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Abstract

Biological activated carbon filtration operating in slow flowing mode is a compromise between slow
sand filtration and rapid-rate biological activated carbon filtration. It brings together the benefits of
both systems: good control of microbial pathogens and dissolved organic matter removal. In this the-
sis the change in water chemistry in such biofilters was studied as a possible alternative for small-scale
decentralised water treatment in Scotland.

Change in chemical water quality was monitored in the influent, effluent, and pore water of lab-
scale biofilters of varying lengths. Also, the effect of pore water chemistry on carbon processing by
microbial communities from various filter depths was studied by batch experiment. Finally the effect
of spatial and temporal water quality variation in Scotland on biofilter performance was studied via a
metadata study.

Results showed that dissolved organic matter was removed via multistage adsorption with filter length
having a positive impact on the removal efficiency in apparent steady state. Applying the biofilters to
other Scottish fresh waters with lower DOM concentrations will increase their performance. Within
the filters, different ecological niches were formed. The community at the top processed the easily
available low molecular weight acids, the community at the bottom was able to degrade the more
recalcitrant humic substances. This indicates that specific microbes inhabit this bottom niche and are
able to survive on the limited choice of DOM species.

These research findings contribute to further optimisation of the biofilter design and for the scien-
tific community to further understand biofilter stratification and its impact on DOM removal.
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Chapter 1

Introduction

Scottish Water provides drinking water to the majority of the population of Scotland. Roughly 80% of
Scottish Water’s drinking Water Treatment Works (WTW) serve only 20% of the population. Overall,
Scotland has more than 20,000 water supplies that serve a population of fewer than 50 people, while
10,000 supplies serve only one household (Scottish Water 2018). Installing, maintaining, and man-
aging such large number of small rural water supplies is economically and environmentally costly.
Having a simple household solution would be ideal for small communities or single households, but
a reliable product is not on the market to date. Either it is too expensive or requires too much main-
tenance. One of the challenges of these point-of-use technologies are the challenging and variable
chemical water quality present in the river and lochs (Scottish Water 2015). To add to the problem,
long term UK data shows that Dissolved Organic Carbon (DOC) has increased with this trend expected
to continue (Scottish Water 2012). The innovations in point-of-use water treatment systems can help
to improve the affordability and quality of drinking water for rural communities and those hardest to
reach.

For single stage filtration systems treating surface water, the primary objective is the control of micro-
bial pathogens. Secondly, the control of chemical water quality is important as high concentrations
contribute to colour, taste, and smell of the water as well as the possible regrowth of pathogens in the
storage or transport system (Matilainen et al. 2011, Volk et al. 1997). Slow flow Biological Activated
Carbon (BAC) filtration is a compromise between slow sand filtration and rapid-rate BAC filtration.
It brings together the benefits of both systems for off-grid drinking water treatment: good control of
microbial pathogens and Dissolved Organic Matter (DOM) removal from the start of operation. The
small scale and low flow-rate of the system results in a lower output of treated water compared to the
large scale slow sand or rapid-rate BAC filtration. However for single households this should not be
an issue, as they only use a fraction of the water normally provided by large scale systems.

Studies concerning filters that use slow flow rates for drinking water treatment are very limited (Moona
et al. 2021), and publications using slow-flow to enhance BAC filtration efficiency are not available.
In this thesis a large laboratory scale experiment was conducted in which the chemical aspects of the
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slow flow BAC filters were studied during the first six months of operation. These results contributed
to the further understanding and development of a small-scale water filtration system that can provide
drinking water in remote areas in Scotland. This multidisciplinary project is funded by Scottish Water.
My contribution to the overall project is looking at the water chemistry passing these filters.

The aim of this thesis is to evaluate slow flow BAC filters as possible application for small scale
water treatment systems by looking at the chemical parameters of the water and the influence of filter
length with help of chemometric methods. To achieve the aims of this project, the following objectives
were identified:

1. To characterise DOM and other chemical water quality parameter removal by pilot filters during
the first months of operation and see how filter lengths impacts this process.

2. To develop a simple cost-effective fluorescence by excitation-emission spectroscopy method
combined to Parallel Factor Analysis using a plate reader for the analysis of DOM.

3. To further understand removal processes of DOM and other chemical parameters by the biofil-
ters through depth-resolved pore water analysis.

4. To examine the degradation of DOM by filter microbial communities at the different depths of
a biofilter.

5. To assess how water source and seasonal changes can impact the biofilters.

Chapter 2 introduces DOM, the various analytical techniques that can be used to measure DOM, as
well as the techniques used to remove DOM during drinking water treatment. Chapter 2 also presents
a review of literature surrounding biofiltration. Finally, the chapter introduces the concept of chemo-
metrics and highlights the methods used in the thesis.

Chapter 3 discusses objective 1 and presents the study of the change in concentration of DOM and
other chemical water quality parameters after filtration by a pilot scale filters. Removal of these chem-
ical water quality parameters over time and impact of filter length are described and evaluated.
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Chapter 4 goes into objective 2 and presents the validation of fluorescence excitation-emission ma-
trix spectroscopy combined to parallel factor analysis using a plate reader for the characterization and
semi-quantitation of DOM in freshwater samples. A comparison is drawn with the results obtained
via a golden standard method.

Chapter 5 focuses on objective 3 and presents the study of the concentration of various chemical
water quality parameters within the pores of the BAC filter medium. Concentrations are measured
through depth and over time.

Chapter 6 discusses objective 4 and presents the study of the degradation of DOM by filter micro-
bial communities at the different depths of a biofilter. Samples from 3 depths of the filter are collected
and their growth, DOM degradation, and community composition studied.

Chapter 7 focuses on objective 5 and presents the data study of spatial and temporal variation in
Scottish fresh waters and the impact on the biofilter processes described in chapter 3, 5, and 6.

Finally, Chapter 8 summarises the major findings of this research, and highlights recommendations
for further research.
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Chapter 2

Literature review

2.1 Organic matter

2.1.1 Classification

Natural Organic Matter (NOM) is a complex mixture of organic compounds. NOM is a break-
down product of plants and other vegetation and is widely abundant in nature. Hydrological flow
path through enriched organic and mineral soils take the NOM into the creeks, rivers and lochs
(Aitkenhead-Peterson et al. 2007, Muller & Tankéré-Muller 2012, Soulsby et al. 2001), see Figure
2.1. When dissolved in water NOM is referred to as Dissolved Organic Matter (DOM).

Figure 2.1: Path of organic matter from vegetation or animal (waste) to produced drinking
water. Rain takes decaying vegetation and animal waste via surface and subsurface flows into
the creeks, rivers, and lochs. Drinking water treatment plants use this fresh water and remove
the DOC from the water resulting in high quality drinking water that is transported to the houses.
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Hereafter, DOM is used instead of NOM, as most organics will be dissolved in waters. DOM (predom-
inantly humic and fulvic acid) can give the characteristic yellow-brown colour to the natural waters
because of peaty soils. The presence of DOM is a concern during drinking water treatment because of
its influence on water quality. DOM is made up from aromatic and aliphatic hydrocarbon structures
that have attached amide, carboxyl, hydroxyl, ketone, and various minor functional groups, which can
form aggregates in natural waters increasing the complexity of the DOM (Leenheer & Croue 2003).
Removal of DOM improves water quality by removing compounds that create taste, odour and smell
(Matilainen et al. 2011). Moreover, it removes compounds that become carcinogenic when getting
in contact with disinfectants (Kitis et al. 2002). Also it decreases the microbial growth potential in
distribution systems (Matilainen et al. 2011, Peterson & Summers 2021, Terry & Summers 2018).
Although millions of individual DOM molecules exist, DOM can be divided in classes depending on
specific characteristics.

Figure 2.2: Simplified classification of DOC with respect to its hydrophobicity and acidity.

Leenheer & Croue (2003) wrote a frequently cited paper on DOM classification. Figure 2.2 shows a
simplified version of this classification and highlights the separation of hydrophobic and hydrophilic
acids, bases, neutrals. Two main components that are part of the hydrophobic acids are the highly
soluble fulvic acid (soluble at all pH) and slightly less soluble humic acid (soluble at pH > 2) (Crit-
tenden et al. 2005, Sillanpää et al. 2014). These humic fractions are the main component of DOM in
water supplies, often accounting for up to 50% (American Water Works Assocation 1999, Sillanpää
et al. 2014, VanLoon & Duffy 2005). It is believed that relatively small primary molecular structures
of 100-2000 Da form macromolecular structures also known as aggregates (Leenheer & Croue 2003,
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Gerke 2018). They are high in aromaticity, low in nitrogen content, contain conjugated double bonds
and are anionic polyelectrolytes (American Water Works Assocation 1999, Crittenden et al. 2005,
Matilainen et al. 2010). Carboxyl and phenolic groups cause their negative charge and they contain
components like aromatic carbonyl and methoxyl, which can have active surface sites (American Wa-
ter Works Assocation 1999, Croue et al. 1999). Hydrophobic neutral examples are hydrocarbons,
aliphatic carbon chains > 5 C with alcohols, amides, esters, ketones, and aldehyde groups, > 9 C
aliphatic carboxylic acids and aliphatic amines, aromatic carboxylic acids aromatic amines of three
rings and greater (Leenheer & Croue 2003, Leenheer & Huffman 1979).

Hydrophilic compounds contain aliphatic carbon chains and nitrogenous compounds and are largely
composed of Low Molecular Weight (LMW) organics (Huber et al. 2011, Sillanpää et al. 2014, Mati-
lainen et al. 2011, Świetlik et al. 2004). Carbohydrates and sugars are examples of the hydrophilic neu-
trals, while proteins and amino acids are basic compounds (Bhatnagar & Sillanpää 2017, Croue et al.
1999, Owen et al. 1995). Although hydrophilic compounds are often classified as LMW organics, pre-
vious studies sometimes also refer to them as components with higher MW than the humic fractions
(Krasner et al. 1996). These high molecular weight biopolymers are formed from polysaccharides,
proteins and amino sugars (Huber et al. 2011). Extracellular polymeric substances are examples of
HMW biopolymers, with a MW of approximately 10 kDa. A study by Volk et al. (1997) showed
for headwaters of the White Clay Creek in southeastern Pennsylvania DOM was comprised of 72 -
78% humic substances, 9-16% carbohydrates, 2 - 3% amino acids and 15 - 22% OM with a molecular
mass > 100 kDa. Example of molecular formulas of the different DOM classes are given in Figure 2.3.
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Figure 2.3: Chemical formulas of a humic substance molecule (A), carbohydrate molecule (glu-
cose) (B), amino acid molecule structure (C), and LMW molecule (propanone) (D).

DOM found in drinking water sources includes a biodegradable fraction and a non-biodegradable frac-
tion. This difference can also be used for classification. Biodegradable organic matter is of interest for
drinking water utilities as it provides a carbon source for microbial regrowth in the distribution sys-
tem. The collective measure of Biodegradable Dissolved Organic Carbon (BDOC) and Assimilable
Organic Carbon (AOC) are the most commonly used parameters to measure biodegradable organic
matter under aerobic conditions (Escobar & Randall 2001, Hammes 2008). BDOC measures change
in organic carbon content sample due to microbial metabolism. BDOC represents the portion of DOC
that is biodegraded by heterotrophic microorganisms for energy production resulting in the production
of CO2 or other organic substances and the growth of biomass, while AOC is the portion of BDOC
that is most readily used by bacteria and converted to cell mass (Escobar & Randall 2001, Juhna &
Melin 1985, Terry & Summers 2018) (Figure 2.4). AOC and BDOC can be seen as complementary
measures that are both important indicators for water biostability (Escobar & Randall 2001).
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Figure 2.4: Graphical representation of the way DOC, BDOC,
and AOC are linked to each other; AOC is part of the BDOC, and
BDOC again part of the DOC.

2.1.2 Analytical techniques

Depending on the classification DOM can be measured by various techniques. Matilainen et al. (2011)
published a comprehensive literature review on the methods used in the characterization of DOM in
relation to drinking water treatment. Analytical methods can be grouped as (1) general parameters,
(2) biological test, (3) isolation and concentration, (4) fractionation, and (5) Element composition and
structures. For the scope of this thesis only the general parameters that are commonly used during
drinking water monitoring, fractionation by Liquid Chromatography Organic Carbon Detection, also
known as LC-OCD, fluorescence spectroscopy and biological tests will be further discussed. These
methods are not used interchangeably but complement each other, as they all measure a different char-
acteristic of the DOM pool.

In practice, NOM/DOM is monitored by the measurement of TOC, DOC, colorimetric tests, absorp-
tion of UV-light at 254 nm (254) or Specific UV Abosrbance (SUVA). TOC and DOC are the most
convenient parameters for analysing. TOC is the sum of all organic carbons in the water including
the particulate and DOC is the fraction of TOC after filtration, mostly through a 0.45 µm filter, when
existing inorganic carbon is removed by acidification. TOC and DOC are both quantitative measures
where all available (dissolved) organic carbon in a water sample is combusted, converted to CO2,
and its CO2 concentration measured. It gives a bulk number of the total amount of organic carbon
in the sample but gives no information on OM character. Similarly, water sample colour only gives
an indication of the concentration of humic and fulvic substances, as these substances give a distinct
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colour in fresh water as a result of breakdown product of leaf litter. This measure, however, does
not give information on other fractions of OM (Uyguner-Demirel & Bekbolet 2011). Specific UV
absorbance at 254 nm, often used as proxy for DOC, only gives an indication of the aromaticity of
the organic matter (Sillanpää et al. 2014). SUVA is the UV absorbance of a given sample at 254 nm
divided by the DOC concentration of the sample. This ratio describes the nature of DOM in the water
in terms of hydrophobicity and hydrophilicity (Matilainen et al. 2011); SUVA larger than 4 indicates
mainly hydrophobic and especially aromatic material, whilst a SUVA smaller than 3 illustrates mainly
hydrophilic material.

2.1.3 LC-OCD

A technique that is gaining popularity, is analysis by size-exclusion chromatography in combination
with organic carbon detection, UV detection and organic nitrogen detection known as LC-OCD-UVD-
OND (Huber et al. 2011) and is an established method to separate the DOM pool to identify five dif-
ferent DOM classes (Figure 2.5).

Figure 2.5: LC-OCD chromatogram with the various DOM fractions and their
respective molecular weights. From Simon et al. (2013).

These classes include (1) Biopolymers that are likely hydrophobic, HMW (10,000 g/mol or higher),
largely non-UV-absorbing Extracellular polymeric substances with saturated structures, polysaccha-
rides and some contribution of proteins or amino sugars (Huber et al. 2011); (2) Humic Substances;
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with higher molecular weight at 1000 g/mol with UV-absorbing aromatic molecular aggregates of rel-
atively small molecules, stabilised by the hydrophobic effect and hydrogen bonds (Gerke 2018); (3)
Building blocks that are UV-absorbing humics of lower-molecular-weight (300 – 500 g/mol) that have
been shown to include microbial breakdown products of humic substances (Huber et al. 2011, Velten
et al. 2011a); (4) Low-Molecular-Weight neutrals; 350 g/mol) characterised as non-UV-absorbing,
weakly or uncharged hydrophilic or amphophilic compounds that can include alcohols, aldehydes,
ketones, and amino acids hydrophilic; and (5) LMW acids; 350 g/mol).

2.1.4 Fluorescence excitation emission matrix spectroscopy

Fluorescence spectroscopy is a spectrochemical method in which the analyte molecules are excited
by light at a certain wavelength and the emitted radiation is measured at a different wavelength. Flu-
orescence spectroscopy has become popular in the water industry due to its potential application as
a monitoring technique. An advantage of fluorescence techniques over traditional methods, such as
UV254 and colorimetric tests, is the better sensitivity and selectivity (Bridgeman et al. 2011). The
3-D fluorescence Excitation–Emission Matrix (EEM) spectrophotometric technique gives a 3D con-
tour map of excitation wavelength vs. emission wavelength vs. fluorescence intensity and visualises a
range of different fluorophores covering the excitation and emission wavelengths range from 250 nm
to 500 nm (Figure 2.6).

Figure 2.6: Landscape (A) and contour (B) plots of an EEM of Suwannee River Fulvic Acid.
From Ryder et al. (2017).

11



The combination of the intensity of each component within a sample makes up for the total fluores-
cence signal at any excitation-emission pair in the EEM. Spectroscopic EEM measurements can be
performed directly on complex DOM mixture. Often the signals of different fluorophores overlap, pre-
senting a challenge for the interpretation of the 3D plot. A variety of advanced data analysis techniques
exist for the understanding of fluorescence EEM including peak picking (Coble 1996), fluorescence
regional integration (FRI) (Chen et al. 2003), Principal Component Analysis (PCA) (Persson & Wed-
borg 2001), PARallel FACtor (PARAFAC) analysis (Murphy et al. 2013b, Stedmon & Bro 2008) and
Self-Organizing Maps (Bieroza et al. 2011). In the chemical sciences, PARAFAC analysis introduced
by Harshman (1970) is used to decompose trilinear multi-way data arrays and facilitates the identifica-
tion and quantitation of independent underlying signals, termed ‘components’ (Murphy et al. 2013b).
For each component (analyte), the pure excitation and emission spectra are found as well as their rel-
ative concentration in the sample. Cuss & Guéguen (2015) included a clear figure of the PARAFAC
process of their samples as shown in Figure 2.7.

Figure 2.7: Example of PARAFAC decomposition of leaf leachate. A data set of EEMs (A) is
decomposed into six characteristic fluorescent components (B), followed by recomposition to
achieve semi quantitative differentiation between the A. Saccharinium and P. Glauca samples
(C). Each of the two samples has a different relative composition of the six fluorophores. From
(Cuss & Guéguen 2015).
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Top left (A) the EEMs of various samples are shown stacked on top of each other creating a data array
with fluorescence signal intensity as content. After PARAFAC decomposition using six components
these six components are visualised at the bottom (B). Then, for two samples (A. saccharinium and
P. Glauca) the relative presence of each component is given in percentage (C). For example, in the A.

saccharinium sample the signal of the first fluorophore (here called C1) makes up for 32.2% of the
total fluorescence signal, while in P. Glauca C1 makes up for 63.9% of the total fluorescence signal.

In raw water, EEMs typically contain two major fluorescence peaks described as humic-like and
protein-like fluorescence maxima (Wu et al. 2003, Baghoth et al. 2011). Humic-like fluorescence
can be divided in humic-like and fulvic-like fluorescence (Chen et al. 2003), while protein-like flu-
orescence includes tryptophan-like and tyrosine-like fluorescence (Hudson et al. 2008). Tryptophan
(e.g., traditionally defines peak T) has its excitation/emission wavelengths at 270–290 / 340–360 nm,
while tyrosine (e.g., traditionally defines peak B) has its peak maxima at 270–280 / 300–320 nm (Hud-
son et al. 2008, Sillanpää et al. 2014, Yang et al. 2015). These components have been associated with
an autochthonous source (Coble et al. 2014) and are believed to be compounds containing at least
one aromatic ring (Barsotti et al. 2016), including amino acids, DNA, lignin, and polycyclic aromatic
hydrocarbons (PAHs). (Carstea et al. 2016). Detection indicates possible microbial activity (Elliott
et al. 2006, Henderson et al. 2009), more specifically, microbial metabolic activity (Fox et al. 2017).

Humic-like components show variations within different studies, commonly ranging between Ex/Em
maxima 250–400 / 372–495 nm. Compounds contributing to these region contain two or more aro-
matic rings (Barsotti et al. 2016), are from an allochthonous origin of terrestrial input (Coble et al.
2014) and include among other things humic substances, lignin, PAHs, aromatic ketones, quinones
and flavonoids (Carstea et al. 2016, 2020, Coble et al. 2014).

2.1.5 BDOC and AOC

BDOC and AOC can be quantified by biological tests. The BDOC concentration is determined as
the difference between the initial maximum DOC concentration and the minimum DOC concentration
observed after an incubation period (Escobar & Randall 2001). Hammes & Egli (2005) developed a
method for AOC detection using flow-cytometric enumeration and a natural microbial consortium as
inoculum. In the method a water sample is inoculated by the natural microbes and incubated at 30 °C.
Samples are taken between 0 and 23 h and cell enumeration during the linear growth phase determined
by flow-cytometry. The growth rate for the natural microbial consortium is finally determined and
converted to AOC with help of a conversion factor. So, while biodegradable organic matter is best
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measured by the collective measure of BDOC and AOC under aerobic conditions (Servais 1994, Terry
& Summers 2018), the bulk measurement DOC is still commonly reported when studying the removal
of DOM in drinking water systems.

2.2 Water sources and treatment

The composition of DOM is dependent on water source. Scottish Water uses a variety of drinking
water sources varying in their water composition and quality. There are lochs and reservoirs (183
sources), rivers and burns (171 sources), and boreholes and springs (87 sources) (Drinking Water
Quality Regulator 2020a). Water of these sources is treated by one of the 233 Water Treatment Works
(WTW) ranging from large supplies providing water to whole cities to very small works that serve
only small communities consisting of a few properties. The water signature determines what type of
treatment technique is required. Water from springs and boreholes is generally of a higher quality and
only requires simple filtering followed by disinfection. Upland water sources such as streams, lochs,
and reservoirs, need additional treatment processes. More extensive treatment is required for water
from lowland sources such as rivers, as it can contain pollutants.

In most cases, the first step in water treatment is the removal of leaves, weeds, and sticks by mesh
screens. Second, particulate matter needs to be removed. Various treatment options are available for
this second step. Often, coagulation using alum (aluminium sulphate) is used to help bind impuri-
ties and colloids together, followed by flocculation in which polymers are added to further increase
the size of the particles formed during coagulation. The aggregates created from the coagulation and
flocculation processes then form themselves into a suspended mass called a sludge blanket, and this
blanket is removed by sedimentation, and water is then allowed to settle in tanks. Third, rapid gravity
filtration is used to remove remaining impurities through direct filtration using sand or a mixture of
coal and sand. Granular Activated Carbon (GAC) is typically used for the removal of trace contam-
inants, like taste and odour compounds (American Water Works Assocation 1999, Crittenden et al.
2005, Velten et al. 2007). Finally, disinfection with chlorine, chloramination or UV is essential to
ensure that water-borne diseases are eliminated, and that the drinking water that is supplied meets The
Public Water Supplies (Scotland) Regulations 2014.

The quality of supplied water is regulated by the Drinking Water Quality Regulator for Scotland,
who make sure that drinking water supplies meet the requirements (Drinking Water Quality Regulator
2020a, Scottish Statutory Instruments 2015). Microbial water quality is monitored by its Coliform, E.
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coli, and Clostridium perfringens content. The chemical water quality on the other hand include pH,
turbidity, metals (aluminium, iron, lead, manganese, and nickel), nitrite, odour, taste, radon, benzo-
3,4-pyrene, and more. TOC and DOC are not regulated via a threshold limit. As long as there is no
abnormal change, the quality is guaranteed (Scottish Statutory Instruments 2015). However, organic
substances (predominantly humic and fulvic acid) can give the characteristic yellow-brown colour,
odour and taste.

Water quality is measured at different points in a water chain: after treatment at the WTW, in service
reservoirs (storage points), and at consumer’s tap. In 2020, 67,373 tests were done at the WTWs of
which only 30 (0.04%) failed, while 137,681 tests taken at consumers taps of which 99.95% complied
with the standards (Drinking Water Quality Regulator 2020a), demonstrating the high quality water
Scottish Water produces. A full list of all monitored parameters are presented yearly by the Drink-
ing Water Quality Regulator (Drinking Water Quality Regulator 2020b). The failed samples mostly
struggled with coliform, manganese, and iron (Drinking Water Quality Regulator 2020b). Coliforms

are a group of bacteria widely found in the environment, however, they should not be present in the
water supply (Eden 2014). Manganese and iron are widely abundant elements in nature and serve as
micronutrient (Grose et al. 1998). Elevated levels impair drinking water quality, as both metals cause
discolouration of water, though, it is unlikely to be harmful to health from short-term or long-term
exposure (Frisbie et al. 2012, Drinking Water Quality Regulator 2020a). In Scotland, undesirable
DOC, manganese (> 0.05 mg/L) and iron concentrations (>2 mg/L), occur predominantly in upland
freshwaters (northern and western parts of Scotland) (Heal 2001). These upland waters are very soft,
exhibiting low mineralization, but contain high concentrations of DOC, iron, and manganese. The
organic nature of catchment soils and acidic pH favour manganese and iron mobilisation (Grose et al.
1998, Heal 2001).

Overall, high quality water is produced in Scotland, but the installation, maintenance, and management
of the systems are costly, especially in small rural areas. Moreover, these traditional systems leave a
large carbon footprint. Scottish Water had an operational carbon footprint for drinking water treat-
ment in 2018/19 of 62,560 tCO2e (tonnes of carbon dioxide equivalent) (Scottish Water 2019). Grid
electricity together with process emissions contributed the most to the carbon footprint, see Figure 2.8.
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Figure 2.8: Greenhouse gas emissions footprint by source 2018/19. From Scottish Water (2019).

2.3 Biofiltration

An economical and environmental friendly water treatment technique is biological activated filter
treatment (Korotta-Gamage & Sathasivan 2017). Biofiltration can be a stand alone process or part
of a treatment train, for example, placed after sedimentation. These systems can consist of the previ-
ously mentioned GAC material, sand, or anthracite with microbial communities living on the granules.
Biodegradable organic matter is the primary substrate for aerobic heterotrophic growth in these biofil-
ters (Peterson & Summers 2021), thereby removal part of the DOC concentration. Although biofilters
might be a promising alternative for water treatment, the filter process is complex and still poorly un-
derstood (Wu et al. 2018). Biofilters include bank filtration systems (Jeyakumar et al. 2017), slow sand
filters (Guchi 2015), and rapid-rate biofilters (Simpson 2008, Terry & Summers 2018). This review is
limited to slow sand and rapid-rate BAC filters, as the slow flow BAC filter, central in the project, is a
compromise between these two techniques.
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2.3.1 Slow and rapid sand filtration

Slow sand filtration are single stage filtration systems that have demonstrated excellent removal of
pathogens, while still being able to remove DOM, and other unwanted compounds. These biologi-
cally driven systems have low maintenance and a low carbon footprint. Slow sand filtration dates back
to 1829 in Paisley, Scotland, where John Gibb supplied water to the city from the slow sand filtration at
his bleachery (Baker 1948). Slow sand filtration has been recognised as a simple, reliable and efficient
treatment technology and a most effective unit treatment process in improving water quality (Galvis
et al. 2002). It can be a good alternative to coagulation, sedimentation, and rapid gravity filtration. A
schematic representation of a sow sand filter design is given in Figure 2.9.

Figure 2.9: Schematic representation of a slow sand filter. Water flows into the tank and travels
down through a sand filter medium covered with a Schmutzdecke to exit at the water outflow.
Microbes live in this Schmutzdecke and facilitate the removal of pathogens and biodegradable
organic matter. From Bielefeldt (2011).

The principle of slow sand filtration is simple. Only a supernatant water layer, sand bed, gravel and an
outlet hose are required for the system to work. The supernatant water layer provides a head of water
that drives the water through the filter bed. This filter bed is usually sand, because of its low costs and
durability. The gravel at the bottom provides a support for the filter sand bed and prevent the sand from
clogging the underdrain piping. The water passes the filter bed through gravity with a retention time
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of several hours. Inert particles, organic material, and microorganisms such as bacteria and viruses
are being removed by physical filtration and biological degradation in the sand bed. Most of these
processes happen at the top of the filter, where deposits of particulate and algal matter, combined with
dense biomass, form a layer called a Schmutzdecke (Guchi 2015). Periodically, the Schmutzdecke
needs to be skimmed of and the sand needs washing.

Slow sand filtration is an appropriate technology for drinking water treatment in rural areas, as it
improves the physical, chemical, and microbiological quality of water in a single treatment process
without the addition of chemicals, and can produce an effluent low in turbidity and free of bacteria,
parasites and viruses (Guchi 2015). However, slow sand filtration does not always remove all harmful
substances to the extent required by relevant drinking water quality standards, much depending on the
nature, composition, and concentration of the components in the influent waters (Galvis et al. 2002).
When using disinfection the necessity of full bacterial and suspended material removal is lower, and
over the years rapid sand filtration has become a good alternative as they can process a lot of water
with a smaller footprint (Yamamura 2014). Table 2.1 gives the slow sand treatment efficiencies as
collected by (Galvis et al. 2002) which have been achieved in filter units operated at filtration rates
in the range of 0.04 and 0.20 mh-1, temperature above 5°C, and sand bed depths greater than 0.5 m.
From the treatment efficiencies it is clear that slow sand filtration works very well for the removal of
microbial contamination. Also, the BDOC fraction (mean 60%) is reduced significantly.

TOC removal ranges from <15-25% and UV-254 from 5-35%, meaning that a part of the organic
carbon removed includes aromatic fractions. Still, some TOC remains which might result in water
with noticeable colour, smell, and taste. Indeed, slow sand filtration is not considered an effective tool
for removal of colour in the water. In combination with coagulation and disinfection, the necessity
of full bacterial and suspended matter removal is lower, and over the years rapid sand filtration has
become a good alternative as it can process a lot of water at a narrower site (Yamamura 2014).
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Table 2.1: Slow sand filter treatment efficiencies in filter units operated at filtration rates in the
range of 0.04 and 0.20 mh-1, temperature above 5°C, and sand bed depths greater than 0.5 m.
From Galvis et al. (2002)

Parameter Removal Comments

Enteric bacteria 90-99.9%
Reduces by low temperature, increased

hydraulic rates, shallow sand beds
and decreased contaminant level

Enteric viruses 99-99.99%

Giardia cysts 99-99.99%

Turbidity <1 NTU
The level of turbidity and

the nature and distribution of
particles affect treatment

Pesticides 0-100% Affected by the rate of biodegradation

DOC 5-40%
Mean around 16%.

Removal appears to be site specific
and varies with raw water and OM character

UV-absorbance (254 nm) 5-35%

True colour 25-40%
30% average, with colour associated

with organic material and humic acids.

UV-absorbance (400 nm) 15-80%
Mean 34%, but upland water sources
42% and lowland water sources 26%

TOC;COD <15-25%

AOC 14-40% Mean 26%

BDOC 46-75% Mean 60%

Iron, manganese 30-90% Fe levels>1 mg/L reduce the filter runs
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2.3.2 BAC filtration

Rapid-rate BAC filtration is an alternative environmentally friendly method for the removal of bioavail-
able organic compounds that also needs low maintenance. The main objective of a rapid-rate BAC
filters is biodegradable organic matter removal, rather than the control of microbial pathogens. In
textbooks, rapid-rate BAC filtration is often not identified as a specific water treatment process, it is
rather discussed in connection with biological activity in GAC filters (Juhna & Melin 1985). Although
rapid-rate BAC filtration can have various media, adsorbates as well as non-adsorbates, many use ad-
sorptive GAC.

Using GAC, the process could be described in three stages: physical adsorption, concurrent adsorp-
tion/biological degradation and biological degradation on its own (Aktaş & Çeçen 2007a, Simpson
2008). While biodegradable organic matter in non-adsorptive media filters only takes place after mi-
crobial communities have colonized the filter, adsorption by the GAC results in removal of DOM
even before biodegradation has started (Brown et al. 2020, Simpson 2008). Terry & Summers (2018)
performed a comprehensive literature data analysis in which the various operational conditions of
rapid-rate BAC filtration experiments were compared as well as their treatment efficiencies. They
found that the biofilters (n = 117) operating in an Empty Bed Contact Time (EBCT) range of 2-38
min removed 12% (median) of the influent TOC. Rapid-rate BAC filtration is therefore considered an
adequate method for the removal of biodegradable DOM.

Granular Activated Carbon

Activated carbon is the general term used to describe carbon-based materials which contain internal
pore structures. Various carbonaceous rich materials can be used to produce activated carbon such
as coal, coconut shell, wood, and lignite. Activated carbon has a large porosity, high surface area,
pore structure consisting of macro-, meso-, and micropores as well as a wide variety of functional
groups present on the activated carbon surface. The functional groups carboxyl, carbonyl, phenols,
lactones, quinones are responsible for the uptake of pollutants. The functional groups as well as
the size of the pores are derived from the activation process, precursors, thermal treatment and post
chemical treatment (Bhatnagar et al. 2013). How the activated carbon is modified will determine
the performance of the activated carbon for specific contaminant removal. Bhatnagar et al. (2013)
wrote a comprehensive review about the various activated carbon modification methods. For instance
acid treatment of carbon increases the acidic property, removes the mineral elements, and improves
the hydrophilic nature of surface. Base (alkaline) treatment of activated carbon produces positive
surface charge which contributes to the adsorption of negatively charged species in higher amounts.
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In drinking water biofilter, basic modified GAC is often used which more easily adsorbs the negatively
charged DOM.

Adsorption

The adsorption of molecules onto the GAC is a combination of (1) pore filling and (2) interaction of
the adsorbates with the carbon medium (MacDonald & Evans 2002, Terzyk 2004), see Figure 2.10.
Pore filling is only possible if the molecules fit into the GAC pore space (Gauden et al. 2014, Kowal-
czyk et al. 2010) and volume (Deng et al. 2017). Pores larger than 50 nm in diameter are classified as
macropores, pore sizes between 2 - 50 nm are classified as mesopores, and pores smaller than 2 nm
are called micropores. Small pollutants are more likely to adsorb in micropores, DOM in mesopores
and bacteria in macropores (Moreno-Castilla 2004).

Not only pore filling, but also GAC-adsorbate interaction is an important part of the adsorption pro-
cess. It consists of non-electrostatic and electrostatic interactions, of which hydrophobic attraction is
part of the non-electrostatic interactions (Figure 2.10) (Karanfil & Dastgheib 2004, Kołodziej et al.
2014, Matsui et al. 2015, Moreno-Castilla 2004, Nam et al. 2014, Pendleton et al. 2002, Rivera-Utrilla
et al. 2001). DOM like humic acids, fulvic acids and other hydrophobic compounds, will have more
frequent hydrophobic attraction (Leenheer & Croue 2003). On the other hand, hydrophilic compounds
of DOM like sugars, proteins, amino sugars and amino acids will tend to be more hydrophilic and wa-
ter soluble (Matilainen et al. 2010, Sillanpää et al. 2014) and therefore less attracted to hydrophobic
GAC. H-bonds can be formed between molecules and functional groups on the GAC. In basic GAC
the nitrogen-containing groups can enhance the interaction between carbon and acid molecules via
dipole–dipole, H-bonding, or covalent bonding (Bhatnagar et al. 2013).

Figure 2.10: Adsorption processes taking place in GAC.
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Electrostatic forces attract negatively charged compounds to the slightly positively charged carbon
surface (Bjelopavlic et al. 1999, Kołodziej et al. 2014, Li et al. 2003, Liang et al. 2018, Nam et al.
2014, Terzyk et al. 2012). Kołodziej et al. (2014) studied the adsorption of humic acids by GAC. They
found that a more alkaline carbon surface increased the uptake of humic acids, as the GAC was more
positively charged and the DOM negatively charged at pH 7 (Bhatnagar & Sillanpää 2017, Kołodziej
et al. 2014, Matilainen et al. 2010, Simpson 2008, Yapsaklı et al. 2009). In this case, a combination of
dispersion forces and electrostatic interactions enhance attraction (Kołodziej et al. 2014, Newcombe
et al. 1997). Kołodziej et al. (2014) also found that for negatively charged GAC the humic acid ad-
sorption was much lower, as the electrostatic interactions repelled the GAC and humic acids.

