K = Q(
√
θ), so that (p, θ)q is trivial for all

q. Next, for each prime q we have (p, p)q = (p,−1)q. That this latter symbol is trivial
for q 6= 2, p is immediate, whilst for q = 2, p it is trivial since p ≡ 1 (mod 8). This
proves the claim.

Returning to the proof, by Claim 2 the Rédei symbol [θ, p, p] exists (see [Ste18,
Definition 7.8]). Writing ε = x+y

√
θ for x, y in Q, we have x2−θy2 = p by assumption.

The field F is then given by adjoining to L the element
√
ε =

√
x+ y

√
θ.

Further, by Claim 1 the extension F/K ′ is minimally ramified in the sense of [Ste18,
Definition 7.6]. Thus we may take a = θ, b = p and Fa,b = F in [Ste18, Definition 7.8],
giving [θ, p, p] =

(
F/K′

p

)
. Consequently, we see that ε ∈ K×2

ε if and only if the Rédei
symbol [θ, p, p] is trivial.
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By [Ste18, Proposition 7.10] the Rédei symbol [p, θ,−θp] exists and is trivial (to see
that θp is a second kind decomposition, use [Ste18, Prop 4.2 (4)] and our computations
of Hilbert symbols above). Now, using the trilinearity and reciprocity of Rédei symbols
[Ste18, Theorem 1.1] we have

[θ, p, p] = [p, θ, p] + [p, θ,−θp]
= [p, θ,−θ]
= [θ,−θ, p]

as required.

This allows us to give a complete statistical description of the F2[G]-module struc-
ture of Sel2(Ep/K). First we introduce some notation.

Notation 4.6.6. For p a prime, we define e1(Ep/K), e2(Ep/K) ∈ Z≥0 to be the unique
positive inters (by Lemma 2.2.12) for which there is an F2[G]-module isomorphism

Sel2(Ep/K) ∼= Fe1(Ep/K)
2 ⊕ F2[G]e2(Ep/K).

Theorem 4.6.7 (Theorem 1.2.5). For each pair (e1, e2) ∈ Z2
≥0, the natural density of

primes p for which e1(Ep/K) = e1 and e2(Ep/K) = e2 is as follows:

lim
X→∞

#
{
p ≤ X prime : e1(Ep/K)=e1 and

e2(Ep/K)=e2

}
# {p ≤ X prime} =



9/16 if (e1, e2) = (4, 0),

1/16 if (e1, e2) = (2, 2),

4/16 if (e1, e2) = (2, 1),

2/16 if (e1, e2) = (2, 0).

Proof. As a consequence of Lemma 4.6.5, and the Chebotarev density theorem applied
to Proposition 4.6.3, it suffices to show that [θ,−θ, p] is trivial for precisely half of the
primes p ≡ 1 (mod 8) which split in K/Q (with respect to the natural density).

Fix a prime p - 2θ. In the notation of [Ste18, Definitions 7.6, 7.8], let Fθ,−θ be
minimally ramified over Q(

√
θ,
√
−1), so that by definition the Rédei symbol [θ,−θ, p]

is equal to the Artin symbol (
Fθ,−θ/Q(

√
−1)

p

)
, (4.43)

where p is any ideal of Q(
√
−1) of norm p. The field Fθ,−θ is a cyclic degree 4 extension

of Q(
√
−1) fitting into the diagram below. It is dihedral of degree 8 over Q and contains
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Q(
√
θ,
√
−1) as a subfield.

Q(
√
θ,
√
−1,
√

2)

Fθ,−θ(ζ8)

Fθ,−θ

Q(
√
θ,
√
−1)

Q(
√
−1)

Q

The field Fθ,−θ(ζ8)/Q is Galois of degree 16. Now p both splits in K/Q and is congruent
to 1 modulo 8 if and only if it splits completely in Q(

√
θ,
√
−1,
√

2) = Q(
√
θ, ζ8). On

the other hand, the Artin symbol (4.43) is trivial if and only if p splits completely in
Fθ,−θ.

Consequently, we wish to compute the density of primes which split completely in
Fθ,−θ(ζ8), amongst those that split completely in Q(

√
θ, ζ8). By the Chebotarev density

theorem, this is equal to 1/2.



Part III

The Family of All Elliptic Curves



Chapter 5

Elliptic Curves Over Galois Exten-
sions

In this chapter we study the family of all elliptic curves ordered by the natural height,
and prove the results presented in §1.3. We begin in §5.1 by studying the statistical
behaviour of the Galois representation given by the n-torsion of E. Using the large
sieve we show that, for each fixed number field K and integer n, for 100% of E/Q the
image of GK in Aut(E[n]) is as large as it is able to be. This material is novel, though
it is an application of the large sieve much like other results in the literature.

Next, in §5.2, we study p-Selmer groups of elliptic curves over a finite Galois exten-
sion of number fields K/F when p is “good” (i.e. p - [K : F ]). In this setting we can
decompose the p-Selmer group over K as a sum of p-Selmer groups of other abelian
varieties, so-called twists, over F . We conclude the section by applying these results in
the case that F = Q and K/Q is multiquadratic to extend results of Bhargava–Shankar
[BS15b,BS13] and Hypothesis 1 on average sizes of p-Selmer groups over Q to ones on
average sizes of p-Selmer groups over K.

In §5.3 we return to the generality that K/F is finite Galois, and bound the differ-
ence between the average size of the Galois fixed space in Selp(E/K) and the average
size of Selp(E/F ). In §5.4 and §5.5 we then apply the previous results to bound the
average dimension of p-Selmer groups, with additional assumptions on K/F , and to
bound average multiplicities of certain lattices in the Mordell–Weil lattices of elliptic
curves. At the end of the chapter we present an example of a class of modules covered
by our result for lattices.

This chapter is solely the work of the author, with the exception of cited results,
and everything except for §5.1 appears in [Pat21].
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§ 5.1 | Torsion Modules
For every elliptic curve E/Q and integer n ≥ 2 let

ρE,n : GQ → Aut(E[n]) ∼= GL2(Z/nZ),

for the Galois representation given by the natural action of GQ on n-torsion points. It
is natural to ask how often the maps ρE,n are surjective. This question was answered by
Duke [Duk97, Theorem 1], who in fact showed that showed that for 100% of E/Q, all
of the maps {ρE,n : n ≥ 2} are surjective. Equivalently, for 100% of E/Q every field
extension Q(E[n])/Q has Galois group GL2(Z/nZ). For a fixed number field K and
integer n ≥ 2, a natural follow-on question is to ask how often ρE,n remains surjective
on restriction to GK .

Sometimes the answer to this question is simply never, as, for some K and n, there
are some constraints which apply to ρE,n(GK) for every elliptic curve E/Q and force
it to be non-maximal. Recall that for each positive integer n we have an isomorphism
Gal(Q(ζn)/Q) ∼= (Z/nZ)× given by mapping an automorphism σ to the class mσ such
that

σ(ζn) = ζmσn .

Definition 5.1.1. For each finite Galois extensionK/Q and positive integer n, we write
DK,n ⊆ (Z/nZ)× for the image of the subgroup Gal(Q(ζn)/K∩Q(ζn)) ≤ Gal(Q(ζn)/Q)
under the isomorphism above. We then define

ΓK,n = {g ∈ GL2(Z/nZ) : det(g) ∈ DK,n} .

Lemma 5.1.2. For every elliptic curve E/Q, every integer n ≥ 2 and every finite
extension K/Q we have an inclusion

ρE,n(GK) ⊆ ΓK,n

Proof. The set DK,n functions as our set of allowed determinants, since det ◦ρE,n = χn

where χn is the cyclotomic character cutting out the extension Q(ζn)/Q. In particu-
lar, elements of ρE,n(GK) can only have determinants inside of DK,n and so certainly
ρE,N(GK) ⊆ ΓK,n.

Remark 5.1.3. Note that if n1, n2 are coprime integers then the Chinese remainder
theorem induces natural isomorphisms

ΓK,n1n2
∼= ΓK,n1 × ΓK,n2

which commute with the analogous splittings of GL2(Z/n1n2Z) and SL2(Z/n1n2Z)

One can then restrict our question above to a more sensible one: how often is
ρE,n(GK) actually equal to the subgroup ΓK,n? In this section we will will show that,
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for fixed n and K, equality holds for 100% of E/Q. For this, we will use the large
sieve in much the same way as Duke [Duk97], with adaptations similar to those found
in later work of Zywina [Zyw10].

§ 5.1.1 | Large Sieve

We now state the version of the large sieve that we will use. Let Ω be a function which
associates to each prime number p a subset Ω(p) ⊆ F2

p. Moreover, for every X > 0 and
every pair (r, s) ∈ Z2 we then define

PΩ(X) =
∑
p≤X

Ω(p)
p2 ,

PΩ(X; (r, s)) = # {p ≤ X : (r, s) mod p ∈ Ω(p)} .

Lemma 5.1.4. There exists a uniform constant c ∈ R such that the following is true.
Let B = [−N1, N1]× [−N2, N2] ⊂ R2 for some Ni ∈ R>0, and Ω be a function as above.
For all real numbers X such that mini {Ni} ≥ X2 we have that

∑
m∈Z2∩B

(PΩ(X; m)− PΩ(X))2 ≤ cN1N2PΩ(X).

Proof. This is an elementary extension of [Gal73, Lemma A] by using the estimate
in [Hux68, Theorem 1] to bound the exponential sums in the proof (see also [Duk97,
Lemma 1]).

We then apply this to our specific counting problem in a manner similar to, for
example, [Gal73, Lemma B].

Proposition 5.1.5. There exists a uniform constant c such that the following holds.
Let Ω be a function as above, and X a real number such that there is a prime number
p ≤ X1/6 with #Ω(p) 6= 0. Write

E(X; Ω) := {(A,B) ∈ E(X) : (A,B) mod p 6∈ Ω(p) ∀p} .

Then
#E(X; Ω) ≤ cX5/6

PΩ(X1/6)
Proof. Note that for (A,B) ∈ E(X; Ω), we have that PΩ(X1/6; (A,B)) = 0, so that

∑
(A,B)∈E(X;Ω)

1 ≤ PΩ(X1/6)−2 ∑
(A,B)∈E(X)

(
PΩ(X1/6; (A,B))− PΩ(X1/6)

)2
.

Let B =
{

(a, b) ∈ R2 : |a|3 , b2 ≤ X
}
, which clearly contains the lattice points E(X)

and has minimal width X1/3. In light of Lemma 5.1.4, we then have that

PΩ(X1/6)−2 ∑
(A,B)∈E(X)

(
PΩ(X1/6; m)− PΩ(X1/6)

)2
≤ cPΩ(X1/6)−1X5/6.
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§ 5.1.2 | Sieving for Conjugacy Classes

We now apply the large sieve in the form presented in §5.1.1 to study ρE,n(K) for
E/Q ordered by height. Our approach, similar to that of Zywina, is to show that for
each fixed conjugacy class C in GL2(Z/nZ), the image ρE,n(GK) must meet C ∩ ΓK,n
almost always. Then since there are only finitely many conjugacy classes we are able
to conclude that the image must actually be ΓK,n almost always.

Definition 5.1.6. For each finite Galois extension K/Q, positive integer n and d ∈
DK,n we write

P(d)
K,n =

{
p prime number :

p>3
p≡d mod n

p totally split in K/Q

}
.

Moreover, we write for each X ∈ R,

P(d)
K,n(X) :=

{
p ∈ P(d)

K,n | p ≤ X
}
.

Remark 5.1.7. Since d ∈ DK,n, the set PK,n(d) is infinite by the Chebotarev density
theorem, since if LK,n = K ∩Q(ζn)

P(d)
K,n =

{
p prime number : p unramified in K·Q(ζn)/Q

Frobp=(Id,d)∈Gal(K/LK,n)×Gal(Q(ζn)/LK,n)⊆Gal(K·Q(ζn)/Q)

}
.

In fact, this shows that as X →∞ we have

#P(d)
K,n(X) ∼ 1

[K ·Q(ζn) : Q]
X

log(X)

For an integer n > 0, a finite Galois extension K/Q, a conjugacy class C ⊆
GL2(Z/nZ) and a real number X we define, in analogue to [Zyw10, §5.1],

YK,n(X;C) =
{

(A,B) ∈ E(X) : ρEA,B ,n(GK) ∩ C = ∅
}
.

We note that this is not the same set as in [Zyw10, §5.1], indeed we are considering
elliptic curves over Q but the image of GK .

Proposition 5.1.8. There exist uniform constants c0, c1 such that the following holds.
Let K/Q be a finite Galois extension, n be a positive integer, d ∈ DK,n and C ⊆
GL2(Z/nZ) be a conjugacy class of elements with determinant d. Then for all X ∈ R>0

such that P(d)
K,n(X) 6= ∅ we have that

#YK,n(X;C) ≤ c0X
5/6
(

|C|
#SL2(Z/nZ)P

(d)
K,n(X1/6)− c1n

5X1/12
)−1

.

Proof. We will use the large sieve. For p ∈ PK,n(d) define

Ω(p) =
{

(r, s) ∈ F2
p : 4r3 + 27s2 6= 0 and ρEr,s,n(Frobp) ∈ C

}
.

If (A,B) ∈ E(X) lies (modulo p) in Ω(p) for such a prime, then EA,B has good reduction
at p and ρEA,B ,n(GK) ∩ C contains the image of the frobenius element over p, so in
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particular (A,B) 6∈ YK,n(X;C). For the remaining prime numbers we set Ω(p) = ∅.
Thus we have

#YK,n(X;C) ≤ #E(X; Ω) ≤ c0X
5/6

PΩ(X1/6) ,

where the second inequality is by Proposition 5.1.5 and c0 is an absolute constant. By
[Jon10, Theorem 8] we have that there is an absolute constant c′1 such that∣∣∣∣∣Ω(p)

p2 −
|C|

#SL2(Z/nZ)

∣∣∣∣∣ ≤ c′1
m5

p1/2 ,

and so in particular, estimating this error by the integral, we obtain that there is an
absolute constant c1 such that

PΩ(X1/6) ≥ |C|
#SL2(Z/nZ)P

(d)
K,n(X1/6)− c1n

5X1/12,

completing the result.

§ 5.1.3 | Galois Image

Immediately we know that, for a fixed extension field K/Q and integer n ≥ 2, 100% of
elliptic curves over Q retain the largest possible Galois image on n-torsion.

Theorem 5.1.9. Let K/Q be a finite Galois extension and n ≥ 2 be an integer. Recall
the group ΓK,n of Definition 5.1.1. Then

#
{

(A,B) ∈ E(X) : ρEA,B ,n(GK) 6= ΓK,n
}

#E(X) �n,K
log(X)
X1/6

Proof. By [Zyw10, Lemma A.10] we have that if H ≤ GL2(Z/nZ) is a subgroup which
meets every conjugacy class with determinant 1 nontrivially, then SL2(Z/nZ) ≤ H.
Moreover, it then follows that if DK,n = det(H) then we must have that H = ΓK,n.

Let C1, . . . , Ck be a complete list of conjugacy classes in GL2(Z/nZ) with determi-
nant in DK,n, then by the above discussion (and Lemma 5.1.2)

{
(A,B) ∈ E(X) : ρEA,B ,n(GK) 6= ΓK,n

}
⊆

k⋃
i=1

YK,n(X;Ci),

so that by Proposition 5.1.8 we have{
(A,B) ∈ E(X) : ρEA,B ,n(GK) 6= ΓK,n

}
� X5/6

k∑
i=1

(
|Ci|

#SL2(Z/nZ)P
(d)
K,n(X1/6)− c1n

5X1/12
)−1

.

Now, note that for all i we have by the Chebotarev density theorem as in Remark 5.1.7∣∣∣∣∣ |Ci|
#SL2(Z/nZ)P

(d)
K,n(X1/6)− c1n

5X1/12
∣∣∣∣∣�n,K

X1/6

log(X) ,

completing the result.
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In particular, this shows that almost no elliptic curves have nontrivial n-torsion
over a fixed extension, which will be of use to us later in this thesis.

Corollary 5.1.10. Let n be a positive integer and let K/Q be a finite Galois extension.
Then

# {(A,B) ∈ E(X) : EA,B(K)[n] is nontrivial}
#E(X) �n,K

log(X)
X1/6 .

Proof. Since the action of ΓK,n ⊇ SL2(Z/nZ) on (Z/nZ)2 has no fixed points, this
follows from Theorem 5.1.9.

§ 5.2 | Good Characteristic: Weil Restriction
For the duration of this section, fix a finite Galois extension of number fields K/F and
an elliptic curve E/Q, and write G = Gal(K/F ). We begin in §5.2.1 with expository
material on twists of elliptic curves and the Weil restriction. In §5.2.2 we then go on
to survey some results on p-Selmer groups in extensions of degree coprime to p. This
material is closely related to, and inspired by, that appearing in [MR07, §3]. Finally,
in §5.2.3, we explain how this material allows us to extend the results of Bhargava and
Shankar [BS15b,BS13] on the average dimension of 3- and 5-Selmer groups over Q to
a bound for the average dimension of 3- and 5-Selmer groups over any multiquadratic
number field.

§ 5.2.1 | Twists of Elliptic Curves

As in Milne [Mil72, §2] (see also [MRS07]), there is a general construction of twists of
powers of an elliptic curve, which we now recall.

Definition 5.2.1. Let n ≥ 1. To each matrixM = (mi,j) in Matn(Z) we can associate
an endomorphism of En given by

(P1, ..., Pn) 7−→
(

n∑
j=1

m1,jPj, ...,
n∑
j=1

mn,jPj

)
.

In this way we view GLn(Z) as a subgroup of AutQ(En). Now suppose that Λ is a free
rank-n Z-module equipped with a continuous GQ-action. Choosing a basis for Λ gives
rise to a homomorphism

ρΛ : GQ −→ GLn(Z),

which we view as a 1-cocycle valued in AutQ(En). The class of ρΛ in H1(Q,AutQ(En))
does not depend on the choice of basis. Associated to this cocycle class is a twist of
En, which we denote Λ⊗E. This is an abelian variety over Q of dimension n, equipped
with a Q-isomorphism ϕΛ : En → Λ⊗ E satisfying ϕ−1

Λ ϕσΛ = ρΛ(σ) for all σ ∈ GQ.

The Weil restriction of E can now be defined as a specific example of such a twist.

Definition 5.2.2. The Weil restriction of E from K to F is the abelian variety

ResK/FE = Z[G]⊗ E.
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Remark 5.2.3. The Weil restriction ResK/FE is classically defined as the unique scheme
over F representing the functor on F -schemes

T 7−→ E(T ×F K).

As in [MRS07, Theorem 4.1], this is equivalent to the construction given above.

§ 5.2.2 | Selmer Groups in Good Characteristic

Here we remark on the structure of n-Selmer groups in the case that n is coprime to
#G, the case of so–called “good characteristic”. In this case, the n-Selmer group splits
as a sum over twists of E. This can be viewed as a finite-level explication of the results
in [MR07, §3], where similar results are shown for Pontryagin dual p∞–Selmer vector
spaces without our restriction on p.

Lemma 5.2.4. For every positive integer n,

(i) there is a natural isomorphism of Z[GF ]–modules

ResK/FE[n] ∼= Z[G]⊗Z E[n],

where σ ∈ GF acts on the right hand side diagonally,

(ii) the above isomorphism induces an isomorphism of Z[G]–modules

Seln(ResK/FE/F ) ∼= Seln(E/K),

where the action of G on the left hand side is induced by the action of G on Z[G]
by left multiplication.

Proof. (i) is found in [MRS07, Theorem 2.2(ii)], see also [Mil72, §1(a)]. For (ii), we
give an analogous argument to that in [MR07, proof of Proposition 3.1(iii)], see also
[Mil72, Proof of Theorem 1] for an similar result for Shafarevich–Tate groups. Indeed,
by (i), Shapiro’s lemma (see, e.g. [Neu13, Theorem 4.9]) provides a Z[G] isomorphism

H1(F, (ResK/FE)[n]) ∼= H1(K,E[n]),

where the action of G on the left hand side is induced by left multiplication on Z[G] in
the isomorphism of (i). It is then elementary to check that this isomorphism commutes
with the corresponding isomorphisms at the local extensions, and thus restricts to one
of Selmer groups.

Definition 5.2.5. Let ρ be an irreducible finite dimensional Q[G]–module. As in
[MRS07, Definition 4.3] we define the twist of E by ρ to be

Eρ = (Q[G]ρ ∩ Z[G])⊗ E,

where Q[G]ρ is the ρ-isotypic component of Q[G], that is, the sum of all left ideals of
Q[G] isomorphic to ρ.
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Example 5.2.6. If K/F is multiquadratic then these twists are extremely concrete.
Let ∆ ∈ F be an element such that F (

√
∆) ⊆ K, and let χ∆ be the corresponding at–

most–quadratic character of GF . Identifying χ∆ with its corresponding one dimensional
Q[G]-module, this construction gives rise to all irreducible finite-dimensional Q[G]-
modules. Moreover, it is clear that Q[G]χ∆ ∩Z[G] is a rank one free abelian group with
action of σ ∈ G given by multiplication by χ∆(σ). In particular, by [MRS07, Theorem
2.2(i)] we obtain that Eχ∆ = E(∆) is just the usual quadratic twist of E by ∆.

We can then split the n-Selmer group of the Weil restriction into those of these
twists. This result is analogous to [MR07, Corollary 3.7], where they study the Pon-
tryagin dual Selmer vector spaces.

Proposition 5.2.7. If n is an integer which is coprime to #G, then we have an
isomorphism of Z[G]-modules

Seln(E/K) ∼=
⊕
ρ

Seln(Eρ/F ),

where the sum is over isomorphism classes of irreducible finite dimensional Q[G]-
modules and the action of G on the summands on the right hand side is induced by the
action of G on Q[G]ρ ∩ Z[G] via the isomorphism in Lemma 5.2.4(i).

Proof. By Lemma 5.2.4 we need only show that Seln(ResK/FE/F ) splits in this way.
The natural map

f :
⊕
ρ

(Z[G] ∩Q[G]ρ)→ Z[G],

is injective with finite cokernel, so by [MRS07, Theorem 4.5, see also Lemma 2.4]
induces an F–isogeny

fE :
⊕
ρ

Eρ → ResK/FE.

Moreover, since the cokernel of f is #G–torsion, the degree of the isogeny fE must be
a divisor of some power of #G [MRS07, proof of Lemma 2.4] and so coprime to n. In
particular, fE induces an isomorphism of n–Selmer groups, and moreover since fE is
an F–isogeny the isomorphism is one of Z[G]–modules.

Remark 5.2.8. In [MR07, Corollary 3.7] the authors do not need to make assump-
tions about coprimality, since the error that occurs when p | #G contributes an ad-
ditional torsion module to the p∞-Selmer groups. This in turn vanishes when tak-
ing the tensor product with Qp to form the Pontryagin dual Selmer vector space
Hom(Selp∞(E/K),Qp/Zp)⊗Qp.

§ 5.2.3 | Average Selmer Ranks in Good Characteristic over Multiquadratic
Fields

In this subsection, we will restrict our interest to multiquadratic number fields. We
use the Weil restriction as in §5.2 to give a bound for Selmer ranks in good character-
istic using results of Bhargava and Shankar [BS15b,BS13]. Their ordering is slightly
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different to the one that we are working with, so for the purposes of using their results
we define for each X ∈ R the set

E ′(X) =
{

(A,B) ∈ E : max
{

4 |A|3 , 27B2
}
≤ X

}
.

Now, we adapt the results of Bhargava–Shankar for quadratic twists.

Proposition 5.2.9. For each squarefree integer D and p ∈ {2, 3, 5}, we have

lim
X→∞

∑
(A,B)∈E ′(X) #Selp(E(D)

A,B/Q)
#E ′(X) = (p+ 1).

Moreover, assuming Hypothesis 1 the conclusion holds for every prime number p.

Proof. Fix a squarefree integer D. Note that the quadratic twist E(D)
A,B has a (possibly

not minimal) Weierstrass equation given by EAD2,BD3 : y2 = x3 +AD2x+BD3. Thus
there is a bijection between

{
E

(D)
A,B : (A,B) ∈ E ′(X)

}
and the set

E ′D(X) =

(A,B) ∈ Z2 :
4|A|3,27B2≤D6X;

D2|A,D3|B;
4A3+27B2 6=0;

∀`-D prime, if `4|A then `6-B;
∀`|D prime, if `6|A then `9-B

 ,
given by identifying (A,B) ∈ E ′D(X) with the curve EA,B. We now partition E ′D(X)
into parts, so as to identify with minimal Weierstrass models. For each pair (d1, d2) of
positive squarefree integers such that D = ±d1d2, we define

E ′d1,d2(X) =

(A,B) ∈ E ′(D6X) :
4|A|3,27B2≤

(
d1
d2

)6
X;

4A3+27B2 6=0;
∀`-d1d2 prime, if `4|A then `6-B;

∀`|d1 prime: `2|A, `3|B, and if `4|A then `6-B;
∀`|d2 prime: if `2|A then `3-B.

 .

Note that E ′d1,d2(X) ⊆ E ′
(
(d1
d2

)6X
)
, and moreover E ′d1,d2(X) parametrises a large family

of elliptic curves ordered by naïve height in the sense of Bhargava–Shankar [BS15a,
BS15b,BS13]. Further, we have that

E ′D(X) =
⊔

D=±d1d2

{
(d4

2A, d
6
2B) : (A,B) ∈ E ′d1,d2(X)

}
,

where the disjoint union is over pairs of squarefree positive integers d1, d2 satisfying
D = ±d1d2.

