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Chapter 1

Introduction

Contact topology was born from the work of Huygens, Hamilton and Jacobi on geometric
optics over two centuries ago [Etn]. It has witnessed remarkable breakthroughs recently,
resulting in a coherent holistic picture of this field. This development further evolved
into a subtle relationship between contact structures, and 3 and 4 dimensional topology
[Etn]. More specifically, there is a one-to-one correspondence between open book de-
compositions and contact structures in 3-dimensions defined by Giroux’s fundamental
theorem [Gir1].

Jean Martinet showed that any oriented closed 3-manifold admits a contact struc-
ture [JM]. The dichotomy between tight and overtwisted contact structures was first
discovered by Bennequin [B]. Eliashberg proved that there is an equivalence between
overtwisted contact structures and homotopy classes of tangent planes on a 3-manifold
[Eli].

Eliashberg classified tight contact structures on S3 and R3. Kanda [Kan] and Giroux
[Gir1] (independently) gave classifications on the 3-torus. Etnyre [Et1] classified tight
contact structures on some lens spaces. Honda gave a complete classification of tight
contact structures on lens spaces, solid tori, and toric annuli with convex boundary
[Hon1] and a complete classification results for tight contact structures on torus bundles
which fibre over the circle, and circle bundles which fibre over closed surfaces [Hon2].
The classification for almost all of these manifolds was also proven by Giroux in [Gir3].
Etnyre and Honda show the non-existence of contact structures on some Seifert fibered
manifolds in [EH]. Ghiggini and Shönenberger gave the first classification with a non-
zero number of tight contact structures on some small Seifert fibered spaces. Hao Wu
gave the classification on small Seifert fibred spaces with e0 ‰ 0,´1,´2. Classification
on some of the remaining Seifert fibred manifolds is given by Ghiggini [G], Ghiggini,
Lisca and Stipicz [GLS1, GLS2], Matkovič [M]. Jonathan Simone gave a classification
of tight contact structures on some plumbed 3-manifolds [Sim].
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2 CHAPTER 1. INTRODUCTION

We build on some of the above results. We classify tight contact structures on some
Seifert fibred manifolds with four exceptional fibres with zero Giroux torsion. For the
Seifert fibred manifold Mpg; q1{p1, ..., q4{p4q, where g is the genus of the base surface B,
we define the Euler number, e0pMq “ t

´q1
p1

u ` t
´q2
p2

u ` t
´q3
p3

u ` t
´q4
p4

u , where txu is the

greatest integer not greater than x. We denote the continued fraction expansion of ´qi
pi

by rai0, a
i
1, ..., a

i
mi
s. We first look at an example case in detail before proving the general

result. We look at the tight contact structures on Mp0;´1{2,´1{2,´1{2,´1{2q which
has eo “ ´4.

Theorem 1.1. There are three tight contact structures on Mp0;´1{2,´1{2,´1{2,´1{2q
without Giroux torsion up to contact isotopy. All three of them are Stein fillable. For
each n P Z` there exists at least one tight contact structure with n-Giroux torsion on
M . These tight contact structures are not weakly fillable.

Once we have calculated the tight contact structures on this example case, it is com-
putationally easy to generalise to manifolds M “ Mp0;´q1{p1,´q2{p2,´q3{p3,´q4{p4q

with e0pMq ď ´4.

Theorem 1.2. Let M “ Mp0;´q1{p1,´q2{p2,´q3{p3,´q4{p4q where e0 ď ´4 and
pi, qi P Z with, pi ě 2, qi ě 1 and gcdppi, qiq “ 1. On M there are exactly |pe0pMq `
1qΠ4

i“1Πmi
j“1pa

i
j ` 1q| tight contact structures with zero Giroux torsion up to contact iso-

topy. All of these can be constructed by Legendrian ´1 surgery and hence are Stein
fillable. For each n P Z` there exists at least one tight contact structure with n-Giroux
torsion on M . These tight contact structures are not weakly fillable.

Chapter 2 is an introduction to contact structures. We start looking at definitions,
examples and different notions of equivalence of contact structures. Contact structures
come in two flavours: tight or overtwisted. The classification of overtwisted contact
structures is well understood, as opposed to that of tight contact structures. We get the
classification of tight contact structures by giving a lower bound and upper bound to
the number of tight contact structures on a manifold M and then showing that the two
bounds match. Chapter 2 focuses on the theory we need to get the lower bound. We
study the construction of tight contact structures via Legendrian surgery. To understand
this surgery we need to study Legendrian knots and links with their invariants, Thurston-
Bennequin number and rotation number. Some of the tight contact structures we get
by surgery might be isotopic. To distinguish non-isotopic contact structures we use
Lisca-Matić’s result [LM], which uses Chern numbers and Stein structures.

Chapter 3 explains convex surface theory. We present results on characteristic foli-
ations, sets of dividing curves and bypasses in a contact manifold which help us to get
the upper bound on the number of tight contact structures. Then we look at a couple
of classification theorems that we use to classify tight contact structures on our Seifert
fibred manifolds.
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We give the proofs of Theorems 1.1 and 1.2 in Chapter 4. We start by constructing
our Seifert fibred manifolds. Then we use methods from Chapter 2 to get the lower
bound and methods from Chapter 3 to obtain the upper bound on the number of tight
contact structures with zero Giroux torsion. These two numbers match and therefore
we obtain a classification result.

It came to the author’s notice 6 months before submission that Elif Medetogullari
had similar results which were never published.





Chapter 2

Contact structures

In this chapter, we provide a brief introduction to contact structures on 3-manifolds,
followed by a review of the overtwisted and tight dichotomy, and the classification of
overtwisted contact structures. In Section 2.1, we review the concept of Legendrian knots
and their invariants. In Section 2.2, we recall Legendrian surgery and collect important
results. We start by looking at the definition and examples of contact structures. The
main references for this chapter are [Etn],[Hon],[Eli1],[Eli2].

A plane field ξ on a 3-manifold M is called a contact structure if there exists a 1-form
α such that ξ=kerpαq and α ^ dα ‰ 0.

Now we will look at two contact structures on R3. Both examples are from [Etn].
These two examples illustrate two different types of contact structure. As we will see,
these two types are exclusive of each other. This dichotomy is very helpful in under-
standing and classifying contact structures.

Consider the manifold R3 with standard Cartesian coordinates px, y, zq and 1-form
α “ dz`xdy. In particular dα “ dx^dy. Hence α^dα “ dx^dy^dz ‰ 0. Hence kerpαq
defines a contact structure. This contact structure is spanned by pB{Bx, xB{Bz ´ B{Byq.
On the x “ 0 plane, the contact planes are spanned by pB{Bx, B{Byq hence they are
horizontal. At x “ 1 the contact planes are spanned by pB{Bx, B{Bz ´ B{Byq. Hence the
planes are rotated by 45˝. As we go along the x-axis, the planes rotate clockwise in the
positive x direction and anticlockwise in the negative x direction. The planes become
more and more vertical as we approach x “ 8. Along the z-axis and the y-axis there
is no rotation. This plane field is called the standard contact structure, ξstd, on R3. In
Figure 2.1 we are looking at the plane z “ 0.

On R3 with pr, θ, zq coordinates, consider the 1-form cosprqdz ` r sinprqdθ. Pick a
ray perpendicular to the z-axis in the z “ 0 plane. The contact planes are horizontal at
the origin and when r “ kπ for each k P Z. They rotate anti-clockwise as we go along

5



6 CHAPTER 2. CONTACT STRUCTURES

Figure 2.1: Standard contact structure on R3 [Pat].

Figure 2.2: Overtwisted disk [Pat].

our ray. Figure 2.2 shows a disk of radius π on the z “ 0 plane. Notice that the tangent
space of the disk agrees with the contact structure planes along the boundary.

A contact manifold is overtwisted if it contains an embedded disk where the contact
structure is tangent to the disk on the boundary, as shown in Figure 2.2. A contact
structure that is not overtwisted is called tight.

Two contact structures ξ0 and ξ1 on M are contactomorphic if there exists a dif-
feomorphism f : M Ñ M such that f˚pξ0q “ ξ1. The two examples above are not
contactomorphic. The standard contact structure on R3 is tight, and the example above
is overtwisted.

There are other notions of equivalence of contact structures which we will be using.
Two contact structures on a 3-manifold are called homotopic if they are homotopic as
tangent plane distributions. They are called isotopic if there is a homotopy between
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them through contact structures. Note that isotopy is a stricter condition than contact
isotopy.

Notice that in the standard contact structure on R3, the contact planes become
vertical at infinity. This gives us the standard contact structures on S3, when we look
at S3 as the one-point compactification of R3.

The following theorem by Eliashberg classifies all overtwisted contact structures on
a 3-manifold M .

Theorem 2.1 (Eliashberg [Eli]). Let M be an oriented connected 3-manifold. Let us
fix a point p P M and an embedded disk centred at the point p. Let DistrpMq denote
the space of all tangent 2-plane distributions on M fixed at the point p. Let ContotpMq
denote the subspace of DistrpMq which consists of all overtwisted contact structures
which have the standard overtwisted disk centered at p. The inclusion from ContotpMq
into DistrpMq is a homotopy equivalence.

Theorem 2.1 implies Theorem 2.2 but the other way round is not true. Since The-
orem 2.2 is clearer and more concise it is often stated as the classification theorem for
overtwisted contact structures.

Theorem 2.2 (Eliashberg [Eli]). Given a closed 3-manifold M , let H be the set of
homotopy classes of (oriented) plane fields on M and let C be the set of isotopy classes
of (oriented) overtwisted contact structures on M . The natural inclusion map from C to
H induces a bijection.

The classification of overtwisted contact structures is very well understood, as op-
posed to that of tight contact structures as we will see later in Section 2.2.

2.1 Legendrian knots

In this section, we will look at knots embedded in R3 with the standard contact structure
ξstd, which is given as kerpdz ` xdy), and some invariants of these knots. For details on
this section we refer to [Etn].

A knot γ in pR3, ξstd) is called a Legendrian knot if γ is tangent to ξstd at every point.

To picture γ, we project it onto the yz-plane. We call this projection the front
projection of γ. As we have seen in the example earlier, the contact planes become
vertical only at infinity; so, there are no vertical tangencies in the front projection.
Since a Legendrian knot in R3 is tangent to the contact planes given as kerpdz ` xdy),
the x-coordinate of γ is given by (minus) the slope in the front projection. In every
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Figure 2.3: Examples of front projection of Legendrian knots [Etn].

