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Abstract

Histopathology is considered the most practical diagnostic method for patient with early stage
cancer. This is because at the very first pre-screening, patient’s tissue samples are delivered to
pathologist for examining evidence of cancer. Computational scientists aid pathologist by heav-
ily producing research on machine learning-based morphological pattern recognition of tissue
image. Many data modelling investigations on histopathology have been conducted in super-
vised manner and some of them were further employed in real-life clinical diagnosis. This
study proposes an approach to developing clusters of tissue tile. The main aim is to obtain
’high-quality clusters’ with respect to phenotypic annotations. In order to achieve this goal,
two colorectal datasets namely 100k-nct and TCGA-COAD are experimented, one of which is
directly annotated with tissue type, and other dataset is annotated through derivation from pa-
tient metadata, quiescent status. Four main independent variables were explored in this study
(i) feature extraction by Resnet50, InceptionV3, VGG16 and an unsupervised generative model,
PathologyGAN. (ii) feature space transformer including original feature, 3D-PCA feature and
3D-UMAP feature and (iii) clustering algorithms namely Gaussian Mixture Model and Hier-
archical clustering and their primary hyper-parameters. As a result, Resnet50 empowered by
UMAP outperformed the most in clustering tissue type on 100k-nct dataset at v-measure of
0.74. The other dataset of which quiescent status is derived from patients encountered nearly
zero in v-measure. However, clustering this quiescence-based dataset on 3D-UMAP Pathology-
GAN yielded far higher V-measure than the rest of cluster configurations and illustrates ability
to capture quiescence-related phenotype through visualisation.

Keywords: phenotype cluster, deep learning, generative adversarial model, tumour tissue,
manifold learning, dimension reduction.
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Chapter 1

Introduction

With the growing interest in data driven approaches, enormous data is being produced and ac-
tively collected via digital platforms running worldwide. Needless to say, data cannot be fully
utilised without an effective analysis in order to either be monetised or provide social benefits.
Model requiring supervised learning is the most common branch of data modelling. It heavily
relies on data annotation which is becoming impractical due to the exponential growth in data
generation. Another main issue is the fact that supervisory bias, in which labelled samples influ-
ence model learning process, can misguide the analysis because its main objective is to maximise
the predictive power. This issue is to be taken into account when interpreting data under certain
sensitive domains. Clinical data science is undeniably considered one of the most sensitive sub-
ject areas as blackbox methods and inaccurate interpretation are crucially serious [1].

Unsupervised learning is often utilized as a solution when concerns regarding supervisory learn-
ing become increasingly significant. Clustering is the most widely used method in unsupervised
machine learning. It is widely employed to solve data-driven problems when labels are un-
available. Technically, clustering is objected to find a way of grouping samples of which their
similarities are high in value on a defined feature space. The mechanism yields an inclusive
information of a label-free dataset. The resulting summary provides insight into data that has a
complex original structure and may be more challenging for further analysis.

Cancer research is one of the most popularly used in the sector of health associated technology
development. Advanced DNA sequencing has been constantly developed with the ambition of
early stage cancer detection for patients with developing cancer. [2] The sequencing technology
derives a patient’s genomic profile from the traversal across the DNA. Indeed, it helps save many
lives. Unfortunately, DNA sequencing is not employed at the entry point of cancer diagnosis.
The common practice delivered to new patients is to examine tissue samples through micro-
scope. [3] The examination of patient tissue samples using a microscope is formally known as
Pathology. This process allows for the early detection of cancers. However, pathology requires

1
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highly skilled pathologists to manually examine sectioned tissues on a case-by-case basis. It’s
a human laborious task that causes fatigue so thus human error is inevitable. Another crucial
challenge is that individual tumours are highly identical. The issue obstructs pathologists from
achieving a definite conclusion on tumour patterns.

Digital Pathology aids pathologists in tissue interrogation. It employs computational methods
to speed up the histopathological process. This is known as "computational pathology". [4]
In terms of digital image processing, Whole Slide Image (WSI) is considered a huge file that
causes a significant burden to computational units. It’s normally gigapixel in size. [5] To curb
this issue, a WSI is better split into a set of smaller equal-sized tiles for further processes. Al-
though individual WSI is unique, each title, which together constitute a unique WSI, represents
fundamental visual elements shared across different WSIs. Hence, abundances of similar tiles
from two WSIs can be features for determining how similar the two WSIs are.

Clustering is a well-established and efficient computational method for grouping data instances
based on their similarities within a defined feature space. When applied to tissue tiles, this
process results in the creation of "phenotype clusters." The cluster representatives, such as cen-
troids, serve as a catalog of phenotypic information, similar to a catalog of gene expression.
By analyzing the abundance of phenotypic clusters in a Whole Slide Image (WSI), a patient’s
phenotype profile can be constructed. This information can then be used by histopathological
experts to identify known and unknown visual features that are related to the patient’s genomic
profile and clinical conditions. The importance of clustering tissue tiles lies in the ability to
effectively categorize and analyze complex pathological data, leading to a better understanding
of disease progression and patient outcomes. Also, there is the feasibility of using phenotype
clusters in supervised learning by providing additional information about the relationships be-
tween the features and the labels, potentially leading to improved results in digital pathology.

In order to ensure that resulting clusters are innate references, cluster training and its config-
urations are expected to proceed without external annotations. This limitation puts a consider-
able challenge into the process of obtaining high quality clusters. Two undeniable questions are
the most suitable clustering algorithm and the correct number of clusters that should be used
for a working dataset. Since data can be represented in various ways, choosing an appropriate
feature space for a dataset is impactful as cluster quality is highly sensitive to different feature
sets [6]. The sensitivity is also extended to data preprocessing steps including but not limited
to dimension reduction. Linear and non-linear transformation could extremely affect clustering
depending upon the assumption of how data is embedded in the original feature space and of
course that of clustering itself [7]. None of the above configurations are ever found without an
effective mathematical measurement of cluster quality. The scoring can be positively or neg-
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atively reflective to how well the data samples are grouped based upon statistical assumption.
However, external labels cannot be imposed during model selections for the phenotype clusters
to be unbiased and deprived from any supervisory objectives. Thus, only intrinsic scores are
mainly valid for seeking hyperparameter configurations. Extrinsic scores which require external
annotations can be further used in result analyses

In this thesis, two popular clustering algorithms, namely Gaussian Mixture Model (GMM)
as a sophisticated partition-based clustering algorithm and Hierarchical Clustering (HC) as an
instance-based clustering algorithm, are applied to two different colorectal image datasets. One
dataset, called 100k-nct, has tissue type labels directly defined, while the other, COAD, has la-
bels derived from patient level information. To perform clustering, features are extracted from
the data samples using several potential deep Convolutional Neural Network (CNN) models,
including PathologyGAN, ResNet50, InceptionV3, and VGG16. In addition to the original fea-
ture representations, the effects of linear and non-linear feature transformations, implemented
through Principal Component Analysis (PCA) and Uniform Manifold Approximation and Pro-
jection (UMAP), are also investigated. All of these components are organized and implemented
as a phenotypic cluster analytical framework with the goal of being applicable to Whole Slide
Image (WSI) datasets, such as colorectal cancer.

1.1 Research aim

This research has three main aim:

1. To develop a robust clustering framework that yields high quality clusters of sub-tissues.

2. The individual phenotype clusters recognise tissue visual characteristics without supervi-
sory biases.

3. Cluster assignment abundances of tissue tiles can reflect patient molecular or clinical pro-
files.

1.2 Research Contribution

The contribution of this research lies in investigating a potential framework that generates high
quality clusters of tissue-patches of WSI. The abundances of cluster membership are expected
to represent the phenotype of WSI.
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1.3 Research Questions

To work towards our research aims, we need to answer the following research questions:

1. What components are required in a clustering framework in order to differentiate types of
tissue tiles without the associated labels provided during cluster training?

2. What patient clinical or molecular attributes can be derived from cluster membership of a
WSI?

3. What measure metric is capable of evaluating the framework configuration that could
produce the high quality cluster?

4. What is the effect on the high quality clusters from different feature representations ?

5. Which kind of feature transformation has the potential to help improve fabricating the
high quality cluster?

1.4 Thesis Statement

The primary purpose of this thesis is to develop a comprehensive clustering framework for tissue
tiles concerning the capability of quantifying the phenotype of whole slide images (WSIs). As
the assignment of clusters for each tile represents a phenotypic element, the assigned tiles can
be quantitated to potentially define a patient’s histopathological phenotype profile and describe
their cancer status. The main functionality of this framework is to seek optimality in clustering
configurations, e.g., choices of representation extraction, ways to clusterable features, clustering
algorithm and the related parameters based on a given tissue dataset. Both intrinsic evaluation
and the annotation-required extrinsic evaluation will be employed to reach the ideal tile-based
clusters. The intrinsic methods are free of bias from any particular objective, while extrinsic
ones illustrate the applicability in diagnostic usages. In this study,The sub-tissue images to train
the model stem from patients with colorectal cancers.
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1.5 Thesis Outline

This thesis is composed of the following chapters:

• Chapter 2 Background: This chapter begins with defining the tumour-tile based anal-
ysis and unsupervised machine learning technique to address in histopathology field by
reviewing the literature. Then it provides a background on describing various feature ex-
traction strategies to represent tissue-patch, data preprocessing to robust representative
features on images such as dimension reduction, how fundamental clustering algorithms
function, and how to assess high-quality clusters by numerous particular metrics.

• Chapter 3 Experimental Framework design: This chapter describes the two colorectal
cancer datasets and the design of experiments to assemble the framework of clustering
on sub-tissue tiles in diverse elements. The data section will describe the selected WSI
dataset with attributes, metadata and labels. In the experiments design section, we describe
an experiment’s design for obtaining high-quality clusters generated from a clustering ap-
proach. Several tissue representations are introduced to find out the best for unsupervised
computational histopathology. Also, linear and non-linear dimension reduction is applied
with the purpose of undercovering a more clusterable feature space. Prototype-based clus-
tering and hierarchical-based clustering are then explored on those configurations and its
performance evaluated by quality cluster assessment techniques.

• Chapter 4 Result and discussion: This chapter describes the experiment outcomes and
manifests optimal unsupervised clustering framework configuration toward the quality
clusters assessment. And also interpret and explain the significance of results of the ex-
periment.

• Chapter 5 Conclusion: This chapter describes the thesis’s contributions, summarises the
experiments, responds to the research questions, and discusses limitations, suggestions,
and future work.



Chapter 2

Background

This research aims to develop a comprehensive clustering framework of tissue patches for quan-
tifying the phenotype of Whole Slide Image. The main objective of this framework is to deter-
mine the appropriate clustering configuration for a given tissue dataset, including representation
extraction, dimension transformation, clustering algorithm, and related parameters.

This chapter begins by defining tumour-tile based analysis and unsupervised machine learn-
ing for the histopathology discipline through a literature review. Then it provides background
information on describing various strategies to represent tissue-patch, data preprocessing to ro-
bust representative features on images such as dimension reduction, how fundamental clustering
algorithms function, and how to evaluate high-quality clusters in a number of specific measure-
ments.

2.1 Literature Review

2.1.1 Machine learning in digital pathology

In digital pathology, image processing and machine learning are widely employed in collabora-
tion to recognise morphological patterns appearing in digital WSI [8, 9]. As a result, it helps fa-
cilitate practitioners in diagnostic purposes. However, very prior art of machine learning requires
the intervention of knowledge, particularly in feature extraction and model training framework
design, which are unique across digital pathology tasks with different objectives. Instead of
jumping straight into execution of data wrangling, clinical data scientists are mandated to spend
their foremost effort on understanding the relevant fundamental knowledge. Thank to the arrival
of deep learning, the required effort to understand a new task-related foundation is reduced when
performing data modelling [10]. It has permitted the acceleration of technology development in
digital pathology.