According to Velten et al. (2011), the degree of adsorption of NOM fractions on GAC increases
with decreasing molecular size (humic < building blocks < LMW organics), while the biopolymers do
not adsorb. Greater portions of the internal GAC surface area can be accessed if NOM size is smaller
(Bhatnagar & Sillanpää 2017). This depends of course on the size of the GAC pores, of which micro-
pores are the most suitable for NOM adsorption (Ando et al. 2010, Bjelopavlic et al. 1999). During
adsorption of organic matter, the adsorption capacity decreases rapidly over time (Crittenden et al.
2005, Gibert et al. 2013, Simpson 2008, Velten et al. 2011a) GAC filtration is therefore not considered
as an effective treatment technology for the removal of these larger fouling components, but rather for
NOM with larger percentage of LMW NOM (Velten et al. 2011a).

Adsorption kinetics

Under unsaturated conditions GAC has a bimodal pore size distribution (De Smedt & Wierenga 1979,
Gauden et al. 2007, Nguyen & Do 2000, 1999), meaning that the pores sizes can be divided into two
groups, the larger pores, and the smaller pores. The larger pores are the areas where water can run
through more easily, while the smaller pores are like a sink or a source for adsorbates (De Smedt &
Wierenga 1979). In many studies the adsorption isotherm of molecules on GAC is best described
by the Langmuir isotherm (Demiral & Gündüzoǧlu 2010, Faria et al. 2004, Foo & Hameed 2010,
Ouakouak & Youcef 2017). The Langmuir adsorption isotherm assumes that that one active site can
bind one molecule and adsorption is reversible. It is known that adsorption kinetics is dependent on
various factors such as mass transfer, diffusion control, chemical reactions, and particle diffusion. The
kinetic of the adsorption process most often follows the pseudo-second-order or intraparticle diffusion
kinetics model (Álvarez-Torrellas et al. 2016, Demiral & Gündüzoǧlu 2010, Kołodziej et al. 2014,
Pohlman 1940). A schematic overview of the diffusion steps is given in Figure 2.11.
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Figure 2.11: Schematic overview of diffusion of molecules from the mobile phase to the
immobile phase within the pores of the GAC. From Liu et al. (2021).

The water in the larger pores is considered as mobile phase and the water in the smaller pores as
immobile phase. Adsorption kinetics is thought of a adsorption of molecules in the mobile phase to
larger pores walls (A) followed by the diffusion of such adsorbed molecules into small micropores
through the pore mouth barriers (B) (Kołodziej et al. 2014, Nguyen & Do 2000, Pohlman 1940). This
diffusion (also called retarded pore diffusion) continuously removes molecules from the large pores
as long as the concentration in the mobile water/large pore adsorption sides is higher than that of the
immobile phase ‘pushing’ the molecules into the micropores. This diffusion is much slower than the
adsorption of molecules in the macropores and is therefore rate limiting step. The opposite also holds,
when molecules are leaching from the filter the concentration in the small pores is high and molecules
will travel via the large pores to the water that leaves the filter.

Figure 2.12 shows the difference in adsorption between the larger and smaller pores. Molecules ad-
sorb via an equilibrium to the wall of the larger pores. At first the concentration around the micropore
mouth increases and retarded pore diffusion brings these molecules into the micropore where the im-
mobile phase is and the concentration still low. In the micropore the molecule adsorbs onto the wall
via an equilibrium. When the concentration of the molecules in the immobile phase of micropores
increases to a concentration that exceeds the concentration of the mobile phase in the large pore, the
molecules diffuse back again. When all adsorption sites at the mobile phase are occupied, the removal
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will continue with the rate of the diffusion of molecules into the immobile phase. As a result, there is
not enough time to adsorb all molecules that passes a filter and therefore an initial breakthrough (but
not full) will take place. Adsorption via the micropores continues with this slow removal continuing
for a long period of time, also known as tailing (Pohlman 1940). If a greater part of the GAC contains
small pores, there is more immobile water resulting in a quicker initial breakthrough and longer tail-
ing (slow removal). The lower the micropore content of the GAC, the more mobile water there is, the
longer it takes until initial breakthrough and the shorter the tailing (Pohlman 1940).

Figure 2.12: Adsorption of humic substances onto different types of activated carbon with
AC/H = hydrogen treated activated carbon, AC/N = ammonized activated carbon, AC0=
normal activated carbon. All three filter types show a clear bent in their curve, where the
first part is the adsorption of molecules to the large pores and the second less steep part is
the adsorption of the molecules in the smaller pores. Difference in adsorption rate is the
result of retarded diffusion, the rate limiting step of the total adsorption. From Kołodziej
et al. (2014).

Biodegradation

The shift in adsorption processes to biological processes takes place when the GAC is getting satu-
rated and simultaneously bacteria start to colonize the GAC material. The biofilm is described to be
in an acclimation phase (Servais 1994, Simpson 2008). In this process activated carbon is enriched
with DOM, nutrients and high oxygen concentrations (Ghosh et al. 1999, Simpson 2008, Stewart et al.
1990). Microorganisms naturally present in the water attach to the GAC media surface.The rough
porous surfaces of the granular particles serve as immobilization sites (Scholz & Martin 1997, Ser-
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vais 1994). There they multiply and form a colony as they feed on the rich supply of adsorbed and
entrapped organic matter, waterborne nutrients and other microorganisms (Korotta-Gamage & Satha-
sivan 2017, Simpson 2008). This colony forms a matrix to help keeping the structure together and
develops into a mature biofilm. The environment within the biofilter can support the growth of a wide
variety of naturally occurring microorganisms (Simpson 2008).

The biofilm that grows on the filter material is capable of biodegrading a significant fraction of nu-
trients entrapped in the GAC pores, DOC adsorbed to the GAC surfaces and other contaminants,
minerals and microorganisms in the raw water (Zhang & Huck 1996). These biological processes start
to remove biodegradable organic matter (Servais 1994) and these processes are even able to remove
recalcitrant biodegradable organic matter (Korotta-Gamage & Sathasivan 2017). While the microbial
community is growing, the second stage of concurrent adsorption and biological degradation process
takes place. The saturation of the GAC continues, and finally the DOC removal is completely replaced
by biological degradation, reaching a steady state (Simpson 2008). The common understanding is that
in steady state the removal of DOC during biofiltration is controlled by the biomass concentration
(Carlson & Amy 1998). However, the relationship between biomass and DOC removal is not linear
(Urfer et al. 1997, Wang et al. 1995), and an increased biomass does not automatically mean a similar
increase in DOC removal.

A graphical representation of these processes is given in Figure 2.13 on the following page. A biofilter
made from inert media such as sand requires sufficient operational time until the biofilter is starting to
remove TOC. When using GAC the initial TOC removal is high and decreases over time as a result of
exhaustion. Concurrently, biodegradation starts to play a role and after sufficient time, the filter solely
relies upon microbial breakdown of TOC. At this point the filter is referred to as a BAC filter. The
transition from GAC filter to BAC filter is time dependent (Velten et al. 2011a), and much still remains
unclear about when the filter can actually be called a true BAC filter. It is believed that a steady state
biofilm and DOC effluent concentration is reached after 90 days in slow sand filter systems (Boon
et al. 2011, Feng et al. 2010, Velten et al. 2011a). For a BAC filter, determining steady state is much
more complicated. This problem is clearly set out by Peterson & Summers (2021), who observed in
their metadata study of 89 wastewater treatment biofilter studies, the median TOC removal for biofil-
ters with less than 10,000 Bed Volumes (BV; the number of times that water has passed the filter bed)
treated was nearly four-fold higher than for those with greater than 40,000 BV treated, 70% and 18%,
respectively. Under steady state conditions the average TOC removal should be independent of BV
throughput and TOC removal is expected to be similar between the 10,000 and 40,000 BV (Peterson
& Summers 2021), which was clearly not the case. When they reclassified the data set for adsorptive
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Figure 2.13: TOC removal acclimation for a GAC filter, which becomes a BAC filter once
the adsorption capacity is exhausted. Initial removal is dominated by adsorption, while at
apparent steady state the removal is dominated by biological removal. Based on Terry &
Summers (2018)

biofilters media filters in steady state as “BAC” when throughput exceeded 20,000 BV or when rela-
tive throughput was 1.0 or higher and as “GAC” when neither threshold was achieved, they found that
of 89 filters, 40 were classified as “GAC”. Peterson & Summers (2021) demonstrated that a significant
part of the filters were wrongly described as steady state BAC filters. The reported TOC removal in
the original studies was, due to the low BV, probably influenced by adsorptive processes.

Why are BAC filters often wrongly classified? According to Peel & Benedek (1980), after a rapid fall
in adsorption efficiency to a lower level the removal actually continues, virtually unchanged, over an
extended period of time, as a result of slow adsorption. The adsorption phase can last for months or
longer depending on the characteristics of the adsorbate and adsorbent (Peterson & Summers 2021).
For example, slow adsorption of large molecular weight DOM into GAC micropores can take months
(Peel & Benedek 1983). In various water treatment operations these types of breakthrough curves
(such as Figure 2.12) have been observed and have been wrongly assumed to be caused by biological
removal following an initial period of high adsorptive uptake (Peel & Benedek 1983), while actually
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all removal could be ascribed to some form of adsorption. Moreover, the sorption process can con-
tinue on the surface of the biofilm covering the filter media (Klimenko et al. 2002, Quintelas et al.
2010), which is referred to as biosorption. The apparent steady state can therefore be easily mistaken
for steady state behaviour.

Colonisation, substrate utilization and stratification

Alongside (slow) adsorption, microbial communities start to inhabit the filters (Simpson 2008). Most
of the microorganisms present in the biofilter live in a biofilm. Biofilms consists of microbial cells
either immobilized at the surface of the GAC (substratum) or embedded in an extracellular polymeric
substances (Simpson, 2008). The GAC pores (1 - 100 nm) are often too small for the bacteria (> 200
nm) to enter. Biofilms in biofilters contains bacteria, both aerobic and anaerobic, as well as proto-
zoa which are grazing on the bacteria (Juhna & Melin 1985). The type and structure of bacteria is
dependent on water chemistry and composition of DOC. As previously mentioned, the colonisation
of microorganisms of the BAC filter requires a carbon source. These carbon molecules can be ex-
tracted from the water that passes through the filter, or from the GAC on which they adsorb (Herzberg
et al. 2003). Understanding of the way microorganisms access these substrates is limited. Different
theories are proposed that describe this multistep biological/physical process. Various studies use the
theory of the bioregeneration of the GAC material (Aktaş & Çeçen 2006, 2007b, De Jonge et al. 1996,
El Gamal et al. 2018, Hanaki et al. 1997, Herzberg et al. 2003, Nath & Bhakhar 2011, Sirotkin et al.
2001). Bioregeneration of activated carbon involves the use of microbial communities to regenerate
the capacity and surface of the carbon (El Gamal et al. 2018). Two methods of bioregeneration as
pointed out by El Gamal are (1) bioregeneration through concentration gradient and (2) due to ex-
oenzymatic reaction. (1) A concentration gradient causes desorption of organics into the bulk solvent
and when microbes metabolize adsorbed contaminants, the equilibrium is shifted resulting in further
desorption. (2) The exoenzymatic hypothesis was introduced by Perotti-Rotman (1974) and explains
that substrates are biodegraded after desorption from the GAC. Bacteria are too large to enter the
micro- and mesopores of the GAC where the substrates are adsorbed. Exocellular enzymes, however,
can enter these pores and react with the substrates. The reaction products show weak adorability and
diffuse out of the pores, where they are biodegraded by the bacteria.

However, Xiaojian et al. (1991) evaluated this theory by looking at the properties of enzymes and
the distribution of exoenzymes in the carbon pores. They concluded that the theory of Perotti-Rotman
was incorrect, and substrates can only be removed by either biodegradation or adsorption. Velten et al.
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(2011) concluded that NOM adsorption is irreversible. In their entire study period, concentrations of
all NOM fractions decreased along the length of the filter bed. According to them this observation
suggests that displacement of one adsorbed NOM fraction by another did not occur and that humics,
building blocks, and LMW compounds adsorbed irreversibly. This could indicate that adsorbed car-
bons are not available to the microbes.

The highest concentration of biomass is present at the top of the filter and decreases with increas-
ing filter depth (Boon et al. 2011, Chen et al. 2016, Liao et al. 2013, Moll et al. 1999, Persson &
Wedborg 2001, Urfer & Huck 2001, Velten et al. 2011, Wang et al. 1995, Zhang et al. 2016). The
high biomass content in the top is a direct result of the highest concentration of the bioavailable DOM
present in the top of the filter. Indeed, (Velten et al. 2011) demonstrated that the DOM concentration of
their O3/BAC filter from start-up with virgin GAC media was the highest concentration in the top and
decreased through filter depth, similar to the biomass. Also Liao et al. (2013) showed in their BAC fil-
ter a decline in AOC and DOC concentration with depth. Chen et al. (2016) showed in their pilot-scale
biofilter treating raw water that DOC, biopolymers, and to a lesser extent humic substances concentra-
tion decreased through filter depth, while there was no clear trend for lower MW building blocks and
acids. Zhang et al. (2016) monitored dissolved organic nitrogen and other physiochemical parameters
through filter depth and demonstrated a decrease in the pH, dissolved oxygen, and nitrite, while DOC,
and ammonium did not change, and nitrate increased. These results suggest that the greatest level of
DOM removal occurs at the top of the filter, resulting in the highest biomass content in the top layer.
However, Chen et al. (2016) demonstrated that the percent removal of FEEM protein-like materials
and LC-OCD biopolymers increased with increasing bed depth. Especially biopolymers demonstrated
a high removal. The percent removal of humic-like materials was consistently low (<13%) but also
increased for increasing media depth, similar to low MW neutrals. LC-OCD B and LMW acids did
not have any distinct removal trend.

In the study conducted by Boon et al. (2011) the removal efficiency was taken as the percent re-
moval per biomass which demonstrated that the highest DOC removal efficiency was found in the
bottom of the filter. This was especially the case for humic substances and building blocks. It appears
that the bacteria able to degrade more recalcitrant carbon are living deeper in the filter (Boon et al.
2011, Juhna & Melin 1985). Indeed, the study conducted by Velten et al. (2011a) that demonstrated
a DOC gradient through filter depth in the maturing biofilter showed that at the start of the biofilter
acclimatisation bacteria in the bottom layers are deprived of easily available DOC. The adsorption in
the top of the filter creates a nutrient-rich micro-environment on the surface of the GAC granules that
is favourable to biological growth (Herzberg et al. 2003, Li & DiGiano 1983, Urfer et al. 1997).
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2.3.3 Design parameters

Although a biofilter is working via a natural process, the design of the filter and the operational set-
tings influence its performance. There are various factors influencing biofilter performance which are
comprehensively set out in various studies (Basu et al. 2016, Korotta-Gamage & Sathasivan 2017,
Peterson & Summers 2021, Terry & Summers 2018). Physiochemical parameters of the influent water
that most significantly affect BAC performance include DOM concentration and characteristics, avail-
able nutrients (Lauderdale et al. 2012, Nemani et al. 2018), temperature (Emelko et al. 2006, Moll
et al. 1999, Moona et al. 2018), turbidity, and pH (Korotta-Gamage & Sathasivan 2017). Operational
settings that have an influence on DOM removal include the type of medium (Emelko et al. 2006,
Lechevallier et al. 1992, Persson et al. 2006, Yapsakli & Çeçen 2010), water pre-treatment (Laud-
erdale et al. 2012, Lechevallier et al. 1992, Yapsakli & Çeçen 2010), renewal of material (Moona et al.
2018), backwashing strategies (Emelko et al. 2006, Liao et al. 2014), as well as EBCT (Arnold et al.
2018, Basu et al. 2016, Chowdhury et al. 2010, Emelko et al. 2006, Korotta-Gamage & Sathasivan
2017, Lechevallier et al. 1993, Terry & Summers 2018, Thiel et al. 2006). The filter media and EBCT
will be discussed in more details because these two parameters were controlled in the biofiltration ex-
periment. Temperature control, pre-treatment, and backwashing were outside the scope of this study.

Media selection

Various granular materials can be used in biofilters such as sand, GAC, anthracite, and expanded
ceramics. A survey of 38 North American utilities found biofilter media configurations were predom-
inantly anthracite/ sand (37%) and GAC/sand (37%), while GAC alone (23%) and sand alone (3%)
designs were less abundant (Terry & Summers 2018).

Often, GAC is used for biofilter media as it offers several advantages over inert media including better
TOC removal. It has to be kept in mind that performance of biofilters that use GAC as media can be
substantially higher due to residual TOC adsorption capacity when prior throughput and influent TOC
are low (Basu et al. 2016). Another benefit of GAC is that it supports more dense microbial popula-
tions than sand or anthracite (i.e. 4 to 8 times more biomass per gram of media), due to a combination
of factors including porosity, surface area, surface roughness, surface charge and adsorption capacity
(Basu et al. 2016). The higher microbial density is expected to translate into higher BDOC removal
within a biofilter. The metadata analysis by Peterson & Summers (2021) on 118 wastewater treatment
studies (of which the BAC filters had processed over 20,000 BV) indeed found a slightly higher TOC
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removal by the GAC compared to the inert media; 23% by GAC and 15% by inert media (Figure
2.14).The largest differences between GAC and inert material in TOC removal were on approximately
24 percentage points higher in BAC filters; these studies used long EBCT, 60 min and 40 min, respec-
tively (Farre et al. 2011, Reaume et al. 2015) .

Also for drinking water treatment, a selection of paired studies that evaluated both inert and BAC
media (with 20,000 + BV) under the same operational conditions report on average a higher TOC
removal with BAC media than inert media similar to that shown in Figure 2.14, with some exeptions
(Bourgin et al. 2018, Chowdhury et al. 2010). Overall, there is evidence that BAC media can be
expected to outperform inert media. However, when very large differences are noticeable this may
indicate non-steady state behaviour in the BAC which should be further evaluated.

Figure 2.14: Boxplot of TOC removal by inert (n=68) and BAC
(n=50) media from various biofiltration studies. Results demon-
strate the higher removal of TOC by BAC. From Peterson & Sum-
mers (2021).
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Empty bed contact time

One of the crucial parameters that impacts DOM removal efficiency is the EBCT (Basu et al. 2016,
Korotta-Gamage & Sathasivan 2017, Peterson & Summers 2021, Terry & Summers 2018). It is the
measure of the water residence time in the biofilter which is calculated by the filter media depth di-
vided by the flow rate. The influence of EBCT on DOM removal has previously been studied by
sampling a biofilter at different depths (Boon et al. 2011, Chen et al. 2016, Chowdhury et al. 2010,
Emelko et al. 2006), using different loading rates (Moona et al. 2021) or different filter lengths. This
parameter should be optimized as long as the chosen settings do not conflict with the hydraulic effi-
ciency or particle removal goals. Moreover, there is also a practical limit or threshold as increasing
EBCT either results in longer filter bed depths at a set high loading rate, or more filter area (larger
filters) at a set filter depth.

TOC removal is independent of the rate the water goes through the filter (filtration rate) as long as the
EBCT remains constant (Servais 1994). Increasing the BV increases the EBCT and thereby increas-
ing the DOC removal (Korotta-Gamage & Sathasivan 2017). Similarly, increasing the filtration rate,
decreases the EBCT and thereby decreasing the DOC removal (Carlson & Amy 1998). A decreased
DOC removal as a result of an increased filtration rate may also be due to bad filter acclimatization
(Basu et al. 2016). In other words, the biomass is unable to assimilate the dissolved carbon substrates
as efficiently at this higher loading rate. There is not time for the biomass to reacclimate to the new
biofilter conditions (Carlson & Amy 1998).

In wastewater treatment studies, the EBCT had a significant impact on the DOM removal. High
DOM removal rates of up to 90% are reported in studies on wastewater treatment (Gerrity et al. 2011,
Hu et al. 2005, Ka et al. 2020, Pipe-Martin 2010, Rattier et al. 2012a). Hu et al. (2005) demonstrated
a 30% increase in DOC removal by the pilot-scale zeolite biofilters when the EBCT was increased
from 5 to 30 min, beyond which no improvement was found. Rattier et al. (2012a) used an EBCT of
1 hour with flow rate of 30 L/h to clean raw water with a DOC concentration of on average 7 mg/L by
BAC filter. They witnessed a removal of approximately 40%. Pipe-Martin (2010) investigated EBCT
varying from 50 to 150 minutes and demonstrated an increase of approximately 60%. According to
Peterson & Summers (2021) extending EBCT above 20 or 30 min can have a significant benefit in
wastewater treatment.
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Figure 2.15: Simulated TOC removal as a function of EBCT at three temperature ranges for
ozonated and nonozonated waters with associated k’ values (k’ = 0.05 min-1 for 10 °C, k’ =
0.09 min-1 for 10 - 20 °C, k’ = 0.14 min-1 for 20 °C). From Terry & Summers (2018).

For drinking water treatment, the metadata study of Terry & Summers (2018) summarized that for
all temperature and oxidation conditions (n = 117), biofilters operating in an EBCT range of 2 - 38
min removed 12% (median) of the influent TOC. They demonstrated that a higher EBCT increases the
TOC removal, for the GAC as well as the inert media (Figure 2.15). A longer EBCT gives a longer
contact time between organic substrates and biomass and promotes diffusion through the biofilm to-
gether with enhanced utilization of the substrate, which leads to a higher DOM removal (Carlson &
Amy 2001, Lechevallier et al. 1992, Rattier et al. 2012, Wu & Xie 2005, Zhang et al. 2017). Moreover,
extracellular hydrolysis of large organic substrates is demonstrated to happen in the bulk water and
increased residence time increases the removal rate of these non-diffusible organics (Aktaş & Çeçen
2006, Rohold & H. 1993). The required higher EBCT for elevated DOM removal suggests that a
considerable portion of the BDOC is relatively recalcitrant, needing longer EBCT for removal (Pe-
terson & Summers 2021). Incremental DOM removal decreases at longer EBCT as the more easily
biodegradable substrate is preferentially removed in the upper filter leaving only more recalcitrant
compounds in the lower filter (Zearley & Summers 2012).
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Table 2.2: Drinking water treatment studies looking at the influence of zone, EBCT and type of
filter meida on TOC/DOC removal.

Ozone EBCT Media %Removal TOC/DOC Study

No
8

GAC (100.000 BV) 11-14

Thiel et al., 2006
Anthracite 1-3

16
GAC (100.000 BV) 15-20

Anthracite 2-7

Yes 9.2
GAC (24.000 BV) 29

Wang et al., 1995Anthracite/sand 16
Sand 20

Yes 60
GAC (45.000 BV) 46

Farre et al., 2011
Sand 23

Yes 40
GAC (1400 BV) 40

Reaume et al., 2015
Sand 20

No 15-30
GAC (0-30.000 BV) 18

Ho et al., 2011
Sand 5

Yes 2-20
GAC (8500-17000 BV) 19

Arnold et al., 2018
Anthracite 9

Yes
7.5 GAC (16 y.o) 24.2

Hooper et al., 2020
12 Anthracite 19.8

Yes
14 GAC (20.000 BV) 18

Bourgin et al., 2018
10 Sand 20

Yes 30
GAC (unknown) 45 Hubele et al., 1985

(From Terry&Summers 2018)S 20

Yes 17-36

GAC (several y.o.) 25

Emelko et al., 2006
23

A/S 20
14

No 7 GAC (exhausted) 9 Chowdhury et al., 2009
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Table 2.2 on the previous page shows a selection of drinking water treatment studies using various
media that looked at the influence of EBCT on DOC removal. In most cases the increased EBCT
showed an increased DOC removal, but the influence of the EBCT varied among studies. Lechevallier
et al. (1992) demonstrated that, although the reduction of the AOC fraction can be achieved with 5
- 10 min EBCT, DOC removal increased from 30% to 50% when the EBCT lengthened from 5 min
to 20 min in a GAC filter. Also Moona et al. (2021) who used a non-absorptive media demonstrated
that long contact times (>30min) can be advantageous for operating biological filters. Li et al. (2006)
reported that the optimum EBCT for a BAC filter that processes ozonated water is 15 min. Not all
studies found an increased DOC removal for an increased EBCT. Hozalski et al. (1995) did not find
any difference in DOC removal when increasing the EBCT from 4 - 20 minutes. Also, Kalkan et al.
(2011) reported a similar increase in TOC removal for their thermally-activated carbon (7%, EBCT 9
to 18 min) but no increase removal for a chemically-activated carbon.

Overall, biofiltration is still considered a black box. Most studies manipulate the operational con-
ditions to find optimal performance of TOC removal without fully understanding why the filter be-
haves as it does. Various steps can be made to enhance the understanding of the biofilter processes,
so that further optimization can be achieved. First of all, only a very few number of studies combine
the collected chemical and microbial data of the biofilter. This is interesting, as a biofilter in steady
state thrives on the microbial processes. Analysing the chemistry in combination with the biology of
the biofilter can contribute to unravelling this black box. Second, DOM analysis is mostly done by
TOC/DOC analysis , while the use of other techniques remains limited. By combining more advanced
DOM analysis method such as fluorescence spectroscopy, LC-OCD, and AOC / BDOC, a better un-
derstanding of the DOM removal processes can be found. Third, most studies only look at the in-
and effluent concentrations. As a result the processes within the biofilter which might hold the key
to finding aspects of the removal process that can be enhanced. Diving into the biofilter and under-
standing what happens inside the biofilter by looking at the ecological mechanisms that are taking
place can therefore be a next step in the further understanding and possible enhancement of biofilter
performance.
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2.4 Chemometrics

2.4.1 Data driven science

Science and the way research is undertaken are changing rapidly. The increase of data generation is
present in all scientific disciplines including environmental chemistry and engineering. A interpre-
tation of high dimensional data is complex. Moreover, data-intensive science represents a paradigm
shift. It asks different kinds of questions and performs science with a different process compared to
theory- or hypothesis-driven science (McCue & McCoy 2017). However, data-driven research is not
entirely hypothesis-free. It often starts with a broad hypothesis and generates large volumes of quan-
titative data relevant to that hypothesis, while often being unbiased by prior knowledge and letting the
data speak for itself. These data are then explored to generate more specific and mechanistic hypothe-
ses through eliminative induction (finding truth by using evidence to eliminate false competitors) or
abductive reasoning (making a probable conclusion from what you know) (Pietsch 2015). In this way
data-driven science does not follow the assumption that the scientist has all the scientific insight to
generate the best hypotheses; instead, it assumes that the scientist has a basic understanding of the
subject and they uses data to generate specific hypotheses (Pietsch 2015). Various disciplines can be
used in data-driven research. Figure 2.16 shows a Venn diagram, which illustrates the relation be-
tween data science, data mining, artificial intelligence, machine learning and deep learning, explained
in more detail in the following section.

Figure 2.16: Venn diagram explaining the relationship between data sci-
ence, data mining, artificial intelligence, machine learning and deep
learning. From Kulin et al. (2021).
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2.4.2 Data science

Data science is the scientific discipline that studies everything related to data, from data collection, data
storage, data analysis, data pre-processing, data visualization, data interpretation, data-based decision
making, determining how to create meaningful output from data and how to communicate relevant
data (Kulin et al. 2021). Data science makes use of data mining, machine learning, deep learning,
artifial intelligence techniques, and other approaches such as: trial and error algorithms, statistics,
causal inference, etc (Kulin et al. 2021).

2.4.3 Data mining

Data mining can be defined as a set of methods used to extract usable information from large data sets
(Amigo, 2021). Data mining implies that the usable information is already in the data, however, the
complexity of the data makes it impossible to find this useful information without powerful mathemat-
ical tools. Basically, data mining aims at patterns that already exist in the data, but which are hidden
due to a large number of samples and variables, the noise of the data, or the difficulty in linking more
than two variables at the same time in a univariate fashion (one variable at a time) (Amigo 2021).
Data mining methods can be divided into clustering or dimension reduction methods (Figure 2.17). It
is important to remember that data mining does NOT include any procedure of learning (discussed in
the next section), and therefore the methods used for data mining are of an unsupervised nature and
are also called unsupervised machine learning tools (Bro & Amigo 2020).

Figure 2.17: Data mining method applied to a matrix X (A) which includes multiple samples and
multiple variables. A PCA model (B) helps to interpret clustering of the data (blue and green
datapoints) in a score plot with help of principal component ( 1 and 2). From Amigo (2021).
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2.4.4 Machine learning

Machine learning is a subset of artificial intelligence (Figure 2.18). It aims to develop algorithms that
can learn from historical/known data and make informed decisions based on what is learned (Amigo
2021, Kulin et al. 2021). The learning procedure makes the algorithm reliable enough to predict any
property in new data that have not been used for learning. Because machine learning includes this
learning, the methods used for machine learning are of a supervised nature (Bro & Amigo 2020).
Learning is often described as training, and as a result machine learning algorithms are composed of
two steps: training (A, calibrating), testing the model (B), and applying the model created in B to
a new data set (C) (Figure 2.18). Examples of supervised machine learning methods are regression
models, classification models.

Figure 2.18: Machine learning procedure showing the three stages of calibration of the model
with help of a training data set using a part of the known samples (A), validation of the model
with help of a test data set with the other part of known samples (B), and prediction new samples
with help of the created model (C). From Amigo (2021).
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2.4.5 Deep learning and artificial intelligence

Deep learning is again a subset of machine learning including methods that permit software to train
itself to perform tasks, like image recognition, by exposing multi-layered neural networks to vast
amounts of data (Bro & Amigo 2020). Deep learning, machine learning and data mining are all part
of the artificial intelligence, which is defined as any technique that enables computers to mimic human
intelligence, using logic, if-then rules, decision making (Bro & Amigo 2020).

2.4.6 Chemometrics

The term chemometrics was coined in 1972 by Svante Would and Bruce Kowalsky. The most ac-
cepted definition of chemometrics is the chemical discipline that uses mathematical, statistical, and
other derived methods employing formal logic to (a) design or select optimal measurement proce-
dures and experiments and (b) provide maximum relevant chemical information by analysing chemi-
cal data (Amigo 2021). Another definition could be that chemometrics is the application of artificial
intelligence (therefore including data mining, machine learning, artificial neural networks, and deep
learning) to data coming from Chemical Systems (Amigo 2021). It means that since the start of the
paragraph it was all about chemometrics. But what makes chemometrics different from the statistical
analysis in other disciplines? Although all disciplines can use the same methodologies, understanding
what the data mean and how to interpret it requires a person that understands chemistry.

2.4.7 Nomenclature and usage

An overview of the possible methods that can be used when applying machine learning to data are
given in Figure 2.19. The definitions in red are discussed in more detail in the next section as they will
be used in the upcoming chapters.
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Figure 2.19: Non-exhaustive overview of data mining/machine learning tools. Machine learning
can be divided into unsupervised (dimension reduction, clustering, and association) and super-
vised learning (regression and classification) tools. Many methods are part of each of the tools
. The methods in red are used in this thesis.

2.4.8 Clustering

Cluster analysis or clustering is a possible exploratory data analysis strategy in which a set of objects
is grouped in such a way that the objects in the same group (called a cluster) are more similar to
each other than to those in other groups (clusters). Cluster analysis is the general task which can
be achieved by various algorithms that differ greatly in their way of forming cluster. Possible types
of clustering are connectivity-based clustering (Hierarchical clustering), centroids-based clustering,
distribution-based clustering, and density-based clustering (Bro & Amigo 2020). In this thesis the
hierarchical clustering heatmap will be used. Heatmaps allow for simultaneously visualise clusters of
samples and variables (see Figure 2.20 for an example of a heatmap).

39



Figure 2.20: An example of a heatmap. 10 discriminant features (variables) in the column
direction with both rows and columns ordered using hierarchical (average linkage) clustering
to identify blocks of features of interest. From Gauchotte-Lindsay et al. (2019).

On the left side of the heatmap the hierarchical clustering is done for the samples and on top of the
heatmap it was done for the variables. The columns/rows of the data matrix are re-ordered according
to the hierarchical clustering by average linkage (specifying the distance between two clusters as the
average distance between objects from the first cluster and objects from the second cluster). In this
way, blocks of ‘high’ and ‘low’ values are grouped in the data matrix. The data matrix is visualized
by a colour scheme which contributes to finding the variables that appear to be characteristic for each
sample cluster.

2.4.9 Principle component analysis

When a couple of variables is measured over a set of samples a multivariate data set can be constructed,
which can also be called a matrix, second-order tensor, or two-way data. Correlations and differences
(variance) between samples reflected by a group of measured variables can be studied by pattern
recognition models (Amigo 2021). The most widely used method is the PCA model. PCA is used in
exploratory data analysis and a schematic overview of the PCA concept is given in Figure 2.21.
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Figure 2.21: Schematic representation of the concept of PCA. The datapoints in the variable
space of 3 variables (A), the centring of the datapoints towards the barycentre (B), the principal
component 1 and 2 describing the maximum variations (C), the projected datapoints in the
new principle component space (D), the PC1 and PC2 scores that describe a datapoint in the
projected principle component space (E), and the loadings describing the relationship between
the old variable axis and new principle component axis (F). Based on Amigo (2021).

In PCA, the data set is presented in a new “space”, with the number of dimensions equal to the number
of variables (n) (Figure 2.21 A). In other words, each new axis corresponds to each variable. In this
new space each m sample is now a “point” in this new space, therefore there will be as many points
as samples. In most cases, the barycentre of that cloud of points is placed to the centre of the variable
space by normalization (centring), (Figure 2.21 B). First, the direction of the maximum variability
in the data is explained by PC1, which must pass by the centre of the variable space. Second, the
direction of the maximum variability that PC1 did not explain is explained by PC2 which must pass
the centre of the variable space and must be orthogonal to PC1 (Figure 2.21 C). Now, PC1 and PC2
are projected in a new space called the principal components space (Figure 2.21 D). How the samples
points are related with the new axis is described by the scores, which is the distance of the projected
samples to the centre of the new axes (Figure 2.21 E). Loadings describe the relationship between the
old axes (variables) and the new axis (PCs) (Figure 2.21 F). In simple words, PCA decomposes the
data matrix into a set of so-called scores and so-called loadings.
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2.4.10 N-way PCA

When data are collected for multiple samples analysing a range of variables under various conditions
data will be present in three dimensions instead of two as is in a matrix. This three dimensional data
are also known as a data array, data cube, third order tensor, or three way data. When dealing with
even more dimensions, data are referred to as N-th order tensor, where N is the number of dimensions.
In this thesis three dimensions are used, and therefore this type of data is referred to as data array. A
representation of a data array is given in Figure 2.22. By X the three-mode data array is denoted of
order (I,J, and K). Such an array originated from the characterization of i objects by j variables under
k different conditions.

Figure 2.22: Representation of a data array with dimensions I, J,
and K for samples, variables, and conditions, respectively.

