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Abstract 

Fine-grained marine sediments containing free gas bubbles can be frequently encountered in the 

seabed worldwide, which can cause large-scale submarine landslides and offshore foundation 

failures. This soil has a unique composite structure with gas bubbles fitting within the saturated soil 

matrix. Therefore, its mechanical behaviour cannot be described using conventional unsaturated soil 

mechanics. The gas cavities have a detrimental effect on the soil stiffness and strength when they 

are filled with undissolved gas because gas has low bulk modulus and shear stiffness. The cavities can 

be filled with gas and pore water due to ‘bubble flooding’. Bubble flooding has a beneficial effect on 

the soil stiffness and undrained shear strength because it makes the saturated soil matrix partially 

drained under a globally undrained condition. The critical state constitutive modelling approach for 

fine-grained soils containing gas bubbles (FGS) is presented, which accounts for the composite 

structure of the soil and bubble flooding. 

  

The new lower and upper bounds for the undrained shear strength of FGS are derived firstly by 

considering the effect of total stress path and plastic hardening of the saturated soil matrix. For the 

upper bound, it is assumed that there is only bubble flooding, and the shear strength of an 

unsaturated soil sample is the same as that of the saturated soil matrix. Bubble flooding makes the 

saturated soil matrix partially drained and increases the undrained shear strength. The amount of 

bubble flooding is calculated using the Modified Cam-Clay model and Boyle’s law for ideal gas. The 

lower bound is derived based on the assumption that the entire soil fails without bubble flooding and 

the gas cavity size evolves due to plastic hardening of the saturated soil matrix. Compared to 

Wheeler’s upper and lower bounds which do not consider plastic hardening of the saturated soil 

matrix, the new theoretical results give a better prediction of the undrained shear strength of FGS, 

especially for the upper bound. Implications for constitutive modelling of FGS is discussed based on 

the new research outcomes. 

 

A constitutive model for normally consolidated FGS is then proposed based on the new bounds. The 

cavities are assumed to have a detrimental effect on the plastic hardening of the saturated soil matrix 

because they damage the soil structure. The variable found in the new upper and lower bounds is 

introduced to capture this detrimental effect of gas bubbles. Some of the bubbles can be flooded by 

pore water from the saturated soil matrix, increasing the soil stiffness and strength. The new model 
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uses stress quantities which can be readily measured, and only one parameter is introduced (as 

compared to the MCC model) to describe the effect of gas bubbles on the mechanical behaviour of 

FGS, making it easy to calibrate and use. The soil response in triaxial compression and isotropic 

compression is considered in the model. However, there are limitations for the conventional 

elastoplastic constitutive model to describe the mechanical behaviour of overconsolidated FGS. A 

constitutive model for overconsolidated FGS is derived based on the structure of that of the normally 

consolidated FGS. The bounding surface and the dilatancy relation are considered to describe the 

response of the overconsolidated FGS matrix. The model has been validated by the results of a series 

of tests. Finally, the comparisons of predictions from three models with test data are shown to 

indicate a progressive relationship among the models proposed in the thesis. 
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Chapter 1 Introduction 

 

Fine-grained soils containing large gas bubbles can be widely seen in the seabed throughout the 

world (Esrig and Kirby 1977; Jommi et al., 2019; Richardson et al., 2001; Sultan and Garziglia, 2014; 

Whelan et al., 1976; Whelan and Lester, 1980; Wu and Jeng, 2019). For instance, the gas-charged 

seabed has been found in the Bristol Channel, North Sea, Gulf of Mexico, Gulf of Guinea, offshore 

western Africa, and Eastern China Sea (Fig. 1.1). The gas is typically methane produced biogenically 

or thermochemically (Barden and Sides, 1970; Fleischeret al.,2001; Sills et al., 1991; Sills and Wheeler, 

1992; Sills and Thomas, 2002; Sultan et al., 2012; Tjelta et al., 2007; Wheeler et al., 1990). Free gas 

can dramatically influence the mechanical behaviour of soils and is considered a major hazard for 

offshore ground engineering (Amaratunga and Grozic, 2009; Dittrich et al., 2010;  Houlsby and Byrne, 

2005; Kvenvolden, 1988; Milich, 1999; Nisbet and Piper, 1998; Rebata-Landa and Santamarina, 2012; 

Riboulot et al., 2013; Rowe and Mabrouk, 2012; Sills and Gonzalez, 2001; Sultan et al., 2012). Some 

failures of offshore foundations and large-scale submarine landslides have occurred due to 

detrimental effect of gas bubbles on soil stiffness and shear strength (Locat and Lee, 2002; Riboulot 

et al., 2013). Gas venting (mainly methane) was encountered during a deep excavation in 

southwestern Ontario, Canada and it shows that the gas exsolved from gassy soil can have effect 

during excavation (Mabrouk and Rowe, 2011). Meanwhile, the presence of gas bubbles can influence 

the consolidation behaviour due to its compressibility (Puzrin et al., 2011). Methane in dredging 

sludge may lead to expansion of sludge layers, partly or even completely counterbalancing 

consolidation (van Kessel and van Kesteren, 2002). A typical example includes the world’s largest 

submarine slides (i.e., Storegga Slide), which was partly triggered by the presence of gas within the 

marine sediments (Sultan et al., 2004). To mitigate the geotechnical risks associated with gassy soils, 

it is vital to have a proper understanding of the mechanical behaviour of this soil. 
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Fig. 1.1 Worldwide distribution of gassy sediments in the sea. Numbers correspond to references 

indexed in Fleischer et al. (2001)  

The structure of soils containing gas bubbles can vary considerably, depending on the relative sizes 

of the bubbles and soil particles. Terzaghi (1943) was careful to distinguish between small and large 

bubbles, which he referred to as “gas bubbles” and “gas voids”, respectively. If the gas bubbles are 

smaller than the particle size, the soil structure is likely to be as illustrated in Fig. 1.3 (Anderson and 

Hampton, 1980; Wheeler, 1986; Boudreau et al., 2005). The bubbles fit within the normal void spaces 

without distortion of the soil structure. The radius of curvature of each gas-water interface, which 

controls the difference between gas pressure and water pressure, is equal to the radius of the bubble. 

If the gas bubbles are much larger than the normal particle size, the soil skeleton is pushed back by 

the gas, leaving a large gas-filled void (Fig. 1.4). It should be noticed that though the gas bubble is 

larger in this case, the volume of gas is still small due to its low solubility. The gas-water interfaces 

are formed by a large number of small menisci, which bridge the gaps between the particles. When 

the gas bubbles fit inside the saturated soil matrix, rather than the pore water, the gas phase is 

discontinuous, and the water phase is continuous (Fig. 1.4). The conventional unsaturated soil 

mechanics is not suitable for describing the response of gassy soils because it has been developed 

for soils with the continuous gas phase and discontinuous water phase, like soils on the embankment 

slopes (in Fig. 1.5). 
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Fig. 1.2 Submarine landslides in gassy fine-grained soils and the impact on offshore infrastructure 

 

Fine-grained gassy soils are essentially composite materials with three phases: the soil skeleton, pore 

water and gas bubbles (Wheeler, 1986). The interaction between gas bubbles and saturated soil 

matrix governs the stress-strain relationship of the soil. Generally, the gas bubbles increase the 

compressibility of gassy soils due to their low bulk modulus (Thomas, 1987; Wheeler, 1986; Hong et 

al., 2017; Wroth and Houlsby, 1985). Nevertheless, they can either increase or decrease the 

undrained strength of gassy clay which is associated with the unique internal structure of the soil. 

The gas bubbles are much larger than the soil particles and fit within the saturated soil matrix as 

shown in Fig. 1.4. The gas bubbles occupy the entire cavities when there is no bubble flooding 

(Wheeler, 1986). In this case, these bubbles are like the cavities in solids (e.g., concrete or steel), 

which have a damaging effect on the soil strength. In some cases, however, the pore water can drain 

into the cavities when the difference between the pore water pressure and pore gas pressure reaches 

Pipeline 
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a critical value, which is called ‘bubble flooding’ (Wheeler, 1986; Wheeler, 1988a, 1988b; Sills et al., 

1991). Bubble flooding makes the saturated soil matrix partially drained in a globally undrained test. 

In an undrained test for FGS, there is no water flow in or out of the sample at the boundary, but the 

sample volume can change due to ‘bubble flooding’ and gas volume change with variation in total 

mean stress. 

 

Fig. 1.3 Gas bubbles much smaller than soil particles (gassy sand) 

 

Fig. 1.4 Gas bubbles much larger than soil particles (gassy soils in the seabed) 

Water
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Fig. 1.5 Unsaturated soil onshore (discontinuous water phase and continuous gas phase) 

There have been extensive experimental and theoretical studies on the behaviour of gassy soils (Sills 

et al., 1991; Sultan et al., 2012; Wheeler et al., 1990; Gao et al., 2021). Wheeler (1986) demonstrated 

that gassy soil has a unique composite structure with saturated soil matrix and gas cavities which can 

be filled with gas or water and gas. Based on this, Wheeler (1986) has derived the upper and lower 

bounds for the undrained shear strength of gassy soils. This research has laid the foundation for 

research on the constitutive modelling of gassy soils (Gao et al., 2020; Gao et al., 2021; Grozic et al., 

2005; Hong et al., 2020; Pietruszczak and Pande, 1996). Progress has been made in modelling the 

constitutive relationship of gassy soils based on these early studies. Grozic et al. (2005) have derived 

a constitutive model for gassy soil by considering the gas bubbles as the part of the pore water, which 

has limitations on representing the actual internal structure of gassy soil. Based on extensive 

laboratory studies, Hong et al. (2020) proposed a constitutive model for gassy soils by considering 

the effect of free gas on the dilatancy and yield surface shape. Gao et al. (2020) have developed a 

composite approach for constitutive modelling of gassy soils. These recent models can describe the 

detrimental and beneficial effects of gas bubbles on the stiffness and strength of gassy soils. But the 

model parameters are not easy to determine. 

Meanwhile, naturally deposited soils in the seabed or lakebed can become overconsolidated due to 

water pressure variation, sediment movement, submarine landslides and cyclic loading, which makes 

the current mean effective stress smaller than the past maximum (Gao et al., 2017). Research on the 

mechanical behaviour of overconsolidated gassy soils is also carried out. The overconsolidation can 

have effect on the dilatancy behaviour of soils, which can be found in both drained tests and 
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undrained tests. The dilatancy behaviour of overconsolidated soil has a significant influence on the 

interaction between the saturated soil matrix and gas bubbles, which has been reported in some 

undrained triaxial test results on lightly overconsolidated gassy soils by Sham (1989). In this case, the 

undrained shear strength can also be affected. The constitutive model for describing the stress-strain 

relationship of both normally consolidated and overconsolidated gassy soil is worth researching. 

 

Six chapters will be included in this study, and they are organised as below: 

Chapter 1 presents a brief introduction to fine-grained soils containing gas bubbles. 

Chapter 2 gives a review of the existing research on FGS, with a focus on the theoretical study. 

Chapter 3 presents the new upper and lower bounds of the undrained shear strength of FGS. For the 

upper bound, it is assumed that there is only bubble flooding, but complete bubble flooding is not 

possible based on fundamental physics. The amount of bubble flooding depends on the stress path. 

For the lower bound, bubble compression is considered which makes the volume fraction of gas 

bubbles smaller during loading. A new state variable that is suitable for modelling the undrained 

shear strength of FGS is identified. The new upper and lower bounds are validated using experimental 

test data in the literature.  

Chapter 4 presents a new constitutive model of the normally consolidated FGS. The new state 

variable found in Chapter 3 is used to capture the effect of gas bubbles on FGS behaviour. The model 

is based on the MCC. Only one extra parameter is needed to model the effect of free gas on soil 

behaviour. The model is validated by tests in the literature. Comparison is made by the new bounds 

and the prediction of model in Chapter 4 with test data, it is evident that the model prediction of 

Chapter 4 is within the two bounds. 

Chapter 5 presents a new constitutive model of the overconsolidated FGS. The model is derived 

based on the framework of the model in Chapter 4. A new dilatancy relation and a new plastic 

modulus (both of which are related to the overconsolidation ratio) are introduced. The model is 

validated using the test results on three FGS samples reported in the literature. Comparison is made 

by the new bounds and the predictions of models in Chapter 4 and Chapter 5 with test data. The new 

upper and lower bounds can simulate the undrained shear strength better in most cases and the 

model in Chapter 5 can give a closer prediction with test data. Meanwhile, the overconsolidated 

model gives better prediction for the stress-strain relationship, effective stress path and undrained 

shear strength. The comparison shows good predictions of models with test data. 
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Chapter 7 includes the conclusion and recommendations for further research.
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Chapter 2 Literature review 

 
FGS is a unique unsaturated soil with a composite structure. Fine-grained soil can be either clay or 

silt. Its mechanical behaviour (compressibility, elastic stiffness, and shear strength) is governed by 

the soil-gas interaction. Early studies on FGS have used clay (s), and a recent study on gassy silt has 

shown that it shows similar response to that of FGS (Hong et al.). In this chapter, a review of past 

research on this soil is presented. This includes the geotechnical problems associated with this soil, 

the internal structure of the soil, laboratory tests (equipment and results), and theoretical studies 

(compressibility, undrained shear strength and constitutive modelling). The main knowledge gaps in 

the constitutive modelling of this soil are identified.  

 

2.1 Geotechnical problems associated with FGS 

 

FGS are considered a major geohazard for offshore ground engineering and oil/gas exploration (Atigh 

and Byrne, 2004; Locat and Lee, 2002; Sultan et al., 2012; Wheeler, 1986). The presence of gas 

bubbles could obviously influence the volume change behaviour of the soils due to their high 

compressibility (Nageswaran, 1983). A number of researchers have reported unusually low values of 

shear strength, which may be partly responsible for submarine landslides on very low-angle slopes 

(Bea and Arnold, 1973; Coleman and Prior, 1978; Prior and Suhayda, 1979; Whelan et al., 1977). 

Besides, the excess water pressure could be caused directly by the process of gas generation, or it 

could be due to the gas bubbles reducing the soil permeability, which could hinder the dissipation of 

pore water set up during the deposition of the soil. Escape of gas from the seabed can cause erosion 

features, such as seabed pockmarks, which could raise the violent gas eruptions and affect the siting 

and design of the offshore structures (Hovland and Judd, 1988; King and MacLean, 1970). First, the 

stability and serviceability of infrastructures such as piles and suction caissons built in the sea can be 

affected by gas bubbles (Wheeler, 1988; Sills et al., 1991). Secondly, in some cases, gas bubbles can 

reduce the strength of submarines, which can trigger large-scale submarine landslides, and then can 

cause significant damage to subsea cables, pipelines and foundations (Locat and Lee, 2002; Grozic et 

al., 2005). Thus, a better understanding of the behaviour of fine-grained soils containing gas bubbles 

is considerable for the offshore construction industry, and proper methods for characterising the 

gassy soil response are desirable.  
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2.2 Internal structure of FGS 

 

Fig. 2.1 shows the unique internal structure of FGS. The gas bubbles fit inside the saturated clay 

matrix rather than the pore water. Therefore, the gas phase is discontinuous, and the water phase is 

continuous. The conventional unsaturated soil mechanics is not suitable for describing the response 

of FGS because it has been developed for soils with a continuous gas phase and discontinuous water 

phase, like soils on embankment slopes (Fig. 1.5). FGS are essentially composite materials with three 

phases: the soil skeleton, pore water and gas bubbles (Wheeler, 1986). The relationship between soil 

stress and strain is controlled by the interaction of gas bubbles with saturated soil matrix. 

 

The gas bubbles can have a significant influence on the mechanical response of soils, including 

compressibility, stiffness and undrained shear strength, which must be properly considered in a 

geotechnical design (Sills et al., 1991; Sultan et al., 2012; Vega-Posada et al., 2014). Puzrin et al. (2011) 

have focused on increasing the compressibility of the pore fluid, by introducing gas bubbles through 

in situ microbial gas production. This method can shift about 50% of the total settlement from 

primary consolidation settlement to immediate settlement (Puzrin et al., 2011). Due to their high 

compressibility, undissolved gas bubbles make fine-graded soils more compressible (Nageswaran, 

1983, Thomas, 1987). Depending on the stress state, pore water pressure, and pore gas pressure of 

soil, the gas bubbles can either increase or decrease the undrained shear strength of the soil. The 

upper and lower bounds have been proposed by Wheeler (1986) based on a series of laboratory tests 

on FGS. It is found that the pore gas pressure and the gas volume fraction are the key factors that 

control the bounds of the undrained shear strength (Wheeler, 1986; Sham, 1989). The compression 

and solution of gas is considered as the primary reason for the increased undrained shear strength 

of FGS (Grozic et al., 2005a; Grozic et al., 2005b). A series of tests on gassy silt with different pore 

water pressure have been carried out by Hong et al. (2017). It is found that gassy silt and clay show 

similar mechanical response. 
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(a) 

 

(b) 

Fig. 2.1 Gas cavities filled by (a) free gas and (b) free gas and pore water (Gao, et al, 2021)  
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2.3 Experimental study of FGS 

 

In this section, some of the experimental studies on FGS are introduced. The zeolite molecular sieve 

technique developed by Nageswaean (1983) is first introduced. The method can produce uniform gas 

bubble distribution in the soil. Then the double-cell triaxial apparatuses for the experimental study 

of FGS used by Bishop et al. (1961) and Wheeler (1986) are presented and some of the test results 

are shown. Some recent tests on gassy silt by Hong et al. (2020) are also introduced. In addition, the 

oedometer tests carried out by Thomas (1987) are discussed. 

 

2.3.1 Sample preparation for experimental study on soils containing gas bubbles 

 

Reconstituted gassy specimens have been used in the experiments due to the difficulties in getting 

intact gassy samples from the field because of gas expansion upon unloading (Lunne et al., 2001; 

Sham 1989; Sultan et al., 2012; Wheeler 1988b). Methane is most frequently encountered in FGS in 

the seabed and has been used by Wheeler (1987). Helium was used in the tests for safety reasons by 

Sham (1989).  

 

The bubbles of gas in the sample are produced by using the zeolite molecular sieve technique 

(Nageswaean, 1983; Wheeler,1986; Hong et al., 2017). Zeolites are a group of inert chemicals with 

an extreme affinity for polar molecules such as water. For zeolite crystal, if the water of hydration is 

removed by heating, other molecules of appropriate size can be incorporated into the zeolite crystal 

while maintaining its original structure. If a gas-impregnated dried zeolite is mixed with the soil slurry, 

the zeolite will absorb the water from the soil slurry instead of the gas, which is released to generate 

bubbles. Zeolite is available in numerous natural and manufactured varieties. The zeolite will be 

chosen by contrasting the molecular diameter of the selected gas. The zeolite powder is dried for 24 

hours at 105°C for the purpose of removing the moisture. The majority of the air is then removed 

from the crystal structure of the dried zeolite by putting it in an evacuated chamber for 24 hours at 

a pressure of -70 to -80 kPa. The zeolite is then exposed to nitrogen for more than 10 hours at a 

pressure of 100 kPa. After being mixed with soil slurry, the gas-filled zeolite absorbed the water from 

the slurry rather than the gas, which was released to create gas bubbles. It is essential that the 

different samples with different gas components, have the same volume of zeolite particles due to 
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the fact that the physical characteristics of the soil and zeolite are not the same (Nageswaran, 1983). 

A zeolite-soil slurry is made by mixing the gassy zeolite with the slurry of the chosen soil. The slurry 

will be placed into 38 mm diameter moulds for initial one-dimensional consolidation after being 

stirred as quickly as possible to avoid gas escape. 
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2.3.2 Triaxial test apparatus for FGS 

 

In most cases, the undrained condition is considered because this is more common for offshore 

geotechnical engineering. In addition, it is very time-consuming to carry out drained tests on clay. In 

undrained triaxial tests, the volume change is caused by the compression of the gas in the 

unsaturated soil. The volumetric strain of gassy soil cannot be measured simply by the water flow 

from the soil sample in triaxial tests. Research has been conducted to resolve this issue.  

 

Bishop and Donald (1961) have developed a double cell triaxial test system as shown in Fig. 2.2. 

Mercury was injected inside the sample cell. A stainless-steel ball floating in the mercury is used as 

the cathetometer sighting point to detect the vertical displacement of the mercury surface. The cell 

pressure was delivered to both sides of an interior jacket that contained mercury. Due to this 

configuration, the level of the mercury surface was unaffected by any variations in cell volume 

brought on by changes in cell pressure. In the following few decades, this approach for measuring 

the volume change of soil samples was extensively employed for experimental research on 

unsaturated soils. Some of the test results are shown in Fig. 2.3. The changes in pore air and pore 

water pressure under an increasing cell pressure are shown in Fig. 2.3 (a) for a sample of the Talybont 

boulder clay compacted at two water contents. Mercury cell has been used to prevent air diffusion 

through the rubber membrane and time has been given for equilibrium under each pressure. Values 

for cell pressure are plotted against water pressure. The initial air pressure in samples sealed soon 

after compaction appears generally not to be atmospheric, but the negative values are rather small 

(Fig. 2.3 (b)). Fig. 2.4 shows the result of (𝜎1 − 𝜎3) and deviator strain with a constant water content 

on partly saturated loose silt. 
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Fig. 2.2 Modification of triaxial cell to surround rubber membrane with mercury, diagrammatic 

section (Bishop, 1961). 
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Fig 2.3 (a) Changes of pore air and pore water pressure in compacted soil under undrained 

conditions using mercury cell; (b) Initial pore air and pore water pressures in sealed specimens 

(Bishop et al., 1961) 

 

 

Fig. 2.4 Constant water content test with controlled air pressure on partly saturated loose silt  

(Bishop et al., 1961) 
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Wheeler (1986) has carried out a series of triaxial tests on FGS. The double-cell triaxial equipment 

has been improved. The improvements are all related to measuring the volume change 

independently of the water flow from the soil sample. The cell is entirely filled with water, and the 

flow into the cell was measured with a burette rather than partially filling the cell with mercury and 

then measuring the displacement of the mercury surface as Bishop did. As a fluid interface is no 

longer necessary, this improvement can eliminate the need for two cell fluids. Additionally, the 

measurement accuracy is improved, as the mercury surface in Bishop and Donald's apparatus shows 

far less displacement than the meniscus in the burette. The modified apparatus is shown in Fig. 2.5. 

 

Some of the test results are shown in Figs. 2.6 to 2.8. Fig. 2.6 shows the deviator stress and pore 

water pressure plotted against the axial strain. Fig. 2.7a shows three curves with different degree of 

saturation relating the overall void ratio after consolidation to the consolidation pressure. Fig. 2.7b 

shows there is a unique relationship between the void ration of soil matrix to the consolidation 

pressure. The general shape of the stress-strain curves during the shearing stage is unaffected by the 

presence of gas bubbles based on the tests carried out by Wheeler (1986). This implies that the gas 

bubbles have no bearing on the overall failure. Gas bubbles, however, can have a significant impact 

on the undrained shear strength. Consolidation pressure and back pressure both have an influence 

on how gas bubbles affect the undrained shear strength (Fig 2.8). The test results are used to propose 

the upper and lower bounds in Wheeler’s study (Wheeler, 1986). 
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Fig. 2.5 Modified double cell triaxial apparatus (Wheeler, 1986)  
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Fig.2.6 Typical behaviour under shearing with consolidation pressure is 400  kPa, initial pore water 

pressure (uw0 ) = 0 and degree of saturation (Sr) = 0.95 (Wheeler, 1986)  
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(a) 

 
(b) 

Fig. 2.7 Test result of isotropic consolidation (Wheeler, 1986) 
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(a) 

 
(b) 

Fig. 2. 8 Test result of Undrained shear strength with initial degree of saturation (Wheeler, 1986) 

 

Some triaxial tests of gassy Malaysian Kaolin soil were carried out in Zhejiang University, including 

two groups on FGS containing the same amount of gas with different initial pore water pressure and 

one group on saturated clay (Hong et al., 2020). The tests are all under undrained conditions and the 

same pre-consolidation pressure (𝑝𝑐
′ =  200 kPa) was used in all the tests. For overconsolidated tests, 

the samples were first consolidated to 𝑝𝑐
′  and then unloaded to 𝑝𝑜𝑐

′ = 𝑝𝑐
′ /OCR, where OCR is the 

overconsolidation ratio. Only lightly overconsolidated clay samples have been used because they are 

more commonly seen in the seabed or lakebed. This study represents a mature method of 

experimental study for fine-grained FGS. Some of the test results of the shear strength have been 

shown in Figs. 2.9 to 2.11. With the higher degree of overconsolidation, the shear strength, which is 

half of the deviator stress, is getting lower based on the observation of the test data.  
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(a) 

 

(b) 

Fig. 2.9 Results of undrained triaxial compression tests on overconsolidated gassy Malaysian Kaolin 

with 𝒑𝒄
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟏𝟓𝟎 kPa, 𝑺𝒓𝟎 = 𝟎. 𝟗𝟒 and different OCR: (a) the 𝜺𝒂 − 𝒒 relationship; (b) 

the effective stress path 
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(a) 

 

(b) 

Fig. 2.10 Results of undrained triaxial compression tests on overconsolidated gassy Malaysian 

Kaolin with 𝒑𝒄
′ = 𝟐𝟎𝟎  kPa, 𝒖𝒘𝟎 = 𝟔𝟎𝟎  kPa, 𝑺𝒓𝟎 = 𝟎. 𝟗𝟔  and different OCR: (a) the 𝜺𝒂 − 𝒒 

relationship; (b) the effective stress path 
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(a) 

 

(b) 

Fig. 2.11 Results of triaxial compression tests on overconsolidated gassy Malaysian Kaolin with 

𝒑𝒄
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟑𝟎𝟎 kPa, 𝑺𝒓𝟎 = 𝟏. 𝟎 and different OCR: (a) the 𝜺𝒂 − 𝒒 relationship; (b) the 

effective stress path 



Chapter 2 

24 

 

2.3.3 Oedometer tests on FGS 

 

A specially designed oedometer cell was introduced to consolidate soil samples by Thomas (1987). 

The oedometer cell apparatus was initially developed by Nageswaran (1983), and numerous 

modifications have been made. However, the main structure of the apparatus remained the same, 

and a schematic description of the oedometer apparatus is presented in Fig. 2.12. The following 

measurements can be realised in this study (Thomas, 1987): 

(a) Measurement of total vertical stress on the soil sample. 

