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Abstract

This thesis presents a novel vertex-centred finite volume algorithm for explicit large
strain solid contact dynamic problems where potential contact loci are known a priori.
This methodology exploits the use of a system of first order conservation equations
written in terms of the linear momentum and a triplet of geometric deformation mea-
sures, consisting of the deformation gradient tensor, its co-factor and its determinant,
in combination with their associated Rankine-Hugoniot jump conditions. These jump
conditions are used to derive several dynamic contact models ensuring the preserva-
tion of hyperbolic characteristic structure across solution discontinuities at the contact
interface, which is a significant advantage over standard quasi-static contact models
where the influence of inertial effects at the contact interface is completely neglected.
By taking advantage of this conservative formalism, both kinematic (velocity) and ki-
netic (traction) contact-impact conditions are explicitly enforced at the fluxes through
the use of the appropriate jump conditions. Specifically, the kinetic contact condition
was enforced, in the traditional manner, through the linear momentum equation, while
the kinematic contact condition was easily enforced through the geometric conserva-
tion equations without requiring a computationally demanding iterative scheme. Ad-
ditionally, a Total Variation Diminishing shock capturing technique can be suitably in-
corporated in order to improve dramatically the performance of the algorithm at the
vicinity of shocks, importantly no ad-hoc regularisation procedure is required to ac-
curately capture shock phenomena. Moreover, to guarantee stability from the spatial
discretisation standpoint, global entropy production is demonstrated through the sat-
isfaction of semi-discrete version of the classical Coleman-Noll procedure expressed
in terms of the time rate of the Hamiltonian energy of the system. Finally, a series of
numerical examples is presented in order to assess the performance and applicability
of the proposed algorithm suitably implemented across MATLAB and a purpose built
OpenFOAM solver.
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Chapter 1

Introduction

1.1 Motivation

Modern engineering practices are consistently pushing the boundaries of innovation
and technological development aided by the increase in computational power over the
past few decades. This has given rise to an increasing reliance on Computer Aided En-
gineering (CAE) throughout the design and manufacturing process, becoming a staple
of modern engineering practices, acting as a bridge between theoretical calculations
and prototype testing. CAE is the encompassing term used to describe computer algo-
rithms designed to solve the governing differential equations for an engineering prob-
lem, such as aerodynamics or stress analysis. CAE simulations save industry time and
money by giving the design engineers an insight into the behaviour of the geometry,
for the given problem, in a shorter time frame than expensive prototype testing, mean-
ing faster design iterations and improvements for a lower cost than prototype testing
alone. With this increased reliance on CAE, fast, robust and accurate computational al-
gorithms are required to ensure a reliable and realistic solution to the governing equa-
tions, is obtained within the desired time frame for any given engineering problem.
Computational engineering covers a wide array of engineering fields which depend on
distinctive governing physics each with unique challenges in obtaining fast, robust and
accurate results.

One such field is that of Computational Solid Dynamics (CSD), which is concerned with
the evolution of solid materials over time, subjected to specified initial and boundary
conditions resulting in body displacement and material deformation. Obtaining a solu-
tion for CSD problems becomes increasingly complex when considering materials that
deform significantly (large strain) or by considering additional physics such as thermal
effects. A particular area of interest within CSD, that significantly increases the com-
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plexity of the problem, is that of contact or impact. Contact or impact scenarios play a
crucial role in a number of engineering problems across a wide spectrum of industries
driving the desire for fast, robust and accurate computational methodologies to aid in
the innovation and development within these industries.

1.1.1 Practical Applications

Computational simulation of large strain contact dynamics can be applied to a wide
range of scenarios and plays a significant role in numerous industries. Some example
applications, shown in Figure 1.1 include; crash simulation [1, 2] in the automotive in-
dustry, bird strike simulation [3] in the aviation industry, hypervelocity impacts such
as ballistic impacts or asteroid strikes in defence and space industries, surgical simula-
tion [4, 5] in the biomedical industry, material manufacture such as shot peening [6] or
cold-rolling [7] and more recently, the design of locomotive soft robots [8] which could
be subjected to adverse terrains and environmental conditions.

Each of these scenarios can benefit from computational simulation; whether it is dur-
ing the design process, as slight changes of each iteration in the design can result in
a significantly different deformation behaviour; in surgical training where practising
on patients can be life threatening; or material manufacture where optimisation can
be challenging. Investigating large deformations experimentally can be impractical or
costly across all industries due to the complex materials or environmental conditions.
Large strain computational contact dynamics proves challenging to accurately simulate
due to the inherent characteristics of contact scenarios.

1.1.2 Characteristics of Contact Scenarios

Contact-impact describes the behaviour when two surfaces touch, whether that is two
surfaces of the same body or of independent bodies. This produces a discontinuous
contact interface between the two surfaces and an associated internal stress (shock)
waves which emanate away from the contact interface [12, 13]. This contact region
is subjected to a series of interface conditions that describe the interaction between
the bodies in terms of the impenetrability (Kinematic), momentum balance of tractions
(Kinetic) and persistence of the interface (Unitary). These conditions, that must be sat-
isfied, combined with the propagation of shock waves proves challenging to accurately
solve computationally due to various bottlenecks related to traditional computational
methods implemented in commercial solvers.
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(a) Crash Testing [9] (b) Hypervelocity Impacts [10]

(c) Practice Surgical Procedures [11] (d) Shot-Peening Process

Figure 1.1: Example practical applications

1.2 Overview of Traditional Methodologies

The modelling of large strain contact dynamic problems proves challenging due to var-
ious aspects of the computation. In this section traditional methodologies will be ex-
plored with focus on methodologies implemented in commercial solvers.

Commercial solver methodologies for large strain contact dynamics can be broken into
two aspects. The first aspect, is the underlying computational method used to approx-
imate the governing equations for the solid dynamic behaviour of the problem. This
aspect is not solely associated to contact scenarios but forms the backbone of the com-
putation for contact mechanics, as a result any challenges or limitations to this method-
ology is carried into contact scenarios. The second aspect, is the identification and
resolution of the contact region. This aspect forms the main focus of this research and
can be further categorised into a series of stages, these include contact search algo-
rithms, solving the discontinuous problem at contacting interfaces (contact resolution)
and accurate modelling of shock wave propagation (shock capture).
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The methodologies used to solve the contact stages vary dependant on the type of time
integrator, either explicit or implicit, and are used to express the dynamic behaviour
of the contact scenario. Explicit methods are traditionally fast and simple to imple-
ment however they are conditionally stable requiring a restriction on the time step to
ensure stability. Implicit methods on the other hand, are generally computationally in-
tensive but more accurate than explicit methods and unconditionally stable, therefore
they have no restrictions imposed on the time step [14, 15]. In dynamic shock capture
scenarios, such as impact, explicit methods are preferred to accurately capture the stress
wave propagation due to their inherent need for small time steps [15]. Since the aim of
this research is focused on fast and accurate computational contact dynamic method-
ologies, explicit methods will be the primary focus, however due to their accuracy and
popularity, implicit methods will also be explored here. Each aspect and contact stage
will be introduced in the following sections.

1.2.1 Lagrangian Solid Dynamics

To approximate contact dynamic problems, an underlying computational method is re-
quired to discretise and solve the solid dynamic physics. In explicit CSD, commercial
solvers such as Abaqus/Explicit [16] and LS-DYNA [17], utilise computational meth-
ods traditionally based on standard displacement based formulations most notably,
the Finite Element Method (FEM) [12, 18, 19] for spatial discretisation and a Newmark
based method [20, 21] for explicit time integration. These methodologies have emerged
as the preferred CSD methods for commercial solvers in part due to compatibility with
unstructured tetrahedral mesh generators [22, 23], providing fast and efficient discrete
meshes. The combination of these methodologies however comes with a series of short-
comings when attempting to scale the procedure to complex physics and material mod-
els such as plasticity or large strain contact dynamics as follows:

1. Second order accuracy for displacement but a first order accuracy for stress [24,
25].

2. Spurious oscillations in the vicinity of shocks such as contact or impact [26, 27].

3. Difficulty with bending dominated scenarios [28, 29].

4. Hour-glassing and pressure checker boarding near the incompressible limit [30].

5. Shear and volumetric locking [31, 32].

Alleviating these shortcomings have been of particular interest in the CSD community
in order to take advantage of the popularity of FEM and build on already developed
commercial software. For example, higher order interpolation methods which improve
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the accuracy of standard methods through higher order elements and basis functions
compromising efficiency [12, 18], reduced integration techniques which improve com-
putational efficiency while using higher order elements such as hexahedrals [12, 18],
mean dilation methods to prevent locking [33], average nodal pressure elements which
approximates the pressure at each node to alleviate pressure checker boarding [28, 29,
34]. A selection of these methodologies have been introduced into commercial soft-
ware in order to address these shortcomings, improving the accuracy and efficiency
of traditional solvers widely used in industry. These methods, however, only partially
address each shortcoming as a result these shortcomings can manifest in scenarios with
complex physics, geometries or material models, such as contact, due to the inability to
discretise the domain accurately and efficiently for higher order elements.

1.2.2 Contact Mechanics

To accurately model contact mechanics within CSD solvers, additional procedures are
required for the identification and resolution of contact regions for single or multiple
bodies. There are three main areas to consider, presented here for application to tra-
ditional FEM solvers, in the order required for contact algorithms: first are search al-
gorithms, required to identify bodies and regions that will potentially be in contact;
second are contact resolution methods that approximate and enforce the contact inter-
face conditions; lastly are shock capture methods that are required to accurately capture
the stress waves generated by the contact discontinuity. Each of these areas for contact
mechanics will be discussed in this section.

Search Algorithms

Search algorithms are used each time or load increment to determine first, whether a
body is potentially going to be in contact with another body (spatial/global search),
then which surfaces (elements and nodes) are possibly in contact requiring contact res-
olution (local search) [15]. For scenarios where large deformations occur this can prove
computational expensive as treating all boundary surfaces as potential contact surfaces
with other bodies, or with itself, require excessive computations every time increment
[35]. By splitting the approach into global and local search, the algorithms for deter-
mining contact can be respectively improved by reducing unnecessary calculations on
surfaces that are not in proximity with another surface. This plays a significant role in
contact scenarios where the type of contact and contact region can be determined prior
to simulation, significantly simplifying the problem and saving computational time.
While search algorithms form an integral part of contact mechanics, detailed evalua-
tion and discussion of popular methods are outside the scope of this research, with
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a brief overview described in this section for completeness, only scenarios where the
contact region are known a priori will be considered in later numerical examples.

Global search methods are designed to be fast and efficient, traditionally by represent-
ing bodies as a coarse description such as body based cells, adaptive grid or Octree
methods [35–38] this reduces the number of computations required for the contact res-
olution algorithms. Search algorithms become increasingly complex when considering
phenomena such as self contact or the fragmentation of bodies for example see meth-
ods presented by Benson and Hallquist [39] for single surface self contact and Kane
et al. [40] for fragmentation of bodies. After the global search is complete and po-
tentially contacting regions identified, the local search on each contact region must be
conducted.

For small displacement contact interfaces the local search only needs to be conducted
once, after a contact region has been identified either by the global search or set prior
to the simulation since it can be assumed the mesh information will remain unchanged
throughout the simulation. On the other hand for large displacement contact interfaces
such as where sliding is present, the local search needs to be repeated each time step, if
the geometry has moved, resulting in additional computational time. This proves to be
an important area of research for search algorithms [15, 35, 36], with recent advances
these search algorithms have become more efficient and widely used [41–43]. Once
the contact regions have been identified, either through the global search or designated
prior to the simulation, the contact region must be resolved each time step.

Contact Resolution

Contact resolution is the general term used to describe how the contact conditions are
solved and enforced along the contact region, across multiple bodies or in self con-
tact. Contact resolution proves challenging to solve computationally with numerous
different methodologies to address the contact interface problem. Contact resolution
can be split into two important stages, first is to conduct the local search and deter-
mine whether the potential contact pairs are in contact, and if so to solve and enforce
the contact constraints based on the contact region discretisation. The choice of contact
resolution method varies depending on the contact scenario since each have different
accuracy, stability and robustness properties [15].

The type of contact resolution method can be characterised into three types depending
on the contact discretisation. Each method first requires a local search method princi-
pally based on the identification of the nearest neighbour [15] to be conducted prior to
solving the contact constraints. The three core discretisations are known as, Node-To-
Node (NTN), Note-To-Segment or Note-To-Surface (NTS) and Segment-To-Segment or
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Surface-To-Surface (STS). NTN contact discretisation such as that proposed by Fran-
cavilla and Zienkiewicz [44], is a method where the closest neighbouring nodes on a
contact pair are identified for evaluation and enforcement of the contact constraints.
This method is only traditionally used in one dimensional or small displacement sce-
narios where the contact interface has identical matching meshes. NTS such as pro-
posed by Hughes et al. [45] are two and three dimensional equivalent discretisation
methods where the slave node of a contact pair identifies the closest boundary element
(segment) of the master. This method enforces the contact constraints at the slave nodes
thus preventing penetration of these nodes, however this does not apply to the master
nodes and is known as a one (single) pass NTS method. The one pass NTS method
is the most commonly used contact discretisation approach in commercial solvers due
to its versatility with large displacement problems. This method can also be used to
enforce the constraints at the master nodes and is known as two (double) pass method
[46–48] however this can over restrict the contact region [49]. Lastly the STS contact
discretisation, such as that proposed by Zavarise and Wriggers [50], can be used in two
and three dimensions where the slave boundary surface identifies the nearest master
boundary surfaces. This method is traditionally used for contact resolution methods
that enforce the contact constraints at the slave integration point of the contact surface
but can lead to penetration of the boundary nodes.

With each of these contact discretisations, a method of solving the contact constraints is
required. The most popular solution methods implemented in commercial solvers are
the penalty method and Lagrange multiplier methods each with unique advantages
and disadvantages for solving the contact constraints and can be applied to any contact
discretisation depending on the required accuracy and stability.

The penalty method consists of imposing the impenetrability condition through a penalty
normal traction along the contact surface which allows for some interpenetration [12]
based on a user defined parameter. Therefore the impenetrability conditions is only ap-
proximately satisfied and does not enforce the continuity of velocities. Due to this the
penalty method can generate excessive interpenetration which can be unpredictable
and potentially generate stiff, ill-conditioned systems that require, to maintain stability,
very small time steps [12, 51]. Even with these disadvantages, the penalty method is
the preferred constraint solution method for explicit solvers due to its simplicity and
scheme compatibility for shock capture scenarios [52].

The Lagrange multiplier method, on the other hand does not allow for interpenetration
by exactly enforcing the impenetrability condition through additional solved variables
(Lagrange multipliers). The addition of these variables, significantly increases contact
accuracy, however introducing an additional contact variable increases computational



1.2. OVERVIEW OF TRADITIONAL METHODOLOGIES 9

time and can generated a system which is not positive-definite with a zero diagonal
term [19, 53]. Lagrange multipliers generally require computationally expensive im-
plicit solvers [54] or are adapted to explicit time schemes by utilise localised iterative
algorithms to solve the boundary constraints, such as the kinematic predictor-corrector
schemes discussed in [55–57]. Lagrange multipliers are generally preferred in quasi-
static or implicit scenarios where capturing shock wave propagation is not a priority
[15].

Accuracy and efficiency of contact resolution methods, rely heavily on the underlying
computational method, type of contact discretisation and solution method of the con-
tact constraints. Therefore, obtaining an accurate and realistic explicit contact response
can prove challenging with each method requiring a compromise in either accuracy or
efficiency depending on the contact scenario.

Shock Capture

When a discontinuity forms, such as a contact interface, an associated shock wave prop-
agates from the contact interface throughout the domain. In CSD, the shock wave cre-
ated from contact propagates throughout the solid as a pressure wave (normal) and a
shear wave (tangential) [13]. Shock capture proves challenging in CSD due to the use
of traditional explicit linear finite elements which can generate spurious oscillations in
the solution if not taken into consideration by the numerical method. To counter this
issue, many commercial solvers implement a method known as artificial bulk viscos-
ity first developed by von-Neumann and Richtmyer [58]. This ad-hoc regularisation
effectively smooths the solution near the shock by introducing an artificially created
viscosity resulting in a stable solution but sacrifices accuracy near the shock. This can
be an issue when dealing with complex material models or physics that require accu-
rate prediction of the stress wave propagation in order to generate the correct material
response. As a result explicit methods are preferred to accurately capture shock wave
propagation with a suitably small time step [15].

1.2.3 Summary of Commercial Contact Methodology

To summarise the above sections, commercial solvers for explicit large strain contact
dynamic applications typically utilised standard displacement based FEMs, requiring
higher order elements (such as hexahedrals) to discretise a solid domain. The contact
region is then modelled using a standard NTS contact discretisation with the penalty
method or a predictor-corrector Lagrange multiplier method to solve and enforce the
contact conditions. By utilising this combination of methodologies, the commercial
solvers can generate realistic solutions to contact scenarios as a compromise of accu-
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racy, due to the contact resolution methods, and efficiency, due to the higher order ele-
ments, this however limits commercial solvers contact capabilities. The explicit contact
dynamic challenges can be summarised as follows:

1. Complex geometries; can not be sufficiently discretised using hexahedral ele-
ments requiring unstructured tetrahedrals leading to locking or pressure checker-
boarding.

2. Complex material models; require significant computational cost due to the solver
requiring higher order of elements therefore more stress evaluations.

3. Shock capture; proves challenging due to the spurious oscillations generated
in the vicinity of contact regions stemming from the underlying computational
method.

4. Contact Accuracy and Efficiency; the penalty method cannot accurately model
contact without very small time steps but are very efficient, while Lagrange mul-
tipliers provide greater accuracy but require more computational intensive itera-
tive schemes.

5. Contact constraint enforcement; the impenetrability condition can only be en-
forced at the slave node using the NTS approach when using penalty or predictor-
corrector methods.

With the increasing reliance on CAE in industry, complex geometries and material
models are now common place, therefore a computational method that can efficiently
and accurately model contact dynamics of complex geometries or material models with
accurate and efficient enforcement of the contact constraints for unstructured tetrahe-
dral meshes would be highly beneficial to industry. As a result, significant research
focus has been directed towards these challenges and current state of the art contact
methodologies will be presented in the next section.

1.3 State of the Art Contact Methodologies

The modelling of large strain contact dynamic problems proves challenging due to var-
ious aspects of the computation, the current state of the art methodologies will be de-
scribed and discussed in this section in order to address the limitations of commercial
solvers.

Similarly to traditional methodologies, current state of the art methods can be broken
into two categories; 1) the underlying computational method, 2) the identification and
resolution of the contact region. Since this research is focused on contact methodolo-
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gies, the state of the art computational methods will not be discussed however see
references [59–61] for examples of advanced mixed formulation for the FEM applied to
contact scenarios.

Commercial contact methods, as discussed in Section 1.2.2, have limitations primarily
in relation to accuracy in terms of the penalty method and efficiency in terms of the
predictor-corrector Lagrange multiplier method. Numerous extensions and variations
to these methods have been proposed over the years, in order to extend these methods
to complex problems as well as improve the robustness and accuracy of these methods.
The current state-of-the-art contact methodologies are known as the mortar method,
Nitsche method and the less common Riemann solver approach, these methods are yet
to be adopted by commercial software with an introduction discussed here.

1.3.1 Mortar Method

The mortar method was first proposed for static contact applications in [62–64] and
later for quasi-static large deformations by Puso et al. [65], it is a particular approach
of STS contact discretisation with constraint enforcement through the use of Lagrange
multipliers at the integration points. This is achieved through the projection of inter-
secting elements of the contact surface and sub-dividing the integration scheme to accu-
rately integrate the contact contributions [66]. This method has shown popularity due
to its robustness and accuracy for enforcing the contact constraints for non-matching
meshes as an improvement over standard NTS approaches used in commercial solvers
[49, 65]. However, the popularity and research focus of the mortar method has been di-
rected towards quasi-static [67–79] and implicit [75, 80–84] contact applications due to
the underpinning Lagrange multiplier formulation. More recently, the mortar method
has been applied using an explicit time scheme by Otto et al. [85], this application of the
mortar method results in exact enforcement of the impenetrability condition in an ex-
plicit scheme however it requires a coupled contact layer, increasing the computational
complexity, and an ad-hoc regularisation to smooth the contact transitions reducing the
accuracy of the solution at contact initialisation and separation.

1.3.2 Nitsche Method

While the Nitsche method [86, 87] was first proposed for quasi-static contact applica-
tions in [88] and extended to quasi-static friction and large deformations in [66, 89–92].
In this methodology the contact constraints are consistently applied through a traction
vector computed from the bulk stress tensor with a suitably large penalty parameter
[93]. This approach allows the contact constraints to be applied without any additional
variables such as the Lagrange multiplier approach and can be described as a particu-
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lar approach of NTS where the contact constraints are applied at the integration points.
This method was later applied to dynamic applications in [94, 95] for various implicit
time schemes and in [96] for explicit time schemes. It can be observed in both time
schemes that the Nitsche method is accurate for displacements but generates oscilla-
tions in the stress history during contact, likely due to the underlying FEM, without
the use of regularisation techniques or any additionally solved variables. This suggests
that the Nitsche method is more computationally efficient than mortar/Lagrange mul-
tipliers but improving the stress accuracy with this method is an open area of research.

1.3.3 Riemann Solver

Lastly, is the less common Riemann solver approach, traditionally used in applications
related to discontinuous interfaces such as shock waves in Computational Fluid Dy-
namics (CFD) or numerical schemes (for example cell-centred finite volume method)
for full discussion in this context see references [97, 98]. The Riemann solver approach
derives the numerical fluxes at a discontinuous surface based on the Rankine-Hugoniot
jump conditions. This method results in explicit expressions for the contacting fluxes
between discontinuous surfaces that can be applied directly into a numerical scheme.
Recently, this approach has been applied to contact dynamics by Abedi and Haber [54],
and later improved upon in [99], utilising spacetime discontinous Galerkin discretisa-
tion. By utilising this method the impenetrability condition is strongly enforced but
requires ad-hoc regularisation to smooth contact transitions. This methodology, while
promising, has not received much attention due to the requirement for the computa-
tional method to be formulated in the context of fluxes, i.e. linear momentum or veloc-
ity, while traditional solid dynamic methods are formulated in terms of displacements.
As a result this method cannot easily be adopted by commercial solvers however could
prove beneficial in contact dynamic applications with an appropriate computational
scheme.