Exploratory analysis such as PCA cannot be applied directly to data arrays. The data array can be
unfolded into a data matrix, but also the original structure can be used. For this, multimode data
analysis is required, more specific, N-way principal component analysis (also referred to as multiway
PCA) (Henrion 1993). Examples of high order PCA are canonical decomposition/Parallel Factor
analysis (CANDECOMP/PARAFAC, and hereafter called PARAFAC analysis) and Tucker3 analysis.
PARAFAC and Tucker3 analysis are both multilinear decomposition methods, which decompose a
tensor into sets of scores and loadings, similar to PCA, that describes the data in a more condensed
form than the original data array (Bro 1997). PARAFAC analysis can be considered a constrained
version of Tucker3 analysis, and Tucker3 analysis a constrained version of two-way PCA. A data
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set that can be modelled adequately by PARAFAC analysis can thus also be modelled by Tucker3 or
two-way PCA. In other words, a two-way PCA model always fits data better than a Tucker3 model,
which again will fit better than a PARAFAC model. This also means that when a PARAFAC model
is adequate, Tucker3 and two-way PCA models have the possible disadvantage of modelling noise or
model the systematic variation which is unwanted. As Occam’s razor stated in the fourteenth century,
‘always use the simplest possible model’, which is also known as the law or principle of parsimony.
In this sense, PCA model can be considered the most complex and flexible model, while PARAFAC
analysis is the most simple and restricted model (Bro 1997). Generally, scientists find two-way PCA
easier to use than the multilinear methods, however, to apply PCA the tensor requires unfolding to
a matrix where the variables in the unfolded modes get mixed up and as a result the effect of one
variable is not associated with one but many elements of a loading vector. Using a more structured
approach, like PARAFAC analysis, will result in a simpler model which also has consequences for the
fit; this is often poorer. The reason for using multi-way methods is therefore not to obtain better fit,
but rather more adequate, robust, and interpretable models (Bro 1997).

2.4.11 CANDACOMP/PARAFAC

Already in 1927 Hitchcock proposed the idea of the expressing a tensor as the sum of a finite number
of rank-one tensors (Hitchcock 1927); and in 1944 Cattell suggested ideas for parallel proportional
analysis and the idea of multiple axes for analysis (circumstances, objects, and features) (Cattell 1944).
It took until 1970 until the concept finally became popular after its third introduction to the psychomet-
rics community, in the form of CANDECOMP (canonical decomposition) by Carroll & Chang (1970)
and PARAFAC analysis by (Harshman 1970). In this thesis, the term PARAFAC analysis will be used.

A decomposition of a data array is made into trilinear components (factors) as shown in Figure 2.23
(Bro 1997, Kolda & Bader 2009, Kroonenberg 2009). Each component consists of one score vector
(a) and two loading vectors (b and c), however, often all three vectors are called loading vectors. The
PARAFAC model output is given by three loading matrices, A, B, and C with elements aif, bjf, and
ckf. The PARAFAC model is found to minimize the sum of squares of the residuals, eijk.
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Figure 2.23: PARAFAC decomposition into multiple trilinear components each having a score
vector (a) and two loading vectors (b and c) as well as the error that is left. Together with the
loading matrices of A (includes a1, a2. . . af ), B (includes b1, b2. . . bf ), and C (includes c1,
c2. . . cf ).

The basic PARAFAC model for a three-way array X with elements xijk consisting of the scores of I
subjects on J variables under K conditions is a direct extension of standard two-mode PCA, as shown
in Equation 2.1, where F is the number of factors (components):

xi jk =
F

∑
f=1

ai f b j f ck f + ei jk (2.1)

While in PCA adding numbers of principle components will increase the complexity of the model and
create a better fit, in PARAFAC analysis an exact number of components/factors need to be chosen
that creates the only possible model. This one possible combination of components makes the model
unique (Kolda & Bader 2009). When too few components are included, a part of the data X will
be included in the error. Using too many components will add part of the error to the components
meaning that error will be interpreted as meaningful data. The choice for number of components is
therefore crucial in PARAFAC analysis and the most difficult task. There are many aspects that can be
discussed regarding PARFAC (Bro 1997, Bro & Kiers 2003, Kolda & Bader 2009, Kroonenberg 2009,
1983), however, for the scope of this thesis they are not further discussed. Despite the more chal-
lenging concept of PARAFAC analysis compared to PCA, various open source packages are available
to perform PARAFAC analysis including informative examples and example datasets (Giordani et al.
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2015, Murphy et al. 2013b, Pucher et al. 2019).

2.4.12 Tucker3

The Tucker decomposition was first introduced by Tucker (1963). Tucker’s 1966 article is the most
comprehensive of the early literature and is generally the one most cited. The Tucker decomposition
is also a form of higher-order PCA. In PARAFAC analysis all directions (I, J, and K) have similar
number of components/factors, however, this can vary in Tucker3. Therefore decomposing a data ar-
ray looks a bit different. It decomposes a data tensor into a core tensor (G) multiplied (or transformed)
by a matrix along each direction (A, B, and C), see Figure 2.24 (Kolda & Bader 2009). Also here, the
part of the data that is not included in the model becomes part of the error (ε).

The basic Tucker3 model for a three-way array X with elements xijk consisting of the loadings of
I sample on J variables under K conditions is another direct extension of standard two-mode PCA, as
shown in Equation 2.2, where P,Q, and R are the number of factors (components): xijk is, in this case,
the value of the measurement referring to the ith, jth and kth:

xi jk =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

ai pb jqckr + ei jk (2.2)

The values P, Q and R are the number of components selected to describe the first, the second and the
third mode, respectively, of the data array. P, Q and R are not necessarily the same for each mode, as in
PARAFAC analysis. The elements aip, bjq and ckr belong, respectively, to the component matrix A (I ×
P), describing the sampling sites (objects), B (J × Q), describing the chemical water quality variables,
and C (K × R), describing the sampling times (conditions) (Figure 2.24). Each of these matrices can
be interpreted as a loading matrix in the normal PCA. Gpqr denotes the elements (p, q, r) of the P ×
Q × R core array G, and eijk denotes the error term for element xijk and is an element of the I × J ×
K array E. In other words, the final result is given by three sets of loadings together with a core array
that describes the relationship among them.
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Figure 2.24: Tucker3 decomposition. The data array X with I (sample), J (variable), and K
(conditions) mode is decomposed in a G core with p, q and r factors for the I, J, and K mode,
respectively, together with the three loading matrices (A for sample mode, B for variable mode,
and C for condition mode). The remaining unexplained data are part of the error ε.

The number of components in each direction are chosen as low as possible while still accounting for
a significant amount of variance, similar to 2-PCA. There is no single possible outcome for Tucker3
analysis and increasing the number of components in each mode will increase the fit and consequently
making the model more complex. The Tucker3 model is therefore not unique, similar to PCA, but un-
like PARAFAC analysis. Core array G must be a superdiagonal matrix, having non-zero elements only
on its main diagonal (Bro 1997). The squared elements of G reflect the strength of the interactions
amongst the three modes and are central to the interpretation of the model (Pardo et al. 2013). Tucker3
model interpretation must consider simultaneously the sign and magnitude of the non-null elements
of G. In the case of a cubic core array, a series of orthogonal rotations can be made on the three spaces
(site, variables and month), looking for the common orientation for which the core array is as much
as possible body-diagonal (Brouwer & Kroonenberg 1991). Also for Tucker3 models various open
source tools are available (Andersson 1998, Giordani et al. 2015).

The difference between PCA and Tucker3 analysis can be illustrated by the example data set ‘Learning
to read’ provided by Bus (1982). The data set describes the process of learning to read of seven pupils
(I = 7). Five tests (J = 5) were used to evaluate the learning process with tests given the letters L, P,
Q, S, and R. The pupils were tested weekly from week 3 to week 47 except for eight holidays weeks,
hence K = 37. The aim of the study was to investigate the learning process and whether the perfor-
mances of the pupils were equal over time (Giordani et al. 2015). Applying PCA to this ‘Learning to
read’ data set with the measured variables in the columns and the tracking of pupils over time in the
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rows, results in a plot with severe overlap of scores with no clear pattern (Figure 2.25). Answering the
research question is not (easily) possible.

Figure 2.25: PCA biplot of the Learning to read data set with PC1 explains 96.7% of the
data and PC2 21%. The pupils are represented by colour, months by symbols and the tests
are presented by the vectors.

Giordani et al. (2015) therefore applied three-way PCA to this ‘Learning to read’ data set with the
pupils, variables, and time in the three different modes creating a data array. There are various ways to
present the outcome of a three-way PCA model, with the one chosen by Giordani et al. (2015) given in
Figure 2.26. A full explanation of the model can be found in (Giordani et al. 2015). In short: the most
appropriate model was formed by 2 components in mode A (pupils), 1 component in mode B (tests)
and 2 components in mode C (time). For the best visual representation of the results the loadings of
mode A and B were given by their loading values, while mode C was graphically presented by the
loading values over time (Figure 2.26).
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Figure 2.26: Tucker3 model outcome for ’Learning to read’ data set. With the pupil’s loadings
(A), variable’s loadings (B), and time loadings (C).

The component scores C1 and C2 demonstrated a clear pattern over time, representing performance
level (C1) and learning rate (C2). The first and second C-mode components were related, respectively,
to the first and second A-mode components. The pupils whose component scores A1 and A2 were
high, were those who had a performance level (C1 with respect to A1) and a learning rate (C2 with
respect to A2) above average. For example, pupil 4 was the best student: his (her) scores were the
highest (scores 1.28 and 1.00). From Figure 2.26 it becomes clear that the information of the three-
way PCA model makes for an orderly interpretation of the data and thereby outperforms the PCA
model.

Also various studies have successfully applied three-way PCA to answer environmental questions.
(Dong et al. 2010, Engle et al. 2014, Giussani et al. 2008, Leardi et al. 2000, Pardo et al. 2013). Leardi
et al. (2000) used three-way PCA to study the environmental information by 4 years of monitoring of
the various quality parameters of different waters of the Venice lagoon. Engle et al. (2014) analysed
groundwater quality parameters collected for three years from 14 monitoring wells to identify changes
and processes affecting interactions.
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2.4.13 PARAFAC and Tucker3 preprocessing

Tucker3 and PARAFAC analysis are very much alike. A PARAFAC model is a constrained version of
Tucker3 analysis with the number of components P = Q = R and having all the superdiagonal elements
of G equal to 1. For both methods, the data sets require pre-processing which homogenises scales and
units without altering the differences among the sample sites and among the sampling times. For PCA,
this problem is solved by autoscaling in the variable (column) direction of the matrix. For PARAFAC
and Tucker3 analysis, this problem is commonly solved by performing a j-scaling when dealing with
a data array (Henrion 1993, Kroonenberg 1983). The three-way array X (with I, K, and J modes) is
matricized to a two-way matrix Xb having I x K modes in the row direction and the J mode in the
column direction (Figure 2.27). On this matrix autoscaling was performed in the variable (column)
direction. As a result, the global variance of each variable was set to one, and the differences among
the objects and the conditions are preserved. J-scaling calculates averages over two modes. This
operation removes some offsets but at the same time may introduce new offsets, thereby introducing
artificial variation that the model also has to handle (Leardi et al. 2000). More suitable pre-treatments
are currently under study (Bro & Kiers 2003).

Figure 2.27: Example of a data array X metricized by frontal slicing for j-
scaling (scaling in the column direction).
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2.4.14 Final remarks

Amigo (2021) wrote a nice and comprehensive manuscript about the definitions of machine learning,
data mining, artificial intelligence and big data analysis, defining their application ranges and its ap-
plication in analytical chemistry, also called chemometrics. According to him, there has been quite a
lot of confusion in the literature about the terms chemometrics, machine learning, data mining, deep
learning and artificial intelligence the last few years. But looking back in time, all these methods are
actually part of what people half a century ago would call statistics, or a century ago just mathematics.

He also warns against the vast amplitude of the words “data science” and the little importance that
sometimes is given to the word data. He states that ‘Only by understanding the scientific problem
and the complexity of the data, will we be able to choose a proper data analysis methodology, if it is
needed.’ In the light of this he warns that a good outcome might not necessarily be a perfect model;
the Garbage In = Garbage Out principle is relevant when creating models. Therefore, the quality and
information that data can provide should be checked, as well as the purpose of the data and how they
were obtained. The consequences of bad data are (1) wrong hypothesis: trying to find what is not
in the data, (2) wrong design of the experiment: hoping that the measurements contain variation that
is not contemplated in the design of the experiment, (3) overuse of resources: using a measurement
instrument just because it is available in the laboratory. Finally, people tend to use more sophisticated
models, just because they look fancy. However, using more complex models on a simple, small data
set could lead to a model that is not correctly applicable to new data set. Therefore, the simpler model,
the better.

50



Chapter 3

Characterisation of DOM removal and other
chemical water quality parameters by laboratory-
scale slow-flow BAC biofilters
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CONTRIBUTORS
The data used in this chapter are part of a larger biofiltration project in which multiple biofilters were
constructed and run for a 6-month period by Dr Marta Vignola (MV) and postgraduate researchers
Dominic Quinn (DQ) and Steve Joyce (SJ). DQ has designed and constructed the biofilters. Filter
operation, pH and conductivity monitoring were done as a team. Water sample analysis for microbial
water quality parameters was done by DQ. Filter modelling was done by SJ, while Legionella and cell
counts were measured by MV. I carried out all chemical water quality parameters monitoring. When
data were produced by others, it will be clearly indicated in the text.

3.1 Introduction

For single stage filtration systems treating surface water, the primary objective is the control of mi-
crobial pathogens. Although the removal of DOM is a non-acute issue, high concentration contributes
to colour, taste, smell of the water as well as the possible regrowth of pathogens in the storage or
transport system (Matilainen et al. 2011, Volk et al. 1997).

Slow sand filters are an example of such single stage filtration system that have demonstrated excellent
removal of pathogens, while still being able to remove DOM, iron and manganese somewhat (Guchi
2015). rapid-rate BAC filtration is an alternative environmentally friendly, smaller scale method for
the removal of bioavailable organic compounds that also needs low maintenance and benefits from
the adsorption of GAC. The main objective of a rapid-rate BAC filtration is biodegradable organic
matter removal, rather than the control of microbial pathogens. Combining the two methods into a
slow flow BAC filter for the off-grid treatment of drinking water could bring together the benefits of
both systems: control of microbial pathogens and increased DOM removal from the start of operation.

The objective of this chapter is therefore to (1) characterize DOM removal and other chemical wa-
ter quality parameters and (2) investigate the impact of filter length for a slow-flow BAC. To this aim,
multiple pilot-scale biofilters of various sizes were built and used for a water treatment experiment
over 6 months. Filter performance was quantified by measuring twenty chemical water quality param-
eters in the influent and effluent water. The chemical composition of the effluent water was compared
to water quality regulations. Also, the removal of DOM, regulated metals and anions were closely
monitored from virgin to steady state. Only filter length varied in the experiments, other operational
parameters and influent water were constant.
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3.2 Materials methods

3.2.1 Raw water

Untreated reservoir water was collected from Pateshillwater treatment works. This water source was
chosen for its proximity to the laboratory. Water quality parameters are presented in Table 3.1. Ap-
proximately 500 L of raw water was collected every two weeks. The water was prefiltered on-site
using a submersible pump and a 10 µm polypropylene cartridge filter. The raw water was then stored
at room temperature until usage.

Table 3.1: Water qualityaveraged between August to
November 2017 provided by Scottish Water

Parameter Unit Value
Colour mg/l Pt/Co 168
Hydrogen ion pH value 7-8
TOC mg-C/l 18
Ammonium mg/l <0.02
Turbidity NTU 1.5
Aluminium µg/l 264
Iron µg/l 647
Manganese µg/l 43
Presumptive E. coli CFU in 100ml 7
Presumptive coliforms CFU in 100ml 22
conductivity µS/cm 118
temperature °C 22

3.2.2 Granular activated carbon

Cabot Norit GAC 1240 W was used as a filter bed medium. Its properties can be found in Table 3.2.
Prewashing of the GAC was done in batches of 260 g of GAC by rinsing it twice with 260 ml of 18.2
M Ohm deionised carbon-free (hereafter referred to as Milli-Q) water. Another 260 ml of Milli-Q
water was added, followed by shaking of the bottle. Trapped air was released by opening the lid. The
GAC in Milli-Q water was then sonicated at full power for 10 minutes in a sonicating bath. The GAC
was left to settle in the Milli-Q water for 48 hours. This procedure was repeated until sufficient GAC
was washed to fill all filters.
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Table 3.2: Characteristics Cabot Norit GAC 1240 W used
as medium for the biofilters.

Characteristic Unit Value
Particle size > 12 mesh (1.70 mm) mass-% Min. 10
Particle size < 40 mesh (0.425 mm) mass-% Max. 5
Moisture (as packed) mass-% Max. 5
Iodine number - 975
Methylene blue adsorption g/100g 20
Total surface area (B.E.T.) m2/g 1100
Apparent density kg/m3 500
Density backwashed and drained kg/m3 445
Ball-pan hardness - 97
Effective Size D10 mm 0.6 - 0.7
Uniformity coefficient - 1.7
Ash content mass-% 12
Water soluble Ash mass-% 0.1
pH - Alkaline
Dechlorination halving value cm 2.5

3.2.3 Biofilter design

Biofilters with 30 and 60 cm GAC filter beds were constructed in triplicate, while 90 cm GAC filters
bed were constructed in four separate triplicates, resulting in 18 individual filters. The layout of the
experimental biofilters and dimensions of key components are sketched in Figure 3.1 on the next page
and the biofilter characteristics and operational settings are given in Table 3.3.

Table 3.3: Biofilter characteristics and the corresponding operational settings.

Characteristic Unit 30cm filter 60cm filter 90cm filter
GAC depth cm 30 60 90
Column inner diameter cm 2.6 2.6 2.6
Filter volume cm3 159 319 478
Packed bed density kg/cm2 4.5 ± 0.1 4.5 ± 0.1 4.5 ± 0.1
Flowrate ml/min 1.06 1.06 1.06
Empty bed contact time h 2.5 5.0 7.5
Run period h 3864 3864 3864
Bed volume - 1546 773 515
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Figure 3.1: Biofilter design including the influent jerrycan (1), peristaltic
pump that pump the influent water into the filter (2), overflow hole (3), peri-
staltic pump that keeps the flow rate at 1ml/min (4), and the sample collection
bottle (5).

For the 30, 60 and 90 cm filters PE80 pipes with an internal diameter of 2.6 cm and length of 60, 90
and 120 cm, respectively, were used. This pipe diameter was associated with the plumbing material
used to construct the filters. For future up-scaling, multiple pipes can be bundled resulting in a higher
volume of water to be treated. Stainless steel meshes at the ends of the pipes with an aperture of 75
µm were used to hold the GAC in place. Peristaltic pumps (Watson Marlow 300 series with three
attached pump heads, 313 OEM) were used to supply water to each filter triplicate. An overflow hole
was drilled 50 mm below the top-end of each filter to allow for excessive water supply to flow back
to the jerrycan creating a constant water head for all filters. Water exiting the filter initially passed
through a needle valve that was set to create a 1 ml/min flow rate for each filter. However, soon after
the start of the experiment, the needle valve was replaced by peristaltic pump system which permitted
much greater control of the flow rate. This peristaltic pump (Watson Marlow 300 series peristaltic
pump with a 5 channel microcassette pump head) was set to 7 rpm, providing a flow rate of 1 ml/min.
One pump was used per filter triplicate.
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3.2.4 Filter bed packing and initiation

The GAC was added to each filter in small batches by pouring the GAC Milli-Q suspension through
a funnel into the neck of the biofilter. The GAC was pushed down with a self-designed packing tool,
consisting of a circular plastic disk with a 28 mm diameter attached to a 1 meter stainless steel pole,
until resistance was felt. The pipes were filled until 300 mm below the top so that each filter could
have a 232 ml head of water above the GAC packing.

Figure 3.1 shows the set-up of the biofilter while filtering reservoir water. Before doing so, the system
needed to be flushed. For this Milli-Q water was circulated through the filters to clean the GAC. This
flushing is not shown in Figure 3.1, but can be found in Appendix A, Figure A.1 (pg. 181). In short,
water flowed from an autoclaved 1L Nalgene bottle (1) to the top of the filter via a peristaltic pump
(2) working at 70 RPM. Overflow at the entrance of the filter (3) was circulated back to the bottle.
The flow rate was regulated by another peristaltic pump (4) at the exit of the filter at 1 ml/min. The
effluent water was collected in the bottle (1) and circulated back to the top. The filters were run in
this self-cycling way for two weeks, with the Milli-Q water being changed after 3, 5 and 7 days. No
measurements were done during this self-circuiting period. After two weeks of circulation Milli-Q
water, GAC had to be added the filters where the GAC had compacted.

3.2.5 Experimental run

After two weeks of circulation, raw water was introduced to the filters. The filters were run contin-
uously in a downstream mode. One jerrycan 30 L supplied three replicate filters of each filter set.
Containers with raw water were replaced with new ones before they ran dry to maintain continuous
water flow. For each of the 18 filters effluent water was collected separately in 1 L Nalgene bottles.
The 30 and 60 cm filters as well as one of the 90 cm filter triplicates were operated, and chemical water
quality parameters monitored for 23 weeks and were afterwards deconstructed to examine microbial
communities within the filter as well as the water chemistry of the pore water. The three remaining
90 cm filter triplicates were each run for a different period of time, being 5, 9, and 12 weeks and
each triplicate was deconstructed at the end of their operation also to analyse the microbiology and
chemistry of the inside of the filter (See Chapter 5 Section 5.2, pg. 111 for deconstruction and pore
water chemistry analysis).
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3.2.6 Sampling campaign

Room temperature, pH, and Conductivity, TOC, DOC, anions (nitrate (NO3
-), nitrite (NO2

-), phos-
phate (PO4

3-), sulphate (SO4
2-), chloride (Cl-), and cations (ammonium (NH4

+)) and metals (Alu-
minium (Al), Chromium (Cr), Manganese (Mn), Iron (Fe), Nickel (Ni), Copper (Cu), Arsenic (As),
Selenium (Se), Cadmium (Cd), Antimony (Sb) and Lead (Pb) of the raw water (hereafter called influ-
ent) and effluent water was measured. Sampling campaign is found in Table 3.4.

Table 3.4: Sampling campaign

Parameter Week
Temperature, Conductivity, pH 0, 2-5, 7-9, 11, 12, 15-19, 21, 23
TOC/DOC, Anions 0-12, 15, 17, 19, 21, 23
Metals (90 cm) 0-4, 6-12, 15, 17, 19, 21, 23
Metals (30 and 60 cm) 0, 3, 7, 11, 15, 19, 23

Prior to every sampling, 100 mL reusable borosilicate glass media bottles with polypropylene cap
(Fisherbrand™) were washed with common detergent and thereafter rinsed thrice with deionised wa-
ter, followed by an acetone rinse, and glassware subsequently heated in a Muffle oven to 550 °C for at
least 6 hours.

The influent water of the 30, 60 and 90 cm filters was collected separately at the top of each filter
length just before the water enters the replicate columns. Effluent water was collected approximately
15 hours after the influent water allowing sufficient time for the newly changed influent to pass through
the filters. For the 30, 60, and 90 cm filter 6, 3, 2 BV passed the filter, respectively. All bottles were
filled to the top to avoid headspace and stored at 4 °Celsius.

3.2.7 Chemical analysis

TOC/DOC analysis

TOC and DOC were analysed using combustion (TOC-L, Shimadzu, Japan) (Shimadzu 2012). See
Appendix A, Figure A.2 (pg. 182) for a schematic representation of the technique. Sample pre-
treatment was done within 24 hours after sampling and analysis was done the same day of sample
preparation. For TOC measurements, 10 ml disposable borosilicate vials (Fisherbrand™), were filled
with 8 - 10 mL sample after the collection bottle was gently shaken. For DOC measurements, similar
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vials were used to prepare 8-10 mL sample after filtration through 0.2 µm polyEther sulfone mem-
brane filters (Whatman Puradisc).

For all weeks, the instrument was run using a pre-set method. In short, non-purgeable organic carbon
was used as the measure of TOC / DOC. Samples were loaded in the autosampler. In the machine 50
µl water samples were sparged to which a small amount 1.5% of 1 M hydrochloric acid was added,
in this way the inorganic carbon in the sample was converted to carbon dioxide during 1.5 min of
sparging using 80 mL nitrogen carrier gas. This carbon dioxide was removed, and the remaining total
carbon was measured with help of 680 °C combustion catalytic oxidation achieving total combustion
inside TC combustion tubes filled with a platinum catalyst. Between the samples, the system was
flushed twice. The integration time was between 0 and 4 minutes and 50 seconds. Every sample was
analysed twice when standard deviation was 0.1 and coefficient of variation 2%. When two samples
exceeded these values a third analysis was done with the best two outcomes used.

For each sample, the machine analysed using 2-3 technical replicates depending on the relative stan-
dard deviation of the results. Also, 3 vials with 100 mg-C/L potassium hydrogen phthalate (TC stock)
solution were loaded in the autosampler from which the machine made its own dilutions towards 2,
4, 6, 8, 10 mg-C/L, measured their signal and calculated the calibration curve. With help of this cal-
ibration curve, the measured signals of the samples were automatically converted to concentrations.
Every 5-10 sample a blank was measured as well as a positive control (5 mg-C/L) at the end of the
analysis. The average Limit Of Quantitation (LOQ) and Limit Of Quantitation (LOD) throughout the
experimental run was 0.59 ± 0.2 and 0.20 ± 0.067 mg-C/L, respectively. Data were extracted as .txt
file for further data analysis.

Anions and cations analysis

NO3
-, NO2

-, PO4
3-, SO4

2-, Cl-,and NH4
+ were monitored by ion chromatography (DionexTM IC900

and IC1100 for anions and cations, respectively) (Thermo Fisher Scientific 2012a,b). See Appendix
A, Figure A.3 (pg. 183) for a schematic representation of the technique. For sample preparation, the
same day as the sampling 0.5 ml AS-DV Autosampler PolyVials vials (Dionex™), were filled with 0.5
mL sample volume after filtration through a 0.2 mm Chromacol nylon syringe filter (Thermo Scien-
tific™) and syringe. Tubes were capped with the compatible caps (Dionex™). Samples were analysed
by ion chromatography the same day of sample preparation. For all weeks, the machine run using a
pre-set method. The method was in loop mode having a delay volume of 125 µl, a delivery speed of
4 mL/min, and a flush factor of 10. In short, an eluent brings with help of a pump 50 µl sample via
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a guard column, which removes contaminants, to the separation column (AS23 column for the IC900
and CS16 column for the IC1100) where the ion chromatography takes place. The AS23 column
separates oxyhalides and common inorganic anions in drinking water, groundwater, wastewater, and
other diverse sample matrices. The CS16 is optimized for the determination of unequal concentration
ratios of adjacent eluting cations such as sodium and ammonium in diverse sample matrices.

The separated ions pass the suppressor that selectively enhances detection of the sample ions while
suppressing the conductivity of the eluent. The conductivity cell measures the electrical conductance
of the sample ions and produces a signal based on a chemical or physical property of the analyte.
The runtime for each sample was 30 minutes. Data were analysed in DionexTM Chromeleon (version
7.1.3.2425) and data extracted as .csv files for further data analysis.

For each sample, the machine analysed 1 technical replicate to minimize sample load. Also, 0.05 (or
0.1), 0.25, 0.5, 0.75, and 1 mg/L dilution series for an anion and cation standard were made separately
using the similar vials as the samples. Anion standard (Dionex™ Combined Seven Anion Standard
II) included Cl- = 100 mg/L; NO2

- = 100 mg/L; NO3
- = 100 mg/L; PO4

3- = 200 mg/L; SO4
2- = 100

mg/L. Cation standard (Dionex™ Combined Six Cation Standard II) included NH4
+ = 250 mg/L.

Calibration standards and samples were loaded in the autosampler, signals were measured, and the
calibration curve calculated automatically. With help of this calibration curve, the measured signals
of the samples were converted to concentrations. Every 5-10 sample a blank was measured together
as well as a positive control (0.5 mg/L) at the end of the analysis. The LOQ / LOD for the cation and
anion standards monitored throughout the experimental run was: NH4

+ = 0.2 ± 0.2 / 0.067 ± 0.067,
NO2

- = 0.08 ± 0.06 / 0.027 ± 0.02, NO3
- = 0.11 ± 0.06 / 0.037 ± 0.02, Cl- = 0.8 ± 0.7 / 0.3 ± 0.023,

SO4
2- = 0.4 ± 0.3 / 0.13 ± 0.1, and PO4

3- 0.3 ± 0.1 / 0.1 ± 0.03 mg/L. In- and effluent concentrations
of ammonium and nitrite were below the LOQ during the course of the experiment and their data not
further reported.

Metal analysis

Dissolved metals were analysed by Inductively Coupled Plasma Mass Spectrometry, also known as
ICP-MS (Radboud University n.d.). See Appendix A, Figure A.4 (pg. 184) for a schematic repre-
sentation of the technique. All dissolved metals which are relevant for EU regulatory requirements
(Appendix A, Figure A.6, pg. 186) except B, Na and Hg, were included in the measurements.
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For sample preparation, 15 ml plastic centrifuge tubes (Fisher Scientific™) were filled with 10 - 15
mL samples. Samples were filtered through the 0.2 mm Chromacol nylon syringe filter (Thermo Sci-
entific™). Two drops of pure nitric acid were added to the sample for conservation.

The samples were analysed by the chemistry department for ICP-MS at Strathclyde University within
6 months using three technical replicates. In short, ICP-MS is a technique to determine low-concentrations
(range: ppb = parts per billion = µg/l). The sample solution is introduced into the device by a peri-
staltic pump. There it becomes vaporized in a spray chamber. The resulting aerosol is injected into an
argon-plasma that has a temperature of 5726 - 7726 °C. Inside the plasma torch, solution is removed
from the sample. Moreover, the sample gets atomization and ionization occurs. Only a small amount
part of the ions produced in the plasma further penetrates to the mass-spectrometer part where it is
being analysed. The LOQ / LOD was determined as:Al = 0.02 / 0.007, Cr = 0.07 / 0.023, Mn = 0.02 /
0.007, Fe = 3 / 1, Ni = 0.006 / 0.002, Cu = 0.006 / 0.002, As = 0.03 / 0.01, Se = 0.6 / 0.2, Cd = 0.008 /
0.003, Sb = 0.01 / 0.003, Pb = 0.02 / 0.007 µg/L, respectively.

SEM

GAC samples were analysed by Scanning Electron Microscopy with Energy Dispersive X-ray spec-
troscopy, alsno known as SEM-EDX (Thermo Fisher Scientific n.d.). A schematic overview of the
technique is given in Appendix A, Figure A.5 (pg. 184). For sample preparation, virgin GAC as well
as GAC collected from the top 10 cm of the 90 cm filter at week 23 were dried at room temperature and
transferred to sterile 50 mL containers for analysis at a later time. SEM-EDX makes high resolution
images of surface topography, with excellent depth of field. It uses a highly-focused, scanning (pri-
mary) electron beam. These primary electrons enter a surface with an energy and produce many low
energy secondary electrons. The image of the sample surface is constructed by measuring secondary
electron intensity as a function of the position of the scanning primary electron beam. Moreover,
backscattered electrons and X-rays are also generated by the primary electron bombardment. Atomic
number(s) of the element(s) within the sample are correlated to the intensity of backscattered electrons.
The analysis of characteristic X-rays emitted from the sample gives the more quantitative elemental
information.

Statistical analysis

All statistical analyses were carried out using R (version 4.0.2). The correlations were determined by
Pearson correlation using an alpha significance level of 0.05. For filter length comparison, significant
differences were ascertained by Kruskal-Wallis (KW) H test using a alpha significance level of 0.05,
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as the data were not normally and homogeneously distributed as well as sample size small, followed
by the Dunn’s post-hoc test (equal variances, unequal group sizes) to examine the pairwise compar-
ison with p-values adjusted by the Bonferroni method. The results were expressed by the mean for
each group together with its variance (expressed by the standard error).

Biomass in apparent steady state was quantified for the three filter lengths by measuring the ATP
on the GAC measured by MV and significant difference was determined by ANOVA with data being
normal and homogeneously distributed (equal variances, unequal group sizes), followed by the Tukey
post-hoc test to discriminate between filter lengths with an 95% confidence level.

Non-parametric multiplicative simple imputation was used to replace values below detection limit
in the compositional data set following Martin-Fernandez et al. (2003). A cluster heatmap with rows
and columns ordered using hierarchical (complete linkage) clustering was used to visualize clusters
of samples and variables, and to simultaneously help find the variables that appear to be characteristic
for each sample cluster.
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3.3 Results and Discussion

3.3.1 Water quality and regulatory limits

Table 3.5: chemical water quality parameters min, max and mean concentrations in the
influent and effluent water of the biofilter together with their regulatory limits. Under-
scored numbers are measured values above the regulatory limits.

Parameters Influent (µg/L) Effluent (µg/L) Limit (µg/L)
Min Max Mean ± sd Min Max Mean ± sd

Iron 268 459 384 ± 54 45 340 250 ± 90 200
Manganese 1.2 3.7 2.1 ± 0.7 1 8 2 ± 1 20
Copper 0 4 2 ± 1 0.0 4.0 1.1 ± 1.0 2000
Lead 0.1 0.7 0.3 ± 0.1 0.0 0.7 0.2 ± 0.2 10
Aluminium 42 100 80 ± 20 100 900 200 ± 200 200
Nitrate 0.3 0.8 0.6 ± 0.2 0.07 0.68 0.11 ± 0.09 50000
Nitrite <LOQ <LOQ - <LOQ <LOQ - 500
Chloride 18 27 20± 3 0 30 19 ± 7 250000
Sulphate 0 6 3 ± 2 0 7 2 ± 2 250000
pH 7.3 8.1 7.9 ± 0.2 7.0 9.2 7.7 ± 0.4 6.5 - 9.5
Conductivity 111 131 118 ± 4 98 134 116 ± 8 2500 µS/cm
TOC 10 15 13 ± 1 0 13 6 ± 4 -
Antimony 0.09 0.46 0.17 ± 0.08 0.1 3.3 0.5 ± 0.7 5
Arsenic 0.2 2.5 0.5 ± 0.5 0 85 10 ± 20 10
Nickel 0.50 1.4 0.8 ± 0.2 1 12 4 ± 2 20
Cadmium <LOQ 0.11 0.02 ± 0.03 0.0 0.6 0.1 ± 0.1 5
Chromium 0.3 1.5 0.5 ± 0.2 0.0 0.7 0.3 ± 0.2 50
Selenium 0 8 3 ± 2 0 16 4 ± 3 10
Phosphate 0.180 0.180 0.180 ± 0.001 0.2 0.9 0.3 ± 0.2 -

Twenty chemical water quality parameters were monitored in the influent and effluent of biofilters
operating from start up to 23 weeks of operation. Table 3.5 presents an overview of the minimum,
maximum, and mean concentrations of these parameters in both waters. Sixteen parameters did not
show concentrations above the regulatory drinking water limits, neither in the influent or the effluent.
The trend of iron, TOC, aluminium, and arsenic was evaluated in more detail (Figure 3.2).
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Figure 3.2: Concentration of aluminium (A), arsenic (B), iron (C), TOC (D). Left y-axis shows
the measured concentration of the influent and the 30, 60, 90 cm effluent (mean ± s.e., n =
3 replicates) over 23 weeks of operation. The right axis together with the dashed line (when
present) highlights the regulatory limits.

