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Abstract
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Doctor of Philosophy

by Ivona Voroneckaja

Hierarchical mixture of experts (HME) is a powerful tree-structured modeling technique

based on the divide and conquer principle. HME model trees consist of two types of nodes

- gate nodes, which are responsible for splitting a large complex problem into several

smaller subproblems, and expert nodes, which perform the corresponding subproblem-

solving. Selecting the number of such nodes as well as the order in which they are

arranged is, however, a non-trivial task. A commonly used approach involves fitting

several architectures and using methods such as cross-validation to pick the best one.

As well as being computationally intensive, this method first requires one to pick the set

of architectures to consider. For complex models with a large number of architectural

elements, this leads to an unmanageable number of potential options. Pre-setting model

architecture also requires choosing initial parameter values, which becomes progressively

more challenging as parameter dimensionality increases. The latter challenges could

be addressed by growing trees during the model fitting process instead of selecting the

architecture in advance. It is thus evident that HME models suffer from a lack of a

flexible and adaptive way of performing automatic architecture selection.

The work presented in this thesis proposes automatic architecture selection methods

for HME models, which allow for adding and removing tree nodes as well as adjusting

the order in which they are arranged. As part of the development, three Bayesian

parameter sampling strategies are proposed and systematically evaluated resulting in a

recommended strategy. An adaptation of the Reversible Jump (RJ) algorithm is then

used to grow and prune HME model trees. The main downfall of the RJ, which lies in

low acceptance rates, is addressed by the addition of a novel reversible jump proposal

algorithm. A new Gate Swaps (GS) algorithm is then proposed to tackle the problem

of changing the order in which the existing tree nodes are arranged. Both algorithms

are evaluated on two real-life problems with a particular focus on the Glasgow rental

property prices data. It is shown that HME models fitted using the proposed RJ GS

MCMC yield accurate predictions as well as provide an exceptionally high level of model

interpretability, which is unusual amongst other machine learning methods.
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Chapter 1

Introduction

Machine learning is a branch of artificial intelligence that uses data and algorithms

to provide valuable insight and make high-quality predictions (Wang et al., 2022). It

has been widely used to solve both regression and classification problems in real-world

applications, such as speech recognition, visual classification, collaborative filtering, and

automatic translation (Smola, 2008).

One of the widely used algorithm strategies in machine learning is called divide and

conquer. The divide step of the strategy involves splitting a large, complex problem

into several smaller subproblems, which are only defined on a subset of data. Given

that the subsets of data are sufficiently simple, the subproblems can then be solved

efficiently. In the conquer step of the strategy, the solutions to these subproblems are

combined to produce a solution to the initial larger scale problem. Efficient steps of the

algorithm yield the benefits of structural simplicity, computational efficiency, and parallel

implementation (Smith, 1985). Structural simplicity is ensured by a careful choice of the

programming language constructs that allow expressing divide and conquer algorithms

concisely. Divide and conquer algorithms are cache-oblivious and make efficient use of

memory caches by only accessing the memory of the subproblem in question instead

of the slower main memory (Frigo et al., 1999). Lastly, parallel implementation means

that the smaller subproblems can be solved at the same time, and hence, given their

simplicity, further improve the computational efficiency. Despite the appeal of the divide

and conquer algorithms, developing them is a nontrivial task. One must ensure that

the problem is divided into subproblems that can indeed be solved efficiently as well

as propose a suitable way to combine these solutions. Examples of divide and conquer

models include decision trees (Loh, 2014), random forests (Breiman, 2001), mixture of

experts (ME) models, and hierarchical mixture of experts (HME) models, which are the

main focus of this thesis.
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An HME model is a tree-structured model based on the divide and conquer principle

where the problem space is divided between the so-called experts. A simple example of

the HME model architecture with five experts is shown in Figure 1.1, where named boxes

correspond to the elements of the tree, called nodes, which are then joined by the edges

of the tree. For HME models, the nodes can be of two types - gate nodes and expert

nodes. The green gate nodes perform the task of partitioning the space while the blue

expert nodes are responsible for problem-solving. An ME model is a special case of the

HME model with only one gate, for instance, the segment containing G3, E2 and E3

only from Figure 1.1 is an ME model.

Figure 1.1: Illustration of an HME model with five experts.

The idea of ME models was first introduced by Jacobs et al. (1991) and extended to

HME models by Jordan and Jacobs (1994) (detailed background on the ME models is

presented in Chapter 2). HME models are widely used for solving both regression and

classification problems based on soft probabilistic splits of the input space (Bishop and

Svenskn, 2002). Each expert in the tree has its own associated expert density function.

The most common choice of expert densities, discussed in Chapter 5, is Gaussian (linear

regression) expert densities (Waterhouse et al., 1996). A non-normal mixture of experts,

which can deal with possibly skewed, heavy-tailed data, is introduced by Chamroukhi

(2015). Another popular choice for expert densities is generalised linear models (GLM)

(McCullagh and Nelder, 1989).

The documented applications of the hierarchical mixture of experts models include time-

series data (Huerta et al., 2003) and the well-known application to the speech recognition
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data (Peng et al., 1996). The latest proposed extension to the hierarchical mixture of

experts family is the hierarchical routing mixture of experts (HRME) (Zhao et al., 2019),

which explores the idea of separating the output variables by jointly partitioning the input

and output spaces. The latter framework is based on simple regression models assigned

to each of the resulting partitions.

Originally, the parameters of HME have been estimated by frequentist inference (dis-

cussed in Chapter 3). The most common way of performing maximum likelihood esti-

mation for this setting is using the expectation maximisation (EM) algorithm (Jordan

and Jacobs, 1994). Within the thesis, we show that the parameters of the HME model

cannot be found in closed-form by maximising the log-likelihood function. A well-known

technique of introduction of latent assignment variables is implemented and leads to the

complete data likelihood function definition. The latter in turn simplifies parameter in-

ference by allowing to sample the expert parameters explicitly (Hurn et al., 2003; Diebolt

and Robert, 1994). The complexity of the HME model architecture usually results in

local maxima thus requiring multiple starting points when maximising the likelihood

function (Huerta et al., 2003). A preferred way to estimate the model parameters is to

use the Bayesian approach covered in Chapter 4 (Huerta et al., 2003).

Bayesian inference is most often achieved using Markov Chain Monte Carlo (MCMC)

methods, spanning a range of algorithms for sampling from a probability density func-

tion. The most widely used algorithms include the Metropolis-Hastings algorithm (Hast-

ings, 1970; Chib and Greenberg, 1995) and the Gibbs sampler (Gelfand, 2000; Geman

and Geman, 1984). In some cases, a mixture of several samplers is required to sample

the parameters of the distribution of interest. In Chapter 5, three Bayesian parameter

sampling strategies are proposed and systematically compared in a special case of Gaus-

sian experts. The first strategy involves sampling and retaining all parameters of the

model, including the latent assignment variables. The second technique is the so-called

brute-force sampling method, which does not take advantage of the parameter inference

simplification resulting from the introduction of latent assignment variables. Finally, the

third sampler proposes integrating out the Gaussian expert parameters and sampling

only the remaining model parameters. Once the preferred parameter sampling strategy

is determined, the problem of the model architecture selection is tackled next.

The main aim of this thesis is to develop a novel method for automatic architecture selec-

tion in HME models. Architecture selection for HME models is the process of choosing

the total number of expert and gate nodes as well as how these nodes are arranged in

the model tree. A literature review of the currently available HME architecture selection

methods is presented in Chapter 6. In this thesis, an adaptation of the reversible jump

(RJ) algorithm, which is a method for constructing reversible Markov chain samplers
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first introduced by Green (1995), is proposed. The RJ MCMC is used to determine the

number of experts and gates in an HME model. The general appeal of reversible jump

lies in the natural generalisation of the existing Markov chain methods (Sisson, 2005).

In fact, the RJ is a rather complex extension of the previously mentioned MH algorithm,

which allows for exploring the sample space within a fixed dimension as well as making

changes in dimensionality. The latter is particularly important for HME models, where

both growing and pruning the tree means adding and removing gate and expert nodes,

respectively, which in turn results in parameter dimensionality changes. The biggest

challenge posed by the RJ algorithm is also addressed - the typically low acceptance

rate, which is often caused by uninformed jumps (Al-Awadhi et al., 2004; Ehlers and

P. Brooks, 2008; Farr et al., 2015; Brooks et al., 2003). A methodology for proposing

intelligent reversible jumps is developed, presented, and evaluated against the naive RJ

algorithm. While the proposed RJ methodology tackles the problem of choosing the

number of nodes in the tree, it does not address the order in which these nodes are

arranged.

The second method of architecture selection for HME models offers a way of adjusting

the tree architecture by swapping the existing nodes, which does not change the total

number of nodes in the model. The proposed method is named the Gates Swap (GS)

algorithm and is presented in Chapter 7. The latter type of architecture selection has the

potential to improve mixing, allow for better exploration of the model architecture space

as well as escape unfortunate splitting decisions previously made. Lastly, combining the

RJ and GS architecture selection algorithms together allows one to propose and consider

models which would have been missed otherwise. The addition of the GS algorithm to

the RJ MCMC is evaluated in Chapter 7.

The RJ MCMC and the RJ GS MCMC are used to fit HME models to two real-life

applications in Chapters 6, 7, and 9. Both methods of architecture selection are also

systematically evaluated against two competitors discussed in Chapter 8 - the Generalised

Additive Model (Hastie and Tibshirani, 1990) and the Bayesian Additive Regression Trees

(Chipman et al., 2010b).

The work presented within this thesis required creating the implementation of HME

models. In order to take advantage of the previously discussed structural simplicity of

the divide and conquer algorithms, the object-orientated programming language of C++

was selected for the task. As a result, a fully functional implementation of the hierarchical

mixture of Gaussian experts with both the reversible jump and the gate swap algorithms

has been designed and built.

Finally, the results of the undertaken work are summarised, caveats and liminations are

discussed, and potential future research opportunities are outlined in Chapter 10.



Chapter 2

Definition of Hierarchical Mixture

of Experts Model

This chapter aims to introduce and define hierarchical mixture of experts models. Firstly,

mixture models are discussed in Section 2.1, which offers some background information

as well as the definition of the model density function. Next, the definition of mixture

models is extended to mixtures of experts models in Section 2.2. Similarly, the back-

ground and well-known applications of the mixtures of experts are discussed followed

by the definition of the model density function. Lastly, hierarchical mixtures of experts

models are introduced in Section 2.3 starting with the underlying architecture, which is

illustrated using a simple example seen in Chapter 1. All model parameters and other

elements of hierarchical mixtures of experts are defined alongside the corresponding pro-

posed notation resulting in the definition of the model density function.

2.1 Mixture Model

2.1.1 Background on Mixture Models

Mixture models (mixtures) are weighted sums of several probability density functions

and hence can be used to represent densities with multiple modes. Mixtures have gained

a lot of popularity due to their flexibility (McLachlan and Peel, 2004). The first major

analysis involving mixture models consisted of fitting a mixture of two normal probabil-

ity density functions with different means and variances (Pearson, 1894). A Gaussian

mixture model (GMM) remains to be the most widely used type of mixture model to

this day. Amongst others, the applications of GMM include text-independent speaker

identification (Reynolds and Rose, 1995), texture and color for image database retrieval

5
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(Permuter et al., 2006), and market volatility modeling (Brigo and Mercurio, 2002). Mix-

ture models are closely related to mixtures of experts and hence hierarchical mixtures of

experts models. Thus we start by defining the mixture model density function.

2.1.2 Mixture Model Density Function

Let ϕ denote a vector of all parameters in the mixture model. The mixture model density

function for outcome yi conditional on xi is then defined as

f(yi|xi,ϕ) =
∑
C∈C

π(C)f (C)(yi|xi,θ
(C)), (2.1)

where yi is the response for the i-th observation in the model and xi is a vector of

corresponding covariates (for i = 1, ..., n). A mixture model consists of components.

The set of all components in the model is denoted as C. Each component C ∈ C has

its own component density, f (C)
(
yi|xi,θ

(C)
)
, where θ(C) denotes a vector of distinct

parameters occurring in the component C density. The component densities must be

valid probability density functions, i.e. f (C)(·) > 0 and
∫
y f

(C)(y)dy = 1 for C ∈ C. The

component densities appearing in (2.1) do not need to belong to the same parametric

family, however in most applications, this will be the case (Titterington et al., 1985). All

of the components in the mixture model have corresponding weights, which are called

mixing weights and are denoted as π(C), where π(C) > 0 and
∑

C∈C π
(C) = 1.

In the next section, the definition of mixture models is extended to the definition of the

mixture of experts model.

2.2 Mixture of Experts Model

2.2.1 Background on Mixture of Experts Model

Mixture of experts is one of the most popular divide and conquer methods, which is

based on dividing the problem space into several problem solver experts supervised by

a gating network (Masoudnia and Ebrahimpour, 2014). Mixture of experts models were

originally developed as a machine learning technique (Jacobs et al., 1991), however, have

been widely used in a number of areas since. Amongst others, examples include mixed

models (Wang et al., 1996), latent class regression models (DeSarbo and Cron, 1988),

concomitant-variable latent-class models (Dayton and Macready, 1998) as well as the

methodology for switching regression models (Quandt, 1972). Mixture of experts models
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have been shown to perform well on different types of data. Gormley and Murphy

(2008) applies a mixture of experts to the rank data in elections studies and Gormley

and Murphy (2010a) uses a mixture of experts in clustering ranked preference data.

Further examples include modelling social network data (Gormley and Murphy, 2010b),

time-series data, such as labor market entry and earnings dynamics (Frühwirth-Schnatter

et al., 2012), and longitudinal data (Tang and Qu, 2016).

More background on mixture of experts models can be found in McLachlan and Peel

(2000), Yuksel et al. (2012) and Frühwirth-Schnatter (2006), while Masoudnia and

Ebrahimpour (2014) present a literature survey for mixture of experts models from a

machine learning perspective. Gormley and Frühwirth-Schnatter (2018) provide more

detail on the inclusion of covariates in the mixture of experts models. Identifiability of

a mixture of experts is discussed in Jiang and Tanner (1999b).

We proceed by defining the density function for the mixture of experts model and high-

lighting the main difference when compared to the mixture model.

2.2.2 Mixture of Experts Model Density Function

A mixture of experts model (ME) can be viewed as an extension of the mixture model

discussed in Section 2.1. In the ME model, the components are called experts. Let E
denote the set of all experts in the model and let E be an expert from the set E . As before,

let yi represent the response for the i-th observation in the model with a corresponding

vector of covariates, xi, for i = 1, ..., n. In the mixture of experts model, the mixing

weights π
(E)
i are individual specific and depend on the associated covariates xi through

a logistic function

π
(E)
i =

exp
(
xT
i γ

(E)
)∑

E∈E exp
(
xT
i γ

(E)
) , (2.2)

for i = 1, ..., n, where the mixing proportions are controlled by the gating parameters(
γ(E)

)
E∈E with γ(E) = 0 for the first E ∈ E in order to ensure identifiability (Yuksel

et al., 2012). The mixing proportions allow for soft probabilistic boundaries between the

experts in the model and must satisfy
∑

E∈E π
(E)
i = 1 for all i = 1, ..., n. Given (2.2) we

can now write down the mixture of experts density as follows

f(yi|xi,ϕ) =
∑
E∈E

π
(E)
i f (E)

(
yi|xi,θ

(E)
)
, (2.3)
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where ϕ denotes a vector of all expert parameters in the mixture of experts model

while θ(E) denotes a vector of distinct parameters occurring in the expert E density,

f (E)
(
yi|xi,θ

(E)
)
.

The main difference between a mixture and a mixture of experts lies in the expression

of the mixing proportion. In the mixture model, the mixing proportion is constant

for all observations while in the mixture of experts, the mixing weight is different for

each individual observation and depends on the covariates. In the following section, we

introduce the hierarchical mixture of experts model and explain how an ME model is a

special case of the HME model.

2.3 Hierarchical Mixture of Experts Model

This section first introduces the tree architecture of HME models by providing a toy

example. The relationship between mixtures of experts and hierarchical mixtures of

experts is then explained. Next, the key notation for all elements of an HME model is

proposed. Finally, the HME density function is stated and defined.

2.3.1 HME Model Architecture

Hierarchical mixture of experts (HME) models are based on a tree architecture, an

example of which, seen in Chapter 1, is shown again in Figure 2.1. The elements of the

tree, called nodes, are joined by the so-called edges of the tree. For HME models, the

nodes can be of two types - gate nodes and expert nodes. In any tree, nodes that do not

have any descendants are also called terminal nodes or leaves. The HME tree has gate

nodes (green) at the non-terminal nodes and expert nodes (blue) at the leaves (Fritsch

et al., 1996). The first gate node of the tree is usually referred to as the root node. All

nodes, descending from some node H, are called the children of H, while H is, in turn,

called their parent. By the nature of this architecture design, gate nodes can be both

parents and children while expert nodes can only be children. Two children nodes that

share a parent are also referred to as sibling nodes. Any node that is located closer to the

root node than some node H is called a senior node with respect to node H. Similarly,

any node that is located further down the tree than some node H is called a junior node

with respect to node H.

Every non-terminal node of the tree corresponds to a logistic gate, which computes a

probability of an observation going down the tree in each direction resulting in soft

probabilistic splits. Viewing HME models as a divide and conquer approach, gating
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networks divide the problem into smaller subproblems while expert nodes perform the

problem-solving duty, i.e. they produce an output of interest.

Figure 2.1: Illustration of an HME model with five experts equivalent to Figure 1.1.

In the case of the HME model depicted in Figure 2.1, an observation enters the model via

the root gate G1, which then produces probabilities of it being passed on to the left gate

G2 and the right gate G3. At the left gate G2 another calculation is made, i.e. obtaining

probabilities to be passed on to the expert E1 or to continue the journey via the middle

gate G4 and so on until the observation reaches a terminal node. For example, one of

the possible paths an observation can take is (G1, G2) → (G2, G4) → (G4, E4). The

latter path would have an associated probability of the particular observation reaching

expert E4, called the path probability. Similar to ME models, each expert in the tree has

its own associated expert density function.

Having introduced the architecture of HME models, it is evident that an ME model is a

special case of the HME model with a tree depth equal to one. Similarly, HME models

can be thought of as mixture of experts models, where experts are mixtures of experts

themselves. Hence all the literature and methods discussing mixture of experts models

are relevant and can be extended to hierarchical mixture of experts models.

Following an introduction to the tree architecture, the next section presents the notation

for node numbering and paths used within this thesis.
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2.3.2 Node Numbering and Paths in HME Models

In order to identify each node, a unique index is assigned to both expert and gate nodes

in the tree. As shown in Figure 2.1, gate and expert nodes are numbered separately. The

node index is assigned from left to right generation-wise, i.e. all children of each gate are

numbered first, followed by its grandchildren, great-grandchildren and so on.

To allow for writing down the definition of the HME model density, it is crucial to propose

a suitable framework for the path notation. As seen in the notation used for ME models

in Section 2.2.2, let E denote an expert from the set of all experts in an HME model, E .

Additionally, let G denote a gate from the set of all gates in an HME model, G. Every

terminal expert node can be defined by the unique path going from the root node to

itself. Let PE denote the path corresponding to a particular expert E and let P denote

the set of all paths in an HME model. Further, let (G,H) denote a segment of the path

joining nodes G and H. In Figure 2.1 the collection of all paths, P, is:

P ={(PE1, PE2, PE3, PE4, PE5)}

={(G1, G2) → (G2, E1),

(G1, G3) → (G3, E2),

(G1, G3) → (G3, E3),

(G1, G2) → (G2, G4) → (G4, E4),

(G1, G2) → (G2, G4) → (G4, E5)}.

Let P(G) denote all paths from P passing through the gate G. For example, consider

P(G3) from Figure 2.1. In this case, all paths passing through the gate G3 are:

P(G3) = {(G1, G3) → (G3, E2),

(G1, G3) → (G3, E3)}.

Further, let P(G)
> denote all the paths descending from the gate G to the terminal nodes.

Following the example,

P(G3)
> = {(G3, E2),

(G3, E3)}.

It can be seen that P(G3)
> is the lower end of the full paths P(G3).
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Lastly, let r(H) denote the number of descendants of node H. In the case of Figure 2.1,

the tree is binary and thus r(G) = 2 for all G ∈ G. Since experts cannot have children

by design, r(E) = 0 for all E ∈ E .

Using the notation proposed in this section, the HME model density function is outlined

next.

2.3.3 HME Model Density Function

The density of the response yi, given a vector of covariates, xi, from hierarchical mixture

of experts model can be written down as follows

f(yi|xi,ϕ) =
∑
E∈E

π
(E)
i f (E)

(
yi|xi,θ

(E)
)
, (2.4)

for i = 1, ..., n, where ϕ denotes a vector of all parameters in HME model while θ(E) de-

notes a vector of distinct parameters occurring in the expert E density, f (E)
(
yi|xi,θ

(E)
)
.

The path probabilities π
(E)
i can be written as

π
(E)
i =

∏
(G,H)∈PE

π
(G,H)
i , (2.5)

where mixing proportions at each gate G are equal to

π
(G,H)
i =

exp
(
xT
i γ

(G,H)
)∑

H′ exp
(
xT
i γ

(G,H′)
) , (2.6)

for all H, children of gate G, with γ(G,H′) = 0 for the first child H ′ in order to ensure

identifiability and
∑

H π
(G,H)
i = 1.

The path probabilities π
(E)
i are obtained as a product of mixing proportions from the

unique path PE , consisting of edges leading to E. Each gate node G in the model has

its own gating parameters, γ(G,H), controlling the mixing proportions at gate G. The

evaluated quantities υ
(E)
i =

π
(E)
i f (E)(yi|xi,θ

(E))∑
E∈E π

(E)
i f (E)(yi|xi,θ(E))

, for i = 1, ...n, across E ∈ E are also

known as responsibilities.

Let us consider the five expert HME example once again. Figure 2.2 shows the mixing

proportions, π(G,H)
i , for all segments of paths joining nodes G and H.
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Figure 2.2: Illustration of an HME model with five experts and mixing proportions.

Expert E2 from Figure 2.2 is used to illustrate the process of obtaining the corresponding

path probability π
(E2)
i . Using the previously introduced notation, the path leading to

expert E2 can be written as

PE2 = (G1, G3) → (G3, E2).

Following equation (2.5), the associated path probability is

π
(E2)
i = π

(G1,G3)
i · π(G3,E2)

i

=
exp

(
xT
i γ

(G1,G3)
)

exp
(
xT
i γ

(G1,G2)
)
+ exp

(
xT
i γ

(G1,G3)
) · exp

(
xT
i γ

(G3,E2)
)

exp
(
xT
i γ

(G3,E2)
)
+ exp

(
xT
i γ

(G3,E3)
)

=
exp

(
xT
i γ

(G1,G3)
)

1 + exp
(
xT
i γ

(G1,G3)
) · 1

1 + exp
(
xT
i γ

(G3,E3)
) ,

as γ(G1,G2) = γ(G3,E2) = 0, because G2 is the first child of G1 and E2 is the first child

of G3.

This section concludes the chapter, where the HME model density function is defined

and suitable notation is proposed. The next two chapters cover inference for gating and

expert parameters in HME model. Two schools of thought are discussed in Chapters 3
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and 4 offering some statistical background as well as outlining methods for parameter

inference.



Chapter 3

Frequentist Inference for HME

Models

This chapter introduces frequentist parameter inference methods for HME models. Firstly,

some background on the frequentist approach is presented in Section 3.1. The HME like-

lihood function is then defined and discussed in Section 3.2. Following the discussion of

the limitations posed by the use of HME likelihood function, latent assignment variables,

which lead to the complete data likelihood function, are introduced and illustrated in

Section 3.3. Section 3.4 discusses parameter inference using the expectation maximisa-

tion algorithm (Dempster et al., 1977). Finally, Section 3.5 summarises the suitability

of the frequentist approach for inference in HME models.

3.1 Introduction to Frequentist Statistics

In any statistical modeling problem, it is of interest to estimate the values of unknown

parameters in the model. Frequentist statistics is one of the two main schools of thought

in the field of statistics, which draws conclusions about the outcome of an event by

using the frequency or proportion of that outcome occurring across a large number of

repetitions of the event. To illustrate the frequentist statistics approach, consider a vector

of observed data y = (y1, ..., yn), which is believed to have a probability density function

f(y|θ), where θ = (θ1, ..., θp) are the unknown parameters of interest. In contrast to

Bayesian approach, discussed in detail in Chapter 4, frequentist approach treats unknown

parameters θ as fixed values with point estimates, θ̂, obtained as a function of the sample

of data, called an estimator. A common estimator used in frequentist statistics is the

so-called maximum likelihood estimator (MLE), which aims to answer the question of

14
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which parameter values are most likely given the observed data. In other words, what

values of θ yield the maximum value for the likelihood function defined as

L(θ|y) =
n∏

i=1

L(θ|yi) =
n∏

i=1

f(yi|θ),

where yi are assumed to be identically distributed and independent (iid) for i = 1, ..., n.

The MLE can then be written as

θ̂MLE = argmax
θ

L(θ|y).

In practice, it is often more convenient to find the MLE which maximises a log-likelihood

function defined as

l(θ|y) =
n∑

i=1

l(θ|yi) =
n∑

i=1

log (f(yi|θ)) ,

which does not change the value of θ̂MLE since the log is a monotonic function. The

MLE estimator is consistent and asymptotically efficient, which means that the MLE

has the smallest variance of all well-behaved estimators (see (Wasserman, 2010) for more

details on estimator properties).

In frequentist statistics, the uncertainty around parameter estimates is specified by con-

fidence intervals. For a particular probability of a, the confidence intervals are defined

such that if the data were repeatedly sampled, resulting in a confidence interval each

time, then a of these intervals would contain the true value of the unknown fixed param-

eters. It is important to highlight, that unlike the intervals produced in Bayesian setting,

the confidence intervals do not mean that the unobserved true value of the parameter

falls into the interval with a probability of a.

We proceed by defining HME likelihood and log-likelihood functions and discussing the

arising parameter estimation problems and procedures.

3.2 HME Likelihood Function

Using the HME density function defined as per (2.4), the HME likelihood function can

be written as
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L(ϕ|y) =
n∏

i=1

f(yi|xi,ϕ) =

n∏
i=1

[∑
E∈E

π
(E)
i f (E)

(
yi|xi,θ

(E)
)]

, (3.1)

for the i-th observation yi with the corresponding vector of covariates, xi, for i = 1, ..., n,

where ϕ denotes a vector of all parameters in the HME model while θ(E) denotes a

vector of distinct parameters occurring in the expert E density, f (E)
(
yi|xi,θ

(E)
)
. The

log-likelihood function is then

l(ϕ|y) =
n∑

i=1

log (f(yi|xi,ϕ)) =
n∑

i=1

log

(∑
E∈E

π
(E)
i f (E)

(
yi|xi,θ

(E)
))

=
n∑

i=1

log

∑
E∈E

 ∏
(G,H)∈PE

π
(G,H)
i

 f (E)
(
yi|xi,θ

(E)
) .

(3.2)

It is evident that the maximum likelihood estimates of the parameters cannot be found in

closed-form. Thus an iterative procedure must be used. One choice would be to directly

optimise the maximum likelihood function numerically. An alternative choice, which sim-

plifies the resulting optimisation problem considerably is the expectation maximisation

algorithm (Dempster et al., 1977), discussed in Section 3.4.

3.3 HME Complete Data Likelihood Function

The latent variables are variables that are not directly observed but inferred through

other directly observed variables in the model. The earliest example of such variables

being used is in the field of psychology, where Spearman (1904) investigates objectively

measuring and determining general intelligence. In HME models, the latent variables

assign observations to unobserved groups defined by the experts in the model. The latent

assignment variables, also called allocation or indicator variables within this thesis, are

defined as follows

z
(G,H)
i =

1 if (G,H) ∈ PE(i)

0 otherwise,
(3.3)

and
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z
(H)
i =

1 if z(G,H)
i = 1 for some (G,H) ∈ PE(i)

0 otherwise,
(3.4)

where E(i) denotes the expert grouping of the i-th observation. To describe such unob-

served grouping, we write observation i is assigned/allocated to expert E(i). The variables

z
(G,H)
i and z

(H)
i , introduced in (3.3) and (3.4) respectively, simply denote whether the

i-th point would need to travel through the corresponding segment (G,H) or the node

H of the tree to reach expert E(i).

Figure 3.1: Illustration of the indicator variables z
(G,H)
i and z

(H)
i for the i-th point,

which is assigned to the expert E2, i.e. E(i) = E2.
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For example, let us consider the i-th observation, that has been assigned to expert E2

(Figure 3.1). Recall that the corresponding path can be written as

PE(i) = PE2 = (G1, G3) → (G3, E2),

which corresponds to the path highlighted by a red bold line. It is evident that the i-th

point considered in this example would have to travel through segments (G1, G3) and

(G3, E2) of the tree to reach E2. Thus we have

z
(G,H)
i =


1 for (G1, G3) and (G3, E2)

0 otherwise.

Similarly, the i-th point would only pass through nodes G1, G3, and E2, which means

that

z
(H)
i =

1 for G1, G3 and E2

0 otherwise.

The introduction of the latent assignment variables allows for the grouping of all obser-

vations into |E| unobserved groups. Hence, the HME model probability density function

seen in (2.4) can be re-written as follows

f(yi, zi|xi,ϕ) =

π
(E(i))
i f (E(i))

(
yi|xi,θ

(E(i))
)

for E(i) ∈ E such that z
(E(i))
i = 1

0 otherwise,
(3.5)

for the i-th observation with the corresponding vector of covariates, xi, for i = 1, ..., n,

where zi =
(
z
(E)
i

)T
E∈E

. The likelihood function, now called the complete data likelihood

function and denoted Lc(·), can then be written as:
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Lc(ϕ|y, z) =
n∏

i=1

f(yi, zi|xi,ϕ)

=

n∏
i=1

∏
E∈E

[
π
(E)
i f (E)

(
yi|xi,θ

(E)
)]z(E)

i
,

(3.6)

for the i-th observation with the corresponding vector of covariates, xi, for i = 1, ..., n,

where ϕ denotes a vector of all parameters in HME model while θ(E) denotes a vector of

distinct parameters occurring in the expert E density, f (E)
(
yi|xi,θ

(E)
)
. The complete

data log-likelihood function is then:

lc(ϕ|y, z) =
n∑

i=1

∑
E∈E

z
(E)
i log

[
π
(E)
i f (E)

(
yi|xi,θ

(E)
)]

=
n∑

i=1

∑
E∈E

z
(E)
i log

 ∏
(G,H)∈PE

π
(G,H)
i

 f (E)
(
yi|xi,θ

(E(i))
) .

(3.7)

In the above equation, z
(E)
i is equal to 1 only for one E ∈ E hence simplifying the

log-likelihood evaluation process. The resultant advantage of using the complete data

log-likelihood is that the expert parameters can be sampled explicitly.

Lastly, having latent assignment variables present in the model lets us write down the

density function for the gating parameters. Let γ(G) =
(
γ(G,H)

)T
H

denote a collection of

all gating parameters for gate G and let z
(G)
i =

(
z
(G,H)
i

)
H

and z(G) =
(
z
(G)
1 , ..., z

(G)
n

)T
.

The conditional probability density function of γ(G) is then

f
(
γ(G)|z(G)

)
∝ f

(
z(G)|γ(G)

)
f
(
γ(G)

)
, (3.8)

where

f
(
z
(G)
i |γ(G)

)
=
∏
H

(
π
(G,H)
i

)z(G,H)
i

, (3.9)

which is simply a probability density function of the multinomial distribution, where∑
H π

(G,H)
i = 1 and z

(G,H)
i = 1 for only one child H of G. The corresponding indicator

likelihood, which is equivalent to the joint density of the allocation variables z(G) given

the parameters γ(G), and log-likelihood functions are then
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L
(
z(G)|γ(G)

)
= f

(
z(G)|γ(G)

)
=

n∏
i=1

∏
H

(
π
(G,H)
i

)z(G,H)
i

, (3.10)

and

l
(
z(G)|γ(G)

)
=

n∑
i=1

∑
H

log

((
π
(G,H)
i

)z(G,H)
i

)
. (3.11)

Having written down the log-likelihood functions for the parameters of HME models, the

process of the maximum likelihood estimation is discussed next.

3.4 The Expectation Maximisation Algorithm

As seen in Section 3.2, for complex models, such as HME, the likelihood function can

get quite complicated resulting in difficult optimisation problems. In some situations,

like in the case of HME models, introducing a latent variable can significantly simply the

resultant optimisation problem. In such case, the expectation maximisation algorithm

(EM) can be used. The EM algorithm was first introduced by Dempster et al. (1977)

and has since been used in machine learning and data mining applications. The idea

behind the EM algorithm consists of iterating two steps, called the expectation (E-step)

and the maximisation (M-step). Jordan and Jacobs (1994) outlines the two steps of the

EM algorithm for the HME models as follows.

Given the initial parameter values ϕ(0) repeat until convergence:

1. E-Step. Obtain the deterministic function Q:

Q(ϕ,ϕ(t)) = E [lc(ϕ|y, z)] ,

where ϕ(t) is the value of the expert parameters at the t-th iteration, the expecta-

tion is taken with respect to ϕ(t), and lc(·) is the complete data likelihood as per

(3.7).

2. M-Step. Maximise function Q with respect to ϕ to find the new parameter esti-

mates ϕ(t+1):

ϕ(t+1) = argmax
ϕ

Q
(
ϕ,ϕ(t)

)
.