6
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Convolutional Neural Network (CNN) is a well-known class of deep learning for image anal-
yses. It was born with the ability to learn how to extract useful visual features from a large
sample-size dataset automatically. This full capacity of CNN was widely recognised after the
introduction of ImageNet dataset [11]. The dataset of million images of several classes has been
the most popular benchmarking image dataset for a decade. Highly potential knowledge related
to Computer Vision that many CNN architectures have learnt from ImageNet is widely transfer-
able to solve many computer vision problems, in which medical analysis is included [12]. The
success of transfer learning on ImageNet influences the development of numerous CNN archi-
tectures to work well on input images with a resolution below the square of a thousand [13]. As
mentioned in the introduction, the resolution of a WSI is typically around 100,000 x 100,000
pixels, which is far beyond the size of input images expected by many mature CNN architec-
tures. Therefore, victorious works on WSI examination were typically done by splitting WSI
into smaller equal-sized patches and then aggregating analytical results from those patches in-
stead of using the entire WSI [14–16].

Most previous research works on digital pathology were conducted under the framework of
supervised learning. In multiple papers, supervised learning-based research focuses range from
tackling fundamental image processing tasks such as cell detection and segmentation [17,18] to
the most prevalent supervised learning problem, classification of cell and tissue types [19, 20].
Some research results derived from the data modelling on histopathology data were further em-
ployed to clinical diagnosis [21]. Nonetheless, knowledge discovered by approaches with su-
pervisory bias is not interchangeable across different tasks but usually valid for a specific goal.
Adaptation of a supervised learning-based model from one task to another demands an extensive
fine-tuning [22]. That is because the learned features are not proven to be generalised. Those
approaches require supervisory bias to achieve a specific goal. Hence, the findings from a su-
pervised learning-based experiment cannot be claimed as the progress of general visual element
discoveries towards an alternative to DNA sequencing technology.

2.1.2 Image representation

It is undeniable that practical features play an impactful role in obtaining a high-quality ma-
chine learning model. No matter how sophisticated machine learning algorithm is employed, it
cannot compensate for the quality of features in order to succeed in a data modelling task [23].
Selecting a feature set is very sensitive and directly influences the quality of model training.
Prior to the use of deep learning techniques, the process of selecting features extensively was
time-consuming and required a significant amount of effort, but it was necessary for achieving
a high-quality model.
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The arrival of deep learning constituted a highly efficient solution to the the burden of exhaustive
search in the traditional feature selection, called representation learning. It simultaneously cre-
ates feature extractor while training a deep classifier. The feature extractor is guided concerning
a specific objective function, either supervisory or nonsupervisory [24]. Another essential ben-
efit of deep representation learning is the ability to be transferable to different domains which
only requires soft tuning.

Training a supervised deep learning model from scratch is inefficient, especially in image clas-
sification, which takes a long time to converge and risks overfitting [25]. Transfer learning
is introduced as an effective solution this weakness with the enormous success. Multiple re-
search works [26–28] used initialised deep neural network architecture parameters, fitted by
ImageNet, the most common benchmarking image classification dataset. By removing the top
fully-connected layers of a deep classifier, the remaining parts work as a feature extractor. Re-
garding famous CNN architectures to be examined as the potential feature extractors, ResNet50,
InceptionV3 and VGG16 as the toplist of deep architectures mentioned in all those research pa-
pers.

Deep feature extraction is not limited to supervised learning fashions. There are several at-
tempts to that in unsupervised ways. One of the first unsupervised feature learning techniques is
Autoencoder (AE) [29]. It is widely recognized as a non-linear technique for reducing dimen-
sionality that can be applied to both structured and unstructured data, including images. Due to
no constraint applied during training vanilla AEs, it is hard to ensure that the feature space lies on
a valid assumption especially for a complex but small dataset. Variational Autoencoder (VAE)
was introduced to solve this issue by constraints imposed into feature space [30]. Dissimilar
to supervised learning in which accuracy defends its performance, unsupervised feature learn-
ing suffers from no exact scoring available which leads to the demand for trust by visualising
the mechanisms inside the function [31]. Fortunately, Ian Goodfellow proposed a new training
framework for neural networks via an adversarial objective, Generative Adversarial Network
(GAN). Throughout the adversarial technique, one of the pairs of models, the generative one,
can illustrate what latent space is representing. Moreover, my colleague and I also published a
recent research work presented a GAN architecture, called PathologyGAN [32], and provided
promising proof of success in using GAN for tissue slide’s feature extraction.

2.1.3 Clustering Framework

Clustering can be roughly divided into two main categories including hierarchical clustering and
partitional clustering. Hierarchical-based clustering allows a sample belongs to more than one
sub-cluster based on a different level of hierarchy [33]. In contrast, partition-based or prototype-
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based clustering is non-overlapping. Guassian Mixture Model (GMMs) and K-means are the
well-known representatives of partitional clustering. GMM is considered as generalised ver-
sion of K-means while K-means is seen as the least complex [37]. Thus, when considering
which type of clustering is to be used, GMM is the more reasonable to be benchmarked against
hierarchical clustering (HC).

Finding the most appropriate clustering algorithm for a dataset and decided to depend solely
on its original feature space, which is normally high in dimension, is not risk-free. Running a
complex clustering algorithm on a huge dataset can take forever. The dataset of sub-tissues of
gigapixel WSIs is to be considered. It is also unavoidably true that curse of dimensionality is
far more harmful to clustering performance than the classification counterpart [38]. This is be-
cause curse of dimensionality directly affects the process related to distance metrics. Compared
to many classification algorithms, clustering is more reliant on measurable distance between
samples.

Luckily, significant works on effective dimension reduction are actively produced to improve
performance of feature embedding and in due course the clustering performance. It ranges from
the simplest approach which is Principal Component Analysis (PCA) to the preservation of
global structure and local structure by manifold learning such as UMAP (Uniform Manifold
Approximation and Projection). There is no clear evidence of which one is better. The study
in [39] shows that only PCA to preserve global structure with respect to valid linear interpolation
is more than sufficient to obtain a high quality cluster. On the other hand, [40] illustrates a
big improvement on clustering through recovering the underlying manifold during dimension
reduction prior to the execution of clustering. These two techniques will be extensively explored
towards the high quality cluster of tissue patches.

2.1.4 Clustering Quality Measurement

Clustering’s ultimate goal is to assign data samples into “correct” clusters. the word “correct” is
variable enough to show an immediate challenge. Different clustering algorithms behave differ-
ently regardless of several critical parameters of each to be properly adjusted in order to obtain
optimality. Cluster training is executed by comforming a cluster pre-defined structure including
selected feature space, number of clusters, distance metric [41]. Because the goodness of clus-
tering is subject to individual perceptions so thus cluster algorithms are destined to provide a
variety of clustering outcomes.

As mentioned previously, performance validation of clustering is far more challenging than that
of supervised learning such as classification. It is due to the fact that, during model training and
validation, external labels are not allowed to influence the clustering framework. Although clus-
ter quality indices consist of intrinsic and extrinsic methods, the latter one which requires sample
labels to calculate can be used only in performance reporting and visualisation. Intrinsic score
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is deemed to reflect statistical properties of clusters including cluster compactness and interclus-
ter density [42]. There are attempts to propose rigid clustering approaches across wide-ranging
domains. Silhouette scores are among the most popular intrinsic methods. The cluster quality
represented by the score is utilised for different purposes. The most common functionality of
the score is to obtain optimal configuration e.g. number of clusters [42, 43]. However, Ciortan,
M et al took on silhouette score to directly analyse clustering performance [44].

Once a definitive clustering model is generated, external annotation is usually used to evaluate
clustering quality. Despite the belief that labels are restricted not to influence model selection, it
is highly recommended to investigate how clustering corresponds to those cluster labels [45]. In
literature, extrinsic measures work alongside intrinsic counterparts in a variety of collaborative
approaches. For example, two research works used extrinsic and intrinsic measures together to
test the performance of models. One of the research piece presented a finding indicating that
both measures highly correlate one another while the other research founded no correlation at
all. However, there is a study which employs the two method for two different purposes. In the
research, silhouette scoring is used to define cluster configurations and only extrinsic scores are
for performance evaluation

As this research’s aim is to find a robust clustering framework for tissue tiles, specific genomic
or clinical annotations can not be relied upon. Figuring out how intrinsic metrics relate to the
evaluation by extrinsic ones is a main contribution of this thesis. Linear and non-linear trans-
formations such as dimension reduction could involve in discovering the relationship between
an intrinsic score and an extrinsic one. A research study [40] proposed that a manifold learning
could come into play in improving cluster quality and results in higher quality clusters based on
both intercluster properties and external annotation correspondences.
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2.2 Image representation

2.2.1 PathologyGAN

PathologyGANs [32] is an approach to the use of machine learning in digital pathology, using
Generative Adversarial Networks (GANs) to learn cancer tissue representations. GANs are ca-
pable of learning high-fidelity and varied representations of data from a target distribution. This
generative model captures visual characteristics of whole tissue architectures and provides an
interpretable latent space, enhancing the capacity of generative models to capture phenotypic
representations.

The generator shows that the distinct region of the learnt feature space are associated with cer-
tain tissue characteristics. [54] and enable the creation of tissue representations without the need
for costly labels and representations that are not only correlated with a predicted result , but also
on the similarities between the characteristics of tissue samples.

Generative Adversarial Network (GANs)

Generative Adversarial Network (GAN) is a class of machine learning framework powered by
deep learning methods proposed by Goodfellow l. et al [53]. GAN is categorised in an unsuper-
vised learning approach that is able to automatically learn the patterns and output the examples
based on the fed input data. GANs have achieved increasing popularity as a generative model
applicable to a variety of disciplines. GANs are an exciting and rapidly advancing field that meet
the promise of generative models by generating realistic examples across a variety of subject ar-
eas, most notably in image-to-image translation tasks, as well as in generating photorealistic
images of objects, scenes, and people.

Figure 2.1: Generative Adversarial Networks (GANs) architecture

The GAN architecture is composed of two sub-models: a generator model for creating new
instances and a discriminator model for identifying whether each instance is genuinely derived
from domain or fabricated by the generator model
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The multilayer perceptrons of G generator and D discriminator are trained concurrently. As
shown in equation2.1 G(z) generates a batch of samples by mapping random noise, z ∼ pz(z),
which, together with real-world instances from the domain, x ∼ px(x) , are sent to D(x), which
classifies them as single scalar output (genuine or fictitious). D is then updated to improve its
ability to distinguish between genuine and fictitious samples in the subsequent round. More
significantly, G is modified depending on how effectively the produced samples confused the
discriminator. The goal of a GANs is to find the equilibrium in the min-max problem. Describe
in equation 2.1

minGmaxDV (D,G) = Ex∼p(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (2.1)

PathologyGAN Architecture

PathologyGAN used BigGAN [55] as a baseline architecture and introduced changes which em-
pirically improved the Fréchet Inception Distance (FID) and the structure of the latent space.

The reason for choosing BigGAN, the model has been shown to be a successful GAN in replicat-
ing datasets with a diverse number of classes and large amounts of samples. From theoretically,
the model will be able to learn and replicate the diverse tissue phenotypes contained in WSI,
being able to handle the large amount of tiles/patches resulting from diving the WSIs. Pathol-
ogyGAN followed the same architecture as BigGAN by employing Spectral Normalisation in
both generator and discriminator, self-attention layers, and adding orthogonal initialization and
regularisation.

Moreover, pathologyGAN used the Relative Average Discriminator [56] instead of Hing loss
as GAN’s objective. where the discriminator’s goal is to estimate the probability of the real data
being more realistic than the fake. From the experiments, they find that changing the GAN’s ob-
jective function makes model convergence faster and produce higher quality images, capturing
the morphological structure of the tissue.

Figure 2.2: The grid pictures on the left belong to the Relativistic Average Discriminator model,
while the right relate to the Hinge loss model.

The discriminator and generator loss functions are defined as follows: Equations 2.2, 2.3,
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where P is the distribution of actual data, Q denotes the distribution of fictitious data, and C(x)

denotes the non-transformed discriminator output or critic:

LDis =−Exr∼P[log(D(xr))]−Ex f∼Q[log(1−D(x f ))], (2.2)

Lgen =−Exr∼Q[log(D(x f ))]−Ex f∼P[log(1−D(xr))], (2.3)

When Exr∼P denotes the expectation over the distribution of the real data and Ex f∼Q denotes
that over the distribution of fake data. D(xr) and D(x f ) are the output of the discriminator when
it is given a real image and a fake image, respectively.

