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Abstract 

As machines become increasingly more intelligent, they become more capable of 

operating with greater degrees of independence from their users. However, appropriate use 

of these autonomous systems is dependent on appropriate trust from their users. A lack of 

trust towards an autonomous system will likely lead to the user doubting the capabilities of 

the system, potentially to the point of disuse. Conversely, too much trust in a system may 

lead to the user overestimating the capabilities of the system, and potentially result in 

errors which could have been avoided with appropriate supervision. Thus, appropriate trust 

is trust which is calibrated to reflect the true performance capabilities of the system. The 

calibration of trust towards autonomous systems is an area of research of increasing 

popularity, as more and more intelligent machines are introduced to modern workplaces.  

This thesis contains three studies which examine trust towards autonomous 

technologies. In our first study, in Chapter 2, we used qualitative research methods to 

explore how participants characterise their trust towards different online technologies. In 

focus groups, participants discussed a variety of factors which they believed were 

important when using digital services. We had a particular interest in how they perceived 

social media platforms, as these services rely upon users continued sharing of their 

personal information. In our second study, in Chapter 3, using our initial findings we 

created a human-computer interaction experiment, where participants collaborated with an 

Autonomous Image Classifier System. In this experiment, we were able to examine the 

ways that participants placed trust in the classifier during different types of system 

performance. We also investigated whether users’ trust could be better calibrated by 

providing different displays of System Confidence Information, to help convey the 

system’s decision making. In our final study, in Chapter 4, we built directly upon the 

findings of Chapter 3, by creating an updated version of our human-computer interaction 

experiment. We provided participants with another cue of system decision making, 

Gradient-weighted Class Activation Mapping, and investigated whether this cue could 

promote greater trust towards the classifier. Additionally, we examined whether these cues 

can improve participants’ subjective understanding of the system’s decision making, as a 

way of exploring how to improve the interpretability of these systems.  

This research contributes to our current understanding of calibrating users’ trust 

towards autonomous systems, and may be particularly useful when designing Autonomous 

Image Classifier Systems. While our results were inconclusive, we did find some support 

for users preferring the more complicated interfaces we provided. Users also reported 

greater understanding of the classifier’s decision making when provided with the Gradient-
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weighted Class Activation Mapping cue. Further research may clarify whether this cue is 

an appropriate method of visualising the decision-making of Autonomous Image Classifier 

Systems in real-world settings. 
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Chapter 1: Trust and Autonomous Technologies 

1.1.1 Aims and Overview 

This literature review has aimed to provide an overview of the existing literature 

examining trust towards autonomous systems. The research within this thesis was intended 

to inform the design of an autonomous image classifier system. In carrying out this 

literature review, research involving similar types of autonomous systems, such as 

diagnostic aids, was considered as more relevant than research involving autonomous 

vehicles or social robotics. Nonetheless, some research from these both of these fields was 

still included in our review, particularly where there were findings that appeared 

generalisable to exploring trust towards an autonomous image classifier. We attempted to 

ground the experiments within this thesis within existing models of trust towards 

automation, as a way of exploring the many different factors that could influence trust. The 

models that informed our research are some of the most influential within the field, 

namely: Lee and See (2004) and Hoff and Bashir (2015), and de Visser and colleagues 

(2018). These models were used as a starting point in developing our initial understanding 

the literature, and were useful in identifying other relevant research by looking at the 

studies cited within these models, and also by searching for newer research that cited these 

models. Each chapter within this thesis introduces a new concept with which we explore 

trust towards technology. For example, Chapter 2 examines social media platforms, 

Chapter 3 examines System Confidence Information, and Chapter 4 examines Gradient-

weighted Class Activation Mapping. Additional research for each concept was sought and 

reviewed for each chapter as they were written. 

Advances in computing science, such as Deep Learning and Convolutional Neural 

Networks have enabled new technologies to undertake more complicated tasks. 

Autonomous systems can now be trained to make complex decisions and can often work 

uninterrupted to process large workloads, all with reduced supervision from human users. 

The flexibility of these systems also permits a wide range of potential applications, where 

intelligent machines can augment human workers to improve productivity within many 

modern workplaces. For example, McKinney and colleagues (2020) report on the use of an 

autonomous system that was trained to identify breast cancer from mammograms. The 

system had an accuracy comparable to human oncology experts and if used correctly, they 

predicted it could lower the specialists’ workload by up to 88% (McKinney et al., 2020). 

As intelligent technologies become more pervasive there has also been a growing interest 

in how much trust users should place in these systems.  Ideally, users will not place too 
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little trust in a well-functioning machine, nor will they place too much trust in a faulty 

machine (Muir, 1987; Parasuraman & Riley, 1997). Instead, users’ trust should be 

calibrated to reflect the system’s true performance capabilities, thereby ensuring 

appropriate trust towards the autonomous system. This calibration of trust towards 

automation is a rapidly growing area of research and has recently been advanced by the 

development of newer, more accessible autonomous technologies.   

1.1.2 The History of the Trust-in-Automation Field   

In many ways, research into human-computer teams has been limited by the 

computational power of the technology available. While there has been interest in man-

machine interactions since the 1960’s (Neurath et al., 1969), the research, and by extension 

our understanding of man-machine interactions, has been limited by a lack of intelligent 

technology that can be applied to a variety of workplaces and environments. To this extent, 

early research tended to use technology which flowed from areas where autonomous 

technologies are most readily available, such as in military domains and the aviation 

industry (Biros et al., 2004; Bragg et al., 1998; Chen & Terrence, 2009; McGuirl & Sarter, 

2006; McGuirl et al., 2009). While it does not appear to be the case for all research carried 

out in the early days of this field, Pak and colleagues (2017) argue that it is important to 

consider that many of these studies would have involved participants who are highly 

trained and/or educated. Moreover, these studies also typically involve individuals who are 

part of a highly specific culture, particularly those from military backgrounds, where the 

organisational culture may have a direct influence on their attitudes towards trust and 

teamwork (Pak et al., 2017). While this does not necessarily invalidate this research, it is 

something that is worth considering in comparison to research involving newer 

technologies, which may involve more generalised participant populations.  

In more recent years, while a significant number of studies still involve military 

personnel and/or technology (Lyons et al., 2016 Ho et al., 2017; Rogers et al., 2019; 

Selkowitz et al., 2017; Wright et al., 2020), a greater amount of research has been carried 

out using more diverse technologies and participant pools. These include investigations 

involving trust towards robots (Desai et al., 2013; Maurtua et al., 2017; Hancock et al., 

2011); fault detection systems (Chavaillaz and Sauer, 2017; Yu et al., 2019), automated 

baggage scanners (Merritt et al., 2013; Chavaillaz et al., 2019) and decision support 

systems (Goddard et al., 2014; Lyell et al., 2018; de Visser et al., 2014). However, out of 

all the research currently investigating trust towards automation, the most significant 

contributor appears to be the automobile industry, in their pursuit of fully autonomous 
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vehicles (Pammer et al., 2021; Verberne et al., 2012; Verberne et al., 2015; Niu et al., 

2018; Jing et al., 2020; Koo et al., 2015).  

This interest in autonomous vehicles is understandable, given the ubiquity of the 

car as a mode of transport, and the considerable amount of road accident fatalities each 

year. As a result, car manufacturers are targeting autonomous vehicles as a realistic way to 

improve road safety (Fagnant and Kockelman 2015). Yet while car manufacturers may be 

beginning to push the development of autonomous technology, the success of these 

vehicles is still largely dependent on whether human drivers will accept them, and support 

for this acceptance is currently inconclusive. Abraham and colleagues (2016) surveyed 

drivers across a wide range of age groups and asked how willing they were to use vehicles 

with varying capacities of automation. Responses indicated that drivers were more 

favourable towards vehicles with partial and full autonomy capability, as opposed to those 

with no autonomous capability, suggesting support from drivers for autonomous vehicles. 

However, when asked about the features and types of autonomy they would be willing to 

use, drivers showed a higher overall preference for automation that could reduce and 

mitigate collisions, yet they were less favourable towards automation that assisted with 

control of driving (Abraham et al., 2016). This could mean that while there is an appetite 

for the introduction of autonomous vehicles, drivers are not prepared to relinquish full 

driving control. This is perhaps understandable given the novelty of this technology. This 

may also help to explain why there is so much research currently being done involving 

trust towards autonomous vehicles. Nonetheless, autonomous vehicles are no exception, 

and it is likely that most autonomous systems will require appropriate trust from their 

users. However, ‘Autonomous Systems’ are something of an umbrella term, and many 

different types of machines can be captured underneath this phrase.   

1.2 Defining Autonomous Systems  

Broadly speaking, autonomous systems are machines that have been designed to 

complete tasks which would have been previously carried out by humans (Parasuraman 

and Riley, 1997). By doing so, these systems can liberate their human users from 

repetitive, labour-intensive tasks, and instead allow them to undertake more complex, 

supervisory duties instead. Arguably the clearest example of this can be seen in the 

agriculture industry, where much of the labour in modern farming is now carried out by 

machines. Historically, human workers would have spent their entire working day 

harvesting crops within fields, often within harsh weather conditions, with relatively 

limited productivity. Beginning with the original ‘Reaper’ machine designed by Scotsman 

Patrick Bell in 1826, and culminating in the modern day Combine Harvester, automation 
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has greatly improved the productivity of farming (West, 1967). With more widespread 

availability of newer, smarter technologies, many other modern workplaces are also 

expected to undergo rapid, technology-induced change, known as the Industrial Revolution 

4.0 (Morrar et al., 2017). Through advances in Artificial Intelligence (AI), such as Deep 

Learning, autonomous systems can now be trained and retrained to handle newer and more 

complicated tasks, which gives autonomous systems a flexibility that was not previously 

available. Yet not all autonomous systems are designed the same, and much of their role 

within the workplace will be defined by the types of tasks they are designed to undertake.   

1.2.1 Levels of Autonomy  

When categorising automation, Parasuraman and colleagues (2000) propose that 

autonomous systems can be separated into two different categories: Information-based 

Automation and Decision-based Automation. Across these two categories, they also 

constructed four sub-stages which can reflect the increasing complexity of autonomous 

systems. For Information-based automation, at the lowest stage (1) the system is expected 

to be involved in the Acquisition of Information, wherein the system is used to collect data 

without analysis. More advanced Information-based automation (2) would also be 

expected to be involved in the Manipulation/Analysis of information, wherein the system 

collects and then processes the data. Thus, for Information-based automation, the human 

operators remain responsible for any decision making that is made for completing tasks, 

and the system is employed as more of a tool by the user.  Within decision-based 

automation (3), the system would be expected to go further, and be able to recommend 

decisions based on analysis of information. At the highest stage (4), decision-based 

automation would also be able to execute actions based on these decisions, with human 

users only playing a limited role in this decision-making.  

Within each of these four stages, the automation can be graded on the Levels of 

Automation (LOA) which illustrate how much of the task the computer handles without 

human consultation, a concept that was originally proposed by Sheridan & Verplank 

(1978). For example, a system with Facial Recognition software may have high LOA in 

stages 1 and 2, if it can collect and analyse visual data from its camera sensors. Yet for the 

decision-based automation stages (3 & 4), it may have low LOA if it only offers limited 

recommendations to the human operator, and especially if the user is responsible for 

making the final decision based on the feedback from the system. Each of these levels 

directly influence the degree of input a human user has on the human-computer team, with 

higher levels leading to less human influence. This effectively means as the machine 

becomes more autonomous the human is left out of more of the decision-making process, 
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and is thus more reliant on the machine (Parasuraman et al, 2000). When there are 

potential consequences for human safety, or the ultimate outcome involves lethality, such 

as in military applications, then trust is likely to be further influenced by the task context 

(Parasuraman and Wickens 2008; Pak et al., 2017). Therefore, it is also important to 

consider that trust in human-machine teams may be influenced to a degree by the inherent 

nature of the task.   

1.2.2 The Nature of the Task  

With their increasing flexibility, autonomous systems are now being employed in a 

variety of settings, and with that comes different stakes attached to successes and failures 

of the system. For example, Autonomous Image Classifier Systems (AICS), which are 

systems trained to categorise the contents of image data and can be used in both low-stakes 

and high-stakes settings. Low-stakes applications of AICS include ‘Pl@ntNet’, an app-

based image classifier trained to identify plants and flowers from images (Goëau et al., 

2014). In contrast, the AICS used by McKinney and colleagues (2020) is intended to 

identify breast cancer from mammography images and represents a much higher stakes use 

of automation. While both examples use similar AICS technology, there are diverging 

stakes attached to system successes and failures, one may be used by hobbyists to identify 

plants, while the other may be used to make a critical diagnosis for patient’s health. In both 

instances, continued use of the AICS are dependent on the user trusting the system, yet 

with the breast cancer classifier example, errors may be met with greater losses in trust 

from the user, given the consequences of system errors.  

Similar research involving autonomous systems used in high stakes situations can 

be seen with Clinical Decision Support Systems (CDSS), which can help health 

practitioners to make diagnoses (Goddard et al, 2014; Lyell et al., 2018), automated 

weapons detection systems (Merritt et al., 2013; Chavaillaz et al., 2019), autonomous 

squad member robots (Selkowitz et al., 2017; Wright et al., 2020), and Unmanned Aerial 

Vehicles (UAV) (Lin & Goodrich, 2015; Rogers et al., 2019). Arguably, there is scope for 

high stake situations involving all autonomous systems at some point in their deployment, 

yet it may still be difficult to replicate these conditions within controlled laboratory 

settings. Additionally, while these systems are intended to reduce the workload of human 

users, if participants can complete the task themselves, it may be difficult to stop them 

from disusing the autonomous system in laboratory experiments if these high-stake 

consequences are not present. An interesting way of exploring this was used by Verame 

and colleagues (2016), who asked participants to work with an automated handwriting 

detection system in conditions with and without performance-related financial incentives. 
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They found that participants who were offered financial incentives linked to the 

performance of the handwriting system were more likely to collaborate with the system. In 

contrast participants who were offered a fixed reward that was not linked to task 

performance were more likely undertake the manual tasks, which reportedly required the 

least effort from participants. This suggests that participants in laboratory-based 

experiments can be motivated to collaborate more with autonomous technology if offered 

financial incentives. At the same time, researchers’ ability to do so will also be dependent 

on the budget for the study, and the ethical frameworks that govern the field in which the 

research is taking place.   

Ultimately, research involving trust towards automation has been carried out in a 

variety of settings, involving many different types of automation completing different 

tasks, all with participant groups from various backgrounds. Nonetheless, across all these 

studies researchers have still been able to identify trends and patterns which explain how 

human users calibrate their trust towards autonomous systems.   

1.3 Defining Trust  

Trust is an often-amorphous concept that is associated with the intentions and 

motivations of others, and is essential for cooperative behaviour between individuals, 

groups, organisations, and other entities (Bhattacharya et al, 1998; Deutsch, 1960; Lewicki 

et al., 1998; Jones & George, 1998; Rousseau et al., 1998). The nature of trust varies 

depending on the field examining it: for economists, trust is something to be calculated, 

whilst sociologists examine trust through the lens of social norms and societal influences, 

and psychologists focus more on interpersonal trust (Rousseau et al., 1998). At a 

theoretical level when one person places trust in another person, they do so because they 

are confident that their interests and wellbeing will be promoted by the other person, 

without fear of exploitation (Read, 1962; Lewicki et al., 1998). For trust to occur, Jones 

and George (1998) suggest that both parties need to have confidence in the values and 

trustworthiness of each other. They will also likely sharin favourable attitudes towards 

each other, and should both experience positive emotional affect as a result of being within 

the relationship (Jones & George, 1998).  

Across the different fields concerned with examining trust, Rousseau and 

colleagues (1998) argue the most common factors are (1) the individual’s willingness to be 

vulnerable and (2) their confident expectations in the other person. When trusting others, 

successful cooperation is only achieved if both parties can orient away from focussing 

entirely on their own individual interests, and are instead willing to accept some costs to 

themselves (Deutsch, 1960). When an individual places trust in someone, their decision to 
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do so will also likely be informed by the trustworthiness of the recipient, i.e. the trustee 

(Dunn & Schweitzer, 2005). The trustworthiness of an individual is typically based on 

perceptions of their personal attributes, such as their competence, loyalty, consistency, 

fairness, and the integrity of their actions and beliefs (Rotter, 1980; Hardin, 2002; Dunn & 

Schweitzer, 2005, Butler, 1991). Thus, interpersonal trust between humans can be seen as 

an act of deliberate vulnerability, where one individual depends on another with the 

optimistic expectation that this will be beneficial to them, but this can only occur if the 

recipient is trustworthy (Hosmer, 1995; Lewicki et al., 1998; Hardin, 2002; Dunn & 

Schweitzer, 2005). Much of the ideas from the literature on trust between humans also 

appears to be relevant when considering trust towards technology.   

1.3.1 Trust Towards Technologies 

When a human user places trust in an autonomous system, they do so in the belief 

that the system will successfully perform the tasks that it was designed to do, allowing the 

user to supervise performance of the task. Across the trust in automation literature, the 

consensus appears to be that users will be much less likely to trust a technology when they 

see it make errors and mistakes (Lee and See, 2004; McGuirl & Sarter, 2006; Merritt et al, 

2015; Hoff & Bashir, 2015; Yu et al., 2019). While there are many similarities between 

human-human trust and human-machine trust, trust towards technology is based primarily 

on the performance of the system. Lee and See (2004) highlight 3 core components within 

trust towards automation: Performance, Process, and Purpose. Performance relates to the 

reliability, competency and predictability of the system, Process relates to how the system 

achieves this, and whether this is appropriate for the task, while Purpose relates to how 

well the system is being used by the operator, and whether this is within the original 

parameters defined by the designers (Lee & See, 2004). While aspects of human-human 

trust can also be also evaluated within these components, there are arguably unique 

differences in how we evaluate humans versus machines. In comparing human-human and 

human-machine trust, Madhavan and Wiegmann (2007) contrast the development of trust 

towards human advisors and automated systems. While many of the components for 

developing trust between these entities are similar, Madhavan and Wiegmann (2007) argue 

that machines are expected to perform more consistently across situations, yet can also be 

invariable and restricted in their approach. By contrast, a competent human advisor would 

be expected to be more adaptable, and able to change their decisions and behaviours based 

on situational changes (Madhavan & Wiegmann, 2007). Arguably, newer technologies that 

make use of Deep Learning are now more adaptable that the decision support systems 

discussed by Madhavan and Wiegmann (2007). However, even when adapting to new 
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tasks or changes in their parameters, these systems still require a resource-intensive 

retraining process, and may still not be as capable as human advisors for relearning and 

adapting in real-time.  

This relationship between trust and performance may be particularly critical when 

humans work with autonomous systems, compared to when working with other humans or 

non-automated technology. When Furlough and colleagues (2019) asked participants to 

ascribe blame when reading about human-robot task failures, the robot was more likely to 

receive a higher proportion of the blame if it was described as autonomous. Likewise, 

Berkeley and colleagues (2015) report that when witnessing forecasting errors, human 

observers are much more likely to lose confidence in forecasting algorithms than human 

forecasters, even if both make the same mistake. This suggests an innate link between 

system performance and users’ trust towards the system. In contrast, Merritt (2011) 

suggests that trust towards automation may be formed from both logical and emotional 

processes, with evaluations based on both how well the system performs, and how much 

the user likes the machine. Support for this can be seen in work by Thüring and Mahlke 

(2007), who report that instrumental (functional) and non-instrumental (aesthetic) interface 

features both shaped participants’ positive attitudes towards electronic musical devices. 

While instrumental features may directly influence users’ perceptions of reliability and 

functionality, non-instrumental aesthetic features also appeared to improve the user’s 

emotional experience of the device. This suggests that trust towards autonomous systems is 

not entirely based upon logical evaluations of system performance, but rather a 

combination of different perceptions from the user. Ultimately, for the purpose of this 

thesis, when measuring trust towards technology this was primarily based on participants’ 

willingness to continue to use, operate, and rely upon the system. This was based on 

Parasuraman and Riley’s (1997) views on distrust and mistrust of autonomous systems, in 

which optimal trust should still see a user critically evaluate a system even when it is 

correct, yet not to the extent that they discontinue their use of system. On top of this, other 

factors relating to the design of the system and interpersonal differences between users 

were also considered as moderating factors, in line with the models of Lee and See (2004) 

and Hoff and Bashir (2015).   

Indeed, when it comes to the adoption of any new technology, there are a wide 

range of factors that can influence consumers’ judgements, and by extension the ultimate 

success of the system. Extensive work by Viswanath Venkatesh has sought to map the 

myriad factors which can inform how users accept new technologies, which are framed in 

the continuously evolving Technology Acceptance Model (TAM). Earlier versions of 

TAM, building on the initial model put forward by Davis and colleagues (1989) focussed 
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on the perceived usefulness and perceived ease of use of the system, as the primary 

determinants for technology acceptance (Venkatesh & Davis, 2003; Venkatesh et al., 

2003). More recently, later iterations of TAM have sought to integrate further, more 

diverse determinants of acceptance, such as system price, the user’s habits, and even the 

hedonistic pleasure gained from using the system (Venkatesh et al., 2012; Venkatesh, 

2015). Technology acceptance is its own distinct field yet trust in automation research can 

still learn from the many different psychological, social and environmental factors which 

can inform the user’s ultimate acceptance of technology. While the successful adoption of 

new technologies is tied to users’ acceptance of them, the users also need to learn to use 

the technology correctly. Just because someone accepts a new technology, it does not 

automatically follow that they will use it appropriately. This is particularly the case with 

autonomous systems, which undertake tasks with a degree of independence from their user. 

As these autonomous systems become more advanced, their capacity for complex tasks 

also increases, yet with this the opportunity for errors increases too (Parasuraman et al., 

2000). As such, while the adoption of autonomous systems is still likely to be informed by 

many of the factors within TAM, autonomous systems are also particularly reliant upon 

appropriate trust from their human user, to ensure these systems are used appropriately.  

1.3.2 Trust Towards the Designers of Technologies 

 The line between human-human trust and human-machine trust may also become 

blurred when we consider that users may also need to consider the reputation of the 

companies that design or provide these technologies. While trust towards a technology 

may be based on the usefulness of the service it provides, it can also be based on the 

reputation of the brand behind the technology (Morgan-Thomas & Veloutsou, 2013), as 

well as the domain/field in which the technology operates (Pak et al, 2017). For example, 

Celmer and colleagues (2018) suggest that while the reputation of brands are often 

discounted in discussions of trust towards autonomous vehicles, the design of these 

technologies is often a reflection of the brand and their design teams. This builds upon 

Parasuraman and Riley’s (1997) claim that while autonomous systems may reduce the 

likelihood of errors from humans carrying out a task, this may be replaced with an 

increased likelihood of errors from the original human designers instead. Culley and 

Madhavan (2013) also note that while an autonomous system may be inanimate itself, that 

these systems are still fundamentally the creations of human designers, and as such a 

reflection of their capabilities, competencies, biases and limitations. Thus, as Celmer and 

colleagues (2018) suggest, when introducing mass-produced autonomous systems in real-
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world settings, any human-automation trust may need to be considered as trust between a 

human and an automation within the context of the brand that designed the machine.  

1.4 Models of Trust Towards Automation  

1.4.1 Muir (1987) 

Various researchers have put forward models attempting to explain the many factors 

which inform trust towards autonomous systems. Muir (1987) provided an initial 

discussion which centred on 4 recommendations for improving calibration of trust towards 

machines:  

1. Improve the human users’ ability to perceive the system’s trustworthiness   

In which the user should be trained to understand how the system works, while the system 

should be designed to make its decisions more transparent and therefore easier to 

interpret.   

2. Attempt to modify the users’ criterion for trustworthiness  

In which the boundaries of the systems’ performance are clearly defined to the user, by 

illustrating the system’s reliability, to ensure the user has realistic expectations about 

system competence.   

3. Enhance the users’ ability to allocate functions and make decisions  

In which the balance of power within the human-machine team is addressed, with the 

human user defined as having significantly greater control and authority when it comes to 

task-related decision making.  

4. Identify and selectively address sources of poor calibration.   

In which the inaccurate expectations and beliefs about the system that are held by the 

human user are addressed within training, in the aim of improving calibration of trust 

towards the system.   

1.4.2 Muir (1994) 

Following this up, Muir (1994) expanded on these points when discussing 

calibrating trust towards machines, by also stating that the initial introductions of 

autonomous systems should be handled carefully, to ensure that errors are limited which 

could prevent the formation of mistrust towards the system during critical early stages of 

use. Additionally, when attempting to recalibrate trust towards systems, Muir (1994) also 

argues that researchers and managers need to be aware that distrust can be particularly 

difficult to overcome, especially if a previously trusted system violates the user’s trust 

through task failures.  
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1.4.3 Lee and See (2004) 

The view of trust as a dynamic and malleable variable was central to the model put 

forward by Lee and See (2004). Within their model, the operator’s trust towards the 

automation, and by extension the way they behave with the system, are dependent on 

interaction between the operator, the surrounding context and environment, the automation 

itself, and the interface of the automation. At its core, trust towards the automation, and the 

subsequent reliance upon the automation form a closed-loop process, wherein interaction 

and use of the system informs trust towards the system, which then in turn informs further 

trust calibration. Within this model, contextual factors also play a particularly important 

role, and can mediate how users’ trust informs their reliance on the system. These 

contextual factors can include the workload and time constraints placed upon the operator, 

as well as the risks associated with the task outcomes, and the operator’s self-confidence. 

To ensure that the user’s trust is appropriately calibrated towards the system, Lee and See 

(2004) also highlight the importance of information displays within the interface of the 

automation. As it can sometimes be difficult to directly evaluate the performance of 

autonomous systems, the information displayed within the interface can help the user to 

form more appropriate expectations about the system, thereby ensuring more appropriate 

calibration of trust.  

1.4.4 Hoff and Bashir (2015) 

Hoff and Bashir’s (2015) model also examined the interaction of trust and reliance 

yet separated trust toward automation into three broad layers. Dispositional Trust relates to 

stable human-centric factors, such as culture, age, and personality traits, which inform 

users’ general disposition toward technology. This would be reflected in users’ general 

attitudes toward technology, and their propensity to trust new technologies. Situational 

Trust relates to fluctuating human-centric factors, such as mood and attention, as well as 

environmental and contextual factors, such as task difficulty, workload, and organizational 

setting. Importantly, these are all factors which can vary over time. Finally, Learned Trust 

is split into two separate sublayers: Initial Learned Trust that reflects the user’s historical 

experience of similar systems, and the reputation of the current system, while Dynamic 

Learned Trust reflects their ongoing experiences of working with the current system. When 

working with an autonomous system, Learned Trust will likely be informed by the users’ 

ability to interpret the system’s decision-making. Additionally, in industrial applications, 

operators may have previous experiences with other autonomous systems, which may 

inform their trust toward newly introduced systems. Similar to the model put forward by 

Lee and See (2004), Hoff and Bashir’s (2015) model suggests these three layers of trust 

combine to inform how users rely upon autonomous systems during collaboration.   
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1.4.5 de Visser and colleagues (2018) 

The view of trust as a dynamic variable that changes over time is also shared by de 

Visser and colleagues (2018) who illustrate how trust could be repaired after it is lost 

following poor performance. They argue that too much of the existing literature focusses 

on the calibration of trust, which focusses on improving the transparency of the systems 

decision making and communicating the reliability of the system. While they believe this 

research remains important, their view is that this focus comes from a perception of 

autonomous systems as are more of a tool that is to be used, rather than an active 

teammate. Thus, for future autonomous systems which may operate with a greater degree 

of independence, they argue for more research that examines how trust towards 

autonomous systems can be repaired.  

