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Abstract

The rate of growth of livestock is an important determinant of profitable and
environmentally sustainable production systems. Slowly growing animals usually have
higher fixed costs of production than rapidly growing animals, and their greenhouse gas
emissions intensity (GHG El) is higher. This thesis investigates the growth of cattle —
firstly by investigation of mathematical models of growth, and then by the investigation of
the effects of a recently developed method for cereal grain preservation using enzyme-
catalysed urea. Finally, the thesis considers faecal proteomic examination as a potential
tool to detect health and growth performance differences in cattle. The thesis had two main
aims: (1) to find the most suitable growth models for cattle at different life stages using
high-density bodyweight data and determine whether the best fitting model(s) improved
parameter estimation in comparison with the traditional linear model; (2) to describe the
effect of the enzyme-catalysed ammonia treatment of cereal grains on the growth

performance of finishing beef cattle and their faecal proteome.

Chapter 2 describes investigations into animal growth models for cattle. Animal growth
models can be used to quantify animal growth rates, inform about animal health status, and
can serve as the basis for strategies to improve animal productivity and genetic selection.
However, model fitting for retrospective performance of animal growth has mostly used
relatively infrequent bodyweight (BW) observations. Recent technical developments have
enabled multiple records of BW for every single animal every day, automatically weighing
animals when they drink milk replacer or water, during milking, or when moving between
yards or pens. The logistic, Brody, Gompertz, von Bertalanffy and Richards models were
applied to high-density but intermittent bodyweight data from the whole of life of
Holstein-Friesian cows; the linear, quadratic, cubic, power and exponential models were
fitted to near-continuous BWs of Holstein and Holstein-cross calves for the first 100 days
or so of life; the linear, logarithmic and negative exponential models were fitted to near-
continuous bodyweights of mixed-breed beef cattle for the last 100 days or so before
slaughter. Model comparisons were based on goodness-of-fit statistics and estimations of
biological parameters. Generalized linear models were fitted to compare the strength of
association between known correlates of growth rate and observed growth rate using two
alternative models of growth. Full data sets from the calves and reduced (sparse) data sets
were used for comparison of parameter estimate precision derived from the best fitting

model and the traditional linear model. The von Bertalanffy model was the best growth
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model to describe the whole of life of the lactating Holstein-Friesian cows, the exponential

model was the most suitable model for calves, and both the linear and the negative
exponential models performed well for fitting to the growth of the finishing beef cattle.
Application of the exponential model in calves improved the precision of parameter
estimation and the sensitivity of analysis of known correlates of growth compared with the

traditional linear model, with both high-density and sparse data.

Chapter 3 describes two trials: one was conducted on a Scottish beef finishing unit where
the cattle were fed on a diet based on barley that was treated with ammonia (ATB) or
propionate preservatives (PTB), and the other was conducted in a typical Italian beef
fattening system where the cattle were fed on a maize-based diet with ammonia treatment
(ATM) or without the ammonia treatment (UTM). Consistent with the findings in Chapter
2 that there was little consistent benefit in using non-linear models rather than traditional
linear models for analysing growth of cattle in the fattening period, the growth rate
estimates in chapter 3 used the traditional method - average daily gain (ADG). Growth
performance of animals from groups in each trial were compared, and effects of the
treatment on ruminal volatile fatty acids and faeces were studied. The enzyme-catalysed
ammonia treatment of grain decreased FCR and faecal starch concentrations, having
similar effects of improving the growth performance of cattle in beef fattening systems to
those previously reported in studies using direct insufflation with anhydrous ammonia.
This method of processing cereal grains has the potential to increase nutrient utilization on

commercial cattle farms.

Chapter 4 addresses a potential problem with faecal proteomic studies for cattle: whether
highly abundant high molecular weight glycoproteins have detrimental effects on protein
identification from faeces that were prepared by filter-aided sample preparation (FASP)
method. Therefore, an in-gel sample preparation method (IGSP) was developed, which

increased the number of bovine faecal protein identifications.

In Chapter 5, to follow up on the apparent differences in faecal starch and occurrence of
diarrhoea in the cattle that were fed ATB or PTB in Chapter 3, the faecal proteomes of a
subset of animals were investigated. Faecal samples were analysed by nanoflow ultrahigh-
performance liquid chromatography-electrospray ionisation-tandem mass spectrometry
(NUHPLC-ESI-MS/MS, Orbitrap Elite) after IGSP as developed in Chapter 4, trypsin

digestion and TMT labelling. Data were assigned using the Sequest HT search engine to



interrogate sequences in bovine, barley, bacterial (Clostridium, Bacteroides,
Ruminococcus, Prevotella and Eubacterium) and archaeal (30 methanogenic genera)
databases in Swissprot and TrEMBL using Proteome Discoverer (PD). Pairwise protein
abundance ratios for animals on the two diets were calculated, with the hypothesis test as
the background-based t-test in PD. Antibodies to bovine serum albumin and barley serpin
Z4 were used in western blots (WB) to validate the results from proteomics. In total, 281
bovine proteins, 199 barley proteins, 176 bacterial proteins and 190 archaeal proteins were
identified in the bovine faeces. The presence of bovine serum albumin and barley serpin
Z4 were confirmed by WB. Mucin 2 was the most abundant host protein identified in the
faeces, and many host digestive enzymes and protease inhibitors were also found. Barley
serpin Z4 was the most abundant barley protein identified in the faeces. Many microbial
proteins were identified in the faecal samples, with a large proportion of bacteria from
Clostridium, and Methanobrevibacter was the dominant archaeal genus. The host proteins
were significantly over-represented in biological processes such as microtubule-based
movement, defence response to Gram-positive bacterium, negative regulation of
endopeptidase activity, cell migration and proteolysis. The microbial proteins were over-
represented in biological processes including carbohydrate metabolism, gluconeogenesis,
glucose metabolism and glycolysis. Thirty-nine proteins were differentially abundant in the
two treatment groups, the majority being more abundant in the PTB group compared to the
ATB group (28 vs 11).

The investigations described in this thesis identified the best models for growth of cattle at
different life stages, and demonstrated the potential to improve the precision of parameter
estimations by the most suitable nonlinear models as an alternative to the traditional linear
model for calves up to about four months old. The enzyme-catalysed ammonia treatment
improved the production performance of finishing beef cattle in two distinct systems. New
protocols for faecal proteomic investigation were developed and the effects of enzyme-
catalysed ammonia treatment on the faecal proteome were examined. The host, dietary,
and microbial proteins of bovine faecal samples in this system were identified, providing a
foundation for the future study of cattle Gl-related diseases and optimizing diets for cattle

to improve performance.
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Chapter 1  General Introduction

Accurate estimation of cattle growth is potentially helpful, not only for monitoring animal
welfare and on-farm dietary management, but also for research into disease treatments and
the development of new zootechnical products. This thesis studied the growth of cattle
mainly from two angles: (1) determining the most suitable growth models for cattle at
different life stages using high-density bodyweight data, which can provide information on
cattle growth characteristics, and can be applied to accurately estimate animal health,
predict animal growth and serve as the basis for strategies to improve animal productivity
and genetic selection; (2) evaluating the effect of an enzyme-catalysed ammonia treatment
of cereal grains on the growth performance of finishing beef cattle and their faecal
proteome. The results of the faecal proteomic investigations, used in conjunction with the
most precise models for growth should provide a foundation for the identification of cattle
growth efficiency markers that might be useful for improving the growth performance. The
following content in this chapter will introduce the growth curves of cattle, chemical

processing of cereal grains and faecal proteomic studies.
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1.1 Growth curves of cattle

Growth trajectories of animals are considered to result from a combination of hereditary
and environmental effects and are defined as change in bodyweight (BW) or size over
time. The proportions of cattle body tissue change during the growth process, with bone
development mainly in the early stage, fat gain in the late stage, and muscle gain in
between (Honig et al. 2022). Breed and sex are two main factors that contribute to
differences in body composition (Alberti et al. 2008, Venkata Reddy et al. 2015, Honig et
al. 2022): beef breeds are characterized by high muscle and low to medium level of fatness
while dairy breeds are usually poorly muscled and have a high or medium level of fat;
cows and heifers have higher fat levels than steers and bulls. In general, growth curves of
animals are sigmoid-shaped, the rate of gain increasing from birth until an inflection point
at which the growth rate decreases until the weight reaches a horizontal asymptote or
mature weight (Lupi et al. 2016, Rodrigues et al. 2018). Growth curves can be described
by nonlinear models, containing biologically meaningful parameters that are moderately
heritable, and the analysis of growth curves are therefore useful for the development of
genetic selection strategies to suit diverse production systems (Daskiran et al. 2010, Silva
et al. 2013, Crispim et al. 2015). From a management perspective, the analysis of growth
curves can enhance the assessment of the animal’s growth potential, including animals that
are in compensatory growth, which is the basis for improving production efficiency (Lupi
et al. 2016), and it can enable the early prediction of an animal’s ultimate performance
(Alonso et al. 2018, Paz et al. 2018, Nascimento et al. 2019). Assessment of the
management factors affecting growth, such as feed requirements (Daskiran et al. 2010),
detection of physiological disorders of animals preceding the clinical diagnosis of the
disease (Maltz et al. 1997), and analysing responses of treatments or response interactions

over time (Paz et al. 2018) are all possible through informed analysis of growth curves.

1.1.1 Measurement of bodyweight

In the past, livestock were kept by farmers with small numbers per family, and reliable
records of BW were very limited (Widyas et al. 2018). Bodyweight of cattle was most
often measured using manual scales set up in races or crushes. There are moving parts in
mechanical scales that wear out during use, friction errors caused by dirt within the
mechanisms can lead to inaccuracy, and errors are common when reading scales, not only
because of movement of animals but also human error. Manually weighing cattle in

crushes is not only stressful for the animals, but also labour-intensive for the owners
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(Dorota 2010). Digital scales overcome many of the problems of mechanical scales, but

precision of weight records remains imperfect. Measurements of BW are also not precise
reflections of actual BW because of variation in gut-fill, urine or milk volume. Because
BW is the primary measure from which animal growth curves can be derived, there is a

need to make it easier to measure BW correctly and at a higher frequency.

Bodyweights of livestock have been estimated from easily accessible morphometric
characteristics, such as thoracic circumference, body length, withers height and shoulder
width (Coopman et al. 2009, Paz et al. 2018). Researchers developed digital image
processing methods to obtain accurate measurements of body condition score (BCS) and
estimates of BW (Stajnko et al. 2008, Tasdemir et al. 2011). Dorota (2010) investigated
automatic estimation of BW in dairy cows using three-dimensional imaging. Its
repeatability, precision and sensitivity were good, and the correlation between BW
measured by scale and estimated by camera was high. Maltz et al. (1997) combined
individual self-feeders with walk-through scales that measured the BW electronically when
the animal was relatively still for a few seconds while eating. Recent technical
developments have enabled multiple records of BW to be made on every animal every day,
which is becoming increasingly common on commercial farms (Gargiulo et al. 2018,
Segerkvist et al. 2020). The automated weighing equipment is often a component of

automated feeding or milking systems (Thorup et al. 2012).

1.1.2 Models for animal growth

Animal growth curves can be analysed by different models, depending on the type of
animal under consideration and the developmental phase of interest. The logistic (Verhulst
1838), Richards (1959), Gompertz (1825), Brody (1945) and von Bertalanffy (1938)
models are the most commonly used models for characterization of growth trajectories,
especially over the whole period of growth of animals (Table 1-1). The logistic function
was originally used for modelling the growth of human populations rather than of
individual organisms, and the Gompertz function was applied to studies on human
mortality. Samuel Brody pointed out that the growth curve of animals could be divided
into two principal segments, a self-accelerating phase and a self-inhibiting phase, that join
during puberty, when the rate of gain is greatest in animals (Brody 1945). The Richards
function is an empirical function with one more parameter than the Brody function.

However, although it might improve model fitting, the additional parameter increases the
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probability of overfitting and of computational difficulties. The von Bertalanffy function

was proposed by assuming that the growth rate was the difference between the rate of
assimilation and the rate of consumption (Bertalanffy 1938), being considered as the
balance of catabolism and anabolism. It was first used for prediction of fish length from
age and was then found also to work for weight against age. Now it has been widely used
in growth studies of many organisms, including plants. When being used for growth
models, these functions use parameters with biological meaning, such as mature BW,
integration parameter and maturation rate, which can explain the whole growth process

from a biologically significant perspective.

Besides the models mentioned above, the Weibull and Log-normal regression models have
also been used to describe growth in male quails (Lucena et al. 2018), and the negative
exponential model was applied for modelling growth curves in Moghani sheep (Ghavi
Hossein-Zadeh 2017). Other approaches that combined models with machine-learning
based on matrix factorization (Alonso et al. 2018), and models with data transformation
methods such as quantile regression have also been applied for precise description of
growth of animals (Rodrigues et al. 2018, Nascimento et al. 2019).

Table 1-1 The underlying functions for nonlinear models that have been used for
livestock growth.

Model Equation Instantaneous growth rate Parameter

Gompertz BW = Ae B (AkBe™*) /(e + BY?
A: mature BW

Logistic BW = A(1+ Be™kt)! AkBeBe -kt B: integration
parameter

— _ —kt —kt

Brody BW = A(1—Be™) AkBe k: maturation rate

Richards BW = A1 — Be~ktym mAkBe~¥(1 — Be-keyni M- inflection
parameter

Von Bertalanffy BW = A(1 — Be *t)3 34kBe~*t(1 — Be Kty

1.1.3 Model fitting and comparison

Nonlinear models as described above can be fitted to summarize the information for the

whole of life bodyweight-age data of animals, and the parameters in the models can be
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interpreted from a biological point of view. Therefore, these model parameters have been

used to estimate breeding values for genetic selection and to intensify the expression of
economically important traits. Goodness-of-fit statistics can be applied to determine the
best growth model for application under each specific circumstance and in each specific
population. The most suitable growth model may not be strictly selected by having the best
goodness-of-fit statistics, but it often requires consideration of both goodness-of-fit
statistics and the estimates of the biologically significant parameters. In other words, one
model might provide excellent goodness-of-fit statistics, while providing biologically

nonsensical parameter estimates.

1.1.3.1 Biological parameters in the nonlinear growth models

Most of the parameters in the models represent biological traits of animals or groups of
animals. The parameter ‘A’ in the models is the asymptotic BW of the animal, and it is
interpreted as adult or mature BW. The parameter ‘B’ is the integration parameter, which
has no direct biological interpretation. Some researchers found it indicated the proportion
of the asymptotic BW to be gained after birth (Crispim et al. 2015, Pires et al. 2017), some
others suggested it reflected the degree of maturation at birth, the higher value the lower
birth weights (Gotuzzo et al. 2019). The parameter ‘k’ is generally interpreted as the
growth rate of the animal (Gotuzzo et al. 2019). The parameter ‘m’ in the Richards model
represents shape of the growth curve, that is, the point of inflection at which the phase of
deceleration commences just before the adult stature is reached. These parameters are key
elements of nonlinear growth models and are indispensable for the best model comparison.
A model should be preferred if the predicted values for parameters such as birthweight,

mature BW and mature age are closer to the observations.

