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Abstract

Future large space structures are likely to be constructed at much greater length-scales, and

lower areal mass densities than has been achieved to-date. This could be enabled by ongoing

developments in on-orbit manufacturing, whereby large structures are 3D-printed in space from

raw feedstock materials. This thesis proposes and analyses a number of attitude control strate-

gies which could be adopted for this next generation of ultra-lightweight, large space structures.

Each of the strategies proposed makes use of distributed actuation, which is demonstrated early

in the thesis to reduce structural deformations during attitude manoeuvres. All of the proposed

strategies are considered to be particularly suitable for structures which are 3d-printed on-orbit,

due to the relative simplicity of the actuators and ease with which the actuator placement or

construction could be integrated with the on-orbit fabrication of the structure itself.

The first strategy proposed is the use of distributed arrays of magnetorquer rods. First, dis-

tributed torques are shown to effectively rotate highly flexible structures. This is compared with

torques applied to the centre-of-mass of the structure, which cause large surface deformations

and can fail to enact a rotation. This is demonstrated using a spring-mass model of a planar

structure with embedded actuators. A torque distribution algorithm is then developed to con-

trol an individually addressable array of actuators. Attitude control simulations are performed,

using the array to control a large space structure, again modelled as a spring-mass system.

The attitude control system is demonstrated to effectively detumble a representative 75×75

m flexible structure, and perform slew manoeuvres, in the presence of both gravity-gradient

torques and a realistic magnetic field model.

The development of a Distributed Magnetorquer Demonstration Platform is then presented,

a laboratory-scale implementation of the distributed magnetorquer array concept. The platform

consists of 48 addressable magnetorquers, arranged with two perpendicular torquers at the

nodes of a 5×5 grid. The control algorithms proposed previously in the thesis are implemented

and tested on this hardware, demonstrating the practical feasibility of the concept. Results of

experiments using a spherical air bearing and Helmholtz cage are presented, demonstrating rest-

to-rest slew manoeuvres and detumbling around a single axis using the developed algorithms.

The next attitude control strategy presented is the use of embedded current loops, con-

ductive pathways which can be integrated with a spacecraft support structure and used to

generate control torques through interaction with the Earth’s magnetic field. Length-scaling

laws are derived by determining what fraction of a planar spacecraft’s mass would need to be
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allocated to the conductive current loops in order to produce a torque at least as large as the

gravity gradient torque. Simulations are then performed of a flexible truss structure, modelled

as a spring-mass system, for a range of structural flexibilities and a variety of current loop

geometries. Simulations demonstrate rotation of the structure via the electromagnetic force

on the current carrying elements, and are also used to characterise the structural deformations

caused by the various current loop geometries. An attitude control simulation is then per-

formed, demonstrating a 90◦ slew manoeuvre of a 250×250 m flexible structure through the

use of three orthogonal sets of current loops embedded within the spacecraft.

The final concept investigated in this thesis is a self-reconfiguring OrigamiSat, where re-

configuration of the proposed OrigamiSat is triggered by changes in the local surface optical

properties of an origami structure to harness the solar radiation pressure induced accelera-

tion. OrigamiSats are origami spacecraft with reflective panels which, when flat, operate as

a conventional solar sail. Shape reconfiguration, i.e. “folding” of the origami design, allows

the OrigamiSat to change operational modes, performing different functions as per mission re-

quirements. For example, a flat OrigamiSat could be reconfigured into the shape of a parabolic

reflector, before returning to the flat configuration when required to again operate as a so-

lar sail, providing propellant-free propulsion. Shape reconfiguration or folding of OrigamiSats

through the use of surface reflectivity modulation is investigated in this thesis. First, a simpli-

fied, folding facet model is used to perform a length-scaling analysis, and then a 2d multibody

dynamics simulation is used to demonstrate the principle of solar radiation presure induced

folding. A 3d multibody dynamics simulation is then developed and used to demonstrate

shape reconfiguration for different origami folding patterns. Here, the attitude dynamics and

shape reconfiguration of OrigamiSats are found to be highly coupled, and thus present a chal-

lenge from a control perspective. The problem of integrating attitude and shape control of

a Miura-fold pattern OrigamiSat through the use of variable reflectivity is then investigated,

and a control algorithm developed which uses surface reflectivity modulation of the OrigamiSat

facets to enact shape reconfiguration and attitude manoeuvres simultaneously.
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Chapter 1

Introduction

L
arge space structures will likely underpin a significant portion of humanity’s future ac-

tivities in space. In recent years, the trend in spacecraft technology has been towards

increasingly smaller satellites, driven by the miniaturisation of various technologies and the

use of standardised form factors. For many applications in space however, there is a need for

large surface areas and large supporting structures. Often this need is driven fundamentally

by the underlying physics of the application, and thus such systems cannot be miniaturised or

scaled down through engineering ingenuity alone. Capturing solar energy in space necessitates

solar panels covering a large surface area; communications antennas benefit from large aper-

ture reflectors; and looking further into the future, crewed interplanetary spaceflight or human

space-habitats will need to be much larger than present space stations and vehicles if they

are to comfortably accommodate large numbers of people on an extended basis. The design,

construction and operation of such structures will require significant efforts, both in terms of

the technical, engineering challenges involved, and the investment of resources required. And

yet the potential scientific, economic and societal benefits of realising ever-larger structures in

space suggest that such efforts will surely be worthwhile. This fact is clearly evidenced by

the steadily increasing interest in large space structures and applications observed in recent

decades; an interest which spans academia, national agencies and private enterprise.

This thesis is concerned with a specific engineering challenge in the design of large space

structures: their dynamics and control. Furthermore this challenge is considered specifically

in the context of large space structures which may be manufactured on-orbit, through the use

of 3D-printing or additive manufacturing technologies. In this introductory chapter a review

of published research on large space structures is presented. First a general overview of the

potential applications for which large space structures are required is given, covering both past

missions and those which have been proposed for the future. After discussing the potential

applications, attention is then given to research regarding the more specific concerns of this

thesis; on-orbit manufacturing and the attitude dynamics and control of large space structures.

1
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1.1 Large Space Structures: Past, Present and Future

The design space of what could be considered a Large Space Structure (LSS) is vast, as is

the range of applications and mission proposals to be found in the literature. In this section,

three broad categories of LSS are identified: space stations and in-space platforms; telescopes

and antennas; and gossamer spacecraft. These categories are by no means definitive (Ref.

[18] considers planetary entry vehicles as a further category for example) nor exclusive (i.e.

a gossamer structure could serve as the collector of a large telescope [19]). However, taken

together they cover the majority of LSS designs which have been proposed and those which

are relevant to this thesis. Additionally, categorising LSS by these general applications further

serves to group LSS by physical properties (mass, length-scale, structural flexibility) according

to the design requirements of each category. This is illustrated in Fig. 1.1, in which examples

of existing and future LSS are placed according to mass and length. The figure shows that LSS

of each category are generally grouped according to these properties (in similar bands of areal

mass density), though there is a clear overlap and outliers belonging to each group, examples

of which will be examined in the following discussion.

Existing spacecraft belonging to each category are depicted in Fig. 1.2. Figure 1.2a shows

the International Space Station (ISS), the largest and most complex structure constructed in

space to date. The ISS has been an immense engineering project, and has served as a symbol

of international cooperation for over 20 years. Yet the convoluted and challenging history of

its development also demonstrates the difficulty in realising such large structures in space.

Figure 1.2b shows the James Webb Space Telescope (JWST), developed by NASA, ESA and

CSA. One of the next generation of “great observatories”, the JWST’s 6.5 m diameter primary

mirror will allow astronomical observations at a greater range and level of sensitivity than ever

before. And yet again the project has presented a massive undertaking, with well documented

engineering challenges and organisational setbacks throughout, including a complete redesign of

the spacecraft at one point [7]. Finally Fig. 1.2c shows the Interplanetary Kite-craft Accelerated

by Radiation Of the Sun (IKAROS) solar sail demonstration, launched by JAXA in 2010.

IKAROS, an example of a gossamer spacecraft, was the first spacecraft to successfully deploy

a solar sail, using solar radiation pressure (SRP) as a form of propellant-free propulsion in

interplanetary space while travelling to Venus [5]. In addition to a number of valuable scientific

objectives, IKAROS succesfully demonstrated several key technologies which will be crucial

in the development of future, even larger gossamer spacecraft. Together these projects all

demonstrate the great value that LSS can offer humanity, yet they also demonstrate significant

engineering complexity and the need for technological innovations involved in such endeavours.

In this section examples belonging to each of the identified LSS categories are discussed,

primarily to give the historical background of LSS, and also to provide a general overview of

the design requirements and features of each class. At this stage it is thought important to

make a distinction between the actually existing “LSS” of today (crewed spacecraft and space
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Figure 1.1: Catalogue of LSS by weight and length of largest dimension [1–15]. ISS - Inter-
national Space station, HST - Hubble Space Telescope, JWST - James Webb Space Telescope,
IAE - Inflatable Antenna Experiment, MeSR - Mercury Sample Return Solar Sail.
∗estimated mass, †stage of development reached with a detailed architecture proposal, ‡conceptual
study/baseline mission requirements only, ¶largest standard design offered.

stations with length on the order of 10 to 100 m), and what is likely to be considered a LSS

in the future (solar power satellites, reflectors or solar sails with lengths on the order of 1 to

10 km or more). While this thesis is primarily concerned with the latter type of structure,

during this introductory discussion “LSS” is taken to refer to the broader range of spacecraft

belonging to the three categories identified previously. This approach is taken primarily so that

later discussion of potential future LSS can be grounded by reference to existing spacecraft and

technologies, avoiding unfounded speculation. Overall, this section aims to provide an overview

of the (existing and future) LSS design space, providing context and motivating applications

for the research objectives of the thesis, and a basis for many of the assumptions made in the

technical chapters which follow.

1.1.1 Space Stations and In-Space Platforms

The largest structures in space to date have all been space stations, in terms of both their

mass, and length scale, as shown by the data in Fig. 1.1. Space stations are facilities designed

to provide a habitable environment and maintain a long-term human presence in space. The
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a

b c

Figure 1.2: Existing large space structures of different categories, the ISS (a), the JWST (b)
and IKAROS (c). (Images courtesy: NASA, NASA, JAXA)

largest of these, at 100 m in length [3], is the ISS, which was preceded as the largest structure

by the Soviet and then Russian operated Mir station, at 33 m [2]. Although space stations as

a category are not the type of LSS with which this thesis is primarily concerned, as the largest

actually existing structures in space an understanding of their design and operation serves as

a reference for understanding the feasibility of realising even larger LSS in the future.

The first operational space station was Salyut-1, launched by the Soviet union in 1971

[2]. The station was 15 m in length and comprised of three pressurised modules, four solar

arrays and a Soyuz service module which provided attitude control and station-keeping. The

station was occupied by a crew of three for 24 days, during which time they made astronomical

measurements using the Orion-1 telescope, and attempted to grow plants in a hydroponics
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unit [2]. Salyut-1 was followed by the US launched Skylab in 1973 [1], Salyut 2-7 (individual

launches between 1974-1982) and Mir (multiple launches between 1986-1996). Mir was the first

modular spacecraft, assembled in orbit from individual modules, each with separate launches.

This on-orbit assembly was a key development for future LSS, in that structures were no longer

constrained by the mass and fairing volume of a single launch vehicle. This approach was also

followed for the ISS, the assembly of which has taken place over 40 separate missions so far

[20]. Tiangong-1 and 2, launched by CNSA as prototype stations for the planned Tiangong

station [9], complete the list of operational space stations to have existed to date. A planned

future space station is NASA’s Gateway project, which is to be placed in a Halo orbit at the

Earth-Moon L1 Lagrange point, and serve as a staging platform for missions to the lunar surface

and future deep space missions [21]. Additionally, at least two commercial space stations have

been announced as being under development [22, 23]. These stations are set to offer individuals

or organisations the opportunity to lease space on-board for research or other purposes, and

even operate as space-tourism facilities, signifying a significant step forward for this burgeoning

industry.

Future space-tourism notwithstanding, the purpose of space stations has primarily been

to serve as orbital laboratories, in which a diverse range of experiments can be carried out by

crewmembers. The effects of spaceflight on the human body, Earth observation, astronomy, and

many other sciences have been the subject of research carried out in these unique environments

[20]. In addition to the science carried out on board, space stations themselves have often

served as demonstration platforms for new spaceflight technologies. For example, during the

development of Skylab, engineers were actively encouraged to consider using new technologies

that did not yet have flight heritage, including the use of large Control Moment Gyros (CMGs)

for attitude control and molecular sieves for CO2 removal [24]. In terms of their general design,

space stations comprise of cylindrical pressurised modules connected via docking ports, onto

which large solar arrays and radiators are mounted (visible on the ISS in Fig. 1.2a). Compared

to the other types of LSS to be discussed, space stations have a much greater mass and rigidity,

required to provide a safe and habitable environment for crewmembers. In terms of their

dynamics and control, they can be mathematically modelled as rigid central buses onto which

flexible appendages are attached [25], as opposed to other types of LSS in which the entire

spacecraft is essentially a flexible body.

Complementary to their function as technology demonstration platforms, space stations are

often viewed as an enabling step towards larger structures and in-space platforms. Indeed,

much of the seminal research on LSS suggested that these large structures could be constructed

manually by astronauts [26], with space stations effectively serving as on-site accommodation

for the construction efforts [27]. More recently, a stated aim of the Chinese space station

program is “mastering the construction and operation technology of large space facilities”

[9]. One potential large space facility being referenced here, which has been a topic of great

interest globally, is space-based solar power (SSP) platforms. SSP is a concept which has been
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a

b c

Figure 1.3: Artist renditions of future LSS concepts: a) the NASA 1976 reference SSP archi-
tecture, b) an 850×850 m solar sail, proposed by JPL for a Halley’s comet rendezvous mission,
c) a generic large space truss structure being constructed on-orbit (Images courtesy: NASA,
NASA/JPL-Caltech, NASA)
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the subject of numerous studies, dating back to the first engineering treatment of the topic

by Peter Glaser in 1968, though the general idea of harvesting energy from space was first

mentioned by Tsiolkovsky in 1912 [28]. In the 1970s NASA performed a large scale study of

the concept, the result of which was the 1979 SPS Reference Architecture [15]. The design

comprised of a 10 km solar panel array placed in a geostationary orbit, from which 5 GW

of power would be transmitted back to Earth through a 1 km diameter microwave antenna

array. An artist’s rendition of the concept is shown in Fig. 1.3a. Though the study determined

that the concept was not economically feasible at the time, in the years since the trends of

falling launch costs and rising energy demand has led to numerous reassessments of SSP, with a

variety of potential architectures proposed [29–31]. While implementing SSP at scale will be an

ambitious engineering project it is generally accepted that it could be realised with technologies

which are readily available today, and that the greater barrier is the large initial investment

required. If the economic viability of SSP continues to improve in the coming decades it seems

inevitable that these types of LSS will become a reality.

1.1.2 Telescopes and Antennas

Telescopes and antennas are another application which require the use of LSS. For telescopes,

larger mirrors are capable of collecting more radiation, providing observations at a higher

resolution and greater distance than is otherwise possible. Similarly, large aperture antennas

allow higher data throughput and improved signal quality [32]. A challenge in both cases is

that a high degree of precision in the shape of the reflector or antenna is generally required,

which adds to the difficulty of realising these types of structures at greater length scales. This

requirement has led to the development of complex deployable systems, and also driven research

into how such structures could be assembled or manufactured on-orbit in the future. Space

telescopes, as flagship scientific missions for space agencies, and large aperture antennas, due

to their significant economic value in telecommunications, have been a driving application in

the development of LSS technology and likely will remain so in the coming years.

A significant number of space telescopes have been launched to date, capable of making

astronomical observations in various parts of the electromagnetic spectrum. Space telescopes

have the advantage of being outwith the Earth’s atmosphere, and can therefore make obser-

vations in parts of the spectrum which are either blocked or distorted by atmospheric gases,

which accounts for the majority of the spectrum other than radio frequency (RF) waves [33].

The first operational space telescope was the OAO-2 (Orbiting Astronomical Observatory),

launched in 1968, followed by the aforementioned Orion-1 telescope onboard the Salyut-1 sta-

tion in 1971. Both observatories collected data in the ultraviolet range, imaging a variety of

objects and demonstrating the feasibility and advantages of space-based astronomy [34]. Prior

to the launch of the JWST, the largest space telescope was the Hubble Space Telescope (HST),

which has been operating since 1990. The HST, 14 m in length and featuring a 2.5 m primary

mirror [33], operates in the ultraviolet to near-infrared regions of the electromagnetic spectrum.
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Hubble has provided data investigating a number of long-standing questions in astronomy, and

been the source of iconic astronomical images, such as the “Pillars of Creation” image of the

Eagle Nebula, and the “Deep Field” images which show some of the youngest and most distance

galaxies to have ever been observed [33].

The recently commissioned JWST, Hubble’s successor, is now the largest operational space

telescope. In addition to a 6.5 m diameter primary mirror, the telescope also features a large

(20 × 14 m) reflective membrane sunshield, which cools the instrument to below 50 K and al-

lows faint objects in the infrared frequency range to be imaged. The architecture of the JWST

is visually quite different to that of the HST, which comprises of a single cylindrical structure

containing the telescope and spacecraft bus, with deployable solar panels. Designing the JWST

to fit within the 5 m fairing volume of the Ariane-5 launch vehicle required the primary mir-

ror itself to be deployable, with the mirror being constructed of three segments that unfolded

once in space. Along with the sunshield, the JWST deployment process involved 40 deployable

structures and 178 release mechanisms [7]. The difference between the architecture of the HST

and JWST can be seen as a first step in a paradigm shift similar to the progression seen towards

modular space stations, where space telescopes are no longer conceived of as single, monolithic

entities. Instead, the JWST and future telescope designs (such as the proposed 15 m diameter

primary mirror LUVOIR-A concept [11]), can be thought of as an assembly of multiple struc-

tures, each serving a different purpose (mirrors, sunshields, starshades etc.). The development

of lightweight, rigid structures capable of serving these diverse needs is therefore a key technol-

ogy for future ultra-large space telescopes [35]. While the deployable strategy adopted for the

JWST has been successful, it is also likely that even larger future space telescopes will require

on-orbit assembly or manufacturing [36].

Like telescope mirrors, reflector antennas are another application in which greater sizes are

inherently advantageous due to the underlying physics of their operation. The area of the

antenna reflector and thus the aperture are directly related to the gain of the antenna [32], and

so large reflectors have been a necessary development for satellite communications. Unlike the

space telescopes discussed previously, in which the entire spacecraft is considered the telescope,

an antenna is just one appendage of a typical spacecraft, (reflected in the lower mass shown for

the two examples of IAE and Astromesh shown in Fig. 1.1). Generally, the design requirements

for an antenna reflector are that the structure is rigid enough to maintain the correct reflecting

shape (typically parabolic) to the required precision, while remaining as lightweight as possible

to reduce launch costs. As with other LSS discussed this is currently achieved through the use

of complex deployable systems.

The largest of these existing deployable antennas are typically in the 10 - 20 m diameter

range [37]. While this aperture size is sufficient for geostationary (GEO) communications

satellites, there is also a need for even larger reflector antennas. For example, analysis has

suggested that accurate monitoring of rainfall on Earth would require a 40 m aperture reflector

antenna in GEO [38]. The study also suggested that a rigid reflector of this length scale would
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require an areal mass density on the order of 2 kg/m2, whereas if membrane reflectors could be

used at this scale the mass density would be greatly reduced (0.4-0.5 kg/m2). This requirement

prompted the development of the Inflatable Antenna Experiment (IAE) in 1996. The IAE was

launched and successfully demonstrated the deployment of a 14 m diameter antenna supported

by an inflatable rigidising structure, though the surface precision of the reflector attained was

not as high as was hoped [39]. The AstroMesh antenna system is another example of a large

deployable mesh reflector with flight heritage, with up to 12 m diameter examples flown [40],

though the design is claimed to be scalable up to 22 m aperture sizes [10]. The JAXA ETS

V-III satellite featured two 19 m diameter reflector antennas, some of the largest reflectors

flown, and was designed to test geostationary communications for mobile devices [41]. Many

other deployable antenna designs exist, including elastic rib designs, cable tensioned systems,

among others [37], and the development of these systems is an active field of research currently.

1.1.3 Gossamer Spacecraft

These current deployable reflector designs can also be thought of as “gossamer structures”,

where gossamer refers to the lightweight mesh or membrane which forms the reflecting surface.

This classification leads to the final category of LSS identified, gossamer spacecraft. This

category refers to a class of spacecraft which is ultra-lightweight and largely comprised of a thin,

likely reflective membrane, i.e. the spacecraft itself can be thought of as a membrane structure,

as opposed to a rigid spacecraft onto which a flexible appendage is mounted. The archetypal

spacecraft of this category is the solar sail, a means of achieving propellant-less propulsion

through solar radiation pressure. Although gossamer spacecraft are the category with perhaps

the least flight heritage, they are also a category with great future potential. As has already

been seen, gossamer structures can serve as sunshields (JWST) and antenna reflectors (the

IAE) among other applications. Gossamer spacecraft, i.e. free-flying membrane structures,

could also be designed to serve a number of applications, including the aforementioned solar

sailing, orbital reflectors for solar energy delivery and starshades for exoplanet astronomy. Here

a brief discussion of the various proposed applications for gossamer spacecraft are given, along

with a discussion of the few existing examples of gossamer spacecraft and the more numerous

examples of proposed architectures and missions.

As noted, solar sails are perhaps the first application which could be considered to be

gossamer spacecraft. A solar sail is a reflective surface designed to reflect sunlight and in doing

so gain momentum, thus providing propellant-free propulsion. With the addition of attitude

control, the direction of the radiation pressure induced force can be controlled, allowing orbit

control of the spacecraft and opening up new trajectories [4]. Despite the potential benefits of

solar sailing, there are numerous challenges associated with their construction and deployment

in space. As noted, the solar sail must be extremely lightweight, and yet rigid enough to

not deform and allow the sail membrane to be tensioned. This sail tensioning can either be

achieved by structural booms, or by spinning the solar sail, or a combination of both. For
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the first strategy, sail designs typically consist of a large square membrane with four booms

across the diagonals. These booms support the membrane and allow tensioning of the material.

Spinning sail designs can be disc shaped, or the heliogryo design, in which long reflective blades

extend from a central hub [4].

Although the concept of solar sailing has been actively researched for some decades now,

relatively few solar sail missions have been flown to date. The aforementioned IKAROS space-

craft, launched in 2010, is the only spacecraft to date to have used a solar sail as a means of

propulsion in interplanetary space, and was the first successfully deployed solar sail [5]. While

not specifically a solar sail, the Znamya-2 reflector was a 20 m wide reflective membrane, de-

ployed in 1993 by Roscosmos [12]. The reflector was designed with the proposed application

of reflecting sunlight to polar latitudes, but the mission itself was intended to demonstrate

centrifugal deployment of a reflective membrane spacecraft [12]. Other solar sail missions flown

since have similarly had the primary objective of demonstrating sail deployment (in Earth

orbit). These technology demonstrations include Nanosail-D2 (2011), which successfully de-

ployed a 10 m2 sail from a 3U Cubesat and became the first solar sail to orbit the Earth [42].

Lightsail-1 (2015)[43] and Lightsail-2 (2019) [44] were developed and launched by the Planetary

Society, after being funded by the donations of over 50,000 individuals around the world [44].

The two missions demonstrated deployment and SRP propulsion, and attitude control in the

case of Lightsail-2 [44], which became the first controlled solar sail in Earth orbit.

Solar sail missions in development include NASA’s Near Earth Asteroid (NEA) scout,

planned to launch in 2022. The mission aims to deploy an 86 m2 solar sail from a 6U Cubesat

form factor and use the solar sail to perform a NEA flyby [45]. The much larger Solar Cruiser

sailcraft is planned for launch in 2025. The Solar Cruiser is to feature a 1653 m2 sail, used

to maintain a halo orbit sunward of the Sun-Earth L1 Lagrange point [46]. Other significant

programs include the gossamer roadmap initiative by DLR, which was established to explore

the near term possibilities of solar sailing, and included the ground based deployment of a 20

× 20 m sail [47]. The program envisioned three Gossamer 1/2/3 missions, involving sails of

5, 20 and 50 m sidelength respectively, where each mission would successively build upon the

lessons of the previous, accelerating the development future solar sail missions [48]. Figure 1.3b

depicts an artist rendition of an 850 × 850 m solar sail, proposed by an early NASA study as

a candidate rendezvous mission to Halley’s comet. While the construction of such large solar

sails remains a significant technical challenge, sails at this length scale could provide an efficient

way of exploring the solar system and a wide variety of missions have been proposed that could

make use of this form of propellant-free propulsion [49].

A closely related concept to the solar sail is orbiting solar reflectors. Such orbital mirrors

may be used to reflect sunlight to the Earth to illuminate densely populated areas (as was

proposed for the Znamya reflector missions) or terrestrial solar PV-farms. This concept was

studied by NASA in the 1970s, with further analysis concluding that the idea was not econom-

ically feasible at the time [14, 50]. More recent work examined the use of aluminised-Kapton
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films as solar mirrors and performed analysis of the film’s mechanical and optical properties,

with promising results [51, 52]. Lior [51] also performed an economic analysis, which agreed

with the earlier NASA studies that the concept would not be economically viable unless trans-

portation costs could be reduced to several hundred $/kg. It is possible that falling launch

costs and the development of in-orbit fabrication technologies may lead to growing interest in

the orbital mirror concept in the future. More recently the concept has been revisited by the

SOLSPACE project at the University of Glasgow, with investigations made of potential mirror

architectures, orbital dynamics and economic considerations [53]. Economic analysis has deter-

mined that, depending on market conditions, economic breakeven of the orbital solar reflector

concept is comparable with terrestrial energy storage systems, which have also been proposed

as complementary systems for terrestrial solar power farms [54]. Detailed modelling of reflector

orbits and energy delivery has been carried out, and further extended to consider energy deliv-

ery by solar reflectors for other planetary bodies [55]. Another use of orbiting solar reflectors

is climate engineering [56, 57]. Reference [58] provides an in-depth discussion of a number of

ways in which orbiting reflectors could be used to engineer the Earth’s climate. These include

the use of occulting disks at the Earth-Sun L1 Lagrange point to partly block incoming solar

radiation to offset the impact of human-driven climate change. While such macro-engineering

projects may not be realised in the near-future, this remains an interesting area of research and

adds to the range of applications for which gossamer spacecraft may be used.

1.2 On-Orbit Manufacturing

A common theme found across the various LSS applications discussed in the previous section

was the inherent difficulty of realising large structures in space. This arises due to the need for

any space structure to first fit within a launch vehicle’s fairing volume. As was discussed, one

way this has been overcome is through on-orbit assembly (modular space stations), but the most

common solution is the use of deployable systems, complex mechanisms which expand from a

compact stowed volume after launch. While deployable systems have been successfully used for

many missions, the mechanisms required add a significant level of engineering complexity to

designs which could otherwise be relatively simple structures, and the strategy does not scale

well to length scales greater than tens of meters. As was noted, the JWST had 178 individual

release mechanisms for deployment of the observatory, and many of these mechanisms were

a single point failure for the mission [7]. A further redundancy in the current designs of

deployable LSS is that the structures must be designed to withstand the extreme forces and

vibrations of launch, whereas while in their operational environment on-orbit, the forces acting

upon the structure are much smaller. This leads to structures often having a greater mass or

different design than would otherwise be required for the majority of the structure’s lifetime.

One solution to these problems is to manufacture structures on-orbit from raw materials which

can then be launched as an efficient package, filling the available launch fairing volume. The
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potential benefits of on-orbit manufacturing were identified in the early years of LSS research,

though due to the low technology readiness of the required technologies the concept only saw

limited interest at the time. The concept has seen a marked increase in interest in recent years,

primarily due to advances in terrestrial additive manufacturing and robotic technologies which

may be adapted for use in space.

From the 1960s onwards many mission applications were proposed for which LSS were re-

quired, examples of which have been given in the previous section. These proposals, in particular

the studies on SSP, resulted in research on how best to construct arbitrarily large structures

in space [59]. The strategies proposed at this time, many as part of the NASA Large Space

Structures program (1970s-1980s), can be divided into three categories: deployables, erectable

structures, and in-space fabrication [26]. As noted, deployable systems have been used ex-

tensively for linear booms and masts, extending solar arrays or instruments from a primary

spacecraft bus. They have also been used for antennas and reflectors, such as the IAE and ETS

V-III satellite reflectors mentioned previously. Realising large planar structures however, such

as would be required for SSP systems for example, would be difficult to achieve with deployable

systems. This is particularly true if the structure is desired to be scalable. Due to this, proposed

construction strategies for such structures largely focussed on erectable structures, i.e. struc-

tures assembled from components either by astronauts engaged in EVAs or by robotic units.

Erectable structures have some flight heritage, with examples being construction operations on

the ISS, or service missions to HST. The absence of their use in other cases is primarily due to

the high costs of human spaceflight, high risks of EVA missions and low technology readiness

(at the time of these studies) of robotic manipulators for assembly. Despite these difficulties,

erectable structures have clear advantages to deployables: the components can be packed with

greater efficiency in the launch vehicle fairing volume; the structures can be modified, repaired

or scaled with greater ease; and finally the structures can be relatively simpler in design, and

have greater structural performance [26]. Figures 1.3 a and c show envisioned erectable struc-

tures (an SSP platform and a generic/non-specified structure respectively) being assembled in

orbit by robotic free flying units.

On-orbit fabrication, where structural elements are manufactured in-space from raw ma-

terials, carries the same advantages as erectable structures. Additionally, such a strategy can

have the advantage of forming structures from continuous elements rather than mechanically

connected separate components, which can result in greater strength and simplicity of the struc-

tures. Two in-orbit fabrication systems were developed in the 1970s under NASA contracts.

General Dynamics’ Convair Division designed a composite “beam builder”, which formed trian-

gular beams from graphite, glass, or thermoplastic through an automated roll forming process

[16]. Grumman Aerospace developed a similar system, which formed triangular beams out of

roll-formed aluminium flatstock [60]. The two beam builder systems are illustrated in Fig 1.4 a

and b respectively, showing the general features of the roll-forming systems, and the large scale

of the apparatus required to produce the 1 m diameter beams. While full scale demonstrations
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a

b

Figure 1.4: Two automated “beam builders” built under NASA contracts in the 1970s, the
General Dynamics composite beam builder (a, [16]), and Grumman Aerospace’s roll-formed
aluminium system (b, [17]) (Images courtesy: NASA, NASA)
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were constructed of both systems, the concept was not developed further and research efforts

at this time were instead redirected towards erectable systems.

Following these early efforts, in-orbit fabrication in general received little attention in the

following decades, primarily due to the complexity and cost of the autonomous systems required,

and relative immaturity of the related technologies. This lack of activity was likely also due to

the contemporary interest in SSP waning, as this was the main application driving these early

studies. Recently the NASA In-Space Manufacturing Program, beginning in 2014, has seen a

renewed interest in on-orbit manufacturing, awarding multiple contracts for the development

of on-orbit additive manufacturing systems [61]. Advancements in the two following areas

mean that the technological landscape today is much more amenable to the concept of on-orbit

manufacturing than it was when the “beam-builders” were developed in the 1970s. The first of

these favourable advances is that there is now a proven history of on-orbit robotic manipulation,

a key technology for the assembly of on-orbit manufactured structures. Examples such as the

Canadarm and European Robotic Arm have extensively demonstrated on-orbit servicing via

robotic arms [62], and it is thought that similar robotic manipulators can be used for on-orbit

manufacturing [61]. The second area that has seen major development and is perhaps the

primary enabling technology is additive manufacturing; where autonomous systems capable of

converting raw feedstock material into 3D geometries are now freely available as off-the-shelf

systems in the form of desktop 3D-printers.

Made in Space, Inc.1 is one company which has developed 3D-printing technologies for use

in space. With NASA funding, the company launched its Zero-G Printer to the ISS in 2014,

demonstrating 3D-printing in orbit for the first time [63]. The Zero-G Printer uses fused filament

fabrication, where filaments of polymer feedstock material loaded on spools are melted and then

extruded in layers, and produced a variety of objects including small tools and designs which

were uploaded to the ISS from Earth [64]. The Zero-G Printer demonstration was followed by

the launch of the Additive Manufacturing Facility to the ISS in 2016, an improvement on the

original printer, incorporating lessons of the first demonstration and offering a wider range of

print materials [65]. The printer was installed on-board the pressurised environment of the ISS

and thus demonstrated 3D-printing in microgravity conditions, but not in vacuum.

The mission was funded under NASA’s aforementioned In-Space Manufacturing (ISM) pro-

gram, which has the broad goals of developing manufacturing capabilities for supporting future

deep-space exploration [66]. One application of in-space additive manufacturing targeted by

the ISM is to 3D-print Moon and Mars habitats [65], while a more near-term goal is the

“on-demand” production of equipment and tools, where parts are produced as needed in-orbit

rather than having spare equipment take up valuable launch space [63]. Additionally there has

been a focus on recycling 3D printed materials for reuse, further easing the supply logistics for

extended missions [66]. Recycling of 3D-printed parts has been demonstrated by the “Refab-

1Recently acquired by Redwire Space. At the time of writing it is unclear if Made in Space is to continue
operating under the same name.
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ricator”, designed by Tethers Unlimited, Inc. Launched to the ISS in 2018, the system is a

hybrid 3D-printer recycling unit capable of reusing printed materials [61]. Outwith the ISM,

research has taken place more widely on the adaptation of 3D-printing technologies for use in

space. This includes ongoing work at the University of Glasgow investigating the adaptation

of 3D printing to microgravity and vacuum conditions, as would be required for a free flying

3D-printer [67]. Similarly, Ref. [68] presents the development of a vacuum rated 3D printer,

where the main challenges encountered are that all components must meet certain outgassing

requirements; and thermal management of the hot-end (heated extruding head), which are typ-

ically air-cooled in normal 3D-printing cases. The use of a free flying additive manufacturing

unit equipped with robotic manipulators is investigated in Ref. [69], with tests conducted using

a 3D printing unit freely moving in 2 dimensions atop an air table.

In addition to the on-demand supply of tools, components, and future habitats, the use of

in-space 3D-printing technologies is also being considered for the construction of LSS. Multiple

systems are currently being developed for this purpose. Tethers Unlimited are developing the

“Spiderfab”, or self fabricating satellite concept [70, 71]. The concept consists of an additive

manufacturing facility with multiple robotic arms, capable of producing structural elements

and assembling them into large structures. The robotic arms are proposed so that the system

is versatile and capable of joining various types of structural elements, and will also be used to

manoeuvre around the structure during the fabrication process. Proposed applications include

the fabrication of large occulting disks (starshades) for exoplanet imaging, which are required

to be on the order of 100 m diameter with 0.1 m shape accuracy [70], along with large aperture

antennas, solar sails, and many of the other applications previously discussed. Development

of the Spiderfab is ongoing with orbital mission demonstrations proposed for the mid 2020s

[71]. In addition to the overarching Spiderfab proposal, Tethers Unlimited have also developed

the “Trusselator” concept, an additive manufacturing system which is capable of producing

arbitrarily long truss-like beams from raw feedstock material [72–74]. The system is markedly

similar in function to the early beam builders developed during the 1970s (Fig. 1.4), though

much smaller in scale, producing 75 mm diameter beams [74]. A proof of concept system has

been built and ongoing research aims to conduct further testing, including thermal vaccuum

tests. A roadmap for orbital demonstration has been laid out, proposing that the technology

could be implemented on a 6U Cubesat platform and used to deploy a 10 m long boom [72].

While the trusses produced are relatively small in diameter, it has then been proposed that

trusses could be joined to form second order truss structures (i.e. a truss of trusses), through

the use of robotic manipulators such as the proposed Spiderfab system [70].

A similar system has also been proposed by Made in Space, named the “Archinaut” [75, 76].

While technical details are somewhat sparse, artist renderings have depicted a similar concept to

the Spiderfab, in which a central 3D-printing facility is equipped with robotic manipulators for

structural assembly of printed parts. The company has also demonstrated similar capabilities

to Tethers Unlimited, releasing images of extruded/additively manufactured booms supporting
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solar panels in ground tests [75]. Archinaut One, later renamed OSAM-2 (On-Orbit Servicing,

Manufacturing and Assembly), is a mission intended to demonstrate these capabilities on-orbit,

by manufacturing and extending two opposing 10 m booms which will support a deployable solar

array in space [61]. While development is ongoing for both the Spiderfab/Archinaut concepts,

the idea seems to hold much promise, especially when compared to the beam builder concepts

discussed previously. For one, the ability to deploy the Trusselator on a Cubesat sized platform

means that orbital demonstration is much easier and less costly to achieve (as opposed to the

space shuttle mission proposed to demonstrate the Grumman beam builder [17]). Secondly,

it is only through the combination of the beam extrusion system with robotic manipulators

that more complex, 3D geometries will be capable of being produced. While still technically

challenging, the prospect of developing such a system appears much more feasible today given

advancements in robotics. Given the potential advantages over deployable systems (potentially

2-5 times reduction in structural mass [71]), if the development of these systems continues at

the current pace it will soon be possible to envision large, customised structures being produced

in space at a greater length scale, and lower mass, than has been possible before.

1.3 Dynamics and Control of LSS

The specific concern of this thesis is the dynamics and control of LSS, and specifically of

LSS which may be manufactured on-orbit. As has been seen, there are a vast range of mission

applications and architectures for LSS, and thus there is great variation in the proposed attitude

control strategies for the different spacecraft which have been discussed in the previous sections.

The attitude control of LSS poses some specific challenges; such structures are likely to be more

lightweight and flexible than traditional spacecraft for one, and thus difficult to manoeuvre

without excessive structural deformation or vibration. LSS also experience disturbances which

may not be significant perturbations for smaller spacecraft, such as the effects of gravity-

gradient torques, SRP, thermal gradients, or aerodynamic torques [25]. In this section an

overview of the challenges of LSS attitude control and the various control strategies which have

been proposed in the literature are discussed.

1.3.1 Attitude Dynamics of LSS

Gravity gradient torques arise on spacecraft due to the variation in the gravitational field

strength across the length of the spacecraft body. This effect is magnified for structures with

greater mass moment of inertia, and so can be a significant disturbance for LSS. It is a well

known result that gravity gradient torques result in some stable configurations (attitudes),

depending on the inertia tensor of the spacecraft [77], and these stable configurations can

potentially be exploited for LSS. For example Refs. [78] and [79] discuss the use of magnetic

damping for a gravity gradient stabilised satellite (not specifically a LSS), demonstrating that

gravity gradient torques can be exploited to provide coarse pointing requirements. For many
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LSS however, the specific pointing requirements may mean that gravity gradient torques must

be counteracted by active attitude control [80].