They propose the use of a transactional model of trust repair, similar to the way 

trust is understood to be repaired between humans (Tomlinson et al., 2004; Tomlinson & 

Mryer, 2009). Within this model there are three elements of autonomous system 

performance, and depending on the outcome, this informs the human user’s evaluation of 

the machine. In the relationship act the machine performs its task, and the outcome is 

either beneficial or costly to the user’s trust. For example, Good Performance is beneficial 

for trust, whilst Poor Performance is harmful for trust. In the relationship regulation act, a 

corrective action may be applied to the previous relationship act, which helps to maintain 

the relationship. These can be immediate or delayed actions, which are either aimed at 

repairing trust after a costly act, or dampening overly-heightened trust after a beneficial 

act, in order to ensure optimal equilibrium within the relationship. While dampening trust 

may seem counterintuitive, this could be beneficial if expectations of the machine are too 

high, thereby reducing the likelihood of mistrusting the machine. These corrective actions 

include behaviours such as apologising, providing explanations, and making promises. 

Finally, in the net victim effect, we can see the influence of these actions and subsequent 

corrections on the perceptions and experience of the human user, where trust either 

increases or decreases (de Visser et al., 2018). de Visser and colleagues (2018) also note 

that individual differences between users will influence the effectiveness of the corrective 

actions taken by the machine, and stress that these differences should be accounted for 

when trying to repair the relationship. Thus, within this model, the user’s trust towards the 

autonomous system changes as a dynamic variable, which continuously reflects their 

perceptions of the system’s performance. Ideally, the user’s trust will accurately reflect this 

performance, and the machine may be able to facilitate this through corrective actions, by 

providing more elaborate insight into system performance.  
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1.5 Key Factors Influencing Trust Towards Automation 

Collectively, it appears that the various factors outlined by these models can be 

grouped into 3 main categories: Environmental, Mechanical, and Human factors. Within 

their model of trust, Lee and See (2004) distinguished between the operator, context, the 

automation and the interface, yet arguably automation and interface can both be collapsed 

within a greater ‘Mechanical’ factor given the significant overlap between the two. While 

these Human, Environmental and Mechanical categories are distinct, they are also capable 

of overlapping. For example, if a pilot was using autopilot to help navigate difficult 

weather conditions, trust towards the autopilot would be informed by the performance of 

the system, yet this performance might be impacted by the weather conditions, thereby 

illustrating how mechanical and environmental factors can overlap. Equally so, an 

experienced pilot may be more comfortable in difficult weather conditions, thereby 

mitigating the influence of the environment, and thereby illustrating the influence of the 

human factors. For a better understanding, it is worth exploring some of the research that 

has carried out involving these three categories.  

1.5.1 Environmental Factors  

Factors associated with the operational environment can affect the task 

performance of the autonomous system and are often difficult to control. For example, in 

Selkowitz and colleagues (2017) participants worked with an autonomous squad member 

robot, which provided them with feedback on environmental elements, such as weather and 

terrain. While the experiment was simulated, participants trust towards the robot was 

highest when provided with a combination of different cues, including feedback on 

environmental factors such as hazards, as well as cues on system resources such as fuel, 

and explanations of system decision making, such as the intentions and motivations 

(Selkowitz et al., 2017). Thus, participants trust towards the system was, at least partially, 

informed by their understanding of environmental factors when evaluating system 

performance. In Hoff and Bashir’s (2015) model, these environmental factors fit within 

their larger framework of Situational Trust, in which trust towards the system is partly 

informed by contextual factors within the environment. However, Hoff and Bashir’s 

(2015) Situational Trust also includes transient factors that are intrinsic to the human 

operator, such as mood, attentional capacity, and self-confidence. While these are all 

factors that can change with time, grouping them together like this blurs the line between 

human and environmental factors, and therefore for the purposes of this review we will 

consider human and environmental factors separately.   
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1.5.1.1 Task Difficulty and Risk   

While environmental factors can impact upon the performance of the autonomous 

system, they may also change how the operator uses the autonomous system. In a study 

involving an autonomous letter detection aid, Schwark and colleagues (2010) report that 

users were more likely to rely upon the system in trials where success was framed as being 

more important. Moreover, they were also more likely to use the system in trials that were 

described as being more difficult to complete (Schwark et al., 2010). Likewise, in a study 

involving a military convoy leader task, when the convoy was in situations where it was 

most vulnerable to attack, operators were reportedly more likely to use the guidance of an 

autonomous aid, rather than the guidance of a human aid (Lyons & Stokes, 2012). This 

would suggest that when faced with higher-stakes tasks, some users may become more 

reliant upon automation.  

However, other research suggests that these environmental factors can also 

dissuade some users from trusting and relying upon autonomous systems. When using a 

GPS-based route planning system, operators were reportedly less likely to trust the 

system’s suggestions when faced with more serious hazards, such as burning buildings and 

riots, compared to when facing lower stakes risks such as traffic jams (Perkins et al., 

2010). Similar findings were reported from a study which explored risk through financial 

incentives. Satterfield and colleagues (2017) examined how perceived risk informed 

operators’ willingness to trust an autonomous UAV system during a UAV management 

task. Risk was introduced to their laboratory setting across low and high-risk conditions, 

by using a points-based system wherein participants were penalised for task failures and 

rewarded for task successes, which directly contributed to their final financial reward. In 

the high-risk condition where there were greater financial deductions associated with 

failures, participants were more likely to intervene in the UAV’s area of responsibility, 

suggesting that they had less faith in the system completing its task successfully 

(Satterfield et al., 2017). This illustrates how environmental factors such as task difficulty 

and risk can inform the ways in which operators may decide to trust and use autonomous 

systems. However, this may be further complicated by the user’s ability to evaluate the 

performance of the system.  

When faced with complex tasks, it may be difficult to accurately evaluate the 

performance of an autonomous system. This idea of task ambiguity was explored by 

Merritt and colleagues (2013) in a study involving trust towards an autonomous baggage 

scanner. Participants collaborated with the scanner to detect weapons within images of 

luggage, which had contents that were either empty or cluttered, meaning that weapons 

were only easy to identify in some of the trials. By doing so, this gave the researchers an 
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insight into how users placed trust in the system when the performance was not easy for 

them to evaluate. Merritt and colleagues (2013) report that when the performance of the 

scanner was ambiguous, trust towards the scanner was higher in individuals with a higher 

self-reported propensity to trust machines. This suggests that some individuals may have a 

bias towards technology (discussed in more detail later) and are subsequently more 

favourable towards autonomous systems even when their performance is difficult to 

evaluate. This also illustrates how environmental factors can interact with human-centric 

factors to inform users’ trust towards autonomous systems. Unsurprisingly, when system 

performance is ambiguous, it can also lead to more errors from the human-machine team. 

In a similar study, Chavaillaz and colleagues (2020) explored trust towards an automated 

baggage scanner that provided false alarms which were either ‘plausible’ or implausible’. 

Participants were more reportedly likely to accept false alarms from the aid when it 

provided alerts for items that were plausibly similar to items that were on a prohibited list. 

In contrast, this was not the case for implausible false alarms, where the cued luggage item 

had little-to-no resemblance to items on the prohibited list. This illustrates how users’ 

reliance upon automated systems can become complicated when system performance is 

difficult to evaluate. Arguably, manipulations which introduce ambiguity into system 

performance should be more prevalent within the wider trust in automation literature, as 

they help simulate conditions which could be typical within real-world applications of 

autonomous systems.    

1.5.1.2 Operator’s Workload  

While environmental factors such as task difficulty can inform trust towards 

autonomous systems, it is also worth considering the workload of the operators themselves 

as an environmental factor. Given autonomous systems have many industrial applications, 

it makes sense to consider that the people who will be using these systems will be doing so 

within the workplace, where they may have competing priorities and tasks. When working 

with machines, operator workload is typically measured subjectively, using questionnaires 

such as the NASA Task Load Index (NASA-TLX) (Hart & Staveland, 1988). The NASA-

TLX captures the physical, mental and temporal demands placed on the user, their 

subjective evaluation of their task performance, and the amount of effort and frustration 

they experienced in the task (Hart & Staveland, 1988). The correct use of autonomous 

systems has the potential to significantly improve the workload of the user, as the 

autonomous system can perform more repetitive tasks and allows the operator to focus on 

other, more complex tasks. For example, McKinney and colleagues (2020) suggest that 

their image classifier, which is trained to detect breast cancer, could lower oncologists’ 

workload by up to 88%. Such benefits could be seen in the findings of Lyle and colleagues 
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(2018), who report that the use of CDSS can help to reduce the workload of healthcare 

practitioners, particularly when faced with complex cases requiring greater attention to 

detail. However, these systems will only be beneficial to their user if they can perform 

their tasks correctly.  

When an autonomous system has low reliability, the operator may need to work 

harder in order to compensate for the machine’s mistakes, which can increase the user’s 

mental workload (Chavaillaz et al., 2016). This reliability itself is likely to be affected by 

the operational environment of the human-machine team, where other environmental 

factors such as extreme weather may reduce system reliability. Biros and colleagues (2004) 

suggest that the perceived predictability of autonomous systems, and the user’s 

dependability on the system can directly inform trust towards the system. If a system is 

unpredictable, the user may have less trust in the system, and therefore may be less likely 

to use the system (Hoff and Bashir, 2015). However, Biros and colleagues (2004) also 

suggest that when a user is given a heavier workload, they may be more likely to use an 

autonomous system, even if they do not trust the system. This could be particularly 

problematic if it leads to the user accepting incorrect decisions from the system, 

particularly given some autonomous systems are employed in high-stakes settings. Thus, 

the workload of the user should be considered as an environmental factor which can 

significantly influence how operators trust and use autonomous systems. While 

autonomous systems can help to reduce their operators’ workloads, these benefits may 

only occur when they are used correctly.  

Collectively, in line with Hoff and Bashir’s (2015) framework of Situational Trust, 

the existing research suggests that environmental factors can influence users trust towards 

automation and can also inform the ways in which they use and rely upon the system. In 

many ways, these environmental factors will also contribute to the design of the system 

itself, within which there are a multitude of factors that can further influence trust.  

1.5.2 Mechanical Factors  

1.5.2.1 Performance and Reliability   

Amongst mechanical factors, the central and most important factor is the 

performance of the autonomous system (Muir, 1987; Parasuraman & Riley, 1997; Lee & 

See, 2004; Hoff & Bashir, 2015). At the most fundamental level, system performance 

reflects the system’s ability to carry out the tasks it was designed to undertake (Hoff and 

Bashir, 2015). When viewed over time, system performance becomes system reliability, 

which is an estimate of how well the system repeatedly performs its task and reflects how 

predictable the machine will be at any given time (Biros et al., 2004; Chavaillaz & Sauer, 
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2017; Chavaillaz et al., 2016; Sauer & Chavaillaz 2017; Hussein et al., 2019). As such, 

users’ trust towards autonomous systems is closely related to their perceptions of the 

system’s accuracy when it is carrying out tasks (Berkeley et al., 2015; Yu et al., 2019; 

Zhang et al., 2020).  

Given trust is a dynamic concept, human users will typically update their trust in response 

to changes in system performance, lowering their trust when performance is poor, and 

elevating their trust when performance is good (Desai et al., 2013; De Visser et al., 2018). 

However, if poor performance is too prevalent, or if the errors have critical consequences, 

then this may culminate in disuse of the system entirely (Parasuraman and Riley, 1997; 

Berkeley et al., 2015). This relationship is further complicated by factors such as 

overreliance, in which an operator may distrust a system, yet is unable to undertake the 

system’s responsibilities, in which case they may rely on the system, but do not trust it 

(Chavaillaz et al, 2016; Biros et al., 2004; Hussein et al., 2019). When this occurs, the 

operator may second guess a system, even if it is sometimes correct, leading to more errors 

from the human-machine team, ultimately at the potential detriment to the cognitive 

capabilities of the human operator (Goddard et al., 2014; Chavaillaz et al, 2016). At the 

same time, if the operator does not use the system correctly this can in turn affect the 

reliability of the system (Ozdemir & Kumral, 2019). Ultimately, the challenge for trust in 

automation research is to ensure that human users can calibrate their trust towards the 

system, so that it accurately reflects the system’s performance capabilities.  As suggested 

by both Lee and See (2004) and Hoff and Bashir (2015), the performance of the 

autonomous system can be conveyed more clearly through different features displayed 

within the system’s interface, which can help the user to better understand its decisions. By 

providing the user with more detailed information about system performance, we are 

increasing the transparency of the system’s decision making.   

1.5.2.2 Transparency and Explainability  

Whilst autonomous systems are becoming more capable of undertaking complex 

tasks, they are often criticised for being uninterpretable ‘black box’ systems, particularly 

when neural networks are involved (Abdul et al, 2018; Ribera & Lapedriza, 2019). As 

such, there has been increasing interest in promoting the explainability of autonomous 

systems, in order to make their decision making more transparent. Explainability is 

characterised as the system’s ability to convey the reasoning behind its decision-making, 

thereby facilitating greater understanding from human users (Gilpin et al., 2019). In theory, 

if a human user can better understand the decisions of an autonomous system, they should 

be able to trust the system more accurately. There are a variety of ways in which system 

decision making can be conveyed to the user, however the most commonly used method 
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across many different autonomous systems appears to be System Confidence Information 

(SCI).   

  SCI is a form of decision support information, which reflects an autonomous 

system’s confidence in carrying out its task, often as a predicted probability of the decision 

being correct (Zhang et al., 2020). The presence of SCI within the interface of autonomous 

systems has previously been found to inform users’ evaluations when working with 

autonomous systems. For example, when SCI was presented in the interface of an 

autonomous handwriting reader, users were more likely to accept the decisions of the 

system (Verame et al., 2016). Similarly, in a study involving an autonomous robot 

navigating environments of varying difficulty, participants provided with SCI were more 

likely to assist the robot than participants without (Desai et al., 2013). Moreover, the same 

participants were better at dynamically modulating their trust towards the robot in response 

to cues of high, medium, and low system confidence, with trust decreasing when 

confidence was low, and increasing when confidence was high (Desai et al, 2013). This 

suggests that SCI could help users to better calibrate their trust towards autonomous 

systems and may even help with recovery of trust following poor system performance.  

While SCI appears to inform how users perceive the performance of autonomous 

systems, it also appears to improve the overall performance of human-machine teams. 

Pilots operating a flight simulator performed less errors and had fewer stalls, when their 

decision support system provided SCI that reflected the system’s recent performance 

(dynamic), compared to when it only provided an overall average summary (static) 

(McGuirl and Sarter, 2006). This suggests that operators incorporate SCI when working 

with autonomous systems, which may ultimately improve human-machine team 

performance. However, McGuirl and Sarter (2006), also note that across both static and 

dynamic feedback conditions, when system confidence was lower, participants tended to 

reject the advice of the system, and instead made the opposite decision. The authors 

suggest that their participants misinterpreted low confidence as lower performance, which 

is problematic, given low confidence does not automatically coincide with low/poor 

performance. A similar finding was also reported by Verame and colleagues (2016), where 

participants were more likely to accept the decisions of the autonomous document reader 

when confidence was described as “very high”, compared to when described as “medium”, 

“low”, and “very low” confidence. Therefore, when working with autonomous systems, 

human operators’ evaluations appear to be influenced by the provision of SCI. However, it 

seems that this information should be presented in a meaningful way, so that it illustrates 

decision making without undermining perceptions of system performance.   
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1.5.2.3 Information Complexity  

When collaborating with an autonomous system the use of decision support 

information, such as SCI, may improve trust towards the system, and lead to a more 

productive human-machine team. However, there are a variety of ways in which SCI could 

be conveyed within the system’s interface. If a cue of system confidence is too simplistic, 

users may not appreciate it, yet if it is too complex, users may feel overwhelmed and 

disuse the information. Theoretically, an optimal cue of SCI would provide the operator 

with enough information to clearly illustrate the performance of the system yet would do 

so without being overly complex. Providing the user with too much information may 

unnecessarily increase the user’s workload, thereby mitigating the benefits of using the 

automation.  

Evidence suggests that when working with some autonomous systems, human users 

may prefer to receive decision support information in simpler, less complex formats. Koo 

and colleagues (2015) examined the influence of multiple levels of information complexity 

on user trust towards an autonomous driving aid. Whilst operating a driving simulator, 

drivers were given messages that explained: how the aid would behave (“it will make a left 

turn”); why the aid would behave (“there is an obstacle”); or how and why the machine will 

behave (“it will make a left turn because there is an obstacle”). When the aid performed 

unsafe driving behaviours, drivers reportedly preferred the messages that only explained 

why the aid behaved as it did, which coincided with the lowest reported anxiety and the 

highest reported trust towards the system. Contrary to their hypotheses, combined 

messages of how and why the aid was behaving reportedly made users more anxious, 

which the authors speculate to come about from the result of information overload.  

Likewise, information complexity was also explored in Selkowitz and colleagues’ 

(2017) study, where participants monitored an autonomous robotic squad member while it 

navigated different environments. They used multiple different interfaces, which 

incrementally increased in the complexity of information provided to users. Their 

participants were reportedly more likely to trust the squad member when they used an 

interface which displayed the most detailed situational information, such as the system’s 

motivations and predicted task outcomes. However, their trust was not increased when this 

information was also augmented with a cue illustrating the degree to which the system was 

uncertain about this information (Selkowitz et al., 2017). This suggests that adding more 

complex information about system performance was beneficial for user evaluations up to a 

certain extent, after which excessive information may not improve trust, similar to the 

findings of Koo and Colleagues (2015). Thus, decision support information appears to 
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influence trust towards autonomous systems when presented in different ways, yet higher 

complexity does not appear to automatically foster higher trust.  

Rudin (2019) suggests that when designing autonomous systems, there should be a 

distinction made between systems that are designed to be explainable and those that are 

made to be interpretable. Much of the previous research in trust towards automation 

appears to involve making systems explainable, wherein the decision making of the 

machine is retroactively explained to the user, through cues such as SCI. However, Rudin 

(2019) argues that developers and designers should put more emphasis on making systems 

that are inherently interpretable, so that users can more easily understand them without 

explanations, particularly when used in high-stakes settings. Such systems would require 

sophisticated interfaces designed to provide their users with optimal transparency yet 

appear to be something that may only become more prevalent in future research.   

While users may benefit from working with autonomous systems that provide 

greater transparency, the influence of increased transparency on trust may only go so far. 

Indeed, Papenmeier and colleagues (2019) report that users’ trust towards an automated 

text classifier appeared to be based more on the system’s accuracy, rather than the system’s 

explanations for its decisions. Similarly, Wright and colleagues (2019) report that users’ 

trust towards an autonomous squad member was more profoundly informed by the 

system’s reliability, and much less impacted by the transparency of the decisions made by 

system. Unsurprisingly, these mechanical factors may be limited in their ability to 

compensate for losses in trust if the overall performance of the system is poor. Ultimately, 

while system performance is central to trust towards automation, it is important to consider 

that factors related to the human operators are also a significant contributor for trust 

towards autonomous systems.  

1.5.3  Human Factors  

For all the other environmental and mechanical factors that can inform trust 

towards automation, some of the variance in operators’ trust will also be explained by 

individual differences amongst different human users. Hoff and Bashir (2015), Lee and See 

(2004), and de Visser and colleagues (2018) all recognise the importance of human factors 

in shaping trust towards automation. Hoff and Bashir (2015) characterise most human 

factors within the Dispositional Trust component of their model, which accommodates 

factors such as age, culture and personality traits. Likewise, Lee and See (2004) also 

consider self-confidence, cultural differences, and predisposition towards trusting as 

human factors which can inform trust towards automation. These human factors can shape 

how operators use and evaluate autonomous systems. For example, novice operators 
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benefited more from using an automated aid when using an X-ray scanner to process cabin 

baggage, in comparison to expert operators (Chavaillaz et al., 2019). Moreover, for the 

same expert operators, their elevated detection rates within the task were not reportedly 

influenced by the use of the automated aid, which illustrates the importance of experience 

and skill levels between human users (Chavaillaz et al., 2019). Amongst operators, 

shortages in experience and skill are something that can often be addressed through 

training and prolonged exposure to the task. However, it may be more difficult to address 

biases towards technology, which are one of the most common human factors within the 

trust in automation literature (Challen et al., 2019; Rice et al., 2017; Lyell & Coiera, 

2017).   

1.5.3.1 Biases Towards and Against Technology  

Automation Bias is the belief that automation performance is inherently superior to 

human performance, where users may tend to overrule their decisions in favour of those 

made by the system, on the basis that a machine is more likely to be correct (Cummings, 

2017; Goddard et al., 2012; Lyell & Coiera, 2017). While expert operators may be 

expected to be less susceptible to Automation Bias, evidence suggests they may be just as 

vulnerable as novices, and in some cases may be even more likely to rely on automation 

(Mosier et al., 2017). Automation Bias represents a particular problem in high-stakes 

settings, such as within the healthcare industry, where automated Clinical Decision 

Support Systems help healthcare practitioners to make diagnoses (Challen et al., 2019; 

Sujan et al., 2019; Goddard et al., 2014; Lyell et al., 2018). In a study involving a 

simulated clinical decision support system with a reliability rate of 70%, healthcare 

practitioners with Automation Bias overruled correct diagnosis answers provided by the 

system in 5.2% of the cases (Goddard et al., 2014). While this number may seem small, in 

a real-world scenario, this bias could result in a patient being misdiagnosed by the health 

practitioner, who rejects a correct decision from the system out of mistrust.  

Similar to Automation Bias, the Perfect Automation Schema (PAS), proposed by 

Dzindolet and colleagues (2002) suggests that human users are vulnerable to forming the 

belief that automation performance is almost perfectly reliable. Individuals who score high 

for PAS are more likely to trust autonomous systems but are also more likely to have 

heightened expectations for the system’s performance (Lyons et al., 2019). If this schema 

is violated, operators may stop using the autonomous system and instead become more 

self-reliant in the task (Dzindolet et al., 2002). Support for this was reported by Merritt and 

colleagues (2015) who found that individuals who scored higher on criteria for PAS 

displayed more intense decreases in trust after witnessing automation errors. Inversely, 

positive biases towards machines can also inform how users interpret autonomous system 



  34 

performance, even if the performance of the autonomous system is difficult to evaluate. As 

discussed previously, individuals with higher self-reported scores of propensity to trust 

machines were more likely to trust the ambiguous performance of the autonomous baggage 

scanner used in Merritt and colleagues’ (2013) study. Collectively, this illustrates how 

perceptions of autonomous system performance, and by extension willingness to use and 

rely upon automation, can be partly informed by individual differences between operators. 

Interestingly, while biases in favour of technology can improve trust, research suggests that 

trust towards automation can also be improved by the presence of human-like 

anthropomorphic traits.  

1.5.3.2 Anthropomorphism  

Anthropomorphism is the introduction and application of human traits and 

behaviours to non-human entities, and is commonly used in children’s cartoons and 

advertisements, and even in more abstract concepts such as theology (Duffy, 2003; Epley 

et al., 2007). This preference for human-like traits and behaviours has historically been 

used by humans to rationalise the behaviours of non-humans, as a way to better understand 

things beyond our control, such as wild animals and even weather systems (Mitchell & 

Thompson, 1997; Epley et al., 2007). As smarter technology has become more ubiquitous, 

designers have also introduced anthropomorphism as a means to help users accept these 

technologies, particularly with systems such as social robots (Duffy, 2003).  

While these traits, such as genders and names, may not necessarily benefit mechanical 

performance, some evidence suggests that they may improve user reliance and trust 

towards the system. In a study that examined attitudes towards different computer agents, 

participants showed a preference for agents with more anthropomorphised features (de 

Visser et al 2012). When asked about their perceptions of computer agents that varied 

along an anthropomorphic spectrum, agents with more human-like avatars were perceived 

as more knowledgeable than agents with computerised avatars (de Visser et al 2012). 

Moreover, when the reliability of the agent was low, computerised avatars had larger drops 

in trust compared with more human-like avatars (de Visser et al., 2012). Similarly, Waytz 

and colleagues (2014) report that individuals who interacted with different autonomous 

vehicles preferred ones with more anthropomorphic features, such as names, voices and 

genders, as opposed to vehicles without. Even when a system does not include physical or 

visual anthropomorphic features, the inclusion of behaviours that mimic the behaviours of 

other humans is also reported to shape trust in human-machine interactions. When 

interacting with a computer system that behaved with good etiquette (i.e. not interrupting 

the user when they were busy) human-machine team performance was reportedly 

improved, even when the system’s reliability was low (Parasuraman and Miller, 2004). 
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This was not found to be the case when operators interacted with a machine designed with 

poor etiquette, such as interrupting the user during tasks (Parasuraman and Miller, 2004). 

This suggests that when designing autonomous system interfaces, the adoption of traits and 

behaviours that mimic those of other humans may benefit human-machine team 

performance.  

Further evidence for anthropomorphic traits may even indicate that there is a 

biological basis for humans’ preference for human-like features. de Visser and colleagues 

(2017) report that when participants were administered oxytocin, a hormone that is 

released through contact with other humans, there was an increase in trust and compliance 

with an anthropomorphised avatar. This also led to better collaborative performances 

between the human users and the automated agent in a shared task de (Visser and 

colleagues, 2017). Interestingly, this was not found to be the case when the agent was 

represented with a computerised avatar that did not have human-like features, suggesting 

that may be an interaction between oxytocin and anthropomorphised features, which may 

influence trust and cooperation. While evidence suggests that some human users may 

prefer autonomous systems which are more anthropomorphic, ultimately the use of human-

like features may only be appropriate in certain contexts or tasks. At the end of the day, 

most autonomous systems are employed to undertake a series of complicated tasks, and 

anthropomorphic features may distract or even hinder team performance in some settings.  

1.5.3.3 Perceptions of Autonomous Systems as Teammates  

On a more general level, trust towards automation may also be influenced by the 

way that people interpret the role of the autonomous system within human-machine teams. 

When considering how technology is used in different human–machine teams, Larson and 

DeChurch (2020) make a distinction between technology and agents. Technology is 

something that is used by teams to achieve their goals, much like a tool, while agents fill a 

distinct role within the team which goes beyond mere augmentation, and can inherently 

improve the team’s performance as a result (Larson & DeChurch, 2020). For agents, they 

also draw a distinction between robots, which are agents with embodied physical 

characteristics, and AI which are disembodied agents that perform tasks that traditionally 

require human intelligence, such as visual identification and decision-making (Larson & 

DeChurch, 2020). Thus, when working with autonomous systems human users may use 

similar distinctions between different types of technology, when attributing responsibility 

and blame.  

In a recent study, when participants read descriptions of human-robot task failures, 

humans tended to be rated as most blameworthy, followed by robots, with environmental 

factors rated least blameworthy overall (Furlough et al., 2019). However, in scenarios that 
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distinguished the robot as being autonomous, the robot was more likely to receive a higher 

proportion of blame for task failures, compared to when described as non-autonomous 

(Furlough et al., 2019). This illustrates how human beliefs can influence trust, and suggests 

users’ evaluations are partly based on the perceived capacity of the autonomous system. 

This can become even more complex, if we consider that these human factors can also 

interact with environmental factors. When seeking advice, the type of task being 

undertaken, and the perceived capacity of the adviser can inform how individuals engage 

with different types of advisers. In a study examining the role of agent and task type, when 

individuals were presented with emotion-based social tasks, they were more likely to 

assume human agents had more expertise, and therefore sought their advice more 

frequently (Hertz and Wiese, 2019). However, when faced with a number-based task, the 

individuals were instead more likely to seek the advice of robot and computer agents, 

indicating they believed robots were better suited to more analytical tasks (Hertz and 

Wiese, 2019). Thus, the users’ perceptions of the capabilities of the autonomous system, 

and their beliefs about the system’s role within the team may also help shape their trust 

towards the system.  

1.6 Conclusion  

The purpose of this literature review was to provide an overview of the existing 

trust-in-automation literature, explore the dominant theoretical models of trust towards 

automation, and identify the key factors which could be explored within a series of studies 

in this thesis. As this research is cross-sectional, sitting between Psychology, Computing 

Science, and Engineering, there were many areas of literature that were overlapping. To 

keep this literature review concise, I focussed on literature that has engaged with popular 

models of trust in automation, such as those put forward by Lee and See (2004) and Hoff 

and Bashir (2015). This literature review may have been improved by including more 

research from the autonomous vehicle literature, as well as including more research 

involving social robotics. However, both of these fields are already well established and 

incredibly diverse, and providing a detailed summary of both fields would have increased 

the length of this literature review significantly. Ultimately, I believe that the literature I 

did include was more than enough to shape and justify the following studies in Chapters 2-

4. In summary trust towards autonomous systems is an area of growing interest, which has 

increased in line with recent advances that have seen autonomous technologies become 

both more intelligent, and more pervasive within modern workplaces. Multiple models 

have been put forward attempting to map out the various ways that a user’s trust towards 

an autonomous system can be influenced. At the broadest level, these factors can be 
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grouped into three main domains of influence: Human factors relating to the user; 

Mechanical factors relating to the autonomous system; and Environmental factors relating 

to the contextual operating environment of the human-machine team.  
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Chapter 2: Exploring the Influence of Trust Towards Digital 

Services on Users Willingness to Share Information  

2.1 Abstract  

Digital economies are populated by services such as ecommerce, streaming 

platforms, and social media services. These digital services have reached widespread 

popularity in many developed nations, and play an important role within modern life. 