Figure 2.4: Legendrian Reidemeister moves [Etn].

crossing, the strands of γ with the smaller slopes lie in front of the strands with the
larger slope. Figure 2.3 shows two examples. The first one is an unknot and the second
one is a trefoil.

Two Legendrian knots γ1 and γ2 are Legendrian isotopic if there is a smooth map
Φ : S1ˆr0, 1s Ñ R3 so that ΦpS1, 0q “ γ0, ΦpS1, 1q “ γ1 and ΦpS1, tq “ γt are embedded
Legendrian knots. One can prove that two Legendrian knots γ0 and γ1 are Legendrian
isotopic if and only if there is a 1-parameter family of contact diffeomorphisms φt : R3 Ñ

R3 such that φ0 “ id and φ1pγ0q “ γ1. We look at Legendrian knots up to Legendrian
isotopy. Two Legendrian knots are Legendrian isotopic if and only if one can go from
one front projection to the other by Legendrian Reidemeister moves. These moves are
shown in Figure 2.4.

Now let us look at some invariants of Legendrian knots. Let γ be an oriented Legen-
drian knot in pR3, ξstdq. Consider a vector field v along γ that is transverse to ξstd. Using
this we can get a knot γ1 by pushing γ in the direction of v. The Thurston-Bennequin
invariant of γ, tb(γ) is the linking number of γ and γ1.
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Figure 2.5: Right-handed crossings (right) contribute +1 to the writhe while left-handed
crossings (left) contribute -1.

Let Σ be a Seifert surface for γ, oriented in such a way that the given orientation of
γ matches its orientation as the boundary of Σ. Since Σ is a surface with boundary, we
can choose a trivialisation ξ|Σ “ Σ ˆ R2 and let π : ξ|Σ Ñ R2 be the projection onto
R2 factor. Let f : S1 Ñ γ Ă R3 be a (regular) parametrisation of γ compatible with its
orientation. The rotation number with respect to Σ, rpγ,Σq, is the degree of the map
π ˝ f 1 : S1 Ñ R2zt0u. Note that the rotation number does not depend on the choice of
trivialisation of the Seifert surface (Lemma 3.5.14 [Gei]).

One can check that these two numbers are invariants of Legendrian knots in R3

by using the Legendrian Reidemeister moves. Let us see how to calculate these two
invariants of an (oriented) Legendrian knot γ in R3 using the front projection. Recall
that the writhe of a knot diagram is the sum (over the crossings in the diagram) of ˘1
at each crossing, where the sign is determined by handedness of the crossing (see Figure
2.5). We denote it by wpγq.

Given an oriented knot, we define the upward cusps and the downward cusps as
shown in Figure 2.6. The Thurston-Bennequin number and the rotation number of a
Legendrian knot γ in front projection can be calculated as follows [Etn]:

tbpγq “ ´
1

2
(#cusps) + #positive crossings ´ #negative crossings.
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Figure 2.6: Downward and upward cusps.

Figure 2.7: Calculation of Thurston-Bennequin number and rotation number [Hon].

rpγq “
1

2
(#downward cusps ´ #upward cusps).

Figure 2.7 shows the Thurston-Bennequin number and rotation number of the unknot
in four different Legendrian front projections and a trefoil knot. Note that if the number
of crossings is zero then |rpγq| ď tbpγq.

2.2 Legendrian surgery

One way to construct new 3-manifolds from old ones is by Dehn surgery. Let K be
an oriented knot in S3 with neighbourhood NpKq. Identify a right handed meridian µ
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and a longitude λ on BNpKq, where λ lies in a Seifert surface for K. We can specify a
framing on K by choosing a single nowhere-zero transverse vector field v to K. Given
a null-homologous knot K, a Seifert surface provides the canonical framing λΣ given

by the normal vector of the surface. We perform Dehn surgery on K with slope
a

b
by

constructing a 3-manifold

Y “ pS1
ˆD2

q Yf S3zNpKq

where the gluing map f : S1 ˆ BD2 Ñ BNpKq sends t˚u ˆ BD2 to the curve aµ ` bλ
[GoS].

We would like to know how Dehn surgery changes the contact structure. In the
contact world, we have Legendrian knots. When we perform surgery on a Legendrian
knot the natural framing to use is contact framing. Let’s understand surgery on a contact
manifold.

For a Legendrian knot γ, the contact framing λtb is given by oriented normal vectors
to γ in ξ. Given a Legendrian knot in S3, λtb corresponds to tbpKqµ` λΣ [Gei].

Let γ be a Legendrian knot in a 3-manifold M . A contact a{b surgery on γ is

a topological
a

b
surgery on γ with respect to the contact framing, and extending the

contact structure on MzNpγq across S1 ˆ D2 by a tight contact structure on S1 ˆ D2

[G]. We perform contact surgery on γ with slope
a

b
by constructing a 3-manifold

Y “ pS1
ˆD2

q Yf S3zNpγq

where the gluing map f : S1 ˆ BD2 Ñ BNpγq sends t˚u ˆ BD2 to the curve aµ` bλtb.

We have to check if such a surgery is well defined. For that we need the classification
of tight contact structures on solid tori. We defer this classification to the next chapter
but for continuity state the results here. There is no tight contact structure on a solid

torus for
a

b
“ 0. If

a

b
“

1

n
there is a unique tight contact structure on the solid torus

and therefore the surgery is well defined. For general
a

b
there might not be a unique

tight contact structure on the solid torus and hence contact surgery might not be well
defined [G].

A Legendrian surgery on a Legendrian knot is a contact p´1q surgery along K. The
reason we define Legendrian surgery specifically is that it preserves tightness [Wan]. For
that we first need to know a special type of complex 2-manifolds called Stein manifolds.
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A smooth, oriented, 4-manifold with boundary X4 admits a Stein structure or is
called a Stein manifold if and only if it has a handle decomposition satisfying all the
conditions given in the following theorem.

Theorem 2.3 ([Eli4]). A smooth, oriented, open 4-manifold X admits a Stein structure
if and only if it is the interior of a (possibly infinite) handlebody such that the following
hold:

(a) Each handle has index ď 2,
(b) Each 2-handle hi is attached along a Legendrian curve γi in the contact structure

induced on the boundary of the underlying 0- and 1-handles, and
(c) The framing for attaching each hi is obtained from the canonical framing on γi

by adding a single left (negative) twist.

A contact manifold M is called holomorphically fillable if it is the oriented boundary
of a compact Stein surface. It is proved by Eliashberg and Gromov that holomorphi-
cally fillable structures are tight [Eli2]. Furthermore, there is the following theorem by
Eliashberg.

Theorem 2.4 ([Eli2]). If pM 1, ξ1q is a contact manifold, obtained from a holomorphically
fillable contact manifold (M, ξ) by Legendrian surgery, then pM 1, ξ1q is holomorphically
fillable.

It is proved by Eliashberg [Eli1] that S3 with the standard contact structure is
holomorphically fillable. Using Theorem 2.4 we can construct tight contact structures
by Legendrian surgery on knots in S3 with the standard contact structure. The following
theorem gives a necessary condition for two such tight contact structures to be isotopic.

Theorem 2.5 ([LM]). Let X be a smooth 4-manifold with boundary. Suppose J1 and J2

are two Stein structures on X. Let cpJq be the Chern class of the Stein structure J . If
the induced contact structures on BX are isotopic, then cpJ1q “ cpJ2q.



Chapter 3

Convex surface theory

In this chapter, we study embedded surfaces in contact manifolds. Let M be a 3-manifold
with contact structure ξ, which could be tight or overtwisted. Before we define convex
surfaces, we need to understand how ξ traces a singular line field on an embedded surface
Σ. The majority of this chapter is based on [Gir2], [Pat],[Hon1], [Hon2], [Siv], [Etn].

The characteristic foliation on Σ comes from integrating the line field induced by ξ.
The line field is given at each point by Σξppq “ ξpXTpΣ. The singular points are points
p P Σ where ξp “ TpΣ. Each integral curve is called a leaf of the singular foliation. We
denote this singular foliation by Σξ.

One can orient the characteristic foliation. Assume Σ and ξ are both oriented. Then
a singular point p is positive (resp. negative) if TpΣ and ξp have the same orientation
(resp. opposite orientation). For a nonsingular point p of a leaf L, we choose the
orientation to be given by a vector v P TppLq such that pv, nq is an oriented basis for
TpΣ, where n P TpΣ is an oriented normal vector to ξp.

There are generically two types of isolated singularities: elliptic and hyperbolic [Hon].
Choose oriented coordinates px, yq on Σ and let the singularity be at the origin. We

write the contact structure as ker α where α “ dz ` fdx` gdy. Then Σξ “ g
B

Bx
´ f

B

By
is the vector field corresponding to the characteristic foliation near the origin. If the
determinant of the matrix:

¨

˚

˝

Bg

Bx

Bg

By

´
Bf

Bx
´
Bf

By

˛

‹

‚

is positive (resp. negative), then the singular point is elliptic (resp. hyperbolic). An
example of a foliation with an elliptic singularity at the origin is given by the contact
structure α “ dz`xdy´ydx, and an example of a foliation with a hyperbolic singularity

13
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Figure 3.1: Elliptic and hyperbolic singularities [Hon].

Figure 3.2: Characteristic foliation on unit sphere in R3 [Pat].

is given by the contact structure α “ dz ` xdy ` ydx. Figure 3.1 shows the leaves of
characteristic foliations around elliptic and hyperbolic singularities. Now let us look at
some examples and illustrations of characteristic foliations in different contact manifolds.

Consider a unit sphere centered at the origin in R3 with the contact structure given
by kerpdz` r2dθq. We can see in [Pat] that this contact structure is contactomorphic to
the standard contact structure on R3. The characteristic foliation will have singularities
at the intersection of the sphere and z-axis. All the leaves go from one singularity to
another. Figure 3.2 shows some of the leaves of this characteristic foliation.

For our next example, consider T 3 with the contact structure given by kerpcospzqdx´
sinpzqdyq. Figure 3.3 shows some planes of this contact structure. Here, opposite faces
of the cube are glued to get T 3. In this T 3, consider a torus x “ constant. We see two
circles made entirely of singularities where sinpzq “ 0. One is at the top and bottom
face of the cube while the other is in the middle. Figure 3.4 shows one such torus with
the characteristic foliation on it. The arrows show the direction of the flow.
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Figure 3.3: Contact structure on T 3 [Pat].

