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Abstract
Given a tensor triangulated category we investigate the geometry of the Balmer spec-
trum as a locally ringed space. Specifically we construct functors assigning to every
object in the category a corresponding sheaf and a notion of support based upon these
sheaves. We compare this support to the usual support in tt-geometry and show
that under reasonable conditions they agree on compact objects. We show that when
tt-categories satisfy a scheme-like property then the sheaf associated to an object is
quasi-coherent, and that in the presence of an appropriate t-structure and affine as-
sumption, this sheaf is in fact the sheaf associated to the object’s zeroth cohomology.
When the tensor triangulated structure is replaced with a monoidal triangulated struc-
ture we show that one can form localising bimodules and central idempotents given
particular localisation sequences. Finally, we provide a computation of the spectrum
for the enveloping algebra of the A2 quiver and determine that spectrum consists of a
single point.
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Chapter 1

Introduction

§ 1.1 | Associated sheaf functors
Given an essentially small tensor triangulated category, one can construct a topological
space, called the Balmer spectrum, from the collection of prime tensor ideals. Impor-
tant collections of subcategories such as localising or thick tensor ideals can often be
classified by subsets of this space. Moreover, just as the spectrum of a commutative
ring can be equipped with the usual structure sheaf, the Balmer spectrum also natu-
rally admits the structure of a locally ringed space. In this work we investigate sheaves
over the Balmer spectrum equipped with this structure sheaf, emphasising the geom-
etry of the space and its influence on ideas of support and the cohomology of objects.
More precisely, given a compactly generated tt-category T generated by the tensor unit
1 we construct an associated sheaf functor

[1,−]• : T −→ Shv(Spc(Tc))

Using the geometric information of this sheaf and its stalks we can define a support
for an object X ∈ T by setting supp•(X,1) = {P | [1, X]•P ̸= 0}. This notion of
support satisfies many of the desirable properties usually satisfied by support theories
and it is natural to ask how this geometric flavour of support compares to the usual
notions. We have the following comparison:

Theorem. Suppose Tc = thick(1) and the Balmer spectrum of Tc is a noetherian
topological space. Then for all objects X ∈ T there is containment

suppX ⊆ supp•(X,1),

where the support on the left is the support in the sense of Balmer-Favi. Moreover if
X is compact then there is an equality

suppX = supp•(X,1).

In algebraic geometry, the notion of affine spaces and schemes are both powerful
and prolific. By using the spectrum as an avatar for our tt-category we can pull these
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geometric properties into our setting. Specifically we consider Balmer’s comparison
map of locally ringed spaces ρ : (Spc(Tc),OT) −→ (Spec(RT),ORT) between the Balmer
spectrum and the spectrum of the endomorphism ring of the tensor unit. We call
categories where ρ is an isomorphism affine, and call a category schematic if it is
locally affine with respect to some open cover of the spectrum. With this we obtain
the following theorem:

Theorem. Let T be schematic. Then for every X ∈ T, the sheaf [1, X]# is quasi-
coherent on (Spc(Tc),OT).

If a triangulated category admits a generator satisfying certain conditions, then the
generator equips the category with a natural t-structure. This allows one to ask ques-
tions about the cohomology of objects. Our construction of the support supp•(X,1)
includes information about the suspensions of the object X. We can construct a slightly
different support supp(X,1) without this suspension data, which we call the untwisted
support. Combining these ideas with the machinery of t-structures allows us to obtain
the following theorem:

Theorem. Let T be an affine category generated by the tensor unit 1. Assume that
HomT(1,Σn1) = 0 for all n > 0. Then for all objects X ∈ T we have

supp•(X,1) =
⋃
i∈Z

supp(H i(X),1).

The material on associated sheaf functors is laid out as follows. In §2 we give the
general preliminaries on triangulated categories, tensor triangular geometry and the
various elements of algebraic geometry we will use. §3.1 contains our construction
of relative sheaf functors, in the generality of a triangulated category acted on by
a tt-category, and including twisting by an invertible object. In §3.2 we compare the
support produced by these sheaf functors to the usual notion of support. §3.3 details the
conditions under which properties such as (quasi-)coherence can lead to the formation
of thick subcategories. Affine and schematic categories are analysed in §3.4, leading
us to show that in such categories the sheaves associated to objects are always quasi-
coherent. We also introduce the notion of a quasi-affine tt-category and investigate the
associated comparison maps. §3.5 compares the usual gluing of sheaves with the tensor-
triangular notion of gluing over a Mayer-Vietoris cover and the significant differences
between the operations. In §3.6 we show how the sheaf functors interact with naturally
occurring t-structures and work towards the theorem showing that when our category
is affine, the twisted support of an object can be obtained by considering the untwisted
supports of its cohomologies. The author first presented the content of these sections in
[Row21]. We round off the discussion in §3.7 by investigating some particular examples.
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§ 1.2 | Monoidal geometry
There has been a growing interest in loosening the conditions on tensor triangulated
categories in order to capture a wider range of examples. Such examples occur in the
study of Hopf algebras and Borel subalgebras. The particular tenet under examination
is the requirement that the tensor product be symmetric. By loosening this requirement
one can now analyse so called monoidal triangulated categories, which we refer to as mt-
categories. Just like tt-categories, these mt-categories admit a notion of prime ideals,
Balmer spectra and support data. Various familiar pieces of the symmetric setting
now have analogues in the monoidal framework, including various classification results
for different types of ideals, such as in [NVY19]. We work on lifting further techinical
results into the monoidal setting. In particular, we build towards proving the following
theorem regarding central idemopotents in the monoidal case:

Theorem. Let T be a rigidly-compactly generated mt-category, S ⊆ Tc a set of compact
objects, and S = Biloc(S) i.e S is the smallest two-sided ideal containing S. Consider
the corresponding smashing localisation sequence

S T S⊥
i∗

⊥
i!

j∗

⊥
j∗

Then

1. S⊥ is a localising two-sided ideal of T.

2. there are isomorphisms of functors i∗i!1 ⊗ (−) ∼= i∗i
! and j∗j

∗1 ⊗ (−) ∼= j∗j
∗.

3. the objects i∗i!1 and j∗j
∗1 satisfy

i∗i
!1 ⊗ i∗i

!1 ∼= i∗i
!1,

j∗j
∗1 ⊗ j∗j

∗1 ∼= j∗j
∗1,

i∗i
!1 ⊗ j∗j

∗1 ∼= 0,
j∗j

∗1 ⊗ i∗i
!1 ∼= 0.

We also compute a new example of the spectrum for a mt-category. We compute
the spectrum of two-sided prime ideals for the enveloping algebra of the A2 quiver and
show that it consists of a single point. Specifically

Spc(Db(Ae2)) ∼= {∗}.

The material on mt-catgeories is laid out as follows. In §4.1 we recall some facts
from the literature about these categories and provide proofs of a few technical lemmas.
In §4.2 we extend the notion of actions to cover mt-categories acting on a triangulated
category, with potentially different mt-categories and actions acting on the left and
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right. In particular we verify that the formation of localising bimodules is well behaved
and prove the above theorem regarding central idempotents. We finish in §4.3 with
our computation of the spectrum for the enveloping algebra of the A2 quiver.



Chapter 2

Preliminaries

We lay out the core building blocks of triangulated categories, and the essential ele-
ments of tensor triangular geometry. Although our work will take us far from some of
these fundamentals, it is important to keep these notions ready at hand.

§ 2.1 | Triangulated categories
We will take a quick tour through the basics of triangulated categories. We will cover
the axioms of triangulated categories and some basic definitions, Verider localisations,
thick and localising subcategories, and finally discuss compact objects and the gener-
ation of subcategories.

§ 2.1.1 | First axioms and definitions

Definition 2.1.1. Let T be an additive category equipped with an invertible endo-
functor Σ : T −→ T, which we call the suspension functor. A candidate triangle in T
is a diagram of the form

X
u−→ Y

v−→ Z
w−→ ΣX

where each of the composites v ◦ u, w ◦ v and Σu ◦ w are equal to the zero morphism.
A morphism of candidate triangles is a commutative diagram

X1 Y1 Z1 ΣX1

X2 Y2 Z2 ΣX2

u1

f

v1

g

w1

h Σf

u2 v2 w2

where each row Xi
ui−→ Yi

vi−→ Zi
wi−→ ΣXi is a candidate triangle. Such a morphism

is an isomorphism if each of the arrows f, g, h is an isomorphism.

Remark 2.1.2. Various authors will write triangle diagrams in the following form:

X Y

Z

u

vw

This form of diagram often suppresses the presence of the suspension functor. In
exchange, this make the triangles actually look like triangles! We will refrain from
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using this form for triangles, and keep the suspension functor present throughout.
Also note that some authors denote the suspension of an object X by X[1], or

refer to it as a translation functor. More generally for an integer i, one can denote
ΣiX = X[i]. Again, we will refrain from this and keep the suspension functor Σ
obvious throughout.

Definition 2.1.3. Let T be an additive category with suspension functor Σ. Let T be
some collection of candidate triangles in T, called distinguished triangles. Then T is a
pre-triangulated category if it satisfies the following four axioms:

TR0: The candidate triangle
X

id−→ X −→ 0 −→ ΣX

is a distinguished triangle. Every candidate triangle isomorphic to a distinguished
triangle is itself distinguished.

TR1: For every morphism X
f−→ Y in T there exists a distinguished triangle

X
f−→ Y −→ Z −→ ΣX.

The object Z is referred to as the cone of f .

TR2: Consider a candidate triangle

X
u−→ Y

v−→ Z
w−→ ΣX

and its rotation
Y

−v−→ Z
−w−→ ΣX −Σu−→ ΣY.

If one of these candidate triangles is distinguished, then so is the other.

TR3: For any diagram of the form

X1 Y1 Z1 ΣX1

X2 Y2 Z2 ΣX2

u1

f

v1

g

w1

u2 v2 w2

where the rows are distinguished triangles, there exists a (not necessarily unique)
morphism h : Z1 −→ Z2 such that the diagram

X1 Y1 Z1 ΣX1

X2 Y2 Z2 ΣX2

u1

f

v1

g

w1

h Σf

u2 v2 w2

is commutative.

A pre-triangulated category (T,Σ, T ) is triangulated if it satisfies the additional
axiom
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TR4: (Octahedral Axiom) Let f : X −→ Y and g : Y −→ Y ′ be morphisms in T.
Consider triangles

X Y Z ΣX

X Y ′ Z ′ ΣX

Y Y ′ Y ′′ ΣY

f

gf

g

Then this completes to a diagram

X Y Z ΣX

X Y ′ Z ′ ΣX

0 Y ′′ Y ′′ 0

ΣX ΣY ΣZ Σ2X

f

1 g 1
gf

1

Σf

in which every row and column is a distinguished triangle in T.

Remark 2.1.4. Note that the axiom TR4 appears in may different guises and forms
throughout the literature. We use the version given above as it ensures that all of
the suspensions are obvious. The price is that the diagram does not look particularly
octahedral. It is currently an open problem whether or not every pre-triangulated
category is automatically triangulated.

Equipped with the notion of a triangulated category, we can now consider some
particular types of functors. The first are the homological functors.

Definition 2.1.5. Let T be a triangulated category and A an abelian category. A
functor H : T −→ A is homological if for every distinguished triangle

X
u−→ Y

v−→ Z
w−→ ΣX

the sequence
H(X) H(u)−→ H(Y ) H(v)−→ H(Z)

is exact. Similarly, a contravariant functor H : T −→ A is cohomological if for every
distinguished triangle

X
u−→ Y

v−→ Z
w−→ ΣX

the sequence
H(Z) H(v)−→ H(Y ) H(u)−→ H(X)

is exact.
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Remark 2.1.6. Given a homological functor H : T −→ A and applying the rotation
axiom TR2, one can extend the exact sequence infinitely in either direction. More
specifically, given a distinguished triangle

X
u−→ Y

v−→ Z
w−→ ΣX

the infinite sequence

· · · −→ H(Σ−1Z) H(Σ−1w)−→ H(X) H(u)−→ H(Y ) H(v)−→ H(Z) H(w)−→ H(ΣX) −→ · · ·

is everywhere exact.

We end this subsection with a few more definitions of interest.

Definition 2.1.7. Let T be a triangulated category admitting all countable coproducts.
Consider a sequence

X0
j1−→ X1

j2−→ X2
j3−→ · · ·

of objects and morphisms in T. The homotopy colimit of this sequence, denoted
hocolimXi is by definiton given by the triangle

∞∐
i=0

Xi
1−shift−→

∞∐
i=0

Xi −→ hocolimXi −→ Σ(
∞∐
i=0

Xi).

where the shift map is the direct sum of the ji. Note that the homotopy colimit is
defined up to non-canonical isomorphism.

Definition 2.1.8. A commutative square

Y Z

Y ′ Z ′

f

g g′

f ′

is called homotopy cartesian if there exists a distinguished triangle

Y

 g

−f


−→ Y ′ ⊕ Z

(
f ′ g′

)
−→ Z ′ −→ ΣY.

If
Y Z

Y ′ Z ′

f

g g′

f ′

is a homotopy cartesian square, then we say that Y is the homotopy pullback of the
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diagram
Z

Y ′ Z ′

g′

f ′

.

Similarly, we say that Y ′ is the homotopy pushout of the diagram

Y Z

Y ′

f

g

Remark 2.1.9. It follows immediately from the axioms of a triangulated category
that every diagram of the form

Z

Y ′ Z ′

g′

f ′

.

admits a homotopy pullback. Similarly every diagram of the form

Y Z

Y ′

f

g

admits a homotopy pushout.

§ 2.1.2 | Verdier quotients, thick subcategories and localising subcategories.

In this subsection, we will recall the notion of Verdier quotients. Given a triangulated
category, taking a Verdier quotient is one of the few known recipes from which we can
make a new category and will appear throughout many of the constructions in this
work.

Related to Verdier quotients, but also incredibly important in their own right are
the notions of thick subcategories and localising subcategories. Classifying these sub-
categories provides powerful structural information about the original triangulated cat-
egory, and is a deep area of research within tensor-triangular geometry (perhaps with
a few more adjectives depending on the category in question).

Definition 2.1.10. Let (T,ΣT, T ) and (S,ΣS,S) be triangulated categories. A trian-
gulated functor (or exact functor) is a functor F : T −→ S, together with a natural
isomorphism ψ : F ◦ ΣT ∼= ΣS ◦ F such that for every distinguished triangle

X −→ Y −→ Z −→ ΣX

in T, the image
F (X) −→ F (Y ) −→ F (Z) −→ ΣSF (X)
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is a distinguished triangle in S.

Definition 2.1.11. Let T be a triangulated category. A subcategory S ⊆ T is a
triangulated subcategory if it is a full additive subcategory of T such that every object
isomorphic to an object in S is itself in S, ΣS = S and for any distinguished triangle

X −→ Y −→ Z −→ ΣX

such that X, Y ∈ S, we have Z ∈ S.

Remark 2.1.12. If S is a triangulated subcategory of a triangulated category T, then
the inclusion functor ι : S ↪−→ T is a triangulated functor.

Definition 2.1.13. Consider a triangulated functor F : T −→ S. Define the kernel of
F to be the full subcategory

ker(F ) = {X ∈ T | F (X) ∼= 0}.

Lemma 2.1.14. The kernel of a triangulated functor is itself a triangulated subcate-
gory.

Definition 2.1.15. Given a triangulated category T, a subcategory is said to be thick
if it is triangulated and closed under direct summands. Explicitly, a full subcategory is
thick if it is closed under suspensions, cones, and direct summands. Given a collection
of objects X in T, we denote by thick(X) the smallest thick subcategory of T containing
X. It is referred to as the thick subcategory generated by X.

Definition 2.1.16. A subcategory of T is said to be localising if it is triangulated and
closed under arbitrary coproducts. Given a collection of objects X in T, we denote by
loc(X) the smallest localising subcategory of T containing X. It is referred to as the
localising subcategory generated by X.

Lemma 2.1.17. Let T be a triangulated category admitting countable coproducts. Then
every localising subcategory is thick.

Proof. Consider a localising subcategory S ⊆ T containing an object of the form Z =
X⊕Y. As T admits countable coproducts and S is localising, S is closed under arbitrary
coproducts and so contains the coproduct ∐n∈N(X⊕Y ) ∼= X⊕∐n∈N(Y ⊕X). Therefore
S contains the triangle

∐
n∈N

(Y ⊕X) −→ X ⊕
∐
n∈N

(Y ⊕X) −→ X −→ Σ
( ∐
n∈N

(Y ⊕X)
)

where the first map is the inclusion ∐n∈N(Y ⊕X) ↪−→ X⊕∐
n∈N(Y ⊕X) and the second

map is the projection onto X. Therefore S contains X and and we conclude that S is
thick.
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We have the following useful lemma from [Ste13, 3.8]:

Lemma 2.1.18. Suppose R and S are triangulated categories having enough coprod-
ucts, and M is a localizing subcategory of S. Condiser a family (Fλ)λ∈Λ of coproduct
preserving exact functors R −→ S. Then the full subcategory

L = {X ∈ R | Fλ(X) ∈ M for all λ ∈ Λ}

is a localizing subcategory of R. In particular, if C is a collection of objects of R
such that for all λ ∈ Λ we have Fλ(C) ⊆ M then every object X ∈ loc(C) satisfies
Fλ(X) ∈ M for all λ ∈ Λ.

So far we have kernels in one hand, and thick subcategories in the other. The
following results from the literature illuminate the connections between the two and
introduce us to Verdier quotients.

Lemma 2.1.19. The kernel of a triangulated functor is a thick subcategory.

The following theorem is essentially due to Verdier, although the form we give below
is most similar to [Nee01].

Theorem 2.1.20. Let S be a triangulated subcategory of a triangulated category T.
Then there exists a triangulated category T/S, called the Verdier quotient of T by S,
and a functor F : T −→ T/S such that S ∈ ker(F ) and F is universal with this property.
Explicitly, if G : T −→ R is a triangulated functor such that S ∈ ker(G), then there
exists a unique functor H : T/S −→ R such that the following diagram commutes:

T T/S

R

F

G
H

Moreover, the kernel ker(F ) is the smallest thick subcategory of T containing S.

Corollary 2.1.21. Every thick subcategory is the kernel of a triangulated functor.

The above theorem therefore gives one of the motivations for classifying different
types of thick subcategories, as it is equivalent to classifying the possible Verdier quo-
tients of a triangulated category, up to whatever additional conditions are attached to
the thick subcategories.

We present the definition of the quotient category as given in the proof of the
theorem, but we will omit the numerous lemmas required to fully prove the theorem.

Definition 2.1.22. Let T be a triangulated category with triangulated subcategory
S. Denote by MorS the collection of those morphisms f such that the cone of f lies in
S. That is, a morphism f is in MorS if it fits into a triangle

X
f−→ Y −→ Z −→ ΣX
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with Z ∈ S.

Definition 2.1.23. For objects X, Y in T define α(X, Y ) to be the collection of all
diagrams of the form

Z

X Y

f g

where f ∈ MorS. These diagrams are represented by the triples (Z, f, g). Define a
relation R(X, Y ) on α(X, Y ) by declaring that a pair of diagrams ((Z, f, g), (Z ′, f ′, g′))
is in R(X, Y ) if there exists a third diagram (Z ′′, f ′′, g′′) and morphisms

u : Z ′′ −→ Z

v : Z ′′ −→ Z ′

such that the diagram

Z

X Z ′′ Y

Z ′

f g

f ′′ g′′

u

v
f ′ g′

commutes.

It turns out that the relation defined above is actually an equivalence relation. This
leads to the following construction.

Construction 2.1.24. Let T be a triangulated category with triangulated subcategory
S. Define a new category T/S with the same objects as T with morphisms given by

HomT/S(X, Y ) = α(X, Y )
R(X, Y ) .

Composition of representatives (W1, f1, g1) and (W2, f2, g2) is induced by the diagram

W3 W2 Z

W1 Y

X

u

v f2

g2

f1

g1

where the commutative square

W3 W2

W1 Y

u

v f2

g1
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is induced by homotopy pullback.

The proof of the theorem consists of showing that the above construction is valid,
and that the resulting category does indeed satisfy the universal property of the Verdier
quotient.

Warning 2.1.25. Here be dragons. In general the homs in the Verdier quotient T/S
may not be sets, even if all of the homs in T are sets. Fortunately, throughout this
work the quotients we will take are well behaved and there is no risk of accidentally
producing some monstrous class of morphisms.

We now have in our minds an idea of what the Verdier quotient looks like, and
some motivation for thick and localising subcategories. For the rest of this work we will
refrain from using this explicit description of morphisms unless absolutely necessary,
although the quotients will appear constantly from now on.

§ 2.1.3 | Compact objects

A common theme in mathematics is to take a large structure, and then try and in-
vestigate the different ways the structure can be constructed. One flavour of this is
to consider ideas of generation. For example, groups and rings are often studied by
considering which objects generate the algebraic structure via the group or ring oper-
ations. For the categories we are interested in, the type of generation that fits best is
compact generation. In this short subsection we will set out the very basics on compact
objects. Beyond this subsection, such objects will appear constantly and play a key
role in many ideas and proofs.

Definition 2.1.26. Let T be a triangulated category admitting all set-indexed coprod-
ucts. An object t ∈ T is compact if HomT(t,−) preserves arbitrary coproducts. That
is, for any family {xλ | λ ∈ Λ} we have HomT(t,

`
λ∈Λ xλ) ∼=

⊕
λ∈Λ HomT(t, xλ).

Definition 2.1.27. We say T is compactly generated if there is a set of compact objects
G such that an object t ∈ T is zero if and only if HomT(g,Σit) = 0 for all g ∈ G and all
i ∈ Z. We call G a (compact) generating set for T. We denote by Tc the full subcategory
of compact objects in T. Note that Tc is an essentially small thick subcategory of T.

The following lemma shows the connection between thick subcategories and the
idea of a generating set.

Lemma 2.1.28. Let T be a triangulated category and g ∈ T a compact object such
that T = thick(g). For an object x ∈ T, if for all j ∈ Z we have HomT(g,Σjx) = 0,
then x = 0. That is, if T = thick(g) then {g} is a compact generating set for T.

Proof. Consider the collection

⊥x = {y ∈ T | ∀j ∈ Z : HomT(y,Σjx) = 0}.
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Observe that ⊥x is thick. By assumption g ∈ ⊥x and so ⊥x = T. Therefore HomT(x, x) =
0.

Remark 2.1.29. The above lemma holds when T = loc(g) for a compact object g.
Note also that the lemma holds when T = thick(G) for some set of compact objects G.

We will see more about compact generation in the discussion of Bousfield localisa-
tion.

As we have seen, compact objects are defined by their good behaviour with arbitrary
coproducts. The following lemma shows that such objects interact well with homotopy
colimits.

Lemma 2.1.30. [Nee92, 1.5] Let t be a compact object of a triangulated category T.
Consider a sequence of objects and maps in T given by:

X0
j1−→ X1

j2−→ X2
j3−→ · · ·

Then there is an isomorphism of abelian groups

colim HomT(t,Xi) ∼= HomT(t, hocolimXi).

Proof. Consider the triangle defining the homotopy colimit hocolimXi:
∞∐
i=0

Xi
1−shift−→

∞∐
i=0

Xi −→ hocolimXi −→ Σ(
∞∐
i=0

Xi).