Digital economies rely upon users’ willingness to share their information, which is 

influenced by trust towards these digital services. Social media services in particular 

are dependent on their ability to collect and analyse users’ data in order to provide 

engaging content, whilst simultaneously informing advertisers, vendors, and other digital 

services about consumer interests. High-profile, controversial events throughout the 2010s 

have raised questions about the data collection practices of digital services, and could 

damage users’ trust towards sharing their personal information and data. We present 

qualitative data from a project which examined the ways individuals characterize their trust 

towards social media and other digital services. Thematic analysis of participants’ 

responses illustrated participants trust towards digital services through two main 

themes: Information Security and Service Transparency. Information Security highlighted 

participants’ considerations for how secure their information was when using the 

service, and Service Transparency highlighted participants’ beliefs about how these 

services use their information, and the intentions of the company providing the service. 

2.2 Introduction 

With increased internet accessibility at the turn of the century, Social Media 

Services (SMS) such as Facebook, Instagram, Twitter and YouTube saw unprecedented 

levels of engagement from users. Estimates suggest that this rate of uptake for SMS far 

outstrips other historically important technologies, such as the automobile and the 

television (Desjardins, 2018). While most SMS are free to use, they rely on access to 

users’ information and data as a core feature of their business models. As SMS users 

engage and connect with each other, their behavioural data is collected and analysed to 

determine the types of content they are interested in, allowing these services to provide 

similar content to keep users engaged. This data is also provided to external advertisers to 

help them understand the services and goods that may be of interest to these users 

(Lipsman et al, 2012). Through this, SMS provide a cornerstone of the digital economy, by 
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introducing consumers to vendors and their products by advertisements structured around 

their interests (Alhabash et al., 2017; Lee et al., 2018). Within the wider digital economy, 

other digital services, such as e-commerce, media streaming services, and online banking 

have all seen similarly explosive increases in usage (Wu et al., 2017; Adhikari et al., 2014; 

Özlen & Djedovic, 2017). 

A great deal of research has already examined how users’ wellbeing is 

influenced by the use of digital services, and in particular SMS, with some evidence 

suggesting these services improve users’ self-esteem and help users to maintain friendship 

networks (Hampton et al., 2011; Mazurek, 2013; Park et al, 2013). Conversely, other 

evidence suggests the use of SMS can be potentially detrimental 

to wellbeing, particularly with users who become over-reliant and compulsively use these 

services (Blackwell et al., 2017; Hawi & Samaha, 2017; Woods & Scott, 

2016). Moreover, the direct communication capabilities of SMS also facilitate 

cyberbullying, with extensive research examining the causes and effects of these 

behaviours amongst users (Parris et al., 2020; Machackova et al, 2013; Sabella et al., 

2013). In the wake of high-profile data breach controversies (Cadwalladr, & Graham-

Harrison, 2018; Lewis, 2014; BBC News, 2017; BBC News, 2013), there has also been 

increased interest in the trustworthiness of companies that provide SMS and other digital 

services. These data breach controversies have publicly illuminated how users’ data can be 

misused by the companies that provide these platforms. Thus, this study sought to use 

qualitative research to explore how individuals characterize their trust towards digital 

services, with a particular focus on SMS given their popularity. It also sought to understand 

how this trust then informs their willingness to share their personal information when using 

these services. 

2.2.1 The Importance of Trust for Digital Services 

Trust is a dynamic and complex variable informed by a variety of factors, 

experiences and events (Hoff and Bashir, 2015; Lee and See, 2004; McKnight et al., 2002). 

Digital ecosystems require continuous access to users’ information and data, yet if users do 

not trust the companies involved, they will be less likely to use and engage with their 

services. There are a variety of factors underpinning trust towards digital services, which 

can stem from the consumer, the vendor and the vendor’s website (Chen And Dhillon, 

2003). An example of the importance of this trust can be seen with eBay, the digital 

marketplace that facilitates consumer-consumer sales. Whilst eBay provides a secure 

platform for these transactions to occur, the rating system for individual users’ reputations 

allows buyers and sellers to evaluate prospective transactions, and decide whether or not to 
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trust the other user, helping to form what is described as a ‘Community of Trust’ (Boyd, 

2002). In this environment trust is crucial, yet if digital services like eBay are unable to 

retain the trust and engagement of users, they may cease to survive (Boyd, 2002). 

 Trust towards digital services is not only required for services that are focussed on 

e-commerce. When users share information about themselves, such as commenting on 

public websites, trust in digital services also predicts a greater likelihood of disclosing 

personally identifiable information, such as names and locations (Gustavo and Mesch, 

2012). Similarly, on SMS users are more likely to share and disclose personal information 

if they are more aware of how their information is used by the SMS provider (Benson and 

colleagues, 2015; Tufekci, 2015). This suggests that trust can inform the way that people 

use digital services; if a user has more trust in the service, they may be more likely to share 

their personal information. However, recent high-profile stories within the news about 

SMS providers have brought attention towards the way our data can be used (and misused) 

by the digital service providers. 

2.2.2 The Rise of Public Distrust Towards Social Media Services 

While SMS are intended to allow users to maintain social connections with other 

users, they can also facilitate the spread of false and misleading information. SMS 

providers have been criticised for creating filter bubbles, otherwise known as ‘echo-

chambers’, in which specific, extreme, and often disingenuous views and ideas can be 

propagated amongst subgroups of users (Pariser, 2011). These echo chambers are believed 

to have helped spread many false articles and narratives about political and international 

entities, known collectively as ‘Fake News’ (Allcott & Gentzkow, 2017). The nature of 

these echo chambers first received widespread attention in the wake of the Cambridge 

Analytica Scandal, in which a third-party organization (Cambridge Analytica) gained 

unauthorised access to large amounts of Facebook users’ data (Cadwalladr, & Graham-

Harrison, 2018). While the larger extent and implications of this are still relatively 

unknown, Cambridge Analytica are believed to have potentially used this data to influence 

the opinions of voters prior to important elections and political referenda, through 

misleading advertisements and articles (Cadwalladr, & Graham-Harrison, 2018). More 

recently, the ‘Qanon’ conspiracy theory has propagated online through SMS, spreading 

many diverging and extreme right-wing beliefs (Amarasingam, & Argentino, 2020). 

Alongside other extremist factions, Qanon followers were implicated in the 2021 

insurrection of the U.S. Capitol building (Amarasingam, & Argentino, 2020; Dalsheim & 

Starrett, 2021). While the investigation into the events of the 2021 insurrection are still 

ongoing, SMS platforms such as Facebook and Twitter have been criticised for not 
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intervening more decisively when users used their platforms to spread false information 

and coordinate these attacks (Sung and Klein, 2021). A similar example of this can be seen 

in the way that misinformation has spread during the COVID-19 pandemic, with efforts to 

combat the virus undermined by SMS users’ sharing inaccurate beliefs about vaccines and 

epidemiology (Limaye et al., 2020). Similar relationships between SMS and 

misinformation were also reported during the 2014 Ebola epidemic (Oyeyemi et al., 2014), 

suggesting this is not exactly a new problem. As a result of these events, there 

is now increased interest in how people share and consume information online, and 

whether the companies that provide these platforms should regulate their content more 

rigorously. Ultimately, these questions also raise questions about the trustworthiness of the 

companies that these platforms.  

2.2.3 Characterising Trust in Digital Services 

The relationship between trust and digital services appears to be complex. 

Individual differences between different users will influence how likely they are to place 

trust in digital services, whilst features in the design and functionality of the website/app 

will also shape the trustworthiness of the service. (Chen And Dhillon, 2003). For SMS, this 

characterisation of trust may also extend to include their trust towards other users, and may 

also vary between different SMS platforms, where they may have different social networks 

(Warner-Søderholm et al., 2018). Trust towards SMS may also be informed by the content 

that users consume when using these services, particularly when seeing misinformation. 

For example, individuals who reported higher trust in the news they receive from social 

media were also more likely to believe long-standing conspiracy theories (Xiao et al., 

2021). However, other evidence suggests that the spread of misinformation might be linked 

more to users’ trust of other users, rather than their trust towards the platform itself. A 

recent study by Sterrett and colleagues (2019), suggests that SMS users’ trust towards 

news articles may be more likely to be influenced by the trustworthiness of the individual 

who shares the article, rather than the trustworthiness of the source of the article itself. This 

echoes similar research by Anspach and colleagues (2020), who report that when 

interacting with news content on SMS, users typically have higher trust in the journalists 

who produced the news, rather than the individuals who shared the news. This would 

suggest that users may be more critical of the person who shares an article, rather than 

those who actually write and publish the article itself. Collectively, trust towards digital 

services can be thought of in a number of different ways, and different users may find 

particular factors more significant when characterising of their trust.  
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 While there are questions about how much trust users should place in SMS, 

individuals continue to use them, with some more popular than ever. Despite Twitter facing 

considerable criticism over its recent handling of misinformation (Hiar, 2021), Twitter 

has also reported continued growth in their active users (Kastrenakes, 2021), suggesting 

that users’ trust towards SMS may not be broken by scandals and controversy. Likewise, 

recent examples of data breaches in digital services like iCloud, Equifax, and Adobe have 

highlighted how vulnerable millions of users’ data actually is when using other digital 

services (Lewis, 2014; BBC News, 2017; BBC News, 2013). Nonetheless, given the 

important role that SMS and other digital services play in modern economies (Alhabash et 

al., 2017; Lee et al., 2018), it is important to understand how trust influences usage, 

engagement and attitudes towards sharing information with these services. Given this, we 

conducted a qualitative study which used focus groups to better understand the 

question: RQ1: How Do People Characterize Trust towards SMS and Other Digital 

Services?  

2.3 Methods 

2.3.1 Design   

We wanted to explore trust towards SMS and other digital technologies using 

qualitative methods as a way of letting participants share their experiences and views on a 

topic that has been traditionally measured through quantitative methods. We considered 

using diaries, which participants could have filled in with their views over an extended 

period of time. We also considered using individual semi-structured interviews to give 

each participant a chance to share their views. Ultimately, focus groups were chosen as a 

way of getting participants to interact with each other, which we believed would help 

foster debate and discussion. Participants were asked a series of semi-structured questions 

in a focus group setting, during which they were free to deviate from questions and 

expand upon their answers. These focus groups were conducted during the initial stages 

of a larger project, in which our collaborators (Qumodo) were developing an artificial 

intelligence tool intended to help users retrieve and remove their explicit images that have 

been inappropriately shared online. Here, we focussed primarily on understanding how 

users characterize their trust towards SMS and other digital services, and how this informs 

their willingness to share their information with them.  

2.3.2 Participants   

16 participants (10 female) were recruited to take part in this study (ages 23-34, 

average=30), and focus groups were small in size (3-4 members). Participants were offered 
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compensation at a rate of £6ph. Participants were a mix of students and professionals from 

a variety of working backgrounds. Professionals were recruited externally through our 

external collaborators, and were from backgrounds in finance, technology research, 

marketing, education, and clinical psychology.  

2.3.3 Interviews   

All focus groups were conducted between July and October 2018. Participants were 

asked a series of questions in a semi-structured interview format, relating to: 1.) their use 

and engagement with SMS and digital services, 2.) their attitudes towards sharing 

information online, and 3.) their trust and views towards technology, particularly Artificial 

Intelligence. The initial questions for each topic were intended to be as broad as possible, 

in order to not lead participants’ views in a particular direction, with more specific 

questions asked towards the end of each topic. For the full list of the questions used in 

these focus groups, see Section 2.6. As they discussed these topics, participants were free 

to expand and diverge on issues they felt were important. Participants were debriefed 

following completion of focus groups and reminded of their rights to anonymity and their 

control over their data. All focus groups were recorded on a dedicated digital voice 

recorder, which were then transcribed for analysis. All participants were provided with 

pseudonyms to ensure their anonymity when sharing their views and experiences.   

2.3.4 Procedure   

Interested participants were then invited to attend focus groups, which were 

either held at the University of Glasgow’s School of Psychology, or our collaborator’s 

office in London (Qumodo). In a semi-structured interview format, participants were asked 

questions regarding their general attitudes towards social media and digital services, the 

ways in which they engage and use these services, and their perceptions and experiences of 

information sharing and security. Throughout this, participants were free to divulge as 

much or as little they deem appropriate and were free to expand on issues that they 

felt were important. Participants were given debriefing forms following completion of the 

focus groups and were again reminded of their rights to anonymity and to access/remove 

their data. Following the focus groups, the recordings were transcribed for qualitative 

analysis. Thematic analysis was then used to identify themes in the collective views of the 

participants.   

2.3.5 Data Analysis   

To understand the role of trust in how users engage and share information when 

using social media and digital services, we conducted thematic analysis on transcripts of 
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participants answers, in line with Braun and Clarke (2006). Three members of the research 

team worked independently to open-code the data from an inductive analysis 

perspective that was independent of an existing theoretical framework. Codes were 

generated using meaningful statements taken at the semantic level throughout the 

transcript, taking the meaning of participants’ views at surface level. These codes were 

then grouped and developed into subthemes that represented participants’ collective 

responses and experiences. The researchers then met to review their independent analysis, 

with discussion on how these subthemes could be combined to represent similar groupings 

of thought, and which larger themes could be created to reflect participants’ views and 

experiences more cohesively.   

2.4 Findings   

We posed the question: RQ1: How Do People Characterize Trust towards SMS 

and Other Digital Services?  Thematic analysis of participants’ responses allowed for 

characterization of trust towards SMS and digital services into the 2 themes of: Information 

Security and Service Transparency.   

2.4.1 Theme 1: Information Security    

In the theme of Information Security, when sharing personal information and data 

with SMS and digital services, participants often considered the security of the platforms 

they were using, as well as the control they had over the information they shared. 

Unsurprisingly, a significant subtheme of this was Platform Security, which covered 

participants’ evaluations of how safe their information is with these services. In a similar 

subtheme, Other Users, participants also discussed the role that other service users may 

play in information security on SMS. When sharing content with friends and other users, 

these individuals may share the content further, thereby spreading it to a wider audience. 

Lastly, the other subtheme within Information Security was Lack of Control, which 

captured some participants’ views when they felt coerced into using these services, as well 

as their strategies for using services they distrust.    

2.4.1.1 Platform Security  

For many participants, their trust towards SMS and other digital services was 

based, at least partly, on the perceived security of the service. Simply put, participants 

expressed distrust towards services that they deemed insecure. Often, this appeared to be 

something that became apparent to them over time.    

Liam: ‘I think there's like […] there's an inherent level of trust that’s… starting to erode 

as we realise the consequences of… and the lack of security that exists.’   
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A common trend that participants reported was the regulation of information they 

shared with services they believed were insecure. This regulation of information sharing 

was prominent throughout the subthemes within Information Security. If participants felt 

that they couldn’t trust an SMS or digital service, they were much less inclined to share 

their information with it.    

Ken: ‘Its about whether they meet the expectations that I have for them, Facebook is a 

really good example, when I first joined Facebook I had everything on there, and then I 

learnt in time its actually not safe, and […] I took some stuff off there, I kind of… I’m fine 

to use it because I just take stuff off it, so with WhatsApp, my… understanding of it is that it 

is secure end-to-end etc., so the stuff I give out there, if that trust is broken, that would 

just…. I would just stop using it… If I knew people could read it, or if they could take it, I 

would just be like: “That is completely broken!”.’   

These comments from Liam and Ken encapsulate the links many participants drew 

between their trust towards SMS and digital services, and the security of these services 

when handling their information. Throughout focus groups, distrust towards SMS 

providers was particularly apparent. This appeared in line with data from polls suggesting 

trust towards SMS providers is significantly lower than manufacturers 

of others technologies, such as credit cards and smartphones (Rainie, 2018). Moreover, in a 

similar poll of SMS users’ attitudes towards providers, Facebook had the worst reputation, 

with 58% of users reporting little-to-no confidence in the company protecting their 

information and data (Gallagher, 2018). The low trust reported in these findings likely 

reflected the fallout from the Cambridge Analytica scandal, where massive amounts of 

user data was inappropriately shared with third party organizations (Cadwalladr & Graham-

Harrison, 2018). Likewise, distrust of SMS within our focus groups was also possibly 

informed by the recency of the Cambridge Analytica scandal, as the story had featured 

frequently in the news in the 3-4 months prior to the focus groups we conducted. As such, 

it's difficult to rule out the extent to which the Cambridge Analytica scandal has colored 

participants’ views, and it's possible that this event enhanced their distrust and skepticism 

of SMS and digital services. Nonetheless, previous research has illustrated that system 

security is also a significant factor in users’ trust towards other digital services. In a sample 

of Bosnian university students, acceptance of online banking services was informed by the 

perceived security of the system, as well as the users’ perceived ability to use the system 

(Özlen and Djedovic 2017). Therefore, trust towards SMS and digital services appeared to 

be closely linked to the security of the platforms providing the service. However, in the 

case of SMS, there was also consideration for how information can be spread by other 

users on the platform.   
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2.4.1.2 Other Users 

The role of Other Users appeared as a subtheme within the theme of Information 

Security, in which participants’ trust towards SMS extended to include other users on these 

sites. While most participants expressed an awareness over the amount of control they had 

over the information they shared with these platforms, they also acknowledged that their 

personal information was vulnerable when shared by other users.    

Patrick: ’I think you have got so much [control] over the privacy settings that you can set: 

No one can find me, or only my friends can view this, […] so you’ve already chosen to 

trust those people, so I think it’s more like the human trust than trusting an app.’   

Patrick’s comments highlight participants’ view of SMS as platforms in which 

information security is enforced by both providers and users. While providers often give 

users access to privacy and security settings, when sharing information publicly, 

participants’ trust towards SMS extended to include their evaluations of the other users 

within their social networks. For some participants, this meant restricting what they shared 

so that it could only be seen by other users within their close friendship circle.    

Claire: ‘Well I always keep it on private mode or whatever, like I wouldn’t just have it out 

there, but I don’t really think about it on a regular basis, in terms of what I’m sharing with 

my friends.’   

Claire’s comment suggests that for some users, if they can trust the other users in 

their SMS networks, and limit the access of users they do not trust, then they may be more 

likely to share information on the platform. For other participants, these restrictions were 

based more on the content itself.    

Cher: ‘I just don’t put anything out there that I wouldn’t want […] the internet to know.’   

Comments from Claire and Cher highlight beliefs that SMS providers have limited 

control over publicly shared information, and emphasizes the users’ need to self-regulate 

the information they share.  Thus, for some participants, trust in SMS as a platform was 

informed by a shared responsibility for their information between both the user and the 

provider. This makes sense given users will be more likely to share information on SMS 

when they perceive themselves to have more control over their information and privacy 

(Jung, 2017). For example, Benson and colleagues (2015) report that SMS users’ feelings 

of control over their personal information is linked to how much personal information they 

disclose. Thus, participants’ trust towards digital services was informed by the perceived 

security of the platform, and in the case of SMS these evaluations extended to include the 

role of Other Users within their friendship networks. However, for some participants their 

engagement with SMS and digital services were not informed by feelings of control.    
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2.4.1.3 Lack of Control  

While some participants believed that they had control over their data and 

information, other participants felt that they had limited control over how their information 

could be shared. The subtheme Lack of Control illustrates how some participants’ felt 

coerced into using these services. For some participants this stemmed from the ubiquity of 

digital services in modern life.    

Melanie: ‘You’re almost forced into trusting […] everything I do, if I like buy something 

online, if I transfer money to someone, like everything is in a system somewhere.’     

Melanie’s suggestion illustrates the rising pervasiveness of digital services, in 

which users may feel engagement is a growing requirement for many aspects of life in the 

modern world. Her claim of being ‘forced into trusting’ characterizes her engagement with 

these services as being motivated more by compliance than by trust. This was echoed by 

other participants, who found it difficult to deal with the Terms and Conditions associated 

with these services.    

Adam: ‘Gmail […] there was a period of time when I was trying to access the emails, like 

I had to send like an email quickly, and it had like a notification that they had applied all 

the privacy stuff, […] and it was like it was like a huge document, and I had no other 

chance, other than clicking apply, because […] even if I don’t agree it’s my Gmail…’.   

Thus, within the Information Security theme, individuals’ feelings of control over 

the information they shared appeared to influence their trust towards the service. However, 

some participants expressed a lack of control in their engagement with digital services, 

which may potentially limit their trust in these services. Similar views were also expressed 

by other participants, in which they felt engagement with SMS was a requirement for 

‘fitting in’ within social groups.    

Lana: ‘I think its because [for] so many people, and its so useful… that now its expected, 

that you should be using it, not as a something of leisure, but as a work thing.’   

Carlos: ‘It’s one of these things where it’s reached that kinda critical mass, where 

everyone has them, [...] it does make things a lot easier on you.’    

Jane: ‘I guess we felt it was necessary because people kept like asking “why can’t we 

contact you online?”.’   

These views are somewhat unsurprising, given SMS continue to be one of the main 

reasons we use other technologies, particularly smartphones and tablets (Poushter, 2016). 

The ubiquity of SMS may be a powerful motivator for prospective users. However, on one 

hand this may not necessarily be a bad thing itself, as Park and colleagues (2013) report, 

increased usage of smartphones and SMS are positively associated with increased social 

capital; the individual’s ability to maintain social interactions with others. At the same 
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time, while SMS provide users with a platform to maintain more friendships, this may not 

automatically translate into long-lasting, high quality friendships. Pittman and Reich 

(2016) report greater uptake in SMS use has coincided with greater feelings of loneliness 

in many Western countries. While Fear of Missing Out (FoMO) is a term that is often used 

playfully in advertising and media, research suggests FoMO may be a legitimate driver for 

SMS engagement amongst users. Roberts and David (2020) argue that while FoMO is 

typically associated with negative consequences for the intensity of SMS use, under the 

right circumstances FoMO can positively influence users’ wellbeing, if it motivates them to 

use SMS in a manner that strengthens social connections. Ultimately, while Lack of 

Control may damage user’s trust towards the platform, this may not necessarily be a bad 

thing if this control is traded for convenience and the increased social capital that digital 

services and SMS can offer to users. 

The theme of Information Security broadly covered how participants’ trust towards 

SMS and digital services was informed by how secure they believed their information and 

data were, when using these platforms. While the security of the platform itself seemed to 

be a primary determinant in how much users engaged with the service, they also 

considered the effect that other users can have, at least in the case of SMS. Moreover, 

participants also described instances where they felt their use of SMS and digital services 

were less informed by choice, and instead driven more by necessity. 

2.4.2 Theme 2: Service Transparency   

Throughout focus group discussions, most participants demonstrated some 

awareness of the information collection processes used by SMS and digital service 

providers. However, there was a greater deal of variance in participants’ understanding and 

interpretation of these practices. This appears to result from a lack of transparency in the 

information collection methods used by SMS and other digital services. In the theme of 

Service Transparency, participants’ trust appeared to be characterized in three different 

subthemes. Firstly, participants showed differing levels of Understanding regarding the 

data collection practices used by SMS and digital services. Some participants demonstrated 

a more nuanced understanding, whilst others did not fully understand the ways in which 

their data was collected. Similar to this, the subtheme of Apathy captured how some 

participants placed little-to-no value in how their data was collected, wherein their trust 

may have limited influence on their use of the service. Lastly, the subtheme Unclear 

Intentions captured how some participants’ distrust of SMS and digital services stemmed 

from the unclear intentions of the service provider when collecting their data.  
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2.4.2.1 Understanding   

Across the focus groups, participants showed various levels of Understanding 

regarding how their data was collected when using SMS and other digital services. For 

example, some participants like Anna, had a strong grasp of these procedures, and 

considered how different information may be collected by the different types of digital 

service they used.   

Anna: ‘So there's a distinction right, with LinkedIn and Facebook, they’re targeting you, 

they’re selling your data to advertisers so that they can specifically target you, whereas 

Netflix is using it to build their AI, so is there a distinction there? Because, with Facebook 

and LinkedIn you can change your privacy settings, so you don’t share as much data with 

them, and with Netflix you can’t, because no one is getting that data except for Netflix.’    

Anna’s comments illustrate how some participants contextualized their trust 

towards digital services by considering the type of digital service they were using, along 

with their perceived intentions of the company providing the service. Similar awareness 

was also demonstrated by other participants.   

Patrick: ‘the whole GDPR, its… its not actually finding you, the person, its finding 

you, 25–30-year-old, male who likes football, sport etc. its not actually seeing you as a 

person, its about seeing you as… the other data […] they’re not targeting you 

specifically’.   

Anna and Patrick’s characterizations highlight the ways in which some participants 

went beyond thinking about themselves as users sharing information within a platform, and 

instead considered the role of the companies that provide these platforms. Tufekci (2015) 

suggests that SMS users are more likely to share personal information when they know 

how it is being used by the service. Similar findings were also reported by Benson and 

colleagues (2015), who report that users were also more likely to disclose personal 

information when they have greater awareness of how this information is used by SMS 

providers. Thus, for individuals like Anna and Patrick, their trust towards SMS and digital 

service providers, and the information they subsequently share with these services, may be 

framed in their understanding of how their data could be used by these companies. 

However, not all participants demonstrated the same level of understanding for how their 

data was being used by SMS and digital service providers.    

Barbara: ‘Yeah its not like a trade-off because you don’t really understand what you are 

giving up. I guess,  Like I don’t know what… it never crosses my… maybe when people… 

you know when it comes up with a cookie thing, those, it will come up a statement, that’s 

the only time I’ll think for a second “Oh someone might have some information of mine”, 
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but I don’t know what they have, what they use it for, what the benefit is of having 

information about me.’ 

Barbara’s comments illustrate how the information collection processes of SMS 

and digital services are not always easily understood. However, this lack of understanding 

was even shared by some of the participants who considered themselves as knowledgeable 

about these practices.    

Ken: ‘I’m reasonably informed about stuff, I… I would say every year in the last 10 years, 

I have been amazed continually at stuff I didn’t know, about whether its about cookies to 

start with, whether its about Geotargeting in your phone, whether its about a fact that, 

maybe anytime I log into WIFI now, all of my data is basically accessible, like… my 

boardroom at work, they’re not allowed phones in there’.    

When taken together with Anna and Patrick’s comments, these comments highlight 

a subtheme of Understanding within the Service Transparency theme. Users’ trust towards 

SMS and digital services may be inherently limited by a user’s ability to understand how 

their information is used by the service provider. This in line with Tufekci (2015) who also 

suggests that a lack of transparency can damage users’ attitudes towards a service, 

and make some users less likely to share personal information. Thus, while some users’ 

trust towards SMS and other digital services may be partly characterized by their beliefs 

about the provider’s intentions for their data, for other individuals there was limited 

understanding of what companies were actually doing with their information.    

2.4.2.2 Apathy  

Within the Service Transparency theme, there was also a subtheme of Apathy, 

which was marked by some participants’ general disinterest in how their information was 

used. While most participants expressed an awareness of their information being collected 

by SMS and digital services, for some there was a lack of interest in how this information 

may be used by the service provider. This Apathy appeared to stem from both a lack of 

transparency in the service providers’ information collection procedures, and personal 

disinterest in the value of their information.    

Bean: ‘Yeah information mining […] I assume that that stuff is going on, yet I use the 

platforms anyway, because, I dunno it’s like good enough for me, I guess I assume I’m like 

a bit insignificant and like a bit boring… I’m just average.’ 

