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Abstract

Complex observation processes abound in ecology and epidemiology. In order
to answer the large-scale, urgent questions that are the focus of modern research,
we must rely on indirect and opportunistic observation. Relating these data to
the biological processes we are interested in is challenging. Statisticians working
in this area need an understanding of both state-of-the-art modelling techniques
and the field-specific nuances of how the data were generated. As a result, many
methods to deal with complex observation processes are highly bespoke. Be-
spoke models are hard to translate between contexts and, because they are often
presented in field-specific language, hard to learn from. Modelling of observa-
tion processes is thus a fractured area of study, leading to duplication of research
effort and limiting the rate at which we can make progress.

In this thesis, I aim to provide a road-map to how we might achieve some
unification in this area. I begin by establishing a conceptual framework that can
be used to describe observation processes and identify methods to address them.
The framework defines all observation processes as a combination of issues of
latency, identifiability, effort or scaling (L.I.E.S.). I illustrate the framework using
motivating examples from ecology and epidemiology. The risk with conceptual
frameworks is that they can be over-fitted to existing data and may fail when
faced with new, real-world problems.

To address this, I also approach the problem from a bottom-up perspective by
tackling a series of ecological and epidemiological case studies. Each case study
requires novel statistical methods to deal with the observation process. By devel-
oping new methods, I explore the world of observation processes potentially not
well-captured in the literature. I then explore whether these case studies motivate
revision or reassessment of my conceptual framework.

While the case studies were chosen to challenge the L.I.E.S. framework, I find
that they mutually reinforce each other. The framework provides a helpful scaf-
folding with which to describe the problems in the case studies. The case studies
provide useful examples of more complex observation processes and how the
four issues encoded in L.I.E.S. interact with one another. These findings illustrate
the value of a framework for unifying approaches to observation processes.
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1.1 Background

The urgency and scale of modern research questions in ecology and epidemiol-
ogy has never been greater. Problems like how to mitigate climate change, bio-
diversity loss, COVID-19, stretch our research capacity to breaking point while
demanding rapid and reliable solutions. Yet our resources remain finite and
our ability to deploy the expensive, high quality, systematic survey that research
has historically relied upon has not, and cannot, grow to meet these challenges.
The modern scientist must thus choose wisely where and when to deploy struc-
tured data collection, and supplement these with opportunistically collected data.
By definition, these data (such as citizen science records [1], hospital admission
records [2], eDNA [3]) are indirect routes to answering the questions we are in-
terested in. However, the indirect route is our only option to stretch our limited
resources far enough (we hope) to address the problems we face.

Observation problems are not unique to ecology and epidemiology but these
two subject areas are rich grounds for their study. In both fields, observational
studies have been commonplace throughout their history, particularly for applied
inference [4; 5]. In conservation management and public health, for example, the
systems being studied are hard to distill into controlled experiments. Indirect ob-
servation (relative to our inferential target) may be less invasive and thus reduce
the risk of disturbance, or, as is in the case with GPS tagging, allow us to follow
portions of a process that would not be visible through conventional methods [6].
In the case of using citizen science observations, there are additional societal ben-
efits from involving non-professional scientists in data collection, from increasing
awareness of a particular problem to the general scientific literacy of the public
[7]. As a result, researchers in these fields have been dealing with such data for
some time and are familiar with their strengths and weaknesses.

In statistics, we often structure our inferential models to reflect what we be-
lieve to be the data-generating process. The biological process model is often the
centre of these models and contain the parameters we are interested in interpret-
ing. For complex data, the biological process model must be combined with an
observation process model which describes how we believe the biological pro-
cess has been distorted. Observation process models are relatively new. System-
atic survey/experimental design exists to identify and minimise the distorting
effect of observation processes, and hence generate data as close to the biological
phenomenon of interest as possible, opportunistic data sources provide no such
guarantees. Opportunistic data may have only loose relevance to the biological
phenomenon and even direct observations may be unreliable when filtered, for
example, through the eyes of a citizen scientist or an insensitive testing method.
These complex issues need to be addressed during inference [8]. Therefore, while
the modern scientist has limited power to increase data collection they must in-
stead make up for the shortfall with more sophisticated data analysis.

Fortunately, data analysis is easier to scale than systematic data collection.
Once a class of problem has been identified and solutions developed, it is rel-
atively easy to apply the solutions to new instances of the problem. A serious
impediment in this process of scaling and generalisation is that observation pro-
cesses are not currently well-defined. As a result, even when two observation
processes are closely related, the solutions are often developed in parallel and
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rarely shared.
So what can we do to address this methodological fragmentation? We can take

a top-down approach, one that establishes an overarching framework of ideas, a
typology of problems that seeks to organise both our methodology and terminol-
ogy along a minimal set of canonical, pure-form problems, each with its own tool-
box of solutions. Alternatively, we might take a bottom-up approach in which we
seek out a diverse collection of case studies and make particular efforts to recog-
nise their commonalities and differences. As discussed below, both approaches
have their strengths and neither is without weaknesses. As a result, in this thesis
I attempt to develop both approaches simultaneously, using each to inform the
other.

1.1.1 Top-down approaches: Sorting through a mixed bag

The development of an overarching framework or theory for understanding ob-
servation processes is an appealing but challenging goal [9]. The appeal is easy
to see: a unified typology of problems that seeks to organise both our method-
ology and terminology along a minimal set of canonical, pure-form problems,
each with its own toolbox of solutions would allow us to break down the exist-
ing methodological siloes. More challenging combinations of these archetypal
problems might then also become more tractable, by breaking solutions down to
individual components, and thus allow progress to accelerate. However, research
into observation processes has not yet, to my knowledge focused on developing
such a framework. There are several possible reasons for this.

Firstly, existing overviews of observation processes tend to have different but
important aims. Many treatments of are not aimed at producing statistical tools
to tackle them. For example, many classic treatments on the topic of observation
processes are philosophical in nature, rather than methodological. These treat-
ments are useful and inspiring but offer few practical solutions [10; 11]. Others
are targeted at justifying and standardising the use of non-systematic data and
offer some practical solutions but do not attempt to be comprehensive [12]. Some
treatments have the opposite aim and focus on how broad a range of observation
processes a given class of methods can be applied to, e.g. [13; 14].

Secondly, the consequences of the problems caused by observation processes
are not well-understood or appreciated. Researchers need to be convinced that
observation processes are a key issue that needs to be addressed. Often, this
work focuses on highlighting examples in a key application area such as citizen
science [15; 1], fisheries [16] or observational medical studies [17]. These stud-
ies are insightful, but generally keep solutions siloed within the area of question.
Fundamentally, concerns about observation processes require ecologists and epi-
demiologists to weigh bias and uncertainty against expediency [18; 19], a difficult
and demanding task that we are not always well equipped to tackle [20; 21].

Although these works do not attempt to create the typology described above,
they do help us understand what a successful typology may look like. The focus
of the synthesis must be well chosen: a philosophy of science approach is per-
haps too broad to be directly applied while more focused treatments do not, by
their very nature, help us break down methodological siloes. Ecology and epi-
demiology are both similar enough to share lessons and broad enough to contain
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many existing siloes. The synthesis must also build upon the large body of litera-
ture from both the statistical and applied perspective. The large body of existing
work in this area means that researchers are interested in this topic, and by en-
gaging with that literature, we provide a ready bridge to bring them on board.
Finally, the impact of observation processes on inference must be made clear. The
framework will only be used if people believe it helps solve a genuine problem.

I build on these lessons in Chapter 2, “L.I.E.S. of Omission: Complex observa-
tion processes in Ecology and Epidemiology”. There, I develop a synthesis of ob-
servation processes in which I posit that all observation processes in ecology and
epidemiology can be described in terms of four constituent problems: latency,
identifiability, effort and scale. I demonstrate each issue with pure-form motivat-
ing examples drawn from the applied literature, review the statistical method-
ology for tackling these problems, and highlight the issues of ignoring each. I
also outline several miniature case studies of how to apply this framework to
real-world problems.

While I believe the synthesis I have proposed overcomes the main challenges
in developing a framework, it cannot overcome the fundamental limitations of
a top-down approach. The primary disadvantages of this approaches are that
any framework must be conceived of a priori from known observation processes
and known approaches to tackling them. The framework must, therefore, be
under constant review and checked against emerging case studies. In essence,
the top-down approach is not sufficient and must be paired and tested against
the bottom-up approach.

1.1.2 Bottom-up approaches: Proceeding by Case Studies

In the bottom-up approach, a series of case studies are explored in which obser-
vation processes pay a key role. In contrast to the top-down approach, the risk of
this approach is that we do not improve upon the methodological fragmentation
that already exists in the literature. By developing the case studies alongside the
L.I.E.S. framework, the two can feed into and inform one another. In the con-
clusions, I discuss whether pursuing the two approaches leads to the realisation
that the case study belongs to a recognisable class of broader problems, or to the
refinement of the broader framework by counterexample.

The choice of case studies within the confines of a thesis were important.
To challenge the framework robustly, I chose case studies which needed new
methodological development to accommodate the observation process. While
the framework uses issues of latency (the relevance and relatedness of the data
collected and the biological process), identifiability (the reliability of the param-
eters inferred), effort (the reliability of the observations made) and scaling (the
relevance of the parameters inferred to the biological process) as the four key
tenets of observation processes, I selected case studies that had at least a com-
ponent of latency (although this does not preclude them from having any of the
other issues, or in having previously unconsidered issues). Latency is where the
observations are of variables that are only indirectly linked to the phenomenon
of interest. With issues of latency, the key is in modelling the transformation of
the observed variable(s) onto the biological variable of interest.

The motivation for focusing primarily on issues of latency is to maximise the
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impact with which we engage the research community. The key to effective mod-
elling of observation processes, and in communicating the risks of not modelling
them, is to thoroughly engage both field scientists and statisticians in the process.
I believe that issues of latency are the key to doing so at this early stage. Firstly, I
believe that latency is the most accessible of these concepts for non-statistical sci-
entists. Proposing mechanistic links between processes is a core skill that many
scientists find engaging and intuitive. Secondly, research in latent variable mod-
elling is well-developed in the statistical literature, with entire textbooks devoted
to the topic [22; 23; 24]. The key to effective modelling of observation processes is
in bridging the gap between statistical and non-statistical scientists, and focusing
on areas where they are both already comfortable makes this easier.

1.1.3 Toolbox

Benefits of the Bayesian Paradigm for Observation Process Modelling

One of the key aims of observation process modelling is to ensure propagation
of uncertainty (particularly when the uncertainty is heterogeneous). While this
is possible under most statistical paradigms, it is most natural using Bayesian
methods. In propagating uncertainty naturally, the construction of models with
multiple components becomes much easier. For example, in many models, the
observation process will be a sub-model that adjusts the biological process model.
These models are both important and they both inform each other, so the ability
to fit these models jointly with shared uncertainty is extremely beneficial.

The use of priors, unique to the Bayesian paradigm, is both conceptually in-
sightful and practically useful in modelling observation processes. When mod-
elling observation processes, we have data which are informative about the bio-
logical process we are interested in but contain some structured uncertainty. Us-
ing these data to construct priors is both natural and internally consistent, allow-
ing the observation component of the model to be interpreted easily alongside
the biological model.

Practically, priors are also useful tools to improve model identifiability and
sampling. Many of the quantities that we are interested in inferring, such as
effort, do not necessarily have natural units of measurement. In this context,
priors can be extremely useful for constraining parameter space in a reasonable
way and making inference possible.

Univariate vs Multivariate Modelling

One of the most common issues with opportunistic data is that there is not neces-
sarily a single, clear response variable. Particularly in latent models, we are often
trying to impute our biological variables of interest from a series of other response
variables. For example, we might try to understand the abundance of one species
that we have only partially observed using the abundance of other species that
were observed more thoroughly. Each species abundance is a function of the en-
vironment and of interactions with other species [25]. The same problems crop
up in missed diagnoses in patients with multiple chronic diseases [26], spatial
smoothing problems [27], or in trying to complete a difficult-to-make measure-
ment, such as biomass, based on correlated easy-to-make measures, such as plant
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heigh and diameter [28]. Sometimes researchers choose to ignore these collinear-
ities to simplify their models (often to their detriment [29]) but with complex
observation processes we generally want to exploit collinearity to help inform
missing or partially observed data.

We therefore need modelling structures that can accommodate both covariates
and multiple, interacting response variables [30]. There are broadly two classes of
models that we can use in a GLM-type framework: univariate models in which
the response distribution has a single dimension and multivariate where it has
multiple dimensions. In both responses, the inclusion of covariates is relatively
trivial through the use of a linear predictor. The two classes diverge in terms of
how they allow the response dimensions to interact.

In the univariate approach, multiple models are fit simultaneously with the re-
sponses from each model being incorporated in the linear predictor of the others.
In this way, each response variable is able to influence the others. This approach
quickly increases in complexity, however, when we allow multiple responses to
interact with each other in their effect on another response. For example, if we
have a patient with multiple chronic diseases, the likelihood of them having a
given condition does not increase linearly with the presence of other conditions.
Some other conditions will facilitate each other, some will be protective against
additional conditions. It is therefore insufficient to have each response affect-
ing the others additively, the responses interact. This can be accommodated in
the univariate approach through the use of interaction terms but this quickly be-
comes unwieldy, especially as the number of interacting variables increases.

In the multivariate approach, the response variables do not interact with each
other in the linear predictor (which now just contains covariates) but through a
covariance matrix. The covariance matrix determines how the multiple response
dimensions are oriented with respect to one another. As the covariance matrix
contains all the other response dimensions, they can be evaluated simultaneously.
To draw an analogy with the univariate approach, the inverse of the covariance
matrix (the precision matrix) gives the partial covariances (i.e. the covariance be-
tween two dimensions independent of the others). This is equivalent to including
the dimensions alone in the linear predictor in the univariate setting. The covari-
ance matrix contains the full covariance in which each dimension can influence
the others. In essence, the covariance structure bakes in the higher order interac-
tion terms in a single structure.

An additional advantage to linking interactions using covariance matrices is
that they have well-known properties, both algebraically and in terms of expert
knowledge. As a result, they are often much easier to sample and set priors for
than the equivalently specified univariate models. For example, although rela-
tionships between response dimensions do not need to be symmetrical, there are
impossible combinations of relationships. In univariate higher order interactions,
this is hard to enforce so must be learnt through sampling which is expensive. In
the multivariate approach, this is achieved by ensuring the covariance matrix is
positive definite. Our understanding of the covariance matrix means there are
efficient sampling methods (for example using Cholesky factors and improved
algorithms [31]) and useful summary statistics (for example, matrix sparsity can
be summarised using its determinant).
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Software Implementation

In most cases, observation process models will be coupled with biological process
models (whose parameters are of scientific interest). A joint modelling frame-
work is therefore a natural way to share uncertainty and information between
the two processed. To implement efficient sampling algorithms such complex
models, it is necessary to have a flexible probabilistic programming language
(PPL) with which to specify them. There are many PPLs (Stan [32], Nimble [33],
JAGS [34], PyMC [35], and Turing [36], to name a few) available with different
advantages and disadvantages.

First, the different languages have very different attitudes to error checking
and messaging. Computational faithfulness of MCMC sampling is not a given
for any model and many traditionally used diagnostics (e.g. r-hat) have been
found to be insensitive to numerous sampling problems [37] and some MCMC
algorithms, e.g. those based on Hamiltonian Monte Carlo, have unique warn-
ings, such as divergent transitions [38]. For this reason, opinionated PPLs that
deploy extensive diagnostics and error messaging are invaluable. Second, not
all PPLs can be easily accessed by all programming languages. While R [39] is
probably the most-used programming language in ecology and epidemiology,
many researchers use Python [40] or Julia [41] too. Thirdly, Bayesian statistics
and programming are difficulty and having a healthy community built around
your chosen PPL is a huge boon.

For these reasons, I use Stan for the bulk of my analyses as: it can be called
from most major programming languages, it has excellent sampling diagnostics
and messaging, and the community is large, friendly and active. One limitation
of Stan is that it is not possible to sample discrete parameters directly. While this
can be overcome by marginalising discrete parameters, this is not always feasible.

Chosen Case Studies

The three case studies chosen reflect different degrees of understanding of the ob-
servation process, from Chapter 3 in which the observation process is fully known
to Chapter 5 in which there are multiple competing, plausible processes. While
two of these chapters address problems in COVID-19, the observation process in
each is quite different, and the third is drawn from the ecological literature.

In Chapter 3, “COVID-19-exploring the implications of long-term condition
type and extent of multimorbidity on years of life lost: A modelling study”, the
observation process is fully known: records of correlated binary covariates have
been summarised as marginal counts. Data aggregations like this are particularly
common in the medical literature, where individual-level records are sensitive so
summaries are produced to guarantee patient privacy. The context is also impor-
tant here. The data were collected at the start of the COVID-19 pandemic and the
focal population were individuals who had died of the disease in Italy. I could be
confident that I had almost census-level coverage of the biological process I was
interested in (as all deaths in Italy are recorded and causes of death attributed)
and full knowledge of the observation process (the data aggregation scheme).

In Chapter 4, “Combining rapid antigen testing and syndromic surveillance
improves community-based COVID-19 detection in a low-income country”, I in-
tegrate two separate observation processes to make predictions about the biolog-
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ical process. Although the mechanism by which each observation process occurs
here, the degree of overlap between the two is not well understood so the model
needed to be flexible in how the two data sources are integrated. The applica-
tion of these methods to disease detection in Bangladesh underscores the value
and potential of imperfect data sources for public health, particularly in such
resource-limited settings.

In Chapter 5, “Do identification guides hold the key to species misclassifica-
tion by citizen scientists?”, there are many, non-exclusive mechanisms by which
latency could plausibly be introduced in the observation process. In this case
study, rather than modelling each plausible mechanism individually, I compare
several flexible models that can accommodate the different mechanisms. The key
innovation in this chapter is the use of an informative prior on the observation
process in the form of the species identification guide used by the citizen scien-
tists.
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L.I.E.S. of Omission: Complex
observation processes in Ecology and
Epidemiology
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2.1 Highlights

• In ecology and epidemiology, the observation process (how we collect data)
can be as complex as the biological process we are investigating.

• Complex observation processes require us to make inference using data that
can be highly abstracted from or limited in their coverage of the biological
process.

• Observation processes are often described in application-specific language
- this makes it challenging for field-scientists to communicate problems to
statisticians and for statisticians to identify pre-existing solutions.

• These challenges often lead to the observation process not being modelled
at all (resulting in misleading inference), or to inadvertent re-invention of a
pre-existing solution.

• We propose a typology that unifies how we describe both the observation
processes and the statistical machinery used to address them.

2.2 Abstract

Advances in statistics mean that it is now possible to tackle increasingly complex
observation processes. Advances in data collection techniques mean that this is
now essential. Methodological research to make inference about the biological
process while accounting for the observation process has expanded dramatically,
but solutions are often presented in field-specific terms, limiting our ability to
identify commonalities between methods. We suggest a typology of observation
processes that could improve translation between fields and aid methodological
synthesis that is comprehensive, orthogonal, intuitive, grounded and memorable.
We propose the LIES framework (defining observation processes in terms of is-
sues of latency, identifiability, effort and scale) and illustrate its use with both
canonical, simple examples and more complex case studies.

2.3 Glossary

biological process: The target of inference for the ecologist, encompassing all
topics of ecological study.

controlled experiment: An experiment focusing on a particular relationship
between response and explanatory variables, where as many as possible of
the confounding (nuisance) variables are kept constant.

ecological phenomena: See biological process.

effort (issues of): The amount and distribution of observations of the phe-
nomenon of interest.
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functional forms: The mathematical specification of a model. Any difference
between the output of models with the same functional forms are due to
different parameterisation, different initial conditions, or stochasticity.

generative modelling: a model which is meaningfully decomposed into in-
terpretable parameters and sub-models, and from which data can be simu-
lated.

hidden state/variable: See latent state/variable.

identifiability (issues of): The ability of a model to make inference about the
relationships between its components.

latency (issues of): Where some or all parts of the biological process are not
directly observed, and thus inference must be made indirectly through its
impact on observable parts of the system.

latent state/variable: A state or variable that is not directly observed but must
be inferred using observable parts of the system (i.e. manifest variables).

manifest state/variable: A state or variable which can be directly observed and
measured.

non-transferability: A situation where a model fits observations well in the
“here-and-now” but predicts poorly in novel situations. The problem can
result from under- or overfitting, or from the violation of stationarity as-
sumptions.

observation processes: The method by which an ecological phenomenon is recorded
as data.

proxies: A manifest state/variable that has a well-defined functional relation-
ship with a latent state/variable.

scaling (issues of): Any discrepancy between the resolution or extent (of,
e.g. space, time, or taxonomy) at which the data are collected and the pro-
cess of inferential interest occurs.

sensitivity analysis: A mapping between the magnitude of perturbations to a
model’s inputs and the consequent disturbances produced to its outputs.

typology: In general, refers to the classification of observations according to
their characteristics. Here, it refers to a minimal set of characteristics that
can be used to describe any observation problem.

2.4 The Increasing Complexity of Observation Pro-
cesses in Ecology and Epidemiology

Modern ecologists are called upon to tackle crises in the environment, as well
as deal with ongoing scientific tasks of data collection and analysis. Technolog-
ical advances in our ability to collect and analyse observations should give us
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unparalleled capacity to address emerging crises, but, instead, we are frequently
stymied by the overwhelming scope and complexity of analysing our ever-more
complex and multifaceted data. Techniques for collecting data have become al-
most as complex as the underlying biological processes we are trying to under-
stand via these observations. Environmental DNA [1], remote sensing [2], biolog-
ging [3] and citizen science [4] data all help get us closer to the spatial, temporal
and taxonomic coverage we need to meet contemporary ecological challenges.
However, they also introduce complexities which need to be addressed through
sophisticated statistical analyses that are often devised as dedicated solutions to
particular data sets. Therefore, a counterpart analytical crisis results from the fact
that statistical methods that pay proper attention to these difficulties can appear
disconnected, specialist and overly technical. As a result, advanced methods are
rarely shared between fields, leading to needless duplication of solutions and in-
hibiting us from identifying methodological gaps that could benefit many fields.

Current solutions to these crises are thin on the ground. As ecology trans-
mutes into a ”hard science” [5], part of the solution is to encourage ecologists
to become more quantitative [6; 7]. While statistical literacy is arguably higher
than ever amongst applied ecologists, we must still rely on close collaboration
with statisticians for method development. Alternatively, the analytical crisis can
be circumvented by relying more heavily on experimental design. Many clas-
sical statistical techniques were developed for designed experiments, involving
careful controls of confounders, a high number of replicates and unbiased mea-
surements. Unfortunately, the nature and scale of ecological questions in the 21st
century are not always amenable to experimental design. GPS-tagged animals
do not remain within pre-defined study areas, citizen scientists have to recon-
cile their observation efforts with their day-jobs and, crucially, there is no Latin
square for climate change. The focus on experimental design and user-friendly
statistical methods can lead researchers to, assume-away the more challenging
features of their data, to analyse them as if they were gathered in a designed
experiment, yielding conclusions that are neither robust nor reproducible (see
statistical golems from [8]).

Realistically, therefore, we cannot simplify the methods or the data needed.
However, we believe that we can simplify observation process modelling by de-
veloping a shared typology of associated problems. A typology will provide a
basis for discussions between statisticians and field scientists to elicit what ob-
servation processes might occur or have occurred, and it creates a set of axes
onto which existing methods can be placed. The latter makes it easier to see
which methods are closely and distantly related in the problem space, rather
than as discrete classes of statistical models. By presenting the problem space in
this way, it becomes easier to iterate between model types during development
and makes methodological synthesis much easier. If there are large methodolog-
ical gaps in the problem space, areas ripe for the development of new statistical
techniques are revealed. If methods occupy the same point in problem space,
this highlights methods which are known by multiple names allowing associ-
ated research to be unified. Unification often leads to rapid progress as pre-
viously disjointed efforts become focused, techniques shared and crucial gaps
identified, as seen in the synthesis of biodiversity metrics under Hill numbers
[9], MaxEnt [10] and presence-only models [11] under point processes [12], and
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dependent mixture/latent Markov/Markov-switching/regime-switching/state-
switching/multi-state models under Hidden Markov Models [13]. A successful
typology, therefore, helps identify the observation processes at play, navigate the
possible solutions, and direct methods development to where it will be most pro-
ductive.

2.5 The L.I.E.S. Framework

A shared typology for observation problems needs to meet the following criteria.
It must be sufficient to describe all observation problems in ecology (comprehen-
sive). To make the typology efficient, each problem type must exist independently
and be able to be used in combination to describe more complex types of prob-
lems (orthogonal). The problem types need to be understandable to both field
scientists and statisticians (intuitive) and should be rooted in the existing method-
ological literature where possible (grounded). Finally, the framework will be most
effective if it is widely adopted which requires friendly packaging (memorable).

Observation problems can be introduced during either data collection or anal-
ysis. There are are two sides to these problems: the relevance of the observation
to the biological process and the reliability of the the observations made. This
motivates a (comprehensive) typology of four core concepts:

Relevance Reliability

Data Collection

Latency - what is the
relationship between
the variables col-
lected and those in
the biological pro-
cess?

Effort - what is the
breadth and depth
of the observations
made?

Data Analysis

Scaling - what does
the scale at which
the parameter is esti-
mated mean biologi-
cally?

Identifiability - what is
the uncertainty in our
parameter estimates
(finite or otherwise)?