1.3.4 Summary of State of the Art Methodologies

In terms of explicit contact dynamics, solving the contact conditions accurately and effi-
ciently proves challenging as the impenetrability condition cannot be strongly enforced
with standard displacement based finite elements alone. As a result obtaining accurate
results is an open research topic with continuous advancements in contact resolution
methods such as mortar or Nitsche methods and emerging methods such as Riemann
solvers. These methodologies are yet to be adopted by commercial solvers leading to
advancement of Open-source solvers created by the research community with alternate
methodologies to address the shortcomings of traditional methods, one such method
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will be the primary focus of this research and introduced in the next section.

1.4 Proposed Methodology

More recently, a novel methodology has emerged for CSD known as the first order
framework for large strain solid dynamics, first proposed by Lee et al. [100] and ex-
tended in recent years for a variety of discretisation techniques and complex physics,
see references [101–118]. This methodology has been formulated to address the short-
comings of traditional displacement based methods, as described in Section 1.2.1, and
is achieved through an alternate first order continuum formulation. This formulation is
based on the balance principle of linear momentum and additional triplet of kinematic
conservation equations resulting in a formulation of conservation equations similar to
the conservation formulation in fluid dynamics. By utilising this continuum formula-
tion, the methodology provides the flexibility to utilise CFD solution and discretisation
methodologies directly for CSD problems, in order to alleviate the shortcomings related
to traditional methods.

In this research, the first order framework will be harnessed as the underlying computa-
tional method and discretised using the well known CFD discretisation, Vertex Centred
Finite Volume Method (VCFVM). This computational formulation will be extended
to explicit large strain contact dynamics by applying traditional CFD shock capture
methodologies to resolve the contact regions, namely a generalised Riemann solver. By
utilising this combination of methodologies a series of novelties are achieved.

1.4.1 Novelties of Proposed Method

The novelty of this research is to apply and extend the first order framework to contact-
impact problems through the use of VCFVM discretisation1 with an appropriate Rie-
mann solver to solve and enforce for the contact constraints. This aims to have several
significant benefits over standard displacement based methods implemented in com-
mercial solvers:

1. Strong enforcement of both contact conditions; namely impenetrability condition
and traction condition through the additional kinematic conservation equations
and expressed explicitly by application of a Riemann solver to the contact inter-
face.

2. Faster computational time; high order elements such as hexahedral or shell el-

1While the use of finite volume methods in solid mechanics is not novel, it is uncommon compared
with traditional finite elements for a comprehensive review see Cardiff and Demirdžić [119].
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ements will not be required at the interface or throughout the domain by using
the VCFVM thus allowing for traditional unstructured tetrahedral elements. This
significantly reduces the number of stress evaluations required as the number of
integration points is reduced hence benefits more complex constitutive models
such as plastic or visco-elastic material models.

3. Increased shock capture accuracy; through using an appropriate Riemann solver
for the contact interface and throughout the domain. This does not require ad-hoc
regularisation, however an appropriate limiter is required.

4. Non-linear Riemann solver for solid dynamics; introduction of a novel Riemann
solver for non-linear material models focused on modelling large impact veloci-
ties.

5. Increased overall accuracy; second order accuracy for both velocity and stress
is achieved across the contact region by utilising the first order framework for
the underlying CSD method. This methodology also provides, a smooth, lock-
ing free solution without pressure instabilities and ensures the satisfaction of the
Coleman-Noll procedure at a semi-discrete level.

1.5 Thesis Scope and Outline

The primary objective of this thesis is to develop a robust contact dynamic solver
through the extension of the first order framework to explicit large strain contact dy-
namic scenarios. It is important at this stage to emphasise that the theory and results
presented throughout this research consider contact and impact scenarios where frac-
ture does not occur and contact surfaces are known a priori therefore global search al-
gorithms2 are not required. This thesis is structured as follows:

• Chapter 2 outlines the underlying theory first for smooth (continuous) non-linear
continuum mechanics used to describe the motion and deformation of a single
body, which forms the backbone of this thesis. The first order framework for
large strain solid dynamics is introduced including relevant polyconvex constitu-
tive models. The theory is then extended to non-smooth problems and example
derivations of the general jump condition for non-smooth problems and simple
material wave speeds are demonstrated and discussed. This theory is then ap-
plied to Hugoniot shock wave speeds from experimental observations.

• Chapter 3 introduces the theory of continuum contact mechanics and discusses
the key contact conditions namely the impenetrability, traction and unitary con-

2Refer to Han et al. [38] for examples of global search algorithms.
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tact condition. Resolution of the contact-impact interface conditions for contact-
stick, frictionless contact and coulomb frictional contact are then explored at a
continuum level through the derivation of two distinct solid dynamic Riemann
solvers, acoustic and non-linear, based on the jump conditions. With these deriva-
tions, the one-dimensional exact solution is derived for the linear elastic impact of
two identical bars. The Hamiltonian energy is then introduced in order to assess
the entropy production of the numerical scheme.

• Chapter 4 describes and applies the numerical method used to discritise the first
order framework. For the spatial numerical scheme, vertex centred finite volume
method is explored while a two-stage time variation diminishing Runge-Kutta
time integrator will be discussed to explicitly evolve time. The entropy produc-
tion of the semi-discrete system will be examined to assess the stability of the
numerical scheme.

• Chapter 5 presents the computational implementation of the proposed method
within open source software "OpenFOAM" [120]. The software will be introduced
followed by crucial algorithms of the purpose built code implemented as part of
this research.

• Chapter 6 presents the one-dimensional problems used to benchmark and assess
the numerical results from the proposed method using MATLAB. This includes,
the impact of: two identical linear elastic bars, two dissimilar linear elastic bars,
two identical Hugoniot bars and two dissimilar Hugoniot bars.

• Chapter 7 presents two and three dimensional problems addressing crucial as-
pects of contact problems; spurious oscillations, pressure checker-boarding and
non-matching contact interfaces. These aspects are investigated through a variety
of problems and compared with standard displacement based finite element soft-
ware, Abaqus/Explicit [16]. First, in two dimensions the impact of two compress-
ible rings are investigated followed by the impact of two nearly incompressible
rectangular bars. Then in three dimensions, the traditional benchmark plastic-
ity problem known as the Taylor bar impact is compared with published results,
followed by the impact of a torus with a rigid surface which is investigated for
elastic and plastic material models followed by investigation of the accuracy of
non-matching contact interfaces through a problem consisting of two nearly in-
compressible bars similar to that of the two dimensional problem. Lastly, a sim-
plified car crash is presented to demonstrate a practical example.

• Chapter 8 summarises and concludes this research with proposed avenues of fu-
ture work.
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Chapter 2

Continuum Equations for Solid
Dynamics

2.1 Preliminaries

In order to develop the computational method as part of this research, this chapter in-
troduces the fundamental theory for non-linear continuum mechanics used to describe
the motion and deformation of a continuum. This theory is required to describe the un-
derlying large strain solid dynamics, before extension to contact dynamics. The chapter
begins by outlining the kinematics and problem variables required to describe the mo-
tion and deformation of a continuum in Section 2.2. Section 2.3 goes on to use these
descriptions to formulate the governing equations for solid dynamics namely the bal-
ance principle for linear momentum and additional kinematic conservation equations,
that will form the basis of the first order conservation framework described in Section
2.4. In order to complete the system of equations for smooth solid dynamics, the con-
stitutive models considered in this research are described in Section 2.5. The extension
of the theory to consider non-smooth problems is then discussed in Section 2.6 where
the derivation of the general jump conditions, simple wave speeds and Hugoniot shock
wave speeds for non-linear elasticity are demonstrated to complete the solid dynamic
system for discontinuous problems.

2.2 Kinematics

Within the field of large strain contact mechanics the deformation and motion of a mate-
rial are typically expressed using the theory of non-linear continuum mechanics, which
will be described in this section following the notation from Bonet et al. [21, 33].

17
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2.2.1 Problem Variables

To describe the deformation of a continuum, first the kinematics must be examined.
Consider the motion and deformation of an enclosed domain Ω0 as shown in Figure
2.1.

Figure 2.1: An enclosed domain subjected to deformation mapping ϕ(X , t) from the
reference configuration (Left) to current configuration (Right)

Figure 2.1 describes the motion and deformation of a continuum particle from material
(reference) or Lagrangian position X to spatial or Eulerian position x through map-
ping ϕ which is a function of reference position X and time t such that x = ϕ(X , t).
This continuum model assumes particles are bijective, mapping, ϕ is invertible and
sufficiently smooth (i.e. the derivatives can be calculated via a Taylor expansion) and
higher order terms are neglected. This allows mapping ϕ to describe the change in a
fibre of differential length within the domain from the reference configuration to spatial
configuration through a tensor known as the deformation gradient F . The deformation
gradient, also known as the fibre map, is a two-point tensor such that dx = F dX and
can be defined as:

F = ∇0ϕ (X , t) , (2.1)

where [∇0]I is the material gradient defined as ∂
∂XI

. From this definition of a fibre map,
a volume map can then be defined. The volume map, also known as the Jacobian,
relates a differential volume within the domain from the initial configuration dV to
spatial configuration dv such that dv = JdV and is defined as:

J = detF ; (2.2)

J must always be greater than 0. Next an area map, also known as co-factor, can be
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defined which relates a differential area within the domain from the reference config-
uration dA, with material normal N , to spatial configuration da, with spatial normal
n, through the co-factor/adjoint tensor H . The area map is traditionally related to the
fibre map as:

H = JF−T. (2.3)

Alternatively, the area map can be expressed through the use of the tensor cross prod-
uct, represented by a bold cross product symbol , as discussed in [106]. This results in
the equivalent definition for the area map as:

H =
1
2
F F , (2.4)

where the tensor cross product between two two-point tensors is defined as (A B)iI =

EijkEI JK AjJ BkK, for a complete list of properties refer to Bonet et al. [121]. Lastly, the ve-
locity v can be defined in terms of the deformation mapping as the partial derivative
with respect to time t:

v =
∂ϕ (X , t)

∂t
. (2.5)

From this description of the motion and deformation of a continuum the governing
equations can then be described for solid dynamics.

2.3 Governing Equations

Solid dynamic problems are governed by a set of physical laws known as the balance
principle of linear momentum and conservation of mass which are traditionally used
to formulate the basis of CSD methodologies. In this section, these governing equa-
tions will be described in the context of Lagrangian solid dynamics and additional
unconventional kinematic conservation equations introduced in order to express the
complete the first order conservation framework for large strain solid dynamics.

Remark 2.1. The conservation of mass simply ensures that the mass of a system remains con-
stant. For Lagrangian formulations this conservation equation does not need to be considered
as an unknown variable as it is inherently fulfilled [106].

2.3.1 Linear Momentum Balance Principle

The balance principle of linear momentum ensures the linear momentum of the sys-
tem is conserved in the presence of any additional body forces and is expressed in the
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reference configuration, in global form per unit of undeformed volume as:

d
dt

∫
Ω0

(ρov) dV =
∫

Ω0

ρ0b0dV +
∫

∂Ω0

t0dA, (2.6)

where ρ0v = p is the linear momentum per unit undeformed volume, b0 is the body
force per unit mass, t0 = PN is the traction vector with P defined as the first Piola-
Kirchhoff stress tensor and N defined as the material outward unit normal. The local
equilibrium equation can be expressed by applying the divergence theorem to the right
hand side of Equation (2.6) to give:

∂ (ρ0v)

∂t
= DIVP + ρ0b0, (2.7)

where DIV is the divergence operator carried out in the reference configuration.

2.3.2 Kinematic Conservation Equations

In order to formulate the first order framework for large strain solid dynamics initially
described by Lee et al. in [100], the conservation of the deformation gradient is also
required and can be simply extended to include the conservation of the area map and
conservation of the Jacobian as described in [101] and [103] to create a set of kinematic
conservation equations1. These kinematic conservation equations can be expressed in
local form as:

∂F

∂t
= DIV (v ⊗ I) ; (2.8)

∂H

∂t
= CURL(v F ); (2.9)

∂J
∂t

= DIV
(
HTv

)
; (2.10)

where CURL is the curl operator carried out in the reference configuration. The first
kinematic conservation Equation (2.8) is the conservation of the deformation gradient
F . This conservation equation can be considered a generalisation of the continuity
equation in fluid dynamics and is considered part of the framework to increase flexibil-
ity. By doing so, the appearance of locking in low order simulations can be alleviated
[100]. The series of kinematic conservation equations can be extended to include the
conservation of the area map H as shown in Equation (2.9). This definition can be
derived by utilising the definition of the area map from Equation (2.4) by utilising the
tensor cross product, as described in [106], resulting in a compact conservation equa-
tion. The last natural extension to the kinematic conservation equations is to consider

1If necessary, refer to [106] for the derivation of these conservation equations.
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the conservation of the volume map J in Equation (2.10). The addition of this conser-
vation equation further increases the flexibility of the framework particularly in nearly
incompressible regime by alleviating pressure checker boarding [103, 105].

By introducing these kinematic conservation equations, in order to ensure the existence
of a single-valued mapping ϕ, additional conditions must be satisfied known as the
compatibility conditions2. These compatibility conditions apply to the evolution of the
deformation gradient F and area map H defined as:

CURLF = 0; DIVH = 0. (2.11)

If compatibility conditions are not satisfied spurious oscillations can occur leading to an
inaccurate solution or ultimately complete breakdown of the numerical scheme, there-
fore, these conditions must be carefully considered when applying the computational
method. For the particular case of linear elasticity these conditions becomes the Saint-
Venant compatibility conditions [122]. With these kinematic conservation Equations
(2.8) - (2.10) and the balance principle for linear momentum in Equation (2.7), the first
order framework for large strain solid dynamics can be formulated.

Remark 2.2. The conservation of energy, also known as the first law of thermodynamics, plays
an important role in temperature dependant problems ensuring that the energy of the system is
conserved. In this research, only isothermal processes, where the temperature remains constant,
are considered thus the conservation of energy is not required as part of the first order framework.
It is useful however, to examine the conservation of energy for various aspects throughout this
research including derivations and most importantly examining the consistency of results. The
conservation of energy for an isothermal process is defined in local form as:

∂ET

∂t
−DIV

(
P Tv

)
= ρ0b0 · v, (2.12)

where ET is the total energy, DIV is the material divergence, P is the first Piola-Kirchhoff stress
tensor, v is the velocity field and b0 is the body force per unit mass. For the complete form of the
conservation of energy, refer to Appendix A.

2Compatibility conditions are also known as involutions.
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2.4 First Order Framework for Large Strain Solid Dynam-

ics

The balance principle of linear momentum and kinematic conservation equations can
be combined into a set of conservation equations, in order to formulate the first or-
der framework for large stain solid dynamics. In local form this can be expressed in
compact form as:

∂U
∂t

+
3

∑
I=1

∂F I

∂XI
= S , (2.13)

where U is the vector of conserved variables, F I is the flux vector in the I-th material
direction and S is the vector of source terms as follows:

U =


ρ0v

F

H

J

 ; F I = −


PEI

v ⊗EI

F (v ⊗EI)

H : (v ⊗EI)

 ; S =


ρ0b

0

0

0

 , (2.14)

with Cartesian basis defined as:

E1 =

1
0
0

 E2 =

0
1
0

 E3 =

0
0
1

 . (2.15)

Therefore, corresponding flux vector associated with material outward unit normal N
is defined as:

FN = F I NI = −


PN

v ⊗N

F (v ⊗N )

H : (v ⊗N )

 . (2.16)

The above hyperbolic system3, combined with a well-posed constitutive model ensures
the existence of real wave speeds at any state of deformation. This property is highly
beneficial for the application to contact problems as it will ensure the robustness of
the computational methodology. The framework presented in this section is valid for
problems that have a smooth solution i.e. there are no shock waves (discontinuities)
present. For the framework to be valid for non-smooth problems the framework must
satisfy conditions known as jump conditions, these will be explored in Section 2.6.

3For proof of hyperbolicity refer to [106]
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Remark 2.3. In comparison, the standard displacement based formulation is derived by con-
sidering only the linear momentum balance principle from Equation (2.7) and reformulating in
terms of displacement to give:

ρ0
∂v

∂t
−DIVP (∇0ϕ) = ρ0b; where v =

∂ϕ

∂t
, (2.17)

where ρ0 is material density, P is the first Piola-Kirchhoff stress as a function of the gradient of
the deformation mapping function ϕ and v is the velocity field. In this second order formulation
the only unknown variable is displacement, as a result solving this method using standard linear
finite elements results in a second order solution for displacement but a first order solution in the
derived stresses and strains [24, 25] and requires integration in time to evaluate the velocity.
On the other hand, the first order framework circumvents these shortcomings by solving the
conserved variables instead of displacement, which preserves the order of accuracy for the derived
stresses and strains and solves velocity directly. Further benefits of the first order framework are
contained within the application of the constitutive model that relates stress to strain.

2.5 Constitutive Models

With the governing equations now defined for the first order framework in Sections
2.3 and 2.4, the next stage is to define an appropriate constitutive (material) model that
describes the relation between the stress and strain of the material. For large strain
constitutive models, used in this work they are typically defined as an energy func-
tional from which the stresses and strains are derived. Three models will be discussed
in this section as they are required for the numerical examples presented in Part IV;
nearly incompressible Mooney-Rivlin, nearly incompressible neo-Hookean and rate-
independent von-Mises plasticity.

2.5.1 Nearly Incompressible Mooney Rivlin

The first material model considered, is the nearly incompressible Mooney Rivlin model.
The Mooney Rivlin model is a hyperelastic constitutive model and is used here to in-
troduce the concept of polyconvex constitutive models [106, 108, 117]. Polyconvex con-
stitutive models are material models that satisfy the polyconvexity mathematical crite-
ria [123] and are based on a strain energy functional that are a convex function of the
components of the deformation gradient, area map and Jacobian [124]. The Mooney
Rivlin model can be expressed as a multi-variable polyconvex strain energy functional
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W(F ,H , J) as the decomposition of the deviatoric Ŵ (F ,H , J) and volumetric contri-
butions U (J) as [106, 108, 124]:

W(F ,H , J) = Ŵ(F ,H , J) + U(J); (2.18)

where:

Ŵ(F ,H , J) = ζ J−2/3(F : F ) + ξ J−2(H : H)3/2 − 3
(

ζ +
√

3ξ
)

; U(J) = κ
2 (J − 1)2 ;

where ζ, ξ and κ are positive material parameters with κ as the bulk modulus and
ζ, and ξ related to the shear modulus as 2ζ + 3

√
3ξ = µ in order to recover the Lamé

coefficients for the small strain regime. From this strain energy functional the first Piola-
Kirchhoff stress tensor can be expressed in terms of work conjugate stresses (ΣF , ΣH ,
ΣJ) with respect to (F , H , J) as:

P = ΣF + ΣH F + ΣJH ; with ΣJ := Σ̂J + p; (2.19)

where:

ΣF := ∂Ŵ
∂F = 2ζ J−2/3F ; ΣH := ∂Ŵ

∂H = 3ξ J−2(H : H)1/2H ;

and:

Σ̂J := ∂Ŵ
∂J = −2

3 ζ J−5/3(F : F )− 2ξ J−3(H : H)3/2; p := dU
dJ = κ (J − 1) .

One crucial aspect of constitutive equations is frame indifference (objectivity) where
the deformation measures must be independent of the reference frame. By formulating
the strain energy functional in terms of {F ,H , J}, objectivity is not necessarily met
since the deformation gradient is not objective. Objectivity must therefore be proved
through an analogous expression by reformulating the dependency of strain energy
from Equation (2.18) with respect to F and H in terms of the right Cauchy-Green tensor
C = F TF and its co-factor G = HTH as demonstrated by Bonet et al. in [121] resulting
in an analogous polyconvex expression for the second Piola-Kirchhoff stress tensor S.
For the purpose of this research, the polyconvex strain energy functional expressed in
terms of {F ,H , J} is more convenient in order to obtain a polyconvex expression for
the first Piola-Kirchhoff stress tensor required as part of the first order framework. For
the case of isotropic elasticity, the expression for the strain energy in Equation (2.18) can
also be expressed through the re-definition of the standard invariants which is more
suitable in the case of an isotropic polyconvex energy functional, described as I1 = F :
F , I2 = H : H and I3 = J2. This leads to a representation of the strain energy as
W(F ,H , J) = w(I1, I2, I3), for further details refer to Bonet et al. [121].
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2.5.2 Nearly Incompressible Neo-Hookean

The second model considered is that of nearly incompressible neo-Hookean constitu-
tive model. This is a hyperelastic model that is valid for large deformations and reduces
to linear elasticity for small deformations. The polyconvex multi-variable energy func-
tional can be defined based on the energy functional in Equation (2.18) by using values
of ζ = µ

2 and ξ = 0 as:

W(F , J) =
µ

2

[
J−2/3 (F : F )− 3

]
+

κ

2
(J − 1)2 , (2.20)

where µ is the shear modulus and κ is the bulk modulus. This energy functional is
then used to obtain the first Piola-Kirchhoff stress from Equation (2.19) in terms of the
deviatoric work conjugates as:

ΣF = µJ−2/3F ; ΣH = 0; Σ̂J = −µ
3 J−5/3 (F : F ) ; (2.21)

and volumetric pressure as:
p(J) = κ (J − 1) . (2.22)

Capturing material behaviour accurately can prove challenging even for simple hyper-
elastic materials as shown by these two constitutive models and becomes increasingly
complex when considering more complex models and physics such as visco-elasticity,
thermo-elasticity4 or thermo-plasticity. As the current research is focused on large
strain isothermal contact, it is important to extend the current work to include elasto-
plasticity and will be introduced in the following section for the specific case of rate-
independent von-Mises plasticity material model.

Remark 2.4. The simplest constitutive model is that of linear elasticity and is valid only for
small deformations with infinitesimal strain for isotropic materials [33]. The energy functional
for linear elasticity can be expressed in terms of spatial strain ε as:

ψ(ε) = µε : ε+
λ

2
(tr(ε))2 , (2.23)

where µ is the shear modulus, λ is Lamé’s first parameter and are related to the bulk modulus κ

as κ = λ + 2
3 µ. The linear elastic Cauchy stress tensor is derived from the energy functional by

taking the first derivative with respect to the small strain tensor as:

σ(ε) =
∂ψ(ε)

∂ε
= 2µε+ λtr(ε)I . (2.24)

4See Appendix A for further details on thermo-elastic constitutive models.
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In the small strain regime, the Cauchy and first Piola-Kirchhoff stress tensors are identical and
can be expressed in terms of the deformation gradient tensor by making use of the definition of
spatial strain in terms of the deformation gradient as:

ε =
1
2

(
F +F T − 2I

)
, (2.25)

by simple substitution into Equation (2.24) and manipulation, noting the relation between κ, µ

and λ the definition of the Cauchy and first Piola-Kirchhoff stress tensors can be obtained as:

P (F ) = µ

[
F +F T − 2

3
tr(F )I

]
+ κ (tr(F )− 3) I . (2.26)

The two hyperelastic models in Section 2.5 degenerate to this simple model for the small strain
regime. Since this research is focused on large strain contact dynamics, the small strain regime
will only be considered for benchmark scenarios through this degenerative property of hypere-
lastic constitutive models.