Applying the homological functor Hom(t,−) and rotating via TR1, we obtain an exact
sequence

Hom(t, hocolimXi) −→ Hom(t,
∞∐
i=0

ΣXi)
Σ(1−shift)−→ Hom(t,

∞∐
i=0

ΣXi)

As t is compact we obtain a commutative diagram of abelian groups

Hom(t, hocolimXi) Hom(t,∐∞
i=0 ΣXi) Hom(t,∐∞

i=0 ΣXi)

Hom(t, hocolimXi)
⊕∞

i=0 Hom(t,ΣXi)
⊕∞

i=0 Hom(t,ΣXi)

∼=

1−shift

∼= ∼=

1−shift

with each row exact, noting that in the above the morphism 1 − shift is the morphism
obtained by applying Hom(t,Σ−) to the original 1 − shift map. The morphism

∞⊕
i=0

Hom(t,ΣXi)
1−shift−→

∞⊕
i=0

Hom(t,ΣXi)

is clearly injective, and therefore the morphism

Hom(t, hocolimXi) −→
∞⊕
i=0

Hom(t,ΣXi)
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is the zero morphism. Now consider the following diagram

⊕∞
i=0 Hom(t,Xi)

⊕∞
i=0 Hom(t,Xi) colim Hom(t,Xi) 0

Hom(t,∐∞
i=0 Xi) Hom(t,∐∞

i=0 Xi) Hom(t, hocolimXi) 0

1−shift

∼= ∼=

1−shift

where the arrow colim Hom(t,Xi) −→ Hom(t, hocolimXi) is the canonical map. The
bottom row is exact by the previous argument. The top row is exact by the definition
of the colimit. We conclude by the five lemma that the canonical map

colim Hom(t,Xi) −→ Hom(t, hocolimXi)

is indeed an isomorphism.

§ 2.2 | Primer for algebraic geometry
The bulk of this work is concerned with the properties of certain sheaves constructed
out of data found within triangulated categories. In this section we will provide a
lightning tour of the basic concepts used throughout. Note that these concepts are
indeed very basic, and this material is included to reinforce these ideas and set the scene
for comparisons with the constructions in the section on tensor triangular geometry.

Throughout this section we will be only defining sheaves on topological spaces. At
no point in this work will we require the greater generality of sheaves defined on general
categories.

§ 2.2.1 | Presheaves, sheaves and stalks

Let X be a topological space.

Definition 2.2.1. Define a category Ω(X) where:

1. Ob(Ω(X)) is the collection of all open subsets of X.

2. For each pair of open subsets V, U ⊆ X there is a unique arrow V −→ U iff
V ⊆ U , and no arrows otherwise.

In other words, Ω(X) is the data of all opens of X ordered by inclusion. That is,
it is the category generated by the poset of opens.

Definition 2.2.2. Let C be a category. A presheaf F on X with values in C is a
functor

F : Ω(X)op −→ C.

Explcitly, a presheaf is a rule which to each open subset U ⊆ X assigns an object
F (U) ∈ C, and for every inclusion V ⊆ U of open subsets assigns a morphism ρUV :
F (U) −→ F (V ) such that whenever we have inclusions W ⊆ V ⊆ U we have ρUW =
ρVW ◦ ρUV .



CHAPTER 2. PRELIMINARIES 16.

Definition 2.2.3. A morphism φ : F −→ G of presheaves valued in C is a natural
transformation of functors. Specifically, for each open subset U ∈ Ω(X) there is a
morphism φU : F (U) −→ G(U) in C, and this assignment is compatible with the
restriction maps of the presheaves. This compatibility can be represented by requiring
the following square to commute for all inclusions of open subsets V ⊆ U :

U F (U) G(U)

V F (V ) G(V )

φU

F ρ
U
V Gρ

U
V

φV

Notation 2.2.4. We denote by PshC(X) the category of all presheaves on X with
values in C, with morphisms given by morphisms of presheaves. When the category C
is obvious, we will supress the notation and simply write Psh(X). If F is a presheaf in
PshC(X) and each object of C has an underlying set, then the elements of each F (U)
are referred to as sections.

From now on we will assume that the value category C consists of objects which
have underlying sets. While this is not strictly necessary for the formalisms to make
sense, it is the setting we find ourselves in for the remainder of this work.

Definition 2.2.5. A sheaf on X with values in C is a presheaf F ∈ PshC(X) satsifying
the following condition: Given any open covering U = ⋃

i∈I Ui indexed by a set I, and
any collection of sections si ∈ F (Ui) such that for all i, j ∈ I

si|Ui∩Uj
= sj|Ui∩Uj

then there exists a unique section s ∈ F (U) such that for all i ∈ I we have s|Ui
= si. A

morphism of sheaves is simply a morphism of the underlying presheaves. The category
of all sheaves on X with values in C and all sheaf morphisms is denoted by ShvC(X),
or by Shv(X) if the context is clear.

Definition 2.2.6. The stalk of a (pre)sheaf F at a point x ∈ X is given by

Fx = colimx∈U F (U)

where the colimit is taken over all open subsets U containing x.

Warning 2.2.7. A presheaf F : Ω(X)op −→ C may fail to have a stalk at point x if
the colimit colimx∈U F (U) does not exist in C. From now on we will assume that C
admits all such colimits. This is the case in many categories which appear in practice,
particular those with an algebraic flavour.

The elements of Fx are germs which are pairs (f, U) where U is an open subset
containing x, and f is a section of F (U), modulo the relation that (f, U) ∼ (g, V ) if
and only if there exists an open subset W ⊆ U ∩V containing x, such that f |W = g|W .
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Definition 2.2.8. Let F be a presheaf. For an open subset U ⊆ X we say (sx) ∈∏
x∈U Fx satisfies the local condition if, for every x ∈ U there exists an open neighbour-

hood x ∈ V ⊂ U and a section r ∈ F (V ) such that for all v ∈ V we have sv = (V, r)
in Fv. For each open subset U ⊆ X, define

F#(U) = {(sx) ∈
∏
x∈U

Fx | (sx) satisfies the local condition}

For open subsets V ⊆ U there are canonical projection maps
∏
u∈U

Fu −→
∏
v∈V

Fv.

We denote by F# the data of the F#(U) and the projection maps. We call F# the
sheafification of the presheaf F .

The following theorem confirms that the rather suspiciously named sheafification is
indeed a sheaf.

Theorem 2.2.9. Let F be a presheaf on X and let F# be the sheafification of F .

1. F# is a sheaf.

2. For all x ∈ X, Fx = F#
x .

3. For any morphism F −→ G where G is a sheaf, the morphism factors uniquely
as F −→ F# −→ G.

It is often the case that we wish to work with a particular basis for a topological
space, rather than just using arbitrary open subsets of the space. Let X be a topo-
logical space with basis B. One can define (pre)sheaves on B by adapting the above
definitions, simply changing every instance of "open subset" to "basic open subset". We
will sometimes refer to (pre)sheaves on a basis B as partially-defined.

Proposition 2.2.10. Let F be a sheaf on B. Then there exists a sheaf F ext on X such
that for all basic open subsets U ∈ B, we have F (U) = F ext(U).

Proof. The key ingredient is applying the so called local condition to the appropriate
open subsets. Specifically, for any open subset U ⊆ X we say (sx) ∈ ∏

x∈U satisfies the
local condition if, for every x ∈ U there exists a basic open neighbourhood x ∈ V ⊂ U

and a section r ∈ F (V ) such that for all v ∈ V we have sv = (V, r) in Fv. For each
open subset U ⊆ X, define

F ext(U) = {(sx) ∈
∏
x∈U

Fx | (sx) satisfies the local condition}

For open subsets V ⊆ U there are canonical projection maps
∏
u∈U

Fu −→
∏
v∈V

Fv.
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We denote by F ext the data of the F ext(U) and the projection maps. We call F ext

the extension of the sheaf F .
The remainder of the proof is essentially Theorem 2.2.9.

Remark 2.2.11. As a consequence of the proposition, each partially defined presheaf
F on B extends uniquely to a sheaf on X via

F
sheafification−→ F ′ −→ (F ′)ext.

From now on we will denote this extension of F by F ′ and freely call this the sheafifi-
cation of F .

In Chapter 3, we will be constructing particular sheaves from the data of a triangu-
lated category, and then investigating their properties. The next two subsections will
lay out the extra structure present on the sheaves, as well as some of the properties of
interest.

§ 2.2.2 | Locally ringed spaces and affine schemes

We start this subsection with a quick recap of O-modules and locally ringed spaces.
Throughout we fix a topological space X.

Definition 2.2.12. Let O be a sheaf of rings. An O-module is a sheaf of abelian
groups F together with a morphism of sheaves

O × F −→ F

such that for every open subset U ⊆ X, the induced map O(U) × F (U) −→ F (U)
defines an O(U)-module structure on F (U), compatible with the restriction maps.
That is, for all open subsets V ⊆ U the diagram

O(U) × F (U) F (U)

O(V ) × F (V ) F (V )

action

Oρ
U
V ×F ρ

U
V F ρ

U
V

action

commutes. A morphism of O-modules is a map φ : F −→ G of sheaves compatible
with the actions of the O-module structures of F and G. More specifically, we require
that the diagram

O × F F

O ×G G

action

id ×φ φ

action

commutes. We denote by ModO the category of all O-modules and O-module mor-
phisms between them.

Definition 2.2.13. A ringed space is a pair (X,OX), where X is a topological space
and OX is a sheaf of rings on X. The sheaf OX is called the structure sheaf. Given
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a continuous map f : X −→ Y , the pushforward sheaf f∗OX is a sheaf on Y where
for each open subset U ⊆ Y we have f∗OX(U) = OX(f−1(U)). A morphism of ringed
spaces (X,OX) −→ (Y,OY ) consists of a continuous map f : X −→ Y and a collection
of ring homomorphisms φU : OY (U) −→ f∗OX(U) for each open subset U ⊆ X,
compatible with the restriction maps. That is, for all open subsets V ⊆ U the diagram

OY (U) f∗OX(U)

OY (V ) f∗OX(V )

φU

OY
ρU

V f∗OX
ρU

V

φV

commutes. An isomorphism of ringed spaces is a morphism of ringed spaces (f, (φU)U∈Ω(X))
such that the continuous function f : X −→ Y is a homeomorphism, and the data of
φ is an isomorphism of sheaves φ : OY −→ f∗OX .

We shall focus our attention on those ringed spaces with well-behaved local prop-
erties.

Definition 2.2.14. Let R be a graded ring. A homogeneous ideal of R is an ideal
I ⊆ R such that I is a graded module over R.

Definition 2.2.15. A ring R is local if it possesses a unique maximal right ideal I. If R
is local then I is also the unique maximal left ideal, and the unique maximal two-sided
ideal. A graded ring R is a graded local ring if the two-sided ideal M generated by
noninvertible homogeneous elements is a proper maximal two-sided ideal.

Definition 2.2.16. A locally ringed space is a ringed space (X,OX) such that all
stalks of OX are local rings. A morphism of locally ringed spaces (X,OX) −→ (Y,OY )
is a morphism of ringed spaces satisfying the additional property that the induced
homomorphisms between the stalks of OY and OX are local homomorphisms. More
specifically, for every x ∈ X, the maximum ideal of the stalk OY,f(x) is mapped into
the maximum ideal of the stalk OX,x.

Remark 2.2.17. If instead of a sheaf of rings, we equip the space X with a sheaf of
graded rings, then we can repeat all of the above definitions but with the adjective
graded, with the caveat that morphisms and restriction maps must also be compatible
with the grading.

Notation 2.2.18. If a topological space X is equipped with the structure of a graded
(locally) ringed space we will denote the structure sheaf by O•

X . Similarly we will
denote the category of graded O•

X-modules by grModO•
X .

Definition 2.2.19. Let R be a Z-graded ring, let M be a Z-graded R-module and
let i be an integer. The module M twisted by i, or the i-twist of M , denoted M(i) is
defined by

M(i)n = Mn+i

for all n ∈ Z.
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We will now introduce the building block of many key concepts in algebraic geom-
etry: the spectrum of a commutative ring.

Definition 2.2.20. Let R be a commutative ring. The spectrum of R, denoted
Spec(R), is the set of all prime ideals of R. The set Spec(R) can be equipped with a
topology, called the Zariski topology, by taking all sets of the form

D(f) = {P | f ̸∈ P}

where f is any element of R, as a basis of open subsets. We define a sheaf of rings
on Spec(R) by defining OSpec(R)(D(f)) = Rf for each basic open subset D(f), which
by Remark 2.2.10 extends to a sheaf defined on all open subsets of Spec(R). The pair
(Spec(R),OSpec(R)) is a locally ringed space.

Remark 2.2.21. For an equivalent construction of (Spec(R),OSpec(R)), see [Har77,
2.2.1] and the discussion that follows.

We can now define schemes, affine or otherwise.

Definition 2.2.22. A locally ringed space (X,OX) is an affine scheme if it is iso-
morphic to (Spec(R),OSpec(R)) for some commutative ring R. A locally ringed space
(X,OX) is a scheme if for every point x ∈ X there is an open neighbourhood U such
that U equipped with the restriction of OX to U is an affine scheme.

Incorporating the property of being an (affine) scheme into tensor triangular geom-
etry will be a key theme throughout this work. With rings fresh in our mind, we will
quickly introduce a graded version of the spectrum.

Definition 2.2.23. Let R be a graded ring. A homogeneous ideal P is prime in the
usual sense if for all homogeneous elements a, b ∈ R, if ab ∈ P then a ∈ P or b ∈ P .

Definition 2.2.24. Let R be a graded ring. The homogeneous spectrum of R, denoted
Spech(R), is the collection of all prime homogeneous ideals of R.

Just as with the usual spectrum, we can equip the homogeneous spectrum with a
topology and structure sheaf OSpech(R) in the same way. The pair (Spech(R),OSpech(R))
is a graded locally ringed space.

§ 2.2.3 | Quasi-coherent and coherent sheaves

In this short subsection we will lay out some important properties of sheaves which we
will later investigate in the tensor triangular setting.

Definition 2.2.25. A sheaf of modules F on a ringed space (X,OX) is of finite type
if for every x ∈ X there exists some open neighbourhood U such that F|U is generated
by finitely many sections.
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Definition 2.2.26. An OX-module F on a ringed space (X,OX) is quasi-coherent if it
is locally the cokernel of a map of free modules. That is, there is an open cover {Uλ}λ∈Λ

of X such that for every λ there exist index sets Iλ and Jλ and an exact sequence of
sheaves of OX-modules of the form

O⊕Iλ
Uλ

−→ O⊕Jλ
Uλ

−→ F|Uλ
−→ 0.

An OX-module F is said to be coherent if

• F is of finite type and,

• for every open U ⊆ X and every finite collection si ∈ F(U), i = 1, . . . , n the
kernel of the associated map O⊕n

U −→ F|U is of finite type.

Note that every coherent sheaf is quasi-coherent.

Notation 2.2.27. Given a ringed space (X,OX) we denote by QCoh(X) the category
of all quasi-coherent sheaves, and we write Coh(X) for the category of all coherent
sheaves.

Coherent and quasi-coherent sheaves naturally form well-behaved categories.

Proposition 2.2.28. Let (X,OX) be a ringed space.

1. [Ser55, I §2] The category Coh(X) of all coherent sheaves is an abelian category.

2. If (X,OX) is a scheme, then the category QCoh(X) of all quasi-coherent sheaves
is an abelian category.

Remark 2.2.29. The above holds true in the graded case. We denote the category of
coherent graded O•

X-modules by Coh•(X) and the category of quasi-coherent graded
O•
X-modules by QCoh•(X).

Definition 2.2.30. Let (X,OX) be a ringed space. The structure sheaf OX is called
coherent if it is coherent as a module over itself.

Definition 2.2.31. An invertible sheaf on a locally ringed space (X,OX) is a sheaf
F which is locally free of rank 1. That is, for each point x ∈ X there is an open
neighbourhood U of x such that F|U ∼= OU .

Throughout this work we will frequently use the construction of a sheaf associated to
a module. We recall the construction and some elementary properties of these sheaves.

Definition 2.2.32. Let R be a commutative ring and let M be an R-module. For
each open subset U ⊆ Spec(R) define the group M̃(U) to be the collection of functions
s : U −→ ∐

P∈U MP (where MP is the localisation of M at P) such that

1. For all P ∈ U , s(P) ∈ MP .
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2. For each P ∈ U , there is an open neighbourhood V of P and elements m ∈ M

and r ∈ R, such that for all Q ∈ V , r ̸∈ Q and s(Q) = m
r

in MQ.

Using the obvious restriction maps, these groups assemble M̃ into a sheaf.

Proposition 2.2.33. [Har77, II 5.1] Let R be a commutative ring, let M be an R-
module and let M̃ be the sheaf on X = Spec(R) associated to M . Then

1. M̃ is an OX-module;

2. for each P ∈ X the stalk (M̃)P is isomorphic to MP , the localisation of M at P;

3. for any f ∈ R, the Rf -module M̃(D(f)) is isomorphic to the localised module
Mf .

§ 2.3 | Tensor triangular geometry
We start this section with the definition of a tensor triangulated category, the main
object of study in this work.

Definition 2.3.1. [Bal05] A tensor triangulated category is a triple (T,⊗,1) consisting
of a triangulated category T, and a symmetric monoidal product ⊗ : T×T −→ T which
is exact in each variable, with unit 1.

We will freely abbreviate tensor triangulated category to tt-category. Essentially,
an existing categorical structure has been equipped with an additional “multiplica-
tion”. Naturally this draws comparisons to familiar algebraic objects like groups being
equipped with a type of multiplication to become rings. As we go further into the build-
ing blocks of tensor triangular geometry this comparison with rings will be increasingly
apparent.

This collection of preliminaries will take us through the main ideas of tt-geometry.
We will start with the definitions and basic results around prime ideals, spectra and
support theories. We will detail Balmer’s construction of a locally ringed space struc-
ture, and recall some proofs of a few technical results. Finally we will embrace the
framework of categorical actions and examine some localisations and supports in this
context.

§ 2.3.1 | Rigidly-compactly generated tensor triangulated categories

Definition 2.3.2. Assume that T is closed symmetric monoidal, i.e. for each k ∈ T
the functor k⊗− has a right adjoint hom(k,−). These functors can then be assembled
into a bifunctor hom(−,−) which we call the internal hom functor. The dual of an
object k is given by k∨ := hom(k,1). An object k is rigid if for all other objects t we
have that the natural evaluation map k∨ ⊗ t −→ hom(k, t) is an isomorphism. For a
rigid object k we have k ∼= (k∨)∨.
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We can now combine the structure of a tensor triangulated category with the small-
ness conditions of compactness and rigidity to obtain a good structure to analyse.

Definition 2.3.3. A rigidly-compactly generated tensor triangulated category is a triple
(T,⊗,1) where T is a compactly generated tensor triangulated category, and (⊗,1) is
a symmetric monoidal structure on T such that the tensor product ⊗ is a coproduct
preserving exact functor in each variable, and the compact objects Tc form a rigid
tensor subcategory. In particular we require 1 to be compact. We will refer to such a
category T as a big tt-category.

Remark 2.3.4. Note that if T is a rigidly-compactly generated tt-category, then a rigid
object must necessarily be compact. To see this observe that given some coproduct⊕

i∈I ti in T, we have

HomT(u,
⊕
i∈I

ti) ∼= HomT(1 ⊗ u,
⊕
i∈I

ti)

∼= HomT(1, hom(u,
⊕
i∈I

ti)) as the tensor product is closed

∼= HomT(1, u∨ ⊗
⊕
i∈I

ti) as u is rigid

∼= HomT(1,
⊕
i∈I

(u∨ ⊗ ti)) as the tensor product preserves coproducts

∼=
⊕
i∈I

HomT(1, u∨ ⊗ ti) as the tensor unit is compact

∼=
⊕
i∈I

HomT(u, ti) by adjunction.

Therefore u is compact.

From now on we will suppress notation and take T to be a big tt-category and
denote by Tc the full subcategory of compact objects.

§ 2.3.2 | The spectrum of a tensor triangulated category

We now present the Balmer spectrum of a tensor triangulated category and the first
notion of support as given in [Bal05]. Restricting to the compact objects, this will let
us view the collection of prime ideals of a tensor triangulated category as a topological
space, equipped with a universal support theory satisfying many desirable properties.

Definition 2.3.5. [Bal05, Def 1.2] A thick tensor-ideal A of T is a thick subcategory
such that for all a ∈ A and t ∈ T the tensor product a ⊗ t also belongs to A. Just as
with thick subcategories, we will denote by thick⊗(X) the smallest thick tensor-ideal
containing X.

Following the similarity with ideals in the usual theory of commutative rings we will
also be interested in those ideals which have the additional property of being prime.

Definition 2.3.6. [Bal05, Def 2.1] A prime ideal of T is a proper thick tensor-ideal
P ⊊ T such that if a⊗ b ∈ P then a ∈ P or b ∈ P .
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It is useful to understand how being prime affects the product of ideals. The
following lemma is similar to [NVY19, 3.2.2].

Lemma 2.3.7. If P is a prime ideal of T then for all ideals I,J ⊆ T such that
I ⊗ J ⊆ P, either I ⊆ P or J ⊆ P.

Proof. Let I,J ⊆ T be ideals such that I ⊗ J ⊆ P and suppose that I ̸⊆ P and
J ̸⊆ P . Then there exists i ∈ I and j ∈ J such that i ̸∈ P and j ̸∈ P . Then

i⊗ j ∈ I ⊗ J ⊆ P .

As P is prime, i ⊗ j ∈ P implies either i ∈ P or j ∈ P , a contradiction. Therefore
I ⊆ P or J ⊆ P as required.

Definition 2.3.8. Let T be a big tt-category, with compacts Tc. The Balmer spectrum
of Tc is given by

Spc(Tc) = {P | P prime ideal of Tc}.

For all a ∈ Tc we define the open subsets U(a) = {P ∈ Spc(Tc) | a ∈ P}. This forms
a basis of quasi-compact open sets for the topology on Spc(Tc) [Bal05, 2.7, 2.14].

Definition 2.3.9. For an object t ∈ Tc the (small) tt-support suppTc t is defined as

suppTc t = {P ∈ Spc(Tc) | t ̸∈ P}.

By definition suppTc t is the complement of the basic open subset U(t). Given a subset
of objects J ⊂ Tc we define the support of the subset as

suppTc(J ) :=
⋃
j∈J

suppTc(j).

This notion of support has many desirable properties and is in fact universal
amongst such constructions.

Theorem 2.3.10. (Universal property of the spectrum [Bal05, 3.2]) We have

1. suppTc(0) = ∅ and suppTc(1) = Spc(Tc).

2. suppTc(a⊕ b) = suppTc(a) ∪ suppTc(b).

3. suppTc(Σa) = suppTc(a) where Σ is the suspension functor for T.

4. suppTc(a) ⊆ suppTc(b) ∪ suppTc(c) for any exact triangle a −→ b −→ c −→ Σa.

5. suppTc(a⊗ b) = suppTc(a) ∩ suppTc(b).

Moreover, for any pair (X, σ), where X is a topological space and σ an assignment of
closed subsets σ(t) ⊆ X to objects t ∈ Tc which satisfy properties (1)-(5) above, there
exists a unique continuous map f : X −→ Spc(Tc) such that σ(t) = f−1(suppTc(t)).
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Proposition 2.3.11. [Bal05, 2.14] Let T be a big tt-category. An open subset U ⊆
Spc(Tc) is quasi-compact if and only if there exists an object t ∈ Tc such that U = U(t).
If Spc(Tc) is a noetherian topological space, then every open subset is of the form U(t)
for some t ∈ Tc.