Figure 3.4: Characteristic foliation on x “ constant in T 3 [Pat].
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Figure 3.5: Characteristic foliation on z “ constant in T 3 [Pat].

Now let us look at a torus z “ constant. On this torus, we get a characteristic
foliation which has no singularities. Figure 3.5 shows some leaves of the characteristic
foliation on a torus z “ constant.

3.1 Dividing set

The theory and results in this section are due to Giroux [Gir1].

An embedded surface Σ in a contact 3-manifold pM, ξ=kerαq is convex if there exists
a vector field X on M which is transverse to Σ such that its flow preserves the contact
structure. Such a vector field is called a contact vector field for ξ. The flow of the vector
field X preserves the contact structure, which means that the Lie derivative of α is a
real multiple of α, that is,

LXpαq “ λα.

This can be calculated using Cartan’s magic formula:

LXpαq “ iXpdαq ` dpiXαq.

As an example of a convex surface, let us look at the unit sphere S2 centered at the
origin in pR3, ξq where the contact structure is given by kerα=kerpdz`xdy´ydxq. This
contact structure is contactomorphic to the standard contact structure on R3 [Pat]. If
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this sphere is convex, then there exists a contact vector field that is transverse to this
sphere. Let us try with X “ xBx` yBy ` zBz. Using Cartan’s magic formula we have,

LXpαq “ iXpdαq ` dpiXαq

“ iXp2dx^ dyq ` dpxα, xyq

“ 2piXpdxq ^ dy ´ dx^ piXpdyqqq ` dxdz ` xdy ´ ydx, xBx` yBy ` zBzy

“ 2xdy ´ 2ydx` dpz ` xy ´ yxq

“ 2xdy ´ 2ydx` dz.

This is not a contact vector field. The calculation before suggests trying with X “

xBx` yBy ` 2zBz. Then we get,

LXpαq “ 2xdy ´ 2ydx` 2dz

“ 2α.

This X is a contact vector field. One can check that this X is transverse to S2.
Hence, the unit sphere is convex in pR3, ξstdq.

The proposition from [Gir2] shows that convex surfaces are generic.

Proposition 3.1. A closed, oriented embedded surface in a contact 3-manifold can be
deformed by a C8-small isotopy into a convex surface.

If two characteristic foliations on a convex surface have the same leaves then we say
they are equal. The proposition below tells us the importance of characteristic foliations
in the context of contact structures.

Proposition 3.2 ([Gei]). Let ξ0 and ξ1 be two contact structures on a 3-manifold M ,
which induce equal characteristic foliations on an oriented convex surface Σ. Then there
is a neighbourhood of Σ on which ξ0 and ξ1 are isotopic.

When we have a convex surface Σ in M , we define its dividing set ΓΣ to be tx P
Σ | Xpxq P ξxu. We can think of the dividing set as those points where ξ is perpendicular
to Σ, where perpendicular is measured with respect to X. We write #ΓΣ for the number
of connected components of ΓΣ.

The following are significant properties of the dividing set which are proved in [Gir2].
The dividing set ΓΣ is a multicurve, which is a properly embedded (smooth) 1-manifold,
possibly disconnected and possibly with boundary. The isotopy class of ΓΣ does not
depend on the choice of our contact vector field X. The set ΓΣ is nonempty. We can
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Figure 3.6: Characteristic foliation near the dividing set ΓΣ [Pat].

divide the complement of ΓΣ in Σ as Σ` \Σ´, where Σ` (resp. Σ´) is the set of points
x where the normal orientation to Σ given by Xpxq agrees with (resp. is opposite to)
the normal orientation to ξx. The term sign configuration on a convex surface with
dividing curves means the induced sign in the complement of the dividing curves. Then
as we across a dividing curve, we go from Σ˘ to Σ¯. Figure 3.6 shows the characteristic
foliation near a dividing curve. Notice that when we say dividing set we mean the
dividing curves and the signs configuration on Σ.

Consider the convex torus of Figure 3.4. It has two dividing curves shown in dashed
lines in Figure 3.7. In the next section we look at usefulness of dividing set especially
when the convex surface is a torus.

3.1.1 Giroux’s flexibility and Giroux’s criterion

The usefulness of the dividing set comes from the following theorem by Giroux:

Theorem 3.3 (Giroux’s flexibility theorem [Gir2]). Consider a contact 3-manifold (M,ξ)
and Σ ĂM a convex surface with characteristic foliation Σξ, contact vector field X and
dividing set ΓΣ. Let F be another singular foliation on Σ which also has dividing set ΓΣ).
Then there is an isotopy φt, t P r0, 1s, of Σ in pM, ξq such that φ0 “ id and φt|ΓΣ

“ id
for all t, φtpΣq&X for all t and φ1pΣq has characteristic foliation F .

The key idea here is that it is the dividing set and not the exact characteristic
foliation which contains the essential contact topology information in a neighbourhood
of Σ [Gir2].

We say that a convex surface Σ in a 3-manifold (M, ξ) has a tight neighbourhood
if there exists a neighbourhood NpΣq such that ξ|NpΣq is a tight contact structure on
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Figure 3.7: The dashed lines are the dividing set for the torus x “ constant [Pat].

NpΣq. Now let us look at the criterion to determine when a convex surface has a tight
neighbourhood.

Proposition 3.4. (Giroux’s criterion)[Gir2] A convex surface Σ ‰ S2 has a tight neigh-
bourhood if and only if ΓΣ has no homotopically trivial dividing curves. If Σ “ S2, then
there is a tight neighbourhood if and only if #ΓΣ “ 1.

Let pM, ξq be a 3-manifold with a tight contact structure. Say Σ – S2 is a convex
surface in M , then ΓΣ is unique up to isotopy, consisting of one (homotopically trivial)
circle. If Σ – T 2 is convex, then ΓΣ consists of 2n parallel, homotopically essential
curves. Once we fix a trivialisation T 2 – R2{Z2, ΓT 2 is determined by the number of
dividing curves and the slope of those curves. For further details refer to [G].

One of the main ingredients we will need is the convex torus in standard form [Hon1].
Let T 2 be a convex torus in a tight contact manifold pM, ξq. After some identification
of T 2 to R2{Z2 the 2n dividing curves have slope s P Q Y t8u. For a convex torus
to be in the standard form we require a particular form of the characteristic foliation
F adapted to ΓT 2 . This characteristic foliation consists of parallel circles with a slope
different from s hence they intersect ΓT 2 in points. Observe that singular points of such
a foliation lie on curves parallel to ΓT 2 (necessarily alternating with ΓT 2). We denote
the set of these curves by L. Each component of L is called a Legendrian divide. A leaf
of the characteristic foliation F is called a Legendrian ruling. Let T 2 be a convex torus
in standard form. We denote the slope of its dividing curves by s or spT 2q when we



20 CHAPTER 3. CONVEX SURFACE THEORY

want to specify the torus and we call it the slope of the torus. Say we have a 3-manifold
M with convex torus as its boundary. By boundary slope we refer to the slope of the
dividing curves on the boundary torus and denote it by spBMq. If our manifold has
multiple boundary tori, we index them by BpMqi and denote the slopes by spBpMqiq.
The slope of the Legendrian ruling is denoted by r.

A consequence of Giroux’s flexibility theorem can be formally stated as:

Corollary 3.5. (Flexibility of Legendrian rulings) Let (T 2, ξT 2) be a torus in standard
form. Via a continuous small perturbation near the Legendrian divides, we can modify
the slope of the Legendrian rulings from r to any other r1 ‰ s (r “ 8 included).

3.1.2 Legendrian realisation

Given a curve or a collection of curves on a convex surface, how do we determine if they
can be made to be Legendrian or not? We have a result which says that almost any
curve can be realised as a Legendrian curve after perturbing a convex surface.

A union of properly embedded disjoint closed curves and arcs C on a convex surface
Σ with Legendrian boundary are called nonisolating if

1. C is transverse to ΓΣ and every arc of C begins and ends on ΓΣ, and
2. every region of ΣzpΓΣ Y Cq has a boundary component which has some part of

(or has some overlap with) ΓΣ [Hon1].

Let X denote the contact vector field. An isotopy φs, s P r0, 1s, for which φspΣq&X
for all s is called admissible.

Theorem 3.6. (Legendrian realisation) [[Hon1], Theorem 3.7] Consider C, a nonisolat-
ing collection of disjoint properly embedded closed curves and arcs, on a convex surface
Σ with Legendrian boundary. Then there exists an admissible isotopy φs, s P r0, 1s so
that

1. φ0 “ id,
2. φspΣq are all convex,
3. φ1pΓΣq “ Γφ1pΣq,
4. φ1pCq is Legendrian.

Since φs is a contact isotopy, a nonisolating collection C can be realised by a Legen-
drian collection C 1 with the same number of geometric intersections with ΓΣ. A corollary
of this theorem is as follows:

Corollary 3.7. (Kanda) A closed curve C on Σ which is transverse to ΓΣ can be realised
as a Legendrian curve (as in Theorem 3.6), if C X ΓΣ ‰ H.
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3.1.3 Twisting

In this section we will look at the twisting of our contact structure; first in a specific
case, and then generalized. Our main reference is [Hon1].

Consider a tight contact structure ξ on T 2 ˆ I with convex boundary. Identify the
torus T 2 with R2{Z2 using an oriented identification. The slope spT 2q is defined by
the property that each dividing curve is isotopic to a linear curve of slope spT 2q in T 2

identified with R2{Z2. Let Ti “ T 2ˆtiu, si be the slope of the dividing curves on Ti and
let αpsiq be the angle between `ve x´axis with the line of slope si in R2. We say that
slope s is between s0 and s1 if s is on the arc of the Farey tessellation as we go from s0

to s1 in clockwise direction. We say ξ is minimally twisting (in the I direction) if every
convex torus parallel to the boundary has slope s between s0 and s1. In particular, if ξ is
minimally twisting and s0 “ s1, then ξ is said to be nonrotative (in the I direction). We
define I-twisting as βI “ αps0q´αps1q “

řl
k“1pαps k´1

l
q´αps k

l
qq, where (i)T i

l
, i “ 0, 1, ..., l

are mutually disjoint convex tori parallel to the boundary, sequentially arranged from
closest to farthest from T0, (ii) ξ is minimally twisting between T k´1

l
and T k

l
and (iii)

αps k
l
q ď αps k´1

l
q ď αps k

l
q ` π [Hon1].