Bean’s comments characterize a more passive form of participants’ trust towards digital 

services, in which she is aware of the data collection motivations of these providers, 

yet continues to use their platforms and services. Similar comments from Barbara also 

highlight how some participants placed limited value in their information.    
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Barbara: I don’t think anyone’s interested in my information […] so I don’t think about 

that’.   

From this perspective, some participants’ trust towards SMS and digital services 

may be influenced by a lack of value attributed to their personal information and data. 

Such views may help to explain why many users continue to use SMS and digital services 

after high-profile data breach scandals. In the wake of the Cambridge Analytica scandal 

(Cadwalladr & Graham-Harrison, 2018), Facebook’s reported daily user activity and 

overall stock valuation decreased significantly (Solon, 2018), suggesting that users’ trust 

was damaged by these events. However, this event did not lead to the collapse of Facebook 

as a platform, as users continue to engage with their service. This may imply engagement 

does not appear to be entirely informed by the perceived trustworthiness of the companies 

that provide the platforms. Parallels with this can also be seen in the continuous growth in 

Twitter’s userbase (Kastrenakes, 2021), despite the platform facing continued pressure to 

halt the spread of misinformation in their service (Oyeyemi et al., 2014; Jin et al., 2014; 

Hiar, 2021). Thus, within the theme of Service Transparency, users’ understanding of how 

their information and data are used by service providers could make them more likely to 

share personal information with the platform. Somewhat paradoxically, the Apathy 

subtheme captured how some participants’ a lack of understanding, or disinterest in the 

service provider’s information handling policies, could also lead them to place limited 

value in their personal information, and subsequently more likely to share their personal 

information. 

2.4.2.3 Unclear Intentions  

There was also evidence of distrust towards SMS and digital services, which 

appeared to stem from a lack of transparency from these service providers. When 

contemplating trust, some users considered the intentions of the companies that provide 

these digital services, and had difficulty trusting them if they believed these companies had 

malicious intentions. For example, while Barbara admitted to having limited understanding 

or interest in how her information and data were used by SMS and digital service 

providers, she also appeared to distrust the platforms as a result of this limited 

transparency.     

Barbara: ‘I speak about something and the next thing you know it’s on my Facebook 

[advertised] […] they’re listening’.   

Barbara’s comments illustrate how this lack of transparency could manifest as 

distrust for some participants, with particular concern for the targeted advertising methods 

that these services employ (Lipsman et al, 2012; Alhabash et al., 2017; Lee et al., 

2018). While SMS such as Facebook and Instagram utilise targeted adverting based on 
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users activity within their apps, there is currently no evidence that they access users’ 

microphones to monitor their conversations outwith these apps (Tulek & Arnell, 2019). For 

other participants, their view of these information gathering practices was more cynical. 

Adam: ‘…there’s no actual aim to do value or to do anything that’s benefiting the users, 

it’s mainly just getting them with, with any sort of kind of bubble, to keep engaged…’    

Comments from Adam and Barbara illustrate how some participants believed that 

digital service providers sought to exploit their users as a way to generate revenue. This 

combination of low transparency and the use of targeted advertisements appears to be 

potentially damaging to trust and corresponds with previous findings in the literature. In a 

study examining the influence of targeted advertisements in social media (Jung, 2017), 

users concern about privacy increased when exposed to advertisements that were highly 

personalized towards them, making them feel their information was being actively tracked. 

Whilst advertising revenue is undoubtedly a core financial source for these companies 

(Alhabash et al., 2017; Lee et al., 2018), the ways in which users' data is collected and used 

are open to interpretation, and some users may interpret a lack of transparency as insidious 

intentions. However, while most participants expressed an awareness of these targeted 

advertising practises, not all participants perceived them as malicious.   

Melanie: ‘Like how they monitor what websites you go on? I feel like it doesn’t bother me 

as much as it should, like I think that a lot of people get freaked out, like this whole media 

thing of like phones listening to you and all that, but I just don’t really have anything to 

hide […]’  

Thus, awareness of information gathering and targeted advertisements does not 

appear automatically foster distrust amongst all users. As Melanie’s comments illustrate, 

despite not fully understanding how her data is used by these companies, for some users 

these practices may be perceived as being benign. Kim and colleagues (2019) report that 

higher trust towards a digital platform can make targeted adverts more acceptable to 

viewers. Taken together, this would suggest that targeted advertisements may not 

intrinsically damage trust towards SMS and digital services themselves. Rather it appears 

that their influence on trust also depends on the value that users’ attach to their personal 

information and data, and their general understanding of how this information could be 

used. Ultimately, the theme of Service Transparency illustrates a complex relationship 

between the transparency of SMS and other digital services, their use of targeted 

advertising, and the user’s understanding and interest in how their information is used.  
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2.4.3 General Discussion 

 This study explored how people characterise their trust towards technologies, such 

as online digital services and social media platforms. Participants trust towards these 

services were characterised within two main themes: Information Security and Service 

Transparency. Information Security related to participants’ thoughts and concerns about 

sharing their information with these technologies, and how securely their information 

would be stored by the companies providing these services. This echoes previous research, 

in which users’ trust towards online services was informed by the perceived security of 

these platforms, as well as the amount of control users felt that had over their information 

(Özlen and Djedovic 2017; Benson et al., 2015; Jung, 2017). Thus, companies providing 

digital services may benefit from greater trust from users by providing clearer insights into 

how they securely store users’ information, as well as providing users with increased 

control over the information they share with these services. Service Transparency captured 

participants’ beliefs about what these companies did with their information.  Previous 

research has also suggested that if users have a better understanding of how their 

information is used, they will be more likely to share it with these companies (Benson et 

al., 2015; Tufekci, 2015). If a digital service relies upon users willingly sharing their 

information with the platform, these companies way benefit from being more transparent 

with how this information is being used, and how this may affect users, through secondary 

technologies such as targeted advertising. Users may also be better able to calibrate their 

trust towards these services if they can become more aware of how technologies like 

targeted advertising work.  

While this research has focussed on trust towards digital services and social media 

platforms, some of our findings may be generalisable for understanding users’ trust 

towards other types of technology. Many types of autonomous systems, such as those in 

used in healthcare settings, may require access to users’ personal information (Challen et 

al., 2019; Sujan et al., 2019; Goddard et al., 2014; Lyell et al., 2018). Trust may be gained 

more readily from users in these situations if the system is transparent with how this 

information is used. Similarly, we have characterised how users may seek to have control 

the information we disclose to these services, and control/authority is also highlighted 

within research involving other technologies (Abraham et al., 2016; Muir 1987; Goddard et 

al., 2014; Lyell et al., 2018; Chavaillaz et al., 2016; Chavaillaz et al, 2020). Both themes 

also show participants considered the reputations of the companies providing these 

services as factors relevant to their trust. Similar research has also suggested that trust 
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towards automation may be informed by the users’ trust and attitudes towards the company 

that provided the automation, as well as the human designers that made them (Culley & 

Madhavan, 2013; Morgan-Thomas & Veloutsou, 2013; Celmer et al, 2018). Thus, our 

research also supports existing evidence suggesting that users’ trust towards technology is 

partly informed by the reputations of the companies providing the technology.  

2.5 Conclusion 

Our study sought to understand how individuals characterize their trust towards 

social media and other digital services. Views from participants illustrated the many ways 

in which participants considered the trustworthiness of these services, captured by two 

main themes of Information Security and Service Transparency.  In the theme of 

Information Security, participants’ trust appeared to be characterized by the security of the 

platform they were using, with particular concern for how easily their information could be 

accessed by other parties. Participants’ trust was also based upon how much control they 

believed they had (if any) over the information they shared with the service. In the case of 

SMS, participants also factored in the role other users may play in sharing their 

information, wherein trust towards the platform is also based upon their trust in the other 

users they may interact when using these services. In the theme of Service Transparency, 

participants trust also appeared to be characterized by their understanding of how their data 

is collected by the service provider. Some participants benefited from greater knowledge of 

how data is collected and used within digital economies, which informed their trust in 

digital services. Conversely, other participants demonstrated limited understanding of these 

practices, and based their trust on speculation and/or disinterest in the perceived intentions 

of these digital service providers. Participants’ trust was also further informed by the value 

that they attached to their data once it was harvested, with some participants attributing 

little value to the information they share with these services. Collectively, participants’ 

trust was characterized by a variety of expectations and assumptions regarding the digital 

services themselves, as well as the company that provides these services.   
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2.6 Focus Group Questions 

2.6.1 Topic: Social Media 

1. If you use it, do you feel using social media is enjoyable? 

2. Do you feel that social media improves society, and if so why? 

3. Is having an online presence/identity a necessary requirement for the modern world? 

4. How important is trust for using social media? 

5. Is it necessary to trust a social media platform for you to use and rely upon it? 

6. Are the benefits of social media (such as maintaining social networks) an acceptable 

trade-off for allowing companies access to your information? 

 

2.6.2 Topic: Information security 

1. Could I ask you to write down some companies that come to mind when talking about 

data security – and specify whether you think they have a good or bad reputation 

(Written) 

2. Do these reputations influence how likely you are to use their services? 

3. What does it mean to you, to feel safe online? 

4. Do you feel that your data and information is safer with a human or a computer, and 

why? 

5. If you had to pick one, would you prefer that Public Governments or Private 

Companies had more access to, and control over your information? 

 

2.6.3 Topic: Technology 

1. If I were to mention the term Artificial Intelligence, what would you say is the first 

thing that comes to mind? (Written) 

2. Can you give some examples of where you think artificial intelligence is currently 

being used, if any? 

3. If a computer was described as having a form of Artificial Intelligence would that 

change your perception and expectations of it? 

4. When using a machine/computer, if it makes an error/mistake, how does that affect 

your ability to trust it? 

5. Do you think we can trust machines the same way we trust people? 

6. Do people think that Artificial Intelligence and other digital technologies can be a good 

thing for society?  
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Chapter 3: Calibrating Trust Towards an Autonomous Image 

Classifier 

Publication: https://doi.org/10.1037/tmb0000032  

 

3.1 Abstract 

Successful adoption of autonomous systems requires appropriate trust from human 

users, with trust calibrated to reflect true system performance. Autonomous image 

classifiers are one such example and can be used in a variety of settings to independently 

identify the contents of image data. We investigated users’ trust when collaborating with 

an autonomous image classifier system that we created using the AlexNet model 

(Krizhevsky et al., 2012). Participants collaborated with the classifier during an image 

classification task in which the classifier provided labels that either correctly or incorrectly 

described the contents of images. This task was complicated by the quality of the images 

processed by the human-classifier team: 50% of the trials featured images that were 

cropped and blurred, thereby partially obscuring their contents. Across 160 single-image 

trials, we examined trust towards the classifier, while we also looked at how participants 

complied with the classifier by accepting or rejecting the labels it provided. Furthermore, 

we investigated whether trust towards the classifier could be improved by increasing the 

transparency of the classifier’s interface, by displaying system confidence information in 

three different ways, which were compared to a control interface without confidence 

information. Results showed that trust towards the classifier was primarily based on system 

performance, yet this also was influenced by the quality of the images and individual 

differences amongst participants. While participants typically preferred classifier interfaces 

that presented confidence information, it did not appear to improve participants’ trust 

towards the classifier.  

3.2 Introduction 

The success of new technologies is dependent on whether they are accepted by the 

end user. Our understanding of how users accept new technologies has developed over 

time, the initial Technology Acceptance Model (TAM) put forward by Davis and 

colleagues (1989) was heavily centred on the perceived usefulness and perceived ease of 

use of the system, as the primary determinants for technology acceptance. More recently, 

extensive work by Venkatesh and colleagues (2012) has sought to develop upon earlier 

iterations of TAM by integrating further, more diverse determinants of acceptance, such as 

system price, the user's habits, and even the hedonistic pleasure gained from using the 

https://doi.org/10.1037/tmb0000032
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system (Venkatesh, 2015). This suggests that innovation alone is not enough for new 

technologies to be successful, and that there is a myriad of psychological, social, and 

environmental factors that inform the ultimate acceptance of technology.  

While the successful adoption of new technologies is tied to users’ acceptance of 

them, the users also need to learn to use the technology correctly. Just because someone 

accepts a new technology, it does not automatically follow that they will use it 

appropriately. This is particularly the case with autonomous systems, which are 

technologies that use Artificial Intelligence (AI) to undertake tasks with a degree of 

independence from their user. As these autonomous systems become more advanced, their 

capacity for complex tasks also increases, yet with this the opportunity for errors increases 

too (Parasuraman et al., 2000). As such the success of autonomous systems also relies 

upon appropriate trust from their human user, to ensure these systems are used correctly. 

Ideally operators’ trust will be calibrated to reflect the actual performance capabilities of 

the autonomous system, ensuring they do not distrust a functional system (too little trust), 

or mistrust a dysfunctional system (too much trust) (Muir, 1987; Parasuraman & Riley, 

1997). In this study, we sought to understand how humans calibrate their trust towards an 

autonomous image classifier system (AICS). 

3.2.1 Autonomous Image Classifier Systems 

AICS are technologies that can independently classify the contents of image-based 

data, using advances in deep learning and convolutional neural network research (Chan et 

al., 2015; Howard, 2013). A major advantage of AICS is that they can process large 

quantities of data quickly and independently, thereby reducing demand on human users. 

For example, in the UK, London’s Metropolitan police force are interested in using AICS 

to help process digital forensic evidence, to reduce their officers’ workload and limit their 

exposure to graphic content (Murphy, 2017). Moreover, AICS can be trained to distinguish 

specific, highly complicated patterns and features: an AICS was recently able to identify 

breast cancer with an accuracy comparable to human experts (McKinney et al., 2020). 

AICS can also be used in lower stakes settings, for example the popular app ‘PlantNet’ can 

provide users with classifications for images of plants and flowers that they encounter 

(Goëau et al., 2014). Even though these applications are impressive, the performance of 

AICS can reflect the expertise and potential biases of the engineers who design the 

systems, as well as the quality of the dataset used to train their algorithms (Danks & 

London, 2017; Rudin, 2019). Thus, AICS are vulnerable to errors and will require 

appropriate trust from human operators. This is particularly important, given the potential 

application of AICS in a wide variety of settings, where AICS may be responsible for 
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supporting high stakes decisions. Thus, we sought to examine how users calibrated their 

trust towards an AICS, and how this trust translated into compliance with the system’s 

decisions, when completing an image classification task. By doing so, we provide an 

insight into trust specifically towards AICS, which we hope will benefit the design and 

deployment of AICS in real-world settings, while also providing further insights for the 

wider trust-in-automation literature.  

3.2.2 Understanding Trust Towards Automation 

Across the literature, trust-in-automation has been studied in a wide variety of 

human-machine teams, and arguably has most commonly been studied with autonomous 

vehicles (Jing et al., 2020). When considering how technology is used in different human-

machine teams, Larson and DeChurch (2020) make a distinction between technology and 

agents. Technology is something that is used by teams to achieve their goals, much like a 

tool, while agents fill a distinct role within the team which goes beyond mere 

augmentation, and inherently improves the team’s performance as a result (Larson & 

DeChurch, 2020). For agents, they also draw a distinction between robots, which are 

agents with embodied physical characteristics, and AI which are disembodied agents that 

perform tasks that traditionally require human intelligence, such as visual identification 

and decision-making. Trust has previously been studied with both robot-based agents 

(Selkowitz et al., 2017; Desai et al., 2013), and with AI-based agents, such as automated 

software repair systems (Ryan et al., 2019), virtual cognitive agents (Hertz & Wiese, 2019; 

de Visser et al., 2016), and decision support systems (Sauer et al., 2016; Yu et al., 2019; 

Zhang et al., 2020). Regarding AICS, these systems most closely align with the examples 

of AI-based agents. It should however be noted that within our experimental design, we 

afforded the AICS limited agency, as human users supervised each classification decision, 

with the authority to overrule each one. Whereas in real-world applications, AICS may be 

employed as agents with greater autonomy when working within teams.  

We interpreted trust towards an AICS through the lens of Hoff and Bashir’s (2015) 

model of trust towards automation, which separates trust into three broad layers. 

Dispositional Trust relates to stable human-centric factors, such as culture, age and 

personality traits, which inform users’ general disposition towards technology. This would 

reflect the users’ attitudes towards the AICS, and more broadly technology in general. 

Situational Trust relates to fluctuating human-centric factors, such as mood and attention, 

as well as environmental factors, such as task difficulty, workload and organizational 

setting, which can all vary over time. We believe that when using an AICS, a significant 

factor for operators’ trust would be the quality of images being processed, which could 
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increase the difficulty of system classifications, particularly if the operator feels they could 

easily classify the images themselves. Finally, Learned Trust is split into two separate sub-

layers: Initial Learned Trust that reflects the user’s historical experience of similar systems, 

and the reputation of the current system, while Dynamic Learned Trust reflects their 

ongoing experiences of working with the system. When working with an AICS, Learned 

Trust will likely be informed by the users’ ability to interpret the system’s decision-

making, particularly if the image is difficult to classify. Additionally, in industrial 

applications, operators may have previous experiences with other AICS, which may inform 

their trust towards newly introduced systems. Hoff and Bashir (2015) suggest these three 

layers of trust combine to ultimately inform how users rely upon the autonomous systems 

during collaboration, which would be crucial for appropriate use of AICS. Therefore, when 

investigating trust towards an AICS, we created experimental manipulations that were 

consistent with Hoff and Bashir's (2015) model and contextualised our hypotheses and 

subsequent findings within their theoretical framework.  

3.2.3 System Performance 

Hoff and Bashir (2015) demonstrate the complex relationship between human, 

mechanical, and environmental factors that combine to inform trust towards autonomous 

systems. However, their model stipulates that when interacting with automation, system 

performance is the central modulator of trust towards automation. In this vein, Yu and 

colleagues (2019) reported close relationships between perceived system accuracy, trust, 

and reliance upon an automated fault detection system, and demonstrated that users will 

modulate their trust and reliance in response to system performance. Thus, when 

collaborating with an AICS, we anticipated system performance, defined as the classifier’s 

ability to correctly label the contents of images, will have the biggest influence on trust: 

(H1a) System performance, whether the classifier’s label correctly describes images, will 

have the strongest influence on trust towards the classifier.  

3.2.4 Image Clarity   

While system performance should be the main driver of trust towards the AICS, the 

classifier’s performance itself is likely to be dependent upon the quality of images being 

processed. Hoff and Bashir’s (2015) Situational Trust encompasses factors which make 

tasks more difficult to accomplish, and we believe image quality would be a particularly 

important factor within the context of AICS use. When images have lower clarity, through 

factors such as occlusion and blurring, the contents of the image may be harder for human 

users to identify. Moreover, when an AICS processes lower clarity images, the system’s 
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performance is also likely to be harder to evaluate, given the increased uncertainty of the 

contents of the images, which may itself impact upon trust towards the classifier. Thus, 

when working with an AICS the quality of the images processed could be considered as an 

environmental factor, given the operator may have limited control over image clarity. A 

similar issue was explored in a study by Merritt and colleagues (2013) involving trust 

towards an automated baggage scanner where trust towards the scanner was affected by the 

difficulty of the task. Specifically, trust was lowest in blocks where the scanner’s 

performance was considered as ‘obviously poor’, and highest when ‘obviously good’, 

given the presence of weapons was made relatively obvious to participants. However, in 

the more difficult, ambiguous block, where the contents of luggage were cluttered, trust 

was found to be lower than the ‘obviously good’ block, yet higher than the ‘obviously bad’ 

block, illustrating the effect of task difficulty. Similar findings were reported in another 

study that involved an automated letter detection aid, in which participants were more 

likely to accept the system’s advice in trials with higher difficulty (Schwark et al., 2010). 

This suggests that the difficulty of the task facing human-machine teams may influence 

how human users interpret and use automated system advice. Of course, the influence of 

task difficulty is likely to vary between autonomous systems, as different systems will be 

employed in different occupational settings, with varying consequences associated with 

system errors. Nonetheless, we anticipated that the relationship between system 

performance and trust towards the AICS would be modulated by the quality of the image 

being processed: (H1b) Image Clarity will significantly interact with system performance 

when predicting trust towards the classifier. With unclear trials, trust will be lower when 

the classifier is correct, and higher when the classifier is incorrect, illustrating participants’ 

uncertainty about the classifier’s performance.  

3.2.5 Individual Differences 

Trust towards an AICS could also be influenced by the operator’s cognitive 

understanding of the system and task, which can be prone to biases intrinsic to each 

individual (Israelsen & Ahmed, 2019). Some examples of these biases include: 

Automation Bias, where automation performance is perceived as inherently superior to 

human performance (Goddard et al., 2011); and Perfect Automation Schema, where 

individuals may believe that automation is almost always perfectly reliable (Dzindolet et 

al., 2002). These biases reflect differences in trust stemming from the experiences of 

individual human users. Hoff and Bashir (2015) characterise biases towards trusting 

machines as a form of Dispositional Trust, which are relatively stable over time, and reflect 

users’ tendencies independently of context. In order to understand how human-centric 
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factors influenced trust towards the AICS, we considered each participant’s score in the 

Propensity to Trust Machines Questionnaire (PTMQ) (Merrit, 2011), as a form of 

Dispositional Trust. PTMQ scores can be used to characterise each user’s predisposition 

towards trusting technology, in which higher scores represent higher self-reported 

tendencies to trust new technologies. The use of PTMQ was highlighted in the study by 

Merritt and colleagues (2013), which showed individuals with higher PTMQ scores had 

higher trust towards the automated baggage scanner when it processed luggage with 

cluttered contents, during the ambiguous performance block. This suggests that users with 

higher PTMQ scores were less likely to have their trust influenced by the difficulty of the 

task, even though the uncertainty of task success would make it harder to evaluate system 

performance more accurately. Thus, users’ existing tendencies towards trusting machines 

may influence trust, even when environmental factors complicate their evaluations: (H1c) 

Participants with higher Propensity to Trust Machines scores will trust the classifier more 

when processing unclear images, where performance may be more difficult to evaluate. 

3.2.6 Improving Trust Through Transparency 

Trust towards autonomous systems may also be improved when system decision-

making is made more transparent (Tomsett et al., 2020). For example, drivers reported 

greater trust towards a driving aid within an autonomous vehicle simulator when provided 

with explanatory feedback messages (Koo et al., 2015). The Situation awareness-based 

Agent Transparency (SAT) model proposes that autonomous system transparency can be 

improved by providing users with more detailed information that is relevant to system 

performance (Chen et al., 2014). Within the lens of the SAT model, human users may 

calibrate their trust more appropriately if the system provides more detailed information 

about its current task (Chen et al., 2014). Using the SAT model, Selkowitz and colleagues 

(2017) report increased trust towards an autonomous robotic squad member as it provided 

users with more detailed situational information, such as system motivations and predicted 

task outcomes. However, this trend was not apparent in the condition with the most 

information, implying there may be a limit to how much information is beneficial to users’ 

trust (Selkowitz et al., 2017). Hoff and Bashir (2015) suggest that these design features 

which increase transparency can help users to understand the system’s purpose and process 

when carrying out tasks, thereby improving the user’s Learned Trust. Thus, we sought to 

understand if we could improve trust towards an AICS by making its decisions more 

transparent through displays of system confidence information (SCI).   
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3.2.6.1 System Confidence Information 

SCI is a representation of system certainty when carrying out tasks and can benefit 

trust towards autonomous systems (Zhang et al., 2020). For example, SCI cues helped 

users to appropriately align their trust towards a navigational robot; lowering trust when 

confidence was low to accommodate poorer performance, and elevating trust when 

confidence was high (Desai et al., 2013). Similarly, Verame and colleagues (2016) report 

individuals were more likely to accept the decisions of an autonomous document reader 

when it displayed ‘very high’ confidence, compared to when displaying ‘medium’ or ‘low’ 

confidence. This suggests SCI may improve system transparency, and in turn users’ trust 

and strategies for collaboration. However, there are a variety of ways that SCI can be 

represented within the interface of autonomous systems. Previous examples include 

confidence discretised into high/medium/low categories, represented with icons (Desai et 

al., 2013) or with text (Verame et al., 2016); as numerical probabilities (9/10 = high 

confidence) (Zhang et al., 2020); or visually through the color and opacity of icons 

(Selkowitz et al., 2017). Within the context of the SAT model, it is possible that more 

detailed forms of SCI would make AICS decision-making more transparent, and therefore 

be most likely to improve users’ trust towards the system.  

3.2.6.2 Complexity of System Confidence Information 

Regarding systems specifically designed to classify image-based or text-based 

content, Ribeiro and colleagues (2016) suggest SCI could be displayed through a bar graph 

to illustrate the probabilities of the most likely options for each decision. Arguably Ribeiro 

and colleagues’ (2016) suggestion presents SCI in a more transparent format than the 

previous examples above, as it provides the user with the system’s confidence for the final 

decision relative to the confidence for other likely classification options. However, there is 

conflicting evidence surrounding the utility of bar graphs when conveying information, as 

evidence suggests they can be difficult to comprehend (Chaphalkar & Wu, 2020), and can 

lead to biases in readers’ thinking (Godau et al., 2016). Contrarily, bar graphs have been 

considered useful when illustrating results with borderline differences, and reportedly 

require less time to interpret than raw data tables alone (Brewer et al., 2012). Therefore, we 

created three separate experimental interfaces that illustrated SCI in different formats and 

compared them against an interface without SCI (Control Interface). We adopted Riberio 

and colleagues’ (2016) recommendation of using a bar graph to illustrate SCI (Graphical 

Interface), we also displayed SCI using text-based percentages (0-100%) (Numerical 

Interface), and lastly used color cues to represent SCI discretised into high/medium/low 

categories (Iconography Interface). Thus, we explored the benefits of displaying SCI 

within the AICS interface: (H2a) Relative to the control interface, the confidence 
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information presented within the experimental interfaces will improve overall trust towards 

the classifier.  

We also sought to understand whether SCI would be more useful when the task 

difficulty increased, specifically when the classifier processes unclear images: (H2b) When 

processing unclear images, trust will be higher towards the experimental interfaces because 

they provide users with more information. 

Lastly, we explored whether the addition of SCI in the experimental interfaces 

would increase users’ workload, measured through subjective task load, and the amount of 

time participants spent in each trial: (H2c) When working with the experimental interfaces, 

participants’ task load will be higher given interfaces with SCI present more information 

per trial.  



  64 

3.3 Methods 

3.3.1 Participants 

74 participants (37F, 36M, 1 Non-Binary), primarily university students (Mean Age 

= 26.2, Min = 19, Max = 55), were recruited through the University of Glasgow’s School of 

Psychology subject pool. All participants were compensated at a rate of £6 per hour for their 

time. 51% of participants considered themselves native English speakers. Ethical approval 

was obtained from the University of Glasgow, College of Science and Engineering ethics 

committee. 

3.3.2 Design 

We used a 2x2x4 within-subjects design where participants saw 2 levels of 

Classifier Performance (Correct, Incorrect) combined with 2 levels of Image Clarity 

(Clear, Unclear), within each of the 4 Interface-specific blocks (Control, Graphical, 

Iconography, Numerical). In each single-image trial (n=160) the classifier’s label would 

either correctly or incorrectly match the image displayed, which was purposely made easy 

or difficult to evaluate due to the clarity of the image. The ordering of blocks was 

randomised, as was the ordering of trials within each block (n=40). The average participant 

took 17 seconds to complete each trial, and 12 minutes to complete each block. 

3.3.3 Materials 

3.3.3.1 Image Classifier 

Participants interacted with an AICS based on the AlexNet image classifier model 

(Krizhevsky et al., 2012), which used MATLAB’s Deep Learning and Image Processing 

Toolboxes (MATLAB ver. R2017a). AlexNet is a pretrained convolutional neural network, 

trained to classify objects within a 227x227-pixel net. To process each image, the file must 

first be resized to fit these dimensions, after which AlexNet is able to read the image. 

AlexNet can output a range of classifications and probabilities to illustrate its interpretation 

of images. 