The EM algorithm is a powerful method, however, it does have its faults. The EM algo-

rithm has been known to suffer from slow convergence, especially in Gaussian mixtures
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(Park and Ozeki, 2009). It is also dependent on the choice of stopping criterion as well

as the initial parameter values used (Karlis and Xekalaki, 2003). When automatically

growing or pruning HME models, the number of parameters is constantly changing mak-

ing the arbitrary choice of the initial parameter values even more challenging. Lastly, the

complexity of the HME model architecture usually results in many local maxima thus

requiring multiple starting points when maximising the complete likelihood function

therefore further decreasing the efficiency of the parameter estimation process (Huerta

et al., 2003).

3.5 Final Remarks

This chapter introduces the statistical background for frequentist parameter estimation

based on maximum likelihood. While it is important to understand and review the

frequentist inference methods for HME, certain disadvantages of the approach make

the opposing Bayesian school of thought a more suitable candidate for HME model

parameter inference. It has been previously mentioned that the iterative maximum

likelihood estimation methods tend to be slow to converge and depend on initial values

as well as the stopping criterion. This issue can be especially difficult in complex models

such as HME, because there is a large number of model parameters present involved in

defining the expert and gating distributions (Bishop and Svenskn, 2002). The problem is

then further complicated by the introduction of automatic architecture selection, tackled

in Chapter 6, which results in an everchanging parameter dimensionality. In the latter

case, the frequentist approach does not offer a natural method for selecting the resulting

tree architectures. Thus in the next chapter, the opposing Bayesian inference approach

is presented and applied to all methods within this thesis.



Chapter 4

Bayesian Inference for HME Models

This chapter spans several topics in Bayesian statistics starting with an introduction

in Section 4.1, which covers the main idea behind the approach and highlights the dif-

ferences when compared to the frequentist approach seen in Chapter 3. Following the

introduction of prior and posterior distributions, the former are discussed in more detail

in Section 4.2. Next, sampling and updating of the model parameters are covered in

Section 4.3. In particular, the Metropolis-Hastings algorithm (Hastings, 1970; Chib and

Greenberg, 1995) and the Gibbs sampler (Gelfand, 2000; Geman and Geman, 1984) sam-

pling algorithms are presented and discussed in the context of HME model parameters.

The steps for updating gating parameters and allocation variables in HME models are

outlined in Section 4.3.3, where a general framework for updating expert parameters is

discussed. The latter is then refined in Chapter 5 for a special case of normal experts,

which is the main focus of this thesis. Finally, the concepts of convergence and mixing

for HME models are discussed in Sections 4.3.4 and 4.3.5.

4.1 Introducton to Bayesian Statistics

Bayesian statistics is founded on the basis of Bayes’ theorem, developed by Thomas

Bayes, which describes the probability of an event that is conditioned on some prior

knowledge (Bayes and Price, 1763). According to Bayes theorem, the probability of

event A occurring given that the event B has occurred is

P (A|B) =
P (B|A)P (A)

P (B)
,

where P (A) and P (B) are, respectively, the probabilities of events A and B occurring

while P (B|A) is the probability of event B occurring, given event A has occurred.

22
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In Bayesian Statistics, the estimation of unknown model parameters is based on Bayes’

theorem, which implies that estimates should change given relevant information. Unlike

the frequentist approach, which aims to provide point estimates for unknown parameters,

the goal of Bayesian statistics is to obtain their probability density functions. The

corresponding parameter density functions then lead to point estimation of unknown

parameters as well as the high probability regions around them. The latter means that

unknown parameters are treated as random variables as opposed to fixed values as seen

in frequentist statistics.

In order to present the adaptation of Bayes theorem used in Bayesian statistics, consider

a vector of observed data y = (y1, ..., yn) , which is believed to have a probability density

function f(y|θ), where θ = (θ1, ..., θp) is a vector of the associated unknown parameters

one wants to estimate. The prior beliefs about unknown parameters can be expressed

via a joint probability density function called the prior distribution and denoted f(θ)

(discussed in detail for HME in Section 4.2). The prior distribution does not take into

account any evidence from the observed data y and thus the density function for θ given

y is updated as follows

f(θ|y) = f(y|θ)f(θ)
f(y)

,

where f(y|θ) is the data likelihood, f(θ|y) is the joint parameter density function condi-

tioned on the observed data y, called the posterior distribution, and f(y) is the marginal

distribution of the observed data, y.

If the posterior distribution, f(θ|y), is in the same probability distribution family as

the prior distribution, f(θ), both are then called conjugate distributions and the prior

distribution is called a conjugate prior. Conjugate priors are a popular choice because

they allow for a derivation of a closed-form expression for the posterior distribution,

which can then be used to sample from the posterior parameters. In the case of non-

conjugate priors, the computation required is usually more complex and hence requires

a different approach. In most cases, a numerical simulation is performed by drawing a

sample of parameter values from an approximation of the posterior distribution.

It is important to note that f(y) does not depend on θ and thus the posterior distribution

can be expressed up to a constant of proportionality as

f(θ|y) ∝ f(y|θ)f(θ),
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which does not require estimating f(y). One can say that the posterior distribution of

unknown model parameters is proportional to the product of data likelihood and the

joint prior density function of those parameters.

The point estimates of the parameters θ, denoted as θ̂, can then be obtained from the

posterior distribution by calculating the posterior mean, median or mode. In contrast

to the frequentist approach, the credible intervals used in Bayesian statistics provide a

probabilistic interpretation of the uncertainty around the parameter estimates. That is,

the credible interval is an interval in which an unobserved parameter value falls with a

particular probability.

The debate on frequentist versus Bayesian approaches dates back a few centuries and

is well reflected by a quote from Kendall (1949), which says “Few branches of scientific

method have been subject to so much difference of opinion as the theory of probabil-

ity”. The choice between frequentist and Bayesian inference can also be viewed as a

choice between relative frequencies and degrees of belief (Vallverdu, 2011). In frequen-

tist statistics, a probability is interpreted as a relative frequency of an outcome of an

event occurring over a large number of independent repetitions of the event under roughly

the same conditions (Bickel and Lehmann, 2012). On the other hand, under Bayesian

framework, a probability is considered to be the plausibility, representing a prior belief,

of an outcome of the event occurring, which can be updated in the light of the evidence.

In this thesis, a choice in favour of the degrees of belief is made. The parameter estima-

tion approaches developed within this thesis are thus outlined using Bayesian approach.

Prior distributions required for Bayesian parameter estimation in the context of HME

models are discussed next.

4.2 Parameter Priors for HME Models

As discussed in the previous section, Bayesian approach for inference requires specifying

prior distributions for the parameters in the model. A common choice for prior distri-

butions of continuous parameters is the multivariate normal distribution, which benefits

from the specification of prior covariances between the parameters as well as individual

prior parameter means and variances (Waterhouse et al., 1996). Hence, Gaussian priors

for the gating and expert parameters in HME models are outlined next.

The prior distribution for gating parameters can be written as

γ(G,H) ∼ MVN
(
µ
(G,H)
γ ,Σ

(G,H)
γ

)
.
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From the density of the gating parameters shown in (3.8), it can be seen that the density is

not Gaussian and thus the proposed prior is not a conjugate prior. Methods for sampling

parameters in such cases are discussed in Section 4.3. Similarly to gating parameters,

the prior distribution for expert parameters can be written as

θ(E) ∼ MVN
(
µ
(E)
θ ,Σ

(E)
θ

)
.

In the special case of normal experts, discussed in Chapter 5, the proposed prior distri-

bution becomes a conjugate prior thus greatly simplifying expert parameter inference.

Even though Gaussian priors are selected for the applications considered in this thesis,

more complex choices of prior distributions have been investigated in the relevant litera-

ture. Examples of such include conditioning the prior variance for the gating parameter

on the inverse of the mean parameter of its descending expert’s distribution (Bishop and

Svenskn, 2002). In addition to Gaussian priors, Gamma priors are discussed by Water-

house et al. (1996). Lastly, Diebolt and Robert (1994) investigates using non-informative

approximations associated with improper priors. Next, the standard sampling techniques

for Bayesian parameter inference are outlined.

4.3 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) methods are a group of sampling techniques that

are often used for estimating posterior distributions in Bayesian inference, where the

closed-form expression cannot be obtained (van Ravenzwaaij et al. (2018), Metropolis

et al. (1953)). An alternative method for Bayesian inference, called variational inference,

is discussed for HME models in Bishop and Svenskn (2002). In addition to approximating

the target posterior distribution, the aim of the approach is to derive a lower bound for

the likelihood of the observed data, which is often used to perform model selection. Given

the requirement to pre-select a group of models to be considered, variational inference,

however, is not suitable for problems of changing dimensionality (discussed in Chapter

6), and thus MCMC methods are used throughout this thesis.

MCMC methods rely on drawing samples where the current value is dependent on the

value that was generated before it. Such draws then form a chain, called a Markov

chain. Beneficially for HME models, the dependability on the previous value allows

MCMC algorithms to narrow in on the distribution that is being sampled even in cases

of high parameter dimensionality (Brownlee, 2019). The resulting Markov chain should
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then effectively sample from the desired target posterior after it reaches equilibrium

(assessing when the equilibrium is reached is discussed in Section 4.3.4).

The two most commonly used MCMC algorithms are the Metropolis-Hastings (MH)

algorithm (Hastings, 1970) and the Gibbs sampler (Geman and Geman, 1984). For HME

models, we use and evaluate a combination of both algorithms to estimate the model

parameters. The simplest method of generating a Markov chain, the MH algorithm, is

discussed next.

4.3.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm requires an additional distribution, called the pro-

posal distribution, and generates a proposed new value of the model parameter using the

previously specified proposal distribution. The likelihood function is then evaluated at

both the current and the proposed value of the parameter. The obtained values are com-

pared in order to decide if the proposed new value should be accepted. More formally,

the steps of the MH algorithm are as follows. Let us partition the parameter vector θ

into b blocks, i.e. θ = (η1, ...,ηb).

1. Set initial starting values for the parameter vector, i.e., θ(0) =
(
η
(0)
1 , ...,η

(0)
b

)
.

2. For t = 1, ..., T and for k = 1, ..., b:

(a) Generate a proposed value η∗
k from the proposal distribution g

(
η∗
k|η

(t−1)
k

)
.

(b) Accept η∗
k with probability

α = min

1,
f (η∗

k|y) g
(
η
(t−1)
k |η∗

k

)
f
(
η
(t−1)
k |y

)
g
(
η∗
k|η

(t−1)
k

)
 .

(c) If the proposal is accepted, set η
(t)
k = η∗

k. Otherwise, set η
(t)
k = η

(t−1)
k .

A special case of the algorithm above, called the Metropolis algorithm, arises when the

proposal distribution is symmetric, i.e., g
(
η
(t−1)
k |η∗

k

)
= g

(
η∗
k|η

(t−1)
k

)
(Metropolis et al.,

1953). The latter simplifies the acceptance probability α to the form

α = min

1,
f (η∗

k|y)

f
(
η
(t−1)
k |y

)
 .

It is a common practice to record whether each proposal for a block k of parameters has

been accepted, resulting in a binary vector ck = (ck1, ..., ckT ), where each
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ckt =

1 if t-th proposal is accepted

0 otherwise,

for t = 1, ..., T . The acceptance rate is then equivalent to the mean of ck, i.e. c̄k =∑T
m=1 ckm

T . A high acceptance rate could indicate that the new proposed values are very

close to the current ones. Thus, one may consider increasing the variance of the proposal

distribution to encourage wider exploration of the space. On the other hand, a low

acceprance rate means that there are many rejections and thus computation time is

being wasted. In such case, decreasing the variance of the proposal distribution might

help, however, in some cases, the suitability of the proposal distribution might need to

be reassessed.

Next, the method of Gibbs sampling, which is used when the full conditional posterior

distribution of the parameter block is known, is discussed.

4.3.2 The Gibbs Sampling Algorithm

The Gibbs algorithm is used to sample from the posterior distribution of the parameter

block, where the full conditional posterior distribution is known (Geman and Geman,

1984). Such cases tend to happen when a conjugate prior is used and hence the full

conditional posterior distribution can be easily obtained. As before, let us partition the

parameter vector θ into b blocks, i.e. θ = (η1, ...,ηb). The Gibbs sampling algorithm

can then be written as follows

1. Set initial starting values for the parameter vector, i.e., θ(0) =
(
η
(0)
1 , ...,η

(0)
b

)
.

2. For t = 1, ..., T and for k = 1, ..., b draw a sample η
(t)
k from the conditional distri-

bution f
(
η
(t)
k |η(t)

1 , ...,η
(t)
k−1,η

(t−1)
k+1 , ...,η

(t−1)
b ,y

)
.

In the above, each block of the model parameters is updated in turn with the acceptance

probability of 1. For HME model parameters, a mixture of both Metropolis-Hastings

and Gibbs sampling algorithms is used and discussed next.

4.3.3 Updating HME Model Parameters

This section covers the general updates of the HME model parameters for a set archi-

tecture.
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4.3.3.1 Allocation Variables Updates

In this section, we propose a way of updating the latent allocation variables as if trying to

answer the question of how likely an observation is to have come from a particular expert

density in the model. Recall that the latent allocation variables z(G) =
(
z
(G)
1 , ..., z

(G)
n

)T
indicate if the i-th point has passed through the gate G. Let z

(G)
zi=1 denote a subset of

size nG containing points that have reached gate G. In addition to gating and expert

parameter updates, this subset can then be updated as

1. Determine all terminal expert nodes descending from the gate G and denote the

set E ′.

2. For each point j = 1, ..., nG in the set z
(G)
zi=1:

(a) Calculate

α
(E)
j =

 ∏
(G,H)∈P (G)

>

π
(G,H)
j

 f (E)
(
yj |xj ,θ

(E)
)
,

for all E ∈ E ′.

(b) Assign the j-th point to expert E, i.e., set z(E)
j = 1 and z

(E′′)
j = 0 for E′′ ̸= E

with probability α
(E)
j , where

∑
E∈E ′ α

(E)
j = 1.

The above algorithm calculates the probabilities of an observation belonging to each of the

experts at their current state. These probabilities are then used to reassign observations.

Next, the updates of gating and expert parameters are considered.

4.3.3.2 Gating and Expert Parameters Updates

In HME models, gating parameters at gate G, i.e. γ(G) =
(
γ(G,H)

)T
H

and expert param-

eters θ(E) can be updated using the Metropolis-Hastings algorithm outlined in Section

4.3.1. As noted before, the MH algorithm requires one to specify the proposal distribu-

tion. In this section, a standard proposal distribution is presented followed by a proposed

alternative, which is tailored to suit the complexity of HME models.

Standard MH Proposal Approach

For a generic continuous parameter vector η, the following multivariate normal distribu-

tion is often used as a proposal distribution:

η∗ ∼ MVN (η,Ση∗) ,
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where η∗ is the new proposed parameter value, η is the current parameter value, and

Ση∗ is the variance-covariance matrix of the proposal distribution.

For this approach, one is required to select the variance of the proposal distribution. The

larger the variance, the wider exploration of the space. Thus, there is a balance to be

had between generating proposals that are too close to the previous parameter value and

proposals that venture too far out thus wasting computation time. This approach works

well for ME cases, such as those tackled in Chapter 5, however, it fails to address the

following issues specific to HME.

Selecting the variance of proposal distribution is a non-trivial task for models, where

multiple model parameters are updated using the same proposal. For example, an HME

model with multiple gate nodes will have multiple gating parameters that require up-

dating. The proposal distribution for each of those gating parameters should thus take

full advantage of the information provided by the observed data, which is relevant to the

specific node. The latter requirement is not met by an arbitrary choice for the variance

of the proposal distribution, which is applied across all gating parameter updates.

Also, adding and removing nodes within the tree model architecture (discussed in Chap-

ter 6) results in an everchanging parameter dimensionality. This means that, immediately

after the parameter dimensionality changes, the previous parameter values do not always

provide the most reliable centering point for the proposal distribution. For example, an

addition of a new gate node, G′, will require setting intial gating parameters γ(G′), which

will then serve as a mean vector for the proposal distribution of the new parameter value,

i.e., γ(G′)∗ ∼ MVN(γ(G′),Σγ∗) . In the situation where the value of γ(G′) is not well

chosen the proposed update γ(G′)∗ is less likely to be accepted thus causing the chain to

move slower. A new approach for constructing expert and gating parameter proposals,

which addresses these shortcomings, is proposed next.

Modified MH Proposal Approach for HME Models

Consider the following proposal distribution

η∗ ∼ MVN (η̂,Σ) ,

where η̂ is the Iteratively Weighted Least Squares (IWLS) estimate of the parameter of

interest (see Appendix A for details on the IWLS algorithm), and Σ is the corresponding

variance-covariance matrix obtained during the estimation process (shown in Appendix

A.1).
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By centering the proposal distribution around the parameter estimate, one is targeting

the high density areas of the parameter space, which is likely to improve the proposals

and hence acceptance rates. This approach is particularly useful when encountering the

previously mentioned issues caused by changing parameter dimensionality. Such cases

are discussed in Chapter 6, where the tailored proposal distribution is used to update

the gating parameters of HME models (details outlined in Appendix B).

Another advantage of performing IWLS estimation is the ability to extract the pro-

posal variance-covariance matrix during the estimation process. The latter is performed

with the help of a matrix decomposition. Unlike the standard approach, the variance-

covariance matrix for the proposal distribution thus follows the direction of the target

distribution and guides the width of the proposal. For HME models, this means that

the proposal distribution will adapt to each node and reflect the relevant information

provided by the observed data.

Difference in Expert and Gate Nodes Updates

It is known that the density of gating parameters in HME model is not Gaussian, unlike

their set prior distribution. Thus the Metropolis-Hastings algorithm, as outlined in this

section, is used to update the gating parameters in the model. In this thesis, evaluations

performed on simple ME cases use the standard proposal distribution. On the other hand,

more complex HME models with changing parameter dimensionality take advantage of

the tailored proposal distribution for the gating parameters.

In this section, a general framework for updating any expert parameters using the MH

algorithm is presented. In practice, the method used for updating expert parameters

depends on the corresponding expert density functions. For example, a conjugate prior

for expert parameters can be used when considering Gaussian experts. In such case, the

full conditional posterior distribution is known and hence the Gibbs sampling algorithm

can be used instead. The special case of Gaussian experts and their parameter sampling

techniques are covered in Chapter 5.

Next, the concept of MCMC chain convergence is discussed in more detail.

4.3.4 Convergence for HME Models

It has been previously mentioned that the chain resulting from the MCMC draws, after

it reaches equilibrium, should be effectively sampling from the desired target posterior

distribution. An MCMC chain is said to have reached its equilibrium, or converged, if

the chain has reached a stationary distribution (Toft et al., 2007). In simple terms, a

stationary distribution is a probability distribution that remains unchanged in the chain
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as the number of iterations increases. In this section, both visual and formal assessment

of convergence is discussed as well as a method for interrogating the convergence of the

overall model is proposed.

4.3.4.1 Visual Evaluation

It is important to note that convergence to the stationary distribution does not occur

instantly. A set of samples, generated before convergence has been achieved, is thus

discarded and referred to as the burn-in period. One can visually assess the convergence

of a single model parameter by looking at the so-called trace plots, which show the

history of parameter values across the MCMC iterations. In the trace plots, signs of

non-convergence include the chain staying in the same state for too long (flat areas) and

evidence of too many consecutive steps in one direction. The desired trace plot of a

chain that has achieved convergence is often said to resemble a hairy caterpillar such as

shown in Figure 4.1. This approach works well in cases where a small number of low

dimensional model parameters is sampled, however, investigating trace plots becomes

rather tedious as the number and/or the dimensionality of model parameters increase.

Figure 4.1: An example of a desired trace plot for some parameter η provided by SAS
Help Center (2019).
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4.3.4.2 Alternative Method of Convergence Assessment for HME Models

It is clear that, although effective, evaluating individual parameter convergence visu-

ally becomes rather time-consuming as the number of parameters sampled increases.

Since HME models are based on a tree architecture, they often have a large number of

model parameters, which increase in dimensionality as the number of explanatory vari-

ables increases. The latter makes assessing the individual parameter convergence rather

challenging. The method proposed in this section improves the ease of the convergence

assessment process for pre-set tree architectures, however more crucially, it offers a frame-

work for assessing convergence in problems of changing parameter dimensionality, where

tracking the individual parameter values is not possible in the first place.

The idea behind the proposed method involves assessing an overall HME model conver-

gence by interrogating the convergence of predictions, obtained by using the posterior

model parameters at each MCMC iteration. More formally, prediction for the i-th point

at iteration t , ŷ(t)i , can be calculated as

ŷ
(t)
i =

∑
E∈E

π
(E)(t)
i f (E)

(
yi|xi,θ

(E)(t)
)

=
∑
E∈E

∏
(G,H)∈PE

π
(G,H)(t)
i f (E)

(
yi|xi,θ

(E)(t)
)
,

(4.1)

where mixing proportions at each gate G are equal to

π
(G,H)(t)
i =

exp
(
xT
i γ

(G,H)(t)
)∑

H′ exp
(
xT
i γ

(G,H′)(t)
) ,

for (G,H) ∈ PE and or E ∈ E . In (4.1) the predictions depend on the expert parameter

values, θ(E)(t), and the path probabilities, π(E)(t)
i , which are obtained using the gating

parameter values, γ(G)(t) =
(
γ(G,H)(t)

)T
H

, at iteration t for i = 1, ..., n with (G,H) ∈ PE

and E ∈ E . It is thus proposed to assess the convergence of ŷ(t) =
(
ŷ
(t)
1 , ..., ŷ

(t)
n

)T
across

t = 1, ..., T instead of examining the convergence of the gating and expert parameters

individually.

Having obtained ŷ =
(
ŷ(1), ..., ŷ(T )

)
one can visually assess the convergence of predic-

tions. In two-dimensional cases, this can be done by plotting the fitted lines for all

iterations and observing when and if they start looking consistent. To demonstrate,

consider Figure 4.2, which has been created for illustration purposes only.
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Figure 4.2: Figure used for illustrating the proposed method for an overall HME
model convergence assessment. Depicted data and fitted lines have been simulated for

illustration purposes only.

Assume that some MCMC chain has been run for 600 iterations. Let plots (i), (ii) and

(iii) show predictions resulting from the first 200, 201 − 400, and 401 − 600 MCMC

iterations, respectively. There appears to be high variability present across the first set

of predictions suggesting that convergence has not yet been achieved. The second set

of predictions exhibits a notable decrease in variability, however, the fitted lines do not

appear as consistent as those seen for the last set. In this case, one may suggest that the

convergence in predictions is achieved from the 400th iteration onwards.

For problems of higher dimensionality, the prediction planes can be plotted and interro-

gated in the same manner. Visual assessment, however, becomes more challenging for

problems with many explanatory variables, and thus a formal assessment is required.

4.3.4.3 Formal Gelman-Rubin Convergence Assessment

A formal assessment of the convergence can be undertaken using the Gelman-Rubin

convergence diagnostic (Gelman and Rubin, 1992; Brooks and Gelman, 1998). Let M

denote the number of chains and assume that all of them are of length N . Let µ̂m and σ̂2
m

be the posterior mean and variance of the m-th chain. The statistic used to undertake

the test is called the potential scale reduction factor (PSRF) and is defined to be the

ratio of the pooled variance, V̂ , to the within-chain variance, Ŵ , obtained as follows
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PSRF =
V̂

Ŵ

V̂ =
N − 1

N
Ŵ +

M + 1

MN
B̂

Ŵ =
1

M

M∑
m=1

σ̂2
m,

where B is between-chains variance calculated as

B̂ =
N

M − 1

M∑
m=1

(µ̂m − µ̂)2

with µ̂ denoting the overall posterior mean of all chains.

The Gelman-Rubin method assesses and compares the estimates of the between-chains

and within-chain variances of the produced predictions, where large differences between

these variances indicate non-convergence. Brooks and Gelman (1998) have suggested

that one can be fairly confident that convergence has been reached given the PSRF

value is less than 1.2. It is important to note that the posterior mean used in the PSRF

calculation does not capture the spread of the distribution. In some cases, it would thus

be more beneficial to consider multivariate PSRF such as parameter posterior distribution

quantiles.

If the convergence hasn’t been achieved, a high between-chains variance might be pointing

to poor mixing, which is discussed next.

4.3.5 Mixing for HME Models

Recall that the draws obtained from the posterior distribution are not independent, be-

cause the new value in the chain depends on the previous one. This results in correlation

between samples that can cause the chain to move slowly. To evaluate the extent to

which the samples produced by the MCMC are correlated, a metric of effective sample

size denoted NESS is used. For a positively correlated sample, produced by an MCMC

algorithm, the effective sample size is defined as:

NESS =
n

1 + 2
∑∞

τ=1 ρ(τ)
,

where n is the number of samples and ρ = ρ(τ) denotes the corellation at lag τ (Cook,

2017; Ripley, 1987). The effective sample size quantifies the loss of information due to
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positive correlation in the sample. Cook (2017) proposes an easy way to understand

the effective sample size. It is suggested to think of NESS as an exchange rate between

the dependent and independent samples. For example, considered a sampler that has

produced 1, 000 MCMC samples after discarding burn-in. It could be that those certain

MCMC samples are worth 100 independent samples or 900 independent samples. The

former would be the case if the MCMC samples were highly correlated and the latter

would occur if the MCMC samples were weakly correlated.

A high correlation may lead to spending too much time in one region of parameter

space, yielding an unreliable picture of the whole posterior distribution. In more severe

cases, the chain might struggle to escape these regions and hence miss some parts of the

posterior distribution entirely. Both of these situations are referred to as bad mixing

(Verity, 2019).

HME models are prone to experiencing poor mixing within the MCMC chain due to

their structural makeup. Having multiple models fitted across the problem space as

well as having several local minima/maxima thus increases the chances of the chain

getting stuck in those regions. Mixing can then be further compromised by the level of

correlation present between the model parameters. Thus the proposal distributions for

updating the HME model parameters should encourage wider exploration of the space

that would ensure all modes of the posterior distribution are visited by the chain.

The topics of convergence and mixing are revisited for a special case of Gaussian experts

in the next chapter.
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Normal Experts HME Sampling

Methods

This chapter and the remainder of this thesis focus on a special case of HME models with

Gaussian experts, which are defined in Section 5.1. Gaussian experts are an extension of

the popular regression model and thus are suitable for most continuous outcome variables.

In Bayesian framework, experts with normal densities are a popular choice due to expert

parameters having a conjugate prior distribution available (discussed in Section 5.2).

The latter leads to the full conditional posterior distribution, which then allows sampling

using the Gibbs sampler. In addition, the marginal posterior distribution of the response

variable can be obtained in closed-form, which can then be used in a variation of the Gibbs

sampler, called the collapsed Gibbs sampler (presented in Section 5.3). Overall, when

considering normal experts, a number of sampling techniques for the expert parameters

become available. Section 5.4 proposes and systematically compares three sampling

strategies for HME models - explicitly sampling and retaining all parameters, brute force

posterior sampler, and the collapsed Gibbs sampler. All three techniques are compared

in the context of the effective sample size (Section 5.4.6), run-time (Section 5.4.7), and

exploration of the space (Section 5.4.8). The results are then critically assessed and

discussed in Section 5.4.9 before recommending a preferred sampling strategy. Section

5.5 evaluates the convergence and mixing of the MCMC chains on a non-trivial example

using the recommended sampling strategy, which highlights the challenges faced by HME

models.

36
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5.1 Definition of Normal Expert

An expert in an HME model is called a normal expert if its density function is of the

form

f (E)
(
yi|xi,θ

(E)
)
= f (E)

(
yi|xi,βE , σ

2
E

)
= ϕµiE ,σ2

E
(yi), (5.1)

for E ∈ E . Here ϕ(·) is the normal density with the mean µiE = xT
i βE and variance

parameter σ2
E .

In the case of normal experts, a conjugate normal-inverse gamma (NIG) prior for the

expert parameters can be used and is discussed next.

5.2 Normal-Inverse-Gamma Prior

The following normal-inverse-gamma (NIG) priors are assigned to the parameters in

(5.1):

βE , σ
2
E ∼ NIG

(
β
(p)
E , V

(p)
E , a

(p)
E , b

(p)
E

)
βE |σ2

E ∼ MVN
(
β
(p)
E , σ

2

EV
(p)
E

)
σ2
E ∼ IG

(
a
(p)
E , b

(p)
E

)
,

for E ∈ E . The posterior NIG distribution can then be written as

βE , σ
2
E |X(E),y(E) ∼ NIG

(
β
(post)
E , V

(post)
E , a

(post)
E , b

(post)
E

)
,

where X(E) and y(E) denote subsets of the design matrix and the response vector, re-

spectively, containing points assigned to expert E and

β
(post)
E =

(
V

(p)−1

E +X(E)TX(E)
)−1 (

V
(p)−1

E β
(p)
E +X(E)Ty(E)

)
V

(post)
E =

(
V

(p)−1

E +X(E)TX(E)
)−1

a
(post)
E = a

(p)
E + nE/2

b
(post)
E = b

(p)
E +

1

2

(
β
(p)T

E V
(p)−1

E β
(p)
E + y(E)Ty(E) − β

(post)T

E V
(post)−1

E β
(post)
E

)
,

(5.2)
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where nE denotes the number of observations assigned to expert E.

For normal experts, the expert parameters βE are equivalent to the coefficients of linear

regression. Thus, elements of βE correspond to intercept and slope parameters in a

standard linear model. The corresponding prior distributions are often centered at zero

for standardised data. One could think of a prior distribution with a mean of zero as a

conservative choice because it assumes an intercept only linear model with no effect of

covariates. It is then the observed data that pushes the estimate away from zero and not

some initial predisposition (Lunn, 2013). The selection of variance parameters for the

prior distributions of the slopes can be guided by the steepness of potential regression

lines. Similarly, the range of the response variable can help in determining the variance

of the prior distribution for the intercept parameter.

The main argument for choosing the inverse-gamma (IG) prior for the expert variance

parameter is simplicity and computational efficiency. Provided the variances are to the

right of the IG distribution mode, such prior expresses a slight preference for smaller

variances. An overview, presented by Gelman (2006), revealed the most commonly used

values for the hyperparameters of the inverse gamma distribution to be 1, 0.01, or 0.001.

Throughout the work undertaken as part of this thesis, it has been noted that smaller

expert variance parameters encourage tighter allocation to experts. To illustrate, con-

sider a single data point and probabilities defined by how likely this observation is to

have come from each of the expert densities in the model. Large expert variances would

encourage these probabilities to be more evenly distributed across all experts. Thus, the

slight preference for smaller variances imposed by the IG prior helps avoid situations in

which observations would have high probabilities of being allocated to all experts solely

due to high prior within-expert variability.

Given the conjugate prior, sampling methods such as the Gibbs sampler can be used,

i.e. the parameters can be drawn directly from the posterior distribution. Furthermore,

Banerjee (2008) demonstrates that the marginal posterior distribution of the response

variable in the conjugate case can be written as

f (E)(y) =

exp
(
a
(p)
E log

(
b
(p)
E

))
· Γ
(
a
(post)
E

)√∣∣∣V (p)
E

∣∣∣
(2π)

nE
2 Γ

(
a
(p)
E

)√∣∣∣V (post)
E

∣∣∣ · exp
(
−aE

(post) log
(
b
(post)
E

))
,

(5.3)

which means that if sampling expert parameters is not of interest, a variant of the Gibbs

sampler, called the collapsed Gibbs sampler, focusing on expert allocations for HME

sampling can be implemented.
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5.3 Collapsed Gibbs Sampler for HME Sampling

The idea behind a collapsed Gibbs sampler is to integrate out as many (noise) variables

as possible before sampling from the conditional distribution of the variables of interest

(Liu, 1994). It has been shown in the previous section that when the NIG prior is used

for Gaussian experts, the marginal posterior distribution of the response can be obtained.

Using this result, the steps of the collapsed Gibbs sampler for updating the allocation

variables are outlined.

As before, let z
(G)
zi=1 denote a subset of size nG containing points that have reached gate

G. In addition to gating parameter updates, this subset can then be updated as

1. Determine all terminal expert nodes descending from the gate G and denote the

set E ′.

2. For each point j = 1, ..., nG in the set z
(G)
zi=1:

(a) Calculate

α
(E)
j =

 ∏
(G,H)∈P (G)

>

π
(G,H)
j

 f (E)
(
y
(E)
j+

)
, (5.4)

for all E ∈ E ′, where f (E)(·) denotes the marginal posterior distribution of

the response variable as per (5.3) and y
(E)
j+ denotes all points that are already

in expert E and the j-th point.

(b) Assign the j-th point to expert E, i.e., set z(E)
j = 1 and z

(E′′)
j = 0 for E,E′′ ∈

E ′ and for E′′ ̸= E, with probability α
(E)
j , where

∑
E∈E ′ α

(E)
j = 1.

Eliminating the sampling of expert parameters decreases the total number of parameters

to be sampled and hence could potentially make the sampling process more efficient.

Complete MCMC update steps for all parameters in HME models with Gaussian experts

are outlined in the following section, where the collapsed Gibbs sampler and two alter-

native sampling strategies are evaluated in terms of their produced effective sample size,

run-time, and exploration of space.

5.4 Systematic Evaluation of HME Model Parameter Sam-

pling Strategies

This section proposes and evaluates three expert parameter sampling techniques in the

case of a mixture model with two Gaussian experts. Firstly, the associated model density
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function is defined and the data sets, simulated for the purpose of this evaluation, are

presented in Section 5.4.1. Next, the three sampling techniques are introduced in Section

5.4.2, and, more formally, the steps of the proposed sampling algorithms are outlined

in Sections 5.4.3, 5.4.4 and 5.4.5. The samplers of interest are then evaluated on two

simulated data sets with respect to metrics of effective sample size and acceptance rates

(Section 5.4.6), run-time (Section 5.4.7), and exploration of the space (Section 5.4.8).