In addition to gravity gradient torques being a more significant disturbance for LSS than

for conventional spacecraft, the force of gravity can lead to dynamic coupling of orbital and

attitude motion, which has been a subject of great research interest in LSS dynamics. Reference

[81] investigates the effect of gravitational orbit-attitude coupling for very large spacecraft, and

demonstrates that higher moments of inertia may need to be included to accurately model the

attitude dynamics of such structures. This adds a level of complexity to mathematical models

which may often be overlooked, and shows that accurate modelling of large structures requires

careful consideration if results from more traditional spacecraft attitude dynamics research are

applied. This may also limit the insights that can be gained into the attitude dynamics of LSS

by simulation alone, as it is well known that the inclusion of gravity gradient torques and orbit-

attitude coupling can result in chaotic dynamic systems [82]. Reference [83] investigates the

effect of orbital motion on attitude motion, demonstrating dynamic coupling between orbital

motion, pitch motion, and axial vibration of a large tethered SSP satellite model. For a similar

system, Ref. [84] shows that for some ranges of fundamental frequencies of a flexible LSS

gravity-gradient forces can lead to buckling of the structure. Further examples of research on

orbit-attitude coupling includes Refs. [85–87], which discuss the coupling of gravity gradient,

SRP, and thermal gradient effects on flexible structures in a variety of scenarios.

Reference [88] investigates the dynamics of a large flexible structure at the Earth-Moon

L1 point (e.g. the proposed lunar gateway), finding that the flexibility of the structure is not

strongly coupled with the orbital motion, but suggests that further work will be required to

investigate the orbit-attitude coupling of large structures in non-Keplerian orbits such as the

halo orbit considered here. Reference [89] also considers coupled dynamics of a LSS at Lagrange

points, an important topic given the variety of LSS applications proposed for this class of orbits.

Mathematical modelling of LSS is also an important topic of research, with a wide variety

of approaches to be found. Structure-control interaction emerged as an important topic of

research in the 1980s. References [25] and [90] discuss contemporary trends in control theory for

LSS, dividing modelling strategies into continuum models and distributed parameter systems,

discussing the mathematical considerations of controller design in both cases. Reference [91]

discusses continuum modelling and computational problems in LSS control design, while [92]

presents a finite element formulation unifying gravitational and structural modelling, such that

orbit-structure interactions are captured by a single general model. Membrane structures (i.e.

gossamer spacecraft) have some unique characteristics which must be considered in modelling

efforts, as described in Ref. [93] and [19]. In some cases, a LSS can be modelled with a

multibody dynamics formulation, where the system is modelled as a series of interconnected

flexible bodies [94]. Reference [95] considers the control of such a structure, composed of

multiple systems with separate controllers, and investigates stability conditions when some of

these controllers fail. As noted, mathematical models of LSS vary greatly depending on the
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specific application or research purpose. The few examples of modelling efforts given here

are intended to demonstrate the variety of approaches to be found, rather than provide a

comprehensive overview of computational methods for LSS.

1.3.2 Attitude Control Strategies

A variety of attitude control systems and actuators have been considered for LSS. Potential

actuators include thrusters, reaction wheels, control moment gyros, reflectivity control devices

(RCD) and magnetic torquers [25]. The early NASA SOLARES reflector study considered the

use of flywheels affixed to the reflector’s large supporting structure for attitude control. One

concept discussed was to attach three flywheels to orthogonal axes, and use SRP to accelerate

them before the reflector became operational [80]. Once the wheels were sufficiently accelerated

control torques could then be enacted by braking. The direct use of SRP is also often proposed

as a means of attitude control, most commonly for solar sail applications. SRP can be used

to induce control torques in a number of ways. Proposed methods include controllable vanes

[96, 97], gimbal systems to shift the centre of pressure on the sail [98, 99], and more recently the

use of surface reflectivity modulation [85, 100, 101]. The IKAROS sailcraft used RCD devices

for attitude control purposes, with RCDs mounted on the sail membrane used to generate

control torques [5]. Reference [102] describes the use of an RCD based on a polymer dispersed

liquid crystal (PDLC), which enables propellant-less attitude control in this manner through

reflectivity modulation via an applied voltage. Reference [100] proposes the use of a discrete

grid of electro-chromic cells for the control a gossamer spacecraft. In the model of Ref. [100],

a voltage can be applied to each cell which modifies the reflectivity. Attitude control is then

achieved by finding combinations of activated cells which give desired torques on the spacecraft.

In this thesis, distributed actuation for attitude control is one of the topics investigated,

as it was identified that the 3D-printing of a LSS allows actuators to easily be placed at any

point of the structure during fabrication. Distributed actuation has been studied primarily in

relation to vibration control of LSS rather than attitude control. References [103–106] consider

spacecraft with distributed gyricity, such as an array of control moment gyros. These works

are primarily concerned with shape control and vibration suppression, rather than attitude

control, for which distributed actuation has not been widely studied. A notable exception is

the recent work of Ref. [107], which integrates attitude control with vibration suppression

for an array of reaction wheels. Reference [108] investigates vibration damping through direct

velocity feedback. Reference [109] proposes an active structure composed of octahedral units,

where selected structural units can be controlled and thus vibrations reduced in a decentralised

fashion. Reference [110] discusses the problem of vibration control during slew manoeuvres,

developing a nonlinear controller which addresses this problem and implementing command-

shaping, whereby the actuator torques are delayed in order to suppress induced vibrations.

Overall, vibration control of flexible LSS is an important consideration, and the coupling of

attitude motion with structural vibrations is seen to be a technically challenging problem in
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LSS design.

Chapters 4-6 of this thesis consider the use of magnetorquer rods or large current loops

for the attitude control of LSS, as this was identified as an attitude control strategy for LSS

which has not received significant attention in the literature. Magnetic torquers are a proven

technology for spacecraft attitude control, but are often not considered for large space structures

due to the large disturbance torques this class of spacecraft may experience. Reference [111]

discusses this issue, and shows that with judicious orbit selection, control of a solar sail in low

Earth orbit may be possible with reaction wheels and magnetorquers. An issue with the sole use

of magnetic control for any spacecraft is that it cannot provide full 3-axis attitude control, as

torques cannot be generated in the direction of the external magnetic field. However, this issue

can be overcome in practice by performing sequences of manoeuvres or by considering that the

external field direction changes over the course of an orbit, providing “average” controllability

[112]. This is demonstrated by in Ref. [113] and [114], which investigate the stability conditions

of magnetic actuation. Reference [115] demonstrates the design of a fully magnetic attitude

control system for picosat platforms, while further examples of magnetic attitude control system

design are found in the survey of Ref. [112].

An early example of a current loop being used for attitude control of a LSS is found in

Ref. [116], in which a conceptual design for a 1500 m diameter radiotelescope is presented.

Reference [116] proposes the use of a large current loop around the perimeter of the disk-like

telescope structure. When a current is applied to this loop a torque is produced which is used

to precess the spin-axis of the rotating telescope, enabling the telescope to scan the celestial

sphere. Reference [117] investigates the use of four current loops for the attitude control of a

15×15 m spinning membrane spacecraft, performing numerical simulations with the membrane

modelled as a multi-particle system. These simulations demonstrate precession of the spin-axis

by 20◦ to a target orientation for a variety of cases (different orbits and spin-rates). Similar to

Ref. [116], Ref. [117] uses the current loop torque to precess the spin axis of a spin-stabilised

spacecraft, though Ref. [117] is based on an earlier concept study which demonstrated slew

manoeuvres of a non-spinning membrane spacecraft with a perimetric current loop [118]. Also

notable is that in these examples the current loops lie in the plane of the spacecraft, and so a

torque can only be produced around one axis.

A related but distinct concept is the use of current loops for the deployment or tensioning of

membrane spacecraft [119–121]. Reference [119] investigates the use of superconducting current

loops to deploy and tension solar sails with radii in the range of 5 to 150 m. A key principle

of this strategy is that the forces acting on the superconducting loop in Ref. [119] are due to

self-interaction of the wire with its own generated magnetic field, rather than current loops

interacting with the external geomagnetic field. Generation of these self-forces requires much

larger loop currents (on the order of 104 A for a 10 m solar sail in Ref. [119]) than are found

to be necessary for attitude control purposes, hence the need for superconducting materials in

Refs. [119–121].
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1.3.3 Origami LSS

Chapter 6 of this thesis presents analysis of the shape and attitude control of “OrigamiSats”, a

new concept in solar sailing where the solar sail is formed by an origami structure that is capable

of shape reconfiguration to serve different mission requirements. The active shape control of

solar sails has previously been considered for some specific applications, though the degree of

shape reconfiguration required by a multi-functional OrigamiSat would be more extensive than

any of the following proposed concepts. Reconfiguring the shape of a solar sail modifies the area-

to-mass ratio of the spacecraft, allowing orbit control and enabling new missions. For example,

Ref. [122] shows that instantaneous changes of the area-to-mass ratio of a spacecraft can be

used to perform fuel-free transfers between Lissajous orbits in the Sun-Earth system, suggesting

this could be achieved through the use of foldable “flaps” being deployed or stowed as required.

Reference [123] introduces a quasi-rhombic pyramidal solar sail design in which the sail geometry

is actively controlled via extendable booms, enabling orbit control. Reference [124] investigates

the active-shape control of spinning solar sails, demonstrating effective shape control can be

achieved using either tethers or RCD devices. Reference [100] demonstrates that a parabolic

shape can be produced in a slack reflective membrane by varying the surface reflectivity across

the membrane surface. This concept is similar to suggestion that the shape-reconfiguration of

an OrigamiSat could be triggered by SRP and differences in local surface reflectivity, though

the mechanics of an origami pattern folding are quite different to the membrane dynamics

considered in this example.

Origami in general has been considered for a number of applications in spaceflight engineer-

ing. The use of origami-based designs for deployable structures is discussed in Ref. [125], where

benefits include a reduction in stowed volume, and an ability to deploy the structure with min-

imal actuation and few moving parts [126]. Reference [127] gives an overview of the advantages

of origami designs specifically for aerospace applications, and demonstrates the wide range of

potential uses, including: protective bellows for Martian rovers, expandable habitats for the

ISS, and deployable antennas. The most well-known example of origami used in spaceflight

engineering is the Miura fold [128], which allows a structure composed of rigid panels to be

folded compactly and then unfolded in one motion, and has been used for deployable solar panel

arrays. As origami-based design is so frequently found in the area of spaceflight engineering,

there is a need to accurately model the behaviour of these origami structures in orbit. Refer-

ence [129] gives a review of research on the dynamics and performance estimation of origami

space structures, highlighting the importance of accurate dynamic models, particularly during

the deployment phase. Examples given by Ref. [129] includes the work of Ref. [130], where a

spring mass model is used to model the membrane dynamics of a six panel solar sail. Reference

[131] presents a simplified model of a spinning solar sail during deployment, and performs an

ABAQUS simulation of the origami fold pattern deploying. Although there is some literature

on modelling the deployment dynamics of solar sails, the deployment of these sails is most often

enacted by centrifugal means as the central hub spins and the sail unfolds [124], and the sail
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itself is considered to be a flexible membrane, rather than a rigid origami structure.

The attitude control and shape reconfiguration of multibody spacecraft more generally (i.e.

not specifically Origami structures) has been well studied in the literature for a variety of sce-

narios/spacecraft architectures, and using a range of modelling approaches. Trovarelli et. al

demonstrate the attitude control of planar [132] and 3D [133] multibody systems using momen-

tum preserving internal torques, demonstrating reorientation manoeuvres of linked bars/panels

using hinge torques, finding optimal control solutions for these manoevures and investigating

the effect of collision or impingement constraints on the optimal control solutions. Similar work

includes that of Gong et. al, who also demonstrate attitude control through the use of shape

reconfiguration for microsatellites [134], and femtosatellites [135], with the latter work including

the design and testing of a foldable PCBsat. Ashrafiuon and Erwin [136] present an approach

for the design of sliding mode control for underactuated, nonlinear multibody systems, proving

the stability of the closed-loop control system through Lyapunov stability analysis for certain

conditions, and demonstrating simulation results for the control of an inverted pendulum, and

a multibody communication satellite. Though the method proposed here by Ashrafiuon and

Erwin is clearly extendable to many different multibody spacecraft architectures, the same

approach cannot be adopted for OrigamiSat’s because the system is non-conservative, as the

force due to SRP introduces momentum to the system. While the OrigamiSat concept is quite

new, there are some examples of similar multi-body membrane spacecraft to be found. Gong

et. al [137] propose the relatively similar concept of a multibody solar sail, comprised of four

pivoting triangular sail “wings” mounted on a central bus, and demonstrate attitude manoeu-

vres through controlled pitching of each wing. Sinn and Vasile [138] investigate the multibody

dynamics of a membrane structure consisting of inflatable cells which is capable of shape recon-

figuration. While similar in purpose to an OrigamiSat the method of actuation and modelling

is quite different to the approach taken in Chapter 6.

1.4 Thesis Objectives and Contributions

This introductory chapter has sought to provide an overview of the potential applications for

LSS in general, including discussion of existing and past missions and proposed concepts. As

has been shown, on-orbit manufacturing of LSS has received much attention in recent years

and it is increasingly likely that these emerging technologies will be used to construct the next

generation of LSS. The dynamics and control of LSS is a field of research that has been active for

many years now, with a broad range of technical challenges and control strategies to be found

in the research literature. However, given the emerging field of on-orbit manufacturing, new

research is required regarding how 3D-printed structures will behave in space, and how they

can be most effectively controlled. This fresh look is required for two reasons; firstly this new

class of on-orbit manufactured LSS will be much more lightweight than previous LSS designs

based around deployable or erectable systems, and may be quite different in design. Such LSS



CHAPTER 1. INTRODUCTION 22

may therefore have quite different dynamic behaviour and control requirements to previously

studied systems, given they occupy this new area of the LSS design space. Secondly, this new

method of construction could enable new spacecraft architectures, and new control strategies

that would not previously have been possible or viable for traditional LSS constructions. The

main objective of this thesis is therefore to identify and analyse novel concepts in LSS dynamics

and control, within the specific context of LSS which may be manufactured on-orbit with

emerging additive manufacturing technologies.

1.4.1 Thesis Outline

This thesis is divided into 8 chapters. Chapter 2 contains a technical introduction, in which some

key mathematical and technical concepts relevant to the later work are presented. Chapters

3-6 contain the original work of the thesis, the contents of which are detailed below. Chapter 7

then concludes the thesis, and discusses potential future work. The technical chapters contain

the following original work and contributions:

• Chapter 3 investigates the utility of distributed magnetic torque rods for the attitude

control of a large space structure. First, distributed torques are shown to effectively

rotate highly flexible structures. This is compared with torques applied to the centre-

of-mass of the structure, which cause large surface deformations and can fail to enact

a rotation. This is demonstrated using a spring-mass model of a planar structure with

embedded actuators. A distributed torque algorithm is then developed to control an

individually addressable array of actuators. Attitude control simulations are performed,

using the array to control a large space structure, again modelled as a spring-mass system.

• Chapter 4 presents the development and experimental results of laboratory work relat-

ing to the magnetic control strategy of Chapter 3. The development of a Distributed

Magnetorquer Demonstration Platform (DMDP), a PCB mounted magnetorquer array

and control circuit, is presented, followed by the results of attitude control experiments

performed on a spherical air bearing within a magnetic field.

• Chapter 5 then investigates a different potential magnetic control strategy, which uses

large current loops embedded within a LSS. Length-scaling laws are derived by deter-

mining what fraction of a planar spacecraft’s mass would need to be allocated to the

conductive current loops in order to produce a torque at least as large as the gravity

gradient torque. Simulations are then performed of a flexible truss structure, modelled as

a spring-mass system, for a range of structural flexibilities and a variety of current loop

geometries. Simulations demonstrate rotation of the structure via the electromagnetic

force on the current carrying elements, and are also used to characterise the structural

deformations caused by the various current loop geometries. Finally, an attitude control

simulation is performed, demonstrating a 90◦ slew manoeuvre of a 250×250 m flexible
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structure through the use of three orthogonal sets of current loops embedded within the

spacecraft.

• Chapter 6 discusses the attitude and shape control of OrigamiSats, large, origami solar sail

type structures which could potentially be manufactured on orbit. This work was part of

a collaborative research project with the University of Liverpool covering simulation and

laboratory-based work, however the simulation work reported here is my own contribution

to the collaboration. Analysis is made of the principles of shape reconfiguration through

the use of SRP and local surface reflectivity modulation. First, a length-scaling analyis is

undertaken of panel folding times under the effect of SRP, considering hinge resistance.

A planar multibody dynamics model of linked reflective panels is then presented, and

used to demonstrate the principle of SRP induced shape reconfiguration. Finally, a 3D

multibody dynamics formulation for arbitrary origami patterns is presented, and numer-

ical simulations are performed of different OrigamiSat designs, investigating the topics of

shape and attitude control of these structures.

1.4.2 List of Publications

The following journal articles have been published based on the contents of this thesis:
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S. Bonardi, and O. Mori. Mechanical Design of Self-reconfiguring 4D-printed OrigamiSat:

a New Concept for Solar Sailing. Frontiers in Space Technologies, 3, 2022

• B. Robb, M. McRobb, G. Bailet, J. Beeley, and C. R. McInnes. Distributed Magnetic

Attitude Control for Large Space Structures. Acta Astronautica, 198(September):587–605,

2022

• B. Robb, M. McRobb, G. Bailet, and C. R. McInnes. 3D-printed, electrically conductive
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a Distributed Magnetorquer Array for the Attitude Control of Large Space Structures.
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Chapter 2

Technical Introduction

T
he attitude of a spacecraft refers to its orientation in space. Attitude dynamics then

refers to how a spacecraft’s attitude evolves over time, and how the attitude is influenced

by the torques which the spacecraft may experience. Spacecraft may experience disturbance

torques, caused by external forces such as gravity, or interaction with a planet’s atmosphere or

magnetic field. Solar radiation pressure is another potential cause of a disturbing torque, as

momentum is imparted to the spacecraft by incident and reflected photons. Attitude control

refers to the process by which the attitude and angular velocity of a spacecraft is affected to

reach a desired state. Generally attitude control is provided by actuators, devices mounted

on the spacecraft which generate desired torques on command. Some forms of attitude control

actuation were discussed in the introduction, with common choices including thrusters, reaction

wheels, control moment gyroscopes, or magnetic torquers. Attitude control can also be achieved

by exploiting environmental torques. For example variation in the force due to gravity across

a spacecraft’s body can lead to gravity gradient torques. These torques can be used to provide

gravity gradient stabilisation, whereby the spacecraft’s attitude remains in the region near a

stable equilibrium configuration relative to the gravity vector as it orbits the Earth or another

body. Attitude control of course requires some knowledge of the spacecraft’s attitude at a given

moment in time, the attainment or estimation of which is known as attitude determination.

This is provided by sensors such as accelerometers, gyroscopes, magnetometers, Sun sensors or

star trackers. Such devices are used to obtain information regarding the spacecraft’s dynamics

and it’s attitude in relation to some external references. This information is used to generate

an estimate of the spacecraft’s attitude, which may be represented mathematically in a number

of ways.

Before beginning the technical chapters, in which the original research of this thesis is

presented, a brief introduction is given in this chapter to some of the mathematical concepts

which are referred to later. In each of the technical chapters which follow, the models and

nomenclature used are defined as they appear. This technical introduction aims to include

only those concepts which are most frequently referred to in the following chapters, and those

25
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which are a prerequisite for the study of attitude dynamics and control. In this chapter,

the different rotation representations which are used in the thesis are discussed, followed by

a discussion of the foremost governing equations of rigid-body rotational dynamics, Euler’s

equations. Finally, a derivation of the gravity gradient torque is given, as this is a disturbance

torque of particular importance for large spacecraft and is referred to at numerous points of the

later chapters. As noted, the content of this chapter is provided only to serve as an introduction

to the mathematical discussion of the later chapters and as such no original content is provided

here. All of the concepts discussed here may be found in any introductory text on spacecraft

dynamics and control, for example Refs. [77, 145, 146], amongst others.

2.1 Reference Frames and Rotations

In order to mathematically describe the attitude of a spacecraft, the first requirement is a

reference frame, generally defined by a set of three, mutually perpendicular axes which is fixed

within the body of the spacecraft. A further reference frame is then needed, generally one

which is defined relative to the Earth, Sun, or other celestial body, with which the spacecraft

body frame is compared, in order to consistently describe the spacecraft attitude. Figure 2.1

shows two example reference frames, the xEyEzE frame, an Earth-centred inertial frame, and

the x1y1z1 body frame, centered on the centre-of-mass of the spacecraft and oriented some

3D rotation away from the xEyEzE frame. Note that in the later chapters, the notation and

labelling for the various body or inertial reference frames varies between the models, but as

noted all frames are defined as they appear in the text.

Another commonly used reference frame in attitude dynamics and control is a rotating

orbital frame, shown in Fig. 2.2. This frame is defined such that the zo axis is always aligned

with the gravity vector, pointing towards the central body (also known as nadir), the xo points

in the direction of the orbital velocity. Then yo completes the right-handed coordinate system,

and is thus antiparallel to the direction of the orbital angular momentum. The Euler angles

(to be defined in Sec. 2.1.2) ψ, θ and ϕ which parametrise a spacecraft’s rotation in relation to

the orbital frame are then referred to as roll, pitch and yaw respectively, in-keeping with the

conventional method of describing the attitude of aircraft.

2.1.1 Rotation Matrices and Euler Angles

A rotation matrix is a transformation matrix which acts to rotate coordinates around the

origin of a given reference frame. The rotation matrix which rotates the basis vectors of a

given reference frame to align with the axes of the spacecraft body frame then encodes the

current attitude of the spacecraft in a mathematically convenient way, which can be used for

computations as needed. Of particular use are three principal rotation matrices, which perform

rotations of θx,y,z around the x, y and z axes of the given reference frame, given by:
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Rx(θx)

1 0 0

0 cos θx sin θx

0 − sin θx cos θx

 (2.1)

Ry(θy) =

 cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy

 (2.2)

Rz(θz) =

 cos θz sin θz 0

− sin θz cos θz 0

0 0 1

 (2.3)

Figure 2.1: Earth-centred inertial frame, xEyEzE, and sequence of rotations to the x1y1z1
body frame.
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Figure 2.2: Earth-centred inertial frame, xEyEzE, orbital frame xoyoz, and sequence of rota-
tions to the x1y1z1 body frame.

2.1.2 Euler Angles

The rotation matrix which provides the rotation to the spacecraft body frame can be parametris-

ed in a variety of ways. One of the most common, and one which appears in the later chapters,

is the use of Euler angles. These are three angles which describe successive rotations around

specified axes, allowing any orientation to be described with just three parameters, and in an

intuitive manner. For example, Fig. 2.1 shows the Euler angles ψ, θ and ϕ, which correspond

to successive rotations around the inertial frame x-axis, the intermediate y′-axis (the rotated

y-axis, also y′′), and the body-frame x1 axis. These angles are thus referred to as the intrinsic

ZY X Euler angles. They are termed intrinsic because the second and third rotations are

performed around the intermediate, rotated axes, as opposed to all rotations performed around

the axes of the initial frame. Here ZY X specifies the order of rotations, and any combination

of three rotations around at least two axes may be used. A rotation matrix which provides the

rotation between the inertial frame and body frame can then be constructed by combining the

principal rotation matrices given above (Eqs. 2.1-2.3), resulting in:

R = Rx(ϕ)Ry(θ)Rz(ψ) (2.4)

Such matrices and their transposes can then be used to perform coordinate transformations

between any desired frames of reference and other computations as required, following the

standard rules of linear algebra.
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2.1.3 Quaternions

One disadvantage of the use of Euler angles to parametrise rotations is that for some attitudes

a singularity occurs. That is to say that there exists some orientations for which the three Euler

angles are not uniquely determined, which is in fact true of all three value parametrisations of

3D rotations. Quaternions are an alternative method of describing rotations which avoid this

singularity, as a quaternion is composed of four components, and which have further useful

properties which make them computationally efficient for the study of attitude dynamics. A

general quaternion is given by:

q = [a, b] (2.5)

where a is a scalar and b a vector, [b1, b2, b3]. In terms of an axis and angle, a rotation of θ

around r may be described by the quaternion given by:

q =

(
cos

θ

2
, sin

θ

2
r

)
(2.6)

For a general quaternion, q = (a, b) the properties which are used at various points in the later

chapters are as follows.

Addition:

q1 + q2 = (a1 + a2, b1 + b2) (2.7)

Quaternion product (in general quaternions are non-commutative):

q1q2 = (a1a2 − b1 · b2, a1b2 + a2b1 + b1 × b2) (2.8)

Conjugate:

q∗ = (a,−b) (2.9)

Norm:

|q| =
√
qq∗ =

√
q∗q =

√
a2 + b21 + b22 + b23 (2.10)

The 3D rotation matrix equivalent to a quaternion is also given by:

Rq =

1− 2b22 − 2b23 2b1b2 − 2ab3 2b1b3 + 2ab2

2b1b2 + 2ab3 1− 2b21 − 2b23 2b2b3 − 2ab1

2b1b3 − 2ab2 2b2b3 + 2ab1 1− 2b21 − 2b22

 (2.11)

For a rigid-body rotating around it’s centre of mass with angular velocity ω, the quaternion



CHAPTER 2. TECHNICAL INTRODUCTION 30

describing the body’s orientation is governed by the equation

q̇ =
1

2
q[0,ω] (2.12)

Th quaternion product (Eq. 2.8) can also be written using a skew-symmetric matrix, and so

Eq. 2.12 can be written as:

q̇ =
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0



a

b1

b2

b3

 (2.13)

2.2 Euler’s Equations

The most fundamental equations of attitude dynamics are the Euler equations, which relate

the angular velocity ω, accelerations ω̇ and applied torques T acting upon a rigid body with

inertia tensor I. They are thus the equivalent, for rotational motion, of Newton’s second law

and are thus essentially an expression of the rate of change of angular momentum. The Euler

equations are given by:

Iω̇ + ω + (Iω) = T (2.14)

or, explicitly:

I1ω̇1 − (I2 − I3)ω2ω3 = T1

I2ω̇2 − (I3 − I1)ω3ω1 = T2

I3ω̇3 − (I1 − I2)ω1ω2 = T3

(2.15)

Where I1,2,3 are the principal moments of inertia of the body. Thus the Euler equations are

a set of three coupled equations which describe the time evolution of a rigid-body’s rotational

motion, under the application of external torques. As the equations are coupled, there are non-

trivial solutions even in the case when the components of the torque are equal to zero, known

as torque-free precession. Physically this means that the rotational axis of a rigid body can

appear to change relative to a fixed inertial frame despite no external torques being applied,

despite (though in-fact a consequence of) angular momentum being conserved. Precession of

the body may also also occur when torques are applied, known as gyroscopic precession, and

this behaviour can often also be unintuitive. The best known example would be a spinning top,

where the torque on the spinning body due to gravity acts to rotate the top around the vertical

axis, even though the direction of the torque is perpendicular to the vertical (i.e. gravity acts

to precess the top around the vertical rather than topple it over).

An understanding of the Euler equations and the dynamics of rotating bodies is thus the

core of spacecraft attitude dynamics, and they can be used to predict the behaviour of many
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scenarios, when the applied torques and spacecraft properties are known. Analysing the dy-

namics of flexible spacecraft requires more detailed modelling than is offered by the Euler

equations alone, and so in the later chapters of the thesis more complex formulations are used.

Nevertheless, the equations are used later in the thesis when it is appropriate to approximate

the spacecraft as a rigid body, and to provide a starting point for more detailed analysis.

2.3 Gravity Gradient Torques and Stabilisation

Throughout the later chapters of this thesis, the effects of gravity gradient torques on large

space structures are considered and included in the numerical simulations. This is a disturbance

torque which arises due to the variation in the magnitude and direction of the gravitational

force across the span of a spacecraft’s body. For small spacecraft, the torque is generally

negligible, as there is not a significant variation in the strength of the gravitational field across

their length-scale. For large spacecraft, such as those considered in this thesis, this effect can

become a significant disturbance and thus receives significant attention in the later analysis.

The derivation of the commonly used expression for the gravity gradient torque is given here, to

provide an understanding of how this important disturbance torque arises and its implications

for large space structures.

The Newtonian gravitational force acting on an infinitesimal mass element located at r+ρ

is given by:

dFg = −µ(r + ρ)

|r + ρ|3 dm (2.16)

where ρ is the distance from the body’s centre-of-mass to an infinitesimal mass element dm, r

is the distance to the centre-of-mass from the central body, and µ is the standard gravitational

parameter. The components of Tg, the gravity gradient torque, are found by integrating this

gravitational force over the body of the spacecraft:

Tg =

∫
B

ρ× dFg

= µr ×
∫
B

ρ

(r2 + 2r · ρ+ ρ2)3/2
dm

(2.17)

where a Taylor expansion is then performed, assuming (r ≫ ρ):

Tg ≈ µr ×
∫
B

ρ
1

r3

(
1− 3

r · ρ
r2

)
dm (2.18)

The definition of the centre-of-mass implies that the integral of ρ dm vanishes. Using the double

cross product identity ρ× (ρ× r) = (r · ρ)ρ− (ρ · ρ)r results in:

Tg = −3µ

r5
r ×

∫
B

ρ× (ρ× r) + (ρ · ρ)r dm (2.19)
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Here, the second cross product in the expression also vanishes, while the first integral can be

re-written using a skew-symmetric multiplication matrix:

Tg = −3µ

r5
r ×

∫
B

[ρ]×[ρ]×r dm (2.20)

It can then be shown that the final term of the equation is by definition the inertia tensor, and

so the final expression for the gravity gradient torque is given by:

Tg = 3
µ

r5
(r × Ir) (2.21)

Another important result in attitude dynamics, and one referred to throughout this thesis, is

gravity gradient stabilisation. By substituting Tg into the Euler equations as the applied torque,

and linearising the resulting equations for small angular deviations of the spacecraft body

frame from the orbital frame (Fig. 2.2), it can be shown that there are certain configurations

(configurations meaning spacecraft of a certain inertia and orientation relative to the orbital
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Figure 2.3: Gravity gradient stability map, showing the overlapping pitch (green) and roll-
yaw (blue) unstable regions.
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frame) at which the spacecraft attitude is stable. There are both stable equilibria, where the

spacecraft attitude will oscillate around the gravity vector, and unstable equilibria, where the

gravity gradient torque is zero yet small deviations in the attitude will result in the attitude

moving away from this configuration. The result of this process gives the well known stability

map shown in Fig. 2.3. The two parameters relate to the mass distribution of the body around

the orbital frame, and are given by:

Kx =
Iy − Iz
Ix

Ky =
Iy − Iz
Ix

(2.22)

where Ix,y,z are the principal moments of inertia for the orbital frame xyz axes respectively.

2.4 Magnetorquers

A rigid current loop in a uniform external magnetic field experiences no net force, but will

experience a torque which is proportional to the area enclosed by the loop, and the current

flowing. The torque arises due to the Lorentz force on the moving charges within the conductive

loop, and is given by:

T = IAe ×B (2.23)

where I is the current in the loop, Ae a vector with magnitude equal to the area enclosed

by the loop and normal to that surface, and B the magnetic field vector. The product IAe

is often referred to as the magnetic dipole moment, md, which characterises the strength the

coil. For magnetorquer rods, the coil is wound around a core material of high relative magnetic

permeability, which acts to concentrate the magnetic field lines around the central axis of the

rod and increase the magnitude of torque generated. In this case the magnetic dipole moment

is given by

md = µcNIAe (2.24)

Where µc is the relative magnetic permeability of the core material, N is the number of turns of

the coil, I the current and Ae the area enclosed by a single turn or equally the cross sectional

area of the core material.



Chapter 3

Distributed Magnetorquer Arrays

M
agnetorquers are a common form of attitude control actuation for small satellites. A

magnetorquer is an electromagnet, a coil of conductive wire which generates a magnetic

field when a current is passed through it. Often a material with high magnetic permeability

is used as a core material within the coil, which concentrates the magnetic field lines in the

core and increases the field strength. Through interaction with the Earth’s (or another body’s)

magnetic field, a torque is generated by the magnetorquer which can then be used for attitude

control purposes, either to directly point the spacecraft or for angular momentum dumping.

Magnetorquers have a number of advantages over other forms of attitude control actuators.

Firstly, they don’t use propellant, only requiring electrical power to operate. They are also rel-

atively simple in design with no moving parts, meaning they are more robust than mechanical

devices such as reaction wheels or CMGs. One disadvantage however is that there is a geomet-

rical constraint on the direction of the torque that a magnetorquer can produce, determined by

the external magnetic field direction. This constraint is discussed in greater detail later in this

chapter. Furthermore, a major disadvantage is that the torque produced by a magnetorquer is

often smaller than what can be produced by other actuators of similar mass. This is because

producing large torques with magnetorquers requires large currents, which can then generate

excessive heat or require significant power. Due to this, magnetorquers are not often considered

for the attitude control of LSS, as the greater mass and moment of inertia of these structures

means that larger torques are required for their attitude control.

As presented in Chapter 1, an objective of this thesis is to consider new attitude control

strategies for LSS which may be 3D-printed on-orbit. As such structures may have a much lower

mass (i.e. “sparse” or gossamer structures) than conventional erectable or deployable designs,

magnetorquers may be a feasible form of attitude control. A further motivating assumption

here is that magnetorquers are relatively simple in design, and so it was proposed that actuator

placement could be easily integrated with the on-orbit fabrication process. For example, it

was envisaged that while 3D-printing a long boom, magnetorquers could be placed within

the boom at regular intervals as it is printed, or wire could even be coiled around the boom

34
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itself to form a magnetorquer. So long as the torquer is then connected to a power source

with switching capabilities, attitude control torques can be generated. This would then allow

customised architectures to be considered, with attitude control provided by magnetorquers

placed anywhere within the structure.

In this chapter, the concept of using distributed magnetorquer arrays for the attitude control

of lightweight, flexible LSS is investigated. The analysis addresses the three following research

questions:

1. Is there any benefit to having a distributed array of magnetorquers as opposed to a single,

larger torquer at the spacecraft centre-of-mass?

2. Up to what length-scale and mass density could magnetorquers provide large enough

torques for attitude control of a LSS?

3. Can a magnetorquer array demonstrate attitude control in orbital simulations, where the

external field direction is constantly changing and there are disturbing gravity gradient

torques?

Research question 1 pertains to the motivating assumption that it would be desirable to dis-

tribute magnetorquers throughout a LSS as it is being printed, as opposed to producing control

torques at a central spacecraft-bus only. Intuition led to the hypothesis that a distributed array

of torquers would lead to more uniform slew manoeuvres, and reduced structural deformation.

Distribution of the torquers will have an associated increase in the structure’s moment of inertia

however, and so analysis was undertaken to first evaluate the motivating assumption and then

to quantify any benefits of distributed torquing. This analysis is presented in Sec. 3.1, first

through the use of a 2D flexible beam model with centralised or distributed torquing elements in

Sec. 3.1.1, and then with a 3D spring-mass model of a planar truss-like structure in Sec. 3.1.2.

Numerical simulations are used to compare the torquing strategies for both models, across

a range of physical properties which are selected with reference to the properties of existing

lightweight space structures. Two geometric configurations for magnetorquer arrays are then

proposed and investigated in Sec. 3.2. The first of these is a radial array, where magnetorquers

are aligned radially around the centre of the structure; and the second is an orthogonal array,

where two perpendicular magnetorquers are placed at each point of a square grid. Control

strategies are proposed for both array types and assessed through rigid-body dynamics sim-

ulations of attitude control manoeuvres. In Sec. 3.3, a length scaling analysis is performed

to address research question 2, considering the impact of magnetorquer performance on the

maximum length-scale at which magnetorquers could provide useful attitude control. Orbital

simulations are then performed, addressing research question 3 by demonstrating detumbling

and slew manoeuvres of a flexible planar spacecraft in the presence of a time-varying magnetic

field and gravity gradient torques. Chapter conclusions are then given in Sec. 3.4.
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3.1 Distributed Control Torques for Large Space

Structures

The motivation for distributed magnetorquer arrays is that it is assumed desirable to distribute

actuator torques across the body of a large flexible space structure, in order to reduce struc-

tural deformation during manoeuvres. For a rigid body, a torque applied at a distance from the

centre-of-mass is equivalent to one applied at the centre-of-mass. For a flexible body however,

the location of torquing actuators and the induced flexible response is an important consid-

eration when designing the attitude control system. In this section distributed and central

torquing strategies are compared using two different models. First, a 2D model of a flexible

beam is used, comprised of rigid bars linked by torsional springs. Then, a 3D spring-mass

model representing a large, truss-like planar space structure is presented, and used to compare

the flexible dynamics of a planar structure with central or distributed torquing. Spring-mass

or multi-particle models allow continuous structures to be modelled accurately with relatively

low computational effort. They have been used extensively by JAXA for modelling the mem-

brane dynamics of the IKAROS solar sail [147], and found to accurately predict the membrane

dynamics when compared with flight-data. Here, the 2D beam model, and the spring-mass

model of a truss-structure are used as generic models of a flexible support boom and a flexible

planar structure respectively. The aim of this section is to demonstrate that for structures

of the length-scale and flexibilities considered, distributed attitude control torques will reduce

structural deformation when compared to centralised torquing strategies. Later simulations are

then used to demonstrate that an array of magnetorquers could serve this purpose, given the

constraints and scaling laws unique to these actuators specifically.

3.1.1 Motivation for Distributed Torques: 2D Beam Model

The beam is modelled as n rigid bars of length lb and mass mb, connected by torsional springs

with spring constant kb. The beam’s shape is parametrised by the angles, θi, between each bar

element and the x-axis, shown in Fig. 3.1. The coordinates of the centre-of-mass of the ith bar

element, located at (xi, yi), can be found using the angles θi, and is given by:

xi = x1 +
1

2
lb cos(θ1) +

i−1∑
j=2

lb cos(θj) +
1

2
lb cos(θi)

yi = y1 +
1

2
lb sin(θ1) +

i−1∑
j=2

lb sin(θj) +
1

2
lb sin(θi)

(3.1)

for all i > 1. The first element’s centre-of-mass coordinates, x1 and y1, are additional degrees

of freedom in the system and appear in Eq. 3.1 as the reference point from which all other

element positions are taken. The kinetic energy of the entire system can then be defined by
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considering, for each element, the translation of the centre-of-mass and rotation around that

centre-of-mass, and performing a summation over all elements:

T =
∑
i

[
1

2
mb(ẋ

2
i + ẏ2i ) +

1

2
Ibθ̇

2
i

]
(3.2)

where Ib is the moment of inertia of each bar around its centre, given by Ib = 1
12
mblb

2. The

expressions for ẋi and ẏi are found by taking the derivatives of Eq. 3.1 with respect to time,

meaning that T is given in terms of the generalised coordinates and velocities, θ and θ̇ only.