Note that for any fixed pair of squarefree positive integers d1, d2 we have by [BS15a,
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Theorem 3.17] that

lim
X→∞

#E ′d1,d2(X)
#E ′(X) =

 ∏
`|d1
prime

(`2 − 1)`3 + (`3 − 1)
`10 − 1


 ∏

`|d2
prime

`2(`2 − 1)`6 + `2(`3 − 1)`3

`10 − 1



= d5
2

 ∏
`|D
prime

`5 − 1
`10 − 1

 .
Thus,

lim
X→∞

1
#E ′(X)

∑
(A,B)∈E ′(X)

#Selp(E(D)
A,B/Q)

= lim
X→∞

1
#E ′(X)

∑
(A,B)∈E ′D(X)

#Selp(EA,B/Q)

= lim
X→∞

1
#E ′(X)

∑
D=±d1d2

∑
(A,B)∈E ′

d1,d2
(X)

#Selp(EA,B/Q)

= (p+ 1)

 ∏
`|D
prime

`5 − 1
`10 − 1

∑
d|D

d5

= (p+ 1),

where the penultimate equality follows from the large family average Selmer group
sizes in [BS15a,BS15b,BS13] and the computation above, and the final follows from
an elementary identity for power-of-divisor sums.

Assuming Hypothesis 1, since the families E ′d1,d2(X) are defined by finitely many
congruence conditions, the argument above holds for all prime numbers p.

We can then relate this to our ordering via elementary estimates, and similarly
obtain a bound for the average Selmer rank.

Proposition 5.2.10. For each squarefree integer D and p ∈ {2, 3, 5}, we have

lim sup
X→∞

∑
(A,B)∈E(X) dim Selp(E(D)

A,B/Q)
#E(X) ≤

(27
4

)5/6 (p+ 1)
p

.

Moreover, assuming Hypothesis 1 the same is true for every prime number p.

Proof. For every real number X, there are clear inclusions

E ′(4X) ⊆ E(X) ⊆ E ′ (27X) .

In particular
∑

(A,B)∈E(X) dim Selp(E(D)
A,B/Q)

#E(X) ≤
∑

(A,B)∈E ′(27X) dim Selp(E(D)
A,B/Q)

#E ′(4X) .
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For each r ≥ 0 there is an elementary inequality pr ≥ pr, so for each E/Q we have
dim Selp(E/Q) ≤ #Selp(E/Q)/p. Hence

∑
(A,B)∈E ′(27X) dim Selp(E(D)

A,B/Q)
#E ′(4X) ≤ 1

p

∑
(A,B)∈E ′(27X) #Selp(E(D)

A,B/Q)
#E ′(4X) .

Finally, by [BS15a, Theorem 3.17] #E ′(X) ∼ cX5/6 for some absolute constant c, and
so using Proposition 5.2.9 we obtain

lim
X→∞

1
p

∑
(A,B)∈E ′(27X) #Selp(E(D)

A,B/Q)
#E ′(4X) =

(27
4

)5/6 (p+ 1)
p

,

providing the required bound.

Remark 5.2.11. In fact, the way that Conjecture 1 is stated in [PR12] (and indeed
that Hypothesis 1 is stated) suggests that we should expect to be able to remove the(

27
4

)5/6
factor in our bound. However this does not contribute to the general shape of

our bounds, so in the interests of maintaining uniformity with what is currently known
we shall use the weaker bound.

Definition 5.2.12. For a squarefree integer D, we write χD for the quadratic character
of GQ cutting out Q(

√
D), and for an abelian group M we write MχD for the discrete

GQ-module M with action by σ ∈ GQ given by multiplication by χD(σ) ∈ {±1}.

Lemma 5.2.13. Let F be a field contained in a multiquadratic number field, write
G = Gal(F/Q), and let E/Q be an elliptic curve. Then for every odd prime number p
there is an isomorphism of Z[G]-modules

Selp(E/F ) ∼=
⊕

D∈Q(F )
Selp(E(D)/Q)χD ,

where Q(F ) is the set of squarefree integers D such that Q(
√
D) ⊆ F and E(D) is the

quadratic twist of E by D.

Proof. This follows by applying Proposition 5.2.7 to multiquadratic extensions as in
Example 5.2.6.

Now we can state an easy statistical consequence of Lemma 5.2.13.

Proposition 5.2.14. Let F be either Q or a multiquadratic number field. Then for
p ∈ {3, 5},

lim sup
X→∞

∑
(A,B)∈E(X)

dim Selp(EA,B/F )

#E(X) ≤ 35/2p+ 1
p

[F : Q],

Moreover, assuming Hypothesis 1 the same holds for all odd prime numbers p.

Proof. Let p be an odd prime number. Using the decomposition in Lemma 5.2.13 we
have that

dim Selp(E/F ) =
∑

D∈Q(F )
dim Selp(E(D)/Q),
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where E(D) is the quadratic twist of E by D and Q(F ) is the set of squarefree integers
D such that Q(

√
D) ⊆ F . The result now follows from Proposition 5.2.10, noting that

the size of Q(F ) is precisely [F : Q].

§ 5.3 | Galois Descent for p-Selmer Groups
We will now use the algebraic results of §3.1 and §2.2 to obtain our statistical results.
This will culminate in a proof of Theorem 1.3.8 which tells us that, for a finite Ga-
lois extension of number fields K/F and a prime number p, as we vary over the E
parametrised by E(X), the average value of∣∣∣dim Selp(E/K)Gal(K/F ) − dim Selp(E/F )

∣∣∣ ,
which we refer to as the failure of Galois descent, is bounded as X → ∞. We use
Lemma 2.2.72.3 to relate the Selmer group SelF (K)(F,E[p]) to the Galois fixed space,
which allows us to use Lemma 2.2.11 to bound this failure of Galois descent by the
genus theory invariant gp(K/F ;E). The remainder of the proof is then showing that
the function gp(K/F ;E) has bounded average as E varies in E .

§ 5.3.1 | Preliminary Counting Lemmas

We begin by recalling the description, afforded by Tate’s algorithm, of the reduction
type of the curves EA,B in terms of the pair (A,B) ∈ E at almost all places.

Lemma 5.3.1. For a prime number ` ≥ 5 and (A,B) ∈ E, the reduction type of
EA,B/Q` is

• In for n > 0 if and only if v`(4A3 + 27B2) = n and v`(AB) = 0,

• additive if and only if v`(gcd(A,B)) > 0,

where v` is the normalised valuation on Q`.

Proof. This is a consequence of Tate’s algorithm, see Appendix A.

Proposition 5.3.2. There exists a constant C > 0 such that for all real numbers
X ∈ R≥2,

∑
(A,B)∈E(X)

#
{
` ≥ log(X) : ` is prime;

EA,B/Q` has bad reduction of type different from I1.

}
≤ C

(
X5/6

log(X)

)
.

Proof. We split the summand into counts of additive and multiplicative primes.
By Lemma 5.3.1, primes of additive reduction for EA,B divide gcd(A,B), so are
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bounded by the absolute values of A and B. Therefore, we have
∑

(A,B)∈E(X)
#
{
` ≥ log(X) : ` is prime;

EA,B/Q` has additive reduction.

}
≤

∑
log(X)≤`≤X1/3

prime

∑
|A|≤X1/3

`|A

∑
|B|≤X1/2

`|B

1

�
∑

log(X)≤`≤X1/3

prime

(
4X5/6

`2 +O

(
X1/2

`

))

�
(
X5/6

∫ X1/3

log(X)

1
y2dy

)
+X1/2 log log(X)

� X5/6

log(X) ,

where the penultimate inequality uses an integral estimate for the main term, that
the sum of reciprocals of prime numbers has order log log(X) and the prime number
theorem for the error term.

For the multiplicative primes: Lemma 5.3.1 shows that if ` is multiplicative of type
different from I1 for EA,B then `2 | (4A3 + 27B2) but ` - AB. Hence we have

∑
(A,B)∈E(X)

#
{
` ≥ log(X) : ` is prime;

EA,B/Q` has multiplicative reduction of type different from I1.

}
≤

∑
log(X)≤`≤

√
31X

prime

∑
|A|≤X1/3

`-A

∑
|B|≤X1/2

`2|4A3+27B2

1

�
∑

log(X)≤`≤
√

31X
prime

(
X5/6

`2 +O
(
X1/3

))

� X5/6

log(X) .

The result follows.

§ 5.3.2 | Bounding the Genus Theory Invariant

We begin by noting some elementary bounds on the norm indices which occur as
summands in the genus theory invariant (as in Definition 2.2.8).

Lemma 5.3.3. Let F be a number field, K/F be a finite extension, p be a prime
number and E/F be an elliptic curve. For every v ∈ ΩF and each w ∈ ΩK extending
v we have that

dimE(Fv)/
(
NKw/FvE(Kw) + pE(Fv)

)
≤



2 + [Fv : Qp] if v|p,

2 if v is a finite place
and v-p,

1 if v is a real place
and p=2,

0 otherwise.

(5.1)
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Proof. We note that these norm indices are bounded above by dimE(Fv)/pE(Fv), so
we estimate this instead.

For each finite place p ∈ ΩF and each E/Q, there is a finite index subgroup, arising
from the filtration by formal groups, of E(Fp) which is isomorphic to the additive
group of integers Op of Fp (see e.g. [Sil09, VII Prop. 6.3]). Thus these norm indices
are bounded by

#E(Fp)/pE(Fp) = (#E(Fp)[p])(#Op/pOp) ≤

p
2+[Fp:Qp] p | p,

p2 else.
(5.2)

Moreover, for archimedean places v ∈ ΩF , if p is odd or v is complex then we have
dimE(Fv)/pE(Fv) ≤ dimH1(Fv, E[p]) = 0. If, on the other hand, p = 2 and v is real
then elementary computations show that the dimension of the quotient at v is at most
1.

We are now mathematically ready to bound the average of the genus theory invari-
ant, but first we require a small amount of notation.

Notation 5.3.4. For a number field F , we define the function ωF on the set of ideals
of the integers of F to send the ideal I to

ωF (I) := # {p ∈ ΩF : p | I} .

We also define r1(F ) to be the number of real embeddings of F . Moreover, δ2 is the
function which takes each prime number p to 1 if p = 2 and 0 otherwise.

We now bound the average of the genus theory invariant.

Proposition 5.3.5. For every number field F , finite Galois extension K/F , prime
number p and real number X ∈ R>0 we have∑

(A,B)∈E(X)
gp(K/F ;EA,B)

#E(X) ≤ Cp(K/F ) +O

(
[F : Q]
log(X)

)
,

where

Cp(K/F ) = 2ωF (6p∆K) + [F : Q] + δ2(p)r1(F ) + 2
∑

` prime
`-6p∆K

ωF (`)2`8 − `7 − 1
`10 − 1 .

Proof. For each elliptic curve E/Q, number field F and finite Galois extension K/F ,
define

g(0)
p (K/F ;E) =

∑
v∈ΩF

v|6p∞∆K

dimE(Fv)/
(
NKw/FvE(Kw) + pE(Fv)

)
,

g(1)
p (K/F ;E) =

∑
p∈ΩF

p-6p∞∆K

p|N(E/F )

dimE(Fp)/
(
NKP/FpE(KP) + pE(Fp)

)
,
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where in each summand, w (resp. P) is a place of K above v (resp. p), and N(E/F )
is the conductor of E/F . By [Maz72, Corollary 4.4], the norm map is surjective at
primes of good reduction which are unramified in K/F , so the norm indices at such
primes are trivial. Thus

gp(K/F ;E) = g(0)
p (K/F ;E) + g(1)

p (K/F ;E),

so we bound the average of g(i)
p (K/F ;E) for i ∈ {0, 1}.

If i = 0 then by Lemma 5.3.3 we have that if p > 2 then
∑

(A,B)∈E(X)
g(0)
p (K/F ;EA,B) ≤ (2# {p ∈ ΩF : p | 6p∆K}+ [F : Q] + δ2(p)r1(F )) #E(X).

We now deal with the case that i = 1. By Propositions 3.1.2, 3.1.3 and 3.1.4,
the norm index at primes of reduction type I1 is trivial. Thus, for each elliptic curve
E/Q, the sum g(1)

p (K/F ;E) is the sum of norm indices at unramified primes of bad
reduction of type different from I1 over F . By [CJ20, Theorem 1.4], for each prime
number ` ∈ [5, X1/6] one has

#
{

(A,B) ∈ E(X) : EA,B/Q` has bad reduction
of type different from I1

}
= 4X5/6

ζ(10)
2`8 − `7 − 1
`10 − 1 +O

(
`X1/2

)
. (5.3)

Since we are looking at unramified local extensions Fp/Q`, curves with bad reduction
of type different from I1 over Fp must satisfy the same condition over Q`. We then
have

∑
(A,B)∈E(X)

g(1)
p (K/F ;EA,B)

≤ 2
∑

5≤`≤31X
prime
`-p∆K

∑
p∈ΩF
p|`

#
{

(A,B) ∈ E(X) : EA,B has bad reduction
of type different from I1 at `

}

≤ 2
∑

5≤`≤log(X)
prime
`-p∆K

∑
p∈ΩF
p|`

(
4X5/6

ζ(10)
2`8 − `7 − 1
`10 − 1 +O

(
`X1/2

))
+O

(
X5/6[F : Q]

log(X)

)

≤ 8X5/6

ζ(10)
∑

` prime
`-6p∆K

# {p ∈ ΩF : p | `, p - ∆K}
2`8 − `7 − 1
`10 − 1 +O

(
X5/6[F : Q]

log(X)

)
,

where in the first inequality we bound the norm index by Lemma 5.3.3, and in the
second we discount large primes using Proposition 5.3.2 and then apply (5.3). The
bound then follows from the well known fact that #E(X) ∼ 4X5/6

ζ(10) .

§ 5.3.3 | Proof of Theorem 1.3.8

We first use the Selmer structures of §2.2 to approximate the dimension of the corre-
sponding fixed space. To begin, almost no elliptic curves defined over Q have nontrivial
n-torsion over a fixed number field K. The proof of this is obtained verbatim from the
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argument of Duke [Duk97, Lemma 5] in the case K = Q, applying the relevant sieve
conditions only at totally split primes as performed by Zywina [Zyw10, Proposition
5.7].

Lemma 5.3.6. Let n be a positive integer and let K/Q be a finite extension. Then

# {(A,B) ∈ E(X) : EA,B(K)[n] is nontrivial}
#E(X) �n,K

log(X)
X1/6 .

Using this result, we can prove the following.

Lemma 5.3.7. Let p be a prime number, F be a number field and K/F be a finite
Galois extension. We have that∑

(A,B)∈E(X)

∣∣∣dim Selp(EA,B/K)G − dim SelF (K)(F,E[p])
∣∣∣

#E(X) �K,p
log(X)
X1/6 ,

where G = Gal(K/F ) is the Galois group.

Proof. Let Dp(G) be a positive integer such that, for every Fp[G]-module M of dimen-
sion at most 2 and every i ∈ {1, 2}, we have

dimH i(G,M) ≤ Dp(G).

Since there are only finitely many such M , Dp(G) certainly exists. By Lemma 2.2.7,
for every elliptic curve E/Q we have

∣∣∣dim Selp(EA,B/K)G − dim SelF (K)(F,E[p])
∣∣∣ ≤

0 if E(K)[p] is trivial,

Dp(G) else.

The result then follows from Lemma 5.3.6.

We now combine this with Proposition 5.3.5 to prove Theorem 1.3.8, namely that
the average failure of Galois descent is bounded.

Theorem 5.3.8. Let p be a prime number, F be a number field and K/F be a finite
Galois extension. Writing G = Gal(K/F ), we have that

lim sup
X→∞

∑
(A,B)∈E(X)

∣∣∣dim Selp(EA,B/K)G − dim Selp(EA,B/F )
∣∣∣

#E(X) ≤ Cp(K/F ),

where Cp(K/F ) is the constant in §1.3.2.
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Proof. By Lemma 5.3.7, we immediately have

lim sup
X→∞

∑
(A,B)∈E(X)

∣∣∣dim Selp(EA,B/K)G − dim Selp(EA,B/F )
∣∣∣

#E(X)

≤ lim sup
X→∞

∑
(A,B)∈E(X)

∣∣∣dim SelF (K)(F,EA,B[p])− dim Selp(EA,B/F )
∣∣∣

#E(X) .

Since by Lemma 2.2.11 this average is bounded by that of the genus theory invariant,
the result follows from Proposition 5.3.5.

From this we derive an immediate consequence.

Corollary 5.3.9. Let p ∈ {2, 3, 5} and let K/Q be a finite Galois extension. Then,
writing G = Gal(K/Q), we have

lim sup
X→∞

∑
(A,B)∈E(X)

dim Selp(EA,B/K)G

#E(X) ≤ Cp(K/Q) +
(27

4

)5/6 p+ 1
p

,

where Cp(K/Q) is as in §1.3.2. Assuming Hypothesis 1 the same is true if p is any
prime number.

Proof. This follows from Theorem 5.3.8 and Proposition 5.2.10

Example 5.3.10. Consider the splitting field K/Q of x3 − 2, which is a degree 6
extension with Galois group G ∼= S3.

If p = 2, it follows from Corollary 5.3.9 that the average dimension of Sel2(E/K)G

is at most C2(K/Q) +
(

27
4

)5/6 3
2 . The primes dividing 6p∆K are 2 and 3, so that

C2(K/Q) = 6 + 2
∑
`6=2,3
prime

2`8 − `7 − 1
`10 − 1 ≈ 6.339.

Thus, the average of dim Sel2(E/K)G is less than 13.71.
Similarly, if p = 3, the average of dim Sel3(E/K)G is less than 12.89.
For every prime number p different from 2 and 3, and every elliptic curve E/Q,

we have that Selp(E/K)G ∼= Selp(E/Q) by Proposition 5.2.7 (one can also note this
by the vanishing of the finite group cohomology in the inflation restriction sequence).
Moreover, for p = 5 the average of the dimension of this fixed space is at most 6/5 by
[BS13].

§ 5.4 | Boundedness of Selmer Ranks
In this section we use the modular representation theory of p–groups to leverage the
result of Theorem 5.3.8 to obtain a bound for the average dimension of the entire
p–Selmer group, not just that of the fixed space. Combining this with estimates for
p–Selmer groups over multiquadratic extensions from Proposition 5.2.14 we then prove
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explicit upper bounds for average p–Selmer ranks over Galois p–extensions of Q and of
multiquadratic number fields.

§ 5.4.1 | General p-Selmer Ranks for p-Extensions

Using the results so far we can, when the Galois group is a p-group, bound the entire
p-Selmer group using only the fixed space.

Theorem 5.4.1. Let p be a prime number, F be a number field and K/F be a Galois
p–extension. Then

lim sup
X→∞

∑
(A,B)∈E(X)

dim Selp(EA,B/K)

#E(X)

≤ [K : F ]

Cp(K/F ) + lim sup
X→∞

∑
(A,B)∈E(X)

dim Selp(EA,B/F )

#E(X)

 ,
where Cp(K/F ) is as in §1.3.2.

Proof. By Lemma 2.2.13 we know that

dim Selp(E/K) ≤ [K : F ] dim Selp(E/K)Gal(K/F ),

so the result follows from Theorem 5.3.8.

We can then combine the bound in Theorem 5.4.1 with the bound already es-
tablished in Proposition 5.2.14 to obtain the full statement of Theorem 1.3.9 and so
Theorem 1.3.5 via the inclusion E(K)/pE(K) ⊆ Selp(E/K).

Corollary 5.4.2. Let p ∈ {2, 3, 5}, F be either Q or a multiquadratic number field,
and K/F be a Galois p–extension. Then

lim sup
X→∞

∑
(A,B)∈E(X)

dim Selp(EA,B/K)

#E(X)

≤


[K : F ]C2(K/F ) + [K : Q]

(
C2(F/Q) + 37/2

28/3

)
if p = 2 and F 6= Q,

[K : F ]
(
Cp(K/F ) +

(
27
4

)5/6 p+1
p

[F : Q]
)

else,

where Cp(K/F ) is the explicit constant in §1.3.2. Moreover, assuming Hypothesis 1
the same is true if p is any prime number.

Proof. If p is odd, then this is immediate from Theorem 5.4.1 and Proposition 5.2.14. If
both p = 2 and F = Q then it is immediate from Theorem 5.4.1 and Proposition 5.2.10.
If p = 2 and F is a multiquadratic extension, then we apply Theorem 5.4.1 twice: first
to the extension K/F , then to F/Q, since both are Galois 2–extensions. The result in
this case then follows from Proposition 5.2.10.
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§ 5.5 | Mordell–Weil Lattices over Galois Extensions
§ 5.5.1 | Mordell–Weil Lattices

Our main object of study here will be the Mordell–Weil lattice, which is the “free part”
of the Mordell-Weil group.

Definition 5.5.1. For a number field K and an elliptic curve E/K, the Mordell–Weil
lattice is the quotient

Λ(E/K) := E(K)/E(K)tors.

When K/F is a Galois extension of number fields and E is defined over F , this is
evidently a finitely generated Z-free Z[Gal(K/F )]-module. We refer to such modules
as Z[Gal(K/F )]-lattices. We begin by giving a precise notion of “multiplicity” for
indecomposable lattices in Mordell–Weil lattices.

Definition 5.5.2. Let p be a prime number, K/F be a finite Galois extension of num-
ber fields and E/F be an elliptic curve. For each finitely generated Z-free Z[Gal(K/F )]-
module Λ, define the multiplicity of Λ in E(K) to be

eΛ(K/F ;E) := max
{
e ∈ Z≥0 : Λ⊕e is isomorphic to a direct summand

of Λ(E/K) as Z[Gal(K/F )]-lattices

}
.

Example 5.5.3. Let K/Q be the splitting field of the polynomial x3−3x−1. Note that
K/Q is Galois and has degree 3, and write G = Gal(K/Q). There are two irreducible
Q[G]-modules: the line Q, with trivial G-action, and the third cyclotomic field Q(ζ3),
where a generator of G acts by multiplication by ζ3. Moreover, Maschke’s theorem tells
us that finite dimensional Q[G]-modules are semisimple, so are isomorphic to direct
sums of these irreducible modules.

Let E/Q be the elliptic curve described by the Weierstrass equation

E : y2 + xy = x3 − x2 − 42x− 19.

The computer algebra program MAGMA [BCP97] can compute that E(K) is torsion–free
of rank 2 and E(Q) is trivial. Since there are no points fixed by the Galois action,
eZ = 0 where Z is the set of integers acted on trivially by G. Moreover, E(K) ⊗ Q ∼=
Q(ζ3), so the Mordell–Weil group is isomorphic to a Z[ζ3]-stable lattice inside of Q(ζ3).
Such lattices are precisely the fractional ideals, and since scaling such a lattice gives
an isomorphic module and the class group of Q(ζ3) is trivial, Λ(E/K) = E(K) is
isomorphic to Z[ζ3] as Z[G]-lattices. In particular, eZ[ζ3](E/K) = 1.

We shall give upper bounds for the averages of some of these exponents by consid-
ering the lattice modulo p, and then estimating the various exponents in terms of the
fixed space in the p-Selmer group.
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Lemma 5.5.4. Let p be a prime number, K/F be a finite Galois extension of number
fields, and E/F be an elliptic curve. Writing G = Gal(K/F ), we have that

dim(Λ(E/K)/pΛ(E/K))G ≤ dim Selp(E/K)G + dimH1 (G,E(K)[p∞]/pE(K)[p∞]) .

Proof. There is a short exact sequence of Fp[G]-modules

0 E(K)[p∞]/pE(K)[p∞] E(K)/pE(K) Λ(E/K)/pΛ(E/K) 0,

so that, taking cohomology over G, we obtain

dim
(

Λ(E/K)
pΛ(E/K)

)G
≤ dim

(
E(K)
pE(K)

)G
+ dimH1(G,E(K)[p∞]/pE(K)[p∞]).

Moreover, the short exact sequence induced by multiplication by p gives an inclusion
of Fp[G]-modules

δ : E(K)/pE(K) ↪→ Selp(E/K),

completing the result.

Proposition 5.5.5. Let p be a prime number, K/F be a finite Galois extension of
number fields, and E/F be an elliptic curve. Writing G = Gal(K/F ), then for every
Z[G]-lattice Λ such that dim(Λ/pΛ)G ≥ 1, we have that

eΛ(K/F ;E) ≤ 1
dim(Λ/pΛ)G

(
dim Selp(E/K)G + dimH1(G,E(K)[p∞]/pE(K)[p∞]

)
.

Proof. If Λ⊕e is a direct summand of Λ(E/K), then(
(Λ/pΛ)G

)⊕e
⊆ (Λ(E/K)/pΛ(E/K))G ,

so that, since dim Λ/pΛG ≥ 1, we have

eΛ(K/F ;E) ≤ dim(Λ(E/K)/pΛ(E/K))G
dim(Λ/pΛ)G . (5.4)

Thus the result follows from Lemma 5.5.4.

§ 5.5.2 | Average Multiplicities

We now use Theorem 5.3.8 to obtain the average multiplicity of certain lattices in
Mordell–Weil lattices of elliptic curves.

Theorem 5.5.6. Let K/F be a finite Galois extension of number fields, write G =
Gal(K/F ) and let p be a prime number. Assume that Λ is a Z[G]-lattice satisfying
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dim(Λ/pΛ)G ≥ 1, then

lim sup
X→∞

∑
(A,B)∈E(X)

eΛ(K/F ;EA,B)

#E(X)

≤ 1
dim(Λ/pΛ)G

Cp(K/F ) + lim sup
X→∞

∑
(A,B)∈E(X)

dim Selp(EA,B/F )

#E(X)

 ,
where Cp(K/F ) is as in §1.3.2.

Proof. Let Dp(G) be an integer such that for every elliptic curve E/Q we have that

dimH1 (G,E(K)[p∞]/pE(K)[p∞]) ≤ Dp(G).

Note that this exists, since there are only finitely many Fp[G]-modules of dimension at
most 2. Now, by Lemma 5.3.6∑

(A,B)∈E(X) dimH1 (G,E(K)[p∞]/pE(K)[p∞])
#E(X) �K,p Dp(G) log(X)

X1/6 ,

and the result follows from Proposition 5.5.5 and Theorem 5.3.8.