Lastly, the results of the systematic comparison are discussed and critically assessed in

Section 5.4.9 before deciding on the recommended sampling strategy.

5.4.1 Two Normal Expert ME Case

The density of the mixture of two normal experts E∗ and E∗∗ can be written as:

f (yi|xi,ϕ) =
∑

E∈(E∗,E∗∗)

π
(E)
i f (E)

(
yi|xi,θ

(E)
)

=
∑

E∈(E∗,E∗∗)

π
(E)
i f (E)

(
yi|xi,βE , σ

2
E

)
=

∑
E∈(E∗,E∗∗)

π
(E)
i ϕµiE ,σ2

E
(yi)

= π
(E∗)
i ϕµiE∗ ,σ2

E∗
(yi) + π

(E∗∗)
i ϕµiE∗∗ ,σ2

E∗∗
(yi)

(5.5)

where ϕ denotes a vector of all parameters in the HME model while θ(E) =
(
βE , σ

2
E

)
de-

notes a vector of distinct parameters occurring in the expert E density for E ∈ (E∗, E∗∗),

and ϕµ,σ2(·) denotes the normal density with the mean µ and variance σ2, and µiE =

xT
i βE .

Figure 5.1: Simulated data sets used for the evaluation of three ME parameter sam-
pling strategies.
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The evaluation undertaken in this section is performed on the simulated data sets shown

in Figure 5.1. The first data set (i) is a straightforward mixture of two experts that are

well separated while the second example (ii) investigates a slightly more complex case

where the separation between two experts cannot be defined by some explanatory variable

value. In both scenarios, there is one explanatory variable present, i.e., xi = (1, xi) and

βE = (β0E , β1E), where β0E and β1E correspond to the intercept and slope parameters

of simple linear regression, respectively. In such case, the density (5.5) can be written as

f (yi|xi,ϕ) =
∑

E∈(E∗,E∗∗)

π
(E)
i f (E)

(
yi|xi,θ

(E)
)

=
∑

E∈(E∗,E∗∗)

π
(E)
i f (E)

(
yi|xi,βE , σ

2
E

)
=

∑
E∈(E∗,E∗∗)

π
(E)
i f (E)

(
yi|xi, β0E , β1E , σ

2
E

)
=

∑
E∈(E∗,E∗∗)

π
(E)
i ϕµiE ,σ2

E
(yi)

= π
(E∗)
i ϕµiE∗ ,σ2

E∗
(yi) + π

(E∗∗)
i ϕµiE∗∗ ,σ2

E∗∗
(yi),

(5.6)

where µiE = β0E + β1Exi for E ∈ (E∗, E∗∗). Recall that for ME models the mixing

proportions are defined as

π
(E)
i =

exp
(
xT
i γ

(E)
)∑

E∈E exp
(
xT
i γ

(E)
)

for E ∈ (E∗, E∗∗). For a binary split, there are two gating parameters present in the

model, i.e., γ(E∗) and γ(E∗∗). As always, the gating parameters corresponding to the first

expert are set to zero in order to ensure identifiability, i.e., γ(E∗) = 0, leaving γ(E∗∗) to be

estimated. Let us simplify the notation by writing γ = γ(E∗∗). The mixing proportions

for the two experts are then

π
(E∗)
i =

1

1 + exp
(
xT
i γ
) , π(E∗∗)

i =
exp

(
xT
i γ
)

1 + exp
(
xT
i γ
) ,

where γ = (γ0, γ1) and π
(E∗)
i + π

(E∗∗)
i = 1 for i = 1, ...n.

For a mixture of two Gaussian experts with one explanatory variable, a sampling method-

ology should cover updating the two-dimensional gating parameter γ, allocation variables

z, and expert parameters, which include intercepts β0E , slopes β1E , and variance param-

eters σ2
E for two experts E∗ and E∗∗. In this section, three sampling approaches, which
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span a mixture of Metropolis-Hastings, Gibbs sampler, and collapsed Gibbs sampler up-

dates are presented. To ensure comparability, the same parameter priors are set for all

samplers. To allow for wider exploration of expert parameter space, weakly informative

priors are chosen for the intercept and slope parameters while a narrower expert variance

parameter is set to reflect the low variability present in the simulated data:

βE , σ
2
E ∼ NIG

(
0,

[
100 0

0 100

]
, 0.001, 0.001

)
.

Similarly, a wide prior centered at zero is chosen for the gating parameter in order to

explore various degrees of abruptness in separation between the two experts

γ ∼ MVN

(
0,

[
100 0

0 100

])
. (5.7)

All sampling strategies considered update the gating parameter γ using the Metropolis-

Hastings algorithm with the following proposal distribution

γ∗ ∼ MVN

(
γ,

[
0.5 0

0 0.5

])
,

where γ∗ and γ denote the new proposed and the previous values for the gating parame-

ter, as outlined in Section 4.3.3.2. The moderate variance of the proposal distribution is

chosen to encourage a careful exploration of the parameter space for a relatively simple

problem.

Having stated the model density function and the associated parameter priors, the pro-

posed sampling techniques are introduced next.

5.4.2 Sampling Strategies

Table 5.1 summarises the three proposed strategies for sampling the parameters of mix-

ture of two experts model.
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Table 5.1: Summary of the three samplers considered. The explicitly sampled pa-
rameters are denoted by ✓and not explicitly sampled parameters are denoted by ✗.

γ βE σ2
E zi

Sampler I ✓ ✓ ✓ ✓

Sampler II ✓ ✓ ✓ ✗

Sampler III ✓ ✗ ✗ ✓

The first sampler corresponds to a standard Bayesian sampling technique, where all

model parameters are sampled and retained (Hurn et al., 2003). To evaluate ME density

of the response yi, given a vector of covariates, xi, one is required to obtain the mixing

proportions as well as individual expert densities. As shown in Figure 5.2, normal expert

parameters, βE and σ2
E , feed into the evaluation of the density in parallel to the gating

parameters, γ, that are used to calculate the mixing proportions π
(E)
i and obtain the

corresponding latent allocation variables zi. The latter standard approach is compared

with two alternative ones.

Figure 5.2: Illustration of Sampler I.

Sampler II is the brute force posterior sampler, which does not make use of the latent

allocation variables. As discussed previously, in such cases the maximum a posteriori

estimates of the expert parameters cannot be found in closed-form. This section proposes
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a step-by-step method, which includes the Metropolis-Hastings algorithm, to sample the

expert parameters under the given circumstances.

Finally, Sampler III is the collapsed Gibbs sampler discussed in Section 5.3. The expert

parameters are integrated out hence reducing the number of parameters sampled. During

the update, the marginal posterior distribution of the response variable is evaluated

instead of the log-likelihood function.

All three samplers are run for 5, 000 iterations with the first 1, 000 draws discarded for

burn-in, leaving samples with 4, 000 iterations. Trace plots have been used to confirm

that convergence has been achieved for model parameters across all samplers considered.

All sampling techniques, discussed in this chapter, produced consistently similar results

in terms of the posterior means and credible intervals of the model parameters (see

Appendix D).

Next, the steps of the three sampling strategies considered are outlined more formally.

5.4.3 Sampler I

The first approach considered involves sampling and retaining all of the parameters (see

Table 5.1). Given some starting values γ(0), β(0)
E , σ2(0)

E and z
(0)
i and proposal distribution

parameter values, the following steps are iterated for t = 1, ..., T :

1. Update γ(t) using Metropolis-Hastings algorithm as follows:

(a) Generate a proposed value γ∗ from the proposal distribution

γ∗ ∼ MVN
(
γ(t−1),Σγ∗

)
,

(b) Accept γ∗ with probability

α = min

{
1,

f
(
γ∗|z(t−1)

)
g
(
γ(t−1)|γ∗)

f
(
γ(t−1)|z(t−1)

)
g
(
γ∗|γ(t−1)

)}

= min

{
1,

f
(
z(t−1)|γ∗) f (γ∗) g

(
γ(t−1)|γ∗)

f
(
z(t−1)|γ(t−1)

)
f
(
γ(t−1)

)
g
(
γ∗|γ(t−1)

)}

where f(z|γ) and f(γ) denote the gate likelihood function and prior distribu-

tion as per (3.10) and (5.7), respectively, while g(·) corresponds to the density

of the proposal distribution outlined in step 1a.

(c) If the proposal is accepted, set γ(t) = γ∗. Otherwise, set γ(t) = γ(t−1).
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2. Calculate π
(t)
i =

(
π
(E∗)(t)
i , π

(E∗∗)(t)
i

)
as

π
(E∗)(t)
i =

1

1 + exp
(
xT
i γ

(t)
) and π

(E∗∗)(t)
i =

exp
(
xT
i γ

(t)
)

1 + exp
(
xT
i γ

(t)
)

for i = 1, ..., n, where xi = (1, xi).

3. Update β
(t)
E and σ

2(t)
E for E ∈ (E∗, E∗∗) by drawing the posterior parameters from

the NIG posterior distribution

β
(t)
E , σ

2(t)
E |X(E)(t),y(E)(t) ∼ NIG

(
β
(post)(t)
E , V

(post)(t)
E , a

(post)(t)
E , b

(post)(t)
E

)
,

where the posterior parameters β
(post)(t)
E , V

(post)(t)
E , a

(post)(t)
E , b

(post)(t)
E at iteration t

are obtained as per (5.2), and X(E)(t) and y(E)(t) denote the design matrix and the

response vector, respectively, containing points assigned to expert E at iteration t.

4. Update z
(t)
i for i = 1, ..., n as follows

(a) Calculate

α
(E)
i = π

(E)(t)
i f (E)

(
yi|xi,θ

(E)(t)
)
,

for E ∈ (E∗, E∗∗), where
∑

E∈(E∗,E∗∗) α
(E)
i = 1.

(b) Assign the i-th point to expert E, i.e., set z
(E)(t)
i = 1 and z

(E′)(t)
i = 0 for

E′ ̸= E with probability α
(E)
i .

5.4.4 Sampler II

The second approach considered involves sampling and retaining expert and gate pa-

rameters only (see Table 5.1). This sampler does not take advantage of the addition of

allocation variables and thus cannot use the full conditional posterior distribution for ex-

pert parameter sampling. In this section, an alternative method for sampling the expert

parameters under such circumstances is proposed.

Given some starting values γ(0), β
(0)
E and σ

2(0)
E and proposal distribution parameter

values, the following steps are iterated for t = 1, ..., T :

1. Update γ(t) in the same way as seen for Sampler I, however using the data likelihood

function,
∏

i=1,...,n L (yi|xi,ϕ), given the other parameters in lieu of the conditional

distribution of γ given z, f (z|γ).

2. Calculate π
(t)
i =

(
π
(E∗)(t)
i , π

(E∗∗)(t)
i

)
for i = 1, ..., n in the same way as seen for

Sampler I.
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3. Update β
(t)
E for E ∈ (E∗, E∗∗) as follows

(a) Draw (
δ

ϵ

)
∼

(
MVN

(
0

0

)
,

(
σ2
δ 0

0 σ2
ϵ

))
.

(b) Obtain the proposed value for β
(t)
E for E ∈ (E∗, E∗∗) as follows:

β∗
E =

(
β∗
0E

β∗
1E

)
=

β
(t−1)
0E + x̄E

(
β
(t−1)
1E − β∗

1E

)
+ δ

β
(t−1)
1E + ϵ


=

(
β
(t−1)
0E − x̄E · ϵ+ δ

β
(t−1)
1E + ϵ

)
,

where x̄E =
∑

i π
(E)(t)
i xi. For small σ2

δ , we have β
(t−1)
0E + β

(t−1)
1E x̄E ≈ β∗

0E +

β∗
1E x̄E , which ensures that the random perturbation does not move the re-

gression line by a large amount if the values of the covariates are not centered

(which for the data being allocated to an expert cannot be guaranteed).

(c) Set β
(t)
E∗ = β∗

E∗ with probability

α = min

(
1,

∏
i

[
π
(E∗)(t)
i ϕ

xT
i β∗

E∗ ,σ
2(t−1)
E∗

(yi) + π
(E∗∗)(t)
i ϕ

xT
i β

(t−1)
E∗∗ ,σ

2(t−1)
E∗∗

(yi)
]

∏
i

[
π
(E∗)(t)
i ϕ

xT
i β

(t−1)
E∗ ,σ

2(t−1)
E∗

(yi) + π
(E∗∗)(t)
i ϕ

xT
i β

(t−1)
E∗∗ ,σ

2(t−1)
E∗∗

(yi)
]

×
f
(
β∗
E∗ |σ2(t−1)

E∗

)
f
(
β
(t−1)
E∗ |σ2(t−1)

E∗

)
 ,

where ϕµ,σ2(·) is the Normal density with mean µ and variance σ2. Having

updated β
(t)
E∗ , set β

(t)
E∗∗ = β∗

E∗∗ with probability

α = min

(
1,

∏
i

[
π
(E∗)(t)
i ϕ

xT
i β

(t)
E∗ ,σ

2(t−1)
E∗

(yi) + π
(E∗∗)(t)
i ϕ

xT
i β∗

E∗∗ ,σ
2(t−1)
E∗∗

(yi)
]

∏
i

[
π
(E∗)(t)
i ϕ

xT
i β

(t)
E∗ ,σ

2(t−1)
E∗

(yi) + π
(E∗∗)(t)
i ϕ

xT
i β

(t−1)
E∗∗ ,σ

2(t−1)
E∗∗

(yi)
]

×
f
(
β∗
E∗∗ |σ2(t−1)

E∗∗

)
f
(
β
(t−1)
E∗∗ |σ2(t−1)

E∗∗

)
 ,

where ϕµ,σ2(·) is the Normal density with mean µ and variance σ2. 1

4. Update σ
2(t)
E for E ∈ (E∗, E∗∗) as follows

(a) Draw u ∼ N(0, σ2
u).

(b) Propose a new value of σ2∗
E = σ

2(t−1)
E × exp (u) for E ∈ (E∗, E∗∗).

1For simplicity, this step has been stated for a special case of two experts E∗ and E∗∗.
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(c) Set σ
2(t)
E∗ = σ2∗

E∗ with probability

α = min

(
1,

∏
i

[
π
(E∗)(t)
i ϕ

xT
i β

(t)
E∗ ,σ

2∗
E∗

(yi) + π
(E∗∗)(t)
i ϕ

xT
i β

(t)
E∗∗ ,σ

2(t−1)
E∗∗

(yi)
]

∏
i

[
π
E∗(t)
i ϕ

xT
i β

(t)
E∗ ,σ

2(t−1)
(E∗)

(yi) + π
(E∗∗)(t)
i ϕ

xT
i β

(t)
E∗∗ ,σ

2(t−1)
E∗∗

(yi)

]

×
f
(
σ2∗
E∗
)

f
(
σ
2(t−1)
E∗

) ×
q
(
σ
2(t−1)
E∗ |σ2∗

E∗

)
q
(
σ2∗
E∗ |σ2(t−1)

E∗

)
 ,

where ϕµ,σ2(·) is the Normal density with mean µ and variance σ2. Having

updated σ
2(t)
E∗ , set σ

2(t)
E∗∗ = σ2∗

E∗∗ with probability

α = min

(
1,

∏
i

[
π
(E∗)(t)
i ϕ

xT
i β

(t)
E∗ ,σ

2(t)
E∗

(yi) + π
(E∗∗)(t)
i ϕ

xT
i β

(t)
E∗∗ ,σ

2∗
E∗∗

(yi)
]

∏
i

[
π
(E∗)(t)
i ϕ

xT
i β

(t)
E∗ ,σ

2(t)
E∗

(yi) + π
(E∗∗)(t)
i ϕ

xT
i β

(t)
E∗∗ ,σ

2(t−1)
E∗∗

(yi)
]

×
f
(
σ2∗
E∗∗
)

f
(
σ
2(t−1)
E∗∗

) ×
q
(
σ
2(t−1)
E∗∗ |σ2∗

E∗∗

)
q
(
σ2∗
E∗∗ |σ2(t−1)

E∗∗

)
 ,

where ϕµ,σ2(·) is the Normal density with mean µ and variance σ2. 2

Given that the simulated data presents two rather simple cases, all proposal parameters

selected for this evaluation are σ2
δ = σ2

ϵ = σ2
u = 0.1, which, after experimenting with

various values, proved to be sufficient when exploring the particular expert parameter

spaces.

5.4.5 Sampler III

The last method of sampling from a mixture of experts model considered involves in-

tegrating out the expert parameters (see Table 5.1). Given some starting values γ(0),

z
(0)
i , and proposal distribution parameter values, the following steps are iterated for

t = 1, ..., T :

1. Update γ(t) in the same way as seen for Sampler I.

2. Calculate π
(t)
i =

(
π
(E∗)(t)
i , π

(E∗∗)(t)
i

)
for i = 1, ..., n in the same way as seen for

Sampler I.

3. Update z
(t)
i for i = 1, ..., n using the collapsed Gibbs sampler as follows

2For simplicity, this step has been stated for a special case of two experts E∗ and E∗∗.
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(a) Calculate

α
(E)
i = π

(E)(t)
i f (E)

(
y
(E)
i+

)
, (5.8)

for all E ∈ (E∗, E∗∗), where
∑

E∈(E∗,E∗∗) α
(E)
i = 1, and f (E)(·) denotes the

marginal posterior distribution of the response variable as per (5.3) and y
(E)
i+

denotes all points that are already in expert E and the i-th point.

(b) Assign the i-th point to expert E, i.e., set z
(E)(t)
i = 1 and z

(E′)(t)
i = 0 for

E′ ̸= E with probability α
(E)
i .

5.4.6 Effective Sample Size and Acceptance Comparison for HME Sam-
plers

In this section, the two data sets shown in Figure 5.1 are discussed in the context of

the effective sample size produced by the three samplers. The results for the first data

set shown in Figure 5.1 (i) are presented in Table 5.2 and the corresponding acceptance

rates are given in Table 5.3.

Table 5.2: Effective sample size (ESS) for the first data set shown in Figure 5.1 (i).

NESS γ0 γ1 β0E∗ β1E∗ β0E∗∗ β1E∗∗ σ2
E∗ σ2

E∗∗

Sampler I 661.95 655.40 3970.41 3181.09 3116.80 3229.43 3821.37 4000.00

Sampler II 595.17 588.65 566.14 544.76 441.29 448.49 699.73 791.36

Sampler III 635.49 639.86 − − − − − −

Table 5.3: Acceptance rates for the first data set shown in Figure 5.1 (i).

Acceptance Rate γ βE∗ βE∗∗ σ2
E∗ σ2

E∗∗

Sampler I 0.30 (1) (1) (1) (1)

Sampler II 0.32 0.40 0.38 0.59 0.56

Sampler III 0.33 − − − −

It can be seen that the effective sample size for the gating parameter is similar across the

three samplers. As discussed in Section 4.3.5, this can be thought of as 4, 000 MCMC

samples producing 661.95, 595.17, and 635.49 independent samples in the case of sampler

I, II and III respectively. The acceptance rates for the gating parameter are in the range

of 30 − 33% for all three samplers (see Table 5.3). Further, it is clear that Sampler I

outperforms Sampler II in terms of the effective sample size for the expert parameters.

The latter is not surprising, because Sampler II uses the Metropolis-Hastings updating
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step, which is known to perform substantially worse in this metric as correlation increases

(Turner et al., 2013). The acceptance rates for the expert parameters are only meaningful

for Sampler II, where the Metropolis-Hastings update is used. The acceptance rates seem

satisfactory and are in the range of 38%− 59%. Overall, it is evident that Sampler I and

Sampler III outperform Sampler II in the case of the first data set.

Next, the analogous results for the second data set (Figure 5.1 (ii)) are investigated. The

effective sample size results are shown in Table 5.4 and the corresponding acceptance

rates are given in Table 5.5.

Table 5.4: Effective sample size (ESS) for the second data set shown in Figure 5.1
(ii).

NESS γ0 γ1 β0E∗ β1E∗ β0E∗∗ β1E∗∗ σ2
E∗ σ2

E∗∗

Sampler I 158.47 105.82 2897.17 1787.74 2670.55 2310.25 2937.03 2712.67

Sampler II 281.19 234.37 460.21 428.58 684.36 571.74 330.00 502.00

Sampler III 197.23 139.67 − − − − − −

Table 5.5: Acceptance rates for the second data set shown in Figure 5.1 (ii).

Acceptance Rate γ βE∗ βE∗∗ σ2
E∗ σ2

E∗∗

Sampler I 0.12 (1) (1) (1) (1)

Sampler II 0.16 0.60 0.31 0.71 0.67

Sampler III 0.12 − − − −

It is evident that the highest effective sample size of 281.19 for the gating parameter

is achieved by Sampler II - the opposite result of the one seen for the first data set.

However, the magnitude of the difference between the highest and the lowest result is

relatively low (121.72). Further, it is evident that Sampler I outperforms Sampler II in

terms of the effective sample size for the expert parameters, which is in agreement with

the results seen for the first data set. The acceptance rates for the gating parameter are

lower than those seen for the first data set and range between 12− 16%, with Sampler II

yielding the highest acceptance rate. Three out of four acceptance rates for the remaining

expert parameters are higher than the ones seen for the first data set. Overall, it is clear

that all three samplers perform worse on the second data set. This is not surprising as

the second data set was designed to be more challenging when it comes to cutting the

space with respect to x.
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5.4.7 Run Time Comparison for HME Samplers

When comparing the three sampling techniques, it is important to consider the cost of

running them. We proceed by looking at the run time for the three samplers, which is

summarised in Table 5.6.

Table 5.6: Run time in seconds for the three sampling techniques applied to the two
data sets shown in Figure 5.1 measured for all 5, 000 iterations.

Time (s) Data I Data II

Sampler I 8.54 8.59

Sampler II 6.23 6.16

Sampler III 88.98 88.07

It is evident that Sampler III is notably slower than Sampler I and Sampler II. This

means that integrating the expert parameters out (using collapsed Gibbs sampler) is

more costly than sampling and retaining them as proposed by the Sampler I. Further, it

can be seen that Sampler II is marginally quicker than Sampler I across both data sets.

However, in the previous section, it was discovered that Sampler II performs the worst

in terms of the effective sample size. An increase of 2.31 and 2.43 seconds in run time

yields an average effective sample size increase from 584.45 to 2, 829.56 and from 436.56

to 1, 947.46 for the first and second data sets respectively. Next, the exploration of the

space for the three techniques is assessed.

5.4.8 Exploration of the Space Comparison for HME Samplers

Another important metric to consider when comparing the three samplers is how well

the parameter space is explored. A simple way to quantify the exploration of the space is

to investigate the posterior variance of the parameter estimates produced by the MCMC

(Table 5.7). The higher the variance, the more space that has been explored by the

sampler.
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Table 5.7: Posterior variances of the MCMC parameter samples across the two data
sets shown in Figure 5.1 and three HME sampling techniques.

Variance γ0 γ1 β0E∗ β1E∗ β0E∗∗ β1E∗∗ σ2
E∗ σ2

E∗∗

Data 1

Sampler I 3.40 0.13 0.24 0.02 1.10 0.02 0.002 0.004

Sampler II 3.34 0.13 0.04 0.004 0.21 0.005 0.002 0.002

Sampler III 3.41 0.13 − − − − − −
Data 2

Sampler I 0.61 0.03 0.30 0.007 0.10 0.003 0.02 0.002

Sampler II 0.56 0.02 0.19 0.05 0.02 0.0007 0.02 0.002

Sampler III 0.72 0.03 − − − − − −

It is evident that all samplers perform similarly with Sampler I performing better across

all parameters for the first data set. It is important to remember that the data sets con-

sidered here are rather simple and the modes of the posterior distributions can be found

without requiring much exploring. Once a preferred sampling technique is determined,

the topic of space exploration is revisited for a more complex example in Section 5.5.

5.4.9 Discussion

The investigation of the three sampling techniques revealed that all three samplers yield a

similar effective sample size result for the gating parameter, however Sampler I performs

notably better than Sampler II for expert parameters.

The run time experiment has highlighted that running Sampler III takes approximately

10 times longer than Sampler I and approximately 14 times longer than Sampler II. A

major advantage of Sampler III is not sampling and retaining the expert parameters,

which might become increasingly beneficial as the number of experts in the tree grows

resulting in storage issues. On the other hand, Sampler III does not allow one to view the

expert parameter estimates produced by the MCMC chain. Therefore, if it is of interest

to investigate the expert densities in detail for each iteration, the required parameters

would need to be drawn from their posterior distributions thus increasing the run time

even further.

Given the notable reduction in the number of parameters sampled, there is, however,

scope and merit in trying to improve the run time of Sampler III. For example, computing

the marginal posterior from scratch requires O(p3) operations, where p is the number

of expert parameters. However, the change to the already computed inverse is just the
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addition or removal of a single observation, which corresponds to a rank one update.

By exploiting the Sherman-Morrison formula (Sherman and Morrison, 1950), which is a

special case of the Woodbury formula (Woodbury, 1950), the inverse can be calculated in

just O(p2) operations. For large p this will lead to a considerable speed increase. Future

research could include optimising or parallelising some calculations as well as further

exploring caching the results and using matrix decompositions.

Lastly, it has been shown that all samplers yield a similar result for the posterior variances

of parameter estimates produced by the MCMC. The latter suggests that all samplers

explore the parameter space to a similar degree in the considered application.

Given the above results, Sampler I is chosen as a recommended sampling technique going

forward.

The work undertaken in this section is directly applicable to hierarchical mixture of ex-

perts models, where all experts are Gaussian and all splits are binary. Having determined

the recommended strategy for sampling such model parameters, the topics of space ex-

ploration, also known as mixing, and convergence are discussed for a more complicated

application.

5.5 Motorcycle Accident Data Application

5.5.1 Motorcycle Accident Data Introduction

Given that the simulated data sets used so far are relatively straightforward, another

example, shown in Figure 5.3, is considered. The study, conducted by Schmidt et al.

(1981), presents a series of measurements in a simulated motorcycle accident, used to

test crash helmets.
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Figure 5.3: Simulated motorcycle accident data.

The explanatory variable, x = (x1, ..., x133)
T , is the time (in ms) after a simulated impact

on motorcycles, and the response variable, y = (y1, ..., y133)
T , is the head acceleration

(in g) of a test object (Chen et al., 2009). The dataset is widely available as mcycle in

the R package MASS and was initially used by Silverman (1985) to showcase some aspects

of the spline smoothing for nonparametric regression fitting.

It is known that the time points are not regularly spaced, and there are multiple ob-

servations at some time points (Silverman, 1985). From Figure 5.3, it is clear that the

variance of the data is not constant, i.e., data exhibits heteroscedasticity. In fact, the

variance of observations increases as time increases. There are also several change points

present in the data. The transitions between different patterns in the response range

from smooth, as seen at around 40 ms, to abrupt, as seen in the area around 15 ms. The

latter characteristics make the motorcycle data set challenging for standard models to

fit. On the other hand, the greater complexity of HME models can adapt to counter the

challenges posed by the data without sacrificing the interpretability.
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Figure 5.4: Simulated motorcycle accident data split into 5 stages.

Looking at the relationship between time and acceleration in more detail (Figure 5.4),

it can be seen that the acceleration stays at just under zero for the first 15 ms after the

impact (stage 1), which is followed by a steep deceleration with approximately −120 g

reached at around 21 ms post-impact (stage 2). After the point of change, the accelera-

tion exhibits a steep increase up to around 70 g until roughly 35 ms after impact (stage

3). Once again, a change in the relationship between time and acceleration is observed

with the response decreasing until approximately 40 ms (stage 4) before leveling off and

staying at around zero acceleration (stage 5). It is interesting to note that for stages 1

and 5, one could fit an intercept-only linear model, however, the variability present in

the response at stage 1 is notably smaller than that observed at stage 5. Similarly, for

stages 2 and 4, there appears to be a negative association present between the time and

acceleration with a notably higher variance in response present for stage 4. Lastly, it is

noted that the separation between stages 4 and 5 is rather smooth and could potentially

be represented by one linear model. It is thus anticipated that an HME with four to five

experts would be sufficient in this scenario.

At this stage, the motorcycle accident data is used to illustrate several challenges faced

by HME models. These shortcomings are then addressed and improved upon in the

subsequent chapters.
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5.5.2 HME Model Fitting for Motorcycle Accident Data

In this section, an HME model is fitted to the motorcycle data set using the previously

recommended sampling strategy (Sampler I). Firstly, it is noted that the response values

range between −135 g and 75 g. Such wide range and varying magnitude implies high

variability across the potential expert parameters and thus makes the selection of the

prior distributions rather challenging. Generally, it is a common practice in machine

learning to perform data standardisation, which is the process of rescaling all variables

so that they have a mean of zero and variance equal to one. This allows for a justified

default centering at zero for the prior parameter distributions. In the cases with more

than one explanatory variable, standardising them also ensures a common scale without

distorting the differences in the range of their values (see Zheng and Casari (2018) for

more details on feature engineering for machine learning). For the motorcycle data set,

both the response and the explanatory variable are therefore standardised.

The exploratory analysis of the data revealed that there are likely to be four to five

experts present in the HME tree. For simplicity, a tree architecture with four experts

is pre-set. Given the previously noted potentially varying levels of abruptness in the

separation between the experts, the following prior distribution is selected for the gating

parameters

γ(G,H) ∼ MVN

(
0,

[
50 0

0 100

])
,

for all (G,H) ∈ PE . This prior also reflects the anticipated higher variability in the slope

parameter of the logistic regression. Taking into account the forseeable variability present

across the potential individual expert fitted regression lines, wide weakly informative

priors are chosen for the intercept and slope expert parameters. A moderate prior is set

for the expert variance parameter in order to encourage a tighter allocation to experts.

The NIG prior is thus chosen as

βE , σ
2
E ∼ MVN

(
0,

[
100 0

0 100

]
, 1, 0.1

)
for all E ∈ E . The above prior distributions are used for all HME models fitted to the

motorcycle accident data throughout this thesis.

For this illustration, consider Sampler I with three deliberately unhelpful starting points

obtained by repeating the following three times:

1. Pre-set an architecture with 4 experts.

2. Randomly allocate observations to the experts in the tree.
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3. Draw the gating parameters γ(G) ∼ N

(
0 1002

1002 0

)
for all G ∈ G.

4. Draw the Gaussian expert parameters βE ∼ N

(
0 25

25 0

)
and log σ2

E ∼ N (0, 25)

for all E ∈ E .

Each of the resulting three states is then used to initialise an MCMC chain, which is

run for 5, 000 iterations with the first 500 predictions discarded as burn-in, leaving 4, 500

iterations. The three chains are then used to assess if the target posterior distribution has

been fully explored. A formal assessment of convergence is undertaken using the Gelman-

Rubin convergence diagnostic. The potential scale reduction factor (PSRF) value of 5.02

is achieved hence strongly suggesting that convergence has not been reached.

To better understand this result, the predictions obtained from the three chains, shown

in Figure 5.5, are investigated next. In the figure, each colour represents one of the three

starting points. It is clear that neither of the three sets of starting parameter values

led to an appropriate average fit. In fact, it is evident that the MCMC runs have not

explored all modes of the distribution hence indicating poor mixing.

Figure 5.5: MCMC predictions for motorcycle accident data with three unhelpful
starting points reflected by colour. The thick lines represent the average predictions

while the thin lines represent every 10-th prediction.
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It is, however, interesting to note that the individual prediction lines appear to be con-

sistent for each of the three colours. In fact, investigating the trace plots of predictions

would lead one to believe that convergence has been reached. For instance, consider

the randomly selected 49-th observation, which is highlighted in red in Figure 5.6 (i).

Plots (ii), (iii) and (iv) of Figure 5.6 show the trace plots of the predictions for the 49-th

point across the MCMC iterations after accounting for burn-in. It is evident that all

three trace plots indeed resemble hairy caterpillars and, if looked at individually, would

suggest that convergence has been achieved. The thick lines in the trace plots represent

the means of predictions and their colours distinguish the three initial MCMC starting

points consistent with Figure 5.5. It is evident that all three chains yield vastly different

mean predictions with the blue starting point resulting in −0.778, the red one in −0.171,

and the green one in −0.628.

Figure 5.6: (i) Standardised motorcycle accident data with the 49-th point highlighted
in red; (ii), (iii) and (iv) depict the trace plots of the 49-th point predictions across
MCMC iterations after accounting for burn-in with the thick lines corresponding to the
mean of predictions and the colour of the lines corresponding to the initial start of the

chain consistent with Figure 5.5.

Using this deliberately challenging illustration, it has thus been shown that the HME

models can suffer from both poor mixing and poor convergence, which in turn lead

to an unreliable and inconsistent model fit. This thesis aims to provide a potential

solution that works even in challenging circumstances such as discussed in this section.

A flexible method that selects the tree architecture automatically could improve mixing
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and make it more likely that MCMC chains converge irrespective of the initial parameter

values. Such method should allow for escaping previously made unfortunate decisions

and starting the model fitting process over if needed. The development of such a method

would thus enable wider use of HME models. The next two chapters propose and evaluate

such automatic architecture selection methods for HME models.



Chapter 6

Automatic Architecture Selection

6.1 Introduction to Automatic Architecture Selection for

HME Models

Architecture selection for hierarchical mixture of experts (HME) models is the process

of choosing the total number of expert and gate nodes as well as how these nodes are

arranged in the model tree. Pre-setting model architecture poses some well-known chal-

lenges. Selecting a simple model with a small number of nodes can result in underfitting

while choosing a complex model with too many nodes can lead to overfitting. As shown

in the previous chapter, fixing the model architecture also requires setting the initial

model parameter values, which can result in poor mixing and issues with convergence.