Below, we define each of the concepts in non-technical language (intuitive). We
illustrate each with pure-form motivating examples (orthogonal) rooted in the sta-
tistical literature (grounded). We make these canonical examples simple but realis-
tic and present the concepts using the moniker ”L.I.E.S. of Omission”, reminding
us that failure to model observation processes correctly is to risk dishonesty in
our analyses (memorable). Finally, we draw from publications across the literature
to demonstrate that the framework can describe real-world observation problems
as either elemental of compound manifestations of these primitive types (compre-
hensive and grounded, see Boxes 1-3).
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Figure 2.1: The Elephant in the Room: These panels illustrate how the four types
of observation process can affect the same image of an elephant. Latency: The
elephant is recorded as six manifest variables, namely the red, green, blue, hue,
saturation and light layers of the image. The latent variable, the elephant, is a
combination of either the first three or the second three colour layers. Identi-
fiability: There are equally plausible views of this image as either an elephant
or a swan, illustrating mathematical identifiability. Effort: The grid cells of the
elephant picture are observed with different degrees of effort, giving us a clearer
idea of some parts of the picture to others. In the left-hand image, there is a bias
top to bottom of the image, with very little effort in observing the tip of the trunk.
In the right-hand image, effort is less obviously structured, with seemingly better
observations of the ears and trunk tip. Scaling: The relevant scale for biological
inference may be different to the scale at which data were collected. We can think
of the scaling process as a process of data aggregation (for a coarser scale) or dis-
aggregation (for a finer scale). A pixel in an image can only have a single value, so
splitting up pixels produces a set of pixels whose mean value is that of the orig-
inal pixel. Aggregating pixels is the reverse process, where pixels with distinct
values are combined into a single pixel with the mean value of the constituent
pixels. In the Scaling panel, the top left image has the smallest pixel size and the
bottom right has the largest pixel size. When the pixel size is too small (top left
of panel), noise is introduced and the image becomes harder to recognise. When
the pixel is too large (bottom right of panel), the pixels homogenise key details,
again making the image harder to recognise.
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2.6 Latency - What the Observer Sees

2.6.1 Motivation

Biological phenomena are often hard to observe directly. Sometimes this is due to
practical constraints. In principle, it may be possible to weigh the dry biomass of
a group of organisms in a habitat, however, it is often more feasible (and less de-
structive) to measure a related variable such as the dimensions of the organisms
while alive. In other cases, the phenomenon we are interested in is not directly
observable, perhaps because it is conceptual in nature (such as an ecosystem equi-
librium or autocorrelation) or has ceased to be observable (for example, historical
species abundance). In such cases, we need to infer the relevant latent quantity
via its causal or correlational links to manifest (observable) quantities. For exam-
ple, an equilibrium might be inferred from the direction and speed with which
an ecosystem might be observed to be moving towards or away from it [14; 15].
Similarly, historical abundances might have dynamical consequences that persist
into the observable present day [16]. As illustrated, latency is a continuum from
small to large degrees of discrepancy between the manifest and relevant latent
variables.

Where the degree of latency is small (e.g. the dimensions in the biomass
example above), the manifest variable can be thought of as a proxy variable.
Proxies can be mapped onto latent variables linearly or with known functional
forms. Functional forms can often be motivated from biological understanding
and quickly out-perform models that assume linear relationships. For example,
the trophic connection between predator and prey often does not depend only
on the density of the prey [17], but also that of the predator [18]. To quantify
predator intake, therefore, we need to use prey numbers and our understanding
of how the two interact. Other examples of such proxies abound in the allometry
literature where scaling laws are known not only functionally, but also paramet-
rically.

The most challenging situation occurs when the latent variable represents a
hidden state which needs to be inferred from multiple manifest variables si-
multaneously. For example, multiple covariates might determine a single hid-
den variable, which may have a complex relationship with one or more response
variables [19; 20]. Alternatively, a hidden state might only be inferable via suc-
cessive observations of manifest states in a dynamical system, as is often the
case with state-space models [21]. For example, in a time series of biologging ob-
servations we can rarely observe an individual animal’s internal intentions (the
hidden state here might be behaviour, see Box 2)[22]. Instead, we must rely on
inferring these based on environmental context (the covariates) and the geometry
of movement (the manifest response variable). Crucially, a model that does not
explicitly include the hidden state may be poorer, or simply unable to capture
the process. For example, disease eradication programs often need to account for
contributions to transmission from hidden disease reservoirs [23].
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2.6.2 Existing Statistical Methods

Entire statistical textbooks are written on latent variable models [24; 25; 26]. Fun-
damentally, the aim of any latent variable method in ecology is to map that which
is easily observed into a space that is biologically meaningful. It is, therefore, use-
ful to think of both latency and the models to tackle latency existing on a contin-
uum. In the case of proxies it may be possible to accommodate these relationships
using simple generalised linear models (GLMs). Coefficients can help transform
scalar proxies to the latent variable they represent. Functional forms may be ap-
proximated with link functions or, where they are well defined mathematically
from biological first principles, with the known functional response.

While hidden states often require sophisticated modelling structures, it is use-
ful to start from the simplest form: the generalised mixed effects model (GLMM)
or hierarchical model. Random effect structures in GLMMs correspond to distri-
butional assumptions about complex latent phenomena for different groupings of
the data [27]. Stepping up in complexity slightly, multi-level hierarchical models
(nested GLMMs) use information from different levels of the data to constrain the
latent variables. For example, state-space like hidden Markov models (see Box
2) have been developed for the reconstruction of stochastic time series of hidden
states [13].

The key to effectively tackling latency is to improve our biological under-
standing of the latent phenomenon. Latent variables are often hardest to esti-
mate and interpret when they are only weakly constrained by prior knowledge
and model structure. By imposing boundaries informed by, for example, expert
prior elicitation [28], we can often improve both computation and inference.

2.7 Identifiability - What Signal the Model Detects

2.7.1 Motivation

We build statistical models to identify relationships. The richness with which we
can describe these relationships by our models will depend on the model def-
inition. If the model is well-defined and the data contain sufficient signal, the
parameters will both capture the real relationships and exclude alternative ex-
planations. Advances in statistical computing have removed many constraints
on model specification which makes specifying interesting, biologically relevant
models easier (often by thinking of the problem generatively). Even then, how-
ever, not all relationships are identifiable by all models (mathematical identi-
fiability) and many relationships will only be identifiable with sufficient data
(practical identifiability) [29].

Mathematical identifiability issues can arise even in simple situations. In
single-species population ecology, we know that population growth can be writ-
ten unambiguously as a balance equation between birth and death rates. How-
ever, even with unlimited data sets on growth it is not possible to obtain esti-
mates of births and deaths since there are infinite plausible combinations that
are consistent with any given growth rate. As model complexity grows, math-
ematical identifiability problems can be much more subtle (see discussion of
multi-collinearity in [30]).
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Practical identifiability problems result from trying to make inference from
data. Even mathematically identifiable models may be unable to estimate re-
lationships with precision if the noise-to-signal ratio is high for the number of
available data points, there is strong collinearity in the data or there are large
degrees of separation between the data and the parameters being estimated.

The severity of identifiability issues may depend on the model’s purpose.
When interpreting parameters to make inference, identifiability is essential. When
a model is purely for prediction, the identifiability of an individual parameter
may not matter so long as the effect of that parameter is identifiable [31]. Simi-
larly, sometimes a parameter may be identified when normalised or transformed.
For example, a covariance matrix may not be identifiable but the corresponding
correlation matrix is [32].

2.7.2 Existing Statistical Methods

The relationship between the model definition and the quantity of interest defines
both types of identifiability problem. We can think of the models working in two
directions. In the forward direction, we simulate from the model. In the inverse
direction, we estimate model parameters using data. We can use the forward
direction to identify issues of mathematical identifiability by testing whether
simulated quantities are affected by the specific model parameters [33]. If chang-
ing the model parameter values does not affect the quantities generated, there are
mathematical identifiability issues.

Once we have ruled out mathematical identifiability issues, we can explore
the inverse direction. Here, we use data on the quantity of interest to estimate
the model parameters. If many parameterisations are equally plausible given the
data, we have high uncertainty and practical identifiability issues. Methods to
assess these problems have been unified under the topics of sensitivity analysis
[34] and uncertainty quantification [35; 36; 37], respectively.

Sensitivity analysis is solely a function of the model definition (i.e. is not af-
fected by data), and there are a plethora of available diagnostics (both analytic
and simulation-based). Directed acyclic graphs (DAGs) are an increasingly pop-
ular method for finding which relationships are identifiable (particularly within
the causal inference literature [38]). Similarly, writing the formal mathematical
definition of a model can help highlight the conditions under which a model is
identifiable. Simulation-based methods are often more approachable and gen-
eralisable, particularly if the underlying model is generative in nature [39]. Al-
though mathematical identifiability problems are data-invariant, they are often
found when fitting to data if the model is not checked before (see Box 2). For
example, in MCMC-based algorithms, correlations between parameter samples,
slow sampling and chains failing to converge are often indicators of mathemati-
cal identifiability problems [40].

Uncertainty quantification depends on both the model definition and the
noise-to-signal ratio in the data. If the model is over-parameterised or the data
are uninformative then there will be high uncertainty in the parameter estimates.
The concept of power analysis exists in both the Frequentist [41] and Bayesian
[42] paradigms, albeit with very different motivations, interpretations and imple-
mentations. In both cases, we are interested in using simulated data to estimate
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the nature and amount of data required to identify a relationship to a given preci-
sion. These simulations may use the exact model definition, but it is important to
also assess how uncertainty changes under model-mispecification (for instance,
by using surrogate models for simulation)[43].

Model mis-specification is almost certain when addressing real world prob-
lems, so model and variable selection methods are also key tools for addressing
practical identifiability [44]. Aiming to choose the most parsimonious model
that, for example, optimises an objective function (e.g. model likelihood, good-
ness of fit, prediction error) also tells us which relationships are not being esti-
mated with precision. The literature for model and variable selection is large and
contentious but broadly comes down to treating model-space as continuous or
discrete. Continuous model-space methods carry out variable selection paramet-
rically as part of the model-fitting process, for example, penalised complexity [45]
or slab-and-spike priors in the Bayesian paradigm and ridge regression or LASSO
in the Frequentist [46]. Discrete model-space methods involve fitting candidate
models independently and choosing a preferred model based on a separate crite-
rion to that used within model fitting. The most commonly used metrics for dis-
crete model-space selection are the information criteria [47; 44], although other
metrics or objective functions are also widely used. Continuous model-space
approaches benefit from internal logical consistency but can be computationally
burdensome and challenging to implement for non-nested models, particularly
where models take different functional forms.

2.8 Effort - Where the Observation Happens

2.8.1 Motivation

When planning data collection, the aim is to try to gather as information rich
observations of the biological process as possible with the minimum bias and
maximum precision. As such, a key tenet of traditional experimental design is
to spread observation effort evenly among sampling units. In doing so, the ob-
servation process does not distort the underlying process. Outwith controlled
conditions, an even distribution of effort is almost impossible, leading to over-
recording of some parts of the system (e.g., seasons, years, spatial regions, indi-
viduals, population classes) and under-representation of others.

Uneven effort often arises from practical constraints. There are limits to where
observers can be sent for safety reasons or due to administrative boundaries.
Sometimes unevenness is deliberate. For example, data collected alongside a ra-
bies vaccination campaign will generally be targeted towards rabies hotspots. In
these cases, stratified effort is uneven but its distribution is known and can be
accounted for in the analysis.

The situation is more complex in platform-of-opportunity data. The distri-
bution of citizen scientists (see Box 1)[48], fisheries by-catch surveys [49] or deer-
vehicle collisions [50] are all driven by processes that are rarely measured directly
and are often driven by multiple other processes. Sometimes these drivers are
spatial (e.g. deer-vehicle collisions often depend on traffic flow; fishing boats
need to minimise their travel time to fish stocks; and citizen scientists like to
record near to where they live and in attractive locations). Often, there are also
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cultural drivers of what is reported - legal penalties may reduce reporting of deer-
vehicle collisions or of fisheries by-catch, while citizen scientists are sometimes
only keen to report ”interesting” findings such as rare or invasive species. As a
result, we frequently need to analyse data where the distribution of effort is not
only uneven but also unknown.

2.8.2 Existing Methods

Uneven effort can be accounted for statistically, after the collection of data. In
principle, to retrieve the biological process from our data we simply need to con-
sider observations per unit effort as the response variable. We can think of this
as an offsetting exercise [51], however, first we need to quantify effort across dif-
ferent sample units. The challenge of this grows with the degree to which effort
is unknown. Where effort is fully known, the offset can be incorporated into the
model as data.

Where effort is in any way unknown, it must be inferred and the degree to
which it is unknown determines the complexity of the modelling required to in-
fer it [48]. Here, effort becomes a latent variable. In the section above, we discuss
issues of latency between the observation process and the biological process.
Here, we have latency between different parts of the observation process. We
may be able to use similar modelling techniques to tackle latent biology and latent
effort. However, while we often have a good understanding of biological mech-
anisms with which to model latent biological processes, latent effort models re-
quire an understanding of human behaviour and (observer perceptions, group
dynamics and economics, see Box 1).

In parallel with the methods to address issues of latency, there are three levels
of complexity when trying to infer effort. The first is to use a proxy variable for
effort based on an assumed functional form. For example, in amateur wildlife
recording, researchers often use the frequency of a focal species or recorder’s list
length for a given site-visit as a measure of recording effort [48], however, this
makes strong assumptions about how the focal species and biodiversity are dis-
tributed. A relaxation of this relationship is to assume a particular functional
form linking effort to the variable. Distance sampling is perhaps the most obvious
use of this technique, where effort (the detection function) decays with distance
from the observer.

The most complex method for inferring effort relies on multiple manifest vari-
ables or known relationships. One approach is to use validation data collected
with known effort. For the range of the validation data, the biological process is
well characterised, meaning that where the validation and heterogeneous-effort
data overlap, the differences can be attributed to effort, and thus used to train
an effort model. Most effort models use covariates to predict effort but some use
properties of how effort is distributed, such as self-excitement [52] or spatial auto-
correlation to account for recording bias [53]. For example, effort in recording life
history data is biased taxonomically but life histories are patterned phylogeneti-
cally allowing the biological process for taxa with low recording effort to borrow
information from those with high recording effort [54; 55].
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2.9 Scaling - Where the Model Finds Signal

2.9.1 Motivation

Determining the relevant scale for analysis is challenging and often overlooked
[56; 57]. For statistical models to be ecologically relevant, the signal detected
needs to have a biological interpretation. And yet, frequently, our models are de-
signed to look for signal in raw data where the scale is determined by equipment
precision and encoding, leading to a discrepancy between the scale of our infer-
ence and that of the biological process. Indeed, the scale that variables impact
on the same biological process may vary, for example, the distance an organism
travels to mate vs to feed. A single variable may impact at multiple scales, for
example, phylogenetic distance may lead to trait autocorrelation at a large scale
(organisms within an order are more similar than those in different orders) but
negative correlation at a small scale (closely related species within a genus may
be more different than more distantly related species in the genus). To reach the
scale relevant to the biological process, therefore, our model needs to be able to
change how neighbouring regions in the data are grouped together or divided.
To do so, we need to understand what proximity means in variables like space,
time and taxonomy, and how these units can be sensibly aggregated (or disag-
gregated).

Proximity needs to be defined in biologically sensible ways that may be non-
linear and possibly directional. For example, geographic proximity might be de-
fined in terms of landscape resistance to a particular organism [58], but also in
terms of that organism’s mobility (a distance traversed daily by a hare might be
a life-time trajectory for a tortoise) [59]. Temporal proximity may be determined
by latitude with rapid seasonal changes in temperature and weather towards the
poles and more smooth transitions in the tropics. Similarly, taxonomic proxim-
ity can be defined by a combination of morphometrics, genomics and functional
traits.

Aggregation operations often make an implicit mean-field assumption: that a
system’s behaviour is defined by the average value (e.g. of a covariate) across the
system, so combining small units into larger units will lead to the same inference.
However, aggregation of fine-scale processes into coarser scale observations can
eliminate our ability to detect signals (see Box 3) [60]. For instance, a forager can
be more efficient if all the prey in its home-range is concentrated at one known
location and it may not matter if weather conditions are generally clement if a
single day’s storm can ruin a season’s breeding chances [59]. In niche space, ag-
gregating environments into coarse habitat classes might enclose under a single
label distinct habitats that are recognized very differently by a species [61]. On
the other hand, using very fine-scale data may lose the signal by obscuring the
environmental context within which the important biology is unfolding (see Box
2). Different biological process may interact with the same covariates at different
scales. For example, where a wolf moves in the next minute may be best pre-
dicted by habitat composition within 200m, whereas where a wolf establishes its
home-range may be best predicted by habitat composition within 20km.
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2.9.2 Existing Methods

Both too much and too little aggregation can lead to discrepancies between our
data and the biological process making us vulnerable to over-and under-fitting
issues [60]. Statistical diagnostics for these issues are common, but finding the
appropriate scale is more challenging. One option is to fit models at multiple
scales and compare using model-selection procedures [62]. A more sophisticated
approach is to treat scale (or scales) as a parameter to be estimated [63] or to
model scales hierarchically [64].

While conceptually simple, these approaches can be computationally pro-
hibitive or limited by data availability. When aggregating at a particular scale,
it is necessary to perform relatively costly numerical integration for each candi-
date scale. The cost of integration can be reduced using analytical tricks such
as Fast Fourier Transformation algorithms. Another common method is to use a
distance decay-kernel [65], such that distant observations bear lower importance.
The scale parameter is then the decay coefficient [66; 67]. Estimating non-linear
effects is becoming easier thanks to packages like INLAbru [68], which extends
fast approximate Bayesian methods [69] in a user-friendly way to accommodate
more complex models.

2.10 Concluding Remarks

Field scientists and statisticians face an ongoing challenge of how to tackle urgent
complex questions with complex data sources. Eliciting the observation processes
requires field science and statistical teams that work closely together and are mo-
tivated to understand one another. Where these teams do not exist, observation
processes go unaccounted for, and any inference and policies made as a result
are compromised. Where these teams succeed, they generate methodological ad-
vances, but advances which are often siloed due to field-specific language. With-
out breaking down these siloes, we stifle our progress. The typology we propose
above is one route through this impasse. However, we believe that it already of-
fers a fresh perspective on observation processes that can lead to methodological
synthesis, innovation and insight as well as provide a mental roadmap through
challenging terrain.

2.11 Outstanding Questions

• What data integration methods are missing? Many problems can be over-
come by integrating complementary data types (e.g. combining fine scale
data at a few locations with coarser data across a larger area to overcome
issues of scale), however, the key is in identifying them.

• How do we incorporate observation process modelling into teaching? Com-
plex observation processes are rarely emphasised in statistics courses but
most students will need to tackle them. Would emphasising the observa-
tion process guard against defaulting to interpretation of patterns in data as
biological signal?
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• Can we link observation processes to experimental design techniques? How
can simulating from models with observation processes improve data col-
lection? Can we think of experimental design as a set of techniques to min-
imise identifiability issues while focusing effort on a small part of the bio-
logical process?

• Can the LIES framework be utilised beyond the fields of ecology and evo-
lution?

2.12 Boxes

2.12.1 Box 1: Citizen Science Case Study

[70] identified four key challenges in analysing citizen science data caused by
observer behaviour: spatial bias, observer differences, reporting preferences and
false-positive errors. By linking these descriptions of the observation process to
the LIES framework, we can better view them in their statistical context and find
methodological commonalities between them, and across other fields of applica-
tion.

Challenge Latency Identifi-
ability

Effort Scale

Spatial Bias X X X
Observer Differences X X
Reporting Preference X X X
False +ve Errors X X

Spatial Bias and Reporting Preferences

Using the LIES framework we found commonalities between Spatial Bias and
Reporting Preferences. Both are issues of heterogeneous effort (across space and
taxonomy, respectively). Citizen scientists are motivated to record by conve-
nience (site accessibility and ease-of-identification) and ecological interest (site
biodiversity and species interest, e.g., rarity status). Convenience can sometimes
be predicted using covariates as effort proxies. While this is common for Spatial
Bias, Reporting Preferences are less predictable. Targeting ecologically interest-
ing sites and species leads to practical identifiability problems in distinguishing
between observational and ecological parameters. A frequent solution is to inte-
grate additional data that is either systematically collected or biased differently,
and treat the latent biological process as a hidden state shared by the different
datasets.

Observer Differences

Citizen scientists vary in skill so, even if they spend the same time in the field,
their effective effort in terms of information gathered, will differ. Observer-
level random effects and skill-scores can be used to estimate effective effort but
these methods also need to account for skill improving with experience. A com-
mon solution is to use time as a proxy for effort changing within an individual.
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These methods rely on labelling individual-level observers but, to ensure pri-
vacy, records are increasingly anonymised to prevent mathematical identifiabil-
ity of individual observers. In these cases, a latent variable of effort can be used
instead to estimate the combined effective effort of recorders across space and
time. Analagous problems exist in the field of survey science leading to poten-
tial overlap between methods to address observer differences and, for example,
participation and response biases.

False-Positive Error

Species misclassifications, where Species A is observed but recorded as Species B,
are common in citizen science data and can lead to major practical identifiability
problems when estimating species-habitat associations. If the two species co-
exist in the habitat, then the degree of association may be overstated for Species
B. If the record is a false-positive and two species do not co-exist at that loca-
tion, the habitat association for Species B will be completely incorrect. Many
methods have been developed for dealing with false-positive errors, but they of-
ten have mathematical identifiability issues due to equal likelihood support for
the species being present-and-correctly-identified or absent-and-falsely-reported.
Alternatively, we could frame the true species identity as a latent variable and in-
fer the correct classification by, for example, linking with habitat data from stud-
ies with low error rates or, because species are not confused at random, using the
citizen scientist’s suggested label as a proxy variable.

2.12.2 Box 2: Animal Behaviour Case Study

Inferring animal behaviour from telemetry data is an exercise in extreme latency,
using path geometry to deduce animal moods and motivations. Hidden Markov
models (HMMs) have become a popular method for dealing with this problem.
HMMs identify hidden states based on movement signatures (e.g., specific com-
binations of speed and tortuosity). The popularity of these models has led to
several user-friendly implementations, allowing non-expert users to fit HMMs.
However, HMMs hide several pitfalls, even for experienced statisticians. Below,
we use the LIES framework to highlight problems that arise when using HMMs
to infer behaviours using telemetry data that may not otherwise be apparent to
such users.

HMMs suffer from identifiability problems in both their statistical machin-
ery and interpretation. Practical identifiability of biologically meaningful hid-
den states is challenging. Determining the number of hidden states to estimate
can be challenging even with prior knowledge of the number of expected be-
haviours, as the ideal number of statistical states may differ from the number
of behaviours. With increasing numbers of and degrees of overlap between the
hidden states comes considerable computational burden. Then, the statistical la-
belling of each state is not an intrinsic property and can change during model
fitting (a mathematical identifiability problem known as label-switching). Even
then, there may be no justifiable biological interpretation for the inferred hidden
states, or ground-truthing (e.g. using video footage) may be required to find it.
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The scale and homogeneity of recording effort can violate the key assump-
tions of HMMs that 1) switches between hidden states happen in discrete time
and 2) the state at a given time is only dependent on the state at the previous
time (the Markov property). For the hidden states identified by the HMM to
make sense biologically, the temporal scale of observations needs to match that
of behaviour switching in the animals. At finer scales, the behavioural states are
likely to be strongly autocorrelated, while at coarser scales the switches may be
missed entirely. Even at the right scale, effort heterogeneities can cause issues.
While missing-at-random observations can be easily tolerated in the fitting pro-
cess, extremely heterogeneous effort across time (i.e. all observations unevenly
spaced) make the discrete-time assumption hard to justify and continuous-time
models, though more challenging, may generate better results. Heterogeneous
effort in space (e.g. signal problems), behaviour (e.g. recording fails during div-
ing) or life-stage (e.g. only breeding individuals get tagged) will require more
sophisticated imputation and interpretation.

2.12.3 Box 3: Biomonitoring By DNA Barcoding

Poorly known and highly species rich organism groups such as arthropods, fungi,
bacteria, and protists are increasingly surveyed with DNA-metabarcoding. These
methods can be applied either to bulk samples of study organisms (say, arthro-
pods accumulated in a Malaise trap) or environmental samples (say, soil-, air-
or water samples). With DNA-metabarcoding, species composition in a sam-
ple is a latent variable, whereas the DNA-barcode sequences are manifest vari-
ables. While the DNA barcodes have been specifically selected to be informative
for species identification, they involve both mathematical identifiability prob-
lems (DNA barcodes can be identical for some closely related species) as well as
practical identifiability problems (similar DNA-barcodes can be difficult to dis-
entangle from noisy sequencing data). A more fundamental issue of latency is
that most species of, for example, arthropods and fungi are still unknown to sci-
ence, or known to science but missing from DNA barcode refence databases. In
such cases, the sequences are often clustered into operational taxonomical units
(OTUs) that can be viewed as proxies of taxonomically described species. Al-
ternatively, the taxonomic scale is often selected for convenience reasons (rather
than ecological reasons) from either the species scale or whatever scale allows for
reliable taxonomical placement, such as the genus or order scale.

DNA-metabarcoding data are generally sample-based and thus the effort is
typically highly standardized: a sample may represent, for example, arthropods
that accumulated in a Malaise trap during a given time period, fungal spores
sieved from a given volume of air, or microbial communities present in a given
volume of soil or water. However, there are two layers of latency in converting
the resulting sequence counts into species abundances. First, concerning the unit
at which abundance is measured, it is to some extent possible to quantify the
amount of DNA belonging to each focal species, e.g., by spiking the sample with
controlled amount of synthetic DNA and by deriving species-specific DNA am-
plification factors. Unfortunately, one is seldom interested in species abundance
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in units of ng of DNA (the proxy variable), but in units of counts of individu-
als, dry biomass, or so on (the latent variables). Second, concerning the spatial
and temporal scales at which abundance is measured, one is seldom interested
in species abundances in a specific sample, but in an ecologically more relevant
unit such as a forest patch. How to convert the from the scale of a sample into
ecologically relevant spatial and temporal scale is a major challenge that typi-
cally requires additional knowledge on, for example, the movement behavior of
the organisms.
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COVID-19 – exploring the
implications of long-term condition
type and extent of multimorbidity on
years of life lost: a modelling study

This chapter has been published in: Hanlon P, Chadwick F, Shah A, Wood R,
Minton J, McCartney G, Fischbacher C, Mair FS, Husmeier D, Matthiopoulos
J, McAllister DA. COVID-19 - exploring the implications of long-term condi-
tion type and extent of multimorbidity on years of life lost: a modelling study.
Wellcome Open Res. 2021 Mar 1;5:75. doi: 10.12688/wellcomeopenres.15849.3.
PMID: 33709037; PMCID: PMC7927210.

My role in this paper was to lead the development of the “Long-term con-
dition prevalence and correlation models”. Understanding the correlations be-
tween long-term conditions was crucial in addressing the central aims of this
project and required entirely novel methodology. The outputs of these models
were then analysed using established techniques in the health economics litera-
ture. A mathematical description of this model is available in Appendix A.