2.5.3 Rate-Independent von-Mises Plasticity

A more complex constitutive model is that of rate-independent von-Mises plasticity
with isotropic hardening, which is the simplest plasticity model and is used to define
materials that deform plastically where the stress is independent of the strain rate. This
constitutive model will only briefly be described here for application in numerical ex-
amples, for further detail refer to [33]. In order to utilise this constitutive model the
multiplicative decomposition of the deformation gradient is required and defined as:

F = FeFp. (2.27)

where Fe and Fp are the deformation gradient tensors associated with the elastic and
plastic contributions respectively. This leads to the definitions of the elastic left Cauchy-
Green strain tensor be = FC−1

p F T with right plastic Cauchy-Green strain tensor Cp =

F T
p Fp. The basic algorithm for solving this type of constitutive model is given in Algo-

rithm 2.1, where the formulation of the stain energy functional is expressed in terms of
the principle stretches and Jacobian as:

W (λe,1, λe,2, λe,3, J) = Ŵ (λe,1, λe,2, λe,3) + U (J) , (2.28)
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where:

Ŵ = µ

[
3

∑
i=1

(ln(λe,i)
2

]
+

1
3

µ (ln J)2 − 2
3

µ ln J

(
3

∑
i=1

(ln(λe,i)

)
, (2.29)

and:
U(J) =

1
2

κ (ln J)2 . (2.30)
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Algorithm 2.1: Rate-Independent von-Mises Plasticity

Input : F n+1, [C−1
p ]n, εn

p

Output: P n+1

Compute Jacobian: Jn+1 = det
(
F n+1) ;

Compute Pressure: pn+1 = κ
(

ln Jn+1

Jn+1

)
;

Compute trial elastic left cauchy strain tensor: bn+1
e,trial = F n+1

[
C−1

p

]n
[F ]n+1 ;

Spectral decomposition of bn+1
e,trial:

λtrial
e,i ,ntrial

i ← bn+1
e,trial = ∑3

i=1

(
λtrial

e,i

)2 (
ntrial

i ⊗ntrial
i
)

;

Obtain trial deviatoric Kirchhoff stress tensor:

τ̂ trial = ∑3
i=1 τ̂

trial
ii

(
ntrial

i ⊗ntrial
i
)

; τ̂trial
ii = 2µ ln

(
λtrial,i

e

)
− 2

3 µ ln
(

λtrial,i
e

)
;

Obtain yield criterion: f
(
τ̂ trial, εn

p

)
=
√

3
2

(
τ̂ trial : τ̂ trial

)
−
(

τ0
y + Hεn

p

)
;

Compute Return-Mapping:
if f

(
τ̂ trial, εn

p

)
> 0 then

Direction Vector: vn+1
i =

τ̂trial
ii√

2
3(τ̂ trial :τ̂ trial)

;

Plastic Multiplier: ∆γ =
f (τ̂ trial ,εn

p)
3µ+H ;

else
vn+1

i = ∆γ = 0;
end

Compute elastic stretch: λn+1
e,i = exp

(
ln(λtrial

e,i − ∆γvn+1
i )

)
;

Assign spatial normals: nn+1
i = ntrial

i ;

Compute Kirchhoff stress tensor: τ n+1 = ∑3
i=1 τii

(
nn+1

i ⊗nn+1
i

)
τii = τ̂ii + Jn+1pn+1; τ̂ii =

(
1− 2µ∆γ√

2
3(τ trial′ :τ trial′)

)
τ̂trial

ii ;

Compute first Piola-Kirchhoff stress tensor: P n+1 = τ n+1 [F−T]n+1 ;

Update elastic left Cauchy strain tensor: bn+1
e = ∑3

i=1

(
λn+1

e,i

)2 (
nn+1

i ⊗nn+1
i

)
;

Update plastic Cauchy Green tensor:
[
C−1

p

]n+1
=
[
F−1]n+1

bn+1
e

[
F−T]n+1 ;

Update plastic strain: εn+1
p = εn

p + ∆γ ;
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2.6 Non-Smooth Problems

As mentioned previously, the first order framework for solid dynamics discussed in
Section 2.4 is only valid for problems which have a smooth solution. For the framework
to be applied to non-smooth problems such as contact, the conservation equations must
satisfy the jump conditions of the flux variables. In this section, the jump conditions
will be derived and applied to the first order conservation framework for large strain
solid dynamics, based on the derivation by Bonet et al. [21] and included in detail here
for completeness as required for the application to contact mechanics. This is followed
by the derivation of two types of material wave speeds for a simple constitutive model
followed by the Hugoniot shock model.

2.6.1 Derivation of General Jump Condition in Lagrangian Dynamics

To derive the general jump condition in Lagrangian dynamics, first consider the possi-
bility of a discontinuity in the conserved variables, U , and flux variables, F , across a
moving surface, Γ(t), travelling at velocity U in the direction of N which is perpendic-
ular to the surface, as depicted in Figure 2.2,

Figure 2.2: Discontinuity across moving surface, Γ(t)

where Ω0 is the total volume and is equal to the union of the time dependant volumes to
the left and to the right of the discontinuity, defined as ΩL

0 (t) and ΩR
0 (t). The boundary

of the domain ∂Ω0, is defined as the union of boundary of the left and right volumes
as ΓL and ΓR respectively. The boundary of the left volume ΩL

0 , is defined as the union
of the left boundary ΓL, and the time-dependant discontinuous surface Γ(t). Similarly,
the boundary of the right volume ΩR

0 , is defined as the union of the right boundary ΓR,
and the discontinuous surface Γ(t). First, by considering the global balance principle
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defined, for this scenario, as:

d
dt

∫
Ω0

U dV +
∫

∂Ω0

FN dA =
∫

Ω0

S dV; with FN =
3

∑
I=1

F I NI . (2.31)

The time rate of unknown variable can be expanded by considering the relation to the
time-dependant left and right volumes by using the Reynolds transport Theorem [12]
as:

d
dt

∫
Ω0

U dV =
d
dt

∫
ΩL

0 (t)
U dV +

d
dt

∫
ΩR

0 (t)
U dV;

=
∫

ΩL
0

∂U
∂t

dV +
∫

Γ(t)
U U L dA +

∫
ΩR

0

∂U
∂t

dV −
∫

Γ(t)
U UR dA;

=
∫

Ω0

∂U
∂t

dV −
∫

Γ(t)
U JU K dA. (2.32)

This results in recovering the time derivative of the conserved variable as the first term
and then an additional second term consisting of the jump in the conserved variable
JU K =

(
UR −U L

)
across the discontinuous surface. At this point, it is important to

note that the negative term in the equation above is due to the opposite directions of
the outward normals of the left and right volumes, i.e. N L is +N while NR is −N .
Next the jump in the surface fluxes can be derived by considering the surface flux term
and expanding based on the boundary relations mentioned previously and in Figure
2.2, as follows:∫

∂Ω0

FNdA =
∫

∂ΩL
0

FN dA−
∫

Γ(t)
F L

NdA +
∫

∂ΩR
0

FN dA +
∫

Γ(t)
FR

NdA;

=
∫

∂ΩL
0

FN dA +
∫

∂ΩR
0

FN dA +
∫

Γ(t)
JFN K dA;

=
∫

Ω0

∂F I

∂XI
dV +

∫
Γ(t)

JFN K dA. (2.33)

Similarly to the conserved variable term, this results in recovering the material deriva-
tive of the flux term and then an additional term that represents the jump in the flux
variable JFN K =

(
FR

N −F L
N

)
across the discontinuous surface. Equation (2.32) and

(2.33) are combined to give:

∫
Ω0

(
∂U
∂t

+
∂F I

∂XI
− S

)
dV =

∫
Γ(t)

(U JU K− JFN K) dA.

Thus recovering the standard pointwise conservation equation as introduced previ-
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ously in Section 2.4 which is smooth and differentiable:

∂U
∂t

+
3

∑
I=1

∂F I

∂XI
= S in Ω0,

together with the jump condition:

UJU K = JFN K on Γ(t). (2.34)

Equation (2.34) can be particularised for the first order framework, assuming identical
material across the discontinuous surface, as follows:

Uρ0JvK = −JP KN ; (2.35a)

UJF K = −JvK⊗N ; (2.35b)

UJHK = −F Ave (JvK⊗N ) ; (2.35c)

UJJK = −HAve : (JvK⊗N ) . (2.35d)

where F Ave and HAve are the average of the deformation gradient tensor and area
map across the discontinuous surface. From these jump conditions it can be observed
that the jump in the flux variables depends on only the jump in the first Piola-Kirchhoff
stress tensor JP K and velocity JvK. With these jump conditions now derived, expressions
for wave speed U can also be derived. To do so, the jump conditions for the velocity
and deformation gradient will be examined from Equations (2.35a) and (2.35b) only, as
Equations (2.35c) and (2.35d) are simply an extension of Equation (2.35b).

2.6.2 Derivation of Simple Material Wave Speeds

For the scenario where the wave speed U is assumed to be equal to the speed of sound
of the material, the acoustic wave speeds c for a specific constitutive model are typically
derived from an eigenstructure analysis5, resulting in two wave speeds, corresponding
to the pressure wave speed cp and the shear wave speed cs respectively. For a simple
constitutive model such as nearly incompressible neo-Hookean (see Section 2.5.2), a
simpler approach can be utilised and is demonstrated here following [21]. Using this
method, first the kinematic jump (Equation (2.35b)) can be post-multiplied by the dis-
continuity normal N , and combined with the kinetic jump (Equation (2.35a)) to give:

cJF KN = −JvK =
1

cρ0
JP KN .

5See reference [106] for an example eigenstructure analysis in the context of the first order framework.
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Rearranging this equation gives:

c2ρ0JF KN = JP KN . (2.36)

To solve for the wave speeds, first a shear wave cs (in the tangential spatial direction of
FTα, where Tα is the tangential vector with α = 1, 2) can be considered making use of
the definitions of the right Cauchy-Green tensor C = F TF and second Piola-Kirchhoff
Stress Tensor S = F−1P to give:

c2
s ρ0JF KN ·FTα = JP KN ·FTα;

c2
s ρ0JF TF K : (Tα ⊗N ) = JF TP K : (Tα ⊗N ) ;

c2
s ρ0JCK : (Tα ⊗N ) = JCSK : (Tα ⊗N ) ;

which results in:

c2
s ρ0 =

JCSK : (Tα ⊗N )

JCK : (Tα ⊗N )
. (2.37)

Now considering a simple neo-Hookean material (see Section 2.5.2) for which the sec-
ond Piola-Kirchhoff stress tensor is defined as:

S = µ(I −C−1) + λ(ln J)C−1. (2.38)

By substituting Equation (2.38) into Equation (2.37) and through algebraic manipula-
tion results in:

c2
s ρ0 =

JCSK : (Tα ⊗N )

JCK : (Tα ⊗N )
,

=
(µJCK + λJ(ln J)KI) : (Tα ⊗N )

JCK : (Tα ⊗N )
,

=
µJCK : (Tα ⊗N ) + λJ(ln J)KTα ·N

JCK : (Tα ⊗N )
,

= µ.

This results in a acoustic shear wave speed for this constitutive model that coincides
with the acoustic linear elastic shear wave:

cs =

√
µ

ρ0
. (2.39)

Next, for the acoustic pressure wave speed cp, by utilise the isochoric-volumetric de-
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composition of first Piola-Kirchhoff defined as:

P = P̂ + pH ; (2.40)

and assuming the jump in first Piola-Kirchhoff is dominated by the jump in the pres-
sure, which is typical of problems with strong discontinuities such as contact 6, this can
be written as:

JP KN ≈ JpHKN ; JP̂ KN = 0.

By considering the case of an acoustic pressure wave speed cp (in the normal spatial
direction n) utilising the definition of Nanson’s rule as n = HN

ΛA
where ΛA = n ·HN :

c2
pρ0 (JF KN ) ·n = (JP KN ) ·n,

c2
pρ0JF KN ·

(
1

ΛA
HN

)
= JpHKN ·n,

c2
p

ρ0

ΛA
JHTF K : (N ⊗N ) = JpKΛA,

and since HTF = JI the equation becomes:

c2
p

ρ0

ΛA
JJK = JpKΛA,

c2
pρ0 = Λ2

A
JpK

JJK
.

(2.41)

In the very simplistic case of a nearly incompressible material where p = κ(J − 1):

cp = ΛA

√
κ

ρ0
. (2.42)

From this neo-Hookean expression for the pressure wave speed, the linear elastic pres-
sure wave speed is recovered when in the small deformation regime, ΛA = 1. As men-
tioned previously this derivation can only be conducted using a simple constitutive
model. For more complex constitutive models the wave speeds must be derived using
eigenstructure analysis [21, 103, 105, 106, 108], however either method will produce
exact expressions for the acoustic wave speeds of the material. This is highly beneficial
in solving discontinuous problems such as contact where accurate wave propagation
of materials is of utmost importance.

6In contact dynamics, the shock wave speed is dominated by the pressure wave speed, therefore it
is useful to assume that the first Piola-Kirchhoff stress tensor in Equation (2.40) is dominated by the
volumetric components of the stresses. Such that the derivation for the wave speed can neglect the
deviatoric components.
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2.6.3 Shock Wave Speeds Derived From Experimental Data

To accurately model the shock wave propagation it becomes apparent from experimen-
tal measurements and observation that for most metals the speed of the pressure shock
wave Up in the normal direction of wave propagation is linearly related to the speed of
sound of the material and particle velocity vp via a constant coefficient s defined as:

Up = cp + svp. (2.43)

This linear relation is formulated based on one-dimensional experiments and observa-
tions [21, 125], therefore a general multi-dimensional expression for the shock pressure
wave can be further defined as:

Up = cp − sΛAJvnK, (2.44)

where JvnK is the jump in normal velocity across the shock front. In order to obtain an
expression for the constitutive pressure, the pressure wave speed can then be expressed
in terms of the jump in the volume ratio from Equation (2.35d) to give JvnK = − Up

ΛA
JJK.

Therefore the pressure wave speed as a function of the jump in the volume ratio can be
expressed as:

Up =
cp

1− sJJK
. (2.45)

The definition of the pressure behind the shock, also known as the Hugoniot state, can
then be derived from Equation (2.41) when considering the case where the material
wave speed c is now substituted by the shock wave speed U as:

JpK

JJK
=

U2
pρ0

Λ2
A

;

=
c2

pρ0

Λ2
A

[
1

(1− sJJK)2

]
.

(2.46)

For the scenario where the shock wave is travelling through undisturbed material, the
jump in pressure is observed to be JpK = 0− pH, where pH is the Hugoniot pressure,
and the jump in volume ratio is observed as JJK = 1− JH, where JH is the Hugoniot
volume ratio. Thus by substituting these observed conditions into Equation (2.46), the
shock pressure can be expressed as follows, rewriting the Hugoniot volume ratio as
JH = J and assuming no cross sectional area changes gives:

pH(J) = c2
pρ0

[
J − 1

[1− s(1− J)]2

]
. (2.47)
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The Hugoniot pressure is traditionally derived via the Mie-Grüneisen Equation of State
(EOS) [125] by assuming the pressure is significantly large thus there is no deviatoric
(shear) stress and is therefore decoupled from the stress tensor. This assumption allows
the Hugoniot pressure model to be coupled with any appropriate deviatoric constitu-
tive model such as those in Section 2.5. The expression in Equation (2.47), however, is
only valid when the model is in compression i.e. volume ratio is less than one (J < 1),
if the model is in tension (J > 1) the appropriate constitutive pressure formulation is
required, matching the deviatoric model.

To visibly demonstrate the importance of the Hugoniot pressure in Equation (2.47) com-
pared to a traditional constitutive pressure formulation, such as those presented in Sec-
tion 2.5, the two different pressure models are plotted for a range of volume ratios in
Figure 2.3. The figure shows a normalised pressure

( p
E
)
, for a linear elastic scenario

with no shear i.e. when E = c2
pρ0, comparing three scenarios. First, the linear model

which is equivalent to s = 0, second, the Hugoniot model with s = 0.5 and lastly the
Hugoniot model with s = 1.

Figure 2.3: Comparison of normalised pressures
( p

E
)

using the linear constitutive pres-
sure model and two Hugoniot pressure models where s = {0.5, 1}

It can be observed, when the material undergoes compression (J < 1), the Hugoniot
pressure becomes significantly larger dependant on the value of slope s in comparison
to the linear model as the volume ratio decreases. While the material undergoes exten-
sion (J > 1) and the Hugoniot pressure model becomes invalid, there is less separation
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between the models with the linear model resulting in a higher pressure. When the ma-
terial is in the small strain regime (J ≈ 1) both models are identical even for different
values of slope s.

For these types of scenarios the corresponding Hugoniot internal energy EH will be
derived here for completeness, by examining the conservation of energy from remark
2.27. The total energy of an isothermal system ET can be defined as the sum of the
kinetic energy and internal potential energy as:

ET =
1

2ρ0
p · p+ E (F ,H , J) , (2.48)

with associated jump condition expressed as:

JETK = ρ0v
Ave · JvK + JE K. (2.49)

In order to obtain one complete expression for the jump in total energy, Equation (2.49)
is then substituted into Equation (A.3) and decomposed8 for an isothermal case, as
follows:

ρ0v
Ave · JvK + JE K = − 1

U
JP TvK ·N ;

= − 1
U

JPN K · vAve − 1
U

(
P AveN

)
· JvK

The first term on the right hand side can then be re-expressed by substitution of the
linear momentum jump condition from Equation (2.35a) to give:

− 1
U

JPN K · vAve = ρ0JvK · vAve, (2.50)

then by rearranging, the kinetic energy components cancel and an expression for the
jump in internal energy can be obtained in terms of the first Piola-Kirchhoff stress tensor

7Traditionally the internal stress is obtained by taking the derivative of the strain energy functional,
refer to Section 2.5, and vice-versa the internal energy can be recovered through integration. In this sce-
nario however, the large shock wave (Jump) is not differentiable so the internal energy must be derived
by an alternate method.

8Making use of the multiplicative property of jump conditions such that for the jump of two variables
JABK they can be decomposed as JABK = AAveJBK+ JAKBAve with [·]Ave = 1

2
(
[·]L + [·]R

)
.
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and jump in deformation gradient as:

JE K = −ρ0v
Ave · JvK + ρ0v

Ave · JvK− 1
U

(
P AveN

)
· JvK;

= − 1
U
P Ave : (JvK⊗N ) ;

= P Ave : JF K.

Now by recalling the isochoric-volumetric decomposition of the first Piola-Kirchhoff
stress tensor from Equation (2.40), for the Hugoniot state as discussed previously, the
deviatoric component can be neglected such that the jump in internal energy E can be
approximated to only the volumetric component as:

JE K = P̂ Ave : JF K + (pH)Ave : JF K;

≈ (pH)Ave : JF K.

This volumetric approximation can be simplified by noting that JF K = JFN K⊗N and
rearranged by making use of the geometric jump conditions from Equation (2.35b) and
(2.35d) to give:

JE K = (pH)Ave : JF K;

= (pH)Ave : JFN K⊗N ;

= (pH)Ave N · JFN K;

= (pH)Ave N ·
(
− 1

U
JvK

)
;

= pAve
(
−HAveN · 1

U
JvK

)
;

= pAveJJK. (2.51)

Provided the shock is propagating through an undisturbed material the jump condi-
tions can be defined as:

JE K = 0− EH; JJK = 1− J; pAve =
1
2
(0 + pH) ;

where EH is the Hugoniot internal energy and pH is the Hugoniot pressure. By substi-
tuting these definitions into Equation (2.51) gives:

0− EH =
1
2

pH (1− J)

EH =
1
2

pH (J − 1) .
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Finally, the Hugoniot pressure from Equation (2.47) is substituted to obtain the final
expression for Hugoniot energy as:

EH (J) =
1
2
(J − 1)

[
ρ0c2

p
(J − 1)

[1− s (1− J)]2

]

=
1
2

c2
pρ0

[
(J − 1)2

[1− s(1− J)]2

]
. (2.52)

Similar to the Hugoniot pressure, this relation is only valid when the shock is signifi-
cantly large and the material is undergoing compression.



Chapter 3

Continuum Contact Equations

3.1 Preliminaries

The first order framework for non-smooth large strain solid dynamics described in
Chapter 2 will now be extended to describe dynamic multi-body contact at a contin-
uum level. This chapter will define several important relations for contact dynamics,
these include the impenetrability, traction balance and unitary contact conditions in
Section 3.2. To solve these contact conditions the proposed formulation is applied to
contact scenarios through the introduction of two different Riemann solvers, acoustic
and non-linear, to exactly express the flux variables at the contact interface for var-
ious contact scenarios in Section 3.3. These conditions are then applied to a simple
one-dimensional linear elastic contact example to derive the exact solution in Section
3.4. Lastly, in Section 3.5, the Hamiltonian energy is introduced for the contact-impact
scenarios. In this chapter the contact conditions are defined in relation to two bodies,
labelled as Body A (Master) and Body B (Slave) where all variables relating to an indi-
vidual body will be expressed as superscript A or B. Several equations can be applied
to both bodies therefore will be expressed as superscript f where f = {A, B}.

3.2 Continuum Equations

The motion and deformation of multiple bodies can be expressed with the definitions
used in non-linear continuum mechanics, as discussed in Chapter 2 for a single body.
These definitions for deformation gradient tensor F , co-factor H , Jacobian J and ve-
locity v can simply be applied to multiple bodies with the addition of superscript
f = {A, B} to define each body individually. Therefore contact between two bodies
can be described as follows, first consider two bodies as shown in Figure 3.1.

39



3.2. CONTINUUM EQUATIONS 40

Initially, at t = 0, bodies A and B are not in contact with a gap between the bodies δ,
where Ω f

0 refers to the initial volume, Γ f
0 refers to the initial boundary and N f refers to

the outward unit normal of each body respectively. Both bodies are then subjected to an
individual mapping ϕ f (X f , t) resulting in the bodies moving or deforming to a spatial
configuration where the boundaries of the bodies come into contact (δ = 0), producing
a contact interface ΓC and contact normal n = nA and nA = −nB. It is important to
note that the contact interface refers to both contact surfaces associated with each body.
At the contact interface two key conditions, namely the impenetrability and traction
balance conditions, must be fulfilled to ensure continuity across both contact surfaces
[12], no additional interface is required to enforce the contact conditions.