1.1.3.2 Statistics for evaluation of models

Goodness-of-fit measurement is the key component of model comparison. Statistics such
as the coefficient of determination (R?), adjusted R? (R?qd;), mean squared error (MSE), root
mean square error (RMSE), mean absolute deviation (MAD), Akaike’s information
criterion (AIC) and Bayesian information criterion (BIC) have been used commonly to
compare the quality of models directly or relatively (Crispim et al. 2015, Pires et al. 2017,
Paz et al. 2018). The equations for the derivation of each statistic are as follows (Table 1-
2).
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Table 1-2. Statistics used for model comparison.

Model Equation Interpretation
Coefficient of determination (R?) RZ=1-Y1 (Yi— Yi)? /3P, (Yi—T)? Yi: observations
Yi': predicted values
i 2 2, . 2 .1 _ _ o — — R2 —
Adjusted R? (R?%dj) R%gj=1— ((n—-1)/(n—p—1))(1—R? 7 - mean of
Mean squared error (MSE) MSE = (1/n) ¥, (Yi— Yi")? observations
n: number of
Root MSE (RMSE) RMSE = VMSE observations
Akaike information criterion (AIC) AIC = 2p—2InL p: number of

parameters in model

Bayesian information criterion (BIC) BIC = plnn — 2InL L: maximum likelihood

In statistics, R? is the proportion of the variance in the dependent variable which is
predictable from the independent variables. It tells how much variance can be explained by
the model, providing a measurement of how well the regression predictions approximate
the observations. The value of R? ranges from 0 to 1, an R? of 1 indicating that the
predictions perfectly fit the data. However, for a given response, R? always increases when
adding more explanatory variables, regardless of their true relationship with the response
variables. Adjusted R? (R%dj) is less biased towards complex models but does not penalise

overfitting sufficiently and strongly enough as a selection criterion, and the value of R?j is

always < R? (Rousson and Gosoniu 2007). R? remains a good measurement of model fit

when all independent variables in the model affect the dependent variable, or all
parameters are significant, and the number of parameters is much lower than the sample

size.

Mean square error (MSE) (or mean squared deviation) is the average of squares of
residuals - the average squared difference between the estimated values and the
observations. A value of MSE close to 0 suggests a good fit of the model. However,
Gotuzzo et al. (2019) found it was not a good indicator of goodness-of-fit in their growth
models (using Gompertz, logistic and von Bertalanffy growth functions) because of
heteroscedasticity (the magnitude of the residuals later in life is much greater than in the
initial part). As an indicator of model fit, MSE is relatively more affected by
heteroscedasticity than either R? or R%qj. Root mean square error (RMSE) is the standard
deviation of the residuals; it tells how concentrated the data is around the predicted curve

of the model. Like MSE, RMSE is also sensitive to heteroscedasticity and penalizes larger
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errors. It has the same unit as the predictors, and same as MSE: smaller value suggests a

greater reliability of the model (Ghavi Hossein-Zadeh 2017, Selvaggi et al. 2017).

Akaike information criterion (AIC) and Bayesian information criterion (BIC) are statistics
that are used for comparison of models with different levels of complexity (Aho et al.
2014). For both indices, lower values indicate better models, but they only indicate the
relative quality of the models under comparison. They both penalize models with a large
number of parameters and the penalty on parameter number is higher in BIC than in AIC
(Hojjati and Ghavi Hossein-Zadeh 2018), provided n > 8. In cases of small sample size, the
AIC value might be smaller in a model with more parameters. Thus to address the risk of
overfitting, the AICc was developed (AICc = AIC + (2p?+2p)/(n-p-1)), which is
essentially AIC with a penalty term for the number of parameters. Researchers found that
results from these three statistics (AIC, AlCc, BIC) were heavily dependent on the degree
of unobserved heterogeneity between data sets and sample sizes (Brewer et al. 2016): BIC
performed better if heterogeneity was large while AIC and AICc were likely to perform
well when heterogeneity was small; AICc provided a stronger penalty than AIC for smaller

sample sizes, and stronger penalty than BIC for very small sample sizes.

1.1.3.3 Growth model comparisons in animal studies

Growth curves of animals are affected by, among other factors, breed, sex (Coutinho et al.
2015, Lupi et al. 2015), population structure (Ghavi Hossein-Zadeh 2015, Hojjati and
Ghavi Hossein-Zadeh 2018), management system and environmental conditions, so the
best model might be expected to vary with study location, farming system, breed or
species. For example, a study of Repartida goats (Pires et al. 2017) showed that the logistic
model provided the best average fit (highest R?, lowest MSE and MAD), the predicted
values being more consistent and closer to the actual observations, although it estimated a
lower BW at birth. The logistic model also performed the best in fitting the growth of
many animals such as Norduz lambs (Daskiran et al. 2010) and Segurena sheep (Lupi et al.
2015, Lupi et al. 2016). However, in a study of Iranian Mehraban sheep (Hojjati and Ghavi
Hossein-Zadeh 2018), the logistic model provided the worst fit (lowest values of Ragj?,
highest values of DW, RMSE, AIC and BIC), while the Brody model provided the best for
this breed. Crispim et al. (2015) proposed that the Brody model would be the best growth
model for Brahman cattle, and found it provided more accurate birthweight estimation than
the other models. The Richards model was found to be the best growth model for Iranian
Shall sheep (Ghavi Hossein-Zadeh 2015) because of the best Ragj?, RMSE, AIC and BIC,
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for Podolica bulls (Selvaggi et al. 2017) due to the accuracy in predicting mature BW as

well as lower RMSE than the other models, and for Angus cows on pasture because of
lowest AIC and BIC, and the best prediction of BWs (Goldberg and Racagnolo 2015).
However, this model increases numerical difficulties as it has four parameters, one more
parameter than the other growth models. It failed to reach convergence when fitting to the
growth of animals such as Morada Nova sheep (Paz et al. 2018) and Brahman cattle
(Crispim et al. 2015). For the von Bertalanffy model, it was found to be the best model for
Ile de France ewes (Moreira et al. 2016) since it provided the highest R? and the lowest
error mean square compared to the other models. However, in their study, researchers
found that the Brody model estimated the birthweight and BW at the end of trajectory
more accurately than the other models. The Gompertz model was proposed to be the most
suitable growth model for Raeini Cashmere goats (Ghiasi et al. 2018), however the
optimum age at slaughter and mature BW were different from the actual observations.
More details of these studies are shown in Table 1-3 below. It should be noted that the

greatest frequency of observations was every 15 - 20 days (Lupi et al. 2016).



Table 1-3 Models that have been used to describe the growth curve of farm animals.

24

Animal Age Weighing frequency Tested models Model comparison Best model Reference
Podolica bulls 0-810d Every 3 months Gompertz, logistic, Goodness-of-fit (RMSE, R?,  Logistic and Richards models ~ (Selvaggi et al. 2017)
Richards and von R2,qj and AIC) and BW (best goodness-of-fit);
Bertalanffy models estimation Richards model (accurate
predicted mature BW)
Brahman cattle 0-24m At birth, 6, 12, 15, 18, 24  Brody, logistic, von Goodness-of-fit (MSE, R?, Brody model (Crispim et al. 2015)
months old Bertalanffy, Gompertzand C, MAD and AIC)
Richards models
Angus cows 0-81ly At birth, weaning, 18 Brody, Gompertz, von Goodness-of-fit (-2 log Richards model (Goldberg and
months old and every Bertalanffy, logistic, and likelihood, AIC and BIC) Racagnolo 2015)
year Richards models and BW estimation
Segurenasheep 0-80d Every 15-20 days Brody, von Bertalanffy, Goodness-of-fit (R?, C, MSE  Logistic model (best for (Lupi et al. 2015)
Verhulst, logistic and and AIC) and BW biological growth curves); Von
Gompertz models estimation Bertalanffy model (best for
commercial growth curves)
Segurenasheep 0-80d Every 15-20 days Von Bertalanffy, Verhulst,  Goodness-of-fit (MD, C and  Logistic model (best general (Lupi et al. 2016)
logistic and Gompertz R?) fit); Verhulst model (best
models individual fit)
Ile de France 0-210d Every month Brody, von Bertalanffy, Goodness-of-fit (R%and Von Bertalanffy model (Moreira et al. 2016)
sheep logistic and Gompertz MSE)

models
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Repartida goat

Mehraban sheep

Shall sheep

Hemsin sheep

Morada Nova

sheep

Liangshan pigs

0-270d

0-365d

0-400d

0-36m

0-730d

0-250d

Every 30 days

Fewer than 5 records per

animal

Fewer than 5 records per

animal

At birth, 2, 3, 6, 12, 18,
24 and 36 months old

Every 15 days upto 1
year old and every 30
days from 1 to 2 years
old

20 records per animal

Brody, Gompertz, logistic,

von Bertalanffy and
Richards models
Brody, Negative
exponential, logistic,
Gompertz and von
Bertalanffy models
Brody, Negative

exponential, logistic,

Gompertz, von Bertalanffy

and Richards models

Negative exponential,

Brody, Gompertz, logistic,

Bertalanffy, Richards, and
Janoschek models

Brody, Richards, von
Bertalanffy, Gompertz,

and logistic models

VVon Bertalanffy,
Gompertz, and logistic

models

Goodness-of-fit (MSE, R?, C

and MAD)
Goodness-of-fit (RMSE,

R%q;, DW, AIC and BIC)

Goodness-of-fit (RMSE,
R2.qj, DW, AIC and BIC)

Goodness-of-fit (R?) and

BW estimation

Goodness-of-fit (R2, MSE,

MAE and RSD) and BW

estimation

Goodness-of-fit (R?)

Logistic model

Brody model

Richards model

Brody model

Gompertz model

Von Bertalanffy model

(Pires et al. 2017)

(Hojjati and Ghavi
Hossein-Zadeh 2018)

(Ghavi Hossein-Zadeh
2015)

(Kopuzlu et al. 2013)

(Paz et al. 2018)

(Luo et al. 2015)




1.1.4 Application of animal growth models

Growth models provide important information about animals, being able to characterize
animal performance. A negative relationship between the asymptotic BW (A) and maturing
rate (k) was found in lle de France female sheep (Moreira et al. 2016), indicating that the
animals which had high growth rates tended to have lower asymptotic BW compared to
those that had low growth rates. Sex was found to have a significant effect (p < 0.001) on
these two parameters of Morada Nova sheep (Paz et al. 2018): males always showed
higher A and k parameters than females. Similar findings were reported in Norduz sheep
(Daskiran et al. 2010) and Segurena sheep (Lupi et al. 2015) - Norduz male lambs grew
faster and attained larger mature BW than female lambs, while the Segurena female sheep
had higher growth rate and reached maturity earlier than the males, suggesting value in
segregating animals by sex to meet nutritional requirements and determine slaughter age

appropriately.

Researchers have proposed the potential of using the improved model parameters to
develop optimal selection strategies to achieve desired animal growth patterns (Coutinho et
al. 2015, Ghavi Hossein-Zadeh 2017) due to the moderate heritability of the parameters
and their correlations with each other. For example, positive genetic correlations between
A and k in pigs have been reported, and researchers identified quantitative trait loci that
affected these parameters (Lazaro et al. 2017). Additive genetic variations of biological
parameters in the Verhulst and logistic models have been found in Segurena sheep, and
were suggested to be introduced as additional selection criteria in breeding programmes
(Lupi et al. 2016). Coutinho et al. (2015) selected Nellore cattle by postweaning BWs and
found it resulted in the altered growth curves, which also suggested the use of growth
models with the biological parameters in selection and genetic improvement programmes.
Genetic merit of an outbred pig population has been predicted by analysing the weight-age
data, and the growth curves were constructed which incorporated genomic estimated
breeding values (JEBVSs) and identified the most relevant single nucleotide polymorphisms
(SNPs) associated with and likely candidate genes influencing growth model parameters
(Silva et al. 2013, Silva et al. 2017). Crispim et al. (2015) identified SNPs associated with
phenotypes based on growth model parameters in a multi-trait genome-wide association
study (GWAS) of Brahman cattle, which informed the search for causative mutations
influencing growth rates. Therefore, using estimated parameters from more accurate

growth models as selection criteria would be expected to improve the rate of selection.
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More accurate growth models enable more precise management compared with that
achieved using inaccurate models. Based on the best growth model and the relative
expression level of growth-related genes, researchers determined the most suitable
slaughter-weight for Liangshan pigs (Luo et al. 2015). Analysing the biological parameters
of the best model representing growth curves of Repartida goats (Pires et al. 2017),
researchers found that the animals had adapted to the adverse condition of environment
and suggested that nutritional strategies should be implemented after weaning, and animals
could be slaughtered before 210 days of age due to their slow growth rate at maturity. The
potential to alter growth curves of Irish beef cattle to meet specific breeding objectives had
been proposed. Early warning of anomalies was also possible and guidelines could be
provided to farmers based on the most suitable growth models of animals (Widyas et al.
2018).
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1.2 Chemical processing of cereal grains

In Europe, cereal grains contribute a large proportion of the diets for fattening cattle, and
particularly in northern and western Europe, they are often harvested with a high moisture
content, necessitating some form of preservation to prevent spoilage by microbial growth
(Olsson et al. 2002). Many physical approaches have been taken, such as controlling
moisture and temperature, and creating an anaerobic environment which is not conducive
to survival and reproduction of microorganisms and pests (Hashem et al. 2012, Navarro
2012). In order to not only inhibit contamination but also improve nutritional value and
promote nutrient utilization, some chemical methods have been applied to cereal grains
alone or in combination with physical methods (Muck et al. 2018). However, excessive use
or processing of grains can be harmful to animal health, for example by accelerating
ruminal starch degradation and increasing risk of rumen fermentation disorders (Humer
and Zebeli 2017). Finding an ideal grain processing method that can have as many of the
previously mentioned benefits as possible without compromising animal health has been

an important research topic.

1.2.1 Acid treatment of grains

Many acids, including formic acid, sorbic acid and benzoic acid, have been used for grain
storage (Raeker 1990). Organic acids such as propionic acid, lactic acid and acetic acid are
naturally present in the gastrointestinal (GlI) tract, so have been recommended on the
grounds that they are expected to be safe for users and animals (Castillo et al. 2004). In
addition to inhibiting microbial growth, acidification can improve protein preservation,
silage aerobic stability and nutrient characteristics of grains, thereby improving animal
performance (Humer and Zebeli 2017, Muck et al. 2018).

Gheller et al. (2020) found that acid treatments can maintain the temperature of grains for a
long period, avoiding the temperature increase which is associated with the growth of
undesirable microorganisms. They also directly inhibit contamination. For example, formic
acid, sorbic acid and benzoic acid can directly suppress spoilage bacteria and inhibit
moulds and yeasts (Muck et al. 2018). Nadeau (2007) reported a lower level of production
of lactic acid and ethanol in grains treated with formic acid or propionic acid, resulting in
better preservation. Propionic acid has been widely used to preserve and process high-

moisture grain for decades (Horton and Holmes 1975). Like the other acids, it can inhibit
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contamination (Jones et al. 1970, Goering and Gordon 1973, Raeker 1990) and improve
aerobic stability (Wang et al. 2017). For example, researchers found that a buffered
propionic acid-based additive prevented yeasts and production of butyric acid in barley and
maize, improving their aerobic stability (Kung and Ranjit 2001, Kung et al. 2004).

