
 
 
 
 
 
 
 
 

 

Pazmino Betancourth, Mauro (2023) Towards a portable mid-infrared tool 

for analysis of mosquito vectors of malaria. PhD thesis. 

 

 

https://theses.gla.ac.uk/83455/  

 

 

 

Copyright and moral rights for this work are retained by the author  

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge  

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author  

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author  

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 
 
 
 

 
 
 
 
 
 
 

Enlighten: Theses  

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 
 

https://theses.gla.ac.uk/83455/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


Towards a portable mid-infrared tool
for analysis of mosquito vectors of

malaria

Mauro Pazmino Betancourth

Submitted in fulfillment of the requirements
for the Degree of Doctor of Philosophy

School of Engineering

College of Science and Engineering

University of Glasgow



Contents

1 Introduction 1

1.1 Infrared Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Fundamentals of electromagnetic radiation . . . . . . . . . . . . 3

1.1.2 Infrared Absorption . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Spectrometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Disperse Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Fourier Transform Spectrometer . . . . . . . . . . . . . . . . . . 13

1.2.3 Infrared spectroscopy sampling techniques . . . . . . . . . . . . 15

1.2.4 Microsampling techniques . . . . . . . . . . . . . . . . . . . . . 18

1.3 Quantum Cascade Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.3 Quantum Cascade Laser configurations . . . . . . . . . . . . . . 22

1.3.4 QCL applications on mid-infrared spectroscopy . . . . . . . . . . 23

1.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.1 Elements of machine learning . . . . . . . . . . . . . . . . . . . . 27

1.4.2 Types of Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 28

i



ii

1.5 Mosquito species identification, age grading and insecticide resistance status 29

1.5.1 Traditional methods for species identification, age grading and

insecticide resistant . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5.2 Recently developed methods for species identification, age grad-

ing and insecticide resistant . . . . . . . . . . . . . . . . . . . . . 34

1.6 Infrared spectroscopy application for mosquitoes . . . . . . . . . . . . . 36

1.6.1 NIRS/MIRS application for age grading . . . . . . . . . . . . . . 37

1.6.2 NIRS/MIRS application for species identification . . . . . . . . . 38

1.6.3 NIRS/MIRS application for infection detection . . . . . . . . . . 38

1.6.4 Advantages and disadvantages of NIRS and MIRS . . . . . . . . 39

1.7 Aims of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2 Diffuse reflectance spectroscopy for predicting age, species and insecticide
resistance of An. gambiae 47

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Mosquito strains and rearing . . . . . . . . . . . . . . . . . . . . 51

2.2.2 Sample processing . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.3 Diffuse Reflectance Spectroscopy/scanning . . . . . . . . . . . . 52

2.2.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.1 Spectra from different mosquito tissues . . . . . . . . . . . . . . . 56

2.3.2 Identification of An. coluzzii and An. gambiae . . . . . . . . . . . 59

2.3.3 Identification of 3 and 10 days old mosquitoes . . . . . . . . . . . 62

2.3.4 Identification of cuticular insecticide resistance . . . . . . . . . . 65



iii

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 Species Classification and age grading of Anopheles mosquitoes using mul-
tivariate and machine learning models 76

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.1 Types of pre-processing and scatter correction . . . . . . . . . . 77

3.1.2 Extracting information from spectral data . . . . . . . . . . . . . 80

3.1.3 Traditional chemometrics applied to species and age classification

in Anopheles mosquitoes using MIRS . . . . . . . . . . . . . . . . 81

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.2 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.4 Evaluation of scatter correction algorithms on machine learning

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.5 Prediction accuracy of different spectra regions . . . . . . . . . . 85

3.2.6 Analysis of Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.1 Pre-processing and Scatter correction . . . . . . . . . . . . . . . 86

3.3.2 Classification of species using Partial Least Squares Discriminant

Analysis (PLS-DA) . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.3 Age prediction using Partial Least Squares . . . . . . . . . . . . . 88

3.3.4 The influence of scatter correction algorithms on machine learn-

ing models accuracy for species prediction . . . . . . . . . . . . . 95

3.3.5 Analysis of different spectral windows for species prediction . . . 98



iv

3.3.6 Analysis of spectra between datasets using Principal Component

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Portable, Fast-swept External Cavity Quantum Cascade Laser system for
Spectroscopy 111

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Overview of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.1 Laser and external cavity configuration . . . . . . . . . . . . . . 113

4.2.2 Scanning system . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2.3 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2.4 Electronics and interface . . . . . . . . . . . . . . . . . . . . . . 116

4.2.5 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.1 EC-QCL spectral characterisation . . . . . . . . . . . . . . . . . 118

4.3.2 Processing EC-QCL data . . . . . . . . . . . . . . . . . . . . . . 121

4.3.3 Speed characterisation . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.4 Mid-IR Spectroscopy measurements . . . . . . . . . . . . . . . . 124

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.4.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 General Discussion 134

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



v

5.2 Principal findings/Implications . . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Limitations/Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A Chapter 2 Appendix 139

A.1 Hyper-parameter configurations . . . . . . . . . . . . . . . . . . . . . . 148

B Chapter 3 Appendix 149

C Chapter 4 Appendix 157



List of Tables

1.1 Vibrations and their characteristic absorption wavenumbers (Table mod-

ified from Smith, B. 1999 [31]) . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Summary of NIRS studies for species identification. Reported accu-

racy, chemometrics/machine learning algorithms used and type of sample

(laboratory reared, semi-field reared or wild caught samples) are shown.

All studies summarised here appear in chronological order . . . . . . . . 41

1.3 Summary of NIRS studies for age grading. Reported accuracy, age

groups, chemometrics/machine learning algorithms used and type of sam-

ple (laboratory reared, semi-field reared or wild caught samples) are shown.

All studies summarised here appear in chronological order . . . . . . . . 41

1.4 Summary of MIRS studies for species identification and age grad-
ing. Reported accuracy, chemometrics/machine learning algorithms used

and type of sample (laboratory reared, semi-field reared or wild caught

samples) are shown. All studies summarised here appear in chronological

order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.5 Summary of NIRS and MIRS principles and pros/cons of field deployment 45

2.1 Species, strains, and age description of the samples . . . . . . . . . . . . . 57

2.2 Summary of the model accuracy for each of the classification problems

using hold out set, nested cross-validation and bootstrapping . . . . . . . 69

2.3 Summary of the processing time of traditional methods for age grading

(parity status), morphological identification, NIRS, MIRS using ATR and

µDRIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



vii

3.1 Datasets information of origin, institute, number of samples, rearing con-

ditions and species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Number of samples used in the analysis . . . . . . . . . . . . . . . . . . . 85

3.3 Pre-processing, latent variables (LV) and Area under the curve of the Re-

ceiver operating characteristic curve (AUC) for each data set: Glasgowlab,

IRSSlab and IRSSfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4 Mean prediction age in An. gambiae females using the raw data and Savitzky-

Golay pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Mean predicted age of laboratory reared An. gambiae females (IRSSlab)

and field (IRSSfield) used as independent validation sets . . . . . . . . . . 92

3.6 Mean predicted age of An. gambiae mosquitoes using IRSSlab and IRSS-

field datasets as independent validation sets . . . . . . . . . . . . . . . . . 94

3.7 Species prediction accuracy of LR, SVM and RF using independent test

sets IRSSlab and IRSSfield . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.8 Accuracy of species prediction of LR for each spectral window in cross-

validation (CV), validation (Val) and validation with independent data sets

(IRSSlab, IRSSfield) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1 HgCdTe photovoltaic detector specifications . . . . . . . . . . . . . . . . 116

4.2 Assignment of wavenumber values found and tentative band assignments

in mosquito and onion sample using the EC-QCL prototype [17,292,349]129

A.1 Top 10 prediction coefficients for Kisumu, Tiassale and Ngousso strains

with tentative functional group assignment . . . . . . . . . . . . . . . . 147

B.1 Mean predicted age of An. gambiae mosquitoes using Glasgowlab dataset 154

B.2 PLS-DA accuracy for each windows with 10-fold cross-validation (CV),

hold out set (Val), and validation with independent sets (IRSSlab and

IRSSfield) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



List of Figures

1.1 Amplitude of the electric field component of the electromagnetic radia-

tion as a function of time. Wavelength (λ) is the distance between two

crests (Plot adapted from Larkin, P. 2017 [23]). . . . . . . . . . . . . . . 3

1.2 Illustration of discrete energy levels and absorption of electromagnetic

radiation (Plot adapted from Larkin, P., 2017 [23]). . . . . . . . . . . . . 4

1.3 Representation of the normal modes of a linear molecule, carbon dioxide,

and a non-linear molecule water (Adapted from Larkin, P. 2017 [23]). . 5

1.4 a) Diagram of a diatomic atom, HCl as harmonic oscillator. δ+ and δ−

represent the partial charges of chlorine and hydrogen. b) Representation

of the interaction between the HCl molecule and the electric vector. The

change in polarity of the electric vector changes the length of the HCl

bond (Modified from Smith, B. 1999 [33]) . . . . . . . . . . . . . . . . . 6

1.5 a) Potential energy E as a function of bond distance X for a diatomic

molecule using the quantum harmonic oscillator model. ν = 0, ν =

1, ν = 3 are vibrational energy levels b) Potential energy as a function

of bond distance for water molecule using anharmonicity. Adapted and

modified from Larkin, P. 2017 [23] and Smith, B. 2018 [31] . . . . . . . 7

1.6 Vibrations of AX2 group. 1: symmetric stretching vibration. 2: antisym-

metric stretching vibration. 3: scissoring vibration. 4: rocking vibration.

5: wagging vibration. 6: twisting vibration. Plot taken from Ozaki, Y.

et al. 2021 [30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Three normal vibrations of N-methylacetamide (model of an amide group).

Plot taken from Ozaki, Y. et al. 2021 [30] . . . . . . . . . . . . . . . . . 9

viii



ix

1.8 Example of an infrared spectrum from 1,2-Propanediol. Taken from Na-

tional Institute of Standards and Technology . . . . . . . . . . . . . . . . 10

1.9 Diagram of the optical path of a disperse spectrometer with a grating

monochromator. Taken from Stuart, B. 2004 [20] . . . . . . . . . . . . . 12

1.10 Schematic of a diffraction grating. Left: Parallel beams from two adja-

cent grooves are displaced by the path length difference. Constructive

interference can occur only when the path length difference is equal to

the wavelength multiplied by an integer (first, second, third order). The

polychromatic radiation will be diffracted at different angles, resulting in

spatial wavelength discrimination. Right: (α) is angle of incidence, (β) is

the angle of reflectance of the radiation. Adapted from Larkin, P. 2018 [42] 12

1.11 Diagram of the Fourier Transform spectrometer with a Michelson inter-

ferometer. Infrared radiation with different wavelengths λ1,2,3.. is directed

into the interferometer and the resulting light goes into the detector.

The moving mirror changes its position (τ ). The resulting interferogram

is Fourier-transformed into a spectrum. Plot modified from Saptari, V.

2003 [46]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.12 Interferograms (left) and its resulting wavelength intensities (right) after

a Fourier Transformation for monochromatic (blue), dichromatic (green)

and continuous (orange) light sources. Modified from [48] . . . . . . . . 14

1.13 Schematic of transmission sampling technique. Sample is positioned in

front of infrared radiation. Specific wavelengths will be absorbed by the

sample. The transmitted radiation is collected by a detector. . . . . . . . 16

1.14 Diffuse reflectance optical diagram. Collimated light from the interfer-

ometer go towards the sample by parabolic mirror (P). The reflected light

from the sample is collected by two mirrors (E) and focused to the detec-

tor (D). (Diagram modified from [58]) . . . . . . . . . . . . . . . . . . . 17

1.15 Attenuate Total Reflection. The light goes through one of the faces of the

Internal Reflection Element (IRE). An evanescence wave generates and

enters the sample at a given depth (dp). The resultant reflected radiation

is collected from the other face of the IRE. . . . . . . . . . . . . . . . . . 18



x

1.16 Optical diagram of a FTIR micro spectrometer (Modified from Stuart B.,

2004 [20] and Katon J., 1996 [60]) . . . . . . . . . . . . . . . . . . . . . 19

1.17 a) Schematic of QCL conduction band. Each stage of the structure con-

sists of an active region and a relaxation/injection region. Electrons can

emit up to one photon per stage. b) The active region is a three-level

system. Photon emission occurs between the 3 → 2 transition. (Diagram

taken from Faist, J. 2013 [71]) . . . . . . . . . . . . . . . . . . . . . . . . 21

1.18 External cavity configurations. Left: Littrow configuration. The first or-

der diffracted beam is coupled back into the QCL, the 0th order is coupled

out by a mirror. Right. Littman-Metcalf configuration: The first order

diffracted beam is reflected off a mirror and diffracted a second time and

then coupled back into the laser. The 0th order is coupled out . . . . . . 23

1.19 Use of QCLs for glucose monitoring by measuring light scattering from

skin. Taken from [110] . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.20 Microplastic characterisation of seawater samples using a commercial QCL

chemical imaging microscope. Taken from [117] . . . . . . . . . . . . . 26

1.21 Machine Learning approach (modified from Geron, A. [124]) . . . . . . 27

1.22 Example of near infrared spectra from two species of mosquito An. gam-
biae (bottom) and An. arabiensis (top). Broad bands in the NIR region are

the result of overtones and combination bands (combination bands ν1 +

ν2, second order and third order combination bands such as ν + 2ν2) (Plot

taken from Mayagaya, V. et al. 2009 [196]) . . . . . . . . . . . . . . . . 40

1.23 Example of mid infrared spectra collected using ATR-FTIR of An. gam-
biae mosquito of 3 days (blue), 6 days (green), and 11 days (pink) after

collection. Bands in the mid infrared region are more resolved. This

is due by measure fundamental vibrations of molecules (Plot taken from

Gonzalez-Jimenez, M. et al. 2019 [17]) . . . . . . . . . . . . . . . . . . . 40

2.1 Schematic illustration of the process of data splitting for each evaluation

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



xi

2.2 Schematic illustration of a confusion matrix as a heatmap. X-axis show

the predicted label (positive or negative) from the model. Y-axis shows

the actual label (positive or negative). Colorbar on the right side indicates

the colormap for each value. TP = True positive, TN = True Negative.

FP = False positive. FN = False negative. . . . . . . . . . . . . . . . . . . 55

2.3 IR mean spectra of the head, thorax, abdomen, and leg from mosquito

samples. Spectra baselines have been shifted for comparison. Coloured

shadow regions show biomolecular peak assignments from 1800 cm−1 to

800 cm−1 region. Red dashed lines indicate Amide I and Amide II peaks

at 1650 and 1550 cm−1 respectively. Photos of the field of view from the

microscope show the part of the mosquito from the spectra was collected. 58

2.4 PCA scatter plot of spectra data from different mosquito parts using µDRIFT.

Legend AB: Abdomen. HE: Head, LG: Leg, TH: Thorax . . . . . . . . 58

2.5 PCA scatter plot of spectra data from different mosquito parts using µDRIFT.

Legend AB: Abdomen. HE: Head, LG: Leg, TH: Thorax . . . . . . . . 59

2.6 Effect of pre-processing in model accuracy Overall species prediction

accuracy using the training set and ten-fold cross-validation for a) logistic

regression and b) random forest. Accuracy has been divided into scatter

correction algorithm (no pre-processing (RAW), robust normal variate

(RNV), standard normal variate (SNV), multiplicative scatter correction

(MSC) and normalisation (NORM), filter window (9, 11 and 21 points)

and derivative (no derivative, first and second derivative). Red dashed line

indicates accuracy of a random classifier (accuracy of 0.5). In boxplots,

the horizontal line represents the median, boxes the interquartile range,

whiskers the overall range, and black diamonds represent outliers. . . . 60



xii

2.7 a) Baseline performance comparison of common machine learn-
ing algorithms. Boxplots show the prediction accuracies for species

prediction on training data using different classifiers after ten-fold cross-

validation. Models tested included Logistic Regression (LR), Linear clas-

sifiers with stochastic gradient descent learning (SGD), Linear Discrim-

inant Analysis (LDA), Classification and Regression Tree (CART), Ran-

dom Forest Classifier (RF), Decision Tree Classifier (ET), Gaussian Naive

Bayes(NB) and Support Vector Machine(SVM). The best performing model

was LR. Boxplot show median (continuous red line) along with the 1st

and 3rd quartile, whiskers identify the minimum and maximum values.

Circles represent outliers. b) Confusion matrix of optimised model
on hold out set Normalised confusion matrix of the prediction of the fi-

nal Logistic regression optimised model using the hold out set. Each row

represents instances of true class, while each column represents instances

of predicted class. c) Variable contribution Variable contribution in the

optimised logistic regression model for species prediction. The green line

is the average of coefficient values after 100 bootstrap with 95% confi-

dence interval is show in shaded green. Shaded red indicates the location

of the top 20 wavenumber values with the highest prediction coefficients.

The highest coefficient prediction wavenumber values for each region are

annotated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.8 a) Boxplot showing prediction accuracy for each species: An. gambiae
(AG) and An. coluzzii (AC) after ten-fold nested cross-validation. In box-

plots, the horizontal line represents the median, boxes the interquartile

range, whiskers the overall range, and black dots represent outliers. b)
Normalised confusion matrix shows the average prediction of ten logistic

regression models obtained during nested cross-validation . . . . . . . . 62



xiii

2.9 Overall accuracy using the training set and ten-fold cross-validation for

a) logistic regression and b) random forest for age prediction between

mosquitoes of 3 and 10 days old. Accuracy has been divided into scatter

correction algorithm (no pre-processing (RAW), robust normal variate

(RNV), standard normal variate (SNV), multiplicative scatter correction

(MSC) and normalisation (NORM), filter window (9, 11 and 21 points)

and derivative (no derivative, first, and second derivative). Red dashed line

shows accuracy for a random classifier (accuracy of 0.5). In boxplots, hor-

izontal line represent the median, boxes the interquartile range, whiskers

the overall range, and black dots represent outliers. . . . . . . . . . . . . 63

2.10 a) Baseline performance comparison of common machine learning
algorithms. Boxplots show the prediction accuracies for age prediction

on training data using different classifiers after ten-fold cross-validation.

Models tested included Logistic Regression (LR), Linear classifiers with

stochastic gradient descent learning (SGD), Linear Discriminant Anal-

ysis (LDA), Classification and Regression Tree (CART), Random Forest

Classifier (RF), Decision Tree Classifier (ET), Gaussian Naive Bayes(NB)

and Support Vector Machine(SVM). The best performing model was LR.

Boxplot show median (continuous red line) along with the 1st and 3rd

quartile, whiskers identify the minimum and maximum values. Circles

represent outliers. b) Confusion matrix of optimised model on hold
out set Normalised confusion matrix of the prediction of the final Logistic

regression optimised model using the hold out set. Each row represents

instances of true class, while each column represents instances of predicted

class.c) Variable contribution Variable contribution in the optimised lo-

gistic regression model for age prediction. The green line is the average

of coefficient values after 100 bootstrap with 95% confidence interval is

show in shaded green. Shaded red indicates the location of the top 20

wavenumber values with the highest prediction coefficients. The highest

coefficient prediction wavenumber values for each region are annotated . 64

2.11 a) Boxplot of accuracies for each class: 3 days old and 10 days old after ten-

fold nested cross-validation. In boxplots, the horizontal line represents the

median, boxes the interquartile range, whiskers the overall range, and

black dots represent outliers. b) Confusion matrix showing the mean of

accuracies of 10 models after nested cross-validation . . . . . . . . . . . . 65



xiv

2.12 a) PCA scatter plot of spectra of each strain (a) and grouped into suscep-

tible and resistant according (b). The variability in the data is explained

by the first two PCs in 92.26% of the total . . . . . . . . . . . . . . . . . 66

2.13 PCA scatter plot of spectra for each pair of strains: Kisumu and Ngousso

(a), Kisumu and Tiassale (b) and Ngousso and Tiassale . . . . . . . . . . 66

2.14 Normalized confusion matrices for SVM with “one vs all approach” in

validation set on multi-class strain classification. Each row represents in-

stances of true class, while each column represents instances of predicted

class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.15 a) Baseline performance comparison of common machine learn-
ing algorithms. Boxplots show the prediction accuracies for insecti-

cide resistance prediction on training data using different classifiers af-

ter ten-fold cross-validation. Models tested included Logistic Regression

(LR), Linear classifiers with stochastic gradient descent learning (SGD),

Linear Discriminant Analysis (LDA), Classification and Regression Tree

(CART), Random Forest Classifier (RF), Decision Tree Classifier (ET),

Gaussian Naive Bayes(NB) and Support Vector Machine(SVM). Boxplot

shows the median (continuous purple line) along with the 1st and 3rd

quartile, whiskers identify the minimum and maximum values. Circles

represent outliers. b) Confusion matrix of optimised model on hold
out set. Normalised confusion matrix of the prediction of the final Lo-

gistic regression optimised model using the hold out set. Each row rep-

resents instances of true class, while each column represents instances of

predicted class.c) Variable contribution. Variable contribution in the

optimised logistic regression model for insecticide resistance prediction.

The green line is the average of coefficient values after 100 bootstrap with

95% confidence interval is show in shaded green. Shaded red indicates the

location of the top 20 wavenumber values with the highest prediction co-

efficients. The highest coefficient prediction wavenumber values for each

region are annotated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



xv

2.16 a) Boxplot of accuracies for each class: susceptible and resistant after ten-

fold nested cross-validation. In boxplots, the horizontal line represent the

median, boxes the interquartile range, whiskers the overall range, and

black dots represent outliers. b) Confusion matrix showing the mean

accuracy of 10 models after nested cross-validation . . . . . . . . . . . . 69

3.1 Representation of artefacts in spectral data. Black line is the original spec-

trum, follow by version affected by artefacts. Modified from Jansen, J. et

al., 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 a) Estimation of first derivative using Savitzky-Golay with a 7 window.

b) Effect of first and second derivative on raw spectra (blue), spectrum

with additive effects (green) and additive plus multiplicative effects (red).

Modified from Rinnan, A. et al., 2009 . . . . . . . . . . . . . . . . . . . 78

3.3 Effect of pre-processing on ATR-FTIR spectral data Mid infrared

spectra from all laboratory reared female mosquitoes collected using ATR-

FTIR in Glasgow without pre-processing (RAW) and after application

of scatter correction algorithms, Standard Normal Variate (SNV), Mul-

tiplicative Signal Correction (MSC), Robust Normal Variate (RNV) and

Savitzky-Golay on the same specimens. Each line represents the spectrum

of one mosquito. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Species prediction using PLS-DA Prediction of An. gambiae (blue) and

An. coluzzii (orange) using PLS-DA and tested with three different val-

idation data sets. a) Receiver operating characteristic curve (ROC) of 50

PLS-DA models and mean corresponding Area Under the ROC curve

using laboratory reared mosquitoes from Glasgowlab as validation set. b)

Ability of the model to predict An. gambiae and An. coluzzii. Histogram

of the estimated linear predictor for the validation set. Colour coded as

follows: An. gambiae(blue) and An. coluzzii (orange). The vertical black

line indicates the threshold for classifying mosquitoes into the two dif-

ferent species. Areas where distributions overlap indicates misclassified

observations. c) Normalised confusion matrix for the best model on vali-

dation set. Each row represents instances of true class, while each column

represents instances of predicted class. The same results are shown using

mosquitoes from IRSSlab (d, e, f ) and IRSSfield (g, h, i). . . . . . . . . . 88



xvi

3.5 Prediction of chronological age Comparison of predicted vs true age

tested on hold out set using PLS across age groups from 1 to 17 days

old. Data is from Glasgowlab dataset. Each point represents a population

sample. Boxplots show the upper and lower ends of the centre box to

indicate the 75th and 25th percentiles. The red dot represents the mean,

the line inside the box indicates the median and the whiskers show the

maximum and minimum no further than 1.5 Interquartile Range (IQR).

Outliers and indicated as a diamond. . . . . . . . . . . . . . . . . . . . . 89

3.6 Effect of pre-processing on age prediction Comparison of predicted vs

true age with 4 pre-processing methods: MSC, SNV, RNV and Savitzky

Golay (window = 9, second derivative) using PLS. Model was trained

with Glasgowlab data set and tested with a hold out set. Boxplot shows

the upper and lower ends of the centre box to indicate the 75th and 25th

percentiles. The line inside the box indicates the median, and the whiskers

show the maximum and minimum no further than 1.5 Interquartile Range

(IQR). Outliers are represented with a black diamond. . . . . . . . . . . 90

3.7 Effect of second derivative on age prediction Predicted vs true age for

validation set with a) raw data and b) Savitzky-Golay (window=9, second

derivative) using PLS. The upper and lower ends of the centre box indi-

cate the 75th and 25th percentiles. The line inside the box indicates the

median, and the whiskers show the maximum and minimum no further

than 1.5 Interquartile Range (IQR). Letters show groups with statistically

different means (p < 0.05) by ANOVA with Tukey’s multiple comparisons 90

3.8 Effect of second derivative in age prediction with independent vali-
dation sets Comparison of predicted vs actual age using a subset of Glas-

gowlab data set as independent validation set with a) raw data and b) after

applying Savitzky-Golay pre-processing. Comparison of predicted vs ac-

tual age using a IRSSfield data set as independent validation set with c) raw

data and b) after applying Savitzky-Golay pre-processing . . . . . . . . . 93

3.9 Accuracy of different machine learning models when different scatter

corrections were applied: No pre-processing (RAW), multiplicative scat-

ter correction (MSC), standard normal variate (SNV), robust normal vari-

ate (RNV) and Savitzky-Golay. Models were trained using Glasgowlab

dataset and tested using 10-fold cross-validation. . . . . . . . . . . . . . . 95



xvii

3.10 Normalised confusion matrix for final models trained in Glasgowlab dataset

and tested on a hold out set. Each row represents instances of true class,

while each column represents instances of predicted class. AC: An. coluzzii.
AG: An. gambiae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.11 Normalized confusion matrix for final model on validation sets: a) IRSS-

lab and b) IRSSfield with different pre-processing algorithms. Each row

represents instances of true class, while each column represents instances

of predicted class. AC: An. coluzzii. AG: An. gambiae . . . . . . . . . . . 98

3.12 Division of the mid infrared spectrum into 3 different windows from 1800

- 1500 cm−1 (X1), 1500 - 1250 cm−1 (X2) and 1250 - 950 cm−1 (X3). . 99

3.13 Boxplot of model accuracy in cross-validation for LR, SVM and SGD

when using the whole mid infrared spectrum (Total) and each of the spec-

tral windows (X1, X2, X3) . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.15 Accuracy and prediction coefficients of three models logistic regression

(LR), support vector machine (SVM) and stochastic gradient descent (SGD)

for each window: a) X4 (1700-1500 cm−1), b) X5 (1800-1600 cm−1) and

c) X6 (1580-1480 cm−1). . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.14 Accuracy on hold-out data set. Normalised confusion matrix for each

model on hold-out data set. Model tested are logistic regression (LR),

support vector machine (SVM) and stochastic gradient descent (SGD).

Each row represents instances of true class, while each column represents

instances of predicted class. AC: An. coluzzii. AG: An. gambiae . . . . . . 101

3.16 A) Baseline accuracy. Classification accuracy after 10-fold cross-validation

using logistic regression (LR), support vector machines (SVM) and stochas-

tic gradient descent (SGD) with different mid-infrared regions: total spec-

tra (1800 - 950 cm−1), X1 (1800 - 1500 cm−1), X2 (1500 - 1250 cm−1),

X3 (1250 - 950 cm−1) and the sum of X1 and X2 (1800 - 1250 cm−1). . 103

3.17 A) Validation on hold out set. Normalised confusion matrix for final

models on validation tested on hold out set. Each row represents instances

of true class, while each column represents instances of predicted class. . 103



xviii

3.18 B) Variable importance. Comparison of prediction coefficients between

IRSSlab (red) and Glasgowlab (blue) data sets for each wavenumber. High

values (positive or negative) suggest a wavenumber is more important

on the model decision. The most import features are located in the X1

region for Glasgowlab data set compared to IRSSlab dataset where the

most important features are located across x1 and X2 regions. . . . . . . 104

3.19 a) Explained variance (barplot) and cumulative explained variance (line

dot) of each PC1, PC2 and PC3. b) PC1 versus PC2 scores plot mean

centred spectra of samples from Glasgowlab (blue) and IRRSlab (orange)

and IRSSfield (green). There is a separation between IRSSfield and IRSS-

lab and Glasgowlab. b) Scatter plot of PC1 scores by sample. c) PC1

loading versus wavenumber values. . . . . . . . . . . . . . . . . . . . . . 105

4.1 Photography of the spectrometer. The optical table houses the main com-

ponents of the set-up: Laser, external cavity and galvo mirror. Tempera-

ture and power sources, detector and sample holder are located externally

in this instance. The size here is determined by required flexibility of

adaptation in the lab and the size of off-the-shelf mechanics and optical

mounts built on a traditional breadboard. It can be significantly minia-

turised down to the ‘matchbox’ level by integration of the mechanical

parts onto a micro-bench. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 Diagram of the external cavity in Littman-Metcalf configuration. The

tuning element is a galvanometer scanning mirror, combined with a fixed

diffraction grating. Radiation can be extracted from the zeroth-order

diffracted light from the grating. M1, 2: gold-coated beam folding and

steering mirrors. L1: collimating lens. QCL: quantum cascade amplifier

chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Example of grating response to polarised light for 100 grooves/mm (a) or

150 grooves/mm (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Responsivity and detectivity of the MCT detector used in the set-up

across 2 - 10 µm wavelength range (taken from Thorlabs, UK) . . . . . 116

4.5 Schematic of the QCL-based setup mid-IR transmission for solids . . . . 117



xix

4.6 Normalised emission lines of the EC-QCL during the wavenumber scan.

Each measurement was collected by rotating the scanning galvanometer

mirror by 0.1 volts. Current injection of 1.7 A. . . . . . . . . . . . . . . 118

4.7 Measured CW output power of the EC-QCL as a function of wavenum-

ber with a power meter. The maximum power peak of 12.6 mW was

achieved at 1040 cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.8 Laser spectrum of the EC-QCL at the wavelength of 1044.3 cm−1 with

a linewidth of 0.3 cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.9 a) Step-scan measurements of emission spectrum of the EC-QCL during

a scan between 950 cm−1 and 1100 cm−1 recorded with 0.2 cm−1 spectral

resolution b) Wavelength measurements at step scans of 0.001 volts. Mode

hops range from 0.3 to 0.9 cm−1 . . . . . . . . . . . . . . . . . . . . . . 119

4.10 The time-resolved emission spectra of the EC-QCL in CW mode with a

current injection of 1.7A and temperature of 19 C. Scanning galvanome-

ter is modulated with a sine-wave at 5 Hz . . . . . . . . . . . . . . . . . 120

4.11 PS spectrum collected from 100 co-added scans using EC-QCL (black

line) and processed with Gaussian filter (red line). . . . . . . . . . . . . . 122

4.12 Top: Transmission spectra from polystyrene calibrated sample at different

scanning frequencies. Bottom: Overlap spectra of PS from 127 Hz to 500

Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.13 a) Tuning range decreases as a function of frequency. b) Average output

power decreases as range increases. c) Resulting tuning rate in µm/s at

different scanning speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.14 Transmission spectra of plastics from consumer products from a) bottle

label b) calibrated PS sample c) PP d) PE obtained with the EC-QCL

(one scan, 200 seconds acquisition time) and with a commercial FTIR

(16 scans). Congruence of spectral features between the two systems are

comparable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.15 Mid-IR spectra of consumer products collected by EC-QCL. Polypropy-

lene - PP (blue), Polyethylene terephthalate - PET (orange) and Polyethy-

lene - PE (green)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



xx

4.16 PCA scores scatter plots of the 17 consumer plastic products coloured by

material: PP (blue), PET (orange) and PE (green). The material of each

sample was identified by the manufacturer information. . . . . . . . . . . 126

4.17 Transmission spectra of polypropylene sample obtained with the EC-

QCL (acquisition time ≈ 1 second, 100 averaged spectra), and with an

commercial FTIR (acquisition time 20 seconds, 20 averaged spectra) . . 127

4.18 Mid infrared spectra of an a) onion dried external layer and b) Anopheles
gambiae mosquito recorded with the EC-QCL setup (green line) and with

a commercial FTIR (blue line). Black dashed line show the agreement of

the spectral features of the second derivative between the two systems. . 128

A.1 Preliminary Field of view from µDRIFT in visual mode for a) Head, b)

Thorax, c) Leg d) Abdomen . . . . . . . . . . . . . . . . . . . . . . . . 139

A.2 Leg spectra using µDRIFT with a range of 4000 cm−1 to 600 cm−1 . . . 140

A.3 PCA scatter plot of spectra for each mosquito part on different ages, one,

3 and ten days old. Two different pre-processing algorithms were tested

to increase clustering between groups . . . . . . . . . . . . . . . . . . . 140

A.4 Confusion matrix of random forest classifier evaluated on hold out set for

species prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.5 Accuracy of all models with the different pre-processing algorithms for

species prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.6 Accuracy of all models with the different pre-processing algorithms for

species prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.7 Accuracy of all models with the different pre-processing algorithms for

age prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.8 Accuracy of all models with the different pre-processing algorithms for

age prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.9 Pair-plot of PC scores coloured by strain . . . . . . . . . . . . . . . . . . 145

A.10 Prediction coefficients of the optimised model plotted against wavenumbers146



xxi

B.1 Selection of optimal number of variables for PLS-DA for species predic-

tion for each pre-processing method. The lowest root mean squared er-

ror in cross-validation was selected. The number of component with the

lowest RMSE is annotated with a red X. RAW: no pre-processing, MSC:

Multiplicative Scatter Correction, SNV: Standard Normal Variate, RNV:

Robust Normal Variate. 2nd derivative: Savitzky-Golay filter with 9 point

window and second order derivative. . . . . . . . . . . . . . . . . . . . . 149

B.2 Scatter plot of AUC values vs number of components when PLS-DA

trained in Glasgowlab data set, evaluated with Glasgowlab data set (blue

line) and IRSS lab data set (black line) for each pre-processing method.