We will now look at another concept of twisting which is a generalisation of the
Thurston-Bennequin number. The twisting number tpγ, F q of a closed Legendrian curve
γ with respect to a given framing F is the number of counterclockwise (right) 2π twists
of the contact framing relative to F . If γ is null-homologous and F is the Seifert framing
then the twisting number is equal to the Thurston-Bennequin number of γ and we denote
it by tpγq.

3.2 Bypasses

In this section, we learn how to change the dividing set on a convex surface. For this
section, we mainly refer to [Hon].

Let Σ ĂM be a convex surface (closed or compact with a Legendrian boundary). A
bypass for Σ is an oriented embedded half-disk D with Legendrian boundary satisfying
the following:

(1) BD is the union of two arcs γ1, γ2 which intersect at their endpoints.

(2) D intersects Σ transversely along γ1.

(3) D (or D with opposite orientation) has the following singularities along BD:

(a) positive elliptic singularities at the endpoints of γ1 (same as endpoints of γ2),

(b) one negative elliptic singularity on the interior of γ1, and

(c) only positive singularities along γ2, alternating between elliptic and hyperbolic.
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Figure 3.8: Bypass [GS].

(4) γ1 intersects ΓΣ exactly at three points, and these three points are the elliptic
points of γ1.

We call the arc γ2 a bypass for Σ or a bypass for γ1. We define the sign of a bypass
to be the sign of the elliptic point at the center of the half-disk. Figure 3.8 shows an
illustration of a bypass disk attached on a convex surface. The disk is coming out of the
page. The dashed lines are dividing curves on the convex surface.

Now let us see how attaching a bypass changes the dividing curves on a convex
surface.

Lemma 3.8. (Bypass attachment)[Hon1] Assume D is a bypass for a convex surface
Σ in a contact 3-manifold pM, ξq. Then there exists a neighbourhood of Σ Y D Ă M
diffeomorphic to Σ ˆ r0, 1s, such that Σi “ Σ ˆ tiu, i “ 0, 1, are convex, Σ ˆ r0, εs is
I-invariant, Σ “ Σˆ{ε}, and ΓΣ1 is obtained from ΓΣ0 by performing the bypass attach-
ment operation depicted in Figure 3.9 in a neighbourhood of the attaching Legendrian
arc γ1.

In Figure 3.9, the dotted lines are dividing curves and the solid line is a Legendrian
arc of attachment of γ1.

Bypasses on tori

We specifically look at bypasses on tori because we need them for the classification of
tight contact structures on T 2 ˆ I, which is one of the building blocks for constructing
other 3-manifolds. We use [Hon1] as our main reference.
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Figure 3.9: Dividing curves before and after bypass attachment [Hon1].

Let Σ ĂM be a convex torus in standard form (refer to Section 3.1.1), identified with
R2{Z2. We can assume that (with this identification) the Legendrian divides and rulings
are linear. After acting via SLp2,Zq, we can assume that the slope of the dividing curves
on Σ is s “ 0 and that the ruling slope is a rational number r not equal to 0. Observe that

we can normalize the Legendrian rulings via an element

ˆ

1 m
0 1

˙

P SLp2,Zq,m P Z,

so that ´8 ă r ď ´1.

Lemma 3.9. (Layering) Assume a bypass D is attached to Σ – T 2 with slope spT 2q “ 0,
along a Legendrian ruling curve of slope r with ´8 ă r ď ´1. Then there exists a
neighbourhood T 2 ˆ I of Σ Y D Ă M , with BpT 2 ˆ Iq – T1 ´ T0 , such that ΓT0 “ ΓΣ,
and ΓT1 will be as follows, depending on whether #ΓT0 “ 2 or #ΓT0 ą 2:

(1) If #ΓT0 ą 2, then s1 “ s0 “ 0, and #ΓT1 “ #ΓT0 ´ 2.

(2) If #ΓT0 “ 2, then s1 “ ´1, and #ΓT1 “ 2.

Here si is the slope of the dividing curves on Ti.

The proof of Lemma 3.9 follows from the bypass attachment Lemma (3.8). Figure
3.10 shows the dividing curves before and after the attachment of a bypass in the two
cases described in the Lemma.

Until now, we have assumed that the slope of the dividing curves is 0. Now let us
see what happens when we have a rational slope. To do that, we interpret the bypass
attachment Lemma in terms of the standard Farey tessellation of the hyperbolic unit
disk H2 “ tpx, yq | x2 ` y2 ď 1u. To get the Farey tessellation, start by labeling p1, 0q

as 0 “
0

1
, and p´1, 0q as 8 “

1

0
. We inductively label points on S1 “ BH2 as follows:

For y ą 0, start with 8 ě
p

q
ě 0 and 8 ě

p1

q1
ě 0 such that pp, qq, pp1, q1q form a

Z-basis of Z2. Then, we label
p` p1

q ` q1
the point halfway between

p

q
and

p1

q1
along S1 on
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Figure 3.10: Bypass attachment on torus [Hon1].

the shorter arc (one for which y ą 0 always). Two points
p

q
and

p1

q1
have an edge joining

them in the Farey tessellation if |pq1 ´ qp1| “ 1. So we have a fraction
p

q
assigned to

each point px, yq P S1 with y ą 0. We assign the fraction ´
p

q
to the point px,´yq P S1

and get edges in the same way as mentioned above. Figure 3.11 shows part of the Farey
tessellation of a hyperbolic disk.

The next Lemma gives us the slope of the new dividing curves after we attach a
bypass along a Legendrian ruling, when #Γ “ 2 and we know the slopes of the dividing
curves and the Legendrian rulings before the bypass attachment.

Lemma 3.10. Let Σ – T 2 be a convex surface with #ΓT 2 “ 2 and let the slope of the
dividing curves on T 2 be s. If a bypass D is attached to Σ along a Legendrian ruling
curve of slope r ‰ s, then the resulting convex surface Σ1 will have #ΓT 2 “ 2 and slope s1

which is obtained as follows: Take the arc rr, ss Ă BH2 obtained by starting from r and
moving counterclockwise until we hit s. On this arc, let s1 be the point which is closest
to r and has an edge in the Farey tessellation from s1 to s.

When we do a bypass attachment on a torus, we isotope the torus over the bypass
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Figure 3.11: Farey tessellation of hyperbolic disk [Hon1].

disk and hence we say we have thickened the torus. Now let us look at an example to
illustrate Lemma 3.9 point (2), using the recipe of Lemma 3.10. Start with a convex
torus T 2 with #ΓT 2 “ 2 and spT 2q “ 0 and the slope of the Legendrian ruling r “ ´2.
This is illustrated in the bottom left diagram in Figure 3.10. Figure 3.12 shows the arc
from r “ ´2 to s “ 0 in the counter clockwise direction. Then s1 “ ´1 since it is the
point which is the closest to r “ ´2 and has an edge in the Farey tessellation from s1 to
s. The bottom right diagram in Figure 3.10 shows the torus after attaching the bypass
with the dividing curves with slope ´1.

Now let us see how can we find bypasses. The following two Lemmas [Hon1] tell us
some ways in which bypasses can occur on a disk and on an annulus.

Lemma 3.11. Let Σ – D2 be a convex surface with Legendrian boundary inside a tight
contact manifold, and tpBΣq “ ´n ă 0. Then every component of ΓΣ is an arc which
begins and ends on BΣ. There exists a bypass along BΣ if tpBΣq ă ´1.

Lemma 3.12. (Imbalance principle) Let Σ – S1 ˆ r0, 1s be convex with Legendrian
boundary inside a tight contact manifold. If tpS1 ˆ t0uq ă tpS1 ˆ t1uq ď 0, then there
exists a bypass along S1 ˆ t0u.
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Figure 3.12: Arc in Farey tessellation from ´2 to 0 [Hon1].

3.3 Classification of tight contact structures on ba-

sic blocks

The main strategy used when classifying tight contact structures on a given manifold
M is to decompose M into simpler pieces, called basic blocks, by cutting along convex
surfaces in M . These simpler pieces are the ones on which the classification of tight
contact structures is known. In this section we study the classification on the basic
blocks which we will use later for our classification theorem. Here, we present the
classification of tight contact structures on B3, T 2 ˆ I and S1 ˆD2 up to isotopy. This
section is based on [Hon1] and [GS].

Eliashberg [Eli3] gave the classification of tight contact structures on the 3-ball B3.

Theorem 3.13. Two tight contact structures on the ball B3 which coincide at BB3 are
isotopic relative to BB3.

Now let us look at the classification of tight contact structures on T 2 ˆ I. We use
characteristic foliations and bypass theory for the classification on T 2 ˆ I. Let us look
at these before we state the classification results.

3.3.1 Flexibility of the characteristic foliations

Let M have a nonempty boundary, and F be a characteristic foliation on BM which is
adapted to a dividing set ΓBM . Let TightpM, Fq be the set of smooth tight contact
structures ξ on M which induce the characteristic foliation F on BM. The isotopy
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classes of tight contact structures on M with fixed boundary characteristic foliation F
are denoted by π0pTight(M, Fqq. Giroux’s flexibility theorem (Theorem 3.3) helps us
prove the following:

Proposition 3.14. (Flexibility lemma) Let M be a compact, oriented 3-manifold with
nonempty boundary. Let F1 and F2 be two characteristic foliations on BM which are
adapted to ΓBM . There exists a bijection

φ12 : π0pTightpM, F1qq Ñ π0pTightpM, F2qq .

So we can write, TightpM, Γq to stand for any of the TightpM, Fq, where F is
adapted to Γ.

3.3.2 Standard neighbourhood of Legendrian curve

Let γ Ă M be a Legendrian curve with negative twisting number n with respect
to a fixed framing. The standard tubular neighbourhood Npγq of γ is S1 ˆ D2 with
coordinates pz, px, yqq and contact 1-form α “ sinp2πnzqdx + cosp2πnzqdy . Here
γ “ tpz, px, yqq|x “ y “ 0u. One can always perturb a neighbourhood of Legen-
drian knot to be contactomorphic to the standard tubular neighbourhood [Gei]. Fix
the framing and identify BN pγq “ R2{Z2 by letting the meridian correspond to p1, 0qT

and the longitude (from the framing) correspond to p0, 1qT . Notice that BN pγq is a

convex torus. With this identification, spBN pγqq is given by ´
1

n
. Here is a result by

Kanda [Kan], about the classification of tight contact structures in this neighbourhood,
although phrased a bit differently.