The effects of acid treatment of cereal grain on animal performance have also been studied.
Jones et al. (1970) found that average daily gain (ADG) and milk protein production of
dairy cows that were fed on propionic acid-treated maize were improved, and milk fat
percentage was decreased; for the heifers and the pigs, there was increased feed efficiency
(FE) with no observable side effects on animal health. Similarly, Horton and Holmes
(1975) reported increased ADG in beef cattle that were fed rolled propionic acid-treated
maize. Gheller et al. (2020) found an increase in feed intake (FI) of dairy cows, as well as
improvements in fat-corrected milk production and milk protein when a propionic acid-

treated total mixed ration (TMR) was fed.

1.2.2 Alkali treatment of grains
1.2.2.1 Effects of alkali treatment on grains

Many processing approaches to animal feed are based on alkalis such as sodium hydroxide
(NaOH), urea and ammonia (Campling 1991). The alkali treatments can prevent mould
growth on moist grain (Bothast et al. 1972, @rskov 1979, Deschard et al. 1987, Kabak et
al. 2006) and increase their pH (Anderson et al. 1981, Deschard et al. 1987). Compared to
untreated grains, treatment of NaOH was reported to increase the pH of high-moisture
maize (11.94 vs 4.53) (Anderson et al. 1981) and barley (10.2 vs 5.4) (Kennedy and Rice
1987), so did ammonium hydroxide (NH4OH) in maize (8.38) (Anderson et al. 1981). High
pH values of alkali-treated whole-crop wheat silages of 9.27, 8.93, 8.91 and 8.66
following treatment with NaOH, NaOH combined with urea, urea and ammonia,
respectively, compared to the pH of 4.88 in untreated wheat (Deschard et al. 1987). Like
acid treatment, alkali treatment was also expected to improve nutrient characteristics of
grains. Increased dry matter (DM), gross energy, neutral detergent fibre (NDF) and acid
detergent fibre (ADF) were found in the whole-crop wheat silages that were treated with
NaOH, urea, or combination of both (Deschard et al. 1987). However, adverse effects of
NaOH treatment such as reduction in vitamin E, lysine and cysteine have been reported
(McNiven et al. 1995, Dehghan-Banadaky et al. 2008). In addition to protecting grains



30

from contamination (Bothast et al. 1972, Kabak et al. 2006), treatment with ammonia
enhances the nutrient value as well. The addition of ammonia has been widely used to
increase non-protein nitrogen (NPN) (Horton 1978, Herrera-Saldana et al. 1982, Males and
Gaskins 1982, Kraiem et al. 1991), which contributes to improved reticuloruminal
microbial growth and activity (Rode et al. 1986), and might therefore improve animal
performance (Spanghero et al. 2017, Belanche et al. 2021). A commercially available
method (Harbro limited, Turriff, Scotland) of cereal grain preservation using enzyme to
catalyse the conversion of urea to ammonia has also been developed. Not like the previous
method that using anhydrous ammonia gas, grain is mixed with urea and a source of
urease, together with sufficient water to allow the reaction to occur, then deposited in
commodity bays and covered with plastic sheeting for 7-10 days, during which ammonia

gas percolates through the cereal grains and is absorbed by the grain.

1.2.2.2 Effects of alkali treatment on digestibility and rumen environment

Alkali treatment was originally used to increase the digestibility of low quality roughages
(Jackson 1977, Oji et al. 1977, Han et al. 1978, Herrera-Saldana et al. 1982, Kraiem et al.
1991), and has also been used for cereal grains (Laksesvela 1981). Sodium hydroxide
hydrolyses hemicelluloses and lignin, thus improving fibre digestibility (Berger et al. 1981,
McNiven et al. 1995). Ammonium hydroxide can improve the digestibility as well, but the
improvements of NaOH in digestibility of grains were reported to be greater than those
from NH4OH (Berger et al. 1981). Researchers found that the increased digestibility of
cereal grains from alkali treatment was similar to that achieved by rolling or crushing
(Drskov and Greenhalgh 1977), and recommended the use of alkali treatment instead of
mechanical treatment to save costs (Humer and Zebeli 2017). However, other researchers
found that there were no effects of NaOH, NaOH combined with urea, urea or anhydrous
ammonia treatments of wheat silage on apparent digestibility of organic matter (OM), and
the decreased digestibility of starch tended to offset the increase in fibre digestibility
(Deschard et al. 1987). McNiven et al. (1995) reported that the treatment of NaOH of
barley lower the starch digestibility in the rumen and small intestine of lactating cows
compared to those fed rolled or roasted barley. Increased DM digestibility of high-moisture
maize and ruminal fibre degradation resulted from the NaOH treatment have been reported
by Anderson et al. (1981), while no changes resulted from the NH4OH treatment compared
to the untreated diet were found. Rode et al. (1986) reported that there was no significant

effect of urea or anhydrous ammonia treatment on in vivo DM digestibility of high-
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moisture barley, but higher apparent digestibility of starch and ADF were found compared
to the untreated diet. In their study, in sacco DM degradation was greater after 8 hours’
incubation in the rumen when the diet included urea- and ammonia-treated compared to

untreated barley.

Alkali treatment can increase ruminal pH values (Anderson et al. 1981) and reduce ruminal
pH fluctuations (McNiven et al. 1995). The ruminal pH of cows that were fed with NaOH-
treated maize was increased compared to those fed the untreated diet (6.34 vs 5.83)
(Anderson et al. 1981). Higher ruminal pH was noted in sheep that were fed on ammonia-
treated grains compared to those fed on untreated barley (7.1 vs 6.6 after feeding for 4
weeks) (Laksesvela 1981) or barley supplemented with urea (6.24 vs 5.99) (Belanche et al.
2021). However, Robinson and Kennelly (1988) found that the ruminal pH of dairy cows
declined slightly (still above 6.09) as the level of ammoniation increased in treating barley.
In their studies (Robinson and Kennelly 1988, 1989), the ammonia treatment increased
ruminal acetate, butyrate and degradable NDF, but the rumen NDF in OM declined as the
level of ammonia treatment increased, and no effects of the ammonia treatment on
degradable DM and digestibility of OM, NDF or starch were found. Mandell et al. (1988)
reported increased degradation of ruminal crude protein (CP) and decreased degradation of
ruminal OM in steers that were fed ammonia-treated barley. Ruminal propionate was
increased and butyrate was decreased, while there were no effects on ruminal NDF
degradation, total VFA or acetate. Another important effect of the alkali treatment on
animals is to slow the degradation rate of starch in the rumen, thus lowering the risk of
rumen fermentation disorders (Humer and Zebeli 2017). A low rate of enzymatic glucose
release (Srivastava and Mowat 1980) and ammonia production in rumen (Nikulina et al.
2018) after ammonia treatment of cereals were reported, which might provide more
balanced fermentation and more stable conditions for microbial protein synthesis,
improving nutrient utilization (@drskov and Greenhalgh 1977, @rskov 1979) as well as

lowering the risk of rumen acidosis.

1.2.2.3 Effects of alkali treatment on animal performance

Higher liveweight gain and feed intake in steers that were fed NaOH-treated wheat silage
compared to those fed untreated diet was found (Deschard et al. 1987). However, there
were contrasting findings of the effects of NaOH treatment on animal intake (@rskov et al.

1978, McNiven et al. 1995). Average daily gain and FE were reduced in steers that were
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fed NaOH-treated maize (Anderson et al. 1981). There were increases in water intake and
urination due to alkali treatment of grains, which resulted in an increased requirement for
straw bedding (@rskov 1979, Deschard et al. 1987). Although Barnes and @rskov (1981)
did not find problems with animal health (livers and kidneys of slaughtered animals were
normal after animals were fed on 45 g/kg NaOH-treated barley over more than ten days),
the potential adverse effects on animals such as nephrotoxicity after prolonged feeding of
87.5 % NaOH-treated barley, possibly resulted from high sodium content and pH value
and the presence of lysinoalanine (Kennedy and Rice 1987), and risks to farmers as well as

possible caustic burns in animals still require attention.

With ammonia treatment, the possibility of palatability problems should also be considered
(Mandell et al. 1988), but can be solved by exposure to the air for some days prior to
feeding (Rode et al. 1986). The effects on animal performance have been inconsistent
among studies (Table 1-4). In sheep, increases in DMI and ADG, with improved
reproductive capacity, were reported if they were fed ammonia-treated barley compared to
untreated barley (Laksesvela 1981). Researchers found increases of ADG and FE in steers
(Mathison et al. 1989), improvement of milk yield and production of milk protein and
lactose in dairy cows that were fed ammonia-treated barley (Robinson and Kennelly 1989)
and increases in growth rate, DMI and final weights of steers that were fed ammonia-
treated maize (Phillip et al. 1985). Mathison et al. (1989) also reported an increase in
carcass weight of steers that were fed on ammonia-treated barley compared to those fed on
untreated barley. However, no differences in FE of steers in the growing phase, or ADG
and FE in the finishing phase were found between animals that were fed ammonia-treated
and untreated barley (Bradshaw et al. 1996). Likewise, ammonia treatment of barley had
no effect on DMI, ADG, FE and carcass traits in steers (Yaremcio et al. 1991), nor on DMI

of steers that fed ammonia-treated maize (Mowat et al. 1981).



Table 1-4. The effects of ammonia treatment on grains and animals.
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Grain Species Processing Comparison Effects on grain Effects on animal Reference
method
Barley  Sheep Adding enzyme- Maxammon-treated barley Increase: total N content Decrease: effective rumen degradable N, (Belanche et al.
catalysed urea versus barley supplemented rumen pH and acetate molar proportion, 2021)
(Maxammon) with urea immediately pre- total apparent N digestibility and urinary
feeding excretion of purine derivatives
Barley  Steers Adding anhydrous ~ Ammoniated whole barley No effect: nutrient composition  Increase: (trend) ADG and FE (Goonewardene et
ammonia versus non-ammoniated whole No effect: carcass traits and grades al., 1998)
Rolling barley
Ammoniated rolled barley
versus non-ammoniated rolled
barley
Barley  Steers Adding anhydrous  Tempered ammoniated rolled - Decrease: apparent digestibility of dry (Bradshaw et al.

ammonia
Tempering and

rolling

barley versus tempered rolled

barley supplemented with urea

matter and gross energy
No effect: ADG, FE, longissimus muscle

area and kidney-pelvic-hear fat

1996)




Adding anhydrous

ammonia

Adding anhydrous

ammonia

Adding anhydrous

ammonia

Different levels of ammonia-
treated barley versus non-

ammoniated barley

Different levels of ammonia-
treated barley versus non-

ammoniated barley

Different levels of ammonia-
treated barley versus non-

ammoniated barley

Increase: CP, ammonia N,
ADF, acid detergent insoluble
nitrogen and acetic acid
Decrease: lactic acid, moulds
and yeasts

No effect: aerobic bacteria
Increase: N content

Decrease: NDF content

Increase: N digestion (trend), milk yield (Robinson and

and production of milk protein and lactose ~ Kennelly 1989)
Decrease: proportion of NDF in rumen OM

No effect: feed intake, rumen bacterial

composition, apparent digestibility of OM,

NDF and starch, total rumen pool sizes of

wet ingesta and DM

Increase: final weight, carcass weight,
DMI, ADG and FE
Decrease: digestibility of DM, OM and

(Mathison et al.
1989)

energy

Increase: whole-tract true DM digestion (Robinson and

and size of degradable fraction Kennelly 1988)
Decrease: rate of degradable DM fraction

degradation

No effect: rate of ruminal N release and N

digestion
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Barley  Dairy cows Adding anhydrous

ammonia

Maize Steers Adding anhydrous
ammonia

Barley  Sheep Adding anhydrous
ammonia

Different levels of ammonia-
treated barley versus non-

ammoniated barley

Ammoniated maize versus

non-ammoniated maize

Ammoniated barley versus

non-ammoniated barley

Increase: total and ammonia N

content and lignin

Increase: protein N, aerobic
stability and pH

Decrease: total free-amino-
acid-N and DM loss

Increase: feeding speed, neutral detergent
residue degradation and rumen acetate and
butyrate

Decrease: rumen pH, rate of degradable
fraction degradation, 3 methyl butyrate
content and size of undegradable fraction
No effect: soluble and degradable DM
fraction sizes, DMI

Increase: final weight, growth rate, DMI
and OMI

Increase: digestibility of DM, OM and
crude fibre, weight gain, pH of ruminal

fluid and reproductive capacity

(Robinson and
Kennelly 1988)

(Phillip et al. 1985)

(Laksesvela 1981)

The effects shown in the table were derived from experimental results when using only ammonia treatment as the independent variable. Maxammon (Harbro Ltd.): combined grains with
urea and enzymes that catalysed the conversion of urea to ammonia.



1.3 Faecal proteomics studies

Faeces accumulates proteins, peptides, lipids, and carbohydrates due to leakage, exfoliation
and secretion, as it constantly samples the environment it is exposed to when passing down
the gastrointestinal tract (GIT) (Ang et al. 2017, Palomba et al. 2018, Nice 2020).
Theoretically, most proteins in the faeces can be detected if proper methods are used to
extract and detect proteins and the databases are suitable. Characterization of faecal
proteins has the potential to reveal host responses to changes such as digestion and
diseases, and has been applied to study of dietary composition (Sistiaga et al. 2014),
biomarkers of diseases (Ang et al. 2017) and precision medicine (Jin et al. 2017).
Metabolome is also useful but potentially less useful as a biomarker. For example, proteins
lend themselves to diagnosis via lateral flow tests because immunoassays are relatively
simple. For farm animals, information from faeces might also indicate the efficiency of
management and ration formulation. Its non-invasive and easy collection method makes
faeces a popular research subject, and repeated sampling over a short period of time is
possible. For Gl-related diseases, faeces has been recommended as an alternative to blood
for diagnosis (Ang et al., 2017), since some specific components in the faeces that come
from GI tumours or other epithelial lesions might be at relatively higher concentrations
than those in blood or urine due to the close proximity to the lesion and lack of dilution by

uptake and distribution in plasma (Nice 2020).

1.3.1 Technologies for studying proteins

Sodium dodecy! sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmli
1970), is the most important technology for analytical protein separation. Whereas one-
dimensional gel electrophoresis (1-DE) separates proteins according to their molecular
mass, two-dimensional gel electrophoresis (2-DE) can separate proteins according to both
net charge and molecular mass (Graves and Haystead 2002). The 2-DE technology allows
proteins to be identified and quantitatively compared in samples, with the presence and
absence of spots indicating qualitative protein expression, and the intensity of spots
showing quantitative information. However, only one sample can be analysed per gel and
the number and the type of proteins that can be resolved by 2-DE are limited; the detection
of low-abundance proteins can be very difficult when highly abundant proteins dominate
the gel. Western blot (WB) and enzyme-linked immunosorbent assay (ELISA) are mature

techniques in molecular biology that rely on specific antibody to proteins of interest and
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have been widely used to detect and quantify specific proteins. Both techniques are

commonly used to validate the results from proteomic studies.