The potential energy, V , of the system comes from the relative angle, ϕ, between successive

elements. Each connection contributes 1
2
kbϕ

2 to the potential, with ϕ given by the difference in

angle θ of the specified elements. Thus, for a beam of n elements, the Lagrangian is given by:

L = T − V

=
n∑

i=1

[
1

2
mb(ẋ

2
i + ẏ2i ) +

1

2
Ibθ̇

2
i

]
− 1

2
kb

n−1∑
i=1

(θi+1 − θi)
2

(3.3)

This expression is in terms of the generalised coordinates and velocities θi and θ̇i only and can

be substituted into the Euler-Lagrange equations to solve for the motion of the beam, such

that:
d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= τi (3.4)

x

y

θi

θi+1

θi+2

Figure 3.1: A section of the flexible beam model showing three elements, with the shape
parametrised by angles θi
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where τi are the torques associated with beam element i, which act upon each individual beam

element around its centre-of-mass. A comparison can then be made between applying a large

torque to the central element and applying smaller distributed torques to each beam element.

This comparison is analogous to having a single large magnetorquer at the centre of a flexible

spacecraft boom compared to a set of magnetorquers distributed along its length.

3.1.1.1 Validation of the Flexible Beam Model

The flexible beam model adopted here has the advantage of allowing large rotational displace-

ments to be simulated, due to the generalised coordinates being the beam element angles rather

than considering displacements of the beam elements only. The choice of these coordinates

also means that the generalised forces are identified as torques acting on each beam element.

Therefore, the subject of our investigation, distributed magnetorquers, may be introduced quite

naturally to the equations of motion. However, the set of Euler-Lagrange equations given by

Eq. 3.4 results in a set of nonlinear, coupled differential equations. The validity of the model is

now demonstrated by showing that in the limit of small displacements and large n, the dynamic

behaviour approaches that of an Euler-Bernoulli beam.

The Lagrangian for a continuous Euler-Bernoulli beam [148], not subjected to external

loads, is:

L =

∫ Lb

0

(
1

2
µ

(
∂w

∂t

)2

− 1

2
EI

(
∂2w

∂x2

)2
)
dx (3.5)

where Lb is the total beam length, µ the mass per unit length, and w(x) represents the vertical

deflection at x. The x-axis coincides with the undeflected beam, which extends from the origin

to x = Lb. The quantity EI, also known as the bending stiffness, is the product of Young’s

modulus and the second moment of area. This is taken to be constant across the length of the

beam. Comparing Eq. 3.4 with Eq. 3.5, the kinetic energy terms are first examined. For small

displacements, the horizontal velocity of each element is negligible, as sin θi ≈ 0 after taking

the time derivative of the first of Eqs. 3.1. The same reasoning gives:

ẏi ≈
∂w

∂t

∣∣∣∣
xi

(3.6)

which allows the first term in the integral of Eq. 3.5 to be rewritten as:

1

2
µ

∫ Lb

0

(
∂w

∂t

)2

dx =
1

2

n ·mb

Lb

lim
∆x→0

n∑
i=1

ẏ2i∆x

≈ 1

2
mb

n∑
i=1

ẏ2i

(3.7)

where the beam mass density is expressed as the total mass divided by the total length, n·mb/Lb,

and for small displacements ∆x ≈ lb. Equation 3.7 is therefore equivalent to the kinetic energy
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term of the discretised model, as both ẋi and Ib tend to zero in the limit of small displacements

and large n. With this result, the discretised model is equivalent to an Euler-Bernoulli beam

for sufficiently large n if the potential terms are also equal. For small deflections, the first

derivative of w(x) can be approximated as the angle between the x-axis and the slope at that

point:
∂w

∂x
≈ θ(x) (3.8)

Taking the potential from Eq. 3.5, the integral is replaced with a Riemann sum and the

definition of the derivative is used to obtain an expression in terms of θ such that:

1

2
EI

∫ Lb

0

(
∂2w

∂x2

)2

dx =
1

2
EI lim

∆x→0

n−1∑
i=1

(
θi+1 − θi

∆x

)2

∆x (3.9)

again substituting ∆x ≈ lb. Equation 3.9 will equal the potential term in Eq. 3.3 so long as

the spring constant is chosen such that:

kb =
EI

lb
=
EIn

Lb

(3.10)

a result corroborated by Ref. [149], where the internal moments of a cantilevered beam are

considered. Thus, the flexible beam model developed here is accepted as a sufficient approxi-

mation of the linear Euler-Bernoulli beam theory, in the limit of small deflections and large n.

This gives a suitable model for the purposes of this thesis, as the aim is to analyse long, thin

beams or trusses in which shear effects are negligible. The nonlinear equations given by Eq.

3.4 may be numerically integrated with low computational effort to simulate large rotations

of the beams under the application of distributed torques. They are assumed to accurately

represent the dynamics of a long, thin beam so long as local deformation, or the difference in

angle between consecutive elements, remains small.

The number of elements needed to sufficiently approximate the beam is chosen by evaluating

the potential term in Eq. 3.3, while varying n. The calculation is performed for a beam

with constant curvature, i.e. n(θi+1 − θi)/Lb = κ, a constant. An Euler-Bernoulli beam

with equivalent, constant curvature would have a potential given by 1
2
EILbκ

2, by evaluation

of Eq. 3.5. The potential of the discrete model is non-dimensionalised by dividing by the

equivalent Euler-Bernoulli potential. Results of this calculation are shown for increasing n in

Fig. 3.2, showing that the non-dimensional potential approaches 1 for large n, as expected. For

the subsequent numerical simulations, a value of n = 31 is chosen as a compromise between

computational effort and a modest error of 3.2% of the Euler-Bernoulli beam potential. The

value n = 31 is chosen over an even number to ensure that a beam element lies at the mid-point

of the beam.
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Figure 3.2: Non-dimensional potential, Ṽ , against number of beam elements, n.

3.1.1.2 Dynamics of Flexible Beams with Distributed Magnetorquers

The equations of motion for a long, slender beam with distributed magnetorquers are now

numerically integrated to compare the potential advantages of distributed torques against a

large torque applied at the centre. Physical data for the beams is taken from Table. 3.1, which

contains a selection of three deployable booms developed for use in large space structures, and

which cover a range of bending stiffnesses and linear mass densities. For all examples, the beam

length is set to Lb = 100 m, which is then discretised into n = 31 elements.

A total torque of 1 N m is applied to each beam, with the full 1 N m applied to the central

element for the centralised case, and 1/15 N m applied to the 15 torqued elements in the

distributed case. The actual torque achievable by real magnetorquers depends on the orbital

altitude, external field direction and of course the specific magnetorquer design. The relatively

large torque value used here is chosen to avoid extremely long simulation times, while both

an overall rotation of the beam and flexible dynamics are observed. The value of the torque

does not significantly affect the results of this analysis, as the purpose of these simulations is

to compare the difference between centralised and distributed torques and so the same total

torque is applied in each case. Realistic magnetorquer sizing is considered in later analysis.

For each beam, two cases are examined. In the first case, the mass of the torquing actuators

is assumed negligible compared to the beam mass. This represents the ideal case, showing the



CHAPTER 3. DISTRIBUTED MAGNETORQUER ARRAYS 41

greatest possible benefit of distributing actuators to be investigated. In the second case, the

total mass of the torquing elements is taken to be comparable to that of the beam itself. In this

case, when actuators are distributed across the beam the overall inertia is increased, which may

reduce manoeuvrability and offset the potential benefits of distributed torques. Additionally,

the mass distribution of the beam is then not constant across it’s length, which will affect the

flexible response of the system.

The potential, V , defined in Eq. 3.3, is now used to compare the centralised and distributed

torque cases, as it provides a scalar measure of the total deflection of the beam at each point

in time. For each beam given in Table 3.1, simulations are performed over a time range of 500

s for both distributed and centralised magnetorquers. For the first quarter of the simulation,

a positive torque is applied to each torqued element, for the next quarter a negative torque is

applied, and the torque is then set to 0. This simulation represents a simple slew manoeuvre

with on/off control of the magnetorquers, allowing comparison of beam deflection during, and

after, a manoeuvre. The deflection ratio Vc/Vd is then calculated by finding the maximum of the

potential during each simulation, with Vc the maximum potential observed in the centralised

case and Vd the maximum for the distributed torques. The results of the simulations are shown

in Table 3.1. These results show that for all beams, distributing the magnetorquers results in

a significant reduction in beam deflection. The results also show that when the distributed

mass of the magnetorquers is included in the analysis, this reduction of beam deflection is only

slightly lower than when they are considered to have neglible mass, as for each beam the effect

of distribution still gives approximately an order of magnitude reduction in beam deflection.

The effect is illustrated in Fig. 3.3, which shows the shape of the deflected beam at the point

of maximum deflection (of Beam 3 in Table 3.1) for both centralised (a) and distributed (b)

magnetorquers. When a large centralised torque is applied, we see there are points of high

curvature in the beam shape near to the torquing element, while for the distributed beam the

overall deflection is much lower and also the curvature is more constant across the beam. This

would be desirable behaviour for a lightweight truss or beam as it would prevent concentrated

Deflection Ratio Vc/Vd

Beam

Bending
Stiffness
EI, N m2

Mass
Density
kg/m

Negligible
Torquer
Mass

Comparable
Torquer
Mass Reference

1

L’Garde
SSP Rigidizable
Truss 15.4× 105 0.7 15.10 9.217

Guidanean (2006)[150]

(EI calculated by Ref.
[151])

2

ATK Space Sys-
tems, Coilable
Boom 0.8× 105 0.07 11.96 8.925

Murphy (2005) [152]

(EI calculated by Ref.
[151])

3

DLR,
Deployable CFRP
boom 0.0521×105 0.1 17.45 15.34 Herbeck (2001) [153]

Table 3.1: Beam data and results of simulation.
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stresses and possible buckling at points with large curvature.

Figure 3.4 shows the plot of the potential for Beam 2, for the centralised (Fig. 3.4a) and

distributed (Fig. 3.4b) torque cases. The figure shows that distributing the magnetorquers

leads to an order of magnitude reduction in the deflection, and also shows that the frequency of

beam vibrations, seen as oscillations in the potential, are significantly reduced by distributing

the magnetorquers. The natural frequencies for both mass distributions are found by linearising

Eqs. 3.3 around equilibrium. For the beam with a central mass, the fundamental frequency

is 0.05 Hz, while for the beam with distributed magnetorquers, it is 0.023 Hz. While these

a

b

Figure 3.3: Exaggerated shape of the 100 m beam at the point of maximum deflection for a
central torque (a) and distributed torques (b). Y-axis is scaled by a factor of 50 for illustration.

a b

Figure 3.4: Potential against time for beam 3, comparing centralised and distributed torquing
on the y-axis (a), and with the y-axis scaled to show distributed torquing only (b).
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differences in natural frequencies are evident from Fig. 3.4, it is also clear from the figure

that in the centralised case higher frequency vibration modes are being excited. This is most

evident in the last half of the simulation, when the magnetorquers are switched off and only

residual vibrations remain. In Fig. 3.4b, regular oscillations are observed in the potential,

suggesting the beam is vibrating at some superposition of the lower frequency modes. In Fig.

3.4a however, the oscillations are much less regular, suggesting the manoeuvre has excited a

number of higher frequency modes, which are not modelled as well by the nonlinear equations

of the model studied here.

While it may also be desirable to reduce the natural frequencies by distributing magnetor-

quers, it is important to note that this effect is due to the redistribution of mass rather than

the distributed torques, and thus comes with an associated increase in inertia which may not

be desirable. However, the excitation of the normal modes is shown to be reduced by dis-

tributed torques, and is apparent when the magnetorquer mass is considered. The motivation

for distributing magnetorquers is to reduce deflection of a spacecraft support structure, and

distributing actuators across the beam length has proved to successfully achieve this goal. Due

to the increase in moment of inertia caused by distributing the magnetorquers, the usefulness

of the proposed concept for specific applications would require a trade-off between pointing

rate requirements, and the required flatness or buckling moments of a gossamer spacecraft.

Applications such as solar power arrays or reflectors may meet the criteria for distribution of

magnetorquers to be worth the increased inertia, as it may be more important for this type of

spacecraft to remain flat during operation than to be particularly agile.

3.1.2 Motivation for Distributed Torques: 3D Spring-Mass Model

Having demonstrated that distributed torquing results in reduced deformation for a 2D beam, a

3D model of a flexible planar structure is now presented and used to further investigate torque

distribution. The structure is modelled as a cubic lattice of nodes, connected by struts to give

an octahedral-tetrahedral truss configuration, illustrated in Fig 3.5. This configuration is a

common type of truss-structure used architecturally for wide-spanning roofs, due to its rigidity

and high strength-to-weight ratio [154]. The mass of the structure is taken to be concentrated

at these nodes, and the struts are approximated as linear, damped springs. The mechanical

model is illustrated in Fig. 3.6. The spring force between connected particles is given by:

Fs = k(r − l0)
r

r
+ γ

(
ṙ · r

r

) r

r
(3.11)

where k, γ and l0 are the spring constant, damping coefficient, and natural length of the strut

between the particles, and r and ṙ the relative position and velocity of neighbouring particles.

The particle position vectors and force directions are illustrated in Fig. 3.7. The total force

on particle i due to the spring and dashpot is then found by summation over all connected
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Figure 3.5: The octahedral-tetrahedral truss structure, the half octahedrons are highlighted
in blue and orange with tetrahedrons filling the space in between.
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Figure 3.6: A cubic unit of the truss structure, showing the spring and dashpot connections
between point masses at the numbered nodes.

Figure 3.7: The spring force directions for two displaced particles i and j.
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particles:

F spring
i =

∑
j∈C

[
k(rij − l0)

rij
rij

+ γ

(
ṙij ·

rij
rij

)
rij
rij

]
(3.12)

where the relative position of the particles is denoted by rij = rj − ri, and C is the set of

connected particles.

Actuator torques are included in the model by the appropriate application of forces to the

individual particles. This chapter is concerned with magnetorquers, which as discussed in the

technical introduction produce a torque given by:

τ = md ×B (3.13)

In the spring mass model, the mass is concentrated at the structure nodes as point masses, and

so a torque cannot be applied to the nodes directly. To include these actuators, magnetorquers

are placed between connected nodes, i.e. the magnetorquers are taken to be embedded within

the connecting struts. If there is a magnetorquer rod embedded within the strut connecting

particles i and j, its dipole moment is aligned with the strut and given by md = mdr̂ij. The

torque within the connecting element is experienced by the particles as a transverse force, given

by:

Fmag
i = −Fmag

j =
1

rji

(
mdB −

(
1

2
mdB · r̂ji

)
r̂ji

)
(3.14)

This expression gives forces which are perpendicular to the connecting strut, and result in a

torque around the centre of the strut which satisfies Eq. 3.13, i.e. 1
2
rji×Fmag

i + 1
2
rij ×Fmag

j =

md ×B.

The final force included in the model is gravity. The gravitational force on particle i is:

F grav
i = −µmp

R2
i

R̂i (3.15)

where µ is the standard gravitational parameter of the primary body, mp the particle mass, and

Ri the absolute position vector expressed in a frame with origin at the centre of the primary

body. The total force on particle i is given by summation of Eqs. 3.12, 3.14 and 3.15:

Fi = F spring
i + Fmag

i + F grav
i (3.16)

Equation 3.16 is evaluated for all particles in the model, and the dynamics simulated by numer-

ically integrating the position and velocity of all particles simultaneously. In the simulations,

Runge-Kutta 4th order integration is used.

3.1.2.1 Comparison of Distributed and Centralised Torques

The spring-mass model is now used to compare distributed and centralised torques by construct-

ing a model of a planar structure with an embedded distributed array of torquing actuators,
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and one in which all torques are applied at the centre of the structure only. The two cases

are illustrated in Fig. 3.8, which shows 40×40 m structures with actuators embedded in the

blue and red highlighted elements. Figure 3.8a, shows actuators embedded within the struts

between all nodes on the top layer of the structure, giving torques aligned with the x1 and y1

body axes. Figure 3.8b shows the same structure with actuators placed at the central cube unit

only. Two highlighted elements are shown for each direction in the central case to maintain

symmetry around the centre-of-mass. A 40×40 m structure is shown here to clearly illustrate

the actuator location and directions, but in the following simulations a 100×100 m structure is

also considered.

In this section, general torquing actuators are considered, rather than magnetorquers specif-

ically, because the torque produced by a magnetorquer depends on its orientation relative to

the magnetic field, according to Eq. 3.13. Furthermore, the magnetic field direction will be

constantly changing while on-orbit. In this section, the aim is to investigate torque distribution

across a flexible structure, and so assuming a constant torque for now allows direct comparison

to be made between the distributed and centralised cases. The simulations are performed by

integrating the particle positions, with the forces given by Eq. 3.16, and a Runge-Kutta 4th

order integration method.

A number of simulations are performed to compare distributed and centralised torques.

Three structures are considered, with the spring constants adjusted to represent a range of

structural flexibility. For each structure a simulation is performed with a single large torque

applied to the centre of the structure, as illustrated in Fig. 3.8b, and then that same total

torque is distributed across the grid of elements, as shown in Fig. 3.8a. The specific geometry

used in the simulations is that of a 100 m side-length square structure, made up of a 19×19

grid of the unit cubes illustrated in Fig. 3.6, resulting in a side length for each cube of 5.26 m.

The grid dimension of 19 is an odd number to ensure that a single cube lies at the centre of

the structure, and so the centre-of-mass of the stucture lies in the centre of a unit cube rather

than at a node. This means that, for centralised torquing, a torque can be applied to a single

unit cube with the resulting torque symmetrical around the centre-of-mass of the structure, as

illustrated in 3.8b. The torque applied is around the body frame x1-axis. The x1y1z1 body

frame is initially aligned with the inertial xyz frame, shown in Fig. 3.8. Although the structure

is actually a collection of particles, a body frame is defined by least-squares fitting a rotation

between the initial particle positions and the displaced positions. The least-squares problem to

minimise is:

min
R,dt

n∑
i=1

||Rpi + dt − qi|| (3.17)

where pi and qi are the initial and final set of points in the structure respectively, and R
and dt the rotation matrix and translation vector describing the mapping from qi to pi. This

problem can be solved using singular value decomposition, as described in Ref. [155]. The

angular velocity body-rates of this rotating frame are then estimated using a backward difference
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1
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Figure 3.8: Example of the spring-mass model of the truss-structure with distributed (a) and
centralised (b) torquing actuators. The x1 and y1 body axis actuators are highlighted in red
and blue respectively.
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formula, applied to the current best-fitting rotation matrix and that of the previous simulation

timestep. Throughout the simulation, the standard ZYX intrinsic Euler angles ψ, θ, ϕ are used

to represent the orientation of this body-frame, as described in the technical introduction of

Chapter 2.

The structural mass, stiffness and magnitude of the actuator torques are selected by con-

sidering large solar sails, which may have areal densities of on the order of 10 g/m2 [156]. This

value is adopted for all three simulations, such that only the structural flexibility varies be-

tween the cases. For a 100×100 m structure, this results in a total mass of 100 kg. Commercial

magnetorquers are available with a dipole moment to mass ratio of 100 A m2/kg [157], and it is

assumed that the maximum dipole moment of a magnetorquer scales linearly with its mass. If

one third of the structural mass is allocated for magnetorquers, the maximum dipole moment

is then taken to be 3333 A m2. If the external magnetic field has a magnitude of 30 µT, such as

may be found in low Earth orbit (LEO), the maximum achievable torque is found by applying

Eq. 3.13, resulting in a representative torque of 0.1 N m.

The model spring constant is determined by selecting a value for the overall bending stiffness

of the structure. The bending stiffness of a four longeron truss with diagonal battens on each

face is given by:

EI = 2EAR2
c (3.18)

where E is the Young’s modulus, A is the longeron cross sectional area and Rc is the radius of

a circle enclosing the truss cross-section [152]. The structure considered here is comprised of

10 such trusses arranged in parallel, and so the total bending stiffness of the structure is found

by multiplying Eq. 3.18 by 10, where any contribution of the connecting elements between

layers is assumed to be negligible. The spring constants are related to EA by the formula

Side length 100 m
Structural units 20
Maximum torque, τmax 0.1 N m
Simulation runtime, tend 30 minutes
Simulation timestep, δt 0.1s
Areal Density, σ 10 g/m2

Total mass 100 kg
Particle mass, mp 0.1250 kg (distributed)

0.0833 kg (centralised)
Bending stiffness, EI

Case A: 103 N m2

Case B: 102 N m2

Case C: 101 N m2

Torque Applied τmax if t ≤ 1
3
tend

−τmax if 1
3
tend < t ≤ 2

3
tend

0 if t > 2
3
tend

Table 3.2: Parameters used for structural simulations.
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k = EA/l0, where l0 is the natural length of the spring. Equation 3.18 treats the truss as an

Euler beam, and so while the bending stiffness may be equivalent, other behaviour may not be

well modelled by this approach. However, it is assumed to be a suitable approximation for the

generic flexible structure modelled here. This process was verified by performing a cantilever

test on the numerical model, where one side of the structure was held fixed and a load applied

to the free end. The resulting deflection matched the expected value for a beam or plate with

the specified bending stiffness. The most common solar sail design comprises diagonal booms

supporting a tensioned membrane. The bending stiffness of these booms varies depending

on the sail length-scale, but is generally on the order of 103 N m2. This bending stiffness is

taken as the most rigid case to be examined. Cases two orders of magnitude lower are also

investigated, to determine whether distributed torquing allows effective attitude control for

even more flexible structures. As noted previously, the structural mass and the applied torque

are held fixed across the three cases considered to allow direct comparison of the results, but in

practice a reduced bending stiffness would also be associated with a reduced structural mass.

Table 3.2 summarises the data which is common to all simulations. Simulations are per-

formed over 30 minutes, denoted tend, which is sufficient time for the structure to perform a

significant rotation of at least 0.4 radians. A timestep, δt, of 0.1 s is selected for the Runge-Kutta

integration, a value which was found to provide stable solutions with reasonable computation

times. The torque profile described in Table 3.2 corresponds to a bang-bang-off signal, with

the torque magnitude set to the maximum, τmax, and the direction either positive or negative

along the x1 axis. Table 3.2 shows the three structural cases which are considered. The dif-

ference across each case is the spring constant used in the model, which is chosen such that

the beam-like bending stiffness of the square structure, for bending around the x1 or y1 di-

rections, is equal to 103, 102 and 10 N m2 for cases A, B and C respectively. These values

correspond to the order of magnitude of bending stiffness of current solar sail designs (Case

A), and two orders of magnitude lower. For the distributed torque case, the total mass of 100

kg is distributed between all particles, while for the central torque case one third of this mass,

the fraction allocated for the actuators, is concentrated at the centre of the structure only.

If the structures were rigid bodies, the torque profile in Table 3.2 would result in a rest-

to-rest manoeuvre. For the flexible structures considered here this excitation signal allows

the response of the structure to be investigated when the torque is first applied and when it

switches direction. Finally, when the torque is switched off the resulting residual vibrations

in the structure can be observed as a measure of how much energy has been absorbed by the

flexibility of the structure. For example, if the structure is found to have large amplitude

residual vibrations it suggests that a significant portion of the control effort has been absorbed

by the flexing structure as strain energy rather than working to rotate the structure. The

surface standard deviation (SD), σ, is used as a measure of flatness in the following results, and

is found by taking the average plane formed by the top layer of points in the structure, and

then calculating the standard deviation of the normal distance of each particle to this plane.
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This measure of the surface flatness is of interest because if this parameter remains low then the

structure is relatively un-deformed and is not likely to fail due to buckling. It is also important

to consider this measure of surface flatness since many applications for space structures of this

scale, such as reflectors, antennas, or solar power arrays would require a high degree of flatness

during operation.

3.1.2.2 Results of Simulation

Results of the simulations for Cases A, B and C with central and distributed torquing are

shown in Figs. 3.9, 3.10 and 3.11 respectively. In all cases, distributed torquing results in

a rigid-body like rotation of the structure. With central torquing however, a rigid-body like

response is seen for Case A, but for more flexible structures much smaller rotations occur

and the behaviour is less uniform, with rotations seen around axes other than the x1 body

axis. For Cases A and B, distributed torquing leads to an order of magnitude reduction in

the surface SD, showing that distributed actuation has had the desired effect of reducing the

surface deformation considerably.

For Case C the magnitude of the surface SD throughout simulation is comparable for both

distributed and central torquing. Figure 3.12 shows the shape of the structure plotted at 500

s intervals. This shows that although the surface is deformed a comparable amount, with

distributed torquing the deformation is much more uniform, creating a wave-like shape along

the x1 body axis. With central torquing the structure has points of high local deformation,

particularly at the centre-of-mass where the torque is applied, and would therefore be more
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Figure 3.9: Results of simulation for Case A
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Figure 3.10: Results of simulation for Case B
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Figure 3.11: Results of simulation for Case C.
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Figure 3.12: Structure shown in the inertial frame at 500 s intervals for Case C, after appli-
cation of distributed (a) and central (b) torques.
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(a) Centralised torques. (b) Distributed Torques.

Figure 3.13: Local surface angle at the point of maximum surface SD for Case A.

likely to fail due to buckling. Additionally, centralised torquing is unable to enact the desired

rotation for Case C. This is because as the structure deforms, the orientation of the central

points and thus the direction of the torque being applied is significantly altered, resulting in

angular displacements around both the x1 and y1 body axes. This behaviour is often described

as follower forces (e.g. [158]), as the applied forces “follow” the geometry of the structure as it

deforms.

For distributed torquing, in the final third of the simulation the surface SD oscillates steadily

with a small amplitude, which suggests that little energy has been absorbed as strain energy

during torquing. With central torquing, the surface SD is found to continue rising at this point.

This is because the structure settles into a more uniform shape after the torque is switched off,

which is a lower energy configuration despite having higher surface SD. Therefore the surface SD

is not a direct measure of the potential energy in the spring-mass system because areas of high

local deformation, such as the where the central torque is applied, can contribute significantly

to the potential energy but not result in a large surface SD.

The “surface flatness” can also be measured by considering the angle the surface makes to

the average plane at each point, which would be important if the surface were to be used as a

reflector or solar sail as this would alter the local angle of incidence for incoming solar radiation.

The local surface angle across the structure is determined by first fitting a continuous surface to

the particle positions using a cubic interpolation, taking the gradient of this surface, and finally

taking the inverse tangent to determine the angle between a plane tangent to the surface and

the x1y1 plane, at each point of the interpolated surface. For the most rigid structure, Case A,

there was little difference between rotations performed by central and distributed torquing, but

there was a large difference in the surface SD for both cases. Further insight into this difference
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is gained by considering the local surface angle at the point of maximum surface SD, shown in

Fig. 3.13. The figure shows that the order of magnitude reduction in surface SD achieved by

distributed torquing corresponds to an order of magnitude reduction in the typical local surface

angle as well. The figure also demonstrates that, for distributed torquing, the deformation is

uniform along the x1 axis, and the structure has settled into a wave-like shape, similar to Fig.

3.12a) but with a much smaller amplitude. For central torquing (a), the deformation is much

less uniform, and the structure’s edges make an angle of over 5◦ to the average plane. Of note

is that the triangular artefacts visible in Fig. 3.13 are simply the effect of fitting a surface

to the square units of the structure, and the large values at the structure’s edges are a result

of overfitting between the node positions. It is thought that the asymmetry in Fig. 3.13 is a

result of compounding errors in the numerical integration, and the nonlinearity of the system

dynamics and follower forces discussed previously.

3.1.2.3 Torque-Shaping

Another approach adopted for the control of large, flexible structures is torque-shaping. Simu-

lations are now performed to investigate the response of the structure after applying a smooth

torque profile, rather than the discontinuous on-off control profile considered previously. The

aim of these simulations is to determine whether a smooth torque profile improves the perfor-

mance of central torquing and could be an alternative to distributed actuation. Simulations

of Cases A, B and C are repeated, but now with torque-shaping implemented to smooth the

excitation signal in an attempt to reduce the magnitude of the flexible response and improve

performance. Torque-shaping is well-studied for the control of spacecraft with flexible ap-

pendages, and is known to reduce the impact of the flexible response of the structure on control

0 t
v

t
-

t
0

t
end

Time 

-1

0

1

Figure 3.14: Versine-smoothed torque profile



CHAPTER 3. DISTRIBUTED MAGNETORQUER ARRAYS 56

efficacy [159]. One torque-shaping strategy is to use the versine function (versine(θ)=1-cos(θ))

to remove discontinuities in the excitation signal and provide a smooth function, which has

been shown to reduce jerk in attitude manoeuvres of a flexible spacecraft [160]. Simulations

are repeated with the same parameters, but with a torque profile now given by:

τ(t) =
1

2

[
1− cos

(
π
t

tv

)]
τmax if t ≤ tv

τ(t) = τmax if tv < t ≤ t− − tv

τ(t) = cos

(
π

2
· t− − tv − t

t

)
τmax if t− − tv < t ≤ t− + tv

τ(t) = −τmax if t− + tv < t ≤ t0 − tv

τ(t) = −1

2

[
1 + cos

(
π
t0 − tv − t

tv

)]
τmax if t0 − tv < t ≤ t0

τ(t) = 0 if t > t0

(3.19)

where t− = 1
3
tend is the point at which the torque is reversed, t0 =

2
3
tend is the point where the

torque is switched off and tv is the ramp-up time of the versine smoothing function, chosen as
1
10
tend here. The torque profile is shown in Fig. 3.14, which is a versine-smoothed version of

the previous bang-bang-off excitation signal.

Results of the simulations for Cases A, B and C with central and disributed torquing,

and torque shaping implemented, are shown in Figs. 3.15, 3.16 and 3.17 respectively. In
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Figure 3.15: Results of simulation for Case A with torque shaping implemented.
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Figure 3.16: Results of simulation for Case B with torque shaping implemented.
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Figure 3.17: Results of simulation for Case C with torque shaping implemented.
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all cases, the overall rotational motion of the structure is very similar to the on-off control

simulations, with the exception of the angular velocity profile which has now been smoothed by

the torque shaping, as is to be expected. The main result here is that, even with torque shaping

implemented, the centralised torquing cases still exhibit unwanted rotations around axes other

than the x1 direction. This is most evident for Case C, the most flexible structure, which fails

to perform a significant rotation at all. Comparing the surface SD in all cases, there is again an

order of magnitude reduction in deformation when distributed torquing is used. For Case A,

torque shaping is found to greatly reduce the amplitude of oscillations of surface SD, and with

distributed torquing the structure appears to deform into an equilibrium position at each stage

of the simulation. This suggests that a combination of distributed torquing and torque shaping

could be used for the attitude control of relatively rigid structures, where it is desired to reduce

oscillations of the surface deformation. The results also show that distributed torquing could

be particularly suitable for the attitude control of extremely flexible structures, represented by

Case C, as although there is a large surface deformation the structure is successfully rotated

around the desired axis. There is again a notable rise in SD in the last third of the simulations

total runtime, when central torquing is implemented, seen in Figs. 3.15 and 3.16. As noted

for the previous simulations, this arises due to the initially large local deformation settling into

a more uniform deformation across the structure, which has a larger surface SD despite being

a lower energy configuration of the spring-mass system. The simulation shown in Fig. 3.15

was performed for an extended duration and the SD was seen to continue rising to a maximum

value of 0.085 at 7800 s, before returning to zero due to the structural damping.

3.2 Magnetorquer Array Configurations and Rigid

Body Dynamics

Simulations have demonstrated that distributed torquing results in reduced structural defor-

mation when compared with centralised torquing strategies, for both a 2D flexible beam model

and for a 3D, planar truss-like structure. Two configurations of planar magnetorquer arrays

are now presented, and control strategies are developed for each. Then, numerical simulations

are presented, where a planar spacecraft is modelled as a rigid body. Rigid body dynamics are

used here to quickly analyse the proposed control strategies, as this section is primarily focused

on algorithmic concerns and the magnetorquer array geometries rather than structural consid-

erations. In general, the output of a magnetorquer is scaled by using pulse-width modulation

(PWM), or bang-bang excitation signals are used. The algorithms developed here present an

alternative to applying PWM to the full array of magnetorquers, where magnetorquers are

assumed to be either off, or on (with positive or negative polarity). If a torque with a value

lower than the maximum torque achievable by the full array is desired, then a fewer number

of magnetorquers are activated. This strategy reduces the losses associated with the rapid

switching of the magnetorquers required by PWM, losses primarily due to the ripple currents
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induced in such devices, as discussed in Ref. [161]. Later simulations in Sec. 3.3 again consider

flexible structures, using the 3D spring-mass model of the previous section.

3.2.1 Radial Dipole Array

The first magnetorquer array configuration takes the dipole directions to be arranged radially

on a square grid or disc. This configuration was chosen due to the fact that many structures

may be fabricated with radial booms extending from a central hub [27, 70]. For a conducting

coil with magnetic dipole moment m, in a magnetic field B, the torque produced is given by

the cross product (as in Eq. 3.13, repeated here for clarity of discussion):

T = m×B (3.20)

The spacecraft is assumed to be a rigid body in this analysis, and so a torque applied at a

distance from the centre-of-mass is equivalent to a torque of the same magnitude and direction

applied at the centre-of-mass. The spacecraft is modelled as a large, thin square structure,

appropriate for the modelling of a large planar reflector for example. The x1y1z1 body frame

(as defined in Chapter 2) is affixed to the spacecraft, with the x1 and y1 axes lying in the square

plane of the array, shown in Fig. 3.18. The inertial frame in which the spacecraft is situated is

again xyz. Magnetorquers are placed at equally spaced points on the structure. A 3× 3 lattice

is shown in Fig. 3.18, but the analysis is provided for a general, n × n array. With a lattice

dimension a, the position of the cenral point of a magnetorquer labelled i, j is given by:

rij = a

(
i− n+ 1

2

)
x̂1 + a

(
j − n+ 1

2

)
ŷ1 (3.21)

The term (n+ 1)/2 in Eq. 3.21 is included so that the central point of the array lies at the

Figure 3.18: Square array of magnetorquers with radial dipole directions
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origin, and the values of i and j are positive integers. The magnetic dipole moments of the

torquers are taken to lie within the plane. This assumption is used in order to demonstrate

2-axis control with an array of magnetorquers. The magnetic dipole moments are therefore

taken to lie in the direction of rij, resulting in the dipole moments being arranged radially

around the centre of the structure. This configuration gives an even distribution of dipole

moment components in the x1 and y1 directions, and so for a large enough array, torques may

be generated in any direction in the plane normal to the magnetic field. It is also assumed that

each magnetorquer may be individually addressed, and in one of three possible states; on, with

current flowing in either direction, or off. The magnetic dipole moment of magnetorquer i, j is

then given by:

mij = mCij r̂ij (3.22)

The scalar magnetic dipole moment value, m, is a constant determined by the magnetorquer

geometry and current applied. C is an n× n control matrix with each element Cij ∈ {1, 0,−1}
denoting the state of magnetorquer i, j. From Eq. 3.22 it can be seen that Cij = 1 or -1 results

in the dipole vector pointing radially outward or inward respectively, while Cij = 0 denotes an

inactive magnetorquer. With this model the total torque, T , produced by an n × n array is

found by combining Eqs. 3.20-3.22 and performing a double summation over i and j such that:

T = ma
n∑

i=1

n∑
j=1

Cij
|rij|

[(
i− n+ 1

2

)
x̂1 +

(
j − n+ 1

2

)
ŷ1

]
×B (3.23)

As each magnetorquer can be in one of 3 states and there are n2 magnetorquers, the total

number of possible combinations of individual magnetorquer states, and equivalent number of

possible control matrices, is 3n
2
. If n is odd, there is a magnetorquer which lies at the origin.

As there is no radial direction defined for this magnetorquer’s dipole moment, it is not included

so as to not break the symmetry of the system. The number of possible matrices is then 3n
2−1,

ignoring the central point. Although this results in a large number of possible control torques,

many configurations result in identical torques due to symmetrical arrangements of torque rods.

For example, with n = 3, there are 19,683 possible C matrices, but these can result in as few

as 84 unique torques, depending on the orientation of the array relative to the magnetic field.

Figure 3.19 shows an example of the possible torques generated by a 3× 3 array when the

array plane (blue plane in Fig. 3.19a) lies in the plane normal to the magnetic field direction

(the z-direction, which is perpendicular to the yellow plane). Torques are shown as grey lines

in Fig. 3.19a. The cross product in Eq. 3.20 results in any torque created also lying in this

plane. With the field taken to be in the z-direction, all torques then lie in the xy-plane. Non-

dimensional torques are shown in Fig. 3.19b, which are found by dividing by the maximum

possible torque which is achieved by activating all magnetorquers, Tmax. The possible torque

vectors are evenly distributed within the unit circle in Fig. 3.19b, so it can be seen that in this

orientation the distributed magnetorquers may generate a torque vector close to any desired

reference torque. Figure 3.20 shows the same information after an arbitrary rotation of the
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Figure 3.19: a) Visual representation of magnetorquer array plane and torque vectors. b)
Non-dimensional torques when the magnetorquer array plane is normal to the magnetic field
direction

array relative to the field direction. Figure 3.20b shows that the pattern of achievable torques

in the xy-plane has now been somewhat skewed and rotated compared to Fig. 3.19b. This

demonstrates that the achievable torque directions and performance of the array are highly

dependent upon the field direction.