3.3.3.2 Classifier Performance 

Participants viewed a series of 160 images selected from The Open Images Dataset 

V4 (OIDV4), (Kuznetsova et al., 2020). These images featured categories such as 

household objects, nature scenes, food items, vehicles, and animals. These were used to 

create four sets of 40 single-image trials, with each having 20 correct and 20 incorrect 

trials. The classifier’s performance was considered as correct when AlexNet provided 

labels that appropriately matched the image’s original label in OIDV4, otherwise 
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performance was considered incorrect. Classifier performance was intrinsically linked to 

each image; performance only varied between images.  

3.3.3.3 Image Clarity 

The contents within 50% of images was made unclear to make the classifier’s 

performance harder to evaluate. These images were first cropped, to partially show their 

contents, and then overlaid with a Gaussian blur when displayed to participants (See Figure 

1). Across all 160 trials, participants saw 40 trials of each combination of Classifier 

Performance and Image Clarity: Correct-Clear, Correct-Unclear, Incorrect-Clear, 

Incorrect-Unclear, which were evenly distributed and mixed across 4 sets of images. These 

sets were organized to ensure they contained the same quantity of categories (animals, 

vehicles, objects etc.), while the average classifier confidence was made similar in each set 

of images (Min = 49.5, Max = 53.6). Each set of images was randomly matched to an 

interface for each participant. Data associated with 1 image was corrupted during data 

collection, and therefore unusable (74 trials removed from initial 11840 observations). 
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Figure 1 

Preparation of images   

 

Note. Each trial featured a single image. Classifier performance was based on AlexNet’s 

classification for the image (B), while Image Clarity was based on the quality of the image 

(A). Clear trials featured images with unobscured contents, while unclear trials featured 

cropped images that were overlaid with a Gaussian blur when presented to participants. 

3.3.3.4 Image Classification Task 

Participants used a mouse and keyboard to interact with the classifier’s Graphical 

User Interface (GUI), built within the MATLAB app designer, (MATLAB ver. R2017a) 

(See Figure 2). The classifier’s label for each image appeared in a box underneath the 

image, while participants could overwrite the classifier with their own label for each 

image. If participants did not understand the classifier’s label, they could specify this with 

a small button beside the label. Additionally, if participants believed the classifier’s label 

was wrong, yet were unable to provide a better correction themselves, they wrote “No” or 

“Don’t Know” in their own user label box. Participants rated the classifier’s performance 

on a visual analogue scale within the GUI, using 3 different interactive sliders 

corresponding with: 

1.) Image Familiarity: Participants were asked to rate how familiar they were with 

the object in each image, insofar as they could identify what the contents of the image 

were. This was to assess how capable participants were at labelling the image themselves 

without the aid of the classifier. While most participants understood the instructions and 

meaning behind this slider, a few participants expressed confusion about the wording of 
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this slider, and this was subsequently renamed in Chapter 4 to ‘Labelling this image is 

easy’, which appeared to be a better explanation of this input for users.  

2.) Label Accuracy: Participants rated how accurately they believed the 

classifier’s label described each image, and were asked not to consider the previous 

performances from the classifier in this evaluation. The intention of this input was to allow 

participants to rate the performance of the classifier on an individual level, by considering 

the performance only in the current trial.  

3.) Classifier Trust: Participants then rated their trust towards the classifier. 

Participants were instructed that ratings of trust should represent their continuous 

interaction with the classifier throughout the experiment, and could be based on 

performances in previous trials. The intention of this input was to have participants 

appraise the cumulative performances of the classifier throughout the experiment.   

All sliders went from 0-100%, represented with visual anchor points of “Not at all” 

and “Entirely”. Data was collected from each slider after each trial and would reset to the 

midpoint (50%) between trials. Each slider would change colour (blue) to cue participants 

towards the rating they needed to provide next, guiding the participant throughout each 

trial. Compliance with the classifier was defined as trials where the participant did not 

overwrite the classifier’s label. Participants moved between trials by using the “Next 

Image” button, which only became active after all 3 sliders had been used. 

Figure 2a 

Interface Differences 
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Note. All four classifier GUIs contained the same basic elements. Cues of SCI were only 

added to the lower left-hand side of the interface, to ensure visual similarity. 
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Figure 2b 

Iconography Interface 

 

Note. The classifiers label in the Iconography interface changed colours to represent the 

classifier’s confidence in the current label. Red represents low confidence, Yellow 

represents medium confidence, Green represents high confidence. 
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Figure 2c 

Numerical Interface 

 

Note. The classifiers SCI was represented as a percentage in the Numerical interface, 

ranging from 0-100% representing low-high confidence. 
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Figure 2d 

Graphical Interface 

 

Note. The classifiers SCI was represented as a bar graph in the Graphical interface, which 

provided the 5 most probable labels for each image, ordered by their probability. 

 

3.3.3.5 Interface Designs 

All four interfaces contained the same basic features but varied in the SCI they 

displayed (See Figure 2). The Control interface provided no SCI. For interfaces that 

displayed SCI, this was represented using the model’s predicted probabilities (between 0 

and 1) for the most likely label(s) to match each image. The Iconography interface 

provided the simplest form of SCI, discretized as low (<0.33), medium (>0.33 and < 0.66) 

or high confidence (>0.66), represented by the classifier’s label changing color to be red, 

yellow, or green, respectively. The Numerical condition was more precise, presenting SCI 

as a text-based numerical percentage, ranging from 0-100% representing low-high 

confidence. The Graphical condition was the most complex representation of SCI, 

illustrated as a horizontal bar graph visualizing the distribution of the classifier’s 5 most 

probable labels for each image.  

3.3.3.6 Questionnaires 

NASA-TLX: After each task block, participants reported their subjective task load 

when working with each GUI, on a low-high scale (0-100%) (Hart and Staveland, 1988).  

Propensity to Trust Machines Questionnaire (PTMQ): A series of 6 questions 

where participants rated on a 7-point Likert scale how likely they are to trust machines 
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(Merritt et al., 2013). Half of participants completed the PTMQ before the experiment 

started, and the rest after completing the experiment. 

Debriefing Questionnaire: Participants answered 7 short questions detailing their 

thoughts about the classifier (Appendix), which they completed following the last block of 

the experiment. They could also expand on each answer by writing a short paragraph, to 

explain these thoughts in further detail. 

3.3.4 Procedure 

All participants read an information sheet explaining the nature of the experiment, 

before giving written consent. Before the experiment began, they were taught to use the 

basic elements within the GUI. All participants were briefly informed how AlexNet could 

provide labels for each image. They were told that in certain blocks AlexNet would also 

display different forms of SCI, to help support its labelling decisions. They were given 

further specific instructions about each type of SCI prior to the relevant blocks. In each 

trial, the participant first rated how familiar they were with the contents of the image. After 

providing this rating,  the classifier then provided the label for each image, to ensure 

participants’ familiarity was not informed by the classifier’s label. Participants then rated 

the accuracy of the classifier’s label, and their trust towards the classifier. Lastly, 

participants decided to keep or replace the classifier’s label for the image, before moving 

to the next trial. Following completion of the experiment and questionnaires all 

participants were given a debriefing form, which explained the study in further detail. 

3.3.5 Analysis 

3.3.5.1 ANOVA 

 Our data were not normally distributed, therefore we had to depart from canonical 

tests and instead opted for a non-parametric alternative: The Aligned Rank Transform 

ANOVA (ART-ANOVA) (Wobbrock et al., 2011). This test allowed for examination of 

multiple factors and their interactions within our repeated measures design. Our primary 

dependent variable of interest was: (1) participants’ trust towards the classifier (Trust). In 

addition to this, we wanted to explore how trust reflected participants’ behaviour, and 

examined (2) how participants decided to accept/reject the classifier’s labels for images 

(Compliance). To assess whether our stimuli selection was balanced (3) we also looked at 

participants’ familiarity with the images presented (Familiarity). Lastly, we considered (4) 

the average time taken for trials in each combination of conditions, as an objective measure 

of task load (Trial Time). Consequently, four ART-ANOVA models were conducted, all 

containing the same three main factors and their interactions: Classifier Performance, 
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Image Clarity, and Interface, using the ‘ARTool’ package in R version 4.0.2 (Kay & 

Wobbrock, 2020; R Core Team, 2020). Each ANOVA model contained random slopes to 

account for multiple observations for each participant, in which they were exposed to each 

combination of Classifier Performance, Image Clarity, and Interface within the experiment. 

Additionally, a Kruskal-Wallis test was also conducted to examine the effect of interface 

on subjective task-load scores (NASA-TLX). Effect sizes were calculated for each main 

effect using partial eta squared. Pairwise comparisons for significant main effects were 

carried out using contrasts from the ‘emmeans’ package, with Bonferroni corrections 

applied to account for multiple comparisons (Lenth, 2020). 

 

I'd expect to see some random slopes, something like `A*B*C + (A*B*C|ID)`, because you have 
multiple observations for each ID for every level of A*B*C (if I've understood your design correctly).  

 

3.3.5.2 Additional analyses 

Nonparametric Kendall’s tau correlations were used to examine the relationships 

between participants’ PTMQ scores and their average trust towards the classifier, as well 

as their average compliance with the classifier, which we compared across each 

combination of Classifier Performance and Image Clarity.  

3.3.5.3 Visualisations 

Static and interactive visualisations were created using the ‘ggplot2’ and ‘plotly’ R 

packages (Wickham, 2016; Sievert, 2020).  

3.3.5.4 Data Availability 

An anonymised version of this dataset is available through the UK Data Service 

ReShare repository here: https://dx.doi.org/10.5255/UKDA-SN-854151. The UK Data 

Service is funded by the Economic and Social Research Council (ESRC) who provided 

funding for this project.  

https://dx.doi.org/10.5255/UKDA-SN-854151
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3.4 Results 

3.4.1 Classifier Performance and Image Clarity 

3.4.1.1 Trust  

Overall, trust was highest in trials where the classifier was correct, and lowest in 

trials where the classifier was incorrect (Figure 3, and Table 1). However, this relationship 

was complicated by the clarity of the image. Participants’ trust tended to be closest to the 

grand mean (M=45.77) when processing unclear images, and furthest when processing 

clear images. For example, if the classifier’s label was correct yet the image was unclear 

(Correct-Unclear: M=51.25, SD=16.02), trust tended to be lower towards the classifier, 

compared to when the images were clear (Correct-Clear: M=72.07, SD=22.77). Inversely, 

when the classifier was incorrect trust was higher for unclear images (Incorrect-Unclear: 

M=36.12, SD=15.50), and lower for clear images (Incorrect-Clear: M=23.62, SD=16.75). 

ART-ANOVA for Trust revealed a significant interaction between Classifier Performance 

and Image Clarity F(1,73)=205.27,  p<0.001, ηp2=0.74, and significant main effects for 

both Classifier Performance F(1,73)=226.49,  p<0.001, ηp2=0.76, and Image Clarity 

F(1,73)=24.8,  p<0.001, ηp2=0.25. This supports H1a: The classifier’s performance was the 

main driver of trust towards the classifier. This also supports H1b: Image Clarity 

significantly interacted with system performance when influencing trust towards the 

classifier. 
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Figure 3 

Trust scores for each image used in the experiment, arranged by accuracy.  

Note. Stimuli arranged by participants’ average accuracy rating of classifier’s label for the 

image. Dashed line represents grand median trust. 

3.4.1.2 Compliance 

A similar pattern emerged when examining how participants accepted and rejected 

the classifier’s labels (Figure 4, Table 1). ART-ANOVA for Compliance revealed a 

significant interaction between Classifier Performance and Image Clarity F(1,73)=544.24, 

p<0.001, ηp2=0.88, and a main effect for Classifier Performance F(1, 73)=1275.09, 

p<0.001, ηp2=0.95. However, there was no significant main effect for Image Clarity 

F(1,73)=1.21, p=0.27, ηp2=0.02.  
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Figure 4 

Difference between trust and compliance for each image used in the experiment, arranged 

by accuracy. 

 

Note. Stimuli arranged by participants’ average accuracy rating of classifier’s label for the 

image. 

3.4.1.3 Familiarity 

In general, participants were more familiar with the images in the Correct-Clear 

and Incorrect-Clear combinations, and less familiar with the images in the Correct-Unclear 

and Incorrect-Unclear combinations, as we expected (Table 1). While there was no 

difference in familiarity between the Correct-Clear (M=92.89, SD=8.58) and Incorrect-

Clear (M=92.31, SD=9.15) stimuli, there was however a difference between the stimuli in 

the Correct-Unclear (M=41.30, SD=14.39) and the Incorrect-Unclear combinations 

(M=29.89, SD=12.82). Therefore, we cannot rule out the possibility that some of the 

differences in Trust and Compliance were related to differences in Image Familiarity in the 

unclear images. ART-ANOVA for Image Familiarity revealed a significant interaction 

between Classifier Performance and Image Clarity F(1,73)=175.22, p<0.001, ηp2=0.71, 

and main effects for both Classifier Performance F(1,73)=226.94, p<0.001, ηp2=0.76, and 

Image Clarity F(1,73)=798.24, p<0.001, ηp2=0.92.  
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3.4.2 Propensity to Trust Machines 

3.4.2.1 Trust 

Participants’ total scores in the PTMQ were distributed as follows: M=28.25, 

SD=7.03, Range=11.25-39.30. PTMQ scores predicted higher trust towards the classifier in 

three of the four different combinations of Classifier Performance and Image Clarity 

(Figure 5). While these relationships are relatively weak, they suggest that individual 

differences may inform trust towards an AICS, particularly when processing unclear 

images, where system performance may be harder to evaluate. Specifically, participants 

with higher PTMQ scores were more likely to trust the classifier during Incorrect-Clear 

trials: r𝜏=0.09, p<0.05, Incorrect-Unclear trials: r𝜏=0.12, p<0.01, and during Correct-

Unclear trials r𝜏=0.14, p<0.001, yet interestingly this relationship was not present during 

Correct-Clear trials r𝜏=0.06, p=0.101. Nonetheless, this supports H1c: Participants with 

higher PTMQ scores tended to trust the classifier more when processing unclear images, 

where performance may be more difficult to evaluate. 
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Figure 5 

Correlations between participants’ PTMQ scores and average trust towards the classifier.  

 

Note. Correlations calculated for each type of performance in each block. 

3.4.2.2 Compliance 

PTMQ scores predicted higher compliance with the classifier in only 2 of the 4 

different combinations of Classifier Performance and Image Clarity (Figure 6). 

Specifically, participants with higher PTMQ scores were more likely to accept the 

classifier’s label only when the classifier was correct, during Correct-Clear trials: r𝜏=0.15, 

p<0.001, and Correct-Unclear trials: r𝜏=0.1, p<0.05. PTMQ scores did not predict greater 

compliance during Incorrect-Unclear trials: r𝜏=0.01, p=0.83, and Incorrect-Clear trials: r𝜏=-

0.02, p=0.62. 
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Figure 6 

Correlations between participants’ PTMQ and average compliance with the classifier. 

 

Note. Correlations calculated for each type of performance in each block. 

3.4.3 Interface Differences 

3.4.3.1 Trust 

Across the classifier’s different interfaces, trust was highest towards the Numerical 

interface (M=47.45, SD=25.27), and lowest towards the Control interface (M=44.74, 

SD=26.05) (Figure 7, Table 2). Despite this, trust towards the classifier was not 

significantly increased when participants worked with the experimental interfaces. While 

they did not improve trust, most participants reported an explicit preference for working 

with the interfaces that displayed SCI, suggesting they still found them beneficial on some 

level (Table 2). ART-ANOVA for Trust revealed no significant main effect of Interface 

F(3,219)=1.66, p=0.18, ηp2=0.02. Thus, H2a was not supported: SCI did not improve 

overall trust towards the classifier. Moreover, there was no interaction between Interface 

and Classifier Performance, nor was there between Interface and Image Clarity. Thus, 

when the classifier’s performance was difficult to evaluate, SCI did not improve 

participants’ trust towards the classifier. This means that H2b was also not supported: 

confidence information did not improve trust when processing unclear images. 
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Figure 7 

Participants’ Trust and compliance with the classifier when witnessing each performance 

type with each interface.  

 

 

Note. Dashed line represents overall median trust towards the classifier, and dotted line 

represents median compliance with the classifier. White diamonds represent individual 

means for each combination. Black dots represent outliers. 

3.4.3.2 Compliance  

Participants were most likely to accept the classifier’s label when working with the 

Graphical interface (M=47.34, SD=35.84), and least likely when working with the 

Iconography interface (M=45.27, SD=36.17) (Figure 7, Table 2). Despite there being no 

difference in trust between experimental interfaces, there were small significant differences 

in compliance with the classifier, suggesting some participants may have been more likely 

to accept the label provided by the classifier when it provided them with confidence 

information. ART-ANOVA for Compliance revealed a small main effect of Interface 

F(3,219)=3.26, p<0.05, ηp2=0.04. However, pairwise comparisons suggest the differences 

between interfaces were nonsignificant: with the most notable being between the Graphical 

and Iconography interfaces (p=0.098) and between the Graphical and Numerical Interfaces 

(p=0.134). There were no interactions involving the interface factor.  
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3.4.3.3 Post-Hoc Power Analysis for Trust Model 

Post-Hoc power analysis was conducted for examining the influence of SCI 

interface cues on participants trust scores. Our sample size for this experiment was 74 

participants, with 4 observations (averaged values for each combination of classifier 

performance and image clarity) for each of the 4 interface conditions. The ART-ANOVA 

model for Trust Scores had a ηp2=0.02, suggesting we only had a 1-β power of 0.835. To 

achieve a 1-β power of 0.95 based on a within subjects design of 4 groups with 4 

observations, we may have needed a sample size of around 108 for full power in this study. 

 

3.4.5 Task Load  

3.4.5.1 NASA-TLX 

A Kruskal-Wallis test on participant’s subjective task load scores revealed no 

differences between the experimental and control interfaces H(3)=0.401, p=0.94, (See 

Table 2). This suggests that the extra information presented by the classifier’s experimental 

interfaces did not increase participants’ subjective workload.   

3.4.5.2 Trial Time  

On average, participants spent the most time (seconds) per trial when working with 

the Graphical interface (M=19.24, SD=7.21), and the least time with the Control interface 

(M=16.43, SD=6.83). This suggests that participants did not necessarily ignore the extra 

information presented within the experimental interfaces, particularly when working with 

the Graphical interface. There were also significant differences in Trial Time relating to 

Classifier Performance and Image Clarity, however these were less interesting. This was 

because participants were expected to take longer in trials when the classifier was 

incorrect, given they had to overwrite the classifier’s label, and in trials with unclear 

images, given the classifier’s performance is harder to interpret. ART-ANOVA on Trial 

Time revealed a main effect of Interface F(3,219)=11.47, p<0.001, ηp2=0.14, which 

suggests that participants took longer to complete trials when presented with the 

classifier’s SCI. Pairwise comparisons illustrated most of the significant differences were 

attributable to the Graphical interface, in comparison to the Control (p<0.001), 

Iconography (p<0.001) and Numerical interfaces (p<0.05). There were also significant 

main effects for Classifier Performance F(1,73)=206.14, p<0.001, ηp2=0.74, and Image 

Clarity F(1,73)=41.77, p<0.001, ηp2=0.36, as well as an interaction between Classifier 

Performance and Image Clarity F(1,73)=91.95, p<0.001, ηp2=0.55.  

Thus, H2c was not completely supported outright, as SCI presented in the 

experimental interfaces did not increase subjective participants’ task load scores. However, 
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there were significant differences attributable to experimental interfaces when considering 

the average time spent per trial as an objective measure of task load, with the Graphical 

interface generally being the most time consuming. 
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3.5 Discussion 

This study sought to understand how individuals calibrated their trust towards an 

AICS when completing an image classification task. Trust towards the classifier was 

primarily based on the accuracy of the system’s description of images. Trust tended to be 

highest when the classifier’s label was correct, and lowest when incorrect. However, the 

clarity of the image being processed also influenced trust, such that if the contents of the 

image were clear then participants were more extreme with their trust, yet with unclear 

images their trust regressed towards the mean. Moreover, there was also evidence of 

individual differences amongst participants. The participants with a positive bias towards 

machines, as indicated by higher scores on the PTMQ, tended to trust the classifier slightly 

more when processing unclear images. Thus, this study provides an insight into how 

human users place trust in a system designed to make classifications on image-based data, 

and expands upon this by also exploring how environmental and interpersonal factors 

contribute to users’ trust towards the system.  Additionally, we further built upon this by 

investigating whether trust towards the classifier could be improved by increasing system 

transparency through different displays of SCI, yet found little support with the formats we 

used. The implications of these findings are discussed below.  

3.5.1 Trust Towards an AICS 

In line with previous research, system performance was the primary driver of trust 

towards the AICS (Hoff and Bashir, 2015; Yu et al., 2019). This is unsurprising, given 

autonomous systems are typically designed to handle a specific set of tasks, and therefore 

task errors represent a violation of their fundamental purpose. However, evaluations of 

AICS performance seemed to extend beyond simple correct vs. incorrect judgements, as 

trust towards the classifier varied within correct and incorrect trials. This possibly reflects 

the nuance in the image classification task, where the classifier must go into more detail 

than the simpler yes/no type judgements provided by other autonomous systems (Yu et al., 

2019; Merritt et al., 2013). At the same time, we should also consider that the classification 

of images is a relatively familiar task that the human user can often complete by 

themselves. By contrast in Selkowitz and colleagues’ (2017) study, the robotic squad 

member provided users with various forms of navigational and situational data and is 

therefore arguably a more complicated task for the user to undertake. Undoubtedly, the 

greatest benefits of AICS will arise in applied settings when users are tasked with 

processing large quantities of data, instead of individual images. Nonetheless, our results 

provide an interesting insight into how individuals perceive the decisions of AICS systems. 
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For example, when the classifier incorrectly labelled one image of a rowboat as a 

speedboat participants’ average compliance was low, yet trust remained relatively high, 

despite the error (Figure 4). This illustrates how participants were able to accommodate 

errors when there is categorical overlap between classifications, and may itself be worth 

further, more rigorous investigation in future studies.  

Evaluations of classifier performance were also informed by how difficult the 

image was to classify: if the contents of the image were clear, trust was generally higher 

when correct, and lower when incorrect, compared to when processing images with unclear 

contents. This appears in line with previous research where trust towards an autonomous 

baggage scanner was also influenced by the difficulty of the task (Merritt et al., 2013). By 

building on this, our study illustrates how task difficulty, considered as a component of 

Situational Trust within Hoff and Bashir’s (2015) model, can also influence trust towards 

AICS. Moreover, participants’ compliance with the classifier was also informed by the 

difficulty of the task. Compliance was typically highest in trials where the classifier was 

clearly correct, and lowest in trials where it was clearly incorrect. However, this 

compliance was less uniform in trials with unclear images, suggesting participants were 

more likely to replace the classifier’s labels in difficult trials. Similar to this, changes in 

task difficulty have been shown to influence how medical practitioners use Clinical 

Decision Support Systems (CDSS). Goddard and colleagues (2014) report that 

practitioners were more likely to switch decisions when working with a CDSS in scenarios 

requiring difficult prescriptions. While this uncertainty may appear detrimental to the 

operator, Lyell and colleagues (2018) report that using CDSS helped lower users’ 

cognitive load when dealing with more difficult prescriptions. Therefore, when working 

with autonomous systems to overcome difficult tasks, the advice of the system may still be 

beneficial even if the system’s decision is ultimately replaced or overruled by the operator. 

While it is worth noting that the increase in difficulty in the previous studies differs from 

the methods used in the current study, our findings provide further illustration of how 

changes in the difficulty of the task may influence how operators use autonomous systems. 

Additionally, there were individual differences between participants’ trust towards 

the classifier, which may be attributable to their PTMQ scores. Specifically, individuals 

with higher PTMQ scores tended to have slightly higher trust towards the classifier, 

particularly during trials with unclear images. Interestingly, higher PTMQ scores also 

correlated with higher compliance with the classifier, but only in trials where the classifier 

was correct. This may suggest that while the individuals with higher PTMQ scores tended 

to trust the classifier more, they remained critical of its performance and their positive bias 
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did not correspond with higher acceptance of incorrect labels. Within Hoff and Bashir’s 

(2015) model, these individual differences are indicative of Dispositional Trust specific to 

each operator. The importance of individual differences is also illustrated within models of 

technology acceptance, which recognize the influence of moderating factors such as the 

age, gender, and experiences of the operator (Venkatesh et al., 2012). Here, we used 

convenience sampling in our participant recruitment, and therefore primarily focussed on 

PTMQ scores as a measure of individual differences. Nonetheless, this echoes previous 

findings where individuals with higher PTMQ scores and greater Automation Bias tended 

to place more trust in autonomous technologies (Merritt et al., 2013; Goddard et al., 2014). 

Therefore, our findings support previous literature suggesting that individual differences 

can influence trust and attitudes towards autonomous technology. In particular, we 

demonstrate that biases towards technology could make individuals more likely to trust an 

AICS when working with it, yet crucially these biases do not automatically translate into 

making the individual more likely to accept erroneous decisions from the system.  

3.5.2 Improving Trust 

Both the SAT model (Chen et al., 2014) and Hoff and Bashir’s (2015) model 

suggest that users are more likely to trust autonomous systems with more transparent 

interfaces. However, we found little support for SCI improving trust towards the AICS, 

despite previous evidence suggesting confidence information can benefit trust towards 

autonomous systems (Zhang et al., 2020; Desai et al., 2013). For example, there was no 

apparent benefit to trust during the more difficult trials with unclear images, despite SCI 

providing greater information about the classifier’s decision. It is possible that the formats 

we used to convey SCI were not optimal, and that participants were unable to effectively 

extract the information. This possibility is consistent with previous evidence suggesting 

that individuals may have difficulty understanding information presented in formats such 

as bar graphs (Chaphalkar & Wu, 2020; Godau et al., 2016). Likewise, as discussed above, 

the image classification task itself may have been relatively easy for participants to 

complete by themselves, meaning that the classifier’s decisions, and by extension SCI, 

may have been of limited use to participants. Additionally, any potential benefits from SCI 

may have been lost due to the low overall reliability of the classifier within our experiment, 

which stemmed from our experimental design. Hoff and Bashir (2015) consider system 

reliability as a subcomponent of system performance, and while design features such as 

SCI can improve system transparency, any benefits to trust may be lost due to system 

reliability being more influential than transparency. This could be supported by 

participants’ responses during debriefing, where they rated the classifier as more a tool 
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than a teammate, and often found it unpredictable (Table 3). Future studies may benefit 

from employing high and low reliability conditions, in order to explore this further.   

Despite this low reliability, participants still found the classifier helpful (Table 3). 

Moreover, they overwhelmingly preferred working with the classifier’s SCI interfaces 

(Table 2) and did not appear to feel encumbered by the extra information, which still 

suggests SCI is potentially beneficial. Furthermore, participants spent the most time per 

trial with the experimental interfaces, particularly the Graphical interface (Table 2). While 

this does not automatically mean that SCI improved participants’ comprehension of the 

classifier’s decisions, it does suggest some processing of this confidence information. 

While we were primarily interested in trust towards an AICS, it would be beneficial to 

examine whether SCI can improve users’ understanding of these systems. Alongside 

developing appropriate trust towards autonomous systems, there is also a growing interest 

in promoting the explainability of autonomous systems, particularly given the ‘black box’ 

nature of contemporary machine learning approaches (Abdul et al., 2018). In future studies 

it would be useful to examine whether displays of SCI can improve the explainability of 

AICS decisions. This may be particularly well-suited to cases when a classifier assigns the 

same classification to two distinctly different objects that share similar image features, 

such as texture and shape.  

3.5.3 Beyond Confidence Information 

Ultimately, trust towards the AICS could be limited by the way that AICS systems 

use deep learning techniques when learning to classify images, which can make their 

decision-making inherently difficult to explain (Gilpin et al, 2019). As a result, these 

systems may lack the explainability of other autonomous systems, which may make them 

fundamentally difficult to trust completely (Rudin, 2019). A recent paper by Chen and 

colleagues (2019) suggested that the decisions of AICS can be made easier to interpret by 

highlighting important features within sections of an image, through visual cues such as 

bounding boxes, in order to support the classification for the full image. By doing so, Chen 

and colleagues (2019) argue that AICS can mimic the reasoning process of humans when 

classifying images, where the system can illustrate to the user that the classification is 

based upon shared features with a prototypical image of the classification, essentially: “this 

image looks like that image”. Thus, the ‘black box’ nature of AICS systems might mean 

that providing SCI alone could be inappropriate for improving trust, and instead users’ 

trust could ultimately benefit from efforts that make AICS decisions more easily 

interpreted. Our lack of empirical support for SCI improving trust towards the AICS may 

be disappointing for potential designers, however these findings still raise important 
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considerations. Designing interfaces for autonomous systems is a complex process, and 

based on our evidence, simply providing a single indicator of system decision-making such 

as SCI, may not be the best way to improve users’ trust, at least in the case of AICS. While 

displays of SCI have shown promise in previous studies, (Verame et al., 2016; Zhang et al., 

2020), it may not be a ‘magic bullet’ for improving trust towards all automation. 