The term “proteomics” was first proposed by Marc Wilkins et al. in 1990s. The most
common proteomics experiment is ‘bottom-up proteomics’, in which proteins are
identified by sequencing the digested peptide fragments, which can also be used to
determine the protein modifications (Lippolis et al. 2019). In addition to sample
preparation, which will be discussed later, there are two main steps in proteomics: sample
ionization and mass analysis. Electrospray ionization (ESI) and matrix-assisted laser
desorption/ionization (MALDI) are the two main methods used to ionize peptides with
addition or loss of one or more protons, and then deliver the sample to the mass
spectrometer (MS) for further analysis (Graves and Haystead 2002). Electrospray sources
have been used to connect with liquid chromatography (LC) that automatically purify and
deliver samples to MS (Graves and Haystead 2002), while in-gel digested proteins ionized
by MALDI can be used directly in MS without chromatographic separation (Qin et al.
1997). Liquid chromatography and gas chromatography (GC) are the two types of
chromatography techniques, but unlike LC, GC is limited to volatile samples. Time-of-
flight, ion trap, orbitrap, quadrupole and Fourier transform ion cyclotron are commonly
used mass analysers (Aebersold and Mann 2003). Two or more mass analysers can be
coupled together (tandem mass spectrometry, MS/MS) to increase their abilities in
analysis, which has been applied in many studies to detect sample proteins based on the
identified peptide sequences. There are approaches that allow protein quantification in
addition to identification in MS-based proteomics, including isotope-coded affinity tags
(ICAT), isobaric labelling (iTRAQ and TMT) and stable isotope labelling with amino
acids in cell culture (SILAC).

1.3.2 Sample preparation for faecal proteomics

Researchers found small differences in microbiota between voided faecal samples and
rectal swab samples (Bassis et al. 2017). Identification of faecal components can be
significantly affected by differences in sample preparation approaches (Tanca et al. 2015)
and storage matrix (Morris and Marchesi 2016). Morris and Marchesi (2016) suggested
that the faecal proteins should be stored in an intact frozen faecal matrix to provide more
stable protein levels and protease activity, compared with extracted protein in solution. The

buffers used to extract faecal protein varied from study to study. For example, phosphate
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buffered saline (PBS) (Cerquetella et al. 2019, Cerquetella et al. 2021), sodium dodecyl
sulfate (SDS) (Tanca et al. 2014, Tanca et al. 2017, Liu et al. 2018) and Tris (50 mM Tris-
HCI with 10mM CaClz, pH 7.8) (Debyser et al. 2016, O' Reilly et al. 2021) have been used
in studies. No significant effect of addition of 0.05% (w/v) NaNsin PBS-based buffer on
protease activity was found, and thus it was proposed for long-term extracted faecal protein
storage (Morris and Marchesi 2016). Zhang et al. (2020) recommended using SDS-based
lysis buffer in combination with ultrasonication in gut metaproteomic studies since the
method achieved higher protein extraction yields and protein identifications than using the
commercial bacterial protein extraction reagent or the urea-based lysis buffer. In addition,
they found that bead-beating increased protein extraction yields compared to extraction
without bead-beating, in line with the finding of Morris and Marches (2016). Other
mechanical cell disruption methods such as heating and freeze-thawing have also been
applied in metaproteomic studies to facilitate protein extractions (Tanca et al. 2014).
Differential centrifugation was also found to increase microbial protein identification,
reduce host- and food-derived proteins, which affected functional and structural

information of taxonomies (Tanca et al. 2015).

Filter-aided sample preparation (FASP) is a common method for the generation of tryptic
peptides prior to LC-MS/MS (Wisniewski et al. 2009). It has also been used in faecal
proteomics studies of human (Zhang et al. 2018), dog (O’ Reilly et al. 2021) and sheep
(Tanca et al. 2017, Palomba et al. 2018). Faeces is a complex, heterogeneous, mixture of
compounds with a huge range of small, potentially chemically active molecules. A clean-
up process prior to protein digestion or LC-MS/MS might be needed to remove substances
which affect the downstream analysis. One-dimensional SDS-PAGE could fractionate
complex sample proteomes and clean up samples with little loss, which could also be used
to select proteins of interest prior to protease digestion (Goldman et al. 2019). In-gel
protein digestion has been used in faecal proteomics studies of humans (Ang and Nice
2010, Debyser et al. 2016, Bosch et al. 2017) and mice (Oleksiewicz et al. 2005, Ang et al.
2010). Some researchers used a commercial kit to clean up the extracted faecal protein
before 2-DE, and digested the differentially expressed protein spots for LC-MS/MS
(Cerquetella et al. 2019, Cerquetella et al. 2021).
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1.3.3 Host proteins in faeces
1.3.3.1 Host proteins in human faeces

Faecal proteomics is relatively more studied in human medicine than in other species. With
the current level of instrument sensitivity, more than 600 human proteins can be detected
in faeces (Bosch et al. 2017, Nice 2020). Most of the human faecal proteomics studies to
date have been focused on disease biomarkers and classification. Calprotectin (S100
family) is stable in faeces and has been proposed as a biomarker for human inflammatory
bowel disease because its concentration in faeces reflects the intensity of the neutrophilic
infiltrate in the gut mucosa (Roseth et al. 1996, Lehmann et al. 2015). Patients with
steroid-refractory Gl acute graft versus host disease had higher faecal calprotectin levels
than patients with steroid-responsive disease (Broglie et al. 2018). Colorectal cancer
(CRC) is one of the diseases that has been most studied using faecal proteomic techniques.
Ang and Nice (2010) found that haemoglobin, myeloperoxidase, S100A9, filamin A and
L-plastin were present at high levels only in the CRC patients. Moreover, compared to the
healthy volunteers, a-1-antitrypsin, a-1-acid glycoprotein, C3, fibrinogen, haptoglobin,
haemoglobin o and f subunits (HBA and HBB), myeloblastin and transferrin were only
found in faeces of the CRC patients (Ang et al. 2011). Glucose-6-phosphate isomerase,
lactate dehydrogenase A, transketolase, and transaldolase 1, which are frequently observed
in neoplastic cells involved in the reprogramming of cancer cell metabolism and aerobic
glycolysis, were expressed significantly differently in faeces of CRC patients relative to
healthy controls (Bosch et al. 2017). Eight members of the complement system, which has
been reported to function in both immune response and immunosuppression to cancer,
were also identified in faeces of CRC patients, with three complement members (C3, C5
and C9) among the top 29 candidate biomarkers of CRC (Bosch et al. 2017). In addition to
the already mentioned proteins, Bosch et al. (2017) proposed that proteins including
lactotransferrin, hemopexin, myeloperoxidase (MPO), serpin family F member 2
(SERPINF2), cytidine deaminase, azurocidin 1 (AZU1), retinol binding protein 4,
fibronectin 1 and glutathione-disulfide reductase (GSR) might also be biomarkers of CRC.
In their study (Bosch et al. 2017), they also found that concentrations of C3, SI00A8/A9,
HBB, SERPINF2, transferrin and GSR in the faeces of patients with advanced neoplasia
were higher than those in the control samples; and SERPINF2, LTF, hemopexin, MPO and
AZU1 were found to be differential between patients with advanced adenoma and control

samples. Debyser et al. (2016) found that the most abundant human proteins in the faecal
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proteomes of cystic fibrosis patients were acute phase proteins associated with
inflammation. In their study, human proteins such as carbonic anhydrase 1, merprin A 8
subunit, triosephosphate isomerase, angiotensin-converting enzyme 2, orosomucoid 1,
zinc-a-2-glycoprotein, spasmolytic protein trefoil factor 2, cytochrome c and neprilysin
were found only in faeces of the patients, while proteins such as pancreatic zymogen
granule membrane protein GP-2, elastase 3A pancreatic, phospholipase A2, chymotrypsin-

C were only found in faeces of the patients’ healthy siblings.

1.3.3.2 Faecal proteins of other species

Faecal proteins of mouse have also received some attention in Gl research because of its
intensive study as an animal model of human diseases. By using 2-DE combined with
MALDI-MS/MS, researchers (Oleksiewicz et al. 2005) identified serum albumin, 1gG Fc
binding protein, pancreatic amylase 2, secreted carbonic anhydrase VI, pancreatic elastase
3B, pancreatic carboxypeptidase B1, a-2u-globulin, mucin and trypsin in healthy mouse
faeces. A total of 336 proteins in murine faeces were identified by using LC-MS/MS (Ang
et al. 2010), among which there were 115 murine proteins, including CRC-associated
proteins such as haemoglobin, haptoglobin, hemopexin, a-2-macroglobulin and cadherin-
17; the other proteins were bacterial, dietary and parasitic proteins. There have been few
faecal proteomics studies of other species. Compared to healthy dogs, Cerquetella et al.
(2019) found that immunoglobulin J-chain isoform 1 only presented in dogs with food
responsive diarrhoea (FRD), which might be explained by increased activation of the
immune system or mucosal damage, or both, in diseased dogs. They (Cerquetella et al.
2021) also identified some faecal proteins from healthy cats and dogs by using 2-DE and
LC-MS/MS. Our previous study (O' Reilly et al. 2021) identified and characterized the
potential biomarkers that could differentiate among canine chronic enteropathies. There
were 98 proteins in faeces of dogs with diarrhoea that were significantly differently
abundant than in healthy dogs. Immunoglobulins were more abundant in healthy dogs,
whereas acute phase proteins were higher in dogs with diarrhoea. Significantly higher
abundances of haemoglobin and fibrinogen were noted in dogs with antibiotic responsive
diarrhoea (ARD). Proteins such as haptoglobin, SI00A8/9, lactoferrin, a-1 antitrypsin and
lysozyme were found to be more abundant in dogs with ARD compared to the dogs with
inflammatory bowel disease (IBD). Palomba et al. (2018) identified 431 proteins in sheep
faeces, including complement system members and regulators, members of the S100

family, peptidoglycan recognition protein and Ig alpha-1 chain C region (part of IgA),
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which are involved in immune and inflammatory response. They found that over 15% of
the faecal proteins were peptidases (such as azurocidin and metallopeptidase families),
which are involved in many different biological processes, including digestion, immune
response and apoptosis. They also concluded that the most abundant protein family in
sheep and human faeces was the intermediate filament family. Liu et al. (2018) identified
21 proteins in tick faeces, 18 of which were tick origin, including actin, enolase, AV422,
histone H2B, serpin and paramyosin, while the other three proteins, namely serum
albumin, HBA and HBB, were likely from the host (hedgehogs). The identified tick
proteins might play a role in hindering blood clotting, immune mediation and resistance to
bacteria, as well as the formation of muscle tissue in ticks. Studies about identification of

faecal host proteins are listed in Table 1-5.



Table 1-5. Faecal proteomics studies.
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Species Obijective Approach Reference

Dog Find biomarkers that might aid TMT-based LC-MS/MS (O' Reilly et al.
diagnosis of chronic diarrhoea and 2021)
distinguish aetiologies among ARD,

FRD and IBD.

Dog and cat  Identify proteins present in healthy 2-DE and LC-MS/MS of (Cerquetella et
dogs and cats. in-gel digested proteins al. 2021)

Dog Identify abundant proteins in dog faeces Quantitative analysis of 2-  (Cerquetella et
and to find potential diagnostic markers DE and LC-MS/MS of in- al. 2019)
of FRD. gel digested proteins

Monkey Develop a framework of faecal Label-free LC-MS/MS (Tsutaya et al.
proteomics to study the behaviour and 2021)
physiology of the host.

Sheep Explore proteins secreted in the sheep Label-free quantification (Palomba et al.
intestinal lumen. LC-MS/MS 2018)

Tick Explore the faecal proteomes of the tick Label-free LC-MS/MS (Liu et al. 2018)
Haemaphysalis flava.

Human Find if there are proteins in the faeces 1-DE and label-free (Bosch et al.
that outperform or complement guantification LC-MS/MS  2017)
haemoglobin in detecting CRC and of in-gel digested proteins
advanced adenomas.

Human Explore the host and microbial protein ~ 1-DE and label-free LC- (Debyser et al.
composition of the GIT and their MS/MS of in-gel digested 2016)
functional changes resulting from CF. proteins

Human Show the potential of a hypothesis- 1-DE and LC-MS/MS with  (Ang and Nice
driven approach for rapid and MRM mode of in-gel 2010)
quantitative CRC biomarker discovery.  targeted proteins

Mice Detect potential biomarkers of CRC 1-DE and label-free LC- (Ang et al. 2010)
based on mice models. MS/MS of in-gel digested

proteins
Mice Establish a diagnostic method to detect ~ 2-DE and label-free (Oleksiewicz et

Gl disease-associated faecal proteins.

MALDI-MS/MS of in-gel

digested proteins

al. 2005)

Approaches that were not indicated using in-gel digested proteins were based on filter-aided sample
preparation; LC-MS/MS: Liquid chromatography with tandem mass spectrometry; FRD: Food responsive
diarrhoea; 2-DE: Two-dimensional polyacrylamide gel electrophoresis; ARD: Antibiotic responsive
diarrhoea; IBD: Inflammatory bowel disease; TMT: Tandem mass tag; CRC: Colorectal cancer; 1-DE:
Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (one-dimensional SDS-PAGE); GIT:
gastrointestinal tract; CF: Cystic fibrosis; MRM: Multiple reaction monitoring.
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1.3.4 Food residues in faeces

Studying food residues in faeces can reveal dietary components (Sistiaga et al. 2014) and
provide information on the digestion of nutrients by animals, which is especially important
for studying the dietary habits of some endangered species (Srivathsan et al. 2016) and
wild animals (Bradley et al. 2007, De Barba et al. 2014). Most of these studies have been
based on direct morphological examination of faeces (Moreno-Black 1978), stable isotope
analysis (Blumenthal et al. 2012) and molecular methods such as specific DNA cloning
and sequencing (Bradley et al. 2007). High-throughput sequencing simplified the
operations and has been used in many studies. For example, researchers developed a
method based on DNA metabarcoding multiplexing and next-generation sequencing to
detect the composition of faeces (De Barba et al. 2014). Srivathsan et al. (2016) used
metagenomics and metabarcoding in characterization of the primate faeces. Compared to
genomic and metagenomic studies, few studies have used proteomics to study undigested
food residues in faeces. Tsutaya et al. (2021) identified plant proteins in monkey faeces,
and studied the taxonomy of the consumed food and investigated the dietary changes,
showing breastfeeding and weaning patterns directly. With sufficient coverage of dietary
databases, the improvement of faecal sample processing method and the reduction of

experimental cost, research on dietary proteome in faeces is expected to increase.