(b) Measurement of pore water pressure on the undrained face. 

(c) Capability to consolidate soil from the slurry. 

(d) Capability to separate the free gas from the pore fluid drains from the sample on 

consolidation. 

(e) Independent evaluation of the volumes of each of the three phases (solid, water and free gas) 

throughout the consolidation test. 

(f) Measurement of total horizontal stresses. 

  

To calibrate the oedometer, de-aired water was firstly soaked into the cell, top cap, and sintered 

bronze disc. A rise in the water pressure beneath the piston was employed to gradually pressurise 

the cell up to 500kPa. The objective of the calibration was to assess how the apparatus responded to 

an increase in cell pressure in terms of compliance. 

 

Two groups of consolidation tests have been carried out by Thomas (1987) in the University of Oxford. 

In the first series of tests, the total stress is applied in small, equal increments to allow for drainage 

and consolidation as the load is increased. In the second series of tests, the load is applied in three 

daily increments, with pore water pressure dissipation to atmospheric back pressure occurring after 

each increment. The results of the first series of tests demonstrate that there is no particular 

relationship between the vertical consolidation stress and the total void ratio for soils with different 

gas contents. The second series of tests illustrate that the only volume change that occurs in 

undrained conditions is caused by gas compression and dissolution. For the second series of tests, 

the results of the soil permeability evaluation involve first calculating the coefficient of consolidation 

and then the coefficient of volume change. It has been discovered that the relationship between soil 
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permeability and gas content was unaffected. Some of the test results are shown in Figs. 2.13 and 

2.14. The test SDTA6 in Fig. 2.13 is the sixth consolidated sample of soils with linear increase of total 

stress. The tests SDTB2 to 5 in Fig. 2.14 are four consolidated samples containing varying gas content 

with three-stage loading of total stress. Details of the text series can be found in Thomas (1987). It 

can be seen that there is a definite relationship between the gas content and the vertical stress for 

each test in Fig. 2.13. In Fig 2. 14, there are test results of different phase of void ratio with time and 

it shows the apparatus in this study can make independent evaluation of the volumes of each of the 

three phases throughout the consolidation test. 
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Fig. 2.12 Schematic description of oedometer apparatus (Thomas, 1987) 
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Fig. 2.13 Change in void ratio with time for SDTA6 (Thomas, 1987) 

 

 

Fig. 2.14 Total gas void ratio versus total vertical stress for test series SDT B2-B5 (Thomas, 1987) 
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2.4 Previous research on constitutive modelling of normally consolidated 

fine-grained soils containing gas bubbles 

  
Based on the experimental study on the soils containing gas bubbles, theoretical studies have been 

carried out by many researchers. Theoretical studies on FGS will be introduced in this section, with a 

primary focus on the undrained shear strength and constitutive modelling. The undrained condition 

is considered because this is more common for offshore geotechnical engineering.  

 

2.4.1 Upper and lower bounds of the undrained shear strength of FGS 

 

The upper and lower bounds of the undrained shear strength of FGS have been presented by Wheeler 

(1986). The upper bound relies on the assumption that all gas bubbles flood with pore water and that 

the cavity size of the bubbles stays constant throughout shearing. The assumption of constant cavity 

size is to eliminate the detrimental effect of gas cavities on soil strength. For the lower bound, it is 

assumed that bubble flooding does not occur, and the entire saturated soil matrix reaches failure. 

There is no water flow out of the soil boundary when the saturated soil sample is under undrained 

test. However, the volume can change due to bubble flooding in this case.  

 

The lower bound proposed by Wheeler is based on the theory by Green (1972), who has proposed a 

model which can be used to predict the yield behaviour of a rigid-perfectly plastic von Mises type 

matrix containing empty spherical cavities. The model is simply a function with two stress invariants, 

𝑝 and 𝑞 (with the assumption that any dependence on the third stress invariant could be ignored), 

and the volume fraction of cavities 𝑓. The function of the yield curve is 

𝜔𝑞2 + 𝜛𝑝2 = 𝜎𝑦
2                                                          (2.1) 

𝜔 and 𝜛 are functions of 𝑓 and 𝜔 ≥ 1, 𝜛 ≥ 0, 𝜎𝑦 is yield stress of matrix. 

 

Eq. (2.1) illustrates a spheroidal yield surface in principal stress space and the yield can occur under 

an isotropic stress state since it depends on the mean stress 𝑝. So, Eq. (2.1) is the same as von Mises' 

yield function when 𝜔 = 1, 𝜛 = 0. 

 

Assumptions have been made for the expressions for 𝜔 and 𝜛. Green (1972) made the assumption 
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that the gas cavities were arranged in a cubic close-packed formation and the matrix material was in 

a state of plastic flow. So, the expression of 𝜔 is 

𝜔 = [
3−2𝑓

1
4⁄

3(1−𝑓
1

3⁄ )
]

2

                                                                     (2.2) 

The expression of 𝜛 is derived based on the condition under hydrostatic pressure. The thick spherical 

shell is selected as the matrix material, and the matrix encloses a single cavity. In Wheeler's study, 

the yield function of von Mises to the matrix material is employed, and the volume occupied by the 

cavity is equal to the volume fraction of cavities. The expression of 𝜛 is derived as below: 

𝜛 = (
3

2 log𝑒 𝑓
)

2

                                                                          (2.3) 

Combining Eqs. (2.1), (2.2) and (2.3), the yield function derived by Green is  

[
3−2𝑓

1
4⁄

3(1−𝑓
1

3⁄ )
]

2

𝑞2 + (
3

2 log𝑒 𝑓
)

2

𝑝2 = 𝜎𝑦
2                                                 (2.4) 

In this equation, it is assumed that the pressure in cavities is 0. However, there will be gas pressure 

if the bubble is large in the soil. In this case, the stress difference (𝑝 − 𝑢𝑔) should be used instead of 

mean stress 𝑝. The modified expression of the yield function by Green is 

[
3−2𝑓

1
4⁄

3(1−𝑓
1

3⁄ )
]

2

𝑞2 + (
3

2 log𝑒 𝑓
)

2

(𝑝 − 𝑢𝑔)2 = 𝜎𝑦
2                                              (2.5) 

The mean stress 𝑝 can be expressed using the deviator stress 𝑞 and the lateral stress 𝜎3 in triaxial 

compression condition 

𝑝 = 𝜎3 + 𝑞/3                                                                       (2.6) 

When the deviator stress 𝑞 reaches the yield conditions, the modified yield function is 

[
3−2𝑓

1
4⁄

3(1−𝑓
1

3⁄ )
]

2

𝑞𝑦
2 + (

3

2 log𝑒 𝑓
)

2

(𝜎3 − 𝑢𝑔 + 𝑞𝑦/3)2 = 𝜎𝑦
2                               (2.7) 

As the values of 𝑓 and 𝑢𝑔 will remain constant in Weeler's assumption. Therefore Eq. (2.7) can be 

expressed as below 

[
3−2𝑓0

1
4⁄

3(1−𝑓0
1

3⁄ )
]

2

(
𝑞𝑓

𝜎𝑦
)

2

+ (
3

2 log𝑒 𝑓0
)

2

[
𝜎3−𝑢𝑔0

𝜎𝑦
+

1

3
(

𝑞𝑓

𝜎𝑦
)]

2

= 1                                 (2.8) 

The yield stress has been normalised by 𝜎𝑦 . When the term 
𝜎3−𝑢𝑔0

𝜎𝑦
  is increased, there is a more 

detrimental effect on the deviator stress at yield state as  
𝑞𝑓

𝜎𝑦
 decrease in Eq. (2.8). The yield function 

developed by Green can be used to predict the lower bound of the undrained shear stress of FGS as 

the value is a half of the deviator stress at the yield state. 
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Since the soil is considered as a rigid-perfectly-plastic material, the lower bound can underestimate 

the soil strength when there is considerable compression of gas bubbles during loading (Sultan et al., 

2012). Compression of gas bubbles reduces the volume fraction of free gas in the soil. Higher gas 

volume fraction causes more damage to the soil structure and leads to lower undrained shear 

strength. 

 

The pore water pressure increases dramatically under a normal consolidated undrained triaxial test. 

On the contrary, the gas pressure will change very slightly because the gas has high compressibility. 

in some circumstances, when the pressure difference between gas pressure and pore water pressure 

reaches a critical value, the saturated soil matrix can be partially drained by pore water draining into 

the gas cavities from the saturated soil matrix in a globally undrained shearing test. The matrix void 

ratio 𝑒𝑚 will become smaller and the strength of soil matrix will increase. Due to the difficulty in 

calculating the specific amount of flooded bubbles, it is exceedingly difficult to determine the 

beneficial effect of bubble flooding. Additionally, the process of flooding might be affected by 

the changes of bubble size, which are challenging to measure. Wheeler (1989) assumed that all the 

bubbles were flooded by water, and the cavities sizes remain unchanged during shearing. In this case, 

an upper bound of the undrained shear strength for bubble flooding can be defined. The maximum 

value of stiffness can therefore be calculated once a minimum void ratio at failure 𝑒𝑚𝑓 for the soil 

matrix is provided. 

 

The initial void ratio of the matrix 𝑒𝑚0  and the initial volume fraction of bubbles 𝑓0 can be utilised to 

calculate the void ratio of the soil matrix 𝑒𝑚𝑓 when complete bubble flooding occurs (Wheeler, 1986) 

𝑒𝑚𝑓 = 𝑒𝑚0 −
(1+𝑒𝑚0)𝑓0

1−𝑓0
                                                              (2.9) 

The change of matrix void ratio will change the strength of matrix. It can be calculated by using the 

critical state concept with the stresses and the void ratio at failure. Fig. 2.15 shows shows the critical 

state line in the 𝑒 − 𝑝 space with a slope of λ. Based on the critical state concept, the relationship 

between 𝑝′𝑓𝑓 and 𝑝′
𝑓

 can be expressed as 

𝑝′𝑓𝑓 = 𝑝′
𝑓

 𝑒𝑥𝑝(
𝑒𝑚0−𝑒𝑚𝑓

λ
)                                                       (2.10) 
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Fig. 2.15 Failure conditions for saturated soi matrix 

 

If the soil matrix void ratio is constant at 𝑒𝑚0, the mean effective stress of the soil matrix will be 𝑝′
𝑓

. 

When the void ratio of the soil matrix becomes a smaller value of 𝑒𝑚𝑓, the mean effective stress of 

the soil matrix at failure will be 𝑝′
𝑓𝑓

 (Fig. 2.15). The theory of critical state concept shows that the 

deviator stress at failure is related to the mean effective stress at failure for the saturated soil with 

𝑞 = 𝑀𝑝′. Thus, the yield stress of the soil matrix from an initial 𝜎𝑦0 to a final 𝜎𝑦𝑓 can be expressed 

as: 

 

𝜎𝑦𝑓

𝜎𝑦0
=

𝑝′𝑓𝑓

𝑝′
𝑓

                                                                        (2.11) 

𝜎𝑦𝑓 =  𝜎𝑦0 𝑒𝑥𝑝(
(1+𝑒𝑚0)𝑓0

λ(1−𝑓0)
)                                                      (2.12) 

 

The total volume of the soil matrix will decrease when the water flows into the cavities. Given that it 

is assumed that the size of cavities cannot change during bubble flooding, the volume fraction of 

cavities will thus increase. So the volume fraction of cavities after complete bubble flooding can be 

expressed 

𝑓𝑓 = 𝑓0/(1 − 𝑓0)                                                           (2.13) 

An upper bound of the undrained shear strength for FGS can be presented when complete bubble 

Critical state line 

𝑙𝑛𝑝′ 𝑝′ = 𝑝′𝑓  𝑝′ = 𝑝′𝑓𝑓 

𝑒𝑚𝑓 
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flooding occurs and no cavity contraction 

[
3−2𝑓𝑓

1
4⁄

3(1−𝑓𝑓
1

3⁄ )
]

2

(
𝑞𝑓

𝜎𝑦𝑓
)

2

+ (
3

2 log𝑒 𝑓𝑓
)

2

[
𝜎3−𝑢𝑤𝑓

𝜎𝑦𝑓
+

1

3
(

𝑞𝑓

𝜎𝑦𝑓
)]

2

= 1                       (2.14) 

Then 𝑓𝑓 can be replaced by Eq (2.13) and 𝑞𝑓 is twice of the undrained shear strength of saturated 

soils. Also, the pore water pressure at failure can be simply calculated by maximising 
𝑞𝑓

𝜎𝑦𝑓
 

𝑢𝑤𝑓 = 𝜎3 + 𝑞𝑓/3                                                                   (2.15) 

Combining Eqs. (2.9), (2.13), (2.14), and (2.15), the final upper bound can be expressed 

𝐶𝑢

(𝐶𝑢)𝑠𝑎𝑡
=

3(1−(𝑓0/(1−𝑓0))
1

3⁄ )

3−2(𝑓0/(1−𝑓0))
1

4⁄
exp [

(1+𝑒𝑚0)𝑓0

λ(1−𝑓0)
]                                               (2.16) 

In Eq. (2.16), 𝐶𝑢 and (𝐶𝑢)𝑠𝑎𝑡 are the undrained shear strength and the saturated undrained shear 

strength in wheeler, 1986 and in the following chapters, 𝑠𝑢 and  (𝑠𝑢)𝑠𝑎𝑡 are used instead. Fig. 2.16 

shows the theoretical and experimental results of Wheeler’s upper and lower bounds for the 

undrained shear strength of Combwich mud containing methane. The upper bound is inclined to 

overestimate the beneficial effect of gas bubbles on the soil strength due to the impossibility of 

complete bubble flooding if the gas dissolution in pore water is negligible. When the gas cavities are 

completely flooded, the gas volume becomes zero, and the gas pressure will reach infinite if the free 

gas does not dissolve in the pore water. Additionally, the total stress path is not taken into account 

while determining the upper and lower bounds. However, the total stress path has a direct effect on 

the evolution of pore water pressure 𝑢𝑤 which affects the undrained shear strength. Indeed, the 

pore water pressure 𝑢𝑤 is an important variable for modelling the lower bound of undrained shear 

strength, as the gas pressure 𝑢𝑔 is closely related to 𝑢𝑤 (Wheeler, 1986; Sham, 1989; Hong et al., 

2020; Gao et al., 2020). 
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Fig. 2.16 Theoretical and experimental values of the undrained shear strength (Wheeler,1986) 

 

2.4.2 Constitutive relations for partially saturated soils containing gas bubbles by 

Pietruszczak and Pande (1996)    

 

An approach for constitutive modelling of FGS based on micromechanical analysis has been 

developed by Pietruszczak and Pande (1996). In the constitutive model, the average pore size is 

included as a material parameter, and gassy soil is modelled as a three-phase medium. It is assumed 

that the liquid and gas phases are separated by curved boundaries. Based on volume averaging, 

which is applied to both stress and strain measurements within each phase, the macroscopic 

mechanical properties of soil are determined. The average response is a function of each phrase's 

mechanical properties and volume contributions. The method demonstrates that the reaction of 

unsaturated soil may be viewed as a combination of the mechanical properties of elements, their 

corresponding volume fractions, and the kind of soil microstructure. 
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2.4.3 Constitutive model for FGS by Grozic et al. (2005) 

 

Based on these preliminary studies, some attempts have been made to simulate the entire stress-

strain relationship of FGS. Grozic et al. (2005) have proposed a constitutive model for this soil by 

considering the gas as part of the pore fluid. Henry's law has been used in the gassy soil model. It can 

be defined as the mass of gas dissolved in a fixed amount of liquid at a constant temperature, which 

is directly proportional to the absolute pressure of the gas above the solution. It means the solubility 

is dependent on the pressure, temperature, and salinity of the pore water. Henry's law can be 

expressed as below 

𝐾𝐻 =
𝐶𝑎

𝑃𝑔
 or 𝐾𝐻 =

55.3

𝐾𝐻,𝑖𝑛𝑣
                                                        (2.17) 

where 𝐶𝑎 is the concentration of a specific gas in the aqueous phase and 𝑃𝑔 is the partial pressure of 

the specific gas in the gas phase (Fredlund and Rahardjo, 1993). Often the reciprocal value, 𝐾𝐻,𝑖𝑛𝑣 is 

used where 𝐾𝐻 is in mol/l and 𝐾𝐻,𝑖𝑛𝑣 is in atm.  

The volume of the pore fluids will alter due to their compressibility, which is a combination of 

the compression of the liquid and the compressibility of the free gas. The total stress, which is related 

to the compressibility of a gas mixture liquid, can be expressed as below 

𝐶𝑔𝑙 = 𝑆𝐶𝑙(
d𝑢𝑙

dσ
) + (1 − 𝑆0 + ℎ𝑆0)𝐶𝑔(

d𝑢𝑔

dσ
)                                          (2.18) 

where 𝐶𝑔𝑙  is the compressibility of the gas mixture liquid, 𝑆 is the degree of saturation, ℎ  is the 

Henry's constant, 
d𝑢𝑙

dσ
 represents the change in liquid pressure in relation to a change in total stress, 

d𝑢𝑔

dσ
 is the gas pressure change in relation to a total stress change, and σ is the total stress in the study 

of Grozic et al. (2005). 

 

Eq. (2.18) will be used to calculate the volume change due to the compression and solution of gas by 

introducing the change of void ratio 

Δ𝑒 = (
Δ𝑢𝑔

𝑢𝑔0+Δ𝑢𝑔
)(1 − 𝑆0 + 𝐾𝐻𝑆0)𝑒0                                              (2.19) 

Eq. (2.19) can be introduced into the modified Cam-Clay (MCC) model for considering the effect of 

gas in the soils. For each increment of axial strain applied, the MCC model is used to calculate the 
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change of pore water pressure firstly due only to the applied strain. The corresponding void ratio 

change, and the degree of saturation inducted by the pore water pressure can then be determined. 

The predictions and measured results are shown as follows. 

 
 

 

Fig. 2.17 Calibration of the gassy soil model. Gassy soil predictions and test results (Grozic et al., 

2005) 
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Fig. 2.18 prediction of the effect of initial gas volume from 100% to 85% (Grozic et al., 2005)  

 

2.4.4 Constitutive model for FGS by Hong et al. (2020) 

 

Based on extensive laboratory studies, Hong et al. (2020) proposed a constitutive model for FGS by 

considering the effect of free gas on the dilatancy and yield surface shape. Four additional 

parameters have been contributed to the constitutive model, which is constructed on the framework 

of the MCC model. A function 𝐷 which can capture the stress-dilatancy relation was developed in the 

model 

𝐷 =
𝑑𝜀𝑣

𝑝

𝑑𝜀𝑞
𝑝 = [1 + 𝜉

𝑢𝑤0−𝑢𝑤0_𝑟𝑒𝑓

𝑝0
′ exp(−

𝜒

𝜓0
)]

𝑀2−𝜂2

2𝜂
                                 (2.20) 

where 𝑢𝑤0_𝑟𝑒𝑓  is the reference initial pore water pressure 𝑢𝑤0  at which the stress–dilatancy of a 

gassy soil is similar to its saturated equivalent. Χ and 𝜉 are two material constants for describing the 

effects of 𝑢𝑤0 and initial gas volume fraction 𝜓0 on the dilatancy of the FGS; and 𝜂 is the stress ratio, 

𝑝0
′  is the effective mean stress and 𝑞 is the deviator stress. 
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The yield function derived by Lagioia et al (1996) was used in this elastoplastic model 

𝐹 =
𝑝′

𝑝0
′ −

(1+
𝜂

𝑀𝐾2
)

𝐾2
(1−𝜇)(𝐾1−𝐾2)

1+
𝜂

𝑀𝐾1

𝐾1
(1−𝜇)(𝐾1−𝐾2)

= 0                                                   (2.21) 

where 𝑝0
′  is the preconsolidation pressure and K1 and K2 are given as below 

𝐾1/2 =
𝜇(1−𝜃)

𝜃(1−𝜇)
(1 ± √1 −

4𝜃(1−𝜇)

𝜇(1−𝜃)2)                                                (2.22) 

𝜇 and 𝜃 are the parameters that can be used to determine the shape of yield surface.  

 

The yield function 𝐹 and the dilatancy function 𝐷 are independently formulated, as shown by Eq. 

(2.20) and (2.21). A non-associated flow rule is adopted in this constitutive model 

𝑑𝜀𝑞
𝑝 = 〈𝐿〉

𝜕𝐹

𝜕𝑞
                                                                 (2.23) 

𝑑𝜀𝑣
𝑝 = 〈𝐿〉

𝜕𝐹

𝜕𝑞
𝐷                                                               (2.24) 

where 𝐿 is the loading index. The McCauley brackets 〈 〉 operate in the way of 〈𝐿〉 = 𝐿  if 𝐿 > 0; 

otherwise, 〈𝐿〉 = 0. 

The behaviour can be derived using Boyle's law 

(𝑢𝑔 + 𝑝𝑎)𝑉𝑔 = (𝑢𝑔 + 𝑝𝑎 + d𝑢𝑔)(𝑉𝑔 + d 𝑉𝑔) = 𝑛𝑔𝑅𝑇 = 𝐶                    (2.25) 

where 𝑢𝑔, 𝑝𝑎, 𝑉𝑔, 𝑛𝑔, 𝑅 and 𝑇 are the pore gas pressure, atmospheric pressure, gas volume, number 

of the mole of the gas, ideal gas constant, and absolute temperature, respectively; and d𝑢𝑔 and d𝑉𝑔 

are increments of gas pressure and gas volume, respectively. 𝐶  can be stated by introducing the 

initial pore gas pressure 𝑢𝑔0 and the initial gas volume 𝑉𝑔0 

(𝑢𝑔0 + 𝑝𝑎)𝑉𝑔0 = 𝐶                                                           (2.26) 

The initial gas pressure is hard to measure, and it can be defined by initial pore water pressure and 

the initial total stress (Sham,1989) 

𝑢𝑔0 = 𝑢𝑤0 + 𝛿(𝑝0 − 𝑢𝑤0)                                                     (2.27) 

where 𝛿 is the model parameter which is from 0 to 1.  

 

The volumetric strain of the gas bubble can then be expressed by combining Eqs. (2.25) - (2.27) 

𝑑𝜀𝑣
𝑔

=
𝑑𝑉𝑔

𝑉
=

𝑑𝑝(𝑢𝑤0+𝑝𝑎)(2𝑝0+𝑝𝑎−𝑢𝑤0)𝜓0

(𝑢𝑔+𝑝𝑎+𝑑𝑝)(𝑢𝑔+𝑝𝑎)(𝑝0+𝑝𝑎)
                                       (2.28) 

The formations were developed for calculating the volumetric strain and gas pressure of gas bubbles. 

In comparison to the MCC model, the model can predict the behaviour of fine-grained soils containing 
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gas bubbles using four additional parameters (Fig. 2.19). 
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Fig. 2.19 Comparison between the predicted and measured shear behaviour of gassy Malaysia 

Kaolin silt: (a) stress–strain relation; (b) pore pressure response; and (c) effective stress path. (Data 

from Hong et al., 2019a) 

 

2.4.5 Constitutive model for FGS by Gao et al. (2020) 

 

A composite approach for constitutive modelling of FGS has been developed by Gao et al. (2020). For 

the fine-grained gassy soil, there are four components in the model: gas, water in cavities, water in 

the saturated soil matrix, and soil particles. The degree of saturation and void ratio can be used to 

describe the volume, including the volume fraction of gas bubbles. In this model, the mean effective 

stress and deviator stress can be expressed by the total effective stress of the soil matrix, mean 

effective stress of the soil matrix, the deviator stress of the soil matrix, gas pressure and pore water 

pressure.  
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Fig. 2.20 Phase diagram for fine-grained soil containing gas bubbles (water in both the saturated 

matrix and cavities. 

 

The yield function of MCC model is used in this model, and a modified hardening law is introduced 

as below 

𝑑𝑝0
′ = 〈𝐿〉𝑟𝑝𝑐 = 〈𝐿〉(𝑟1 − 𝑟2) = 〈𝐿〉

(1+𝑒0)𝑝0
′

𝜆−𝜅

𝜕𝐹

𝜕𝑝′
[1 − 𝑎√𝑓

𝜂

M
(

𝑢𝑔+𝑝𝑎

𝑝0
′ )𝜉]          (2.29) 

𝑟1 = 〈𝐿〉
(1+𝑒0)𝑝0

′

𝜆−𝜅

𝜕𝐹

𝜕𝑝′
                                                                     (2.30) 

𝑟2 = 〈𝐿〉
(1+𝑒0)𝑝0

′

𝜆−𝜅

𝜕𝐹

𝜕𝑝′
[𝑎√𝑓

𝜂

M
(

𝑢𝑔+𝑝𝑎

𝑝0
′ )𝜉]                                                (2.31) 

where 𝑝0
′  indicates the size of MCC yield surface, 𝐿 is the loading index, 𝑒0 is the initial value of the 

saturated matrix void ratio 𝑒𝑚 , 𝜂 (= 𝑞/𝑝′) is the stress ratio, 𝜆 is the compression index, 𝜅 is the 

swelling index, 𝑝𝑎  is the atmospheric pressure, 〈 〉 are the McCauley brackets [〈𝐿〉 = 𝐿 for 𝐿 > 0 

and 〈𝐿〉 = 0 otherwise] and 𝜉 is a new model parameter. 𝑎 is used to describe the detrimental effect 
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of gas bubbles on plastic hardening and shear strength. 𝑟1  and 𝑟2  represent the variables in the 

hardening law. 𝑟1  is the same as that for the MCC model and the term 𝑟2  is used to model the 

detrimental effect of gas bubbles on plastic hardening and shear strength. When the volume fraction 

of the gas bubble is 0, 𝑟2 = 0, it means the hardening law is identical to that of the original modified 

Cam clay model.  

For strain variables, the summation of the volumetric strain of the saturated soil matrix and the 

volumetric strain of the cavity can be employed to decompose the total strain of the fine-grained 

FGS. (Tsai and Hahn, 1980; Pietruszczak and Pande, 1996; Diambra et al., 2010). It is evident that the 

volume fraction of the gas bubbles is associated with the volumetric strain of the cavity. The 

volumetric variation of water flow into and out of the matrix at the boundary of the saturated soil 

matrix and bubble flooding determines the volumetric strain increment of the saturated soil matrix. 