Proposition 3.15. Given a negative integer n, there exists a unique tight contact struc-
ture on S1ˆD2 with a fixed convex boundary with #ΓBpS1ˆD2q=2 and slope spBpS1ˆD2qq

=
1

n
. Modulo modifying the characteristic foliation on the boundary using the flexibil-

ity Lemma, the tight contact structure is isotopic to the standard neighbourhood of a
Legendrian curve with twisting number n.

We will use the Lemma below a number of times for classifying tight contact struc-
tures.

Lemma 3.16. (Twist number Lemma) Let (M, ξq be a tight manifold. Consider a
Legendrian curve γ with fixed framing Fr with tpγ, Frq “ n P Z, and a standard tubular

neighbourhood, Npγq of γ with spBpNpγqqq “
1

n
. If there exists a bypass D which is

attached along a Legendrian ruling curve on BpNpγqq of slope r, and
1

r
ě n ` 1, then

there exists a Legendrian curve Npγq, isotopic (but not Legendrian isotopic) to γ with
larger twisting number.
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3.3.3 Basic slices

For this section the main reference is [Hon1]. Fix an identification T 2 “ R2{Z2. Let
T 2 ˆ I “ R2{Z2 ˆ r0, 1s with coordinates px, y, zq, and Tt “ T 2 ˆ ttu, t P r0, 1s. Then
(T 2 ˆ I, ξ) is called a basic slice if

(1) ξ is tight;
(2) Ti are convex and #ΓTi “ 2, for i “ 0, 1;
(3) the minimal integral representatives of Z2 corresponding to si (for i “ 0, 1) form

a Z-basis of Z2;
(4) ξ is minimally twisting.

After a diffeomorphism of T 2, we may assume that a basic slice has sppT 2qˆt1uq “ ´1
and sppT 2q ˆ t0uq “ 0.

We denote the subset of minimally twisting tight contact structures in TightpT 2 ˆ

I, ΓT1 Y ΓT2q by Tightmin
pT 2 ˆ I, ΓT1 Y ΓT2q.

Proposition 3.17. Let pT 2ˆ I, ξq be a basic slice with #ΓTi “ 2, i “ 0, 1 and sppT 2q ˆ

t1uq “ ´1 and sppT 2q ˆ t0uq “ 0. Then |π0pTight
minpT 2 ˆ I, ΓT1 Y ΓT2qq| “ 2.

Hence, a basic slice can have two tight contact structures up to isotopy and fixed
boundary characteristic foliation. We will call these positive and negative isotopy classes.

Here is a useful corollary of this result.

Corollary 3.18. Let pT 2 ˆ I, ξq be a basic slice, with sppT 2q ˆ t1uq “ s1 and sppT 2q ˆ

t0uq “ s0. Then for any slope s between s1 and s0 there exists a convex torus T parallel
to T 2ˆ {pt} with slope spT q “ s.

With this, one can prove the following proposition:

Proposition 3.19. Let pT 2ˆ I, ξq be tight with convex boundary and sppT 2qˆt1uq “ s1

and sppT 2q ˆ t0uq “ s0. Given any s between the s0 and s1, there exists a convex torus
parallel T to T 2 ˆ tptu with spT q “ s.

3.3.4 Classification of tight contact structures on T 2 ˆ I

The main reference for this section is [Hon1]. Take pT 2 ˆ I, ξq such that ξ is tight,
minimally twisting and rotative (refer 3.1.3). We will later look at the nonrotative case.
We denote sppT 2q ˆ t1uq by s1 and sppT 2q ˆ t0uq by s0. For convenience, adjust the

slopes (using an action of SL2pZq) to be s0 “ ´1 and ´8 ă s1 ă ´1. Write s1 “ ´
p

q
where p ě q ą 0 are integers and pp, qq “ 1.
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Let ´
p

q
have the following unique continued fraction expansion:

´
p

q
“ ra0, ¨ ¨ ¨ , aks “ a0 ´

1

a1 ´
1

a2 ¨ ¨ ¨ ´
1

ak

,

with all ai ă ´1 integers. We identify ´
p

q
with ra0, ¨ ¨ ¨ , aks.

Minimally twisting, rotative case

The classification of tight contact structures on T 2ˆ I is given in terms of the continued
fraction expansion of the boundary slopes.

Proposition 3.20. (Minimally twisting, rotative case) Let ΓTi , i “ 0, 1, satisfy #ΓTi “

2 and s0 “ ´1, s1 “ ´
p

q
, where p ą q ą 0. Then |π0pTight

minpT 2 ˆ I, ΓT1 Y ΓT2qq| “

|pa0 ` 1qpa1 ` 1q ¨ ¨ ¨ pak´1 ` 1qpakq|.

Minimally twisting, non-rotative case

Consider a contact structure ξ on T 2 ˆ I. Also assume that ξ is tight and minimally
twisting; #ΓTi “ 2, i “ 0, 1. For non rotative case we want that s0 “ s1. Via an action
of SL2pZq we can have s0 “ s1 “ ´1. The following proposition gives us the family of
such tight contact structures on T 2 ˆ I [Hon1].

Theorem 3.21. (Minimally twisting, non rotative) Let ΓTi, i=0,1, satisfy #ΓTi “ 2 and
s0 “ s1 “ ´1. Then there exists a holonomy map k : π0pTightminpT 2ˆI,ΓT1YΓT2qq Ñ Z,
which is bijective.

3.3.5 Giroux torsion

Say we have a contact manifold (M, ξ). Say T Ă M is a convex torus in standard
form. For each n P Z, we say that pM, ξq has n-torsion along T if there exists a contact
embedding of (T 2 ˆ I, ξn “ kerpsinp2nπzqdx ` cosp2nπzqdyq) into pM, ξq, such that
T 2 ˆ ttu are isotopic to T . We say that (M, ξ) has n-Giroux torsion if there exists
an embedded torus T along which pM, ξq has n-torsion and there does not exist any
embedded torus T 1 along which pM, ξq has (n` 1)-torsion [GH].





Chapter 4

Tight structures on Seifert
manifolds

In this chapter we will be giving the proof of Theorem 1.1 and Theorem 1.2. First let
us look at the construction of a large subfamily of Seifert fibred manifolds with four
exceptional fibres. For details about Seifert fibred manifolds look at [Hat].

4.1 Seifert fibred 3-manifolds

A model Seifert fibreing of S1 ˆ D2 is a decomposition of S1 ˆ D2 into disjoint circles
called fibres. To construct it start with I ˆD2 and identify 0 ˆD2 with 1 ˆD2 using
a 2πp{q rotation. Here p{q P Q and pp, qq “ 1. The segment that passes through the
center of I ˆD2, that is I ˆ t0u, becomes one fibre. All the other fibres are made from
q segments of I ˆ txu.

A Seifert fibreing of a 3-manifold M is a decomposition of M into disjoint circles,
the fibres, such that each fibre has a neighbourhood fibre preserving diffeomorphic to a
neighbourhood of a fibre in some model Seifert fibreing of S1ˆD2. A Seifert manifold is
one which possesses a Seifert fibreing. In a Seifert manifold each fibre has a well defined
multiplicity that is the number of times a small disk transverse to that fibre meets each
nearby fibre. For example in the model Seifert fibreing of S1ˆD2 with 2πp{q twist, the
fibre S1 ˆ t0u has multiplicity q while all the other fibres have multiplicity 1. fibres of
multiplicity 1 are called regular fibres and the others are called exceptional fibres. One
can check that exceptional fibres are isolated and lie in the interior of M .

An explicit Seifert fibreing can be constructed as follows: Start with B a compact,
connected, orientable surface. Choose disjoint disks D1, ..., Dk in the interior of B. Let
B1 be B with the interiors of these disks deleted. Let M 1 Ñ B1 be the circle bundle with

31
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M 1 orientable. Since B1 is orientable M 1 is the product B1 ˆ S1. Let s : B1 Ñ M 1 be
a section of M 1 Ñ B1. We choose a diffeomorphism of each component of ´BM 1 with
S1ˆS1 by taking the section to S1ˆtyu and a fibre to txuˆS1. From M 1 we construct
M by attaching k solid tori Vi “ D2 ˆ S1 to the torus components of ´BM 1, taking a
meridian circle BD2 of D2 ˆ S1 to a circle of some finite slope pi{qi P Q in ´BM 1. The

attaching map Ai : BVi Ñ ´BM 1 is given by

ˆ

pi ai
´qi bi

˙

P SLp2,Zq. Here ai and bi are

chosen in such a way that Ai P SLp2,Zq. Once the meridian disk is attached there is
only one way to fill in a ball to complete the attachment of D2 ˆ S1. We denote Seifert
fibred manifolds as Mpg;´q1{p1, ...,´qk{pkq, where g is the genus of the surface B. We
define the Euler number, e0pMq “

ř

it
´qi
pi

u, where txu is the least integer not greater
than x.

We first look at a specific example of a Seifert fibred 3-manifold with base surface
S2 and four exceptional fibres, Mp0;´1{2,´1{2,´1{2,´1{2q. We start by constructing
tight contact structures with zero Giroux torsion by Legendrian surgery to get a lower
bound on the number of tight contact structures. These tight contact structures might
be contact isotopic. To distinguish non-isotopic contact structures we use Lisca-Matić’s
result Theorem 2.5 which uses Chern numbers and Stein structures. To get the up-
per bound on the number of tight contact structures we use convex surface theory for
which we decompose our manifold as shown in Figure 4.4. We start by maximising the
twisting numbers of the exceptional fibres by attaching bypasses. Then we use Honda’s
classification of tight contact structures on each of the pieces in the decomposition of
M [Hon2, Hon1]. We then glue these pieces together to construct M . It is possible to
get an overtwisted contact structure when we glue two pieces with tight contact struc-
tures; we identify and discard such combinations. We look at the dividing curves on
the convex surfaces we glue together to find overtwisted disks. Amongst the remaining
combinations, we need to identify the isotopic ones from the others. We use relative
Euler class [Hon1] to identify non-isotopic tight contact structures.

4.2 An example case

Theorem 4.1. There are three tight contact structures with zero Giroux torsion on
Mp0;´1{2,´1{2,´1{2,´1{2q up to contact isotopy. All three of them are Stein fillable.
For each n P Z` there exists at least one tight contact structure with n-Giroux torsion
on M . These tight contact structures are not weakly fillable.

We start by constructing the manifold Mp0;´1{2,´1{2,´1{2,´1{2q. We follow the
method shown in Section 4.1. We start with the surface S2. Let B1 be S2 with the interior
of four disks removed and M 1 be the orientable circle bundle over B1. The attaching maps
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Figure 4.1: Surgery description of the Seifert manifold.