1.3.5 Microorganisms in ruminant faeces

The microbiota plays an important role in animals, not only because it contributes to
nutrient degradation, but also because it modulates animal metabolism and health
(Andersen et al. 2021). A diverse GIT microbiome is expected to be more capable and
resilient to changes compared to that with only a few species. Researchers reported that
alpha-diversity increased as animals aged (Dill-McFarland et al. 2017) while some others
found that animals tended to develop a more homogeneous and specific GIT microbiome
during growth than after birth (Li et al. 2019). Characterization of the microbiota in
ruminants helps to reveal the distribution and diversity in GIT, mechanisms of nutrient
degradation and other functions, building a foundation for dietary manipulation, animal
health and greenhouse gas control (Shi et al. 2014, Lopes et al. 2015). Ruminal microbiota
has been explored extensively, although faecal microbiota is receiving increasing attention,

more research is still needed, especially from the protein perspective.
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1.3.5.1 Bacterial and archaeal compositions in ruminant faeces

Molecular biological approaches have been applied to study the microbiota: omics
technologies such as metagenomics, metatranscriptomics and metaproteomics enabled in-
depth reveal of the composition and functional patterns of the microbiota in ruminants.
Bacteria generally dominate the rumen microbiome compared to archaea, fungi and viruses
(Bainbridge et al. 2016). Researchers studied the bacterial microbiota of cattle and sheep
by using gene sequencing and found that there were abundant Firmicutes, Bacteroidetes
and Proteobacteria across the whole GIT (Mao et al. 2015, Wang et al. 2017). Faeces
share many microbial communities with rumen, although faeces and rumen could be
separated from each other based on the bacterial communities (Zeng et al. 2015, Holman
and Gzyl 2019). The diversity of bacterial community was found to be significantly
decreased as digesta passed through GIT (Frey et al. 2010, Mao et al. 2015), and the diet-
induced changes in the rumen bacteria were reduced or eliminated in the faeces (Noel et al.
2019). Researchers (Tanca et al. 2017) found that Firmicutes and Bacteroidetes were
dominant phyla in the faeces of sheep by using 16S rDNA sequencing, shotgun
metagenomics combined with shotgun metaproteomics, with Firmicutes being the most
abundant phylum, followed by Bacteroidetes. Similar results based on 16S sequences were
reported in cattle, showing that Firmicutes dominated the faecal bacterial communities
(Ozutsumi et al. 2005, Durso et al. 2010, Shanks et al. 2011, de Oliveira et al. 2013, Kim et
al. 2014, Mao et al. 2015). However, this was in contrast to the rumen in some studies,
where the most abundant phylum was found to be Bacteroidetes (Lee et al. 2012, Lopes et
al. 2015). Within Firmicutes, Ruminococcaceae, Lachnospiraceae and Clostridiaceae were
the most abundant families identified by metaproteomics in the sheep faeces and
Prevotellaceae and Bacteroidaceae were the dominant families within Bacteroidetes
(Tanca et al. 2017). In cattle faeces, Ruminococcaceae and Lachnospiraceae were also
among the most dominant families of Firmicutes, and Bacteroidaceae was one of the
dominant families within Bacteroidetes (de Oliveira et al. 2013, Kim et al. 2014). Genera
such as Clostridium, Bacteroides, Ruminococcus, Prevotella and Treponema were
abundant in the faeces of cattle (Dowd et al. 2008, Callaway et al. 2010, Mao et al. 2015).
The relative abundances of Clostridium and Bacteroides in the rectum were higher than in
other GIT regions (Mao et al. 2015, Zaheer et al. 2017), and they were also enriched in the
cecum and colon of calves compared to the rumen, and increased proportionally in the

cecum as the calves grew (Dias et al. 2018).
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Methane in ruminants is primarily produced by methanogenic archaea in the rumen during
fermentation (Noel et al. 2019), and is mostly emitted through eructation, which leads to an
energy loss to animals at the same time (Hook et al. 2010). Many studies have mainly
focused on the structure and function of archaeal communities in the rumen, although the
lower GIT can be involved in methane production and emission as well (Murray et al.
1976, Hill et al. 2016, Bekele et al. 2022). In a study of sheep faeces (Tanca et al. 2017),
researchers found that the archaeal Euryarchaeota was one of the most abundant microbial
phyla based on the data of V4-16S rRNA, metagenomic and metaproteomic, and
Methanobacteriaceae and Methanocorpusculaceae were found to be the dominant families
within this phylum according to the metaproteomic results. Holman and Gzyl (2019) found
that methanogenic genus Methanobrevibacter, which had been reported as the predominant
archaeal genus in rumen (Janssen and Kirs 2008), was in all the 121 faecal samples of
cattle from 52 studies, so was Methanosphaera, which had also been found to be one of the
dominant methanogens in rumen (Hook et al. 2010, Cersosimo et al. 2016). Zhou et al.
(2014) found that phylotypes close to Methanobrevibacter were the main taxonomy along
the GIT of calves based on 16S rRNA sequencing and PCR-denaturing gradient gel
electrophoresis. St-Pierre and Wright (2013) also reported that 16s rRNA gene sequences
of Methanobrevibacter were the most frequently identified phylotypes in herbivores’ gut.
Differences between composition of ruminal and faecal communities have been noticed.
For example, Methanocorpusculum was found in more than half of the 121 faecal samples
but was almost absent from the 721 rumen samples of cattle (Holman and Gzyl 2019).
Turnbull et al. (2012) also reported that Methanocorpusculum was usually found in
hindgut rather than foregut of ruminants. Researchers found that Methanocorpusculum
labreanum, Methanocorpusculum sp. MSP and Methanoculleus bourgensis only presented
in the faeces of cattle compared to samples of rumen fluid (Daquiado et al. 2014). In their
study (Daquiado et al. 2014), according to mcrA gene sequences, Methanobrevibacter
ruminantium was proposed to be the predominant methanogenic archaea species in the
barn floor manure, while the predominant methanogenic archaea species in rectal dung was
Methanocorpusculum labreanum. Methanobrevibacter smithii, Methanobrevibacter
thaueri, Methanobrevibacter ruminantium and Methanobrevibacter millerae were
suggested to be core methanogen community of cows since they were found in each breed
(Holstein, Jersey and Holstein-Jersey crossed) of the primiparous dairy cows at different

days in milk time points (Cersosimo et al. 2016).
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There are variations in composition and abundance of the microbial community between
animal individuals, but bacterial communities can still be phylogenetically related (Brulc et
al. 2009, Jami and Mizrahi 2012). The differences in microbial communities in ruminants
have been found mainly attributable to diet (Shanks et al. 2011, Kim et al. 2014,
Henderson et al. 2015), although age, breed, genetics and environment are also important
influences (Henderson et al. 2015, Cersosimo et al. 2016, Dill-McFarland et al. 2017, Jiao
etal. 2017, Noel et al. 2019).

1.3.5.2 Functions of ruminant faecal microbiota

Many polysaccharides from the diets of ruminants are not digestible by host enzymes, but
they can be degraded by the bacteria throughout the GIT. Prevotella, Clostridium,
Ruminococcus and Bacteroides have enzymes that break down structural carbohydrates to
produce short-chain fatty acids such as acetate, propionate and formate, producing energy
to animals, and are abundant in ruminant faeces (Flint et al. 2008, Holman and Gzyl 2019).
Starch and sucrose metabolism is one of the core pathways of bacteria in ruminants, as is
the metabolism of their hydrolytic products such as glucose, maltose and xylose (Wang et
al. 2013, Li and Guan 2017). Bacteria play an important role in methane production since
they produce the substrates such as acetate and formate for methanogenesis (Janssen and
Kirs 2008, Noel et al. 2019). Methane can be formed by reduction of CO2 or methanol by
methanogens with hydrogen gas (Holman and Gzyl 2019, Matthews et al. 2019).
Membrane transport, carbohydrate metabolism, amino acid metabolism, replication and
repair and, energy metabolism were the five main pathways of the bacterial microbiota of
cattle throughout the GIT predicted by metagenomics (Mao et al. 2015). Significant
differences in abundance of bacterial gene families among GIT regions of the cattle were
noted (Mao et al. 2015), for example, less digesta-associated microbiota of the cecum and
colon was involved in carbohydrate metabolism and DNA replication and repair than those
in the forestomach; and the abundance of mucosa-associated microbiota in the rectum were
not as highly involved in amino acid metabolism as those in other parts of the GIT. A study
of sheep faeces (Tanca et al. 2017) reported that the enriched microbial genes were related
to membrane transport of molecules, DNA replication and repair, transcription, translation
and protein folding; and the three most abundant potential metabolic pathways were
glycolysis, L-arginine biosynthesis and peptidoglycan biosynthesis. Similar results were
found in cattle faeces, in which the largest proportion of genes was related to carbohydrate

and protein metabolism, based on metagenomics data (Durso et al. 2011).
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Whereas genomics data could predict the potential functions and the involved pathways of
the microbiota, proteomics results reveal the actual functions exerted by them. Based on
metaproteomics results, researchers (Tanca et al. 2017) found that the main functions of
the faecal microbiota in the sheep faeces were related to metabolism (especially
carbohydrate degradation); protein synthesis and folding; and transport and signalling.
Phylum-specific protein functions were noted in the sheep microbiota (Tanca et al. 2017),
for example, class 1l fructose-BP aldolase, ABC transporter and bacterial flagellin as
specific for Firmicutes, TonB-dependent receptor and ATPase C chain as specific for
Bacteroidetes, and methanogenesis as specific for Euryarchaeota. Bacterial proteins in the
sheep faeces (Tanca et al. 2017) were mainly involved in metabolic pathways such as
polypeptide chain elongation, glycolysis and gluconeogenesis; there were also phylum-
specific pathways, such as 1,2-propanediol degradation and butanoate metabolism as
specific for Firmicutes, starch degradation for Bacteroidetes, and for Euryarchaeota,
methanogenesis from CO2 and methyl-coenzyme M reduction were among the 20 most

relevant pathway-phylum combinations.

Correlations between microbiota in GIT of ruminants and nutrient degradation were
expected to lay a foundation for improving dietary management and thus improving animal
growth performance. Researchers (Lopes et al. 2015, Morgavi et al. 2015) found that the
rumen fermentation and digestibility and, the host phenotype were influenced by the
microbial diversity, and suggested the potential of metabolomics approach for monitoring
biomarkers of the microbial functions. Shanks et al. (2011) found correlations between
faecal starch concentration and relative abundance of Firmicutes and Bacteroidetes,
respectively, and suggested the starch concentration to be a predictor of bacterial
community structure. Changes in faecal microbial community of ruminants due to diseases
such as subacute rumen acidosis and salmonellosis were studied (Mao et al. 2012, Munoz-
Vargas et al. 2018), and faecal bacterial genes associated with antibiotic resistance and
bacterial virulence were found (Durso et al. 2011), which might provide insights into
potential microbial-based diagnostic or therapeutic targets. Methane emissions not only
cause energy loss from animal production chains but also pollute the environment (Chang
et al. 2019, Ugbogu et al. 2019, Bekele et al. 2022). Measurement approaches of methane
emission, including using respiration and accumulation chambers and in vitro gas
production techniques, have been widely used in ruminants (Storm et al. 2012, Hill et al.
2016, Bekele et al. 2022). Studies have developed models to predict the methane emission

using dietary variables such as digestibility of hemicellulose, dry matter intake and
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metabolizable energy intake (Ellis et al. 2007, Kebreab et al. 2008, Ramin and Huhtanen
2013). Researchers found that the animals which had lower residual feed intake could
produce less methane (Hegarty et al. 2007). Sheep that emitted lower methane level were
found to have smaller rumen than those high methane-emitting sheep (Matthews et al.
2019), which might also provide a basis for animal breeding to reduce methane emissions.
The increases of diet digestibility and inclusion of dietary lipids were also found to
decrease the methane production (Hristov et al. 2013). Dietary strategies, including using
secondary plant metabolites (e.g., tannins and saponins) (Ku-Vera et al. 2020), seaweed
and 3-nitrooxypropanol (Almeida et al. 2021), have been proposed for methane mitigation

in ruminants.
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1.4 Aims of the thesis

In conclusion, model fitting for retrospective performance analysis of animal growth has
mostly made use of infrequent observations of BW, and the traditional method of
quantifying the effects of interventions on growth is based on ADG estimates, ignoring the
non-linear properties of the growth trajectories at different life stages. A new cereal grain
preservation method using enzyme-catalysed urea was developed, but the effects of it on

animal growth performance haven’t been studied.

This thesis investigates the growth of cattle — firstly by investigation of mathematical
models of growth, and then by the investigation of the effects of a recently developed
method for cereal grain preservation using enzyme-catalysed urea. Finally, the thesis
considers faecal proteomic examination as a potential tool to detect health and growth
performance differences in cattle. The thesis had two main aims: (1) to find the most
suitable growth models for cattle at different life stages using high-density bodyweight
data and determine whether the best fitting model(s) improved parameter estimation in
comparison with the traditional linear model; (2) to describe the effect of the enzyme-
catalysed ammonia treatment of cereal grains on the growth performance of finishing beef

cattle and their faecal proteomes.



50

Chapter 2 Growth Curve Models Using High-
density Bodyweight Data for Accurate Parameter
Estimation in Cattle

2.1 Introduction

The analysis of growth trajectories of animals is fundamental to many studies related to
animal production, management, treatment and genetic selection (Berry et al. 2005,
Crispim et al. 2015, Lupi et al. 2016). The non-linear trajectory of gain in bodyweight
(BW) over the whole of life of animals is generally best represented by rate-state
differential equations. Growth models such as the logistic (Verhulst 1838), Richards
(Richards 1959), Gompertz (Gompertz 1825), Brody (Brody 1945) and von Bertalanffy
models (Bertalanffy 1938) were derived from these equations, and have been widely used
in studies to describe or predict the growth patterns of livestock (Lupi et al. 2015, Ghavi
Hossein-Zadeh 2017, Selvaggi et al. 2017). However, model fitting for retrospective
performance analysis of animal growth has mostly made use of relatively infrequent
observations of BW, often on a monthly or quarterly basis (Moreira et al. 2016, Selvaggi et
al. 2017), and sometimes even less frequently or simply at the beginning and end of a trial
(Soberon et al. 2012). For example, researchers studied the major factors that could predict
mature BW based on modelling only three BWs from the whole of life of each of 5,284
Angus cows (Goldberg and Racagnolo 2015); Crispim et al. (2015) identified and
characterized single nucleotide polymorphisms (SNPs) associated with phenotypes (growth
model parameters) in a multi-trait genome-wide association (GWAS) study of Brahman
cattle, based on fitting growth models with only six BWs measured over the whole of life
of 1,255 Brahman cattle.

Recent technical developments have enabled multiple records of BW to be made on every
single animal every day, automatically weighing animals when they drink milk replacer or
water, during milking or when walking from one pen or yard to another, as is becoming
increasingly common on commercial farms (Gargiulo et al. 2018, Segerkvist et al. 2020).
Researchers have estimated the energy balance (EB) of dairy cows by using high-density
BW records, either alone or in combination with frequent body condition score (BCS)

measurements (Thorup et al. 2012, Thorup et al. 2013). The use of daily BW records by
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parametric or time series models has enabled more precise quantification of the
performance of Nordic Red cows (Méntysaari and Mantysaari 2015), suggesting that high-
density BWs might enable the development of more accurate models to describe the

growth of cattle as they progress through distinct developmental phases.