When bubble flooding occurs, the change of volumetric strain of bubble flooding can be described as 

below 

𝑑𝜀𝑣
𝑓

= 𝐴𝑑𝑢𝑤 = (1 − 𝑠𝑟)(
𝑝0

′

𝑢𝑔+𝑝𝑎
)𝜉exp(1 −

𝑢𝑔−𝑢𝑤

𝜒𝑝0
′ ) 

〈𝑑𝑢𝑤〉

𝑢𝑔+𝑝𝑎
                        (2.32) 

In the equation, χ and 𝜉 are two introduced parameters. There is complete bubble flooding when the 

degree of saturation is 1 and in this case, there is no change of volumetric strain of bubble flooding. 

Additionally, the magnitude of the bubble flooding will increase as the gas pressure decreases. 𝜉 is 

one of the new model parameters which can reflect the rate of bubble flooding, and it will change 

with the 𝑝0
′  based on the experiment results. χ is also used to calculate the rate of bubble flooding, 

and it can decrease the rate as the difference between gas pressure and pore water pressure increase.  

The model also derived a method to calculate the initial gas pressure by assuming that the value is 

related to the initial total stress and initial pore water pressure 

𝑢𝑔𝑖 = 𝑢𝑤𝑖 + 𝛿(𝑝𝑖 − 𝑢𝑤𝑖) = 𝑢𝑤𝑖 +
𝑢𝑤𝑖+𝑝𝑎

𝑝𝑖+𝑝𝑎
(𝑝𝑖 − 𝑢𝑤𝑖)                               (2.33) 

As the initial pore water increases, the initial gas pressure increases as well, eventually approaching 

the initial total stress. 

The increment of pore water pressure is introduced in the elasto-plastic relation in the model. The 

pore gas pressure, volume change of cavities and gas should be updated based on the evolution 
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of 𝑝′, 𝑞 and 𝑢𝑤. Details can be found in Gao et al. (2020). The constitutive equation of the model can 

be simply shown as 

[
𝑑𝑝′

𝑑𝑞
𝑑𝑢𝑤

] = [
𝐷11 𝐷12 0
𝐷21 𝐷22 0

0 0 𝐾𝑤

] [

𝑑𝜀𝑣

𝑑𝜀𝑞

𝑑𝜀𝑣
𝑤

]                                                 (2.34) 

Comparison between the measured data (from Hong et al.,2020) and predictions of the constitutive 

model are shown as Fig. 2.21. The recent two models (Hong et al., 2020, Gao et al.,2020) are capable 

of describing the detrimental and beneficial effect of free gas on the stiffness and strength of FGS 

(Ehlers and Blome, 2003; Ehlers et al., 2004; de Boer, 2003). But in addition to the classic critical state 

model for saturated clay, the two models have introduced at least two additional parameters. Some 

of which might be difficult to get through regular triaxial tests. Besides, the gas pressure is employed 

as an internal variable in the model proposed by Gao et al., 2020, making it difficult to use the model. 

Firstly, the gas pressure in FGS is incredibly difficult to measure, both in the lab and outdoors. 

Secondly, additional equations are needed to calculate the initial gas pressure and the evolution of 

the gas pressure during loading. Finally, when the gas pressure is used as a state variable, the 

constitutive equations must be derived using the elastic bulk modulus of water (Gao et al., 2020).  
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(a) 

 

(b) 

Fig. 2.21 Comparison between the measured data and predictions of Malaysian Kaolin in undrained 

compression: (a) test data; (b) model predictions (Gao et al., 2020) 
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2.4.6 Bounding surface model for overconsolidated saturated soils (Gao et al., 2017) 

 

The majority of past research has concentrated on the behaviour of normally consolidated FGS. 

However, naturally deposited clay in the seabed or lakebed can become overconsolidated due to 

water pressure variation, sediment movement or submarine landslides. Bounding surface models 

(Dafalias, 1986) are widely used to describe the response of overconsolidated clay. A conventional 

plasticity model gives purely elastic response when the stress state is inside the yield surface, which 

is not realistic.   

A bounding surface model has been derived to capture the dilatancy behaviour of the 

overconsolidated saturated soils. A dilatancy relation has been developed as below by Gao et al. 

(2017), 

𝐷 =
𝑑𝜀𝑣

𝑝

|𝑑𝜀𝑞
𝑝

|
=

𝑀𝑑
2−𝜂2

2𝜂
                                                                (2.35) 

where 𝑑𝜀𝑣
𝑝 and 𝑑𝜀𝑞

𝑝 denote the plastic volumetric and shear strain increment for the saturated soil 

matrix, respectively  

𝑀𝑑 = 𝑀𝑐𝑅𝑚                                                                     (2.36) 

𝑚 should be calibrated based on the test results on overconsolidated clay. 𝑅 is the ratio of the ‘image’ 

and current stress state (Gao et al., 2017) and it is the reciprocal of overconsolidation ratio in the 

study. The variation of 𝑚 typically ranges from 0 to 0.6 based on the experience (Gao et al., 2017), 

which has no significant influence on the prediction for the stress-strain relation base on the 

experimental investigation. 𝑚 can be determined by fitting the 𝑝′ − 𝑞 relations in undrained cases.  

 

The bounding surface model with state-dependent dilatancy for overconsolidated clay is applied for 

the saturated soil matrix. The bounding surface is defined as (Collins, 2005) 

 �̅� =
(�̅�′−𝛼�̅�0/2)2

[(1−𝛼)�̅�′+𝛼�̅�0/2]2 +
�̅�2

𝑀𝑐
2[(1−𝛼)�̅�′+𝛼�̅�0/2]2 − 1 = 0                                    (2.37) 

where �̅�0 is the size of the current yield surface, 𝛼 is a model parameter and 𝑀𝑐 is the critical state 

stress ratio in triaxial compression. The mapping centre for the bounding surface is the origin of the 

stress space.  

 

Under undrained triaxial compression/extension loading conditions, the model gives the following 
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relation 

𝑝𝑓/𝑝𝑖 =  (OCR · 𝛼/2)(𝜆−𝜅)/𝜆                                                             (2.38) 

where 𝑝𝑓  is mean effective stress at critical state and 𝑝𝑖  is initial confining pressure. 𝛼  can be 

evaluated from Eq. (2.38) directly because 𝜆 and 𝜅 are known. It is recommended to use the test 

results on normally consolidated clay since it is simpler to determine the critical state. The suggested 

range of parameter 𝛼 is 0 to 1.8, ensuring that the bounding surface remains convex. The MCC yield 

surface is recovered when 𝛼=1. 

 

The plastic modulus at the image stress point, �̅�𝑝 can be determined as below 

�̅�𝑝 = − 
𝜕𝐹

𝜕�̅�0

𝜕�̅�0

𝜕𝜀𝑣
𝑚𝑝

𝜕𝐹

𝜕�̅�
�̅� =  −

(1+𝑒0)�̅�0

𝜆−𝜅

𝜕𝐹

𝜕�̅�0

𝜕𝐹

𝜕�̅�

𝑀𝑐
2−𝜂2

2𝜂
                                    (2.39) 

The relationship between �̅�𝑝, which can represent the increase of stiffness and peak stress ratio of 

clay with the degree of overconsolidation, and the plastic modulus at the current stress state, 𝐾𝑝 is 

crucial to the performance of the bounding surface model (Dafalias and Herrmann, 1986; Pestana 

and Whittle. 1999). In the previous bounding surface models, 𝐾𝑝  is typically assumed to be an 

interpolation function of �̅�𝑝 and a shape-hardening function (Dafalias and Herrmann 1986; Ling et al. 

2002) or reference modulus (Banerjee and Yousif 1986; Pestana and Whittle 1999). To avoid 

excessive complication, the expression for 𝐾𝑝 in this study is simply assumed to be of the identical 

form of �̅�𝑝 by simply replacing 𝑀𝑐 with a virtual peak stress ratio 𝑀𝑣. 

 

Therefore the plastic modulus for the saturated matrix is 

𝐾𝑝 = −
(1+𝑒0)�̅�0

𝜆−𝜅

𝜕𝐹

𝜕�̅�0

𝜕𝐹

𝜕�̅�

𝑀𝑣
2−𝜂2

2𝜂
                                                       (2.40) 

𝑀𝑣 = 𝑀𝑐𝑅−𝑛                                                              (2.41) 

where 𝑀𝑣  is related to 𝑅  according to Eq. (2.41), and 𝑛  is the nonnegative model parameter 

(Zervoyanis, 1982; Nakai and Hinokio, 2004; Mita et al., 2004). Typically, greater 𝑛 results in a stiffer 

response because both 𝑀𝑣 and 𝐾𝑝 are increasing functions of n for 𝑅 ≤ 1, which means OCR ≥ 1. 

Parameter 𝑛 can then be determined through fitting stress-strain relations in undrained cases by 

setting parameter 𝑚 = 0.   

 

The bounding surface model can have a good prediction only for the overconsolidated saturated soils. 

Sham (1989) has reported some undrained triaxial test results on lightly overconsolidated FGS. It is 
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shown that the overconsolidation affects the soil-gas interaction and the undrained shear strength. 

But a constitutive model for describing the stress-strain relationship of overconsolidated FGS has not 

been developed. 

 

2.5 Limitations of Existing Constitutive Models  

 

There have been developments in existing constitutive models for fine-grained soils containing gas 

bubbles. However, there are limitations which make these models not able to capture the mechanical 

behaviour of FGS very well. 

 It is assumed that the gas and water existed as a single compressible pore fluid by Nageswaran 

(1983). This is valid for modelling the soil response under consolidation but not shear, because 

'bubble flooding' can occur. 

 The upper and lower bounds proposed by Wheeler (1986) have not considered the total stress 

path, which can influence the change of pore water pressure. The upper bound tends to 

overestimate the beneficial effect of gas bubbles on the soil stiffness due to complete bubble 

flooding is assumed in Wheeler's research. If complete bubble flooding occurs, the gas volume 

would become zero. Then the gas pressure would reach infinite, which is not possible. The 

lower bound tends to underestimate the soil strength because the change of gas volume 

fraction during compression has not been considered.  

 Grozic et al. (2005) have proposed a constitutive model for this soil by considering the gas as 

part of the pore fluid, which cannot represent the real internal structure of this soil. 

Meanwhile, the pore gas pressure is equal to the pore water pressure based on the 

assumption. The difference between these two pore pressures can be significant enough and 

have a dramatic influence on the strength. 

 Pietruszczak and Pande (1996) have developed a method for constitutive modelling of FGS 

based on micromechanical analysis. Though it can consider the composite structure of FGS, it 

cannot capture the detrimental effect of gas bubbles on the undrained shear strength.  

 Based on extensive laboratory studies, Hong et al. (2020) proposed a constitutive model for 

FGS by considering the effect of free gas on the dilatancy and yield surface shape. Gao et al. 

(2020) have developed a composite approach for constitutive modelling of FGS. Both these 

two recent models are capable of describing the detrimental and beneficial effects of free gas 
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on the stiffness and strength of FGS. But the two models contain at least two extra parameters 

in addition to the classic critical state model for saturated clay (i.e., Modified Cam-clay model, 

or MCC model), some of which may not be easily obtained through conventional triaxial tests. 

Besides, the gas pressure is employed as an internal variable in Gao et al. (2020), which causes 

inconvenience for using the model: (i) it is almost impossible to measure the gas pressure in 

FGS either in the lab or the field; (ii) extra equations for estimating the initial gas pressure and 

evolution of gas pressure during loading are required; (iii) the elastic bulk modulus of water 

has to be used to derive the constitutive equations when the gas pressure is employed as a 

state variable (Gao et al., 2020; Taiebat and Dafalias, 2010; Yin et al., 2013). 

 

2.6 Research Objective 

 

Though some of the proposed constitutive models presented so far can make reasonable predictions 

on the mechanical behaviour of the FGS, the limitations of these models can make such behaviours 

hard to predict for most of the problems. The aim of the study is to propose a new constitutive model 

for both normally consolidated FGS and overconsolidated FGS. To achieve this goal, the new upper 

and lower bounds of the undrained shear strength for the fine-grained FGS will be investigated to 

find the terms which can be used to capture the influence of the gas bubbles on the hardening law 

of the constitutive model. Then the model can be revised by introducing a simple dilatancy relation 

and bounding surface to make a  better prediction of the mechanical behaviour of overconsolidated 

FGS. The objectives of this study include: 

(1) The new upper and lower bounds of the undrained shear strength for the fine-grained soils 

containing gas bubbles will be proposed. Reasonable assumptions will be made for both upper 

and lower bounds. For the upper bound, only bubble flooding will be considered, and 

complete bubble flooding cannot occur. The amount of bubble flooding will depend on the 

stress path and degree of overconsolidation. The volume change of gas cavities during loading 

which can reduce the gas volume fraction will be considered in the new lower bound.  

(2) A new constitutive model for the normally consolidated fine-grained soils containing gas 

bubbles will be built. Stress quantities which can be readily measured will be used in the new 

constitutive model. The soil response in triaxial compression and isotropic compression will 

be considered in this constitutive model. A new hardening law which can capture the effect 

https://www.researchgate.net/profile/Mahdi_Taiebat
https://www.researchgate.net/scientific-contributions/79876001_Yannis_F_Dafalias
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of gas bubbles will be proposed based on the variable found in the new bounds. Volume 

change due to bubble flooding and gas cavity compression will be considered in the model. 

Only one parameter will be introduced to describe the effect of gas bubbles on the mechanical 

behaviour of FGS, which makes the model easier to use and calibrate. More reasonable 

predictions will be made in this model. 

(3) A new constitutive model for the overconsolidated fine-grained soils containing gas bubbles 

will be presented based on the constitutive model for normally consolidated FGS. With the 

framework of the normally consolidated constitutive model, the hardening law will be revised 

to make better predictions for overconsolidated FGS. Meanwhile, a dilatancy relation and a 

bounding surface will be introduced for overconsolidated condition. The model will be 

validated with test data from the literature. 
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Chapter 3: Upper and lower bounds of the undrained 

shear strength for fine-grained soils containing gas 

bubbles 

 

This chapter has been published as Gao Z.W., Cai H.J. (2021). “Effect of total stress path and gas 

volume change on undrained shear strength of FGS.” Int. J. Geomech. 21(11). 

http://doi.org/10.1061/(ASCE) GM.1943-5622. 0002198.  

Dr Gao revised the assumptions for the upper and lower bounds. Mr Cai carried out all the detailed 

derivation, analysis and comparison. Prof. Wheeler made contribution to the development via 

meetings with Dr Gao and Mr Cai. 
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3.1 Introduction 

 

There has been extensive research on the undrained shear strength of gassy fine-grained soils. 

Wheeler (1986) was the first to derive the upper and lower bounds for the undrained shear strength 

of FGS. The upper bound was derived based on the assumption that the bubbles are completely 

flooded by the pore water in an undrained test. For the lower bound, it is assumed that the entire 

saturated soil matrix reaches failure and no bubble flooding occurs. This theory is capable of giving 

the maximum and minimum possible undrained shear strength of FGS (Wheeler, 1986; Sham, 1989; 

Hong et al., 2017). However, the upper and lower bounds have limitations in predicting the effect of 

total stress path on undrained shear strength. As discussed in Chapter 2, the total stress path affects 

the evolution of pore water pressure, which has a direct influence on the pore gas pressure and 

undrained shear strength. Specifically, the upper bound tends to overestimate the beneficial effect 

of gas bubbles on the soil strength because of the assumption of complete bubble flooding, which is 

not possible if the gas dissolution in pore water is negligible. When the gas cavities were completely 

flooded, the gas volume would become zero, and the gas pressure would reach infinite if the free gas 

did not dissolve in the pore water. Since the soil is considered a rigid-perfectly-plastic material, the 

lower bound can underestimate the soil strength when there is significant compression of gas 

bubbles during loading (Sultan et al., 2012). Compression of gas bubbles reduces the volume fraction 

of free gas in the soil. Theoretical analysis has shown that the undrained shear strength of FGS is 

higher when the gas volume fraction is lower under otherwise identical conditions (Wheeler, 1986; 

Sham, 1989). Besides, the upper and lower bounds were derived without considering the total stress 

path. However, the total stress path can affect the change of pore water pressure, which is found to 

have a dramatic influence on soil strength (Wheeler, 1986; Sham, 1989; Hong et al., 2020; Gao et al., 

2020). Some constitutive models have also been proposed for FGS, which can be used to predict the 

undrained shear strength of this soil (Pietruszczak and Pande, 1996; Grozic et al., 2005; Sultan and 

Garziglia, 2014; Hong et al., 2020; Gao et al., 2020). But some model parameters which are not easy 

to determine are needed. 

A new study on the upper and lower bounds for the undrained shear strength under specific loading 

conditions is presented based on the work by Wheeler (1986) and the critical state soil mechanics 

(Muir Wood, 1990). It is assumed that there is only bubble flooding for the upper bound, but 

complete bubble flooding does not occur. The amount of bubble flooding is dependent on the stress 
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path and degree of overconsolidation. The lower bound is based on the one in Wheeler (1986), There 

is no bubble flooding occurs, indicating that the bubbles only have a detrimental effect on soil 

strength. But the volume change of gas cavities during loading is considered for the lower bound. The 

effect of overconsolidation and total stress path is accounted for based on the Modified Cam-Clay 

(MCC) model (Roscoe and Burland, 1968). It should be emphasized that the new upper and lower 

bounds are not the rigorous upper and lower bounds that consider all the loading conditions 

(Wheeler, 1986). Instead, they are derived for each specific loading condition and expected to offer 

a better approximation of the real undrained shear strength than the theory of Wheeler (1986). The 

new upper and lower bounds have been validated by the test data on three FGS from the literature. 

Implications for constitutive modelling are discussed. This study only focuses on the behaviour of 

normally consolidated and lightly overconsolidated FGS, which are frequently seen in the seabed. 

 
3.2 The new upper bound of the undrained shear strength for fine-grained 

soils containing gas bubbles 

 

FGS is a composite material with a saturated soil matrix and compressible gas cavities. The gas 

bubbles tend to degrade the soil structure and shear strength when there is no bubble flooding. But 

they can be flooded by the pore water from the saturated soil matrix in some cases, making the 

undrained shear strength higher. It is assumed that there is only bubble flooding for the upper bound. 

The initial stress state is assumed to be isotropic for the derivation below.  

 

In the original work by Wheeler (1988), the upper bound of the undrained shear strength was derived 

based on complete bubble flooding which can be written as Eq. (3.1).  

𝑠𝑢

𝑠𝑢
𝑠 =

3{1−[𝑓0/(1−𝑓0)]
1
3}

3−2[𝑓0/(1−𝑓0)]
1
4

𝑒𝑥𝑝 [
(1+𝑒𝑚0)𝑓0

𝜆(1−𝑓0)
]                                                  (3.1) 

where 𝑒𝑚0 is the initial void ratio of matrix. 

This is unrealistic and tends to give significant overestimation of the soil strength due to complete 

bubble flooding is assumed. The following assumptions are made for deriving the new upper bound:  

(a) The stress and strain state in the soil is uniform. 

(b) There is no gas dissolution in the pore water when the pore pressure increases or more free 

gas generation when the pore water pressure decreases. Boyle’s law can be used to describe 
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the volume change of gas bubbles. The gas pressure remains finite, and the gas volume is 

not zero at the failure state. Note that gas dissolution in the pore water gives extra volume 

contraction of the saturated soil matrix, which increases the undrained shear strength. 

Rigorously speaking, this should be considered in the upper bound. But this is very small in 

most cases and neglected here. 

(c) The gas pressure 𝑢𝑔 is always identical to the pore water pressure 𝑢𝑤, which is the condition 

for bubble flooding (Wheeler, 1986; Sham, 1989). The gas volume change is only due to 

bubble flooding, which is the same as the volume change of the saturated soil matrix. The 

volume of the cavity remains the same during bubble flooding. 

(d) For the unsaturated soil, the undrained shear strength of the entire soil sample is the same 

as that of the saturated matrix after bubble flooding. The existence of free gas at the failure 

state does not damage the soil structure. Note that the derivation of the upper bound in 

Wheeler (1986) has accounted for this damaging effect by considering the gas volume 

fraction after bubble flooding is bigger than the initial gas volume fraction (𝑓𝑓 = 𝑓0/(1 − 𝑓0)). 

The volume of cavities  thus increases and makes the undrained shear strength lower. But 

the upper bound can still be very high for some tests. This indicates that proper consideration 

of the amount of bubble flooding is more important. 

 

Based on the Boyle’s law and Assumptions (b) and (c), one can get 

(𝑢𝑤0 + 𝑝𝑎)𝑉𝑔
0 = (𝑢𝑤𝑓 + 𝑝𝑎)𝑉𝑔

𝑓
                                                 (3.2) 

where 𝑉 and 𝑢 denote the specific volume (calculated by assuming that the volume of soil particles 

is unit) and pressure, respectively; the subscripts ‘g’ and ‘w’ denote gas and pore water, respectively; 

the superscripts ‘0’ and ‘f’ represent the initial and failure states, respectively;  𝑝𝑎 is the atmospheric 

pressure (101 kPa). At the initial state, the gas volume is 

𝑉𝑔
0 =

𝑓0

1−𝑓0
𝑉𝑚

0 =
𝑓0

1−𝑓0
(1 + 𝑒𝑚0)                                                    (3.3) 

where 𝑓0 is the initial gas volume fraction (Wheeler, 1986); 𝑉𝑚
0 is the initial specific volume of the 

saturated matrix and 𝑒𝑚
0  is the initial matrix void ratio (Wheeler, 1986). If the initial stress state of 

the soil is isotropic and the stress state is uniform in the soil (Assumption a), the pore water pressure 

at the failure state can be obtained as below based on the Modified Cam-Clay (MCC) model (Fig. 3.1) 

𝑢𝑤𝑓 = 𝑝0
′ + 𝑢𝑤0 +

1

𝑎
𝑀𝑝𝑓

′ − 𝑝𝑓
′                                                        (3.4) 

where 𝑝0
′  (= 𝑝0 − 𝑢𝑤0) is the initial mean effective stress, 𝑝𝑓

′  (= 𝑝𝑓 − 𝑢𝑤𝑓 ) is the mean effective 
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stress at failure, 𝑀 is the critical state stress ratio and 𝑎 denotes the slope of the total stress path 

(Fig. 3.1). 

Based on Eqs. (3.2) - (3.4), the volume change of gas during the loading process δ𝑉𝑔 can be calculated 

as below 

δ𝑉𝑔 = 𝑉𝑔
0 − 𝑉𝑔

𝑓
=

𝑓0(1+𝑒𝑚0)

1−𝑓0

1+𝑏
𝑝𝑓

′

𝑝0
′

1+
𝑢𝑤0+𝑝𝑎

𝑝0
′ +𝑏

𝑝𝑓
′

𝑝0
′

        with     𝑏 =
1

𝑎
𝑀 − 1                (3.5) 

The volume change of the saturated soil matrix during loading δ𝑉𝑚 is 

δ𝑉𝑚 = 𝑉𝑚
0 − 𝑉𝑚

𝑓
= (Ν − Γ) − (λ − κ)lnOC𝑅 + λln (

𝑝𝑓
′

𝑝0
′ )                            (3.6) 

where Ν and Γ represent the value of 𝑉𝑚 on the normal consolidation line (NCL) and critical state line 

(CSL) at unit mean effective stress, respectively (Fig. 3.1);  λ is the slope of NCL and CSL in the 𝑉𝑚 −

ln𝑝′ plane;  𝑂𝐶𝑅 is the degree of overconsolidation at the initial state. For the MCC model, Ν − Γ =

(λ − κ)ln2, and Eq. (3.6) can be rewritten as 

δ𝑉𝑚 = 𝑉𝑚
0 − 𝑉𝑚

𝑓
= (λ − κ)ln

2

𝑂𝐶𝑅
+ λln (

𝑝𝑓
′

𝑝0
′ )                                     (3.7) 

where κ is the slope of the swelling line in the 𝑉𝑚 − ln𝑝′ plane. Based on Assumption (c), one can get 

the following based on Eqs. (3.5) and (3.7) 

𝑓0(1+𝑒𝑚0)

1−𝑓0

1+𝑏
𝑝𝑓

′

𝑝0
′

1+
𝑢𝑤0+𝑝𝑎

𝑝0
′ +𝑏

𝑝𝑓
′

𝑝0
′

− λln (
𝑝𝑓

′

𝑝0
′ ) = (λ − κ)ln (

2

𝑂𝐶𝑅
)                             (3.8) 

The undrained shear strength of the saturated soil 𝑠𝑢
𝑠 with 𝑝0

′  is (Muir Wood, 1990) 

𝑠𝑢
𝑠 =

1

2
𝑞𝑓 =

1

2
𝑀𝑝0

′ Λ =
1

2
𝑀𝑝0

′ (
𝑂𝐶𝑅

2
)

λ−κ

λ
                                                (3.9) 

Based Assumption (d), the upper bound for the undrained shear strength of the unsaturated soil is 

𝑠𝑢 =  
1

2
𝑀𝑝𝑓

′                                                                            (3.10) 

Eq. (3.8) can thus be expressed in terms of 𝑠𝑢
𝑠 as below based on Eqs. (3.9) and (3.10) 

𝑓0(1+𝑒𝑚0)

1−𝑓0

1+(
𝑏

Λ
)

𝑠𝑢
𝑠𝑢

𝑠

1+
𝑢𝑤0+𝑝𝑎

𝑝0
′ +(

𝑏

Λ
)

𝑠𝑢
𝑠𝑢

𝑠

− λln (
1

Λ

𝑠𝑢

𝑠𝑢
𝑠 ) = (λ − κ)ln (

2

𝑂𝐶𝑅
)                       (3.11) 

While an explicit expression of 
𝑠𝑢

𝑠𝑢
𝑠  in terms of 𝑓0 cannot be obtained using Eq. (3.11), the value of 𝑓0 

can be easily determined when 
𝑠𝑢

𝑠𝑢
𝑠  and other variables are known. Since 

𝑠𝑢

𝑠𝑢
𝑠 ≥ 1 for the upper bound, 

the relationship between 𝑓0 and 𝑠𝑢
𝑠  should be generated starting from 

𝑠𝑢

𝑠𝑢
𝑠 = 1 based on Eq. (3.11). 
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The value of 𝑓0 can be obtained by setting a reasonable small increment of 
𝑠𝑢

𝑠𝑢
𝑠  from 1. Therefore, the 

relationship between 𝑓0 and 
𝑠𝑢

𝑠𝑢
𝑠  can be drawn as the upper bound. The upper bound expressed by Eq. 

