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Abstract

In this thesis we develop neural networks that exploit the symmetries of four different
low-dimensional geometries, namely 1D grids, 2D grids, 3D continuous spaces and
graphs, through the consideration of translational, rotational, cylindrical and permu-
tation symmetries. We apply these models to applications across a range of scientific
disciplines demonstrating the predictive ability, robustness, scalability, and interpretabil-
ity.

We develop a neural network that exploits the translational symmetries on 1D grids
to predict age and species of mosquitoes from high-dimensional mid-infrared spectra.
We show that the model can learn to predict mosquito age and species with a higher
accuracy than models that do not utilise any inductive bias. We also demonstrate that the
model is sensitive to regions within the input spectra that are in agreement with regions
identified by a domain expert. We present a transfer learning approach to overcome the
challenge of working with small, real-world, wild collected data sets and demonstrate
the benefit of the approach on a real-world application.

We demonstrate the benefit of rotation equivariant neural networks on the task of seg-
menting deforestation regions from satellite images through exploiting the rotational
symmetry present on 2D grids. We develop a novel physics-informed architecture,
exploiting the cylindrical symmetries of the group SO+(2, 1), which can invert the trans-
mission effects of multi-mode optical fibres (MMFs). We develop a new connection
between a physics understanding of MMFs and group equivariant neural networks.
We show that this novel architecture requires fewer training samples to learn, better
generalises to out-of-distribution data sets, scales to higher-resolution images, is more
interpretable, and reduces the parameter count of the model. We demonstrate the capa-
bility of the model on real-world data and provide an adaption to the model to handle
real-world deviations from theory. We also show that the model can scale to higher
resolution images than was previously possible.

We develop a novel architecture which provides a symmetry-preserving mapping be-
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tween two different low-dimensional geometries and demonstrate its practical benefit for
the application of 3D hand mesh generation from 2D images. This models exploits both
the 2D rotational symmetries present in a 2D image and in a 3D handmesh, and provides
a mapping between the two data domains. We demonstrate that the model performs
competitively on a range of benchmark data sets and justify the choice of inductive bias
in the model.

We develop an architecture which is equivariant to a novel choice of automorphism
group through the use of a sub-graph selection policy. We demonstrate the benefit of
the architecture, theoretically through proving the improved expressivity and improved
scalability, and experimentally on a range of widely studied benchmark graph classifi-
cation tasks. We present a method of comparison between models that had not been
previously considered in this area of research, demonstrating recent SOTA methods are
statistically indistinguishable.
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1
Introduction

The research field of deep learning has rapidly grown in the past decade, overtaking
human level performance in some aspects of computer vision (He et al., 2016), and
playing games (Schrittwieser et al., 2020; Silver et al., 2017). Many recent advances have
been a result of including prior knowledge into models (LeCun et al., 1989b; Mikolov
et al., 2010). Although, this leads to a veritable zoo of separate architectures (Bronstein
et al., 2021) and without a unified theoretical foundation it can be difficult to develop
models for previously unutilised prior knowledge. Despite surpassing human level
performance on some tasks, the research field of deep learning has not seen the same
breakthroughs on tasks where datasets are small due to the time and cost associated with
data collection. In this situation a different approach is required. As a result, in many
instances deep learning models still struggle to generalise to objects or tasks that are out-
of-distribution of the training dataset; cannot scale due to the high-dimensionality of the
data; lack interpretability of how predictions are made and are not robust to symmetry
transformations of the data. Developing deep learningmodels that overcome these issues
could enable breakthroughs in applications that have previously been inaccessible.

A unification of the understanding of different types of geometry was developed and
named the Erlangen Programme (Klein, 1872). This was achieved through the study
of invariants and looking at which properties of each geometry remained unchanged
used some class of transformations. This is known as the symmetries of the different
geometries. The study of symmetries is especially important as it was used in Noether’s
Theorem (Noether, 1971), where conservation laws of physics can be derived from
first principles using symmetry principles. Geometric deep learning is a framework for
studying various deep learning architectures through the lens of symmetries. It attempts
to provide a unified view of deep learning through considering the different inductive
biases built into deep learning models through symmetries. Developing deep learning
modelswith some inductive bias built in provides away of incorporating prior knowledge

1
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into the model. By considering symmetries within the data and building models that are
equivariant to such symmetries the space of functions possible to be learned by themodel
is reduced. Therefore, such inductive biases find a lower-dimensional subspace of the
learning problem. This guarantees that the model is robust to symmetry transformations
within the data.

In this thesis we develop novel equivariant neural networks for different scientific appli-
cations. This involves the consideration of different low-dimensional geometries, each
relevant for the specific applications, and the symmetries associated to the specific task.
When developing each equivariant network, which is robust to a symmetry transforma-
tion, we use the language of group theory, and hence considered different groups.1 This
thesis focuses on 1D grids and the group Z (Chapter 3); 2D grids and the groups SO(2)

and SO+(2, 1) (Chapter 4); 2D grids and 3Dmanifolds, and the groupsC8⋊Z2,R2, andR3

(Chapter 5); and graphs and the automorphism group (Chapter 6). Further, we develop
novel models that exploit symmetries not previously considered, providing connections
between the group theoretic understanding and the understanding from the domain
of interest. We also show that using a suitable inductive bias, given by considering the
symmetries of the task, improves the model’s ability to solve the given task, whether it be
classification, segmentation or generation. We show that equivariant models are able to
better generalise to out-of-distribution data; scale better to higher-dimensional data and
are more robust than their non-equivariant counterparts. We further demonstrate that
models with suitable inductive bias are more interpretable than unconstrained models,
and better align with the intuition of domain experts.

1.1 Outline and Contributions

The research contributions of this thesis are contained in Chapters 3, 4, 5, 6. Each chapter
pertains to a specific data structure and its corresponding symmetry structure, where
an application of the developed model is presented that is suitable for the respective
symmetry structure. In essence each chapter develops a specific equivariant neural
network and explores the benefits of such a model for various applications. In each
chapter we address the symmetry structure and equivariant model developed; the
relevant applications of the proposed model and either the robustness, scalability, or
interpretability of the model. The thesis is structured as follows:

Chapter 2 introduces the necessary mathematical background for the entire thesis, cov-
1Further details on each group are provided in Chapter 2.
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ering core concepts used in the following chapters.

Chapter 3 is based on the paper:
Siria, D.J., Sanou, R., Mitton, J., Mwanga, E.P., Niang, A., Sare, I., Johnson, P.C.,
Foster, G.M., Belem, A.M., Wynne, K. and Murray-Smith, R., 2022. Rapid age-
grading and species identification of natural mosquitoes for malaria surveillance.
Nature Communications, 13(1), pp.1-9.
My contribution to this paper was in leading the machine learning aspects of the
paper, designing the architecture, and running all the experiments.

Chapter 4 is based on the papers:
Mitton, J. and Murray-Smith, R., 2021. Rotation Equivariant Deforestation Segmen-
tation and Driver Classification. NeurIPS 2021 Workshop on Tackling Climate Change
with Machine Learning.
Mitton, J., Mekhail, S.P., Padgett, M., Faccio, D., Aversa, M. and Murray-Smith,
R., 2022. Bessel Equivariant Networks for Inversion of Transmission Effects in
Multi-Mode Optical Fibres, 36th Conference on Neural Information Processing Systems
(NeurIPS 2022).
My contribution to this paper was in leading the paper, developing the theory,
developing the connection between physics and group theory, designing the archi-
tecture, and running all the experiments.

Chapter 5 is based on the paper:
Mitton, J., Kaul, C. and Murray-Smith, R., 2021. Rotation Equivariant 3D Hand
Mesh Generation from a Single RGB Image. arXiv preprint arXiv:2111.13023.
My contribution to this paper was in leading the paper, designing the architecture,
and running all the experiments.

Chapter 6 is based on the paper:
Mitton, J. and Murray-Smith, R., 2021. Local Permutation Equivariance For Graph
Neural Networks. arXiv preprint arXiv:2111.11840.



2
Background

Geometric deep learning concerns building neural networks that exploit some symme-
tries in high-dimensional data that arise due to the underlying low-dimensionality and
structure of the physical world (Bronstein et al., 2017). These symmetries arise across a
range of scientific disciplines and exist for data which have different low-dimensional
geometries. Here we introduce some of these low-dimensional geometries which we
seek to exploit. Furthermore, the study of symmetries most often concerns the use of
group theory and as such this section introduces the necessary definitions and concepts.
We also introduce the concept of equivariance which plays a crucial role in geometric
deep learning and has a strong relation to group theory. Finally, we present the different
groups and corresponding low-dimensional geometries considered throughout. As
this work focuses on applications across a range of scientific disciplines we introduce
the necessary preliminaries and background literature for each of these in the relevant
chapter rather than introducing those here. Each chapter makes use of neural networks
and core deep learning techniques for training the various models, we also introduce
here.

2.1 Low-Dimensional Geometries

When we say low-dimensional geometries here we mean the domain on which the
data lives. These domains are often the result of the process of physical measurement
(Bronstein et al., 2021); for example images often live on a 2D grid as a result of the sensor
array within a camera. Each chapter considers a different low-dimensional geometry
with Chapter 3 considering the domain of 1D grids, Chapter 4 2D grids, Chapter 5 2D
grids and 3D continuous spaces, and Chapter 6 graphs comprising nodes and edges. The
various data types and their respective domain of interest is summarised in Table 2.1.

4



CHAPTER 2. BACKGROUND 5

One physical measurement process utilised in this work is infrared spectroscopy which
produces spectra. Spectra are sampled on a 1D grid, but form a high-dimensional space
due to the large number ofwavenumbers sampled. This high-dimensionality corresponds
to a large n value in the domain column and spectra row in Table 2.1. The spectra are
signals on this domain that are 1D real vectors corresponding to the absorption of light
at the particular wavenumber sampled. These signals (x : Ω → R1) form a vector space,
which we use as the input function or input feature space to the deep learning model. It
is the regular structure of this high-dimensional 1D grid which we exploit in Chapter 3.

We also make use of images which are sampled on a 2D grid, but can form a high-
dimensional space as the resolution of the image increases. This high-dimensionality
corresponds to a large n value in the domain column and images row in Table 2.1.
The images are sampled on this domain which create 3D real vectors corresponding to
the RGB values typically associated to images. Similarly to the spectra, these signals
(x : Ω → R3) form a vector space, which we use as the input function or input feature
space to the deep learning model. In the instance grey scale images are used the signal
changes to x : Ω → R1, although the only difference is that the vector space reduces in
dimension to R1, reducing the input feature space of a neural network. It is the regular
structure of this 2D grid which we exploit in Chapter 4.

Furthermore, we make use of point clouds which are sampled on a 3D continuous real
space. Despite the input domain not being as high-dimensional as the spectra or an
image, a point cloud does not generally comprise of just a single point and generally
has n points, where n can become large. The points sampled on this domain create 3D
real vectors corresponding to the x, y, z position vectors, which locate the point in the
domain. Again, these signals (x : Ω → R3) form a vector space, which we use as the
input function or input feature space to the deep learning model. It is worth noting this
is not the only signal that could be used for a point cloud, for example if each point had
a color associated with it this could also be used. In Chapter 5 we exploit the structure of
both images and point clouds and produce a mapping between the two domains which
preserves structure.

Finally, graphs consist of a set of nodes V and an adjacency tensor A which provides
information on the connectivity of the graph through the edges connecting nodes. Sim-
ilarly to a point cloud a graph generally consists of many nodes. Both the nodes and
edges of the graph are signals (x : Ω → Rn) which form a vector space and are used as
the input function or input feature space to the deep learning model. This vector space
is presented here very generally as graphs typically cover a wide range of applications
which would each yield a different vector space Rn. In Chapter 6 we exploit the structure
of a graph, or more specifically the lack or ordering of the nodes.
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Data Type Domain Name Domain Ω Vector Space
Spectra 1D Grid Zn R1

Images 2D Grid Zn × Zn R3

Point Clouds 3D Continuous Space R3 R3

Molecules / Social Networks Graphs (V,A) (Rn,Rn)

Table 2.1: An overview of the various data types, their respective data domains, and the
vector spaces considered for the specific type of data.

2.2 Symmetries

The symmetries of an object are usually referred to as the invariants of the object (Co-
hen & Welling, 2016). These symmetries are transformations that can be applied to
the object which leave it unchanged (Cohen et al., 2021), which is to say the object is
invariant to these transformations. Such transformations include—but are not exclusive
to—translations, rotations, reflections, and permutations. For example, in computer
vision when considering an image it is possible to translate each pixel and the resulting
image remains an image of the same object. Therefore, translation is a symmetry which
can be exploited in computer vision. In each chapter we exploit a different symmetry in
the low-dimensional geometry in which the data lives.

A symmetry (or isometry) is a mapping f : Ω → Ω which preserves distances. Every
symmetry is a bijection, meaning that it has a one-to-one correspondence. Again in the
example of translational symmetry in computer vision, translating all of the pixels maps
each pixel to a new location and no two pixels are mapped to the same location. In
addition, every symmetry being a bijection means that each symmetry has an inverse
(Bronstein et al., 2021). This can also be seen in the translation example, where, after
translating an image there always exists another translation which moves each pixel
back to its original location. Furthermore, symmetries can be combined to create a new
symmetry (Bronstein et al., 2021). Therefore, given two symmetries g : Ω → Ω and
h : Ω → Ω, their compositions g ◦ h and h ◦ g are symmetries (Bronstein et al., 2021).
Finally, a symmetry has an identity object e : Ω → Ω where e ◦ h = h (Bronstein et al.,
2021); in the translation example this can be seen as the zero translation which doesn’t
move any pixels. These conditions, which are necessary to be a symmetry, form the laws
required for an algebraic object to be known as a group. Geometric deep learning is
usually defined through the lens of group theory and as such we provide further details
and background in the following sections.
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2.3 Functions

A function f can be thought of as a black box, where any element from X can be fed into
the box, and an element from Y will be produced on the other end (Cameron, 2007).

The set of allowable inputs X to the function is called the domain of f (Cameron, 2007).
Similarly, there is a set of allowable outputsY to the functionwhich is called the codomain
of f (Cameron, 2007). It is worth noting that it is not strictly required that every possible
value of the codomain Y be producible by the function f . Some examples of the input
domains X are detailed in Table 2.1 under the Domain Ω column. An ordered pair (x, y)
is a convenient way of detailing that an input x produces output y (Cameron, 2007).

Definition 1. A function f : X → Y is a subset of X × Y such that, for every element
x ∈ X , there is a unique element y ∈ Y for which (x, y) ∈ f (Cameron, 2007).

As noted by Cameron (2007), a function is often called a map or mapping. This is due
to the fact that a function f maps an input x ∈ X to an output y ∈ Y . Throughout this
work we will interchangeably use the terms map, mapping, and function.

2.4 Binary Operations

In Section 2.2 we used the notation ◦ to denote composition of two symmetries without
saying anything about what this ◦ does. Here we define a binary operation and other
useful relations for considering two mathematical objects.

Definition 2. Binary Operation ◦
A binary operation on a set A is a function f from A× A to A (Cameron, 2007).

Here we add the ◦ notation in with the binary operation definition as we make use of this
notation throughout. This amounts to using the influx notation a◦ b for f(a, b) (Cameron,
2007). Another common approach is to use juxtaposition and simply write ab for f(a, b)
(Cameron, 2007). Examples of binary operations which typically have their own notation
are +, −, ·, ×, and ∗ (Cameron, 2007).

Definition 3. Binary Relation
A binary relation R on a set A is a subset of the Cartesian product A × A (Cameron,
2007).

A binary relation can be thought of as a function which returns either true of false
(Cameron, 2007). A binary relation takes in two elements from a set a and b and returns
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true if the pair satisfy the relation or false if they do not Cameron (2007).

Definition 4. Equivalence Relation
An equivalence relation, R is a binary relation on a set Awhich satisfies the following
laws (Cameron, 2007):
(Reflexive law): (a, a) ∈ R for all a ∈ A.
(Symmetric law): If (a, b) ∈ R then (b, a) ∈ R.
(Transitive law): If (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.

2.5 Group Theory

Definition 5. Group
A group is a set G with a binary operation ◦, usually denoted (G, ◦) satisfying the
following laws (Cameron, 2007):
(G0) (Closure law): For all g, h ∈ G, g ◦ h ∈ G.
(G1) (Associative law): g ◦ (h ◦ k) = (g ◦ h) ◦ k for all g, h, k ∈ G.
(G2) (Identity law): There exists e ∈ G such that g ◦ e = e ◦ g = g for all g ∈ G.
(G3) (Inverse law): For all g ∈ G, there exists h ∈ Gwith h ◦ g = g ◦ h = e.

Definition 5 provides a definition of a group, where a group is commonly written as
(G, ◦), although where the binary operation is not ambiguous we will write a group as
G. The commutative law is not included within the definition of a group, although if a
group also satisfies g ◦ h = h ◦ g for all g, h ∈ G then the group is called commutative or
abelian.

Throughout this work we will follow the common method for reducing notations with
groups and often write g ◦ h as gh. Further, we will use the power notation gn = g · g . . . g
to abbreviate the combination of an element g with itself n times. Finally, we will often
use g−1 for the inverse of the element g.

Example 1. Real numbers and addition.
The set R together with the binary operation + yields a group (R,+) (Cameron, 2007).
This is the group of real numbers with the binary operation of addition.

To show that (R,+) in Example 1 is a group we are required to consider each of the
axioms.
(G0) For all g, h ∈ Rwe need to check that g + h ∈ R. From the definition of R is clear
that addition of two number yields a real number.
(G1) The order of summation of real numbers does not impact the result and hence
g + (h+ k) = (g + h) + k for all g, h, k ∈ R, so it is associative.
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(G2) It is known that adding zero to a real number does not change it, hence 0 ∈ R
satisfies g + 0 = 0 + g = g for all g ∈ R, and it has an identity.
(G3) Finally, for each real number there exists the negative equivalent, such that for all
g ∈ R there exists −g ∈ R satisfying −g + g = g +−g = 0.

Therefore we can conclude that (R,+) is a group.
Definition 6. Subgroup
Given a group G, a subgroup of G is a subset of Gwhich, using the same operation as in
G, is itself a group (Cameron, 2007). A subgroup H of G is denoted by H ≤ G.

Now that we have the definition of groups and subgroups, we are interested in mappings
between these structures. We need to be able to define mappings between different
structures to be able to consider different symmetries of the structures.
Definition 7. Group Homomorphism
Given two groups G and H , a homomorphism θ : G → H is a function θ from G to H
that satisfies the condition (Cameron, 2007)

(g1g2)θ = (g1θ)(g2θ) ∀g1, g2 ∈ G. (2.1)

Definition 8. Group Isomorphism
A homomorphism that is one-to-one and onto is called an isomorphism (Cameron, 2007).
That is a group isomorphism is bijective (surjective and injective).

Two groups G and H are called isomorphic is there is an isomorphism between them.
Two groups being isomorphic means that from the point of view of abstract algebra they
are the same, even if their elements are completely different (Cameron, 2007).
Definition 9. Group Automorphism
Given a group G a group automorphism is an isomorphism from G to G.
Let X be some mathematical object for which we can formulate the notion of homomor-
phism (or isomorphism). Then an automorphism of X is an isomorphism θ : X → X ;
in other words, it is a permutation of X which happens also to be a homomorphism
satisfying (Cameron, 2007)

(x ◦ y)θ = xθ ◦ yθ. (2.2)

Let Aut(X ) be the set of all automorphisms of X . Then Aut(X ) is a group, the automor-
phism group of X . This can also be considered for a group rather than a general object X
and therefore we can talk about the automorphism group of a group (Cameron, 2007).

An important equivalence relation defined on a group is that of conjugacy. Conjugacy
provides a measure of similarity between elements in the group and allows for the
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splitting of group elements into equivalence classes. Each equivalence class is a unique
partition of the group elements. The group G hence can be thought of as the disjoint
union of equivalence classes, which are called conjugacy classes.

Definition 10. Conjugacy
For a group G, two elements of the group g, h of G are conjugate (written g ∼ h) if
h = g−1xg for some g ∈ G (Cameron, 2007).

Throughout this work we are interested in how a group acts upon some data. Equipped
with the concept of a low-dimensional geometry which is the underlying domain on
which the data lives, we can consider how the group acts upon this domain. Following
this, we are interested in how the group acts upon the signals (features) which live on
this domain.

Definition 11. Group Action
A group action of a group G on a set Ω is a function µ : Ω×G→ Ωwith the following
two properties (Cameron, 2007):
(GA1) µ(µ(u, g), h) = µ(u, gh) for all u ∈ Ω, g, h ∈ G.
(GA2) µ(u, 1) = u for all u ∈ Ω, where 1 is the identity of G.

Therefore if we have a group G acting on a base space Ω, we automatically obtain an
action of G on the feature space X (Ω) (Bronstein et al., 2021):

(gx)(u) = x(g−1u) (2.3)

for g ∈ G, x ∈ X (Ω), and u ∈ Ω.

Throughout this work we will make use of linear group actions, known as group repre-
sentations (Bronstein et al., 2021). This type of group action is of particular interest for
deep learning as typically the functions learned to update the feature spaces X (Ω) are
linear. The non-linearity is introduced through specific non-linear functions inserted
after each linear update function. Therefore, introducing group representations, which
are linear group actions, is a well studied tool which can be utilised in deep learning to
constrain the update functions such that they respect the properties of a group action.
Given the connection made between symmetries and group theory (Cohen et al., 2021;
Cohen & Welling, 2016; Bronstein et al., 2021) considering group representations in the
context of deep learning provides a method of constraining neural networks to respect
the symmetries of the considered low-dimensional geometry.
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2.6 Representation Theory

The feature spaces considered in deep learning are typically vector spaces. The concept
of a vector is quite commonly introduced in high-school or any engineering or science
degree, and is generally distinguished from scalar values by the use of bold type. On the
other hand, a vector space can be considered as an algebraic object, just like a group. For
a formal definition of a vector space we would divert the reader to Cameron (2007).

As stated at the end of Section 2.5, we are particularly interested in linear maps in deep
learning. Often a homomorphism of a vector spaces is called a linear transformation or
linear map, and as such we adopt this notion.

Definition 12. Linear Transformation
For a vector space V a linear transformation from V to V is a function θ : V → V which
satisfies the following conditions (Cameron, 2007):

(v1 + v2)θ = v1θ + v2θ (2.4)

(cv1)θ = c1(v1θ) (2.5)

for scalars c and v1, v2 ∈ V .

Definition 13. Finite Group Representation
A representation of a finite group G on a finite-dimensional complex vector space V is
a homomorphism ρ : G→ GL(V ) of G to the group of automorphisms of V (Fulton &
Harris, 2013).

Similarly, we can define a group representation as a map ρ : G→ Cn×n that assigns to
each group element g ∈ G an invertible matrix ρ(g), and further satisfies ρ(gh) = ρ(g)ρ(h)

(Bronstein et al., 2021).

Throughout this work we consider feature spaces as vector spaces. Therefore, group
representations provide a convenient way represent the group actions on such vector
spaces and constrain the linear transformations with some symmetry group. In general
the dimensions n of the invertible matrix ρ(g) will be equal to the dimensionality of the
feature space on which the group acts X (Ω).

An example of a group representation, which is used in later chapters, is that of the
rotation group SO(2).

Example 2. Rotation Group SO(2)

The group representation given as a homomorphism to the general linear group and as
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a map to rotation matrices Cesa (2020):

ρ : SO(2) → GL(R2), ρ : SO(2) →

[
cos θ − sin θ

sin θ cos θ

]
. (2.6)

The rotation group SO(2) is the group of all planar rotations and rotates the vector space
through the angle θ.
Definition 14. Equivalent Representations
Two representations ρ and ρ′ on a vector space V are called equivalent or isomorphic iff
they are related by a change of basis Q ∈ GL(V ) (Cesa, 2020),

∀g ∈ G, ρ′(g) = Qρ(g)Q−1. (2.7)

Equivalent relations therefore behave similarly. This can also been seen for composition
of representations through (Cesa, 2020):

ρ′(g1)ρ
′(g2) = Qρ(g1)Q

−1Qρ(g2)Q
−1 = Qρ(g1)ρ(g2)Q

−1. (2.8)

Similarly to a group action providing details on the action of a group on a base space,
a group representation details how the group acts on signals x ∈ X (Ω) (Cohen et al.,
2021)

ρ(g)x(u) = x(g−1u), (2.9)

which also satisfies
(ρ(g)(ρ(h)))x(u) = (ρ(gh)x)(u). (2.10)

It is also useful in the context of deep learning to consider mappings between different
group representations. An example, which will be seen later in Chapter 6, is that of a
mapping from a graph to a set or from a graph to pooled graph. These will both be map-
pings between different group representations. A map ψ between two representations
ρ(G)(V ) and ρ(G)(W ) on different vector spaces V andW , but of the same group G is a
vector space map ψ : ρ(G)(V ) → ρ(G)(W ) such that

ρ(G)(V ) ρ(G)(W )

ρ(G)(V ) ρ(G)(W )

ψ

g g

ψ
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commutes for every g ∈ G. This is denoted a G-linear map to distinguish it from an
arbitrary linear map.
Definition 15. Direct Sums of Representations
Multiple representations can be combined by taking the direct sum of the representations.
Given two representations ρ1 and ρ2 of a group G, their direct sum ρ1 ⊕ ρ2 is defined as
(Weiler & Cesa, 2019; Finzi et al., 2021)

(ρ1 ⊕ ρ2)(g) =

[
ρ1(g) 0

0 ρ2(g)

]
, (2.11)

which generalises to multiple representations as⊕
i

ρi(g) = ρ1(g)⊕ ρ2(g)⊕ . . . . (2.12)

Definition 16. Irreducible Representations (Irreps)
A representation is called irreducible if it can only be decomposed as the direct sum of
trivial representations.
Definition 17. Regular Representation
The regular representation of a finite group G acts on itself by translation. The action on
a G-dimensional vector space permutes its axes.

2.7 Equivariance

The previous background sections provided a background into group theory and devel-
oped this to provide an understanding of group representations and how these govern
group actions on the low-dimensional geometry of the data domain Ω. This provides the
mathematical concepts required to study how the symmetries of the domain Ω underly-
ing the signals X (Ω) impose structure on functions f defined on the signals. This allows
us to build on the definitions of maps between representations and build maps such
that the functions are constrained by imposing structure from the symmetries chosen.
This is a powerful inductive bias, as it reduces the space of possible functions f (Weiler
& Cesa, 2019). This inductive bias of symmetry can be understood through the terms
equivariance and invariance and we define this now.
Definition 18. Equivariance
A function f : X (Ω) → X (Ω) is said to be equivariant to the group G (Bronstein et al.,
2021) if

f(ρ(g)x) = ρ(g)f(x) ∀g ∈ G, x ∈ X (Ω) (2.13)
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Equivariance states that if a group action ρ(g) is applied on the input feature space x
before passing the features through a function f , it produces the same output as first
passing the input feature space x through the function f and then applying the group
action ρ(g).

Definition 19. Invariance
A function f : X (Ω) → X (Ω) is said to be invariant to the groupG (Bronstein et al., 2021)
if

f(ρ(g)x) = f(x) ∀g ∈ G, x ∈ X (Ω) (2.14)

Invariance states that if a group action ρ(g) is applied on the input feature space x before
passing the features through a function f , it produces the same output as only passing
the input feature space x through the function f . Therefore, the output of the function f
is unaffected by the group action on the input.

2.8 Training Deep Learning Models

Machine learning can broadly be categorised into three different branches supervised,
unsupervised, and semi-supervised. Supervised machine learning characterises the
scenario when there exists data samples and corresponding labels or targets to be pre-
dicted. On the other hand unsupervisedmachine learning covers the scenario where data
samples exist but there is no corresponding labels. Semi-supervised machine learning
sits somewhere between the two where an algorithm should learn from both labelled
and unlabelled data. This thesis focuses on supervised machine learning and as such
the following details will be more specific to the supervised machine learning scenario.

2.8.1 Neural Networks

In supervised machine learning it is often assumed that there is a set ofN samples where
each consists of some data point x and label y, yielding a dataset of D = {(xi, yi)}Ni=0

(Bronstein et al., 2021). It is assumed that these samples are drawn i.i.d from an under-
lying distribution defined over X × Y , where X and Y are the data and label domains
respectively (Bronstein et al., 2021). It is further assumed that the labels y ∈ Y are
generated by some unknown function f , such that yi = f(xi) (Bronstein et al., 2021). The
task of supervised machine learning is therefore to estimate the function f by training a
model on the dataset D. In deep learning this function estimation is accomplished by
learning some parameterised function class F = {fθ∈Θ}, where the parameters θ ∈ Θ
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are the network weights (Bronstein et al., 2021).

2.8.2 Transfer Learning and Fine-Tuning

Transfer learning is a training technique in machine learning where a pre-trained model
is re-purposed for a new task. This necessitates that a model has already been trained
for a task previously. There is an assumption that the two tasks are sufficiently similar
that there are features within the pre-trained model that will be useful for the new task.
These features can then be re-purposed or transferred to the new task. Fine-tuning is
also a training technique that is used in conjunction with transfer learning and refers to
the situation where some of the weights are unfrozen and trained from the initialisation
of a model which was trained on a different task. Fine-tuning can also incorporate the
situation where some additional weights are added to a pre-trained model and then
trained.

When both transfer learning and fine-tuning are used as techniques to train a model
some weights, typically those in early layers of the model, are frozen and some weights,
typically those in later layers of the model, are un-frozen and trained. The freezing of
some weights in the model fixes the feature extraction of this part of the model. The
model is re-trained to update the non-frozen weights to re-purpose the model for a new
task. This concept of transferring the weights to a new model to solve a new task and
freezing part of the model is demonstrated in Figure 2.1.

Figure 2.1: Example of transfer learning and fine-tuning. An initial model is trained on
task 1. Then the weights are transferred to a new model for task 2. This model is then
fine-tuned by freezing some of the weights while un-freezing and training other weights.
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Transfer learning is used when there is a relatively small dataset, but there exists a much
larger dataset which has similar properties. Therefore, the large dataset can be used
to train a general model, which will learn useful features for solving the specific task
associated to that dataset, and is less likely to suffer from over-fitting issues due to the
size of the dataset. Then, these learned features can be taken advantage of for the new
task associated to the smaller dataset, where it would be more likely that the model
would over-fit to the smaller dataset and generalise poorly if this pre-training was not
utilised. The main goal of using transfer learning and fine-tuning is to improve the
generalisation of the model, speed up the training time, and re-use feature capability
from a prior task.



3
Translational Symmetries on 1D Grids

In this chapter we develop amodel comprising of translation equivariant 1D convolutions
for the task of predicting mosquito age and species. We demonstrate that the model
can predict mosquito age and species with a high level of accuracy for lab, semi-field,
and wild data, overcoming the challenges of working with small wild data sets through
the use of transfer learning from a model trained on lab data. Further, we show that
the model is sensitive to regions of chemical relevance in the input spectra. Finally,
we demonstrate that the model can be a useful tool in assessing the impact of malaria
intervention schemes.