In most practical applications, for convenient calculation, the traditional method of
quantifying the effects of dietary interventions, disease, or other management interventions
on livestock growth has been based on before-and-after measurements to generate linear
slope or average daily gain (ADG) estimates (Reynolds et al. 1990, Lensink et al. 2000,
Duthie et al. 2018). However, animal growth follows a complex, non-linear curve that can
be divided into distinct phases: an initial, accelerating rate of gain is followed by an
approximately linear phase, and finally by a decelerating rate of gain. Using suitable
nonlinear models for growth of livestock at different life stages would be expected to
improve the accuracy of parameter estimation compared to the traditional linear analyses,
providing outcome measures for trials that more accurately reflect the effects of
interventions. Any consequent improvement in precision of effect estimation should
increase statistical power or allow studies with fewer animals but equivalent statistical

power, thereby reducing cost and animal welfare imposts.

The overarching aim of this study was to determine the extent to which the application of
non-linear models to high-density data might generate more precise estimates of growth
parameters than the traditional linear model. Firstly, we aimed to find the best growth
models for the whole of life of Holstein-Friesian cows for which high-density but
intermittent BW data were available. Secondly, we wished to apply a similar approach to
find the best models for Holstein and Holstein-cross calves using near-continuous BW
observations from the first 100 days or so of life, and finally, to do the same for the last

100 days or so before slaughter in mixed-breed beef cattle.
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2.2 Materials and methods

All data in this study were collected during the general animal husbandry management of

these animals, no ethical approval was required.

2.2.1 Models and model comparison statistics

Figure 2-1 shows the workflow for the present study. To find the most suitable models for
cattle growth, models (Table 2-1) were fitted to three data sets from different life stages:
(1) whole of life (from birth to up to 4,077 days old); (2) early juvenile (up to 125 days);
and (3) post-pubertal, sub-adult to adult (over 400 days old) by using the nls function in R,
version 4.0.3 (R Core Team, 2020). Models were compared using the coefficient of
determination (R> = 1 — [ Y™~ ,(Y; — ;)% /XY™, (Y; — YV)? ], where Y; is the i-th of n
observations, Y;' is the i-th model prediction, and Y is the mean of the observations), the
Akaike information criterion (AIC = 2p — 2 In(L); where p represents the number of

parameters in the model, and L represents the maximum likelihood), and root-mean-

square-error (RMSE = \/%Z?zl(}’i — Y;")2) (Akaike 1974, Lupi et al. 2015, Burnham and

Anderson 2016, Selvaggi et al. 2017). Within the same data set, a high R? for a model
represents small differences between the observations and the model predictions, indicating
that the model fits the data well. A low value of RMSE indicates better fit of the model.
RMSE provides an absolute measure of fit (in the same units as the dependent variable)
whereas R? represents a relative measure of fit. A lower AIC value indicates relatively
higher model prediction accuracy. In addition, biological characteristics (birthweight and
mature BW) estimated from the models were compared with the corresponding
observations to assess the precision and plausibility of the estimates. Figures were made
using ggplot2 package (Wickham 2016) in R software.



Data collection

Data filtering

. J {w

\

hole of life: logistic, Gompertz, Brody,
Richards, von Bertalanffy models

Fit models to each animal and Early life stage: linear, quadratic, cubic,
extract model parameters power, exponential models

Late life stage: linear, logarithmic,

\ negative exponential models _/

Compare goodness-of-fit of models
and their predictions of birthweight
and/or mature BW with observations

Find the best model for
different life stages

Find characteristics
of animals that are
l associated with the

best fitting model

Whole of life Compare accuracy of
estimation of effects on

growth rate estimates of .
the best model with the Late life stage

traditional linear model

Determine the extent to which the application of nonlinear
models generate more precise estimates of growth
parameters than traditional linear model with sparse data

l

Early life stage

Figure 2-1. Flow diagram of the study.
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Table 2-1. Models that were applied in the present study for fitting the bodyweights (cumulative BW) of cattle for whole of life, early and late life

stages and their instantaneous growth rates.

Life stage Model Cumulative BW Instantaneous growth rate Parameters
Early and late life stages Linear BW = at +b a
Early life stage Quadratic BW = at?’+b 2at
Cubic BW = at*+b 3at?
t: age in days
Power BW = t% +b at®! g Y
Exponential BW = be® abe® a: growth rate
. o b: initial weight
Late life stage Logarithmic BW = aln(t) +b alt
. ] A: mature BW
Negative exponential BW = —be ™™ +b Ake™t

Whole of life

Gompertz
Logistic

Brody

Von Bertalanffy

Richards

BW = Ae B¢ ™

BW = A(1+ Be™*t)!
BW = A(1— Be ™)
BW = A(1 — Be~kt)3

BW = A(1 — Be ktym

AkBe*t /(e¥t + B)?
AkBe—Be_kt—kt
AkBe™*t

3AkBe~*t(1 — Be~kt)?

mAkBe ¥t(1 — Be Ft)ymt

B: integration parameter
k: maturation rate

m: inflection parameter
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2.2.2 Whole of life data

There were 294,549 BW observations on 1,003 Holstein-Friesian cows from birth to up to
the 8" lactation (mean + standard deviation (SD): 1,400 + 480 days old). The BW records
during early life development (up to 515 + 141 days) and the dry periods were intermittent,
being measured approximately every 30 to 90 days. The BWs in lactation periods were
automatically weighed two to four times daily on exit from the parlour, using a walk-over
scales and a shedder to ensure an accurate weight for each individual cow. Data are owned
by Scotland’s Rural College (SRUC) and were made available to this project under a

material transfer agreement (MTA).

We first detected and removed outliers, which might be caused by the equipment or
movement of animals during measurements, by using linear regression to fit splines to the
raw data. We only used the data from animals for which there were at least five BW
observations from prior to the first lactation, and at least seven days of BW records during
each lactation. Gestation is a complicating factor in bodyweight estimation of female
animals: the combined weight of foetal membranes and foetal fluids, together with the
developing foetus, will exceed 70 kg, even in small Jersey cattle (Eley et al. 1977). A
further complication is the expected change in fatness of dairy cattle within lactations:
ideally, cows in good body condition, with some fat cover, during the first weeks of
lactation are expected to lose considerable BW (McCarthy et al. 2007), which is regained
in later lactation (coincident in most cases with conception and gestation, occurring after d-
45 of lactation). To minimize the dynamic effect of gestation and onset of lactation on
bodyweight, and thus to develop a general growth model for the cows, we considered two
distinct data subsets. Both subsets included the birthweights and all the observations before
the onset of the 1%*-lactation, none of which were from late pregnancy. In the first subset
(three-bodyweight, TBW), three daily mean BWs from each cow in each lactation were
included: the daily mean BWs for d-1, d-30 and d-60 of lactation (or the nearest day in the
rare cases where that was not available). In the second reduced data set (lowest-
bodyweight, LBW), the lightest within-lactation daily mean BW for each animal was taken
for each lactation. The logistic, von Bertalanffy, Gompertz, Brody and Richards models
were fitted to the data from each animal. The model performance was assessed according
to R? and RMSE, model comparison was based on AIC (except for the Richards model that
has four parameters, so AIC comparisons would not be valid with a 3-parameter model) as

well as the accuracy of their estimations of birthweight and mature BW.



56

2.2.3 Early life stage data

174,072 near-continuous BW records were obtained from 399 mixed-breed calves
(crossbred Aberdeen Angus, Holstein-Friesian, British Blue and Limousin), measured
between February 2019 and February 2020. Calves were weighed manually within 24 h
after birth and then weighed automatically by SRUC Crichton Royal Biocontrol units when
the animals drank milk replacer or water from, at the earliest, the first day after birth (mean
+ SD: 14 £ 11 days old) until, at the oldest, 126 days old (mean + SD: 66 + 24 days old).

Data are owned by SRUC and were available to this project under a MTA.

We analysed the data of the calves that had a birthweight record and at least 14 days of
BW observations. Outliers that might have been caused by the equipment or movement of
animals during measurements were removed by using linear regression to fit splines to the
raw data. To minimise fluctuations caused by variation in feed intake, gut or bladder fill,
we calculated the daily mean BW for each calf from all of the records from any given day
(excepting those filtered by spline fitting). The linear, quadratic, cubic, exponential and
power models were fitted to the daily mean BW data and the model parameters R?, AIC,
RMSE and the precision of estimation of the birthweight by each of the models were

compared to find the most suitable model for the early life stage.

Growth rate varies among breeds of cattle (Aviles et al. 2015) and between males and
females (Marlowe and Gaines 1958, Daskiran et al. 2010), and we expected that the
strength of these associations, and statistical power to detect them, would increase with
increasing accuracy of growth rate parameter estimation. We compared the strength of
association between these known correlates of growth rate (which in this analysis are
analogous to competing interventions that might affect growth rate in a trial) and two
alternative measures of growth rate: the growth rate parameter estimated from the best
fitting growth model, and growth rate estimated from the traditional linear method (that is,
change in weight between the beginning and end of a treatment period divided by number
of days in the treatment period). A bootstrap analysis was conducted by re-sampling the
BW data 1,000 times with replacement, and for each observation, fitting a generalized
linear model (GLM) with breed and sex as independent variables, and the growth rate
parameter estimate derived from either the linear or the non-linear model as the dependent
variable. Because the competing models differed in their dependent variables, they could

not be compared directly using RMSE or AIC. Instead, the strength of association between
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the parameter estimates for the growth curves and the breed and sex was estimated using
R?, and the difference between R? estimates was considered to be the difference in
performance of the competing growth rate estimation methods. For each bootstrapped data
set, we calculated the difference between the R? value derived from the non-linear and the
linear models, and for all observations we determined the mean difference, 95%
confidence interval and a bootstrapped p-value to determine whether the observed

differences differed significantly from zero (p < 0.05).

To quantify the effect of data density on statistical power, we repeated the bootstrapping
analysis on six increasingly sparse data sets that corresponded with a notional reduction in
frequency of measurement. Besides the full data set (birthweights were excluded), the
reduced data sets contained data from the first measurement day, and data from every two
days, four days, a week, two weeks, or four weeks. Animals that had at least three BWSs in
each reduced data set were retained. Model parameters were extracted and were used as
described above by bootstrapping 1,000 times in models with breed and sex as independent

variables, and either a linear or non-linear estimate as the dependent variable.

2.2.4 Late life stage data

The late life stage data consisted of 189,033 BW observations from 1,300 mixed-breed
finishing beef cattle (Simmental, Charolais, Salers, Aberdeen Angus, Shorthorn, British
Blue, Belgian Blue, Limousin and crossbreds). Cattle were weighed automatically when
drinking, using the Beef Monitor system (Ritchie Agricultural, Forfar, Scotland) several
times a day through the finishing (fattening) period of up to approximately 100 days before
slaughter, between October 2016 and May 2018. Weighing errors were detected and
removed using a Monte Carlo Markov chain (MCMC) method (unpublished). Data are

owned by Harbro/Innovent/Scotbeef and were made available for this project.

For this study, we analysed the growth of animals with at least 60 days of BW data. Unlike
the two previous data sets, in which the initial time point was birthdate, and starting
weights (birthweights) were relatively similar, in this data set the age and weight of
animals at the beginning of the period of observation varied greatly. Since the nutritional
management during the finishing period is very distinct from that used prior to finishing,
and in most cases, cattle growers will be interested in the rate of gain of animals from time

of onset of feeding, in this analysis, the day of onset of feeding was taken as d-1, and the
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age and weight of animals at d-1 were used as covariates for subsequent model fitting. The
linear, negative exponential and logarithmic models were fitted to individual animal data.
In the absence of an appropriate, independently measured mature weight, the model

performance was compared using goodness-of-fit parameters only.

To determine whether specific characteristics of animals were associated with the best
fitting model (the linear or the negative exponential model), we applied binary logistic
regression in the generalized linear model function glm in R to test factors including age
and BW at the beginning and end of the observation, the number of days on feed, weight
gain during the trial, the farm, and breed (British or Continental). The effect of the factors
was analysed by Wald.test (Bewick et al. 2005). Finally, the strength of association
between the known correlates of growth rate (farms and/or breeds) and growth parameters
derived from two alternative models of growth rate (the best non-linear model and the
linear model) were compared using GLMs, using the same approach as described for

calves above.
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2.3 Results

2.3.1 Growth models for the whole of life of the cattle

After removing outliers and filtering, data from 906 animals remained: there were 19,070
BWs in the TBW data set, and 13,701 BWs in the LBW data set. The mean birthweight (+
SD) of the 906 animals was 42.27 (+ 5.41) kg and the mean heaviest BW + SD was 635.28
+ 79.80 kg. In the TBW data set, the logistic, Gompertz and von Bertalanffy models were
successfully fitted to all the animals individually, while the Brody model could not be
fitted to two animals and the Richards model could not be fitted to 279 animals. Examples
of each of these models as fitted to one animal from the TBW data set are shown in Figure
2-2 a. Bodyweights of all the animals were plotted in Figure 2-2 b, and the growth
trajectories were drawn based on the mean values of the predicted parameters of each
model for all the animals. The full results of model fitting are shown in Table 2-2 and
Figure 2-3, including the mean value and standard deviation (SD) of the models’ goodness-
of-fit (R?, AIC and RMSE) and estimated parameters, and the fitted BWSs. Similar plots
and results for animals in the LBW data set are in the Appendix (Figure 2-1 and 2-2, and
Table 2-1).
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Figure 2-2. The whole of life bodyweights (BW) of cattle in the TBW data set (BW
measurements used from each lactation were daily mean BWs for d-1, d-30 and d-
60 of that lactation) and the predicted growth trajectories of models: (a) an example
of fitting models to an individual cow (black dots are the BWs and the coloured
lines are the predicted growth trajectories of models); (b) the grey dots are all the
BWs from 906 cattle in this data set, and the coloured curves are the predicted
growth trajectories from the models, for which the parameters were the mean
values for each parameter and model for all of the cattle.
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Table 2-2. The results of fitting models (failure cases excluded) to BWs of 906 cows from birth to a maximum of 4,000 days old in the TBW data

set, in which the BWs in lactations were the daily mean BWs for d-1, d-30 and d-60 of that lactation.

Growth model

Estimate
Logistic Brody Gompertz Von Bertalanffy Richards

Number of successful models fitted 906/906 904/906 906/906 906/906 627/906
R? 0.981 (0.013) 0.983 (0.011) 0.986 (0.0099) 0.987 (0.0095) 0.990 (0.0071)
AlC 204.43 (59.12) 200.70 (53.12) 196.35 (56.49) 194.84 (55.06) 201.47 (52.71)
RMSE 26.15 (9.43) 24.21 (7.68) 21.76 (8.01) 21.07 (7.59) 19.25 (6.76)
Parameter A 592.32 (62.42) 725.99 (210.65) 614.03 (62.74) 629.39 (66.94) 660.08 (92.51)
Parameter B 7.87 (1.87) 0.98 (0.02) 2.56 (0.28) 0.61 (0.05) 0.74 (0.23)
Parameter k 0.0058 (0.0013) 0.0017 (0.0004) 0.0037 (0.0007) 0.0030 (0.0006) 0.0025 (0.0008)
Estimated birthweight (kg) 74.76 (21.45) -3.76 (29.211) 51.20 (18.11) 39.01 (17.48) 27.86 (11.54)
Birthweight difference RMSE 38.85 54.27 20.04 17.59 18.27
(estimated-observed) Mean Difference +32.49 (21.31) -46.02 (28.79) +8.93 (17.95) -3.26 (17.29) -14.46 (11.19)

(SD)
Mature BW difference RMSE 51.19 201.68 46.93 55.21 132.86
(estimated-observed) Mean Difference -40.33 (31.54) +70.44 (189.09) -20.18 (42.40) -6.45 (54.86) +16.68 (131.93)

(SD)

Results are presented as mean (standard deviation) unless indicated otherwise. Parameter A, B and k are parameters in the models, represent mature BW, integration parameter and
maturation rate, respectively. RMSE of birthweight or mature BW: Square root of the mean of the differences between estimated birthweights/mature BWs of models and the corresponding
observations of all the animals. Mean (SD) of birthweight or mature BW estimation: mean value and standard deviation of the differences between the estimated birthweights/mature BWs

and the actual observations of all the animals, ‘+’ means over-estimated, ‘-> means under-estimated.
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Figure 2-3. Model comparison (the Richards model was excluded) according to the
best AIC and estimations of birthweight and mature BW for each individual cow in
the TBW data set, in which the data in lactations were the daily mean BWs of d-1, d-
30 and d-60 of that lactation.