In [Bal10] Balmer constructs a locally ringed space structure on the spectrum
Spc(Tc). We will study certain collections of sheaves of modules on this space. In
order to do so we will provide Balmer’s construction and adjusted notation.

Throughout we assume T is a big tt-category with compact objects Tc.

Definition 2.3.12. An object u is said to be invertible if there exists an object v such
that u⊗ v ∼= 1.

Proposition 2.3.13. If X ∈ T is an invertible object, then the inverse X−1 is isomor-
phic to the dual X∨. Moreover, X is rigid and compact.

Proof. Suppose X is invertible with inverse X−1. Then the functor X⊗ − : T −→ T is
an equivalence of categories with inverse X−1 ⊗ −. These functors are therefore both
left and right adjoint to one another. Therefore there is an equivalence of representable
functors

Hom(X ⊗ −,1) ∼= Hom(−, X−1)

via the adjunction. From the properties of the internal hom functor we have

Hom(X ⊗ −,1) ∼= Hom(−, hom(X,1))

and so we conclude that X−1 ∼= hom(X,1) ∼= X∨. The rigidity of X is then immediate,
as the corresponding counit of adjunction in the evaluation map is just the isomorphism
realising X ⊗X−1 ∼= 1. The fact that X is compact then follows by Remark 2.3.4.

Definition 2.3.14. For any two objects a, b in a big tt-category T, given an invertible
object u we define the twisted homomorphism group

Hom•
T(a, b) :=

⊕
i∈Z

HomT(a, u⊗i ⊗ b).

In the special case u = Σ1 we define the graded homomorphism group by

Hom∗
T(a, b) :=

⊕
i∈Z

HomT(a,Σib).

Remark 2.3.15. For completeness we should include the invertible object u in the
notation, but we suppress it here. We rarely deal with more than one invertible object
at a time in this setup. Also note that in the case u = 1, the twisted homomorphism
group is given by

Hom•
T(a, b) =

⊕
i∈Z

HomT(a,1⊗i ⊗ b) =
⊕
i∈Z

HomT(a, b),

which is a coproduct of countably many copies of the usual homomorphism group.
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Definition 2.3.16. [Bal10, 2.1] We define the central ring RT to be the endomorphism
ring of the tensor unit

RT := EndT(1).

Given a compact invertible object u we define the twisted central ring R•
T to be

R•
T := Hom•

T(1,1).

Note that this is a special case of Definition 2.3.14 where a = b = 1.

Proposition 2.3.17. [Bal10, 3.3] Let u ∈ Tc be invertible. Then there exists ϵu ∈ RT

such that R•
T is ϵu-commutative. That is, given two homogenous elements f and g of

orders i and j respectively, we have fg = ϵiju gf.

Recall from Definition 2.3.8 that the space Spc(Tc) has a basis of quasi-compact
open subsets.

Construction 2.3.18. [Bal10, 6.1] Let U ⊂ Spc(Tc) be a quasi-compact open subset
with closed complement Z. Define Tc

Z := {t ∈ Tc | supp(t) ⊂ Z} to be the thick
⊗-ideal of Tc supported outside of U . Define the tensor-triangulated category Tc on U

Tc(U) := (Tc/Tc
Z)♮

as the idempotent completion of the Verdier quotient Tc/Tc
Z . This quotient is the

localisation S−1Tc with respect to S = {s : a −→ b | supp(cone(s)) ⊂ Z}.

Remark 2.3.19. Note that for every quasi-compact open U ⊂ Spc(Tc) we have U ∼=
Spc(Tc(U)) and moreover if V is a quasi-compact subset of U then (Tc(U))(V ) ∼= Tc(V ).

By construction we have a natural monoidal functor

qU : Tc −→ Tc(U).

Notation 2.3.20. Let X be a topological space with basis B. Recall from Remark
2.2.11 that given a (partially defined) presheaf F on B we denote the associated sheaf
on the whole of X by F#.

Definition 2.3.21. [Bal10, 6.4] For each quasi-compact open U ⊂ Spc(Tc), define the
commutative ring pOT(U) by

pOT(U) := RT(U) = HomT(U)(1U ,1U).

For an invertible object u ∈ Tc define the ϵu-commutative graded ring

pO•
T(U) := R•

T(U) = Hom•
T(U)(1U ,1U)

where
Hom•

T(U)(1U ,1U) ∼=
⊕
i∈Z

HomT(U)(1U , u⊗i
U ⊗ 1U).
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These form partially defined presheaves on Spc(Tc), only defined on the basis of quasi-
compact open sets. The associated sheaves on the space Spc(Tc) are denoted

OT := pO#
T ,

O•
T := (pO•

T)#.

We denote the locally ringed space obtained by

Spec(T) = (Spc(Tc),OT),

and the graded locally ringed space by

Spec•(T) = (Spc(Tc),O•
T).

There is a natural map of locally ringed spaces between the Balmer spectrum of Tc

and the spectrum of the commutative ring RT.

Construction 2.3.22. [Bal10, 5.6, 6.10] Let P ∈ Spc(Tc) and define

ρ•
T(P) := {f ∈ (R•

T)hom | cone(f) ̸∈ P}.

By [Bal10, 5.6] ρ•
T(P) is a homogenous prime ideal of R•

T. Moreover, ρ•
T : Spc(Tc) −→

Spech(R•
T) is continuous and natural in Tc. For every s ∈ (R•

T)even we define

U(s) := U(cone(s)) = {P ∈ Spc(Tc) | cone(s) ∈ P}.

For each distinguished openD(s) in Spec(RT) we have U(s) = (ρ•
T)−1(D(s)). By [Bal10,

Lemma 6.9] we have
O•

Spech(R•
T)(D(s)) ∼= pO•

T(U(s))

and both are naturally isomorphic to R•
T[s−1]. This allows us to construct a ring ho-

momorphism
rD(s) : O•

Spech(R•
T)(D(s)) −→ O•

T(U(s))

as the composition of the isomorphism O•
Spech(R•

T)(D(s)) ∼= pO•
T(U(s)) followed by the

sheafification morphism. This construction is compatible with restriction and defines
a morphism of ringed spaces

(ρ•
T, r) : Spec•(T) −→ Spech(R•

T).

Proposition 2.3.23. [Bal10, 6.11] The map

(ρ•
T, r) : Spec•(T) −→ Spech(R•

T)

is a map of graded locally ringed spaces. Moreover, if ρ•
T is a homeomorphism, then

(ρ•
T, r) is an isomorphism of graded locally ringed spaces. The degree 0 restriction of
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this map defines a map of locally ringed spaces

(ρT, r) : Spec(T) −→ Spec(RT)

such that if ρT is a homeomorphism then (ρT, r) is an isomorphism of locally ringed
spaces.

The proofs for the above require the following useful lemma. We will use more
general versions at various points in this work.

Lemma 2.3.24. [Bal10, 6.3] Let P ∈ Spc(Tc), and let a, b ∈ Tc. Let U be the collection
of all those quasi-compact open subsets of Spc(Tc) containing P. Then there is a natural
isomorphism

colimU∈U HomTc(U)(a, b) ∼= HomTc/P(a, b).

Definition 2.3.25. Given a prime P ∈ Spc(Tc) we denote the closure of P by V(P).
We define a set Z(P) by

Z(P) = {Q ∈ Spc(Tc) | P ̸∈ V(Q)}.

Lemma 2.3.26. Given a prime P ∈ Spc(Tc) there is an equality of sets

1. V(P) = {Q ∈ Spc(Tc) | Q ⊆ P}.

2. Z(P) = {Q ∈ Spc(Tc) | P ̸⊆ Q}.

Proof. The proof of the first statement can be found in [Bal05, 2.9]. The second
statement follows from the first:

Q ∈ Z(P) ⇐⇒ P ̸∈ V(Q)
⇐⇒ P ̸∈ {R ∈ Spc(Tc) | R ⊆ Q}

⇐⇒ P ̸⊆ Q.

From this we conclude Z(P) = {Q ∈ Spc(Tc) | P ̸⊆ Q}, completing the proof.

Definition 2.3.27. A subset V ⊂ Spc(Tc) is Thomason if V is a (possibly infinite)
union of closed subsets with quasi-compact open complements.

Lemma 2.3.28. For an essentially small tensor triangulated category Tc the following
hold for all P ∈ Spc(Tc).

1. supp(P) = Z(P).

2. supp(P) = ⋃
P∈U Spc(Tc) \ U taken over all quasi-compact opens U containing

P .

3. Tc
supp(P) = P.
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4. P = ⋃
P∈U Tc

Spc(Tc)\U .

5. For a Thomason subset Z ⊆ Spc(Tc) we have supp Tc
Z = Z.

Proof. 1. We have S ∈ supp(P) iff there exists p ∈ P such that S ∈ supp(p), iff
p ̸∈ S, i.e P ̸⊆ S.

2. First note that by Proposition 2.3.11 every quasi-compact open subset of Spc(Tc)
is of the form U(t) for some object t ∈ Tc. We obtain the following chain of
implications

Q ∈ supp(P) ⇐⇒ Q ∈ supp(t) for some t ∈ P

⇐⇒ Q ∈ Spc(Tc) \ U(t) for some t ∈ P

⇐⇒ Q ∈
⋃

P∈U
Spc(Tc) \ U

where the union is over all quasi-compact open subsets containing P .

3. If t ∈ P then by definition supp(t) ⊆ supp(P) and so t ∈ Tc
supp(P). If t ∈ Tc

supp(P)

then as supp(t) ⊆ supp(P) we have P ̸∈ supp(t) and so t ∈ P .

4. Let t ∈ P and let Z = supp(t), which is closed with open complement U . Note
that P ∈ U . It is immediate that t ∈ Tc

Z and so P ⊆ ⋃
P∈U Tc

Z . For the other
inclusion let t ∈ ⋃

P∈U Tc
Z . Then there exists an open subset U with closed

complement Z such that P ∈ U and t ∈ Tc
Z . That is supp(t) ⊆ Z. Then

P ̸∈ supp(t) and so t ∈ P .

5. As Z is Thomason, we have Z = ⋃
λ∈Λ Spc(Tc) \ Uλ where each open subset Uλ

is quasi-compact. By Proposition 2.3.11 there exist objects tλ ∈ Tc such that
Uλ = U(tλ) and so Z = ⋃

λ∈Λ Spc(Tc) \ U(tλ) = ⋃
λ∈Λ suppTc(tλ). Therefore if

P ∈ Z, there exists tλ such that P ∈ suppTc(tλ) ⊆ Z. Hence tλ ∈ Tc
Z and

P ∈ supp(Tc
Z) and so Z ⊆ supp(Tc

Z). Now fix P ∈ supp Tc
Z . Then there exists

t ∈ Tc
Z such that P ∈ supp(t) from which it is immediate that P ∈ Z. Therefore

Tc
Z ⊆ Z, concluding the proof.

Definition 2.3.29. The radical
√

J of a thick ⊗-ideal J is defined to be
√

J := {r ∈ T | ∃n ≥ 1 such that r⊗n ∈ J }.

A thick subcategory J is called radical if J =
√

J .

Remark 2.3.30. If the category Tc is rigid then every thick ⊗-ideal is radical. All
thick ⊗-ideals are radical if and only if r ∈ thick⊗(r⊗r) for every object r ∈ Tc [Bal05,
4.4].
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Proposition 2.3.31. [Bal05, 4.9] Let J ⊂ Tc be a thick ⊗-ideal. Then

Tc
supp(J ) =

√
J .

§ 2.3.3 | Categorical actions

The definitions so far suggest that one can think of a big tt-category as some kind
of bizarre commutative ring. The work of Stevenson in [Ste13] takes this comparison
further by introducing the action of a big tt-category on another triangulated category.
In the comparison with rings, this is the introduction of modules.

Remark 2.3.32. From now on we will assume that the suspension functor of the
big tt-category T is compatible with the tensor product. This is guaranteed when T
can be realised as the homotopy category of a finitely presentable stable E2-monoidal
∞-category.

Definition 2.3.33. [Ste13, Def 3.2] Let T be a big tt-category and K a triangulated
category. A left action of T on K is a functor

∗ : T × K −→ K

which is exact in each variable, together with natural isomorphisms

aX,Y,A : (X ⊗ Y ) ∗ A ∼−→ X ∗ (Y ∗ A)

and
lA : 1 ∗ A ∼−→ A

for all X, Y ∈ T, A ∈ K, compatible with the biexactness of (−) ∗ (−) and satisfying
the following conditions:

1. The associator a satisfies the pentagon condition which asserts that the following
diagram commutes for all X, Y, Z ∈ T and A ∈ K

X ∗ (Y ∗ (Z ∗ A))

X ∗ ((Y ⊗ Z) ∗ A) (X ⊗ Y ) ∗ (Z ∗ A)

(X ⊗ (Y ⊗ Z)) ∗ A ((X ⊗ Y ) ⊗ Z) ∗ A

X∗aY,Z,A aX,Y,Z∗A

aX,Y ⊗Z,A aX⊗Y,Z,A

where the bottom arrow is the associator of T.

2. The unitor l makes the following squares commute for every X ∈ T and A ∈ K

X ∗ (1 ∗ A) X ∗ A 1 ∗ (X ∗ A) X ∗ A

(X ⊗ 1) ∗ A X ∗ A (1 ⊗X) ∗ A X ∗ A

X∗lA

1X∗A

lX∗A

1X∗AaX,1,A a1,X,A
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where the bottom arrows are the right and left unitors of T.

3. For every A ∈ K and r, s ∈ Z the diagram

Σr1 ∗ ΣsA Σr+sA

Σr(1 ∗ ΣsA) Σr+sA

∼

∼ (−1)rs

∼

is commutative, where the left vertical map comes from exactness in the first
varianble of the action, the bottom horzontal map is the unitor, and the top map
is given by the composite

Σr1 ∗ ΣsA −→ Σs(Σr1 ∗ A) −→ Σr+s(1 ∗ A) l−→ Σr+sA

whose first two maps use exactness in both variables of the action.

4. The functor ∗ distributes over coproducts whenever they exist. That is, for
families {Xi}i∈I in T and {Aj}j∈J in K, and X in T, A in K the canonical maps

a

i

(Xi ∗ A) ∼−→ (
a

i

Xi) ∗ A

and a

j

(X ∗ Aj) ∼−→ X ∗ (
a

j

Aj)

are isomorphisms whenever the coproducts concerned exist.

If T acts on K we will say that K is a T-module.

Definition 2.3.34. Let L ⊆ K be a localising (thick) subcategory. We say L is a
localising T-submodule of K if the functor

T × L ∗−→ K

factors via L. That is, L is closed under the action of T. Given a collection of objects
A in K, we denote by loc∗(A) (resp. thick∗(A)) the smallest localising (resp. thick)
submodule containing A.

We have the following useful lemma.

Lemma 2.3.35. [Ste13, 3.13] If T is generated as a localising subcategory by the tensor
unit 1, then every localising subcategory of K is a T-submodule.

§ 2.3.4 | Localisations, residues and big supports

The notion of support first introduced by Balmer is only defined for compact objects.
The problem now is how to extend the concept of a support to be applicable to all
objects, while keeping as many of the properties enjoyed by the original support theory



CHAPTER 2. PRELIMINARIES 32.

as possible. A solution to this problem was defined by Balmer-Favi in [BF11], which
was then extended by Stevenson in [Ste13] to the case of actions. As the techniques
used in the definition will be used in various future sections, we will present them in
some detail. We focus on the three main components:

• Localisations with respect to the topology on Spc(Tc).

• Tensor idempotents associated to points in the spectrum.

• Support defined in terms of tensor idempotents.

We begin with the notion of a localisation sequence.

Definition 2.3.36. A localisation sequence is a diagram

R T S
i∗

⊥
i!

j∗

⊥
j∗

where both i∗ and j∗ are fully faithful, and we have equalities (i∗R)⊥ = j∗S and ⊥(j∗S) =
i∗R where

(i∗R)⊥ = {t ∈ T | HomT(i∗r, t) = 0 for all r ∈ R}

and
⊥(j∗S) = {t ∈ T | HomT(t, j∗s) = 0 for all s ∈ S}.

We call i∗i! the acyclisation functor and j∗j
∗ as the localisation functor.

A localisation sequence provides an abundance of additional information. Refer-
ences for the following statements and their proofs can be found in [Nee01], [BN93],
and [Kra09]. Further references can be found in [BF11]. The form of the proposition
below can be found in [Ste18a, 2.15].

Proposition 2.3.37. Given a localisation sequence as in the definition, the following
hold:

1. The composites j∗i∗ and i!j∗ are zero. Moreover the kernel of j∗ is R.

2. The composite
S j∗−→ T −→ T/R

is an equivalence. In particular, the Verdier quotient T/R is locally small and the
canonical projection T −→ T/R has a right adjoint.

3. For every X ∈ T there is a distinguished triangle

i∗i
!X −→ X −→ j∗j

∗X −→ Σi∗i!X.
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These triangles are functorial and unique in the sense that given any distinguished
triangle

X ′ −→ X −→ X ′′ −→ ΣX ′

with X ′ ∈ R and X ′′ ∈ S there are unique isomorphisms X ′ ∼= i∗i
!X and X ′′ ∼=

j∗j
∗X.

4. A localisation sequence is completely determined by either of the pairs of adjoint
functors (i∗, i!) or (j∗, j

∗).

Lemma 2.3.38. [Kra09, 5.5.1] Given a localisation sequence as above, the functor i!

is coproduct preserving if and only if j∗ is coproduct preserving.

Definition 2.3.39. A localisation sequence is called smashing if i! (or equivalently j∗)
preserves coproducts. In such a sequence we call R a smashing subcategory of T. If R
is a tensor ideal then we say it is a smashing tensor-ideal.

In particular we will use the following theorem, combining Proposition 2.3.37 with
the definition of smashing localisations. This theorem is the work of Miller [Mil92] (for
part 1) and Neeman [Nee01] (for parts 2 and 3). This particular form of the theorem
is from [BF11, 4.1]

Theorem 2.3.40. [Miller, Neeman] Let T be a big tt-category and let C be a thick
⊗-ideal of Tc. Then we have

C Tc Tc/C

loc(C) T T/ loc(C)⊥ ⊥

1. loc(C) is a smashing tensor ideal, the bottom row of the diagram is a smashing
localisation sequence and loc(C)c = loc(C) ∩ Tc = C.

2. T/ loc(C) has small hom-sets and is a compactly generated tensor-triangulated
category.

3. Tc/C fully faithfully embeds into the compact objects of T/ loc(C) and the addi-
tive closure of Tc/C is exactly (T/ loc(C))c. That is, if t is a compact object in
T/ loc(C) then t is a summand of an object in Tc/C.

We can choose C in the theorem to connect it to the topology on Spc(Tc) via
Thomason subsets.

Given such a Thomason subset V define the associated thick-tensor ideal Tc
V = {t ∈

Spc(Tc) | suppTc t ⊆ V}. Letting C = Tc
V and ΓVT = loc(C) the above theorem gives

us a smashing localisation sequence
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ΓVT T LVT
i∗

⊥
i!

j∗

⊥
j∗

with corresponding acyclisation and localisation functors

ΓV(−) = i∗i
!(−) and LV(−) = j∗j

∗(−)

respectively.
With such a localisation we can now move onto the definition of tensor idempotents

associated to points.

Definition 2.3.41. We say a point x ∈ Spc(Tc) is weakly visible if there exist Thoma-
son subsets V and W of Spc Tc such that

V \ (V ∩ W) = {x}.

That is, the set singleton {x} is the intersection of a Thomason subset and the com-
plement of a Thomason subset. We denote the collection of all weakly visible points
by Vis(Tc).

Definition 2.3.42. We say a space is weakly noetherian if every point in the space is
weakly visible.

Remark 2.3.43. The definition of “weakly visible” aligns with [BHS21], and coincides
with the definition of “visible” in [Ste13]. We will say a point x ∈ Spc(Tc) is visible in
the sense of Balmer-Favi if the closure V(x) = {x} is a Thomason subset. It follows
that every visible point in this sense is also weakly visible, as the set Z(x) = {y ∈
Spc(Tc) |x ̸∈ V(y)} is always Thomason, and {x} = V(x) \ (V(x) ∩ Z(x).

Definition 2.3.44. For a weakly visible point x ∈ Vis(Tc) we define a tensor idempo-
tent

Γx1 = ΓV1 ⊗ LW1.

where V , W are Thomason subsets such that {x} = V \ (V ∩ W). By [BF11, Corollary
7.5] any such pairs (V1,W) and (V2,W2) of Thomason subsets will define isomorphic
tensor idempotents.

We can now introduce the definition of the support relative to an action.

Definition 2.3.45. Let T act on K. Then for A ∈ K we define the support of A to be
the set

supp(T,∗) A = {x ∈ Vis(Tc) | ΓxA ̸= 0}

where ΓxA denotes Γx1 ∗ A. When the action in question is clear we will omit the
subscript from the notation for support.

The below properties demonstrate the good behaviour of this support:
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Proposition 2.3.46. [Ste13, 5.7] The support assignment supp(T,∗) satisfies the fol-
lowing properties:

• given a triangle
A −→ B −→ C −→ ΣA

in K we have suppB ⊆ suppA ∪ suppC;

• for any A ∈ K and i ∈ Z
suppA = supp ΣiA;

• given a set-indexed family {Aλ}λ∈Λ of objects of K there is an equality

supp
a

λ

Aλ =
⋃
λ

suppAλ

whenever the coproduct on the left exists;

• the support satisfies the separation axiom. That is, for every specialisation closed
subset V ⊆ Vis Tc and every object A of K

supp ΓV1 ∗ A = (suppA) ∩ V

suppLV1 ∗ A = (suppA) ∩ (Vis Tc \ V).

When considering a big tt-category acting on itself via the tensor product, the
following additional properties hold. Note that in the noetherian case, this result is
given in [BF11, 7.17].

Proposition 2.3.47. [BHS21, 2.12, 2.18] Let T be a tt-category acting on itself via the
tensor product. Suppose in addition that the spectrum Spc(Tc) is a weakly noetherian
topological space. Then

• for every compact object t ∈ Tc we have

supp(T,∗) t = suppTc t.

• supp(T,∗)(0) = ∅ and supp(T,∗)(1) = Spc(Tc).

• supp(T,∗)(t⊗ t′) ⊆ supp(T,∗)(t) ∩ supp(T,∗)(t′).

From now on we will simply write supp for any of the support theories detailed so
far, unless it is useful to specify further.

We will now introduce the local-to-global principle for a tt-category T acting on a
triangulated category K.

Definition 2.3.48. Let T be a tt-category with weakly noetherian spectrum acting
on K. We say that T × K ∗−→ K satisfies the local-to-global principle if for each A ∈ K

loc∗(A) = loc∗(ΓxA | x ∈ Spc(Tc)).
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Theorem 2.3.49. [BHS21, 3.21] Let T be a tt-category acting on itself via the tensor
product. If the spectrum Spc(Tc) is noetherian, then the local-to-global principle holds.

Note that the theorem was originally proved in [Ste13, 6.9] with the assumption of
that T possessed a good theory of homotopy colimits through an enhancement. The
theorem given above from [BHS21] holds without any such assumption.