The linear search was set up from 1 to the number of components selected

using RMSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.3 Model coefficients from calibrated data sets from raw data and after dif-

ferent pre-processing algorithms for species prediction . . . . . . . . . . 151

B.4 Model coefficients from calibrated data sets from a) Raw data and after b)

Savitzky-Golay preprocessing for age . . . . . . . . . . . . . . . . . . . 152

B.6 Boxplot of PLS-DA accuracy using 10-fold cross-validation when using

the whole mid infrared spectrum (Total) and each of the spectral windows

(X1, X2, X3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.5 PLS latent variables optimization for different scattering corrections suing

calibration (blue line) and cross-validation (green line) for age prediction 153

B.7 a) Principal Component Analysis (PCA) PC1 versus PC2 vs PC3 scores

plot normalised spectra for laboratory mosquitoes from Glasgowlab (blue)

and IRRSlab (orange) and IRSSfield (green) . . . . . . . . . . . . . . . . 155

B.8 Mid infrared spectra of all samples from Glasgowlab, IRRSlab and IRSS-

field of An. gambiae and An. coluzzii . . . . . . . . . . . . . . . . . . . . 156

B.9 Mean Mid infrared spectra from Glasgowlab, IRSSlab and IRSSfield . . . 156

C.1 Power fluctuations of the gain chip in pulse mode (1.45 A, duty cycle

50%, frequency 5 Hz, pulse period 200 ms, pulse width 100 ms) with the

galvanometer mirror fixed in one position . . . . . . . . . . . . . . . . . 157



xxii

C.2 Power fluctuations of the gain chip in continuous-wave (CW) (1.78 A)

with the galvanometer mirror fixed in one position . . . . . . . . . . . . 158

C.3 Schematic of the QCL-based setup mid-IR transmission for solids with

the addition of a lock-in amplifier . . . . . . . . . . . . . . . . . . . . . . 158

C.4 Comparison of similarity index values between the raw data (black line),

after Savitzky-Golay smoothing with a window=21 (blue line), and after

Gaussian filter, sigma=0.5 (red line).) . . . . . . . . . . . . . . . . . . . . 159

C.5 Processing steps of EC-QCL data using Savitzky-Golay as smoothing

filter. Background scans (blue), sample scans (red). . . . . . . . . . . . . 160

C.6 Processing steps of EC-QCL data using Gaussian filter for signal smooth-

ing. Background scans (blue), sample scans (red). . . . . . . . . . . . . . 161



Abstract

Mid-infrared spectroscopy (MIRS) has emerged as a potential tool to predict species,

age and infection in the Anopheles malaria mosquitoes as well as in other disease vectors.

The main advantages of optical methods in general are their speed, little or no sample

preparation, label-free, lower cost and already established protocols and analysis pipelines.

New rapid, low cost, high-throughput tools for vector surveillance are urgently needed

to develop and optimise new vector control strategies, as vector borne diseases (VBD)

are spreading around the globe due to climate change and globalisation, and endemic

countries are suffering resurgence of malaria cases following weakening of control tools.

However, the current commercially available FTIR spectrometers have limitations. They

are expensive, bulky and low power that hider its implementation in the field. Quantum

cascade lasers (QCL) have become an alternative to FTIR light sources due to their unique

characteristics (i.e. coherence, high power in a smaller spot size, small chip size), which

allows easier implementation for the field due to its lower cost, practicality, and accuracy.

These characteristics can expand the possibilities to develop new ways to measure spec-

tral information from disease vectors. This thesis is aimed at developing a QCL-based

spectrometer, understanding the most informative infrared region for VBD surveillance

and the use of legs for surveillance and prediction of key traits from mosquitoes using

MIRS.

In this project, micro-diffuse reflectance spectroscopy (µDRIFT) was used on mosquito

legs to predict age, species and cuticular insecticide resistance. Indeed, spectra from legs

led to high accuracy ML models for age prediction (overall model accuracy: 77.1% (±

6.5%) with a mean accuracy of 82% for 3 days old and 74% for 10 days old) and moderate

accuracy for species identification (overall model accuracy: 69.1% (± 7.9%) with a mean

accuracy of 68% for An. gambiae and 71% for An. coluzzii). Finally, cuticular resistance

in three strains of Anopheles mosquitoes was identified with high accuracy when grouped

into susceptible and resistant classes (overall model accuracy: 71.3% (± 8%) with a mean

accuracy of 73% for susceptible and 71% for resistant class). However, these preliminary
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findings need to further be confirming by ruling out confounding factors such as the use

of different strains of Anopheles by using a single strain with various degrees of insec-

ticide resistant. I found that Partial Least Squares Discriminant Analysis (PLS-DA) and

can be used for high accuracy prediction between An. gambiae and An. coluzzii when

tested on laboratory samples from the same origin (mean accuracy: 87%). However,

species prediction decreases when the model is tested on samples from different labora-

tories (mean accuracy: 62%) and in semi-field samples (mean accuracy: 46.5%). For age

prediction, PLS regression was able to predict different group ages (3, 5, 7, 9, 12, 15 days

old) when tested with laboratory samples from the same origin (R2 = 0.68, RMSE = 2.24)

and with samples from other laboratories (R2 = 0.78, RMSE = 1.89). Nevertheless, the

model cannot predict the age of semi-field samples (R2= -1.84, RMSE = 7.99). Also, I

found narrower spectral windows of ≈ 300 cm−1 in length located on the Amide I and

Amide II region are sufficient to predict mosquito species using machine learning (ac-

curacy from 88% to 98%). This can help for a more efficient way of collecting spectral

data. Future work should focus on how to improve model calibration by adding sam-

ples with diverse origin (different laboratories, different rearing conditions) to improve

model generalisation. Finally, I have developed a QCL-based spectrometer in the range

of 8-11 µm with scan speeds up to 500 Hz, with a maximum tuning rate of 400 µm/s.

The system can collect spectra from polymers (polypropylene, polyethylene terephtha-

late and polyethylene) and biological samples (mosquitoes) in transmission mode. When

compared to commercial FTIRs, MIRS measurements of whole mosquito bodies in KBr

discs through the QCL-based spectrometer were in high agreement at bands 988, 1029

and 1056 cm−1 showing that the newly developed device works in mosquitoes. This

study has made the first step towards the use of QCL-based system for spectroscopy of

insect disease vectors, opening new opportunities for the implementation and use of mid-

infrared spectroscopy for vector-borne disease surveillance.
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Chapter 1

Introduction

Malaria is one of the most important vector-borne diseases, with 241 million cases and

627 000 deaths recorded in 2020 worldwide [1]. It is mainly transmitted by 4 major

vectors: Anopheles gambiae, An. coluzzii, An. arabiensis and An. funestus [2]. However,

other species such as An. rivulorum, An. vaneedeni, An. leesoni and An. merus can act as

secondary vectors [3–5]. Malaria cycle starts with the mosquito ingesting the parasite

through a blood meal from an infected host. The parasite requires from 9 to 14 days to

develop into its infectious stage and to move to the salivary glands, where it is transmitted

to the next host when the mosquito blood feeds again [6, 7]. Thus, the mosquito must

survive long enough for the parasite to be successfully transmitted. Vector control is the

most effective way of reducing malaria transmission [8]. The target of current vector

control approaches is to decrease the life span of adult mosquitoes by using Long Lasting

Insecticidal Nets (LLINs), and Insecticide Residual Spray (IRS) [9]. However, mosquito

populations are becoming increasingly resistance to insecticides across Africa [10,11].

Vector surveillance is the core of vector control programmes in endemic countries [12,

13]. The aim of surveillance is to estimate the intensity of transmission and assess the

impact and progress of intervention programs [14]. Surveillance includes estimating

species composition, abundance, infection rate of vector populations, and insecticide re-

sistance status [15]. In addition, other entomological parameters, such as the age struc-

ture of a population, are valuable to assess due to its influence on transmission [16]. Ex-

isting methods for age grading, species identification and insecticide resistance can be

labour-intensive, expensive, and in the case of age grading, not accurate. In the search

of cheaper, accurate and faster methods, infrared spectroscopy has become a potential

tool for mosquito surveillance [17–19]. The ability to predict species, age, and insec-

ticide resistance by detecting chemical changes in the mosquito’s cuticle using infrared

1
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spectroscopy opens an opportunity to improve current surveillance systems. Further-

more, the use of better and faster machine learning algorithms to analyse infrared data

promises an accurate and versatile tool in the fight against vector-borne diseases. Thus,

the project “Towards Portable Mid-Infrared Tool for Analysis of Mosquito Vectors of

Malaria” aims at improving vector surveillance by exploring different alternatives to cur-

rent spectroscopy methods and the use of next generation semiconductor lasers as a tool

for mosquito surveillance.

This chapter will provide an overview of the current state-of-the-art infrared spec-

troscopy. It will start describing the fundamentals of spectroscopy, the different sam-

pling techniques with emphasis in the ones used in the following experimental chapters.

Then, it will explain how quantum cascade works and its current applications. Also, there

will be an overview on machine learning, and which are the most common techniques

for species identification, age grading and identification of insecticide resistance status

in mosquitoes. It will finish with a review of the current state of infrared spectroscopy

applied in mosquito surveillance.

1.1 Infrared Spectroscopy

Infrared spectroscopy is one of the most important and widely used analytical techniques

[20]. The main advantage is its versatility, as any sample from films, solutions, powders,

films, fibre types, etc. can be studied with spectroscopy [21]. Infrared spectroscopy (near

infrared, mid-infrared, and Terahertz) along with Raman spectroscopy are techniques

of vibrational spectroscopy [22]. Infrared spectroscopy measures the transitions between

molecular vibrational energy levels, which are the result of mid-infrared absorption. The

characteristics of infrared vibrational bands are given by their frequency, intensity, and

band shape [23]. The vibrational energy levels are unique to each molecule; thus, infrared

spectroscopy can provide the fingerprint of absorbed frequencies of a molecule of interest

[24]. The measurement of these absorbed frequencies is presented in the form of an

infrared spectrum [20]. Therefore, by applying this technique to a sample, it will generate

a specific infrared spectrum base on the sample’s chemical composition. Applications of

infrared spectroscopy can be seen in agriculture, food science, chemistry, security, and

biomedical sciences [24–26].
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1.1.1 Fundamentals of electromagnetic radiation

Light is electromagnetic radiation which propagates through space as a wave [22]. It

consists of an electric field and a magnetic field, which oscillate in single planes per-

pendicular to each other [20]. They are described by a continuous sinusoidal wave-like

motion. Infrared spectroscopy neglects the magnetic field component and only consider

the electrical field component [23] as shown in Figure 1.1.

λE
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+
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+ + +
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Figure 1.1: Amplitude of the electric field component of the electromagnetic radiation as a func-

tion of time. Wavelength (λ) is the distance between two crests (Plot adapted from Larkin, P.

2017 [23]).

The velocity of the propagation of electromagnetic radiation is constant, which is the

speed of light (c). In a fixed distance, the speed of the wave is the product of wavelength

(λ) which is the distance between two crests and the frequency (ν), defined as the number

is cycles per unit of time (seconds) as show in the following equation:

c = λ ∗ (ν) (1.1)

Wavelength units are represented as wavenumbers, ν̃, in cm−1 which is defined as the

number of waves per unit of length (one centimetre) [20, 23]. These parameters are

related to the following equation:

ν̃ =
ν

c
(1.2)

We picture a beam of light as a wave that contains a certain amount of radiant energy,
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which can be subdivided into a certain number of photons. The amount of energy in

one photon is given by:

E = hν (1.3)

Here, h is the Planck constant and ν is the photon frequency [27].

1.1.2 Infrared Absorption

A molecule when is irradiated with infrared light, it can absorb the light under specific

conditions. First, the energy hυ of the infrared light absorbed by the molecule must be

equal to the energy difference between two energy levels of vibration of the molecule

(ground state (E0) to excited state (E1)) [20,22,23,28] (Fig. 1.2). This phenomenon can

be represented by the following equation:

ν =
(E1 − E0)

h
(1.4)

Equation 1.4 is called the Bohr frequency condition. Therefore, infrared absorption is

based on a transition between energy levels of a molecular vibration [22]

Figure 1.2: Illustration of discrete energy levels and absorption of electromagnetic radiation (Plot

adapted from Larkin, P., 2017 [23]).

The selection rule for infrared radiation is that transitions with a change in the vibrational

quantum number by ±1 are allowed, while other transitions are forbidden. Another

selection rule is that infrared light is absorbed when the electric dipole moment of a

molecule changes. This will be defined by the symmetry of the molecule [22,29].

Normal modes of vibration

When a molecule absorbs infrared light, its bonds vibrate. The vibrational motion caused

by infrared light is complex, but it can be explained by simple vibrations called normal
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modes. Normal modes can be described as independent motion of atoms in a molecule

[30]. In each normal vibration, all atoms vibrate with the same frequency (normal fre-

quency), and they pass through their equilibrium positions simultaneously. To calculate

the number of normal modes of a molecule with N atoms, we use the rule 3N-5 and 3N-

6 for linear and non-linear molecules, respectively. A diatomic molecule will have one

normal mode, stretching vibration, where the bond can stretch and compress. Examples

of these molecules are H2, N2 and O2. Let’s consider a three-atom non-linear molecule

such as water (H2O), it will have three normal modes. One symmetric stretch, one asym-

metric stretch and one bending vibration as shown in Fig. 1.3a. For a linear molecule

such as CO2, it will have 4 normal modes. These modes are an asymmetric stretch, sym-

metric stretch and two bending vibrations (Fig. 1.3b). The number of normal modes is

just a guide of how many infrared bands a molecule has, since not all vibrations can be

excited by infrared light.

Figure 1.3: Representation of the normal modes of a linear molecule, carbon dioxide, and a non-

linear molecule water (Adapted from Larkin, P. 2017 [23]).

Infrared absorption process

There are two conditions that need to be meet for infrared absorption. The first one is

the change in dipole. For this, I am going to use the HCl molecule as a model. The HCl

molecule is represented as a harmonic oscillator, where the atoms are represented as balls

with masses and the bond is represented as a spring (Fig. 1.4a). The electronegativity

difference between the two atoms results in the chlorine partially negative charge (δ−)

and the hydrogen partially positive charge charged (δ+). The molecule has two charges

separate by a distance; this is called a dipole moment, which is the measurement of the

charge asymmetry of a molecule. It can be calculated by the equation:
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µ = q ∗ r (1.5)

where q is the charge, r is the distance and µ is the magnitude of the dipole. As mentioned

before, the polarity of the electrical vector of electromagnetic radiation alternates from

positive to negative through time, as shown in Fig. 1.1. When the electrical vector

encounters the HCl molecule, depending on the polarity of the electrical vector, it will be

repelled or attract the H atom, by doing so, the HCl bond will be shortened or stretched.

The length of the bond will change with the same frequency as the polarity of the electric

vector changes (Fig.1.4b). The molecule is vibrating with the same frequency as the

electric vector; therefore, the energy of the photon is transferred to the molecule. We

can represent this condition by the following equation:

∂µ/∂X ̸= 0 (1.6)

where ∂µ is the change in the dipole moment and ∂X is the change in the bond distance.

“Infrared active” molecules will have a vibration that satisfies equation 1.6, the electric

dipole moment changes as its bonds contract or expand. This is seen with heteronuclear

diatomic molecules (molecules with two non-identical atoms). On the other hand, an

“infrared inactive” molecule, its electric dipole moment remains zero no matter how

much its bonds expand. This is the case of mononuclear diatomic molecules [31,32].

Figure 1.4: a) Diagram of a diatomic atom, HCl as harmonic oscillator. δ+ and δ− represent the

partial charges of chlorine and hydrogen. b) Representation of the interaction between the HCl

molecule and the electric vector. The change in polarity of the electric vector changes the length

of the HCl bond (Modified from Smith, B. 1999 [33])

The potential energy of the classical harmonic oscillation of a diatomic atom is given

by PE = 1/2KX2, where X is the distance between masses. The plot of the potential

energy as a function of X is a symmetric parabola, as shown in Fig. 1.5a. Xe is the
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equilibrium bond distance where the energy is at minimum and K is the force constant

measure of the curvature of the potential near Xe. According to quantum mechanics,

molecules can only exist in quantise energy states, thus vibrational energy can only have

discrete values. The vibrational energy levels are shown in Fig.1.5b. In this model, en-

ergy states are equidistant. However, a more realistic approach to the harmonic oscillator

is anharmonicity, which happens if the change in dipole moment is not linearly propor-

tional to the nuclear displacement. Fig.1.5b shows how the potential energy of a water

molecule measure in wavenumber (y-axis) is affected by the changes in the bond dis-

tance measure in Angstrom (x-axis). As the bond distance is made shorter or longer than

the equilibrium bond distance, the molecular energy increases. The discrete vibrational

energy levels are notated with vibrational quantum number ν. The ground state of the

molecule is ν = 0, the next energy level, ν = 1, is the first excited vibrational state. The

separation between levels is not equidistant, and they become smaller at higher vibra-

tional levels. In the case of H-O stretching vibration, for example, the distance between

ν = 0 and ν = 1 is 3500 cm−1. In order to a photon be absorbed by the molecule, it needs

to match the energy difference between ν = 0 and ν = 1. Water absorbs photons with

3500 cm−1. Therefore, the second condition for infrared absorption is that the energy of

the photon needs to match a vibrational energy difference within a molecule [23,33,34].

(a) (b)

Figure 1.5: a) Potential energy E as a function of bond distance X for a diatomic molecule using

the quantum harmonic oscillator model. ν = 0, ν = 1, ν = 3 are vibrational energy levels b)

Potential energy as a function of bond distance for water molecule using anharmonicity. Adapted

and modified from Larkin, P. 2017 [23] and Smith, B. 2018 [31]
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Group Frequencies

Group frequencies can help with the analysis of vibration spectra of polyatomic molecules.

The concept can be applied when the amplitudes of a specific functional group are very

large compared to other atoms. Examples of groups frequencies are stretching vibration

of O-H group, C=O vibration of a carbonyl group, etc. These group frequencies are

important in the analysis of infrared spectra [35].

Vibrations include a change in bond length, which is called stretching or a change in

bond angle, called bending. Stretching can be in phase or symmetrical or out of phase

or asymmetrical. For example, a molecule AX2 will have six vibrational modes. Two

of them stretching vibrations, one being symmetric stretching vibration and the other

asymmetric stretching vibration. The rest are bending vibrations. This can be classified

as scissoring, rocking, wagging, and twisting vibrations. Scissoring and rocking vibra-

tions are in-plane vibrations, while wagging and twisting vibrations are out-of-plane

vibrations (Fig. 1.6). Group frequencies become handy for more complex molecules

such as proteins. A classic example is the amide group. The normal vibration of the

amide group has been calculated using the N-methyl acetamide as a model. Out of the

twelve normal modes of the molecule, three normal modes, amide I, II and III are key to

study the structure of proteins. Amide I has a C=O stretching vibration. Amides II and III

are coupling modes of C-N stretching vibrations and N-H in-plane bending vibrations,

as shown in Fig. 1.7 [20,30,32]

Figure 1.6: Vibrations of AX2 group. 1: symmetric stretching vibration. 2: antisymmetric

stretching vibration. 3: scissoring vibration. 4: rocking vibration. 5: wagging vibration. 6:

twisting vibration. Plot taken from Ozaki, Y. et al. 2021 [30]
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Figure 1.7: Three normal vibrations of N-methylacetamide (model of an amide group). Plot

taken from Ozaki, Y. et al. 2021 [30]

The intensity of the absorption of infrared light will be influenced by how greater the

change of dipole is and how many infrared active vibrations a molecule has. For ex-

ample, The number of infrared active vibrations will be less in symmetrical molecules

than asymmetrical ones, which will be representing in weaker absorption bands. The

vibrations and their characteristic absorption wavenumber are indicated in table 1.1.

Table 1.1: Vibrations and their characteristic absorption wavenumbers (Table modified from

Smith, B. 1999 [31])

Group vibration Classification Wavenumber cm−1

OH stretch Free ∼3600

H-bounded 3000-2500

CH stretch Olefin ∼3080

Methyl ∼2960, ∼2870

Methylene ∼2925, ∼2850

SH stretch – 2600-2550

C=O stretch Acyl chloride ∼3080

Ester ∼1735

Aliphatic Aldehyde ∼1730

Aliphatic ketone ∼1715

Quantitative Analysis

In absorption spectroscopy, the spectrometer will emit broadband infrared light. Due to

absorption of infrared light by molecules, the light that passes through the sample will
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be attenuated [36]. It is assumed that the relationship between the intensities of incident

and transmitted infrared radiation and the concentration of analyte material present in a

sample follows Lambert-Beer law which states: “The transmission of a sample within an

incident bean is equivalent to 10 exponent the negative product of the molar extinction

coefficient multiplied by the concentration of a molecule in solution time the path length

of the sample in solution” [37]:

T =
I

I0
= 10ϵcl (1.7)

Where T is transmittance, I0 is the intensity of incident light, I is the intensity of trans-

mitted light, ϵ is referred to as the molar absorptivity, c is the concentration and l is the

path length. In the case of where Lambert-Beer law holds, the relationship between ab-

sorbance and analyte concentration is linear [23]. Absorbance is equal to the difference

between the logarithms of the intensity of I0 and I :

A = −log(
I

I0
) (1.8)

The infrared spectrum is represented by plotting transmittance or absorbance vs. wavenum-

ber (Fig. 1.8).

Figure 1.8: Example of an infrared spectrum from 1,2-Propanediol. Taken from National Insti-

tute of Standards and Technology
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1.2 Spectrometers

Spectrometers are any instrument which measures a property of light as a function of

wavelength [38]. The main components of a spectrometer are the light source, a detector,

filters, mirrors, and gratings which will be assembled based on the type of spectrome-

ter [37]. They can be classified into Dispersive and Fourier Transform. While disperse

spectrometers were used extensively in the past, its limited resolution (fixed to one reso-

lution width) and slow speed restricted its use [20]. Later, they were replaced by Fourier

transform spectrometers, which currently dominated the area of infrared spectroscopy.

1.2.1 Disperse Spectrometer

Dispersive spectrometers produce spectra by taking incoming radiation from a source

and dispersing into its spectral components. These types of spectrometers are also called

grating or scanning spectrometers. The optical path of a dispersive spectrometer which

uses a grating monochromator is shown in Fig. 1.9. They have three basic parts: a radi-

ation source, a monochromator, and a detector. The incoming radiation goes through

the entrance slit, and it is collimated onto the dispersive element. The dispersed radiation

is then reflected back to the exit slit to the detector. The dispersive elements can include

prisms and gratings. A grating consists of a reflecting surface with parallel grooves which

are very closely spaced as shown in Fig. 1.10 right. Each groove diffracts the light to

different directions, separating the light into its individual wavelengths. The reflected

radiation is focused to the exit slit, and only radiation that leaves the grating at specific

angles can exit through the slit. When radiation is reflected at an angle, the parallel beams

from two adjacent grooves have a different path length (Fig. 1.10 right). The path length

difference depends on the groove spacing, the angle of incidence (α), and the angle of

reflectance of the radiation (β)(Fig. 1.10 right). This means that beams of a particular

wavelength leaving at a specific angle from all the grooves will be in phase and show

constructive interference when they converge at the exit slit, this is called the first order.

Other wavelengths will show destructive interference. Different wavelengths will reach

the detector by rotating the grating [20,23,34,39–41].
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Figure 1.9: Diagram of the optical path of a disperse spectrometer with a grating monochroma-

tor. Taken from Stuart, B. 2004 [20]

Figure 1.10: Schematic of a diffraction grating. Left: Parallel beams from two adjacent grooves

are displaced by the path length difference. Constructive interference can occur only when the

path length difference is equal to the wavelength multiplied by an integer (first, second, third

order). The polychromatic radiation will be diffracted at different angles, resulting in spatial

wavelength discrimination. Right: (α) is angle of incidence, (β) is the angle of reflectance of the

radiation. Adapted from Larkin, P. 2018 [42]
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1.2.2 Fourier Transform Spectrometer

Fourier Transform Infrared (FTIR) Spectrometer is a powerful tool for spectral analysis.

It consists of a light source, an interferometer, and a detector. The light source of FTIR

spectrometers is called Globar. Globar light sources are made of silicon carbide, and they

are heated to 1650 ◦C in order to radiate infrared light with a wavelength range of 2 to

25 µm [43]. The radiation from the globar is directed to a Michelson interferometer (Fig.

1.11). The interferometer contains three main components: a beam splitter, a movable

mirror and a fixed mirror perpendicular to each other. The radiation is split at the centre

of the beam splitter and half of the radiation is transmitted while the other half is reflected.

These transmitted and reflected beams go into the two arms of the interferometer and are

reflected, where they are combine and interfere at the beam splitter. Finally, the result-

ing beam goes to the detector. The movable mirror scans different positions, changing

the distance between the two mirrors arms. This will create destructive or construc-

tive interference, which will affect the intensity of the resulting beam. The final result

is the intensity of the final beam as a function of the difference in distance of the two

mirrors, called interferogram [44]. Examples of interferogram from monochromatic,

dichromatic, and broadband radiation are shown in Fig. 1.12 left. The interferogram is

then Fourier transformed resulting in the spectrum of the light source (Fig. 1.12 right)

Fourier-transformation extracts from the interferogram its different frequencies (in this

case wavenumbers) and their corresponded intensity [45] by the following equations:

S(ν) =
∫ ∞

−∞
I(x)e+i2πνx dx = F−1[I(x)] (1.9)

I(x) =
∫ ∞

−∞
S(ν)e−i2πνx dν = F[S(ν)] (1.10)

where S is the spectrum, I is the interferogram, frequency is ν, x is the difference in

distance between the two arms of the interferometer. Equation 1.9 converts the in-

terferogram into spectrum. Equation 1.10 shows intensity variation as a function of

wavenumber [46,47].

FTIR spectrometer produces a sample’s spectrum by first producing an interferogram

without a sample and another interferogram with the sample. The ratio between the

two spectra will correspond to the final sample spectrum.
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Figure 1.11: Diagram of the Fourier Transform spectrometer with a Michelson interferometer.

Infrared radiation with different wavelengths λ1,2,3.. is directed into the interferometer and the

resulting light goes into the detector. The moving mirror changes its position (τ ). The resulting

interferogram is Fourier-transformed into a spectrum. Plot modified from Saptari, V. 2003 [46].

Figure 1.12: Interferograms (left) and its resulting wavelength intensities (right) after a Fourier

Transformation for monochromatic (blue), dichromatic (green) and continuous (orange) light

sources. Modified from [48]
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Advantages

The strengths of FTIR spectrometers are speed, higher signal-to-noise ratio (S/N), and

accuracy/reproducibility. Speed is achieved by the ability of the mirror to move short

distances very fast, and also the measurement of all wavelengths at the same time [49].

In addition, the use of the Fast Fourier Transform (FFT) which computes Fourier trans-

formations more efficiently, reduces the acquisition time of a spectrum down to mil-

liseconds [47]. High S/N is possible by averaging multiple signals thanks to the rapid

scanning of the equipment [20]. Finally, the use of a Helium Neon laser as an internal

reference calibration ensures accurate and reproducible measurements [49].

Disadvantages

The disadvantages of FTIR become evident in high spatial resolution image acquisition.

Due to the globar light source, there is a lack of spatial coherence and the optical power

per diffraction limited spot is low [50]. The low emission intensity of the globar also limits

the measurement of samples with a highly absorbing matrix, especially in spectroscopy of

proteins in aqueous solutions. The low power limits the path lengths and requires samples

with high protein concentrations, which increases the difficulty of using flow cells [51–

53]. Moreover, the equipment requires LN2 detectors, and the cost of equipment can be

prohibited to labs with limited resources. Some sampling techniques can require sample

preparation (or can be destructive to the sample). Tissues still need long measurement

times (in the order of hours or days) when using high-resolution chemical imaging [54].

1.2.3 Infrared spectroscopy sampling techniques

There are several sampling techniques depending on the type of sample to be measured.

These techniques can be grouped into transmission methods, internal and external re-

flectance methods, photoacoustic detection, and gas chromatography/infrared [55]. Each

of these methods requires specific sample preparation, which will dictate how easy the

technique can be used for a specific project. I am going to focus on the three main ones

utilised in this thesis: transmission, diffuse reflectance, and attenuated total reflection.
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Transmission mode

Transmission is the most basic method for infrared spectroscopy. This method requires

positioning the sample in front of the infrared beam. Here, infrared radiation is passed

through a sample. The sample will absorb some of the radiation, and some will pass

through or be transmitted [56]. The transmitted radiation is collected with a detector

(Fig. 1.13). Transmission can be used to measure infrared absorbance of gases, liquids

and thin films [57]. Although liquid and gas samples require no preparation, solid samples

need to be prepared. They can be dissolved and examined in solution, prepared as solid

suspensions dispersed in a fluid or within a disk of a transparent medium, such as KBr [42].

The absorbance is usually presented as transmittance using equation 1.7.

Figure 1.13: Schematic of transmission sampling technique. Sample is positioned in front of

infrared radiation. Specific wavelengths will be absorbed by the sample. The transmitted radiation

is collected by a detector.

Diffuse Reflectance (DRIFT)

In diffuse reflectance, the incident radiation penetrates the sample, and it is reflected in

all directions. Part of the light will be absorbed at sample-specific wavelengths, and the

resulting scattering is collected over a large angle. Thus, a diffuse reflection spectrum

will contain information about the infrared absorption of the sample. A typical optical

configuration for diffuse reflectance spectroscopy consists of a parabolic mirror, which

focus the light to the sample, and another set of parabolic mirrors located over the sample

which collect the reflected light. The reflected light is then directed towards the detector



17

[58] (Fig. 1.14). DRIFT is commonly used for powders and fibres [23, 59]. Diffuse

reflectance can be expressed as the Kubelka–Munk function (K-M):

(1−R)2

2R
=

c

k
(1.11)

where R is the absolute reflectance of the sample, c is the concentration and k is the molar

absorption coefficient. However, 1/T, absorbance, ratios, and derivatives has been used

to present diffuse reflectance data [37].

Figure 1.14: Diffuse reflectance optical diagram. Collimated light from the interferometer go

towards the sample by parabolic mirror (P). The reflected light from the sample is collected by

two mirrors (E) and focused to the detector (D). (Diagram modified from [58])

Attenuated Total Reflectance (ATR)

Attenuated Total Reflectance uses the total internal reflection phenomenon to measure

infrared absorbance. It uses a high diffraction, high IR transmission crystal as a medium

instead of the air. This crystal offers a surface contact with the sample. The incident beam

irradiates the surface trough the optical medium, and the total reflection occurs at the

surface (Fig. 1.15). The electric field of the evanescent wave will penetrate the sample,

if the sample absorbs infrared radiation at a specific wavelength, the reflectance of that

wavelength will be reduced, thus losing energy. if not, the radiation will be reflected

completely. ATR measurements are presented as attenuated radiation as a function of

wavelength, which will be similar to absorption in transmission mode. This method is
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particularly useful for thick samples which are difficult to measure in transmission and

requires little to no sample preparation [20,59].

Figure 1.15: Attenuate Total Reflection. The light goes through one of the faces of the Internal

Reflection Element (IRE). An evanescence wave generates and enters the sample at a given depth

(dp). The resultant reflected radiation is collected from the other face of the IRE.

1.2.4 Microsampling techniques

One of the advantages of an FTIR spectrometer is that it can be combined with a mi-

croscope. This allows us to investigate smaller samples by focusing the light beam onto

smaller, localised spots. A FTIR microspectrometer contains a sample x-y stage, two

Cassegrain objectives and apertures [60]. The infrared light is passed through a micro-

scope to the sample, and the resulting light is collected by the Cassegrain objective (Fig.

1.16). An aperture is added that focuses the light into the detector. The system also has

objectives made of glass for visual inspection of the sample. This hybrid system can be

used for transmission, DRIFT and ATR sampling methods [20, 61]. FTIR microspec-

troscopy can also be used to produce 2D or 3D images of a sample. This is useful for

dealing with heterogeneous and complex samples such as cells or tissues [62].
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Figure 1.16: Optical diagram of a FTIR micro spectrometer (Modified from Stuart B., 2004 [20]

and Katon J., 1996 [60])

1.3 Quantum Cascade Lasers

Quantum cascade Lasers (QCLs) are a type of semiconductor laser developed by J. Faist,

F. Caspasso in 1994 [63]. They are based on intersubband transitions and multiple quan-

tum well structures within the conduction band of the semiconductor [64]. Their archi-

tecture is based on the theoretical work proposed by Kazarinov and Suris in 1971 [65].

Since their first development, QCLs have seen a steady improvement in design, wall plug

efficiency, power, and tuning range [43]; making them a suitable option for mid infrared

applications in the fields of communications, security, environmental monitoring, and

biology [66–69].
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1.3.1 Fundamentals

The structure of a QCL is based on a series of quantum wells composed of thin layers

of different semiconductor material with different bands gaps1(Fig. 1.17a). Inside these

quantum wells, one-dimensional confinement occurs allowing band splitting which pro-

duces several electronic subbands (indicated as 1, 2, 3 in Fig. 1.17b). The structure can

be divided into a gain region and an injection/relaxation region. The gain region will

create and maintain a population inversion between the two levels of the laser transition.

In general, the active region has three levels, such that electrons are injected in the n =

3 state and the population inversion is maintained between the states n=3 and n=2. The

injection/relaxation region follows the gain region, whose role is to transport electrons

from level 1 to level 3 of the next period (Fig. 1.17b). Infrared light is generated by

an intersubband transition of an electron between the two quantise levels in the con-

duction band (states n=3 and n=2 in Fig. 1.17b). Then, the electron goes to the next

period of the structure by tunneling to the relaxation/injection region (Fig. 1.17). In

order to achieve population inversion for lasing, the electrons must be injected rapidly

into the upper level 3 and then rapidly extracted from level 2. Fast depopulation of level 2

is achieved by longitudinal-optical (LO) phonon scattering from level 2 into level 1 [70].

Once the electron is in the next period, the process repeats itself across the structure. This

process is called cascading [71]. One electron can produce as many photons as periods

in the structure [72, 73] which translates to a high optical output power [73]. The en-

ergy difference between the two confined energy levels depends on barrier widths of the

quantum wells [72], this allows to tailor the emitted wavelength by the layer thickness

and material properties [74]. The number of layers ranges from 20 to 35 for lasers in the

4-8 µm, but can reach up to 100 stages [75]. Increasing the number of stages, increase

the output power, however, the more periods the devices has also mean larger applied

voltages, as the voltage drop per period has to be constant. This requires higher electric

power to be dissipated [76].