With the exception of the Richards model, all the growth models fitted quite well to the
growth data of all the cattle. The R? values of the models were all above 0.981, and the
mean RMSE values were no more than 26.15 kg. The average AIC values of all the models
ranged from 194.84 to 204.43. The von Bertalanffy model was the best model for 287
cows according to the lowest AIC values, followed by the Gompertz model (211 cows), the
Brody model (199 cows) and the logistic model (125 cows). The Richards model provided
84 cows with low AIC, however, it failed to fit with the growth of many cattle in our case
(279 cows), so it was not considered further as a candidate for best model. Among the 211
cows for which the Gompertz model fitted best, the AIC of 117 were not significantly
better (difference in AIC < 2) than the Von Bertalanffy model. Consequently, the VVon

Bertalanffy model was the best model for the animals according to the model statistics.
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The von Bertalanffy model provided the closest estimates of birthweight to the
observations of most of the cattle (443 cows), followed by the Gompertz model (319
cows), logistic model (90 cows) and the Brody model (54 cows). The RMSE of the
birthweight estimation of the von Bertalanffy model was the lowest (17.59 kg), followed
by the Gompertz model (20.04 kg). The average difference between the birthweight
estimates of the Von Bertalanffy model and the observed birthweights was the smallest
(underestimated by 3.26 kg). The estimated mature BW from the Brody model were the
closest to the observed maximal weights of most of the cattle (447 cows), followed by the
von Bertalanffy model (191 cows), the logistic model (157 cows) and the Gompertz model
(111 cows). However, the RMSE and the average difference between the estimates of the
Brody model and the observed maximal weights were the largest among the models.
Although the von Bertalanffy model ranked second in mature BW estimation, it provided
close agreement of mature BW, and it provided the smallest average differences between
the estimates and the observations (on average, underestimated by 6.45 kg). Consequently,
we considered that the von Bertalanffy model was the best model for fitting the whole of
life growth curves of the Holstein-Friesian cows due to the best goodness-of-fit and
accurate estimation of BWs. The estimated growth rates (kg/d) for the whole of life of the
cattle using the von Bertalanffy model are shown in Figure 2-4. When the animals were
203 £ 37 days old, they reached a maximum growth rate at 0.84 + 0.12 kg/d.
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The grey lines and the red line represent individual cattle and the mean of all cattle, respectively.

Figure 2-4. The predicted growth rates (from birth to 4,000 days old) of the 906 cows
in the TBW data set (the BWs in lactations were the daily mean BWs for d-1, d-30
and d-60 of that lactation) using the von Bertalanffy model.

2.3.2 Growth modelling of calves

After cleaning up the data and calculating the daily mean BW of each calf, there were
20,846 data points from 361 calves. There were 15 crossbred Aberdeen Angus (AAX)
bulls and 8 heifers; 4 crossbred Belgian Blue (BBX) bulls and 4 heifers; 98 Holstein-
Friesian (Holstein) bulls and 171 heifers; 35 Limousin (LIMO) bulls and 26 heifers. Each
calf had a birthweight and at least 15 BWs, including BWs from at the earliest, 2 days old
(8 £ 13 d) to the oldest at 125 days old (70 + 21 d). Based on the model fitting results of all
the individual calves, mean values of parameters of each model for 361 calves were
calculated. The growth trajectories from birth to 125 days old predicted by each model can
be found in Figure 2-5. Goodness-of-fit and results of birthweight estimation of each
model are in Table 2-3 and Figure 2-6.
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Figure 2-5. The bodyweights (BWs) of cattle in the early stage of life (from birth to
125 days old) and the fitted growth trajectories of models: (a) an example of fitting
models to an individual calf (black dots are the observations and the coloured lines
are the fitted trajectories); (b) the grey dots are the BWs of all the 361 calves and
the coloured curves are the fitted growth trajectories of models, of which the

parameters were the mean values of all the cattle.
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Table 2-3. The overall results of fitting models to the growth of 361 calves in the early stage of life (from birth to 125 days old).

Growth model

Estimate

Linear Quadratic Cubic Power Exponential
R? 0.947 (0.07) 0.935 (0.08) 0.871 (0.09) 0.937 (0.08) 0.954 (0.07)
RMSE 2.10 (0.90) 2.34 (0.98) 3.69 (1.57) 2.27 (0.91) 1.79 (0.68)
AIC 255.76 (125.45) 268.35 (125.87) 323.48 (154.47) 265.32 (126.52) 235.57 (105.83)
Parameter a 0.63 (0.17) 0.0086 (0.0037) 0.00015 (0.00012) 0.89 (0.076) 0.010 (0.0024)
Parameter b 36.37 (7.21) 46.55 (6.50) 50.66 (7.08) 34.35 (7.30) 40.34 (6.01)
Birthweight difference RMSE 9.12 6.25 10.09 10.84 4.96
(estimated-observed) Mean (SD) -7.63 (4.97) +4.04 (4.78) +8.26 (5.81) -9.80 (4.65) -2.81 (4.10)

Results are mean (standard deviation) unless indicated otherwise. Parameter a and b are parameters in models, represent growth rate and birthweight, respectively. RMSE of birthweight:
square root of the mean of the differences between estimated birthweights of models and the birthweights of all the animals. Mean (SD) of birthweight estimation: mean value and standard
deviation of the differences between the estimated birthweights and the actual observations of all the animals, ‘+’ means over-estimated, ‘-> means under-estimated.
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Figure 2-6. Model comparison according to the best AIC and estimations of
birthweight for the 361 calves from birth to 125 days old.

Each of the five models provided a good fit for the growth of calves, with high R?
values for each calf. The mean R? for the models for 361 calves were all above 0.87.
The exponential model was the best model for 165 calves according to the lowest AIC
values, followed by the linear model (84 calves), the quadratic model (71 calves), the
power model (35 calves) and the cubic model (6 calves). Among the 165 calves that
fitted the best with the exponential model, the model provided 155 calves with
significantly lower AIC (difference in AIC > 2) than the linear model, which was the
second best model; among the 84 calves that fitted the best with the linear model, AIC
values of 11 of them were not significantly different from the exponential model.
According to model statistics, the exponential model is the best model for the growth of
cattle in the early life stage. The exponential model also provided the most accurate
estimates of birthweight for 162 of 361 calves, followed by the quadratic model (124
calves), the cubic model (38 calves), the linear model (27 calves) and the power model
(10 calves). The exponential model mostly under-estimated the birthweights (266 in

361 calves), while the quadratic model mostly over-estimated the birthweights (291 in
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361 calves). The average birthweight estimated by the exponential model was 40.09 +
6.06 kg, and the quadratic model was 46.94 + 6.73 kg. Overall, the exponential model
provided both the best model statistics and birthweight estimation of 95 calves at the
same time, while the quadratic model only provided 42 calves with the best model
statistics and birthweight estimation at the same time, and for the linear model, only 12.
Consequently, the exponential model was proposed to be the best model for the growth
of cattle at early life stages (from birth to 125 days old). The growth rate trajectories of

all the calves predicted by the exponential model are shown in Appendix (Figure 2-3).

When models were constructed to quantify the effect of breed, sex and their interaction
(Figure 2-7), the exponential model was more sensitive to differences in these
independent variables, as the p-values for the effects of breed, sex and their interaction
for the estimation of parameter a were 6.21 x 108, 0.0030 and 0.035, respectively, in
contrast to the p-values for the effects of breed and sex on parameter a in the linear
model, being only 0.0087 and 0.074 with a non-significant interaction (p = 0.15). The
exponential model provided 13.7 % R? estimate for breed, sex and their interaction,
while R? of the model for the linear model parameter a was 5.5 %. It showed that there
were 8.2 percentage points (pp) difference (95% CI: 3.2 - 13.3 pp, p < 0.01) between
the exponential model estimates and the linear model estimates by bootstrapping 1,000

samples.
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AAX: Aberdeen Angus, 15 bulls and 8 heifers; BBX: Belgian Blue, 4 bulls and 4 heifers; Holstein:
Holstein-Friesian, 98 bulls and 171 heifers; LIMO: Limousin, 35 bulls and 26 heifers.

Figure 2-7. Effects of breed and sex on the parameter a in (above) the linear
model and (below) the exponential model (the most suitable model).
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Data sets were made to test the effect of reducing the density of the data on the
statistical power of the exponential model. The reduced data sets included the data
thinned to every two days, every four days, weekly, every two weeks, and every four
weeks. Only 183 of the 361 calves yielded at least three measurements when thinned to
28-day frequency. Therefore, to make the reduced data sets comparable across different
degrees of thinning, only these 183 animals were used in this analysis. The overview of
the number of BW data-points per animal in each data set is shown in Table 2-4.
Among the 183 calves, there were one AAX bull and one heifer, two BBX bulls and
three heifers, 13 LIMO bulls and 6 heifers and 28 Holstein bulls and 129 heifers. Due
to the limited number of animals in some breeds, animals except for Holstein were
considered as a group - beef cattle. The estimation of effects of breed and sex on
parameter estimates using each data set is shown below (Table 2-4). It confirmed that
the exponential model was more sensitive to the differences in the independent
variables, showing significant effects of breed on the growth parameters while the
linear model showed nonsignificant effects of it. The interaction effects of breed and
sex on growth rate estimates of the exponential model were significant until the data
frequency decreased to every 14 days, while the linear model always showed it
nonsignificant. In figure 2-8, R? estimates of the models with parameter estimates as
dependent variables, and breed and sex as independent variable varied as the frequency
of BW measurement decreased. The exponential model always generated much higher
R? estimates than those provided by the traditional linear model. However, the R?
estimates of both the linear model and the exponential model did not decrease as the
data frequency decreased, and even slightly increased when the data were thinned to

every 14 days or 28 days.
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Table 2-4. The effects of breed and sex on parameter estimates in the linear
model and exponential model of the 183 calves, for which the reduced data sets
included the data filtered to once every two days, once every four days, once
every seven days, once every 14 days and once every 28 days.

Frequency  Observations / calf P - value
Model
(day) Min  Max Med Mean Breed  Sex  Breed x Sex
1 57 115 73 75 Linear 0.51 050 0.76
Exponential 0.00076 0.31  0.033
2 29 58 37 38 Linear 0.47 051 0.77
Exponential 0.00054 0.32 0.034
4 15 29 19 19 Linear 0.49 047 0383
Exponential 0.00044 0.37 0.042
7 9 17 11 11 Linear 0.52 041 0.87
Exponential 0.0004 0.34 0.058
14 5 9 6 6 Linear 0.43 045 0.99
Exponential <0.001 031 013
28 3 5 3 3 Linear 0.25 0.61 093
Exponential <0.001 037 019
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Figure 2-8. The R? estimates provided by the linear model and the exponential
model to the effects of breed and sex, using the reduced data sets that included
the data of the 183 calves filtered to once every two days, once every four days,
once every seven days, once every 14 days and once every 28 days.

2.3.3 Growth model for the finishing period of beef cattle

After removing outliers and incomplete cases, 22,936 BW observations from 268
fattening cattle with BW records of no less than 60 days were retained. The day of
onset of feeding was taken as d-1, and the age and weight of animals at d-1 were used
as covariates for subsequent model fitting. Linear, negative exponential and logarithmic
models were fitted to the data for each animal. However, unlike the linear model (R? =
0.946 + 0.050) and the logarithmic model (R? = 0.788 + 0.057), which could be fitted to
the BWs of all the animals, the negative exponential model could be fitted only to the
BW data from 152 animals (R? = 0.951 + 0.038). According to the comparisons of
model statistics, the linear model fitted the best (lowest AIC, R? = 0.958 + 0.030) for
171 finishing beef cattle (64% of 268 cattle) while the negative exponential model
fitted the best (lowest AIC, R?=0.949 + 0.045) for 97 finishing beef cattle (36% of 268
cattle), the logarithmic model never provided a good fit to the growth curves of cattle
over the finishing period. Among the 152 animals that could be fitted with all the three
models, 22 of them could be fitted well with both the linear model and the negative

exponential model due to the close values of R? (difference in R? < 0.001) and AIC
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(difference in AIC < 2). Figure 2-9 shows two examples of fitting models to finishing
beef cattle and all cleaned BWs of the 268 finishing beef cattle.
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Figure 2-9. The weight gains of finishing beef cattle in the late stage of life and the fitted growth trajectories of models: (a) and (b) are two
examples (black dots are the weight gains and the coloured lines are the fitted trajectories), (a) shows that the linear model is the best model
and (b) shows that the negative exponential model is the best; (c) shows all the cleaned data of the 268 finishing beef cattle.
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Because we expected that some animals in this phase of development would have been
approaching their maximum mature BW, we tested whether the age of animals or their
BWs would influence whether the linear model or the negative exponential model was
better. Among the 268 finishing beef cattle, the birth dates of 160 animals were known. For
these cattle, we gathered the data including their age at the beginning (580 + 107 days old)
and at the end of the measurement (687 £ 112 days old), their duration on feed (107 £ 26
days), their weight gains during the observation period (123 £ 35 kg), their BWs at the
beginning (550 + 77 kg) and at the end of the measurement (673 + 68 kg) and farm
information (3 farms). These variables were used as independent variables in a binary
logistic regression model in which the outcome variable was whether the linear model or
the negative exponential model performed the best. Only the number of days that the cattle
were on feed significantly affected (p = 0.041) the choice of best model for 160 cattle. The
potential effect was then tested on all the 268 cattle (mean + SD of days on feed were 100
+ 25 d). The result confirmed that the days of the cattle on feed significantly influenced (p
= 0.036) the choice of best model. The probability of the best model being the negative
exponential model is plotted against days on measurement below (Figure 2-10). It shows
that the longer an animal is on feed, the more likely it is that the best model will be the
negative exponential model. In the present study, there were 88 cattle whose breeds were
known; these were divided into British (9 cattle) and Continental (79 cattle). There were no
significant effects of the breeds (p = 0.99) on the model comparison results: the growth of
all the British cattle fitted better with the linear model, while the growth of nearly half of
Continental cattle (40) fitted better with the linear model and the rest fitted better with the
negative exponential model (39). The days on feed of the British cattle varied from 69 to
175 d, for Continental cattle it varied from 70 to 195 d. The effect of days on feed on
model selection was confirmed in this small subset as well, showing the p-value as 0.034.
In conclusion, the longer the cattle were on feed, the more likely that the best model for

growth would be the negative exponential model.
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NE: the negative exponential model. The grey dots (jitter at top and bottom of panel) were the results of
model comparison of the 268 cattle: dots on the lower x-axis are the days on feed for which the best model
was the linear model, and those on the top horizontal x-axis are the days on feed for which the best model
was the negative exponential model. The area between the two red lines represents the 95 % CI of the
probability.