Chapter 3

Geometry of associated sheaf func-
tors

§ 3.1 | Constructing associated sheaf functors
Given a big tt-category T we have now seen the construction of locally ringed spaces
Spec(Tc) and Spec•(Tc). Given an action of T on a triangulated category K we will
define an “associated sheaf functor”, which associates to each object A ∈ K an OT-
module (and in the graded case an O•

T-module). This construction extends Balmer’s
construction of the locally ringed space structure. We will then show how these sheaves
interact with the tt-support theories and under what conditions we can determine their
coherence properties.

Throughout this section the action of T on K will be denoted by ∗.

Definition 3.1.1. Consider the spectrum Spc(Tc). We define the category QBasic(Tc)
of quasi-compact open subsets of Spc(Tc), with morphisms given by inclusion. Given
an abelian category X we define QBPshX(Spc(Tc)) to be the category of X-valued
presheaves defined over the basis of quasi-compact opens of Spc(Tc). That is, the
category of contravariant functors

F : QBasic(Tc)op −→ X.

Remark 3.1.2. By Remark 2.2.11, as the quasi-compact open subsets of Spc(Tc) are
a basis, every F ∈ QBPshX(Spc(Tc)) extends uniquely to a sheaf F# ∈ ShvX(Spc(Tc)).

Construction 3.1.3. Let U ⊆ Spc(Tc) be a quasi-compact open subset with closed
complement Z. Recall the definition

ΓZT = loc(Tc
Z) = loc({t ∈ Tc | supp(t) ⊆ Z}).

Define
T(U) = T/ΓZT.

and
K(U) = K/(ΓZT ∗ K).
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If V is a quasi-compact open subset of U then (K(U))(V ) ≃ K(V ).
For a prime ideal P ∈ Spc(Tc) we define

K(P) = K/(loc⊗(P) ∗ K).

There is an action of T(U) on K(U) induced by the action ∗ of T on K [Ste13, 8.5].
We will also use ∗ to denote this induced action.

Remark 3.1.4. Instead of restricting to a quasi-compact open, we can instead restrict
to the complement of a Thomason subset of the spectrum. That is, given a Thomason
subset Z ⊆ Spc(Tc) with complement U we can repeat the above construction to
produce the corresponding categories T(U) and K(U). We focus on the case where U
is a quasi-compact open, as in this case we have Spc(T(U)c) ∼= U [BF07, 1.11].

Definition 3.1.5. Fix an invertible object u ∈ T. Define a functor

p• [−,−](−) : (Kc)op × K × QBasic(Spc(Tc))op −→ gr Ab

by

p• [A,B](U) = Hom•
K(U)(AU , BU),

where AU , BU are the respective images of A and B under the localisation functor
qU : K −→ K(U), and

Hom•
K(U)(AU , BU) ∼=

⊕
i∈Z

HomK(U)(AU , (u⊗i ∗B)U)

as in Definition 2.3.14. This defines a functor

p• [−,−] : (Kc)op × K −→ QBPshgr Ab(Spc(Tc)),

which extends uniquely to a functor

[−,−]• : (Kc)op × K −→ Shvgr Ab(Spc(Tc)).

We call this the associated sheaf functor. We say that [A,B]• is the sheaf associated to
A and B relative to u.

The untwisted associated sheaf functor is constructed by taking the presheaf

p[A,B](U) = HomK(U)(AU , BU)

and applying sheafification as above. We denote this untwisted sheaf by [A,B]#.

Proposition 3.1.6. The functor [−,−]• : (Kc)op × K −→ Shvgr Ab(Spc(Tc)) upgrades
to a functor

[−,−]• : (Kc)op × K −→ grModO•
T.

Proof. Fix (A,B) ∈ (Kc)op×K and a quasi-compact open subset U ⊆ Spc(Tc). Consider
the sections p• [A,B](U) = Hom•

K(U)(AU , BU). We define a graded module structure via
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the action of T on K. As noted this action restricts to an action of T(U) on K(U).
Fix f ∈ p•O•

T(U) with deg(f) = i and g ∈ p• [A,B](U) with deg(g) = j. Explicitly
f ∈ HomT(U)(1U , (ui ⊗ 1)U) and g ∈ HomK(U)(AU , (uj ∗ B)U). Define f · g to be the
composite

AU
≃−→ 1U ∗ AU

f∗g−→ uiU ∗ (ujU ∗BU) ≃−→ ui+jU ∗BU .

This multiplication is compatible with the addition on morphisms, and the grading.
Together with the compatibility of the action with the restriction maps this completes
the proof.

We now compute the stalks of these sheaves. To do this we will require that Spc(Tc)
be a weakly noetherian topological space satisfying the local-to-global principle and
that T has a well-behaved theory of homotopy colimits by appealing to some higher
structure such as some flavour of model, derivator, or ∞-category (see [Ste13, 6.5] for
more discussion).

Remark 3.1.7. By assuming our tt-category has a suitable enhancement, we can
expand the notion of homotopy colimit to any diagram of objects, rather than just
sequences as in Definition 2.1.7. In Lemma 2.1.30 we saw that compact objects in-
teract well with the basic notion of homotopy colimits. In the presence of a suitable
enhancement, more general homotopy colimits are themselves just filtered colimits and
so it is automatic that mapping out of a compact object commutes with homotopy
colimits.

Lemma 3.1.8. Let T act on K. Suppose Spc Tc is a weakly noetherian space and
assume that the local-to-global principle holds for the action of T on K. For a prime
P ∈ Spc Tc the stalk of the sheaf [A,B]• at P is given by

[A,B]•P = Hom•
K(P)(AP , BP)

where
Hom•

K(P)(AP , BP) =
⊕
i∈Z

HomK(P)(AP , u
i
P ∗BP).

Proof. We use the identification ΓVK = ΓVT ∗ K = TV ∗ K from [Ste13, 4.11], where V
is the complement of a quasi-compact open subset U . Now consider all quasi-compact
opens Ui containing P , with complements Vi. We first note that inclusions Vi ⊆ Vj
induce natural morphisms:

LVi
B LZ(P)B

LVj
B

which induces a map between hocolimLVi
B and LZ(P)B. This map completes to a

triangle
hocolimLVi

B −→ LZ(P)B −→ Z −→ Σ hocolimLVi
B.
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By a slight generalisation of [Bou83], localising subcategories are closed under ho-
motopy colimits and so Z is an object in LZ(P)K. Therefore LZ(P)Z ∼= Z and by
Proposition 2.3.46 we have

supp(B) = supp(LZ(P)B) = supp(B) ∩ (Spc(Tc) \ Z(P)) ⊆ Spc(Tc) \ Z(P).

For each Q ̸∈ Z(P) we have
ΓQLZ(P)B ∼= ΓQB.

Applying this functor to the above gives a triangle

ΓQ hocolimLVi
B −→ ΓQB −→ ΓQZ −→ ΓQΣ hocolimLVi

B.

Given that ΓQ hocolimLVi
B ∼= ΓQB the first morphism in the triangle is an isomor-

phism and so ΓQZ ∼= 0. As T has weakly noetherian spectrum and we assumed a
good theory of homotopy colimits this forces Z ∼= 0 by the local-to-global principle
[Ste13, 6.8]. Therefore hocolimLVi

B ∼= LZ(P)B. Now, for a quasi-compact open subset
U ⊆ Spc(Tc), recall that there is an induced localisation sequence

ΓVK K K(U) = LVK⊥
qU

⊥
ιU

with an equivalence of functors ιUqU(−) ∼= LV(1)∗ (−), as in [Ste13, 4.4]. By definition
the stalk of [A,B]• at P is given by

[A,B]•P = colimP∈Ui
Hom•

K(Ui)(AUi
, BUi

)

where the colimit is taken over all quasi-compact open subsets Ui ⊆ Spc(Tc) containing
P . Hence

[A,B]•P ∼= colimP∈Ui
Hom•

K(Ui)(AUi
, BUi

),
∼= colimP∈Ui

Hom•
K(Ui)(qUi

A, qUi
B),

∼= colimP∈Ui
Hom•

K(Ui)(A, ιUi
qUi
B) by adjunction,

∼= colimP∈Vc
i

Hom•
K(A,LVi

B),
∼= Hom•

K(A, hocolimLVi
B) by compactness,

∼= Hom•
K(A,LZ(P)B) by the isomorphism in the previous paragraph,

∼= Hom•
K(P)(AP , BP) by adjunction.

Remark 3.1.9. Note that if T acts on itself via the tensor product and Spc(Tc) is
a noetherian space, then by Theorem 2.3.49 the local-to-global principle immediately
holds, without needing to consider an enhancement.

Lemma 3.1.10. For all A ∈ Kc the functor [A,−]• is homological and coproduct
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preserving.

Proof. Observe that as Hom(A,−) is homological and the associated sheaf functor
is exact, the functor [A,−]• must be homological. To prove that [A,−]• preserves
coproducts, fix a quasi-compact open set U ⊆ Spc(Tc) and some set-indexed collection
of objects (Bλ)λ∈Λ in K. As the localisation sequence used in the construction of
K(U) is smashing [Ste13] the canonical functor K −→ K(U) preserves compact objects.
Therefore there is an isomorphism

Hom•
K(U)(A,

∐
λ∈Λ

Bλ) ∼=
⊕
λ∈Λ

Hom•
K(U)(A,Bλ)

noting that as − ⊗ − is coproduct preserving in each variable, for any invertible object
u we have u⊗∐

λ∈Λ Bλ
∼=
∐
λ∈Λ(u⊗Bλ). It follows that there is an isomorphism

p• [A,
a

λ∈Λ

Bλ] ∼=
⊕
λ∈Λ

p• [A,Bλ]

and so
[A,
a

λ∈Λ

Bλ]• ∼= (
⊕
λ∈Λ

p• [A,Bλ])#.

Sheafification of a presheaf is a left adjoint and so preserves coproducts. Therefore

[A,
a

λ∈Λ

Bλ]• ∼=
⊕
λ∈Λ

p• [A,Bλ]#

∼=
⊕
λ∈Λ

[A,Bλ]•.

The following lemma shows the effect of twisting by the invertible object at the
level of presheaf sections.

Lemma 3.1.11. Fix an invertible object u ∈ T, and objects A ∈ Kc and B ∈ K. For
all basic open subsets U ⊆ Spc(Tc) and for all i ∈ Z there are isomorphisms of graded
rings

p• [u−i ∗ A,B](U) ∼=
(

p• [A,B](U)
)
(i) ∼= p• [A, ui ∗B](U)

Proof. Recall that
(

p• [A,B](U)
)
(i) denotes the i-twist of p• [A,B](U) as in Definition

2.2.19. Given a basic open U ⊆ Spc(Tc), the sections of the associated presheaves are
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given by

p• [u−i ∗ A,B](U) ∼=
⊕
j∈Z

HomK(U)(u−i
U ∗ AU , ujU ∗BU),

∼=
⊕
j∈Z

HomK(U)(AU , uiU ∗ (ujU ∗BU)),

∼=
⊕
j∈Z

HomK(U)(AU , (uiU ⊗ ujU) ∗BU),

∼=
⊕
j∈Z

HomK(U)(AU , ui+jU ∗BU),

∼=
(

p• [A,B](U)
)
(i).

Similarly,

p• [A, ui ∗B](U) ∼=
⊕
j∈Z

HomK(U)(AU , ujU ∗ (uiU ∗BU)),

∼=
⊕
j∈Z

HomK(U)(AU , (ujU ⊗ uiU) ∗BU),

∼=
⊕
j∈Z

HomK(U)(AU , ui+jU ∗BU),

∼=
(

p• [A,B](U)
)
(i).

§ 3.2 | Comparison of support theories
Throughout this section we assume that the Balmer spectrum of the tt-category T is
a noetherian topological space.

Definition 3.2.1. Fix an action of a big tt-category T on a triangulated category K.
Let u be an invertible object in Tc and A an object in Kc. For an object B ∈ K we
define the u-twisted A-support of B by

supp•(B,A) = {P ∈ Spc(Tc) | [A,B]•P ̸= 0}.

We define the untwisted A-support of B by

supp(B,A) = {P ∈ Spc(Tc) | [A,B]#P ̸= 0}.

When considering two distinct invertible objects u1 and u2 simultaneously, we will
expand the notation and write supp•(B,A, u1) and supp•(B,A, u2) but will only do so
to improve readability. Note that supp(B,A) = supp•(B,A,1).

We note the following basic properties:

Proposition 3.2.2. Given the notion of support defined above we have:

1. supp•(0, A) = ∅.
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2. Given a triangle B −→ C −→ D −→ ΣB in K we have

supp•(C,A) ⊆ supp•(B,A) ∪ supp•(D,A).

3. For any integer i ∈ Z we have

supp•(B,A) = supp•(ui ∗B,A) = supp•(B, u−i ∗ A).

4. supp•(⊕λ∈Λ Bλ, A) = ⋃
λ∈Λ supp•(B,A),

Proof. 1. As [A, 0]• = 0, all of the stalks vanish at each P and so the support is
empty as required.

2. Let P ∈ supp•(C,A). Applying the homological functor [A,−]• followed by the
stalk functor at P gives a long exact sequence

· · · −→ [A,B]•P −→ [A,C]•P −→ [A,D]•P −→ [A,ΣB]•P −→ · · ·

If P ̸∈ supp•(B,A) ∪ supp•(D,A) then as the sequence is exact we would have
[A,C]•P = 0, a contradiction. Therefore P ∈ supp•(B,A) ∪ supp•(D,A) and the
result holds.

3. Follow immediately from Lemma 3.1.11.

4. As A is compact we have an isomorphism

Hom•
K(P)(A,

⊕
λ∈Λ

Bλ) ∼=
⊕
λ∈Λ

Hom•
K(P)(A,Bλ).

Using this gives us another chain of implications:

P ∈ supp•(
⊕
λ∈Λ

Bλ, A) ⇔ Hom•
K(P)(A,

⊕
λ∈Λ

Bλ) ̸= 0

⇔
⊕
λ∈Λ

Hom•
K(P)(A,Bλ) ̸= 0

⇔ P ∈ supp(Bλ, A) for some λ ∈ Λ
⇔ P ∈

⋃
λ∈Λ

supp•(Bλ, A).

Remark 3.2.3. Consider the twisted support supp•(B,A) with respect to an invert-
ible object u. We can decompose this twisted support into a union of untwisted sup-
ports. By definition Hom•

K(P)(A,B) ̸= 0 if and only if there exists i ∈ Z such that
HomK(P)(A, u⊗i ∗ B) ̸= 0. Therefore [A,B]•P ̸= 0 if and only if there exists i ∈ Z such
that [A, u⊗i ∗B]#P ̸= 0. Taking the union over all i ∈ Z we obtain

supp•(B,A) =
⋃
i∈Z

supp(u⊗i ∗B,A).



CHAPTER 3. GEOMETRY OF ASSOCIATED SHEAF FUNCTORS 44.

In order to investigate further, we consider local generators relative to each prime
ideal in the spectrum.

Definition 3.2.4. Let T act on K. Let B ∈ K be an object with non-empty support.
Fix a compact object A ∈ Kc and a prime ideal P ∈ supp(B). We say that B is locally
generated at P by A if BP ∈ loc(AP), realised as a full subcategory of the Verdier
quotient K/ loc(P). Let (A(P))P∈supp(B) be a collection of compact objects in K. We
say B is locally generated by (A(P))P∈supp(B) if it is locally generated at each prime
P ∈ supp(B) by A(P). Finally, we say that B is locally generated by A if B is locally
generated by the constant sequence (A)P∈supp(B).

Remark 3.2.5. Note that every compact object is locally generated by itself.

Lemma 3.2.6. Let T act on K. Let B be an object in K, locally generated at P ∈
supp(B) by a compact object A ∈ Kc. Then there exists i ∈ Z such that

P ∈ supp(ΣiB,A)

If B is locally generated by a collection of compact objects (A(P))P∈supp(B) then there
exists a sequence of integers (i(P))P∈supp(B) such that

supp(B) ⊆
⋃

P∈supp(B)
supp(Σi(P)B,A(P)) ⊆

⋃
P∈supp(B)

supp•(Σi(P)B,A(P)).

In particular, if u = Σ1 we have

supp(B) ⊆
⋃

P∈supp(B)
supp•(B,A(P)).

Proof. Suppose B is locally generated at P by A. First note that AP is indeed compact.
To see this, note that as A is compact and formation of submodules is well-behaved
by Lemma 3.12 in [Ste13] and the localisation functor (−)P gives rise to a smash-
ing localisation sequence as in Theorem 2.3.40, from which the compactness of AP

follows. As P ∈ supp(B), by the adjunction in the associated localisation sequence,
the localisation BP ∈ K/ loc⊗(P) ∗ K is non-zero. As BP ∈ loc(AP), by Lemma
2.1.28 there exists i ∈ Z such that Homloc(A)(AP ,ΣiBP) ̸= 0. As loc(AP) is full,
we have Homloc(A)(AP ,ΣiBP) = HomK(P)(AP ,ΣiBP). Then [A,ΣiB]#P ̸= 0 and so
P ∈ supp(ΣiB,A(P)), proving the first part. Now suppose B is locally generated by
a collection of compact objects (A(P))P∈supp(B). By the first part there exists for each
prime P an integer i(P) such that P ∈ supp(Σi(P)B,A). Taking the union over all
such supports we obtain

supp(B) ⊆
⋃

P∈supp(B)
supp(Σi(P)B,A(P)) ⊆

⋃
P∈supp(B)

supp•(Σi(P)B,A(P)).

where the second inclusion follows from Remark 3.2.3. Finally, when the support is
twisted by u = Σ1 then the final statement follows from Proposition 3.2.2.
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Remark 3.2.7. If K = loc(A) for some compact object A then every object B is locally
generated by A. Then the previous lemma can be simplified by replacing all instances
of A(P) with just A. In particular when u = Σ1 we have

supp(B) ⊆ supp•(B,A).

A natural place to compare support theories is for the case of a tt-category T
acting on itself via the tensor product. The support theory defined by Balmer-Favi in
this setting agrees with that of Balmer when restricted to compact objects of T. The
following lemma pushes our theory of support in the same direction.

Lemma 3.2.8. For any A,B ∈ Tc we have

supp•(B,A) ⊆ suppB.

Proof. Fix P ∈ supp•(B,A). By definition

Hom•
Tc/P(A,B) ∼= [A,B]•P ̸= 0.

If P ̸∈ supp(B) i.e. B ∈ P then B ∼= 0 in Tc/P . But then the hom-group would be 0,
a contradiction.

Theorem 3.2.9. If Tc = thick(A) then for all objects B ∈ Tc there is an equality

suppB =
⋃
i∈Z

supp•(ΣiB,A).

When u ∼= Σ1 we obtain
suppB = supp•(B,A).

Proof. As Tc = thick(A) by Remark 3.2.7 and Lemma 3.2.6 we have

supp(B) ⊆
⋃

P∈supp(B)
supp•(Σψ(P)B,A) ⊆

⋃
i∈Z

supp•(ΣiB,A),

which gives the first inclusion. For the reverse inclusion we have

supp•(ΣiB,A) ⊆ supp(ΣiB) by Lemma 3.2.8,
⊆ supp(B).

And so we obtain the first equality. The second equality follows immediately as when
u ∼= Σ1 we have ⋃i∈Z supp•(ΣiB,A) = supp•(B,A).

We now return to the situation where T acts on K. In particular we will focus on
the case where the support is twisted by Σ1.

Definition 3.2.10. For an object B ∈ K we define the localising support by

locsupp(B) = {P ∈ Spc(T c) | B ̸∈ loc⊗(P) ∗ K}.
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Proposition 3.2.11. Let B be locally generated by a compact object A. Then

supp•(B,A,Σ1) = locsupp(B).

Proof. We obtain the following

P ∈ supp•(B,A,Σ1) ⇐⇒
⊕
i∈Z

HomK(P)(AP ,ΣiBP) ̸= 0

⇐⇒ BP ̸= 0 in K(P)
⇐⇒ B ̸∈ loc⊗(P) ∗ K

⇐⇒ P ∈ locsupp(B).

Therefore supp•(B,A,Σ1) = locsupp(B) as required.

Proposition 3.2.12. Suppose B is locally generated by a compact object A, and fix an
invertible object u ∈ Tc. Then

supp(B,A, u) ⊆ supp(B,A,Σ1).

Proof. Fix a prime P such that P ̸∈ supp(B,A,Σ1). By definition

HomK(P)(AP ,ΣiBP) = 0

for all i ∈ Z. As B is locally generated by A, the hom-sets being zero implies that
BP = 0 in the quotient K/ loc⊗(P) ∗ K. Therefore, for all i ∈ Z we have u⊗i ∗ BP =
0. In particular HomK(P)(AP , u

⊗i ∗ BP) = 0 and so P ̸∈ supp(B,A, u). That is if
P ̸∈ supp(B,A,Σ1) then P ̸∈ supp(B,A, u). Therefore we conclude supp(B,A, u) ⊆
supp(B,A,Σ1) as required.

§ 3.3 | Almost thick preimages of sheaf categories
We show that in general the collection of objects which are quasi-coherent after sheafi-
fication is almost a thick subcategory, with a clear potential obstruction. The proof
only relies on the formal property of being a coproduct preserving homological functor
and so the intermediate steps are simple.

Convention 3.3.1. Throughout this section B : T −→ A will be a homological, co-
product preserving functor from a big tt-category T to an abelian category A. X will
be an additive subcategory of A. We denote the preimage of X under B by

B−1(X) = {C ∈ T | B(C) ∈ X}

as a full subcategory of T.

We note the following elementary properties of B−1(X) in the following series of
propositions. Proofs are included for completeness.
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Proposition 3.3.2. We have

1. B−1(X) is an additive subcategory of T.

2. If X is closed under summands then B−1(X) is closed under summands.

3. If X is cocomplete then B−1(X) is cocomplete.

Proof. 1. X is additive so contains the zero object 0A. As B is additive we have
B(0T) = 0A and so 0T ∈ B−1(X). The preimage is also closed under finite co-
products. Given A,B ∈ B−1(X) we have B(A ⊕ B) ∼= B(A) ⊕ B(B) ∈ X, from
which the result follows.

2. Consider an object A ∈ B−1(X) such that A ∼= B ⊕ C. By additivity B(A) ∼=
B(B) ⊕ B(C). As X is closed under summands both B(B) and B(C) are in X
and so B,C ∈ B−1(X) as required.

3. Let Yλ be a collection of objects in B−1(X). As X is cocomplete it contains the
coproduct ∐λ B(Yλ). B is coproduct preserving so ∐λ B(Yλ) ∼= B(∐λ Yλ). Then∐
λ Yλ ∈ X as required.

Remark 3.3.3. Every abelian subcategory is closed under summands, as each sum-
mand is the kernel of a projection.

Definition 3.3.4. A full subcategory W ↪−→ A of an abelian category A is wide if it
is abelian, closed under extensions, and the kernels and cokernels in W agree with the
kernels and cokernels in A.

Proposition 3.3.5. Suppose X is a wide subcategory and consider an exact triangle

X −→ Y −→ Z −→ ΣX

such that all but Y are assumed to be in B−1(X). If Σ−1Z ∈ B−1(X) then Y ∈ B−1(X).

