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Abstract

The unsteady production of vorticity is a unifying principle in biological locomotion
in air and water. Shape-tailoring their aerodynamic/hydrodynamic surfaces, natural
flyers/swimmers switch with ease between regimes of attached and separated flow.
Modern engineering tries to mimic this shape control ability in applications such as
micro air vehicles and oscillating energy harvesting devices. Owing to the complexity
of morphing, fundamental research merits further efforts, to provide a clearer view
of the link between shape variation and unsteady flow response.

In this dissertation, classical theories (potential flow) are combined with numeri-
cal methods (vortex methods) in the development of a physics-based low-order model
to simulate complex unsteady flows around foils undergoing large camber variations,
as a first step towards exploring the capability of camber morphing to alter vortex
characteristics, like formation time and strength. Discrete-vortex methods have
risen as one of the most suitable numerical tools to establish a relation between
camber definition, flow characteristics and aerodynamic loads produced, involving a
reasonably low number of parameters. An existing discrete-vortex model for rigid
foils is extended to variable-camber foils. A time-varying chord line is proposed,
where the boundary condition in thin-aerofoil theory is to be satisfied. This enables
large deformations of the camber line to be modelled. Computational fluid dynamics
simulations at Reynolds numbers of O(104) are used to test the performance of the
model. Furthermore, a new method is introduced to determine the rate at which
vorticity is fed into leading-edge vortices in vortex models. The strength of nascent
particles at the leading edge is here computed with the velocity at the edge of the
shear layer, formulated in terms of the leading-edge suction parameter (an inviscid
parameter from unsteady thin-aerofoil theory). This novel formulation allows post-
separation flow behaviour, like vortex sheets dynamics, to be correctly captured.
Finally, morphing and vortex modelling are combined to demonstrate the potential
of this technique to affect leading-edge vortices: the amount of vorticity produced
at the leading edge is modulated by suitably tailoring the shape of the camber line.

This research aims to advance our theoretical understanding of the correlation be-
tween prescribed deflection at the trailing edge and alteration of flow properties at the
leading edge, of interest to the design of flow control strategies inspired by nature.
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A few years back, when this journey was still to begin, I was lucky enough to
access part of the original Marqués de Saudade’s poetic work. Diving for days
among poems of the highest literary complexity, I came across what would turn
out to be the most precise, yet simple, reflection of what I was to feel the years
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The pleasure lies not in discovering truth, but in
searching for it.

— Leo Tolstoy

1
INTRODUCTION

H
undreds of millions of years ago (the fossil age of the evolution-

arily oldest species of the extant dragonflies), the benefits of

unsteady aerodynamics seemed to be already known for some.

In the course of natural evolution, since the first creatures left the ground to stay

aloft, flyers have been constantly adapting the morphology and functionality of their

winged systems (Alexander, 2015). Their mastery of flight, performing acrobatic

manoeuvres which baffle the human eye, made them a source of admiration to

mankind since prehistoric times, witnessed on 11,000 years old cave drawings

(Videler, 2006).

Nonetheless, the fascination for winged creatures alone, not walking hand in

hand with a proper understanding of the underlying flow physics, has hampered

humanity’s attempts to embrace the true potential of unsteady aerodynamics.

Despite some theoretical endeavours made a century ago (Birnbaum, 1924), the

complex features of flapping wings (Shyy et al., 2013) have eluded scientific research

until the last half of the 20th century. With the advent of high-speed cameras and

other modern techniques for unsteady flow diagnosis, the mystery of flapping flight

began to be unveiled (Ellington et al., 1996), revitalising a long-standing hankering

to mimic those nimble movements on man-made flight devices.
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Efforts in this direction are now blooming with the emergence of new flight

technologies, like Micro Aerial Vehicles (MAVs), ideal candidates for emergency

situations: to scour areas in search and rescue of missing people without risking

human lives, specially across tricky terrain or hazardous environments; or goods

delivery in remote places where time is of the essence. Regarding the former

application, the rugged terrain of Scotland’s natural landscapes is one of the easiest

for hikers to go astray or get stranded in. In 2020 alone, Scottish Mountain Rescue

received 671 call-outs (Carrell, 2022). Small unmanned vehicles have the potential

to reduce risk in these perilous operations. Their role is foreseen to grow further as

technology advances and aspects of natural flight such as morphing are incorporated

into MAVs. This control technique would allow them to withstand unsteady flow

conditions like the wet and gusty weather prevailing in the Scottish Highlands.

The usage in the latter scenario was accelerated by the coronavirus outbreak.

When COVID-19 struck, emergency supplies (medical equipment and samples) were

distributed to isolated locations in Scotland, like the Isle of Mull, helping to bolster

the healthcare system capacity to cope with the pandemic (Neate, 2020).

Another sector that benefited greatly from unsteady flows is that of renewable

energy. The race for planet decarbonisation, aspiring to eventually eliminate carbon

dioxide emissions to the atmosphere, has put the spotlight on clean energy. Potential

renewable resources to look at are water and air. Tidal and wind power play a key

role in regions with favourable geographical conditions in terms of strong winds and

tidal currents. Such is the case of Scotland, whose marine area alone contains 25%

of Europe’s tidal energy resource. Its most important contribution is the Pentland

Firth and Orkney Waters, where some of the fastest tidal stream currents in the

world are observed, exceeding 5m/s (Murray & Gallego, 2017). It is here where

unsteady flows can lead oscillating energy harvesting devices to sustainably harness

tidal power, decreasing the environmental impact.

Unsteady aerodynamics is seeing important advancements. Still, some of its

enigmatic nature will endure through time, and natural flyers will keep deftly

outmanoeuvring any human-made attempt of small scale flight... or perhaps not?
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1.1 Motivation

The benefits of mimicking flapping motion notwithstanding, unsteadiness can

sometimes pose a problem rather than give a solution. Unsteady flow fields are

characterised by extremely rapid changes, including the formation of vortices due to

the moving body or external agents. Whilst the well-known Leading-Edge Vortex

(LEV) plays a significant role in lift enhancement for small flappers, and improved

performance for oscillating energy harvesters, it also is responsible for a strong non-

linear relationship between the kinematics and the forces generated. This can result

in highly dynamic loading on the immersed structure, which at best can deteriorate

the performance of the device, and at worst can compromise its structural integrity,

rendering it useless to fulfil the mission for which it was conceived.

Given the disparate impact of these time-varying flows an improved understand-

ing of unsteady aerodynamics is fundamental, and so is the ability to obtain rapid

predictions of flow behaviour. The requirement of almost instantaneous results

makes time-consuming analysis tools, such as Computational Fluid Dynamics

(CFD) simulations or experiments, impractical. A promising course of action

is the development of Low-Order Models (LOMs): the flow physics is distilled

into easier problems which are solved with aerodynamic theories. Geometries are

simplified and flow properties modelled are reduced to the bare minimum needed.

This enables real time flow and force predictions, and allows understanding of

the fundamental phenomena at play.

The numerous factors contributing to unsteady flow conditions, from wing

kinematics (pitch, plunge or surge motions), through morphing (chordwise, spanwise

or sweep angle), to external disturbances (gusts, turbulence or neighbour bodies),

renders any endeavour to model all possible combinations unthinkable within the

scope of a doctoral dissertation. To complicate matters further, three-dimensional

effects can also be important sources of unsteadiness. Because of the very complex

nature of the problem, in a bid to simplify the analysis this dissertation restricts itself

to two-dimensional flows. To aid gaining a clearer view of some key contributions

to flow development and force evolution of unsteady aerodynamics at low Reynolds
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Figure 1.1: Natural flyer (from ardmoth.org) and its bionic peer (from www.festo.com).

numbers, only pitch motions of a foil and its temporal camber variations are

studied in this thesis.

The long term goal of this research is to characterise vortex dynamics in response

to morphing wings. To this end, the main objectives of the dissertation are:

• To develop a low-order model to simulate unsteady flows past deforming foils.

• To explore the capacity of temporal camber variations in altering characteris-

tics of vortex structures like formation time and strength.

The fundamental nature of the work presented here is believed to provide a

more thorough vision of the underlying principles of camber morphing, and to serve

as a solid basis for the design of unsteady flow control strategies that mimic the

capabilities of natural flyers, hoping to see one day their bionic peers aloft (Fig. 1.1).

Having introduced the reasons motivating this research, the state of the art is

presented in the following chapter. The research questions sought to be answered

are highlighted, and novel contributions from this work in that direction are listed,

along with their location within the main text.



Do not go where the path may lead, go instead where
there is no path and leave a trail.

— R.W. Emerson

2
BACKGROUND

F
luids in nature are continuously subjected to dynamic phenomena.

Numerous disciplines of science study these events (Lugt, 1983). Among

them, unsteady aerodynamics deals with the formation and development of vortices

around aerodynamic surfaces in motion or subjected to flow disturbances.

2.1 Unsteady flows: Leading-edge vortex

The complex flow field of unsteady fluid problems is characterised by rapid changes

in circulation bound to the lifting surface, and non-linear phenomena such as flow

separation and shedding of vortex structures. The degree of unsteadiness of a

fluid problem is generally determined by a parameter known as reduced frequency,

k = ωc
2U , that relates oscillatory and linear velocities in the fluid. It was introduced

a century ago by Birnbaum (1924).

The impact that unsteady flows produce on immersed bodies can be poles

apart: while the formation of vortices can bring a great benefit to biological and bio-

inspired manoeuvring (Polet et al., 2015); and the extraction of energy by harnessing

environmental vortices can reduce the cost of propulsive locomotion (Liao et al.,

2003); possible detrimental effects in man-made technologies, if these varying flows

are uncontrolled, range from minor loss of efficiency to violent vibrations and
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mechanical failure. Thus, the control of unsteady flows has become a topic of

great interest for modern aerospace engineering.

2.1.1 Rotary wings

An in depth insight into the physics underlying unsteady flow separation is owed to a

phenomenon known as dynamic stall, and a broad body of literature on the matter is

available, stemmed especially from investigations in the rotorcraft community, since

this phenomenon was identified over the blades of helicopter rotors and has been

a major concern since. Aerodynamic bodies undergoing time-dependent motions

(pitching, plunging) can delay the onset of stall to incidences far beyond their

static stall limits (McCroskey, 1982). The distinctive feature of this process is the

formation of a strong vortex at the leading edge, the Dynamic-Stall Vortex (DSV).

As the angle of attack increases, a free shear layer forms in the vicinity of the leading

edge and rolls-up into a vortex. During this dynamic process the vortex is being

fed by the shear layer, building in strength and increasing its size. At some point

the vortex has covered the entire chord length of the aerofoil and detaches from the

leading edge convecting into the wake (McCroskey, 1981). A boost in lift force is

experienced while the DSV remains attached to the aerofoil, but the downstream

convection of the vortex produces an aft movement of the centre of pressure, which

results in large nose-down pitching moment, and is followed by a large drop in lift

when the vortex is shed, marking the onset of unsteady flow separation.

In the same manner, vorticity is produced at the trailing edge induced by the

downstream convecting DSV, giving rise to another vortex swirling in the opposite

sense, the Trailing-Edge Vortex (TEV), which is also shed into the wake. The

alternately vortex shedding process leads to a pattern of counterrotating vortices

over the wake, known as the von Kármán vortex street. In accordance with this

phenomenon aerodynamic loads oscillate. These undesirable load fluctuations

are a limiting factor to the operation of rotary wings, since they are responsible

for material fatigue and structural damage. Thence the importance of developing

effective control mechanisms that modulate its occurrence and widen the operational
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(a) (b) (c)

Figure 2.1: Leading-edge vortex visualisation: (a) experiment, (b) computational fluid
dynamics and (c) discrete-vortex model. Images are rotated to present the profile in a
horizontal position. Adapted from Benton and Visbal (2019), Granlund et al. (2013), and
Ramesh et al. (2014) with permission.

range of these aeronautical systems. On these grounds, diverse semi-empirical

methods to predict and model dynamic stall have been developed, such as the

well-known model by Leishman (2006).

In consistency with the motion of rotor blades, the majority of research car-

ried out on unsteady foils by that time was mainly focused on oscillatory pitch

kinematics with low reduced frequencies at medium to high Reynolds numbers

(O(105) to O(107)).

2.1.2 Flapping wings

The failure of conventional aerodynamic theories to explain flapping-wing flight

prompted the quest for unsteady mechanisms which improve its performance. Biol-

ogists revealed that insect flight relied, among others, on unsteady flow separation

and associated formation of a strong leading-edge vortex (Ellington et al., 1996).

Natural flyers have flaunted their ability to enhance high lift by means of several

aerodynamic mechanisms for which there is documented evidence (Sane, 2003;

J. Wang, 2005): the clap and fling (Lighthill, 1973; Maxworthy, 1979; Weis-Fogh,

1973), the Kramer effect (Sane & Dickinson, 2002), the wake capture (Birch &

Dickinson, 2003; Dickinson et al., 1999; Lehmann et al., 2021), or the leading-edge

vortex (Chin & Lentink, 2016; Shyy & Liu, 2007).

Among these mechanisms, the LEV is arguably the most common, and responsi-

ble to a large degree for the success of low Reynolds number flapping flight. There
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are records of its appearance in the flight of all major extant flying taxa: from

insects (Bomphrey et al., 2005; Bomphrey et al., 2009; Fuchiwaki et al., 2013;

Srygley & Thomas, 2002; Thomas et al., 2004; Willmott et al., 1997); to birds

(Muijres et al., 2012; Videler et al., 2004; Warrick et al., 2009); and bats (Muijres

et al., 2008). Records cover almost the whole spectrum of flight regimes: from

hovering (Swanton et al., 2010; Van Den Berg & Ellington, 1997; Warrick et al.,

2009), and slow flight (Muijres et al., 2012; Muijres et al., 2014), to cruising flight

(Hubel & Tropea, 2010). The relatively high angle of attack at which the wing

operates in these situations promotes flow separation at the leading edge. When

this flow reattaches before the trailing edge an LEV is formed (see Fig. 2.1 for LEV

visualisation through various techniques). Were it not for this vortex, not enough

lift would be generated in flow regimes dominated by strong viscosity effects, which

make the generation of lift and thrust challenging. Other than over flapping wings,

examples of this unsteady phenomenon are found in fish (Borazjani & Daghooghi,

2013; Bottom II et al., 2016) and rotating plant seeds (Lentink et al., 2009).

The acknowledged benefit these vortices confer to biological flight has given a

big impetus to the design of highly-manoeuvrable small-scale aerial vehicles which

aim to favourably exploit unsteady flows (Ajanic et al., 2022; Chang et al., 2020;

Colorado et al., 2012; Jafferis et al., 2019). Research carried out on dynamic stall

until the arrival of these technologies was considered sufficient to illustrate its

behaviour. However, unlike rotary-wing mechanisms, flapping-wing systems operate

at low Reynolds numbers (O(102) and O(104)) and high dimensionless rates of

motion (Shyy et al., 2008). Although the characteristic sequence of events observed

during the physical process of flow separation and LEV formation is generally shared

by most unsteady aerofoils, a thorough examination of the literature reveals the

sensitivity of vortex features to the type of motion performed, as well as several

parameters involved: amplitude of motion, reduced frequency, Reynolds number

(Carr, 1988; Mulleners & Raffel, 2013). Faster motions bring about larger pressure

gradients and flow speeds, which results in stronger LEVs formed on aerofoils

operating at these flight regimes. If further progress is to be made in the design of
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applications involving unsteady motions, like MAVs (Mueller, 2001) or oscillating

energy harvesting devices, a better comprehension of the viscous flow evolution

over the aerofoil under these conditions is needed. Thence the increasing number of

studies on the flow physics underlying flapping flight (Akkala & Buchholz, 2017; Ford

& Babinsky, 2013; Kissing et al., 2020; Rival et al., 2014; Widmann & Tropea, 2015).

Due to the growing interest in controlling LEV dynamics, either to stabilise the

vortex and benefit from its temporary boost in lift, or to mitigate transients in

gust encounters, the development of mathematical models is sought after which,

by distilling complex unsteady flow problems into simpler ones, allow to capture

the essential physics of LEVs in a more tractable way (Eldredge & Jones, 2019;

Manar & Jones, 2019).

2.2 Discrete modelling of fluids: Vortex methods

The dynamic behaviour of unsteady flows can be analysed through the evolution of

vorticity fields. Continuous distributions of vorticity, like separated shear layers or

vortices, can be represented by finite arrays of computational elements which carry

a discrete concentration of vorticity. A full description of the flow field is possible

by tracking the motion and deformation of these discrete elements according to

their local velocities, which includes the free stream velocity and those induced

by other vortices through the Biot–Savart’s law. This is the basis of Discrete-

Vortex Methods (DVMs). Extensive reviews on the subject are found in Cottet

and Koumoutsakos (2000) and Spalart (1988).

These numerical methods have the capacity to inform on the physics they

aim to reproduce. Contrary to grid-based Euler methods, such as high-fidelity

CFD, vortex methods are grid-free, which means there is no need to discretise the

entire fluid domain, reducing considerably the computational burden of calculating

flow properties at every point of the grid. Instead, the computational effort is

concentrated on features of greater interest, such as vortices (flow field regions

with non-zero vorticity). This adaptability to sudden changes in flow conditions
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makes Lagrangian methods ideal for analysis of external unsteady aerodynamics,

justifying their application to simulate separated flows.

2.2.1 Steady flow separation

The fundamental problem of two-dimensional vortex sheets was a logical choice for

the first studies on the matter. In the 1930’s Rosenhead (1931) investigated the

break up of a surface of discontinuity owing to instability, and subsequent formation

of vortices, by placing a number of point vortices equally spaced along its trace

and with the same strength. Several endeavours to numerically compute vortex

sheet dynamics in two dimensions arose after his ground-breaking research with

varying degrees of success. Moore (1971) and Takami (1964) applied the point

vortex approximation to the vortex sheet roll-up process, but did not observe any

spiral structure as previous studies managed to achieve, instead vortices moved

chaotically, casting a doubt on the validity of results. In an attempt to provide

an explanation to such discrepancies between investigations, Chorin and Bernard

(1973) conjectured that limited accuracy on pre-computer calculations might act

as a smoothing mechanism that obviates the singular character of point vortices,

which would otherwise induce unbounded velocities, making them inappropriate to

approximate bounded velocity fields. He proved the smoothing effect of numerical

error applied to the roll-up of free vortex sheets.

A natural next step in the study of vortex sheet dynamics was the problem

of flow separation and vortex shedding over bluff bodies. On this regard, Sarp-

kaya (1968) applied these methods to predict the development of symmetric flow

separation about a circular cylinder immersed in an impulsively started uniform

flow. Assumptions about the separation point over this geometry are necessary, for

which he hypothesised the point bisecting the feeding zone into the shear layer to be

the physical point of separation. To eliminate the need for assumptions about the

location of flow separation, and also to avoid dealing with the difficult treatment

of oscillating separation points, Clements (1973) considered a squared cylinder.

Having right-angle corners, this shape fixes the location from where vortices are
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introduced into the flow field. He was then capable of predicting the asymmetric

interaction of shear layers and the resultant steady vortex shedding.

Notable success was later achieved for inclined flat plates, yet in steady motion.

In the manner in which Clements (1973) dealt with the interaction of vortex sheets,

Kuwahara (1973) looked at the case of a flat plate at high incidence. The use

of the Kutta condition allowed him to fix the position from where the nascent

vortices emerged. He further showed that small variation of these points could

strongly affect the normal force coefficient. In a later study Sarpkaya (1975) noticed

the importance of the oscillation of the position from where vortices enter the

flow field to the continuation of oscillations in the drag force. By allowing this

point to vary in time, he claimed to have removed the difficulties arising from the

use of the Kutta condition. He further computed the vorticity shedding rate by

averaging the instantaneous velocities of the first four elements. These studies were

complemented with work by Kiya and Arie (1977).

The focus was then moved to more streamlined geometries, with Katz (1981)

studying flow separation on cambered aerofoils from a given point over the surface

other than the leading edge. The chordwise location of this point was assumed to be

known from experiments. Clements and Maull (1975) and Saffman and Baker (1979)

provided an excellent historical background on the computation of two-dimensional

vortex sheets using vortex methods, whereas Leonard (1980) was concerned with the

accuracy and computational efficiency and reviewed advancements up to that date.

2.2.2 Unsteady flow separation

Although the interest in using these vorticity-based methods for rapid flow es-

timations seemed to wane for some time, their use has received a new impetus

in recent years, due to the ever-increasing availability of computational tools for

speeding-up simulations, their intrinsic high modularity, and a wider access to

resources. To provide an illustrative example of the computational cost reduction

achieved in the last half century, to simulate the unsteady flow past a flat plate

using ≈ 200 discrete vortices took Kuwahara (1973) ≈ 1 hour, in contrast with
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(c)

(b)(a)

(d)

(e) (f)

Figure 2.2: Flow representation by different discrete-vortex methods, adapted with
permission from: (a) Chorin (1973), (b) Clements (1973), (c) Sarpkaya (1975), (d) Katz
(1981), (e) Ramesh et al. (2014) and (f) Darakananda and Eldredge (2019).

the ≈ 6 seconds needed in the present dissertation to recreate the unsteady flow

due to a deforming foil using triple the number of vortex elements. Some initial

challenges inherent in these methods have also been successfully addressed: the

numerical complexity of velocity calculations through the Biot-Savart law (mutual

interactions between a huge number of particles) has been reduced by employing

adaptive fast summation algorithms (Greengard & Rokhlin, 1987); viscosity effects,

such as diffusion of vorticity, are also being included in Lagrangian formulations

with random-walk methods (Chorin, 1973). Figure 2.2 provides an illustrative

example of the evolution of vortex methods over time: from bluff bodies (a, b),

through steady foils (c, d), to unsteady foils (e, f).
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The use of vortex models within the field of unsteady aerodynamics is seeing a

boost in the last decade, primarily driven by the growing interest in bio-inspired

flight and the advent of micro aerial vehicles. Built upon inviscid theories (Munk,

1923; Theodorsen, 1935; Von Karman & Sears, 1938; Wagner, 1925), vortex models

might be augmented to include non-linearities arising from viscosity, dominant in

these flight regimes, and be successful in modelling unsteady flow problems. Sears

(1956) reviewed early investigations on the extension of classical potential flow

theories to include viscous phenomena, such as flow separation and stall. Some of

the earliest models developed for these scenarios are those by Ansari et al. (2006),

Hammer et al. (2014), C. Wang and Eldredge (2013), and Xia and Mohseni (2013).

A critical aspect for the success of vortex models is how to determine the vorticity

released into the flow field through the free vortex sheets formed at both edges of

the aerofoil. Extensions to the classical steady Kutta condition have been developed

to achieve this at the trailing edge. Among the efforts in this direction those by

dos Santos et al. (2021), Ramesh (2022), Taha and Rezaei (2019), and Xia and

Mohseni (2017) stand out. As for the leading edge, there is an ongoing quest for

a universally valid criterion to predict the onset of unsteady flow separation. The

documented evidence that the initiation of local reverse flow at the leading edge

is correlated with critical flow events in this region (Beddoes, 1978; Ekaterinaris

& Platzer, 1998; Evans & Mort, 1959; Shih et al., 1995), has led researchers to

look at different leading-edge flow quantities, and several onset criteria are being

suggested. On these lines, Narsipur et al. (2020) and Ramesh et al. (2014) examined

the leading-edge suction, whereas Ramanathan et al. (2019) studied boundary-layer

characteristics, and Kamrani-Fard et al. (2021) considered the wall shear stress.

Among the diverse criteria proposed to determine the onset of dynamic stall,

the one by Ramesh et al. (2014) has been widely adopted in the development of

low-order models for unsteady flows (Bird et al., 2021; Darakananda & Eldredge,

2019; Faure et al., 2022; Faure et al., 2020; Hirato et al., 2021; Z. Liu et al., 2017;

Ramesh et al., 2015; Suresh-Babu et al., 2021). This criterion was defined based on

the idea that for a given Reynolds number a rounded leading edge can sustain a
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limited amount of suction over which flow separates. During the process of vortex

shedding that follows the amount of suction at the leading edge is maintained at that

maximum value. This concept was used by Ramesh et al. (2018) and Suresh-Babu

et al. (2022) to design combinations of pitch and plunge kinematics whose objective

was to modulate the formation and shedding of LEVs.

Contrary to the previous assumption, a decay of suction force during the vortex

formation process has been observed in recent investigations (Deparday & Mulleners,

2019; He et al., 2020; Narsipur, 2022; Narsipur et al., 2020). If this behaviour were

correctly captured the post-separation performance of low-order models augmented

with this criterion could be enhanced. But how to reproduce the observed evolution

of leading-edge suction is an unanswered question.

In closing this section a last remark must be made: an important asset to

evaluate the feasibility of numerical models towards real-time simulations and

control is their ability to capture disturbances in the flow field caused by external

inputs, as it can be due to the motion or deformation of the immersed body.

Vortex methods are advantageous for the study of deforming bodies, or those with

multiple elements undergoing independent motions from one another, as is the case

of unsteady aerofoils equipped with a trailing-edge flap, the core of this research.

Eulerian methods require the use of mesh deformation techniques, like remeshing at

every time step of the simulation to adapt the grid to the shape-varying geometry.

As far as the numerical computations are concerned, the added cost this operation

entails makes Lagrangian methods, like vortex methods, a potential alternative

tool for the analysis of flows over surfaces with time-varying shape, showing an

excellent balance between reliability and computational time.

2.3 Flow control: Camber morphing

Biomimicry exerts an enormous influence on the design of flow control strategies.

The natural ability of biological species to shape their propulsive surfaces, either

passively or actively, to safely and efficiently deal with sudden changes in the flow,

has inspired numerous investigations. A vast catalogue of bio-inspired control
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techniques can be found in the literature as a result. Extensive reviews are given

by Harvey et al. (2022) and D. Li et al. (2018).

2.3.1 Passive control

Passive deflection of natural aeroelastic devices can improve the behaviour against

stalling in feathered flyers. Under certain flight conditions, at high angles of

attack, the alula deploys as a response to adverse pressure gradients at the leading

edge (Alvarez et al., 2001). A streamwise vortex forms on the tip of this natural

structure, and induces strong downwash delaying flow separation farther downstream

(S. Lee et al., 2015). In situations when flow separates at the trailing edge, wing

feathers rise off the surface in the reversed flow region to beneficially modify the

unsteady vorticity field. This action prevents the upwards spread of the recirculating

zone, delaying global separation on the suction side, thus increasing the operating

angle of attack (Bechert et al., 2000; Carruthers et al., 2007). Emulating these

natural reactions, self-deploying structures are becoming popular as a passive

mechanism to enhance post-stall behaviour by altering the unsteady flow field

they interact with (Brücker & Weidner, 2014; Johnston & Gopalarathnam, 2012;

Nair et al., 2022; Rosti et al., 2018).

2.3.2 Active control

Active wing morphing may also lead to major changes in the aerodynamics. In

terms of spanwise variations, birds and bats dynamically change their wingspan in

flapping flight. By stretching and retracting their wings vortex structures can be

intensified (S. Wang et al., 2014, 2015). But perhaps active chordwise morphing

has been the bio-inspired flow control strategy most exploited. Figure 2.3 provides

an illustrative example of camber morphing in nature.

Fixed-wing aircraft

In steady aerodynamic applications, like aircraft executing low-speed operations,

temporary adjustments of the effective camber through deflection of control surfaces
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Figure 2.3: Cambered wings of natural flyers: a moth (left) and a barn owl (right).
Reproduced from Dalton (1999) with permission.

are known to improve aerodynamic performance during the different flight segments

(take-off, cruise and landing).

Movable surfaces have also been applied on highly-manoeuvrable aircraft for

transient lift control. For example, Rennie and Jumper (1996) investigated the

application of a Dynamic Trailing-Edge Flap (DTEF) to cancel lift associated with

the aerofoil’s pitching motion; and Rennie and Jumper (1999) to cancel the lift

perturbation caused by a gust (gust alleviation).

Rotor blades

Focused on unsteady separation control, the use of these moving surfaces has been

widespread within the field of rotary wings, where dynamic stall is a major concern.

Aiming to alleviate the undesirable effects of this phenomenon, the DTEF has been

extensively used to improve rotor performance. Among the possible ways of altering

the camber, acting on the trailing edge of the aerofoil is presumed to be a more

appropriate choice for rotor blades, which normally encounter a severe environment

at the leading edge. In this field, Feszty et al. (2004) numerically performed a

systematic study of actuation parameters for a pulsed DTEF, to suggest optimum

strategies which offered a compromise between minimising negative damping and

maximising dynamic lift. They attributed the large negative pitching moment and

associated negative damping primarily to the TEV, rather than the DSV already

detached at this stage. The argument was that a force acting on a long arm to

the pivot axis contributes significantly to the pitching moment. An upwards flap

deflection displaces the TEV to a higher position, reducing the vertical distance with
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the DSV, which pushes the TEV off the trailing edge as it convects downstream.

Suction due to the TEV thus diminishes, along with the associated negative pitching

moment and damping. In an experimental extension of this work, Green et al.

(2011) suggested that the favourable effect of a DTEF on dynamic loads was owed

to the strong suction generated on its pressure side as a result of shape modification.