Figure 2-10. The probability (black line) of the best model being the negative
exponential model over the days of cattle on feed (measurement).

For the 152 finishing beef cattle (days on feed, mean + sd = 103 + 27 d) for which data
could be fitted with the negative exponential models, the comparison of precision of
parameter estimation by the traditional linear model and by the best nonlinear model was
done similar to the study on calves, as described above. Farm information of all these
animals and breeds of 53 of them were known, GLMs were firstly fitted with farm (two
farms) and breed (Continental or British) of the 53 animals as independent variables, and
the growth rate parameter estimates as the dependent variable. It showed that breed did not
significantly affect the parameter estimates in either model, but there was a significant
effect of farm on growth rate estimates in the linear model (p = 0.00079), but no significant
effect of farm on growth rate estimates in the negative exponential model (p = 0.86). Farm
was then used as the independent variable in testing all the 152 animals, which confirmed
the better performance of the linear model: p-values of farm effect on growth rate estimates
were 0.0031 and 1.0 x 107 of the negative exponential model and the linear model,

respectively. Bootstrapping 1,000 samples showed that the negative exponential model
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provided R? estimates that were around 14 percentage points (pp) lower than the linear

model estimates (12 vs 26 %).

In conclusion, the best models for the growth of beef cattle during the fattening phase of
life were the linear model and the negative exponential model, in many cases the linear
model was easier than the negative exponential model to be fitted with the growth of the
cattle. The linear model provided the best goodness-of-fit of fitting the growth of more
animals compared to the other models, however, the longer the cattle were on feed the
more likely that the best model for growth would be the negative exponential model. For
those animals for which data was available for fitting GLMs, the linear model was more
sensitive to the effects and provided overall more precise parameter estimates than the
negative exponential model. The finding suggested that to evaluate the best model for the

growth of animals before analysing effects of interventions might be useful.
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2.4 Discussion

Our analysis with high-density, but non-continuous data suggested that the von Bertalanffy
model was the best model (compared with the Brody, Gompertz, logistic and Richards
models) to describe the whole of life growth trajectories of the lactating Holstein-Friesian
cows. For near-continuous BW observations of Holstein and Holstein-cross dairy calves up
to 125 d, the exponential model performed the best. Applying this model improved the
precision of the estimates of the effects of breed and sex, providing greater statistical
power than the traditional linear model. The best models for the growth of beef cattle
during the fattening phase of life were the linear model and the negative exponential
model, with the negative exponential model becoming the preferred model for cattle that
stayed longer in the fattening phase, although the linear models provided better effect
estimates for independent variables that were expected to influence growth rate. These two
findings together are consistent with the theory underlying the growth models fitted to the
growth of whole of life of cows. The growth of animals in different phases could be

analysed separately using the most suitable models.

The von Bertalanffy model fitted the best to the growth of whole of life of cows in the
present study, with not only high goodness-of-fit but also accurate biological estimates.
Consistent with our findings, Berry et.al (2005) reported that the von Bertalanffy model
performed the best among the Brody, logistic, Richards and Gompertz models in modelling
the growth of three strains of Holstein-Friesian female dairy cattle using weekly BWs.
Vaccaro and Rivero (1985) also used the von Bertalanffy model for analysis of growth of
Holstein-Friesian cows in the Venezuelan tropics. It was also reported to be the best model
to describe the growth of other cattle breeds such as Zebu cattle and Nelore cattle (Lopes et
al. 2012) and has been used in Chianina and Nelore cattle as well to compare growth
parameters (Carrijo and Duarte 1999). However, it showed poor goodness-of-fit compared
to the Brody and Richards models in synthetic breeds of Charolais, Angus and Galloway
female beef cattle (Goonewardene et al. 1981). For these beef cattle and also for purebred
Hereford, Goonewardene et al. (1981) found that the Brody model was the most suitable
growth model according to high goodness-of-fit and accurate prediction of BWs. Forni et
al. (2009) reported that the Brody model was the best model for Nelore female beef cattle,
providing accurate birthweights compared to the Gompertz and von Bertalanffy models.
However, in the present study, it indeed provided lots of Holstein-Friesian cows with

accurate mature BW estimates but also provided the worst estimations of birthweight
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among the growth models. The Richards model is an empirical function with one more
parameter than the other models. It was found to give better prediction of BWs of Angus
pasture-fed cows from birth to maturity (Goldberg and Racagnolo 2015) and more precise
prediction of mature BWSs of Podolica bulls than the other models (Selvaggi et al. 2017).
However, at the same time as improving model fit, the Richards model increases the
probability of overfitting and numerical difficulties in growth modelling. Consistent with
the present study, researchers failed to fit it to the growth of Brahman cattle (Crispim et al.
2015). Two more models were tested in the present study: the logistic and Gompertz
model. The former was initially used for modelling growth of human population and the
latter was developed for human mortality. Although the goodness-of-fit of the two models
were not bad, they provided very poor biological estimates for the Holstein-Friesian cows
in the present study. Both models have been reported to perform well in fitting to the
growth of small livestock such as sheep (Lupi et al. 2015, Ghavi Hossein-Zadeh 2017), and
birds such as domestic pigeon (Gao et al. 2016) and meat quail (Gotuzzo et al. 2019). The
decision of which is the most suitable growth model depends on many factors such as
species, breeds, sex, changes in environmental factors, differences in feeding management
and results of genetic selection (Brown et al. 1976, Selvaggi et al. 2017). Comparison
between models should not only focus on purely statistical criteria, but also be based on
practical biological characteristics. As noted previously (Brown et al. 1976), the selection
of the models and their modified forms should depend upon the nature of the study and the
intended application of the results. With the accurate analysis of whole of life growth
trajectories of cattle, heritability of model parameters and their genetic correlations can be
estimated, selection of high-performance animals and the most suitable time for slaughter
might be chosen (Luo et al. 2015, Lupi et al. 2016, Ghavi Hossein-Zadeh 2017).

The exponential model was the best model to describe the growth of calves up to 125 d
compared with the linear, quadratic, power and cubic models. Few studies have examined
growth models of cattle in their early life stages. In 1995, some researchers found that the
linear model was the most suitable growth model for Retinta beef cattle up to the weaning
according to the best goodness-of-fit, compared with the logistic, Gompertz, Richards,
Brody and von Bertalanffy models, polynomial model with up to fourth degree and diverse
exponential models (Berlanga et al. 1995). In a recent study (Quigley et al. 2021),
researchers measured BWs of calves weekly up to 64 days old and every four weeks for
calves over 60 days old and below 114 days old, and generated a quadratic correlation

between ages and BWs. However, although the quadratic model ranked second in
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estimation of birthweights of calves in the present study, the exponential model provided

better goodness-of-fit and more precise birthweight estimation.

Historically, where researchers have had access to several weight measurements, as well as
the traditional before-and-after measurement to evaluate animal growth rates, the
bodyweight data has sometimes been split into two or more shorter time periods to
minimize the errors. For example, Donovan et al. (1998) split the growth from birth to 14
months into two periods (birth to 6 months and 6 months to 14 months) to study the effects
of colostrum-dependent immune status and disease conditions on heifer growth. Malhado
(2013) calculated ADG of cattle from birth to 205 days old and from 205 to 365 days old
to study the influence of inbreeding depression on cattle growth. According to the findings
in the present study, application of the exponential model would be expected to improve

accuracy of description of animal growth patterns, even with as few as four datapoints.

The exponential model for calves provided more precise parameter estimates than the
traditional linear model, and it showed higher sensitivity to the effects of breed and sex
compared to that in the traditional method, which remains widely used in practice
(Reynolds et al. 1990, Lensink et al. 2000, Duthie et al. 2018). For example, researchers
studied the effect of potential factors including sex, age and season (Marlowe and Gaines
1958, Tanner et al. 1970) on the growth of animals in their early life stages, from birth to
120 days old (Windeyer et al. 2014), the first 23 weeks (Lensink et al. 2000) and from birth
to weaning age (Soberon et al. 2012). Higher sensitivity of the exponential model in
analysing the effects of “intervention” factors had been validated by using the reduced data
sets, which included the data thinned to every two days, every four days, weekly, every
two weeks, and every four weeks, showing significant effects of intervention by the
exponential model while the linear model showed nonsignificant effects of intervention.
The R? estimates of the exponential model were always higher than those of the linear
model. Thus the exponential model was proposed to be the most suitable growth model for
cattle in the early life stages, and was recommended to be used to analyse effects of
interventions on growth performance — providing better precision and higher statistical
power. The R? estimates generated by both models did not decrease as the data became
sparser, which suggested that both models could work on sparse data of the early life
stages. Data simulation could be used to test the statistical power of the exponential model

for further investigation.
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The growing stage of cattle is also an important life stage, but since animals are often on
pasture during this stage, the automatically weighed bodyweights were not available. For
beef cattle that were mature or approaching maturity and in finishing systems on farm, the
linear model and the negative exponential model both performed well, the negative
exponential model being slightly better for animals that were on feed for longer. While this
would be expected as a general property of curves — that the shorter a segment is taken the
easier it is to fit a straight line — it is also what would be expected from the general class of
curves generated by the rate-state differential equations such as the von Bertalanffy — the
rapid growth phase that follows the initial exponential curve approximates a linear
function, but over time tends to the negative exponential. The present study suggests only
that either linear or negative exponential curves would be appropriate, and that the choice

might depend on the length of time on feed.
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2.5 Conclusion

A workflow for determining the best model for growth of the cattle in different life stages
has been developed. The von Bertalanffy model was the best model for whole lifespan
growth of Holstein-Friesian cows. By using near-continuous BWSs, the exponential model
was found to be the most suitable model for cattle in their early life stages up to 125 d, and
this model provided more precise parameter estimates, enabled more efficient
determination of explanatory variables and improved statistical power compared to the
traditional linear model. Both linear model and negative exponential model produced a
good fit to growth of the finishing beef cattle. The longer the finishing beef cattle stayed on
farm, the more likely it was that the negative exponential model was the best model. The
main implications of the study are that an exponential model should be used in preference
to a linear model for assessing growth performance in calves in the first three to four

months of life, but that in finishing cattle there is no consistent advantage.
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2.6 Author contribution

Except that the data for the cows and calves (owned by SRUC) were exported by Ainsley
Bagnall of SRUC and the data for the finishing beef cattle (owned by Harbro Ltd.) were
firstly cleaned by Paul Johnson of the University of Glasgow, | was responsible for all the

data collation, filtering, analyses, visualisation and thesis writing.
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Chapter 3 Effects of Ammonia-treated Cereal
Grains on Growth Performance of Beef Cattle
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2022, 115350; available online 3 June 2022.
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Highlights:

Treatment of maize with ammonia resulted in improved feed-conversion in cattle.
Ammonia treatment increased faecal and ruminal pH.
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Ammonia treatment of cereals increases efficiency of cereal utilisation.
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3.1 Introduction

Feed quality for livestock can be adversely affected by pests and microorganisms during
storage and effective feed preservation is beneficial to animal health. Many approaches
have been taken to create an environment that is not conducive to the survival and
reproduction of microorganisms and pests: controlling moisture and temperature, creating
an anaerobic environment by adding deoxidiser or filling containers with carbon dioxide
(COy) or nitrogen (N2) (Raeker 1990, Hashem et al. 2012, Navarro 2012). Additives such
as microbial inoculants, chemicals and enzymes, are also commonly used to both preserve
and enhance the digestibility and nutritive value of rations for livestock (Muck et al. 2018).
Cereal grains contribute a large proportion of the diets for fattening cattle in Europe, and
are often harvested with a high moisture content in northern and western Europe,
necessitating preservation (Olsson et al. 2002). High starch content of the cereals also
increases the risk of reticuloruminal acidosis (Owens et al. 1998). Whereas acidifying
treatments are effective preservatives (Campling 1991) but do not address acidosis,
alkalization treatments of cereal grains have the potential to address both spoilage and
acidosis (Humer and Zebeli 2017).

Ammonia treatment has been applied to inhibit mould growth and bacterial proliferation
(Bothast et al. 1972, Kabak et al. 2006) in low quality roughages and whole grains and to
increase their digestibility (Oji et al. 1977, Han et al. 1978, Horton 1978, Laksesvela 1981,
Kraiem et al. 1991). Ammonia treatment increases non-protein nitrogen (NPN) (Oji et al.
1977, Horton 1978, Herrera-Saldana et al. 1982, Males and Gaskins 1982, Kraiem et al.
1991), which contributes to improved reticuloruminal microbial growth and activity (Rode
et al. 1986), and might therefore improve animal performance (Spanghero et al. 2017,
Belanche et al. 2021). Improvements in feed intake and feed efficiency in steers (Mathison
et al. 1989) and increases in milk yield and milk protein in dairy cows were noted when
ammonia-treated high-moisture barley was fed (Robinson and Kennelly 1989). Laksesvela
(1981) reported an increase in dry matter intake (DMI) of adult female sheep fed ammonia-
treated barley in addition to a higher lambing percentage than those fed untreated barley.
Due to the alkalinising nature of ammonia, it is also expected to decrease the rate of
ruminal starch degradation like other alkali treatments (Humer and Zebeli 2017), thereby

reducing the risk of rumen fermentation disorders.
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Ammonia treatment of livestock feed is not new. Early investigations of ammonia made
use of anhydrous ammonia gas and demonstrated effective preservation and some
enhanced animal performance. However, until recently, relatively little use has been made
of ammonia treatment, probably because of the logistic challenges associated with treating
large volumes of feed. Several systems have recently been developed commercially,
including Maxammon (Harbro Ltd, Turriff, Scotland) in which ammoniation is achieved
by mixing cereal grain with urea and a source of enzyme to catalyse the conversion of urea
to ammonia. Feed can be treated readily on-farm using mixer wagons, deposited in a
commodity-bay, and covered with a plastic sheeting for 7-10 days, during which ammonia
gas percolates through the cereal grains and is absorbed. There are fewer concerns about
using ammonia as a feed preservative than the ammonia emission in agriculture (from
animal husbandry, farming, etc). The amount of ammonia liberated into the atmosphere
during the production of the gas is unknown, although in-house studies commissioned by
Harbro suggest that it is quite low if the recommendations for sheeting the product are
followed. This is to be expected, given the apparent high efficiency with which the
ammonia is incorporated in the grains. Maxammon treatment had been reported to improve
microbial protein synthesis and therefore improved efficiency of digestion and utilisation
of carbohydrates and proteins (Belanche et al. 2021). In the present study, we aimed to
establish whether the commercially available method of cereal grain preservation would
deliver similar performance benefits to those previously documented using direct
insufflation with anhydrous ammonia gas. The beef catt