Figure 4.2: Legendrian realisation of unknot with Thurston-Bennequin number -1.

Ai : BVi Ñ ´BM 1 are given by

ˆ

2 ´1
1 0

˙

. The surgery representation of this manifold

M is shown on the left hand side in Figure 4.1. We perform four p´1q Rolfsen twists
to get the surgery diagram on the right in Figure 4.1. The Legendrian representation of
an unknot with surgery coefficient ´2 has Thurston-Bennequin number ´1 and hence
the rotation number is 0. This gives a unique Legendrian representation, for each of
the four ´2 framed unknots as shown in Figure 4.2. For the unknot with surgery
coefficient ´4, the Legendrian realisation has Thurston-Bennequin number ´3 and hence
the rotation number can be ´2, 0, or 2. The corresponding Legendrian realisations are
shown in Figure 4.3. Since the rotation numbers of these three Legendrian realisations
are different, the Chern numbers of the corresponding Stein structures are different
[LM]. Then, by Theorem 2.5, the three contact structures are non-isotopic. Since they
are Stein fillable (using Lemma 2.4) they have zero Giroux torsion [Gay]. This tells us
that there are at least three tight contact structures on M with zero Giroux torsion up
to contact isotopy.

Figure 4.3: Legendrian realisations of the unknot with Thurston-Bennequin number -3.
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Figure 4.4: Decomposition of a Seifert fibred 3-manifold with four exceptional fibres.

4.2.1 Upper bound

A 3-manifold M is called irreducible if every 2-sphere S2 ĂM bounds a ball B3 ĂM . A
2-sided surface S ĂM without S2 or D2 components is called incompressible if for each
disk D Ă M with D X S “ BD there is a disk D1 Ă S with BD1 “ BD. An irreducible
manifold M is called atoroidal, if every incompressible torus in M is B-parallel; otherwise,
the manifold is called toroidal. It is proved by Colin in [Col]:

Theorem 4.2. Let M be an oriented, closed, connected, toroidal irreducible 3-manifold
which contains an incompressible torus. Then M carries infinitely many isotopy classes
of tight contact structures.

The converse was later proved by Colin, Giroux and Honda in [CGH]:

Theorem 4.3. Every closed, oriented, atoroidal 3-manifold carries a finite number of
tight contact structures up to isotopy.

The Seifert fibred 3-manifold with four exceptional fibres, M “Mp0;´1{2,´1{2,´1{2,
´1{2q has infinitely many incompressible torus. We would like to count the tight contact
structures on M with zero Giroux torsion. We have indicated one incompressible torus
in Figure 4.4. Consider a T 2 ˆ I neighbourhood of one of the incompressible tori. We
cut along T0 and T1 to decompose our manifold in three pieces, one of which is T 2 ˆ I.
The other two pieces are denoted by N1 and N2. As shown in Figure 4.4 each Ni can be
decomposed in {pair of pants}ˆS1 and two solid tori.

Let us start by looking at one of these pieces, say N1. We denote the {pair of
pants}ˆS1 by Σ ˆ S1 and the two solid tori by V1, V2. There are three boundary
components of Σ ˆ S1, which we denote by BpΣ ˆ S1qi, where BpΣ ˆ S1qi for i “ 1, 2
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corresponds to the torus BVi for i “ 1, 2 and BpΣ ˆ S1q3 is glued to the T 2 ˆ I. Note
that BpΣ ˆ S1q3 is the same as BN1. We identify BVi with R2{Z2 by choosing p1, 0qT as
the meridional direction and p0, 1q as longitudinal direction. We denote the two singular
fibres by F1 and F2 and assume that these are simultaneously isotoped to Legendrian
curves and further isotoped so that their twisting number is negative. Denote their
twisting numbers by n1 and n2. Let V1 and V2 be the standard neighbourhoods of F1

and F2. The slope of the dividing curves (refer Section 3.1.1) on BVi is
1

ni
. Using the

construction from Section 4.1, the two attaching maps Ai : BVi Ñ ´BpΣˆS1qi are given

by

ˆ

2 ´1
1 0

˙

for i “ 1, 2.

4.2.2 Maximising twisting numbers

We use the same methods to maximise the twisting number as illustrated in [EH]. For
i “ 1, 2 we have Ai.pni, 1q

T “ p2ni ´ 1, niq. We denote the slope of the dividing curve

on ´BpΣ ˆ S1qi by spBpΣ ˆ S1qiq “
ni

2ni ´ 1
(Refer to Section 3.3.2). Note that the

slope of the dividing curves on BpΣ ˆ S1q is not 8. Using the flexibility of Legendrian
ruling (Corollary 3.5) we may assume that the Legendrian ruling slope of BpΣˆS1qi for
i “ 1, 2, 3 is infinite.

Lemma 4.4. We can increase the twisting numbers n1 and n2 up to 0.

Proof. Consider an annulus I ˆ S1 in M from BpΣ ˆ S1q1 to BpΣ ˆ S1q2 such that its
boundary consists of Legendrian ruling curves on the tori. The boundary of this annulus
intersects the dividing curves in 2p2ni ´ 1q points respectively.

If n1 ‰ n2 then, due to the imbalance principle (Lemma 3.12) there exists a by-
pass along a Legendrian ruling curve on either of the boundaries. Note that A´1

i “
ˆ

0 1
´1 2

˙

and hence the Legendrian ruling has slope 2 on BVi. Using the twist number

Lemma 3.16 we can attach a bypass and thicken Vi to V 1i increasing the twisting number
as long as ni ă 0.

Say n1 “ n2 and there is no bypass on the annulus A “ I ˆS1 in M from BpΣˆS1q1

to BpΣ ˆ S1q2. Then we cut N1zpV
1

1 Y V 12q open along A. Note that the boundary of a
neighbourhood of AYV 11 YV

1
2 is a piecewise smooth solid torus with four edges. We use

the edge rounding Lemma (Lemma 3.11, [Hon1]) to smoothen these four edges. Since
each rounding changes the slope by an amount of ´1

4
1

2n1´1
, the slope of the diving curves
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on the boundary torus is

spBpΣˆ S1
q1q ` spBpΣˆ S

1
q2q ´ 4p

1

4

1

2n1 ´ 1
q

n1

2n1 ´ 1
`

n1

2n1 ´ 1
´

1

2n1 ´ 1
“ 1.

This boundary torus is isotopic to BN1 and identified with R2{Z2 in the same way as
BN1. Hence the slope of the dividing curves on boundary torus ´BN1 is ´1.

Now take an annulus IˆS1 from BpΣˆS1q1 to BN1. For n1 ă 0 we have 2n1´1 ă ´1.
Hence there exists a bypass by the imbalance principle 3.12 on V1 until we increase n1

up to 0. One can do a similar calculation for n2. Hence we can increase n1 and n2 until
n1 “ n2 “ 0.

4.2.3 Combining tight contact structures on basic blocks

We have n1 “ n2 “ 0. The slope of the dividing curves on ´BN1 is ´1, on BpΣ ˆ S1q1

is 0 and on BpΣ ˆ S1q2 is 0. Now we count the number of tight contact structures on
{pair of pants} ˆS1 when the slope of the dividing curves on the three boundary tori
are 0, 0,´1. Again consider an annulus I ˆ S1 from BpΣ ˆ S1q1 to BpΣ ˆ S1q2. Either
there exists a bypass on both boundary components or not.

Case 1: If no bypass exists then we have the following conditions: According to the
classification Lemma 5.1 of Honda [Hon2], ΣˆS1 with such boundary slopes has a unique
tight contact structure as shown in Figure 4.5 (Note that we are using the opposite sign
convention to Honda’s). Call it ξA. Using the A´1

i the slope of the dividing curve on the
boundary of Vi for i “ 1, 2 is 8. By Proposition 3.15, there is exactly one tight contact
structure on Vi for i “ 1, 2. This gives a unique tight contact structure on N1.

Case 2: If there is a bypass then the cutting and rounding construction gives a torus
of infinite slope after a bypass attachment. Then Honda’s classification of tight contact
structures on {pair of pants} ˆS1 (Lemma 5.1, [Hon2]) asserts that there exists a unique
factorisation Σ ˆ S1 “ Σ1 ˆ S1 Y L1 Y L2 Y L3, where the Li are T 2 ˆ I with minimal
twisting and all components of the boundary of Σ1 ˆ S1, denoted by BpΣ1 ˆ S1qi, have
dividing curves of 8 slope. Figure 4.6 shows Σ and Σ1 with their boundary slopes. Here
we fix Σ to be Σˆ t0u and Σ1 to be Σ1 ˆ t0u.
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Figure 4.5: Dividing curve on Σ with contact structure ξA on Σˆ S1.

Figure 4.6: Σ and Σ1 with their boundary slopes.
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Figure 4.7: Possible dividing curves on pair of pants.

Let us start by looking at the tight contact structures on Σ1 ˆ S1 and then add in
the Li to get the tight contact structures on Σ ˆ S1. Each boundary component of Σ1

intersects the dividing set of the corresponding torus twice.

Lemma 4.5. Each dividing curve on Σ1 connects one boundary component to any other
or one dividing curve goes from BpΣ ˆ S1q3 to itself and two dividing curves go from
BpΣˆ S1q1 to BpΣˆ S1q2. These are shown in Figure 4.7 C,D.

Proof. Assume there is a boundary-parallel dividing arc on boundary component one
or on boundary component two as shown in Figure 4.7 A,B. Say the boundary parallel
dividing arc is across BpΣˆ S1q1. This means there is a bypass along BpΣˆ S1q1. After
attaching this bypass we can thicken V1 Y L1 to get V 11 . The slope on the boundary of
V 11 is 0 (using Lemma 3.10) in the basis of Σ1 ˆ S1. Hence we have a toric annulus L1

with boundary slopes 0 and 8 and an extension of this toric annulus is another toric
annulus with boundary slopes 8 and 0. Hence we have too much radial twisting in V 11
and hence the contact structures on V 11 is overtwisted. Similarly, we get an overtwisted
contact structure if we had a boundary-parallel dividing arc on boundary component
two. The possible dividing curves configurations without boundary-parallel dividing arcs
on boundary component one or on boundary component two are of the form described
in this Lemma.