3.2.1.1 Free-Space Simulation of a Radial Dipole Array

The performance of the radial model described can be investigated by performing a simulation

of the system’s attitude dynamics, in the absence of any environmental disturbances. Slew ma-

noeuvres will be considered using torques generated by the array to perform rotations between

target orientations, with a constant field direction. Rigid-body dynamics will be used along

with the quaternion kinematic equations to model the array’s orientation. As presented in the

technical introduction, for a rigid body rotating around its centre-of-mass, the time derivative

of a quaternion describing its current orientation is given by:

q̇ =
1

2
q[0,ω] (3.24)

Along with the three Newton-Euler equations, the equations of motion are solved numerically,

with a control torque, T generated using the radial array model defined by Eq. 3.20. In vector

form, the Newton-Euler equations are:

Iω̇ + ω × (Iω) = T (3.25)
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Figure 3.20: a) Visual representation of magnetorquer array and torque vectors. b) Non-
dimensional torques when the magnetorquer array plane has rotated by Euler angles of 10, 45
and 20◦ (zyx extrinsic convention)

A quaternion error feedback scheme is now used to control the magnetorquer array. An error

quaternion qerr is defined using the quaternion product of the desired orientation quaternion,

qref , with the current orientation conjugate, q∗t [146], such that:

qerr = qrefq
∗
t (3.26)

The vector part of this (pure) quaternion then gives the direction of the torque required to

achieve the desired orientation. A reference torque can be built from this vector along with a

damping term proportional to the current angular velocity vector, such that:

Tref = −Pqqerr − Pωω (3.27)

where qerr is the vector part of the qerr quaternion. The ratio of the proportional and derivative

gains, Pq and Pω, can be adjusted to change the characteristics of the controller, while both are

scaled to generate reference torques with a magnitude achievable by the dipole array. Once a

reference torque is calculated, a look-up table is created of all current possible torques which

may be generated by different combinations of dipole directions on the array, following [101]

where a similar approach was taken for an array of reflectivity control devices. The best

achievable torque is then selected based on the Euclidean distance between the two torque

vectors. The look-up table of possible torques is generated by finding every possible control

matrix and applying Eq. 3.20. For a 3 × 3 array these control matrices are defined by all

possible combinations of 1, 0 and −1. A sample of the 19,683 possible control matrices are
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shown in Eq. 3.28, where the matrices were generated by cycling every matrix element through

each of the possible values. 1 1 1

1 1 1

1 1 1

 ,

 1 1 1

1 1 1

1 1 0

 ,

 1 1 1

1 1 1

1 1 −1

 ,

 1 1 1

1 1 1

1 0 1

 ,

 1 1 1

1 1 1

1 0 0

 ,

 1 1 1

1 1 1

1 0 −1

 ,

 1 1 1

1 1 1

1 −1 1

 ,

 1 1 1

1 1 1

1 −1 0

 . . .

(3.28)

3.2.1.2 Results of Free-Space Simulation

Simulations are now performed in MATLAB in order to test the dipole array model and define

the actuator characteristics. The goal of this analysis is to determine what attitude manoeuvres

a dipole array may achieve, and how closely the torques generated by the dipole array track

the reference controller torque given by Eq. 3.27. The equations of motion were integrated

with ode45. The controller gains were determined manually by adjusting Pq such that the

magnitude of the reference torque remained within a range achievable by the actuators and

then adjusting the ratio Pq/Pω to give sufficient damping to the response. The controller was

tested by setting the desired orientation to a 90◦ rotation around the y-axis, which corresponds

to a reference quaternion qref = −0.7071 + 0î − 0.7071ĵ + 0k̂. Controller gains were set at

Pq = 1000 N m, Pω = 20000 N m s rad−1. The resulting reference torques lie in the range of 0

to 200 N m, which covers the range of torques the simulated array produces. Actuator torques

are determined by an implementation of Eq. 3.20 in MATLAB with the magnetic dipole

moment of the magnetorquers set to m = 100 A m2, moments of inertia of (15,15,30)×104

kg m2, and magnetic field strength |B| = 1 T for illustration. These parameters are chosen

to yield torques on the order of 100 N m, but this scaling is arbitrary and does not affect the

behaviour of the controller or torque tracking, so long as the reference torques and actuator

torques are compatible. Essentially, the simulation performed here is to demonstrate that the

actuator torque direction can approximate Tref accurately rather than a realistic simulation of

the orbital environment, which is explored later in Sec. 3.3.

Results of the simulation are shown in Fig. 3.21, where the quaternion components move

smoothly to the desired orientation with no oscillation. The reference torque y component,

Ty, produced by Eq. 3.27 is shown in Fig. 3.22, along with the actual torque produced by

the array. The actual torque tracks the reference reasonably well, notably oscillating around

the reference value at t = 150 s when the array cannot reproduce the reference torque, and

so switches between the nearest values. As this is a rotation around the y-axis only the other

torque components are zero.

For general 3D attitude motion, the controller is not capable of tracking the reference torque
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Figure 3.21: Quaternion components against time for a rotation around the y-axis of π/2
radians. Current quaternion component shown in black while the desired reference quaternion
is dashed red.

y

Figure 3.22: Reference torque Tref and actuator torque T produced by the controller for the
y-axis rotation.
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a) b) c) a) b) c)

a) b) c) a) b) c)

Figure 3.23: Quaternion components against time for a composite manoeuvre. Current
quaternion component shown in black while the desired reference quaternion is dashed red.

a) b) c)

Figure 3.24: Torque components in inertial frame during simulation, Tx is tracked accurately
while some oscillation occurs around Ty due to discrepancies between required torques and Tref .
Tz is zero as this is the field direction.
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as the magnetorquers are not capable of producing a torque in the magnetic field direction (here,

the z-direction). However, with a sequence of rotations it is still possible to achieve an overall

rotation around the z-axis, despite not being able to create a torque outwith the xy plane [162].

Figure 3.23 shows the simulation results of performing such a manoeuvre, where the sequence

of rotations is; (a) π
2
radians around y-axis, (b) π

2
radians around x-axis and (c) −π

2
radians

around the y-axis. The resulting final attitude corresponds to a rotation of π
2
around the z-axis,

which would not be possible directly. The reference and control torques are shown in Fig. 3.24.

Notable is the oscillation in Ty, since during the second rotation the array lies on the yz plane

and so the choice of torques in the y direction is much more limited, making it harder to find a

possible torque which matches Tref . Also notable is that after the third rotation Tref does not

reach zero since when the array returns to the xy plane, it is slightly offset from the desired

orientation around the z-axis. The calculation producing Tref would generate a torque mostly

in the z direction to correct the attitude, but this is not possible to create with the array so the

“nearest” possible torque is zero. This behaviour can be corrected by taking smaller timesteps

in the simulation and allowing longer for the body to settle between rotations. This is also

evidenced by the steady state errors after the final rotation in Fig. 3.24. Also note that there

is a slight delay during the final manoeuvre and time where Tref is small in magnitude, this is

because at this point the dipole direction of the array is almost aligned with the external field,

and so the largest torque which can be produced by the array (which Tref is scaled by) is very

small.

3.2.2 Orthogonal Dipole Array

The second proposed magnetorquer array configuration consists of an n×n square grid, which

has two perpendicular magnetorquers placed at each point. The magnetic dipole moments of

these magnetorquers are coplanar with the structure’s surface, and aligned with the body-frame

x1 and y1 axes. Figure 3.25 illustrates the dipole moment directions, which are labelled mx1

and my1, for the dipole moments in the x1 and y1 directions respectively. The torque produced

by each dipole is found by taking the cross product with the external field B, and are denoted

by τ1 and τ2. The subscripts 1 and 2 are used to denote this and avoid implying that τ1 and

τ2 are aligned with the x1 and y1 axes, as these vectors lie in the plane normal to the magnetic

field. Although mx1 and my1 are perpendicular, for an arbitrary orientation of the plane with

respect to the magnetic field, τ1 and τ2 will not be perpendicular in general. This can be shown

by taking the scalar product of the two torque vectors:

τ1 · τ2 = (mx1 ×B) · (my1 ×B)

= (mx1 ·my1)(B ·B)− (B ·my1)(my1 ·B)

= −(mx1 ·B)(my1 ·B)

(3.29)
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Figure 3.25: Square array of magnetorquers with two orthogonal dipoles at each grid point

Equation 3.29 vanishes only in the case when the magnetic field is perpendicular to one of the

dipole directions, which shows that τ1 and τ2 are not generally perpendicular. As the torque

vectors provided by the magnetorquers of each direction are not perpendicular in general, an

expression must be found for the number of dipoles in each direction to activate in order to

compose a reference torque. Figure 3.26 shows an example of how a reference torque may

be generated using this configuration. It can be seen that, in this example, Tref is closely

approximated by activating two x1 direction magnetorquers, and two y1 direction magnetor-

quers. In general, the number of magnetorquers in each direction to activate can be found by

decomposing an arbitrary reference torque vector into components.

The total actuation torque, T , must be constructed from some integer multiples of τ1 and

τ2, since there can only be an integer number of activated dipoles. This requirement can be

written as:

Figure 3.26: Example composition of torque Tref from component vectors τ1 and τ2 for an
arbitrary orientation of the array. Here N1 = N2 = 1 and the resulting vector is close to the
reference torque Tref
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Figure 3.27: Voronoi diagram for 21 points placed at random in a square region

T = N1τ1 +N2τ2 (3.30)

Then N1 is found using the scalar product of the reference torque and τ1, and rounding to the

nearest integer, unless the value is greater than n2. In that case, all the magnetorquers are

activated and the controller is saturated. Therefore:

N1 =

⌊
Tref · τ1
|τ1|2

⌉
(3.31)

Similarly, N2 is given by an equivalent expression, except that N2 is reduced by taking into

account the contribution to the τ2 direction already given by N1τ1, so that:

N2 =

⌊
Tref · τ2 −N1τ1 · τ2

|τ2|2
⌉

(3.32)

There is now the issue of deciding which magnetorquers are to be activated on the square

array. It is assumed desirable to have the activated magnetorquers as evenly distributed as

possible, to make full use of the array and distribute the loads throughout the structure. The

issue of selecting which actuators to activate can be considered an analogue to placing N points

evenly within a square region, which is in general not a trivial problem and has been studied

extensively in the field of computer science [163, 164]. If N is a square number, it is easy to

visualise an even distribution where the points are placed on the vertices of a square grid, and

for certain numbers the solution is given by dividing the area into hexagonal cells, known as

hexagonal packing. These geometries cannot be exploited to give a solution for all N however.

A common numerical solution to this problem, which is adapted for the magnetorquer allocation

problem, is the use of Voronoi diagrams and Lloyd’s Algorithm, which evenly distributes a set
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of points in Euclidean space within uniform cells [165].

A Voronoi diagram is a partitioning of a plane based on the distance to the nearest point

of a set of specified points. Figure 3.27 shows the Voronoi diagram for a set of 21 random

points placed in a square region. Each cell bounds the region of space that is nearer to the

contained red generator point than any other. Lloyd’s algorithm generates a Voronoi diagram

for a set of points, and then calculates the centroid of each cell in that diagram. The set of

initial generating points is then replaced with the centroids, and a new diagram generated.

This process is repeated until the change in centroid position falls below a set tolerance. This

algorithm is known to converge onto a distribution known as a centroidal Voronoi tesselation,

proven to be an optimal solution for a number of resource allocation problems, as the points

approach an even distribution in space with cells of equal area [166].

In the context of the orthogonal dipole array described here, this approach can be used to

select which magnetorquers to activate at a given time. For a given orientation, and desired

torque, the number of dipoles in both possible directions that must be activated are given by

Eqs. 3.31 and 3.32. For each dipole direction i = 1, 2, Ni random points are generated within a

square region which represents the array. Lloyd’s algorithm is then applied until a satisfactory

distribution of points is found. As the array consists of dipoles placed at discrete points, the

nearest dipole to each generated point of the final set is then selected and activated. As an

example, consider a 10 × 10 array of orthogonal dipoles, and assume that Eq. 3.31 has been

evaluated so that the controller must activate 72 of the 100 dipoles. The algorithm is run

until the centroids do not change by more than a set tolerance, in this case resulting in 1000

iterations. The algorithm runtime was 0.25 s within MATLAB on a 2.3 GHz CPU, though it is

noted that the magnetorquer activation patterns could be precomputed in practice and so the

Distribution after 1000 iterations Final distribution after rounding

Figure 3.28: Placing 72 points evenly on a 10 × 10 grid with Lloyd’s algorithm, The e1

direction magnetorquers located at the sites marked in red will be activated. The algorithm
would then be repeated for the e2 direction magnetorquers.
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Figure 3.29: Voronoi diagrams at different steps of Lloyd’s algorithm. Generator points (red
points) are replaced with centroids (crosses) of the Voronoi cell polygon at each step. The
points become evenly distributed as the diagram approaches a centroidal tesselation.
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onboard runtime of the algorithm will not be an issue for future implementation. Figure 3.28

shows the point distribution and Voronoi diagram generated by the algorithm. The final step

involves rounding the centroids to the nearest actuator point. The magnetorquers located at

the sites marked in by the circular points on the right side of Fig. 3.28 will then be activated.

Figure 3.29 shows the voronoi diagram at different steps of the algorithm, illustrating how

the initially randomly placed points gradually approach the more evenly distributed centroidal

tessellation pattern.

3.2.2.1 Free-Space Simulation of an Orthogonal Dipole Array

Simulations are now performed to test the orthogonal dipole model. Similar to the previous

results for the radial array, these simulations assume no disturbances other than the control

torques. The rigid body Euler equations are used again and solved numerically, where the

reference torque Tref is found using Eq. 3.27. The Voronoi/Lloyds algorithm method is then

implemented to find the number and grid patterns of magnetorquers which must be activated.

Simulations were again performed in MATLAB in order to test the orthogonal array model,

and to compare results with those of the radial dipole array. As the main constraint on the

radial array was the look-up table method, which could not be used for an array larger than

3×3, the goal here is to demonstrate that the orthogonal dipole strategy is suitable for modelling

much larger arrays. Therefore, a 20 × 20 grid of magnetorquers is implemented in MATLAB.

The controller is tested by setting the desired orientation to a 90◦ rotation around the y-axis,

as used for the first simulation performed in Sec. 3.2.1.1, which corresponds to a reference

quaternion qref = −0.7071 + 0î− 0.7071ĵ + 0k̂. The controller gains remain set at Pq = 1000,

Pω = 20000. The resulting reference torques lie in the range of 0 to 200 N m as before, and now

the magnetorquer dipole moments are selected such that the total torque produced by the array

is in this range. This results in each magnetorquer having a magnetic dipole moment m = 1 A

m2. This value is much lower than for the radial model since there are now 400 magnetorquers

in total. All other parameters are the same as for the radial array simulations.

The results of the simulation are shown in Fig. 3.30, demonstrating that the quaternion

components smoothly approach the target orientation. The reference torque y1 component

produced by Eq. 3.27 is shown in Fig. 3.31, along with the actual torque produced by the

array. The actual torque tracks the reference torque almost exactly. Comparing this with the

radial dipole torque (Fig. 3.22) shows that the orthogonal array is much better at matching the

reference torque. This is due to the larger number of dipoles in this array, which allow much

smaller changes in actuator torque direction to be achieved and so direct comparison of this

accuracy is not appropriate. These results demonstrate that the orthogonal model is capable

of tracking the reference torque, and that the model can be scaled to larger arrays than was

previously possible with the radial array.

A simulation is also performed in which the array performs a rotation around the field axis,

through the sequence described in Sec. 3.2.1.1. Figure 3.32 shows the quaternion components
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Figure 3.30: Quaternion components against time for a rotation around the y-axis of π/2
radians. Current quaternion component shown in black while the desired reference quaternion
is dashed red.

Figure 3.31: Reference torque Tref and actuator torque T produced by the controller for the
y-axis rotation.
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a) b) c) a) b) c)

a) b) c) a) b) c)

Figure 3.32: Quaternion components against time for a composite manoeuvre. Current
quaternion component shown in black while the desired reference quaternion is dashed red.

a) b) c)

a) b) c)

Figure 3.33: Torque components in inertial frame during simulation, Tx is tracked accurately
while some oscillation occurs around Ty due to discrepancies between required torques and Tref .
Tz is zero as this is the field direction.
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of the array during this simulation, which are markedly similar to the radial array results in

that each manoeuvre is performed smoothly within 500 s, and the array achieves the final

desired attitude with a slight steady-state error. A key difference with these results is that the

second and third manoeuvres take slightly longer than for the radial array. This is because

of the geometry of the orthogonal array. When the array plane attempts to perform the

second manoeuvre around the x-axis, the radial array is more likely to have magnetorquers

perpendicular to the field direction at all times, which gives the maximum possible torque as

seen from Eq. 3.20. The orthogonal array only has two dipole directions however, so for a

given orientation it is less likely that the dipoles will be perpendicular to the field direction.

This effect is made clear by examining the torque output of the array during the sequence of

manoeuvres, shown in Fig. 3.33. At t = 500 s, when performing a rotation around the x-axis the

array quickly becomes unable to match the reference torque x-component in magnitude because

neither of the two dipole directions are perpendicular to the field. This is in contrast with the

radial array results (Fig. 3.23), where the array is capable of achieving the reference torque

magnitude because as one dipole rotates out of the plane normal to the field direction, another

will become perpendicular to it, as they are arranged like spokes on a wheel rotating around the

x-axis. This limitation of the orthogonal array could be improved by placing magnetorquers

in more directions at each point, but the combinatorial problem encountered with the radial

array would then need to be solved, albeit in a reduced form. Despite this issue the array still

manages to achieve the correct sequence of attitude manoeuvres, and it was chosen as a more

suitable strategy for the attitude control of a large space structure as it would be very difficult

to achieve the large magnetic dipole moments required by the radial array.

3.3 Orbital Simulations of a Large Space Structure

with Distributed Magnetorquers

Simulations are now used to demonstrate the attitude control of a large, flexible structure using

the orthogonal magnetorquer array described in Sec. 3.2.2, in the presence of gravity gradient

torques and a changing magnetic field. First, a scaling law is developed to demonstrate how the

magnetorquer array torque and gravity gradient torque scale with the structure’s side length.

These scaling laws lead to reasonable estimates of the structure’s mass and required control

torques, and are used to define the physical parameters used in the later orbital simulations.

Simulations are performed to demonstrate detumbling, using the well-known Bdot control law,

and two rest-to-rest manoeuvres which make use of a quaternion error feedback controller. The

aims of these simulations are: 1) to show that magnetorquers can provide sufficient torques

for the attitude control of a lightweight truss structure at this scale; 2) to demonstrate which

axes these manoeuvres can be performed around given the geometric constraints of magnetic

attitude control, and 3) to show that the distributed array and torque distribution algorithm

allows flexible structures to be controlled successfully by the application of rigid-body control
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laws; since torque distribution reduces structural deformation and the response to the control

torques more closely resembles that of a rigid body.

3.3.1 Scaling of Magnetorquer Arrays

To provide an adequate degree of attitude control, the magnetorquer array must be capable

of producing a torque at least as large as the gravity gradient torque that a large structure

will experience on orbit. Aerodynamic and radiation pressure torques are not considered for

simplicity, and because these will generally be smaller disturbances than the gravity gradient

unless, for aerodynamic torques, the structure is in a very low altitude orbit. The gravity

gradient torque scales with the moment of inertia and thus the square of the structure’s length.

For a rigid body this is given by: [146]

Tgrav = 3
µ

r5
rb × Irb (3.33)

where rb is the position vector of the centre-of-mass, expressed in body frame coordinates, and

I is the inertia tensor. Using the inertia tensor of a thin, square plate, I1 = I2 = 1/12Md2,

I3 = 1/6Md2, and taking the maximum value which occurs when the structure is at a 45◦ angle

to the local vertical, Eq. 3.33 leads to:

Tmax
grav =

µMd2

8r3
(3.34)

where M is the total mass of the structure (assumed uniformly distributed), d the sidelength

and r the orbital radius. As noted previously, it is assumed that the dipole moment and thus

torque produced by a magnetorquer is proportional to its mass, i.e. the dipole moment produced

by a given mass of magnetorquers is Mdip = κτMτ , where κτ is the constant of proportionality

and Mτ the total mass of magnetorquers. This assumption is based on the fact that magnetic

torque rods are solenoids, which produce a torque that is proportional to the number of turns

in the coil. Increasing the number of turns in this solenoid then leads to a proportional increase

in both mass and torque. It is also assumed that this relationship remains linear despite the

magnetorquer mass being distributed between the array points. The maximum actuator torque

is achieved when the dipole moment is perpendicular to the external field, and is found from

Eq. 3.13:

Tmax
ac = κτMτB (3.35)

For a given scale of structure, a certain mass of magnetorquers is required to have Tac ≥ Tgrav.

The fraction of structural mass which must be allocated to magnetorquers to meet this condition

is found by equating Eqs. 3.34 and 3.35, and substituting Mτ = λfM , where λf is the fraction

of total mass allocated to magnetorquers. B is approximated as a dipole field for this analysis,

given by |B| = B0

(
RE

r

)3
where RE = 6370 km is the radius of the Earth and B0=3.12×10−5

T is the average field strength at the surface of the Earth. These substitutions lead to an
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Figure 3.34: Required magnetorquer mass fraction as a function of structure sidelength for a
range of dipole moment to mass ratios.

expression for λf , the fraction of total structural mass that must be allocated to magnetorquers

in order to have an achievable actuator torque equal to the maximum gravity gradient torque:

λf =
µd2

8B0R3
Eκτ

(3.36)

Equation 3.36 has no r dependence, since both the gravity gradient and dipole field strength

scale as r3. However, although the torques are equal, the magnetic torque magnitude available

for active control falls with increasing orbit radius. Equation 3.36 shows that the required mag-

netorquer mass fraction scales with d2, suggesting the scale of structures for which distributed

magnetorquer arrays would be suitable is limited, and scales inversely to κτ , the dipole moment

to mass ratio of the magnetorquers used. As noted previously, magnetorquers are available

commercially with md =100 A m2 [157], though this is a larger value than the majority of

magnetorquers with flight heritage, which are found to have κτ on the order of 10 A m2/kg,

[167]. The range in values here is thought to be due to the fact that many of these torquers

were flown in CubeSats, so their dipole moment is most likely limited by available power or

thermal constraints. For the type of large structure considered here, a considerable quantity

of solar radiation can be intercepted and so power will not likely be a limiting factor, and so

the larger value of κτ =100 A m2/kg is thought reasonable, though it is possible that even

higher values of κτ could be achieved. Figure 3.34 shows λτ as a function of d for a range of κτ ,

demonstrating the maximum scale of structure for which distributed magnetorquer arrays with

a given κτ would be suitable. For κτ = 100 A m2/kg, the figure suggests a side length of 100 m
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could be controlled, assuming it were reasonable to allocate up to 60% of the total structural

mass for the attitude control system. It is also notable that the total mass doesn’t appear in

Eq. 3.36, although more massive structures will experience smaller angular accelerations. In

Sec. 3.1 it was found that distributed torquing allowed the control of more flexible structures

than central torquing. More flexible structures will have a lower mass, and so although a 100

m structure would require a minimum of 60% of its mass to be magnetorquers, the structure

itself can be much less massive than would be necessary to provide the required bending stiff-

ness for centralised torquing. This analysis suggests that distributed magnetorquer arrays are

particularly suitable for lightweight, flexible structures, at length scales up to approximately

100 m for currently available magnetorquers.

3.3.2 Detumbling with a Bdot Control Law

The Bdot control law is commonly used to allow angular momentum dumping through magne-

torquers. This control law is considered here as it is so commonly used, and because angular

momentum dumping is often the primary use of magnetic torque rods in conventional space-

craft. The algorithm provides an expression for the desired control torque, TBdot, in terms of

the body rates, ω, of the spacecraft and the magnetic field, B, [168], such that:

TBdot = kBdot(ω ×B)×B (3.37)

where kBdot is the controller gain. Although we are considering a flexible body, we again use

the best fitting rotation matrix of the nodal points to describe the structure’s attitude, and

estimate the angular rates at each time step using the backward difference formula. This

treats the structure as a rigid-body for the controller, and so it is assumed to only be effective

should the structure maintain its initial shape sufficiently. The structure is placed on a polar,

circular orbit with altitude 800 km, and air drag is not considered in the simulation. Moreover,

radiation pressure is also neglected in order to assess the use of magnetic attitude control. The

magnetic field is calculated at each time step using the World Magnetic Model (WMM) for

2020 [169]. Although there will be slight variation in the magnetic field over the structure itself,

this variation is negligible compared to the variation over the orbit, and so for computational

efficiency the magnetic field is only calculated at the centre-of-mass of the structure and is

assumed constant across its span.

Considering the scaling law Eq. 3.36, a 75×75 m square structure is selected for the following

simulations. The magnetorquers are assumed to have κτ of 100 A m2/kg, and so a side length

of 75 m means that a magnetorquer mass fraction of 50% would provide an actuator torque

greater than the gravity gradient torque, illustrated in Fig. 3.34. The structure’s mass is set

to 200 kg, 100 kg of which is allocated to magnetorquers while another 100 kg is the structural

mass. This structural mass is assumed to provide a bending stiffness of 103 N m2, the same as

Case A in Sec. 3.1, based on the fact that areal densities on the order of 10 g/m2 are capable
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of achieving this level of rigidity for solar sails. The spring constant used in the model is then

determined as in Sec. 3.1. The 100 kg of magnetorquers are capable of producing a total dipole

moment of 10000 A m2, which is distributed between 380 magnetorquer sites along both the

x1 and y1 body axis directions, as illustrated in Fig. 3.8, but here with 20×20 cube units. All

other simulation parameters are the same as the previous simulations, given in Table 3.2. The

initial angular velocity is set to ω0 = (0.01, 0.007, 0) rad s−1. While this is a modest rate for

a conventional satellite, it represents a significant angular velocity for a 75×75 m structure.

Through simulation it was found that the structure failed through buckling at larger angular

velocities due to centripetal forces. This was observed for angular velocities approximately

an order of magnitude larger than ω0, so the initial angular velocity selected is assumed to

be a rate at which a structure of this scale could be considered tumbling but not at danger

of structural failure. The magnitude of ω0 is also approximately three times as large as the

maximum angular velocity reached during the simulation in Fig. 3.9. It is also an order of

magnitude larger than the orbital angular velocity. Structural parameters and other simulation

data are summarised in Table 3.3

The results of the simulation are shown in Fig. 3.35. The structure is seen to detumble

to a state with all rates below 1×10−3 rad s−1, or 10% of the original rates, in 1 hour. At

this point there is some fluctuation in the body rates, presumably due to the influence of the

gravity gradient torque, but the controller corrects these disturbances and the body rates remain

Structural Parameters
Length d 75 m
Magnetorquer dip. to mass ratio κτ 100 A m2/kg
Magnetorquer mass fraction λf 50%
Total Mass M 200 kg
Bending stiffness EI 103 N m2

Structural units 20×20
Total number of torquers for each direction 380
Total number of particles 800
Orbital altitude R 800 km
Detumbling
Initial ang. velocity ω0 (0.01,0.07,0)
Bdot controller gain kBdot 1×1012

Simulation runtime tend 2.5 hours
Slew Manoeuvres
Proportional Gains Pq (10,50,1)
Derivative Gains Pω (1600,8000,800)
Simulation runtime tend 4.2 hours
Simulation timestep dt 0.1 s
Integration method Runge-kutta 4th order
Magnetic Field World Magnetic Model (2020)

Table 3.3: Parameters used for orbital simulations.
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close to zero. Figure 3.36 shows the control profile during the simulation, which indicates the

number of magnetorquers activated at a given time and their polarity. During the first hour of

detumbling the controller is saturated, with nearly all magnetorquers activated. Later, once the

majority of angular momentum has been removed, fewer magnetorquers are activated, although

there is another point of saturation at approximately 2 hours. This is due to the coincidence of

a point of maximum gravity gradient torque with minimum control effectiveness, which occurs

when the field is oriented within the plane of the structure. The surface is seen to experience

large deformations while detumbling, with the surface standard deviation reaching a maximum

value of 0.5 m. As the surface deviation is oscillating regularly it is likely some normal modes

have been excited, which could be caused by the actuator torques changing periodically while

the structure rotates, or by the difference in magnitude of the gravitational forces acting upon

the lumped masses of the structure. The surface deformation is shown in Figs. 3.37 and 3.38,

which shows the local surface angle and shape of the structure at the point of maximum surface

SD. The edges of the surface make an angle of 4◦ to the average plane, and the structure is

visibly twisted in Fig. 3.38. The allowable deformation would depend on the specific structure

and a limit on this is not considered here, but again it is noted that the deformation is smooth

with no points of high curvature that may cause buckling.

3.3.3 Slew Manoeuvres with Quaternion Error Feedback Control

In addition to angular momentum dumping, magnetorquers can also be used directly for ma-

noeuvring, although the geometric constraint of being unable to generate a torque in the ex-

ternal field direction leads to an underactuated control problem for general re-orientations.
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Figure 3.38: Structural deformation at
point of maximum surface SD.

Despite these disadvantages, some limited attitude control is still possible, depending on the

orbit selected, and here we investigate the capabilities of the distributed magnetorquer array

for performing slew manoeuvres. The aim of these simulations is to demonstrate which ma-

noeuvres can be achieved when the proposed array geometry is placed in a polar orbit, and

how effective the distributed array is at enacting these manoeuvres.

A quaternion error feedback controller is again used to generate a reference torque for

performing these manoeuvres. This controller is primarily used for rigid-body rotations, and it

is applied to the flexible structure by considering the best-fitting rotation for the set of nodal

positions. As in Eq. 3.27, a reference torque is found by evaluating:

Tref = −Pqqerr − Pωω (3.38)

The controller is modified to take into account the gravity gradient torque. Equation 3.33 is

for the torque on a rigid body, where the inertia matrix is found by integrating over the body’s

volume. For the spring-mass structure this is therefore an estimation, but is assumed accurate

so long as the original shape is sufficiently maintained. The inertia tensor is taken to be the

initial mass-moments-of-inertia of the particle distribution around the principal axes, which is
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found by summation over the point masses. The diagonal components of I are given by:

I1 =
∑
i

mp(y
2
1i + z21i)

I2 =
∑
i

mp(x
2
1i + z21i)

I3 =
∑
i

mp(x
2
1i + y21i)

(3.39)

where x1i is the x1 component of the ith particle in the body frame, and likewise for y1i and

z1i. For the 200 kg structure these components are I1 = I2 = 1893 kg m2 and I3 = 2867 kg m2.

The reference torque in Eq. 4.2 is modified to give:

Tref = −Pqqerr − Pωω − 3
µ

r5
rb × Irb (3.40)

assuring the controller will now compensate for the estimated gravity gradient torque. When

selecting the control gains, it was found that replacing the proportional and derivative gains

Pq and Pω with diagonal matrices Pq and Pω resulted in better performance. This can be

understood intuitively as applying a different gain to each axis of rotation. It was found that

disturbances in the angle of rotation around the z and y axis were more likely to lead to

tumbling of the structure, so a larger gain is selected for the corresponding entry the gain

matrices. This results in the controller prioritising the correction of any disturbances in these

directions and thus reduces the risk of the structure beginning to tumble. The feedback gains

are selected as (10, 50, 1) N m and (1600, 8000, 800) N m s rad−1, for the diagonal entries of Pq

and Pω respectively.

The attempted manoeuvres are illustrated in Fig. 3.39. The structure is again placed in a

polar orbit. As the structure orbits, the magnetic field direction is primarily in the yz-plane,

and rotates around the x-axis. There is always a slight x-component to the field because it’s not

an ideal dipole field. Additionally, because magnetic north and true north are not aligned, this

variation in this component changes over multiple orbits due to the Earth’s rotation, which

is taken into account when calculating the field components from the WMM. The selected

manoeuvres are chosen to demonstrate rotation around all three inertial axes, (I,III and IV),

and to demonstrate the ability of the system to either work against the gravity gradient torque

(I) or to move between gravity-gradient stable configurations (II). Simulation parameters are

summarised in Table 3.3.

Results of the simulations are shown in Figs. 3.40 -3.43b, where all manoeuvres are per-

formed successfully within approximately 1.5 hours, with the exception of Manoeuvre IV. In

the case of Manoeuvre IV the desired attitude is not achieved and the structure begins to

tumble. This is because when attempting to rotate around the inertial y-axis, the direction

of the gravity gradient torque is not in a direction that can be counteracted by the magnetic

torques produced by the system. Therefore, this is a limitation imposed on the use of mag-
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netic control in general rather than the control strategy presented here. Figure 3.40c shows

the torques experienced by the structure during Manoeuvre I, with the gravity gradient and

control torques shown in red and blue respectively, and dashing used to indicate the body axis

components of each. The torques are primarily around the body x1 axis, as the desired axis

of rotation, and the results show that the controller successfully counteracts this component

of the gravity gradient torque over the simulation runtime of four hours. There are points at

which the controller is unable to produce the required torque, due to the relative orientation

of the external field and the structure, which are shown in this figure as points where Tac falls

to zero briefly. Notably this occurs at 0.5 hours for a significant period, when the structure

is still performing the manoeuvre. The result of this period of control ineffectiveness is the

structure overshooting the desired angle of π/2 rad, as shown in Fig. 3.40a. This overshooting

is not underdamping caused by the gain selection, rather it is due to the coincidence of a point

of large gravity gradient torque with a point of minimum control effectiveness. Therefore this

scenario may be typical of the control strategy and may need to be taken into account when

planning manoeuvres. Manoeuvre II was performed to investigate the controller performance

when moving between gravity gradient stabilised configurations, as opposed to working against

the gravity gradient torque. As illustrated in Fig. 3.41b, the control effort is greatly reduced

Figure 3.39: Illustration of Manoeuvres I-IV.
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Figure 3.40: Results of simulation for Manoeuvre I.
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Figure 3.41: Results of simulation for Manoeuvre II.
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Figure 3.42: Results of simulation for Manoeuvre III.
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Figure 3.43: Results of simulation for Manoeuvre IV.

when compared to the results of Manoeuvre I. This shows that the use of gravity gradient sta-

bilised configurations as “resting points” in between attitude manoeuvres could be an efficient

strategy, depending on the mission requirements and desired attitudes. Manoeuvre III begins

with the structure facing the inertial y-direction because with the initial orientation used for

the other manoeuvres, as shown in Fig. 3.39, the magnetic torques are unable to cause rotation

around the inertial z-axis. This is because the field direction is near to the positive or negative

z direction for the majority of the time. However, manoeuvres I and III could be combined, in

the sequence I, III and then the reverse of I, to achieve a rotation equivalent to purely rotating

around the inertial z-axis. A final note is that the surface SD is much higher in all cases here

than in the previous results of Sec. 3.1.2, approaching 1 m for the successful manoeuvres. This

is due to the gravity gradient torque acting on the structure, as it was found that performing

manoeuvres in the absence of this torque did not produce such large surface deformations.

Although the surface SD is much higher here, the deformation itself is smooth with no points

of large local curvature, as would be the result of using centralised torquing.

3.4 Chapter Summary

In this chapter, a novel attitude control strategy for large space structures was proposed and

analysed. First, the use of distributed torques for the attitude control of flexible structures

was investigated, through the use of a 2D flexible beam model and then with a 3D spring mass

model of a generic, flexible truss structures. In both cases it was found that distributed torquing

led to significant reductions in structural deformation during slew manoeuvres, and thus the

motivating assumption that it may be desirable to distribute the torquing actuators throughout
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a 3D-printed large space structure was verified numerically. Two configurations of a distributed

magnetorquer array were then presented, the radial and orthogonal arrays. Each configuration

was analysed through the use of rigid body simulations, and due to its reduced computational

complexity the orthogonal array was selected as a more suitable strategy for further analysis.

A length-scaling analysis was then performed, which found that the strategy could be suitable

for lightweight structures at a length-scale of approximately 100 m. The spring-mass model

was then used to perform orbital simulations of a flexible structure and demonstrate attitude

control in the presence of gravity gradient torques and a time-varying magnetic field.



Chapter 4

Laboratory Demonstration of a

Magnetorquer Array

M
agnetorquer arrays were proposed as a form of distributed attitude control in the pre-

vious chapter, with a length-scaling analysis of the concept and numerical simulations

presented. In this chapter, a laboratory-scale demonstration of the concept is presented, and

used to investigate an implementation of the control algorithms developed on physical hardware.

While Chapter 3 demonstrated attitude control of a LSS with the strategy through simulation,

it was thought necessary to develop a hardware implementation of the control algorithms and

array, in order to further investigate the strategy and demonstrate the feasibility of imple-

menting the strategy physically. This led to the development of a Distributed Magnetorquer

Demonstration Platform (DMDP), a 25×25 cm PCB onto which a 5×5 array of custom-built

magnetorquers are mounted, the design and testing of which are the subject of this chapter.

Research questions for this chapter are as follows:

1. Can a laboratory-scale demonstration of a magnetorquer array be produced, capable of

producing torques large enough to demonstrate attitude control on a spherical air-bearing?

2. Can the torque scaling, torque distribution, and attitude control algorithms presented in

Chapter 3 be implemented on physical hardware and run in real-time?

3. Are any modifications to the control loop demonstrated through simulation required, to

account for the use of real hardware?

The chapter is organised as follows. In Sec. 4.1, the electrical design of the DMDP is

described, including details of the build and testing of the magnetorquer rods, magnetorquer

driver circuitry, control circuit, and balancing platform. Section 4.2 then describes the proposed

control algorithm, as used in Chapter 3 for a simulated magnetorquer array and adapted here

to account for the particularities of the hardware implementation. Section 4.3 then describes

the setup of attitude control experiments, performed by placing the DMDP atop a spherical

87
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air-bearing within the magnetic field of a Helmholtz cage. Results of experiments are presented

and discussed, in which slew manoeuvres and detumbling in 1-axis are demonstrated using the

distributed array control and torque distribution algorithm, demonstrating the effectiveness of

the proposed strategy. Finally a chapter summary is given in Sec. 4.4.

4.1 DMDP Design and Fabrication

In this section, information regarding the design and construction of the DMDP are presented,

including details regarding the magnetorquer coil winding and characterisation, and the design

of a 3D-printed balancing platform, used to adjust the position of the system’s centre-of-mass

when mounted on a spherical air bearing.

An annotated figure of the fully assembled DMDP system is shown in Fig. 4.1. The

DMDP consists of a 250×250 mm printed circuit board, onto which 48, 35-mm-long, ferrite-

core magnetorquers are mounted. Two magnetorquers are mounted in orthogonal directions

on the front and back side of the PCB, at each point of a 5×5 grid (omitting the central

point, where the controller, sensors and batteries are located). A top down view of the front

and reverse side of the magnetorquer array is shown in Fig. 4.2 and 4.3 respectively. The

PCB has two layers. Through hole components were used for ease of assembly, and to aid

in finding of faults once soldered together. The PCB is mounted to a custom-built balancing

platform, which consists of three 3D-printed adjustable hinges, which house M8 threaded steel

rods onto which sets of balancing weights (lasercut acrylic discs) are secured by fasteners. The

balancing platform allows the position of the centre-of-mass of the system to be adjusted, with

the hinged supports giving coarse adjustments while fine tuning is achieved by moving the

balancing weights along the threaded rods. With the exception of the PCB fabrication, all

other construction and assembly of the DMDP took place using the facilities of the Integrated

Space and Exploration Technology laboratory.