Figure 3.1: Kinematics of Two Contacting Bodies

3.2.1 Impenetrability Condition

The impenetrability condition for two bodies is defined as the intersection of the two
bodies must be equal to zero. This is written as:

ΩA ∩ΩB = 0. (3.1)

For problems where the displacement of the contact interface is relatively small, such
that for any given position on the contact interface ΓC, there is a corresponding position
on Body A xA and a matching position on Body B xB, for the entire duration of contact.
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This condition can be expressed simply in terms of the displacement of the two bodies,
by defining the normal gap or gap function as:

δn =
(
xB − xA

)
·n ≥ 0, (3.2)

where x f is defined as the sum of the initial position X f and displacement u f (x f =

X f + u f ), and n is the spatial outward unit normal of the master body. This condition
enforces that when the normal gap is greater than zero (δn > 0) the bodies are not in
contact, however when the normal gap is equal to zero δn = 0 the bodies are in contact.
For these types of scenarios, the initial tangential movement is also assumed small and
considered as contact-stick, such that the tangential gap δt is defined as:

δt = δ − δnn = (I −n⊗n) δ = 0 on ΓC. (3.3)

For contact interfaces with large displacements, such that for any given position on
the contact interface ΓC, the corresponding position on Body A and B vary with time
t. This is typical for a contact interface with significant tangential movement such as
frictionless contact. Therefore, the impenetrability condition is highly non-linear, as a
result it cannot be expressed as an algebraic or differential equation [12] therefore it
must be expressed in rate form as:

γn =
(
vA − vB

)
·n ≤ 0 on ΓC, (3.4)

where v f is the velocity across the contact interface. It can be noted that Equation
(3.4) restricts the interpenetration rate for two points on the boundary to be either zero,
which means the bodies are in contact, or negative, which means the bodies are moving
apart. Equivalently the tangential components can be written in a similar form as:

γt = vA
t − vB

t ≤ 0 on ΓC, (3.5)

where v
f
t is the tangential decomposition of v f defined as:

v
f
t = v f − v f

nn = (I −n⊗n) v f . (3.6)

In numerical schemes small interpenetration is generally allowed between contacting
bodies, such as the penalty method, therefore Equation (3.1) above is not observed
exactly for instances in time.
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3.2.2 Traction Balance Condition

The second condition that must be fulfilled is that of the momentum balance across the
contact interface which must be fulfilled by the tractions. For the tractions t f at the
boundary to fulfil this condition the sum of tractions must be equal to zero, since the
boundary has no mass, and can be expressed as:

tA + tB = 0. (3.7)

The tractions can be defined in terms of the material configuration as:

t f = P fN f , (3.8)

where P f is the first Piola-Kirchhoff stress tensor depending on the constitutive model
as defined in Section 2.5. Therefore the normal tractions can be defined as:

t f
n = t f ·n; (3.9)

where n is the master outward normal vector. As a result the momentum balance of
the normal traction can be expressed as:

tA
n + tB

n = 0. (3.10)

By not considering adhesion between contact surfaces in the normal direction, the nor-
mal tractions cannot be tensile therefore the normal tractions must be compressive or
zero and can be expressed as:

tC
n ≡ tA

n (x, t) = −tB
n(x, t) ≤ 0; (3.11)

since the normal of one of the bodies is selected to define the normal traction, the sign
will depend on the choice of normal. Similarly the sum of tangential tractions must be
equal to zero:

tA
t + tB

t = 0. (3.12)

where t f
t is the tangential decomposition of t f defined as:

t
f
t = t f − t f

nn = (I −n⊗n) t f (3.13)

In the particular case of a frictionless model of contact the tangential tractions vanish
as:

tA
t = tB

t = 0. (3.14)
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3.2.3 Unitary Contact Condition

The impenetrability condition and the traction balance condition can be combined into
one condition known as the unitary contact condition and can be expressed in terms of
the gap function δn for small displacement interfaces as:

tC
n δn = 0. (3.15)

This condition must hold on the contact surface such that if the gap is equal to zero
(δn = 0) the bodies are in contact and the normal traction can follow Equation (3.11)
(tn ≤ 0), while if the normal gap is greater than zero (δn), the normal tractions must be
zero (tn = 0) as the bodies are not in contact. In this research the gap function will be
used to determine contact as only small displacement contact interfaces are considered
for multi-body contact.

Remark 3.1. Alternatively, for large displacement contact interfaces, the unitary contact con-
dition can be expressed in a similar manner terms of the gap rate γn as:

tC
n γn = 0. (3.16)

Again, this condition must hold on the contact surface such that if the gap rate is equal to zero
(γn = 0) the bodies are in contact and the normal traction can follow Equation (3.11) (tn ≤ 0),
while if the normal gap rate is less than zero (γn), the normal tractions must be zero (tn = 0) as
the bodies are not in contact.

3.2.4 Contact Algorithm with Extension to Frictional Contact

To correctly enforce the contact conditions described above, the impenetrability, trac-
tion balance and unitary contact condition combine to form a set of equations which
can be considered a particular case of the Karush-Kuhn-Tucker conditions from op-
timisation theory [15]. These contact conditions form a contact algorithm where the
contact stage is determined dependant on these conditions. This contact algorithm is
outlined in Algorithm 3.1 for extension to frictional contact scenarios where k is the
friction coefficient. In this algorithm, the contact interface conditions and kinetic con-
straint are first predicted for contact-stick regime where there is no relative sliding. If
the kinetic constraint is in compression then the interface is determined as in contact,
otherwise the bodies are not in contact and separation will occur for bodies previously
in contact. If the interface is in contact then the slip criterion fs is checked which de-
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termines if the tangential force is larger than opposing frictional force, in other words
whether the contact interface is in the contact-stick or contact-slip regimes1. If the tan-
gential force is smaller than the resisting frictional force then interface is in contact-stick
regime, while if tangential force is larger than the resisting frictional force then interface
is in contact-slip regime. With this algorithm now defined a method for expressing the
contact interface conditions {tC, vC} for each contact stage is required.

Algorithm 3.1: Classical Karush-Kuhn-Tucker Contact algorithm

1 if δn = 0 then
Obtain trial contact-stick traction: tC,trial = tC

Determine the normal contact traction: tC,trial
n = n · tC,trial

2 if tC,trial
n < 0 then
Check slip criterion: fs = ∥tC,trial

t ∥ − k⟨−tC
n ⟩

if fs ≤ 0 then
Contact-stick mode: tC and vC

else
Contact-slip mode: tC and vC

3 end

4 else
Separation mode: vC and tC = 0

5 end

6 else
Not in contact: vC and tC = 0

7 end

3.3 Contact-Impact Interface Conditions

To satisfy the conditions discussed in the previous section, traditional methods utilise
numerical approaches, such as the penalty or Lagrange multiplier methods to enforce
these conditions, however, due to the limitations of the underlying computational method,
these are not always strongly enforced. An advantage of the first order framework for-
mulation, and a novelty for this research, is that the contact conditions can be strongly
enforced by deriving exact expressions at the continuum level for the interface vari-
ables of velocity vC and traction tC from the jump conditions in Section 2.6.1, by using
the approach known as a Riemann Solver [126]. In this section various contact con-
ditions will be derived for two types of Riemann solvers, first the acoustic Riemann
solver followed by a non-linear (consistent) Riemann solver, starting with the contact-

1In the case for frictionless contact, the friction coefficient is always zero therefore there is no opposing
frictional force resulting in a contact interface that is always in the contact-slip regime.
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stick contact condition. It should be noted that since a Riemann solver can apply to any
discontinuous interface the superscript notation for bodies A and B will now represent
the bulk of the body while superscript L and R will represent the left and right hand
sides of any discontinuous interface, such as a contact or shock interface.

3.3.1 Acoustic Contact Conditions

Contact-Stick conditions

In the situation where infinite friction is present to prevent relative sliding, known as
contact-stick, the expression for the contact variables {vC, tC} can be derived by con-
sidering the jump conditions presented in Equations (2.34). For an acoustic Riemann
solver [126, 127], first the normal components will be derived by considering the kinetic
jump condition from Equation (2.35a), where for the acoustic case the pressure wave
speed Up is equal to the speed of sound of the material cp, expressed across two bodies
as:

cL
pρL

0 JvK = −JP KL(−N L); cR
p ρR

0 JvK = −JP KR(−NR).

Multiplying by a unique spatial normal n, and rearranging:

cL
pρL

0 (v
L
n − vC

n ) = tL
n − tC

n ;

cR
p ρR

0 (v
R
n − vC

n ) = −(tR
n − tC

n );

which yields:

vC
n =

cL
pρL

0 vL
n + cR

p ρR
0 vR

n

cL
pρL

0 + cR
p ρR

0
+

tR
n − tL

n

cL
pρL

0 + cR
p ρR

0
; (3.17a)

tC
n =

cL
pρL

0 cR
p ρR

0

cL
pρL

0 + cR
p ρR

0

(
tL
n

cL
pρL

0
+

tR
n

cR
p ρR

0

)
+

cL
pρL

0 cR
p ρR

0

cL
pρL

0 + cR
p ρR

0

(
vR

n − vL
n

)
; (3.17b)

where the normal components for each side of the interface are defined as:

vL
n = n · vL; vR

n = n · vR; tL
n = n ·

(
P LN L

)
; tR

n = −n ·
(
P RNR

)
.

It can be observed in Equation (3.17a) that the normal velocity at the discontinuous
surface can be expressed in terms of a ratio of the acoustic pressure wave speed cp and
material density ρ0 multiplied by the normal velocity vn at either side of the discontin-
uous surface plus the ratio of the normal traction tn at each side. Similarly, the normal
traction at the discontinuous surface in Equation (3.17b) can be expressed as a ratio
of the acoustic pressure wave speed and material density. From Equation (3.17a) and
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(3.17b) it can be observed that the first term can be considered as the weighted average
of the flux variable across the interface while the second term is a naturally occurring
stabilisation from the bulk of each respective side of the interface.

For the contact-stick mode, to prevent relative sliding, a similar derivation for the tan-
gential expression is conducted. In this scenario the shear shock wave speed is defined
as cs for example, from Equation (2.39) for linear elasticity. With the tangential velocity
and tractions defined as:

vt = v − vnn; tt = t− tnn; (3.18)

following a similar derivation as the normal components, the expressions for the tan-
gential components are expressed as:

vC
t =

cL
s ρL

0v
L
t + cR

s ρR
0 v

R
t

cL
s ρL

0 + cR
s ρR

0
+

tR
t − tL

t
cL

s ρL
0 + cR

s ρR
0

; (3.19a)

tC
t =

cL
s ρL

0 cR
s ρR

0

cL
s ρL

0 + cR
s ρR

0

(
tL

t
cL

s ρL
0
+

tR
t

cR
s ρR

0

)
+

cL
s ρL

0 cR
s ρR

0

cL
s ρL

0 + cR
s ρR

0

(
vR

t − vL
t

)
. (3.19b)

It can be observed that the tangential components of the contact variables in Equation
(3.19a) and (3.19b) are identical to the normal contact components, now represented in
terms of the tangential velocity and tractions at the left and right of the interface with
the shock wave speed now the shear wave speed cs. For contact-stick contact condition,
the complete post-impact velocity and traction can be expressed as:

vC = vC
nn+ vC

t ; tC = tC
nn+ tC

t , (3.20)

where n is the unique contact normal. Equations (3.20) enforces continuity of all veloc-
ity and traction components. With the contact-stick condition defined the expressions
can degenerate to different contact conditions such as contact-slip and separation.

Contact-Slip conditions

The first additional and necessary contact condition is that of contact-slip where there
are no shear components at the contact interface such that cR

s = 0 and tR
t = 0, this

simplifies the tangential components from Equation (3.19) to:

vC
t = vL

t −
tL

t
cL

s ρL
0

; tC
t = 0, (3.21)

while the normal components in Equation (3.17) remain unchanged and can be com-
bined with Equation (3.21) through Equation (3.20) when the contact interface is in the
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contact-slip mode.

Separation conditions

The next necessary contact condition is separation (or traction-free boundary) condi-
tion which occurs after the bodies have been in contact and have separated such that
cR

p = cR
s = tR

n = 0 and tR
t = 0 which significantly simplifies the components of both

Equations (3.17) and (3.19) to:

vC
n = vL

n −
tL
n

cL
pρL

0
; vC

t = vL
t −

tL
t

cL
s ρL

0
; (3.22a)

tC = 0. (3.22b)

These equations can be applied at the contact region through Equation (3.20) to enforce
the separation condition when the bodies are no longer in contact.

Rigid-body contact conditions

The next contact condition is the particular case of contact with a rigid body. In this
case the wave speeds at the rigid side of the contact interface are cR

p = cR
s ≈ ∞ therefore

the Equation (3.20) reduces to:

tC
n = tL

n + cL
pρL

0 (v
R
n − vL

n); tC
t = tL

t + cL
s ρL

0 (v
R
t − vL

t ); (3.23a)

vC = vR. (3.23b)

These equations can be enforced again through Equation (3.20) for any rigid body con-
tact interface conditions.

Pressure dominated contact interface

Another interesting contact condition is the case where the jump in the traction (or
the first Piola Kirchhoff stress P , Equation (2.19)) is dominated by the jump in the
pressure component of the stress (which in this case is related to ΣJ , refer to Section
2.5), whilst the rest of the components of the stress {ΣF , ΣH} can be neglected. This is
the case when attempting to model problems with predominant nearly incompressible
behaviour. Use of Equation (2.19) in conjunction with the Nanson’s rule HAveN =

ΛAn (where ΛA is the ratio between the current area and the undeformed area, see
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Section 2.6.2), enables the jump in the traction vector to be:

tR − tL = JtK = JP KN = JΣF + ΣH F + ΣJHKN ; (3.24a)

≈ JΣJK
(
HAveN

)
; (3.24b)

= JΣJKΛAn. (3.24c)

Neglecting the stress components ΣF and ΣH implies that JΣF + ΣH F KN = 0. The
jump in the traction vector in the normal direction can now be derived by multiplying
Equation (3.24c) with a spatial normal vector n to yields:

tR
n − tL

n = n · JtK = JΣJKΛA. (3.25)

It is interesting to notice that the jump in the tangential component of the traction van-
ishes. This is easily shown below as:

tR
t − tL

t = JttK = JtK− JtnKn; (3.26a)

= JΣJKΛAn− JΣJKΛAn = 0, (3.26b)

by making use of Equations (3.25), (3.24c) and the relation where tt = t − tnn thus
giving the contact conditions for the normal components as:

vC
n =

cL
pρL

0 vL
n + cR

p ρR
0 vR

n

cL
pρL

0 + cR
p ρR

0
+

1
cL

pρL
0 + cR

p ρR
0

(
ΣR

J − ΣL
J

)
ΛA; (3.27a)

tC
n =

cL
pρL

0 cR
p ρR

0

cL
pρL

0 + cR
p ρR

0

(
tL
n

cL
pρL

0
+

tR
n

cR
p ρR

0

)
+

cL
pρL

0 cR
p ρR

0

cL
pρL

0 + cR
p ρR

0

(
vR

n − vL
n

)
; (3.27b)

and for the tangential components as:

vC
t =

cL
s ρL

0v
L
t + cR

s ρR
0 v

R
t

cL
s ρL

0 + cR
s ρR

0
; (3.28a)

tC
t =

cL
s ρL

0 cR
s ρR

0

cL
s ρL

0 + cR
s ρR

0

(
tL

t
cL

s ρL
0
+

tR
t

cR
s ρR

0

)
+

cL
s ρL

0 cR
s ρR

0

cL
s ρL

0 + cR
s ρR

0

(
vR

t − vL
t

)
; (3.28b)

These equations can be enforced again through Equation (3.20) for any pressure domi-
nated contact interface.

Homogeneous contact interface

When considering the exact same material properties on the left and right sides of a
point of contact, the density and the shock wave speeds are identical and constant for
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both sides, namely ρL
0 = ρR

0 = ρ0 and cL
p = cR

p = cp and cL
s = cR

s = cs. Enforcing these
conditions in Equation (3.17) and (3.19) simplifies these equations to:

vC
n =

1
2

(
vL

n + vR
n

)
+

1
2ρ0cp

(
tR
n − tL

n

)
; tC

n =
1
2

(
tL
n + tR

n

)
+

ρ0cp

2

(
vR

n − vL
n

)
,

(3.29a)

vC
t =

1
2

(
vL

t + vR
t

)
+

1
2ρ0cs

(
tR

t − tL
t

)
; tC

t =
1
2

(
tL

t + tR
t

)
+

ρ0cs

2

(
vR

t − vL
t

)
.

(3.29b)

Then in the particular case of nearly incompressible materials this substitution yields:

vC
n =

1
2

(
vL

n + vR
n

)
+

1
2ρ0cp

JΣJKΛA; tC
n =

1
2

(
tL
n + tR

n

)
+

ρ0cp

2

(
vR

n − vL
n

)
, (3.30a)

vC
t =

1
2

(
vL

t + vR
t

)
; tC

t =
1
2

(
tL

t + tR
t

)
+

ρ0cs

2

(
vR

t − vL
t

)
. (3.30b)

From these expressions for various contact conditions, it can be observed more clearly
that the Riemann solver approach is simply the sum of the average states (unstable)
plus an additional upwind stabilisation that depends on the jumps which have been
used in developing stabilised methods in order to alleviate unwanted spurious hour-
glassing and pressure instabilities [100, 110, 112, 114–116]. By utilising an acoustic
Riemann solver to compute the contact interface variables the exact solution for linear
elastic materials is obtained. This however is only an approximation for more com-
plex materials such as large strain hyperelastic materials, therefore a more accurate
Riemann solver could be derived for each material model. In this research a non-linear
(consistent) Riemann solver to address the Hugoniot shock model in Section 2.6.3 will
be derived in the following section.

3.3.2 Non-Linear Contact Conditions

To obtain a more accurate expression for the contact conditions in the case of the Hugo-
niot shock model, from Section 2.6.3, a non-linear Riemann solver is derived in this sec-
tion to express the contact conditions. The Hugoniot model only applies to the normal
components {vC

n , tC
n} therefore are derived here followed by the normal components

for the rigid-body and homogeneous contact conditions.

Normal Contact Conditions

Following a similar procedure to the derivation for the acoustic Riemann solver in Sec-
tion 3.3.1, first considering the kinetic jump condition from Equation (2.35a), where for
the Hugoniot shock case the pressure wave speed Up is expressed in Equation (2.44).
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The normal component across across two bodies in terms of normal tractions is ex-
pressed as:

UL
p ρL

0 JvnKL = JtnKL; UR
p ρR

0 JvR
n K = −JtnKR. (3.31)

Starting by focusing on the left body. The first term in Equation (3.31), by substitution
of the pressure wave speed Up from Equation (2.44), can be expressed as:

JtnKL = ρL
0

(
cL

p − sΛL
AJvnKL

)
JvnKL; (3.32a)

= ρL
0 cL

pJvnKL − sρL
0 ΛL

A

(
JvnKL

)2
. (3.32b)

where the jump in a variable is defined as J·KL = [·]C − [·]L. The above expression after
substitution and some simple algebra becomes:

sρL
0 ΛL

A

(
vC

n

)2
−
(

ρL
0 cL

p + 2sρL
0 ΛL

AvL
n

)
vC

n = tL
n − tC

n − ρL
0 cL

pvL
n − sρL

0 ΛL
A

(
vL

n

)2
. (3.33)

Analogously, with the definition of J·KR = [·]R − [·]C, Equation (3.31) for the right body
can also be obtained as:

sρR
0 ΛR

A

(
vC

n

)2
+
(

ρR
0 cR

p − 2sρR
0 ΛR

AvR
n

)
vC

n = tR
n − tC

n + ρR
0 cR

p vR
n − sρR

0 ΛR
A

(
vR

n

)2
. (3.34)

Equations (3.33) and (3.34) represent a system of two equations with two unknowns,
namely normal contact traction tC

n and normal contact velocity vC
n (expressed in terms

of the left and right normal tractions and velocity before the impact). By subtracting
Equations (3.33) from (3.34) this will result in expressions for the normal components
of velocity arranged in the form of a quadratic equation as:

[
s(ΛR

AρR
0 −ΛL

AρL
0 )
] (

vC
n

)2

+
[
ρL

0 cL
p + ρR

0 cR
p − 2s

(
ΛR

AρR
0 vR

n −ΛL
AρL

0 vL
n

)]
vC

n

−
(

tR
n − tL

n + ρL
0 cL

pvL
n + ρR

0 cR
p vR

n − s
[

ΛR
AρR

0

(
vR

n

)2
−ΛL

AρL
0

(
vL

n

)2
])

= 0;

(3.35)

Similarly, adding Equations (3.33) and (3.34) would provide the expression for the con-
tact traction vector as:

tC
n =

1
2

(
tL
n + tR

n

)
+

1
2

(
ρR

RcR
p vR

n − ρL
0 cL

pvL
n

)
− 1

2

(
ρR

0 cR
p − ρL

0 cL
p

)
vC

n

− s
2

[
ρR

0 ΛR
A

(
vC

n − vR
n

)2
+ ρL

0 ΛL
A

(
vC

n − vL
n

)2
]

.
(3.36)
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Alternatively the traction vector can be expressed only in terms of the normal contact
velocity and left body variables as:

tC
n = tL

n + ρL
0 cL

p(v
C
n − vL

n)− sρL
0 ΛL

A

(
vC

n − vL
n

)2
. (3.37)

These expressions for the normal contact conditions are combined with the acoustic
tangential expressions in Equations (3.19) via (3.20) in order to obtain full expressions
for contact-stick contact condition. While for the contact-slip contact condition, the
normal components are combined with the acoustic tangential components in Equation
(3.21) to form the appropriate non-linear contact-slip conditions. Furthermore, for the
separation contact conditions the expression in Equation (3.22) are directly applied as
the Hugoniot model is no longer valid at the contact interface as it is in tension.

Rigid-Body Contact Conditions

For the particular contact condition where the material on the right is significantly
stiffer, the pressure shock wave speed on the stiffer material is approximated to be
cR

p ≈ ∞. With this definition the non-linear rigid-body normal contact conditions can
be defined as:

vC
n = vR

n ; tC
n = tL

n + ρL
0 cL

p(v
R
n − vL

n)− sρL
0 ΛL

A

(
vR

n − vL
n

)2
. (3.38)

It can be observed that only the velocity from the stiffer body vR
n , enters the solution.