The L.I.E.S. Framework

The observation processes in the following case study include:

Latency: the diseases in this case study are observed as aggregations (counts) of
binary (present/absent) but exist and are correlated in continuous states.

Identifiability: (mathematical) the count data are sums of binarised (present/absent)
diseases, however there are many possible patient-level combinations which
are consistent with the count data. The disease correlations are modelled
using a multivariate probit model in which the mean and variance are not
identifiable.

Identifiability: (practical) information will be lost with each degree of latency,
there will likely be large uncertainty in the resulting inference.
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The application of the framework to the case study will be discussed in more
detail in the conclusion.
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3.1 Abstract

Background: COVID-19 is responsible for increasing deaths globally. As most
people dying with COVID-19 are older with underlying long-term conditions
(LTCs), some speculate that YLL are low. We aim to estimate YLL attributable
to COVID-19, before and after adjustment for number/type of LTCs, using the
limited data available early in the pandemic.

Methods: We first estimated YLL from COVID-19 using WHO life tables,
based on published age/sex data from COVID-19 deaths in Italy. We then used
aggregate data on number/type of LTCs in a Bayesian model to estimate likely
combinations of LTCs among people dying with COVID-19. We used routine
UK healthcare data from Scotland and Wales to estimate life expectancy based
on age/sex/these combinations of LTCs using Gompertz models from which we
then estimate YLL.

Results: Using the standard WHO life tables, YLL per COVID-19 death was
14 for men and 12 for women. After adjustment for number and type of LTCs,
the mean YLL was slightly lower, but remained high (11.6 and 9.4 years for men
and women, respectively). The number and type of LTCs led to wide variability
in the estimated YLL at a given age (e.g. at ≥80 years, YLL was >10 years for
people with 0 LTCs, and <3 years for people with ≥6).

Conclusions: Deaths from COVID-19 represent a substantial burden in terms
of per-person YLL, more than a decade, even after adjusting for the typical num-
ber and type of LTCs found in people dying of COVID-19. The extent of mul-
timorbidity heavily influences the estimated YLL at a given age. More compre-
hensive and standardised collection of data (including LTC type, severity, and
potential confounders such as socioeconomic-deprivation and care-home status)
is needed to optimise YLL estimates for specific populations, and to understand
the global burden of COVID-19, and guide policy-making and interventions.

3.2 Introduction

The SARS-CoV-2 pandemic, the virus causing COVID-19, emerged in late 2019
and continues to have substantial impact on populations and healthcare systems
throughout the world. This manuscript presents a revised version of an analysis
initially conducted in March 2020, at which time Italy, the first European nation
to experience a major outbreak of COVID-19, was seeing rapidly escalating num-
bers of cases and deaths. In the UK, at that time, the initially small number of
hospitalisations and deaths were beginning to rise. The analysis sought to esti-
mate the burden of COVID-19 deaths in terms of potential years of life lost (YLL),
at a time when individual-level data on COVID-19 deaths was scarce.

When severe, coronavirus disease 2019 (COVID-19) causes acute respiratory
failure, often requiring mechanical ventilation [1]. At the beginning of April
2020, more than 1,200,000 confirmed cases have been reported globally, includ-
ing 67,000 deaths [2]. In response to this threat, governments introduced non
- pharmaceutical interventions such as physical distancing and the delivery of
health services has radically changed, with resources diverted towards the man-
agement of COVID-19 and away from their usual activities [3]. These measures
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have aimed to limit a surge in cases that risks overwhelming healthcare services
[4], and have continued and repeated in various forms throughout the world.

Since few health care systems could have responded adequately to the in-
creased need for acute care without these changes, these decisions were in some
ways inevitable. However, as societies seek to “return to normal”, decisions
about the extent and nature of ongoing measures to limit spread of COVID-19
will be more difficult. These choices will require balancing the likely direct effects
on mortality from COVID-19 against the likely indirect impacts on mortality for
other conditions – due, for example, to inadequate access to necessary services for
many people with long-term conditions (LTCs), potential reluctance of the public
to attend for acute events such as myocardial infarction, or impacts from forced
unemployment, loss of income and social isolation. The indirect effects are likely
to be complex, most will be downstream, and will require extensive research to be
better understood. However, we need to capture the direct effects of COVID-19
as accurately as possible now, via currently available data and methodologies.

In April 2020, most reports of COVID-19 deaths used raw counts [2]. This
may give a distorting picture of the mortality burden, however, as it does not con-
sider how long someone who died from COVID-19 might otherwise have been
expected to live. As people dying from COVID-19 are predominantly older and
have pre-existing LTCs [5; 6; 7], some have speculated that many of these peo-
ple would have soon died of other causes and that life expectancy may therefore
not being greatly impacted [8; 9]. While multimorbidity, the presence of multiple
LTCs, is known to be associated with increased mortality [10], people with mul-
timorbidity nonetheless can be expected to live for many years [11]. Raw counts
of deaths may therefore mislead policy-makers and the public, causing them to
either over- or under-estimate the total impact of COVID-19 related deaths.

Within epidemiology, there is a standard measure used to account for this dif-
ficulty, the years of potential life lost (YLL) [12]. YLL can be expressed per-capita
as the average number of years an individual would have been expected to live
had they not died of a given cause. The conventional approach to YLL uses data
on the age at which deaths occurred combined with typical life expectancy at a
given age, to estimate a weighted average of the number of years lost. YLL is
used to allow fair comparisons of the health impact of different policies, such as
different measures to address the pandemic. However, given the controversial
role of multimorbidity in COVID-19 deaths it is also important to calculate YLL
additionally considering the effects of the presence of a single LTC or multimor-
bidity.

Therefore, we propose to quantify the burden of mortality related to COVID-
19, both using the conventional age-based YLL measure, and YLL additionally
accounting for type and number of underlying LTCs. We draw upon data sources
available in April 2020, as this modelling study aimed to estimate the potential
YLL at an early stage in the pandemic, when the impact was emerging. It should
be noted, however, that events unfolding throughout the pandemic are likely to
impact the YLL. Any estimate, particularly in the context of a pandemic, is depen-
dent on what populations are exposed, and to what extent. Updated estimates,
taking account of events which transpired in the UK and beyond, are the sub-
ject of ongoing collaborative efforts and we have not attempted to model these.
Rather, this manuscript provides a detailed and reproducible quantification of
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YLL using techniques targeting the specific challenges of estimation at the early
stages of the pandemic.

3.3 Methods

3.3.1 WHO standard YLL approach

The standard approach for calculating years of life lost is to apply the distribution
of ages among those who died from a specific cause to a standard life-table. For
the purposes of international comparison, we opted to use the WHO 2010 Global
Burden of Diseases table as the reference [13], which presents YLL by age, but not
by sex or extent of multimorbidity. This method involves summing the expected
years of life remaining from the table according to the number (or for the mean
YLL the proportion) of people dying within each age-band. We applied the age
distribution of COVID-19 deaths in Italy from published data to estimate the YLL
[14].

We chose the WHO life tables to allow comparison of the burden of COVID-
19 deaths with other conditions in an international context. However these, un-
like many national-level life tables, do not stratify by sex. Furthermore our sub-
sequent modelling draws upon data from specific setting based on availability
early in the pandemic (namely data on COVID-19 deaths from Italy, and life-
expectancy estimates based on data from Wales). Therefore, following comments
from academic colleagues via social media, we performed sensitivity analyses
using life tables from Italy (2017), United Kingdom (2016–2018) and, for compar-
ison, the United States (2017).

3.3.2 Overview of modelling to accommodate long-term condi-
tions and multimorbidity

The remainder of the methods describes our approach to estimating YLL account-
ing for number and type of underlying LTC, along with age and sex. Our mod-
elling comprised three main components: (i) estimating the prevalence of, and
correlations between, LTCs among people dying with COVID-19; (ii) modelling
UK life expectancy based on age, sex, and each combination of these LTCs sepa-
rately; and (iii) combining these models to calculate the estimated YLL per death
with COVID-19. These are summarised by age-group, sex, and multimorbidity
counts (that take into account different combinations of LTCs).

The data sources used for each of these stages of modelling are summarised
in Figure 3.1.
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Figure 3.1: Overview of Components of Models. Green boxes indicate source of
data or final outputs. Yellow boxes indicate Istituto Superiore di Sanità (ISS) data
and blue boxes indicate Secure Anonymised Record Linkage (SAIL) data. White
boxes indicate each model used to inform the final analysis. AGG - aggregate.
IPD - individual level patient data.

3.3.3 Rapid review

To inform our estimates of number and type of LTCs, we first sought to iden-
tify the most detailed data available for underlying long-term conditions among
people dying of COVID-19. We performed a rapid review to identify data on
underlying conditions for people dying with COVID-19. We searched the WHO
repository of COVID-19 studies on 24th March 2020. To identify studies report-
ing data on LTCs among people who had died from Covid-19, we screened ti-
tles and abstracts of all epidemiological, clinical, case-series and review articles
(n=1685). We identified and screened 77 potentially relevant full-text articles,
of which four reported aggregate data on LTCs among people who had died of
COVID-19. Three were small studies (32, 44, and 54 deaths, respectively) based
in Wuhan, China [5; 6; 7]. However, the fourth was a comprehensive report from
the Istituto Superiore di Sanità (ISS) (published each Tuesday and Wednesday)
including data on 11 common LTCs (ischaemic heart disease, atrial fibrillation,
heart failure, stroke, hypertension, diabetes, dementia, chronic obstructive pul-
monary disease, active cancer in the past 5 years, chronic liver disease and chronic
renal failure), as well as the number of patients who had 0, 1, 2 or ≥3 LTCs for 701
of the 6801 people who died with COVID-19 in Italy [14]. In view of the smaller
sizes of the Chinese studies, and the greater dissimilarity of these populations
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with the UK relative to the Italian data, we opted not to include these in the anal-
ysis. These data were used to construct a plausible scenario for the prevalence of
combinations of LTCs among people who died from COVID-19 for the modelling
presented here.

Long-term condition prevalence and correlation models. This first stage of
our modelling aimed to estimate the prevalence and correlation between specific
LTCs among people dying with COVID-19.

We utilised aggregate data on COVID-19 deaths from the Istituto Superiore
di Sanità in Italy. Since we were unable to obtain individual patient data for the
Italian case-series of deaths from COVID-19, we had to infer the joint prevalence
of LTCs from the summarised information available, i.e. the marginal distribu-
tion of multimorbidity counts (the row sums, or total number of diseases for each
patient, wherein counts of ≥3 LTCs were collapsed into the single category of 3+)
and the marginal distributions of LTC frequency (the columns sums, or the total
number of patients with each LTC). To that end, we developed a Bayesian latent
process model of disease prevalence and correlation and fitted it using Markov
chain Monte Carlo (MCMC) to both elements in the published data. This analysis
was applied jointly to the small number of deaths that had occurred in Scotland,
primarily to aid convergence in Bayesian model fitting by providing some infor-
mation about the correlation between LTCs [15]. The Scottish subset of the data
contained a partial record of known LTCs for individual patients, but the multi-
morbidity count per patient, as well as the marginal frequency of each LTC, were
missing (hence, modelled as latent). Bayesian priors for the correlations between
diseases were specified with a tendency to zero (shrinkage). Numerical inves-
tigations indicated little sensitivity of convergence to the strength of shrinkage,
so we opted for weak shrinkage as a precautionary approach. This model gave
us the full matrix of correlations between every combination of LTCs at the level
of individuals, therefore providing us with a complete dependence structure of
LTCs presented within the sample of COVID-19 mortalities. In order to prop-
agate uncertainty through the analysis, from this fitted model (effective sample
size of MCMC 410) we simulated 10,000 notionally “typical” patients, with plau-
sible combinations of LTCs (under the combined Italian and Scottish data).

To test the sensitivity of our findings to the estimated correlations, we also esti-
mated the YLL under two opposite extremes (i) that LTCs were independent and
(ii) that LTCs were highly correlated. Unlike the Bayesian LTC mode, these sensi-
tivity analyses did not use the information on the multimorbidity counts from the
ISS report, but only the proportion of patients with each of the eleven comorbidi-
ties. For the “independent” scenario we created 11 vectors comprising 1s and 0s
(respectively with and without the long term condition) corresponding in length
to the number of patients. We then sampled from these vectors with replacement
to obtain 10,000 simulated patients. For the “highly correlated” scenario we first
sorted each vector, then combined them to form a 710x11 matrix, then sampled
each row with replacement to obtain 10,000 simulated patients. This generated
a dataset where individuals with one comorbidity which reduces life expectancy
were more likely to have other comorbidities which reduce life expectancy (and
vice versa).

Age models. Next, we modelled the relationship between age and multi-
morbidity counts among people dying with COVID-19. We were unable to ob-
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tain direct estimates of the association between age and extent of multimorbidity
among patients who had died from COVID-19. Therefore, we modelled two sce-
narios: independence between age and multimorbidity count (i.e. no correlation
between age and multimorbidity count among people dying of COVID-19), and a
positive association between age and multimorbidity count. To inform the latter,
we examined data within the Secure Anonymised Information Linkage (SAIL)
databank for 145 patients who had influenza recorded as the cause of death in
their death certificate in 2011. SAIL is a repository of routinely collected health-
care data (including primary care, hospital episodes, and mortality data) from
a representative sample covering approximately 70% of the population of Wales.
While influenza is a different condition, these data were used for the sole purpose
of estimating correlations between age and multimorbidity counts (conditioning
on death), and did not inform the model in any other way. We found that for
men, age increased by 4.7 years per unit increase in the number of LTCs until
the count reached 6 after which there was no evidence of further increase. For
women, the figure was 2.6. Therefore, we performed the modelling assuming
that for COVID-19 the mean age increased by 5 years per unit increase in mul-
timorbidity count across the range from 0 to 6 LTCs in men. To allow for some
degree of uncertainty around this estimate by sampling from a normal distribu-
tion. We arbitrarily chose a standard deviation of 0.5. We estimated this similarly
for women, but using a mean increase of age of 3 years per increase in multimor-
bidity count. We incorporated this information in a model fitted to the summary
age data provided in the Italian case report. We obtained 10,000 samples from
the posterior distribution for inclusion in the YLL calculations. SAIL analyses
were approved by SAIL Information Governance Review Panel (Project 0830).
Approval for the use of individual patient data in the analysis was given by the
NHS Public Health Scotland Caldicott officer.

Survival models. For patients aged 50 years or older at death, we estimated
mortality according to age, sex and combinations of each LTC using the SAIL.
From these data, we identified all participants aged over 49 years who were reg-
istered with a participating practice for the duration of 2011 (approximately 0.85
million people). This period was selected as electronic coding of diagnoses was
well established, and it allowed >6 years of follow-up. Age and sex were ex-
tracted from primary care records. We also identified all LTCs for which we had
information of COVID-19 deaths from Italy. LTCs were identified using a combi-
nation of primary care data (using Read diagnostic codes) and hospital episodes
(using ICD-10 codes). Individuals were considered to have a LTC if they had a
relevant diagnostic code entered prior to 31st December 2011. Relevant codes
were identified from the Charlson comorbidity index and the Elixhauser comor-
bidity index [16; 17], which had established algorithms for identification from
ICD-10 codes [18], and have been adapted for using Read codes in primary care
[19]. Code lists are available in [15].

All-cause mortality was assessed by linkage to national mortality registers
from 1st January 2012 until August 2018 (last available data). Participants were
censored if they de-registered from a participating SAIL practice. We used the
flexsurv package in R (version 1.1.1) to fit a Gompertz model treating age as the
timescale [20]. We assessed the fit of this distribution graphically [15]. In models
stratified by sex we included all the LTCs as main effects as well as age-LTC inter-
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actions that improved the model fit in terms of the Akaike information criterion.
In sensitivity analyses we also included two-way (comorbidity-comorbidity) and
three-way (comorbidity-comorbidity-age) interaction terms for the four comor-
bidities with the largest effect measure estimates (COPD, heart failure, liver fail-
ure and dementia) requiring 12 additional parameters. To propagate uncertainty
from the survival models we obtained 10,000 samples of the coefficient estimates
by sampling from a multivariate normal distribution corresponding to the coeffi-
cients and variance-covariance matrix from the regression models.

Combination of comorbidity and mortality models. In the final analysis, we
combined 10,000 samples from all three sources: LTC combination models, age
models and survival models. We used the rate and shape parameters with the
cumulative distribution function implemented in the flexsurv package to calcu-
late the survival probabilities at 3-month intervals from aged 50 to 120 (to allow
all curves to descend to zero). From these times and survival probabilities we
estimated the mean survival, or life expectancy.

Bayesian models were written in the JAGS language [21] and implemented
using runjags for R (version 2.0.4) [22], survival models were fit using the flexsurv
package in R (version 1.1.1) 20, and for the final analysis the model-outputs were
also combined in R (version 3.6.1). The 95% uncertainty intervals were obtained
using empirical bootstrapping, with the number of samples in the mean equal to
the effective sample size from the LTC correlation model. All code, data (except
individual-level data for Scotland), intermediate outputs and diagnostic plots are
provided on GitHub (https://github.com/dmcalli2/covid19 yll final) [15].

3.4 Results

3.4.1 WHO life tables

The proportion of men and women in 10-year age-bands was reported for the
6801 deaths included in the ISS case report. On applying the proportion in each
age-band to the WHO Global Burden of Disease 2010 life tables for men, we found
that the YLL was 14.4 per person using the whole cohort and 14 after excluding
those aged under 50. For women, comparable figures were 12.2 and 11.8 years,
respectively. In sensitivity analyses using alternative life tables, life expectancy
was lower (particularly for men), however the estimates YLL remained above
10 years for both men and women, regardless of life table used (detailed results
shown in https://github.com/dmcalli2/covid19 yll final/blob/master/
Scripts/Addendum.md).

3.4.2 Comorbidity models

For 710 patients who had died with COVID-19 for whom information on LTCs
was presented in the ISS report [14], the proportion with each LTC was as fol-
lows: ischaemic heart disease 27.8%, atrial fibrillation 23.7%, heart failure 17.1%,
stroke 11.3%, hypertension 73 diabetes 31.3%, dementia 14.5%, chronic obstruc-
tive pulmonary disease 16.7%, active cancer in the past 5 years 17.3%, chronic
liver disease 4.1%, chronic renal failure 22.2%. The ISS report also presented
the proportion of patients who died with each of the following multimorbidity
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counts: 0 (2.1%), 1 (21.3%), 2 (25.9%) and ≥3 (50.7%). Using these data, alongside
individual - level patient data for a small number of patients from Scotland to
aid with model fitting, we were able to simulate a set of realistic notional patients
with specific combination of LTCs. The correlations between every pair of LTCs
are shown in the appendix and the full posterior distributions from the modelling
are available at GitHub (https://github.com/dmcalli2/covid19 yll final) [15].

3.4.3 Age models

Based on the proportions reported for each age-band, for men the mean age for
the ISS deaths was 77.9 years when people aged less than 50 were excluded and
77.4 years overall. For women the figure was 81.1 for both. The models we fit to
these data to smooth out the distribution and to make it easier to accommodate
different scenarios for the association between age and multimorbidity counts
comorbidity are shown in Figure 3.2; the distribution of age and multimorbid-
ity counts for men and women are shown under the assumption that these are
independent, and under the assumption that multimorbidity is associated with
age.

Figure 3.2: Modelled distribution of age in ISS population, assuming age is
associated with comorbidity counts, and assuming age and comorbidity are in-
dependent. Coloured bars indicate the comorbidity count from zero (dark/blue)
to 11 (light/yellow).
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3.4.4 Survival models

The coefficients for the survival models are shown in the supplementary ap-
pendix. Briefly, all LTCs other than hypertension were associated with increased
mortality (in a model including 10 other LTCs), and for each LTC the association
with mortality was attenuated as the baseline age increased. Figure 3.3 shows the
survival curves applied to different age and combinations of LTCs, stratified by
age-band and multimorbidity count. This figure shows how these associations
and age relate to survival across the age range from 50 to 110 years old.

Figure 3.3: Survival curves for all-cause mortality Figures are paneled by age
and sex. Individual lines represent survival curves for a single simulated pa-
tients with a given set of LTCs. From light to dark (yellow to blue) they show
decreasing multimorbidity counts (11 to 0). There are 10, 000 lines, one for each
notional patient. Lines run from the age at which each simulated patient died
(survival probability = 1) to when they would have died under the model (sur-
vival probability = 0). Patients with the same age and total multimorbidity count
will have a different survival curve if they have a different set of 11 LTCs.

3.4.5 Years of life lost

For men the average YLL on adjusting for number and type of LTC as well as age
was 11.6(10.9–12.4). For women this value was 9.4(8.7–10). The results were simi-
lar under the different assumptions for the age-multimorbidity association and in
both sensitivity analyses, whether assuming strongly correlated or independent
LTCs (Table 3.1). For comparison, the YLL based on age alone using the WHO
tables was 14.0 and 11.8 for men and women, respectively.
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Table 3.1: Years of life lost (YLL) and 95% credible intervals under different mod-
elling assumptions.

LTC-LTC
correlation

Age-
multimorbidity
correlation

Men Women

Modelled Associated 11.6 (10.9-12.4) 9.4 (8.7-10)
Modelled Independent 11.1 (10.4-11.7) 9.2 (8.6-9.8)
Independent Associated 12 (11.2-12.9) 9.8 (9.2-10.5)
Independent Independent 11.5 (10.9-12.1) 9.6 (9.1-10.2)
Highly
correlated Associated 13.5 (12.5-14.4) 10.9 (10.1-11.8)

Highly
correlated Independent 12.8 (12.1-13.6) 10.7 (10-11.5)

Across the simulated patients there was substantial variation in YLL adjusted
for multimorbidity count (Figure 3.4).

Figure 3.4: YLL by sex. Coloured bars indicate the multimorbidity count from
zero (dark/blue) to 11 (light/yellow).

On stratifying the YLL estimates by sex, age and multimorbidity count (for the
simulated patients) there were clear differences (Figure 3.5, Table 2) with the YLL
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ranging from around 2-years per person in men or women aged 80 with large
numbers of LTCs, to around 35 years in younger people without any LTCs (Table
3.2). For most age-bands and most multimorbidity counts the YLL per person
remained above 5. In sensitivity analyses including the survival models with ad-
ditional comorbidity-comorbidity and comorbidity-comorbidity-age interaction
terms, (despite these models having a better fit based on AIC) than the model
presented here, the YLL only changed minimally from that seen in the main anal-
ysis. This was true overall YLL for each sex (13.1, 95% CI 12.2–14.0 and 10.5; 95%
CI 9.7–11.3 for men and women respectively) and on additionally stratifying on
age and multimorbidity count (as shown in Table 3.2). For the latter comparison,
the largest difference – 0.7 YLL – was seen in women aged 50–59 with six comor-
bidities. For most age-comorbidity bands the YLL was the same, to one decimal
place, under both survival models.

Figure 3.5: YLL stratified by sex, age and multimorbidity count. Coloured bars
indicate the multimorbidity count from zero (dark/blue) to 11 (light/yellow).
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Table 3.2: Mean years of life lost, accounting for type of long-term conditions, by
age-band, sex and multimorbidity count. Estimates are based on life-expectancy
calculates for specific types and combinations of LTCs, which are then aggregated
across LTC counts.

Men Women
Multi-
morbidity
Count

50-59 60-69 70-79 80+ 50-59 60-69 70-79 80+

0 35.37 25.76 16.83 7.29 33.59 26.40 17.00 6.85
1 34.99 25.42 16.73 6.69 35.12 25.51 16.62 6.99
2 30.04 22.36 14.58 5.78 28.76 21.41 14.37 6.09
3 26.49 19.01 12.35 5.14 25.31 18.26 11.94 5.31
4 22.00 15.93 10.64 4.36 20.27 15.27 10.07 4.46
5 18.27 13.79 9.07 3.60 16.63 12.70 8.28 3.84
6 14.63 11.09 7.26 - 11.67 9.61 6.57 3.27
7 11.32 9.44 6.08 2.56 9.82 7.67 5.05 2.76
8 7.68 6.97 4.56 2.03 6.62 5.48 3.88 2.33
9 - 5.81 3.84 1.64 - 3.64 2.80 1.60
10 - - 4.14 - - - 2.71

3.5 Discussion

3.5.1 Summary of main findings

Using published data on people who have died from COVID-19 and survival
models based on age and multimorbidity count in a general population in the
United Kingdom, we estimated the burden (years life lost) from COVID-19 re-
lated mortality. We make a number of important observations. First, using the
WHO GBD 2010 life tables as the reference [13], the estimated YLL was over a
decade for COVID-19 deaths with 14 YLL in men and 12 in women. As such,
mortality from COVID-19 represents a substantial burden to individuals and
comparable to high burden LTCs such as ischaemic heart disease and chronic
obstructive pulmonary disease. Second, YLL estimated from models using the
prevalence of underlying LTCs based on patients dying from COVID-19 in Italy
and age-, sex- and multimorbidity count-specific survival models in the UK did
not drastically impact the YLL. Across both men and women, the number of YLL
dropped to 11.6 and 9.4 years respectively. Third, across most age and multimor-
bidity count strata the estimated YLL per person remained substantial and gen-
erally above 5 years. This means that even after accounting for multimorbidity
count, most individuals lost considerably more than the “1–2 years” suggested by
some commentators [23] perhaps [24; 25] reflecting the high prevalence of multi-
morbidity in this population, especially in those over the age of 50 years [26; 27].
Finally, whilst the YLL remained high across most age- and multimorbidity count
strata, the presence of multimorbidity did indeed influence the magnitude of the
YLL. For example, in the elderly, over the age of 80, the estimated YLL in peo-
ple with no LTCs was 7 years falling to less than two years with an increasing
multimorbidity count.
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YLL is a widely used metric to compare the relative impact of different causes
of death and is used to guide policy-making and health service delivery and to
prioritise interventions aimed at preventing deaths [28]. Using UK reports for
approximate comparisons, the YLL in England and Wales for other conditions
ranged, per capita from 8.2 for chronic obstructive pulmonary disease, 11.6 for
coronary heart disease, 13.1 for pneumonia, and 21.6 for asthma [29]. Therefore,
against these benchmarks, mortality from COVID-19 represents a substantial bur-
den to individuals. It should be noted, however, that YLL for an emergent infec-
tion such as COVID-19, particularly in a pandemic, will be sensitive to the specific
circumstances of the virus spreading, mitigation strategies, and potential future
treatment or vaccines. These estimates, therefore, relate to the specific conditions
at the time of modelling and will need to be updated particularly as vaccination
or other strategies alter susceptibility or severity of infection. It is important to
note, however, that it would be a misuse of any such modelling if it were used to
criticise decision-making undertaken at the time.