Nonetheless, while SCI did not explicitly improve participants’ trust towards the AICS, 

most participants still preferred interfaces that displayed SCI, which suggests it might be 

beneficial to some degree. Thus, this study motivates further research into developing 

novel methods for conveying the decision making of systems like AICS.  

3.5.4 Limitations 

This study involved interaction with an AICS in a relatively low stakes task, where 

participants worked with the classifier to label neutral stimuli. Applied uses of AICS may 

also include higher stakes tasks, such as identifying patients with diseases (McKinney et 

al., 2020). In such cases, trust towards an AICS may be even more susceptible to system 

errors, given the more serious consequences of false alarms and missed cases. By contrast, 

in our experiment there were no consequences associated with system errors. Regardless, 

participants still modulated their trust in response to system successes and errors, while 

they tended to comply with the classifier only when it was correct, suggesting they took the 

task seriously despite these low stakes. Future studies may wish to build upon these 

findings by introducing greater consequences for task errors.  

3.6 Conclusion  

During a human-computer image classification task, trust towards an AICS was 

primarily based on the classifier’s ability to label images. Additionally, image clarity 

significantly interacted with AICS performance, and further informed participants’ ratings 

of trust and compliance, illustrating the role of task difficulty in their evaluations. 

Furthermore, some of the variance in trust towards the AICS appeared to have been 

attributable to individual differences amongst participants, as those with higher propensity 

to trust machines scores tended to have slightly higher trust towards the classifier. Lastly, 

while most participants preferred interfaces that displayed system confidence information, 

it did not appear to improve their trust towards the classifier, despite previous studies 

suggesting confidence information can improve trust. 
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3.7 Data Tables 

Table 1  

Descriptive statistics for Trust Score, Label Accuracy, Image Familiarity, Compliance, and Time as a function of Performance Type.  

 

 Trust (%) 
Label  

Accuracy (%) 

Classifier 

Compliance (%) 

Familiarity  

of Images (%) 

Time Per Trials 

 (Seconds) 

Performance Type M SD M SD M SD M SD M SD 

Correct & Clear 72.07 22.77 92.19 7.13 86.89 17.77 92.89 8.58 13.10 5.25 

Correct & Unclear 51.25 16.02 59.30 12.35 60.20 24.13 41.30 14.39 17.66 7.02 

Incorrect & Unclear 36.12 15.50 34.46 13.76 31.29 25.08 29.89 12.82 20.26 8.63 

Incorrect & Clear 23.62 16.75 10.32 9.07 6.62 11.35 92.31 9.15 19.98 7.13 
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Table 2 

Descriptive statistics for Trust, Accuracy, Compliance, Familiarity, Time, TLX, Aesthetics and Overall Preference as a function of Interface.  

 
Trust the 

Classifier (%) 

Label  

Accuracy (%) 

Classifier 

Compliance (%) 

Familiarity of 

Images (%) 

Time Per Trials 

(Seconds) 

Task Load 

(NASA-TLX) 

Aesthetic Rating 

(1-7) 

Favourite 

Interface 

Interface M SD M SD M SD M SD M SD M SD M SD (%) 

Control 44.74 26.05 49.28 32.19 46.21 36.52 64.35 30.73 16.43 6.83 224.20 77.83 4.51 1.43 7 

Graphical 45.27 25.44 49.98 31.56 47.34 35.84 63.76 31.40 19.24 7.21 230.68 78.47 4.54 1.39 50 

Iconography 45.60 25.25 47.75 32.53 45.27 36.17 63.81 31.44 17.14 8.02 231.43 85.08 4.62 1.40 17 

Numerical 47.45 25.27 49.27 32.77 46.18 37.16 64.49 30.59 18.18 8.23 225.57 80.12 4.53 1.48 26 
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Table 3  

Descriptive statistics for responses to Questions 1-6 from Debriefing Questionnaire  

 Response (1-7) 

 M SD 

How helpful did you think the classifier was?  

<Not at all / A Great Help>  
4.63 0.87 

How predictable was the classifier’s behaviour?  

<Predictable / Unpredictable> 
4.64 1.38 

How specific did you think the classifier’s labels were?  

<Too Specific / Too General>  
3.44 1.12 

If you had to describe it to someone, 
 how you would characterise the classifier?  

<Teammate / Tool>  
5.48 1.50 

If you had to classify another set of images,  

would you want to work with the classifier again? 

 <With Classifier / Alone>  
2.97 1.37 

If you had to classify another set of images,  

which type of collaborator would you prefer? 

 <Computer / Human>  
4.54 1.51 
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Chapter 4: Promoting Better Understanding and Appropriate 

Trust When Working with an Autonomous Image Classifier  

4.1 Abstract 

 When designing autonomous systems, there are a variety of ways in which the 

system’s decision making can be made more transparent to the user. When provided with 

relevant decision support information, the user may trust the system more appropriately, 

and may also report better understanding of the system’s decisions. We investigated 2 

different cues of decision support information (System Confidence Information and 

Gradient-weighted Class Activation Mapping) to see whether they can promote trust 

towards an autonomous image classifier. We also explored whether these cues improve 

users’ self-reported understanding of the system’s decision making. These cues were 

provided intermittently across 8 experiment blocks, in which participants collaborated with 

the classifier to complete an image classification task featuring 240 single-image trials. 

Participants worked with each of the 4 interfaces twice, across both conditions of High 

Reliability (90% correct) and Low Reliability (60% correct). Results suggest that trust was 

not improved by the addition of any of the experimental cues. However, participants 

reported greater understanding of system decision making when working with the interface 

that provided Gradient-weighted Class Activation Mapping. This suggests that users may 

benefit from cues that visualise the image areas/features that are relevant to classifier 

decision making. Additionally, participants typically preferred the classifier interface that 

provided the most detailed version of the systems’ decision support information, 

suggesting these cues remain useful to users. 

4.2 Introduction 

For all the ingenuity and innovation required to develop new technologies, their 

ultimate success depends on their adoption by human users. Originally, models of 

technology adoption centred only on the perceived usefulness and ease of use of the system 

(Davis, Bagozzi, and Warshaw, 1989). However, extensive work by Viswanath Venkatesh 

has since highlighted many other potential factors which can inform a human user’s 

adoption of technologies, including habits, their previous experiences, and even the price 

of the system (Venkatesh & Davis, 2000; Venkatesh et al., 2012; Venkatesh, 2015). 

However, for autonomous technologies to be successfully adopted, there is an additional 

emphasis on the user being able to trust the system, given it will be operating with a degree 

of independence from the user. 
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Blindly trusting an autonomous system is inappropriate; instead, trust should be 

calibrated to ensure that it accurately reflects the performance of the autonomous system 

(Muir, 1987). In doing so, the user will not place too much trust in an error-prone machine 

(mistrust), nor will they place too little trust in a competent system (distrust) (Parasuraman 

& Riley, 1997). However, evidence suggests that there are many kinds of factors which 

can influence users’ trust towards autonomous technologies. Some are relatively 

straightforward: system performance and task accuracy closely align with trust towards 

autonomous systems (Yu et al., 2019; Papenmeier et al., 2019). Some are less immediately 

apparent, and illustrate more complex psychological influences on users’ trust: individuals 

working with cognitive agents preferred systems with more anthropomorphic features i.e. 

human-like traits (De Visser et al., 2016). Hoff and Bashir (2015) integrate these different 

factors by considering 3 layers of trust that inform the way individuals use autonomous 

systems. Dispositional trust covers human-centric factors related to the user, situational 

trust covers operational task and environment-related factors, whilst dynamic trust covers 

factors related to the autonomous system itself, and the user’s experience of similar 

systems (Hoff & Bashir, 2015). Ultimately, these layers are combined to inform the user’s 

continued reliance on the system. Therefore, the successful implementation of autonomous 

technologies is closely linked to their ability to garner appropriate trust from users. 

4.2.1 Trust Towards Autonomous Image Classifiers 

In our previous experiment, we explored how human users calibrated their trust 

specifically towards an autonomous image classifier system (AICS), when collaborating in 

an image classification task (Ingram et al., 2021). AICS are autonomous systems which 

can be trained to process large quantities of image data, in order to reduce the demand on 

human collaborators. Using Hoff and Bashir’s (2015) model, we examined how 

dispositional, situational, and system-based factors all influenced users’ trust towards the 

AICS. Our experiment was separated into two main components: 1. Examining how 

participants’ trust was linked to the performance of the classifier, and 2. Exploring whether 

trust towards the classifier could be improved by providing additional information about 

system performance. 

From the first component, we found that users’ trust was primarily based upon the 

classifier’s performance; whether it was able to correctly identify the contents of the 

image. When the classifier was correct trust towards the classifier was typically higher, 

whilst trust tended to be lower when the classifier was incorrect. This relationship between 

trust and system performance was also influenced by the quality of the image being 

processed. When the contents were clear and easily identifiable, participants were more 
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decisive with their trust ratings; high trust when correct, and low trust when incorrect. 

However, when processing low quality images (i.e. blurred and partially occluded 

contents), participants were less decisive with their trust, and often gravitated towards the 

midpoint of the scale we provided when reporting their trust. This suggested participants’ 

evaluations of the AICS were also informed by the difficulty of the task. There was also 

evidence of individual differences in trust towards the AICS; participants’ scores in the 

Propensity to Trust Machines Questionnaire (PtTMQ) (Merrit, 2011) correlated positively 

with increased trust towards the classifier. These findings were in line with Hoff and 

Bashir’s (2015) model and also replicated findings from a similar study involving an 

automated baggage scanner (Merritt et al., 2013). However, our findings were less 

straightforward within the second component of our experiment, when we attempted to 

improve participants’ trust towards the classifier by displaying the system’s decision-

making information. 

4.2.2 Improving Trust Towards an AICS 

Evidence suggests that providing users with more detailed information about 

system processes can increase trust towards the system, as it can make the system’s 

decision-making more transparent (Chen et al., 2014; Desai et al., 2013; Mercado et al., 

2016; Selkowitz et al., 2017; Tomsett et al., 2020; Zhang et al., 2020). A popular method 

for improving transparency is the use of System Confidence Information (SCI), which 

illustrates the system’s uncertainty about its decisions, and has previously improved users’ 

trust towards a variety of autonomous systems (Desai et al, 2013; Verame et al., 2016; 

Zhang et al., 2020). In Ingram and colleagues (2021) we compared three different forms of 

SCI by presenting the classifier’s confidence in the following ways: 1. Confidence 

discretised with colours (Iconography), 2. Confidence as a percentage (Numerical), 3. 

Confidence as a bar graph visualising the 5 most probable labels for each image 

(Graphical). Despite previous findings, we found limited support for SCI improving 

participants trust towards the AICS. When compared against a control interface without 

SCI, there was no obvious increase in trust towards the three experimental interfaces 

featuring SCI. However, when we asked participants to state their explicit preference for 

one of the four interfaces used in our experiment, they overwhelmingly preferred the 

interfaces featuring SCI. Moreover, the strongest preferences were for the Graphical and 

Numerical interfaces, which provided the most detailed form of SCI. Thus, while SCI did 

not improve trust towards the classifier, it appears participants may have found the SCI 

beneficial in some capacity. We speculated that this may be explained by the relatively low 

reliability of the AICS throughout the experiment (discussed in greater detail later). 
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The other factor that we have since considered was whether the nature of the image 

classification task may have meant that SCI was less useful to users, as it only illustrated 

the system’s certainty when classifying images. It is possible that trust towards the AICS 

could be improved by presenting users with a more meaningful cue of system decision-

making. It is also possible that SCI may not have been easily understood by some 

participants, as it may require some understanding of how probabilities work in order to be 

useful. Thus, instead of comparing different forms of SCI against each other, in the current 

research we compare one form of SCI (an amalgamation of the Numerical and Graphical 

interfaces used in Ingram et al., 2021) with an entirely different cue of classifier decision-

making: Gradient-weighted Class Activation Mapping (commonly known as Grad-CAM 

or CAM).  

4.2.3 Gradient-weighted Class Activation Mapping  

CAM is method for visualising the activity of neural networks, and can be used to 

highlight the discriminative image areas used by an AICS when identifying the contents of 

image data (Jia & Shen, 2017; Selvaraju et al., 2017; Yang et al., 2019; Mukhopadhyay et 

al., 2020). Simply put, this allows for visualisation of the areas which are most influential 

for each classification, often illustrated in the form of a heatmap where warmer colours 

represent greater activity (Selvaraju et al., 2017; Yang et al., 2019). For example, Jia and 

Shen (2017) employed CAM to illustrate how their neural network identified skin lesions, 

by visually demonstrating that the majority of classifier activity was centred on areas of 

damaged tissue. In theory CAM represents an intuitive way to illustrate the decision-

making of an AICS to human users. Chen and colleagues (2019) suggest that cues such as 

CAM can be used to make the decision making of AICS more interpretable, by mimicking 

the way that humans explain their decisions when making classifications. However, Rudin 

(2019) cautions that CAM may not be the perfect way to support AICS decisions. She 

suggests that even if a user knows there is greater network activity around certain parts of 

an image, this does not necessarily translate into the user knowing what the network 

actually does with those areas. Nonetheless, given increased transparency can improve 

trust towards other autonomous systems, we believe that it remains equally possible that 

both SCI and CAM may be beneficial to users’ trust. While SCI illustrates the classifier’s 

certainty for the label(s) it provides, CAM illustrates the areas of the image that were most 

informative in the classification, and it is unclear whether one cue will be more beneficial 

than the other for improving users’ trust towards an AICS. Previous studies have typically 

focussed on investigating ways to increase the spatial accuracy of CAM methods (Patro et 

al., 2019; Yang et al., 2019), yet to our knowledge there have been no formal 
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investigations of how CAM can be used to inform trust towards an AICS. Thus, we used 

an additive model to assess whether trust towards an AICS can be improved by making the 

system more transparent through both CAM and SCI. We created 3 experimental interfaces 

which provided different cues to support AICS classifications, which were compared to a 

basic interface with no cues of decision-making (Control - See Figure 8A). These 

experimental interfaces were: 1. System Confidence Information only (SCI - See Figure 

8B). 2. Class Activation Mapping only (CAM - See Figure 8C). 3. Confidence Information 

and Class Activation Mapping (SCI+CAM - See Figure 8D). By providing participants 

with these different interfaces, we were able to examine the utility of both SCI and CAM 

cues and hypothesised:   

(H1a): Trust towards the classifier will be increased when working with the experimental 

interfaces. 

(H1b): Trust will be highest when working with the SCI+CAM interface, as it provides the 

most detailed information. 

 

 

 

 

 

 

 

 

 

Figure 8  

Decision Support Information offered by the Classifier within each Interface.  
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Note. Control Interface (A) only provided labels for images, while additional information 

was provided in SCI (B), CAM (C) and SCI+CAM (D) interfaces. Further details are 

provided within the Methods section.   

4.2.4 Understanding the Classifier  

As autonomous technologies have become more capable of undertaking complex 

tasks, there has also been an increasing interest in promoting the explainability of these 

systems, particularly with neural networks which are often criticised for being ‘black box’ 

systems (Abdul et al., 2018; Ribera & Lapedriza, 2019). Explainability is characterised as 

the system’s ability to convey the reasoning behind its decision-making, thereby 

facilitating greater understanding from human users (Gilpin et al., 2019). Theoretically, 

there may be some overlap between a user’s understanding of an autonomous system and 

their subsequent trust towards the system. If the user is more capable of understanding the 

decision making of an autonomous system, then it is plausible they may be better placed to 

calibrate their trust towards the system more appropriately. That being said, trust towards 

automation should not be entirely dependent upon the user’s understanding of how the 

system works, particularly with more complex systems. For example, an operator may be 

able to appropriately trust an autonomous system designed to manage a swarm of drones, 

even though they may never be able to fully understand the how the system coordinates so 

many different streams of information. Ultimately, comprehension of the decision-making 

of autonomous systems will undoubtedly vary between different machines and tasks. 

When evaluating the performance of an AICS, there is significant scope for human 

users to understand the decision-making of the system, given visual identification and 
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object classifications are inherently familiar tasks for humans (Doniger et al., 2001). In 

Ingram and colleagues (2021), SCI did not improve trust towards the AICS, however we 

also speculated that most participants may still have preferred the interfaces with SCI 

because they offered better insight into the classifier’s decision-making. While we 

anticipate that SCI and CAM may improve user’s trust towards an AICS, we also expect 

that these cues may increase the explainability of the system, and thereby improve users’ 

understanding of the system’s decision-making. However, Rudin (2019) argues there 

should be distinction between an explainable system and an interpretable system, wherein 

an explainable system is retroactively explained to the user through cues such as CAM or 

SCI, while an interpretable system would be inherently understandable by the user. Rudin 

(2019) also argues that developers should put more emphasis on designing systems which 

are interpretable, particularly when the system is intended to make high-stakes predictions, 

such as in parole decisions. While these are important points that should be addressed in 

future work, the design of interpretable systems is outwith the scope of this research, and 

we will primarily focus on how CAM and SCI can increase the explainability of AICS 

decision-making. We anticipated that both CAM and SCI would improve comprehension 

of classifier decisions, given both cues increase system transparency, relative to the control 

interface. Moreover, in line with the Chen and colleagues (2014) and Selkowitz and 

colleagues (2017), we hypothesised that the participants’ understanding of classifier 

decisions would be highest when provided with both SCI and CAM cues together:   

(H2a): Participants’ understanding of the classifier will be increased when working with 

the experimental interfaces.   

(H2b): Participants’ understanding will be highest when working with the SCI+CAM 

interface, as it provides the most detailed information.   

4.2.5 System Reliability and Trust  

In Ingram and colleagues (2021) we suggested our results may have been tempered 

by the low overall reliability of the classifier throughout the experiment (50%), which 

stemmed from our experimental design. From this we speculated that any potential benefits 

to trust from displaying SCI may have been lost, due to the low overall reliability of the 

system. Indeed, a similar study reported that users’ trust towards an automated text 

classifier appeared to be based more on the system’s accuracy, rather than the system’s 

explanations for its decisions (Papenmeier et al., 2019). Likewise, Wright and colleagues 

(2019) suggest that system reliability had a profound influence on users’ trust towards an 

autonomous military squad member, with system transparency having much less influence. 

This suggests that the potential benefits of increased system transparency may be 
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dependent on the overall reliability of the system. In our previous experiment, our analysis 

was primarily focussed on the performance of the AICS in the individual trials within our 

experiment, yet we did not manipulate the system’s overall reliability across the 

experiment. However, evidence suggests that the reliability of the system can have a 

significant influence on users’ trust towards autonomous systems (Sauer et al., 2016; Sauer 

& Chavaillaz, 2017; Hussein et al., 2019). For example, when supervising an autonomous 

squad member, individuals reported higher trust in settings where the system was perfectly 

reliable (100%), compared to when the system was relatively unreliable (67%) (Wright et 

al., 2019). Therefore, we built upon the work of Ingram and colleagues (2021) by 

examining trust towards an AICS in conditions of high reliability (90% Correct trials) and 

low reliability (60% Correct trials). We hypothesised that participants’ trust will likely 

reflect the frequency of errors committed by the AICS within each block: 

(H3): Trust towards the classifier will be highest in high reliability conditions. 

4.2.6 Operators Workload  

It is also important to note that with certain autonomous systems, the way that the 

operator uses the system can directly impact upon the system’s reliability (Ozdemir & 

Kumral, 2019). Therefore, if the human user does not use the system properly, this could 

lead to sub-optimal system performance, which could potentially create a negative 

feedback loop influencing users’ trust towards the system. This is particularly important 

given errors and poor system performance can often require users to correct the system’s 

mistakes, thereby increasing the human operator’s workload (Sauer et al., 2016; de Visser 

& Parasuraman, 2011). As such, we expected to see a significant increase in participants’ 

workload when the AICS presents low reliability, given participants will be required to 

correct the classifier more frequently. We collected subjective workload ratings through 

the NASA Task Load Index (NASA-TLX), and hypothesised:  

(H4a): Participants’ subjective task load scores will increase during low reliability 

conditions.  

While we believed that both the SCI and CAM cues have the potential to be equally 

informative to users, we anticipated that participants may find the CAM interface to be 

slightly more user-friendly as it arguably requires less effort to interpret. That being said, 

when we provided cues of SCI to participants in Ingram and colleagues (2021), we did not 

see an increase in participants’ subjective task load. This suggests that providing a single 

cue of either CAM or SCI alone may not result in an increase in users’ subjective task load. 

However, in our previous study we did see a significant increase in the average time spent 

per trial when participants worked with the most detailed version of the SCI interface. This 
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suggests that displaying cues such as SCI and CAM can indirectly increase the user’s 

workload by giving them more information to process. However, the user may still not 

report a subjective increase in their workload if they find the additional cue(s) to be 

beneficial. Indeed, increasing an autonomous system’s transparency through displays of 

more information may not lead to higher greater workload in operators if the interface is 

well designed (Mercado et al., 2016; Selkowitz et al., 2017).  Nonetheless, it remains 

possible that providing both SCI and CAM together at the same time may significantly 

increase users’ workload, as users will be provided with 2 additional cues of system 

decision-making to process. To assess whether participants become encumbered by SCI 

and CAM cues, we examined participants’ subjective workload (NASA-TLX), as well as 

the average time spent per trial when working with each interface, and hypothesised:   

 (H4b): Participants’ task load will be significantly higher when working with the 

SCI+CAM interface.  

4.2.7 This Study  

Thus, in this study we attempted to build upon the study protocol used by Ingram 

and colleagues (2021), and address questions raised by our findings. We have three main 

avenues of interest, which are reflected in our experimental design: (1.) Can trust towards 

the classifier be improved through greater transparency using SCI and/or CAM cues? (2.) 

Does this transparency improve individuals’ subjective understanding of the classifier’s 

decision-making? (3.) How does the reliability of the classifier inform user’s trust towards 

an AICS? Additionally, we also assessed (4.) How system reliability and interface 

transparency impacted upon the workload of human users when collaborating with the 

classifier.  

4.3 Methods  

4.3.1 Participants  

A total of 49 participants (32F), primarily university students (Mean Age = 26.3, Min = 19, 

Max = 50), were recruited through the University of Glasgow’s School of Psychology 

subject pool. All participants were compensated at a rate of £6 per hour for their time. 50% 

of participants considered themselves native English speakers. Ethical approval was 

obtained from the University of Glasgow’s College of Science and Engineering ethics 

committee. Data collection was paused during the COVID-19 pandemic, and was resumed 

when restrictions were lifted to allow for face-to-face data collection.   
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4.3.2 Design  

A 4x2x2 within-subjects design was used, where participants used each of the 4 

Classifier Interfaces (Control, SCI, CAM, SCI+CAM) within each level of Block 

Reliability (High Reliability, Low Reliability) (8 Blocks total). In each single-image trial 

(8x30, n=240), the classifier’s label would either correctly or incorrectly match the image 

displayed, characterised as Trial Performance (Correct, Incorrect). The proportion of these 

correct and incorrect trials defined the reliability for each of the 8 blocks (4x High 

Reliability = 90% Correct, 4x Low Reliability = 60% Correct). The ordering of blocks was 

pseudo-randomised with the experiment effectively split into two halves. In blocks 1-4, 

participants worked with each interface once, with 2 blocks randomly selected to be high 

reliability, and 2 blocks that were low reliability, and were randomly ordered. In blocks 5-8 

participants worked with each interface again, with the alternative reliability for each 

interface, which was again randomly ordered. The ordering of trials was fixed within each 

block, and defined by the reliability condition (Figure 9). The average participant took 21.5 

seconds to complete each trial, and 10.7 minutes per block.   

  

4.3.3 Materials  

4.3.3.1 Image Classifier   

Participants interacted with an AICS based on the SqueezeNet image classifier 

model (Iandola et al., 2016), which used MATLAB’s Deep Learning and Image Processing 

Toolboxes (MATLAB ver. R2019a). SqueezeNet is a pretrained convolutional neural 

network, trained to classify objects within a 227x227-pixel net. To process each image, the 

file must first be resized to fit these dimensions, after which SqueezeNet can interpret the 

image. Like AlexNet, SqueezeNet can provide the probabilities for multiple possible labels 

for each image, which allowed for creation of the SCI cue, to illustrate the classifier’s other 

possible labels for each image. Crucially, SqueezeNet also allows for representation of the 

CAM, which can illustrate the classifier’s activity in a heatmap-style cue to participants. 

While it is also possible to implement CAM with models such as GoogleNet and ResNet-

18, SqueezeNet provides CAM with a higher spatial resolution than other models 

(Mathworks, 2019). This effectively means the generated heatmaps bind more tightly to 

the objects in the images and should therefore be more informative to participants.  

4.3.3.2 Images  

240 images were selected from the Open Images Dataset V5 (OIDV5) (Now: V6+) 

(Kuznetsova et al., 2020), none of which were featured in our previous experiment (Ingram 
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et al., 2021). These were used to create eight separate sets of 30 single-image trials, which 

featured similar content such as household objects, food items, vehicles, and animals. The 

classifier’s performance was considered as correct when SqueezeNet provided labels 

which appropriately matched the image’s original label in OIDV5, otherwise performance 

was considered incorrect. Trial performance was intrinsic to each image; performance only 

varied between images, and participants only saw each image once.   

4.3.3.3 Reliability  

The classifier’s reliability was blocked into 2 different levels: High Reliability 

(90% of trials correct), Low Reliability (60% of trials correct), which was achieved by 

controlling the proportion of correct and incorrect trials within each of the 8 sets of images. 

In high reliability image sets there were 27 correct trials and 3 incorrect trials (90%), with 

18 correct trials and 12 incorrect trials in low reliability sets (60%). In each block the 

location of correct and incorrect trials was fixed, and was pre-defined based on the 

reliability level. This was done to ensure participants experienced similar types of 

performance with each classifier interface for each level of reliability. However, to ensure 

that this did not make the classifier’s performance become too predictable, we created 2 

scenarios per reliability level (Figure 9). Therefore, each participant completed 2 blocks for 

each of the 4 reliability scenarios. While the location of correct and incorrect trials was 

fixed within these scenarios, the images used for correct and incorrect trials was randomly 

drawn from each set to reduce order effects. This ensured different participants were less 

likely to see the same images during the same trials. 

Figure 9 

Classifier’s reliability in each of the 4 reliability scenarios.    
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4.3.3.4 Image Classification Task  

The experimental task followed a similar protocol to the one used by Ingram and 

colleagues (2021). Participants used a mouse and keyboard to interact with the classifier’s 

Graphical User Interface (GUI), which was built using MATLAB App Designer 

(MATLAB ver. R2019a). In each trial, the target image appeared in the centre of the GUI, 

and the classifier’s label appeared below. Diverging from Ingram and colleagues (2021), 

we simplified how participants chose to accept or reject the classifier’s labels. At the end 

of each trial, participants used one of three buttons to make the appropriate decision for the 

classifier’s label. If they believed it was correct, they used the green ‘Keep’ button to move 

to the next trial. If they believed it was incorrect, they used the red ‘Edit’ button to 

manually overwrite the classifier’s label with their own, before pressing the green ‘Submit’ 

button to move to the next trial. If they had difficulty deciding what the contents of the 

image were, or did not understand the classifier’s label, they used the yellow ‘Unsure’ 

button to signify this, which also moved them to the next trial. Additionally, in Ingram and 

colleagues (2021) we asked participants about their familiarity with the contents of each 

image, however some participants found this wording confusing. Therefore, we attempted 

to simplify this by asking participants how easy they believed it was to label the image 

themselves in each trial instead.  