1band gap is the minimum energy required to excite an electron from the valence band to the con-

duction band



21

Figure 1.17: a) Schematic of QCL conduction band. Each stage of the structure consists of an

active region and a relaxation/injection region. Electrons can emit up to one photon per stage. b)

The active region is a three-level system. Photon emission occurs between the 3 → 2 transition.

(Diagram taken from Faist, J. 2013 [71])

1.3.2 Fabrication

The fabrication of a QCL consists of epitaxy of the semiconductor structure, waveguide

fabrication, device mounting and encapsulation. This process is possible using molec-

ular beam epitaxy and metalorganic chemical vapour deposition [77]. The first step

is the growth of the active region, which is made of layers that have high crystalline

and chemical purity. The material used for QCLs is chosen to target a specific wave-

length. For example, heterostructures for wavelengths between 3 and 24 µm are made of

Indium Gallium - arsenide/Aluminium Indium - arsenide/Indium Phosphide (InxGa1-

xAs/InyAl1-yAs/InP) heterostructures [78,79]. These materials have higher optical gain,

the inherent ability for vertical dielectric waveguiding and the technology to fabricate

them is mature [80]. Short wavelengths (≈ 2.6 µm) require higher conduction band off-

set, which is achieved by using 0.53Ga0.47As/AlAs0.56Sb0.44 or InAs/AlAs0.16Sb0.84. Longer

wavelengths, around 20 µm, can be reached suing In0.53Ga0.47As with GaAs0.51Sb0.49

barriers. Performance-wise, the best materials are gallium indium arsenide/Aluminium

indium arsenide (GaInAs/AlInAs) grow on Indium Phosphide (InP) substrates, Gallium

arsenide/Aluminium gallium arsenide (GaAs/AlGaAs) grown on GaAs substrates, Alu-

minium antimonide/Indium arsenide (AlSb/InAs) grown on InAs, Indium gallium ar-
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senide/Aluminium Indium antimonide (InGaAs/AlInAsSb), Indium gallium arsenide/Gallium

arsenide antimonide (InGaAs/GaAsSb) or InGaAs/AlInGaAs grown on InP substrates

[81].

1.3.3 Quantum Cascade Laser configurations

Quantum Cascade Lasers configurations depends on the resonator cavity2 design. These

configurations can be classified into three main types: Fabry-Perot (FP), distributed feed-

back (DFB) and external cavity (EC). Each of these designs will change the gain of the

active region. The gain will be reduced by the losses caused by waveguide losses, mirror

losses from the facets and losses caused by using wavelength selection gratings (external

diffraction gratings or Bragg gratings) [71].

Fabry-Perot

The Fabry-Perot is the simplest design used in QCLs. It consists of a QCL chip with high

reflection coatings on the end facets of the laser ridge. This configuration has multimode

emission over a wide spectral range that has been used in applications where absorption

bands are broader, such as liquid analysis [26].

Distributed Feedback Quantum Cascade Laser

Distributed Feedback Quantum laser chips have a Bragg grating integrated into the laser

waveguide. The Bragg grating increases losses for all the wavelength except the one that

the Bragg was designed for (which is defined by the grating period) [64, 82]. The laser

can be tuned within a range of 5 cm−1 through changing temperature operation or

injection. Both methods can achieve tuning rates of 0.1 – 1.2 cm−1/K. Arrays of DFB

QCLs can be assembled to cover a wider wavelength range [83]. The narrowband single

mode emission is suitable for gas analyses [64,74]

External Cavity Laser

The external cavity design uses an external diffraction grating as wavelength selector.

Wavelength selection (Tuning) is achieved by rotating the grating, which changes the
2cavity where the laser is amplified
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frequency of the optical feedback of the gain chip. This allows the laser to achieve narrow

linewidth and broad tunability with tuning ranges of hundreds of wavenumbers [84].

Since its first development in 2001, where the spectral coverage was 35 cm−1 [85], EC-

QCLs can now reach 556 cm−1 with a single chip [86], and even larger tuning ranges

(1000 cm−1) [87] through the combination of several gain chips. The most common

configurations for EC-QCLs are shown in Fig. 1.18. In the Littrow configuration, the

diffraction grating is placed over a rotation stage and tuning selectivity is achieved by

changing the angle of the grating. The first order from the diffraction grating is re-

flected back to the laser, while the zeroth order is coupled out by a mirror. This con-

figuration has a high efficiency, power and easy alignment [88]. On the other hand, the

Littman-Metcalf configuration has the diffraction grating in a fixed position. The first

order goes into a mirror, which is reflected to the grating and into the laser as optical

feedback. Tuning is achieved by changing the angle of the mirror. The advantages of

this configuration are a fixed direction of the output and the smaller linewidth due to

stronger wavelength selectivity [89]. External cavity QCL can reach sweep rates up to

1 kHz [90] making them suitable for fast spectral acquisition.

Figure 1.18: External cavity configurations. Left: Littrow configuration. The first order

diffracted beam is coupled back into the QCL, the 0th order is coupled out by a mirror. Right.

Littman-Metcalf configuration: The first order diffracted beam is reflected off a mirror and

diffracted a second time and then coupled back into the laser. The 0th order is coupled out

1.3.4 QCL applications on mid-infrared spectroscopy

The mid infrared region is very important for characterisation of biological samples due

to the strong absorption bands from lipids, nucleic acids, proteins, and carbohydrates [24].
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Moreover, the presence of high transparency atmospheric windows at 3–5 and 8–12 µm

regions are useful in gas sensing/monitoring [91]. The high power, broad tunability

and small footprint of QCLs are ideal for spectroscopy applications. Furthermore, the

increasing number of companies building these devices have extended the opportunity

for testing in a wide area of applications [73]. Here, I will describe some of the main

areas of research where QCL are used for mid infrared spectroscopy.

Traced gas detection

Due to global warming over the last decades, greenhouse gas monitoring has become in-

creasingly important, especially for CH2, CH4 and N2O next to CO2. QCLs with their

very narrow linewidth have been widely used for monitoring of such gases. QCLs in Lit-

trow and Littman-Metcalf configurations are the most used for traced gas detection [92].

Detection of N2O at very low concentration (as low as 2 parts per billion) is achieved us-

ing QCLs with multipass cells (gas cells where the laser makes multiple passes, increasing

the path length) [93,94] and detection of CH4 and N2O simultaneously [95]. Remote gas

sensing and stand-off detection of explosives [69,96] and hazardous chemicals [97,98] is

also possible using ultra-fast tuning EC-QCLs.

Biomedical applications

Infrared spectroscopy is a promising tool in histopathology, however, the slow speed of

data acquisition has limited the use of commercial FTIR into routine application [99,100].

Quantum Cascade Lasers have shown a dramatic decrease in acquisition time compared

to FTIR, reducing the processing time from hours to minutes in breast cancer diag-

nosis [101, 102], colon [103], and esophagus [104] using only key-specific wavelengths

and hyperspectral imaging. QCLs have been tested extensively for non-invasive glucose

monitoring. Results show systems that can measure glucose concentration from solutions

and whole blood using transmission and ATR modes [105–109], directly from the skin

(Fig. 1.19) [110, 111] and from the lips [112] with high accuracy. Another biomedical

application is breath gas analysis to detect acetone for diabetes diagnosis [113] (i.e., CO

and CO2 [114] and H2O and N2O [115]). However, none of these QCL-based systems

have been able to transition into routine implementation for clinical use.
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Figure 1.19: Use of QCLs for glucose monitoring by measuring light scattering from skin. Taken

from [110]

Polymer identification

Another area of interest for QCLs is the identification of polymers, specifically microplas-

tic characterisation from sea samples. Two important applications have been developed in

the last years, the first one using diffuse spectroscopy with QCL in the range of 5.59 - 7.41

µm which can detect five plastic consumer products (polyethylene terephthalate (PET),

high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene

(PP), and polystyrene (PS)) with a 97% accuracy [116]. The other application used a

commercial chemical imaging microscope (SPERO QT, DRS Daylight Solutions) with

four QCL chips covering from 1800 to 950 cm21 for fast hyperspectral imaging of envi-

ronmental samples (e.g., marine surface water, deep sea water and snow [117](Fig. 1.20).

They achieved better results in the number of particles per sample identified due to the

higher resolution of the QCL system. These studies show how quantum cascade lasers

can be incorporate into the process of plastic identification and quantification.
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Figure 1.20: Microplastic characterisation of seawater samples using a commercial QCL chemical

imaging microscope. Taken from [117]

So far, the value of Quantum Cascade Lasers is the ability to generate spectral data faster

and with higher resolution compared to its counterpart FTIR for a variety of applica-

tions. While this enables collection of high volumes of spectral data, there is a challenge

of finding the best approach to analyse it. This is especially important when the aim of

the analysis is diagnosis of diseases, identification of different sample types or predicting

the concentration of an analyte. The current approach in chemical analysis is the use of

linear models such as Partial Least Squares and Linear Discriminant Analysis. They offer

a robust and effective way to analyse high dimensional spectral data [118]. However, less

popular non-linear techniques can improve classification or prediction when applied to

data [119]. Furthermore, the popularisation of more user-friendly software for machine

learning analysis has opened the opportunity to test more advanced algorithms. While

my thesis focuses on exploring new technology for spectroscopy, it also deals with the ex-

ploration of traditional chemometrics and more advance machine learning algorithms to

analysis infrared data. Therefore, I will review the basic concepts in the area of machine

learning.

1.4 Machine Learning

Machine learning (ML) is an area of computer science which uses algorithms to make

decisions using data with minimal or no human intervention [120]. This is possible

by using algorithms that can adapt to presented data and new data. The adaptation is

achieved by “experience” which makes them better every time the process is repeated.

This process is called training, where inputs of data and outputs plus a set of parameters

are feed to the algorithm [121, 122]. The algorithm optimised itself to make decisions,

but also has the ability to produce new decisions based on new data [123,124]. A general
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approach of using ML is described in Fig. 1.21. Machine learning has been applied to

solve problems in several scientific fields such as biomedical sciences [125], chemistry

[126], pattern recognition [127], ecology [128].

Figure 1.21: Machine Learning approach (modified from Geron, A. [124])

1.4.1 Elements of machine learning

A machine learning project requires a set of elements in order to be implemented. The

most important is data, which the core of an ML project. Data can be anything from

pixels from images, spectroscopy data, sensor data, measured medical data, and it is de-

noted as x. In addition to the input data, there is the output value y, which can be the

name of the image, a patient’s diagnosis or type of sample [120,129]. The input data are

also called ’features’, while the outputs are called ’labels’. The relationship between the

input and output can be denoted as

y = f(x) (1.12)

The main objective of ML is to find the function that describes this relationship by using

a model. A model provides a framework which allows to approximate the behaviour of

a system and make predictions. A model can be expressed by:

ŷ = f̂(x;w) (1.13)

where f̂ depends on parameters w to describe the input-output relationship. To find the

parameter values, a learning algorithm is used w = w(x, y), also called the loss function

(L). The loss function calculates how far (or close) the value of the model is from its
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true value. One of the common learning algorithms is the gradient descent, which is an

iterative algorithm that helps find the function parameters that minimise the loss function.

These calculations help find the parameters of the function in the training data, but the

ultimate goal is to predict future data. The model needs to be able to generalise (make

predictions with unseen data), therefore, the model is evaluated by assessing how close

the predictions are with new data [129].

1.4.2 Types of Learning

Machine learning approaches can be divided into two main areas: Unsupervised learning

and supervised learning.

Unsupervised learning

Unsupervised learning does not use label data to train, in fact it does not use training

data sets. This approach uses the raw data to find relationships or patterns inside the data

that has not been previously postulated [130]. Unsupervised learning can be divided into

three problems accordingly to [122]: Association, clustering and dimensionality reduc-

tion. Association focuses on discovering the probability of the co-occurrence of items

in a collection. Clustering groups items such that items within the same cluster share

similar properties compared to items from another cluster. Dimensionality reduction re-

duces the number of features when dealing with high dimensional data. Dimensionality

reduction can be achieved through feature selection and feature extraction [118]. Spec-

troscopy heavily uses dimensionality reduction for visualisation, cluster analysis or as a

pre-processing step before classification. The most common one is multivariate dimen-

sion reduction using principal component analysis (PCA) [118]

Supervised learning

Supervised learning is the use of specific data sets that contain the input and output pa-

rameters, called labelled data. This labelled data tells the algorithm which results are

correct or expected according to the set of inputs. After the training, the algorithm is

validated with a test or validation set. These tests or validation sets are not included in the

training. If the results are not sufficiently accurate, the process of training and validation

are repeated until the algorithm can produce accurate results [131]. Supervised learning
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requires the training data sets to be as representative as they could be of the real world

data, hence, the algorithm can predict correct results when tested. Supervised learning

can be categorised into classification and regression. Classification assigns items into pre-

defined categories. The most basic classification process is binary, where each item can

be classified into two categories. Moreover, this classification can be expanded into mul-

tiple classification (called multi-label classification). Regression allows the prediction of

continuous outputs values from one or multiple predictor variables by fitting a curve to

the training data. The most commonly applied supervised learning algorithms are: K-

Nearest neighbours, Linear Regression, Logistic Regression, Support Vector Machines

(SVM), Decision Trees, Random Forest and Neural Networks [124, 132]. Besides these

two categories, there are other types of learning worth exploring such as semi-supervised

learning, reinforcement learning, deep learning and batch and online learning [124]

1.5 Mosquito species identification, age grading and in-

secticide resistance status

Mosquitoes are vectors of numerous important diseases of humans including malaria,

dengue, Zika, etc. The ability to measure the potential for, and intensity of transmission

of, these diseases depends on surveillance of mosquito populations. The ability to trans-

mit pathogens and susceptibility to control measures varies markedly between mosquito

species; including between morphologically cryptic species [133]. Thus, accurate identi-

fication of mosquito species is a crucial component of malaria vector surveillance. Vector

control programs rely on surveillance of key mosquito traits, among which the identifi-

cation of mosquito species is crucial [134]. Most of the main vectors of malaria in sub-

Saharan Africa belong to the Anopheles gambiae s.l. complex and An. funestus s.l [135].

There are eight cryptic species (morphologically indistinguishable) in the An. gambiae
complex [136] with three major vectors: An. arabiensis, An. coluzzii and An. arabien-
sis [137]. While the major vector from An. funestus s.l complex is An. funestus, other

species such as An. rivulorum, An. parensis, An. vaneedeni and An. leesoni play a role as

secondary vectors [138–141]. These species have different biting patterns, blood feeding

and resting behaviours which have an impact in their epidemiological importance [142].

Therefore, an accurate species identification is key to apply the most efficient vector con-

trol interventions.

Pathogens that are transmitted by insects require a specific time frame to develop inside
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their vector before becoming transmissible. The time frame is called extrinsic incubation

period (EIP). This period is not fixed across mosquito species, and it will be affected

by ambient temperature and humidity [143]. EIP is also used to calculate the vectorial

capacity (the ability of a mosquito to transmit a pathogen) in conjunction with mosquito

survival, human biting rates and ratio of mosquitoes to humans [9]. Evidence has shown

that vectorial capacity increases exponentially when mosquito longevity increases, since

older mosquitoes have survived long enough to complete the EIP [143,144]. Therefore,

vector control targets mosquito survival, resulting in a change in age structure with a

smaller proportion of mosquitoes surviving long enough to transmit. In order to measure

transmission intensity and evaluate the impact of vector control interventions, the age

structure of the target vector population must be monitored.

Here, I am going to give a brief overview of the most common techniques for species

composition, age grading, and insecticide resistance, as well as new techniques which

have been developed in the last years.

1.5.1 Traditional methods for species identification, age grading

and insecticide resistant

Species identification

Morphological method The most basic and widely used method is based on morphol-

ogy. Different mosquito species have specific morphological characters which are used

for taxonomic identification. The taxonomist observes the adult mosquito using a stereo-

scope, looking for those morphological features with the guide of taxonomic keys [145].

It is a cheap method since it requires only a stereoscope microscope, however, it is quite

slow, the specimen needs to be in good condition, and it requires very specialise exper-

tise [134, 146]. This technique is not suitable when dealing with cryptic species that are

morphologically indistinguishable from each other [137]. That is the case for African

malaria vectors, where the major groups An. gambiae and An. funestus can be identified

morphologically, but the cryptic species within each group cannot be identified with this

method.

Molecular methods Molecular techniques such as polymerase chain reaction (PCR) pro-

vide an alternative for identifying otherwise cryptic species through analysis of species-

specific DNA sequences [147, 148]. This technique is widely used and can be applied to
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a relatively large number of samples (e.g. each PCR run with a duration of ≈ 30 min-

utes, and it can process up to 96 samples). However, as any molecular technique, it is

not cheap. The price can range for $0.55 up to $10 per sample [149,150] and it requires

specialised equipment and reagents that in some countries a cost prohibited and can take

months to arrive.

Age grading

External wear Variation in external wear (i.e: loss of scales and wing fray) to identify

young and old mosquitoes was suggested by Perry, R. in 1912 [151]. The technique

requires to assesses the minimum wear that female mosquitoes have after its first ovipo-

sition. After defining the baseline, samples with less wear can be identified [152, 153].

Accuracy of this technique depends on the specie. For example, misclassification of nul-

liparous females was 0.9% and 0.1% for Coquillettidia fraseri and Coquillettidia metallica.

Nulliparous females could be recognised by the completeness of wing fringing in Cx.
annulirostris. However, the collection method was important since damaged samples can

result in overestimation of their age [154]. Significant differences in wing damage be-

tween parous and nulliparous has also been reported in Ae. albopictus [155]. The amount

and type of wear was specific for each species. For example, abdominal sternites was

better in Coquillettidia, while wing fray was better in Mansonia and Aedes [153]. The

disadvantages of this technique are its low resolution (it can only classify between nulli-

parous and parous), it is subjective, and it depends on the observer’s experience.

Presence of mites Gillett, J. [156] suggested the presence of hydrachnid mites on nulli-

parous females mosquitoes. Nulliparity is only indicated if mites are of the Hygrobatidae
type and are alive. These mites attached to adult mosquitoes when they emerge from

pupae and leave at the time of oviposition [157]. The association between mites and

parity depends on the mite specie as well as the mosquito specie. In Anopheles, the pres-

ence of Limmensiidae showed moderate reliability in Anopheles implexus (Theo.) from the

Zika Forest near Entebbe, Uganda. However, Arreuridae was a more reliable nulliparous

indicator [158]. Moreover, Arrenurus mites were found on only nulliparous Anopheles
annularis and Anopheles stephensi, but in Anopheles culicifacies, 36.8% of parous mosquitoes

were infested with mites [159]. The effectiveness of the method depends on the percent-

age of infested mosquitoes in a population, which depends on the type of breeding places.

Mosquitoes from breeding sites such as tree-holes, water-storage pots and polluted wa-

ters, habitats are unlikely to have mites, whereas mosquitoes breeding in marshes and
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weedy ponds are more likely to be infested [151]. For example, in Anopheles arabiensis,
hygrobatid mites have been found in quite high numbers (up to 39 on a single specimen).

Female mosquitoes can be classified as nulliparous if the correct mite family is present and

alive.

Presence of meconium Meconium is waste from the larval midgut epithelium located in

the midgut of an adult mosquito after pupation. The meconium can remain up to 49

hours after adult emergence, after that, it is degraded by hydrolytic enzymes [160]. It is

used to detect nulliparous or young males. Meconium has been found in Anopheles punc-
tipennis (Say), Culex pipiens, Aedes triseriatus (Say), Aedes aegypti L., An. stephensi Liston,

Cx. pipiens quinquefasciatus Say [161]. Its use as a nulliparous indicator has been seen in

Culex quinquefasciatus, Culiseta morsitans and Culiseta melanura [151]. It requires mini-

mal dissection expertise. Dissections are performed under a microscope in saline solution

and presence of opaque material in the midgut noted. However, it provides limited age

information [16].

Presence of larval muscle Larval muscle remnants in adults are visible as a translucent

tissue located between the gut and the abdominal wall. They disappear within 12–59 h

depending on the temperature (higher autolysis rate at higher temperature). It requires

minimal dissection expertise. It provides limited age information [16,151,162].

Growth lines on apodemes Evidence of using growth lines on apodemes (inward pro-

trusions of the exoskeleton) for age grading has been used in Anopheles, Aedes and Culex
mosquitoes. The mosquitoes have to be macerated in potassium hydroxide (KOH), dis-

sected and then the thorax is cut transversely between the second and third pairs of coxae

and up to the scutellum. After that, it stained with haematoxylin. The number of lines

observed per apodeme indicates calendar age in days [163]. It requires expertise in dis-

section and staining. Environmental conditions can limit its applicability [151].

Ovarian tracheation and Polovodova ovariole separation The simplest one is the ovary

tracheation method. It identifies whether female mosquitoes have laid eggs (parous) or

have not previously laid eggs (nulliparous) by assessing the presence of coiled ends in the

tracheoles (skeins) [164]. In general, nulliparous mosquitoes are considered young or

unlikely infectious (3-4 days) [165] since they have not taken their first blood meal yet

compared to parous [160]. A more detailed approach was developed by Polovodova et
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al. [166] to classify mosquitoes by the number of gonotrophic cycles3 they have com-

pleted; providing greater resolution of survival in the parous group. This is based on the

observation that each egg oviposition will leave a small dilatation in the ovarioles. There-

fore, the number of dilatations on the ovarioles indicates the number of gonotrophic

cycles a female mosquito has completed [168, 169]. Morphological techniques are the

traditional methods for age grading mosquitoes. These methods are cheap, and they

do not require expensive equipment or reagents to carry out. A microscope and basic

dissection tools are enough to perform both methods, but these approaches have many

limitations and disadvantages. The disadvantages are the low resolution of the ovary tra-

cheation method, the difficulty of counting the number of dilatations, which increases as

the more cycles the mosquito goes through [160], and the variability of the gonotrophic

cycle length according to the temperature [170–172] which makes it difficult to compare

to chronological age. Despise these limitations, these remain the primary methods used

in the field.

Ovarian oil injection This method assess the number of dilatations at the base of ovar-

ioles. The process starts with the ovaries removed and then injected with paraffin oil to

separate ovarioles. The number of dilatations per ovariole match the number of gonotrophic

cycles. It requires a high level of expertise, and it suffers from the same limitations as the

Polovodova technique [173].

Parasitic infections This method estimates the survival rate of mosquitoes based on im-

mediate and delayed sporozoite. It required dissecting the mosquito with a needle and

further observation with a microscope. Ovaries at Cristophers’ stages III, IV and V have

increased optical density due to granulation in the basal body which increases with each

oviposition and can be used to estimate parity status [174,175]

Insecticide resistant

Insecticide resistance in mosquitoes gathers several mechanisms including increased metabolic

detoxification, which includes the over expression of detoxification enzymes, target site

insensitivity where amino acid substitution occurs in the target site of DDT and pyrethroids,

and cuticular resistance where changes in the cuticle reduces the penetration of insecti-

3A gonotrophic cycle is the process from taken a blood meal, digested it and laid a batch of eggs

(oviposition) [167]
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cide [176–181]. Not only the mechanisms of resistance are diverse, but so are the genes

that regulate these processes [176].

Molecular techniques Several genes are highly associated with some forms of resistance,

(e.g. kdr, rdl, ace-1 for target site mutations) [182, 183] which are used frequently in

screening vector populations for resistance. However, metabolic resistance DNA mark-

ers remains scarce [184–187]. This creates a challenge for monitoring the multiple mech-

anisms of resistance.

Bioassays Resistance is often assessed in terms of the phenotypic response to insecti-

cide exposure; rather than mosquito genotype. Currently, the gold standard to identify

phenotypic resistance is a set of bioassays recommended by the World Health Organisa-

tion [188]. Some of these bioassays require processing times up to 24h to test for suscep-

tibility to insecticides, making them slow for fast surveillance. Therefore, the complex

mechanisms involve on insecticide resistance remains a challenge for monitoring and

evaluation.

1.5.2 Recently developed methods for species identification, age

grading and insecticide resistant

Species identification

Image recognition and wing beat frequency These techniques have been tested mainly on

Aedes and Culex mosquitoes [189–191] and a few using Anopheles [192]. The differences

between wing beat frequency across species can be used to identify mosquitoes. While

the technique works well to identify mosquitoes from different genus, the overlap in

wing beat frequencies between closely related species remains a challenge. Moreover,

any of these techniques have been tested using Anopheles cryptic species. The same holds

true when using image recognition. The analysis of mosquito photographs using ma-

chine learning can identify mosquitoes across different genus and between species such

as Ae. aegypti and Ae. albopictus but struggles with morphologically similar species (i.e.

Culex erraticus and Culex pipiens sl) [193–195]. Therefore, these novel techniques still

cannot overcome the complexity of identifying African malaria vectors.
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Spectroscopy methods Lastly, Near-infrared (NIRS) and mid-infrared (MIRS) have shown

potential for rapid identification of An. gambiae, An. arabiensis and An. coluzzii [17–19,

196–199]. NIRS and MIRS use infrared light to obtain chemical information from the

mosquito. This chemical data is then analysed with multivariate analysis or machine

learning to predict species. These techniques will be discussed in more detail later in the

chapter.

Age grading

Cuticular hydrocarbons Cuticular hydrocarbons (CHCs) are the principal and more

abundant components of insect cuticle [200, 201]. CHCs form complex mixtures. Cur-

rently, the following CHCs classes have been found: n-alkanes, unsaturated hydrocar-

bons, terminally branched monomethyl alkanes and internally branched monomethyl,

dimethyl, and trimethyl- alkanes [202]. Age grading using gas chromatography in An.
gambiae have found not only a decrease of n-C21 and n-C23 with age, but also changes

across the whole CHCs profile [201]. Similar results have been seen in other mosquito

species (Cx. quinquefasciatus [203] and Ae. Aegypti [204]. Field validation of CHCs with

gas-liquid chromatography in Ae. Aegypti shows high prediction for ages up to 15 days

old [205]. Gas chromatography requires multiple steps and reagents which causes long

processing times and increased costs, however, the changes in CHCs in the cuticle with

age has opened the opportunity of using other methods such as spectroscopy.

Transcriptional gene profile The expression of some genes is age-dependent, providing

an opportunity to estimate age based on expression profiles. Here, gene expression data

is used to create transcriptional profiles of mosquitoes of known age to build calibration

models. Then, the model is used to predict the age of mosquitoes using their transcrip-

tional profiles [143]. Genome-wide profiles in An. gambiae showed changes in 112 genes

and 7 candidate genes for age grading [206]. These genes are related to stress-response,

detoxification, chitin metabolism, and they encode for oxidoreductases. Further charac-

terisation of AGAP009551 and AGAP011615 genes showed age-dependent monotonic

changes in their transcript levels in field populations [207]. Similar results have been ob-

tained with Ae. aegypti with three genes (Ae-15848, Ae-8505, and Ae-4274) can predict

chronological age (1, 5, 9, 13, 17, 21 days old) [208]. Joy et al. in 2012 [209] found that

Ae-15848 was more consistent out of the three genes and can identify individuals older

than 14 days old with 87% accuracy and younger than 5 days old with 94.8% accuracy

in laboratory and semi field cage samples. This method requires expensive molecular
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biology equipment and needs highly trained personnel. RNA extraction for expression

profiling requires specific laboratory infrastructure and facilities for sample preservation,

making it highly impractical in laboratories with limited resources.

Protein profile Protein expression changes with age in mosquitoes. It has been reported

9 age-dependent proteins in An. gambiae and 19 proteins in An. setphensi [210]. MALDI-

TOF mass spectrometry has been used for age prediction with accuracies over 72% using

the same species previously named [211]. In Aedes, four protein candidates have shown

the potential as good biomarkers for ageing: Actin depolymerising factor, Eukaryotic

initiation factor 5A, insect cuticle protein Q17LN8, and Anterior fat body protein (AFP).

All of them showed decreases in abundance during ageing, especially AFP [212]. This

method requires high-end mass spectrometers and extensive and technically challenging

proteomic assessments to find suitable candidate proteins [16].

Spectroscopy methods NIRS, MIRS and Raman spectroscopy have been studied as a

rapid way of predicting calendar age. Recently, studies in Anopheles [17, 19, 196–199,

213–219] and Aedes [220–222] mosquitoes have shown great potential. NIRS measures

the chemical composition using wavelengths from 350 to 2500 nm. MIRS measure the

chemical composition in the wavelength range of 2500 and 25,000 nm. These two meth-

ods can predict calendar age and physiological age with high accuracy. They require no

expertise to collect the data, and sample preparation is minimal or none. Both are high

throughput with with minimal reagent costs. Raman spectroscopy has been also tested

in Aedes aegypti, showing good performance in predicting calendar ages (0, 3, 6, 10, 12,

14, 18 and 22 days old). However, the technique has been applied only to homogenised

samples [223]. NIRS and MIRS for age grading will be discussed in more detail later in

the chapter.

1.6 Infrared spectroscopy application for mosquitoes

The absorption bands detected by NIRS are the overtones of the fundamental vibra-

tions, which are broad and not well-defined (Fig. 1.22). This makes changes in spectra

of different compounds less pronounced and therefore, less detectable. Contrary, the ab-

sorption bands in MIRS are the product of the fundamental vibrations. These bands are

well resolved, and they are assigned to specific chemical groups (Fig. 1.23). Here, I am
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going to describe the advances in species prediction, age grading and infection detec-

tion using NIRS and MIRS with a review of pros and cons of each method in mosquito

surveillance.

1.6.1 NIRS/MIRS application for age grading

The idea of detecting biochemical changes in the cuticle associated with age, species,

or infection using NIRS light started to be tested in the area of medical entomology ap-

proximately 10 years ago. In 2009, infrared spectroscopy, specifically NIRS (14000-4000

cm−1) technology was first explored as an alternative tool for age grading and species

identification methods in mosquito vectors [196]. In this study, discrimination accuracy

between An. gambiae and An. arabiensis was 78.6% on wild mosquitoes and for age grad-

ing, discrimination between mosquitoes younger and older than 7 days old was achieved

with an accuracy of 80%. Further studies on the An. gambiae s.l. complex have generated

improved species identification accuracy on wild mosquitoes to 90% [197]. Similar re-

sults were achieved in laboratory, semi-field reared and wild caught mosquitoes [19,221].

Replication of these high accuracy results with independent test data sets has been unsuc-

cessful. An extensive study by Krajacich et al. showed a lower prediction power with age

groups of less than 7 days of age or greater than 7 days of age and wild caught mosquitoes

reared to known ages as independent test sets (accuracy ranged from 49% to 69% de-

pending on the data set used in calibration). These low accuracy values are thought to be

the result of the variability introduced by the more heterogeneous diet and genetics of

wild caught mosquitoes; and the lack of control of physiological variants during the cali-

bration phase of the model [214]. However, model generalisation has been improved by

using Artificial Neural Networks (ANN) with autoencoders to assess parity status with

accuracies from 68% to 88.3% using independent sets not used in training [218]. Apart

from studies on Anopheles species, NIRS can predict age two age groups (<7 or ≥7) with

94% accuracy and three age groups (>7d, 7–13d > 13d) with 70.5% accuracy using lab-

oratory reared Ae. albopictus [220]. When using field samples, NIRS can differentiate

between (< 8d ≥ 8d) however, models trained with laboratory samples could not predict

field samples and vice versa [217]. A detailed summary of NIRS studies for age grading

is shown in Table 1.6.4.

MIRS have recently been used to predict age in mosquitoes. MIRS using ATR has been

tested on the Anopheles gambiae complex in conjunction with machine learning algo-

rithms. Two species, An. gambiae and An. arabiensis with age groups of 1, 3, 5, 7, 9, 11,
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15 days old were tested with a variety of machine learning algorithms [17]. Age pre-

diction accuracy was variable on each age group and species, with an average of 15% to

97% for An. gambiae and 10% to 100% for An. arabiensis. Moreover, studies in Ae. aegypti
have show high prediction accuracy for group ages 2 and 10 days old [222].(Table 1.6.4)

1.6.2 NIRS/MIRS application for species identification

An. gambiae, An. arabiensis can be identified using NIRS. It has been tested on field

samples with an accuracy of 90% for An. gambiae and 76% An. arabiensis. High accu-

racy is maintained with samples preserved in RNAlater and other common preservation

methods (ethanol, refrigeration, etc. Table 1.6.4). MIRS with ATR have reported high

accuracy for species prediction of Anopheles species, from 70 to 85% for An. arabiensis and

An. gambiae [17]. Aedes species could be differentiated using MIRS and diffuse reflection

using the region of 1800 to 600 cm−1 with an accuracy of over 90% to discriminate be-

tween lab reared samples of Ae. japonicus, Ae. albopictus, and Ae. triseriatus [224] (Table

1.6.4)

1.6.3 NIRS/MIRS application for infection detection

NIRS has also been used on to assess virus/bacterial infections. Wolbachia infections in

Ae. aegypti were identified from uninfected, with 92 and 88.5% accuracy for females and

males. Moreover, identification of different Wolbachia strains (wMelPop and wMel) was

achieved with accuracies of 96.6 and 84.5% [225]. Zika infection in Ae. aegypti were

predicted with accuracy of 94.2 to 99.3% [149]. High throughput detection of Wol-

bachia, Zika and chikungunya in trapped dead female Ae. aegypti. Overall accuracies of

93.2, 97 and 90.3% for Zika, chikungunya and Wolbachia respectively [226]. Detection

of Trypanosoma cruzi (Chagas diseases) in Triatoma infestans has also been reported [227].