Proof. Apply B to the distinguished triangle given to obtain a long exact sequence

· · · −→ B(Σ−1Z) e−→ B(X) f−→ B(Y ) g−→ B(Z) h−→ B(ΣX) −→ · · ·

We have a short exact sequence

0 −→ coker(e) −→ B(Y ) −→ ker(h) −→ 0.

As X is abelian and both e and h are morphisms in X, both coker(e) and ker(h) are in
X. As X is also closed under extensions, this forces B(Y ) ∈ X as required.

Combining the above propositions gives the following corollary:
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Corollary 3.3.6. If X is wide and B−1(X) is closed under suspensions, then B−1(X)
is thick.

This continues our general theme of needing additional suspension data to obtain
results. We now show that provided we have the right data on suspensions we can just
focus on a collection of generators.

Construction 3.3.7. Given a collection of objects X we can generate the full subcat-
egory thick(X ) iteratively. Set

⟨X ⟩1 = add(ΣkX | X ∈ X , k ∈ Z)
⟨X ⟩i+1 = add(X |∃ X1 −→ X −→ X2 −→ ΣX1, X1 ∈ ⟨X ⟩i, X2 ∈ ⟨X ⟩1)

Then thick(X ) = ∪∞
i=1⟨X ⟩i. Note that if X ∈ ⟨X ⟩i, then so is ΣkX for all k ∈ Z.

Lemma 3.3.8. Suppose X is wide. Given a finite set of objects X = {x1, . . . , xn} in
T, suppose that for all k ∈ Z and j = 1, . . . , n we have Σkxj ∈ B−1(X). Then

thick(X ) ⊆ B−1(X).

Proof. We show that each of the ⟨X ⟩i are contained in B−1(X) by induction. If Y ∈
⟨X ⟩1 then it is a summand of a coproduct of objects in B−1(X) and so is also in B−1(X)
by Proposition 3.3.2. The claim therefore holds for i = 1. Now suppose that the claim
holds for all i ≤ m. Fix Y ∈ ⟨X ⟩m+1. We have a distinguished triangle

X −→ Y ⊕W −→ Z −→ ΣX

with X ∈ ⟨X ⟩m and Z ∈ ⟨X ⟩1. By induction both X and ΣX are in B−1(X) and
so are both Z and Σ−1Z. Therefore so is Y ⊕ W by Proposition 3.3.5. X is wide so
Proposition 3.3.2 tells us B−1(X) is closed under summands, and so Y ∈ B−1(X).

As an aside we have the following interaction with certain homotopy colimits.

Proposition 3.3.9. Suppose X is cocomplete and wide. Let

Y0
j1−→ Y1

j2−→ Y2
j3−→ · · ·

be a sequence in T. If there is an increasing sequence of integers

0 ≤ i0 < i1 < i2 < i3 < · · ·

such that for all ik we have that Yik and ΣYik are objects of B−1(X), then hocolim Yi

is an object of B−1(X).

Proof. By Proposition 3.3.2 the coproduct of the Yik lies in B−1(X) as is the coproduct
of the ΣYik . The homotopy colimit hocolim Yik is defined by the triangle

∞∐
k=0

Yik
1−shift−→

∞∐
k=0

Yik −→ hocolim Yik −→ Σ
∞∐
k=0

Yik
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where the shift map is the direct sum of the maps jik+1 : Xik −→ Xik+1. By Proposition
3.3.5 hocolim Yik lies in B−1(X). By [Nee01, 1.7.1] hocolim Yi ∼= hocolim Yik , completing
the proof.

We now apply the formalism of these wide subcategories to particular subcategories
of sheaves.

Proposition 3.3.10. Let T be a big tt-category acting on a compactly generated tri-
angulated category K. For each A ∈ Kc consider the associated sheaf functor

[A,−]• : K −→ grModO•
T.

Then this functor fits into the setup of Convention 3.3.1, taking A = grModO•
T and

X = Coh•(Spec(Tc)). Thus the results requiring X abelian hold. Moreover if Spec(Tc)
is a scheme, setting X = QCoh•(Spec(Tc)) will also satisfy the required conditions.

Remark 3.3.11. Note that this setup holds for both the twisted and non-twisted case
as appropriate.

We can condense this section into the following result:

Corollary 3.3.12. Suppose K = thick(X). If for all i ∈ Z, [A,ΣiX]• is coherent,
then for all B ∈ K the sheaf [A,B]• is coherent. If Spec(Tc) is a scheme then if for all
i ∈ Z, [A,ΣiX]• is quasi-coherent, then for all B ∈ K the sheaf [A,B]• is quasi-coherent.

Corollary 3.3.13. Suppose K = thick(1) and let u = Σ1. If the Σ1-twisted structure
sheaf O•

T is coherent, then every sheaf of the form [1, B]• is coherent.

Proof. Follows immediately from the previous corollary: if the Σ1-twisted structure
sheaf O•

T is coherent then each of the sheaves [1,Σi1]• are coherent. Therefore by the
previous corollary each sheaf of the form [1, B]• is coherent.

§ 3.4 | Affine and schematic categories
Our results on (quasi-)coherence so far require us to already know the nature of the
suspensions of generators. We now restrict to the case of T acting on itself, and
consider sheaves of the form [1, X]#. We will show that when the Balmer spectrum of
T is well-behaved, all such sheaves are quasi-coherent.

Definition 3.4.1. We say a big tt-category T is affine if the natural comparison map

ρ : (Spc(Tc),OT) −→ (Spec(RT),OSpec(RT))

is an isomorphism of locally ringed spaces. We say that T is schematic if there exists
an open cover {Ui} of Spc(Tc) such that for each i the natural comparison maps

ρi : (Spc(Tc(Ui))OT(Ui)) −→ (Spec(RT(Ui)),OSpec(RT(Ui)))
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are isomorphisms of locally ringed spaces. In the twisted case we instead consider
the corresponding graded morphisms and say T is twisted affine and twisted schematic
respectively.

Remark 3.4.2. Note that by Proposition 2.3.23 the comparison map ρ is a homeo-
morphism on the underlying topological spaces, then it is automatically a isomorphism
of locally ringed spaces.

Immediately from the definitions we see that every affine category is schematic and
that the spectrum of a schematic category is a scheme.

Proposition 3.4.3. If X is a quasi-compact quasi-seperated scheme then Dperf(X) is
a schematic category.

Proof. As X is a scheme we have an open cover of X by affines Ui. Let E(Ui) be the
image of Ui under the homeomorphism X ∼= Spc(Dperf(X)) of [Bal02, 7.3]. Then

E(Ui) ∼= Spc(Dperf(X))(E(Ui)) ∼= Spc(Dperf(Ui))

by [Bal02, 7.8]. By [Bal10, 8.1] each of the Dperf(Ui) are affine, completing the proof.

A category being affine is sufficient for all of the associated sheaves [1, X]# to be
quasi-coherent. We start by considering compact objects.

Proposition 3.4.4. For a compact object X ∈ Tc and any endomorphism s ∈ RT we
have

p[1, X](U(s)) ∼= HomTc(1, X)[s−1].

The proof of this proposition is nearly identical to [Bal10, 6.9]. We will fill in those
details left to the reader in [Bal10].

Proof. By definition

p[1, X](U(s)) = HomTc/Tc
Z
(1, X)

where Z is the closed complement of U(s). In fact Z = supp(cone(s)) and clearly

supp(cone(s)) = supp(thick⊗(cone(s))).

Applying Proposition 2.3.31

Tc
Z =

√
thick⊗(cone(s)).

As Tc is rigid this gives Tc
Z = thick⊗(cone(s)). By [Bal10, 2.16] we have

thick⊗(cone(s)) = thick⊗(cone(si) | i ≥ 0).

This is the ideal J associated to the multiplicative set S = {si | i ≥ 0} as in [Bal10,
3.5]. Applying [Bal10, 3.6] gives

p[1, X](U(s)) ∼= HomTc/Tc
Z
(1, X) ∼= HomTc/J (1, X) ∼= S−1 HomTc(1, X),
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and so p[1, X](U(s)) ∼= HomTc(1, X)[s−1] as required.

Proposition 3.4.5. Suppose T is affine. Then for every X ∈ Tc the sheaf [1, X]# is
quasi-coherent on Spec(T). Explicitly

[1, X]# ∼= M̃

where M̃ is the sheaf associated to the RT-module M = HomTc(1, X).

Proof. By Proposition 3.4.4 we have for each s ∈ RT an isomorphism

p[1, X](U(s)) ∼= HomTc(1, X)[s−1].

By [Har77, Ch.2, 5.1] we also have that

M̃(D(s)) ∼= HomTc(1, X)[s−1].

Given that ρ is a homeomorphism, D(s) ∼= U(s) and so p[1, X] is isomorphic to M̃

on a basis of quasi-compact opens. Therefore the associated sheaves are isomorphic
which gives [1, X]# ∼= M̃. As sheaves associated to modules are quasi-coherent, this
completes the proof.

The result can be extended to non-compact objects using the following theorem.

Theorem 3.4.6. [HPS97, 3.3.7] Let T be a big tt-category. Then given a morphism
s ∈ RT, the thick tensor ideal J = thick⊗(cone(s)) fits into a localisation diagram

J Tc Tc/J

loc(J ) T T/ loc(J )⊥ ⊥

such that for all objects X ∈ T we have

HomT/ loc(J )(1, X) ∼= S−1 HomT(1, X)

where S = {si | i ≥ 0}.

Remark 3.4.7. The existence of the localisation diagram can actually be obtained
from Theorem 2.3.40.

Immediately from the theorem we obtain:

Corollary 3.4.8. For any object X ∈ T and any endomorphism s ∈ RT we have

p[1, X](U(s)) ∼= HomT(1, X)[s−1].

Corollary 3.4.9. Suppose T is affine. Then for every X ∈ T the sheaf [1, X]# is
quasi-coherent on Spec(T). Explicitly

[1, X]# ∼= M̃,
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where M̃ is the sheaf associated to the RT-module M = HomT(1, X).

The proof of this is identical to the compact case.
We can now conclude with the schematic case.

Lemma 3.4.10. Let U ⊆ Spc(Tc) be a quasi-compact open subset. Then for objects
A ∈ Tc, B ∈ T there is an isomorphism of sheaves on U :

[A,B]•|U ∼= [AU , BU ]•,

where the associated sheaf functor on the left is over Spc(Tc) and the associated sheaf
functor on the right is over Spc(Tc(U)) ∼= U . For the untwisted setting we have

[A,B]#|U ∼= [AU , BU ]#.

Proof. We prove the twisted case, from which the untwisted case follows. We will
show that the corresponding presheaves are isomorphic from which the uniqueness of
sheafification will complete the proof. We first show that the presheaves agree on all
quasi-compact open subsets V ⊆ U . Let V ⊆ U be such a quasi-compact open. Recall
that T(V ) ≃ (T(U))(V ). Therefore

p• [A,B](V ) ∼= Hom•
T(V )((AU)V , (BU)V ),

∼= Hom•
T(V )(AV , BV ),

∼= p• [A,B](V ),
∼= p• [A,B]|U(V ).

where the last two equalities hold as both V and U are quasi-compact basic open
subsets. As these isomorphisms are all compatible with restrictions, the presheaves are
isomorphic and therefore so are their sheafifications.

Theorem 3.4.11. Let T be schematic. Then for every X ∈ T, the sheaf [1, X]# is
quasi-coherent on Spec(T).

Proof. As T is schematic we are given an open cover {Ui} of Spc(Tc), such that each
of the Spc(Tc(Ui)) is affine. Fixing i, restricting from Spc(Tc) to Ui and applying the
affine result for the affine category T(Ui) and using Lemma 3.4.10 we have

[1, X]#|Ui
∼= [1Ui

, XUi
]# ∼= M̃i,

where Mi = HomT(Ui)(1, X). This is the definition of a quasi-coherent sheaf on a
scheme, completing the proof.

The definitions of affine and schematic provide a coarse grading through which
to examine tensor triangular categories. Taking further inspiration from algebraic
geometry, we can attach additional conditions to the schematic structure. In particular
we translate the notion of being quasi-affine to the tensor-triangulated setting.
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Definition 3.4.12. Let T be a big tt-category. We say that T is quasi-affine if there
is an open cover (Ui)i∈I of Spc(Tc) such that

1. the cover (Ui)i∈I realises T as a schematic category,

2. for each i ∈ I there exists a morphism si ∈ RT such that Ui = U(cone(si)).

Example 3.4.13. To motivate the definition observe that if (X,OX) is a quasi-affine
scheme, then the tt-category Dperf(X) is quasi-affine. Indeed, as X is quasi-affine, the
structure sheaf OX is ample and so for each point x ∈ X there exists an element s ∈
Γ(X,OX) such that x ∈ Xs. Now by the main result of [Bal02] there is an isomorphism
(Dperf(X),ODperf(X)) ∼= (X,OX) of schemes, and that the associated comparison map
is an isomorphism when restricted to affine subsets. The collection of the Xs, each of
which are affine, therefore form a cover realising the schematic structure of Dperf(X).
Now there is an equality

Γ(X,OX) = HomDperf(X)(OX ,OX) = RDperf(X)

and moreover Xs
∼= U(cone(s)). Therefore the cover realising the schematic property

is of the required form and we conclude that Dperf(X) is quasi-affine.

Proposition 3.4.14. Let T be quasi-affine. Then the collection

{U(cone(s)) | s ∈ RT}

is a basis for the usual topology on Spc(Tc).

Proof. For a morphism f in Tc we will write U(f) = U(cone(f)). As T is quasi-affine
there is a collection of elements S = (si)i ⊆ RT such that for each index i we have

1. Spc(Tc) = ⋃
i U(si)

2. The comparison map Spc(Tc(U(si)))
ρU(si)−→ Spec(RT(U(si))) is an isomorphism.

Fix the index i. Let S = {id, si, s2
i , ...} be the multiplicative set generated by si. By

Proposition 3.4.4 we have
RT(U(si))

∼= S−1RT.

By assumption the comparison map at U(si) is an isomorphism, and so

Spc(Tc(U(si))) ∼= Spec(S−1RT).

A basis for Spec(S−1RT) is given by the collection

{D(r/sni ) | r ∈ RT, n ∈ Z}.

Using the identification D(s) ∼= Spec(S−1RT), one can see that for a distinguished
basic open D(r/sni ) we have

D(r/sni ) = D(r) ∩D(si) = D(rsi).
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As the comparison map is an isomorphism over Tc(U(si)) we can take the preimage
under ρU(si) to obtain a basis

{U(rsi) | r ∈ RT}

for Spc(Tc(U(si))). We consider the collection

B = {U(rsi) | r ∈ RT, si ∈ S}.

Unwinding the definition of a basis, one can then observe that B is a basis for a topology
on Spc(Tc) and that it coincides with the standard topology generated by the usual
basis {U(x) | x ∈ Tc}.

Corollary 3.4.15. If T is quasi-affine then the natural comparison map is injective:

Spc(Tc) ρ
↪−→ Spec(RT).

If T is quasi-affine and the unit 1 satisfies Hom(1,Σi1) = 0 for all i > 0, then the
natural comparison map is an isomorphism and T is affine.

Proof. By the previous proposition, if T is quasi-affine then the collection

{U(cone(s)) | s ∈ RT}

is a basis for the usual topology on Spc(Tc). Therefore by [DS14, Proposition 3.11],
the comparison map is injective. For the second part, assume that Hom(1,Σi1) = 0.
Then by [Bal10, Theorem 7.13] the comparison map is surjective. Combining this with
the quasi-affine assumption we conclude that the comparison map is an isomorphism.

We can use affine categories to give concrete examples of the bad interactions be-
tween associated sheaf functors and invertibility of objects. First we give an example
of an object which is invertible but its associated sheaf is not.

Example 3.4.16. Let R be a commutative ring and consider the category Dperf(R).
Define

X = · · · −→ 0 −→ 0 −→ 0 −→ 0 −→ 0 −→ R −→ 0 −→ · · · ,

Y = · · · −→ 0 −→ R −→ 0 −→ 0 −→ 0 −→ 0 −→ 0 −→ · · · ,

with X concentrated in degree 2 and Y concentrated in degree −2. In Dperf(R) the
tensor unit is the complex with R concentrated in degree 0. Clearly X ⊗ Y ∼= 1. As
Dperf(R) is affine we have

[1, X]# ∼= H̃0(X) ∼= 0,

[1, Y ]# ∼= H̃0(Y ) ∼= 0.
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Hence the associated sheaves are not invertible.

Now we give an example where X is not invertible but [1, X]# is invertible.

Example 3.4.17. We again consider Dperf(R) and define

X = · · · −→ 0 −→ R −→ 0 −→ R −→ 0 −→ · · · ,

concentrated in degrees −2 and 0. We have [1, X]# ∼= H̃0(X) ∼= ODperf(R). Therefore
[1, X]# is invertible. However, X is not invertible in Dperf(R).

§ 3.5 | Mayer-Vietoris covers
There is a process, defined in [BF07], which allows gluing of objects inside a given
triangulated category. We show that gluing behaves well with the associated sheaf
functors with respect to supports and quasi-coherence. Throughout we consider T a
tt-category acting on itself.

Definition 3.5.1. [BF07, 2.1] Let T be a triangulated category. A formal Mayer-
Vietoris cover of T is a pair of thick triangulated subcategories S1 and S2 such that
HomT(X1, X2) = HomT(X2, X1) = 0 for every pair of objects X1 ∈ S1 and X2 ∈ S2.

We denote by S1 ⊕S2 the thick subcategory whose objects are of the form X = X1 ⊕X2

with X1 ∈ S1 and X2 ∈ S2. This setup is referred to as a Mayer-Vietoris situation.

Remark 3.5.2. Note that the defintion of a Mayer-Vietoris cover makes no mention of
a tensor structure on T. Further applications of these covers can be found in [Rou08].

Such a situation can be presented in a square diagram:

T T/S1

T/S2 T/(S1 ⊕ S2)

The content of the next theorem was first in [BF07, 4.3] but we present the form given
in [BF11, 2.11]

Theorem 3.5.3. Suppose we have a formal Mayer-Vietoris situation as in the above
definition. Assume that the quotients in the associated square diagram have small
hom objects. Let X1 ∈ T/S1 and X2 ∈ T/S2 be two objects and σ : X1

∼−→ X2 an
isomorphism in T/(S1 ⊕ S2). Then there exists an object X ∈ T and isomorphisms
X ∼= Xi in T/Si for i = 1, 2, compatible with σ in T/(S1 ⊕ S2). The object X is unique
up to possibly non-unique isomorphism and is called a gluing of X1 and X2 along σ.

We may denote a gluing as in the theorem by X = X1 ∪σ X2. One may also glue
morphisms together under the same hypotheses [BF07, 3.5].

The gluing of objects can be used in the context of tt-categories:
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Corollary 3.5.4. [BF11, 5.15] If Spc(Tc) = U1 ∪ U2 with each Ui a quasi-compact
open, then

T T(U1)

T(U2) T(U1 ∩ U2)

satisfies gluing of objects and morphisms as above.

In general, gluings may not be unique, or are only unique up to non-unique iso-
morphism. When considering more general covers gluings may not even exist. There
are conditions which can be imposed to guarantee existence and uniqueness over finite
covers, such as the following theorem.

Theorem 3.5.5. [BF07, 5.13] Let Spc(Tc) = U1 ∪ U2 ∪ · · · ∪ Un be a cover by quasi-
compact open subsets for n ≥ 2. Consider objects Xi ∈ T(Ui) and isomorphisms σji :
Xi

∼−→ Xj in T(Ui∩Uj) satisfying the cocycle condition σkjσji = σki in T(Ui∩Uj ∩Uk)
for 1 ≤ i, j, k ≤ n. Assume moreover the following connectivity condition: for any
i = 2, . . . , n and for any quasi-compact open V ⊆ Ui, we suppose that

HomT(V )(ΣXi, Xi) = 0.

Then there exists a gluing which is unique up to unique isomorphism.

Remark 3.5.6. As noted in [BF07] it suffices to check the connectivity condition only
on those V ⊆ Ui which are unions of intersections of U1, . . . , Un.

Definition 3.5.7. We say a collection of objects admits a connective gluing if it satisfies
the hypotheses of Theorem 3.5.5.

The next two results show that when considering a gluing, the local components
contain the expected local information.

Proposition 3.5.8. Let {Ui}i∈I be a collection of quasi-compact open subsets of Spc(Tc)
such that Spc(Tc) = ⋃

i∈I Ui, for some index set I. Suppose we have a collection of ob-
jects Xi ∈ T(Ui) which admit some gluing X. Fix a compact object A and define
Ai = AUi

. If V is a quasi-compact open subset of Spc(Tc) then

p• [A,X](V ) ∼= p• [Ai, Xi](V )

for any i such that V ⊆ Ui.

Proof. By the definition of the gluing we have XUi
∼= Xi. Suppose V ⊆ Ui. Then

p• [A,X](V ) ∼= Hom•
T(V )(AV , XV ),

∼= Hom•
T(V )((AUi

)V , (XUi
)V ), as V ⊆ Ui by Lemma 3.4.10,

∼= Hom•
T(V )((Ai)V , (Xi)V ), as XUi

∼= Xi,

∼= p• [Ai, Xi](V ).
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Finally one can choose any i such that V ⊆ Ui because the gluing data guarantees that
if V ⊆ Ui ∩ Uj we have

(Xi)V ∼= (Xij)V ∼= (Xj)V ,

and so any such i will produce the same result.

Gluing interacts well with quasi-coherence.

Proposition 3.5.9. Let Spc(Tc) = U1 ∪ U2 with Ui quasi-compact open, i = 1, 2,
and let X1, X2 be objects of T with an isomorphism σ : X1

∼−→ X2 in T(U1 ∩ U2).
Let X = X1 ∪σ X2. If [11, X1]# and [12, X2]# are both quasi-coherent, then [1, X]# is
quasi-coherent.

Proof. Fix P ∈ Spc(Tc). Without loss of generality suppose P ∈ U1. As [11, X1]# is
quasi-coherent there exists an open neighbourhood U of P such that there is an exact
sequence

OI
T|U −→ OJ

T|U −→ [11, X1]#|U −→ 0.

Moreover we can shrink U to be contained in U1 and quasi-compact. Now on every
quasi-compact open subset V of U1 we have [1, X]#(V ) ∼= [11, X1]#(V ) and so the
given exact sequence for X1 also holds for X. Similarly one can obtain such a sequence
using X2 in the case where P ∈ U2. Therefore [1, X]# is quasi-coherent.

Proposition 3.5.10. Let Spc(Tc) = U1 ∪U2 and consider some gluing X = X1 ∪σ X2

with X1 ∈ Tc(U1) and X2 ∈ Tc(U2). Then

supp•(X,A) ⊆ supp(X) ⊆ supp(X1 ⊕X2).

Proof. The first containment is Lemma 3.2.8. We prove the second containment.
Consider a prime P ∈ supp(X), so that we have X ̸∈ P and so XP ̸= 0. As
Spc(Tc) = U1 ∪ U2 is a cover, we may assume that P ∈ U1. By Lemma 2.3.28 we
have an equality P = Tc

supp(P) = Tc⋃
U∋P Spc(Tc)\U and so Tc

Spc(Tc)\U1
⊆ P . Therefore

(X1)P ∼= (XU1)P ∼= XP ̸= 0.

and X1 ̸∈ P i.e. P ∈ supp(X1). We can repeat the argument for each prime, choosing
U1 or U2 as appropriate. Therefore

supp(X) ⊆ supp(X1) ∪ supp(X2) = supp(X1 ⊕X2).