(3.11) is dependent on the 
𝑢𝑤0+𝑝𝑎

𝑝0
′  and total stress path described by the different variable 𝑎, which 

is not fully considered by Wheeler (1986). This makes the new upper bound work better for specific 

loading conditions with different 𝑢𝑤0, 𝑝0
′  and total stress paths. More discussion on this will be given 

in the section on the validation using existing test data. 

 

                     

Fig. 3.1 The initial state, failure state and stress paths for the saturated soil matrix 
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3.3 The lower bound of the undrained shear strength for fine-grained soils 

containing gas bubbles 

 

By treating the saturated soil matrix as a rigid, perfectly plastic von Mises-type material, Wheeler et 

al. (1990) showed that the undrained shear strength of FGS can be expressed as 

4 [
3−2𝑓

𝑓

1
4

3(1−𝑓
𝑓

1
3)

]

2

𝑠𝑢
2 + (

3

2ln𝑓𝑓
)

2

( 𝑝𝑓 − 𝑢𝑔)
2

= 4(𝑠𝑢
𝑠)2                                (3.12) 

where 𝑓𝑓  is the gas volume fraction at failure (Wheeler, 1986; Green, 1972). The lower bound in 

Wheeler (1986) was derived by assuming that there is no change in the gas volume and gas pressure 

during the loading (𝑓𝑓 = 𝑓0 and  𝑢𝑔 = 𝑢𝑤0). It is shown by Sultan et al. (2012) that the lower limit 

proposed by Wheeler (1986) does offer an absolute lower bound for the test data. But it can be too 

conservative for tests in which significant contraction of gas bubbles occurs. The reason is that the 

assumption of 𝑓𝑓 = 𝑓0 can be too conservative when the gas volume decreases during loading, which 

makes 𝑓𝑓 <  𝑓0 and undrained shear strength higher.  

In this study, the lower limit is derived by considering the gas volume change. The following 

assumptions are made: 

(a) The stress and strain state in the soil remains uniform but the failure condition can still be 

expressed by Eq. (3.12). Note that Eq. (3.12) was originally derived based on non-uniform 

stress distribution in the soil. There is no change of gas volume fraction during shearing 

in Eq. (3.12) due to the assumption 𝑓𝑓 = 𝑓0  is made by Wheeler. It means no volume 

change of gas bubbles under loading condition, which indicates a non-uniform stress 

distribution in the soil. 

(b) The initial gas pressure 𝑢𝑔
0 is the same as the initial pore water pressure 𝑢𝑤

0 . The same 

assumption has been used in the lower bound of Wheeler (1986). Gas dissolution in pore 

water is neglected.  

(c) The change of gas pressure δ𝑢𝑔 is the same as the change in total stress δ𝑝. This is based 

on the 𝑢𝑔 = 𝑝 ±  
4

3
 𝑠𝑢

𝑚(1 − 𝑓) (Wheeler et al., 1990). 𝑠𝑢
𝑚 is the undrained shear strength 

of saturated soil matrix which is constant. When the gas volume fraction is assumed 

constant, that equation gives δ𝑢𝑔 = δ𝑝.  In the new lower bound, 𝑓 is not constant due 
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to the volume change of gas is considered. However, the value of δ𝑓 can be neglected in 

𝑢𝑔 = 𝑝 ±  
4

3
 𝑠𝑢

𝑚(1 − 𝑓) (Wheeler et al., 1990) because the change in gas volume fraction 

is very small and has a limited effect on 𝑢𝑔 . Thus, the assumption of δ𝑢𝑔 = δ𝑝  is 

reasonable and it is proven to have a better prediction. The cavity volume is the same as 

the gas volume in the lower bound case. 

In a globally undrained test, the δ𝑢𝑔 for the lower bound can be obtained based on Fig.3.1 as below 

δ𝑢𝑔 = δ𝑝 =  
2

𝑎
𝑠𝑢

𝑠 =
1

𝑎
𝑀𝑝0

′ Λ                                                (3.13) 

In this case, the Boyle’s law for the gas is expressed as 

(𝑢𝑤0 + 𝑝𝑎)𝑉𝑔
0 = (𝑢𝑤0 + 𝑝𝑎 +

1

𝑎
𝑀𝑝0

′ Λ) 𝑉𝑔𝑓                                    (3.14) 

Eq. (3.14) can be used to get 𝑉𝑔
𝑓

 as below 

𝑉𝑔
𝑓

=
𝑢𝑤0+𝑝𝑎

𝑢𝑤0+𝑝𝑎+
1

𝑎
𝑀𝑝0

′ Λ
𝑉𝑔

0 =

𝑢𝑤0+𝑝𝑎

𝑝0
′

𝑢𝑤0+𝑝𝑎

𝑝0
′ +

1

𝑎
𝑀Λ

𝑓0

1−𝑓0
𝑉𝑚

0 = 𝛽
𝑓0

1−𝑓0
𝑉𝑚

0                     (3.15) 

where 𝛽 is self-evident. Since bubble flooding is not considered in the lower bound, 𝑉𝑚
0 = 𝑉𝑚

𝑓
 due to 

the undrained condition. The gas volume fraction at failure 𝑓 can be expressed as below based on 

Eqs. (3.3) and (3.15) 

𝑓𝑓 =
𝑉𝑔

𝑓

𝑉𝑔
𝑓

+𝑉𝑚
0

=
𝛽

𝑓0
1−𝑓0

𝛽
𝑓0

1−𝑓0
+1

=
𝛽𝑓0

1+(𝛽−1)𝑓0
                                               (3.16) 

Since 𝑢𝑔
0 = 𝑢𝑤

0  and δ𝑢𝑔 = δ𝑝 (Assumptions b and c above), one can get 𝑝𝑓 − 𝑢𝑔 = 𝑝0
′ . Therefore, the 

new lower bound is expressed as 

4 [
3−2𝑓𝑓

1
4

3(1−𝑓𝑓

1
3)

]

2

𝑠𝑢
2 + (

3

2ln𝑓𝑓
)

2

(𝑝0
′ )2 = 4(𝑠𝑢

𝑠)2                                       (3.17) 

with 𝑠𝑢
𝑠 and 𝑓𝑓 being expressed by Eqs. (3.9) and (3.16), respectively. For one specific test, the lower 

bound can be obtained by giving the value of 𝑓0. Then an 𝑓𝑓 can be calculate by using Eq. (3.16) and 

𝑠𝑢
𝑠 can be calculated by using Eq. (3.9). with a giving 𝑢𝑤0 and 𝑝0

′ . The value of 𝑠𝑢 is obtained and the 

lower bound with the ratio of 𝑠𝑢/𝑠𝑢
𝑠 is finally expressed. Similar to the new upper bound, the new 

lower bound is also dependent on 
𝑢𝑤0+𝑝𝑎

𝑝0
′  and total stress path, which is described by the variable 𝑎 

(Fig. 3.1). Both variables (
𝑢𝑤0+𝑝𝑎

𝑝0
′  and 𝑎) appear in the expression of the function of 𝛽.   

 

For the new upper and lower bounds of the undrained shear strength of FGS, it can be seen that the 
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volume change of the gas bubble is the same as the volume change of the saturated soil matrix when 

considering bubble flooding only. It is assumed that the volume of the saturated soil matrix remains 

constant when the new lower bound is proposed. When the parameter 𝑎 is unchanged, the upper 

and lower bounds of the undrained shear strength are influenced by the pore water pressure as Fig. 

3.2 shows. 

 

Fig. 3.2 The initial state, failure state and stress paths for the saturated soil matrix considering the 

new upper and lower bounds 

 

3.4 Model validation  

 

The prediction of the new lower and upper bounds will be compared with the test data on three FGS 

from literature (Wheeler, 1986, Sham, 1989, Hong et al., 2020). The MCC model parameters for these 

soils are given in the literatures (Wheeler, 1986, Sham, 1989, Hong et al., 2020) and shown in Table 

3.1. All the tests have been done under undrained triaxial compression condition with δ𝑞 = 3δ𝑝 (𝑎 =
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3 in Fig. 3. 1). Most of the samples are normally consolidated and some are lightly overconsolidated. 

The 𝑠𝑢
𝑠  is calculated in different ways for the new and Wheeler’s bounds. Eq. (3.9) is used to 

determine 𝑠𝑢
𝑠 for the new bounds. To make it consistent with the work by Wheeler (1986), the 𝑠𝑢

𝑠 for 

Wheeler’s (1986) bounds is taken as the measured undrained shear strength for saturated soils. 

 

Table 3.1 MCC model parameters for new bounds 

Soil 𝑀 λ κ Ν 
Kaolin with helium 0.89 0.23 0.05 3.35 

Combwich mud with methane 1.33 0.174 0.0297 3.062 
Malaysian kaolin with nitrogen 1.05 0.24 0.05 3.74 

 

3.4.1 Combwich mud with methane 

 

Figs. 3.3 - 3.4 show the prediction of the new upper and lower bounds with the test data on normally 

consolidated gassy Combwich mud (Wheeler, 1986). The prediction of Wheeler’s theory is also 

included. In most cases, the new upper and lower bounds are closer to the test data. The prediction 

of the new upper bound is lower than the one in Wheeler (1986) because the new theory does not 

assume complete bubble flooding. The prediction of the new lower bound is slightly higher than the 

lower bound of Wheeler (1986). This is due to that the new lower bound considers gas bubble 

contraction during loading, which makes the undrained shear strength higher.  

At the same 𝑓0, the new theory predicts lower shear strength for both the lower and upper bounds 

as 
𝑢𝑤0+𝑝𝑎

𝑝0
′  increases (Fig. 3.3). This agrees with the test data, which shows that 𝑠𝑢 decreases when 

𝑢𝑤0+𝑝𝑎

𝑝0
′ increases at the same 𝑓0. The reasons are: (a) For the new upper bound, higher 

𝑢𝑤0+𝑝𝑎

𝑝0
′ makes 

the amount of bubble flooding smaller and undrained shear strength smaller (Eq. 3.5); (b) In the new 

lower bound, higher 
𝑢𝑤0+𝑝𝑎

𝑝0
′ renders the bubble contraction smaller and  𝑓𝑓  bigger at the same 𝑓0, 

leading to smaller 𝑠𝑢 (Eqs. 3.15 and 3.16).  

For the tests with  𝑝0
′ = 200kPa and 𝑢𝑤0 = 100kPa, it appears that the new lower bond tends to 

overestimate the undrained shear strength, while Wheeler’s does better. This indicates that the new 

lower bound may overpredict the undrained shear strength of FGS under certain loading conditions. 

This overprediction is mainly caused by the Assumption (a) for the new lower bound which neglects 
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the nonuniform stress distribution in FGS that has a negative effect on the soil strength.  

 

(a) 
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(b) 

Fig. 3.3 Prediction of the upper and lower bounds for normally consolidated gassy Combwich mud 

from Wheeler (1986) with (a) 𝒑𝟎
′ = 𝟏𝟎𝟎 kPa and (b) 𝒑𝟎

′ = 𝟒𝟎𝟎 kPa 
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(a) 
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(b) 

Fig. 3.4 Prediction of the upper and lower bounds for normally consolidated gassy Combwich mud 

from Wheeler (1986) with 𝒑𝟎
′ = 𝟐𝟎𝟎 kPa: (a) the upper bound prediction and (b) the lower bound 

prediction 

 

3.4.2 Kaolin with helium (Sham, 1989) 

 
Figs. 3.5 - 3.6 show the comparison between the test data and theoretical predictions for normally 

consolidated Kaolin with helium (Sham, 1989). The gas bubbles are found to have primarily 

detrimental effect on the undrained shear strength. The upper bound of Wheeler (1986) gives much 

higher 𝑠𝑢  than the new upper bound, with the latter offering better prediction of the maximum 

possible su for unsaturated soils (Figs. 5a and 6a). At the same 𝑝0
′  and 𝑓0, the new upper bound gives 

lower su for unsaturated soils as 𝑢𝑤
0  increases. This is due to smaller amount of bubble flooding at 

higher 𝑢𝑤0 or 𝑢𝑔0 (Eq. 3.5). Wheeler’s lower bound predicts zero 𝑠𝑢  at 𝑓0 between 0.03 and 0.04, 
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which appears to be very conservative. The new lower bound gives zero 𝑠𝑢 at higher 𝑓0 for all the 

tests, as it considers gas cavity compression during loading. This is closer to the test data. But it is still 

conservative for tests with 𝑓0 > 0.2 (Figs. 3.4b and 3.5b). There could be much more gas cavity 

compression at higher 𝑓0 in real soil samples than that assumed in Eqs. (3.13) and (3.14). 

 

(a) 
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(b) 

Fig. 3.5 The upper and lower bounds for normally consolidated Kaolin from Sham (1989) with 𝒑𝟎
′ =

𝟏𝟎𝟎 kPa: (a) the upper bound prediction and (b) the lower bound prediction 
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(a)
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(b) 

Fig. 3.6 The upper and lower bounds for normally consolidated Kaolin from Sham (1989) with 𝒑𝟎
′ =

𝟐𝟎𝟎 kPa: (a) the upper bound prediction and (b) the lower bound prediction 
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Fig. 3.7 shows the results of overconsolidated Kaolin with 𝑂𝐶𝑅 = 2. Both the new and 

Wheeler’s (1986) lower bounds give higher 𝑠𝑢 than the measured value when 𝑓0 >

0.01. But the Wheeler’s is closer to the test data. One possible reason is that gas 

bubble expansion during unloading before shearing has caused irreversible damage to 

the soil structure, leading to lower undrained shear strength (Sultan et al., 2012). The 

new lower bound does not consider this damage. Meanwhile, it accounts for the 

bubble compression in triaxial compression after the isotropic unloading, which has 

beneficial effect on 𝑠𝑢. This makes the new lower bound prediction higher. Similar to 

the normally consolidated samples, the new upper bound gives smaller 𝑠𝑢 than the 

Wheeler’s. 

 

Fig. 3.7 The upper and lower bounds for overconsolidated Kaolin (𝑶𝑪𝑹 = 𝟐) with 

𝒑𝟎
′ = 𝟏𝟎𝟎 kPa 
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3.4.3 Malaysian Kaolin silt with nitrogen (Hong et al., 2020) 

 

Fig. 3.8 shows the test results of normally consolidated Malaysian Kaolin silt with 

different 𝑢𝑤0  (Hong et al. 2020). 𝑝0
′  is 200 kPa for all the tests. All the test results lie 

in the new upper and lower bounds. The new bounds are closer to the test data than 

the Wheeler’s. The results of tests with 𝑢𝑤0 = 0 and 𝑢𝑤0 = 50 kPa lie exactly on the 

new upper bound, while the test results for 𝑢𝑤0 = 600 kPa are very close to the new 

lower bound. Compared to the other two clays above, the gas bubbles are found to 

have less detrimental effect on 𝑠𝑢. Hong et al. (2020) have shown that this is related 

to the plastic index (𝐼𝑝) of clays. The Malaysian kaolin silt has the lowest 𝐼𝑝 and the 

least detrimental effect can be observed. The most significant detrimental effect can 

be seen on Kaolin reported in Sham (1989) which has the highest 𝐼𝑝. 

 

(a) 
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(b) 

 

(c) 
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(d) 
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(e) 

Fig. 3.8 The upper and lower bounds for normally consolidated Malaysian kaolin 

with nitrogen from Hong et al. (2020): (a) 𝒖𝒘𝟎 = 𝟎, (b) 𝒖𝒘𝟎 = 𝟓𝟎 kPa, (c) 𝒖𝒘𝟎 =

𝟏𝟓𝟎 kPa, (d) 𝒖𝒘𝟎 = 𝟑𝟎𝟎 kPa and (e) 𝒖𝒘𝟎 = 𝟔𝟎𝟎 kPa 

 

Fig. 3.9 shows the results of lightly overconsolidated Malaysian kaolin with different 

uw0 (Hong et al., 2020). All the samples were first consolidated to 𝑝𝑐
′ = 200 kPa and 

then unloaded to different 𝑝0
′ = 𝑝𝑐

′ /𝑅. The overconsolidation ratio 𝑅 varies between 

1.05 and 1.67. The undrained shear strength is normalized by the 𝑠𝑢
𝑠  at 𝑅 = 1. For 

each test, the initial gas volume fraction 𝑓0 is different, which can be found in Hong et 

al. (2020). Some of the test data is above the new upper bound at 𝑢𝑤0 = 0, which 

means that there could be more bubble flooding than the theoretical prediction. At 

𝑢𝑤0 = 600 kPa, the lower bound is higher than the measured results at 𝑅 = 1.43 and 

𝑅 = 1.67. Similar to the case for overconsolidated Kaolin in Sham (1989), there could 
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be irreversible soil structure damage during isotropic unloading, which is not 

accounted for by the new lower bound. 

 

(a) 
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(b) 
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(c) 

Fig. 3.9 The new upper and lower bounds for slightly overconsolidated Malaysian 

Kaolin with nitrogen from Hong et al. (2020): (a) 𝒖𝒘𝟎 = 𝟎, (b) 𝒖𝒘𝟎 =150 kPa, and (c) 

𝒖𝒘𝟎 = 𝟔𝟎𝟎 kPa 

 

3.4.4 Effect of total stress path 

 

The pore water pressure 𝑢𝑤 is found to have dramatic influence on the behaviour of 

FGS (Wheeler, 1986; Sham, 1989; Hong et al., 2017). Under otherwise identical 

conditions of 𝑓0 and 𝑂𝐶𝑅, FGS has smaller 𝑠𝑢 at higher 𝑢𝑤. It is important to realize 

that 𝑢𝑤 changes during loading. In undrained tests, the evolution of 𝑢𝑤 is dependent 

on the total stress path, which means that the 𝑠𝑢 of FGS is affected by the total stress 

path (Sultan et al., 2012). Note that the total stress path does not affect the effective 

stress path of a saturated clay but does affect that of the FGS because the evolution 
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of gas volume is dependent on the total stress path (Gao et al., 2020).The upper and 

lower bounds of Wheeler (1986) are independent of the total stress path. Fig. 3.10 

shows the prediction of the new upper and lower bounds under total stress paths with 

different 𝑎 values (Fig. 3.1). The parameters for Combwich mud are used and the soil 

is assumed to be normally consolidated. When 𝑎 = ∞, the total stress path is 𝛿𝑝 = 0. 

As 𝑎 increases from 3 to ∞, both the new upper and lower bounds give smaller 𝑠𝑢. 

Smaller 𝑎 leads to smaller change in 𝑢𝑤 (Fig. 3.1), which means less bubble flooding 

and lower 𝑠𝑢 for the upper bound. For the lower bound, bigger 𝑎 causes less bubble 

compression and higher 𝑓𝑓 at the same 𝑓0, which makes the 𝑠𝑢 smaller. When 𝑎 < 0, 

the 𝑠𝑢 predicted by the new lower bound is smaller than that of Wheeler’s because it 

considers gas bubble expansion due to reduction in 𝑝 (Eqs. 3.13-3.15). In this chapter, 

only triaxial compression condition is considered. When the absolute value of negative 

𝑎 is sufficiently large (which is referring to a triaxial extension test with 𝑝 < 0) which, 

𝑢𝑤  can decrease during loading, indicating that there can be ‘negative’ bubble 

flooding based on Eqs. (3.2) - (3.7), which is water flow from a partially flooded bubble 

to the saturated matrix. But there is no experimental evidence to show if there is 

‘negative’ bubble flooding at present. For all the simulations presented here, 𝑢𝑤 

increases and ‘negative’ bubble flooding does not occur. Unfortunately, there is no 

test data under loading conditions with 𝑎 = ∞  and 𝑎 < 0 . Note that the current 

theory only works in triaxial compression and cannot be applied in triaxial extension 

because it is based on the MCC which does not capture the soil response in triaxial 

extension well.  
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Fig. 3.10 Effect of total stress path on the new upper and lower bounds 

 

3.5 Discussion on the interaction between gas bubbles and 

saturated soil matrix 

 

The upper and lower bounds of Wheeler (1986) give the maximum and minimum 

possible 𝑠𝑢 for FGS, respectively. They are found to work for all the FGS above. The 

new bounds are generally closer to the test data because complete bubble flooding is 

not assumed for the upper bound and gas volume change during loading is considered 

for the lower bound. The new bounds are also dependent on the stress path. 

Therefore, the new bounds can be used to get a better prediction of 𝑠𝑢 for specific 

loading conditions. 

 

Some of the test data is very close to the new upper or lower bound, indicating that 
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either bubble flooding or the detrimental effect dominates. But most of the results 

are within the two bounds. For these tests, some of the gas cavities degrade the soil 

structure and reduces the undrained shear strength. Meanwhile, some of the bubbles 

may get flooded by pore water from the saturated matrix, which has beneficial effect 

on the soil stiffness and strength. As a result, the 𝑠𝑢  measured for the entire soil 

sample lie within the two bounds. The 𝑠𝑢  measured for FGS is also dependent on 

𝑢𝑤0+𝑝𝑎

𝑝0
′ . 

 

It has important implications for the constitutive modelling of FGS. First, the 

theoretical predictions above show that FGS is a composite material with a saturated 

soil matrix and compressible gas cavities. These bubbles tend to damage the soil 

structure but could be flooded by pore water. The condition for bubble flooding is 

𝑢𝑔 ≈ 𝑢𝑤  for each gas bubble (Wheeler, 1988). For the entire soil, however, some 

bubbles are flooded while others are not, depending on the microstructure of cavity 

surface (Wheeler et al., 1990). Complete bubble flooding does not occur, as the 

measured 𝑠𝑢  is well below Wheeler’s upper bound. Besides, the variable 
𝑢𝑤0+𝑝𝑎

𝑝0
′  is 

appropriate for modelling the effect of free gas on mechanical behaviour of FGS. 

Higher 
𝑢𝑤0+𝑝𝑎

𝑝0
′  leads to less bubble flooding and more detrimental effect (Hong et al., 

2020; Gao et al., 2020). Note that the variable 
𝑢𝑔0+𝑝𝑎

𝑝0
′  has been used for FGS, but it is 

very difficult to measure 𝑢𝑔 (Wheeler, 1986; Sham, 1989; Gao et al., 2020)
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Chapter 4: A critical state constitutive model 

of the fine-grained soils containing gas 

bubbles 

 

This chapter has been published in the Canadian Geotechnical Journal (“Editor’s 

Choice” paper for 2022): 

Gao, Z., Cai, H., Hong, Y., Lu, D.C. (2022). “A critical state constitutive model for gassy 

clay.” Canadian Geotechnical Journal, 59(6), pp. 1033-1045. http://doi.org/ 

10.1139/cgj-2020-0754. 

This work has been done through collaboration among University of Glasgow, Zhejiang 

University and Beijing University of Technology. Dr Gao developed the basic 

framework for modelling. Mr Cai made key contributions to the model formulations, 

validation and manuscript writing, with supervision of Dr Gao. Some test data on gassy 

clay was provided by Dr Hong at Zhejiang University. Prof. Lu has contributed to the 

development the ideas and writing. 

  

http://eprints.gla.ac.uk/view/author/30723.html
http://eprints.gla.ac.uk/view/author/47638.html
https://eprints.gla.ac.uk/251166/
https://eprints.gla.ac.uk/251166/
https://eprints.gla.ac.uk/view/journal_volume/Canadian_Geotechnical_Journal.html
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4.1 Introduction 

 

A new critical state constitutive model for FGS is proposed in this chapter. It is based 

on the method proposed in Gao et al. (2020), which accounts for the composite 

internal structure and bubble flooding of FGS. The new model uses stress quantities 

which can be readily measured and only one parameter is introduced (as compared to 

the MCC model) to describe the effect of gas bubbles on the mechanical behaviour of 

clays, making it easy to calibrate and use. The soil response in triaxial compression and 

isotropic compression is considered in this study. Two stress quantities, the mean 

effective stress 𝑝 [(= 𝜎1 + 2𝜎3)/3] and deviator stress 𝑞 (= 𝜎1 − 𝜎3) are used, where 

𝜎1  is the total axial stress and 𝜎3  is the total radial stress. The volumetric strain 𝜀𝑣 

(= 𝜀1 + 2𝜀3) and shear strain 𝜀𝑞 [=
2

3
(𝜀1 − 𝜀3)] are used in the constitutive equations, 

where 𝜀1 is the axial strain and 𝜀3 is the radial strain.  

 

4.2 Framework of the constitutive model for the fine-grained 

soils containing gas bubbles 

 

This study focuses on the mechanical behaviour of normally consolidated clay with a 

fixed amount of free gas. Gas dissolution and exsolution due to the change in mean 

total stress is not considered, as the two processes can be negligible for the gas types 

(mainly methane or nitrogen, which has very low solubility) of interests. The following 

assumptions are made for the new constitutive model based on existing research 

(Wheeler, 1988; Wheeler et al., 1990; Gao et al., 2020): (a) FGS is a composite material 

with compressible cavities and saturated soil matrix. The cavities are filled with gas 

when there is no bubble flooding. Once bubble flooding occurs, there are both gas and 

water in the cavities (Wheeler, 1988; Gao et al., 2020). Bubble flooding makes the 

saturated soil matrix partially drained in a globally undrained test, because there is 

water drainage from the soil, but such water flow is insufficient to make the matrix 
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fully drained. Terzaghi’s effective stress principle works for the saturated soil matrix. 

(b) The volume change of FGS is caused by both water flow at the soil element 

boundary and bubble flooding (Wheeler, 1988). When there is no bubble flooding, the 

gas cavities have a detrimental effect on the soil strength only because gas bubbles 

have no shear stiffness and strength, causing stress concentration (and thus damage) 

around the cavities. Bubble flooding makes the mean effective stress of the saturated 

soil matrix increase, which has a beneficial effect on the stiffness and shear strength. 