The latter challenges could be tackled by growing trees during a model fitting process in

contrast to selecting the architecture in advance.

The area of architecture selection for the hierarchical mixture of experts models has

been investigated by Fritsch et al. (1996). One approach proposed therein consisted of

determining the expert with the lowest likelihood and replacing it with a new gate and

new experts. The gate weights are then allocated randomly while the expert parameters

are inherited from the original expert and modified with an addition of noise. The

method relies on random drawing of the gating parameters, which in turn means that the

proposed state is not fully informed by the data available. Inheriting expert parameters

may also cause issues in cases where the newly formed experts represent vastly different

relationships between covariates and response. Further relevant research was undertaken

in the area of Bayesian hierarchical clustering trees, which share some similarities with

the hierarchical mixture of experts models in terms of the model architecture. The

difference between the two lies in the leaves of the trees. In the usual clustering trees

setting, the goal is to group the observations that are more similar to one another, while

59



Chapter 6. Automatic Architecture Selection for HME Models 60

the leaves of hierarchical mixture of experts models perform the task of fitting statistical

models to the partitioned data. Thus some methods of creating splits and merges might

be of interest when considering hierarchical mixtures of experts. In the case of Bayesian

clustering trees, Heller and Ghahramani (2005) applies Bayesian hypothesis testing to

decide which merges were advantageous as well as to choose the recommended depth of

a binary tree. The problem is then further extended beyond a binary tree by Blundell

et al. (2010). Generating trees with unbounded width and depth is discussed in Adams

et al. (2010), where a tree-structured stick-breaking process is presented. The aim of

this thesis is to contribute to the conducted research by proposing a Bayesian automatic

architecture selection method for the HME models, which allows for both growing and

pruning the trees as well as adjusting the existing architecture of the tree.

Consider two proposed ways of modifying the architecture of an HME model. The

first approach, Type A, involves splitting and merging terminal nodes of the tree hence

changing the total number of nodes in the model. This type of architecture selection

can be thought of as operating in the leaves of the tree with the primary purpose of

growing and pruning the tree. The second way of adjusting the tree architecture, Type

B, involves swapping the existing nodes. This approach does not change the total number

of nodes in the model. The success of the two types of architecture selection methods is

somewhat dependent on each other. While Type A is essential to creating a tree and can

be used on its own, it is not well-equipped to efficiently change the decisions made during

the tree-growing process, particularly those high up in the tree. The latter downfall of

Type A is perfectly matched by the sole purpose of Type B, which is reconsidering the

order of the nodes in the tree. On the other hand, Type B can only operate if there

are nodes available to swap, which are in turn created by Type A. Using the two types

of architecture selection has the potential to increase the exploration of the space and

hence improve the previously recorded poor mixing and convergence issues. Such flexible

methods for automatic architecture selection would allow to propose and consider models

which would have been missed otherwise as well as escape unfortunate previously made

decisions, including an unhelpful initial state.

This chapter proposes and evaluates Type A architecture selection methods, which are

designed to overcome the main challenges posed by the nature of the HME models. A

novel approach for Type B of architecture selection is then presented and discussed in

Chapter 7.

Type A of architecture selection is implemented using an adaptation of the Reversible

Jump (RJ) algorithm. Some background on the algorithm is presented in Section 6.2 fol-

lowed by an illustration of splits and merges in the HME model tree in Section 6.3. Next,

the general framework for the RJ algorithm is outlined in Section 6.4 before discussing
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the specifics of adapting the algorithm to the HME models in Section 6.5. The algo-

rithm steps are then further specified for a binary tree in Section 6.5.1 before discussing

the model size prior and methods of choosing which nodes to split or merge in Sections

6.5.3 and 6.5.4. The latter sections lead to outlining the step-by-step reversible jump

algorithm for the HME models with normal experts in Section 6.6. The main challenge

posed by the RJ algorithm is discussed and tackled in Section 6.5.2 and the proposed

method is then evaluated in Section 6.7. All of the above is then applied to a real-life

data set in Section 6.8, where the proposed methods are interrogated further. Finally, a

tool for an interactive visualisation of the model fitting process is showcased in Section

6.8.5. The effects of the frequency and number of reversible jumps are then examined in

Section 6.8.6 before making final remarks in Section 6.9.

6.2 Introduction to Reversible Jump

When proposing a split or a merge in an HME model, one is simply solving a model

selection problem within the MCMC chain. The difficulty arises when comparing models

with a different number of parameters. There is a need for a flexible and constructive

way to jump between the plausible models. The latter can be achieved by the reversible

jump (RJ) algorithm for the construction of reversible Markov chain samplers first in-

troduced by Green (1995). The general appeal of the reversible jump lies in the natural

generalisation of existing Markov chain methods (Sisson, 2005). The algorithm, which

allows for exploring the sample space within a fixed dimension as well as making changes

in dimensionality, is an extension of the widely used Metropolis-Hastings (MH) algo-

rithm (Metropolis et al., 1953). Another benefit of the reversible jump is the improved

mixing caused by the new state proposals exploring larger spaces than the MH algorithm

(Brooks et al., 2003).

The biggest challenge posed by the reversible jump algorithm is the typically low accep-

tance rate, which is often caused by uninformed jumps (Al-Awadhi et al., 2004; Ehlers

and P. Brooks, 2008; Farr et al., 2015; Brooks et al., 2003). This issue prevents the use of

the algorithm to its full potential. Developing informed proposals for hierarchical mix-

ture of experts models includes several important decisions along the way. For example,

a forward jump, or a split, requires proposing the location of the split, gating parameters,

expert parameters, and allocation variables. An informed method for proposing all of

the above would have the potential of increasing the acceptance rates of the reversible

jump and thus improving mixing.

Research conducted on the topic of developing proposals for the reversible jump includes

using an additional Markov chain to adjust the proposed moves (Al-Awadhi et al., 2004).
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An adaptive proposal constructor, which optimises performance at each iteration is in-

troduced in Ehlers and P. Brooks (2008). Farr et al. (2015) discusses an interpolation

technique, which improves the proposals by implementing inter-model jumps. Further

illustrations of proposal development procedures can be found in Brooks et al. (2003).

Generally, the Reversible Jump Markov Chain Monte Carlo (RJ MCMC) is a widely used

method across a range of applications including inferring the elastic and petrophysical

properties from pre-stack seismic data (Aleardi and Salusti, 2020), which also applies the

delayed rejection updating scheme to speed up the convergence of the algorithm (Green

and Mira, 2001). Keith et al. (2004) introduce a generalised Markov sampler, which is a

mixture of several samplers, including the reversible jump. Jasra et al. (2007) present an

extension of the population-based MCMC to the transdimensional case combining several

methods, including the RJ algorithm. Waagepetersen and Sorensen (2001) provide a

tutorial on the derivation of the reversible jump algorithm with application in genetics.

The reversible jump, amongst others, is further discussed in Green and Mira (2001),

Green (2003), Green and Hastie (2009) and Hastie and Green (2012).

Provided there is a carefully chosen proposal state, the reversible jump algorithm has

the potential to improve the fitting and mixing of HME models via the introduction of

automatic architecture selection. This chapter first illustrates the idea using a simple

five expert hierarchical mixture model architecture.

6.3 Illustration of Reversible Jump

The reversible jump framework can be used when proposing splits and merges in hier-

archical mixture of experts model. The proposed method operates in the leaves of the

tree. That is, in the simplest binary tree case, the forward jump splits one expert into

two, while the backward jump merges two experts into one. To ensure the reversibility

of the jumps, only experts that have the same parent can be merged. The forward jump

requires one to decide on where to cut the space and to introduce a new gate with two

child experts to replace the original expert. The observations in the original expert then

have to be reallocated to the newly formed experts. The backward jump in turn reverses

the effects of the forward jump. A new expert, which absorbs the two original sibling

experts, is introduced as a replacement for the parent gate. All observations are then

assigned to the newly formed expert. It is evident that the number of model parameters

changes with every jump, i.e., a forward jump, or a split, increases, while a backward

jump, or a merge, decreases the number of parameters in the model. The reversible

jump framework is well suited for undertaking such transdimensional jumps. Consider

the illustration of the HME model with five experts as shown in Figure 6.1.
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Figure 6.1: Illustration of an HME model with five experts equivalent to Figure 1.1.

Figure 6.2: Illustration of an HME model with six experts. Split of E5 from Figure
6.1 into E5 and E6.

Let’s say that one is interested in proposing a split of expert E5 into two new experts

(forward jump). The resulting architecture is shown in Figure 6.2. It can be seen that

a new gate G5 is introduced and it performs the task of partitioning the space further.

Two new experts E5 and E6 are now formed and are children of G5. A backward jump

would undo the effects of the forward jump, i.e. merge experts E5 and E6 from Figure

6.2 into one expert E5 from Figure 6.1. In the backward jump, the gate G5 is discarded

and replaced by the newly formed expert. Such jumps can be performed as additional

steps in the MCMC chain thus performing the automatic tree growth. Next, the steps

of the reversible jump are outlined more formally.
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6.4 General Framework and Algorithm for Reversible Jump

The general idea of the reversible jump allows for jumps between several plausible models

with potentially different parameter dimensionalities. Assume we have a finite and count-

able set of models. Let each model have a density function fM (θ) with the associated

parameter vector θ belonging to parameter space Θ. Further denote the transformation

between the set of parameters θ and θ∗ by T . For example, if we are performing a

transformation from M parameters to M∗ parameters, we write θ∗ = TM→M∗(θ). The

reversible jump algorithm starts with an initial model M [0] and initial parameter values

for that model θ[0]. Iterate for t = 1, 2, ..., T :

1. Update parameters of the current model using a sampler of your choice.

2. Select model M∗ with probability P (M [t−1] → M∗) = pM [t−1]→M∗ .

3. Generate ∆[t−1] ∼ fM [t−1]→M∗ .

4. Use T to transform between the parameters of the current and the proposed models,

i.e. set (θ∗,∆∗) = TM [t−1]→M∗
(
θ[t−1],∆[t−1]

)
.

5. Compute the acceptance probability

α := min

(
1,

fpost
M∗ (θ∗)× pM∗→M [t−1] × fM∗→M [t−1](∆∗)

fpost

M [t−1]

(
θ[t−1]

)
× pM [t−1]→M∗ × fM [t−1]→M∗

(
∆[t−1]

) ×∣∣∣∣∣∂TM [t−1]→M∗
(
θ[t−1],∆[t−1]

)
∂
(
θ[t−1],∆[t−1]

) ∣∣∣∣∣
)
,

(6.1)

where fpost
M (θ) is the posterior distribution for the model M with parameter vector

θ.

6. With probability α set M [t] = M∗ and θ[t] = θ∗, otherwise set M [t] = M [t−1] and

θ[t] = θ[t−1].

The above steps outline a general case of the reversible jump. Next, the algorithm is

discussed in the context of hierarchical mixture of experts models.

6.5 Reversible Jump for HME Models

6.5.1 Competing Models in a Binary HME Tree

Assume one is interested in splitting expert E′ into two new experts E∗ and E∗∗. From

this point onwards, only the observations that have reached expert E′ are considered.
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Further denote the new gate parent of experts E∗ and E∗∗ by G∗ with associated gating

parameters γ(G∗,E∗) = 0 and γ(G∗,E∗∗). For ease of notation, for the remainder of the

binary tree case discussion, denote γ = γ(G∗,E∗∗). In this scenario, two competing

models are considered at the depth of E′. The first model M1 with no split and the

density function

fM1

(
yi|xi,θ

M1
)
= f (E′)

(
yi|xi,θ

(E′)
)
, (6.2)

and the second model M2 with the split and density function

fM2

(
yi|xi,θ

M2
)
=

∑
E∈(E∗,E∗∗)

π
(E)
i f (E)

(
yi|xi,θ

(E)
)
, (6.3)

where π(E)
i are the mixing proportions obtained using the gating parameters of the parent

gate G∗. In equations (6.2) and (6.3) θM1 and θM2 denote the parameters of the models

M1 and M2 respectively. In this case, θM1 =
(
θ(E′)

)T
and θM2 =

(
θ(E∗),θ(E∗∗),γ

)T . As

before, let E(i) denote the expert to which the i-th observation is assigned, the complete

data density for M2 can then be written as 1

f
(c)
M2

(
yi, zi|xi,θ

M2
)
=

∏
i∈(E∗,E∗∗)

π
(E(i))
i f (E(i))

(
yi|xi,θ

(E(i))
)
.

Let fpost
M (θ) denote the posterior distribution function for model M with associated model

parameters θ. Following notation introduced in Section 6.4, denote the transformation

between the set of parameters θM1 and θM2 by T . For example, if we are performing a

transformation from M1 parameters to M2 parameters, we write θM2 = TM1→M2(θ
M1).

The reversible jump algorithm can then be implemented as per Section 6.4. For a special

case of normal experts, which is the focus of this thesis, the steps of forward and backward

reversible jumps are derived in Section 6.6.2. Next, an algorithm for developing efficient

split proposals is presented.

6.5.2 Developing Efficient Proposals for the Forward Jump

The acceptance rate of the forward jumps in the RJ algorithm for HME models depends

on the suitability of proposals for the new state. The RJ algorithm is well-known for low

acceptance rates arising from randomly generated jumps (Al-Awadhi et al., 2004; Ehlers

1The notation i ∈ (E∗, E∗∗) is used as a shorthand for the i for which z
(E∗)
i = 1 or z

(E∗∗)
i = 1.
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and P. Brooks, 2008; Farr et al., 2015; Brooks et al., 2003). As discussed previously, a

forward jump, or a split, requires one to pick a location of the split as well as propose

the gating parameters for the newly formed gate. In the case of a backward jump, there

is no addition of a new gate node and hence there is no need for developing a gating

parameter proposal. In this section, a method of making intelligent forward jump gating

parameter proposals for HME models is proposed.

The proposed method is illustrated in a two-dimensional setting and shown in Figure

6.3. Firstly, a point x∗ is selected at random from the points allocated to the expert

one wants to split (circled by a red dashed line). Meanwhile, a gating slope parameter,

denoted γ1, is drawn from chosen proposal distribution. The chosen point x∗ and the

gating slope parameter γ1 are then used to infer the initial gating intercept parameter

γ∗0 . The mixing proportions obtained using γ = (γ∗0 , γ1)
T are shown as a dashed line

in the bottom plot. Finally, some noise is added to the inferred intercept parameter

resulting in γ0. The final proposed mixing proportions obtained using γ = (γ0, γ1)
T are

then shown as a solid line in the bottom plot.

Figure 6.3: Illustration of the forward jump proposal algorithm for the reversible
jump MCMC.
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Forward Jump Proposal Generation Algorithm for the New Gating Parame-

ters

More formally, identify the points that have reached the expert one wants to split, i.e.

i1, ..., in∗ . Denote the total number of points in the set by n∗. The steps of the proposed

algorithm are then as follows

1. Draw x∗ from all xi1 , ...,xin∗ at random. It then follows that q (x∗) = 1
n∗ .

2. Draw γ1 ∼ MVN (µγ1 ,Σγ1).

3. Calculate γ∗0 = −x∗Tγ1.

4. Draw ϵ ∼ N
(
0, σ2

ϵ

)
.

5. Set γ0 = γ∗0 + ϵ.

It can be shown that the joint probability density function of the proposed gating pa-

rameter γ=(γ0,γ1)
T can be written as

q(γ) =

in∗∑
i=i1

1

n∗ × ϕµγ|xi ,Σγ|xi
(γ), (6.4)

where ϕµ,Σ(·) is the multivariate Gaussian density function with mean vector µ and

variance-covariance matrix Σ (please refer to the Appendix C for the details of the

derivation).

It is evident that one is required to select several parameters for the proposal. Firstly,

the mean, µγ1 , and variance-covariance matrix, Σγ1 , for the proposal distribution of

the logistic regression slopes γ1 are to be chosen. The latter can be guided by the

initial exploration of the data. For example, for a centered-at-zero proposal with a larger

variance would be more likely to capture varying abruptness in the separations between

potential experts. Similarly, smoother transitions between the experts would be explored

with smaller values of Σγ1 . The second proposal parameter to be selected is the variance

for the noise added to the logistic regression intercept, σ2
ϵ . It is encouraged to keep this

value small in order to not move too far away from the inferred intercept whilst still

introducing a random element to the proposal.

The forward jump proposal generation algorithm offers an alternative to the naive ap-

proach, which is based on uninformed random draws of the gating parameters. By

selecting a reference point from the existing observations in the initial step 1 of the al-

gorithm, one uses information provided by the observed data. This information is then
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intelligently combined with the elements of a standard proposal approach, which is used

in step 2. The latter development is thus expected to lead to more favorable forward

jump proposals. The proposed forward jump generation algorithm is formally evaluated

on an HME model with Gaussian experts in Section 6.7.

Next, the incorporation of prior beliefs on the size of an HME model tree is discussed.

6.5.3 Model Size Prior for HME Models

As before, let E denote an expert from the set of all experts in the model, E . Further

denote the number of elements in the set E as NE . One might wish to impose a prior on

the total number of experts in an HME model. The proposed prior on the tree size can

be written as follows:

f(NE) =
λNE exp(−λ)

NE !
,

i.e., NE ∼ Poi(λ). Let us further denote the set of all experts after the proposed RJ step

as E∗ and let NE∗ denote the number of elements in the set. The effect of the model size

prior on the acceptance probability of the RJ jump can then be quantified as

f(NE∗)

f(NE)
=

λNE∗ exp(−λ)
NE∗ !

λNE exp(−λ)
N !

=
NE !

NE∗ !
λ(NE∗−NE). (6.5)

In a case of a binary tree, NE∗ can be either NE∗ = NE +1 (after split) or NE∗ = NE − 1

(after merge). For the two cases, (6.5) can then be written as

f(NE∗)

f(NE)
=


λ

NE∗ , if NE∗ = NE + 1,

NE
λ , if NE∗ = NE − 1.

(6.6)

Imposing a prior on the total number of experts in the model is a way of controlling

the overall size of the tree. The latter might be valuable when it comes to avoiding

overfitting/underfitting. Selecting which experts to split and which ones to merge is

discussed next.

6.5.4 Choosing Experts to Split and Merge

Having outlined the theory for the RJ algorithm, the methodology for selecting experts

to be split and merged is to be developed. Following the divide and conquer strategy, an
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assumption is made that experts containing fewer observations are less likely to benefit

from a split compared to a merge. Similarly, experts with more observations are assumed

to be less likely to benefit from a merge compared to a split.

In a binary tree case, any expert can be split into two experts. Consider splitting expert

E and let nE =
∑

i z
(E)
i denote the total number of observations in E. The proposed

probability of choosing expert E to split is then proportional to

psplit (E) ∝ nE + δ

NE
, (6.7)

where δ is a very small constant and NE is the number of elements/experts in the set E .

In a binary tree case, any two sibling experts can be merged into one expert. Denote

the set of all gates which are parents to two experts as G∗. Further denote the total

number of elements in G∗ as NG∗ . Consider merging the kids of gate G∗ from G∗ and

let nG∗ =
∑

E∈P(G∗)
>

∑
i z

(E)
i denote the total number of observations assigned to the

children of G∗. The proposed probability of choosing children of G∗ to merge is then

proportional to

pmerge (G∗) ∝ 1

nG∗ + δ
, (6.8)

where δ is a very small constant.

It is important to note that the quantities stated in (6.7) and (6.8) must also be calculated

for the jump in the opposite direction of the proposed jump.

The addition of informed expert selection for reversible jumps was also noted to en-

courage the merging of empty experts. Given (6.8), the gates with a smaller number of

observations assigned to their children have a higher probability of being picked for a

merge. Thus, gates with empty experts as children are more likely to be selected. Elim-

inating empty experts improves on the overall fit of the tree since such experts do not

have an effect on the overall likelihood of the tree and are thus are an unnecessary com-

plication of the model architecture. On the other hand, (6.7) ensures a lower probability

of picking an empty expert for a split thus avoiding wasting computational time.

This section concludes the theory and proposed extensions required for implementing

the reversible jump for the HME models. Next, the special case of normal experts is

discussed in detail and applied to simulated data as well as a real life application.



Chapter 6. Automatic Architecture Selection for HME Models 70

6.6 Reversible Jump for Normal Expert HME Models

6.6.1 Competing Models for Normal Expert HME Models

Using notation introduced in Section 6.5.1, further assume that experts E′, E∗ and E∗∗

are normal experts. Let ϕµ,σ2(·) denote the normal density with the mean µ and variance

σ2
E . In such case the density function of model M1 with expert E′ can be written as

fM1

(
yi|xi,θ

M1
)
= f

(
yi|xi,θ

(E′)
)

= f (E′)
(
yi|xi,βE′ , σ2

E′
)

= ϕµiE′ ,σ2
E′
(yi),

where θM1 =
(
θ(E′)

)T
=
(
βE′ , σ2

E′
)T and µiE′ = xT

i βE′ . The corresponding likelihood

function is

LM1 =
∏
i∈E′

ϕµiE′ ,σ2
E′
(yi).

Finally, the posterior distribution function for model M1 with expert E′ can be written

as

fpost
M1

(
θM1

)
∝ LM1 × f(βE′)× f

(
σ2
E′
)
, (6.9)

where f(βE′) and f
(
σ2
E′
)

correspond to the expert parameter prior distribution density

functions. Similarly, the density function for the second model M2 with experts E∗ and

E∗∗ can be written as

fM2

(
yi|xi,θ

M2
)
=

∑
E∈(E∗,E∗∗)

π
(E)
i f (E)

(
yi|xi,θ

(E)
)

=
∑

E∈(E∗,E∗∗)

π
(E)
i f (E)

(
yi|xi,βE , σ

2
E

)
=

∑
E∈(E∗,E∗∗)

π
(E)
i ϕµiE ,σ2

E
(yi),

where θM2 =
(
θ(E∗),θ(E∗∗),γ

)T
=
(
βE∗ , σ2

E∗ ,βE∗∗ , σ2
E∗∗ ,γ

)T and µiE = xT
i βE for E ∈

(E∗, E∗∗). Alternatively, if the allocation variables are known
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f
(c)
M2

(
yi, zi|xi,θ

M2
)
= π

(E(i))
i f (E(i))

(
yi|xi,θ

(E(i))
)

= π
(E(i))
i f (E(i))

(
yi|xi,βE(i), σ

2
E(i)

)
= π

(E(i))
i ϕµE(i),σ

2
E(i)

(yi),

where µE(i) = xT
i βE(i) for E ∈ (E∗, E∗∗). In the case of known allocation variables, the

corresponding likelihood function is

LM2 =
∏

i∈(E∗,E∗∗)

π
(E(i))
i ϕµE(i),σ

2
E(i)

(yi).

Finally, the posterior distribution function for model M2 with experts E∗ and E∗∗ can

be written as

fpost
M2

(
θM2

)
∝ LM2 × f(βE∗)× f(σ2

E∗)× f(βE∗∗)× f
(
σ2
E∗∗
)
× f (γ) , (6.10)

where f(βE) and f
(
σ2
E

)
for E ∈ (E∗, E∗∗) correspond to the expert parameter prior

distribution density functions and f (γ) denotes the gating parameter prior distribution

density function.

The steps of the reversible jump algorithm for a special case of normal experts are

outlined next.

6.6.2 Forward and Backward Jumps for Normal Expert HME Models

In a special case of normal experts, the steps of the reversible jump algorithm, split by

direction, are outlined in Sections 6.6.2.1 and 6.6.2.2.

6.6.2.1 Forward Jump (Split Move)

Current Model M1, Proposed Model M2

1. Update parameters of the current model M1, i.e. θM1 = (βE′ , σ2
E′)T . Record the

corresponding probability densities q (βE′) and q
(
σ2
E′
)
, respectively.
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2. Identify the points that have reached expert E′, i.e, i ∈ E′. Denote the total

number of points that have reached E′ by nE′ . All subsequent steps are applied to

this subset of points only. 2

3. Propose a gating parameter value γ for the new gate G∗ as follows

(a) Draw x∗ from all xi1 , ...,xinE′ at random. It then follows that q (x∗) = 1
nE′

.

(b) Draw γ1 ∼ MVN (µγ1 ,Σγ1).

(c) Draw ϵ ∼ N
(
0, σ2

ϵ

)
.

(d) Set γ0 = −x∗Tγ1 + ϵ.

(e) Evaluate the joint probability density function of the proposed gating param-

eter γ=(γ0,γ1)
T as

q(γ) =

inE′∑
i=i1

1

n
× ϕµγ|xi ,Σγ|xi

(γ),

where ϕµ,Σ(·) is the multivariate Gaussian density function with mean vector

µ and variance-covariance matrix Σ.

4. Calculate the mixing proportions π
(E∗)
i and π

(E∗∗)
i for i ∈ E′ as

π
(E∗)
i =

1

1 + exp
(
xT
i γ
) and π

(E∗∗)
i =

exp
(
xT
i γ
)

1 + exp
(
xT
i γ
) .

5. Assign each point i ∈ E′, i.e., set z
(E)
i = 1 and z

(E′′)
i = 0 for E′′ ̸= E, to experts

E∗ and E∗∗ with probabilities of π(E∗)
i and π

(E∗∗)
i respectively.

6. Given the allocations from the previous step, obtain the MLE estimates for the

expert parameters of M2, i.e. β̂E∗ , σ̂2
E∗ , β̂E∗∗ , σ̂2

E∗∗ .

7. Draw the new values

βE ∼ MVN

(
β̂E , σ̂

2
E

(
X(E)TX(E)

)−1
)
,

where β̂E is obtained in the previous step, σ̂2
E

(
X(E)TX(E)

)−1
is the best linear

unbiased estimator for Var (βE), and X(E) denotes a subset of the design matrix

containing points that have reached expert E for E ∈ (E∗, E∗∗).
2Though steps 1 and 2 are not part of a transdimensional move, the proposals in the reverse step are

identical to the regular Gibbs update of the expert parameters, thus the proposal densities from step 1
can be reused in the calculation of the acceptance probability of the reverse move.
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8. Draw the new values σ2
E given βE from the conditional Inverse-Gamma posterior

distribution

σ2
E |X(E),y(E) ∼ IG

(
a
(post)
E , b

(post)
E

)
,

where y(E) is a subset of the response vector containing points that have reached

expert E for E ∈ (E∗, E∗∗) and the posterior parameters
(
a
(post)
E , b

(post)
E

)
are ob-

tained as per (5.2).

9. Calculate the probability of drawing the new values of βE , for E ∈ (E∗, E∗∗) as

q (βE) = ϕ
β̂E ,σ̂2

E

(
X(E)T X(E)

)−1(βE),

where ϕµ,Σ(·) is the multivariate Gaussian density function with mean vector µ

and variance-covariance matrix Σ.

10. Calculate the probability of drawing the new values of σ2
E , i.e. q(σ2

E), for E ∈
(E∗, E∗∗) by evaluating the appropriate Inverse-Gamma density function as per

step 8.

11. Calculate the probability of drawing the chosen values for the allocation variables

q(z) =
∏

i∈(E∗,E∗∗)

π
(E(i))
i .

12. Calculate the model size priors f(NE) and f(NE∗) for the total number of experts

before and after the jump, respectively. For a binary forward jump, as per (6.6),

f(NE∗)

f(NE)
=

λ

NE∗
,

where the number of experts in the model NE follows a Poisson distribution with

rate λ, i.e., NE ∼ Poi(λ).

13. Calculate psplit(E′), the probability of choosing to split E′, as per (6.7) and pmerge(G∗),

the probability of merging the two children of G∗, i.e. E∗ and E∗∗, as per (6.8).

14. Accept the forward jump with probability

α = min

(
1,

fpost
M2

(
θM2

)
× q (βE′)× q

(
σ2
E′
)
× f(NE∗)× pmerge(G∗)

fpost
M1

(θM1)× q(βE∗)× q(βE∗∗)× q(σ2
E∗)× q(σ2

E∗∗)× q(z)× q(γ)× f(NE)× psplit(E′)

)
,
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where q(γ) is obtained as per step 3e, while fpost
M1

(θM1) and fpost
M2

(
θM2

)
are calcu-

lated as per (6.9) and (6.10), respectively.

6.6.2.2 Backward Jump (Merge Move)

Current Model M2, Proposed Model M1

1. Update parameters of the ccurrent model M2, i.e. θM2 = (βE∗ , σ2
E∗ ,βE∗∗ , σ2

E∗∗ ,γ).

Record the corresponding probability densities q(γ), q(z), q (βE), and q
(
σ2
E

)
for

E ∈ (E∗, E∗∗).

2. Update allocations for all data points i = 1, ..., n as follows

(a) Calculate

α
(E)
i =

 ∏
(G,H)∈PE

π
(G,H)
i

 f (E)
(
yi|xi,θ

(E)
)
,

for all E ∈ E .

(b) Assign the i-th point to expert E, i.e., set z(E)
i = 1 and z

(E′′)
i = 0 for E′′ ̸= E,

with probability α
(E)
i where

∑
E∈E∗ α

(E)
i = 1.

3. Assign all points from E∗ and E∗∗ to the merged expert E′.

4. Given the allocations from the previous step, obtain the MLE estimates for the

expert parameters of M1, i.e. β̂E′ , σ̂2
E′ .

5. Draw the new values

βE′ ∼ MVN

(
β̂E′ , σ̂2

E′

(
X(E′)TX(E′)

)−1
)
,

where where β̂E′ is obtained in the previous step, σ̂2
E′

(
X(E′)TX(E′)

)−1
is the best

linear unbiased estimator for Var (βE′), and X(E′) denotes a subset of the design

matrix containing points that have reached expert E′.

6. Draw the new values σ2
E′ given βE′ from the conditional Inverse-Gamma posterior

distribution

σ2
E′ |X(E′),y(E′) ∼ IG

(
a
(post)
E′ , b

(post)
E′

)
,

where y(E′) is a subset of the response vector containing points that have reached

expert E′, and the posterior parameters
(
a
(post)
E′ , b

(post)
E′

)
are obtained as per (5.2).
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7. Calculate the probability of obtaining the value of βE′ as

q(βE′) = ϕ
β̂E′ ,σ̂2

E′

(
X(E′)T X(E′)

)−1(βE′),

where ϕµ,Σ(·) is the multivariate Gaussian density function with mean vector µ

and variance-covariance matrix Σ.

8. Calculate the probability density of the new value of σ2
E′ , i.e. q

(
σ2
E′
)

by evaluating

the appropriate Inverse-Gamma density as per step 6.

9. Calculate the model size priors f(NE) and f(NE∗) for the total number of experts

before and after the jump, respectively. For a binary backward jump, as per (6.6),

f(NE∗)

f(NE)
=

NE
λ

,

where the number of experts in the model NE follows a Poisson distribution with

rate λ, i.e., NE ∼ Poi(λ).

10. Calculate pmerge(G∗), the probability of merging the two children of G∗, i.e. E∗

and E∗∗, as per (6.8) and psplit(E′), the probability of choosing to split E′, as per

(6.7).

11. Accept the backward jump with probability

α =min

(
1,

fpost
M1

(
θM1

)
× q (βE∗)× q

(
σ2
E∗
)
× q (βE∗∗)× q

(
σ2
E∗∗
)
× q(z)× q(γ)× f(NE∗)× psplit(E′)

fpost
M2

(θM2)× q(βE′)× q(σ2
E′)× f(NE)× pmerge(G∗)

)
,

where fpost
M1

(θM1) and fpost
M2

(
θM2

)
are calculated as per (6.9) and (6.10), respec-

tively.

The steps outlined above can now be applied to automatically grow HME models. Before

the full implementation is carried out, the reversible jump proposal generation algorithm

for HME model with normal experts is evaluated first.
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6.7 Evaluation of the Reversible Jump Proposal Generation

Algorithm

The reversible jump proposal generation algorithm, outlined in the previous sections, is

evaluated on simulated data shown in Figure 6.4. The desired model fit is a hierarchical

mixture of three normal experts, where the three experts E1, E2 and E3 are represented

by black, red and green colours respectively. For the purpose of algorithm evaluation,

an additional expert E4 is introduced and shown in blue.

It is evident that the three potential experts, as shown in Figure 6.4 (i), would be well

separated as there are abrupt changes present in the relationship between the response

and explanatory variable. The black and green experts are also anticipated to have no-

tably different intercept and slope parameters when compared to the red expert. Finally,

there is a low level of variability in the response present for each anticipated expert.

Figure 6.4: Hierarchical mixture of experts with (i) three; (ii) two; (iii) four experts
for simulated data. Experts E1, E2, E3 and E4 represented by colours black, red,

green and blue respectively.

The forward jump parameters are drawn from two Gaussian distributions ,i.e., γ1 ∼
N (0, 100), which ensures that the proposed slope parameters are steep enough, and

ϵ ∼ N (0, 0.5), which introduces a random element to the proposed intercept parameter

(see Section 6.5.2 for details). Given the anticipated abrupt separation between experts,

the following weakly informative prior distribution is selected for the gating parameters

γ(G,H) ∼ MVN

(
0,

[
100 0

0 100

])
,

for all (G,H) ∈ PE . Taking into account the notable variability present across the

potential individual expert fitted regression lines, wide weakly informative priors are
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chosen for the intercept and slope expert parameters. A moderate prior is set for the

expert variance parameter to reflect the anticipated tighter allocation to experts. The

NIG prior is thus chosen as

βE , σ
2
E ∼ MVN

(
0,

[
100 0

0 100

]
, 1, 0.1

)
,

for all E ∈ E .

The following scenarios are then considered:

Case A Proposing a split, where it should be accepted.

Scenario: split expert E2 (red) from Figure 6.4 (ii) into two new experts.