∼ D(xr) = sigmoid(C(xr)−Ex f∼QC(x f )),

∼ D(x f ) = sigmoid(C(x f )−Exr∼pC(xr)),

w = M(z),z ∼ Pz.

In encoder loss function, LEnc, the mean square error between latent vectors w and their
reconstruction from generated images w′ = R(G(w)) as equation 2.4

LEnc = Ez∼Pz

[
1
n

n

∑
i=1

(wi −w′
i)

2

]
where w′ = E(G(w)),w = M(z). (2.4)

Figure 2.3: High-level architecture of PathologGAN
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2.2.2 VGG-16

Karen Simonyan and Andrew Zisserman developed the VGG network concept [60] in 2013 and
competed in the 2014 ImageNet Challenge with the resulting model. The name VGG is from the
Visual Geometry Group at the University of Oxford, which they were members of. The VGG
model was a significant step forward in the effort to assist computers in "seeing" the world.
This ability has been honed over many decades in the area of Computer Vision (CV). The VGG
model is a significant advancement that paved the way for several others in this field.

Figure 2.4: Decomposing larger filters into the smaller filters used in VGG-16 [61]

The 3 × 3 filter size is considered to be the smallest that effectively captures the concepts
from left to right, top to bottom, and so on. Thus, decreasing the filter size further may have an
effect on the model’s ability to understand the spatial features of the image. In contrast to the
large receptive fields in the first convolutional layer, this model proposes using a very small 3 ×
3 receptive field all over the network with a stride of one pixel. The first layer of AlexNet had a
receptive field of 11 x 11 with stride 4, whereas ZFNet had a receptive field of 7 x 7 with stride
2. Using a 3 x 3 filter makes VGG stand out. Two subsequences 3 x 3 filters provide a 5 x 5
effective filter. Accordingly, three 3 x 3 filters correspond to a 7 x 7 filter. A combination of
many 3 x3 filters can serve as a larger receptive area. Additionally, it significantly decreases the
number of weight parameters in the model by lowering the size of the filter.

VGG Architecture

The convolution network receives a fixed-size 224x224 RGB image during training. The only
preprocessing is subtracting the mean RGB value from each pixel. 3x3 convolutional layers are
used to capture the notions of left/right, up/down, and centre. It is because this size is the small-
est size that could capture the direction in the kernel of the filter. The stride of the convolution is
fixed at one pixel, and the spatial padding of the convolution layer’s input is also set to one pixel
to maintain spatial resolution after convolution. Five maximum-pooling layers are added after
parts of the convolutional layers to accomplish spatial pooling (not all the convolution layers are
followed by max-pooling).

Following a stack of convolutional layers, three Fully-Connected (FC) layers are used: the first
two have 4096 channels each, while the third performs numbers of channels, one for each target
class (Following Fig 5. There are 1000 channels based on 1000- way ILSVRC classification).
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Finally, there is a soft-max layer. In all networks, the configuration of the fully connected layers
is identical. And all hidden layers are equipped with the rectification (ReLU) non-linearity.

Figure 2.5: Different configurations of VGG [60]

VGG16 Architecture

The more layers in a CNN model, the more complicated functions the model can fit. For an Arti-
ficial Neural Network (ANN), adding layers does not always result in improved performance. A
VGG Network with more layers, such as VGG20, VGG50, or VGG100. The weights of a neural
network are updated by the backpropagation method, which makes slight adjustments to each
weight in order to reduce the model’s loss with chain-rules. However, when the gradient travels
to the initial layers, the value increases with each local gradient. As a consequence, the gradient
becomes more tiny, resulting in extremely minor modifications to the initial layers. This results
in a significant increase in training time.

Figure 2.6: The architecture of VGG16 [62]
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VGG16 consists of 13 convolutional layers, 5 maximum-pooling layers, and three fully con-
nected layers. As a result, the total number of layers with configurable parameters is 16 (13
convolutional layers and 3 fully connected layers). That is why the model is called VGG16.
The first block contains 64 filters; this number is increased in subsequent blocks until it reaches
512. Two fully connected hidden layers and one output layer complete this model. Both fully
connected layers have the same number of neurons, 4096. The output layer has numbers of
neurons, one for each category according to the task.

2.2.3 RESNET-50

A residual neural network (ResNet) is an artificial neural network(ANN) that employs a skip
connection to shortcut to skip over some layers and feature a batch normalisation. A deep
residual network framework was proposed “Deep Residual Learning for Image Recognition”
[17] in 2016. It came first in ImageNet detection, ImageNet localization, COCO detection, and
COCO segmentation in the ILSVRC & COCO competitions of 2015. The model was able to
train a network with 152 layers using this method while maintaining a lower complexity than
VGGNet. It obtains a top-5 error rate of 3.57 percent, which is higher than the mistake rate
experienced by humans on this dataset.

Figure 2.7: A residual neural network in its canonical form. A layer l-1 is skipped over activation
from layer l-2.

The reason residual neural networks are able to outperform a regular neural network, there
has been a tendency toward going deeper, solving more complicated problems, and improving
classification and recognition problems. Training neural networks gets more difficult and the
accuracy begins to saturate and subsequently decline.

Deep residual learning

H(x) = F(x)+ x (2.5)

As x denotes the input of the first of these layers, and H(x) identifies the desired underlying
mapping. Allowing the stacked nonlinear layers match another mapping of F(x).
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Figure 2.8: A building block of residual learning

Residual learning is adopted to every few stacked layers. A building block is shown in figure
2.8 define as equation 2.6.

y = F(x,wi)+ x (2.6)

Where x and y are the input and output vectors of layers considered. The function F(x,Wi)

represents the residual mapping to be learned. From figure 2.8, it contain 2 layers and simplify
as equation 2.7.

F =W2σ(W1x) (2.7)

Which σ denotes ReLu (Skipping the bias to simplify the notation). The shortcut connec-
tion is operated by F + x and element-wise addition. And it makes an addition after the second
nonlinear adopted. The shortcut connection is not an extra parameter or computational com-
plexity when compared to a plain network. However, the dimension of x and F must be equal in
equation 2.7. If it not in the case when changing the input/output channel, performing a linear
projection Ws by the the shortcut connection has to employ to matching the dimensions:

y = F(x,wi)+Wsx (2.8)

Residual Learning (skip connections) could address both of these issues. By skipping layers
during the initial training phases, the network is effectively simplified. This accelerates learning
by minimising the influence of vanishing gradients due to the decrease in the number of layers
propagating through. As the network gains knowledge of the feature space, it gradually fills up
the skipped layers.

RestNet Architecture

The ResNet structure included the insertion of shortcut connections in order to convert a plain
network to its residual network counterpart. The plain network was based on VGG neural net-
works. ResNets have fewer filters and are less sophisticated than VGGNets [60]. Additionally,
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Figure 2.9: RestNet high-level architecture [59]

it followed two straightforward design principles: each layer had the same number of filters for
the same output feature map size, and the number of filters was doubled when the output feature
map size was half to maintain the time complexity per layer. The shortcut connections were
added to this plain network. While the input and output dimensions were the same, the identity
shortcuts were directly used.

Figure 2.10: ResNet-50 Architecture
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ResNet50 is a ResNet version that has 48 Convolutional layers, 1 MaxPool layer, and 1
Average Pool layer. It operates on 3.8x109 floating points. There was a minor change made for
ResNet 50 and higher numbers of layers. For the lower number of layers, shortcut connections
skipped two layers; now, they skip three levels. Additionally, 1 x 1 convolution layer was added.

Figure 2.11: A deeper residual function F for ImageNet. Left: a building block (on 56×56
feature maps) for ResNet34. Right: a “bottleneck” building block for ResNet-50/101/152

As Figure 2.11, a convolution with a kernel size of 7 x 7 and 64 distinct kernels, each with
a stride size of 2, results in a single layer. Following that, max pooling is added to the network,
along with a stride size of 2. Following there comes a 1 x 1, 64 kernel, followed by a 3 x 3,
64 kernel, and finally a 1 x 1, 256 kernel. These three layers are repeated three times in total,
giving us 9 layers in this stage. Following that, a kernel of 1 x 1,128 is stacked onto the network,
followed by a kernel of 3 x 3,128 and finally a kernel of 1 x 1,512. This phase was performed
four times, totaling 12 layers. Following it is a kernel of 1 x 1,256 and two further kernels of 3
x 3,256 and 1 x 1, 1024, which are repeated six times for a total of 18 layers. And then a 1 x
1, 512 kernel was combined with two additional 3 x 3, 512 and 1 x 1, 2048 kernels, which was
done three times for a total of nine layers. Following that, the network adds an average pool and
concludes with a fully linked layer having 1000 nodes and a softmax function, which results in
a single layer.
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2.2.4 InceptionV3

Convolutional networks are the core of most modern computer vision technologies. Deep con-
volutional networks have been popular, delivering significant advances in many benchmarks.
While larger models and higher computing costs generally improve quality, computational effi-
ciency and low parameter count are still enabling aspects for use cases like mobile vision and big
data. Compared with the architectural simplicity of VGGNet comes at a high cost of evaluating
the network demands a lot of processing. However, GoogLeNet’s Inception architecture [64]
was also built to function well under memory and computational constraints. For example,
GoogleNet utilised just 5 million parameters, compared to AlexNet’s 60 million. VGGNet also
used 3x as many parameters as AlexNet. The InceptionV3 model was designed in strategies
to handle growth networks while maximising the efficiency of the extra processing by using
factorised convolutions and aggressive regularisation.

InceptionV1 (GoogLeNet)

Figure 2.12: InceptionV1 Architecture [65]

InceptionV1 (GoogLeNet) focused on growing the network depth to extract more features
and improve the model’s learning capabilities. GoogleLeNet is a 22 layer deep network devel-
oped using the Inception module. The Inception module’s premise was that neurons that extract
characteristics should learn together. Earlier convolutional designs varied kernel size to extract
optimum features. The InceptionNet design focuses on parallel processing and extraction of
several feature maps.

Convolutions 1x1, 3x3, 5x5 and 3x3 max pooling are all performed using the Inception
module. Then it constructs the next feature by combining all the processes results. Not all
operations, such as pooling or convolution, are executed sequentially. The inception module
retrieves various features from each convolution or pooling operation. For example, 1 x1 and
3x3 convolutions provide different information. A single feature map with all characteristics
will be created when the separate processes are executed concurrently. This will improve the
model’s accuracy by focusing on multiple features simultaneously. The output dimension of
each extracted feature map will vary according to the varying kernel sizes. In order to make
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the output dimension of each operation consistent, the individual feature maps are concatenated
together using padding.

InceptionV3

InceptionV3 is an improved model version of InceptionV1. The network was optimised in the
Inception V3 model for better model adaptability. It is more efficient, has a deeper network,
but does not make it slower, and uses Classifiers as regulariser as auxiliary components. The
InceptionV3 model has 42 layers and a reduced error rate than the previous version. Three key
components of the success of InceptionV3 over the previous series includes

• Factorization into Smaller Convolutions: where one large sized convolution is replaced
by a number of smaller convolutions through a mathematical function called ’factorisa-
tion’ , which results in in a relative reduce in number of parameters of 28%.

• Utility of Auxiliary classifiers: It is served as a regulariser inside the Inception V3 model
architecture. The network with an auxiliary classifier has been proved to be more accurate
than the network without one.

• Efficient Grid Size Reduction: the modified network will have overall smaller grid size
but be compensated by a increasing number of filters.

Figure 2.13: InceptionV3 Architecture [66]
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2.3 Dimension Reduction

In applications such as image processing [71], computational biology [72] , and clustering [73],
high-dimensional datasets are regularly encountered. In molecular biology, for instance, human
DNA gene expression profiles generally include hundreds of genes; this is the issue dimension.
A common 2D picture in image processing contains 1282 = 16,384 pixels or dimensions. Di-
mension Reduction aims to reduce the number of features under analysis, each of which is a
dimension that partially describes the objects. As additional characteristics are added, the data
become very sparse, and the analysis is plagued by the curse of dimensionality. Additionally,
smaller data sets are simpler to handle.