Similar findings were reported by Gerontakos and Lee (2006) through experimental

investigations using surface pressure measurements, upheld in follow-up works adding

particle image velocimetry (Gerontakos & Lee, 2008), and harmonic DTEF (T. Lee

& Su, 2011). More recently He et al. (2020) turned efforts towards characterising

the influence of an oscillating DTEF on the development of dynamic stall, with

a special focus on the evolution of the leading-edge suction parameter. Built on

prior studies, Samara and Johnson (2020) analysed dynamic stall behaviour on a

cambered aerofoil designed for small-scale wind turbines. Investigations on the use

of DTEF with application to rotary wings were primarily conducted on oscillating

aerofoils about the static-stall angle, intending to simulate the typical angle of attack

variations experienced by rotor blades during low-speed forward flight. A mutual

goal was the search for optimum combinations of DTEF actuation parameters that

provide a good compromise between different aerodynamic requirements.

Micro aerial vehicles

In the last decade, unsteady flow separation at the leading edge has become a research

area of general interest within the field of bio-inspired fluid mechanics, largely driven

by the advent of MAVs. These new small-size flying devices are often equipped

with thinner wings, perform more aggressive motions at higher dimensionless rates,

and operate at lower Reynolds numbers than have previously been studied.

Some efforts have been addressed to better understand the effect of camber

variation on the unsteady aerodynamics of bio-inspired locomotion. Along these

lines, C. Li et al. (2015) performed a parametric study on a hovering plate with a

harmonic DTEF superimposed. Including the hinge location, deflection amplitude

and phase angle in the analysis, different camber patterns are formed, and a careful
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(b)(a)

Figure 2.4: Camber values found on bat wings: (a) angle deflected by the trailing edge,
and (b) camber ratio. Adapted from Von Busse et al. (2012) with permission.

(c)(b)(a)

Figure 2.5: Camber values found on raptor wings, quantified as a percentage of the
total chord length: (a) barn owl, (b) tawny owl and (c) goshawk. Adapted from Cheney
et al. (2021) with permission.

selection of control parameters was shown to affect the strength of LEVs. The

downside of this approach is that a larger parameter space would make finding

the optimal impracticable. This led Xu et al. (2015) to develop an adjoint-based

approach, with which the same optimal DTEF deflection angle and phase delay as

C. Li et al. (2015) were reached at a much lower computational cost. In a similar

manner in which previous studies generated different camber patterns by variations

of the phase angle on oscillatory motions, Y. Liu et al. (2015) prescribed linear

DTEF deflections in a translating wing with different times of actuation, showing

that shedding behaviour could be altered by proper tailoring of the flap kinematics.

Results obtained from these investigations are clear signs that trailing-edge flexion is

directly connected with leading-edge vorticity alteration, and thus with the strength

of LEVs. However, a quantitative relation is missing.
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Furthermore, the high degree of morphing observed in the performance of many

natural species (see Figs. 2.4 and 2.5), and its associated flow control benefits, has

fired the interest on this practice, which has been reflected in a higher range of

DTEF deflections sought. The degree of deformation of an aerofoil cross section

can be quantified through a parameter that relates the maximum camber of the

foil, ηmax, to the total chord length, c (or distance from leading to trailing edge).

This parameter is the camber ratio, ηmax

c . In animal flight literature, some authors

take the maximum camber of the profile to define such ratio (Maeda et al., 2017),

whereas others use instead the camber at the mid chord (Walker et al., 2009),

or even the average camber of the profile (Cheney et al., 2021). The chordwise

coordinate of maximum camber (flexion point for a DTEF) is often located at or

close to the mid chord of the aerofoil (Cheney et al., 2022; Cheney et al., 2021;

Maeda et al., 2017; Muijres et al., 2008; Von Busse et al., 2012; M. Wolf et al.,

2010; T. Wolf & Konrath, 2015), encouraging the use of larger DTEFs.

Attempts are being made to gain further insight into the use of larger DTEFs

at high deflection rates. Medina et al. (2017) investigated the response of fast

DTEF in separated flows as a possible route towards gust mitigation and to enable

aggressive manoeuvres. Mancini et al. (2019) looked into the relationship between

force and circulation production on a wing with a rapid DTEF. The transient

effects of fast low-amplitude flap deflections on a massively separated flow over

an aerofoil were studied by Medina et al. (2020). Medina and Hemati (2021)

applied periodic flap deflections to suppress disturbances induced by a plunge

motion, including the formation of LEVs.

The use of large camber variations towards unsteady flow control at low Reynolds

numbers is proving to be a promising field of research, with still many challenges

to face ahead. A summary of all these studies involving DTEFs is provided in

Table 2.1, along with the actuation parameters used in each piece of research.
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2.4 Research objectives - Original contributions

Itemised below are some gaps identified in the knowledge that are targeted in this

dissertation. Each of them is followed by a description of the approach whereby

posed questions have been tackled, and a summary of the remaining contents

forming the chapter in which these novel findings are located within the main text.

1) Research on morphing strategies inspired by biological shape-adaptations

has shown its potential for the control of unsteady flows. The majority of these

works are experimental in nature or based on high-fidelity numerical computations,

thus being constrained, either physically by the experimental setup, or in terms of

time required. Given the fast-changing nature of unsteady flows, if the aim is to

explore the control capability of strategies beyond the flow scenario for which they

were first conceived, tools are desired to provide quick reliable results in diverse

scenarios. The goal is then to introduce the effect of chordwise morphing in a simple

mathematical model, leading to the following questions:

– To what precision can the behaviour of unsteady flows, including vortex
dynamics and loads acting on the surface, be predicted by these means?

– What degree of camber morphing can be attained?

● Chapter 3 takes a step forwards in this direction with the development of a low

computational-cost tool to simulate the response of unsteady flows to aerofoils

undergoing large-amplitude variations of the camber. While keeping fairly high

levels of accuracy, the run-times of this model are on the order of seconds. The first

part of the chapter covers a thorough review of the mathematical background of

the model. The second part validates its performance for a wide range of cases,

combining several parameters involved in the definition of the camber.

● Chapter 4 complements the above efforts by providing an additional validation tool

for the low-order model. Analytical expressions for the vortex sheet strength and

Fourier coefficients are derived for the problem of a harmonic trailing-edge flap, which

are later used as a reference against which to compare the low-order estimations.
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2) By capturing the essential flow physics, vortex models can help in gaining

fundamental comprehension of the dynamics of vortices. It is however apparent

from the foregoing exposition around the latest approaches taken to model viscous

phenomena, and the experimentally observed behaviour of the leading-edge suction

during vortex formation, that a new method to determine the appropriate vorticity

flux through separated shear layers has to be devised, which will make capturing

post-separation flow behaviour possible, like the reattachment of shear layers.

The questions then arise as to:

– Will a new formulation improve unsteady flow modelling?

– How can post-stall evolution of flow characteristics be more accurately
reproduced?

● Chapter 5 bridges a gap in the current modelling of post-separation flow behaviour

with vortex methods. To solve the existing issue on capturing the appropriate

vorticity feeding rate through separated shear layers an alternative formulation is

introduced. The strength of vortex particles entering the flow field at the leading

edge is now expressed in terms of the velocity at the edge of the shear layer. After

introducing this new approach, a thorough analysis is presented on the evolution of

leading-edge suction and other flow variables during vortex formation, showing that

the reattachment process of separated vortex sheets is now modelled correctly.

3) Considering the scarceness of studies where alteration of LEV development

through camber variations has been characterised, there is scope for new contribu-

tions in this area. If the flow response to external inputs like surface deformations

were successfully incorporated into vortex models (as indicated in the first point),

it would allow us to better conceive of control strategies to modulate desired flow

features. This leads one to pose the following questions:

- Which parameters govern the formation and growth of leading-edge
vortices?

- Is there hope to control LEV characteristics exploiting the fundamental
knowledge procured with these simplified models?
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● Chapter 6 aims to deliver theoretical knowledge on the correlation between

prescribed flexion at the trailing edge and alteration of flow properties at the leading

edge, allowing for various parameters to be tested independently to quantify their

effect on LEV formation and strength. The variable-camber discrete-vortex model

is first validated under the presence of a strong leading-edge vortex, and is later

used to trigger and delay its formation and to alter its strength, demonstrating the

potential of camber morphing in modulating LEV characteristics. Additionally, an

expression of the vortex strength is derived in terms of camber-defining parameters,

which allows to gain insight into their effect on vortex formation.
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It is not the strongest of the species that survives,
not the most intelligent that survives. It is the one
that is the most adaptable to change.

— Charles Darwin

3
MORPHING: MODELLING

3.1 Introduction

M
orphing takes a key role in this research, and the first half of the

dissertation is devoted to its study. Shape-tailoring of appendages, like

wings or tails, has shown to be influential in the success of biological locomotion. Fun-

damental insight into the correlation between geometrical changes on surfaces and

local characteristics of the fluid around can be gained through mathematical analysis.

Simplified aerodynamic models of bodies immersed in unsteady flows which represent

this morphing practice are scarce. The dearth of such modelling tools motivates the

development of a low-order model to simulate flow response to bodies undergoing

arbitrary camber variations in time, which is the first objective of this thesis.

A widely validated discrete-vortex model for rigid wings is leveraged and extended

to variable-camber wings in this chapter. The resulting Morphing Discrete-Vortex

Model (MDVM) lays the groundwork for vortex-dynamics characterisation in

response to shape variations from a theoretical perspective, the last objective

of the research and content of Chapter 6.

This chapter is laid out as follows: The fundamentals of the low-order model are

covered in §3.2, including an extension of Unsteady Thin-Aerofoil Theory (UTAT)

for deformable bodies in §3.2.1, aspects of the numerical scheme in §3.2.2, and the

25
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derivation of aerodynamic loads in §3.2.3. The process of building and setting-up

the CFD model used for validation is detailed in §3.3. The performance of the

low-order model is demonstrated in §3.4, which starts reasoning the practicality

of cases chosen (guided by patterns observed in nature) in §3.4.1, followed by a

detailed explanation of expected limitations in computing the drag force in §3.4.2,

to finally analyse flow and force evolution due to dynamic trailing-edge flexion,

with small amplitude in §3.4.3, medium amplitude in §3.4.4, and large amplitude

in §3.4.5. A summary to the chapter is given in §3.5.

3.2 Variable-camber discrete-vortex model

The pillars on which the mathematical model used in this research stands, deep-

rooted in the concept of vorticity, are set out in this section. Namely, the bound

vortex sheet and separated vortex sheets (from both, trailing and leading edge).

Concerning the first part, an adapted potential-flow theory for unsteady aerofoils

is further extended to include temporal camber variations. This will constitute

the central subject of the chapter, and a detailed elaboration on the underlying

mathematics is provided in §3.2.1.

In relation to the second one, a time-stepping scheme is implemented in the

discrete-vortex method. In the interest of brevity, only those aspects considered

of greater importance for the correct understanding of the model are discussed

in §3.2.2, and the interested readers in broadening their knowledge are referred

to Katz and Plotkin (2001), Ramesh (2022), and Ramesh et al. (2014), where

a good review on the matter is given.

As for the model augmentation to account for viscous effects, such as unsteady

flow separation at the leading edge, details on the criterion adopted to determine

the onset of LEV formation, and the different approaches considered to calculate

the vorticity shedding rate from the separation point, will be extensively covered

in Chapter 5 and barely touched upon here. Albeit being an essential question

for the ultimate goal of the low-order model, the focus of this first theoretical

chapter is on morphing. To avoid the risk of falling into unnecessary repetition,
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and to make a clear distinction between the modelling targets pursuit on each

chapter, separation at the leading edge has been omitted for now, and the cases

analysed in §3.4 have been selected accordingly.

3.2.1 Bound vortex sheet

The high complexity of many fluid problems requires simplifying assumptions to be

made for their study. Such is the case of a fluid domain enclosing an aerodynamic

profile. If the fluid surrounding the body and its wake is considered to be inviscid

and incompressible (effects of viscosity and compressibility neglected), the Navier-

Stokes continuity equation, which states no fluid is being created or destroyed, takes

the form of the Laplace’s equation for the velocity potential, ϕ:

∇2ϕ = 0 . (3.1)

Solving this potential flow equation provides the velocity field due to the motion

and deformation of the aerofoil.

A fluid parcel in the immediate vicinity of a moving/deforming wall is subjected

to the local velocities of the flow and the body. Owing to viscosity, the tangential

component of the velocity field across the interface may suffer from a discontinuity.

This imparts a rotational motion to the fluid in the boundary layer, in other words,

vorticity is created and confined in a thin layer adjacent to the wall. The solution

to Eq. (3.1) reduces to finding an appropriate combination of elementary solutions

distributed over the chord line, the position and strength of which is adjusted for

the no-through-flow boundary condition to be satisfied on the aerodynamic surface

being modelled, here the camber line. An arrangement of singularities consisting

on vortex elements is traditionally chosen because of their physical character. The

resulting line of variable vorticity is known as the bound vortex sheet, and it

represents the vorticity created at the boundary layer.

For simplicity, these elements are continuously distributed. The use of continuous

chordwise vorticity loading was introduced by Birnbaum (1924). Applying the
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method of Fourier series to his conception, Glauert (1927) approximated the

distribution of bound vorticity, γB, by an equivalent trigonometric expansion,

which for the general time-dependent problem takes the form:

γB(θ, t) = 2Uref [A0(t)
1 + cos θ

sin θ +
∞
∑
n=1

An(t) sin(nθ)] , (3.2)

with Uref being a reference velocity; A0(t), A1(t), ..., An(t) time-dependent Fourier

coefficients, whose expressions are determined as functions of the instantaneous local

downwash (given in Eq. (3.25)); t the time; and θ the variable of transformation

used in the discretisation of the chord line, which for mathematical convenience

relates Cartesian to trigonometric coordinates according to the Glauert’s transform

x = c
2(1 − cos θ), where c is the chord length. Values of θ vary from 0 at the

leading edge to π at the trailing edge.

The first feature of note in Eq. (3.2) is that the steady Kutta condition is

automatically satisfied, since zero vorticity at the trailing edge is implicitly enforced,

γB(π) = 0. Another point to highlight is the singularity of the first term at the

leading edge, γB(0) → ∞, which allows to model the high suction peak in this

region observed experimentally. This fact prompted the definition of an inviscid

parameter connected to the A0 Fourier term which serves to predict the onset of

flow separation at the leading edge, and will be thoroughly discussed in Chapter 5.

Morphing-defining parameters

Information is needed about the shape of the solid surface on which the boundary

condition is to be imposed. In the most general form, a wing can be represented by

its upper and lower surfaces, which in a Cartesian coordinate system attached

to the wing reads:

z(x, y) = ηc(x, y) ± ηt(x, y) , (3.3)

where ηc symbolises the camber line and ηt the thickness. Positive and negative

signs distinguish between suction and pressure surfaces respectively.
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If a cross-section at an arbitrary spanwise location is considered (2D simplifica-

tion) and the thickness effect neglected (thin aerofoil), the wing can be replaced

by its camber line, z = η(x), the locus of points midway between upper and lower

surfaces. Some important aerodynamic characteristics of a wing section, like the

chordwise load distribution, are fundamentally associated with that shape, which

can vary in time due to deformation. To tackle this problem, the camber line

can be broken down into two components, ηgeom and ηdef . The former denotes

the geometrical camber, whereas the latter accounts for time-dependent chordwise

deformations. A general deforming aerofoil can then be expressed according to:

η(x, t) = ηgeom(x) + ηdef(x, t) . (3.4)

The most basic representation of chordwise deformation is the flapped flat plate,

this is, a rigid plate (the control surface, such as a trailing-edge flap) hinged at

a specific point to another rigid plate (the foil’s main element). For this initially

uncambered case, symmetric in clean configuration, ηgeom(x) = 0 and ηdef(x, t) is

a piece-wise-linear function. This mechanism, despite its simplicity, serves to set

the basis of morphing modelling with potential flow theory. And the extension

to more complex deforming patterns is a promising future line of research, as

suggested in Chapter 7.

A classical approach to the flap problem (Katz & Plotkin, 2001) considers

a fixed chord line along which bound vorticity is distributed. The chordwise

distribution of camber has non-zero value for only those points after the hinge

position, and is given by:

η(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 for xLE < x < xhg ,

−(x − xhg) sin δ for xhg < x < xTE ,
(3.5)

where xLE, xhg and xTE are the chordwise coordinates of the leading edge, hinge, and

trailing edge respectively; and δ is the flap deflection angle (positive downwards).



30 3.2. Variable-camber discrete-vortex model

Following the assumption of small-disturbance flow in thin-aerofoil theory, the

approximation can be made that the boundary condition is transferred from

the camber line, z = η(x), to the chord line, z = 0. This simplification can be

demonstrated through a Taylor series expansion of the velocity potential:

∂ϕ

∂z
(x, z = η) =

∂ϕ

∂z
(x, z = 0) + η∂

2ϕ

∂z2 (x, z = 0) + O(η2) . (3.6)

A first-order approximation to the exact mathematical formulation of the problem

enables an easier treatment of the boundary condition. In order to retain only the

linear term of the expansion, the camber must be sufficiently small compared to

the chord for distances measured along both lines to be similar:

η(x)

c
≪ 1 ∀x . (3.7)

As this ratio increases so does the error introduced in the solution, since higher-order

terms are being neglected. If large-amplitude deflections are sought, the camber

will be large at the trailing edge (see Eq. (3.5)), and condition (3.7) will be violated.

Additionally, for the trailing edge to stay in the perpendicular to its initial position,

the flap length needs to be extended as the deflection angle increases. To avoid losing

physical sense (chord length must be fixed in the absence of elasticity), and to stay

within the applicability bounds of thin-aerofoil theory, deflections are constrained

for the traditional fixed chord line approach to rather small values.

A novel approach to the problem, introduced in this thesis, aims to overcome

the previous geometrical restriction by proposing a time-varying chord line. This

effective chord line, ceff , is defined as the line which connects leading and trailing

edges at all times (see Fig. 3.1). Using the law of cosines, which generalises the

Pythagorean theorem for non-right triangles, a relation can be obtained between

the lengths of the flap and foil’s main element, and the angle they form. Observing

this angle is π − δ, the instantaneous effective chord length can be expressed as:
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αeff α αδ

δ

ξ
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Figure 3.1: Schematic of different approaches to model a variable-camber aerofoil: fixed
chord line vs. time-varying chord line. Information displayed includes: frames of reference,
spatial distribution of bound vorticity (round arrows) and angles in (a); chord lengths
and maximum camber in (b). All parameters are defined in the main text.

ceff(t) =
√
ca2 + cf 2 + 2 ca cf cos δ(t) , (3.8)

where ca and cf represent the fore element and flap chord lengths respectively. The

sum of both terms gives the foil total chord length, c = ca + cf .

In dealing with bodies subject to time-dependent motions and deformations, an

appropriate frame of reference is essential. The body-fixed frame LE ξ η is used

in this work: pinned at the leading edge of the camber line, with one of its axes

along the effective chord line and the other normal to it, as illustrated in Fig. 3.1(a).

Any point of the foil is therefore described by its chordwise coordinate, ξ, and its

normal coordinate, η, in this frame of reference.

The chordwise axis forms with the horizontal axis of an inertial frame an effective

angle of attack, αeff , composed by the pitch angle (positive upwards), α, and an

additional contribution due to the flap deflection, αδ, as shown in Fig. 3.1(a):

αeff(t) = α(t) + αδ(t) . (3.9)

The effect of this last component can be thought of as an increase in effective angle

for downwards flap deflections (those leading to an increment of positive camber,
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or negative camber reduction), and a decrease in effective angle when it deflects

upwards (reduction of positive camber, or negative camber increment). Similarly to

how Eq. (3.8) has been derived, the law of sines enables to express the instantaneous

value of this angle in terms of shape-control parameters:

αδ(t) = arcsin
⎛

⎝

cf
ceff(t)

sin δ(t)
⎞

⎠
. (3.10)

The chordwise coordinate in the new frame of reference is given by the Glauert

transform as:

ξ =
ceff

2 (1 − cos θ) , (3.11)

and the camber distribution is derived as a piece-wise function analogous to Eq. (3.5):

η(ξ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ξ tanαδ for ξLE < ξ < ξhg ,

(ceff − ξ) tan(δ − αδ) for ξhg < ξ < ξTE ,
(3.12)

with ξLE = 0, ξTE = ceff and ξhg = ca cosαδ being the chordwise coordinates of

the leading edge, trailing edge and hinge respectively. Variation of θ from 0

to π traces the camber line.

Camber is maximum at the hinge location, and its magnitude can be written

as a fraction of the effective chord length as:

ηmax
ceff

=
ca
ceff

cf
ceff

sin δ . (3.13)

With this novel approach the maximum camber ratio is reduced compared to

the classical approach, decreasing the departure from small-disturbance assumption,

and improving the accuracy on estimation of aerodynamic loads. A comparison

of the magnitude of maximum camber obtained in each approach for the same

flap deflection is given in Fig. 3.1(b).
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Figure 3.2: Velocity components of an arbitrary point over the foil camber line. The
diverse sources of velocity are colour-coded in the box. The orientation of vectors drawn
correspond to the following case: a foil moving leftwards, plunging upwards, pitching
clockwise, with a flap being deflected clockwise, and a gust coming from the bottom left.
Positive axes of each coordinate system are shown for reference.

Unsteady boundary condition

The differential form of the continuity equation as defined in Eq. (3.1) does not

depend directly on time. In the treatment of unsteady flows, time dependency

comes into play through the boundary condition. Typically, the Neumann form

of the present boundary value problem imposes a no-slip boundary condition for

a real fluid, which requires it to have zero relative velocity with respect to the

solid surface in a frame of reference attached to the body. Since viscous effects

of the boundary layer are neglected in potential flows, the tangential component

of the local velocity is unrestricted, but zero-normal flow needs to be enforced at

each point across the fluid-solid interface, v ⋅ n = 0.

Fluid particles in that region flow tangentially to the camber line. Their

velocity stems from a combination of external flow perturbations, velocities induced

by vortices in the flow field, body motion and surface deformation, as depicted

in Fig. 3.2. From action-reaction principle, the sign is the opposite for those

contributions that are due to the interface moving/deforming:
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v = −v0 − vrot − vrel + vext +∇ϕ . (3.14)

Coordinates of each velocity contribution expressed in the body-fixed frame are:

1. Velocity of the origin, due to translation

v0 = (−U cosαeff − ḣ sinαeff ,0 ,−U sinαeff + ḣ cosαeff) . (3.15)

2. Velocity as a rigid body, due to rotation

vrot = Ω1 × r1 +Ω2 × r2

Ω1 = (0 , α̇ ,0) , Ω2 = (0 , α̇δ ,0)

r1 = (ξ − ξpvt ,0 , η − ηpvt) , r2 = (ξ ,0 , η)

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (3.16)

3. Relative velocity, due to deformation

vrel = (−ξ̇ ,0 , η̇) . (3.17)

4. External velocity, due to flow disturbances like gusts

vext = (ux cosαeff − uz sinαeff ,0 , ux sinαeff + uz cosαeff) . (3.18)

5. Vortex-induced velocity, due to TEVs and LEVs

∇ϕ = (
∂ϕB
∂ξ
+
∂ϕTEV
∂ξ

+
∂ϕLEV
∂ξ

,0 , ∂ϕB
∂η
+
∂ϕTEV
∂η

+
∂ϕLEV
∂η

) . (3.19)

A generic pitching and plunging foil moves with a constant horizontal velocity

in the inertial frame (no surge motion prescribed), U , and a plunge velocity in

the vertical direction, ḣ. The forward velocity is taken as the reference velocity

for Eqs. (3.2) and (3.25), Uref = U . The effective angle of attack, αeff , is used

to transform between the body-fixed and inertial frames (see Fig. 3.1). For the

angular variation terms, α̇ is the pitch rate about the pivot axis, of coordinates

ξpvt = cpvt cosαδ and ηpvt = cpvt sinαδ in the body-fixed frame, where cpvt is the

distance from the leading edge to the pivot point; and α̇δ is the rotation rate of the
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coordinate system about the leading edge due to flap deflection. The relative velocity

of points along the surface is due to temporal variations in the camber and effective

chord length. The sign of its components can be explained as follows: a positive

flap deflection growing in magnitude, δ > 0 with δ̇ > 0, causes an increase in camber,

η̇ > 0, and a reduction in effective chord length, ξ̇ < 0. Without any loss of generality,

it is assumed in this research there are no external flow disturbances, ux = uz = 0.

Finally, it must be pointed out that the velocity potential, ϕ, is comprised of terms

associated with bound vorticity, ϕB, trailing-edge vorticity, ϕTEV , and leading-edge

vorticity, ϕLEV . Then, ∂ϕ∂ξ and ∂ϕ
∂η are velocities induced tangential and normal to the

effective chord line by all of these vortices. Although cases studied in this chapter do

not cover leading-edge vorticity shedding, its contribution is kept in all expressions

since these generic forms will be used in later chapters without modifications.

Expressed in the body frame of reference, the chordwise and normal velocity

components at an arbitrary point over the camber line are:

vξ =
∂ϕ

∂ξ
+U cosαeff + ḣ sinαeff − α̇(η − ηpvt) − α̇δη + ξ̇ , (3.20a)

vη =
∂ϕ

∂η
+U sinαeff − ḣ cosαeff + α̇(ξ − ξpvt) + α̇δξ − η̇ . (3.20b)

Surfaces, here reduced to the camber line, can be defined by an implicit function,

which in the frame of reference attached to the body is F (ξ, η, t) ≡ η − η(ξ, t) = 0.

The unit normal vector to this surface (positive outwards) is proportional to

the gradient of that function:

n = ∇F
∣∇F∣

=
1

√

1 + (∂η∂ξ )
2
(−
∂η

∂ξ
,0,1) . (3.21)

Adding all the foregoing velocity contributions in Eqs. (3.15) to (3.19) to define

the velocity vector of a fluid particle at an arbitrary point over the camber line,

applying the boundary condition with the normal vector obtained from the implicit



36 3.2. Variable-camber discrete-vortex model

representation of the camber line in Eq. (3.21), and rearranging the solution, yields

the instantaneous local downwash or induced velocity normal to the surface, ∂ϕB

∂η .

For an arbitrary flapping and simultaneously deforming foil in a generic vortex-

dominated scenario (TEVs and LEVs shed) the expression has the general form:

W (ξ, t) =

∂η

∂ξ
(
∂ϕTEV
∂ξ

+
∂ϕLEV
∂ξ

+U cosαeff + ḣ sinαeff − α̇(η − ηpvt) − α̇δη + ξ̇)

−
∂ϕTEV
∂η

−
∂ϕLEV
∂η

−U sinαeff + ḣ cosαeff − α̇(ξ − ξpvt) − α̇δξ + η̇ .

(3.22)

This general expression of the downwash includes the effects of motion kinematics,

camber line deformations and flow induced by vortices. The term ∂ϕB

∂ξ has been

neglected since it is an order of magnitude smaller than the other terms. Temporal

derivatives, α̇δ, ξ̇, and η̇, are obtained by differentiating Eqs. (3.8) to (3.13):

α̇δ =
cos δ + ca

ceff

cf

ceff
sin2 δ

ca

cf
+ cos δ δ̇ , (3.23a)

ξ̇ = ξ
ċeff
ceff
= −ξ

ηmax
ceff

δ̇ , (3.23b)

η̇ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

tanαδ ξ̇ + ξ
cos2 αδ

α̇δ for ξ < ξhg ,

(
ξ

ceff
− 1) ηmax tan(δ − αδ)δ̇ + ceff−ξ

cos2(δ−αδ)(δ̇ − α̇δ) for ξ > ξhg ,

(3.23c)

where δ̇ is the rate of flap deflection.

Velocities induced by vortices in the flow field are converted to the body-fixed

frame using the effective angle of attack:

∂ϕTEV,LEV
∂ξ

= uind cosαeff −wind sinαeff , (3.24a)

∂ϕTEV,LEV
∂η

= uind sinαeff +wind cosαeff , (3.24b)
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with uind and wind being the vortex-induced velocities (for both TEV and LEV) in

the inertial x and z directions, respectively, obtained in Eq. (3.27).

The Fourier coefficients introduced in Eq. (3.2) are related to the shape of the

foil through the boundary condition enforced on its camber line. They are given

in terms of the instantaneous local downwash in the body-fixed frame as:

A0(t) = −
1
π ∫

π

0

W (ξ, t)

Uref
dθ , (3.25a)

An(t) =
2
π ∫

π

0

W (ξ, t)

Uref
cos(nθ)dθ . (3.25b)

Lastly, the bound circulation can be computed by integrating the distribution

of bound vorticity in Eq. (3.2) over the time-varying chord line:

ΓB(t) = πceffUref (A0(t) +
A1(t)

2 ) . (3.26)

3.2.2 Separated vortex sheets

Creation of vorticity is conceivable without contradicting Helmholtz-Kelvin theorems

by changing topological flow properties: vorticity created as a free sheet (Saffman,

1995). Hence, a trailing-edge vortex sheet forms as an aerofoil moves following a

prescribed trajectory. Leading-edge vortex sheets can also arise in certain scenarios,

but their study is left for Chapter 5.

Within the framework of vortex methods, each of these sheets is approximated

by an array of vorticity-carrying elements as depicted in Fig. 3.3 (the complete

picture of an unsteady foil with free vortex sheets at both edges is given in Fig. 5.1).

The amount of particles representing these sheets is determined in the current

model using a time-stepping scheme, as described in Katz and Plotkin (2001) and

highlighted in Ramesh et al. (2013). At each time step of the numerical simulation

a discrete vortex is shed from the trailing edge (for the leading edge see §5.2).
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Figure 3.3: Representation of a separated shear layer at the trailing edge of an unsteady
foil by vortex elements.