3.1 Introduction

This chapter builds on the development of translation equivariant models to develop a
model for the prediction of mosquito age and species from mid-infrared spectra. Mid-
infrared spectra consist of a 1D feature space corresponding to the absorption of light
which lives on a high-dimensional 1D grid due to the large number of wavenumbers
considered. Wedevelop amodel that consists ofmultiple layers that respect the symmetry
of translation, which here means these layers enforce equivariance to the group Z on
a domain of 1D grids; this is achieved through the use of 1D convolutions. Following
the translation equivariant layers we add pooling layers and fully connected layers
for the final prediction of both the age and species of the input sample. The use of
translation equivariant 1D convolutions allows the model to extract features at different
spatial locations using the same model weights, providing an efficient weight sharing
scheme for high-dimensional data. Spectra consist of many peaks and troughs, created
by absorption of light due to the presence of different molecules within the mosquito,
and each of these can be a superposition of many smaller peaks and troughs produced by

17



CHAPTER 3. TRANSLATIONAL SYMMETRIES ON 1D GRIDS 18

the different cuticular components they belong to (chitin, proteins, or waxes). As these
occur at different wavenumbers, being able to detect peaks at differing wavenumbers
is of importance. Therefore, the translation equivariance of 1D convolutions allows the
feature extraction from peaks and troughs to be shared spatially, which is of importance
in mid-infrared spectra. Furthermore, having the translational weight sharing provided
by a translation equivariant network allows structures to be detected within the signal
more efficiently than a non-equivariant model, which is important in high-dimensional
data. We empirically demonstrate the performance of the model on data of mosquitoes
reared in the lab and semi-field, and those collected in the wild. For the semi-field and
wild data we overcome the challenge of learning on a very small data set through the
use of transfer learning, re-using the translation equivariant feature extraction part of
the model pre-trained on lab data. In addition, we perform a sensitivity analysis on
the model to assess which input wavenumbers the model prediction is sensitive to and
show that this corresponds to regions within the spectra that have chemical relevance.
Finally, for the wild data, where there is a lack of labelled data, we demonstrate that
the predicted age distribution of the model is similar to the true distribution of wild
mosquitoes, which would be of practical relevance for population monitoring used to
assess the impact of malaria intervention schemes. Our contributions are:

• A model comprising translation equivariant 1D convolutions, which overcomes
the high-dimensionality of spectra data without feature selection for mosquito age
and species prediction.

• A transfer learning method for overcoming the challenge of working with small
mosquito data sets, which allows the model to generalise to wild and semi-wild
data.

• A demonstration that the proposedmodel predicts age and species more accurately
than prior methods.

• A sensitivity analysis demonstrating model sensitivity to chemically relevant re-
gions in the input spectra.

• A demonstration of how the model can be used to predict age distributions of wild
mosquitoes.
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3.2 Background

3.2.1 Mosquitoes and Mid-Infrared Spectroscopy

The transmission of malaria presents a paradox; it depends on malaria mosquitoes that
have a shorter mean lifespan than the malaria parasite requires for its development to
become transmissible (Beier, 1998). Consequently, the persistence of malaria is depen-
dent upon the the small proportion of mosquitoes that survive long enough to transmit
the malaria sporozoites to a mammalian host. As a result, small changes in mosquito
longevity have a big impact on malaria transmission (Macdonald, 1956). Malaria control
interventions have therefore focused on targeting adult mosquitoes, and have reduced
the incidence of malaria in Africa (Macdonald et al., 1952; Bhatt et al., 2015). Despite
this progress, the effectiveness of control interventions maybe threatened by insecticide
resistance (Churcher et al., 2016).

A method for rapid, accurate, and reliable assessment of mosquito age structure is of
crucial importance formonitoring the impact ofmosquito control interventions. However,
current mosquito age grading methods typically rely on old techniques based on ovary
dissections such as that proposed by Beklemishev et al. (1959) that are slow, labour-
intensive, coarse, and imprecise, and which vary between mosquito species (Hugo et al.,
2014; Johnson et al., 2020). Many alternatives have been investigated with variable
success (Schlein, 1979; Caputo et al., 2005; Cook et al., 2007; Bass et al., 2007; Mayagaya
et al., 2009; Sikulu et al., 2015). Malaria is transmitted by multiple, often morphologically
indistinguishable, mosquito species that differ in longevity and behaviour (Ferguson
et al., 2010; Cohuet et al., 2010). Therefore, the most useful method for the prediction
of mosquito age would also predict the mosquito species and would not rely on time-
consuming techniques and expensive reagents.

The cuticle of a mosquito, the outermost part of the body, has a chemical composition
which differs between different species and changes with age (Johnson et al., 2020).
Infrared spectroscopy can detect changes in mosquito cuticle by quantifying how it
absorbs light (Mayagaya et al., 2009; Lambert et al., 2018). Mid-Infrared Spectroscopy
(MIRS) measures the absorption of light in the wavenumber region of 4000-400 cm−1.
MIRS measures discrete fundamental vibrations of bio-molecules, allowing information
to be extracted frombiological samples (Waynant et al., 2001; Sorak et al., 2012). Therefore
MIRS is a useful technique for extracting information about the chemical composition of
mosquitoes. Despite this benefit, MIRS provides a 1D signal that has a high-dimensional
feature space, which presents a challenge for non-ML techniques and generally requires
some pre-processing (Jiménez et al., 2019).
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3.2.2 Translation Equivariance

In this chapter we are concerned with translation equivariance on 1D grids due to the
improved weight sharing offered by the inductive bias of a 1D convolution. We are
therefore interested in the translation group G = T acting on the domain X (Ω) =

(Zn,+) of an n-dimensional grid. Therefore the equivariance constraint of a translation
equivariant layer, f , is:

f(ρ(g)x) = ρ(g)f(x) ∀g ∈ T, x ∈ (Zn,+), (3.1)

which states that if the input features x are first translated by the group action ρ(g) before
passing through the function (neural network layer) f , this should equal first passing
the input features x through the function (neural network layer) f and then translating
by the group action ρ(g). This constraint is satisfied by a 1D convolution implemented
efficiently in most deep learning frameworks.

A convolutional layer can be viewed as a set of convolutional kernels which are convolved
with the image. This amounts to multiplying the kernels weights with the features of
a region of the input domain that is of the same size as the kernel, and then repeating
this process for each distinct region on the input domain. The act of repeating for
each distinct region on the input domain highlights that the convolution operation will
similarly process an input independent of a translation action applied to the base space.
A discrete convolution operation is expressed through:

y =
n−1∑
i=0

n−1∑
k=0

w(i−k)modnxk, (3.2)

for output y, input x, and weight matrix w.

Writing this in matrix multiplication yields a circulant matrix as the weight matrix, which
is formed by stacking w n-times shifted modulo n. Hence, convolution can be written as
matrix multiplication with a circulant matrix. A circulant matrix has a multi-diagonal
structurewith elements on each diagonal sharing the same value. Circulantmatrices have
an interesting property that they commute, i.e. W0W1 = W1W0 for circulant matrices
W0 and W1. Here we are interested in translation equivariant functions, hence it is
worth noting that translation can be written as a shift matrix S, which is also a circulant
matrix. Therefore the translation equivariance of convolution can be seen through matrix
multiplication with shift matrices:

WST = STW, (3.3)
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for the weight matrixW from a convolutional kernel and shift matrix S.

Translation equivariant models were considered in the convolutional neural network
of LeCun et al. (1989a), where this translational symmetry was utilised as part of a
model for image classification. Since their introduction, convolutions have been a key
component of recent developments of neural networks for image based tasks with many
models introducing new components to the overall model such as pooling, regularisation,
non-linearities, batch normalisation, or skip connections to advance the state-of-the-art in
image classification (LeCun et al., 1998; Krizhevsky et al., 2012; Simonyan & Zisserman,
2015; Szegedy et al., 2014; He et al., 2016). Despite most advances being made in the
image domain the techniques developed and advances made are applicable for 1D
convolutions.

3.3 Mosquito Age and Species Classification

3.3.1 Datasets

In this chapter, four datasets are used:

1. A dataset of mosquito larvae from the lab which were reared in the lab (LV).
2. A dataset of mosquito larvae from the field which were reared in the lab (GV).
3. A dataset of mosquito larvae from the lab that were reared in a semi-field environ-

ment (EV).
4. A dataset of mosquito larvae from the field that also developed in the field (Wild).

Each dataset has a different purpose with the ultimate goal to be able to correctly predict
the age and species of the wild mosquitoes. The LV dataset is relatively easy to collect as
the age can be easily monitored and the species is known; further, it is possible to have a
higher degree of control over the quantity of each group of mosquitoes collected. The GV
dataset also shares many of the benefits of the LV dataset due to being reared in the lab,
but introduces genetic variability due to not coming from a population of mosquitoes
that have existed for many generations in the lab. The EV dataset closer replicates wild
mosquitoes due to being reared in a semi-field environment and it is therefore of interest
to be able to correctly predict the age and species of these mosquitoes. The EV dataset
has the advantage that the age of mosquitoes is easily known bymonitoring the date they
are released into the semi-field from the lab. Conversely, as we only had access to one
semi-field environment for each location, this dataset is relatively small in the machine
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Figure 3.1: Four different datasets are used to determine the ability of the model to
predict age and specifies of mosquitoes. Each introduces a new variation making the
task more difficult, yet closer to the required prediction ability for this method to assist
in population understanding of mosquitoes. The laboratory variation (LV) comprises
mosquito larvae from the lab which are reared in the lab, the genetic variation (GV)
comprises mosquito larvae from the field which are reared in the lab, the environmental
variation (EV) comprises mosquito larvae from the lab which are reared in a semi-field
environment, and the wild variation (Wild) comprises mosquito larvae from the field
which subsequently develop in the field and are collected from the field. This figure is
adapted from Siria et al. (2022).

learning context, which presents a challenge for deep learning algorithms. Finally, the
Wild dataset is of particular interest as these are truly wild mosquitoes collected in the
field and themain goal is to be able to predict age and species of thesemosquitoes. Details
on the method for determining the chronological age of wild mosquitoes is provided in
(Siria et al., 2022). Due to the time cost of dissecting mosquitoes, not all wild collected
mosquitoes are dissected. To independently test model predictions, the non-dissected
mosquitoes are also scanned to produce MIRS. These were selected at random from the
same populations as the dissected ones. Therefore, it is assumed that the age structure
of dissected and non-dissected mosquitoes should be similar. This dataset is challenging
to work with as it is very small and highly unbalanced due to the challenges of collecting
and dissecting the mosquitoes to determine the age, which presents a challenge from
a deep learning perspective. The key differences between each dataset are shown in
Figure 3.1.

For each dataset the input data is a mid-infrared spectrum and the target to be predicted
by the model is the age and species of the mosquito. The input spectrum contains
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information about the chemical composition of the mosquito and the task for the model
is to learn how the shape of the signal correlates with age and species. Therefore, the
model is required to learn to correctly predict the mosquito age and species from these
1D signals. For the age prediction task we group mosquitoes into three different classes,
those which are:

• 1-4 days old (not infected).
• 5-10 days old (potentially infected but not infectious).
• ≥ 11 days old (old enough to be infectious).

For the species prediction task the three different species form the three different classes,
these are:

• An. Arabiensis.
• An. Coluzzii.
• An. Gambiae.

The input mid-infrared spectra used throughout this chapter consist of 1550 different
wavenumbers. An example of spectra for different age and species of mosquitoes is
provided in Figure 3.2.

Figure 3.2: Representative variation of mid-infrared absorption spectra of An. Arabiensis,
An. Coluzzii and An. Gambiae and of the three age groups. This figure is from Siria
et al. (2022).

In addition to the description of each dataset, we perform some preliminary analysis
of the data using UMAP (McInnes et al., 2018). This unsupervised clustering shown
in Figure 3.3 reveals signatures within the MIR spectra of both geographic origin and
rearing conditions. This discrepancy between clusters indicates two properties of these
datasets:

• Firstly, there exists useful variation between species, suggesting that MIRS are
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predictive of species.
• Secondly, there is unsurprising (Krajacich et al., 2017; Khoshmanesh et al., 2017)

variation between mosquito origins and rearing environments, indicating that
models based on cuticle composition must include representative samples from
each origin to statistically adjust for origin bias.

(a)

(b)
Figure 3.3: UMAP plots showing an unsupervised clustering of MIRS data projecting
down to 2-dimensions. (a) coloured according to site of origin and (b) source of variation.

3.3.2 Model Specification

3.3.2.1 Model Architecture

In Section 3.2.2 we stated that 1D convolutions provide an efficient implementation of a
deep neural network layer that is translation equivariant. Further, given the nature of
mid-infrared spectra, consisting of multiple peaks and troughs on a 1D grid, utilising
1D convolutions is a well motivated method to learn from the input features. This is
due to the need to extract information about the peaks and troughs at different spatial
locations in an efficient manner. The inductive bias of 1D convolutions, which shares
kernel weights spatially across the entire input, provides exactly this. The translation
equivariance of 1D convolutions means that if a peak occurs in a different spatial location
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in the input spectra it will be processed similarly by the same weights. This is due to the
occurrence of multiple similar peaks in different spatial locations appearing locally like
a shift in the input spectra and convolutions have a fixed size receptive field meaning
they process local patches of the input.

As a result of the fact that 1D convolutions are efficient and physically motivated for the
input data to our model, we build a model that comprises multiple 1D convolutional
layers followed by fully connected layers. We interleave pooling layers between the
convolutional layers to reduce the high-dimensionality of the data. As a result, the fully
connected layers operate on a lower-dimensional data domain. The fully connected
layers allow information sharing across the entire data domain allowing learned features
to be combined from either end of the spectra in a way that is not possible with only
convolutions (unless sufficiently many convolutional layers are used, which we do not
do). Further, the fully connected layers produce the final output prediction of both age
and species. An overview of the architecture of the model is given in Figure 3.4.

Figure 3.4: Schematic representation of the deep convolutional neural network that
takes MIR spectra as inputs and outputs mosquito age and species. The input layer
(wavenumber values) is fed through five 1-dimensional convolutional layers, comprising
of 16 filters each (convolutional layers region), followed by a dense layer of 500 features
and age and species output layers (dense layers) that were used to make predictions.
This figure is from Siria et al. (2022).

In the early convolutional layers of the model, batch normalisation (Ioffe & Szegedy,
2015) was used to improve the stability of the neural network and max pooling was
used to reduce the spatial size of the representation. Further, ℓ2 regularisation (Krogh
& Hertz, 1991; Schmidhuber, 2015) was used in each layer to reduce overfitting, with a
convolutional stride of size one in convolutional layers one, three and five, and stride of
two in convolutional layers two and three. We used size two max pooling in the final
convolutional layer, and dropout was applied before the dense layer to further reduce
overfitting. The convolutional neural network architecture was found by optimising the
hyper- parameters. For this, the number of layers was hand optimised, while the kernel,
stride, and pooling sizes for each convolutional layer were optimised using gp_minimize
from scikit-optimise (Pedregosa et al., 2011). The overall architecture is provided in
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more detail in Figure 3.5.

Figure 3.5: Graphical diagram of the deep convolutional neural network developed for
the prediction of mosquito age and species from spectra. The convolutional layers are
written in the form n conv, sm, o, where n is the width of the filter,m is the stride size,
and o is the dimension of the feature space.

3.3.2.2 Model Training

The model is trained in two different ways depending on the specific task. When con-
sidering the lab-reared data there is access to a large dataset and as such the model is
initialised with random weights and trained from this initialisation. Conversely, when
considering semi-field or wild data the dataset is small. Therefore, transfer learning is
used. For this, the model is initialised with the weights from a pre-trained model, the
convolutional layers weights are frozen, and the model is trained from this initialisation.
Here, the pre-trained model is a model trained on the larger lab dataset. This allows for
the features learned by the model on the lab data to be re-used and only the final layers
in the model are fine-tuned to avoid over-fitting on the semi-field and wild datasets. The
wild dataset is not only small, but also imbalanced and as such, a re-weighting is applied
to the optimisation gradients during training to mimic a balanced dataset.
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3.3.3 Experiments

Unless otherwise stated, the model was trained using datasets balanced across mosquito
age-groups and species. Further, in each experiment the dataset was split such that there
is a 10% testing dataset and the remaining 90% of the dataset was used for optimising
the model through 10-fold cross validation. Further, the spectra were standardised such
that they are centered around the global mean and scaled to unit variance.

3.3.3.1 Lab Reared Data

The first experiments test whether themodel can learn to correctly classify the age-groups
and species of mosquitoes from their MIR spectra. Initially the laboratory variation (LV)
dataset is used to assess how well the model can predict lab reared data when trained
on lab reared data. Figure 3.6 (a) and (b) demonstrate that the model can predict both
age-groups and species of LV data with a high level of accuracy achieving 84% and 93%
accuracy in classifying age-group and species respectively. In comparison we trained a
fully connected network on the same dataset and Figure 3.7 (a) and (b) show that this
model achieved 74% and 87% accuracy in classifying age-group and species respectively.
Secondly, both the LV and genetic variation (GV) datasets are used, where LV data is
only utilised in the training dataset while the GV dataset is split into training and testing
datasets. This assesses how well the model can predict lab reared data with genetic
variability. Figure 3.6 (c) and (d) demonstrate that the model can again predict both
age-groups and species of lab reared data with a high level of accuracy achieving 89%
and 95% accuracy in classifying age-group and species respectively from the GV dataset.
In comparison we trained a fully connected network on the same training and testing
datasets and Figure 3.7 (c) and (d) show that this model achieved 82% and 84% accuracy
in classifying age-group and species respectively. These results demonstrate that the
convolutional model can be trained to accurately predict both age-groups and species
of lab reared mosquitoes. While the full-connected model also achieves a high level of
accuracy, in both instances it under-performs in prediction accuracy when compared to
the convolutional model. This demonstrates that the convolutional layers are beneficial
for the prediction of mosquito age and species. Furthermore, both of these models
outperform which hand select specific wavenumbers to use as input features and logistic
regression to predict age and species achieving 53% and 83% accuracy respectively
(Jiménez et al., 2019).
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3.3.3.2 Semi-Field Data
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Figure 3.6: Confusion matrices of the convolutional model classification accuracy. (a-b)
A model trained on LV data and tested on LV data. (c-d) A model trained on LV+GV
data and tested on GV data. (e-f) A model trained on LV+GV data and tested on EV
data. (g-h) A model initially trained on LV+GV data, re-trained using transfer learning
with EV data (here, 1452 examples), and tested on EV data.

The ability to predict age and species of semi-field or wild mosquitoes with a sufficiently
high degree of accuracy, such as to enable population monitoring, which is required to
assess the effectiveness of malaria control measures, has been previously unachievable
(Siria et al., 2022). The ability of the model to generalise to new datasets is assessed
by testing the model trained on lab reared LV and GV data on mosquitoes reared in a
semi-field through the use of the environmental variation (EV) dataset. Figure 3.6 (e)
and (f) demonstrates that the model trained on LV and GV data does not generalise well
to new data from a different source, such as the EV dataset. Given the strong performance
of the model in predicting both LV and GV datasets test sets with high accuracy, it is
most likely that the drop in performance when testing on the EV dataset is due to distinct
differences in the data. Several hypotheses can be drawn, as to why the data is different.
Some of these include regular access to a food source in the lab versus a natural food
source in the semi-field; a climate-controlled environment in the lab versus a naturally
varying climate in the semi-field; and a smaller space without other objects in the lab
versus a larger space and natural objects to interact with, such as a hut and animals, in
the semi-field. Furthermore, we also assessed the ability for the fully-connected model to
generalise to the EV dataset from a model trained only on LV and GV data. Figure 3.7 (e)
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and (f) demonstrates that the fully connected model does not generalise well to the EV
dataset either. This further validates that it is not simply that the convolutional model
generalises poorly, but that the datasets are different.

Figure 3.7: Confusion matrices of the fully connected model classification accuracy. (a-b)
A model trained on LV data and tested on LV data. (c-d) A model trained on LV+GV
data and tested on GV data. (e-f) A model trained on LV+GV data and tested on EV
data. (g-h) A model initially trained on LV+GV data, re-trained using transfer learning
with EV data (here, 1452 examples), and tested on EV data.

To enable the model to classify semi-field mosquitoes we utilise transfer learning using
the model pre-trained on lab data. This allows the model to make use of the features
learned from the lab data and reduces the quantity of training data required from the
semi-field. Figure 3.6 (g) and (h) demonstrates that with 1452 training data points from
the EV dataset used to re-train the model it is able to classify both age-groups and species
with 94% accuracy. Therefore, with relatively fewmosquito samples collected from a new
site, the model is able to be re-trained to make accurate predictions. We again repeated
this experiment on the fully connected model, following the same training set-up except
for here we froze the first fully connected layer and allowed the remaining layers to be
trained. Figure 3.7 (g) and (h) demonstrates that with 1452 training data points from the
EV dataset used to re-train the fully connected model it is able to classify age-group and
species with 81% and 88% accuracy respectively. This highlights that the convolutional
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layers are beneficial when utilising transfer learning to generalise to a new small dataset.

In addition to the result using 1452 training data points, Figure 3.8 shows the impact
on the test accuracy when using different size EV training datasets. This demonstrates
that a high test accuracy can be achieved with a small number of training data points.
Increasing the quantity of EV data in the training set caused the prediction accuracy
to increase rapidly, already exceeding 80% accuracy with 324 training examples and
exceeding 90% accuracy when over 815 EV data points were used for training. This is
of practical relevance given the field collection effort of collecting mosquito samples.
Further, for comparison, Figure 3.9 shows the same experiment performed with the fully
connected model, which demonstrates that the convolutional model generalises better to
the new dataset with fewer training samples.
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Figure 3.8: Classification accuracy improved from ∼50% to 94% for both age group and
species with a training set comprising 0 (i.e. effects of increasing sampling of lab-reared
mosquitoes only) through 1452 semi-field (EV) mosquitoes used to re-train the transfer
learned model. The solid and shaded lines indicate the mean and standard deviation of
the mean of 20 trained models, respectively.
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Figure 3.9: Classification accuracy improved from ∼40% to 81% and 88% for age group
and species respectively with a training set comprising 0 (i.e. effects of increasing
sampling of lab-reared mosquitoes only) through 1452 semi-field (EV) mosquitoes used
to re-train the transfer learned model. The solid and shaded lines indicate the mean and
standard deviation of the mean of 20 trained models, respectively.
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3.3.3.3 Model Sensitivity
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Figure 3.10: Average model sensitivities to different wavenumber values and comparison
with the features of the average absorption spectrum (grey line) of each output class. The
coloured stripes show the regions associated with the particular vibration of a functional
chemical group. The upper part (maxima) displays the intervals of wavenumber values
in which the maximum of the absorption peaks of each vibration appear for each of the
three most abundant components in the cuticle of a mosquito (Jiménez et al., 2019). Here,
the vibration of the same bonds appears in different wavenumber values depending on
which cuticular component they belong to (chitin, protein or wax), which modifies the
shape of the peaks.
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Figure 3.11: Average model sensitivities to different wavenumber values and comparison
with the features of the average absorption spectrum (grey line) of each output class. The
coloured stripes show the regions associated with the particular vibration of a functional
chemical group. The upper part (maxima) displays the intervals of wavenumber values
in which the maximum of the absorption peaks of each vibration appear for each of the
three most abundant components in the cuticle of a mosquito (Jiménez et al., 2019). Here,
the vibration of the same bonds appears in different wavenumber values depending on
which cuticular component they belong to (chitin, protein or wax), which modifies the
shape of the peaks.
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Figure 3.10 shows the sensitivity of the convolutional model, which was trained for
predicting both LV and GV datasets, to understand the regions in the MIR spectra that
are most informative of mosquito age and species. The approach taken here follows that
outlined by Selvaraju et al. (2017). Firstly, the gradient of the model inputs with respect
to the model class output of interest is found. The gradients that act negatively towards
the class prediction are then zeroed, such that only wavenumbers in the spectra that
are leading to a positive classification of that class are retained. This is done as we are
interested in finding the regions in the spectra that are causing the model to predict that
samples are of this class, rather than those causing the model to predict that samples
are not of a particular class. This is repeated for each input spectrum and the gradients
are averaged. This is repeated for each age group and species class, which enables the
sensitivity regions in the spectra to be assessed for each age group and species.

The sensitivity profiles indicate that themodel extracted key biochemical features present
in the spectra, corresponding more specifically to wavenumber values associated with
the vibration of chitin and protein vibrations as is shown by the vertical colored bands in
Figure 3.10. Furthermore, the aliphatic hydrocarbon bands (green stripes) contributed
little to the model, suggesting that lipids like wax in the cuticle are less informative in
distinguishing age and species of mosquitoes. The sensitivity plot has high frequency
fluctuations in sensitivity, which we believe is a similar phenomena to that utilised in
the area of adversarial attacks on neural networks. Commonly when talking about
adversarial attacks on neural networks this is in reference to convolutional neural net-
works trained on images. Adversarial attacks often involve injecting small amounts
of high frequency information into an image, which is unnoticeable to humans, that
trick the network into mis-classifying the image (Szegedy et al., 2014; Goodfellow et al.,
2014). This implies that convolutional neural networks are sensitive to high frequency
information, which is demonstrated by our network as it is sensitive to high frequency
information within the spectra. Enforcing smoothness in the convolutional kernels can
overcome this, making the model less sensitive to high frequency information, although
Wang et al. (2020) showed that this comes at cost to the classification accuracy of the
model. As a result, the high frequency nature of the sensitivity plot shows that the
convolutional model is extracting high frequency information from the spectra. Given
that the user of such a model is also the person interested in the results, it seems counter
intuitive that the model would be used in a situation where adversarial attacks can lead
to incorrect classifications. Therefore, the model learning high frequency information is
not concerning and it would not be advantageous to lower classification performance to
stop this behaviour.
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The same sensitivity analysis was repeated on the fully connected model. Figure 3.11
shows that the fully connected model also has some sensitivity to regions within the
spectra that correspond to key biochemical regions. Furthermore, the model is sensitive
to the aliphatic hydrocarbon bands (green stripes), suggesting that the model is using
information from changes in lipids like wax in the cuticle to distinguish age and species
of mosquitoes. Although, the fully connected model is also sensitive to regions which do
not align with the vibration of any bonds that exist in the mosquito. One example of this
is the peak in sensitivity around the 2350cm−1 region, which corresponds to CO2, and
should not be a good indicator of mosquito age and species. This region in the spectra is
most likely an indicator of differences in the processing of mosquito samples and the
operator of the mid-infrared spectrometer. The sensitivity of the model to these regions,
which are void of meaningful information, has two possible explanations:

• The model is using this region as a form of calibration to adjust for offsets in the
spectra.

• The model is over fitting to the data and has learned some feature in these regions
that can more easily classify the data.

Given that we expected the useful information within the spectra to be the peaks and
troughs associated with key biochemical regions, this is most likely an indicator that the
model is over fitting. This assumption is further backed up by the fully connected model
requiring more EV training examples to generalise in Figure 3.9 than the convolutional
model in Figure 3.8.

When comparing the sensitivity plots from both models we notice that both models are
sensitive to the C-O stretch region, which could be a strong indicator that this region
features useful information for determining mosquito age and species. In addition, both
models are sensitive to the C=O strectch, Amide I, and Amide II regions, which suggests
that these regions are also useful indicators of age and species.

3.3.3.4 Wild Data

The model was then evaluated on the ability to predict the age of wild mosquito popula-
tions. The wild data differs from the LV, GV, and EV datasets in that we have a small
dataset of mosquitoes which have been dissected to determine the age and another
dataset of mosquitoes which the age is unknown. This is due to the cost of dissecting
mosquitoes making it only possible to have access to one training dataset of known age.
This situation is representative of a real situation in which a small dataset of mosquitoes
could be dissected to be used for transfer learning of the model trained on lab data.
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Similar to the approach for EV data, a model is trained using transfer learning from the
model pre-trained on lab data as the base model. The target age classes for the wild data
are the number gonotrophic cycles. Although the convolutional layers were trained to
predict chronological age classes, it is expected that these share many features of wild
mosquitoes classified into gonotrophic cycles. Indeed, the three classes of 1–4, 5–10
and ≥ 11 days old correspond to females that underwent 0, 1 or ≥ 2 gonotrophic cycles
(Detinova et al., 1962). Separate models were trained with 335 wild mosquitoes collected
and dissected in Burkina Faso and 758 from Tanzania.

It is not possible to assess the classification accuracy of the age groups as was done
for the lab and semi-field data due to the true age groups not being known for wild
mosquitoes. Instead, predictions are made by the model for the age groups of each
sample from the wild test dataset. Next the predicted distributions over the age groups
are averaged over the samples. This is repeated for 10 models, each trained on the wild
data, to assess the variability predicted age distribution. Figure 3.12 shows that the
models predicted very similar age structures for the non-dissected test dataset and the
dissected (morphologically assessed) training dataset. This suggests that the model can
be readily adapted to diverse field settings and ageing methodologies.
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Figure 3.12: Testing on wild mosquito populations. The proportion of wild female
mosquitoes with 0, 1 or≥ 2 gonotrophic cycles (G0, G1, G2+G3+G4) was determined by
ovarian dissection andmorphological characterisation (yellow). The predictionsmade by
the model on non-dissected mosquitoes (blue). The mean proportions and 95% credible
intervals of the age proportion from dissected mosquitoes (yellow) were estimated
with a Dirichlet distribution and provided in (Siria et al., 2022). The age proportion
predicted by the model (blue) is presented as box andwhisker plots showing the median,
interquartile range (IQR, box), lowest/highest data within 1.5 IQR (whiskers), and
outliers (red points) of the probability distribution of predictions from ten different
models.
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3.3.3.5 Discussion

The results show that considering translation equivariance for high-dimensional spec-
tra data is a promising direction given the improved performance over an MLP model.
Further, the sensitivity analysis of the two types of models demonstrates that the convolu-
tional based model is more sensitivity to high frequency information in the spectra. This
suggests that capturing higher resolution spectra could be a promising direction. The
results, especially on the wild data, shows that this approach could be used to determine
the age structure of mosquito populations. This could therefore be used as a tool in
determining the success rate of mosquito interventions.

3.4 Conclusions

A novel model is presented for the classification of age groups and species of mosquitoes.
This can not only be utilised for predicting age and species of mosquitoes reared in the
lab, but also for wild mosquitoes, overcoming the challenge of working with very small
unbalanced data through the use of transfer learning. This demonstrates that translation
equivariant 1D convolutions are a useful tool for learning on high-dimensional mid-
infrared spectra. We demonstrate that the developed model outperforms previous
methods in the prediction of age and species of lab reared mosquitoes. Further, the
trained model is sensitive to regions within the input spectra that correspond to regions
that have chemical relevance, suggesting that the model is learning useful features. We
also demonstrate that transfer learning can be used as a technique to train a model that
can predict age groups and species of semi-field mosquitoes with high levels of accuracy
while requiring a small quantity of data. In addition, transfer learning can be used to
train amodel that predicts an age structure similar to what is seen in thewildwith a small
quantity of data. Finally, the proposed model can be used to assist malaria mosquito
surveillance and will hopefully assist in assessing the effectiveness of malaria control
interventions.