Remark 3.5.11. Providing the gluing exists, the above propositions can be extended
to finite collections of objects.

The next collection of results show that gluings can be used to determine when the
presheaf functors are the same as the associated sheaf functors.
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Definition 3.5.12. Let U be a quasi-compact open subset of Spc(Tc) and let U =
{U1, . . . , Un} be an open cover of U by quasi-compact opens. We say an object X ∈ T
is 1-coconnected over U if for every i and every quasi-compact open V ⊆ Ui we have

Hom•
T(V )(1,Σ−1X) = 0,

We will say that X is absolutely 1-coconnected over U if it is 1-coconnected over every
finite cover of U .

Theorem 3.5.13. Let X be an object of T, U a quasi-compact open subset of Spc(Tc)
and U = {U1, . . . , Un} a cover of U by quasi-compact opens. If X is 1-coconnected
over U then p• [1, X] satisfies the sheaf condition with respect to this cover. That is, the
sequence

0 −→ p• [1, X](U) −→
⊕
i

p• [1, X](Ui) −→
⊕
i,j

p• [1, X](Uij)

is exact, where Uij = Ui ∩ Uj.

Proof. Consider the base case n = 2, where the cover U has two opens U1 and U2. For
each i ∈ Z the Mayer-Vietoris sequence of [BF07, Theorem 3.5] gives an exact sequence

HomT(U12)(Σ1, u⊗i ⊗X) HomT(U)(1, u⊗i ⊗X)

HomT(U1)(1, u⊗i ⊗X) ⊕ HomT(U2)(1, u⊗i ⊗X) HomT(U12)(1, u⊗i ⊗X).
.

By assumption X is 1-coconnected over U so for all i, HomT(U12)(Σ1, u⊗i ⊗ X) = 0.
For each i the sequence becomes

0 HomT(U)(1, u⊗i ⊗X)

HomT(U1)(1, u⊗i ⊗X) ⊕ HomT(U2)(1, u⊗i ⊗X) HomT(U12)(1, u⊗i ⊗X).
.

Therefore on the presheaf we have an exact sequence

0 −→ p• [1, X](U) −→ p• [1, X](U1) ⊕ p• [1, X](U2) −→ p• [1, X](U12).

Therefore the sheaf condition holds on the cover U . Now suppose the result holds
for all cases n < m with m > 2. Consider the case n = m. Given a cover U = {Ui}mi=1

let V = ⋃n
i=2 Ui and consider the cover U = U1 ∪ V . By induction the sheaf condition

holds on this cover of U and the given cover of V . Therefore the condition holds for
the original cover U and the result holds.

Corollary 3.5.14. Let U be a quasi-compact open subset of Spc(Tc) and suppose X ∈ T
is absolutely 1-coconnected over U . Then p• [1, X] verifies the sheaf condition at U and
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hence
[1, X]•(U) = p• [1, X](U) = Hom•

T(U)(1, X).

Proof. Recall that the sheaf condition is that for every finite cover U = {U1, . . . , Un}
of U the sequence

0 −→ p• [1, X](U) −→
⊕
i

p• [1, X](Ui) −→
⊕
i,j

p• [1, X](Uij)

is exact, where Uij = Ui ∩Uj. As X is assumed to be absolutely 1-coconnected over U ,
it is 1-coconnected with respect to each finite cover U . Therefore by Theorem 3.5.13
the given sequence is exact for every finite cover of U , and therefore the sheaf condition
is satisfied. Therefore we have an equality of sections

[1, X]•(U) = p• [1, X](U) = Hom•
T(U)(1, X)

as required.

We have seen that a gluing of objects can lead to good properties in the associated
sheaves. However, a gluing of the associated sheaves does not give a gluing of objects
even in the simplest cases.

Example 3.5.15. Consider Tc = Dperf(R) for some commutative ring R. This is an
affine category and moreover for each object X we have [1, X]# ∼= H̃0(X). Consider
the following two perfect complexes:

X = · · · −→ 0 −→ R −→ 0 −→ R −→ 0 −→ 0 −→ · · · ,

Y = · · · −→ 0 −→ 0 −→ 0 −→ R −→ 0 −→ 0 −→ . . . ,

where X has R in degrees −2 and 0, and Y has R in degree 0 only. Both complexes
have the same zeroth cohomology and so there is an isomorphism of untwisted sheaves
[1, X]# ∼= [1, Y ]#. However they are not isomorphic in Dperf(R) as they have non-
isomorphic homology in degree −2. Therefore consider the trivial cover U1 = U2 =
Spc(Tc). We have

Tc(U1 ∩ U2) ≃ Tc(Spc(Tc)) ≃ Tc,

and the existence of a gluing of X to Y would imply that X ∼= Y in Dperf(R), a
contradiction. Therefore the existence of a gluing of sheaves does not provide a gluing
objects.

§ 3.6 | Interactions with t-structures
We now consider the case where T is equipped with a t-structure. For more details on
t-structures see [BBD82].
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Definition 3.6.1. Let T be a triangulated category with full subcategories T≤0 and
T≥0. Denote T≤n = Σ−nT≤0 and T≥n = Σ−nT≥0. A t-structure on T is the data
(T≤0,T≥0) such that

1. There are containments

T≤−1 ⊆ T≤0 and T≥1 ⊆ T≥0.

2. For any X ∈ T≤0, Y ∈ T≥1, HomT(X, Y ) = 0.

3. For any X ∈ T there exists a distinguished triangle

X0 −→ X −→ X1 −→ ΣX0

such that X0 ∈ T≤0 and X1 ∈ T≥1.

A t-structure is non-degenerate if
⋂
n∈Z

T≤n =
⋂
n∈Z

T≥n = 0.

The heart of the t-structure is the full subcategory

T♡ = T≤0 ∩ T≥0.

The following are standard results on t-structures:

Proposition 3.6.2. Let (T≤0,T≥0) be a t-structure on T. Then the following hold:

1. The heart T♡ is an abelian category.

2. Consider the natural inclusion functors i≤n : T≤n −→ T and i≥n : T≥n −→ T.
There exist functors τ≤n : T −→ T≤n and τ≥n : T −→ T≥n such that

i≤n ⊣ τ≤n and τ≥n ⊣ i≥n.

Explicitly

HomT(i≤nX, Y ) ∼= HomT≤n(X, τ≤nY ),
HomT(X, i≥nY ) ∼= HomT≥n(τ≥nX, Y ).

Definition 3.6.3. Given a t-structure (T≤0,T≥0) we define the n-th cohomology func-
tor Hn : T −→ T♡ by

Hn(X) = τ≥0τ≤0ΣnX.

We give the following theorem from [HKM02] showing that a t-structure can be
built from a compact object under suitable conditions.
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Definition 3.6.4. We say an object X ∈ T is connective if

HomT(X,ΣnX) = 0 for all n > 0.

If U ⊆ Spc(Tc) is a quasi-compact open subset then we say that an object X is locally
connective over U if HomT(U)(X,ΣnX) = 0 for all n > 0. If U = (Ui)i∈I is an open
cover of Spc(Tc) with each Ui quasi-compact, then we say that X is locally connective
over U if X is locally connective over each of the Ui.

Theorem 3.6.5. [HKM02, 1.3] Let T be a triangulated category with arbitrary coprod-
ucts, C a connective compact object, and B = EndT(C)op. Define

T≤n = {X ∈ T | HomT(C,ΣiX) = 0 for i > n}

T≥n = {X ∈ T | HomT(C,ΣiX) = 0 for i < n}

Let T♡ = T≤0 ∩ T≥0. If {ΣiC | i ∈ Z} is a generating set, then the following hold:

1. (T≤0,T≥0) is a non-degenerate t-structure on T.

2. The functor
HomT(C,−) : T♡ −→ ModB,

is an equivalence of categories.

Definition 3.6.6. Let C be a connective compact object of T. Let (T≤0,T≥0) be the
t-structure of Theorem 3.6.5. We say that (T≤0,T≥0) is the t-structure connectively
generated by C. We say that C connectively generates (T≤0,T≥0).

Observe that if T is generated by the tensor unit 1 and 1 is locally connective with
respect to some cover U , then for each U ∈ U the tt-category T(U) can be equipped
with the t-structure connectively generated by 1. We denote the heart of this structure
by T(U)♡.

We now detail conditions under which these local t-structures interact well with
the corresponding localisation functors.

Proposition 3.6.7. Let T be a big tt-category, generated by the tensor unit 1. Consider
a morphism s ∈ RT := HomT(1,1) and the quasi-compact open subset U = U(cone(s)).

1. For an object X ∈ T, if HomT(1, X) ∼= 0 then HomT(U)(1U , XU) = 0.

2. If 1 is connective in T then 1U is connective in T(U). As a consequence, if 1 con-
nectively generates a t-structure on T then 1U connectively generates a t-structure
on T(U).
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3. If 1 is connective then for all i ∈ Z we have the following commutative diagrams:

T T(U)

T≤i T(U)≤i

(−)U

τ≤i τ≤i
U

(−)U

and

T T(U)

T≥i T(U)≥i

(−)U

τ≥i τ≥i
U

(−)U

In other words, truncation and localisation commute.

Proof. 1. By Theorem 3.4.6 we have an isomorphism

HomT(U)(1U , XU) ∼= S−1 HomT(1, X)

where the right term is the localisation of the module HomT(1, X) with respect
to the multiplicative set associated to s. By assumption HomT(1, X) is zero, and
therefore so is the localisation. Therefore HomT(U)(1, X) ∼= 0.

2. The unit 1 is connective and so HomT(1,Σn1) ∼= 0 for all n > 0. Applying part
(1) to each of the Σn1 we have that for each n > 0, HomT(U)(1,Σn1) ∼= 0. In
other words, 1 is locally connective over U and therefore connectively generates
a t-structure on T(U).

3. First note that by part (2), as 1 is connective it makes sense to consider the t-
structure (T(U)≤0,T(U)≥0) connectively generated by 1U . Fix X ∈ T and i ∈ Z.
We first prove that

(τ≤iX)U ∈ T(U)≤i and (τ≥iX)U ∈ T(U)≥i.

Consider HomT(U)(1U ,Σj(τ≤iX)U). As τ≤iX ∈ T≤i we have HomT(1,Σjτ≤iX) =
0 for all j > i. Therefore by (1) HomT(U)(1U ,Σj(τ≤iX)U) = 0 for all j > i so
by definition (τ≤iX)U ∈ T(U)≤i. A similar proof provides the second part of the
claim. Now consider the diagrams

T T(U)

T≤i T(U)≤i

(−)U

τ≤i τ≤i
U

(−)U

and

T T(U)

T≥i T(U)≥i

(−)U

τ≥i τ≥i
U

(−)U

The proof of the first claim shows that the bottom arrows in each diagram do in
fact land in T(U)≤i and T(U)≥i respectively.
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Recall that the t-structure on T induces a unique triangle

τ≤iX −→ X −→ τ≥i+1X −→ Στ≤iX.

Applying the localisation funtor (−)U gives a triangle

(τ≤iX)U −→ XU −→ (τ≥i+1X)U −→ (Στ≤iX)U .

Now by the previous lemma (τ≤iX)U ∈ T(U)≤i and (τ≥i+1X)U ∈ T(U)≥i+1.
Therefore the above triangle is isomorphic to the canonical triangle induced by
the t-structure on T(U), given by the following diagram:

(τ≤iX)U XU (τ≥i+1X)U (Στ≤iX)U

τ≤i
U (XU) XU τ≥i+1

U (XU) Στ≤i
U (XU)

As all of the vertical arrows are isomorphisms we have

(τ≤iX)U ∼= τ≤i
U (XU) and (τ≥i+1X)U ∼= τ≥i+1

U (XU)

which completes the proof.

Remark 3.6.8. As an immediate consequence we have

H0
U(XU) ∼= (H0(X))U

as the homology functor is defined by the truncation functors.

Our work on affine categories allows us to define this t-structure in terms of sheaves
associated to objects. We work in the untwisted setting.

Lemma 3.6.9. Let T be an affine category and suppose that the unit 1 connectively
generates a t-structure on T. Then:

1. For all n ∈ Z:

(a) T≤n = {X ∈ T | [1,ΣiX]# = 0 i > n}.

(b) T≥n = {X ∈ T | [1,ΣiX]# = 0 i < n}.

(c) T♡ = {X ∈ T | [1,ΣiX]# = 0 i ̸= 0}.

2. Let X ∈ Tc. Then

(a) If X ∈ T≤n then suppX = ⋃
i≤n supp(ΣiX,1).

(b) If X ∈ T≥n then suppX = ⋃
i≥n supp(ΣiX,1).

(c) If X ∈ T♡ then suppX = supp(X,1).
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Proof. As T is affine the sheaf [1,ΣiX]# is equivalent to the sheaf associated to the
module HomT(1,ΣiX). For (1), by Theorem 3.6.5 we have

T≤n = {X ∈ T | HomT(1,ΣiX) = 0 i > n}.

As T is affine, for each i > n, HomT(1,ΣiX) = 0 if and only if [1,ΣiX]# = 0. Therefore
T≤n = {X ∈ T | [1,ΣiX]# = 0 i > n}, proving (1)(a). Similar proofs give us (1)(b)
and (1)(c). For (2) note that by Remark 3.2.3 and Theorem 3.2.9 we have for compact
X equalities

suppX = supp•(X,1) =
⋃
i∈Z

supp(ΣiX,1),

where supp•(X,1) is twisted with respect to Σ1. Now if X ∈ T≤n, by part (1)(a)
[1,ΣiX]# = 0 for i < n. Therefore by definition supp(ΣiX,1) = ∅ for all i < n and
so ⋃i∈Z supp(Σix,1) = ⋃

i≤n supp(ΣiX,1), proving (2)(a). Similar proofs provide the
results in (2)(b) and (2)(c), completing the proof.

We want to investigate when an object can be analysed via an appropriate object
in the heart of the t-structure, as in the following definition.

Definition 3.6.10. Given an object X ∈ T we say that an object X♡ ∈ T♡ is a hearty
replacement for X if

[1, X]# = [1, X♡]#.

We say that X can be heartily replaced by X♡.

When the comparison map of spectra is an isomorphism then the heart of the
t-structure encodes information about associated sheaf functors in the obvious way.

Proposition 3.6.11. Suppose T is affine and that the unit object connectively generates
a t-structure. Then

• T♡ ≃ QCoh Spec(RT).

• Each object X ∈ T has a hearty replacement X♡. That is, for an object X ∈ T
there exists an object X♡ ∈ T♡ such that

[1, X]# ∼= [1, X♡]#.

Proof. Consider the following diagram:

T♡ ModRT

QCoh Spec(RT)

HomT(1,−)

[1,−]# (̃−)
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The top arrow is an equivalence by Theorem 3.6.5. The vertical arrow is an equivalence
as Spec(RT) is an affine scheme. As T is affine, for any object X ∈ T we have [1, X]# ∼=

˜HomT(1, X) i.e. [1,−]# ∼= (̃−) ◦ HomT(1,−). Therefore our diagram commutes and
the final diagonal arrow is an equivalence, as required. For the second part, note that
[1, X]# is quasi-coherent for all X ∈ T as T is affine, so via the equivalence in our
diagram there must exist X♡ ∈ T♡ such that [1, X]# ∼= [1, X♡]# as claimed.

Suppose instead that T is not affine. Then the diagram of Proposition 3.6.11 may
not be commutative. Define a functor

(−)♭ = ˜HomT(1,−)

and consider the diagram

T ModRT

Shv Spec(T) QCoh Spec(RT)

HomT(1,−)

(−)♭

[1,−]# (̃−)

ρ∗

By definition the upper triangle commutes. If the lower triangle commuted then [1, X]#

would be quasi-coherent for all X ∈ T. We show that under mild conditions the lower
triangle fails to be commutative.

Proposition 3.6.12. Suppose that Spc(Tc) contains a non-zero prime ideal and that

HomTc(1,1) = k

is a field. Then
[1,−]# ̸∼= ρ∗(−)♭.

Proof. Consider an sheaf F in Mod Ok. Such an object is in the additive closure of
the structure sheaf and so the pull back ρ∗F must be in the additive closure of OT.
Every object in this closure must be supported everywhere. Now consider an object
M ∈ P , where P is a non-zero prime ideal in Spc(Tc). The associated sheaf [1,M ]#

is not supported at P and so [1,M ]# is not in the additive closure of OT. Therefore
[1,M ]# is not the pullback of a Ok-module along ρ and so [1,−]# ̸∼= ρ∗(−)♭.

In the affine case we have the following connections between the cohomology functor
and the associated sheaves.

Lemma 3.6.13. If T affine then for an object X we have

1. [1, X]# ∼= [1, τ≤0X]#.

2. [1, H0X]# ∼= [1, τ≥0X]#.
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3. If X ∈ T≥0 then [1, X]# ∼= [1, H0X]#.

Proof. 1. First note that as the unit 1 is connective, HomT(1,Σi1) = 0 for all i > 0.
In other words, 1 ∈ T≤0, which is a full subcategory. Using the adjunction
between the associated truncation and inclusion functors for T≤0 we obtain the
following string of isomorphisms:

HomT(1, τ≤0X) ∼= HomT≤0(1, τ≤0X),
∼= HomT(i≤01, X),
∼= HomT(1, X).

By assumption T is affine. Combining this fact with the above isomorphism we
conclude

[1, X]# ∼= ˜HomT(1, X) ∼= ˜HomT(1, τ≤0X) ∼= [1, τ≤0X]#.

2. By definition H0X = τ≤0τ≥0X. Using part (1) we obtain

HomT(1, H0X) = HomT(1, τ≤0τ≥0X) ∼= HomT(1, τ≥0X).

Again, as T is affine this gives us [1, H0X]# ∼= [1, τ≥0X]# as required.

3. If X ∈ T≥0 then X ∼= τ≥0X and so

[1, X]# ∼= [1, τ≥0X]# ∼= [1, H0X]#,

where the second isomorphism is from (2).

In our hunt for hearty replacements the previous lemma states that if X ∈ T≥0

then the zeroth cohomology H0X is a hearty replacement for X. For T affine we can
extend this to all objects in T and upgrade the assignment (−)♡ to a functor via the
cohomology functor.

Proposition 3.6.14. Suppose that T has the t-structure connectively generated by 1.
Then for all X ∈ T we have

HomT(1, X) ∼= HomT(1, H0X),

and if T is affine we have
[1, X]# ∼= [1, H0X]#,

where H0 is the cohomology functor induced by the t-structure connectively generated
by 1. We can choose the functor H0(−) as our assignment (−)♡.

Proof. For X ∈ T consider the canonical triangle

τ≤−1X −→ X −→ τ≥0X −→ Στ≤−1X.
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Applying the homological functor HomT(1,−) produces a long exact sequence

· · · −→ HomT(1, τ≤−1X) HomT(1, X)

HomT(1, τ≥0X) HomT(1,Στ≤−1X) −→ · · ·
.

As τ≤−1X ∈ T≤−1 we have HomT(1, τ≤−1X) ∼= 0 and HomT(1,Στ≤−1X) ∼= 0. There-
fore we obtain the short exact sequence

0 −→ HomT(1, X) −→ HomT(1, τ≥0X) −→ 0

which by exactness gives HomT(1, X) ∼= HomT(1, τ≥0X). As we assumed T affine this
gives [1, X]# ∼= [1, τ≥0X]#. Then by Lemma 3.6.13 (2) we have

[1, X]# ∼= [1, τ≥0X]# ∼= [1, H0X]#.

Remark 3.6.15. While Proposition 3.6.14 applies to affine tt-categories, issues arise
when trying to extend it to schematic categories. Indeed, Proposition 3.6.7 only guar-
antees that the cohomology and localisation functors are well behaved when localising
over an open of the form U(cone(s)) for some s ∈ RT. A quasi-affine tt-category T
could therefore be a good candidate to extend the proposition. Unfortunately, requir-
ing that the unit 1 connectively generate a t-structure on T means that the hypotheses
of Corollary 3.4.15 are satisfied, and so our candidate quasi-affine category is in fact
affine.

Theorem 3.6.16. Let T be an affine category such that the tensor unit 1 generates T
and connectively generates a t-structure on T. Then for all objects X ∈ T we have

supp•(X,1) =
⋃
i∈Z

supp(H i(X),1),

where the support on the left is twisted by the invertible object Σ1.

Proof. By the previous proposition, we identify the associated sheaf of an object to that
of its zeroth cohomology. Applying this to the definition of the Σ1-twisted support we
obtain the following equalities:

supp•(X,1) =
⋃
i∈Z

supp(ΣiX,1), by Remark 3.2.3,

=
⋃
i∈Z

supp(H0ΣiX,1), by the previous theorem,

=
⋃
i∈Z

supp(H i(X),1),

completing the proof.
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§ 3.7 | Applications and examples
§ 3.7.1 | TT-categories from lattices

In this section we will produce a tt-category from a bounded lattice L.

Definition 3.7.1. A lattice L is a poset (L,≤) such that every pair of elements admits
a greatest lower bound/infimum/meet ∧, and a least upper bound/supremum/join ∨.

Definition 3.7.2. Let L be a lattice. We say L is bounded if there exists a minimal
element 0 and a maximal element 1. The lattice L is complete if arbitrary subsets of
L admit both meets and joins. We say L is distributive if for all ℓ1, ℓ2, ℓ3 ∈ L we have

ℓ1 ∧ (ℓ2 ∨ ℓ3) = (ℓ1 ∧ ℓ2) ∨ (ℓ1 ∧ ℓ3).

Definition 3.7.3. A lattice L is a frame if it is complete and satisfies

ℓ ∧ (
∨
i∈I
mi) =

∨
i∈I

(ℓ ∧mi)

for all ℓ ∈ L and any collection of elements {mi}{i∈I} of L indexed by some set I.

Example 3.7.4. Consider the lattice

1

x y z

0

As it is finite, it is complete and bounded, with maximal element 1 and minimal
element 0. However, it is not distributive (and so is not a frame). Indeed,

x ∧ (y ∨ z) = x ∧ 1 = x.

while on the other hand we have

(x ∧ y) ∨ (x ∧ z) = 0 ∨ 0 = 0.

Example 3.7.5. Let X be a topological space and consider the collection of all open
subsets of X, denoted by Ω(X). Then Ω(X), ordered by inclusion, is a frame. The
join is given by union ∪, while the meet is obtained by int ∩, taking the (open) interior
of the intersection. The minimal element is the empty set ∅ and the maximal element
is the whole space X.

Definition 3.7.6. Let P be a poset. A subset S ⊆ P is downwards closed if s ∈ S

and ℓ ∈ P such that ℓ ≤ s then ℓ ∈ S. For an element x ∈ P define the downwards
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closure of x by
↓ x = {ℓ ∈ P | ℓ ≤ x}.

Given a subset S ⊆ P define the downwards closure of S by

↓ S =
⋃
x∈S

↓ x.

If S is a subset of P , then S is downwards closed if and only if S = ↓ S.

Definition 3.7.7. Let (P,≤) be a poset. A subset I ⊂ P is an ideal if all of the
following hold:

1. I ̸= ∅

2. I is downwards closed.

3. For all x, y ∈ I there exists z ∈ I such that x ≤ z and y ≤ z

Definition 3.7.8. An ideal I of a lattice (P,≤) is prime if all of the following hold:

1. I is a proper ideal of P .

2. For all x, y ∈ P , if x ∧ y ∈ I then x ∈ I or y ∈ I.

Now that we have primes, the spectrum is not far behind.