Case B Proposing a split, where it should be rejected.

Scenario: split expert E3 (green) from Figure 6.4 (i) into two new experts.

Case C Proposing a merge, where it should be accepted.

Scenario: merge experts E3 and E4 (green and blue) from Figure 6.4 (iii) into one

expert.

Case D Proposing a merge, where it should be rejected.

Scenario: merge experts E2 and E3 (red and green) from Figure 6.4 (i) into one

expert.

Each of the cases above is ran 1, 000 times and the occurrence of the desired outcome is

recorded in Table 6.1. It can be seen that the algorithm has behaved as expected. The

majority of beneficial splits and merges has been accepted (77.6% and 88.9% respectively)

while only a small proportion of detrimental splits (7%) and none of undesired merges

have been accepted. It is worth noting that this is a simple problem, which has been

simulated to test and showcase the proposed method. The acceptance rates might not

be as high when used on more complicated, multidimensional data sets.

Table 6.1: Results for the evaluation of the reversible jump proposal generation algo-
rithm.

Case Proposal Expected Acceptance Recorded Acceptance

A Split High 77.6%

B Split Low 7%

C Merge High 88.9%

D Merge Low 0%
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It is of interest to look at the accepted forward jumps, or splits, to understand if the

proposed algorithm is working as anticipated. Two examples of accepted jumps are

shown in Figures 6.5 and 6.6.

Plots (i) in the corresponding figures depict the same initial state with two experts (black

and red). Plots (ii) in turn show the fit straight after an accepted forward jump. It is

important to note that the fitted lines shown in these plots are not fitted to the data,

but those proposed by the reversible jump efficient proposal generation algorithm. The

gate and expert parameters are then improved upon by multiple MCMC runs and the

resulting regression lines and allocations are shown plots (iii). The colors present in plots

(ii) and (iii) distinguish the three experts present in the HME tree post-split.

Figure 6.5: First example of accepted forward jump state from initial state shown in
(i); Fit immediately after the jump shown in (ii); Fit after 100 MCMC runs shown in

(iii). Experts E1, E2, E3 represented by colours black, red and green respectively.

Figure 6.6: Second example of accepted forward jump state from initial state shown
in (i); Fit immediately after the jump shown in (ii); Fit after 100 MCMC runs shown
in (iii). Experts E1, E2, E3 represented by colours black, red and green respectively.

In the first example from Figure 6.5 (ii), the proposed split is a fortunate one, because

the space is cut in the right region and the proposed expert parameters already fit the
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data well. In the case of a second example from Figure 6.6 (ii), the initial cut appears

to be away from the desired region and the proposed expert parameters do not seem

to fit data well. However, this state is an excellent start for MCMC to then improve

upon resulting in an excellent fit shown in Figure 6.6 (iii). The latter example highlights

that the reversible jump proposal is not expected to provide a perfect solution to the

problem, but to assist MCMC by proposing a reasonable start. Having shown that

informed forward jumps work on a simple simulated example, the algorithm is next

evaluated on a real-life data set.

6.8 Evaluation of the Reversible Jump MCMC on Motor-

cycle Accident Data

This section evaluates the performance of the RJ MCMC on the motorcycle accident

data set. The naive approach, which does not incorporate the developments proposed

throughout this chapter, is presented in Section 6.8.1 and is compared to the informed

RJ methodology in Section 6.8.2. The previously introduced unhelpful intitial states case

(see Section 5.5) is revisited and evaluated with respect to mixing and convergence in

Section 6.8.3. In Section 6.8.4, we move away from starting the chain with a pre-set tree

architecture and investigate automatic tree growth with RJ MCMC. The automatically

grown tree is then visualised using an interactive R-Shiny application in Section 6.8.5.

The effects of the frequency and number of reversible jumps are then interrogated in

Section 6.8.6 before making final remarks in Section 6.9.

6.8.1 Naive Reversible Jump MCMC Results

The reversible jump MCMC for hierarchical mixture of experts model is evaluated on

motorcycle accident data set (standardised data shown in Figure 6.7). The detailed

exploratory analysis and description of the data is covered in Section 5.5.1. In a nutshell,

it is evident that the motorcycle data is of a heteroscedastic nature with the variance

of observations increasing as time increases. Moreover, there are a number of change

points present in the data. These characteristics of the data make it a good candidate

for showcasing the main strengths of HME models.

First, an informed HME model architecture is chosen to evaluate the performance of

the naive RJ algorithm, which does not incorporate any of the developments proposed

throughout this thesis. Following initial observations made in Section 5.5.1, an initial

state consisting of 5 normal experts is chosen and shown in Figure 6.7. The initial
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allocations are pre-set by visual inspection with initial model parameters set as the

corresponding MLE estimates.

Figure 6.7: Initial informed allocations for evaluation of the naive reversible jump
against the proposed method on standardised motorcycle accident data.

For this illustration, the RJ MCMC is run for 5, 000 iterations, with the first 500 runs

discarded as burn-in. In all evaluations performed in this chapter, the convergence of the

chains is assessed by visual inspection of the predictions as outlined in Section 4.3.4.2. A

single reversible jump is proposed every 10 MCMC iterations, which serves as a starting

point for the detailed frequency and number of jumps investigation undertaken in Section

6.8.6. The prior distributions used here are stated in Section 5.5.2 and applied to the

motorcycle accident data throughout the thesis.

Naive RJ MCMC chain with non-informative jumps is set-up is as follows:

1. The direction of the jump is chosen at random.

2. Experts to split/merge are chosen at random.

3. In case of a split, the new gating parameters are drawn from

γ(G,H) ∼ MVN

(
0,

[
100 0

0 100

])
,

for all (G,H) ∈ PE and for all E ∈ E . A wide proposal is chosen to allow for the

observed abrupt separation between the potential experts.

4. The new expert parameters are drawn from

βE ∼ MVN

(
0,

[
5 0

0 5

])
and σ2

E ∼ IG (1, 0.1) ,
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for all E ∈ E . A smaller variance for the proposal distribution of the intercept and

slope is used here to ensure that the initial starting values are not too far from zero

for the standardised data.

The predictions produced by the naive RJ MCMC algorithm are shown in Figure 6.8

while the associated acceptance rates are given in Table 6.2. It can be seen that the naive

RJ MCMC was not able to escape three unfortunate merges resulting in the depicted

state. Table 6.2 also reveals a low overall rate acceptance of 0.6%. It is evident that

none of the proposed splits have been accepted, which is not a surprising result given

the uninformed split proposal. From Figure 6.9, it is clear that the chain has spent

the most time exploring models with two experts. Although the individual predictions

(black lines) appear to be tightly clustered suggesting convergence has been achieved, it

is evident that the chain has not explored all modes of the posterior distribution. These

results are next compared to the methodology proposed in Section 6.5.

Table 6.2: Acceptance rates of the naive RJ algorithm jumps for the motorcycle
accident data.

Splits Merges All Jumps

Number Proposed 244 256 500

Number Accepted 0 3 3

Acceptance 0% 1.17% 0.6%

Figure 6.8: Naive RJ MCMC predictions for the motorcycle accident data. Every
10-th prediction shown. Average predictions shown in red.
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Figure 6.9: Distribution of the number of experts in the naive RJ MCMC chain for
the motorcycle accident data.

6.8.2 Informed Reversible Jump MCMC Results

Next, all new methods proposed in this chapter are applied to the same problem with

the exception of the model size prior. At this stage, it is of interest to find out what

number of experts the chain spends most time in without the influence of model size

prior. The obtained results can then help inform whether such prior is required for this

application.

The forward jump parameters are drawn from two Gaussian distributions, i.e., γ1 ∼
N (0, 100), ϵ ∼ N (0, 0.5) to ensure the comparability of the two methods (see Section 6.5.2

for forward jump proposal details) . The resulting predictions are shown in Figure 6.10

while the corresponding acceptance rates are given in Table 6.3.

Table 6.3: Acceptance rates of the informed RJ algorithm jumps for the motorcycle
accident data.

Splits Merges All Jumps

Number Proposed 250 250 500

Number Accepted 30 31 61

Acceptance 12% 12.4% 12.2%
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Figure 6.10: Informed RJ MCMC predictions for the motorcycle accident data. Every
10-th prediction shown. Average predictions shown in red.

Figure 6.11: Distribution of the number of experts in the informed RJ MCMC chain
for the motorcycle accident data.
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It is evident that the informed RJ MCMC predictions are tracking the data really well

with the red line showing the average predictions. All modes of the posterior distribution

appear to have been visited and investigated by the MCMC chain. It can further be seen

that 12% of the proposed splits and 12.4% of the proposed merges have been accepted

yielding an overall acceptance rate of 12.2% for the reversible jump proposals. The latter

jump acceptance rates are a vast improvement on those seen for the naive RJ MCMC

(0%, 1.17% and 0.6% respectively). The distribution of the number of experts shown in

Figure 6.11 reveals that 72.2% of the time, the HME model consisted of 4 experts. It is

also evident that the RJ MCMC explored models with three to six experts in them.

Figure 6.12: The number of experts in the HME tree after each informed RJ proposal
step for the motorcycle accident data.

Figure 6.12 shows the number of experts present in the HME tree after each informed

reversible jump. In agreement with observations made thus far, there is evidence of a

changing architecture and movement between three and five experts for the majority of

the time. The architecture, however, does not settle on a particular number of experts.

Increasing the number of MCMC iterations has also been investigated and has resulted

in the same outcome. This means that there is no meaning to commenting on posterior

parameter estimates and thus the average model fit is discussed as a whole.

To further illustrate a HME model fit, consider an example of a model fit at a randomly

chosen iteration shown in Figure 6.13.
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Figure 6.13: (i) HME model fit at a randomly selected iteration using informed RJ
MCMC for the motorcycle accident data; (ii) representation of the expert activity in

the explanatory variable space, where red bars correspond to responsibilities.

From plot (i), it can be seen that at this particular iteration, there were 4 experts

present in the model each represented by a different color. The solid lines are equiva-

lent to the fitted linear regression lines obtained using the posterior intercept and slope

expert parameters. As anticipated, the fitted lines vary in both location and steepness

thus accurately representing the changing relationship between time and acceleration.

Similarly, the dashed lines represent the uncertainty bounds defined by the posterior

expert variance. It is immediately obvious that these are not constant across experts

with the smallest variance present for expert 1 (pink) and the largest for expert 3 (blue).
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The observations are consistent with those made at the exploratory stage. The level

of abruptness in the separation between experts can be visualised using individual re-

sponsibilities, which are equivalent to the product of the path probabilities and expert

densities for each point, shown in plot (ii). Overall, it appears that experts are covering

a distinct range of the explanatory variable, however, there is a slight overlap between

experts 3 (blue) and 4 (purple) at the point of change. Figure 6.13 showcases one of

many plots available in the bespoke R-Shiny application, which is discussed in detail in

Section 6.8.5. Next, the prediction intervals are investigated in order to assess the effects

of heteroscedasticity on the model fit (Figure 6.14).

Figure 6.14: HME prediction intervals for the motorcycle accident data. The thin red
lines show the 2.5-th and 97.5-th percentiles of predictions made during the informed
RJ MCMC iterations. The thick red line shows the average predictions. For more

details on obtaining predictions, please refer to Appendix E.

It can be seen that the prediction intervals account for the change in variance and are

broader for areas with more uncertainty and narrower for the areas with tighter clustered

observations. This is one of the features that makes HME models so appealing. In

Chapter 8, the competitors of HME models are also assessed in the context of accounting

for heteroscadasticity.

Next, the three unhelpful starting points presented in Section 5.5 are evaluated and

compared to the previously obtained outcome.
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6.8.3 Mixing and Convergence

The deliberately unhelpful starting point evaluation for the motorcycle accident data

undertaken in Section 5.5 is revisited in this section. It has been shown that running an

MCMC chain with pre-set architecture from the three starting points yields inconsistent

results across the chains as well as highlights poor mixing, where only a subset of posterior

distribution modes is explored by each of the chains (Figure 6.15). It is now of interest to

investigate whether the addition of the informed reversible jump helps chains investigate

modes of the posterior distribution despite their unfortunate starting points.

The same starting parameter values are now used to initialise the three informed RJ

MCMC chains as per methodology proposed in this chapter. From this point onwards,

the term naive RJ MCMC refers to the uninformed RJ MCMC while the terms RJ

MCMC and informed RJ MCMC are used interchangeably. To ensure comparability of

the two methods, the pre-set HME architecture used in this evaluation is consistent with

the one seen for MCMC with no reversible jump.

The results of the evaluation are shown in Figure 6.16. It is evident that the addition of

the reversible jump has notably improved the overall HME model fit for all three chains.

Consistent predictions are produced across all three cases hence showing that the RJ

MCMC has explored all modes of the posterior distribution and removed the effect of

the unfortunate starting point.

It can be deduced that the addition of the reversible jump can improve mixing for HME

models. The predictions obtained for all three starting points appear to be consistent

and tightly clustered together suggesting that the chains have converged to the same

stationary distribution. To formally check that convergence has been reached across and

within the chains, the Gelman-Rubin diagnostic is examined next.
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Figure 6.15: Equivalent to Figure 5.5. MCMC predictions with the three starting
points reflected by color for motorcycle accident data. The thick lines represent the

average predictions while the thin lines represent every 10-th prediction.

Figure 6.16: RJ MCMC predictions obtained with the three starting points reflected
by color for motorcycle accident data. The thick lines represent the average predictions

while the thin lines represent every 10-th prediction.
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The Gelman-Rubin diagnostic yields a value of 1.13, which strongly suggests that the

convergence has been achieved as well as is a clear improvement over the value of 5.02

as seen for the MCMC with no reversible jump (see Table 6.4).

Table 6.4: The potential scale reduction factor (PSRF) for chains with three randomly
drawn parameter starting values obtained using MCMC and RJ MCMC for motorcycle

accident data.

MCMC RJ MCMC

PSFR 5.02 1.13

Having shown that the addition of the informed reversible jump step can improve mix-

ing and convergence, the simplest starting point of the HME model with one expert is

considered next.

6.8.4 Automatic HME Tree Growth for Motorcycle Accident Data

In the previous sections, an initial state for HME model consisted of a pre-set architec-

ture. Setting a starting number of experts also requires providing the initial allocation

variables and model parameter values, which becomes challenging when working with

more than two dimensions. In this section, we start with only one normal expert and let

the RJ MCMC guide us to the preferred number of experts. Similarly as seen before,

Figure 6.17 showcases the resultant predictions while the acceptance rates are given in

Table 6.5.

Table 6.5: Acceptance rates of the RJ algorithm jumps with initial start of 1 expert
for motorcycle accident data.

Splits Merges All Jumps

Number Proposed 257 243 500

Number Accepted 21 18 61

Acceptance 8.17% 7.41% 7.8%
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Figure 6.17: RJ MCMC predictions with initial start of 1 expert for the motorcycle
accident data. Every 10-th prediction shown. Average predictions shown in red.

The predictions appear consistent with the ones seen in the previous section. On the

other hand, the acceptance rates appear slightly lower than those seen for the initial start

of HME with 5 experts. A closer look at the distribution of experts, shown in Figure 6.18,

reveals that the majority (86.4%) of HME models within the RJ MCMC chain consisted

of 4 experts, which is in agreement with the results seen before. Understandably, when

starting with 1 expert, more time is spent growing the tree, while starting with 5 experts

results in not accepting the merges that would yield to a model with less than 3 experts

(see Figure 6.11).

Figure 6.18: Distribution of the number of experts in the RJ MCMC chain with an
initial start of 1 expert for the motorcycle accident data.
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Figure 6.19 further reveals that the number of experts increases to four within the first

10 jumps. Following that, the number of experts ranges from three to five, which is

consistent with results seen for an initial start with five experts (Figure 6.12).

Figure 6.19: The number of experts in the HME tree after each informed RJ step
proposal with an initial start of 1 expert for the motorcycle accident data.

Overall, the results presented in this section suggest that starting with the simplest model

and allowing the RJ MCMC to select the required number of experts is a viable tactic that

leads to models consistent with those achieved with an informed pre-set architecture. It

thus seems preferable to start with one expert in the tree and hence reduce issues arising

from selecting the number of experts, their arrangement in the tree, and the associated

initial model parameters.

Thus far, it has been shown that, for motorcycle accident data, the proposed methodology

for informed reversible jumps outperforms the naive approach as well as improves mixing

and convergence. It has also been demonstrated that the RJ MCMC can grow HME

model trees from the simplest starting point of one expert thus improving on the strategy

of initialising the RJ MCMC chains with an informed tree architecture. It then follows

that the recommended strategy is to start with a one expert architecture and use the

informed RJ MCMC methodology for fitting HME models. An interactive interrogation

of such strategy for the motorcycle data is further illustrated in the next section, where

the previously referred to bespoke R-Shiny application is presented.
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6.8.5 Interactive Illustration of HME Model Fit for Motorcycle Acci-
dent Data

An R-Shiny application, also referred to as the app, has been created to allow for a

closer investigation of the HME model fit. The tool could be used for interpreting any

HME model fitted using RJ (GS) MCMC as well as assessing convergence. This section

provides an overview of each tab available within the app (Figure 6.20), highlights the

key benefits, and discusses the arising features of HME models.

Figure 6.20: Tabs available within the R-Shiny application.

For illustration, the motorcycle accident data application, where an HME model is fitted

using the RJ MCMC with an initial start of one expert, is used. Additional functionality

that allows for uploading new data to the app could be implemented in order to use the

app outside of the discussed example.

Iteration Analyser

The Iteration Analyser tab of the app provides a number of control options shown in

Figure 6.21. Each of those options is next discussed in turn.

Figure 6.21: Control options in the Iteration Analyser tab of the R-Shiny appli-
cation.
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1. Select iteration number (green box);

This control allows for picking an iteration to be displayed. In this case, a user can

choose from a set of iterations recorded after each reversible jump. For a reversible

jump, which is proposed every 10-th iteration in a chain of length 5, 000, the app

allows viewing iterations 1, 11, 21, ..., 4991. The blue triangle at the bottom right

of the green box initiates an animation that goes through the chosen range of

iterations.

2. Edit the range of iterations (orange box).

This control allows for zooming in on a range of iterations of interest. The output

displayed for a randomly selected iteration is shown in the figure below.

In the above, the top plot depicts the allocations to the experts present in the

tree at a chosen iteration as well as shows the fitted regression lines corresponding

to the experts. The fitted lines can be removed by unticking Show fitted lines

(black box). It can also be seen that experts are marked by numbers in the plot,

which can be removed by unticking Show expert numbers (yellow box). The

bottom plot shows expert activity across explanatory variable space measured by

a default metric of responsibilities.
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3. Zoom in on x. (light blue box).

The default appearance of the output can be altered by zooming in on the explana-

tory variable. For example, the negative values of the standardised time can be

zoomed in on as shown in the figure below.

4. Show predictions (red box).

This control displays the predictions for the selected iteration as demonstrated

below.

5. Colour by (purple box).

This control switches the default coloring of points by allocations to a view, where

each point is represented by a piechart. The slices of each piechart then correspond

to either path probabilities or responsibilities (selected by user) across all experts.

The bottom plot also adjusts to showcase expert activity with respect to a chosen

metric. This view reveals that path probabilities, which depend solely on the gating

parameters and the explanatory variable, suggest a smoother transition between

experts than that seen after expert densities are taken into account.
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6. Show bounds (grey box)

This control displays the uncertainty bounds defined by the expert variance pa-

rameter. This alternative to viewing expert numbers printed in the plot can be

selected by ticking Show legend (dark blue box).

7. Only show expert number (pink box)

This control allows for viewing the regression fit for one expert at a time. For

example, picking expert 3 yields the view shown below.

8. Show splits (brown box).

This control allows for viewing the location and abruptness of the separation be-

tween experts. Ticking Show splits prompts the appearance of Show gate order

(dotted brown box), which displays the order in which the splitting of the space

occurs, and Only show gate number (dashed brown box), which allows for view-

ing one split at a time. This feature introduces the option to reconstruct the tree

architecture at each iteration.
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Predictions

The Predictions tab allows for viewing the predictions made at each iteration on one

plot. The range of predictions can be adjusted using the Edit the range of iterations

(red box) while the value k entered in Show every (yellow box) results in every k-th

iteration being plotted. The mean of predictions can be added/removed from the plot by

ticking/unticking Show mean predictions (green box) with an option to control how

many runs are discounted for burn-in when calculating the mean in Discard burn-in

for mean predictions calculation (orange box). For instance, a plot for iterations

501, ..., 4991 plotting every 10-th prediction and the mean for predictions calculated

discounting first 500 runs can be obtained as shown below.
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Consider the situation where one is interested in predictions made later on in the chain.

Changing the range of iterations to only view the last 2000 iterations and plotting every

second prediction without the mean predictions can be set up as shown below.

This tool is particularly useful for assessing the convergence of predictions. It can be

used to investigate whether and when the predictions start to appear consistent (see

Section 4.3.4.2 for more details). Finally, the control Show 95% prediction interval

(pink box) can be used to visualise prediction intervals.
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Acceptance Summary

The Acceptance Summary tab provides a simple summary of the reversible jump accep-

tance rates as demonstrated in the figure below.

Expert Number Distribution

The Expert Number Distribution tab provides a view of the expert number distribu-

tion in the MCMC chain. The Show the distribution of (blue box) control provides

an option to flick between the distribution of all experts, full experts, and empty experts

as shown in the respective figures below. This extension provides insight into how often

the RJ MCMC chain retains experts with no observations in them. An infrequent ap-

pearance of empty experts suggests that the merges are working as expected within the

RJ methodology.



Chapter 6. Automatic Architecture Selection for HME Models 100



Chapter 6. Automatic Architecture Selection for HME Models 101

Access

The R-Shiny app presented in this section can be accessed here.

So far, proposing a single jump every 10 MCMC iterations has been considered. As

shown in this section, such choice of number and frequency of reversible jumps provided

a good starting point for the visualisation and evaluation of the proposed methodology.

It is, however, important to understand how the frequency and quantity of proposed

jumps affect the overall model fit.

6.8.6 Frequency and Number of Jumps in Automatic HME Architec-
ture Selection for Motorcycle Accident Data

The application of the RJ MCMC on the motorcycle data in the previous section is

based on proposing 1 jump every 10 MCMC iterations. It is important to consider the

impact and the meaning of the latter tuning parameters. Let L denote the number of

consecutive jumps proposed (without MCMC inbetween) and let K denote the frequency

of these jumps, i.e. propose L jumps every K-th MCMC iteration.

The larger the value of K, the longer the MCMC chain has to improve on the new state

proposed by the jump. If the value of L is larger than 1, the option of escaping an

unfortunate jump becomes available, however, one is then facing the risk of discarding a

beneficial jump before MCMC has had a chance to improve on it. We start by investi-

gating the effect of the number of jumps proposed with no MCMC in between (varying

L) in the motorcycle accident data with results given in Table 6.6.

Table 6.6: The number of jumps proposed within the RJ MCMC for the motorcycle
accident data vs acceptance rates, average number of experts in the model, and run

time.

K=10
Total

Jumps

Overall

Acceptance

Split

Acceptance

Merge

Acceptance

Average

Number of

Experts

Run

Time

(s)

L

1 500 7.8% 8.17% 7.41% 3.92 239.67

2 1000 8.10% 8.33% 7.86% 3.90 233.28

3 1500 13.53% 13.31% 13.77% 3.72 236.34

5 2500 11.40% 11.71% 11.1% 3.75 238.81

10 5000 19.34% 19.41% 19.27% 3.60 236.43

In general, it can be seen that all scenarios yield a similar number of experts on average.

It is likely that in the motorcycle data case an HME model with at most 4 experts is

https://ivonasykes.shinyapps.io/RJ_MCMC_HME/
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sufficient. Overall, the acceptance rates do not follow a strict pattern as the value of L

increases. The highest acceptance rate is achieved with L = 10, which might indicate that

the accepted proposals are escaped, or undone, before getting a chance to be improved

on by MCMC. This investigation suggests that the number of jumps proposed every k-th

iteration does not appear to have an effect on the overall preferred HME model size. On

the other hand, it highlights the importance of choosing a value of L that allows for

an escape from unfortunate jumps while giving the MCMC an opportunity to improve

on the proposed state. Another important point to note is that there is no apparent

difference in the run time of the algorithm as L increases, which implies that the cost

of additional jumps is relatively low. Next, the effect of the frequency of the reversible

jumps is investigated. It is of interest to understand whether allowing for longer MCMC

chains in between the jumps results in better intermediate states thus improving the

acceptance rates.

Table 6.7: The frequency of jumps proposed within the RJ MCMC for the motorcycle
accident data vs acceptance rates, average number of experts in the model, and run

time.

L=1
Total

Jumps

Overall

Acceptance

Split

Acceptance

Merge

Acceptance

Average

Number of

Experts

Run

Time

(s)

K

5 1000 12.50% 12.57% 12.42% 3.89 262.16

10 500 7.8% 8.17% 7.41% 3.92 239.67

25 200 14.5% 15.09% 13.83% 3.96 228.43

50 100 7.00% 10.00% 4.00% 3.81 211.54

100 50 18.00% 19.35% 15.79% 3.83 204.34

From Table 6.7, it is evident that the average number of experts is similar across all

values of K and the results seen in Table 6.6. This suggests that the values of K and L

do not seem to have an effect on the preferred average number of experts in the HME

model for this data set. The acceptance rates seen for varying values of K do not follow

a consistent pattern. It is important to note that as the total number of jumps decreases,

the number of splits and merges also decreases and is equal to approximately half of the

total number of jumps. The latter means that the acceptance rates are more sensitive

to small changes in the number of accepted/rejected jumps. Keeping that in mind, the

rates seen here are in a similar range to the ones seen in Table 6.6. Finally, a consistent

decrease in the run time of the RJ MCMC is observed for the total number of jumps of

1, 000 and below. Performing 1, 000 jumps takes 57.82 seconds longer than performing 50

jumps. We have observed in Table 6.6 that adding more jumps past the 1, 000 threshold
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does not result in a significant run time increase, hence it is preferable to explore and

propose more states in any given scenario.

6.9 Summary

So far, the following key benefits of the RJ MCMC for HME models have been discussed

and illustrated:

1. Ability to accurately model changes in the data patterns.

2. Allowing for different variances across experts addresses heteroscedasticity.

3. The size of the HME tree can be selected automatically.

4. The addition of the informed jump generation algorithm vastly improves the re-

versible jump acceptance rates when compared to the naive reversible jump ap-

proach.

5. The choice of the frequency and number of reversible jumps does not seem to have

an effect on the overall preferred fit of the HME model.

6. The addition of the reversible jump seems to improve mixing and convergence.

In this section, a method for automatic growing and pruning of the HME model tree

has been proposed and assessed. The RJ MCMC, however, does not directly address

changing the order in which the nodes are arranged in the model tree. This functionality

is tackled by the proposed addition to the reversible jump MCMC methodology, which

is discussed in the next chapter.



Chapter 7

Automatic Architecture Internal

Adjustment

7.1 Introduction to Gate Swaps

So far, the methodology for automatically growing and pruning HME trees has been pro-

posed and evaluated. In this chapter, the idea of changing the architecture of an existing

HME model tree is discussed. As covered previously, the gate nodes in HME models

perform the crucial task of partitioning a complex problem into smaller subproblems.

The novel idea introduced here involves changing the order in which the splits occur

after they have been selected.

The reversible jump methodology proposed in the previous section relies on the jumps

being indeed reversible. In a binary tree, this means that any expert in the tree can be

split into two new experts. The reversibility of the jump in turn means that the two

experts that can be merged into a single expert must be siblings. That is, the reversible

jump is only operating in the leaves of the tree.

Consider the example shown in Figure 7.1 once more in order to illustrate the potential

scenario that the design of reversible jumps fails to address. Assume that the split at

G2 is not a beneficial one. If the current state of the model tree is as depicted in the

figure, two merges would need to occur before a new, potentially more beneficial split

could be proposed instead. That is, firstly, E4 and E5 would need to be merged into

a single expert E4 to replace the gate G4. Secondly, the newly formed E4 would need

to be merged with E1 to form a single expert E1 and replace G2. At this stage, a new

split could be proposed to the merged expert E1 to start over again. Since the proposed

104
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reversible jump methodology allows for merging at the leaves only, two siblings such as

an expert E1 and a gate G4 cannot be merged in one step.

Figure 7.1: Illustration of an HME model with five experts equivalent to Figure 1.1.

Of course, there is no guarantee that the RJ MCMC will indeed lead to the merges

outlined above, especially if the split at G4 provides a reasonable separation between

E4 and E5. An alternative way of proposing a new split in the circumstances discussed

involves altering the order of splits by swapping the gate nodes. The development of this

additional step in the MCMC chain, called the Gate Swap (GS) algortihm, has a number

of potential advantages. Firstly, it would make escaping the unfortunate previously made

splitting decisions possible. The method also has the potential to improve the exploring

of the model space and hence improve the mixing. When implemented together with

the reversible jump, gate swaps would propose tree architectures that would have not

been considered otherwise. The latter could result in a simpler architecture that yields

a better overall fit. This section proposes a framework for swapping gate nodes as an

additional step in the RJ MCMC chain.

An illustration of the proposed method is presented in Section 7.2. The steps of the GS

algorithm are then formally outlined in Section 7.3, and an application is presented in

Section 7.4. The GS algorithm is then evaluated on the same real-life data as the RJ

algorithm in Section 7.5. Finally, some concluding remarks are made in Section 7.6.
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7.2 Illustration of Gate Swaps for HME Models

Let us refer to the illustration of the HME model with five experts as shown in Figure

7.1 once more. Following the example from the previous section, let’s say that one is

interested in swapping gate G2 with gate G4. Firstly, a decision has to be made on which

child of G4 should be replaced by G2. In our example, G4 has two children, so there are

two options. If it is decided to replace E4, which is the first child of G4, the resulting

tree will look like the one shown in Figure 7.2. On the other hand, replacing E5, the

second child of G4, will result in a tree depicted in Figure 7.3.

Figure 7.2: Illustration of swapping gates G2 and G4 from the HME model shown in
Figure 7.1 by replacing E4.

Figure 7.3: Illustration of swapping gates G2 and G4 from the HME model shown in
Figure 7.1 by replacing E5.

In all cases of gate swaps, the decision on which child of the more junior gate is to be

replaced has to be made. A reasonable starting point is to pick one child at random
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with all children having an equal probability of being picked. In the above example of a

binary tree, each child would be picked with a probability of 0.5.

It could be argued that the most important split is the very first one, i.e., G1, because

it divides all observations into the smallest number of groups with the largest amount

of observations in each. Gate swaps provide an option of escaping from a bad choice of

the first split as well as subsequent splits. Let’s now assume that we are interested in

swapping the root gate G1 with its descendant gate G2 (Figure 7.1). As before, in the

case of a binary tree, we have two ways of performing the swap. We could choose to

replace E1, the first child of G2, by G1 as shown in Figure 7.4. Alternatively, we could

choose to replace G4, the second child of G2, with G1 as shown in Figure 7.5.

Figure 7.4: Illustration of two ways of swapping gates G1 and G2 from the HME
model shown in Figure 7.1 by replacing E1.

Figure 7.5: Illustration of two ways of swapping gates G1 and G2 from the HME
model shown in Figure 7.1 by replacing G4.
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The architecture shown in Figure 7.5 could be beneficial if there was one distinct subgroup

present in the data. In that case, assigning those observations to E1 and separating them

from the rest of the observations early on would be a substantial improvement on the

original tree structure. The toy example used here illustrates how the hypothetical

unfortunate split at G2 could be improved upon in four different ways, each resulting in

a completely new tree architecture. The steps of the Gate Swap algorithm, that allows

for such proposals, are formally outlined in the next section.

7.3 The Gate Swap Algorithm

The steps of the gate swap algorithm are as follows:

1. Check that there is more than one gate in the tree.

2. Select two gates in the tree, such that one gate is senior to the other, to be swapped

at random.

3. Check which gate is more senior. Call the senior gate G and the junior gate G∗.

4. Record likelihood for the original tree

L(ϕ|y) =
n∏

i=1

f(yi|xi,ϕ) =
n∏

i=1

[∑
E∈E

π
(E)
i f (E)

(
yi|xi,θ

(E)
)]

.

5. Randomly choose which child of G∗ should be replaced by G.

6. Perform the swap and record the likelihood for the new proposed tree

L∗(ϕ|y) =
n∏

i=1

f(yi|xi,ϕ
∗) =

n∏
i=1

[∑
E∈E

π
∗(E)
i f (E)

(
yi|xi,θ

(E)
)]

,

where π
∗(E)
i for E ∈ E are the new path probabilities obtained after the gate swap.

7. Accept the swap with probability

α = min

(
1,

L∗(ϕ|y)
L(ϕ|y)

)
,

where L(ϕ|y) and L∗(ϕ|y) are results from steps 4 and 6 respectively.

It is evident that the acceptance probability, α, is made up solely of a ratio of model

likelihoods. The latter, rather unusual in Bayesian setting, acceptance probability arises
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from the fact that there are no modifications made to the existing model parameters or

the size of the tree so the prior distributions are identical and cancel out. In fact, the

only aspect of the tree that changes is the order in which its nodes are arranged and thus

the resultant post-swap path probabilities.

Having outlined the steps of the GS formally, an illustration of the GS algorithm on a

simulated data is presented next.

7.4 Application of the Gate Swaps Algorithm on Simulated

Data

Consider a simulated three-dimensional example of an HME model with three Gaussian

experts in the tree as depicted in Figure 7.6. In this model, z is the response variable

while x and y are the explanatory variables. Let us assume that the first split, represented

by G1, separates E1 (black points) from the remaining experts by cutting x at 0. The

second split, governed by G2, then further separates E2 (red points) and E3 (green

points) by cutting y at 0 for x < 0. In such case, a single model is fitted to the black

points which fails to capture the abrupt change in the response variable values happening

at around y = 0. The latter also leads to the fitted plane missing the extreme values of

y.