The ATR-FTIR sampling method has been used in Ae. aegypti to diagnose Wolbachia
infections and for sex and age discrimination. The technique can differentiate between

two strains of Wolbachia, discriminate between males and females and predict two and ten

days old mosquitoes with an accuracy of 90% in lab reared samples. Although promising,

accuracy dropped when used to identify infectious individuals in field populations to

78% [222]. Additionally, malaria detection in blood samples in glass slides [228], dried

blood in filter paper [229] and blood meal identification in Anopheles [230] have been

reported.
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1.6.4 Advantages and disadvantages of NIRS and MIRS

NIRS and MIRS are trying to complement or replace techniques in mosquito surveillance

which are time-consuming, expensive and sometimes inaccurate. The overall advantage

of optical spectroscopy methods relies on the speed of sample processing and data acqui-

sition. Sample processing involved minimum or not reagent use, except for desiccant to

dry the sample in case of MIRS, this makes the price per sample far cheaper compared to

qPCR (110 times cheaper [149]). Data acquisition is fast with an average of 2-3 minutes

per sample, making it possible to process 3000 samples per week with current technol-

ogy [222]. This also decreases price per sample due to the reduction in hours required

to process a batch of samples ($10 per sample for qPCR vs $0.10 for NIRS [149]). The

data can be analysed with any open-source software such as Python, Orange and R or

their commercial counterparts (MATLAB, Unscrambler X). All of this can be achieved

with minimum personnel and training [149,197] which makes it an attractive competitor

against current molecular biology techniques. The advantages of NIRS relies on in the

maturity of the technology, its non-destructive nature, high penetration depth, it can be

used in tick samples, in-situ sample measurements and overall cheaper accessories. How-

ever, bands in the near infrared region are due to the overtones and combination bands

(combination bands ν1 + ν2, second order and third order combination bands such as ν

+ 2ν2), therefore, it has many overlapping bands making it difficult for band assignment

(Fig. 1.22). On the other hand, MIRS bands are well resolved, and they are assigned

to specific chemical groups. This makes spectral assignment easier and allows extracting

more information about the sample, such as protein conformation. Even though, ATR is

destructive with the sample, it eliminates any sample processing, increase the measure-

ment speed, and it can collect spectra from thick samples. The main disadvantages of

MIRS are the inability to automate spectral acquisition when using ATR, the presence of

water in the sample can affect the measurements, and the use of liquid nitrogen detectors

(Table 1.5). However, the development of better light sources and detectors can over-

come some of these problems associated with MIRS. MIRS has a 7-year disadvantage in

terms of being tested in as a tool for mosquito surveillance compared to NIRS, but it has

already showed promising results which can complement NIRS. There is still room to

explore it with different spectral acquisition techniques, sampling other mosquito body

parts, identifying other biological traits (insecticide resistance) and the implementation

of new light sources. All of these aiming to improve the technique in order to implement

it as a routine tool in mosquito surveillance.



40

Figure 1.22: Example of near infrared spectra from two species of mosquito An. gambiae (bot-

tom) and An. arabiensis (top). Broad bands in the NIR region are the result of overtones and

combination bands (combination bands ν1 + ν2, second order and third order combination bands

such as ν + 2ν2) (Plot taken from Mayagaya, V. et al. 2009 [196])

Figure 1.23: Example of mid infrared spectra collected using ATR-FTIR of An. gambiae mosquito

of 3 days (blue), 6 days (green), and 11 days (pink) after collection. Bands in the mid infrared

region are more resolved. This is due by measure fundamental vibrations of molecules (Plot

taken from Gonzalez-Jimenez, M. et al. 2019 [17])
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Table 1.2: Summary of NIRS studies for species identification. Reported accuracy, chemo-

metrics/machine learning algorithms used and type of sample (laboratory reared, semi-field reared

or wild caught samples) are shown. All studies summarised here appear in chronological order

Accuracy Data Analysis Ref

76% for An. arabiensis† and 90% for An. gam-
biae†

PLS [196]

High accuracy for species prediction in semi-

field and field samples. 89% An. arabiensis**, 91%

An. gambiae** and 90% An. gambiae†

PLS [197]

Similar accuracy for species identification in

fresh samples compared to RNAlater preserved

samples. 82.1% for An. arabiensis* and 81.3%

An. gambiae* fresh. 76.4% for An. arabiensis* and

83.4% An. gambiae* preserved in RNAlater

PLS [19]

Effect of preservation methods. Accuracy of

91.8% An. arabiensis* 91.0% An. gambiae*. > 80%

average with different preservation methods

PLS [18]

* Laboratory reared samples
** Semi-field samples
† Wild caught samples

Table 1.3: Summary of NIRS studies for age grading. Reported accuracy, age groups,

chemometrics/machine learning algorithms used and type of sample (laboratory reared, semi-

field reared or wild caught samples) are shown. All studies summarised here appear in chrono-

logical order

Accuracy Data Analysis Ref

Age prediction accuracy of 80% An. gambiae s.s†
between < 7d, ≥ 7d

PLS [196]

Accuracy of 89% for An. arabiensis** and 78% An.
gambiae s.s** for <7d or≥7d. Accuracy of 90% for

An. gambiae s.l.† validated with by dissections.

PLS [197]
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Table1.3 (Continued)

Accuracy Data Analysis Ref

Effect of preservation methods for prediction of

< 7 d, ≥ 7d in An. gambiae s.s*. Accuracy of 80%

preserved in desiccants, refrigeration, RNAlater.

73% in ethanol and 80.9% in carnoy

PLS [216]

Effect of preservation methods in accuracy for

age grading. Average accuracy of 83.2% in fresh

samples and 90% preserve in RNAlater for An.
gambiae and An. arabiensis. Age groups: <7d, ≥d

PLS [19]

Unable to differentiate between a virgin, pre-

gravid, laid one egg batch or laid two egg

batches of An. arabiensis

PLS [215]

No difference in age grading accuracy in samples

resistance and susceptible of Anopheles spp.. using

two age groups, <7 d and >7 d). Accuracy of 79%

overall

PLS [213]

Age grading (<8 d and ≥8 d) and Wolbachia de-

tection in Ae. aegypti* 91% accuracy for non-

infected Ae. aegypti* and 83% with infected sam-

ples with wMel and wMelPop strains

PLS [221]

Variable accuracy for age grading in An. gam-
biae† using independent test sets. 45% to 67%

using <7 or ≥7d age groups

PLS, iPLS, enPLS

PLS (MASS), VCPA

svmLinear, ORF

[214]

High accuracy for age grading in Ae. albopictus*
94% for two age group (<7 or ≥7 d) and 70.5%

for three age groups (>7d, 7–13d > 13d).

PLS [220]

Better performance of ANN compared to PLS

in regression and binary age prediction. RMSE

reduction of 1 day in An. gambiae* and An. arabi-
ensis**. Increment of 6% in accuracy when using

ANN in binary age prediction (< 7, > 7 d) from

93.6% to 99.4% for An. gambiae* and 88.7% to

99.0% for An. arabiensis**

PLS

Artificial Neural

Networks (ANN)

[231]
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Table1.3 (Continued)

Accuracy Data Analysis Ref

High accuracy predicting Parity status.

97.1±2.2% for An. arabiensis† and 93.3±1.2% for

An. gambiae†

ANN with encoder [218]

Age prediction in Ae. albopictus (< 8d ≥
8d). High accuracy ((AUC=0.88/AUC=0.97) of

lab/field models predicting lab/field samples, re-

spectively. Low accuracy of lab models predict-

ing field samples (AUC = 0.60)

PLS and resample

PLS

[217]

* Laboratory reared samples
** Semi-field samples
† Wild caught samples
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Table 1.4: Summary of MIRS studies for species identification and age grading. Reported

accuracy, chemometrics/machine learning algorithms used and type of sample (laboratory reared,

semi-field reared or wild caught samples) are shown. All studies summarised here appear in

chronological order

Accuracy Data Analysis Ref

Species

Species prediction in lab reared fe-

males was 76.8% in An. gambiae* and

76.8% in An. arabiensis*

Logistic Regression [17]

Species prediction using the legs and

DRIFT was possible with 94.5% for

Ae. japonicus*, 100% for Ae. albopic-
tus*, 97.9% for Ae. triseriatus* and

100% for Ae. aegypti*

PLS-DA [224]

Using a few semi-field samples in the

training set increased generalisation

of CNN model to 90% An. arabien-
sis 100% An. coluzzii and 96% An.
gambiae

Deep convolutional

neural network

(CNN) with transfer

learning

[199]

Age

High accuracy age grading in Ae. ae-
gypti* with group ages 2d and 10d

with 0.99 AUC

PLS [222]

Age prediction of various age groups

(1,3,5,7,9,11,15) with accuracies

from 15% - 97% An. gambiae* and

10% - 100% An. arabiensis*

Logistic Regression [17]

Accuracy of 0.98 for 1-4 days old**,

0.91 for 5-10 days old** and 0.96 for

11-17 days**. High accuracy pre-

dicting 0, 1 or ≥2 gonotrophic cycles

†

Deep convolutional

neural network

(CNN) and transfer

learning

[199]

* Laboratory reared samples
** Semi-field samples
† Wild caught samples
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Table 1.5: Summary of NIRS and MIRS principles and pros/cons of field deployment

How they work Pros and cons of field deployment

NIRS Near infrared measures the

chemical composition using

wavelengths from 350 to 2500

nm.

NIR bands are due to overtones

and combination modes.

Pros

Non-destructive to the sample.

High accuracy for species prediction and

age grading.

Miniaturised spectrometers are available.

Highly transmitting window to radiation.

Cons

NIR region contains many overlapping

bands.

Bands assignment is difficult.

MIRS Mid infrared measure the

chemical composition using

wavelengths from 2500 and

25,000 nm.

MIRS bands are due to discrete

fundamental vibrations of

biomolecules.

Pros

More information can be extracted from

samples (i.e: protein conformation).

High accuracy for age and species predic-

tion.

Miniaturised spectrometers are available.

New mid-infrared light sources are being

developed for field use.

Cons

Destructive when using ATR.

Atmospheric absorption limits use in the

field.

Sample automation cannot be implemented

in ATR.
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1.7 Aims of the project

In this study, I tested the use of different mid-infrared sampling methods, chemometrics and

machine learning algorithms for prediction of key mosquito traits of relevance in malaria vec-

tor surveillance: species identification, age grading and cuticular resistance status. I focused on

mosquitoes within the An. gambiae s.l. complex; as these represent the most important vectors in

Africa. Additionally, I assessed the use of quantum cascade lasers as a new tool for spectroscopy

in mosquitoes. To achieve this, laboratory and statistical analysis and prototype building were

carried out to address the following objectives:

1. Evaluate the use of micro diffuse reflectance spectroscopy for species identification, age

grading and cuticular resistance status in An. gambiae s.l. mosquitoes. (CHAPTER 2)

2. Asses the use of multivariate statistical methods with spectra collected by Attenuate Total

Reflection spectroscopy for species identification and age grading of An. gambiae. (CHAP-

TER 3)

3. Estimate the effect of pre-processing methods and different spectra windows on the accu-

racy of species identification of female laboratory reared An gambiae. (CHAPTER 3)

4. Development of a portable external cavity quantum cascade laser as infrared light source

for spectroscopy measurements of mosquitoes. (CHAPTER 4)

This study aimed at improving our understanding of the potential of different spectroscopy sam-

pling methods as well as next generation infrared lasers for mosquito surveillance.



Chapter 2

Diffuse reflectance spectroscopy for
predicting age, species and insecticide
resistance of An. gambiae

2.1 Introduction

Mosquito borne diseases are a major threat for global public health. One of the most important is

Malaria change to with an estimated 241 million cases and, 627000 million deaths in 2020. 90%

most of which are reported in Sub-Sahara Africa [232]. The parasite is transmitted by mosquitoes

of the genus Anopheles, with the four primary vector species in Africa being An. gambiae, An.

coluzzii, An. arabiensis and An. funestus [2, 136].

Vector control programs are a key component of malaria management [233–235] and vector

surveillance is an important tool to evaluate and monitor the impact of those programs [14,236].

The constant ongoing pressure from insecticides (mainly pyrethroids) used on insecticide treated

nets (ITNs) and Insecticide residual spray (IRS), has given rise to insecticide resistance in most

African malaria vector populations [237–239]. This emergence of resistance has the potential to

significantly erode the effectiveness of control [240]. Hence, detection and measurement of the

degree of this trait in vector populations is also a crucial component of surveillance. Moreover,

these interventions have also prompted other ecological changes, including shifts in species com-

position [4, 241, 242] and behaviour [243, 244]. Several of these changes could also impact the

effectiveness of interventions [243, 245], therefore, a constant surveillance of a variety of traits is

needed to adapt control strategies to these population changes. [246,247]

The four main vector species in Africa differ in their behaviour, malaria transmission potential

47



48

and response to control, because of that, a good tool for species identification is crucial for malaria

vector surveillance [248]. For example, in some areas, An. arabiensis is most likely outdoor biting,

therefore, its population is less likely to be impacted by the use of ITNs compared to An. gambiae

s.s [248]. An. funestus shows strong resistance to pyrethroids compared to An. arabiensis [249].

Therefore, it is very important for vector control programs to know what species are present

in any given area and how they are changing with interventions. Species identification can be

done morphologically by identifying physical features that are unique to each species [250–252],

it can be quite cheap for processing large numbers of samples, and it can be implemented in the

field. One of the main challenges of identifying species morphologically is the fact that the main

malaria vectors in sub-Saharan Africa occur as a species complex whose members are morpholog-

ically identical. Moreover, important features for species identification (legs, wings, scales) may

be damaged by collection methods (CDC or BG traps), and that a high degree of expertise is

required to identify samples at the species level [134]. Other techniques are used to differentiate

cryptic species, including molecular techniques such as PCR and DNA sequencing [148,253] or

LAMP [254]. These methods are high-throughput, but the costs of reagents and the require-

ment of specialised laboratory equipment make them expensive to implement and maintain for

programmatic surveillance.

In addition to vector species, information on vector survival and age structures to predict malaria

transmission and evaluate the impact of interventions [255,256]. Vector age is epidemiologically

important because only mosquitoes that survive long enough for malaria parasites to complete

their extrinsic incubation period (EIP; 9 to 12 days for P. falciparum [257]) can transmit. Older

mosquitoes can go through more gonotrophic cycles, each feeding cycle is an opportunity for

a mosquito to become infected and lay eggs [9]. The primary outcome of IRS and ITNs is to

increase mosquito mortality, especially among older female mosquitoes. IRS prevent the trans-

mission by killing the mosquito after it feeds, and ITNs inhibit feeding before the mosquito

can inoculate a person with sporozoites [258]. Vector control approaches based on killing adult

mosquitoes have been prioritised in malaria vector control since the first global malaria elimina-

tion program in the 1950s based on the prediction from the Ross-MacDonald model, that trans-

mission is most sensitive to changes in adult survival [259]. A successful intervention will follow

with a reduction in the old mosquito population to a younger non-infectious population, chang-

ing the age structure of the population [260]. Similarly, the erosion of effectiveness in control

methods (e.g., possibly due to emergence of insecticide resistance) could be indicated by a shift in

the age structure by an increase in survival [261] affecting malaria transmission [7,262]. For these

reasons, it is extremely important for control programs to be able to assess and track changes in

the age structure of vector populations, both when evaluating interventions and tracking their

long-term impact. This makes surveillance of vector age structure and survival important for

assessment of transmission intensity and intervention effectiveness. Traditional methods for as-

sessment of vector age rely on dissecting adult females to assess their reproductive status in terms
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of whether they have laid eggs previously (parous) or not (nulliparous). Parity rates can be used

to classify females into two broad categories of ‘young’ and ‘old’; based on the assumption that

females require 3 – 4 days [160] to complete their first gonotrophic cycle and produce eggs; thus

nulliparous females are younger [160]. This technique is difficult to perform, therefore, imprac-

tical on larger sample sizes. There are many other techniques that have been investigated for age

grading [16] including characterisation of cuticular hydrocarbons [201, 263] transcription gene

profiles [207, 208, 264] and mass spectroscopy [211] with all of them showing promising results.

However, they rely on laborious techniques, expensive reagents and molecular techniques which

are not practical for large scale application, therefore, hard to incorporate into routine surveillance

laboratories.

Mosquitoes have developed a variety of mechanisms to resist insecticides. The two main ones are

target insensitivity by point mutation (kdr) and metabolic detoxification by over-expression of

a family of genes such as P450, esterase and GST [176, 178]. Another mechanism of insecticide

resistance is cuticular resistance. The cuticle is modified by an increase of hydrocarbons in the

mosquito epicuticle [178]. This is caused by the over-expression of CYP4G16 and CYP4G17

genes [265]. These modifications reduce insecticide uptake by thickening or changing the com-

position of the leg cloak in the tarsus [179]. It has been identified using electron microscopy and

differential quantification of cuticular hydrocarbons and chitin [179–181, 265]. Point mutations

can be detected using molecular methods such as PCR but with more complex metabolic resis-

tant mechanisms and in the absence of DNA markers associated with those, a proper diagnosis

at a large scale is impossible. Lately, qPCR [266] has been shown to be capable of diagnosing

metabolic pyrethroid resistance, but requires expensive reagents to implement as part of routine

surveillance in low income countries. However, there is no standard method as PCR to screen

populations.

In the last decade, spectroscopy-based techniques have been developed to identify biological traits

in mosquitoes. Spectroscopy uses light-matter interactions to generate information that can be

used for classification. Infrared spectroscopy measures the quantity of the interaction between

infrared radiation and matter. Molecular bonds can absorb specific frequencies of the infrared

light. These frequencies will be specific to each functional group inside the molecule, thus pro-

viding a fingerprint of the analyte [20,23,59]. The most commonly investigated is Near Infrared

spectroscopy (NIRS) with a range from 12,500 to 4000 cm−1. Absorption in this region is caused

by overtones and combination of fundamental vibrations of CH, NH, OH and SH functional

groups [267]. These molecules are present in a vast range of organic and inorganic materials,

plant and animal tissues and insects [267, 268]. The advantage of NIRS is the increased penetra-

tion deep into the tissue (from 2 to 3 mm up to 8 mm) [267, 269] which allows non-destructive

and high throughput measurements [16]. The increased penetration depth can be helpful to de-

tect viruses and parasites since it collects information not only from the cuticle but also from the

inside of the mosquito [270,271]. NIRS has been tested for age and species classification in a va-
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riety of malaria [19,196,198,213,214] and dengue vectors [220,225], Chagas vectors [227,272],

culicoides [273], agricultural pests [274–276] and Drosophila [277]. Moreover, it has been tested

in detecting arboviruses and malaria in vectors [149,226,278]. Nevertheless, near infrared spectra

peaks are difficult to interpret due to overtone information and combination of vibrations in the

region. This makes NIRS spectra difficult to work with for qualitative analysis [267], to extract

information about sample composition or feature assignment to specific chemicals [267,268]. The

limitation of NIRS in mosquito surveillance is that age grading can be done when broad cate-

gories (young and old) but difficulties appear when narrower age groups are needed. However,

this issued has been partially resolved by using more advanced machine learning algorithms [231].

Also, field samples are difficult to classify into age groups when laboratory samples are used for

calibration [198, 214], however evidence suggest that model generalisation can be achieved by

using encoders and neural networks [218].

More recently, mid-infrared spectroscopy (MIRS) has been explored as complementary to NIRS

for vector surveillance. MIRS covers a different spectral range (4000 to 400 cm−1), which en-

compasses the "fingerprint" region of biological samples. The bands in the fingerprint region are

the result of fundamental stretching, bending, and rotating vibration of molecules. Moreover, the

peaks from MIRS are more resolved compared to NIRS [279]. These peaks appear in character-

istic frequencies of the spectra which facilitates its interpretation, band assignment and qualitative

analysis [16, 267]. Contrary to NIRS, the penetration depth is reduced due to its shorter wave-

lengths (≈ 10 µm penetration into the tissue) [280], therefore, spectral information is collected

only from the surface of the sample which in the case of mosquito samples is mainly the cuticle

(2 - 5 µm) and part of the mosquito interior. This can be an advantage as it only collects infor-

mation related to the changes occurring in the cuticle. However, the shallow deep of penetration

prohibits its use in a non-invasive way [281]. MIRS has been used recently as a tool to identify

biological traits in mosquitoes. First, it was used to identify Wolbachia infected mosquitoes and

age grading in Aedes aegypti [222] and to identify Aedes species (Ae. aegypti, Ae. japonicus, Ae.

albopictus and Ae. triseriatus) [224]. In Anopheles mosquitoes, it has been used to identify blood

meals [230], and predict age and species of laboratory populations [17]. In these studies, the most

common method for collecting spectra is Attenuated Total Reflection spectroscopy (described

in the Introduction section). Although it is a robust technique for acquiring MIRS from tick

samples, this approach is destructive (the sample is pressed against the ATR crystal for maximum

contact) and thus renders the sample unavailable for further analysis, and cannot be used in other

mosquito tissues such as wings and legs because of their small size, limiting the characterisation

of different parts that might be informative.

The potential application of MIRS for wide-scale vector surveillance could be improved through

use of alternative non-destructive approach for signal acquisition. One possibility is the use of

diffuse reflectance; which allows measurement of the flux per wavelength of light reflected in

a scattered manner from a sample [37]. This is achieved by focusing the sample beam by an
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ellipsoidal or aspherical mirror and collected by another ellipsoidal mirror at 180 or 90 degrees

from the incident beam. Diffuse reflectance spectroscopy involves shining a beam of infrared

light onto a sample, with part of the light being reflected from the surface, and the other part

entering the sample by refraction. The infrared radiation will be absorbed at specific wavelengths,

which depend on the sample’s composition, and the resulting scattering is collected [20, 282].

A variation of this technique is micro-diffuse reflectance spectroscopy (µDRIFT), in which a

microscopy is incorporated into the system to allow more precise direction of where the sample

is taken. This feature enables data to be obtained from small parts of a sample by reducing the

field of view according to needs. This ability to see the specific sample and to obtain spectra from

small areas makes it possible to analyse tissue-specific features that are prohibitive by other sample

techniques such as transmission and ATR- FTIR [283]. This could be a particular advantage for

aspects of mosquito surveillance where the trait of interest (e.g., type of insecticide resistance) may

be restricted to specific body parts or tissues. This technique is well suited to understand tissue

specific signals and while it requires a microscope, potentially increase processing time and cost, if

proven successful, its implementation will require additional developments to making appropriate

to the field.

This study aimed to explore (1) identify the suitability of different mosquito tissues for analysis by

diffuse reflectance micro-spectroscopy (µDRIFT) and (2) evaluate the use of the resulting mid-

infrared spectra for prediction of species, age, and the presence of cuticular resistance in African

malaria vector species.

2.2 Materials and Methods

2.2.1 Mosquito strains and rearing

Experiments were conducted on two morphologically indistinguishable African malaria vector

species: Anopheles gambiae (Kisumu and Tiassale strains) and An. coluzzii (Ngousso strain). The

Anopheles coluzzii Ngousso strain from Yaoundé, Cameroon [284] is susceptible to all insecticides.

The Anopheles gambiae Tiassale strain from southern Cote d’Ivoire [285] is resistant to permethrin

and deltamethrin, organophosphates, carbamates and organochlorines, and has showed cuticle

modifications to reduce insecticide intake [265, 266]. Resistance in this strain is conveyed by

a variety of mutations (L1014F kdr and G119S Ace-1) and the up-regulation of P450 [266].

The Anopheles gambiae Kisumu strain from Kenya [285] is susceptible to all insecticides. The

strains were reared under standard insectary conditions (26±1 °C, 80%±10% humidity, 12 h

light:12 h dark cycle) at the University of Glasgow, Scotland, UK. Larvae were fed on Tetramin

tropical flakes and Tetra Pond Pellets (Tetra Ltd, UK). Pupae were transferred into cages for adult

emergence. Adult mosquitoes were fed ad libitum on 5% glucose. A cohort consisted of pupae
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collected and separated in cages for emergence, and then held for either 3 and 10 days post-

emergence for age grading/species discrimination and 1, 2, 3 days post-emergence for insecticide

resistant experiments prior to scanning. Approximately 20-30 adult females of each age and

strain were collected per cohort. Each cohort was reared and collected at different time points.

Three cohorts were used for each species and strain except An. gambiae Tiassale which needed

four cohorts to compensate for the larger sample size of the other strains, since it was the only

resistant strain and for some classification problems, groups with roughly the same sample sizes

are needed.

2.2.2 Sample processing

The protocol used to process mosquito samples prior to µDRIFT measurements is described in

Gonzales-Jimenez, et al. 2018 [286] with minor modifications. Adult females were separated

using a manual aspirator, transferred into holding cups and killed by exposure to chloroform for

20 min. Dead mosquitoes were transferred into silica gel desiccant filled tubes and stored at 4 °C.

Samples were kept for between 3-5 days to dry them completely prior to scanning.

2.2.3 Diffuse Reflectance Spectroscopy/scanning

Different parts of the mosquito body were analysed. Individual mosquitoes were placed on their

side under a gold mirror, which acts as a sample holder. The sample holder is positioned under the

microscope in a XY stage of the FTIR. Subsequently, and to improve sample placement, each part

of the mosquito was separated from the body before scanning. For each mosquito, the head, the

thorax, the abdomen and one hind leg (the femur) were scanned. Spectra were measured using

a Nitrogen purged Bruker (Bruker Corporation, USA) vertex70 with a Hyperion 1000 system

with a 15x objective and nitrogen liquid-cooled Mercury Cadmium Telluride (MCT) detector

with Globar light. The time taken to scan varied from 10 seconds up to 5 minutes depending on

the part of the mosquito being scanned at room temperature. Spectra were taken from the Mid-

infrared range (600 to 4000 cm−1 at 4 cm1 resolution). Background measurements were taken

every half hour, while assessing the CO2 region. The average time needed to separate the body

part and place it on the gold mirror was 10 seconds. However, body parts of multiple mosquitoes

(up to 5 body parts on each measurement) were placed into the gold mirror to save time. The

total time needed to separate the body part, place it on the gold mirror, position the XY stage,

focus the microscope and spectra collection was approximately 35 seconds for the legs up to 5

minutes and 35 seconds for head, thorax, and abdomen.
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2.2.4 Data Analysis

Import of individual files, assembling datasets, pre-processing and analysis of the spectra were

performed in Orange [287] and Python (Python 3.6) with in-house developed scripts. Principal

Components Analysis was used to assess data clustering.

Species prediction and age grading

Species prediction and age grading were based on analysis of An. gambiae and An. coluzzii

mosquitoes of ages 3 and 10 days old. First, the data set comprised of 3 cohorts. Then, it was

split into training set (80%) and hold out set (20%). Baseline performance of the following algo-

rithms was calculated: Logistic Regression (LR), Linear classifiers with stochastic gradient descent

learning (SGD), Linear Discriminant Analysis (LDA), Decision Tree Classifier (CART), Random

Forest Classifier (RF), Randomised Tree Classifier (ET), Gaussian Naive Bayes (NB) and Sup-

port Vector Machine (SVM) using ten-fold stratify cross-validation with the training set. Cross-

validation split the training data set into training and test set. The training set is used to train the

model, and then the model is tested on the test set. This process is repeated n times. On each

round of cross-validation, the data set is randomly split into a training set and a testing set. This

process is repeated several times (n-folds) and the average cross-validation accuracy is used as a

performance metric. Stratify cross-validation was applied to maintain the same proportion of age

groups and species in the training and test set. The algorithm with the highest baseline accuracy

was then chosen for further optimisation. Hyperparameter tuning was used to optimised different

parameters. The final optimised model was then evaluated with the hold out set (Fig. 2.1).

An alternative approach was used to overcome the limited sample size. Nested cross-validation

provides an unbiased estimation of performance parameter scores independently of the sample

size [288]. For nested cross-validation, the whole data set was used. Nested cross-validation

has two layers, the outer layer and the inner layer. In the outer layer, data was split into 90%

to develop the model and 10% for validation. In the internal layer, the remaining 90% of the

data was used for optimisation of the model by hyperparameter tuning using a three-fold cross-

validation. The optimised model was then validated with 10% of the data, which was split at the

beginning. The whole process was repeated 10 times. Each time, a different 10% and 90% of

the data set was selected for validation and model development, respectively (Fig. 2.1b). Mean

accuracy from the 10 models was reported.

Apart from accuracy as a performance metric, confusion matrices were also reported. A confusion

matrix is a table which describes the performance of a model (Fig. 2.2). It shows how many

samples of each class have been predicted correctly by the model. The confusion matrix shows

four numbers that are used to define the performance of the model. True Positive (TP) when the
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observation is predicted positive by the model and is actually positive. True Negative (TN), when

the observation is predicted negative by the model and is actually negative. False positive (FP),

when an observation is predicted positive by the model and is actually negative and False negative

(FN), when the observation is predicted negative and is actually positive. A perfect model will

have values of 1 for true positive and true negative, and values of 0 for false positive and false

negative. Confusion matrix are shown as a heatmap with a colorbar on the side to improve

readability (Fig. 2.2). Values close to 1 will be darker, while values close to 0 will be brighter.

Finally, confidence intervals for variable contribution were calculated by bootstrapping (n=100).

All the training and evaluation was performed on Python using the scikit-learn library [289].

Hyperparameter configurations can be found in the appendix section A.1 for each model and

classification problem.

Additionally, signal pre-processing is known to increase model performance in NIRS [217, 290,

291] and MIRS [222], especially when using reflection methods [224]. Therefore, to assess

whether pre-processing increases baseline performance accuracy of different machine learning

models for species prediction and age grading, the following pre-processing algorithms were

investigated: Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC), Nor-

malisation (NORM), and Savitzky-Golay (first and second derivative with 9, 11, 21 windows

sizes)

Prediction of cuticular resistance

Analysis of insecticide resistance was based on the comparison between the lines known to be

susceptible (Kisumu, Ngousso) and known to be resistant (Tiassale). First, we performed a multi

class classification between the three strains using the hold out method approach described before.

Then, another classification was performed, with the strains group together into two groups:

resistant and susceptible to insecticide. The idea behind this is that spectra for the resistant line

will be consistently different from the two susceptible lines. Therefore, the model should be able

to group the susceptible lines together. For this classification problem, the hold out set approach

and nested cross validation were applied. Performance metrics (accuracy, confusion matrix) and

variable contribution were reported as well.
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Figure 2.1: Schematic illustration of the process of data splitting for each evaluation method

Figure 2.2: Schematic illustration of a confusion matrix as a heatmap. X-axis show the predicted

label (positive or negative) from the model. Y-axis shows the actual label (positive or negative).

Colorbar on the right side indicates the colormap for each value. TP = True positive, TN = True

Negative. FP = False positive. FN = False negative.

2.3 Results

To assess the suitability of different mosquito tissues for diffused reflectance mid infrared spec-

troscopy, a nitrogen purged Bruker (Bruker Corporation, USA) vertex70 with a Hyperion 1000

system with a 15x objective and nitrogen liquid-cooled Mercury Cadmium Telluride (MCT)

detector with Globar light with a spot size of was 50x50 µm. A total of 344 samples from 3 co-

horts were used for age grading and species classification, and 291 samples from 3 and 4 cohorts

were used for insecticide resistance classification (Table 2.1). Each cohort represents a batch of



56

mosquitoes of one specie reared to specific ages in one cage. Each cohort was reared, processed

and scanned at different time points. Cohorts for species and age grading were reared first. Co-

horts for insecticide resistance were reared after species/age grading experiments were completed.

The Tiassale strain have 4 cohorts to increase the number of samples to reduced class imbalance

when compared to the other strains. All the spectra collected for each cohort were put together

in a data set for analysis. The data set was shuffled and split into training set and hold out set. The

training set was then used for training and optimisation using cross-validation and hyperparam-

eter tuning. Then, the final optimised model was then evaluated on the hold out set. For nested

cross-validation, the whole data set was used and split as indicate in the methods section.

2.3.1 Spectra from different mosquito tissues

Scanning times varied depending on the mosquito body part. Thick tissues (e.g., head, thorax,

abdomen) required up to 5 minutes (≈300 scans) of acquisition time to avoid totally absorbed

peaks. Even so, absorbance values reached values over 1. On the other hand, legs needed only 16

scans (10 seconds) to obtain a quality spectrum (Appendix A Fig. A.2). Differences in spectra were

most notable in the Amide I and Amide II bands (Fig. 2.3 red shaded area) where the peaks of

both bands are shifted on thick samples compare to the legs. Spectra obtained from different parts

of the mosquito body were notably and consistently different. Specifically, there was a distinct

difference between the thicker tissues (head, thorax, abdomen, which clustered together) and the

legs (Fig. 2.4). This was also consistent across the different mosquito ages (Fig. 2.5). Subsequent

analysis focused on leg samples, given the considerably lower acquisition time.
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Table 2.1: Species, strains, and age description of the samples

Species and age classification

Species Strain # samples Age # cohorts

An. gambiae Kisumu
64 3 days old 3

105 10 days old 3

An. coluzzii Ngousso
69 3 days old 3

96 10 days old 3

Total 344

Insecticide resistance classification

Species Strain # samples Age # Cohorts Group

An. coluzzii Ngousso

30 1 day old 3

Susceptible30 2 days old 3

30 3 days old 3

An. gambiae Kisumu

30 1 day old 3

Susceptible29 2 days old 3

29 3 days old 3

An. gambiae Tiassale

37 1 day old 4

Resistant39 2 days old 4

37 3 days old 4

Total 291

Note: Each cohort represents a batch of mosquitoes of one specie reared to specific ages in one

cage. Each cohort was reared, processed and scanned at different time points. Tiassale strain have

4 cohorts to increase the number of samples and reduced class imbalance when compared to the

other strains
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Figure 2.3: IR mean spectra of the head, thorax, abdomen, and leg from mosquito samples. Spec-

tra baselines have been shifted for comparison. Coloured shadow regions show biomolecular peak

assignments from 1800 cm−1 to 800 cm−1 region. Red dashed lines indicate Amide I and Amide

II peaks at 1650 and 1550 cm−1 respectively. Photos of the field of view from the microscope

show the part of the mosquito from the spectra was collected.

Figure 2.4: PCA scatter plot of spectra data from different mosquito parts using µDRIFT. Legend

AB: Abdomen. HE: Head, LG: Leg, TH: Thorax
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Figure 2.5: PCA scatter plot of spectra data from different mosquito parts using µDRIFT. Legend

AB: Abdomen. HE: Head, LG: Leg, TH: Thorax

2.3.2 Identification of An. coluzzii and An. gambiae

Pre-processing results

Robust normal variate with Savitzky-Golay second derivative and a 9 window smoothing in-

creased model performance of logistic regression and random forest up to 0.69 and 0.72 respec-

tively (Fig. 2.6a and b). Overall, first and second derivative increased performance of most of

the models tested. However, it should be noted that the application of normalisation and Sav-

itzky–Golay second derivative dropped LR accuracy to 50% (accuracy equal to a random classi-

fier). The reason is that extreme pre-processing can erase any difference in the spectra between

groups, making it harder for the model to predict species. The same happened with random forest

across the different smoothing windows, although not at the same level. Random forest might

use the small differences between spectra for classification, but smoothing erases them, decreasing

classification accuracy. The differences in model architecture (random forest has a more flexible

decision boundary) might help to reduce the effect of extreme pre-processing. Accuracy from

the rest of the models can be found in Appendix A Fig. A.5 and Fig. A.6.