2.3.1 Principal Components Analysis (PCA)

Principal component analysis (PCA) is the process of calculating the principal components and
using them to execute a change of basis on the data, often keeping just the top few components
and rejecting the rest. PCA was introduced in 1901 by Karl Pearson [74]. Principal components
of a set of points in a real coordinate space are a sequence of unit vectors, where the ith vector is
the direction of the line that best matches the data while remaining orthogonal to the first i− 1
vectors. In this context, the best-fitting line is one that minimises the average squared distance
between the points and the line. Different individual dimensions of the data is linearly uncorre-
lated with respect to these directions, which create an orthonormal basis. Principal Components
Analysis accomplishes dimension reduction through the following steps.

Figure 2.14: (Left) The original 3-dimensional dataset. The red, blue, green arrows are the
direction of the first, second, and third principal components. (Right) Scatterplot after PCA
reduced from 3-dimensions to 2-dimensions
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1. Standardise the data

Generally, the variables composing the dataset will have distinct units and means. This
can result in complications such as the calculation yielding extremely huge numbers. To
increase the efficiency of the procedure, it is recommended to centre the data at mean 0.
This is accomplished by removing the mean from the data and dividing by the standard
deviation. This maintains the relationships while ensuring the overall variance equals 1.

2. Calculate the Covariance Matrix

PCA aims to extract the majority of information from a dataset by determining the prin-
cipal components that maximise the variance between observations. Covariance matrix
is a symmetric matrix with rows and columns equal to the number of data dimensions.
Calculating the covariance between the pairwise means reveals the degree to which the
characteristics or variables vary from each other.

3. Calculate the Eigenvectors and Eigenvalues of the Covariance Matrix

Eigenvectors are vectors that do not change direction when a matrix is transformed. Eigen-
values are scalars that represent the vector’s magnitude. The covariance matrix eigenvec-
tors point towards the biggest variance. More variation is explained by a larger Eigenvalue.
The greatest Eigenvector corresponds to the first principal component, which explains the
most variance, the second largest Eigenvector to the second principal component, etc.

4. Reduce Dimensionality

The principal components are efficient feature combinations that minimise feature over-
lap. Getting rid of redundant data already helps reduce dimensionality. Given that each
new principal component reduces the overall variance explained, we may further reduce
dimensionality by deleting the least relevant principal components. Finally, projecting the
data from initial feature space to the principal component space is executed. So, we could
describe the PCA algorithm, Assuming you have data consisting of a set of observations
of p variables, and we wish to reduce the data so that each observation can be represented
by L variables, L < p. Suppose further that the data is organised as a collection of n data
vectors x1...xn with each xi representing a single grouped observation of the p variables.

µ j =
1
n

n

∑
i=1

xi j (2.9)

Firstly, the empirical mean is computed the mean feature value from each j column. So, the
result is vectors in px1 dimensions.
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C =
1
n

Σ
n
i = 1(xi −µ)(xi −µ)T (2.10)

After getting the empirical mean, applying mean subtraction to X to centering the data by
minimising mean square error of the mean of data, and then calculating the pxp covariance
matrix by conjugate transport operation in variances.

Cvi = λivi (2.11)

Next, Computing Eigenvalues λi and Eigenvectors vi of covariance matrix where i is 1 to
the number of features q. And we can estimate the high-valued Eigenvectors. Beginning from
arranging all Eigenvalues λi in descending order and choosing a threshold value θ .

(Σs
i=1λi)(Σ

q
i=1λi)

−1 ≤ θ (2.12)

s is number if high valued λi chosen to satisfy the relationship. After that, selecting a subset
of the Eigenvectors corresponding to select high valued λi.

P =V T x (2.13)

To extract low dimensional feature vectors (principal components) from raw feature matrix.
V is the matrix of principal components and x is the feature vector. The first column P is the
projection of the datapoint onto the first principal component, and the following columns are the
following principal components.

Figure 2.15: An example of 2D PCA on iris dataset
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2.3.2 Uniform Manifold Approximation and Projection (UMAP)

UMAP (Uniform Manifold Approximation and Projection) is a dimension reduction algorithm
based on manifold learning and topological data analysis. It provides a solid general framework
for tackling manifold learning and dimension reduction. The theoretical framework of UMAP
is based on Riemannian geometry and algebraic topology. This method was proposed in 2018
by Leland McInnes el et. [75].

Simplicial Complexes and Topological Data

Simplicial complexes are a way to build topological spaces from basic components. This reduces
the complexity of dealing with topological spaces’s continuous geometry to basic combinatorics
and counting. In general, and in dimension reduction in particular, this strategy of controlling
geometry and topology is crucial. The first step is to supply some “simplices”. A simplex is a
geometrically simple k-dimensional object. A k-simplex is produced by obtaining the convex
hull of k + 1 independent points. That makes generalisation to arbitrary dimensions trivial.
Constructing a simplicial complex. Simplices can give building blocks. A simplicial complex is
a grouping of simplices joined by faces. This method could create a broad class of topological
spaces by glueing simplices of various dimensions together.

Figure 2.16: Low dimensional simplices. It is constructed from the convex hull of k+1 points. It
is a line segment between two zero simplices. It is a triangle with three 1 simplices as “faces”.
[75]

In order to obtain the topological space, a strategy is applied to a finite amount of data sam-
ples. If the data samples originate from some underlying topological space, we must construct
an open cover of that space in order to discover its topology. If our data is in metric space
(we can measure distance between points), another way to replicate an open cover is to create
balls of a predefined radius around each data point. As demonstrated in figure 2.17, a simplicial
complex built from a dataset of a noisy sine wave.
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Figure 2.17: A simplicial complex process. (above left) initial noise sine wave data points.
(above right) a basic open cover of the dataset. (below) A simplicial complex built from a
dataset of a noisy sine wave [75]

Adapting fuzzy topological representation to real world data

In real world data, using some basic Riemannian geometry [76] and assuming the data is equally
distributed, we could compute a local concept of distance for each point. In fact, the local sense
of distance is relative to the proximity to the nearest neighbour point, each of which could have
a different one. The manifold can have more than one part that is linked to it. Instead, it needs
that every place on the manifold is in a small enough area around the linked point. This is what
the term "local" means.

It is clearly seen that local measurements are incompatible. Each point has its own local
metric, therefore the distance from point a to point b may be 1.5, while from point b to point a
may be merely 0.6. Mathematically, we have a group of fuzzy simplicial sets, and their union is
a well-defined operation. In graph terminology, this means that if two edges of weight a and b
disagree, they should be merged into a single edge with weight as equation 2.14.
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a+b−a ·b (2.14)

The weights are basically the probability of an edge (1-simplex) existing. The combined
weight represents the likelihood of one or more edges. When all the fuzzy simplicial sets are
combined, we get a single fuzzy simplicial complex, which we may think of as a weighted
graph. We are simply applying the edge weight combination formula on the entire graph (with
non-edges having a weight of 0). So now, we will get the fuzzy topological representation of the
data with combined edge weights.

Building a Low-Dimensional Representation

The low dimensional representation should have a comparable fuzzy topological structure. Find-
ing an appropriate low dimensional representation relies on measuring the similarity of fuzzy
topological structures. Using this metric, we can discover the low dimensional representation
with the closest fuzzy topological structure. Obviously, the optimization approaches available
will vary depending on the features of our measure of proximity. We regarded the weights asso-
ciated with simplices as the probability of the simplex occurring when we were merging them.
Since both topological structures have the identical 0-simplices, to compare the two probability
vectors indexed by the 1-simplices, the cross entropy is selected.

∑
e∈E

wh(e) · log(
wh(e)
wl(e)

)+(1−wh(e)) · log(
1−wh(e)
1−wl(e)

) (2.15)

Specifically, if E is the set of all possible 1-simplices and we have weight functions such
that wh(e) is the weight of the 1-simplex e in the high dimensional case and wl(e) is the weight
of e in the low dimensional case, then the cross entropy will be used to minimise the loss as a
type of force-directed graph layout algorithm. As a result of this process of pull and push, the
low dimensional representation will finally settle into a state that closely matches the general
structure of the source data

2.4 Clustering Algorithms

Clustering is a process of finding cluster structure in dataset. it attempts to classify the data
points that have been labelled into different groups or clusters. Similar members of clusters or
groups should be grouped together as much as possible, and distinct members of clusters should
be distinguished as much as possible. Because no class label is used in the learning process, it
is an unsupervised classification. Kaur Mann et al. [33] define that a quality clustering method
will produce high superiority groups with minimal inter-class similarity. The superiority of a
clustering result relies on both the method’s similarity measure and its implementation. A clus-
tering technique’s superiority is determined by its ability to uncover hidden patterns. The dis-
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tance function may represent a cluster’s similarity. Data mining requires certain criteria for data
clustering. These are scalability, attribute handling, and attribute handling. Handling changing
data, finding random groupings, domain knowledge is required to determine input parameters.
Adaptable to noise and outliers Insensitive to input record order, dimensionality, User-specified
limitations, Readability and usability

2.4.1 Hierarchical-based Clustering (HC)

Hierarchical clustering (a.k.a. hierarchical cluster analysis or HCA) is a cluster analysis tech-
nique used in data mining and statistics that aims to create a hierarchy of clusters. This technique
is based on connectivity-based clustering methods. It clusters the data using the distance matrix
criterion. It builds clusters incrementally [33]. Hierarchical clustering’s benefits are embedded
granularity, flexibility and ease of dealing with any degree of resemblance or dissimilarity. How-
ever, any attribute type of Hierarchical clustering drawbacks are lack of clarity in termination
criteria and the most hierarchical algorithms do not enhance previously created clusters. Hierar-
chical clustering’s benefits are at the expense of efficiency. Compared to the linear complexity
of K-means and Expectation-Maximisation, the most popular hierarchical clustering techniques
have a complexity that is at least quadratic in the number of samples [52].

The hierarchical Clustering (HC) objectives are defined and optimised in the space of binary
trees with n leaves, where n is the number of data points. Every binary tree with n leaves rep-
resents a series of exactly n. Generally, techniques for hierarchical clustering are classified into
two categories [47].

Agglomerative Clustering

This is a "bottom-up" approach: each observation begins in its own cluster, and as one moves up
the hierarchy, pairs of clusters are combined. This approach creates a tree of clusters, also known
as nodes. The following criteria are utilised to cluster the data in this method: minimum distance,
maximum distance, average distance, and centre distance. The stages in these procedures,

1. In the initial stage, the algorithm considers each data point as a cluster and selects a prox-
imity matrix to measure the distance between clusters. For the proximity matrix, four
distance functions are available: single linkage (min), average linkage, full linkage, and
ward (max). Single linkage indicates that the distance between two clusters is defined as
the smallest distance between two points in the first cluster. Full linkage uses a maxi-
mum of two data points to connect two clusters. Average linkage computes the distance
between two clusters by averaging all data points from the first cluster. Ward utilises the
sum of squares to compute distance between locations.
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2. To determine the closest pair of clusters, it calculates the similarity (distance) between
each cluster.

3. Then, based on the distance function, clusters that are similar are merged to form a single
cluster.

4. Steps 2 and 3 are repeated iteratively until all data points are merged into a single cluster.

Hierarchical clustering typically involves constructing a single tree of clusters, where each
node represents a cluster and each data point begins as a tree leaf. The tree’s origin is the final
cluster containing all data points

Divisive Clustering

a "top-down" technique in which all observations begin in a single cluster and are divided re-
cursively as one descends the hierarchy. It is the reverse of the agglomerative approach. Start-
ing with the root node (cluster), each node creates the cluster (leaf) on its own. Bottom-up
approaches make clustering decisions based on local patterns without taking the global distribu-
tion into account initially. These early decisions are irreversible. When making top-level par-
titioning decisions, thorough information about the global distribution is helpful for top-down
clustering [52].

Figure 2.18: Representation of agglomerative and divisive approach [33]

Hierarchical clustering output

Generally, the results of hierarchical clustering are displayed in the form of a dendrogram. In hi-
erarchical clustering, there are no assumptions about the number of clusters during dendrogram
construction. After constructing the dendrogram, this structure is sliced horizontally. All of the
subsequent child branches generated below the horizontal cut represent an individual cluster at
the highest level and specify the membership of each data sample within that cluster.
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Figure 2.19: Dendrogram with clusters marked [34]

2.4.2 Gaussian Mixture Model (GMM)

A Gaussian Mixture Model (GMM) is a parametric probability density function that is rep-
resented numerically as the weighted sum of Gaussian component densities [37]. GMM pa-
rameters are estimated from training data using the iterative Expectation-Maximisation (EM)
approach, allowing the model to learn the sub populations automatically. Since sub population
assignment is not known, this constitutes a form of unsupervised learning.