Point vortices were used to represent flows in the earliest discrete-vortex methods

(Rosenhead, 1931). Vortices in close proximity could induce artificially large

velocities on each other. To eliminate numerical stiffness, the idea of treating

vortices as distributed vortex cores, or vortex blobs with finite core radii, was

introduced by Chorin (1973). Induced velocities in the flow field are then bounded

by including the core radius of the blob, vcore, in their calculation. The vortex-core

model proposed by Vatistas et al. (1991), based on an empirical formula for the

tangential velocity component, is used in this work.

Therefore, knowing the strength of the k-th wake vortex shed at time step i − 1

(from the trailing edge in this case), Γk, the induced downwash components on

any point of the aerofoil (x,z), due to this vortex located at (xk,zk) in the current

time step i, are provided by the Biot-Savart law:

uind =
Γk
2π

z − zk
√

((x − xk)2 + (z − zk)2)
2
+ v4

core

, (3.27a)

wind = −
Γk
2π

x − xk
√

((x − xk)2 + (z − zk)2)
2
+ v4

core

. (3.27b)
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Two alternative ways to compute the strength assigned to trailing-edge vortex

elements are discussed in what follows.

Many discrete-vortex methods use an iterative process so the Kelvin circulation

conservation theorem is fulfilled. This theorem establishes the relationship between

the free vortex sheets formed at both edges of the foil and the bound vortex sheet:

dΓB(t)
dt

+
dΓLEV (t)

dt
+
dΓTEV (t)

dt
= 0 . (3.28)

The bound circulation, ΓB, is taken from Eq. (3.26), and no shedding of leading-edge

vorticity is considered in this chapter, ΓLEV = 0. The strength of trailing-edge

vortex elements is then easy to compute.

According to literature on the Kutta condition, velocity being finite at the

trailing edge, which is the steady Kutta condition, is necessary but insufficient to

correctly determine the circulation for unsteady flows. An additional condition

is needed in scenarios where vorticity is continuously shed from the trailing edge.

This might be expressed as continuity in the vortex sheet across the trailing edge

(non-zero vorticity). If a point vortex or regularised vortex blob is used to represent

shed wake vorticity at any discrete time step there is a discontinuity across the

trailing edge, and the second condition is not satisfied. The solution is then

erroneous. As an alternative, Ramesh (2022) proposed a continuous distribution

of vorticity, derived from the exact Wagner solution, to represent the last shed

vorticity at any time. This distribution is later converted into a vortex blob placed

at its centroid, and the calculation advances as for the other approach. Details

on the implementation are provided in that paper. Results from MDVM using

both approaches are compared later in §3.4.3.

For convergence of vortex-blob methods, it is necessary that the vortex-core

radius be larger than the average spacing between blobs, d, which means they

must overlap (Hald, 1979). In this work the radius is taken to be vcore = 1.3d

following guidelines from Leonard (1980).
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Testing different non-dimensional time steps, ∆t∗ = ∆tU
c , proved that 0.015

yielded good results in most simulations (balancing precision-speed), and this value

has been used in all results shown in this dissertation. Since a vortex blob is released

at every time step of the simulation, ∆t, the distance between consecutive blobs

is d = ∆tU , or in terms of the non-dimensional time step d = ∆t∗ c. Hence the

vortex core radius used in this work is vcore = 0.02c.

The last shed particle in vortex methods is traditionally positioned along the

path line of the shedding edge. If it is placed instead at one third of the distance

from the edge to the previously shed particle (Ansari et al., 2006), the flow is

more accurately described as both effects are taken into account, the motion of the

aerofoil and the advection of the previous particle. As for the first shed particle,

its position is determined with the velocity at the shedding edge.

To advance the calculation, particles in the flow field are convected with the

net velocity induced in their centre (free stream velocity plus mutual interactions),

enabling the rolling-up into vortex structures, thus featuring a deforming wake.

Particles of the bound vortex sheet move with the aerofoil velocity.

3.2.3 Pressure distribution and aerodynamic coefficients

Once the velocity field is known, the pressure distribution over the aerofoil surfaces

is derived by means of Bernoulli’s equation modified for the unsteady regime:

∆p(ξ) = pl(ξ) − pu(ξ) = ρ [
1
2(V

2
tu − V

2
tl
) + (

∂ϕ

∂t
∣
u

−
∂ϕ

∂t
∣
l

)] . (3.29)

The tangential velocity in the first term can be obtained from Eq. (3.20) for

points ahead and behind the hinge as:

Vt =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

vξ cosαδ + vη sinαδ for ξ < ξhg ,

vξ cos(δ − αδ) − vη sin(δ − αδ) for ξ > ξhg .
(3.30)
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This expression simplifies to Vt = vξ after transferring the boundary condition

from the camber line to the chord line.

On evaluation of Eq. (3.20a) over the upper and lower sides of the chord line,

the only term that differs is the spatial derivative with respect to the chordwise

coordinate of the velocity potential due to bound vorticity, ∂ϕB

∂ξ . Its value above

and below a vortex distribution is given by:

∂ϕB
∂ξ
∣
u

=
γ(ξ)

2 , ∂ϕB
∂ξ
∣
l

= −
γ(ξ)

2 . (3.31)

Bearing in mind that squared terms have the same value on the upper and

lower side they cancel out in the pressure difference, and the only contribution is

due to double products of summands if ∂ϕB

∂ξ is present. Hence, the first term in

Eq. (3.29), using the values from Eq. (3.31), becomes:

1
2(V

2
tu − V

2
tl
) = (

∂ϕTEV
∂ξ

+
∂ϕLEV
∂ξ

+U cosαeff + ḣ sinαeff

− α̇(η − ηpvt) − α̇δη + ξ̇)γ(ξ) .

(3.32)

Evaluating in a similar way the second term in Eq. (3.29), only the velocity

potential associated to the bound vorticity, ϕB, differs for the upper and lower

sides. Thus, integrating Eq. (3.31) and deriving in time yields the pressure

jump contribution:

∂ϕ

∂t
∣
u

−
∂ϕ

∂t
∣
l

=
∂

∂t ∫
ξ

0
γ(ξ)dξ . (3.33)

A final expression for the pressure difference on the aerofoil is attained by

substituting Eqs. (3.32) and (3.33) in Eq. (3.29):

∆p(ξ) = ρ[(∂ϕTEV
∂ξ

+
∂ϕLEV
∂ξ

+U cosαeff + ḣ sinαeff

− α̇(η − ηpvt) − α̇δη + ξ̇)γ(ξ) +
∂

∂t ∫
ξ

0
γ(ξ)dξ] .

(3.34)
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The normal force acting on the aerofoil is obtained by integrating the pressure

jump from Eq. (3.34) over the chord line:

FN = ρ[∫
ceff

0
(
∂ϕTEV
∂ξ

+
∂ϕLEV
∂ξ

+U cosαeff + ḣ sinαeff

− α̇(η − ηpvt) − α̇δη + ξ̇)γ(ξ)dξ + ∫
ceff

0

∂

∂t ∫
ξ

0
γ(ξ0)dξ0dξ] .

(3.35)

Contributions to this force can be grouped into non-circulatory and circulatory

due to either translation, rotation, deformation or wake vortices (LEVs and TEVs):

FN = FNnc + FNt + FNr + FNd
+ FNv . (3.36)

Force decomposition serves to give insight into the magnitude of each contribution

to aerodynamic loads. Note that flap deflection effect is divided into rotation

(as a variation in effective angle of attack, α̇δ) and deformation (as a change in

effective chord length, ξ̇). The normal force coefficients for the different components,

normalised using 1
2ρU

2
refc, are broken down below:

1. Non-circulatory

CNnc =
2πc2

eff

Uc
(

3
4Ȧ0(t) +

1
4Ȧ1(t) +

1
8Ȧ2(t)) . (3.37)

2. Circulatory due to translation

CNt =
2πceff
Uc

(U cosαeff + ḣ sinαeff)(A0(t) +
1
2A1(t)) . (3.38)

3. Circulatory due to rotation

CNr = −
2
U2c ∫

ceff

0
(α̇(η(ξ) − ηpvt) + α̇δη(ξ))γ(ξ)dξ . (3.39)

4. Circulatory due to deformation

CNd
=

2
U2c ∫

ceff

0
ξ̇γ(ξ)dξ . (3.40)
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5. Circulatory caused by vortices

CNv =
2
U2c ∫

ceff

0
(
∂ϕTEV
∂ξ

+
∂ϕLEV
∂ξ

)γ(ξ)dξ . (3.41)

Time derivatives α̇δ and ξ̇ are defined in Eq. (3.23).

In addition to this pressure force, a leading-edge suction force acting axial to the

aerofoil in the upstream direction will play a role in the generation of aerodynamic

loads. It is given by the Blasius formula (Katz & Plotkin, 2001):

FS = ρπcU
2A2

0 . (3.42)

Using the same factor to normalise it yields the suction force coefficient:

CS = 2πA2
0 . (3.43)

Aerodynamic coefficients are normally derived in the free stream coordinate

system, so the resulting component normal to the incoming flow is the lift, and

the parallel component is the drag:

CL = CN cosαeff +CS sinαeff , (3.44a)

CD = CN sinαeff −CS cosαeff . (3.44b)

Finally, the pitching moment (nose-up positive) is obtained as:

M = ∫
ceff

0
∆p(ξ)(ξpvt − ξ)dξ . (3.45)

Upon substituting Eq. (3.34), and normalising with 1
2ρU

2
refc

2, the pitching

moment coefficient around the pivot axis results:
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CM = CN
cpvt
c

cosαδ −
2πc2

eff

Uc
(

7
16Ȧ0(t) +

11
64Ȧ1(t) +

1
16Ȧ2(t) −

1
64Ȧ3(t))

−
2πc2

eff

Uc2 (U cosαeff + ḣ sinαeff)(
1
4A0(t) +

1
4A1(t) −

1
8A2(t))

+
2

U2c2 [∫
ceff

0
(α̇(η(ξ) − ηpvt) + α̇δη(ξ) − ξ̇ −

∂ϕTEV
∂ξ

−
∂ϕLEV
∂ξ

)γ(ξ)ξdξ] .

(3.46)

3.3 Variable-camber CFD model

Reference data is necessary to assess the performance of a low-order model, be it from

high-fidelity simulations or from experiments. While it is relatively easy to come by

data from the literature for pitching/plunging aerofoils in the flow regime of interest

for this work, Reynolds numbers O(104), it is not that common to find similar data

for aerofoils undergoing arbitrary variations in camber. To obtain the required data

a program for validation was designed based on high-fidelity computational fluid

dynamic simulations. A CFD model for a dynamic trailing-edge flap was developed

using an in-house version of the open-source software OpenFOAM. Validation of the

CFD model itself was constrained to available data in the literature. Considering

the framework on which the content of this thesis is placed (low Reynolds number

flows and high reduced rates of motion), the best fit was found in the experiments

carried out by Medina et al. (2017), where the kinematics profile prescribed to the

flap consisted of a smoothed ramp-hold manoeuvre. This was recommended by

the AIAA FDTC Low Reynolds Number Discussion Group as a set of canonical

motions (see also §5.3.1), in considering harmonic kinematics less conducive to the

study of rapid manoeuvres, of interest to MAV applications (Ol et al., 2010).

The aerofoil’s geometry for the CFD mesh was hence constructed following the

experimental model used in Medina et al. (2017): a NACA 0006 profile with a chord

length of 20cm, equipped with a DTEF hinged at the mid-chord, cf

c = 0.5. Details to

define the hinge gap were provided by the author of the experiments, and were closely

followed to create the mesh, but have not been included here without his consent.
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(a)
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(c) (d) (e)
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Figure 3.4: Details of the CFD mesh: (a) complete fluid domain, (b) overset-mesh
strategy adopted for multi-element configurations (body-fitted and background meshes),
(c) leading edge, (d) hinge gap, (e) trailing edge, (f) rear part of main element and (g)
front part of flap.
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One of the main challenges to be faced in simulating multi-body problems is

the meshing. To enable independent prescribed kinematics for each moving part

(main element and trailing-edge flap) an overset mesh approach, known as the

Chimera technique, was adopted. The grid system is made up of geometrically

simple overlapping structured grids. For each moving component a high quality

body-fitted curvilinear grid was built, being embedded within a coarser Cartesian

grid of circular shape, as depicted in Figure 3.4(a, b). This background mesh has

a diameter of 24 chord lengths. The number of cells around the main element

of the aerofoil was 176, and 182 around the flap, with a fine resolution near the

leading edge, hinge gap and trailing edge. This is illustrated through zoomed-in

images around these regions, Figure 3.4(c − g). The overset grids for both front and

rear elements extend to 0.2 chord lengths in the wall-normal direction, in which 67

cells are contained. The maximum cell size in these meshes is 0.01 chord lengths.

Overall, the number of cells are: 11,792 cells for the body-fitted mesh around

the main element of the aerofoil, 12,194 cells for the body-fitted mesh around the

flap and 82,500 cells for the background mesh.

The Finite Volume Method (FVM) was used to solve the time-dependent

incompressible Navier-Stokes equations. A second-order backwards implicit scheme

was used to discretise the time derivatives, and second-order limited Gaussian

integration schemes were used for the gradient, divergence, and Laplacian terms.

Pressure–velocity coupling was achieved using the Pressure Implicit with Splitting of

Operators (PISO) algorithm. For turbulence closure the Spalart-Allmaras turbulence

model (Spalart & Allmaras, 1992) was chosen because of its extensive and successful

use in unsteady separated flow problems. All simulations performed in this work

are at low Reynolds numbers, confining the effects of turbulence to the wake

and leading-edge vortex.

Using this set-up for the CFD model various flap deflection cases extracted

from Medina et al. (2017) were simulated. With the main element fixed at α = 0○,

a ramp-hold motion was prescribed to the flap with amplitude δ = 20○ and three

different reduced rates of flap deflection: Kδ = 0.07 (slow), Kδ = 0.27 (medium) and
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K=1.09

K=0.27

K=0.07 K=1.09

K=0.27

K=0.07

(b)(a)

Figure 3.5: Aerodynamic coefficients time history: (a) lift and (b) pitching moment.
Results are from CFD (curves) and experimental data (markers).

Kδ = 1.09 (fast). Flow conditions of the experiment were also replicated in the

simulations: a free stream velocity of 0.2m/s and a Reynolds number based on the

chord length Re = 4 ⋅ 104 (experiments were conducted in water). The aerodynamic

coefficients obtained for the three cases are compared in Fig. 3.5. The remarkably

good agreement with experimental results, observed for all rates of flap motion, was

encouraging to use this CFD model as a validation tool for the low-order model.

Finally, in order to broaden the spectrum of shape-defining parameters accessible

to study foil morphing, a new arrangement was derived from the previous geometry,

keeping the main geometric constraints but changing the flap length to 30% of

the aerofoil’s total chord (see §3.4.4 and §3.4.5).

3.4 Dynamic trailing-edge flexion

Three different sets of cases for temporal camber variations are analysed in this

section to assess the performance of MDVM. Various combinations of shape-control

parameters, such as the length of body deflected, the amplitude and the rate of

deflection, are included to understand its limitations and prove its capability in

modelling deforming foils. Firstly, the reason behind the parameters chosen is

explained in detail in §3.4.1. Next, expected limitations to the model predictions
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are brought out in §3.4.2 based on classical fluid mechanics theory. Finally, results

for the three sets are shown and thoroughly discussed in §3.4.3, §3.4.4 and §3.4.5.

3.4.1 Deformations in nature, optimal convergence

Periodic flow motions are typically described using a dimensionless number that re-

lates oscillatory and linear fluid velocities: the Strouhal number, St. To characterise

flapping-based mechanisms of locomotion where the orientation of oscillations is

normal to the direction of motion, like animal propulsion (cruising bird/bat/insect

flight or fish swimming), a form of the Strouhal number can be used which is based

on the amplitude of flapping oscillations (Shyy et al., 2013):

St =
fA

U
, (3.47)

where f represents the dimensional stroke frequency of the appendage; A the

peak-to-peak amplitude of its trailing edge; and U the animal’s forward velocity.

If the oscillating flow is caused by trailing-edge flexion, by writing the stroke

amplitude in terms of bending parameters as A = 2 cf sin δmax, knowing the relation

between angular and linear frequency ω = 2πf , and recalling the expression for the

reduced frequency k = ω c
2U , a modified expression for the Strouhal number is yielded:

Stδ =
2kδ
π

cf
c

sin δmax . (3.48)

Here kδ is the non-dimensional trailing-edge flexion frequency (flap deflection

reduced frequency in this work); cf

c is the flexion ratio, defined as the length of

appendage/body being flexed, this is from flexion point to trailing edge, relative

to the total length of the appendage/body (flap-to-foil ratio in this work); and

δmax is the flexion angle, that the line connecting flexion point and trailing edge

forms with the appendage/body symmetry line (flap deflection amplitude in this

work). Figure 3.6 shows the graphic relation between parameters involved to derive

the new expression for the Strouhal number.
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A

U

(b)(a)

cf

c

δmax

Figure 3.6: Schematic of parameters involved in different definitions of Strouhal number:
(a) general oscillatory motion and (b) adapted for trailing-edge flexion.

Natural selection seems to have tuned animal cruise kinematics for high thrust

production and propulsive efficiency, constraining the optimal Strouhal number

observed in biological propulsion to a narrow range of 0.2 < St < 0.4 (Taylor

et al., 2003; Triantafyllou et al., 1993). Geometric configurations of natural flexible

propulsors also follow similar patterns across animal taxa (Lucas et al., 2014).

Existing morphometric data of bending parameters on a number of fish species

identified values to which flexion ratio and flexion angle converge for all fish surveyed:

bending tends to occur at about one third from the trailing edge of the fish tail, with

an angle of 30○ (Hang et al., 2022; Lucas et al., 2014). Wing-shape data collected

from bats flight revealed the extreme degree of active deformation exhibited in their

wings at low flight speeds (Von Busse et al., 2012), with trailing-edge flexion angles

as high as 20○ to 45○ (see Fig. 2.4a). Camber corresponding to these values varies

from 0.1 to 0.2 (see Fig. 2.4b), or from 10% to 20% if expressed as a percentage

of the total chord length (Cheney et al., 2022; Muijres et al., 2008; M. Wolf et al.,

2010). The chordwise coordinate of maximum camber obtained with the above

values is 0.5, or in other words, the flexion point (flap hinge in this work) is located

at the mid chord for these wings. Similar deformation traits, camber ≥ 10% around

the mid chord, have also been recorded for passively cambered wings (see Fig. 2.5)

in all flight modes: gliding raptors (Cheney et al., 2021), flapping owls (T. Wolf &
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Table 3.1: Bending parameters used to characterise deformation on each studied case:
flexion ratio, flexion amplitude, reduced flexion frequency, Strouhal number.

cf

c δmax[○] kδ Stδ

case A 0.5 1 0.5 0.003
case B 0.3 20 π 0.21
case C 0.5 20 π 0.35
case D 0.3 45 π/2 0.21
case E 0.5 45 π/2 0.35

A

BC

DE

Figure 3.7: Comparison of bending parameters for optimal performance in fish swimming
and flapping-wing flight (adapted from Lucas et al. (2014) with permission) and those
used for studied cases. Note that the flexion ratio represented in the x-axis is the
complementary of that in Eq. (3.48). Rather than the length of propulsor being bent, the
distance from the leading edge to the point at which flexion occurs is stated in the graph.

Konrath, 2015), hovering hummingbirds (Maeda et al., 2017); and on aeroelastic

insect wings (Walker et al., 2009, 2010; Zheng et al., 2013).

To give an idea of the magnitude of flap deflection needed to achieve equivalent

deformations, a camber of ηmax

c = 0.1 for a flexion ratio of cf

c = 0.5 translates into a

flexion angle of δmax = 20○ (see Eq. (3.13)). This value is used to define medium

amplitude deformation cases studied in this section, whereas the maximum value

observed in bat flight, δmax = 45○, is taken to show the performance of the low-order

model in large-amplitude deformation scenarios. Following guidelines on biological
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bending parameters, two different flexion ratios are considered for each set of cases,
cf

c = 0.3 and cf

c = 0.5. The reduced frequency of trailing-edge flexion is adjusted for

each of them in order to keep the Strouhal number given in Eq. (3.48) within the

optimal range observed in nature. An additional case for very small deformations at

low rate has been included. The aim is to prove the enhancement in aerodynamic

loads estimation when the modified Kutta condition (see §3.2.2) is implemented in

the model. Since studied cases have been selected aiming to cover as wide a range

of real data observed in natural bending as possible, Fig. 3.7 illustrates where these

cases lie according to their flexion amplitude and ratio when compared to data from

Lucas et al. (2014). Parameters defining all cases are listed in Table 3.1.

The argument in favour of choosing the flexion ratio cf

c = 0.5 is further reinforced

by recent experimental investigations involving trailing-edge flap deflections with

that configuration (Medina et al., 2017). Research efforts to study the same

fluid problem from different perspectives, theoretical and experimental, can be

complemented if the same set-up is used for both. Indeed, experimental data

generated by one of these research studies has served to build and validate the CFD

model, which has itself been used throughout this thesis as a validation tool for

the low-order model. All details have been described in §3.3.

3.4.2 Drag on deforming bodies

Looking at the source of aerodynamic drag production, contributions to this load

are traditionally divided in two major categories: lift-induced drag, and parasitic or

profile drag (Meseguer & Sanz-Andrés, 2012). The former is a direct consequence

of the incoming air flow being redirected by the moving object, and it is distinctive

of lifting bodies. The two-dimensionality of the problem in question discards this

source of drag. To the later belong the so-called skin friction drag and the form drag.

The first one is directly proportional to the wetted surface (area, or skin, in contact

with the fluid). The second one depends on the body shape (wake width). It is

related to flow separation, and characteristic of bluff bodies. In the separated region

behind the body a low pressure zone forms, which translates into a backwards force
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(c)(b)(a)

Figure 3.8: Streamlining effect on viscous drag components: (a) totally streamlined
body over which skin friction drag prevails, (b) slightly less streamlined body with both
drag components and (c) bluff body dominated by form drag.

or drag. The larger the cross-section the wider the wake behind, and the higher the

drag. In this sense it is often considered a type of pressure drag due to separation.

In this research there are no compressibility effects, so the wave drag contribution,

caused by shock waves on transonic and supersonic flight regimes, is null.

Therefore, the only two drag components to be considered in the fluid mechanics

problem dealt with in this research seem to be of viscous origin: the skin friction

drag and the form drag. In streamlined bodies (an aerofoil at low angle of attack

for example) the skin friction drag prevails over the form drag. As the bluntness of

the body increases the effect of friction begins to fade and flow separation makes

the form drag to dominate. This relation between the shape of the object and

its wake is schematised in Fig. 3.8.

Among the assumptions made in the derivation of the theoretical model is that

of potential flow. The above-cited components cannot be estimated under this

simplification, and the total drag force on an aerofoil moving with a constant velocity

relative to the fluid will be zero, statement known as the D’Alembert’s Paradox. To

mathematically prove that the aerodynamic drag coefficient predicted by the low-

order model would indeed be zero in that case, by getting rid of the non-stationary

terms in Eqs. (3.35) and (3.42), the normal and suction force coefficients become:

CN = 2π cosαeff (A0 +
A1

2 ) , (3.49a)

CS = 2πA2
0 . (3.49b)

And bearing in mind that A0 = sinαeff and A1 = A2 = ... = 0 for that case:
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(b)(a)

Figure 3.9: Morphing effect on flow separation and wake width: (a) steady foil exhibiting
separated flow downstream and (b) time-varying camber foil avoiding separation and
narrowing the wake through dynamic trailing-edge flexion.

CN = 2π cosαeff sinαeff , (3.50a)

CS = 2π sin2αeff . (3.50b)

Hence, the lift and drag coefficients from Eq. (3.44) result:

CL = 2π sinαeff , (3.51a)

CD = 0 . (3.51b)

In unsteady foils however, integration of the pressure distribution over the surface

given in Eq. (3.34) unveils further contributions to the drag force. Motion kinematics

and shape variations, along with the wake of vortices developed downstream, deflect

the airflow coming in to the foil to generate lift and drag. This combination of

unsteady aerodynamics effects gives rise to a drag component whose origin is not

viscosity, but can rather be thought of as a potential contribution similar to the

lift-induced drag for 3D problems. Non-zero drag predictions are therefore expected

with the mathematical model presented in this chapter.

Shaping the body might avoid flow separation and lead to wake narrowing, there-

fore reducing the form drag. This can be achieved through dynamic deformation,

as schematised in Fig. 3.9. Narrower wakes behind deforming bodies are due to the

flow turning in the opposite direction to the bending surface (Gerontakos & Lee,

2008; Rennie & Jumper, 1996), resulting in a persistence of the attached flow state.

Viscous drag will then be mainly due to skin friction. Unsteady motions selected
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0 0.5 1
t/T
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Theodorsen
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continuous
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Figure 3.10: Lift coefficient for one cycle of harmonic trailing-edge flap deflections with
amplitude δmax = 1○, reduced frequency kδ = 0.5 and flexion ratio cf /c = 0.5. Results are
from Theodorsen’s classical theory ( ), discrete representation of wake vorticity shed in
MDVM ( ) and continuous representation ( ).

for analysis in this section ensure the flow remains fully attached to the foil, with

the exception of the last set of cases, where flow separates either over the moving

flap or at the foil’s leading edge. The later will be revisited in §5.4 to showcase

the improvement in capturing subtle flow separation at the leading edge with the

new formulation of vorticity-shedding rate introduced in Chapter 5.

The context on drag modelling provided in this section will ease the aerodynamic

drag coefficient analysis carried out in the following sections.

3.4.3 Small-amplitude deformations

Trailing-edge flap deflections are prescribed on an aerofoil moving at a constant

velocity with zero angle of attack. Flap kinematics are defined, for all three set

of cases, by a sinusoidal wave:

δ = δmax sin(ωt) , (3.52)

where δmax represents the amplitude of the motion; and the angular frequency,

ω, is twice the value of the reduced frequency, kδ. The value of each parameter

is listed in Table 3.1 for all cases studied.
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(c)(b)(a)

Figure 3.11: Aerodynamic coefficients for one cycle of harmonic trailing-edge flap
deflections with amplitude δmax = 1○, reduced frequency kδ = 0.5 and flexion ratio
cf /c = 0.5: (a) lift, (b) drag and (c) pitching moment at the leading edge. Results are
from Theodorsen’s classical theory ( ), MDVM ( ) and CFD ( ).

Before going into detail, the effect of wake modelling on the aerodynamic loads

is analysed in Fig. 3.10, where the lift coefficient is presented for one cycle of flap

deflection (after solution has converged) according to parameters under case A

in Table 3.1. If a continuous distribution of vorticity is adopted to represent the

wake shed at the trailing edge in the current time step, which is derived from

the exact Wagner solution (see §3.2.2), the lift coefficient is observed to perfectly

match Theodorsen’s classical theory. If, instead, a point vortex or regularised

vortex blob (discrete representation) is used to account for shed wake vorticity, as

is typically formulated in unsteady thin-aerofoil theory (Ramesh et al., 2013), there

is a discontinuity in the vortex sheet across the trailing edge. The resultant lift

coefficient exhibits an offset compared to the analytical solution.

Because of the very small amplitude and reduced frequency of flap deflection

in this first case, the potential contribution to drag from the unsteadiness of the

problem is nearly null. On the contrary, as CFD simulations do take viscosity into

account, the drag force acting on a real fluid is not zero. The disagreement between

the morphing discrete-vortex model and CFD results is evident in Fig. 3.11(b). Just

as it has been shown for the lift in Fig. 3.10 (which coincides with Fig. 3.11a),
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Figure 3.12: Spatial distribution of vortex particles overlapping normalised vorticity
contours extracted from CFD simulations, for one cycle of harmonic trailing-edge flap
deflections. Kinematics parameters are: amplitude δmax = 1○, reduced frequency kδ = 0.5
and flexion ratio cf /c = 0.5.

the moment coefficient at the leading edge for the discrete-vortex model and the

analytical solution from classical theory matches, presenting a very good agreement

with the computational results, as observed in Fig. 3.11(c).

Out-of-plane vorticity contours from CFD and vortex particles from MDVM

are shown overlaid in Fig. 3.12. The small amplitude of flap deflection does

not give rise to wake roll-up into vortices, but the light oscillations are properly

reproduced by the low-order model.

3.4.4 Medium-amplitude deformations

As the amplitude or rate of flap deflection increases, the potential contribution to

drag due to the deformation of the immersed body becomes more noticeable (recall

§3.4.2). To illustrate this, for case C in Table 3.1, drag coefficient estimations from

both LOM strategies and CFD simulations are compared in Fig. 3.13. Predictions

made by MDVM implemented with the variable chord line get closer to computations

made with the viscous CFD model, still being slightly smaller in magnitude. This

deviation was expected and attributed to the skin friction drag only accounted for

in the high fidelity flow simulation. Some noise is observed in the CFD curve, whose

origin is in the interpolations happening at the interfaces between the different

overlapping meshes (three grids in some regions, see Fig. 3.4b). It could be removed

by filtering out high frequencies. Worthy of note is the disparity between predictions

made by the new variable chord line and the classical fixed chord line approaches.