4.1.1 Magnetorquers

The 48 magnetorquers were designed and built specifically for the experiment. The torquers

consist of a 5-mm-diameter, 35-mm-long cylindrical ferrite core, around which 1000 turns of

0.1 mm diameter enamelled copper wire is wound. The magnetorquers were wound using

a mechanical coil winder, onto which a drill chuck was attached to hold the ferrite core in

place. Once wound, the ferrite core was secured via a press fit into two 3D-printed mounting

brackets, which allow the completed magnetorquer to be mounted to the PCB via four M2

screws, while the copper wire is soldered directly into a through-hole on the PCB. A key

requirement of the proposed control strategy developed in Ref. [140] is that the torquers are

individually addressable, and have 3 discrete states, on, with positive or negative polarity, and

off. This was achieved here by driving each magnetorquer via a H-bridge circuit, depicted in

Fig. 4.4. This circuit allows the state of the torquer to be specified by two input signals,
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Figure 4.1: DMDP assembly, mounted on the air-bearing balancing platform and showing
the main components of the system, and the body xyz frame orientation.
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Figure 4.2: Front view of the DMDP PCB, showing the 5× 5 array of orthogonal magnetor-
quers (x-direction torquers shown mounted on the front of the board).
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Figure 4.3: Reverse side of the DMDP PCB, showing the y-direction magnetorquers.
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Figure 4.4: H-bridge driving circuit for each magnetorquer, allowing the polarity to be reversed
via two input signals

through the use of opposing pairs of PNP and NPN transistors acting as digital switches. As

illustrated in the Fig. 4.4, when both inputs are logic low, the two lower NPN transistors are

closed, and current cannot flow from the magnetorquer power supply. Setting one input high

opens the corresponding NPN transistor switch, which subsequently connects the base of the

opposite PNP transistor to ground. This allows current to flow in one direction, energising

the magnetorquer. Two LEDs are included as shown in the circuit diagram, to indicate the

direction of the magnetorquer’s polarity when energised and give a visual indication when the

array is in operation. Further diodes are included to protect the switching transistors when the

magnetorquer is switched off, at which point the collapsing field results in a back e.m.f which

could potentially damage the components.

A prototype of two magnetorquers and their driving circuit was fabricated before the full

array PCB, to test the H-bridge circuit performed as expected and to attempt to characterise

the magnetic dipole moment of the energised magnetorquers. This prototype is shown in Fig.

4.5, showing the component placement and giving a detailed illustration of the magnetorquer

construction. The prototype circuit shown here was designed to fit within a 50 mm square
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footprint, such that the prototype circuit could then be used on the final array by replicating

the design at each point of the 5×5 grid.

An attempt was made to determine the magnetic dipole moment of the magnetorquers, by

measuring the axial field strength at varying distances from the torquer. The dipole moment

was calculated following the procedure outlined by Lee et. al in Ref. [170], who derive an

expression for the magnetic dipole moment m, of a magnetorquer (a uniformly magnetised core

of length L), given by:

m =
4π

µ0

1(
R
L
− 1

2(
R2−RL+L2

4

)3/2

)
−
(

R
L
+ 1

2(
R2+RL+L2

4

)3/2

)Ba (4.1)

where R is the distance from the centre of the magnetorquer at which the axially directed field

strength Ba is measured, and µ0 = 1.256× 10−6 H/m is the permeability of free space. A mag-

netorquer was tested with 40 mA of current, and the magnetic field measured at 10mm intervals

along the torquer axis using the magnetometer of an Invensense MPU9250 IMU unit. For each

data point, 250 measurements were taken of the background field (i.e. with the magnetorquer

supply switched off), which were averaged and then subtracted from 250 measurements with

the supply turned on. Applying Eq. 4.1 to the data gave a final calculated value of 0.027

A m2 for the magnetorquer at 40 mA (the nominal operational current when installed in the

DMDP). Due to the small scale of the magnetorquers (requiring precise placement of the mag-

netometer to measure the axial field) and relatively weak generated field strength (compared

to the background noise), the collected data suffered a high degree of variation. Though the

calculated value is not likely to be highly accurate, an approximate value was sufficient for

verifying that the torquers would be powerful enough to produce sufficient torques for rotating

the DMDP within reasonable timescales, and overcoming the turbine torque of the spherical air

Figure 4.5: Prototype of magnetorquer driver circuit, with H-bridge circuit for front and back
magnetorquers within 5cm square.
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bearing. Furthermore, since a closed loop feedback scheme is employed, some degree of error

in the assumed value of the magnetic dipole moment can be accounted for by the control gains

of the algorithm (as discussed in Sec. 4.2).

4.1.2 Control System

As noted, each magnetorquer requires two digital inputs to specify the magnetorquer state (po-

larity), operating the H-bridge switches and energising the magnetorquer with the separate 3.6

V magnetorquer supply. For the 48 magnetorquers, a total of 96 inputs are required to control

the full array. Magnetorquer switching commands are processed by an onboard microcontroller,

with an Arduino Leonardo initially selected and later replaced with a Teensy LC board (due

to the greater memory available). These boards were chosen for ease of programming, and to

make use of standard, well-documented libraries for the other DMDP components. The micro-

controller plugs into the magnetorquer array at the central node (as seen in Fig. 4.2), and so

the controller can be easily replaced or exchanged for any with the Arduino form factor. The

96 digital outputs required to address each magnetorquer of the array is achieved through the

use of six MCP23017 I2C expansion devices (the 28 pin packages seen in Fig. 4.2), which each

provide 16 digital inputs/outputs which are controlled by the microcontroller over the I2C bus.

The control system is completed by an InvenSense MPU-9250 9-axis inertial measurement unit

(IMU), which combines an accelerometer, gyroscope and magnetometer on a single device, and

a DSDTech HC-05 bluetooth transceiver board, which allows IMU data and switching com-

mands to be communicated wirelessly between the DMDP and a desktop computer. Power for

the magnetorquers is provided by six AA Ni-MH batteries, connected in two sets of three to

provide a nominal supply of 3.6 V, and a capacity of 4200 mA h. As each torquer draws a

current of approximately 40 mA, the power supply then provides over an hour of continuous

operation of the full array. The controller and related devices are powered by a separate battery.

4.2 Control Algorithm and Implementation

A quaternion error feedback scheme is implemented to generate control torques for the DMDP

and provide attitude control. This control law has been used widely for magnetic attitude

control [113]. As noted, the motivation for developing the DMDP was to test the control

strategy put forward in Chapter 3, which is repeated here for clarity of discussion. A block

diagram of the control scheme is illustrated in Fig. 4.6. A measurement from the IMU is made,

which provides the current values of the magnetic field, body rates and accelerometer readings.

A quaternion q describing the current orientation relative to the inertial lab frame is found by

applying a Madgwick orientation filter to the IMU readings [171]. This processing is performed

on the onboard microcontroller, using an open source library written for processing data from

the MPU9250 board [172], which also includes calibration routines which were used to determine

the sensor offsets and biases. The quaternion product of q and the desired orientation qref is
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qref qref ⊗ qqref ⊗ q −Pqqerr − Pωωerr
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Figure 4.6: Block diagram of the DMDP control strategy

then calculated, which gives an error quaternion qerr, describing the required rotation between

the current and desired attitude. The vector part of this error quaternion is then input into the

control law, along with the current and desired angular velocity vector to generate the reference

torque Tref :

Tref = −Pqqerr − Pωωerr (4.2)

where Pq and Pω are the control gains. This reference torque is then input to the magnetorquer

allocation algorithm described in Ref. [140], along with the current magnetic field reading B.

This algorithm finds the nearest possible torque to Tref that can be achieved by the array for

the current orientation, and outputs a command specifying which magnetorquers of the array

are to be activated, and their polarity.

Following Ref. [140], the magnetic dipole moments of the magnetorquers, which are labelled

mx and my, are coplanar with the structure’s surface, and aligned with the body-frame x and

y axes (as illustrated in Fig. 4.2). The torque produced by each dipole is found by taking

the cross product with the external field B, and are denoted by τx and τy, though it is noted

that τx and τy are not aligned with the x and y axes, instead lying in the plane normal to the

magnetic field. Although mx and my are perpendicular, for an arbitrary orientation of the

plane with respect to the magnetic field, τx and τy will not be perpendicular in general. The

total actuation torque, T , must be constructed from some integer multiples of τx and τy, since

there can only be an integer number of activated dipoles. This requirement is written as:

T = Nxτx +Nyτy (4.3)

where Nx and Ny denote the number of x and y direction torquers to be activated respec-
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tively. Nx is found using the scalar product of the reference torque and τx, and rounding to the

nearest integer, unless the value is greater than 24 (the maximum number of torquers in each

direction). In that case, all the magnetorquers of that direction on the array are activated and

the controller is saturated. Therefore:

Nx =

⌊
Tref · τx
|τx|2

⌉
(4.4)

Similarly, Ny is given by an equivalent expression, except that Ny is reduced by taking into

account the contribution to the τy direction already given by Nxτx, so that:

Ny =

⌊
Tref · τy −Nxτ1 · τy

|τy|2
⌉

(4.5)

From Nx and Ny, an activation pattern is then generated which specifies which torquers on

the array are to be activated. The activation pattern is found by finding a centroidal voronoi

tesselation for Ni points placed in the 5 × 5 grid of the array, which ensures that for any

activation number, the activated torquers are as evenly distributed across the array as possible,

as was shown to reduce structural deformations for flexible structures in Ref. [140]. Again it

is noted that further details of this step of the torque allocation algorithm are available in Ref.

[140], while the process has only been outlined here for clarity of discussion. The magnetorquer

switching commands are sent to the DMDP, and the next IMU reading is taken to complete

the closed loop feedback control strategy.

4.2.1 Hardware Implementation

The control strategy is implemented essentially as described on the DMDP hardware, although

some modifications to the algorithm as presented in Ref [140] were required. The control

torques and array allocation algorithm calculations are all performed on a laptop computer,

which communicates with the DMDP via the bluetooth serial port. IMU data is read from the

serial port using a MATLAB program, which then calculates the required switching command

and returns this to the DMDP. The communication protocol for switching commands consists of

a string constructed of consecutive sets of 3 integers ijk, for each activated magnetorquer. This

is read by the DMDP controller and the corresponding output pins of the I2C expanders set to

logic high or low. The integers correspond to the expander address i = 1, ..6, the node j = 1, ..., 4

(each expander controls 4 array nodes or eight torquers total), and the torquer direction and

polarity k = 1, ..., 4, corresponding to +x,−x,+y,−y respectively. As the Madgwick filter used

to estimate the DMDP attitude relies on the IMU’s magnetometer reading, the magnetorquers

must be switched off while an IMU reading is taken, otherwise the magnetic field generated

by the magnetorquers interferes with the reading and large errors in the attitude estimation

are returned. It was found that the magnetometer reading returned to the normal background

field in a time of approximately 2 s after the magnetorquers were switched off. Therefore a
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cycle of 2 s off, 5 s on was implemented for the actuators. The IMU data is read at the end

of the 2 s period, the control calculations are performed and then the specified magnetorquers

are switched on for 5 s. These values were found through trial and error, and were found to

provide a balance between stable attitude estimation and control effectiveness for the angular

rates encountered.

4.3 Attitude Control Experiments

Figure 4.7: DMDP mounted on a spherical air-bearing within a Helmholtz cage for attitude
control experiments, showing the inertial xLyLzL lab frame and xyz body frame.

In this section the results of attitude control experiments are presented, in which the DMDP

was mounted upon a spherical air bearing, simulating free-fall, and a Helmholtz cage is used to

generate an external magnetic field. The aim of these experiments is to verify the performance

of the control algorithm described in Sec. 4.2, and demonstrate that the torquer allocation

algorithm developed in Ref. [140] conforms with the results of numerical simulations and
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produces the torques expected by this previous analysis. Furthermore, the aim of this hardware

implementation of the strategy is to determine what effect the modifications to the control

loop such as the required duty cycling, inclusion of sensor noise and uncertainties, and other

disturbances have on the performance of the strategy when compared with the more ideal

scenarios considered in previous numerical simulations.

Table 4.1: DMDP and experiment data.

Side length 250 mm
Mass

Array 0.7222 kg
Batteries 0.3476 kg
Platform 0.6390 kg
Bearing 0.2112 kg

Total 1.92 kg
Mom. of inertia
(CAD estimate)

[0.026,0.026,0.034] kg m2

Mag. dipole moment
(approx.)

m 0.03 A m2

Mag. Field (Lab frame) B [2,100,45] µT
Max. Torque (est.) T 1.5×10−4 N m
Control gains Pq 40

Pω 400
Duty cycle off time 2 s
Duty cycle on time 5 s

The DMDP and balancing platform were mounted on a PIglide HB Hemispherical Air

Bearing, a 75 mm diameter hemisphere which sits upon a cushion of air in a curved pedestal,

supplied by an air compressor at 60 PSI, shown in Fig. 4.7, which also shows the body xyz

frame, and the inertial lab frame xLyLzL. The air bearing allows the system to rotate freely

around the lab zL axis, and gives ±45◦ of rotation around the other axes. The system was

balanced by trial and error, by adjusting the vertical and relative position of the three sets

of weights on the platforms legs. When the centre-of-mass of the system is below the centre

of rotation (centre of the bearing hemisphere), the system oscillates as a pendulum, while

when above it the system will tilt over due to the torque exerted by gravity. At this stage,

attitude control was sought to be demonstrated around a single axis (the lab zL-axis), and

so the centre-of-mass was placed just below the centre of rotation, to ensure stability around

the other axes. The lateral position of the centre-of-mass (it’s location relative to the central

axis) determines the equilibrium attitude of the system, and it was sought that this orientation

would result in the DMDP z-axis and lab zL axis being aligned. This was again adjusted by

trial and error, by adjusting the position of the balancing weights until the desired equilibrium

point was reached. The platform is placed in the centre of a Helmholtz cage, which consists

of three pairs of copper coils wound around the faces of a square frame. One pair of coils

was energised, and supplied with a current of 3 A. The resultant field was measured with a
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handheld magnetometer and found to be [2,100,45] µT (in the lab frame), giving a total field

strength of 205 µT, approximately four times greater than the background field strength of

54.02 µT measured in the laboratory. As the largest component of the field is directed in the

yL direction, the DMDP is then capable of producing torques around the zL axis for attitude

control purposes, although there will be some component in the other axes which then act to

excite or dampen the oscillation of the system around the equilibrium position. The physical

properties of the DMDP and other data is summarised in Table 4.1.

Results of attitude control experiments are presented in Figs. 4.8, 4.9 and 4.10, which show

the IMU measurements and number of active torquers during a 90◦ and 180◦ slew manoeuvre

around the z-axis, and detumbling from an initial rate of 15 deg/s respectively. Though the

system orientation is described by quaternions within the control algorithm, Euler angles are

plotted here for clarity of discussion. The angles ψ, θ and ϕ correspond to a sequence of rotations

corresponding to the z, y and x axis respectively, describing the orientation of the body xyz

frame relative to the lab xLyLzL frame, as illustrated in Fig. 4.7. For the slew manoevures,

the angle error is seen to smoothly rise to 0 in both cases, though there is some overshoot of

approximately 5◦ during the 90◦ manoeuvre, and a slight steady state error of approximately

2◦ after the 180◦ manoeuvre. Not that the Euler angles and magnetic field are only measured

once every 7 s, at the end of the 2 s period where the magnetorquers are switched off, while the

body rates, taken directly from the gyroscope measurement, are taken as frequently as they

Figure 4.8: Results of experiment for a 90◦ slew manoeuvre around the z-axis.
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Figure 4.9: Results of experiment for a 180◦ slew manoeuvre around the z-axis.

Figure 4.10: Results of experiment, detumbling from an initial rate of 15◦/s around the z-axis
to rest.
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are available to be read by the MATLAB program. This data was available at a frequency of

approximately 3 Hz. The torque activation plot shows that the array is performing as expected,

with the initially large torque provided by activating all 24 torquers in the x-direction, before the

polarity is reversed to brake the system and minor adjustments provided by a lower number of

torquers for the remainder of the manoeuvre. This behaviour corresponds well with the results

of simulations in Ref. [140], where manoeuvres were also performed by first activating the

full array and minor adjustments later made by activating a fewer number of magnetorquers.

Similarly, the torque distribution procedure is seen to correspond well with earlier simulation

results, with the location of the activated torquers being evenly distributed across the array

at all times. This was confirmed visually when the DMDP was in operation by observing the

illuminated LEDs, which are used to indicate magnetorquer activation. While the manoeuvre

is performed around the z-axis, oscillations due to the gravitational torque are clearly visible

in the body rate plots, though these oscillations remain below 3◦ around either axis. While

the controller is attempting to counteract these oscillations, we note again that the DMDP is

oscillating around an equilibrium point and so it is not clear if the system is having an effect on

these oscillations. The time taken to perform a 90◦ slew of approximately 1 minute corresponds

with the expected time for an array of 0.03 A m2 torquers, which is close to the result of Eq.

4.1 which it was noted was likely only an approximate value due to high uncertainties in the

field measurement. When detumbling, the DMDP is found to come to rest from the initial

rate of 15 deg/s in approximately 175 s, before moving to the target attitude. Note that for

the initial 100 s of the detumbling phase the shape of the Euler angles plot and magnetic

field are due to the sampling frequency being lower than the rotation rate. This is also why

initially, the deceleration is quite low, as the system is rotating fast enough that the magnetic

field direction in the body frame changes significantly during a single magnetorquer activation

cucle. Therefore, this tumbling value of 15 deg/s is likely close to the maximum rate that the

system can detumble, without some modification to the control algorithm or duty cycling of

the torquers.

4.4 Chapter Summary

This chapter has described the design, build and testing of a distributed magnetorquer array

for spacecraft attitude control. The DMDP was built to test the control algorithms developed

in the earlier work of Chapter 3, and so the quaternion error feedback scheme used previously

was implemented, where the torque produced by the array is scaled by changing the number of

activated torquers at a given time, and using a torquer selection algorithm which results in the

activated torquers being as evenly distributed across the array as possible for any number of

activated torquers. First, the design and construction of the DMDP, its magnetorquers, and the

3D-printed balancing platform used to adjust the position of the centre-of-mass of the system

were presented. The adaptation of the control algorithm of Chapter 3 for the DMDP hardware
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was then discussed, and then the results of experiments presented in which slew manoeuvres

and detumbling around 1-axis are demonstrated.



Chapter 5

3D-Printed Conductive Structures

A
nother potential strategy for the magnetic attitude control of LSS is the use of large cur-

rent loops, embedded within the spacecraft structure. As opposed to the magnetorquer

rods considered in Chapter 3, which increase the magnetic field strength generated through the

use of a core material with high magnetic permeability, large current loops (or “air-core” mag-

netorquers) can achieve a large magnetic dipole moment by virtue of enclosing large areas. This

is a key difference between the two strategies, and results in a difference in the length-scaling

of the concepts. As discussed in Chapter 3, estimates of the dipole moment to mass ratio for

magnetorquer rods were given, but these were based on values of commercially available mag-

netorquer rods. As these are designed primarily for microsatellites, it is likely that the dipole

moment (and thus torque) values given are limited by the thermal constraints of being housed

within a microsatellite, or by the power available. For a large current loop in a LSS, it is likely

that the thermal and power constraints will be much less limiting than for microsatellites, as

the conducting wire can be placed at a greater distance from the other subsystems, and the

spacecraft can intercept a large amount of solar radiation for power. A further significant dif-

ference between the two concepts is that, for the distributed magnetorquer arrays, the actuator

torques were considered to be applied at single points. For a large current loop, the torque

produced is a result of integrating the Lorentz forces acting on each section of the pathway,

which will act in various different directions at different points of the structure. The structural

deformation caused by a current loop must therefore be considered in the analysis, and the

Lorentz forces acting on the pathway must be modelled, whereas for the distributed magnetor-

quer array, the torque can be directly calculated and applied to the structure as a point torque

at the magnetorquer sites. The control-structure interaction is then a further key difference

between this control strategy and the magnetorquer arrays of the previous chapter, with quite

different analysis and modelling required to demonstrate the feasibility of the concept.

The research questions for this chapter are the following:

1. What is the maximum length-scale that a conductive structure could provide useful atti-

tude control, considering thermal and power limitations?

103
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2. How rigid would a structure need to be for current loops to provide attitude control

without excessive deformation?

3. Can large embedded current loops demonstrate attitude control of a flexible structure in

orbital simulations, where the external field direction is constantly changing and there

are disturbing gravity gradient torques?

Section 5.1 first discusses the physical principles of current loops, considering how Lorentz

forces lead to a torque which can be exploited for attitude control purposes. A variety of

current loop geometries for planar spacecraft are presented, demonstrating that in theory it

is possible to achieve three axes of effective dipole moment by combining different conducting

pathway geometries. A preliminary feasibility analysis of the concept is performed in Sec.

5.2, where a representative calculation is first performed to estimate the torque generated by a

conducting pathway, and rigid body-simulations are then used to estimate whether the strategy

could provide attitude control, where pointing requirements are provided by a simplified orbital

reflector mission concept. Length-scaling laws are then derived in Sec. 5.3, by defining a

simplified thermal model and deriving an expression for what fraction of a spacecraft’s mass

would need to be taken up by a conducting pathway in order to counteract the maximum gravity

gradient torque which that spacecraft may experience. In Sec. 5.4, the spring-mass model first

introduced in Chapter 3 is then modified and used to model the Lorentz forces acting on a

conductive pathway, with numerical simulations performed to investigate the ability of current

loops to rotate planar spacecraft in the absence of disturbances and across a range of structural

flexibility and truss densities. Section 5.5 then presents an attitude control simulation of a

flexible, conductive structure, demonstrating that the strategy is capable of performing slew

manoeuvres in LEO and in the presence of gravity gradient torques and a time-varying magnetic

field direction. Section 5.6 then summarises the findings of the chapter.

5.1 Current Loop Geometries for Planar Spacecraft

As presented in Sec. 2.4 of the technical introduction, A rigid current loop in a uniform external

magnetic field will experience a torque given by :

T = IAe ×B (5.1)

Considering a planar, 3D-printed spacecraft with conducting pathways, there are a number of

possibilities for the geometries that these current loops could take. The most straightforward

geometry is to have one large current loop around the perimeter of the spacecraft (as in Ref.

[116]). This current loop would enclose the maximum possible area on the spacecraft, and could

only produce attitude control torques around some axis lying in the plane of the structure, due

to the cross product in Eq. 5.1.
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The most efficient geometry in terms of the mass required would be a large closed loop, since

the maximum area enclosed for a given perimeter length is given by a circle. This geometry is

illustrated in Fig. 5.1a), where the current loop is shown as a blue path on the perimeter of

the top layer of the structure. Although less efficient in terms of the path length to enclosed

area ratio, for a flexible structure it may be desirable to have multiple current loops spaced

throughout the structure, illustrated in Fig. 5.1b). This geometry would distribute the control

torques throughout the flexible structure, which has previously been shown to reduce structural

deformations during slew manoeuvres, as was demonstrated in Chapter 3. Figure 5.1b) shows

three current loops on both the top and bottom layer of the structure, though an arbitrary

number of loops could be fabricated depending on the flexibility of the structure and thus the

need to distribute control torques. A given current loop can only produce torques around one

axis, defined by the cross product of the enclosed area surface normal vector and the magnetic

field vector in Eq. 5.1. Magnetic attitude control systems generally employ three orthogonal

magnetorquers, so that by varying the current in each torquer control torques can be produced

around any axis lying in the plane normal to the field vector. Similarly, this could be achieved

for a 3D-printed conductive structure by constructing current loops which enclose area in the

a)

o
o

o

b)

c) d)

e) f)

Figure 5.1: Current loop geometries for attitude control of a square, planar truss structure
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yz or xz plane of Fig. 5.1. Although we are considering a planar structure, these current loops

would require the structure to have some depth. One possible configuration is shown in Fig.

5.1c), which shows current loops lying in the yz plane on each layer of the structure. Another

possible configuration is shown in Fig. 5.1d) and detailed in Fig. 5.1e). Figure 5.2 gives a more

detailed illustration of the concept, highlighting how the single, rectangular coil section detailed

in Fig. 5.1e) forms part of the continuous pathway. In this case, the conducting pathway is

formed of a single continuous circuit, rather than separate loops, which winds back and forth

across the structure, as shown for a single unit in Fig. 5.1e). Though this geometry may be

less mass efficient than the multiple current loops of Fig. 5.1d), it may be desirable to have a

single continuous pathway, and furthermore this geometry is included as it demonstrates a path

geometry that could be implemented in long trusses as well as the planar lattice structure shown

here. Figure 5.1f) shows how three orthogonal coil directions can be achieved by overlaying

patterns b) and d), where the third direction is achieved by rotating the pattern shown in Fig.

5.1d) by 90◦, shown in green on the figure. By varying the current in each loop, the strength

and direction of the overall magnetic dipole moment of the system can be specified, allowing

torques to be produced in any direction perpendicular to the magnetic field. Rather than

overlaying the conductive pathways, it is possible to envision multiple conducting paths within

Figure 5.2: A cubic lattice support structure with an embedded conducting path shown in
red. Interaction between the structure’s current-carrying elements and the Earth’s magnetic
field generates torques which may then be used for attitude control. The blue sphere represents
the spacecraft bus. The expanded image illustrates the first points in the path sequence on a
segment of the structure.
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Figure 5.3: A conducting structure with 3 different conducting paths. An “effective” magnetic
dipole moment is given in the x direction by the green path, the y direction by the red, and z
direction by the blue path.

the structure. Figure 5.3 illustrates this concept, where the paths in are separated into different

sections of the structure. This may be required if overlaying the pathways was not possible

due to the specific construction of the structure, i.e. if the structural elements themselves were

conductive and so pathways could not be overlaid without short circuiting each current loop. In

this case, a further possible configuration allowing 3-axes of controllable dipole moment would

be to have switching nodes at each node of the structure, allowing the conductive pathway

geometry to be programmed as required, switching between the geometries of Fig. 5.1a-d, or

sectioned pathways as in Fig. 5.3 to produce the desired magnetic dipole moment.

5.2 Rigid-Body Conductive Structures

In this section, a preliminary analysis is performed of the attitude control concept by considering

the torque generated by a rigid conductive structure. The structure is considered to be a rigid

body here so that the current geometry does not change shape as the structure deforms, which

would alter the enclosed area and thus torque generated by the current loop. First, a method

for calculating the torque produced by geometry D of Fig. 5.1 by direct summation of the

contributing Lorentz forces is presented. Then, some first estimates of the physical properties
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of a conducting structure are made and used to determine the magnitude of torque that could

be achieved with strategy. Preliminary attitude control simulations are then performed for

this example spacecraft, demonstrating detumbling and attitude control for a simplified orbital

reflector mission scenario, again considering the spacecraft to be a rigid body. Later analysis

then considers the potential physical properties of a conductive structure spacecraft in more

detail, and simulates the current loop/structure interaction for a flexible structure. The aim of

the preliminary analysis in this section is firstly to further demonstrate the principle of operation

of the concept, through explicitly calculating the torque generated by a current loop, and then

to give a preliminary assessment of the feasibility of the concept with regards to potential

mission requirements and physical parameters such as the structure’s areal mass density and

length-scale.

5.2.1 Torque Calculation for a Rigid Conductive Structure

Figure 5.2 shows an illustration of the proposed spacecraft, where a conducting path is shown

in red, and winds back and forth across the structure. The spacecraft bus is represented by

the blue sphere at the centre-of-mass, and the reflective film is not shown for clarity. The coil

path is taken to consist of 3/4 of a turn in the xz-plane, followed by a step in the y-direction

which repeats back and forth across the structure, as shown in the expanded view of Fig. 5.2.

The following analysis refers to a list of nodes which sequentially describe this path. The force

on an individual path segment between points with indices i and i + 1, in the presence of an

external magnetic field B, is given by the Lorentz force law:

fi = I Li ×B (5.2)

where Li is a vector with magnitude equal to the segment length and aligned from i to i + 1,

and I is the current. The expanded view in Fig. 5.2 shows the first points in the path sequence,

from which it is evident that this vector is given by the difference in position of points i and

i+ 1. Position vectors are taken from the centre-of-mass of the spacecraft, such that:

Li = ri+1 − ri (5.3)

To calculate the torque contributed by this line segment, it is assumed that the entirety of the

force acts upon the midpoint of the line segment rather than being distributed evenly across

the path element. This assumption is made since the segment length is small compared to the

overall spacecraft side length. In this case, the torque contributed by path segment i is given

by:

τττ i =
1

2
(ri + ri+1)× (I Li ×B) (5.4)
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The total torque generated by the conducting path is then found by summation over the n

individual segments:

T =
n−1∑
i=1

1

2
I (ri + ri+1)× [(ri+1 − ri)×B] (5.5)

where the sequence {L1, ...,Ln} is defined by the geometry of the structure and the connections

between the conducting pathways.

For a square structure such as that shown in Fig. 5.2, with physical data given in Table

5.1, the maximum achievable torque would be 1.12 N m. The magnetic field strength in Table

5.1 is taken to be 30 µT as this is a typical value for LEO [169], and the areal mass density,

σ, assumes an ultra-lightweight structure, composed of a 3D-printed polymer or composite

material, overlaid with a thin film. This areal density may in fact be a conservative estimate,

as solar sails with areal densities on the order of 10 g m−2 have been proposed [51]. However,

a higher value was used here as it is expected that the mass of conductor required to carry

a current of 10 A would increase the areal mass density significantly. Further work would be

required to assess the feasibility of fabricating a functional spacecraft of this density and scale in

orbit, however these values are used to provide an order of magnitude estimate of the potential

torques achievable.

Side length d 100 m
Path segment length L 1 m
Field Strength (LEO) B 30 µT

Current I 10 A
Areal Mass Density σ 100 g m−2

Table 5.1: Example spacecraft configuration.

A further refinement of the concept could entail placing addressable switches at each node

of the square lattice. These switches could then be commanded to change the current-path

direction as required, depending on the direction of the desired control torque. This would then

allow the maximum conducting path length to be used for torque generation in all directions,

with a lower mass than having multiple conducting paths as the same conducting elements are

used for each coil direction.

5.2.2 Detumbling Simulation of a Conductive Structure In-Orbit

The utility of the conducting structure as an attitude control system is now assessed by simu-

lating a square structure in-orbit, with control torques generated by the representative model

defined in Table 5.1. The structure is taken to be a rigid-body, and so the system dynamics

are again described by the Newton-Euler equations:
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Iω̇ + ω × (Iω) = T (5.6)

where T is the external torque acting upon the spacecraft, I is the inertia tensor and ω the

angular rates expressed in the principal-axes frame. The dynamics are implemented along with

the quaternion kinematic equations:

q̇ =
1

2
q[0,ω] (5.7)

where q is the quaternion describing the current attitude, and [0,ω] is a quaternion with scalar

component 0, and vector part ω, the angular velocity components in the principal axes frame

[145]. The equations of motion are implemented in the MATLAB programming environment,

and solved numerically with the ode45 integrator. Again, the physical data is taken from Table

5.1, and the inertia tensor taken to be that of a rigid, flat square plate, given by:

I =


1
12
md2 0 0

0 1
12
md2 0

0 0 1
6
md2

 (5.8)

where m = σd2 is the total mass of the structure, d the sidelength and σ the areal mass

density. The components of the tensor then have values I1 = I2 = 8.3 × 105 kg m2 and

I3 = 16.7 × 105 kg m2. In order to assess the ability of the conducting structure to detumble

itself, the well-known Bdot control law [168] is implemented, which provides an expression for

the desired control torque, TBdot, in terms of the body rates, ω, of the spacecraft and the

magnetic field, B, such that:

TBdot = k(ω ×B)×B (5.9)
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Figure 5.4: Body rates of the structure over the simulation time of two days. The structure
is detumbled from an initial angular velocity vector of ω = (0.707, 0.707, 0) rad s−1, nearly to
rest.
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Figure 5.5: Torques produced by the conducting structure during simulation. Initially the
controller is delivering the maximum torque of 1.12 N m until the end of the detumbling phase
when finer control is required.

for some fixed gain k. This torque is used as the external torque T in Eq. 5.6, and no

other disturbing torques are considered at present. The field direction is taken to be constant

throughout the simulation for ease of illustration. The initial angular velocity of the structure

is set to ω = (0.707, 0.707, 0) rad s−1, such that the magnitude of the initial angular velocity

is 0.1 rad s−1, a significant spin rate for a 100×100 m2 structure. The simulation is performed

over two days. The geometry of the structure is taken to be two overlaid conducting paths,

with orthogonal coil directions, i.e. the path shown in Fig. 1 overlaid with a duplicate path

rotated by 90◦. The maximum torque generated by each path is 1.12 N m, as calculated using

Eq. 5.5. A further assumption is that the current in the paths can be varied between zero and

a maximum of 10 A, and that the direction of the current can be reversed, allowing the torque

magnitude to be varied and the direction to be reversed.

Results of the simulation are shown in Fig. 5.4, demonstrating that the conducting structure

is able to detumble itself in just under two days. The torques are shown in Fig. 5.5, where it

can be seen that initially the controller is delivering the maximum torque of 1.12 N m when

required, until the end of the simulation when the angular rates are reduced sufficiently that

finer control is required. It is important to note that the initial angular velocity in the field

direction, in this case the z-axis, is zero, as magnetic control is not capable of producing torques

in the magnetic field direction and so any angular momentum in this direction would remain

after detumbling.

5.2.3 Attitude Requirements for Simplified Reflector System

An investigation is now made of whether the attitude control system could, at least partially,

provide the torques required to continuously illuminate a fixed point on the Earth’s surface. For
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this analysis, a simplified model is used to provide an illustration of the operational concept,

and to provide a representative example of the angular rates and accelerations required. The

purpose of this analysis is to demonstrate that the magnitude of the torque produced by a

conducting structure in polar orbit within a dipole magnetic field could be sufficient to control

the reflector, and to demonstrate operation by simulating the system over multiple orbits.

Figure 5.6 shows the geometry of an orbiting solar reflector in a circular, polar orbit. The

figure shows the orbital plane, to which we ascribe the inertial coordinate system xyz. This

coordinate system is Earth centered and rotates with the orbital plane, such that the y direction

always points towards the Sun. The following simplifications are made: 1) the orbit is Sun-

synchronous, 2) the tilt of the Earth’s axis relative to the ecliptic is ignored, and is taken to

be around the z-axis, and 3) the Earth’s magnetic field is a dipole field, also centered on the z-

axis. The target ground-point which is to be illuminated by the reflector is located at R, which

changes over time as the Earth rotates. This is assumed to be a large equatorial terrestrial

solar power farm. The reflector position is given by vector r, and so rrad = r−R is the relative

position of the target ground-point and reflector, and the direction in which sunlight is to be

Reflector Orbit Dipole Field

R

r

rrad

ωE

ψ

θ

x

z

y

Figure 5.6: Geometry of a reflector on a circular, polar orbit, illuminating a point on the
Earth’s equator. The Earth-Sun vector is in the y direction, so the Sun’s radiation is directed
into the page. The dipole magnetic field, shown in red, is hidden in the top left of the figure
for clarity and is not shown to scale.
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reflected. Within this simplified model, the position vectors are given by:

r =

r cos θ0

r sin θ

 (5.10)

R =

Re cosωet

Re sinωet

0

 (5.11)

where θ is the true anomaly of the reflector, which changes at a constant rate, as shown in Fig.

5.6, and Re, ωe are the radius and angular velocity of the Earth, respectively. The magnetic

field components in the orbital plane are those of a dipole field, with polar components given

by:

Br = −2B0

(
Re

r

)3

sin θ

Bθ = −B0

(
Re

r

)3

cos θ

(5.12)

where B0 = 3.12×10−5 T is the mean value of the magnetic field at the magnetic equator on the

Earth’s surface [173]. The angle ψ lies between the z-axis and the line of intersection between

the reflector surface and the orbital plane. This line of intersection is shown in grey in Fig.

5.6. For sunlight incoming along the y-direction to be reflected along rrad to the target ground-

point, this line of intersection must be perpendicular to rrad, which defines the angle ψ. An

expression for ψ is now sought, as this angle needs to be maintained by applying control torques

with the conducting structure. As the ground point rotates with the Earth and moves out of

the orbital plane, the reflector would also need to roll around the reflector axis shown in grey in

Figs. 5.6 and 5.7 to give the correct angle of reflection. This component of the reflector attitude

dynamics is ignored in this analysis because this angle changes at a much slower rate than the

angle ψ. Changes in this angle depend on the target ground-point velocity, while changes in ψ

depend mainly upon the reflector orbital velocity which is much greater. Another reason this

component of the attitude dynamics is ignored is because it would require control torques with

a component in the z-direction. A torque in this direction could not always be achieved due to

the fact that torques can only be produced in the plane normal to the field direction, which is an

inherent constraint of magnetic attitude control. If the conducting support structure is found

capable of maintaining the pitch angle ψ, it could then be supplemented by reaction wheels

or another attitude control system to achieve the required angle of reflection. The constraints

made on the system for this model allow us to consider only the 2D geometry of the xz plane

to find this expression. Figure 5.7 shows the geometry in the orbital plane, where Rx is the

projection of the ground-point position onto the plane. An equation for ψ can then be found
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as:

ψ =
π

2
− ε =

π

2
− tan−1

(
r cos θ −Re cosωet

r sin θ

)
(5.13)

As the time dependence of θ is known, it is then possible to find an expression for the required

angular velocity of the solar reflector by taking the time derivative of Eq. 5.13, resulting in:

ψ̇ =
−rReωe sin(ωet) sin θ + rθ̇(r −Re cos(ωet) cos θ)

r2 +Re cos(ωet)(Re cos(ωet)− 2r cos θ)
(5.14)

An exact expression for the angular acceleration can also be found by taking the time derivative

again, omitted here for conciseness.

Equation 5.13 provides a steering law for the pitch around the Sun-reflector axis which must

be maintained. Additionally, the reflector must be angled correctly towards the Sun to provide

the required angle of reflection towards the target. In Fig. 5.6, the reflector, represented by the

yellow plane, would be angled at 45◦ to the page since the target is positioned in the xz plane.

This ensures that rrad would be perpendicular to the sun-line direction, providing an angle of

reflection of 45◦.

A simulation is now performed of a reflector in orbit, with torques generated by the con-

ducting paths which attempt to maintain the reflector attitude such that the angle ψ, given by

r sin θ

r

ψ ε

r cos θ −Rx Rx

rrad

θ

Figure 5.7: Geometry of the reflector-target vector rrad, illustrating how the angle ψ can be
determined
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Eq. 5.13, is continually maintained. The physical data given in Table. 5.1 is again assumed.