Definition 3.7.9. Let (P,≤) be a poset. The spectrum of P is the set:

Spec(P ) = {I ⊆ P | I is a prime ideal}

We define a topology on Spec(P ) using a basis of open subsets of the form

DP (x) = {I ∈ Spec(P ) | x ̸∈ I}

Given a poset, downward closure produces another poset.

Definition 3.7.10. Let (P,≤) be a poset. Let Dcl(P ) denote the collection of all
non-empty downwards closed subsets of P . That is,

Dcl(P ) = {S ⊆ P | S =↓ S}.

Lemma 3.7.11. Let L be a bounded lattice. Then the collection of all non-empty
downwards closed subsets Dcl(L), ordered by inclusion, is a frame.

Proof. The fact that Dcl(L) is a poset with respect to inclusion is immediate. The
set P is the maximal element of Dcl(P ), while the singleton set {0} is the minimal
element. Therefore Dcl(L) is bounded. The meet is intersection, and the join is union.
As the arbitrary intersection and arbitrary union of downwards closed sets are again
downwards closed, and intersection and union of sets satisfies the frame condition, we
conclude that Dcl(L) is a frame.
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We will now consider a tt-category constructed from a monoid. This construction
can be found in [Ste18b]. This is relevant because the data of a bounded lattice L
defines a monoid, where the binary operation is given by the meet ∧ and the maximal
element 1 is the identity element of the operation.

Construction 3.7.12. Let (M, ∗,1) be a commutative monoid with zero element 0M
and fix a field k. Consider the category

TM =
∏

m∈M\{0}
D(km)

where km = k for all k ∈ M \ {0}, the category D(km) is the unbounded derived
category of all km-vector spaces, and the product is taken in the category of additive
categories. The objects in TM are M -graded objects of D(k), and so each object can
be thought of as the direct sum of each of its graded pieces. The zero object in TM

can be identified with k0M
The category TM inherits a triangulated structure from the

usual triangulated structure on D(k) applied levelwise. TM can then be equipped with
tensor product by defining

km1 ⊗ km2 = km1∗m2

which extends to an exact and coproduct preserving tensor product on the whole of
TM , with tensor unit k1.

Remark 3.7.13. Note that if Q is an ideal of the tt-category T cM , then Q is uniquely
determined by the generators km it contains. More precisely

Q = thick⊗(m ∈ M | km ∈ Q).

In fact, the same is true for localising ideals. That is, if Q is a localising ideal, then

Q = loc⊗(m ∈ M | km ∈ Q).

Given a bounded lattice L, we obtain a monoid (L,∧,1) and then apply the above
construction to obtain the tt-category TL.

Lemma 3.7.14. Every thick tensor ideal of TL is radical.

Proof. By the construction of Tc
L it suffices to check kx ∈ thick⊗(kx ⊗ kx) for each

kx ∈ Tc and we conclude by Remark 2.3.30. But kx⊗kx ∼= kx∧x ∼= kx and the condition
holds.

Remark 3.7.15. The category Tc
L gives an example of a tt-category which is not rigid,

but all of the thick tensor ideals are radical.

Definition 3.7.16. Let L be a bounded lattice. Define a function

γ : Spc(T cL) −→ P(DclL)
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by
γ(Q) = {↓ A | A ⊆ {ℓ ∈ L | kℓ ∈ Q}}.

The fact that this function is well-defined follows immediately from the previous re-
mark.

Lemma 3.7.17. Let Q ∈ Spc(T cL). Then γ(Q) is a proper ideal of the frame Dcl(L).

Proof. We check each of the three conditions making up the definition of an ideal.

1. Note that for every ideal Q, we have {0} ⊂ {ℓ ∈ L | kℓ ∈ Q} and so {0} ∈ γ(Q).
In particular, γ(Q) is non-empty.

2. First we observe that {ℓ ∈ L | kℓ ∈ Q} is downwards closed. Indeed if f ≤ ℓ with
kℓ ∈ Q, then

kf = kf∧ℓ ∼= kf ⊗ kℓ ∈ Q

and so f ∈ {ℓ ∈ L | kℓ ∈ Q}. Now let S ∈ γ(Q) and R ∈ Dcl(L) such that
R ⊆ S. Then there exists a subset A ⊆ {ℓ ∈ L | kℓ ∈ Q} such that R ⊆ ↓ A.
Then for each r ∈ R there exists a ∈ A such that r ≤ a, and so by the previous
argument kr ∈ Q and so R ⊆ {ℓ ∈ L | kℓ ∈ Q} and we conclude that R ∈ γ(Q).

3. For S,R ∈ γ(Q), clearly S,R ⊆↓ {ℓ ∈ L | kℓ ∈ Q} ∈ γ(Q)

All three conditions are satisfied and so we conclude that γ(Q) is an ideal of Dcl(L).
Finally note that as Q is prime in Spc(TL) it is a proper ideal, the image γ(Q) is also
proper.

Lemma 3.7.18. The ideal γ(Q) is prime.

Proof. The fact that γ(Q) is a proper ideal follows from the previous lemma. It remains
only to show that γ(Q) is prime. Let S,R ∈ Dcl(L) such that S ∩R ∈ γ(Q). We have

Q ⊇ thick⊗(kx ∈ S ∩R)
= thick⊗(ks∧r | s ∈ S, r ∈ R)
= thick⊗(ks ⊗ kr | s ∈ S, r ∈ R)
= thick⊗(ks | s ∈ S) thick⊗(kr | r ∈ R).

As Q is prime in TL, it is a consequence of Lemma 2.3.7 that either thick⊗(ks | s ∈ S) ⊆
Q or thick⊗(kr | r ∈ R) ⊆ Q. Therefore S ⊆ {ℓ ∈ L | kℓ ∈ Q} or R ⊆ {ℓ ∈ L | kℓ ∈ Q}.
That is S ∈ γ(Q) or R ∈ γ(Q) and so we conclude that γ(Q) is a prime ideal of
Dcl(Q).

Proposition 3.7.19. There is a bijection of sets

γ : Spc(T cL) −→ Spec(Dcl(L)),

given by
γ(Q) = {↓ A | A ⊆ {ℓ ∈ L | kℓ ∈ Q}}.
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Proof. The image of γ lies in Spec(Dcl(L)) by the previous lemma. The fact that γ is
injective follows from the fact that each prime ideal Q in Spc(TL) is uniquely defined
by the collection {ℓ ∈ L | kℓ ∈ Q}. It remains to show that γ is surjective. Fix a prime
H ∈ Spec(Dcl(L)) and let H = ⋃

S∈H S. Define β(H) = thick⊗(kh | h ∈ H). This is
well-defined as H is non-empty. Clearly γ(β(H)) = H and so it remains to show that
β(H) is a prime ideal of TL. It is clear that β(H) is proper. As thick tensor ideals
depend only on which objects kℓ they contain, this reduces to the following situation.
Let x, y ∈ L such that kx∧y ∈ β(H). Then x ∧ y ∈ H so ↓ x∩ ↓ y =↓ x ∧ y ⊆ H. As
H is prime, ↓ x ∈ H or ↓ y ∈ H and so kx ∈ β(H) or ky ∈ β(H). Therefore β(H) is
prime. Moreover, it is clear that β(γ(Q)) = Q and so we conclude that γ is a bijection
with inverse β.

Definition 3.7.20. For a spectral space X, define the Hochster dual of X to be the
topological space X∨ with open subbasis consisting of all those closed sets in X with
quasi-compact complement. Note that (X∨)∨ = X.

Theorem 3.7.21. If L is a bounded lattice then there is a homeomorphism

γ : Spc(TL)∨ −→ Spec(Dcl(L)).

Proof. By the previous proposition, the function γ is a bijection of sets with inverse β.
It remains to show that both γ and β are continuous.

1. Fix a quasi-compact open subset DDcl(L)(X) ⊆ Spec(Dcl(L)). We compute its
preimage:

γ−1DDcl(L)(X)c = γ−1{H ∈ Spec(Dcl(L)) | X ∈ H}

= {Q | {kx | x ∈ X} ⊆ Q}

=
⋂
x∈X

{Q | kx ∈ Q}

=
⋂
x∈X

U(kx)

=
⋃
x∈X

Z(kx).

As each of all of the Z(kx) are closed in Spc(TL), they are open in Spc(TL)∨ and
so the union ⋃x∈X Z(kx) is open in Spc(TL)∨. Hence γ is continuous.

2. We check continuity of β on the open subbasis Z(kx) for x ∈ L:

β−1Z(kx) = β−1{Q ∈ Spc(TL)∨ | kx ̸∈ Q}

= {H ∈ | x ̸∈ H}

= DDcl(L)({x}).

As β−1Z(kx) = DDcl(L)({x}) is a basic open subset of Spec(DDcl(L)) we conclude
that β is a homeomorphism.
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We have shown that γ is a continuous bijection with continuous inverse β and therefore
conclude that Spc(TL)∨ is homeomorphic to Spec(Dcl(L)).

With the spectrum computed, we can now apply Balmer’s classification theorem
for thick tensor ideals.

Corollary 3.7.22. The lattice of thick tensor ideals of T cL is dual to the lattice Dcl(L).

We can also explicitly compute the structure sheaf of the spectrum.

Proposition 3.7.23. Let L be a bounded lattice. Then the structure sheaf of Spc(T cL)
is k, the constant sheaf with value k.

Proof. Fix an open subset U ⊆ Spc(Tc
L) with closed complement Z. Consider the

presheaf sections HomTc
L(U)(k1, k1). Such a section is a morphism in the Verdier quo-

tient with representative
X

k1 k1

f g

for some X ∈ Tc
L such that cone(f) ∈ Tc

L,Z . Note that if either f or g are the zero
morphism, then the morphism represented by the corresponding diagram is the zero
morphism. Therefore we can restrict to the case where the morphisms f and g are
both non-zero. By the construction of the category TL there are no non-zero maps
h : km −→ k1 when m ̸= 1. As we assume f is non-zero, the object X must have k1 as
a summand. We can rewrite our representative diagram as

k⊕n
1 ⊕ Y

k1 k1

f g

where n is a positive integer and the object Y does not contain k1 as a summand. By
the construction of T, the component of f on Y is zero, and so the cone of f must
be given by k⊕n−1

1 ⊕ Y . As we require supp(cone(f)) ⊆ Z, we must have n = 1, or
Z = Spc(Tc

L) in which case every morphism in the quotient is zero. We now consider
the map g : k1 ⊕ Y −→ k1. Again, the component of g on Y is again zero. Therefore
our morphism is represented by the diagram

k1

k1 k1

f g

As HomD(k1)(k1, k1) ∼= k1, the morphism f is already invertible. When considering
the Verdier quotient, our roof diagram corresponds to the morphism gf−1 and the
collection of all such roofs is naturally isomorphic to k1. Hence we conclude that the
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presheaf sections are simply given by Hom(k1, k1) ∼= k1, and so the associated sheaf is
the constant sheaf k.

§ 3.7.2 | Group algebras of cyclic groups

Let k be a field and G a finite group. The group algebra kG provides us with two cat-
egories of interest. The first is the bounded derived category Db(mod kG), with tensor
product ⊗ = ⊗k, and the stable module category mod kG, again with tensor product
⊗k. These categories are of great interest to representation theory, and the correspond-
ing spectra have been calculated, for instance in [BCR97], [FP07] and [BIK11]. In this
section we will investigate the behaviour of associated sheaf functors in the context of
these categories.

We will start with the bounded derived category. While the original computation
can be found in [FP07, 7.5], the translation and proof of the theorem into the tt-
geometry framework is from [Bal10, 8.5]

Theorem 3.7.24. [FP07; Bal10] Let k be a field and G a finite group. Consider the
bounded derived category T = Db(mod kG) equipped with the tensor product ⊗k. The
natural comparison map is an isomorphism of locally ringed spaces

Spec•(T) ∼= Spech(H•(G, k))

We will restrict ourselves to the case where T = Db(mod kCp) where k is a field with
positive characteristic p and Cp is the cyclic group of order p.

Lemma 3.7.25. The graded homomorphism ring of T is given by

R•
T = Hom•

Db(mod kCp)(k, k) = H•(Cp, k).

In particular

H•(Cp, k) =

k[t], |t| = 1 if p = 2
k[t,s]
(s2) , |t| = 2, |s| = 1 if p ≥ 3

Proof. The central ring is isomorphic to the usual group cohomology ring as in [FP07;
Bal10]. The calculation of this group cohomology ring is standard and can be found
in [Eve91].

By Theorem 3.7.24 there is an isomorphism of locally ringed spaces

(Spc(T),O•
T) ∼= (Spech(H•(Cp, k)),O•

H•(G,k)).

The spectrum Spc T is the two point space

(0)

Dperf(kCp)
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with open subsets ∅ ⊆ {Dperf(kCp)} ⊆ Spc(T).

Proposition 3.7.26. The graded structure sheaf O•
T is isomorphic to the graded presheaf

pO•
T. In particular, the structure sheaf of the ungraded spectrum (Spc(T),OT) is the

constant sheaf k.

Proof. We first compute the sections of the presheaf pO•
T over the open subsets of

Spc(T).

1. For the open subset ∅, the localisation of T is T(∅) = 0. Therefore pO•
T(∅) = 0.

2. For the open subset {Dperf(kCp)}, the localisation of T is T({Dperf(kCp)}) =
mod(kCp). Therefore pO•

T({Dperf(kCp)}) = (H•(Cp, k))t.

3. For the open subset Spc(T), the localisation of T is T(Spc(T)) = T. Therefore
pO•

T(Spc(T)) = H•(Cp, k).

We observe that this presheaf is already a sheaf, and so pO•
T = O•

T. Considering this
sheaf in degree zero only we observe that H0(Cp, k) = k and so OT is the constant
sheaf k.

Proposition 3.7.27. The ungraded associated sheaf functor [k,−]# : T −→ Mod OT

is not an equivalence of categories, independent of the characteristic of k.

Proof. By considering k and kCp and applying the ungraded associated sheaf functor
[k,−]# we obtain

[k, k]# ∼= k and [k, kCp]# ∼= Sky(0)(k)

where Sky(0)(k) is the skyscraper sheaf of value k at the closed point (0). Applying the
associated sheaf functor to any perfect complex results in a skyscraper sheaf supported
at (0). Therefore there exists no sheaf in the image of [k,−]# supported only at the
open point {Dperf(kCp)}.

Proposition 3.7.28. When char(k) = 2 the graded associated sheaf functor

[k,−]• : Db(mod kC2) −→ Coh• Spec•(T)

is essentially surjective and conservative.

Proof. Suppose char(k) = 2. As the cohomology ring H•(G, k) is noetherian, the
structure sheaf is coherent and by Corollary 3.3.13 every object M ∈ Db(mod kC2) has
associated sheaf [k,M ]• and this sheaf must be coherent. Therefore the image of [k,−]•

certainly lies in Coh•(Spec•(T)). In order to show the graded associated sheaf functor
is conservative, let us consider the indecomposable objects in Db(mod kC2). Two of the
indecomposable modules are given by the complexes with k or kC2 in degree zero, and
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the zero module in all other degrees. Additionally, for each n > 1 consider the complex
Mn given by

· · · −→ 0 −→ kC2
1−g−→ kC2

1−g−→ · · · 1−g−→ kC2 −→ 0 −→ · · ·

consisting of n copies of kC2 with arrows given by multiplication by 1−g, where g is the
non-trivial element of C2. These complexes are indecomposable objects in Db(mod kC2).
By noting that kC2 is self-injective, we can compute the global presheaf sections by
simply considering the usual hom-complex. Taking stalks at the closed point (0) we
see that [k, k]•(0)

∼= k[t], [k, kC2]•(0)
∼= k and for each n we have [k,Mn]•(0)

∼= k[t]
tn

. Each
of these rings is graded, and suspending any of these indecomposables will result in
the same stalk but with a new grading uniquely determined by the suspension. It is
now immediate that the graded associated sheaf functor is conservative, as any iso-
morphism between the corresponding sheaves would force the stalks to agree. Finally
let F ∈ Coh• Spec•(T) be an indecomposable graded coherent sheaf. By Proposition
3.7.26 we deduce that every such module must have global sections consisting of an
indecomposable k[t]-module, with the sections over {Dperf(kCp)} being the correspond-
ing localisation as a k[t, t−1]-module. This can all be obtained by applying the graded
associated sheaf functor to the indecomposable objects in T. In particular, every such
sheaf is a finite sum of the indecomposables k[t](j) = [k,Σjk]• and k[t]

tn
(i) = [k,ΣiMn]•.

We conclude that the functor is essentially surjective.

We now consider the stable module category K = mod kG.

Theorem 3.7.29. [FP07, 7.5] Let k be a field and G a finite group. Consider the stable
module category K = mod kG. Then there is a homeomorphism of topological spaces

Spc(K) ∼= Proj(H•(G, k))

Just as with the derived category we will restrict our attention to the group algebra
kCp where k is a field of characteristic p and Cp is the cyclic group of order p. In this
case there is an equivalence of categories

K = mod kCp ∼= mod k[x]
(xp) .

Lemma 3.7.30. The graded homomorphism group of the tensor unit k of K is given
by

R•
K = Hom•

K(k, k) =

k[t, t−1], |t| = 1 if p = 2
k[t,t−1,s]

(s2) , |t| = 2, |s| = 1, if p ≥ 3

Proof. The central ring Hom•
K(k, k) is isomorphic to the Tate cohomology ring [FP07;

Bal10]. The cohomology ring itself can be computed using standard techniques, which
can be found in [AW67]. We provide a tt-flavoured proof for fields of odd characteristic,
with the case p = 2 being similar. We identify kCp with A = k[x]

(xp) . Let X be the perfect
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complex
· · · −→ 0 −→ A

x−→ A −→ 0 −→ · · ·

There is a triangle
Σk −→ X −→ k

t−→ Σ2k

where t is the same as in Lemma 3.7.25. As thick(X) = Perf(A), the stable module
category K can be obtained by taking the quotient of Db(mod kG) by thick(X). By
[Bal10, 3.6], this is equivalent to inverting t in the corresponding graded homomorphism
ring, completing the proof.

By using the identification Spc(K) ∼= Proj(H•(G, k)) we can explicitly compute the
corresponding structure sheaves.

Proposition 3.7.31. In the untwisted setting, for all prime p, we have

Spec(K) ∼= Spec(k).

In the graded setting,
Spec•(K) ∼= Spech(R•

K).

Proof. First note that Proj(H•(G, k)) consists of a single point. Therefore the structure
sheaf of the spectrum is determined entirely by its global sections. In degree zero we
have

RK = k

and so we can immediately conclude that Spec(K) ∼= Spec(k) as locally ringed spaces.
For the graded case, observe by our computation of R•

K in Lemma 3.7.30 that Spech(R•
K)

also consists of a single point and so we conclude by the same argument as the untwisted
case.

Proposition 3.7.32. Let k be a field with char(k) = 2. Then the associated sheaf
functor [k,−]• is an equivalence of categories

[k,−]• : K −→ Coh•(Spec•(K)).

Proof. When p = 2, the stable module category K is equivalent to mod k[x]
(x2) . This is

equivalent to mod k, the category of finite-dimensional k-vector spaces. As the space
Spec•(K) is a point, the category Coh•(Spec•(K)) is equivalent to grmod k[t, t−1], the
category of finitely generated graded modules over the Laurent polynomial ring k[t, t−1].
This is also equivalent to mod k. The result then follows, as

[k, k]• ∼= k[t, t−1]

and the equivalence grmod k[t, t−1] ∼= mod k identifies k[t, t−1] with k.

Proposition 3.7.33. Let k be a field with characteristic p = 3. Then the associated
sheaf functor [k,−]• is not essentially surjective.
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Proof. If p = 3 then the structure sheaf of Spec•(K) is given by O•
K = k̃[t,t−1,s]

(s2) with
indecomposable sheaves given by O•

K, O•
K(1),O•

K/(s), and O•
K/(s)(1). Meanwhile K =

mod kC3 only has objects k and Σk = k(x)
(xp−1) . Taking associated sheaves we obtain

[k, k]• = O•
K and [k,Σk]• = O•

K(1),

and so conclude that the associated sheaf functor [k,−]• is not essentially surjective.



Chapter 4

Monoidal triangular geometry

Many of the definitions and concepts of tensor-triangular geometry can be naturally
extended to the noncommutative setting. Examples of interest relate to Hopf and Lie
algebras, in which the associated monoidal product fails to be symmetric. In [NVY19]
the authors define the usual machinery of prime ideals, Balmer spectra and support
data in the non-commutative setting. A classification of thick two-sided ideals is also
obtained, albeit with significantly more hypotheses than in the symmetric setting.
In this chapter, we continue translating various tensor triangulated concepts into the
noncommutative world. In §4.1 we lay out the basic definitions from [NVY19], and
prove that minimal primes exist in the monoidal setting. We adapt the proof from
[Bal05], adjusting the argument to use the monoidal definition of prime ideals. In §4.2
we begin translating the definition of the action of a tt-category on a triangulated
category into the noncommutative setting. We lay out the formation of localising
bimodules and show how the asymmetry of the tensor product affects the formation of
residue objects. So far, examples of non-commutative Balmer spectra being explicitly
described have been of a "quantum" or "Hopf" flavour. In §4.3 we diverge from this
by instead investigating the enveloping algebra of the A2 quiver and show that its
associated noncommutative Balmer spectrum consists of a single point.

§ 4.1 | Machinery of monoidal geometry
In this section we recall the definitions of monoidal geometry, including the Balmer
spectrum of prime ideals where the tensor product is no longer symmetric. We prove
the existence of minimal primes in non-zero monoidal triangulated categories.

We begin with some basic definitions and results from [NVY19].

Definition 4.1.1. An essentially small monoidal triangulated category is a triple of
the form (T,⊗,1), where T is an essentially small triangulated category and (⊗,1) is
a monoidal structure on T such that ⊗ is an exact functor in each variable. In other
words, it is a tensor triangulated category but the tensor need not be symmetric.

We will abbreviate "monoidal triangulated category" to "mt-category".

The following definition contains the different notions of prime in the noncommu-
tative setting.
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Definition 4.1.2. Let T be an essentially small mt-category.

1. A thick two-sided ideal of T is a thick subcategory closed under left and right
tensoring with arbitrary objects of T.

2. A prime ideal of T is a proper thick ideal P such that I ⊗ J ⊆ P implies I ⊆ P
or J ⊆ P for all thick two-sided ideals I and J or T.

3. A semiprime ideal of T is an intersection of prime ideals of T.

4. A completely prime ideal of T is a proper thick ideal P such that A ⊗ B ∈ P
implies A ∈ P or B ∈ P for all objects A,B ∈ T.

Definition 4.1.3. The noncommutative Balmer spectrum of an essentially small mt-
category T is the topological space of prime ideals of T. We denote the noncommutative
spectrum by Spc(T). The topology on Spc(T) is generated by the collection of closed
subsets

V (S) = {P ∈ Spc(T) | P ∩ S = ∅}

for all subsets S of T.