 

4.3. Stress and strain variables for FGS 

 

As FGS is a composite, the rule of mixtures should be used to get the relationship 

between total stress and stress state of the saturated soil matrix (Pietruszczak and 

Pande, 1996; Gao and Diambra, 2020; Gao et al., 2020; Shi et al., 2019). Though the 

gas bubbles are much larger than the soil particles, the gas volume fraction is small 

(<0.05 in most cases). Therefore, the following equations are used for stress 

decomposition (Gao et al., 2020)  

𝑝𝑚 = 𝑝                                                      (4.1) 

𝑝𝑚
′ = 𝑝′ = 𝑝 − 𝑢𝑤                                             (4.2) 

𝑞𝑚 = 𝑞                                                     (4.3) 

where 𝑝𝑚 and 𝑝′𝑚 are total and mean effective stress of the saturated clay matrix, 𝑞𝑚 

is the deviator stress of the saturated soil matrix, 𝑢𝑤 is the pore water pressure. 𝑞 is 

only dependent on 𝑞𝑚  because the gas has no shear stiffness. Note that the 

assumption in Eqs. (4.1) and (4.2) is valid when the gas volume fraction is small and 

the gas pressure is close to the water pressure. As will be shown in the subsequent 

sections, the model can give reasonable prediction of FGS behaviour with this 

assumption. It could be due to that the gas pressure and water pressure are close, 

because the curvature of the air-water interface is small due to big gas bubble size 

(Wheeler, 1986). The volume fraction of cavities 𝑓 is expressed as below (Wheeler, 

1988) 
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𝑓 =
𝑉𝑐

𝑉
                                                            (4.4) 

where 𝑉𝑐 is the specific volume of cavities and 𝑉 is the total specific soil volume. When 

there is no bubble flooding, the cavities are filled with free gas, and one has 

𝑉𝑐 = 𝑉𝑔 = (1 − 𝑆𝑟)𝑒                                          (4.5) 

𝑓 =
𝑉𝑐

𝑉
=

(1−𝑆𝑟)𝑒

1+𝑒
                                            (4.6) 

where 𝑆𝑟 (=
𝑉𝑤

𝑉𝑣
) is the degree of saturation and 𝑒 is the global void ratio, with 𝑉𝑤 and 

𝑉𝑣  being the specific volume of pore water and void, respectively. When there is 

bubble flooding, 𝑉𝑐 > 𝑉𝑔 and Eq. (4.4) must be used to calculate 𝑓 (Fig. 2.1). Following 

Gao et al. (2020), the global shear strain 𝜀𝑞 and volumetric strain of 𝜀𝑣 the FGS can be 

expressed as below 

     𝜀𝑞 = 𝜀𝑞
𝑚                                                           (4.7)                    

𝜀𝑣 = (1 − 𝑓)𝜀𝑣
𝑚 + 𝑓𝜀𝑣

𝑐                                            (4.8)                         

where the superscripts ‘m’ and ‘c’ represent the saturated soil matrix and gas cavities, 

respectively. Eq. (4.7) is assumed because the gas bubbles have no shear stiffness and 

the distortion of them follows that of the saturated matrix (Gao et al., 2020). But the 

term 𝑓𝜀𝑣
𝑐  in Eq. (4.8) cannot be neglected due to bubble flooding and high 

compressibility of the gas bubbles (Gao et al., 2020). As FGS is considered as a 

composite, the constitutive equation for the soil needs to be obtained based on the 

constitutive model for saturated soil matrix and gas cavities, which will be presented 

in the subsequent sections. 
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4.4 Constitutive relationship for the saturated soil matrix   

 

4.4.1 Volume change of the saturated soil matrix 

 

The constitutive model for the saturated soil matrix is proposed based on the Modified 

Cam-Clay (MCC) model (Roscoe and Burland, 1968). The plastic hardening of the MCC 

is modified to incorporate the effect of gas cavities. Besides, the volumetric strain 

increment of the matrix 𝑑𝜀𝑣
𝑚 is dependent on both water flow at the boundary 𝑑𝑉𝑏 

and bubble flooding 𝑑𝑉𝑓 which occurs inside the soil (Wheeler, 1986; Sills et al., 1991). 

The expression for 𝑑𝜀𝑣
𝑚 is  

𝑑𝜀𝑣
𝑚 =

𝑑𝑉𝑏

𝑉𝑚
+

𝑑𝑉𝑓

𝑉𝑚
= 𝑑𝜀𝑣

𝑏 + 𝑑𝜀𝑣
𝑓

                                         (4.9) 

where 𝑑𝜀𝑣
𝑏 and 𝑑𝜀𝑣

𝑓
 denote the volumetric strain increments caused by water flow at 

the boundary and bubble flooding, respectively.  

 

4.4.2 Constitutive equations for the saturated soil matrix 

   

The yield function 𝐹 of modified Cam-Clay model is used 

𝐹 = 𝑞2 − 𝑀2𝑝′(𝑝0
′ − 𝑝′) = 0                              (4.10)                                            

where 𝑝0
′  is the size of the current yield surface and 𝑀 is the critical state stress ratio. 

The associated plastic flow expressed as below is used 

𝑑𝜀𝑣
𝑚𝑝 = 〈𝐿〉

𝜕𝐹

𝜕𝑝′
                                                      (4.11)                                                            

𝑑𝜀𝑞
𝑚𝑝 = 〈𝐿〉

𝜕𝐹

𝜕𝑞
                                                       (4.12)                                                            

where 𝑑𝜀𝑣
𝑚𝑝 and 𝑑𝜀𝑞

𝑚𝑝 denote the plastic volumetric and shear strain increment for 

the saturated soil matrix, respectively; 𝐿 is the loading index and 〈  〉 are the McCauley 

brackets which make 〈𝐿〉 = 𝐿  for 𝐿 > 0  and 〈𝐿〉 = 0  otherwise. The elastic stress-

strain relationship is the same as that of the MCC model, with the elastic bulk modulus 

𝐾𝑚 and shear modulus 𝐺𝑚 for the saturated matrix being expressed as 



Chapter 4 

83 

 

𝑑𝜀𝑣
𝑚𝑒 =

𝑑𝑝′

 𝐾𝑚
           with          𝐾𝑚 =

1+𝑒𝑚

𝜅
𝑝′                        (4.13)                            

𝑑𝜀𝑞
𝑚𝑒 =

𝑑𝑞

 3𝐺𝑚
         with       𝐺𝑚 = 𝐾𝑚

3(1−2𝜈)

2(1+𝜈)
                     (4.14)                                  

where 𝐾𝑚 is the elastic bulk modulus of the saturated soil matrix, 𝐺𝑚 is the elastic 

shear modulus, 𝑒𝑚 (= 𝑆𝑟𝑒 without bubble flooding) is the void ratio of the saturated 

soil matrix, 𝑑𝜀𝑣
𝑚𝑒 is the elastic volumetric strain increment of the saturated soil matrix, 

𝑑𝜀𝑞
𝑚𝑒 is the elastic shear strain increment, 𝜅 is the swelling index and 𝜈 is the Poisson’s 

ratio.  

Since the pore gas pressure is not used in the current model, the plastic hardening law 

and bubble flooding equation are different, which will be discussed in this chapter. In 

Chapter 3, it is found that the variable  
𝑢𝑤+𝑝𝑎

𝑝0
′  is suitable for modelling lower and upper 

bounds of the shear strength of FGS, where 𝑝𝑎 is the atmospheric pressure and 𝑝0
′   

denotes the yield surface size. It will thus be employed in the new model formulations.   

The following hardening law is proposed for the saturated soil matrix. 

𝑑𝑝0
′ = 〈𝐿〉𝑟𝑝𝑐 = 〈𝐿〉(𝑟1 − 𝑟2) = 〈𝐿〉

(1+𝑒0)𝑝𝑐
′

𝜆−𝜅

𝜕𝐹

𝜕𝑝′
[1 − 𝑎𝐻√𝑓

𝜂

M
(1 − e

−
𝑢𝑤+𝑝𝑎

𝑝0
′

)] (4.15)           

where 𝑝0
′  denotes the size of MCC yield surface, 𝐿 is the loading index, 𝑒0 is the initial 

value of the saturated matrix void ratio 𝑒𝑚 , 𝜂 (= 𝑞/𝑝′) is the stress ratio, 𝜆 is the 

compression index, 𝜅  is the swelling index, 𝐹  is the MCC yield function, 𝑝𝑎  is the 

atmospheric pressure, 〈  〉 are the McCauley brackets [〈𝐿〉 = 𝐿 for 𝐿 > 0 and 〈𝐿〉 = 0 

otherwise].𝑎𝐻 is the new parameter which is used to describe the detrimental effect 

of gas bubbles on plastic hardening and shear strength, it must be determined using 

the triaxial compression test data on FGS. 𝑟1 = 〈𝐿〉
(1+𝑒0)𝑝0

′

𝜆−𝜅

𝜕𝐹

𝜕𝑝′
 which is the same as 

that for the MCC model and the term 𝑟2 = 〈𝐿〉
(1+𝑒0)𝑝0

′

𝜆−𝜅

𝜕𝐹

𝜕𝑝′
[𝑎𝐻√𝑓

𝜂

M
(1 − e

−
𝑢𝑤+𝑝𝑎

𝑝0
′

)] is 

used to model the detrimental effect of gas bubbles on the plastic hardening and shear 

strength. Higher 𝑟2  indicates more detrimental effect of gas bubbles on plastic 

hardening and shear strength. 𝑟2 = 0 when there is no cavity with 𝑓 = 0. Note that 
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𝑢𝑤+𝑝𝑎

𝑝0
′  is used as a state variable here because it is found suitable for modelling lower 

and upper bounds of the shear strength of FGS in Chapter 3. Existing experimental 

evidence shows that the gas bubbles merely influence the plastic hardening of 

saturated soil matrix in isotropic consolidation, and therefore, the term 
𝜂

M
 is 

introduced to make 𝑟2 = 0 at 𝜂 = 0 (Thomas, 1987; Wheeler, 1986; Hong et al., 2020). 

When the FGS is subjected to shear (e.g., triaxial compression), the detrimental effect 

of gas bubbles on plastic hardening is higher as  
𝑢𝑤+𝑝𝑎

𝑝0
′  increases, but such detrimental 

effect is limited (Wheeler, 1988; Hong et al., 2020; Gao et al., 2021). Therefore, the 

term 1 − e
−

𝑢𝑤+𝑝𝑎

𝑝0
′

 is used to make 𝑟2  increase with  
𝑢𝑤+𝑝𝑎

𝑝0
′  and reach the maximum 

value of 1 when 
𝑢𝑤+𝑝𝑎

𝑝0
′  is big enough. The plastic modulus 𝐾𝑝 for the saturated matrix 

is 

𝐾𝑝 = −
𝜕𝐹

𝜕𝑝𝑐
′ 𝑟𝑝𝑐                                             (4.16) 

 

4.4.3 Bubble flooding 

 

The concept of bubble flooding was first proposed by Wheeler (1986) to explain the 

beneficial effect of gas bubbles on undrained shear strength of FGS. For each bubble, 

the condition of bubble flooding is 𝑢𝑔 ≈ 𝑢𝑤, where 𝑢𝑔 is the gas pressure (Wheeler, 

1986). Since 𝑢𝑔 > 𝑢𝑤 due to the surface tension of water meniscus, 𝑢𝑔 ≈ 𝑢𝑤 is more 

likely when 𝑢𝑤 increases, which makes the curvature of water meniscus reduce and 

the difference between 𝑢𝑔  and 𝑢𝑤  smaller. Therefore, it is assumed that bubble 

flooding occurs when 𝑢𝑤 increases. The following formulation is proposed for 𝑑𝜀𝑣
𝑓

 

𝑑𝜀𝑣
𝑓

= 𝐴𝑑𝑢𝑤                                                 (4.17) 

where 

𝐴 = {

(1−𝑠𝑟)𝑒

(𝑢𝑤+𝑝𝑎)(1+𝑒)
                for 𝑑𝑢𝑤 > 0

0                                    for 𝑑𝑢𝑤 ≤ 0
                    (4.18) 
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It is evident that there is bubble flooding only when the soil is unsaturated with 𝑠𝑟 <

1 and 𝑑𝑢𝑤 > 0 (Gao et al., 2020). The rate of bubble flooding is also higher when 𝑢𝑤 

is smaller, which is supported by the experimental observation that gas cavities have 

a less beneficial effect on the strength of clay when 𝑢𝑤 is higher (Wheeler, 1986; Sham, 

1989; Hong et al., 2020). In drained isotropic compression, bubble flooding will not 

occur based on Eq. (4.17) because 𝑢𝑤 is constant. As will be shown in the subsequent 

sections of this chapter, this assumption is reasonable for modelling the volume 

change of FGS in drained isotropic compression (Figs. 4.4 and 4.8). However, if we 

devise an isotropic compression test with partial drainage (e.g., 𝑢𝑤  increases), the 

model will predict some bubble flooding. Note that Eq. (4.12) can predict bubble 

flooding even when there is a small variation in 𝑢𝑤, which is not realistic because this 

may not bring 𝑢𝑤 close to 𝑢𝑔. This limitation is expected to be addressed in future 

research. 

 

4.5 Gas and cavity volume change  

 

Since the cavity surface is part of the saturated soil matrix, it is expected that the cavity 

changes size when the effective stress of saturated soil matrix changes (or there is 

deformation in the matrix). Therefore, the volumetric strain increment of the cavity 

𝑑𝜀𝑣
𝑐 is assumed to be affected by 𝑑𝑝′ 

𝑑𝜀𝑣
𝑐 =

𝑑𝑉𝑐

𝑉𝑐
= 𝐵𝑑𝑝′ =

1 

𝑝′+𝑢𝑤+𝑝𝑎
𝑑𝑝′                             (4.19) 

where 𝑑𝑉𝑐  is the volume change of the cavity. This equation indicates that the 

compressibility of the cavity is dependent on the stiffness of saturated soil matrix as 

𝑝′ is included. Higher 𝑝′ will lead to lower compressibility of both the saturated soil 

matrix and gas cavity. In addition, the cavity volume change may also depend on other 

soil properties like the plasticity index and particle size, which means that extra model 

parameters may be required to describe such influence. But it is found that Eq. (4.14) 

is suitable for modelling the gas volume change. Therefore, it is unnecessary to use 

more complex formulations for the gas volume change. 
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4.6 The constitutive equation and parameter determination  

 

The constitutive equation for the entire FGS can be derived based on the constitutive 

model for the saturated soil matrix and equations for cavity and gas volume evolution, 

which is presented in this section. In the present model, the total strain increment is 

assumed to be the summation of the elastic and plastic parts with 𝑑𝜀𝑣
𝑚 = 𝑑𝜀𝑣

𝑚𝑒 +

𝑑𝜀𝑣
𝑚𝑝  and 𝑑𝜀𝑞

𝑚 = 𝑑𝜀𝑞
𝑚𝑒 + 𝑑𝜀𝑞

𝑚𝑝 . Based on Eqs. (4.8) and (4.19), one can get the 

following 

𝑑𝜀𝑣 = (1 − 𝑓)𝑑𝜀𝑣
𝑚 + 𝑓𝐵𝑑𝑝′                               (4.20) 

Since 𝑑𝜀𝑣
𝑚 = 𝑑𝜀𝑣

𝑚𝑒 + 𝑑𝜀𝑣
𝑚𝑝 =

𝑑𝑝′

𝐾𝑚
+ 〈𝐿〉

𝜕𝐹

𝜕𝑝′
, Eq. (4.20) can be rewritten as 

𝑑𝜀𝑣 = (1 − 𝑓) (
𝑑𝑝′

𝐾𝑚
+ 〈𝐿〉

𝜕𝐹

𝜕𝑝′
) + 𝑓𝐵𝑑𝑝′                       (4.21) 

The expression of 𝑑𝑝′ can be obtained based on Eq. (4.21) as below 

𝑑𝑝′ =
𝑑𝜀𝑣−(1−𝑓)〈𝐿〉

𝜕𝐹

𝜕𝑝′
1−𝑓

𝐾𝑚
+𝑓𝐵

=
𝑑𝜀𝑣

𝑋
− 〈𝐿〉

1−𝑓

𝑋

𝜕𝐹

𝜕𝑝′
                       (4.22) 

where 𝑋  represents the denominator of Eq. (4.22). Combining Eq. (4.22) and the 

condition of consistency for the yield function of MCC, one has 

𝜕𝐹

𝜕𝑝′
[

𝑑𝜀𝑣

𝑋
− 〈𝐿〉

1−𝑓

𝑋

𝜕𝐹

𝜕𝑝′
] + 3𝐺𝑚

𝜕𝐹

𝜕𝑞
[𝑑𝜀𝑞 − 〈𝐿〉

𝜕𝐹

𝜕𝑞
] − 〈𝐿〉𝐾𝑝 = 0        (4.23) 

 

where 𝐿 is the loading index and 〈 〉 are the McCauley brackets which make 〈𝐿〉 = 𝐿 

for 𝐿 > 0 and 〈𝐿〉 = 0 otherwise. The loading index 𝐿 can then be determined using 

Eq. (4.23) 

〈𝐿〉 =

1

𝑋

𝜕𝐹

𝜕𝑝′
𝑑𝜀𝑣+3𝐺𝑚

𝜕𝐹

𝜕𝑞
𝑑𝜀𝑞

𝐾𝑝+
1−𝑓

𝑋
(

𝜕𝐹

𝜕𝑝′
)

2
+3𝐺𝑚(

𝜕𝐹

𝜕𝑞
)

2 = Λ𝑝𝑑𝜀𝑣 + Λ𝑞𝑑𝜀𝑞                (4.24) 

where  Λ𝑝 = 

1

𝑋

𝜕𝐹

𝜕𝑝′

𝐾𝑝+
1−𝑓

𝑋
(

𝜕𝐹

𝜕𝑝′
)

2
+3𝐺𝑚(

𝜕𝐹

𝜕𝑞
)

2 and Λ𝑞 =
3𝐺𝑚

𝜕𝐹

𝜕𝑞

𝐾𝑝+
1−𝑓

𝑋
(

𝜕𝐹

𝜕𝑝′
)

2
+3𝐺𝑚(

𝜕𝐹

𝜕𝑞
)

2. The expression of 

𝑑𝑝′ in terms of 𝑑𝜀𝑣 and 𝑑𝜀𝑞 can be obtained using Eqs. (4.22) and (4.24) 

𝑑𝑝′ = 𝐶𝑝𝑝𝑑𝜀𝑣 + 𝐶𝑝𝑞𝑑𝜀𝑞                                     (4.25) 

where 
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𝐶𝑝𝑝 =
1

𝑋
− ℎ(𝐿)Λ𝑝

1−𝑓

𝑋

𝜕𝐹

𝜕𝑝′
                                             (4.26) 

𝐶𝑝𝑞 = −ℎ(𝐿)Λ𝑞
1−𝑓

𝑋

𝜕𝐹

𝜕𝑝′
                                               (4.27) 

where ℎ(𝐿)  is the Heaviside function with ℎ(𝐿) = 1  when 𝐿 > 0  and ℎ(𝐿) = 0 

otherwise. The increment of the deviator stress 𝑑𝑞 is 

𝑑𝑞 = 3𝐺𝑚(𝑑𝜀𝑞 − 𝑑𝜀𝑞
𝑚𝑝) = 3𝐺𝑚 (𝑑𝜀𝑞 − 〈𝐿〉

𝜕𝐹

𝜕𝑞
) = 𝐶𝑞𝑝𝑑𝜀𝑣 + 𝐶𝑞𝑞𝑑𝜀𝑞       (4.28)                                  

where 

𝐶𝑞𝑝 = −ℎ(𝐿)3𝐺𝑚Λ𝑝
𝜕𝐹

𝜕𝑞
                                           (4.29) 

𝐶𝑞𝑞 = 3𝐺𝑚 − ℎ(𝐿)3𝐺𝑚Λ𝑞
𝜕𝐹

𝜕𝑞
                                        (4.30) 

Combining Eqs. (4.8), (4.17), (4.19) and (4.22), the following equation can be got 

𝑑𝜀𝑣 = (1 − 𝑓)(𝑑𝜀𝑣
𝑏 + 𝐴𝑑𝑢𝑤) + 𝑓𝐵(𝐶𝑝𝑝𝑑𝜀𝑣 + 𝐶𝑝𝑞𝑑𝜀𝑞)             (4.31) 

Eq. (4.31) can then be used to get the expression for 𝑑𝑢𝑤 

𝑑𝑢𝑤 = 𝐶𝑤𝑝𝑑𝜀𝑣 + 𝐶𝑤𝑞𝑑𝜀𝑞 + 𝐶𝑤𝑏𝑑𝜀𝑣
𝑏                             (4.32) 

where 

𝐶𝑤𝑝 =
1−𝑓𝐵𝐶𝑝𝑝

(1−𝑓)𝐴
                                                      (4.33) 

𝐶𝑤𝑞 = −
𝑓𝐵𝐶𝑝𝑞

(1−𝑓)𝐴
                                                     (4.34) 

𝐶𝑤𝑏 = −
1

𝐴
                                                             (4.35) 

The constitutive equation can be written in a matrix form as below 

[
𝑑𝑝′

𝑑𝑞
𝑑𝑢𝑤

] = [

𝐶𝑝𝑝 𝐶𝑝𝑞 0

𝐶𝑞𝑝 𝐶𝑞𝑞 0

𝐶𝑤𝑝 𝐶𝑤𝑞 𝐶𝑤𝑏

] [

𝑑𝜀𝑣

𝑑𝜀𝑞

𝑑𝜀𝑣
𝑏

]                           (4.36) 

The constitutive equation requires two volumetric strain quantities 𝜀𝑣 and 𝜀𝑣
𝑏, which 

represent the total volume change and volume change due to water flow at the 

boundary. This is due to the bubble flooding and cavity volume change in the soil, 

which makes 𝜀𝑣 and 𝜀𝑣
𝑏 different. A code base on the MCC model is used for the model 

implementation. Both undrained triaxial compression and isotropic consolidation tests 

are simulated.  
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In a globally undrained test, 𝑑𝜀𝑣
𝑏 = 0 and a fixed 𝑑𝜀𝑞  (about 1e-5 is given in the model 

implementation) 𝑑𝑢𝑤 can then be calculated based on the total stress path with 𝑑𝑞 =

3(𝑑𝑝′ + 𝑑𝑢𝑤). Once 𝑑𝑢𝑤  is obtained, 𝑑𝑝′ and 𝑑𝑞 can be calculated using Equation 

(4.36). 𝑑𝜀𝑣
𝑐 can then be calculated using Equation (4.19).  

 

When an isotropic consolidation test is performed, there is no deviator strain (𝑑𝜀𝑞 =

0  and 𝑑𝜀𝑣  is given as a fixed value) and 𝑑𝑢𝑤 = 0, which means there is no bubble 

flooding in isotropic consolidation condition. Equation (4.36) can thus be used to 

calculate 𝑑𝑝′ and 𝑑𝑞 based on this condition.  

 

The volume change of cavity, saturated matrix, and entire soil should be calculated 

using the following equations:  

𝑑𝑉𝑐 = 𝑉𝑐𝑑𝜀𝑣
𝑐 = 𝑉𝑐 𝐵𝑑𝑝′ = 𝑉𝑐

1 

𝑝′+𝑢𝑤+𝑝𝑎
𝑑𝑝′                             (4.37) 

𝑑𝑉𝑚 = 𝑉𝑚𝑑𝜀𝑣
𝑚 = 𝑉𝑐 (

𝑑𝑉𝑏

𝑉𝑚
+

𝑑𝑉𝑓

𝑉𝑚
) = 𝑉𝑐(𝑑𝜀𝑣

𝑏 + 𝑑𝜀𝑣
𝑓

)                  (4.38) 

𝑑𝑉 = 𝑑𝑉𝑐 + 𝑑𝑉𝑚                                                 (4.39) 

 

The code for this model is provided in the Appendix I. 

 

There are six parameters in the model, five of which are the same as those for the 

MCC model. Only the parameter 𝑎𝐻 in Eq. (4.15) should be determined for FGS. Since 

𝑎𝐻 is used to describe the detrimental effect of gas bubbles on plastic hardening and 

shear strength, it must be determined using the triaxial compression test data on FGS. 

Only one set of test data from the conventional triaxial compression test is needed for 

determining 𝑎𝐻 through best fitting the stress-strain relationship. A test with an initial 

degree of saturation 𝑆𝑟0 ≤ 0.95 where the effect of gas on the soil response is obvious 

is recommended. Determination of 𝑎𝐻 will be presented below using the test data of 

gassy Combwich mud (Wheeler, 1986).  
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4.7 Model validation 

  

The model will be validated against the test data on three FGS, including Gassy 

Combwich mud (Wheeler, 1986), Gassy Kaolin (Sham, 1989) and Gassy Malaysian 

Kaolin (Hong et al., 2020).  

 

4.7.1 Calibration of model parameter 

 

Both isotropic consolidation and undrained triaxial compression tests have been 

reported on gassy Combwich mud in Wheeler (1986). The parameters 𝑀, 𝜆 and 𝛮 are 

directly obtained from Wheeler (1986). The elastic parameter 𝜈 = 0.2 is assumed as 

it has a small influence on the model prediction. Finally, 𝑎𝐻 is determined using the 

undrained test data on gassy Combwich mud with initial mean effective stress 𝑝0
′ =

400 kPa, initial pore water pressure 𝑢𝑤0 = 0 and initial degree of saturation 𝑆𝑟0 =

0.95 (Fig. 4.1). Specifically, 𝑎𝐻 is determined by fitting the undrained shear strength 

of this test visually. The undrained shear strength is higher when 𝑎𝐻 is smaller, which 

describes a less detrimental effect of gas bubbles on the soil stiffness and strength (Fig. 

4.1). The best model prediction for the undrained shear strength and effective stress 

path can be obtained by using 𝑎𝐻 = 14 for gassy combwich mud (Wheeler, 1986). The 

calibration of the model parameter 𝑎𝐻 for gassy combwich mud is shown in Fig. 4.1 

and same method is used for gassy kaolin (Sham, 1989) and gassy Malaysian kaolin 

(Hong et al., 2020). All the model parameters are listed in Table 4.1.  