Remark 5.5.7. The requirement that (Λ/pΛ)G is non-trivial for some prime number
p is rather easy to check. If ΛG 6= 0 then already this is non-trivial for every prime
number, and if ΛG = 0 then via the short exact sequence induced by multiplication
by p, (Λ/pΛ)G is isomorphic to the p-torsion of the finite cohomology group H1(G,Λ).
Computing this cohomology group in any given instance is a purely mechanical task.

We then immediately obtain Theorem 1.3.11.

Corollary 5.5.8. Let p ∈ {2, 3, 5}, F be either Q or a multiquadratic number field, and
K/F be a finite Galois extension. Write G = Gal(K/F ), then for every Z[G]-lattice Λ
such that dim(Λ/pΛ)G ≥ 1,

lim sup
X→∞

∑
(A,B)∈E(X)

eΛ(K/F ;EA,B)

#E(X)

≤ 1
dim(Λ/pΛ)G ·

C2(K/F ) + [F : Q]
(
C2(F/Q) + 37/2

28/3

)
if p = 2 and F 6= Q,

Cp(K/F ) +
(

27
4

)5/6 p+1
p

[F : Q] else,

where Cp(K/F ) is the explicit constant in §1.3.2. Moreover, under Hypothesis 1 the
same is true if p is any prime number.

Proof. Applying Theorem 5.5.6, it is sufficient to replace the nominator in the left hand
side with dim Selp(EA,B/F ) and bound the average appropriately in each case.

If p ∈ {3, 5}, then this follows from Proposition 5.2.14; if p = 2 and F = Q then it
follows from Proposition 5.2.10; and finally, if p = 2 and F is a multiquadratic number
field then it follows from Corollary 5.4.2.
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§ 5.5.3 | An Example: Semidirect Products

We conclude by providing a family of examples of lattices which satisfy the hypotheses
of Theorem 5.5.6 and generalise Example 1.3.13 from the introduction. Let K/Q be
a finite Galois extension such that G = Gal(K/Q) is an inner semidirect product
N o H. Consider the augmentation ideal Λ ⊆ Z[N ], which is defined by the short
exact sequence of Z[N ]–modules:

0 Λ Z[N ] Z 0,ε (5.5)

where the augmentation map ε is given explicitly by ∑n∈N an · n 7→
∑
n∈N an.

Identifying each n ∈ N with the coset nH ∈ G/H provides an isomorphism of
Z[N ]–modules Z[N ] ∼= Z[G/H]. This identification allows us to induce a G–action on
Λ ⊆ Z[G/H], and to upgrade (5.5) to a short exact sequence of Z[G]–modules. Taking
cohomology over N we obtain an exact sequence of Z[G/N ]–modules

0 ΛN Z[G/H]N Z H1(N,Λ) 0.ε (5.6)

In particular, as Z[G/H]N = Z · (∑n∈N nH) so that ε is injective on the fixed points,
we have that ΛN = 0. By Remark 5.5.7, since ΛG ⊆ ΛN = 0, we have that for every
prime number p

(Λ/pΛ)G ∼= H1(G,Λ)[p].

It follows from the inflation restriction short exact sequence that H1(G,Λ) ∼=
H1(N,Λ)G/N . Again considering (5.6), we have that H1(N,Λ) ∼= Z/#NZ with trivial
G/N–action. In particular, for all primes p | #N we have that

(Λ/pΛ)G ∼= Z/pZ.

Thus, if #N is divisible by 2, 3 or 5 then by Corollary 5.5.8 we have that the
average of eΛ(K/Q;E) is bounded as E/Q runs through elliptic curves ordered by
height. Moreover, assuming Hypothesis 1 the same is true for any nontrivial N .



Chapter 6

2-Selmer Groups & Multiquadratic
Extensions

In this chapter we will study the average of the genus theory in 2-Selmer groups of
elliptic curves in the family of all elliptic curves over multiquadratic extensions K/Q.
Combining this with methods of Bhargava and Shankar [BS15a], which allow us to
control the average size of SelC (K)(Q, EA,B[2]) in Chapter 7, we are able to prove the
results stated in §1.4.

In order to make the chapter more concise, we introduce some notation for its
duration.

Notation 6.0.1. For each v ∈ ΩQ, each multiquadratic extension K/Q and each
elliptic curve E/Qv, the local norm index modulo 2 at v of E is denoted

ιv(K/Q;E) := dimF2

E(Qv)
NKw/QvE(Kw) + 2E(Qv)

.

In particular recall that, by Definition 2.2.8, the genus theory part of the 2-Selmer
group of an elliptic curveE/Q over suchK is then given by g2(K/Q;E) := ∑

v∈ΩQ ιv(K/Q;E).
In §6.1 we provide a general counting machine to compute averages for a class of

functions on E which are sums of local invariants, including g2(K/Q; ·). In §6.2 we then
apply this machine to obtain the contribution to the average of the genus theory from
primes of additive reduction. We then have to make slight adaptations in the case of
multiplicative reduction, and we compute their contribution in §6.3. We compute the
average of the final part of the genus theory, the contribution from the archimedean
place, in §6.4. Finally in §6.5 we pull forward a result from Chapter 7 to control the
corestriction Selmer group, and then use this and our earlier results to prove those
stated in §1.4.



CHAPTER 6. 2-SELMER GROUPS & MULTIQUADRATIC EXTENSIONS 122

§ 6.1 | Averaging Local Constants: General Count-
ing Machine

In this section we prove some counting results for a large class of functions, which
will be shown to contain the genus theory invariant, with the expectation that this
generality will have utility in future. In particular, it can be expected that these
results may describe the statistical behaviour of general Tamagawa ratios for elliptic
curves parametrised by E . To maximise on the utility of these results, we will count
with respect to “height–like” orderings on E .

Definition 6.1.1. For each pair C = (C1, C2) ∈ R2
>0, and every positive real number

X we define a finite set

EC(X) :=
{

(A,B) ∈ E : |A| ≤ C1X
1/3 and |B| ≤ C2X

1/2
}
.

Example 6.1.2. For C = (1/ 3
√

4, 1/
√

27), EC(X) = E ′(X) the set of elliptic curves of
naive height at most X.

§ 6.1.1 | Technical Lemmata

Here we provide some elementary proofs of useful results for certain arithmetic functions
relating to the set E .

Definition 6.1.3. For every p which is either a prime number or 1, we define functions
fp, gp : Z\ {0} → R by, for each B ∈ Z\ {0}, setting

fp(B) :=
∏

` prime
`6|B
6̀=p

(1− `−4), gp(B) :=
∏

` prime
`6|B
` 6=p

`4.

Remark 6.1.4. Both of these functions are clearly multiplicative, that is, for coprime
m,n we must have that fp(mn) = fp(m)fp(n) and similarly for gp.

Sums of these functions can be estimated using Dirichlet convolution, even with
congruence conditions. We deal with fp first.

Lemma 6.1.5. Let p be either a prime number or 1. For each residue class b ∈ Z/pnZ
for some n > 0 and real number Y ≥ 1 we have

∑
1≤|B|≤Y

B≡b mod pn

fp(x) =

2Y ζ(10)−1 +O (1) if p = 1
2Y
pn

ζ(10)−1

1−p−10 +O (1) otherwise

where the implied constant is 17/6.

Proof. Let f̃p := µ ∗ fp be the Dirichlet convolution of fp with the Möbius function.
Then we note some properties of this new function. Firstly, since fp and µ are multi-
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plicative so is f̃p. Secondly, for every prime number ` and integer r > 0 we have

f̃p(`r) = fp(`r)− fp(`r−1) =

−`
−4 if ` 6= p and r = 6

0 else.

From these properties we note that the Euler product for the L-function of f̃p is
L(f̃p, s) = ∏

6̀=p(1− `−4−6s), so that in particular

L(f̃p, 1) =

ζ(10)−1 if p = 1
ζ(10)−1

1−p−10 if p is prime.
(6.1)

Moreover the multiplicativity shows that for each integer m we have

∣∣∣f̃p(m)
∣∣∣ =

d
−4 if m = ±d6 for some squarefree integer d coprime to p

0 else.
(6.2)

Now, addressing the problem at hand, we have
∑

1≤|B|≤Y
B≡b mod pn

fp(B) =
∑

1≤|B|≤Y
B≡b mod pn

∑
m|B

f̃p(m)

=
∑

1≤m≤Y
(m,p)=1

f̃p(m)
∑

1≤|B′|≤Y/m
mB′≡b mod pn

1

= 2Y
pn

∑
1≤m≤Y
(m,p)=1

f̃p(m)
m

+O

 ∑
1≤m≤Y
(m,p)=1

∣∣∣f̃p(m)
∣∣∣
 ,

where the implied constant here is 2. Using (6.2) and an integral estimate we see that
term inside the error bracket is at most (4− Y −1/2)/3 ≤ 4/3. For the main term, note
that we have ∑

1≤m≤Y
(m,p)=1

f̃p(m)
m

= L(f̃p, 1)−
∑
m>Y

f̃p(m)
m

,

and again using (6.2) and an integral estimate we see that the rightmost sum has
absolute value at most Y −3/2/9 ≤ 1/9, completing the proof.

Now, for gp we will settle for an easier estimate since it will appear as an error term
for us.

Lemma 6.1.6. Let p be either a prime number or 1. For every real number Y ≥ 1,

∑
|B|≤Y

gp(B) ≤ 62 + 10ζ(2)
5 Y < 16Y.

Proof. Again, we take the Dirichlet convolution g̃p := µ ∗ gp, and compute that for
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every prime number ` and integer r > 0 we have

g̃p(`r) =

`
4 − 1 if ` 6= p and r = 6

0 else.

In particular, using the multiplicativity of g̃p we have for each integer m,

g̃p(m) =


∏
`|d(`4 − 1) if m = d6 for some squarefree integer d coprime to p

0 else.
(6.3)

Then we have, as in the proof of Lemma 6.1.5,

∑
|B|≤Y

gp(B) = 2Y
∑

1≤m≤Y

g̃p(m)
m

+O

 ∑
1≤m≤Y

g̃p(m)


where the implied constant is 2. Now, by (6.3)

∑
1≤m≤Y

g̃p(m)
m

≤
∑

1≤d≤Y 1/6

1
d2 ≤ ζ(2),

and similarly

∑
1≤m≤Y

g̃p(m) ≤
∑

1≤d≤Y 1/6

d4 ≤ (Y + 1)5/6 − 1
5 ≤ 31Y 5/6

5 .

§ 6.1.2 | Local Functions

We wish to study behaviour of elliptic curves defined by congruence conditions modulo
prime powers. We begin by giving the probability that an elliptic curve satisfies a given
congruence condition. These probabilities are known (they can be obtained from the
Ekedahl sieve as it is presented in [CS20] or by methods similar to [CJ20]), but we will
require explicit estimates of the error.

Notation 6.1.7. For each prime number `, we take our Haar measure µ` on Z2
` to be

the one which is normalised to have total measure 1. For each integrable function

ψ : Z2
` → R,

we write E`[ψ] :=
∫
Z` ψ dµ` for the expectation. We say that such a function has finite

level if there exists a pair of integers M = (M1,M2) ∈ Z≥0 (referred to as a level) such
that ψ is constant on each set of the form{

(a, b) ∈ Z2
` : a≡N1 mod `M1 ,

b≡N2 mod `M2 ,

}
and we refer to the pair of smallest such M1,M2 as the minimal level of ψ, and denote
it by Mψ.
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We write E` ⊆ Z` for the open set

E` = Z2
`

∖{
(a, b) ∈ Z2

` : a≡0 mod `4

b≡0 mod `6

}
.

We define the function ∆(A,B) := 4A3 + 27B2.

Lemma 6.1.8. Let ` be a prime number, and ψ : E` → R be an integrable function of
finite level with M = Mψ = (M1,M2). Then for every pair C = (C1, C2) ∈ R2

>0 and
every real number X ≥ max

{
C−2

2 , 1
}
we have

∑
(A,B)∈EC(X)

ψ(A,B) =4C1C2X
5/6

ζ(10)
`10

(`10 − 1)E`[ψ]

+O
(
`M1+M2E`[|ψ|]

(
C2X

1/2 + C1X
1/3
))
,

with implied constant equal to 22.

Proof. For each (a, b) ∈ Z/`MZ we define a function

ψ(a,b) : Z2
` → R

(A,B) 7→

ψ(A,B) if (A,B) ≡ (a, b) mod `M

0 else,

so that
ψ =

∑
(a,b)∈Z/`MZ

ψ(a,b).

Proving the claimed statement is therefore reduced to the case that ψ = ψ(a,b) for some
pair (a, b) ∈ Z/`MZ. Making this reduction we further assume that ψ 6= 0 (as else the
statement is trivial), and write Aψ for the nonzero real number in the image of ψ.

Ignoring the discriminant nonzero condition on (A,B) ∈ EC(X) adds at most
2(2C1X

1/3 + 1) extra curves, so

∑
(A,B)∈EC(X)

ψ(A,B) =


∑

|B|≤C2X1/2

B≡b mod pM2

∑
|A|≤C1X1/3

A≡a mod pM1

∀`6|B `4-A

Aψ

+O
(
|Aψ| (2C1X

1/3 + 1)
)

with implied constant 2. We then move the case B = 0 into the error term, so that

∑
|B|≤C2X1/2

B≡b mod pM2

∑
|A|≤C1X1/3

A≡a mod pM1

∀`6|B `4-A

Aψ =


∑

1≤|B|≤C2X1/2

B≡b mod pM2

∑
|A|≤C1X1/3

A≡a mod pM1

∀`6|B `4-A

Aψ


+O

(
|Aψ| (2C1X

1/3 + 1)
)
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with the implied constant being 1. Now, dealing with the main term here,

∑
1≤|B|≤C2X1/2

B≡b mod pM2

∑
|A|≤C1X1/3

A≡a mod pM1

∀`6|B `4-A

Aψ

= Aψ
∑

1≤|B|≤C2X1/2

B≡b mod pM2


2C1X

1/3

pM1

∏
`6|B
` 6=p

` prime

(1− `−4) +O


∏
`6|B
`6=p

` prime

`4




= Aψ

4C1C2X
5/6

ζ(10)
p10

pn1+n2(p10 − 1) +O
(
|Aψ|C2X

1/2
)

+O
(
|Aψ|C1X

1/3
)
.

Here, the first equality is by elementary estimates and the implied constant can be
taken to be 2. The second equality is by Lemmas 6.1.5 and 6.1.6, and so the implied
constants are at worst 17

6 and 16 respectively. Now combining this with the error terms
from ignoring the discriminant zero curves and the case B = 0 above we obtain

∑
(A,B)∈EC(X)

ψ(A,B) = 4C1C2X
5/6

ζ(10)
`10

(`10 − 1)E`[ψ]

+O
(
|Aψ|C2X

1/2
)

+O
(
|Aψ|C1X

1/3
)

+O (|Aψ|)

= 4C1C2X
5/6

ζ(10)
`10

(`10 − 1)E`[ψ]

+O
(
`M1+M2E`[|ψ|]

(
C2X

1/2 + C1X
1/3
))
,

where the implied constants in the first line are 17
6 , 22 and 3. Then, since C2X

1/2 ≥ 1,
the second line holds with implied constant 22.

§ 6.1.3 | Systems of Local Constants

We will now seek to have local functions at every prime number, and recover their data
simultaneously.

Definition 6.1.9. A local constant (on E) is a collection α = (α`)` prime of functions

α` : Z2
` → R,

supported on E`. We say that a local constant α is orderly if it satisfies all of the
following:

1) for every prime number `, α` is an integrable function of finite level;

2) there is a pair Mα = (M1,M2) ∈ Z≥0 such that for every prime number `, the
function α` has level Mα;

3) there is a constant Cα ∈ R such that for every prime number `, max (|im(α`)|) ≤
Cα;
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4) there is a finite set Σα of prime numbers such that for primes ` 6∈ Σα if `2 - ∆(A,B)
then α`(A,B) = 0.

We will consider Mα, Cα and Σα to be part of the data of α.

Lemma 6.1.10. Let α = (α`)` be an orderly local constant. Then for every pair
C = (C1, C2) ∈ R2

>0 and every real number X > max {552, exp(max(Σα))} we have∣∣∣∣∣∣∣∣∣
∑

(A,B)∈EC(X)

∑
log(X)≤`
prime

α`(A,B)

∣∣∣∣∣∣∣∣∣ ≤ 4Cα(C2 + 4)C1X
5/6 +X1/2

log(X)− 8 .

Proof. Since α is orderly, and all of the primes in Σα are less than log(X), we must
have that α`(A,B) = 0 whenever `2 - (4A3 + 27B2) (i.e. EA,B/Q` has type I0 or I1

reduction). Moreover,∣∣∣∣∣∣∣∣∣
∑

(A,B)∈EC(X)

∑
log(X)≤`
prime

α`(A,B)

∣∣∣∣∣∣∣∣∣ ≤ Cα
∑

(A,B)∈EC(X)
#
{

log(X) ≤ ` : EA,B/Q` not
of type I0 or I1

}
.

We now estimate the sum on the right hand side. By Appendix A, since log(X) > 4
we have that

∑
(A,B)∈EC(X)

#
{
` prime :

`≥log(X)
EA,B/Q` not
of type I0 or I1

}

≤
∑

log(X)≤`≤X1/2

prime

∑
|A|≤C1X1/3

#
{
B ∈ Z : |B|≤C2X1/2

4A3+27B2≡0 mod `2

}

≤
∑

log(X)≤`≤X1/2

prime

(
2C1X

1/3 + 2
)(2C2X

1/2

`2 + 4
)

We then break this term into two parts by expanding the rightmost term. Firstly, note
that a simple integral estimate gives

∑
log(X)≤`≤X1/2

prime

1
`2 ≤

∫ X1/2

log(X)−1
y−2dy ≤ 1

log(X)− 1 ≤
1

log(X)− 8 .

Moreover by [Ros41, Theorem 29A], since X1/2 ≥ 55

#
{
` prime : log(X) ≤ ` ≤ X1/2

}
≤ π(X1/2) ≤ 2X1/2

log(X)− 8 .
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Therefore,

∑
log(X)≤`≤X1/2

prime

(
2C1X

1/3 + 2
)(2C2X

1/2

`2 + 2
)
≤
(
2C1X

1/3 + 2
) (8 + 2C2)X1/2

log(X)− 8

= 4(C2 + 4)C1X
5/6 +X1/2

log(X)− 8

as required.

We now state and prove the main counting machine for this chapter.

Theorem 6.1.11. Let α = (α`)` be an orderly local constant, and write the minimal
level as Mα = (M1,M2). Then for every C = (C1, C2) ∈ R2

>0 and every real number
X > max

{
552, exp(max(Σα)), C−2

2

}
∑

(A,B)∈EC(X)

∑
` prime

α`(A,B) = 4C1C2X
5/6

ζ(10)
∑

`≤log(X)
prime

`10

`10 − 1E`(α`)

+O

4Cα(C2 + 4)(C1X
5/6 +X1/2)

log(X)− 8 + 22
(
C2X

1/2 + C1X
1/3
) ∑
`≤log(X)
prime

`M1+M2E`[|α`|]


where the implied constant is 1, EC(X) is as in Definition 6.1.1, and E` is as in
Notation 6.1.7.

Proof. By Lemma 6.1.10,

∑
(A,B)∈EC(X)

∑
` prime

α`(A,B) =

 ∑
(A,B)∈EC(X)

∑
`≤log(X)
prime

α`(A,B)


+O

(
Cα(C2 + 4)C1X

5/6 +X1/2

log(X)− 8

)
,

where the implied constant is 4. The error here gives the first error term in the theorem
statement. By Lemma 6.1.8 the main term here can then be unpacked as

∑
(A,B)∈EC(X)

∑
`≤log(X)
prime

α`(A,B)

=
∑

`≤log(X)
prime

(
4C1C2X

5/6

ζ(10)
`10

(`10 − 1)E`[α`] +O
(
`M1+M2E`[|α`|]

(
C2X

1/2 + C1X
1/3
)))

where the implied constant is 22.

§ 6.2 | Additive Primes
As an application of our explicit results above on averaging orderly local constants, we
now find the average of the additive contribution to the genus theory.
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Notation 6.2.1. For each multiquadratic extension K/Q, define the function

Gadd
K : {` ∈ Z≥5 : ` prime} → R

to map each element ` to

Gadd
K (`) =



`(`−1)(`5+1)(5`3−4`2+3)
6(`10−1) if Kp/Q` is ramified and quadratic;

`(`−1)(3`5+`3−2`2+3)
3(`10−1) if Kp/Q` is unramified and quadratic;

`(`5+1)(5`4−9`3+4`2+6`−6)
6(`10−1) if Kp/Q` is biquadratic;

0 if Kp/Q` is trivial.

where p ∈ ΩK is a choice of place extending `.

§ 6.2.1 | Local Densities for Additive Primes

It will be important to establish local terms at each prime number `, for which we need
the following definition.

Definition 6.2.2. For every pair N = (N1, N2) ∈ Z2
>0 and prime number `, we write

as shorthand
Z/`NZ := Z/`N1Z× Z/`N2Z.

For each Kodaira type T , we then write

E`,T := {(A,B) ∈ E : EA,B/Q` has Kodaira type T} ,

and
EN
`,T := (E`,T mod `N) ⊆ Z/`NZ.

We simply write EN
` for the image of the full set E in Z/`NZ.

It is, of course, very easy to work out #EN
`,T just by examining the table in Appendix

A. Motivated by the extra conditions required to obtain the values of the norm index,
we count special subsets of these.

Lemma 6.2.3. For each prime number ` ≥ 5, and α ∈ F×` we have

#
{

(a, b) ∈ E (4,6)
`,III : a`−1 ≡ α mod `

}
= `6.

Remark 6.2.4. There are many elements a′ ∈ Z/`4Z such that a′` = a, however these
are all equivalent modulo ` and so our set is well defined. Similar considerations will
not be discussed in future.

Proof. From Appendix A, the elements (A,B) ∈ E (4,6)
`,III are precisely the elements of

E (4,6)
` of the form

(A,B) = (a`, b`2),

for some a ∈ (Z/`3Z)× and b ∈ Z/`4Z. Noting that we also require a ≡ α mod `, we
have `2 choices for a and `4 choices for b.
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Lemma 6.2.5. For each prime number ` ≥ 5 and n ∈ {0, 1, 3},

#
{

(a, b) ∈ E (1,1)
`,I0 : T 3 + aT + b has n roots

}
=


(`2−1)

3 if n = 0
`(`−1)

2 if n = 1
(`−1)(`−2)

6 if n = 3

Proof. For ease, we will write Pa,b(T ) := T 3 + aT + b ∈ F`[T ]. From Appendix A, we
see immediately that for n ∈ {0, 1, 3},{

(a, b) ∈ E `,I0(4,6) : Pa,b(T ) has n roots
}

=
{

(a, b) ∈ F2
` : P(a,b)(T ) has n roots in F` and no repeated roots

}
,

since −(4a3 + 27b2) = disc(Pa,b(T )). Note that the 3 roots {α1, α2, α3} ⊆ F` of Pa,b
satisfy α1 + α2 + α3 = 0, because the T 2 coefficient in Pa,b is 0.

Consider, first, the case n = 0. Here Pa,b(T ) is irreducible, and the set of irreducible
monic cubic polynomials is in 1 : 3 correspondence with elements α ∈ F`3\F`. Under
this correspondence the polynomials with T 2 coefficient being 0 (our set of Pa,b(T ))
correspond to α with trace 0. Thus

#
{

(a, b) ∈ F2
` : P(a,b)(T ) is irreducible over F`

}
= 1

3
(
# ker(TrF`3/F`)− 1

)
= `2 − 1

3 ,

where we use that the trace is surjective (since ` 6= 3, the only element of F` with trace
0 is 0).

Now consider n = 1. In this case, Pa,b(T ) must factor as a product of one monic
linear polynomial and one monic irreducible quadratic polynomial. Moreover, since
the T 2 coefficient is 0, the root of the linear polynomial must be equal to −TrF`2/F`(α)
where α is a root of the quadratic factor. Thus

#
{

(a, b) ∈ F2
` : P(a,b)(T ) has 1 root in F` and no repeated roots

}
= #

{
(a′, b′) ∈ F2

` : T 2 + a′T + b′ is irreducible
}

= 1
2#F`2\F` = `(`− 1)

2 .

Finally, for the case n = 3, it is elementary to see that #E `(1,1) = `2 − `, and so the
result follows by subtracting the counts of the previous cases.

§ 6.2.2 | Averaging the (Additive) Genus Theory

We are now able to compute the average of the additive genus theory.

Notation 6.2.6. For each prime number `, multiquadratic extension K/Q and pair
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(A,B) ∈ E` we define

ιadd` (K/Q;A,B) =


0 if ` ∈ {2, 3}

0 if EA,B/Q` has reduction type In or I∗n ∃n > 0,

ι`(K/Q;EA,B) else

We extend each ιadd` to Z2
` by setting α`(A,B) = 0 for (A,B) ∈ Z2

`\E`

Lemma 6.2.7. The endomorphism ψ ∈ End(Z/`(4,6)Z) given by (a, b) 7→ (`2a, `3b)
induces surjections (for every α ∈ F×` , m ∈ {0, 1, 3}) from{

(a, b) ∈ E `,III(4,6) : a`−1 ≡ α mod `
}

to
{

(a, b) ∈ E `,III
∗

(4,6) : a`−3 ≡ α mod `
}
,

and from {
(a, b) ∈ E `,I0(4,6) : T 3 + aT + b has n roots mod `

}
to {

(a, b) ∈ E `,I
∗
0

(4,6) : T 3 + a`−2T + b`−3 has n roots mod `
}
.

Additionally, # ker(ψ) = `5.

Proof. This is clear.

Lemma 6.2.8. Let K/Q be a multiquadratic extension. For every prime number ` and
pair (A,B) ∈ Z2

` write α`(A,B) = ιadd` (K/Q;A,B). Then the collection α = (α`)` is
an orderly local constant with associated constants Mα = (4, 6), Cα = 2, and Σα = ∅.