4
Rotational Symmetries on 2D Grids

In this chapter we develop two different models, both with rotational symmetries on
image domains. The first is a steerable convolutional neural network with symmetries
given by the discrete rotational group C8 for the application of segmentation of defor-
estation regions. The second is novel model with cylindrical symmetries given by the
group SO+(2, 1). This model is developed for the task of inverting transmission effects
of multi-mode optical fibres.

4.1 Introduction

In this chapter we construct a steerable convolutional neural networks for discrete ro-
tation groups in Section 4.3. This consists of developing a U-Net style model for both
classification and segmentation of deforestation regions from satellite images. This
presents a clear example of a rotation equivariant architecture for an application where
rotational transformations naturally occur. The improved classification and segmenta-
tion accuracy demonstrates the benefits of such an approach. Finally, the stability of the
predicted segmentation maps is demonstrated, which is highly desirable for the given
application.

In addition, we develop a model that correctly models the cylindrical symmetries of
imaging through an optical fibre in Section 4.4. This work overcomes the challenges of
translating the terminology between physics and equivariant neural networks to com-
pose a novel architecture that correctly models the cylindrical symmetries of the task
by developing a network with SO+(2, 1). This overcomes the non-local relationship be-
tween images and their corresponding speckled patterns through incorporating a useful
inductive bias into the model, namely correctly modelling the cylindrical symmetries of
the imaging task. This non-local relationship presents a challenge for prior works such

37
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as fully convolutional based methods, as they assume the inductive bias of locality where
it does not exist. We combine this model with a convolutional post-processing model,
which we demonstrate makes our method more interpretable than prior works. Despite
this, we also demonstrate the method is applicable to real-world data through the use of
a dataset collected in the laboratory, and show how our method can be adapted to over-
come deviations between theory and the physical world. Furthermore, we explore how
our method performs under a range of experiments, demonstrating improved robustness
to the training dataset size, noise in the speckled images, and the parameterisation of
the Bessel basis set inside the model. Finally, we demonstrate that our model can scale
to higher resolution images that had previously been possible, which could unlock the
use of imaging through multi-mode fibres for new applications.

4.2 Background

The first works incorporating rotational equivariance for images selected a discrete rota-
tion group such as the group p4 or p4m consisting of rotations by 90° and with or without
mirror reflections (Cohen & Welling, 2016; Veeling et al., 2018). Such models replace
the convolution operator used in a typical Convolutional Neural Network (CNN) with
a group-convolution. Therefore, instead of performing convolution over an image do-
main, group-convolution is performed over a group. Convolution and cross-correlation
are often used interchangeably in deep learning texts. As such we detail the different
between convolution and group-convolution as cross-correlations as this is the typical
implementation used in deep neural networks. Given that cross-correlation is typically
performed on the image domain Ω = Z2 with an input signal f = X (Ω) : Z2 → R and
filter ψ : Z2 → R, it can be defined as:

[f ⋆ ψ](x) =
∑
y∈Z2

f(y)ψ(y − x). (4.1)

Cross-correlation is equivariant to translation group actions. This can be demonstrated
by showing that a translation action applied to the input signal f is equivalent to a
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translation action applied to the output signal:

[[Ltf ] ⋆ ψ] (x) =
∑
y∈Z2

f(y − t)ψ(y − x)

=
∑
y∈Z2

f(y)ψ(y + t− x)

=
∑
y∈Z2

f(y)ψ(y − (x− t))

= [Lt [f ] ⋆ ψ] (x).

(4.2)

Then group cross-correlation can be considered as considering a larger set of transfor-
mations, where these transformations have a group structure. As such, group cross-
correlation can be defined as

[f ⋆ ψ](g) =
∑
y∈Z2

f(y)ψ(g−1y). (4.3)

This group cross-correlation endows each of the |G| feature channel to a different element
g ∈ G. A single layer then has n× |G| features where nwould be chosen as is typically
chosen in a regular CNN. For such small rotational groups the equivariance required for
the network can be simply implemented by stacking rotated and reflected versions of
the kernel typically used in a regular CNN.

An important step in the development of rotation equivariant convolutional neural
networks was that of steerable CNNs (Cohen &Welling, 2017; Cohen et al., 2018, 2019;
Weiler & Cesa, 2019). Steerable CNNs describe E(2)-equivariant convolutions on the
images domain R2, where E(2) is the group of rotations and reflections of the plane
R2. The feature spaces of steerable CNNs are vector or scalar spaces, where a group
representations ρ determines the transformation behaviour of the feature space under
transformation of the input. To guarantee the transformation behaviour of the feature
fields the convolutional kernels are constrained, depending on the group representation
used. A general approach for constructing such a network was provided by Weiler &
Cesa (2019) through the use of irreducible representations of the group.

Steerable CNNs define the feature space of the input signal as f : R2 → Rc, which
associates a c-dimensional feature vector f(x) ∈ Rc to each point x in the base space
R2. For a scalar feature field Rc = R1, which associate the trivial representation, ρ(g) =
1∀g ∈ G, to the feature space detailing how the features transform under a group action.
In the case of the trivial representation this amount to multiplication by the identity;
hence, the features move to a new position, but do not change orientation. While for a
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vector feature field the group representation associated to the feature space details how
it transforms under a group action. That is, an input vector feature space is transformed
as

v(x) 7−→ ρ(g) · v(g−1(x− t)), (4.4)

where the input is not only moved to a new position, but also changes orientation via
the group action g ∈ G. Each layer in the network of a steerable CNN is required to be
equivariant so that the transformation law of the feature spaces is preserved. Therefore
the cross-correlation is performed with a G-steerable kernel, which for input and output
feature space transformation laws given by ρin and ρout is required to satisfy the kernel
constraint (Weiler & Cesa, 2019)

ϕ(gx) = ρout(g)ϕ(x)ρin(g) ∀g ∈ G, x ∈ R2. (4.5)

The concept of steerable CNNs encompasses the group convolutions described above,
where a discrete rotation group is used. Although, in addition, steerable CNNs describe
rotation equivariant CNNS which are equivariant to group actions of the continuous
rotation group SO(2). In the case of discrete rotation groups, a different feature space
is associated to each rotation angle. Storing features for an infinite number of rotation
angles is not computationally tractable. In Equation 4.5 the kernel constraint is given to
ensure that a network layer utilising steerable convolutions is equivariant, which features
the group representations ρout and ρin. This constraint is solved by Weiler & Cesa (2019)
by decomposing the constraint in terms of the irreps of ρout and ρin, where the irrep
decomposition is given by

ρ = Q−1

[⊕
i∈I

ψi

]
Q, (4.6)

whereQ is a change of basismatrix, {ψi} are the irreps ofG, and I is an index set encoding
the types and multiplicities of irreps in ρ.

As the groups considered for ensuring rotation equivariant on images are all subgroups
of O(2), their action on R2 are all norm preserving. As a result the decomposition into
irreps does not constrain the radial component, only the angular component. In addition,
each irrep of such a group is always associated to a unique angular frequency. Therefore,
the kernel constraint can be expressed in terms of an angular Fourier series, where
instead of choosing a discrete number of rotations a maximum frequency can be chosen.
Solving for the kernel space of permissible filters that can be usedwithin a steerable CNN
and ensuring that the model maintains rotation equivariance yields only the spectrally
localised circular harmonics (Worrall et al., 2017; Weiler & Cesa, 2019; Franzen & Wand,
2021). Therefore a rotation equivariant CNN can be created by solving for the circular
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harmonics up to a certain rotational frequency and combining this with a radial profile
function and sampling a basis of resolution given by the CNN filter size. This yields a
set of bases which can be linearly combined with a learnable weighting applied to each
to form the kernel for the CNN.

We present an example of a steerable CNN on a domain where rotational transformations
naturally occur in Section 4.3. Here we follow the concept of steerable CNNs using a
discrete rotation group.

Of the works that incorporate rotation equivariance into CNNs, we are particularly
interested in those using a continuous rotation group SO(2) in Section 4.4. Although, in
Section 4.4 we are not interested in developing a group equivariant convolutional model
due to the non-similar spatial arrangements between the speckled and original image
domains. Despite this, the concept of equivariance still applies, as the concept of learning
a model from a fixed basis set, which guarantees symmetry properties are conserved, is
relevant due to the nature of transmission through multi-mode optical fibres.

4.3 Rotation Equivariant Deforestation Segmentation

In this section we develop a rotation equivariant U-Net model for the segmentation
of deforestation regions from satellite images. Given that fewer examples of rotation
equivariant models exists, when compared to convolutional neural networks, we hope
this example will make it easier for such a model to be utilises for new applications. This
model predicts stable segmentation maps under rotations, which is a natural transforma-
tion of the input images, unlike non-rotation equivariant models. Further, it improves
the accuracy of segmentation map prediction and deforestation drive classification.
Therefore, our contributions are:

• An example of a rotation equivariant network for an application where the input
images have no fixed orientation.

• A demonstration of the practical benefits of correctly considering the symmetries
of a given problem.

4.3.1 Background

Deforestation has been greatly accelerated by human activities withmany drivers leading
to a loss of forest area. Deforestation has a negative impact on natural ecosystems, biodi-
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versity, and climate change and it is becoming a force of global importance (Foley et al.,
2005). Palm plantation deforestation is projected to contribute 18-22% CO2-equivalent
emissions in Indonesia (Carlson et al., 2013), which is the leading producer of palm
oil (Carlson et al., 2012). Furthermore, deforestation in the tropics contributes roughly
10% of annual global greenhouse gas emissions (Arneth et al., 2019). In addition to
the emissions caused by deforestation, over one quarter of global forest loss is due to
deforestation with the land being permanently changed to be used for the production of
commodities, including beef, soy, palm oil, and wood fiber (Curtis et al., 2018). "Climate
tipping points are when a small change in forcing, triggers a strongly nonlinear response
in the internal dynamics of part of the climate system" (Lenton, 2011). Deforestation is
one of the contributors that can cause climate tipping points (Lenton, 2011). Therefore,
understanding the drivers for deforestation is of significant importance for preventing
climate tipping points.

The availability and advances in high-resolution satellite imaging have enabled appli-
cations in mapping to develop at scale (Roy et al., 2014; Verpoorter et al., 2012, 2014;
Janowicz et al., 2020; Karpatne et al., 2018). A range of prior works have used deci-
sion trees, random forest classifiers, and convolutional neural networks for the task of
classifying and mapping deforestation drivers from satellite images (Phiri et al., 2019;
Descals et al., 2019; Poortinga et al., 2019; Hethcoat et al., 2019; Sylvain et al., 2019; Irvin
et al., 2020). However none of these previous methods leverage advances in rotation
equivariant convolutional networks (Cohen & Welling, 2016, 2017; Weiler & Cesa, 2019),
and as such the methods are not stable under rotation of the input images. This is a
significant weakness as rotational transformation can naturally occur during the capture
of such data. As a result the segmentation regions predicted by previous methods are
not independent from the choice of orientation of the image. Therefore, the region of
deforestation predicted will be different depending on the orientation of the satellite
image, which makes the use of these methods unreliable when used in practise.

4.3.2 Model Specification

To overcome the limitations of prior works, namely their lack of independence from the
choice of orientation of the input image we develop a rotation equivariant model. Due
to the recent emergence of equivariant neural networks (Cohen &Welling, 2016), the
availability of already implemented models as well as pre-trained models is scarcer than
non-group equivariant model. Therefore, we develop a U-Net (Ronneberger et al., 2015)
style architecture for the task of segmentation utilising the e2cnn package Weiler & Cesa
(2019) and attach an MLP to the lowest dimensional feature space for classification. We
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utilise two models to assess the benefits of incorporating rotational equivariance for the
task of deforestation prediction:

• A translation equivariant convolutional model.
• A translation-rotation equivariant convolutional model.

The first model uses translation equivariant convolutional layers and is not equivariant
under rotations, while the second model uses translation-rotation equivariant convolu-
tional layers and is therefore rotation equivariant. For the rotation equivariant version,
we choose the group C8 of discrete rotations by 45° as the symmetry group. Therefore,
this model has a guaranteed transformation behavior for 45° rotations of the input image.
We chose to consider the equivariance group C8 as the lower the choice ofN in the group
CN , the lower the memory requirement is for the model for a fixed feature dimension.
This is due to the implementation of equivariance to the cyclic group consisting of N
rotated copies of the feature fields.

The input to themodel is RGB images, which consists of three independent 1-dimensional
vector spaces on the domain R2. Therefore, the input feature space consists of the direct
sum of three trivial representations, which associates three independent 1-dimensional
feature vectors f(x) ∈ R to each point x of the base space. The trivial representation is
characterised by the group representation ρ(g) = 1 ∀g ∈ C8. Therefore the feature space
is defined as f =

⊕3
i fi feature fields which transform under the direct sum ρ =

⊕3
i ρi,

where each ρi is the trivial representation. Each hidden layer in the model has a feature
space that consists of multiple regular representations of the group C8. Therefore, the
feature space of hidden layers is defined as f =

⊕m
i fi, for fi : R2 → R8, where m is

the choice of number of features commonly used in a neural network. The structure
of each feature space is fully characterised by the group representation ρC8

reg, with the
group representation characterising the transformation law of the the hidden layers
given as the direct sum of individual representations ρ =⊕m

i ρ
C8
reg. Finally, the output of

the model is a prediction of the segmentation map. This is a single 1-dimensional vector
with transformation law characterised by a single trivial representation.

We chose the dimensionm of the feature space of the rotation equivariant network such
that the model has a similar size of feature space to the non-rotation equivariant model.
The overall architecture of the model is details in Figure 4.1.
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Figure 4.1: A breakdown of the rotation equivariant model, which is a U-Net style
model with the convolutional blocks replaced with rotation equivariant ones. The model
consists of five convolutional blocks with down sampling in between each, followed
by five convolutional blocks with up sampling in between each. In addition, each
convolutional block in the down sampling region has a skip connection connecting it
with the convolutional block in the up sampling region, which processes inputs of the
same resolution. A breakdown of the convolutional block is also given in the lower right
hand side of the figure.

4.3.3 Experiments

The dataset used is the same as that used by Irvin et al. (2020), where forest loss event
coordinates and driver annotations were curated by (Austin et al., 2019). Random
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samples of primary natural forest loss events were obtained from maps published by
Global Forest Change (GFC) at 30m resolution from 2001 to 2016. These images were
annotated by an expert interpreter (Austin et al., 2019) to determine deforestation regions
and deforestation drivers. The drivers are grouped into categories determined feasible to
identify using 15m resolution Landsat 8 imagery, while ensuring sufficient representation
of each category in the dataset (Irvin et al., 2020). The mapping between expert labelled
deforestation driver category and driver group used as a classification target is provided
in Table 4.1. The dataset consists of 2,756 images, segmentation maps, and class labels.
We follow the training/validation/testing set splits as provided by Irvin et al. (2020).

Table 4.1: The mapping between deforestation driver groups as defined in (Irvin et al.,
2020) and the expert labelled deforestation driver categories defined in (Austin et al.,
2019). The deforestation driver groups are used as classification targets when training
models.

Expert Labelled Deforestation Driver Category Classification Target Driver Group
Oil palm plantation

PlantationTimber plantaion
Other large-scale plantations
Grassland/shrubland Grassland/shrubland
Small-scale agriculture

Smallholder agricultureSmall-scale mixed plantation
Small-scale oil palm plantation
Mining

Other
Fish pond
Logging road
Secondary forest
Other

The prediction accuracy of the segmentation maps between the two models is com-
pared in Table 4.2. This shows that the rotation equivariant model achieves better test
segmentation accuracy. One cause of this benefit is that the model can share learned
segmentation features across different orientations that occur across the different images
in the dataset, while the non-rotation equivariant model has to learn repeated features for
each orientation. The stability of the segmentation map prediction is also demonstrated
by testing on a rotated version of the test dataset. The rotation equivariant network has
an identical test accuracy on both the rotated and non-rotated datasets, demonstrating
the stability of the segmentation maps under rotation. Surprisingly, the non-rotation
equivariant model has a near identical test accuracy on the rotated and non-rotated
datasets. This is most likely a result of the deforestation regions being predicted by the
model being either too large or too small and therefore, despite the deforestation map
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not deforming smoothly under rotation, it does not impact the accuracy significantly.

Table 4.2: Comparison between a model with translation equivariant convolutions and a
model with both translation and rotation equivariant convolutions. Results are displayed
as percentages for the segmentation accuracy of per pixel prediction averaged between
the true deforestation and non-deforestation areas to account for the class imbalance
towards non-deforestation areas.

Model Train Validation Test Rotated Test
UNET - CNN 72.9 68.7 67.8 67.9
UNET - C8 Equivariant 84.1 71.3 72.3 72.3

The model trained with rotation equivariance also outperforms the non rotation equiv-
ariant model for classification of the drivers of deforestation, shown in Table 4.3. One
reason that the rotation equivariant model achieves a higher classification accuracy is
that the model is using the features more efficiently by not learning similar features at
different orientations. As a result the model predicts more accurate segmentation maps,
which it can then use to better classify the deforestation drivers.

Table 4.3: Comparison between a model with translation equivariant convolutions and a
model with both translation and rotation equivariant convolutions. Results are displayed
as percentages for the classification accuracy of driver of deforestation.

Model Train Validation Test Rotated Test
UNET - CNN 90.3 60.6 57.9 56.3
UNET - C8 Equivariant 82.7 67.1 63.0 64.3

The segmentation map predictions for the non rotation equivariant model and rotation
equivariant models are shown to compare the stability of segmentation under rotation
in Figure 4.2. This highlights that the segmentation map prediction for the non-rotation
equivariant model changes as the image is rotated, which would be highly undesirable
if used in practice as the rotation orientation of the satellite should not effect the seg-
mentation map prediction of deforestation. On the other hand, the rotation equivariant
model segmentation map prediction is stable under rotation, which is a highly desirable
property of the model.

4.3.4 Discussion

The results demonstrate that when the data domain has a known symmetry, such as a
rotational symmetry in this case, it is beneficial to make the model equivariant to this
symmetry. This ensures that no undesired deformations exist in the model predictions
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(a) (b)

(c) (d)

Figure 4.2: A comparison of predicted segmentation maps under rotation for both the
non-rotation equivariant model and the rotation equivariant model. The original image
is shown in (a) and (b) with the edge of the true segmentation map in red. Image (a)
shows the predicted segmentation map for the non-rotation equivariant model in light
blue. Image (b) shows the predicted segmentation map for the rotation equivariant
model in dark blue. The 90° rotated image is shown in (c) and (d) with the edge of
the true segmentation map in red. Image (c) shows the predicted segmentation map
for the non-rotation equivariant model in light blue. Image (d) shows the predicted
segmentation map for the rotation equivariant model in dark blue.

when a natural symmetry transform of the data occurs. Given that rotations of the images
captured by satellites can occur, rotation equivariant networks present a promising
direction for building segmentation models for satellite imagery.
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4.4 Cylindrical Equivariant Inversion ofMulti-Mode Fibre
Transmission Effects

In this section we present a model which naturally accounts for the difference in spatial
arrangement between speckled and original images and scales more efficiently than
previous methods to higher resolution images. This is the first method to demonstrate an
ability to invert 256× 256 pixel speckled images into 256× 256 pixel original images. Our
approach also takes advantage of the circular correlations in the speckled images, and
improves upon previous general imaging results. Concerning the equivariance literature,
we develop a model comprising of cylindrical harmonic basis functions, a basis set which
has seen little attention in the equivariance literature, and make the connection between
the transmission of light through a fibre and the group theoretic understanding used in
developing equivariant neural networks. In addition, to the equivariant component of
our model we also introduce a post processing model, which is a convolutional model,
which correctly operates on images in the same spatial arrangement to those being
predicted. The separation of the model into two complementary components creates
a more interpretable model than previous approaches. In the experimental section we
introduce a new theoretical dataset which makes it possible to explore the predictive
performance of the model on out-of-distribution datasets, with the existence of noise in
the speckled patterns, with fewer training examples, and with an under parameterised
bases space. Our contributions are:

1. A connection between group theoretic equivariant neural networks and the inver-
sion of MMF transmission effects, providing a novel type of model to tackle the
problem

2. A more interpretable model due to splitting the model into a physics motivated
equivariant model and convolutional model

3. A more data-efficient model to solve the inversion of MMF transmission effects
4. A more scalable model to solve the inversion of MMF transmission effects, which

can scale to previously unachievable resolutions
5. A model that provides better generalisation to out-of-training domain images
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4.4.1 Background

4.4.1.1 Multi-Mode Fibres

Multi-mode fibres present a clear advantage over single-mode fibre bundles due to
having 1-2 orders of magnitude greater density of modes than a fibre bundle (Choi et al.,
2012). As a result, multi-mode fibres (MMF) havemany potential applications inmedical
imaging, cryptography, and communications. In the medical domain, the use of multi-
mode fibre imaging has potential to create hair-thin endoscopes for imaging sensitive
areas of the body. However, to utilised for these applications, the fibre transmission
properties must be compensated for to return a clear image (Stasio, 2017). This section
concerns the use of a single multi-mode fibre and does not consider fibre bundles due to
the advantages presented by multi-mode fibres.

A MMF has multiple different fibre modes, each of which propagates at a different
velocity. This leads to an amplitude and phase mixing of the image as it propagates
through the fibre (Mitschke, 2016). As a result, an input image creates a complex-valued
speckled pattern on the output of the MMF. If each propagation mode and velocity was
known the transmission matrix (TM) could be computed, providing a linear system that
inverts the transmission effects, although in general this is not known. This information
be found by acquiring the output amplitude and phase relative to each mode, but in
practise this is time consuming and requires many measurements to be taken to fully
characterise the TM. In addition, this is only applicable to the specific fibre in its current
configuration and as such bending the fibre changes the TM and requires the entire
process to be repeated.

Inverting a speckled image is challenging for multiple reasons. Firstly, the speckled
images have a non-local relationship with respect to the original images. As a result,
solely local patch-based models, such as convolutional neural networks, do not make
sense as a solution without some dense mapping function. Therefore, the non-locality
necessitates mapping the speckled images into a spatial arrangement similar to the
original images before typical image-based deep learning techniques can be used, such
as convolutions and pooling. In addition, the speckled images have circular correlation,
which could be taken advantage of, although as noted by Moran et al. (2018), finding
these requires solving the inversion, creating a chicken-and-egg problem. Further, the
mode mixing interference during propagation of an image can lead to information loss
such that inverting the transmission does not yield the true original input image, as
is demonstrated in Figure 4.3. Finally, the fibre is equivalent to an unknown complex
transmission matrix (TM) so, the inverse of this could be found using a complex-valued
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linear model, although this presents challenges in terms of memory requirements. A
mapping between 350 × 350 original and speckled images would result in a TM with
3504 ≈ 15 billion entries, requiring a linear model with as many parameters. We provide
further details on the inversion of the TM in Section 4.4.1.2.

The ability to accurately, in a scalable way, learn to invert the transmission effects, would
unlock MMF imaging as a useful tool across a range of domains. Although, a model
which correctly models the physics of inverting the transmission effects should produce
the inverted image in Figure 4.3 and producing the original image requires addition
information to be learned. We provide further details into the propagation of light
through optical fibres and how we construct theoretical TMs in Section 4.4.1.5.

4.4.1.2 Invertibility of TMs

Given a TM, which models how an image propagates through a fiber, it is possible to
invert the matrix and get the corresponding mapping back from the speckled image
space to the original image space. We provide details of the construction of theoretical
TMs in Section 4.4.1.5. Utilising this we can inspect information loss due to the limited
number of modes of the fibre by passing the image through the TM and back through
the inverse to create an inverted image. Therefore, if we knew the TM this inverted image
would be the recoverable information. We show some examples of the original image,
the speckled image, and the inverted image in Figure 4.3.

This is useful as it allows us to separate the task of inverting the transmission effects of a
fibre into that which could be reconstructed by understanding the physics of the TM
and that which requires generating due to being lost information. We believe this could
therefore be viewed as two tasks:

1. A task of inverting the transmission effects which would have the aim of generating
the inverted images

2. A task of predicting the original images from the output of the first task

4.4.1.3 Related Work

Previous work in inverting the transmission effects of MMFs can be categorised into
three different approaches:

1. Characterisation of the TM through experimentation
2. Learning a dense linear model
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(a) Original (b) Speckled (c) Inverted
Figure 4.3: (a) The original image, (b) the speckled image created by passing the original
images through a theoretical TM, (c) the inverted image created by passing the speckled
images through the inverted theoretical TM.

3. Learning a convolutional model

Method 1 requires extensive experimentation to characterise the TM of the fibre (Čižmár
& Dholakia, 2011, 2012; Choi et al., 2012; Mahalati et al., 2013; Papadopoulos et al., 2012;
Plöschner et al., 2015; Leite et al., 2021), where the number of experimentalmeasurements
required for re-calibration was reduced by Li et al. (2021) by exploiting sparstiy in the
TM. The general approach taken in method 1 is to characterise the TM by acquiring the
output amplitude and phase relative to each mode (Čižmár & Dholakia, 2011, 2012).
Choi et al. (2012) present an approach to construct the TM in a scanner-free method
based on measurement of amplitude and phase of the output. Although the method
requires 500 measurement repetitions at different incidence angles. Mahalati et al. (2013)
develop a method in which the number of resolvable image features approached four
times the number of spatial modes. Papadopoulos et al. (2012) develop a digital phase
conjugation technique to restore images without the requirement of calculating the full
TM. Despite this, the solution of finding the TM, or part of it, has to be repeated for every
different fibre, for every different length, under each different bending scenario, and for
each different temperature, reducing the practicality of this solution. Plöschner et al.
(2015) developed a procedure that could also incorporate bending through a precise
characterisation of the fibre and a theoretical model.

Methods 2 and 3 are both machine learning based approaches to solve the inverse
problem. Both of these approaches train a neural network to approximate the inverse
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transmission matrix and predict the original images from the speckled patterns. Method
2 consists of using dense linear models, which have no inductive bias (Moran et al., 2018;
Fan et al., 2019; Caramazza et al., 2019). Moran et al. (2018) and Caramazza et al. (2019)
approached solving the inverse problem through the use of either a Real and Complex
linear model with a Hadamard layer to model the power drop off of the spatial light
modulator. A dense linear model can account for the difference in spatial arrangement
between speckled and original images and is therefore a theoretically sound approach
to solving the task. Despite this, at its core, this approach requires the use of a fully
connected model, which maps from speckled images to the original images and scales as
O(N2

sN
2
o ), whereNs is the resolution of the speckled image andNo is the resolution of the

original image. This is a very memory-expensive operation and restricts the scalability
of the approach to relatively low resolution images. Furthermore, the high number of
trainable parameters of a fully connected model, which has no inductive bias, could lead
to the model overfitting to the specific training data.

Method 3 is to use a convolutional machine learning based approach (Borhani et al., 2018;
Rahmani et al., 2018). In theory a fully convolutional neural network approach improves
upon the scalability issue, through incorporating an inductive bias into the model that
is commonly used for learning on images. Despite this, for the task of inverting the
transmission effects of optical fibres, the speckled and original images do not have a local
relationship. This is an issue for fully convolution based approaches as convolutions
have an inductive bias of locality and the input and output data domains do not share
the same spatial arrangement. Therefore, in practice, using a full convolutional approach
requires the model to have a large number of layers in order to be able to effectively map
every pixel in the speckled image to every pixel in the original image. As a result, in
practice, fully convolutional approaches do not over come the scalability issues. Borhani
et al. (2018) use a convolutional U-Net model to invert the transmission effects. To
overcome the issue of mapping between two domains that are not in the same spatial
arrangement their model requires 14 hidden layers to learn the inversion of 32 × 32

resolution images. Rahmani et al. (2018) also use a fully convolutional model, which
comprises of 22 convolutional layers, for low resolution, 28× 28, images. Therefore, it
is not surprising the model can overcome the issues of mapping between two image
domains with non-similar spatial arrangements as a mapping from each speckled pixel
to each original image pixel is possible. Despite this, the use of a large number of
convolutional layers removes the scalability benefit of the approach. There is therefore
no evidence that the convolutional based models truly improve the scalability issue as
these models are very large considering the resolution of images.

Fan et al. (2019) use a convolutional neural network to invert transmission effects. Here,
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the convolutions and pooling reduce the speckled resolution before a dense linear layer
predicts the original image. As a result the model will be sensitive to the learned down-
sampling of the convolutions and suffer from similar scalability issues to Moran et al.
(2018) due to the inclusion of a dense linear layer.

All of these approaches are mostly expected to work for classes of objects that belong to
the class that was used for training (Borhani et al., 2018). Rahmani et al. (2018) make the
first attempt to demonstrate generalisation outside of the training domain, although the
results demonstrate limited evidence of true generalisation due to the choice of images
featuring limited high frequency features and low quality reconstructions. Caramazza
et al. (2019) demonstrate stronger generalisation due to the testing data choice, but there
is still scope to improve the reconstruction quality outside of the training domain.

4.4.1.4 Equivariance

Cylindrical Harmonics
While the circular harmonics have seen some attention in the deep learning community
due to the use in constructing rotational equivariant CNNs, the cylindrical harmonics
have seen less attention (Klicpera et al., 2020). The cylindrical harmonics appear as
a solution to Bessel functions for integer α and are therefore of interest for problems
where information transformation is characterised by such functions. For example Bessel
functions are used when solving wave or heat propagation. Bessel functions are solutions
for different complex numbers α of Bessel’s differential equation:

x2
d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0. (4.7)

For integer values of α the Bessel function solutions are a linearly independent set of
functions expressed in cylindrical coordinates. Each function consists of the product of
three functions. The radially dependent term is typically called the cylindrical harmonics.
Further details on the connection between group theory and the Bessel basis functions is
provided in Section 4.4.2.1.

4.4.1.5 Generation of Theoretical Transmission Matrices

Light propagation through a MMF is characterised by the transmission modes of the
fibre. The fibres considered in this work have a step index profile with the refractive
index within the core being constant and at a higher value than the cladding. The
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analytical solutions for the fibre modes can be determined by solving the Helmholtz
equation in cylindrical coordinates, details for which are given in Appendix 4.4.2.1. The
problem can therefore be expressed as an eigen-value eigen-function problem, where the
eigen-functions are the fibre modes and the eigen-values are the propagation constants,
β, of the modes. The solutions for the electric field within the fibre are comprised of
Bessel functions of the first kind inside the core and modified Bessel functions of the
second kind in the cladding as follows:

f corel (r, θ) =
Jl(u(β) · rR)
Jl(u(β))

e±ilθ, (4.8)

f cladl (r, θ) =
Kl(w(β) · rR)
Kl(w(β))

e±ilθ, (4.9)

where r and θ are the radial and azimuthal coordinates, respectively, l is the azimuthal
index of the mode, R is the fibre core radius, and u and w are normalised frequencies
defined as follows:

u(β) = R
√
k20n

2
core − β2

lm, (4.10)

and
w(β) = R

√
β2
lm − k20n

2
clad, (4.11)

where ncore and nclad are the refractive indices of the core and cladding, respectively, k0
is the vacuum wave number, and m is the radial mode index. Further details on the
connection between propagation of light throughMMFs and group theoretic equivariant
neural networks is provided in Appendix 4.4.2.1.