Figure 2.20: Mixture components with data points visualisation [35]

This algorithm is based on mixture models, they are probabilistic models for representing



CHAPTER 2. BACKGROUND 31

the presence of sub populations within an overall population that do not require that an observed
data set identify the sub population to which an individual observation belongs. In statistics,
a mixture model is a model that represents the presence of sub populations within an overall
population without requiring that an observed data set identify the sub population to which an
individual observation belongs. a mixture model corresponds to the mixture distribution, which
reflects the probability distribution of observations over the whole population.

Gaussian distribution

Figure 2.21: Gaussian Distribution (Normal distribution)

Gaussian distribution, also known as the normal distribution, is a probability distribution
that is symmetric around the mean, indicating that data near the mean occur more often than
data distant from the mean. A normal distribution will show as a bell curve on a graph. A
normal distribution is a probability distribution that is used to explain events with a default state
and cumulative potential departures from that state. The key attribute that may be observed
is that the mean, median, and mode all have comparable values, which results in a symmetric
distribution. defining X as variables observe, µ distribution’s mean or expectation, σ standard
deviation and σ2 distribution variance. As equation 3, the general expression for f (x) probability
density function.

f (x) =
1

σ
√

2π
e−

1
2
(
x−µ

σ
)2 (2.16)

Gaussian distribution is a version of the standard normal distribution that been stretched by
a factor of (standard deviation) and translated with (mean). The mean defines the position of the
curve’s apex. By increasing and reducing the mean, the curve will shift to the right and left. The
standard deviation determined the curve’s width. Increased standard deviation results in a wider
curve.

For multivariate Gaussian Distribution, the parameter is denoted d Gaussian distribution of
a vector dimensions, x as input vector in d length, µ as dimensional vector of the distribution
mean. Σ are dxd size covariances matrix and |Σ| are the determinant of the covariance matrix.
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Figure 2.22: Gaussian distribution curve in difference mean and variance

So, we could be expressed as the probability density function

N(x|µ,Σ) = 1
(2Π)d/2

√
|Σ|

exp(−1
2
(x−µ)T (x−µ)Σ−1(x−µ)) (2.17)

For a dataset with d features, we would have a mixture of k Gaussian distributions (where
k is equivalent to the number of clusters), each having a certain mean vector and variance ma-
trix. Interpolating over causes the Gaussian to shift in the d-dimensional (hyper)plane, while
modifying the matrix causes the Gaussian to change shape.

Gaussain Mixture Model

A Gaussian mixture model is a density model where we combine a finite Gaussian mixture
number of K Gaussian distributions N(x|µk,Σk) model.

p(x|θ) =
K

∑
k=1

πkN(x|µk,Σk) (2.18)

0 ≤ πk ≤ 1,
K

∑
k=1

πk = 1

Where we defined θ := {µk,Σk,πk : k = 1, ...,K} as the collection of all parameters of the
model. This convex combination of Gaussian distribution give more flexibility for modelling
complex densities than a simple Gaussian distribution.

Parameter Learning via Maximum Likelihood

The purpose is to use a GMM with K mixture components to find an acceptable approximation of
this unknown distribution p(x). Assume that given a dataset X = x1, ...,xN where xn, n = 1, ...,N
are drawn from Independent and identically distributed (i.i.d) of an unknown distribution p(x).
The parameter of the GMM are the K-means µk, the covariances Σk, and the mixture weigh Πk.
As a result, we describe all these free parameter in θ := {µk,Σk,Πk : k = 1, ...,K}.
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To get a maximum likelihood (ML) of the model parameters, We begin by putting down the
likelihood, or the training data’s predicted distribution given the parameters. We take use of our
i.i.d. assumption, which results in factorised likelihood.

p(X |θ) =
N

∏
n=1

p(xn|θ), p(xn|θ) =
K

∑
k=1

πkN(x|µk,Σk), (2.19)

log p(X |θ) =
N

∑
n=1

logp(xn|θ) =
N

∑
n=1

log
K

∑
k=1

ΠkN(x|µk,Σk) =: L (2.20)

Where p(xn|θ) is Gaussian mixture density likelihood term for each individual in equation
2.19. The log-likelihood is obtained as equation The objective of equation 2.20 is to identify the
parameters θ ∗

ML that maximises the log-likelihood L. However, it is not a "typical" approach for
computing the log-likelihood gradient dL/dθ . We are unable to find a closed-form solution. we
can form the maximise the likelihood p(X |θ) of the data with regard to the model parameters
by

θ
∗ = argmax p(X |θ) = argmax

N

∏
i=1

p(xi|θ) (2.21)

However, the results from normal parameters estimate show a straightforward iterative pro-
cedure for solving the parameter estimation issue using the EM algorithm’s maximum likelihood
approach would be helpful to solve a complexity in process. Expectation-Maximisation (EM)
algorithm for GMMs can be used to identify appropriate model parameters θML,

Expectation-Maximisation (EM)

The Expectation-Maximisation (EM) method, a statistical technique for determining the optimal
model parameters, was proposed by Dempster et al. [51] and is a general iterative scheme for
learning parameters (maximum likelihood or MAP) in mixture models and, more generally,
latent-variable models. EM is generally used when data has missing values. These unobserved
variables are referred to as latent variables. In unsupervised learning problems, the objective
or cluster number is set to be unknown. Due to these missing variables, it is difficult to find
the appropriate model parameters. Determining the mean vector and covariance matrix would
be straightforward if we knew which cluster corresponded to which data point. Since unknown
values of the latent variables, Expectation-Maximisation attempts to identify the optimal values
for these variables using the available data and then discovers the model parameters
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These are the two main parts of the EM algorithm: the E Step, also known as the Expectation
Step or Estimation Step, and the M Step, also known as the Maximisation Step.

• Estimate step:

– µk, Σk and Πk should be initialised with some random values, or with K means
clustering or hierarchical clustering results.

– Then, using the specified parameter values, estimate the latent variables values.

• Maximisation step:

– Update the values of the parameters (µk, Σk and Πk) determined using the Maximum
Likelihood approach.

Figure 2.23: Expectation-Maximisation Algorithm [36]
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2.5 Cluster Quality Assessment

Clustering is a type of unsupervised learning and a typical tool for statistical data analysis used
in a variety of disciplines. The function of the assessment technique is to assess the quality of
the data in certain aspects. Clustering does not need labels to execute the process of forming
the clusters; only a collection of characteristics for each observation is involved. The objective
is to generate clusters with similar observations grouped together and different observations
maintained as far apart as possible. clustering algorithms split an input data set into a number
of partitions, or clusters. For tasks where a target partition is established for testing purposes,
a clustering solution is described as a mapping from each data point to its cluster assignment
in both the target and hypothesised clustering. Unlike supervised learning methods, evaluating
the success of a clustering algorithm is not as simple as counting the number of mistakes or
the accuracy and recall. For instance, clustering may be performed on cancer samples with the
expectation that samples in the same group represent the same subtype of cancer. Once the
clustering has been executed, the quality of the result must be evaluated qualitatively. First,
to ensure that groupings are relevant, and second, since a score could act as a substitute for
assessing different models and finding the best one.

2.5.1 Homogeneity

To achieve homogeneity criterion, a clustering algorithm must assign to a single cluster only the
data points that belong to a single class. In other words, the distribution of classes inside each
cluster should be skewed toward a single class, or have zero entropy. Examining the conditional
entropy of the class distribution given the specified clustering makes it possible to estimate how
near a clustering is to this target. In the situation of full homogeneity, the value H(C|K) equals
0.The size of the value depends on the size of the dataset and the distribution of class sizes.
Therefore, instead of taking the conditional entropy in its raw form, The value is normalised
by the highest decrease in entropy that the clustering information could give H(C). we define
homogeneity as equation 2.22, 2.23 and 2.24

h = 1− H(C|K)

H(C)
, (2.22)

H(C|K) = 1−
|C|

∑
c=1

|K|

∑
k=1

ack

N
· log

a(ck)

∑
|K|
k=1 ack

(2.23)

H(C) =−
|C|

∑
c=1

∑
|K|
k=1 ack

n
· log

∑
|K|
k=1 a(ck)

n
(2.24)
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2.5.2 Completeness

Completeness and homogeneity are symmetrical. To meet the completeness criterion, a clus-
tering must assign to a single cluster all data points that belong to a single class. To evaluate
completeness, the distribution of cluster assignments within each class is examined. Each of
these distributions will be totally skewed towards a single cluster in a clustering solution that
is perfectly thorough. This degree of skew could be determined by calculating the conditional
entropy, H(K|C), of the proposed cluster distribution based on the class of the component data
points. In the event of perfect completion, H(K|C) = 0. we define completeness as equation
2.25, 2.26 and 2.27

c = 1− H(K|C)

H(K)
, (2.25)

H(K|C) =−
|C|

∑
c=1

|K|

∑
k=1

ack

N
· log

a(ck)

∑
|K|
k=1 ack

(2.26)

H(K) =−
|K|

∑
k=1

∑
|K|
c=1 ack

n
· log

∑
|K|
c=1 a(ck)

n
(2.27)

2.5.3 V-Measure

V-measure is an entropy-based metric that specifically quantifies how well the homogeneity
and completeness conditions have been met. It was proposed by Andrew Rosenberg and Julia
Hirschberg in 2007 [67]. V-measure is calculated as the harmonic mean of distinct homogeneity
and completeness scores, identical to how accuracy and recall are often merged into F-measure
[68]. As F-measure scores may be weighted, so too can V-measure scores be weighted to favour
homogeneity or completeness.

After calculating the weighted harmonic mean of homogeneity and completeness, the V-
measure of a clustering solution is computed. If it is larger than 1, completeness is given more
weight in the computation, and if it is smaller than 1, homogeneity is weighted more heavily.

V = 2 · (h · c)
h+ c

, (2.28)

There is also another widely used extrinsic method called Adjusted Rand Index (ARI). How-
ever, the limitation of the ARI, which highly relies on having accurate true class labels to ac-
curately reflect the quality of a clustering solution, makes it inappropriate for use in situations
where the true class labels are derived from patient-level annotations, as occurs in our second
dataset (TCGA-COAD).
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2.5.4 Silhouette

A simple graphical representation for partitioning approaches was proposed by Peter Rousseeuw
in 1987 [69]. Each cluster is represented by a so-called silhouette based on a comparison of its
closeness and distance. The silhouette illustrates which items are well-integrated within their
cluster and which are positioned between clusters. By combining the silhouettes into a single
plot, the full clustering is presented, providing for an assessment of the relative quality of the
clusters and an overview of the data setup. The average silhouette width gives an assessment of
the clustering’s validity and may be used to determine the ’optimal’ number of clusters [70].

Figure 2.24: Illustration of the elements and its distant from each cluster when computation [69]

The silhouettes formed below are beneficial when the distances are on a ratio scale (as in the
case of Euclidean distances) and when looking for clusters that are compact and well-defined. In
practice, the definition uses average proximities, as in the case of group average linkage, which
is known to function best in situations involving approximately spherical clusters. To generate
silhouettes, we need just two things: the division we’ve got (through the use of a clustering
approach) and a collection of all item distances. For any object i in the dataset, the number of
s(i) is the dissimilarities value from objects. And denote by A the cluster to which it has been
assigned. Then we can compute a(i) is the average dissimilarity of i to all other objects of A.and
d(i,C) is average dissimilarity of i to all objects of Cluster C.