From the result in Lemma 4.5 we can divide our analysis in two cases, correspond-
ing to Figure 4.7 C or D. These are two different dividing sets (refer to Section 3.1)
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corresponding to different contact structures on ΣˆS1. We will first count all the tight
contact structures we get corresponding to Figure 4.7 C. We refer to this analysis as
Case 2A. Then we do the same for Figure 4.7 D and refer to it by Case 2B.

Case 2A: Consider the set of dividing curves where each curve on Σ1 connects one
boundary component to the other as shown in Figure 4.7 C. The following Lemma is
proved by Honda and Etnyre [EH]. I restate it for clarity.

Lemma 4.6. The two dividing sets given by two different sign configurations (refer to
3.1) in Figure 4.7 C give a unique contact structure on Σ1 ˆ S1.

Proof. We start by cutting Σ1 ˆ S1 along Σ1 and then round the edges. We get a solid
genus two handlebody. We can arrange the dividing curves on the boundary so that
two meridonial disks intersect the dividing set exactly twice. (This is shown in Figure
4.8.) Hence there is a unique dividing curve, separating the two intersection points, on
these two disks. We cut along these two disks to get a 3-ball. There is a unique contact
structure on this 3-ball with the given restriction to the boundary surface (Theorem
3.13). Since the dividing curves on the surface, we cut along are determined by our
initial configuration of dividing curves, we get a unique contact structure on Σ1 ˆ S1.

Case 2B: Let us look at the case when one dividing curve goes from BpΣ ˆ S1q3 to
itself and two dividing curves go from BpΣˆ S1q1 to BpΣˆ S1q2 as shown in Figure 4.7
D. This gives us at most two tight contact structures on Σ ˆ S1 for Case 2B, one for
each sign configuration.

We now look at the dividing curves on ΣˆS1 “ Σ1ˆS1YL1YL2YL3. Let Ai “ ΣXLi.
For the contact structure on ΣˆS1 to be tight the dividing set of A3 will have two arcs
connecting the boundary components. There are two possible configurations depending
on the sign of the basic slice L3. The dividing set of A1 and A2 consists of a boundary
parallel arc on the the boundary component with dividing curves of infinite slope. There
are two possible configurations depending on the sign of the respective basic slice. This
is shown in Figure 4.12. Again dotted lines represent the dividing curves. Now let us
look at the dividing curves on Σ ˆ S1 separately for case 2A and case 2B as we did
before.

Case 2A: We fix one sign configuration for the contact structure on Σ1 ˆ S1 as
shown in Figure 4.9. This fixes the sign configuration of the contact structure on
L3. In our case it is positive. We write p˘,˘,˘q to denote that the signs of the
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Figure 4.8: Dividing curves on boundary of Σ1 ˆ I.

Figure 4.9: Possible dividing set on Σ.
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Figure 4.10: Two possibilities of dividing curves on D2 with tpBDq “ 2 [Hon1].

Figure 4.11: Possible dividing set on Σ.
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Figure 4.12: Positive (left) and Negative (right) sign configuration of dividing sets on
A2 and A1.

basic slices, Li for i “ 1, 2, 3 are positive/negative. Now we have a choice of sign for
the contact structure on L1 and L2. This gives us four total configurations, given by:
p`,`,`q, p´,´,`q, p´,`,`q, p`,´,`q. It is proved in [Hon2] (Lemma 5.1, 9th para-
graph in the proof) that if all three basic slices have the same sign then we get an
overtwisted disk. Hence p`,`,`q corresponds to an overtwisted contact structure on
Σ1 ˆ S1.

We can have a contact structure with p´,´,`q configuration. This corresponds
to one tight contact structure on Σ ˆ S1 with the slopes of the dividing curve on the
boundary torus 0, 0,´1. The dividing set is shown in Figure 4.13. The tight contact
structure on ΣˆS1 corresponding to this dividing set on Σ will be denoted by ξB. If we
had started our case 2A with the opposite signed configuration, then we would have the
dividing set as shown in Figure 4.14 on Σ. This corresponds to a different tight contact
structure on Σˆ S1. Let us call it ξB1 .

Similarly we can have p´,`,`q and p`,´,`q configuration. The dividing sets cor-
responding to these signed configurations are shown in Figure 4.15. Each of these cor-
responds to one tight contact structure on ΣˆS1. We denote them by ξC and ξD. If we
had started our case 2A with the opposite signed configuration, then we would have the
dividing sets shown in Figure 4.16 on Σ. These correspond to a different tight contact
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Figure 4.13: Dividing set of ξB on Σ.

Figure 4.14: Dividing set of ξB1 on Σ.
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Figure 4.15: Dividing set of ξC and ξD on Σ.

structures on Σˆ S1. Let us call them ξC1 and ξD1 .

Case 2B: We have fixed one sign configuration for Σ1 ˆ S1 as shown in Figure 4.11.
This fixes the sign configuration of L3. Now we have a choice for sign on L1 and L2.
This gives us four total configurations shown in Figure 4.17. The case where both the L1

and L2 have positive signs yields overtwisted contact structure. We can see the dividing
curves by dotted lines in Figure 4.17 A. The boundary of the overtwisted disk is outside
the disk bound by these dividing curves. Now consider the case when L1 and L2 have
mixed signs. Then we get a bypass on the Li with a negative sign as shown in Figure
4.17 B, C. Say the bypass is on L1. We can attach this bypass and thicken our solid
torus to get a solid torus with boundary slope 0. Hence we have a toric annulus L1

with boundary slopes 0 and 8 and an extension of this toric annulus is another toric
annulus with boundary slopes 8 and 0. Hence we have too much radial twisting in V 11
and hence the contact structures on V 11 is overtwisted. Similarly, we get an overtwisted
contact structure if we had a boundary-parallel dividing arc on boundary component
two. Hence we are left with the case where both L1 and L2 have negative signs as shown
in Figure 4.17 D. This contact structure on Σˆ S1 is denoted by ξE. We would get the
opposite signed configuration if we had started case 2B with the other sign configuration.
This will be denoted ξ1E and it is shown in Figure 4.18.
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Figure 4.16: Dividing set of ξC1 and ξD1 on Σ.

Figure 4.17: Four possible configurations of dividing curves on Σ.
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Figure 4.18: Dividing set of ξE1 on Σ.

We have nine tight contact structures on Σ ˆ S1 denoted by ξA, ξB, ξB1 , ξC , ξC1 ,
ξD, ξD1 , ξE, ξE1 . There is a unique tight contact structure on each Vi. Let us glue
the two Σ ˆ S1 along the toric annulus (refer section 4.2.1). When we are gluing the
two Σ ˆ S1 we are gluing using an orientation reversing diffeomorphism so we have to
glue them using T 2 ˆ I with boundary slopes ´1 and `1. After gluing, we get {sphere
with four holes}ˆS1, namely tshirtu ˆ S1, which we call Y . Let us look at all possible
tight contact structures on Y with zero Giroux torsion. Figure 4.19 shows all possible
dividing curve configurations on the sphere with four holes which give potentially tight
contact structures with zero Giroux torsion after gluing the two pairs of pants. The tight
contact structure on Y we get by gluing two pairs of pants with ξE and ξE1 is shown
in Figure 4.20. This contact structure has non-zero Giroux torsion (Section 3.3.5). All
other combinations of gluing two pairs of pants give us an obvious overtwisted disk in
Y .

When we glue the four solid tori to Y with contact structure as determined by
the dividing curves in pictures 5,6,7 and 8 of Figure 4.19 we get overtwisted contact
structures on Mp0;´1{2,´1{2,´1{2,´1{2q. Indeed in all of these cases, there is a
boundary parallel dividing curve, say γ1, on the shirt. There is a boundary parallel
torus, say T1 containing γ1. We denote this boundary torus as T0 and the dividing curve
on it as γ0. Consider the T 2 ˆ r0, 1s from T0 to T1. The dividing curves γ0 and γ1 have
slope zero, hence we have a boundary parallel torus corresponding to every slope in this
T 2 ˆ I (Prop. 3.19). So in particular we have a torus with slope 1

2
. Using A´1

i this
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Figure 4.19: Dividing curve configurations on the sphere with four holes representing all
possible tight contact structures on Y .

corresponds to slope zero in the basis of the glued in solid torus. Hence this dividing
curve bounds a meridonial disk in the solid torus which is our overtwisted disk.

We use the relative Euler class (see Section 4.2 in [Hon1]) to show that pictures 3
and 4 (as shown in Figure 4.19) yield non-isotopic tight contact structures on Y . We
denote the ith tight contact structure in Figure 4.19 as ξi. We have that the relative
Euler class epξ3q “ ´2 whereas epξ4q “ 2. Diagrams 1 and 2 (as shown in Figure 4.19)
can be shown to be equivalent by section changes similarly to those discussed in Section
4.3. The relative Euler class is epξ1q “ 0. So we get at most three potentially tight
contact structures on tshirtu ˆ S1.

Since the upper bound and lower bound (which we computed in Section 4.2) both
are three, we get that |π0pTightminpMqq| “ 3. All of these are Stein fillable, since we get
these three contact structures on M by doing a ´1 Legendrian surgery on Legendrian
link in (S3, ξstd).
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Figure 4.20: Dividing curve configuration on the sphere with four holes.

Since M is toroidal there are Z many non-isotopic tight contact structures on M
corresponding to integral Giroux torsion. It is proved by Gay in [Gay] that tight contact
structures that are strongly symplectically fillable have no Giroux torsion. Also, it
is proved in [Gei] that a weakly fillable tight contact structure on a rational homology
sphere is a strongly fillable contact structure. The Seifert fibred manifold M is a rational
homology sphere. Hence the tight contact structures on M with non-zero Giroux torsion
are not weakly fillable.

4.3 General case

Consider the manifold M “ Mp0;´q1{p1,´q2{p2,´q3{p3,´q4{p4q where e0 ď ´4 (here
Euler number, e0pMq “ t

´q1
p1

u ` t
´q2
p2

u ` t
´q3
p3

u ` t
´q4
p4

u , where txu is the greatest integer

not greater than x) and pi, qi P Z with , pi ě 2, qi ě 1 and gcdppi, qiq “ 1, ´qi
pi
“

rai0, a
i
1, ..., a

i
mi
s, where all aij

1s are integers, ai0 “ t
´qi
pi

u ď ´1, and aij ď ´2 for j ě 1. We

define pij “ ´a
i
jp
i
j´1 ´ pij´2 for j “ 0, 1, ...,mi and pi´2 “ ´1 and pi´1 “ 0. Similarly we

define qij “ ´a
i
jq
i
j´1 ´ qij´2 for j “ 0, 1, ...,mi and qi´2 “ ´1 and qi´1 “ 0. The previous

example (Section 4.2) we have considered has e0pMq “ ´4 and ´qi
pi
“ ´1

2
. Once we have

calculated the tight contact structures on this example case, it is computationally easy
to generalise to the case of all manifolds M with e0pMq ď ´4.