The estimated YLL can vary substantially depending on the reference pop-
ulation chosen and the age distribution among those who die. Moreover, where
attempts are made to account for underlying conditions in those who died, the ac-
curacy will depend on the quality and completeness of data both for those deaths,
and in the reference population used to obtain estimates of survival according to
those underlying conditions. Nonetheless, although imperfect, we would argue
that public health agencies should present estimates of YLL for COVID-19, along-
side the more usual counts of deaths. We have already seen that if agencies do
not do so, commentators can and will fill this vacuum, sometimes making sub-
stantial errors such as using life expectancy at birth to make inferences about the
years of life lost by someone who has already lived into later life and thereby
considerably underestimating the impact of the disease on individuals [23]. In
additional to reporting YLL, metrics such as excess deaths and quality-adjusted
life years are important to fully contextualise the loss of life seen in the pandemic.

It should be noted that these estimates were made early in the pandemic and
could not account for specific patterns and events which emerged within the UK.
For example, these analyses were performed before the impact of COVID-19 in
care homes in the UK became apparent. SAIL contains data on all participants
registered with a GP (and so would include care-home residents), however our
estimates of life expectancy do not distinguish between people who live in care-
homes and those who do not. As such our analyses would not reflect the YLL
at a population level where care-homes are disproportionately impacted. Our
estimates, given the data sources which were available at the time, are more likely
to reflect the YLL of COVID-19 deaths among hospitalised patients.

Finally, our estimates of YLL only attempt to quantify the direct effects of
COVID-19. Indirect impacts on mortality (e.g. through pressure on healthcare
services of unintended consequences of lockdown measures) should also be con-
sidered, and are not captures by our YLL calculation.

3.5.2 Strengths and Limitations

Our analysis is novel in that it adjusts YLL for the number and type of underlying
LTCs. This is important as people with underlying multimorbidity are recognised
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to be more vulnerable to COVID-19. However, although we had data for eleven
common and important LTCs, we did not have markers of underlying disease
severity among those who died. Severity of the underlying LTC has consider-
able impact on life expectancy [30]. Moreover, we had no data for rarer severe
LTCs, which may nonetheless be common among those who die from COVID-
19 at younger ages. As such, the attenuation of YLL following adjustment for
LTCs may be an underestimate. However, we think that this effect is unlikely to
be substantial enough to reduce YLL to the orders of magnitude suggested by
some commentators. Indeed, on stratifying by age and multimorbidity counts,
we rarely found average YLLs of below three. Also, we were not able to adjust
our estimates for other factors and exposures (such as socioeconomic status, oc-
cupation, smoking, health behaviours) which would have given a more accurate
representation of life-expectancy in the absence of COVID-19.

Socioeconomic status is a particularly pertinent issue, as it may influence not
only outcomes from infection (e.g. through multimorbidity and other risk factors)
but also the likelihood of exposure (e.g. higher proportions of occupations for
which home-working was not feasible). Since socio-economic status also predicts
mortality there is a possibility of residual confounding due to the lack of data on
socioeconomic status available for our models. To prevent mean inflation through
rare deaths in younger people, who only modelled deaths in people over 50 years,
however deaths among younger people may influence estimates YLL.

We did not have access to large quantities of individual-level data with which
to estimate the prevalence of different combinations of LTCs. Therefore, we fit-
ted a complex model (which was methodologically innovative and will be the
subject of a separate publication) to estimate the joint probabilities, using the
overall (marginal) estimates of each LTC, and the overall multimorbidity counts
alongside a small amount of individual-level data from Scotland to help with
model fitting. This model (i) represents the best estimate for the joint probabilities
given the available data and importantly, (ii) the results for overall YLL remained
substantially similar in widely different sensitivity analyses assuming either that
LTCs are highly correlated among people dying from COVID-19 or that they are
entirely independent.

Finally, given the emergent nature of the coronavirus pandemic, this study
was conducted rapidly and under pressure of time. We chose the best data for
age, sex and prevalence of LTCs that was available to us at the time of our mod-
elling, but better-quality individual-level data specific to individual countries will
yield substantially more reliable estimates. We would suggest that each public
health agency should produce country-specific estimates, using the same LTC
definitions in those who died as in the reference population and ideally to an
agreed international protocol. Our study has used complex state-of-the-art statis-
tical modelling and inference techniques, which rely on expensive computer sim-
ulations. We have also provided all our data (except individual-level data form
the Scottish population, for which we provide a simulated substitute dataset) and
code to allow others to check our modelling and correct any errors [15].

Our model, due to limited data available at the time, combined data on Covid-
19 deaths and life expectancy data from different countries and contexts. While
this synthesis of data sources allowed an estimation to be generated at an early
stage, it limits the generalisability to specific contexts. Summaries of YLL relating
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to a specific country or context should ideally use data (both life-expectancy and
Covid-19 related) from that context. A comparison of such estimates (based on
individual-level and country specific data) with our approach (modelling aggre-
gate - and individual - level data from multiple sources early in the pandemic)
would be important to test the utility of this approach for future pandemics.

Despite these limitations, our findings do indicate that adjusting for number
and type of LTCs does not substantially reduce the estimated YLL compared to
the standard approach. Our analysis does not, however, offer a definitive estima-
tion of YLL across all contexts, nor does it necessarily fully adjust for underlying
health status. For example, further work based in Scotland has illustrated that the
life expectancy in care-home residents, and therefore the estimated YLL, is sub-
stantially different from the general population [31]. This is important given the
large proportion of COVID-19 deaths that have occurred in care homes [32; 33].
Additionally, it indicates that additional factors are likely to influence underlying
health status, life expectancy, likelihood of dying from Covid-19, and by exten-
sion YLL. These factors are not fully represented by the presence or absence of
specific LTCs. Some of these factors are likely to be challenging to estimate from
routine data alone, and producing YLL estimates which account for these factors
should be an area of future investigation.

3.6 Conclusion

Among patients dying of COVID-19, there appears to be a considerable burden
in terms of years of life lost, commensurate with diseases such as coronary heart
disease or pneumonia. While media coverage of the pandemic has focused heav-
ily on COVID-19 affecting people with ‘underlying health conditions’, and while
the number and type of LTCs certainly influence the life expectancy and YLL
for individuals, adjustment for number and type of LTCs only modestly reduces
the estimated YLL due to COVID-19 compared to estimates based only on age
and sex. Public health agencies and governments should report on YLL, ideally
adjusting for the presence of underlying LTCs, to allow the public and policy-
makers to better understand the burden of this disease.

3.7 Data availability

All code, data (except individual-level data for Scotland), intermediate outputs
and diagnostic plots are provided on GitHub: https://github.com/dmcalli2/
covid19 yll final.

3.7.1 Source data

Zenodo: Data and Code to support COVID-19 - exploring the implications of
long-term condition type and extent of multimorbidity on years of life lost: a
modelling study. https://doi.org/10.5281/zenodo.3751561 [34].

This project contains the source data used in performing this modelling study
(except individual-level data for Scotland), which are also available via GitHub (
https://github.com/dmcalli2/covid19 yll final/tree/master/Data).
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Individual-level data for Scotland are accessible via application to the elec-
tronic Data Research and Innovation Service (eDRIS) and the Public Benefit and
Privacy Panel (PBPP) (www.isdscotland.org/Products-and-Services). Individual
- level data for Wales are available via application to the Secure Anonymised
Information Linkage (SAIL) at saildatabank.com. For both eDRIS and SAIL, in-
dividuals are required to complete information governance training, be affiliated
with an appropriate organisation (e.g. a university, healthcare organisation, etc.)
complete an application form, and the analysis must be performed to support
research conducted in the public interest.

3.7.2 Extended data

Zenodo: Data to support COVID-19 - exploring the implications of long-term
condition type and extent of multimorbidity on years of life lost: a modelling
study. http://doi.org/10.5281/zenodo.3751561 34.

This project contains the archived scripts used during this modelling study,
which are also available via GitHub (github.com/dmcalli2/covid19 yll final
/tree/master/Scripts).

Data are available under the terms of the Creative Commons Attribution 4.0
International license (CC-BY 4.0).
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Chapter 4

Combining rapid antigen testing and
syndromic surveillance improves
community-based COVID-19
detection in a low-income country

This chapter has been published in: Chadwick, F.J., Clark, J., Chowdhury, S.
et al. Combining rapid antigen testing and syndromic surveillance improves
community-based COVID-19 detection in a low-income country. Nat Commun
13, 2877 (2022). https://doi.org/10.1038/s41467-022-30640-w. Additional results
and methodological details available in Appendix B.

The L.I.E.S. Framework

The observation processes in the following case study include:

Latency: the true COVID-19 status is hidden and must be inferred from observed
variables (symptoms and rapid antigen test results). The observed variables
are binary realisations (present/absent) of continuous immunological pro-
cesses.

Identifiability: (mathematical) the correlations between the binary observed vari-
ables are modelled using a multivariate probit model in which the mean
and variance are not identifiable.

Identifiability: (practical) the model is purely predictive meaning practical iden-
tifiability issues could manifest as poor prediction or classification.

Scaling: for purely predictive models, scaling is only relevant in terms of the
cross-validation structure (i.e. do model tests match how they will be imple-
mented). In this case, the data arrive in two-week intervals which provides
a natural scale for testing.

The application of the framework to the case study will be discussed in more
detail in the conclusion.
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4.1 Abstract

Diagnostics for COVID-19 detection are limited in many settings. Syndromic
surveillance is often the only means to identify cases but lacks specificity. Rapid
antigen testing is inexpensive and easy-to-deploy but can lack sensitivity. We
examine how combining these approaches can improve surveillance for guiding
interventions in low-income communities in Dhaka, Bangladesh. Rapid-antigen-
testing with PCR validation was performed on 1172 symptomatically-identified
individuals in their homes. Statistical models were fitted to predict PCR-status
using rapid-antigen-test results, syndromic data, and their combination. Un-
der contrasting epidemiological scenarios, the models’ predictive and classifica-
tion performance was evaluated. Models combining rapid-antigen-testing and
syndromic data yielded equal-to-better performance to rapid-antigen-test-only
models across all scenarios with their best performance in the epidemic growth
scenario. These results show that drawing on complementary strengths across
rapid diagnostics, improves COVID-19 detection, and reduces false-positive and
-negative diagnoses to match local requirements; improvements achievable with-
out additional expense, or changes for patients or practitioners.

4.2 Introduction

Identification and isolation of COVID-19 cases remains key to the pandemic re-
sponse. The faster and more accurately cases can be identified, the more ef-
fectively clinical care can be provided, and transmission reduced through tar-
geted interventions. Real-time PCR has rapidly become the gold-standard test
for SARS-CoV-2 detection (although Dramé et al point out that, with less than
100% sensitivity, PCR falls short of being a true gold-standard)[1] due to its high
sensitivity and specificity.[2] However, turnaround can be slow and access to lab-
oratory diagnostics is limited in many parts of the world. As such, syndromic
surveillance has often been the primary means of case identification for guiding
individual and population-wide mitigation measures.[3; 4] Rapid antigen tests
are an increasingly popular alternative to PCR as they have high specificity, and
are less expensive, easier to perform, and faster, returning results within 20 min-
utes. Hence, rapid antigen tests have potential to greatly decrease the time and
expense associated with case detection, but concerns have been raised that their
lower sensitivity leads to unacceptably high false negative diagnoses.[5; 6; 7; 8]
Improving COVID-19 diagnosis is a priority and, therefore, requires us to better
harness imperfect but fast and inexpensive methods, particularly for individual
diagnosis but also for population-level surveillance.[9]

Syndromic surveillance has been used since the start of the pandemic.[10]
The COVID-19 case definition was based on early data from clinical cases,[11]
but, as the virus has evolved and spread, the clinical picture of COVID-19 has
changed. Updated case definitions have improved, though are necessarily non-
specific and generate many false positive diagnoses (and ignores asymptomatic
cases entirely). [12; 13] A natural extension is syndromic modelling, whereby
symptomatic and risk factor data are used to fit a model to allow more accu-
rate prediction of how likely a patient is to have COVID-19. [14] However, dis-
ease syndromes change between populations, when new variants emerge, and as
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other diseases become more or less common, [12; 15] which can make syndromic
models perform poorly in new settings across space and time. This is a particu-
lar challenge for seasonal respiratory pathogens, where symptoms often co-occur
and are non-specific.[12]

A key limitation of both rapid tests and syndromic surveillance is their low
effectiveness at COVID-19 detection in asymptomatic patients. Asymptomatic
cases are known to play a role in driving transmission.[16] Resource limitations
mean that many health agencies and governments have exclusively or temporar-
ily targeted interventions towards symptomatic individuals to reduce transmis-
sion. Asymptomatic cases can still be identified through contact tracing from
symptomatic patients. Reliable diagnosis of symptomatic cases of COVID-19,
therefore, is a priority in many settings and is the focus of this paper.

Even for symptomatic patients, neither rapid tests nor syndromic surveillance
can match PCR in terms of both sensitivity and specificity. However, lower sen-
sitivity and specificity may be admissible depending on the scale and impact of
misclassification.[17] Indeed, there are costs to both individuals and societies that
must be considered when making policy decisions to the determine the most ap-
propriate approach to testing. Low specificity means more common COVID-19
misdiagnoses (false positives), leading to unnecessary self-isolation, which is ex-
pensive to individuals and society.[18] Low sensitivity means COVID-19 cases
will be missed (false negatives) and mitigation measures not put in place leading
to increased transmission and disease burden.[19] These misclassifications are
complementary for a given diagnostic, meaning increasing specificity will lead to
decreased sensitivity, and vice versa.

The typical approach is to balance sensitivity and specificity to maximise the
number of correct classifications and assume that both misclassification types are
equally costly. The costs of false positives and false negatives, however, vary
enormously depending on the intersection of perspective, economic and epi-
demiological concerns. An individual may be motivated to secure a false neg-
ative diagnosis if there is insufficient support for self-isolation. In contrast, at
the government level, false negatives may be acceptable if the economic cost of
supporting those individuals is less than the cost of accelerating case rates. The
epidemiological context will also alter the impact of false positives and false neg-
atives. For example, if the disease is prevalent or increasing the priority of both
individuals and governments may be to curb transmission and reduce impacts as
quickly as possible. In this instance, false negatives have an outsized and costly
impact by increasing the number of contact events occurring in the population
and delaying control measures by underestimating epidemic size.[19] In contrast,
under low prevalence, false negatives will be correspondingly low so even a high
false negative rate (low sensitivity) will have modest impact, but small decreases
in specificity will lead to a large number of expensive false positives.[20] In prac-
tice the situation will be more nuanced and modulated by testing capacity con-
straints, requiring a balance to be struck.[17]

The best diagnostic approach for surveillance will therefore be one where cor-
rect classifications have highest value and misclassifications have lowest cost.
Here, we examine the use of rapid antigen testing and syndromic surveillance
of COVID-19 in symptomatic patients from low-income communities in Dhaka,
Bangladesh, where a large volunteer workforce supports COVID-19 diagnosis,
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care and prevention. In this context, community-based workers used a mobile
phone-based application to record patient symptoms and provide advice and
support services, with a diagnostic algorithm deployed on the app to inform their
provisioning. This algorithm could be updated in real-time depending upon the
epidemiological context to allow appropriate tailoring of service provision (al-
though was not updated during the study period).

Here, we demonstrate that by combining rapid antigen testing and syndromic
surveillance we can draw on their complementary strengths, ameliorate their re-
spective weaknesses, and tune them for different epidemiological scenarios. We
compare their performance alone and in combination for general prediction and
as diagnostics under three scenarios with different misclassification requirements
determined by government policy-makers. Overall, we show that the optimised
combined models achieve equal-to-much-lower error rates than the rapid anti-
gen test- or syndromic surveillance-only in all metrics, and how integrating data
from multiple rapid testing methods can improve diagnostics, particularly when
adapted to local situations.

4.3 Methods

4.3.1 Data Collection

Recruitment took place across low-income communities in Dhaka North Com-
munity Corporation between 19 May 2021 and 11 July 2021. Participants were
identified for COVID-19 testing by CSTs. CSTs are community-based volunteer
health workers trained to identify individuals reporting symptoms suggestive of
COVID-19 through hotline calls or community-based reporting channels. Prob-
able cases identified by CSTs are counselled to isolate for 14 days under house-
hold quarantine, connected to telemedicine services for home-based COVID-19
management, and provided with over-the-counter medication or medical refer-
rals if the case is severe. CSTs submit surveillance data to a centralised database
through a mobile-phone-based application (Supplementary Materials (Data Col-
lection)).

Participants were selected for testing if they were over 15 years old, had a
fever (>38°C) at the point of assessment, and one or more of 14 symptoms listed
in Table 4.1. CSTs collected the enrolled individual’s age and gender, and took
two nasal swabs. One swab was used for rapid antigen testing (SD Biosensor
STANDARDTM Q COVID-19 Ag Test BioNote) at the household, and the other
returned under cold-storage to the Institute of Epidemiology, Disease Control and
Research (IEDCR) for PCR testing. The full questionnaire and testing protocols
are provided in Supplementary Methods.

Participants provided written informed consent to sample collection and for
their results to be analysed in the study. The study protocol was approved by
the Institutional Review Board at the IEDCR, Ministry of Health, Bangladesh,
IEDCR/IRB/04.
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Figure 4.1: Schematic description of identification of likely COVID-19 cases
by community support teams (CSTs) and model definitions. CSTs collect syn-
dromic data (age, gender and presence/absence of 14 predetermined symptoms),
and two sets of naso-pharyngeal swabs (for rapid antigen testing and PCR). We
used three model classes: rapid-antigen-test-only in 1, syndromic data only in 2,
and both rapid-antigen-test and syndromic data in 3. The PCR result is used to
train and test each model using temporal cross-validation.

4.3.2 Statistical Modelling

Structure

We developed three model classes using: 1. the rapid-antigen-test result; 2. the
syndromic data, and 3. the two data sources combined (Figure 4.1). We identi-
fied cases by PCR. As RAT-only used the rapid-antigen-test result, no statistical
model is needed. For Syndromic-only, we used a Bayesian multivariate probit
model,[21] with multivariate referring to multiple response variables. The multi-
variate probit structure allows the model to account for the binary and correlated
nature of the symptoms, while conditioning on the risk factors of age and gender,
thereby improving over models which implicitly assume independence between
symptoms. By using a Bayesian formulation, we generate full posteriors for our
parameter estimates, allowing natural quantification of uncertainty. We chose
minimally informative priors, with standard normals for the covariates and in-
tercepts and a flat LKJ distribution for the correlation matrix (described in more
detail in Supplementary Materials: Statistical Methodology).

For Syndromic - RAT Combined, we use a hurdled multivariate probit. The
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approach exploits the specificity of rapid antigen tests by treating rapid test-
positives as cases. While this sounds like a strong assumption, this simply trans-
lates in practice to telling all rapid test-positive individuals to assume they have
COVID-19. Rapid - antigen - test - negative individuals are then modelled using
the sensitive syndromic approach of Syndromic - only to capture PCR - posi-
tives missed by the rapid antigen test. This approach leverages the potentially
different syndromic profiles of PCR-positive patients who are rapid-antigen-test-
positive and -negative, allowing the model to adapt solely to the latter. The mod-
els were fitted to the data using Bayesian inference techniques based on Hamil-
tonian Monte Carlo in the Stan programming language.[22] Further technical de-
tails and model equations are presented in Supplementary Methods.

Model Selection

For model selection and all measures of performance, we used out-of-sample,
temporal cross-validation (Figure 4.2), where training and testing data are sepa-
rated based on time. We structured the cross-validation temporally to reflect the
real-world prediction problem: using recent testing data to predict new cases.
Due to the changing nature of the disease and its management over time, using
unstructured cross-validation would result in an overstatement of model perfor-
mance.

We conducted backwards model selection, starting with the most complex
biologically plausible model, to identify a subset of models with the highest pre-
dictive power. Shrinking the number of possible models was necessary to lower
computational demand and reduce the risk of overfitting. The large number of
symptoms corresponds to many potential model configurations (>131 000 for
14 symptoms and two covariates) which might perform well on the test sets by
chance (even under temporal cross-validation) but lack transferability to novel
situations. The Bayesian multivariate probit structure common to these mod-
els directly estimates the full posterior correlation matrix for the PCR-status and
other symptoms. By first using the strength of the correlation with the PCR-status
(coarse selection, Figure 4.2) and general predictive power (fine selection, Fig-
ure 4.2) to narrow down the number of candidate models, and then testing those
models under the epidemiological scenarios, we are more likely to choose models
that generalise well to new data (Supplementary Materials (Statistical Methodol-
ogy)).

Measuring Model Performance

We assessed models using three sets of increasingly policy-relevant criteria. First,
we use predictive performance to measure model performance in a decision -free
context (i.e. comparing predicted probabilities of an individual having COVID-
19 to their true status). Second, we use receiver operating characteristic (ROC)
curves to show generic model classification performance. Finally, we measure
classification performance under three epidemiological scenarios (defined in Ta-
ble 4.2).

We scored the models’ predictive power using cross-entropy (defined in Sup-
plementary Methods). Cross-entropy measures the accuracy of predicted proba-
bilities of binary outcomes, rather than making binary classifications, similar in
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+ +
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Import Symptoms and Covariates

Final Models

Figure 4.2: Model selection procedure. Rounds of model selection in the multi-
variate probit component of the Syndromic-only and Syndromic-Rapid Antigen
Test (RAT) Combined models. With 14 symptoms (5 shown for demonstration
purposes) and two covariates there are over 131 000 possible model combina-
tions. To make exploring these models computationally feasible and to reduce
the risk of overfitting, we carried out two rounds of model selection. A subset
of symptoms are identified using the strength of posterior correlation between
each symptom and PCR-status identified by the corresponding model, with the
weakest correlated symptoms removed during each round of selection. From
this subset of symptoms, a more exhaustive search of potential models is then
conducted to identify the best symptom-covariate relationships, using temporal-
cross validation to measure model performance. The best model for each level
of complexity (i.e. number of symptoms) are then used as our candidate models.
Only these final models are used for classification. This reduces the set of models
tested as classifiers from >131 000 to just four per model class.
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concept to a mean square error for normally-distributed data, but adapted for
binary data.[23] A cross-entropy of zero indicates a model that predicts with cer-
tainty the correct result each time. A random classifier for the problem scored
11.54

In practice, models are often evaluated on their performance as deterministic
classifiers rather than as stochastic prediction engines (i.e. their ability to classify
an individual as a COVID-19 case or not, rather than the probability that the indi-
vidual is a case). Deterministic classification requires that a probability threshold
is chosen over which patients are classified as COVID-19 positive. Classifier per-
formance was compared generically (using ROC curves to look at the error rates
that can be achieved with each model without specifying a scenario). Generic per-
formance here is only used to show the flexibility of the model classes, i.e. model
performance without reference to a specific scenario. The best model for a local
situation can only be determined if the relative costs of false positives and nega-
tives are considered.

We compare model performance under three scenarios (using error terms de-
scribed in Table 4.2) developed for illustrative purposes through discussion with
colleagues at IEDCR. In Scenario 1, we do not consider epidemiological context
but minimise false negative and false positive rates equally by maximising the
correct classification rates individually and in total, as measured by the harmonic
mean (not the arithmetic mean which would maximise the rates in total, Supple-
mentary Methods). Scenario 2 corresponds to epidemic growth as experienced
during the spread of the Delta variant during the period of data collection. Un-
der these circumstances, false negatives are costly relative to false positives. In
Scenario 3, incidence is assumed to be low and relatively stable. In this situation,
policy-makers may prioritize keeping false positive diagnoses low to prevent fa-
tigue and to keep the workforce active.

4.4 Results

4.4.1 Population Characteristics

Of 1241 participants enrolled by community support teams across Dhaka, 1172
(94%), had complete data available for analyses. The remainder were removed
due to duplicated sample identification codes that prevented reliable matching
of test results to symptom metadata. These duplications occur at random, due to
human error, and we do not believe they could bias results. Patient summaries
by age, gender, case positivity and symptoms are presented in Table 4.1. No
participants had been vaccinated as the study pre-dated mass vaccination in low-
income communities in Dhaka and only symptomatic patients were included in
this study because they were the local government priority for support. Case
positivity measured by PCR in Dhaka increased from 15.8% to 23.8% from the
first (19th-26th May 2021) to the last week (4th-11th July 2021) of the study, corre-
sponding to prevalence rising from 1.4 to 13.8 confirmed cases per 100 000 people
[24].
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Table 4.1: Breakdown of patient numbers by age and gender, in relation to case positivity by PCR and reported symptoms (both as
% rounded to nearest integer). Although age is binned here, raw age in years was used for analyses. Furthermore, in the survey
non-binary genders were permitted but none reported.
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16-25 Women 124 19 23 73 69 19 4 94 77 38 51 52 10 49 43 73 19
16-25 Men 157 20 20 74 72 22 5 91 73 44 45 50 10 36 42 62 13
26-35 Women 144 17 25 72 70 19 10 90 75 35 42 51 4 40 43 69 7
26-35 Men 178 26 26 80 78 14 10 89 74 38 38 49 7 38 33 69 16
36-45 Women 101 26 28 79 77 25 4 93 78 38 48 53 5 47 42 72 18

36-45 Men 119 24 23 75 71 18 7 89 71 38 38 55 8 39 41 67 8
46-55 Women 66 20 17 74 74 15 3 86 70 32 32 55 0 35 33 58 15
46-55 Men 58 22 16 55 55 14 2 84 57 34 34 52 10 45 33 69 7
56+ Women 57 23 25 72 68 23 11 84 54 33 30 49 4 32 26 60 14
56+ Men 61 26 30 66 64 15 5 77 59 41 36 49 8 36 23 52 11

All 1065 22 23 74 71 19 7 89 71 38 41 51 7 40 38 66 13
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4.4.2 Model Selection

Backwards model selection using strength of posterior correlation with outcome
(Methods (Statistical Modelling: Model Selection)) for both the multivariate pro-
bit syndromic data only model and the thresholded multivariate probit syndromic
data with rapid antigen test result (hereafter the Syndromic-only and Syndromic-
RAT combined) models showed a marked decline in predictive power at more
than 4 symptoms. The final four symptoms retained in Syndromic-only were loss
of smell, ongoing fever, diarrhoea and loss of taste and in Syndromic-RAT com-
bined were ongoing fever, wet cough, loss of smell and dry cough. The symptoms
are listed in reverse order of importance as determined by model selection (i.e. all
four symptoms were retained in the four symptom model, the first was removed
in the three symptom model, the second was also removed in the two symptom
model etc.) and the median estimated correlations can be seen in the Supplemen-
tary Results (Supplementary Figures 1 and 2). The covariate gender was dropped
for both model classes while age was dropped in the Syndromic-RAT combined
class but retained in the Syndromic-only class.