Iron concentration in the influent was higher than the regulatory drinking water limit, while aluminium
and arsenic showed exceeding levels in the effluent. The trends of the other parameters can be found
in Appendix A, Figure A.7 and A.8 (pg. 187 and 188). Up to the first ten weeks of the experiment
aluminium and arsenic concentrations in the effluent were higher than the regulatory limits, while not
in the influent (Figure 3.2 A and B). Aluminium and arsenic concentrations in the influent water were
80 ± 20 and 0.50 ± 0.50 µg/L, respectively, while the effluent water at the start of the experimental
run was 600 ± 100 and 20 ± 7 µg/L. These effluent concentrations were approximately 3 and 2 times
higher than their regulatory limit, respectively. After approximately 10 weeks these increased lev-
els in the effluent diminished. This suggests that the GAC material initially added these components
to the water. Throughout the experiment, iron influent concentration varied from 270 to 460 µg/L,
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averaging 380 µg/L with a standard deviation of 50 µg/L. This exceeded the regulatory limit of 200
mg/L. Measurements show that filtration removed the iron significantly during the first weeks of oper-
ation, irrespective of filter length (Figure 3.2 C). The effluent iron concentration, however, gradually
increased already shortly after the start of the experiment. The 30, 60 and 90 cm filter surpassed the
regulatory limit after approximately week 3, 5 and 7, respectively. This suggests that iron could be a
problematic chemical water quality parameter when biofilters are solely being used for drinking water
treatment in rural Scotland.

TOC was removed significantly during the first weeks of operation for all three filter lengths (Fig-
ure 3.2 D). TOC is not mentioned in regulations but is still relevant in drinking water context because
it may colour water or add odours and taste, and hence influence people’s perception of clean drinking
water (Scottish Water 2015). Moreover, it contributes to regrowth of bacteria in storage and distribu-
tion systems (Peterson & Summers 2021, Terry & Summers 2018, van der Kooij & van der Wielen
2011). However, it does not cause health risks (Drinking Water Quality Regulator 2020a). TOC
concentration in the influent water ranged from 10 to 15 mg/L, averaging 13 mg/L with a standard
deviation of 1 mg/L. Similar to iron, the TOC effluent concentration seems to gradually increase over
time after initial removal, possibly as a result of GAC saturation. These observations show that the
long-term performance of the filters to remove TOC is not yet fit for purpose. However, as long as
the bioavailable fractions are being removed from the water it is safe to store for later consumption
irrespective of DOM content (Hijnen et al. 2014, van der Kooij & van der Wielen 2011).

3.3.2 Removal efficiency

For a more detailed evaluation of the biofilter performance, the removal efficiency (Equation 3.1) of
the various chemical water quality parameters was monitored over time (Figure 3.3 and 3.4). Some
parameters had removal efficiencies above zero, while other were below zero. This negative removal
meant that the concentration in the effluent was higher than the influent. In such case, the filter was
leaching.

Results show that the filters removed DOC, TOC, iron, nitrate, copper, chromium, lead, chloride,
and sulphate (Figure 3.3 A-I). DOC, TOC, iron, and nitrate were removed over the whole operational
period. The 30 and 90 cm filters behaved significantly differently for these chemicals, resulting in a
later onset of breakthrough and a higher removal in steady state for the 90 cm filter (Dunn’s post-hoc
test on KW; TOC H(151) = 18.50, DOC H(151) = 17.26, (iron) H(63) = 16.78, (nitrate) H(151) =
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22.15, p.adj < .001). Copper, chromium, and lead were also removed by the filter, however, their
removal values occasionally dropped below zero, meaning the effluent concentration was higher than
that of the influent. These metals demonstrated low concentrations in the influent and effluent (See
Appendix A, Figure A.8, pg. 188), and the magnitude of the measurements could be within the error
resulting in the occasional higher effluent than the influent. Chloride and sulphate were only removed
at the start of the experiment after which the chloride removal dropped to zero and the sulphate re-
moval became negative. Phosphate, arsenic, aluminium, antimony, and cadmium showed negative
percentage removal during the first weeks of the experiment (Figure 3.4 J-N). The negative percentage
removal was a result of the division of the higher effluent concentration by the influent concentration.

Removal(%) =
Concentrationin f luent −Concentratione f f luent

Concentrationin f luent
×100 (3.1)
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Figure 3.3: Removal in % of DOC (A), TOC (B), iron (C), nitrite (D), copper (E), chromium
(F), lead (G), chloride (H), sulphate (I) by the 30 (green), 60 (blue) and 90 (purple) cm filte
(mean ± s.e., n = 3 replicates) within the biofilter during the first 23 weeks of operation.
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Figure 3.4: Removal in % of phosphate (J), arsenic (K), aluminium (L), antimony (M),
cadmium (N), manganese (O), nickel (P), selenium (Q) by the 30 (green), 60 (blue) and
90 (purple) cm filter (mean ± s.e., n = 3 replicates) within the biofilter during the first 23
weeks of operation.
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Heatmap

Figure 3.5: Cluster heatmap of chemical water quality variables removal by the biofilter
both rows and columns ordered using hierarchical (complete linkage) clustering. Vari-
ables clustered by V1 - V3 and biofilter samples clustered by S1 - S3.

The multivariate information about the removal of the chemical water quality parameters was also vi-
sualized by a heatmap (Figure 3.5) which combined and visualized the removal (influent concentration-
effluent concentration) between two dimensions (chemical water quality variables and samples) in
order to identify patterns. The characteristics of the samples and corresponding names are given in
Appendix A, Table A.1 (pg. 189). To facilitate clustering of samples having different EBCTs, opera-
tion time was expressed as throughput in BV (Equation 3.2).

BV =
Volume of treated water

EBCT
(3.2)
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The samples were divided in three sections: (S1) clusters the samples with high BV (> 500), (S2)
clusters the samples with medium BV (200 - 500), (S3) clusters low BV (< 200). The variables on
the other hand clustered into three sections (V1 - V3). V1 included variables that were removed by
the filter, while V3 included variables that leached from the filter during the first week of operation.
V2 are the remaining variables. In the heatmap, dark blue represents a negative removal (leaching),
while dark red denotes a high removal. The dendrograms of the variables (on top of the heatmap) and
samples (on the left side of the heatmap) illustrate the arrangement of the clusters. In other words, to
what extent samples or variables behave similarly.

Variable cluster V2

Cluster V2 includes nickel (Ni), manganese (Mn), chloride (Cl-), conductivity, chromium (Cr), Lead
(Pb), sulphate (SO4

2-), copper (Cu) and selenium (Se). All these variables did not demonstrate a
clear removal or leaching in the first weeks. For example, nickel leaching was constantly present but
reduced over time, with the 90 cm excreting significantly more nickel than the 30 cm filter (Dunn’s
post-hoc test on KW; H(63) = 10.29, p.adj = 0.06) (Figure 3.4 O). Manganese leached from the 60
and 90 cm filters, while the 30 cm filter showed some removal. As result significance difference was
present between the 30 and 60 cm filters as well as 30 and 90 cm filters (Dunn’s post-hoc test on
KW; H(63) = 17.82, p.adj < 0.001). Selenium concentration difference between in- and effluent was
negligible (Figure 3.4 Q), while the other metals (chromium, lead, and copper) were removed from
samples with low BV while at higher BV occasional leaching was picked up (Figure 3.3 E - G). This
negative removal could be a result of leaching but could also be a result of small variations and low
concentrations of the variable between in- and effluent. At very low concentration small variations can
result in relatively high negative removal. Chloride was removed during the first week and afterwards
showed minor leaching (Figure 3.3 H), sulphate showed significant removal during the first weeks of
the experiment, which lasted longer than that of chloride (Figure 3.3 I). Removal reversed to leaching
between week 7 and 10 with higher effluent concentrations compared to influent. After week 10 in-
and effluent concentrations are statistically equal. Interestingly, nitrate (NO3

-), another anion, was
part of cluster V1 and demonstrated almost full removal throughout the experimental run.

The question is why nitrate keeps on being removed while chloride and sulphate reverse into leaching.
Electrosorption studies have demonstrated a preferential initial adsorption of chloride on the GAC
over nitrate (Chen et al. 2015, Mubita et al. 2019). In both studies adsorption of nitrate became domi-
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Figure 3.6: pH (A) and conductivity (B) measured in the influent water and 30, 60, and 90 cm
filter effluent (mean ± s.e., n = 3 replicates) of the biofilter over 23 weeks of operation showing
the data points of the three filter lengths.

nant over that of chloride, which even caused the chloride to desorb again. With selectivity coefficient
KCl-NO3

- > 1, the competitiveness of nitrate is stronger than chloride, and as a result desorption of
chloride occurs. Chen et al. (2015) did not observe obvious selectivity between chloride and sulphate.
This would suggest that they behave similarly. These findings could explain the significant removal of
chloride and sulphate in the present study during the first weeks of operation followed by the (minor)
leaching from the filter.

The conductivity clustered most with chloride in the heatmap. Figure 3.6 (B) shows the conduc-
tivity in the influent and effluent during the experiment. Although the influent concentration was not
registered in the first two weeks, a concentration higher than the effluent can be expected, because of
the minimal variation of conductivity over time. Indeed, conductivity was, similar to chloride, lower
in the effluent in the first weeks, while it increased quickly. When plotting the change in chloride
against the change in conductivity (Figure 3.7), it shows a moderate correlation (Pearson correlation,
r(61) = .57, p = .001). At the start of the experiment negatively charged molecules are retained by the
filter causing the conductivity in the effluent to decrease. When the chloride is leaching from the filter
the conductivity increases to above the value of the influent. The conductivity was less influenced by
the sulphate leaching, probably as a result of much lower concentrations of sulphate (average 2 mg/L)
compared to chloride (average 19 mg/L).
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Figure 3.7: Scatter plot of the conductivity versus chloride concentration mea-
sured in the biofilters during the 23 weeks of operation.

Variable cluster V3

Cluster V3 includes the chemicals aluminium (Al), aresenic (As), phosphate (PO4
3-), antimony (Sb),

and cadmium (Cd) together with pH. This third variable cluster consisted of chemical water quality
variables that demonstrated overshoot at the first week of operation when the pH was elevated. Their
removal was negative in sample cluster S1 (blue), which disappeared in sample cluster S2 and S3.
Their leaching was also clearly noticeable in Figure 3.4 J-N. The discard happened randomly in the
three filters with no clear influence of filter length. The leaching of the metals is the result of desorp-
tion of metals from the pre-existing GAC surface–metal complexes (Al-Attas et al. 2018). The used
Norit W1240 GAC is made from steam activated coal that contains ash (12% total and 0.1% soluble).
Indeed, leaching metals were already present in the virgin GAC. SEM-EDX imaging recorded the
presence of aluminium and iron (Figure 3.8).
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Figure 3.8: SEM-EDX image and spectra of fresh GAC (A) and GAC from the top
10 cm of the biofilter at W23 (B).

Leaching of metals from the GAC filter is a common phenomenon during the start-up of a GAC sys-
tem (Grieco 2021), and the pH variation plays an important role in this overshoot (Chen et al. 2003).
At the start, the surface functional groups on the virgin alkaline GAC are protonated when getting in
contact with water, resulting in a rise in pH (Boehm 1994). Protonation is followed by the charge-
neutralizing of the surface with negatively charged molecules present in the water such as anions and
NOM (Farmer et al. 2015). This decreases the pH over time (Grieco 2021). In the present study, a
rise in pH was indeed noticeable during the first week because of filtration as well as a decrease in
conductivity (Figure 3.6). After week 5, the pH of the effluent decreased below the influent pH for
the remaining weeks and the conductivity increased. When the pH in the filter is elevated, metals
are able to leach from the carbon (Grieco 2021). In this present study, leaching did not depend on
filter lengths as the overshoot took place until approximately W7-W10 for all filter lengths with high
variation between all measurements.

Leaching of metals and phosphate could have been prevented by sufficient flushing of the GAC. Grieco
(2021) advices 30 BV to reduce arsenic effluent concentration below 5 µg/L and 50 BV for the pH
to stabilize. Although approximately 50 BV was reached in the present study, recirculated DI water
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was used which was only replaced 3 times. During recirculation an equilibrium must have built up,
slowing down the flushing of the GAC. Monitoring fo the rinse water could have identified this.

Variable cluster V1

Cluster V1 includes TOC, DOC, iron, and nitrate (NO3
-) removal. This cluster represents the chemi-

cal water quality variables that were constantly being removed during filtration (Figure 3.3 A-D). It is
positively associated with sample cluster S3. This means that at the start of the experiment, where BV
were low, their removal was high. Cluster S1 and S2 (higher BV) contain more blue coloured blocks,
indicating that the removal of these chemical parameters decreased for higher BV.

Adsorption
In the experiment, an almost hundred percent removal was visible for DOC, TOC, and nitrate in the
early weeks of the experiment (Figure 3.2 and A.8). With biodegradation not being installed yet, this
removal is the result of adsorption of the chemicals to the GAC. In water with near neutral pH, the al-
kaline GAC is positively charged and facilitates the adsorption of negatively charged NOM and anions
by electrostatic interactions (Faria et al. 2004, Grieco 2021, Kołodziej et al. 2014, Paredes et al. 2016).
With the filter still being unsaturated, the removal of these chemicals is driven by the adsorption during
the first weeks of operation (Simpson 2008). Electrostatic interactions, pore filling, hydrophobic inter-
action, hydrogen bonds and p - p interaction all contribute to this adsorption process (Bhatnagar et al.
2013). The metals, however, are positively charged and the previously described processes are not
expected to apply to them. In water, un-complexed metals are not commonly found (Adusei-Gyamfi
et al. 2019), and are often complexed to organic or inorganic molecules. At near neutral pH the order
of adsorption to humic substances has been reported as Fe = Pb = Al = Cr = Cu > Cd > Ni > Mn, with
sorption efficiency increasing with rise in pH (Hart & Davies 1981, Kerndorff & Schnitzer 1980). In
metal-NOM complexation metal binds to already existing ionized sites on the NOM molecule or by
displacing a proton from its position (Adusei-Gyamfi et al. 2019). When DOM is removed by GAC
via adsorption, it consequently removes the complexed metal, as GAC adsorption is believed not to
dissociate the NOM–metal complexes (Al-Attas et al. 2018). In the results, this is clearly visible for
DOC/TOC and iron. TOC, DOC, and iron showed a similar trend (Figure 3.3). Indeed, iron correlated
strongly with DOC (Pearson correlation; r(61) = .879, p < .001) and is removed when TOC/DOC is
removed.
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GAC saturation
DOC behaved similarly to TOC (Pearson correlation; r(149) = .995, p < .001), and only DOC will be
further discussed. All three filters showed almost 100% DOC removal at the start of the experimental
run (Figure 3.3 A). However, the removal efficiency declined over time. This was most likely the
result of GAC saturation, because no biodegradation is taking place yet at the start of the operation
run (Korotta-Gamage & Sathasivan 2017). The 90 cm filter was expected to treat at least three times
the amount of water in at least three times the number of weeks before saturation compared to 30 cm,
as there was three times the amount of GAC (Biswas & Mishra 2015, Lee et al. 1983). Interestingly
all filters plateaued at approximately 15 weeks after treating the same amount of water. Instead of
needing the same amount of BV until equilibrium, the 90 cm filter needed much less BV, compared
to the other two filters. This becomes clearer in Figure 3.9, where DOC removal efficiency is plotted
against the BV. The 90 cm filter started breakthrough at 291 BV and reached apparent steady state at
approximately 307 BV (slope = -0.20), while the 60 and 30 cm filter needed started breakthrough at
379 and 470 BV, respectively, and reached steady state at 462 (slope = -0.14) and 924 BV (slope =
-0.08), respectively (Linear regression; F(36,2) = 31.31, p < 0.05).

Figure 3.9: DOC removal as function of BV (mean, n = 3 replicates) for different filter
lengths (30, 60, and 90 cm) including their (dashed) regression lines over the first 15 week
of operation.
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Apparent steady state
From week 15 the filter appears to be in an apparent steady state (3.3 A B), with significant difference
between the filter lengths at week 23 (Dunn’s post-hoc test on KW; H(36) = 26.6, p.adj < 0.001). The
30, 60 and 90 cm filters removed 26 ± 3%, 34 ± 3%, 43 ± 2%, respectively. The scientific consensus
for a BAC filter is that it is fully functioning through biodegradation when DOM removal is in steady
state (Terry Summers, 2018a).

First, we can evaluate the removal efficiency at the assumed steady state. These removals ranged
from approximately 26 - 43% depending on filter length and are much higher than the reported DOM
removal in rapid-rate BAC filtration (10 - 15%) and slow sand filtration (16%) (Guchi 2015, Terry &
Summers 2018). There are drinking water treatment studies that have reported TOC or DOC removal
above the commonly accepted 10 - 16%: 6 – 30% at 6-30 min EBCT (Arnold et al. 2018), 17–37%
at 18 min EBCT (Kalkan et al., 2011), 23 – 51% at 18 min EBCT (Farre et al. 2011), 22–63% at
18 - 120 min EBCT (Reungoat et al. 2011), 70% at 60 min EBCT (Pipe-Martin 2010), 60% at 14.4
hour EBCT (Ka et al. 2020), and 37% at EBCT of 1 hour (Rattier et al. 2012a). All these studies use
adsorptive media. There seems to be a link between the adsorptive character and the elevated removal
efficiencies reported by these studies.

Secondly, we can look at the BV needed until reaching the steady state caused by microbial activ-
ity solely. The apparent steady state of the present study was achieved between 300 and 950 BV
depending on filter length. It is a much lower BV than the advised 20,000 BV indicated by Peterson
& Summers (2021). It means that not enough BV have passed through the filters in the current study
to have exhausted the GAC. As a result, GAC adsorption is expected to still play a large role.

Third, we can look at the microbial activity in the filter. During steady state, it is expected for DOM
removal to be a function of biomass concentration (Carlson & Amy 1998), and therefore a higher
DOM removal in steady state suggests a higher microbial activity. During saturation of the filters, mi-
crobial communities start to inhabit the GAC while utilizing biodegradable organics (Korotta-Gamage
& Sathasivan 2017, Scholz & Martin 1997, Simpson 2008). Although this biodegradation contributes
to the removal of DOM, the formation of biomass decreases the alkalinity of the GAC, making it less
easy for negatively charged molecules such as the DOM and anions to adsorb (Mahajan et al. 1980,
Rattier et al. 2012a). In the present study, it is not clear when biodegradation start playing a role in the
removal of DOM, but already in week 5 biomass (cells) was present on the GAC (Figure 3.10).
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Figure 3.10: Trends of DOC (A) and Biomass (B) removal. DOC removal was measured at week 23
for the three filter lengths (n = 3 replicates). Letters (a, b, c) in (A) denote significant differences with
regard to DOC removal between filter lengths assessed by Dunn’s post-hoc test on KW H-test. Cell
counts were measured at week 5, 9, 12, and 23 for the 90 cm filter as well as the 30 and 60 cm filter
at week 23 (n = 3 replicates). Letters (a and b) in (B) denote significant differences between filter
lengths at week 23 with regard to cell count assessed by Tukey’s post-hoc test on ANOVA.

At week 23 the 30, 60 and 90 cm filters removed 26 ± 3%, 34 ± 3%, 43 ± 2%. The total biomass in
the filters, on the other hand, was 2·1010 ± 6·108, 1·1010 ± 8·108 and 2·1010 ± 7·108 cells for the 30, 60
and 90 cm filters respectively (Figure 3.10). Interestingly, while the shortest filter-showed the lowest
DOC removal efficiency, it had the highest biomass content. This suggests that adsorption still plays
an important role even when the removal efficiency appears to be in steady state.

All these factors point out that in the present study the apparent steady state for DOM removal is
not a result of solely biodegradation, but that adsorption is still playing a significant role. Adsorption
kinetics of carbon is modelled as a series of two consecutive processes: nonselective adsorption of
molecules in larger pores followed by the movement of such adsorbed molecules into the small mi-
cropores through the pore mouth barriers (Kołodziej et al. 2014, Nguyen & Do 2000, Pohlman 1940).
After a rapid fall in adsorption efficiency to a lower level when the nonselective adsorption sites are
occupied, adsorption actually continues, apparently unchanged, over an extended period of time, also
known as tailing (slow adsorption) (Pohlman 1940). This adsorption phase can last for months or
longer depending on the characteristics of the adsorbate and adsorbent (Peterson & Summers 2021).
Because this dual-rate kinetic model produces a similarly shaped breakthrough curve, various water
treatment operations have been wrongly classified as biological removal following an initial period
of high adsorptive uptake (Peel & Benedek 1983), while actually all removal could be ascribed to
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some form of adsorption. This apparent steady state can therefore be easily mistaken for steady state
behaviour caused by microbial activity. To conclude, in the present study the apparent steady state is
highly likely causing the slow adsorption of the DOC into the micropores. The longest filter benefits
the most from these slow adsorption processes resulting in the highest removal efficiency for longer
periods of time during this apparent state. How much of the witnessed DOM removal can be ascribed
to biodegradation or biosorption remains unknown. Analytical techniques that better characterize and
quantify DOM fractions (such as AOC, BDOC, fluorescence or LC-OCD) could contribute to quantifi-
cation of the DOM fraction being biodegraded and/or adsorbed. Therefore in chapter 4 a fluorescence
spectroscopy method is designed to characterize and semi-quantify DOM which can help to character-
ize and monitor the behaviour of less biodegradable humic substances and the more readily available
proteins. Among other methods, this method will then be applied in chapter 5 to analyse the pore
water of the biofilter for further understanding of the removal processes of DOM within the biofilter.

Other V1 parameters
Looking at the other chemical water quality variables of cluster V1, nitrate was also fully removed
at the start of the operation (Figure 3.3 D). Removal of nitrate by GAC has been shown previously
(Demiral & Gündüzoǧlu 2010, Mubita et al. 2019). Over time the concentrations of the 30 and 60
cm filters rose above the LOQ resulting in a lower removal efficiency. However, removal efficiencies
remained high during the whole operational run. On average removal efficiency was 75 ± 20%, 84 ±
10%, 87 ± 5% for the 30, 60 and 90 cm filters, respectively, with the 30 and 60 cm as well as the 30
and 90 cm filters showing statistical difference (Dunn’s post-hoc test on KW; H(151) = 22.51, p.adj <
0.001).

As described before, iron was removed in a similar way as DOC with a large removal at the start
of the experiment and a decline over time until steady state. In steady state, iron removal efficiency
was 18 ± 7%, 22 ± 2%, 26 ± 2% for the 30, 60 and 90 cm filter. Only the 30 and 90 cm filters behaved
statistically differently from each other (Dunn’s post-hoc test on KW; H(27) = 14.10, p.adj < 0.001).

Overall, results of the present study show that longer filters have higher removal rates because of
its high EBCT and extended slow-adsorption. Microbial data provided by DQ demonstrated that filter
length did not influence the pathogen removal and that all microbial processes are taking place within
the first 30 cm of the filter. Therefore, from a microbial point of view short biofilters with low EBCT
can be used for the treatment of the water. However, from a chemical point of view the longer filter
has the longest slow adsorption and the highest removal of DOM and iron for the longest period of
time.
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3.4 Conclusion

The objective of this chapter was to (1) quantify DOM removal and other chemical water quality
parameters and (2) explore the impact of filter length for a biofilter during the first six months of
operation. Results from this study suggest that:

- Slow-flow BAC filtration with long filter length resulted in a significantly higher DOC removal
in apparent steady state compared to the smaller filters.

- In the apparent steady state not only biodegradation, but also other processes such as slow-
adsorption by GAC or biosorption by the biofilm play a role in the removal of DOC which
might explain the increased DOM removal by slow-flow BAC filtration compared to other BAC
filter studies.

- Longer filters have a higher capacity to remove DOM, because of GAC material is available for
slow-adsorption.

- The slow-flow BAC filter did not meet the criteria for proving clean drinking water. It was not
able to filter iron until a concentration below the EU standards. Moreover, the DOC concentra-
tion increased to such high concentration that colour was visible. Also, arsenic leached from the
filter during the first weeks.

- The choice for filter length is dependent on the treatment goal for the Scottish off-grid system.
If one of the important aspects is the significant reduction of TOC and iron, solutions for the
removal of these chemical parameters need to be found before the system can be deployed.

- Most of the other anion, cations and metals are present in (very) low concentrations and are not
a problem for the quality of the treated water. It is, however, recommended to flush the GAC
thoroughly and monitor the flush water to avoid pH and conductivity fluctuations at the start of
the operation resulting in the leaching of harmful metals such as arsenic.

- To what extent microbial utilization plays a role in the removal of DOM is not clear from this
chapter. Therefore in chapter 4 a fluorescence spectroscopy method is designed to character-
ize and semi-quantify DOM which can help to characterize and monitor the behaviour of less
biodegradable humic substances and the more readily available proteins. This method will then
be applied in chapter 5 to analyse the pore water of the biofilter for further understanding of the
removal processes of DOM within the biofilter.
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Chapter 4

Fluorescence excitation-emission measurements
of DOM using a plate reader coupled to
PARAFAC analysis
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4.1 Introduction

To produce safe and high-quality drinking water, the effective removal of DOM is essential. The
results of chapter 3 have demonstrated that slow-flow BAC filtration is able to remove DOM. In biofil-
ters, DOM is one of the chemical parameters that plays an important role in the ecological mecha-
nisms happening in the biofilter. It is used as substrate by the microorganisms that will inhabit the
filter and can steer microbial community composition (Wu et al. 2018). Results of chapter 3 did not
unveil to what extend microbial breakdown of biodegradable DOC played a role during filtration. For
this, a method that characterises the DOM better is required. One of these methods is EEM fluores-
cence spectroscopy is a proven popular technique to characterize and monitor dissolved organic matter
(DOM) in natural as well in engineered systems (Carstea et al. 2020). Although this technique does
not provide absolute concentrations, it can characterize the DOM to a certain extent and give relative
fluorescence signals (Ryder et al. 2017). PARAFAC has become one of the most commonly used
techniques to analyse the fluorescence EEM data (Sanchez et al. 2013), with a repository of published
organic fluorescence spectra available online (Murphy et al. 2014a). Although PARAFAC is not con-
sidered a simple method, various tools are freely available that can assist with the PARAFAC model
building (Bro & Vidal 2011, Murphy et al. 2013a,b).

Top-end fluorescence spectrometers quickly and accurately produce EEMs over a wide range of ex-
citation and emission wavelengths using small intervals (hereafter called resolution). This, together
with the fact that no sample pre-treatment and ample sample volume are required, makes fluorescence
excitation–emission measurements a popular analytical method. However, these top-end fluorescence
spectrometers are not always present in laboratories. A possible alternative could be the use of a plate
reader for fluorescence EEM measurements. Plate readers are multifunctional and possibly present in
laboratories where fluorescence spectrometers are missing. Plate readers that can make fluorescence
scans are able to produce a non-automated EEM, while newer versions can even do so fully automated.
Possible challenges when fluorescence EEM are produced by a plate reader are the microplates and
the resolution of the machine. The microplates that are commonly used in plate readers are made from
material that causes autofluorescence. Although special microplates are available that counteract the
autofluorescence (Greiner bio-one 2020), interference of autofluorescence signal during PARAFAC
modelling cannot be ruled out. Also, when using a non-automated plate reader, a number of manual
steps have to be taken and consequently a lower number of excitation and emission wavelengths will
be used. This will impact the resolution of the produced EEM.
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The use of the plate reader to analyse DOM by fluorescence EEM spectroscopy and subsequent anal-
ysis of data by PARAFAC has the potential to make the approach more widely applicable and more
affordable; notably for less well-resourced laboratories where fluorimeters are not commonly present
in laboratories. The objective of this chapter is therefore to develop a fit for purpose analytical method
using a non-automated plate reader to characterize and semi-quantify DOM with help of PARAFAC.
This innovative method using a plate reader has not been reported to date. The method was validated
by evaluating its specificity, linearity, accuracy, and precision with help of two reference standards that
cover the DOM EEM range and by applying the method to a small data set of water samples analysed
by the method itself and a method commonly accepted in the field of expertise (the golden standard).
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4.2 Material and methods

4.2.1 Plate reader method

Plate reader + Microplates

The Tecan M200 Pro plate reader (Tecan, Switzerland) was used for method development with the
following settings: excitation scan modus, excitation bandwidth 5 nm (250-315 nm) and 10 nm (316-
450), emission bandwidth 20 nm, excitation scan number 21, gain 60, number of flashes 25, integration
time 20 µs, lag time 0 µs, settle time 0 ms, z-position 20000 µm. For each EEM, the analysis was done
in 3 sections being excitation/emission (1) 250/280, 250-260/290, 250-270/300, 250-280/310, 250-
290/320, 250-300/330, 250-310/340, 250-320/350, 250-320/360, 250-370/370; (2) 250-380/380, 250-
390/390, 250-400/400, 250-410/410, 250-420/420, 250-430/430, 250-440/440, 250-450/450, 250-
450/460, 250-450/470; (3) 250-450/480, 250-450/490, 250-450/500, 250-450/510, 250-450/520, 250-
450/530, 250-450/540, 250-450/550. Samples were analysed in a 96 wells microplate (UVStar®,
black chimney flat bottom µClear®, Greiner, Austria). This microplate made from cycloolefin co-
polymers was chosen because of its low costs, low level of autofluorescence, along with very good
transparency in lower UV wavelengths (down to 230 nm) (Greiner bio-one 2020). The black chimney
shaped (tube shaped) wells with flat transparent bottom prevented signal crossing from other wells.

EEM Absorbance data

For each sample, as well as blank (Milli-Q water), 330 µl was transferred to one of the wells of the
microplate with help of a pipette. This provides a pathlength of approximately 1 cm which is the
standard pathlength of a spectroscopy cuvette. The fluorescence intensity of the sample and the blank
was measured for the EEM ranging from excitation wavelength 250-450 nm and emission wavelength
280-550 nm with 10 nm interval for both wavelengths. Afterwards, the absorbance of both sample and
blank were measured from 250-550 nm with 10 nm interval. During analysis, a maximum of two rows
of the microplate was analysed at the time to minimise the risk of evaporation. The plate reader did
not order the data for each sample as EEM. A self-build MATLAB tool (MATLAB R2016B) was used
to extract the EEM together with the excitation and emission wavelengths for every sample/blank
(Appendix B, Section B.2, pg. 193). The absorbance with its corresponding wavelengths was also
extracted from the raw datafile. Data were stored according to the PARAFAC data analysis method
developed by Pucher et al. (2019), including a metadata file with sample information.
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Spectral correction factor data

Raw fluorescence data are often biased due to variations in the efficiency at which the various wave-
lengths of light are transmitted through the monochromators and the imperfections in the optical com-
ponents or their alignment (Murphy et al. 2013b). This can create systematic biases in the data set with
inaccurate excitation or emission spectra and must be corrected through spectral correction. In spectral
correction, every combination of excitation and emission wavelength within the EEM is multiplied by
a correction factor from a correction matrix (the correlation matrix is the excitation correction vector
x emission correction vector) that is specific to the instrument in use. The emission spectral correction
vector was based on the method of Lakowicz (2006), and is described in Appendix B, Section B.1, pg.
191. The excitation wavelength of the current set-up did not need further correction. The excitation
correction vector ranging from 250-470 nm was therefore set to 1. Both the excitation and emission
correction files are stored according to Pucher et al. (2019).

Raman calibration data

Fluorescence measurements at different timepoints or using different instrument settings can cause
fluorescence signal variation. For data comparison an intensity calibration is required. A simple
method developed by Lawaetz & Stedmon (2009) uses the integrated area of a water Raman peak for
the calibration of the fluorescence intensity. This water Raman band is a result of non-elastic scatter
and runs through the EEM (Figure 4.1). The wavelength-dependent Raman cross-section of water is
directly proportional to the integral of the Raman peak (Arp) (Figure 4.1) and a fixed property of water
(Faris & Copeland 1997). In most cases, the area under the peak at excitation wavelength 275 or 350
nm is used (Lawaetz & Stedmon 2009, Murphy et al. 2010, 2013b). For the Plate Reader method
(hereafter called PR method), the Arp at 420 nm excitation wavelength of a blank is used to calibrate
the results, because background noise due to autofluorescence of the system interferes with the Arp

at excitations 275 and 350 nm. For the calculation of the Arp, the fluorescence emission intensities,
ranging from 460 to 520 with 10 nm interval at 420 nm excitation wavelength, were extracted from
the first measured DI blank of the day and stored in a separate file with its corresponding wavelengths.
Raman calibration files are stored according to (Pucher et al. 2019).
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Figure 4.1: Raleigh and Raman scatter present in an EEM of water. From
Lawaetz & Stedmon (2009).

4.2.2 Gold standard method

The Gold Standard method (hereafter called GS method) used the Duetta (Horiba, Japan) equipped
with a 3.5 mL quartz cuvette using the following settings: Excitation range 250-470 nm with 10 nm
steps increment, emission range 280-550, automatic correction of inner filter effect, excitation/emission
band pass set at 5 nm, integration time 1s and detector accumulations 1. For each sample, the cuvette
was loaded with 3 mL sample and placed in the machine. The absorbance and fluorescence were mea-
sured consecutively, and the inner filter effect was automatically corrected. Afterwards, a blank was
measured, and its signal subtracted from the signal of the sample. Samples were Raman calibrated as
described previously using excitation wavelength 350 nm. Data preprocessing and PARAFAC carried
out in a similar way as the PR method.

4.2.3 Data pre-processing

To build a PARAFAC model the raw EEM needed pre-processing to correct systematic biases in the
data set. For data preprocessing, the staRdom package for R was used (Pucher et al. 2019), following
the steps given in Figure 4.2.
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Figure 4.2: Schematic overview of PARAFAC pre-processing steps.

Step (1) Sample EEMs were spectrally corrected by element-wise multiplication with the correction
matrix (excitation correction vector x emission correction vector) as described previously. (2) Sample
EEMs were subsequently corrected for large direct scattering of the incident light at the same wave-
length as the excitation by deleting the values of these excitation-emission wavelength pairs (Stedmon
& Bro 2008). (3) Sample and blank EEMs were corrected for the inner filter effect which can re-
sult in an underestimation of emitted fluorescence. During inner filter effect the dissolved analytes
attenuate either the excitation, the emission light, or both as it passes through the sample (Ryder et al.
2017). This effect was corrected with help of the inner filter correction equation (Murphy et al. 2010).
(4) Sample EEMs were corrected for non-elastic scatter by subtracting the blank spectrum from the
sample spectrum. Although the necessity of Raman scatter removal by blank subtraction has been
questioned in previous studies (Murphy et al. 2010, Zepp et al. 2004), this correction step is necessary
in the PR method. In fact, in addition to the removal of Raman scatter (Lawaetz & Stedmon 2009,
Murphy et al. 2010), this correction step removes the autofluorescence signal caused by the plate
reader and/or microplate. (5) Raman calibration normalized the sample EEMs by dividing the sample
EEM by the area under the Raman peak of the blank.

4.2.4 PARAFAC

A PARAFAC model was built with help of the staRdom package in R (version 4.1.1) (Pucher et al.
2019), described in short here. Exploratory phase: initial PARAFAC models were created for a first
set of components (1-6 factors). For all investigated components, sample outliers and problematic
excitations and emissions were inspected and removed where needed. Three measures are used to
decide which possible models described the data set best (including all fluorophores without includ-
ing noise), being (1) fit-values, (2) Core Consistency Diagnosis (CORCONDIA) and (3) split-half
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validation. Fit-values describe the variance that is explained by the model. Core consistency diagno-
sis evaluates the degree of trilinearity of the PARAFAC loadings by comparison of the least squares
Tucker3 core (Tucker 1966) calculated for these and a superdiagonal core of ones according to the
assumption that the model can be represented as a constrained Tucker3 model with the core corre-
sponding to a superdiagonal of ones (Bro & Kiers 2003, Sanchez et al. 2013). The core consistency,
which is expressed as a percentage, implies the degree of fitting of the Tucker3 core with respect to the
assumption of the model. Core consistency of a one component model is always 100% and decreases
as the number of components in the model increases. Core consistency exhibits a significant reduction
when an additional component is added after the appropriate number of constituents has been reached.
Split-half analysis proposed by Harshman & Sarbo (1984) uses multiple split-half tests, where various
models are created and compared after dividing the data set in half in different ways (Murphy et al.
2013b, Peleato et al. 2016).