Moreover for each prime number ` we have

E`[α`] =



`(`−1)(`5+1)(5`3−4`2+3)
6`10 if Kp/Q` is ramified and quadratic;

`(`−1)(3`5+`3−2`2+3)
3`10 if Kp/Q` is unramified and quadratic;

`(`5+1)(5`4−9`3+4`2+6`−6)
6`10 if Kp/Q` is biquadratic;

0 if Kp/Q` is trivial or if ` ∈ {2, 3}

where p ∈ ΩK is any choice of place extending `.

Proof. The claim that α is orderly is immediate from Proposition 3.2.9 and appendix
A, as are the claimed values of Mα, Cα,Σα. We now prove the last claim, regarding
the expectation. For ` ∈ {2, 3} this is immediate from the definition of α`. Thus we
assume that ` ≥ 5. If Kp/Q` is trivial then this follows immediately from the definition
of ι`.

If Kp/Q` is unramified and quadratic then, since ` is inert in K/Q, it follows from
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Proposition 3.2.9, Appendix A and Lemma 6.2.7 that

E`[α`] = `−10 ∑
(A,B)∈E(4,6)

`

α`(A,B)

= `−10(1 + `−5)#E (4,6)
`,III

+ 2`−15#
{

(A,B) ∈ E (4,6)
`,I0 : T 3 + AT +B ∈ F`[T ] has 3 roots

}
.

Considering this expression, it then follows from Lemmas 6.2.3 and 6.2.5 and Appendix
A that

E`[α`] = `−10
(

(`6 + `)(`− 1) + 2`3 (`− 1)(`− 2)
6

)

= 3`7 − 3`6 + `5 − 3`4 + 2`3 + 3`2 − 3`
3`10 .

Factoring this expression then provides the required form.
If Kp/Q` is ramified and quadratic then it is immediate from Proposition 3.2.9,

Lemma 6.2.7 and Appendix A that

`10E`[α`] =
(
1 + `−5

)
#
{

(A,B) ∈ E (4,6)
`,III : A`−1 6∈ ∆K

`
F×2
`

}
+ (1 + `−5)#

{
(A,B) ∈ E (4,6)

`,I0 : T 3 + AT +B ∈ F`[T ] has 1 root
}

+ 2(1 + `−5)#
{

(A,B) ∈ E (4,6)
`,I0 : T 3 + AT +B ∈ F`[T ] has 3 roots

}
.

Considering this expression, as in the inert case above, it then follows from Lem-
mas 6.2.3 and 6.2.5 that

E`[α`] = `−10(1 + `−5)
(
`6 `− 1

2 + `8 `(`− 1)
2 + `8 (`− 1)(`− 2)

3

)

= `(`− 1)(`5 + 1)(5`3 − 4`2 + 3)
6`10 ,

as required.
Finally, if Kp/Q` is biquadratic it follows from Proposition 3.2.11 and Lemma 6.2.7

that

`10E`[α`] = (1 + `−5)#
{

(A,B) ∈ E`,I0 : T 3 + AT +B ∈ F` has 1 root
}

+ 2(1 + `−5)#
{

(A,B) ∈ E`,I0 : T 3 + AT +B ∈ F` has 3 roots
}

+ 2(1 + `−5)#E`,III .

Using Lemma 6.2.3, Lemma 6.2.5 and Appendix A we then deduce

E`[α`] = `−10(1 + `−5)
(
`8 `(`− 1)

2 + `6(`− 1) + `8 (`− 1)(`− 2)
3

)

= `(`5 + 1)(5`4 − 9`3 + 4`2 + 6`− 6)
6`10 ,
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concluding the proof.

Having established that the contribution to the genus theory coming from additive
primes gives an orderly local constant, and studied its properties, we now have our
main application of Theorem 6.1.11.

Corollary 6.2.9. For every multiquadratic extension K/Q, pair C = (C1, C2) ∈ R2
>0

and real number X > max
{

552, exp(max({p | ∆K})), C−2
2

}
, there is an equality

∑
(A,B)∈EC(X)

∑
`

prime

ιadd` (K/Q;A,B) = 4C1C2X
5/6

ζ(10)
∑

5≤`≤log(X)
Gadd
K (`)

+O

(
8(C2 + 4)(C1X

5/6 +X1/2)
log(X)− 8 + 22

(
C2X

1/2 + C1X
1/3
)

(log(X) + 1)11
)
,

where Gadd
K is the function of Notation 6.2.1 and the implied constant is 1.

Proof. This follows from Lemma 6.2.8 and Theorem 6.1.11, after noting that one can,
rather wastefully, estimate

∑
`≤log(X)
prime

`10E[α`] ≤
∑

n≤log(X)
2n10 < (log(X) + 1)11.

§ 6.3 | Multiplicative Primes
We now deal with the contribution to the genus theory coming from when elliptic
curves (or one of their quadratic twists) have multiplicative reduction.

Notation 6.3.1. For each multiquadratic extension K/Q, define the function

Gmult
K : {` ∈ Z≥5 : ` prime} → R

by

Gmult
K (`) =



(`8+`3)(`−1)
(`10−1) if Kp/Q` is ramified and quadratic;

`3(`−1)(`5+`+1)
(`+1)(`10−1) if Kp/Q` is unramified and quadratic;

(`8+`3)(`−1)(4`+5)
4(`10−1)(`+1) if Kp/Q` is biquadratic;

0 if Kp/Q` is trivial.

where p ∈ ΩK is a choice of place extending `.

§ 6.3.1 | Multiplicative Primes

Lemma 6.3.2. Let ` ≥ 5 be a prime number, n ≥ 1 be an integer. For every B ∈
(Z/`nZ)×, and u ∈ F×` we have that

#
{
A ∈ (Z/`nZ)× : (4A3 + 27B2) = u`n

}
=

#µ3(F`) if (B2 mod `) ∈ 4F×3
` ,

0 else.
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Proof. This is immediate from Hensel lifting: since ` ≥ 5 and 1
4(u`n − 27B2) ∈

(Z/`nZ)×, the roots of the polynomial T 3 − 1
4(u`n − 27B2) are in bijection with those

of its reduction mod `.

Proposition 6.3.3. Let ` ≥ 5 be a prime number and n > 0 an integer, and let
R1, R2 ∈

{
F×2
` ,F×` \F×2

`

}
. Then for every pair C = (C1, C2) ∈ R>0 and every real

number X ≥ max
{
C−1

2 , 1
}
we have

#
{

(A,B) ∈ EC(X) :
EA,B is type In at `

(B mod `)∈R1
((4A3+27B2)/`n mod `)∈R2

}

= 4C1C2X
5/6

ζ(10)
`8−n(`− 1)2

4(`10 − 1) +O
(
C1X

1/3 + C2`X
1/2 + 1

)
where the implied constant may be taken to be 26.

Proof. We begin similarly to Lemma 6.1.8: the discriminant nonzero condition con-
tributes at most 2(2C1X

1/3 + 2). Then,

#
{

(A,B) ∈ EC(X) :
EA,B is type In at `

(B mod `)∈R1
((4A3+27B2)/`n mod `)∈R2

}
=

∑
|B|≤C2X1/2

(B mod `)∈R1

#
{
|A| ≤ C1X

1/3 : 4A3+27B2 mod `n+1∈`nR2;
for every prime number ` such that `6|B we have `4-A.

}

=
∑

|B|≤C2X1/2

(B mod `)∈R1
(B2 mod `)∈4F×3

`

2C1X
1/3#µ3(F`)(`− 1)

2`n+1

∏
p6|B
p prime

(1− p−4) +O

` ∏
p6|B
` prime

p4




where the second equality follows from Lemma 6.3.2, and the implied constant is 2.
Dealing with the error term, by Lemma 6.1.6 we bound

2`
∑

|B|≤C2X1/2

∏
p6|B
` prime

p4 ≤ 124 + 20ζ(2)
5 C2`X

1/2 < 32C2`X
1/2.

For the main term, Lemma 6.1.5 shows that

∑
|B|≤C2X1/2

(B mod `)∈R1
(B2 mod `)∈4F×3

`

2C1X
1/3#µ3(F`)(`− 1)

2`n+1

∏
p6|B
p prime

(1− p−4)

= 2C1X
1/3#µ3(F`)(`− 1)

2`n+1 #F×6
`

(
2C2X

1/2

ζ(10)`(1− `−10) +O (1)
)

= 4C1C2X
5/6

ζ(10)
`8−n(`− 1)2

4(`10 − 1) +O

(
C1X

1/3

`n−1

)

where in the first equality we use that the restrictions on the summand B mod ` are
equivalent to fixing the image of B in F×` /F×6

` , and in the second we use the Chinese
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remainder theorem to deduce that #µ3(F`)F×6
` = #F×2

` = (` − 1)/2. The error term
in the final line then has implied constant at most 17/12.

Remark 6.3.4. The proof here is similar to that of Lemma 6.1.8, however if we were
simply to apply that Lemma here then in order to have well defined congruence condi-
tions we would have to count the pairs (A,B) over congruence classes in (Z/`n+1Z)2,
which would lead to a coefficient of `n in our error. This will be too large our applica-
tion, since we will have `, n ≈ log(X). We avoid this in the proof above by using that
the condition we need to apply in the second summation need not be detected mod `n

but can in fact be seen mod ` (removing the n in the error).

§ 6.3.2 | Averaging the (Multiplicative) Genus theory

Notation 6.3.5. For each prime number `, multiquadratic extension K/Q and pair
(A,B) ∈ E` we define

ιmult
` (K/Q;A,B) =


0 if ` ∈ {2, 3}

ι`(K/Q;EA,B) if EA,B/Q` has reduction type In or I∗n, ∃n > 0,

0 else

We extend each ιmult
` to Z2

` by setting ιmult
` (A,B) = 0 for (A,B) ∈ Z2

`\E`.

We record a useful lemma.

Lemma 6.3.6. Let X > 0 be a real number, ` ≥ 5 be a prime number and C ∈
R2
>0. Moreover, let n > 0 be an integer and R1, R2 ∈

{
F×2
` ,F×` \F×2

`

}
. Entrywise

multiplication by (`2, `3) induces bijections for each n > 0,
{

(A,B) ∈ EC(`−6X) :
EA,B/Q` has type In

6B∈R1
∆(A,B)`−n∈R2

}
→
{

(A,B) ∈ EC(X) :
EA,B/Q` has type I∗n

6B`−3∈R1
∆(A,B)`−(n+6)∈R2

}
.

Proof. Immediate from Tate’s algorithm (Appendix A).

Unramified Quadratic Places

Lemma 6.3.7. Let K/Q be a multiquadratic extension. Let ` ≥ 5 be a prime number
and p ∈ ΩK be a place extending ` such that Kp/Q` is the unramified quadratic exten-
sion. Then for every pair (C1, C2) ∈ R>0 and every X ≥ max

{
C−2

2 , 1, ∆(C1, C2)−1`
}

we have

∑
(A,B)∈EC(X)

ιmult
` (A,B) = 4C1C2X

5/6

ζ(10) Gmult
K (`)

+O

(
log(∆(C1, C2)X)

(
C1X

1/3 + C2`X
1/2 + 1

)
+ C1C2

∆(C1, C2)X7/6

)

where the implied constant can be taken to be 28.
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Proof. By Proposition 3.2.9 we have an identity
∑

(A,B)∈EC(X)
ιmult
` (A,B)

=
log(∆(C1,C2)X)/2 log(`)∑

n=1
#
{

(A,B) ∈ EC(X) : EA,B/Q` has type I2n>0 or I∗2n−1

}

+ 2
log(∆(C1,C2)X)/2 log(`)∑

n=1
#
{

(A,B) ∈ EC(X) : EA,B/Q` has type I∗2n>0
−∆(A,B)`−(6+2n)∈F×2

p

}
,

where we can restrict the range of summation for n because EA,B/Q` having type In
or I∗n presupposes that at least `n | ∆(A,B) ≤ ∆(C1, C2)X. Now by Lemma 6.3.6 and
Proposition 6.3.3 we have

∑
(A,B)∈EC(X)

ιmult
` (A,B) =4C1C2X

5/6

ζ(10)
`8(`− 1)2

(`10 − 1) (1 + `−4 + `−5)
log(∆(C1,C2)X)/2 log(`)∑

n=1
`−2n

+O
(
log(∆(C1, C2)X)

(
C1X

1/3 + C2`X
1/2 + 1

))
.

where the implied constant is at worst 26 × 12/2 log(`) < 28. Note that

log(∆(C1,C2)X)/2 log(`)∑
n=1

`−2n = 1− `−2blog(∆(C1,C2)X)/2 log(`)c

`2 − 1

= 1
(`2 − 1) +O

(
1

∆(C1, C2)X

)
,

where the implied constant is 25/24. Applying this identity the main term above, we
simplify to

∑
(A,B)∈EC(X)

ιmult
` (A,B) =4C1C2X

5/6

ζ(10)
`3(`− 1)(`5 + `+ 1)

(`+ 1)(`10 − 1) +O

(
C1C2

∆(C1, C2)X1/6

)

+O
(
log(∆(C1, C2)X)

(
C1X

1/3 + C2`X
1/2 + 1

))
.

where the implied constants are 25
4 and 28 respectively.

Ramified Quadratic Places

Lemma 6.3.8. Let K/Q be a multiquadratic extension. Let ` ≥ 5 be a prime number
and p ∈ ΩK be a place extending ` such that Kp/Q` is a ramified quadratic extension.
Then for every pair (C1, C2) ∈ R>0 and real number X ≥ max

{
1, C−1

2 ,∆(C1, C2)−1`
}

we have

∑
(A,B)∈EC(X)

ιmult
` (A,B) = 4C1C2X

5/6

ζ(10) Gmult
K (`)

+O

(
C1C2

∆(C1, C2)X1/6 + log(∆(C1, C2)X)
(
C1X

1/3 + C2`X
1/2 + 1

))

where the implied constant can be taken to be 29.
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Proof. Let θ ∈ Q` be a uniformiser such that Kp = Q`(
√
θ). Using Proposition 3.2.9

to compute ιmult
` (A,B) for (A,B) ∈ E we obtain

∑
(A,B)∈EC(X)

ιmult
` (A,B)

=
log(∆(C1,C2)X)/ log(`)∑

n=1

#
{

(A,B) ∈ EC(X) : EA,B/Q` has type In,
(−1)n+16B∆(A,B)θ−n∈F×2

`

}

+ 2#
{

(A,B) ∈ EC(X) :
EA,B/Q` has type I2n,

6B 6∈F×2
`

−∆(A,B)θ−n∈F×2
`

}

+ #
{

(A,B) ∈ EC(X) : EA,B/Q` has type I∗n,
(−1)n+16B∆(A,B)θ−(n+9)∈F×2

`

}

+ 2#
{

(A,B) ∈ EC(X) :
EA,B/Q` has type I∗2n,

6Bθ−3 6∈F×2
`

−∆(A,B)θ−(n+6)∈F×2
`

}
where we can restrict the range of summation for n because EA,B/Q` having type In
presupposes that `n | ∆(A,B) ≤ ∆(C1, C2)X. Now by Lemma 6.3.6 and Proposi-
tion 6.3.3 we can simplify this to

∑
(A,B)∈EC(X)

ιmult
` (A,B)

=
log(∆(C1,C2)X)/ log(`)∑

n=1

(1 + `−5)4C1C2X
5/6

ζ(10)
`8(`− 1)2

2(`10 − 1)(`−n + `−2n)

+O
(
C1X

1/3 + C2`X
1/2 + 1

),
with implied constant 29. Note that

log(∆(C1,C2)X)/ log(`)∑
n=1

`−n + `−2n

= 1− `−2blog(∆(C1,C2)X)/ log(`)c

`2 − 1 + 1− `−blog(∆(C1,C2)X)/ log(`)c

`− 1

= `+ 2
`2 − 1 −

(`+ 1)`−blog(∆(C1,C2)X)/ log(`)c + `−2blog(∆(C1,C2)X)/ log(`)c

`2 − 1

= `+ 2
`2 − 1 +O

(
1

∆(C1, C2)X

)

Where the implied constant is at most 25
24 + 5

4 < 4. Evaluating the summation we
arrive at

∑
(A,B)∈EC(X)

ιmult
` (A,B) =4C1C2X

5/6

ζ(10)
(`8 + `3)(`− 1)2(`+ 2)

(`10 − 1)(`2 − 1)

+O

(
(`8 + `3)(`− 1)2C1C2

(`10 − 1)∆(C1, C2)X1/6

)
+O

(
log(∆(C1, C2)X)

(
C1X

1/3 + C2`X
1/2 + 1

))
,
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with implied constants 2/ζ(10) and 29 respectively. Noting that

(`8 + `3)(`− 1)2

(`10 − 1) < 1

then the result then follows since 1/ζ(10) < 1.

Biquadratic Places

Lemma 6.3.9. Let K/Q be a multiquadratic extension. Assume that ` ≥ 5 is a prime
number and p ∈ ΩK is a prime dividing ` such that Kp/Q` is the biquadratic extension.
Then for every pair (C1, C2) ∈ R>0 and real number X ≥ max

{
C−2

2 , 1, ∆(C1, C2)−1`
}

we have

∑
(A,B)∈EC(X)

ιmult
` (A,B) = 4C1C2X

5/6

ζ(10) Gmult
K (`)

+O

(
C1C2

∆(C1, C2)X1/6 + log(∆(C1, C2)X)(C1X
1/3 + C2`X

1/2 + 1)
)
,

where the implied constant can be taken to be 29.

Proof. By Proposition 3.2.11 we have an identity
∑

(A,B)∈EC(X)
ιmult
` (A,B)

=
log(∆(C1,C2)X)/ log(`)∑

n=1
#
{

(A,B) ∈ EC(X) : EA,B/Q` has type In and either:
n is odd or −∆(A,B)θ−n 6∈F×2

`

}
+ 2 #

{
(A,B) ∈ EC(X) : EA,B/Q` has type In and both:

n is even and −∆(A,B)θ−n∈F×2
`

}
+ #

{
(A,B) ∈ EC(X) : EA,B/Q` has type I∗n and either:

n is odd or −∆(A,B)θ−(n+6) 6∈F×2
`

}
+ 2 #

{
(A,B) ∈ EC(X) : EA,B/Q` has type I∗n and both:

n is even and −∆(A,B)θ−(n+6)∈F×2
`

}
,

where we can restrict the range of summation for n because EA,B/Q` having type In
presupposes that `n | ∆(A,B) ≤ ∆(C1, C2)X. Now by Lemma 6.3.6 and Proposi-
tion 6.3.3 we have

∑
(A,B)∈EC(X)

ιmult
` (A,B)

=4C1C2X
5/6

ζ(10)
`8(`− 1)2

(`10 − 1) (1 + `−5)
log(∆(C1,C2)X)/ log(`)∑

n=1
`−n +

log(∆(C1,C2)X)/2 log(`)∑
n=1

1
4`
−2n


+O

(
log(∆(C1, C2)X)(C1X

1/3 + C2`X
1/2 + 1)

)
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where since 10× log(`)−1 < 8 the implied constant is at worst 29. Note that

log(∆(C1,C2)X)/ log(`)∑
n=1

`−n = 1− `−blog(∆(C1,C2)X)/ log(`)c

`− 1

= 1
`− 1 +O

(
1

∆(C1, C2)X

)
,

log(∆(C1,C2)X)/2 log(`)∑
n=1

`−2n = 1− `−2blog(∆(C1,C2)X)/2 log(`)c

`2 − 1

= 1
(`2 − 1) +O

(
1

∆(C1, C2)X

)
,

where the implied constants are 5
4 and 25

24 respectively. Thus we have
∑

(A,B)∈EC(X)
ιmult
` (A,B)

=4C1C2X
5/6

ζ(10)
`8(`− 1)2

(`10 − 1) (1 + `−5)
(

1
`− 1 + 1

4(`2 − 1)

)
+O

(
log(∆(C1, C2)X)(C1X

1/3 + C2`X
1/2 + 1)

)
,

+O

(
4C1C2X

5/6

ζ(10)
`8(`− 1)2

(`10 − 1) (1 + `−5) 1
∆(C1, C2)X

)

=4C1C2X
5/6

ζ(10)
(`8 + `3)(`− 1)2(4`+ 5)

4(`10 − 1)(`2 − 1)

+O

(
log(∆(C1, C2)X)(C1X

1/3 + C2`X
1/2 + 1) + C1C2

∆(C1, C2)X1/6

)
,

with the implied constants in the first equality being 29 and 145/96, and that in the
final line being 29 (using that (`8 + `3)(`− 1)2 < `10 − 1 and 4/ζ(10) < 4). This then
matches the proposed result, and so the proof concludes.

The Multiplicative Genus Theory

Having dealt with the contributions of the various types of primes to the average
multiplicative genus theory, we are now ready to finish the computation. We begin, as
in the case of averaging orderly local constants in §6.2, by discarding the contribution
of large primes.

Lemma 6.3.10. Let K/Q be a multiquadratic extension. For every C = (C1, C2) ∈
R2
>0, and every real number X > max {552, exp(max {` prime : ` | ∆K})}∣∣∣∣∣∣∣∣∣

∑
(A,B)∈EC(X)

∑
`≥log(X)
prime

ιmult
` (A,B)

∣∣∣∣∣∣∣∣∣ ≤ 8(C2 + 4)C1X
5/6 +X1/2

log(X)− 8

Proof. With notation as in the lemma statement, let N = blog(∆(C1, C2)X)c. Let



CHAPTER 6. 2-SELMER GROUPS & MULTIQUADRATIC EXTENSIONS 140

γ = (γ`)` prime be the collection of functions

γ` : Z2
` → R

(A,B) 7→

ι
mult
` (A,B) if v`(∆(A,B)) ≤ N

0 else

Note that ιmult
` (A,B) 6= 0 presupposes that ` | ∆(A,B), so in particular ιmult

` and γ`

agree on EC(X). Note that, since γ`(A,B) is determined by the image of (A,B) in
Z/`N+1Z×Z/`N+1Z, by Proposition 3.2.9 and Proposition 3.2.11, γ is an orderly local
constant with constants Mα = (N + 1, N + 1), Cα = 2, and Σα = {` prime : ` | ∆K}.
Thus the result follows from Lemma 6.1.10.

We can now compute the average genus theory at multiplicative primes.

Theorem 6.3.11. Let K/Q be a multiquadratic extension. For every C = (C1, C2) ∈
R2
>0, and every real number X > max

{
C−1

2 , 552, exp(max {` prime : ` | ∆K})
}

∑
(A,B)∈EC(X)

∑
`

prime

ιmult
` (A,B) = 4C1C2X

5/6

ζ(10)

 ∑
5≤`≤log(X)

prime

Gmult
K (`)


O

(
C1C2 log(X)

∆(C1, C2)X1/6 + log(X) log(∆(C1, C2)X)
(
C1X

1/3 + C2 log(X)X1/2 + 1
))

+O

(
(C2 + 4)C1X

5/6 +X1/2

log(X)− 8

)
,

where the implied constants are 211 and 8 respectively, EC(X) is as in Definition 6.1.1,
and E` is as in Notation 6.1.7.

Proof. By Lemma 6.3.10 we can restrict the range of our primes, and then applying
Lemma 6.3.7, Lemma 6.3.8 and Lemma 6.3.9 we obtain the required result.

§ 6.4 | The Archimedean Contribution
In order to determine the average behaviour of g2(K/Q;E) we have so far broken the
contribution from non-archimedean places into additive and multiplicative contribu-
tions and then computed the averages of each of those. It remains to determine the
contribution coming from the archimedean place. We firstly record a lemma which
computes the norm index.

Lemma 6.4.1 ([Kra81, Proposition 6]). Let E/R be an elliptic curve, write ∆E for
the discriminant of a choice of Weierstrass model for E/R. Then

#E(R)/NC/RE(C) =

2 if ∆E > 0

1 else
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Thus we need only count the number of elements (A,B) ∈ EC(X) such that
∆(A,B) < 0 (note that ∆(A,B) = −∆EA,B in the lemma above).

Lemma 6.4.2. Let C = (C1, C2) ∈ R2
>0, and write M(C) := min

{
C2,

2C3/2
1√
27

}
. For

every real number X ≥ 1,

#
{

(A,B) ∈ EC(X) : ∆(A,B) < 0
}

=4C1C2X
5/6

ζ(10)

(
M(C)
2C2

− 9M(C)5/3

20C1C2
3
√

4

)
+O

(
(C1 +M(C)2/3)X1/3 +M(C)X1/2 + 1

)
where the implied constant is at worst 32.

Proof. We have

#
{

(A,B) ∈ EC(X) : ∆(A,B) < 0
}

=
∑

|B|≤C2X1/2

#
{
A ∈ Z :

|A|≤C1X1/3

gcd(A3,B2) is 12th-power free
4A3+27B2<0

}

=
∑

|B|≤C2X1/2

#
{
A ∈ Z : −C1X1/3≤A<3B2/3

3√4
gcd(A3,B2) is 12th-power free

}

=
∑

1≤|B|≤M(C)X1/2

(C1X
1/3 − 3

3
√

4
B2/3

) ∏
`6|B

(1− `−4) +O

∏
`6|B

`4

+O
(
C1X

1/3
)
,

where the first implied constant is 2 and the second is 1 (the second error term is the
B = 0 term). Summing first error term (with implied constant) here gives at worst
32M(C)X1/2 by Lemma 6.1.6, so we deal with the two terms in the main term to
complete the proof. Firstly, by Lemma 6.1.5

∑
1≤|B|≤M(C)X1/2

C1X
1/3

∏
`6|B

(1− `−4)
 = 2C1M(C)X5/6

ζ(10) +O
(
C1X

1/3
)

with implied constant 17/6. For the remaining summand, we use Abel’s summation
formula and Lemma 6.1.5 to obtain, writing f(B) := f1(B) = ∏

`6|B(1 − `−4) for each
integer B 6= 0,

∑
1≤|B|≤M(C)X1/2

B2/3f(B)

= 2
 ∑

1≤B≤M(C)X1/2

f(B)
M(C)2/3X1/3 − 2

3

∫ M(C)X1/2

1

 ∑
1≤B≤y

f(B)
 y−1/3dy


= 2M(C)5/3X5/6

ζ(10) − 4
3ζ(10)

∫ M(C)X1/2

1
y2/3dy +O

(
M(C)2/3X1/3

)
+O

(∫ M(C)X1/2

1
y−1/3dy

)

= 6M(C)5/3X5/6

5ζ(10) +O
(
M(C)2/3X1/3 + 1

)
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where the error terms in the second equality are 17/6 and 68/9. The implied constant
in the third and fourth lines is then at worst 85/6, where we are using that X ≥ 1 and

4
5ζ(10) <

8
9 . Thus in total,

#
{

(A,B) ∈ EC(X) : ∆(A,B) < 0
}

=4C1C2X
5/6

ζ(10)

(
M(C)
2C2

− 9M(C)5/3

20C1C2
3
√

4

)
+O

(
(C1 +M(C)2/3)X1/3 +M(C)X1/2 + 1

)
where the implied constant is at most 32 as required.