For the particular case, when considering no-slip wall boundary condition, the values
of vR

n is set to zero. Again the normal component can be combined with the acous-
tic tangential component from Equation (3.23a) to for the complete rigid-body contact
condition.

Homogeneous Normal Contact Conditions

The final non-linear contact condition, considered in this research, is for when consid-
ering the exact same material properties on the left and right sides of a point of contact.
In this scenario, the density and the shock wave speeds are identical and constant for
both sides of the contact interface i.e. ρL

0 = ρR
0 = ρ0 and cL

p = cR
p = cp. By enforcing

these conditions in Equation (3.35), and approximating ΛL
A = ΛR

A = ΛA = n ·HAveN ,
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the vC
n simplifies to:

vC
n =

1[
cp − sΛA (vR

n − vL
n)
] [ cp

2

(
vL

n + vR
n

)
+

1
2ρ0

(tR
n − tL

n)−
1
2

sΛA

((
vR

n

)2
−
(

vL
n

)2
)]

;

(3.39a)

=
1
2

(
vL

n + vR
n

)
+

1
2ρ0

1[
cp − sΛA (vR

n − vL
n)
] (tR

n − tL
n); (3.39b)

and tC
n simplifies to:

tC
n =

1
2

(
tL
n + tR

n

)
+

ρ0cp

2

(
vR

n − vL
n

)
− 1

2
sρ0ΛA

[
(vC

n − vR
n )

2 + (vC
n − vL

n)
2
]

; (3.40a)

=
1
2

(
tL
n + tR

n

)
+

ρ0cp

2

(
vR

n − vL
n

)
− 1

4
sρ0ΛA

[
(vR

n − vL
n)

2 +
1

ρ2
0
[
cp − sΛA (vR

n − vL
n)
]2 (tR

n − tL
n)

2

]
.

(3.40b)

It can be observed that these two expressions easily degenerate to the acoustic Rie-
mann solver in Equation (3.29a) by enforcing s = 0. It is clear that by using either the
acoustic or non-linear Riemann solver approach, the values at the interface are only de-
pendant on the variables at the left and right of the interface therefore does not require
any additional constraint or regularisation methodologies unlike tradition methods of
computing and enforcing the contact interface. To demonstrate these contact conditions
in practice, a simple one-dimensional exact solution will be derived in the next section
for the local one-dimensional case, particularised for the impact of two identical linear
elastic bars.

3.4 One-Dimensional Contact Analytical Solution

In this section, the contact theory discussed previously in this Chapter and the con-
tinuum equations from Chapter 2 will be applied to the simple case of the impact be-
tween two one-dimensional identical linear elastic bars. The purpose of this section
is to demonstrate that the Riemann solver contact conditions derived in this Chapter,
exactly enforce the contact conditions in combination with the first order conservation
framework resulting in an exact analytical solution for this scenario. The solution cal-
culated in this section will later be used to benchmark the computational method.

To derive the exact solution for this problem, the first order framework can be expressed
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in one-dimension2 as the one dimensional wave equation for each bar as:

∂U x

∂t
+

∂F x

∂X
= 0; with U x =

[
ρ0vx

FxX

]
; F x = −

[
PxX

vx

]
, (3.41)

with associated jump conditions:

cpρ0JvxK = −JPxXKNX; (3.42a)

cpJFxXK = −JvxKNX. (3.42b)

where PxX is the one-dimensional component of the linear elastic first Piola-Kirchhoff
stress tensor, from Equation (2.26), expressed as:

PxX = E(FxX − 1). (3.43)

The associated acoustic wave speed cp is derived for the linear elastic constitutive
model, based on the derivation in Section 2.6.2, by substituting Equation (3.42b) into
Equation (3.42a) and making use of Equation (3.43) then rearranging as follows:

cpρ0JvxK = −EJFxXKNx =
E
cp

JvxK;

cp =

√
E
ρ0

. (3.44)

In this linear elastic scenario, the shock wave produced by contact is small such that the
shock wave speed Up is equal to the speed of sound within the material cp, therefore
the acoustic wave speed will be used through the derivation. Equation (3.42a) gives the
closed form solution for a one-dimensional contact point or interface of a homogeneous
linear elastic material. This equation can then be evaluated for each contact stage i.e.
in contact and separation following a simplified one-dimensional case of Algorithm 3.1
in order to derive the expressions at the contact interface. The contact stages can be
observed in Figure 3.2 and can be described as follows.

2Since this is the one-dimensional first order wave equation the conservation of the area map and
Jacobian no longer apply condensing the notation.
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Figure 3.2: One-Dimensional Elastic Bar Impact: Wave solution at different times: (a)
t0 = 0, (b) t1 = δN/v0, (c) t2 = t1 + L/(2cp),(d) t3 = t1 + L/cp, (e) t4 = t1 + 3L/(2cp)
and (f) t5 = t1 + 2L/cp. δN is the initial gap between the two bars. The left column
represents the velocity profile vx and right column represents the stress profile (not
traction)
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At t0 (Figure 3.2a) the bars have an initial gap δN and the left bar has initial velocity
v0 while the right bar is at rest. The time that contact occurs (Figure 3.2b) can simply
be determined as t = δN/v0. Once contact occurs, the shock wave generated (both in
velocity and stress) by the contact propagates at wave speed cp in opposite directions
along the length of each bar away from the contact interface (Figure 3.2c). When the
compressive stress wave reaches the free end of each bar (Figure 3.2d) the wave is
reflected back to the contact interface (Figure 3.2e), this wave varies depending on the
prescribed boundary condition. In this scenario the reflection from the free end (i.e.
traction is zero and velocity is doubled), results in a tensile stress wave which is an exact
inversion of the compressive stress wave. While the velocity wave remains unchanged.
Finally after the tensile stress wave returns to the contact interface (Figure 3.2f) the
bars separate. To obtain the exact mathematical expressions for each contact stage for
this scenario, it is possible to use the same procedure from Section 3.3 to obtain the
one-dimensional Riemann solution based on the jump condition in Equation (3.42a)
and (3.42b). Therefore, drawing comparison with Equation (3.29a) the one-dimensional
solution of the contact interface conditions {vC

x , tC
x } where vL

x = v0, vR
x = 0 and tL

x =

tR
x = 0 to give:

vC
x =

1
2
(v0 + 0) +

1
2ρ0cp

(0− 0) ;

=
1
2

v0;

tC
x =

1
2
(0 + 0) +

ρ0cp

2
(0− v0) ;

= −
(ρ0cp

2

)
v0,

which is the common (continuous) velocity of both bars and the traction at the contact
interface, this is the one-dimensional equivalent of contact-stick. Next this process can
be used to determine the release velocities of both bars by substitution of tC = 0 into
Equation (3.42a) for each bar respectively since the contact interface cannot support
tension to give:

cpρ0

(
vL

x − vC,L
x

)
=
(

tL
x − 0

)
; cpρ0

(
vR

x − vC,R
x

)
= −

(
tR
x − 0

)
;

and by substitution of vL
x = tL

x = 0 for the left bar and tR
x = 0, vR

x = v0 for the right bar
to give:

vC,L
x = vL

x −
tL
x

cpρ0
;

vC,L
x = 0;

vC,R
x = vR

x +
tR
x

cpρ0
;

vC,R
x = v0.

(3.45)

It is clear from these release velocities that the kinetic energy is transferred fully from
the left bar to the right at the point of contact with no loss in energy.

Through the one-dimensional derivation of the exact solution, it can clearly be observed
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that by using the acoustic Riemann solver approach for the interface of contact scenar-
ios, the velocity and stress (tractions in multi-dimensions) can be explicitly enforced at
a continuum level with exact expression for linear elastic materials. Harnessing this
approach for enforcing the contact conditions in a computational method, would pro-
vide a significant advantage over traditional FEM based solvers, since the enforcement
of the contact constraints in these solvers are either enforced through the penalty or
additional constraint methodologies thus reducing the contact interface accuracy or
efficiency. Applying this Riemann solver approach to computational contact method-
ologies forms one of the novelties of this thesis and will be discussed with the compu-
tational implementation in Chapter 4.

3.5 Second Law of Thermodynamics

In order assess the stability of the proposed numerical algorithm through the proof of
entropy production, in Chapter 4, it is useful to introduce the Hamiltonian H(X , t)
[21, 118]. For the isothermal case, this is a generalised convex entropy function of the
system of conservation Equations (2.13), coinciding with the definition of total energy
per unit of undeformed volume. Therefore, the HamiltonianH can be defined as:

H(X , t) = Ĥ(p,F ,H , J,α) =
1

2ρo
p · p+ E(F ,H , J,α), (3.46)

which represents the summation of the kinetic energy per unit of undeformed volume
(the first term on the right hand side of Equation (3.46)) and the internal energy E
expressed in terms of the three deformation measures {F ,H , J} and a set of state vari-
ables [128–130] collected in the form of a tensor α 3. It is important to note thatH(X , t)
and Ĥ(p,F ,H , J,α) represent alternative functional representations of the same quan-
tity.

It is useful to revisit the second law of thermodynamics when written in terms of the
Hamiltonian. Taking the derivatives of Ĥ from Equation (3.46) with respect to its ar-
guments, the time rate of the Hamiltonian when considering one body potentially in

3For example, plastic deformation or similar.
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contact, can be obtained via the chain rule as follows:

d
dt

∫
Ω0

H dV =
∫

Ω0

∂Ĥ(p,F ,H , J,α)
∂t

dV,

=
∫

Ω0

(
∂Ĥ
∂p
· ∂p

∂t
+

∂Ĥ
∂F

:
∂F

∂t
+

∂Ĥ
∂H

:
∂H

∂t
+

∂Ĥ
∂J

∂J
∂t

+
∂Ĥ
∂α

:
∂α

∂t

)
dV,

=
∫

Ω0

(
v · ∂p

∂t
+ ΣF :

∂F

∂t
+ ΣH :

∂H

∂t
+ ΣJ

∂J
∂t

+
∂E
∂α

:
∂α

∂t

)
dV,

=
∫

Ω0

(
v · ∂p

∂t
+ (ΣF + ΣH F + ΣJH) : ∇0v +

∂E
∂α

:
∂α

∂t

)
dV,

=
∫

Ω0

(
v · ∂p

∂t
+P : ∇0v +

∂E
∂α

:
∂α

∂t

)
dV,

(3.47)
where, Equations (2.13) and (2.19) have been substituted in the third and fifth lines
of Equation (3.47), respectively. Subsequently, the linear momentum balance principle
from Equation (2.6) can be substituted into Equation (3.47) to give:

d
dt

∫
Ω0

H dV =
∫

Ω0

[
v · (ρ0b) + v ·DIVP +P : ∇0v +

∂E
∂α

:
∂α

∂t

]
dV. (3.48)

By recalling that v ·DIVP +P : ∇0v = DIV
(
P Tv

)
, the above equation reduces to:

d
dt

∫
Ω0

H dV =
∫

Ω0

[
v · (ρ0b) + DIV(P Tv) +

∂E
∂α

:
∂α

∂t

]
dV. (3.49)

By performing integration by parts of the divergence term in Equation (3.49), and after
some re-arrangement, it yields:

d
dt

∫
Ω0

H dV − Π̇ext = −Ḋ, (3.50)

where Π̇ext denotes the power introduced by external forces, defined as:

Π̇ext =
∫

Ω0

v · (ρ0b) dV +
∫

∂Ω0\Γ
vB · tB dA +

∫
Γ
vC · tC dA. (3.51)

Here, Γ represents the boundary faces on contact region and ∂Ω0 \ Γ represents the
remaining boundary faces that are not in contact. In the above expression, the first
term on the right hand side represents external force acting on a body, the second term
represents the non-contact boundary forces obtained via the enforcement of standard
Neumann or Dirichlet boundary conditions, and the third term represents the contact
boundary forces describing appropriately the contact-impact phenomenon. To further
examine this, consider the case of elasto-plasticity [112, 131, 132] where the elastic en-
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ergy is expressed in terms of elastic left Cauchy-Green tensor be = FC−1
p F T. Therefore

in this case, the internal state variable is the inverse of the plastic right Cauchy Green
tensor as, α = C−1

p . With this definition, the rate of plastic dissipation Ḋ described in
Equation (3.50) becomes:

Ḋ = −
∫

Ω0

∂E
∂C−1

p
:

∂C−1
p

∂t
dV. (3.52)

In the scenario where the rate of plastic strain ˙̄εp has been defined as the work conju-
gate to the von-Mises equivalent stress τ̄ [131], the equation above can be alternatively
expressed as [131]:

Ḋ =
∫

Ω0

˙̄εpτ̄ dV; τ̄ =

√
3
2
(τ̂ : τ̂ ), (3.53)

where τ̂ represents the deviatoric component of the Kirchhoff stress. It is important to
note here that in the above expression, the rate of dissipation is always non-negative,
that is Ḋ ≥ 0, Equation (3.50) can be transformed into the following inequality:

d
dt

∫
Ω0

H dV − Π̇ext ≤ 0, (3.54)

which represents a valid expression for the global statement of the second law of ther-
modynamics [133]. Satisfaction of inequality (3.54) is a necessary ab initio condition to
ensure stability, otherwise referred to as the Coleman–Noll procedure [114]. This key
concept will be further exploited in the next Chapter at a semi-discrete level.
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Chapter 4

Numerical Scheme

4.1 Preliminaries

In this Chapter the continuum formulation for contact dynamics discussed in Part II,
will be discretised for computational implementation. In this research the first order
framework is spatially discretised using the finite volume method, introduced in Sec-
tion 4.2 and particularised for the vertex centred finite volume method (VCFVM) with
linear flux reconstruction and limiter in Section 4.3. The stability of this semi-discrete
formulation is assessed in terms of the entropy production in Section 4.3.3. The semi-
discrete equations will then be extended to explicit dynamics with a two stage Runge-
Kutta time integrator, explored in Section 4.4.

4.2 Finite Volume Method

In order for the continuum formulation discussed in Part II to be solved computation-
ally the first order framework must be discretised with an appropriate computational
method. As discussed in Part I, traditional computational methodologies for explicit
contact dynamics, in particular the FEM, have a series of shortcomings stemming from
the computational method, therefore an alternate computational method will be con-
sidered in this research. By formulating the solid dynamic problem as the set of first
order conservation equations, in terms of fluxes, its easy to draw comparisons with
CFD conservation formulations. These formulations are commonly discretised using
the Finite Volume Method (FVM), first introduced separately by McDonald [134], Mac-
Cormack [135] and extended to three dimensions by Rizzi [136] which are based on
direct discretisation of the global conservation equations [14]. The advantage of this
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direct integral discretisation is that the global conservation of the primary variables1

are automatically satisfied at a discrete level and fluxes are not required to be continu-
ous therefore are suitable for scenarios where shock waves are present [14, 137, 138], an
important property to consider for contact scenarios. To discretise a conservation equa-
tion using the FVM, the domain is split into a series of distinct finite volumes known
as control volumes, the definition of which varies based on the type of FVM, either
cell-centred or vertex-centred, based on the location of the stored primary conserved
variables, as shown in Figure 4.1.

(a) Cell-Centred Finite Volume (b) Vertex-Centred Finite Volume

Figure 4.1: Control volume definitions (red) for CCFVM and VCFVM with primary
variable locations (green) in two dimensions

In the Cell Centred Finite Volume Method (CCFVM), the control volumes are defined
by a traditional primary mesh split into nodes, edges and cells (elements) with the indi-
vidual control volumes defined as the cells bounded by the associated cell edges/faces,
see Figure 4.1a. In this scheme the conserved variables are located at the centre of each
cell which requires projection to the boundary faces in order to compute the bound-
ary conditions. On the other hand, VCFVM is where the control volumes are defined
centred around each node (vertex) by constructing a secondary or dual mesh onto the
primary mesh, see Figure 4.1b. This gives increased flexibility to the definition of the
control volume compared with the cell-centred approach, however requires additional
pre-processing to create the dual mesh. This flexible control volume definition results in
a less computational intensive scheme for tetrahedral meshes since there are 5 to 6 times

1For example in CFD, mass, momentum and energy.
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more cells than vertices in a tetrahedral mesh thus requiring less evaluation and stor-
age of the conserved variables [139]. This provides a significant benefit in large strain
solid dynamics where complex computationally intensive constitutive models require
evaluation at each conserved variable location, significantly increasing the computa-
tional cost. Another key benefit of VCFVM is that the conserved variables are stored
directly on the boundary, therefore do not require projection and boundary conditions
can be strongly enforced unlike CCFVM. These differences naturally benefit VCFVM
in contact dynamic scenarios as the contact constraints can be strongly enforced at the
boundary vertices and can provide fast solutions for complex material models, there-
fore VCFVM will be the spatial discretisation for this research and discussed in the
following section.

4.3 Vertex Centred Finite Volume Method

As mentioned previously, VCFVM is a node (vertex) based computational discretisa-
tion where the conserved variables are solved for and stored at the nodes of the pri-
mary mesh. The domain is first discretised using traditional unstructured meshing
techniques to create a primary mesh. This primary mesh is then split into a series of
control volumes through a secondary or dual mesh which can be constructed by a va-
riety of techniques, in this research the median dual approach for tetrahedral meshes
[140] will be utilised which constructs the dual mesh by connecting the edge midpoints
to cell centroids. In order to apply this spatial computational method the notation from
Figure 4.2 for two dimensions will be used to discretise the first order conservation
equations in the following sections.

(a) (b) (c)

Figure 4.2: Notation for VCFVM in two dimensions (a) Control volume for interior
node i (b) Control volume for boundary node i (c) Control volume for contact boundary
node i
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4.3.1 Semi-Discrete Conservation Equation

To apply the VCFVM to the first order framework, first Equation (2.13) is integrated
in space for any undeformed control volume Ωi

0 and applying the Green-Gauss diver-
gence theorem [14], the equation becomes:

Ωi
0

dU i

dt
= −

∫
∂Ωi

0

FNdA + Ωi
0S i, (4.1)

where U i and S i are the conservation variables and source terms associated with con-
trol volume i, respectively. While FN is the flux vector previously defined in Equation
(2.16). By following the approach in [114] the surface integral can be approximated by
an upwinding numerical flux and then reformulated for computational efficiency in
Total Lagrangian form to2:

Ωi
0

dU i

dt
= −

∑
j∈Λi

F I
Nij
∥Cij∥+ ∑

γ∈ΛB
i

F B
i Cγ + ∑

β∈ΛC
i

FC
i Cβ

+ Ωi
0S i, (4.2)

where j ∈ Λi is the set of connecting control volumes j that are associated with control
volume i and Cij is the area vector associated with edge i− j. For a mean undeformed
area vector Cij satisfies the reciprocal relation: Cij = −Cji. Similarly γ ∈ ΛB

i and
β ∈ ΛC

i are the sets of connecting non-contact boundary faces γ and contact boundary

faces β that are associated with control volume i with Cγ,β =
Aγ,β

3 Nγ,β representing the
respective boundary area vector. The terms within the parenthesis are the evaluation
of the control volume interior interface flux F I

Nij
, non-contact boundary flux F B

i and

contact boundary flux FC
i . The internal interface flux F I

Nij
= FC

N

(
F L

ij,FR
ij ,Nij

)
can

be evaluated from the contact-stick condition3 which depends on both sides of the mid-
point of edge ij. The non-contact and contact boundary flux F B,C

i are evaluated based
on the weighted average approach [141] and is defined in three dimensions as:

F B
i =

6F B
i +F B

j +F B
k

8
; FC

i =
6FC

i +FC
j +FC

k

8
, (4.3)

where j and k are the other nodes that define boundary face γ or β with node i. The
non-contact boundary flux F B

i can be evaluated based on appropriate Dirichlet or Neu-
mann boundary conditions (refer to [100]) while the contact boundary flux FC

i can be

2For hypervelocity impacts, fracture, or large sliding interfaces Arbitrary Lagrangian Eulerian (ALE)
formulation may be required to address excessively large mesh/geometry distortion.

3The interior numerical flux between contacting control volumes can be considered a particular case
of contact-stick with infinite friction hence Equation (3.20) for the acoustic Riemann solver can be imple-
mented to approximate the interface flux.
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evaluated based on appropriate contact boundary conditions from Section 3.3. It is
worth noting that when boundary face β is not in contact, Cβ = 0.