The new definition of the chord line introduced in this chapter clearly improves upon
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Figure 3.13: Drag coefficient for one cycle of harmonic trailing-edge flap deflections
with amplitude δmax = 20○, reduced frequency kδ = π and flexion ratio cf /c = 0.5. Results
are from CFD ( ), MDVM with fixed chord line ( ) and with time-varying chord
line ( ).
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Figure 3.14: Chord line definition effect on pressure and suction force vectors orientation.
Arrows indicate: pressure distribution (blue), normal force (red) and suction force (green).
A fixed chord line approach (a) results in lift and thrust generation, whereas a time-
varying chord line (b) tilts the normal force vector to produce also drag.

the classical method, which provides an almost zero drag coefficient. Furthermore,

that value is negative during the complete cycle of flap deflection (pure thrust).

The reason lies behind the orientation of the pressure and suction force vectors

relative to the incoming flow, exhibited in the sketch of Fig. 3.14. Observing the

pressure distribution (blue arrows) along the foil with a fixed chord line, Fig. 3.14(a),

in the absence of pitching kinematics the resulting normal force vector (red arrow)

stays always perpendicular to the direction of motion. As a consequence only

lift force is produced, and the sole contribution to drag is owed to the suction

force. Since this other vector has the direction of motion, a propulsive or negative
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(c)(b)(a)

(f)(e)(d)

Figure 3.15: Aerodynamic coefficients for one cycle of harmonic trailing-edge flap
deflections with amplitude δmax = 20○, reduced frequency kδ = π and flexion ratios
cf /c = 0.3 and cf /c = 0.5 (respectively): (a, d) lift, (b, e) drag and (c, f) pitching moment
at the leading edge. Results are from Theodorsen’s classical theory ( ), MDVM ( )
and CFD ( ).

drag force is generated, as depicted in Fig. 3.13. If on the contrary the chord line

is allowed to rotate with deflections of the trailing-edge flap, in other words, a

time-varying chord line is considered, Fig. 3.14(b), the angle of attack of the aerofoil

against the free stream direction is modified in time (see Eqs. (3.9) and (3.10)),

tilting the pressure force vector to produce both, lift and drag.

Having justified the improvement in aerodynamic performance achieved with a

variable chord line definition, this is the strategy implemented in MDVM to provide

the remaining results of this section. Examining the lift and moment coefficients in

Fig. 3.15, it is observed that both, MDVM and the classical theory, track very closely
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(b)

(a)

Figure 3.16: Spatial distribution of vortex particles overlapping normalised vorticity
contours extracted from CFD simulations, for two cycles of harmonic trailing-edge flap
deflections. Kinematics parameters are: amplitude δmax = 20○, reduced frequency kδ = π
and flexion ratios cf /c = 0.3 (a) and cf /c = 0.5 (b).

CFD curves for the smallest flexion ratio, Fig. 3.15(a, c). Whereas for the largest

flexion ratio, Fig. 3.15(d, f), Theodorsen theory results deviate from the viscous

flow calculations in magnitude and in phase, but MDVM keeps a well agreement.

Representation of the flow field via the spatial distribution of vorticity is exhibited

in Fig. 3.16, with low-order predictions and high-fidelity computations overlapping.

With the parameters used to define this case, deflection of the trailing-edge flap

imparts a rotational motion to the fluid strong enough for the wake to roll-up

into coherent structures. Two single vortices with different rotation sense are shed

from the trailing edge during each flap deflection cycle, a vortex shedding pattern

classified as 2S-mode by Williamson and Roshko (1988). The wake behind the foil

exhibits a reverse Bénard–von Kármán vortex street, where vortices are organised in

two rows such those with negative vorticity (clockwise rotation) are located below

the wake centre line, and those with positive vorticity (counter-clockwise rotation)

above it. In this configuration vortices induce on each other a downstream jet-like

velocity component (Jones et al., 1998). This thrust-indicative wake pattern is

characteristic of flapping-based propulsion, like aquatic-locomotion, and has been

documented for pure plunging and pure pitching aerofoils before (Freymuth, 1988).

The location and size of each vortex is captured by MDVM with great accuracy.
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(c)(b)(a)

(f)(e)(d)

Figure 3.17: Aerodynamic coefficients for one cycle of harmonic trailing-edge flap
deflections with amplitude δmax = 45○, reduced frequency kδ = π/2 and flexion ratios
cf /c = 0.3 and cf /c = 0.5 (respectively): (a, d) lift, (b, e) drag and (c, f) pitching moment
at the leading edge. Results are from Theodorsen’s classical theory ( ), MDVM ( )
and CFD ( ).

3.4.5 Large-amplitude deformations

Further increasing the deflection amplitude, the typical sine waveform in the

temporal evolution of aerodynamic coefficients, characteristic of harmonic motions

with small-medium amplitudes, begins to distort as evinced in Fig. 3.17. For the

smallest flexion ratio, lift and moment analytical and numerical calculations exhibit

a smoother curve distortion than CFD results, Fig. 3.17(a, c). It is important to

note the appearance of flow separation over the aerofoil in CFD simulations for this

set of cases, which might be the reason behind the differences observed. For this
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(b)

(a)

Figure 3.18: Spatial distribution of vortex particles overlapping normalised vorticity
contours extracted from CFD simulations, for two cycles of harmonic trailing-edge flap
deflections. Kinematics parameters are: amplitude δmax = 45○, reduced frequency kδ = π/2
and flexion ratios cf /c = 0.3 (a) and cf /c = 0.5 (b).

smaller bending ratio separation occurs over the flap (blue region in Fig. 3.18a). The

source of separation seems to be the hinge gap, and since the geometry as modelled

by theory and MDVM has no discontinuity in this area results are expected to differ

to some extent. As for the drag coefficient, Fig. 3.17(b, e), the magnitude predicted

by MDVM remains somewhat lower than CFD for the reason explained in §3.4.4.

On the other hand, large flexion ratios combined with large trailing-edge deflections

increase the effective angle of attack experienced by the foil enough for the flow

to separate at the leading edge, as noticed in Fig. 3.18(b). Leading-edge vorticity

modelling has been omitted in the development of MDVM presented in this chapter

and this phenomenon will be analysed later in §5.4. Nonetheless, the low-order

model manages to reproduce CFD results with great success, whereas lift and

moment curves from classical theory differ in magnitude and shape, Fig. 3.17(d, f).

Visualisation of vorticity contours reveals again a propulsive vortical signature

in the wake. A similar arrangement of vortices to that of medium-amplitude

deformation cases is observed in Fig. 3.18, with a slightly larger separation between
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vortex pairs. Despite flow separation not modelled in MDVM it seems to have a

minor effect on vortices shed, and the model reproduces with exactness the wake

pattern in terms of placement and size of vortices.

3.5 Summary

The main goal of this chapter has been to develop a low-order aerodynamic model

to simulate the unsteady flow response to bodies undergoing arbitrarily large

temporal camber variations.

To achieve this, analytical predictions based on an adapted potential-flow theory

for unsteady aerofoils have been combined with numerical methods using discrete-

vortex elements. Leveraging a widely validated discrete-vortex model for rigid

wings, the extension to variable-camber wings has been possible by modifying the

boundary condition from unsteady thin-aerofoil theory, where time dependency

is accounted for in the study of unsteady flows.

In pursuance of reproducing the extreme degree of bending observed in nature,

the majority of the chapter has been devoted to extend the range of applicability of

thin-aerofoil theory, originally conceived for small flow disturbances. To address the

restriction imposed on chordwise deformation with the small-amplitudes assumption,

a time-varying chord line is proposed in this work as the curve where the zero-

normal flow boundary condition has to be satisfied. Being defined as the line which

connects the instantaneous position of leading and trailing edges, this new effective

chord line is allowed to vary in time due to trailing-edge deflection. The maximum

camber ratio is thus reduced for large amplitudes, lessening the error associated

when transferring the boundary condition from the camber line, and increasing

the accuracy on aerodynamic loads estimation.

Furthermore, no assumptions of planar wakes (necessary in fully closed-form

theories) are made in the numerical scheme, which enables to capture wake distortion

and shed of trailing-edge vortices. The model is valid for arbitrary variations in

free stream velocity (external perturbations like gusts), kinematics (rapid plunge

and pitch manoeuvres) and geometry (chordwise deformations).
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A set of harmonic trailing-edge deflection cases has been used to assess the

performance of the new morphing discrete-vortex model. Various combinations

of shape-control parameters have been tested, which include the flexion ratio, the

amplitude and rate of deflection. Regardless of the flexion ratio, results for small-

amplitude deflections evince noticeable differences with CFD results in terms of drag

force. The dominant component of drag in these scenarios is viscous in origin, which

is not modelled in MDVM. As the amplitude of deflection increases the viscous drag

loses importance in favour of the form drag, and results improve. However, this is

only the case if the time-varying chord line approach introduced in this chapter is

considered. Because this way the chord line is allowed to rotate with flap deflections,

the effective angle of attack seen by the aerofoil varies in time. This variation tilts the

pressure force vector against the incoming free stream, which results in lift and drag

generation. If on the contrary the fixed chord line approach is followed, the pressure

force vector remains perpendicular to the direction of motion, producing lift only

(the contribution to horizontal force is due to the suction force, with positive sign).

In terms of lift and moment, MDVM predictions reproduce with great success the

temporal evolution computed with CFD, including the distortion from the typical

sine waveform observed for large amplitudes, which the classical theory does not.

Lastly, flow visualisation through vorticity contours showcases the capacity of

MDVM in modelling wake roll-up into coherent structures, capturing remarkably

well the location and size of vortices shed from the trailing edge at every cycle.

In short, the low-computational cost physics-based model developed in this

chapter performs simulations of unsteady flows past deforming bodies, including

non-linear aerodynamic phenomena such as vortex shedding, in the order of seconds

in a personal laptop. It lays the groundwork for vortex-dynamics characterisation

in response to shape variations, studied in Chapter 6.
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Frustra fit per plura quod potest fieri per pauciora.

[It is futile to do with more things that which can be
done with fewer]

— William of Ockham

4
MORPHING: ANALYTIC APPROACH

4.1 Introduction

T
heoretical predictions of aerodynamic loads have been published in

literature for the most fundamental unsteady problems: impulsively

started aerofoils (Wagner, 1925), oscillating aerofoils (Theodorsen, 1935), aerofoil

response to sharp-edge gusts (Küssner, 1936), and harmonic gusts (Sears, 1941).

Although the strength of the vortex sheet is used to compute the aerodynamic

loads, its analytical prediction was not explicitly derived in these works.

Insight into the fundamental nature of the flow field can be gained by observing

the balance between circulatory and non-circulatory contributions, which is possible

having an analytic expression of the vortex sheet strength. It also is practically

useful, owing to a broad interest on rapidly obtaining accurate unsteady pressure

distributions over wings undergoing time-varying kinematics. In addition, it enables

to obtain closed-form expressions for the contribution to Fourier coefficients of

the different motion-defining parameters.

Progress along these lines has recently been possible due to available computa-

tional resources in modern times, out of reach to aerodynamicists who developed

their theories a century ago limited to the means of the time. A numerical method

to compute certain complex coefficients was presented by Epps and Roesler (2018),

65
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which allowed them to obtain analytic predictions of the vortex sheet strength in

the four seminal unsteady aerodynamics problems before cited.

Owing to the interest of the dissertation on morphing, the attention is focused

on Theodorsen’s problem, an aerofoil with three independent degrees of freedom:

pitch, plunge and flap motions. This chapter aims to obtain simple forms of the

Fourier coefficients for this basic problem. The derivation for the vortex sheet

strength of Epps and Roesler (2018) is here adapted to the frame of reference

used in unsteady thin-aerofoil theory. This allows to obtain the sought coefficients

through comparison with the bound vorticity distribution defined in Chapter 3.

This chapter is structured as follows: in §4.2 the basis is set for the ultimate

derivation of Fourier coefficients, starting in §4.2.1 with a definition of the problem

and the transformation variables needed to change the frame of reference; to which

follows a decomposition of vortex sheet strength into individual contributions of

motion parameters, for the non-circulatory term in §4.2.2, the circulatory term

due to motion in §4.2.3, and the wake-induced term in §4.2.4; simple forms of the

Fourier coefficients are then provided in §4.3, where for the first two coefficients

the dependency on the reduced frequency is exhaustively analysed in §4.3.1, and

the expression for the rest of coefficients is subsequently given in §4.3.2; finally,

the chapter is summarised in §4.4.

4.2 Vortex sheet strength

Different strategies can be followed to solve the potential flow problem. The flow

can be partitioned into a non-circulatory part, which fulfils the zero-normal flow

boundary condition but not the Kutta condition, plus a circulatory part due to

the surface of discontinuity behind the wing, which satisfies the last condition.

This strategy was adopted by Theodorsen (1935). An alternative flow partition

makes a distinction between the solution obtained ignoring the effect of the wake,

the so-called quasi-steady part, which depends only on the instantaneous relative

velocity of the aerofoil and the air (contrary to the non-circulatory term in the

previous approach, this part does enforce the Kutta condition), and the solution
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Figure 4.1: Schematic of variables used to define the aerofoil-flap problem according to:
Theodorsen (1935) in black, and unsteady thin-aerofoil theory in green.

that accounts for the wake-induced velocity. This partitioning strategy was followed

by Von Karman and Sears (1938). Despite the different formulation, the total flow

field is the same in both approaches. For convenience, the first flow partitioning is

adopted in this section, where the intention is to derive the vortex sheet strength

for Theodorsen’s problem in the desired frame of reference. In a later step, the

quasi-steady term mentioned in the second strategy is formed to enable comparison

of terms with unsteady thin-aerofoil theory.

4.2.1 Problem kinematics and frame of reference

There is some diversity within the literature of unsteady foils in the notation adopted

for kinematics parameters. The point taken as the origin of the body-fixed frame of

reference used to define the geometry also differs between studies. As opposed to

the convention adopted by Birnbaum (1924) for its theory of thin wing sections,

where the aerodynamic centre is taken as the origin of the coordinate system; or

that by Theodorsen (1935), in which the origin lies midway between the leading

and the trailing edge; for unsteady thin-aerofoil theory the origin is fixed at the

aerofoil leading edge. Values of the non-dimensional chordwise coordinate of the

leading edge and trailing edge are, respectively, −1
2 and 3

2 in the first case; −1 and 1

in the second case; and 0 and 1 in the last case. The schematic in Fig. 4.1 illustrates

these differences for the cases of Theodorsen and UTAT.

Mathematical representation of the angle deflected by a lifting surface (either

ailerons or trailing-edge flaps) is often time assigned the Greek letter β or δ.

Intending to ease the follow-up of the mathematical development in this chapter,
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given that Theodorsen’s outcomes are taken as starting point the framework of

his work is adhered to, and β instead of δ is used to represent flap deflections (see

Fig. 4.1). The use of δ will be adopted again in Chapter 5.

Harmonic motions of plunge, pitch and flap deflections are defined in com-

plex variable as:

h(t) = h0 e
iωt , (4.1a)

α(t) = α0 e
iωt+ϕ , (4.1b)

β(t) = β0 e
iωt+ψ , (4.1c)

where h0, α0 and β0 denote the complex amplitude of each degree of freedom; ω = 2Uk
c

is the angular frequency of the sinusoidal wave, with k the reduced frequency; ϕ

indicates the phase between plunge (taken as reference) and pitch motions; and

ψ the phase between plunge motion and flap deflection.

Association of terms between the vortex sheet strength derived in this chapter

and the bound vortex sheet strength from unsteady thin-aerofoil theory, given in

Eq. (3.2), will offer straight away the Fourier coefficients in simple forms. To do so,

both expressions of the vorticity distribution on the aerofoil need to be written in

terms of the chordwise transformation variable, θ, in the same frame of reference.

Some relations between variables used in both frameworks have to be defined.

If x̃ = − cos θ is used in the available expressions for the vortex sheet strength

(Epps & Roesler, 2018), where x̃ indicates dimensionless chordwise coordinate,

values of θ going from 0 to π trace the camber line from the leading edge (x̃ = −1)

to the trailing edge (x̃ = 1). The reference length used to make variables non-

dimensional in Theodorsen’s work is the half chord, b, and in UTAT the total

chord, c. Hence the equivalence b = c
2 is clear. The pitch axis in Theodorsen’s

framework is placed at a distance from the leading edge of b(1 + a), whilst this

length is cpvt in UTAT. Therefore, a = 2 cpvt

c − 1 can be used in the expressions

borrowed for the vortex sheet strength. The relation between variables is illustrated

in Fig. 4.1 and summarised in Table 4.1.
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Table 4.1: Equivalence between variables used in Theodorsen and UTAT frameworks.

Theodorsen UTAT equivalence
flap angle β δ β = δ

chord length 2b c b = c
2

chordwise coordinate x = x
UT AT

− b x
UT AT

= c
2(1 − cos θ) x̃ = x

b = − cos θ
distance LE to pivot axis b(1 + a) cpvt a = 2 cpvt

c − 1

4.2.2 Non-circulatory vortex sheet strength

The non-circulatory flow is an instantaneous response of the fluid to the motion

and deformation of the aerofoil, therefore exclusive to unsteady problems. Built

on the velocity potential derived by Theodorsen (1935) for an aerofoil oscillating

in three degrees of freedom, Epps and Roesler (2018) came up with the following

expressions to compute the effect of each individual motion/deformation parameter

on the non-circulatory vortex sheet strength:

1. Vertical motion and pitch angle — ḣ , α

γnh,α
(x̃, t) = (ḣ(t) +Uα(t))

−2x̃
√

1 − x̃2
. (4.2)

2. Rate of rotation of the aerofoil — α̇

γnα̇(x̃, t) = 2bα̇(t){1
2
√

1 − x̃2 + (
1
2 x̃ − a)

−x̃
√

1 − x̃2
} . (4.3)

3. Angle bent down by the flap — β

γnβ
(x̃, t) = −

2U
π
β(t){θf

x̃
√

1 − x̃2
+ log ∣N ∣ + (x̃ − f) 1

N

dN

dx̃
} . (4.4)

4. Rate of flap displacement — β̇

γnβ̇
(x̃, t) = b

π β̇(t) {θf
√

1 − x̃2 + ((x̃ − 2f)θf + sin θf) −x̃√
1−x̃2

−2(x̃ − f) log ∣N ∣ − (x̃ − f)2 1
N
dN
dx̃
} .

(4.5)
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Here f = cos θf and N = (1 − x̃f −
√

1 − x̃2 sin θf)/(x̃ − f). The location of the hinge

is indicated by θf . To adapt these expressions to the framework of UTAT the forms

defined in Table 4.1 for x̃, a and b have to be used.

Logarithm approximation

The presence of logarithmic terms in Eqs. (4.4) and (4.5) might seem a cause for

concern, since they become singular at the hinge, x̃ = cos θf . Approximations in

terms of only trigonometric functions are desired, so that the global expression

for the vortex sheet strength will enable a direct comparison with thin-aerofoil

theory to extract the Fourier coefficients sought. After applying the corresponding

relations between variables, to have all functions expressed in the frame of reference

of interest, these logarithmic terms take the general form:

L1 = log ∣N ∣ = log 1 + cos(θ + θf)
∣ cos θ + cos θf ∣

, (4.6a)

L2 = cos θ log ∣N ∣ . (4.6b)

For the particular case where θf = π
2 , this is, a flap whose length is half the

total chord of the aerofoil, the fortunate situation is given that Eq. (4.6) can be

written in terms of inverse hyperbolic functions. Upon evaluation of Eq. (4.6a)

under such condition we have:

L1∣
θf=π

2

= log 1 − sin θ
∣ cos θ∣ , (4.7)

and recurring to the following known relation:

arcsinh ( tan(−θ)) = arctanh ( sin(−θ)) = log (1 − sin θ
cos θ ) , (4.8)

the logarithmic term can be equated to an inverse hyperbolic function:
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L1∣
θf=π

2

= arctanh ( sin(−θ)) . (4.9)

The same procedure applies to Eq. (4.6b).

Taylor series of a function f(x) is an expansion into an infinite sum of terms

with increasing exponent, the sum of which equals the function. When 0 is the

point about which the function is expanded it is called a Maclaurin series, which

for the inverse hyperbolic function of interest here is given as:

arctanh(x) = x + x
3

3 +
x5

5 + . . . =
∞
∑
m=0

x2m+1

2m + 1 for ∣x∣ < 1 . (4.10)

Replacing Eq. (4.10) with x = sin(−θ) in Eq. (4.9), which satisfies the range

of validity since sin θ ∈ [−1,1], the logarithmic terms in the non-circulatory vortex

sheet strength can be approximated, for an aerofoil-flap configuration with the

hinge located at the mid chord, by summations of powers of sin θ:

L1∣
θf=π

2

= −
∞
∑
m=0

sin2m+1 θ

2m + 1 , (4.11a)

L2∣
θf=π

2

= −
∞
∑
m=0

sin2m+1 θ

2m + 1 cos θ . (4.11b)

In order to have an only-sines expression, the cos θ in the second logarithmic term

needs to be converted. The following known relation has been used:

sin ((2n − 1)θ) cos θ = 1
2[ sin

((2n − 2)θ) + sin ((2n)θ)] . (4.12)

Note that this way odd terms of the Fourier sine series are replaced by even terms.

Basic algebraic operations allow to convert Eq. (4.11) into summations of terms

in sin(nθ) to the power of 1, consistent with Eq. (3.2). A binomial has been included

in this final derivation to determine the coefficient of each term:
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Figure 4.2: Comparison between the first logarithmic term, L1, in its exact form ( )
and its truncated series approximation keeping 10 terms ( ), 100 terms ( ) and 1000
terms ( ).

L1∣
θf=π

2

= −
No

∑
m=0

m

∑
r=0
[
(−1/4)m

2m+1 (−1)r(
2m+1
r
)

⋅ sin ((2m − 2r + 1)θ)] ,

(4.13a)

L2∣
θf=π

2

= −
Ne

∑
m=0

m

∑
r=0
[
(−1/4)m

2m+1
(−1)r

2 (
2m+1
r
)

⋅ ( sin ((2m − 2r)θ) + sin ((2m − 2r + 2)θ))] ,

(4.13b)

where No and Ne indicate, respectively, the number of odd and even terms of the

sine series kept in the expansion. The more terms the better the approximation

to the function. It is interesting to observe that the approximation of the first

logarithmic term, L1, associated with the angle bent by the flap, comprises odd

terms of the sine series only, whereas the approximation of the second logarithmic

term, L2, related to the bending angular velocity, contains solely even terms.

An illustrative example of the accuracy achieved if the logarithmic functions

from Eq. (4.6) are approximated by sums of sines to the power of one, as defined

in Eq. (4.13), is given in Fig. 4.2. The presence of a logarithmic component in

the vortex sheet strength gives rise to a pronounced spike around the hinge, going

from zero at the leading edge to infinity at the hinge location, and back to zero at

the trailing edge. The effect is thus centred around the hinge, and it is directly
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proportional to the flap amplitude and rate of deflection. An approximation of the

function by a sine series, no matter how many terms are kept, accurately tracks

the target curve everywhere over the aerofoil except in the vicinity of the hinge,

where it removes the singularity to produce a bump. The fewer terms the smoother

the bump, although the higher the deviation from the original value.

Uncoupled effects

Upon substitution of the relations from Table 4.1 and the approximations to the

logarithmic terms from Eq. (4.13) in the expressions of the non-circulatory vortex

sheet strength (Eqs. (4.2) to (4.5)), to have them all written in terms of the

chordwise transformation variable θ in consistency with UTAT, and recalling that

logarithmic terms have been approximated for a flap whose chord length is half

that of the aerofoil, θf = π
2 , the effects of plunge, pitch and flap motions can be

isolated for this specific geometry. Individual contributions to the non-circulatory

vortex sheet strength are therefore broken down as:

1. Plunge rate — ḣ

γnh
= ḣ(t) [2c cot θ] . (4.14)

2. Pitch angle — α

γnα = α(t) [2U cot θ] . (4.15)

3. Pitch rate — α̇

γnα̇ = α̇(t) [2c(
1
2 −

cpvt
c
) cot θ − c2 csc θ + c sin θ] . (4.16)

4. Flap angle — β

γnβ
= β(t)[ U cot θ − 2U

π csc θ

+2U
π

N

∑
m=0

m

∑
r=0

(−1)m+r

22m(2m+1)(
2m+1
r
) sin (2(m−r+ 1

2)θ) ] .

(4.17)
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5. Flap rate — β̇

γnβ̇
= β̇(t)[ cπ cot θ − c

4 csc θ + c
2 sin θ

− cπ

N

∑
m=0

m

∑
r=0

(−1)m+r

22m+1(2m+1)(
2m+1
r
)( sin (2(m−r)θ) + sin (2(m−r+1)θ)) ] .

(4.18)

Beyond the interest in having uncoupled the effect of kinematics parameters,

upon grouping terms with the same trigonometric function in both circulatory

and non-circulatory vortex sheet strengths, and comparing them with the bound

vortex sheet strength from unsteady thin-aerofoil theory, individual contributions

to all Fourier coefficients are obtained in §4.3.

4.2.3 Circulatory vortex sheet strength – motion

The circulatory component of the vortex sheet strength is attributed to flow field

vorticity which the moving or deforming body sheds itself. According to the flow

partitioning previously described, in order to form the quasi-steady vortex sheet

strength a pure circulatory flow (it must induce zero flow through the surface)

needs to be produced, its net circulation being determined so as the steady Kutta

condition is enforced. Such circulatory flow is defined in Epps and Roesler (2018)

by the following vorticity distribution:

γc0(x̃, t) =
Γ0(t)

πb

1
√

1 − x̃2
, (4.19)

where the required circulation is Γ0(t) = 2πbW0 eiωt, with W0 being the complex

amplitude of the motion, expressed as:

W0 = iωh0 +Uα0 + iωb(
1
2 − a)α0 +

1
π
T10Uβ0 + iω

1
2πbT11β0 . (4.20)

Coefficients T10 and T11 in the above expression are provided by Theodorsen (1935)

as T10 =
√

1 − f 2 + arccos(f) and T11 = (2 − f)
√

1 − f 2 + (1 − 2f)arccos(f).
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Uncoupled effects

By substituting in Eqs. (4.19) and (4.20) the variables given in Table 4.1, individual

contributions to the circulatory vortex sheet strength due to motion are derived:

1. Plunge rate — ḣ

γc0h
= ḣ(t) [2c csc θ] . (4.21)

2. Pitch angle — α

γc0α = α(t) [2U csc θ] . (4.22)

3. Pitch rate — α̇

γc0α̇ = α̇(t) [2c(
3
4 −

cpvt
c
) csc θ] . (4.23)

4. Flap angle — β

γc0β
= β(t)[2U (1

2 +
1
π
) csc θ] . (4.24)

5. Flap rate — β̇

γc0β̇
= β̇(t)[c(

1
4 +

1
π
) csc θ] . (4.25)

4.2.4 Circulatory vortex sheet strength – wake

The wake-induced vortex sheet strength is written in Epps and Roesler (2018) as:

γw(θ, t) = −ik
Γ0

πb
S(k) [Q0(k)

1 − cos θ
sin θ + 2

∞
∑
n=1

Qn(k) sin(nθ)] eiωt ,

(4.26)
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where S(k) is the Sears function and Qn(k) are the wake coefficients. The first

two can be analytically evaluated as Q0(k) =K0(ik) and Q1(k) =K1(ik) −
1
ik e
−ik,

being Kn(ik) modified Bessel functions. The remainder of wake coefficients have

to be calculated numerically, and up to 3000 terms might be necessary to reach

convergence to a smooth distribution of vorticity. The method to calculate these

coefficients is detailed in Epps and Roesler (2018).

Uncoupled effects

Proceeding in a similar manner as for the previous case, expressions for the individual

effects on the circulatory vortex sheet strength induced by the wake are here derived:

1. Plunge rate — ḣ

γwh
= −ḣ(t)[ 2 c i k S(k)Q0(k)(csc θ + cot θ)

+4 c i k S(k)Qn(k) sin(nθ) ] .

(4.27)

2. Pitch angle — α

γwα = −α(t)[ 2U ik S(k)Q0(k)(csc θ + cot θ)

+4U ik S(k)Qn(k) sin(nθ) ] .

(4.28)

3. Pitch rate — α̇

γwα̇ = −α̇(t)[ 2 c (3
4 −

cpvt

c
) i k S(k)Q0(k)(csc θ + cot θ)

+4 c (3
4 −

cpvt

c
) i k S(k)Qn(k) sin(nθ) ] .

(4.29)

4. Flap angle — β

γwβ
= −β(t)[ 2U (1

2 +
1
π
) i k S(k)Q0(k)(csc θ + cot θ)

+4U (1
2 +

1
π
) i k S(k)Qn(k) sin(nθ) ] .

(4.30)

5. Flap rate — β̇

γwβ̇
= −β̇(t)[ c (1

4 +
1
π
) i k S(k)Q0(k)(csc θ + cot θ)

+2 c (1
4 +

1
π
) i k S(k)Qn(k) sin(nθ) ] .