At this stage, the RJ MCMC could improve on the fit in two ways. Firstly, E1 could

be split into two experts, which would solve the issue, however, create an unnecessary

extra expert that would be likely to get merged in the future. The same outcome could

be achieved in reverse, that is, E2 and E3 could be merged first followed by the split

of E1. Of course, there is no guarantee that the reversible jump moves would yield the

discussed moves in the specified order. This means that improving this fit with the RJ

MCMC would require at least two accepted reversible jump steps.

Using the GS algorithm outlined in Section 7.3, consider a single proposed step sug-

gesting swapping G1 and G2 by replacing the first child of G2, which is E2, with

G1. Such swap is accepted, with the initial model log-likelihood value of −345.725

and the proposed model likelihood value of −337.821 yielding an acceptance probability

of α = min (1, exp(7.90)) = 1. The resulting tree architecture, allocation variables, and

the fitted plane are depicted in Figure 7.7. It is evident that in one step, the gate swap

was able to propose an architecture with the same amount of experts, but a more advan-

tageous split. After as little as 5 MCMC iterations post the acceptance of the gate swap,

the fitted plane shown in plot (iii) captures the previously discussed abrupt change at

y = 0 for x > 0 as well as fits the data well at the extremes of y.
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Figure 7.6: An example of a HME model with three experts in the tree. (i) depicts
the underlying tree architecture; (ii) shows the assignment of the observations to the

three experts; (iii) shows resulting fitted plane.
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Figure 7.7: An example of a HME model with three experts in the tree after the
proposed swap is accepted. (i) depicts the underlying tree architecture; (ii) shows the
assignment of the observations to the three experts 5 MCMC iterations post swap; (iii)

shows resulting fitted plane 5 MCMC iterations post swap.



Chapter 7. Automatic Architecture Internal Adjustment 112

The toy example presented in this section illustrates how the addition of the GS step to

the RJ MCMC can benefit the overall model fit, allow for escaping unfortunate splits

and consider architectures that might have been missed otherwise. All of the above has

the potential to speed up the convergence as well as improve mixing. The GS algorithm

is next evaluated on the motorcycle crash helmet data set alongside the reversible jump

algorithm.

7.5 Evaluation of the RJ GS MCMC for Motorcycle Acci-

dent Data

7.5.1 Introduction to the RJ GS MCMC Evaluation

In this section, the GS algorithm is evaluated on the motorcycle accident data set. In the

first scenario, an HME model is fitted using the reversible jump MCMC methodology

and is equivalent to the fit discussed in Section 6.8.2. In the second scenario, in addition

to a reversible jump proposed every 10th iteration, a swap is also proposed every 100th

iteration. Such frequency for proposed swaps is chosen as a starting point for the detailed

swap frequency investigation undertaken in Section 7.5.4. To insure comparability, both

MCMC chains are run for 5, 000 iterations with the first 500 runs discarded as burn-in.

In all evaluations performed in this section, the convergence of the chains is assessed

by visual inspection of the predictions as outlined in Section 4.3.4.2. Both models are

then used to make predictions and compared. Due to a small number of observations

available (133), the data is not split into training and test sets so the predictions are

made on the whole data set. The prior distributions used for both cases here are stated

in Section 5.5.2 and applied to the motorcycle accident data throughout the thesis. In

both cases, the starting model tree architecture consists of one expert, which means that

the architecture selection is performed automatically.

7.5.2 Reversible Jump Gate Swap MCMC Results

The results of both the RJ MCMC and the RJ GS MCMC runs are summarised in Table

7.1. It is important to remember that gate swaps are only possible when there is more

than one gate present in the model tree, thus the total number of swaps proposed is not

equal to the number of MCMC iterations divided by the frequency of swaps. Firstly,

it is evident that the acceptance rate for the gate swaps is very high (43.48%). High

acceptance rate might be pointing to moves that are not leading to dramatic changes

in the likelihood of the tree. A large number of such moves, however, is undoubtedly
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improving mixing in the architecture, because a high number of accepted gate swaps

indicates considering a larger number of model tree architectures.

It can also be seen that the acceptance rates of the reversible jumps have increased

after the introduction of the gate swaps. This result is expected since the gate swaps

change the architecture of the tree which then leads to new potential splits and merges

to be considered. The mean squared error (MSE) reveals that the RJ MCMC slightly

outperforms RJ GS MCMC. The latter coupled with high acceptance rates might indi-

cate that, while gate swaps improve mixing in architecture, their acceptance also causes

greater disturbance to the architecture of the tree thus creating less accurate predictions

during the time it takes for the reversible jumps and the MCMC to improve upon the

accepted post gate swap state. Having evaluated the predictive performance of the two

methods as well as acceptance rates, we proceed by investigating the overall model fit.

Table 7.1: Acceptance rates for the implementation of reversible jump only (equivalent
to Table 6.5) and with the addition of gate swaps algorithm for motorcycle accident

data.

Splits Merges All Jumps Swaps

RJ MCMC

Number Proposed 257 243 500 -

Number Accepted 21 18 61 -

Acceptance 8.17% 7.41% 7.8% -

Mean Squared Error 0.2081

RJ GS MCMC

Number Proposed 244 256 500 46

Number Accepted 37 35 70 20

Acceptance 15.16% 13.67% 14.40% 43.48%

Mean Squared Error 0.2301

The recorded predictions for the RJ GS MCMC are shown in Figure 7.8. It can be seen

that the majority of predictions track the data points appropriately, which is also con-

firmed by the average predictions (thick red line). Comparing the predictions produced

with the addition of gate swaps to those produced without (Figure 6.17), it is evident

that there are smoother transitions between the experts present for the RJ GS MCMC

case. The distribution of the number of experts across the MCMC runs is depicted in

Figure 7.9. In agreement with the RJ MCMC (Figure 6.18), the majority of the time

is spent exploring the states with 4 experts. On the other hand, trees with 3 experts

are investigated notably more when the gate swaps are used. This result is expected
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because gate swaps cause disturbance and changes in the overall tree architecture hence

encouraging some of the decisions made previously to be reconsidered.

Figure 7.8: RJ GS MCMC predictions with initial start of 1 expert for motorcycle
accident data. Every 10-th prediction shown. Average predictions shown in red.

Figure 7.9: Distribution of the number of experts in the RJ GS MCMC chain with
initial start of 1 expert for the motorcycle accident data.
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Figure 7.10 showcases the number of experts in the HME tree after each reversible jump.

Iterations at which gate swaps occur are denoted by dashed lines. Those are further

color coded for accepted (green) and rejected (red) swaps. There appears to be no clear

pattern in the acceptance of the proposed swaps. Similarly as seen for the RJ MCMC,

the chain does not appear to settle on a specific number of experts in the tree and, after

the initial tree growing, explores states with two to five experts in them.

Figure 7.10: Number of experts in the tree after each reversible jump proposal for
the motorcycle accident data. Gate swap proposals are marked as dashed lines with

green indicating an accepted and red indicating a rejected gate swap proposal.

Having investigated the key features of the fitted model, the effect of gate swaps on

mixing and convergence of the MCMC chains is investigated next.

7.5.3 Mixing and Convergence

Once again, the random starting point evaluation undertaken in Section 5.5 is revisited.

Please refer to Section 6.8.3 for the results obtained by randomly initialising three MCMC

chains with and without the reversible jump. The same starting parameter values are

now used for the three RJ GS MCMC chains resulting in the predictions shown in Figure

7.11.
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As seen before, the addition of the gate swaps has produced a smoother overall fit.

Although the individual average predictions appear to track data well for each of the

three chains, there is more between-chain variability seen at the points of change. Once

a swap is accepted, the overall architecture of the tree is disturbed, which might result

in more time spent exploring smoother separations between experts before arriving to

the more confident and steeper separations, which is evident for green and red chains.

Given the observed minor between-chain variability, a formal assessment of convergence

is required.

Figure 7.11: RJ GS MCMC predictions obtained with the three starting points re-
flected by colour for the motorcycle accident data. The thick lines represent the average

predictions while the thin lines represent every 10-th prediction.

The Gelman-Rubin diagnostic yields a value of 1.01 thus further improving on the one

seen for the RJ MCMC and strongly suggesting that convergence has been reached (see

Table 7.2).
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Table 7.2: The potential scale reduction factor (PSRF) for the three randomly drawn
parameter starting values for MCMC, RJ MCMC and RJ GS MCMC for the motorcycle

accident data.

MCMC RJ MCMC RJ GS MCMC

PSFR 5.02 1.13 1.01

Having identified that gate swaps can further improve on mixing and convergence, the

frequency of swaps is considered next.

7.5.4 Frequency of Swaps in Automatic Architecture Selection for Mo-
torcycle Accident Data

After each swap is accepted, the reversible jumps and parameter updates improve on the

proposed state. Thus it is of interest to understand what effect the frequency of swaps

has on acceptance rates. The less frequent the swaps, the more time is left for improving

on the accepted state. On the other hand, more frequent swaps allow for considering

more architectures overall. Let’s say that swaps are performed every R-th iteration of

RJ GS MCMC and a single reversible jump is still proposed every 10-th iteration. The

results for varying values of R are presented in Table 7.3.

Table 7.3: Acceptance rates and run-time for a varying gate swap frequency in the
RJ GS MCMC for the motorcycle data. The first scenario was re-run to measure the

run-time under the same conditions across all tests.

R
Total

Swaps

Proposed

Swaps

Acceptance

Overall

Reversible

Jump

Acceptance

Average

Number

of Experts

Run

Time

(s)

- 0 - 7.80% 3.89 249.67

50 98 36.73% 16.40% 3.69 194.80

100 46 43.48% 14.40% 3.66 226.52

200 24 37.50% 9.40% 4.02 238.70

Firstly, it is evident that the swaps acceptance rates are consistently high across all

values of R. In agreement with the results seen in Table 7.1, the acceptance of reversible

jumps increases once the gate swaps are active, however, there is no clear pattern linking

the reversible jump acceptance and the frequency of swaps. Looking at the average

number of experts for R = 200 versus the other cases, it appears that the total number
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of gate swaps proposed may be associated with a slightly smaller average number of

experts in the trees. This result is expected since the addition of gate swaps encourages

more moves to happen overall by adding the swaps as well as increasing the number of

accepted reversible jumps. Moreover, as seen in Section 7.4, an unfortunate split at the

root can cause additional experts to appear in order to counteract the effect, while a

successful swap may solve the problem hence resulting in a smaller number of experts

overall. Finally, investigating the run-time of each case reveals that it is associated with

the average number of experts rather than with the number of swaps. This finding

appears intuitive since each additional node in the tree increases the number of sampled

parameters as well as results in more potential jumps and swaps. Finally, in this case,

swaps do not appear to be expensive in terms of the additional run-time required.

7.6 Summary

Overall, it appears that the addition of the GS algorithm does have merit. A larger

number of tree architectures has been considered hence improving mixing in architec-

ture. The improved exploration of tree architecture space is also confirmed by the high

swap acceptance rates. Furthermore, Gelman-Rubin diagnostic is used to showcase the

improvement in convergence for the unfortunate starting point experiment. It has also

been shown that running RJ GS MCMC does not result in a notable increase in run-

time when compared to the RJ MCMC. Moreover, the addition of gate swaps has been

associated with a smaller average number of experts in the tree hence making the model

fit simpler. The design of the GS algorithm would arguably benefit more complex and

deeper trees than those considered so far as the addition of the gate swaps allows for

escaping unfortunate splits, which are in turn less likely to occur in shallow trees.

Having outlined and evaluated the proposed methodology for the second type of auto-

matic architecture selection, as an addition to methodology covered in Chapter 6, the

next chapter covers two competitors of the HME models and assesses their performance

against HME model fit.



Chapter 8

Competitors for HME

8.1 Introduction

This chapter discusses two competitors of HME models - Generalised Additive Model

(GAM) and Bayesian Additive Regression Trees (BART). A fundamental model with a

response variable yi and predictor variables xi = (x1i, ..., xpi) is considered throughout

this chapter:

yi = f(xi) + ϵi,

where ϵi ∼ N (0, σ2). In the subsequent sections, the function f(·) is defined for GAM

(Section 8.2) and BART (Section 8.3). The model-fitting process as well as pros and

cons of each method are also discussed in the dedicated sections. The two competitors

are then fitted to the motorcycle accident data set in Section 8.4 and compared to the RJ

MCMC HME model fit produced in Chapter 6. The resulting models are then assessed

in the context of heteroscedasticity (Section 8.4.1), accuracy of the fitted values (Section

8.4.2), and interpretability (8.4.3).

8.2 GAM

8.2.1 Definition of GAM

The generalised Additive Model (GAM) was originally developed by Hastie and Tibshi-

rani (1990) and is a generalisation of the Generalised Linear Model (GLM), which is

119
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in turn a generalisation of a standard linear model with response variable yi, predictor

variables xi = (x1i, ..., xpi) and the corresponding model parameters β = (β0, β1, ...βp)
T :

yi = f(xi) + ϵi

= xiβ + ϵi

= µi + ϵi

where ϵi ∼ N (0, σ2), yi ∼ N (µi, σ
2) and E(yi|xi) = µi. The idea behind the GLM is to

express the response variable yi as a linear function of the predictor variables xi, which

is done by using a link function g(·) that is related to the mean µi as follows

g(µi) = ηi = xiβ = β0 + β1x1i + ...+ βpxpi

E(yi|xi) = µi = g−1(ηi),
(8.1)

where β = (β0, β1, ...βp)
T are the model parameters associated with the predictors

(Nelder and Wedderburn, 1972). The general expression showcases how a link func-

tion g(·) relates to the mean µi, or, on the other hand, how the expected value E(yi|xi)

relates to the so-called linear predictor, ηi. It is evident that a standard linear model is

a GLM with the link function g(µi) = µi, which is called the identity link function.

GAM, in turn, extends the GLM framework to allow for nonlinear forms of the ex-

planatory variables in the model. The latter is achieved through an additive modeling

technique, in which the response variable depends on unknown smooth functions of the

explanatory variables. In other words, the model coefficients from (8.1) are simply re-

placed with flexible functions, s(·), that allow for nonlinear relationships:

g(µi) = β0 + s(x1i) + ...+ s(xpi).
(8.2)

In the case of the response variable following Gaussian distribution, the link function

used in (8.2) is the identity link function, that is

yi = β0 + s(x1i) + ...+ s(xpi) + ϵi.

E(yi|xi) = µi = β0 + s(x1i) + ...+ s(xpi), (8.3)
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where ϵi ∼ N (0, σ2). The smooth functions s(·), can be represented by local regression

(loess) (Fox and Weisberg, 2018), regression splines such as B-splines or P-splines, thin

plate splines (Perperoglou et al., 2019) or smoothing splines (Wahba, 2011), which are

used in this chapter.

8.2.2 Smoothing Splines

Spline functions consist of piecewise polynomials that are joined together at pre-defined

subintervals. The points at which the joins occur are known as knots. The degree of the

spline is equivalent to the degree of the polynomial. For example, a spline degree equal to

1 is equivalent to a chain of line segments while a spline of degree 3, also known as cubic

spline, is equivalent to a chain of third-degree polynomial segments. For a polynomial of

degree p, the spline function can be written as

f(xi) =

p∑
j=0

Bjbj(xi)

= B0 +B1xi +B2x
2
i + ...+Bpx

p
i ,

(8.4)

where bj(x) are referred to as basis functions and Bj as basis coefficients. For a cubic

spline, p = 3 with b0(x) = 1, b1(x) = x, b2(x) = x2 and b3(x) = x3.

The aim of spline smoothing is to fit a smooth, flexible function f(x) that minimises

the residual sum of squares defined as RSS =
∑n

i (yi − f(xi))
2. It is evident that RSS

is minimised when f̂(xi) = yi, which is a regression that interpolates the points and

hence is highly likely to result in overfitting. To avoid this, a smoothing spline fits such

a smooth function by minimising the penalised residual sum of squares defined as

RSS(λ) =

n∑
i=1

(yi − f(xi))
2 + λ

∫ b

a
f ′′(t)∂t, (8.5)

where λ is a fixed smoothing parameter, a ≤ x1 ≤ ... ≤ xn ≤ b, and f ′′(·) denotes the sec-

ond derivative of function f(·). For smoothing splines, the observed unique explanatory

variable values, i.e., x1, ..., xn, are the knots.

After taking a closer look at (8.5), it becomes clear that the first term is equivalent to

the unpenalised residual sum of squares and it measures closeness of function f(x) to

the observed data. The second term, on the other hand, penalises the curvature in the

function thus controlling the smoothness of the fit (Denceaux, 2016). In a special case,

where λ = 0, there is no constraint on the smoothness of f(x). As λ increases from
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zero to infinity, f(x) is forced to be smoother with respect to the penalised residual

sum of squares (Helwig, 2021). In simple terms, the larger the value for λ, the bigger

the penalty. The value for λ can be chosen using methods such as cross-validation,

Akaike information criterion (AIC), or Bayesian information criterion (BIC) (for more

information on selecting the smoothing parameter value see Wood, 2008).

For smoothness penalty λ
∫ b
a f ′′(t)∂t from (8.5) , the unique minimiser solution is a cubic

spline (for the proof see Green and Silverman, 1994), which can be obtained as per (8.4)

with p = 3. This means that the smoothing spline f(x) is a piecewise cubic polynomial

in each interval (xi, xi+1) (for ordered xi). The polynomial pieces fit together at the

points xi in such a way that the function f(x) and its first and second derivatives are

continuous at each knot and hence on the whole of [a, b]. In order to ensure that the

function is linear beyond the boundary knots, natural cubic splines further require that

the value of the second and third derivatives of f(x) is equal to zero at the start and end

points a and b.

A broadly used method for fitting GAM models is presented next.

8.2.3 GAM Model Fitting

As discussed in the previous section, GAMs consist of multiple smooth functions. Hence,

model fitting for GAMs means simultaneously estimating these smooth functions (Larsen,

2015). One of the methods used for fitting GAMs, used in R package gam, is called the

backfitting algorithm (Buja et al., 1989). The algorithm is intuitively easy to understand

as it is based on solving linear equations (Xia, 2009). Denote y = (y1, ..., yn)
T and

xj = (xji, ..., xjn)
T for j = 1, ..., p. The backfitting algorithm steps for estimating (8.3)

are then as follows:

1. Initialise β
(0)
0 = E(y), s(0)(x1) = ... = s(0)(xp) = 0, t = 0.

2. Iterate

(a) t = t+ 1.

(b) For j = 1, ..., p calculate

i. The j-th partial residuals as

Rj = y − β0 −
j−1∑
k=1

s(t)(xk)−
p∑

k=j+1

s(t−1)(xk)

.
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ii. Estimate the new value of the j-th smooth function as

s(t)(xj) = E(Rj |xj).

(c) Calculate the Residual Sum of Squares (RSS) as

RSS =
1

n

y −
p∑

j=1

s(t)(xj)

2

.

Stop if RSS fails to decrease or satisfies the convergence criterion.

The above algorithm can be adapted to suit non-Gaussian response variables by introduc-

ing weights to the smoothers (Xia, 2009). For GAMs with links other than the identity

link, other procedures such as the General Local Scoring Algorithm can be used (Hastie

and Tibshirani, 1986).

8.2.4 GAM Model Features

In addition to allowing for more flexibility in modeling the predictor variables, GAM

also offers an interpretability advantage over GLM. Namely, due to the model being ad-

ditive, one can visualise the individual fitted smooth functions of each predictor. The

latter, however, becomes more complicated when fitting the smooth functions to the in-

teraction terms in the model (see Chang et al. (2020) for a detailed assessment of GAM

interpretability). When it comes to heteroscedasticity, the GAM approach does not ac-

count for it by design and hence simple approaches, such as taking the log transform

of the response variable, are often used. Given that the homoscedasticity assumption is

often violated in real-life applications, care must be taken when managing heteroscedas-

ticity (Rosopa et al., 2013). Lastly, due to the flexible nature of splines, GAMs are prone

to over-fitting, which should be taken into account when assessing the model fit (Wood

(2008) discusses penalisation methods to aid the issue). In cases where GAM models

fail to capture the abrupt changes in the response, alternative nonparametric approaches

such as change-point regression might be of value (Shaban, 1980).

GAMs are often described as a flexible and purely frequentist framework (Miller, 2019)

making them a notable non-Bayesian competitor to HME models. It is anticipated that

the advantages of increased interpretability and accounting for heteroscedasticity in the

response offered by the HME over GAM have the potential to tip the scales in favor of

the former. Contrary to GAM, the second competitor comes from Bayesian school of

thought and is discussed next.
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8.3 BART

8.3.1 Definition of BART

Developed by Chipman et al. (2010b), Bayesian Additive Regression Trees (BART) is a

nonparametric Bayesian regression approach that approximates the response variable by

a sum of regression trees, which split the problem space into smaller subproblems and

provide a numeric output at the leaves of the tree. The latter is achieved by approximat-

ing the mean of the response variable yi, given the predictor variables xi = (x1i, ..., xpi),

by a sum of m regression trees, i.e., E(yi|xi) ≈ h(xi) ≡
∑m

j=1 gj(xi), where each gj

denotes a regression tree. The model can then be written as

yi = h(xi) + ϵi (8.6)

where ϵi ∼ N (0, σ2). The idea behind BART is to fit a number of such trees, known as

weak learners. The weak learners are kept simple by imposing a strong prior that keeps

the effects of each tree small. Each individual tree might only offer a poor prediction for

the response, however, the sum of the trees can provide an accurate prediction, where

each tree explains a small and different proportion of f(·) (Chipman et al., 2010b). Simi-

lar ideas have been used in ensemble methods in the frequentist context such as boosting

(Freund and Schapire, 1997), bagging (Breiman, 1996), or random forests (Breiman,

2001). Boosting relies on subsequently fitting single trees to the data variation not ex-

plained by the previous trees. On the other hand, bagging and random forests create

a large number of independent trees, which are then used to make predictions that are

averaged. Next, the methods of bagging and random forests are explained in more detail.

8.3.2 Bagging and Random Forests

The bagging algorithm, first introduced by Breiman (1996), incorporates the bootstrap-

ping sampling technique, which uses random sampling with replacement to create diverse

samples (Efron, 1979). The idea lies in repeatedly drawing large numbers of smaller sam-

ples of the same size from the original sample. The resulting bootstrap samples are then

used to fit the models independently and in parallel. Finally, the outputs created by

the individual models are averaged to obtain a more accurate estimate of the response

variable. Each individual model might overfit the data and the hope is that this can be

averaged out.
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Random forests are an extension of the bagging algorithm, which also randomly selects a

subset of the explanatory variables to be used in each sample resulting in less correlated

models (Breiman, 2001) thus further reducing the variance of the aggregated estimate.

The number of covariates to be randomly selected is a tuning parameter that can be

determined by trying different values and using cross-validation to pick the optimal one

(Stone, 1974).

The appeal of bagging methods lies in its ease of algorithm implementation as well as the

resulting reduction in variance within a learning algorithm (Buja and Stuetzle, 2006).

On the other hand, as the number of dimensions and iterations grows, the intensive

resampling can lead to the algorithm being computationally expensive (Bühlmann and

Yu, 2002). The latter drawback is improved upon by the random forest algorithm,

which reduces the problem dimensionality. Finally, a well-known limitation of bagging

methods lies in the loss of model interpretability caused by averaging the individual

learner outputs.

Typically trees are used as base learners in these algorithms, however, other choices

would also be possible. These algorithms are thus sum-of-tree models just like BART.

BART is a successful attempt of porting the idea to the Bayesian context. An overview

of the BART model fitting process is presented next.

8.3.3 BART Model Fitting

The BART model is usually fitted using Bayesian backfitting MCMC, which in itself

is a Gibbs sampler that takes advantage of a few key residual-related observations (see

Section 4.3.2 for more details on the Gibbs sampler). Following Chipman et al. (2010b),

let Tj denote each binary regression tree and Mj denote the associated terminal node

parameters. The sum-of-trees model (8.6) can then be expressed as

yi =
m∑
j=1

g(xi|Tj ,Mj) + ϵi,

where ϵi ∼ N (0, σ2). The posterior distribution of the model parameters can thus be

written as

f((T1,M1), ..., (Tm,Mm), σ|y),
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where y = (y1, ..., yn)
T . Let us further denote T(−j) as the set of all trees in the sum

except the j-th one, and similarly define M(−j) to be the set of model parameters ex-

cluding the ones belonging to the j-th tree. The Gibbs sampler should thus perform m

successive draws from

(Tj ,Mj)|T(−j),M(−j), σ,y (8.7)

for j = 1, ...,m followed by a straight-forward draw of σ. The conjugate inverse chi-

square distribution prior is used for σ resulting in a simple draw from the full conditional

posterior inverse gamma distribution (see Hastie and Tibshirani (2000) for details).

A key observation is made in order to implement the draws as per (8.7). The conditional

distribution of the j-th tree depends on the joint distribution of all the remaining trees

only through partial residuals defined as

Rj = y −
∑
k ̸=j

g(x|Tk,Mk),

where x = (x1, ...,xp) and xj = (xji, ..., xjn)
T . Thus, the m draws as per (8.7) are

equivalent to

(Tj ,Mj)|Rj , σ, (8.8)

which is simply the posterior distribution of a single tree model, where Rj is the response.

Since a conjugate Gaussian prior is used for Mj , the posterior distribution for Tj

f(Tj |Rj , σ) ∝ f(Tj)

∫
f(Rj |Mj , Tj , σ)f(Mj |Tj , σ)∂Mj (8.9)

can be obtained in closed form. Each draw from (8.8) can then be carried out in two

steps

Tj |Rj , σ

Mj |Tj , Rj , σ.

An elaborate Metropolis-Hastings algorithm is used to draw Tj (Chipman et al., 1998).

Integrating out Mj in (8.9) results in avoiding jumps between a varying number of

dimensions, and thus, the need for the reversible jump algorithm implementation. Mj is
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sampled by independently drawing from a Gaussian distribution centered at the output

of the terminal node.

Having outlined the model fitting process, an overview of the model features is presented

next.

8.3.4 BART Model Features

At each MCMC iteration, BART produces a draw from the posterior distribution of the

response variable, i.e. produces predictions. The additive nature of the model means that

BART implementations cannot usually offer a single model object from which fits and

summaries may be extracted hence sacrificing the interpretability of the model (Chipman

and McCulloch, 2016). It is evident from the expression of BART model density (8.6)

that there is a single error variance applied across all observations, which does not directly

address potential issues when dealing with a heteroscedastic response.

BART is a Bayesian divide-and-conquer approach model which makes it the obvious

competitor for HME. The architectural difference between the two lies in the fact that

BART fits a large number of simple trees that are then combined together while the HME

is a one-tree model. BART is an additive model with a high predictive power recorded

across multiple applications including the prediction of trip durations in transportation

(Chipman et al., 2010a), somatic prediction in tumor experiments (Ding et al., 2011),

biomarker discovery in proteomic studies (Hernandez et al., 2015) as well as others. Tan

and Roy (2019) state that the success of BART has led to researchers using it as the

standard reference model for comparison when proposing new statistical or prediction

methods. Given the evident predictive power of BART, as well as over a decade of

development, the model is bound to be challenging to outperform when it comes to

prediction. The key differentiating point offered by HME models is their interpretability

which coupled with accurate predictions could potentially form notable competition for

BART.

8.3.5 BART Extensions

There have been a number of BART extensions developed since the introduction of the

modeling technique in 2010. Linero and Yang (2017) discuss the development of proba-

bilistic splits in the BART models. The latter extension is also known as Soft Bayesian

Additive Regression Trees (SBART). It is proposed to substitute the deterministic path

followed by the input variables with a probabilistic path. For SBART, probabilities of

going down the tree in each direction can be thought of as weights, which are observation
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specific and depend on the selected bandwidth parameter and the cut-off points drawn

from the proposal distribution. The individual weak learners in SBART are thus similar

to shallow HME trees with differing definitions for the probabilistic splits.

The problem of sparsity, i.e., the number of predictors being larger than the number of

observations, for BART is tackled by Linero (2018). The construction of Dirichlet priors

that adapt to sparsity in the input variables is proposed. It is also demonstrated that

the proposed method allows for a fully Bayesian approach to variable selection.

The previously discussed poor mixing of MCMC samplers for tree-based models is also

noted and addressed for Bayesian Regression Trees in Pratola (2016). Issues such as

local mode stickiness and poor mixing are said to stem from inefficient MH algorithm

proposals. Improved proposals, called the tree rotation proposal and rule perturbation

proposal, are developed and demonstrated to be effective in improving mixing.

It has been discussed in the previous section that the unmodified BART does not directly

address potential issues arising from a heteroscedastic response. Pratola et al. (2020)

address this limitation by developing a nonparametric heteroscedastic elaboration of

BART, called HBART. In addition to the mean function being modeled with a sum of

trees, it is proposed to model the variance function with a product of trees thus improving

on the original constant variance error model.

Further parallels between HME and BART models can be drawn when looking at the

model trees BART (MOTR-BART) extension (Prado et al., 2021). Instead of having

a unique prediction value at each of the terminal nodes, MOTR-BART uses a linear

predictor. Unlike HME, this approach does not use all of the input variables to obtain

a prediction. In fact, the prediction is made based on the covariates that are present in

the splitting decisions of the corresponding tree. It is shown that MOTR-BART requires

fewer trees in order to equal or outperform BART.

8.4 HME Evaluation Against Competitors on Motorcycle

Accident Data

In this section, GAM and BART models are fitted to the standardised motorcycle ac-

cident data set and compared to the HME fit produced by the RJ MCMC discussed

in Chapter 6. As seen previously, the accelerometer readings act as a response variable

y = (y1, ..., yn)
T while time is treated as the single explanatory variable x = (x1, ..., xn)

T .

GAM is fitted in R using the default settings of the function gam from the package gam.

Since there is only one explanatory variable present in the model, the GAM model is
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equivalent to a simple one-spline model. The default smoothing splines are used to rep-

resent the relationship between time and acceleration. BART is fitted to the same data

set in R using the default settings of the function bart from the package BayesTree. In

this section, the three models are compared in terms of treatment of heteroscedasticity,

accuracy of the fitted values, and interpretability.

8.4.1 Heteroscedasticity Assessment

In this section, the prediction intervals are investigated in order to assess the effects of

heteroscedasticity on the model fits produced by HME, GAM, and BART (please refer

to Appendix E for how these are obtained).

Figure 8.1 showcases the predictions produced by HME model as seen in Chapter 6.

It is evident that the prediction intervals account for the change in variance, i.e., are

broader for areas with more uncertainty and narrower for the areas with tighter clus-

tered observations. In contrast, a spline-based model and BART fail to account for

the heteroscedasticity resulting in too wide prediction intervals for the areas of lower

variability (Figures 8.2 and 8.3, respectively).

Figure 8.1: HME prediction intervals for the motorcycle accident data. The thin red
lines show the 2.5-th and 97.5-th percentiles of predictions made during the RJ MCMC
iterations. The thick red line shows the average predictions. Thin lines correspond to

every 10-th prediction.
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Figure 8.2: Spline-based model fitted using R package gam for motorcycle accident
data set. The thick red line corresponds to the fitted values. The thin red lines cor-
respond to the 2.5-th and 97.5-th percentiles of predictions obtained as per Andersen

(2019).

Figure 8.3: BART prediction intervals for the motorcycle accident data. The thin
red lines show the 2.5-th and 97.5-th percentiles of predictions made during the MCMC

iterations. The thick red line shows the average predictions.
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It is also interesting to note that the average predictions made by the HME model ap-

pear smoother than those of BART. Overall, it appears that BART predictions track

the data too closely, especially so in the area of the highest variability in the response.

If the motorcycle data set contained more observations, this could be improved upon

by splitting the data into training and test sets. Failing to do so due to a small num-

ber of observations might result in an overestimated predictive performance, which is

investigated next.

8.4.2 Predictive Performance

The accuracy of the fitted values and average predictions for the three models are sum-

marised in Table 8.1. It can be seen that HME model outperforms GAM and comes

close to BART (difference in the MSE of 0.025).

Table 8.1: Mean squared error obtained from the predictions made on the motorcycle
accident data for the following models - Hierarchical Mixture of Experts (HME), Gen-
eralised Additive Model (GAM) - one spline model in this application, and Bayesian

Additive Regression Tree (BART).

HME GAM BART

Mean Squared Error 0.2081 0.4512 0.1832

Although the motorcycle data set served as an excellent example to illustrate how the

HME model accounts for heteroscedasticity, the data set is rather simple and small,

which limits the assessment of predictive performance. The next chapter discusses a

more complex case, where predictions are made on the test set, and hence revisits the

assessment of the predictive performance of the three models.

8.4.3 Interpretability

The motorcycle accident data set consists of one explanatory variable and a response

variable, which makes the visualisation of the model fit rather straightforward. It has

been shown in Chapter 6, Section 6.8.5 that the HME model fit produces a large amount

of interpretable output such as predictions at each iteration, average predictions, the

latent assignment variables, model fit at a chosen iteration (including the normal expert

density parameters) as well as an indication of split abruptness between the experts (path

probabilities and responsibilities). All of the above leads to an in-depth understanding

of the HME model fit and the experts within it.

GAM also allows one to look at the fitted values (shown as a thick red line in Figure

8.2) as well as visualise the smooth function used to represent the relationship between
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explanatory and response variables (Appendix F). Since GAM is a frequentist approach,

the model output also produces a measure of smooth term significance as well as the

standard model fit assessment and assumption validation techniques.