Equation (4.1) is particularised for the full first order conservation framework as:

Ωi
0

d (ρ0v)i
dt

= ∑
j∈Λi

tI ∥∥Cij
∥∥+ ∑

γ∈ΛB
i

tB
i ∥Cγ∥+ ∑

β∈ΛC
i

tC
i
∥∥Cβ

∥∥+ Ωi
0

(
ρ0b

i
0

)
; (4.4a)

Ωi
0

dFi

dt
= ∑

j∈Λi

v I ⊗Cij + ∑
γ∈ΛB

i

vB
i ⊗Cγ + ∑

β∈ΛB
i

vC
i ⊗Cβ; (4.4b)

Ωi
0

dHi

dt
= ∑

j∈Λi

F Ave
(
v I ⊗Cij

)
+ ∑

γ∈ΛB
i

Fi

(
vB

i ⊗Cγ

)
+ ∑

β∈ΛC
i

Fi

(
vC

i ⊗Cβ

)
;

(4.4c)

Ωi
0

dJi

dt
= ∑

j∈Λi

v I ·
(
HAveCij

)
+ ∑

γ∈ΛB
i

vB
i · (HiCγ) + ∑

β∈ΛC
i

vC
i ·
(
HiCβ

)
; (4.4d)

where v I , tI are the internal interface velocity and traction computed from the Rie-
mann solver for contact-stick in Equation (3.20), tB

i and vB
i are the boundary traction

and velocity respectively depending on the appropriate boundary conditions, referring
to [100]. tC

i and vC
i are the contact traction and velocity respectively computed based on

the conditions in Section 3.3, [·]Ave = 1
2 ([·] + [·]) are the average of the respective vari-

able with the adjacent control volume. By substituting the contact interface variables
directly for each control volume, thus producing Equation (4.4), this does not ensure
discrete satisfaction of the involutions defined in Equation (2.11). Following the work
Hassan et al. [114], one viable option to ensure the discrete satisfaction of the involu-
tions is to approximate the updates of F (Equation (4.4b)) and H (Equation (4.4c)) by
using central difference approximations for v I , for example, only using the first term
of Equations (3.17a) and (3.19a) for the acoustic conditions, while removing second
term containing the upwinding stabilisation. For consistency, F Ave and HAve will be
replaced with Fi and Hi. Assuming the jump in traction is dominated by the jump in
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pressure, refer to Section 3.3, the geometric conservation equations reduce to:

Ωi
0

dFi

dt
= ∑

j∈Λi

vWAve
ij ⊗Cij + ∑

γ∈ΛB
i

vB
i ⊗Cγ + ∑

β∈ΛB
i

vC
i ⊗Cβ; (4.5a)

Ωi
0

dHi

dt
= Fi

∑
j∈Λi

vWAve
ij ⊗Cij + ∑

γ∈ΛB
i

vB
i ⊗Cγ + ∑

β∈ΛC
i

vC
i ⊗Cβ

 ; (4.5b)

Ωi
0

dJi

dt
= Hi :

∑
j∈Λi

vWAve
ij ⊗Cij + ∑

γ∈ΛB
i

vB
i ⊗Cγ + ∑

β∈ΛC
i

vC
i ⊗Cβ


+ ∑

j∈Λi

SΣJ
ij

(
ΣR

J − ΣL
J

)
;

(4.5c)

where vWAve
ij is the weighted average velocity defined as:

vWAve = vWAve
n n+ vWAve

t , (4.6)

where:

vWAve
n =

cL
pρL

0 vL
n + cR

p ρR
0 vR

n

cL
pρL

0 + cR
p ρR

0
; vWAve

t =
cL

s ρL
0v

L
t + cR

s ρR
0 v

R
t

cL
s ρL

0 + cR
s ρR

0
, (4.7)

at the interface of edge ij, vB
i and vC

i are the non-contact and contact boundary ve-
locities without stabilisation based on the boundary conditions from Section 3.3 and
[100]. Importantly, SΣJ

ij is the strictly positive Riemann upwind stabilisation based on
the pressure component (see Section 3.3) which cannot be included in Equations (4.5a)
and (4.5b), but since there is no involution for Equation (4.5c), the stabilisation term can
be included and is defined as the stabilisation terms from Equation (3.20) as:

SΣJ
ij =

1
2ρ0cp

cij · cij

∥Cij∥
; (4.8)

where cij = HAveCij. It can be observed that in Equation (4.5) that the stabilisation
terms are not present in Equation (4.5a) and (4.5b) thus ensuring that these equations
satisfy the involutions. The mappings Fi, Hi in Equations (4.5b) and (4.5c) are naturally
curl and divergence free as the equations are formulated in terms of a material discrete
gradient of a continuous velocity field [103]. By utilising the equations above and tak-
ing the flux variables, F L

ij

(
U L

ij

)
and FR

ij

(
UR

ij

)
, as piecewise constants (i.e. U L

ij = U i

and UR
ij = U j), the resulting solution would be first order in space [14, 139]. Therefore

to ensure accuracy of the scheme, a linear reconstruction procedure is utilised with a
Barth-Jespersen slope limiter [142] for the flux variables, F L

ij and FR
ij to compute the

variables at the control volume interfaces and will be discussed in the following section.
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4.3.2 Flux Reconstruction and Limiter

In order to obtain a second order spatial accuracy, a linear reconstruction procedure is
utilised. This procedure can be described by referring to the one-dimensional repre-
sentation in Figure 4.3, where the red dots represent the nodes (position of conserved
variable), the blue rectangles represent each control volume and the black lines repre-
sent the linear reconstruction of the fluxes. For a given node i which has two connected
nodes j1 and j2, the flux Fij at each control volume interface along each edge ij, are re-
constructed (black line) from conserved variable Ui by first computing the flux gradient
which is defined in multi-dimensional form following the Green-Gauss approach [142]
as:

Ωi
0Gi = ∑

j∈Λi

F (U i) +F
(
U j
)

2
⊗Cij + ∑

γ∈ΛB,C
i

(F (U i)⊗Nγ)
Aγ

3
, (4.9)

where the first term on the right hand side is simply the sum of the area weighted
average of internal fluxes while the second term is the sum of the area weighted average
of the boundary fluxes. With this flux gradient, the fluxes at the left and right sides of
the flux interface ij can be linearly reconstructed based on the distance to the interface
from the respective node as:

F L
ij = F (U i) +

1
2 ΦiGi∆X ; FR

ij = F
(
U j
)
− 1

2 ΦjGj∆X , (4.10)

where ∆X =
(
Xj −Xi

)
, is the difference between nodal positions and Φi,j is the slope

limit function which can be defined by any appropriate limiter, in this research the slope
limiter will be defined using the Barth-Jespersen limiter [142] outlined per component
in Algorithm 4.1. It can be observed that for a limiter where a component Φi = 1
the complete linear reconstruction is employed, however in the vicinity of a shock this
complete linear reconstruction would result in local extrema at the interface therefore
a limiter is used to constrain the reconstruction such that no local extrema is created
[143] but this sacrifices the order of accuracy near the shock.

4.3.3 Entropy Production

In this section, the inequality from Equation (3.54) in Section 3.5, is assessed for the
set of semi-discrete Equations, (4.4a), (4.5a), (4.5b) and (4.5c). For illustrative purposes,
the body under consideration is said to be acoustic and homogeneous. Additionally,
in the following proof, it is assumed that piecewise constant approximation (first or-
der in space) is used for variables across each control volume known as the Godunov
approach [126, 127]. Making use of Equations (3.53), the semi-discrete counterpart of
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Figure 4.3: One-dimensional representation of piecewise linear reconstruction

Equation (3.47) is:

∑
i

Ωi
0

dHi

dt
= ∑

i
Ωi

0

[
vi ·

dpi

dt
+ Σi

F :
dFi

dt
+ Σi

H :
dHi

dt
+ Σi

J
dJi

dt
− 1

Ωi
0

Ḋi

]
; (4.11a)

= ∑
i

Ωi
0

[
vi ·

dpi

dt
+
(

Σi
F + Σi

H Fi + Σi
JHi

)
:

dFi

dt
− 1

Ωi
0

Ḋi

]
+ ∑

i
∑

j∈Λi

Σi
JS

ΣJ
ij (Σ

j
J − Σi

J);
(4.11b)

= ∑
i

Ωi
0

[
vi ·

dpi

dt
+Pi :

dFi

dt

]
+ ∑

i
∑

j∈Λi

Σi
JS

ΣJ
ij (Σ

j
J − Σi

J)−∑
i

Ḋi, (4.11c)

where, Equations (4.5a) - (4.5c) and Equation (2.19) have been substituted into the sec-
ond and third lines of (4.11), respectively. Subsequently, the linear momentum conser-
vation Equation (4.4a), the deformation gradient conservation Equation (4.5a) can be
substituted and, after some algebra, gives:

∑
i

Ωi
0

dHi

dt
= ∑

i
∑

j∈Λi

1
2
[
ti · vj − tj · vi

]
∥Cij∥+ ∑

i
∑

j∈Λi

vi ·Sv
ij
(
vj − vi

)
+ ∑

i
∑

j∈Λi

Σi
JS

ΣJ
ij (Σ

j
J − Σi

J)−∑
i

Ḋi + Π̇ext.
(4.12a)

Here, Π̇ext denotes the semi-discrete power contribution, expressed as:

Π̇ext = ∑
i

Ωi
0vi · (ρ0b

i
0) + ∑

γ

Aγ
0 t

B
i · vB

i + ∑
β

Aβ
0t

C
i · vC

i , (4.13)
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Algorithm 4.1: Component-Wise Barth and Jespersen Slope Limiter
Input : Ui,Uj
Output: Φi

1. Compute minimum and maximum values of variable U :

Umin
i = min

j∈Λi

(
Ui,Uj

)
; Umax

i = max
j∈Λi

(
Ui,Uj

)
2. Compute an unlimited reconstruction at the flux interface:

Uij = Ui +
1
2Gi ·

(
Xj −Xi

)
; ∀j ∈ Λi

3. Obtain a maximum allowable value of Φij each flux interface:

Φij =


min

(
1, U

max
i −Ui
Uij−Ui

)
, if Uij −Ui > 0;

min
(

1, U
min
i −Ui
Uij−Ui

)
, if Uij −Ui < 0;

1, if Uij −Ui = 0

4. Select the limiter associated to the control volume:

Φi = min
j∈Λi

(
Φij
)

and the positive definite matrices are:

Sv
ij =

ρ0cp

2
(n⊗n) +

ρ0cs

2
(I −n⊗n) . (4.14)

Noting that the nested summation is carried out over control volumes in Equation
(4.12) and the anti-symmetric nature of the first line of the right hand side, it can be
conclude that these terms cancel and thus Equation (4.12) reduces to:

∑
i

Ωi
0

dHi

dt
− Π̇ext = ∑

i
∑

j∈Λi

vi ·
(
Sv

ij
(
vj − vi

))
+ ∑

i
∑

j∈Λi

Σi
JS

ΣJ
ij (Σ

j
J − Σi

J)−∑
i

Ḋi,

(4.15a)

= ∑
i

∑
j∈Λi

vj ·
(
Sv

ji
(
vi − vj

))
+ ∑

i
∑

j∈Λi

Σj
JS

ΣJ
ji (Σ

i
J − Σj

J)−∑
i

Ḋi.

(4.15b)

It is worth pointing out that the first two terms on the right hand side can be equiv-
alently written by swapping indices i and j. Simply averaging the first line and the
second line of the equation above, and noticing that Sv

ij = Sv
ji and SΣJ

ij = SΣJ
ji , an alter-
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native expression can be defined as:

∑
i

Ωa
0

dHi

dt
− Π̇ext = −

1
2 ∑

i
∑

j∈Λi

[(
vj − vi

)
·Sv

ij
(
vj − vi

)
+ SΣJ

ij

(
Σj

J − Σi
J

)2
]
−∑

i
Ωj

0
˙̄εi

pτ̄i.

(4.16)
It can be observed that, the first term on the right hand side of Equation (4.16) is al-
ways non-positive. Moreover, in the case of elasto-plasticity, the second term involving
the rate of plastic dissipation is also non-positive, thus satisfying the second law of
thermodynamics from the inequality in Equation 3.54.

4.4 Time Discretisation

To achieve a numerical scheme that has approximately second order accuracy, a second
order time integrator must be selected to be coupled with the linear reconstruction and
Barth-Jesperson limiter implemented for the spatial discretisation. The time integrator
implemented to advance the simulation can be one of many well-known methods, to
ensure robustness and simplicity Time Variation Diminishing (TVD) Two Stage Runge-
Kutta (RK2) scheme was implemented [14]. This scheme consists of two stages and an
average step, which can be expressed as follows:

U ∗i = U n
i + ∆tU̇ n

i (U n
i , tn) , (4.17a)

U ∗∗i = U ∗i + ∆tU̇ ∗i
(
U ∗i , tn+1

)
, (4.17b)

U n+1
i =

1
2
(U n

i +U ∗∗i ) . (4.17c)

The time step ∆t is computed based on the standard Courant-Friedrichs-Lewy (CFL)
condition which ensures stability of the scheme such that:

∆t = αCFL
h

Un
p,max

, (4.18)

where αCFL is the CFL number, h is the minimum characteristic length of all control
volumes and Un

p,max is the maximum shock pressure wave speed at a given time step
n. This fully discrete numerical scheme, was first implemented in MATLAB for one
and two dimensional scenarios then extended to three-dimensions through a purpose
built solver implemented in open-source software "OpenFOAM". An introduction to
OpenFOAM and the creation of this solver will be discussed in the next chapter.



Chapter 5

OpenFOAM Computational Framework

5.1 Preliminaries

In this Chapter, the three dimensional implementation of the proposed first order con-
servation framework for large strain explicit contact dynamics into open source soft-
ware "OpenFOAM" is presented, first a brief introduction to OpenFOAM is presented
in Section 5.2. This is then followed by the introduction and implementation of the
multiple body contact solver for the proposed method in Section 5.3, including the pur-
pose built VCFVM library and an introduction to the arbitrary mesh interface library
for non-matching interfaces. Lastly, an example workflow of how to setup an example
multi-body contact simulation using the custom built solver is explored in Section 5.4
with relevant mesh and input files included for completeness in Appendix B and C.

5.2 Introduction to OpenFOAM

OpenFOAM [120] is a well known cell-centred finite volume package for a variety of
academic or industrial applications and is licensed under the General Public License
(GPL) which gives anyone the ability to download, install, use and modify the source
code of the software package to fit a desired application. OpenFOAM is implemented
in C++, an object oriented programming language [144], providing the traditional ben-
efits of abstraction, inheritance, polymorphism and operator overloading thus produc-
ing a large and efficient library of classes for the user to take advantage of including
complex mathematical and physical models or algorithms.

OpenFOAM has been primarily developed with a focus towards CFD applications,
however with the large library of complex mathematical models and algorithms al-
ready developed for these applications, the solvers can easily be modified or extended

70
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to include various continuum mechanics problems such as solid dynamics. The stan-
dard OpenFOAM distribution is limited to small strain solid mechanic problems with
several unofficial branches of OpenFOAM expanding to large strain problems, such as
"foam-extend". OpenFOAM is designed to create executables, known as applications,
from a vast C++ library which are characterised as either a solver or utility. A solver
is designed to solve a desired continuum mechanics problem such as "icoFoam" which
is designed for incompressible fluid dynamics. While a utility is designed for data ma-
nipulation such as "gmshToFoam" which is used to convert a mesh file created using
mesh generation software, gmsh [145] (*.msh) to the format readable by OpenFOAM.
To develop a solver for the proposed method, first the general OpenFOAM problem
definition (pre-processing) must be examined prior to concentrating on the definition
and solving of the proposed method.

5.2.1 OpenFOAM Problem Definition

To simulate a problem using OpenFOAM, the desired problem must first be defined by
creating the test case directory, geometry, initial and boundary conditions along with
the mesh for the given problem, this procedure is known as pre-processing. For Open-
FOAM simulations, first the test case directory must be created based on the typical
OpenFOAM directory structure, as shown in Figure 5.1 for single region and multi-
ple region cases, the selection of which varies depending on the problem scenario and
geometry. The typical case directory consists of four main components, first, is the
definition of the appropriate geometry and mesh. In general to obtain a tetrahedral
mesh1 , the geometry is defined and meshed using an external Computer Aided De-
sign (CAD) and mesh generation package such as SolidWorks, ANSYS or gmsh before
requiring conversion to the OpenFOAM format through an appropriate OpenFOAM
utility. Throughout this research, gmsh was used to generate and mesh the geome-
tries hence the *.msh file extension is used to define the mesh file and was converted
to the OpenFOAM format using the gmshToFoam utility, storing the OpenFOAM mesh
in sub-directory polyMesh. The appropriate boundary conditions can then be defined
through the polyMesh/boundary file. For simulations where the mesh remains un-
changed throughout the simulation, the polyMesh sub-directory is stored within, the
second main component of the case directory, the constant directory. This directory is
used to store any data that is constant throughout the simulation, for example the mesh
or various continuum properties2. The third component is the system directory which
defines all relevant information to describe and control the simulation. This includes

1If requiring a hexahdral mesh, OpenFOAM has a utility for hexahedral mesh generation
snappyHexMesh designed for predefined geometry files.

2For Example fluidProperties, thermoProperties or mechanicalProperties
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the control dictionary, controlDict, file which specifies various system parameters re-
quired such as the solver name, start time, end time and CFL number. The fvSchemes

and fvSolution are used to control the finite volume scheme with various parameters
such as discretisation methods for gradient or divergence equations. The last compo-
nent is the initial time directory, 0, containing all initial conditions, such as velocity,
required by the solver and is specified within this directory as *.orig file extension.

By comparing Figure 5.1a and 5.1b it is clear that both single region and multi-region
case structures follow a similar format with two primary differences. First is that the
multiple region case structure uses sub-directories for each time (0), constant and
system directories in order to define the initial conditions, mesh and system param-
eters associated with each region. Second, is the addition of the regionProperties file
which defines the number of regions and region names to be read by the solver.

By following one of these case structures, any type of simulation can be created for
an appropriate solver using the existing libraries in OpenFOAM, therefore, to simu-
late problems for explicit large strain contact dynamics using the proposed method,
a purpose-built OpenFOAM solver was created as part of this research. This custom
solver has limited OpenFOAM integration through utilisation of the main algorithms,
case structure, mathematical and field components of the OpenFOAM C++ library
where possible.

The primary challenge associated with development of a vertex centred solver in Open-
FOAM is that the base C++ library lacks any template objects or functions for vertex
(point) based operations or algorithms. This meant that the purpose built solver devel-
oped for this research was developed as a stand-alone solver with custom algorithms,
operations and class objects, as required for the application, with OpenFOAM as the
foundation. This limits the scalability of the current solver as significant development
time would be required to either extend the current solver efficiently as required, or to
fully integrate a vertex centred discretisation based solver into OpenFOAM. Therefore,
throughout this chapter only snapshots of the code will be provided with appropriate
outlining algorithms in order to explain the implementation of the vertex based solver
for brevity.
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(a) Single Region Case Structure (b) Multiple Region Case Structure

Figure 5.1: Typical OpenFOAM Case Structure
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5.3 Contact Dynamic Solver Implementation

Following the typical OpenFOAM case structure in Figure 5.1, this section introduces
the implementation in OpenFOAM of the proposed method, by considering each con-
tacting body as an individual region i.e. Figure 5.1b will be the base case structure for
this research3. First the underlying custom vertex centred C++ library, developed as
part of this research, required for the proposed method will be introduced in Section
5.3.1. The explicit multi-body contact solver will then be introduced in Section 5.3.2
with an example workflow, this is then extended to non-matching meshes through the
introduction of an OpenFOAM library called Arbitrary Mesh Interface (AMI) in Section
5.3.3.

5.3.1 Custom Vertex Centred OpenFOAM Library

In order to develop a multi-body contact solver based on the the proposed method
in OpenFOAM, a series of custom class objects were created for the vertex centred
methodology, that will be introduced in this section. A summary of the vertexCentred

library is shown in Figure 5.2 and is categorised similar to OpenFOAM into directories
as applications and libraries.

Figure 5.2: Vertex Centred First Order Framework Library Structure

Each directory is described as follows:

• ./applications/solvers - this directory contains the solver for large strain con-
tact dynamics using the first order framework discretised using VCFVM and will
be discussed further in Section 5.3.2.

• ./libraries/mathematics - consists of the underlying vertex based mathematics
and constructions required for this research, including the dualMesh construction,
mathematical operations and continuum mechanic computations.

3While either case structure could be used as the basis of the multi-body contact solver, the multiple
region structure was chosen for ease of implementation but requires more pre-processing.



5.3. CONTACT DYNAMIC SOLVER IMPLEMENTATION 75

• ./libraries/materialModels - this directory contains definitions for all mate-
rial models including the runTime selector, materialModelGrp, for the neoHookean
and vonMises-Plasticity material models as described in Section 2.5.

• ./libraries/numericalSchemes - this directory contains definitions for numeri-
cal based schemes such as vertex based gradientSchemes, interpolationSchemes
and limiters as described in Section 4.3.2.

• ./libraries/solidDynamics - consists of the definitions for the vertex based first
order framework in solidDyn based on Section 4.3 and the definitions for bound-
ary conditions in boundaryConditions, importantly both single and multi-body
contact algorithms based on the contact equations in Section 3.3.

Since this research is focused on the development of a explicit contact dynamic solver,
the underlying class objects from ./libraries will not be presented, therefore refer to
theory presented in Chapters 2, 3 and 4.

5.3.2 Explicit Multi-Body Contact Solver

By utilising the custom VCFVM library introduced in Section 5.3.1 an explicit multi-
body contact solver was developed. The solver developed as part of this research is
shown in Listing 5.1 with relevant comments to describe the workflow.

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |

\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O perat ion | Website : h t tps ://openfoam . org

\\ / A nd | Copyright (C) 2011 −2019 OpenFOAM Foundation
6 \\/ M anipula t ion |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 License

This f i l e i s par t of OpenFOAM.
10

OpenFOAM i s f r e e software : you can r e d i s t r i b u t e i t and/or modify i t
12 under the terms of the GNU General Publ ic License as published by

the Free Software Foundation , e i t h e r vers ion 3 of the License , or
14 ( a t your option ) any l a t e r vers ion .

16 OpenFOAM i s d i s t r i b u t e d in the hope t h a t i t w i l l be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

18 FITNESS FOR A PARTICULAR PURPOSE . See the GNU General Publ ic License
f o r more d e t a i l s .

20

You should have rece ived a copy of the GNU General Publ ic License
22 along with OpenFOAM. I f not , see <http ://www. gnu . org/ l i c e n s e s / >.