(4.31)
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Table 4.2: Components of quasi-steady vortex sheet strength, γ0(θ, t).

cot( θ2) sin θ sin(nθ) for n ≥ 2

ḣ(t) 2c - -
α(t) 2U - -
α̇(t) 2c (1

2 −
cpvt

c ) c -

β(t) U 2U
π

N

∑
m

1
22m(2m+1)(

2m+1
m
) Eq. (4.36a)

β̇(t) c
π

c
2 Eq. (4.36b)

Table 4.3: Components of wake-induced vortex sheet strength, γw(θ, t).

cot( θ2) sin(nθ) for n ≥ 1

ḣ(t) −2 c i k S(k)Q0(k) −4 c i k S(k)Qn(k)

α(t) −2U ik S(k)Q0(k) −4U ik S(k)Qn(k)

α̇(t) −2 c (3
4 −

cpvt

c ) i k S(k)Q0(k) −4 c (3
4 −

cpvt

c ) i k S(k)Qn(k)

β(t) −2U (1
2 +

1
π) i k S(k)Q0(k) −4U (1

2 +
1
π) i k S(k)Qn(k)

β̇(t) −c (1
4 +

1
π) i k S(k)Q0(k) −2 c (1

4 +
1
π) i k S(k)Qn(k)

At this point, all components of the vorticity distribution over an aerofoil are

expressed in terms of the transformation variable from UTAT, θ. Combining the

non-circulatory and the circulatory contributions due to motion, listed in Eqs. (4.14)

to (4.18) and Eqs. (4.21) to (4.25), the quasi-steady vortex sheet strength is defined:

γ0 = γn + γc0. All terms here are functions of either cot( θ2) or sin(nθ), and the same

goes for the wake-induced vortex sheet strength, γw (note that cot( θ2) = csc θ+cot θ).

Direct comparison with the bound vortex sheet strength from unsteady thin-aerofoil

theory is now possible. A summary in a matrix-like form is given in Tables 4.2

and 4.3, where each element is associated to a certain time-dependant kinematics

parameter and trigonometric function of the transformation variable.
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4.3 Fourier coefficients

Having obtained expressions for the bound vortex sheet strength it is possible to

derive simple forms of the Fourier coefficients, needed to compute the unsteady

pressure distribution over the aerofoil-flap configuration, and to determine the

dynamics of the stagnation point. It is the aim of the present section to derived

these expressions, for all Fourier coefficients, in terms of only the amplitude and

reduced frequency of motion, which are the inputs of the low-order model.

Recalling from Eq. (4.1) that complex harmonic functions are defined as the

amplitude of the variable in question multiplied by eiωt, time derivatives are obtained

multiplying by i2Uk
c . Applying this factor to the corresponding terms in Tables 4.2

and 4.3, dividing by 2U for direct comparison with the bound vorticity in UTAT, and

taking the real part of the resulting expressions, the contribution of each kinematics

parameter to each Fourier coefficient is obtained in the form of a sinusoid. The

temporal evolution of any Fourier coefficient is therefore defined by a sinusoidal

wave whose amplitude comprises the effects of plunge rate, pitch angle, pitch rate,

flap deflection angle and flap deflection rate:

An(t) = (An,h +An,α +An,α̇ +An,β +An,β̇) e
iωt . (4.32)

4.3.1 A0 and A1 coefficients

The first two Fourier coefficients, A0 and A1, play a fundamental role in potential

flow theory since they are necessary to compute both the bound circulation in

Eq. (3.26) and the non-circulatory component of unsteady loads in Eq. (3.37). The

importance of the zero-th coefficient is further manifested in Chapter 5 through

its use in predicting and modelling leading-edge flow separation. These reasons

justify the special consideration of A0 and A1 in this section.

The amplitude of individual effects in Eq. (4.32) is given in Table 4.4 for the

A0 coefficient, and in Table 4.5 for the A1 coefficient. Note that all kinematics
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Table 4.4: Amplitude of individual effects in A0 Fourier coefficient.

A0,h h0 R (2 i k + 2k2 S(k)Q0(k))

A0,α α0 R (1 − i k S(k)Q0(k))

A0,α̇ α0 R (2 i k (1
2 −

cpvt

c ) + 2 (3
4 −

cpvt

c )k
2 S(k)Q0(k))

A0,β β0 R (1
2 − (

1
2 +

1
π) i k S(k)Q0(k))

A0,β̇ β0 R ( 1
π i k + (

1
4 +

1
π)k

2 S(k)Q0(k))

Table 4.5: Amplitude of individual effects in A1 Fourier coefficient.

A1,h h0 R (4k2 S(k)Q1(k))

A1,α α0 R (−2 i k S(k)Q1(k))

A1,α̇ α0 R (i k + 4 (3
4 −

cpvt

c )k
2 S(k)Q1(k))

A1,β β0 R( 1
π

N

∑
m

1
22m(2m+1)(

2m+1
m
) − 2 (1

2 +
1
π) i k S(k)Q1(k))

A1,β̇ β0 R (1
2 i k + 2 (1

4 +
1
π)k

2 S(k)Q1(k))

parameters contribute a quasi-steady and a wake-induced term to the total amplitude

of A0 (expressed the last one as a complex function of the reduced frequency, k).

Whereas for the amplitude of A1 only the pitch rate, flap angle and flap rate

effects have a quasi-steady component.

Complex functions of the reduced frequency

Following the main thesis theme of morphing through temporal camber variations,

a pure flap motion has been considered in this chapter for the analysis of Fourier

coefficients. Their expressions, Eq. (4.32), evolve in time as sinusoidal waves of an

amplitude determined by solely flap-related terms, which for A0 and A1 become:

A0(t) = (A0,β +A0,β̇) e
iωt , (4.33a)

A1(t) = (A1,β +A1,β̇) e
iωt , (4.33b)

with A0,β, A0,β̇, A1,β and A1,β̇ provided in Tables 4.4 and 4.5.
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(a) (b)

Figure 4.3: Representation in the complex plane of functions used to calculate Fourier
coefficients A0 (a) and A1 (b): wake coefficients Q(k) ( ), Sears function S(k) ( ),
f(k) ( ) and g(k) ( ). Direction of increasing reduced frequency is indicated for
each curve by filled circles of growing size (kβ = 0.2, kβ = 0.5, kβ = π/2).

To get a better understanding of the effect the reduced frequency, k, has on the

total amplitude of A0 and A1, a complex function is defined for each of these four

coefficients by grouping their terms that depend on said parameter:

f0(k) = i k S(k)Q0(k) for A0,β , g0(k) = k2 S(k)Q0(k) for A0,β̇

f1(k) = i k S(k)Q1(k) for A1,β , g1(k) = k2 S(k)Q1(k) for A1,β̇

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

(4.34)

where the wake coefficients Q0(k) and Q1(k) have been introduced in §4.2.4.

These two pair of functions are plotted in the complex plane, along with the

Sears function and the wake coefficient used in their formulation, to examine their

tendency as the reduced frequency increases. Functions related to A0 are represented

in Fig. 4.3(a), and those pertaining to A1 in Fig. 4.3(b). With increasing reduced

frequency, in the direction of the curve in which filled circles grow in size, the real

part of all but one of the newly defined complex functions goes from zero when

k = 0 to an asymptotic value when k →∞. These limiting values are 1
2 for f0(k) and

f1(k), and 1
8 for g0(k). They will impose a constraint on the growth of the term they

contribute to the amplitude of the respective Fourier coefficient. Since all terms in A0
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are bounded, the amplitude of this coefficient reaches a constant value after some k.

The only function with an unbounded real part, g1(k), contributes to the amplitude

of A1. Because this term will grow indefinitely with the reduced frequency, so will

the total amplitude of A1, even when the remaining terms present a limit. It will be

easier to visualise all this in the next subsection, where a scale factor is introduced

that indicates the behaviour of Fourier coefficient with the reduced frequency.

Scale factors

Observing how terms are defined in Tables 4.4 to 4.7, the amount contributed

by each kinematics parameter to the total amplitude of a Fourier coefficient is

expressed as a constant multiplied by the real part of a complex function. This

constant indicates the amplitude of the corresponding motion (plunge, pitch, flap

deflection). The real part of the function can be thought of as a factor which scales

that magnitude depending on the reduced frequency of the motion. It serves to

indicate how much will it contribute to the amplitude of the Fourier coefficient when

the reduced frequency is modified. Different subfactors can be introduced for each

vorticity component within a specific motion effect contributing to a certain Fourier

coefficient, this is, every term of every row of every table (e.g., non-circulatory

component of pitch rate on A0, wake-induced effect due to flap deflection on A2, and

so on). Since pure flap kinematics have been considered for analysis in this section,

the scale factor for the flap motion, Sβ, multiplied by the complex amplitude of

flap deflection, β0, provides the total amount contributed by the flap motion to

the desired Fourier coefficient: An,β = Sββ0.

As mentioned, each factor can be broken down into several subfactors. For

example, to compute A0 for this case of an aerofoil undergoing exclusively flap

deflections, according to Table 4.4 there will be 4 contributing terms (those inside

the big parenthesis in the last two rows): the quasi-steady part of the vorticity, and

the part associated with the wake, for both individual effects, the flap angle and the

flap rate. But the function defining the quasi-steady component on the flap rate

effect has no real part. Thus, the scale factor for the flap motion is decomposed as:
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(a) (b)

Figure 4.4: Scale factors for flap motion as a function of the reduced frequency,
for A0 (a) and A1 (b) Fourier coefficients: quasi-steady part of vorticity due to flap
deflection amplitude Sβq ( ), wake-induced part owing to flap deflection amplitude Sβw
( ), wake-induced part from flap deflection rate Sβ̇w ( ), and combined effect ( ).
Asymptotic values are shown to the right of each curve.

Sβ = Sβq + Sβw + Sβ̇w , (4.35)

where Sβq is the subfactor defined for the quasi-steady part of the vorticity due to

the flap deflection amplitude; Sβw similar for the part of the vorticity associated

with the wake; and Sβ̇w a subfactor to compute the wake-induced part of the

vorticity owing to the rate of flap deflection.

Insight into the behaviour of Fourier coefficients with the reduced frequency

can be gained by understanding the effect this parameter has on each subfactor.

The evolution with k of all terms in Eq. (4.35) is exhibited in Fig. 4.4. The first

subfactor, Sβq, does not depend on the reduced frequency, so its contribution will be

a constant value. Subfactors Sβw and Sβ̇w are proportional to the complex functions

f(k) and g(k) introduced in Eq. (4.34), so they will behave alike with the reduced

frequency. Accordingly, for k = 0 they will be null, and for k →∞ they will converge

to the asymptotic values before mentioned multiplied by certain constants, as shown

to the right of each curve (see Tables 4.4 and 4.5). Finally, the total scale factor for

the flap motion, Sβ, sum of the previous three (red line in the graphs), will have

at k = 0 the same value as the quasi-steady subfactor of the corresponding Fourier
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(a) (b)

β0 = 45°

β0 = 20°

β0 = 5°

Figure 4.5: Maximum amplitude of A0 (a) and A1 (b) Fourier coefficients as a function
of the reduced frequency, for flap deflection amplitudes β0 = 5○ (yellow), β0 = 20○ (green)
and β0 = 45○ (blue). Markers indicate reduced frequencies selected for validation.

coefficient. For k →∞ the trend will differ between coefficients: for A0, where all

subfactors are bounded, it will evolve towards a constant value which is the sum

of the three asymptotic values, whereas for A1 it will scale as O(k2).

Parameter space

The two main parameters that quantitatively characterise aerofoil kinematics are the

amplitude and the rate of motion. Their effect on A0 Fourier coefficient is discussed

in Fig. 4.5(a), and on A1 coefficient in Fig. 4.5(b). This can be easily deduced by

looking at Tables 4.4 and 4.5. The effect of the reduced frequency has been analysed

in the previous subsection. The tendency of Fourier coefficients with variations of

this parameter is clear by observing the behaviour of scale subfactors associated

with the kinematics in question (harmonic flap deflections here). As explained, the

maximum value or amplitude of the Fourier coefficient is the result of multiplying the

scale factor by the kinematics amplitude. Thus, the curve representing maximum

values of A0 and A1 will have the shape of the corresponding red curve in Fig. 4.4

scaled by the amplitude of the motion (hence the name of the factors). The trend

is shown for three different amplitudes of flap deflection: β0 = 5○, β0 = 20○, β0 = 45○.

As for the amplitude effect, Fourier coefficients are directly proportional to this

magnitude. It is observed in Fig. 4.5 how larger values of flap deflection shift the

curve of each coefficient upwards while the general trend is preserved.
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kβ = π/2
β0 = 45°

β0 = 20°

β0 = 5°

kβ = 0.5kβ = 0.2

(c)(b)(a)

Figure 4.6: Temporal evolution of A0 Fourier coefficient for one cycle of harmonic flap
deflection with small, medium and large amplitude (yellow, green and blue respectively),
with: (a) low, (b) medium and (c) high reduced frequency. Results are from the analytical
solution ( ) and the discrete-vortex model ( ).

kβ = π/2
β0 = 45°

β0 = 20°

β0 = 5°

kβ = 0.5kβ = 0.2

(c)(b)(a)

Figure 4.7: Temporal evolution of A1 Fourier coefficient for one cycle of harmonic flap
deflection with small, medium and large amplitude (yellow, green and blue respectively),
with: (a) low, (b) medium and (c) high reduced frequency. Results are from the analytical
solution ( ) and the discrete-vortex model ( ).

Comparison with numerical results

Theoretical expressions of the Fourier coefficients derived in this chapter serve as a

benchmark for validation of numerical codes. Comparison between these analytic

expressions and simulations performed with the discrete-vortex model developed in

Chapter 3 is made in Fig. 4.6 for A0 Fourier coefficient, and in Fig. 4.7 for A1 Fourier

coefficient. The parameter space chosen for comparison encompasses a range of

values, for the deflection amplitude and the reduced frequency, wide enough to cover

various cases of engineering interest, such as those studied in §3.4. Nine different

cases of harmonic trailing-edge flap deflections are therefore selected, which comprise

all possible combinations of deflection amplitudes β0 = 5○, β0 = 20○ and β0 = 45○,
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Table 4.6: Amplitude of individual effects in An Fourier coefficients (n = 3,5,7...).

An,h h0 R (4k2 S(k)Qn(k))

An,α α0 R (−2 i k S(k)Qn(k))

An,α̇ α0 R (4 (3
4 −

cpvt

c )k
2 S(k)Qn(k))

An,β β0 R ( T1
2U − 2 (1

2 +
1
π) i k S(k)Qn(k))

An,β̇ β0 R (2 (1
4 +

1
π)k

2 S(k)Qn(k))

Table 4.7: Amplitude of individual effects in An Fourier coefficients (n = 2,4,6...).

An,h h0 R (4k2 S(k)Qn(k))

An,α α0 R (−2 i k S(k)Qn(k))

An,α̇ α0 R (4 (3
4 −

cpvt

c )k
2 S(k)Qn(k))

An,β β0 R (−2 (1
2 +

1
π) i k S(k)Qn(k))

An,β̇ β0 R (T2
c i k + 2 (1

4 +
1
π)k

2 S(k)Qn(k))

with reduced frequencies kβ = 0.2, kβ = 0.5 and kβ =
π
2 . Numerical parameters used

for the LOM are those stated in §3.2.2, and results presented are for one cycle of

motion. At one edge of the spectrum, with the smallest values of both amplitude

and reduced frequency, theoretical and numerical predictions perfectly match. Upon

increasing the value of any of the parameters, the agreement is preserved in all

cases except at the opposite edge of the spectrum. For this case, with the highest

amplitude and reduced frequency, the maximum value predicted theoretically is

lower than the one provided by the low-order model. It is not surprising, since the

derivation of Fourier coefficients presented in this chapter is built upon the classical

theory of Theodorsen, which is only valid for small amplitudes. Finally, note that

the maximum value of each curve corresponds with a marker from Fig. 4.5.

4.3.2 An coefficients (n ≥ 2)

The logarithmic terms that appear in the expression for the vortex sheet strength

were approximated by sine series in Eq. (4.13). Independent contributions to

An Fourier coefficients with n ≥ 2 can be extracted upon using the following

transformation variables to get rid off the second summation: r = m − n−1
2 for
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Eq. (4.13a), and r =m − n
2 and r =m − n−2

2 for Eq. (4.13b). The missing terms in

Table 4.2, which will be defined as T1 and T2, are then:

T1 =
2U
π

No

∑
m=n−1

2

(−1)n−1
2

22m(2m + 1)(
2m + 1
m − n−1

2
) with n = 3,5,7, ... , (4.36a)

T2 = −
c

π

Ne

∑
m=n−2

2

(−1)n
2

22m+1(2m + 1) [(
2m + 1
m − n

2
) − (

2m + 1
m − n−2

2
)] with n = 2,4,6, ... ,

(4.36b)

where the last term of the summation is the binomial coefficient.

Following the method used for A0 and A1 Fourier coefficients, the amplitude

of individual effects in Eq. (4.32) can now be obtained elegantly, and is given

in Table 4.6 for odd-index An coefficients, and in Table 4.7 for even-index An

coefficients. Note that the quasi-steady vorticity component contributing to the

amplitude of An coefficients with n ≥ 2 depends only on the shape of the camber

line (last column in Table 4.2). Thus, only flap kinematics (flap angle and flap rate)

can have both, the quasi-steady and the wake-induced contributions.

Comparison with numerical results

An equivalent full analysis to the one performed in §4.3.1 is theoretically possible

for An Fourier coefficients with n ≥ 2. However, no analytical closed-forms can be

derived for wake coefficients Qn(k), and a numerical approach has to be considered

(see §4.2.4). This means that a large number of computations would be required

to properly study the dependency on the reduced frequency, which makes the

effort worthless. Instead, only for a few cases, the same nine cases as before, the

temporal evolution of A2 and A3 Fourier coefficients are compared against numerical

predictions from the discrete-vortex model. Results for one cycle of motion are

presented for A2 in Fig. 4.8, and for A3 in Fig. 4.9. Because the derivation of

the analytic expressions is based on Theodorsen’s theory, where small amplitude

and planar wake assumptions are made, results are expected to be less accurate

for large-amplitude deflections. For these cases, the numerical curve distorts and
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kβ = π/2
β0 = 45°

β0 = 20°

β0 = 5°

kβ = 0.5kβ = 0.2

(c)(b)(a)

Figure 4.8: Temporal evolution of A2 Fourier coefficient for one cycle of harmonic flap
deflection with small, medium and large amplitude (yellow, green and blue respectively),
with: (a) low, (b) medium and (c) high reduced frequency. Results are from the analytical
solution ( ) and the discrete-vortex model ( ).

kβ = π/2

β0 = 45°

β0 = 20°

β0 = 5°

kβ = 0.5kβ = 0.2

(c)(b)(a)

Figure 4.9: Temporal evolution of A3 Fourier coefficient for one cycle of harmonic flap
deflection with small, medium and large amplitude (yellow, green and blue respectively),
with: (a) low, (b) medium and (c) high reduced frequency. Results are from the analytical
solution ( ) and the discrete-vortex model ( ).

shows non-linearity (as it happened for the lift coefficient in Fig. 3.17), whereas

the theoretical prediction does not. Furthermore, it was shown in §3.4.5 that flow

separation occurs at the leading edge of the aerofoil in that case. With the exception

of said case, analytical and numerical predictions compare very similar for all other

combinations of amplitude and reduced frequency studied.

4.4 Summary

The main motivation of this chapter has been to contribute simple analytical

forms of all bound vorticity Fourier coefficients, with the effect of motion-defining

parameters uncoupled, for the fundamental aerodynamic problem of an oscillating
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plate-flap configuration. Uncoupling the different contributions facilitates a better

understanding of their relation to the Fourier coefficients, and by extension to the

unsteady pressure distribution and stagnation point location.

To achieve this goal, available expressions of the vortex sheet strength for

this problem have been adapted to the frame of reference used in unsteady thin-

aerofoil theory. This allowed the coefficients sought to be obtained by comparing

expressions for the bound vortex sheet strength. Logarithmic terms in the non-

circulatory vortex sheet strength have been approximated using a Fourier expansion

for better comparison to the expansion used in unsteady thin-aerofoil theory. This

has only been done for the special case of a flap hinged at the mid chord.

All Fourier coefficient expressions have been derived in terms of only the

amplitude and reduced frequency of motion. The idea of scale factors has been

introduced, with subfactors representing all different components of the vorticity.

Insight into the behaviour of Fourier coefficients with the reduced frequency can be

gained by analysing the evolution of all subfactors with variations of this parameter.

Contrary to classical analysis that yields closed-form expressions, such as

Theodorsen’s theory, the present derivation includes series that must be truncated

for practical evaluation, in the non-circulatory and wake vorticity terms. The

approach for Fourier coefficients with n ≥ 2 can thus be seen as semi-numerical.

Regardless of this, the derived expressions for Fourier coefficients (and accordingly

unsteady pressure distribution and stagnation point location) can be used to

validate numerical codes.

Comparison has been made between the expressions derived in this chapter and

numerical simulations performed with the discrete-vortex model developed in the

previous chapter. A pure flap motion with different combinations of amplitude

and reduced frequency has been considered for analysis. Theoretical and numerical

predictions perfectly match for most cases, with the exception of the case with

both largest amplitude and highest frequency. This is as expected, since the small-

amplitude assumption of Theodorsen’s theory, upon which the derivation is built,

imposes a limitation in the accuracy of results for large-amplitude motions.
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LEADING-EDGE VORTEX:

MODELLING

5.1 Introduction

V
ortex formation features heavily in this research, and the second half of

the dissertation is devoted to its study. Flow separation at the leading

edge of a wing or a fin results in an aerodynamic non-linearity. As a consequence of

the vorticity produced at this edge a shear layer is formed, that rolls up on itself

giving rise to a coherent structure, the well known leading-edge vortex. Fed by the

vorticity in this shear layer, the LEV grows in size and strength to the extent that

it is able to significantly alter the aerodynamics under study. In a two-dimensional

problem the growth rate of the LEV is correlated to the influx of mass through the

feeding shear layer, which necessarily depends on the shear layer’s thickness. The

mass flow rate is itself influenced by the geometry of the leading edge. In particular,

it is influenced by the leading-edge radius. Flow separation at the leading edge is a

phenomenon attributable entirely to viscosity. Vortex models, although based on

inviscid theories, are able to capture the non-linearity associated with the LEV, but

require explicit closure conditions. The present chapter explores the performance of

some of these models in LEV-dominated flows using different strategies to estimate

the vorticity shedding rate from the separation point.

89
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The outline of this chapter is as follows: different approaches for modelling LEV

formation are discussed in §5.2, which opens in §5.2.1 bringing back a criterion

previously used in discrete-vortex models, and presents in §5.2.2 a novel strategy to

determine the vorticity feeding rate. It follows with a thorough comparison in §5.3

of the vortex sheet dynamics resulting from both approaches. After introducing the

problem kinematics in §5.3.1, and the CFD model used for validation in 5.3.2, the

onset of flow separation is studied in §5.3.3, the vortex growth stage in §5.3.4, and

the process of flow reattachment in §5.3.5, to close with the analysis of aerodynamic

coefficients in §5.3.6. A particular case from a previous chapter involving flow

separation due to flap motion is revised in §5.4 using the new model. Finally, the

summary of the chapter is provided in §5.5.

5.2 Leading-edge vortex sheet

Inviscid and incompressible flow assumptions as the basis of the theoretical model

may seem inappropriate for studies of low Reynolds number aerodynamics. These

regimes are dominated by the effect of viscosity. Viscous fluid phenomena, such

as leading-edge separation, can yet be incorporated into low-order models built

upon classical aerodynamic theories. This can be accomplished by empirically

augmenting potential-flow theory.

Reported evidence that flow separation at the leading edge is closely related to

critical events of the flow in this region (Beddoes, 1978; Ekaterinaris & Platzer,

1998; Evans & Mort, 1959; Shih et al., 1995), inspired Ramesh et al. (2014) to seek

an inviscid parameter, numerically calculable at every time step of a simulation,

that would serve to introduce viscous behaviours in potential flow models, such as

the formation of LEVs. For this aim, they hypothesised that a non-dimensional

measure of the suction at the leading edge would be correlated to the zero-th term

in the Fourier expansion of the bound vorticity distribution, A0 (see Eq. (3.25a)).

This way, they introduced the Leading-Edge Suction Parameter (LESP), L:
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Figure 5.1: Representation of separated shear layers at the leading and trailing edges of
an unsteady foil by vortex elements. Inset: parameters involved in the calculation of the
strength of leading-edge vortex elements with Eq. (5.6).

L(t) = A0(t) . (5.1)

Success in modelling vortex dynamics has a direct bearing on the vorticity

flux through feeding shear layers, here represented by arrays of vortex elements as

illustrated in Fig. 5.1. The A0 term plays a crucial role in this regard. Two different

approaches to calculate the strength of vortex elements emerging at the leading

edge at every time step of the low-order simulation are discussed next.

5.2.1 Constant-L model: LDVM

In prior work Ramesh et al. (2014) postulated that leading-edge vortex formation

and shedding occurs at a constant value of leading-edge suction, which is indeed the

maximum amount that the aerofoil can sustain at that specific Reynolds number

of operation. When, due to the motion of the aerofoil or vortex-induced velocities,
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the instantaneous A0 from potential theory exceeds that critical value, vorticity

is released from the leading edge as discrete vortices. When it falls below the

limit, the shedding process terminates. By requiring the theoretical value to equal

the empirically determined critical value, an iterative process to fulfil Kelvin’s

circulation theorem provides the strength of these discrete vortices. Ramesh et al.

(2014) developed a discrete-vortex method to simulate leading-edge vortex shedding

with this criterion, termed LESP-modulated Discrete-Vortex Method (LDVM).

Models based on this idea are gathered in this chapter under the label constant-L

models, and two different implementations of LDVM are presented herein. Ramesh

et al. (2018) further suggested that for a given aerofoil and Reynolds number, the

critical value is kinematics-independent as long as no significant trailing-edge flow

separation results from the aerofoil’s motion.

Several quantitative criteria have been proposed in recent years to trigger leading-

edge separation based on local flow signatures. Ramesh et al. (2014) identified the

critical value of L from CFD skin-friction distributions over the aerofoil’s upper

surface. Initiation of vortex formation is there signalled by the first appearance

of a spike in the negative-cf region reaching a positive value. This time instant

is used to obtain the critical L value from inviscid-LDVM analysis. For this

purpose, the attached-flow condition at the leading edge is fulfilled in the low-

order simulations by disabling the release of vortex particles from this point. A

version of LDVM implemented with this criterion is used in this chapter, and

referred to as criterion P henceforth.

In a follow-up investigation, Narsipur et al. (2020) expanded the spectrum of

parameters used in the study of vortex formation, to notice that the earlier criterion

by Ramesh et al. (2014) is limited in applicability to low Reynolds numbers. For

the high Reynolds numbers cases analysed in their work, vorticity contours already

evinced a clear vortex structure at the time instant corresponding to LEV onset

if that criterion is adopted. Alternatively, they proposed the first appearance of

an inflexion point within the negative-cf region as a more reliable signature of

LEV onset detection. This criterion proved to work well for all Reynolds numbers
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studied, and it gives rise to the second version of LDVM contemplated in this

chapter, denoted criterion I in what follows.

5.2.2 Variable-L model: SVDVM

The primary intent in §5.2.1 has been to discuss various approaches to estimate

the initiation of LEVs. The accuracy of low-order models built on these grounds

is however expected to be limited. While the principal physical phenomenon is

captured, i.e. the presence of vortex structures in the flow, their temporal evolution

is firmly marked by the post-stall behaviour of the leading-edge suction, which

governs the rate of circulation fed into the nascent vortex. It must be stressed here

that leading-edge suction does not remain fixed at a critical value during vortex

formation as suggested by Ramesh et al. (2014), since recent experiments and

computation showed that the critical value is reached after the onset of instabilities

near the leading edge, preceding flow separation, has already occurred (Deparday &

Mulleners, 2019; Narsipur et al., 2020). It will be demonstrated in §5.3 how failing

to reproduce this trend affects leading-edge vortex dynamics.

It is the aim of this section to contribute to the resolution of this modelling

shortcoming, by presenting an alternative strategy to compute the rate of vorticity

shed from the separation point in vortex methods (Martínez et al., 2022). To

this end, an expression proposed in the literature to estimate the rate of vorticity

transport through a separated shear layer in terms of the velocity at its outside edges

(Clements, 1973; Fage & Johansen, 1927; Katz, 1981; Leonard, 1980; Sarpkaya,

1975) is recovered in this work:

dΓs
dt
=

1
2(V

2
1 − V

2
2 ) , (5.2)

where V1 and V2 are the velocities at the outer and inner edges of the shear layer

(closer and further to the leading edge respectively), with the outer velocity much

greater than the inner velocity, V 2
1 ≫ V 2

2 (Fage & Johansen, 1927). This way of
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estimating the rate at which vorticity is released from a separation point was termed

the shear velocity method in the literature (Katz, 1981).

Assuming the separation point to be located at the leading edge, a valid

supposition for unsteady flow problems with an LEV as the dominant feature,

Eq. (5.2) simplifies to the following expression for the leading-edge vorticity

feeding rate, Γ̇LE:

Γ̇LE =
1
2u

2
LE , (5.3)

where uLE is the velocity at the leading edge of the aerofoil.

A salient point to make here is that in thin-aerofoil-theory primitive variables

become singular at the leading edge: the suction peak, represented by the A0 term

of the bound vorticity distribution, and the velocity are infinite at this location.