4.4.3 Predictive Performance

In the comparison of predictive performance under out-of-sample temporal cross
- validation (Methods (Statistical Modelling: Model Performance)), RAT - only
(rapid-antigen-test result) performed worst with a cross-entropy of 3.18 (cross-
entropy values further from zero correspond to worse predictive performance).
The median cross-entropy values were between 2.71 and 2.78 for Syndromic-only
models. Syndromic-RAT combined models performed best with cross-entropy
values between 1.56 and 1.6 (Figure 4.3).

4.4.4 Classification Performance

Generic model classification performance under out-of-sample temporal cross-
validation (Methods (Statistical Modelling: Model Performance)) for the one and
four symptom models in the Syndromic-only and Syndromic-RAT Combined
classes is shown by their ROC curves (Figure 4.4). The curves for the models
of different complexities are extremely similar (as are the two and three symp-
tom model curves, not shown), however, note that the four symptom model
has higher precision and granularity across both axes. The RAT-only model is
a binary test (rapid-antigen-test positive or negative) and so the ROC is a single
value, not a curve, with false positive rate of 0.02 and a false negative rate of 0.45.

4.4.5 Scenario-Specific Performance

Scenario-specific classification performance under out-of-sample temporal cross-
validation (Methods (Statistical Modelling: Model Performance)) is shown in Fig-
ure 4.5. Across all scenarios (defined in Table 4.2), the best models in Syndromic-
RAT Combined that used both the rapid antigen testing and syndromic data
performed equally well or better than the other two model classes. In Scenario
1 (“Agnostic”, wherein the correct classification is maximised, assuming equal
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Figure 4.3: Model Predictive Performance. Predictive performance of candi-
date models were measured using out - of - sample cross - entropy. Combined
posterior median and interquartile ranges for n = 1172 biologically independent
individuals predicted under temporally - structured cross - validation. Cross -
entropy shows the most generalised-level of model predictive power, assessing
performance in the probability scale without requiring classification threshold
decisions. A cross - entropy of zero indicates a model that predicts with certainty
the correct result each time. A random classifier for the problem scored 11.54. In-
terquartile ranges are shown for the posterior cross-entropy of the best candidate
models at each level of model complexity tested under temporal cross - valida-
tion. The intermediate complexity models perform best at prediction, although
performance is similar across all the models within each model class. There was
a marked decline in predictive power at more than four symptoms, leading us to
choose this as the maximum complexity model in our candidate models. Model
classes are colour-coded, the rapid-antigen-test only (RAT-only) model is purple,
Syndromic - only model is teal, and the Syndromc - RAT Combined model is
yellow.
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Figure 4.4: Generic Model Classification Performance. Median (grey dots)
and interquartile ranges for receiver operating characteristics (ROC) for rapid-
antigen-testing-only approach (purple) and posterior median and interquartile
range ROC for Syndromic - only (teal) and Syndromic - Rapid Antigen Test (RAT)
Combined (yellow) models for n = 1172 biologically independent individuals pre-
dicted under temporally - structured cross - validation. In the RAT-only model,
the ROC is a single value (i.e. a dot rather than a line) as the binary test has
a single sensitivity and specificity. In Syndromic - only and Syndromic - RAT
Combined classes, the ROC values demonstrate the performance of the model for
any hypothetical scenario as defined by the axes (as opposed to Figure 4.5 which
demonstrates model performance in specific epidemiological scenarios which are
realisations of single points in this space). While ROC plots are often plotted as
curves, we do not have continuous probability values due the binary nature of
predictor symptoms. This is important as discontinuity in the probabilities im-
pacts the sensitivity of the model to classification thresholds, such as those used
in the scenarios below.
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Figure 4.5: Performance of models under three epidemiological scenarios.
Combined posterior median and interquartile ranges of error rates for n = 1172 bi-
ologically independent individuals predicted under temporally - structured cross
- validation. In the Agnostic Scenario, the model is optimised to maximise the
correct classification rate with error measured as the sum of the false positive
and false negative rates. In the Epidemic Growth Scenario, a maximum false
negative rate of 20% is permitted, and the error is measured as the false posi-
tive rate. In the Declining Incidence scenario, a maximum false positive rate of
20% is permitted, and the error is measured as the false negative rate. These re-
quirements were determined through discussion with colleagues at the Institute
of Epidemiology and Disease Control (IEDCR), Bangladesh. The plot shows the
posterior median and interquartile range for scenario-specific errors. Lower er-
rors correspond to better model performance. There is no error rate defined for
rapid-antigen-testing-only model (RAT-only) in the Epidemic Growth Scenario
as the model failed to meet the requirement for that scenario (indicated by grey
bar). Model classes are colour-coded, the RAT - only model is purple, Syndromic
- only model is teal, and the Syndromc - RAT Combined model is yellow.

costing of false positives and false negatives, Table 4.2), models in RAT-only and
Syndromic-RAT Combined classes performed equally well (overlapping poste-
rior interquartile ranges) and distinctly better (no overlap in posterior interquar-
tile range) than models in the Syndromic-only class. The median errors, as de-
fined in Table 4.2, were 0.43 for models in RAT-only and Syndromic-RAT Com-
bined and between 0.85 and 0.86 for Syndromic-only models (Figure 4.5). In Sce-
nario 2 (“Epidemic Growth”, wherein false negative rates must be below 20%,
Table 4.2), the RAT-only models failed to meet the scenario-requirement. The me-
dian errors were between 0.74 and 0.75 for Syndromic-only models, and 0.41 and
0.5 for Syndromic-RAT Combined models (Figure 4.5).

In Scenario 3 (“Declining Incidence”, wherein false positive rates must be
below 20%, Table 4.2), Syndromic-only again performed worst, and Syndromic-
RAT Combined achieved the lowest error, with RAT-only falling between the two
(closer to Syndromic-RAT Combined than Syndromic-only). The error in RAT-
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Table 4.2: Requirements and performance criteria for each epidemiological
scenario. The requirement refers to a base level of performance the model
must achieve, allowing the more flexible models to be adapted to meet that
requirement as closely as possible (e.g. by determining a classification thresh-
old). These requirements were determined through discussion with colleagues
at the Institute of Epidemiology and Disease Control (IEDCR), Bangladesh,
using internal resource projections. The performance criterion is used to deter-
mine which model performs the ’best’ given that the requirement has been met.

Scenario Name Requirement Performance Criterion
(Error)

1 Agnostic Maximise correct
classification rates

Sum of error rates

2 Epidemic Growth <20% false negative rate False positive rate
3 Declining Incidence <20% false positive rate False negative rate

only was 0.03 and the median errors ranged from 0.19 to 0.2 for Syndromic-only,
and 0.19 to 0.2 for Syndromic-RAT Combined (Figure 4.5). The results for each
scenario-model combination can be translated into numbers of misclassifications
per 1000 tests if the test positivity rate is known. We present this in Supplemen-
tary Results (Supplementary Results Table 1) for low- (5%), average- (20%) and
high- (35%) test positivity rates in Bangladesh.

The candidate models are chosen as a result of a selection process and per-
formed much better than more complex models (i.e. with 5 or more symptoms)
or simpler models (with no symptoms but an intercept and age and gender as co-
variates) in terms of cross-entropy and ROC. For the models that used syndromic
data, across all scenarios, within the final four candidate models the number of
symptoms included made relatively little difference in terms of median perfor-
mance (with respect to error, Figure 4.5 scenario-plot and Table 4.2), although the
more complex models have higher precision.

Across all metrics, the rapid antigen test result is the most informative data-
type for potential COVID-19 patients. However, incorporation of even one symp-
tom and the use of a modelling framework greatly improves our ability to pre-
dict and classify cases, both generically and in specified scenarios. Including ad-
ditional symptoms and covariates provides further information on the patient’s
status and greater model flexibility, resulting in higher precision in predictions
and classifications.

4.5 Discussion

We have demonstrated that combining rapid antigen tests with syndromic mod-
elling yields better identification of COVID-19 cases than either diagnostic in iso-
lation. These gains in performance are mirrored across metrics of prediction, as
well as general and scenario-specific classifications. The biggest improvement is
seen under the scenario of “Epidemic Growth” (Table 4.2), and as expected fol-
lowing relaxation of restrictions and with the emergence of new variants. In this
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scenario, the combined data model has a false negative rate of 18% (IQR: 21-15),
22 (IQR: 19-25) percentage points lower than the rapid-antigen-test-only model.
Although the syndromic model matches the combined model’s false negative
rate, its false positive rate is 41% (IQR: 47- 37), 33 (IQR: 30- 33) percentage points
higher. In real terms, at the end of our study, there was a 20% case positivity
rate in Bangladesh. By applying our framework under the “Epidemic Growth”
scenario, for every 100 rapid antigen tests, our approach would capture an addi-
tional 7 cases. In a country deploying millions of tests per week, this results in
catching tens of thousands of cases that would otherwise be missed.” Similarly,
the combined model class performs equally well or better than the other models
for the other scenarios explored (Figure 4.5). These scenarios offer snapshots of
performance, while the model prediction and classification metrics provide an
indication of how the models perform more generically (Figures 4.3 and 4.4, re-
spectively). The more complex model classes achieve this top performance across
all scenarios and metrics measured here thanks to their flexibility (allowing them
to be readily adapted to new situations) and their synergistic use of the higher
specificity rapid antigen testing and the more sensitive syndromic data.

The final symptoms and covariates chosen through model selection should be
interpreted cautiously. Firstly, the power of the models to detect relationships
will be partially determined by sample size. Secondly, these models were de-
veloped for prediction and classification in a unique sub-population: community
support team (CST)-identified, symptomatic patients in low-income communities
in Dhaka. From the same symptom and risk factor set, different variables were
retained for different model classes, despite data being collected over a short pe-
riod from the same population. These differences may point to mechanisms by
which CST-identified and rapid antigen test positive individuals differ from other
groups. They also underline the importance of collecting a relatively broad range
of symptom data as the syndromic profile of the disease shifts between popula-
tions. Of interest is whether individuals identified by PCR but missed by rapid
antigen tests are less infectious and more typical of asymptomatic cases (perhaps
due to different lengths of time since symptom onset). This could be examined
using viral load measured as Threshold Cycle (Ct) values from PCR and further
testing for other illnesses.[25] Our use of PCR as a validation test should also
be explored further, as it does not have 100% sensitivity so additional validation
tests may be informative. However, finding alterantive gold-standard tests that
can be carried out in the community is challenging.[26]

The modelling frameworks allow for the potential inclusion of additional co-
variates where they are collected reliably. These covariates may define different
sub-populations in which we expect the relationships between symptoms and
infectious status to differ. For example, vaccinated patients would be expected
to exhibit fewer and milder symptoms than unvaccinated patients. By including
vaccination status alongside symptoms within the model, the model can share
information between the two groups while allowing the relationships to differ
where this improves prediction. Similar approaches could be taken to incorporate
rapid antigen test manufacturer, recent disease prevalence or time since symptom
onset. Furthermore, using a modelling framework allows explicit estimation and
exploration of these differences, rather than relying on post hoc analysis of misdi-
agnosis rates (for example, [27]). When a particular data source is found to have
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good predictive power, it would be useful to identify whether this could target
further data collection. For example, the low false-positive rate of rapid antigen
tests means that, if affordable, serial-testing of the same individual could increase
true positive detections without a major impact on accuracy.

The boost in diagnostic performance we found was achieved by harnessing
data collected by community-based health workers using a mobile-phone based
application to record patient symptoms and test results. These data were already
being collected in Bangladesh and similar methods are being rolled out in other
Low- and Middle-Income Countries.[28; 29] We ensured our method is scalable
by developing it using a large community-based sample and with input from the
CST program organisers. As CST data are collected via a mobile phone applica-
tion the diagnostic model can be updated in real-time. The algorithm of the app
could therefore be modified to reflect local epidemiological requirements, local
case rates and the considered cost/benefits of misdiagnosis, thereby facilitating
adaptation to new variants or even new diseases. Similarly, if a source of data be-
comes unavailable then the underlying model can be changed to reflect this. For
example, if there are rapid antigen test supply problems, the app could deploy
Syndromic-only which uses the same data as Syndromic-RAT Combined, with-
out relying on the rapid antigen test, and the combined model could be retrained
on tests from different manufacturers with different performance characteristics.

One of the key innovations of this framework is the ability to adapt the di-
agnostic to local populations and their needs. To achieve this, we need good
quality, local data collection and to understand the costs of sensitivity and speci-
ficity. The costs of false negatives and false positives vary greatly depending on
epidemic context, and balancing the treatment of individuals with control of the
health burden at a societal level.[30] Similarly, the market price of interventions
can fluctuate depending on demand, aid funding and global trends.[31] In prac-
tice, the costs of rapid antigen tests are likely to be up to an order of magnitude
lower than PCR when considering the additional infrastructure and personnel.
Access to testing (RAT or PCR) needs to be considered as part of weighing up the
costs and benefits of surveillance approaches.[32] Understanding how to measure
and balance these demands requires insights from economists, epidemiologists,
social scientists and policy-makers, and is an area of active research. [33] Given
the degree of complexity, it is tempting to rely on methods that do not openly
require a decision to be made about the relative costs of the different misclassi-
fication types. However, rather than removing the complex cost structures in-
volved, such methods simply hide them. All methods place a balance on false
positives and negatives implicitly, our hope is that by requiring these decisions
to be made explicitly, they are more readily challenged, researched and improved
upon. Similarly, the need for local data collection should not be seen as a weak-
ness of the method, but rather a welcome requirement that allows us to directly
assess intervention success and biases.

Pandemic management can only be done with testing at scale. The combined
syndromic and rapid antigen testing approach that we report is promising for
large-scale COVID-19 testing in low-income communities. Moreover, our frame-
work is adaptable, including for many other infectious diseases where strict ad-
herence to gold-standard laboratory diagnostics greatly limits testing capacity.
Imperfect diagnostics are frequently imperfect in different ways, and these dif-
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ferences are ripe for statistical treatment. These methods are often more agile
than gold-standard diagnostics in changing situations as experienced during the
pandemic, when fast responses are essential. Overall, our approach shows that
by understanding how to utilise the complementary strengths of imperfect but
rapid diagnostics (and deploying the more limited gold-standard testing for vali-
dation), good quality large-scale testing can be achieved even in low-income com-
munities.

4.6 Code Availability

The statistical code used in this study are available in a GitHub repository at
https://github.com/fergusjchadwick/COVID19 SyndromicRAT public.
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Do identification guides hold the key
to species misclassification by citizen
scientists?
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5.1 Abstract

1. Citizen science data often contain high levels of species misclassification
that can bias inference and conservation decisions. Current approaches to
address mislabelling rely on expert taxonomists validating every record.
This approach makes intensive use of a scarce resource and reduces the role
of the citizen scientist.

2. Species, however, are not confused at random. If two species appear more
similar, it is probable they will be more easily confused than two highly
distinctive species. Identification guides are intended to use these patterns
to aid correct classification, but misclassifications still occur due to user-
error and imperfect guidebook design. Statistical models should be able
to exploit this non-randomness to learn confusion patterns from small val-
idation data-sets provided by expert taxonomists, yielding a much-needed
reduction in expert workload. Here, we use a variety of Bayesian hierar-
chical models to probabilistically classify species based on the species-label
provided by the citizen scientist. We also explore the utility of guidebooks
provided by the citizen science schemes as a prior for species similarity, and
hence draw conclusions for their future improvement.

3. We find that the species-label assigned to a record by a citizen scientist, even
when incorrect, contains useful information about the true species-identity.
The citizen scientists correctly identify the species in around 58% of records.
Using models trained on only 10% of these records (validated by experts),
we can correctly predict species-identity for 69 (90%CI: 64-73)% of records
when the guidebook is used, vs 64 (58-69)% for models that do not use the
guidebook. The fact that misclassifications can be predicted systematically
indicates that improvements could be made to the guidebook to reduce mis-
classification.

4. By using Bayesian, hierarchical models we can greatly reduce the work-
load for experts by providing a probabilistic correction to citizen science
records, rather than requiring manual review. This is increasingly impor-
tant as the number of citizen science schemes grows and the relative num-
ber of taxonomists shrinks. By learning confusion patterns statistically, we
open up future avenues of research to identify what causes these confusions
and how to better address them.
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5.2 Introduction

Citizen science has become increasingly important for addressing modern ecolog-
ical questions. Systematic methods for monitoring biodiversity can rarely achieve
the same scale in space or time. Simultaneously, these projects empower mem-
bers of the public to take an active interest in the natural world and its stew-
ardship [1]. However, these data are challenging to analyse, with heterogeneous
recording effort across space, time, and taxa, and frequent misclassification of
species [2]. A large number of models have been developed to tackle heteroge-
neous effort problems in citizen science data [3; 4; 5], however, fewer attempts
have been made to address species misclassification [6; 7].

Misclassifications can affect biological inference. For example, in a survey
aimed at describing the habitat associations of a focal species, mislabelling of
other species as the focal species can increase both bias and uncertainty in the
perceived habitat usage. If the habitat usage by the two species overlaps, this
may be small, however, if species misclassifications lead to false positive records
the resulting inference will be biased [8; 9]. Schemes that acknowledge these
problems tend to tackle species misclassification via labour-intensive manual re-
view of each record by experts [10]. Unfortunately, expert reviewers are few [11]
and citizen science records are many [12]. We therefore require solutions to the
problem that make efficient use of small amounts of expertly reviewed data.

Fortunately, most species are not confused at random [10]. Species are most
likely to be confused if they share similar physical traits, such as coloration, size
or behaviours. Such non-randomness is amenable to statistical treatment via the
development of suitable observation models. Statistically modelling the obser-
vation process allows us to learn which species are confused and to make prob-
abilistic reclassifications. These misclassification patterns can be learned from
expert-validated data alone [13] but to reduce the workload for experts we can
incorporate prior knowledge about species similarity. Crucially, we can incor-
porate prior knowledge about species similarity from the perspective of the citizen
scientists. The features that make two species look similar to a citizen scientist, for
whom species identification may be a new experience, are likely to differ from
those used by experts.

Fortunately, we have expert knowledge on what citizen scientists see codi-
fied in identification guides. These guides are developed by scheme organis-
ers and use simple, easy-to-learn features to help citizen scientists distinguish
species. Scheme organisers often incorporate knowledge from citizen science
workshops and previous schemes when designing guides [14]. This may lead to
the traits used in different guides varying for the same species group, however,
most guides are characterised by minimal structure (i.e. they do not use keys or
only use very coarse keys) and the traits selected tend to be easy to find and dis-
tinguish without previous experience. Translating guidebooks into formal priors
is challenging due to this lack of imposed structure, as it is unlikely that the traits
are weighted equally and citizen scientists will develop heuristic hierarchies of
traits and combinations thereof.

Overcoming this challenge and including guidebooks in misclassification mod-
els should also allow us to assess guidebook design. Assuming the species are
distinguishable, if the models do not find signal in which species are confused
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(with or without the guidebook prior), then the guidebook (or some other form of
training) is performing well and misclassifications are down to user error alone.
If the models do find a signal in which species are confused, then there is struc-
ture in the misclassifications not currently addressed by the guidebooks. If the
guidebook prior is uninformative, it is not capturing features that lead to confu-
sions. This may arise from the citizen scientists using traits that are not included
in the guidebook or making errors that do not correspond to conventional traits,
for instance, labelling the record as a species with a similarly spelled name or
some species being culturally more important, for example, if they are rare or in-
vasive [15]. If the guidebook prior is informative, it is generating confusions by
making species appear overly similar. This may arise from including too many
traits and placing insufficient emphasis on the most informative traits.

In this paper, we present a series of observation models that address species
misclassifications explicitly. These models include multiple approaches to incor-
porating guidebooks as priors (including not incorporating the guidebook). The
prediction performance of these models is tested under cross-validation with dif-
ferent amounts of training data using both simulated and real-world data from
the “Blooms for Bees” citizen science scheme [10]. We discuss the implications of
the results for guidebook design and suggest extensions to these models.

5.3 Materials and Methods

5.3.1 Modelling Problem

For a data set of N records we consider two N -length vectors: the record-labels
(the species label chosen by the citizen scientist), U ; and the record-identities (the
species that a record truly belongs to), T . The elements of both vectors take values
from a set of M levels representing the possible species.

Tn, Un ∈ {Species 1, ... , Species M}

We construct our model generatively, beginning with the underlying biologi-
cal process that determines the relative frequency of each species (the true record-
identities). We assume this process is independent of our observation process, is
proportionate to the species abundance and will often be the pattern we are in-
terested in reconstructing from our data. Even if we are not interested in the
biological process, by jointly modelling it with the observation process we can
potentially improve our estimation of the species misclassifications [7].

In principle, any biological process model could be used. To simplify nota-
tion, we will assume the mth species’ relative frequency, αm, is a function of K
environmental covariates (X , e.g. distribution of temperature, precipitation and

wind): αm = f

(
K∑
k=0

βk,mXk,m

)

Since the true record-identities, Tn, are non-ordinal, the categorical (or single-
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trial multinomial) distribution, Cat, is a natural choice for the likelihood of any
given record. The categorical distribution is parameterised with a vector of prob-
abilities, A, corresponding to the probability that the record truly belongs to each
potential species. We therefore transform our unbounded linear predictor, α,
into a simplex using the softmax link function (a multivariate generalisation of
the logit transformation, also known as the “multi-logit”).

Tn ∼ Cat(A)

A : Am =
eαm

M∑
i=1

eαi

Now that we have a model for generating the true species identities, we need
to link these identities to the labels assigned by the citizen scientists (i.e. the
observation process model). We want to estimate the probability that a given
record-label, Un, is generated conditional on the underlying record-identity, Tn,
Here, too, we will use a categorical distribution parameterised by the rows of an
M×M matrix, C that corresponds to the record-identity, Tn. This matrix encodes
the pairwise confusability of Tn with each potential Un, i.e., the generation of Un

from Tn. The formulation of CTn could take multiple forms depending on the
amount of trust placed in the citizen scientist, whether external information is
incorporated, and, if so, how that information is incorporated. Here, we describe
the generic structure using the shorthand f for the different modelling frame-
works, with f indicating the vector of classification probabilities conditional on
the true identity of the record, and fm showing the mth element of that vector. Be-
low, we describe the different variants of the modelling framework in more detail
(see also Figure 5.1)

Un ∼ Cat(f(CTn))

P (Un = Species m|Tn) = fm(CTn)

5.3.2 Model 0: Trust User

Our null “model” assumes that the citizen scientists are 100% correct in their la-
bels (i.e. the label always matches the species identity). This model is extreme
since even experts are rarely 100% correct but, implicitly, this is the model as-
sumed by any analysis of citizen science scheme that uses the data without cor-
rection or mediation via calibration datasets and strong priors.

P (Un = i|Tn = j) = δi,j

where δi,j =

{
1, if i = j

0, otherwise
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Figure 5.1: Causal Structures of Candidate Models We define five modelling
frameworks of different degrees of complexity. All of the frameworks contain a
“Species Incidence” term, α, which corresponds to the function that allows the
estimation of (and adjustment for) relative species abundance. The “Trust User”
framework assumes that the record-label matches the record-identity. The “Min-
imal” framework incorporates an unstructured confusion matrix, C, allowing
the record-label to differ from the record-identity. The “Deterministic Correla-
tion”, “MV Probit” and “Latent Factor” frameworks all use the citizen science
scheme’s guidebook, G, to estimate correlations between species, V , to inform
C. The “Deterministic Correlation” uses the empirical correlation between the
species in the guidebook as data to inform C. The “MV Probit” framework esti-
mates the correlation between the species in the guidebook using a multivariate
- probit model. These two approaches weight the guidebook traits equally. The
final framework, the “Latent Factor” approach, is the most flexible, using latent
factors, S, to combine and reweight the traits. All the approaches which use the
guidebook are subject to a flexible sigmoidal transformation using a Normal CDF
parameterised by θ and ψ
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5.3.3 Model 1: Minimal

The simplest model (conceptually) is to populate the elements in C with parame-
ters that allow the citizen scientists to confuse species (i.e. suggest the wrong label
conditional on the species’ identity). If we do not know a priori which species the
citizen scientist is likely to confuse, we can use free parameters to populate C.
The elements of C can be drawn independently and the rows used to param-
eterise the categorical distribution under softmax transformation. To make the
model identifiable, we must fix one parameter in each row (i.e. in each vector
passed to the categorical distribution). Here, we fix the correct classification (the
diagonal of C) to one to maintain consistency with our later models that use a
correlation structure (and thus also have ones on the diagonal). As we expect
correct classification to be more likely than any given misclassification, we cen-
tre the off diagonal values around zero. The spread of misclassification values
is determined by a standard half-Normal prior on σ. The larger σ is, the greater
the spread in probabilities of misclassification. A smaller σ indicates most mis-
classifications are equally likely to each other, but much less likely than correct
classifications. It is plausible that σ could vary by species so we examined two
versions of the model: one with a global σ parameter (as below) and a more flex-
ible one where it is indexed by species, σi.

Un ∼ Cat(f(CTn,.))