The average length of all lines going from i to C. After computing d(i,C) for all C¬A, and
then the smallest of those numbers is selected. It can denote by equation 2.29

b(i) = minimumC¬Ad(i,C) (2.29)

And we can write the simple formula for compute silhouette score as

s(i) =
b(i)−a(i)

max{a(i),b(i)}
(2.30)



Chapter 3

Experimental Framework Design

In this chapter, The contents contain the overview of two colorectal cancer datasets and the ex-
perimental strategy used to create the clustering framework on sub-tissue tiles. The data section
will discuss the selected WSI dataset with characteristics, metadata, and labels, how to divide
the WSI into sub-tissue tiles. In the experiments setting section, we describe an experimental
design for observing essential configurations of framework to obtain the high-quality clusters.
This study also includes how to handle patient data into the sets of training, validation, and test,
how representation of tissue tile is extracted, how transforming the original feature space of WSI
sub-tile patches influences the cluster quality, and we examine the selected clustering algorithms
to perform on the feature representation through quality cluster assessment techniques.

3.1 Datasets

3.1.1 100,000 histological images of human colorectal cancer and healthy
tissue (100k-nct)

Figure 3.1: Samples from the NCT-CRC-HE-100k dataset [80]

This is a collection of 100,000 non-overlapping image patches extracted from hematoxylin
and eosin stained histological images of human colorectal cancer and normal tissue. Each im-
age is patched to 224x224 pixels (px), with a pixel size of 0.5 microns (MPP) and no colour
normalisation was applied to these images. And it is also with the label of tissue types in table

38
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Table 3.1: Tissue type description

Tissue type Tissue type description
ADI Adipose

BACK background
DEB debris
LYM lymphocytes
MUC mucus
MUS smooth muscle

NORM normal colon mucosa
STR cancer-associated stroma
TUM colorectal adenocarcinoma epithelium

3.1. In this study, the nct-100k dataset was chosen due to its richness of individual phenotype.
Consequently, it will be potential to verify the hypothesis that our clustering framework can
differentiate tissue visual characteristics without supervisory biases.

Figure 3.2: Number of tissues type label on NCT-CRC-HE-100k

3.1.2 The cancer genome atlas colon adenocarcinoma (TCGA-COAD)

The data collection is part of the initiative to establish a scientific community engaged in linking
cancer phenotypes to genetics by providing clinical pictures matched to participants from the
cancer genome atlas [79]. As the diagnostic tissue images are captured by high-definition digital
microscope and mapped with a patient clinical profile. The labels of which are derived from the
patient level information. As with literature reviews, WSI examination was often performed by
combining analytical results from smaller patches of equivalent size as opposed to examining the
entire WSI. This dataset was used to verify the hypothesis that cluster assignment abundances
of tissue tiles can reflect molecular or clinical patient profiles.

TCGA-COAD WSIs to sub-tile tissue patches

As the 100k-nct dataset was patched from the datasource, original images from the TCGA-
COAD dataset are whole slide images that are cropped to match the 100k-nct dataset. The



CHAPTER 3. EXPERIMENTAL FRAMEWORK DESIGN 40

Figure 3.3: Whole slide image of TCGA-CZ-5467 case id

Figure 3.4: 224x244 pixel sub tile samples from WSI of TCGA-G4-6317 case id

TCGA-COAD consists of 459 WSIs with 20x magnification. This magnification level gives
patches sufficiently large to capture a specific detail, such as nucleus details, without generating
an excessive amount of patches after cropping. And WSIs are cropped with a 224x244 region
of whole slide images. After that, 2,441,581 sub-tissue patches are produced.

TCGA-COAD External Annotation

WSIs annotations are from collaborating between K. Yuan Lab and UCL on detecting quies-
cence in colorectal tissues. From 57 unique patient quiescence labels annotated on each patient-
level TCGA-COAD WSIs. Annotations for quiescence can represent the state of quiescence in
colorectal tissues for each patient. 30 WSIs are annotated on label 0 and 27 on label 1. And
unlabeled WSIs are considered to be undefined status, so we represent them as label 2. Conse-
quently, each patient only produces one WSI. We can treat patient-level annotation as slide-level

Table 3.2: TCGA-COAD’s WSIs quiescence labels description

quiescence label label description
0 negative quiescence
1 positive quiescence
2 uncertain result
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annotation. As shown in figure 28, 125,664 tiles are annotated on label 0, 185,028 tiles on label
1 and 2,130,889 tiles on label 2.

Figure 3.5: number of different quiescence labels

Figure 3.6: Ratio of tiles annotated by different quiescence labels and after filtered out undefined
label
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3.2 Experiment setting

In this section, we describe thoroughly how we extract deep features from various deep extrac-
tors such as pathologyGAN, ResNet50, InceptionV3 and VGG16, how to fitting features with
dimension reduction techniques, PCA and UMAP, observing how to use the Silloutte coeffi-
cient to find optimal cluster configurations and how to subject high quality clusters to intrinsic
measurements such as V-measure. Therefore, the above could all be defined in the following
steps.

1. Sub-tissue patch representation extraction

2. Dimension Reduction or feature transformation

3. Splitting into train, validation, test

4. Clustering Configuration

5. High Quality Cluster Evaluation

3.2.1 Sub-tissue patch representation extraction

In this study, four different candidate methods of representation extraction were chosen to vec-
torise all tissue tiles for cluster analysis.

PathologyGAN Encoder

PathologyGAN Encoder is the first method considered to be the most potential feature extractor
for tissue tiles with respect to the literature review and intra-team knowledge. For training
configuration, the input image is of 224 x 244 size with 3 image channels. 150 dimensions
of the attention network, 10,000 maximum number of instances for a bag and output of 200-
d vector as the latent space from the model. It runs on a 1-e4 learning rate, 50 epochs, 10
folds. Due to Generative Adversaries Network requires large number of samples to achieve the
equilibrium, PathologyGAN Encoder was train based on sub-tissue patch from TCGA-COAD.

ResNet50, InceptionV3 and VGG16

The other 3 methods, ResNet50, InceptionV3 and VGG16, are the toplist of deep architectures
according to recent research. These 3 features are fitted by ImageNet and removing the top
fully-connected layers of a deep classifier, the remaining parts work as a feature extractor. These
methods are based on pre-trained weight from ImageNet dataset with 224 x 244 input size, and
other default parameters on Pytorch. It runs on 4,096 batch-size. In ResNet50 and InceptionV3,
we only selected the 2,048 sized outputs from avg_pool (GlobalAveragePooling) before the
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classification layer. Similarly, VGG16, 4,096 sized fully-connected layer output is selected.
Finally, two colorectal datasets were inferenced to get feature space by these methods.

3.2.2 Dimension reduction or feature transformation

From the outputs of the representation extraction methods, high-dimensional features are ex-
tracted. the data become very sparse, and the analysis is plagued by the curse of dimensionality.
It also creates problems in terms of time and space while training. Dimension reduction strategy
is employed to turn original features into a more clusterable form.

Apart from clustering sake, visualisable feature space is preferred for interpretation, we select
only the 3 dimensions as the number of components in these experiments. The new 3-d repre-
sentation makes it easy enough to interpret the feature space of different feature extractor from
how well their performance on two colorectal datasets. On the fitting data, we selected only 5%
(122,079 samples) of the all slide of TCGA-COAD sub-tissue patch. and 100k-nct was selected
all sample to fit estimators.

Principal components analysis (PCA)

First, Principal components analysis (PCA) is selected by its popularity over time and robustness
to preserve important features. PCA estimators was used all default parameters except number
of components(n_components) at 3.

Uniform manifold approximation and projection (UMAP)

This method uses manifold learning techniques and topological analysis concepts to tackle by
reducing complexity in topological spaces and continuous geometry to basic combinatorics
and counting. the UMAP was configured the size of local neighborhood (n_neighbors) at 30
, The effective minimum distance between embedded points(min_dist) at 0, number of compo-
nents(n_components) at 3 and enable low memory configuration.

3.2.3 Splitting train, validation, test

In this study, Two colorectal datasets were divided into train and test data with proportions of
66.66 % and 33.33 % respectively. In 100k-nct, we simply and directly split the data by sub-
tissue sample. However, All TCGA-COAD sub-tissues patches were annotated from patient
level. To avoid the same patient WSIs sub-tissues contaminated into training and test set, we
divide dataset by patient-level criteria.

For validation set, we employed 3-fold cross-validation strategy on training set to stabilise a
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machine learning model’s skill on new data. The cross-validation can help estimate how se-
lected cluster configuration e.g. number of cluster will perform on data not being seen during
training. It’s straightforward and gives a less biased or optimistic estimate of model skill.

As Figure 31, we can see the ratio of tiles annotated by different quiescence labels without
label 2. In the training set, 46.90% of tiles are annotated on label 0 and 52.10% of tiles on
label 1. And In merging validation set and test set, 30.70% of tiles are annotated on label 0 and
69.30% of tiles on label 1.

Figure 3.7: Ratio of tiles annotated by different quiescence labels

Figure 3.8: Ratio of tiles annotated by different quiescence labels without label 2

3.2.4 Clustering configuration

In order to cluster the features from different features, two clustering concepts are examined:
prototype-based clustering and hierarchical-based clustering. Firstly, Gaussian Mixture Model
(GMM), the one for clustering for prototype-based clustering, is a probabilistic model that as-
sumes all the data points come from a mix of a finite number of Gaussian distributions with
unknown parameters. One way to think of mixture models is as an extension of k-means clus-
tering that takes into account the data’s covariance structure as well as the centres of the latent
Gaussian. And the another one, Agglomerative hierarchical clustering is selected to be the one
for hierarchical-based clustering. Each observation begins in its own cluster, which is then grad-
ually combined to produce hierarchical clustering using a bottom-up approach. In this study,
Agglomerative hierarchical clustering is used ward linkage criteria for merge strategy. It is a
variance-minimising strategy by sum of squared differences within each cluster. And we also
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employ K- nearest neighbours after clustering results from Agglomerative hierarchical cluster-
ing.

Both algorithms are experimented by 2 to 50 numbers of clusters. In the training session,
we decided to downsampling training size according to the capability of processing memory on
the lab workstation. Due to the large number of sub-tile tissues from TCGA-COAD, training
sample were kept only 5% on each fold randomly. In each validating variable, optimal number
of cluster is selected based on maximal silhouette score.

3.2.5 Cluster quality evaluation

From the two colorectal cancer datasets with annotations, it can be applied by extrinsic methods
that measure the correlation of resulted clusters to group truth. If the ground truth is unavailable,
we can evaluate the quality of a clustering based on how well the clusters are separated using
intrinsic methods. Ground truth can be considered as supervision in the form of “cluster labels.”
In consequence, extrinsic methods are also known as supervised methods, while intrinsic meth-
ods are unsupervised methods [5].

In order to find the optimal cluster number, Silhouette coefficient was selected. It is intrinsic
methods to find measure of how similar an object is to its own cluster (cohesion) compared to
other clusters (separation) by using the mean intra-cluster distance and the mean nearest-cluster
distance for each sample with unsupervised manner.

For extrinsic methods, V-measure is considered to be the one that is solving problems such
as dependent on clustering algorithm or dataset, problem of matching of evaluated portion of
data and aspect of completeness and homogeneity within clusters.



Chapter 4

Result and Discussion

In this research, we aim to develop a clustering framework that yields high quality clusters of
sub-tissue to be claimed as phenotype clusters The clusters are expected to recognise tissue vi-
sual characteristics without supervisory biases and cluster assignment abundances of tissue tiles
is expected to reflect patient molecular or clinical profiles. In chapter 3, we discussed the two
colorectal datasets and how they are splitted into tissue patches. In experimental setting sec-
tion, we describe an experimental design for observing a multitude of framework configurations
on the high-quality clusters. This chapter describes the experimental outcomes and manifests
optimal unsupervised clustering framework with respect to ability to capture biological visual
characteristic. Interpretation and explanation on promising experimental findings will be dis-
cussed.

4.1 Reduced Dimension Feature Space Visualisation

The two colorectal datasets were passed to generate the feature by different representation ex-
tractors, PathologyGAN, RESNET50, InceptionV3 and VGG16. Each representation was then
applied with dimension reduction techniques, PCA and UMAP which transformed the repre-
sentations into 3 dimensions. Depicted in figure 4.1, three dimensional UMAP feature space
showed distinguishing areas of tissue types than that of PCA. Speaking of PCA, Intra-distances
are small among datapoints in the same tissue type. Notwithstanding, distances between cluster
of tissue type are significantly smaller than that is by UMAP.

46
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Figure 4.1: 3D PCA (top) and 3D UMAP (below) representation in NCT-100k and labelled with
tissue type from PathologyGAN, ResNet50, InceptionV3 and VGG16 respectively.