 
 

Table 4.1 Model parameters for Chapter 4 

Soil 𝑀 𝜆 𝜅 𝛮 𝜈 𝑎𝐻 

Combwich mud (Wheeler, 
1986) 

1.33 0.174 0.0297 3.06 0.2 14 

Kaolin clay (Sham, 1989) 0.87 0.23 0.014 3.35 0.2 15 
Malaysian kaolin silt (Hong 

et al., 2020) 
1.05 0.25 0.06 3.81 0.2 3 
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   (a)                                    
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 (b) 

 
(c) 

Fig. 4.1 Model prediction for shear behaviour of gassy Combwich mud (test data 

from Wheeler, 1986): (a) the 𝜺𝒂 − 𝒒 relationship; (b) the effective stress path and (c) 

the evolution of excess pore water pressure 

4.7.2 Gassy Combwich Mud (Wheeler, 1986) 

 

The undrained shear strength of the FGS shown in Fig. 4.1 is higher than that of the 

saturated soil. This is because of the beneficial effect caused by bubble flooding 

dominates for the FGS, which is illustrated in Fig. 4.2. The model prediction without 

bubble flooding is shown in Fig. 4.2 (𝐴 = 0 in Eq. 4.13). All the model parameters are 

the same as those in Table 4.1. The undrained shear strength predicted by neglecting 

bubble flooding is smaller than the saturated one, as bubbles are assumed to have a 

detrimental effect on the soil stiffness and strength only with 𝑎𝐻 = 14. Under other 

conditions of 𝑢𝑤0, 𝑆𝑟0 and 𝑝0
′ , the overall effect of gas bubbles on undrained shear 
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strength can become detrimental due to a smaller amount of bubble flooding, which 

has been discussed in the second assumption for the model.  

 

(a)                           

 

(b) 
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(c) 

Fig. 4.2 Effect of bubble flooding on shear behaviour of gassy Combwich mud (test 

data from Wheeler, 1986): (a) the 𝜺𝒂 − 𝒒 relationship; (b) the effective stress path 

and (c) the evolution of excess pore water pressure 

 

Though many undrained triaxial compression tests have been done by Wheeler (1986), 

only one complete set of data is available, which includes the effective stress path and 

shear stress-strain relationship (see Fig. 4.1). For the other tests, only the undrained 

shear strength 𝑠𝑢 is available, which will be used to validate the model prediction. Fig. 

4.3 shows the model prediction for the undrained shear strength of gassy Combwich 

mud with different 𝑝0
′  and 𝑢𝑤0. The dots and the lines represent the undrained shear 

strength from test results and the predictions, respectively. The prediction line is 

obtained by connecting the prediction data points for different 𝑆𝑟0 values. The model 

prediction captures the trends of 𝑠𝑢 variation with 𝑆𝑟0 well, including both beneficial 

and detrimental effects under different circumstances. Obvious overestimation is 

observed for the tests with 𝑝0
′ = 200 kPa and 𝑢𝑤0 = 100 kPa (Fig. 4.3b). There are 

two possible reasons for this discrepancy. First, the 𝑠𝑢 for the test with 𝑝0
′ = 400 kPa, 
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𝑢𝑤0 = 0 kPa and 𝑆𝑟0 = 0.95, which has been used for determining the parameter 𝑎, 

lies on the upper bound of the test data in its group (Fig. 4.3a). This indicates that the 

model prediction tends to give higher 𝑠𝑢  for most of the tests. A better model 

prediction is expected if more results like those in Fig. 4.1 are available for getting 

more optimum value of 𝑎𝐻. Besides, it is noticed that the data for this group of tests 

are quite scattered, with two tests ( 𝑆𝑟0 = 0.97  and 𝑆𝑟0 = 0.984 ) showing 

unexpectedly low 𝑠𝑢  (Fig. 4b). The real 𝑠𝑢  could be higher and closer to the model 

prediction. 

 
   (a)                               
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 (b) 

 
(c) 
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Fig. 4.3 Model prediction for the undrained shear strength of gassy Combwich mud 

(test data from Wheeler, 1986): (a) 𝒑𝟎
′ = 𝟒𝟎𝟎 kPa; (b) 𝒑𝟎

′ = 𝟐𝟎𝟎 kPa and (c) 𝒑𝟎
′ =

𝟏𝟎𝟎 kPa 

Fig. 4.4 presents the comparison between test data and model prediction of gassy 

Combwich mud in isotropic compression (Wheeler, 1986). The dots and lines 

represent the test data and model predictions, respectively. The initial degree of 

saturation 𝑆𝑟0  is the one at 𝑝′ = 100  kPa. For the FGS samples, the total volume 

change is caused by water drainage from the saturated soil matrix and compression 

of gas bubbles (Eq. 4.14). There is no bubble flooding as 𝑢𝑤 is a constant (Eq. 4.12). 

The model can satisfactorily describe the volume change of FGS with different 𝑆𝑟0 (Fig. 

4.4a), indicating that Eq. (4.14) is suitable for modelling gas cavity compression in FGS. 

There is a unique relationship between the matrix void ratio 𝑒𝑚 and 𝑝′ for all samples 

(Fig. 4.4b), because Terzaghi’s effective stress principle works in the saturated soil 

matrix. 

 
  (a)                               
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 (b) 

Fig. 4.4 Model prediction for isotropic consolidation of gassy Combwich mud (test 

data from Wheeler, 1986): (a) the 𝒆 − 𝒑′  relationship and (b) the 𝒆𝒎 − 𝒑′ 

relationship  
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4.7.3 Gassy Kaolin (Sham, 1989) 

 

A series of undrained triaxial compression tests have been carried out on Kaolin with 

helium to investigate the upper and lower bounds for the undrained shear strength of 

FGS (Sham, 1989). Details of the test procedure can be found in Sham (1989). The MCC 

parameters are determined using the same method as for Combwich mud. The 

parameter 𝑎𝐻 is determined using the test data shown in Fig. 4.5, which is the only set 

of data which includes the stress-strain relationship and effective stress path. The 

model is then used to predict the 𝑠𝑢 of all the other gassy Kaolin specimens under 

different combinations of 𝑝0
′  and 𝑢𝑤0  (Fig. 4.6). The predicted 𝑠𝑢  is close to the 

measured value for most cases except those with 𝑝0
′ = 100 kPa and 𝑢𝑤0 = 300 kPa 

(Fig. 4.7d). Close inspection shows that the initial value of 
𝑢𝑤+𝑝𝑎

𝑝𝑐
′  is the maximum for 

this group of tests. This means that Eq. (4.10) tends to underestimate the detrimental 

effect of gas bubbles on the shear strength of this soil at higher 
𝑢𝑤+𝑝𝑎

𝑝𝑐
′ . An improved 

model prediction can be achieved by introducing more model parameters, which will 

inevitably make the parameter determination more difficult. 

 
(a)    
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 (b) 

Fig. 4.5 Model prediction for the shear behaviour of gassy Kaolin (test data from 

Sham, 1989) with 𝒑𝟎
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟏𝟎𝟎 kPa and 𝒔𝒓𝟎 = 𝟎. 𝟗𝟒𝟑: (a) the 𝜺𝒂 − 𝒒 

relationship; (b) the effective stress path 
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(a) 

 
 (b) 
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   (c)       

                          

 
 (d) 

Fig. 4.6 Model prediction for the undrained shear strength of gassy Kaolin clay  (test 

data from Sham, 1989): (a) 𝒑𝟎
′ = 𝟐𝟎𝟎 kPa and 𝒖𝒘𝟎 = 𝟎 kPa; (b) 𝒑𝟎

′ = 𝟐𝟎𝟎 kPa and 
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𝒖𝒘𝟎 = 𝟏𝟎𝟎  kPa (c) 𝒑𝟎
′ = 𝟐𝟎𝟎  kPa and 𝒖𝒘𝟎 = 𝟑𝟎𝟎  kPa; (d) 𝒑𝟎

′ = 𝟏𝟎𝟎  kPa and 

𝒖𝒘𝟎 = 𝟑𝟎𝟎 kPa 

4.7.4 Gassy Malaysian kaolin (Hong et al., 2020) 

 

A group of undrained triaxial tests have been carried out on gassy Malaysian kaolin by 

Dr. Hong to validate the model (Hong et al., 2020).  The liquid limit and plastic limit of 

MK is 65% and 28%, respectively (Hong et al., 2017). According to the plasticity chart 

(BSI 1999), this soil can be categorized as high plastic silt. The gas used in the tests is 

nitrogen. To get FGS samples with uniform and repeatable distribution of gas bubbles, 

the zeolite molecular sieve technique has been used (Nageswaran 1983; Wheeler 

1988; Sills et al. 1991; Hong et al., 2020). A more detailed discussion of the sample 

preparation method can be found in Hong et al. (2017; 2020). The tests have been 

carried out using the GDS triaxial apparatus with a double-cell (i.e., HKUST cell (Ng et 

al., 2002)) and a differential pressure transducer (DPT). Before triaxial compression, 

each specimen was isotropically consolidated to an initial effective mean effective 

stress of 𝑝0
′ = 200 kPa with different 𝑢𝑤0. 

All the MCC parameters are determined using the test results in Figs. 4.7 and 4.8 on 

the saturated soil. In Fig. 4.7, the dots and lines denote the test results and model 

predictions, respectively. In isotropic consolidation with constant pore water pressure, 

there is no bubble flooding and the gas bubbles do not affect plastic hardening (Eq.4. 

10). But there is extra gas bubble compression for unsaturated soil samples in isotropic 

consolidation (Eq. 4.14), which makes the slope of their 𝑒 − 𝑝′ curves higher than that 

of the saturated soil (Fig. 4.8). The model gives a unique 𝑒𝑚 − 𝑝′ relationship, which 

is identical to the 𝑒 − 𝑝′ curve for the saturated soil. The parameter 𝑎 is determined 

using the results on FGS in undrained triaxial compression tests with 𝑝0
′ = 200 kPa 

and initial pore water pressure 𝑢𝑤0 = 150 kPa (Fig. 4.9). The model predictions for 

the other undrained triaxial compression tests are shown in Figs. 4.10 and 4.11. In 

general, the model has reproduced both detrimental and beneficial effect of gas on 
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the soil response with various combinations of 𝑢𝑤0 and 𝑆𝑟0.  

It is noticed that gassy Malaysian kaolin silt has a much smaller 𝑎𝐻  than gassy 

Combwich mud and Kaolin (Table 4.1). This indicates that the gas bubbles have a much 

smaller detrimental effect on the 𝑠𝑢  of Malaysian kaolin. Hong et al. (2020) have 

shown that this is maybe linked with the difference in the plastic index (PI) of the soil. 

The more detrimental effect of gas on the soil strength is observed when the PI is 

higher. Among the three clays, the Malaysian kaolin has the lowest PI while the Kaolin 

in Sham (1989) has the highest. Indeed, the parameter 𝑎𝐻 is the biggest for the Kaolin 

and smallest for the Malaysian kaolin silt (Table 4.1). Therefore, the parameter could 

be alternatively approximated based on the PI of each soil. But the undrained triaxial 

tests on Malaysian kaolin silt have been performed with the same 𝑝0
′ . More tests on 

Malaysian kaolin with different 𝑝0
′  need to be done to confirm the correlation 

between PI and 𝑎𝐻. 

 

  
(a) 
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(b) 

 

 
(c) 
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Fig. 4.7 Model prediction for the undrained shear behaviour of saturated Malaysian 

kaolin (test data from Hong et al., 2020): (a) the 𝜺𝒂 − 𝒒 relationship; (b) the effective 

stress path and (c) the evolution of excess pore water pressure 

 

 

Fig. 4.8 Model prediction for the isotropic consolidation of gassy Malaysian kaolin 

(test data from Hong et al., 2020) 
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(a) 

 
(b) 
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(c) 

Fig. 4.9 Model prediction for the stress-strain relationship of gassy Malaysian kaolin 

(test data from Hong et al., 2020) with 𝒑𝟎
′ = 𝟐𝟎𝟎 kPa and 𝒖𝒘𝟎 = 𝟏𝟓𝟎 kPa: (a) the 

𝜺𝒂 − 𝒒 relationship; (b) the effective stress path and (c) the evolution of excess pore 

water pressure 
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(a)                               

 
 (b) 
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(c) 

Fig. 4.10 Model prediction for the stress-strain relationship of gassy Malaysian kaolin  

(test data from Hong et al., 2020) with 𝒑𝟎
′ = 𝟐𝟎𝟎 kPa and 𝒖𝒘𝟎 = 𝟓𝟎 kPa: (a) the 

𝜺𝒂 − 𝒒 relationship; (b) the effective stress path and (c) the evolution of excess pore 

water pressure 
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(a)                                   

 
 (b) 
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(c) 

Fig. 4.11 Model prediction for the undrained shear behaviour of gassy Malaysian 

kaolin (test data from Hong et al., 2020) with 𝒑𝟎
′ = 𝟐𝟎𝟎 kPa and 𝒖𝒘𝟎 = 𝟑𝟎𝟎 kPa: (a) 

the 𝜺𝒂 − 𝒒 relationship; (b) the effective stress path and (c) the evolution of excess 

pore water pressure 

 

4.8 Comparison with the new bounds in Chapter 3 

 

Figs. 4.12 and 4.13 show the comparison of the predicted undrained shear strength 

from the new bounds in Chapter 3 and the constitutive model in Chapter 4 with the 

test data from Sham (1989) and Hong et al. (2020). It is evident that the model 

prediction of Chapter 4 is within the two bounds. This shows that the hardening law 

and bubble flooding equation used in the model are reasonable and the state variable 

𝑢𝑤+𝑝𝑎

𝑝0
′

 is suitable for constitutive modelling of FGS. 
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(a) 

 

(b) 
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Fig. 4.12 The comparison of predictions between the models in Chapter 3 and 

Chapter 4 with test data from Sham (1989) with (a) 𝒑𝟎
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟎 and (b) 

𝒑𝟎
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟏𝟎𝟎 𝐤𝐏𝐚  

 

(a) 
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(b) 

Fig. 4.13 The comparison of predictions between the models in Chapter 3 and 

Chapter 4 with test data from Hong et al. (2020) with (a) 𝒑𝟎
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 =

𝟏𝟓𝟎 𝐤𝐏𝐚 and (b) 𝒑𝟎
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟑𝟎𝟎 kPa 
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Chapter 5: A bounding surface constitutive 

model of overconsolidated fine-grained soils 

containing gas bubbles 

 

This chapter has been submitted to 9th International SUT OSIG Conference 

“Innovative Geotechnologies for Energy Transition: 

Cai H.J., Gao Z.W., Hong .Y, Zhang J.F., Lu D.C. (2023). “Constitutive Modelling of 

Overconsolidated gassy clay.” 9th International SUT OSIG Conference “Innovative 

Geotechnologies for Energy Transition”, London, UK,12-14 September 2023 (under 

review). 

This work has been done through collaboration among University of Glasgow, Zhejiang 

University and Beijing University of Technology. Mr Cai has made key contributions to 

the model formulations, validation and manuscript writing, with the supervision of Dr 

Gao. Some test data on gassy clay was provided by Dr Hong and Mr. Zhang at Zhejiang 

University. Prof. Lu has contributed to the development the ideas and writing. 
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5.1 Introduction 

 

The main objective of this chapter is to investigate the mechanical behaviour of 

overconsolidated FGS and develop a new constitutive model. The constitutive model 

has been proposed based on the composite material method developed in Chapter 4. 

The constitutive model for overconsolidated clay proposed by Gao et al. (2017) will be 

used to describe the response of saturated soil matrix. Undrained triaxial compression 

tests have been carried out on gassy Malaysian Kaolin by Dr. Yi Hong at Zhejiang 

University (Hong et al., 2020). The model will be validated by the test data on 

Malaysian Kaolin (Hong et al., 2020) and Speciwhite Kaolin clay (Sham, 1989).  
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5.2 Undrained triaxial compression tests on Malaysian Kaolin 

 

A series of undrained triaxial tests have been carried out on reconstituted gassy 

Malaysian kaolin by Dr. Yi Hong at Zhejiang University. As summarized in Table 5.2, 

there are three groups of tests. Some of the typical test results are shown in Chapter 

2 (Figs. 2.9-2.10), where the initial degree of saturation 𝑆𝑟0 is the value at the end of 

isotropic consolidation for normally consolidated FGS or isotropic unloading for 

overconsolidated FGS. 

 

Table 5.1 Index properties of Malaysian Kaolin silt 

Index properties value 

Plasticity index 27 

Plastic limit ωP(%) 38 

Liquid limit ωL(%) 65 

  

Grain size distribution  

Percentage of clay (%) 64.9 

Percentage of silt (%) 35.1 

Percentage of sand (%) 0 
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Table 5.2 Programme of test 

 Test Group 1 2 3 

 Test number 1-a 1-b 1-c 1-d 1-e 1-f 2-a 2-b 2-c 2-d 2-e 2-f 3-a 3-b 3-c 3-d 3-e 3-f 

 𝑢𝑤0 (kPa) 0 600 300 

After 

consolidation  

𝑆𝑟 (%) 94.1 93.5 94.2 93.8 94.5 94.0 95.9 96.2 95.7 96.0 96.5 96.1 100 

f (%) 3.6 3.9 3.5 3.7 3.3 3.6 2.5 2.3 2.6 2.4 2.1 2.3 0 

After 

unloading 

𝑆𝑟 (%) 94.2 93.6 94.2 93.8 94.5 94.0 96.0 96.2 95.7 96.0 96.5 96.1 100 

OCR 1.67 1.43 1.25 1.18 1.11 1.05 1.67 1.43 1.25 1.18 1.11 1.05 1.67 1.43 1.25 1.18 1.11 1.05 
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5.3 Constitutive model for overconsolidated soils containing 

gas bubbles 

 

5.3.1 The stress and strain quantities for the model 

The constitutive model in Chapter 4 is based on the MCC model, which gives purely 

elastic response when the stress state is within the yield surface. But experimental 

evidence shows that overconsolidated clay always shows elastoplastic response. 

Therefore, the bounding surface or sub-loading surface concepts have been proposed 

to model the elastoplastic behaviour of overconsolidated soils (Hashiguchi, 1980; 

Dafalias et al., 1986). In this chapter, the bounding surface model for overconsolidated 

clay developed by Gao et al. (2017) will be used. This model employs a bounding 

surface that is first proposed by Collins (2005) based on the thermodynamics. A new 

dilatancy relationship for overconsolidated clay is employed. Fig. 5.1 shows the 

bounding surface used in this model. In this figure, 𝑝 and 𝑞  represent the current 

stress state and �̅� and �̅� represent the ‘image’ stress state. The variable 𝑟 is used to 

describe the degree of overconsolidation, which evolves during the loading process. 

At the initial state, 𝑟 = 1/𝑂𝐶𝑅 and it becomes 1 at the critical state. It is shown that 

this model gives good prediction of overconsolidated FGS. 

 

In addition, the model in Chapter 4 predicts no detrimental effect of gas bubbles on 

soil strength when the soil behaviour is elastic. As a result, it gives unrealistic 

prediction of the effective stress path for OC gassy clay (Fig.5.2). The effective stress 

path shows increasing 𝑝 before yielding due to bubble flooding. There is no damaging 

effect of gas bubbles on the soil response because there is no plastic deformation. 

Therefore, it is desirable to have a bounding surface model that can describe the 

plastic deformation before yielding, which is the main objective of this chapter. 
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Fig. 5.1 The mapping rule of the model on 𝒑 − 𝒒 plane 

 

 

Fig. 5.2 The stress path of prediction by model in Chapter 4 (no plastic deformation 

and bubble flooding occurs before yielding) 

 

5.3.2 Constitutive relationship for the saturated soil matrix  

 

The bounding surface model with state-dependent dilatancy for overconsolidated clay 
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is used for the saturated soil matrix. The bounding surface is expressed as (Collins, 

2005) 

 �̅� =
(�̅�′−𝛼�̅�0/2)2

[(1−𝛼)�̅�′+𝛼�̅�0/2]2
+

�̅�2

𝑀𝑐
2[(1−𝛼)�̅�′+𝛼�̅�0/2]2

− 1 = 0            (5.1) 

where �̅�0 is the size of the current yield surface, 𝛼 is a model parameter and 𝑀𝑐 is the 

critical state stress ratio in triaxial compression. Note that the bounding surface should 

be expressed in terms of 𝑝𝑚
′  and 𝑞𝑚, but they are replaced by 𝑝′ and 𝑞 according to 

Eqs. (4.2) and (4.3). The mapping centre for the bounding surface is the origin of the 

stress space. The following hardening law is employed for modelling the evolution of 

�̅�0: 

𝑑�̅�0 = 〈𝐿〉𝑟�̅�0
= 〈𝐿〉

(1+𝑒0)�̅�0

𝜆−𝜅

𝜕𝐹

𝜕�̅�

𝑀𝑐
2−�̅�2

2�̅�
(1 − 𝑥)                         (5.2) 

where 

𝑥 = 𝛾𝑓
1−(1+�̅�/𝑀𝑐)−20

1+exp(−
𝑢𝑤+𝑝𝑎

�̅�0
)
                                                   (5.3) 

where 𝐿 is the loading index, 〈  〉 are the McCauley brackets which make 〈𝐿〉 = 𝐿 for 

𝐿 > 0  and 〈𝐿〉 = 0  otherwise, 𝑒0  is the initial value of the matrix void ratio 𝑒𝑚 

(Wheeler, 1986), �̅� (= �̅�/�̅�′) is the stress ratio for the ‘image’ stress state, 𝑝𝑎 is the 

atmospheric pressure (101 kPa), 𝜆 is the compression index, 𝜅 is the swelling index 

and 𝛾 is a new model parameter. The term 𝑥  is used to describe the effect of gas 

cavities on plastic hardening of the soil. Higher 𝑥 indicates more detrimental effect of 

gas bubbles on plastic hardening and shear strength. 𝑥 = 0 when there is no cavity 

with 𝑓 = 0 . Existing experimental evidence shows that the gas bubbles merely 

influence the plastic hardening of saturated soil matrix in isotropic consolidation, and 

therefore, the term (1 + �̅�/𝑀𝑐)−20 is introduced to make 𝑥 = 0 at �̅� = 0 (Thomas, 

1987; Wheeler, 1986; Hong et al., 2020). Note that (1 + �̅�/𝑀𝑐)−20 = 0 where 𝑥 (no 

detrimental effect on hardening) approximately equal to 1 when �̅� > 0 (detremiental 

effected is activated). When the FGS is subjected to shear (e.g., triaxial compression), 

the detrimental effect of gas bubbles on plastic hardening is higher as  
𝑢𝑤+𝑝𝑎

�̅�0
 increases, 

but such detrimental effect is limited (Wheeler, 1988; Hong et al., 2020; Gao et al., 
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2021). Therefore, the term 1 + exp (−
𝑢𝑤+𝑝𝑎

�̅�0
) is used to make 𝑥 increase with  

𝑢𝑤+𝑝𝑎

�̅�0
 

and reach the maximum value of 1 when 
𝑢𝑤+𝑝𝑎

�̅�0
 is big enough.The plastic modulus for 

the bounding surface is thus expressed as 

�̅�𝑝 = −
𝜕𝐹

𝜕�̅�0
𝑟�̅�0

= −
𝜕𝐹

𝜕�̅�0

(1+𝑒0)�̅�0

𝜆−𝜅

𝜕𝐹

𝜕�̅�

𝑀𝑐
2−�̅�2

2�̅�
(1 − 𝑥)               (5.4) 

Following Gao et al. (2017), the plastic modulus for the current stress state is 

𝐾𝑝 = −
𝜕𝐹

𝜕�̅�0

(1+𝑒0)�̅�0

𝜆−𝜅

𝜕𝐹

𝜕�̅�

𝑀𝑣
2−�̅�2

2�̅�
(1 − 𝑥)                             (5.5) 

𝑀𝑣 = 𝑀𝑐𝑅−𝑛                                               (5.6) 

where 𝑅 is the ratio of the ‘image’ and current stress state (Gao et al., 2017). 𝑀𝑣 is 

used to model the effect of overconsolidation on the peak shear strength of saturated 

clay. 

The following plastic flow rule is expressed as below is employed 

𝑑𝜀𝑞
𝑚𝑝 = 〈𝐿〉

𝜕𝐹

𝜕�̅�
                                               (5.7) 

𝑑𝜀𝑣
𝑚𝑝 = 〈𝐿〉

𝜕𝐹

𝜕�̅�
𝐷                                             (5.8)  

where 𝑑𝜀𝑣
𝑚𝑝 and 𝑑𝜀𝑞

𝑚𝑝 denote the plastic volumetric and shear strain increment for 

the saturated soil matrix, respectively, 𝐷 is the dilatancy equation 

𝐷 =
𝑀𝑑

2−𝜂2

2𝜂
                                                      (5.9) 

𝑀𝑑 = 𝑀𝑐𝑅𝑚                                                 (5.10) 

where 𝑚 is a model parameter. 

 

The elastic stress-strain relationship is the same as that of the modified Cam-clay (MCC) 

model, with the elastic bulk modulus 𝐾𝑚  and shear modulus 𝐺𝑚  for the saturated 

matrix being expressed in Chapter 4. 

𝑑𝜀𝑣
𝑚𝑒 =

𝑑𝑝′

 𝐾𝑚
            with         𝐾𝑚 =

1+𝑒𝑚

𝜅
𝑝′                          (5.11) 

𝑑𝜀𝑞
𝑚𝑒 =

𝑑𝑞

 3𝐺𝑚
          with        𝐺𝑚 = 𝐾𝑚

3(1−2𝜈)

2(1+𝜈)
                       (5.12) 

where 𝑑𝜀𝑣
𝑚𝑒  is the elastic volumetric strain increment of the saturated soil matrix, 
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𝑑𝜀𝑞
𝑚𝑒 is the elastic shear strain increment, 𝜅 is the swelling index and 𝜈 is the Poisson’s 

ratio.  

 

5.3.3 Bubble flooding and cavity volume change 

 

The formulations for modelling the volume change due to bubble flooding 𝑑𝜀𝑣
𝑓

 are the 

same as the formulations in Chapter 4 (Eq. (4.17) and Eq. (4.18)). The volumetric strain 

increment of the cavity 𝑑𝜀𝑣
𝑐 is assumed to be affected by 𝑑𝑝′ ,and it is shown in Eq. 