Species prediction

The total number of mosquitoes used in the training set were 231 mosquitoes, with the opti-

mised model being evaluated on a hold out set of 99 samples. Baseline performance of different

classifiers with the training data set and ten-fold cross validation is shown in Fig. 2.7a. Logistic

regression showed the highest average prediction accuracy of 67.0% ± 5.57% follow by Ran-

dom Forest. Further optimisation of the model by hyperparameter tuning increased its accuracy

to 69.25%. Accuracy using the hold out set was 80.5% (82% for An. gambiae and 79% for An.

coluzzii) (fig.2.7b). Even though, random forest classifier had a higher accuracy compared to

logistic regression, when evaluated with the hold out set, accuracy was 73% (Appendix A Fig.
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A.4). The top 20 wavenumber values with the highest coefficients are located mainly in the re-

gion of 1700 and 1500 cm−1, with some located in the 1300, 1000, 900 and 600 cm−1 (Fig. 2.7c).

These wavenumber values are assigned to the C=O bond (1700 cm−1) related to proteins and

waxes [17], O=C-N bond (1500 cm−1) related to proteins and chitin [292] and C-O bond (1000

cm−1) related to chitin.

Due to the high computational requirements for running nested cross-validation, one model (LR)

was chosen based on its high performance obtained from results using hold out set. Model mean

accuracy was 69.4% (± 8.8%) after 10-fold nested cross-validation, with a mean accuracy of 69%

for An. gambiae and 70% for An. coluzzii (Fig. 2.8b). This result contrast with the overoptimistic

accuracy obtained by hold out set approach. A more balanced accuracy between species was

achieved with nested cross-validation compared to hold out set. Model evaluation with hold

out set and by nested cross/validation suggests that mid infrared spectra from legs collected with

µDRIFT have a signal that can differentiate between these cryptic species; but with relatively low

accuracy for An. coluzzii.

(a)

(b)

Figure 2.6: Effect of pre-processing in model accuracy Overall species prediction accuracy

using the training set and ten-fold cross-validation for a) logistic regression and b) random forest.

Accuracy has been divided into scatter correction algorithm (no pre-processing (RAW), robust

normal variate (RNV), standard normal variate (SNV), multiplicative scatter correction (MSC)

and normalisation (NORM), filter window (9, 11 and 21 points) and derivative (no derivative, first

and second derivative). Red dashed line indicates accuracy of a random classifier (accuracy of 0.5).

In boxplots, the horizontal line represents the median, boxes the interquartile range, whiskers the

overall range, and black diamonds represent outliers.
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(a) (b)

(c)

Figure 2.7: a) Baseline performance comparison of common machine learning algo-

rithms. Boxplots show the prediction accuracies for species prediction on training data using dif-

ferent classifiers after ten-fold cross-validation. Models tested included Logistic Regression (LR),

Linear classifiers with stochastic gradient descent learning (SGD), Linear Discriminant Analy-

sis (LDA), Classification and Regression Tree (CART), Random Forest Classifier (RF), Decision

Tree Classifier (ET), Gaussian Naive Bayes(NB) and Support Vector Machine(SVM). The best

performing model was LR. Boxplot show median (continuous red line) along with the 1st and

3rd quartile, whiskers identify the minimum and maximum values. Circles represent outliers. b)

Confusion matrix of optimised model on hold out set Normalised confusion matrix of the

prediction of the final Logistic regression optimised model using the hold out set. Each row repre-

sents instances of true class, while each column represents instances of predicted class. c) Variable

contribution Variable contribution in the optimised logistic regression model for species predic-

tion. The green line is the average of coefficient values after 100 bootstrap with 95% confidence

interval is show in shaded green. Shaded red indicates the location of the top 20 wavenumber

values with the highest prediction coefficients. The highest coefficient prediction wavenumber

values for each region are annotated
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(a) (b)

Figure 2.8: a) Boxplot showing prediction accuracy for each species: An. gambiae (AG) and An.

coluzzii (AC) after ten-fold nested cross-validation. In boxplots, the horizontal line represents

the median, boxes the interquartile range, whiskers the overall range, and black dots represent

outliers. b) Normalised confusion matrix shows the average prediction of ten logistic regression

models obtained during nested cross-validation

2.3.3 Identification of 3 and 10 days old mosquitoes

Pre-processing results

After assessing species prediction, we used a similar approach for 3 and 10 days age group pre-

diction. We combined both species and split them into the two ages group. The number of

mosquitoes used in the training set were 266 mosquitoes, and the optimised model was tested

on 53 mosquitoes. Accuracy in cross-validation did not increase with any scatter correction or

derivative. A decrease of accuracy started to appear with first and second derivative when applied

normalisation. The same tendency of accuracy dropped to 0.5 when using normalisation and the

second derivative (window 21 points) was also observed when using LR (Fig. 2.9a) and SGD

(Appendix A Fig. A.7). This was not the case with other models (e.g., RF, Fig. 2.9b). The results

of all models can be seen in Appendix A, Fig. A.7.
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(a)

(b)

Figure 2.9: Overall accuracy using the training set and ten-fold cross-validation for a) logistic

regression and b) random forest for age prediction between mosquitoes of 3 and 10 days old.

Accuracy has been divided into scatter correction algorithm (no pre-processing (RAW), robust

normal variate (RNV), standard normal variate (SNV), multiplicative scatter correction (MSC)

and normalisation (NORM), filter window (9, 11 and 21 points) and derivative (no derivative,

first, and second derivative). Red dashed line shows accuracy for a random classifier (accuracy of

0.5). In boxplots, horizontal line represent the median, boxes the interquartile range, whiskers

the overall range, and black dots represent outliers.

Results for age prediction

Logistic regression obtained the best baseline performance when predicting 3 and 10 day old

age groups, with an accuracy of 73.91% ± 3.13% (Fig. 2.10a). The model was then optimised

by hyperparameter tuning, which increased its accuracy to 83%. The accuracy on the hold out

set was 87% (89% for three days old and 85% for 10 days old) (Fig. 2.10b). Top 20 prediction

coefficients were located in the CH stretch rig stretching (878 cm−1) related to chitin, C=C

bond (1485 cm−1) and Amide I region (1680-1690 cm−1), related to proteins and chitin (Fig.

2.10c). This suggests that changes in the cuticle’s leg related to age in these two groups (3 and

10) can be detected with µDRIFT and our model can predict with high accuracy for younger

mosquitoes. When the model was evaluated using nested cross-validation, there was a decrease

in mean accuracy down 77.1% (± 6.5%) after ten-fold nested cross-validation. Class accuracy
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ranged from 58% to 100% for 3 days old and 57% to 80% for ten days old (Fig. 2.11a) with a

mean accuracy of 82% for 3 days old and 74% for 10 days old (Fig. 2.11b)

(a) (b)

(c)

Figure 2.10: a) Baseline performance comparison of common machine learning algo-

rithms. Boxplots show the prediction accuracies for age prediction on training data using dif-

ferent classifiers after ten-fold cross-validation. Models tested included Logistic Regression (LR),

Linear classifiers with stochastic gradient descent learning (SGD), Linear Discriminant Analy-

sis (LDA), Classification and Regression Tree (CART), Random Forest Classifier (RF), Decision

Tree Classifier (ET), Gaussian Naive Bayes(NB) and Support Vector Machine(SVM). The best

performing model was LR. Boxplot show median (continuous red line) along with the 1st and

3rd quartile, whiskers identify the minimum and maximum values. Circles represent outliers. b)

Confusion matrix of optimised model on hold out set Normalised confusion matrix of the

prediction of the final Logistic regression optimised model using the hold out set. Each row repre-

sents instances of true class, while each column represents instances of predicted class.c) Variable

contribution Variable contribution in the optimised logistic regression model for age prediction.

The green line is the average of coefficient values after 100 bootstrap with 95% confidence inter-

val is show in shaded green. Shaded red indicates the location of the top 20 wavenumber values

with the highest prediction coefficients. The highest coefficient prediction wavenumber values

for each region are annotated
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(a) (b)

Figure 2.11: a) Boxplot of accuracies for each class: 3 days old and 10 days old after ten-fold nested

cross-validation. In boxplots, the horizontal line represents the median, boxes the interquartile

range, whiskers the overall range, and black dots represent outliers. b) Confusion matrix showing

the mean of accuracies of 10 models after nested cross-validation

2.3.4 Identification of cuticular insecticide resistance

After prediction of species and age was performed with supervised algorithms, we tested the

same approach to analyses whether µDRIFT could differentiate the strain with cuticular resis-

tance (Tiassale strain) from others (Kisumu and Ngousso strains). A total of 286 mosquitoes were

used for this analysis. Initial assessment using PCA analysis showed no clustering between strains

(Fig. 2.12a, Appendix A, Fig. A.9). Similarly, there was no clustering when strains were grouped

as with cuticular resistant ("resistant") and the other two lines without cuticular resistance ("sus-

ceptible")(Fig. 2.12b). The same pattern was observed when comparing each pair of strains to

each other (Fig. 2.13).
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(a) (b)

Figure 2.12: a) PCA scatter plot of spectra of each strain (a) and grouped into susceptible and

resistant according (b). The variability in the data is explained by the first two PCs in 92.26% of

the total

(a) (b) (c)

Figure 2.13: PCA scatter plot of spectra for each pair of strains: Kisumu and Ngousso (a), Kisumu

and Tiassale (b) and Ngousso and Tiassale

Strain prediction

A multi-class classification for the different strains using SVM was performed. The model used

a one vs the rest approach. It involves splitting the multi-class dataset into multiple binary clas-

sification problems. A binary classifier is then trained on each binary classification problem and

predictions are made using the model that is the most confident. Average accuracy on the hold

out set was 60%. The lowest prediction accuracy was for Ngousso with 39% while for Kisumu

was 63% and 79% for the Tiassale strain) (Fig. 2.14). Prediction coefficients showed differences

in weights for each strain. 1400, 1550, 1650 y 1770 cm−1 region for Kisumu strain, compare to

1100, 1300 and 1500 cm−1 for Tiassale, and 1200, 1400 and 1500 cm−1 for Ngousso (Appendix
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A, Fig. A.10). Most of the bands are related to chitin and wax (Appendix A, Table A.1).

Figure 2.14: Normalized confusion matrices for SVM with “one vs all approach” in validation set

on multi-class strain classification. Each row represents instances of true class, while each column

represents instances of predicted class

Classification “resistant group” (cuticular resistant strain) and “susceptible” (strains
without cuticular resistant)

A total of 200 samples were used for training/cross-validation and 86 samples as hold out set.

Mosquitoes were predicted into resistant and susceptible groups with an accuracy of 71.83% ±

4.37% with LR and 73.17% ± 3.20% with SVM (Fig. 2.15a). Although baseline accuracy was

higher with SVM, LR showed a higher accuracy in during evaluation with hold out test with

69.76% (72% for resistant and 67% for susceptible) (Fig. 2.15b). Variable contribution of the

optimised logistic regression model was assessed using model coefficients (Fig. 2.15c). Top 20

coefficients are located in the C-O stretching (940 – 1130 cm−1) and C-O-C ring (1130-1170

cm−1). Model evaluation using nested cross validation showed a mean accuracy of 71.3% (± 8%)

compared to the 69.77% using hold out set. The distribution of accuracy of the model for each

class is shown in figure 2.16a. Mean accuracy was 73% and 71% for susceptible and resistant class

respectively (Fig. 2.16b)
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(a) (b)

(c)

Figure 2.15: a) Baseline performance comparison of common machine learning algo-

rithms. Boxplots show the prediction accuracies for insecticide resistance prediction on training

data using different classifiers after ten-fold cross-validation. Models tested included Logistic Re-

gression (LR), Linear classifiers with stochastic gradient descent learning (SGD), Linear Discrimi-

nant Analysis (LDA), Classification and Regression Tree (CART), Random Forest Classifier (RF),

Decision Tree Classifier (ET), Gaussian Naive Bayes(NB) and Support Vector Machine(SVM).

Boxplot shows the median (continuous purple line) along with the 1st and 3rd quartile, whiskers

identify the minimum and maximum values. Circles represent outliers. b) Confusion matrix

of optimised model on hold out set. Normalised confusion matrix of the prediction of the

final Logistic regression optimised model using the hold out set. Each row represents instances

of true class, while each column represents instances of predicted class.c) Variable contribution.

Variable contribution in the optimised logistic regression model for insecticide resistance predic-

tion. The green line is the average of coefficient values after 100 bootstrap with 95% confidence

interval is show in shaded green. Shaded red indicates the location of the top 20 wavenumber

values with the highest prediction coefficients. The highest coefficient prediction wavenumber

values for each region are annotated
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(a) (b)

Figure 2.16: a) Boxplot of accuracies for each class: susceptible and resistant after ten-fold nested

cross-validation. In boxplots, the horizontal line represent the median, boxes the interquartile

range, whiskers the overall range, and black dots represent outliers. b) Confusion matrix showing

the mean accuracy of 10 models after nested cross-validation

Table 2.2: Summary of the model accuracy for each of the classification problems using hold out

set, nested cross-validation and bootstrapping

Classification Problem Hold out Nested-CV Bootstrapping (n=100)

Species 80% 69.4%(8.8%) 66.0% (CI 95%: 59.2% , 71.5%)

Age 87% 77.1% (6.5%) 75.1% (CI 95%: 66.9% , 82.3%)

Insecticide resistance 69.77% 71.3% (8%) 69.6% (CI 95%: 62.7% , 77.2%)
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Table 2.3: Summary of the processing time of traditional methods for age grading (parity status),

morphological identification, NIRS, MIRS using ATR and µDRIFT

Method Sample preparation/

Scanning time

per mosquito

Accuracy Ref

Parity dissection 8 min Detinova

45 min Polovodova

Gold standard for parity

status

[293]

Morphological

identification

Not possible in cryptic

species

–

NIRS 30 seconds

High accuracy for

species prediction and

parity status in Anophe-

les

[213,218]

MIRS-ATR less than a minute

High accuracy for

species and parity status

in Anopheles

[17,199]

µDRIFT (legs) 30 sec - 45 sec

High accuracy for

species prediction in

Aedes

High age prediction (3

and 10 days old) and

low species prediction in

Anopheles

[224]

2.4 Discussion

This study is an initial proof of concept on the potential of µDRIFT as a tool to identify biological

traits in laboratory reared Anopheles mosquitoes. This technique allowed to collect spectra from

the head, thorax, abdomen, and legs without destroying the sample. Spectra from one leg taken

from 344 mosquitoes coupled and analysed by logistic regression allowed us to classify An. coluzzii

and An. gambiae females with 62% accuracy, and 3 days and 10 days old with 89% accuracy.

This is the first attempt to identify two species of the An. gambiae complex, An. gambiae and An.

coluzzii using µDRIFT. Analysis of the model coefficients showed that bands with more weight
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in the model decision were mainly from the C-O stretch (940-1130 cm−1), and C=O (1700

cm−1) [292]. The C-O stretch region is related to chitin [292,294] while C=O band at 1700 cm−1

is assigned to protein and wax [17]. Evidence shows differences in survival in drier environments

[295], cuticle hydrocarbons expression [296, 297] and cuticle thickness [298] between these two

species. A previous study using ATR-FTIR for species classification of An. arabiensis and An.

gambiae obtained 80% accuracy with laboratory colonies [17]. Moreover, µDRIFT has shown

high classification accuracy between species of Aedes which are not cryptic [224]. However,

there are no comparable studies using MIRS or NIRS to distinguish these same Anopheles species,

therefore we cannot conclude that the low accuracy obtained here is due to the technique rather

than the nature of the species. We hypothesised that some of the ecological differences between

An. coluzzii and An. gambiae may not be associated with changes to the leg structure of sufficient

magnitude to allow reliable differentiation, however, the classification power of our model may

also be limited by the relatively low sample sizes.

My model correctly predicted the age of 3 days old and 10 days old with 87% accuracy and

77.1% ±6.5% depending on the evaluation method. My results are similar to those reported for

Ae. aegypti where females were correctly predicted into age categories of 2 and 10 days with 81

to 88% accuracy respectively using Partial Least Squares Discriminant Analysis (PLS-DA) [222].

There are no studies in An. gambiae and MIRS predicting only two ages categories, therefore,

comparing them to my results is not accurate. Gonzales et al. [17] were able to predict An.

gambiae into age groups 3, 9 and 11 ranged from 20 to 50% and for An. arabiensis ranged from

40 to 80%. The accuracy of predicting mosquito age in broad categories of "young" (<7 days

old) or "old" (7+days) using NIRS ranges from 65-97% [19, 196–198]. In NIRS analysis, there

is often variability in prediction accuracy between groups from 3 to 9 or 12 days, depending

on the algorithm used [198, 214]. The bands used by our model for age prediction were similar

to those identified in two previous studies using MIRS [17, 222]. Like these previous studies,

we identified important bands for age prediction to fall within the C-O stretching (940- 1130

cm−1) and amide I region [292]. This C-O stretching region is assigned to chitin [292, 294],

and the amide I region is assigned to proteins and N-H related to proteins. The CH2 bend for

chitin and wax were also important for age classification. It has been shown that gene expression

changes with age in chitin bind cuticle proteins and chitin metabolism in Anopheles [206, 207].

Even though there was information in the literature about specific bands for age grading, at that

time only one study showed feature importance for age grading in the infrared region [222].

Therefore, it was important to not bias the analysis to specific regions, since this was the first

time mid-infrared was collected from the legs for age grading. Also, it was important to assess

if the model would pick up signal from regions with meaningful biological information and if

those bands match previous literature. These results put more evidence on the fact that age affects

the cuticle structure of the mosquito. These structural changes are associated with the increase

and decrease of cuticle proteins and also changes in the chitin metabolic process. Although these
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changes as not been fully characterised, they can be detected with MIRS.

NIRS and MIRS have not been tested for identification of cuticular insecticide resistance in

mosquitoes. Cuticular resistance is characterised by a thickening of the leg cuticle by the in-

creased content of chitin, proteins and CHCs [179]. The top 10 variable contributions are lo-

cated in the C-O stretching (940-1130 cm−1), C-O-C ring (1130-1170 cm−1) and Amide II

(1500-1525 cm−1) regions [294]. The C-O stretching and C-O-C ring, and Amide II asso-

ciated with chitin and proteins. Cuticular resistant mosquitoes are characterised by a thicker

procuticle at the tarsus, an increment in CHCs in the legs and a high content of chitin monomer

D-glucosamine [179]. The differences may not only be in terms of chitin quantity but also in

qualitative differences arising from down regulation of CPs, CPR8 and CPR120 [179]. These

differences may have been identified by the algorithm. The question remains if this apparent

difference can be pinpointed cuticular resistance, or is a confounding effect of strain (e.g., only

1 strain had cuticular resistance). I tried to disentangle the influence of the strains on the classi-

fication between “susceptible” and “resistant” by first assessing their differences using PCA, but

we did not identify any strain specific clustering. This result can be interpreted as lack of evident

differences in the spectra between strains. Moreover, when trying to classify between strains,

just one strain, Tiassale, was identified with a high accuracy. The model was not able to predict

Ngousso, with accuracy below 50% and slightly above 60% for Kisumu. I expected that if the

strains were different, the model should be able to differentiate between the three with at least

60%. I thought that the approach "one vs the rest" may influence the classification but I tested also

"one vs one" with similar results. Future work needs to focus to disentangle the strain/cuticular

resistance confounder. One way can be the analyses of multiple populations of the same species

and strains with different degrees of cuticular resistance and asses how model classify them. An-

other option is to measure the cuticle thickness (by electron microscope) and chitin content from

the legs and asses if they are correlated at an individual leg mid infrared spectrum. Moreover,

sample size needs to be increase.

Our models were evaluated using hold-out data set to avoid any over or under optimistic results;

but we found upwardly accuracies in all our classification problems (Table 2.2). This was especially

high when predicting age, which went from 87% using validation down to 77.1% with nested

cross validation. This phenomenon was less dramatic in models classifying species and cuticular

resistance. Optimistically biased performance estimates can be linked to the small sample size

used, therefore, nested cross-validation and bootstrapping were also implemented. Nested cross-

validation is known to give unbiased performance estimates regardless of sample size [288, 299].

Nested cross-validation also gave us the ability to report accuracy values with a standard deviation,

which provides a more accurate representation of the performance of the models. Future work

should be performed with a larger sample size to confirm the accuracies reported here.

Pre-processing was also tested to see how affect model accuracy. It is widely use in NIRS studies to
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correct light scattering effects and baseline shifts. The aim is to maximise the difference between

classes while minimising the differences between samples of the same group. Pre-processing in

MIRS is not as important as NIRS mainly because of the use of ATR, which minimises baseline

shifts and scattering problems in MIRS in contrast to reflection in NIRS. Pre-processing in studies

using ATR varies widely, from mean centering, to use of first and second derivatives. Savitzky-

Golay second derivative improved model performance in species identification. This agrees with

studies in Aedes and MIRS [222,224]. However, for age prediction, it did not generate a difference

in model performance, except when using second derivative and 21 windows smoothing together

with LR, where model accuracy dropped to 50%. This might be due to the nature of logistic

regression, since the rest of the models did not show this behaviour. Moreover, the extreme

window smoothing might eliminate any differences between spectra.

µDRIFT scanning time was different for tick tissues (head, thorax, and abdomen) and for legs.

Long scanning times, up to 5 minutes, were required for tick tissues. This scanning time is higher

compared to scanning speeds reported in ATR spectroscopy and NIRS. However, the legs only

required 16 scans with a resolution of 4 cm−1 which is less than 10 seconds. As mentioned in the

methods section, a single mosquito needs approximately 35 seconds from removing the legs until

collecting its spectrum. This scanning time is more efficient than parity dissection (8 minutes per

mosquito Detinova method to 45 minutes Polovodova method [293]) or morphological identi-

fication (which cannot be done with cryptic species). Moreover, scanning time can be reduced

even further by collecting only the region from 1800 to 600 cm−1 to match NIRS scanning time,

which is 3 to 5 seconds. WHO insecticide susceptibility test requires 1 hour of exposition plus

24 hours to measure mortality. At 20-25 samples per tube with six replicates, it can process 150

female mosquitoes per test, each mosquito requires 10 minutes. This time can be reduced, but it

will require more test tubes and manpower, while spectroscopy just need one operator and the

spectrometer. In terms of processing time, µDRIFT is at the same level of NIRS and MIRS using

ATR (Table 2.3).

Diffuse reflectance spectroscopy is very sensitive to changes in the path length, and one difficult

encountered here was positioning mosquito legs as flat possible over the gold mirror to avoid

distorted spectra from the samples. The leg joints can interfere and create a gap between the

tissue and the gold mirror that generates changes in the spectra; an issue previously raised in

Sroute et al. [224]. We tried to minimise this problem by separating the femur from the rest

of the leg, and eliminating the joints of the leg and eliminating the joints to avoid positioning

the sample incorrectly. This process increased the overall processing time at the beginning, but

it can be done easily with training. Future work should focus on analysis of other species (i.e.,

An. arabiensis, An. funestus) to assess whether the low accuracy in species discrimination reported

here is due to the close genetic relatedness of the species used here or is a general feature of the

approach. Also, further study on in mosquito groups expanded to encompass differences in terms

of feeding and physiological status is needed to increase the robustness of the technique.
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There are several limitations in this chapter. First, resistance/susceptibility was not validated by

traditional techniques. Therefore, it is not sure if the strains were 100% resistant or susceptible.

This is also true for species. However, routine species identification is performed every month to

assess the purity of the colonies reared in the laboratory. Future work should include validation by

PCR for species identification and WHO bioassays for cuticular resistance. Second, the decision

of measuring only the legs for species identification/age grading was due to the longer scanning

times required for thick tissues (head, thorax, abdomen) compared to the legs. I acknowledge that

literature co-relate chemical information with age in the head and thorax. However, legs have

been also used for age relating studies [204,205,293] and also emerging literature was indicating

the legs as a potential tissue for MIRS in species identification [224]. On top of that, cuticular

resistance is localised in the legs. All these reasons made the case to focus on the legs as an inter-

esting body part to assess with µDRIFT in this chapter. However, the rest of the tissues should be

considered and explore in detail to take advantage from the chemical information in the thorax

and the head.

Diffuse reflectance spectroscopy offers a rapid non-destructive method for measurement of mid

infrared spectra from mosquitoes for species, age, and insecticide resistant classification. The

advantage of using the legs is the ability to scan numerous samples at the same time by placing

them next to each other, facilitating the scanning process. One of the advantages compared

to ATR spectroscopy is the non-destructive nature of the process, which leaves the remaining

mosquito specimen available for further analysis (e.g., PCR or ELISA analysis for infection, etc.).

It allows exploring tissues such as wings and legs which might serve to identify other biological

traits, not only in mosquitoes but other diseases vectors. The accuracy is comparable in terms of

age grading. Nevertheless, the added cost and the size of the microscope can be a limiting factor in

terms of cost ($ 25000 for the added microscope). However, new IR microscopes with Quantum

Cascade Lasers are becoming cheaper and smaller than current FTIR systems; therefore, in the

future these systems will become easier to implement and test them. Compared to NIRS, both

techniques are non-destructive but NIRS have been tested longer with high accuracy for age

grading, species prediction and protocols have been standardised. The proposed technique here is

in its infancy and at the moment is not recommended as an alternative to NIRS. Having said that,

diffuse reflection opens the door for non-invasive and targeted measurements that can expand

vector surveillance tools. On top of that, new technologies (i.e., quantum cascade lasers) have

shown potential to overcome the limitations of diffuse reflection measurements. Currently, they

have been used on human dermis for non-invasive glucose monitoring [54,110]. This technique

is a promising approach despite current limitations, and it is worth exploring its strengths with

further experiments
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2.5 Conclusion

This study adds to the growing evidence on the value of MIRS coupled with machine learning al-

gorithms as a tool for vector surveillance of mosquitoes of medical importance, specifically malaria

vectors. Moreover, it shows the potential of diffuse reflectance spectroscopy for age grading and

species identification. In summary: i) Spectra from the legs can be acquired significantly faster

than those from other mosquito parts (head, thorax, abdomen). ii) Spectra from one mosquito

leg is sufficient for use in classification problems. iii) Logistic Regression performed relatively

well, predicting mosquito age. iv) Even with limited sample size, the model performance for

identification of species and a cuticular resistant strain was over 60%. v) Nested cross-validation

gave unbiased accuracy across all classification problems. Larger data sets for training testing and

validation will likely increase model performance. Moreover, inclusion of different species (An.

funestus and An. arabiensis) and group ages (from 1 to 15 days) is needed to further test the ro-

bustness and applicability of this technique. It may also be useful to include more accurate feature

selection and reduce bands in order to increase the performance of the models. The first step to

illustrate that a cuticular resistant strain can be identified with MIRS has been taken, but a lot

of uncertainty remains given the potential confounding of resistance phenotypes and correlated

strain attributes in this study. The use of the same strain with different degrees of cuticular re-

sistant, multiple strains of the same species with known differences in resistance, measure of leg

thickness and chitin content can help disentangle resistance phenotype and strains. This study

shows the potential of µDRIFT using the mid-infrared region for mosquito surveillance. Future

work will determine if the technique can predict insecticide resistance as well other species and

more age groups



Chapter 3

Species Classification and age grading
of Anopheles mosquitoes using
multivariate and machine learning
models

3.1 Introduction

Mid infrared spectroscopy (MIRS) has been recently explored as a complementary technique to

Near Infrared Spectroscopy (NIRS) in mosquito species prediction and age grading [17, 222].

MIRS bands are due to discrete fundamental vibrations of biomolecules providing more infor-

mation about the chemical composition of a sample, compared to the broad bands of NIRS. This

might be useful in detecting small changes in the cuticle due to age, or between species. The

most used analytical technique is Attenuate Total Reflection - Fourier Transform infrared (ATR-

FTIR) combined with supervised nonlinear machine learning algorithms. Similar to all spec-

troscopy techniques, ATR-FTIR is not immune to artefacts in the spectral signal. These artefacts

can be grouped into scattering effects and baseline offset/slope [290, 300]. Scattering effects are

caused when the size of the particles in the sample has one dimension that is roughly the same as

the wavelengths used [300, 301]. Baseline offset is another typical characteristic of ATR-FTIR,

where the baseline is lifted by a constant value. Slope baseline is when baseline is lifted by no

constant values, which increase slowly. Other effects can be attributed to low signal intensity,

etc. (Fig. 3.1)

76
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Figure 3.1: Representation of artefacts in spectral data. Black line is the original spectrum, follow

by version affected by artefacts. Modified from Jansen, J. et al., 2013

After the collection of quality data, pre-processing is one of the most important steps before using

Principal Components Analysis, Partial Least Squares, or any other machine learning algorithms

to analyse spectra [290]. Pre- processing allows correction of scattering effects, baseline slopes

and offsets, and any other artefacts that might interfere with the performance of classification and

regression models. Here, we are going to describe some of the most common pre-processing

algorithms.

3.1.1 Types of pre-processing and scatter correction

Savitzky-Golay

The most common smoothing algorithm is the Savitzky-Golay (SG) algorithm. SG fits a poly-

nomial (of degree dg) in a small symmetric window of at least dg+ 1 (dg = 2m− 1) points that is

centred in the point to be replaced by the smoothing value (one polynomial per window) [290].

Once the data point has been replaced, the window shifts one data point, and the process is re-

peated (Fig. 3.2a). The main advantage of the SG is that it preserves the relative maxima, minima,

and width of the spectral data while reducing any random noise. However, wider filter windows

can distort the signal. Therefore, the filter window, as well as the polynomial degree, need to be

optimised [302].

To enhance spectral resolution and eliminate baseline, SG derivatives can be used for differentia-
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(a)

(b)

Figure 3.2: a) Estimation of first derivative using Savitzky-Golay with a 7 window. b) Effect

of first and second derivative on raw spectra (blue), spectrum with additive effects (green) and

additive plus multiplicative effects (red). Modified from Rinnan, A. et al., 2009

tion. The first derivative removes additive constant background effects, and the second derivative

removes the baseline linear slope variations and additive effects (Fig. 3.2b). The number of points

used to calculate the polynomial and the degree of the fitted polynomial can be chosen accord-

ing to how much noise the raw signal has [303, 304]. The first and second derivatives may help

identify the less apparent features, but a larger filter window size might remove relevant infor-

mation [302].

Multiplicative Scatter Correction

Multiplicative Scatter Correction (MSC) removes scatter effect artefacts or imperfections from the

spectral data. This process also accounts for scaling baseline effects [303]. It requires a reference
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spectrum that should not have any scattering effects. However, reference spectra are usually not

available for every type of sample, thus, the mean spectra can be used as a reference spectrum.

MSC is based under two assumptions: First, a spectrum is composed of two spectra: one due to

light diffusion (d) and the other due to chemical absorbance (c), where the spectrum d needs to

be corrected:

xi = di + ci (3.1)

Second, all samples have the same coefficients of the diffusion spectrum at all wavelengths. This

allows the estimation of the correction coefficients, bo and bref,1 using ordinary least-squares

regression of the individual spectrum against the mean spectrum [305] using the following model:

Xorg = bo + bref,1.Xref + e (3.2)

and the final corrected spectrum is obtained by subtracting:

Xcorr −
Xorg − bo
bref,1

= Xref +
e

bref,1
(3.3)

where Xorg is the uncorrected spectrum, Xref is a reference spectrum or mean spectrum, e is the

un-modeled part of Xorg, Xcorr is the final-corrected spectrum, and bo and bref,1 are correction

coefficients.

Each spectrum from the data is shifted and rotated to fit the reference spectrum. After correction,

all spectra will have the same scatter level as the reference. To calculate bo and bref,1, a sub-region

from the reference with no chemical information is selected, which works well if the reference

spectrum does not have any variation. The use of the mean spectrum as reference might remove

information and decrease the performance of model predictions. The success of MSC relies on

finding the best reference spectrum, however, when using the mean spectrum of the calibration

set, it might not represent new data well.

Standard Normal Variate

Standard Normal Variate (SNV) is also one of the most common pre-processing algorithms used

on NIR data. It was introduced by Barnes et al. [306] and reduces the multiplicative effects of

scattering and particle size, and reduce the differences in intensities of the signals [302]. Contrary

to MSC, it does not require a reference spectrum. To correct spectral data suing SNV, each

spectrum is centred and then scaled by dividing by its standard deviation using the following

equation:

Xcorr =
Xorg − a0

a1
(3.4)

where: ao is the mean value of the spectrum to be corrected and a1 is the standard deviation
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This transformation is carried out on individual samples and not to the whole data set as MSC.

SNV can improve Partial Least Squares model prediction when spectral data are affected with

scattering effects by reducing within-class variance; however, the corrected spectra will have

positive and negative values centred on 0, making interpretation more difficult. Finally, arte-

facts could be introduced when applying SNV. his is caused by the assumption of SNV is that

multiplicative effects are uniform over the whole spectrum, which is not always true [302].

Robust Normal Variate

Robust Normal Variate (RNV) was developed to reduce the artefacts introduced by SNV by using

the median or the mean of the inner quartile range and the standard deviation. First proposed

by Guo et al. [307], he defined the problem with SNV as the "closure" which is defined as "a

statistical term indicating that the sum of the data is necessarily equal to a certain amount, so that

if one of the data changes in one direction, the other data must change into the other direction

to compensate for the change". Therefore, when SNV is applied, the data are closed due to the

sum of the deviation of each spectral values from the mean absorbance is zero. This phenomenon

introduces artificial negative correlation. RNV eliminates closure by subtracting the median of

the spectrum from each spectral variable and divide that value by the standard deviation of the

spectrum [303]:

z =
[X − percentile(X)]

std[x < percentile(x)]
(3.5)

where std[x ≤ percentile(x)] means the standard deviation of values that are less than the per-

centile. RNV is less sensitive to outliers compared to SNV; however, optimisation of the percentile

level is needed.

3.1.2 Extracting information from spectral data

After the signal is pre-processed, the next step is to extract meaningful information from the

data to build models that can predict or estimate information when presented with new samples.

Although there is an extensive list of algorithms for that purpose, in this chapter, I am going

to describe the most widely used in chemometrics, partial least squares, and partial least squares

discriminant analysis.