P (Un = Species m|Tn) = fm(CTn,.) =
eCTnm

M∑
i=1

eCTni

Ci,j ∼ N(0, σ2)

σ ∼ half-N(0, 1)

Ci,i = 1

5.3.4 Estimating Species Similarity from ID Guides

Species identification by citizen scientists is most commonly done visually and
we would expect similar-looking species to be more readily confused than highly
distinctive-looking species. However, the question then arises: how do we know
which species look similar to the citizen scientists? One source of information
on this could be the identification guides provided to the citizen scientists by the
scheme-organisers. These guides are often very different from professional taxo-
nomic guides where subtle features and highly structured keys are relied upon.
Citizen science guides are characterised by easy-to-recognise features and limited
structure. Many guides are thus easily converted into simple M ×H binary trait
matrices, G, with each row corresponding to a species, each column the level of
a trait and a binary indicator in each cell indicating whether the indexed species
has the indexed trait.

The distance between species in G-space, V , therefore, represents our prior
expectation of which species are likely to be confused and can be used to inform
our C matrix. There are multiple options for defining this distance depending
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on the amount of flexibility given to estimating the correlation in G-space and
the weighting of the different dimensions (i.e. the different traits). The simplest
of these methods, the “Deterministic Correlation” model described below, is the
only method to use the empirical correlation of species in G-space as a measure
of distance, making the least flexible use of the guidebook data. The “MV Pro-
bit” method relaxes this approach by estimating the correlation of species in G-
space as a measure of distance by means of a multivariate probit. Both of these
methods apply equal weighting to the trait dimensions in G-space, but in real-
ity it is unlikely that all traits are equally important to the citizen scientists for
species determination. For example, some traits, like colour, may be easier to
assess without specialist knowledge and be relied on more heavily. They may
also be viewed in combination, so while head colour, thorax colour and abdomen
colour are separate traits in the guidebook, many species have the same colour
on multiple body parts and will be thought of as “the ginger bee” (like many of
the carder bee species). Our final method, the “Latent Factor” model, accounts
for this behaviour by allowing the traits in G-space to be up- or down-weighted
and recombined using latent factors (or “supertraits”). The correlation between
species in latent factor space is then used to inform C.

The correlation distance between species, regardless of how it is estimated,
does not necessarily map directly onto the confusability distance in the proba-
bility space. While we would generally expect the confusability ranking to be
maintained, the scalar distance in the two spaces will likely differ. We, therefore,
introduce a convolution step, wherein we apply a flexible sigmoidal transforma-
tion to each vector of correlational distances. Specifically, we use the Normal CDF
function which has two parameters, a slope (θ) and threshold (ψ). As the slope
approaches zero, the sigmoid becomes a step function, with values smaller than
the threshold transformed to zero and larger values become ones. The threshold
determines where this step occurs. As the slope gets larger, the values around
the threshold will become values between zero and one, with only more extreme
values becoming zeroes or ones. We expect a small number of species to be con-
fused with the true species, so place a prior having a mid-high threshold and
small slope. Similarly to the σ parameter in the “Minimal” model, it is plausible
that θ and ψ could vary by species so we examined two versions of the model:
one with global values for those parameters parameter (as below) and a more
flexible one where they are indexed by species (θTn , and ψTn).

V ′
Tn,m =

1

2

[
1 + erf

(
VTn,m − ψ

θ
√
2

)]
ψ

2
+ 0.5 ∼ Beta(5, 2)

θ ∼ half-N(0, 0.22)

We also need to allow for confusion not associated with the guidebook. We
achieve this by incorporating V ′

i,j as a prior for Ci,j . As V ′
i,j is bounded by zero

and one, we use a Beta distribution with a mean-variance parameterisation. This
parameterisation allows the variance, λ, to up or down-weight the contribution
of V ′

i,j to Ci,j .
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CTn,m = Beta
(
λ · V ′

Tn,m, λ ·
(
1− V ′

Tn,m

))
AlthoughCi,j is bound by zero and one, the vector still needs to be normalised

to generate a simplex of confusions. One option would be to use the softmax
transformation (as in the Minimal Model), however, with constrained values (un-
like in the Minimal Model) softmax tends to generate a large number of small
probabilities. This contradicts our understanding of confusions which we expect
to be sparse, with a few large probabilities (commonly confused species) and
many zero probabilities (species which are never confused). Fortunately, as the
values are now all positive, we can simply normalise by dividing each element
of the vector by the sum of the vector. This is easy to calculate and is compatible
with sparse probabilities.

C ′
Tn,m =

CTn,m∑M
i=1CTn,i

These normalised values can now be used to parameterise the categorical dis-
tribution as in the Minimal Model:

Un ∼ Cat(f(CTn,.))

5.3.5 Model 2: Deterministic Correlation

There are several numerical methods for calculating the empirical correlation of
a dataset. These point estimates for correlations, e.g. Pearson’s, Kendall’s and
Spearman’s coefficients assume no uncertainty in the correlations but are very
computationally efficient, and thus useful as a baseline guidebook-based model.
We use the Pearson’s correlation coefficients for the species in the guidebook as
data, V .

Vi,j =
cov(Gi,.,Gj,.)

σGi,.
σGj,.

5.3.6 Model 3: Multivariate Probit

The next most complex version of the model allows the uncertainty in the guide-
based correlation, V , to be estimated. Since we have binary data, a natural
method for doing this is the multivariate probit, which assumes that binary vari-
ables are realisations of correlated, normally distributed latent processes [16; 17].
This assumption is both computationally expedient and often matches our bio-
logical knowledge, since many binary variables are functions of continuous un-
derlying processes. For example, an individual is considered infected or not in-
fected (binary) based on an underlying quantity of pathogens (continuous).
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The binary data, G formed of H traits and M columns, are linked to the latent
continuous variable, z, by means of a thresholding function, I, which returns a
one if the latent variable is positive and a zero if it is negative. This thresholding
process is equivalent to a probit link.

Gh,m = I(zh,m > 0)

The latent state, z, is generated from anM length intercept-only linear predic-
tor, β and a multivariate-Normal (MVN) error term, ϵ. The correlation between
species is induced through the normalised covariance matrix parameter of the
MVN.

zh,m = βm + ϵh,m

ϵh ∼MVN(0,V )

Vii = 1

The intercept corresponds to the number of traits each species has (i.e. the
number of traits indicated by a 1 in the guide). There is little biological inter-
pretation for this value (as it is determined by encoding decisions), so we use a
standard Normal prior which is minimally informative under a probit transfor-
mation.

β ∼ N(0, 1)

We place an LKJ prior on the correlation prior with η = 1. The LKJ prior
corresponds to beta-distributed marginal correlations of Beta

(
η+M−2

2
, η+M−2

2

)
. At

η = 1 this is relatively uniform at small values of M but with slight peaking at 0
correlations for larger values of M . Lower marginal correlation between species
as they increase is plausible although the degree of shrinkage should be moni-
tored when re-applying. There are relatively few priors for correlation matrices
and the LKJ distribution is computationally efficient.

V ∼ LKJ(1)

5.3.7 Model 4: Latent Factor Models

The approaches thus far all treat traits as equally important, however, this is un-
likely to hold in reality. Field biologists (particularly ornithologists) have long
referred to the “jizz” or “vibe” of an organism: the combination of shape, mode
of movement, posture, colouration and myriad subtle traits which allow an or-
ganism to be identified from a quick glance. In these scenarios identification is
not occurring on a trait-by-trait basis but some reading of the whole or of groups
of traits together. While non-expert users may not achieve identification at a
glance, it is likely they process the guidebooks and identification process in a
similar way. Some species will be discounted immediately based on the dom-
inant colour (a combination of thorax, abdomen, and tail colour), for instance,
while other species will be more challenging to disentangle. The development
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of citizen science identification guides is often an attempt to formalise this pro-
cess by using measurable traits. Guides may be able to capture this with expert
construction, but the need to function for novice citizen scientists as well as more
experienced observers means that there will often need to be an imperfect match
between the guide layout and its use by groups of different experience levels. As
a result, to understand guide-based confusion we need a system by which we can
up- and down-weight the contribution of different traits in the guidebook.

One approach is to consider the traits in G as functions of latent factors, S.
These latent factors can be thought of as “super-traits”: continuous underlying
processes that when combined in different proportions give rise to the traits that
are measured and included in the guide. Crucially, the correlation between latent
factors represent the similarity between species as seen by the citizen scientists,
so correlations between species in S give us V . The number of latent factors, R,
can be estimated or may be pre-determined based on the size of data/previous
experiments (or the latter used to inform a prior for estimation).

Estimating Latent Factors from Traits Most traits are binary so here we link
traits, G, and latent factors, S, using logistic regression. The latent factors need
to be flexible but estimable. For this reason, we assume a linear relationship be-
tween traits and their latent factors and provide standard Normal priors which
are relatively uninformative under logit transformation. Where more information
is known about the latent factors, more complex functional forms could be used.
Similarly, where non-binary traits are present the approach can be generalised to
accommodate more complex traits using other GLM formulations.

Gm,h ∼ Bern(pm,h)

ln
(

pm,h

1− pm,h

)
= βh,0 +

R∑
r=1

Sm,rβh,r

Sm,r ∼ N(0, 1)

As the latent factors have exchangeable priors, we risk label-switching identi-
fiability issues (i.e. the indexing of the latent factors may be inconsistent between
MCMC chains). We need to impose some form of order on S, however, as we are
going to estimate the correlations between the rows of S (i.e. between the species
in super-trait space) ordering the latent factors is undesirable. For this reason, we
place a hierarchical prior on β.

βm,r ∼ N(0, τr)

τr ∼ half-N(0, 0.5)

τ1 ≤ τ2 ≤... ≤ τR−1 ≤ τR

Even with these restrictions, S and β are only identifiable when linked to
another data source (in our case, the identity-label confusions).

Linking Latent Factors to Species Confusions through V To link S to V we
simply calculate the correlations between the rows ofS (i.e. between the species
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in latent factor space). To do this, we must first z-score normalise the rows of S
to achieve a mean of zero and variance of 1 to give us Ŝ. We can then calculate
the Pearson correlation of S by post-multiplying Ŝ by it’s transpose to give us V .

Ŝm,r =
Sm,r − S.,r

σS.,r

V =
Ŝ · ŜT

R− 1

5.3.8 Measuring Performance

The aim of these models is to reduce the work required by expert taxonomist
reviewers to processing a small validation data set to which the model can be fit,
while propagating and stating the uncertainty in corrected classifications. The
best model, therefore, is the one that has highest out-of-sample predictive power
from the smallest training data set. In this section, we define how we measure
out-of-sample predictive performance using the correct classification rate and our
experimental design for comparing performance across different sample sizes.

First, since the same performance metrics are measured across varying models
we will use the following summary notation to represent all the models (includ-
ing those that incorporate V ):

Tn ∼ Cat(A) ∴ P(Tn = Species i) = Ai

Un ∼ Cat(f(CTn,.)) ∴ P(Un = Species j) = fj(CTn,.)

If we then want to predict Tn given Un we apply Bayes rule:

P(Tn = Species j|Un = Species i) =
P(Un = Sp. i|Tn = Sp. j)P(Tn = Sp. j)

M∑
j=1

P(Un = Sp. i|Tn = Sp. j)P(Tn = Sp. j)

We will represent the M ×M matrix that defines all the possible combinations
of U and T using the symbol Ψ. Each row of Ψ corresponds to a label and defines
a simplex (probabilities summing to 1) which give the probability of the possible
record-identities, T .

The simplest way to think about model performance is to measure how often
the record-identity predicted by the model matches the true record-identity as
validated by the model, i.e. the correct prediction rate, R. To estimate this value,
we generate prediction values, T̂n, for each record in a holdout set of size N , and
measure the proportion of records for which T̂n = Tn
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T̂n ∼ Cat(ΨUn,.)

R =

N∑
n=1

{
1 if T̂n = Tn

0, otherwise

N

5.3.9 Comparing Performance Under Cross-Validation and Vary-
ing Data Richness

As outlined above, models need to be evaluated on both predictive performance
under varying data richness (i.e., what proportion of the available data is used in
training the model). We therefore use holdout cross-validation, where the data
available are randomly assigned to two groups, d0 (training) and d1 (testing). The
assignment is repeated J-times to estimate the average and spread of the per-
formance metrics. Varying data richness (the sizes of d0 and d1) introduces two
sources of uncertainty associated with the training and testing sets of data. As
either the training or testing set shrinks, the number of data-point combinations
will increase, leading to higher variability in the fitting process and prediction
targets that will both be reflected in the performance metrics.

We are not interested in uncertainty due to testing set size therefore the sim-
plest solution to this source of variation is to fix the size of d1. Naturally, the
size of available testing data is complementary to the amount of available train-
ing data. We therefore chose to test on 25% of the available data, as requiring
more than 75% of the available data to be used in training would not represent a
significant reduction in the work of the expert validators.

Varying the size of d0 introduces two sources of variability. Firstly, there is
the larger uncertainty in parameter estimates associated with smaller data sizes.
Secondly, there is the larger number of combinations of data that may be used
in the training data. The first is of vital importance to understanding model per-
formance while the second is a nuisance that we should control for. Unfortu-
nately, it is hard to predict what impact the latter will have, so we have to take a
computationally-intensive approach.

We start by choosing a large value of J and running holdout cross-validation
for all the model classes at the smallest d0 of interest. The smallest size of d0
will have the largest performance-metric variability due to training set effects
(fortunately, they will also be the quickest models to run). We then repeatedly
sub-sample from 1 to J of the cross-validation exercises and assess at what value,
J ′, the centre and spread of the performance-metrics stabilises. The larger sizes
of d0 can then be run only J ′ times and the variability therein can be attributed
solely to uncertainty in parameter estimation.

5.3.10 Case Study

We apply our modelling framework to real-world data from the “Blooms for
Bees” citizen science program. In this program, citizen scientists were asked
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to photograph and identify to species-level every visiting bumblebee to a sin-
gle plant with at least one open flower in their garden or allotment. The scheme
provided an unstructured identification guide to participants via a mobile phone
app (through which they also submitted their records). The guide has 23 bumble-
bee species and 69 traits (including levels of traits). Falk et al then reviewed the
photographs and corrected any misclassified species [10]. This generated 2314
records containing the original label from the citizen scientist and the corrected
identity provided by the expert reviewer. The records are primarily concentrated
around the West Midlands of England as the program was developed by Coven-
try University. This restricted geographic region, and focus on garden and allot-
ment habitats allowed us to adopt a very simple biological process model using
an intercept-only linear predictor for each species, α, corresponding to their rel-
ative abundance. The performance of the observation models is compared using
the cross-validation protocol above.

5.3.11 Simulation Study

In some instances, we may not know exactly which guidebook the citizen scien-
tists used. For example, participants may supplement the guidebook provided
by the scheme with their own favourite guidebook. It is therefore important to
understand how sensitive our models are to the exact guidebook used. We can
explore this using simulations. Guidebooks for the same group of species may
differ in a large number of ways - the rank order of species similarities, the fre-
quency of the traits used, the determination of the correlations between species
(i.e., how strongly correlated the species are in the trait-space defined by the
guidebook). To assess the sensitivity of the models to these changes, we need
to simulate under one guidebook scenario and then compare prediction perfor-
mance when the model is fit with the correct guidebook vs a contrasting one.
These kinds of transplant tests are computationally intensive, especially when
testing under the cross-validation conditions described above.

To make these simulations computationally tractable, we need to prioritise
how we simulate and change the guidebook. First, we choose one of our observa-
tion models to be the basis of the simulation. The “Multivariate Probit” model is
the simplest model that allows us to generate a full guidebook. In this model (Fig-
ure 5.1), we can change the rank ordering of species similarities by re-organising
the columns of the correlation matrix, the frequency of the traits using the mean β
parameter, and the determinant of correlations by modifying the prior on V . This
brings us to the second prioritisation: which of these to change. The guidebook-
space defined by these parameters is huge and not practical to explore fully. We
choose to focus only on changing the rank order of species similarities as this is
a commonly discussed decision by guidebook designers (e.g., when navigating
a dichotomous key designers often try to ensure the final pair of species in each
branch are easy to distinguish). Finally, as the “Multivariate Probit” model is
stochastic, we need to repeat simulations to account for the inherent noise in the
generative process. For this reason, we limit our comparison to two contrasting
scenarios (i.e., two species rankings) to facilitate more repetitions.

In order to make our simulations realistic, we draw the parameters for each
scenario from the posterior of the “Multivariate Probit” fit to the real data. To
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change the species rankings in a consistent way, we modify the correlation pa-
rameter using hierarchical clustering with the complete linkage algorithm imple-
mented using the “hclust” function in the R “stats” package [18; 19]. The precise
nature of the reordering is not significant, but it is worth noting that by only re-
ordering the correlation matrix we keep the same matrix determinant.

We now have full parameters for two contrasting scenarios (Figure 5.2). The
“Real” scenario has the same rank species similarity as our real data while the
“Restructured” scenario has a different rank species similarity

Posterior Sample
from MV Probit fit to

real data

Simulate Guidebook Simulate Guidebook

Simulate Confusions Simulate Confusions

Fit Candidate Models
Using Correct Prior

Under Cross
Validation

Fit Candidate Models
Using Incorrect Prior

Under Cross
Validation

Fit Candidate Models
Using Correct Prior

Under Cross
Validation

Fit Candidate Models
Using Incorrect Prior

Under Cross
Validation

"Real" 

matrix

"Retructured" 

matrix

Figure 5.2: Simulation study outline. The simulation scenarios are based on
species correlations estimated using the real data. This correlation matrix (“real”,
with a blue to red scale indicating negative to positive correlations) is used to
generate one set of simulations directly, and restructured to generate a contrast-
ing correlation matrix (“restructured”) from which distinct but comparable sim-
ulations are created. Each of our candidate models is then fit (under cross vali-
dation) to the simulated data using either the correct or contrasting guidebook as
a prior. This allows us to assess how sensitive to the guidebook the models are.
Steps which are repeated are indicated with a partial concentric ellipse.

We take five samples from the posterior of the “Multivariate Probit” model fit
to the real data. From these samples, we generate five guidebooks and five corre-
sponding data sets (i.e., vectors of species labels and species identitities). To these
data, we fit 7 candidate models (Minimal, Deterministic Correlation with cor-
rect and incorrect prior, Multivariate Probit with correct and incorrect prior and
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Latent Factor with correct and incorrect prior) under the same cross-validation
scheme described for the real data.

5.4 Results

5.4.1 Computational Resources

Analyses were run in R (v4.2.1) [18] with the CmdStanR (v0.5.3) [20] interface
to Stan (v2.30.1) [21] on a 64-bit workstation with 32 AMD Ryzen Threadripper
3970X CPUs running a Ubuntu 20.04.5 LTS operating system.

5.4.2 Model Convergence

All models achieved convergence with R̂ < 1.1 [22], < 2% divergent transitions
[23], and effective sample sizes of over 100 samples/chain (with the exception
of a small number of lower level parameters in the ”Latent Factor“ model) [24].
Model runtimes varied by model type and data richness, with the more complex
models and larger datasets taking longer to run (see Figure 5.3) with runtimes
ranging from a minute to just over 3 hours.
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Figure 5.3: Comparison of model run times. Median and interquartile ranges
for run times across cross-validation model fitting. Each row panel corresponds
to different levels of data richness. As model complexity and data richness in-
creases, models take longer. Run times vary from minutes to a few hours.

90



Chapter 5

5.4.3 Case Study

When tested against the real data at the lowest level of data richness (10%), the
best median performance of models which used the guidebook exceeded the
“Trust User” model by around 10% and the “Minimal” models by 5%. The best
performing parameterisation of the “Minimal” model predicted the proportion of
correct classifications was 0.64 (90% Credible Interval (CI): 0.58-0.69), compared
to the best performing parameterisations of the “Deterministic Correlation”, 0.67
(0.62-0.71), the “Multivariate Probit”, 0.69 (0.64-0.73), and “Latent Factor”, 0.69
(0.64-0.73) models.

With higher data richness, the differences in model performance shrink and
performance quickly plateaus. Indeed, between data richnesses of 30% and 50%,
the best performing parameterisations of the models have the same median per-
formance, with only small improvements in precision (if any). The “Minimal”
model achieves a correct classification rate of 0.68 (0.64-0.71) at 30% with the 90%
CI shrinking to 0.65-0.71 at 50%. These rates are very close to those achieved
by the guide-based models across which there is almost no difference in per-
formance. The “Deterministic Correlation” model achieves the same rate of 0.7
(0.67-0.73) at 30% and 50% data richness. The “Multivariate Probit” yields 0.7
(0.66-0.73) at 30% with the credible interval shrinking slightly to 0.66-0.72 at 50%
data richness. The “Latent Factor” performs identically at both levels of data
richness, with rates of 0.69 (0.66-0.72).

The flexibility of the parameterisations tested generally made little difference
in performance except at low data richness. For each model, we tested two pa-
rameterisations and compared their 50% credible intervals (more sensitive to dif-
ferences than the more conservative 90% CIs used for between-model compar-
isons). As shown in Figure 5.4, the less flexible parameterisation of the “Minimal”
model performed best at 10% data richness (0.64 (0.62-0.66) vs 0.62 (0.6-0.64)),
with no difference at higher levels of data richness. In contrast, the more flexi-
ble parameterisation of the “Deterministic Correlation” model performed slightly
better at all levels of data richness. The “Multivariate Probit” and “Latent Fac-
tor” models seemed less affected by parameterisation (although the less flexible
parameterisation of the “Latent Factor” model had much larger uncertainty in
the tails at 10% data richness than the corresponding flexible parameterisation).
Based on these results, the best model fits to the simulated data are the less flex-
ible parameterisation of the “Minimal” model and the flexible parameterisation
of the other models.

5.4.4 Simulation Study

The difference in performance between the “Minimal” model and guide-based
models was much greater in the simulation study at low data richness. At 10%
data richness, the “Minimal” model achieved 0.23 (0.17-0.36) for the “real” simu-
lations and 0.31 (0.19-0.4) for the “restructured” simulations, rates approximately
0.2 lower than the guide-based models. There is a consistent but small improve-
ment of performance when the “correct” guidebook prior is used for the “Deter-
ministic Correlation” and “Multivariate Probit” models, while the “Latent Fac-
tor” model performs equally well with either prior, Figure 5.5. For both simula-
tion scenarios, the “Deterministic Correlation” receives a bump as a consequence
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Figure 5.4: Comparative performance of models fit to real data. Aggregated
posterior correct classification rate for models fit under cross - validation to the
real data. The data richness for the cross - validation scheme is indicated by the
horizontal panels (0.1=10% data richness, 0.3=30%, 0.5=50%) and model types by
the vertical panels. There are two parameterisations for each model, the “flexible”
one which allows the model to vary on a species-wise basis (the variance in the
“Minimal” and sigmoidal transformation parameters for the others) vs “global”
wherein these parameters are shared across species. The correct classification rate
achieved by the citizen scientists is shown as a horizontal grey line.
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Figure 5.5: Comparative performance of models fit to simulated data. Data were
simulated under two guidebook scenarios (indicated by the column titles), one
drawn from the real data (“Real”) and one from a clustered adaptation (“Restruc-
tured”). Each model was then fit to each scenario and given either the matching
(“Correct”) guidebook or the alternative (“Contrasting”) guidebook. The “Min-
imal” model does not use the guidebook prior. The data richness for the cross
validation scheme is indicated by the horizontal panels (0.1=10% data richness,
0.3=30%, 0.5=50%).
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of using the correct prior in median correct prediction rate of 0.02 and the “Mul-
tivariate Probit” one of 0.01.

At medium data richness, the results are similar for both sets of simulations,
so henceforth for clarity the results reported are for the “restructured” simulation.
At 30% data richness, the “Minimal” model achieves a rate of 0.56 (0.52-0.61), a
slightly better performance than the “Deterministic Correlation” model with the
contrasting prior, 0.55 (0.51-0.59), and the same as it with the correct prior, 0.56
(0.52-0.61). The “Multivariate Probit” model performs better with both the incor-
rect prior, 0.58 (0.54-0.63) and with the correct one, 0.59 (0.54-0.63). The “Latent
Factor” model equals the latter performance with both prior types.

At the highest data richness, 50%, the “Minimal” model performance, 0.59
(0.55-0.63), exceeds that of the “Deterministic Correlation” model: 0.56 (0.53-0.61)
with the incorrect prior and 0.58 (0.54-0.62) with the correct one. The “Multivari-
ate Probit” and “Latent Factor” models now perform identically with either prior,
yielding a correct classification rate of 0.6 (0.56-0.65).

5.5 Discussion

We have demonstrated that there are predictable patterns to how citizen scientists
confuse species and these patterns are informed by the guidebooks they use. The
current approach to correcting citizen science data requires labour-intensive ex-
pert review of every single record. We have shown on real data that it is possible
to reduce this work by 90 percentage points yet maintain a high rate of accu-
rate classifications ( 70% with the guidebook and 65% without) with appropriate
probabilistic uncertainty for each classification (compared to 58% without uncer-
tainty when you trust the citizen scientists).

Misclassifications that are, in part, predictable, indicate that the identification
guides could be improved to exploit the structure in these confusions. If the
guidebooks do not improve misclassification prediction, this would indicate that
there are similarities between species that are not being captured by the guide-
book. If the guidebook does improve misclassification prediction (as we found
here), it means the guidebooks may be the source of the confusion, for exam-
ple, by making species seem too similar. In principle, the informativeness of
the guidebook could vary between species, however, the global parameterisa-
tion (which links the guidebook to species more equally) generally performed
similarly enough to the more flexible parameterisations of the same model. That
all the models reach the same maximum correct classification rate (approximately
70%) indicates that there is perhaps no pattern in the rest of the misclassifications,
with the species being confused at random. These unstructured confusions are
unlikely to be affected by improvements to the guide but could potentially be
mediated by increased training of participating citizen scientists if possible.

When comparing these models, we are most interested in which performs the
best with the least amount of validation data. In both the real data case and
simulation study, the “Multivariate Probit” and “Latent Factor” models comfort-
ably achieve the highest correct classification rate. The other models do improve
with increased data and eventually match the performance of the others. For the
“Minimal” model, this is likely because it relies on uninformative priors. The
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“Deterministic Correlation” model is fundamentally a point estimate version of
the “Multivariate Probit” model (in terms of how they treat the guidebook). Es-
sentially, this comes down to how estimable the correlation matrix is from the
guidebook data. If the guidebook had a huge number of traits relative to the num-
ber of species, the two would give identical answers. In real applications, this is
unlikely to ever happen (and with binary traits, correlations are even harder to
estimate).