(4.19). The total gas volume change is assumed to be the summation of cavity volume 

change and bubble flooding

𝑑𝑉𝑔 = 𝑑𝑉𝑐 + 𝑑𝑉𝑓 = 𝑉𝑐𝑑𝜀𝑣
𝑐 + 𝑉𝑚𝑑𝜀𝑣

𝑓
                              (5.13) 

Eq. (4.13) can be used to calculate the evolution of 𝑢𝑔 based on Boyle’s law. Since 𝑢𝑔 

is not used in the constitutive equations, and its evolution is not given here. But 𝑉𝑔 is 

updated in each loading step as it has effect on 𝑓, which is required in the model. The 

detailed derivation of the constitutive equations is given as follows. 

Since 𝑑𝜀𝑣
𝑚 = 𝑑𝜀𝑣

𝑚𝑒 + 𝑑𝜀𝑣
𝑚𝑝 =

𝑑𝑝′

𝐾𝑚
+ 〈𝐿〉

𝜕𝐹

𝜕�̅�
𝐷, The increment of volumetric strain can 

be rewritten as 

𝑑𝜀𝑣 = (1 − 𝑓) (
𝑑𝑝′

𝐾𝑚
+ 〈𝐿〉

𝜕𝐹

𝜕�̅�
𝐷) + 𝑓𝐵𝑑𝑝′                          (5.14) 

The expression of 𝑑𝑝′ can be obtained based on Eq. (5.14) as below 

𝑑𝑝′ =
𝑑𝜀𝑣−(1−𝑓)〈𝐿〉

𝜕𝐹

𝜕�̅�
𝐷

1−𝑓

𝐾𝑚
+𝑓𝐵

=
𝑑𝜀𝑣

𝑋
− 〈𝐿〉

1−𝑓

𝑋

𝜕𝐹

𝜕�̅�
𝐷                             (5.15) 

where 𝑋 represents the denominator of Eq. (5.15). Based on the bounding surface 

theory, one has 

𝜕𝐹

𝜕�̅�′
𝑑𝑝′ +

𝜕𝐹

𝜕�̅�
𝑑𝑞 − 〈𝐿〉𝐾𝑝 = 0                                      (5.16) 

Combining equations (5.15), (5.16), one can get 

𝜕𝐹

𝜕�̅�′
[

𝑑𝜀𝑣

𝑋
− 〈𝐿〉

1−𝑓

𝑋

𝜕𝐹

𝜕�̅�
𝐷] + 3𝐺𝑚

𝜕𝐹

𝜕�̅�
[𝑑𝜀𝑞 − 〈𝐿〉

𝜕𝐹

𝜕�̅�
] − 〈𝐿〉𝐾𝑝 = 0       (5.17) 
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The loading index 𝐿 can then be determined using Eq. (5.17) 

𝐿 =

1

𝑋

𝜕𝐹

𝜕�̅�′
𝑑𝜀𝑣+3𝐺𝑚

𝜕𝐹

𝜕�̅�
𝑑𝜀𝑞

𝐾𝑝+
1−𝑓

𝑋

𝜕𝐹

𝜕�̅�′

𝜕𝐹

𝜕�̅�
𝐷+3𝐺𝑚(

𝜕𝐹

𝜕�̅�
)

2 = Λ𝑝𝑑𝜀𝑣 + Λ𝑞𝑑𝜀𝑞                (5.18) 

The expression of 𝑑𝑝′ in terms of 𝑑𝜀𝑣 and 𝑑𝜀𝑞 can be obtained using Eqs. (5.16) and 

(5.18) 

𝑑𝑝′ = 𝐶𝑝𝑝𝑑𝜀𝑣 + 𝐶𝑝𝑞𝑑𝜀𝑞                                       (5.19) 

where 

𝐶𝑝𝑝 =
1

𝑋
− ℎ(𝐿)Λ𝑝

1−𝑓

𝑋

𝜕𝐹

𝜕�̅�
𝐷                                   (5.20) 

𝐶𝑝𝑞 = −ℎ(𝐿)Λ𝑞
1−𝑓

𝑋

𝜕𝐹

𝜕�̅�
𝐷                                      (5.21) 

where ℎ(𝐿)  is the Heaviside function with h(L) = 1  when L > 0  and h(L) = 0 

otherwise. The increment of the deviator stress 𝑑𝑞 is 

𝑑𝑞 = 3𝐺𝑚(𝑑𝜀𝑞 − 𝑑𝜀𝑞
𝑚𝑝) = 3𝐺𝑚 (𝑑𝜀𝑞 − 〈𝐿〉

𝜕𝐹

𝜕�̅�
) = 𝐶𝑞𝑝𝑑𝜀𝑣 + 𝐶𝑞𝑞𝑑𝜀𝑞      (5.22)                                 

where 

𝐶𝑞𝑝 = −ℎ(𝐿)3𝐺𝑚Λ𝑝
𝜕𝐹

𝜕�̅�
                                  (5.23) 

𝐶𝑞𝑞 = 3𝐺𝑚 − ℎ(𝐿)3𝐺𝑚Λ𝑞
𝜕𝐹

𝜕�̅�
                              (5.24) 

Combining Eqs. (4.8), (4.12), (4.14) and (5.19), the following equation can be got 

𝑑𝜀𝑣 = (1 − 𝑓)(𝑑𝜀𝑣
𝑏 + 𝐴𝑑𝑢𝑤) + 𝑓𝐵(𝐶𝑝𝑝𝑑𝜀𝑣 + 𝐶𝑝𝑞𝑑𝜀𝑞)             (5.25) 

Eq. (5.25) can then be used to get the expression for 𝑑𝑢𝑤 

𝑑𝑢𝑤 = 𝐶𝑤𝑝𝑑𝜀𝑣 + 𝐶𝑤𝑞𝑑𝜀𝑞 + 𝐶𝑤𝑏𝑑𝜀𝑣
𝑏                     (5.26) 

where 

𝐶𝑤𝑝 =
1−𝑓𝐵𝐶𝑝𝑝

(1−𝑓)𝐴
                                                  (5.27) 

𝐶𝑤𝑞 = −
𝑓𝐵𝐶𝑝𝑞

(1−𝑓)𝐴
                                                  (5.28) 

𝐶𝑤𝑏 = −
1

𝐴
                                                      (5.29) 

The constitutive equation can be written in a matrix form as below 

https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Heaviside_step_function
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[

𝑑𝑝′

𝑑𝑞
𝑑𝑢𝑤

] = [

𝐶𝑝𝑝 𝐶𝑝𝑞 0

𝐶𝑞𝑝 𝐶𝑞𝑞 0

𝐶𝑤𝑝 𝐶𝑤𝑞 𝐶𝑤𝑏

] [

𝑑𝜀𝑣

𝑑𝜀𝑞

𝑑𝜀𝑣
𝑏

]                                   (5.30) 

Note that in a globally undrained test, 𝑑𝜀𝑣
𝑏 = 0.  A code base on the MCC model is 

used for the model implementation. The same framework and calculation procedure 

as Chapter 4 is used. 

 

In a globally undrained test, 𝑑𝜀𝑣
𝑏 = 0 and a fixed 𝑑𝜀𝑞  (about 1e-5 is given in the model 

implementation) 𝑑𝑢𝑤 can then be calculated based on the total stress path with 𝑑𝑞 =

3(𝑑𝑝′ + 𝑑𝑢𝑤). Once 𝑑𝑢𝑤  is obtained, 𝑑𝑝′ and 𝑑𝑞 can be calculated using Equation 

(4.36). 𝑑𝜀𝑣
𝑐 can then be calculated using Equation (4.19). The code for this model is 

provided in the Appendix II. 
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5.4 Model validation 

 

The tests data on gassy Malaysian Kaolin (Hong et al., 2020) and Speciwhite Kaolin clay 

reported in Sham (1989) is used for the model validation. The model parameters for 

the two FGS which can be obtained in the literature are shown in Table 5.3. 

 

All the MCC parameters for Malaysian Kaolin silt are determined using the test results 

in Fig. 5.4 on the saturated soil. The parameters 𝑀𝑐 , 𝜆 and Ν are directly obtained 

from Hong (2020). ν = 0.25 is assumed as it has negligible influence on the model 

prediction. κ is determined based on the undrained shear strength of saturated soil. 

The parameters 𝑚, 𝑛 and 𝛾 are determined based on the test results for saturated 

fine-grained soil (Fig. 5.3). Finally, 𝛼 is determined using the data for FGS with 𝑝𝑐
′ =

200  kPa, 𝑢𝑤0 = 150  and 𝑆𝑟0 = 0.94  in normally consolidated conditions (Fig. 5.1) 

with Eq. (5.31).  

𝑝𝑓

𝑝𝑖
= (𝑂𝐶𝑅 ×

𝛼

2
)(

𝜆−𝜅

𝜆
)                                             (5.31) 

where 𝑝𝑓 is the mean effective stress at failure and 𝑝𝑖 is initial mean effective stress. 

The relationship between 𝑝𝑓 and 𝑝𝑖 can be derived based on Fig. 5.3.  
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Fig. 5.3 Relationship between 𝒑𝒇 and 𝒑𝒊 in undrained triaxial compression test (Gao 

et al., 2017) 

 

Parameters 𝑚 and 𝑛 can be determined based on the test results on overconsolidated 

FGS. It is found that the parameter 𝑚 has no significant influence on the prediction. 

Thus, parameter 𝑛  can be determined by setting 𝑚 = 0  at first. Then 𝑚  can be 

determined to fit the test results better. 

The model predictions for the undrained triaxial compression tests are shown in Figs. 

5.4 to 5.6. The dots and lines represent the test data and model predictions, 
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respectively. Different degree of saturation and 𝑂𝐶𝑅  are considered in the tests, 

which includes the effective stress path and shear stress-strain relationship. It is 

evident that the model can give reasonable prediction of the effective stress path and 

undrained shear strength. But there is discrepancy in the shear stress-strain 

relationship when the axial strain is less than 2% and the undrained shear strength for 

tests with 𝑆𝑟0 = 0.96 (Fig. 5.5). The model gives lower stiffness than the test data. This 

could be due to that the model does not consider the small-strain stiffness of FGS. The 

overprediction of the undrained shear strength for the for tests with 𝑆𝑟0 = 0.96 can 

be improved by using a modified formulation for the term 𝑥 in the hardening law. But 

this may require more model parameters.  

The validation of gassy kaolin clay with 𝑝𝑐
′ = 200 kPa, 𝑢𝑤0 = 100 kPa and OCR=1 has 

been shown in Fig. 5.7. It is the only set of data which includes the stress-strain 

relationship and effective stress path. Fig. 5.8 shows the validation of normalised 

undrained shear strength on Kaolin (Sham, 1989) with 𝑝𝑐
′ = 200 kPa, 𝑢𝑤0 = 300 and 

𝑂𝐶𝑅 =2. The parameters for the saturated clay are determined based on the test 

results in Sham (1989). The parameter 𝛾  is determined on the undrained shear 

strength data for unsaturated FGS (Fig. 5.7). All the parameters are listed in Table 5.3. 

The model prediction is in good agreement with the test data.  
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Table 5.3 Model parameters for Chapter 5 

soil 
Malaysian kaolin silt 

(Hong et al., 2020) 

Kaolin clay 

(Sham, 1989) 

𝑀𝑐 1.04 0.87 

𝜆 0.14 0.23 

𝜅 0.05 0.014 

Ν 3.81 3.35 

𝜈 0.25 0.2 

𝛼 1.0 1.0 

𝑚 2.0 0.1 

𝑛 0.6 0.5 

𝛾 30 46 

 

 

(a) 
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(b) 

Fig. 5.4 Model prediction for the stress-strain relationship of gassy Malaysian Kaolin  

(test data from Hong et al., 2020) with 𝒑𝒄
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟏𝟓𝟎 kPa, 𝑺𝒓𝟎 = 𝟎. 𝟗𝟒 

and different 𝑶𝑪𝑹: (a) the 𝜺𝒂 − 𝒒 relationship; (b) the effective stress path 

 

(a) 
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(b) 

Fig. 5.5 Model prediction for the stress-strain relationship of gassy Malaysian Kaolin  

(test data from Hong et al., 2020) with 𝒑𝒄
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟔𝟎𝟎 kPa, 𝑺𝒓𝟎 = 𝟎. 𝟗𝟔 

and different 𝑶𝑪𝑹: (a) the 𝜺𝒂 − 𝒒 relationship; (b) the effective stress path 

 

(a) 
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(b) 

Fig. 5.6 Model prediction for the stress-strain relationship of gassy Malaysian Kaolin  

(test data from Hong et al., 2020) with 𝒑𝒄
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟑𝟎𝟎 kPa, 𝑺𝒓𝟎 = 𝟏. 𝟎𝟎 

and different 𝑶𝑪𝑹: (a) the 𝜺𝒂 − 𝒒 relationship; (b) the effective stress path  
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(a) 

 

(b) 
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Fig. 5.7 Model validation for the stress-strain relationship of gassy Kaolin (test data 

from Sham, 1989) with 𝒑𝒄
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟏𝟎𝟎 kPa, 𝑺𝒓𝟎 = 𝟎. 𝟗𝟒𝟑 and 𝑶𝑪𝑹 = 𝟏: 

(a) the 𝜺𝒂 − 𝒒 relationship; (b) the effective stress path 

 

Fig. 5.8 Model validation of normalised undrained shear strength for the different 

𝑺𝒓 of gassy Malaysian Kaolin (test data from Sham, 1989) with 𝒑𝒄
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 =

𝟑𝟎𝟎 kPa and 𝑶𝑪𝑹 = 𝟐 

 

Figs. 5.9 to 5.11 show the calculated results of gassy Malaysian kaolin silt with 𝑝𝑐
′ =

200  kPa, different  𝑢𝑤0 , 𝑆𝑟0  and 𝑂𝐶𝑅 . The stress-strain relationship and effective 

stress path is included in the figures. The effect of the degree of saturation and 𝑂𝐶𝑅 

can be easily seen in each figure. 
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(a) 

 

 

(b) 

Fig. 5.9 Model prediction for the stress-strain relationship of gassy Malaysian Kaolin 

with 𝒑𝒄
′ = 𝟐𝟎𝟎  kPa, 𝒖𝒘𝟎 = 𝟎 kPa, 𝑺𝒓𝟎 = 𝟎. 𝟗𝟐  and different 𝑶𝑪𝑹 : (a) the 𝜺𝒂 − 𝒒 

relationship; (b) the effective stress path 
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(a) 

 

(b) 

Fig. 5.10 Model prediction for the stress-strain relationship of gassy Malaysian 

Kaolin with 𝒑𝒄
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟏𝟎𝟎 kPa, 𝑺𝒓𝟎 = 𝟎. 𝟗𝟒 and different 𝑶𝑪𝑹: (a) the 

𝜺𝒂 − 𝒒 relationship; (b) the effective stress path 
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(a) 

 

 

(b) 

Fig. 5.11 Model prediction for the stress-strain relationship of gassy Malaysian 

Kaolin with 𝒑𝒄
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟐𝟎𝟎 kPa, 𝑺𝒓𝟎 = 𝟎. 𝟗𝟔 and different 𝑶𝑪𝑹: (a) the 

𝜺𝒂 − 𝒒 relationship; (b) the effective stress path 
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Figs. 5.12 to 5.14 show the simulation of the normalised undrained shear strength 

with different degree of saturation and OCR, at different  𝑢𝑤  and the same 𝑝𝑐
′ =

200kPa. 𝑠𝑢
0 is the undrained shear strength of the saturated clay, which varies with 

the OCR. In Fig. 5.12, the undrained shear strength 𝑠𝑢  increases as the degree of 

saturation 𝑆𝑟 decreases, which is related to the ‘bubble flooding’. But the increase in 

𝑠𝑢  becomes less significant as 𝑂𝐶𝑅  increases. This is due to the dilatancy of 

overconsolidated clay. As 𝑂𝐶𝑅  increases, the saturated soil matrix becomes less 

contractive, which means smaller increase in pore water pressure 𝑢𝑤 and less ‘bubble 

flooding’ (Eq. 4.17). In Figs. 5.13 and 5.14, 𝑠𝑢 decreases as 𝑆𝑟 decreases for both the 

normally consolidated and overconsolidated soils. There is more significant decrease 

in 𝑠𝑢 for normally consolidated soils. This is also due to the detrimental effect of gas 

cavities on plastic hardening is more significant in normally consolidated soils. There 

is a specific highest value of the normalised undrained shear strength at 𝑆𝑟 = 0.973 

in Fig. 5.13. One possible reason is that there is more beneficial effect than detrimental 

effect at a certain value of the degree of saturation. It is found that gas bubbles tend 

to have less beneficial effect on the undrained shear strength of soil as the 𝑂𝐶𝑅 

increases. This is associated with the dilatancy of overconsolidated FGS. As 𝑂𝐶𝑅 

increases, the saturated soil matrix becomes less contractive, which causes smaller 

increase in pore water pressure in undrained tests and less bubble flooding. 

Meanwhile, overconsolidation makes the detrimental effect of gas bubbles on the 

undrained shear strength less significant. 
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Fig. 5.12 Model prediction of normalised undrained shear strength for gassy 

Malaysian Kaolin with 𝒑𝒄
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟎 kPa 
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Fig. 5.13 Model prediction of normalised undrained shear strength for gassy 

Malaysian Kaolin with 𝒑𝒄
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟏𝟓𝟎 kPa 

 

 

 

Fig. 5.14 Model calculation of normalised undrained shear strength for the different 

𝑺𝒓 and OCR of gassy Malaysian Kaolin with 𝒑𝒄
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟔𝟎𝟎 kPa
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5.5 Comparison on new bounds and constitutive models 

 

Fig. 5.15 shows the prediction of the upper and lower bounds and the constitutive 

model for the overconsolidated FGS with test data. The new upper and lower bounds 

can simulate the undrained shear strength better in most cases and the model in 

Chapter 5 can give a closer prediction with test data. 

 

 

Fig. 5.15 The comparison of predictions between the models in Chapter 3 and 

Chapter 5 with test data from Hong et al. (2020) with 𝒑𝟎
′ = 𝟐𝟎𝟎  kPa, 𝒖𝒘𝟎 =

𝟏𝟓𝟎  kPa and different 𝑶𝑪𝑹 

 

Figs. 5.16 and 5.17 show the comparison of the predictions of the constitutive model 

in Chapters 4 and 5 with test data from Hong et al. (2020). The samples are lightly 

overconsolidated with 𝑂𝐶𝑅 = 1.05 and 1.25. Fig. 5.16 indicates that the 

overconsolidated model gives better prediction for the stress-strain relationship, 
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effective stress path and undrained shear strength. In particular, there is no increase 

in 𝑝′ at the initial loading stage when the overconsolidated model is used, because the 

detrimental effect of gas bubbles on plastic hardening can be captured. The normally 

consolidated model gives bubble flooding without damaging effect, which leads to the 

increase of 𝑝′.  

 

(a) 
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(b) 

Fig. 5.16 The comparison of predictions between the models in Chapter 4 and 

Chapter 5 with test data from Hong et al. (2020) with 𝒑𝐜
′ = 𝟐𝟎𝟎  kPa, 𝒖𝒘𝟎 =

𝟏𝟓𝟎  kPa, 𝒔𝒓𝟎 = 𝟎. 𝟗𝟒 and 𝑶𝑪𝑹 = 𝟏. 𝟎𝟓: (a) 𝜺𝒂 − 𝒒 relationship; (b) the effective 

stress path 

 

The results in Fig. 5.17 are interesting. The normally consolidated model gives better 

prediction of the shear stiffness before failure (Fig. 5.17 a) because the model assumes 

purely elastic response in before 𝑞  reaches 108 kPa. The overconsolidated model 

underpredicts the shear stiffness due to the consideration of plastic deformation. Fig. 

5.17 b clearly shows that the overconsolidated model overpredicts the 𝑝′ when 𝑞 <75 

kPa. 
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(a) 

 

(b) 

Fig. 5.17 The comparison of predictions between the models in Chapter 4 and 

Chapter 5 with test data from Hong et al. (2020) with 𝒑𝐜
′ = 𝟐𝟎𝟎  kPa, 𝒖𝒘𝟎 =
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𝟏𝟓𝟎  kPa, 𝒔𝒓𝟎 = 𝟎. 𝟗𝟒 and 𝑶𝑪𝑹 = 𝟏. 𝟐𝟓: (a) 𝜺𝒂 − 𝒒 relationship; (b) the effective 

stress path 

 

Fig. 5.18 shows the comparison of predicted undrain shear strength by the new 

bounds and two models. The two models give similar prediction of the undrained 

shear strength. But it is worth noting that the ooverconsolidation model gives more 

reasonable prediction of the effective stress path before failure (Figs. 5.16 and 5.17)  

 

Fig. 5.18 The comparison of predictions of the models in Chapter 3 ,4 and Chapter 5 

with test data from Hong et al. (2020) with 𝒑𝟎
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟏𝟓𝟎  kPa and 

different 𝑶𝑪𝑹 

 

In Fig. 5.19, the lower bound is higher than the model prediction. This shows that the 

new hardening law used in Chapter 5 is appropriate for overconsolidated FGS. But the 

assumptions used in Chapter 3 for the lower bound may overestimate the undrained 

shear strength in some cases. Since there is very limited test data on overconsolidated 
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FGS, more research is needed to verify this conclusion. 

 

Fig. 5.19 The comparison of predictions between the models in Chapter 3, Chapter 4 

and Chapter 5 with test data from Sham (1989) with 𝒑𝟎
′ = 𝟐𝟎𝟎 kPa, 𝒖𝒘𝟎 = 𝟑𝟎𝟎 and 

𝑶𝑪𝑹 = 𝟐 
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Chapter 6: Conclusions and 

Recommendations 
 

This chapter covers the main conclusions of the study in the thesis, with 

recommendations for future work on the behaviour of fine-grained soils containing 

gas bubbles. 

 

6.1 Conclusions 

 

Three main parts are included in the thesis. Firstly, a study on the upper and lower 

bounds for the undrained shear stress of FGS is presented based on the critical state 

soil mechanics and previous theoretical studies. The variable proposed in the new 

bounds of the undrained shear strength is then introduced to perform the detrimental 

effect on the undrained shear strength of FGS. Finally, the constitutive model for 

overconsolidated FGS is proposed. The constitutive model is validated using the 

triaxial test data of different FGS.  
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6.1.1 New lower and upper bounds for the undrained shear strength of 

FGS 

 

New lower and upper bounds for the undrained shear strength of FGS have been 

developed based on the critical state soil mechanics and the original work of Wheeler 

(1986). The new upper bound is derived based on the assumption that the gas volume 

change is the same as the amount of pore water flowing into the cavities. There is only 

bubble flooding for the upper bound, but complete bubble flooding does not occur. 

The amount of bubble flooding is dependent on the stress path and degree of 

overconsolidation. The MCC model is used to calculate the undrained shear strength 

after bubble flooding. The lower bound is derived based on the original work of 

Wheeler (1986), but the volume change of gas cavities during loading is considered.  

 

Both the new and Wheeler’s (1986) lower and upper bounds are capable of describing 

the undrained shear strength of FGS, but the new bounds are closer to the test data 

of three FGS. Therefore, Wheeler’s bounds predict the possible maximum and 

minimum undrained shear strength for all loading conditions, but the new bounds 

work better for predicting the undrained shear strength under specific loading 

conditions. The new bounds can also account for the effect of the total stress path on 

the undrained shear strength of unsaturated samples. But more experimental work 

needs to be done to verify the predictions. The new lower bound is found to 

overestimate the undrained shear strength of lightly overconsolidated FGS. This could 

be because it does not account for the soil structure damage caused by gas bubble 

expansion during unloading. 

 

The study of the new bounds has several implications for the constitutive modelling 

of FGS. The theoretical study shows that the FGS has a unique structure with a 
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saturated soil matrix and compressible cavities. Bubbles damage the soil structure but 

there could be bubble flooding which increases the soil strength. The variable 
𝑢𝑤0+𝑝𝑎

𝑝0
′  

is proper for characterising the effect of gas on the soil behaviour. Bigger 
𝑢𝑤0+𝑝𝑎

𝑝0
′  leads 

to less bubble flooding and more detrimental effect. This variable is introduced to 

propose the constitutive model in the following section of the thesis. 
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6.1.2 A critical state constitutive model for FGS 

 

A critical state constitutive model for FGS is then proposed, in which the soil is 

considered as a composite material with saturated soil matrix and cavities. The 

cavities tend to have a damaging effect on the soil structure as the gas has high 

compressibility and zero shear strength. In some cases, the cavities can be flooded by 

pore water, which makes the saturated soil matrix partially drained in an undrained 

test. Bubble flooding has a beneficial effect on soil stiffness and strength. The new 

model has the following features:  

(a) Plastic hardening of the saturated soil matrix is assumed to be affected by gas 

cavities to model the damaging effect of gas cavities on the soil structure. As 

the gas volume fraction increases, the shear stiffness and strength of the soil 

decrease.  

(b) The beneficial effect of free gas on soil strength and stiffness is modelled by 

considering bubble flooding. Bubble flooding is assumed to occur in all FGS in 

shear. But the amount of bubble flooding is dependent on the stress state and 

pore water pressure change. 

(c) There are six parameters (𝑀, 𝜆, 𝜅, 𝛮, 𝜈, 𝑎𝐻) in the model, five of which are the 

same as those for the MCC model. Only one extra parameter ( 𝑎𝐻 ) is 

introduced to describe the damaging effect of gas bubbles on the plastic 

hardening of the saturated soil matrix. It can be readily determined using the 

triaxial compression test data. The model has been validated by the results of 

over 100 tests on three FGS.  
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6.1.3 A constitutive model for overconsolidated FGS 

 

A constitutive model for overconsolidated FGS has been proposed based on the model 

for normally consolidated FGS and the bounding surface model. FGS is considered as 

a composite with saturated soil matrix and gas cavities. The mechanical behaviour of 

saturated soil matrix is described by a constitutive model for overconsolidated clay 

accounting for the effect of overconsolidation on dilatancy. Plastic hardening of the 

saturated soil matrix is assumed to be affected by gas cavities to model the damaging 

effect of gas cavities on the stiffness and shear strength. The beneficial effect of free 

gas on soil behaviour is modelled by considering bubble flooding. The model has been 

validated by the test data of gassy Malaysian Kaolin. It is found that gas bubbles tend 

to have a less beneficial effect and more detrimental effect on the undrained shear 

strength of clay as the OCR increases. This is associated with the dilatancy of 

overconsolidated clay. As OCR increases, the saturated soil matrix becomes less 

contractive, which causes a smaller increase in pore water pressure in undrained tests 

and less ‘bubble flooding’. 