Theorem 4.7. On M there are exactly |pe0pMq ` 1qΠ4
i“1Πmi

j“1pa
i
j ` 1q| tight contact

structures with zero Giroux torsion up to contact isotopy. All of these can be constructed
by Legendrian ´1 surgery and hence are Stein fillable. For each n P Z` there exists
at least one tight contact structure with n-Giroux torsion on M . These tight contact
structures are not weakly fillable.

To prove this theorem we follow similar methods as we used for our example case
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Figure 4.21: Surgery diagram representations of the manifold Mp0;´q1{p1,´q2{p2,
´q3{p3,´q4{p4q.

(see Section 4.2). We need an additional section change operation to show that some of
the potential tight contact structures are isotopic.

The surgery diagram for the construction ofM “Mp0;´q1{p1,´q2{p2,´q3{p3,´q4{p4q

is shown in Figure 4.21 on top left. We perform Rolfsen twists to get the surgery diagram
on the top right. We do a slam dunk operation to obtain the diagram at the bottom.
One can refer to [GoS] for both these operations. The number of Legendrian realisations
for each of the unknots is paji`1q or pe0pMq`1q based on their Thurston-Bennequin and
rotation numbers. Then by Theorem 2.5 there are at least |pe0pMq`1qΠ4

i“1Πmi
j“1pa

i
j`1q|

tight contact structures with zero Giroux torsion on M up to contact isotopy. This gives
a lower bound on the number of tight contact structures on M .
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Upper Bound

We start with the decomposition of the Seifert fibred manifold as stated previously in the
example case. The manifold M “Mp0;´q1{p1,´q2{p2,´q3{p3,´q4{p4q has incompress-
ible tori. We are going to start by counting tight contact structures with zero Giroux
torsion on M .

Using the same construction and notations from the example case as in Figure 4.4

we have that the two attaching maps Ai : BVi Ñ ´BpΣˆS1qi are given by

ˆ

pi ui
qi vi

˙

P

SL2pZq for i “ 1, 2 where ui “ pimi´1 and vi “ qimi´1. Using the flexibility of Legendrian
ruling (Corollary 3.5) we assume that the ruling slope of BpΣ ˆ S1qi for i “ 1, 2, 3 is
infinite. Assume that the fibres Fi are simultaneously isotoped to Legendrian curves such
that their twisting numbers are particularly negative. For i “ 1, 2 we have Ai.pni, 1q

T “

pnipi ` ui, niqi ` viq. We denote the slope of the dividing curve on ´BpΣ ˆ S1qi by

si “
niqi ` vi
nipi ` ui

“
qi
pi
`

1

pipnipi ` uiq
.

Note that the manifolds, Mp0;´q1{p1, ...,´q4{p4q, we are working with are L-spaces
(see Theorem 1.1 [LS]). We look at Seifert fibered manifold M 1 “ p0;´q1{p1, ...,´q3{p3q

which is an L-space with e0 ď ´2. Any tight contact structures on M 1 has a Legendrian
curve with twisting number ´1 in the {pair of pants} ˆS1 (Using corollary 5.2 from
[G]). We call this curve L and its neighbourhood V . We can construct M from M 1 by
doing a surgery on a fiber which is not in V . Hence we have a Legendrian curve with
twisting number ´1 in our manifold M . We can assume that the Legendrian ruling
slope on BpΣ ˆ S1qi for i “ 1, 2 is 8. Take an annulus Ai between BV and BpΣ ˆ S1qi

for i “ 1, 2. There might be some bypasses on BpΣ ˆ S1qi by the imbalance principle
(3.12). After attaching these bypasses the slope of the dividing curve on BpΣ ˆ S1qi is
t
qi
pi

u for i “ 1, 2. One can similarly prove that the dividing curve on BpΣ ˆ S1qi is t
qi
pi

u

for i “ 3, 4.

Combining tight contact structures on the basic blocks

After we glue the two {pair of pants} ˆS1 across the toric annulus we get tshirtu ˆ S1

which we call Y 1. The slope of the dividing curves on the boundary tori of Y 1 is t
qi
pi

u

for i “ 1, 2, 3, 4. We take a suitable diffeomorphism of tshirtu ˆ S1 to normalise the
boundary slopes to be Σ4

i“1t
qi
pi

u “ s on one of the boundary torus and 0 on the other

three boundary tori. This amounts to a section change (refer Prop2.1 in [Hat]). We
denote this tshirtu ˆ S1 by Y . The number of tight contact structures up to contact
isotopy on the manifold before the section change is the same as the number of tight
contact structures up to contact isotopy on the manifold after the section change. Since
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Figure 4.22: Decomposition of Y.

s ě 0 we can decompose Y in a tshirtu ˆ S1 with all four boundary slopes 0 and a toric
annulus with boundary slopes 0 and s. This is shown in Figure 4.22.

There are three tight contact structures with zero Giroux torsion on tshirtuˆS1 with
all four boundary slopes 0 (as proved in section 4.2.3). There are ps ` 1q tight contact
structures on a toric annulus with boundary slopes 0 and s [Hon1]. When we glue this
toric annulus on tshirtuˆS1, we need the signs of the regions on the boundary to match.
One can draw all combinations and check that amongst 3s` 3 only 2s` 3 are possible.
So we get an upper bound of 2s` 3 on the number of potential tight contact structures
represented by dividing curves on tshirtu ˆ S1.

We write the boundary slopes on Y as ps1, s2, s3, s4q where the slope si is spBY qi. Say
that our boundary slopes on Y are p2, 0, 0, 0q. We will show that the two dividing curve
configurations shown on a shirt in Figure 4.23 (top right and top left) represent two
different sections (as in Prop. 2.1 in [Hat]) of the same contact structure on tshirtuˆS1.
We start with a tight contact structure that has a positive and negative bypass on the
boundary component with boundary slope 2. This dividing curve configuration is shown
on the top left. Consider an annulus A between boundary component having slopes 2
and 0, as shown in Figure 4.23. We do the section change (as in Prop. 2.1 in [Hat])
across annulus A to get Y 2 with boundary slopes p1, 1, 0, 0q. We obtain the dividing
curves on the new section of Y 2 as follows: we start with our old section on tshirtuˆS1

with boundary slopes p2, 0, 0, 0q and draw the dividing curves on the shirt as well as on
all four boundary tori. Using the construction as in Prop. 2.1 in [Hat] we draw our new
section (with boundary slopes p1, 1, 0, 0q) in our old tshirtu ˆ S1 (with boundary slopes
p2, 0, 0, 0q). We mark all intersections of the dividing curves with the boundary of the
new section. Since the new shirt is embedded in old tshirtu ˆ S1, we start drawing the
dividing curve at one of the boundary components with slope 1 and follow through in our
new shirt across the old section. We get the dividing curves connecting the two boundary
components with boundary slopes 1. This dividing curve configuration is shown in Figure
4.23 at the bottom. Next, we look at the dividing curve configuration which has the
two same signed bypasses on the boundary component with slope 2 and half a twist
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Figure 4.23: Different sections of a tight contact structures on tshirtu ˆ S1.

across the incompressible torus. This dividing curve configuration is shown on the top
right. We do the section change along annulus A1 between boundary components having
slopes 2 and 0 which goes across the half twist. We get the dividing curves (using the
same process as above) connecting the two boundary components with boundary slopes
1. After the section change, we get the dividing curve configuration as shown in Figure
4.23 at the bottom. Hence one can get the top right dividing curve configuration from
the top left dividing curve configuration by section change on the tshirtu ˆ S1. Hence
the top right and the top left dividing curve configurations are two different sections of
the same tight contact structure on Y .

We had the upper bound 2s ` 3 of potential tight contact structures represented
by dividing curves on tshirtu ˆ S1. One can draw the dividing curves to check that s
many tight structures are represented by two different sections (one with a positive and
a negative bypass and the other with the same signed bypass and half a twist across the
incompressible torus) in the upper bound 2s ` 3. Hence we get a tighter upper bound
of s ` 3. Since s “ Σ4

i“1t
qi
pi

u and e0pMq “ t
´q1
p1

u ` t
´q2
p2

u ` t
´q3
p3

u ` t
´q4
p4

u we get that

s ` 3 “ |e0pMq ` 1|. Hence the number of the potential tight contact structures on
tshirtu ˆ S1 is bounded above by |e0pMq ` 1|.

The solid torus Vi has a boundary slope of ´
qi´t

qi
pi

upi

vi´t
qi
pi

uui
= ´

qi`pa
i
0`1qpi

vi`pai0qui
. With this

boundary slope, there are exactly Πm
j“1pa

i
j`1q tight contact structures on Vi (Theorem 2.3

in [Hon1]). Thus, up to contact isotopy there are at most |pe0pMq` 1q|Π4
i“1Πm

j“1pa
i
j ` 1q

tight contact structures with zero Giroux torsion on M “ Mp0;´q1{p1,´q2{p2,´q3{p3,
´q4{p4q with e0pMq ď ´4.
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Since the upper bound and lower bound match, we get |π0pTightminpMqq| “ |pe0pMq`
1q|Π4

i“1Πm
j“1pa

i
j ` 1q. All of these are Stein fillable since we get these contact structures

on M by doing a ´1 Legendrian surgery on a Legendrian link in (S3, ξstd).

Since M is toroidal there are Z` many non-isotopic tight contact structure on M
corresponding to integral Giroux torsion. As seen in example case the tight contact
structures on M with non zero Giroux torsion are not weakly fillable.

4.4 Concluding remarks

One can try to classify tight contact structures on Seifert fibred manifold M “ Mp0;
´q1{p1,´q2{p2,´q3{p3,´q4{p4q where e0 ą ´4 and pi, qi P Z with , pi ě 2, qi ě 1 and
gcdppi, qiq “ 1. We can constructing tight contact structures with zero Giroux torsion
by Legendrian surgery to get a lower bound on the number of tight contact structures.
To get the upper bound on the number of tight contact structures we use convex surface
theory. These two bounds don’t match. Currently the author is unable to find any
contact isotopy between the contact structures found by convex surface theory or find
an invariant to say that those are non-isotopic contact structures.
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