An overall measure of model quality was defined by EEMqual (Bro & Vidal 2011). This measure
is the combination of three tests (fit-values, core consistency diagnosis and split-half validation) and
is expressed by a single value (Equation 4.1). All three tests have a value between 0 and 100, where
0 is bad and 100 perfect. When all three measures are close to hundred, the EEMqual was close to
hundred, and the model is good. In general, the most suitable model is the model with the highest
number of components which still has a high EEMqual (Equation 4.1). In the current method, models
with increasing number of components were tested and the one with the highest number that is still
providing a good model (high EEMqual) was chosen.

EEMqual = Fit ×Coreconsistencediagnosis×Splithal f (4.1)

4.2.5 Method validation

The PR method was validated for fitness-for-purpose. The following validation parameters : selectiv-
ity, linearity, limit of detection and quantitation, accuracy (recovery) and precision (repeatability and
intermediate precision) were investigated by measuring two fluorophores, Quinine Sulphate (QS) and
TRyptophan (TR), on two days within 2 weeks. QS excitation/emission range is <250-400 / 400-600
and TR excitation/emission range is 260-300 / 300-450 nm. These two analytes thereby cover the
section of the EEM similar to humic-like (excitation/emission range = 250-400 / 400-550 nm) and
protein-like (excitation/emission range = 250-300 / 300-400 nm) fluorescence components present in
fresh water.
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Validation standards

200 µg/L stock solutions were prepared: tryptophan (Sigma Aldrich, UK) was prepared in the absence
of added buffer at pH 7 in (1) DI water (Elix© Pure Water Systems, Merck) and (2) river water and
(3) 50%-50% mix of DI and river water; QS (Sigma Aldrich, UK) in 0.1 H2SO4 was examined at
a concentration of 15 mg/L and at pH 1.5 in (3) DI water and (4) 50% - 50% mix of DI and river
water. Pure DI water and river water were used as blanks; samples were stored at 4 °Celsius in the
dark before analysis within 48 h.

Validation parameters

selectivity Selectivity is the extent to which a method can determine particular analyte(s) in a mix-
ture(s) or matrix(ces) without interferences from other components of similar behaviour (FDA 2020).
Three concentrations (10, 50, 150 µg/L) of each analyte dissolved in pure water as well as in matrix (1
: 1 river water : DI water) were created and measured in triplicate by the PR method as well as the GS
method. For each method a separate PARAFAC model was created. The spectral shape/peak position
(qualitative) as well as the signal intensity (quantitative) was compared between solvent (water and
matrix) and among methods (PR ad GS methods). Spectral shape and peak position were compared
by visual plot inspection as well as a Pearson correlation in which the combined excitation and emis-
sion spectra of each analyte were compared among solvents and methods with data being normality
distributed.

Signal intensity was compared among the two methods by looking at their signal recoveries of the
standards in matrix where signal in water was used as reference (Equation 4.2).

Recovery =
(Concentration in matrix)
(Concentration in water)

×100 (4.2)

Linearity Linearity is the ability of the method to produce results that are directly proportional to an-
alyte concentration within a given range (FDA 2020). It is evaluated by the slope, intercept, standard
error of slope, standard error of intercept, correlation coefficient of a six-point calibration curve. For
this, six calibration standards (10, 30, 50, 100, 150 and 200 µg/L) were measured in triplicate, with
subsequent regression analysis on the data.
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Limit of detection and quantitation Limit Of Detection (LOD) is the lowest amount of analyte in
a sample which can be detected but not necessarily quantitated as an exact value, while the LOQ is
the level above which quantitative results may be determined with acceptable accuracy and precision
(FDA 2020). The LOQ were calculated with help of Equation 4.3.

LOQ =
(standard error of intercept)

slope
×10 (4.3)

Accuracy and precision The Quality Controls were used to determine the accuracy of the method
(recovery) and its precision (repeatability and intermediate precision). Accuracy is the nearness of a
result or the mean of a set of measurements to the true value and is expressed in recovery (Equation 4.4)
(FDA 2020). Precision is the agreement between a set of replicate measurements without assumption
of knowledge of the true value and was expressed by the repeatability within 1 day (Equation 4.5)
as well as the intermediate precision over 2 days (Equation 4.6) (FDA 2020). For this, three quality
controls (10, 50 and 150 µg/L) were measured in sixfold for both fluorophores on two different days.

Recovery =
(Measured concentration)

(Used concentration)
×100 (4.4)

Repeatability =
standarddeviation

mean
×100 (within 1 day) (4.5)

Intermediate precision = mean×100 (over 2 day) (4.6)
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4.2.6 Method application

Water samples

Six water samples were collected from various water sources in The Netherlands and one in Scotland:
Amsterdam channel (NL), lake ‘s-Gravenbroek (NL), lake ‘s-Gravenkoop (NL), river Wiericke (NL),
fosse Driebruggen (NL), and Kelvin Glasgow (GB). Two additional samples were created by diluting
river Wiericke and fosse Driebruggen 1 : 1 with DI water.

Application

The PR and GS methods were applied to a small data set of water samples (s=8) to verify the environ-
mental applicability of the PR method. This was done by looking at the qualitative and quantitative
specificity of the PR method. First the correct number of PARAFAC components was determined.
Second, for the qualitative specificity, the spectral shapes of the components of the models of both
methods were compared. This was done by a Pearson correlation. Next, both excitation/emission
spectra were cross checked with components previously reported in the literature using the OpenFluor
database (Murphy et al. 2014). For each component the number of correlated components in the
database (Tucker’s Congruence Coefficient > 0.95%) were given together with their reported charac-
teristics of the three best matching components. Tucker’s Congruence Coefficien is an index of the
similarity between the compared factors (components). The hits with the components in the database
were compared among the two methods. Third, for the quantitative specificity, signal intensities of
the components were compared among the methods. Also, signal intensities of the components were
compared among diluted and undiluted samples. This last step was necessary to check the influence
of absorbance in samples with high fluorescence intensities. An overview of the various parameters
analysed, and corresponding models produced is given in Table 4.1.
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Table 4.1: Details of the validation data sets and corresponding PARAFAC
models.

Validation
parameter Matrix Conc. Reps. GS method model name Nr. samples

per model Comments

Selectivity DI & River 10, 50, 150 3 Yes

(1)PRmethod&DI

(2)PRmethod&river

(3)GSmethod&DI

(4)GSmethod&river

9

9

3

3

250 & 260 nm
excitation removed

for GS method

Regression
(linearity&LOQ) DI

10, 30, 50,
100, 150, 200 3 No

Accuracy
(Recovery)

DI 10, 50, 150 6 No (5) 108

Precision
(Repeatability&

intermediate precision)

DI 10, 50, 150 6 No

Method applicability - water samples 1 Yes
(6)

(7)

8

8

250 & 260 nm
excitation removed

for GS method
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4.3 Results and Discussion

4.3.1 PARAFAC component selection

The aim of this study was to validate the use of a plate reader for the characterization and semi-
quantitation of DOM with help of PARAFAC. First various validation parameters (selectivity, linear-
ity, accuracy, and precision) were evaluated using two reference standards (QS and TR) dissolved in
water and a river water matrix, followed by the demonstration of the method’s applicability to envi-
ronmental samples.

For each validation data set from Table 4.1, a separate PARAFAC model was built. The first step was
to find the correct number of components per data set to subsequently build the individual PARAFAC
models. The correct number of components that describes all present fluorophores while excluding
the background noise was selected with help of the results of EEMqual. EEMqual was the combined
measure of the fit-values, CORCONDIA and split-half validation. Results are given in Appendix B,
section B.2, pg. 193, and show that 2 components were needed to build for models 1 to 7.

Selectivity

Selectivity was studied to demonstrate that fluorescence components were at similar position in the
EEM’s of the PR method and GS method in water and in matrix, as well as with similar signal in-
tensity. Correct position is hereafter called qualitative selectivity, while the right signal intensity is
hereafter called quantitative selectivity. The excitation/emission spectra of the analytes in ultra-pure
and matrix (river water) of the GS method and PR method are shown in Figure 4.3, respectively. Dur-
ing PARAFAC model building, the GS method showed significant background scatter at excitations
250 and 260 nm in most low concentration samples. These excitation wavelengths needed to be ex-
cluded and were consequently missing in their excitation spectra (Figure 4.3). For the PR method, no
abnormalities were found in the spectra during model building.
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Figure 4.3: PARAFAC component excitation (red) and emission (blue) spectra of QS in
water (A) and in matrix (B) analysed by the GS method, QS in water (C) and QS in matrix
(D) analysed by the PR method, TR in water (E) and in matrix (F) analysed by the GS
method, and TR in water (G) and TR in matrix (H) analysed by the PR method.
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Figure 4.4: Significant correlations (-.6 > R > .6) between spectra of TR (A) and QS (B) analysed
by the PR method PR and the GS method in water (H2O) and matrix.

To judge the qualitative selectivity of the PR method for each analyte, the excitation/emission spectra
were compared between methods and solvent. Visual comparison of the PR and GS method showed
similar spectra position and shape (QS: Figure 4.3 A vs C, TR: Figure 4.3 E vs G). Only the shape
of excitation wavelengths 250 and 260 could not be compared, because of the removal of these wave-
lengths from the GS model. Visual comparison of the water and matrix samples of the PR method also
showed similar spectra position and shape (QS: Figure 4.3 C vs D, TR: Figure 4.3 G vs H). Overall,
the components demonstrated excellent Pearson correlation (R(49) > .97, p < .001) among the meth-
ods and solvents (Figure 4.4). Therefore, the PR method demonstrated a good qualitative selectivity.

To judge the accuracy of the signal intensities of the measured analytes, the signal recovery (Equation
4.2) in river water matrix was compared among the PR and GS methods. For both methods, the ma-
trix interfered in some way with the fluorescence signal intensity. Apart from PR method TR50 and
TR150, all other samples experienced matrix effect resulting in negative recovery (Figure 4.5). The
recovery of the GS method ranged from -40 to -8.6%, the PR method ranged from -17 to 36%. The 10
µg/L TR was excluded because of an error in sample preparation. Overall, the PR method recoveries
were within acceptable limits of ± 20%, apart from the 50 µg/L tryptophan sample (TR50) analysed
by the PR method (FDA 2020).
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Figure 4.5: Quantitative specificity: signal recovery of 10, 50, 150 µg/L QS (QS10, QS50,
QS150) and 50, 150 µg/L TR (TR50, TR150) (n = 1 replicate) for the GS (A) and PR (B)
methods.

Signal quenching of QS can be a result of the inner filter effect. This effect is due to dissolved analytes
attenuating either the excitation light, the emission light, or both as the they pass through the sample
(Ryder et al. 2017). While other methods are available for this correction (Larsson et al. 2007), the
equation proposed in Lakowicz (2006), and used in the present study, is the commonly accepted cor-
rection method. With the optical density of the samples in the study under the absorption limit (A <
1.5) (Kothawala et al. 2013, Ryder et al. 2017), the mathematical inner filter effect correction approach
is assumed to be correct. Another possible quenching mechanisms is energy transfer (Lakowicz 2006,
Mounier et al. 2017). Energy transfer is a dynamic quenching process in which non-radiatively energy
(without absorption or emission of photons) transfers from donor (in the excited state) to the acceptor.
The donor and acceptor then are coupled by a dipole–dipole interaction. This process only occurs
when the emission spectrum of a fluorophore donor overlaps with the absorption spectrum of the ac-
ceptor, which does not need to be fluorescent. In the present study, both TR and QS emission spectrum
(donor) overlapped with the absorption spectrum of humic-like fluorescence acceptor present in the
river water matrix. So, the insufficient recovery can be a result of these principles. On the other hand,
the positive extreme recovery of the 50 µg/L tryptophan sample (TR50) by the PR method can be the
result of overcorrection of the inner filter effect. Both problems could be resolved by sample dilution.
However this dilution step is not always possible and also adds a sample handling disadvantage, which
is a source of error (Ryder et al. 2017). Moreover, when two fluorophores are present in a water sample
and one of them is present in high concentration and the other is present with minimal signal intensity,
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dilution can positively affect the highly present fluorophore signal, while removing the signal of the
other fluorophore. It is therefore best to analyse both diluted and undiluted samples, when sufficient
sample volume is available.

Linearity and detection limits

Second, the linearity and detection limits were investigated by using quantitative data from model 5
(Table 4.1). A 6-point calibration curve (10, 30, 50, 100, 150 and 200 µg/L) was created on two inde-
pendent days using 3 replicates per calibration point. The calibration curve of QS and TR measured at
day 1 are given in Figure 4.6. The method showed a good linearity on both days. Regression analysis
indicated that the regression coefficients for TR as well as QS were above 0.99 and the LOQ around
10 µg/L for both analytes (Table 4.2).

Figure 4.6: Calibration curve of TR (A) and QS (B) measured at day one.

Accuracy and precision

Third, the accuracy and precision were investigated by using quantitative data from model 5 (Table
4.1). The accuracy was evaluated by looking at analyte recovery (Table 4.2). For most samples the
recovery of the PR method was good (recovery between 90-110%). Only the recovery of the low
concentration samples (10 µg/L) varied. Most low concentration samples showed recovery above
100%. Again, this suggests that low signals might be overestimated by the PR method. All TR sam-
ples measured at day 2 showed a relatively low recovery compared to their day 1 counterpart. In
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general, the accuracy was within acceptable limits. The precision was evaluated by looking at mea-
surement repeatability in one day (repeatability) and over two days (intermediate precision) (Table
4.2). Measurement repeatability and intermediate precision illustrated a high precision under the var-
ious circumstances (% Relative Standard Deviation (RSD) < 10). Only the intermediate precision of
the 10 µg/L TR samples (18% RSD) deviated.

Table 4.2: Validation parameters of the PR method.

Tryptophan Quinine sulphate
Day1 Day2 Day1 Day2

Linearity and
detection limit

Corr. Coeff. 0.999 0.998 0.998 1.000
Slope /sensitivity 0.02 0.03 0.06 0.06

SEa of slope 1.66·10-4 3.05·10-4 4.40·10-4 3.47·10-4

Intercept 8.00·10-37 2.00·10-3 -0.08 -0.07
SEa of intercept 0.027 0.03 0.05 0.04

LOQb 8.88 11.45 8.99 6.17

Precision

Repeatability (%RSD)c
10 6.13 3.09 4.18 1.09
50 1.86 2.65 0.93 2.18
150 0.98 0.47 3.36 0.90

Intermediate precision (%RSD)c
10 17.64 5.48
50 5.13 1.81
150 6.85 3.64

Accuracy

Recovery range (%)d
10 105–125 79-87 115–129 108-111
50 99-104 89-96 99–102 97-103
150 101-104 89-90 98-108 95-98

Mean recovery (%)d ± SDe
10 116± 7 84±3 119± 9 109±2
50 101±2 91±2 101±1 99±2
150 102±1 90±0 102±3 97±1

a SE = standard error
b Limit of quantitation (LOQ) = 10 × (SE of intercept/slope)
c % of Relative Standard Deviation (%RSD) = (SD/mean) × 100
d Recovery (%) = (measured concentration/used concentration) × 100
e SD = standard deviation
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4.3.2 Method applicability

The PR method as well as the GS method were applied to a set of environmental samples to judge the
qualitative and quantitative specificity of the PR method. For both methods independent models were
created (model 6 and 7 for the PR and GS method, respectively, Table 4.1). For qualitative specificity,
the component of the PR method was compared to that of the GS method by visual inspection of their
excitation/emission spectra and Pearson correlation, as well as comparison of their nomenclature in the
OpenFluor database. For quantitative specificity, signal intensities of the components were compared
among the methods as well as the comparison between diluted and undiluted samples. This last step
was necessary to check the influence of absorbance in samples with high fluorescence intensities.

Qualitative specificity

The components given by both methods are illustrated by the EEM (Figure 4.7) and corresponding
spectra (Figure 4.8).The excitation spectrum of component 1 (C1) differed slightly among the two
methods, while the emission spectra look similar (Figure 4.8 A and C). C1 of the GS method had
one maximum (270 nm), the PR method on the other hand had two peaks (270 and 320 nm). With
replicates showing similar results, it remains unclear what caused this second peak at 320 nm.
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Figure 4.7: EEMs of PARAFAC component 1 and 2 analysed by the GS method(A and B) and
component 1 and 2 analysed by the PR method (C and D) from the water sample data set.

98



Figure 4.8: PARAFAC component excitation (red) and emission (blue) spectra of water sample
data set analysed by the GS method (C1 and C2 are A and B) and PR method (C1 and C2 are C
and D.

99



For component 2 (C2), the excitation and emission spectra of both methods looked similar (Figure
4.8 B and D). The peak position of component C1 and C2 found by the GS method were at excita-
tion/emission < 270 / 440 nm (Figure 4.8 A) and 280 / 330 (Figure 4.8 B), respectively. The peak
position of component C1 and C2 found by the PR method were at excitation/emission 270(320) /
450 nm (Figure 4.8 C) and 280 / 340 (Figure 4.8 D), respectively. Between the two methods both
components C1 and C2 were very similar (C1: r(45) = .96, p < .001 and C2: r(45) = .89, p < .001)
(Figure 4.9).

Figure 4.9: Significant correlations (-.6 > R > .6) between spectra
of C1 and C2 analysed by the PR method (PR) and the GS method
(GS).

Cross checking the component spectra of both methods with OpenFluor database (Murphy et al. 2014)
yielded similar component descriptions. Table 4.3 includes the characteristics of the components C1
and C2 analysed by the PR and GS method. For both methods, C1 matched with the references that
described the component as (terrestrial) humic-like fluorescence. For C2, the results of both methods
matched with references describing this component as protein-like/tryptophan-like fluorescence. This
demonstrates that despite the small discrepancies in spectral shape and peak position, components
were correctly classified.
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Table 4.3: OpenFluor results of the components C1 and C2 present in the water samples
analysed by the PR (PR C1 and PR C2) and GS (GS C1 and GS C2) method.

Comp. Ex/Em OpenFluor
matches (>0.95)

Components in previous studies
matched in OpenFluor Tucker’s Congruence Coefficien Ex/Em Description

PR C1 260(320)/450 19

C1,Chen et al. (2017),
river, porewater, bottom water

C2, Brogi et al. (2019),
Ocean

C1, Derrien et al. (2019)
Soil

Ex= 0.987
Em= 0.999

Ex= 0.990
Em= 0.989

Ex= 0.984
Em= 0.994

265(310)/440
Terrestrial Humic-like

250,320/455
Humic-like

220/446 nm
humic-like

PR C2 280/340 31

C3, Garcia et al. (2021)
Ocean

C3, DeFrancesco & Guenguen (2021)
Ocean

C3, Osburn (2016)
Coastal waters

Ex= 0.994
Em= 0.993

Ex= 0.996
Em= 0.984

Ex= 0.991
Em= 0.987

280/342
protein-like, aliphatic compounds likely
derived from recent microbial production

tryptophan-like
280/335

protein (tryptophan)
275/350

GS C1 <270/440 14

C3, Eder et al. (2022)
Stream

C3, Murphy et al. (2014)
Stream/estuary

C3, Kida et al.,
Antarctic lakes and streams

Ex= 0.975
Em= 0.998

Ex= 0.982
Em= 0.986

Ex= 0.996
Em= 0.972

<245/414
humic-like, terrestrial,

<245/430
-

250/440
terrestrial humic-like

GS C2 280/330 46

C5, Cawley et al. (2012),
estuary, ocean

C4, Yamashita et al. (2021),
Stream

C5, Zhou et al. (2019),
Stream/ocean

Ex= 0.996
Em= 0.997

Ex= 0.995
Em= 0.991

Ex= 0.996
Em= 0.987

270/<340
Peak T1

280/330
Protein-like

275/328
Protein, tryptophan & tyrosine mix

1 Peak T, <260/435–460, Humic like; Peak C, 320–360/420–460, Humic like; Peak B, 275/310, Tyrosine-like or protein-like (Coble 1996).

Humic-like fluorescence signals have been subclassified with peaks in low excitation ranges being
called Coble’s peak A or fulvic-like, while the peak in the higher excitation range is called Coble’s
peak C or humic-like (Chen et al. 2003, Coble 1996, Ishii & Boyer 2012). Peak A humic substances
are smaller with less aromaticity compared to the humic substances responsible for the fluorescence
signal of peak C (Barsotti et al. 2016, Ishii & Boyer 2012, Wu et al. 2003). When this subclassification
is applied to C1 of the PR method, small and larger humic-substance components (Coble’s peak A and
C) can be detected. For the GS method, C1 only shows 1 peak in the smaller excitation wavelength
range (Peak A). In the larger humic-substance region, the C1 of the GS method has some signal, but no
peak (Figure 4.7). The PR and GS method differ in this subclassification and therefore this approach
is debatable when using the PR method.
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Quantitative specificity

First, quantitative specificity was studied by comparing signal intensities of the GS and PR method, as
shown in Figure 4.10. For all water samples, the signal intensity of the fluorophores was normalized
by dividing the measured intensity by the intensity of the QS standard. These QS normalized signals
of the GS method were higher than the PR method (paired T-test, t (7,1) = -4.63, p < 0.05); between
12-15% times larger. Comparability of quantitative results between different instruments remain an
issue to date (Goletz et al. 2011). With the precision of the PR method at 2.3 ± 1.7%, the difference
between the methods of 12-15% is much larger. However, 12-15% is still acceptable.

Figure 4.10: Quantitative specificity of the PR method; the QS normalized signals of various
water samples analysed by the PR and GS method (n = 1 replicate) and the ratio between them.

Second, quantitative specificity was studied by looking at the diluted and undiluted samples (Table
4.4). Signal recovery of the fluorophores in diluted samples with respect to the undiluted samples lied
between 86-87% for the PR method. The recovery of the GS method, on the other hand, was between
95-98% and demonstrated a better signal recovery of the diluted samples. However, recovery of both
methods was within the 15% deviation, and therefore recoveries were both acceptable.
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Table 4.4: Quantitative specificity of the PR method; signal recovery (%) of QS and TR in
the Wiericke and Driebruggen samples analysed by the PR and GS method.

Analyte Method Water Original signal Signal Diluted signal corrected Recovery (%)
QS PR Wiericke 1.87 0.80 1.60 86

Driebruggen 1.75 0.76 1.52 87
GS Wiericke 2.55 1.21 2.42 95

Driebruggen 2.41 1.18 2.36 98

TR PR Wiericke 17.62 7.55 15.10 86
Driebruggen 16.51 7.19 14.38 87

GS Wiericke 2.04 0.97 1.94 95
Driebruggen 1.93 0.94 1.88 97

Some considerations

Some methodological constrains have affected the results of the present study. First, the Raman peak
needed to be measured at a different excitation wavelength (420 nm) compared to the commonly ac-
cepted excitation wavelength (270 or 350 nm). While qualitatively the PARAFAC components com-
pared well with other studies via the OpenFluor database, direct comparison of the quantitative results
was not possible in this way. Using QS normalized signals did improve the comparability between
the GS and PR method. The PR method systematically underrated the signal intensity compared to
the GS method. When data of two different methods need to be compared, the difference between the
two methods can be estimated by measuring a standard and correct data accordingly. Alternatively,
the Raman peak at 350 and 420 could be measured by a GS method and the correction factor between
350 and 420 nm can be used to adjust the PR method results. However, even with careful calibration,
variance between similar instruments can be very significant ( 6–10% in intensity) (Goletz et al. 2011).
Direct quantitative comparison is questionable but can be useful for, for example, metadata analysis
of various published studies.

Second, analysis of the microplate could only be done 2 rows at the time because non-interfering
lids that prevent evaporation were not manufactured to date. This caused a longer total analysis time
as well as extra manual steps that need to be taken. Although high end equipment makes all corrections
automatically creating a simple and quick analysis, the plate reader works with a 96-well microplate.
This would allow for high throughput, when cycloolefin lids are purchasable. Cycloolefin lids have
low autofluorescence and prevent evaporation of the sample. This would make it possible to analyse
96 samples at the time. Overall, the PR method demonstrated validation parameters within acceptable
limits when samples are used with a concentration above 10 µg/L. Where possible, samples with high
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absorbance should be analysed diluted and undiluted to check the influence of the absorbance on the
signal. Using 96-well plates at once can result in a high throughput with the benefit of using replicate
measurements. This could help to detect and eliminate measurement variation.

Despite these limitations, the results provide evidence that even low resolution tools, such as a plate
reader, can be used for the general classification of DOM fluorophores. This is important because
high end equipment is not commonly present in all laboratories. Plate readers on the other hand
are widely used in research, quality control and manufacturing processes in the pharmaceutical and
biotechnological industry and academic organizations.
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4.4 Conclusion

The objective of this chapter was to develop fit for purpose and cost-effective analytical method using
a non-automated plate reader to characterize and semi-quantify DOM with help of PARAFAC. The
use of the plate reader to analyse DOM by fluorescence EEM spectroscopy and subsequent analysis
of data by PARAFAC has not been reported to date. Results from this study suggest that:

- In line with the hypothesis, the proposed fluorescence-spectrophotometric technique is an appro-
priate method for the identification and semi-quantification of fluorescence components within
the DOM spectral range and therefore fit for purpose.

- PR method demonstrated validation parameters within acceptable limits when samples are used
with a concentration above 10 µg/L. While small differences between the two methods is appar-
ent, the application of fluorescence EEM spectroscopy in combination with PARAFAC is able
to generally characterize DOM in a similar way as high-end equipment.

- Where possible, samples should be diluted to overcome possible matrix effect. It is also rec-
ommended to use replicates during analysis, especially when low concentrations are assumed.
This could help to detect and eliminate measurement variation.

- This innovative method can be applied to pore water samples described in chapter 5. The volume
of these samples is too small for DOC analysis and fluorescence EEM spectroscopy by plate
reader can be used as a proxy.
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Chapter 5

Understanding removal processes of DOM and
other chemical parameters by slow-flow BAC
filtration using the analysis of pore water
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Contribution

The data used in this chapter are part of a larger biofiltration project in which multiple biofilters were
constructed and run for a 6-month period by Dr Marta Vignola (MV) and postgraduate researchers
Dominic Quinn (DQ) and Steve Joyce (SJ). Filter deconstruction and sampling were done as a team.
DNA sequencing on the GAC samples was done by DQ. ATP analysis on the GAC samples was done
by MV. I carried out pore water extraction and chemical water quality paramater analysis, with the
help of SJ at week 12 during my absence. When data were produced by others, it will be clearly
indicated in the text.

5.1 Introduction

The BAC filter is still considered a black box (Zhu et al. 2010). Very diverse communities have been
found to populate biofilters and significant steps have been made to increase the understanding of their
composition (Hu et al. 2020, Lautenschlager et al. 2014, Oh et al. 2018, Palomo et al. 2016), and their
role in the treatment process (Bai et al. 2013, Pinto et al. 2012, Ye et al. 2001). However, the true chal-
lenge is still identifying the ecological mechanisms responsible for their colonization and assembly
and how this might affect their functions and the quality of the final drinking water (Chen et al. 2021,
Li et al. 2021).

Results from chapter 3 have demonstrated that slow-flow BAC filtration removes organic compounds
and various anions and cations and that EBCT is an important design parameter, which increased the
time until the start of breakthrough as well as increased the removal efficiency in apparent steady state.
However, it remains unclear how much of this removal of DOM was the result of slow-adsorption
and/or biodegradation/biosorption. Biodegradation takes place within the filter and is expected to in-
fluence the chemistry of the water.

To unravel the processes that are taking place within the BAC filter detailed information is needed
about the change in concentration of water quality parameters in the pores of the filter over time.
Water quality parameters such as TOC, DOC, BDOC, AOC, DON, protein-like and humic-like flu-
orophores, and LC-OCD fractions of DOM within biofilters have been monitored in the past (Boon
et al. 2011, Chen et al. 2016, Liao et al. 2013, Persson et al. 2006, Tränckner et al. 2008, Urfer &
Huck 2001, Velten et al. 2011a, Wang et al. 1995, Zhang et al. 2016). However, these studies used
water samples drawn from various depths of the filter. This technique carries the risk of measuring
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the short circuiting water instead of the water that enters the pores. Short circuiting is a condition that
occurs when water flows along a nearly direct preferential pathway from the inlet to the outlet of the
biofilter, often resulting in shorter contact times with the GAC in comparison with the presumed re-
tention times. This water has a different chemistry compared to the water that enters the pores, where
microbial processes are taking place.

When parameters are measured at regular time intervals at various depths the data set has information
in three dimensions (modes), being sampling sites, variables, and time. These data are structured in
a data array, with biofilter depths, variables and time all having their own mode. This structure is
more complex to interpret and requires data reduction methods, such as PCA, to disclose hidden in-
formation. For data arrays this is done by three-way PCA, which allows for a good insight into the
data structure, showing correlation between variables, and helping in the description of environmental
problems.

The objective of this chapter is therefore to further understand removal processes of DOM and other
chemical parameters by slow-flow BAC filtration using the analysis of pore water. To do so, the same
multiple pilot-scale slow-flow BAC filters of various sizes constructed in chapter 3 were used for this.
Changes in chemical water quality composition were studied by measuring seven parameters in the
pore water. Fluorescence signal as proxy of DOC was one of them measued with help of the method
developed in chapter 4. Data were interpreted by chemometric methods such as Tucker3. Only filter
length varied in the experiments, other operational parameters and influent water were constant.

110



5.2 Materials methods

5.2.1 Biofiltration deconstruction

All details concerning the set-up and experimental operation of the 18 biofilters are given in Chapter
3, Section 3.2.1 till Section 3.2.5 (pg. 53). Three individual 90 cm filter triplicates were deconstructed
at week 5, 9, and 12, while the remaining 90 cm filter triplicate as well as the 30 and 60 cm filter
triplicates were deconstructed at week 23. Deconstruction was done by interrupting the influent water
to the filter system and draining the system for 15 minutes. The biofilter was disconnected and cut in
sections of various sizes (see Figure 5.1, so that information about stratification of microbial commu-
nities and biochemistry could be obtained. While DNA sampling only required little GAC, the pore
water analysis required much more GAC. For this reason, multiple cuttings needed to be combined to
be able to extract enough pore water.

Figure 5.1: Schematic representation of the cutting of the biofilter. GAC from the strongly black
rimmed cuttings were first sampled for DNA analysis. GAC cuttings of each of the colours brown
(0-10 cm), red (10-20 cm), purple (20-30 cm), yellow (50-60 cm) and blue (80-90 cm) were
combined for further pore water extraction. Grey cuttings were not used for either analyses.

5.2.2 Pore water extraction

A schematic overview of the pore water extraction is given in Figure 5.2. (1) 50 mL centrifuge tubes
were filled with wet GAC material and (2) centrifuged (Thermo scientific Heraeus Multifuge X1R
centrifugeat) 5000 rpm for 5 minutes. (3A) The dry GAC material at the top of the centrifuged tubes
was collected in separate labelled containers. (3B) The remaining wet GAC was transferred into a
15 mL syringe and the syringe placed in a clean labelled 50 mL centrifuge tube with closed lid. (4)
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This tube was centrifuged for 5 minutes at 1000 rpm and (5A) extracted water collected in a 15 ml
centrifuge tube. (5B) The remaining dry GAC in the syringe was added to its corresponding collection
pot. (6) When all pore water of the sample was collected, the 15 mL tube was centrifuged at 5000 rpm
for 5 minutes to sink the suspended solids. (7) The supernatant was transferred to an 8 ml amber glass
vial (FisherbrandTM) using a Pasteur pipette. Multiple samples were centrifuged simultaneously, and
tubes were reused after a rinse with MQ water and being dried. Samples were stored at 4 degrees in
the dark until analysis by ion chromatography (within 24 hours) or fluorescence EEM spectroscopy
(within 4 days).

Figure 5.2: Schematic overview of the pore extraction steps. (1) Wet GAC is centrifuged after
which (2) the dry GAC is collected, and the remaining wet GAC is transferred into pipettes
without the bottom part. (3) Pipettes are placed in centrifuge tubes and centrifuged at lower
pace. (4) Afterwards, the dry GAC is collected again while the supernatant is collected in a
new centrifuge tube and (5) centrifuged at high speed to let the GAC dust in the sample settle.
Supernatant was collected for further analysis.

112



5.2.3 Analytical techniques

Ion chromatography

Five anions (nitrate (NO3
-), nitrite (NO2

-), phosphate (PO4
3-), sulphate (SO4

2-), and chloride (Cl-))
and two cations (ammonium (NH4

+) and sodium (Na+)) were analysed by ion chromatography (see
Chapter 3, Section 3.2.6, pg. 57 for the analytical procedure). In short, 0.5 mL sample was filtered
through a 0.2 µm nylon filter and analysed by ion chromatography using one technical replicate.
The use of a single replicate was chosen to overcome the large sample load and required machine
usage. The LOQ corresponds to on average 0.12, 0.06, 0.44, 0.40, 0.16 mg/L for NO3

-, NO2
-, Cl-,

SO4
2-, and Na+, respectively. These anions and cations were chosen because of their role in the

microbial processes (NO3
-, NO2

-, and SO4
2-), as well as their non-microbial counterpart to understand

physiochemical processes (Na+ and Cl-). NH4
+ (at pH 7-8) and PO4

3- had concentrations below their
LOQ, and data were not used.

Fluorescence

The remaining sample volume from the pore water extraction was collected in 8 ml disposable am-
ber glass vials. Because the remaining volume was very small, TOC/DOC analysis was not possible.
Fluorescence EEM spectrosocopy by plate reader on the other hand only required 330 µL and was
therefore used as a proxy for TOC. Unfiltered samples were analysed by fluorescence EEM spec-
troscopy using the M200Pro plate reader (Tecan, Switzerland) (as developed in chapter 4) using three
technical replicates when sufficient sample volume was left. Results of chapter 4 advise to analyse
diluted and undiluted samples to cover for possible influence of matrix effect. However, the water
volume collected during pore extraction did not give enough volume to do so. Therefore only the
undiluted samples were analysed.

Chapter 4, Section 4.2.6 (pg. 89) explains the PARAFAC data preprocessing in detail. In short:
for all samples the EEM and absorbance were measured, together with at least 1 blank sample EEM
and absorbance per day as well as 1 Raman scan (Ex. = 420 nm, Em.= 460-550 nm) of the blank per
day. EEM samples were Raleigh Scatter corrected, Raman corrected, Inner Filter Effect corrected and
normalized to Raman units (see figure 4.2). The LOQ of the technique was 0.2 Raman unit. However,
using the LOQ would exclude substantial number of samples. The technical and biological replicates
demonstrated high repeatability and as a result the limit of detection of 0.06 Raman unit was used
as a cut off for sample inclusion. Therefore, 137 samples were used to build the PARAFAC model.
Chapter 4, Section 4.2.4 (pg. 85) explains the PARAFAC modelling. In short, visual spectral inspec-
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tion, residual examination, and the EEMqual (which looks at model fit, CORCONDIA, and split-half
validation) were used to determine the correct number of components. The model was built followed
by the extraction of the qualitative and quantitative data.