BART creates draws from the posterior distribution of the response variable at each

iteration, which are then averaged to obtain the predictions shown as a thick green line

in Figure 8.3. Similarly, the posterior variance parameters can be obtained. BART

is an additive model and thus one cannot investigate the individual terms/trees using

the BayesTree BART implementation in R. The latter means that it is not possible to

visualise where and in what order the tree splits occur or what numeric outputs are

produced at the leaves of individual trees.

Even though it is evident that HME allows for deeper interpretability of the fitted model,

in a two-dimensional problem, one could argue that the level of interpretability offered by

GAM and BART is sufficient for the application. In the next chapter, a multidimensional

real-life problem, for which a high level of interpretability is required, is considered.



Chapter 9

Rental Prices in Glasgow

9.1 Introduction to Glasgow Rental Market

With 38% of Scotland’s population living in rented accommodation, the opportunity for

buy-to-let investments is at an all-time high (Scotland’s Census, 2011). According to the

supply and demand data collected by Admiral (2022), the second-highest tenant demand

in the UK is faced by the Scottish city of Glasgow, where there are 998 people looking to

rent for every 100 available rental properties. The latter demand coupled with Glasgow

being the most affordable city in Scotland to buy property makes it a perfect candidate

for a buy-to-let investment (RW Invest, 2022). A viable first-time investor strategy,

requiring minimal capital, relies on purchasing a studio or a one-bed flat. Home.co.uk

(2022) estimate the average price of £105, 961 for a one-bed flat in Glasgow making it

notably more affordable when compared to the average price of £161, 252 for a two-

bedroom flat in Glasgow. Moreover, in the first quarter of 2022, one-bedroom flats were

the quickest to let across Glasgow with an average time to let of 10 days hence minimising

the cost of property staying vacant (ESPC, 2022a). The average rental price for a one-

bedroom property in Glasgow is estimated to be £936 per calendar month, or pm, which

generates an attractive annual pre-tax yield of 10.6% on average (ESPC, 2022b). Thus

this chapter focuses on rental prices of one-bedroom and studio apartments in the city

of Glasgow.

Geographical location is the main factor to be considered when investigating the rental

prices of one-bedroom and studio flats in Glasgow. To illustrate, consider the rental

listings available for one-bed and studio flats on a property portal website Zoopla on the

13th of September, 2022. The lowest listed rental price of £450 pm is observed in the

area of Baillieston (marked in red in Figure 9.1) while the highest rental price of £2, 882

pm is listed for a property on Ingram street, the city center of Glasgow (marked in blue in

133



Chapter 8. Rental Prices in Glasgow 134

Figure 9.1). The latter example illustrates the extremes of rental prices in two areas that

are 7 miles apart. However, one does not need to stretch far in order to observe a sharp

difference in the rental prices in Glasgow. For instance, consider two areas of Glasgow

that are only one subway stop, or half a mile, apart - Partick and Govan (marked in

purple and in green, respectively, in Figure 9.1). On the 13th of September, 2022, the

average listed rental prices for a one-bedroom flat on Zoopla were £956.67 pm and £650

pm for Partick and Govan, respectively. Given the abrupt rental price changes across

many proximities, estimating the rental price given the precise geographic location of the

property is of direct interest to buy-to-let investors.

Figure 9.1: Map of Glasgow, Scotland. The circles represent points of interest cen-
tered at the exact location of subway stations and the central coordinates for the re-

maining locations.

In this chapter, a hierarchical mixture of experts model with normal experts is fitted

to the property rental price data provided by Zoopla Limited (2022). The properties
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analysed include those classified as belonging to the Glasgow area by Zoopla, which

includes Glasgow city as well as parts of some neighboring local authorities. A subset of

the data containing rental prices and geographical locations of studio flats, one-bedroom

apartments, and one-bedroom maisonette flats is considered. The data investigated spans

three years of the most recent records available, i.e., the period from the 1st of July, 2019

to the 30th of June, 2021. Firstly, some exploratory analysis of the data is performed in

Section 9.2. Next, the model fitting process is outlined in Section 9.3. The HME model

is first fitted using the RJ MCMC with results presented in Section 9.4. The gate swap

extension to the algorithm is added and assessed in Section 9.5. The HME model is then

compared to two of its competitors in Section 9.6. Finally, the results and findings are

summarised in Section 9.7.

9.2 Exploratory Analysis of Glasgow Rental Prices

This section undertakes the exploratory analysis of the rental prices in Glasgow for all

880 of the studios, one-bed flats, and one-bed maisonettes listed for rent in the period

between the 1st of July, 2019 and the 30th of June, 2021. The rental price density

histogram and smooth density function, estimated with kernel smoothing using density

function in R, is shown in Figure 9.2. It can be seen that recorded prices range from as

low as £240 pm to as high as £1, 016 pm.

Figure 9.2: Histogram of the density of monthly rental prices in Glasgow, Scotland.
The dark red line corresponds to the smooth kernel density function of the rental prices.
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There are two peaks observed in the density function occurring at around £450 pm

and £620 pm. Recall that HME models with normal experts partition the problem into

several subproblems, where a simple linear model is sufficient. In fact, the latter property

makes the HME models very well-equipped to address the potential multimodality.

Figure 9.3 facilitates further investigation of the rental prices in the context of their

geographical location. The plot depicts all 880 properties available in the data set where

data points are coloured by the listed rental price per month.

Figure 9.3: Map of Glasgow, Scotland, with points representing properties listed for
rent. The property points are colored by the listed rental price per month. The red
triangle and square points correspond to the most expensive and the cheapest rentals,

respectively.

The lowest monthly rental price recorded for the period (£240 pm) belongs to a property

in Cumbernauld and the highest rental price (£1, 016 pm) to a property in the desirable

Park Circus location in the west end of Glasgow (marked as red square and triangle,

respectively, in Figure 9.3). Overall, higher rental prices appear to be concentrated in
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the city center as well as the west end of Glasgow. The south side of the river appears to

have lower rental prices when compared to the north side with the exception of the east

end of Glasgow, where rental prices appear to be relatively low on both sides of the river.

Figure 9.4 divides the area of Glasgow into nine subsets with the boundaries defined by

the subway stations of the city.

Figure 9.4: Map of Glasgow, Scotland, with points representing properties listed
for rent. The property points are colored by the listed rental price per month. The
dashed lines correspond to the coordinates of the most southern (West Street), eastern
(Buchanan Street), northern (Hillhead), and western (Govan) subway stations. These

boundaries divide the space into nine partitions marked by letters from A to I.

Area E corresponds to the inside of the subway circle. The area features some of the

highest rental prices recorded with an exception of the bottom left corner, corresponding

to the area of Govan, where rental prices seem to be lower overall. Area A exhibits

a divide between the regions of Clydebank with lower prices and Bearsden/Milngavie

where most rental prices seem to be middle-range. A similar pattern is seen in area B,
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where areas such as Kelvindale and Kelvinside exhibit higher prices than those further

north. Area C depicts fewer properties for rent overall with prices closer to the lower end

of the scale. Area D reveals higher rental prices for the north of the river Clyde in areas

such as Partick when compared to the south side of the river, which has similar rental

prices as those seen in area G. Area H exhibits a mixture of rental prices with lower

ones present towards the east of the boundary, which reflects the separation between the

areas of Pollokshields and Shawlands and the area of Govanhill. Area F shows a clear

decrease in the rental price with the increase in the easting of the property. Finally, area

I depicts more scattered rental properties with a cluster forming in East Kilbride, where

rental prices appear to be consistent with those seen in the east of Glasgow in areas C

and F . To summarise:

• The north side of the river inside the subway circle and the northwest of Glasgow

are subject to higher rental prices.

• It appears that the location of the property with respect to the river is more

important in the west than in the east of the city.

• A pocket of higher rental prices is present in the south of Glasgow in the area of

Pollokshields/Shawlands amongst the overall lower rental prices.

A divide and conquer algorithm such as a hierarchical mixture of experts is a good fit

for such complicated relationships for several reasons. Firstly, conflicting relationships

between the rental prices and geographical locations can be represented by the different

models fitted to partitioned subspaces of the problem. Soft probabilistic boundaries allow

for both sharp and smooth transitions between the models fitted reflecting the reality of

the rental market in Glasgow. The automatic model architecture methodology developed

in Chapter 6 decreases issues arising from preselecting the space partitions. In addition

to the ability to predict rental prices, HME model also offers a level of interpretability,

which is an essential feature for buy-to-let investors. The subsequent sections of this

chapter discuss fitting HME model with normal experts to the rental price data as well

as assessing the performance of the proposed methodology, predictive performance, and

the interpretability of the model.

9.3 HME Model Fitting for Glasgow Rental Prices

A hierarchical mixture of experts model with Gaussian experts is fitted to the standard-

ised Glasgow rental price data. The data set containing 880 observations is randomly
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divided into training (70%) and test (30%) subsets. All models discussed in this chap-

ter are fitted on the training data set while their predictive performance is evaluated

on the test set. The monthly rental price acts as the response variable, where each yi

corresponds to the monthly rental price of the i-th property. The longitude (x1i) and

latitude (x2i) of the property are treated as the explanatory variables forming a vector

xi = (x1i, x2i), which corresponds to the geographical location of the i-th property.

The initial state consists of one expert, which is then improved upon by the automatic

tree growth using the reversible jump and gate swap methodology developed in Chapter

7. First, an HME model is fitted using RJ MCMC only, which is then further extended

to RJ GS MCMC. Following the initial impression formed by exploratory analysis, a

wide, weakly informative gating parameter prior is chosen to reflect the varying level

of abruptness in rental prices across many proximities. Similarly, given the anticipated

conflicting patterns in rental prices across their geographical locations, a wide weakly

informative prior is chosen for the intercept and slopes expert parameters. In order to

encourage a tighter allocation to experts across all geographic locations, a moderate prior

is selected for the variance. Thus, all variables are standardised with the following prior

parameter values chosen:

βE ∼ NIG

(
0,

[
100 0

0 100

]
, 1, 0.01

)

γ(G,H) ∼ MVN

(
0,

[
50 0

0 50

]) (9.1)

for all (G,H) ∈ PE and for all E ∈ E .

It has been shown in Section 6.8.6 that the frequency and quantity of reversible jumps

do appear to have an effect on the overall preferred fit of the model. As seen previously,

in order to propose a large total number of jumps that are given a chance to be improved

upon once accepted, a single reversible jump is proposed every 10 MCMC iterations.

As seen before, the forward jump parameters are drawn from two Gaussian proposal

distributions ,i.e., γ1 ∼ N (0, 100), ϵ ∼ N (0, 0.05) (see Section 6.5.2 for the forward

jump proposal methodology). A wide proposal distribution is selected for the slopes of

logistic regression to encourage the exploration of both smooth and abrupt transitions

during forward jumps. As usual, a small amount of variation is then added to the slope

parameter of the logistic regression in order to add an element of randomness to the

proposal. All MCMC chains discussed in this chapter are run for 1, 100 iterations with
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the first 100 discarded for burn-in. The convergence of the chains is assessed by visual

inspection of the predictions as outlined in Section 4.3.4.2.

The HME model is first fitted using RJ MCMC and the results are outlined in the

following section.

9.4 RJ MCMC Results for Glasgow Rental Prices

Table 9.1 summarises the recorded reversible jump acceptance rates while Figure 9.5

depicts the distribution of the number of experts in the model trees. The overall recorded

acceptance rate of 14.55% for the reversible jumps is a notable improvement on the

notoriously low reversible jump acceptance rates (Al-Awadhi et al., 2004; Ehlers and

P. Brooks, 2008; Farr et al., 2015; Brooks et al., 2003). It is evident that the preferred

number of experts in the tree is 3 with reversible jumps exploring up to 4 experts. Figure

9.6 further reveals that automatic tree growth took place during the first 50 jumps after

which the fit settled on a model with 3 experts.

Table 9.1: Acceptance rates of the reversible jumps for the Glasgow rental prices
data.

Splits Merges All Jumps

Number Proposed 60 50 110

Number Accepted 9 7 16

Acceptance 15.00% 14.00% 14.55%

Figure 9.5: Distribution of the number of experts in the RJ MCMC chain for the
Glasgow rental prices data.
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Figure 9.6: Number of experts in the tree after each reversible jump proposal step in
RJ MCMC for the Glasgow rental prices data.

An additional RJ MCMC run has been created in order to obtain the Gelman-Rubin

statistic resulting in the value of 1.06, which strongly suggests that the convergence has

been achieved. Given that there were no jumps after the 50-th one, the model fit can be

further investigated by focusing on the MCMC iterations after the jumps stopped. Even

though model parameters are still updating and changing at each iteration, their posterior

point estimates can be investigated and obtained as means of posterior parameter values.

For the allocation variables, one can interrogate the information on which expert each

of the properties has been allocated to the majority of the time post the 50th jump.

Figure 9.7 offers the previously seen map view of Glasgow with the resulting allocations.

It is evident that Expert 1 (pink) contains properties located in the east and southeast

of Glasgow bordering with Expert 2 (green), which groups properties located in the city

center and northwest of Glasgow while Expert 3 (blue) properties are located in the

south, southwest and far west of the city. It is also apparent that the three experts

meet in the center of Glasgow. It is interesting to note that the river closely follows the

border between Experts 2 and 3, however, doesn’t seem to be a factor for Expert 1. The

separation between Experts 1 and 2 occurs in the previously noted areas of Pollokshields

and Govanhill. Similarly, Experts 1 and 3 draw a border between the central Merchant

city district and neighboring Carntyne, Bridgeton, and Parkhead areas. All of the above

is consistent with the observations made in the exploratory stage of the analysis.
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Figure 9.7: Assigned allocations to the 3 experts in the HME tree for the Glasgow
rental prices training data. The depicted allocations correspond to which expert each

of the properties has been allocated the majority of the time.

The three-dimensional view depicted in Figure 9.8 helps to further visualise the average

allocations in space after the 50th reversible jump (one can view an animated version

here). It is clear that the properties assigned to Expert 2 (green) tend to have higher

rental prices on average, followed by Expert 1 (pink) and Expert 3 (blue), which is also

consistent with the observations made in the exploratory stage of the analysis. It is

interesting to note that Expert 1 properties that are located in between Expert 1 and

Expert 2 have lower rental prices than the other properties in the group. In general, the

rental prices appear to increase towards the center point for pink and blue points and

increase even further as the latitude increases for the green points.

https://drive.google.com/file/d/1aQR0cQdfDsbUyYQEs_fdOpHF_sieC1bT/view?usp=sharing
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Figure 9.8: Three-dimensional view of the geographic locations and recorded rental
prices for the Glasgow rental prices training data. The depicted allocations correspond
to which expert each of the properties has been allocated the majority of the time.
Expert 1 - pink, Expert 2 - green, Expert 3 - blue. Animated version available here.

It is crucial to remember that HME models provide soft probabilistic splits, which means

that the division between experts is not as clear-cut as it appears when solely looking

at the allocation variables. This means that some points might actually have similar

probabilities of being assigned to two or even all three of the experts in the tree. Thus,

let us refer to Figure 9.9 and Figure 9.10 to assess the abruptness of the splits between

experts. The figures represent the average path probabilities and responsibilities (path

probabilities multiplied by the expert densities), respectively, associated with the 3 ex-

perts in the tree after the 50-th jump as pie chart slices. It is shortly illustrated why

it is of interest to investigate both path probabilities and responsibilities. To further

investigate the behavior of rental prices within each expert, the radius of the pie charts

in the figures illustrates the rental price of the property, i.e., the larger the radius, the

higher the monthly rental price. Figures 9.11 and 9.12 provide a closer view of the soft

splits in the areas of borders between the experts.

https://drive.google.com/file/d/1aQR0cQdfDsbUyYQEs_fdOpHF_sieC1bT/view?usp=sharing
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Figure 9.9: Pie charts colored by the average path probabilities associated with each
of the 3 experts in the tree for the Glasgow rental prices training data. Individual pie
chart radiuses illustrate the rental price of the property - the larger the radius, the

higher the monthly rental price.

Figure 9.10: Pie charts colored by the average responsibilities associated with each
of the 3 experts in the tree for the Glasgow rental prices training data. Individual pie
chart radiuses illustrate the rental price of the property - the larger the radius, the

higher the monthly rental price.
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Recall that path probabilities, π(E)
i , are obtained based on values of explanatory vari-

ables, in this case, longitude and latitude, and values of gating parameters corresponding

to the nodes of the tree. On the other hand, responsibilities also take into account the

expert densities, which depend on the parameters of experts present in the tree, i.e.,

υ
(E)
i =

π
(E)
i f (E)(yi|xi,θ

(E))∑
E∈E π

(E)
i f (E)(yi|xi,θ(E))

. Thus, comparing the two can help one better under-

stand the probabilistic splits.

At a first glance, the experts appear to be well separated. Both path probabilities and

responsibilities indicate a smoother transition for some properties located on the borders

between the experts. On the other hand, the assignment to the latent groups is rather

strict when moving away from the boundaries between experts. It is also evident that

Expert 2 contains some of the properties with the highest rental prices since the green

points appear to be the largest, on average. Expert 3 points are the smallest and most

consistent in size indicating the lowest rental prices on average as well as the least amount

of variation. There also seems to be more variation present in the rental prices of the

properties in Expert 1 when compared to the other two experts in the tree. In general,

for Expert 2, points get slightly smaller towards the north and far west of the city. For

Expert 1, the size of the points decreases towards the east of the city with the highest

rental prices situated in the center of the south of the city.

Next, let us refer to the zoomed-in versions of Figure 9.9 and Figure 9.10. Consider the

path probabilities recorded for a property circled in red in Figure 9.11 and denote it as

the m-th property. It is evident that path probabilities are distributed across all three

experts with π
(E1)
m = 0.327, π(E2)

m = 0.079, and π
(E3)
m = 0.594. This means that based on

its geographical location, this property is most likely to be assigned to expert E3 (blue),

followed by E1 (red) and E2 (green). Information, provided by path probabilities, is next

compared to that arising from responsibilities. The same property is now circled in red

in Figure 9.12. It is immediately clear that the slice corresponding to E2 seems to have

disappeared from the pie chart. In fact, the recorded responsibilities are υ
(E1)
m = 0.108,

υ
(E2)
m = 0.001, υ(E3)

m = 0.891. It is thus evident that for this property the separation

between experts becomes more confident once the expert densities are taken into account.

That is, it is now very unlikely for this property to be allocated to E2 (green) with the

most likely outcome of it being allocated to E3 (blue). A similar pattern can be observed

for several properties neighboring the one discussed in here. For this example, it is now

clear that the more abrupt separation between E2 (green) and the other two experts in

this area is stemming from expert densities.
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Figure 9.11: Zoomed-in version of pie charts colored by the average path probabilities
associated with each of the 3 experts in the tree for the Glasgow rental prices training

data.

Figure 9.12: Zoomed-in version of the pie charts colored by the average responsibilities
associated with each of the 3 experts in the tree for the Glasgow rental prices training

data.
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The impression formed so far is further confirmed by the results presented in Table 9.2.

It is evident that the highest average rental price has indeed been recorded for properties

allocated to Expert 2, followed by Expert 1 and Expert 3. It is interesting to note that

the mean rental prices for Expert 1 and 2 are close to the two modes of the response

noted in the explanatory stage of the analysis (see Figure 9.2).

All parameter estimates discussed in relation to Table 9.2 are posterior point estimates

obtained as the mean of posterior parameter values and are simply referred to as estimates

in the following paragraphs.

Table 9.2: For each expert: the average rental price of properties allocated to the par-
ticular expert for the Glasgow rental prices training data; the estimated mean posterior
parameters for the densities of the normal experts, where β̂lonE and β̂latE correspond
to the coefficients for the longitude and the latitude, respectively, and σ̂2

E corresponds
to the mean normal expert variance parameter.

Expert (E) 1 2 3

Mean Rental Price (£) 457.91 606.52 416.26

β̂lonE -0.3505 0.0820 -0.0288

β̂latE 0.1197 -0.4422 0.1869

σ̂2
E 0.3537 0.5558 0.1431

It has been noted that there might be different levels of variability, or heteroscedasticity,

present in the response across the experts. In agreement with the observations made

previously, the highest estimated variability in the response corresponds to Expert 2

while the lowest corresponds to Expert 3.

Looking at the estimated slope coefficients for Expert 1, the negative value for the lon-

gitude slope parameter indicates that, keeping the latitude constant, the rental prices of

those properties assigned to Expert 1 decrease towards the east of the city. Similarly,

the positive value for the estimated latitude slope parameter indicates that, keeping

longitude constant, the rental price of properties increases towards the north of the city.

For Expert 2, the value of the longitude slope parameter estimate is positive, however

close to zero, indicating that, keeping the latitude constant, the rental prices of those

properties assigned to Expert 2 increase slightly towards the east of the city. In contrast

to Expert 1, for Expert 2 the negative value for the latitude slope parameter estimate

indicates that keeping longitude constant, the rental price of properties decreases towards

the north of the city, which is consistent with previously made observations.

Finally, for Expert 3 the value of the longitude slope parameter estimate is negative,

however, close to zero, which means that keeping the latitude constant, the rental prices

of those properties assigned to Expert 3 decrease slightly towards the east of the city.
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Similarly to Expert 1, for Expert 3 the positive value for the latitude slope parameter

estimate indicates that keeping longitude constant, the rental price of properties increases

towards the north of the city.

Overall, it is evident that rental prices for Expert 1 and 3 behave similarly with respect

to longitude and latitude, however, the two experts are the furthest away from each other

geographically. Expert 2, on the other hand, exhibits the opposite effects when it comes

to the relationship between the rental price and longitude/latitude.

The posterior point estimates of gating slope parameters, obtained as means of posterior

parameter values, for two gates in the tree are given in Table 9.3. Let G1 denote the

root gate node and let G2 be a child gate of G1.

Table 9.3: For each gate: the estimated posterior means for gating parameters, where
γ̂lonE and γ̂latE correspond to the coefficients for the longitude and the latitude, re-

spectively for the Glasgow rental prices training data.

Gate (G) 1 2

γ̂lonG 8.5667 -17.9809

γ̂latG -11.124984 -20.85077

It is evident that both gates estimate a more abrupt separation between experts with

respect to latitude than longitude. It can also be seen that the second split at G2 is

estimated to be more abrupt than the first one at G1. Unfortunately, commenting on

gating parameter slope estimates has limited value when it comes to interpretability.

An alternative way of investigating the splits involves evaluating the logistic regression

function for each gate on a grid, which corresponds to the ranges of explanatory variables,

and scaling the result to the range of response variable in order to visualise split planes

such as shown in Figure 9.13.

At a first glance, it is clear that, as expected, both gates provide an abrupt separation

between experts. It can be seen that two gates split the problem space in different

locations. Comparing the location of the first split (at the root gate G1) shown in plot

(ii) with the corresponding allocations depicted in plot (i), it is evident that the first split

separates E1 (pink) from the other two experts. Similarly, looking at the second split

(at G2) shown in plots (iii) and (vi) and comparing them against the allocations as per

(i) and (iv), it is evident that the second split defines the boundary between E2 (green)

and E3 (blue). Having assessed the locations of the splits in the context of allocations,

the previously noted higher absolute values for G2 slope parameters appear consistent

with the prior knowledge of rental prices. That is, there is a larger difference between

rental prices recorded for properties in the boundaries between experts E2 (green) and

E3 (blue) than that between E1 (pink) and the other two experts. Such thorough
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investigation of the average HME model fit allows for reconstructing the post reversible

jump model architecture, which is shown in Figure 9.14.

Figure 9.13: Visualisation of splits in the fitted HME model for the Glasgow rental
price training data. Two angles represented by each row of plots. (i) and (iv) provide
a view of average allocations with colors: Expert 1 - pink, Expert 2 - green, Expert
3 - blue.; (ii) and (v) illustrate the split at gate G1; (iii) and (vi) illustrate the split
at gate G2. The planes shown in (ii), (iii), (v), and (vi) correspond to the logistic
regression function for each gate evaluated on a grid, which corresponds to the ranges

of explanatory variables, and scaled to the range of response variable.

Figure 9.14: Architecture of the fitted HME model with 3 experts for the Glasgow
rental prices training data.
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Finally, the three-dimensional view of the resulting model is represented by the average

prediction plane shown in Figures 9.15 and 9.16. The animated version of the figure can

be accessed here. The first figure provides the most intuitive view of the fitted model,

where a steep change in the prediction plane is observed where the previously seen Expert

1 and Expert 3 meet and the peak corresponding to Expert 2 emerges in the background

(see Figure 9.8 for comparison). The main peak thus corresponds to the rental prices in

the central and west locations of the city while the smaller peak captures the price drop

evident in the central south of Glasgow. Overall, the fitted model appears to represent

the relationships noted in the explanatory stage of the analysis as anticipated. Having

assessed the performance of RJ MCMC, the addition of gate swaps is investigated next.

Figure 9.15: Average RJ MCMC fitted plane and the corresponding contour plot
for the Glasgow rental prices training data. Predictions made on a 25 × 25 grid. The

animated version of the figure can be accessed here.

https://drive.google.com/file/d/1dC8Xg-FxHEvKNDVogUNRkkpu-bcEn0y6/view?usp=sharing
https://drive.google.com/file/d/1dC8Xg-FxHEvKNDVogUNRkkpu-bcEn0y6/view?usp=sharing
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Figure 9.16: Average fitted plane for the Glasgow rental prices training data shown
from additional angles. Predictions made on a 25 × 25 grid. The animated version of

the figure can be accessed here.

9.5 RJ GS MCMC Results for Glasgow Rental Prices

It has been shown that RJ MCMC settles on a model with 3 experts in it. Given such a

small number of experts in the tree, the addition of gate swaps may prove to be excessive,

however, it may provide some guidance on when RJ GS MCMC performs best and should

be used.

In this application, the frequency of the reversible jumps remains unchanged with one

jump proposed every 10th iteration. It has been shown in Section 7.5 that frequent gate

swap proposals tend to drive the overall number of experts in the model down. On the

other hand, the frequency of swap proposals should be sufficiently high in order to have

a notable effect. Thus, gate swaps are proposed every 25th iteration and the results are

summarised in Table 9.4.

https://drive.google.com/file/d/1dC8Xg-FxHEvKNDVogUNRkkpu-bcEn0y6/view?usp=sharing
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Table 9.4: Acceptance rates for the implementation of reversible jump only (equivalent
to Table 6.5) and with the addition of gate swaps algorithm for the Glasgow rental prices

training data. Mean squared error obtained on the test data set.

Splits Merges All Jumps Swaps

RJ MCMC

Number Proposed 60 50 110 -

Number Accepted 9 7 16 -

Acceptance 15.00% 14.00% 14.55% -

Mean Squared Error 0.4776

RJ GS MCMC

Number Proposed 59 51 110 12

Number Accepted 22 21 43 4

Acceptance 37.29% 41.18% 39.09% 33.33%

Mean Squared Error 0.6096

Consistent with findings made in Chapter 7, the introduction of gate swaps increases the

acceptance rates of the reversible jumps. Even though gate swap proposals do not change

the number of experts in the tree, it is evident that successful proposals are followed by

an increased reversible jump activity. It can be seen that a third of the proposed swaps

have been accepted. Such high acceptance rates might indicate proposals that improve

mixing in architecture, however, do not have a large effect on the overall likelihood of

the model tree.

Figure 9.17 reveals that the addition of gate swaps encourages exploring trees consisting

of up to 5 experts with the most time spent in trees with 2 experts only. The latter

finding is expected given the previously established association between the introduction

of gate swaps and a decrease in the average number of experts in the tree. Unlike the RJ

MCMC, there is no evidence of RJ GS MCMC settling on a certain amount of experts

(Figure 9.18). Since reversible jumps continue to be accepted throughout the duration

of the MCMC, there is no meaningful way to summarise the posterior model parameters

as seen for the RJ MCMC. For the property data application, the gate swaps appear to

cause more disturbance than improvement, which is confirmed by the produced mean

squared error, that is notably higher than the one achieved without the gate swaps (Table

9.4).
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Figure 9.17: Distribution of the number of experts in the RJ SG MCMC chain with
initial start of 1 expert for the Glasgow rental prices training data.

Figure 9.18: Number of experts in the tree after each reversible jump proposal for the
Glasgow rental prices training data. Gate swap proposals are marked as dashed lines
with green indicating an accepted and red indicating a rejected gate swap proposal.

RJ GS MCMC results in the predictions plane shown in Figures 9.19 and 9.20 with the

animated version available here. The decrease in the average number of experts across

MCMC iterations creates a model fit, in which the rental prices appear to simply increase

towards the center of Glasgow. The latter is of course true, however, fails to capture the

complex relationships across the east, west, and south areas of Glasgow. An additional

RJ GS MCMC run has been created in order to obtain the Gelman-Rubin statistic as

per Section 5.5 resulting in the value of 1.07, which indicates that despite the changing

architecture, convergence in predictions has been achieved.

https://drive.google.com/file/d/1r1A3BD8AZ-9BXp-6MUNlqi5Sc1bEo_tx/view?usp=sharing
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Overall, the results obtained in this section are not surprising given the small number

of experts in the HME model tree. For this application, the improvement in the ex-

ploration of model architecture space does not appear to be worth the loss of modeling

and prediction accuracy. The next section evaluates the HME model fitted using the RJ

MCMC against two competitors.

Figure 9.19: Average RJ GS MCMC fitted plane and the corresponding contour plot
for the Glasgow rental prices training data. Predictions made on a 25 × 25 grid. The

animated version is available here.

https://drive.google.com/file/d/1r1A3BD8AZ-9BXp-6MUNlqi5Sc1bEo_tx/view?usp=sharing
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Figure 9.20: Average RJ GS MCMC fitted plane the Glasgow rental prices training
data view from additional angles. Predictions made on a 25 × 25 grid. The animated

version is available here.

9.6 HME Performance against Competitors for Glasgow Rental

Prices

9.6.1 Competitor Model Fitting Details

In this section, the fitted HME model is compared to two competitors - Generalised

Additive Models (GAM) and Bayesian Additive Regression Trees (BART) (please see

Chapter 8 for details). For both competitors, the models are fitted on the training data

set while their predictive performance is evaluated on the test set. As before, the data is

standardised with the monthly rental price acting as the response variable, where each

yi corresponds to the monthly rental price of the i-th property. The longitude (x1i) and

latitude (x2i) of the property are treated as the explanatory variables forming a vector

xi = (x1i, x2i), which corresponds to the geographical location of the i-th property.

https://drive.google.com/file/d/1r1A3BD8AZ-9BXp-6MUNlqi5Sc1bEo_tx/view?usp=sharing
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The following GAM model is fitted to the property data in R using the default settings

of the function gam from the package gam:

Rental Pricei = f1(longitudei) + f2(latitudei) + f3(longitudei, latitudei) + ϵi,

where ϵi ∼ N (0, σ2). For simplicity, the default smoothing splines with 4 degrees of

freedom and the default smoothing parameter equal to 1 are used to represent the rela-

tionship between the rental price and the longitude and latitude of the property as well

the interaction between the two (R Documentation, 2023).

BART is fitted to the property data in R using the default settings of the function

bart from the package BayesTree. BART is a sum of trees model, where each tree

is constrained by a prior, which is controlled by power and base parameters with the

default values of 2 and 0.95, respectively. This prior is recommended to ensure that each

individual tree is a weak learner that contributes only a small amount to the overall fit (R

Documentation, 2022). As seen for HME, BART model is also run for 1, 100 iterations

with the first 100 discounted as burn-in.

9.6.2 Competitor Evaluation against HME

The predictive performance of the competitor models is summarised in Table 9.5. It can

be seen that the HME model outperforms GAM and comes close to the BART model

(MSE difference of 0.032). The predictive performance results are consistent with those

seen for the motorcycle accident data.

Table 9.5: Mean squared error obtained from the predictions made on the test data
set of the property rental price data for the following models - Hierarchical Mixture of
Experts (HME), Generalised Additive Model (GAM) and Bayesian Additive Regression

Tree (BART).

HME GAM BART

Mean Squared Error 0.4776 0.6111 0.4452

For buy-to-let investors in Glasgow, it is crucial to understand how the geographical

location of the property affects the rental price. GAM provides a limited level of in-

terpretability that can be achieved by separating the additive smooth components for

longitude and latitude and plotting them against the rental price. The visualisation

of interaction terms, however, is complicated and less intuitive (see Noam Ross (2022)
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for GAM interaction visualisation ideas). Furthermore, GAM does not account for het-

eroscedasticity present in the response and it has been shown that there is indeed different

variability in the rental prices present across distinct areas of Glasgow. Finally, GAM ap-

pears to have the largest mean squared error and thus the worst predictive performance

out of the models considered.

While BART does have the best predictive performance in terms of the mean squared

error, the model does not account for heteroscedasticity and is viewed as more of a

black-box method. Hence BART does not provide the same level of interpretability as

that presented for the HME model (see Section 9.4). The trade-off between prediction

accuracy and interpretability is a well-known and discussed topic in machine learning and

most of the time the choice comes down to the main goal of the model fitting process

(Weller et al., 2021) . In the case of the Glasgow rental property market problem, the

additional information provided by the nature and design of HME models is of utmost

importance to the first-time buy-to-let investors, who want to develop an understanding

of the market as a whole as well as make an accurate prediction. It is thus believed

that, given how close the mean squared errors of HME and BART are, such buy-to-let

investors would prefer using the HME model.