Like Ingram and colleagues (2021), participants rated the classifier’s performance 

on a visual analogue scale within the GUI, using 4 different interactive sliders. These 
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corresponded with: 1.) How easy it was to label each image, 2.) How accurately they 

believed the classifier’s label described each image, 3.) Whether they understood why the 

classifier made each decision, and 4.) Their overall trust towards the classifier. They were 

instructed that ratings of label accuracy should reflect the classifier’s performance in each 

individual single image trial, while ratings of trust should represent their continuous 

interaction with the classifier throughout the experiment. When reporting their 

understanding, participants were asked to illustrate if the classifier’s decisions made sense, 

irrespective of whether it was correct or incorrect, based on the features within each image. 

All sliders went from 0-100%, represented with visual anchor points of “Not at all” and 

“Entirely”. Data were collected from each slider after each trial and would reset to the 

midpoint (50%) between trials. Each slider would change colour (white) to cue participants 

towards which rating to provide next, guiding the participant throughout each trial. 

Compliance with the classifier was defined as a trial in which the participant did not use 

the ‘Edit’ button.   

4.3.3.5 Interface Differences  

All four interfaces contained the same basic features, such as buttons, sliders, and a 

progress gauge which illustrated the number of images processed by the participant (Figure 

10). The control interface was the default interface and featured no additional cues of 

classifier decision-making (Figures 8 & 10). The SCI interface added a display of the 

classifier’s confidence for each image, which was illustrated as a percentage for the top 

label choice, as well as a bar graph underneath illustrating the distribution of confidence 

for the 5 most likely labels for the image (Figures 8, 10 & 11). The SCI interface combined 

features from the two most popular formats of SCI used in used in Ingram and colleagues 

(2021), which were the bar graph and the numerical percentage.  The CAM interface added 

a display of the classifier’s activation map for each image, which was illustrated as a 

heatmap-style cue overlaid over the image, to illustrate areas of the image with the most 

activations (Figures 8, 10 & 12). The SCI+CAM interface added both the SCI and CAM 

cues, to provide participants with the most information each trial (Figures 8 & 10).  

Figure 10 

SCI + CAM Interface demonstrating classifier GUI, with added CAM and SCI cues.   
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Note. Control interface features neither CAM or SCI cues.   

Figure 11 

Classifier Confidence Information (SCI) illustrating the most probable labels.      

  

  

  

  

  

 

 

Figure 12 

Class Activation Map (CAM) showing areas of image with most activity.     
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Note. Warmer colours illustrate greater network activity when processing the image. 

4.3.3.6 Questionnaires  

NASA-TLX: After each task block, participants reported their subjective task load 

when working with each GUI, on a low-high scale (0-100%) (Hart and Staveland, 1988).  

Propensity to Trust Machines Questionnaire (PTMQ): A series of 6 questions 

where participants rated on a 7-point Likert scale how likely they are to trust machines 

(Merritt et al., 2013).  

Debriefing Questionnaire: Participants answered 9 short questions detailing their 

general thoughts about the classifier (Appendix). They could also expand on each answer 

by writing a short paragraph, to explain these thoughts in further detail.  

4.3.4 Procedure  

All participants read an information sheet explaining the nature of the experiment, 

before giving written consent. The participants then completed the PTMQ. Before the 

experiment began, they were taught to use the basic elements within the GUI. All 

participants were briefly informed how SqueezeNet could provide labels for each image. 

They were told that in certain blocks SqueezeNet would also support its decisions with 

different cues, which were explained in further detail prior to the relevant blocks. In each 

trial, the participant first rated how easy they thought it would be to label the image. The 

classifier then provided the label for each image, to ensure participants’ ability to label the 

image was not informed by the classifier’s label. Participants then rated the accuracy of the 

classifier’s label, and then rated whether they understood why the classifier made the 

decision. Lastly, they rated their overall trust towards the classifier. After this, participants 

decided to keep or replace the classifier’s label for the image, or to report if they were 

unable to evaluate the label. After each block, participants completed the NASA-TLX. 

Following the experiment, all participants completed a short debriefing questionnaire, to 
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give their perceptions of the classifier, before being given a debriefing form, explaining the 

study in further detail.  

4.3.5 Analysis 

4.3.5.1 ANOVA 

We performed non-parametric analyses using the Aligned Rank Transform 

ANOVA (ART-ANOVA) (Wobbrock et al., 2011). This test allowed for examination of 

multiple factors and their interactions within our repeated measures design. Our primary 

dependent variable of interest was: (1) participants’ trust towards the classifier (Trust). In 

addition to this, we wanted to explore (2) how well participants understood the classifier’s 

decisions (Understanding). We also considered (3) the average time taken in trials within 

each combination of conditions (Trial Time). Consequently, three primary ART-ANOVA 

models were conducted, all containing the same three main factors and their interactions: 

Interface, Block Reliability, and Trial Performance, using the ‘ARTool’ package in R 

version 4.0.2 (Kay & Wobbrock, 2020; R Core Team, 2020). Each ANOVA model 

contained random slopes to account for multiple observations for each participant, in 

which they were exposed to each combination of Interface, Block Reliability, and Trial 

Performance.  An additional ART-ANOVA model was also used to measure (4) subjective 

task load scores (NASA-TLX), using only two predictors and their interaction: Reliability 

and Interface. This model did not contain Trial Performance, because NASA-TLX scores 

were collected at the end of each block, and therefore we could only consider block-level 

factors within this model. Effect sizes were calculated for each main effect using partial eta 

squared. Pairwise comparisons for significant main effects were carried out using contrasts 

from the ‘emmeans’ package, with Bonferroni corrections applied to account for multiple 

comparisons (Lenth, 2020). Visualisations were created using the ‘ggplot2’ R package 

(Wickham, 2016).  

4.3.5.2 Data Availability  

An anonymised version of this dataset will be made available by DOI through the 

UK Data Service ReShare repository. The UK Data Service is funded by the Economic and 

Social Research Council (ESRC) who provided funding for this project.  

4.4 Results 

4.4.1 Influence of Interface on Trust  

Participants’ overall trust towards the classifier was highest when working with the 

SCI+CAM interface (M=65.38, SD=24.34), and lowest when working with the CAM 

interface (M=63.47, SD=25.31) (Table 4). The ART-ANOVA model for Trust revealed no 
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significant main effect of Interface F(3,144) = 1.04, p = 0.38, ηp2= 0.02. This suggests that 

there was no overall increase in trust associated with any of the interfaces. When 

examining trust within low reliability blocks, there appeared to be an increase in trust 

between the Control and SCI+CAM interfaces. When the classifier was correct in a low 

reliability block trust was lowest when working with the Control Interface (M=60.06, 

SD=25.66) and highest when working with the SCI+CAM interface (M=64.14, SD=23.47) 

(Table 5 and Figure 13). Likewise, when the classifier was incorrect in a low reliability 

block trust was also lowest when working with the Control Interface (M=40.13, SD=24.11) 

and highest when working with the SCI+CAM (M=45.96, SD=23.76) (Table 5 and Figure 

13). This suggested there was some support for an interaction between Interface and Block 

Reliability, but this was not significant F(3,144) = 2.57, p = 0.06, ηp2= 0.05. Overall, this 

does not provide support for (H1a): Trust towards the classifier will be increased when 

working with the experimental interfaces. Likewise, this does not provide outright support 

for (H1b): Trust will be highest when working with the SCI+CAM interface, as it provides 

the most detailed information.  

Figure 13 

Trust Scores For Each Trial Performance Type At Each Reliability Level 

 

Note. Dashed line represents grand mean for trust towards the classifier (%). White 

diamonds represent individual mean values for each condition.  
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4.4.1.1 Post-Hoc Power Analysis for Trust Model 

Power analysis for this study appeared similar to the power analysis conducted in Chapter 

3, due to the similarity in the design of these experiments. Post-Hoc power analysis was 

conducted examining the influence of each of the 4 interface conditions on Trust. Our 

sample size for this experiment was 49 participants, with 4 observations (averaged values 

for each combination of trial performance and reliability) for each of the 4 interface 

conditions. The ART-ANOVA model for Trust Scores had a ηp2=0.03, suggesting we only 

had a 1-β power of 0.832. To achieve a 1-β power of 0.95 based on a within subjects 

design of 4 groups with 4 observations, we may have needed a sample of around 108 

participants for full power in this study.  

 

 

4.4.2 Influence of Interface on Understanding  

Participants reported greatest understanding of the classifier’s decisions when 

working with the SCI+CAM interface (M=71.94, SD=29.51) (Table 4). In contrast, 

participants typical understanding was lowest when working with the Control interface 

(M=68.72, SD=31.47) (Table 4). The ART-ANOVA model for Understanding revealed a 

small main effect of Interface F(3,144) = 4.00, p < 0.05, ηp2= 0.08. Pairwise comparisons 

revealed that the only significant difference in understanding was between the Control and 

CAM interfaces (p < 0.01). There was also a significant interaction between Interface and 

Trial Performance F(3,144) = 5.73, p < 0.001, ηp2= 0.11. This suggests that the extra 

information provided by the experimental interfaces may improve participants’ 

understanding of the classifier’s decisions, particularly interfaces featuring the CAM cue 

(Figure 14 and Table 6). This partially supports (H2a): Participants’ understanding of the 

classifier will be increased when working with the experimental interfaces. However, this 

does not support (H2b): Participants’ understanding will be highest when working with the 

SCI+CAM interface, which provided the most detailed information. 

Figure 14 

Understanding Scores For Each Trial Performance Type At Each Reliability Level  
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Note. Dashed line represents grand mean for understanding classifier’s decision making 

(%). White diamonds represent individual mean values for each condition.  

 

4.4.3 Influence of System Reliability  

4.4.3.1 Trust  

Trust towards the classifier was influenced by the classifier’s performance in 

individual trials (Trial Performance), and the classifier’s reliability throughout the block 

(Block Reliability) (Tables 5 & 7, Figure 15). The ART-ANOVA model for Trust revealed 

a significant interaction between Block Reliability and Trial Performance F(1,48) = 10.68, 

p < 0.001, ηp2= 0.18. There was also a main effect of Block Reliability F(1,48) = 71.37, p 

< 0.001, ηp2= 0.60, and a main effect of Trial Performance F(1,48) = 41.86, p < 0.001, 

ηp2= 0.47. This suggests that participants based their trust towards the classifier on both its 

performance within individual trials and its cumulative performance within the block. For 

example, in trials where the classifier was correct, trust towards the classifier was lower 

within low reliability blocks (M = 62.54, SD = 24.36), compared to correct trials within a 

high reliability block (M = 75.69, SD = 18.55) (Table 7). Conversely, trust towards the 

classifier was higher if an incorrect trial took place within a high reliability block (M = 

57.16, SD = 25.27), compared to incorrect trials within a low reliability block (M = 43.22, 

SD = 23.84) (Table 7). Thus, evaluations of the classifier were informed by both the 
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performance within individual trials, and by the collective reliability across the block. This 

supports (H3): Trust towards the classifier will be highest in high reliability conditions. 

Figure 15 

Average Trust Scores For Each Image Used In The Experiment  

 

Note. Stimuli arranged by participants’ average accuracy rating of classifier’s label for the 

image. 

4.4.3.2 Understanding 

Participants’ understanding of the classifier’s decisions did not appear to vary 

greatly across reliability levels, instead their understanding was primarily based on the 

classifier’s performance (Tables 6 and 8, Figure 16). Overall, when the classifier was 

correct, participants typically understood the classifier’s decision more than when the 

classifier was incorrect (Table 8). The ART-ANOVA model for Understanding revealed a 

main effect of Trial Performance F(1,48) = 275.37, p < 0.001, ηp2= 0.85, while there was 

also a small but significant main effect of Block Reliability F(1,48) = 4.63, p < 0.05, ηp2= 

0.09. There were no interactions between Reliability and Trial Performance. Participants’ 

understanding of the classifier’s decisions in correct trials was similar in both high 

reliability (M = 81.93, SD = 21.98), and low reliability conditions (M = 80.88, SD = 21.93) 

(Table 8). Likewise, there was limited difference in understanding scores for incorrect 

trials between high reliability (M = 40.80, SD = 27.82) and low reliability conditions (M = 

38.40, SD = 28.85) (Table 8). This suggests that while participants understanding may 
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have been influenced by the classifier’s reliability within the block, it was mostly based 

their understanding on the classifier’s current performance within individual trials. 

Figure 16 

Average Understanding Scores For Each Image Used In The Experiment  

 

 

Note. Stimuli arranged by participants’ average accuracy rating of classifier’s label for the 

image.  

4.4.4 Participants’ Task Load  

4.4.4.1 NASA-TLX  

The classifier’s reliability appeared to have the largest influence on participants’ 

subjective task load scores, which were lower in conditions with high reliability, and 

higher in conditions with low reliability (Table 9, Figure 17). Across both high and low 

reliability conditions, task load was typically lowest when working with the Control 

interface and highest when working with the experimental interfaces (Table 4, Figure 17). 

The two-way ART-ANOVA model for NASA-TLX scores revealed a significant main 

effect for Block Reliability F(1,48) = 15.29, p <0.001, ηp2=0.24. However, there was no 

significant main effect for Interface F(3,144) = 1.50, p = 0.22, ηp2=0.03. There was also 

no significant interaction between Block Reliability and Interface. This suggests that 

participants’ subjective workload was increased in low reliability conditions, given they 

had to make more corrections to the classifier’s labels. This provides support for (H4a): 

Participants’ subjective task load scores will increase during low reliability conditions. 



  112 

However, the addition of SCI, CAM or SCI+CAM cues did not appear to increase 

subjective workload, which does not provide support for (H4b): Participants’ task load will 

be significantly higher when working with the SCI+CAM interface.  

Figure 17  

Subjective Task Load Scores For Each Interface At Each Reliability Level  

 

Note. Dashed line represents grand mean for subjective task load scores (NASA-TLX). 

White diamonds represent individual mean values for each condition.   

4.4.4.2 Trial Time  

Participants typically spent the most time per trial (seconds) when working with the 

SCI+CAM interface (M=20.66, SD=22.02), and the least time per trial when working with 

the Control interface (M=17.58, SD=14.42) (Table 4, Figure 18). Time spent per trial was 

further influenced by the classifier’s performance. Participants tended to spend more time 

in trials where the classifier’s performance was incorrect (Table 10, Figure 18), which is 

unsurprising given participants had to correct the classifier’s label in these trials. The ART-

ANOVA model for Trial Time revealed significant main effects for Trial Performance 

F(1,48) = 439.47, p < 0.001, ηp2 = 0.90 and Interface F(3,144) = 10.46, p < 0.001, ηp2 = 

0.18. There was no main effect for Block Reliability F(1,48) = 0.37, p = 0.54, ηp2 = 0.01. 

There was however a 2-way interaction between Trial Performance and Interface F(3,144) 

= 4.43, p < 0.05, ηp2 = 0.08. There were no other significant interactions within the Trial 

Time model. Pairwise comparisons revealed significant differences in time spent per trial 

was between the Control and SCI+CAM interfaces (p<0.0001), the Control and SCI 
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interfaces (p<0.001), and the Control and CAM interfaces (p<0.01). This suggests that 

participants tended to spend more time per trial when working with the classifier interfaces 

which provided the most information, and suggests that this additional information was not 

necessarily ignored by the participants. This provides some support for (H4b): Participants’ 

task load will be significantly higher when working with the SCI+CAM interface. 

Figure 18  

Average Time Spent Per Trial With Each Interface For Correct and Incorrect Trials  

 

Note. Dashed line represents grand mean for time spent per trial (seconds). White 

diamonds represent individual mean values for each condition.  

4.5 Discussion 

The primary purpose of this study was to explore whether trust towards an image 

classifier could be improved through displays of Gradient-weighted Class Activation 

Mapping (CAM) and Classifier’s System Confidence Information (SCI). We also 

investigated whether these cues improved participants’ understanding when working with 

the classifier, as a way of illustrating the decision-making of the system. We also explored 

the role that system performance, across blocks (reliability) and within individual trials 

(trial performance) played in shaping participants’ understanding of system decision 

making and trust towards the classifier. Lastly, we also explored how the system’s 

reliability and our cues of system decision making influenced users’ task load.  
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4.5.1 Improving Trust Towards an AICS 

Previous research suggests that increasing the transparency of system decision-

making can improve users’ trust towards autonomous systems (Chen et al., 2014; Mercado 

et al., 2016; Selkowitz et al., 2017; Tomsett et al., 2020). We provided participants with 

cues of SCI and CAM in a bid to increase the transparency of the AICS, yet there was no 

overall increase in participants’ trust towards the classifier. This suggests that system 

reliability may have a much more profound impact on users’ trust than the transparency of 

the system. This would mirror the findings of similar research, including our own (Chapter 

3/ Ingram et al., 2021). Autonomous system accuracy was reportedly more influential on 

users’ trust than the explanations provided by the system, when participants worked with 

an autonomous text classifier (Papenmeier et al., 2019). Likewise, when estimating their 

trust towards an autonomous squad member, the reliability of the system was reportedly 

more influential than the system transparency for users’ evaluations (Wright et al., 2019). 

We also expected that the SCI and CAM interface could improve participants’ trust 

in low reliability conditions, as it provided the most detailed interpretation of system 

decision-making, which may be useful when there are more errors. In low reliability 

blocks, trust did appear to increase when users were provided the SCI and CAM cues 

together, relative to the control interface, yet this was not a significant increase (Table 5). 

However, we believe it is possible that with a more appropriate sample size there may be 

enough power to support this trend within the data. By contrast, we did not see this trend 

under high reliability conditions, where the Control interface tended to have the most trust 

(Table 5). Again, this may make sense when considering that in high reliability blocks the 

classifier was correct in most of the trials (90%), and so the additional information may 

have been seen as superfluous given the system was almost always correct. Thus, while 

SCI and CAM cues may not have increased overall trust, it remains possible that they may 

still be beneficial for improving trust towards an AICS if presented together during low 

reliability conditions.   

4.5.2 System Reliability  

As in our pervious experiment, participants’ trust towards the classifier was mostly 

influenced by the performance of the classifier (Ingram et al., 2021). In the current study, 

the significant interaction between Trial Performance and Block Reliability suggests that 

participants modulated their trust in response to the classifier’s performance within 

individual trials, yet also factored in its overall reliability within the block. This is 

illustrated most clearly within Figure 15, in which we looked at average trust scores for 
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each trial, and can see 4 clusters representing the 4 main combinations of Trial 

Performance and Block Reliability: (1) Correct Trials in High Reliability Blocks; (2) 

Incorrect Trials in High Reliability Blocks; (3) Correct Trials in Low Reliability Blocks; 

and (4) Incorrect Trials in Low Reliability Blocks. These results suggest that participants 

calibrated their trust differently for an incorrect performance within a high reliability block 

than they did within a low reliability block, and vice versa for correct trials. Ultimately, it 

appears the reliability within the block has a bigger influence on participants’ trust towards 

the classifier, and suggests that participants based their trust more on the classifier’s 

collective performance across the trials within blocks, rather than on individual trials. 

These results are not particularly surprising, as they replicate the findings of previous 

studies in which system reliability significantly influenced trust towards automation 

(Chavaillaz et al., 2016; Sauer & Chavaillaz, 2017; Hussein et al., 2019; Papenmeier et al., 

2019; Wright et al., 2019). More importantly however, they develop upon the findings of 

our previous experiment, and reinforce the importance of system reliability when 

measuring trust towards autonomous systems. 

In Ingram and colleagues (2021) (Chapter 3) none of our cues of SCI improved 

trust towards the AICS, despite them increasing the transparency of system decision-

making. We speculated that the low overall reliability of the classifier within our previous 

experiment (50%), due to our experimental design, may have limited the potential benefits 

of SCI for improving trust. Within the current study, over 4 blocks of high reliability 

(90%) and 4 blocks of low reliability (60%) the classifier had a higher overall reliability 

(75%), Ironically, it is possible that within the current study our Interface cues may not 

have increased trust due to a ceiling effect within the high reliability (90%) condition. 

During high reliability blocks, participants trust for all 4 interfaces was typically near the 

upper limit of the scale we used to measure trust. It is therefore possible that during high 

reliability conditions, trust towards the experimental AICS interfaces could not be elevated 

any further due to the powerful effect of system reliability. Alternatively, it is equally 

possible that during high reliability conditions, the system was so reliable that the 

additional information provided by SCI and CAM cues became irrelevant, and therefore 

did not improve trust in a meaningful way. Nonetheless, the benefits of cues such as SCI 

and CAM may go beyond trust towards AICS, and these cues may also help to improve 

users’ understanding of AICS decision-making. 

4.5.3 Improving Users Understanding of AICS Decisions  

While there is a great deal of research that is interested in improving trust towards 

autonomous systems, there is a parallel strand of research that is also interested in 
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improving the explainability of autonomous systems (Rudin, 2019; Gilpin et al., 2019). A 

common criticism of autonomous systems, particularly those based on neural network 

technology, is that these machines are uninterpretable ‘black box’ systems, in which the 

decision-making of the system is difficult, if not impossible, for the user to understand 

(Abdul et al., 2018; Ribera & Lapedriza, 2019). While we were primarily interested in 

seeing whether SCI and CAM cues can improve trust towards an AICS, we also explored 

whether they improved participants’ understanding of classifier decisions.  

Participants’ understanding of the classifier was significantly improved when they 

worked with the CAM interface, yet there was no significant increase in understanding for 

the SCI or SCI+CAM interfaces. This would suggest that participants felt they could best 

interpret the decision-making of the AICS when working with the CAM cue. In theory this 

makes sense, as CAM appears to be useful for highlighting the areas and features of the 

image which influenced the classifier’s decision. This supports Chen and colleagues (2019) 

suggestion, that cues such as CAM can visually represent the decision-making of AICS in 

a way that human users can easily understand. However, as Rudin (2019) suggests, there 

remains a disparity between CAM showing which parts of an image were influential for an 

AICS decision, and the user actually knowing what the AICS did when interpreting the 

features highlighted by CAM. A user could see the CAM cue highlighting features within 

an image that were relevant to the classification, yet still not grasp why these features are 

relevant to the AICS. Nevertheless, for the images that we used in our stimuli, our CAM 

cue appeared to be particularly useful at highlighting whether or not the AICS had detected 

the object of interest within the image. It therefore remains possible that participants’ 

understanding was only enhanced by knowing whether or not the AICS had properly 

detected the object within the images. This is something which could also be illustrated by 

bounding box cues instead of CAM, which may take less effort to interpret, whilst still 

highlighting areas of interest. Future studies may benefit from examining more simplified 

ways of illustrating AICS activity when processing images, particularly if these cues can 

improve trust and/or understanding without increasing the user’s workload. 

4.5.4 Workload 

When implemented within real-world settings, cues of SCI and CAM may improve 

AICS transparency. However, these cues will only be beneficial if they do not overwhelm 

the operator, and may not be used if they are detrimental to the user’s productivity. If the 

interface is well designed, increasing the transparency of an autonomous system’s interface 

may not automatically increase a user’s workload (Mercado et al., 2016; Selkowitz et al., 

2017). When examining subjective task load through NASA-TLX questionnaires, our 
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participants reported no significant increase in perceived workload when working with the 

experimental interfaces. We had expected to see an increase in subjective workload when 

they worked with the SCI+CAM interface, but this was not the case. Based on the current 

trends within the data (Table 4 and 9) we believe there may have been a significant 

difference in subjective task load if we increased our sample size. Interestingly however, 

we did see an increase in the average time spent per trial when participants worked with all 

3 of the experimental interfaces. The biggest increases in average time spent per trial were 

seen in the SCI and SCI+CAM interfaces, which makes sense as these are the most 

‘information-heavy’ versions of the classifier’s interface. This also suggests that 

participants did not ignore the extra information presented in the experimental interfaces. 

Moreover, this also aligns with their ratings for their preferred interface (Table 4). When 

asked which interface they preferred the majority picked the SCI+CAM interface (44.9%), 

with the SCI-only interface the next most popular (30.6%) (Table 4). Thus, while 

participants spent more time per trial with the experimental interfaces, they also 

overwhelmingly preferred working with them, suggesting they found them beneficial.  

Ultimately, users’ workload appeared to be most significantly impacted by the 

classifier’s performance, both within individual trials and through changes in its reliability 

between blocks. These findings replicate those of similar studies, in which imperfect 

automation can influence the workload of the operator using the system, by leaving the 

user with a larger share of the task to complete themselves (Sauer et al., 2016; de Visser & 

Parasuraman, 2011). The largest increases we saw in subjective workload were between 

the high and low reliability conditions. Likewise, participants’ average time spent per trial 

was most significantly increased in trials where the classifier’s label was incorrect. Neither 

finding should be seen as surprising, participants were expected to take more time in trials 

where they had to correct the classifier’s errors, and would likely report a higher subjective 

workload in low reliability blocks where there were simply more errors to correct. Thus, 

while cues such as SCI and CAM may improve AICS transparency, their effect on 

workload appears minimal in comparison to the overall performance of the system.  

4.5.5 Future Directions and Limitations  

Improving system transparency appeared to be beneficial for users working with an 

AICS, in particular the CAM cue which appeared to improve understanding. This suggests 

that CAM may be particularly well suited to further research investigating explainability 

and trust towards AICS. Future research may benefit from exploring the utility of these 

cues as an optional resource which can be manually accessed by the user. Within the 

blocks where they were made available, CAM and SCI were automatically presented to the 
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user as part of each trial. It may be useful to explore participants use of SCI and/or CAM 

when they are an optional resource that can be manually accessed within each trial, as 

opposed to something that is automatically presented to the user. This could give a clearer 

indication of whether or not users actually want to use these cues when working with an 

AICS. Making these cues optional could also limit the impact they have upon the user’s 

workload, by presenting them only when requested. 

Undoubtedly our interpretation of these results was impacted by the limited sample 

of participants that we were able to collect due to the Covid-19 pandemic. For the purposes 

of this PhD, we analysed and reported the results as if we had completed our data 

collection, but would have preferred to have a sample size similar to the sample used in 

Chapter 3 (n=74).   

4.6 Conclusion  

Our study sought to build upon the findings from our previous experiment, by 

exploring whether we could improve users’ trust when working with an Autonomous 

Image Classifier System (AICS). For the most part, trust was primarily influenced by the 

general performance of the classifier: whether the classifier’s label correctly or incorrectly 

described the image. Changes in participants’ trust appeared to be most significantly linked 

to changes in the reliability of the system across experimental blocks: increasing in high 

reliability blocks, and lowering in low reliability blocks. We also examined the usefulness 

of both Gradient-weighted Class Activation Mapping (CAM) and Classifier Confidence 

Information (SCI), as a way of improving trust towards the classifier. We did not find an 

increase in trust towards the AICS when participants worked with the interfaces featuring 

SCI and/or CAM. We did however find that participants’ understanding of the classifier’s 

decision-making appeared to be significantly improved when working with the interface 

featuring the CAM cue. While ratings of subjective workload were not increased when 

working with the experimental interfaces, there was an increase in the average time spent 

per trial for all 3 experimental interfaces, relative to the control. Future research may be 

able to build upon these findings, in order to further explore the utility of these cues of 

system decision-making.  
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4.7 Data Tables 

Table 4 

Descriptive statistics for Trust, Understanding, Compliance, Identifiability, Time, TLX, Aesthetics and Overall Preference with each Interface.  