Partial Least Squares regression

Partial Least Squares (PLS) regression is a general method for path analyses using latent vari-

ables [308]. It assumes that both the independent matrix X , (the absorbance values for each

wavelength) and the dependent matrix Y (the species names or age days) can be projected onto
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a low-dimensional factor space and that a linear relation exists between the scores of the two

blocks [309]. The dependent and independent matrices are decomposed into scores and loadings

by:

X = TP T + EXY = UQT + EY (3.6)

where T , U , P , and Q are the X and Y scores and loadings matrices respectively. A linear

relationship between X and Y scores is given by:

U = TC (3.7)

where C is the diagonal matrix of coefficients. Then it is possible to compute the regression

coefficients B which will be used to predict the values of the matrix Y for unknown samples from

which X is known.

Ynew = XnewB (3.8)

Partial Least Squares Discriminant Analysis

Partial Least Squares Discriminant Analysis (PLS-DA) is a multivariate dimensionality reduction

method. It is a modification of PLS where a binary coded dummy variable, Y, is created based

on the class information of the training data set. Then the regression model is calculated based

on the PLS algorithm [309].

3.1.3 Traditional chemometrics applied to species and age classifi-

cation in Anopheles mosquitoes using MIRS

The selection of pre-processing methods in ATR-FTIR data has not been given considerable at-

tention [300]; with mosquito studies using ATR-FTIR being no exception. Out of the two studies

using ATR-FTIR method [17, 222], only one uses Savitzky-Golay. Moreover, studies of species

classification and age grading in Anopheles have not used the PLS algorithm so far. The argu-

ments against using PLS are: first, its propensity for over-fitting; meaning the model adapts "too

well" to the training data and has limited value for predicting unseen data [17]. This phenomenon

has been seen in NIRS [214], where PLS was not able to predict ages of field samples reared to

known ages. However, the other models used in that study (Oblique Random Forest and support

vector machine) suffered from the same issue. Therefore, overfitting might not be the problem,

but the fundamental differences between training data and the unseen data. This issue might

not be resolved by more complex models. There is evidence of the use of encoders and ANN to

increase model generalisation, but it has only been used in NIRS [218]. It is worth investigating

if MIRS also suffers from the same issue, and it is due to the data or the model itself. The second

argument is that PLS assumes linearity, which for species prediction does not represent an issue.
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This is seen in the high accuracy for species prediction in NIRS and MIRS. However, for age

grading, it represents a problem, since changes in the cuticle caused by age might not be linear.

This has been seen in NIRS studies where PLS underestimates older mosquitoes when trying to

predict chronological age [214]. Consequently, there has been a preference for using non-linear

supervised machine learning algorithms in the hope of overcoming the limitations of PLS. Re-

cent studies have compared PLS and ANN with an increment of accuracy using ANN for age

grading [231]. Currently, there has been no proper assessment of the prediction power of PLS

and PLS-DA with mid-IR data, nor a comparison of PLS with other machine learning models.

Therefore, the objectives of this chapter are to:

1. Establish a baseline using PLS-DA and PLS for Anopheles mosquito species classification

and age prediction using ATR-FTIR data.

2. Assess pre-processing algorithms for ATR infrared data and how they affect model accuracy

in species classification with linear and nonlinear machine learning models.

3. Identify the region most informative of the infrared spectra for Anopheles species classifi-

cation

3.2 Methods

3.2.1 Data sets

Three datasets were used for this chapter. Data set one was obtained by researchers from the

Chemistry department of the University of Glasgow. The specimens from University of Glasgow

are female laboratory reared mosquitoes of two species: Anopheles gambiae s.s (Kisumu strain) and

An. coluzzii (Ifakara strain). Rearing, blood feeding, and processing of mosquito specimens are

described in [17]. Briefly, the mosquitoes were reared under standard insectary conditions of 27

± 1 C, 70% humidity and a 12-hr light: 12-hr dark cycle. Anopheles gambiae s.s (Kisumu strain)

mosquitoes were provided by Prof. Hilary Ranson (Liverpool School of Tropical Medicine).

Larvae were fed ad libitum on fish pellets (Tetra Pond Pellets, Tetra GmbH, Herrenteich 78,

D49324). Pupae were collected from larval rearing trays and moved into a cage for adult emer-

gence. Mosquitoes were considered to be in the age category of “Day 0” on their day of emer-

gence from pupa to adult. Upon emergence, adults were fed ad libitum on a 5% glucose solution.

Mosquitoes were held from 1 up to 15 days post emergence (with an interval of one day) for

analysis. Upon collection, mosquitoes were transferred into a cup and killed with a cotton soaked

with chloroform placed on top of the cup for 30 minutes. Dead mosquitoes were then trans-

ferred into a tube over a layer of cotton and silica gel desiccant. The vial was then immediately
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stored at 4ºC for at least 3 days before scanning. Spectral acquisition from individual mosquito

thoraxes was taken by Attenuate Total Reflection FTIR using a dry-air purged Bruker Vertex

70 spectrometer equipped with a globar lamp, a DLaTGS detector, a KBr beamsplitter, and a

diamond ATR accessory (Bruker Platinum ATR Unit A225). Sixteen scans were taken at room

temperature between 400 and 4,000 cm−1 with 1 cm−1 resolution. Datasets two and three were

obtained by researchers at the Institut de Recherché en Sciences de la Santé (IRSS), Burkina Faso.

The laboratory colonies reared at IRSS (IRSSlab) are An. gambiae/Soumousso and An. coluzzii/

Vallée du Kou and were reared at laboratory conditions as described above. Mosquitoes were

sampled at ages ranging from 1 to 17 days old, with a hundred and twenty mosquitoes per day.

Each age group is composed of three physiological status. The IRSSfield dataset contained the

same laboratory colonies but reared under semi-field conditions. These laboratory colonies were

reared during the rainy season. Temperature and humidity were constantly monitored every day

in the semi-field and recorded. Mosquitoes blood fed from live cattle and were able to oviposit

in water containers inside the cages. The collected age groups were 1, 4, 7, 10, and 15 with 50

mosquitoes per age group [310] (Table 3.1)

Table 3.1: Datasets information of origin, institute, number of samples, rearing conditions and

species

Dataset Origin Institue # Samples Conditions Species Age groups

Glasgow lab
Glasgow

University
4446 Laboratory

An. coluzzii 1d to 17d

of Glasgow An. gambiae

IRSS lab
Burkina Institut de Recherche

4926 Laboratory
An. coluzzii 1d to 17d

Fasso en Sciences de la Santé (IRSS) An. gambiae

IRSS field
Burkina Institut de Recherche

522 Semifield
An. coluzzii 1d,4d,7d,10d,15d

Fasso en Sciences de la Santé (IRSS) An. gambiae

3.2.2 Data pre-processing

Data was pre-processed using Python 3.6 with in-house developed scripts. Assembly of datasets

from individual files and cleaning (low intensity, high water content, atmospheric intrusion) was

done using Loco Mosquito 5.0, a program written in Python 3.6 [17]. The spectral region used

was from 1800 to 600 cm−1, except when stated differently. Before data analysis the following

pre-processing algorithms were applied on the spectra: Standard Normal Variate (SNV), Multi-

plicative Signal Correction (MSC), Robust Normal Variate (RNV) [291] and Savitzky-Golay.
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3.2.3 Statistical Analysis

Partial Least Squares regression (PLS) and five machine learning models: Logistic Regression

(LR), Support Vector Machines (SVM), Decision Tress (CART), Support Vector Machine with

Stochastic Gradient Descent training (SGD) Gaussian Naives Bayes (NB) were tested using scikit-

learn package [289]. Absorbance at different wavenumber values were used as features for model

training.

Partial Least Squares analysis

To establish a baseline for species classification and age grading, PLS-DA and PLS regression were

used to predict species and estimate mosquito age, respectively. Glasgowlab dataset and IRSSlab

dataset were used to optimise the number of latent variables via cross-validation for species and

age. A linear search was used to optimise the number of latent variables (from 1 to 400). First,

the number of components with the lowest root mean squared error (RMSE) were chosen with

only Glasgowlab data set (Appendix Fig B.1). Second, to avoid overfitting, meaning choosing

a model with numerous components which adjust too closely to the training data set, a new

linear search from 1 to the number of components already chosen was performed using IRSSlab

dataset as an independent test set. Area Under The Curve (AUC) of the Receiver Operating

Characteristics (ROC) was used as a metric (Appendix Fig. B.2). The number of latent variables

that balanced high values of AUC-ROC when using both Glasgowlab and IRSSlab data set was

chosen. After optimisation, the Glasgowlab data was split into two sets: training and test sets

(50% each). The training data set was split further into training and validation sets (70%, 30%).

The model was trained, tested and then validated. This process was performed 50 times for each

scatter correction and also using IRSSlab and IRSSfield as validation datasets. The model with

the highest AUC-ROC was chosen for the final confusion matrix and density plots. For age

classification, Glasgowlab dataset used for optimisation of the number of latent variables using

cross-validation. The R2 value was used to assess the best model. Validation was also evaluated

with IRSSlab and IRSSfield. Model coefficient values were used for wavelength importance for

species and age. Means for each day were calculated and analysed using an analysis of variance

(ANOVA) test with Tukey’s correction for multiple comparisons.

3.2.4 Evaluation of scatter correction algorithms on machine learn-

ing algorithms

The process of evaluation was the same as described for PLS. Accuracy value and confusion ma-

trices were used to assess the performance of the model.
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3.2.5 Prediction accuracy of different spectra regions

Further analysis to identify which regions contained more information for classification purposes

was done using three main spectral "windows": 950-1250 cm−1, 1250-1500 cm−1 and 1500 -

1800 cm−1. Each window was based on the range of quantum cascade lasers. The region of 950

- 1250 cm−1 is based on the current range of our QCL setup (Chapter 4). For each window, cross-

validation was used to calculate baseline accuracy. Then, each region was evaluated for species

prediction IRSSlab and IRSSfield datasets. After that, the window with the highest accuracy was

split into three regions. The process of training and evaluation was repeated. Lastly, to explore

the spectral differences between the two species, prediction coefficients from the best models were

extracted and plotted against wavenumber values. The dominant wavenumber values were used

to infer the possible biochemical difference of each species.

3.2.6 Analysis of Spectra

Principal component analysis (PCA) of all combined data sets was performed to visualise any

clustering of the samples. Loading plots of principal components with the most explained variance

were analysed to identify wavelength differences between data sets.

3.3 Results

A total of 9894 mosquitoes were used in the analysis (Table 3.2). The spectral region used was

1800 to 600 cm−1 except where otherwise indicated.

Table 3.2: Number of samples used in the analysis

Data set # An. gambiae # An. coluzzii Total

University of Glasgow 2019 2337 4446

IRSS lab 2000 2992 4926

IRSS field 264 258 522

9894
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3.3.1 Pre-processing and Scatter correction

An overview of how the different scatter corrections and pre-processing algorithms affect the

shape of the spectra is shown in Fig. 3.3. Raw data show some scatter effects across the spectra,

especially additive effects. After scatter corrections, a visible decrease of variation between sample

can be observed, especially in the region 1500 to 1200 cm −1. As expected, RNV produces fewer

artefacts compared to SNV. The reason is the use of a percentile instead of the mean. SG with 9

point window size and second derivative eliminates any additive effect present in the data, as well

as enhances the bands located in the 1700 and 1200 cm−1 region.

Figure 3.3: Effect of pre-processing on ATR-FTIR spectral data Mid infrared spectra from

all laboratory reared female mosquitoes collected using ATR-FTIR in Glasgow without pre-

processing (RAW) and after application of scatter correction algorithms, Standard Normal Variate

(SNV), Multiplicative Signal Correction (MSC), Robust Normal Variate (RNV) and Savitzky-

Golay on the same specimens. Each line represents the spectrum of one mosquito.
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3.3.2 Classification of species using Partial Least Squares Discrim-

inant Analysis (PLS-DA)

PLS-DA models using MIRS can classify between laboratory reared females An. gambiae and An.

coluzzii with high accuracy (Table 3.3). A model with 5 latent variables showed a high accu-

racy for species classification when laboratory reared mosquitoes from the same laboratory as test

set was used (Fig. 3.4a-c, AUC = 0.93, Accuracy=0.87). Probability distribution plots showed

a separation between classes and a high true positives and true negative values (Fig. 3.4c). The

PLS model performance on samples from the same origin is excellent. However, its classification

power decreased when independent validation sets were used. Model accuracy decreased when

predicting mosquitoes from other laboratories (Fig. 3.4c, AUC=0.63, Accuracy=0.62). Proba-

bility density plots showed how the classes overlap with each other and the confusion matrix

indicates how An. coluzzii can be classified (Fig. 3.4e, 3.4f). For IRSSfield, the model was unable

to classify either species with AUC values below a random model (Fig 3.4g, AUC=0.35, Accu-

racy=0.47). This can be seen in more detail in the density plots and confusion matrix, where the

model classifies An. gambiae more often as An. coluzzii and vice versa (Fig 3.4h and 3.4i).

Scattering correction and pre-processing increased model AUC-ROC values tested on samples

from the same origin, but when tested with independent validation sets, there was a decrease

in AUC-ROC. RNV was the exception with the highest AUC-ROC value of 0.41 when tested

with the IRSSfield data set. The Savitzky-Golay second derivative had a detrimental effect on the

model. It reduced AUC values further from 0.61 to 0.56 in the IRSSlab data, set and from 0.37

to 0.28 for IRSSfield (Table 3.3).

Table 3.3: Pre-processing, latent variables (LV) and Area under the curve of the Receiver oper-

ating characteristic curve (AUC) for each data set: Glasgowlab, IRSSlab and IRSSfield

Pre-processing LV AUC Glasgow AUC IRSSlab AUC IRSSfield

RAW 5 0.93 0.63 0.35

SNV 5 0.95 0.62 0.40

MSC 7 0.95 0.61 0.37

RNV 6 0.95 0.60 0.41

Savitzky-Golay 6 1.00 0.56 0.28
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 3.4: Species prediction using PLS-DA Prediction of An. gambiae (blue) and An. coluzzii

(orange) using PLS-DA and tested with three different validation data sets. a) Receiver operating

characteristic curve (ROC) of 50 PLS-DA models and mean corresponding Area Under the ROC

curve using laboratory reared mosquitoes from Glasgowlab as validation set. b) Ability of the

model to predict An. gambiae and An. coluzzii. Histogram of the estimated linear predictor

for the validation set. Colour coded as follows: An. gambiae(blue) and An. coluzzii (orange). The

vertical black line indicates the threshold for classifying mosquitoes into the two different species.

Areas where distributions overlap indicates misclassified observations. c) Normalised confusion

matrix for the best model on validation set. Each row represents instances of true class, while each

column represents instances of predicted class. The same results are shown using mosquitoes from

IRSSlab (d, e, f ) and IRSSfield (g, h, i).

3.3.3 Age prediction using Partial Least Squares

MIRS with PLS regression models can predict moderately the chronological days of laboratory

reared mosquitoes from 1 to 17 days old (Fig. 3.5, R2 = 0.68, RMSE = 2.24). Differences between



89

very young (1-4 days old) and very old (12-17 days old) can be observed. The model overesti-

mated the age of females in 1 to 4 days range, and underestimated the age of older mosquitoes

from 14 to 17 days old (Appendix B, Table B.1)

Figure 3.5: Prediction of chronological age Comparison of predicted vs true age tested on

hold out set using PLS across age groups from 1 to 17 days old. Data is from Glasgowlab dataset.

Each point represents a population sample. Boxplots show the upper and lower ends of the centre

box to indicate the 75th and 25th percentiles. The red dot represents the mean, the line inside the

box indicates the median and the whiskers show the maximum and minimum no further than

1.5 Interquartile Range (IQR). Outliers and indicated as a diamond.

After the first assessment of age prediction with all age groups, 6 ages were chosen to see if

by increasing the number of days between each group, the model improves its ability of age

prediction. The ages were 3, 5, 7, 9, 12, 15 days old. Predicted age using the raw and pre-

processed data are shown in Fig 3.6. Savitzky-Golay tends to reduce the under and overestimation

of ages (Table 3.4). Tukey Post hoc analysis indicated that An. gambiae could be differentiated

into 5 age groups (3, 5-7, 9, 12, 15) when using raw data. After applying Savitzky-Golay pre-

processing, 5 and 7 days could be differentiated into two different age groups (Fig. 3.7 a, b). The

reason is that Savitzky-Golay first smooths any difference between samples of the same age, and

then the second derivative reduces further differences by removing baseline differences, making

the samples more homogeneous. These results on better age group separation (Fig. 3.7 b).
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Figure 3.6: Effect of pre-processing on age prediction Comparison of predicted vs true age

with 4 pre-processing methods: MSC, SNV, RNV and Savitzky Golay (window = 9, second

derivative) using PLS. Model was trained with Glasgowlab data set and tested with a hold out

set. Boxplot shows the upper and lower ends of the centre box to indicate the 75th and 25th

percentiles. The line inside the box indicates the median, and the whiskers show the maximum

and minimum no further than 1.5 Interquartile Range (IQR). Outliers are represented with a

black diamond.

(a) (b)

Figure 3.7: Effect of second derivative on age prediction Predicted vs true age for validation

set with a) raw data and b) Savitzky-Golay (window=9, second derivative) using PLS. The upper

and lower ends of the centre box indicate the 75th and 25th percentiles. The line inside the box

indicates the median, and the whiskers show the maximum and minimum no further than 1.5

Interquartile Range (IQR). Letters show groups with statistically different means (p < 0.05) by

ANOVA with Tukey’s multiple comparisons

Our PLS model was able to predict the age of laboratory reared female mosquitoes from IRSSlab

using the raw data and pre-processed data (R2 = 0.77, RMSE = 1.89, R2 = 0.78, RMSE = 1.89).

There was a similar tendency for the model to overestimate the age of young mosquitoes and

underestimate the age of older mosquitoes (Table 3.5). Samples were differentiated into five age
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Table 3.4: Mean prediction age in An. gambiae females using the raw data and Savitzky-Golay

pre-processing

Pre-processing Actual Age Samples Mean predicted age [95% CI]

RAW

3 31 4.30 [3.92 – 4.68]

5 42 7.13 [6.64 – 7.63]

7 42 7.21 [6.62 - 7.80]

9 37 9.09 [8.60 – 9.58]

12 45 10.65 [10.20 – 11.10]

15 35 12.80 [12.25 – 13.35]

Saviztky Golay

3 31 3.59 [3.07 – 4.11]

5 42 6.56 [6 – 7.13]

7 42 7.20 [6.82 – 7.57]

9 37 9.20 [8.65 – 9.74]

12 45 10.98 [ 10.41 – 11.54]

15 35 14.13 [13.54 – 14.71]

groups as seen with samples of the same origin (Fig 3.8a) and after pre-processing, the samples

were differentiated into 6 age groups (Fig 3.8b). However, the model was unable to predict ages

from semi-field female mosquitoes. The model overestimates the age of 1, 4, 7 days old by more

than 6 days. The mean predicted age for 10 days old was 4.89 days old and for 15 days old was 1.56

(R2 = -1.84, RMSE = 7.99) Pre-processing did not increase the predictive power of the model,

instead the mean predicted age for all age groups was from 26 to 40 days old (R2 = 33.45, RMSE

= 27.86, Table 3.5). A summary of the models and their performance in each data set can be seen

in Table 3.6. These results suggest PLS-DA and PLS as a viable model to predict age and species

in laboratory reared mosquitoes; with reduced accuracy on samples from other laboratories, but

it cannot predict laboratory colonies reared in semi-field conditions.

Here, I presented a baseline performance of the typical chemometrics approach used for species

and age prediction using MIRS which has not been addressed before. This approach achieved

a similar performance compared to other machine learning models in species prediction and

chronological age prediction used with MIRS [17]. Pre-processing increased model accuracy

in species and age, which has not been properly evaluated in MIRS studies using Anopheles. Poor

model generalisation was not fixed by pre-processing, and it is not caused by the model architec-

ture, but because data sets between different labs and rear conditions are fairly different.
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Table 3.5: Mean predicted age of laboratory reared An. gambiae females (IRSSlab) and field

(IRSSfield) used as independent validation sets

IRSSlab

Raw Savitzky-Golay

Real Age # samples Mean predicted Mean predicted

age [CI 95%] age [CI 95%]

3 31 4.30 [3.92 - 4.68] 3.59 [3.07 - 4.11]

5 42 7.13 [6.64 - 7.63] 6.56 [6.00 - 7.13

7 42 7.21 [6.62 - 7.80] 7.20 [6.82 - 7.57

9 37 9.09 [8.60 - 9.58] 9.20 [8.65 - 9.74]

12 45 10.65 [10.20 - 11.10] 10.98 [10.41 - 11.54

15 35 12.80 [12.25 - 13.35] 14.13 [13.54 - 14.71]

IRSSfield

1 53 6.96 [6.42 - 7.49] 29.02 [26.43 - 31.61]

4 60 8.84 [8.12-9.55] 33.21 [29.79 - 36.63]

7 55 10.99 [10.02-11.97] 23.32 [20.18 - 26.46

10 48 4.89 [4.16-5.62] 40.55 [36.02 - 45.09]

15 48 1.56 [0.24-2.89] 26.81 [22.64 - 30.98]
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(a) (b)

(c) (d)

Figure 3.8: Effect of second derivative in age prediction with independent validation sets

Comparison of predicted vs actual age using a subset of Glasgowlab data set as independent vali-

dation set with a) raw data and b) after applying Savitzky-Golay pre-processing. Comparison of

predicted vs actual age using a IRSSfield data set as independent validation set with c) raw data

and b) after applying Savitzky-Golay pre-processing
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3.3.4 The influence of scatter correction algorithms on machine

learning models accuracy for species prediction

Scatter correction algorithms were applied to the data to reduce the effect of scattering between

the samples. These were multiplicative scatter effect, standard normal variate robust normal vari-

ate and Savitzky-Golay. The results in figure 3.9 suggest pre-processing can increase model

accuracy compared to the raw data. All models showed an increase in accuracy with NB ben-

efited the greatest with an increment from 0.65 to 0.8 with SNV, MSC and up to 0.81 with

Savitzky-Golay. The reason is that pre-processing removes any unwanted variability and en-

hanced the most important features for our classification problem. However, this increase in

accuracy depended on the model architecture. LR and SGD which are linear models showed a

decreased in accuracy to the same level as a random model (accuracy = 0.5) when Savitzky-Golay

was used. The extreme changes to the spectrum (smoothing and second derivative) caused by

Savitzky-Golay might erase all the differences between species, making it extremely difficult for

those models to separate the two classes. Interestingly, nonlinear models (NB, RF, CART) ben-

efited more from the extreme pre-processing. The same phenomenon was seen when models

were tested on hold-out data set (Fig. 3.10). Here, scatter correction not only increased accuracy

but also improved group classification across all models, suggesting that the elimination of the

noise caused by scattering enhance features which are important for species prediction.

Figure 3.9: Accuracy of different machine learning models when different scatter corrections

were applied: No pre-processing (RAW), multiplicative scatter correction (MSC), standard nor-

mal variate (SNV), robust normal variate (RNV) and Savitzky-Golay. Models were trained using

Glasgowlab dataset and tested using 10-fold cross-validation.
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Figure 3.10: Normalised confusion matrix for final models trained in Glasgowlab dataset and

tested on a hold out set. Each row represents instances of true class, while each column represents

instances of predicted class. AC: An. coluzzii. AG: An. gambiae

Effect of scatter correction algorithms on model accuracy with independent val-
idation sets for species prediction

Quantification of the effect of scatter correction on classification in species prediction was assessed

using two independent sets: IRSSlab and IRSSfield data sets. The classification accuracy drops

below 0.6 on all models (Table 3.7). LR did not benefit from pre-processing, reaching the same

accuracies as a random model when Savitzky-Golay was applied. The same phenomenon was

observed using SGD. Pre-processing slightly increased classification accuracy in the RF model

compared with the un-processed spectra. Confusion matrices show SVM provided slightly bet-

ter classification in species prediction than the rest of all pre-processing algorithms (Fig. 3.11a).

Validation on IRSSfield samples showed the worst prediction accuracy (Table 3.7). Confusion ma-

trices show how species are misclassified by all the models with un-processed and pre-processed

data (Fig. 3.11b.) The reason for the low model performance is that while pre-processing elim-

inates differences between samples to maximise class separation, there are inherent differences

between the data sets which are being maximised by pre-processing algorithms. This makes

model generalisation extremely difficult.
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Table 3.7: Species prediction accuracy of LR, SVM and RF using independent test sets IRSSlab

and IRSSfield

Preprocessing Model IRSSlab IRSSfield

RAW LR 0.57 0.41

SVM 0.56 0.39

RF 0.56 0.43

SNV LR 0.52 0.37

SVM 0.57 0.39

RF 0.59 0.42

MSC LR 0.51 0.41

SVM 0.57 0.39

RF 0.58 0.43

RNV LR 0.50 0.45

SVM 0.57 0.38

RF 0.59 0.36

Savitzky Golay LR 0.50 0.49

SVM 0.50 0.49

RF 0.56 0.39
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(a)

(b)

Figure 3.11: Normalized confusion matrix for final model on validation sets: a) IRSSlab and b)

IRSSfield with different pre-processing algorithms. Each row represents instances of true class,

while each column represents instances of predicted class. AC: An. coluzzii. AG: An. gambiae

3.3.5 Analysis of different spectral windows for species prediction

In order to select the most informative region of the spectra for future applications (such as QCLs),

I divided the spectra into 3 regions (Fig. 3.12). Each window was used as input to three different

ML models trained. Glasgowlab dataset was used as training set and the effect of the use of differ-

ent windows on prediction accuracy was quantified by the performance of each model validated

with the three data sets: Glasgowlab (hold out set), IRSSlab and IRSSfield. LR had the highest
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mean accuracy when the whole range (1800 to 950 cm−1) and X1 region were used (0.98 and

0.98, Fig 3.13), when validation was done with samples from the same origin. Prediction accu-

racy decreased when the window moved into lower wavenumber values (accuracy X2 = 0.91, X3

= 0.85), however, it never dropped below 0.80. SVM and SGD accuracy was higher when using

X1 (0.87, 0.94) compared to the entire region (0.86, 0.92). SMV classification was the lowest of

the models (0.67) when using the X3 window. These changes in accuracy when using different

regions of the mid-infrared pointed to the X1 window as the one with more information for

species prediction.

Figure 3.12: Division of the mid infrared spectrum into 3 different windows from 1800 - 1500

cm−1 (X1), 1500 - 1250 cm−1 (X2) and 1250 - 950 cm−1 (X3).

Figure 3.13: Boxplot of model accuracy in cross-validation for LR, SVM and SGD when using

the whole mid infrared spectrum (Total) and each of the spectral windows (X1, X2, X3)

X1 window has the Amid I and II bands and ester carbonyl, which are related to chitin, fatty

acids, wax and proteins [17, 222]. The higher accuracy when using this window suggest the

majority of differences between the two species are due to changes in protein, chitin and wax

content. These bands have been shown to be related to age in An. gambiae [199] and Ae. aegypti

[222]. Consequently, this window was further divided into three smaller sections (X4, X5 and

X6) to examine if there is a specific region inside the Amid I and II bands which is responsible

for the high accuracy reported here. The X5 window, which contains the Amide I band and

C=O band showed the highest accuracy for species prediction of 0.98. Anopheles gambiae can be
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discriminated with 0.96 and An. coluzzii with 0.99 (Fig. 3.14). The region X4 with Amide I and

II bands reached 0.94 followed by X6 with 0.88 using LR 3.15. The prediction coefficients of the

X5 window show that most weighted wavelengths are located in the 1700 - 1775 cm−1region,

where the Amide I and C=O band are located. The ester carbonyl band is related to fatty acids,

suggesting that the difference in fatty acids and chitin content between the two species allows

them to be differentiated with great accuracy.

Results of the evaluation of each of the window with IRSSlab and IRSSfield data sets as validation

sets shows the same trend of decreasing accuracy below 0.60 and 0.50 continued (Table 3.8).

Interestingly, some models showed similar accuracies when validated with IRSSlab and IRSSfield.

For example, SVM showed consistency accuracy across both validation data sets even when small

windows (X4, X5, X6) are used, the same as with SGD. SGD shows an accuracy of 0.58 when

using X4 window. For comparison, PLS-DA accuracy across all windows were added. As with

the other algorithms, the X4 and X5 regions showed the highest accuracy, similar when using

the entire spectrum (Appendix B, Fig. B.6). By removing regions with less information, it is

easier for the model to separate the two species. This might suggest that using small wavelength

ranges decreases the variation between datasets decreases and retain some species-specific which

can be identified by classification algorithms.

Figure 3.15: Accuracy and prediction coefficients of three models logistic regression (LR), sup-

port vector machine (SVM) and stochastic gradient descent (SGD) for each window: a) X4 (1700-

1500 cm−1), b) X5 (1800-1600 cm−1) and c) X6 (1580-1480 cm−1).
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Figure 3.14: Accuracy on hold-out data set. Normalised confusion matrix for each model on

hold-out data set. Model tested are logistic regression (LR), support vector machine (SVM) and

stochastic gradient descent (SGD). Each row represents instances of true class, while each column

represents instances of predicted class. AC: An. coluzzii. AG: An. gambiae

Table 3.8: Accuracy of species prediction of LR for each spectral window in cross-validation

(CV), validation (Val) and validation with independent data sets (IRSSlab, IRSSfield)

Window Model CV Val IRSSlab IRSSfield

X1

LR 0.99 (±0.01) 0.98 0.51 0.37

SVM 0.87 (±0.01) 0.88 0.54 0.54

SGD 0.94 (±0.06) 0.89 0.44 0.44

PLS-DA 0.85 (±0.02) 0.84 0.58 0.45

X2

LR 0.91 (±0.01) 0.90 0.58 0.36

SVM 0.73 (±0.01) 0.73 0.52 0.51

SGD 0.89 (±0.06) 0.86 0.56 0.56

PLS-DA 0.83 (±0.02) 0.82 0.56 0.43

X3

LR 0.85 (±0.01) 0.86 0.55 0.30
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Table3.8 (Continued)

Window Model CV Val IRSSlab IRSSfield

SVM 0.68 (±0.01) 0.68 0.46 0.45

SGD 0.78 (±0.06) 0.78 0.55 0.55

PLS-DA 0.79 (±0.02) 0.80 0.61 0.30

X4

LR 0.94 (±0.01) 0.94 0.57 0.38

SVM 0.82 (±0.01) 0.83 0.55 0.55

SGD 0.92 (±0.06) 0.97 0.58 0.58

PLS-DA 0.87 (±0.01) 0.87 0.59 0.49

X5

LR 0.99 (±0.01) 0.98 0.51 0.35

SVM 0.89 (±0.01) 0.88 0.56 0.56

SGD 0.95 (±0.06) 0.96 0.47 0.47

PLS-DA 0.85 (±0.01) 0.84 0.59 0.49

X6

LR 0.87 (±0.01) 0.88 0.53 0.43

SVM 0.73 (±0.01) 0.74 0.52 0.51

SGD 0.88 (±0.06) 0.93 0.56 0.56

PLS-DA 0.86 (±0.02) 0.86 0.57 0.49

Evaluation of different spectral windows on IRSSlab data set for species prediction

To assess whether the trend of decreasing accuracy in species prediction in different spectral

windows can be seen in another data set, I used the IRSSlab data set exclusively for analysis.

As expected, the highest accuracy was achieved when using the complete spectrum (windows

X1+X2+X3) regarding the model used in cross-validation (Fig. 3.16) or hold out set (Fig. 3.17).

However, there was no accuracy variation between the different windows. X2 window showed

slightly higher accuracy compared to the other windows when using LR, while there was no

difference in accuracy between windows with SVM and SGD. However, when X1 and X2 were

combined, accuracy increased almost at levels when using the complete spectrum X1+X2 (Fig.

3.16 and Fig. 3.17). The reason is that the difference between species is most likely located in

the Amid I and II bands (X1 region) and also in bands related to chitin/wax related (X2). This
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was further confirmed when examining the prediction coefficients (Fig. 3.18). The model coeffi-

cients showed the relative importance of wavenumber values on the decision (species prediction).

IRSSlab most weighted prediction coefficients (most important) are distributed across the 1600

to 1400 cm−1 region (Windows X1 and X2). This distribution is different when comparing to

prediction coefficients in Glasgowlab where its most weighted wavelengths are located at 1800

cm−1 to 1700 cm−1 (Window X5) region. The differences between species in the IRSSlab data

set are exclusively due to changes in proteins and chitin (Amid I, O=C-N, C-CH3) and less due to

C=O and C-O bands which are chitin and wax only. On the other hand, in the Glasgowlab data

set, differences between species are caused by changes in fatty acids and proteins. These results

show that high accuracy for species prediction (> 80%) can be achieved by only using the region

from 1800 to 1250 cm−1 (≈ 650 cm−1). Moreover, the differences in important features between

the two data sets in species prediction are the cause of poor model generalisation.
A

B

C

Figure 3.16: A) Baseline accuracy. Classification accuracy after 10-fold cross-validation using

logistic regression (LR), support vector machines (SVM) and stochastic gradient descent (SGD)

with different mid-infrared regions: total spectra (1800 - 950 cm−1), X1 (1800 - 1500 cm−1), X2

(1500 - 1250 cm−1), X3 (1250 - 950 cm−1) and the sum of X1 and X2 (1800 - 1250 cm−1).

A

B

Glasgow Lab

IRRS Lab

Figure 3.17: A) Validation on hold out set. Normalised confusion matrix for final models on

validation tested on hold out set. Each row represents instances of true class, while each column

represents instances of predicted class.
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A

B

Glasgow Lab

IRRS Lab

Figure 3.18: B) Variable importance. Comparison of prediction coefficients between IRSSlab

(red) and Glasgowlab (blue) data sets for each wavenumber. High values (positive or negative)

suggest a wavenumber is more important on the model decision. The most import features are

located in the X1 region for Glasgowlab data set compared to IRSSlab dataset where the most

important features are located across x1 and X2 regions.