 

The model has been validated by the data in undrained triaxial tests from literature 

(Wheeler, 1986, Sham, 1989, Hong et al., 2020). No drained tests have been 

performed in this study, and no such data is available in the literature. This is due to 

that the undrained condition is more important for the geotechnical design in clay. 

The model may show slight softening behaviour when 𝑢𝑤 is very high. The reason is 

that the evolution law for the bounding surface size can cause contraction of the 

bounding surface. To improve the model response in this regard, flatter bounding 

surface with rotational hardening law (for anisotropy) can be used. This will be the 

future work of this study. 
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6.2 Recommendations for the future work 

 

Constitutive models are proposed for both normally consolidated and 

overconsolidated FGS to describe their mechanical behaviour in the thesis. The new 

upper and lower bounds are firstly derived based on reasonable assumptions. Then a 

constitutive model for normally consolidated FGS is proposed using the variable which 

is found in the new upper and lower bounds. Both the effects of bubble flooding and 

gas bubbles are considered in the new constitutive model. To make further prediction 

for the mechanical behaviour of overconsolidated FGS, the constitutive model is 

revised by introducing a dilatancy relation and a bounding surface. Though, the three 

models can make good prediction with the test data, further research can be 

promoted. Some future work can be done in the following aspects to improve our 

understanding of FGS mechanics and constitutive modelling: 

 

Improvement in our understanding of FGS mechanics: There are many studies on both 

experimental and theoretical aspects. However, it is still worth researching to 

understand more about FGS mechanics. The gas pressure is hard to measure, and the 

pore water pressure is then used instead based on reasonable assumptions. A more 

specific method of measuring gas pressure should be proposed, and related apparatus 

should be developed. Meanwhile, research on the behaviour of overconsolidated FGS 

with a higher degree of consolidation is necessary. More parameters may influence 

the mechanical behaviour of FGS. Even though the prediction will be more 

complicated with more parameters, they should be introduced to make the prediction 

well. 

 

Improvement in constitutive modelling:  

a) The formulation for describing the plastic hardening, bubble flooding and 

cavity volume change needs to be further improved to capture FGS 
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behaviour with different properties. The model parameters are performed 

based on the existing test data, and more extensive laboratory tests on 

different soils are needed for this work; The model will be implemented in 

an open-source software package to solve real boundary value problems 

associated with FGS, enabling the assessment of geo-hazards such as 

submarine landslides of the gassy seabed. The main code will be modified 

to account for bubble flooding;  

b) When a FGS sample is subjected to unloading, there can be gas exsolution 

that damages the soil structure. The current model cannot capture the 

behaviour of FGS under unloading because it gives a purely elastic 

response. More research will be done to extend the model for such loading 

conditions.  

c) For the constitutive model for the overconsolidated FGS, the data in 

undrained triaxial tests have validated the model. No drained tests have 

been performed in this study, and no such data is available in the literature. 

This is due to that the undrained condition is more important for the 

geotechnical design in clay. More experimental research on the drained 

response of FGS is needed in the future. The model may show slight 

softening behaviour when 𝑢𝑤 is very high. The reason is that the evolution 

law for the bounding surface size can cause contraction of the bounding 

surface. To improve the model response in this regard, flatter bounding 

surface with rotational hardening law (for anisotropy) can be used. This 

will be the future work of this study. 
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Appendix I  
 

This is the code for constitutive model in Chapter 4. The constitutive equations can be 

found in Chapter 4. 

 

       PROGRAM CONSTITUTIVE MODEL FOR GASSY SOIL 

      IMPLICIT REAL*8(A-H,O-Z) 

      OPEN (unit=8, file='CM.TXT',status='unknown') 

100   FORMAT (f12.6,1x,f12.6,1x,f12.6,1x,f12.6,1x,f12.6,1x,f12.6, 

     $                     1x,f12.6,1x,f12.6,1x,f12.6)  

C       

      PRINT*, 'WHAT IS THE SOIL? 1 FOR SHAM AND 2 FOR SIMON, 3 FOR ZJU' 

      READ*, ISOIL 

      IF (ISOIL .EQ. 1) THEN 

      DLA=0.23D0 

      DKA=0.014D0 

      DNIU=0.2D0 

      DM=0.87D0 

      EGA=2.350D0 

      DMA=15.D0 

      ELSE IF (ISOIL .EQ. 2) THEN 

          DLA=0.174D0 

          DKA=0.0297D0 

          DNIU=0.2D0 

          DM=1.33D0 

          EGA=2.06D0 

          DMA=14.0D0 

      ELSE IF (ISOIL .EQ. 3) THEN 

          DLA=0.25D0 

          DKA=0.06D0 

          DNIU=0.2D0 

          DM=1.05D0 

          EGA=2.81D0 

          DMA=3.D0 

      END IF 

C       

      PA=101.0D0 

C        

      PRINT*, ' THE INITIAL EFFECTIVE P' 

      READ*, P 

      Q=1.0D-6 
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C 

      PRINT*, 'GIVE THE INITIAL UW' 

      READ*, UW 

      uw0=uw 

      EV=0.0D0 

      EQ=0.0D0 

      DEQREF=1.0D-5 

C 

      PC=Q*Q/(DM*DM*P)+P 

 

C******************************************************* 

 

      E0=EGA-DLA*LOG(PC) 

      EM=E0 

      PRINT*,'give SR initial value' 

      READ*, SR 

      PRINT*, 'STRESS PATH, 1 FOR CU TEST DQ=3DP, 2 FOR ISO CONS' 

      READ*, IPATH 

 

C ************************************************** 

 

      VS=1.0D0 

      VM=1.D0+EM 

      VV=EM/SR 

      VG=(1.D0-SR)*EM/SR 

      VC=VG 

      ETT=VV 

      VT=VM+VG 

      FV=VG/VT  ! VOLUME FRACTION OF GAS BUBBLES ! 

C      

       IF (IPATH .EQ. 2)THEN  

         DSTOP = P 

         STOVL = 200.0D0 

      ELSE IF (IPATH .EQ. 1)THEN  

         DSTOP = EQ 

         STOVL = 15.0D-2 

      END IF 

C       

      DO WHILE (DSTOP .LT. STOVL) 

          IF (IPATH .EQ. 1)THEN   

                WRITE(8,100) p,q, EQ*100.D0,q,EQ*100.D0,UW-uw0 

          ELSE IF (IPATH .EQ. 2)THEN 
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              WRITE(8,100) ETT, P, EM, P 

          END IF    

C           

      IF (SR .GT. (1.D0-1.D-6)) THEN 

          SR=1.D0-1.D-6 

      END IF 

      ETA=Q/P 

      A=(1.D0-SR)/(UW+PA)*ETT/(1.D0+ETT) 

      B=(1.D0)/(P+UW+PA)   

C       

      DK=(1.D0+EM)/DKA*P 

      DG=3.D0*(1.D0-2.D0*DNIU)*(1.D0+EM)*P/(2.D0*DKA*(1.D0+DNIU)) 

C     

      PFPQ=2.D0*Q 

      PFPP=-DM*DM*PC+DM*DM*2.D0*P 

      PFPC=-DM*DM*P 

C       

      RPC1=PFPP*PC*(1.D0+E0)/(DLA-DKA) 

C       

      FV=MAX(FV, 0.0D0) 

      TRMU=1.D0-EXP(-(UW+PA)/PC) 

      TERMF=SQRT(FV) 

      TERME=(ETA/DM) 

      DAMG=TRMU * TERMF * TERME 

      DMG2=PFPP*DMA ! 

      RPC2=PC*(1.D0+E0)/(DLA-DKA)*DAMG*DMG2 

C       

      RPC=RPC1-RPC2    

C 

      PARAX=(1.D0-FV)/DK +FV*B 

C       

      DKP=-PFPC*RPC 

      DNR=DKP+(1.D0-FV)/PARAX*PFPP*PFPP+PFPQ*3.D0*DG*PFPQ 

C 

      DLP=1.D0/PARAX*PFPP/DNR 

      DLQ=PFPQ*3.D0*DG/DNR 

C      

      CPP = 1.D0/PARAX-DLP*(1.D0-FV)/PARAX*PFPP 

      A1 = CPP 

      CPQ = -DLQ*(1.D0-FV)/PARAX*PFPP 

      A2 = CPQ 

      A3=0.0D0 
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C       

      CQP= -3.D0*DG*DLP*PFPQ 

      B1=CQP 

      CQQ=3.D0*DG-3.D0*DG*DLQ*PFPQ 

      B2=CQQ 

      B3=0.0D0 

C        

      CWP=(1.D0-FV*B*CPP)/((1.D0-FV)*A) 

      C1=CWP 

      CWQ=-FV*B*CPQ/((1.D0-FV)*A)  

      C2=CWQ 

      CWB=-1.D0/A 

      C3=CWB 

C    

C======================================================       

C    FOR UNDRAINED TRIAXIAL COMPRESSION TESTS 

C======================================================       

C          

      IF (IPATH .EQ. 1 ) THEN    

          DEQ=DEQREF 

          DEV=(B2-3.D0*(A2+C2))/(3.D0*(A1+C1)-B1)*DEQ 

          DEVB=0.0D0 

      END IF 

C      

C======================================================       

C    FOR ISOTROPIC CONSOLIDATION TESTS 

C======================================================       

C  

      IF (IPATH .EQ. 2) THEN    

          DEV=DEQREF  

          DEQ=0.0D0 

          DEVB=-C1*DEV/C3 

      END IF     

C===================================================           

C   STRESS PATH COMPLETED 

C===================================================       

      DP=A1*DEV+A2*DEQ+A3*DEVB 

      DQ=B1*DEV+B2*DEQ+B3*DEVB 

      DUW=C1*DEV+C2*DEQ+C3*DEVB 

C       

      DLIN=DLP*DEV+DLQ*DEQ    

      DPC=DLIN*RPC    
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C 

      DEVC=B*DP 

      DEVM=DEVB+A*DUW 

      DVM=DEVM*VM 

      DVC=VC*DEVC 

      DVT=DVC+DVM 

      DVG=DVC+A*DUW*VM 

C 

      VC=VC-DVC 

      VT=VT-DVT 

      VG=VG-DVG 

      VV=VV-DVT 

      VM=VM-DVM 

C 

      SR=1.D0-VG/VV 

      FV=VG/VT 

      ETT=VV 

      EM=VM-VS ! VM-1.0D0 

C       

      P=P+DP 

      Q=Q+DQ 

      UW=UW+DUW 

C       

      PC=PC+DPC 

      EV=EV+DEV 

      EQ=EQ+DEQ 

C     

      IF (IPATH .EQ. 2)THEN  

         DSTOP = P 

         STOVL = 200.0D0 

      ELSE IF (IPATH .EQ. 1)THEN  

         DSTOP = EQ 

         STOVL = 15.0D-2 

      END IF 

C       

      END DO 

      END 
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Appendix II       
 

This is the code for constitutive model in Chapter 5. The constitutive equations can be 

found in Chapter 5. 

 

PROGRAM State_Dependent_Dilatancy_Clay_PQ_Space_Collins_Yield_Surf 

        IMPLICIT real*8 (A-H,O-Z) 

        IMPLICIT INTEGER (KIND=8) (I-N) 

c     

      OPEN( UNIT=8,FILE='STATE-DEPD-DLATC-CLAY.TXT', STATUS = 'UNKNOWN') 

100   FORMAT (f12.6,1x,f12.6,1x,f12.6,1x,f12.6,1x,f12.6,1x,f12.6)     

      ! THE PARAMETERS 

      AHARD = 0.5D0    

      BDILA = 0.1D0    

      DLA = 0.23D0 

      DKA = 0.014D0 

      DMC = 0.87D0 

      DNU = 0.20D0  

      DMA = 46.0D0 

      DBETA=1.D0 

      ! 

      DAL = 1.0D0             

      !GAMA = ALPHA              

      !HFGAMA = GAMA / 2.0D0 

      !BETA = 1.0D0 - GAMA 

    ! 

! Yield function expression: 

!  F=(P-HFGAMA*PC)**2/(BETA*P+HFGAMA*PC)**2+Q**2/M**2/((1.0D0-

ALPHA)*P+HFGAMA*ALPHA*PC)**2 

 

C      PRINT*, 'WHAT IS THE OCR VALUE ? '  

C      READ*, OCR 

      OCR=2.0d0 

     

      P = 100.0D0         

      PC = P * OCR      

      P0B = PC 

      PINI = P 

      Q = 1.0D-16 

      UW=300.0D0 
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      UW0=UW 

      DEQREF = 1.0D-6 

      VOIDR0 = 1.13D0   

      VOIDR = VOIDR0 

   

      EPSV = 0.0D0 

      EPSQ = 0.0D0 

      RPAST = 1.0D0 / OCR 

      PA=101.0D0 

  

C====================================================================

==========     

   !  DO WHILE (EPSQ .LT. 0.102D0) 

   !  IF(EPSQ .lt. 0.01d0)then 

   !  DEPSQ = 1.D-6 

   !  ELSE 

   !  DEPSQ = 1.D-5 

   !  END IF 

C====================================================================

==========       

C      PRINT*,'give SR initial value' 

C      READ*, SR 

C      SR=1.0d0-1.0D-6 

      SR=0.969D0 

C      PRINT*, 'STRESS PATH, 1 FOR CU TEST DQ=3DP, 2 FOR ISO CONS' 

C      READ*, IPATH 

      IPATH=1 

C ************************************************** 

      VS=1.0D0 

      VM=1.D0+VOIDR 

C      WRITE(*,*),'VM=',VM 

      VV=VOIDR/SR 

      VG=(1.D0-SR)*VOIDR/SR 

C      WRITE(*,*),'VG=',VG 

      VC=VG 

      ETT=VV 

      VT=VM+VG 

C      WRITE(*,*),'VT=',VT 

 

      FV=VG/VT  

C      

      IF (IPATH .EQ. 2)THEN  
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         DSTOP = P 

         STOVL = 200.0D0 

      ELSE IF (IPATH .EQ. 1)THEN  

         DSTOP = EPSQ 

         STOVL = 15.0D-2 

      END IF 

C       

      DO WHILE (DSTOP .LT. STOVL) 

          IF (IPATH .EQ. 1)THEN   

                WRITE(8,100) P,Q,EPSQ*100.D0,Q,EPSQ*100.D0,UW-UW0 

          ELSE IF (IPATH .EQ. 2)THEN 

              WRITE(8,100) ETT, P, VOIDR, P 

          END IF    

C           

      IF (SR .GT. 1.D0) THEN 

          SR=1.D0-1.D-6 

      END IF   

      A=(1.D0-SR)/(UW+PA)*ETT/(1.D0+ETT) 

C      WRITE(*,*),'A=',A     

C      READ*,SJDF 

      B=(1.D0)/(P+UW+PA)    

C      WRITE(*,*),'B=',B 

C      READ*,SJDF 

C      print*, sr,uw,ett 

C      read*, sttrr 

C      WRITE(*,*),'UW=',UW 

   ! 

      ETA=Q/P  

      R=RPAST   

c      print*,p,q 

c      read*,ccs 

     

911   PB=P/R 

      QB=Q/R 

      DF1=((PB-DAL*P0B/2.D0)**2.D0)/(((1.D0-DAL)*PB+DAL*P0B/2.D0)**2.D0) 

      DF2=(QB*QB)/(DMC**2.D0)/(((1.D0-DAL)*PB+DAL*DAL*P0B/2.D0)**2.D0) 

      FCHECK=DF1+DF2-1.D0                     

      IF ( FCHECK .GT. 1.0D-5 ) THEN 

          R = R * 1.001D0                

          GO TO 911 

          ELSE IF  ( FCHECK .LT. -1.0D-5 ) THEN               

              R = R * 0.999D0            
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              GO TO 911 

      END IF 

c 

      IF (R .GT. 1.0D0)  R = 1.0D0 

      RPAST = R           

c                print*, R,RPAST 

c    ! PRINT*, R 

c     

     

      FQ=2.D0*QB/(DMC*DMC*((1.D0-DAL)*PB+DAL*DAL/2.D0*P0B)**2.D0) 

C      WRITE(*,*),'FQ=',FQ 

C      READ*,SDJF 

      DC1=2.D0*(PB-DAL/2.D0*P0B)/(((1.D0-DAL)*PB+DAL/2.D0*P0B)**2.D0) 

      DC2=(PB-DAL/2.D0*P0B)**2.D0 

      DC3=(-2.D0)*((1.D0-DAL)*PB+DAL/2.D0*P0B)**(-3.D0)*(1.D0-DAL) 

      DC4=QB*QB/(DMC*DMC)*(-2)*(((1.D0-DAL)*PB+DAL*DAL/2*P0B)**(-3.D0)) 

      FP=DC1+DC2*DC3+DC4*(1.D0-DAL) 

C      WRITE(*,*),'FP=',FP 

C      READ*,SDJF 

      DC5=DC1*(-DAL/2.D0) 

      DC6=(-2.D0)*(((1.D0-DAL)*PB+DAL/2.D0*P0B)**(-3.D0))*(DAL/2.D0) 

      FP0B=DC5+DC2*DC6+DC4*(DAL*DAL/2.D0)  

C      WRITE(*,*),'FP0B=',FP0B 

C      READ*,SDJF 

      IF (FP0B .GT. 0.0D0) then 

          PRINT*, 'ERROR' 

      end if 

       

c    

      DKPB=-FP0B*(1.D0+VOIDR)*P0B/(DLA-DKA)*FQ*(DMC**2-ETA**2)/2.0D0/ETA 

C     print*, dkpb 

C     WRITE(*,*),'DKPB=',DKPB 

C     READ*,SFES 

       

       

c 

      DMVP=DMC/(R**AHARD)    !  EXP ( AHARD * (1.D0 - R) )!  POWER LAW.. 

C     WRITE(*,*),'DMVP=',DMVP 

      DMDIL=DMC*(R**BDILA)        !  EXP (BDILA * (-1.0D0 + R) )! POWER LAW.. 

C     WRITE(*,*),'DMDIL=',DMDIL 

c 

      DMVPP=(DMVP**2-ETA**2)/2.0D0/ETA 
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C     WRITE(*,*),'DMVPP=',DMVPP 

C     READ*,SDJF  

      DPLA=(DMDIL**2-ETA**2)/2.0D0/ETA 

C     WRITE(*,*),'DPLA=',DPLA 

C     READ*,SJDF 

 

      DKELA=P*(1.D0+VOIDR)/DKA 

C     WRITE(*,*),'DKELA=',DKELA 

C     READ*,SDJF 

      G=3.0D0*(1.0D0-2.0D0*DNU)/2.0D0/(1.0D0+DNU)*DKELA 

C     WRITE(*,*),'G=',G 

C     READ*,SDJF 

c 

      RPC1=FQ*DPLA*P0B*(1.D0+VOIDR)/(DLA-DKA)  !FP=FQ*D 

C     WRITE(*,*),'RPC1=',RPC1 

C     READ*,SDJF  

      FV=MAX(FV, 0.0D0) 

      TRMU=1.D0+EXP(-DBETA*(UW+PA)/P0B) 

C     TERMF=SQRT(FV) 

      TERME=1.D0-(1.D0+(ETA/DMC))**(-20.D0)   ! DMC OR DMVP ??? 

      DAMG=FV*TERME/TRMU                      !TRMU * TERMF * TERME (ORIGINAL) 

      DMG2=FQ*DPLA*DMA ! 

      RPC2=P0B*(1.D0+VOIDR)/(DLA-DKA)*DAMG*DMG2 

C      JLK;;KJ 

      RPC=RPC1-RPC2 

C     WRITE(*,*),'RPC=',RPC 

C     READ*,SDJF 

C 

      RPC3=FQ*DMVPP*P0B*(1.D0+VOIDR)/(DLA-DKA)  !FP=FQ*D 

C     WRITE(*,*),'RPC1=',RPC1 

C     READ*,SDJF  

      DMG3=FQ*DMVPP*DMA ! 

      RPC4=P0B*(1.D0+VOIDR)/(DLA-DKA)*DAMG*DMG3 

C      JLK;;KJ 

      RPC5=RPC3-RPC4 

C     WRITE(*,*),'RPC=',RPC 

C     READ*,SDJF 

      PARAX=(1.D0-FV)/DKELA +FV*B 

C     WRITE(*,*),'PARAX=',PARAX 

C     READ*,SDJF 

C       

      DKP=-FP0B*RPC5 
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C     WRITE(*,*),'DKP=',DKP 

C     READ*,SDJF 

      DNR=DKP+(1.D0-FV)/PARAX*FP*FQ*DPLA+FQ*3.D0*G*FQ 

C     WRITE(*,*),'DNR=',DNR 

C     READ*,SDJF 

C     PRINT*,DKP 

 

C 

      DLP=1.D0/PARAX*FP/DNR 

C     WRITE(*,*),'DLP=',DLP 

C     READ*,SDJF 

      DLQ=FQ*3.D0*G/DNR 

C     WRITE(*,*),'DLQ=',DLQ 

C     READ*,SDJF 

C      

      CPP = 1.D0/PARAX-DLP*(1.D0-FV)/PARAX*FQ*DPLA 

      A1 = CPP 

C     WRITE(*,*),'A1=',A1 

C     READ*,SDJF 

      CPQ = -DLQ*(1.D0-FV)/PARAX*FQ*DPLA 

      A2 = CPQ 

C     WRITE(*,*),'A2=',A2 

C     READ*,SDJF 

      A3=0.0D0 

C       

      CQP= -3.D0*G*DLP*FQ 

      B1=CQP 

C      WRITE(*,*),'B1=',B1 

C      READ*,SDJF 

      CQQ=3.D0* G-3.D0*G*DLQ*FQ 

      B2=CQQ 

C      WRITE(*,*),'B2=',B2 

C      READ*,SJDF 

      B3=0.0D0 

C        

      CWP=(1.D0-FV*B*CPP)/((1.D0-FV)*A) 

      C1=CWP 

C      WRITE(*,*),'C1=',C1 

C      READ*,SJDF 

      CWQ=-FV*B*CPQ/((1.D0-FV)*A) 

      C2=CWQ 

C      WRITE(*,*),'C2=',C2 
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C      READ*,SJDF 

      CWB=-1.D0/A 

      C3=CWB 

C      WRITE(*,*),'C3=',C3 

C      READ*,SJDF 

C======================================================       

C     FOR UNDRAINED TRIAXIAL COMPRESSION TESTS 

C======================================================       

C          

      IF (IPATH .EQ. 1 ) THEN    

          DEPSQ=DEQREF 

C          DEPSV=0.0D0 

          DEPSV=(B2-3.D0*(A2+C2))/(3.D0*(A1+C1)-B1)*DEPSQ 

C          WRITE(*,*),'DEPSV=',DEPSV 

C          READ*,SDJF 

          DEVB=0.0D0 

      END IF 

C      

C======================================================       

C    FOR ISOTROPIC CONSOLIDATION TESTS 

C======================================================       

C  

      IF (IPATH .EQ. 2) THEN    

          DEPSV=DEQREF  

          DEPSQ=0.0D0 

          DEVB=-C1*DEV/C3 

      END IF     

C===================================================           

C   STRESS PATH COMPLETED 

 

C===================================================       

      DP=A1*DEPSV+A2*DEPSQ+A3*DEVB 

C     WRITE(*,*),'DP=',DP 

C     READ*,SJDF 

      DQ=B1*DEPSV+B2*DEPSQ+B3*DEVB 

C     WRITE(*,*),'DQ=',DQ 

C     READ*,SJDF 

      DUW=C1*DEPSV+C2*DEPSQ+C3*DEVB 

C     WRITE(*,*),'DUW=',DUW 

C     READ*,SJDF 

      !DP0B=P0B*(1.0D0+VOIDR)/(DLA-DKA)*HDL*DLINDEX*FQ*DPLA 

C     DVOID=(1.0D0+VOIDR)*DEPSV        ! 
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C       

C    DLIN=DLP*DEPSV+DLQ*DEPSQ   ! THIS IS IMPORTANT, PAY ATTENTION TO THE 

CHANGES MADE 

      DLIN=DLP*DEPSV+DLQ*DEPSQ 

C      WRITE(*,*),'DLIN=',DLIN 

C      READ*,SJDF! 

C      DP=DKELA*(DEPSV-DLIN*FQ*DPLA) 

C      WRITE(*,*),'DP=',DP 

C      READ*,SJDF 

C      DQ=3.D0*G*(DEPSQ-DLIN*FQ) 

C      WRITE(*,*),'DQ=',DQ 

C      READ*,SJDF 

      DP0B=DLIN*RPC  

C      WRITE(*,*),'DP0B=',DP0B 

C      READ*,SJDF 

C 

      DEVC=B*DP 

      DEVM=DEVB+A*DUW 

C      WRITE(*,*),'DEVM=',DEVM 

C      READ*,SJDF 

      DVM=DEVM*VM 

C      WRITE(*,*),'DVM=',DVM 

C      READ*,SJDF 

      DVC=VC*DEVC 

      DVT=DVC+DVM 

      DVG=DVC+A*DUW*VM 

C 

      VC=VC-DVC 

      VT=VT-DVT 

      VG=VG-DVG 

      VV=VV-DVT 

      VM=VM-DVM 

C      WRITE(*,*),'VM=',VM 

C      READ*,SDJF 

C 

      SR=1.D0-VG/VV 

      FV=VG/VT 

      ETT=VV 

C      VOIDR=VOIDR-DVOID 

      VOIDR=VM-VS ! VM-1.0D0 

C      WRITE(*,*),'VOIDR=',VOIDR 

C      READ*,SJDF 
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C       

      P=P+DP 

      Q=Q+DQ 

      UW=UW+DUW 

C       

      P0B=P0B+DP0B 

      EPSV=EPSV+DEPSV 

      EPSQ=EPSQ+DEPSQ 

C     

      IF (IPATH .EQ. 2)THEN  

         DSTOP = P 

         STOVL = 200.0D0 

      ELSE IF (IPATH .EQ. 1)THEN  

         DSTOP = EPSQ 

         STOVL = 15.0D-2 

      END IF 

c 

      END DO 

c 

      END 
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