This poses a hurdle in implementing Eq. (5.3) on reduced order models which are

based on UTAT. Ramesh (2020) provided a solution to this issue by applying the

principle of matched asymptotic expansions (Van Dyke, 1964). The solution from

UTAT (outer solution) is matched with that from unsteady potential flow past a

parabola (inner solution) to resolve the singularity. An expression for the velocity

at the leading edge is derived that depends on only A0:

uLE =

√
2
rLE

UA0 , (5.4)

with rLE the radius of the aerofoil’s leading-edge. For a symmetric NACA aerofoil it

is defined as rLE = 1.1019t2, where t is the maximum thickness of the aerofoil

as a fraction of the chord.

A final expression for the growth rate of circulation at the leading edge results

after substituting Eq. (5.4) in Eq. (5.3):

Γ̇LE =
U2A2

0
rLE

, (5.5)



5. LEADING-EDGE VORTEX: MODELLING 95

which shows that vorticity feeding rate is proportional to the square of the leading-

edge suction parameter and inversely proportional to the leading-edge radius.

The discrete formulation of Eq. (5.5) provides the strength of the i-th vortex

particle entering the flow field from the leading edge at the current time step, Γi:

Γi(t) =
U2A2

0(t)

rLE
∆t . (5.6)

To compute the aerodynamic loads, before the pressure jump is integrated,

the contribution of the new vortex particle shed from the leading edge has to

be included in the unsteady pressure term, Eq. (3.33), by adding Γi

∆t for every

shed particle. The normal force and moment coefficients will then be corrected by

adding 2Γiceff

∆tU2c and Γic
2
eff

∆tU2c2 , respectively, at every time step that a vortex particle

is shed from the leading edge.

The vortex model constructed following this scheme will be labelled Shear-layer

Velocity Discrete-Vortex Model (SVDVM). One of its strengths comes through the

unrestricted evolution of L during the vortex-shedding process. For this reason, it

will also be referred to as variable-L model throughout the thesis.

5.3 Leading-edge vortex formation and dynamics

The role of A0 in the context of vortex sheet dynamics is studied in depth through

the primary unsteady flow features: flow separation and vortex formation (covered

in §5.3.3), vortex growth (in §5.3.4) and flow reattachment (in §5.3.5).

5.3.1 Kinematics: ramp pitching motion

The canonical ramp manoeuvre suggested by Eldredge et al. (2009) assures the

appearance of the previous sequence of events, one in each of the three differ-

ent segments comprising this movement (up-hold-down). The smoothed pitch

motion is given by:
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Table 5.1: Parameters defining pitching kinematics.

α0[○] αmax[○] Kα σ t∗1 t∗hold

0 45 0.2 0.9 2 2

α(t∗) = α0 +
Kα

a
ln
⎡
⎢
⎢
⎢
⎢
⎣

cosh (a(t∗ − t∗1)) cosh (a(t∗ − t∗4))
cosh (a(t∗ − t∗2)) cosh (a(t∗ − t∗3))

⎤
⎥
⎥
⎥
⎥
⎦

, (5.7)

where α0 is the mean pitch angle; Kα =
α̇c
2U the reduced pitch rate (this value is

determined with the angular velocity, α̇, at the midpoint of the ramp-up segment);

a = π2Kα/(2αmax(1 − σ)) a parameter to determine the smoothing at the transition

points, with larger values of σ (from 0 to 1) producing sharper transitions (Granlund

et al., 2013); and αmax the pitch amplitude. Time is made non-dimensional by

dividing by the convective time, t∗ = t
tc
= tU

c . The timing of the four transition

points is indicated by: t∗1, start of the pitch-up; t∗2 = t∗1 + αmax

2Kα
end of the pitch-

up; t∗3 = t∗2 + t∗hold start of the pitch-down; t∗4 = t∗3 + αmax

2Kα
end of the pitch-down.

Parameters defining the motion are listed in Table 5.1.

The reasoning for the values imputed is as follows: t∗1 allows enough time for

boundary layers to fully develop on the aerofoil before the motions starts; Kα

and σ describe a rapid transient manoeuvre, typical for biological and bio-inspired

flapping flight; αmax and t∗hold guarantee the development of the vortex into a

coherent structure, essential for the analysis of the total circulation; α0 allows the

flow to reattach at the leading edge and to track the progress of the reattached

region. Additionally, two geometries, NACA 0004 and a NACA 0012 aerofoils, are

considered to account for thickness effects, since the shape of an aerofoil (radius

at the leading edge) has an impact on the amount of leading-edge suction that

it can support (Narsipur, 2022), on the strength of the dynamic-stall vortex, and

on the aerodynamic loads (McCroskey, 1982). Finally, the pivot location at the

trailing edge offers the possibility of studying vortex events occurring on both sides

of the aerofoil during a single manoeuvre. The delayed formation of the typical
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Figure 5.2: Details of the CFD mesh: (a) complete fluid domain, (b) close-up of the
aerofoil, (c) leading edge and (d) trailing edge zoomed-in.

suction LEV, due to the appearance of an LEV on the pressure side, has been

documented before for similar pitching profiles with a trailing edge pivot axis, for

high reduced pitch rates of Kα = 0.2 (Granlund et al., 2013), Kα = 0.39 (Yu &

Bernal, 2017), and Kα = 0.7 (Ol et al., 2009).

5.3.2 CFD model for unsteady rigid aerofoils

Camber morphing is not considered in this chapter, so the geometries studied are

not equipped with a trailing-edge flap. These are a NACA 0004 and a NACA 0012

aerofoils in clean configuration. Flow conditions also differ slightly from those in

Chapter 3. Therefore, a better suited CFD model was developed for validation of

the low-order models used in this chapter, whose details are provided as follows.

The aerofoil chord length was 3 inches, and the free stream velocity 0.1312 m/s,

resulting in a Reynolds number based on the chord Re = 104 for these unsteady

flow simulations. O-meshes (instead of an overset-mesh) were constructed for these

clean geometries. The far field extended to 12 chord lengths in all directions, as

depicted in Fig. 5.2(a). The number of cells around the aerofoil was 246, with a fine

resolution near the leading edge and the trailing edge, as observed in Figs. 5.2(c)

and 5.2(d), and the number of cells in the wall-normal direction was 257. The
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no-slip boundary condition was enforced on the surface of the aerofoil, and free

stream (inlet/outlet) boundary conditions were used for the far field. This behaves

as a zero-gradient condition when fluid is flowing out of the boundary face, and as

a fixed value condition (equal to the free stream) otherwise. Solver setting for CFD

simulations was the same as described in §3.3 for the multi-body problem.

5.3.3 Flow separation: Leading-edge suction

The new model introduced in this chapter brings an important advantage in that

no empirical parameter is needed to incorporate the influence of viscosity. On

the other hand, without this critical parameter the information about the start

of flow separation is lost. Hence an alternative procedure is necessary to retain

knowledge about this viscous phenomenon.

Identification of flow separation

Qualitatively, flow separation can be inferred by monitoring a sequence of flow

field images. By studying the trend of some theoretical variables at desired time

instants, a more quantitative form can be produced. A careful evaluation of the

sign of a function’s derivatives at a given point provides meaningful information on

its local behaviour. The first derivative can be seen as the slope of the tangent line

to the function. It tells us if the function increases or decreases locally. Whereas

the second derivative explains the behaviour of the first derivative: if the second

derivative is positive the slope of the graph increases with x and vice versa.

In a bid to ascertain the time instant at which flow separates using the new

formulation, the leading-edge suction parameter is examined, and by extension the

edge velocity of the shear layer (scaled with L) and the vortex-element strength

(scaled with L squared). Observing the state of these magnitudes at the time step

when flow starts to separate at the leading edge from CFD vorticity images, a slope

lessening is noticeable in their curves about this time, meaning a change in rate of

vorticity creation. Mathematically, this translates into the first derivative having
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the same sign as the function, and the second derivative having the opposite sign.

Returning to Eqs. (5.4) and (5.6), the expressions of the functions’ derivatives are:

duLE(t)
dt =

√
2
rLE

UȦ0(t) , (5.8a)

d2uLE(t)

dt2 =

√
2
rLE

UÄ0(t) , (5.8b)

for the leading-edge velocity, and:

dΓi(t)
dt = 2U

2∆t
rLE

A0(t)Ȧ0(t) , (5.9a)

d2Γi(t)
dt2 = 2U

2∆t
rLE

⎡
⎢
⎢
⎢
⎢
⎣

Ȧ2
0(t) +A0(t)Ä0(t)

⎤
⎥
⎥
⎥
⎥
⎦

, (5.9b)

for the vortex particle strength.

The sign of the functions depends upon the side of the aerofoil over which flow

separates: positive when the LEV is forming on the suction side, negative if it forms

on the pressure side. For the first case the curves exhibit a concave-down shape,

which corresponds to a positive first derivative and a negative second derivative. Ap-

plying these guidelines to Eqs. (5.8) and (5.9) the following inequalities are obtained:

Ȧ0(t) > 0 , Ä0(t) < 0 , (5.10)

for the velocity at the leading edge, and:

A0(t)Ȧ0(t) > 0 , Ä0(t) < −
Ȧ2

0(t)

A0(t)
, (5.11)

for the strength of vortex particles.
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LE QC HC 3QC TE

Figure 5.3: Evolution of L during leading-edge flow separation for a NACA 0004 aerofoil
pitching about five pivot axes (LE, QC, HC, 3QC, TE). Predictions from SVDVM ( )
are compared against calculations from CFD ( ). Coloured triangles mark the onset of
flow separation according to Eq. (5.12).

In summary, the system of inequalities to enforce to the zero-th Fourier coefficient

and its derivatives is:

A0(t) > 0 , Ȧ0(t) > 0 , Ä0(t) < −
Ȧ2

0(t)

A0(t)
for suction side LEV

A0(t) < 0 , Ȧ0(t) < 0 , 0 < Ä0(t) < −
Ȧ2

0(t)

A0(t)
for pressure side LEV

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(5.12)

The onset of leading-edge separation in this work is suggested to correspond

with the instant at which the absolute value of Ä0(t) is maximum (local minimum

for the suction side, and local maximum for the pressure side) within the range

where the system of inequalities (5.12) is satisfied. The timing of such a maximum

lies slightly before the global maximum of L is reached. Figure 5.3 compares the

evolution of L between SVDVM and CFD (extracted as described in Appendix

B.1) for a NACA 0004 pitching about five different pivot locations. The onset of

separation is indicated with markers, and its timing is consistent with findings by

He et al. (2020), who inferred that dynamic stall development is not governed by

the maximum L, as Ramesh et al. (2014) thought.
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Table 5.2: Values of L at the onset of LEV formation: critical value for LDVM-based
models, and value at flow separation for SVDVM.

NACA 0004 NACA 0012
criterion P 0.16 0.32
criterion I 0.12 0.27
criterion Ä0 0.05 0.17

(a) (b) (c) (d) (e)

Figure 5.4: Characteristic LEV shapes for different kinematics/geometries as modelled
with CFD (top images) and SVDVM (bottom images): (a) slow pitch rate, (b) medium
pitch rate, (c) high pitch rate, (d) pivot axis at the rear half and (e) thick aerofoil. All
plots are shown in the reference frame of the aerofoil at an arbitrary time instant.

Critical L values obtained with criterion P and criterion I are collected in

Table 5.2 for the two cases studied in this chapter. The value of L at the onset

of flow separation according to the methodology just introduced, termed criterion

Ä0 hereinafter, is also included. As it will be discussed in subsequent sections, the

variable-L model will enable improved predictions of leading-edge vortex dynamics

compared to the constant-L models.

To assess its performance, the new criterion proposed from Eq. (5.12) to

determine the onset of flow separation was tested over a broad range of kinematics

and geometries characterised by very diverse LEV shapes. Results were compared

against CFD simulations, and vorticity contours at representative instants of the

vortex evolution are exhibited in Fig. 5.4. The selection of cases was motivated

by the knowledge that increasing the reduced pitch rate strengthens the LEV,



102 5.3. Leading-edge vortex formation and dynamics

delaying many of the vortex milestones to larger incidences, and that the same

effect is attained by moving the pitch axis aftwards (Eldredge & Jones, 2019). A

distinctive shape is the elongated backwards LEV covering the whole surface of

slow pitching aerofoils, as shown in Fig. 5.4(a). Typical of medium pitch rates is a

well-formed round LEV away from the surface, like the one displayed in Fig. 5.4(b).

Representative of higher pitch rates is the formation of a strong TEV preceding the

LEV, which can be clearly seen in Fig. 5.4(c). For aerofoils that pitch about a pivot

axis over the rear half of the chord, a pressure-side LEV delaying the suction-side

LEV is expected, as represented in Fig. 5.4(d). Finally, a late formed LEV is

characteristic of thick aerofoils, like that in Fig. 5.4(e).

Whether or not the removal of the dependency on a critical value has too great

an implication on the correct modelling of the complex vortex dynamics, may be

assessed only on the basis of its comparison with reference data. The remainder of

this chapter aims to analyse different features in the evolution of a vortex and its

feeding sheet for both approaches to model the rate of vorticity transport.

Post-stall behaviour of L

Post-separation behaviour of the leading-edge suction parameter is an ongoing

matter of research. Numerous low-order models have been built on the hypothesis

that it is held fixed at a critical value during the whole vortex formation phase

(see examples in §2.2). Notwithstanding the general good estimations of load

coefficients in studies using this assumption, recent computational (Narsipur, 2022;

Narsipur et al., 2020) and experimental lines of investigation (Deparday et al., 2022;

Deparday & Mulleners, 2019) revealed that the leading-edge suction drops shortly

after the vortex starts forming at the leading edge. The closure condition set at this

point for constant-L models renders them inappropriate to capture the leading-edge

suction post-stall behaviour, and therefore to reproduce the correct dynamics of

vortex sheets (vorticity transport rate, inclination angle, reattachment process). In

contrast, the variable-L model does recreate the observed declining tendency of L.

The positive-slope of the suction parameter decreases following a patch of reversed
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(a) (b)

Figure 5.5: Temporal evolution of L: (a) NACA 0004 pitching around its trailing edge
and (b) NACA 0012 pitching around its mid-chord. Symbols for LDVM models indicate:
onset of LEV formation (☆) and termination of LEV (◻). Symbols for SVDVM indicate:
leading-edge flow separation (△) and reattachment (∇).

flow close to the leading edge (visualised through streamlines in CFD simulations),

and turns negative slightly after the separated shear layer rolls up into a vortex.

In LDVM-based low-order models, the suction parameter is defined as the

zero-th Fourier term from unsteady thin-aerofoil theory, given by Eq. (5.1). The

post-separation behaviour of this parameter is illustrated in Fig. 5.5 for the three

discrete-vortex schemes considered in this chapter (two constant-L models and

the variable-L model), and it is contrasted with the value extracted from CFD

simulations as discussed in Appendix B.1. For the case of a NACA 0012 aerofoil

pitching at its mid-chord, Fig. 5.5(b), prior to the onset of flow separation, which

is marked with stars for the constant-L models and a triangle for the variable-L

model, the leading-edge suction evolves similarly for both schemes. At this point

onwards the predicted values of L progressively differ between models. Whilst the

suction parameter is bounded by the critical value in the original LDVM scheme,

it peaks in SVDVM not long after the shear layer separates at the leading edge

and starts rolling-up into the nascent LEV. The value of L then drops as the

vortex increases in size and strength. This post-stall behaviour of the leading-edge

suction parameter has been observed in recent investigations, and is here only well

tracked with the new discrete-vortex model. Once the flow begins to reattach

at the leading edge when the aerofoil pitches back down, time instant signalled
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(i) LEVp1 onset (v) LEVp2 onset(iii) LEVs1 onset (iv) LEVs1 end(ii) LEVp1 end

Figure 5.6: Unsteady flow events over a NACA 0004 undergoing a ramp-hold-return
pitch motion with the pivot axis at the trailing edge. On the upper sequence of images,
vorticity contours from CFD (top) and vortex particles from SVDVM (bottom) are
compared. On the lower graph, the corresponding L value for each flow event is shown.
Sub-index p stands for pressure side, and s for suction side of the aerofoil.

with an inverted triangle in the variable-L model, the deviation between both

schemes becomes smaller, to finally collapse all three curves by the end of the

motion, when the initial steady state is recovered.

It is worth noting that the temporal evolution of L changes with the pivot location.

In Fig. 5.5(a) a NACA 0004 pitches around its trailing edge. The location of the

pivot point in the rear half of the aerofoil triggers flow separation over the pressure

side before it happens on the suction side. As stated above, the formation process of

an LEV influences the suction experienced by the aerofoil. Because the constant-L

models do not capture the associated decay in L, the slope of these curves differ

from the variable-L model and CFD results after the pressure-side LEV is formed.

This is clearly visible in the first grey-shaded region, between t∗ ∼ 2 and t∗ ∼ 3.
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The rate of circulation fed into the LEV has been estimated in the new discrete-

vortex model through the velocity at the edge of the shear layer. With no empirical

parameters needed to determine the temporal evolution of L, SVDVM offers a

faster way to model unsteady flow separation, and a more accurate recreation of

vortex sheet dynamics. Flow features that characterise unsteady aerofoils, such

as vortex formation and flow reattachment, are naturally captured with this new

approach, and the sequence of vortex events that occur around the NACA 0004

aerofoil, summarised in Fig. 5.6, is a good case in point: at the beginning of the

pitching motion the stagnation point moves towards the upper surface, resulting in

L dropping to negative values. A negative value of the suction parameter means

that flow separation, and the consequent formation of an LEV, will occur over

the pressure side of the aerofoil (see Eq. (5.12)). This is indicated as event (i) in

the graph, and the corresponding flow field from CFD simulations and SVDVM

predictions shows the incipient vortex, with red colour representing counter-clockwise

vorticity. Immediately after, L reaches a local minimum, equivalent to what was

explained earlier for the case of positive L. As the pitching motion progresses, the

stagnation point returns to the leading edge and the suction parameter changes

sign, the time instant at which the flow reattaches at the leading edge, event (ii) in

the plot. Since the rate at which leading-edge vorticity builds in the SVDVM model

is proportional to the instantaneous suction parameter (see Eq. (5.5)), zero-strength

particles enter the flow field at this time. The attached flow state is identified as a

small region close to the leading edge where no discrete vortices are visible in the

bottom image of event (ii). Although the algorithm generates those computational

elements carrying very little vorticity, or none at all, they are not perceptible since

their radii are proportional to their strength, and they run along the aerofoil’s chord

line. Next, the stagnation point moves towards the lower surface, and the same

sequence is repeated over the suction side of the aerofoil, events (iii) − (iv). The

blue colour here indicates clockwise vorticity. By the end of the motion, an LEV

with negative vorticity is formed on the pressure side, whilst the shear layer feeding

the suction-side LEV continues to attach as the flow convects downwards, event (v).
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x 10-2

(a)

(c)

x 10-2

(b)

(d)

Figure 5.7: Temporal evolution of normalised discrete-vortex strength and leading-edge
vortex total circulation: (a, c) NACA 0004 pitching around its trailing edge and (b, d)
NACA 0012 pitching around its mid-chord. Symbols for LDVM models indicate: onset of
LEV formation (☆) and termination of LEV (◻). Symbols for SVDVM indicate: leading-
edge flow separation (△) and reattachment (∇). White circles are from CFD.

5.3.4 Vortex growth: Circulation

Separated shear layers are the initial stage in the formation of vortices, and their

feeding mechanism. Vortex dynamics can be successfully predicted by means of

vortex methods if the rate of circulation transferred into the vortex through the

feeding shear layer is accurately modelled. Vortex elements representing these sheets

have individual strengths assigned, Γi, which together define the total circulation

accumulated within the vortex, ΓLEV . This parameter is a characteristic indicator

of the vortex growth stage.

The correlation between these quantities is assessed in Fig. 5.7. Estimated

non-dimensional strengths of the i-th discrete vortex released from the leading

edge at each time step of the low-order simulation, Γi, are displayed in Figs. 5.7(a)

and 5.7(b). The novel approach to model leading-edge flow separation presented in

this chapter, SVDVM, is compared against the two variants of LDVM introduced

in §5.2.1, where the critical value of the leading-edge suction parameter has been

determined from CFD according to different signals in the wall shear stress. The

strength of shed particles in these methods is governed by the difference between
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the instantaneous and critical values of L, whilst for the new formulation it is

proportional to the instantaneous L squared, Eq. (5.6). The NACA 0004 case is

analysed in Fig. 5.7(a). Regardless of the DVM chosen to model unsteady thin

aerofoils, the strength of vortex particles is similar throughout most of the vortex

lifespan: soon after the onset of leading-edge flow separation, a local maximum is

observed during the ramp-up part of the motion. As the angular acceleration drops

during the transition before reaching the final pitch angle, the strength of released

particles climbs, to peak at the instant of the largest negative value (maximum

deceleration), t∗ = 4. It follows a short sharp decline due to the deceleration

returning to zero. The slope decreases more gently thereafter, when the aerofoil

stays stationary at 45○ and the only velocity contributing to A0 is that induced by

the growing LEV, t∗ ∼ 4 to t∗ ∼ 6. Analogous later peaks are the product of angular

acceleration/deceleration during the transitions in the last segment of the motion,

when the aerofoil is pitching back to zero, t∗ ∼ 6 to t∗ ∼ 8. In spite of the overall

trend captured by all formulations in a similar manner, there are some meaningful

differences: the critical value of L determined by criterion P and criterion I is

too high for the LEVs formed on the pressure side to be captured, identifiable by

negative values of vortex strength in SVDVM, t∗ ∼ 2 and t∗ ∼ 8. This large critical

value is also the reason for a later onset of LEV formation on the suction side,

denoted by stars in the graph, which ultimately translates into a smaller vortex

total circulation. Conversely, SVDVM does manage to model the aforesaid vortices,

achieving a smooth transition in the strength assigned to vortex particles where A0

changes sign, this is where a suction-side LEV succeeds a pressure-side LEV.

One of the improvements attained with the new model is that, through the

leading-edge radius, the thickness effect can be included in the calculation of the

rate at which leading-edge vorticity builds, Eq. (5.5). This is examined through the

NACA 0012 case in Fig. 5.7(b). Whilst the results obtained are largely similar for

the NACA 0004, some distinctions can be identified: 1) the specific characteristics of

the present motion, where the pivot axis is located at the mid-chord, do not trigger

the occurrence of vortices on the pressure side, as was observed for the thinner
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foil; 2) acceleration spikes at the transition points are less pronounced here due to

the pitching axis being closer to the leading edge; 3) flow curvature at the leading

edge is lower for thicker aerofoils, allowing them to sustain a higher amount of

suction, which translates into larger values of L at flow separation than for thinner

aerofoils. These higher L values (see Table 5.2) delay the occurrence of the vortex

even further, accentuating the difference between models on the individual strength

of discrete vortices during the ramp-up phase, between t∗ ∼ 3 and t∗ ∼ 4. Also the

final decline, past t∗ ∼ 6, is more abrupt in constant-L models for the same reason.

Non-dimensional LEV circulation, ΓLEV , is depicted in Figs. 5.7(c) and 5.7(d).

To enable direct comparison between CFD results, where clockwise vorticity is taken

as negative, and low-order model predictions, where the opposite is considered, the

absolute value of the total circulation has been plotted. Vorticity is continuously

shed and accumulated into the vortex, leading to a progressive growth in circulation

magnitude. The same general trend is observed for both aerofoils: two linear

sections with different positive slopes, influenced by the kinematics. During the

up-stroke (first grey-shaded region) the i-th particle strength rises up to its peak

value at the end of the motion (see Fig. 5.7a), leading to a significant circulation

growth. Once the motion has ceased contributing to the strength of vortex particles

(through A0) the positive slope gently reduces, yet the circulation still increases as

discrete vortices keep adding to the growing LEV. Owing to their higher L value at

flow separation, constant-L models start releasing particles later than the variable-L

model, which translates into a lower total circulation. However, dissimilarities

between models are barely noticeable for the thin aerofoil case, Fig. 5.7(c), and all

curves are in good agreement with CFD data (extracted as explained in Appendix

B.2) up to the time of vortex shedding. From this point forwards dissipation effects

on the free vortex are expected, but LOM predictions do not account for them, and

so the circulation remains at its maximum value indefinitely. Discrepancies between

models are more evident for the thicker aerofoil, Fig. 5.7(d). During the down-stroke

constant-L models cease releasing particles and their curves stop growing, drifting
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(a) (b)

Figure 5.8: Temporal evolution of shear layer slope: (a) NACA 0004 pitching around
its trailing edge and (b) NACA 0012 pitching around its mid-chord. Symbols for LDVM
models indicate: onset of LEV formation (☆) and termination of LEV (◻). Symbols for
SVDVM indicate: leading-edge flow separation (△) and reattachment (∇). White circles
are from CFD.

the maximum predicted value of vortex circulation away from that of CFD. The

variable-L model on the contrary provides an accurate estimation of that peak value.

5.3.5 Flow reattachment: Shear layer angle

The interplay between vortex particles distributed in the flow field is the essence of

vortex methods. The amount of vorticity each of these discrete elements carries

has a critical role in modelling vortex dynamics, since the strength and inclination

of the sheet they represent will solely depend on their mutual interactions. With

the interest focused on the leading edge, the performance of vortex methods can

be assessed by observing the angle that the separated vortex sheet forms with the

chord line, λsl. In DVM models it can be computed with the last two discrete

vortices shed. The methodology followed to obtain this angle from CFD simulations

is detailed in Appendix B.3. The temporal evolution of the shear layer slope is

exhibited in Fig. 5.8 for both, the thin and the thick aerofoils. For the variable-L

model the entire history has been traced, whereas only the formation and growth

stages of the suction-side LEV are represented for the constant-L models, which

are unable to reproduce the reattachment process. Results from CFD, represented
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t* = 5.5 t* = 6.0 t* = 6.5t* = 5.0

LDVM crit-P

LDVM crit-I

SVDVM

Figure 5.9: Dynamics of the leading-edge vortex sheet during LEV growth stage for
the NACA 0012 aerofoil. Vorticity contours from CFD are overlaid with vortex particles
from the three DVMs.

by white circles in the graphs, span from the onset of flow separation to the point

at which it reattaches at the leading edge as determined by SVDVM, marked

with a triangle and an inverted triangle respectively. The separated shear layer

moves away from the surface as the aerofoil pitch angle increases, reaching its

maximum inclination when the angular deceleration ceases entirely, shortly after

t∗ = 4. With the aerofoil motionless, the flux of vorticity through the feeding shear

layer lessens during the vortex growth stage, pulling it back closer to the surface as

the coherent vortex structure convects downstream. Graphically, this is observed

as a gentle decrease in λsl between t∗ ∼ 4 and t∗ ∼ 6. Because the growth rate

of circulation at the leading edge is nearly the same for all models at this stage

(see Figs. 5.7a and 5.7b), all curves fall with a similar decline. The magnitude

of λsl is however smaller the higher the critical L. A higher critical value means

that it will take longer for the first leading-edge vortex particle to enter the flow

field. Consequently, such starting discrete vortices will be weaker than the one

placed at that time instant if a smaller critical value was calculated, since in that

case the vortex sheet would have already started developing, and the growth rate

of circulation would be increased (see Figs. 5.7(a) and 5.7(b) between t∗ ∼ 3 and

t∗ ∼ 4). Weaker particles in the flow field are convected faster with the incoming

flow, thus resulting in a smaller angle of separation.

To visually reinforce the tendency of the separated vortex sheet observed

for the three DVMs and CFD simulations, a sequence of images zoomed-in on

the leading edge of the NACA 0012 aerofoil is exhibited in Fig. 5.9. The time
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interval shown, from t∗ = 5.0 to t∗ = 6.5, is indicated with a dashed square in

Fig. 5.8(b), and comprises most of the vortex growth stage, when the LEV displays

its distinctive fully-developed shape. It is interesting to recall here the inherent

limitation of constant-L models in properly capturing vortex sheet dynamics: when

the instantaneous value of the theoretical A0 drops below the critical value release

of leading-edge vorticity terminates, and no more leading-edge vortex particles enter

the flow field. Previously shed discrete vortices continue to move downstream with

the incoming flow, which results in the vortex sheet being no longer connected to the

aerofoil (last image of the sequence, t∗ = 6.5). CFD contours evince however that

at this time instant the fully-developed LEV still remains attached to the aerofoil

through the shear layer. This is only reproduced with the novel approach introduced

in this chapter to model vorticity feeding rate, where a new computational element

is placed at every time step of the numerical simulation, and its strength estimated

with the velocity at the edge of the shear layer, Eq. (5.6).

As remarked above, numerical computations of shear layers with constant-L

models entails a certain degree of inaccuracy, since the vortex sheet detaches from

the leading edge when suction falls below a certain value. Accordingly, results

presented for the remainder of this section include only the estimations made by

the variable-L model and CFD calculations. During the return part of the ramp

motion, the second grey-shaded area in Fig. 5.8, the aerofoil goes back to its initial

position, and the slope of the separated shear layer progressively reduces until

the flow reattaches at the leading edge. Numerically, this has been defined as the

instant when leading-edge suction becomes null (see Fig. 5.6), and it is indicated

in the graph with an inverted green triangle. Low-order predictions of the shear

layer angle underestimate results given by high-fidelity computations. A plausible

explanation might have its origin in the geometry below the reattaching layer.

Low-order models simplified the aerofoil to a line, allowing a zero value for λsl at

reattachment, whereas the rounded leading edge in CFD simulations imposes a

geometric constraint, precluding that zero angle from being reached.
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t* = 8.0 t* = 8.5 t* = 9.0 t* = 9.5

Figure 5.10: Dynamics of the leading-edge vortex sheet during the reattachment process
for the NACA 0004 aerofoil. Vorticity contours from CFD are overlaid with vortex
particles from SVDVM.