5.2.4 Statistical analysis

All data analysis was carried out using R (version 4.0.2). All results were gathered in a table and data
entries below the LOQ were substituted by 0.65 times their LOQ.

Normality and outliers

The normal distribution of each variable was tested. Shapiro–Wilk test was applied to check the distri-
bution pattern of the variables. For both data sets, not all variables demonstrated a normal distribution
(p < 0.05), which is a common phenomenon in environmental data (Leardi et al. 2000). This was con-
firmed by frequency histograms demonstrating skewness. A logarithmic transformation was therefore
applied to the variables of both data sets to transform the data into a (pseudo-) normal distribution.

Outliers were evaluated by the Hotelling T2 – Q residual plot generated from an initial PCA model
(Goueguel 2020, Bro & Amigo 2020). Q-residuals were calculated as the distance between the orig-
inal position of an object to the principle component space (squared orthogonal Euclidean distance)
and showed how well the object is fitted by the PCA model. The distance from the projection of the
object to the principle component space and the origin was used to get the Hotelling T2 distance (score
distance). The T2 distance visualised extreme objects. Two critical limits were used in the Hotelling
T2 vs Q residual plot. (1) The hotelling T2 cut-off for outlying the squared score distances is the 0.975
quantile of the Chi-Square distribution with k degrees of freedom (Equation 5.1) (Goueguel 2020). (2)
The cut-off values for the Q-residual distances were obtained using the Wilson-Hilferty approximation
for a Chi-Squared distribution (Equation 5.2) (Goueguel 2020). Outliers were inspected for both data
sets, but none were found based on these cut-off values (See Appendix C, Figure C.1 and Figure C.2,
pg. 195).

SD >
√

(X2
k,0.975 (5.1)

OD > [median(OD+Z0.975 ×MAD(OD2/3)]3/2 (5.2)
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Three-way modelling by Tucker3

Three-way PCA, more precise Tucker3, was applied to two individual data sets. To understand the
change in chemical variables through depth over time data of 5 depths (0-10, 10-20, 20-30, 50-60,
80-90 cm), 8 variables (nitrate, nitrite, sulphate, chloride, sodium, peak T, peak H1, and peak H2),
and 3 timepoints (week 5, 9, and 23) were combined to a data array (data set Time). Week 12 was
not included in the data array, because fluorophore data of that week were missing as a result of
wrong sample storage and subsequently missing analysis. To understand the similarity between the
three filter lengths, the change in chemical variables through depth for the various filter lengths was
analysed at week 23 having 3 depths (0-10, 10-20, 20-30 cm), 8 variables (nitrate, nitrite, sulphate,
chloride, sodium, peak T, peak H1, and peak H2), and 3 filter lengths (the 30, 60, and 90 cm filter).
From the three filter lengths only the top 30 cm were used, and all data combined to a data array (data
set Length).

Data pre-processing

Each data set required pre-processing which homogenises scales and units without altering the differ-
ences among the sample sites and among the sampling times. A j-scaling was used. The three-way
array X (with I, J, and K modes) was matricized to a two-way matrix Xb having I x K modes in the
row direction and the J mode in the column direction. On this matrix variables were log transformed
to make the data semi-normally distributed, because data were not normally distributed. Afterwards,
autoscaling was performed in the variable (column) direction. As a result, the global variance of
each variable was set to one, and the differences among the objects and the conditions are preserved.
J-scaling calculates averages over two modes.

Tucker3

For the Tucker3 analysis the ThreeWay toolbox was used in R (version 4.0.2) (Giordani et al. 2015).
A description of the Tucker3 approach is given in chapter 2 section 2.4.12 (pg. 45). The T3 code
provided an interactive Tucker3 analysis with the following main steps: (1) provide the number of
entities in the P, Q, and R mode. (2) determine the type of centring and normalization (already done,
so not executed). (3) PCAs of super matrices with slices of the 3way array next to each other, thus 3
super matrices were analysed by PCA, and for each component matrix and illi was found. The results
are used to create a generalized scree plot, which can be used to find the number of components for
each mode. (4) specific convergence criterion is set to 1·10-6 by default. The statistical validity of
the obtained component matrices was assessed by a bootstrap procedure for computing the confidence
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intervals for the solution (Giordani et al. 2015). The analysis was based on 500 bootstrap samples and
matching via optimal transformation towards full solutions.

Other statistical analyses

The correlations were determined by Pearson correlation using an alpha significance level of 0.05.
For filter depths significant differences were ascertained by KW H-test as the data were not normally
and homogeneously distributed as well as sample size small using an alpha significance level of 0.05,
followed by the Dunn’s post-hoc test (equal variances, unequal group sizes) to examine the pairwise
comparison with p-values adjusted by the Bonferroni method. The results were expressed by the group
mean together with its variance (expressed by the standard error).
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5.3 Results and Discussion

5.3.1 Fluorescence components

Chemical water composition was monitored through filter depth over time to understand the change
happening through the filter. Apart from anion and cations, the fluorescence signal was monitored in
various filter depths over time. To be able to study the change in presence of the fluorophores, the
fluorophores were extracted from the fluorescence EEM samples (n = 137) by PARAFAC analysis.
Examples of pre-processed EEMs are given in Figure 5.3. This figure shows that there is a difference in
signal intensity and ratio between eligible fluorophores when comparing different depths (A compared
to B) and weeks (A and C), and filter length.

Figure 5.3: Example EEMs of the pore water data set. Sample from week 9 at 0-10 cm from the
90 cm filter (A); sample from week 9 at 50-60 cm from the 90 cm filter (B); sample from week
23 at 0-10cm from the 90 cm filter (C).

The appropriate number of components was selected that explained all meaningful fluorophores while
excluding meaningless scatter with help of the EEMqual results (See Appendix C, Figure C.3, pg.
196). Three components were needed to build a PARAFAC model, because at component four the
EEMqual dropped significantly. With this information a three components PARAFAC model was
created, and qualitative and quantitative data produced. The qualitative data (shape and position of the
components) are presented in Figure 5.4.
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Figure 5.4: Qualitative results of the PARAFAC analysis of the pore water data set. Left: the ex-
citation (red) and emission (blue) spectra of the components C1-C3. Right: their corresponding
EEMs.

In Figure 5.4 component 1 showed one peak (280 nm) for the excitation and one peak (330 nm) in
the emission spectrum C1. The peak position of component C2 and C3 were at excitation/emission
270(360)/480 nm and 260(320)/440 nm, respectively. Component C2 and C3 had a moderate correla-
tion (Pearson correlation, r(47) = .38, p = .007), while the correlation of C1 with both components C2
and C3 was absent.
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Cross checking the component spectra with OpenFluor database (Murphy et al., 2014) yielded com-
ponent description given by other studies. Table 5.1 includes the characteristics of the components C1,
C2, and C3. C1 matched with references describing this component as protein-like / tryptophan-like
fluorescence (hereafter called peak T). Both C2 and C3 matched with the references that described the
component as (terrestrial) humic-like fluorescence (hereafter called peak H1 and peak H2).

Table 5.1: OpenFluor results of the components C1 – C3 present in the pore
water samples.

Comp. Ex/Em OpenFluor
matches (>0.95)

Components in previous studies
matched in OpenFluor Tucker’s Congruence Coefficien Ex/Em

Description

C1 280/335 4

C1, Kida et al.
antarctic lakes & streams

C3, Brianchi et al.,
coastal & open waters

H1, Huarong et al.
river water

Ex= 0.952
Em= 0.979

Ex= 0.961
Em= 0.969

Ex= 0.969
Em=0.954

Autochthonous, protein-like

Amino-acid-like DOM

Protein-like

C2 270(360)/490 >25

C2, Murphy et al.,
Stream, river, estuary & ocean

C2, Graeber.,
stream

C1, Eder et al.,
stream

Ex= 0.998
Em=0.996

Ex= 0.992
Em=0.998

Ex= 0.994
Em=0.995

Terrestrial humic-like
material

C3 260(320)/440 16

C1, Lambert et al.,
rivers

C1, Stedmon.,
seawater

C2, Osburn et al.,
estuary

Ex= 0.990
Em=0.967

Ex= 0.979
Em=0.972

Ex= 0.974
Em=0.978

terrestrial humic-like
component

terrestrial humic-like
component

aromatic, conjugated
macromolecular substances

of terrestrial origin

5.3.2 Variable correlation

After fluorescence analysis, the monitored chemical parameters now included: fluorophore peaks H1
H2, and T, as well as nitrate, nitrite, chloride, sulphate, and sodium. The first impression of the re-
lationships between these variables was given by the Pearson correlation among the variables. An
overview of all meaningful correlations is given in Figure 5.5. Three variable groupings can be found
in the matrix: (1) peak H1 and peak H2, (2) peak T and H1, H2 and NO2

-, (3) Na+, Cl-, and SO4
2-.
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Figure 5.5: Significant correlations (-.6 > R > .6) of the measured
chemical parameter in the biofilter over time and depth for various
lengths.

5.3.3 Depth, variables, and time

Tucker3 model

To interpret the chemical variables over time for various sampling sites simultaneously, Tucker3 was
applied to data set Time. For Tucker3, the data set was arranged in a three-way data array with modes:
5 filter depths (0-10, 10-20, 20-30, 50-60, 80-90cm), 8 measured chemical variables (H1, H2, Pr,
NO3

-, NO2
-, SO4

2-, Cl-, Na+) and over 3 time points (week 5, 9, and 23) from the 90 cm filter. There-
fore, the data set was arranged as a three-dimensional array with modes: 5 (depths) × 8 (variables) ×
3 (time).

To find the appropriate number of components for each mode, initial Tucker3 models were created
with up to 5, 8, and 3 components in respectively the p, q, and r mode. The scree plot was used to
visualise how many additional percent of variance each model explained when adding extra compo-
nents (See Appendix C, Figure C.4, pg. 196). Generally, the optimal complexity of the Tucker3 model
is the one that requires the smallest number of components, but still describes relatively high fraction
of data variance. Figure C.4 scree plot of the Tucker3 model of data set Week with the percentage
variance explained by the model when using up to 5, 8, and 3 components in the P, Q, and R modes.
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For data set Week, the complexity that shows as much variance but is still interpretable is the model
with 2 components in each mode, also known as a [2,2,2]-model, accounting for 70% variance. The
statistical validity of the bootstrap computing confidence intervals for the current fit was between 66-
87%. Such a medium variance with environmental data is not unusual as a result of the very high
noise related to the great variability of environmental and sampling conditions (Leardi et al. 2000).

It has two components in mode P (depth), two components in mode Q (the chemical variables) and
two components in mode R (weeks). Results of the Tucker3 model are reported in Figure 5.6 with
loading plots of Depths (P), Variables (Q) and Weeks (R). Each of these diagrams may be inspected
separately, e.g. in Figure 5.6 B a clear discrimination between the chloride and nitrite is noticeable.

Figure 5.6: Loading plots of the Tucker3 [2,2,2]-model from data set Week with depths (A),
chemical variables (B), months (C).

More information, however, can be expected by the joint interpretation of all loading plots. For this,
the information in G core is required. The G core of the [2,2,2]-model is shown in Figure 5.7 A to-
gether with its unfolded two frontal planes (time slices) in Figure 5.7 B. In total the core matrix of the
[2,2,2]-model has eight elements (g111 up to g222). The two parts of this unfolded matrix correspond
to the first and second components of ‘Time’, while the rows relate to the components of ‘Depth’
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and the columns within each block refer to the components of ‘Variables’. From the core matrix it
appeared that a diagonalization has been obtained, because the two major parts of the variance are
covered by the body diagonal elements, g111 and g222 (Henrion 1993). The remaining elements have
minor importance.

Figure 5.7: Core of the Tucker3 ’Time’ [2,2,2]-model (A) and its unfolded core
matrix equivalent represented by the frontal planes (B). g111 and g222 have
both a high negative value.

With most of the variance covered by g111 and g222, these elements together describe almost the full
G core of Figure 5.7 A, which simplified lead to a trilinear model with three terms, see Equation 5.3.

xi jk = ai1b j1ck1g111 +ai2b j2ck2g222 + ei jk (5.3)

Loading plots can be interpreted simultaneously with respect of their respective signs and magnitudes.
This means that only large magnitude loadings with the right combination of signs can be interpreted
together. For a better visual interpretation, the loading of the two components for each mode in Figure
5.6 are plotted in individual plots in Figure 5.8. Figure 5.8 A1 and A2 present the loading plots of
the two components of the depth’s mode, while Figure 5.8 B1 and B2 present the loading plots of the
two components of the variable’s mode, and Figure 5.8 C1 and C2 present the loading plots of the two
components of the month’s mode.

G111 and g222 interactions together describe almost the full G core, which can be simplified to a
trilinear model with two terms, see, Equation 5.3. Loading plots can be interpreted simultaneously
with respect of their respective signs and magnitudes. An example of the interpretation of the Tucker3
model is as follows: Term 1 of Equation 5.3 (explaining 16% of information) has a negative core
element, g111, and the interaction will be important for samples with high positive B1 in combination
with negative C1, as well as negative B1 together with positive C1 loadings compensating the negative
sign of g111. This means that positive large A1 (all depths), positive large B1 (peak T, peak H1, peak

122



H2, and NO2
-), and large negative C1 (W23) can be interpreted together. Term 2 of Equation 5.3

(explaining 54% of information) also has a negative core element, g222, and also here the interaction
will be important for samples with high negative A2 loadings. More of these interactions are present
and an overview is given in Table 5.2.

Figure 5.8: Tucker3 [2,2,2]-model loading plots from data set Week with depth loading plot of
component 1 (A1), depth loading plot of component 2 (A2), variables loading plot of component
1 (B1), variables loading plot of component 2 (B2), month loading plot of component 1 (C1),
and month loading plot of component 2 (C2).
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Table 5.2: Meaningful interactions for elements g111 and g222 of the Tucker3
[2,2,2]-model of data set Week.

g111 (negative) A B C

Large A1, +B1, -A2 All depths
C1, Peak T, peak H1
peak H2, and NO2

- W23

Large A1, -B1, +A2 All depths No high magnitude W5

g222 (negative) A B C

Large -A, B, C 0-10 cm + 10-20 cm Na+, Cl-, NO3
-, SO4

2-,
(Peak H1, H2, T)

All weeks

From Figure 5.8 and Table 5.2 it appeared that the variables can be arranged in two groups. Group 1:
most anions and the cation variables (Na+, Cl-, NO3

-, and SO4
2-) are present in the pore water in all

weeks with some form of stratification. Group 2: the other variables (peak T, peak H1, peak H2, and
NO2

-) are most influenced by the weeks with the highest concentrations at week 23. This grouping of
variables is somewhat similar to that of the correlation matrix in Figure 5.5, with the only difference
that in the correlation matrix no significant correlation was present for the peak H1 and H2 with nitrite.

Group 1 variables

The first group of variables that showed similar behaviour are sodium, chloride, sulphate, and nitrate.
Their concentrations in the pore water of the 90 cm filter over time are given in Figure 5.9. All anions
were present at each filter depth and in each week these compounds were in an equilibrium with the
mobile phase or an equilibrium was building up. For chloride this concentration was higher than the
influent concentration in the top 10 cm of the filter at week 5 (Figure 5.9 A and Figure 5.10 A), while it
was lower at all other depths. In the remaining weeks the chloride concentration was for most depths
slightly higher than the influent concentration. In Chapter 3, Section 3.3.2 (pg. 70) the significant
removal of chloride at the first weeks of operation was discussed, followed by the displacement by ni-
trate (Chen et al. 2015, Mubita et al. 2019). This displacement resulted in the increased concentrations
of chloride in the immobile phase of the micropore that eventually diffuses towards the mobile pore of
the larger pores and into the water that exits the filter. This again, resulted in an effluent concentrations
higher than influent concentrations.
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Figure 5.9: Concentration Cl- (A), SO4
2- (B), NO3

- (C) in the pore water of various depths
(mean ± s.e., n = 3 replicates) of the slow-flow BAC filter over several timepoints.
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Figure 5.10: Repeated graphs from chapter 3. In- and effluent concentrations of the group 1
variables Cl- (A), SO4

2- (B), NO3
- (C) and Na+ (D) (mean ± s.e., n = 3 replicates) of the 90 cm

filter during 23 weeks of operation.

Sulphate showed stratification at week 5 with significant higher concentration in the top 10 cm com-
pared to the bottom 10 cm (Dunn’s posthoc on KW, H(4) = 10.47, p.adj = .033). For sulphate the con-
centration in the pores at week 5 was lower than that of the influent (Figure 5.9 B and Figure 5.10 B).
Chapter 3, Section 3.3.2 (pg. 70) discussed that sulphate was also be removed during the first weeks
of the experiment. Indeed, the low concentrations in the pores cause the diffusion to go from mobile
phase to immobile phase of the micropores. In the remaining weeks the sulphate concentrations of
the various depths varied. The top demonstrated higher concentrations compared to the bottom depths.

Similar to chloride, sulphate was highly likely being substituted by nitrate. Also here, the displace-
ment caused the sulphate concentration in the immobile phase to be higher than in the mobile phase
driving the diffusion towards to mobile phase and into the effluent. As a result sulphate was leaching
from the filter as observed in Chapter 3.
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The concentration of nitrate in the pore water appeared to differ among filter depths (Figure 5.9 C)
with highest concentrations in the top, however this was not significant. The concentration in the top
pores was higher than the influent, while at lower depths the concentration was lower (Figure 5.10 C).
In the top of the filter, the pores were filled with nitrate and excess would slowly diffuse back to the
mobile phase again and travel down. There it would meet pores with immobile water with low con-
centrations and diffusion would bring the molecules into these pores at lower depth. As this process
slowly continues, the pore water concentration increased in all depth from a concentration below the
influent until a higher concentration, which again could result in desorption of nitrate molecules. At
a certain point all pores are saturated, and the nitrate concentration will have a breakthrough. The 30,
and 60 cm filters started to show this breakthrough in the last weeks of the experiment (see Appendix
A, Figure A.8, pg. 188).

Group 2 variables

Figure 5.11 shows that peak H1 and H2 have a similar pattern through depth over time, which corre-
sponds with the very good correlated (Pearson correlation, r(13) = .952, p < .001). The concentration
of two humic-like fluorophores was below or around zero at week 5 and their concentration increased
between week 5 and 9. At week 9, peak H1 and H2 only showed a detectable signal for the 5 and 15
cm sections, which were not significantly different from each other. Between week 9 and 23, peak H1
and H2 kept increasing in all filter depths, but mostly in the top.

The influent water only showed the presence of humic-like fluorescence (peak H1 and H2), while
the presence of the biodegradable peak T and peak B were not present (see Appendix C, Section C.1,
pg. 197) for the fluorescence EEM PARAFAC model of the in- and effluent). Concentrations of peak
H1 and H2 were lower in the pore water than the influent for all filter depth at all timepoints (Figure
5.11 and Figure 5.12). This suggests that the humic substance molecules were driven into the im-
mobile phase of the pores at all depths and all weeks. In other words, GAC seemed not to be fully
saturated in any depths at any point of the experiment.
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Figure 5.11: The fluorescence signal of fluorophore peak H1 (A) and peak H2 (B) in the pore
water of various depths (mean ± s.e., n = 3 replicates) of the slow-flow BAC filter over several
timepoints.
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Figure 5.12: Fluorescence signal of Peak H1 (stripes) and Peak H2 (unstriped) in the influent
(red) and effluent (blue) water of the biofilter at various weeks (mean ± s.e., n = 3 replicates).

Chapter 3, Section 3.3.2 (pg. 72) extensively discusses the removal of DOC by the slow-flow BAC
filter as well as the processes driving this removal. After a rapid fall in adsorption efficiency to a lower
level when the nonselective adsorption sites are occupied, adsorption actually continues, apparently
unchanged, over an extended period of time, also known as tailing or slow adsorption (Kołodziej et al.
2014, Nguyen & Do 2000, Pohlman 1940). This slow-adsorption can last for months. While chapter 3
section 3.3.2 (pg. 72) talks about these removal processes of DOC, these processes are also applicable
to the humic substances. Indeed, the influent water had a high humic substance concentration (Ap-
pendix C, Figure C.7, pg. 199) and as a result peak H1 and H2 can be used as a DOC proxy (Carstea
et al. 2020). So, in the pore water the initial adsorption is visible by the low signal in all depths, while
the filling of the smaller pores mostly takes place in the top of the filter and travels down creating the
higher signals.

Fluorescence index (defined as the ratio of fluorescence intensity at 450 nm to fluorescence inten-
sity at 500 nm emission wavelength, both at 370 nm excitation wavelength) has been used to indicate
the degree of aromaticity (McKnight et al. 2001). The influent as well as the water in the top pores
had a fluorescence index above 1 meaning that the presence of H2 > H1. Deeper in the filter as well
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as the water in the bottom pores had a fluorescence index below 1 meaning that the presence of H2 <
H1. H1 fluorescence material has a high aromaticity, while H2 fluorescence are less aromatic fractions
(McKnight et al. 2001). In other words, the filter preferentially removed the more aromatic fractions,
leaving a higher concentration of less aromatic fractions to travel down the filter and enter the effluent.
These results confirm the results found in chapter 3, that the adsorption still played a significant role
even up to week 23.

Despite the fact that microbial activity must play a role in the removal of the DOM components,
because biomass was found at different depths of the biofilter (Chapter 3, Section 3.3.2, Figure 3.10,
pg. 76) and bacteria require DOM as an energy source, the extent of this form of removal was unfor-
tunately not further revealed with help of the pore water fluorescence signal.

The protein-like fluorophore, peak T, and nitrite had a signal below the LOQ and therefore their plots
(Figure 5.13 A and B, respectively) are absolute values instead of normalized plot. At week 5 nitrite
showed the first concentrations above the LOQ in the top three depths, while peak T was not present
yet. From week 5 to week 9 the Peak T increased in all depths, with the highest concentrations in the
top. From week 9 to week 23 the signal increased for depths 10-20 to 80-90, while 0-10 remained
the same. The stratification at week 23 was significant higher in the top three depths compared to the
bottom two depths (Dunn’s posthoc on KW, H(4) = 34.40, p.adj < .001).
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Figure 5.13: Fluorescence signal of peak T (A) and the nitrite concentration (B) at various
depths (mean ± s.e., n = 3 replicates) of the biofilter measured at various timepoints.
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The nitrite concentration increased in various depths over time. At week 5 the top three depths showed
nitrite concentration, while the deeper sections had no detectable concentration. At week 9 these
deeper sections almost overtook the higher sections with respect to nitrite concentration. Also at week
23 the lower sections visually had a higher nitrite concentration than the top. The stratification ap-
peared to have reversed in W9.

In Figure 5.13 Peak T and nitrite appear to have a different behaviour which was confirmed by their
low correlation for filter length 90 cm over time and depth (Pearson correlation, r(13) = .454, p =
.089). However they are linked to each other by the Tucker3 model (Figure 55). This is probably
caused by the fact that both analytes had low concentrations at week 5 which increased over time.
Overall, the group 1 variables are present in high concentrations through filter depth and over time
with stratification noticeable through depth. Their change in concentration has most likely to do with
the diffusion constantly happening through the length and impacted by influent concentration. How-
ever, this effect will decrease with decreasing concentration. Group 2 variables on the other hand are
highly dependent on time. Additionally, for these variables, stratification plays a role in their concen-
tration gradient. After 23 weeks the filter does not seem to be in equilibrium yet. Especially peak H1
and peak H2 clearly show that adsorption still is taking place and impacting the biofilter processes
greatly.

One observed irregularity is unexpected lower concentrations of the anions and the higher concen-
tration of H1 and H2 at week 23 for the 50-60 and 80-90 cm depths. The cause of this remains
unclear. The standard error or the measurements are low, meaning that it is not caused by an outlier of
a biological replicate. Possibly the system was not drained properly diluting the pore water with the
short circuiting water that changed the chemical water composition of the bottom filter depth.

5.3.4 Pore water chemistry for different filter lengths

At the end of the experiment, the top 30 cm appear to behave more similarly for the group 1 variables,
while the group 2 variables differences are still apparent. The question is if filter length (30, 60, or
90 cm) also has an influence on the behaviour of the chemical parameters in the top 30 cm of the
biofilters. For example, pathogen removal monitored by DQ did not show a difference in filter length
with removal processes happening in the top 30 cm. For this, a Tucker3 analysis was applied to the
data set Length.
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The length dataset was best described by a [2,2,2]-model, accounting for 82% variance. However,
it did not give an appropriate core body diagonalization. Therefore the [1,2,2]-model was used with
one component in mode A (depths), two components in mode B (the chemical variables), and two
components in mode C (lengths) and explaining 75.72% of the variations.

With most of the variance covered by g111 (explaining 58% of information) and g122 (explaining
18% of information), these elements together describe almost the full G core, which simplified leads
to a trilinear model with three terms, see Equation 5.4. Term 1 of Equation 5.4 (explaining 55% of
information) has a negative core element, g111, while term 2 of Equation 5.4 (explaining 16% of
information) also has a positive core element, g122. To which interactions the g111 and g122 are
important is shown in Table 5.3.

xi jk = ai1b j1ck1g111 +ai1b j2ck2g122 + ei jk (5.4)

Table 5.3: Meaningful interactions for the elements g111 and g122 of the
Tucker3 [1,2,2]-model of data set Length.

g111 (negative) A B C
+A1, +B1, -C1 0-10 cm NO2

- L30

-A1, +B1, +A2 20-30 cm NO2
- L90

g122 (negative) A B C

+A, +B, +C 0-10 cm + 10-20 cm
Peak H1, H2, T, Na+,

Cl-, NO3
-, SO4

2-, (NO2
-)

All weeks

Figure 5.14 A1 presents the loading plots of one component of the depth’s mode, while Figure 5.14 B1
and B2 present the loading plots of the two components of the chemical variable’s mode, and Figure
5.14 C1 and C2 present the loading plots of the two components of the lengths mode.
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Figure 5.14: Tucker3 [1,2,2]-model loading plots from data set Length with depth loading plot
of component 1 (A1), variables loading plot of component 1 (B1), variables loading plot of com-
ponent 2 (B2), month loading plot of component 1 (C1), and month loading plot of component
2 (C2).

The two most meaningful interpretations are as follows: (1) negative g111: nitrite has the highest
concentration in the top 0-10 cm in the 30 cm filter, while nitrite concentration in the 90 cm filter is
higher in the 20-30 cm. (2) positive g122: all variables but mostly the Peak T, H1, H2 and sodium
have the highest concentrations in the top of the filter in all filter lengths. From Figure 5.14 it appeared
that most of the variables behaved similarly in all filters, with the exception of nitrite. For nitrite, the
top 10 cm of the 30 cm filter has the highest concentration, while for the 90 cm filter the first 10 cm
has the lower concentration.
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It therefore seems that the three filters behaved similarly in the top 30 cm, apart from nitrite. The
extra centimetres of the 60 and 90 cm therefore probably only extend the chemical processes happen-
ing in the top, but do not alter them.

Figure 5.15: Concentrations of fluorophore peak T (A) and nitrite (B) at different depths (mean
± s.e., n = 3 replicates) of the biofilter for various filter lengths.
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5.3.5 Microbial activity or adsorption

Protein-like fluorescence signal has recently been ascribed to microbial activity (Fox et al. 2017).
Other generally accepted methods for monitoring microbial activity are ATP and Quantitative Poly-
merase Chain Reaction (PCR) measurements, which were also done throughout the experiment by MV
and DQ (Appendix C, Figure C.8 and C.9, pg. 200). The correlation among the three proxies is found
in Figure 5.16 and demonstrates a good correlation. Of these techniques, fluorescence spectroscopy
is the easiest to perform. Only pore water extraction is a time-consuming step, while the fluorescence
scan is simple and easy. As the excitation/emission wavelength of peak T is known (280-350 nm) a
quick first screening of microbial activity by analysing the fluorescence signal at 280-350 nm can be
done without the use of PARAFAC scaling down the analysis process.

Figure 5.16: Significant correlations (-0.6 > R > 0.6) of fluo-
rophores and other biomass proxies measured in the biofilter over
time and depth for various lengths.
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However, not all peak-T signal came from microbial activity. The total peak-T concentration included
the peak-T present within the cells, Extracellular polymeric substances, or colloidal/particulate re-
tained by the GAC filter, or a combination. Though, Chen et al. (2016) and Fox et al. (2017) showed
that the majority of the protein-like fluorescence (> 75%) is intracellular in origin, as a result of the
building of proteins for growth and metabolism. This suggests that most of the signal in the biofilter
samples was caused by peak-T present within the cells. In other words, a clear presence of microbial
activity was measured in the biofilter .

The highest concentrations were measured in the top of the filter and over time the concentration
through filter depth homogenised. This stratification in microbial activity (or biomass) has been
demonstrated by previous studies (Boon et al. 2011, Chen et al. 2016, Liao et al. 2013, Moll et al.
1999, Persson & Wedborg 2001, Urfer et al. 1997, Velten et al. 2011a, Wang et al. 1995, Zhang et al.
2016). The high microbial activity in the top was a direct result of presence of the highest DOM
concentration in the top niches Velten et al. (2011a). Overall, the present study demonstrated that
microbial activity was taking place and consequently removed DOM. However, the contribution of
microbial DOM breakdown to the overall DOM removal remains unclear.
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5.4 Conclusion

The objective of this chapter was to further understand removal processes of DOM and other chemical
parameters by slow-flow BAC filtration using the analysis of pore water. Results from this study
suggest that:

- The two-stage adsorption (1. attachment to pore walls and 2. migration into the micropores) as
observed in chapter 3 was supported by the pore water analysis. Lower sections already started
to adsorb molecules, while the top was not fully saturated yet.

- Filter length did not impact the processes happening in the top of the filter. It only extends these
processes to deeper in the filter.

- Adsorption and diffusion processes influenced the pore water chemistry. As these processes play
a large role up to the end of the experimental run, it remains unclear to what extent microbial
activity contributed to DOM removal.

- This role of microbial communities at various depths of the filter on DOM removal is further
investigated in chapter 6.

- As demonstrated by DQ and MV, a stratification of microbial activity is present throughout the
filter with most activity taking place in the top of the filter and signal increasing over time.

- This stratification is similar to that of the peak-T fluorescence. Peak T can be used as a proxy
for microbial activity or cell count.

- Microbial stratification is similar to that of the humic-like fluorescence. As humic-like fluores-
cence is a proxy for DOC, a nutrient stratification is present within the biofilter as described by
Boon et al. (2011), which might play a role in the colonization of microbes throughout the filter.
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Chapter 6

Differential utilisation of dissolved organic mat-
ter compound groups by different biofilter mi-
crobial communities

139



Contribution

This chapter is based on a submitted paper: ‘Differential utilisation of dissolved organic matter com-
pound groups by different biofilter microbial communities’ written by Jeanine Lenselink1*, Marta
Vignola1*, Dominic Quinn1, Umer Zeeshan Ijaz1, Ryan Pereira2, Steve Joyce1, William Sloan1,
Stephanie Connelly1, Graeme Moore3, Caroline Gauchotte-Lindsay1, Cindy Smith1. (1 James Watt
School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom; 2 The Lyell Cen-
tre Heriot-Watt University, Edinburgh, EH14 4AP, United Kingdom; 3 Scottish Water, 6 Castle Drive,
Dunfermline, KY11 8GG, United Kingdom; * Joint first author). The GAC used for this work was part
of the biofiltration work done by MV, DQ, SJ, and myself. The batch experiment was done together
with MV. Cell counts were done by MV, DNA analysis was done by DQ, and DOM sample prepa-
ration was done by me and sent to the Lyell Centre at Herriot Watt University where Ryan Pereira
analysed the samples with LC-OCD. Data analysis with respect to cell count and DNA analysis were
done by MV, while LC-OCD analysis was done by me. Introduction, materials & methods, and results
& discussion were written by MV and myself, in which I focussed on the DOM and MV on the cell
count microbial data.

6.1 Introduction

Diverse microbial communities have been found to populate biofilters and significant steps have been
made to increase the understanding of their composition (Hu et al. 2020, Lautenschlager et al. 2014,
Oh et al. 2018, Palomo et al. 2016) and their role in the treatment process (Bai et al. 2013, Pinto
et al. 2012, Ye et al. 2001). However, the true challenge is still identifying the ecological mechanisms
responsible for their assembly and how this might affect their functions and the quality of the final
drinking water (Chen et al. 2021, Li et al. 2021).

Boon et al. (2011) suggested that the nutrient gradients in a GAC biofilter fed with ozonated-water
contributed to the establishment of different environmental niches across the different depths of the
filter bed, which selected for communities differing in species richness and evenness. Furthermore,
they observed an increase in the normalised DOM removal efficiency with filter depths; with the com-
munities in the lower filter sections being the most efficient. The authors suggested that the different
functionalities shown by the communities at different sections could be the result of their different
microbial richness, evenness and dynamics and that microbial community composition drives biolog-
ical DOM removal efficiencies. The results of chapter 5 also demonstrated that the biofilter had a
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nutrient gradient through filter depth which changed over time. For example, the highest concentra-
tion of DOM was present in the pore water of the top section of the biofilter. Microbial communities
have been shown to degrade various DOM compound groups (Boon et al. 2011, Chen et al. 2016,
Logue et al. 2016, Spray et al. 2021, Wu et al. 2018). Recently, several studies have tried to under-
stand the impact of microbial community composition on the ability to degrade the DOM in water:
particularly how this could impact the processing of the different fractions composing the DOM pool
(Logue et al. 2016, Wu et al. 2018). Logue et al. (2016) were able to show a direct link between
microbial communities’ composition and their ability to degrade DOM in aquatic environments. They
showed how the kinetics of DOM degradation and the DOM fractions preferentially utilized by the
microorganisms in freshwater communities depended strictly on their compositions. Furthermore,
DOM composition has been shown to be responsible for driving microbial succession and selection in
aquatic communities.Wu et al. (2018) observed that microbial communities tend to use the more labile
fractions (fast turnover by bacteria) in a DOM pool first; once these are depleted and the DOM pool
enriched in recalcitrant carbon (slow turnover by bacteria ), microbial communities undergo further
selection and bacteria capable of processing a wide variety of carbon groups tend to become dominant.

As the water flows through the filter, the microbial assemblies and their functions at a given depth
of the filter are intimately linked with processes happening above, analogously to the river continuum
concept theory developed by Vannote et al. (1980), but in an engineered system. The communities at
the top of the filters receive water rich in heterogeneous assemblages of labile and refractory DOM.
These communities have the luxury of choosing which compound to use; the labile compounds are
quickly used, as also observed by Wu et al. (2018), while the more refractory compounds are left in
the stream for use by the communities at the bottom. Hence, the communities at the bottom of the
filter are forced to adapt and survive on what is left, resulting in the enrichment of microorganisms
capable of growing on more complex DOM compounds. This should result in a stratification of the
composition of filter communities as well as in a stratification of their ability to process the different
DOM fractions.

The objective of this chapter was therefore to examine the relationship between degradation of DOM
and filter microbial communities at the different depths of the biofilter. For this, microbial commu-
nities from the top (TOP), middle (MID) and bottom (BOT) of the 12-week operational laboratory
GAC biofilter were harvested and their growth rate and use of DOM compound groups on the same
freshwater sample during 35h incubation compared. Moreover, their community composition was
compared at the end of the incubation period.
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6.2 Materials Methods

6.2.1 Glassware preparation

All glassware was prepared following the protocol of Hammes & Egli (2005) to reduce the AOC
contamination. In short, all glassware and screw caps were washed with a common detergent and
rinsed three times in Milli-Q water then submerged overnight in 0.2 M HCl and again rinsed three
times with Milli-Q water. Borosilicate vials were subsequently heated in a Muffle oven to 550 °C for
at least 6 h.