Taking the derivative of Equations 4.8 and 4.9, and equating the resulting functions
asserts a smoothness condition on the electric field across the core-cladding boundary.
Solving this for all values of β over all possible integer values of l gives the propagation
constants. These constants correspond to the fibremodes given by the, now appropriately,
parameterised Equations 4.8 and 4.9. Examples of the mode fields are given in Figure 4.4.

A diagonal fibre propagation matrix, F , can then be made from the eigen-values, β, of
the Helmholtz problem and the corresponding eigen-functions can be recorded in a
matrix,M , which maps the image space to the fibre mode, or group space. We can find
the inverse mapping bases from the fibre or group space back to the image space,M †, by
taking the conjugate transpose. These three components allow us to construct the TM as:

TM =MFM †. (4.12)
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Figure 4.4: Electric field amplitude profiles of the Bessel bases used within our model.
Here red is positive, blue is negative and the colour saturation represents the electric
field strength. These bases are often known as LP modes.

4.4.2 Model Specification

Our method comprises two models: a Bessel equivariant model and a convolutional
post-processing model. The Bessel equivariant model uses a basis set of the form of
the cylindrical harmonics to ensure that the model is equivariant to known symmetries
in optical fibres. The model learns a diagonal complex mapping function between
bases, which from a physics perspective can be interpreted as learning the propagation
constants of each mode in the fibre or from an equivariance perspective a weight matrix
learning how each filter contributes to the reconstruction task. The Bessel equivariant
model is constrained by the basis choice to produce circular images, which can have
circular artifacts also seen in a true inversion, see Figure 4.3. The post-processing model
is used to fill gaps in the corners, remove circular artifacts, and sharpen the images. The
two stage approach is useful in safety-critical applications as users can inspect the output
of both models, where the Bessel equivariant model output is less likely to depend on
the training data due to the choice of inductive bias.

4.4.2.1 Bessel Equivariant Model

The core of our Bessel equivariant model has an inductive bias that better replicates the
physics of the task of inverting the transmission effects of MMF imaging. To achieve this
we utilise prior knowledge of MMFs and the modes with which an image propagates
through the fibre. Similar to the successes of rotation equivariant neural networks, which
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make use of circular harmonics to achieve rotation equivariance, we utilise cylindrical
harmonics as an inductive bias of the model. This is motivated by the propagation
modes of the fibre being characterised by Bessel functions, where the radially dependent
solution is given by the cylindrical harmonics. We make the connection to the group
theoretic development of equivariant neural networks in Section 4.4.2.1, demonstrating
the connection between the group SO+(2, 1), the light cone, and Bessel function solution
to the wave equation.

The first stage of building the Bessel equivariant model is the computation of two sets
of basis functions, which is done prior to training and only has to be completed once
when creating the model. The first set transforms an input image into a function that
lives on the group, while the second transforms from a function that lives on the group
back into the image domain. These basis functions are sampled on a grid given by
the size of the speckled images for the first basis set and the original images for the
second basis set. These bases are not trainable parameters and are not updated during
training of the model. These basis functions are an alternative to those used in general
rotation equivariant neural networks, which typically offer equivariance to the group
SO(2), except they correctly model the symmetry group, SO+(2, 1) of the task of inverting
transmission effects of a MMF due to the added time dimension. An example of the
bases used is given in Figure 4.4. The basis functions used within the model are the same
as the fibre modes that are created when constructing a theoretical TM, which is detailed
in Section 4.4.1.5.

The second component of the Bessel equivariant model is a diagonal complex-valued
weight matrix. This comprises the trainable weights of the Bessel equivariant model. This
complex-valued weight matrix is diagonal, as, in theory there is no mode mixing, and
therefore the model only needs to learn the complex propagation constant associating
each input mode to its corresponding output mode. In practise manufacturing defects,
sharp bends, dopant diffusion, elliptical cores, amongst other reasons can cause mode
mixing (Carpenter et al., 2014), which can be compensated for within the model by
relaxing the diagonal constraint placed upon the weight matrix. The model’s weight
matrix linearly transforms the function mapped by the first basis set. The model trainable
parameters, under the diagonal constraint, are equal to the number of bases within the
model.

The overall architecture of the Bessel equivariant model is therefore a mapping from
the image space to the fibre mode space provided by the first basis set, then a learned
update function provided by the complex weight matrix, and finally a mapping from
the fibre model space to the output image space provided by the second basis set. The
overall model architecture is given in Figure 4.5.



CHAPTER 4. ROTATIONAL SYMMETRIES ON 2D GRIDS 57

Figure 4.5: Our two stage model architecture comprising of a Bessel equivariant model
and post-processing model. Input (left) is speckled images. Output (right) is predicted
image. The speckled image resolution Bessel function bases transform the speckled
image into a mode space of the group SO+(2, 1). The complex weight matrix is diagonal.
The original image resolution Bessel function bases provides a mapping from the mode
space to the output image space. The trainable parameters of the Bessel equivariant
model are the diagonal complex weight matrix only. The post-processing model is a
convolutional model.

Group Theoretic Understanding of Optical Fibre Transmission Modes
When a light beam propagates in free space or in a transparent homogeneous medium,
its transverse intensity profile generally changes. Despite this, there exists certain distri-
butions that do not change intensity profile as they traverse. These non-changing profiles
are the transmission modes of the space.

The development of group equivariant networks exploits a similar principle, where these
networks are constructed under the more general principle of finding basis functions
called irreducible representations of some group. Some examples of this principle in-
clude: for the circle S1 or line R the irreducible representations are given by complex
exponentials exp(inθ), for the group SO(2) the irreducible representations are given by
the circular harmonics, for the group SO(3) the irreducible representations are given by
theWigner D-functions, and for S2 the irreducible representations are given by the spher-
ical harmonics. Thus a function on the group can be composed as a linear combination
of the corresponding irreducible representations. On the other hand, when learning a
function it is possible to learn the weightings of each of the irreducible representations of
the group to learn that function. Building a model such that its feature space comprises
the irreducible representations of the group provides a method of constructing a model
that is equivariant to the underlying group of the representations.

Here we seek to show a connection between the known properties of optical fibres and
group equivariant networks. We start by providing some details on the propagation
of light through a fibre. The propagation of light is governed by the time-independent
(Helmholtz) equation, which in cylindrical coordinates is given by Equation 4.13.

∂2E

∂r2
+

1

r

∂E

∂r
+

1

r2
∂2E

∂ϕ2
+ q2E = 0. (4.13)
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The standard approach to solving the above equation is to use the separation-of-variables
procedure, which assumes a solution of the form given in Equation 4.14.

Ez = AF1(r)F2(ϕ). (4.14)

Due to the circular symmetry of the fibre, each component must not change when
the coordinate ϕ is increased by a multiple of 2π. Therefore, we make the following
assumption:

F2(ϕ) = eiνϕ, (4.15)

where ν ∈ Z.

Substituting Equation 4.14 into Equation 4.13 yields a wave equation of the following
form:

∂2F1

∂r2
+

1

r

∂F1

∂r
+

(
q2 − ν2

r2

)
F1 = 0. (4.16)

Which is a differential equation for Bessel functions. Solving this both inside the core
of the fibre and in the cladding of the fibre provides two solutions. In the core of the
fibre, as r → ∞ the guided modes must remain finite. Thus for r ≤ a for core radius a
the solution is a Bessel function of the first kind:

Ez(r ≤ a) = AJν(ur)e
iνϕei(ωt−βz) (4.17)

and outside of the core the solution is a modified Bessel function of the second kind:

Ez(r ≥ a) = CKν(wr)e
iνϕei(ωt−βz). (4.18)

Solving these equations provides the transmission modes of the fibre, i.e. the non-
changing distributions.

Next we consider the propagation of light through a fibre from a group theoretic per-
spective. The indefinite special orthogonal group SO(2, 1) is the group considering two
spatial dimensions and one time dimension, and can be realised as:

SO(2, 1) = {X ∈ Mat3(R)|X tνX = ν, det(X) = 1} (4.19)

where,

ν =

1 0 0

0 1 0

0 0 −1

 . (4.20)
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To identify the Lie algebra so(2, 1) we use the tangent space T1SO(2, 1) to SO(2, 1) at
the identity 1. We then choose a curve a : L → SO(21) such that a′(0) = A Then, the
characterising equation of A gives:

a(t)Tνa(t) = ν. (4.21)

Taking the derivative with respect to t gives:

a′(t)Tνa(t) + a(t)Tνa′(t) = 0. (4.22)

Then, evaluating the expression at t = 0 gives:

ATν + νA = 0. (4.23)

Now we check the linear conditions determined by the above characterisation to then
write out the Lie algebra, with ν having a natural block decomposition. Therefore, for a
general element A ∈ so(2, 1), given as:

A =

(
W x

yT z

)
, (4.24)

whereW ∈ M(2,R), x, y ∈ R2, and z ∈ R. In this block decomposition ν =

(
I2 0

0 −1

)
.

Then, Equation 4.23 becomes:(
W T y

xT z

)(
I2 0

0 −1

)
+

(
I2 0

0 −1

)(
W x

yT z

)
=

(
0 0

0 0

)
. (4.25)

Therefore, the following conditions are imposed:

W T = −W (4.26)

y = x (4.27)

z = 0. (4.28)

Hence, the Lie algebra so(2, 1) is given by:

so(2, 1) =

{(
W x

xT 0

)
: W T = −W

}
=


 0 −w x1

w 0 x2

x1 x2 0


 . (4.29)
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As a result, we can see that the condition onW is such thatW ∈ so(2,R). Therefore, the
condition onW characterises the rotational symmetry of the group. Given the goal is
make the connection between the group theoretic understanding of group equivariant
neural networks and solution to the wave equation in cylindrical coordinates, this is
promising as the solutions to Bessel functions have rotational symmetries.

Further, the group SO(2, 1) is that of two spatial dimensions and one time dimension.
The connection between the three spatial dimensional case and the view as a light cone
was made in the development of Minkowski spacetime. Here you imagine a cone where
the time axis runs from the point of a cone through the centre of the plane drawn on the
open end and the two spatial axes form a plane which intersects the cone and is parallel
to the plane drawn on the open end. This is known as the future light cone and is an
interpretation of how light spreads out after an event occurs. The group actions of the
group SO+(2, 1), which is the group SO(2, 1) with the requirements that t > 0, act on
this space and can be viewed as rotations of the three dimensional Euclidean sphere. A
connection can be drawn between this view and the fact that non compact generators of
SO(n, 1) differ from corresponding matrix elements of the same generators of SO(n+ 1),
the group of rotations in n+ 1-dimensional space, by a factor of

√
(− 1) (Wong, 1974).

Therefore, the connection can be made between the group actions of SO+(2, 1) and the
light cone view of light propagation.

A final connection can be made, now that there is a connection between the group action
and the light cone, between the light cone and the wave equation. Returning to the
wave equation we note that it describes waves travelling with frequency independent
speed. The character of the solution is different in odd and even dimensional spaces.
In an odd dimensional space a disturbance propagates on the light cone and vanishes
elsewhere. On the other hand, in an even dimensional space a disturbance propagates
inside the entire light cone. Therefore, in an even dimensional space a disturbed medium
never returns to rest. This phenomena if known as geometric dispersion. Here we
are interested in even dimensional space as we have two spatial dimensions governing
transmission through the fibre along with a third time dimension. We therefore expect
the propagation of light through the fibre to be understood by propagation inside the
entire light cone. Given the wave equation:

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
, (4.30)

a solution is possible through considering the three-dimensional theory if we regard u as
a function in three-dimensions and that the third dimension is independent. Therefore,
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we make the following requirements:

u0(0, x, y) = 0 (4.31)

ut(0, x, y) = ϕ(x, y). (4.32)

Then the three-dimensional solution equation becomes:

u(t, x, y) = tMct[ϕ] =
t

4π

∫∫
S

ϕ(x+ ctα, y + ctβ)dω, (4.33)

where α and β are the first two coordinates on the unit sphere and dω is the area element
on the sphere. This integral can be written as a double integral over the disc D with
centre x, y and radius ct:

u(t, x, y) =
1

2πct

∫∫
D

ϕ(x+ ξ, y + ν)√
(ct)2 − ξ2 − ν1

dξdν. (4.34)

Therefore, it becomes clear that the solution does not only depend on the data on the
light cone where

(x− ξ)2 + (y − ν)2 = c2t2, (4.35)

but on the entire data inside the light cone. It can therefore be seen how the solution
to the wave equation yields the interpretation of the light cone in the precise way that
was yielded by the analysis of the group SO+(2, 1). This completes the connections
between the group action of SO+(2, 1) and the solution to the Bessel functions that
govern the transmission modes within optical fibres. Now we can compose a model in a
similar way to how circular harmonics are used to construct rotation equivariant neural
networks under the group SO(2), but by utilising the basis functions found by solving
the Bessel function in Equation 4.16 to compose a network which is equivariant to the
group SO+(2, 1). This is useful as it positions the model with respect to other group
equivariant neural networks, and provides a model with suitable inductive bias for the
task of learning a function approximation to transmission through optical fibres.

4.4.2.2 Post-Processing Model

As demonstrated in Section 4.4.1.2 the limited number of modes means that the transmis-
sion effects of a MMF are typically not fully invertible leading to information loss. We
would therefore not expect an equivariant model informed by the physics of the task to
be able to fully invert the transmission effects. To overcome this we add a second model
which is similar to a super-resolution model, except that it does not change the resolution
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and instead learns to remove circular artifacts, fill in gaps, and sharpen the images. It
is a fully convolutional model comprising of convolutional layers and non-linearities.
This model takes as input the output of our Bessel equivariant model, which we suspect
will be similar to what is achievable by passing the speckled images through an inverted
TM, and predicts the original images. This model is composed of eight convolutional
layers with ReLU non-linearities. The motivation behind the explicit separation of the
inversion and enhancement models is that in some applications, especially safety-critical
applications, it is important to be able to see the results of an inversion conditioned on
the observations alone, regardless of prior expectations.

4.4.2.3 Training Details

Throughout the paper we make use of three different datasets that are commonly used in
machine learning, namely MNIST (LeCun et al., 1998), fMNIST (Xiao et al., 2017), and
ImageNet (Deng et al., 2009). MNIST and fMNIST are also commonly used in the study
of inverting transmission effects of MMFs due to their low resolutions. MNIST images
are 28× 28 images of handwritten digits between 0 and 9. fMNIST images are 28× 28

images of items of clothing, such as trousers, jumpers, or shoes. ImageNet is a large scale
dataset of higher resolution images which we size to be 256× 256. We only use a subset
of the imageNet dataset to demonstrate the ability to invert such high resolution images.
For each of these datasets we split into a training and testing dataset. The training dataset
is used for training, while the testing dataset is not used during training and we use this
to test the model after training. We use the testing dataset to generate all the predicted
images throughout this chapter.

We train each model for 200 epochs with the stochastic gradient descent algorithm. We
use the mean squared error as a loss function between the original images and the
predicted images. We do not use any regularisation on the model weights. For the Real
and Complex linear models and the Bessel equivariant model we train each model for
200 epochs. For the post-processing model, as it is an addition to the Bessel equivariant
model, we train this model for 200 epochs after the Bessel equivariant model has already
been trained for 200 epochs and the Bessel equivariant model’s weights have been frozen.
For the training, all models are trained on 1 Titan RTX GPU with 24GiB of memory. We
attempted training the complex linear model on a A6000 GPU with 48GB of memory on
ImageNet to check if this was possible, but the model required more memory.

We utilise two different sources of data throughout the experimental section. The first
of these is collected using a theoretical TM, which was developed specifically for this
chapter and makes it easier and faster to create a new dataset through removing the
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need for experimentation in the lab. We provide details of the theoretical TM generation
in Section 4.4.1.5. For this theoretical dataset we have both the amplitude and phase
information for the speckled patterns. In addition, we also have access to the original and
inverted images, where the inverted images are created by first passing an image through
the TM and then back through its inverse. The second source of data was collected by
Moran et al. (2018), which is data collected in the lab using a real fibre. For this data we
only have the amplitude information for the speckled patterns. In addition, we also have
the original images which have constant phase. This data has no licence and it accessible
on the projects GitHub page.

4.4.3 Experiments

The experiments section is broadly split into experiments on the data of Moran et al.
(2018) collected in in the lab and data generated using a theoretical TM. The data from
Moran et al. (2018) was created using a physical optical fibre and we refer to this data
source to as lab based data. The code for creating theoretical TMs was developed as part
of work for a paper, of which this section is based on. This allows the developed model
to be tested on new datsets with much greater ease than would be possible if all datsets
had to be collected in the lab. In addition, it makes it possible to test on higher-resolution
images, which due to the scaling issues of prior works, had not been attempted in the lab
previously and therefore no such dataset exists. We refer to data generated utilising a
theoretical TM created with this code as theoretical TM data. Within the lab based data
the experiments are further broken down into:

• Experiments which validate that our new approach can invert the transmission
effects of lab based data, despite using significantly fewer trainable model parame-
ters

• Experiments on the relaxation of the diagonal constraint of the complex weight
matrix within the model to account for losses in lab based systems

Further, the experiments on data from a theoretical TM can be broken down as follows:

• Experiments which validate that our new approach can invert the transmission
effects of theoretical data, despite using significantly fewer trainable model param-
eters

• Experiments which demonstrate the ability of our model to generalise to out-of-
distribution data

• Experiments considering the effects of noise in speckled images.
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• Experiments which demonstrate the predictive ability of our model on reduced
size datasets

• Experiments which demonstrate the predictive ability of ourmodel when the Bessel
basis set is under parameterised

• Experiments which validate that our new approach can invert the transmission
effects of higher resolution images than has been previously been considered

4.4.3.1 Lab Based MMF – Inversions

In the first experiment we compare our model to the complex-valued linear model
developed by Moran et al. (2018) by considering both MNIST and fMNIST data. This
aims to demonstrate that our model can invert the transmission effects of a fibre in a lab
based context. For this we train and test separate models for the MNIST and fMNIST
datasets.

Figure 4.6 (d) demonstrates that our model provides clear and accurate reconstructions
of the target images whilst using orders of magnitude fewer trainable parameters. In
addition, visually, our model (d) produces less noise that the complex linear model (e).
Furthermore in (c), despite having some noise in the predictions, the object is clearly
visible in the output of the Bessel equivariant model only. Therefore it is demonstrated
that the Bessel equivariant model only is able to reconstruct the digit or item such that it
is visible, and this is correctly sharpened to a realistic prediction of the original image by
our post-processing model. We provide further visualisations in Figures B.1 and B.2 in
the appendix.

Table 4.4 shows that the complex linear model outperforms our model in terms of
achieving a lower loss function on bothMNIST and fMNIST data. Despite this our model
is still solving the task of inverting lab based data successfully. Furthermore, Table 4.4
shows that the complex linear model is over fitting to the training as it achieves a lower
loss value on the training dataset than the testing dataset, while out model achieves
comparable losses on both datasets.

We also compare the number of trainable parameters within the model in Table 4.5. This
highlights that our model requires two orders of magnitude fewer parameters that the
complex linear model. In addition, it can be seen that without the post-processing model
our Bessel equivariant model only requires two orders of magnitude fewer parameters
that the complex linear model. Therefore, our model has the potential to scale to higher
resolution images where the complex linear model will run out of GPU memory.
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(a) Input (b) Target (c) BEM (d) BEM (PP) (e) Complex
Figure 4.6: Comparison of predicted images from inverting transmission effects of a
MMF. The upper row is fMNIST data, lower row MNIST data. (a) Input speckled image,
(b) the target original image to reconstruct, (c) Output of the Bessel equivariant model,
(d) Output of the combination of Bessel equivariant and post-processing model, and (e)
the output of the complex-valued linear model.

Table 4.4: Comparison of the loss values of each model trained with MNIST or fMNIST
data.

MNIST fMNIST
Model Train Loss Test Loss Train Loss Test Loss
Complex Linear 0.00396 0.00684 0.00509 0.01061
Bessel Equivariant Diag 0.03004 0.03125 0.02903 0.03140
Bessel Equivariant Diag + PP 0.01317 0.01453 0.01609 0.01749

Table 4.5: Comparison of # trainable parameters in each model trained with MNIST or
fMNIST data.

Model Number of Trainable
Parameters (Millions)

Complex Linear 78.826
Bessel Equivariant Diag 0.057
Bessel Equivariant Diag + Post Proc 0.500
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4.4.3.2 Lab Based MMF – Accounting for Losses

In the second experiment we explore our model’s ability to invert the transmission effects
of a real world fibre by relaxing the diagonal constraint of our model. This aims to
demonstrate that our model can overcome issues such as manufacturing defects, sharp
bends, dopant diffusion, elliptical cores, amongst other reasons which cause reality to
deviate from theory. For this we train and test separate models for the MNIST and
fMNIST datasets.

As we noted in Section 4.4.2.1, the assumption that the mapping between Bessel bases
is diagonal holds in theory, although in practice an imperfect system could lead to a
necessity to relax this assumption. Here we explore this for data collected using a real
fibre by building four different versions of our model:

1. A model with the assumption of a diagonal weight matrix
2. A model that has the diagonal assumption relaxed to allow five elements either

side of the diagonal to be populated
3. A model that has the diagonal assumption relaxed to allow ten elements either

side of the diagonal to be populated
4. A model full a fully populated weight matrix

If the fibre and experimental set-up were in an ideal setting we would expect the model
with a diagonal weight matrix to be sufficient to produce near perfect reconstructions,
up to the optimisation process finding the weights such a model. The second model
allowing five elements to be populated either side of the diagonal would allow the model
to capture some of the block diagonal structure seen in Carpenter et al. (2014), although
this would still occlude the mapping between modes further apart in our mapping space.
Similarly, the third model allows for capturing more of the block diagonal structure by
allowing ten elements to be populated either side of the diagonal. Finally, the model
with a fully populated weight matrix allows the greatest flexibility and has the greatest
potential to capture deviations from theory as seen in practice, although, this model does
not take advantage of the known diagonal structure that this mapping function has and
is therefore over-parameterised.

Figure 4.7 (a, c, e, g) demonstrates that as the diagonal assumption of the complex
weight matrix is relaxed, our Bessel equivariant model only produced images closer to
that original image through capturing more high frequency detail and predicting less
noise. Our models with five and ten elements either side of the diagonal populated
with trainable parameters (c, e) improves upon the result achieved by the model with
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(a) (b) (c) (d) (e) (f) (g) (h)
Figure 4.7: Comparison of predicted images from inverting transmission effects of a
MMF with varying relaxations on the assumption the fibre has a diagonal fibre prop-
agation matrix. The upper row is fMNIST data, lower row MNIST data. (a, c, e, g)
Reconstructions using the Bessel equivariant model only. (b, d, f, h) Reconstructions
using the Bessel equivariant model and post-processing model. (a, b) Reconstructions
when the complex weight matrix is diagonal. (c, d) Reconstructions when the complex
weight matrix has five block diagonal structure. (e, f) Reconstructions when the complex
weight matrix has ten block diagonal structure. (g, h) Reconstructions when the complex
weight matrix is full.

diagonal weight matrix (a) by both removing noise, better capturing the bend in the
trouser leg, and producing a sharper version of the number nine. Further, the model
with full populated weight matrix (g) is able to generate digits that like the correct
digit. When combined with the post-processing model (b, d, f, h) all variants of the
Bessel equivariant model produce clear high-quality reconstructions. We provide further
visualisations of the results of models with different diagonal relaxation in Figures B.3
and B.4 in the appendix. This is a promising result as it demonstrates that our model
allows for a design choice of complexity, with the option to trade off performance for
a reduced memory requirement whilst maintaining accurate results even in the lowest
memory configuration; this is something that is not possible with the Real or Complex
linear models. Choosing a model with a low number of off-diagonal trainable elements,
we believe, is the best trade off between considering losses and imperfections of the
real-world while benefiting from the known sparsity of the mapping function between
Bessel bases.

Table 4.6 shows the training and testing loss values for each variant of the model, split
to show the output of the Bessel equivariant model only and when combined with the
post-processing model. This shows that our model with a full mapping matrix between
bases, i.e. full relaxation of the diagonal constraint, outperforms all other models. In
addition, with a relaxation to allow for a 10 block diagonal structure our model performs
comparably with the complex linear model despite requiring two orders of magnitude
fewer parameters. The test loss continues to increase as the diagonal constraint is enforced
in the Bessel equivariant weightmatrix indicating aworsening of the reconstructed image.
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Despite this, our model still provides clear reconstructions of the target images as is
shown in Figure 4.7.

Table 4.6: Comparison of the loss values of each model trained with MNIST or fMNIST
data.

MNIST fMNIST
Model Train Loss Test Loss Train Loss Test Loss
Complex Linear 0.00396 0.00684 0.00509 0.01061
Bessel Equivariant Diag 0.03004 0.03125 0.02903 0.03140
Bessel Equivariant Diag + PP 0.01317 0.01453 0.01609 0.01749
Bessel Equivariant 5 Off Diag 0.01782 0.01931 0.02057 0.02354
Bessel Equivariant 5 Off Diag + PP 0.00658 0.00740 0.01138 0.01315
Bessel Equivariant 10 Off Diag 0.01362 0.01521 0.01788 0.02140
Bessel Equivariant 10 Off Diag + PP 0.00488 0.00576 0.00943 0.01162
Bessel Equivariant Full 0.00300 0.00684 0.00548 0.01380
Bessel Equivariant Full + PP 0.00145 0.00378 0.00306 0.00964

Weprovide the number of trainable parameters within eachmodel in Table 4.7. This high-
lights that all of our models except the one with full weight matrix requires two orders of
magnitude fewer parameters that the complex linear model. As the diagonal mapping
between Bessel bases is relaxed to include 5 or 10-block diagonal structure the number of
trainable parameters increases, but is still very low in comparison to the complex linear
model. In the most flexible version of our model the number of trainable parameters is
comparable with the complex Linear model, although we have demonstrated that this
level of flexibility is not required to achieve good image reconstruction.

Table 4.7: Comparison of number of trainable parameters in each model trained with
MNIST or fMNIST data when accounting for losses in a physical fibre.

Model Number of Trainable
Parameters (Millions)

Complex Linear 78.826
Bessel Equivariant Diag 0.007
Bessel Equivariant Diag + PP 0.450
Bessel Equivariant 5 Off Diag 0.059
Bessel Equivariant 5 Off Diag + PP 0.502
Bessel Equivariant 10 Off Diag 0.124
Bessel Equivariant 10 Off Diag + PP 0.567
Bessel Equivariant Full 42.665
Bessel Equivariant Full + PP 43.108
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4.4.3.3 Theoretical TM - Inversions

This experiment compares each model when trained on a training subset of fMNIST
images and their speckled equivalent and tested on a testing subset of fMNIST images
and there speckled equivalent. This aims to demonstrate that our model can invert the
transmission effects of a theoretical fibre. We provide a comparison of the predictions of
a complex valued linear model (Moran et al., 2018), our equivariant model only, and our
equivariant model coupled with a post-processing model on fMNIST images. We create
the dataset using 28× 28 fMNIST images and generate 180× 180 speckled images using
the theoretical TM.

(a) Input (b) Target (c) BEM (d) BEM (PP) (e) Complex
Figure 4.8: Comparison of predicted images from inverting transmission effects of a
theoretical MMF with fMNIST data. (a) Input speckled image, (b) Target original image
to reconstruct, (c) Output of the Bessel equivariant model, (d) Output of the Bessel
equivariant and post-processing model, and (e) Output of the complex valued linear
model.

Figure 4.8 shows reconstructions produced by the three models. This demonstrates
visually that our model, even without the post-processing part, is able to reconstruct
the original images. The post-processing model refines the output of the equivariant
model and fills in gaps outside the fibre. Despite it being possible to estimate the general
category of clothing from the outputs of the complex linear model, the higher frequency
information has been lost. For example, the pattern on the jumper is not as clear as in the
original image. On the other hand, our model is able to reconstruct this higher frequency
information. We provide further reconstructions in Figure B.5.

Further to the reconstructions, loss values for each model are provided in Table 4.8. This
demonstrates that out Bessel equivariant model only achieves a comparable loss value to
the complex linear model. Although, this result is a consequence of the circular nature
of the Bessel basis functions, and as such the Bessel equivariant model under-performs
due to not being able to reconstruct pixel values close to the edge of the image. On the
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the hand, the complex linear model under-performs due to failing to reconstruct higher
frequency information and over-fitting to the general clothing categories. Finally, when
our Bessel equivariant model is combined with the post-processing model it outperforms
all other models.
Table 4.8: Comparison of the loss values of each model trained with fMNIST data and
the corresponding speckled patterns.

Model Train Loss Test Loss
Complex Linear 0.0149 0.0146
Bessel Equivariant 0.0141 0.0139
Bessel Equivariant + Post Proc 0.0032 0.0032

We provide the number of trainable parameters in Table 4.9. Similarly to learning to
reconstruct lab based data, ourmodel requires two orders ofmagnitude fewer parameters
than the complex linear model. Further, when considering only the Bessel equivariant
part of the model it requires four orders of magnitude fewer parameters than the complex
linear model.
Table 4.9: Comparison of number of trainable parameters in each model trained with
fMNIST data and the corresponding 180× 180 speckled patterns, created by a theoretical
fibre with ∼ 1000 modes.

Model Number of Trainable
Parameters (Millions)

Complex Linear 25.402
Bessel Equivariant Diag 0.001
Bessel Equivariant Diag + PP 0.222

4.4.3.4 Theoretical TM – Generalising To Out-Of-Distribution Data

This experiment tests the ability of each model trained in Section 4.4.3.3 to generalise to a
new dataset. For this, we take eachmodel trained on reconstructing fMNIST images from
their corresponding speckled patterns and test there ability to reconstructing MNIST
images from there corresponding speckled patterns. Previous works have demonstrated
some ability to generalise to new data classes (Rahmani et al., 2018; Caramazza et al.,
2019), although in each case the results are not perfect.

Figure 4.9 shows reconstructions produced by the three models. This demonstrates
visually that our Bessel equivariant model without the post-processingmodel generalises
well to an out-of-distribution dataset. On the other hand, the complex linear model
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somewhat predicts the correct digits. In this out of training domain our post-processing
model does not add any value to the original Bessel equivariant model, which has already
predicted a good reconstruction. This highlights the benefit of our two-stage modelling
approach as we have one robust model and a second model to sharpen the images, as a
result if a user believes the situation could be unusual they could reliably use the output
of our Bessel equivariant model and not the post-processing part. We provide further
reconstructions in Figure B.6.

(a) Input (b) Target (c) BEM (d) BEM (PP) (e) Complex
Figure 4.9: Comparison of predicted images from inverting transmission effects of aMMF
for models trained with fMNIST data and tested on MNIST data. (a) Input speckled
images, (b) Target original images, (c) Output of the Bessel equivariant model, (d)
Output of Bessel equivariant and post-processing model, and (e) Output of the complex
valued linear model.