Finally, with the aerofoil at rest back at a zero angle of attack, the reattached

region is extended from the leading edge rearwards, until it encompasses the

whole surface of the aerofoil and the initial undisturbed flow state is recovered.

By including the velocity at the leading-edge shear layer in the calculation of

vortex particle strength, SVDVM accurately updates in time the position of the

shear layer. The reattaching process is illustrated for the NACA 0004 aerofoil

in Fig. 5.10. The time interval shown, t∗ = 8.0 to t∗ = 9.5, corresponds to the

dashed square highlighted in Fig. 5.8(a).

5.3.6 Aerodynamic coefficients. Reynolds number effect

Contrary to other canonical motions (like translation or rotation), for pure pitching

manoeuvres the Reynolds number is believed not to have a significant role in the

initial development of the LEV, at least in the range O(102) to O(104) (Eldredge

& Jones, 2019). In early experimental investigations into dynamic stall, it was

observed that Reynolds number had little effect on aerodynamic load coefficients,

but the leading-edge profile did have a larger impact (McCroskey, 1982). These

findings have been more recently supported with computational evidence (Narsipur,

2022; Narsipur et al., 2020). The influence of these two variables, thickness and

Reynolds number, on the performance of discrete-vortex models in LEV-dominated

scenarios is explored in this section.

Regarding the aerofoil shape, the time history of the aerodynamic coefficients

is examined for the two cases studied in Fig. 5.11, where predictions made by the

low-order models are compared against results obtained from CFD simulations.

Overall, the different approaches to determine the rate of circulation fed into an
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(a) (b)

(d) (e)

(c)

(f)

Figure 5.11: Aerodynamic coefficients time history for a NACA 0004 pitching around its
trailing edge: (a) lift, (b) drag and (c) pitching moment; and for a NACA 0012 pitching
around its mid-chord: (d) lift, (e) drag and (f) pitching moment

LEV reveal minor variations when compared to the high-fidelity simulations for

the thin aerofoil case, Figs. 5.11(a) to 5.11(c). Added-mass effects, indicated by

spikes when angular accelerations are large, are particularly pronounced for this

kinematic condition and correctly captured by both discrete-vortex schemes. Curves

from CFD data are closely tracked during the entire time series, aside from minor

dissimilarities over the down stroke phase of the motion (second grey-shaded region

in the graphs), from t∗ = 6.0 to t∗ = 8.0. Differences become more noticeable for

the thick aerofoil case, Figs. 5.11(d) to 5.11(f), especially over the time interval

mentioned. Some of the most significant distinctions between models occur here,

and constant-L models fail to keep a good agreement with CFD results. If the
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strategy adopted to define the shedding rate of vorticity is based on a critical

value of the leading-edge suction parameter, it is during this part of the motion

when the theoretically predicted A0 falls below the limiting value (see squares in

Fig. 5.5). Furthermore, the strength of the last released vortex particles rapidly

decays (see Figs. 5.7(a) and 5.7(b), and last snapshot in Fig. 5.9, where the size of

particles is proportional to their strength). With no more discrete vortices entering

the flow field vorticity is no longer built at the leading edge, and the vortex sheet

breaks off (see Fig. 5.8), affecting the contribution of the LEV to the aerodynamic

loads. On the contrary, the variable-L model estimates aerodynamic loads with

higher accuracy, which is particularly marked on the drag and moment coefficients,

Figs. 5.11(e) and 5.11(f). Although SVDVM estimation of the moment coefficient is

slightly more negative than the CFD results the trend is properly followed, whereas

LDVM-based models fail to capture the characteristic shape in this phase of the

motion. The function of LEVs is to prevent leading-edge vorticity from advecting

downstream, and in SVDVM the leading-edge vortex sheet remains adhered to the

bound vortex sheet during that time interval. The improvement with this approach

can then be justified by the build up of vorticity not being inaccurately halted

during the down stroke (see Figs. 5.7 and 5.8). The component of the aerodynamic

loads due to the vortex is therefore not negatively impacted.

Having removed the need of an empirical value for the development of SVDVM,

it is logical to inquire how important the effect of the Reynolds number might be

on the performance of this novel discrete-vortex model. In order to examine this,

an additional test case is included following the work by Narsipur et al. (2020): a

NACA 0012 aerofoil pitching harmonically about its quarter chord at a reduced

frequency of kα = 0.4. Two different Reynolds numbers, Re = 3 ⋅ 104 and Re = 3 ⋅ 106,

are considered in that work. Reference CFD data was taken from the supplementary

material accompanying the paper.

The aerodynamic load coefficients estimated with the variable-L model are

compared with the reference CFD data in Fig. 5.12. In view of the results, the

effect of the Reynolds number on aerodynamic loads seems to be minimal, despite
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(c)(b)(a)

Figure 5.12: Reynolds number effect on the aerodynamic loads for a NACA 0012 aerofoil
pitching harmonically about its quarter chord: (a) lift, (b) drag and (c) pitching moment.
Results are from SVDVM ( ) and CFD data (∇ , △).

being a difference of two orders of magnitude between cases. This is consistent with

the statement made at the beginning of this section. The good agreement between

the aerodynamic coefficients predicted by SVDVM and CFD data might mislead

about the range of Reynolds numbers for which the low-order model provides

reliable estimations of unsteady flows.

From the aerodynamic loads coefficients alone it is difficult to assess the

performance of the model in full, and it would not be wise to extrapolate the

outcome to other aspects such as flow field modelling. In a bid to better understand

the real scope of accurate predictions, the temporal evolution of the leading-edge

suction parameter (a reliable indicator of the state of the flow at the leading edge)

is compared in Fig. 5.13 for the same Reynolds numbers. The maximum value of L

and its timing are observed to increase with the Reynolds number, being closest

to the SVDVM estimation in the lower range. Although during pre-separation

and reattachment stages trends are very well captured, the decline in L associated

with vortex formation starts earlier for SVDVM. This could mean that the actual

flow regime for which the model accurately predicts unsteady flow features, such

as leading-edge flow separation, is below Re = 3 ⋅ 104. However, further research

is required before a definitive statement could be made. It would be interesting
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Figure 5.13: Reynolds number effect on L for a NACA 0012 aerofoil pitching harmonically
about its quarter chord. Results are from SVDVM ( ) and CFD data (∇ , △).

to examine the behaviour for even lower Reynolds numbers, between O(102) and

O(103), to cover the spectrum seen in biological and bio-inspired flight research,

where the use of discrete-vortex methods is gaining popularity.

5.4 Flow separation due to flap motion

The acronym MDVM introduced in Chapter 3 refers to a morphing discrete-vortex

model. Although vorticity was shed only from the trailing edge in that chapter,

modelling of leading-edge vorticity shedding as discussed in the present chapter

is also valid for deforming camber lines. The acronym will then be kept for the

final version of the low-order model to simulate vortex flows around morphing

foils developed in this dissertation.

Originally studied in §3.4.5, the large-flexion ratio large-amplitude oscillating

trailing-edge flap, cf

c = 0.5 and δmax = 45○, triggered the occurrence of leading-edge

flow separation, which was visualised through CFD vorticity contours (see Fig. 3.18).

Because in that chapter no shedding of leading-edge vorticity was assumed in the

construction of the low-order model, no particles were released from that point.

The case is revised in this section using the updated version of MDVM, where

leading-edge vorticity shedding has been accounted for (see §5.2.2). The spatial

distribution of vortex particles in the flow field now showcases how flow separates at
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Figure 5.14: Leading-edge flow separation with harmonic flap oscillations (see §3.4.5):
(a) vorticity contours from CFD and (b) vortex particles from the modified version of
MDVM. Unsteady flow hallmarks: pressure-side leading-edge vortex (LEVP ), suction-side
leading-edge vortex (LEVS) and trailing-edge vortex (TEV).

the leading edge, alternating between the suction and pressure side of the aerofoil

(flow separates twice every cycle of flap motion). As a result, small vortex structures

form with opposite sense of rotation, visible in Fig. 5.14 and highlighted as LEVS

(suction-side LEV) and LEVP (pressure-side LEV).

5.5 Summary

The motivation of this chapter comes from the critical role that estimations of

vorticity shedding rate play on the modelling of vortex-dominated flows. Numerous

discrete-vortex models assume a constant post-stall evolution of the leading-edge

suction, inaccurately halting the production of vorticity. After leading-edge suction

falls below a critical value the vortex sheet breaks off from the leading edge,

making these models incapable of reproducing later vortex dynamics traits like

the reattachment process.

This chapter has aimed to address the weaknesses highlighted by proposing an

alternative strategy for vortex methods to estimate the rate at which leading-edge

vorticity is produced, in terms of the velocity at the outside edges of the shear layer.

The resultant expression for the rate of circulation fed through the shear layer is

proportional to the square of the leading-edge suction parameter, and inversely

proportional to the leading-edge radius. This allows, on the one hand to include the
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effect of thickness in the computation, and on the other hand to naturally capture

the evolution of leading-edge suction during the vortex formation process.

A new discrete-vortex model with this implementation has been derived, and

named SVDVM. Its performance has been tested for two different profiles, a NACA

0004 and a NACA 0012, undergoing a canonical pitch ramp manoeuvre. By including

the velocity at the edge of the shear layer in the calculation of vortex particle

strength, this model improves predictions of vortex sheet dynamics compared to

the other class of discrete-vortex models. The position/inclination of the separated

shear layer is accurately updated in time, capturing unsteady flow features such

as its reattachment. As an illustrative example of the capacity SVDVM has in

modelling LEV-dominated scenarios, comparison of normalised vorticity with CFD

simulations is exhibited: for the ramp-up segment in Fig. 5.15, for the ramp-hold

stage in Fig. 5.16, and for the ramp-return phase in Fig. 5.17.

Additionally, a criterion to determine the onset of flow separation has been

proposed through a system of inequalities to be enforced to the zero-th Fourier

coefficient and its derivatives. Its validity has been tested over a broad range of

kinematics, yielding reliable estimations of the time instant at which flow separates

at the leading edge for the cases studied.

The effect of Reynolds number on the accuracy of low-order predictions has been

analysed with data from the literature, and preliminary results suggest a better

performance at lower Reynolds numbers. However, this observation is based only

on the available data used for comparison, and further study should verify the exact

scope for which unsteady flow simulations are suitable. This could serve to remove

the empirical dependency of discrete-vortex models for these flow regimes.

Lastly, the applicability of the low-order model for variable-camber foils has

been demonstrated. This has been achieved by successfully recreating an oscillating

flap case from Chapter 3 where flow separation at the leading edge was provoked

by the flap motion. The validated extension of this model to deforming foils

sets the groundwork to characterise the alteration of LEV development through

trailing-edge flexion, the subject of the following chapter.
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Figure 5.15: Out-of-plane vorticity comparison between CFD (left) and SVDVM (right)
simulations for the NACA 0004 aerofoil during the ramp-up segment. Critical unsteady
flow features are highlighted: pressure-side leading-edge vortices (LEVP ), suction-side
leading-edge vortices (LEVS) and flow reattachment on the pressure side (RP ).
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t* = 4.0

t* = 4.5

t* = 5.0

t* = 5.5

t* = 6.0

Figure 5.16: Out-of-plane vorticity comparison between CFD (left) and SVDVM (right)
simulations for the NACA 0004 aerofoil during the ramp-hold segment.
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t* = 6.0

t* = 6.5

t* = 7.0

t* = 7.5

t* = 8.0

SV

MSV

RS1

Figure 5.17: Out-of-plane vorticity comparison between CFD (left) and SVDVM (right)
simulations for the NACA 0004 aerofoil during the ramp-down segment. Critical unsteady
flow features are highlighted: formation and merger of secondary vortices (MSV ) and flow
reattachment on the suction side (RS).
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Who controls the past controls the future.
Who controls the present controls the past.

— George Orwell

6
LEADING-EDGE VORTEX:

MODULATION

6.1 Introduction

C
ontrol of unsteady flows is instinctively achieved by natural flapping

flyers. They resort to very diverse techniques which confer them with great

manoeuvrability. Combining rapid motions with complex deformations they switch

between flight regimes of attached and separated flow while maintaining excellent

control authority. Pressure gradient modulation via wing shaping stands out as one

of the best suited techniques for flow separation control at Low-Reynolds numbers

(Gad-el-Hak, 2000). The idea of dynamic camber has stimulated multiple studies,

and whilst the general interest has been on the influence this strategy has on the

instantaneous aerodynamic loads produced, few have looked at the direct impact

on the flow field and the evolution of resultant vortex structures (Harbig et al.,

2013; C. Li et al., 2015; Y. Liu et al., 2015). Leading-edge vortex has widely been

accepted as the foremost determinant of high forces generated by flapping wings,

and it has been hypothesised that camber achieved through trailing-edge flexion

causes correlated alteration of the vorticity at the leading edge, and subsequently

the magnitude of aerodynamic coefficients (Zhao et al., 2011).
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Taking this fundamental relation forwards, the discrete-vortex model developed

in Chapter 3 to simulate shape-varying foils in unsteady flow scenarios, and the

criterion introduced in §5.3.3 to determined the onset of flow separation at the leading

edge, are combined in this chapter to explore the capacity of camber morphing in

altering vortex structures characteristics. A quantitative picture of the effect of

trailing-edge flap deflections on leading-edge vortex formation time and strength is

derived through modulation of the leading-edge suction parameter history.

This chapter serves multiple purposes. It assesses the performance of the

low-order morphing model under more complex kinematics than thus studied

so far, in the presence of leading-edge vorticity shedding, by combining pitch

motion and temporal deformations along the chord in §6.2. It illustrates the

potential of trailing-edge flexion in altering vortex features, like formation time

and strength, through modulation of the leading-edge suction parameter in §6.3,

and it provides fundamental insight into this correlation. The chapter closes

drawing conclusions in §6.4.

6.2 Combined pitching and trailing-edge flexion

In Chapter 3 emphasis was placed on the shape of the camber line during defor-

mations of an aerofoil, rather than its impact on the flow field. The kinematic

analysis assessed the validity of the model to perform large amplitude trailing-edge

deflections, without exploring the topic of flow separation. On the contrary, Chapter

5 has been solely concerned with the temporal evolution of the fluid around unsteady

aerofoils, without undergoing shape variations. This included flow separation at

the leading edge. For an in-depth study of that unsteady phenomenon, a rapid

pitching manoeuvre was chosen that ensured flow separation at the leading edge,

followed by the formation and growth of a strong vortex structure.

A dynamic manoeuvre involving unsteady separated flow during which a wing

rapidly pitches to very high angles of attack (α ≈ 50○) and deforms simultaneously is

observed at the end of a typical gliding-perching sequence on birds flight (Carruthers

et al., 2010). Combining the outcomes from both chapters - morphing and vortex
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modelling - more complex kinematics, like that one, can be defined to alter vortex

behaviour. With this aim, a pitching motion at the quarter chord of a NACA 0006

aerofoil is considered, as defined in Eq. (5.7), to which different combinations of

ramp-type flap deflection are superimposed. A slight modification has been made to

the values in Table 5.1 to have a smoother transition between phases of both motions,

using σ = 0.6 instead. Furthermore, because the main interest is to affect the initial

stages in the vortex development (formation and growth), neither shedding nor

reattachment are of concern here. Accordingly, the return part of the motion has

been omitted, and the duration of the hold part, t∗hold, is large enough for the vortex

to grow but not to shed, giving a total duration of the motion t∗ = 5. Flap kinematics

are prescribed with the same values as the pitch motion except for the reduced rate,

that is varied to generate seven different cases (including a baseline case with no

flap motion) by modifying the effective angle of attack history, Eq. (3.9): three of

them experience positive flap deflections (downwards) with Kδ = 0.2, Kδ = 0.4 and

Kδ = 0.6, and the other three equivalent negative deflections (upwards).

6.2.1 Aerodynamic loads and flow field

The first step is to validate the low-order model under these combined kinematics

against CFD simulations. Low-order predictions of unsteady loads are compared to

high-fidelity computations in Fig. 6.1 for a NACA 0006 aerofoil equipped with a

trailing-edge flap hinged at its mid chord. The baseline case (grey curve) exhibits a

good agreement for the whole time series. Although some deviations are evinced

when flap deflections are added to the gross motion, the reason seems to have

little connection with the accuracy of the model, and they are rather credited

to geometrical differences. The aerofoil-flap geometry for CFD simulations was

designed based on an experimental model from the literature (see §3.3). That

model presents a gap at the hinge location, visible in Fig. 3.4(d), which could

not be covered in CFD as it was done on the experimental setup. Flow in this

region is therefore prone to separation at the leading edge of the flap if the angle

of incidence is large for this element. Having clarified this, for cases undergoing



126 6.2. Combined pitching and trailing-edge flexion

(b)

(a)

Figure 6.1: Aerodynamic coefficients time history for pitch-flap combined kinematics:
(a) lift and (b) quarter-chord pitching moment from CFD ( ) and MDVM ( ).

positive deflections (green curves) the flap experiences a high angle of attack at

around t∗ = 2, which is now owe to a combination of pitch and flap deflection. As a

result, a Hinge Vortex (HV) forms at the leading edge of the flap and stays attached

until approximately t∗ = 4. Flow visualisation via spatial distribution of vorticity is

shown in the top row of Fig. 6.2 for the case with Kδ = 0.4, where the hinge vortex

on the suction side, HVS, is highlighted. Extra lift is expected during this period,

and it is attributed to said vortex being adhered to the aerofoil. In consistency with

the fact that MDVM does not model the hinge gap, and therefore not the hinge

vortex either, low-order estimations of the lift coefficient, presented in Fig. 6.1(a),

under-predict values obtained with CFD between t∗ = 2 and t∗ = 4. On the other

hand, for the cases subjected to negative flap deflections (red curves), the right

corner at the end of the fore element induces flow separation, that evolves over the

pressure side of the flap, generating this section a negative lift (downwards force).

The total lift coefficient for these cases is thus reduced between t∗ = 2 and t∗ = 4.

Vorticity fields are shown in the top row of Fig. 6.3 for the case with Kδ = 0.4,
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LEV

TEV

HV

Figure 6.4: Normalised circulation of LEV, HV and TEV for positive flap deflection
with Kδ = 0.4. Curves represent MDVM predictions and markers CFD computations.
Vorticity iso-contours defining each vortex shape are included to the right of the graph.

highlighting the separated flow region on the pressure side, HVP . A negative

vertical force applied behind the point at which moments are computed (the

quarter chord here) produces a clockwise pitching moment, increasing the positive

value of the coefficient for the period of time where separated flow is present,

as observed in Fig. 6.1(b).

Hinge vortex

To give the observation of this vortex a more quantitative form, its strength is

represented in Fig. 6.4 by means of the normalised total circulation extracted from

CFD simulations. The strength of LEV and TEV has also been quantified and

serves as a reference to ascertain the magnitude of the effect that a hinge vortex

can have on aerodynamic loading. Past t∗ = 2 the strength of the hinge vortex is

around half that of the LEV, which could explain the substantial contribution to

lift noticed in Fig. 6.1(a) for that case. Beyond this, the graph is useful to asses the

precision with which the low-order model estimates the strength of vortices.

Aside from the strength, MDVM fully captures important traits of vortex

dynamics such as: timing, size and position of vortices (excluding those formed at

the hinge gap); slope of feeding shear layers; or wake patterns, like the shedding
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HV

Figure 6.5: Shape comparison of LEV structure at t∗ = 4 for all flap deflection rates.
Vortex particles from MDVM are overlaid to vortex boundaries from CFD.

of two consecutive trailing-edge vortices. This is visible on the last snapshot in

Fig. 6.2, and was previously reported in bats flight (Johansson et al., 2008) and

computational studies with similar motions and deformations (Y. Liu et al., 2015).

Visualisation of vorticity contours provided in Figs. 6.2 and 6.3 showcases the good

agreement with CFD in modelling all these flow features.

The limitations imposed by the hinge gap to fully test the performance of

MDVM are further examined in Fig. 6.5. For a late time of the vortex growth

stage, t∗ = 4, the shape of the fully-developed LEV is compared between MDVM

and CFD simulations. The boundary of the vortex is defined in CFD as explained

in Appendix B.2. Leading-edge vortex particles (trailing-edge particles are omitted

here to present a clearer image) are overlaid to assess the correct size and position of

the LEV are captured, as well as the slope of the feeding shear layer at the leading

edge. The agreement in all these flow features is remarkable for the baseline case

(grey) and the negative flap deflection cases (red). For the positive flap deflection

cases (green) some dissimilarities arise. An emerging vortex structure is observed

at the hinge gap, this time growing upstream. By the selected time instant, t∗ = 4,

the HV studied before has already been shed into the wake (see Fig. 6.2), but a
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Figure 6.6: Leading-edge suction parameter time history for pitch-flap combined
kinematics. Results are from CFD ( ) and MDVM ( ).

new one has formed, apparently induced by the growing LEV itself. Because the

LEV rotates clockwise, the momentum imparted on the fluid moving through the

gap pulls it upstream (notice also the sharp corners at the trailing edge of the

main aerofoil). The stronger the LEV the larger the imparted momentum, and

subsequently the size of the newly growing HV, which in turn interacts with the

LEV pushing it further downstream. This can explain the difference observed with

MDVM, which is more accentuated for the fastest flap deflection case, corresponding

to the strongest LEV as it will be discussed in §6.3.2.

Comments made regarding the appearance of hinge vortices do not infer the

performance of MDVM deteriorates for positive flap deflections, they only aim to

remark that direct comparison with CFD is meaningless at late stages of the LEV

development. Overall, the low-order model presents a very good agreement in all

aspects analysed, and for all cases, up to at least the onset of vortex formation,

which it will be shown in §6.3.1 to happen between t∗ = 1 and t∗ = 2 for all cases.

Since the attention is primarily focused on the formation process, it is believed

HVs do not pose a hindrance in the following study.

6.2.2 Leading-edge suction

In §5.3.6, and in particular Fig. 5.13, the effect of Reynolds number on the leading-

edge suction parameter was discussed. Estimations made by MDVM seemed to



132 6.3. Alteration of LEV development

agree better with lower Reynolds numbers. The CFD simulations for the present

chapter have been performed at Re = 4 ⋅ 104. Thence, somewhat lower values of L

are expected with the low-order model, and this is exhibited in Fig. 6.6. Despite

the maximum values being slightly lower, the general trend is captured in all cases,

which will suffice to achieve the goal of next section: to demonstrate the potential

of camber morphing on altering vortex characteristics, including its formation time

and strength. This will be accomplished by modulating the leading-edge suction

parameter history through prescribed trailing-edge flexion.

6.3 Alteration of LEV development

Motion kinematics can be tailored to modify the timing of LEV occurrence

through modulation of the leading-edge suction parameter. By superimposing

heave motions on a pitching aerofoil Ramesh et al. (2018) and Suresh-Babu et al.

(2022) demonstrated, through CFD and LOM simulations respectively, the viability

of using the LESP concept to alter vortex formation. By the same token, morphing

can be applied to affect the behaviour of vortices. The very nature of the variable-

camber discrete-vortex model developed in Chapter 3 allows to input a broad

spectrum of shape-defining parameters, which includes the length of the bending

surface, the rate of deformation and the flexion amplitude. The study presented in

following sections is centred around the effect of the second parameter on vortex

formation time and strength.

6.3.1 Vortex formation time

Since the objective pursuit in this chapter is to alter vortex characteristics, the

formation of an LEV has to be ensured before any action is taken to affect its

behaviour. To design a baseline case which evinced a strong LEV, a rapid transient

manoeuvre was prescribed on the aerofoil, and six different camber profiles were

derived by actuating the trailing-edge flap as described in §6.2. In total, seven cases

are generated to analyse the production of leading-edge vorticity. All of them share

flow conditions, Re, radius of the profile at the leading edge, rLE, instantaneous
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(a)

(d)

(b)

(c)

CFD MDVM

Figure 6.7: LEV formation triggered with positive trailing-edge flexion. Flow separation
at the leading edge is marked with squares. A vertical line indicates the time instant at
which CFD vorticity contours and MDVM vortex particles are shown for each case.

angle of attack, α(t), flexion ratio, cf

c , flexion amplitude, δmax, and start of actuation.

In other words, the only difference between cases is therefore owed to the rate of

flap deflection, Kδ. However, this parameter modifies the instantaneous value of

flap deflection angle, δ(t), and by extension those of the effective angle of attack,

αeff(t), the camber ratio, ηmax(t)
c , and the effective chord length, ceff(t).

Qualitative predictions of flow patterns induced by dynamic cambering, as

noted by Zhao et al. (2010), suggest that positive camber in a wing is expected to

produce higher values of leading-edge vorticity, and hence larger net forces than the

uncambered counterpart, contrasting to the lower values expected for negatively

cambered wings compared to the zero-camber case. Inspired by these observations,

the effect of the different cambering profiles on the amount of vorticity produced

at the leading edge is quantified here through the leading-edge suction parameter

history, which for cases undergoing downwards flap deflections (positive camber) is

presented in Fig. 6.7. The time instant of leading-edge flow separation has been

calculated for each case based on the criterion introduced in Eq. (5.12), and marked

with a coloured square over the corresponding curve. For the time period shown,

the addition of positive camber is observed to increase the suction at the leading

edge, the more the faster the flap motion. This is reasonable bearing in mind
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(c)(b)(a)

(f)(e)(d)

Figure 6.8: Morphing parameters (vs. time and vs. L respectively): (a, d) flap deflection
angle, (b, e) effective angle of attack and (c, f) camber ratio. Squares mark the instant of
flow separation.

that the instantaneous camber ratio, ηmax(t)
c , will be higher for a larger value of

Kδ until the flap ceases its motion (see Fig. 6.8c). It is also noticeable that for

faster cases the flow separates earlier and after the aerofoil has accumulated a larger

amount of suction (squares shifted up-leftwards).

In terms of flow topology, it can be visualised from the vorticity contours

displayed to the right of Fig. 6.7 how positive cambering triggers the onset of LEV

formation. For the time instant selected, t∗ = 1.5, which corresponds to the timing

of flow separation at the leading edge for the case where it occurs the latest (baseline

case), an incipient LEV is appreciated for all positive flap deflection cases, in a

more advanced stage the higher the rate of deflection (from top to bottom). The

flow state is very well captured with MDVM, although the predicted size of the

vortex being slightly bigger than CFD. This is presumably due to the Reynolds

number effect, as commented in §6.2.2 and §5.3.6 in more detail.
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CFD MDVM

(b)

(c)

(d)

(a)

Figure 6.9: LEV formation delayed with negative trailing-edge flexion. Flow separation
at the leading edge is marked with squares. A vertical line indicates the time instant at
which CFD vorticity contours and MDVM vortex particles are shown for each case.

Contrary to the set of positive camber profiles, Fig. 6.9 showcases how a negative

camber delays the occurrence of the leading-edge vortex. The opposite effect is now

observed to what has been previously discussed: faster upwards motions of the flap

result in larger negative values of the instantaneous flap deflection angle, δ(t) (see

Fig. 6.8a), which accentuates the reduction in magnitude of L. Flow separation at

the leading edge is delayed in time, and undergone with lower amounts of suction

the faster the flap actuation (squares shifted down-rightwards). It is interesting

to look at the fastest case, where a drop in L is noticed at the beginning of the

motion. This is due to the instantaneous effective angle of attack, αeff(t), turning

negative because the flap rotates sufficiently faster than the aerofoil pitches (see

Fig. 6.8(b), where this specific case is represented by a dashed line).

Vorticity contours from CFD and vortex particles from MDVM, exhibited to the

right of Fig. 6.9, confirm the findings just discussed. At the time instant selected

for visualisation in this set of cases, t∗ = 2.25, the LEV is seen to be already in

an advanced stage for the baseline case, while it has barely formed for the fastest

deflection case (again, from top to bottom). These results match the opening

remarks in this section (Zhao et al., 2010).



136 6.3. Alteration of LEV development

(b)

ηmax = 0

(c)

ηmax > 0

(a)

ηmax < 0

Figure 6.10: Stagnation point movement due to camber variations. Streamlines from
CFD show the stage of LEV formation for: (a) negative camber, (b) no camber and (c)
positive camber. Red and green arrows indicate the direction of motion.

The mathematical concept of stagnation point can help better understand the

observed behaviour of L in Figs. 6.7 and 6.9. By definition, the local velocity of the

fluid is zero at the stagnation point. Since L is correlated with the velocity at the

leading edge, Eq. (5.4), its value becomes null when the stagnation point coincides

with the geometric leading edge. Because L is a measure of the suction in that point,

it will also be zero. When the stagnation point is moved away from the leading

edge the flow is forced to travel upstream and around the edge, giving rise to a

low-pressure region which generates suction force. The longer the distance to travel

the larger the magnitude of the force. Flap deflections modify the effective angle of

attack of the aerofoil, affecting the location of the stagnation point. Similar to a

pitch-up motion, positive deflections increase the effective angle of attack, resulting

in the stagnation point moving aftwards (over the pressure side if αeff > 0, and over

the suction side if αeff < 0). This movement is illustrated in Fig. 6.10(c) through

streamlines extracted from CFD simulations. A green arrow indicates the motion

with respect to the baseline case, where no flap deflections are superimposed. Having

moved the stagnation point away from the leading edge, the amount of suction will

be larger than for the baseline case, reason why the curves for positive camber cases
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in Fig. 6.7 exhibit larger values of L. Conversely, the stagnation point is moved

forwards with negative flap deflections, getting closer to the leading edge and thus

reducing the amount of suction. This is depicted in Fig. 6.10(a), where the direction

of motion is signalled this time with a red arrow. Accordingly, curves for negative

camber cases in Fig. 6.9 show lower values of L than the baseline case. Similar to

how Ramesh (2020) expressed the location of the stagnation point in terms of A0,

it would be possible to derive an equivalent expression for arbitrary flap motions,

as suggested in §7.2. This would allow a quantitative analysis to be carried out.