6.2.2 AOC-free Inocula preparation

For preparation of the three inocula (TOP, MID, BOT) the GAC from the three biofilters that were
deconstructed in week 12 was used (see materials and methods of chapter 5 for the deconstruction of
the biofilter). 500 mg of GAC was collected from the top 10 centimeters at 0-2, 2-4, 4-6, 6-8, 8-10
cm depths separately, and transferred to sterile 5 mL containers (TOP) for a different study; 2500 mg
of GAC was collected in sterile 5 mL containers from 30-50 cm (MID) and 60-80 cm depths (BOT).
3 mL of filtered (0.22 µm filter) Milli-Q water was added to all the GAC samples and vortexed for 5
seconds to detach biofilm. A higher GAC to Milli-Q water ratio was chosen for the MID and BOT
sections to take into account lower biomass concentration. 500 µL was withdrawn from each of the
5 extractions of 0 to 10 cm and combined, while 1 mL were withdrawn from the 30-50 and 60-80
samples. This procedure might enrich for certain microbial communities as they can proliferate more
easily in the inoculum. However, using the GAC material with microbes still attach was not possible,
the the remaining adsorption capacity would interfere with the DOM carbon pool.

The procedure was repeated for each of the three biofilters; extracts of the same depth from the three
reactors were pooled together (3x 0-10 cm, 3x 30-50 cm, 3x 60-80 cm) in 15 mL sterile Polypropy-
lene tubes stored in the dark at 4 °C and used within 4h to prepare three (TOP, MID, BOT) AOC free
inocula as described in Hammes & Egli (2005). For this, 200 µL from each pooled extract was added
to 50 mL filtered (0.1 µm, Millex-GP, Millipore) freshwater in 100 mL AOC-free borosilicate vials.
Although pooling can affect the microbial composition of the three individual replicates, this step was
necessary to harvest enough DNA material. Moreover, as the three depths were treated similarly, the
effect of pooling was present in all three depths.

Vials were incubated without further amendments at 30 °C for 14 days. At the end of the 14 days
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of incubation, the content of the vials was transferred to 50 mL sterile Polypropylene centrifuge tubes.
The cells were harvested by centrifugation (10 min, 3000 g), resuspended in Milli-Q water amended
with a mineral buffer as described by Lechevallier et al. (1993) and then poured into fresh 100 mL
AOC-free borosilicate vials. Finally, the vials were incubated for a further 7 days to ensure that all
residual organic was depleted. Inocula were kept in the dark and at 4 °C until their use.

6.2.3 Experimental set-up

The experiment was performed applying a batch culture approach in which the same filtered fresh
water was inoculated independently with each of the three AOC-free inocula (TOP, MID and BOT);
cell growth and associated degradation of DOM was measured as described below. For the tracking of
DOM degradation fluorescence EEM spectroscopy was selected among other techniques. However,
due to miscommunication this analysis was forgotten during the experiment.

6.2.4 Cell Abundance Specific growth rate

For cell abundance, 100 ml AOC-free glass vials, sealed with Teflon coated screw caps (Fisherbrand™
with PTFE liner material) were prepared in triplicate. Vials were filled with 60 mL of 0.1 µm filtered
freshwater (0.1 µm, Merck™ Stericup™) to remove autochthonous microorganisms as well as par-
ticulate organic matter. Water was inoculated with either TOP, MID or BOT inoculum to a similar
concentration of cells (4.23x103 ± 1x102 cells/mL). Alongside the three experimental treatments, a
negative control, filtered fresh water only with no added inocula, was incubated. All the vials were
incubated at 30 °C, in the dark. Samples were collected from triplicates at 0, 10, 12, 14, 16, 18, 20, 22,
23, 36 h (negative control was measured at 0 h and 23 h only). At each timepoint, vials were opened,
and 1 mL of sample was withdrawn using a sterile pipette; the samples were immediately fixed with 1
mL of 1% v/v Glutaraldehyde, stored at 4 °C in the dark and measured within 2 h by flow cytometry
using a BD AccuryTM C6 Plus flow cytometer equipped with a laser emitting at 488 nm (66 µl/min
flowrate; 50 µl sample analysed). Samples (1 mL) were stained with 10 µl/mL SYBR Green I (1:100
dilution in Tris-EDTA buffer solution, pH 8.0) and incubated in the dark at 37 °C for at least 13 min
before measurement (Hammes 2008, Vignola et al. 2018). The specific growth in each sample were
determined as follows:

µ =
ln(xT 18)− ln(xT 10)

δ t
(6.1)

where xT18 and xT10 are the concentrations measured after 18 and 10 h of incubation and t the time
interval between the two points.
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6.2.5 DNA extraction and 16S rRNA gene sequencing

At the end of the 36 h incubation, replicates from each depth treatment (TOP, MID or BOT) were
pooled, and cells filtered onto 0.2 µm membrane filters (Whatman) and frozen at -80 °C until DNA
extraction. DNA was extracted with the FastDNA Spin Kit for soil kit (MP Biomedicals) following
the manufacturer’s protocol. Extracted DNA was quantified using the Qubit dsDNA HS Assay Kit
(Life Technologies, Eugene, OR, United States) with a Qubit fluorometer (Invitrogen, Eugene, OR,
United States). V3-V4 regions of 16S rRNA gene were amplified for sequencing using the Illumina
MiSeq (at GENEWIZ, Inc, South Plainfield, NJ, USA). Sequences were submitted to NCBI.

6.2.6 16S rRNA gene Sequencing Analyses

Raw sequence data were analysed using QIIME2 pipeline and Deblur algorithm (Caporaso et al.
2010). The Deblur algorithm was used to facilitate better discrimination as it is an overlap free al-
gorithm allowing only one set of reads, either forward or reverse reads. The reverse reads were of low
quality and therefore discarded from the analyses. Additionally, while selecting trim length for Deblur,
we have used https://www.qiita.ecsd.eduhttps://qiita.ucsd.edu/static/ doc/html/deblur_quality.html for
their suggestions and as such reads were trimmed using the recommendations. The sequences were
then trimmed above a Phred Quality score of 20 using qiime2. Amplicon Sequence Variants were pro-
duced using Deblur against SILVA v138 gene reference database. Qiime’s align-to-tree-mafft-fasttree
was then used to generate the rooted phylogenetic tree. The representative sequences were taxo-
nomically classified using TaxAss workflow (https://github.com/McMahonLab/TaxAss) which uses
an additional database formatted in the same format as SILVA v138 database to resolve ASVs that are
not resolved by standard Naïve Bayesian Classifier using the standard database. The biom file for the
ASVs was generated by combining the abundance table with taxonomy information using biom utility
available in Qiime2 workflow. Results were visualised by a cluster heatmap with rows and columns
ordered using hierarchical (average linkage) clustering.

Further analyses on the ASVs table were performed using R (version 4.0.2). Taxonomic alpha di-
versity indexes – Richness, Shannon and Fisher Alpha - were estimated after rarefying at the lowest
sequencing depth of 53,948. These indexes are employed to describe the microbial biodiversity of
the communities in terms of richness, as the number of different species present in the samples, and
evenness as a distribution of species abundances. While Richness and Fisher Alpha indexes relate to
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richness only, Shannon relates to both richness and eveness. The abundance table was then normalized
using TSS + CLR (Total Sum Scaling followed by Centered Log Ratio) normalization at the Genus
level as per recommendations by Rohart et al. (2017).

6.2.7 LC-OCD-UVD-OND sample preparation

DOM compound groups were analysed using liquid chromatography-organic carbon detection-ultraviolet
detection-organic nitrogen detection (LC-OCD-UVD-OND; Huber et al. (2011)). For LC-OCD-UVD-
OND analyses, 250 mL AOC-free serum bottles were prepared as described above, with the ratio
medium/headspace kept the same as the 100 mL glass vials. The amount of inoculum added was
changed to have the same initial concentration of cells. Bottles were capped with metal crimp and
silicone septa. All the vials were incubated at 30 °C, in the dark. At T0, 50 mL medium were poured
into a 60 mL carbon-free glass vial; at T23, incubated bottles were decapped, and 50 mL sample were
poured into a 60 mL carbon-free glass vial. For the two time points, the samples were stored at room
temperature in the dark, transported to the Lyell Centre, Edinburgh and measured (three technical
replicates per sample) within 24 h. The LC-OCD-UVD-OND separates DOM without prior modifica-
tion by injecting 1 ml of water onto a size exclusion column (2 ml/min; HW50S, Tosoh, Japan) with a
phosphate buffer (potassium dihydrogen phosphate 1.2 g/L plus 2 g/L di-sodium hydrogen phosphate
x 2 H2O, pH 6.58) to identify five different DOM classes (see Table 6.1). All DOM classes were
quantified as well as the molecularity (nominal molecular weight) of the humic substance class given
(Huber et al. 2011).

The limit of detection of the OND and OCD were calculated as three times the standard deviation
of the mean area of the noise for six blank injections (Milli-Q water), and the values were converted to
concentration units using calibration curves. The LOQ was calculated as 10 times the standard devia-
tion of the mean area of the noise for six blank injections. The limit of detection for OCD and OND
were 82 ppb/C and 53 ppb/N, respectively. The corresponding LOQ was 273 ppb/C and 176 ppb/N,
respectively. The reproducibility of the OCD and OND was tested by injecting 0.4 µg of International
Humic Substances Society Humic Acid Standard (HS3S10H) in triplicate. For the OCD, the RSDs
were lower than 2.2%. For the OND, the RSDs of Humic Substances was lower than 1.6%.
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Table 6.1: LC-OCD-OND DOM fractions and corresponding molecular weights and description.

DOM class Mw
(g/mol) Description Reference

Biopolymers
(BP) >10,000

Hydrophobic, largely non-UV-absorbing
extracellular polymers with saturated structures,

polysaccharides and some contribution of
proteins or amino sugars

Huber (2011)

Humic substances
(HS) 1000

UV-absorbing aromatic molecular aggregates
of relatively small molecules, stabilized by the

hydrophobic effect and hydrogen bonds
Gerke (2018)

Building blocks
(BB) 300–500

UV-absorbing humics of lower-molecular-weight
that have been shown to include microbial
breakdown products of humic substances

Huber et al. (2011)
Velten et al. (2011)

Low molecular
weight neutrals
(LMW neutrals)

350

non-UV-absorbing, weakly or uncharged
hydrophilic or amphophilic compounds that

can include alcohols, aldehydes, ketones,
and amino acids hydrophilic

Huber (2011)

Low molecular
weight acids
(LMW acids)

350 Huber et al. (2011)

6.2.8 Statistical analysis

All statistical analyses were carried out using R (version 4.0.2). For cells abundances and growth rates
significant differences were ascertained by ANOVA with data being normal and homogeneously dis-
tributed, followed by the Tukey post-hoc test (equal variances, and equal group sizes) to discriminate
between treatments with a 95% confidence level. For the LC-OCD-UVD-OND compound groups
significant differences were ascertained by a KW is H-test as the data were not normally and homo-
geneously distributed using an alpha significance level of 0.05, followed by the Dunn’s post-hoc test
(equal variances, unequal group sizes) to examine the pairwise comparison with p-values adjusted by
the Bonferroni method. For both methods, the results were expressed by the mean for each group
together with its variance (expressed by the standard error).

146



6.3 Results and discussion

6.3.1 Increase in cell abundance

The results showed that the microbial communities enriched from three different depths of a biofil-
ter (extracted and transformed into three inocula: TOP, MID, BOT) varied in their cell abundance
and growth rate. Over the course of the experiment, cell abundances increased in all three treatments
(TOP, MID and BOT, Figure 6.1 A). Cell concentrations increased from an average of 4.35·103 ± 2·102

cells/mL at T0 for all three inocula (n = 9) to 1.83·106 ± 9·103 (n = 2 due to a problem with FCM anal-
yses on one replicate); 2.06·106 ± 1·104 (n = 3); 2.15·106 ± 7·103 (n = 3) cells/mL for TOP, MID and
BOT inoculum respectively after 36h of incubation. The total amount of cells harvested differed sig-
nificantly between BOT and the other two treatments after only 10 h of incubation (BOT>TOP-MID,
Tukey’s post-hoc test on ANOVA; p.adj < 0.05); while after 20 h all the treatments differed between
each other (BOT>MID>TOP, Tukey’s post-hoc test on ANOVA; p.adj < 0.05 per each pairwise com-
parison).

Figure 6.1: Trends of cell abundances (A) and growth-rates (B). Abundances were measured
over the course of the experiment for the three treatments (mean ± s.e., n = 3 replicates). Stars
and ns in B denote significant differences with regard to growth rates between treatments as-
sessed by Tukey’s post-hoc test on ANOVA. ns denote no significant difference, Stars denote
significant differences between treatments (p<0.05).
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While they were exposed to the same DOM composition and incubated under the same controlled con-
ditions, the MID and BOT communities showed faster growth rates than the TOP and consequently,
with a higher abundance of cells at the end of the experiment. (Tukey’s post-hoc test on ANOVA; p.adj
< 0.05) (Figure 6.1 B). Although a difference between MID and BOT was detectable (Figure 6.1 B), it
was not statistically significant (p > 0.05). This outcome is highly likely a result of high within-group
variation of MID treatment presented by the wider error of the boxplot.

Assuming an average content of organic carbon per cells equal to 1.5x10-13 g of C/cell (as suggested
by Pick et al. (2019), Vrede et al. (2002), the total net growth of cells at the end of the 23 h incubation
accounted for the 1.31% and 1.36% of the total initial DOC content in the TOP and MID treatment,
respectively, and for the 1.53% of the BOT treatment. Therefore, we expected to see a similar per-
centage decrease in the DOC concentration values; however, we did not observe a decrease in DOC
concentration for any of the treatments. The expected change in DOC concentration might have fallen
within the instrument’s error.

6.3.2 Microbial community structure

A total of 180,300 high-quality reads were obtained through sequencing (TOP = 53,947, MID =
71,954, BOT = 54,398), and 1,127 ASVs were detected in this study. Of these, 166 were shared
between the three communities; 305 were only found in the TOP, 199 only in the MID and 190 only
present in the BOT. The remaining 267 ASVs were either shared between TOP-MID (81), or TOP-
BOT (58) or MID-BOT (128). In terms of alpha biodiversity, the TOP community had the highest
observed Richness, Shannon and Fisher Alpha indexes compared to BOT and MID communities (Ta-
ble 6.2). In other words, the TOP community had the greatest diversity of species which were the
most evenly distributed. The genera Ralstonia and Pandoraea were the most abundant in all the three
communities accounting for 62% and 15% of the TOP community: 66% and 16% of the MID com-
munity and 62% and 16% of the BOT community, respectively. The lineage betI-B of Burkolederiales

and the genus Curvibacter were one to two orders of magnitude more abundant in the BOT and MID
communities (11% and 1% for BOT; 7% and 0.6% for MID) than in the TOP one (0.08% and 0.01%).
The Genus Sphingobium and the lineage alfIV alfIV-B of Sphingomonadales were highly abundant in
the TOP (5%, 8% respectively), but almost absent in the other two treatments (0.0% and 0.002% for
BOT; 0.003% and 0.0% for MID) (Figure 6.2).
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Table 6.2: Alpha diversity parameters for the pooled triplicates Sample Number of High
quality reads Richness Fisher Alpha Shannon.

Sample Number of High quality reads Richness Fisher Alpha Shannon
TOP 53,948 610 96 4.13
MID 71,954 547 85 3.99

BOTTOM 54,398 541 84 4.10

Figure 6.2: Heatmap of the communities in the three treatments at genus level with
both rows and columns ordered using hierarchical (average linkage) clustering (A).
Venn diagram of the ASVs found in the treatments (B).

6.3.3 DOC concentration

Measured LC-OCD fraction concentrations can be found in Appendix D (pg. 203). DOC concen-
tration before inoculation was 12.19 ± 0.03 mg-C/L; after 23 h of incubation, 12.35 ± 0.04, 12.34 ±
0.10, 12.18 ± 0.06 mgC/L were measured in the TOP, MID and BOT treatments respectively. Only
the TOP DOC was statistically different from T0 (Dunn’s post-hoc test on KW H-test; H(3) = 14.50,
p.adj = 0.014), but no significant differences between final DOC treatments were observed (Figure
6.3). Again, within group variation was noticeable, especially for the TOP and BOT treatment.
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Figure 6.3: Boxplot of the DOC concentration at T = 0 and the three treatments
(TOP, MID, BOT) after 23h incubation. Letters a, b and c denote significant dif-
ferences between treatments regarding DOC concentration. Letters (a,b,c) denote
significant differences with regard to DOC concentration in the different treatments
assessed by Dunn’s post-hoc test on KW H-test. Same letters denote no significant
difference, different letters denote significant differences between treatments.

6.3.4 DOM degradation

The initial DOC was mainly composed of humic substances (83 ± 0.4%), but the compound groups
building blocks (8.0 ± 0.2%), LMW neutrals (5.7 ± 0.2%), LMW acids (0.1 ± 0.02%) and biopolymers
(3.3 ± 0.7%) were also found. This DOM composition changed slightly in all the samples during the
incubation period. While no significant differences were observed among the three treatments at the
end of the experiment regarding the different DOM fractions concentrations, significant differences
were observed between T0 and the three treatments after 23h incubation (Dunn’s post-hoc test on KW
H-test; p.adj < 0.05). Although no reduction in humic substance concentration was observed in TOP
and MID from T0 to T23, BOT exhibited a significant decrease in humic substance content compared
to T0 and significant increase in both building block content (Figure 6.4 A-B). Along with a decrease
of humic substances, in BOT treatment, we also observed an increase in its molecularity (Figure 6.4
C). The TOP and MID treatment demonstrated no change in the molecularity. Molecularity refers
to the nominal molecular weight. In other words, the BOT treatment increased the molecular weight
of the humic subtance pool. The detailed composition of the humic substance structure is unknown.
However, it has been suggested that they are composed of LMW compounds weakly attached to a
larger refractory core (Finkbeiner et al. 2020, Gerke 2018). An increase in molecular weight of this
carbon group can be the result of the removal of small or the addition of high molecular weight humic
substance structures. In this experiment, the BOT community showed microbial degradation of the
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humic substance fraction as suggested by the significant decrease in its concentration. It therefore
seems most plausible that only the small humic substance molecules were degraded by microorgan-
isms leaving the bigger structures in the DOM pool and increasing the molecularity of the DOM pool.

Figure 6.4: Boxplots of humic substance concentration (A), building block concentration (B),
and molecularity of the humic substance pool (C) at T = 0 and in the three treatments (TOP,
MID, BOT) at T = 23. Letters (a,b,c) denote significant differences in concentration humic
substances (A) and building blocks (B), and molecularity of humic substance pool (C) between
the different treatments assessed by Dunn’s post-hoc test on KW H-test. Same letters denote no
significant difference, different letters denote significant differences between treatments.

Throughout incubation, the LMW neutral carbon fraction did not change (Figure 6.5 A). The LMW
acid concentration on the other hand decreased in the TOP and MID treatment. However, the dif-
ference between T0 and T23 was only statistically significant for MID (Dunn’s post-hoc test on KW
H-test; H(3) = 8.79, p.adj = 0.045); the concentration of LMW acids in TOP fell below the limit of
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detection (Figure 6.5 B). Finally, the biopolymers concentration increased significantly only in MID
at the end of the experiment (Dunn’s post-hoc test on KW H-test; H(3) = 11.20, p.adj = 0.020) (Figure
6.5 C). T0 showed a larger variance, while TOP had a significant outlier.

While the present study reports no removal of the LMW neutrals (Figure 6.5 A) and building blocks
(Figure 6.5 B), these fractions are generally considered microbially labile and their biological removal
has been reported in several studies (Boon et al. 2011, Krzeminski et al. 2019). However, these studies
used ozonated waters, in which DOM is oxidised and broken down into smaller (more bioavailable)
components. In the study, we used non-ozonated surface water where these compounds are presumed
to be more refractory to biological degradation (Amon & Benner 1996, Chen et al. 2016, Vasyukova
et al. 2014). The refractory nature of building blocks as well as the fact that building blocks are the
product of humic substance breakdown (Huber et al. 2011), caused the building block concentration
to increase in the BOT treatment during incubation.

The study also reports no removal of biopolymers (Figure 6.5 C), while these fractions are gener-
ally considered easily available for microbial degradation (Chen et al. 2016, Vasyukova et al. 2014).
On the contrary, here we observed an increase in the biopolymers concentrations during incubation
in all treatments, with only the MID treatment being statistically significant (due to high variances).
Biopolymers could have been formed by the microbial cells during their growth. Lautenschlager et al.
(2014) also observed a slight increase of the biopolymers concentrations in their reservoir with treated
drinking water, where the presence of cells was also reported.
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Figure 6.5: Boxplots of the LMW neutrals (A), LMW acids (B), and biopolymers (C) at T = 0 and
(TOP, MID, BOT) at T = 23h. Letters a, b and c denote significant differences between treatments
regarding concentrations. Letters (a,b,c) denote significant differences in concentration LMW
neutrals (A) and acids (B), and biopolymers (C) between the different treatments assessed by
Dunn’s post-hoc test on KW H-test. Same letters denote no significant difference, different letters
denote significant differences between treatments.

6.3.5 Differences

The results showed that the three microbial communities differed in the type of DOM compound
group utilized during the incubation process. This could indicate that the change in DOM distribution
at the end of the incubation reflects the utilisation of DOM fractions (as identified by the LC-OCD-
UVD-OND) by the three different communities. The TOP and MID treatments removed compounds
belonging to the fraction of DOM with a LMW acids (Figure 6.5 B). The BOT community, on the
other hand, used the complex and the most abundant fraction of humic substances (Figure 6.4 A). It
suggests that only BOT was able to degrade the widely abundant humic substance fractions, which

153



could explain the higher growth rate observed in the BOT community, as compared to TOP and MID.

The metabolism of the different DOM fractions by heterotrophic bacteria is a complex and contro-
versial subject (Amon & Benner 1996). The traditional view is that small molecules present in the
DOM pool (up to 600 Da) are also the most labile (Weiss et al. 1991), since they can be readily taken
up by microorganisms across their cell membrane, and they are the C-source preferentially chosen by
microorganisms (Münster & Chróst 1990). Bigger and more complex molecules (greater than 600 Da)
would require extracellular enzymes for the conversion into smaller and more easily degradable com-
pounds; therefore, they are considered more recalcitrant to microbial activity. Although biologically
more recalcitrant than LMW acids and neutrals, several studies have shown that a portion of humic
substances is biologically degradable; this has been observed both in natural (Moran & Hodson 1990,
Volk et al. 1997) and engineered environments (Boon et al. 2011, Lautenschlager et al. 2014). The hu-
mic substance fraction was the most abundant DOM fraction in the experiment accounting for 82.7%
of the total dissolved organic carbon present in water. The high concentration of such compounds in
freshwater compensates for their slower rates of utilisation (Volk et al. 1997).

Apart from the difference in DOM utilization, the three treatment communities showed different com-
positions, with TOP sharing the lowest similarity with the other two. The structure of a microbial
community impacts its ability to degrade the different DOM fractions (Logue et al. 2016). While the
degradation of LMW DOM is believed to be a functional trait common to many microbial commu-
nities, the ability to utilize more recalcitrant DOM (such as humic substances and biopolymers with
greater molecular weight) is considered a trait less widely distributed (Logue et al. 2016). Therefore
it seems that the different structure of the three communities has influenced their ability to degrade
the DOM pool.The BOT and MID communities possess the rarer ability to degrade complex organic
carbon molecules. The genus Curvibacter, which was significantly more abundant in the BOT and
MID communities, has been thought to play an important role in the DOM degradation of freshwater
since it seems to possess the ability to utilize specific types of carbon source (Wu et al. 2018). Hence,
some of the taxa in the Curvibacter genus seem to play an important role in the degradation of humic
substances and fractions. However, only the BOT community actually demonstrated this ability by
significantly lowering the humic substance concentration.
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6.4 Conclusion

The objective of this study was to explore the ability of microbial communities extracted from differ-
ent depths of the 12 week operating laboratory scale biofilter to degrade DOM. Understanding this is
essential to improve biofilter performances and DOM removal in drinking water treatments. Results
from this study suggest that:

- The differences observed in the three communities’ ability to degrade DOM, as well as their
composition studied after 35h of incubation, are the consequence of the initial compositional
difference of the biofilter communities from which they were derived.

- Such differences are a consequence of the adaptation of the original biofilter communities to
the different environmental niches developing at different depths of the biofilter. Lower depths
highly likely select for communities capable of degrading more complex DOM compounds.

- Whether this results from their continued exposure to such DOM compound groups during the
biofilter operation needs further investigation.

- Looking at the result of Chapter 3, 5 and 6 together the processes within the filters can be bet-
ter understood. DOM removal is mostly a result of multistage adsorption (initial adsorption in
macropores and continued tailing in the micropores). The top of the filter becomes saturated
quicker compared to the bottom. This stratification of carbon source results in different eco-
logical niches. The stratification of DOM results not only in a stratification of biomass, but
also in a difference in community structure through filter depth. The highest species diversity is
present in the top niche, probably as a result of a wider variety of DOM. The bottom section has
a lower diversity of microbes, highly likely as a result of DOM restriction. However, as a result
of this DOM restriction, only specific microbes are able to inhabit this niche and able to survive
on the limited choice of DOM species. Using fresh Scottish water with high concentrations of
not-easily degradable humic substances, the communities able to survive in the bottom niche
are able to degrade these recalcitrant DOM molecules. This insight highlights the benefits of
using long biofilters. Not only does the long biofilter remove DOM to a greater extent for a
longer period of time, it also provides the opportunity for humic substances degrading microbes
to inhabit the filter.
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Chapter 7

Three-way PCA to study spatial and temporal
variation in water quality parameters and its
impact on biofilter performance
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7.1 Introduction

Natural water quality varies from place to place, with the seasons, with climate, and with the types of
soils and rocks through which water moves (Aitkenhead-Peterson et al. 2007, Liu et al. 2014, Muller
& Tankéré-Muller 2012, USGS 2001).

In biofiltration, water quality not only impacts the performance of the biofilter (Basu et al. 2016, Laud-
erdale et al. 2012, Pharand et al. 2015), but it also influences the composition of bacterial communities
within the biofilter (Ma et al. 2020). The results of chapters 3, 5, and 6 showed that the studied biofil-
ters removed DOM and consequently complexed iron via a dual-stage adsorption in combination with
some degree of biodegradation. At the end of the experiment the GAC material was not exhausted yet
and a significant stratification of DOM was visible within the pores of the filter, highly likely resulting
in a stratification of microbial communities. In this apparent steady state the iron concentration in the
effluent was above the regulatory limits. Moreover, the DOM concentration was also high, resulting
in coloured water, probably in combination with smell, taste and making it a possible carbon source
for microbial growth. It must be noted that the concentration of DOC and iron in influent water was
relatively high. It was sampled at one particularwater treatment work location having its own geo-
chemical and microbial signature. How this signature compares to other water sources and seasonal
fluctuation is unknown. Water sources of other regions could have a higher geochemical loading,
which can negatively impact the performance of the biofilters even more. Also seasonal variation can
alter the geochemical signature of the water and thereby influence the performance of the biofilter
performance, the chemical signature within the pore water, and the stratification of microbial com-
munities. Therefore, understanding this spatial and temporal variation of biochemical water signature
can help to understand how results of Chapter 3, 5, and 6 will be impacted when using the waters from
other regions in Scotland throughout the year.

The objective of this chapter was to apply chemometric methods to study spatial and temporal varia-
tion in water quality parameters and evaluate how this might influence the performance of slow-flow
BAC filter. First, a multivariate biochemical data set of five water sources in Scotland monitored from
January 2015 till December 2019 was analysed by three-way PCA to understand spatial and temporal
variation of the biochemical water quality. Second, the biofilter influent water was compared with
these various Scottish water sources by normal PCA. In this way, the present study systematically
assesses the slow-flow BAC performance in relation to water source and seasonality.
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7.2 Materials and methods

7.2.1 Sampling sites

Data from various WTWs from across Scotland ran by Scottish Water were used in this study. Table
7.1 shows coordinates, sampling location, water type and vegetation surrounding the reservoirs/catchment
area. The Biofilter Influent (IN) water used for the experiments of chapter 3, 5, and 6 was taken at
Pateshill (Table 7.1) and prefiltered with a 10 µm polypropylene cartridge filter.

7.2.2 Sampling period

The biochemical analysis of the variouswater treatment work water samples was done at the Scottish
Water laboratory and spanned the period January 2015 until December 2019. IN water samples were
analysed in-house once a week in the period October 2018 and December 2018, and once every two
weeks from January 2019 until March 2019.

7.2.3 Variables

Different variables were measured in-house for the IN samples and in the Scottish Water lab for
thewater treatment work samples (Table 7.1). The methods used for the in-house analysis of the
variables are given in the materials and methods of Chapter 3, Section 3.2 (pg. 53).

7.2.4 Data pre-treatment

WTW data required pre-treatment to get the required data format. A full overview of all pre-treatment
steps including the number of samples remaining per step are given in Appendix E, Table E.1 (pg.
205). The most important steps were as follows: (1) Data entries from January 2015 until December
2019 were extracted. (2) "Greater than" symbols were removed from its value, as further data process-
ing did not allow for "greater than symbols". (3) Values with a smaller than symbols were replaced by
a random number between zero and value itself. (4) Measurements from the same day were consid-
ered technical replicates and the mean was taken. (5) Variables DOC, dissolved iron (dFe), dissolved
manganese (dMn), E. coli and total coliform were selected, because WTW and IN had these vari-
ables in common. (6) Measurements of the same month over several years were averaged by taking
the median to compensate for unmeasured entries. The median was chosen to minimise the impact
of outliers. (7) Daer, Lochinvar, Rawburn and Pateshill had only <10% unmeasured entries, while
this was 40% for Forehill, Rosebery and Penwhapple. Only water sources with <10% unmeasured
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variables were kept, being: Dear, Lochinvar, Pateshill, Rawburn. The data set included four sample
sites (Dear, Lochinvar, Pateshill, Rawburn), 5 variables (DOC, dFe, dMn, E. coli and total coliform)
and 12 monthly measurements (January – December). This data set (data set Waterquality) helped to
understand the spatial and temporal variation of WTWs.

7.2.5 Substituting missing data

Missing data as a result of measurement absence needed to be replaced before three-way PCA could
be applied. In normal PCA, samples with missing parameters can be excluded. In three-way PCA,
however, a full data array is required. The data set missed the DOC, dFe, and dMn concentration of
Pateshill in February, despite the averaging between 2015 and 2019. The missing values as a result
of measurement absence were substituted by applying nonparametric multivariate imputation on the
Pateshill subset using the zCompositions package for R (version 4.0.2) (Palarea-Albaladejo & Martín-
fernández 2015).

7.2.6 Normality distribution and outliers

The normal distribution of each variable was tested. Shapiro–Wilk test was applied to check the
distribution pattern of the variables. Almost none of the variables demonstrated a normal distribution,
which is a common phenomenon in environmental data (Leardi et al. 2000). This was confirmed by
frequency histograms demonstrating skewness. A logarithmic transformation was therefore applied
to the variables to transform the data into a (pseudo-) normal distribution. Zero values (as a result of
counting E. coli and total coliform) were substituted with 0.1 before the log transform was applied.
Although the use of log transformation is debated for counting data (Hara & Kotze 2010, Ives 2015),
normality distribution after log transformation did not show severe outliers after log transforming these
variables. Outliers were evaluated by the Hotelling T2 – Q residual plot generated from an initial PCA
model (Bro & Amigo 2020, Goueguel 2020) as described in Chapter 5, Section 5.2 (pg. 45). Outliers
were inspected, but none were found based on their cut-off values (Appendix E, Figure E.1, pg. 206).

7.2.7 Data pre-processing

The data sets required pre-processing which homogenises scales and units without altering the dif-
ferences among the sample sites and among the sampling times. For PCA, this problem is solved by
autoscaling in the variable (column) direction. For three-way PCA, this problem is solved by perform-
ing a j-scaling. The three-way array X (with I, J, and K modes) was matricized to a two-way matrix

161



Xb having I x K modes in the row direction and the J mode in the column direction. On this ma-
trix autoscaling was performed in the variable (column) direction. As a result, the global variance of
each variable was set to one, and the differences among the objects and the conditions are preserved.
J-scaling calculates averages over two modes.

7.2.8 PCA

Traditional PCA was applied on the data set using the MixOmics toolbox ® (Rohart et al. 2017). For
this, the data array was transformed to a matrix. This operation was carried out by unfolding the data
array. The measured variables were kept in the columns and the sampling sites measured at various
months were placed in the rows, resulting in a matrix of 60 samples (4 sites × 12 months) × 5 variables.

7.2.9 Tucker3

Secondly, three-way PCA, more precise Tucker3, was applied to data set. A detailed explanation
of the Tucker3 concept is given in Chapter 2, Section 2.4.1 (pg. 45). For the Tucker3 analysis the
ThreeWay toolbox was used in R (version 4.0.2) (Giordani et al. 2015). The T3 code provided an
interactive Tucker3 analysis with the following main steps: (1) provide the number of entities in the P,
Q, and R mode. (2) determine the type of centring and normalization (already done, so not executed).
(3) PCA’s of super matrices with slices of the 3way array next to each other, thus 3 super matrices are
analysed by PCA, and for each component matrix and eigenvalues is found. The results are used to
create a generalized scree plot, which can be used to find the number of components for each mode.
(4) specify convergence criterion is set to 1·10-6 by default. The statistical validity of the obtained
component matrices was assessed by a bootstrap procedure for computing the confidence intervals for
the solution (Giordani et al. 2015). The analysis is based on 500 bootstrap samples and matching via
optimal transformation towards full solutions.

7.2.10 Other statistical analyses

Further statistical analyses were carried out using R (version 4.0.2). The correlations were determined
by Pearson correlation using an alpha significance level of 0.05.
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7.3 Results and Discussion

7.3.1 Spatial and temporal variation within Scotland

Spatial and temporal variation of biochemical water quality parameters in Scottish raw waters were
studied. The data set consisted of 5 sampling sites, 5 measured biochemical variables and over 12
(averaged between 2015 - 2019) months (Table 7.1). Therefore, the data were arranged as a three-
dimensional array with modes: 5 (sites) × 5 (biochemical variables) × 12 (months).

PCA

Traditional PCA applied on the data set of samples (4 sites × 12 months) × 5 variables required 2 prin-
cipal components to explain 91% variance (Figure 7.1). The biplots obtained after PCA is reported
in Appendix E, Figure E.2 (pg. 206). The separation of sampling sites is well visible in the bi-plot.
The four sites (indicated by the four colours) are well grouped and can be described by the variables.
However, information about the sampling time (indicated by the symbols) are mixed and clear patterns
cannot be found. Moreover, the simultaneous interpretation of sampling sites and time is not possible
in the PCA biplot.