We have the following characterisation of prime ideals in terms of objects rather
than ideals:

Theorem 4.1.4. [NVY19, 1.2.1] Let T be an essentially small mt-category. Then the
following hold:

1. A proper thick ideal P of T is prime if and only if A⊗B⊗C ∈ P, for all C ∈ T
implies A ∈ P or B ∈ P for all A,B ∈ T.

2. A proper thick ideal P of T is semiprime if and only if A ⊗ C ⊗ A ∈ P, for all
C ∈ T implies A ∈ P for all A ∈ T.

3. The noncommutative Balmer spectrum Spc(T) is always nonempty.

The formulation of primeness in terms of ideals is due to [BKS07] while the formu-
lation in terms of objects is due to [NVY19].

Just like in the symmetric setting, there is a universal support datum which is the
noncommutative analogue to Balmer’s notion of support.

Definition 4.1.5. For an essentially small mt-category T, the small noncommutative
support of an object t is given by

supp(t) = {P ∈ Spc(T) | t ̸∈ P}.

Lemma 4.1.6. The small noncommutative support satisfies the following properties:
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1. supp(0) = ∅ and supp(1) = Spc(T).

2. supp(t⊕ s) = supp(t) ∪ supp(B), for all t, s ∈ T.

3. supp(Σt) = supp(t).

4. If t −→ s −→ r −→ Σt is a distinguished triangle, then supp(t) ⊆ supp(s) ∪
supp(r).

5. ⋃r∈T supp(t⊗ r ⊗ s) = supp(t) ∩ supp(s) for all t, s ∈ T.

6. For all t ∈ T the subset supp(t) is closed.

We can now detail some properties of prime ideals which lift to the noncommutative
setting.

Theorem 4.1.7. [NVY19, 3.2.3] Suppose M is a multiplicative subset of T and suppose
I is a proper thick two-sided tensor ideal of T such that I ∩ M = ∅. The set

X(M, I) = {J a thick two-sided tensor ideal of T | I ⊆ J ,J ∩ M = ∅}

has a maximal element P and moreover P is prime.

Proposition 4.1.8. Let T be a non-zero mt-category.

1. Let S be a ⊗-multiplicative collection of objects which does not contain zero. Then
there exists a prime ideal P such that P ∩ S = ∅.

2. Let J ⊊ T be a proper thick tensor ideal. Then there exists a maximal proper
thick tensor ideal I ⊊ T which contains J .

3. Maximal proper thick tensor ideals are prime.

Corollary 4.1.9. If an object t ∈ T belongs to all primes, then t is tensor nilpotent.

Proof. The proof is as in [Bal05, 2.4]. We prove the contrapositive. Let t be a non-
nilpotent element. Then the set S = {t⊗n | n ≥ 0} is a multiplicative subset of T
which does not contain zero. By Theorem 4.1.7 and Proposition 4.1.8 there exists a
prime ideal P such that P ∩ S = ∅. Therefore t ̸∈ P and so does not belong to all
primes.

Proposition 4.1.10. If T is a non-zero mt-category, then there exist minimal primes
in T. More precisely, for any prime ideal P ⊂ T there exists a minimal prime P ′ ⊂ P.

Proof. To apply Zorn’s lemma, we will show that for any non-empty chain of prime
ideals C ⊂ Spc(T), the thick ⊗-ideal Q′ = ⋂

Q∈C Q is prime. Let a1, a2 ̸∈ Q′. There
exist Q1,Q2 ∈ C such that a1 ̸∈ Q1 and a2 ̸∈ Q2. So there exists Q0 ∈ C such that
a1, a2 ̸∈ Q0. As Q0 is prime, there exists an object t ∈ T such that a1 ⊗ t ⊗ a2 ̸∈ T.
Therefore a1 ⊗ t ⊗ a2 ̸∈ Q′. We have shown that if a1, a2 ̸∈ Q′ then there exists t ∈ T
such that a1 ⊗ t⊗ a2 ̸∈ Q′. This is equivalent to the contrapositive: if for all t ∈ T we
have a1 ⊗ t⊗ a2 ∈ Q′ then a1, a2 ∈ Q′. That is, we have shown that Q′ is prime.
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§ 4.2 | Monoidal actions
Given a tt-category T and a triangulated category K, one can define a left action of T
on K [Ste13]. With obvious adjustments one can define a right action. The definitions
do not use the symmetric property of the tensor product and so lifts immediately to
the monoidal case.

Definition 4.2.1. Let T,R be mt-categories and let K be a triangulated category. We
say that K is a left T-module if there is a left action of T on K. Similarly we say that K
is a right R-module if there is a right action of R on K. We say that K is a T-R-bimodule
if for each t ∈ T, k ∈ K, r ∈ R there exists an isomorphism

αt,k,r : (t ∗T k) ∗R r
∼−→ t ∗T (k ∗R r)

compatible with both the actions of T and R.

Definition 4.2.2. Let K be a T-R-bimodule. We say L ⊆ K is a subbimodule if both
of the actions T × L ∗T−→ K and L × R ∗R−→ K factor via L.

Definition 4.2.3. Let K be a T-R-bimodule and let K ⊆ K be a collection of objects
in K. We denote the smallest localising left T-submodule containing K by Lloc∗T(K).
Similarly denote the smallest localising right R-submodule containing K by Rloc∗R(K).
We denote the smallest localising T-R-bimodule by BilocT-R(K).

Definition 4.2.4. Given collections of objects T ⊆ T, K ⊆ K and R ⊆ R we define

T ∗T K = Lloc∗T(t ∗T k | t ∈ T, k ∈ K)
K ∗R R = Rloc∗R(k ∗R r | k ∈ K, r ∈ R).

We have the following collection of lemmas adapted from [Ste13]:

Lemma 4.2.5. Suppose that K is a collection of objects of K such that K is stable
under the action of T. Then loc(K) is a localising left T-submodule. Similarly, if T
is a collection of objects of T and K is a localising subcategory of K closed under the
action of objects in T, then K is closed under the action of loc(T). Analogous results
hold for right actions.

Lemma 4.2.6. Suppose I ⊆ T is a localising two-sided ⊗T-ideal and K is a collection
of objects of K. Then there is an equality of localising left T-submodules of K

I ∗T K = loc(t ∗T k | t ∈ I, k ∈ K).

Similarly, if J ⊆ R is a localising two-sided ⊗R-ideal and K is a collection of objects
of K then there is an equality of localising right R-submodules of K

K ∗R J = loc(k ∗R r | k ∈ K, r ∈ J ).
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Lemma 4.2.7. Given a set of objects T of T and a set of objects K of K we have

loc(t ∗T k | t ∈ loc(T ), k ∈ loc(K)) = loc(t ∗T k | t ∈ T , k ∈ K).

Similarly given a set of objects R of R and a set of objects K of K we have

loc(k ∗R r | k ∈ loc(K), r ∈ loc(R)) = loc(k ∗R r | k ∈ K, r ∈ R).

Lemma 4.2.8. Given a collection of objects of T of T and a collection of objects K of
K we have

loc⊗
T(T ) ∗T loc(K) = loc(T ) ∗T loc(K)

= T ∗T K

= loc(s ∗T (t ∗T k) | s ∈ T, t ∈ T , k ∈ K).

Similarly given a collection of objects R of R and a collections of objects K of K we
have

loc(K) ∗R loc⊗R(R) = loc(K) ∗R loc(R)
= K ∗R R

= loc((k ∗R r) ∗R s | k ∈ K, r ∈ R, s ∈ R).

Now we can make some obvious statements with obvious proofs.

Lemma 4.2.9. Let T ,K and R be collections of objects in T,K and R respectively.
Then

(T ∗T K) ∗R R = T ∗T (K ∗R R).

From now on we can refer to this bimodule as T ∗T K ∗R R with no confusion.

Proof. Applying the previous lemmas we obtain a string of equalities

(T ∗T K) ∗R R = loc(s ∗T (t ∗T k) | s ∈ T, t ∈ T , k ∈ K) ∗R R

= loc(((s ∗T (t ∗T k)) ∗R r) ∗R u | s ∈ T, t ∈ T , k ∈ K, r ∈ R, u ∈ R)
= loc((((s ∗T t) ∗T k) ∗R r) ∗R u | s ∈ T, t ∈ T , k ∈ K, r ∈ R, u ∈ R)
= loc(((s ∗T t) ∗T (k ∗R r)) ∗R u | s ∈ T, t ∈ T , k ∈ K, r ∈ R, u ∈ R)
= loc((s ∗T t) ∗T ((k ∗R r) ∗R u) | s ∈ T, t ∈ T , k ∈ K, r ∈ R, u ∈ R)
= loc(s ∗T (t ∗T ((k ∗R r) ∗R u)) | s ∈ T, t ∈ T , k ∈ K, r ∈ R, u ∈ R)
= T ∗T loc((k ∗R r) ∗R u | k ∈ K, r ∈ R, u ∈ R)
= T ∗T (K ∗R R).

This leads immediately to:
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Lemma 4.2.10. Let K be a collection of objects in a T-R-bimodule K. Then

Rloc∗R(Lloc∗T(K)) = Lloc∗T(Rloc∗R(K)) = BilocT-R(K).

Considering [Ste13, 3.13] for left and right actions simultaneously we obtain:

Lemma 4.2.11. Let K be a T-R-bimodule. Suppose both T and R are generated as lo-
calising subcategories by their respective tensor units. Then every localising subcategory
of K is a T-R-subbimodule.

So far we have not mentioned any sort of rigidity conditions or required compact
generation. To introduce rigidity we will use the following characterisation of duals.

Definition 4.2.12. Let T be a mt-category. An object X ∈ T is left-dualisable if
there exists an object X∨ (called the left dual of X) together with evaluation and
coevaluation maps

ev : X∨ ⊗X −→ 1 and coev : 1 −→ X ⊗X∨

such that the compositions

X
coev ⊗ id−→ X ⊗X∨ ⊗X

id ⊗ ev−→ X

and
X∨ id ⊗ coev−→ X∨ ⊗X ⊗X∨ ev ⊗ id−→ X∨

are the identity maps on X and X∨ respectively.
An object X ∈ T is right-dualisable if there exists an object ∨X together with

evaluation and coevalutation maps

ev′ : X ⊗ ∨X −→ 1 and coev′ : 1 −→ ∨X ⊗X

such that the compositions

X
id ⊗ coev′

−→ X ⊗ ∨X ⊗X
ev′ ⊗ id−→ X

and
∨X

coev′ ⊗ id−→ ∨X ⊗X ⊗ ∨X
id ⊗ ev′
−→ ∨X

are the identity maps on X and ∨X respectively.
We call an object X ∈ T rigid if it is both left and right dualisable. Note that the

left and right duals of an object need not agree in general.

We can now introduce our preferred set of hypotheses on future mt-categories.

Definition 4.2.13. A rigidly-compactly generated monoidal triangulated category is a
triple (T,⊗,1) where T is a compactly generated monoidal triangulated category, and
(⊗,1) is a monoidal structure on T such that the tensor product ⊗ is a coproduct
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preserving exact functor in each variable, and the compact objects Tc form a rigid
tensor subcategory. In particular we require 1 to be compact. We will refer to such a
category T as a big mt-category.

In the presence of rigidity and the strongly dualisable condition, we can restrict
actions to compact objects.

Lemma 4.2.14. Suppose T × K ∗−→ K is a left action where T is rigidly-compactly
generated and K is compactly generated. Then the action restricts to an action at the
level of compact objects Tc × Kc ∗−→ Kc. Similarly if K × R ∗−→ K is a right action
where R is rigidly-compactly generated and K is compactly generated then the action
restricts to an action at the level of compact objects Kc × Rc ∗−→ K.

Proof. The proof is identical to [Ste13, 4.6]. The only subtlety is that as we are not in
the symmetric setting, in the case of the left action we use the left dual, while in the
case of the right action we use the right dual.

We have the following lemma for localising subcategories generated by compact
objects. This is the two-sided, non-symmetric version of [Ste13, 4.9].

Proposition 4.2.15. Suppose K is a T-R-bimodule, with K,T, and R compactly gen-
erated, in such a way that we may restrict and consider Kc as a Tc-Rc-bimodule. Let
L ⊆ T be a left ⊗T-ideal generated, as a localising sucategory, by compact objects of
T. Let M ⊆ K be a localising subcategory generate by objects of Kc, and finally let
N ⊆ R be a right ⊗R-ideal generated, as a localising subcategory, by compact objects of
R. Then the subcategory L ∗T M ∗R N is also generated, as a localising subcategory, by
compact objects of K.

Proof. The proof is identical to [Ste13] Proposition 4.9, applied to each side individu-
ally.

Here is a two-sided ideal version of smashing localisation:

Theorem 4.2.16. Let T be a rigidly-compactly generated mt-category, S ⊆ Tc a set
of compact objects, and S = Biloc(S) i.e S is the smallest two-sided ideal containing
S. Consider the corresponding smashing localisation sequence

S T S⊥
i∗

⊥
i!

j∗

⊥
j∗

Then

1. S⊥ is a localising two-sided ideal of T.

2. there are isomorphisms of functors i∗i!1 ⊗ (−) ∼= i∗i
! and j∗j

∗1 ⊗ (−) ∼= j∗j
∗.



CHAPTER 4. MONOIDAL TRIANGULAR GEOMETRY 86.

3. the objects i∗i!1 and j∗j
∗1 satisfy

i∗i
!1 ⊗ i∗i

!1 ∼= i∗i
!1,

j∗j
∗1 ⊗ j∗j

∗1 ∼= j∗j
∗1,

i∗i
!1 ⊗ j∗j

∗1 ∼= 0,
j∗j

∗1 ⊗ i∗i
!1 ∼= 0.

Proof. First note that as Biloc(S) = T∗S ∗T then by the previous proposition Biloc(S)
is generated as a localising subcategory by objects of Tc and so the smashing localisation
sequence exists. We now proceed with the proofs.

1. We first show that S⊥ is a left ideal. Consider the full subcategory LM = {X ∈
T | X ⊗ S⊥ ⊆ S⊥}. As the tensor product is exact and coproduct preserving,
Lemma 2.1.18 applies to the family of functors (−⊗S)S∈S⊥ , and soM is localising.
Now consider a compact object t ∈ Tc and an object Y ∈ S⊥. Then for all Z ∈ S
we have

HomT(Z, t⊗ Y ) ∼= HomT(t∨ ⊗ Z, Y ) as t is left dualisable
∼= 0 as S is a left ideal and Y ∈ S⊥.

Therefore t ⊗ Y ∈ S⊥ for all Y ∈ S⊥ and so Tc ⊆ M . In particular M = T and
so S⊥ is a left ideal. The proof that S⊥ is a right ideal is almost identical: we
lay it out below. Consider the full subcategory RM = {X ∈ T | S⊥ ⊗X ⊆ S⊥}.
As the tensor product is exact and coproduct preserving, Lemma 2.1.18 applies
to the family of functors (S ⊗ −)S∈S⊥ , and so M is localising. Now consider a
compact object t ∈ Tc and an object Y ∈ S⊥. Then for all Z ∈ S we have

HomT(Z, Y ⊗ t) ∼= HomT(Z ⊗ ∨t, Y ) as t is right dualisable
∼= 0 as S is a right ideal and Y ∈ S⊥.

Therefore Y ⊗ t ∈ S⊥ for all Y ∈ S⊥ and so Tc ⊆ M . In particular M = T and so
S⊥ is a right ideal. We have shown that S⊥ is both a left ideal and a right ideal,
and so we conclude that S⊥ is a two-sided ideal.

2. Consider the localising triangle for the tensor unit 1:

i∗i
!1 −→ 1 −→ j∗j

∗1 −→ Σi∗i!1.

We can tensor this triangle with any object X ∈ T on the right to obtain a
triangle

i∗i
!1 ⊗X −→ X −→ j∗j

∗1 ⊗X −→ Σi∗i!1 ⊗X.

Now i∗i
!1 ⊗X ∈ S and j∗j

∗1 ⊗X ∈ S⊥ so by uniqueness of localisation triangles
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the triangle is isomorphic to the localisation triangle

i∗i
!X −→ X −→ j∗j

∗X −→ Σi∗i!X.

Therefore i∗i!1 ⊗ X ∼= i∗i
!X and j∗j

∗1 ⊗ X ∼= j∗j
∗X, and these isomorphisms

assemble to an isomorphism of the corresponding functors i∗i!1 ⊗ − ∼= i∗i
! and

j∗j
∗1 ⊗ − ∼= j∗j

∗. The other direction can be obtained by tensoring on the left
to obtain a triangle

X ⊗ i∗i
!1 −→ X −→ X ⊗ j∗j

∗1 −→ X ⊗ Σi∗i!1.

and by the same argument we conclude that −⊗i∗i!1 ∼= i∗i
! and −⊗j∗j

∗1 ∼= j∗j
∗.

3. Consider the localisation triangle for the unit 1:

i∗i
!1 −→ 1 −→ j∗j

∗1 −→ Σi∗i!1.

Tensoring with i∗i
!1 we obtain

i∗i
!1 ⊗ i∗i

!1 −→ i∗i
!1 −→ i∗i

!1 ⊗ j∗j
∗1 −→ i∗i

!1 ⊗ Σi∗i!1.

Now as i∗i!1 ∈ S and j∗j
∗1 ∈ S⊥, we have i∗i!1 ⊗ j∗j

∗1 ∈ S ∩ S⊥ and so i∗i!1 ⊗
j∗j

∗1 ∼= 0. The same argument shows that jast⊗ j∗1 ⊗ i∗i
!1 ∼= 0. Therefore the

localisation triangle reduces to

i∗i
!1 ⊗ i∗i

!1 −→ i∗i
!1 −→ 0 −→ i∗i

!1 ⊗ Σi∗i!1.

and we conclude that i∗i!1 ⊗ i∗i
!1 ∼= i∗i

!1. Finally, to prove that j∗j
∗1 ⊗ j∗j

∗1 ∼=
j∗j

∗1, consider the localisation triangle for the unit 1 and tensor with j∗j
∗1 to

obtain
j∗j

∗1 ⊗ i∗i
!1 −→ j∗j

∗1 −→ j∗j
∗1j∗j

∗1 −→ j∗j
∗1 ⊗ Σi∗i!1.

This reduces to a triangle

0 −→ j∗j
∗1 −→ j∗j

∗1j∗j
∗1 −→ 0

and we conclude j∗j
∗1 ⊗ j∗j

∗1 ∼= j∗j
∗1.

§ 4.3 | The non-commutative spectrum of the A2 en-
veloping algebra

Consider the following quiver
A2 = 1 α−→ 2.
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with path algebra Γ = kA2. There are right and left projectives Pi = Γ(−, i) and
P i = Γ(i,−) respectively. In particular we have

P1 = ke1

P2 = kα ⊕ ke2

P 1 = ke1 ⊕ kα

P 2 = ke2

We consider the quiver defining the enveloping algebra, namely Ae2 = A2 ⊗ Aop
2 . This

is given by the following quiver:

(1, 2) (2, 2)

(1, 1) (2, 1)

α⊗e2

e1⊗α e2⊗α

α⊗e1

As our particular example is given by Ae2, we can apply the specific results in [Kel07,
2.9, 4.4], which show that the path algebra kAe2 is derived equivalent to the path algebra
of the Dynkin quiver D4, shown without orientation below:

1 2 3

4

Note that the result used from [Kel07] is specific to Ae2 and D4. The quiver D4 has
twelve indecomposable modules. As the path algebra of D4 is finite-dimensional hered-
itary, every object in D(kD4) is quasi-isomorphic to its cohomology complex and so up
to suspension D(kD4) has twelve indecomposable objects. Therefore by derived equiv-
alence D(kAe2) has twelve indecomposable objects up to suspension. We will describe
these indecomposables, as well as their representations and projective resolutions. The
maps in the projective resolutions are the obvious ones. Eleven of these are given by the
indecomposable modules of the commutative square. There are four indecomposable
projective modules, which we denote P(1,2), P(2,2), P(1,1) and P(2,1).

1. The module P(1,2) has representation
k k

k k

2. The module P(2,2) has representation
0 k

0 k

3. The module P(1,1) has representation
0 0

k k
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4. The module P(2,1) has representation
0 0

0 k

There are four indecomposable simple modules, one of which is P(2,1). We denote
the other three by S(1,2), S(2,2) and S(1,1).

1. The module S(1,2) has representation
k 0

0 0

. The module has projective

resolution
P(2,1) −→ P(2,2) ⊕ P(1,1) −→ P(1,2).

2. The module S(2,2) has representation
0 k

0 0

. The module has projective

resolution P(2,1) −→ P(2,2).

3. The module S(1,1) has representation
0 0

k 0

. The module has projective

resolution P(2,1) −→ P(1,1)

There are four more indecomposable modules, which we label E,F, I and J .

1. The module E has representation
k k

0 0

. The module has projective reso-

lution P(1,1) −→ P(1,2).

2. The module F has representation
k 0

k 0

. The module has projective reso-

lution P(2,2) −→ P(1,2).

3. The module I has representation
k k

k 0

. The module has projective reso-

lution P(2,1) −→ P(1,2).

4. The module J has representation
0 k

k k

. The module has projective reso-

lution P(2,1) −→ P(2,2) ⊕ P(1,1)
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The final indecomposable object is denoted by K and is given by

K = P(2,2) ⊕ P(1,1) −→ P(1.2).

We want to classify the two sided prime ideals of the derived category D(Ae2).
Such ideals will be entirely determined by which indecomposables they contain. The
following will be useful:

Lemma 4.3.1. Let Q be a (finite) quiver. If S is a two-sided ideal of D(kQe) containing
a projective indecomposable P(i,j), then S contains all indecomposable projectives. In
particular S = D(kQe).

Proof. Consider a projective P(x,y). We calculate the tensor product:

P(x,i) ⊗ P(i,j) ⊗ P(j,y) ∼= P(x,j)
⊕|Q(i,i)| ⊗ P(j,y)

∼= (P(x,j) ⊗ P(j,y))⊕|Q(i,i)|

∼= (P(x,y)
⊕|Q(j,j)|)⊕|Q(i,i)|

∼= P(x,y)
⊕|Q(i,i)||Q(j,j)|.

where Q(i, j) denotes the set of arrows between vertices i and j in Q. As thick tensor
ideals are closed under summands we have P(x,y) ∈ S. As the choice of projective was
arbitrary it follows that S contains all projectives. As D(kQe) is generated by the
algebra, which itself is a sum of projectives, it follows that S = D(kQe).

We can now compute the spectrum directly in the case

A2 = 1 α−→ 2.

Proposition 4.3.2. The spectrum of prime thick two-sided ideals of D(kAe2) is a point.

Proof. By the previous lemma, we need only show that for every indecomposable object
X ∈ D(kAe2) the thick two-sided ideal thick⊗(X) contains a projective indecomposable.
Obviously this holds for the projectives, so we need only check the remaining eight
indecomposables.

We calculate directly:

P(1,2) ⊗ S(2,2) ⊗ P(2,1) ∼= P(1,1)

P(1,1) ⊗ S(1,1) ∼= P(1,1)

E ⊗ P(2,1) ∼= P(1,1)

P(1,1) ⊗ F ∼= P(1,2)

P(1,1) ⊗ I ∼= P(1,2)

J ⊗ P(2,1) ∼= P(2,1)

P(1,1) ⊗K ⊗ P(2,1) ∼= P(1,1)

P(1,1) ⊗ S(1,2) ⊗ P(2,1) ∼= P(1,1)
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from which we conclude that the thick two-sided tensor ideals containing an indecom-
posable are equal to D(kAe2) and hence only the zero ideal is prime.
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