Flow control strategies based on the time-varying camber idea involve to

knowingly manipulating the production of leading-edge vorticity by tailoring the

shape of the camber line. It therefore seems logical to seek a mathematical relation

between A0 and parameters affecting the camber. Such an expression would

enable the separation of the effects of each contributing variable, and quantitatively

ascertain their capacity to affect the formation of LEVs. For the study of transient

camber variations (non-harmonic), instantaneous shape-defining parameters seem

better suited: effective angle of attack, αeff ; effective chord length, ceff ; camber

ratio, ηmax

c ; and deflected angle, δ. The expression sought can then be attained upon

integration of Eq. (3.22) as indicated in Eq. (3.25a). After some rearrangement

and recurring to variable transformations, most of the integrals involved are easily

computable for the specific case of cf

c = 0.5, and a final expression for A0 can

be derived in a semi-analytical form:

A0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0,w

+ sin(αeff)

−2Kh cos(αeff)

+Kα[
ceff

c − 2 cpvt

c cos ( δ2) ]

+Kδ [
1
2
ceff

c + 2 (1
2 −

1
π
)(4ηmax

c tan ( δ2) −
ceff

c
1

cos2( δ
2 )
)] .

(6.1)
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There is no analytical form for vortices-induced effects, A0,w, which are history-

dependant, and they have to be treated numerically. The above expression could be

further simplified to depend on only the instantaneous pitch angle, α(t), and flap

deflection angle, δ(t), upon substitution of αeff from Eqs. (3.9) and (3.10), ceff
from Eq. (3.8), and ηmax from Eq. (3.13). Coupling of parameters in some terms

makes it difficult a priori to assess the exact effect of each term on the leading-edge

suction. This is analysed in detailed in the following section.

6.3.2 Vortex strength

In Chapter 5 it was shown that the strength of vortex particles entering the flow

field at the separation point, in this case located at the leading edge, is directly

proportional to the leading-edge suction squared, Eq. (5.6). The dependency of this

parameter on shape-defining variables is given by Eq. (6.1) for the case of an aerofoil-

flap configuration where the length of the flap is half the total chord length of the

aerofoil. The effect of different parameters on the vorticity feeding rate, and thus

the strength of the LEV, can therefore be deduced by combining both equations.

The instantaneous strength and growth rate of LEVs are analysed in Fig. 6.11

for the seven cases. The normalised vortex circulation is presented against non-

dimensional time of vortex growth, t∗LEV , defined as units of time after flow separates

at the leading edge for that case. This variable has been introduced to allow direct

comparison between cases. By bringing all curves to the same origin of times, the

state of the vortex at any instant during the growth phase can be consistently

compared. A distinction has been made between the period of time when both,

aerofoil’s motion and vortex dynamics, contribute to the LEV growth (continuous

curves), and the period following the end of the motion (dashed curves), which

is indicated by a diamond for each case. To study the evolution of leading-edge

vorticity produced, and hence the vortex strength, it is useful to observe the value

of flap deflection at the time instant of flow separation, since it plays a crucial role

in the post-separation behaviour. These values are obtained for each case from the

coloured squares in Fig. 6.8(a). For positive flap deflection cases, the faster the
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Figure 6.11: Leading-edge vortex strength: normalised vortex circulation vs. non-
dimensional time of vortex growth, during aerofoil’s motion ( ) and after the motion
has ceased ( ). The end of the motion is marked for each case (◇). Inset figures
compare the different shapes of the LEV one unit of time after formation.

motion the higher is δ at separation. And for negative deflections, δ will increase

in negative value with the rate of deflection. The fastest upwards deflection case

(dashed curves in Fig. 6.8) is omitted for the following analyses due to its particular

beginning. Having a look now at the other camber-defining parameters involved

in Eq. (6.1): the camber ratio, ηmax

c , proportional to the deflection angle, δ, and

preserving its sign (see Eq. (3.13)), will have at separation a larger value for faster

positive deflections; as for the effective angle of attack, αeff , since the pitch angle

is the same for all cases, it will follow similar trends to δ.

Upon evaluation of Eq. (6.1) during the first stage, indicated in Fig. 6.11 with

continuous curves, the behaviour of each term with increasing values of δ can be

estimated as follows: 1st) it needs to be calculated numerically. 2nd) it increases

with δ. 3rd) it is null, since no plunge motion has been considered in this study. 4th)

the first term inside the parenthesis decreases with δ, meaning that larger values
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will increase less A0; the second term also decreases with δ, but having negative

sign means that larger values of δ will reduce less A0. Since the first term scales as

O(
√

cos δ) and the second term as O(cos δ), the later contribution has a greater

effect, and therefore the whole term increases with δ. 5th) the first term inside the

parenthesis decreases with δ; the second one increases; and the third one is made

up of a component which increases and a component which decreases. Since the

three terms scale, respectively, as O(
√

cos δ), O(sin δ tan δ) and O(
√

cos δ cos−2 δ),

the second term has a greater effect. The contribution of this term to A0 then

increases with δ. In addition, the constant multiplying outside the parenthesis,

Kδ, further accentuates the difference between cases. In short, all terms are either

independent of δ or increase with it. As remarked in the previous paragraph, the

value of δ at separation increases with the rate of deflection. Thus, the faster the

flap deflection the higher the initial δ and also the rate of change. This means that

A0 will grow faster, and so will the vortex strength (greater slope in the graph).

As for the second stage, indicated in Fig. 6.11 with dashed curves, the motion

has ceased already and all cases have reached the same maximum value of δ. The

only contribution to A0 that differs between cases is then due to vortices-induced

velocities, A0,w. Because this term is expected to be very small compared to the

second term in Eq. (6.1), all cases evolve with a very similar slope, meaning the

growth rate is nearly the same (parallel curves in the graph).

The shape of the LEV at one unit of non-dimensional time after formation

is compared between cases through the inset figures in Fig. 6.11, where vortex-

delimiting contours extracted from CFD are overlapped. Shown is only the aerofoil’s

fore element. It is observed that the vortex size at the selected time is between c
4 and

c
2 for all cases. In consistency with the foregoing analytical discussion on the vortex

strength, increasing the positive camber (downwards flap deflections) strengthens

the vortex, which therefore grows in size. The faster the deflection the bigger the

LEV. It is interesting to note however, that for negative cambers (upwards flap

deflections) the vortex extends for all three cases the same length along the suction

side of the aerofoil, but the stronger it is the closer to the surface it stays.
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Drawn from investigations carried out by Feszty et al. (2004) on rotary-wings, an

actuator at the trailing edge, like a flap, could only mitigate the effects of dynamic

stall, but not to delay the process. Later studies endorsed the claim observing that

actuation of a trailing-edge flap did not affect the timing of DSVs initiation on those

cases tested, although it did alter their strength (Gerontakos & Lee, 2006, 2008;

Samara & Johnson, 2020). The low-pressure signature of the vortex was reduced

with upwards flap deflections, which means the vortex weakened. With downwards

deflections the vortex exhibited larger in its transverse direction, indicative of

a stronger vortex. Flow conditions (higher Reynolds number), model geometry

(thicker aerofoil and shorter flap) and kinematics (different profile, lower rate of

motion and deflection) on these works differ from the ones in the current study.

This could be the reason why the vortex formation time was not affected in those

investigations, whereas it has been demonstrated in §6.3.1 that LEV formation can

indeed be affected. Still, findings about the qualitative behaviour of vortex strength

are in agreement with the results shown in Fig. 6.11: negative trailing-edge flexion

(upwards) reduces the strength of LEVs, and the opposite happens for positive

flexion (downwards). Recent research on deformable flapping plates at low Reynolds

numbers (C. Li et al., 2015), flow conditions that are closer to the ones analysed

here, supports the relations observed between variations in camber and their effect

on the strength of the vortex. Studies of camber-morphing wings show that at

low speeds, or at high pitch angles, increased camber is systematically beneficial

(Cheney et al., 2021). To establish a link with the results from Fig. 6.11, it would not

be inconsistent to think that a stronger LEV resulting from larger values of positive

camber could help provide the extra lift required in these demanding situations.

6.4 Summary

In this chapter morphing and vortex modelling have been combined with a threefold

objective: to assess the performance of the low-order morphing model in more

complex scenarios than those studied so far, where the shape of the camber line

varies in time and vorticity is produced at the leading edge; to illustrate the
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capacity of trailing-edge flexion in altering vortex features, like formation time

and strength, through modulation of the leading-edge suction parameter history;

to provide fundamental insight into this correlation. The expectation is to turn

the acquired knowledge from mathematical relations, between morphing-defining

parameters and evolution of flow variables, into potential strategies for flow control

to enhance biologically-inspired locomotion.

To achieve these goals, a rapid transient manoeuvre has been prescribed on a

NACA 0006 aerofoil hinged at the mid chord, to ensure the formation of LEVs. Six

different camber profiles have been generated from this baseline case by actuating

the trailing-edge flap with different parameters. This set of cases has enabled the

examination of the effect of camber modifications on the production of leading-edge

vorticity, and hence the vortex formation time and strength.

The occurrence of a hinge vortex has been noticed in CFD simulations due

to a gap in that region, which is not modelled in MDVM. This has led to some

differences in the aerodynamic coefficients at late stages of the vortex growth.

However, since the focus has been on the vortex formation, said hinge vortices

have not posed a hindrance in the analysis.

It has been shown that suitable alterations of camber parameters drive the

occurrence of LEV, triggering or delaying its formation. The amount of vorticity

accumulated into the vortex, this is its strength, can also be affected.

A semi-analytical expression has been derived for the specific case of cf

c = 0.5

which relates the leading-edge suction parameter to the camber-defining variables.

This has been done by integrating A0 from unsteady thin-aerofoil theory, defined in

terms of the downwash, where all the variables affecting the camber are included.

The resulting expression has allowed a fundamental discussion on the behaviour

of LEV strength.

Some progress has been made on the use of physics-based models, like MDVM,

to explore the unsteady flow control capability of dynamic cambering. The number

of vortex particles in the fluid was around 300 for the cases shown in this chapter,

and it took ≈ 3 seconds in a personal laptop to follow the evolution of the fluid
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from t∗ = 0 to t∗ = 5. Besides providing nearly-immediate results (making the

model useful as an engineering tool), it enables a fundamental understanding of the

relation between dynamic camber variations and unsteady flow response. These

results are encouraging for the design of control strategies for vortex flows based

on the camber morphing practice.

This dissertation is concluded in the next chapter, suggesting related research

questions that could be addressed in future investigations.
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The Road goes ever on and on
Out from the door where it began.
Now far ahead the Road has gone,
Let others follow it who can!

— J.R.R. Tolkien

7
CONCLUSIONS AND FUTURE WORK

W
hat is learnt is a handful of sand, whereas the unknown is the size

of the world, goes a Tamil proverb. With no more time ahead, this

dissertation came to an end. A brief summary of the whole research carried out is

given in §7.1, and some research avenues are recommended in §7.2 to be the focus

of future investigations, hoping to resume this work where it is left now.

7.1 Concluding remarks

The main goal of Chapter 3 has been the development of a physics-based low-order

model to simulate unsteady flow response to arbitrarily large variations of the

camber. For this purpose, an adapted potential-flow theory for unsteady aerofoils

has been combined with numerical methods using discrete-vortex elements. To

extend the range of applicability of UTAT, conceived for small disturbances, the

no-through-flow boundary condition has been enforced over a chord line that is

allowed to vary with flap deflections. This has enabled large-amplitude deflections to

be accurately modelled. The outcome: a low-computational cost physics-based tool,

capable of modelling unsteady flows past deforming foils in the order of seconds on

a personal laptop. This is a potential tool to explore the capability of trailing-edge

flexion in altering vortex characteristics.
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The aim in Chapter 4 has been to derive simple analytical forms of all Fourier

coefficients for the classic aerodynamic problem of a hinged flat plate oscillating

harmonically. To achieve this, an expression for the vortex sheet strength has

been adapted from Theodorsen’s to UTAT’s framework, to allow comparison with

the bound vortex sheet strength from UTAT. Previous treatment involved the

approximation of some logarithmic terms as a Fourier series, which has been done

for the specific case of a flap hinged at the mid-chord. The resultant analytical

expressions for the Fourier coefficients serve to validate numerical codes. They

can also be used to predict unsteady pressure distributions and stagnation point

location for this fundamental aerodynamic problem.

The motivation of Chapter 5 came from the need to address the inaccuracy of

current vortex models in predicting the post-separation evolution of flow features.

To solve this, an alternative way to estimate the rate at which leading-edge

vorticity is produced in vortex methods has been introduced. Expressed now

in terms of the velocity at the outer edge of the feeding shear layer, the strength

of vortex particles is proportional to the leading-edge suction parameter squared,

and inversely proportional to the radius at the leading edge. This allows us to

include the effect of thickness in the computation, and to properly capture the

evolution of leading-edge suction during vortex formation. As a result, modelling

the reattachment process of separated vortex sheets became possible, avoiding

the break off observed in previous models.

Finally, the intention in Chapter 6 has been to explore the capability of camber

variations in altering the production of leading-edge vorticity, and hence vortex

characteristics like the formation time and strength of LEVs. For this purpose, the

outcomes of previous chapters have been combined. This has enabled assessment of

the performance of the low-order model in complex scenarios which involve both,

temporal variations of the camber line and production of vorticity at the leading edge.

It has been demonstrated how the occurrence of an LEV can be triggered or delayed

in time through suitable variations of the camber line. The strength of the vortex,

or amount of vorticity accumulated into it, can also be affected. A semi-analytical
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expression which relates the leading-edge suction parameter with camber-defining

variables has provided fundamental understanding of the vortex formation process.

7.2 Suggested avenues of research

Below are recommended lines of research where some progress has already been

made, which are deemed more promising, or that form the logical continuation

of each chapter in this dissertation.

7.2.1 Extensions to the discrete-vortex model

Personally, the most interesting paths to take Chapter 3 forwards are:

Compliant trailing edge

Cutting-edge technologies in aerospace structures, materials and manufacturing have

now pushed the limits of design far beyond the traditional conception of rigid wings,

and even passive flexibility, offering diverse solutions to exploit the camber morphing

concept. Hinge-less architectures like the belt-rib (Campanile & Sachau, 2000), the

fish bone geometry (Woods & Friswell, 2012), or other compliant structures (Moulton

& Hunsaker, 2021), have increase the achievable level of compliance, allowing for

smooth and continuous large camber variations to be created (around 18% camber

ratio reported in Woods et al. (2015)). This has an added benefit over conventional

trailing-edge flaps, where the adverse pressure gradient due to the camber slope

discontinuity at the hinge point may trigger flow separation in this region. Thus, a

higher degree of control with the morphing low-order model is to be pursued.

Trying to implement the idea of compliance into MDVM using simple maths,

an elliptic flap was my first idea. However, the 90○ value of the camber slope at

the trailing edge could more easily prompt separation in this region than for the

hinged flap. Having discarded this approach, I considered a parabolic flap. There

is a well detailed formulation for this in Hunsaker et al. (2019). The parabolic

flap has been used in other research papers, and its effectiveness has been proven

to outperform that of the traditional flap, requiring a lower deflection to produce
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HG≡P0 P1

TE≡P2

𝛿
β

Figure 7.1: Bio-inspired compliant trailing edge: (top) Fish Bone Active Camber concept,
reproduced from Woods et al. (2014) with permission; (centre) Aerofoil Recambering
Compliant System geometry, reproduced from Moulton and Hunsaker (2021) with
permission; (bottom) quadratic Bézier curve approach. Drawn in blue is the control
polygon defining the curve, P0 − P1 − P2. The control parameter, β, is also indicated.

the same lift increment. However, if the goal is to extend the scope of the control

strategy applied, one would ideally handle a camber line with a higher degree of

morphing. A promising alternative, due to the degree of manipulation offered,

is the use of Bézier curves to define the flap’s camber line, as illustrated by the

schematic in Fig. 7.1. These polynomial curves are very user friendly, they allow

modelling of more complex shapes by adding control points and different weights

to each control point if desired (Farin, 2014). More interesting yet, the derivative

of a Bézier curve is given by another Bézier curve of degree n − 1. Bearing in

mind that adapting the current model for these curves to be used, would only

require information on the camber distribution and its derivative, the said property

should make the implementation much easier. As a first attempt, a quadratic curve

n = 2 could be pursued. This way, two of the three control points are directly

obtained in the desired frame of reference, since the coordinates of the hinge and

the trailing edge are already known. As for the third point, its position would be

determined by the tangents to both edges. If continuity of the camber slope at the

hinge point is sought, the first tangent is predetermined by the direction of the
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fore-element symmetry line. This provides an extra control parameter: the angle

formed between the line connecting the hinge and trailing edge, and the line linking

the last two control points, β (see Fig. 7.1 for a detailed definition of the curve).

For a value of β = 0 the rigid flap is retrieved, whereas for β = δ the parabolic flap

is obtained. This could be used to evaluate the implementation with available data

in the literature (Hunsaker et al., 2019). Having developed the required maths to

get to this point, an added difficulty was found in mapping points along the curve

with their corresponding point over the discretised chord line. Different points

are obtained along a Bézier curve in parametric form by increasing the value of

the parametrisation variable, t, as expressed in:

x(t) = ξhg((1 − t)2 + 2t(1 − t)) + cf sinβ
sin(δ+β) cosαδ2t(1 − t) + ceff t2 ,

y(t) = ηhg((1 − t)2 + 2t(1 − t)) + cf sinβ
sin(δ+β) sinαδ2t(1 − t) .

(7.1)

However, there is no fixed increment for this variable, t, that provides all the points

wanted. To get those points matching with the chord line discretisation, chordwise

coordinates need to be replaced in the expression of the Bézier curve, so that

a value for the variable t is obtained, which is then used to provide the normal

coordinate or camber. A plausible alternative might be the use of Bézier curves

in their non-parametric form (Sanchez-Reyes & Chacón, 2018). However, more

progress has to be made in this direction to assess its feasibility.

Chordwise flexibility

By coupling the discrete-vortex model with a structural model, aeroelasticity effects

would be taken into account. This would give MDVM the opportunity to be

exploited for the simulation of problems involving fluid-structure interactions. It

has been demonstrated qualitatively in §3.4 the great performance of MDVM

in capturing wake patterns. There exist several vortex identification methods

(Graftieaux et al., 2001; Huang & Green, 2015) that could be implemented to

easily locate the core of wake vortices in the model. This would open the doors to
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explore a multitude of current interest research topics in the field of flapping-based

propulsion, where engineering is seeing great progress with the development of

Autonomous Underwater Vehicles (AUV). Chordwise flexibility has a determinant

role in optimal thrust production, efficiency enhancement (Han et al., 2022) and

wake stabilisation among other effects, having been shown to inhibit the symmetry

breaking of propulsive wakes (Marais et al., 2012).

7.2.2 Generalisation of analytical expressions
Fourier coefficients

The analytical expressions presented in Chapter 4 have been derived only for

the aerodynamic problem of Theodorsen and the specific case of a flap whose

length is half the total chord. Extension to other flap lengths has not been done

due to a lack of time, combined with the mathematical difficulty encountered in

approximating logarithmic terms as Fourier series. It would be interesting to resume

those efforts, in order to obtain expressions of the Fourier coefficients which are

of general application, regardless of the flap length. Furthermore, other classical

aerodynamic problems involving non-harmonic motions of a flap could be studied

to derive equivalent expressions.

Unsteady pressure distribution and stagnation point

From the analytical forms of Fourier coefficients derived in that chapter, obtaining

an expression for the unsteady pressure distribution over the aerofoil, as well

as for the location of the stagnation point, should be straightforward following

guidelines by Ramesh (2020), who derived these expressions for Theodorsen’s

problem without flap actuation.

7.2.3 Variations of shear-layer thickness

The onset of leading-edge flow separation is a very active matter of research within

the field of unsteady aerodynamics. Multiple attempts are being made to find a

universally applicable criterion to determine the onset of separation. Following
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recent findings of other researchers about the effect of Reynolds number on the

post-separation evolution of the leading-edge suction parameter (Narsipur, 2022),

the assessment of the real scope in which the criterion proposed in Chapter 5 is

valid deserves further exploration. The following direction of research is suggested:

since the thickness of the feeding shear layer is determinant in calculating the

flux of vorticity, and its magnitude is expected to vary with the Reynolds number,

efforts could be addressed towards including this parameter in the computation

of leading-edge vorticity shedding, perhaps through the velocity at the inner edge

of the shear layer, which has been neglected in the current model.

7.2.4 Exploration of camber morphing capabilities

With the low-order model extensively validated, and some of its capabilities already

demonstrated, there are many interesting challenges for which MDVM could be

applied. A few of them are summarised next.

Flow reattachment modulation

Similarly to how the leading-edge suction parameter has been used to modulate

vortex formation time and strength in Chapter 6, another interesting unsteady flow

feature to look at is the reattachment phase of the separated shear layer.

Closed-loop control design

Closed-loop control strategies with discrete-vortex models as plant have been

designed for different objectives. For example, Sedky et al. (2020) investigated

the impact of the closed-loop control on gust mitigation, seeking to regulate lift

during a gust encounter with pitching kinematics as the input. Stimulated by that

research, the morphing discrete-vortex model developed in this work could be used

to design a closed-loop control with camber variation as the input and the formation

time or desired strength of the LEV as the objective.
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Figure 7.2: Alteration of LEV formation time with various combinations of flexion ratio
and flexion rate. Distribution of vortex particles is shown for all cases at the same time
instant during vortex growth. A dashed line traces the order in which the LEV forms.

Flexion ratio effect

Finally, the effect of flexion ratio, cf

c , could be further explored as a continuation of

the work presented in Chapter 6, where results shown were for cf

c = 0.5. As a proof of

concept, preliminary results of the notable effect this parameter has on the formation

of LEVs are displayed in Fig. 7.2. For the same pitching motion, two different

flap deflection profiles are prescribed (downwards and its equivalent upwards), and

five different values of the flexion ratio are compared. The distribution of vortex

particles shows a remarkable difference in LEV size, and hence in vortex strength,

attainable with variations of the length deflected.
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Time is a sort of river of passing events, and strong
is its current; no sooner is a thing brought to sight
than it is swept by and another takes its place, and
this too will be swept away.

— Marcus Aurelius

A
Low-order model post-processing

A.1 Scaling vorticity plots

P
lots of vorticity from low-order simulations can be post-processed to aid

identifying regions in the flow field with higher concentrations of vorticity,

like vortices. The strength of discrete elements is normalised with the circulation

value of the strongest particle in the flow field for that specific simulation, excluding

the starting vortex (because of its theoretically infinite value). The strongest particle

will then have assigned a non-dimensional vorticity value of 1 or −1 (depending on

its sense of rotation). Consequently, the particles in the flow field have normalised

vorticity in the bounds [−1,1]. With these bounds established, the radii of vortex

particles is defined with the square of the vorticity, in order to make the distinction

easier between very strong and very weak particles, since a parabolic distribution

accentuates these differences. To visualise this, the vorticity plot from a simulation

of a foil undergoing harmonic trailing-edge flexion is shown in Fig. A.1. This case

has been chosen because the generated wake pattern of alternate vortices illustrates

nicely how those point vortices located close to the core of a vortex are much

bigger than those in between vortex pairs. Lines in the background represent limits

of each vortex according to CFD results.
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Figure A.1: Identification of vortices in the LOM through the biggest particles in the
flow field, which represent the highest concentrations of vorticity. Q contours used to
delimit vortices in CFD (red and blue lines) are overlaid for comparison.

It is important to emphasise that the process of vorticity scaling presented

in this appendix has only visual purposes, and that the radii used to compute

mutual interactions between particles through Eq. (3.27) is not modified. Also,

note that visualisation from different simulations cannot be directly compared

due to the per-solution normalisation (it can vary dramatically depending on the

unsteadiness of each particular case).



The past remains hidden in clouds of memory.

— Matsuo Bashō

B
CFD model post-processing

R
eference data is necessary to validate the performance of mathematical

models, and the accuracy on estimating diverse flow quantities can

be assessed with this data. This appendix describes post-processing techniques

developed to extract variables of interest from CFD simulations, used to characterise

vortex dynamics in Chapter 5. These are: the edge velocity of a shear layer in §B.1,

the vortex circulation in §B.2 and the slope of a separated shear layer in §B.3.

B.1 Extracting the edge velocity of a shear layer

In §5.3.3 the edge velocity of the shear layer at the leading edge, uLE, was needed

to compute the leading-edge suction parameter, L. A monitor line over which

to extract the velocity profile was drawn in the chordwise direction, extending

upstream far enough from the surface to cover the entire boundary layer. The

thickness of the boundary layer is given by the distance from the wall to a point

where the flow velocity has essentially the free stream velocity value. Its maximum

value can be closely approximated by δ
c ≈

5√
Re

, which for the current setup resulted

in 5% of the total chord length. Over this reference line 100 equally spaced

probes were positioned to compute the velocity (results obtained with 100 and 500

probes did not show significant differences). The tangential velocity, normal to
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this monitor line, was composed from the data recorded, and ultimately used to

derive L. Alternatively, other researchers calculated this parameter by integration

of pressure distribution (Narsipur et al., 2020).

B.2 Extracting the circulation of a vortex

In §5.3.4 the strength of the leading-edge vortex was examined through its total

circulation, ΓLEV . The complex nature of vortices makes it difficult to give an

unambiguous definition of what a vortex is (Haller, 2005; Jeong & Hussain, 1995).

In the absence of universal consensus within the fluid mechanics community, several

identification methods are available in the literature and exhaustively reviewed by

Epps (2017). One of the most commonly adopted techniques to delimit vortices

is the Q-criterion. Vortices are defined through positive levels of Q contours,

with larger values for stronger vortices. Menon and Mittal (2021) demonstrated

however that the effect on unsteady loading of strain-dominated regions surrounding

rotational vortex cores (negative levels of Q contours) can be as important, and

should not be carelessly ignored when studying vortex-dominated problems. In such

scenarios there are some important phenomena to contemplate: the boundary-layer

eruption caused by the advecting LEV above leads to fluid entrainment into the

vortex; also the LEV interacts with the surrounding irrotational strain field. These

vorticity transport mechanisms make it challenging to disentangle the contribution

associated with swirl from that due to shear. Moreover, too low a threshold for

the Q-criterion visualisation contour might result in large fluid regions identified as

vortices without any physical significance. By comparison, neither the strain fluid

surrounding vortices is simulated in the vortex method, nor the boundary layer is

captured with the potential model it builds upon. In this sense, the strength of

the LEV as defined in this work comes from only the vorticity generated at the

separation point and transported through the shear layer, without alterations due to

the earlier phenomena. It could therefore be more precise to think of it as the rate

of circulation at the separation point, rather than the total strength of the vortex.
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Figure B.1: Vortex boundary defined by iso-contour of vorticity (black line), encom-
passing rotational fluid (red contours) and strain fluid (blue contours).

To provide a meaningful comparison between the LOM and CFD, out-of-plane

vorticity was filtered for the latter to only clockwise values (negative values); the

bound vorticity, or layer over the upper surface, was masked; and an iso-contour

of vorticity ωzc
U∞
= −7 was taken as the boundary within which the circulation of

the LEV, ΓLEV , was computed. This contour, shown as a black line in Fig. B.1,

contains vortical fluid (positive Q values) and entrained strain fluid (negative Q

values) that progressively mix. This merge of rotational fluid and regions with

zero vorticity is also seen in vortex rings (de Guyon & Mulleners, 2021), which are

produced by many sea creatures, like squid or jellyfish, to propel themselves.

B.3 Extracting the slope of a shear layer

In §5.3.5 the slope of the separated shear layer at the leading edge, λsl, was

introduced. Because the shear layer curves close to the leading edge, evaluation

of this angle is inevitably influenced by the size of the fluid region considered.

Hence, a direct comparison between modelling approaches requires the length of

this area to be similar for both. In the low-order model the slope of the vortex

sheet was estimated using the last two vortex particles released, with the distance

between their cores observed to be within the range 0.01-0.02 chord lengths for all

time steps. This is a physically reasonable value bearing in mind that ∆t∗ = 0.015
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Figure B.2: Shear layer slope from CFD using linear regression. Black lines represent
vorticity iso-contours, where yellow dots indicate the farthest point of the contour from
the leading edge. The green line is fitted using these points to provide the slope.

in the simulations (see §3.2.2), and particles move with the free stream velocity,

U = 1. The equivalent length of shear layer taken into account for CFD calculations

should then be somewhere around 1% to 2% of the aerofoil’s chord length. As

a reference, the thickness of the NACA 0004 at one third of the chord is 4% of

the chord length. Therefore, from one quarter to the half of this length makes

a good approximation. Out-of-plane vorticity iso-contours spanning up to this

length within the shear layer were traced. Linear regression was then applied

over the furthest point of each contour from the leading edge, as exemplified in

Fig. B.2, to calculate the shear layer angle.



The dry river-bed finds no thanks for its past.

— Rabindranath Tagore
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