Table 4.10 presents the loss values for testing of each models on the MNIST dataset. This
shows that our Bessel equivariant model significantly out-performs the complex linear
model in generalising to a new dataset. Furthermore, when comparing to the fMNIST
testing loss provided in Table 4.8, it can be seen that the loss value for our model is very
similar between both datasets. This further demonstrates the ability of our model to
better generalise to new datasets.

Table 4.10: Comparison of the loss values of each model trained with fMNIST data.

Model MNIST Test Loss
Complex Linear 0.0363
Bessel Equivariant 0.0026
Bessel Equivariant + Post Proc 0.0028
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4.4.3.5 Theoretical TM – Effects of Noise on Speckled Images

Here we compare the effect of noise on the speckled images when using a theoretical
TM. In each case the speckled images are saturated at 90% of there maximum value and
Gaussian noise is added with different standard deviation values. We demonstrate the
reconstruction ability of ourmodel in Figure 4.10whenGaussian noisewith 0.01 standard
deviation is used, in Figure 4.11 when Gaussian noise with 0.05 standard deviation is
used, in Figure 4.12 when Gaussian noise with 0.1 standard deviation is used, and
in Figure 4.13 when Gaussian noise with 0.5 standard deviation is used. Figure 4.10
demonstrates that with a low level of noise added to the speckled patterns our model is
largely unaffected. Figures 4.11 and 4.12 show that as more noise is added to the speckled
patterns noise begins to appear in the reconstructions of our model, but that image is
still easily identifiable. Finally, Figure 4.13 demonstrates that when significant noise is
added to the speckled patterns the reconstruction quality begins to drop, although in
this instance the speckled pattern is visually indistinguishable from the noise. We also
provide the loss values in Table 4.11. These results demonstrate that our approach is
robust to noise.
Table 4.11: Comparison of the loss values of each model trained with fMNIST data when
the speckled images are saturated at 90% and Gaussian noise is added with standard
deviation given in the column Noise Level.

Noise Level Model Train Loss Test Loss

0.01 Bessel Equivariant 0.0140 0.0142
Bessel Equivariant + Post Proc 0.0033 0.0033

0.05 Bessel Equivariant 0.0147 0.0149
Bessel Equivariant + Post Proc 0.0043 0.0043

0.1 Bessel Equivariant 0.0166 0.0168
Bessel Equivariant + Post Proc 0.0049 0.0049

0.5 Bessel Equivariant 0.0373 0.0377
Bessel Equivariant + Post Proc 0.0164 0.0166
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(a) Input (b) Target (c) BEM (d) BEM (PP)
Figure 4.10: Comparison of predicted images from inverting transmission effects of
a MMF using fMNIST data created with a theoretical TM when the speckled images
are saturated at 90% of their maximum value and Gaussian noise with 0.01 standard
deviation added. (a) The input noisy speckled image, (b) the target original image to
reconstruct, (c) the output of the Bessel equivariant model, and (d) the output of the
combination of Bessel equivariant and post-processing model.

(a) Input (b) Target (c) BEM (d)BEM (PP)
Figure 4.11: Comparison of predicted images from inverting transmission effects of
a MMF using fMNIST data created with a theoretical TM when the speckled images
are saturated at 90% of their maximum value and Gaussian noise with 0.05 standard
deviation added. (a) The input noisy speckled image, (b) the target original image to
reconstruct, (c) the output of the Bessel equivariant model, and (d) the output of the
combination of Bessel equivariant and post-processing model.
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(a) Input (b) Target (c) BEM (d) BEM (PP)
Figure 4.12: Comparison of predicted images from inverting transmission effects of a
MMF using fMNIST data created with a theoretical TM when the speckled images are
saturated at 90% of their maximum value and Gaussian noise with 0.1 standard deviation
added. (a) The input noisy speckled image, (b) the target original image to reconstruct,
(c) the output of the Bessel equivariant model, and (d) the output of the combination of
Bessel equivariant and post-processing model.

(a) Input (b) Target (c) BEM (d) BEM (PP)
Figure 4.13: Comparison of predicted images from inverting transmission effects of a
MMF using fMNIST data created with a theoretical TM when the speckled images are
saturated at 90% of their maximum value and Gaussian noise with 0.5 standard deviation
added. (a) The input noisy speckled image, (b) the target original image to reconstruct,
(c) the output of the Bessel equivariant model, and (d) the output of the combination of
Bessel equivariant and post-processing model.



CHAPTER 4. ROTATIONAL SYMMETRIES ON 2D GRIDS 75

4.4.3.6 Theoretical TM – Reduced Training Dataset Size

In this section we compare the effect of reducing the training dataset size on the recon-
struction ability of the models. For this, we make use of the fMNIST dataset created
using a theoretical TM and select different size subsets to train on. Figure 4.14 shows the
reconstructions when the dataset is reduced in size by a half and includes 6000 training
examples. This highlights that the output of our Bessel equivariant model on its own has
become more blurred than when the entire dataset is used. Similarly, the complex linear
model also now predicts more blurred images. Despite this when using our full model
the post-processing model sharpen and correct the prediction to match the target. The
result of increased blurring in the predicted images by our Bessel equivariant model only
and the complex linear model is increased in Figures 4.15 and 4.16 as the training dataset
is reduced in size, although in each the object is still somewhat detectable. Despite this
increased blurring of the predicted images, the post-processing model is still able to
correct the images to closely resemble the targets. Finally in Figure 4.17, with only 120
training examples, the complex linear model predicts and empty image. Furthermore,
our Bessel equivariant model predicts a shape from which the object is not identifiable
and the post-processing model goes some way to correcting to the target image, but falls
short of producing a good reconstruction. Never-the-less these results demonstrate that
our model can learn to reconstruct the target images with less training examples than
the complex linear model. This is most likely due to the significantly reduced number of
trainable parameters of our model allowing for faster generalisation.
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(b) Input (b) Target (c) BEM (d) BEM (PP) (d) Complex
Figure 4.14: Comparison of predicted images from inverting transmission effects of a
MMF. The training dataset was reduced from the original size of 12000 to 6000. (a) The
input speckled image, (b) the target original image to reconstruct, (c) the output of the
Bessel equivariant model, (d) the output of the combination of Bessel equivariant and
post-processing model, and (e) the output of the Complex valued linear model. The
data used was fMNIST with speckled patterns created with a theoretical TM.

(a) Input (b) Target (c) BEM (d) BEM (PP) (e) Complex
Figure 4.15: Comparison of predicted images from inverting transmission effects of a
MMF. The training dataset was reduced from the original size of 12000 to 2400. (a) The
input speckled image, (b) the target original image to reconstruct, (c) the output of the
Bessel equivariant model, (d) the output of the combination of Bessel equivariant and
post-processing model, and (e) the output of the Complex valued linear model. The
data used was fMNIST with speckled patterns created with a theoretical TM.
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(a) Input (b) Target (c) BEM (d) BEM (PP) (f) Complex
Figure 4.16: Comparison of predicted images from inverting transmission effects of a
MMF. The training dataset was reduced from the original size of 12000 to 1200. (a) The
input speckled image, (b) the target original image to reconstruct, (c) the output of the
Bessel equivariant model, (d) the output of the combination of Bessel equivariant and
post-processing model, and (e) the output of the Complex valued linear model. The
data used was fMNIST with speckled patterns created with a theoretical TM.

(a) Input (b) Target (c) BEM (d) BEM (PP) (f) Complex
Figure 4.17: Comparison of predicted images from inverting transmission effects of a
MMF. The training dataset was reduced from the original size of 12000 to 120. (a) The
input speckled image, (b) the target original image to reconstruct, (c) the output of the
Bessel equivariant model, (d) the output of the combination of Bessel equivariant and
post-processing model, and (e) the output of the Complex valued linear model. The
data used was fMNIST with speckled patterns created with a theoretical TM.

4.4.3.7 Theoretical TM – Under Parameterising the Basis Set

In this section we consider the impact of under parameterising the Bessel function bases.
This demonstrates the capability of the model when the number of bases is not specified
to match the given fibre being used and could represent a situation where details of the
fibre being used are not known. For this we reduce the number of radial frequencies
that feature in the set of basis functions. The original basis set we utilised for the data
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collected using a theoretical fibre for fMNIST comprises of 21 radial frequencies and 1061
bases. Here we show the original results using this full bases set in Figure 4.18 column
(b). Next we show the results of removing the high frequency bases by only considering
the first 14 radial frequencies, which amounts to having 932 bases in Figure 4.18 column
(c). In addition, we show the results of removing further high frequency bases by
only considering the first 7 radial frequencies, which amounts to having 567 bases in
Figure 4.18 column (d). Finally, we show the results of removing further high frequency
bases by only considering the first 4 radial frequencies, which amounts to having 322
bases in Figure 4.18 column (e). These results demonstrate that our model behaves in a
predictable way when the basis set it under parameterised, namely that as the higher
frequency bases are removed the resulting images predicted by the Bessel equivariant
model only do not feature high frequency information. We provide further visualisations
in Figures B.7, B.8, and B.9 in the appendix. These demonstrate that despite our Bessel
equivariant model not being able to reconstruct high frequency information when the
basis set is sufficiently under parameterised the post-processing model is able to sharpen
the image and fill in some of the high frequency information. Therefore, when using our
entire model issues of under parameterising the basis set are minimal and the model is
robust to the number radial frequencies chosen.

The loss values for each model is provided in Table 4.12 and visualised in Figure 4.19,
which backs up what is seen in Figure 4.18. This further demonstrates that as high
frequency bases are removed from the model the loss values increase. Figure 4.18 shows
that this loss increase is due to the models inability to reconstruct high frequency details.

Table 4.12: Comparison of the loss values of eachmodel trainedwith fMNIST data created
with a theoretical TM. This shows the impact of under parameterising the Bessel function
basis set by removing higher frequency modes. 21 radial frequencies is the natural choice
for the fibre considered, hence all values less than 21 give an under parameterised model.

Model Radial # Modes Train Loss Test Loss
Frequencies

Bessel Equivariant 21 1061 0.0141 0.0139
Bessel Equivariant + Post Proc 21 1061 0.0032 0.0032
Bessel Equivariant 14 932 0.0158 0.0156
Bessel Equivariant + Post Proc 14 932 0.0036 0.0036
Bessel Equivariant 7 567 0.0203 0.0201
Bessel Equivariant + Post Proc 7 567 0.0053 0.0053
Bessel Equivariant 4 332 0.0299 0.0296
Bessel Equivariant + Post Proc 4 332 0.0090 0.0090
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(a) Target (b) BEM (21) (c) BEM (14) (d) BEM (7) (e) BEM (4)
Figure 4.18: Comparison of predicted images from inverting transmission effects of a
MMF, when reducing the number of radial frequencies present in the Bessel function
bases. (a) The input speckled image. (b) The number of radial frequencies present in the
Bessel function bases was left at the original value of 21, which represents 1061 bases. (c)
The number of radial frequencies present in the Bessel function bases was reduced from
the original value of 21 to 14, which represents a reduction in the number of bases from
the original value of 1061 to 930. (d) The number of radial frequencies present in the
Bessel function bases was reduced from the original value of 21 to 7, which represents a
reduction in the number of bases from the original value of 1061 to 567. (e) The number
of radial frequencies present in the Bessel function bases was reduced from the original
value of 21 to 4, which represents a reduction in the number of bases from the original
value of 1061 to 322. The data used was fMNIST with speckled patterns created with a
theoretical TM.
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Figure 4.19: Comparison of the loss values of each model trained with fMNIST data
created with a theoretical TM. This shows the impact of under parameterising the Bessel
function basis set by removing higher frequency modes. 21 radial frequencies is the
natural choice for the fibre considered, hence all values less than 21 give an under
parameterised model.
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4.4.3.8 Theoretical TM – Scaling to Larger Images – ImageNet

Scaling to higher resolution images has been a challenge in MMF imaging due to the non
local relationship between pixels in speckled images and their corresponding original
image, and as a result the densemapping between these twodomains is high-dimensional.
This has prohibited prior methods from being able to reconstruct high resolution images
from there corresponding speckled patterns. In this experiment we assess the ability of
our model to scale to high resolution images and demonstrate the improved scaling of
our model over prior works.

For this we experiment with a subset of images from the ImageNet dataset, where we fix
the resolution to be 256×256. Inverting the transmission effects of such higher resolution
images has not been previously achievable. We only compare our equivariant model with
our equivariant model coupled with a fully convolutional post-processing model. The
complex-valued linear model cannot fit in the GPU memory of an A6000 with 48.7GiB
of memory with this resolution of image and therefore we cannot show reconstructions
from this model.

Figure 4.20 shows that our Bessel equivariant model produces a reconstruction from
which it is possible to determine the type of dog and its activity. The reconstruction
does not capture all the high frequency information, but this fibre only has∼1000 modes
and as a result the true inversion does not correctly reconstruct the original image as
was demonstrated in Section 4.4.1.2. Therefore this is a high quality reconstruction.
When we combine the two models some of the artifacts of the Bessel equivariant model
are removed as the post-processing model fills in information towards the corners and
sharpens the image. Further reconstructions are provided in Figure B.10.

(a) Input (b) Target (c) BEM (d) BEM (PP)
Figure 4.20: Comparison of predicted images from inverting transmission effects of
a MMF using high resolution ImageNet data. (a) Input speckled image, (b) Target
original image to reconstruct, (c) Output of Bessel equivariant model (d) Output of
Bessel equivariant and post-processing model.
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Table 4.13: Comparison of the loss values of each model trained with ImageNet data.

Model Train Loss Test Loss
Bessel Equivariant 0.0541 0.0574
Bessel Equivariant + Post Proc 0.0161 0.0159

We present the loss values for both models in Table 4.13. This shows the reduction in
loss possible by utilising the full model as the Bessel equivariant model on its own is
heavily penalised due to not being able to reconstruct the image in the corners.

We compare the models’ memory requirements in Figure 4.21. This shows how fewer
trainable parameters within our model translates into significantly less memory use
than the complex linear model. This effect is seen more drastically when scaling to high
resolution images, where the complex linear model runs out of memory on a 24.2GiB
Titan RTX for original and speckled images of resolution 180× 180 pixels. Our model, in
contrast, has been tested on 256× 256 pixel images, requiring only 2.1GiB. In addition,
despite the reconstruction not tested here, this shows that in theory our model can scale
to megapixel images.
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Figure 4.21: (Upper Left) Comparison of number of trainable parameters versus TM size
(dashed line indicates model cannot in practice be built due to large memory require-
ments). (Lower Left) Comparison of required GPU memory against TM size. Vertical
grey lines indicate a given image size – our model can process 1024× 1024 images on a
single consumer-level Titan RTX GPU. (Lower Right) Comparison of reducing the size
of the training dataset. All plots are for a 1000 mode fibre.
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4.4.4 Discussion

The results demonstrate that developing a neural network model that is equivariant to
the symmetries of the task of inversion of MMF transmission significantly simplifies the
learning task through reducing the number of parameters in the model. This improves
the scalability of the model with respect to the image resolutions and makes the model
more robust to out of distribution data. This opens up the possibility of using neural
network based methods for the inversion of MMF transmission effects to applications
that require the use of higher resolution images. In addition, the improved robustness to
out of distribution data is particularly valuable in safety critical applications.

4.5 Conclusions

In Section 4.3 we developed a novel architecture for the task of segmentation of deforesta-
tion regions, which models the correct symmetries for the task, where few examples of
rotation equivariant networks exist in comparison to non-rotation equivariant networks.
Further, we compared this model to a more standardised model that has been widely
used in deep learning for image segmentation. This demonstrates the practical benefits
of incorporating the correct symmetries for a given task, namely increased accuracy
of the predicted segmentation maps and the generation of stable segmentation maps
under transformations that naturally occur. Finally, this provides a concrete example
of building a rotation equivariant model for a task that has rotational symmetries. This
will aid in making these techniques more readily adopted, by reducing the difficultly
of implementing such a model for a given task when compared to the non-rotation
equivariant counterparts.

In Section 4.4 we develop a novel architecture for the task of inverting the transmission
effects of multi-mode optical fibres demonstrating a more interpretable model, better
generalisation, improved robustness, and a model that can scale to higher resolution
images. We overcome the challenge of bridging the gap between the understanding of
multi-mode optical fibres in physics and equivariant neural networks in Section 4.4.2.1.
We develop a method for generating theoretical transmission matrices, making conduct-
ing varied experimentsmore accessible in Section 4.4.1.5. We present a new type ofmodel
for solving the task of inverting the transmission effects of a MMF through developing a
SO+(2, 1)-equivariant neural network, which models the cylindrical symmetries known
in light propagation through optical fibres, and combining this with a post-processing
network in Sections 4.4.2.1 and 4.4.2.2. The post-processing network will learn features
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specific to the training data, and will generalise to new image classes as well as a general
convolutional network. The use of a theoretical TM allows us to compare an ‘ideal’
inverse with the output of previous models based on learning a full transmission matrix.
This suggests that previous learned transmission matrices were combining elements
of the actual transmission matrix with elements of the post-processing network, which
would affect their ability to generalise to new images. We also anticipate that in interac-
tive safety-critical applications, users might want the ability to switch between modes,
to be sure that the evidence was there, and not overly influenced by the priors in the
training data.

We demonstrate that ourmodel improves upon the SOTA complex linear models through
incorporating a useful physically informed inductive bias into the equivariant network
in Section 4.4.3. Firstly, in Section 4.4.3.1, we show that our model can reconstruct real
world data through the use of images and speckled patterns generated by a fibre in the
laboratory. In addition, we explore how the diagonal assumption within the complex
weight matrix in our model can be relaxed to overcome losses in a real world system in
Section 4.4.3.2. Secondly, we demonstrate the ability of our model the invert the transmis-
sion effects of the theoretical fibre in Section 4.4.3.3. Further, our equivariant network is
shown to perform well on new image classes, providing a model that better generalises
to out-of-distribution data in Section 4.4.3.4. We also demonstrate the impact on our
model when there is noise in the speckled patterns, of having a reduced training dataset
size; and when the Bessel function basis set is under parameterised in Sections 4.4.3.5,
4.4.3.6, and 4.4.3.7 respectively. These experiments demonstrate the robustness of our
approach.

Finally, we demonstrate that our approach significantly improves the ability to scale to
higher resolution images by improving the scaling law from O(N4) to O(m), where N
is pixel size and m is the number of fibre modes. We provide a comparison between
our model and prior works on both data created using a real fibre and a theoretical TM,
demonstrating in both cases that our model solves the task while using significantly less
trainable parameters than the complex real model throughout Section 4.4.3. In addition,
in Section 4.4.3.8, we demonstrate results on high resolution 256× 256 images, which has
previously been unachievable due to the growth of parameters with previous models.
The dramatic reduction in the number of parameters for each fibre configuration opens
the way for future models which can learn mappings for high-resolution images, from a
wider set of perturbed fibre poses and combine these using architectures such as VAEs.



5
Rotational Symmetries in 3D Hand Reconstruction

In this chapter we develop a novel rotation equivariant model for the task of generating
3D hand meshes from 2D RGB images. The model comprises four main components: a
rotation equivariant encoder, a mapping function from the base space of 2D grids to 2D
vector spaces, a projection function from a 2D vector space to a 3D vector space, and a
3D rotation equivariant decoder. Each component is constructed to guarantee rotation
equivariance around the 2D axes of the input images. We demonstrate that the proposed
architecture generalises to new orientations better than prior works. We also show the
mesh reconstruction accuracy on three benchmark datasets comparing to prior works.

5.1 Introduction

Vision based models for 3D hand mesh generation are currently receiving a lot of interest
as they facilitate a wide range of applications. Some of these include virtual reality
(VR), augmented reality (AR), and sign language recognition. Currently, two main
approaches exist to tackle the difficulties of 3D mesh generation from 2D RGB images.
One approach uses deformable models which exploit a prior distribution in 3D shape
shape. These models can be trained on relatively small datasets, although typically they
struggle to generalise to a diverse range of hand meshes. As such, they often do not
accurately generate hand meshes of correct shape and pose. The second approach is to
use neural network models, which are more general and do not exploit a 3D shape space
prior. The neural network model is generally in the form of a convolutional encoder
and graph or mesh neural network decoder. These models are able to more accurately
predict the correct shape and pose of the hands, although these models currently require
large amounts of data to train. One solution to this is to make use of synthetic data as a
pre-training step. Although, the use of synthetic data often results in a model that does

84
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not generalise well to real-world examples. On the other hand, collecting large datasets
of real-world data is expensive and time consuming, prohibiting this as a viable option in
many cases. The lack of robustness presented from using synthetic data or the expense
of gathering real-world data may limit the number of applications of the approach.

In this work we overcome the issue of requiring large amounts of data by building a
neural network model with a suitable inductive bias. We quantitatively demonstrate the
effectiveness of this approach on real-world data, outperforming previous state-of-the-art
methods. Further, we qualitatively demonstrate the benefit of our choice of inductive bias
and compare to alternative models. We follow the approach of using a neural network
based decoder, rather than a deformablemodelwith 3D shape prior, to overcome the issue
with generalisation. In addition to building a model than can generalise, we constrain the
weight matrices throughout the model to enforce rotational equivariance. This improved
weight sharing in the model reduces the need for pre-training on large synthetic datasets
and generalises well when trained only on a small real-world dataset. The resulting
rotational equivariance of the model, which is a suitable inductive bias for generating
3D meshes from RGB images due to the symmetries present in the data, ensures that
a 2D rotation of the input image corresponds to an equivalently rotated 3D mesh. To
the best of our knowledge this is the first work proposing rotation equivariance for the
generation of 3D meshes from RGB images. Furthermore, we compare models with both
an MLP and GNN decoder to explore the benefit of using a decoder with locality as
an inductive bias. This highlights some disadvantages to using a GNN decoder, and
motivates us to build a MLP based model with rotational equivariance.

5.2 Background

5.2.1 Rotational Equivariance

The background on rotation equivariance on 2D grids, namely rotation equivariance for
images, has been considered in Chapter 4.2. Therefore, we will not repeat this here and
refer the reader to Chapter 4.2 for the background in rotation equivariance on 2D grids.
Instead, this section provides the background on rotation equivariant networks for 3D
vector spaces and more general methods of constructing equivariant neural networks.

In general for data living on a 3D continuous real base space the group considered is that
of 3D rotations, SO(3), 3D rotations and translations, SE(3), or 3D rotations, reflections
and translations, E(3) (Thomas et al., 2018; Fuchs et al., 2020; Satorras et al., 2021; Köhler
et al., 2019; Schütt et al., 2017). The group representations g ∈ SO(3) are orthogonal
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matrices that can be decomposed as:

ρ(g) = QT
[
⊕lD

l(g)
]
Q, (5.1)

where Q is a change-of-basis matrix and Dl is a Wigner-D matrix (Thomas et al., 2018;
Fuchs et al., 2020). The Wigner-D matrices D map elements of the group SO(3) to
(2l + 1)× (2l + 1)-dimensional matrices. Each Dl is an irrep of the group SO(3). Scalars
map to the trivial irrep and vectors in 3D space map to non-trivial irreps, namely the
real Wigner D-matrices:

D0(g) = 1 and Dn(g) = R(g), (5.2)

where R is a rotation matrix given by the action of g ∈ SO(3) on a vector in R3. Equa-
tion 5.1 shows that the group representation is a direct sum of irreps, where the number
of irreps used l can be chosen.

A weight matrix kernel in an SO(3) equivariant linear layer is therefore constructed from
the choice of group representations ρ. The weight matrix kernel is written as:

W lk : R3 → R(2l+1)×(2k+1), (5.3)

which is amapping from the corresponding vector space of the kth irrep to the correspond-
ing vector space of the lth irrep. Weiler et al. (2018), Thomas et al. (2018), and Kondor
(2018) showed that the kernel lies in the span of an equivariant basis {W lk

J }k+lJ=|k−l|. There-
fore, the weight matrix in an SO(3) equivariant network is a learnable linear combination
of such basis kernels

WSO(3) =
k+l∑

J=|k−l|

ψlkJ W
lk
J , (5.4)

where W lk
J is the weight matrix kernel, commonly referred to as a basis, and ψlkJ is a

learnable function for the J th coefficient.

The basis kernels W lk
J can be constructed from spherical harmonics. The spherical

harmonics Y (l)
m are functions defined on the surface of a sphere and they form a complete

set of orthogonal functions, and thus an orthonormal basis. Spherical harmonics are
basis functions for irreducible representations of SO(3). For the spherical harmonics
Y l
m l is a non-negative number andm is an integer between −l and l. The real spherical

harmonics for l = 0, namely scalar functions, and l = 1, namely functions in 3D vector
space are:

Y (0)(r̂) ∝ 1 Y (1)(r̂) ∝ r̂, (5.5)
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where r̂ is a vector in 3D space normalised to unit length.

These functions are SO(3) equivariant; that is, for all g ∈ SO(3) and r̂,

Y (l)
m (R(g)r̂) =

∑
m′

Dl
mm′(g)Y

(l)
m′ (r̂). (5.6)

Therefore, the weight matrices of an SO(3) equivariant linear layer are restricted such
that,

W lk
J =

J∑
−J

YJmQ
lk
Jm. (5.7)

Thomas et al. (2018) and Fuchs et al. (2020) provide methods for constructing such
networks. Here each basis kernelW lk

J : R3 → R(2l+1)×(2k+1) is formed by taking a linear
combination of Clebsch-GordanmatricesQlk

Jm of shape (2l+1)×(2k+1), where the J,mth

linear combination coefficient is themth dimension of the J th spherical harmonic. As a
result an SO(3) equivariant network can be constructed from the spherical harmonics.

Following this, work has been conducted on a more general method of constructing
equivariant models Lang &Weiler (2020), Ravanbakhsh et al. (2017). However these
methods still require considerable mathematical work limiting there general application.
On the other hand, a general framework for constructing rotation-reflection equivariant
convolutional networks for the group E(2) including subgroups was presented in Weiler
& Cesa (2019). Further, a general framework for solving equivariance constraints for
a range of different groups was presented for a multilayer perceptron (MLP) based
architecture by Finzi et al. (2021). This method therefore recovers the same bases as
other equivariant networks.

5.2.2 Graph Neural Networks

GNNs were first introduced as a means to learn on graph structured data using neural
networks where the data is irregularly structured Gori et al. (2005), Scarselli et al. (2008),
Li et al. (2015), Duvenaud et al. (2015). GNNs becomemorewidely usedwhen theywere
developed to scale better with the size of input graph Welling & Kipf (2016), Veličković
et al. (2018), Bronstein et al. (2017), Gilmer et al. (2017a), Defferrard et al. (2016). Since
then GNNs have been used to learn about graphs Chen et al. (2020), Simonovsky &
Komodakis (2017), Morris et al. (2019), Xu et al. (2019), Mitton et al. (2021), point
clouds Wu et al. (2019), Hertz et al. (2020), Zhao et al. (2021), Fuchs et al. (2020), Li &
Lee (2019), and meshes Feng et al. (2019), Hanocka et al. (2019), Hanocka et al. (2020).
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Graph-mesh- and point-convolutions are relevant here as they can be used in the decoder
as an inductive bias to build into the model. They provide the inductive bias of locality
in the model, meaning that features are updated only based on neighbouring nodes. On
the other hand, using an MLP does not provide any locality inductive bias in the model,
as the features at every node are updated based on the features of every other node.

5.2.3 3D Hand Mesh Generation

Generating meshes from 2D images has seen increased attention in recent years Chatzis
et al. (2020). Using a convolutional encoder is the approach taken in all prior works to
embed the image into a latent space, with differing choices of convolutional architecture.
The main difference between prior works comes in the form of the decoder. One ap-
proach is to use a deformable model which has been fit to landmarks, exploiting a prior
distribution in 3D shape space Baek et al. (2019), Boukhayma et al. (2019), Hasson et al.
(2019), Zhang et al. (2019), Kulon et al. (2019). This has the advantage that the model
will generate realistic looking hands. On the other hand, this approach has a weakness
that the model will tend to generate hands only from the prior distribution and therefore
the generated meshes may not accurately reflect the input image.

Another approach is to usemore general models as the decoder with no prior distribution
guiding the model to generate hands. One such method uses a ResNet-50 encoder and
spacial mesh convolutional decoder (Kulon et al., 2020). Another method uses a stacked
hourglass convolutional encoder and graph convolutional decoder utilising Chebyshev
polynomials (Ge et al., 2019). While these approaches more accurately generate hand
meshes with the correct shape and pose of the input image, they generally require large
amounts of synthetic data as a pre-training step. This is not advantageous as it requires
significant effort in creating a synthetic dataset. In addition, these methods are not
robust at generating real-world meshes due to the reliance on large datasets. Current
approaches (Ge et al., 2019; Kulon et al., 2020) choose a small sized neighbourhood for
the update functions in the decoder, and do not consider a larger neighbourhood. This
locality is lost if the graph chosen is a fully connected graph. Current methods allow
longer range dependency between nodes in the graph by stacking multiple GNN layers.
No attention appears to be paid to the impact of this choice and whether there is a benefit
to using larger neighbourhoods during update functions or even fully connected graphs.
Further, it can be noted that using an MLP layer instead of fully connected GNN could
be seen as an alternative approach to allowing long range dependency on node features.
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5.3 Rotation Equivariant 3D HandMesh Generation From
2D Images

5.3.1 Model Specification

5.3.1.1 Overview

We follow the model structure of previous works on learning to generating 3D hand
meshes from RGB images (Kulon et al., 2020; Ge et al., 2019) consisting of a convolutional
encoder to embed the image into a latent space and a decoder to generate the 3D meshes.
The input to the model is RGB images of hands and the model outputs predicted 3D
meshes of the hand. The decoder predicts the point positions of a mesh, where we follow
previous work (Ge et al., 2019; Kulon et al., 2020) and output the points of the mesh in a
fixed order, thus making use of a predefined topology.

Unlike previous works we consider the symmetries in the problem and create a fully
rotation equivariant model. This comprises of an encoder and decoder, similarly to prior
works, except in this instance both are rotation equivariant. Further, our model has two
new modules a vector mapping function and a 3D projection function. Therefore our
model comprises of four main components:

1. a rotation equivariant encoder
2. a rotation equivariant mapping function from functions defined on a 2D grid to

functions defined on 2D continuous vector space
3. a rotation equivariant projection function from 2D to 3D
4. a rotation equivariant decoder

The encoder maps from images to functions defined on the group C8 ⋊R2. The vector
mapping function maps from the output latent space of the encoder, which is a function
on the group C8 ⋊ R2 to 2D vector spaces which are acted upon by representations of
the group SO(2). The 3D projection function maps from a vector feature space acted
upon by representations of the group SO(2) to both an SO(2) invariant scalar function
and a vector space acted upon by representations of the group SO(2). This allows us to
introduce the third inferred dimension of the 3D space in a controlled way, namely by
using the SO(2) invariant scalar function as the depth prediction. Finally the decoder is
an SO(3) equivariant MLP model. By ensuring rotation equivariance at each stage of the
model a 2D rotation of the input image corresponds to a 2D rotation of the output mesh



CHAPTER 5. ROTATIONAL SYMMETRIES IN 3D HAND RECONSTRUCTION 90

about the depth axis. An overview of the model is provided in Figures 5.1, 5.2, 5.3, and
5.4.