9.7 Summary

In this chapter, hierarchical mixture of experts model has been fitted to the data set

containing rental property prices in Glasgow. An initial investigation of the data re-

vealed complex relationships between the geographical location of the property and its

rental price across different areas of the city. An initial impression of such relationships

was formed and confirmed by the fitted HME model. It has been shown that a high

reversible jump acceptance rate of 14.55% has been achieved demonstrating the success

of the devised reversible jump proposals. The automatic architecture selection methods

lead to a preferred number of three experts in the tree. Results produced by the MCMC

chain during the model fitting process have been presented and discussed to showcase

the interpretability of HME model. The latter included looking at the latent assignment

variables for the considered properties as well as the mixing proportions associated with

the three experts. The soft probabilistic splits, evident for several properties located

on the borders between the experts, were showcased and discussed when assessing the

abruptness of the tree splits. Next, the estimated posterior mean parameter values were

presented and interpreted. The fitted posterior mean variance parameters illustrated

HME model’s ability to capture heteroscedasticity present in the rental prices across the
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three experts. Visualisation of the locations for splits allowed for an in-depth under-

standing of the model as well as reconstructing the architecture of the fitted HME tree.

The gate swaps have, however, proved to be an excessive addition to the model fitting

algorithm for this application. Finally, the performance of HME model was compared to

GAM and BART models. It has been shown that HME model outperformed GAM and

came close to BART in terms of prediction capability as well as demonstrated the added

benefits of accounting for heteroscedasticity and a high level of model interpretability.

There is scope for extending the example presented in this chapter to a multivariate

scenario. For example, one could investigate rental price changes over time as well as

add additional explanatory variables such as which floor the property is located on, if it

boasts of having a garden, the year the property was built, and many more.

Overall, the rental prices data helped illustrate that HME models are a powerful tool

that offers a high level of model interpretability as well as accurate predictions. Using

the fitted HME model, the first-time investor could firstly make a reliable estimate of

the expected rental income for a particular property. Secondly, they would be able to

interrogate the model output to gain an in-depth understanding of the model representing

the rental market in Glasgow. The next chapter offers an overview of the work undertaken

throughout this thesis as well as discusses potential future extensions of the work.



Chapter 10

Conclusions, Discussion and Future

Work

10.1 Main Goal

From the outset of the work undertaken throughout this thesis, a lack of a flexible and

automatic architecture selection technique is identified as the main challenge faced by

the HME models. It is demonstrated that pre-setting HME model architecture can

lead to poor mixing and issues with convergence. A commonly used approach to ar-

chitecture selection involves trying several architectures out and using methods such as

cross-validation to pick the best one. Such a method is computationally intensive and

still requires the user to pick the set of architectures to consider. The process of deciding

on how many nodes the model tree should have and how these nodes should be arranged

yields an unmanageable number of options. Choosing model architectures in advance

also requires setting initial parameter values, which becomes progressively challenging

as parameter dimensionality increases. Thus, the work presented in this thesis aims to

propose automatic architecture selection methods, which would allow for both adding

and removing tree nodes as well as adjusting the order of the existing nodes.

10.2 Reversible Jump Methodology

Growing and pruning the HME model trees results in an ever-changing model parame-

ter dimensionality, which requires a flexible and constructive way to move between the

plausible models. The reversible jump algorithm, used for the construction of reversible

Markov chains, stands out as a great candidate for the task. It is shown that for HME

159
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models, the naive reversible jump algorithm suffers from low acceptance rates. In gen-

eral, the cause of low RJ acceptance rates usually lies in uninformed jump proposals

(Al-Awadhi et al., 2004; Ehlers and P. Brooks, 2008; Farr et al., 2015; Brooks et al.,

2003). To address this issue for HME models, a method for proposing intelligent jumps

is developed resulting in the reversible jump acceptance rate increase from 0.6% to 12.2%

for one of the applications presented in the thesis. The improvement in the acceptance

rates is shown to be consistent across multiple applications and tuning parameter se-

lections. It is also demonstrated that the addition of the reversible jump can improve

mixing and convergence as well as allow for escape from an unhelpful initial state. The

proposed automatic architecture selection method appears to yield a consistent model

fit on average irrespective of the reversible jump frequency and the initial state. The

adaptation of the reversible jump methodology with the addition of the reversible jump

proposal generation algorithm thus forms the desired solution for automatically growing

and pruning the HME model trees.

10.3 Gate Swap Methodology

The reversible jump operates in the leaves of the tree and thus does not allow for sudden

dramatic changes inside the model architecture. Such changes are achieved by imple-

menting a novel idea, which consists of swapping the order of existing nodes. The latter

is carried out by the addition of the gate swap algorithm to the reversible jump MCMC.

It is demonstrated that the gate swaps result in proposing architectures that would not

have been considered otherwise. This seems to further improve mixing in architecture

with consistently high acceptance rates suggesting the increased exploration of model ar-

chitecture space. The gate swaps also introduce the option of escaping previously made

unbeneficial splits in one step and hence encourage simpler models with fewer experts

in the tree. It is observed that gate swaps can cause notable disturbance to the model

architectures and are often followed by increased reversible jump activity. Throughout

the evaluation of the reversible jump gate swap MCMC, it becomes apparent that gate

swaps are better suited for deep trees. Firstly, larger trees are more likely to contain

unfortunate splits and hence benefit from the swaps. Secondly, the bigger the tree the

more gates there are available for a swap, which creates a larger pool of architectures

to be proposed. Given that the addition of gate swaps is not expensive in terms of run

time, it is recommended to fit HME models using both the RJ MCMC and the RJ GS

MCMC to evaluate which model fitting technique is most suitable for the application in

question.
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10.4 Performance Against Competitors

In this thesis, HME models are fitted to two real-life applications with both models

evaluated against two competitors - GAM and BART. In both cases, the HME model

outperforms the GAM and comes close to the BART in terms of its predictive perfor-

mance. The key differentiating features offered by HME are the ability to account for

heteroscedasticity as well as offer a high level of interpretability of the fitted model. As

well as creating accurate predictions, HME model allows for an in-depth understanding

of the fitted model. The latter includes insight into the distribution of the number of

experts across the MCMC runs, the latent assignment variables, the abruptness and

location of the separation between the experts as well as access to the normal expert

density parameters. The interpretability of the model is showcased with impact when

modeling rental prices in Glasgow. The problem is approached from the first-time buy-

to-let investor’s point of view, which requires developing an understanding of Glasgow

rental market as a whole as well as making a reliable prediction. It is shown that the

model captures complex relationships between the geographical location and the rental

price of properties in Glasgow. The investor can thus identify areas that exhibit a steep

price change in close proximity as well as identify general peaks in rental prices. All of

the above results in a more desirable outcome than that produced by a prediction-driven

black-box method.

10.5 Potential Applications

As seen throughout this thesis, HME models are particularly useful in applications with

evident change points, varying degrees of smoothness, and complex relationships be-

tween the response and input variables. In addition, HME models are very well-suited

for modeling a heteroscedastic response. In practice, the complexity of the relationship

between the response and explanatory variables is rarely uniform across the whole prob-

lem space. In fact, a complex relationship is often present in a small portion of the

problem space with a rather simple relationship evident elsewhere. It is thus preferable

to spend relatively more effort sampling in the areas where such relationships are more

interesting. The structural makeup of HME models allows for doing just that by fitting

a simple model in the majority of the problem space and concentrating on the remain-

ing complex subproblem. In addition to applications covered in this thesis, consider an

example, tackled by Gramacy (2015), which exhibits the described characteristics. The

application involves a new reusable rocket booster, developed by NASA and called the

Langley Glide-Back Booster (LGBB). It is of interest to learn about the LGBB response

in flight characteristics as a function of a selected number of inputs. In particular, the
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relationship between the lift response and speed (Mach) and angle of attack (alpha) with

the side-slip angle (beta) fixed at zero is investigated (Figure 10.1).

Figure 10.1: LGBB in flight Lift plotted as a function of Mach (speed) and alpha
(angle of attack) with beta (side-slip angle) fixed to zero. Source: Gramacy (2015).

It is evident that in the majority of the problem space, the relationship between the

response variable lift and the two covariates alpha and Mach is simple and could poten-

tially be represented by a smooth plane. On the other hand, there are several peaks and

dips present in the lift for smaller Mach values forming a more complex relationship. In

addition to the Bayesian Treed Gaussian Process model proposed by the author, such

relationships could be represented by an HME model, which would partition the problem

space and solve subproblems accordingly.

Further potential HME applications can be observed in the area of geology. For example,

surface elevation application discussed by Davis (2002), where varying levels of elevation

are modeled as a function of geographical location. HME models could also be used

to model complex relationships and varying levels of smoothness often appearing in the

area of molecular design. For instance, HME could be considered as an alternative to

the currently used polynomials in modeling the relationship between the docking studies

and the biological activity of δ-selective enkephalin analogues (Sapundzhi et al., 2015).
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10.6 Future Research

Although at this time the focus is placed on showcasing the model interpretability for low

dimensional problems, future research could investigate fitting HME models using the

RJ GS MCMC on problems of higher dimensionality. Another potential extension of the

work presented consists of further development of the reversible jump algorithm, which

would allow for merging all sibling nodes as opposed to merging expert siblings only.

Such jumps would propose more drastic pruning and growing of the trees. The latter

idea, however, also entails a nontrivial task of developing forward jump proposals that

would have the functionality to replace any expert with a tree that is also hierarchical.

Although the expert parameter sampling methods proposed throughout this thesis con-

centrate on Gaussian experts, the methodology could be extended to suit GLM and other

experts. The latter would broaden the suitable applications and potentially prove to be a

worthwhile addition to the smaller number of available competitor methods. Borrowing

some ideas from GAM, new methods for fitting simple smooth functions at the leaves of

the tree could also be considered.

Although the individual expert densities in the tree are usually of the same form, they do

not need to be. A mixture of different expert densities could potentially improve HME

model fit even further. The above, of course, would require developing the methodology

for flexible parameter sampling as well as picking the expert density to be used when

introducing a new expert.

The HME model architecture also allows for the approach to be used to solve classification

problems. A continuous response variable, seen in this thesis, could be replaced by a

categorical response variable defining the classes. The reversible jump and gate swap

methodology could be used to perform automatic partitioning of the problem space,

based on the explanatory variables, in the same way as seen throughout this thesis. On

the other hand, the output produced by experts would need to be categorical, which

could be achieved by fitting appropriate models at the leaves of the tree, i.e., logistic,

multinomial or ordinal regression.

RJ GS MCMC for HME models could be further extended to handle cases with multi-

variate outcomes. Approaches that allow for modeling multiple responses at the same

time are especially required in fields such as medicine, where it is of interest to predict

a set of correlated variables (for an application in psychiatry see Teixeira-Pinto et al.,

2009). Given that the path probabilities in HME models do not depend on the response

variables, only expert densities alongside the corresponding parameter proposals and up-

dates would require adaptation. For example, methods, similar to the latent variable
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model for multiple outcomes discussed in Sammel et al. (1999), could be used in the

leaves of HME trees.

Developing a methodology for dealing with missing values when fitting HME models is

another area of potential future research. Unlike HME, alternative tree-based methods,

such as Classification and Regression Trees (CART), use the so-called surrogate splits

to tackle the problem of missing values (Breiman, 1984). Feelders (2000) describes the

function of such surrogate splits as picking in which direction to send an observation

with a missing value based on determining to what extent the potential splits resemble

the best split in terms of the number of cases that they send the same way. Such an

observation is then assigned based on the most resembling surrogate split. In the case

of HME, the complication arises from all input variables being used in the calculations

performed by both gate and expert nodes.

In general, when considering missing data mechanisms, one is first required to think about

the reason behind the missingness (Lai, 2019). For example, the data could be missing

completely at random (MCAR), which means that the missingness process is unrelated

to the research question, and thus, in general, observations with missing variables can

be omitted. Thus, under MCAR, no additional HME-specific methodology is required.

Difficulties, however, arise when the probability of missing observations can be explained

by the observed data; such a missingness process is known as missing at random (MAR).

For MAR, in the cases where missing data is only present in the response, the missing

observations can often be omitted, however, the presence of missing data in the input

variables requires implementing more advanced methods (Lai, 2019). Finally, utmost care

needs to be taken towards the non-ignorable missingness which occurs when conditions

of MAR do not hold and thus valid inference can only be obtained by appropriately

modeling the missingness mechanism.

A method known as listwise deletion, which uses complete cases only, can be used under

MCAR and, in some cases, under MAR. An example of a fully Bayesian approach for

missing data entails treating missing data as parameters with some prior information.

Alternatively, methods, known as multiple imputation (MI), can be implemented to

predict the missing values using the observed data (Buuren, 2012; Demirtas, 2018). In a

Bayesian setting, MI methods capture the uncertainty around the produced predictions

by imputing multiple data sets and getting the corresponding samples from the posterior

distributions of the missing values. Such samples are then used to assign the missing

values. Taking into account the nature of missingness processes, future research for

HME could thus focus on treating the missing data as parameters, exploring imputation

methods as well as developing novel approaches.
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10.7 Conclusion

The work carried out throughout this thesis resulted in a functional methodology for

automatically selecting and adjusting hierarchical mixture of experts model architecture.

The latter included

1. Proposing and evaluating three Bayesian sampling strategies for HME models with

Gaussian experts resulting in the recommended approach.

2. Adapting the reversible jump methodology to HME models.

3. Developing methodology for improving on low naive reversible jump acceptance

rates for HME models.

4. Proposing algorithm, which outlines forward and backward jump steps for HME

models with Gaussian experts.

5. Introducing the gates swaps algorithm for adjusting the existing HME tree archi-

tecture.

The above contributions have led to improvement in mixing and convergence as well

as sensitivity to starting values for considered HME model applications. It has been

demonstrated that the hierarchical mixture of experts can offer accurate predictions,

accountability of heteroscedasticity as well a high level of model interpretability.



Appendix A

Iteratively Weighted Least Squares

Algorithm

A.1 IWLS Algorithm

An iteratively weighted least squares (IWLS) problem with a solution α∗ can be written

as

α∗ =
(
XTW (α)X

)−1
XTW (α)Z(α),

where X is the design matrix, W (α) is the weight matrix and Z(α) is the response

vector. As per Dutang (2017), the IWLS algorithm can then be written as

1. Initialisation:

(a) Use original data and add a small shift y + 0.1.

(b) Compute working responses Z(α)(0).

(c) Compute working weights W (α)(0).

(d) Solve this system of linear equations to get α(0)

XTW (α)(0)Xα(0) = XTW (α)(0)Z(α)(0).

2. Iteration: for t = 1, ..., T :

(a) Compute working responses Z(α)(t).
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(b) Compute working weights W (α)(t).

(c) Solve this system of linear equations to get α(t+1)

XTW (α)(t)Xα(t+1) = XTW (α)(t)Z(α)(t).

A.2 QR Decomposition for IWLS Algorithm

In practice, the linear equations stated in the IWLS algorithm steps 1d) and 2c) are

solved using the QR decomposition (Green, 1984). To simplify notation, let W (α) = W

and Z(α) = Z. The equations can then be simplified as follows

XTWX = XTWZ

XTW
1
2W

1
2X = XTW

1
2W

1
2Z

X̃T X̃ = X̃T Z̃,

where X̃ = W
1
2X and Z̃ = W

1
2Z. Next, perform a QR decomposition on X̃, i.e. write

X̃ = QR. Then

X̃T X̃ = X̃T Z̃

(QR)TQR = (QR)T Z̃

RTQTQR = RTQT Z̃

RTR = RTQT Z̃

R = QT Z̃,

where QTQ = I, because Q is an orthonormal matrix. The QR decomposition can be

exploited further in the calculation of the variance-covariance matrix Σ:

Σ = (XTWX)−1 = (X̃T X̃)−1 = ((QR)TQR)−1 = (RTQTQR)−1 = (RTR)−1. (A.1)



Appendix B

Gating Parameter Estimation

Details

B.1 Indicator Log-likelihood Function

As seen previously, the indicator likelihood, which is equivalent to the joint density of

the allocation variables z(G) given the parameters γ(G), for the points that have reached

gate G can be written as

L
(
z(G)|γ(G)

)
=

n∏
i=1

∏
H

(
π
(G,H)
i

)z(G,H)
i

,

It follows that the corresponding log-likelihood function is

l
(
z(G)|γ(G)

)
=

n∑
i=1

∑
H

z
(G,H)
i log

(
π
(G,H)
i

)

=

n∑
i=1

∑
H

z
(G,H)
i log

 exp
(
γ(G,H)Txi

)
∑

H′ exp
(
γ(G,H′)Txi

)
 .

168



Appendix B. Gating Parameter Estimation Details 169

Using the fact that
∑

H z
(G,H)
i = 1, the above can also be written as

l
(
z(G)|γ(G)

)
=

n∑
i=1

[∑
H

z
(G,H)
i

(
log
(
exp

(
γ(G,H)Txi

))
− log

(∑
H

exp
(
γ(G,H)Txi

)))]

=

n∑
i=1

[∑
H

z
(G,H)
i

(
γ(G,H)Txi − log

(∑
H

exp
(
γ(G,H)Txi

)))]

=
n∑

i=1

[(∑
H

z
(G,H)
i γ(G,H)Txi

)
− log

(∑
H

exp
(
γ(G,H)Txi

))]
.

(B.1)

B.2 Score Function

Let S
(
γ(G)

)
denote a score function containing the first derivatives of the indicator

log-likelihood function. The score function can be obtained by differentiating (B.1) as

follows

S
(
γ(G,H)

)
=

∂l
(
z(G)|γ(G)

)
∂γ(G,H)

=

n∑
i=1

xi

∑
H

z
(G,H)
i −

exp
(
γ(G,H)Txi

)
∑

H′ exp
(
γ(G,H′)Txi

)


=
n∑

i=1

xi

[∑
H

z
(G,H)
i − π

(G,H)
i

]
= XT

(
z(G,H) − π(G,H)

)
,

where z(G,H) =
(
z
(G,H)
1 , ..., z

(G,H)
n

)T
and π(G,H) =

(
π
(G,H)
1 , ..., π

(G,H)
n

)T
. A vector of

first derivatives for all H descending from G is thus obtained as

S
(
γ(G)

)
=
(
XT

(
z(G,H) − π(G,H)

))T
H

= X#T
(
z(G) − π(G)

)
, (B.2)

where X# is the original matrix X repeated as many times as there are splits at gate G,

z(G) =
(
z(G,H)

)T
H

and π(G) =
(
π(G,H)

)T
H

.
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B.3 Hessian Matrix

Let H
(
γ(G)

)
denote a Hessian matrix containing the second derivatives of the indicator

log-likelihood function. The derivation of the Hessian matrix requires obtaining the

derivatives of the mixing proportion

π
(G,H)
i =

exp
(
γ(G,H)Txi

)
∑

H′ exp
(
γ(G,H′)Txi

) . (B.3)

with respect to the gating parameters. This problem can be further split into two cases.

First, differentiating π
(G,H)
i with respect to γ(G,H) (Case 1). Second, differentiating

π
(G,H)
i with respect to γ(G,H′′), where H ̸= H ′′ (Case 2).

Case 1

Let us write the denominator of (B.3) as follows:

∑
H′

exp
(
γ(G,H′)Txi

)
= exp

(
γ(G,H)Txi

)
+
∑

H′ ̸=H

exp
(
γ(G,H′)Txi

)
︸ ︷︷ ︸

A

.

The derivative of π(G,H)
i with respect to γ(G,H) can then be obtained as follows

∂π
(G,H)
i

∂γ(G,H)
=

∂

∂γ(G,H)

 exp
(
γ(G,H)Txi

)
exp

(
γ(G,H)Txi

)
+A


=

xi exp
(
γ(G,H)Txi

)(
exp

(
γ(G,H)Txi) +A

))
− exp

(
γ(G,H)Txi

)
xi exp

(
γ(G,H)Txi

)
(
exp

(
γ(G,H)Txi

)
+A

)2
=

xi exp
(
2γ(G,H)Txi

)
+A · xi exp

(
γ(G,H)Txi

)
− xi exp

(
2γ(G,H)Txi

)
(
exp

(
γ(G,H)Txi

)
+A

)2
=

A · xi exp
(
γ(G,H)Txi

)
(
exp

(
γ(G,H)Txi

)
+A

)2
=

exp
(
γ(G,H)Txi

)
exp

(
γ(G,H)Txi

)
+A

xi ·
A

exp
(
γ(G,H)Txi

)
+A

= π
(G,H)
i · xi ·

exp
(
γ(G,H)Txi

)
+A− exp

(
γ(G,H)Txi

)
exp

(
γ(G,H)Txi

)
+A
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= π
(G,H)
i · xi ·

1−
exp

(
γ(G,H)Txi

)
1 + exp

(
γ(G,H)Txi

)
+A


= π

(G,H)
i

(
1− π

(G,H)
i

)
xi.

Case 2

Let H and H ′′ be two different nodes, then the derivative of π
(G,H)
i with respect to

γ(G,H′′) is

∂π
(G,H)
i

∂γ(G,H′′)
=

∂

∂γ(G,H′′)

 exp
(
γ(G,H)Txi

)
∑

H′ exp
(
γ(G,H′)Txi

)


=
0− exp

(
γ(G,H)Txi

)
xi exp

(
xT
i γ

(G,H′′)
)

(∑
H′ exp

(
γ(G,H′)Txi

))2
= −

exp
(
γ(G,H)Txi

)
∑

H′ exp
(
γ(G,H′)Txi

) · exp
(
xT
i γ

(G,H′′)
)

∑
H′ exp

(
γ(G,H′)Txi

)xi

= −π
(G,H)
i π

(G,H′′)
i xi.

Combining the two cases together, we have

∂π
(G,H)
i

∂γ(G,H)
= π

(G,H)
i

(
1− π

(G,H)
i

)
xi, and

∂π
(G,H)
i

∂γ(G,H′′)
= −π

(G,H)
i π

(G,H′′)
i xi, (B.4)

with H ̸= H ′′. Analogously, having obtained (B.4), the derivation of the second deriva-

tives of the gating parameter log-likelihood function is split into two cases.

Case 1
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∂2l
(
z(G)|γ(G)

)
∂γ(G,H)∂γ(G,H)T

=
∂

∂γ(G,H)

[
n∑

i=1

xi

[∑
H

z
(G,H)
i − π

(G,H)
i

]]

=
∂

∂γ(G,H)

[
n∑

i=1

xi

∑
H

z
(G,H)
i −

n∑
i=1

xi

∑
H

π
(G,H)
i

]

=
∂

∂γ(G,H)

[
−

n∑
i=1

xi

∑
H

π
(G,H)
i

]

= −
n∑

i=1

xix
T
i

(
π
(G,H)
i

(
1− π

(G,H)
i

))
= XTA(G,H)X,

(B.5)

where A(G,H) is a n×n diagonal matrix with diagonal entries A(G,H)
ii = π

(G,H)
i

(
1− π

(G,H)
i

)
for i = 1, ...n.

Case 2

For some H ′′ ̸= H

∂2l
(
z(G)|γ(G)

)
∂γ(G,H)γ(G,H′′)T

=
∂

∂γ(G,H′′)T

[
n∑

i=1

xi

[∑
H

z
(G,H)
i − π

(G,H)
i

]]

=
∂

∂γ(G,H′′)T

[
n∑

i=1

xi

∑
H

z
(G,H)
i −

n∑
i=1

xi

∑
H

π
(G,H)
i

]

=
∂

∂γ(G,H′′)T

[
−

n∑
i=1

xi

∑
H

π
(G,H)
i

]

= −
n∑

i=1

xix
T
i

(
−π

(G,H)
i π

(G,H′′)
i

)
= XTA(G,H,H′′)X,

(B.6)

where A(G,H,H′′) is a n×n diagonal matrix with diagonal entries A(G,H,H′′)
ii = −π

(G,H)
i π

(G,H′′)
i

for i = 1, ...n.

Combining the two results (B.5) and (B.6), the Hessian matrix can then be written as

H
(
γ(G)

)
=


XTA(G,H1)X · · · XTA(G,H1,Hr)X

...
. . .

...

XTA(G,H1,Hr)X · · · XTA(G,Hr)X

 = X#TA#X#. (B.7)
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B.4 IWLS for Gating Parameter Estimation

The iteratively weighted least squares (IWLS) algorithm, outlined in Appendix A, is used

to estimate the gating parameters γ(G) (Green, 1984). The latter incorporates Newton’s

method (Fisher, 1925) where the following is iterated until convergence

γ(G)∗ = γ(G) +
(
−H

(
γ(G)

))−1
S
(
γ(G)

)
. (B.8)

For illustrative purposes, assume that there are p covariates and r splits present at each

gate in the model, the dimensions for the elements in (B.8) are then

γ(G)∗︸ ︷︷ ︸
rp×1

= γ(G)︸︷︷︸
rp×1

+

−H
(
γ(G)

)
︸ ︷︷ ︸

rp×rp


−1

S
(
γ(G)

)
︸ ︷︷ ︸

rp×1

.

In order to simplify the notation of results obtained for S
(
γ(G)

)
and H

(
γ(G)

)
, let us

drop the subscript G as

S (γ) = X#T (z− π)

and

H (γ) = X#TA#X#,

respectively. The problem can then be reformulated as an iterative weighted least squares

(IWLS) problem as follows
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γ∗ = γ + (−H (γ))−1 S (γ)

= (−H (γ))−1 (−H (γ))γ︸ ︷︷ ︸
γ

+(−H (γ))−1 S (γ)

= (−H (γ))−1 [−H (γ)γ + S (γ)]

=
(
−X#TA#X#

)−1 [(
−X#TA#X#

)
γ +X#T (z− π)

]
=
(
−X#TA#X#

)−1 [(
−X#TA#X#

)
γ +X#TA#A#−1(z− π)

]
=
(
−X#TA#X#

)−1 [
−X#TA#

(
X#γ −A#−1(z− π)

)]
=
(
X#TA#X#

)−1 [
X#TA#

(
X#γ −A#−1(z− π)

)]
=
(
X#TA#X#

)−1 [
X#TA#

(
X#γ −A#−1(z− π)

)]
,

where γ∗ is the IWLS problem solution with weights A#, response vector X#γ −
A#−1(z − π) and the design matrix X#. From here onwards, the steps of the IWLS

algorithm can be implemented as per Appendix A.



Appendix C

Derivation of the Proposed Gating

Parameter Density for Forward

Jump

Given that γ1 and ϵ are independent, we have that

(
ϵ

γ1

)
∼ MVN

((
0

µγ1

)
,

(
σ2
ϵ 0

0 Σγ1

))
.

It is evident that γ = (γ0,γ1)
T can be written as a linear transformation of (ϵ,γ1)

T given

x∗ as

γ =

(
γ0

γ1

)
=

(
1 −x∗

0 I

)(
ϵ

γ1

)
=

(
−x∗Tγ1 + ϵ

γ1

)
.

One can work out the mean vector and the variance-covariance matrix of γ given x∗ as

follows

E (γ|x∗) = E

((
γ0

γ1

)∣∣∣∣∣x∗

)
=

(
1 −x∗

0 I

)
E

((
ϵ

γ1

))

=

(
1 −x∗

0 I

)(
0

µγ1

)

=

(
−x∗Tµγ1

µγ1

)
.
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Cov (γ|x∗) = Cov

((
γ0

γ1

)∣∣∣∣∣x∗

)
=

(
1 −x∗

0 I

)
Cov

((
ϵ

γ1

))(
1 −x∗

0 I

)T

=

(
1 −x∗

0 I

)(
σ2
ϵ 0

0 Σγ1

)(
1 0

−x∗ I

)

=

(
σ2
ϵ −x∗TΣγ1

0 Σγ1

)(
1 0

−x∗ I

)

=

(
σ2
ϵ + x∗TΣγ1x

∗ −x∗TΣγ1

−x∗TΣγ1 Σγ1

)
.

Hence

γ|x∗ ∼ MVN

((
−x∗Tµγ1

µγ1

)
,

(
σ2
ϵ + x∗TΣγ1x

∗ −x∗TΣγ1

−x∗TΣγ1 Σγ1

))
∼ MVN

(
µγ|x∗ ,Σγ|x∗

)
.

Finally,

q(γ) =

in∗∑
i=i1

1

n
× ϕµγ|xi ,Σγ|xi

(γ), (C.1)

where ϕµ,Σ(·) is the multivariate Gaussian density function with mean vector µ and

variance-covariance matrix Σ.



Appendix D

Posterior Means for Parameters of

Mixture of Two Gaussian Experts

Example from Section 5.4

Lower Estimate Upper Lower Estimate Upper

γ0 γ1

Sampler 1 -14.186 -10.416 -6.948 1.451 2.111 2.900

Sampler 2 -13.983 -10.334 -7.05 1.492 2.100 2.853

Sampler 3 -14.102 -10.480 -7.021 1.467 2.126 2.844

Table D.1: Posterior means and 95% credible intervals for the gating parameters of
the mixture of two Gaussian experts (Section 5.4, data set (i) from Figure 5.1).

Lower Estimate Upper Lower Estimate Upper

σ2
E∗ σ2

E∗∗

Sampler 1 0.129 0.198 0.304 0.205 0.309 0.454

Sampler 2 0.129 0.193 0.285 0.233 0.303 0.406

Table D.2: Posterior means and 95% credible intervals for the expert variance pa-
rameters of the mixture of two Gaussian experts (Section 5.4, data set (i) from Figure

5.1).
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Lower Estimate Upper Lower Estimate Upper

β0E∗ β0E∗∗

Sampler 1 -2.988 -2.011 -1.098 22.541 24.529 26.578

Sampler 2 -2.485 -2.024 -1.611 23.790 24.759 25.716

β1E∗ β1E∗∗

Sampler 1 2.173 2.445 2.735 -3.178 -2.881 -2.588

Sampler 2 2.317 2.449 2.583 -3.056 -2.913 -2.774

Table D.3: Posterior means and 95% credible intervals for the slope and intercept
parameters of the mixture of two Gaussian experts (Section 5.4, data set (i) from

Figure 5.1).

Lower Estimate Upper Lower Estimate Upper

γ0 γ1

Sampler 1 -3.226 -1.879 -0.368 0.050 0.302 0.593

Sampler 2 -3.346 -1.747 -0.331 0.034 0.273 0.569

Sampler 3 -2.927 -1.700 -0.299 0.050 0.249 0.500

Table D.4: Posterior means and 95% credible intervals for the gating parameters of
the mixture of two Gaussian experts (Section 5.4, data set (ii) from Figure 5.1).

Lower Estimate Upper Lower Estimate Upper

σ2
E∗ σ2

E∗∗

Sampler 1 0.125 0.192 0.292 0.320 0.527 0.830

Sampler 2 0.117 0.183 0.274 0.332 0.531 0.827

Table D.5: Posterior means and 95% credible intervals for the expert variance pa-
rameters of the mixture of two Gaussian experts (Section 5.4, data set (i) from Figure

5.1).

Lower Estimate Upper Lower Estimate Upper

β0E∗ β0E∗∗

Sampler 1 7.610 8.243 8.869 -2.965 -1.826 -0.734

Sampler 2 7.982 8.246 8.533 -2.631 -1.810 -1.047

β1E∗ β1E∗∗

Sampler 1 -0.171 -0.047 0.079 0.904 1.074 1.250

Sampler 2 -0.106 -0.047 0.005 0.949 1.071 1.199

Table D.6: Posterior means and 95% credible intervals for the slope and intercept
parameters of the mixture of two Gaussian experts (Section 5.4, data set (ii) from

Figure 5.1).



Appendix E

Prediction Intervals for HME and

BART

HME

For HME, the prediction interval for the i-th point is defined by the 2.5th and 97.5th per-

centiles of the distribution resulting from all predictions ŷ∗
i =

(
ŷ
∗(1)
i , ..., ŷ

∗(T )
i

)
produced

across iterations t = 1, ..., T as follows:

1. Pick expert E∗ from all E ∈ E with probabilities corresponding to the path prob-

abilities
(
π
(E)(t)
i

)
E∈E

.

2. Draw u ∼ N(0, 1).

3. Calculate ŷ
∗(t)
i = ŷ

(t)
i + u × σ̂

(t)
E∗ , where ŷ

(t)
i denotes the estimated value for yi at

iteration t and σ̂
(t)
E∗ corresponds to the posterior standard deviation parameter for

the normal expert E∗ at iteration t.

The above steps are computed separately for each observation i yielding ŷ∗
1, ..., ŷ

∗
n, where

each ŷ∗
i is used to obtain the corresponding 2.5th and 97.5th percentiles for i = 1, ..., n.

BART

For BART, the prediction interval for the i-th point is defined by the 2.5th and 97.5th

percentiles of the distribution resulting from all predictions ŷ∗
i =

(
ŷ
∗(1)
i , ..., ŷ

∗(T )
i

)
pro-

duced across iterations t = 1, ..., T as follows:

1. Draw u ∼ N(0, 1).
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2. Calculate ŷ
∗(t)
i = ŷ

(t)
i + u × σ̂(t), where ŷ

(t)
i denotes the estimated value for yi at

iteration t and σ̂(t) corresponds to the posterior standard deviation parameter at

iteration t.

The above steps are computed separately for each observation i yielding ŷ∗
1, ..., ŷ

∗
n, where

each ŷ∗
i is used to obtain the corresponding 2.5th and 97.5th percentiles for i = 1, ..., n.

GAM

Since GAM is a frequentist approach, the prediction intervals are less straightforward to

obtain. The step-by-step approach outlined by Andersen (2019) is thus used.

The corresponding intervals are then obtained as the 2.5th and 97.5th percentiles of the

resulting predictions distributions.



Appendix F

Details of GAM fit for Motorcycle

Accident Data

Figure F.1: GAM model fit on the motorcycle accident data. The smoothing spline
fitted to the explanatory variable (time) is shown as a solid black line alongside the

estimated standard errors around the fit shown as dashed lines.
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