§ 6.5 | Applications
We have now completed all of the work required to obtain the average of the genus
theory part of the 2-Selmer groups of elliptic curves (defined over Q) over a multi-
quadratic extension. We will begin by drawing together the results of this chapter to
determine the average of the genus theory part in 2-Selmer groups over multiquadratic
extensions. Then we pull forward a result from the next chapter, which will allow us
to control the average size of the corestriction Selmer groups, and then go on to apply
these together to obtain results for the fixed space in the 2-Selmer group and even for
the full 2-Selmer group in some cases.

From now on we will restrict our interest to the natural ordering on elliptic curves,
given by the sets

E(X) := E (1,1)(X).

This will reduce some headache in what follows.

§ 6.5.1 | The Average of the Genus Theory

Throughout this chapter we have been focussed on computing the average of the genus
theory. We split things up so that we could control the contributions to the average of
the local norms from primes ` ≥ 5 of: multiplicative (including twists of multiplicative)
reduction in §6.3; and additive (excluding twists of multiplicative) reduction in §6.2.
Together with bounds to control the contribution of local norm indices at 2 and 3, this
will enable us to compute the average of the genus theory.

Definition 6.5.1. For each multiquadratic extension K/Q, define the function

GK : ΩQ → R

as follows. We map each prime number ` ≥ 5 to

GK(`) =



`(`5+1)(`−1)(5`3+2`2+3)
6(`10−1)

if K/Q is ramified and
quadratic at `,

`(`−1)(3`7+3`6+3`5+`4+2`3+`2+3`+3)
3(`+1)(`10−1)

if K/Q is unramified and
quadratic at `,

`(`5+1)(10`5+4`4−7`3+5`2−12)
12(`10−1)(`+1) if K/Q is biquadratic at `,

0 if K/Q is totally split at `.
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For the remaining finite primes we define

GK(2) =

0 if K/Q is totally split at 2

22+[K2:Q2] else;
GK(3) =

0 if K/Q is totally split at 3,

4 else.

We then send the infinite place to

GK(∞) =


7

10
√

27
if K is imaginary

0 else.

This notation then allows us to succinctly describe the average of the genus theory
g2(K/Q;E) (see Definition 2.2.8)

Theorem 6.5.2. Let K/Q be a multiquadratic extension. Then

∑
v∈ΩQ
v-6

GK(v) ≤ lim
X→∞

∑
(A,B)∈E(X)

g2(K/Q;EA,B)

#E(X) ≤
∑
v∈ΩQ

GK(v),

where GK is as in Definition 6.5.1. In particular, if 2 and 3 are totally split in K/Q
then we have an equality

lim
X→∞

∑
(A,B)∈E(X)

g2(K/Q;EA,B)

#E(X) =
∑
v∈ΩQ

GK(`).

Proof. By definition, for each elliptic curve E/Q,

g2(K/Q;E) =
∑
v∈ΩQ

ιv(K/Q;E)

= ι∞(K/Q;E) + ι2(K/Q;E) + ι3(K/Q;E) +
∑
`≥5
prime

ιadd` (K/Q;E)

+
∑
`≥5
prime

ιmult
` (K/Q;E).

Firstly by Lemma 5.3.3 we have for ` ∈ {2, 3}

0 ≤ ι`(K/Q;E) ≤ GK(`),

so that the average for these is bounded similarly. Next, it is simple to compute that

#E(X) ∼ 4X5/6

ζ(10) ,

(for example, apply Theorem 6.1.11 with the orderly local constant α given by taking α2

to be the constant function 1 and α` to be the constant function 0 for every ` > 2) so in
particular by Lemma 6.4.1 and Lemma 6.4.2 we know that the average of ι∞(K/Q;E) is
GK(∞). Moreover, applying Theorem 6.3.11 and Corollary 6.2.9 we obtain the average



CHAPTER 6. 2-SELMER GROUPS & MULTIQUADRATIC EXTENSIONS 144

for the remaining sum and so the claimed result.

§ 6.5.2 | The Corestriction Selmer Group: A Preview

In Chapter 7 we obtain the average size of the corestriction Selmer group. In this
subsection we state the key result of that chapter, we ask that the reader wait patiently
for the proof – the tools used are quite distinct from the ones in this chapter. Also,
the application is more related to the material in this chapter.

Definition 6.5.3. For every multiquadratic extension K/Q and each prime number
p ≥ 5 define local factors

Lp(C (K)) :=



(p−1)(p4−p3+p2−p+1)(46p5+62p4+79p3+84p2+84p+48)
48(p10−1)

if K/Q is ramified and
quadratic at p,

16p11+16p10+−8p9+8p8−8p7−10p6−4p5+7p4−p3−8p2−24p−1
16(p10−1)(p+1)

if K/Q is unramified and
quadratic at p,

(p+1)(p−1)(p4−p3+p2−p+1)(5p5+15p4+13p3+9p2+13p+8)
8(p10−1)(p+1) if K/Q is biquadratic at p,

1 if K/Q is totally split at p.

For p ∈ {2, 3} we define some ‘coarse’ local factors

Lp(C (K)) :=


1 if K/Q is totally split at p,

1
22+[Kw :Q2] if p = 2 and K/Q is not totally split at p,
1
4 if p = 3 and K/Q is not totally split at p.

Moreover, define an archimedean factor

L∞(C (K)) :=


1
2 if K is real,
9
20 if K is imaginary.

These local factors allow us to concisely describe the average size of corestriction
Selmer groups in Chapter 7. For now, we will be content to pull forward a corollary of
the results there, which gives an upper bound on the average dimension of corestriction
Selmer groups.

Theorem 6.5.4 (Corollary 7.7.15). Let K/Q be a multiquadratic extension, then

lim sup
X→∞

∑
(A,B)∈E(X) dim SelC (K)(Q, EA,B[2])

#E(X) ≤
(27

4

)5/6

4
∏
v∈ΩQ
v-6

Lv(C (K))

 ,

where the factors Lv(C (K)) are as in Definition 6.5.3.

§ 6.5.3 | 2-Selmer Groups over Multiquadratic Extensions

We can use the results above to obtain strong upper and lower bounds for the av-
erage dimension of the Galois fixed space inside 2-Selmer groups over multiquadratic
extensions. We will take some notation to make the statements easier to parse.
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Definition 6.5.5. Define the functions FS+ and S+ from the set of multiquadratic
extensions to R>0 by

FS+(K) := lim sup
X→∞

∑
(A,B)∈E

dim Sel2(EA,B/K)Gal(K/Q)

#E(X) ,

S+(K) := lim sup
X→∞

∑
(A,B)∈E

dim Sel2(EA,B/K)

#E(X) ,

and similarly let FS−(K) and S−(K) be the liminfs for the above ratios. If FS+(K) =
FS−(K) then we denote the resulting value by FS(K), and similarly for S(K).

Theorem 6.5.6. Let K/Q be a multiquadratic extension and write G := Gal(K/Q).
Then

∑
v∈ΩQ
v-6

GK(v) ≤ FS−(K) ≤ FS+(K) ≤
∑
v∈ΩQ

GK(v) +
(27

4

)5/6

4
∏
v∈ΩQ
v-6

Lv(C (K))

 ,

where GK is as in Definition 6.5.1, and Lv(CK) is as in Definition 6.5.3.

Proof. By Lemma 5.3.7, for large X we have
∑

(A,B)∈E

∣∣∣dim SelF (K)(Q, EA,B[2])− dim Sel2(EA,B/K)G
∣∣∣

#E(X) � log(X)
X1/6 .

Moreover, by Lemma 2.2.11 we have an equality for every elliptic curve E/Q

dim SelF (K)(Q, E[2]) = dim SelC (K)(Q, E[2]) + g2(K/Q;E).

We have the average of the genus theory part by Theorem 6.5.2, providing the lower
bound and part of the upper bound, and an upper bound for that of the corestriction
Selmer group by Theorem 6.5.4, providing the rest of the upper bound, and so result
follows.

In fact this also allows us to get upper and lower bounds on the average 2-Selmer
rank via Lemma 2.2.13.

Corollary 6.5.7. Let K/Q be a multiquadratic extension. Then

∑
v∈ΩQ
v-6

GK(v) ≤ S−(K) ≤ S+(K) ≤ 2
∑
v∈ΩQ

GK(v) +
(27

4

)5/6

8
∏
v∈ΩQ
v-6

Lv(C (K))

 .

Proof. Clearly FS−(K) ≤ S−(K) and by Lemma 2.2.13 we know that

S+(K) ≤ [K : Q]FS+(K).

The result then follows from Theorem 6.5.6.
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An interesting interpretation of Theorem 6.5.6 is the following.

Corollary 6.5.8 (Theorem 1.4.2). Assume that FS(K) exists for all K in a set K of
multiquadratic fields in which 2 and 3 are totally split. Then for each K ∈ K,

FS(K) =
∑
v∈ΩQ

GK(v) +O

((46
48

)ω(∆K))
,

where the implied constant is independent of K.

Proof. It is clear from the definitions that for large enough p (independent of K), if
p is ramified in K/Q then Lp(C (K)) ≤ 46/48. Since the unramified primes satisfy
Lp(C (K)) ≤ 1 we have the result.

§ 6.5.4 | 2-Selmer Groups over Quadratic Fields

We now apply these results for quadratic fields, where the representation theory of
F2[Z/2Z]-modules allows us to obtain a stronger control on the full 2-Selmer group.

We begin by noting that, in fact, the probability that a 2-Selmer group over a
quadratic extension has nontrivial Galois action is typically quite small. However,
unlike in the family of quadratic twists in Chapter 4, we do not get that this is 0%.

Corollary 6.5.9. For each squarefree integer d, write K = Q(
√
d) and let G =

Gal(K/Q). Then

lim sup
X→∞

#
{

(A,B) ∈ E(X) : G acts nontrivially
on Sel2(EA,B/K)

}
#E(X) �

(46
48

)ω(d)
,

with constant independent of d.

Proof. By Corollary 4.1.4(iii), for each X ≥ 0

#
{

(A,B) ∈ E(X) : G acts nontrivially
on Sel2(EA,B/K)

}
#E(X) ≤ # {(A,B) ∈ E(X) : SelC(K)(Q,EA,B [2])6=0}

#E(X) ,

≤
∑

(A,B)∈E(X) dim SelC (K)(Q, EA,B[2])
#E(X) .

Then by Theorem 6.5.4

lim sup
X→∞

∑
(A,B)∈E(X) dim SelC (K)(Q, EA,B[2])

#E(X) ≤
(27

4

)5/6

4
∏
v∈ΩQ
v-6

Lv(C (K))

 .
The result then follows from looking at the definitions of the factors on the right

hand side of this the fact that for sufficiently p, if p | d then p is ramified and
Lp(C (K)) ≤ 46

48 and otherwise p is unramified and Lp(C (K)) ≤ 1.

Studying the full 2-Selmer rank we obtain upper and lowed bounds.
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Definition 6.5.10. Define the function

S+ : {d ∈ Z : d is squarefree} → R≥0,

by

S+(d) := lim sup
X→∞

∑
(A,B)∈E

dim Sel2(EA,B/Q(
√
d))

#E(X) ,

and similarly let S−(d) be the liminf for the above ratio. If S+(d) = S−(d) then we
denote the resulting value by S(d).

Theorem 6.5.11. Let d be a squarefree integer. Then

∑
v∈ΩQ

GK(v) ≤ S−(d) ≤ S+(d) ≤
∑
v∈ΩQ

GK(v) +
(27

4

)5/6

8
∏
v∈ΩQ
v-6

Lv(C (K))

 ,

where GK is as in Definition 6.5.1, and Lv(CK) is as in Definition 6.5.3. In particular,
assuming that S(d) exists then we would have

S(d) =
∑
v∈ΩQ

GK(v) +O

((46
48

)ω(d))
.

Proof. The first statement is an application of Lemma 2.3.11, Lemma 5.3.7 and Corol-
lary 6.5.8. The second then follows from the first in the same way that Corollary 6.5.8
followed from Theorem 6.5.6.



Chapter 7

Bhargavology & Multiquadratic Ex-
tensions

In this chapter, we prove the previously stated result Theorem 6.5.4, on the average size
of the corestriction Selmer group in large families of elliptic curves E/Q. The counting
techniques used in this chapter are largely due to Bhargava and his collaborators,
typically referred to as ‘Bhargavology’.

In §7.1 and §7.2 we provide the necessary background on (principal) homogenous
spaces for elliptic curves for relating Selmer elements to equivalence classes of binary
quartic forms. This material is well known: the first section can be found in [Sil09,
Chapter X], and the second begins historically with work of [BSD63] which has been
substantially developed by Cremona and his collaborators (see e.g. [Cre97]).

In §2.3 we described the corestriction Selmer group as an intersection of Selmer
groups of quadratic twists. Using this, in §7.3 we provide a description of the core-
striction Selmer groups in terms of equivalence classes of binary quartic forms.

The counting begins in §7.4, which is a review section recalling necessary details
from the influential work of Bhargava and Shankar [BS15a]. In §7.5 we define the
notion of a 2-Selmer bundle, which, loosely speaking, assigns a Selmer structure to each
elliptic curve E/Q in a large family in a continuous manner. We show that Bhargava
and Shankar’s counting techniques can be adapted to compute average sizes of Selmer
groups arising from 2-Selmer bundles. In §7.6 we show that the corestriction Selmer
structures form a 2-Selmer bundle, and so determine the average size of corestriction
Selmer groups in ‘large families’ of elliptic curves in terms of a product of local densities.
In §7.7 we explicitly determine these densities for the family of all elliptic curves, and
in particular recover Theorem 6.5.4 as Corollary 7.7.15.
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§ 7.1 | Principal Homogeneous Spaces and Selmer
Elements

Throughout this section, unless we state further restrictions, K is assumed to be a field
of characteristic 0.

§ 7.1.1 | Weil-Châtelet Groups

We recall some useful results which will enable us to interpret the description of core-
striction Selmer groups in Proposition 2.3.9 in terms of equivalence classes of binary
quartic forms. Later in the chapter we will axiomatise the work of Bhargava–Shankar
to count these equivalence classes.

Definition 7.1.1. Let E/K be an elliptic curve. Then a (principal) homogeneous
space for E/K is a pair (C, µ) where C/K is a smooth curve and

µ : C × E → C

is a morphism over K satisfying

(1) for every point q ∈ C
µ(q, OE) = q,

where OE here refers to the identity element on E;

(2) for every pair of points P,Q ∈ E, and each point q ∈ C, we have

µ(µ(q, P ), Q) = µ(q, P +Q);

(3) for every pair of points q0, q1 ∈ C there is a unique P ∈ E such that

µ(q0, P ) = q1.

Remark 7.1.2. In other words, a principal homogeneous space for E/K is an algebraic
curve over K with a simply transitive (algebraic group) action of E.

Notation 7.1.3. If (C, µ) is a homogeneous space for E/K, then an interpretation of
Definition 7.1.1 (3) is to think of the point P ∈ E as the ‘difference’ between the points
q and p. As such, we will take the notation q −µ p for this unique P , or sometimes
simply q − p if µ is clear from context.

There is a natural notion of equivalence of such spaces.

Definition 7.1.4. Let E/K be an elliptic curve, and (C, µ), (C ′, µ′) be two homoge-
neous spaces. These two homogeneous spaces are said to be equivalent if there is an
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isomorphism θ : C → C ′ defined over K such that the diagram below commutes

C × E C

C ′ × E C ′,

µ

θ×Id θ

µ′

where Id is the identity map.

Remark 7.1.5. In other words, two homogeneous spaces are equivalent if there is an
isomorphism over K between them which respects the action of E.

Definition 7.1.6. The collection of equivalence classes of homogeneous spaces for
an elliptic curve E/K is called the Weil-Châtelet group for E/K and is denoted by
WC(E/K). The equivalence class of the homogeneous space given by (E,+) (that is,
E acting on itself by translation) is called the trivial class.

Proposition 7.1.7 ([Sil09, Proposition 3.3]). Let (C, µ) be a homogeneous space for
an elliptic curve E/K. Then (C, µ) is in the trivial class in WC(E/K) if and only if
C(K) 6= ∅.

We now have a fundamental result about this group, which relates it to an inter-
esting Galois cohomology group.

Theorem 7.1.8 ([Sil09, Theorem X.3.6 and Proposition X.3.3]). Let E/K be an el-
liptic curve. There is a natural bijection of pointed sets

WC(E/K)→ H1(K,E)

defined as follows.
Let (C, µ) be a homogeneous space for E/K, and let q0 ∈ C be a point. Then

{(C, µ)} 7→ {σ 7→ σ(q0)−µ q0} ,

where the braces are to indicate that we map the equivalence class of (C, µ) to the
cohomology class of the cocycle on the right.

Remark 7.1.9. It is clear from the definition of the bijection above that the trivial class
in WC(E/K) maps to the identity element of the group H1(K,E) (simply choose the
marked rational point q0 = OE ∈ E(K)).

§ 7.1.2 | n-coverings

We now recall the description ofH1(K,E[n]) for each integer n ≥ 2 in terms of so-called
n-coverings. This can be found, for example, in [Sto06, §1.2, First interpretation].

Definition 7.1.10. Let n ≥ 2 be an integer and E/K be an elliptic curve. Then an
n-covering of E/K is a pair (C, π) where C/K is a smooth curve and π : C → E is
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a morphism defined over K such that there exists an isomorphism θ : C → E defined
over the algebraic closure K making the diagram below commute.

C E

E E.

π

θ Id

×n

(7.1)

Two n-coverings (C, π), (C ′, π′) are said to be equivalent if there is an isomorphism
defined over K, φ : C → C ′, such that the diagram below commutes.

C E

C ′ E.

π

φ Id

π′

An n-covering is said to be trivial if it is equivalent to the n-covering given by E itself
equipped with multiplication by n, (E,×n).

Theorem 7.1.11 (see, e.g., [Sto06, Proposition 1.3 and proof]). Let n ≥ 2 be an
integer and E/K be an elliptic curve. Then there is a natural bijection of pointed sets{

equivalence classes of
n-coverings of E/K

}
→ H1(K,E[n])

defined as follows.
Let (C, π) be an n-covering of E/K, let θ : C → E be an isomorphism over K such

that the diagram (7.1) commutes, and let P0 ∈ E be a point over K. Then

{(C, π)} 7→
{
σ 7→ σ ◦ θ ◦ σ−1 ◦ θ−1(P0)− P0

}
,

where the braces are to indicate that we map the equivalence class of (C, π) to the
cohomology class of the cocycle on the right.

Remark 7.1.12. It is easy to see that the trivial class on the left maps to the identity
element on the right: choose C = E, π = ×n and θ = Id.

These geometric interpretations for the Galois cohomology groups H1(K,E[n]) and
H1(K,E) as equivalence classes of n-coverings and of principal homogeneous spaces
are compatible in a natural way.

Theorem 7.1.13 ([Sto06, §1.2 First interpretation]). The diagram (of pointed sets)
below commutes:

H1(K,E[n]) H1(K,E)

{
equivalence classes of
n-coverings of E/K

}
WC(E/K),

Theorem 7.1.11 Theorem 7.1.8 (7.2)

where the vertical maps are the bijections described in the referenced theorem, the top
horizontal is induced by the natural inclusion E[n] ⊆ E and the lower horizontal is
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constructed as follows. Let (C, π) be an n-covering of E/K, let θ : C → E be an
isomorphism over K such that the diagram (7.1) commutes, then

{(C, π)} 7→ {(C, µ)}

where for P ∈ E and q ∈ C, we define µ(q, P ) := θ−1(θ(q) + P ). The braces are
to indicate that the map sends the equivalence class of the n-covering (C, π) to the
equivalence class of the homogeneous space (C, µ) defined above.

From this there is then an obvious corollary.

Corollary 7.1.14. Consider the inclusion δ : E(K)/nE(K) → H1(K,E[n]), induced
by the multiplication by n exact sequence for E. Then the correspondence of Theo-
rem 7.1.11 identifies the image of δ with the set of equivalence classes of n-coverings
(C, π) of E/K such that C(K) 6= ∅.

In particular, we have a commutative diagram (of pointed sets) with all of the
vertical maps being bijective:

0 E(K)/nE(K) H1(K,E[n]) H1(K,E)

{ equivalence clases of
n-coverings (C,π) of

E/K such that C(K)6=∅

} {
equivalence classes of
n-coverings of E/K

}
WC(E/K)

Thm. 7.1.11 Thm. 7.1.8

Thm. 7.1.13

Remark 7.1.15. This tells us a lot about n-Selmer elements. Recall that if K is a
number field and E/K is an elliptic curve then Seln(E/K) := ker(α) where α is the
diagonal map below.

H1(K,E[n]) H1(K,E)

∏
v∈ΩK

H1(Kv, E[n]) ∏
v∈ΩK

H1(Kv, E).

α

That is to say, in the language of n-coverings above and using Proposition 7.1.7, the
elements of Seln(E/K) are identified with the equivalence classes of n-coverings (C, π)
of E/K such that for every place v ∈ ΩK , C(Kv) 6= ∅. Moreover, the inclusion
E(K)/nE(K) → Seln(E/K) identifies this quotient of the Mordell–Weil group with
the subset of equivalence classes of n-coverings (C, π) which not only possess points
everywhere locally but actually possess a global point, i.e. C(K) 6= ∅.

§ 7.2 | Binary Quartic Forms
We now discuss the explicit correspondence between 2-Selmer elements and certain
equivalence classes of binary quartic forms. This is an explicit version of the correspon-
dence to 2-coverings in §7.1. The original correspondence with binary quartic forms was
given some time ago by Birch and Swinnerton-Dyer [BSD63] and has been developed
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substantially by Cremona and his collaborators [Cre97] (see also [Cre99,CF09,SC02]).

§ 7.2.1 | Basic Objects

Recall that a binary quartic form over a ring R is a degree 4 homogeneous polynomial
in two variables with coefficients in R.

Notation 7.2.1. For each ring R we define VR to be the set of binary quartic forms
with coefficients in R. Moreover, for i = 0, 1, 2 denote by V (i)

R to be the subset of binary
quartic forms in VR with nonzero discriminant having i pairs of complex roots in P1

C

and 4 − 2i real roots in P1
C. The set of definite quartic forms, those which take only

positive or only negative values when evaluated at nonzero elements (x0, y0) ∈ R2, is
V

(2)
R . We denote the subset of positive (resp. negative) definite forms by V (2+)

R (resp.
V

(2−)
R ). We write V (i)

Z := VZ ∩ V (i)
R .

Definition 7.2.2. Let K be a field and g(x, y) ∈ VK be a binary quartic form. Then
we say that f is K-soluble if there are x, y, z ∈ K with (x, y) 6= (0, 0) such that

z2 = g(x, y).

We say that g ∈ VQ is locally soluble if g is Qv-soluble for every place v of Q.

For every ring R there is a well defined (twisted) action of GL2(R) on VR, given for
each g ∈ VR and γ ∈ GL2(R) by

γ · g(x, y) = det(γ)−2g((x, y) · γt),

where the action of γ on (x, y) on the right hand side is just the standard matrix
operation on a row vector, and γt is the transpose matrix. Moreover, the centre of
GL2(R) acts trivially, and so this descends to an action of PGL2(R).

Associated to g(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 ∈ VR there are then two
invariants of this action, I(g) and J(g), given by

I(g) = 12ae− 3bd+ c2,

J(g) = 72ace+ 9bcd− 27ad2 − 27eb2 − 2c3.

There are also the covariants g4(g;X, Y ), g6(g;X, Y ) ∈ R[X, Y ], given by

g4(g;X, Y ) = (3b2 − 8ac)X4 + 4(bc− 6ad)X3Y + 2(2c2 − 24ae− 3bd)X2Y 2

+4(cd− 6be)XY 3 + (3d2 − 8ce)Y 4,

g6(g;X, Y ) = b3 + 8a2d− 4abc)X6 + 2(16a2e+ 2abd− 4ac2 + b2c)X5Y

+5(8abe+ b2d− 4acd)X4Y 2 + 20(b2e− ad2)X3Y 3

−5(8ade+ bd2 − 4bce)X2Y 4 − 2(16ae2 + 2bde− 4c2e+ cd2)XY 5

−(d3 + 8be2 − 4cde)Y 6.
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§ 7.2.2 | Correspondence

We now relate binary quartic forms to homogeneous spaces and 2-coverings. We note
the parts of use to us as one large theorem, to gather everything in one place for use
later in the thesis. The theorem summarises [CF09, §6], though the reader should note
that we consider the elliptic curve E : y2 = x3 − I

3x −
J
27 , whereas the authors in loc.

cit. consider the model (for the same curve) y2 = x3 − 27Ix − 27J , and so there is a
change of variables applied between their results and what is stated below.