Figure 5.1: The first of four components is the 3D hand mesh generation model is the
encoder. The encoder is a rotation equivariant convolutional neural network that takes
as input 2D RGB images of hands and outputs a latent space that comprises of functions
on the group C8 ⋊R2.

Figure 5.2: The second of four components is the 3D hand mesh generation model is
the vector mapping function. The vector mapping function takes as input the latent
functions and outputs 2D vector spaces of point vectors.
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Figure 5.3: The third of four components is the 3D hand mesh generation model is the
3D projection function. The 3D projection function takes as input 2D vector spaces and
outputs both a 2D vector space and a 1D vector, which are interpreted as the X-Y and Z
dimensions in 3D space respectively. This function uses representations of the group
SO(2) to map from a vector representation, T1, to both a vector representation, T1, and
scalar representation, T0.

Figure 5.4: The fourth of four components is the 3D hand mesh generation model is the
decoder. The decoder is a SO(3) equivariant function that maps from 3D points to 3D
points, where the output is the hand mesh.

5.3.1.2 Encoder

For the encoderwe use a steerable convolutional neural network (CNN)Cohen&Welling
(2017), Weiler & Cesa (2019), which is translation-rotation equivariant. We chose to
make the encoder equivariant to the group C8, the group of rotations by 45◦. We enforce
that the feature spaces transforms under the regular representation, ρreg, of the group
C8. This defines the transformation law of the feature fields in the network. Therefore,
the steerable CNN has a feature space of steerable fields f : R2 → R8, which associate an
8-dimensional vector f(x) ∈ R8 to each point x in the base space. The transformation law
of the feature fields in the convolutionalmodel is given by f(x) := ρ(g)·f(g−1(x−t)). This
states that it transforms the feature fields by moving the feature vectors from x to their
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new position g−1(x− t), which both translates them by t and rotates the orientation by
g−1, and acts on them by ρ(g), which permutes the order of the feature vector depending
on the group element g.

For the encoder we define a residual block, which comprises of two steerable convolution
layers, two batch normalisation layers Ioffe & Szegedy (2015), and two ReLU layers Nair
& Hinton (2010) with skip connection He et al. (2016). The encoder comprises of a
steerable convolution, batch normalisation, and ReLU layer followed by five residual
blocks and final steerable convolution. The encoder is detailed in Figures 5.1 and 5.5.

Figure 5.5: Diagram of the encoder inside the model. This shows the representation
space used at each layer in the model and the total number of layers. The right hand
column details the components of the residual block, while the left hand column shows
the entire structure of the encoder.
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5.3.1.3 Vector Mapping

The vector mapping layer converts latent functions defined on the group C8 ⋊R2 to a
2D continuous latent vector space, which is acted upon by representations of the group
SO(2). We achieve this by first inverting the action of the group on the base space,
which, noting that the transformation law of the feature fields in the encoder is given by
f(x) := ρ(g) · f(g−1(x− t)), involves applying the transformation f(x) := f(g(x)), where
the group action is g ∈ C8. We then transform the latent functions defined on the image
domain, Z2, to latent functions defined on a 2D continuous vector space, R2. This is
achieved by reshaping the latent functions from (b×m×g×k×k) to (b×k×k×g×n×2)

by interpreting the learned latent function’s feature dimension as n points in a 2D
continuous vector space; where b is the batch size,m is the feature dimension, g is the
group dimension, k is the dimension of the grid, and n is the halved feature dimension.
Following this, we apply the corresponding group action g−1 ∈ C8 ≤ SO(2), where it
is noteworthy that this does not require any prior knowledge of the orientation of the
image. This corresponding group action is achieved by using representations of the
group ρ(g) ∈ R2×2. Finally, we apply a permutation invariant function over the group
axis as we specify that the output graph should be of fixed topology. This permutation
invariant function ensures the topology of the output graph is not dependent on the
permutations of the encoder’s transformation law. Here we chose to use a summation
as the permutation invariant function. The output of the vector mapping function is
therefore a 2D continuous vector space, where the feature vectors correspondingly rotate
when the input image is rotated. This mapping from 2D grids to 2D continuous vector
space is implicitly done in prior works (Kulon et al., 2020; Ge et al., 2019), where this
switch of input domain is given no consideration. Whereas, here we we develop a novel
vector mapping function to ensure that rotation equivariance is maintained. The vector
mapping function is detailed in Figure 5.2.

5.3.1.4 3D Projection

The 3D projection function maps from a function on a 2D continuous vector space acted
upon by representations of the group SO(2) to both an SO(2) invariant scalar function
and a function on a 2D continuous vector space acted upon by representations of the
group SO(2). In tensor notation this is a mapping from T

SO(2)
1 to T SO(2)

1 ⊕ T
SO(2)
0 . We

treat the scalar representation as a learned depth estimate and therefore treat it as the
third dimension of the 3D point cloud. We therefore reshape the SO(2) vector and scalar
functions into a 3D vector space. The 3D projection function is detailed in Figure 5.3.
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5.3.1.5 Decoder

The decoder maps the latent function, which is a function on a 3D continuous vector
space acted upon by representations of the group SO(3), into the vertex points of the
output mesh. The decoder is SO(3)-equivariant and therefore guarantees that a rotation
of the input image corresponds to a rotation of the predicted 3D mesh about depth
axis introduced by the 3D projection function. The decoder comprises of three layers
mapping between functions that live on a 3D continuous vector space acted upon by
representations of the group SO(3). The resulting output of the model is a fixed topology
mesh that comprises position vectors in 3D space. This decoder comprises of equivariant
multi-layer perceptron layers Finzi et al. (2021). The architecture of the decoder is
presented in Figures 5.4 and 5.6.

Figure 5.6: Diagram of the decoder used inside the model. This shows the representation
space used at each layer in the decoder.

5.3.1.6 Model Training

The loss function can consist of some combination of a vertex reconstruction loss, a
Laplacian loss, and a hand prediction loss. The vertex reconstruction loss is a mean
squared error (MSE) loss. This enforces that points in the predicted mesh are close to
points in the true mesh. The MSE loss is given by:

Lv =
1

N

N∑
i=1

∥∥v3Di − v̂3Di
∥∥2
2
, (5.8)

where v3Di and v̂3Di are the ground truth and predicted vertex locations respectively.

The Laplacian loss is introduced to preserve the local surface smoothness of the mesh.
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The Laplacian loss is given by:

Ll =
1

N

∑N

i=1

∥∥∥∥δi −∑vk∈N (vi)
δk

/
Bi

∥∥∥∥2
2

, (5.9)

where δi = v3Di −v̂3Di is the offset between the ground truth and predicted vertex locations,
N (vi) is the set of neighbouring vertices of vi, and Bi is the number of vertices in the set
N (vi).

The hand prediction loss is a binary cross entropy (BCE) loss. This is used to predict
whether a hand is present in the image and is used for multi hand prediction tasks. The
BSE loss is given by:

Lb =
1

N

N∑
i=1

yi · log(xi) + (1− yi) · log(1− xi), (5.10)

where x is the model prediction and y is the true value.

For each dataset a different loss function can be used, where a hyperparameter is used as
a weighting factor for each of the losses. The weighting factor used for each loss function
for each dataset is provided in Table 5.1.

Dataset M/S MSE Loss Laplacian Loss BCE Loss R MSE Loss
Real-World 100 101 0 0
FreiHAND 100 101 0 0
InterHand 2.6M 103 0 100 10−1

Table 5.1: Details on the hyperparameters weighting each loss function for each dataset.
A hyperparameter of zero indicates that the loss function is not used for that dataset. In
the heading row M stands for mesh, S stands for skeleton, and R stands for root. M/S
MSE Loss is the loss function used for the reconstruction of the mesh or skeleton of the
hand and R MSE Loss is the loss function used for a single 3D root position of the hand.

For each of the datasets used we also provide further training details in Table 5.2.

Dataset Optimiser Epochs Initial lr lr Decay lr Decay Batch Size
Rate

Real-World Adam 300 10−5 0.5 ∀100 8
FreiHAND Adam 46 10−4 0.1 38 32
InterHand 2.6M Adam 20 10−5 0.1 15 & 17 64

Table 5.2: Training details for each dataset. Details incldue the optimiser used, number
of epochs trained for, initial learning rate (lr), decay factor of the lr, rate at which the lr
is decayed, and the batch size used.
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5.3.2 Experiments

5.3.2.1 Real-World Dataset

We experiment on the real-world dataset from Ge et al. (2019), which we split into 500

training and 83 testing examples of images and meshes. The input images are of size of
256× 256 and the meshes to be predicted have 954 vertices. We report the mesh error
as the evaluation metric, where the mesh error is the average error in Euclidean space
between corresponding vertices in each generated 3D mesh and its ground truth 3D
mesh, namely the mesh MSE loss in Section 5.3.1.6.

Choice of Decoder
We first experiment with the choice of decoder by using a non-rotation equivariant
CNN encoder, vector mapping function and 3D projection function, and two different
decoders. This ensures the model is inline with state-of-the art prior methods (Ge et al.,
2019; Kulon et al., 2020) and allows for the comparison exclusively between decoders.
The two decoders considered are:

• Multi-Layer Perceptron (MLP)
• Graph Neural Network (GNN)

The state-of-the art prior methods (Ge et al., 2019; Kulon et al., 2020) utilise a GNN
decoder with node neighbourhoods chosen to be relatively small in comparison to the
entire set of vertices in the output mesh. No consideration is given to the neighbourhood
size used in the graph decoder and whether a global update could improve upon the
local updates of a GNN. A MLP could be viewed as a fully connected GNN update with
separate update on each edge. The main drawback of an MLP is the fixed size outputs
of the model and in general GNNs are used due to the variable size of the data. Here
when generating 3D meshes the output is of fixed size and hence one benefit of using a
GNN is moot. The remaining advantage of using a GNN over an MLP is that the GNN
has an inductive bias of locality. We experimentally compare using a GNN and MLP
decoder in Table 5.3. This shows that the MLP decoder achieves a lower mesh error
indicating the MLP model learns to generate more accurate meshes. This indicates that
the inductive bias of locality does not improve mesh prediction over the MLP model.
As we seek to build the inductive bias of rotational equivariance into our model, which
aims to improve the generalisation of the vertex position prediction, we conclude that an
MLP decoder is desirable given its improved performance.
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Table 5.3: Average mesh error tested on the testing set of the real-world dataset Ge et al.
(2019).

Method Fixed orientation
mesh error [mm]

MLP 7.36
GNN 8.08

Rotation Equivariant Model
We experiment with three different models two non-rotation equivariant models, named
MLP and GNN, and a rotation equivariant model, named EMLP. The method named
MLP has a non-rotation equivariant CNN encoder, vector mapping function and 3D
projection function, and an MLP decoder. The method named GNN has a non-rotation
equivariant CNN encoder, vector mapping function and 3D projection function, and a
GNN decoder. Finally, the method named EMLP is the model detailed in Section 5.3.1; it
has a rotation equivariant CNN encoder, vectormapping function, 3D projection function,
and decoder, where each component is detailed in Figures 5.1, 5.2, 5.3, and 5.4 respectively.
All three models have an identical training scheme, detailed in Section 5.3.1.6, and they
are tested on the same 83 testing examples. Table 5.4 demonstrates that the model with
an MLP based decoder performs better on the fixed orientation testing dataset than
the model with GNN based decoder and the rotation equivariant EMLP model. One
explanation for this is that the MLP is the most unconstrained and flexible of the three
models. As a result, it is better able to learn to reconstruct hand meshes when the hand
poses remain similar and in similar orientations. On the other hand, when considering a
testing dataset which contains hands in a rotated orientation, both the MLP and GNN
models perform very poorly, while the EMLPmodel maintains a good performance level.
This demonstrates the improved generalisation of a model that accounts for suitable
symmetries in the data. Overall, the consistency of the rotation equivariant model across
all testing datasets results in it outperforming the other models for mesh reconstruction.
This indicates our choice of model for generating 3D meshes is beneficial and rotation
equivariance is a useful inductive bias to build into the model.

Table 5.4: Average mesh error on the testing set of the real-world dataset (Ge et al., 2019)
in the column fixed orientation mesh error. Also, a rotated version of this testing dataset
in the column rotated orientation mesh error, where the rotations used are 90◦, 180◦, and
270◦.

Method Fixed orientation Rotated orientation
mesh error [mm] mesh error [mm]

MLP 7.36 136.27
GNN 8.08 140.52
EMLP 10.13 10.82
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Following this, we conduct an ablation study to assess the benefit of each new com-
ponent introduced within our model. We use the MLP baseline from Table 5.4, as it
outperformed the GNN model, and similarly compare to the EMLP model, which is our
fully rotation equivariant model comprising all components introduced in Section 5.3.1.
Table 5.5 highlights the benefit of each component introduced in our model with the
fully rotation equivariant model achieving a mesh error an order of magnitude lower
than any other combination of model components on the rotated orientation testing
dataset. This demonstrates that each new component introduced within our model is
required for improved generalisation to new rotated orientations. Despite the better
ability to reconstruct rotated hand meshes, the fully equivariant model under-performs
the other models on the fixed orientation dataset. This is most likely a result of the model
not being as flexible as any other combinations, due to each model having a similar
number of parameters, which results in it not being able to as accurately capture the
fixed orientation meshes.
Table 5.5: Average mesh error on the testing set of the real-world dataset (Ge et al., 2019)
for fixed/rotated orientationmesh error. Conv is a non rotation equivariant convolutional
encoder, EConv is a rotation equivariant convolutional encoder, MLP is a non rotation
equivariant multi-layer perceptron, and EMLP is a rotation equivariant multi-layer
perceptron.

Encoder Projection Decoder Fixed orientation Rotated orientation
function mesh error [mm] mesh error [mm]

Conv MLP MLP 7.36 136.27
Conv EMLP EMLP 6.82 143.28
Conv MLP EMLP 6.94 138.93
Conv EMLP MLP 6.32 139.27
EConv MLP MLP 7.84 141.54
EConv EMLP MLP 7.27 143.99
EConv MLP EMLP 7.73 151.78
EConv EMLP EMLP 10.13 10.82

In addition to the performance of the three networks, we present the number of trainable
parameters in Table 5.6. This shows that all three models have a similar number of
trainable parameters. We aimed to build all three models such that they had a similar
number of trainable parameters to ensure a fair comparison between each model.

Table 5.6: Number of trainable parameters in each component of the model in millions.

Method Encoder 3D Projection Decoder Total
MLP 0.17 2.79 9.38 12.34
GNN 0.17 2.79 8.76 11.72
EMLP 0.62 2.81 8.92 12.35

Furthermore, we compare our rotation equivariantmodel to other priorworks in Table 5.7.
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This demonstrates that our method produces superior results to previous methods on a
real-world testing dataset.

Table 5.7: Average mesh error tested on the testing set of the real-world dataset. Results
for prior methods are taken from Ge et al. (2019).

Method Mesh error [mm]
MANO-based Romero et al. (2017) 20.86
Direct LBS Cai et al. (2018) 13.33
Graph CNN Ge et al. (2019) 12.72
Ours 10.13

Input Target Pred. View A View B

Figure 5.7: Qualitative mesh reconstruction results on the testing dataset from the real-
world dataset of Ge et al. (2019) comparing our model’s predictions to the target meshes.

Finally, we qualitatively validate our method by comparing the target mesh to the mesh
predicted by our model in Figure 5.7. We present the image input into the model with
both the target and predicted meshes projected onto the input image. Further, we show
the mesh generated by our model for the image in two different view points. This
shows that the generated meshes accurately capture the pose and shape required and
the generated meshes are smooth. Further, we provide additional reconstruction in
Figure C.1. In addition to qualitative analysis on the testing dataset, we also compare
how our model performs to the two non-rotation equivariant models with MLP and
GNN decoders on a testing dataset where the hands have been rotated by 90◦. As is
demonstrated in Figure 5.8 our EMLP model generates meshes that accurately capture
the pose and and shape of the hand. On the contrary, the MLP and GNNmodel fail to
capture the pose correctly and do not predict realistic looking handmeshes inmany cases.
This result is an effect of the type of inductive bias that we chose to build into our model.
These results demonstrate that the inductive bias of locality does not assist the model in
generalising the hands in orientations outside of the training dataset. Further, the MLP
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Input Target EMLP
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Figure 5.8: Qualitative mesh reconstruction results on rotated testing hand images from
the testing dataset for the EMLP, MLP, and GNNmodels.

model with no inductive bias appears to generate more realistic looking hands than the
GNN model, despite generating hands of incorrect pose. Comparing both models to
our EMLP model highlights the value of building useful inductive bias into the model,
especially those that reflect some known symmetry in the data.

5.3.2.2 FreiHAND Dataset

FreiHAND (Zimmermann et al., 2019) is a dataset comprising of 2D images accompanied
with the corresponding 3D hand meshes and hand pose data. It consists of 130,240
training examples with 3,960 examples reserved for testing. It contains difficult poses
and interactions with objects, which makes this a more challenging dataset than the
real-world one. The 3D meshes are generated by iteratively fitting a hand shape model
and therefore are not as accurate as in the real-world dataset. As a result of the hand-
object interactions within the dataset, we expect the encoder to be more important, as
the images contain more complex information, such as the varied objects and occlusions
of the hands. Nevertheless, the dataset is a widely used benchmark, and as such we also
test our method on it.

We modified the model presented in Section 5.3.1 in line with the model presented by
(Chen et al., 2021) by adding a second encoder, while maintaining each of our rotation
equivariant components. The second encoder predicts a segmentation map of the hand
that is concatenated with the input features of the original encoder. The original model
then operates as describes in Section 5.3.1. The addition of the second encoder is to give
the model more capacity in the encoder to be able to overcome the additional complexity
in the input images.
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We compare to previous methods in Table 5.8, where we consider models that have a
similar capacity to our model, namely those with a ResNet 18, Resnet 50 or equivalent
encoder. Due to the diversity of the backgrounds and objects in the hand images, we
believe that pre-training the encoder on a large image dataset is required to encode useful
hand information. This is due to a large pre-trained encoder already containing the
necessary weights to identify objects that are present in addition to the hands, whilst an
encoder that has not been pre-trained will lack this prior information. We pretrained our
rotation equivariant encoder on imagenet using the ffcv package (Leclerc et al., 2022)
for 24 epochs. Typically, ResNet models are trained on imagenet for more epochs and
therefore it is likely our model would perform better if the pretraining was conducted
for longer. For comparison we also show the result of our model when trained with an
encoder that has not been pretrained on imagenet. The results demonstrate that our
method when the encoder is pretrained is competitive with state-of-the-art methods
trained using 4 and 8 GPUs despite our method only using 1 GPU, which suggests the
generalisation benefit of rotation equivariance is a promising direction.

Table 5.8: Performance comparison with previous methods on FreiHAND dataset (Zim-
mermann et al., 2019). Methods in comparison are: MANO (Romero et al., 2017), Hasson
et al (Hasson et al., 2019), Boukhayma et al (Boukhayma et al., 2019), FreiHAND (Zim-
mermann et al., 2019), Kulon et al (Kulon et al., 2020), Pose2Mesh (Choi et al., 2020),
I2LMeshNet (Moon & Lee, 2020), CMR-G (Chen et al., 2021)

Method Encoder PA-MPVPE ↓ F@5mm ↑ F@15mm ↑
MANO 14.4 0.416 0.880
Hasson et al ResNet18 13.2 0.436 0.908
Boukhayma et al ResNet50 13.0 0.435 0.898
FreiHAND ResNet50 10.7 0.529 0.935
Kulon et al ResNet50 8.6 0.614 0.966
Pose2Mesh ResNet18 7.8 0.674 0.969
CMR-G ResNet18 7.6 - -
I2LMeshNet ResNet50 7.6 0.681 0.973
Ours - pre-train EqResNet18 7.9 0.663 0.968
Ours - no pre-train EqResNet18 8.9 0.608 0.957

We also provide examples of themesh reconstructions precdicted by ourmodel overlayed
onto the input hand images in Figure 5.9. This demonstrates that ourmodel can accurately
reconstruct the hand meshes with more challenging background and with objects within
the hands. We provide further reconstruction in Figure C.3.
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Figure 5.9: Qualitative mesh reconstruction results on the testing dataset from the
FreiHand dataset of Zimmermann et al. (2019).

5.3.2.3 InterHand2.6m Dataset

We also experiment on the InterHand2.6m dataset (Moon et al., 2020). This dataset
comprises of 2D images and accompanying 3D hand pose. Therefore, instead of recon-
structing the 3D hand mesh, here the model is required to predict the 3D hand pose
from the image. Each pose is a skeleton of the hand consisting of 21 3D points. Further,
each image can consist of one or two hands, and when there are two hands in the image
they can be interacting. Therefore, the task is to predict the 42 3D points comprising both
hands, the root depth, and whether each hand is present in the image. As a result, we
modify our decoder for this dataset such that it outputs 42 3D points, the root depth, and
binary prediction of whether each hand is present. This requires changing the output
vector space of the decoder from 954

⊗
T1 to 42

⊗
T1
⊕

1
⊗

T0
⊕

2
⊗

T0.

The dataset consists of 1.4 million training examples, 380 thousand validation examples,
and 849 thousand testing examples. This makes it a large dataset, especially in compari-
son to the real-world dataset. Similarly to the FreiHAND dataset, occlusion can occur in
the images when one hand overlaps the other.

We compare to previous methods in Table 5.9. This demonstrates that our method
performs competitivelywith leadingmethods, ranking 3rd best in terms of joint predictive
accuracy. A key difference between our architecture and the majority of other methods,
including NRSfM (Deng et al., 2022) and IntagHand (Li et al., 2022), is that they use
a ResNet50 encoder pre-trained on Imagenet (Deng et al., 2009) and the equivalent
rotation equivariant pre-trained ResNet50 model does not exist. As a result, our encoder
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is a rotation equivariant ResNet18 model, which is not pre-trained. Therefore, the base
starting point of our encoder has a worse ability to detect and classify objects in images.
As a result, we believe our model could generate more accurate hand poses by making
use of a larger pre-trained encoder.

Table 5.9: Performance comparison with previous methods on InterHand2.6m dataset
(Moon et al., 2020). Methods in comparison are: Zimmermann et al (Zimmermann &
Brox, 2017), Zhou et al (Zhou et al., 2020), IHMR (Rong et al., 2021), Boukhayma et al
(Boukhayma et al., 2019), Moon et al (Moon et al., 2020), Spurr et al (Spurr et al., 2018),
Zhang et al (Zhang et al., 2021), PRN (Park et al., 2020), DNRSfM (Kong & Lucey, 2019),
C3dpo (Novotny et al., 2019), NRSfM (Deng et al., 2022), and IntagHand (Li et al., 2022)

Method MPJPE ↓
Zimmermann et al 36.4
Zhou et al 23.5
IHMR 17.1
Boukhayma et al 16.9
Moon et al 16.9
Spurr et al 15.4
DNRSfM 13.8
Zhang et al 13.1
C3dpo 9.8
NRSfM 8.9
IntagHand 8.8
Ours 9.3

5.3.3 Discussion

The results show that enforcing rotational symmetries within the model ensures the
predicted hand meshes transform in a predictable way under rotation and that no
undesirable deformations occur in the predicted meshes. The advantage of this is most
noticeable when training on a small dataset, which is likely when using real world data
due to the cost of data collection. This implies that incorporating rotational symmetries
into hand mesh prediction models improves the robustness of such models, ensuring
predicted pose meshes as stable under rotation.
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5.4 Conclusions

We present a novel framework for generating 3D hand meshes from 2D RGB images that
is composed of equivariant layers that ensure the entire model is rotation equivariant. To
the best of our knowledge this is the first model for generating 3D meshes from 2D RGB
images that considers equivariance. We provide a comparison between and MLP and
GNN based decoder, showing that an MLP model generates more accurate smoother
meshes than a GNNmodel. This improvement in mesh generation justifies our choice
of using an MLP based model. Further, we demonstrate that rotation equivariance is a
suitable inductive bias to build into each component of the model by outperforming, in
terms of reconstruction accuracy, other leading methods on a real-world dataset. In ad-
dition, this improves robustness by removing undesirable deformations of the generated
meshes under rotation of the input image, which we both quantitatively and qualita-
tively compare with non-rotation equivariant models. Furthermore, we demonstrate
competitive mesh reconstruction ability with state-of-the-art methods on two widely
used, large scale, benchmark datasets. The theoretical match of prior knowledge about
the problem, and the improved empirical performance compared to the state of the art,
support the use of these new inductive biases in models generating 3D hand meshes
from 2D RGB images.



6
AutomorphismSymmetries in SubgraphGraphNeural
Networks

In this chapter we develop a novel graph neural network that is equivariant to auto-
morphism groups of subgraphs. This model initially comprises of a subgraph selection
policy to split the input graphs into a collection of subgraphs, which uniquely stores
subgraphs in separate bags based on their automorphism groups. The input features of
the subgraphs are updated through multiple automorphism equivariant layers, before
the subgraphs are pooled and graph level features are output. We demonstrate that the
model is more scalable than global permutation equivariant models. We also show that
the model performs competitively across a range of graph benchmark tasks.

6.1 Introduction

Machine learning on graphs has received much interest in recent years with many graph
neural network (GNN) architectures being proposed. One such method, which is widely
used, is the general framework of message passing neural networks (MPNN). In an
MPNN, the graph consists of a set of nodes which have a feature space associated to
them, and an adjacency matrix which details the connectivity of the graph. It is also
possible to have edge feature spaces such that the edges do not only provide connectivity,
but also have feature vectors associated to them. Then in an MPNN, node feature vectors
in each layer of the network are updated according to

mv =
∑

n∈N (v)

M(hv, hn, evn) (6.1)

and
hv = U(hv,mv), (6.2)

105
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where N (v) is the set of nodes in the neighbourhood of nodes v, h is the vector space of
nodes in a specific hidden layer, and e is the feature vector space of the edge connecting
two nodes. As a result MPNNs provide both a useful inductive bias and scalability
across a range of domains (Gilmer et al., 2017b).

However, Xu et al. (2019); Morris et al. (2019) showed that models based on a message
passing framework with permutation invariant aggregation functions, for example the
summation in Equation 6.1, have expressive power at most that of the Weisfeiler-Lehman
(WL) graph isomorphism test (Weisfeiler & Leman, 1968). Therefore, there exist many
non-isomorphic graphs that a model of this form cannot distinguish between.

Many methods have been proposed to design a GNN that improves the expressive
power of MPNNs. Although—most often—an increase in expressivity must be traded
off against scalability. We present the background into existing methods which attempt
to tackle this question in Section 6.2.

We build on the developments of permutation equivariance to design a framework to
create provably more expressive and scalable graph networks. We achieve this through
incorporating symmetry structures in graphs, by considering a graph equivariant update
function which operates over subgraphs. Our framework, Subgraph Permutation Equivari-
ant Networks (SPEN), is developed from the observation that operating on subgraphs
both improves the scalability and expressive power of higher-dimensional GNNs, whilst
also unlocking a natural choice of automorphism group, further increasing the expressive
power of the network. Our framework consists of:

1. encoding the graph as a bag of bags of subgraphs
2. utilising a k-order permutation equivariant base encoder
3. constraining the linear map to be equivariant to the automorphism groups of the

bags of subgraphs

Subgraphs each have a symmetry group and our framework captures this in two ways.
Each subgraph has a permutation symmetry, which is induced by a permutation of
the nodes in the graph. In addition, there is a symmetry across subgraphs whereby
subgraphs are associated to an automorphism group. We therefore construct a neural
network comprising of layers that are equivariant to both permutations of nodes and
the automorphism groups of subgraphs. We achieve this by utilising a permutation
equivariant base encoder with feature space constrained by the direct sum of different
order permutation representations. Further, we constrain the linearmapwithin each layer
of the network to be equivariant to the automorphism groups of the bags of subgraphs.
This means that subgraphs belonging to different automorphism groups are processed by
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a kernelwith differentweights, while for subgraphs belonging to the same automorphism
group the kernel shares weights. This leads to us creating a subgraph extraction policy
which generates a bag of bags of subgraphs, where each bag of subgraphs corresponds to
a different subgraph automorphism group. Our main contributions within this chapter
are:

• an automorphism equivariant compatible subgraph extraction method.
• a novel choice of automorphism groups with which to constrain the linear map to

be equivariant to
• a more scalable framework for utilising higher-dimensional permutation equivari-

ant GNNs
• a more expressive model than higher-dimensional permutation equivariant GNNs

and subgraph MPNNs
• A theoretical analysis of the proposed model in terms of scalability and an appli-

cation of the theoretical analysis from Bevilacqua et al. (2022) and de Haan et al.
(2020) to demonstrate the expressivity of our model.

• a demonstration that our method is statistically indistinguishable from state-of-the-
art methods on benchmark graph classification tasks.

Throughout this chapter we are following the notation presented by (Bevilacqua et al.,
2022) for how we present what a subgraph is and for the expressivity analysis.1

6.2 Background

6.2.1 Graph Neural Network Definitions

In this work we consider graphs as concrete graphs and utilise subconcrete graphs in
our framework. The subgraphs are extracted as k-ego network subgraphs. A concrete
graph is defined as:

Definition 20. A Concrete Graph (de Haan et al., 2020)G is a finite set of nodes V(G) ⊂ N
and a set of edges E(G) ⊂ V(G)× V(G).

The set of node IDs may be noncontiguous and we make use of this here as we extract
overlapping subgraphs and perform the graph update function on bags of subgraphs.

1One of contributions of this chapter namely operating on subgraphs, which inherit ids from the
original graph was developed concurrently to (Bevilacqua et al., 2022), see https://openreview.net/
forum?id=7oyVOECcrt for the initial version of our work.

https://openreview.net/forum?id=7oyVOECcrt
https://openreview.net/forum?id=7oyVOECcrt
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The natural numbers of the nodes are essential for representing the graphs in a computer,
but hold no information about the underlying graph. Therefore, the same underlying
graph can be given in may forms by a permutation of the ordering of the natural numbers
of the nodes. Throughout the paper we refer to concrete graphs as graphs to minimise
notation.

In practice, graphs can have both node and edge features, which are both vector spaces.
Throughout this chapter we represent graphs in tensor format. This is due to the use
of tensor format making the notation connecting graph feature spaces and the group
representations acting on them easier.

Definition 21. In tensor format the values ofG are encoded in a tensorA ∈ R|V(G)|×|V(G)|×d,
where the node features are encoded along the diagonal and edge features are encoded
in off-diagonal positions.

Following our use of concrete graphs we also make use of subconcrete graphs, which
are defined as:

Definition 22. A subconcrete GraphH is created by taking a node i ∈ V(G), and extracting
the nodes j ∈ V(G) and edges (i, j) ⊂ V(G)×V(G), according to some subgraph selection
policy.