24 Applicat ion
solidVertexMBFoam

26

Descr ipt ion
28 A l a r g e s t r a i n multi −body c o n t a c t dynamics s o l v e r based on a l i n e a r
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momentum/ s t r a i n s mixed formulat ion . An e x p l i c i t Tota l Lagrangian
30 formulat ion u t i l i s i n g a monol i thic Tota l Var ia t ion Diminishing

Runge−Kutta time i n t e g r a t o r .
32

34 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
// Include required header f i l e s

36 # include " fvCFD .H"
# include " p o i n t F i e l d s .H"

38 # include " r e g i o n P r o p e r t i e s .H"
# include " solidDyn .H"

40

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
42

i n t main ( i n t argc , char * argv [ ] )
44 {

# inc lude " setRootCase .H" // Set path and root case d i r e c t o r i e s
46 # include " createTime .H" // I n i t i a l i s e time v a r i a b l e s

# inc lude " createMultiMesh .H" // Read regions and generate primary meshes
48 # include " readControls .H" // Read c o n t r o l parameters

# inc lude " createSolidDynamics .H" // Generate ver tex based regions f o r s o l i d dynamics
50

// Main time loop
52 while ( runTime . loop ( ) )

{
54 // Ca l c u l a te and s e t minimum time increment across a l l bodies

del taT . value ( ) = GREAT;
56 f o r A l l ( bodyRegions , bodyNum)

{
58 sol idRegions [bodyNum ] . updateMaxWaveSpeed ( ) ;

del taT . value ( ) = min ( del taT . value ( ) , ( c f l * so l idRegions [bodyNum ] . h_maxUp ( ) . value ( ) ) ) ;
60 }

runTime . se tDel taT ( del taT ) ;
62

// Update time and time step
64 t += del taT ; t s t e p ++;

66 // P r i n t to console current time v a r i a b l e s
Info << "\nTime Step = " << t s t e p << "\n del taT = " << del taT . value ( ) << " s "

68 << "\n Time = " << t . value ( ) << " s " << endl ;

70 // Set previous time step v a r i a b l e s f o r a l l bodies
f o r A l l ( bodyRegions , bodyNum)

72 {
so l idRegions [bodyNum ] . setOldTime ( ) ;

74 }

76 // Compute Runge−Kutta Stages
f o r ( i n t i =0 ; i <RKstages ; i ++)

78 {
// Update Boundary and Set h a l f s tage v a r i a b l e s f o r a l l bodies

80 f o r A l l ( bodyRegions , bodyNum)
{

82 sol idRegions [bodyNum ] . updateBoundaryConditions ( ) ;
so l idRegions [bodyNum ] . s e t H a l f S t a g e V a r i a b l e s ( ) ;

84 }

86
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// Solve and update s tage f o r a l l bodies
88 f o r A l l ( bodyRegions , bodyNum)

{
90 // Solve s tage

sol idRegions [bodyNum ] . so lveStage ( t , deltaT , i ) ;
92

i f ( i < RKstages −1)
94 {

// Update s tage
96 sol idRegions [bodyNum ] . updateStage ( t , del taT ) ;

}
98 }

}
100

// Advance time f o r a l l conserved v a r i a b l e s and update v a r i a b l e s f o r a l l bodies
102 f o r A l l ( bodyRegions , bodyNum)

{
104 sol idRegions [bodyNum ] . advanceTime ( del taT ) ;

so l idRegions [bodyNum ] . updateStage ( t , del taT ) ;
106 sol idRegions [bodyNum ] . updateMaterialModel ( ) ;

}
108

110 // Output time step r e s u l t s f o r a l l bodies
i f ( runTime . outputTime ( ) )

112 {
f o r A l l ( bodyRegions , bodyNum)

114 {
so l idRegions [bodyNum ] . output ( ) ;

116 }
}

118 // P r i n t to console when complete
Info << " Simulat ion completed = "

120 << ( t . value ( ) /runTime . endTime ( ) . value ( ) ) *100 << "%" << endl ;
}

122

// P r i n t to console s imulat ion s t a t i s t i c s
124 Info << "\nExecutionTime = " << runTime . elapsedCpuTime ( ) << " s "

<< " ClockTime = " << runTime . elapsedClockTime ( ) << " s "
126 << nl << "End\n" << endl ;

128 re turn 0 ;
}

130

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Listing 5.1: Source Code of Explicit VCFVM Multi-Body Contact Solver

This purpose built solver and VCFVM library is capable of solving explicit contact dy-
namics problems for one or two bodies with the possibility of extension to three or more
bodies. By developing this solver based on the proposed method presented in Chapters
2, 3 and 4, simple conforming contact scenarios can be solved, however an important
challenge of three dimensional multi-body contact is when the contact occurs between
non-matching contact interfaces. Therefore, to be able to solve non-matching contact
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interfaces an additional OpenFOAM library known as Arbitrary Mesh Interface (AMI)
was adapted for application with the contact solver.

5.3.3 Arbitrary Mesh Interface

One challenging aspect of multi-body contact is to address when two meshes come into
contact with two completely independent geometries and associated meshes, resulting
in a non-matching interface i.e. nodes and cells that do not overlap exactly. For the
proposed method this proves challenging as the problem variables are stored and cal-
culated at the nodes (vertex) for each mesh, and when two bodies come into contact
this information must be passed accurately between the bodies to appropriate nodal
positions. For one and two dimensions, this is trivial by carefully considering the prob-
lem setup and mesh generation, however for three dimensions the treatment of non-
matching meshes is essential as meshes become highly unstructured due to complex
geometries.

To tackle this challenge several methods exist as discussed previously for FEM meth-
ods or other approaches for example, generalised grid interface [146] for finite volume
methods. Since this research is focused on the development of the purpose built Open-
FOAM contact solver for the proposed method, assessing the capabilities and imple-
mentation of these methods is outside the scope of this thesis, therefore, harnessing
the pre-existing OpenFOAM libraries is a priority in this scenario. OpenFOAM has a
pre-developed library for multi-region computations including the transfer of problem
variables for non-matching meshes through a method known as Arbitrary Mesh Inter-
face (AMI) this library was developed based on the algorithm presented by Farrell and
Maddison [147].

This AMI library has been designed and fully parallelised for meshes which overlap
such as those for rotating fans in fluid dynamics, sliding interfaces or mapping fields
for coupled simulations. This approach works by taking two overlapping meshes and
projecting the nodes for one mesh onto the other then identifying the nearest nodes
associated with each cell. OpenFOAM then provides several options to calculate the
interpolation between the current face and the nearest cell. The determination of which
method is best for the application to contact dynamics is outside the scope of this re-
search hence a robust method based on the area of each overlapping face was selected
termed "faceAreaWeight" or "partialFaceAreaWeight" in OpenFOAM. These methods
would provide a weighting based on the overlapping area of each mesh face for the
interpolation of the cell variables from one mesh face to the other.

The AMI library has a number of different methods, functions and boundary condi-
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tions for applications to CFD problems, however these are implemented for the trans-
fer of cell-to-cell data due to the cell based nature of OpenFOAM. As a result, to utilise
these methods in the newly developed vertex-centred solver, the vertex variables re-
quire manipulation so that the pre-existing AMI code can be harnessed. To do this,
each face associated with a contact patch would require an associated surface variable
stored at the centre of each face, for each variable to be interpolated {v, t}. These
variables would then be interpolated between contact patches using the AMI library
then linearly reconstructed from the face centre to the node using a gradient calculated
based on surrounding surface variables following a two dimensional variation of the
method in Section 4.3.2 without application of a limiter. This procedure for clarity is
summarised in Algorithm 5.1 and depicted in Figure 5.3 as a two-dimensional exam-
ple. Algorithm 5.1 was implemented within the boundaryConditions/contact class
object and thus would give the multi-body solver the ability to solve problems with
both matching and non-matching meshes.

Algorithm 5.1: The non-matching mapping procedure in two dimensions.

1 (1) Obtain averaged variables at face centroid f : {tL
f ,vL

f } ← {tL
i ,vL

i };
2 (2) Map face variables from “L" to “R" surface using AMI face area projection

weighting {tMap
f ,vMap

f };
3 (3) Reconstruct face nodal variables {tMap

i f ,vMap
i f } via piecewise linear

reconstruction;

Figure 5.3: Two-dimensional vertex based mapping algorithm to project {ti,vi} from
“L" surface to “R" surface.
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5.4 Example Problem Setup and WorkFlow

By implementing the multi-body solver as described in this Chapter, a robust vertex
centred solver for large strain contact dynamics based on the first order conservation
framework was developed in OpenFOAM. To demonstrate how to this solver can be
applied to multi-body contact simulations an example workflow will be demonstrated
in this section. The example provided here is the procedure used to generate the Open-
FOAM results in Chapter 6 and 7, in particular the one dimensional two identical linear
elastic bar impact in Section 6.2. In order to simulate this contact example in Open-
FOAM, the traditional CAE simulation workflow is followed as depicted in Figure 5.4
and will be described in the following sections.

Figure 5.4: Simulation Workflow

5.4.1 Pre-Processing

The first stage is known as pre-processing, where the problem is setup by defining the
geometry, generating the mesh, creating the case directory and converting the mesh to
the OpenFOAM format. To solve this example using the newly developed OpenFOAM
solver the geometry and mesh must first be created. This can be achieved through
many different software packages, but for this example the geometry was created and
mesh generated in open source software gmsh [145]. To create the geometry in gmsh,
first the domain can be created as two geometry scripts based on the two bodies, the
example gmsh scripts for each geometry are shown in Listing B.1 for Body 1 and B.2 for
Body 2. In these geometry scripts the geometry is first defined with the "box" command,
then the domain is discretised using a structured mesh by defining the number of cells
along its length, width and height using the "transfinite" command. For this example, a
mesh that consisted of 80 cells along the bar length and 8 across the width and height.
Last in these scripts, the "Physical Volume" name was assigned4 to correspond with
the region name to be assigned in OpenFOAM. The example geometry and mesh are
shown in Figure 5.5.

4A similar command "Physical Surface" can be used to assign the boundary patch names for the
boundary conditions at this stage, in this scenario "free" and "contact".
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(a) Geometry (b) Mesh

Figure 5.5: Example pre-processing of Body 1 in gmsh

With the geometry and mesh parameters now defined, each body can now be discre-
tised using the gmsh mesh generator for 3D geometries, resulting in two meshes that
consist of 30720 cells and 6561 nodes that can be saved using the naming convention
as body1.msh and body2.msh respectively within the multi-region case directory de-
fined similar to that in Figure 5.1b. The next step is to convert the mesh files into
the OpenFOAM format within the case directory, this is easily achieved by using the
"gmshToFoam" utility with the "-region" modifier. In this scenario however, the Open-
FOAM mesh conversion was unreliable when converting the boundary conditions if
defined using the "Physical Surface" command in gmsh5. To circumvent this issue,
a custom utility script was created and is presented in Listing B.3. This utility con-
verts the mesh files previously created, then redefines the boundary patches by using
the "autoPatch" and "createPatch" utilities, requiring the "createPatchDict" files6

presented in Listings B.4 and B.5 for Body 1 and Body 2 respectively. By running this
custom utility the OpenFOAM mesh can be created and boundary conditions correctly
applied for rectangular bar impact scenarios only.

5.4.2 Processing

The next part of the typical simulation workflow is known as processing or solving,
where the application is run. In order to run the solver, the relevant input files must
be defined. First the initial conditions can be set for both bodies by modifying the
"lm.orig" files, presented in Listing C.1 and C.2, located in the sub-directories of the
initial time directory "0". Next the constant directory needs to be setup, first the
"regionProperties" file must be defined as presented in Listing C.3 in order to de-
fine the region names required by the solver and should match the region specific sub-

5This issue is associated with the "transfinite" commands therefore only occurs for structured
meshes using this command.

6These files must be stored in their region specific sub-directories of the "system" directory.
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directories used within the case directory. Next the material properties for each region
must be defined as presented in Listing C.4. For this scenario, both bodies are identi-
cal therefore only one file is presented, however the solver is capable of handling two
completely different material models if defined. Lastly, the system directory needs to
be setup with the "controlDict", "fvSolution" and "fvSchemes" presented in Listing
C.5, C.6 and C.7 respectively. The "controlDict" file defines all the system parameters
such as the solver name "solidVertexMBFoam", start time of 0s, end time of 0.7s and
CFL number of 0.3. The "fvSolution" file must be in each sub-directory and defines
the solid dynamic system selections such as solving the additional conservation equa-
tions and inclusion of the slope limiter. The "fvSchemes" file must be defined in each
sub-directory however, this file is not used by the contact solver as it is the file used to
select the cell-centred scheme discretisations and is mandatory as part of the standard
OpenFOAM case structure. With the case directory now fully defined, as shown in
Figure 5.6 the contact solver application can be run.

To run the contact solver, the "run" script must be executed through the console from
the case directory that was setup during the pre-processing stage. When input, the
script listed in Listing C.8 will run and the solver will commence solving the contact
scenario previously defined. Various statistics will be displayed in the console and
saved in a "log.solidVertexMBFoam" for later viewing or debugging. The console will
display current progress of the simulation with output results saved in relevant time
step directories. Once complete the results can be examined by post-processing.

5.4.3 Post-Processing

With the simulation complete the next stage is to visualise the results known as post-
processing. In this research, paraView was used to visualise the results from Open-
FOAM by using the paraFoam utility which converts the OpenFOAM format results
to a readable format for paraView, an example of the results is shown in Figure 5.7.
The local time evolution of the contact nodes were then extracted and plotted in MAT-
LAB for comparison purposes with the one and two dimensional MATLAB codes. The
results from this example are shown in Chapter 6.
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(a) (b)

(c) (d)

Figure 5.7: Example post-processing of simulation in paraView (a) at t = 0s (b) at
t = 0.25s (c) at t = 0.5s (d) at t = 0.7s
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Figure 5.6: Case Directory Example
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Chapter 6

One-Dimensional Problems

6.1 Preliminaries

In this chapter, a series of one-dimensional benchmark problems are presented in or-
der to establish the accuracy, consistency and stability of the proposed method. This is
achieved through comparisons of the exact solutions and commercial software for four
example problems. The first problem considered is that of the impact between two
identical linear elastic bars, in Section 6.2, followed by the second problem considering
the impact of two dissimilar linear elastic bars, in Section 6.3. These two examples are
based on typical manufactured problems for dynamic contact numerical methods as
presented in several journal articles [45, 51, 148–154] with simple to derive exact solu-
tions as presented previously in Section 3.4. The objective of these two examples are to
benchmark the accuracy and consistency of the proposed method across one, two and
three dimensional implementations within MATLAB and OpenFOAM. Next in Sec-
tion 6.4 the Hugoniot shock model is first benchmarked against Abaqus/Explicit [16]
followed by two parametric studies to investigate the importance of using the Hugo-
niot shock model by examining the slope s and impact velocity. Lastly, in Section 6.5
the impact of two dissimilar Hugoniot bars is investigated and benchmarked against
Abaqus/Explicit.

6.2 Two Identical Linear Elastic Bars

6.2.1 Problem Description

The first problem considered, consisted of two one-dimensional linear elastic bars with
identical lengths L = 10m, as depicted in Figure 6.1. Bar One (left) was travelling at

86
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0.1m/s towards Bar Two (right) which was at rest with an initial gap between the bars
δn of 0.01m. The material properties for both bars are shown in Table 6.1. The objective
of this problem was to benchmark the accuracy of the proposed method against the
exact solution for the problem which was derived in Section 3.4 and results in Table
6.2. First the one-dimensional implementation will be investigated, followed by the
multi-dimensional implementations of the proposed method.

Figure 6.1: Two Identical Linear Elastic Bars - Problem description and geometry for
Bar One (left) and Bar Two (right)

Table 6.1: Two Identical Linear Elastic Bars - Material parameters

Young’s modulus E0 100 [N/m2]

Material density ρ0 0.01 [kg/m3]

Poisson’s ratio ν 0.0
Lamé parameters µ 50 [N/m2]

λ 0 [N/m2]

Acoustic wave speed cp 100 [m/s]

Table 6.2: Two Identical Linear Elastic Bars - Exact solution

Stage
Bar One Bar Two Time

vL
x [m/s] PL

xX [Pa] vR
x [m/s] PR

xX [Pa] [s]

Prior to contact 0.1 0 0 0 0 ≤ 0.1
In contact 0.05 −0.05 0.05 −0.05 0.1 ≤ 0.3

After contact 0 0 0.1 0 > 0.3

6.2.2 One-Dimensional Results

The proposed method was first implemented as a one-dimensional algorithm in MAT-
LAB with results presented in this section. The problem was simulated using a CFL
of 0.3 and in order to investigate the consistency of the method, spatially discretised
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using the following meshes per bar: Mesh 1 consisting of 129 nodes and 128 elements;
Mesh 2 consisting of 257 nodes and 256 elements; Mesh 3 consisting of 513 nodes and
512 elements; Mesh 4 consisting of 1025 nodes and 1024 elements.

The first objective to investigate, was the consistency of the proposed method and en-
sure that the method satisfies the second law of thermodynamics by comparing the
global energy time histories for meshes 1 to 4 as shown in Figure 6.2. The consistency
of the proposed method can be observed in Figure 6.2a and 6.2b where as the mesh den-
sity increases the numerical entropy (error) decreases and the energy conserved after
contact ( t ≥ 0.1s) is improved. This demonstrates the satisfaction of the second law of
thermodynamics ensuring long term stability. By examining the energy time histories
in Figure 6.2c for Bar One and in Figure 6.2d for Bar Two, the expected bar behaviour
from Section 3.4 can clearly be observed in terms of energy and can be described as fol-
lows. At t = 0, Bar One has purely kinetic energy as the bar is travelling with an initial
velocity of 0.1m/s, while Bar Two has no energy associated with the bar, as the bar was
at rest. As time evolves Bar One translates towards Bar Two until t = 0.1s when the
bars come into contact and the pressure wave begins to propagate away from the con-
tact region. While in contact, the pressure wave propagates along both bars producing
elastic deformation as the kinetic energy is partial converted to potential energy while
the remaining kinetic energy from Bar One is transferred to Bar Two as the bars travel
together. At t = 0.2s the bars potential energy peaks as a result of the pressure wave of
each bar reaching the free end and reflecting back to the contact region which results
in contact separation occurring at t = 0.3s. After separation, it is clear that nearly all
kinetic energy is transferred from Bar One to Bar Two, with approximately 0.4% (see
Figure 6.2b) dissipated as numerical error for Mesh 4 and could be reduced with fur-
ther mesh refinement. As a result Bar One is now at rest while Bar Two is travelling at
approximately 0.1m/s.

With the consistency of the proposed method clearly demonstrated for the one-dimensional
problem, the next objective was to investigate the accuracy of the proposed method by
comparing the results against the exact solution. Prior to comparing the results against
the exact solution, a series of simulations were conducted to compare the results of
different spatial approximations, these results are shown in Figure 6.3 comparing the
proposed method using first order (constant), second order (linear) without limiter and
second order (linear) with limiter against the exact solution and linear FEM without
bulk viscosity. By observing Figure 6.3a and 6.3b it is clear that the linear FEM with-
out bulk viscosity produces an accurate result in contact for the velocity time evolution
with oscillations only at separation while in the axial stress time evolution oscillations
are observed during contact and at separation demonstrating the need for ad-hoc reg-
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(a) Global total Energy - Mesh refinement (b) Numerical dissipation - Mesh refinement

(c) Energy measures - Bar One (Mesh 4) (d) Energy measures - Bar Two (Mesh 4)

Figure 6.2: Two Identical Linear Elastic Bars - Time evolution of global energy and
dissipation

ularisation. The proposed method on the other hand agrees well with the exact solu-
tion across each spatial approximation, however there are slight discrepancies for each
method. For the constant approximation, the local solution is smooth throughout the
simulation for both velocity and axial stress time evolutions but is overly dissipative
at separation in both results. This would be expected to improve for increasingly fine
meshes, however this would also increase the computational cost of the method. While
the linear approximation without a slope limiter, accurately matches the exact solu-
tion for velocity, however for the stress time history there is spurious oscillations in
the region prior to separation. This could be an issue for more complex problems as
this could not only affect the accuracy of the solution but the stability of the numerical
simulation. Lastly the linear approximation with a slope limiter, accurately matches
the exact solution for both velocity and axial stress. This method successfully retains
the accuracy of the linear approximation while removing the spurious oscillations as a
result this interpolation method will be used throughout this research for all numerical
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examples using the proposed method. The investigation and analysis of appropriate
limiters is out side the scope of this research. As discussed in Chapter 4, it is expected
that drawing on the vast area of research into VCFVM slope limiters, any appropriate
limiter could easily be implemented into the proposed method to improve the accuracy
of the solutions presented here.

(a) Velocity vx (b) Axial Stress σxx

Figure 6.3: Two Identical Linear Elastic Bars - Local time evolution at initial position
X = [10]m comparing spatial approximations: linear FEM without bulk viscosity, con-
stant (first order), linear (second order) without and with a limiter and the exact solu-
tion

The last results presented for the identical bar scenario are the local time history of
the contact nodes of both Bar One and Bar Two at initial positions X = [10]m and
X = [10.01]m respectively, spatially discritised using Mesh 4 and solved by using linear
approximation with a slope limiter. The results were then plotted against the exact
solution in Figure 6.4. The proposed method matches closely with the exact solution
with only a slight overshoot at separation for in the axial stress time evolution.

6.2.3 Multi-Dimensional Results

With the promising one-dimensional results presented in the previous section, the next
objective was to investigate the two and three dimensional implementations of the pro-
posed method for the same problem setup. The comparison of these implementations
with the exact solution are shown in Figure 6.5 for the central contact node for each con-
tact surface corresponding to initial position X = [10, 0, 0]Tm and X = [10.01, 0, 0]Tm
for each bar respectively. The meshes used for each implementation are based on Mesh
4 of the one-dimensional implementation, by using the same number of elements along
the length of the bar, 1024, and 2 elements across the height and width to produce a cen-
tral contact node. The mesh information for each are as follows: in two-dimensions, a
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triangular mesh consisting of 3075 nodes and 4096 elements per bar was used and in
three-dimensions a tetrahedral mesh consisting of 9225 nodes and 24576 elements per
bar.

By analysing the local evolutions in Figure 6.5 it can clearly be observed that the pro-
posed method across each implementation produces an accurate result matching closely
with the exact solution. In terms of the two-dimensional results in MATLAB, the
results match the exact solution perfectly for displacement and velocity with only a
slight overshoot at separation in the axial stress evolution. For the OpenFOAM (three-
dimensional) implementation the results match the exact solution perfectly for both
displacement and velocity while the axial stress matches nearly perfectly with only a
tiny overshoot at separation. The results from the multi-dimensional implementations
successfully capture the contact accurately with nearly exact replication of the solution
across each implementation.
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(a) Velocity vx - Bar One (b) Velocity vx - Bar Two

(c) Axial Stress σxx - Bar One (d) Axial Stress σxx - Bar Two

(e) Displacement ux - Bar One (f) Displacement ux - Bar Two

Figure 6.4: Two Identical Linear Elastic Bars - Comparison of local time evolutions for
the proposed method and exact solution
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(a) Velocity vx - Bar One (b) Velocity vx: Bar Two

(c) Axial Stress (σxx) - Bar One (d) Axial Stress σxx - Bar Two

(e) Displacement ux - Bar One (f) Displacement ux - Bar Two

Figure 6.5: Two Identical Linear Elastic Bars - Comparison of local time evolution
for the proposed method in MATLAB (Two-dimensional) and OpenFOAM (Three-
dimensional) with the exact solution at initial position X = [10, 0, 0]Tm and X =
[10.01, 0, 0]Tm for each bar respectively
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6.3 Two Dissimilar Linear Elastic Bars

The next one-dimensional problem considered consisted of a similar set up to the two
identical linear elastic bar problem presented in the previous section (refer to Figure
6.1) with the exception that Bar One now is made from a softer material with a Young’s
Modulus of 49N/m2 therefore the pressure wave speed cp = 70m/s. The purpose of
this problem was to investigate the proposed methods robustness when considering a
contact interface consisting of two different materials.

6.3.1 One-Dimensional Results

The first objective, once again, was to investigate the consistency of the proposed method
through the mesh refinement of the energy time evolution as shown in Figure 6.6 using
the same meshes as described in Section 6.2. This is then followed by the local time evo-
lution of the contact nodes of both Bar One and Bar Two at initial positions X = [10]m
and X = [10.01]m respectively.