Theorem 7.2.3 ([CF09, §6]). Given the data of a pair, (E,F ) where F is a charac-
teristic 0 field, and E/F is an elliptic curve with specified Weierstrass equation

E : y2 = x3 − I
3x−

J
27 ,

the following is true.
Let L := F × F × F , let f(X) := X3 − 3IX + J , and consider the étale algebra

L = L(E) := F [ε]/ 〈f(ε)〉. Fix ε1, ε2, ε3 ∈ F to be the three roots of f(X) and so fix
the embedding L ⊆ L induced by mapping ε 7→ (ε1, ε2, ε3). Under this embedding, we
define the norm of an element w = (w1, w2, w3) ∈ L ⊆ L to be NL/Fw := w1w2w3 ∈ F .

Then there is a commutative diagram (of groups)

E(F )/2E(F ) H1(F,E[2])

{PGL2(F )-equivalence classes of
binary quartic forms g∈VF
with (I(g),J(g))=(I,J)

}
ker

(
NL/F : L×/L×2 → F×/F×2

)
δ

q α

z

δ′

(7.3)

where the definitions and properties of the maps are as follows:

• The map δ is an injection. It is the usual connecting map arising from taking
Galois cohomology on the multiplication by 2 short exact sequence for E.

• The map q is injective, and its image is the collection of cosets represented by
F -soluble binary quartic forms. For P = (ξ, η) ∈ E(F ) we define

q(P ) :=
{
X4 − 3

2ξX
2Y 2 − ηXY 3 + ( I

12 −
3ξ2

4 )Y 4
}

where the braces denote that we map to the PGL2(F )-equivalence class of the
stated binary quartic form.

• The map α is an isomorphism. This map is constructed as follows (see [Sch95,
Theorem 1.1]): consider the map

w : E[2]→ µ2(L)
P 7→ (e2(P, (ε1, 0)), e2(P, (ε2, 0)), e2(P, (ε3, 0)))
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where e2 denotes the Weil Pairing. This induces a map

w∗ : H1(F,E[2])→ H1(F, µ2(L)).

Additionally we have the Kummer isomorphism (see [Ser79, p.152, Ex.2])

κ : H1(F, µ2(L)) ∼= L×/L×2.

Then α := κ ◦ w∗.

• The map z called the cubic invariant, and is injective. It is constructed as follows.
For a binary quartic form g representing an element of the domain, define the
‘irrational covariant’ to be

G(X, Y ) := 1
3 (4εg(X, Y ) + g4(g;X, Y )) ∈ L[X, Y ].

Choose (x, y) ∈ F × F such that G(x, y) ∈ L× (such a pair exists by [CF09, §2
Paragraph 2]), and define

z(g) := G(x, y) ∈ L×/L×2.

This map is independent of the choice of (x, y) by [CF09, Proposition 2], and
z(g) has square norm by [CF09, Lemma 1].

• The map δ′ is injective, and is constructed as follows. Let g(X, Y ) be a represen-
tative of an equivalence class in the domain. Then let C be the smooth projective
curve with affine equation Z2 = g(X, 1), and define the map

π : C → E

(x, z) 7→
(
g4(g;x, 1)

12z2 ,
g6(g;x, 1)

8z3

)
.

The pair (C, π) is in fact a 2-covering of E (see [CF09, §6 p11 Remarks (3)] and
references therein). The map δ′ sends the equivalence class of g to the equiva-
lence class of the 2-covering (C, π) and then maps this to a cocycle class via the
correspondence of Theorem 7.1.11.

From this we state a shorter helpful corollary, which is at the core of the work of
Bhargava and Shankar on 2-Selmer groups [BS15a, see e.g. §3.1].

Corollary 7.2.4 (See also [BS15a, Theorem 3.2] and references therein). Let F be a
characteristic 0 field, and E/F be an elliptic curve with specified Weierstrass equation

E : y2 = x3 − I
3x−

J
27 .

Using the notation of Theorem 7.2.3 for the data (E,F ) above, the map q is a
bijection between PGL2(F )-orbits of F -soluble binary quartic forms with invariants I, J
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and elements of E(F )/2E(F ). Under this bijection, the identity element corresponds
to the (unique!) PGL2(F )-orbit of binary quartic forms possessing a linear factor over
F .

Furthermore, the stabiliser in PGL2(F ) of any (not necessarily F -soluble) binary
quartic form g ∈ VF with invariants (I, J) = (I(g), J(g)) such that 4I3 − J2 6= 0 is
isomorphic to E(F )[2] where E is the elliptic curve defined by y2 = x3 − I

3x−
J
27 .

§ 7.2.3 | Elliptic Curves Over Q

At this point we restrict to our case of interest, which here is F = Q. We begin with
a useful bookkeeping definition.

Definition 7.2.5 ([BS15a, §3]). Let E/Q be an elliptic curve, and let (A,B) ∈ E be
the unique pair such that

E ∼= EA,B : y2 = x3 + Ax+B. (7.4)

Then we define the quantities

I(E) := −3A
J(E) := −27B

Moreover, for (I, J) = (I(E), J(E)) we will use the notation EI,J : y2 = x3 − I
3x −

J
27

in order to pass back from the invariants I(E), J(E) to a model for the curve E.

We then have the following proposition, which is well known and follows from
[BSD63, Lemma 2] (see also [Cre97]).

Proposition 7.2.6 (see also [BS15a, Proposition 3.3]). Let E/Q be an elliptic curve,
with specified Weierstrass equation

E : y2 = x3 − I
3x−

J
27 .

Then using the notation of Theorem 7.2.3 for the data (E,Q): the map δ′ is a bijection
between the set of PGL2(Q)-orbits of locally soluble binary quartic forms g ∈ VQ with
(I(g), J(g)) = (I, J) and the 2-Selmer group Sel2(E/Q) ⊆ H1(Q, E[2]).

Furthermore, the set of binary quartic forms g ∈ VQ having a linear factor (over Q)
and invariants (I, J) lie in a single PGL2(Q)-orbit, and this orbit maps to the identity
element of Sel2(E/Q).

Proof. By [BSD63, Lemma 2] we know that the 2-coverings corresponding to Selmer
elements are in the image of δ′. It is then clear from construction that the local
restriction map for each v ∈ ΩQ, H1(Q, E[2])→ H1(Qv, E[2]), sends a 2-covering (C, π)
to (C, π) considered now over Qv. By definition 2-Selmer elements thus correspond to
the elements (C, π) in the image of δ′ such that C(Qv) 6= ∅ for every v ∈ ΩQ, which is
equivalent to the local solubility of the binary quartic form mapping to C.
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In order to reduce to counting lattice points, we have the following lemma which
follows from [BSD63, Lemmas 3,4,5] and shows that we can always find an integral
representative (i.e. g ∈ VZ ⊂ VQ) in the PGL2(Q)-orbit of a locally soluble binary
quartic form.

Lemma 7.2.7 ([BSD63, Lemmas 3,4,5], see also [BS15a, Lemma 3.4]). Let g ∈ VQ

be a locally soluble binary quartic form having integer invariants (I, J) := (I(g), J(g))
such that (24 · 3) | I and (26 · 33) | J . Then g is PGL2(Q)-equivalent to an element of
VZ.

Since each elliptic curve E/Q is isomorphic to the elliptic curve defined by the
equation y2 = x3 − 24I(E)

3 x − 26J(E)
27 , Lemma 7.2.7 and Proposition 7.2.6 imply the

following key theorem.

Theorem 7.2.8 (see also [BS15a, Theorem 3.5]). Let (A,B) ∈ E, and specify the
Weierstrass equation for E = EA,B to be

E : y2 = x3 + 24Ax+ 26B.

Then using the notation of Theorem 7.2.3 for the data (E,Q): the map δ′ induces a bi-
jection between PGL2(Q)-equivalence classes of locally soluble binary quartic forms g ∈
VZ with invariants (I(g), J(g)) = (24I(E), 26J(E)) and the 2-Selmer group Sel2(E/Q).

Furthermore, the set of g ∈ VZ having a linear factor (over Q) and invariants
(24I(E), 26J(E)) lie in a single PGL2(Q)-orbit, and this orbit maps to the identity
element of Sel2(E/Q).

§ 7.3 | Binary Quartic Forms & the Corestriction
Selmer Group

We now improve Corollary 7.2.4 (in the case that F is a local field) to determine
which locally soluble binary quartic forms correspond to elements of the local groups
in the corestriction Selmer structure. We will then improve Theorem 7.2.8, to also
describe the corestriction Selmer group in terms of binary quartic forms. We will make
fundamental use of Proposition 2.3.9, and the results in the previous section.

Definition 7.3.1. Let F be a characteristic 0 field, and S ≤ F×/F×2 be a finite
subgroup. Then we say that a binary quartic form g(X, Y ) ∈ VF is (F, S)-soluble if for
each θ ∈ S there exist x, y, z ∈ F with (x, y) 6= (0, 0) such that

z2 = θg(x, y).

Moreover, we say that g ∈ VQ is locally S-soluble if for every place v ∈ ΩQ, g is
(Qv, S)-soluble (S here being interpreted as its image in Q×v /Q×2

v ).
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Remark 7.3.2. This is clearly well defined, since altering θ by a square scales the chosen
z-coordinate. Further note that being (F, 〈1〉)-soluble is the same as being F -soluble,
and in fact being (F, S)-soluble always requires at least being F -soluble.

Before we can describe image of (F, S)-soluble binary quartic forms under the cor-
respondence of Corollary 7.2.4, we will require a helpful lemma.

Theorem 7.3.3. Let F be a characteristic 0 field, and let E/F be an elliptic curve
with fixed Weierstrass equation E : y2 = x3 + I

3x −
J
27 . Let θ ∈ F× be nonsquare, and

fix the following model for the quadratic twist Eθ

Eθ : y2 = x3 − θ2I
3 x−

θ3J
27 .

Write ϕθ : Eθ → E for the isomorphism (over F (
√
θ)) given by (x, y) 7→ ( y

θ
√
θ
, x
θ
).

This map restricts to an isomorphism (over F ) Eθ[2] → E[2], and the diagram below
commutes:

H1(F,Eθ[2]) H1(F,E[2])

{PGL2(F )-equivalence classes of
binary quartic forms g∈VF
with (I(g),J(g))=(θ2I,θ3J)

} {PGL2(F )-equivalence classes of
binary quartic forms g∈VF
with (I(g),J(g))=(I,J)

}
,

ϕ∗θ

φθ

δ′ δ′

where the vertical maps are those described in Theorem 7.2.3 for the data (Eθ, F ) and
(E,F ) respectively. The map φθ is given by sending the equivalence class of a binary
quartic form g to that of θ−1g.

Proof. Note firstly that the new map φθ is well defined: scalar multiplication commutes
with the action of PGL2(F ) on the forms, and the claimed invariants in the image are
correct as I(g) and J(g) are homogeneous of degree 2 and 3 in the coefficients of the
associated form g.

Write L := L(E) = F [ε]/ε3 − 3Iε + J and Lθ := L(Eθ) = F [ε]/ε3 − 3θ2Iε + θ3J

for the étale algebras associated to the data of (E,F ) and (Eθ, F ) by Theorem 7.1.11.
Moreover, let us write

β : Lθ → L

ε 7→ θε.

We begin by noting that the following diagram commutes:

Lθ L

L L

κ

β

κ (7.5)

where κ are the Kummer maps induced by the inclusions L,Lθ ⊂ L fixed in The-
orem 7.2.3. Then, since the Weil pairing is preserved by the isomorphism ϕθ, it is
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then clear from the definition of the maps α of Theorem 7.2.3 that the diagram below
commutes:

H1(F,Eθ[2]) H1(F,E[2])

ker(NLθ/F : L×θ /L×2
θ → K×/K×2) ker(NL/F : L×/L×2 → K×/K×2),

ϕ∗θ

α α

β

where the vertical maps are those described in Theorem 7.2.3 for the data (Eθ, F ) and
(E,F ) respectively.

Using the commutativity of the diagram in Theorem 7.2.3 for the data (E,F ) and
(Eθ, F ), and that the α-maps are injective, we then see that the claim that δ′ ◦ φθ =
ϕ∗θ ◦ δ′ holds if and only if the diagram below commutes:

ker(NLθ/F : L×θ /L×2
θ → K×/K×2) ker(NL/F : L×/L×2 → K×/K×2)

{PGL2(F )-equivalence classes of
binary quartic forms g∈VF
with (I(g),J(g))=(θ2I,θ3J)

} {PGL2(F )-equivalence classes of
binary quartic forms g∈VF
with (I(g),J(g))=(I,J)

}
,

β

φθ

z z

but this follows from the definition of the maps z: if g is a binary quartic form with
invariants (θ2I, θ3J) then (for an appropriate choice of (x, y) ∈ F × F )

β ◦ z(g) = β
(1

3(4εg(x, y) + g4(g;x, y))
)

= 1
3(4θεg(x, y) + g4(g;x, y))

≡ 1
3(4θ−1εg(x, y) + θ−2g4(g;x, y))

= 1
3(4εθ−1g(x, y) + g4(θ−1g;x, y))

= z ◦ φθ(g)

Using Theorem 7.3.3 we are then able to describe the local groups of the core-
striction Selmer structure in terms of the correspondence to binary quartic forms from
Corollary 7.2.4.

Corollary 7.3.4. Let F be a number field, and K/F be a Galois extension. Let v ∈ ΩF ,
assume that w ∈ ΩK is a place extending v such that Kw/Fv is multiquadratic, and
write S := ker(F×v /F×2

v → K×w /K
×2
w ). Let E/Fv be an elliptic curve, with specified

Weierstrass equation
E : y2 = x3 − I

3x−
J
27 .

Using the notation of Theorem 7.2.3 for the data (E,Fv) above, the map δ′ restricts
to a bijection between PGL2(F )-orbits of (F, S)-soluble binary quartic forms with in-
variants I, J and elements of corKw/Fv(Sw(K;E)). Under this bijection, the identity
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element corresponds to the (unique!) PGL2(F )-orbit of binary quartic forms possessing
a linear factor over F .

Equivalently: q is a bijection between PGL2(F )-orbits of (F, S)-soluble binary quar-
tic forms with invariants I, J and elements of (NKw/FvE(K) + 2E(F ))/2E(F ), with
the same stipulations about the quartic forms corresponding to the identity element.

Proof. By Proposition 2.3.8, we know that

corKw/Fv(Sw(K;E)) =
⋂
θ∈S

S (θ)
v (F ;E).

By Theorem 7.3.3 and Corollary 7.2.4 S (θ)
v (F ;E) corresponds through δ′ to the equiv-

alence classes of binary quartic forms g ∈ VF with invariants I, J such that θg is
F -soluble. Thus the intersection corresponds precisely to the equivalence classes of
(F, S)-soluble binary quartic forms. That the second statement is equivalent is clear
from Theorem 7.2.3.

We can now strengthen Theorem 7.2.8 to identify the corestriction Selmer group as
a subset of the equivalence classes of locally soluble binary quartic forms.

Theorem 7.3.5. Let K/Q be a multiquadratic extension, and S := ker(Q×/Q×2 →
K×/K×2). Let (A,B) ∈ E, and specify the Weierstrass equation for E = EA,B to be

E : y2 = x3 + 24Ax+ 26B.

Then using the notation of Theorem 7.2.3 for the data (E,Q): the map δ′ induces a
bijection between PGL2(Q)-equivalence classes of locally S-soluble binary quartic forms
g ∈ VZ with invariants (I(g), J(g)) = (24I(E), 26J(E)) and the corestriction Selmer
group SelC (K)(Q, E[2]) ⊆ H1(Q, E[2]).

Furthermore, the set of g ∈ VZ having a linear factor (over Q) and invariants
(24I(E), 26J(E)) lie in a single PGL2(Q)-orbit, and this orbit maps to the identity
element of SelC (K)(Q, E[2]).

Proof. To ease discussion below, for each v ∈ ΩQ let δ′v be the map from Theorem 7.2.3
with the data (E,Qv). Moreover write Sv for the image of S in Q×v /Q×2

v .
Let A be the set of PGL2(Q)-equivalence classes of locally soluble binary quartic

forms g ∈ VZ having invariants (I(g), J(g)) = (24I, 26J) such that: for every v ∈
ΩQ, the map δ′v maps the equivalence class of g to an element of Cv(K/Q;E). By
Corollary 7.3.4, Cv(K/Q;E) corresponds under the δ′ to the set of equivalence classes
of (Qv, Sv)-soluble binary quartic forms g ∈ VQv with invariants (24I, 26J).

Now by the definition of the corestriction Selmer structure, and Theorem 7.2.8, δ′

induces a bijection between SelC (K)(Q, E[2]) ⊆ Sel2(E/Q) and the set A, as required.
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Theorem 7.3.5 tells us which PGL2(Q)-equivalence classes of integral binary quartic
forms g ∈ VZ to count in order to determine the average of SelC (K)(Q, EA,B[2]) as
(A,B) ∈ E varies.

§ 7.4 | Recalling Bhargava–Shankar
For each multiquadratic extension K/Q, we wish to understand SelC (K)(Q, E[2]) as
E ∈ E varies. By construction this is a subgroup of Sel2(E/Q), the object studied
by Bhargava and Shankar in [BS15a] when they obtained the first bounds on average
ranks of elliptic curves. This section is a brief summary of the necessary parts of their
work, which we will use in what follows. Everything will be written in the generality
of ‘large families’, as is done in their work, though our main interest will be the family
of elliptic curves parametrised by E .

§ 7.4.1 | Elliptic Curves and Families

Firstly, we have the invariants corresponding to each elliptic curve.

Definition 7.4.1 ([BS15a, §3]). For each pair (I, J) ∈ R2 we define the height to be

H(I, J) := max
{
|I|3 , J2/4

}
.

For an elliptic curve E/Q, with associated invariants I := I(E) and J := J(E) (see
Definition 7.2.5), we define the height of E to be

H ′(E) := H(I, J).

The discriminant of the pair (I, J) is defined to be

∆′(I, J) := 4I3 − J2

27

Example 7.4.2. In the language of the previous chapter, for C = (1
3 ,

2
27) and X > 0{

EA,B : (A,B) ∈ EC(X)
}

= {E/Q : H ′(E) ≤ X} .

Remark 7.4.3. Note that if we present E = EA,B for (A,B) ∈ E then it is easy to see
that the notion of height introduced above differs from the naive height by a constant
factor:

H ′(E) = max
{
|−3A|3 , (−27B)2

}
= 27

4 max
{

4 |A|3 , 27B2
}
,

so the ordering on elliptic curves is equivalent to that of the naive height. Moreover,

∆′(I, J) = −(4A3 + 27B2) = −∆(A,B)

recovers the discriminant of the given model of E.

We now introduce the ‘large families’ of elliptic curves to which the results of [BS15a]
apply.
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Definition 7.4.4 ([BS15a, §3]). For each prime p, let

Σp ⊂
{

(I, J) ∈ Z2
p : ∆′(I, J) 6= 0

}
be a nonempty closed subset with boundary of measure 0. Moreover let Σ∞ be one of
the following:{

(I, J) ∈ R2 : ∆′(I, J) < 0
}
,
{

(I, J) ∈ R2 : ∆′(I, J) > 0
}
,{

(I, J) ∈ R2 : ∆′(I, J) 6= 0
}
.

Associated to the data Σ = (Σv)v∈ΩQ , we have a family of elliptic curves over Q,

FΣ := {E/Q : (I(E), J(E)) ∈ Σv ∀v ∈ ΩQ} .

A family of elliptic curves F is said to be defined by congruence conditions if F = FΣ

for some Σ = (Σv)v∈ΩQ as above.

Associated to a family of curves which is defined by congruence conditions, we have
some additional data.

Notation 7.4.5. Let F = FΣ be a family of elliptic curves defined by congruence
conditions. Then we have

• Inv(F) := {(I(E), J(E)) : E ∈ F}.

• For each prime number p, Invp(F) is the set of (I, J) in the p-adic closure of
Inv(F) in Z2

p for which ∆′(I, J) 6= 0.

• Inv∞(F) := Σ∞.

Remark 7.4.6. It is not, in this generality, true that Invp(FΣ) = Σp. Take, for instance,

Σp =
{

(I, J) ∈ Z2
p : I ≡ J ≡ 0 mod p and ∆′(I, J) 6= 0

}
for every prime number p. Then of course FΣ = ∅, so Invp(FΣ) = ∅.

The families that can be studied with the analytic tools of [BS15a] are those defined
by congruence conditions that satisfy an additional ‘largeness’ axiom.

Definition 7.4.7. A family F of elliptic curves which is defined by congruence condi-
tions is further called a large family if for all but finitely many primes p the set Invp(F)
contains all pairs (I, J) ∈ Z2

p such that p2 - ∆(I, J).

Remark 7.4.8. Rephrased in terms of the associated elliptic curves, this definition states
that: for sufficiently large p, Σp contains all elliptic curves with reduction types I0 and
I1.
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§ 7.4.2 | Counting Binary Quartic Forms

By Theorem 7.2.8, finding the average of Sel2(E/Q) as E varies in a large family is
equivalent to counting PGL2(Q)-equivalence classes of elements g ∈ VZ with certain
invariants. Bhargava and Shankar count PGL2(Z)-orbits in VZ, rather than PGL2(Q)-
equivalence classes. We postpone the relationship between the two counting problems
to the next subsection, and simply present the results.

Definition 7.4.9. The height of a binary quartic form f ∈ VQ with invariants I, J is
defined to be

H(f) := max
{
|I|3 , J2/4

}
Remark 7.4.10. The height of a binary quartic form is a function of its invariants. In
particular, the binary quartic forms g ∈ VZ which have PGL2(Q)-equivalence classes
corresponding (via Theorem 7.2.8) to 2-Selmer group elements for E/Q have height

H(g) = 212H ′(E).

Thus counting PGL2(Q)-equivalence classes of binary quartic forms of bounded height
corresponds to counting the elements of all EA,B of bounded naive height.

In order to apply local conditions (such as solubility) to the equivalence classes of
binary quartic forms, we require a notion of acceptable congruence conditions.

Definition 7.4.11 ([BS15a, §2.7]). A function ψ : VZ → [0, 1] ⊂ R is said to be defined
by congruence conditions if, for all primes p, there exist functions ψp : VZp → [0, 1]
satisfying

(i) For all f ∈ VZ, the product ∏p ψp(f) converges to ψ(f).

(ii) For each prime p, the function ψp is locally constant outside some closed set
Sp ⊂ VZp of measure zero.

If additionally for all but finitely many primes p, we have ψp(f) = 1 whenever p2 - ∆(f),
then we say ψ is acceptable.

We then have our notation for the relevant counts.

Definition 7.4.12. For each real number X > 0, we define N(V (i)
Z ;X) to be the

number of PGL2(Z)-equivalence classes of irreducible elements f ∈ V
(i)
Z satisfying

H(f) < X

Let ψ be an acceptable function with corresponding local functions ψp which are
PGL2(Z)-invariant. Then we further define Nψ(V (i)

Z ;X) to be the number of PGL2(Z)-
orbits of irreducible elements f ∈ V

(i)
Z satisfying H(f) < X, where each equivalence

class is counted with weight ψ(f).

We then have their main counting machine.
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Theorem 7.4.13 ([BS15a, Theorem 2.21]). Let ψ : VZ → [0, 1] be an acceptable func-
tion defined by congruence conditions via local functions ψp : VZp → [0, 1] which are
PGL2(Z)-invariant. Then for i ∈ {0, 1, 2+, 2−}

Nψ(V (i)
Z ;X) = N(V (i)

Z ;X)
∏
p

∫
f∈VZp

ψp(f)df + o(X5/6)

§ 7.4.3 | Weighted integral orbits

We now explain the reduction from PGL2(Q)-equivalence classes in VZ to PGL2(Z)-
orbits. Doing so makes use of a certain well-behaved weighting. Ideally, in order
to count PGL2(Q)-equivalence classes in VZ, one could simply count the number of
PGL2(Z)-orbits of f ∈ VZ with weight 1/n(f) where n(f) is the number of PGL2(Z)-
orbits inside the PGL2(Q)-equivalence class of f . However, this weighting is not defined
by congruence conditions and so Theorem 7.4.13 would not be possible. In order to
resolve this, one replaces n(f) by a slightly different weight m(f).

Definition 7.4.14 ([BS15a, §3.2]). For a binary quartic form f ∈ VZ we define a
weighting

m(f) :=
∑

f ′∈B(f)

#AutQ(f)
#AutZ(f ′) ,

where B(f) denotes a set of representatives of orbits of the action of PGL2(Z) on the
PGL2(Q)-equivalence class of f ∈ VZ, and AutR(f) is the stabiliser of f in PGL2(R).
Analogously there are local weights at each prime p for f ∈ VZp

mp(f) :=
∑

f ′∈Bp(f)

#AutQp(f)
#AutZp(f ′)

,

where Bp(f) denotes a set of representatives of orbits for the action of PGL2(Zp) on
the PGL2(Qp)-equivalence class of f ∈ VZ.

This new weighting is defined by congruence conditions, which keeps us on track
for using Theorem 7.4.13.

Proposition 7.4.15 ([BS15a, Prop 3.6]). Suppose f ∈ VZ has invariants I, J such
that ∆′(I, J) 6= 0, then m(f) = ∏

pmp(f).

Helpfully, weighting bym(f) instead of n(f) does not matter particularly for count-
ing purposes – they differ only in a density zero set.

Lemma 7.4.16 ([BS15a, Lemma 2.4], see also [BS15a, §3.2]). For f ∈ VZ, denote its
PGL2(Q)-equivalence class in VZ by [f ]Q . Then for sufficiently large X > 0 and any
ε > 0

#
[f ]Q :

f∈VZ,
H(f)<X

∆′(I(f),J(f))6=0
m(f)6=n(f)

�ε X
3/4+ε

Thus, in order to count PGL2(Q)-equivalence classes of elements f ∈ VZ, it is
enough to count PGL2(Z)-equivalence classes of f with weight 1/m(f), as the number
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of forms for which the correct weight differs from this is negligible when taking an
average.