An important part of the developed framework in this chapter is the use of subgraphs.
We consider the subgraph selection policy as a k-ego-network policy. For brevity we
refer to subconcrete graphs as subgraphs throughout the paper.

Definition 23. A k-Ego Network of a node is its k-hop neighbourhood with induced
connectivity.

This chapter focuses on symmetries between graphs. For this we considered the au-
tomorphism symmetries of graphs through the consideration of the automorphism
group. Here we consider the automorphism group of the permutation group by con-
sidering graphs with the same structure up to some permutation as part of the same
automorphism group. We define a naturality constraint for a linear map as this governs
a symmetry or equivariance condition up to graph isomorphism.

Definition 24. The naturality constraint for a linear map states that for a graph G and
linearmap fG : ρ(G) → ρ′(G) the following condition holds for every graph isomorphism
ϕ (de Haan et al., 2020):

ρ′(ϕ) ◦ fG = fG′ ◦ ρ(ϕ).

When considering the permutation symmetries of a graph and looking at the automor-
phism group, there can be no automorphic mapping between a graph with four nodes
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and a graph with five nodes. This is due to there being no permutation of the four nodes
features such that they yield the five nodes features.

In this chapter we are interested in the symmetries of the symmetric group Sn. This con-
straint can be solved for different order tensor representations (Maron et al., 2018; Finzi
et al., 2021). We present the space of linear layers mapping from k-order representations
to k′-order representations in Figure 6.4.

6.2.2 Expressive Graph Neural Networks

More expressive graph neural networks (GNNs) exist which can be grouped into three
different groups:

1. those which design higher-dimensional GNNs
2. those which use positional encodings through pre-coloring nodes
3. those which use subgraphs/local equivariance

Several architectures have been proposed of the type 1, which design a high-order GNN
equivalent to the hierarchy of k-WL tests (Maron et al., 2018, 2019; Morris et al., 2019,
2020b; Keriven & Peyré, 2019; Azizian & Lelarge, 2021). Despite being equivalent to
the k-WL test, and therefore having provably strong expressivity, these models lose the
advantage of locality and linear complexity. As such, the scalability of such models
poses an issue for their practical use. Maron et al. (2018) showed that the basis space
for permutation equivariant models of order k is equal to the 2kth Bell number, which
results in a basis space of size 2 for order-1 tensors, 15 for order-2 tensors, 203 for order-3
tensors, and 4140 for order-4 tensors, demonstrating the practical challenge of using
higher-dimensional GNNs. Several architectures have also been proposed of type 2
where authors seek to introduce a pre-coloring or positional encoding that is permuta-
tion invariant. These comprise of pre-coloring nodes based on pre-defined substructures
(Bouritsas et al., 2022) or lifting graphs into simplicial- (Bodnar et al., 2021b) or cell-
(Bodnar et al., 2021a) complexes. These methods require a pre-computation stage, which
in the worst-case, finding substructures of size k in a graph of n nodes, is O(nk). Finally,
subgraphs/local equivariance of type 3 have been considered to find more expressive
GNNs. Local graph equivariance requires a (linear) map that satisfies an automorphism
equivariance constraint. This is due to the nature of graphs having different local symme-
tries on different nodes/edges. This has been considered by de Haan et al. (2020) though
imposing an isomorphism/automorphism constraint on edge neighbourhoods and by
Thiede et al. (2021) and Xu et al. (2021) by selecting specific automorphism groups
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and lifting the graph to these. Although the choice of automorphism group chosen
by de Haan et al. (2020) leads to little weight sharing and requires the automorphism
constraint to be parameterized, while those proposed by Thiede et al. (2021) and Xu
et al. (2021) do not guarantee to capture the entire graph and requires a hard-coded
choice of automorphism group. Xu et al. (2021) also propose a method for searching
across different subgraph templates, although this still requires some hard-coding of
the subgraph structures. Operating on subgraphs has been considered as a means to
improve GNNs by dropping nodes (Papp et al., 2021; Cotta et al., 2021), dropping edges
(Rong et al., 2020), utilising ego-network graphs (Zhao et al., 2022), and considering the
symmetry of a bag of subgraphs (Bevilacqua et al., 2022).

6.2.3 Previous Methods

Here we provide further details on some of the key models from the previous section.
This aims to help position our model with respect to other methods. The methods
detailed below generally fall into model types 1 and 3 above.

6.2.3.1 Global Equivariant Graph Networks

Global Permutation Equivariance. Global permutation equivariant models have been
considered by Hartford et al. (2018), Maron et al. (2018), Maron et al. (2019), and
Albooyeh et al. (2019), with Maron et al. (2018) demonstrating that for order-2 layers
there are 15 operations that span the full basis for an permutation equivariant linear
layer. These 15 basis elements are shown in Figure 6.4 with each basis element given
by a different color in the map from representation ρ2 → ρ2. Despite these methods,
when solved for the entire basis space, having expressivity as good as the k-WL test, they
operate on the entire graph. Operating on the entire graph features limits the scalability
of the methods. In addition to poor scalability, global permutation is a strong constraint
to place upon the model. In the instance where the graph is flattened and an MLP is
used to update node and edge features the model would have n4 trainable parameters,
where n is the number of nodes. On the other hand, a permutation equivariant update
has only 15 trainable parameters and in general 15 ≪ n4.

Viewing a global permutation equivariant graph network from a category theory per-
spective there is one object with a collection of arrows representing the elements of the
group. Here the arrows or morphisms go both from and to this same single object. The
feature space is a functor which maps from a group representation to a vector space. For
a global permutation equivariant model the same map is used for every graph.
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Global Naturality Global natural graph networks (GNGN) consider the condition of
naturality (de Haan et al., 2020). GNGNs require that for each isomorphism class of
graphs there is a map that is equivariant to automorphisms. This naturality constraint
is given by the condition ρ′(ϕ) ◦ KG = KG′ ◦ ρ(ϕ), which must hold for every graph
isomorphism ϕ : G → G′ and linear map KG (de Haan et al., 2020). While the global
permutation equivariance constraint requires that all graphs be processed with the same
map, global naturality allows for different, non-isomorphic, graphs to be processed
by different maps and as such is a generalisation of global permutation equivariance.
As is the case for global permutation equivariant models, GNGNs scale poorly as the
constraint is placed over the entire graph and linear layers require global computations
on the graphs.

Viewing a GNGN from a category theory perspective, (de Haan et al., 2020), there is
a different object for each concrete graph, which form a groupoid. Then, there is a
mosphism or arrow for each graph isomorphism. These can either be automorphisms, if
the arrow maps to itself, or isomorphisms, if the arrow maps to a different object. The
feature spaces are functors which map from this graph category to the category of vector
spaces. The GNG layer is a natural transformation between such functors consisting of a
different map for each non-isomorphic graph.

G1 G2

G3

Groupoid of Concrete Graphs
(de Haan et al., 2020)

6.2.3.2 Local Equivariant Graph Networks

Local equivariant models have started to receive attention following the successes of
global equivariant models and local invariant models. The class of models that are
based on the WL test are not in general locally permutation equivariant, in that they
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still use a message passing model with permutation invariant update function. Despite
this, many of these models inject permutation equivariant information into the feature
space, which improves the expressivity of the models (Bouritsas et al., 2022; Morris et al.,
2020b; Bodnar et al., 2021b,a). The information to be injected into the feature space is
predetermined in these models by a choice of what structural or topological information
to use.

Covariant Compositional Networks In contrast to using results from the WL test co-
variant compositional networks look at permutation equivariant functions, but they do
not consider the entire basis space as was considered in Maron et al. (2018). Instead
they consider four equivariant operations (Kondor et al., 2018). This means that the
permutation equivariant linear layers are not as expressive as those used in the global
permutation equivariant layers. Furthermore, in a covariant compositional networks
the node neighbourhood and feature dimensions grow with each layer, which can be
problematic for larger graphs and limits their scalability.

Local Naturality A local natural graph network (LNGN) (de Haan et al., 2020) uses a
message passing framework. The increased expressivity comes from the specification of
the constraint that node features transform under isomophisms of the node neighbour-
hood. Therefore, a different message passing kernel is used on non-isomorphic edges.
In practice, this leads to little weight sharing in graphs that are quite heterogeneous and
as such, the layer is re-interpreted such that a message from node p to node q, kpqvp, is
given by a function k(Gpq, vp) of the edge neighbourhoodGpq and feature value vp at p. In
comparison to ourmethod, LNGN amounts to choosing a different automorphism group,
where an LNGN is equivariant to the edge subgraph when performing the message
passing. On the other hand, we use the k-ego network subgraphs of each node in the
graph. As was noted by the authors of LNGN, their choice of automorphism group
leads to little weight sharing and requires parameterising. For some datasets, namely
those which are particularly heterogeneous, our choice of automorphism group requires
parameterising. In practice, this was not required on most datasets, which allows us to
use the true automorphism group. We also utilise a different base update function in
comparison to LNGNs, where we use a higher-order permutation equivariant update
function and an LNGN uses a GCN.

Viewing an LNGN from a category theoretic perspective (de Haan et al., 2020), there is
a groupoid of node neighbourhoods — where morphisms are isomorphisms between
node neighbourhoods — and a groupoid of edge neighbourhoods — where morphisms
are isomorphisms between edge neighbourhoods. In addition, there is a functor map-
ping from edge neighbourhoods to the node neighbourhood of the start node, and a
functor mapping similarly, but to the tail node of the edge neighbourhood. The node
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feature spaces are functors mapping from the category of node neighbourhoods to the
category of vector spaces. Further, composition of two functors creates a mapping from
edge neighbourhoods to the category of vector spaces. An LNG kernel is a natural
transformation between these functors.

N1 N2

N3

Groupoid of Node Neighbourhoods
(de Haan et al., 2020)

E1 E2

E3

Groupoid of Edge Neighbourhoods
(de Haan et al., 2020)

Autobahn Another local equivariant graph network, which makes use of an automor-
phism group symmetry, is that of Autobahn (Thiede et al., 2021). Autobahn uses the
automorphism groups of cycles and paths. This choice again differs from the automor-
phism group that we use. A key difference can be seen that our method is general in
the way it can be used on any graph dataset, while Autobahn is designed specifically
for molecular datasets. Our choice of automorphism group and subgraph selection
policy ensures that the information of every node is made use of in the model, which
Autobahn’s choice of automorphism group can lead to nodes being ignored.

Equivariant Subgraph Aggregation Networks ESAN (Bevilacqua et al., 2022) is an-
other method that utilises subgraphs. ESAN considers a range of different subgraph
selection policies and explores the expressive power of each. In contrast our approach
considers one subgraph selection policy, which is specifically chosen due to it leading
to a natural choice of automorphism equivariance constraint that we found requires
less parameterisation than previous works. This presents a key different between our
approach and ESAN, namely that we consider automorphism groups of subgraphs while
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ESANdoes not. A further difference is that we integrate higher-dimensional permutation
equivariant feature spaces into our networks.

k-reconstruction GNNs k-reconstruction GNNs (Cotta et al., 2021) also consider sub-
graphs, although here vertex removed subgraphs are considered, which is different to
the subgraph choice we make. Removing single nodes from a graph would not yield the
same improvement in scalability as we demonstrate in our method due to each subgraph
being almost the same size as the original graph, while we demonstrated using k-ego
network subgraphs yields subgraphs which are much smaller than the original graph in
practise. Furthermore, in our work we show how the combination of subgraph selec-
tion policy, automorphism equivariance constraint, and higher-order permutation GNN
update functions improves expressivity beyond 1-WL, while k-reconstruction GNNs
compare to 1-WL.

GRaph AutomorPhic Equivalence network The GRaph AutomorPhic Equivalence
network (GRAPE) model (Xu et al., 2021) is somewhat similar to Autobahn in that they
use subgraph templates to select the automorphism constraint, although it appears that
for GRAPE this is chosen to be more general than for Autobahn. This still differs from
our subgraph selection policy and has to be pre-determined before building a model.
On the other hand, our method, using a k-ego network policy, has the automorphism
constraint driven by the data, ensuring the approach is applicable across a range of graph
datasets.

6.3 Subgraph Permutation Equivariant Networks

6.3.1 Model Specification

We first outline necessary definitions that our method builds upon. Following this we
present the twomain concepts of our SPENmodel. Firstly, SPENhas a k-ego net subgraph
extraction method, which are collected into bags determined by their automorphism
group. Secondly, SPEN has an automorphism equivariant graph neural network. This
chapter presents the core concepts of the model which contribute to the improved
scalability and expressivity. The overall architecture of the SPEN model is presented in
Figure 6.1. Further, the breakdown of an automorphism equivariant layer within our
framework is presented in Figure 6.2. In addition, in Figure 6.3 we detail an example
breakdown of one of the mapping functions used within our model. Finally, Figure 6.4
shows a visualisation of some of the bases used within the mapping functions in the
automorphism equivariant functions. The key definitions required to understand our
framework are provided in Chapter 6.2.1.
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6.3.1.1 Subgraph Selection Policy

subgraphs can be extracted from a graph in a number of ways, by removing nodes,
by removing edges, extracting connectivity graphs at nodes, or extracting connectivity
graphs at edges to name a few. In this work we focus on k-ego network subgraphs. These
are subgraphs extracted by considering the k-hop connectivity of the graph at a selected
node and extracting the induced connectivity. The subgraph selection policy of k-ego
networks therefore extracts a subgraph for each node in the original graph.

In this work we process graphs as bags of subgraphs, where the notation of a bag
of subgraphs was introduced by Bevilacqua et al. (2022). In general the size of the
subgraphs, |H|, extracted for a graph are not all the same size, and thus |H| varies
from subgraph to subgraph. We therefore go further than representing each graph as a
bag of subgraphs and represent each graph as a bag of bags of subgraphs, where each
bag of subgraphs hold subgraphs of the same size, i.e. SHi is the bag of subgraphs for
subgraphs of size |H| = i. The graph is therefore represented as the bag of bags of
subgraphs G ≡ {{SHi . . . SHk}} ≡ {{{{H i

1, ..., H
i
a}}, ..., {{Hk

1 , ..., H
k
c }}}}, for subgraphs

H , with bags of subgraphs which are each of size a, ..., c containing subgraphs of sizes
i, .., k respectively.

In Chapter 6.3.2 we demonstrate how our choice of subgraph selection policy improves
the expressivity of the overall model. Further, in Chapters 6.3.2 and 6.3.3 we show
that the choice of subgraph selection allows the method to scale better than global
approaches. Finally, in Chapter 6.3.3.1 we show that using k-ego network subgraphs
yields subgraphs which are typically much smaller than the original graph. This both
feeds into the improved ability of our method to scale to larger graphs and provides a
smaller more compact automorphism group compared to an approach such as node
removed subgraphs. As a result, our method requires less parameterisation of the
automorphism group than other automorphism equivariant approaches.

6.3.1.2 Automorphism Equivariant Graph Network Architecture

The input data represented as a bag of bags of subgraphs has a symmetry group of both
the individual subgraphs and of the bags of subgraphs. We construct a graph neural
network that is equivariant to this symmetry. This can be broken down into three parts:

1. the automorphism symmetry of the bags of subgraphs
2. the permutation symmetry of subgraphs within bags of subgraphs
3. the original graph permutation symmetry
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An overview of the architecture is detailed in Figure 6.1, where each component is
described as follows. (1-2) The first component of our SPENmodel comprises of splitting
the graph G into subgraphs H1 . . . Hn, for a graph with n nodes. For this we use a k-ego
network policy extracting a subgraph for each node in the input graph. (3) Secondly,
we place subgraphs H1 . . . Hn into bags SHi . . . SHj , where each bag holds subgraphs
of a specific size, with i . . . j being the different sizes |H| of subgraphs. The extracted
subgraphs are used as fully-connected graphs with zero features for non-edges; this
results in each bag of subgraphs representing an automorphism group. Here it is
worth noting that the figure shows three bags of subgraphs or three automorphism
groups, while in general there does not have to just be three automorphism groups
and this can vary. (4) We then process the bags of subgraphs with an automorphism
equivariant linear map. This comprises of multiple separate functions f , with a different
function processing each automorphism group, i.e. fSH3

0 is the function mapping the
automorphism group corresponding to the bag SH3 of subgraphs in layer 0. This is a map
from a 2-order permutation representation, i.e. graphs, to the direct sum of a 1-order and
2-order permutation representation. (5) We then stack multiple layers each comprising
of an automorphism equivariant mapping function. Each of the automorphism groups
is updated with a function mapping from the direct sum of a 1-order and 2-order
permutation representation to the direct sum of a 1-order and 2-order permutation
representation. (6) The final layer in the model is again an automorphism equivariant
mapping function were each automorphism group is mapped from the direct sum of a
1-order and 2-order permutation representation to a 0-order representation. (7) Each
automorphism group is averaged. (8) An MLP is used to update the feature space.

Automorphism Symmetry
We have defined the subgraph selection policy used, which results in the input graph, G,
being represented as a bag of bags of subgraphs, {{SHi . . . SHk}}. As each bag of sub-
graphs holds subgraphs of a different size, each forms a different automorphism group.
Therefore, we have different feature spaces for different subgraph sizes and different
representations acting on these, i.e. ρ(SHi) ̸= ρ(SHj). A linear layer acting on subgraphs
should therefore operate differently on subgraphs from different automorphism groups.
This is demonstrated in Figure 6.1 (4,5,6) by having different linear map f for each bag
of subgraphs (fSH3

i , fSH4

i , fSH5

i ). This is defined more rigorously through the concept
of naturality. Given a linear layer mapping from a feature space acted upon by ρm to
a feature space acted upon by ρ′m for each subgraph H a (linear) map can be detailed
as fH : ρm(H) → ρ′m(H). However, given two isomorphic subgraphs H and H ′ are the
same graph up-to some bijective mapping, we want fH and fH′ to process the feature
spaces in an equivalent manner. This naturality constraint is therefore similar to the
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global naturality constraint on graphs G, except for subgraphs, H :

ρ′(ϕ) ◦ fH = fH′ ◦ ρ(ϕ). (6.3)

This constraint (Equation 6.3) says that if we first transition from the input feature space
acted upon by ρ(H) to the equivalent input feature space acted upon by ρ′(H) via an
isomorphism transformation ρ(ϕ) and then apply fH′ we get the same thing as first
applying fH and then transitioning from the output feature space acted upon by ρ′(H)

to ρ′(H ′) via the isomorphism transformation ρ′(ϕ). Since ρ(ϕ) is invertible, if we choose
fH for some H then we have determined fH′ for any isomorphic H ′ by fH′ = ρ′(ϕ) ◦ fH ◦
ρ(ϕ)−1. Therefore, for any automorphism ϕ : H → H , we get an equivariance constraint
ρ′(ϕ)◦fH = fH◦ρ(ϕ). Thus, a layer in themodelmust have, for each automorphism group,
a map, fH , that is equivariant to automorphisms. Therefore, our choice of subgraph
selection policy, extracting bags of subgraphs, aligns with the naturality constraint, in
that we require a mapping function fSHi , for each bag of subgraphs.

Permutation Symmetries Within Bags of Subgraphs
The order of subgraphs in each bag of subgraphs is arbitrary and changes if the input
graph is permuted. This ordering comes from the need to represent the graph in a
computer and the ordering is tracked through the use of concrete graphs. It would
therefore be undesirable for the output prediction to be dependent upon this arbitrary
ordering. This is overcome in the choice of insert and extract functions used to share
information between subgraphs demonstrated in Figure 6.2. At the end of a linear layer
in our model node and edge features from the original graph can be representedmultiple
times, i.e. they occurs in multiple subgraphs. We therefore average these features across
subgraphs through insert and extract functions, and in doing this ensure the output is
invariant to the ordering of subgraphs in each bag.

Subgraph Linear Maps
Each bag of subgraphs has a symmetry group that is given by permutation of the order of
nodes in a graph. This group is denoted Sn for a graph of n nodes. The group Sn acts on
on the graph via (σ ·A)ij = Aσ−1(i)σ−1(j). subgraphs,H , therefore have a symmetry group
Sm ≤ Sn and we are interested in constructing graph neural network layers equivariant
to this symmetry group. The graph is an order-2 tensor and the action of the permutation
group can be generalised to differing order tensors. For example, the set of nodes in a
graph is an order-1 tensor. For the case of a linear mapping from order-2 permutation
representations to order-2 permutation representations, the basis space was shown to
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Figure 6.3: An example of what a function box in Figure 6.1 breaks down into. This
example is for a function fSH

i mapping from a representation ρ1 ⊕ ρ2 → ρ1 ⊕ ρ2. This
demonstrates there is a mapping function from ρ2 to ρ2, from ρ2 to ρ1, from ρ1 to ρ2,
and from ρ1 to ρ1, as well as ρ2 is a group representation for graphs and ρ1 is a group
representations for sets.

comprise of 15 elements by Maron et al. (2018). Similarly, the constraint imposed by
equivariance to the group of permutations can be solved for different order representation
spaces and we provide an example of all mappings between representation spaces from
order 0-2 in Figure 6.4. Further, we are not restricted to selecting a single input-output
order permutation representation space and can construct permutation equivariant
linear maps between multiple representations separately through the direct sum ⊕. For
example, the direct sum of order 1 and 2 representations is given by ρ1 ⊕ ρ2. We utilise
this to build the linear mapping functions, fSHi , shown in Figures 6.1 (4,5,6) and 6.2
(a) to use linear maps between feature space acted on by different representations ρ.
An example of how this map breaks down into individual functions mapping from
and to a graph feature space acted on by 2-order permutation representations and a set
feature space acted on by 1-order permutation representations is provided in Figure 6.3.
Furthermore, the bases utilised within each of these functions, mapping between feature
spaces acted upon by different order representations, is given in Figure 6.4.

Due to the construction of a subgraph the subgraphs inherit node ids from the original
graph. Therefore, a permutation of the order of the nodes in the original graph cor-
responds to an equivalent permutation of the ordering of the nodes in the subgraphs.
In addition, as the permutation action on the graph does not change the underlying
connectivity, the subgraphs extracted are individually unchanged up-to some isomor-
phism. Therefore, a permutation of the graph only permutes the ordering at which the
subgraphs are extracted.

Algorithm Summary
The proposed approach is to split the input graph into a set of subgraphs. Collect
subgraphs that are the same size. The process these with a GNN model using different
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ρ0 → ρ0 ρ1 → ρ1 ρ2 → ρ2

ρ0 → ρ1 ρ0 → ρ2 ρ1 → ρ2

ρ1 → ρ0 ρ2 → ρ0 ρ2 → ρ1

Figure 6.4: Bases for mappings to and from different order permutation representations,
where ρk is a k-order representation. Each color in a basis indicates a different parameter.
ρ2 → ρ2 is a mapping from a graph to a graph, and has 15 learnable parameters. Further,
there are mappings between different order representation spaces and higher order
representation spaces.

permutation representation spaces, which uses the same weights for subgraphs of the
same size and different weights for subgraphs not of the same size. Finally, the subgraphs
are pooled, averaged, and the features updated with an MLP before predicting the graph
class.

6.3.2 Analysis of Expressivity and Scalability

In this section we study both the expressive power of our architecture following the
theoretical analysis outlined in Bevilacqua et al. (2022) by its ability to provably separate
non-isomorphic graphs and the scalability by its ability to process larger graphs that
its predecessor. The expressivity analysis follows from prior work of (Bevilacqua et al.,
2022) and (Zhao et al., 2022).

6.3.2.1 WL Test and Expressive Power

The Weisfeiler-Lehman (WL) test (Weisfeiler & Leman, 1968) is a graph isomorphism
test commonly used as a measure of expressivity in GNNs. This is due to the similarity
between the iterative color refinement of the WL test and the message passing layers
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of a GNN. The WL test is a necessary but insufficient condition, which is not able to
distinguish between all non-isomorphic graphs. The WL test was extended to the k-WL
test, which provides increasingly more powerful tests that operate on k-tuples of nodes.

WL analogue for subgraphs. One component of our model is the idea of operating
on subgraphs rather than the entire graph, more specifically our architecture operates
on ego-network subgraphs. We follow the theoretical analysis outlined in Bevilacqua
et al. (2022) to verify that operating on subgraphs will improve the expressive power
of the base model within our automorphism equivariant model. Therefore, following
Bevilacqua et al. (2022) we present a color-refinement variant of the WL isomorphism
test that operates on a bag of subgraphs.

Definition 25. The subgraph-WL test utilises a color refinement of
ct+1
v,S = HASH(ctv,S,N t

v,S, C
t
v), which is a simplification of that outlined in (Bevilacqua

et al., 2022), where HASH(·) is an injective function,N t
v,S is the node neighbourhood of v

within the ego-network subgraph S, and Ct
v is the multiset of v’s colors across subgraphs.

Theorem 6.3.1. subgraph-WL is strictly more powerful than 1&2-WL.

The proof of Theorem 6.3.1 begins with the definition of vertex coloring, required for the
WL test.

Definition 26. (Vertex coloring). A vertex coloring is a function mapping a graph and
one of its nodes to a "color" from a fixed color palette (Rattan & Seppelt, 2021; Bevilacqua
et al., 2022).

Generally, a vertex coloring is a function c : V → C, (G, v) 7→ cGv , where V is the set of all
possible tuples of the form (G, v)with G = (V,E) the set of all finite graphs and v ∈ V
(Bevilacqua et al., 2022).

Next, we define a color refinement step. This is required to update the coloring of each
vertex, which is the iterative process theWL test goes through to determine if two graphs
are non-isomorphic.

Definition 27. Vertex color refinement. Let c, d be two vertex colorings. We say that
d refines c when for all graphs G = (V G, EG), H = (V H , EH) and all vertices v ∈ V G,
u ∈ V H we have that gGv = dHu ⇒ cGv = cHu . This is written as d ⊑ c (Bevilacqua et al.,
2022).

It is also given that when working with a specific graph pair G1, G2, the refinement d of
c is written d ⊑G1,G2 c, when, in particular, it holds that ∀v ∈ V G1

, u ∈ V G2 , dG1
v = dG2

u ⇒
cG1
v = cG2

u (Bevilacqua et al., 2022).
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The 1-WL test represents a graph as a multiset (or histogram) of colors associated with
its nodes. This coloring induces a partitioning of the nodes into color classes, where two
nodes belong to the same partition iff they have the same coloring. The algorithm starts
from some initial coloring and iteratively updates the coloring, leading to, at each step
where the algorithm does not terminate, a finer-grained node partitioning. Each of these
iterations is a refinement step, since, if c indicates the coloring computed at iteration t
then the subsequent coloring at iteration t+ 1 is given by ct+1 ⊑G,G c

t

Definition 28. subgraph-1-WL (Zhao et al., 2022). subgraph-1-WL generalises the 1-WL
test by replacing the color refinement step ct+1

v = HASH(Start(v)) with
ct+1
v = HASH(Gt[Nk(v)]),∀v ∈ V . Where G[Nk(v)] is the k-hop egonet.

We start by proving that subgraph-WL is at least as expressive as 1-WL. For this we first
characterise our subgraph-WL to make the comparison between a refinement strategy
for a bag of subgraphs and those which operate on graphs.

Definition 29. Subgraph-WL node refinement. For a graph G = (V,E) we denote SG as
a bag of subgraphs generated by taking the k-hop ego net of each node v ∈ V . The color
refinement for node v at time step t ≥ 0, Ct

v, is given by the set of node colors across the
subgraphs, denoted as {{ctv,H}}H∈SG

.

Definition 30. The definition of color refinement b ⊑ a (Bevilacqua et al., 2022) is that
for all graphs G1 = (V 1, E1) and G2 = (V 2, E2) and all nodes v ∈ V 1, w ∈ V 2 that,
bv = bw ⇒ av = aw.

For such a node refinement policy, inclusive of node refinement across subgraphs, Bevilac-
qua et al. (2022) show that, for b the node coloring from a subgraph-WL refinement and
a the node coloring from a WL refinement, b ⊑ a. It then follows that for all graphs
G1 = (V 1, E1) and G2 = (V 2, E2) and all nodes v ∈ V 1, w ∈ V 2 that bv = bw ⇒ av = aw.

Lemma 6.3.2. subgraph-WL is at least as powerful as subgraph-1-WL in distinguishing
non-isomorphic graphs.

We follow the notation of (Bevilacqua et al., 2022) and denote denote a colorings by the
subgraph-1-WL algorithm, b colorings on each subgraph by the subgraph-WL algorithm,
and c coloring on each node within a subgraph by the subgraph-WL algorithm. We also
denote S1, S2 as the bags of subgraphs from G1, G2 respectively. If |S1| ≠ |S2| then the
two graphs are trivially distinguished by subgraph-WL. In the case where |S1| = |S2| we
seek to show that if subgraph-1-WL (Zhao et al., 2022) identifies non-isomorphic graphs,
then so does subgraph-WL.

First, subgraph-1-WL at time step t deems two graphs non-isomorphic if the following
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two are assigned two different multisets of node colors (Bevilacqua et al., 2022):

{{atv|v ∈ Vv}} ≠ {{atw|w ∈ Vw}},

while subgraph-WL deems them non-isomorphic when the following two are assigned
two different multisets of subgraph colors (Bevilacqua et al., 2022):

{{btS1
k
}}mk=1 ̸= {{btS2

h
}}mh=1.

If it is given that subgraph-1-WL distinguishes between two graphs at iteration T , then
by Definition 30 bT ⊑ aT . In addition, Bevilacqua et al. (2022) prove that for such
a coloring at T a subgraph refinement policy such as subgraph-WL is refined by the
coloring generated at T + 1 on any pair of subgraphs: ∀H1, H2 ∈ S1 ∪ S2 cT+1 ⊑H1,H2 b

T .
The proof follows from the definition of the refinement step given by (Bevilacqua et al.,
2022) that in an algorithm for a bag of subgraphs, namely, the inclusion of a term which
refines over the multiset of node colors across subgraphs implies that if CT

v = CT
u then

bTv = bTu . This gives that if subgraph-1-WL can distinguish between two graphs at time
step T then the subgraph refinement policy yields distinct colors to any pair of subgraphs.
Therefore, subgraph-WL can distinguish between two graphs that subgraph-1-WL can
and is at least as expressive.

This provides the necessary detail for the proof of Theorem 6.3.1. To prove that subgraph-
WL is strictly more powerful than 1&2-WL we could instead prove that subgraph-1-WL
is strictly more powerful than 1&2-WL and then by Lemma 6.3.2 the proof that subgraph-
WL is strictly more powerful than 1&2-WL is complete. In fact, Zhao et al. (2022) prove
that subgraph-1-WL is strictly more powerful than 1&2-WL by presenting a pair of
non-ismorphic graphs that subgraph-1-WL distinguishes but 1-WL cannot. Therefore,
we can conclude that our subgraph-WL is strictly more powerful than 1&2-WL.

Therefore we know that even for a simple 1-WL expressive function in the GNN, such as
message passing, our model, splitting the graph into subgraphs, is immediately more
expressive than 1&2-WL.