3.3.6 Analysis of spectra between datasets using Principal Compo-

nent Analysis

Analysis of PCA found two principal components which explained 77.82%, 16.83% of the vari-

ance observed in all data sets combined (Fig. 3.19a). PCA scores plot shows how IRSSfield clus-

tered towards PC1 negative values (Fig. 3.19b). Differences between the laboratory samples and

semi-field samples are more evident when comparing scores of PC1 (Fig. 3.19c). Based on PC1

loadings, wavelengths in the Amide I and II region and the absorption band at 1000 cm−1) have

negative loadings, while C = O band (1750 cm−1) and 1500 to 1000 cm−1 have positive loadings

(Fig. 3.19c). Glasgowlab have higher absorption intensity in the two regions with positive load-

ings and those intensities decrease in IRSSlab as seen in the downright trending of PC1 score

values. These differences are also seen when comparing the mean spectra of the three databases

(Appendix B, Fig. B.9). Overall, the differences in absorption bands related to proteins, waxes and

chitin present in samples from IRSSfield may explain the difficulty of predicting age and species

when models are calibrated with laboratory-reared samples and tested on semi-field reared sam-

ples. The reason is that the model learns specie-specific differences from the laboratory-reared

samples which are located in a very limited region of the spectrum, while the differences in the

samples from other laboratory and semi-field reared samples are located in other regions, making

it very difficult for the model to predict species.
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(a) (b)

(c) (d)

Figure 3.19: a) Explained variance (barplot) and cumulative explained variance (line dot) of each

PC1, PC2 and PC3. b) PC1 versus PC2 scores plot mean centred spectra of samples from Glas-

gowlab (blue) and IRRSlab (orange) and IRSSfield (green). There is a separation between IRSS-

field and IRSSlab and Glasgowlab. b) Scatter plot of PC1 scores by sample. c) PC1 loading versus

wavenumber values.
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3.4 Discussion

Here, I have presented a thorough analysis of ATR-FTIR spectral data from laboratory and field

mosquitoes. I assessed the potential of the most common approach, the use of partial least squares,

against less common machine learning algorithms for species and age prediction. Furthermore,

I analysed different scatter correction algorithms and their effect on model performance in pre-

diction of Anopheles mosquito species classification and age grading. I also quantified the effect of

using different spectral regions for analysis and the differences between samples from two differ-

ent laboratories and field samples.

PLS has been used mainly in three other studies on Aedes mosquitoes for age grading, Wolbachia

infections [222] and species identification [224]. PLS shows high accuracy in binary classifi-

cations, and our model reported similar results for species prediction (overall accuracy = 0.87).

These values are comparable with the ones obtained by Gonzales et al. [17] for An. gambiae and

An. arabiensis with accuracy of 0.82 and 0.84 respectively. There are no studies for An. coluzzii

using MIRS, but the classification accuracy of our model is above 0.9. Although, PLS has not

been used in Anopheles and MIRS, PLS has been used consistently through most NIRS studies

and our results are comparable to them [18, 19]. Therefore, PLS or ML algorithms for species

classification show similar performance when samples from the same origin are used for training

and validation.

PLS was able to discriminate between mosquitoes aged from 1 to 17 days old with overall mod-

erate accuracy (R2=0.68). This is higher compared to Krajacich, et al. (R2CV=0.39) [214] when

comparing the same algorithm and validation with samples from the same origin. The R2 val-

ues here are only surpassed by an ensemble PLS model (R2CV=0.74). Moreover, I was able to

discriminate 5 out of the 6 age categories used (without pre-processing), and 6 out of 6 (with pre-

processing); whereas Krajacich, et al. just discriminate 4. This was also true in age prediction with

Aedes [225]. However, there was a consistent tendency for over-estimation of the age of young

mosquitoes, and underestimation of older mosquitoes. Similar to Gonzales, et al. [17], very young

mosquitoes can be discriminated but in contrast to that study, our 15 days old mosquitoes were un-

derestimated. Mean predicted age was 14.13 [95% CI 13.54 – 14.71]. This over/underestimation

is caused by the use of PLS, which is a linear model and chronological age is not linear. Overall,

our results for species prediction are in line with previous studies in NIRS and MIRS. For age

prediction, the results are slightly better, considering the use of a simpler PLS model. This might

be due to the amount of information (absorption bands) in the mid-infrared spectra compare to

near infrared. Near infrared spectra consist of overtones and combination of bands from the mid

infrared region. These bands overlap to each other a not well resolved compared to PLS region.

This might mask some information, resulting in lower model performance. I chose a wider gap

between ages since, probably, there is not a significant change of the chemical profiles between
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close age groups. The issue might be trying to predict chronological age, which is how humans

perceive time, of a biological system, without understanding how it relates with physiological

age and changes in the spectrum. When comparing true age and predicted age (Fig. 3.5, we can

differentiate three groups: 1 to 4, 5 to 9 and 10 to 17. Ages with 1 day apart are very similar,

suggesting that the spectra do not change within those intervals. Studies that tried to predict

age with a higher resolution have failed in MIRS [17] and NIRS [214,220] and it is common to

wider the gap between groups with intervals of 2, 3 or 4 days, not only in MIRS/NIRS but also

in Raman [223] and MALDI-TOF mass spectrometry [211].

One of the problems with NIRS is the decrease in model prediction when tested with sam-

ples from other laboratories or field samples [214]. However, a recent study by Milali, M. et al.

2020 [218] showed ANN models with autoencoders can predict parity status from other cohorts

which were not used in model training. My results suggest that MIRS suffers from a poor pre-

diction with datasets from other origins and rear conditions. Although, high accuracy of age

prediction between different laboratory samples was achieved and to a lesser extent for species

prediction, models were incapable of predicting species and ages from laboratory samples reared

in semi-field conditions, independently of the model used. I expected at least good classification

power for species when using the IRSSlab dataset as these mosquito samples are reared in similar

laboratory conditions in terms of temperature (27 °C) [17, 310] but it was not the case. The use

of different strains between laboratories might be playing a role in the decrease of species pre-

diction. High coefficient values for Glasgowlab were located mainly at the 1750 cm−1 region for

species (Fig. 3.18) while IRSSLab coefficients were distributed more evenly between 1800 and

1200 cm−1 region. Although, genetic (different strains) might be affecting the prediction power,

rearing conditions seem to have the most influence, since the lowest accuracy was obtained when

trying to predict species and age from the IRSSfield. Temperature has an effect on CHCs pro-

files in Drosophila [311, 312]. Higher temperature exposure is related to higher concentration

of longer chain CHCs, as well as short-term changes in temperature and other selection pres-

sures (climatic conditions, physiological constraints) [313]. This is also seen in Anopheles, where

humidity and photoperiod changes CHCs concentration [314]. On top of that, colonies from

different laboratories might be highly genetic divergent [315]. These changes in cuticle com-

position are reflected in the spectra with differences in the amid I and amid II bands and notably

around 1000 cm−1 region (Appendix B, Fig. B.8 and Fig. B.9). These changes might mask the

differences between species and age. Overall, the lower variability within individuals from the

same laboratory specimens compared to counterparts from other lab or field populations, plus

temperature differences in rearing and holding conditions between laboratories, affect drastically

model performance in age and species prediction. Therefore, model training needs to include

a subset of semi-field and field derived mosquitoes in order to improve model generalisation as

shown in recent studies [199]

Scatter corrections highlighted that the Savitzky-Golay correction had a detrimental effect in
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LR and SGD models even in cross-validation, but led to an improvement when using with PLS.

However, the effect of Savitzky-Golay was detrimental when validated with independent data

sets. Decreased in model performance due to Savitzky-Golay has been seen in crickets [316].

Pre-processing tends to increase the differences between groups from the same sample batch,

however, extreme pre-processing eliminates the signal differences between groups making it

difficult for the model to find any difference, therefore decreasing its performance

Research in MIRS for mosquito surveillance is expanding, and is characterised by a move towards

more complicated algorithms such as RF or Artificial Neural Networks (ANN). However, there is

evidence that PLS can reach similar prediction performance compared to ANN [119,317] or RF

and SVM [318] but when non-linear relationships appear, ANN can be more useful [119]. These

results also support this interpretation; PLS reached similar results when compared to other ma-

chine learning models for species prediction, but for prediction of chronological age, non-linear

models (ANN) might perform better as suggested on recently NIRS studies [218,219]. Therefore,

I suggest the use of PLS as first method for species prediction and if the prediction performance

is not satisfactory, move to more complicated models (Logistic regression for example). For age

prediction, if dealing with chronological age or gonothropic cycles, ANN might be more suitable

as a starting point.

Further work is needed to assess how temperature affects spectral data. One way of doing this

is to reared mosquitoes at different temperatures and humidity while other conditions constant

remain (food, body size, etc.) and assess which bands change and how they change (peak height

and width). Doing this will give us insight on what specific compounds in the cuticle are chang-

ing according to temperature, and it might be possible to find a relationship between tempera-

ture, changes in the spectrum, age, and species. Currently, there is limited information on how

MIRS spectral data vary between laboratory colonies reared in different conditions; in response

to temperature or other local environmental conditions. However, my results differ from those

reported in a previous study with NIRS where no fundamental differences in spectra between

laboratory reared and wild mosquitoes were found using k-means [319]. However, two studies

have produced similar findings that age models derived from laboratory data do not work when

applied to field samples or field samples reared in semi-field conditions [214, 217]. The first of

these was assessing age grading in Anopheles [214], and suggested genetic variability and a lack

of control over variables such as food were responsible for this phenomenon. The second study

hypothesised this was due to differences in water content between laboratory and field derived

mosquitoes [217]. Water content can be a source of variation in NIRS, as usually samples are not

dried before spectra measurements. Differences in water content between ages groups in insects

has been reported using NIRS, where younger weevils have higher water content compared to

old ones [320]. Moreover, OH band related to water is a major band used in the detection of wheat

pests [274, 321]. Therefore, water might play a role in age and species prediction in mosquitoes.

However, the potentially confounding impact of water content was minimised in our samples
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because they were desiccated before analysis. My results support the hypothesis of fundamental

differences between laboratory samples reared in laboratory and semi-field conditions, and even

between samples from different laboratories. Therefore, due to the data mismatch, it is imperative

the use of semi-field samples or samples from different laboratories in the model calibration.

Finally, I have shown the viability of using much narrower spectral regions of around 300 cm−1

for species prediction. Although the validation accuracy decreased as the window moved to lower

wavenumber values, it never went below 70%; and remained similar across windows for the inde-

pendent sets. One thing to highlight is the lower accuracy achieved by LR compared to SVM and

SGD, which remained consistent. Except when using windows X3. I hypothesised that if model

training includes more diverse samples from different laboratories and semi-field conditions, the

accuracy for each window should increase as well. This will open up opportunities to implement

new technologies, such as Quantum Cascade Lasers, which is emerging as an alternative to more

traditional globar FTIR in the field of biomedical science for tissue classification. These lasers

have a narrower but customise wavelength ranges. Therefore, a Quantum Cascade Laser-based

spectrometer can be built according to a specific spectral window of interest for more efficient

data acquisition.

3.5 Conclusion

This study showed how traditional chemometrics can be applied to ATR-derived spectra data for

species and age prediction in the malaria vector An. gambiae. It also showed how the issue of

lower prediction power when using training and validation data sets come from different ori-

gins is caused by the mismatch (data for training is not representative of the data that will be

used when the model is deployed) and not by the model used. Moreover, it shows the benefit of

exploring narrower wavelengths and its impact in model prediction and its potential for a more

efficient way of data extraction and open the opportunity to develop custom spectrometer using

next generation mid-infrared light sources. In summary: i) PLS and PLS-DA can be used as

models for species and age prediction when using laboratory samples. ii) Scatter corrections on

machine learning models can increase model performance but Savitzky-Golay should use with

caution with models such as LR. iii) The uniformity of laboratory samples, in addition to dif-

ferences in rearing conditions, have an impact in the absorption bands mainly in the amide I,

II region and around 1000 cm−1. These changes are in agreement on how CHCs changes ac-

cording to temperature, physiological factors reported in previous studies. iv) Narrower spectral

regions of 300 cm−1 showed potential for species prediction, especially the Amide I and II region.

Therefore, there is still room for exploration. The question of how temperature affects the spec-

tra data needs to be addressed, in order to be considered when dealing with field samples. New

techniques such as transfer learning [310] can fix the problem of data mismatch by adding a small
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percentage of wild caught or semi-field samples to the training set to improve model generali-

sation. Future work should focus on how different spectral windows can be applied according

to different prediction problems.These will help us to move spectroscopy as a surveillance tool

forward into better and faster devices.



Chapter 4

Portable, Fast-swept External Cavity
Quantum Cascade Laser system for
Spectroscopy

4.1 Introduction

Infrared spectroscopy is one of the most important and versatile techniques for chemical analysis

[25]. It characterises the chemical composition of a sample by measuring the absorption of light

by exciting its chemical bonds [322]. This is possible thanks to the capacity of functional groups

to absorb infrared radiation due to changes in the dipole moment during vibration [323]. Infrared

spectroscopy therefore probes these vibrational modes [20] and, importantly, a given functional

group absorbs light at the same frequency independent of the molecule it is attached to [33].

Every different functional group absorbs at a different frequency, so an absorption spectrum of

a biological sample contains a set of the unique absorption signatures indicating the presence of

proteins, carbohydrates, lipids and nucleic acids [24,107].

Fourier transform infrared spectrometers (FTIR) are the industry standard for mid infrared spec-

troscopy across a variety of areas and applications [54]. They traditionally use Globars as a light

source that emit broadband radiation, but this extended incoherent source does not allow for

compact systems or high resolution microscopy without significant loss of signal-to-noise ratio.

Nonetheless, the use of mid-infrared spectroscopy for mosquito surveillance [17, 222, 224, 229]

and malaria diagnosis [228,230] using FTIR have shown promising results in laboratory and field

settings. However, the equipment is not without its limitations for this application. The infrared

light is emitted with a low optical power (µW range) which can limit its use with high absorbance

samples [53]. Moreover, it lacks spatial coherence and requires liquid nitrogen cooled HgCdTe

111
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(MCT) detectors to achieve high signal-to-noise ratio [324,325]. Miniaturisation of FTIR equip-

ment is also challenging due to the presence of a delicate interferometer with a physical mirror

scanning system [107, 326]. For example, the resolution of the spectrum is directly determined

by the path length difference in the interferometer. For higher resolutions, the path difference

needs to be larger. Current portable FTIR equipment offers spectral resolution not better than 4-8

cm−1 [327] while FTIR spectrometers based on micro-electromechanical systems (MEMS) have

reported resolutions of 66 cm−1 [328], which is impractical for our purposes. Other challenges

are power consumption, IR sources and infrared detectors [327].

Since Quantum Cascade Lasers (QCL) were demonstrated in 1994 [63], they have already chal-

lenged conventional FTIR thanks to the advances in performance at room temperature [73],

power output [329] and wall-plug efficiency [330]. They offer compactness [331,332], high opti-

cal output power [52], comparable SNR to FTIR when using simple non-cryogenic thermoelectrically-

cooled detectors and faster spectral data acquisition [325, 333]. Numerous studies have reported

an increased speed and resolution in chemical imaging [102,103,334], improved analysis of amide

I and II bands in proteins [53,335], increased path length for aqueous solutions [51] and accurate

protein secondary structure monitoring [336, 337] Moreover, QCLs are the core of the devel-

opment of portable and fast systems beyond biomedical applications such as stand-off chemical

sensing [338, 339] and quantification/classification of microplastics [116] which showcases the

versatility of these novel laser devices.

As evidence of mid infrared spectroscopy as a reliable tool for mosquito surveillance is increasing,

it is imperative to explore alternatives to the FTIR to improve and adapt it to the challenges in the

field. We need to build custom, compact, and field ready systems that can be deployed anywhere.

QCLs already have the characteristics needed to be the infrared light source for these new systems.

Building on current developments in room temperature operating continuous wave QCLs, here

is discussed a compact spectrometer using an external Cavity (EC) QCL-based spectrometer in

the 9-10.5 µm MIR region aiming for mosquito surveillance. First, I will describe the system

design, laser characterisation and system performance. After that, I will show the results of mid-IR

spectroscopy measurements of different samples. I shall benchmark the QCL system performance

against a commercial FTIR on the same set of samples.

4.2 Overview of the system

The spectroscopy system is designed for fast spectroscopy measurements at 9 - 10.5 µm using

an external cavity quantum cascade laser configuration. It was built by me in the Photonics

Devices and Systems laboratory at the University of Glasgow. It costs approximately £18000

excluding the computer. It has the following measurements: length x width x height = 300 mm
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x 600 mm x 150 mm, and its weight is 22 lbs. The system consists of a quantum cascade laser, a

cooling system, an external cavity (diffraction grating, scanning galvanometer) and a photovoltaic

HgCdTe (MCT) detector (Fig. 4.1). The system is controlled by software using LabVIEW with

in-house developed scripts. All components are mounted on an easy to carry optical baseplate

with handles, except for the drive electronics units.

Figure 4.1: Photography of the spectrometer. The optical table houses the main components

of the set-up: Laser, external cavity and galvo mirror. Temperature and power sources, detector

and sample holder are located externally in this instance. The size here is determined by required

flexibility of adaptation in the lab and the size of off-the-shelf mechanics and optical mounts built

on a traditional breadboard. It can be significantly miniaturised down to the ‘matchbox’ level by

integration of the mechanical parts onto a micro-bench.

4.2.1 Laser and external cavity configuration

The optical configuration of our EC-QCL set up is shown in Fig. 4.2. The Littman-Metcalf

type external cavity configuration consists of four main elements: The gain element (optical

amplifier), in this case a quantum cascade laser chip with an antireflection coating on the front

facet to inhibit lasing from the Fabry-Perot cavity formed by the front and back semiconductor

facets, a collimating lens, a diffraction grating and a scanning galvanometer mirror. The QCL

chip is Gold Tin (AuSn) soldered to an aluminium nitride (AlN) carrier, custom-made (Thorlabs

Quantum Electronics, USA) with broadband anti-reflection (AR) coated on one facet. The AlN

carrier is mounted on a copper heat-spreader with a thermoelectric cooler underneath it. The

resulting heat from the thermoelectric cooler is removed by a Corsair Hydro liquid cooler with

heat exchanger and standard PC fans to the ambient lab environment. This system is more

compact than a traditional chiller and offers an additional advantage of allowing cooling down to

-30 °C if necessary. Light is collected with a collimating lens (6.55 mm diameter, EFL = 4.0 mm,

with an 8 to 12 µm AR coating on both surfaces). The collimated beam is rotated in polarisation

by the two unprotected gold coated mirrors (m1 and m2) and directed onto a diffraction grating
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(100 grooves/mm blazed for a wavelength of 10.6 µm). This change in polarisation is carried out

because of the highest efficiency of the grating is the orthogonal polarisation to the laser emission.

As an example, typical grating efficiency vs wavelength plots are shown in Fig. 4.3. From the

grating, the first order diffraction beam is reflected into the QCL chip by the galvanometer

mounted mirror. The emitted laser light is extracted in the zeroth order reflection from the

diffraction grating. The scanning galvanometer mirror is use for wavelength selection and fast

scanning. This cavity configuration is chosen for simplicity of adaptation, and ensures that the

output beam does not move in angle, such that a sample scanning and microscopy stage can

be easily incorporated. A second benefit is that the double pass on the grating decreases the

bandwidth of the external cavity and so increases the instantaneous resolution of the laser. This

allows a route to shrink the beam size and grating size.

The laser can run in two modes of operation, pulsed and continuous-wave (CW). In pulsed mode,

the gain chip emits light in optical pulses (Appendix C Fig. C.1). The frequency, pulse period

and pulse width can be modified accordingly to specific needs. On the other hand, CW opera-

tion produces a constant power over a period of time (Appendix C Fig. C.2). Pulsed mode has

the advantage of offering larger spectral coverage and requires lower energy compared to CW

operation [75, 340]. CW offers narrower line width, it allows the implementation of enhanced

modulation techniques which can improve the sensitivity of the measurements, and it has more

spectral power compared to pulsed mode. Pulsed operation suffers from pulse-to-pulse intensity

fluctuations [341] and in our system it requires a lock-in amplifier, which adds more components

and complexity to our prototype.

Figure 4.2: Diagram of the external cavity in Littman-Metcalf configuration. The tuning ele-

ment is a galvanometer scanning mirror, combined with a fixed diffraction grating. Radiation

can be extracted from the zeroth-order diffracted light from the grating. M1, 2: gold-coated

beam folding and steering mirrors. L1: collimating lens. QCL: quantum cascade amplifier chip
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(a) (b)

Figure 4.3: Example of grating response to polarised light for 100 grooves/mm (a) or 150

grooves/mm (b).

4.2.2 Scanning system

The galvanometer, Thorlabs GVS111, 1D large beam (10 mm) diameter galvo system with a

servo driver board is used to sweep the laser wavelength. The total scanning angle of the mirror

is ±12° and repetition frequency up to 1 kHz for small angles. The mirror swings by 0.8° per

volt applied from a digital to analogue converter card. The encoder feedback channel from the

mirror position is captured by the analogue to digital converter on the same card, along with the

detector signal.

4.2.3 Detector

The detector used was an amplified HgCdTe (MCT) photovoltaic detector (2.0 - 10.6 µm, Thor-

labs, UK). It has an integrated hyper-hemispherical GaAs lens for optical immersion and a wedged

ZnSe window AR-coated for 2 - 13 µm. It has an integrated high gain amplifier which is switch-

able from 0 to 30 dB. The detector responsivity is shown in Fig. 4.4 and detailed information of

detector specifications is shown in table 4.1
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Table 4.1: HgCdTe photovoltaic detector specifications

Wavelength

range

Responsivity

x Effective

Detector Width

Output

Bandwidth

3dB

Conversion

gain p
NEP

2.0 - 10.6 µm

(6.5 µm )
≥ 0.01 A·mm/W DC - 100 MHz

120 V/W

(Gain Setting 1)

4000 V/W

(Gain Setting 8)

210 pW/Hz1/

Figure 4.4: Responsivity and detectivity of the MCT detector used in the set-up across 2 - 10

µm wavelength range (taken from Thorlabs, UK)

4.2.4 Electronics and interface

The system is controlled by a two custom-made LabVIEW programs. The first one is use for

step scanning and alignment. The LabView graphical user interface (GUI) displays the current

position of the mirror and the detector signal simultaneously. The user can set the position of

the mirror, maximum and minimum position for scanning (in volts) and the time for each point

measure in milliseconds. The result screen displays the detector signal against the mirror position

in degrees, and a two-column tab delimited ASCII text file is generate after the scan. The second

program is optimised for fast sweep scanning. The output is a waveform that drivers the galvo

mirror via the DAQ card. The user can set the number of scans and the speed of the scans. The

results display the final spectra in degrees against transmittance. A file with all the scans recorded

is generated for post analysis.
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All analogue signals from the system are connected to the computer via a DAQ PCIe card (PCIE

1802-AE, Advantech Ltd., UK). This card is a combined multichannel digital to analogue con-

verter (DAC) and analogue to digital converter (ADC). The inputs are the detector signal and the

galvanometer position. Analogue signals out of the system are a waveform to the servo driver of

the Galvo system. The power supply for the laser and thermoelectric cooler is the ITC-4001QCL

bench-top laser diode and temperature controller (Thorlabs, UK). The power source for gal-

vanometer is the GPS011-EC galvo system linear power supply (Thorlabs, UK). The system

schematic is shown below (Fig. 4.5). A lock-in amplifier was added when the laser was in pulsed

mode. The output of the detector was connected to the lock-in amplifier and, from there, the

output was connected to the DAQ PCIe card. A reference signal out of the TEC controller was

sent to the lock-in amplifier (Appendix C, Fig. C.3). The alignment of the system was performed

using a broadband pyroelectric detector (Gentec-EO, THZ51-BNC), via a beam splitter or more

simply with a mid-infrared card (Thorlabs VRC6S).

Figure 4.5: Schematic of the QCL-based setup mid-IR transmission for solids

4.2.5 Samples

Various types of samples were used to test the prototype: a calibrated and NIST traceable polystyrene

sample (PS) with a thickness of 0.3 and 0.7 µm with characteristic absorption bands located at 1028

cm−1 and 1068 cm−1. These calibrated samples were used to compare the spectra collected from

the system and a commercial FTIR. Also, they were used to characterise the speed of the system

as well as any shifts in wavelength. After that, a set of samples from consumer plastics were used to

test the prototype with real world samples and compare to the FTIR. Moreover, the samples were
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also used to assess the ability to identify different types of plastic using the spectra collected with

the prototype. Finally, to assess the collection of spectra from biological samples, the external

layer of an onion and an Anopheles gambiae mosquito were used to test the system.

4.3 Results

4.3.1 EC-QCL spectral characterisation

Figure 4.6 shows the emission spectra of the EC-QCL system at different galvanometer angles

with a current injection of 1.7 A in continuous wave (CW) operation collected with an FTIR

(vertex 70v, Bruker) with a deuterated triglycine sulfate (DTGS) detector, 32 scans with a res-

olution of 0.3 cm−1. The wavelength of the laser can be tuned over approximately 140 cm−1,

from 960 cm−1 to 1100 cm−1. The maximum optical output power was 12 mW at 1049 cm−1

and output power follows the spectral profile (Fig. 4.8). Instantaneous linewidth measured by

the FTIR is 0.3 cm−1, and it was constant across the tuning range of the laser (Fig. 4.8). Spec-

tral purity was characterised by moving the galvanometer at steps of 0.001 volts and collecting

the emission spectra at each position. The wavelength varied discontinuously with mode hops.

However, the mode hops were not constant, varying from 0.3 cm−1 to 0.9 cm−1 (Fig. 4.9).

Figure 4.6: Normalised emission lines of the EC-QCL during the wavenumber scan. Each

measurement was collected by rotating the scanning galvanometer mirror by 0.1 volts. Current

injection of 1.7 A.
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Figure 4.7: Measured CW output power of the EC-QCL as a function of wavenumber with a

power meter. The maximum power peak of 12.6 mW was achieved at 1040 cm−1.

Figure 4.8: Laser spectrum of the EC-QCL at the wavelength of 1044.3 cm−1 with a linewidth

of 0.3 cm−1.

Figure 4.9: a) Step-scan measurements of emission spectrum of the EC-QCL during a scan

between 950 cm−1 and 1100 cm−1 recorded with 0.2 cm−1 spectral resolution b) Wavelength

measurements at step scans of 0.001 volts. Mode hops range from 0.3 to 0.9 cm−1
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Further characterisation was performed by time-resolved spectral measurements of the laser out-

put at 5 Hz with a sine wave from a wave generator driving the galvanometer mirror. The

EC-QCL lasing range varied from 1110 cm−1 to 950 cm−1 following the sine wave movement

of the mirror. As a result, one down-sweep and one up-sweep of the tuning range is achieved

each cycle, as show in Fig. 4.10.

Figure 4.10: The time-resolved emission spectra of the EC-QCL in CW mode with a current

injection of 1.7A and temperature of 19 C. Scanning galvanometer is modulated with a sine-wave

at 5 Hz

This tuning methodology allows for two spectra per cycle to be captured. At this speed, both

sweeps are found to be identical in power vs wavenumber characteristic.

Two different diffraction gratings were tested in the system based on the number of grooves

per millimetre. The change from a 150 groove/mm grating to a 100 groove/mm increased the

wavelength range by a factor of two from 15.07 cm−1 to 30.78 cm−1 when moving the mirror

over an angle of 1°. The general diffraction grating equation [342] is given by:

qλ = d(sinα+ sinβ) (4.1)

where q is the order, λ is the wavelength of the incident light, d is the groove spacing and α and

β are the incident and diffracted angles. In our set-up, q=1, λ = 9.6 µm, d = 10 µm and α=50°, the

angle of diffraction β is 11.1°. The diffraction angle is higher when using 150 grooves, which is

42.34°. The change in diffraction grating have a direct effect in the angular dispersion given by

the equation 4.2 for Littman-Metcalf configuration:

D = 2
∂β

∂λ
=

4

λ
tanβ (4.2)

By reducing β using a diffraction grating with fewer grooves per mm, the angular dispersion

reduces from 21.86 to 4.7° which matches our experimental measurements of ≈ 4.5° (Fig. 4.9a).
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4.3.2 Processing EC-QCL data

The fast swept scan mode of the laser required preprocessing due to the absence of a lock-in-

amplifier, the high number of scans collected and to eliminate any instrument noise and mechan-

ical errors. One hundred scans were collected for background and polystyrene sample, each scan

consisted of 1000 data points. The galvanometer positional values were scanned for duplicates.

Approximately, 1% of the 1000 data points were duplicates. Three processing pipelines were

tested, two of them were modifications from Schwaighofer et al. [343]. The first one was the

co-addition of the 100 scans, the calculation of the final transmittance and the application of a

Gaussian filter to reduce overall noise. A Gaussian filter is a low pass filter in which the degree

of smoothing can be set by the value of standard deviation of the distribution (notated here as

sigma). The second and third pipeline consisted of smoothing each scan using Savitzky-Golay and

a Gaussian filter, respectively. To eliminate misaligned scans, the similarity index was calculated

for each scan. The similarity index for each scan is calculated by the following equation:

similarity index =
100∏
i=1

r|(xt, xi)| (4.3)

where r(xt, xi) is the correlation coefficient between one scan and each of the remaining 99 scans.

The values range from 0 to 1 [344]. Scans with similarity index values less than 0.90 for Savitzky-

Golay and 0.98 for Gaussian filter were discarded. Approximately, 30 scans were discarded when

using Savitzky-Golay and 3 scans when using Gaussian filter. The mean similarity index of the

raw data was low (SI = 0.32) but after smoothing, it increased up to 0.99 depending on the filter

used (Appendix C, Fig. C.4). After that, the scans were averaged and the final transmittance was

calculated by the equation:

T =
I

Io
(4.4)

The use of the first method preserved the range of the laser, and the filter managed to eliminate

most of the spectral noise (Fig. 4.11), however, the Gaussian filter reduced slightly the intensity

of the peak at 1027 cm−1, when sigma values were high (around 10). In the second pipeline,

Savitzky-Golay filter did not reduce the intensity of the peaks, but reduced the range of the

measurement. This is mainly due to the use of a high window value (Appendix C, Fig. C.5).

Moreover, the noise in the 1050 cm−1 was still present. The third method showed a higher noise

reduction, high and consistent similarity index values across scans and by keeping sigma value at

5, band intensities were not affected.
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Figure 4.11: PS spectrum collected from 100 co-added scans using EC-QCL (black line) and

processed with Gaussian filter (red line).

4.3.3 Speed characterisation

To assess the spectroscopy capabilities of our system at different scanning speeds, the absorption

spectra were measured from a calibrated sample made of polystyrene (PS) of 0.3 µm thickness

with characteristic absorption bands located at 1028 cm−1 and 1068 cm−1. A triangle wave was

used to drive the mirror in a linear scan rather than a sinusoidal wavelength sweep as before.

This triangle wave was produced by the data acquisition card to the galvanometer at different

frequencies ranging from 127 to 500 Hz. Spectral measurements were co-added for an average

of 100 scans for each, background and sample measurements, with a total acquisition time of 2

seconds per sample at 127 Hz reducing to 0.8 seconds at 500 Hz. Each measurement consisted

of 1000 data points separated by ≈ 0.3 cm−1. The two main PS absorption bands at 1028 and

1069 cm−1 can be seen at all the different scan speeds (Fig. 4.12). Spectra show high correlation

between scan rates, however, there is a slight shift between at faster scanning speeds. The largest

shift occurs at 500 Hz of ≈ 1.2 cm−1 when compared to the 127 Hz. Laser range was also affected

by frequency scans, as expected, since the moving mass of the mirror is unable to reach larger

deflection angles with a given input power to the galvo motor. It was reduced from 135 cm−1

to 80 cm−1 when reach 500 Hz (Fig. 4.13). The shift is likely to be caused by a delay due to

the rise and fall time of the pyro-electric sensor through the data acquisition card and the more

instantaneous reading of the mirror encoder position. The spectrum also shows noise in the 1050

to 1100 cm−1 region. This is caused by the lower optical power of the laser, which decreases its

S/N ratio.
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Figure 4.12: Top: Transmission spectra from polystyrene calibrated sample at different scanning

frequencies. Bottom: Overlap spectra of PS from 127 Hz to 500 Hz

Figure 4.13a shows the range in cm−1 as a function of scanning frequency. As expected, the

range of our system decreases as frequency scan increases from 130 cm−1 at 125 Hz to 80 cm−1

at 500 Hz. While increasing the speed from 127 to 220 Hz or 317 Hz does not reduce the

range dramatically (134.48, 133.67 and 125.51 cm−1 respectively), reaching frequencies of 417

and 500 reduced the range to 22.76 cm−1. The average optical output power was also measured

at different frequency speeds (Fig. 4.13b). By reducing the range of the galvanometer, the optical

output power increases from 2.07 mW at 125 Hz to 3.3 mW. This is due to the decrease in angle

of the galvanometer at high frequencies, therefore, the mirror spends more time in the centre of

the laser range where the optical output power is at its maximum. The highest tuning rate of the

EC-QCL in this configuration was achieved with the scanning galvanometer sweeping at 417

Hz, with a resulting tuning rate of 400 µm/s (Fig. 4.13c). Higher tuning speeds would require a

lower mass mirror, a higher drive current unit, or a resonant scanning galvanometer, where the

tuning speed is fixed to the oscillation frequency of a sprung mirror.
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Figure 4.13: a) Tuning range decreases as a function of frequency. b) Average output power

decreases as range increases. c) Resulting tuning rate in µm/s at different scanning speed.

4.3.4 Mid-IR Spectroscopy measurements

Polymer identification

Mid-IR spectroscopy measurements were tested first on plastic samples. To assess the agreement

between spectra collected from a commercial FTIR and the EC-QCL, a calibrated PS sample

and a bottle label sample were used. Spectra were collected using transmission in step-scan mode

(Pulse mode, 1.45 A, duty cycle 50%, frequency 5 Hz, pulse period 200 ms, pulse width 100

ms) with a time acquisition of 100 seconds per scan. The spectral features of the two samples

can be detected, and there is a good agreement between EC-QCL and FTIR (Fig. 4.14a and b).

Polypropylene characteristic main absorption bands at 972 cm−1 (CH3 rock, C-C stretch) and

997 cm−1 (CH3 rock, CH3 band, and CH bend) [345] were detected with additional bands at

1045 cm−1 and 1083 cm−1 (Fig. 4.14a). The aromatic CH bend at 1027 cm−1 in the calibrated

PS sample was also detected and in agreement with the data from the FTIR (Fig. 4.14b). I

also compared industrial grading samples of PP and PE against consumer products of the same

material. PP and PE samples showed similar absorption bands with differences in transmittance

(Fig. 4.14c and d). These differences may be due to local differences in concentration and density

across the samples. It should be noted that PE does not have important absorption bands in this

region, causing the variability in the number of bands between samples.