Our simulation study shows that using the same guidebook as a prior and
to generate the data leads to a modest gain in performance for the guide-based
models. The “correct” guidebook led to slightly improved performance of the
“Deterministic Correlation” and “Multivariate Probit” models, and the “Latent
Factor” model performed identically with the “correct” and “contrasting” pri-
ors. Nevertheless, at low data richness, these models all outperformed the “Min-
imal” models that used no guidebook. That the gains in model performance were
only modest motivates a more thorough exploration of guidebook space. It’s no-
table that the “Latent Factor” model (where the correlational structure is between
supertraits, rather than straight guidebook traits), shows no difference at all be-
tween the two priors. Understanding the interplay between these features should
form the basis of future work if we wish to use these models to directly inform
future guidebook design.

There are also several exciting extensions to these models that could be de-
veloped. Currently, the models are self-contained, relying on no collection of co-
variates or other data sources, but it would be possible to incorporate additional
information in both the biological and observation components of the model. In
our studies here, we have assumed an intercept-only model for species incidence.
This could be extended to include more sophisticated models that account for
species-habitat associations [25] or species interactions [26]. In modelling these
processes jointly, there would be a feedback loop between the observation and
biological process, improving both simultaneously, and propagating uncertainty.
It is worth noting that species misclassifications is only one of several issues that
need to be addressed in citizen science data [3; 2].

The misclassification component of the model could also incorporate covari-
ates. For example, in an open meadow it might be easy to follow a bee until an
identification can be made confidently, while more difficult terrain might make
this impossible. We could also incorporate information about the observers them-
selves, such as their level of experience or track record of making correct identi-
fications [27]. The existing model structures could be easily adapted to include
these features by placing a linear predictor on C with V acting as a prior for the
intercept (i.e. baseline confuseability).

The widespread use of mobile applications for data collection and submission
opens up the possibility of deploying these data in real time [28; 29; 30]. Several
citizen science apps already offer suggestions of potential similar species (some-
times weighted probabilistically) [31; 32]. These models could be used to suggest
such alternatives and to feedback common confusions to the scheme designers. In
turn, this could facilitate experimentation on guidebook design, where different
users are given different versions of the guidebook, or the guidebook is adapted
and updated live.
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5.6 Conclusions

Modelling observation processes is a challenging but essential step in modern
ecological research. Frequently, we must learn these processes directly from the
data but here we have shown that there are useful priors available in the form
of guidebooks. The mutual benefit of combining explicitly modelling the ob-
servation process with input from citizen science scheme developers is currently
underexplored, particularly when it comes to misclassification. Leveraging statis-
tical models can help reduce the workload of taxonomic experts and thus unlock
the scalability of citizen science data for ecological research. The development
of these methods relies on citizen science scheme organisers adopting positive
attitudes to data sharing, and methods developers engaging positively with that
community to learn from them.
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The L.I.E.S. Framework

The observation processes in the following case study include:

Latency: the true species identity for each record is hidden and only the label
attached to the record by the citizen scientist is observable. How similar
species appear to each other from the perspective of citizen scientists is also
unobservable but the case study aims to use the observable guidebook to
estimate this.

Identifiability: (mathematical) the data in this case study are factors and mod-
elled using the categorical distribution which is parameterised by a simplex.
Simplexes are normalised and thus invariant to scaling factors making them
non-identifiable without fixing a value or using a strong prior.

Identifiability: (practical) the model is currently predictive so practical identifi-
ability issues could manifest as poor prediction or classification. In the fu-
ture, these models could be used to make inference about why species are
confused and parameter uncertainty will become more important.

Scaling: the guidebooks are used to estimate how close species are (and thus
how likely they are to be confused), however, there is not a natural scale for
this distance.

The application of the framework to the case study will be discussed in more
detail in the conclusion.
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Conclusion
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6.1 Overview

The aim of this thesis was to explore how methodological siloes in the study of
observation processes could be broken down. Across ecology and epidemiol-
ogy, data sets with complex observation processes are increasingly relied upon
in research. The complexity of these problems, particularly the requirement to
understand both sophisticated statistical methodology and nuances of data col-
lection, tend to generate bespoke solutions that cannot be easily transferred be-
tween disciplines. As a result, the gains in efficiency and innovation that could
be generated from unifying research efforts are being lost, and instead research is
duplicated and commonalities that would encourage innovation are hidden from
view.

I approached this from two perspectives. I began looking at observation prob-
lems from the top-down by developing a conceptual framework that I believe can
describe any observation process as a combination of problems of latency, identi-
fiability, effort and scale. I then explored the problem from the bottom-up through
a series of novel case studies from ecology and epidemiology from first principles.
The outstanding question of the thesis is whether the two perspectives have led
to compatible results. Does the framework adequately describe the observation
problems addressed in the case studies, and were the methodological similarities
between the case studies more visible, thanks to the overview provided by the
framework?

6.2 Complementary Perspectives on Observation Pro-
cesses

6.2.1 L.I.E.S. and the Multimordibity Case Study

In the first case study, “COVID-19 – exploring the implications of long-term con-
dition type and extent of multimorbidity on years of life lost: a modelling study”,
I aimed to extract the plausible covariances between diseases (multimorbidity)
using only the marginal counts for each disease. In this project, there were multi-
ple levels of latency. First, diseases are diagnosed as present or absent in different
patients but frequently they are the result of an underlying, continuous scale of
severity [1; 2]. I therefore had to map the binary realisations (disease present or
absent) of the disease onto a continuous sub-space to quantify patterns of mul-
timorbidity. Second, because the study of correlations in urgent clinical studies
is seen as secondary, the binary realisations are often aggregated into marginal
counts. This represents some loss of information, so a perfect reconstruction of
joint observations is not possible. Nevertheless, when taken together, the mani-
fest marginal counts are only consistent with some combinations of latent binary
realisations.

These compounded layers of latency introduced both mathematical and prac-
tical identifiability issues. The model used to translate from binary data to co-
variance between the continuous latent states of the diseases is the multivariate
probit [3]. If we consider one disease in isolation, the latent state takes the form of
a univariate normal distribution which is then thresholded at 0 (the probit link) to

101



Chapter 6

transform the continuous states into the binary realisation. The normal distribu-
tion has two parameters: the mean and variance. The portion of the distribution
less than zero corresponds to the frequency of the disease. Unfortunately, the
proportion of the normal distribution smaller than zero is down to the ratio of
the mean and standard deviation, so the two parameters are not mathematically
identifiable. The solution is to fix the standard deviation to 1. In the multivari-
ate context, this means normalising the covariance matrix to give a correlation
matrix.

Even by taking the correlation approach, the first and second layers of latency
- binarisation of the disease and the aggregation of the binary data into marginal
counts - introduces risk of practical identifiability problems. At both stages, infor-
mation is lost, making the correlations harder to estimate without large amounts
of data. Multiple correlation structures of the latent states could give rise to the
patients’ disease profiles and multiple combinations of disease presences and ab-
sences are coherent with the marginal counts. This manifests as a relatively large
uncertainty in the estimated correlation matrix.

I ensured the uncertainty caused by the latency issues was propagated to the
down-stream models. I also exploited all evident dependencies in the data, to
make sure that no more uncertainty than necessary was propagated through. The
resulting inference was still useful from a practical point of view but this interplay
between latency and potential identifiability problems is also interesting theoret-
ically. In this instance, it was the degrees of latency that directly contributed to
the identifiability issues. Do issues of latency (or, indeed, of effort or scale) al-
ways contribute to increased identifiability issues? It seems unlikely that there
will always be mathematical identifiability problems solely due to latency, but it
is possible that it will always lead to increased uncertainty and thus increase the
chances of practical identifiability problems. As practical identifiability will only
be an issue if the uncertainty is too high to make useful inference, these two is-
sues can exist independently but it should be noted that problems linked to one
can lead to problems in the other.

In this case study, I effectively had 100% effort coverage for the target popula-
tion (individuals in Italy and Scotland who had died of COVID-19). The scaling
was also easy to choose in the model because I was interested in the profile of
individuals. Scaling issues do come into the problem slightly in the unmodelled
part of this case study in which the findings are extrapolated. Reassuringly, how-
ever, at least one paper that used the estimates produced, explicitly modelled the
differences between their target population and ours [4].

6.2.2 L.I.E.S. and the COVID-19 Diagnosis Case Study

In the second case study, “Combining rapid antigen testing and syndromic surveil-
lance improves community-based COVID-19 detection in a low-income country”,
I aimed to integrate data from two sources that contained complementary infor-
mation about COVID-19 infection status. The first data source, rapid antigen
tests, represent a binary summary of the quantity of antigen produced by the
patient’s body in response to COVID-19. A patient having a stronger immune
response will have higher antigen production and thus be more likely to test pos-
itive. The second data source, symptomatic information, represents a multivari-
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ate binary categorisation of several continuous processes linked to the immune
system, but not necessarily in response to COVID-19. The latent variable of inter-
est, infection with COVID-19, informs both data sources in similar but different
ways.

As discussed with respect to the previous case study, binary data are less in-
formative than continuous data and the same mathematical identifiability issues
around estimating the means and variances apply. The model was designed to
be purely predictive, so the only practical identifiability issue that can manifest
is poor prediction/classification. Since these data were from a planned experi-
ment (albeit not for the use-case to which I applied), effort is as homogeneous
across the target population as could be achieved. Increasing the intensity of ef-
fort would likely improve the quality of prediction but naturally effort intensity
is a function of resources which are extremely limited in this setting.

Determining the appropriate scaling for a predictive model is of practical im-
portance. While I was explicitly not interested in interpreting parameters bio-
logically, I did need to ensure that the evaluation of predictive power is at the
appropriate scale. In this case, the structure for testing predictive power emerges
as a natural property of the data. The data come in sequentially at two weekly
intervals, meaning that the model needs to predict ahead two weeks at a time on
existing data.

6.2.3 L.I.E.S. and the Species Misclassification Case Study

In the third and final case study, “Do identification guides hold the key to species
misclassification by citizen scientists?”, the aim was to identify whether citizen
scientists mistake species’ names in a systematic way and whether this could be
linked to the guidebooks used. Much of the literature into species misclassifica-
tion focuses on concepts of false positives and uses methods from that literature.
Instead, I framed the label assigned by the citizen scientist as a manifest variable
that carries information about the latent variable of interest: the true identities.
The mechanism for this latency (i.e., why citizen scientists get species wrong) is
not directly known, but I hypothesised that the structure of the guidebooks they
use may act as a useful prior for these confusions.

In this case study, the data were categorical rather than binary and so were
modelled using a single-trial multinomial (i.e., the categorical distribution) pa-
rameterised by a simplex. Generating simplexes often involves a normalisation
step (to ensure the values sum to one), using the softmax function or similar. Of-
ten, normalisations are invariant to scaling factors (i.e., normalising a vector will
give the same result as normalising the vector multiplied by a constant) which
can cause mathematical identifiability problems. The issue can be resolved with
either a strong prior or by setting one value to a constant - here we set correct
classifications equal to one pre-normalisation.

Some of the candidate models for this case study used latent variables that
represent concepts we may wish to interpret, for example, the contribution of a
given trait or trait-cluster to the confusion probability of two species. While I
do not interpret these parameters in the case study (I focus on prediction), I do
suggest that future research could revolve around interpreting these parameters
to improve guidebook design. The practical identifiability of these parameters is
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not currently clear. It may be that modelling multiple guidebooks or using studies
with higher effort intensity (i.e., more records) simultaneously would improve
our estimation of these low level parameters. Unusually for a citizen science
study, I did not worry about recording effort. This is because I explicitly chose
not to incorporate any habitat parameters, although I did structure the models so
they could accommodate an effort model.

Scaling manifests in this model in the observation process itself. To quantify
how confuseable two species are I use correlation distance between them in the
guidebook. However, I acknowledge that the correlational distance may not have
a linear mapping onto the confusion distance for the citizen scientist. To address
this, I include a convolutional term which effectively allows the scale to be se-
lected as a parameter in the model.

6.2.4 L.I.E.S: a Successful Framework

The observation problems arising from the case studies can be easily described
solely using the L.I.E.S. framework. Indeed, the framework provides a natural
structure for summarising these issues for each case study. This is positive news
for the robustness and utility of the framework although, naturally, these are only
three case studies that were developed alongside the framework. There are three
steps to continue development of the framework:

1. Publish the framework so that other researchers can use and test it;

2. Conduct an ongoing literature review to categorise new methods papers
under the framework;

3. Identify generalisable classes of statistical solution to the different combina-
tions of problems.

The first of these steps is perhaps the most rigorous. The framework could be
conceptually sound but if it is not used by other researchers then it has failed in its
main task. It is also the best way to identify conceptual or implementation flaws
in the framework as it stands. The choice of journal is crucial as the framework
bridges ecology, epidemiology and statistics, and requires engagement from all
three disciplines. Too broad a journal and the examples are unlikely to resonate
with the bulk of the audience, too narrow a journal and the benefit of cutting
across themes will be lost. There are relatively few journals that occupy this space
but one example is Trends in Ecology and Evolution[5]. If the framework is taken
up with enthusiasm, there may be a case for more targeted versions of the frame-
work aimed at sub-fields of ecology and epidemiology (e.g. which draws all the
examples from fisheries science, ecotoxicology, or vector-borne diseases), or in-
deed at broader versions, aimed at incorporating other fields (e.g. economics, or
medicine).

A systematic and ongoing review of the literature (similar to [6] reviews of
COVID-19 prediction models) could benefit the framework in two ways. Firstly,
it would extend the bottom-up approach taken in this thesis. If new observation
process models can be readily and meaningfully explained using L.I.E.S. then the
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framework will be shown to be comprehensive and robust. Secondly, a classifica-
tion of existing and novel methods using the framework would aid in achieving
the the third step.

An exciting outcome for this framework would be to achieve a mapping of
the four canonical observation problems it defines onto generalised statistical so-
lutions. To an extent, this is realised in the field of latent variable modelling,
where different model classes are well-defined [7; 8; 9] and for identifiability is-
sues where tools to find problems are under active development [10; 11]. How-
ever, statistical solutions to problems of effort and scale are yet to be unified.
The next question would be whether the combined problems can be solved with
the combined solutions, or whether additional methods would be needed to deal
with each combination specifically. Being able to map each problem onto a co-
herent class of statistical methods would perhaps indicate some deeper truth to
the framework but it is not essential for the framework to be successful. Indeed,
it may represent a pyrrhic victory if the notional solutions are too complex or
depart too far from existing methods, they may hinder observation process mod-
elling more than they help.

6.3 Other Lessons Learned

6.3.1 Effective Statistics Relies On Non-Statisticians

Many applied statisticians enjoy statistics as it gives them the chance “to play in
everyone’s backyard” (to quote John Tukey [12]). This attitude can reflect the ab-
solute best and worst of what it means to be an applied statistician. At our best,
we help inform work in other disciplines, working with the experts in those ar-
eas to translate their knowledge and questions into meaningful inferential frame-
works. At our worst, we treat non-statisticians as generators of data that allow
us to build fancy models and generate publications but no insights. To stretch a
metaphor, playing in someone’s backyard is a lot more fun when you have been
invited and your host gets to play too.

The COVID-19 pandemic has highlighted the dangers of statisticians moving
into fields for which they are ill-equipped. [13; 14; 15; 16] each highlight po-
tentially damaging attempts by ecological statisticians to contribute to pandemic
modelling. The authors of the studies criticised were probably trying to add help
in a time of global emergency, but by adding uninformed but convincing “so-
lutions” into the mix, they risked drowning out more relevant voices. In the
COVID-19 work in this thesis [17; 18], I was engaged in both instances by epi-
demiological experts and developed our models in constant dialogue with them.
My models, without their input, would likely have been, at best, unhelpful, or, at
worst, dangerous.

The same applies when analysing citizen science data. Many citizen science
schemes, particularly long-term ones such as the Bee, Wasp and Ant Recording
Society [19], have committed, long-term experts and organisers. These individu-
als understand the observation processes and what drives their citizen scientists
better than could ever be achieved from looking at the data alone [20]. The moti-
vations of citizen scientists are heterogeneous and in constant flux, and only those
in regular contact with them tend to know why and how they change [21; 22].
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Even among professional scientists, those with field experience tend to better un-
derstand where and why data collection plans are not followed (e.g., [23]), or why
certain instruments give peculiar readings [24].

While I believe that this lesson is pertinent across applied statistics, it is non-
negotiable for the study of observation processes. Much progress in this field
will come from translating insights from non-statisticians into statistical solutions
(even if not done through the L.I.E.S. framework). The frequent mutual unease
between statisticians and field scientists is a major block to progress, and any-
thing that can be done to bridge these groups is likely to have large, positive
consequences.

6.3.2 Priors Are Always Informative So They Might As Well Be
Informative In The Right Way
(And Reparameterisations Are Our Friends)

While the previous lesson on the value of non-statisticians was a core value to
me from the start of my PhD (and reinforced during it), my understanding of the
value and potential of prior modelling was hard-won. The techniques outlined
in this lesson and the next (and the “Bayesian Workflow” in [10] more generally)
sound like a huge amount of work at the start of model development that can
be hard to motivate oneself to do. However, debugging and understanding com-
plex models without these techniques is extremely hard. In my future work, I
fully intend to embrace the “Bayesian Workflow” and wish it had featured more
prominently in my thesis.

Prior specification in Bayesian models has a long and controversial history
(nicely summarised in [25]). There is a general notion that we should use “non-
informative” priors in our models. The precise nature of “non-informative” is
poorly defined but it is often implemented as a uniform prior or diffuse normal.
However, such priors are rarely actually “non-informative”. An example that
surprised me early in my PhD was the impact of these priors in a logistic regres-
sion. The logit link function transforms more extreme values than ±3 to 0 and 1.
When a prior stretches to ±∞ (as with various “non-informative” default priors),
it places the majority of the prior mass outside of the ±3 range. Thus, the prior
is highly informative, suggesting extreme probabilities. I then found that as my
models became more complex (for example, in the multivariate setting), the re-
lationship between the prior distribution and the propagated prior density (the
way that prior affects downstream values in the model) became even harder to
understand.

I believe there are two parts to the solution to this problem that helped me,
particularly in the third case study (on species misclassification). First, I needed
to understand how information was pushed-forward through my model. Sec-
ond, I needed a better idea of what information I wanted to push forward (as
no information is not an option). I had previously thought about priors as being
likelihood independent but that is not the case [26], the prior meaning is changed
depending on the structure and dimensions of the likelihood. Fortunately, the
likelihood structure and dimensions of a problem contain little information that
bias our inference in a meaningful way. I simply used this likelihood shell to con-
duct prior push-forward checks, where I simulated from the prior and evaluate
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how these simulations manifest when push-forward. This is a form of simulation-
based calibration [11]. As there is no data being brought into the likelihood, I was
only observing the impact of the priors. Where the push-forward distribution did
not reflect our prior, I could refine the prior and repeat the exercise.

Now that I understood how information was projected through the model, I
had to decide what level of information we want to project. In theory, the prior-
push-forward approach can be used to develop the super-diffuse priors many
researchers are so keen on. However, I strongly believe that the situations in
which a super-diffuse prior does not actively contradict our understanding of a
model are few and far between. I instead needed to understand my understand-
ing! A thought experiment I found useful was the “bet the farm” approach. Were
there any values for the parameter of interest I would willingly rule out with con-
fidence (i.e., risk losing the farm far)? The answer, invariably, was yes. Even in
situations where we do not have as much knowledge, there are generally some
physical limits or practical boundaries that we can call upon when setting a prior.
When estimating the size of an animal, we know they are multi-cellular, we know
they have to fit within a continent or ocean. Even these very broad assumptions
are often an improvement over the diffuse prior approach - all without risking
the farm.

Sometimes I did have strong prior information but it did not correspond to a
parameter in my model. For example, in the species misclassification case study, I
often did not know have information on individual confusion pairs (outwith the
guidebook, that is) so had to set exchangeable priors, but I knew something about
the overall patterns of confusion (i.e., they were unlikely to be uniform).. In this
situation, my prior knowledge was perhaps best applied as a check on summary
statistics for our prior-push-forward model. If the prior-push-forward suggests
all species are equally confuseable all the time, I may have needed to modify
the priors to change that behaviour. To do so, I still needed an understanding
of which priors affect which bits of the model. Simulation experiments told me
this, however, I also made my life easier by setting up my model generatively.
A generative model is one which is meaningfully decomposed into interpretable
parameters and sub-models, and from which data can be simulated. While the
prior-push-forward effects can still be surprising, structuring our models in this
way is extremely helpful for sense checking them.

Some default parameterisations of distributions are not conducive to genera-
tive thinking. For example, the Beta distribution has shape parameters which do
not have a clear intrinsic meaning and can only be evaluated in combination. This
can make setting priors for them extremely challenging (especially when trying
to incorporate meaningful expert information). Fortunately, the distribution can
be reparameterised in terms of the mean and variance (or even skew and kur-
tosis). These parameters are much more interpretable, making it easier to elicit
expertise to set them (even if just through betting the farm) and to see how values
are propagated through the model.

107



Chapter 6

6.3.3 Posterior Sampling Is Difficult
(And Reparameterisations Are Our Friends)

The revolution in statistics that led to the widespread embrace of Bayesian meth-
ods was arguably not driven by the conceptual and philosophical benefits of the
paradigm. These benefits did keep the Bayesian flame alive, but it was the de-
velopment of Markov chain Monte Carlo (MCMC) algorithms and, in particular,
their user-friendly implementations in the form of BUGS-type [27] probabilistic
programming languages (PPLs) that has led to widespread uptake of Bayesian
methods [28]. The relief for a statistician like me is huge! I can access this mod-
elling paradigm with its myriad benefits without needing to calculate the poste-
rior using analytic solutions or hand-coding my own MCMC algorithms. This
is particularly useful more generally given the skills needed to do high-powered
algebra or to code efficient algorithms and those needed to develop interesting
and useful models overlap far less than we might hope. The downside of this
democratisation of Bayes, however, is that it’s easy to forget what a complex task
we are asking a few lines of code to achieve.

I, and most applied statisticians, think relatively little about the posterior ge-
ometries we are asking JAGS [29] or Stan [30] or any other PPL to navigate. This
is largely appropriate; learning measure theory is not something many of us have
the time or skill to do. However, I still rely on our MCMC algorithms having suc-
cessfully navigated the high-dimensional, Escher-ian volumes I have created in
order to give me important inferential guarantees. I therefore need to be con-
vinced the samplers have done what I want based on summaries from the PPL.
For this reason, I wanted to choose a PPL that gives informative diagnostic sum-
maries for the samplers, as well as the more conventional convergence diagnos-
tics for the parameters.

To me, Stan [30] stands head and shoulders above most other PPLs in the
provision of sampling diagnostics. The reasons are manifold (pun intended).
Firstly, the development team behind Stan believe in opinionated software (i.e.
that things should “fail noisily” where possible). Secondly, the user community
of Stan is extremely large meaning that the user interface (including error mes-
sages) is tested a lot and fed back for improvement. Thirdly, Stan implements
a form of dynamic Hamiltonian Monte Carlo (HMC) [31]. When this class of
MCMC fails it does so in an informative way leading to useful diagnostics (as
well as including more general MCMC diagnostics such as effective sample size
and split-R̂).

There are three main HMC-specific diagnostics provided by Stan: max tree-
depth exceeded, low energy Bayesian Fraction of Missing Information (eBFMI)
and divergent transitions. The first of these relates to the efficiency of the sampler
and, if all other metrics are okay, is not majorly concerning. The second and third
of these metrics indicate the estimated posterior may be unreliable. Fortunately,
both of them can be explored visually (using manual plotting or interactive tools
like ShinyStan [32]) to identify the problematic region of the posterior. Often,
there are a large number of options to tame the posterior geometry to improve
sampling, kept up to date in the Stan manual [33] and on the Stan webstie [34].

One technique to improve model geometry that I used multiple times in this
thesis is to reparameterise hierarchical model components [35]. Hierarchical pa-
rameters are often correlated with one another and relatively weakly informed
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by the data. This can lead to a “funneling” in the posterior, i.e. in some por-
tions of the parameter space, the region of mutually compatible values for the
two parameters becomes extremely small. Funneling makes the parameters hard
to sample, as when the sampler is adapted for the wider part of the funnel it
is not be able to enter the narrow part of the funnel, and when the sampler is
adapted for the narrow part of the funnel it is not be able to efficiently sample the
wide end. Reparameterisation saved me here. I started with sampling param-
eters with Normal priors (although this technique works for other distributions
too). Instead of drawing from a Normal with mean, µ, and variance, σ2, I instead
used standard normals (mean of zero and variance of 1) and then transformed by
multiplying the results by σ and adding µ. In doing so, Stan can sample the full
parameter space without having to directly sample the funnel geometry.

6.3.4 Beware of Conventions, Defaults and Asymptotic Proper-
ties

Every part of statistics is hard and we all want to do a good job. This can make it
tempting to reach for off-the-shelf performance metrics and model components.
Doing so allows us to defer to the wisdom of others (often backed up by complex
but reassuring asymptotic properties) and reduce how much we have to think.
Unfortunately, if we are too deferential, we can cause huge problems for our-
selves if our problem is different to the one these tools were designed around.
For example, generic concepts of model performance are hard to imagine in ap-
plied statistics. In general, the performance of the model needs to be contextu-
alised with reference to the problem we are trying to solve. Similarly, asymptotic
properties look extremely impressive (especially to those of us who are less math-
ematically minded) but the majority of the time applied statisticians are working
in pre-asymptotic regimes [36].