Rather than the Bdot controller used previously to detumble the structure, tracking behaviour

is now sought by using a quaternion error feedback controller to generate control torques, with

the desired orientation specified by Eq. 5.14. The control law is given by:

Tref = −Pqqerr − Pωω (5.15)

where Pq and Pω are the controller gains, ω the angular rates, and

qerr = qrefq
∗
t (5.16)

is the error quaternion, given by quaternion multiplication between the current attitude, qt, and

the desired, qref . This generates a reference torque, and the nearest achievable torque which

can be generated by the conducting structure is used to propagate the Newton-Euler equations.

The nearest achievable torque is found by assuming that again the structure consists of two

overlaid paths, described in Sec. 5.2.3, with the addition of a third path consisting of coils lying

in the plane of the structure, shown in blue in Fig. 5.3, also capable of producing 1.12 N m.

With this geometric configuration, analogous to having three perpendicular magnetorquers, a

torque can be generated in any direction in the plane normal to the magnetic field direction.

To find the actuator torque, the reference torque is projected onto the plane normal to the

magnetic field and is then taken to be the torque generated by the array, up to the maximum

achievable torque calculated by Eq. 5.5. A key difference to the previous detumbling simulation

is that the magnetic field direction is no longer constant, instead it’s components are given by

Eq. 5.12. Due to the constrained geometry of the system, these torques will always lie on the

y-axis, and so deliver an angular acceleration around the Sun-reflector direction. The orbital

altitude is taken to be 800 km, resulting in an orbital period of 100.7 minutes. The simulation is

performed for 10 orbital periods, and so 10 passes of the ground-point are made, and the initial

position of the ground-point is chosen such that halfway through the simulation it is located

directly underneath the reflector. The attitude control system attempts to point towards the

target ground-point even when it is not visible from the reflector, as this ensures the reflector

will have the correct orientation when the ground-point next becomes visible. Results of

the simulation are shown in Fig. 5.8. The attitude control system is able to maintain the

required pitch angle, ψ, until approximately t = 5.5 hrs. This is because at this point, the

required torque exceeds the torque achievable by the structure, and so the angular acceleration

of the reflector lags behind that required by Eq. 5.13. The results show that larger torques

are required at approximately the halfway point of the simulation. This is because, at this

time the ground-point has rotated with the Earth into the orbital plane, and so is directly

underneath the reflector. Since the distance between the reflector and target is then much

lower, the reflector must rotate faster to maintain illumination. However, other than the three

passes nearest this point, the system is capable of producing the required torques.
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As discussed previously, the areal mass density value of 100 g m−2 used in this analysis

is an order of magnitude higher than that which may be assumed for solar sails, and was a

conservative value chosen by assuming that the conducting mass required to fabricate such a

structure would increase the density substantially. If it were possible to fabricate a structure

with an areal density of 10 g m−2, this would decrease the moments of inertia by a factor of

10. Such a structure was simulated and results are shown in Fig. 5.9. Due to the lower mass,

the maximum torque achievable by the conducting structure is now sufficient to provide the

required attitude control, as the values of ψ and ψ̇ are now seen to match the reference values

for the duration of the simulation. When the reflector passes directly over the ground-point,

at t = 8.3 hrs, the torque can still not match the reference reference torque, however this is

seen to have minimal effect on the error in ψ, as the reference torque is not achieved for only

a small period of time. While it remains to be seen whether a conducting structure capable

of conducting 10 A of current could be realised, even the results for a structure with an areal

density of 100 g m−2 demonstrate that at the required pitch angle could be achieved by this

system for the majority of the reflector’s operation. The reflector could then be supplemented

Figure 5.8: Results of simulation for a 100×100 m orbiting solar reflector, showing the con-
ducting structure is only capable of maintaining the required pitch angle ψ for part of the
simulation. Actual values are shown in black with reference values shown in red.
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Figure 5.9: Results of simulation for a 100×100 m orbiting solar reflector with areal density of
10 g m−2, showing that a maximum torque of 2 N m is now sufficient to maintain the required
pitch angle ψ. Actual values are shown in black with reference values shown in red.

by another attitude control system for the time period when the reflector passes directly over

the target, and for fine-pointing.

5.3 Length Scaling of Large Current Loops

In this section, analysis is undertaken to determine how the effectiveness of the proposed atti-

tude control strategy changes with the length-scale of the spacecraft structure. For this analysis

it is assumed that the spacecraft is a homogeneous, square planar structure which has been

3D-printed on-orbit. A further assumption is that during manufacturing, conductive pathways

have been embedded in the structure which form closed current loops. It is also assumed that

the conductive pathway itself is a solid, cylindrical wire, and that the spacecraft is orbiting the

Earth, where the Earth’s magnetic field is approximated as a dipole field.

The torque generated by the conducting structure is proportional to the current flowing

through the conducting pathway. The maximum current depends upon the power available,

but will also be limited by the temperature rise in the conductor allowed by the materials of
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the supporting structure and heat flow between the conductor and support structure. For the

analysis of this section, a simplified thermal model of the conductive structure is considered to

estimate the extent to which a maximum wire temperature will limit the achievable torque.

Figure 5.10 illustrates a single unit cube of a conducting structure, consisting of 3D-printed

booms or trusses onto which a conducting wire is anchored by thermally insulated nodes at-

tached to the main structure. With a current applied, the power loss due to resistive heating

in the wire is given by:

Pj = I2R (5.17)

for current I and resistance R. The resistance is assumed to vary linearly with temperature

over the operational temperature ranges, and is given by [174]:

R = Rr [1 + α(Γ− Γr)] (5.18)

where Rr is the resistance at reference temperature Γr, α is the temperature coefficient and Γ

the current temperature of the conductor. Rr is inversely proportional to the cross sectional

area of the wire, which is assumed to be circular:

Rr =
4ρrl

πd2
(5.19)

where ρr is the resistivity of the conducting material at the reference temperature, l is the total

length of the conductor and d the wire diameter.

Heat leaves the wire through thermal radiation only, as it is assumed that the anchor

points are thermally insulating so any heat flow into the support structure is negligible. It

is also assumed that a thin film membrane shields the wire from any incoming radiation, as

the membrane side of the spacecraft would be directed towards the Sun during operation if

the spacecraft were acting as a reflector or solar sail. The effect of heat being reflected by the

back of the membrane and reabsorbed by the wire is also not considered, nor is the potential

temperature rise of the membrane itself. It is assumed that the wire is a grey body with

emissivity ϵ, so that the power dissipated through thermal radiation is given by the Stefan-

Boltzmann law:

Pr = ϵσAsΓ
4 = ϵσπdlΓ4 (5.20)

where σ = 5.670373 × 10−8 W m−2K−4 is the Stefan-Boltzmann constant, and As the surface

area of the wire. Of note is that both the resistive heating and thermal radiation are propor-

tional to the length of the conducting wire, and so the heat flow can be considered per unit

length of the conductive path, with units of Watts per meter.

The wire will rise to the temperature at which the resistive heating and thermal radiation are

in equilibrium. For a given diameter of wire, there will be a maximum allowable temperature

in the conductor depending on the specific construction of the spacecraft. This temperature

then determines the maximum current that can be applied to the wire and thus the maximum
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achievable torque. If the wire were perfectly insulated from the supporting structure, this

temperature could be very high, approaching the melting point of the conductor. In practice,

it may be desirable to restrict the maximum temperature of the conductor to be below the

melting point of the support structure, in case of accidental contact or because there will be

radiative heat transfer from the wire to the structure. This restriction would also allow the

anchor points to be constructed from the same material as the support structure in a continuous

3D print. Potential materials for 3D-printing the support structure are thermoplastics which

could be printed through fused deposition modelling (FDM). We consider polycarbonate as a

candidate material for such structures [175], which has a glass transition temperature of around

147◦, and a melting point of 155◦C.

Equating Pj and Pr allows an expression for d to be found, in terms of I and Γe for a given

wire material, such that:

ϵσπdΓ4
e =

4ρr
πd2

[1 + α(Γe − Γr)] (5.21)

Therefore, Eq. 5.21 gives an expression for the wire diameter required to carry a specified

current while maintaining thermal equilibrium at the desired temperature. The torque produced

is proportional to the current in the conductive path, and to the magnetic field strength which

will vary with orbital altitude and position. To proceed we approximate the Earth’s magnetic

field as a dipole field and consider an equatorial orbit, such that the field strength is given by

3d-Printed
Structure

Thin �ilm 
membrane

Anchor points
Conducting wire

Current 

Thermal
radiation

Figure 5.10: A unit cube of an implementation of the concept, consisting of a conducting
wire anchored to lightweight 3D-printed structural members.
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[173]:

B = B0

(
RE

Ro

)3

(5.22)

where B0 = 3.12 × 10−5 T is the typical field strength on the Earth’s surface at the equator,

RE = 6370 km is the mean radius of the Earth, and Ro is the orbital altitude. The attitude

control torque requirements for structures with different length scales will vary greatly, due to

the scaling of the mass moment of inertia and the scaling of various disturbance torques that

will need to be counteracted by the attitude control system. Furthermore, these factors will

all vary with altitude as well. We assume that the torque produced by a current loop may be

considered “useful” if, for a given length-scale, the torque produced by the current loop has a

magnitude at least as great as the maximum gravity gradient torque that the spacecraft will

experience, following the discussion in Ch. 3. The maximum gravity gradient torque for a

square, planar structure occurs when the face of the structure is oriented at 45◦ to nadir, and

is given by:

Tmax
g =

D2Mµ

8R3
o

(5.23)

where D is the side-length of the square spacecraft, M the total mass, and µ = 3.986× 1014 m3

s−2 the standard gravitational parameter of Earth. Equation 5.23 is found by evaluating the

standard gravity gradient torque equation (e.g. [146]) for a square structure with which has

an inertia tensor with principal components given by i1 = i2 =
1
12
MD2, i3 = 2i1, i.e. a square

plate with uniform mass density. The subscripts 1, 2 and 3 refer to the xo, yo, zo body frame

axes respectively, which is fixed to the structure as shown in Fig. 5.1, along with the inertial

xyz frame.

The torque produced by a current loop depends on the enclosed area, while the mass of

that current loops depends on its length. Expressions for both the enclosed area and path

length as a function of structural side-length are now found. For geometry A of Fig. 5.1,

the enclosed area is given by Ae = D2 for side-length D, and the path length is given by

l = 4D. For geometries B and C, a general expression is found for N equally spaced loops,

while for geometry D the expression is given for N “layers” of coils arranged lengthways across

the structure. Additionally, for geometries C and D, the enclosed area of the coils depends on

the depth of the structure, w, which is taken to be D/N . Of note is that the following analysis

is only accurate for sufficiently large N that w << D, as it was assumed in Eq. 5.23 that the

structure’s inertia tensor is that of a thin square plate. The expressions for Ae and l for the coil

geometries considered are summarised in Table 5.2. For the geometries which contain multiple

current loops the number of coils/layers is denoted N , and it is assumed the loops are equally

spaced. For the last two geometries, it is further assumed that the depth of the structure is

given by D/N , i.e. that the structure can be considered to be composed of square unit cells.

The maximum torque produced by the current loop is Tmax
L = IAeB, from Eq. 2.23.

Equating this with the maximum gravity gradient torque (Eq. 5.23), which is taken as the
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reference requirement for useful attitude control, and substituting the dipole field magnitude

from Eq. 5.22 allows an expression for the current required of a current loop to counteract the

gravity gradient torque:

IAeB0R
3
E =

D2Mµ

8
(5.24)

The conductor mass fraction λf =Mc/M is defined as the conductor mass divided by the total

mass, and expresses the total mass in terms of the areal mass density σA, giving:

M =
Mc

λf
=

1
4
πd2l

λf
= σAD

2 (5.25)

Equations 5.21, 5.24 and 5.25 are then used to find an expression for λf with d and I eliminated:

Table 5.2: Current Loop Geometries

Loop Geometry Enclosed Area, Ae Path Length, l

A)
D

Ae = D2 l = 4D

B)

D −D/N

D Ae =
N∑
i=1

(
i

N
D

)2

=
D2(N + 1)(2N + 1)

6N

l =
N∑
i=1

4
i

N
D

= 2D(N + 1)

C)

D

D
/N

Ae =
N+1∑
i=1

D2

N

=
D2(N + 1)

N

l =
N+1∑
i=1

2D

N
+ 2D

=
2D

N
(N + 1)2

D)

D

D
/N

D/N

Ae = N
N+1∑
i=1

3

4

(
D

N

)2

=
3D2(N + 1)

4N

l = 4ND
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λf =

(
µ4ρ3cρ

2
r(1 + α(Γe − Γr))

2

16384 · πΓ8
eϵ

2σ2
BB

4
0R

12
E

) 1
3

· D
10
3 l

A
4
3
e

σ
1
3
A

= C1G(N)D
5
3σ

1
3
A

(5.26)

where the constant C1 is the bracketed term in Eq. 5.26 (including the exponent), and G(N) =

(D
5
3 l)/A

4
3
e is a factor determined by the coil geometry, where it is noted that the D term is

eliminated for the geometries considered here in Table 5.2 leaving some function of the coil

number N . This is the case for any geometry where the enclosed area Ae scales with D
2 while

path length scales with D, which is true in general if both dimensions of the enclosed area scale

with D.

Equation 5.26 holds for geometries B, C and D in Table 5.2, so long as the number of
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Figure 5.11: Scaling for coil geometry A
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coils/layers in the structure N is sufficiently large that the mass density of the structure can

be assumed to be approximately uniform, as was assumed in Eq. 5.23. For geometry A, this

assumption does not hold and the derivation must be modified to account for the uneven mass

distribution of the single, outer current loop. The final expression for λf in this case is omitted

here for brevity, but is derived by calculating the maximum gravity gradient torque for a body

with inertia tensor components i1 = i2 = ( 1
12
(M −Mc) +

4
3
Mc)D

2, and i3 = 2i1.

In summary, an expression for λf has been derived, which gives the fraction of the total

mass that must be comprised by the conducting pathway in order to produce a torque as great

as the maximum gravity gradient torque a planar spacecraft may experience, while maintaining
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D
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C

D
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D

Figure 5.12: Scaling for coil geometries B, C & D (N = 27)
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a specified equilibrium temperature in the conducting path.

Plots of λf , d, I and Pj/D
2 are shown in Fig. 5.11 for geometry A, and Fig. 5.12 for geome-

tries B-D. It is assumed the conductor is a copper wire, and that the spacecraft is fabricated

from some polycarbonate printed structure, so that the wire temperature should not exceed the

glass temperature of 147◦C. Other physical data is summarised in Table 5.3. For geometries

B-D the equations have the same form with different horizontal axis scaling since the G(N)

factor is unique to each geometry. For geometry A it is noted that there are two branches for

the solutions due to the uneven mass distribution. This is because at some length scales the

gravity gradient torque can be counteracted either by a lightweight current loop with a more

massive structure, or by a more massive current loop capable of carrying a greater current. This

more massive current loop is capable of carrying a greater current, thus producing a greater

torque and offsetting the increase in inertia and thus greater gravity gradient torque. For the

other coil geometries, the conductor mass is uniformly distributed and therefore this branching

of the solutions does not appear. Figure 5.11 shows that for a single, outer current loop, length

scales on the order of 100 m to 1000 m could be feasible to meet the given criteria, for areal

mass densities on the order of near to far term solar sails. The plot of the required areal power

density is included, as it was assumed in the derivation that the available power would not

be a limiting factor for this attitude control strategy. This assumption is likely valid, as the

required areal power density is relatively insignificant when compared to the solar insolation of

1368 W/m2 the spacecraft will intercept on-orbit, and PV panels covering a small fraction of

the spacecraft surface will be capable of powering the system. Note that the red points on the

plots represent the length scale at which λf=1, and therefore solutions beyond (or below for

that branch of the solution in the case of geometry A) are unphysical.

For geometry B, the length-scaling is found to be much more favourable than the outer loop

geometry, with length scales on the order of 10 km meeting the criteria of the thermal and

torque equilibrium equations. Both geometries C and D are seen to have much more adverse

scaling than geometry B. As discussed previously, this is due to the fact that the area enclosed

by these current loops relies on the structure having some depth, which will by definition be

the smallest dimension of the planar structures considered here. For both cases, length scales

on the order of 100 m would be feasible, and the power requirements are also well within what

could be considered reasonable for such structures. Figures 5.11 and 5.12 both show the scaling

functions for N = 27, i.e. for a structure with a depth dimension that is 3.7% its length. This

value was chosen here as this is the value used in later simulations, where larger values would

result in excessive computation times. For geometries B-D, the factor G(N) influences the

length-scaling however and must be considered. The change in the maximum length scale - i.e.

the length scale at which λf = 1 (the top line of the λf plots in figs/Condstruc 5.11 and 5.12)

with N is shown in 5.13. For geometry B, increasing N increases the number of current loops

(which lie in the plane of the structure), and it is seen to increase the maximum possible length

scale at which the torque from the current loops can equal the gravity gradient torque (i.e. the
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plot shows that having multiple, thinner current loops is more thermally efficient than fewer

loops). Although the plot suggests that N could be increased indefinitely to achieve greater

torques, there will be a practical limit on how thin a useable conductive wire can be which we

do not consider here. For both geometries C and D, the maximum length scale decreases with

N , as these geometries rely on the structure’s depth which also decreases with increasing N ,

and so a greater number of current loops enclosing an ever-decreasing area is seen to be less

mass-efficient in this case.

In the length-scaling analysis, radiative heating due to the wire being illuminated by the Sun

was not included in the thermal model, both for simplicity and as it was assumed the reflective

membrane would be directed towards the Sun and thus shade the conductive wire. Given solar

irradiance in LEO of 1360 W/m2, assuming that 70% of this is absorbed by the wire, (ϵ = 0.7),

which has an illuminated area of l×d, the (worst-case) radiative heating power is PS = 952×ld.
The power dissipated through thermal radiation (Eq. 5.20), for a wire temperature of Γe = 420

K, is given by Pr = 3880.2 × ld, or approximately 4PS. This addition to the thermal energy

balance would require an increased wire diameter to maintain the required temperature, but

as a 25% increase it is not the dominant contribution and does not significantly alter the

length-scaling analysis here. In practice, this increase in wire diameter may be built in as a

safety factor anyway, or another solution could be to reduce the current or implement pulse

width modulation (PWM) when the current loop is illuminated. This would reduce the control

effectiveness during illumination, but maintain the lower mass requirement of non-illuminated

operation. A trade-off between these strategies could be performed, depending on the specific

pointing requirements of the application considered and whether the wire will be shaded by the

membrane during operation.

Results of analysis for all geometries show that the use of conductive pathways embedded
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mass density coil geometries.
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in a large, planar structure could feasibly be used for attitude control purposes at length-scales

on the order of kilometres, though in practice this length scale is more likely to be reduced to

the order of 100 m. This is due to the fact that large values of λf would not be physically

realisable, as this would constitute the structure being comprised solely of the thin copper

wire and leave no mass for the actual supporting structure. Furthermore, the analysis was

performed for each coil geometry individually, while in practice it would most likely be required

to have three, orthogonal current loop geometries overlaid with one another, such that three-

axis magnetic control could be implemented. In other words, although analysis of geometry

B has suggested length-scales on the order of 10 km may be feasible, the length-scale of the

worst-performing geometry will be the limiting factor if three-axis control is desired. Although

other actuation strategies have not been analysed here, it may be possible that geometry B

could be employed for a kilometre scale structure, providing torque around one axis only, and

then be supplemented by another form of attitude control such as an array of CMGs or the use

of solar radiation pressure to enact torques around other axes.

5.4 Simulations of Flexible Structures with Embedded

Current Loops

Although it has been demonstrated that current loops can provide sufficiently large torques for

attitude control purposes, a further consideration is whether they are capable of reorienting

a highly flexible structure successfully. The structural response is particularly of interest for

current loops because the torque produced by the current loop is the result of integrating the

Lorentz forces on the current carrying wire around the loop. For a rigid current loop this

produces a pure torque as described by Eq. 2.23, but for a flexible loop these forces act to

deform the structure (effectively modifying the enclosed area). Additionally, this behaviour is

highly nonlinear in that the direction of the forces acting on the current loop depends on the

changing shape of the current loop/structure at a given point in time. The dynamics of flexible

structures with embedded current loops are investigated in this section by performing numerical

simulations of a 250×250 m square truss structure, for a range of structural flexibilities and N ,

for each of the coil geometries presented in the previous section. The aim of these simulations

is to determine how rigid a structure of this length-scale would need to be for this attitude

control strategy to be considered feasible, and furthermore to gain some general insight into

the nature of the structural deformations and dynamics observed in the structure when the

current loops are energised.

5.4.1 Model Description

The structure is again modelled as a spring-mass system (also commonly known as a lumped-

parameter or multi-particle model [147]), following Chapter 3. This gives a computationally
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efficient model of a general, flexible LSS. In this chapter, the equations are recast in matrix

form, as opposed to in Chapter 3 where the particle forces were determined iteratively. This

reduces the computation time of the model and also allows a modification to the damping term

detailed here. In matrix form, the equations are:

Mr̈ = Fmag −K(r −Rθr0)− γṙ (5.27)

where M is the diagonal mass matrix, Fmag the Lorentz forces, K the stiffness matrix, r the

particle positions, r0 the equilibrium/initial particle positions (and Rθ the rotation matrix found

by least-squares fitting a rotation between r0 and r) and γ the damping matrix. As in Chapter

3, the system is comprised of point masses connected by linear springs, and so the stiffness

matrix is assembled in the usual way (e.g. [176]). In terms of the adjacency matrix A defining

the structural connectivity (defined in Chapter 3), the stiffness matrix can be constructed from

3× 3 submatrices according to:

K3×3
ij =


∑i−1

i′=1Ai′j +
∑Np

j′=j Aij′Kij′ if i = j

−AijKij otherwise
(5.28)

where Np is the number of particles, and Kij the first 3 × 3 submatrix of the global stiffness

matrix of a 3D linear spring [176], given by:

Kij = ki,j

 c2x cxcy cxcz

cxcy c2y cycz

cxcz cycz c2z

 (5.29)

where cx = (xj − xi)/Li,j is the cosine of the angle between the local and global x axes (with

equivalent expressions for y and z), and kij is the spring constant of the spring connecting

particles i and j. This is determined by first selecting the desired the overall beam-like bending

stiffness EI of the structure, relating this to an equivalent beam element elastic modulus E

and cross section Ac following Chapter 3 (EI = 2EAcR
2
c), and setting ki,j = EAc/Li,j, for

Li,j =
√

(xj − xi) 2 + (yj − yi) 2 + (zj − zi) 2 which is the natural length of the spring.

In Chapter 3 viscous damping with a uniform damping coefficient for each spring element

was used, with a value chosen that provided numerical stability without significantly affecting

the response (i.e. near zero damping for all vibration modes). In this section, Caughey or

modal damping is instead used to provide increased numerical stability and to give damping

behaviour more closely representing that of an LSS in general, though of course the damping

behaviour can vary greatly depending on the specific design and construction. The Caughey
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damping matrix is defined as[177]:

γ = M

 Nϕ∑
n=1

2ξnωnϕnϕ
T
n

M (5.30)

where M is the (diagonal) mass matrix, ξn the damping ratio, Nϕ the total number of vibration

modes, ωn the modal frequency and ϕn the mode shape for the nth mode of the undamped

system in all cases. The mode shapes and natural frequencies of the undamped system are

found in the usual manner by solving the eigenvalue problem |K− ω2M| = 0 (e.g. [178]). The

damping ratios for each mode are then specified. For the first 100 modes, the damping ratio

was set to 1% of critical damping. For all modes with mode number n > 100 the damping

ratio is either equal to the Rayleigh (proportional) damping value, ξn = 2ξ100ωn/ω100 or 10,

whichever is greater, where ξ100 = 0.01 is the damping ratio of the 100th mode. These values

are chosen in an attempt to represent a general LSS, which will most likely have very light

damping of the low-frequency modes (under 10% without active vibration control [179]) while

the high-frequency, more localised vibration modes would have higher damping. The damping

ratio was given an upper limit of ξ = 10 as it was found that higher values led to numerical

instability for the structural cases considered here.

The Lorentz forces acting on particle i of the spring-mass model due to the current carrying

wires is determined by:

Fmag
i =

∑
j∈CL

1

2
ILrij ×B −

∑
j∈C−

L

1

2
ILrij ×B (5.31)

where CL = {j|AL
ij = 1} and C−

L = {j|AL
ji = 1} are the sets of particle indices where a current

carrying element of loop L is connecting particles i and j, with current flowing from i to j

or from j to i respectively. The current loops are defined by the directional adjacency matrix

AL, in which AL
ij = 1 if a current carrying element connects particles i and j with current

flowing in that direction. The adjacency matrices define the direction of ”positive” current,

and the same matrix then gives the correct forces for current flowing in the opposite direction

if the loop current IL takes a negative value. The ”positive” current direction is defined for the

current loop geometries here such that the magnetic dipole moment of the current loop points

in the positive xyz direction for the geometries shown in Fig. 5.1 (i.e. the current loops all

follow the right hand rule, winding anti-clockwise around their respective axis). Each current

loop geometry has a unique adjacency matrix, which is computed prior to the simulation being

performed. The overall magnetic force vector Fmag is then found by summation over all current

loops (if multiple loops are defined/present) and assembling the particle force vectors into a

single vector for use in Eq. 5.27. Note that only forces due to interaction with the external

geomagnetic field are considered, and not any interaction with the magnetic field generated by

the current loops themselves. This assumption is made because it was found that the magnetic
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field strength generated by the current loop, measured at some other perpendicular point of

the loop, would be much lower than the geomagnetic field strength and thus would not be

a significant contribution to the particle forces. The magnetic field generated by a straight,

current carrying wire is given by:

Bw =
µ0I

2πr
(5.32)

where µ0 = 4π× 10−7 H/m is the magnetic permeability of free space, and r the distance from

the wire. For the cases considered in the following simulations, the current is on the order of

10 A, and the structural unit spacing (and thus closest spacing between parallel wire elements)

is on the order of 10 m, resulting in the self-interaction field being on the order of 10−7 T,

two orders of magnitude lower than the geomagnetic field in LEO. The self-forces due to the

current loop’s own magnetic field are therefore assumed to be negligible for the cases considered

here. For a tightly packed structure (< 1 m unit spacing) with loop currents > 100 A, the

field generated by the current loop could be comparable to the geomagnetic field and act to

compress/expand the units of the structure, and would need to be considered in the analysis.

5.4.2 Simulation Results

Using the spring-mass model, simulations have been performed for each of the current loop

geometries (A-D) shown in Table 5.2. As noted, the aim of these simulations is to determine

how rigid the structure must be to withstand the forces acting on the current loop and be

gently rotated, when that current loop is capable of producing a torque at least as large as the

maximum gravity gradient torque the structure would experience. Simulations are performed

for each of the four loop geometries, and for three values of both the equivalent bending stiffness

EI and the number of structural units N . Varying N changes both the number of current loops

for geometries B-D, and the structural depth. There are therefore nine simulations performed

for each of the four geometries, resulting in 36 simulations total. Each simulation is performed

Structural Simulation Parameters Loop geometry: A B C D
Length D 250 m N Current, I (Amps)
Areal mass density σA 100 g/m2 12 42.60 15.28 35.64 47.53
Damping ratio ξn 0.01 (n < 99) 19 42.60 10.02 36.68 48.91
Beam-like bending stiffness EI 103, 104, 105 N m2 27 42.60 7.457 37.24 49.65
Integration timestep (for EI) dt 0.1, 0.05 , 0.01 s Attitude Control Simulation Parameters
Integration method 4th order Runge-Kutta Length D 250 m
Magnetic field strength B 27.7 µT (800 km) Unit number N 19
Current Loop Physical Data Bending stiffness EI 104 N m2

Density of copper wire P 8960 kg/m3 Loop Geometries - [C,C,B]
Reference temperature Γr 293 K Max. currents Imax [36.68, 36.68, 5.644]
Equilibrium Temperature Γe 420 K Max. dip. moment mmax 2.413×106 A m2

Reference resistivity at Γr ρr 1.68×10−8 Ω m Control Gains kp 600
Grey-body emissivity ϵ 0.7 kω 4× 105

Temperature coefficent α 0.00404 K−1 Orbital altitude Ro 800 km
Stefan-Boltzmann constant σB 5.67×10−8 Wm−2K−4 Integration timestep dt 0.05 s
Magnetic field (sea-level) B0 3.12×10−5 T Simulation runtime 10000 s
Std. gravitational parameter µ 3.986×1014 m3 s−2 Mag. Field Model WMM (2022) [169]
Mean radius of Earth re 6370 km (Other data same as structural simulations.)

Table 5.3: Simulation parameters
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in free-space with a fixed external magnetic field direction with no other disturbing forces

considered. This choice is made so that the deformation of the structure under application of

the Lorentz forces can be directly observed and compared for each case without other factors

affecting the structural dynamics. In all cases the structure is initially at rest, and the magnetic

dipole moment is perpendicular to the magnetic field. The loop has a constant current, and

then Eq. 5.27 is numerically integrated for 4000 s. Under these conditions, a rigid current loop

would undergo simple harmonic motion, completing a rotation of 180 deg and then reversing

direction. The simulation parameters are summarised in Table. 5.3, where the loop currents

are calculated following the derivations in Sec. 5.1. A length scale of 250 m is selected as this

results in a λf value of <10% in all cases (following Fig. 5.11 and 5.12), which is considered to

be an upper limit on a reasonable mass allowance for the attitude control system of a gossamer

structure of this size. Following Chapter 3, 103 N m 2 is taken as a reference beam like bending

stiffness for a solar sail-type gossamer spacecraft, and then two orders of magnitude greater are

considered, to cover a wide range of structural flexibilities. The areal mass density is selected as

100 g/m 2 by considering that near term solar sails can have an areal mass density on the order

of 10 g/m 2, and thus an order of magnitude greater than this is thought to be a reasonable value

to cover the range of flexibilities we consider here, as discussed in Sec. 5.2.3. The magnetic

field strength is considered a typical value for an orbital altitude of 800 km, determined by Eq.

5.22. The values of N were chosen to cover a range of values, with an upper limit of 27 selected

due to exceedingly long computation times for values greater than this.

Results of the simulations are shown in Tables 5.4 to 5.7. The figures show the structure

at the point of maximum strain energy (shown in the xoyozo body frame), and a plot of strain

against time throughout the simulation. The xoyozo body frame is initially aligned with the

xyz inertial frame as shown in Fig. 5.1. The structure itself is drawn in black while the current

loops are coloured blue and green for the z and y direction dipole moment loops respectively. In

all cases, it was found that a bending stiffness of EI = 103 N m2 was too flexible for the current

loop to rotate successfully, and the structure would collapse (as in the first column of Table

5.4). In particular, for geometries C and D, the orientation of the magnetic field and resultant

Lorentz forces ended up stretching the structure in the z direction, to a distance of over 500 m.

Although the structure essentially folds up in these simulations, it is important to note that

this model does not exactly represent a membrane, in that the springs here are linear, behaving

the same under tension and compression. This represents a general, homogeneous flexible truss

structure rather than a gossamer spacecraft specifically. For a gossamer spacecraft of this

flexibility, it is likely that the tensioning of the membrane would be a significant contribution

to the structural response. Although it was thought that an electromagnetic current loop could

in fact be used to tension the membrane of such a spacecraft, our results suggest that this

would not be possible in practice. This is because, although some of the forces on the current

loop would act to tension the membrane in one direction, there are always force pairs that will

act to collapse/fold the structure in a direction perpendicular to these forces. In the simulation
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Table 5.4: Results of simulation for Geometry A
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Table 5.5: Results of simulation for Geometries B
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Table 5.6: Results of simulation for Geometry C
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Table 5.7: Results of simulation for Geometry D
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results this was observed most clearly for geometries C and D, as the structure was stretched

in the z direction, and simultaneously compressed in the x direction. However, we note that

this result is due to the interaction of the current loop with the external, geomagnetic field.

For much higher currents, requiring superconducting loops, it has been demonstrated [119–121]

that tensioning could be achieved via the self-forces in the wire. For EI = 105 N m2, it was

found that the structure behaves essentially as a rigid body in all cases, and thus for structures

of this rigidity large current loops would be an effective means of attitude control, and standard

rigid-body control laws may be used.

The chosen current loop geometries all resulted in quite different structural responses. This

is because although the torque in all cases is the same, the forces which result in that torque

have different magnitudes and are applied at different points. Comparing the z direction loops

(A and B), the structural deformation and maximum value of the total strain are quite similar in

each case, though there is some difference in the strain profiles for N = 19 and 27. For geometry

B, there is a large peak in U at approximately 2000 s, whereas for geometry A there are larger

oscillations in U over the entire simulation. At 2000 s the magnetic dipole moment is aligned

with the field direction, and this is the point of minimum torque, but maximum “stretching”

of the structure (as discussed in the previous paragraph). This suggests that although there

is a slight benefit to having multiple planar current loops in that the structure can be more

smoothly rotated, the tensioning of the current loop(s) at certain orientations results in similar

deformations for both cases. Comparison of geometries C and D shows that for achieving a

magnetic dipole moment in this direction, geometry C performs much better than the coil type

geometry, with the strain energy two to three orders of magnitudes lower for the cases here.

This is because for geometry D, there are many more opposing force pairs present which act to

deform the structure instead of producing the desired torque, and these force pairs are always

located in the same unit of the structure, whereas for C these forces act at opposite ends of the

structure (the vertical loop elements at the edge of the structure). Considering the variation

of N for cases B and C, there is a clear benefit to having a greater number of current loops in

that the total strain is greatly reduced and the rotation is more similar to that of a rigid body.

Overall the results show that current loops are capable of smoothly rotating flexible struc-

tures, though for a given areal mass density there will be a minimum level of structural rigidity

required to prevent excessive stretching of the structure. For a 100 g/m2 structure results

suggest a beamlike bending stiffness of approximately 104 N m 2 is sufficient. Although the

current loops failed to rotate more flexible structures in this case, it is important to note that

more flexible structures may have a lower mass than that considered here, and thus the torque

applied in these simulations may be greater than would be required for their attitude control,

though our analysis is restricted to 100 g/m2 here. In all cases, having a greater number of

current loops which distribute the Lorentz forces more evenly across the structure was found

to result in lower structural deformation.
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5.5 Attitude Control Simulation of a Conductive

Structure

Having found that embedded current loops are capable of rotating a flexible spacecraft, this

section now demonstrates the attitude control of a large space structure using current loops,

in the presence of gravity gradient torques and a representative magnetic field model. A 250

m square planar structure is again considered, with multiple embedded current loops allowing

three axes of controllable magnetic dipole moment. Current loop geometries B and C are

considered, such that the structure is composed of a square lattice containing loop geometry B

and two perpendicular cases of geometry C overlapping in the same structure. The spacecraft is

placed in an 800 km altitude, circular polar orbit. An areal mass density of 100 g/m2 and beam-

like bending stiffness of EI = 104 N m 2 is selected, in keeping with the previous section where

it was determined such a structure may be successfully rotated by embedded current loops with

relatively little structural deformation. Gravitational forces are now added to Eq. 5.27, which

are calculated for each point-mass particle of the model (using F grav
i = (µmi/|Ri|2)R̂i, where

Ri is the position vector of particle i in an Earth centred inertial frame). As the gravitational

force on each particle is calculated individually using that particle’s position, variations across

the structure naturally lead to gravity-gradient torques in the simulation. The structure is

placed onto the desired orbit by giving every particle an initial velocity in the z-direction equal

to the orbital velocity vo =
√
µ/Ro. The magnetic field is now calculated at each timestep

of the simulation by determining the position of the structure’s centre of mass in an Earth-

centred inertial frame and finding the value of the World Magnetic Model (WMM) at that

position [169]. It is assumed that there is no variation of the field across the structure to avoid

evaluating the WMM multiple times and save computation time. In all other respects the

simulation and model are the same as the previous section.

A proportional-derivative (PD) type quaternion error feedback control law is again im-

plemented, which is commonly used for magnetic attitude control [113], and was previously

considered in Chapter 3. The controller generates reference control torques according to:

Tref = −kpqerr − kωω (5.33)

where qerr is the vector part of a quaternion representing the rotation between the current

attitude and the desired attitude, ω is the body rate vector, and kp and kω are the control

gains. Once a reference torque is found, the magnetic dipole moment necessary to generate this

torque is then given by:

md =
B × Tref

|B| (5.34)
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Figure 5.14: Structural displacement at point of maximum strain energy (t = 9339 s)

from which the loop currents are determined, according to:

I =
( md

mmax

)
◦ Imax

IL = sign(IL)I
max
L if IL > Imax

L

(5.35)

where Imax is the vector of maximum allowable currents in the loops calculated from Eq. 5.24,

and mmax is the magnitude of the magnetic dipole moment of each loop at maximum current

(which is the same value for all loops), and ◦ denotes elementwise multiplication of the vectors.

The current vector I has components IL, with L = x, y, z corresponding to current in the xyz

direction dipole loops respectively. The second line of Eq. 5.35 ensures that the current in each

loop does not exceed the maximum allowable value. The control gains are selected following a

trial-and-error approach, using a rigid-body simulation (which is faster to evaluate compared

to the spring-mass model) with an equivalent inertia tensor to the spring-mass model. The

structure is initially lying in the xy plane, and the desired rotation is a 90◦ slew manoeuvre

around the y-axis. Simulation data and model parameters are summarised in Table. 5.3, using

the same data as the length-scaling analysis of Sec. 5.3.
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Figure 5.15: Attitude control simulation results

5.5.1 Results of Simulation

Simulation results are shown in Fig. 5.15. The simulation was performed for 10000 s, which is

approximately 1.5 orbits. The structure is seen to smoothly rotate, reaching the target attitude

in 3000 s. As the structure orbits, it is then periodically disturbed by the gravity gradient

torque, which results in attitude errors of up to 18◦ (at 6500 s), which are then corrected by the
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controller. The torque profile shows that the actuation torque (blue) is mostly able to negate

the gravity gradient torque (red), although at 5000 s there is a point where the controller is

saturated, which leads to the large attitude error a short time later. The plots of strain energy

and modal amplitudes (found by expressing the structure displacements as a superposition of

the mode shapes in the standard way [176]) shows that the structural deformation is fairly small

while the structure rotates, though there is some growing vibration of primarily the first and

third mode shape towards the end of the simulation. Figure 5.14 shows a plot of the structure

at 9339 s, the point of maximum strain energy in the system, showing that the structure is

visibly deformed, though it is unlikely a displacement of this amplitude would cause failure

due to buckling. While there are some growing vibrations towards the end of the simulation,

these are to be expected due to the time-varying actuator and gravity forces. With some form

of active or passive vibration control a damping ratio of closer to 10% of critical damping

is expected to be a reasonable value for structures of this type [179], which would likely be

sufficient to suppress these excitations on a longer timescale. We also note that although there

is some control saturation, this could be avoided by increasing the wire mass. The current

loops here were sized to produce a maximum torque equal to the maximum possible gravity

gradient, but this maximum can only be achieved when the loop is oriented perpendicular to

the magnetic field. Therefore, it is likely necessary that in practice the current loops should be

sized to produce a maximum torque slightly greater than the maximum gravity gradient torque

to avoid the control saturation which occurred in this simulation.