After the initial assessment, seventeen plastics samples from consumer products were used with the

aim to identify them based on their infrared spectra. Most of the plastic samples were translucent

with a wide range of colours. The samples came from labels, covers or containers for food pack-

ing and domestic cleaning products. Initial PCA results showed a clear clustering pattern similar

to the material indicated by the sample’s manufacturer (Fig. 4.16). The first principal component

accounts of the 90.5% of the total variation and separate PET from PE. The second principal com-
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ponent accounts for 7.9% of variation and appear to separate PE from PET and PP. Polyethylene

terephthalate spectra were very similar due to the low transmittance in the 1100 region caused

by two absorption bands at 1096 cm−1 and 1050 cm−1 which are assigned to methylene group

and vibrations of the ester C-O bond [346]. Polyethylene samples showed absorption bands at

1050 cm−1 and 1080 cm−1, but they were not consistent across samples. Polypropylene samples

were also uniform across samples, except a milk bottle cap with high absorption bands at 974 and

999 cm−1 (Fig. 4.15). The spectra from the three types of polymer were sufficiently different to

from defined clusters.

Figure 4.14: Transmission spectra of plastics from consumer products from a) bottle label b)

calibrated PS sample c) PP d) PE obtained with the EC-QCL (one scan, 200 seconds acquisition

time) and with a commercial FTIR (16 scans). Congruence of spectral features between the two

systems are comparable.
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Figure 4.15: Mid-IR spectra of consumer products collected by EC-QCL. Polypropylene - PP

(blue), Polyethylene terephthalate - PET (orange) and Polyethylene - PE (green))

Figure 4.16: PCA scores scatter plots of the 17 consumer plastic products coloured by material:

PP (blue), PET (orange) and PE (green). The material of each sample was identified by the

manufacturer information.

Fast-swept scans were also tested on the same plastic consumer products. Agreement between

FTIR and EC-QCL on the main absorption bands was evident (Fig. 4.17). The EC-QCL spec-

trum contains more noise since it was unfiltered. A difference in the amount of transmittance in

the main peaks at 974 and 999 cm−1 and a shift in the baseline is evident.
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Figure 4.17: Transmission spectra of polypropylene sample obtained with the EC-QCL (acqui-

sition time ≈ 1 second, 100 averaged spectra), and with an commercial FTIR (acquisition time

20 seconds, 20 averaged spectra)

Biological samples

Mid-IR transmission spectra from biological samples were recorded using fast-swept mode. A

spectrum was acquired by continuous tuning of the galvanometer across the full spectral range

(950 - 1100 cm−1) with a tuning speed of 150 µm/s and an instantaneous spectral resolution of

0.3 cm−1 (laser linewidth was 0.3 cm−1 at full width half maximum, FWHM). One hundred

scans were averaged per spectrum for background and a further for sample transmission for a

total acquisition time of ≈ 2 s. The samples used were an external layer from an onion and a

whole mosquito (An. gambiae). The onion did not require processing (it only needed to be dry)

and it was just positioned in front of the laser. The mosquito samples were processed with the

KBr disc method for transmission measurements. KBr method consists of grinding the sample

with KBr powder. The resulting mixture is then compacted using a press until a translucent disc

is obtained. This facilitates transmission measurements. Savitzky-Golay smoothing was applied

to the final spectrum and the second derivative was calculated.

KBr is infrared inactive, therefore is widely used as a substrate for transmission measurements

since there will not be any bands associated with the KBr disc [347,348]. Moreover, as mentioned

before, a background of a KBr disc without the sample was taken to correct for humidity and

presence of CO2. From the onion sample, four absorptions bands were identified at 990, 1014 and

1035, 1056 cm−1. The region of 1800 to 900 cm−1 contains bands from cellulose and pectin [349].

The shape of the raw onion spectrum collected with the EC-QCL shows variations in the region

1050 to 1100 cm−1 (Fig. 4.18a left). Comparison between FTIR and EC- QCL second derivative
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spectrum found agreement with three out of the four absorption bands. The band at 1056 is not

well resolved in the EC-QCL spectrum (Fig. 4.18a right). Similar results were obtained with

the mosquito sample (Fig. 4.18). Three absorption bands were identified at 988, 1029 and 1056

cm−1. Band 1029 and 1056 are related to chitin [17, 292]. Band assignments are listed in Table

4.2. The shape of the raw spectra is comparable with the FTIR, however, the baseline shift in

the 1050-1100 cm−1 region is observed. In comparison, between the second derivative spectra,

there is an agreement between bands, however, the artefacts of the spectrum from the EC-QCL

are amplified by the second derivative method.

(a)

(b)

Figure 4.18: Mid infrared spectra of an a) onion dried external layer and b) Anopheles gambiae

mosquito recorded with the EC-QCL setup (green line) and with a commercial FTIR (blue line).

Black dashed line show the agreement of the spectral features of the second derivative between

the two systems.
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Table 4.2: Assignment of wavenumber values found and tentative band assignments in mosquito

and onion sample using the EC-QCL prototype [17,292,349]

Wavenumber (cm−1) Band assignment Compound

Mosquito

988 – –

1029 C-O Chitin

1056 C-O Chitin

Onion

990 – –

1014 ν(CO)(CO),ν(CC),δ(OCH), ring Pectinate

1035 ν(CO),ν(CC),ν(CCO) Cellulose

1056 ν(CO),ν(CC),δ(OCH) Pectin

4.4 Discussion

Here, I have proposed the use of a fast swept EC-QCL system for mid-IR spectroscopy. The

system can scan at repetition rates of between 117 Hz and up to 500 Hz with a spectral range

of 135 to 80 cm−1 respectively and with maximum tuning rate of 400 µm/s. It has been used to

collect spectra from consumer plastic products, thin layers and KBr disc processed samples.

Our system can reach speeds up to 500 Hz with a tuning range of 80 cm−1. As far as we are aware

of, our system is the fastest when comparing tuning rate with systems with the same external

cavity. Reported EC-QCL speeds with the same external cavity configuration range from 10 Hz

for broad tunability (1425-1285 cm−1) [350], 100 Hz (2105-2240 cm−1) [351], 200 Hz (950-

1050 cm−1) up to 1 kHz for spectral windows of 1 to 2 cm−1 [338]. Systems with different

configurations such as Littrow with MOEMS mirror scanners can reach speeds up to 300 kHz and

tuning ranges of 300 cm−1 [339]. Fast speeds are useful for obvious reasons such as increase the

number of samples can be measure but also for real-time gas monitoring, combustion/explosion

diagnostics [352] and chemical imaging [334]. At the moment, our EC-QCL can take 100 spectra

in approximately 1 second without any optimisation. Even though, the system would require

another QCL gain chip to increase the spectral coverage to 1700 to 1500 cm−1, that will increase

the scanning time up to 2 seconds per sample. These scanning times can be reduced by decreasing

the amount of spectra collected per sample.

The system performed well in step scan mode when collecting polymer spectra. Spectral features
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of PP, PE and PET were identified, and spectra were similar to those collected by FTIR. PP spe-

cially has strong absorption bands in our EC-QCL region. Moreover, PS is also a good candidate,

as shown by the spectrum from the calibration reference sample. PET-labelled samples absorbed

most of the infrared light in the 950 - 1100 cm−1 region in transmission mode, except for a small

region near 999 cm−1. PE has strong absorption bands but does have one small feature at 1050

cm−1. Significantly, the spectra between the three types of plastics are sufficiently different in

that spectral region, and that difference can be used for polymer identification. Two studies us-

ing QCL have been carried out for this application. Michel, A. et al. [116] used an experimental

set-up based on a commercial EC-QCL by Daylight Solutions. They were able to identify PET,

high density polyethylene (HDPE), low density polyethylene (LDPE), PP, and PS in diffuse re-

flection mode in combination with linear discriminate analysis with an accuracy of 97%. I show

here that even with a basic PCA analysis, our samples already well clustered by the tree types of

plastics used, therefore, I hypothesise that a very high accuracy can be achieved using machine

learning algorithms and our EC-QCL system. Moreover, our EC-QCL has a speed advantage

of 2 seconds of acquisition time for 100 averaged spectrums compared to 5 seconds acquisition

time for 1 spectrum. Apart from fast scanning speeds, the application of plastic identification also

needs to consider particle size. For example, samples from seawater contain microplastics with

sizes less than 10 µm, which remain challenging for current FTIR systems. However, QCL-based

systems have achieved sensitivity to five times more particles under 10 µm [117]. Future work

should focus on discriminating other types of plastics such as poly-carbonate (PE), polystyrene

(PS), poly(ethylene-vinyl acetate) (EVA) and polyurethane (PU), as well as assessing the particle

size sensitivity of the system.

I have demonstrated the use of our custom-built EC-QCL for acquiring spectra from biolog-

ical samples. The onion was used to assess if there was any shift in the position of absorption

bands when comparing FTIR and ECQCL measurements. The chose of an onion was due to its

availability, since other biological samples (from other insects) were not available. Both, onion

and mosquito measurements were carried out in transmission mode. Due to the thickness of the

onion, it did not require pre-processing with KBr. On the other hand, mosquito sample did

require sample pre-processing with KBr. Both samples showed a high agreement seen in the

position of the absorption bands when comparing with measurements using a commercial FTIR.

However, due to the uneven power density of the laser across the sample due to the high spatial

resolution of a coherent laser source relative to the incoherent source from the FTIR, aberrations

on the spectrum were present. This can be remedied by optimising the power density of the laser

to have a more Gaussian shape across a more suitable spots size. Processing the sample into a KBr

disc increases the time of sample measurement by at least 1 minute per sample. I chose to process

the sample with KBr because the system at that time can only perform transmission mode, which

is the easiest to assemble and test. Moreover, the thickness of the mosquito makes it impossible

to measure a whole mosquito in transmission mode, which is why it needs to be processed into a
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KBr pellet. However, QCLs can be adapted for diffuse reflection and ATR [353–355]. As shown

in chapter 2 and by Sroute et al. [224], DRIFT is a viable alternative to collect mid infrared spectra

from mosquitoes. The implementation of a DRIFT set up is fairly easy (one is already built in the

laboratory but due to COVID-19 lock-downs there was no time to collect enough data to present

in this thesis) and future work should focus on testing the performance of the sampling technique

with whole mosquitoes and EC-QCL. Examples of high performance EC-QCL using diffuse re-

flectance can be found in analysis of pharmaceutical formulation [356,357]. Using this approach

allows non-contact and non-destructive measurements. The range of our system is quite small

compared to the 400-4000 cm−1 range of commercial FTIR use on previous studies in Anopheles

mosquitoes [17,229] and for malaria diagnosis [230]. However, not all the mid-infrared region is

needed for good discrimination. For example, species identification in Aedes has been carried out

using only the 1700 to 600 cm−1 region [224]. In malaria diagnosis from blood samples, most

of the model coefficients were located at 1100 to 800 cm−1 region [230]. Even though the lim-

ited range of the QCLs can be seen as a disadvantage, not having to record the whole spectrum

makes QCL system more efficient and faster compare to FTIR. This benefits not only for large

volumes of spectral collection but also for future applications such as chemical imaging. If incre-

ment of spectral range is needed, gain chips with multiple-stage hetero-cascading active regions,

can increase the spectral range to 772 cm−1 [87]. Also, multiple QCL gain chips with different

wavelength ranges can be combined, extending the range accordingly to specific needs. Com-

mercial systems have up to 4 gain chips for a coverage of 5.4 - 12.8 µm (800 to 1800 cm−1) [358].

Therefore, there is great potential of EC-QCL for mosquito surveillance thanks to its versatility

and customisable nature.

The noise at the 1000 cm−1 region of the system is due to the uneven spectral power density.

Usually, systems show a Gaussian-type distribution of power, however our gain chip has a very

steep increment in power in the mentioned range. Therefore, not all the wavelengths have an

even power. This is more evident when running the system at full speed, where the overall

power decreases and its signal-to-noise ratio also decreases. This can be overcome by improving

the alignment of the system and by miniaturisation onto a more stable micro-bench rather than

the large traditional optical breadboard. Slight misalignment between the galvanometer and the

diffraction grating can cause loses in power and range. Another way of removing noise is by pre-

processing the signal. Averaging scans can help to remove noise, but it cannot eliminate it if the

noise is not random [359]. A variety of filters such as Savitzky-Golay, and Gaussian filter utilised

here showed and improvement in the signal but other filters such as Fast Fourier Transform

(FFT) can help. The addition of similarity index here helped to avoid the use of high values of

sigma by removing misaligned scans. This technique has been proven useful to increase S/N

ratio and sensitivity [53, 343]. Another way to improve S/N ratio is adding balanced detection.

Balanced detection consists of splitting the laser signal by a beam splitter or beam sampler into

a reference signal and sample signal. Both signals are detected with matched detectors, and the
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reference signal is subtracted from the sample signal in real time. This process effectively cancels

all electrical noise [360] at least up to the sample plane. This method can reduce noise by 20

times [53], however, the use of two detectors increases the cost and complexity of the setup

and limits portability. Therefore, a compromise between portability, noise and cost needs to be

addressed before choosing a given spectroscopy system going forward.

4.4.1 Future work

Future work should focus into three main areas: increasing wavelength range or move to another

mid-IR region, diffuse reflectance as sampling technique and increasing scanning speed. For the

wavelength range, even though 950-1100 µm is an important region for biological applications,

the laser range can be extended by at least 100 cm−1 accordingly to the gain chip manufacturer.

Moreover, the 1700-1500 cm−1 has shown to be important for age grading mosquitoes [222,310].

Therefore, acquiring gain chips in the amide I region should be put into consideration. Second,

the main motivation of optical techniques is the non-contact non-destructive characteristic to

measure samples. Focusing on development of a diffuse reflectance setup is key. Even though,

thorax and abdomen are high absorbance tissues due to the thickness, high power lasers can

overcome this issue. Diffuse reflectance also can increase the high-throughput nature of the

system, by reducing sample processing time. There would be no need for KBr pellet processing

or positioning the sample under the diamond crystal as in ATR. Moreover, automatisation of

sample measurements by incorporating carousel-type holders can greatly increase the amount

of samples that can be measured in a given time. Finally, the speed of the laser sweep can also

be further enhanced by changing the mirror scanning system. Options outside traditional galvo

systems are oscillatory scanners (MOEMS and resonant mirrors) and rotary (polygon) scanning

systems. QCL systems with MOEMS diffraction gratings can achieve speeds up to 975 Hz with a

broadband range in the Littrow configuration [339]. Resonant mirror scanners are also a suitable

option for high scanning speeds. Off the shelf resonant scanners can achieve 8 kHz to 12 kHz

[361]. However, there is no full control of position or scanning speed compared to traditional

galvo scanners. Polygon mirrors, or multi-facet mirrors, offers fast scanning speeds and relative

compactness. Through the use of such polygon mirrors, fast-swept systems in the near infrared

targeted at optical coherence tomography (OCT) have increased scanning speeds to 50 kHz [362]

and 86 kHz [363] using polygon mirrors. The inclusion of these systems can greatly increase the

overall speed of future prototypes.

Finally, the prototype at this stage cannot be used in the field. The modifications needed to test it

in the field would be: the reduction of the external cavity length, by changing the XYZ stage and

eliminating the 3 gold mirrors, so the light will hit directly to the diffraction grating. This will

eliminate the difficulty to align the laser and will increase the laser power, increasing its S/N and

probably the range of the gain chip. By reducing the size of the external cavity, a small diffuse
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reflectance module with a small carousel-type holder can be mounted in the same breadboard

along with the detector. In addition to that, an enclosure to protect the system, changing the

PC for a laptop and an adding a small USB DAQ can enhance even further the portability of the

system. These fairly easy changes would make the system ready to be tested outside controlled

conditions.

4.5 Conclusion

In this chapter, I have demonstrated the use of a fast swept continuous wave EC-QCL system

for mid-IR spectroscopy in mosquito samples and polymers in the region of 950-1100 cm−1.

In summary: i) High speed and high tuning rate were achieved by using off-the-shelf optical

components, which also means that there is plenty of room for future optimisation. ii) The

system can collect spectral information from polymers in consumer products (PP, PE, PET) and

PCA cluster samples according to polymer type. iii) Spectral data from biological samples, onion’s

external layer of whole An. gambiae processed in KBr disc were obtained at high speeds of 100

spectra per second with little optimisation. iv) Absorption bands in the spectrum from mosquitoes

matched their position comparing with commercial spectrometers. The current prototype has

the potential for extreme miniaturisation, and also lower cost for its use in the field.



Chapter 5

General Discussion

5.1 Overview

Mid infrared spectroscopy has the potential to become an additional tool for mosquito surveil-

lance. Studies have shown promising results when using laboratory, semi-field and field samples

for species identification and age grading in Anopheles and Aedes mosquitoes [17, 222, 224, 310].

Furthermore, advances in mid-IR light sources have opened the development of faster and better

spectrometers with increased portability and miniaturisation, easy integration, and lower cost.

These characteristics are appealing for the development of a field-ready spectrometer for real-

time mosquito surveillance. Therefore, I developed a fast swept QCL-based spectrometer using

the 8-11 µm region, aiming for age and species prediction. Due to the ability of QCLs to pro-

duce high power mid-IR light and focus it into a small spot size, I investigated the viability of

collecting spectra from different mosquito parts using µDRIFT and their use for species, age and

cuticular insecticide resistance prediction. Moreover, I identified the most informative region

for species prediction from ATR derived data using supervised machine learning to implement

future QCLs. Understanding the potential of different tissues and their use with µDRIFT for

mosquito surveillance, what wavelength regions are important for efficient data acquisition and

how semiconductor lasers can be integrated for next-generation spectrometers, can help to ex-

pand MIRS into a routine tool in mosquito monitoring. Here, I review the principal findings and

their implications with respect to the use of infrared spectroscopy for mosquito surveillance.

5.2 Principal findings/Implications

This study has made the first step towards the use of QCL-based system for spectroscopy of insect

disease vectors. The fast swept EC-QCL system developed here from off-the-shelf components
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can already achieve fast scans at speeds from 127 Hz to 500 Hz, with a maximum tuning rate of

400 µm/sec. A sample’s spectral profile can be obtained in ≈ 2 seconds, collecting 100 scans of a

background and the sample when using at 127 Hz. As the main application of this system was for

mosquito spectroscopy, the prototype was able to collect mid-IR spectra from mosquito samples

processed into a KBr disc in transmission mode with high agreement in the position of absorption

bands compared to a commercial FTIR. However, there are still optimisation steps needed to

correct distortions of the spectra and decrease overall noise. In addition, the system needs to be

adapted for diffuse reflectance measurements to avoid process the samples. Overall, our QCL

system is suitable for fast-swept MIRS of polymers and mosquitoes in KBr pellets. Quantum

Cascade Laser-based systems have been tested through a wide range of applications. With the

increase in the number of companies building gain chips and the commercial availability of ready-

to-use systems for spectroscopy and micro spectroscopy, this technology will become easier to test

in vector research. Now that our understanding is expanding in terms of how infrared data from

the mosquito cuticle can be related to biological traits, it will become increasingly straightforward

to adapt QCL technology to already identified needs, (i.e., custom gain chips to cover discrete

important regions of the infrared, automated sampling, smaller and portable spectrometers). This

is happening already with bulky and high maintenance systems such as µFTIR that have been

replaced with commercial QCL counterparts which are a fraction of the size, with faster data

acquisition speeds, and without the need of LN2 cooled detectors. Quantum cascade laser-based

spectrometers are an attractive alternative to expand the area of spectroscopy to disease vectors.

As QCLs have a limited wavelength range, I tested how choosing smaller regions of the infrared

window affects species prediction accuracy. When using laboratory samples, a region of 200 cm−1

in length located at 1700 cm−1 was enough to distinguish between An. gambiae and An. coluzzii

with very high accuracy (> 0.98). The same tendency of different windows having different

accuracies was also found in other data sets. Overall, smaller windows of ≈ 300 cm−1 located in

the Amide I and II region or the combination of two windows can be used to achieve relatively

accurate species prediction in Anopheles. This goes in line with previous studies showing that not

all the spectrum is needed for predictions, and that specific regions are more important than others

[222,229]. These results can be used to find more efficient ways to collect data, increase sampling

speed and explore QCL based systems with narrower wavelength ranges available compared to

FTIR equipment.

This work adds evidence of the use of legs for species and age prediction in mosquitoes, and for

the first time in An. gambiae. Infrared spectroscopy is on its way to become a complementary

tool for mosquito surveillance, due to its straightforward implementation, the minimal training

needed to operate the equipment, and its high throughput at a lower maintenance cost com-

pared to molecular techniques. Current FTIR studies in mosquitoes rely on ATR as a sampling

technique to extract spectral information [17, 199, 222]. Attenuated Total Reflection is a robust

technique for solids, however, one of the disadvantages is its destructive nature to the mosquito
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sample. Moreover, the requirement of pressing the sample against the crystal limits the sampling

speed and challenges any possibility of automated sampling. Additionally, collecting localised

spectra from specific body parts such as legs or wings is not possible due to the small amount of

tissue these parts have. Here, I demonstrated how the use of µDRIFT can overcome these lim-

itations. First, by measuring the backscattered light from the sample, the destructive nature of

ATR is eliminated, and its sampling speed is increased. Second, by using a microscope to focus

the infrared light onto smaller spots, spectral information from legs, wings or any section of the

mosquito can be extracted. Age prediction into categories of 3 days or 10 days old was possible

(mean accuracy of 77.1% ± 6.5%) and, to a lesser extent, species prediction between An. gambiae

and An. coluzzii (mean accuracy = 69.1% ± 7.9%). Age prediction accuracy is lower compared

to NIRS studies [214, 217]. However, by increasing training sample size, model performance is

likely to improve. I also investigated whether this method could distinguish between 3 mosquito

strains from two species (Kisumu, Tiassale and Ngousso) that vary in cuticular resistance to in-

secticides. Preliminary results showed strains could be differentiated into those with (1 strain)

and without cuticular resistance (2 strains) with an accuracy of 71.3% ± 8%. This raises the pos-

sibility that some important insecticide resistance phenotypes could be identifiable using MIRS;

However, further work is needed to test this as the preliminary results here could be confounded

by other factors such as the use of different strains. The relative high accuracy for age grading

opens the possibility of testing the hypothesis that different tissues might be better suited for the

prediction of specific biological traits. This can help us improve our understanding of how dis-

tinct morphological tissues contain different information for different biological traits. Previously

only one study has used µDRIFT to analyse mosquito legs for species prediction, in Aedes [224]

and two others used this approach for specific analysis of insect wings [292, 364]. The success-

ful demonstration of this approach on Anopheles legs highlights this approach could be broadly

transferable to a range of different insects and vector species such as Tsetse flies (Glossina genus),

where morphological methods (ovary cycles) cannot be applied to male. Gene expression assays

have shown changes across age of genes related to cuticle proteins in Tsetse [365]; further high-

lighting the potential value of MIRS for age grading in these species. This will open opportunities

for new lines of research to characterise disease vectors (or other insects) using MIRS.

This work also revealed how PLS algorithms are still an option to use for prediction of mosquito

species and age using MIRS data. PLS had similar accuracy for species prediction and age grading

compared to other machine learning models when using data from the same origin. It also high-

lighted how PLS and other machine learning algorithms could not generalise enough to predict

unseen data from other laboratories and from different rearing conditions. The main cause for

this was the mismatch (i.e., spectra between data sets are vastly different between training and

test sets) rather than the algorithms used. This was apparent when samples clustered together

accordingly to the rearing conditions when using PCA. Also, the model coefficients for species

classification emphasised different regions of the spectra depending on which data set was used
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for training. This creates the necessity of having training data sets from a variety of places and

having them updated regularly to have training data sets that match the real-world field sam-

ples and have high prediction accuracy. This practice is usually used in state-of-the-art image

recognition, where models are trained with billions of samples [366].

5.3 Limitations/Future work

It is important for future development of the QCL prototype to focus on overcome the limita-

tions of the system. First, using KBr treated samples is not optimal, therefore, the exploration of

other methods for spectral acquisition techniques needs to be tested. A diffuse reflectance set up

was already built at the Photonics Devices and Systems laboratory and preliminary measurements

were performed on whole mosquitoes, however the process was interrupted by COVID-19 lock-

downs and the results were not included in this thesis. The prototype diffuse-reflectance module

can benefit of the development of an automated sample platform to increase sample processing.

Second, the addition of a gain chip that covers the amide I and amide II region should be added due

to its importance for species and age prediction. The gain chip used was already bought before

starting this project and the range was chosen based on previous studies on glucose monitoring

and not on studies of MIRS in mosquitoes (which were not published at that time). The current

range is useful not only for glucose monitoring [54, 109], but for ethanol and breath acetone

measurements [113], malaria detection in blood [228,229] and urea [228]. However, this region

proved to be challenging to assess mosquito cuticle due to the absence of very strong absorption

bands. Third, the use of quantum cascade detectors (QCD) to overcome the issue of saturation.

TE-cooled MCT and pyroelectric detectors in the mid infrared region have a low power dy-

namic range (few mW) which causes saturation effects when using high power QCLs. Most of

the QCL-based systems need to attenuate the power output of the laser with sapphire windows or

a mesh to overcome the detector saturation, but this hinders the advantage of using high power

QCLs. Quantum cascade detectors [367] show a wider dynamic range compared to TE-cooled

MCT or pyroelectric detectors, allowing the use of the full power of the QCL gain chip. This

type of detector has been already used in gas sensing systems [368,369] and liquids [370], showing

similar performance compared to LN2-cooled MCT detectors. All these options and limitations

need to be considered in future developments of the prototype. Once all these changes are imple-

mented, the next step should be reducing the size of the system. Compactness of the system can

be achieved by using custom EC-QCL from companies such as Fraunhofer IAF and Fraunhofer

IPMS [90, 339, 371] which uses resonant micro-opto-electro-mechanical system (MOEMS) for

the external cavity. The use of MOEMS can reduce the size of our prototype by a fifth of the

current size. All these future works will take the prototype closer to the ultimate goal of having

a fast field friendly mid-infrared spectrometer for mosquito surveillance.
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It is worth exploring how the spectral data of each tissue of the mosquito can be used for age

grading, species identification and other biological traits such as insecticide resistance or malaria

infections with more detail. Currently, abdomen and thorax samples are mainly used in spec-

troscopy analyses of mosquitoes. By using µDRIFT, the analysis of more localised, specific tissues

(i.e., head, thorax, abdomen, legs, and wings) is possible. I recommend testing µDRIFT with

different species (i.e., An. gambiae, An. arabiensis, An. funestus) and for age grading, more fine

scale resolution of age groups should be included (i.e. 1-2 days) and validate the results with

parity status to assess the robustness and accuracy across species and ages. Wing samples may

be more tractable for analysis given the relative ease with which spectra can be collected from

them; however, more detailed investigation is needed to confirm what biological signatures are

detectable from wings. from which might be interesting to see what information they may be

able to provide.

Insecticide resistance was difficult to evaluate using MIRS due to the experimental design used,

and the confounding factors discussed in chapter 2. The use of the same strains known to have

cuticle resistance, but that have lost it over time, could be used to disentangle the strain-specific

confounder. Also, it will be useful to combine spectral data with hydrocarbon concentration and

cuticle thickness determined by electron microscopy to know if the changes in spectrum are due

to changes in cuticle composition or are the inherent differences of each strain used.

I hope the work described in this thesis can guide new ways of thinking about spectroscopy in

mosquitoes and other insects vectors, and what semiconductor laser-based systems can offer to

improve and move the technique forward.
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Chapter 2 Appendix

Figure A.1: Preliminary Field of view from µDRIFT in visual mode for a) Head, b) Thorax, c)

Leg d) Abdomen
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Figure A.2: Leg spectra using µDRIFT with a range of 4000 cm−1 to 600 cm−1

Figure A.3: PCA scatter plot of spectra for each mosquito part on different ages, one, 3 and ten

days old. Two different pre-processing algorithms were tested to increase clustering between

groups
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Figure A.4: Confusion matrix of random forest classifier evaluated on hold out set for species

prediction.

Figure A.5: Accuracy of all models with the different pre-processing algorithms for species pre-

diction
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Figure A.6: Accuracy of all models with the different pre-processing algorithms for species pre-

diction
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Figure A.7: Accuracy of all models with the different pre-processing algorithms for age predic-

tion
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Figure A.8: Accuracy of all models with the different pre-processing algorithms for age predic-

tion
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Figure A.9: Pair-plot of PC scores coloured by strain
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Figure A.10: Prediction coefficients of the optimised model plotted against wavenumbers
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Table A.1: Top 10 prediction coefficients for Kisumu, Tiassale and Ngousso strains with tentative

functional group assignment

Species Wavenumber Functional group Aetiological

Strain (cm-1) Assignment compound

1397 C-H Chitin, wax

1399 C-H Chitin, wax

1401 C-H, C-CH3 bend Chitin, wax

1509 Amide II Chitin protein

An. gambiae 1559 Amide II Chitin protein

Kisumu 1653 Amide I, ν(C=O) Protein

1655 Amide I, ν(C=O) Chitin protein

1657 Amide I, ν(C=O) Chitin/protein

1773 * *

1775 * *

1198 C-O *

1200 C-O *

1202 Amide III, ν(C-N), δ(N-H) *

An. coluzzii 1204 Amide III, ν(C-N), δ(N-H) *

Ngousso 1404 C-H, C-CH3 Chitin, wax

1406 C-H, C-CH3 Chitin, wax

1408 C-H, C-CH3 Chitin, wax

1410 C-H, C-CH3 Chitin, wax

1541 Amide II Protein, chitin

1559 Amide II Protein, chitin

1142 C-O stretch Chitin

1144 C-O stretch Chitin

1347 * Protein

1349 * Lipids

An. gambiae 1350 * Lipids

Tiassale 1352 *

1354 *

1536 Amide II Chitin, protein

1538 Amide II Chitin, protein

1539 Amide II Chitin, protein
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A.1 Hyper-parameter configurations

Logistic regression for species prediction

• penalty = ’l2’

• C=0.1

• class weight = 1:0.5, 0:0.5

• solver= ’liblinear’

Logistic regression for age prediction

• penalty = ’l2’

• C=0.1

• class weight = 1:0.5, 0:0.5

• solver = ’liblinear’

Logistic regression insecticide resistance

• C=0.1

• penalty = ’l2’

• solver = ’saga’
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Chapter 3 Appendix

(a) (b) (c)

(d) (e)

Figure B.1: Selection of optimal number of variables for PLS-DA for species prediction for each

pre-processing method. The lowest root mean squared error in cross-validation was selected. The

number of component with the lowest RMSE is annotated with a red X. RAW: no pre-processing,

MSC: Multiplicative Scatter Correction, SNV: Standard Normal Variate, RNV: Robust Normal

Variate. 2nd derivative: Savitzky-Golay filter with 9 point window and second order derivative.
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(a) (b)

(c) (d)

(e)

Figure B.2: Scatter plot of AUC values vs number of components when PLS-DA trained in

Glasgowlab data set, evaluated with Glasgowlab data set (blue line) and IRSS lab data set (black

line) for each pre-processing method. The linear search was set up from 1 to the number of

components selected using RMSE.
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(a) (b)

(c) (d)

(e)

Figure B.3: Model coefficients from calibrated data sets from raw data and after different pre-

processing algorithms for species prediction
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(a)

(b)

Figure B.4: Model coefficients from calibrated data sets from a) Raw data and after b) Savitzky-

Golay preprocessing for age

Figure B.6: Boxplot of PLS-DA accuracy using 10-fold cross-validation when using the whole

mid infrared spectrum (Total) and each of the spectral windows (X1, X2, X3)
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Figure B.5: PLS latent variables optimization for different scattering corrections suing calibra-

tion (blue line) and cross-validation (green line) for age prediction
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Table B.1: Mean predicted age of An. gambiae mosquitoes using Glasgowlab dataset

True age # samples Mean predicted

Age [95% CI]

1 52 2.21 [2.74 - 1.68]

2 60 3.03[3.48 - 2.59

3 31 3.01 [3.54 - 2.48]

4 46 3.21 [3.83 - 2.59]

5 41 6.44 [7.42 - 5.46]

6 44 7.49 [8.37 - 6.61]

7 42 6.79 [7.93 - 5.65]

8 37 8.28 [8.93 - 7.63]

9 37 9.72 [10.72 - 8.73]

10 47 12.09 [12.77 -11.42]

11 35 11.71 [12.52 - 10.89]

12 45 11.92 [12.65 -11.19]

13 33 12.31[13.28 - 11.34]

14 24 11.29 [12.12 - 10.45]

15 35 13.89 [14.64 - 13.12]

16 38 12.71 [13.26 - 12.15]

17 36 14.21 [15.14 - 13.27]
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Table B.2: PLS-DA accuracy for each windows with 10-fold cross-validation (CV), hold out set

(Val), and validation with independent sets (IRSSlab and IRSSfield)

Window CV Val IRSSlab IRSSfield

X total 0.87 ±0.01 0.86 0.60 0.47

X1 0.85 ± 0.02 0.84 0.58 0.45

X2 0.83 ± 0.02 0.82 0.56 0.43

X3 0.79 ± 0.02 0.80 0.61 0.30

Figure B.7: a) Principal Component Analysis (PCA) PC1 versus PC2 vs PC3 scores plot nor-

malised spectra for laboratory mosquitoes from Glasgowlab (blue) and IRRSlab (orange) and

IRSSfield (green)
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Figure B.8: Mid infrared spectra of all samples from Glasgowlab, IRRSlab and IRSSfield of An.

gambiae and An. coluzzii

Figure B.9: Mean Mid infrared spectra from Glasgowlab, IRSSlab and IRSSfield
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Chapter 4 Appendix

Figure C.1: Power fluctuations of the gain chip in pulse mode (1.45 A, duty cycle 50%, frequency

5 Hz, pulse period 200 ms, pulse width 100 ms) with the galvanometer mirror fixed in one position
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Figure C.2: Power fluctuations of the gain chip in continuous-wave (CW) (1.78 A) with the

galvanometer mirror fixed in one position

Figure C.3: Schematic of the QCL-based setup mid-IR transmission for solids with the addition

of a lock-in amplifier
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Figure C.4: Comparison of similarity index values between the raw data (black line), after

Savitzky-Golay smoothing with a window=21 (blue line), and after Gaussian filter, sigma=0.5

(red line).)
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Figure C.5: Processing steps of EC-QCL data using Savitzky-Golay as smoothing filter. Back-

ground scans (blue), sample scans (red).
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Figure C.6: Processing steps of EC-QCL data using Gaussian filter for signal smoothing. Back-

ground scans (blue), sample scans (red).
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