Even when the asymptotic properties of a metric hold, it is often still debat-
able whether or not we actually want that metric. Many of the information cri-
teria approximate leave-one-out cross-validation. Genuine leave-one-out cross-
validation is extremely computationally intensive, so the appeal of an approxi-
mation is clear, if leave-one-out is a relevant test of performance. In most of my mod-
els, not all data points are born equal. Whenever there was structure in my data,
my ability to predict some data points was higher than others. In the diagnos-
tic case study, I knew that relationships between symptoms were changing over
time. The prediction problem was one of forecasting (i.e. predicting the next few
time points). Predicting within the existing time series of data was much easier as
I knew what the relationship between symptoms was either side of the point we
were predicting. Unfortunately, this did not reflect the prediction problem I had,
so would have overestimated the power of my model. The same would apply
to spatial models. It is much easier to predict the value of a cell in the middle
of our study region than one on the edge of it. The same problems apply for al-
most any model with autocorrelated or hierarchical components. Unfortunately,
this generally means that the best predictive measurements are computationally
intensive, structured cross-validation schemes (although there is some work on
automated [37] and approximated [38] cross validation for structured problems
now).
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Sometimes there were no good performance metrics. Multivariate methods
for evaluating predictive performance are extremely challenging. In a multivari-
ate categorical model, for a given input the model generates a prediction simplex.
I generally wanted to evaluate a multivariate model on the full simplex, i.e. if the
models first guess was not good, was the second guess and so on. Kullback-
Leibler divergence and derived metrics like cross entropy should in principle
have given me this behaviour, with lots of nice mathematical behaviours to back
them up. They measure the distance between distributions, so we should be able
to compare the predictive distribution with the true distribution and the diver-
gence between the two tells us the relative performance. However, I never had
the true distribution so I had to evaluate based on data which are realisations of
the true distribution. This means that I needed to compare my predictive distri-
bution with vectors of 0s and 1s. For the univariate case, these values converge
with relatively little data. But as the dimensions increase, the convergence be-
comes extremely slow. While there are not necessarily good non-default metrics,
the key here was not to be taken in by alleged multivariate properties here that
do not manifest in practice.

These problems do not just apply to model evaluation, model components
can also have surprising properties. The softmax (or multi-logit) transformation
is a widely used transformation that takes a vector of reals and transforms it to
a simplex, by taking the exponent of each element of the vector and dividing it
by the sum of the exponent of each element of the vector. In one of the earlier
iterations of the species misclassification models, I used softmax to take the vec-
tor of correlation distances between the species and return a simplex of confusion
probabilities. However, softmax has no sparsity properties. This means that even
in the situation where the input vector is a 1 (for correct classification) and series
of 22x -1s (for each misclassification), the probability of correct identification is
only 0.25. If the same was true for a 100 species system, the probability of cor-
rect identification becomes just 0.07. Such behaviour is extremely undesirable for
most use-cases [39] but softmax is still used as a standard method to generate a
simplex.

6.4 Conclusion

Observation process modelling is an exciting frontier in applied statistics. The
potential gains to be made by unifying the excellent work, currently spread across
numerous area of application, are vast. Unification allows us to reduce research
waste, kick-start innovation, and continue to unlock the enormous potential of
complex data sources from acoustic records to Zooniverse’s citizen scientists. In
this thesis, I have laid out my vision for achieving this (the L.I.E.S. framework)
and tested it against three case studies. The framework has survived these trials
and must now be pitted against a larger audience and used to start a conversation
about how we can progress. The future of this field is exciting, daunting and
waiting.

110



Chapter 6

References

[1] R. Plomin, C. Haworth, and O. S. Davis, “Common disorders are quantita-
tive traits,” Nature Reviews Genetics, vol. 10, no. 12, pp. 872–878, 2009.

[2] R. Sukkar, E. Katz, Y. Zhang, D. Raunig, and B. T. Wyman, “Disease progres-
sion modeling using hidden markov models,” in 2012 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2845–
2848, IEEE, 2012.

[3] J. H. Albert and S. Chib, “Bayesian analysis of binary and polychotomous
response data,” Journal of the American Statistical Association, vol. 88, no. 422,
pp. 669–679, 1993.

[4] T. Ferenci, “Different approaches to quantify years of life lost from covid-19,”
European Journal of Epidemiology, vol. 36, no. 6, pp. 589–597, 2021.

[5] A. Sugden, “Trends in ecology and evolution,” Trends in Ecology & Evolution,
vol. 1, no. 1, p. 2, 1986.

[6] L. Wynants, B. Van Calster, G. S. Collins, R. D. Riley, G. Heinze, E. Schuit,
M. M. Bonten, D. L. Dahly, J. A. Damen, T. P. Debray, et al., “Prediction mod-
els for diagnosis and prognosis of covid-19: systematic review and critical
appraisal,” bmj, vol. 369, 2020.

[7] A. A. Beaujean, Latent variable modeling using R: A step-by-step guide. Rout-
ledge, 2014.

[8] W. H. Finch and B. F. French, Latent variable modeling with R. Routledge, 2015.

[9] J. Loehlin and A. Beaujean, Latent Variable Models: An Introduction to Factor,
Path, and Structural Equation Analysis, Fifth Edition (5th ed.). Routledge, 2017.

[10] A. Gelman, A. Vehtari, D. Simpson, C. C. Margossian, B. Carpenter, Y. Yao,
L. Kennedy, J. Gabry, P.-C. Bürkner, and M. Modrák, “Bayesian workflow,”
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We describe the mathematical procedure on which the inference of typical
COVID - 19 patient comorbidity profiles from combined low - cardinality com-
plete data (Scottish patients) and high - cardinality incomplete data (Italian records)
is based.

A complete data vector yi in our study is a K-dimensional binary vector of
ones and zeros indicating the presence or absence of a medical condition in a
given patient i. So yik = 1 indicates that medical condition k in patient i is present,
and it is absent if yik = 0. Dependencies between comorbidities are modelled with
a latent multivariate normal distribution

x ∼ N (x|µ,Σ) (A.1)

where Σ is a covariance matrix with all diagonal elements kept fixed at 1 (i.e. a
correlation matrix). The conditional probability of an observation given the latent
variable is

p(yik|xik, ξ) = [ψ(xik; ξ)]
yik [1− ψ(xik; ξ)]

1−yik (A.2)

where ψ is a link function, like the probit or the logit, and ξ are its parameters.
Conditional on the latent variables X = (x1, . . . ,xN), the data Y = (y1, . . . ,yN)
are assumed to be independent

p(Y|X, ξ) =
N∏
i=1

K∏
k=1

p(yik|xik, ξ) (A.3)

where N is the number of patients with complete records, and K is the number
of comorbidities. As it turns out, in the data for the Scottish patients, a zero
entry does not indicate the absence of a comorbidity, but an unknown disease
status. These entries therefore have to be treated as missing values, leading to the
following modification:

p(Y|X, ξ) =
N∏
i=1

K∏
k=1

[
p(yik|xik, ξ)

]yik
(A.4)

The parameters ξ,µ and Σ can in principle be estimated by maximizing the
likelihood

p(Y|ξ,µ,Σ) =

∫
p(Y|X, ξ)N (X|µ,Σ)dx (A.5)

where we define the matrix normal distribution as follows:

N (X|µ,Σ) =
N∏
i=1

N (xi|µ,Σ) (A.6)

Now, in addition to the complete patient data, we have incomplete data Ỹ =
(ỹ1, . . . , ỹÑ), where the individual comorbidity indicators ỹik are unknown, and
we only have access to the marginal counts indicating the total number of occur-
rences of comorbidity k:

ỹ.,k =
Ñ∑
i=1

ỹi,k (A.7)
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In words: ỹ.,k represents the total number of patients in the complementary in-
complete data set (the “Italian” data) for which comorbidity k has been recorded.
We also have the patient-wise comorbidity counts:

ϕ(m) =
Ñ∑
i=1

δ

(
m,

K∑
k=1

ỹik

)
(A.8)

where δ(., .) is the Kronecker delta. In words: ϕ(m) denotes the number of pa-
tients in the complementary incomplete data set (the “Italian” data) for which m
comorbidities have been recorded. Note that we deliberately use different sym-
bols m and k in (A.7) and (A.8). While k in (A.7) is an identifier for a specific
comorbidity, m in (A.8) is a count of comorbidities. In practice ϕ(m) may be
subject to censoring, as we will discuss below. The total likelihood is given by

p(Y, Ỹ|ξ,µ,Σ) =

∫
p(Y|X, ξ)p(Ỹ|X̃, ξ)N (X|µ,Σ)N (X̃|µ,Σ)dXdX̃ (A.9)

with
p(Ỹ|X̃, ξ) =

∑
H

p(Ỹ|H)p(H|X̃, ξ) (A.10)

where H = (h1, . . . ,hÑ), hi = (hi1, . . . , hiK)
T, and hik ∈ {0, 1} is a latent indicator

for the presence of comorbidity k in patient i. The structure of H mimics that
of Y and augments the information that is missing in the incomplete “Italian”
data Ỹ; so p(H|X̃, ξ) is given by (A.3), with Y replaced by H, and separate latent
variables X̃:

p(H|X̃, ξ) =
Ñ∏
i=1

K∏
k=1

p(hik|x̃ik, ξ) (A.11)

However, since this information is not actually available, H is a latent variable
(our procedure follows the standard procedure of data augmentation in missing
data problems). The first term in the sum on the right-hand side of (A.10) is given
by

p(Ỹ|H) =
K∏
k=1

δ

ỹ.,k, Ñ∑
i=1

hi,k

×
K∏

m=1

δ

ϕ(m),
Ñ∑
i=1

δ

(
m,

K∑
k=1

hik

) (A.12)

This is a filter that accepts those latent variable matrices H that are consistent with
the marginal constraints given by the incomplete data Ỹ. The marginalization in
(A.10) is computationally onerous, so we use a Bayesian sampling approach

p(ξ,µ,Σ,X, X̃,H|Y, Ỹ) (A.13)
∝ p(Y, Ỹ, ξ,µ,Σ,X, X̃,H) (A.14)
= p(Y|X, ξ)N (X|µ,Σ)p(Ỹ|H)p(H|X̃, ξ)N (X̃|µ,Σ)π(µ)π(Σ)π(ξ)

with prior distributions π(µ), π(Σ) and π(ξ). We follow a Gibbs sampling strat-
egy:

X ∼ p(X|ξ,µ,Σ,H,Y, Ỹ, X̃) ∝ p(Y|X, ξ)N (X|µ,Σ) (A.15)
X̃ ∼ p(X̃|ξ,µ,Σ,H,Y,X, Ỹ) ∝ p(H|X̃, ξ)N (X̃|µ,Σ) (A.16)
H ∼ p(H|ξ,µ,Σ,X, X̃,Y, Ỹ) ∝ p(Ỹ|H)p(H|X̃, ξ) (A.17)

µ,Σ ∼ p(µ,Σ|X, X̃, ξ,H,Y, Ỹ) ∝ N (X|µ,Σ)N (X̃|µ,Σ)π(µ)π(Σ)(A.18)

116



Appendix A

In principle we could include ξ in this sampling scheme, but we decided to keep it
fixed, set such that the link function in (A.2) reduces to a step function at zero. The
parameters of the latent Gaussian distribution, µ and Σ in (A.18), can be directly
sampled from a distribution that is available in closed form if the priors π(µ) and
π(Σ) are conjugate. The conditional distributions in (A.15–A.17) are not avail-
able in closed form, so we have to resort to a Metropolis-Hastings-within-Gibbs
scheme. The computation of p(Ỹ|H) in (A.17) via (A.12) is effectively a rejection
sampling step, which in practice may have very low acceptance probability. To
improve mixing and convergence of the Markov chain we have therefore intro-
duced a slight “fudge” and replaced the Kronecker deltas in (A.12) by peaked
Gaussians with very small variance.

Rather than choosing a conjugate prior for Σ (an inverse Wishart distribution),
we choose a prior for the individual off-diagonal elements, shrinking them to zero
with a rescaled beta distribution. This makes it easier to satisfy the constraint
of keeping the diagonal elements fixed at 1. In addition, sampling from an in-
verse Wishart distribution is not available in JAGS, which we used for this project.
The consequence is that sampling has now to be carried out with a Metropolis-
Hastings-within-Gibbs scheme, slightly deteriorating the rate of convergence.
The output of interest is a collection of typical patient profiles {Hi}. To this end,
we sample from the joint posterior distribution (A.13) and marginalize over the
other parameters (by simply discarding them).

A practical problem that we have ignored so far is censoring of the marginal
comorbidity counts ϕ(m) in (A.8). To deal with this, we use the prior knowl-
edge that these counts can be assumed to follow a Poisson distribution. A simple
approach is to fit a Poisson distribution to the censored counts and use data aug-
mentation to impute the missing values, following the straightforward procedure
described in Selvin (1974). A disadvantage is that this would not take the uncer-
tainty of the imputation into account.

We therefore integrate this data augmentation step into our Gibbs sampling
routine. The set of ϕ(m) = {ϕ(m)} in (A.12) becomes a latent variable, on which
the distribution in (A.12) now explicitly depends: p(Ỹ|H) → p(Ỹ|H,ϕ(m)). The
distribution of these counts follows a Poisson distribution:

ϕ(m) ∼ P(ϕ(m)|λ) (A.19)

whose parameter λ is sampled from the posterior distribution of the available
censored counts:

p(λ|ϕ̃(m)) ∝ p(ϕ̃(m)|λ)π(λ) = π(λ)
∑
ϕ(m)

δ
(
ϕ̃(m),ϕ(m)

)
P(ϕ(m)|λ) (A.20)

for which standard procedures are available; see [1]. The upshot is that (A.19) and
(A.20) have to be included as additional sampling steps in our Gibbs sampling
routine (A.15–A.18).

When feeding the sampled comorbidity profiles H into the survival analy-
sis, we need to allow for the fact that these samples were drawn from a Markov
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chain and that they are therefore not independent. Let f(H) denote the life ex-
pectancy from SAIL for patients with comorbidity profiles H, then the expected
SAIL-equivalent life expectancy for the Italian Covid-19 patient population is

E =

∫
f(H)p(H|Y, Ỹ)dH (A.21)

which in practice is approximated with a finite sample of comorbidity profiles
from our MCMC sampler:

Ê ≈ 1

M

M∑
m=1

f(Hm) (A.22)

Here Hm is the mth sample from the Markov chain. The uncertainty quantifica-
tion for our estimator Ê from a sample of M independent samples is given by

σ(Ê) =

√
var(f)

M
(A.23)

where

var(f) =
1

M − 1

M∑
m=1

(
f(Hm)− Ê

)2
(A.24)

However, given that the M comorbidity profiles are dependent, this would sys-
tematically underestimate the uncertainty. The correct uncertainty quantification
is given by

σ(Ê) =

√
var(f)

Meff

(A.25)

where Meff is the effective sample size, which represents the equivalent size of a
sample of independent draws from the same distribution and is mathematically
defined as

Meff =
M

1 + 2
∑∞

t=1 ρt
(A.26)

The quantities ρt denote the t-step autocorrelations of the MCMC trajectory, which
can be computed with standard MCMC analysis software packages, like the coda
package from CRAN (which, in fact, directly computesMeff as well). For the math-
ematical details, see chapter 11 in [2].
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B.1 Supplementary Figures

The key result we would like to highlight in the paper is the power of the work-
flow we have developed. Individual parameter estimates will vary depending on
the population to which the models are applied and we strongly advise against
applying the parameter values found here (for example, the final symptoms cho-
sen through model selection) outwith the population and time to which the mod-
els were fit.
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B.1.1 Correlation Estimates

The relationship between symptoms and results can only be understood through
the full correlation matrix. In Figures 1 and 2, we present the median correlations
for the four symptom Syndromic-only and Syndromic-RAT Combined models.
These results should not be used to prioritise future data collection because the
most predictive symptoms are liable to change with time (e.g., the emergence of
new COVID variants) and context (e.g., broader vaccination levels).

Figure B.1: Median correlation between PCR result and top symptoms for 4
symptom Syndromic-only Model
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Figure B.2: Median correlation between PCR result and top symptoms for 4
symptom Syndromic-RAT Combined Model
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B.2 Supplementary Tables

B.2.1 Translation of Error Rates into Raw Numbers Based on
Case Positivity Rate

False positive and false negative rates can only be translated into numbers of peo-
ple affected if the case positivity rate is known. To demonstrate how the numbers
of misclassifications change for the same false positive and false negative rates,
we have scaled these numbers with respect to low (5%), average (20%) and high
(35%) CPRs in Bangladesh in Table B.1.
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Table B.1: Translation of best model performance by scenario into number of patients per 1000 tested who were incorrectly diagnosed,
broken down by case positivity rate (CPR). CPRs chosen to reflect low, average and high values in Bangladesh.

Per 1000

5% CPR 20% CPR 35% CPR

Model
Class

Scenario False
Positives

False
Nega-
tives

False
Positives

False
Nega-
tives

False
Positives

False
Nega-
tives

RATonly All 24 20 21 81 17 141
SyndOnly 1 400 21 337 85 274 149
SyndRAT 1 105 18 88 71 72 124
SyndOnly 2 703 10 592 40 481 69
SyndRAT 2 392 10 330 39 268 68

SyndOnly 3 189 34 159 137 129 240
SyndRAT 3 188 15 158 59 129 103
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B.3 Supplementary Methods

Below we have extended the modelling description provided in the main text to
include more technical detail. The code used to implement these tasks is available
at https://github.com/fergusjchadwick/COVID19 SyndromicRAT public.

B.3.1 Modelling

Structure

We examined the ability of the two imperfect identification methods, syndromic
modelling and rapid antigen testing (RAT), to predict the patient’s COVID-19 sta-
tus when used separately and together. These combinations define three model
classes (Main Text Figure 4).

RAT-only uses only the RAT result. It equates being RAT-positive with the
patient being PCR-positive for COVID-19 (hereafter, PCR-positive), and being
RAT-negative with PCR-negativity.

Syndromic-only uses only the syndromic data. For this model, we used a
Bayesian multivariate probit model.[1] The multivariate probit structures the out-
comes of the PCR test and symptoms presence/absence as a D-dimensional vec-
tor of binary outcomes (yi = (yi1, yi2, . . . , yid), yij ∈ {0, 1}). These outcomes are
determined by an indicator function which takes a D-dimensional vector of con-
tinuous latent variables (zi = (zi1, zi2, . . . , ziD), zij ∈ R). These latent continu-
ous variables then covary as realisations of a D-dimensional multivariate nor-
mal, with the mean of the error structure informed by a linear predictor (in our
case formed of the covariates age and gender),

∑J
j=1 xijβjd+ ϵid, and a covariance

(Σ) between dimensions. The linear predictor allows us to condition the out-
comes on risk factor variables (here, age and gender). The covariance structure
allows us to account for the correlated nature of the symptoms with each other
and the outcome. This multivariate approach (multiple response variables) is
also a very efficient way of encoding complex relationships between symptoms.
These relationships need to be accounted for because symptoms are not simply
additive in their predictive power. For example, in the diagnosis of measles the
“Three C’s” are used: cough, coryza (irritation and inflammation of the mucous
membrane in the nose leading to head cold, fever, sneezing) and conjunctivitis.
These symptoms individually, and in pairwise combination could be indicative
of a wide range of diseases, but when all three are present measles is a highly
probable cause (obviously, this is a simplified example conditioning on patient
age and vaccination status). In the alternative, univariate approach, symptoms
would be encoded as covariates in the linear predictor for PCR-status, and the
complex relationships would need to be reflected as high-order interaction terms.
These interaction terms use a large number of parameters and can be hard to fit
to data. Using a multivariate structure allows us to exploit more efficient poste-
rior sampling algorithms, and in higher dimensional settings like this uses fewer
parameters.

The covariance matrix formulation of the model described above is not identi-
fiable, because the variance, diag(Σ) and means of the latent variables, zi trade off
against each other.[1] For this reason, we use a correlation matrix, Ω, formulation
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with the variance set to 1. A correlation based framework also makes communi-
cation with clinicians and other practitioners smoother as correlations are more
familiar. We thus formulate the multivariate probit as:

yid = I(zid > 0)

zi = xiβ + ϵi

zid =
J∑

j=1

xijβjd + ϵid

ϵi ∼ N(0,Ω)

Ωii = 1

β ∼ N(0, 1)

Ω ∼ LKJ(1)

(B.1)

Syndromic-RAT Combined combines the two data sources. We utilise the
specificity of RAT by treating RAT-positive patients as PCR-positive patients. The
RAT-negative patients are modelled using the sensitive syndromic approach us-
ing Syndromic-only to capture PCR-positive patients that are missed by the RAT.
This approach leverages the potential different syndromic profiles of PCR-positve
patients who are RAT-positive and -negative, allowing the model to adapt solely
to the latter. Structurally, the model combines RAT-only and Syndromic-only,
with RAT-positive patients being modelled using RAT-only, and RAT-negative
patients with Syndromic-only.

By using a Bayesian formulation, we generate full posteriors for our param-
eter estimates, allowing natural quantification of uncertainty. Bayesian methods
also facilitate the use of more informative priors. We used minimally informa-
tive priors here. For covariate coefficients (betas) we used standard normals
which are relatively flat in the probit scale. For the correlation prior, we used the
Lewandowski-Kurowicka-Joe (LKJ) distribution, a covariance matrix prior with
unit variance (i.e. a prior for correlation matrices). The LKJ distribution has a
single parameter, η, which controls the degree of marginal correlation shrinkage.
We used minimal shrinkage, η = 1)[2]. More informative priors that incorporate
spatio-temporal effects, for instance, would be natural extensions. The models
were fitted to the data using Bayesian inference techniques based on Hamiltonian
Monte Carlo in the Stan programming language[3]. The models all converged
with zero divergent transitions and large effective sample sizes.

Model Selection

We conducted backwards model selection (starting with the most complex, bio-
logically plausible model) to identify a subset of models with the highest predic-
tive power under temporal cross-validation (Main Text Figure 5). For the cross-
validation, we divided the data into 5 folds of equal sizes in time order (i.e. the
first fold is formed of the chronologically first N

K
patients, where N is the number

of patients and K is the number of folds, the second fold by the next N
K

etc.) To
test the sensitivity of this cross-validation structure, we also did a strict temporal
division (i.e. the first T

K
days where T is the number of days samples were taken

on). The results did not change qualitatively between these approaches.
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The coarse round of model selection (Main Text Figure 5) selected candidate
symptoms based on whether they had a strong and consistent correlation with
PCR as estimated according to Equation (B.1). The models were fit with both co-
variates throughout the coarse round and symptoms were compared in nested
models. In the fine round of model selection, these candidate symptoms and
the covariate combinations (age and gender, age, gender and no covariates) were
permuted to more exhaustively explore the model space. Reducing the num-
ber of possible models using the two stages of model selection was necessary to
reduce computational demand and reduce the risk of overfitting models to the
test scenarios. The large number of symptoms corresponds to a high number of
potential model configurations (>131 000 for 14 symptoms and two covariates)
which might perform well on the test sets (even under the challenging conditions
of temporal cross-validation) but lack transferability.

By using general predictive power to narrow down the number of candidate
models and then testing those models, we are more likely to choose models that
generalise well to new data. It was clear when fitting the models that there were
“jumps” in performance (as defined below) between models containing five and
four symptoms, so the models with one to four symptoms were used as the can-
didate models. Zero symptom models were not included in the analysis as they
do not correspond to a feasible policy (with covariates they would require gov-
ernments to ask individuals of a given gender and age as COVID-19 positive,
and without covariates they would involve randomly assigning individuals as
COVID-19 positive).

Predictive Performance

We scored the models’ predictive power using binary cross-entropy (hereafter,
cross-entropy). Cross-entropy measures the accuracy of models that generate
probabilities of binary outcomes, rather than make binary classifications, simi-
lar in concept to a mean square error for normally-distributed data, but adapted
for binary data.[4] A cross-entropy value close to zero corresponds to high levels
of accuracy, with larger values indicating lower accuracy. More specifically, the
metric allows us to compare a binary vector, y ∈ [0, 1], with a vector of probabilis-
tic predictions (p(y) ∈ (0, 1)) as follows:

Hp(q) = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (B.2)

The resulting score is comparable across all methods for assigning predic-
tions where the same test data are used, allowing us to compare predictions from
Model Classes 1-3. Hp(q) ∈ 0,R+ with zero indicating perfect prediction (assign-
ing probabilities of ones and zeroes to outcomes of ones and zeros exactly) and
larger values indicating worse predictions.

Classification Performance

In applied settings, models must often be evaluated on their performance as clas-
sifiers rather than just as prediction engines (i.e. their ability to say a patient is
COVID-19 positive or negative, not simply the probability the patient might be
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COVID-19 positive or negative). To generate a classification, Ŷ , a probability
threshold, p̂, must be chosen over which patients are classified as COVID-19 pos-
itive:

Ŷ =

{
1, if p(y) ≥ p̂

0 otherwise
(B.3)

Receiver operating characteristics (ROCs) are a way to measure the perfor-
mance of a set of classifications in terms of true and false positives and neg-
atives (TP, FP, TN and FN) and the rates of each of these classification types
(e.g. TPR = TP

TP+FN
, and FPR = FP

FP+TN
). The error rates are calculated with

respect to a particular threshold, p̂, or across the range of possible p̂s to generate
a ROC curve. In our epidemiological scenarios (outlined below) we use our ROC
curve calculations to identify single thresholds which yield a required error rate.

We strongly emphasise that generic performance here is only used to show the
flexibility of the model classes; the best model for a local situation can only be de-
termined if the relative cost of false positives and false negatives is known. Here,
we choose three representative scenarios. Each scenario has a requirement and
error rate (defined in Main Text Table 2). We identify the threshold, p̂, at which
the requirement is most closely exceeded (i.e. if the requirement were, hypothet-
ically, that an error rate should be a maximum 15%, the threshold that produces
an error rate below 15% but as close to 15% as possible will be chosen).

In Scenario 1, we do not consider epidemiological context but simply min-
imise false negative and false positive rates equally. We do this by maximising
the two correct classification rates both individually and in total, as measured by
the harmonic mean. The harmonic mean is used widely in the classification litera-
ture as it is maximised by achieving large values in all its component parts, rather
than the arithmetic mean which can be maximised by having one extremely large
component at the expense of other components. In other words, the arithmetic
mean could be large because it has a very high TPR but a small TNR, whereas the
harmonic mean will maximise both TPR and TNR. While conceptually the har-
monic mean is better suited than the arithmetic for this use case, both produce
qualitatively the same results for these data.

Scenario 2 corresponds to the situation in Bangladesh at time of writing (Sep.
2021), with COVID-19 cases beginning to rapidly increase again. Under these
circumstances, false negatives are extremely costly relative to false positives due
to the exponential growth of the disease.

In Scenario 3, the pandemic is not declining but maintaining a steady rate of
cases. In this situation, policy-makers may be keen to keep false positive diag-
noses low to prevent lockdown fatigue and to keep the workforce active.

The requirements in Scenario 2 and 3 were developed in discussion with the
Institute of Epidemiology, Disease Control and Research (IEDCR), Bangladesh,
for illustrative purposes.
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