Comparing SPEN to the WL test. We have already shown that when considering a
graph update function that operates on a bag of k-ego network subgraphs, even if the
update function itself has limited expressivity, it is more expressive than 1&2-WL. SPEN
utilises a natural permutation equivariant update function through operating on a bag of
bags of subgraphs. The naturality constraint of our model states that each automorphism
group of subgraphs should be processed by a different (linear) map. In addition, we
utilise higher-dimensional GNNs. Both of these choices are expected to increase the
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expressive power of our model.

Proposition 6.3.3. For two non-isomorphic graphs G1 and G2 subgraph-WL can success-
fully distinguish them if (1) they can be distinguished as non-isomorphic from the multi-
sets of subgraphs and (2)HASH(·) is discriminative enough thatHASH(ctv,S1 ,N t

v,S1 , Ct
v) ̸=

HASH(ctv,S2 ,N t
v,S2 , Ct

v) .

This implies that, despite the subgraph policy increasing the expressive power of the
model, it is still limited by the ability of the equivalent to the HASH(·) function’s ability
to discriminate between the bags of subgraphs. The naturality constraint of our model
processing each automorphism group with a different higher-dimensional GNN is
therefore expected to increase the expressive power of our model over subgraphmethods
utilising an MPNN.

Theorem 6.3.4. SPEN is strictly more powerful than subgraph MPNN.

We demonstrate the claim of Theorem 6.3.4 similarly to Bouritsas et al. (2022); de Haan
et al. (2020). We use a neural network with random weights on a graph and compute
a graph embedding. We say the neural network finds two graphs to be different if the
graph embeddings differ by an ℓ2 norm of more than ϵ = 10−3 of the mean ℓ2 norms of
the embeddings of the graphs in the set. The network is said to be most expressive if it
only finds non-isomorphic graphs to be different. We test this by considering a set of 100
random non-isomorphic non-regular graphs, a set of 100 non-isomorphic regular graphs,
a set of 15 non-isomorphic strongly regular graphs,2 and a set of 100 isomorphic graphs.
Table 6.1 shows that a simple invariant message passing (GCN) (Welling & Kipf, 2016)
as well as a simple invariant message passing model operating on subgraphs (SGCN),
which we created, are unable to distinguish between regular and strongly regular graphs.
Further, it is shown that PPGN (Maron et al., 2019) can distinguish regular graphs but
not strongly regular graphs, although a variant of PPGN that uses high order tensors
should also be able to distinguish strongly regular graphs. On the other hand, our SPEN
model is able to distinguish strongly regular graphs. Therefore, our model is able to
distinguish non-isomorphic graphs that a subgraph MPNN cannot and is strictly more
powerful.

6.3.2.2 Scalability

Global permutation equivariant models of the form found by Maron et al. (2018) operate
over the entire graph. They therefore scale with O(n2), for graphs with n nodes. Our
method operates on k-ego network subgraphs where a subgraph is produced for each

2See http://users.cecs.anu.edu.au/~bdm/data/graphs.html.

http://users.cecs.anu.edu.au/~bdm/data/graphs.html
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Table 6.1: Rate of pairs of graphs in the set of graphs found to be dissimilar in expres-
siveness experiment. An ideal method only find isomorphic graphs dissimilar. A score
of 1 implies the model can find all graphs dissimilar, while 0 implies the model finds no
graphs dissimilar.

Model Random Regular Str. Regular Isom.
GCN 1 0 0 0
SGCN 1 0 0 0
PPGN 1 0.97 0 0
SPEN 1 0.98 0.97 0

node in the original graph. Our method therefore scales with O(nm2), where m is
the number of nodes in the k-ego network subgraph. It is therefore clear that if n = m,
theoretically, ourmethod scalesmore poorly than global permutation equivariantmodels,
although this would imply the graph is fully-connected and every subgraph is identical.
In this situation extracting subgraphs is irrelevant and only 1 subgraph is required
(the entire graph). Hence if n = m our method scales with that of global permutation
equivariant models. The more interesting situation, which forms the majority of graphs,
is when n ̸= m. Whenm≪ n our method scales more closely with methods that scale
linearly with the size of the graph and it is for this type of data that our method offers a
significant improvement in scalability over global permutation equivariant models.

We empirically show how SPEN and global permutation equivariant methods scale
depending on the size of n andm by analysing the GPU memory usage of both models
across a range of random regular graphs. We utilise random regular graphs for the
scalability test as it allows for precise control over the size of the overall graph and
subgraphs. We compare the GPU memory usage of both models across a range of graph
sizes with a subgraph size of m = 3, 6, and 9. Through analysing the graphs in the
TUDataset, which we make use of when experimenting on graph benchmarks, we note
that the average subgraph sizes range between 3 and 10 (see Table 6.2), justifying the
choice of subgraphs in the scalability tests. Figure 6.5 shows that the Global Permutation
Equivariant Network (GPEN) (Maron et al., 2018) cannot scale beyond graphs with 500
nodes. On the other hand, our method (SPEN) scales to larger graphs of over an order
of magnitude larger. In the situation wherem = 3 GPEN can process graphs of size up
to 500 nodes, while our SPEN can process graphs of size up to 10,000 nodes using less
GPU memory.
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Figure 6.5: Computational cost of global permutation equivariant model (GPEN) and
our (SPEN) model with a very similar number of model parameters for varying average
size graphs. For this test we constructed random regular graphs of varying size using
the NetworkX package (Hagberg et al., 2008). For SPEN subgraphs were constructed
using a 1-hop ego network policy. As is demonstrated by the log-axis, SPEN can process
graphs an order of magnitude larger than global methods.

6.3.3 Experiments

6.3.3.1 Dataset and Implementation Details

TU Datasets
We tested our method on a series of 7 different real-world graph classification problems
from the TU Datasets benchmark of (Yanardag & Vishwanathan, 2015). Five of these
datasets originate from bioinformatics, while the other two come from social networks.
To highlight some features of each dataset, we note that both MUTAG and PTC are very
small datasets, with MUTAG only having 18 graphs in the test set when using a 10%
testing split. Further, the Proteins dataset has the largest graphs with an average number
of nodes in each graph of 39. Also, NCI1 and NCI109 are the largest datasets having over
4000 graphs each, as a result it is expected that this dataset will lead to less spurious
results. Finally, IMDB-B and IMDB-M generally have smaller graphs, with IMDB-M only
having an average number of 13 nodes in each graph. The small size of graphs coupled
with having 3 classes appears to make IMBD-M a challenging problem. We present
the range of graph sizes and subgraph sizes when utilising a 1-ego network subgraph
extraction policy in Table 6.2.

Model Architecture
We consider the input graphs as an input feature space that is an order 2 representation.
For each local permutation equivariant linear layer we use order 1 and 2 representations
as the feature spaces. This allows for projection down from graph to node feature spaces
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Table 6.2: Different range of graph sizes and subgraph sizes for each dataset considered
from TU datasets.

Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M
Graph Sizes 10-28 2-109 4-620 3-111 4-111 12-136 7-89
subgraph 2-5 2-5 1-26 2-5 1-6 1-135 1-88Sizes
Mean Sub- 3.2 3.0 4.7 3.2 3.2 9.8 10.1graph Size

through the basis for ρ2 → ρ1, projection up from node to graph feature spaces through
the basis for ρ1 → ρ2, and mappings across the same order representations through
ρ2 → ρ2 and ρ1 → ρ1. The final local permutation equivariant linear layer maps to order
0 representations through ρ2 → ρ0 and ρ1 → ρ0 for the task of graph level classification.
In addition to the graph layers, we also add 3 MLP layers to the end of the model.

Despite these specific choices, which were made to provide a baseline of our method
for comparison to existing methods, the framework we present is much more general
and different representation spaces can be chosen. Therefore, different permutation
representation spaces, ρ1 ⊕ ρ2⊕ · · · ⊕ ρi, can be chosen for different layers in the model
and a different k value can be chosen when creating the subgraphs.

For all experiments we used a 1-hop ego networks as this provides the most scalable
version of our method. We trained each model for 50 epochs on all datasets using the
Adam optimizer. We considered the evaluation procedure as was conducted in (Bevilac-
qua et al., 2022; Xu et al., 2019; Yanardag & Vishwanathan, 2015; Niepert et al., 2016).
Specifically, we conducted 10-fold cross validation and reported the mean and standard
deviation of validation accuracies across the 10 folds. Specific model architecture details
are provided in Table 6.3 where they vary across each dataset.

The model is constrained to be equivariant to the automorphism groups of the bags of
subgraphs. For MUTAG, PTC, NCI1, and NCI109 we directly constrain the model to the
automorphism groups of the bags of subgraphs. For PROTEINS, IMDB-B, and IMDB-M,
there exist some bags of subgraphs which comprise of a single subgraph. As this would
lead to no weight sharing between these subgraphs and and any other subgraphs we
parameterize the automorphism constraint to bunch bags of subgraphs which contain
few subgraphs.
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Table 6.3: Specific model architecture details for each dataset considered from TU-
Datasets.

Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M
# Layers 4 4 6 6 6 6 6
Feature 16 16 32 64 64 32 32Dimension
ℓ2 0 0 0.02 0 0 0 0regularisation

6.3.3.2 Graph Benchmarks

TU Datasets
We perform experiments with our method to compare to leading methods. For this
we are looking to see how global permutation equivariant methods compare to our
method? How our approach compares in terms of validation accuracy on real graph
benchmarks with state-of-the-art methods? How our method scales wen compared with
global permutation methods on real benchmark tasks?

We compare to a wide range of alternative methods, including subgraph based methods,
higher-dimensional GNN methods, and automorphism equivariant methods. We focus
specifically on IGN (Maron et al., 2018) as this method uses an order-2 permutation
equivariant tensor representation space for the linear map and is therefore the most
similar to our base GNNmodel. Bevilacqua et al. (2022) test their DSS-GNN on multiple
different subgraph policies and here we compare to the method utilising k-hop ego
networks as this is the most similar variant to our method.

Table 6.5 compares our SPEN model to a range of other methods on benchmark graph
classification tasks from TUDatasets (Morris et al., 2020a). We perform statistical sig-
nificance analysis using Welch’s ANOVA method for comparing multiple means with
different variances. We consider the null hypothesis that the means are equal and to
reject this null hypothesis the p value is required to be below 0.05. We highlight in grey
all the methods indistinguishable from the state-of-the-art method. See Appendix D.1
for more details on the statistical significance analysis. Comparing out method (SPEN)
to a higher-dimensional global permutation equivariant (IGN) demonstrates that our
method significantly outperforms the base GNN model on four datasets and is sta-
tistically indistinguishable on the remaining three. Table 6.5 also highlights that our
method is statistically indistinguishable from the state-of-the-art result on six out of
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seven datasets, and achieves a larger mean on three of these datasets. This demonstrates
that our method performs competitively across the range of datasets. The strong results
produced by our method suggests that our framework’s improved expressivity is benefi-
cial for learning on graph classification tasks. Further, our statistical significance analysis
highlights that previous methods which claim state-of-the-art are not achieving this in a
statistically meaningful way.

This approach ismost suitable for the types of graphs present in the TUDatasets presented
in this section. Namely a dataset of smaller graphs that may have some non-isomorphic
graphs that would not be distinguished by a message passing neural network. Despite
this approach improving scalability over the base GNN, it is unlikely to scale to very large
graphs unless they are particularly sparse due to the dense representation of graphs.
Furthermore, if an N node graph is fully connected this approach does not make sense
as splitting into subgraphs would yield N copies of the same subgraph, which is the
original graph. This also applies for graphs close to fully connected, where many of the
subgraphs would simply be repeats of each other.

Scalability on Graph Benchmark Datasets
Figure 6.6 demonstrates that the improved scalability of our methods on regular graphs
carries over onto graphs on real-world benchmarks. This show that as the size of the
graphs grows global permutation equivariant methods rapidly consume large amounts
of GPUmemroy. On the other hand, due to using subgraphs, our method scales to larger
graphs while using significantly less memory. This highlights that our method offers a
significant improvement in scalability over global permutation equivariant models.
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Figure 6.6: Computational cost of a global permutation equivariant model (GPEN) and
our method (SPEN) with a very similar number of model parameters and batch size for
datasets with varying average size graphs from the TUDatasets. For SPEN subgraphs
were constructed using a 1-hop ego network policy.
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Subgraph Compute Run-time
The current implementation of the model computes the subgraphs on the fly, although
this could be moved into a pre-processing stage which would speed up run-time of
the model and slow down the pre-processing stage. Here, in Table 6.4, we provide the
run-time of the computation of the subgraphs for each dataset to provide an idea of how
long this process takes in our 1-hop SPEN model.

Table 6.4: Run-time to compute subgraphs for each dataset from TUDatasets when using
a 1-hop ego-net subgraph selection policy.

Dataset subgraph Compute Run-time [s]
MUTAG 0.90
PTC 2.26
PROTEINS 14.25
NCI1 31.21
NCI109 30.96
IMDB-B 17.79
IMDB-M 19.75

6.3.4 Discussion

The results show that buildingmodels that operate on k-ego network subgraphs improves
the scalability of a GNN over the base GNN function. Although, the graphs considered
are still small in comparison to some graphs in the wild, such as social network graphs.
For very large graphs with widely varying node degrees the automorphsim constraint
would most liekly need to be parameterised, which may impact the model performance.
Despite this, utilising k-ego network subgraphs, higher order permutation representation
feature spaces, and automorphism symmetries allows for the development of GNN
models that perform strongly on real-world graph benchmarks.
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6.3.5 Future Directions

Many expressive GNN approaches use the WL test as a measure of expressivity. Despite
this, tools exist such as Nauty (McKay & Piperno, 2014) exist that can compute the
automorphism groups of graphs. Nauty cannot be used as a replacement for the neural
networks developed as these need to be able to learn to classify or segment different
graphs, something Nauty cannot do. Despite this, considering the approach Nauty takes
to determine automorphism groups could lead to the development of more expressive
GNNs.

6.4 Conclusion

We present a novel graph neural network framework for building models that operate on
k-ego network subgraphs, which respect both the permutation symmetries of individual
subgraphs and is equivariant to the automorphism groups across bags of subgraphs.
The choice of subgraph policy leads to a novel choice of automorphism groups for the
bags of subgraphs. The framework is more scalable than global higher-dimensional
GNNs through the use of subgraphs and we have both theoretically and experimentally
demonstrated this. We have shown that SPEN is provably more expressive than the base
higher-dimensional permutation equivariant GNN and subgraph MPNNs through the
choice subgraph selection policy, permutation equivariant base GNN, and automorphism
equivariant kernel constraint. We have demonstrated the expressivity of the framework.
Finally, we have shown that SPEN performs competitively across multiple graph classifi-
cation benchmarks, achieving statistically indistinguishable accuracy compared to the
state-of-the-art method on six out of seven datasets. We believe that our framework is a
step forward in the development of graph neural networks, demonstrating improved ex-
pressivity, scalability, and experimentally achieving strong performances on benchmark
datasets.



7
Conclusion

Wehavedevelopednovel deep learningmodels that exploit symmetries in high-dimensional
data across a range of scientific disciplines. We explored applications that use different
data domains — including grids, continuous spaces and subgraphs — and developed
neural networks that are equivariant to the corresponding group symmetry. Through
this, we developed the theory of equivariant neural networks for new symmetry groups,
providing connections between the theoretical understanding from the domain of in-
terest and the group theoretic understanding of equivariant networks. This overcomes
the challenges of creating neural networks comprising of novel layers outwith common
machine learning frameworks, and provides example frameworks for building such
models. We show that equivariant models — using a suitable inductive bias — given by
considering the symmetries of the task — improves the models classification, segmenta-
tion, or generative ability. Further, we demonstrate that equivariant models are able to
better generalise to out-of-distribution data, scale better to high-dimensional data, and
are more robust than their non-equivariant counterparts. In addition, we demonstrate
that models with an inductive bias taken from the symmetries of the data are more
interpretable than unconstrained models, and better align with the intuition of domain
experts.

In chapter 3 we present a novel model for the classification of age groups and species
of mosquitoes. We present a model and training regime that overcomes the challenge
of working with very small unbalanced data through the use a convolutional neural
network and transfer learning. This enables the model to generalise to small genetically
similar datasets, which was previously unachievable. We also show that this model
classifies mosquito age groups and species with higher accuracy than models with no
inductive bias. We further show that the trained model is sensitive to regions within
the input spectra that correspond to regions that have chemical relevance, suggesting
that the model is learning useful features. We compared our model to an equivalent
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model which does not utilise the inductive bias provided by convolutions. We evaluate
the practical relevance of the model by predicting the age structure of wild mosquitoes,
demonstrating that model can predict a similar distribution to what is seen in the wild
with only a small quantity of data. Finally, the proposed model can be used to assist
malaria mosquito surveillance and will hopefully assist in assessing the effectiveness of
malaria control interventions.

In chapter 4 we develop two rotation equivariant models for images. The first model
demonstrates the advantages of using a rotation equivariant model when there is rota-
tional symmetries within the data for the task of segmentation of deforestation regions.
For the second model we develop the theory of cylindrical symmetries for equivariant
neural networks, presenting a novel model for the task of inverting optical fibre trans-
mission effects. The development of this model bridges the gap between the theoretical
understanding of multi-mode optical fibres in the physics community and group the-
oretic understanding of equivariant neural networks. We develop new datasets based
on theoretical transmission matrices, which allows us to test the model on previously
unachievable resolutions of images. We demonstrate that our equivariant approach to
solving the task provides a more interpretable model, with desirable characteristics for
applications of multi-mode fibre imaging. Our equivariant model better generalises to
out-of-distribution data, is robust to noise in the speckled images, can learn and gener-
alise with a smaller training dataset, and is robust to under parameterising the bases
functions. We also show that the model can invert the transmission effects of a physical
fibre in the laboratory. We demonstrate that our model can operate on higher resolution
images than was previously possible, which opens up multi-mode optical fibre imaging
to new applications where more detail is required in the predicted images. The dramatic
reduction in the number of parameters within our model for each fibre configuration
opens the way for future models that can learn mappings for high-resolution images,
from a wider set of perturbed fibre poses and combine these using architectures such as
VAEs.

In chapter 5 we develop a novel model for generating 3D hand meshes from 2D image,
which ensures the entire model is rotation equivariant guaranteeing a rotation of the
input hand corresponds to a rotated mesh being generated. We provide a comparison
between and MLP and GNN based decoder, showing that an MLP decoder generates
more accurate, smoother meshes than a GNN model. We demonstrate that rotation
equivariance is a suitable inductive bias to build into each component of the model by
demonstrating the stability of reconstruction under rotation on a small real-world dataset
anddemonstrating that ourmodel outperforms, in terms of reconstruction accuracy, other
leading methods. We also demonstrate competitive mesh reconstruction ability with
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state-of-the-art methods on two widely used, large scale, benchmark datasets. The use of
rotation equivariance as an inductive bias in models for generating 3D handmeshes from
2D RGB images is supported by the robustness of the model when generating meshes at
differing orientations.

In chapter 6 we develop a novel graph neural network framework for building models
that operate on k-ego network subgraphs, which respect both the permutation symme-
tries of individual subgraphs and is equivariant to the automorphism groups across bags
of subgraphs. The choice of subgraph policy leads to a novel choice of automorphism
groups for the bags of subgraphs. The framework scales to larger graphs better than
global higher-dimensional GNNs as a result of operating on subgraphs. The ability to
scale to larger graphs is both theoretically and experimentally demonstrated. We have
shown that SPEN is more expressive than the base higher-dimensional permutation
equivariant GNN and subgraph MPNNs through the choice subgraph selection policy,
permutation equivariant base GNN, and automorphism equivariant kernel constraint.
We have also shown that SPEN performs competitively across multiple graph classifi-
cation benchmarks, achieving statistically indistinguishable accuracy compared to the
state-of-the-art method on six out of seven datasets.
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A
Code Appendix

We provide a static version of the code and data used for each experiment and to produce
each of the figures in the thesis here: http://dx.doi.org/10.5525/gla.researchdata.1349

In addition to the static version maintained public github repositories can be found here:
https://github.com/JoshuaMitton
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B
MMF Appendix

B.1 Lab Based MMF – Inversions

This section provides further visualisations for the task of inverting the transmission
effects of a fibre in a lab based context. Further examples of the reconstructions are
provided for both MNIST and fMNIST datasets in Figures B.1 and B.2.

(a) Input (b) Target (c) BEM (d) BEM (PP) (e) Complex

Figure B.1: Comparison of predicted images from inverting transmission effects of aMMF
for fMNIST data. (a) Input speckled image, (b) the target original image to reconstruct,
(c) Output of the Bessel equivariant model, (d) Output of the combination of Bessel
equivariant and post-processing model, and (e) the output of the complex-valued linear
model.
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(a) Input (b) Target (c) BEM (d) BEM (PP) (e) Complex

Figure B.2: Comparison of predicted images from inverting transmission effects of aMMF
for MNIST data. (a) Input speckled image, (b) the target original image to reconstruct,
(c) Output of the Bessel equivariant model, (d) Output of the combination of Bessel
equivariant and post-processing model, and (e) the output of the complex-valued linear
model.
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B.2 Lab Based MMF – Accounting for Losses in a Lab
Based System

This section provides further visualisations for the task of inverting the transmission
effects of a fibre in a lab based context, where the diagonal constraint of the complex
weight matrix is relaxed. Further examples of the reconstructions are provided for both
MNIST and fMNIST datasets in Figures B.3 and B.4.

(a) (b) (c) (d) (e) (f) (g) (h)
Figure B.3: Comparison of predicted images from inverting transmission effects of aMMF
with varying relaxations on the assumption the fibre has a diagonal fibre propagation
matrix for fMNIST data. (a, c, e, g) Reconstructions using the Bessel equivariant model
only. (b, d, f, h) Reconstructions using the Bessel equivariant model and post-processing
model. (a, b) Reconstructions when the complex weight matrix is diagonal. (c, d)
Reconstructions when the complex weight matrix has five block diagonal structure. (e,
f) Reconstructions when the complex weight matrix has ten block diagonal structure. (g,
h) Reconstructions when the complex weight matrix is full.
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(a) (b) (c) (d) (e) (f) (g) (h)
Figure B.4: Comparison of predicted images from inverting transmission effects of aMMF
with varying relaxations on the assumption the fibre has a diagonal fibre propagation
matrix for MNIST data. (a, c, e, g) Reconstructions using the Bessel equivariant model
only. (b, d, f, h) Reconstructions using the Bessel equivariant model and post-processing
model. (a, b) Reconstructions when the complex weight matrix is diagonal. (c, d)
Reconstructions when the complex weight matrix has five block diagonal structure. (e,
f) Reconstructions when the complex weight matrix has ten block diagonal structure. (g,
h) Reconstructions when the complex weight matrix is full.
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B.3 Theoretical TM - Inversions

This section provides further visualisations for the task of inverting the transmission
effects of a theoretical fibre for fMNIST data and the corresponding speckled patterns.
Further examples of the reconstructions are provided in Figure B.5.

(a) Input (b) Target (c) BEM (d) BEM (PP) (e) Complex
Figure B.5: Comparison of predicted images from inverting transmission effects of a
theoretical MMF with fMNIST data. (a) Input speckled image, (b) Target original image
to reconstruct, (c) Output of the Bessel equivariant model, (d) Output of the Bessel
equivariant and post-processing model, and (e) Output of the complex valued linear
model.
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B.4 Theoretical TM–GeneralisingToOut-Of-Distribution
Data

This section provides further visualisations for the task of inverting the transmission
effects of a theoretical fibre. Here predictions are made on the out-of-distribution MNIST
data and the corresponding speckled patterns, which are not similar to the examples
seen during training. Further examples of the reconstructions are provided in Figure B.6.

(a) Input (b) Target (c) BEM (d) BEM (PP) (e) Complex
Figure B.6: Comparison of predicted images from inverting transmission effects of aMMF
for models trained with fMNIST data and tested on MNIST data. (a) Input speckled
images, (b) Target original images, (c) Output of the Bessel equivariant model, (d)
Output of Bessel equivariant and post-processing model, and (e) Output of the complex
valued linear model.
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B.5 Theoretical TM – Under Parameterising the Bases Set

This section provides further visualisations for the task of inverting the transmission
effects of a theoretical fibre when the basis set within our Bessel equivariant model is
under parameterised in Figures B.7, Figures B.8, and Figures B.9.

(a) Speckled (b) Target (c) BEM (d) BEM (PP)
Figure B.7: Comparison of predicted images from inverting transmission effects of a
MMF, when reducing the number of radial frequencies present in the Bessel function
bases from 21 to 14. This represents a reduction in the number of bases from the original
value of 1061 to 930. (a) The input speckled image. (b) The target image. (c) The output
of the Bessel equivariant model. (d) The output of the Bessel equivariant model and
post-processing model. The data used was fMNIST with speckled patterns created with
a theoretical TM.
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(a) Speckled (b) Target (c) BEM (d) BEM (PP)
Figure B.8: Comparison of predicted images from inverting transmission effects of a
MMF, when reducing the number of radial frequencies present in the Bessel function
bases from 21 to 7. This represents a reduction in the number of bases from the original
value of 1061 to 567. (a) The input speckled image. (b) The target image. (c) The output
of the Bessel equivariant model. (d) The output of the Bessel equivariant model and
post-processing model. The data used was fMNIST with speckled patterns created with
a theoretical TM.
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(a) Speckled (b) Target (c) BEM (d) BEM (PP)
Figure B.9: Comparison of predicted images from inverting transmission effects of a
MMF, when reducing the number of radial frequencies present in the Bessel function
bases from 21 to 4. This represents a reduction in the number of bases from the original
value of 1061 to 322. (a) The input speckled image. (b) The target image. (c) The output
of the Bessel equivariant model. (d) The output of the Bessel equivariant model and
post-processing model. The data used was fMNIST with speckled patterns created with
a theoretical TM.
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B.6 Theoretical TM – Scaling to Larger Images – ImageNet

This section provides further visualisations for the task of inverting speckled images
created with a theoretical fibre to imagenet images in Figure B.10

(a) Input (b) Target (c) BEM (d) BEM (PP)
Figure B.10: Comparison of predicted images from inverting transmission effects of
a MMF using high resolution ImageNet data. (a) Input speckled image, (b) Target
original image to reconstruct, (c) Output of Bessel equivariant model (d) Output of
Bessel equivariant and post-processing model.
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Hands Appendix

C.1 Additional Real-World Reconstructions

Input Target Pred. View A View B

Figure C.1: Qualitative mesh reconstruction results on the testing dataset from the real-
world dataset of Ge et al. (2019) comparing our model’s predictions to the target meshes.
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Input Target EMLP
Pred.

EMLP
View A

MLP
Pred.

MLP
View A

GNN
Pred.

GNN
View A

Figure C.2: Qualitative mesh reconstruction results on rotated testing hand images from
the testing dataset for the EMLP, MLP, and GNNmodels.
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C.2 Additional FreiHand Reconstructions

Figure C.3: Qualitative mesh reconstruction results on the testing dataset from the
FreiHand dataset of Zimmermann et al. (2019).
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GNN Appendix

D.1 Further Results Discussion

In addition to the comparison across datasets in Table 6.5 Figures D.1, D.2, D.3, D.4, D.5,
D.6, and D.7 show the test accuracy distribution of the SPEN method and compares
to other methods from Table 6.5. This shows for the smaller datasets that the spread
of test accuracy’s is larger leading to our method and others presenting large standard
deviations over the results. Comparing the SPEN results to the other methods here
highlights that the SPEN result is competitive across a range of datasets. For the NCI1
and NCI109 datasets the distribution of results of our method highlights the strong
performance of the SPEN method. For IMDBB and IMDBM the distribution of results
for the SPEN method also highlights that it is competitive on these datasets.

We also present analysis of the statistical significance of test accuracies from each method
across the seven datasets considered. Here we make use of the Welch’s ANOVA method
for comparing the means of multiple scores with different variances. We consider the
null hypothesis that the means are equal and to reject this null hypothesis the p value
is required to be below 0.05. Tables D.1 and D.2 show that for leading methods SPEN,
CIN, GSN, CCN, and DSS the p values between each of these methods is greater than
0.05 and therefore we cannot reject the null hypothesis, and thus conclude that the
means are not significantly different. Despite this our SPEN method does produce
statistically significantly better results than some benchmark results. Table D.3 compares
the statistical significance of results on the Proteins dataset, which is one where our
method appears to perform more poorly ranking 15th for mean values. Here we show
that when comparing the leading results of PPGN, CIN, IGN, DSS, GSN, and SIN there
is no statistical significance between our mean accuracy and theirs. Therefore we can
conclude that there is no significant difference between the means and our method
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is comparable with SOTA results. Tables D.4, D.5, and D.6 also show that for leading
methods the p values between each of thesemethods is greater than 0.05 and thereforewe
cannot reject the null hypothesis, and thus conclude that the means are not significantly
different. Despite this our SPEN method does produce statistically significantly better
results than some benchmark results. Finally, Table D.7 does show statistically significant
results between our method and leading methods and therefore our method is under-
performing on this dataset. This is something we seeks to explore and improve in the
future. Overall the analysis of the statistical significance of results by our SPEN method
and other benchmark results highlights that the mean accuracy’s from recent leading
methods are not significantly different. This is the same across each recent method
claiming SOTA on some benchmark datasets and not an exclusive result to our method.
This highlights that our method is competitive with SOTA methods across a range of
benchmarks.
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Figure D.1: Comparison between our SPEN method and other methods on the MUTAG
dataset. Results for the SPEN method are also presented as a histogram of the 10-fold
runs. Each other method is given as a Gaussian distribution with mean and standard
deviation as is presented in Table 6.5.
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Figure D.2: Comparison between our SPEN method and other methods on the PTC
dataset. Results for the SPEN method are also presented as a histogram of the 10-fold
runs. Each other method is given as a Gaussian distribution with mean and standard
deviation as is presented in Table 6.5.
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FigureD.3: Comparison between our SPENmethod and othermethods on the PROTEINS
dataset. Results for the SPEN method are also presented as a histogram of the 10-fold
runs. Each other method is given as a Gaussian distribution with mean and standard
deviation as is presented in Table 6.5.
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Figure D.4: Comparison between our SPEN method and other methods on the NCI1
dataset. Results for the SPEN method are also presented as a histogram of the 10-fold
runs. Each other method is given as a Gaussian distribution with mean and standard
deviation as is presented in Table 6.5.
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Figure D.5: Comparison between our SPEN method and other methods on the NCI109
dataset. Results for the SPEN method are also presented as a histogram of the 10-fold
runs. Each other method is given as a Gaussian distribution with mean and standard
deviation as is presented in Table 6.5.
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Figure D.6: Comparison between our SPEN method and other methods on the IMDB-B
dataset. Results for the SPEN method are also presented as a histogram of the 10-fold
runs. Each other method is given as a Gaussian distribution with mean and standard
deviation as is presented in Table 6.5.
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Figure D.7: Comparison between our SPEN method and other methods on the IMDB-M
dataset. Results for the SPEN method are also presented as a histogram of the 10-fold
runs. Each other method is given as a Gaussian distribution with mean and standard
deviation as is presented in Table 6.5.
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