5.6 Chapter Summary

This chapter has investigated the attitude control of large space structures through the use of

embedded current loops. First, the operating principle of the concept was discussed, and a

variety of current loops geometries presented. A preliminary feasibility study was performed,

considering the rigid-body dynamics of conductive structures, estimated values for spacecraft

mass and loop current, and a simplified orbital reflector mission scenario for representative

pointing requirements. This preliminary analysis was followed by more detailed consideration

of the structures required mass and power. Results of a length-scaling analysis and a simple

thermal model show that embedded current loops should be considered as a viable form of

attitude control for large space structures, particularly for lightweight, planar structures which

are most likely to be realised by on-orbit manufacturing techniques in the coming years. Simu-

lations were then performed of a flexible structure with embedded current loops, investigating

the behaviour of different path geometries for structures across a range of structural flexibilities

and areal mass densities. Finally, an attitude control simulation was performed of a flexible

structure with embedded conductive pathways, in the presence of gravity gradient torques and

a time-varying magnetic field.



Chapter 6

Attitude and Shape Control of

OrigamiSats

OrigamiSats are a new design paradigm in solar sailing, in which origami based designs

are used to create reconfigurable, multifunctional membrane spacecraft. This chapter

proposes and investigates a strategy for the attitude and shape control of OrigamiSats, in

which the force due to SRP is used to enact folding and shape control of the origami spacecraft

structure. This work was performed as part of a collaborative research project with the Uni-

versity of Liverpool, Oxford Space Systems, and JAXA, results of which have been published

in Refs. [139] and [144] included in the list of publications in the thesis introduction. Research

at the University of Liverpool investigated OrigamiSat manufacturing, considering the possi-

bility of 3D-printing a rigid frame directly onto thin reflective films to produce the facets and

foldable edges of the spacecraft. Various candidate materials and other considerations relating

to the 3D-printing process were investigated, and a prototype of an OrigamiSat was produced

in which shape memory polymer material was used to enact folding of the structure when heat

was applied to the hinges. Complimentary to these practical experiments, the original work

presented in this thesis chapter is concerned with numerical analysis and mathematical mod-

elling of OrigamiSats, and an investigation into the potential of using SRP to enact OrigamiSat

reconfiguration by controlling the reflectivity of each facet, through the use of Reflectivity

Control Devices (RCDs). The research questions for this chapter are as follows:

1. Can the force due to SRP be used to reconfigure an OrigamiSat through the use of variable

reflectivity?

2. At what length-scales or areal mass densities could the control strategy be considered

feasible?

3. Can shape reconfiguration with variable reflectivity be controlled through the use of a

closed-loop feedback control law, and can this be further extended to include attitude

control?

140
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These questions are investigated first by considering analytical solutions for the folding

times of a simplified model, and then through the use of numerical simulations which model

the dynamics of multibody OrigamiSat systems under the effect of SRP. As the research was

not focussed on a specific OrigamiSat design/folding pattern, a further goal was to develop a

simulation framework in which the origami design could be easily modified, in order to consider

a variety of folding patterns.

The control strategy investigated in this chapter is quite a different form of actuation to the

magnetic control strategies considered in previous chapters. However, there are a number of

characteristics of the control problem and of the type of spacecraft being considered which all

of the strategies proposed in this thesis have in common. Firstly, the control of an OrigamiSat

with variable reflectivity is another form of distributed actuation, in that the actuators (RCD

devices) are placed evenly across the spacecraft structure, distributing the control forces. Sec-

ondly, the control problem is underactuated, due to the constrained direction of the force due

to SRP, a problem which was also encountered during the investigation of magnetic control.

OrigamiSats, as a type of solar sail, will also have a similar areal mass density and length scale

(i.e. ultra-light membrane spacecraft) as the structures considered in the previous chapters.

Finally, it is noted that OrigamiSats are also a potential type of spacecraft for which on-orbit

manufacturing could be an enabling technology. As noted, collaborators at the University

of Liverpool have investigated the 3D-printing of OrigamiSat structures directly onto thin-

films [139], a manufacturing process which could potentially be performed in-orbit to produce

OrigamiSats at a greater length scale and lower mass than would otherwise be possible. While

the content of this chapter is concerned with OrigamiSat control and dynamics, it is noted that

the analysis is performed in the context of a spacecraft architecture which may be produced

using on-orbit 3D-printing. This is therefore a further commonality between OrigamiSats and

the other spacecraft architectures considered thus far, in accordance with the stated aims of

the thesis.

In this chapter, mathematical models of OrigamiSats are developed and used to demon-

strate that folding can be triggered by changing the local optical properties of the membrane.

First, in Sec. 6.1 a simplified, planar model of a single facet folding is used to derive some

approximate scaling laws. In Sec. 6.2, a 2D model of linked rigid facets is used to demon-

strate the principle of SRP triggered shape reconfiguration. Section 6.3 then describes a 3D

multibody dynamics formulation, which is used to derive the equations of motion for arbitrary

OrigamiSat fold patterns. A ray-tracing module is described, which has been included in the

model to consider the effects of inter-facet reflections or shadowing. Simulations are performed

of different OrigamiSat designs, investigating the system dynamics and an initial attempt is

made at implementing shape control of a constrained OrigamiSat. Section 6.4 then discusses

a potential control strategy in which a closed-loop feedback controller is developed which com-

bines both shape and attitude control for a Miura-fold OrigamiSat. Results of simulation for

some example manoeuvres are presented and discussed, demonstrating the proposed strategy.
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A summary of the chapter is then given in Sec. 6.5.

6.1 Folding Time of a Rigid Reflective OrigamiSat

Facet

Here, the feasibility of using SRP to actuate the folding of high area-to-mass ratio, rigid facets

is demonstrated using a simplified planar model of a rigid panel with a fixed edge constraint.

This rigid panel represents a single facet of an OrigamiSat. The bending resistance from the

hinge material of an OrigamiSat is estimated by assuming that the panel can be treated as a

centre-loaded cantilever beam [180], and scaling laws for the hinge resistance torque and SRP

force are developed.

Figure 6.1 illustrates a rigid, reflective, square facet with a fixed support at one edge and

exposed to incoming radiation. The facet has sidelength l, and the unit vectors n an t define

the surface normal and transverse vectors respectively. The transverse direction is defined to

be the vector perpendicular to n and lying within the plane spanned by n and ui, which is the

direction of the incident radiation. Considering only specular reflection and absorption of the

y
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Figure 6.1: Reflective origami facet with fixed edge constraint.
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incident radiation, for a Lambertian surface the force acting on the facet is given by:

FSRP = PA(1 + ρ) cos2 αn+ PA(1− ρ) cosα sinαt (6.1)

where ρ, the reflectivity, is the fraction of the incident radiation that is reflected, P = 4.563×
10−6 N m−2 is the SRP constant 1 AU from the Sun, and A = l2 is the facet area [4].

The surface is further assumed to be perfectly reflective, in which case ρ = 1 and Eq. 6.1

reduces to FSRP = 2PA cos2 αn. An expression is now derived for the time required for the

facet to complete a fold through π/2 radians. If the facet has no bending resistance, and so is

free to rotate around the fixed edge, the angular acceleration of the facet around the y-axis is

given by:

α̈ =
τ

Iy
=

3P cos2 α

σl
(6.2)

where τ = Pl3 cos2 α is the magnitude of the torque produced by the SRP force (FSRP), acting

through the centre of the facet, and Iy =
1
3
σl4 is the mass moment of inertia of the facet around

the y-axis, expressed in terms of the areal mass density σ. Equation 6.2 is then linearised in

the range α = [0, π/2] by making the approximation cos2 α ≈ (1 − 2
π
α). This approximation

replaces cos2 α with a linear function that varies from 1 to 0 in the range α = [0, π/2], as

shown in Fig. 6.2, i.e. it is assumed that the force due to SRP is proportional to the angle of

incidence. This approximation is sufficient for the purposes of the analysis here, where the aim

is to find order of magnitude estimates for the time taken to fold an OrigamiSat facet. Of note

is that an equivalent problem to that studied here is solved without this linearisation in Ref.

[181], where the authors determine the oscillation period of a triangular solar sail. Though

the approach taken in Ref. [181] does not require the linear approximation of cos2 adopted

here, the resultant expression does include an integral expression which must be determined

numerically in general. While the approximation adopted here may result in a less accurate

expression, as noted it is considered sufficient for the discussion here and furthermore results

in more straightforward expressions for α(t), which provide clarity of discussion. Following

the aforementioned linearisation, an approximate solution for α(t) can be derived when setting

α̇(0) = α(0) = 0:

α(t) =
π

2

[
1− cos

(√
6P

πσl
t

)]
(6.3)

The time taken for the facet to complete a rotation of π/2 rad is found by rearranging Eq.

6.3 for t and integrating between α = 0 and π/2, which gives:

tπ/2 =
π

2

√
πσl

6P
(6.4)

Equation 6.4 is illustrated in Fig. 6.3, for areal mass densities ranging from 10 g/m2, that of

near term solar sails, to two orders of magnitude higher. A range of areal mass densities are
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Figure 6.2: Dependence of folding time on length scale and areal mass density.

σ=1000 g/m2

σ=100 g/m2

σ=10 g/m2

0 20 40 60 80 100

50

100

500

1000

5000

l (m)

t π
/2
(s
)

Time to fold π/2 rad

Figure 6.3: Dependence of folding time on length scale and areal mass density.
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considered to take into account the fact that the areal mass density of OrigamiSats will likely

be greater than that of a single (conventional) solar sail of equivalent total area. This is thought

likely for two reasons, the first being that this analysis assumes a rigid facet, and the structural

mass required to guarantee sufficient rigidity may increase the overall areal mass density. The

second reason is that each OrigamiSat will require its own subsystems (communications, power

etc), which will also contribute to an increase in mass (compared to a single, larger solar sail

with a single bus). While near term solar sails are expected to have an areal mass-density on

the order of 10 g/m2, a more probable estimate for an OrigamiSat swarm is thought to be on

the order of 100 g/m2. This estimate is made by considering the typical areal mass density of

Cubesat solar sail designs [182], and by supposing that a single OrigamiSat is likely to resemble

a Cubesat in terms of the sail length scale and mass of the central spacecraft bus. As shown in

Fig. 6.3, for areal mass densities of this order of magnitude the time required to fold the facet

remains on minute time-scales for length-scales up to 100 m. This suggests that rapid, active

shape re-configuration of OrigamiSats could be feasible using SRP.

6.1.0.1 Bending Resistance

In the previous section, a formulation was adopted where the rigid facet was free to rotate

around the fixed edge in Fig. 6.1. Now, a more realistic model is introduced where the

resistance to the facet’s rotation due to the hinge material is taken into account. The hinge

is only required to constrain the OrigamiSat edges together, allowing relative rotation, and so

one solution would be to use the sail material itself as a flexure hinge. The hinge stress due to

the inertial forces of the rotating facets would need to be considered in the sail design process,

but at this stage it is assumed that the hinge can be thin enough that a flexure hinge of sail

material would be the solution offering the lowest bending resistance. In other words, it is

assumed that the resistance of the hinge can be modelled as a linear torsion spring, where the

resistance to rotation comes from the bending stiffness of the hinge material, rather than the

resistance coming from the friction in a hinge or bearing. The rotational bending stiffness is

defined [180] by:

k =
EIyA
l

=
Ed3w

12L
(6.5)

where E is the Young’s modulus, IyA the second moment of area of the hinge cross-section,

and w, d and l the width, thickness and length of the hinge respectively, as illustrated in Fig.

6.4. It is assumed that the hinge material is thin enough that the curvature can be ignored,

i.e. that the deflection discontinuously increases from 0 to ϕ at the hinge root, where ϕ is

the hinge angle. This assumption was also made by [183] when modelling creases in a 7.5µm

solar sail film and found to be accurate through non-linear finite element analysis, and through

comparison with experiment. With this assumption, the bending resistance of the square facet

illustrated in Fig. 6.1a is given by:

k =
Ed3

12
(6.6)
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Figure 6.4: Flexure hinge geometry

which is found by taking Eq. 6.5 and setting w = L = l. The bending resistance does not

depend on l because although the length of the fold root, and thus second moment of area

increases proportional to l, the lever arm of the applied force also increases at the same rate.

An expression is now derived for the time taken for a square facet subjected to SRP and with

bending resistance to fold π/2 radians. With bending resistance, Eq. 6.2 becomes:

α̈ =
Pl3 cos2 α− kα

1
3
σl4

(6.7)

Again approximating cos2 α ≈ (1− 2
π
α), a solution for α(t) is:

α(t) = πP l3

1− cos

√6Pl3 + 1
4
Eπd3

πσl4
t

 (6.8)

and the time taken to reach a fold angle of π/2 rad is now given by:

tπ/2 =

√
πl4σ

6l3P + 1
4
Eπd3

cos−1

[
− πEd3

24l3P

]
(6.9)

Equation 6.9 only has a solution if:

l > d

(
πE

24P

)1
3

(6.10)

If the inequality in Eq. 6.10 is not satisfied, physically this means that the facet does not

complete a rotation of π/2 radians, as the bending stiffness is too large compared to the SRP

torque. If l is equal to the right hand side of the inequality then the facet just reaches π/2

radians, but will oscillate between α = 0 and π/2. For larger l, the facet will exceed this angle.
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Figure 6.5: Change in facet folding time with length-scale, considering the bending stiffness
of a 7.5 µm thick flexure hinge.

Equation 6.10 then gives the minimum facet length scale required to fold a facet using SRP

for a given flexure hinge thickness. Using parameters of the IKAROS base membrane as an

example [183], d = 7.5 µm and E = 3.2 GPa, Eq. 6.9 is shown in Fig. 6.5, along with the zero

bending resistance case. For l < 0.34 m, there is no solution, while for l > 0.34 m the curve

rapidly approaches the no bending resistance case, and the hinge resistance can effectively be

ignored.

This analysis shows that, for a simplified, rigid facet model, it should be possible to rapidly

fold an OrigamiSat using SRP. When the effect of the hinge bending resistance was considered,

assuming the hinge is a thin flexure hinge of comparable thickness to the sail membrane itself,

there is a minimum length scale required for the facet to be able to overcome the bending

resistance and fold, but for length scales greater than this the bending resistance can essentially

be ignored.

6.2 Planar Model of Linked, Reflective Facets

Having considered a simplified, single facet model in the previous section, the analysis is now

extended to investigate the multibody dynamics of an OrigamiSat with multiple facets. To this



CHAPTER 6. ATTITUDE AND SHAPE CONTROL OF ORIGAMISATS 148

end, a planar model of linked rigid bars has been developed, and is presented here. The aim

of this work is to first verify results relating to folding-times obtained via the simplified single

facet model of the previous section, and to assess the feasibility of using SRP to trigger the

OrigamiSat folding when there are multiple rigid facets rotating relative to one another, and

when the entire system is in free-space with no fixed supports.

6.2.0.1 Model Description

Here, the equations of motion for a multibody system consisting of N linked, rigid bars are

presented. The generalised coordinates of the system are the x and y coordinates of each bar’s

centre-of-mass, and the angle θ each bar makes to the x-axis. These coordinates are contained in

the state vector q = [x1, y1, θ1, ..., xN , yN , θN ]. The system dynamics are found using a Lagrange

multipliers formulation, as described by, for example, Ref. [184]. The constraints are satisfied

by first solving:

JM−1JTλ = −J̇q̇ − JM−1Qa (6.11)

for a vector of Lagrange multipliers λ, and then finding the constraint forces with:

Qc = JTλ (6.12)

where J is the Jacobian, defined by J = ∂C/∂q for the constraint equation vector C. Qa

is the vector of applied forces. M is the mass matrix, which is diagonal with elements

[m1,m1, I1, ...mN ,mN , IN ], where mi, Ii = 1
12
miL

2
i are the mass and mass moment of iner-

x

y

θi

θi+1

θi+2

Figure 6.6: Planar multibody system of rigid bars linked by revolute joints.
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tia of the ith bar, respectively, for bar length Li. The constraint equations are given by first

finding the position vector of the end of each bar, and enforcing that the ends of connected

bars are coincident, such that:

C =



x1 +
1
2
L1 cos θ1 − x2 +

1
2
L2 cos θ2

y1 +
1
2
L1 sin θ1 − y2 +

1
2
L2 sin θ2

...

xN−1 +
1
2
LN−1 cos θN−1 − xN + 1

2
LN cos θN

yN−1 +
1
2
LN−1 sin θN−1 − xN + 1

2
LN sin θN


= 0 (6.13)

The equations of motion are then given by:

q̈ = M(Qa +Qc) (6.14)

which may be numerically integrated to evaluate the time-evolution of the system. The applied

force vector Qa is the force due to SRP on each bar, and is found by evaluating Eq. 6.1 for each

bar, for a given radiation incidence direction and the reflectivity ρi of each facet, and again

assuming square facets such that Ai = L2
i . The bending stiffness of the edges is not considered

at this stage, since the previous analysis found this force to be negligible compared to the force

due to SRP for large enough facets.

6.2.0.2 Results of Simulation

The planar multibody model is now used to investigate the dynamics of linked rigid, reflective

facets in free space, subject to SRP. Simulations are performed using custom code developed

in MATLAB, in which the equations of motion are implemented and numerically integrated.

Numerical integration is performed with a Runge-Kutta 4th order integration scheme, and a

simulation timestep of 1 s. The bar elements are given a length of 1 m, and the mass is

calculated assuming an areal mass density of 10 g/m2. The incident radiation is directed along

the positive y-axis. In the first simulation, two linked bars with perfect reflectivity ρ = 1 are

considered. If initially, θ1 = θ2 = 0 rad, there is no relative rotation of the bars, as the SRP

force is normal to both surfaces and thus in the same direction, so it is experienced by the

system as rigid body motion. A small initial relative angle is introduced, by setting θ1 = −0.01

rad and θ2 = 0.01 rad. This means that the SRP acts to fold the facets together as there is

a small difference in the direction of the force on each facet. The system is shown plotted at

three points in Fig. 6.7. Through simulation, it was found that the two facets fold together

in a time of 412 s. This is greater than the time suggested by Fig. 6.3 for facets of this size.

This is because there is no fixed support at the edge and each facet is free to accelerate in the

y-direction when the force is applied. However, once the rotation begins it rapidly accelerates,

as a greater portion of the SRP torque acts in opposing directions on the two facets, and the

majority of the fold is completed within approximately 50 s which is more in line with the
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Figure 6.7: Planar dynamics of two perfectly reflective, linked, rigid panels subject to SRP

expected folding times given in Fig. 6.3.

By controlling the surface reflectivity of each facet, through the use of RCDs for example,

folding can be induced without the need for an initial relative angular displacement, as was

required in the previous simulation. This is because, as a consequence of Eq. 6.1, a facet of

equal area with higher reflectivity will experience a greater force, and thus accelerate relative

to a less reflective facet, resulting in a rotation around the joint between them.

A simulation was performed of a three facet system, with reflectivities given by [1, 0, 1]

for facets one to three respectively, and all initial angles zero. These reflectivities represent

an idealised case, though in practice the difference in reflectivity that could be achieved with

RCDs will most likely be much smaller. Due to the difference in surface reflectivity between

the facets, a fold is induced. Three facets are used here such that the symmetry prevents the

Figure 6.8: Three panel system, plotted in the centre-of-mass frame at t = 40s for alternating
reflectivty patterns.
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Figure 6.9: Results of simulations of a planar multibody system, consisting of linked rigid
bars and subjected to SRP. Black represents a perfectly absorbing facet, while gray is perfectly
reflecting.

overall system rotating, and so only the outer facets fold in while the centre facet remains flat.

The facets are found to complete a fold of π/2 radians in 100 s. This is twice the value expected

in from the fixed edge analysis in Fig. 6.3 for l = 1 m, because unlike the fixed edge case the

centre facet here is also accelerating in the positive y-direction. Since the force on the perfectly

absorbing centre facet is exactly half that on the outer facets (initially), in the centre-of-mass

frame the angular acceleration is half that which would be found for the fixed edge case. The

system is shown in Fig. 6.8 at t = 40 s, showing the outer facets have begun to fold inwards,

away from the incident radiation. In Fig. 6.8, grey facets are perfectly reflective while black

facets are perfectly absorbing.

By inverting the surface reflectivity, the fold direction can be reversed, as shown in Fig. 6.8.

The facets again fold inwards in the exact same time as the previous case but this time in the

opposite direction. Note that in the previous simulations, the facets are free to pass through

each other, and do not shadow other facets from the incoming radiation. This causes the facet’s

rotation to slow as they approach an angle of π rad, as the SRP passes through the centre facet

and acts to decelerate them. The effects of self reflection and shadowing are considered in later

modelling.

A planar model of linked rigid facets has been used to demonstrate that SRP can be used



CHAPTER 6. ATTITUDE AND SHAPE CONTROL OF ORIGAMISATS 152

to fold rigid reflective facets in free space, although the time taken to fold the facets may be

higher than was suggested by the previous analysis. This is due to the rotation axis of the fold

also undergoing transverse acceleration, whereas the previous analysis was for a facet with a

fixed edge. Considering the relative motion of the facet edges, it was found that folding times

were a minimum of a factor of two times greater than for the fixed edge case. It was also found

that controlling the local surface reflectivity of the facets could be used to induce folding of

facets, both towards and away from the incident radiation. However, symmetric configurations

were used here to avoid rotation of the overall system relative to the radiation direction.

For more complicated geometries, the planar model is not a suitable model of an OrigamiSat,

because it only represents a chain of facets each connected to their adjacent facets, whereas a

3D origami fold pattern would have multiple facets mutually connected. In the planar model,

each new facet added to the system introduces a new degree of freedom, as that facet is free to

rotate. For 3D origami patterns the number of degrees of freedom are reduced, since multiple

facets are interconnected and so restrict the overall motion. A system with a greater number of

facets has been simulated with results of simulation shown in Fig. 6.9, which shows the system

at selected time steps. The outer facets are seen to rotate inwards first, and then the inner

facets consecutively fold inwards while the centre facet remains flat, due to the symmetry of

the system. This simulation is included to demonstrate that a linked facet system, modelled by

the planar model here, behaves like a long flexible chain for large numbers of facets. Although

the parabolic shape achieved in Fig. 6.9 could conceivably be used as a reflector or receiver,

this would be formed of a long chain of facets and so may have limited utility. This concept

is similar to the work of Ref. [100], which shows that SRP can be used to produce a parabola

by modulating the reflectivity across a slack membrane, though this strategy required a rigid

supporting hoop to achieve the desired shape. It is unclear whether the shape of a facet chain

without this type of supporting rigid structure could be effectively controlled solely through

the use of SRM, though this was not investigated further here.

6.3 3D Multibody Dynamics Model of Rigid Origami

Having examined the planar dynamics of linked rigid facets, a model is now presented for

simulating the spatial dynamics of 3D rigid origami patterns, subjected to SRP. The aim of

this section is to use this model to demonstrate that 3D origami patterns can be folded using

SRP, when the reduced degrees of freedom of 3D fold patterns and the limited direction of

the applied force due to SRP are taken into account. A general expression for the multibody

dynamics of rigid origami patterns is presented, and a ray-tracing module for the calculation

of SRP force that has been developed for this work is included and verified. The model is then

used to demonstrate through simulation that SRM can be used to reconfigure a Miura fold

[128] OrigamiSat, and then to demonstrate the active shape control of a pyramidal OrigamiSat

design.
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6.3.0.1 Model Description

In this section, the procedure for generating the equations of motion of a multibody system con-

sisting of linked, flat, rigid facets is presented. The formulation allows the multibody equations

of motion to be generated for different origami designs, which are specified as collection of poly-

gons. The dynamics of the multibody system are described using the well-known “augmented

formulation”, described by Ref. [185]:[
M JT

J 0

][
q̈

λ

]
=

[
Qa +Qv

Qc

]
(6.15)

where M is the system mass matrix, q the state vector of body coordinates and J = ∂C/∂q is

again the constraint Jacobian, for the vector of system constraint equations C. λ is a vector

of Lagrange multipliers, used to solve for the constraint forces Qc, while Qa and Qv are the

applied and inertial force vectors respectively.

The OrigamiSat is modelled as a system of flat, rigid facets, constrained by spherical joints

at overlapping vertices of the facets. The state vector q contains the Cartesian coordinates of

each facet’s centre-of-mass, ri, and the three ZY ′X ′′ Euler angles, ψ, θ, ϕ describe its orientation

relative to the inertial xyz frame. Figure 6.10 shows the reference frames, Euler angles and

sequence of rotations for the ith facet. The state vector q is then ordered such that q =

[x1, y1, z1, ψ1, θ1, ϕ1, ..., xN , yN , zN , ψN , θN , ϕN ]
T , where N is the total number of facets. The

mass matrix M is composed diagonally by [m1I3×3, I1, ...,mNI3×3, IN ] where I3×3 is the three

by three identity matrix, and mi and Ii are the mass and inertia tensor (in the body frame) of

the ith facet respectively.

The origami fold pattern is defined as a set of N polygons, which are themselves a set of ni

vertex coordinates, such that the vector of all vertex positions is V = [v11, ...,v1n1 , ...,vN1, ...,vNnN
]T .

An example fold pattern is shown in Fig. 6.11 for a nine (a) and four (b) facet structure, showing

the fold lines, numbered polygons and vertices, and a graph illustrating the vertex connectivity.

The constraint equations are found by first generating an adjacency matrix A, which is

a square Nv × Nv matrix, where Nv is the total number of vertices, given by Nv =
∑N

i=1 ni.

The adjacency matrix elements are equal to one if the vertices overlap, and zero otherwise, i.e.

Aij = 1 if Vi = Vj, 0 otherwise. The constraint equations are given by:

ACV = C = 0 (6.16)

where AC is the constraint adjacency matrix, defined by:

AC,ij =


∑NV

j′=j Aij′ if Aij′ = 0 ∀ j′ < j and Aij = 1

−1 if Aij′ ̸= 0 ∀ j′ < j and Aij = 1

0 otherwise

(6.17)
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Figure 6.10: Sequence of rotations between the inertial frame xyz and the ith facet body
frame x1iy1iz1i.

with all zero rows removed, resulting in an Nv × Nc matrix, where Nc is the number of con-

straints. For example, if vertices i, j and k are coincident, Eq. 6.16 leads to the constraint

equation 2vi − vj − vk = 0 appearing in the constraint vector C. This procedure allows the

multibody dynamics to be formulated for arbitrary fold patterns, where the pattern is defined

as a collection of polygons. For an initial state vector q and applied force vector Qa, the differ-

ential algebraic system of equations in Eq. 6.15 is solved for the Lagrange multipliers λ, and

the accelerations q̈, which are then numerically integrated to simulate the system dynamics.

Although the notation of this section is somewhat cumbersome this approach has proved con-

venient for implementing within a mathematical programming environment, as the functions

required to generate the required expressions are included in standard libraries and the origami

design can be simply input as a list of points. A flow chart of the software implementation of the

model is given in Fig. 6.12, showing the separation between model generation (Mathematica)

and the numerical integration and panel force calculations (MATLAB). The controller included

in Figure 6.12 will be presented in Sec. 6.4.

6.3.0.2 Ray-Tracing for SRP Calculation

To take into account the effects of self-shadowing and reflection of light between facets, ray-

tracing is used to calculate the path of the incident and reflected radiation, and to then evaluate

the resultant force due to SRP on each facet. Ray-tracing is commonly used in computer

graphics for accurate rendering of 3D models [186]. In spaceflight engineering, ray-tracing is
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used for precise orbit determination when the SRP force needs to be known within a tolerance

such that the variation in the optical properties of the spacecraft’s surface lead to unacceptable

errors when estimating the orbital position [187]. For an origami spacecraft, it is possible that

in a certain configuration the entire incident radiation on a perfectly reflective facet could be

reflected onto another facet, effectively doubling the force due to SRP on that second facet and

greatly affecting the system dynamics. Ray-tracing gives a computationally efficient method of

calculating these inter-facet reflections and shadowing. A description of the module is given in

this section.

The ray-tracing procedure begins by defining an NR×NR grid of points, evenly distributed

within a square region that has a surface normal aligned with the incident radiation direction,

and directed at the centre-of-mass of the multibody system. The square region has a spatial

dimension DR large enough to completely contain the projected area of the OrigamiSat within

Figure 6.11: Polygon and vertex numbering scheme, and a graph showing the vertex connec-
tivity for a Miura fold pattern (a) and a pyramidal sail pattern (b)
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Figure 6.12: Flow chart of the software implementation of the OrigamiSat multibody dynam-
ics equation generation and numerical simulation.
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the DR ×DR square. Rays are then cast from these points and the resultant force is found by

determining whether each ray intercepts a sail facet. These collision calculations are performed

using a MATLAB wrapper [188] for the OPCODE collision detection library [189], which makes

use of bounding volume hierarchies. If a ray intercepts a sail facet, the ray is then specularly

reflected from the facet’s surface, and the collision detection repeated to determine whether

the ray intercepts a further facet. This process is repeated until no further reflections are

found. Throughout the ray-tracing calculation, the location of rays which intercept each facet

are stored, and the resultant force and torque on each facet is found by summation of the

contribution of every intercepted ray, according to Eq. 6.18, which gives the total force on facet

i due to SRP:

F SRP
i = P

∑
j

sign(uj · n)
(
DR

NR

)2
[∏

c

ρjc

]
((1 + ρi) cosαn+ (1− ρi) sinαt) (6.18)

Equation 6.18 is derived by evaluating Eq. 6.1 for every incident ray on facet i. The facet area

A in Eq. 6.1 is replaced with D2
R/N

2
R

∏
c ρ

p
c/ cosα, where α is the angle between the incident

ray and the facet normal, which ensures that the total intensity of light from all rays sums to

the total flux through a DR × DR square. The term
∏

c ρ
j
c is the product of the reflectivity

of all facets previously intercepted by ray j, which takes into account the reduced intensity of

a reflected ray due to imperfect surface reflectivity. The torque is also found by summation

over each ray’s contribution, and this may be nonzero now as the centre-of-pressure may not

coincide with the centre-of-mass for a partially illuminated facet. The torque is given by:

τ SRP
i =

∑
j

rij × fSRP
j (6.19)

where rij is the position vector of the incidence point of ray j from the centre-of-mass of facet

i, and fSRP
j is the expression within the summation of Eq. 6.18. The ray-tracing procedure is

illustrated in Fig. 6.13, showing the ray paths for a three facet system. The light blue facets

are perfectly reflecting, while the dark blue facet is perfectly absorbing. Figure 6.13 shows

the incident rays being reflected from the outer facets then absorbed by the centre facet, thus

increasing the force on the centre facet in this configuration.

The ray-tracing module was verified by comparing the force applied to a simple structure

consisting of three square facets, as illustrated in Fig. 6.13. Simulations were performed with

the facets facing the incident radiation, and facet reflectivities given by [1,0,1], i.e. a 3D

implementation of the planar model shown in Fig. 6.8. The simulation was performed until the

two outer facets folded to the vertical position, and the total impulse experienced by all facets

throughout the simulation was calculated by summation of the contribution of each incident

ray on each timestep. During the simulation, the difference between the force calculated using

the ray-tracing module, and the exact value given by evaluation of Eq. 6.1 is calculated on

each time step. The summation of this force difference over the entire simulation then gives the



CHAPTER 6. ATTITUDE AND SHAPE CONTROL OF ORIGAMISATS 158

ray-tracing error impulse, ϵR. This is divided by the total impulse for a simulation in which the

exact SRP force of Eq. 6.1 is used, ϵA, to give a relative value for the overall force error when

using ray-tracing. This process was repeated with different resolutions used in the ray-tracer,

with results shown in Fig. 6.14. The results show that the difference between the ray-tracing

and exact SRP impulse is less than 0.1% of the total exact impulse when more than 104 rays

are used in the simulation. Figure 6.14 also shows the computation time for a single timestep of

the simulation against the number of rays used, which increases linearly from a value of 0.01 s

for a number of rays greater than 104. Overall, ray-tracing using the opcode library for collision

detection is found to be an accurate and computationally fast method for calculating the SRP

force on origami spacecraft.

6.3.1 Simulations of Self-Reconfiguring OrigamiSats

The multibody dynamics formulation presented in the previous section is now used to demon-

strate through simulation that SRP and local SRM can be used to control the shape reconfig-

uration of rigid origami structures. In addition to demonstrating the basic principle of SRP

triggered shape reconfiguration, these simulations are used to illustrate the limitations of the

strategy and to highlight some considerations for the future development of control algorithms

for the active shape control of OrigamiSats.

Figure 6.13: Illustration of ray-tracing for an example three-facet OrigamiSat
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Figure 6.14: Force error and computation time of the ray-tracing module against the number
of rays.

6.3.1.1 Miura Fold Pattern

The first simulation is of a Miura fold pattern, consisting of a 4×4 grid of rhombic unit cells.

The Miura fold is well known to have only one degree of freedom in folding, making it partic-

ularly useful for deploying planar structures as the unfolding requires minimal actuation. The

OrigamiSat is 1× 1 m, with an areal mass density of 10 g/m2, again considering the areal mass

density of near-term solar sails. Reference to Fig. 6.3 suggests that at this length scale, the

time to complete a fold should be on the order of minutes. Additionally, Fig. 6.3 shows that

at this length scale the effect of bending resistance for a thin film hinge is insignificant and as

such is not considered in the following simulations. The simulation timestep was chosen to be

0.1 s, and the system given in Eq. 6.15 solved numerically in MATLAB using the ode45 solver,

where the applied forces Qa are calculated using the ray-tracing module and the evaluation of

Eq. 6.18 and 6.19. For simplicity, the structure is assumed to be at rest in free space with no

other external forces acting upon it. The structure is initially flat and lying in the xy plane,

and incident radiation is directed in the −z direction. To ensure the structure folds correctly,

the correct pattern of valley/mountain folds for the Miura pattern must be initiated. This is

achieved by applying a torque of ±1 × 10−8 N m to alternating facets, integrating the equa-

tions of motion for one timestep, and then setting the facet velocities and forces to zero before

beginning the simulation. This results in a slight angular displacement of the facets which

achieves the desired mountain/valley folds and allows the main simulation to proceed. Note

that in reality, the correct pattern of mountain and valley folds would be preserved by either the

plastic deformation of the creases in the hinge material, or by a physical mechanism. This “fold

initiation” is only a concern for the simulation here because the exactly-flat condition can lead

to numerical instability. First, the outer columns of facets are set to be perfectly reflective with



CHAPTER 6. ATTITUDE AND SHAPE CONTROL OF ORIGAMISATS 160

ρ = 1, while the middle two columns are perfectly absorbing with ρ = 0. Reflective/absorbing

facets are illustrated in all figures as light/dark blue respectively.

Figure 6.15: a) Reconfiguration of a Miura fold pattern using SRP. Light blue facets are
perfectly reflective and dark blue are perfectly absorbing. b) Reversing the folding direction by
reversing the reflectivity pattern. After 80 s, inter-facet reflections cause the sail to reopen.
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The simulation was run for a duration of 100 s and results are shown in Fig. 6.15a, which

shows the OrigamiSat drawn in the centre-of-mass frame at selected timesteps. The OrigamiSat

is seen to completely fold inwards in this time, due to the relatively larger force acting on the

outer, reflecting facets. This force acts in the correct direction to effectively fold the single-

degree-of-freedom Miura fold pattern. As in the planar simulations, it was thought that by

reversing the reflectivity pattern that the folding action could also be reversed. The simulation

was repeated, this time with the inner facets perfectly reflective, with results shown in Fig.

6.15b. The folding direction is indeed found to have reversed here. However, after t=80 s, the

folding ceases and the sail instead begins to open and return to the flat configuration. This is

due to the inter-facet reflections, as incident radiation is reflected from the central facets and is

then absorbed by the outer facets. This increases the force acting on the outer facets enough to

reopen the sail. It was found that the sail could still be folded completely if the reflectivity of

the central facets is set to zero after a time of approximately 30 s, as the remaining momentum

of the facets is enough to complete the fold and there are then no inter-facet reflections to

prevent the motion.

6.3.1.2 PD Shape Control of a Pyramidal OrigamiSat

If the reflectivity of each facet can be individually controlled using RCDs, it would be possible

to actively control the shape reconfiguration of an OrigamiSat. This is demonstrated here

through simulation of a pyramidal sail design, in which the facet reflectivities can be individually

controlled continuously in the interval ρ = [0, 1], again assuming some ideal form of RCD. In

attempting to perform this simulation, it was found that the OrigamiSat’s overall attitude was

unstable and it would begin to rotate relative to the incident radiation direction. For simplicity,

this instability was removed by constraining the x, y coordinates of the centre facet’s vertices,

such that this facet always faced the incoming radiation. This constraint was imposed here to

simplify the dynamics for this demonstration of shape control, but in practice control algorithms

will be required which combine shape and attitude control requirements.

A triangular design is selected, consisting of four triangular facets. The facet and vertex

numbering and connectivity, used to generate the equations of motion, are shown in Fig. 6.11.

The areal mass density is again selected as 10 g/m2, and the sidelength of each triangular facet

is set to 1 m, again assuming that this scale will give folding times on the order of minutes and

that the hinge bending resistance can be ignored. Shape control is achieved through the use

of a proportional derivative (PD) controller, where the variables being controlled are the hinge

angles of the outer facets, contained in the vector Φ = [ϕ1, ϕ3, ϕ4]. The hinge angles are defined

as ϕ = 0 for a facet lying in the xy plane, and positive when the facet folds downwards in the

−z direction. A PD control law is implemented to determine the required reflectivity values of

the outer facets (labelled 1,3 and 4), given by:

ρ1,3,4 = −kpΦe − kdΦ
′
e (6.20)
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where the values are constrained to the range [0,1]. kp and kd are the proportional and derivative

control gains respectively, and Φe = Φ − Φref is the vector of angle errors, given by the

difference between the current facet angles and the target angles. The derivative term Φ′
e is

estimated using a backwards difference formula, using the values at the previous timestep of

the simulation. The reflectivity of the centre facet, ρ2 is found by summation of the outer facet

reflectivities and subtraction from one, ρ2 = 1−∑i=1,3,4 ρi. This gives the required difference

in reflectivity for the facets to fold in either direction, as illustrated in Fig. 6.8 for the planar

case.
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Figure 6.16: Relative angle of outer facets during PD control simulation moving between the
three target configurations.