Finally, if we write ψp := 1p/mp(f), where 1p is the indicator function for the set
of Qp-soluble binary quartic forms then we see that ψ = (ψp)p an acceptable function
defined by congruence conditions.

Proposition 7.4.17 ([BS15a, Prop. 3.18]). Let p > 2 be an odd prime number. If
f ∈ VZ is either not Qp-soluble or mp(f) 6= 1 then p2 | ∆′(I(f), J(f)).

In particular we can use Theorem 7.4.13 to count our orbits of interest. In doing so,
it will be helpful to compute the p-adic masses on the right hand side of the equation
there. For this we have the following.

Theorem 7.4.18 ([BS15a, Cor. 3.8]). Let p be a prime and φp a continuous PGL2(Qp)-
invariant function on VZp, such that every element f ∈ VZp in the support of φp has
nonzero discriminant, is soluble and satisfies 24 · 3 | I(f) and 26 · 33 | J(f). Then

∫
Zp

φp(f)
mp(f)df

=
∣∣∣∣ 1
27

∣∣∣∣
p
VolPGL2(Zp)

∫
(I,J)∈Z2

p

∆(I,J)6=0

1
#EI,J(Qp)[2]

 ∑
σ∈EI,J (Qp)/2EI,J (Qp)

φp(fσ)
 dIdJ

where fσ is any element in VZp corresponding to σ under the correspondence in Theo-
rem 7.2.8.

§ 7.5 | A Statistical Wiles–Greenberg Formula
Having now recalled the technology we need, we give a useful application. For the
duration of this section, we let F be a large family of elliptic curves.

§ 7.5.1 | 2-Selmer Bundles

We shall firstly need a way to gather together the elements of general Selmer structures
on elliptic curves in our large family F .

Definition 7.5.1. A 2-Selmer bundle L (on F) is the data of, for each place v ∈ ΩQ,
a subset

Lv(F) ⊆
{
f ∈ VQv : (2−4I(f),2−6J(f))∈Invv(F)

and f is Qv-soluble

}
,

such that

(I) L∞(F) is either the whole set or the subset of binary quartic forms which have
a linear factor over R – we say that L∞(F) is type 2 or type 1 respectively for
the two options;

(II) for each prime number p, Lp(F) ∩ VZp is closed and open in VZp and is a union
of PGL2(Qp)-equivalence classes;
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(III) for every (I, J) ∈ Inv(F), all but finitely many prime numbers p satisfy{
f ∈ VZp : (I(f),J(f))=(24I,26J)

and f∈Lp(F)

}
=
{
f ∈ VZp : (I(f),J(f))∈(24I,26J)

f is Qp-soluble

}
;

(IV) there is a constant C(L ) ∈ R>0 such that for every prime number p ≥ C(L )
and every f ∈ VZ: if p2 - ∆(f) then f ∈ Lp(F).

For each 2-Selmer bundle L we denote the subset

L (F) :=
{
f ∈ VZ : (2−4I(f), 2−6J(f))∈Inv(F)

∀v∈ΩQ, f∈Lv(F)

}
⊆ VZ.

Remark 7.5.2. By definition, L (F) is automatically a union of PGL2(Q)-equivalence
classes. The restrictions on L∞(F) should be understood as follows. If ∆′(I, J) < 0
then #EI,J(R)/2EI,J(R) = 1 so that being R-soluble is equivalent to having a linear
factor by Corollary 7.2.4. If instead ∆′(I, J) > 0 then #EI,J(R)/2EI,J(R) = 2, and so
a choice of subgroup can be either the whole group or trivial. Under the correspondence
Corollary 7.2.4 such a choice is equivalent to deciding whether to include all R-soluble
forms with appropriate invariants or just the ones with a linear factor. Our constraint
essentially forces that this decision is uniform across all of the elliptic curves E ∈ F .

We can understand the set VZ ∩ L∞(F) of binary quartic forms in terms of the
V

(i)
Z of Notation 7.2.1. We list all of the possibilities in the table below for the readers

convenience, for an explanation of this see the discussion at the start of [BS15a, §2.1].

Type of L∞(F) Inv∞(F) VZ ∩L∞(F)
1 {(I, J) : ∆(I, J) < 0} V

(1)
Z

1 {(I, J) : ∆(I, J) > 0} V
(0)
Z

1 {(I, J) : ∆(I, J) 6= 0} V
(0)
Z ∪ V (1)

Z

2 {(I, J) : ∆(I, J) < 0} V
(1)
Z

2 {(I, J) : ∆(I, J) > 0} V
(0)
Z ∪ V (2+)

Z

2 {(I, J) : ∆(I, J) 6= 0} V
(0)
Z ∪ V (1)

Z ∪ V (2+)
Z

Table 7.1: The possibilities for VZ∩L∞(F), dependent on the type of L∞(F)
and Inv∞(F)

A 2-Selmer bundle associates a Selmer structure of sorts to every elliptic curve in
the family. We will define it below, then prove the important properties afterwards.

Definition 7.5.3. Let L be a 2-Selmer bundle. Then for each elliptic curve E ∈ F
and each place v ∈ ΩQ, writing (I, J) := (I(E), J(E)), we define the subset

L (E)v := δ

({
x ∈ E(Qv)/2E(Qv) :

x corresponds via Corollary 7.2.4
(with Weierstrass model E24I,26J )

to a subset of Lv(F)

})
⊆ H1(Qv, E[2]),

where δ : E(Qv)/2E(Qv)→ H1(Qv, E[2]) is the usual connecting map from the Galois
cohomology of the multiplication-by-2 exact sequence on E.



CHAPTER 7. BHARGAVOLOGY & MULTIQUADRATIC EXTENSIONS 167

We then define the associated Selmer set for each E ∈ F to be

SelL (Q, E[2]) :=
{
x ∈ H1(Q, E[2]) : resv(x) ∈ L (E)v ∀v ∈ ΩQ

}
,

where resv : H1(Q, E[2])→ H1(Qv, E[2]) is the usual restriction map.

Remark 7.5.4. Note that, as in Remark 7.5.2, for each 2-Selmer bundle L we have
that L∞(F) has type 2 if and only if for every E ∈ F with ∆′(I(E), J(E)) > 0, we
have #L (EI,J)∞ = 2.

Lemma 7.5.5. Let L be a 2-Selmer bundle, and E ∈ F be an elliptic curve. If
L (E)v ⊆ H1(Qv, E[2]) is a subgroup for every v ∈ ΩQ then L (E) := {L (E)v}v∈ΩQ

is
a Selmer structure with Selmer group SelL (Q, E[2]).

Proof. All that needs to be checked is that for all but finitely many v ∈ ΩQ, L (E)v is
in fact the group of unramified classes. Let I = I(E) and J = J(E) for convenience.

Note that the constraint in the definition of a 2-Selmer bundle ensures that all but
finitely many v ∈ ΩQ satisfy that the set of PGL2(Qp)-equivalence classes in

{f ∈ Lp(F) : (I(f), J(f)) = (I, J)}

corresponds via Corollary 7.2.4 to E24I,26J(Qp)/2E24I,26J(Qp). In particular, since for
all but finitely many p this right hand set maps under the connecting map δ to the
subgroup of unramified classes H1

nr(Q, E[2]), we have the result.

Of course there is a classical example of the construction above: the 2-Selmer bundle
which gives the usual 2-Selmer groups.

Example 7.5.6. Consider the 2-Selmer bundle S given by, for each place v ∈ ΩQ,
setting

Sp(F) =
{
f ∈ VQv : (2−4I(f),2−6J(f))∈Invv(F)

and f is Qv-soluble

}
.

Indeed: Axioms (I), (II) and (III) are clear from the definitions (and also implicit in
[BS15a]). Finally Axiom (IV) follows from Proposition 7.4.17.

The associated Selmer group for E ∈ F is the usual 2-Selmer group, i.e.

SelS (Q, E[2]) = Sel2(E/Q).

§ 7.5.2 | Statistics

Here we use the statistical results of [BS15a], as recalled in §7.4, to conclude a local
mass formula for the average size of Selmer groups obtained by 2-Selmer bundles. More
specifically we will apply Theorem 7.4.13, but we shall unpack the right hand side of
this a little. Firstly we establish the archimedean contribution.
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Proposition 7.5.7. If L is a 2-Selmer bundle then

N(VZ∩L∞(F);X)

= 1
27VolPGL2(Z)\PGL2(R)

∫
(I,J)∈Inv∞(F)
H(I,J)<X

#L (EI,J)∞
#EI,J(R)[2]dIdJ +O(X3/4+ε)

Proof. If #L (EI,J) = 2 for ∆(I, J) > 0 then this is [BS15a, Final paragraph before
Thm. 3.19]. We expose the proof alongside the case that we set the archimedean
condition to be triviality. Note that by [BS15a, eq. (20)] and [BS15a, Prop. 2.8 and
preceding discussion], and in their notation, we have for every i = 0, 1, 2+, 2−, writing
n1 = 2 and ni = 4 for i 6= 1, then

N(V (i)
Z ;X)

= VolRX(L(i))/ni +O(X3/4+ε)

=



1
27VolPGL2(Z)\PGL2(R)

∫
(I,J)∈Inv∞(F)

∆(I,J)>0
H(I,J)<X

1
4dIdJ +O(X3/4+ε) i = 0, 2+, 2−

1
27VolPGL2(Z)\PGL2(R)

∫
(I,J)∈Inv∞(F)

∆(I,J)<0
H(I,J)<X

1
2dIdJ +O(X3/4+ε) i = 1

The result then follows from Remark 7.5.4 and Table 7.1, checking each possibility for
Inv∞(F) and type for L∞(F) and using that N(V (i)

Z ) is uniform for i = 0, 2+, 2−.

We then we compute the local masses coming from the non archimedean places.

Lemma 7.5.8. Let L be a 2-Selmer bundle. Then for every prime p we have
∫

Lp(F)∩VZp

1
mp(f)df =

∣∣∣∣∣210

27

∣∣∣∣∣
p

VolPGL2(Zp)
∫

(I,J)∈Invp(F)

#L (EI,J)p
#EI,J(Qp)[2]dIdJ

Proof. Define the function φp : VZp → {0, 1}, by φp(f) = 1 if and only if f ∈ Lp(F).
By definition, φp is continuous and so by Theorem 7.4.18 we obtain

∫
Lp(F)

1
mp(f)df =

∫
Zp

φp(f)
mp(f)df

=
∣∣∣∣ 1
27

∣∣∣∣
p
VolPGL2(Zp)

∫
(I,J)∈Z2

p

∆(I,J)6=0

#L (EI,J)p
#EI,J(Qp)[2]dIdJ

=
∣∣∣∣∣210

27

∣∣∣∣∣
p

VolPGL2(Zp)
∫

(I,J)∈Invp(F)

#L (EI,J)p
#EI,J(Qp)[2]dIdJ

where the final step is given by the variable change (24I, 26J) 7→ (I, J), noting that
EI,J is Qp isomorphic to E24I,26J .

We then have the weighted indicator function for counting elements in a 2-Selmer
bundle.
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Definition 7.5.9. For every 2-Selmer bundle L and prime number p, let

φL ,p : VZp → {0, 1}

be the indicator function which is 1 if f ∈ Lp(F) and 0 else. Moreover, let ψL ,p :=
φL ,p/mp, and denote ψL := ∏

p ψL ,p : VZ → {0, 1}.

Finally, we need to know that this weighted indicator function (with which we wish
to apply Theorem 7.4.13) is indeed acceptable.

Lemma 7.5.10. Let L be a 2-Selmer bundle. Then the function ψL is acceptable (in
the sense of Definition 7.4.11), with local functions ψL ,p = φL ,p/mp.

Proof. That these local functions converge to the required global one is immediate from
Proposition 7.4.15. The second condition, that ψL ,p is locally constant outside of a
closed set of measure 0, is clear from the definitions of the maps φL ,p and mp. Finally,
to obtain the final condition, we need that for sufficiently large prime p, ψL ,p(f) = 1
whenever p2 - ∆(f). This follows from Proposition 7.4.17 and Axiom (IV) for the
2-Selmer bundle L .

We are now ready to state the main statistical corollary.

Theorem 7.5.11. Let L be a 2-Selmer bundle. Then, for each large family F of
elliptic curves,∑

E∈F
H′(E)<X

(#SelL (Q, E[2])− 1)∑
E∈F

H′(E)<X
1 = 2M L

∞ (F ;X)
∏
p

M L
p (F) + o(1),

where the local masses are

M L
∞ (F ;X) :=

∫
(I,J)∈Inv∞(F)
H(I,J)<X

#L (EI,J )∞
#EI,J (R)[2] dIdJ∫

(I,J)∈Inv∞(F)
H(I,J)<X

dIdJ

M L
p (F) :=

∫
(I,J)∈Invp(F)

#L (EI,J )p
#EI,J (Qp)[2]dIdJ∫

(I,J)∈Invp(F) dIdJ

Proof. By Lemma 7.4.16 (and the explanation below it) and Theorem 7.2.8 the nu-
merator of the left hand side is equal to the number of PGL2(Z)-orbits in L (F) of
height at most 212X with no rational linear factor counted with weights 1/m(f) (up
to acceptable error). Moreover, by [BS15a, Lemma 2.3] the number of PGL2(Z)-orbits
in L (F) of height at most 212X which are reducible but factor as a pair of irreducible
quadratics is at worst O

(
X2/3+ε

)
and so by counting orbits of irreducible forms we

will be within acceptable error of counting the orbits of forms with no rational linear
factor.
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Thus by Theorem 7.4.13, Lemma 7.5.10 and Table 7.1 we have
∑
E∈F

H′(E)<X

(#SelL (Q, E[2])− 1) = NψL
(VZ ∩L∞(F); 212X)

= N(VZ ∩L∞(F); 212X)
∏
p

∫
f∈VZp

ψp(f)df + o(X5/6)

Then, using the mass formulae in Proposition 7.5.7 and Lemma 7.5.8, this gives

N(VZ ∩L∞(F); 212X)
∏
p

∫
f∈VZp

ψp(f)df + o(X5/6)

= 210

27 VolPGL2(Z)\PGL2(R)
∫

(I,J)∈Inv∞(F)
H(I,J)<X

#L (EI,J)∞
#EI,J(R)[2]dIdJ

∏
p

∣∣∣∣∣210

27

∣∣∣∣∣
p

VolPGL2(Zp)
∫

(I,J)∈Invp(F)

#L (EI,J)p
#EI,J(Qp)[2]dIdJ

+ o(X5/6)

= 2


∫

(I,J)∈Inv∞(F)
H(I,J)<X

#L (EI,J)∞
#EI,J(R)[2]dIdJ


∏
p

 ∫
(I,J)∈Invp(F)

#L (EI,J)p
#EI,J(Qp)[2]dIdJ

+ o(X5/6).

where the last equality uses that ∏pVolPGL2(Zp) = ζ(2)−1 as well as the equality
VolPGL2(Z)\PGL2(R) = 2ζ(2). Moreover by [BS15a, Thm 3.17]

∑
E∈F

H′(E)<X

1 =
∫

(I,J)∈Inv∞(F)
H(I,J)<X

dIdJ

∏
p

(∫
(I,J)∈Invp(F)

dIdJ

)
+ o(X5/6).

Thus we have the result.

We have now reduced computing the average size of certain Selmer structures on
elliptic curves to proving that they can be packaged as Selmer groups arising from
2-Selmer bundles, a purely algebraic task, and then applying Theorem 7.5.11 and
computing some local masses.

§ 7.6 | The Corestriction Selmer Bundle
Our goal is to apply Theorem 7.5.11 to count the average size of corestriction Selmer
groups. In order to do this, we have the, somewhat algebraic, task of showing that
these Selmer groups arise from a 2-Selmer bundle. As in the previous section, we take
F to be a large family.

Definition 7.6.1. LetK/Q be a multiquadratic extension and let S := ker(Q×/Q×2 →
K×/K×2). Define the 2-Selmer bundle C (K) given by, for each place v ∈ ΩQ,

C (K)v(F) =
{
f ∈ VQv : (2−4I(f),2−6J(f))∈Invv(F)

and f is (Qv ,S)-soluble

}
.



CHAPTER 7. BHARGAVOLOGY & MULTIQUADRATIC EXTENSIONS 171

Now we verify that this does indeed define a 2-Selmer bundle.

Lemma 7.6.2. For every multiquadratic extension K/Q, C (K) is indeed a 2-Selmer
bundle. Moreover, our notation is well chosen:

• for every place v ∈ ΩQ, and every pair (I, J) ∈ Invv(F), choosing a place w ∈ ΩK

extending v we have

C (K)(EI,J)v = corKw/Qv(Sw(Kw;EI,J));

• for every E ∈ F the group SelC (K)(Q, E[2]) (in the sense of Definition 7.5.3) is
precisely the corestriction Selmer group (of Definition 2.2.1).

Proof. The identity C (K)(EI,J)v = corKw/Qv(Sw(Kw;EI,J)) in the lemma statement
is clear from the definition and Corollary 7.3.4. Similarly, the Selmer group statement
is immediate so long as it is well defined (i.e. so long as C (K) is a 2-Selmer bundle).

Note that for every v ∈ ΩQ we can write

C (K)v(F) =
⋂
θ∈S

(
θ−1 ·Sv(F)

)
.

As Axioms (I) and (II) are clearly invariant under taking intersections and scaling,
these follow from the fact that S is a 2-Selmer bundle.

By Corollary 7.3.4 we see that for each pair (I, J) ∈ Inv(F), and place v ∈ ΩQ the
set of PGL2(Qv)-equivalence classes in

{f ∈ C (K)v(F) : (I(f), J(f)) = (I, J)}

corresponds to the local corestriction group Cv(K/Q;EI,J) ⊂ H1(Q, EI,J [2]). By
Lemma 2.2.4, all but finitely many v satisfy

Cv(K/Q;EI,J) = H1
nr(Q, E[2]) = Sv(Q;EI,J).

Now for all but finitely many v the local corestriction group corresponds to the set
of soluble forms with invariants I, J as required for Axiom (III).

It remains to prove that Axiom (IV) holds. Let p ≥ 5 be a prime number, and
assume f ∈ VZ is such that p2 - ∆(f). By Proposition 7.4.17, f is soluble and so
its PGL2(Qp)-equivalence class corresponds to an element of Sp(Q;EI,J). Writing
(I, J) := (I(f), J(f)), we note that (by Appendix A) EI,J has reduction type I0 or
I1. By [Maz72, Corollary 4.4], Proposition 3.1.4 and Proposition 3.1.2, we thus have
Cp(K/Q;EI,J) = Sp(Q;EI,J) and so f ∈ C (K)p(F) as required.

Thus we have the following corollary of Theorem 7.5.11.
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Corollary 7.6.3. Let K/Q be a multiquadratic extension. Then,∑
E∈F

H′(E)<X
(#SelC (K)(Q, E[2])− 1)∑

E∈F
H′(E)<X

1 = 2M C (K)
∞ (F ;X)

∏
p

M C (K)
p (F) + o(1),

where the local masses are

M C (K)
∞ (F ;X) :=

∫
(I,J)∈Inv∞(F)
H(I,J)<X

#C (K)(EI,J )∞
#EI,J (R)[2] dIdJ∫

(I,J)∈Inv∞(F)
H(I,J)<X

dIdJ
,

M C (K)
p (F) :=

∫
(I,J)∈Invp(F)

#C (K)(EI,J )p
#EI,J (Qp)[2] dIdJ∫

(I,J)∈Invp(F) dIdJ
.

Proof. Immediate from Lemma 7.6.2 and Theorem 7.5.11.

Of course: the local masses above depend on the family F , and so we cannot really go
much further in this generality.

§ 7.7 | The Family of All Elliptic Curves
We conclude the chapter by applying Corollary 7.6.3 for the most common family of
interest: that of all elliptic curves.

Notation 7.7.1. We denote by Fall the large family of elliptic curves FΣ where each
Σv is taken to be maximal (see Definition 7.4.4).

Note that Fall is, of course, in bijection with the set E .

§ 7.7.1 | Local Densities

Here we provide some lemmas and compute some integrals which will be of use when
we go to apply Corollary 7.6.3. To ease our space use somewhat, we introduce some
notation for this section.

Notation 7.7.2. Recall the notation in Notation 6.1.7. We additionally define for
each prime number p the relative density of a subset Z ⊆ Ep to be

Dp(Z) :=
∫
(A,B)∈Z dAdB∫
(A,B)∈Ep dAdB

=
∫

(A,B)∈Z dAdB

1− p−10 .

Lemma 7.7.3. Let p ≥ 5 be a prime number and a ∈ F×p , then

Dp

({
(A,B) ∈ Ep : EA,B has reduction type III

and Ap−1≡a mod p

})
= p6

p10 − 1 ,

and
Dp

({
(A,B) ∈ Ep : EA,B has reduction type III∗

and Ap−3≡a mod p

})
= p

p10 − 1 .
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Proof. The first equality follows from Lemma 6.2.3. The second equality is seen by
noting that the set we are taking density of is the image of the one in the first equality
under the map (A,B) 7→ (p2A, p3B) by Appendix A.

Lemma 7.7.4. Let p ≥ 5 be a prime number and n ∈ {0, 1, 3}, then

Dp

({
(A,B) ∈ Ep : EA,B has reduction type I0

and T 3+AT+B has n roots

})
=


p8(p2−1)
3(p10−1) if n = 0,
p9(p−1)
2(p10−1) if n = 1,
p8(p−1)(p−2)

6(p10−1) if n = 3,

and

Dp

({
(A,B) ∈ Ep : EA,B has reduction type I∗0

and T 3+Ap−2T+Bp−3 has n roots

})
=


p3(p2−1)
3(p10−1) if n = 0,
p4(p−1)
2(p10−1) if n = 1,
p3(p−1)(p−2)

6(p10−1) if n = 3,

Proof. The first equality follows from Lemma 6.2.5. The second equality is seen by
noting that the set we are taking the density of is the image of the one in the first
equality under the map (A,B) 7→ (p2A, p3B) by Appendix A.

Lemma 7.7.5. Let p ≥ 5 be a prime number and n > 0 an integer, and let R1, R2 ∈{
F×2
p ,F×p \F×2

p

}
. Then

Dp

({
(A,B) ∈ Ep :

EA,B is type In at p
(B mod p)∈R1

((4A3+27B2)/pn mod p)∈R2

})
= p8−n(p− 1)2

4(p10 − 1)

and
Dp

({
(A,B) ∈ Ep :

EA,B is type I∗n at p
(Bp−3 mod p)∈R1

((4A3+27B2)/pn+6 mod p)∈R2

})
= p3−n(p− 1)2

4(p10 − 1) .

Proof. We note that by Tate’s algorithm (see Appendix A){
(A,B) ∈ Ep :

EA,B is type In at p
(B mod p)∈R1

((4A3+27B2)/pn mod p)∈R2

}
=
{

(A,B) ∈ Z2
p :

(B mod p)∈R1
4A3+27B2≡0 mod pn

((4A3+27B2)/pn mod p)∈R2

}
.

It follows from Lemma 6.3.2 that for each B ∈ Z×p ,∫
A∈Zp

4A3+27B2≡0 mod pn
((4A3+27B2)p−n mod p)∈R2

dA =
∑
u∈R2

∫
A∈Zp

4A3+27B2≡upn mod pn+1

dA

=


(p−1)#µ3(Fp)

2pn+1 if B2 mod p ∈ 4F×3
p ,

0 else.
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Thus∫
B∈Zp

(B mod p)∈R1

∫
A∈Zp

vp(4A3+27B2)=n
((4A3+27B2)p−n mod p)∈R2

dAdB =
∫

B∈Zp
(B mod p)∈R1

(B2 mod p)∈4F×3
p

#µ3(Fp)(p− 1)
2pn+1 dB

=
#F×p
#Fp

#F×6
p

#F×p
#µ3(Fp)(p− 1)

2pn+1

= #µ3(Fp)(p− 1)2

#µ6(Fp)2pn+2

= (p− 1)2

4pn+2 ,

and so
Dp

({
(A,B) ∈ Ep :

EA,B is type In at p
(B mod p)∈R1

((4A3+27B2)/pn mod p)∈R2

})
= p8−n(p− 1)2

4(p10 − 1) ,

as required.
The second equality is seen by noting that the set we are taking the density of is the

image of the one in the first equality under the map (A,B) 7→ (p2A, p3B) by Appendix
A.

§ 7.7.2 | Computing the p-adic Factors

We can now compute each of the p-adic masses in Corollary 7.6.3 for the family of all
elliptic curves. Recall Notation 6.1.7.

Lemma 7.7.6. Let K/Q be a multiquadratic extension. For every prime number p,

M C (K)
p (Fall) =

∣∣∣∣12
∣∣∣∣
p

∫
(A,B)∈Ep #

(
EA,B(Qp)

NKw/QpEA,B(Kw)+2EA,B(Qp)

)−1
dAdB

1− p−10 ,

where w ∈ ΩK is a place extending the place at p.

Proof. Let p be a prime number, (I, J) ∈ Invp(Fall), and for ease write E = EI,J .
Firstly note that, since E(Qp) has a finite index subgroup isomorphic to the additive
group Zp (see e.g. [Sil09, VII Prop. 6.3]), we have

#E(Qp)/2E(Qp)
#E(Qp)[2] = #Zp/2Zp

#Zp[2] =
∣∣∣∣12
∣∣∣∣
p

Therefore, by Lemma 7.6.2 and Lemma 2.2.10, the ratio M C (K)
p (Fall) is described by

the local norm index modulo 2 from Chapter 6

#C (K)(E)p
#E(Qp)[2] = #E(Qp)/2E(Qp)

#E(Qp)[2]2ιp(K/Q;E) =
∣∣∣∣12
∣∣∣∣
p

2−ιp(K/Q;E)

Also, for every prime number p 6= 3 we have

Invp(Fall) =
{

(−3A,−27B) ∈ Z2
p : vp(A) < 4 or vp(B) < 6

}
= Ep,
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Therefore, by the above and in the language of Notation 6.1.7 we have (for p 6= 3)

M C (K)
p (Fall) =

∣∣∣∣12
∣∣∣∣
p

∫
(A,B)∈Ep #

(
EA,B(Qp)

NKw/QpEA,B(Kw)+2EA,B(Qp)

)−1
dAdB

1− p−10 ,

as required. When p = 3, the change of variables (I, J) 7→ (A,B) contributes a factor
of |81|3 to both the numerator and denominator, so that the above expression holds
for p = 3 also.