Figure 7.1: PCA biplot of the data set Waterquality with principal component 1
explains 52% of the data and principle component 2 39%. The scores grouped
by colour, months by symbols and the loadings are presented by the vectors.
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Tucker3

To interpret the biochemical variables over time for various sampling sites simultaneously, Tucker3
was applied to the data set. For Tucker3, the data set was arranged in a three-way data array with
modes: 4 (sampling sites) x 5 (biochemical variables) x 12 (months). To find the appropriate number
of components for each mode, initial Tucker3 models were created with up to 4, 5, and 12 components
in respectively the p, q, and r mode. The scree plot was used to visualise how many additional percent
of variance each model explained when adding extra components Appendix E, Figure E.3 (pg. 207).
Generally, the optimal complexity of the Tucker3 model is the one that requires the smallest number
of components, but still describes relatively high fraction of data variance.

Figure 7.2: Loading plots of the Tucker3 [2,2,2]-model from the data set Waterquality with
sampling sites (A), biochemical variables (B), months (C).

The complexity that describes as much variance but is still interpretable is the model with 2 com-
ponents in each mode, also known as a [2,2,2]-model, accounting for 67% variance. The statistical
validity of the bootstrap computing confidence intervals for the current fit was between 64 and 88%.
Such a medium variance with environmental data is not unusual as a result of the very high noise re-
lated to the great variability of environmental and sampling conditions (Leardi et al. 2000). It has two
components in mode P (sampling site), two components in mode Q (the biochemical variables) and
two components in mode R (months). Results of the Tucker3 model are reported in Figure 7.2 with
loading plots of Samples (P), Variables (Q) and Months (R). Each of these diagrams may be inspected
separately, e.g. in Figure 7.2A shows a clear discrimination between the Rawburn and the other three
sampling sites, while in Figure 7.2 B DOC and dFe form a clear variable cluster as well as E. coli and
coliform.
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More information, however, can be expected by the joint interpretation of all loading plots. For this,
the information in G core is required. The G core of the [2,2,2]-model is shown in Figure 7.3 A
together with its unfolded two frontal planes (time slices) in Figure 7.3 B. In total the core matrix of the
[2,2,2]-model has eight elements (g111 up to g222). The two parts of this unfolded matrix correspond
to the first and second components of ‘Time’, while the rows relate to the components of ‘Sampling
sites’ and the columns within each block refer to the components of ‘Biochemical variables’. From
the core matrix it becomes clear that a diagonalization has been obtained, because the two major
parts of the variance are covered by the body diagonal elements, g111 and g222 (Henrion 1993). The
remaining elements have minor importance.

Figure 7.3: G core of the Tucker3 [2,2,2]-model (A) and its unfolded core matrix equiv-
alent represented by the frontal planes (B). G111 has a high positive value, G222 a high
negative value, while the other values are of minor importance.

With most of the variance covered by g111 (explaining 42% of information) and g222 (explaining
18% of information), these elements together describe almost the full G core of Figure 7.3 A, which
simplified leads to a trilinear model with three terms:

xi jk = ai1b j1ck1g111 +ai2b j2ck2g222 + ei jk (7.1)

Loading plots can be interpreted simultaneously with respect of their respective signs and magnitudes.
This means that only large magnitude loadings with the right combination of signs can be interpreted
together. For a better visual interpretation, the loading of the two components for each mode in Figure
7.2 are plotted in individual plots in Figure 7.4. Figure 7.4 A1 and A2 present the loading plots of the
two components of the sampling site mode, while Figure 7.4 B1 and B2 present the loading plots of
the two components of the biochemical variable’s mode, and Figure 7.4 C1 and C2 present the loading
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plots of the two components of the month’s mode.

An example of the interpretation of the Tucker3 model is as follows: the first term of the [2,2,2]-
model, g111, is the combination of the first components in all modes. In other words, the loadings
plot A1, B1, and C1 are interpreted together. G111 has a positive sign (Figure 7.2) and therefore the
combination of loadings of the first components from Figure 7.4 should together be positive in order
to create this positive g111. The positive element g111 is formed by the combination of positive A1
loadings together, all B1 loadings and positive C1 loadings. This means that positive large A1 (Daer,
Lochinvar and Pateshill), positive large B1 (E. coli, coliform, and dMn), and large positive C1 (June,
July, and August) are meaningful together. The positive g111 element can also be constructed by large
negative A1 (Rawburn), large positive B1 (E. coli, coliform and dMn) together with a large negative
C1 (February and March). In a similar way the g222 term can be analysed. An overview of all mean-
ingful combinations is given in Table 7.2.

Table 7.2: Meaningful interactions for the elements G111, G112, and G222 of
the Tucker3 [2,2,2]-model of the SW data set.

G111 (positive) A B C
Large +A1, +B1, +C1 Daer, PH, Loch E. coli, coliform, dMn May, Jun, Jul, Aug

Large -A1, +B1, -C1 Raw E. coli, coliform, dMn Feb, Mar

G222 (positive) A B C
Large +A2, +B2, +C2 PH dFe, dMn, DOC All months, highest in winter

Large -A2, -B2, -C2 Daer E. coli, coliform, dMn All months, highest in winter

G122 (negative) A B C
Large -A2, +B2, +C2 Rawburn E. coli, coliform, dMn All months, highest in winter
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Figure 7.4: Tucker3 [2,2,2]-model loading plots with sample loading plot of component
1 (A1), sample loading plot of component 2 (A2), variables loading plot of component 1
(B1), variables loading plot of component 2 (B2), time loading plot of component 1 (C1),
and time loading plot of component 2 (C2).

From Figure 7.4 and Table 7.2 it becomes clear that the components B1 and B2 of the Tucker3 model
relate to the different way the biology and chemistry of the water behave over time. Moreover, DOC
and dFe have similar loadings which was also demonstrated by a high correlation (Pearson correla-
tion, r(45) = .925, p < .001). This high correlation between DOC and dFe was also found in Chapter
3, Section 3.3.2 (pg. 72) and was explained by the complex formation between DOC and dFe in water
(Soulsby et al. 2001).

There seems to be a seasonality related to the biochemical signature of the water sources, which also
varied among sampling sites. Sampling sites Daer, Lochinvar, and Pateshill have high concentrations
of E. coli, coliform and dMn in the summer months, while Rawburn has the highest microbial content
in the winter. Looking at the correspondent average monthly temperature and precipitation in Figure
7.5 it becomes clear that the months with the highest temperatures demonstrated the highest micro-
bial content for most sampling sites. The relationship between temperature and microbial growth is
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generally understood, with warm water temperatures of 15-20° C during summer months in Scotland
providing better conditions for bacteriological growth compared to winter (Grose et al. 1998, van der
Kooij & van der Wielen 2011). Rawburn, however, showed the higher microbial content in the winter
months.

Figure 7.5: Average temperature (A) and precipitation (B) in Scotland throughout the
year. Recorded by Metoffice and available at https://www.metoffice.gov.uk.

Pateshill samples demonstrated similar E. coli and coliform content as Lochinvar and Daer, but much
lower than Rawburn. DOC, dFe on the other hand were much higher than the other sampling sites
with a slight increased concentration during the winter months. In the study on Irish streams, Liu
et al. (2014) found the highest DOC concentrations in autumn and early winter with spring having the
lowest concentrations. Soulsby et al. (2001), who studied seasonal water quality trends in four streams
in the Cairngorm Mountains in Scotland, reported TOC maxima/peaks in January, February, May, Au-
gust, September, and November. A possible explanation for this pattern is the annual cycle of plant
growth and decomposition (Muller & Tankéré-Muller 2012), together with precipitation (Figure 7.5).
DOC concentration in water increases with increased hydrological flow through enriched organic and
mineral soils countering the effect of dilution by rainwater (Aitkenhead-Peterson et al. 2007, Muller
& Tankéré-Muller 2012, Soulsby et al. 2001). In a study by Soulsby et al. (2001) the winter period
– and in particular snowmelt – strongly influences both the hydrological regime and hydrochemical
seasonality of streams in the western Cairngorms.
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Also, DOC concentration depends on the topography of the land (Aitkenhead-Peterson et al. 2007, Liu
et al. 2014). According to Liu et al. (2014), it increases in the following order: arable land, grassland,
peatland and forestland. In autumn and winter, DOC export is linked to peatland, while spring is best
described by grassland and arable and summer by heather, montane and conifer (Aitkenhead-Peterson
et al. 2007). Interestingly, the surroundings of Pateshill were predominantly covered by grassland and
conifer trees (Table 7.1), which does not explain the higher DOC concentrations in autumn and winter.

Overall, a seasonal variability can be expected for the microbial and chemical water quality parame-
ters as well as variation among water sources, with the highest concentrations of DOC and dFe found
at Pateshill. The variables DOC and dissolved iron had similar loadings and therefore monitoring their
behaviour could be done by one of the variables. In this case, DOC is the simplest analytical method
and therefore the best proxy. Also the variables E. coli and coliform described similar water quality
aspect. For these variables also one of the pair can be chosen as proxy.

While independent PCA plots were also able to show similarity between the variable loadings as
well as the grouping of the sample sites, Tucker3 made it possible to simultaneously interpret time
and sampling sites. This made it possible to see that Rawburn behaved differently to the other sites
with respect to the seasonality of the microbial water content. Tucker3 therefore demonstrates to be
beneficial for data sets where multiple monitoring conditions are used and can be seen as the future of
multivariate and multidimensional data analysis. For this type of data analysis, systematic monitoring
of various sampling sites is necessary. If, for example, pH was monitored on a regular basis for the
various water sources it could have included in the data array. pH plays an important role in the ad-
sorption of NOM on GAC (Bond & Digiano 2004, Cardenas 2008), and observing possible fluctuation
could explain possible changes in biofilter performance.

7.3.2 IN and Pateshill comparison

The previous paragraph demonstrated the influence of spatial and seasonal variation for various water
sources in Scotland. To be able to discuss how spatial and seasonal variation affects biofilter perfor-
mance, we must first know how the INfluent water of the biofiltration (IN) compares to the other water
sources. Due to the absence of data from April till September, the influent was not included in the
Tucker3 model and direct comparison of water quality between IN and the other water sources is not
possible. Though, IN was sampled at Pateshill, and in case similar results of Pateshill can be seen as
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a proxy for IN, therefore the Tucker3 results can be used to discuss the impact of spatial and temporal
variation in water quality and the impact on the biofilter.

For the microbial and chemical variables DOC, dFe, dMn, and E. coli, IN and Pateshill were signif-
icant different, while coliform was not statistically significantly different (Mann-Whitney-Wilcoxon,
p.adjust < 0.05). IN was sampled at Pateshill and therefore similar microbial and chemical water qual-
ity was expected. A possible explanation for the noticed difference could be that the measurements
from IN (Oct 2018 and March 2019) were lower than averaged Pateshill datapoints (Oct - March
averaged over 2015 - 2019), while Pateshill Oct 2018 - March 2019 could be similar to that of IN.
However, Figure 7.6 demonstrates that this is not the case. In all boxplot the IN data (described in
red) is indeed positioned below the boxplot of Pateshill. However, Pateshill measurements done in
the similar months and years as IN are not positioned at the bottom of the boxplot but varied. This
indicates that the averaging of the years for Pateshill did not cause the difference between IN and
Pateshill.

An explanation for the lower values of IN could be the rough prefiltering done for the IN waters.
This filter step could have retained part of the microbial content, possibly attached to particulate mat-
ter. Also, the IN water was stored for a period of time before used in the biofiltration experiment
which could have altered the water and thereby decreasing the microbial content. For dMn and dFe
concentration, the difference between Pateshill and IN could be a result of the difference of sample
pre-treatment done in-house and the Scottish water laboratory. In the Scottish water lab the samples
were filtered through a 0.45 µm filter before the DOC, dFe and dMn analyses, while in-house a 0,2
µm filters were used before analysis of the variables resulting in a significantly lower dFe and dMn
concentration. Finally, systematic variations between the analytical instruments used in-house and in
the Scottish water laboratory can explain the observed differences between IN and Pateshill.
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Figure 7.6: Boxplot of all measurements done by Scottish Water between 2015 and 2019 between
or variables DOC (A), dFe (B), dMn (C), E. coli (D), and coliform (E). Datapoints of Pateshill
in Oct-Dec2018 (10-12) and Jan-March 2019 (1-3) are pointed out with labels and data from
IN labelled in red.
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7.3.3 Impact of spatial and temporal variation

To what extent can we discuss the impact of temporal and seasonal variation on the biofilter perfor-
mance with only the variable coliform being similar between Pateshill and IN? Strictly speaking, only
coliform was in similar quantities present in IN and Pateshill. However, for the scope of this thesis
the DOC is of greater interest. Despite the lower DOC concentration in IN compared to Pateshill,
both water sources had much higher DOC concentration than Daer, Lochinvar, and Rawburn. We will
therefore discuss the spatial and temporal variation of DOC, while keeping in mind that IN does differ
from Pateshill.

Pateshill and IN both have a complex water chemistry. Organic matter in the soil and surrounding
vegetation determines the amount and composition of DOC produced in watersheds (Aitkenhead-
Peterson et al. 2007). Large soil carbon pools and areas of peat result in high DOC concentrations
and exports (Aitkenhead-Peterson et al. 2007). Pateshill is water storage, which receives water from
a populated area characterized by anthropogenic pressure due to industrial and agricultural activities,
while Daer, Lochinvar and Rawburn are natural lochs, which receive rainwater coming down from
hillsides.

In Chapter 3, the relatively high DOC concentration in the effluent of the pilot-scale biofilter demon-
strated to be an issue. Therefore, longer filters were advised to achieve the best removal. Using other
water sources in Scotland with lower DOC loading will impact the biofilter performance. Lowering
the influent DOC concentration decreases the rate at which adsorption sites are occupied and thereby
lower the advancement of the adsorption zone and elongate the breakthrough time (Bond & Digiano
2004, Zachman & Summers 2010). Adsorption kinetics is modelled by a dual Langmuir kinetic model
meaning a series of two consecutive processes: nonselective adsorption of molecules in meso- and su-
permicropores followed by the movement of such adsorbed molecules into a small micropores through
the pore mouth barriers (Nguyen & Do 2000). A lower DOC concentration not only elongates the time
required for the nonselective adsorption of molecules in mesopores but also the slow adsorption by the
movement of such adsorbed molecules into a small micropores. It moves forward and elongates the
start of the initial breakthrough (when mesopores become filled), but also moves forward and stretches
the movement of the adsorbed molecules into the small micropores. This second stage, also referred
to as slow adsorption (Peel & Benedek 1980), is positioned at a higher removal efficiency compared
to the IN water used during biofiltration (Cardenas 2008).
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If the biofiltration would have continued for a longer period of time using the IN water, the filter
would run in spring and summer. A season effect could therefore be expected to influence the biofilter.
Pateshill demonstrated a seasonality for the DOC concentration (Figure 7.4). If the biofiltration exper-
iment would have continued for more months, the influent DOC concentration would have decreased.
Consequently, the biofilter would have been loaded with a lower concentration of DOC. With slow
adsorption still taking place, a lower concentration would cause the removal efficiency to increase.

A lower DOM influent concentration as a result of a different water source of seasonal fluctuation
not only impacts the performance of the biofilter. With similar DOM composition expected in dif-
ferent Scottish water throughout the season, a difference in the speed the adsorption takes place and
thereby the DOM profile over time. In chapter 5 the first humic-like fluorescence signal was found in
the pore water at week 9. With a lower DOM concentration the presence of this signal can be delayed
by weeks. Consequently, these different environmental niches throughout filter depth at week 9 will
also impact the composition of microbial communities at that time found in chapter 6. Again, further
DOM characterization at various sampling sites throughout the year as well as similar measurements
done within the biofilter could lead to a better understanding of the spatial and seasonal impact of
DOM on biofilter performance, stratification and consequent microbial structuring can be found.
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7.4 Conclusion

The objective of this study was to understand how water source and seasonal changes can impact the
slow-flow BAC filter. Results show that:

- Compared to other sampling locations, the influent water used in Chapter 3, 5, and 6 had a high
chemical loading and low microbial loading.

- Despite seasonal variation in concentrations, the filter would highly likely perform better in
terms of chemical water quality parameters when applied across Scotland or during summer
months. Moreover, it would slow down pore filling and possibly impact microbial composition
at the various niches through filter depth.

- Three way-PCA via Tucker3 is not commonly used in this field of expertise but proved invalu-
able in giving insights when dealing with multiway data. For example, the difference in seasonal
variability of Pateshill and Rawburn would not have been so clearly visualized by PCA.

- For Scottish Water this chemometric tool can help to monitor a large number of sampling sites
over time by looking at multiple variables at the same time. It does not only give a clear overview
on how these sites behave, but it also informs on processes that are not easily found by interpre-
tation of individual plots.

- If the WTW data collection would have been complete resulting in a data array without missing
values, more variables and sampling sites could have been included in the analysis making it
more comprehensive. This highlights the importance of structured data collection.
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Chapter 8

Conclusion

8.1 Restatement of research aim and objectives

The aim of this thesis was to evaluate slow-flow BAC filtration as possible application for small scale
water treatment systems by looking at the chemical water quality aspects with help of chemometric
methods. To achieve the aims of this project, the following objectives were identified:

1. To characterize DOM and other chemical water quality parameters removal by pilot slow flow
BAC filters during the first months of operation and see how filter length impacts this process.

2. To develop a simple cost-effective fluorescence by excitation-emission spectroscopy method
combined to PARAFAC analysis using a plate reader for the analysis of the DOM in objective
3.

3. To further understand removal processes of DOM and other chemical parameters by slow flow
BAC filtration using the analysis of pore water.

4. To examine the degradation of DOM by filter microbial communities at the different depths of
a biofilter.

5. To understand how water source and seasonal changes can impact the slow-flow BAC filter.
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8.2 Summary of key findings of chapter 3 to 7

8.2.1 Characterization of DOM and other chemical water quality parameters
removal by laboratory-scale slow-flow BAC biofilters

An initial understanding of the removal of chemical water quality parameters in a pilot-scale slow-flow
BAC filter from virgin to steady state for various filter lengths was studied. Slow-flow BAC filtration
of 90 cm was found to remove 20% higher DOC concentration in apparent steady state compared to
the 30 cm filter. Apparent steady state was found to depend on processes such as slow-adsorption
by GAC or biosorption for the removal of TOC. Longer filters have more GAC material for this
slow adsorption. Overall, it was shown that the BAC filter did not meet the criteria for providing clean
drinking water, as it was not able to filter iron until a concentration below the EU standards. Moreover,
the DOC concentration was shown to increase over time to such high concentration that colour was
visible. With all microbial processes taking place within the first 30 cm of the filter, no added value
of filter length was demonstrated for pathogen removal. The choice for filter length was therefore
demonstrated to be dependent on the treatment goal for the Scottish off-grid system.

8.2.2 Fluorescence excitation–emission measurements of DOM using a plate
reader coupled to PARAFAC analysis

A simple cost-effective method for the analysis of fluorescence by EEM spectroscopy combined to
PARAFAC using plate reader was developed. It was demonstrated that the method is fit for purpose.
Using two reference standard and various concentrations the PR method produces a high signal lin-
earity (R>0.998), good repeatability (RSD < 6.5%) and intermediate precision (RSD < 18%). Also
the recovery was within acceptable limits (97 - 118%). Applied to environmental samples the re-
sults showed high similarity with the results of the golden standard : correlation among the retrieved
fluorophores was good (R>0.89) and signal recovery was within acceptable limits (85-98%).

8.2.3 Understanding removal processes of DOM and other chemical parame-
ters by slow-flow BAC filtration using the analysis of pore water

The removal process of DOM and other chemical parameters by slow-flow BAC filtration using the
analysis of pore water was studied. It was demonstrated that the two-stage adsorption (1. attachment
to pore walls and 2. migration into the micropores) as observed in chapter 3 was supported by the
analysis of the pore water. Results showed that lower sections already started to adsorb molecules,
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while the top was not fully saturated yet. It was demonstrated that filter length did not impact the
processes in the top of the filter. It only extends these processes to deeper in the filter. The extent
to which microbial activity was taking place in the biofilter could not be given. It was demonstrated
that the biomass stratification found by DQ and MV was similar to that of the peak-T fluorescence
and that peak T can be used as a proxy for microbial activity or cell count. It was also demonstrated
that microbial stratification was similar to that of the humic-like fluorescence and thereby to DOC.
This showed that a nutrient stratification is present within the biofilter, which could impact bacterial
community structures within the biofilter.

8.2.4 Differential utilisation of dissolved organic matter compound groups by
different biofilter microbial communities

The ability of microbial communities extracted from different depths of a biofilter at week 12 to de-
grade DOM was studied. It was demonstrated that the differences observed in the three communities’
ability to degrade DOM, as well as their composition studied after 35h of incubation, are the con-
sequence of the initial compositional difference of the biofilter communities from which they were
derived. Such differences were expected to be a consequence of the adaptation of the original biofilter
communities to the different environmental niches developing at different depths of a biofilter. It was
suggested that lower depths might select for communities capable of degrading more complex DOM
compounds.

8.2.5 Three-way PCA to study spatial and temporal variation in water quality
parameters and its impact on slow-flow BAC performance

How spatial and temporal variations in the water quality can influence the performance results of the
pilot-scale slow-flow BAC filter was studied. It was demonstrated that the influent water used in the
experiments had a high chemical loading and low microbial loading. Despite seasonal variation in
concentrations, the filter was expected to perform better in terms of chemical water quality parame-
ters when applied across Scotland or during summer months. It slows down pore filling and possibly
impacts microbial composition at the various niches through filter depth.
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8.3 Conclusion and recommendations for future research

This thesis introduces the use of a slow-flow BAC filter system for the application of a small-scale
filter system in remote areas in Scotland. It demonstrates to remove the problematic high TOC and
dissolved iron concentrations, especially during the first weeks of treatment. The water used during the
experiment was of high chemical loading which consequently caused the concentration of the treated
water not to remain under the regulatory limit during apparent steady state. When water in summer
months or from other water sources is used, an improved removal during apparent steady state is ex-
pected, most likely under the regulatory limits. It is recommended to prefilter the water to remove the
particulate matter that can include high concentrations of iron, manganese, and TOC. Moreover, it is
recommended that the filter is thoroughly flushed before usage to remove dissolved ash present in the
GAC and to prevent pH swings as a result of GAC protonation.

This thesis highlights the importance of slow adsorption, also known as tailing, in apparent steady
state. This process is often confused with biodegradation resulting in an overestimated microbial
DOC removal in apparent steady state. It is therefore advised not to look at a plateau in the TOC
removal curve, but look at the number of bed volumes processed in combination with the theoretically
expected TOC removal (between 10-20%) when describing the filter process (Figure 8.1). The tailing
of DOM removal can continue for months and using a long filter with more absorptive material can
remove DOC for an extensive period of time.
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Figure 8.1: TOC removal as function of bed volumes for a GAC filter that becomes a BAC
filter once the adsorption capacity is fully exhausted. Initial removal is dominated by multistage
adsorption (macropore filling and micropore filling). Removal will asymptotically reach the
steady state (at around 20,000 BV) where removal process is mostly dependent on biological
removal. Based on Figure 2.13.

This thesis also introduces the benefit of using longer filter lengths. While pathogen removal has been
demonstrated to happen in the first 30 cm of the biofilter, the highest removal of TOC and dissolved
iron happens in apparent steady state of the 90 cm filter. This 90 cm filter removes significantly more
TOC and dissolved iron compared to the 30 cm filter. Moreover, also nitrate was removed best by
the longest filters. When applied to waters with increased nitrogen content, for example as a result of
nearby livestock, the longest filter makes sure that nitrate is removed sufficiently. Using the increased
filter length does not influence the chemical processes taking pace in the top 30 cm of the filter, but it
extends the removal process and thereby the lifetime of the filter.

Another benefit of the long filter introduced by this thesis is the selection of microbial communi-
ties capable of removing recalcitrant DOC, such as humic substances. These microbial communities
were position deep in the filter, highly likely as a result of nutrient limitation. These long filters there-
fore cultivate microbial communities important for the humic rich Scottish waters.
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To conclude, when installed with a rough pre-treatment filter and sufficiently flushed GAC, a 90 cm
BAC filter will be a good alternative for the treatment of Scottish fresh water to provide good quality
drinking water for remote areas in Scotland, low in microbial and chemical water quality parameter
concentrations. For further application the pilot scale system needs to be scaled up to provide suffi-
cient drinking water per household. Up-scaling can be achieved by increasing the size of the BAC
filter or placing multiple filters parallel to each other. While using one large filter with increased filter
width sounds as the easiest solution it might behave differently compared to the pilot scale filters, for
example, it might affect the short circuiting paths.

In hindsight, several aspects of the study should have chosen differently. First, the GAC should have
been flushed thoroughly diminish the impact of GAC settling and leaching. Second, DOM should
be characterized in more detail. For example, the combination of fluorescence EEM spectroscopy,
LC-OCD, and AOC/BDOC measurement will give a more comprehensive impression of the DOM
removal and/or transformation within the slow-flow BAC filter. Using more sophisticated methods
requires a higher volume of porewater than extracted during the present study. This problem could be
overcome by pooling the water samples of the biological replicates and focussing on the DOM char-
acterization and leave out the anion and cation analysis. Also larger sections can be cut to increase the
harvested pore water volume. Third,the filter experiment should have be extended for enough EBV
for the filter to reach a true steady state where biodegradation is fully taking over the removal process.
If this takes too much time, a smaller scale of the filter should be used to shorten this process. Alter-
natively, exhausted GAC can be used that was treated with the influent water used for the experiment.
With this exhausted GAC the steady state DOM removal can be monitored directly.

Another recommendation to the biofilter study is the measurement of oxygen throughout the filter.
This could contribute to the understanding of the limiting factor of microbial growth deeper in the
filter. Is this a lack of substrates and nutrients or also a result of a shortage of oxygen?

Finally, it is recommended to repeat batch experiment using more biological replicates and moni-
toring the DOM transformation at multiple timepoints instead only at the start of the experiment and
23 hours. The increased number of replicates can strengthen the statistics and the findings. Using
multiple timepoints can help to reveal in which order the DOM fractions are being utilized. Adding
to the experiment fluorescence EEM spectroscopy will help to further characterize the DOM pool and
its changes during incubation.
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Appendix A

Appendix chapter 3

Figure A.1: Schematic representation of the biofilter when working in recircuiting mode.
The water is pumped from the influent jerrycan (1), peristaltic pump brings the influent
water into the filter (2), overflow hole runs back the excess of water that is pumped in the
filter (3), and after the water is run through the filter it is brought back to the jerrycan.(4)
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Figure A.2: Schematic representation of the carbon combustion method. From Qualls (2015).
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Figure A.3: Schematic representation of a typical ion chromatography (IC) analysis process.
From Thermo Fisher Scientific (2012a).
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Figure A.4: Schematic representation of ICP-MS. From Radboud University (n.d.).

Figure A.5: Schematic representation of SEM-EDX. From RJL Micro & Analytics (n.d.).
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Figure A.6: Parameters of water quality at consumers’ taps provided by the drinking water
quality regulator (2020).
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Figure A.7: Concentration of nitrate (Top left), phosphate (Top right), copper (Bottom
left), chromium (Bottom right). Left y-axis shows the measured concentration of the in-
fluent and the h= 30, 60, 90 cm effluent (mean ± s.e., n=3 replicates) over 23 weeks of
operation. The right axis together with the dashed line (when present) highlights the reg-
ulatory limits.
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Figure A.8: Concentration of lead (Top left), antimony (Top right), cadmium (Middle left),
nickel (Middle right), manganese (Bottom left), and selenium (Bottom right). Left y-axis
shows the measured concentration of the influent and the h= 30, 60, 90 cm effluent (mean
± s.e., n=3 replicates) over 23 weeks of operation. The right axis together with the dashed
line (when present) highlights the regulatory limits.
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Table A.1: Heatmap sample names

Week Length EBCT BV Name
0 30 2.5 0 W0-30cm-BV0
0 60 5.0 0 W0-60cm-BV0
0 90 7.5 0 W0-90cm-BV0
3 30 2.5 180 W3-30cm-BV180
3 60 5.0 90 W3-60cm-BV90
3 90 7.5 60 W3-90cm-BV60
7 30 2.5 470 W7-30cm-BV470
7 60 5.0 240 W7-60cm-BV240
7 90 7.5 160 W7-90cm-BV160

11 30 2.5 720 W11-30cm-BV720
11 60 5.0 360 W11-60cm-BV360
11 90 7.5 240 W11-90cm-BV240
15 30 2.5 1000 W15-30cm-BV1000
15 60 5.0 500 W15-60cm-BV500
15 90 7.5 330 W15-90cm-BV330
19 30 2.5 1260 W19-30cm-BV1260
19 60 5.0 630 W19-60cm-BV630
19 90 7.5 420 W19-90cm-BV420
23 30 2.5 1520 W23-30cm-BV1520
23 60 5.0 630 W23-60cm-BV630
23 90 7.5 510 W23-90cm-BV510
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Appendix B

Appendix chapter 4

B.1 Spectral correction

The emission spectral correction vector was measured according to the method of Lakowicz (2006),
Parambath (2016), Ryder et al. (2017). European pharmaceutical reference standards (Phenyl-alanine
(PA), Tyrosine (TY), Tryptophan (TR), and Quinine Sulphate (QS)) (Sigma Aldrich, UK) were used;
reagents and materials were weighted with a precise electronic balance (Ohaus Explorer, Cole-Parmer);
all standards except quinine sulphate had a concentration of 10-4 to 10-5 M with no added buffer and
pH 7; quinine sulphate in 0.02 M H2SO4

2- had a concentration of 15 mg/L and pH 1. Samples were
analysed within 8 h.

The fluorescence emission signals of Phenyl-alanine, Tyrosine, Tryptophan and Quinine Sulphate (PA,
Ty, Tr and QS, respectively) were measured by the plate reader (see chapter 4 section 4.2 pg. 82 for
settings) at excitation wavelength 260, 270, 280, 345.6 nm, respectively, over the emission wavelength
range of 290 - 320, 300 - 350, 310 - 450 and 380 - 500 nm, respectively. For every analyte, the signals
was normalized with respect to its emission peak. Afterwards, the correction factors were calculated
for each wavelength by dividing the measured intensity by the theoretical intensity. CF at emission
wavelength 290 - 300 nm (PA), 300 - 340 nm (TY) and 340 - 410 nm (TR) and QS (410 - 500 nm)
were selected and aligned to produce one curve according to the method of a Certified Calibration
Kit - Spectral Fluorescence Standards Hoffmann & Monte (2006). CF of 280 and 510 - 550 nm were
determined by extrapolation of the produced curve.

Most of the emission correction was needed in the ultraviolet region (280 - 400 nm). The measured
(circles scatter) and theoretical (triangle scatter) spectra of phenyl-alanine (red), tyrosine (yellow),
tryptophan (green) and quinine sulphate (purple) are given in Figure B.1. The calculated combined
emission correction curve is in Figure B.2. These emission correction values are used in further
PARAFAC analysis by the PR method.

191



Figure B.1: Normalized fluorescence emission spectra of 4 stan-
dards analysed by the Tecan M200 Pro plate reader (measured)
and Chen (1967) (theoretical).

Figure B.2: Combined emission correction values.
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B.2 EEMqual

Figure B.3 A - E, respectively. Model 3 shows a clear drop at component 3, meaning that a 2-
component model is the correct choice. The EEMQual of 4 components is too small to be correct.
However the three component model needed to be inspected. For all models, the three component
models included the modeling of background noise, while the two component models clearly included
analyte signal. Therefore the two component model was chosen.

Figure B.3: EEMqual for models 1-5 given by A-E, respectively.

The EEMQual of validation models 6 and 7 are given in Figure B.4 A - B, respectively. Model
6 shows a clear drop at 4 components, meaning that a 3-component model is the correct choice. For
model 7, a clear drop was not present, but a step-wise decline of EEMQual over number of compo-
nents. The three and four component model needed to be inspected. Both the 3 and 4 component
model included the modeling of background noise, while the two component models clearly included
analyte signal. Therefore the two component model was chosen.

Figure B.4: EEMqual of models 6 and 7 given by A-B, respectively.
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Appendix C

Appendix chapter 5

Figure C.1: T2 - Q residual plot for the detection of outliers in data set Time. No outliers
found

Figure C.2: T2 - Q residual plot for the detection of outliers in data set Length. No outliers
found
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Figure C.3: EEMqual for the pore water data set. High EEMqual is shown
for up to 3 component, while at the 4th component the EEMqual drops. As a
result EEMqual indicates 3 components as the correct number.

Figure C.4: Scree plot of the Tucker3 model of data set Week with the percentage variance
explained by the model when using up to 5,8, and 3 components in the P, Q, and R modes.
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C.1 PARAFAC in- and effluent water

PARAFAC model of the in- effluent biofilter water samples of week 5,9 23 (n = 54). EEMQual
data showed that the number of components is 3 or 4 (Figure C.5). Further inspection of the 3 and
4 component models showed that the 4 component model was similar to that of the three component
model. The EEMs of the 3 component model are given in Figure C.6.

Figure C.5: EEMQual of the biofilter in- effluent data set.
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Figure C.6: EEM of the PARAFAC component 1 Peak-T (A), component 2
Peak-H1 (B), and component 3 Peak-H2 (C) present in the in effluent water.
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Figure C.7: LC-OCD fractions and their contribution to the whole DOC content of the biofilter
influent water.
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Figure C.8: qPCR copies measured at the various depths of the biofilter (mean ± s.e., n = 3
replicates) at different weeks (5, 9, 12, and 23) and lengths (week 23: 30, 60, and 90 cm).
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Figure C.9: ATP per gram wet GAC measured at the various depths of the biofilter (mean ± s.e.,
n = 3 replicates) at different weeks (5, 9, 12, and 23) and lengths (week 23: 30, 60, and 90 cm).
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Appendix D

Appendix chapter 6

Table D.1: Measured LC-OCD fraction concentration (mean ± se, n=3) at T = 0 and in the three
treatments (TOP, MID, BOT) at T = 23.

DOC HS MW_HS BB LMWN LMWA BP

T0 12.19±0.03 10.08±0.06 0.62±0.02 0.98±0.04 0.69±0.02 0.01±0.004 0.40±0.03

T 12.35±0.04 10.05±0.07 0.80±0.02 1.07±0.07 0.70±0.03 0.000 0.52±0.03

M 12.41±0.10 8.69±1.97 0.81±0.06 2.46±2.03 0.72±0.07 0.003±0.001 0.44±0.12

B 12.18±0.06 9.81±0.05 0.87±0.03 1.20±0.06 0.65±0.03 0.005±0.001 0.53±0.05
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Appendix E

Appendix chapter 7

Table E.1: data set Waterquality pre-treatment

Nr. samples Pre-treatment steps
24486

↓ Identical entries removed
24371

↓ Entries with NA removed
24353

↓ Keep raw water data only
9832

↓ Keep 2015-2019
6772

↓ Remove < and > sign
6772

↓ Take mean of data from same day
6550

↓ Unfold data to different structure with variables in column
1005

↓ Keep variables of interest
1005

↓ Take median of measurement done in the same month over the years
84
↓ Remove Forehill

42
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Figure E.1: Hoteling T2 - Q residuals plot for the SW data set; no outliers detected.

Figure E.2: PCA scree plot of the data set Waterquality in which
the increase of principle components results in a higher fit of the
data.
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Figure E.3: Tucker3 model scree plot of the SW data set with the percentage variance
explained by the model when using up to 4, 5, and 12 components in the P, Q, and R
modes.
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