 
Trust the 

Classifier (%) 

Understand 

Classifier (%) 

Label  

Compliance 

(%) 

Identifiability of 

Images (%) 

Time Per Trials 

(Seconds) 

Task Load 

(NASA-TLX) 

Aesthetic 

Rating (1-7) 
Favourite 

Interface 

Interface M SD M SD M SD M SD M SD M SD M SD N (%) 

Control 63.59 26.22 68.72 31.47 73.28 44.26 82.29 23.23 17.58 14.42 162.20 102.95 4.54 1.58 8 (16.3%) 

SCI 65.26 24.25 71.36 29.96 72.51 44.66 82.00 24.16 20.29 21.86 170.86 100.69 4.70 1.42 15 (30.6%) 

CAM 63.47 25.31 71.77 29.27 73.20 44.30 82.13 23.71 19.15 15.36 169.61 102.79 4.79 1.40 4 (8.2%) 

SCI+CAM 65.38 24.34 71.94 29.51 72.86 44.47 81.80 24.24 20.66 22.02 169.58 109.04 4.83 1.34 22 (44.9%) 

 

Note. M and SD represent mean and standard deviation, respectively. 
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Table 5 

Means and standard deviations for Trust (%) as a function of a 4(Interface) X 2(Reliability) X 2(Trial Performance) design 

 

  High Reliability Low Reliability 

  Correct Incorrect Overall Correct Incorrect Overall 

Interface M SD M SD M SD M SD M SD M SD 

Control 76.84 17.98 57.41 26.65 74.89 19.89 60.06 25.66 40.13 24.11 52.12 26.88 

SCI 76.57 17.72 59.09 23.98 74.82 19.16 63.32 23.07 43.57 23.03 55.47 24.99 

CAM 73.74 19.57 55.53 25.64 71.91 20.97 62.66 25.01 43.22 24.15 54.91 26.44 

SCI+CAM  75.63 18.75 56.62 24.86 73.73 20.26 64.14 23.47 45.96 23.76 56.90 25.20 

 

Note. M and SD represent mean and standard deviation, respectively. 
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Table 6 

Means and standard deviations for Understanding (%) as a function of a 4(Interface) X 2(Reliability) X 2(Trial Performance) design 

  

  High Reliability Low Reliability 

  Correct Trials Incorrect Trials Correct Trials Incorrect Trials 

Interface M SD M SD M SD M SD 

Control 80.59 24.31 35.61 29.03 78.48 22.99 35.18 27.80 

SCI 82.58 21.22 42.89 26.64 81.25 22.23 37.72 28.56 

CAM 82.29 20.84 45.10 26.63 81.16 21.93 40.32 29.56 

SCI+CAM 82.26 21.36 39.62 28.26 82.64 20.33 40.37 29.21 

 

Note. M and SD represent mean and standard deviation, respectively. 
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Table 7 

Means and standard deviations for Trust Score as a function of a 2(Trial Performance) X 2(Reliability Level) design 

  

  Reliability Level 

  High Reliability Low Reliability 

Performance in 

Trial 
M SD M SD 

Correct 75.69 18.55 62.54 24.36 

Incorrect 57.16 25.27 43.22 23.84 

  

Note. M and SD represent mean and standard deviation, respectively. 
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Table 8 

Means and standard deviations for Understanding Score as a function of a 2(Trial Performance) X 2(Reliability Level) design 

  

  Reliability Level 

  High Reliability Low Reliability 

Performance in 

Trial 
M SD M SD 

Correct 81.93 21.98 80.88 21.93 

Incorrect 40.80 27.82 38.40 28.85 

  

Note. M and SD represent mean and standard deviation, respectively. 
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Table 9 

Means and standard deviations for Task Load (NASA-TLX Scores) as a function of a 4(Interface) X 2(Reliability) design 

  

  Reliability Level 

  High Reliability Low Reliability 

Interface M SD M SD 

Control 146.71 95.82 177.69 108.38 

SCI 165.35 98.24 176.37 103.80 

CAM 164.53 109.39 174.69 96.60 

SCI+CAM 160.51 103.20 178.65 114.93 

 

Note. M and SD represent mean and standard deviation, respectively. 
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Table 10 

Means and standard deviations for Trial Time (Seconds) as a function of a 4(Interface) X 2(Trial Performance) design. 

 

 Trial Performance 

  Correct Trials Incorrect Trials 

Interface Name M SD M SD 

Control 15.48 12.89 23.93 16.78 

SCI 18.24 22.69 26.52 17.72 

CAM 16.81 14.20 26.21 16.54 

SCI+CAM 18.33 22.74 27.74 17.94 

 

Note. M and SD represent mean and standard deviation, respectively. 

 

 

  



  126 

Table 11 

Descriptive statistics for responses to Debriefing Questionnaire questions (1-6, and 8) 

  

 Response (1-7) 

 M SD 

How helpful did you think the classifier was?  

<Not at all / A Great Help>  
4.9 1.0 

How predictable was the classifier’s behaviour?  

<Predictable / Unpredictable> 
3.5 1.3 

How specific did you think the classifier’s labels were?  

<Too Specific / Too General>  
3.1 1.3 

If you had to describe it to someone, how you would characterise the classifier?  

<Teammate / Tool>  
5.6 1.4 

If you had to classify another set of images, would you want to work with the classifier again? 

 <With Classifier / Alone>  
2.7 1.4 

If you had to classify another set of images, which type of collaborator would you prefer? 

 <Computer / Human>  
4.5 1.9 

Overall, how well would you say you typically understand technology?  

<Expert / Novice> 
3.4 1.5 

 

Note. M and SD represent mean and standard deviation, respectively. 
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Chapter 5: General Discussion  

5.1 Summary of Study Findings  

5.1.1 Summary: Qualitative Exploration of Trust Towards Technology.   

Our first study sought to explore trust towards technology from a qualitative 

perspective. A recurrent theme that became apparent during my initial literature review, 

was that the majority of the existing research was being carried out using quantitative 

tools, from researchers who were predominantly from computing science and engineering 

backgrounds. As such, I felt that there was a gap within the literature exploring how users 

characterize trust towards technology. Through focus group interviews, we asked 

participants to explain their thoughts on popular technologies, such as Social Media 

Services and online retailers. Even though this research did not involve direct interaction 

with the autonomous technologies frequently seen in other literature, these findings still 

appeared to be relevant. Participants expected their information to be secure when using 

these services, and a violation of this expectation, through accidental leaks or malicious 

agents, was interpreted by many as being fatal for trust towards the service. Likewise, 

many participants (but not all) were interested in how their information was used by these 

services, which could be interpreted as a need for greater transparency within these 

services. These findings were also potentially linked to the Cambridge Analytica Scandal 

which was exposed in the months prior to this research (Cadwalladr & Graham-Harrison, 

2018), which likely prompted many participants to revaluate their relationship with these 

technologies. 

5.1.2 Summary: Calibrating Trust Towards an Autonomous Image 

Classifier  

Our second study sought to investigate trust within an experimental context. We 

explored how human users calibrate their trust towards an Autonomous Image Classifier 

System (AICS) when completing an image identification task. By doing so we provided, to 

our knowledge, the first insight into how human users calibrate their trust specifically 

towards an AICS. We found that trust was primarily based upon the system’s performance, 

if the AICS was correct trust was higher, and when incorrect trust was lower. We also 

demonstrated how environmental factors further influenced trust calibration. When 

processing low quality images (blurred and cropped contents) participants were more 

cautious when estimating their trust, and tended to report values closer the midpoint of our 

trust scale. By comparison, participants were much more extreme with their trust 
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evaluations when processing higher quality (clearer) images. This illustrated how human 

users considered the difficulty of the task facing the AICS when estimating their trust. 

This design choice was heavily influenced by Merritt and colleagues (2013) who 

examined trust towards a weapons detection system when processing images of luggage 

which were either empty or full/cluttered. This research stood out to me because it was one 

of the few studies which fully explored a scenario that the human-machine team may face 

within real-world settings. In such settings, performance of the autonomous system 

becomes much harder to appraise, as the success of failure of the system is not so readily 

apparent, and this may influence how the operator relies upon a system. I believe that 

introducing these scenarios within laboratory experiments may improve the ecological 

validity of the research by limiting the capacity for the human user to carry out the task 

themselves. I was inspired to try and follow this example by manipulating the quality of 

the images processed by the AICS within this experiment. In these trials the performance 

of the classifier would also be harder to evaluate, since the participant cannot as easily 

identify the contents of the image themselves. This could have also created an opportunity 

where some participants became more reliant on the system, if the labels it provided 

plausibly matched the blurred contents of the image. Ultimately, I believe the decision to 

have unclear images provided greater insight into how participants placed trust in the 

system, and also prevented participants from completing the entire task themselves without 

considering the advice of the classifier.   

The other main component of this research was exploring whether trust towards the 

AICS could be improved by making the system more transparent through different displays 

of System Confidence Information (SCI). A great deal of existing research demonstrates 

that trust towards autonomous systems is typically improved by making the system’s 

decision making more transparent (Chen et al., 2014; Desai et al., 2013; Mercado et al., 

2016; Selkowitz et al., 2017; Tomsett et al., 2020; Zhang et al., 2020). Somewhat 

surprisingly, we did not see a significant increase in participants trust when provided with 

cues of SCI, suggesting this may not be an appropriate way to improve trust towards an 

AICS. This was disappointing, as we thought the provision of SCI would help to better 

illustrate the decision making of the AICS, particularly when the AICS was processing low 

quality images, where it may be harder to evaluate the system’s performance. Instead, there 

was no observable increase in participants’ trust towards the classifier, yet when asked for 

their favourite interface, participants overwhelmingly preferred the interfaces with SCI. 

This suggests they found the extra information beneficial on some level, and warranted 

further exploration. 
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5.1.3 Summary: Promoting Understanding and Trust Towards an 

Autonomous Image Classifier  

Our third study directly followed on from the findings in Chapter 3, by examining 

new ways to improve trust towards an AICS. In Chapter 3, whilst participants preferred 

interfaces that provided SCI, the cues we provided did not significantly improve trust 

towards the AICS. We speculated that there were a variety of potential reasons for this lack 

of impact on participants’ trust and sought to test these theories in our final study. We first 

modified our experimental paradigm so that the classifier would have a higher reliability 

throughout this experiment, given the importance of system performance reliability 

(Chavaillaz et al., 2016; Wright et al., 2019; Yu et al., 2019). We also introduced an 

entirely new method for improving system transparency: Gradient-weighted Class 

Activation Mapping (Grad-CAM/CAM) (Selvaraju et al., 2017; Yang et al., 2019). 

Through CAM, we were able to visually represent the activity of the AICS when 

processing images, thereby highlighting the regions and features that were important for 

each classification. By doing so, we could then compare the utility of both SCI and CAM 

as way of improving trust through increased system transparency. We also recognised that 

it was equally possible that these cues may not actually increase trust. Therefore, as 

additional factor of interest, we also looked at the whether these cues improved users’ 

understanding of the AICS decision making. This was because we speculated that it was 

also possible that participants may prefer these cues simply because they help them to 

better understand the machine’s decisions, without making it more trustworthy. 

While our data collection was disrupted by the COVID-19 pandemic, we were still 

able to find some interesting insights within our preliminary data. Participants 

overwhelmingly preferred the most complicated version of the interface (SCI+CAM), and 

while participants typically spent the most time working with this interface, they didn’t 

report an increase in their subjective workload. This would suggest these cues may be 

useful to users without over encumbering them with information. During low reliability 

blocks trust towards the classifier was also highest when working with the SCI+CAM 

interface, yet this was not a significant increase relative to the control interface. A larger 

sample size may clarify whether there was a true increase in trust with these cues. 

Additionally, we found that participants’ understanding of the classifier’s decision making 

was increased by the presence of the CAM cue. These findings show support for the utility 

of the CAM cue improving users’ confidence towards an AICS.  
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5.2 Contributions to the Field 

5.2.1 Measuring Trust Towards Automation 

 The central aim of the research within this thesis was to explore trust towards 

technology and automation. A criticism of this research, and indeed the wider trust-in-

automation literature could be that a user’s trust towards an autonomous system may 

simply be their estimation of reliability, or their confidence in the system’s performance. 

Much of the existing literature places system reliability and performance as central factors 

in trust towards automation. This should not be surprising, given that autonomous systems 

are typically designed to complete a specific set of tasks, and any deviation from this 

represents a violation of their fundamental purpose. Across all three of my studies, users’ 

trust was also primarily informed by the performance of the technology: a well-functioning 

machine merits trust, whilst an underperforming machine invokes distrust. This is 

consistent with a considerable amount of existing literature, in which trust towards 

autonomous systems is closely linked to system performance and reliability (Chavaillaz et 

al., 2016; Desai et al., 2013 Sauer & Chavaillaz, 2017; Hussein et al., 2019; Papenmeier et 

al., 2019; Parasuraman & Riley; 1997; de Visser et al., 2018; Wright et al., 2019; Yu et al., 

2019).  

In Chapter 2, during focus group discussions, participants touched on a variety of 

factors that may shape and inform their trust towards digital online technologies. 

Participants appraisals of these services were influenced by the security of their 

information on these services, as well as their perception and understanding of how their 

information is used by these services. Both factors can be considered as important to the 

performance of these services. If users’ information is not secure, or at least does not 

appear to be secure, these technologies are not completing performing a fundamental task 

expected of their services. Similar research suggests if people do not feel that they have 

control over the information they share with these services, they may be less likely to share 

more information (Benson et al., 2015). This in itself, may affect the performances of these 

services, given that the entire digital ecosystem is reliant on users’ willingness to have their 

data collected. Equally, as users are required to share their information with these digital 

services, if there is a lack of clarity in how this information is used, these services may 

need to convey their processes to users in a clearer manner. It is easy to see how this could 

negatively impact upon users trust when it is not clearly communicated. For example, Jung 

(2017) reports that users had greater concern about their privacy and their information 
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when they were exposed to targeted ads on social media. During our focus groups, 

participants interpretations of how their information was used by these services, and the 

extent to which their information was harvested, was interpreted in many different ways. 

The bigger picture was that a lot of participants spent time discussing this, and regardless 

of experience or background, believed that the communication of these practises was 

important for fostering trust. Moreover, some participants showed an awareness of 

mitigating factors that could also inform their trust towards these services. Some 

participants highlighted their lack of knowledge or interest in digital technologies as 

something that shaped their trust (or lack thereof) towards these services, while others 

noted the impact that other humans could have, particularly in the case of social media 

services. Therefore, the measurement of trust in this study provides a unique insight into 

how users may characterise their trust towards technologies, and provides perspectives 

from participants which appear to align with evidence from existing literature  

In the experiments within Chapters 3 and 4, trust was measured using a variety of 

methods. The most straightforward method used participants’ scores from the Propensity to 

Trust Machines Questionnaire (PTMQ), which used 6 questions exploring how likely they 

were to trust new technologies. This was collected once per participant, either at the start 

or at the end of the experiment. By doing so, this captured participants’ trust towards 

technology as a static, trait-like measurement. In Hoff and Bashir’s 2015 model, PTMQ 

scores could be considered as a form of Initial Learned Trust, which is based on users’ 

previous interactions with technology. Similar to this, Lee and See (2004) also recognise 

the users’ ‘predisposition towards trust’ as a component of the ‘trust evolution’ process, 

wherein users’ trust towards a system is shaped by continuous interaction with the system. 

Secondly, as participants interacted with the classifier in both of our experiments, in each 

trial they were also asked to update their trust towards the classifier, to reflect how much 

they would want to continue working with the classifier. In each trial they also had to 

decide, ultimately, whether or not to reject the classifier’s suggested label for each trial, 

which was termed as Compliance. Within Hoff and Bashir’s (2015) these measures of trust 

and compliance could be considered as Dynamic Learned Trust, given they are based on 

continuous interaction with the classifier, and represent a more state-like measurement of 

trust. In Chapter 3, we found correlations between participants PTMQ scores and their trust 

towards the classifier, as well as between their PTMQ scores and their Compliance with 

the classifier. This suggests that our measurement of trust within each trial aligned with our 

measurement of trust using the PTMQ questionnaire. This also mirrors other findings 

within the literature where higher scores of Automation Bias and Propensity to Trust 
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Machines correlate with users placing more trust in autonomous technologies (Merritt et 

al., 2013; Goddard et al., 2014). Ultimately, we demonstrate that trust towards an 

autonomous image classifier can be measured on a trial-by-trial basis, and that this 

measurement can align with other measures of trust, such as the PTMQ.  

5.2.2 Improving Trust Towards Automation 

 Within the context of Bonnie Muir’s (1987) exploration of trust towards 

automation, the research in Chapters 3 and 4 has primarily focussed on her first suggestion: 

“Improving the user's ability to perceive a decision aid's trustworthiness”. In Chapter 3, we 

used different cues of SCI as a way of exploring their potential for improving the 

transparency of an autonomous image classifier system. In Chapter 4, we also introduced 

Grad-CAM as an alternative way of improving system transparency. Both cues were 

intended to improve our participants capacity for interpreting the decision making of the 

classifier. The Situation awareness-based Agent Transparency (SAT) model (Chen et al., 

2014), suggests that autonomous system transparency can be improved by providing 

information about system performance within the interface. Within the SAT model, 

providing more information should promote greater transparency, and by extension more 

trust from the user, in keeping with Muir’s (1987) suggestion. However, in both studies our 

results were less than conclusive, trust was not directly improved by the presence of SCI or 

Grad-CAM cues, even though participants preferred working with the interfaces which 

provided more information. Previous literature employing SCI-type cues have found that 

they improve trust towards other types of automation (Desai et al., 2013; McGuirl and 

Sarter, 2006; Verame et al., 2016; Zhang et al., 2020). As previously speculated, the lack 

of improved trust in our experiments may have been linked to our experimental design, or 

could be due to SCI being less relevant when working with an AICS. Nonetheless, in 

science Null Results remain important, and may still contribute towards our understanding 

of trust towards automation. Ultimately, I believe the main benefit of this research was 

comparing different types of SCI together, and doing so across multiple types of system 

performance. Much of the existing literature has only looked at these factors separately, 

and this research has attempted to bring these factors together. While our results may 

suggest that neither SCI or CAM are appropriate for improving trust towards an AICS 

when used alone, additional factors may also need to be considered 

Instead, we may need to look again to Muir’s (1987) suggestions for other routes to 

evaluate these cues. For example, when “Improving the user's ability to perceive a decision 
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aid's trustworthiness”, we used cues such as SCI and CAM. However, this suggestion 

could be also done through additional training for our participants/users. While we did 

have a limited training block at the start of our experiments to get participants accustomed 

to the classifier’s interface, we may have benefited from a more detailed training session 

which could have explained to users how the AICS works, and go into detail on how cues 

such as SCI and Grad-CAM can explain the system’s decision-making parameters. This 

may have also allowed for us to engage with Muir’s second suggestion: “Modifying the 

user's criterion of trustworthiness”, where we could have helped to define and illustrate the 

performance and reliability of the AICS to the participants before using the system. While 

this may have made participants more aware of how competent the AICS was, there is also 

the danger of biasing participants’ opinions toward the system before they’ve even had a 

chance to interact with it. In doing so, participants could have based their trust scores 

primarily on the initial training we provided, rather than using evidence of directly 

interacting with the classifier in the experiments. If users are exposed to an autonomous 

system that does not commit any errors during training, this can increase users’ 

Automation Bias, making them overestimate the capabilities of the system (Sauer et al., 

2016). Similarly, if the reliability of the system is low during training, participants are less 

likely to trust the system when working with it (Chavaillaz & Sauer 2017). Thus, any 

attempt to train participants prior to interaction with the system should take serious 

consideration of how best to inform participants without misleading them about 

performance, and without overwriting their ‘raw perceptions’ of the system. Something 

like this could be tested using a between-subjects experimental design, allowing for 

comparison of trust scores of participants with limited versus detailed training.  

Training could also be used for Muir’s (1987) other suggestion: “Identifying and 

selectively recalibrating the user on the dimension(s) of trust which are poorly calibrated”. 

Essentially, we may have been able to use participants’ PTMQ or Automation Bias 

(Mosier et al, 2017) scores, to identify and provide training to participants with excessively 

low or excessively high predispositions towards trusting machines. These individuals may 

have benefited more from training framing the system’s competence, thereby helping them 

to calibrate their trust more effectively. Such an approach could also be beneficial within 

real-world settings when introducing an automated system to a workplace. If a costly new 

autonomous system is introduced to a workplace, it would make sense to examine which 

potential users are more prone to under-trusting or over-trusting the system, and provide 

them with further training to recalibrate their perceptions. Lastly, while Muir (1987) also 

suggests “Enhancing the user's ability to allocate functions in a system”, in our 
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experiments participants always had the ultimate say on the final label for each image. This 

means that participants were always in control of the final decision in each trial, giving 

them significant authority over the AICS. Theoretically, a way to engage with this 

suggestion may have been to allow participants to change the classification model, which 

may have then provided different classifications for certain images, and provided 

participants with a greater sense of control over the AICS. Such a feature would have been 

difficult to control for within our experimental conditions – but may be more feasible 

within an experiment designed to specifically test this.  

5.3 Limitations  

Our experiments with the AICS in Chapters 3 and 4 used the pretrained AlexNet 

and SqueezeNet models, around which I built the rest of the classifier’s interface. By doing 

so, we used these models in a ‘plug and play’ capacity, in which we did not retrain or 

recalibrate the decision making of the classifier. As a result, some of the labels output by 

the classifier could be considered as linguistically strange. For example, it would likely 

classify an image of a white bear in a snowy environment as an ‘Ice Bear’ rather than a 

‘Polar Bear’. I tried to circumvent this by being selective with the stimuli I used in these 

experiments, by picking only images which were given more conventional labels by the 

classifier. We also asked participants to rate the accuracy of these labels as a way of cross-

validating the appropriateness of the decisions made by AlexNet and SqueezeNet. In an 

ideal world, I would have liked to have taken my own set of images, and then trained the 

classifier to recognize the contents of them. I believe by doing so we would have had 

greater levels of control over the output of the classifier, and could be absolutely certain 

about whether the classifier’s decision was ‘truly correct’.   

In the end, for the sake of convenience, I used stimuli taken from the Open Images 

Dataset(s) V4 and V5 (Kuznetsova et al., 2020), and used the attached labels within the 

dataset as the ‘true’ label for the image. The labels output by AlexNet and SqueezeNet 

were then compared to these ‘true’ labels, as a way to ascertain Correct vs Incorrect 

performances from the AICS. Even this strategy was not 100% perfect, as there were some 

images in the Open Images Dataset that I didn’t feel I could use in good conscience. The 

most memorable instance of this was an image of a big cat which was defined in the Open 

Images Dataset as a ‘Jaguar’, but SqueezeNet defined it as a ‘Leopard’. A cursory Google 

image search only added to the confusion, and I could foresee participants having similar 

issues in determining whether the classifier was ‘truly correct’ in its decision making. 

Ultimately images where I significantly doubted the label provided by the Open Images 
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Dataset were not used in our experiments. If we had been able to train the classifier using 

our own set of images, I believe I could have been absolutely certain about the 

appropriateness of the labels the classifier provided in our experiments.  

Additionally, while we explored trust using quantitative and qualitative methods, 

most of this research relied upon subjective reporting from participants. If I had to do it all 

again, I think I would have tried to integrate a behavioural measurement of trust within 

some of our research too. The idea of implementing a tool such as Eye Tracking was 

always in the back of my mind, and I believe this would have been useful for our 

experiments with the AICS. It would have been interesting to explore whether users’ 

fixations changed in response to fluctuations in the classifier’s performance. Furthermore, 

we may have gained a better insight into the utility of the different interfaces we provided 

in Chapters 3 and 4, by seeing whether participants truly looked at the SCI and CAM cues. 

Ultimately, I was unable to use any behavioural methods such as Eye Tracking due to a 

lack of time, but I firmly believe it would be worth exploring in future research.   

5.4 Future Directions & Closing Remarks  

As suggested above, I would like to see more objective measurements of trust 

within our field. I believe that behavioural methods such as eye tracking could improve our 

understanding of trust towards technology. In a similar vein, when exploring the utility of 

cues such as SCI and CAM, I think it would be interesting to have these cues available as 

optional resources which are manually accessed by the participant. In our experiments 

these cues were always displayed automatically within each trial, but I think the true 

usefulness of these cues could be demonstrated when participants have to deliberately 

choose to see them. It is possible that the user may choose to use these cues more when a 

system has low reliability, and may in fact ignore these cues when a system has high 

reliability. 

Our findings are primarily centred on trust towards an AICS, but some of these 

findings may be generalisable to research involving other types of automation. We found 

correlations between trust towards the AICS and participants PTMQ scores, in line with 

previous research (Merritt et al., 2013; Goddard et al., 2014). In Chapter 3, we also 

demonstrated the influence of task difficulty on participants trust towards the autonomous 

system, which appeared to have a dampening effect on extreme trust scores, regardless of 

whether or not the classifier was correct or incorrect. This also mirrors some of the existing 

literature, where users are capable of factoring the difficulty of the task into their 

evaluations of automation (Goddard et al., 2014; Lyell et al., 2018; Merritt et al., 2013; 

Schwark et al., 2010). SCI is a popular cue of system decision making amongst other 
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autonomous systems, yet we demonstrate that it may not be suitable for improving trust in 

low reliability settings. We also demonstrated that participants’ perceived understanding of 

the AICS performance was based on performance within individual trials, and not on the 

reliability of the system within the block. This does not necessarily mean that participants 

actually understood what the classifier was doing when it made these decisions, rather, 

participants believed they understood what it was doing. This is important, as it suggests 

that trust and perceived understanding of an autonomous system are not entirely dependent 

on each other – a system may have low reliability and therefore the user may distrust it, but 

they may still feel they can understand why it made mistakes. This would be worth 

exploring using other autonomous systems to see if this process can be fleshed out further.  

Regarding real-world applications of AICS, I think the CAM cue seems like a 

particularly useful way of representing AICS decision making. In Chapter 4 we seen an 

increase in participants’ understanding of the classifier’s decision making. With a bigger 

sample size, it may have also benefited trust when combined with SCI in low reliability 

conditions. Stepping away from my role as a researcher and into the role of a user, I can 

definitely see why the CAM cue could be particularly useful. During the countless hours I 

spent designing the experiments in Chapters 3 and 4, I became significantly acquainted 

with the quirks and mannerisms of the AlexNet and SqueezeNet models. Whilst I still 

found SCI beneficial for interpreting the decision making of the AICS, I felt that the CAM 

cue was particularly intuitive to use. I found it took less effort to interpret CAM, and 

thought in many cases it was eye-catching and intriguing to look at when working with the 

classifier. Above all though, I feel that the CAM cue gives the user a much clearer insight 

into whether or not the classifier has actually ‘seen’ the object(s) of interest. By contrast I 

feel that the SCI cue, whilst useful, does not convey the machine’s interpretation to quite 

the same degree, and may still come across as more of a black-box system as a result. In 

my humble opinion, CAM is therefore the cue with biggest potential for making image 

classifiers more intuitive and trustworthy for their users. I will watch on with interest to see 

whether the next generation of researchers can prove this to be the case. 
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Appendices 

Debriefing Questionnaire – Chapter 3 

1.How helpful did you think the classifier was?  

<Not at all / A Great Help>  

2.How predictable was the classifier’s behaviour?  

<Predictable / Unpredictable>  

3.How specific did you think the classifier’s labels were?  

<Too Specific / Too General>  

4.If you had to describe it to someone, how you would characterise the classifier?  

<Teammate / Tool>  

5.If you had to classify another set of images, would you want to work with the classifier 

again?  

<With Classifier / Alone>  

6.If you had to classify another set of images, which type of collaborator would you 

prefer?  

<Computer / Human>  

7.If you had to quickly classify another set of 1000 images, which version of the interface 

would you prefer?  

<Numerical, Iconography, Graphical, or Control Interface> 
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Debriefing Questionnaire – Chapter 4 

1.How helpful did you think the classifier was?  

<Not at all / A Great Help>  

2.How predictable was the classifier’s behaviour?  

<Predictable / Unpredictable>  

3.How specific did you think the classifier’s labels were?  

<Too Specific / Too General>  

4.If you had to describe it to someone, how you would characterise the classifier? 

<Teammate / Tool>  

5.If you had to classify another set of images, would you want to work with the classifier 

again? <With Classifier / Alone>  

6.If you had to classify another set of images, which type of collaborator would you 

prefer? <Computer / Human>  

7.If you had to quickly classify another set of 1000 images, which version of the interface 

would you prefer? <Control, SCI, CAM, or Max Interface> 

8.Overall, how well would you say you typically understand technology? <Expert / 

Novice> 

9.If you could only choose one cue, which one would you choose? <Heat Maps (CAM) / 

Confidence Info (SCI)> 
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