In each transformed feature space, TCGA-COAD sub-tissue patches were labelled with qui-
escence label as shown in figure 4.2. Only tissues with negative and positive quiescence are
illustrated since there is no pattern perceived when samples with uncertain quiescence included.
PCA algorithm quite under-performed in the entire candidates of representation about separating
particular quiescence-related clusters.

4.2 Optimal number of cluster suggested silhouette score

After we get feature vectors from each image representation extractors and each of them is
reduced in dimension by two dimensionality reduction techniques, those defined training sets
were to train on by Gaussian Mixture Model(GMM) and Hierarchical-based clustering(HC).
Both algorithms were experimented by varying numbers of clusters from 2 to 50.

4.2.1 Silhouette score on 100k-nct

Firstly, those features sets of 100k-nct images were trained with both clustering algorithm. As
figure 4.3, Calculating and visualizing the silhouette score according to clustering the images
on original, 3d-PCA, and 3D-UMAP feature spaces. The line colours are blue, orange, and
green respective. Overall, the silhouette score for the feature space processed by UMAP is
considerably higher than that of the original and PCA.

Figure 4.4 illustrates all the highest silhouette scores by each image representation. Pathol-
ogyGAN on 3D-UMAP yield the highest silhouette score at 0.68. and follow by resnet50,
inceptionV3 and vgg16. and their score are 0.65, 0.49 and 0.61 respectively.
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Figure 4.2: 3D PCA (top) and 3D UMAP (below) representation in TCGA-COAD and labelled
with quiescence label from PathologyGAN, RESNET50, InceptionV3 and VGG16 respectively.

As shown in figure 4.5, number of clusters suggested by the Silhouette score from all image
representation methods on 100k-nct. The number of clusters which produced the highest scores
is implied as the optimal number of cluster for a specific representation. number of clusters
from 3 to 12 is indicated for all grouped characteristics. Restnet50 suggests a greater number of
clusters than other features, which is relatively close to the number of ground-truth classes.

For more references, figure 4.6 presents silhouette score from GMM and HC on 100k-nct on
3D UMAP is explored. The star symbols denoted the optimal number of clusters based on the
yield silhouette score with the highest value in each representation technique.

4.2.2 Silhouette score on TCGA-COAD

Another colorectal dataset, both clustering algorithms were employed to train clustering on 4
different image representations as it was done on 100k-nct. As shown in figure 4.7, silhouette
scores were computed on the clustering with PCA and UMAP feature spaces. and its line colours
are blue and orange respectively. We decided to skip the training on original features because
of computational complexity in multi-million samples with high dimension. It is out of the
capacity of lab workstation. Moreover, low quality of clustering on 100k-nct which has been
shown and will be shown later in this section demonstrates no reason for further investigation
on any original feature spaces

In this dataset, clustering by HC on 3d-UMAP features produced significantly higher sil-
houette scores than 3D-PCA regardless of image representation. However, the performance of
GMM on reduced feature spaces by UMAP and PCA are comparable. UMAP-reduced features
yield better silhouette score than PCA in small number of clusters such as 2 to 10 for patholo-
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Figure 4.3: Silhouette score of 100k-nct trained by GMM and HC.

gyGAN, 2 to 3 for Resnet50, 2 to 9 for InceptiveV3 and 2 to 7 for VGG16 while PCA-reduced
features yield higher in relatively greater number of clusters.

Figure 4.8 reveals the highest silhouette scores of clustering the TCGA-COAD dataset on 4
different image representations. Resnet50 which was dimensionality-reduced by 3D-UMAP has
the highest silhouette score, at 0.89 in both clustering algorithms. Regardless of representation
and clustering algorithm, it is noticeable that UMAP gains higher quality clusters on the basis
of internal statistical properties. compared to PCA.

From figure 4.9. As overall representations dimensional-reduced by UMAP produced the
higher silhouette score than PCA, The silhouette score suggested the number of clusters between
2 to 5 among all image representations.

In this setting, silhouette scoring tends to suggest the lower number of cluster in which 2
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Figure 4.4: Highest Silhouette score from GMM and HC clusters on 100k-nct.

Figure 4.5: Number of clusters suggested by Silhouette score on 100k-nct.

Figure 4.6: Suggest number of cluster by Silhouette score in GMM and HC on 100k-nct on 3D
UMAP

number of cluster is the majority. The number lies in to the number of classes, the quiescence
status, derived from patient WSIs.

As depicted in figure 4.10, silhouette scores of clustering by GMM and HC on TCGA-COAD
are visualised. The star symbols denoted the optimal number of clusters based on the yielded
silhouette score with the highest value in each representation.
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Figure 4.7: Silhouette score of clusters trained by Gaussian Mixture Models and Hierarchical
clustering on TCGA-COAD.

4.3 Cluster Quality Evaluation

As two colorectal cancer datasets have pre-defined annotations, cluster evaluation can be con-
ducted by extrinsic measures to evaluate correlation between clustered groups and their des-
ignated ground-truth. For extrinsic methods, V-measure is considered to be an inclusive score
which takes both homogeneity and completeness into consideration. In this section, each dataset
will be examined as follows.

4.3.1 100k-nct cluster quality evaluation

Firstly, how density of samples in each feature space is correlated with data annotation, which
is tissue type, was explored. Three extrinsic scores are employed to evaluate the overall per-
formance, which the suggested number of clusters are disregarded. Box plots in Figure 4.11
and 4.12 demonstrate that UMAP (green boxes) is at the top among three forms of dimension
transformation. As the result presents overall performance, one conclusion can be drawn from is
that UMAP gains more cluster-able representation no matter what is the original representation
and what clustering configurations will be.

We further dig down into the quality of clusters of which number of groups suggested by the
highest silhouette score. Figure 4.13 reveals results from the same three measures of extrinsic
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Figure 4.8: Highest Silhouette score from GMM and HC clusters on TCGA-COAD.

Figure 4.9: Number of clusters suggested by Silhouette score on TGCA-COAD.

scoring including homogeneity, completeness and V-measure. However, only the optimal num-
ber of clusters is investigated. According to the bar charts, UMAP still outperforms other forms
of representation transformation.

For GMM clustering, optimal-k Restnet 50 gave the most highly homogeneous clusters while
the VGG16 counterpart was at the top in basis of complete clusters. On the other hand incep-
tionV3 is among the lowest in both aspects. Despite different assumptions are behind the the
two clustering algorithms, HC generates the similar pattern that GMM does. Except the origi-
nal feature space of Resnet50 which is scored considerably high in completeness but relatively
low in homogeneity. However, referring to the suggested silhouette reported in the previous
section in figure 4.5, silhouette score of HC on the Resnet50’s original feature is maximised at
low number of clusters, which is a common configuration that yields high completeness but low
homogeneity.

As V-measure is regarded as the most balanced scoring techniques to consider cluster qual-
ity, in addition to the very bottom of the mentioned chart, figure 4.14 summarise the compar-
ison base on V-measure alone. It is perceived that once UMAP is employed to uncover the
underlying manifold of 100k-nct dataset on a selected representation, optimal-k Resnet50 sig-
nificantly outperform the other representations in which results produced by both GMM and HC
are comparable. Considering all representation transformed by UMAP, PathologyGAN is only
one representation that leads HC to win GMM.
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Figure 4.10: Suggest number of cluster by Silhouette score in Gaussian Mixture Models (GMM)
and Hierarchical clustering (HC) on TCGA-COAD on 3D UMAP

Figure 4.11: Extrinsic scores from GMM of different representations on 100k-nct

4.3.2 TCGA-COAD cluster quality evaluation

Assessing cluster quality is incredibly challenging if no available annotation is directly repre-
senting data points in sample-by-sample basis. TCGA-COAD dataset is annotated in the patient
level. It is undeniable that high extrinsic score is not to be expected. As shown in figure 4.15.
both clustering algorithms produced the relatively low V-measures of all clustering configura-
tions. Surprisingly, PathologyGAN representation which did not win in the 100k-nct clustering
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Figure 4.12: Extrinsic scores from HC of different representations on 100k-nct

benchmark reveals a trend of discovering some characteristics while v-measures of the remain-
ing setting are close to zero. However, PathologyGAN itself would not not obtain the wining
place. It still required the UMAP transformation to help achieve the improvement margin.

To be more precise, we again investigated the extrinsic performance of clustering of which
number of clusters suggested by maximal silhouette scores. The optimal clusters of each con-
figuration are illustrated in figure 4.16. All three extrinsic scores even strengthen the previous
finding. Even if number of cluster is selected by intrinsic properties without label influence,
PathologyGANs remains outperform the other method. However, that of ResNet50 in which
silhouette score stood out in figure 4.7 failed to capture this molecular property at all.

Thus, silhouette score can not be claimed to guaranty the best representation for a specific
clustering task but it is still an effective number-of-cluster selector. UMAP is by far a prac-
tical transformer collaborating well any clustering paradigm in identifying phenotypic clusters
without supervisory biases.
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Figure 4.13: Homogeneity, Completeness and V-measure of GMM and HC clusters suggested
by Silhouette score on 100k-nct

4.4 Further interpretation

In this study, two colorectal datasets were introduced as a bench-marking problem in tissue
patch clustering. As a result, four main independent components which can influence were
to examine on this issue including (i) clustering algorithm, (ii) dimension reduction or feature
transformation, and (iii) the selected representation. Here, each aspect will be emphasised by
information shown in table 4.1
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Figure 4.14: V-measure of clusters trained by GMM and HC, which number of clusters sug-
gested by Silhouette Score

4.4.1 Discussion on clustering algorithm

As mention in Chapter 2, the two representatives of clustering technique, partitioning-based and
hierarchical-based clustering. Although results produced by both GMM and HC are always
comparative, there is a to-some-degree noticeable figures which can be supported by fundamen-
tal theories of clustering.

GMM as the former category seems to regard the prior-defined Gaussian distribution of data
while inspecting data in given dimension space. In 100k-nct benchmak, where no represen-
tation extractors were ever trained upon, GMM is slightly better in finding collaboration from
rich characteristics extracted by Resnet50. As Resnet50 was trained by one of the biggest and
diverged image dataset, ImageNet, it is guaranteed to embed overwhelming varieties of visual
feature, which were relevant or vice-versa to tissue images. Result in 4.1 shows that GMM
obtained the highest V-measure at 0.741 whereas HC’s was little far behind at 0.737.

In TCGA-COAD, extrinsic score can not be as high as expected as annotation derived from
patient level. Regardless of feature transformation, both HC and GMM produced equivalent
v-measure score, 0.022. the score is incredibly low but it is the highest among all settings.

Although there was a slightly different figure by the two different clustering paradigms,
the margin is not significantly big enough to justify the most appropriate one for tissue patch
clustering.

4.4.2 Dimension reduction or feature transformation

In term of feature space, each representation was transformed by 3 methods namely original
space (no transformation at al), PCA, UMAP for exploring how global and local structures
encoded by either linear interpolation properties or as complex as manifold learning can help
improve cluster quality. Moreover, in TCGA-COAD dataset, computational constrains limited
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Figure 4.15: V-measure score of different representations on TCGA-COAD

our exploration on clustering such as a big dataset.
Base on evidence shown in 4.1, it is undoubtedly claimed that UMAP yielded considerably

better overall performance for all clustering configuration. It is implied that finding of the study
[40] is supported. Discovering underlying manifold of dataset is required in order for clustering
algorithms to be fully functional in capturing phenotypic properties of tissue image.

4.4.3 Image representation

Four feature extractors were explored in this study namely PathologyGAN, Resnet50, Incep-
tionV3, VGG16. Based on two benchmark datasets, InceptionV3 struggled to achieve any
promising findings neither in identifying tissue type nor differentiating quiescent status. It is
clearly seen that the clever idea about growing parallel-processing-friendly network depth which
solved a complex classification (ImageNet) can not be always transferable to clustering in dif-
ferent domains. Clustering tissue image on InceptionV3 representation yielded poor results in
every configuration.
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Figure 4.16: Homogeneity, Completeness and V-measure of GMM and HC clusters suggested
by Silhouette score on TCGA-COAD

Resnet50 and VGG16 of which architectures were developed in tiny different concepts. They
both performed far better than InceptionV3, which was designed for low computational capa-
bility. Overall, Resnet50 will be considered as a better candidate of transferable ImageNet’s
knowledge to tackle tissue type clustering. However, they both failed to capture quiescence-
related visual patterns as reported V-measure is nearly zero.