The simulation is run for a duration of 600 s, with the target angles set to -1 rad for the first

200 s, 1 rad for the next 200 s, and 0 for the final 200 s. The controller was tuned manually

, resulting in control gains of kp = 50 and kd = 1200. The control gains were selected by trial

and error, by first finding a proportional gain that gave a reasonable rise time, and then finding

a derivative gain that eliminated any overshoot. Results of the simulation are shown in Fig.

6.16, showing a plot of the angles of the outer facets, and in Fig. 6.17, which shows the system

plotted at 5 s intervals for the first 300 s of the simulation, showing the transition between the

first two target configurations. Figure 6.17 shows the sail configuration plotted sequentially for

the duration of the simulation, in order from left to right and top to bottom. The controller

successfully reconfigures the OrigamiSat between the two target shapes, before returning to the

flat position. As seen in Fig. 6.16, there is a slight discrepancy between the angle of facet 4

and the other outer facets, which is thought to be due to a rounding error in the numerical
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Figure 6.17: Pyramid OrigamiSat plotted at 5 s intervals for the first 300 s of PD control
simulation, plotted sequentially from left to right along the rows, showing the transition between
the first two target configurations. The reflectivity of each facet represented by shade of blue
interpolated for values between 0 and 1.

simulation. As the shape is triangular, the vertex coordinates cannot all be integers. This

slight difference in the facet coordinates is then carried through the simulation and the effect

amplified by the feedback controller, since each facet is controlled individually.
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Overall, the simulation has demonstrated that PD control of shape reconfiguration through

the use of local SRM is possible, but some limitations have been encountered. Firstly, it is again

noted that the orientation of the central facet was constrained to remain facing the direction of

the incident SRP. This constraint was imposed because it was found that otherwise the space-

craft began to tumble. This highlights the need for either an integrated attitude/shape control

algorithm, or for a separate attitude control system to maintain attitude stability while shape

reconfiguration is performed. A further note is that some knowledge of the shape reconfigu-

ration was assumed a priori when implementing the PD control equation. Specifically, it was

assumed that reflectivity patterns of ρ = [1, 0, 1, 1] and ρ = [0, 1, 0, 0] would result in folding

in the positive and negative directions respectively. While this was an obvious assumption for

this sail design, for more complex origami structures with coupled degrees-of-freedom in folding,

the relationship between facet reflectivity patterns and folding behaviour may be difficult to

predict. For more complicated origami designs, this relationship could potentially be deduced

through simulation by creating a lookup table of possible reflectivity patterns and observing the

resulting dynamics, or it may be possible to find analytic expressions for the resulting motion

of specific reflectivity patterns. A further level of complexity is introduced here by the fact

that the system will have different folding behaviour for a given reflectivity pattern depend-

ing on the direction of incoming radiation, i.e. the coupling of the attitude/reconfiguration

dynamics further complicates the development of potential control strategies. For this reason

it is assumed that an additional attitude control system may be desired for spacecraft of this

type, which is capable of maintaining a fixed orientation relative to the Sun vector while the

reflective facets are used to enact shape reconfiguration.

A further challenge encountered is that the extent of the shape reconfiguration that can be

achieved with this strategy is limited. There is an obvious limit in that, if the outer facets fold

over past the vertical position, they then occlude the centre facet and SRP can not be used to

return to a flat position. In practice, it was found through simulation that the achievable angle

was less than π/2 rad, with the controller struggling to not overshoot and lose control effective-

ness for target angles greater than approximately 1 rad, hence the target value selected for the

simulations here. This limit means that for some OrigamiSats, reversible shape reconfiguration

would require further actuation in addition to the RCDs. For example, SMPs or SMAs could

be used in the hinges of such a spaceraft to actuate the deployment, while SRM could then

be used for shape reconfiguration within the achievable angles during normal operation. Of

note however is that this limitation depends on the origami folding pattern, as for the Miura

pattern of the previous simulation reversible folding was achieved through the use of SRP alone.

The need for additional hinge actuation will depend upon the folding degrees-of-freedom of the

origami design, and also on whether inter-facet shadowing or reflections break the symmetry

of the folding process, as was observed for the Miura fold.
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6.4 Integrated Shape and Attitude Control for

OrigamiSats

In this section a control logic is proposed for integrating the attitude and shape control of an

OrigamiSat through the use of variable reflectivity facets. In principle the reflectivity of the

OrigamiSat facets could be controlled through the use of RCDs, a proven technology for solar

sails with their use for attitude control demonstrated on the IKAROS mission [5], as noted

previously. In the previous section, shape control through variable reflectivity was demon-

strated for a pyramidal OrigamiSat, with a PD control law implemented. As noted however,

the attitude dynamics were decoupled from the shape control strategy in this simulation by

constraining the central panel of the sail to always remain sun-pointing. Now, a control law

is sought which integrates attitude control with shape reconfiguration for an unconstrained

OrigamiSat in free space. A Miura-fold pattern is again selected as a test case for the control

design. This origami pattern represents a simplified case (in terms of the Origami kinematics),

as the system has only one degree of freedom in folding (in addition to the three degrees of

freedom in rotation). The Miura-fold is also a well known design, and has tesselation properties

so the system could potentially be scaled to a greater number of panels. The shape and attitude

of the Miura-fold OrigamiSat are still coupled however, and so even as a simplified case the sys-

tem is still challenging from a control perspective. Furthermore, since there is only one folding

degree-of-freedom, it was thought it would be easier to gain a qualitative understanding of the

nature of the attitude/shape coupling of the system. This can provide some deeper insight into

the controller performance which could in the future be applied to more complex OrigamiSat

designs.

In the thesis introduction (Sec. 1.3.3), it was noted that the control of multibody sys-

tems/spacecraft is well studied, with some examples given of different approaches taken for

a variety of spacecraft architectures. A key difference between these previously studied sys-

tems and the control strategy proposed in this chapter is that the RCD-controlled OrigamiSat

system is underactuated and non-conservative, as SRP introduces angular momentum to the

system. Therefore some previously proposed strategies for multibody spacecraft control are not

suitable for this problem. Due to the complexity of the system dynamics and underactuation,

it is unlikely that a straightforward solution for the general OrigamiSat SRP control problem

(i.e. a strategy which may be applied to any Origami folding pattern) is achievable, though

it is possible that some general results and guidance for controller design can be gained by

studying specific scenarios. Therefore, the aim of this section is to present an investigation

into OrigamiSat SRP controllability through the use of numerical simulations of a Miura-fold

OrigamiSat.

As noted, the system dynamics are coupled and the system is underactuated, as changing

the panel reflectivity has a limited effect on the change in direction or magnitude of the force

due to SRP. Nevertheless, it was found in Sec. 6.3.1 that the multibody dynamics of the
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system can be exploited to enact folding of the OrigamiSat, and that often the reflectivity

pattern required to perform the desired “folds” could be intuited by considering opposing

reflectivities for panels on either side of the required fold line. In the case of the Miura fold

pattern for example, it was found that folding/unfolding of the pattern could be enacted by

two opposite reflectivity patterns. While it is likely not always possible to simply guess the

required reflectivity patterns, or even likely that their always exists a reflectivity pattern to

perform the desired fold, for the relatively simple Miura pattern this approach is again adopted

to simplify the integration of shape and attitude control. A further complication and added

nonlinearity to the dynamics is the effects of interpanel shadowing or reflection, where the

panel forces can change discontinuously as the OrigamiSat changes shape and different panels

become illuminated. As this effect depends on both the (time-varying) OrigamiSat geometry

and attitude, it is non-trivial to determine when or if interpanel reflections become a dominant

contribution to the panel forces, and indeed these effects require the use of ray-tracing to

accurately calculate the force due to SRP on the spacecraft. Again however, for simple fold

patterns it is likely possible to intuitively deduce or predetermine which configurations result

in interpanel reflections and build this knowledge into the control design on a case-by-case

basis. For the Miura fold for example, it was found in Sec. 6.3.1 that the configuration shown

in Fig. 6.18 resulted in interpanel reflections which reversed the folding effect of the shown

reflectivity pattern (light blue implies ρ = 1, dark blue ρ = 0), causing the sail to reopen due

to the increase force on the outer panels. As noted previously, RCDs are a proven technology

for attitude control of solar sails. By varying the reflectivity of these devices mounted on a

sailcraft, the force due to SRP is modified on the device and thus useful torques can be produced

for attitude control purposes. In the case of OrigamiSats, it is assumed that the reflectivity

of each panel can be controlled individually, and varied between perfectly absorbing (ρ = 0)

and perfectly reflecting (ρ = 1), which represents an ideal scenario. In practice, many RCD

devices have two discrete states, which are switched when a voltage is applied to the material.

In practice some variation between these two reflectivities could be achieved by having a large

number of (discrete) RCD devices on each panel, and switching a specified portion of them at

a time. Previously, attitude control through the use of an array of variable reflectivity panels

has been demonstrated through simulation by Borggräfe et. al [101], though in this case the

authors assumed discrete reflectivity states (0 or 1 for each cell), and determined the required

reflectivity pattern by considering all possible reflectivity patterns and creating a lookup table

of the generated torques, then comparing these with the desired reference torque output by the

controller. While this strategy could also be employed for OrigamiSats, a limitation is that the

number of possible patterns increases exponentially with the number of panels, and furthermore

imposing discrete states on the panels would complicate the shape/attitude control integration

by not allowing the separate control signals to be superimposed, as described in the following

section.
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ΦM

Figure 6.18: Interpanel reflections reverse the folding effect of some reflectivity patterns for
a Miura OrigamiSat. Reference “Fold angle”, ΦM , highlighted.

6.4.1 Controller design

In this section, a closed-loop feedback controller for the shape and attitude of a Miura type

OrigamiSat is presented and analysed through numerical simulation. Shape reconfiguration

is controlled through a classical PID control law, with the output signal used to produce a

reflectivity pattern of panel reflectivity values for the OrigamiSat. Simultaneously, a quaternion

error feedback controller is used to generate a reference desired torque for attitude control,

and a further reflectivity pattern generated, calculated to produce a torque as near to the

reference as possible with the RCD panels. These two (shape and attitude) reflectivity patterns

are then superimposed, scaled, and applied to the OrigamiSat. While the control scheme is

relatively straightforward (in terms of the individual classical control laws used), some further

modifications are made to improve control performance and build in some knowledge of the

system dynamics and nonlinearities associated with the multibody dynamics and interpanel

reflections.

A block diagram of the controller is shown in Fig. 6.19, showing the separate attitude/shape

control loops and their integration. For attitude control, first a quaternion representation is

found from the OrigamiSat panel coordinates by fitting a rotation between the initial panel
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centre of masses and the current positions (using singular value decomposition, as in Sec. 3.1.2

for the spring-mass model). This quaternion is then input to the quaternion error feedback

controller, along with the desired reference orientation and current body rates, found through

backwards difference interpolation of the current rotation and and that of the previous timestep.

This produces a reference torque given by:

Tref = −Pqq
err
u − Pωω =

TxTy
Tz

 (6.21)

This is then used to produce a reflectivity pattern by superimposing three reflectivity patterns

which are known to produce a torque in each of the body frame axes. The method here is

similar to that proposed by Borgräffe et. al [101] for an RCD array, though as noted the panel

reflectivities are considered in this section to be continuously variable between 0 and 1, and

thus the desired torque can be composed of a combination of the three basis patterns shown

in Fig. 6.19. A further key difference is that the planar spacecraft considered by Borgräffe

et. al was only capabe of producing torques around the body x, y axes, but the Miura pattern

OrigamiSat is capable of producing a torque in the z direction, as long as the sail is not perfectly

flat. The “attitude reflectivity vector”, where each element gives the desired reflectivity of the

corresponding OrigamiSat panel, is given by:

ρa = Txρx + Tyρy + Tzρz (6.22)

where ρx, ρy, ρz are the vectors corresponding to the patterns illustrated in Fig. 6.19 for the

three torque axes if the corresponding torque component is positive, and the opposite patterns

if it is negative. Shape control is provided by a PID controller. First the fold angle ΦM is

calculated from the OrigamiSat panel coordinates (the fold angle is highlighted in Fig. 6.18)

and then fed into the PID controller, along with the desired fold angle, interpolated fold angle

rate (again estimated with a backwards difference formula), and previous measurements to

calculate the error integral. The controller output uS, which physically represents the desired

generalised folding force associated with the folding angle Φmis given by:

uS = kpΦE + ki

∫ τ

0

ΦE(τ)dτ + kdΦ̇E (6.23)

where ΦE is the error between ΦM and the desired fold angle, and kp, ki, kd the PID control

gains. This is then converted to a reflectivity pattern, where again known patterns are used

which correspond to folding and unfolding of the OrigamiSat (as demonstrated for the Miura

sail in Sec. 6.3.1). The shape control pattern is thus:

ρs = uSρf (6.24)
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Figure 6.19: Block diagram of the closed-loop feedback controller

where ρf is the “open” pattern depicted in Fig. 6.19 for uS positive, and “closed” for negative.

This results in two separate control outputs, ρa and ρs, which are vectors of positive values

corresponding to the panel reflectivities (though at this point the raw values may exceed 1).

6.4.1.1 Gain-Scheduling

The control outputs us and T ref , from Eqs. 6.21 and 6.23 respectively, are further modified by

some gain scheduling functions. Gain scheduling modifies the control gains in different operation

regions, as determined by some preset values based on measured scheduling parameters, and

is therefore a simple method of dealing with the nonlinear dynamics of the system if there

are certain known or determined features. The required scheduling functions were deduced by

performing simulations of different manoeuvres and addressing obvious points of failure for the

controller. Two scheduling parameters are used, the first being ΦM , the fold angle, and the

second the sail pitch angle, α, which is the angle between the incident radiation, and the sail

normal (body z-axis). Two scheduling functions, C1 and C2 are implemented, such that the
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overall panel reflectivity vector is given by:

ρ = C1(α) [C2(ΦM , α)usρf + Txρx + Tyρy + Tzρz]
(6.25)

The first of the gain-scheduling functions is given by:

C1 =

1 if α < 90◦

−1 otherwise

which ensures the reflectivity pattern is reversed for angles of incidence greater than 90◦. This is

required as the effect of the reflectivity patterns is reversed depending on which side of the sail

is illuminated (where it is assumed that both sides of the panels are fitted with RCD devices).

The second scheduling function modifies the shape/folding output only, and is given by:

C2 =


(ΦM − 170)2 + 1 if ΦM > 170◦

1 if 170◦ > ΦM > 114◦

0 if ΦM < 114◦ and α > 90◦

Due to the interpanel reflections depicted in Fig. 6.18, the reflectivity pattern used to close

the sail loses effectiveness when the fold angle is below 114◦ (determined through simulation).

Therefore, further attempts to close the sail beyond this angle are counterproductive, and it is

better to rely on any remaining folding momentum to achieve smaller fold angles. This is only

required for α < 90◦, where folding is achieved by setting the inner panels to ρ = 1 (and so the

Miura pattern is folding towards the incident radiation). For folding in the opposite direction,

i.e. where the outer panels have ρ = 1, interpanel reflections are not a concern and folding can

be enacted in the full range of ΦM . Above ΦM = 170◦, C2 is set to the given quadratic, to

rapidly increase the shape-control gain when the sail approaches the perfectly flat condition.

This factor was included as the sail is restricted to not exceed a fold angle of 180◦, where the

Miura pattern becomes perfectly flat and folds can be induced around incorrect fold lines. In

practice, it would likely be possible to design a Miura fold pattern which could reverse folding

directions around 180◦, as mechanical hinges or creased folding lines could ensure the correct

folds are made at this point. In the simulation however it was found that the perfectly flat

condition often led to computational instability, and therefore incorporating reversible folding

would require some modification to the constraint equations. C2 instead ensures that for angles

above 170◦, the shape control gain is increased significantly and the controller thus favours

shape control over attitude in this region - since the desired attitude control pattern may act

to further unfold the OrigamiSat at this point.

As noted, the predefined reflectivity patterns ρf,x,y,z which appear in Eq. 6.25 are one of two

vectors/patterns depending on the sign of the control signal with which they are multiplied. For
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positive values of C1C2us, ρf is the “open” pattern shown in Fig. 4.6, and for negative values

the opposite. The components of T ref have the equivalent effect, in that the three corresponding

patterns in the top of Fig. 4.6 are reversed for negative values. Equation 6.25 then gives a

vector of positive values corresponding to the desired reflectivity of each panel, and as a final

step the values are scaled to lie between [0, 1], by dividing all values are by the value of the

largest element (if the maximum is greater than 1). This scaling then automatically balances

the attitude/shape control requirements at a given moment, where the weighting for each is

determined by the magnitude of the control signals output by each block of the controller.

6.4.1.2 Controller Tuning

The shape PID-control gains are tuned following the well-known Zeigler-Nichols method (e.g

Ref. [190]), where first the integral and derivative gains are set to zero, and the proportional

gain is increased until steady oscillations are seen in the response. The gains are then set in

relation to this following the standard Ziegler-Nichols equations [190]. The control response

for a desired fold of 20◦ is shown in 6.20. The fold angle is seen to smoothly fall to the set

point, though there is not the expected overshoot and settling that would be expected following

Zeigler-Nichols tuning. This is likely due to the nonlinearity of the folding process, in that the

“unfolding” reflectivity pattern results in a greater acceleration of the folding angle than the

“folding” pattern. Despite this, the selected gains were found to perform well enough, and in

fact it may be desirable to have no overshoot in the response as it is known that beyond some

fold angles the controller loses effectiveness due to the interpanel reflections illustrated in Fig.

6.18. The attitude control gains are selected by adjusting Pq and Pw to produce an output that

is comparable to the shape control output for similar error values, so that there is nominally

an equal weighting given to the two control signals, and the available reflectivity control is

evenly split between both requirements. The system response for a 20◦ slew manoeuvre around

the body x-axis is shown in Fig. 6.21, again showing the response is smooth and with no

overshoot. While performing the manoeuvre, the shape becomes disturbed due to the coupling

Figure 6.20: PID tuning of shape control law for Miura fold OrigamiSat.
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of the multibody system. The fold angle disturbance and recovery is shown in Fig. 6.21,

showing that there is a relatively large disturbance of approximately 5◦ in the fold angle, but

this is then corrected by the shape-controller over the remainder of the simulation. The control

gains, spacecraft data and simulation parameters are summarised in Table. 6.1.

6.4.2 Demonstration of Integrated Shape and Attitude Control

The control law is now demonstrated through simulations of two example manoeuvres. The two

manoeuvres are illustrated in Fig. 6.22. The first is comprised of a rotation of 180◦ around the

body x-axis, while simultaneously folding the sail to a fold angle of 140◦. The second manoeuvre

is a 90◦ rotation around the z-axis, again while folding to an angle of 140◦. This second

manoeuvre demonstrates how the sail can generate a torque in the z-direction with the given

pattern, but only when the sail is not perfectly flat so that some panel surfaces are at an angle

to the xy frame. Figure 6.22 shows the sail plotted at 200 s intervals during the simulation. The

panel reflectivities are also shown, ranging from light to dark blue, corresponding to perfectly

reflective and absorbing respectively. Plots of the sail angles, rates and control signals are

shown in Figs 6.23 and 6.24. In both cases the desired attitude is approached smoothly, while

the shape configuration is less smooth with larger disturbances during the manoeuvre. Plots
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Figure 6.21: Attitude and shape response during 20◦ slew manoeuvre after attitude control
tuning.
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xy

zIncident radiation

ϕref = 180◦, ΦrefM = 140◦

ψref = 90◦, ΦrefM = 140◦

Figure 6.22: Miura OrigamiSat plotted at 200 s intervals for the two example manoeuvres.
Light and dark blue represent perfectly reflecting/absorbing panels respectively.
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Figure 6.23: Results of simulation for a 180◦ manoeuvre around the body x-axis and simul-
taneous shape reconfiguration
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Figure 6.24: Results of simulation for a 90◦ manoeuvre around the z-axis and simultaneous
shape reconfiguration
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Side length 1 m
Areal Mass Density 10 g/m2

Simulation timestep dt 0.1 s
Simulation time 1000 s
Number of rays NR 5002

Control gains Pq 15
Pω 1000
kp 0.48
ki 0.0069
kd 8.4

Table 6.1: Simulation data.

of the control signals are given for both before and after the scaling process, demonstrating the

relative values of the shape and attitude control outputs and how these are balanced at different

points of the simulation. Initially the fold angle is greater than 170◦, and so shape-control is

favoured (due to the quadratic C2 function described previously). Once the angle falls below

170◦, both the shape and attitude signal are approximately equal in magnitude, and so the

two objectives share the scaled control values evenly. For the first manoeuvre, as shown in Fig.

6.23, there is a period after 200 s where the shape control signal dominates the scaled values.

This is the point where the sail approaches a rotation of 90◦, and so is nearly side-on to the

incident radiation. The force due to SRP is therefore much lower in this configuration, and the

system loses control effectiveness, hence the large errors in fold angle at this point.

6.5 Chapter Summary

In this chapter, the attitude and shape control of OrigamiSats through the use of surface

reflectivity modulation was investigated. First, a length-scaling analysis was performed by

considering a simplified, single-facet model. It was found that for lightweight OrigamiSats,

folding times could be expected on the order of minutes for length-scales up to the order of

100 m, even when the bending resistance of a flexure hinge was considered in the analysis. A

2D multibody dynamics OrigamiSat model consisting of linked, rigid bars was then presented

and used to investigate the principle of SRP induced OrigamiSat folding. It was found that

varying the reflectivity of adjacent facets could in principle be used to control the folding

process in 2D. A 3D multibody dynamics formulation was then used to further investigate the

concept. An automatic procedure for generating the equations of motion for any OrigamiSat

folding pattern was presented, and the need for and development of a ray-tracing module

discussed. This model was then used to demonstrate shape reconfiguration of a Miura-fold

OrigamiSat, and PD control was demonstrated for a pyramidal OrigamiSat design. As it

was found that the folding of the OrigamiSat caused large disturbances to the attitude, it

was then investigated whether attitude control could be integrated with the shape control
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process, again solely through the use of surface reflectivity modulation. A control strategy

was developed for a Miura-fold OrigamiSat, consisting of two separate closed loop feedback

control laws, the outputs of which are superimposed and used to provide attitude and shape

control simultaneously. Finally, numerical simulations were used to demonstrate this control

strategy, with two example manoeuvres presented in which a Miura fold OrigamiSat performs

a simultaneous attitude manoeuvre and shape reconfiguration.



Chapter 7

Conclusions and Future Work

T
his thesis has considered the dynamics and control of large space structures, proposing and

investigating a number of strategies for the attitude control of such spacecraft through

the use of distributed actuation. In particular, the proposed strategies have been designed and

analysed as potential forms of attitude control for a specific class of large space structure: ultra

lightweight, flexible spacecraft, likely to be 3D-printed on-orbit in the coming years.

A motivating factor, common to all the proposed attitude control strategies, has been the

relative ease with which an implementation of the concept could integrated with the 3D-printing

of a structure itself. The magnetorquer arrays discussed in Chapters 3 an 4 could be fabricated

by embedding magnetorquer rods within structural elements at regular intervals during the

3D-printing of the structure. The conductive structures of Chapter 5 take this idea a step

further, in that in this case the structure itself provides the actuation. For the OrigamiSats

of Chapter 6, actuation is provided by solar radiation pressure through the use of reflectivity

control devices, relatively simple electronic components which can be embedded within a flex-

ible membrane onto which the OrigamiSat structure is then printed. A further commonality

of the proposed concepts is the fact that the actuation in all cases is distributed across the

structure. As demonstrated in Chapter 3, distributed actuation was found to greatly reduce

structural deformation during slew manoeuvres for structures in the range of flexibility and

mass considered here. Additionally, distribution of the attitude control system gives greater

robustness compared to having a single central bus and set of large actuators. Such a (dis-

tributed) spacecraft could be designed such that failure or damage to one area of the structure

does not affect the performance of the rest of the attitude control system, or the structure

could be designed in a scalable, modular fashion with attitude control available for each of the

smaller component structures which make up the whole. In this sense, the control strategies

proposed in this thesis take advantage of the new opportunities in spacecraft design afforded by

on-orbit manufacturing, leveraging the 3D-printing process to fabricate a distributed attitude

control system and the potential benefits thereof.

In this chapter, a summary of the findings and conclusions are given for the technical

178
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chapters of the thesis, followed by some suggestions for future work and a discussion of questions

raised by the research presented here.

7.1 Chapter 3

This chapter proposed and analysed the use of distributed magnetorquer arrays for the attitude

control of large structures. Simulation has demonstrated that distributed torques are in princi-

ple more effective at rotating a large, flexible structure than centralised torques, even when the

increase in inertia of the distributed actuators is taken into account. This was demonstrated

for 100 m structures with different parameters which cover a range of structural stiffnesses rep-

resentative of large space structures of this scale. Of three cases considered, distributed torques

are found to be more effective at inducing rotation than an equivalent torque applied to the

centre-of-mass only. In addition to being able to achieve rotations, distributed torques result

in lower deformation of the structure’s surface, which may be desirable for many applications

of large space structures.

Given that distributed torquing was found to be a desirable control strategy, magnetorquers

in particular were then considered as a potential actuator. A configuration of magnetorquers

was proposed for the control of a large planar structure, and a torque distribution algorithm

developed which allows the overall control torque to be scaled by activating patterns of mag-

netorquers in the array. It was found that a large, 75 m flexible structure may be controlled by

an array of magnetorquers through the application of this torque distribution algorithm, and

rigid-body control laws. Both detumbling and slew manoeuvres were demonstrated through

simulation, using the magnetorquer array in the presence of gravity gradient torques and a

changing magnetic field. The application of these rigid-body control laws is only possible due

to the torque being distributed across the structure sufficiently to approximate a rigid body,

as was demonstrated previously. Slew manoeuvres were selected to demonstrate the range of

possible rotations that can be enacted by the system, and it was found that rotations around

the inertial x and z axes are possible for a square structure placed in polar orbit, but that due

to the relative directions of the external field and gravity gradient, rotations around the inertial

y-axis are not possible.

Despite the limitations of magnetic attitude control, an array of magnetorquers is attractive

as they could be easily integrated into the on-orbit fabrication of a large space structure. For

large space structures fabricated on-orbit, the system proposed here could provide a basic level

of attitude control and stability, where the majority of the control effort is generated by the

distributed magnetorquers. This could then be augmented by further actuation to suit specific

mission requirements such as shape control and pointing accuracy.
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7.2 Chapter 4

This chapter described the design, build and testing of a distributed magnetorquer array for

spacecraft attitude control. The DMDP was built to test the control algorithms developed in

Chapter 3, where a quaternion error feedback scheme was implemented in which the torque

produced by the array is scaled by changing the number of activated torquers at a given time.

A torquer selection algorithm is used which results in the activated torquers being as evenly

distributed across the array as possible for any number of activated torquers. This approach

has been demonstrated to succesfully perform single-axis slew manoeuvres and detumbling,

through experiments performed on a spherical air bearing and using the magnetic field generated

by a Helmholtz cage. The torque scaling and distribution algorithms investigated previously

through simulation are thus considered to be verified for single axis rotation by this practical

implementation, despite the required inclusion of magnetorquer duty cycling, sensor noise, and

the resultant sampling rates and other limitations of the hardware used.

7.3 Chapter 5

This chapter proposed the use of large current loops as a further potential magnetic control

strategy to the distributed arrays of the previous chapter. Results of a length-scaling analysis

and a simple thermal model show that embedded current loops should be considered as a

viable form of attitude control for large space structures, particularly for lightweight, planar

structures which are most likely to be realised by on-orbit manufacturing techniques in the

coming years. The analysis suggests that current loops lying in the plane of the structure

are capable of producing torques at least as large as the maximum gravity gradient torque

for structures on the order of 1000 m in length, when a modest portion (<10%) of the total

structural mass is afforded to the conductive material. To achieve 3-axis magnetic attitude

control, some structural depth is required, and the length-scaling is found to be more adverse,

though it seems feasible that this could be achieved for structures of lengths on the order of 100

m, again assuming <10% of the mass for the conductive loops and that the structures depth is

at least 3% of the length.

Considering structural flexibility, results of simulation have shown that a 250 m square

structure, with areal mass density of 100 g/m2, would require a beam-like bending stiffness of

at least 104 N m2 in order to not completely collapse under the effect of the Lorentz forces

acting on the current loop. However, it is noted that a more flexible structure of lower mass

would require lower torques to control, and it is possible current loops could still be viable in

this case. Although it is possible that membrane tensioning via current loops could be possible,

the results do suggest that any tensioning effect using current loops occurs simultaneously with

a perpendicular compression of the structure, and so it appears unlikely that conductive loops

interacting with the geomagnetic field could be used for this purpose. Simulations have shown
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that all the current loop geometries considered here are capable of rotating a flexible structure,

though the structural deformation observed varies. In particular it was found that for current

loops which enclose area in the depth dimension of a planar structure, having multiple large

current loops is much preferred to having the coil type conducting pathway which was originally

proposed in this chapter.

Finally, an attitude control simulation has demonstrated that the strategy is capable of

performing a slew manoeuvre and maintaining a set attitude, in the presence of gravity gradient

torques and a representative magnetic field model. Overall, it has been demonstrated that

embedded current loops or conductive structures appear to be a promising form of attitude

control strategy for large, lightweight space structures. The strategy is particularly appealing

for the type of structure that may be 3D printed on-orbit, due to the simplicity of the design

and relative ease with which production of the large current loops could be integrated with the

3D printing process.

7.4 Chapter 6

In this chapter, the use of combined thermo-optical properties for triggering shape reconfigura-

tion of an OrigamiSat was investigated. It was shown that for a reflective flat square facet with

a fixed edge, the time to complete a fold of π/2 rad under the influence of SRP is on the order

of minutes for areal mass densities on the order of 10 g/m2 and length-scales on the order of

metres. Furthermore, it was shown that for a hinge constructed of the same thin film material

as a conventional solar sail, the bending resistance of this hinge can be neglected above a crit-

ical length scale, due to the advantageous scaling of the force as a result of the SRP compared

to the hinge resistance. Results of planar simulations show that folding can be induced, and

the direction of folding reversed by controlling the surface reflectivity of linked, rigid facets.

However, long chains of connected facets may be difficult to control in this manner, due to the

large number of rotational degrees of freedom in the system.

A method for generating the multibody equations of motion for 3D rigid origami systems

was then developed, and used to demonstrate the use of SRM to enact shape reconfiguration

of 3D origami structures in free space. Simulations have shown that shape control with this

strategy is possible in principle, but the degree of control that can be achieved depends upon a

number of factors: the kinematics of the origami pattern design and in particular the degrees

of freedom in folding of the design; the effect of inter-facet reflections and shadowing; and

the ability to decouple the attitude dynamics from the shape reconfiguration, either through

a dedicated attitude control system or the development of an integrated shape and attitude

control algorithm. Active shape control was demonstrated for a simple triangular OrigamiSat

design with a PD control law, though the results here suggest that in practice additional

actuation will be required to achieve deployment and shape control within the full range of

possible motion for many origami designs.
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An integrated shape and attitude closed feedback control law was then developed and

demonstrated for a Miura-fold pattern OrigamiSat. The proposed control law was seen to per-

form well, with 3-axis attitude control achievable, and shape reconfiguration possible between

ΦM = 180◦ and 114◦ when folding towards the incident sunlight, and in the full range when

folding away from the Sun. While an ideal model has been assumed, in which panel reflectivities

are controllable between 0 and 1, the principle of variable reflectivity as a form of attitude and

shape control has been demonstrated. In particular, the proposed strategy of combining the

shape and attitude control patterns from the separate closed loop controllers has proven to be

a simple and effective method, where judicious selection of the control gains is found to lead to

the controller performing a natural trade-off between these competing objectives.

The proposed strategy could likely be applied to other OrigamiSat designs, though the

predefined reflectivity patterns would need to be known in advance for each degree of freedom

of the origami pattern. Indeed, for many origami patterns it is likely that the patterns required

to enact a fold around a certain edge will change depending on the sail attitude, and thus could

not be predefined in the same way as was possible here for the Miura sail. In this case it may be

possible to employ some form of model predictive control, whereby at each timestep the set or

a subset of the possible reflectivity patterns are tested through simulation, to determine which

degrees of freedom are acted upon by different combinations, and the pattern best matching

an optimal trajectory to the desired configuration are selected. While such a strategy could

be promising the computational power required to test every possible combination of panel

reflectivities would be large, and would not scale well for an increased number of panels.

7.5 Future Work

Analysis of the attitude control strategies in this thesis has largely consisted of mathematical

modelling and numerical simulation, though in the case of the distributed magnetorquer array

of Chapter 3 a laboratory scale demonstration of the concept was developed and presented in

Chapter 4. Future work in this area would require further experimentation with the laboratory

scale demonstration, to further test the characteristics of the control system and extend the

work of Chapter 4 to consider 3-axis control. As noted, this work would require much more

precise balancing of the DMDP system on the spherical air-bearing, such that the residual

gravitational torque can be overcome by the relatively small magnetic torques generated by

the array. The full set of (3-axis) manoeuvres demonstrated in Chapter 3 through numerical

simulation could then be attempted at the laboratory scale, to fully verify these results. Another

important topic of research required to further develop the concept would be to determine the

minimum areal mass density that could be achieved with the proposed strategy of 3D-printing

the structure on-orbit, and what structural bending stiffness this would provide. In Chapter 3, a

wide range of areal mass density and bending stiffness were considered, and so future work could

narrow this range by considering more detailed structural modelling and/or characterisation of
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structures or structural units 3D-printed at the laboratory scale.

Similarly, the most pressing research topic following the results of Chapter 5 regards the

feasibility of developing a practical implementation of the concept, and how best a conductive

structure could be achieved in practice. It was suggested that copper wire could be embedded

within or affixed to structural elements as they are 3D-printed on-orbit, and so future work

could entail the development of a system capable of such a process. Again this would allow

printed elements and structural units to be characterised at the laboratory-scale, giving better

estimates of the minimum achievable areal mass density for such a structure and the resultant

flexibility. These printed models could also be characterised to investigate the validity of the

thermal model presented in Sec. 5.3, as the thermal balance of the conducting wire was a key

factor in the length-scaling analysis here. More future work regarding conductive structures

would be more detailed modelling which includes the self-interaction of the conducting elements.

Calculation in Sec. 5.3 suggested that these forces would be negligible so long as the spacing of

the structural units was sufficiently large. It may still be worth consideration of more densely

packed structures, in which self-interaction forces become more important, to examine if the

concept could still be applied in these cases. This research would be required if it was found,

through structural analysis or physical experiments, that more densely packed truss structures

were required to provide sufficient structural rigidity.

The analysis and results of simulation of OrigamiSats, presented in Chapter 6, also open

a number of potential avenues of research. Regarding integrated attitude and shape control,

future work would be to apply the strategy developed in Sec. 6.4 for the Miura-fold OrigamiSat

to further, more complex Origami designs. Another topic of future research would be to extend

the control system design to include further actuation, for example the use of shape-memory

materials in the hinges (as was investigated from a manufacturing perspective in Ref. [139]), or

the ability to lock/unlock the Origami edges on command using mechanical devices. Given the

promising results of Chapter 6 in achieving shape reconfiguration with variable reflectivity as

the sole form of actuation, it is thought likely that some limited further actuation could allow

much more complex Origami designs to be reconfigured with ease, and allow a greater variety of

potential applications. As with the other strategies considered in the thesis, development of a

practical implementation of the OrigamiSat concept is another obvious area of future research.

As noted, the feasibility study which the work of Chapter 6 was conducted under took some first

steps in this direction. The work of colleagues at the University of Liverpool (not included in

this thesis) investigated potential materials for 3D-printing an origami structure directly onto a

thin film, and incorporating shape-memory polymers in the printed hinges. Future work could

include the development of larger prototype OrigamiSats and efforts to determine the required

structural mass, or the development of a prototype which includes RCDs mounted on the

OrigamiSat panels. Such a prototype could then be used to demonstrate shape reconfiguration,

for example by suspending the OrigamiSat in a vacuum chamber and using a solar simulator

to illuminate the panels. This experiment could be used to verify the multibody dynamics
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simulations presented in Chapter 6. It may prove challenging to develop an experimental rig

which can suspend the prototype OrigamiSat and simulate free-fall however, in which case an

in-orbit demonstration may be the only way to fully demonstrate the concept.

7.6 Final Remarks

Through numerical analysis and experimental work, this thesis has investigated the feasibility

of a variety of distributed attitude control strategies for future LSS. In the analysis of each

chapter, attempts were made to determine the boundaries of the LSS design space at which

each of the proposed strategies could prove feasible, in terms of length-scale, structural flexibility

and areal mass density. The future work proposed in this chapter can then be seen as potential

ways of increasing the level of confidence in these design space boundaries, a process which will

require both further numerical analysis but in particular further practical demonstrations and

experimental work.

As discussed in the introduction, LSS may be constructed to serve a number of purposes,

both in Earth-orbit and beyond. Though there are many potential applications, the analysis

of the thesis has remained largely application-agnostic, instead considering the general range

of physical properties (areal mass density, stuctural flexibility, length-scale), that this next

generation of LSS will likely possess. It is therefore hoped that the results of the thesis are

general enough to be of use in the future development of LSS covering a wide range of potential

applications and properties. A guiding principle in the work of this thesis was to consider forms

of actuation which have not received considerable attention previously in the study of LSS, and

to explore their potential. Therefore, even if future research finds control strategies which are

more suitable for adaptation to on-orbit manufactured structures, or more efficient by some

measures, it is hoped that this thesis can at least offer some contribution to future efforts in

the form of a wider range of choices for their attitude control systems and add to the body of

knowledge regarding the modelling, simulation and analysis this class of spacecraft.

In each of the technical chapters, it was posited that the principal advantage that the pro-

posed strategies may have is the ease with which they may be deployed within a 3D-printed

structure during the fabrication process, due to the relative simplicity of the required compo-

nents. As such the primary development which would first be required for any of the strategies

to be fully realised is that of an operational on-orbit manufacturing platform itself. As presented

in the thesis introduction, there has been considerable interest in on-orbit manufacturing, from

the early NASA studies to the more recent research and development of various companies and

researchers. Given this level of interest and the potential benefits of the strategy, it seems in-

creasingly likely that the coming years will see the first large-scale demonstration of an on-orbit

manufactured structure, in which case it is hoped the assumptions, analysis and conclusions of

this thesis may be fully tested in practice for this new generation of truly large space structures.
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