It remains to compute the integral above, which we now break into cases and
compute using the density calculations in §7.7.1.

Lemma 7.7.7. Let K/Q be a multiquadratic extension. For each prime number p ≥ 5
such that K/Q is unramified at p,

∫
(A,B)∈Ep #

(
EA,B(Qp)

NKw/QpEA,B(Kw)+2EA,B(Qp)

)−1
dAdB

1− p−10

= 16p11 + 16p10 +−8p9 + 8p8 − 8p7 − 10p6 − 4p5 + 7p4 − p3 − 8p2 − 24p− 1
16(p10 − 1)(p+ 1) .

Proof. Define the following sets

S1 =
(A,B) ∈ Ep :

EA,B has reduction type given by one of the following:
•In for some n∈2Z>0

•III
•I∗n for some n∈(2Z≥0+1)

•III∗

 ,
S2 =

{
(A,B) ∈ Ep :

EA,B has reduction type given by one of the following:
•I∗0 and T 3+Ap−2T+Bp−3 has 3 roots in Fp

•I∗n for some n∈2Z≥0 and −(27B2+4A4)p−(6+n)∈F×2
p

}
,

S0 = Ep\ (S1 ∪ S2) .

Then by Proposition 3.2.9,

∫
(A,B)∈Ep #

(
EA,B(Qp)

NKw/QpEA,B(Kw)+2EA,B(Qp)

)−1
dAdB

1− p−10 =
2∑
i=0

2−iDp(Si).

The relative densities of these sets can then be computed directly from Lemmas 7.7.3,
7.7.4, and 7.7.5 as

Dp(Si) =


(p5+1)p
(p10−1) + (1+p4)p4(p−1)2

(p10−1)(p2−1) if i = 1
p3(p−1)(p−2)

6(p10−1) + p3(p−1)2

4(p10−1)(p2−1) if i = 2

=


p(p8−p7+p6+p5+p4−p3+p+1)

(p10−1)(p+1) if i = 1
p3(p−1)(2p2−2p−1)

12(p10−1)(p+1) if i = 2

and so, since Dp(S0) = 1− (Dp(S1) +Dp(S2)), the result follows.

Lemma 7.7.8. Let K/Q be a multiquadratic extension. For each prime number p ≥ 5
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such that K/Q is ramified and quadratic at p,

∫
(A,B)∈Ep #

(
EA,B(Qp)

NKw/QpEA,B(Kw)+2EA,B(Qp)

)−1
dAdB

1− p−10

= (p− 1)(p4 − p3 + p2 − p+ 1)(46p5 + 62p4 + 79p3 + 84p2 + 84p+ 48)
48(p10 − 1) .

Proof. Fix a place w ∈ ΩK such that w | p and choose θ ∈ Zp such that Kw = Qp(
√
θ).

Define the following sets

S1 =


(A,B) ∈ Ep :

EA,B has reduction type given by one of the following:
•I0 and T 3+AT+B has 1 root in Fp

•I∗0 and T 3+Aθ−2T+Bθ−3 has 1 root in Fp
•In for some n∈Z>0 and (−1)n+16B(4A3+27B2)θ−n∈F×2

p

•I∗n for some n∈Z>0 and (−1)n+16B(4A3+27B2)θ−(n+6)∈F×2
p

•III and −Aθ−1 6∈F×2
p

•III∗ and −Aθ−3 6∈F×2
p


,

S2 =

(A,B) ∈ Ep :

EA,B has reduction type given by one of the following:
•I0 and T 3+AT+B has 3 roots in Fp

•I∗0 and T 3+Aθ−2T+Bθ−3 has 3 roots in Fp
•In for some n∈2Z>0 and 6B 6∈F×2

p and (4A3+27B2)θ−n∈F×2
p

•I∗n for some n∈2Z>0 and 6Bθ−3 6∈F×2
p and (4A3+27B2)θ−(n+6)∈F×2

p

 ,
S0 = Ep\ (S1 ∪ S2) .

Then by Proposition 3.2.9,

∫
(A,B)∈Ep #

(
EA,B(Qp)

NKw/QpEA,B(Kw)+2EA,B(Qp)

)−1
dAdB

1− p−10 =
2∑
i=0

2−iDp(Si).

The relative densities of these sets can then be computed directly from Lemmas 7.7.3,
7.7.4, and 7.7.5 as

Dp(Si) =


(p5+1)p4(p−1)

2(p10−1) + (p5+1)p3(p−1)
2(p10−1) + (p5+1)p(p−1)

2(p10−1) if i = 1
(p5+1)p3(p−1)(p−2)

6(p10−1) + (p5+1)p3(p−1)
4(p10−1)(p+1) if i = 2

=


p(p−1)(p3+p2+1)(p5+1)

2(p10−1) if i = 1
p3(p−1)(2p2−2p−1)(p5+1)

12(p10−1)(p+1) if i = 2

and so, since Dp(S0) = 1− (Dp(S1) +Dp(S2)), the result follows.

Lemma 7.7.9. Let K/Q be a multiquadratic extension. For each prime number p ≥ 5
such that K/Q is biquadratic at p,

∫
(A,B)∈Ep #

(
EA,B(Qp)

NKw/QpEA,B(Kw)+2EA,B(Qp)

)−1
dAdB

1− p−10

= (p+ 1)(p− 1)(p4 − p3 + p2 − p+ 1)(5p5 + 15p4 + 13p3 + 9p2 + 13p+ 8)
8(p10 − 1)(p+ 1) .
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Proof. Define the following sets

S1 =

(A,B) ∈ Ep :

EA,B has reduction type given by one of the following:
•I0 and T 3+AT+B has 1 root in Fp

•I∗0 and T 3+Aθ−2T+Bθ−3 has 1 root in Fp
•In for some n∈2Z>0 and −(4A3+27B2)p−n 6∈F×2

p

•I∗n for some n∈2Z>0 and −(4A3+27B2)p−(n+6) 6∈F×2
p

•In or I∗n for some n∈(2Z>0−1)

 ,

S2 =

(A,B) ∈ Ep :

EA,B has reduction type given by one of the following:
•I0 and T 3+AT+B has 3 roots in Fp

•I∗0 and T 3+Aθ−2T+Bθ−3 has 3 roots in Fp
•In for some n∈2Z>0 and −(4A3+27B2)p−n∈F×2

p

•I∗n for some n∈2Z>0 and −(4A3+27B2)p−(n+6)∈F×2
p

•III or III∗

 ,
S0 = Ep\ (S1 ∪ S2) .

Then by Proposition 3.2.11,

∫
(A,B)∈Ep #

(
EA,B(Qp)

NKw/QpEA,B(Kw)+2EA,B(Qp)

)−1
dAdB

1− p−10 =
2∑
i=0

2−iDp(Si).

The relative densities of these sets can then be computed directly from Lemmas 7.7.3,
7.7.4, and 7.7.5 as

Dp(Si) =


(p5+1)p4(p−1)

2(p10−1) + (p5+1)(p3+2p2)(p−1)2

2(p10−1)(p2−1) if i = 1
(p5+1)p3(p−1)(p−2)

6(p10−1) + (p5+1)p3(p−1)2

2(p10−1)(p2−1) + (p5+1)(p−1)p
2(p10−1) if i = 2

=


p2(p5+1)(p−1)(p3+p2+p+2)

2(p10−1)(p+1) if i = 1
(p5+1)(p−1)p(p4−p3+p2+3p+3)

6(p10−1)(p+1) if i = 2

and so, since Dp(S0) = 1− (Dp(S1) +Dp(S2)), the result follows.

§ 7.7.3 | The Archimedean Contribution

We now compute the archimedean factor in Corollary 7.6.3 for the family Fall.

Lemma 7.7.10. Let K/Q be a multiquadratic field, and (I, J) ∈ R2 be elements such
that ∆′(I, J) 6= 0. Then

#C (K)(EI,J)∞
#EI,J(R)[2] =


1
4 if K is imaginary and ∆′(I, J) > 0
1
2 else

Proof. Let w ∈ ΩK be an archimedean place, and denote E := EI,J . Then note that
by Lemma 7.6.2

C (K)(E)∞ = NKw/RE(Kw)/2E(R).

From this identity the case that K is real (so Kw = R) is obvious (see e.g. [BK77, Prop
3.7]).
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If, on the other hand, K is imaginary then noting that NC/RE(C) = 2E(R) we have

#(NC/RE(C)/2E(R))
#E(R)[2] =


1
2 if ∆′(I, J) < 0
1
4 if ∆′(I, J) > 0,

as required, since ∆′(I, J) is the discriminant of the elliptic curve EI,J .

Lemma 7.7.11. Let K/Q be a multiquadratic extension. Then we have an equality

M C (K)
∞ (Fall;X) =


1
2 if K is real,
9
20 if K is imaginary.

Proof. If K is real then this is immediate from the definition of M C (K)
∞ (Fall;X) and

Lemma 7.7.10. If K is imaginary then by Lemma 7.7.10 we have

M C (K)
∞ (F ;X) =

∫
(I,J)∈R2

∆′(I,J)6=0
H(I,J)<X

#C (K)(EI,J )∞
#EI,J (R)[2] dIdJ

∫
(I,J)∈R2

∆′(I,J) 6=0
H(I,J)<X

dIdJ

= 1
2 −

∫
(I,J)∈R2

H(I,J)<X
∆′(I,J)>0

dIdJ

4
∫

(I,J)∈R2

∆′(I,J)6=0
H(I,J)<X

dIdJ

= 9
20 .

where the final equality is obtained via simple minded calculus.

§ 7.7.4 | The Average Size of the Corestriction Selmer Group

We can now compute the average size of the corestriction Selmer group. We begin with
a definition.

Definition 7.7.12. For every multiquadratic extension K/Q and each prime number
p ≥ 5 define local factors

Lp(C (K)) :=



(p−1)(p4−p3+p2−p+1)(46p5+62p4+79p3+84p2+84p+48)
48(p10−1)

if K/Q is ramified and
quadratic at p,

16p11+16p10+−8p9+8p8−8p7−10p6−4p5+7p4−p3−8p2−24p−1
16(p10−1)(p+1)

if K/Q is unramified and
quadratic at p,

(p+1)(p−1)(p4−p3+p2−p+1)(5p5+15p4+13p3+9p2+13p+8)
8(p10−1)(p+1) if K/Q is biquadratic at p,

1 if K/Q is totally split at p.

For p ∈ {2, 3} we define some ‘coarse’ local factors

Lp(C (K)) :=


1 if K/Q is totally split at p,

1
22+[Kw :Q2] if p = 2 and K/Q is not totally split at p,
1
4 if p = 3 and K/Q is not totally split at p.
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Moreover, define an archimedean factor

L∞(C (K)) :=


1
2 if K is real,
9
20 if K is imaginary.

These local factors allow us to, finally, concisely describe the average size of core-
striction Selmer groups.

Theorem 7.7.13. Let K/Q be a multiquadratic extension, recall Notation 7.7.1, and
for concision write

A(K) := lim
X→∞

∑
E∈Fall
H′(E)<X

(
#SelC (K)(Q, E[2])− 1

)
∑

E∈Fall
H′(E)<X

1 .

Then we have inequalities

4
∏
v∈ΩQ

Lv(C (K)) ≤ A(K) ≤ 4
∏
v∈ΩQ
v-6

Lv(C (K)).

In particular, if 2 and 3 are totally split in K/Q we have an equality

A(K) = 4
∏
v∈ΩQ

Lv(C (K)).

Proof. By Corollary 7.6.3, computing all of the masses except those at 2 and 3 using
Lemmas 7.7.7, 7.7.8, 7.7.9, and 7.7.11, we have

A(K) =
 ∏
p∈{2,3}

M C (K)
p (Fall)

 2L∞(C (K))
∏
p≥5
prime

Lp(C (K)). (7.6)

For p ∈ {2, 3}, using Lemma 5.3.3 and the fact that if K/Q is totally split at p then
the local norm is the identity map, we know that for every elliptic curve E/Qp

Lp(C (K)) ≤ 1
#
(
E(Qp)/(NKw/QpE(Kw) + 2E(Qp))

) ≤ 1.

Combining these bounds with Lemma 7.7.6 we obtain∣∣∣∣12
∣∣∣∣
p
· Lp(C (K)) ≤M C (K)

p (Fall) ≤
∣∣∣∣12
∣∣∣∣
p
.

Combining with the identity (7.6) we obtain the claimed result.

Remark 7.7.14. It is clear that the ‘coarse’ local factors L2 and L3 are approximations
of the correct factors for M C (K)

2 and M C (K)
3 . Broadly, the only ingredients going into

computing the local factors Lp for p ≥ 5 was the studious account of local norm indices
at p in §3.2, which itself only required performing Tate’s algorithm carefully. Certainly,
for p ∈ {2, 3} one could go through Tate’s algorithm, compute the corresponding results
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to those in §3.2, and then find the correct factors L2 and L3. However, we feel that both
the reader and the author have suffered enough already, and leave this as an exercise
for a reader who has an exceptionally long train journey to pass.

We state, as corollary, the bounds that this result leaves us with for the average
dimension of corestriction Selmer groups in the natural ordering on elliptic curves.

Corollary 7.7.15 (see also Theorem 6.5.4). Let K/Q be a multiquadratic extension,
then

lim sup
X→∞

∑
(A,B)∈E(X) dim SelC (K)(Q, E[2])

#E(X) ≤
(27

4

)5/6

4
∏
v∈ΩQ
v-6

Lv(C (K))

 .
Proof. Using the inequality r ≤ 2r−1, by Theorem 7.7.13 and Example 6.1.2 we know
that for C = ( 1

3√4 ,
1√
27) we have

lim sup
X→∞

∑
(A,B)∈EC(X) dim SelC (K)(Q, E[2])

#EC(X)

≤ lim sup
X→∞

∑
(A,B)∈EC(X)

(
#SelC (K)(Q, E[2])− 1

)
#EC(X)

≤ 4
∏
v∈ΩQ
v-6

Lv(C (K))

Now using the clear inclusions

EC(4X) ⊆ E(X) ⊆ EC(27X),

we obtain

lim sup
X→∞

∑
(A,B)∈E(X) dim SelC (K)(Q, E[2])

#E(X)

≤ lim sup
X→∞

#EC(27X)
#EC(4X)

∑
(A,B)∈EC(27X) dim SelC (K)(Q, E[2])

#EC(27X)

≤
(27

4

)5/6

4
∏
v∈ΩQ
v-6

Lv(C (K))


where the final inequality uses that #EC(X) ∼ 4C1C2X5/6

ζ(10) and the inequality from
Theorem 7.7.13 above.



Appendix A

Tate’s Algorithm

Let F be the completion of a number field at a non-archimedean place with residue
characteristic p ≥ 5. Let OF , vF and kF be the ring of integers, normalised valuation,
and residue field. Let E : y2 = x3 +Ax+B be a minimal integral model for an elliptic
curve defined over F (as in Definition 3.2.2), and write PE(T ) := T 3 +Aπ−2

F T +Bπ−3
F .

In Table A.1 we present the well known summary of the outcome of Tate’s algorithm
(as presented in [Sil94]) in this setting.
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Appendix B

Corestriction Selmer Group Compu-
tations

The explicit description of the corestriction Selmer group in §2.3 (originally due to
Kramer for quadratic extensions [Kra81]), along with the explicit realisation of the
twisted Kummer images in Chapter 7, allows us to compute corestriction Selmer groups
by adapting current methods for 2-Selmer groups. Work of Kramer [Kra81] shows that
the image of the norm from Sel2(E/K) inside of SelC (K)(Q, E[2]) is precisely the kernel
of the Cassels–Tate pairing restricted to the corestriction Selmer group, so we are also
able to compute the image of the norm.

In §B.1 we present the outcome of some such computations. We count the dimension
of SelC (K)(E/Q) for each quadratic fieldK = Q(

√
d) with d squarefree of absolute value

at most 20, and for each elliptic curve E/Q with height at most 107. As we discuss
in §1.4.3, the data seems to suggest that the statistical behaviour of NK/QSel2(E/K)
is similar to that of SelC (K)(Q, E[2]). In particular it seems likely that its average size
will also be positive, and so Sel2(E/K) would have nontrivial Gal(K/Q)-action for a
positive proportion of elliptic curves (ordered by height).

We present the code which was used to compute our data in §B.2.

§B.1 | Corestriction Selmer Group Data

Selmer structures over Q(
√
d) for all elliptic curves of height at most 107

Dimension 0 1 2 3 4 5
Count of Sel2(E/Q) 702001 1251306 654229 109166 4378 16

K = Q(
√
−19)

Count of SelC (K)(Q, E[2]) 1475870 961149 254582 28526 967 2
Count of NK/QSel2(E/K) 1550766 976689 180331 12987 322 1

K = Q(
√
−17)

Count of SelC (K)(Q, E[2]) 1747192 801070 158007 14362 465 0
Count of NK/QSel2(E/K) 1796425 808795 109101 6637 138 0
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Dimension 0 1 2 3 4 5
K = Q(

√
−15)

Count of SelC (K)(Q, E[2]) 1570766 899551 225201 24705 869 4
Count of NK/QSel2(E/K) 1639053 911830 157352 12426 431 4

K = Q(
√
−14)

Count of SelC (K)(Q, E[2]) 1907473 689456 114673 9211 283 0
Count of NK/QSel2(E/K) 1944670 694638 77659 4029 100 0

K = Q(
√
−13)

Count of SelC (K)(Q, E[2]) 1792345 769029 146364 12999 357 2
Count of NK/QSel2(E/K) 1838316 775987 100630 6043 120 0

K = Q(
√
−11)

Count of SelC (K)(Q, E[2]) 1428843 989455 271021 30742 1031 4
Count of NK/QSel2(E/K) 1508209 1005984 192353 14215 333 2

K = Q(
√
−10)

Count of SelC (K)(Q, E[2]) 1935023 667272 109823 8753 225 0
Count of NK/QSel2(E/K) 1971005 672187 73990 3838 76 0

K = Q(
√
−7)

Count of SelC (K)(Q, E[2]) 1271553 1066312 338525 43089 1612 5
Count of NK/QSel2(E/K) 1365659 1086773 245335 22629 696 4

K = Q(
√
−6)

Count of SelC (K)(Q, E[2]) 1877363 708409 124700 10358 265 1
Count of NK/QSel2(E/K) 1919689 714137 82522 4630 117 1

K = Q(
√
−5)

Count of SelC (K)(Q, E[2]) 1702623 832722 169696 15602 453 0
Count of NK/QSel2(E/K) 1756508 841140 116106 7184 158 0

K = Q(
√
−3)

Count of SelC (K)(Q, E[2]) 1364074 1012410 306132 37128 1346 6
Count of NK/QSel2(E/K) 1463054 1033708 207987 15831 511 5

K = Q(
√
−2)

Count of SelC (K)(Q, E[2]) 1567855 921926 210267 20399 648 1
Count of NK/QSel2(E/K) 1634648 933059 143913 9266 209 1

K = Q(
√
−1)

Count of SelC (K)(Q, E[2]) 1356169 1038346 291823 33529 1225 4
Count of NK/QSel2(E/K) 1448835 1056667 200023 15211 359 1

K = Q(
√

2)
Count of SelC (K)(Q, E[2]) 1606088 894675 200316 19387 629 1
Count of NK/QSel2(E/K) 1671520 905625 135324 8437 189 1

K = Q(
√

3)
Count of SelC (K)(Q, E[2]) 1695879 830127 177373 17207 509 1
Count of NK/QSel2(E/K) 1756483 839827 117070 7507 208 1
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Dimension 0 1 2 3 4 5
K = Q(

√
5)

Count of SelC (K)(Q, E[2]) 1431466 982759 274044 31711 1113 3
Count of NK/QSel2(E/K) 1517338 1000640 188929 13830 356 3

K = Q(
√

6)
Count of SelC (K)(Q, E[2]) 1886698 700868 122974 10269 286 1
Count of NK/QSel2(E/K) 1928753 706561 81084 4576 121 1

K = Q(
√

7)
Count of SelC (K)(Q, E[2]) 1730907 810900 163284 15505 500 0
Count of NK/QSel2(E/K) 1783613 819391 110948 7014 130 0

K = Q(
√

10)
Count of SelC (K)(Q, E[2]) 1911182 686194 114457 9025 238 0
Count of NK/QSel2(E/K) 1948266 691140 77523 4079 88 0

K = Q(
√

11)
Count of SelC (K)(Q, E[2]) 1776615 780860 149746 13502 371 2
Count of NK/QSel2(E/K) 1823772 788101 102840 6263 120 0

K = Q(
√

13)
Count of SelC (K)(Q, E[2]) 1453037 974343 263061 29687 963 5
Count of NK/QSel2(E/K) 1531146 990412 185586 13620 329 3

K = Q(
√

14)
Count of SelC (K)(Q, E[2]) 1942107 662161 108003 8556 269 0
Count of NK/QSel2(E/K) 1977786 667007 72504 3710 89 0

K = Q(
√

15)
Count of SelC (K)(Q, E[2]) 1990830 621291 100335 8359 281 0
Count of NK/QSel2(E/K) 2026192 626247 65159 3403 95 0

K = Q(
√

17)
Count of SelC (K)(Q, E[2]) 1316558 1042928 320321 39833 1451 5
Count of NK/QSel2(E/K) 1403336 1061659 234361 21103 633 4

K = Q(
√

19)
Count of SelC (K)(Q, E[2]) 1757324 795545 154170 13667 389 1
Count of NK/QSel2(E/K) 1804416 802711 107345 6501 122 1

Table B.1: The count of curves of height at most 107 with the size of corestric-
tion Selmer group or norm of Selmer group from a fixed quadratic field

§B.2 | Corestriction Selmer Group Code
Below is the code, written for the magma computer algebra system [BCP97], which we
use to compute the data in the previous section.

1 function IsInCoresSubgroup(C, selmer_primes_for_E : quad_twists := [1])
2 // Input:



APPENDIX B. CORESTRICTION SELMER GROUP COMPUTATIONS 186

3 // C: Hyperelliptic curve representing a class in the
4 // two selmer group of an elliptic curve E
5 // selmer_primes_for_E: finite set of primes for which the 2-selmer
6 // conditions of E above are not necessarily the
7 // unramified condition
8 // quad_twists: a set of elements in the mult group of the ground
9 // field of C

10 // Output:
11 // boolean: whether all of the quadratic twists of C by
12 // elements in quad_twists are everywhere locally soluble
13 /////////////////////////////////////////////////////////////////////
14 for D in quad_twists do
15 f_D := D*HyperellipticPolynomials(C);
16 for p in selmer_primes_for_E cat PrimeFactors(D) do
17 if not HasPoint(f_D, 2, p) then return false; end if;
18 end for;
19 end for;
20 return true;
21 end function;
22

23 function CoresSelmer(E, quad_discs)
24 // Input:
25 // E: Elliptic curve.
26 // quad_discs: A set for which K is the field obtained from Q by adjoining
27 // the squareroots found within.
28 // Output:
29 // AbGrp: The Corestriction Selmer group associated to E and the
30 // multiquadratic field K as a subgroup of the two Selmer
31 // group of E/Q.
32 // AbGrp: The two Selmer group of E/Q.
33 // map: map from the two selmer group to the etale algebra used in
34 // computations of two selmer groups
35 /////////////////////////////////////////////////////////////////////
36 TwoSel, mm := TwoSelmerGroup(E);
37 m := Inverse(mm);
38 selmer_primes_for_E :=
39 [p : p in BadPrimes(E) | p ne 2 and IsEven(TamagawaNumber(E, p))]
40 cat [2];
41 quad_twists := [&*Q:Q in &join[Subsequences(Set(quad_discs), k) : k in

[0..#quad_discs]]];↪→

42 cores_elts := [];
43 for s in TwoSel do
44 if IsInCoresSubgroup(TwoCover(m(s)), selmer_primes_for_E: quad_twists :=

quad_twists) then↪→

45 Append(~cores_elts, s);
46 end if;
47 end for;
48 return sub<TwoSel|cores_elts>, TwoSel, m;
49 end function;
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50

51

52 function NormOfSelmer(E, D)
53 // Input:
54 // E: Elliptic curve.
55 // D: A squarefree integer
56 // Output:
57 // AbGrp: The norms from the two Selmer group of E/Q(sqrt(d))
58 // AbGrp: The Corestriction Selmer group associated to E and the
59 // quadratic field Q(sqrt(d)) as a subgroup of the two Selmer
60 // group of E/Q.
61 // AbGrp: The two Selmer group of E/Q.
62 // map: map from the two selmer group to the etale algebra used in
63 // computations of two selmer groups
64 /////////////////////////////////////////////////////////////////////
65 Cores, TwoSel, m := CoresSelmer(E, [D]);
66 NTwoSel := [];
67 for g in Cores do
68 if g eq Cores.0 then continue; end if;
69 Cg := TwoCover(m(g));
70 inker := true;
71 for h in Cores do
72 if h eq Cores.0 then continue; end if;
73 if not CasselsTatePairing(Cg, TwoCover(m(h))) eq 0 then
74 inker := false;
75 continue;
76 end if;
77 end for;
78 if inker then Append(~NTwoSel, g); end if;
79 end for;
80 return sub<Cores|NTwoSel>, Cores, TwoSel, m;
81 end function;
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