Another feature extractor in this study is PathologyGAN which was trained on TCGA-
COAD in an unsupervised generative adversarial manner. It was considered the most potential
representation because of domain relevance and an absence of supervisory biases. However,
PathologyGAN seems to be under performance when transferred to apply in 100k-nct dataset,
compared to Resnet50, which was trained on a dataset of more divered samples. In TCGA-
COAD benchmark, other ImageNet-based pre-trained models were complete unsuccessful in
capturing quiescence. In contrast, PathologyGAN by far obtained the highest extrinsic perfor-
mance of capturing quiescence-related visual patterns.
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Table 4.1: Summarised experimental result

Dataset
Clustering
Algotithm

Dimension
Reduction

Feature
Extractor

Highest
Sihoutte

Score

Optimal
no. of

clusters
Homogeneity Completeness V-measure

100K-NCT

Gaussian
Mixture
Model

(GMM)

Original

pathologyGAN 0.252 2 0.159 0.532 0.245
resnet50 0.125 7 0.500 0.573 0.534
inceptionv3 0.194 4 0.151 0.247 0.188
vgg16 0.084 4 0.358 0.679 0.467

3D PCA

pathologyGAN 0.377 3 0.184 0.384 0.249
resnet50 0.317 6 0.453 0.582 0.509
inceptionv3 0.427 3 0.139 0.299 0.190
vgg16 0.349 5 0.453 0.646 0.533

3D UMAP

pathologyGAN 0.625 3 0.262 0.537 0.352
resnet50 0.624 11 0.758 0.724 0.741
inceptionv3 0.456 5 0.278 0.390 0.324
vgg16 0.621 3 0.288 0.953 0.443

Hierarchical
-based
Clustering
(HC)

Original

pathologyGAN 0.263 2 0.131 0.454 0.203
resnet50 0.176 2 0.203 0.874 0.330
inceptionv3 0.279 3 0.145 0.363 0.207
vgg16 0.075 5 0.474 0.671 0.556

3D PCA

pathologyGAN 0.369 2 0.108 0.360 0.166
resnet50 0.301 2 0.161 0.671 0.259
inceptionv3 0.419 3 0.146 0.341 0.204
vgg16 0.335 5 0.437 0.648 0.522

3D UMAP

pathologyGAN 0.675 5 0.412 0.622 0.496
resnet50 0.638 12 0.773 0.705 0.737
inceptionv3 0.481 3 0.163 0.368 0.225
vgg16 0.621 3 0.288 0.953 0.443

TCGA-COAD

Gaussian
Mixture
Model

(GMM)

3D PCA

pathologyGAN 0.276 2 0.001 >0.000 0.001
resnet50 0.290 3 0.004 0.002 0.002
inceptionv3 0.328 3 0.002 0.001 0.001
vgg16 0.296 3 0.006 0.003 0.004

3D UMAP

pathologyGAN 0.374 2 0.028 0.018 0.022
resnet50 0.897 2 >0.000 >0.000 >0.000
inceptionv3 0.457 2 >0.000 >0.000 >0.000
vgg16 0.364 4 0.004 0.002 0.002

Hierarchical
-based
Clustering
(HC)

3D PCA

pathologyGAN 0.257 2 0.001 >0.000 0.001
resnet50 0.213 3 0.003 0.002 0.002
inceptionv3 0.313 2 >0.000 >0.000 >0.000
vgg16 0.262 2 0.003 0.003 0.003

3D UMAP

pathologyGAN 0.390 5 0.044 0.015 0.022
resnet50 0.898 2 >0.000 >0.000 >0.000
inceptionv3 0.482 2 0.001 0.001 0.001
vgg16 0.627 2 >0.000 >0.000 >0.000

4.4.4 Explore what inside each and between cluster

To examine relationships inside the cluster, we visualize the recursive merging of two clusters’
centroids based on their linkage distance in optimal number of clusters suggested by silhouette
score. As shown in Figure 4.17a, RESNET 3D UMAP with GMM is yielded highest silhouette
score by 11 number of clusters. We can observe the high prevalence of particular tissue types
inside clusters. The proportion of cluster members belonging to the 3 and 4 cluster ids entirely
common on BACK subtiles. Moreover, the LYM sub-tiles and ADI sub-tiles have almost perfect
cluster member percentages for cluster ids 1 and 2, respectively. each cluster has a distant
relationship to an adjacent cluster. Furthermore, 0, 6 and 9 cluster ids are dominated by MUC,
TUM and DEB tissue types in high proportion respectively. Not only dominated one tissue type
cluster, but there are also the combination of tissue types within a cluster. 4 and 10 cluster ids are
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(a) GMM (b) HC

Figure 4.17: 100k-nct Dendrogram linkage of RESNET 50 UMAP from (optimal silhoutte)
GMM clustering and counts of samples under each node

share the similar cluster membership between TUM and NORM tissues types. Most of cluster
members in 7 and 8 cluster ids share STR and MUS tissue type in their cluster as well. Not
only that, 8 cluster ids is also the cluster with the maximum number of sub-tissues allocated by
GMM with RESTNET 50 under UMAP dimension reduction, based on the sample count for
each cluster.

From previous viewpoint with GMM, there is also visible similarly in Figure 4.17b that show
linkage cluster of RESNET 50 UMAP with HC clustering in dendrogram perspective from some
random sample from 100k-nct sub tissues. 11 number of clusters also yield highest silhouette
score. the 2, 4 and 10 cluster ids show abundance of the cluster members belonging to BACK
sub tiles. They also share the similar linkage of hierarchical structure. The other pure clusters
from their tissue type’s cluster membership are 3, 5, 8 and 9 cluster ids that contain almost
unique of ADI, LYM, DEB and MUC tissue types. In addition, there exist mixtures of tissue
types inside a cluster. 6 and 7 cluster ids are share the similar cluster membership between TUM
and NORM tissues types. The majority of cluster members in cluster ids 0 and 1 have STR and
MUS tissue types, although there is a relatively large number of DEB tissue type inside cluster
id 0.

Figures 4.18a and 4.18b of TCGA-COAD illustrate dendrograms of RESNET 50 UMAP
with the highest silhouette score on GMM and HC clustering. In both algorithms, the number
of clusters that produced the highest silhouette score is 2. When examining individual clusters,
the percentage of positive and negative quiescence subtissue labels is nearly equivalent in both.
And it correlate with preceding part, the v-measure score of TCGA-COAD essentially reflected
zero in RESTNET representation. Moreover, when we investigate the sample counts under each
node, we see that the number of samples between the two clusters varies significantly.

Achieving higher silhouette under image representation does not ensure achieving in extrin-
sic evaluation. Therefore, we examine the best v-measure score produced by the experiment
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(a) GMM (b) HC

Figure 4.18: TCGA-COAD Dendrogram linkage of RESNET 50 UMAP (optimal silhoutte) on
GMM and HC clustering and counts of samples under each node

(a) GMM (b) HC

Figure 4.19: TCGA-COAD Dendrogram linkage of pathologyGAN UMAP (best V-measure)
on GMM clustering and counts of samples under each node

to determine its cluster qualities. When we investigate pathologyGAN UMAP with cluster-
ing results that provide the best v-measure score on TCGA-COAD. Comparing it to 3D UMAP
RESTNET 50 to figure 4.19 that showed the percentage of cluster members, the quiescence state
label separate better even its very low silhouette sore. Positive quiescence cluster membership
is considerably dominant in 0 cluster ids and 1 HC cluster ids in GMM. And PathologyGAN
potentially balance the number of samples in each cluster. UMAP can be effective to unfolding
latent feature in pathologyGAN.

To analyse the cluster assignments on the WSI of a patient to determine how well the cluster
assignments can characterize the WSI characteristics of a patient with derived quiescence. Util-
ising 3D UMAP pathologyGAN on GMM to produce Figure 4.20. The blue overlay represents 0
cluster ids while the red overlay represents 1 cluster ids. When comparing positive and negative
quiescence patient WSI, there is no meaningful difference between the cluster assignment. As
experimental result, the extrinsic score cannot be as high as the annotation produced from the
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Figure 4.20: Sub-tile cluster assignments from GMM pathologyGAN 3dUMAP (Highest V-
measure)

patient level, as described before. so, their cluster assignments can not capture its charesteristics
of patient quienscen state as well.
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Conclusion

5.1 Summary of thesis contributions and experiments

This research presents a clustering approach to identifying phenotype of tissue slides. The clus-
ter setting was designed to work on tissue tile, patched from Whole Slide Image (WSI). The
ultimate goal of this study is to find a generic approach to obtaining ’high-quality clusters’ of
tissue patches with respect to phenotypic classes or perhaps representing phenotype of WSI.

The experiment was conducted in 4 stages with two colorectal cancer datasets, 100k-nct
with annotated tissue types and TCGA-COAD with patient quiescence. (i) Representation of
tissue tile: 4 different representation extractors were categorised into 2 groups. ImageNet-based
Pre-trained CNNs including Resnet50, InceptionV3, VGG16 and an unsupervised generative
model PathologyGAN were trained on TCGA-COAD dataset. each instance of tissue patches
were feature-extracted for further modelling. (ii) dimension reduction or feature transforma-
tion: each representation of data is processed into 3 different forms of feature transformation
including original feature, 3D-PCA feature and 3D-UMAP feature to figure out which approach
of discovering underlying clusterable structure. (iii) cluster configuration: partition-based clus-
tering and hierarchical-based clustering were explored in varying number of clusters (iv) how
optimal clusters were selected and interpreted : the optimal number of cluster was suggested by
silhouette score of cross-validation. Cluster visualisation and extrinsic measure e.g. V-measure
were employed to evaluate cluster quality in real-life purpose.

5.2 Response to research questions

Four research questions mentioned in Chapter 1 will be responded here. First, main components
to be together constitute a clustering framework including feature representation, feature trans-
formation for improving clusterablity, clustering algorithm, intrinsic measure to be as configura-
tion e.g. number of cluster identifier. According to the study, these components were important
success factors of identifying tissue type in 100k-nct data without any influence of ground-truth.
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Second, quiescence is the only molecular property being explored in this study. No v-measure
sounds enough to say that solid pattern is captured and the association between cluster member-
ships and molecular profile is obligated to further investigate. However, the configuration with
maximal v-measure was revealed in Dendrogram that one of the clusters dominated by tiles
obtained from patient with positive quiescence. Third, silhouette score is an effective measure-
ment to decide cluster configuration especially number of clusters. Notwithstanding, it is yet to
be concluded that the best candidate of representation can be reliant on silhouette score. Forth,
Restnet50 seems to be robust on data of which domain is irrelevant to source domain, from Im-
ageNet to colorectal cancer dataset (100k-nct). However, in case PathollogyGAN has a chance
to be trained in an unsupervised adversarial manner on the working dataset, TCGA-COAD, it
potentially solves a complex problem lying in the dataset. Finally, regarding the study, manifold
learning such as UMAP plays an important role in preparing a more clusterable representation.
It helps improve significant performance of clustering based on extrinsic scores. The scoring
considered both direct label e.g. tissue type and patient’s derived label e.g. quiescence as the
ground-truth.

5.3 Limitations and suggested future research works

There are three main areas which have not been fully achieved under this study.

1. The relationship between tile assignments of this phenotypic clusters and classification
performance of patient clinical profile was not given enough attention in this study. More
patient metadata related to their clinical and molecular status could be investigated based
on clustering perspectives.

2. Although silhouette score is incredibly effective in identifying clustering hyper-parameters,
no measure has been founded yet in selecting the most appropriate feature extractor with-
out the suggestion of ground-truth. a generic cluster quality measurement could be an
attention grabbing research topic in this area.

3. Phenotypic clusters are supposed to be proven the applicability across patient cohorts with
only minor fine-tuning. Mechanisms which bring this ability to the clustering framework
should be experimented and discussed towards a fully automate histopathology-based can-
cer diagnosis.
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