By observing Figure 6.6a and 6.6b it is clear that as the mesh density increases the
accuracy of the proposed method improves similar to the results for the identical bar
scenario as expected. The energy plots for each bar, Figure 6.6c and 6.6d highlight
the importance of accurately modelling a contact interface for dissimilar materials as
there is a significant difference in energy response in comparison to those presented in
Figure 6.2 for the one-dimensional identical bars scenario, due to the change in material
properties. This is evident in Figure 6.6c which shows the energy response for Bar One
with the new Young’s modulus of 49N/m2. Until contact at t = 0.1s, Bar One has
purely kinetic energy as the bar translates towards Bar Two which has no energy, as
the bar is at rest. After contact the kinetic energy from Bar One is transferred to Bar
Two as kinetic and potential energy in a similar fashion to that observed in Figure
6.2 as the material properties of Bar Two are unchanged. Bar One on the other hand
has a larger proportion of kinetic energy converted to potential energy as the pressure
wave propagates through the bar due to the lower Young’s modulus. As a result the
pressure wave speed is slower (70m/s) in Bar One than Bar Two (100m/s) which results
in the pressure waves returning to the contact interface at different times, for Bar Two
the pressure wave returns at t = 0.3s while for Bar One the pressure wave returns at
t ≈ 0.39s. This can be observed clearly in the energy plots, first in Figure 6.6c at t = 0.3s
there is a sudden increase in kinetic energy as the pressure wave of Bar Two transfers
energy across the contact interface while in Figure 6.6d a corresponding decrease in the
gradient of the kinetic energy profile until the pressure wave of Bar One returns to the
contact interface at t ≈ 0.39s resulting in separation of both bars. Unlike the case for
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(a) Global total energy - Mesh refinement (b) Numerical dissipation - Mesh refinement

(c) Energy measures - Bar One (Mesh 4) (d) Energy measures - Bar Two (Mesh 4)

Figure 6.6: Two Dissimilar Linear Elastic Bars - Energy time evolution of comparing
Mesh 1-4 for the proposed method

identical bars, not all energy is transferred from Bar One to Bar Two during contact,
instead after separation Bar One retains a portion of both kinetic and potential energy
which alternately oscillates as Bar One expands and contracts.

These observations are made even more apparent when investigating the local time
evolution of the contacting nodes at the interface for velocity, axial stress and displace-
ment in Figure 6.7 when compared with the exact solution. When comparing the results
in Figure 6.7 it can be observed that the proposed method matched exactly with the dis-
placement of both bars with near perfect agreement in both the velocity and axial stress
results.

6.3.2 Multi-Dimensional Results

To further benchmark the multi-dimensional implementations, this problem was re-
peated and compared across each implementation in a similar manner to the identical
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linear elastic bar example in Section 6.2.3. The local results taken at the contact points
(initial position X = [10, 0, 0]Tm and X = [10.01, 0, 0]Tm for each bar respectively)
from each set of results using the two and three-dimensional implementations are com-
pared in Figure 6.8. From these results it is clear that the proposed method matches ex-
actly across each implementation for both displacement and axial stress throughout the
simulation. In the velocity time evolution however, it can be observed that the solution
matches exactly throughout contact but there are overshoots at separation and during
post-separation expansion and contraction of the softer material (Bar One) in Figure
6.8a. These overshoots are likely a result of the involutions that must be satisfied for
the conservation of deformation gradient F and co-factor H . In one-dimension these
involutions are naturally satisfied, while in two and three dimensions they require spe-
cial consideration by the numerical scheme as discussed in Section 4.3.1. This requires
further investigation to improve the accuracy of the scheme for dissimilar materials.
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(a) Velocity vx - Bar One (b) Velocity vx - Bar Two

(c) Axial Stress σxx - Bar One (d) Axial Stress σxx - Bar Two

(e) Displacement ux - Bar One (f) Displacement ux - Bar Two

Figure 6.7: Two Dissimilar Linear Elastic Bars - Comparison of local time evolutions for
the proposed method and exact solution at initial position X = [10]m and X = [10.01]m
for each bar respectively



6.3. TWO DISSIMILAR LINEAR ELASTIC BARS 98

(a) Velocity vx - Bar One (b) Velocity vx - Bar Two

(c) Axial Stress σxx - Bar One (d) Axial Stress σxx - Bar Two

(e) Displacement ux - Bar One (f) Displacement ux - Bar Two

Figure 6.8: Two Dissimilar Linear Elastic Bars - Comparison of local time evolution
for the proposed method in MATLAB (Two-dimensional) and OpenFOAM (Three-
dimensional) with the exact solution at initial position X = [10, 0, 0]Tm and X =
[10.01, 0, 0]Tm for each bar respectively
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6.4 Two Identical Hugoniot Bars

6.4.1 Problem Description

The next problem investigated considers the impact between two one-dimensional bars
similar to the benchmark case from Section 6.2, now modelled with Hugoniot pressure
constitutive model, refer to Section 2.6.3. The problem set-up for this test case is shown
in Figure 6.9 with material properties given in Table 6.3 where the initial velocity of Bar
One v1

0 is significantly increased from 0.1 m/s to 100 m/s (to match the acoustic ma-
terial wave speed) and initial gap δn is increased from 0.01m to 10m to ensure contact
occurs at 0.1s. The purpose of this test case is to 1) benchmark the Hugoniot pres-
sure constitutive model against standard FEM approaches, 2) investigate and compare
the acoustic Riemann solver and non-linear Riemann solver when using the Hugoniot
pressure model, 3) investigate and compare the effect of the slope s of the shock wave
speed to particle wave speed ratio for a selection of values s = {0, 0.25, 0.5, 0.75, 1}, 4)
investigate and compare the effect of impact velocity for a selection of initial velocities
v1

0 = {0.1, 1, 10, 100}. All simulations were conducted with a CFL of 0.3.

Figure 6.9: Two Identical Hugoniot Bars - Problem description and geometry for bar
one (left) and bar two (right)

Table 6.3: Two Identical Hugoniot Bars - Material parameters

Young’s modulus E0 100 [N/m2]

Material density ρ0 0.01 [kg/m3]

Poisson’s ratio ν 0.0
Lamé parameters µ 50 [N/m2]

λ 0 [N/m2]

Acoustic wave speed cp 100 [m/s]
Shock Wave speed slope s {0, 0.25, 0.5, 0.75, 1}
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6.4.2 Numerical Results

Benchmarking - Comparison with FEM

The first objective was to benchmark the solution against traditional FEMs for a large
relative impact velocity, 100m/s, and s = 1 . To do so the first step is to examine the con-
sistency and accuracy of the global energy time histories by comparing two different
methodologies for the proposed method. The two approaches considered here will be
the acoustic Riemann Solver (RS) and non-linear Riemann solver, both modelled using
the Hugoniot constitutive model. The acoustic Riemann solver will consider the pro-
posed method applied with the acoustic Riemann solver (from Section 3.3.1) through-
out the simulation for the calculation for the numerical fluxes. While the non-linear
Riemann solver method will consider the proposed method applied with the non-linear
Riemann solver (from Section 3.3.2) throughout the simulation for the calculation of
the numerical fluxes. The global energy time histories comparing the two methods are
shown in Figure 6.10a, when considering 1024 elements across the length of each bar
(Mesh 4 from Section 6.2). It can be observed that the two different approaches agree
very well, suggesting the different Riemann solvers have little influence on the overall
solution in this scenario. While to prove consistency of the proposed method, the nu-
merical dissipation for four meshes {128, 256, 512, 1024} elements per bar are compared
in Figure 6.10b which shows as number of elements increase the numerical dissipation
decreases and tends to the steady state dissipation. Lastly, various energy measures are
compared in Figure 6.10c and 6.10d for Bar One and Two respectively for Mesh 4. The
kinetic energy from Bar One can clearly be observed to transfer to Bar Two after contact
initiation at t = 0.1s through kinetic and potential energy with the energy loss equating
to the numerical dissipation introduced to the system caused by contact.

To further investigate the comparison of methods, the local time histories are examined
in Figure 6.11 for initial position X = [10]m for Bar One and X = [20]m for Bar Two.
The following results compare five methodologies, the two for the proposed method
as mentioned previously, with the addition of a third proposed method termed incon-
sistent Hugoniot where the Hugoniot pressure model is applied throughout the simu-
lation (despite the model being invalid when in tension and after separation, refer to
Section 2.6.3). These results are then compared with two traditional FEMs, linear FEM
and mean dilation which were simulated in Abaqus/Explicit discretised appropriately
for the two methods using 2D plane strain elements with equivalent meshes. The ar-
tificial numerical dissipation (linear bulk viscosity) was removed from the linear FEM
to demonstrate its significance, this is clearly visualised in the velocity and axial stress
histories (Figures 6.11a - 6.11d) which show spurious oscillations throughout the linear
FEM solution after initial contact. No other method shows the same spurious oscilla-
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(a) Global total energy - Comparison of Riemann
solvers

(b) Global dissipation - Mesh refinement

(c) Energy Measures - Bar One (d) Energy Measures - Bar Two

Figure 6.10: Two Identical Hugoniot Bars - Time evolution of global energies and dissi-
pations comparing different Riemann solvers and mesh refinements

tions with good agreement across all three variables. To more closely examine the local
histories the linear FEM solution is removed, resulting in Figure 6.12. During contact
the four methods match closely until separation occurs, where a slight difference in
velocity and displacement histories is observed at initial separation and after complete
separation in Figures 6.12a and 6.12b for velocity, and in Figures 6.12c and 6.12d for
displacement while the axial stress histories match nearly exactly in Figures 6.12c and
6.12d. The results from the proposed method using acoustic and non-linear Riemann
solvers match nearly exactly while the mean dilatation method has a slightly slower
separation which coincides with the inconsistent Hugoniot method. This suggests the
mean dilation method presented here does not accurately model the separation as the
Hugoniot model is used in computing the compression and tension pressure waves re-
sulting in a slower separation and lower magnitude post-separation reflection waves
as the bars contract and expand in comparison with the proposed method.
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It is therefore concluded that, the proposed method using the Hugoniot pressure model
is successfully benchmarked for both acoustic and non-linear Riemann solvers com-
pared with the mean dilatation method when in contact (compression) as the results
match exactly. For separation on the other hand, the mean dilatation method serves
as an approximation while the proposed method is valid for both compression and
tension pressure waves. By comparing the acoustic and non-linear Riemann solver ap-
proaches it is observed that for this simple one-dimensional problem, no significant
difference is observed throughout the simulation, this is likely due to the Hugoniot
pressure constitutive model dominating the solution using both solvers. This suggests
that for internal wave propagation an acoustic Riemann solver is sufficient to model the
shock wave propagation. For the boundary however, in particular for contact, further
investigation is required for multi-dimensional scenarios where the normal pressure
plays a role in the computation of tangential components such as angled or frictional
contact.

Comparison of Shock Wave Slope

To further investigate the importance of the linear relationship between the shock wave
speed and the particle wave speed a parametric study was conducted using the non-
linear Riemann solver for the values of the slope s = {0, 0.25, 0.5, 0.75, 1}. The compar-
ison of the local time histories at X = [10]m for Bar One (first column) and X = [10]m
for Bar Two (second column) are shown in Figure 6.13.

From these results, the value of slope s plays a significant role in each key variable, ve-
locity, stress and displacement. In terms of velocity in Figures 6.13a and 6.13b, it can be
observed that there is no effect prior to or during contact, with all simulations obtain-
ing a 50m/s contact velocity at t = 0.1 s. The effect of s is observed in the separation
time and magnitude, as the value of s increases the separation occurs earlier with a
decrease in shock gradient, for example at s = 0 separation begins at t = 0.3s with an
instantaneous release and full transfer of kinetic energy (velocity) from Bar One to Bar
Two, while at s = 1 separation, in terms of velocity, begins at t ≈ 0.24s and fully sep-
arates at t ≈ 0.27s with the majority of kinetic energy transferred to Bar Two and Bar
One retaining a small proportion of kinetic energy (velocity). In terms of axial stress in
Figure 6.13c and 6.13d, it can be observed that for increasing values of s the axial stress
during contact increases from −50Pa for s = 0 to −75Pa for s = 1 and the earlier sep-
aration can also be observed, in terms of stress, with separation beginning at t ≈ 0.21s
and finishing at t ≈ 0.24s. Finally, in terms of displacement in Figures 6.13e and 6.13f,
the observations from the velocity time histories are again evident, where the value
of s only affects the separation time and post separation displacement. These observa-
tions are a direct result of the high relative impact velocity combined with the Hugoniot
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pressure model producing an increase in shock wave speed emanating from the contact
region. In this scenario the ratio of the jump in velocity JvnK to acoustic wave speed cp

is equal to 1 therefore the change in shock wave speed is a direct result of the change
in material parameter s and can be calculated analytically from Equation (2.44) for each
value of s as Up = {100, 125, 150, 175, 200} m/s. This clearly indicates that the higher
value of s results in a higher shock wave speed and stress magnitude, therefore faster
wave propagation and results in a faster separation however for low values of impact
velocity, such as 0.1m/s the shock wave speed are {100, 100.25, 100.5, 100.75, 101} for
each value of s respectively. The impact of slope s on the solution is minor as the shock
wave speed is approximately the acoustic wave speed. To further investigate these
results, the influence of impact velocity will now be demonstrated.

Comparison of Impact Velocity

To investigate the role of impact velocity, a parametric study was conducted using the
non-linear Riemann solver for the values of initial velocity v1

0 = {0.1, 1, 10, 100}m/s.
For each velocity, the initial gap was set to δn = {0.01, 0.1, 1, 10}m to ensure initial
contact at t = 0.1s. The comparison of the local time histories using a logarithmic Y
axis are shown in Figure 6.14 for axial stress and displacement.

By first examining the axial stress in Figures 6.14a and 6.14b, it is observed that at ini-
tial contact t = 0.1s the stress magnitude increases significantly. The axial stress then
remains constant for each initial velocity respectively at {−0.05,−0.5,−5.25− 75} Pa
before separating at different times consistent with previous results for different values
of slope s. For the two slower impact velocities of 0.1 and 1m/s, it can be observed that
the bars separate instantaneously at t = 0.3s which matches exactly with the analyt-
ical solution for the linear elastic case in Section 6.2, even when considering a Hugo-
niot pressure model with s = 1. While for the two faster impact velocities 10m/s and
100m/s, an earlier separation is observed, with a gradual separation. For v1

0 = 10m/s,
separation begins at t = 0.28s and finishes at t = 0.29s while for v1

0 = 100m/s, sepa-
ration begins at t ≈ 0.21s and finishes at t ≈ 0.24s. This gradual separation is also ob-
served in the displacement results from Figures 6.14c and 6.14d. These observation are
explained by examining the speed of wave propagation for each scenario i.e. the shock
wave speed, Equation (2.44), which are calculated as Up = {100.1, 101, 110, 200}m/s.
In the first two scenarios Up ≈ cp therefore these scenarios are dominated by the acous-
tic speed of the material. As the impact velocity increases the difference in shock wave
speed to acoustic wave speed increases significantly, demonstrating that after initial
impact the compressive shock wave travels significantly faster than the acoustic wave
speed of the material to the free end, before reflection back to the contact interface thus
resulting in an earlier separation. This suggests that for low relative velocity impacts
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i.e. when the acoustic wave speed of the material is significantly larger than the impact
velocity, the Hugoniot constitutive model is not required to model the shock produced
by contact accurately. However as the impact velocity increases and it approaches the
acoustic wave speed of the material the Hugoniot constitutive model is required to
model the shock wave propagation accurately. These observations draw similarities to
the Mach number from fluid dynamics and can be expressed equivalently as a ratio of
the particle velocity JvnK to acoustic wave speed cp from Equation (2.44) as:

M =
JvnK

cp
. (6.1)

This ratio proves useful to determine when to use the Hugoniot constitutive model, for
each impact velocity the ratio is calculated to be {0.001, 0.01, 0.1, 1}. It can be observed
that the higher the ratio the greater the effect on the wave propagation therefore it can
be concluded that at low ratios (M < 0.01) the Hugoniot model is not required while
if the ratio increases towards transonic (M = 0.8− 1.2) or supersonic (M > 1.2) shock
wave speeds the use of the Hugoniot pressure model is essential to model the material
response accurately.
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(a) Velocity vx - Bar One (b) Velocity vx - Bar Two

(c) Axial Stress σxx - Bar One (d) Axial Stress σxx - Bar Two

(e) Displacement ux - Bar One (f) Displacement ux - Bar Two

Figure 6.11: Two Identical Hugoniot Bars - Time evolution monitored at X = [10]m
(first column) and X = [20]m (second column) comparing linear FEM without bulk vis-
cosity, mean dilatation with bulk viscosity, inconsistent Hugoniot constitutive model,
acoustic Riemann Solver and non-linear Riemann Solver
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(a) Velocity vx - Bar One (b) Velocity vx - Bar Two

(c) Axial Stress σxx - Bar One (d) Axial Stress σxx - Bar Two

(e) Displacement ux - Bar One (f) Displacement ux - Bar Two

Figure 6.12: Two Identical Hugoniot Bars - Time evolution monitored at X = [10]m
(first column) and X = [20]m (second column) comparing mean dilatation with bulk
viscosity, inconsistent Hugoniot constitutive model, acoustic Riemann Solver and non-
linear Riemann Solver
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(a) Velocity vx - Bar One (b) Velocity vx - Bar Two

(c) Axial Stress σxx - Bar One (d) Axial Stress σxx - Bar Two

(e) Displacement ux - Bar One (f) Displacement ux - Bar Two

Figure 6.13: Two Identical Hugoniot Bars - Time evolution monitored at X = [10]m
(first column) and X = [20]m (second column) comparing different values of shock
wave slope s = {0, 0.25, 0.5, 0.75, 1}
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(a) Axial Stress σxx - Bar One (b) Axial Stress σxx - Bar Two

(c) Displacement ux - Bar One (d) Displacement ux - Bar Two

Figure 6.14: Two Identical Hugoniot Bars - Time evolution monitored at X = [10]m
(first column) and X = {10.01, 10.1, 11, 20}m (second column) comparing different val-
ues of impact velocity v1

0 = {0.1, 1, 10, 100}
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6.5 Two Dissimilar Hugoniot Bars

6.5.1 Problem Description

The next problem considered the impact of two one-dimensional Hugoniot bars, sim-
ilar to the problem set-up from Figure 6.9 with Bar Two now with a reference density
of 0.02 kg m−3 instead of 0.01 kg m−3. The objective of the problem is to benchmark
the proposed method against standard FEMs for a dissimilar contact interface. Com-
parison after separation will not be considered (after t = 0.3s) in this section since the
Hugoniot model when applied to traditional FEMs, as discussed in Section 6.4, is in-
valid as it is applied in both compression and tension. All simulations for the proposed
method were conducted with a CFL of 0.3.

6.5.2 Numerical Results

As with previous problems, the first step was to compare the energy profiles to en-
sure consistency as shown in Figure 6.15 for various energy time evolutions. First,
shown in Figure 6.15a and 6.15b are the comparison of methods for total energy and
dissipation respectively, comparing the proposed method using an acoustic Riemann
solver and non-linear Riemann solver. From these two figures it is observed that the
energy and dissipation using the proposed method match exactly for the two differ-
ent Riemann solvers, as observed in the identical Hugoniot bar problem in Section 6.4.
At initial contact, t = 0.1s, the total energy for the proposed methods remain nearly
constant at ≈ 500 J until separation begins to occur at t ≈ 0.17s the energies then
gradually decrease to ≈ 406J. This is also observed in the dissipation, Figure 6.15b.
In Figure 6.15c is the dissipation time evolution comparing the four meshes consist-
ing of {128, 256, 512, 1024} elements per bar, the consistency of the proposed method
is observed as the number of elements increases the result tends to a steady state so-
lution. Lastly, in Figure 6.15d and Figure 6.15e are the time evolutions of different
energy measures (total, kinetic and potential) using Mesh 4 for Bar One and Bar Two
respectively. The effect of the increased density of Bar Two can clearly be observed
by comparing these results to those in Figure 6.10d and Figure 6.10e. Next, the local
time histories at the contact nodes, position X = [10]m and X = [20]m for Bar One
and Two respectively, are compared for the four methods in Figure 6.16. By examining
these results, clear agreement is observed across all three variables, velocity, axial stress
and displacement for all four methodologies. Slight overshoot is observed in both ve-
locity and axial stress time histories for each method at initial contact, consistent with
previous results. The primary observable difference between methods is observed in
the velocity profiles, Figure 6.16a and 6.16b, as the bars begin to separate. Again, as ob-
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served previously in Section 6.4, this is likely caused by the different constitutive model
being applied at separation as the FEM and Inconsistent Hugoniot proposed method
match exactly. While the two Riemann solver methods with valid Hugoniot model also
match exactly.

(a) Global total energy - Comparison of methods (b) Global dissipation - Mesh refinement

(c) Energy measures - Bar One (d) Energy measures - Bar Two

Figure 6.15: Two Dissimilar Hugoniot Bars - Time evolution of global energies and
dissipations comparing different Riemann solvers and mesh refinements
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(a) Velocity vx - Bar One (b) Velocity vx - Bar Two

(c) Axial Stress σxx - Bar One (d) Axial Stress σxx - Bar Two

(e) Displacement ux - Bar One (f) Displacement ux - Bar Two

Figure 6.16: Two Dissimilar Hugoniot Bars - Time evolution monitored at X = [10]m
(first column) and X = [20]m (second column) comparing mean dilatation, inconsistent
Hugoniot constitutive model, acoustic Riemann solver and non-linear Riemann solver



Chapter 7

Multi-Dimensional Problems

7.1 Preliminaries

In this Chapter, a series of multi-dimensional problems addressing different objectives
are investigated for six different multi-dimensional scenarios. First in Section 7.2, the
impact between curved surfaces is investigated through a two-dimensional problem
consisting of two identical compressible rings. The primary objective of this prob-
lem was to ensure no spurious modes exist in the simulation for the proposed method
which is common in linear FEM. The second objective was to investigate the presence
of pressure checker boarding through the problem presented in Section 7.3. This two-
dimensional problem considered the impact of two identical nearly incompressible bars
which typically exhibit pressure checker boarding when simulated using linear FEM.
The third objective was to investigate pressure checker boarding in more complex ma-
terial models, in particular von-Mises plasticity with isotropic hardening. First, in Sec-
tion 7.4 the classic plasticity benchmark problem known as the Taylor bar impact [155]
and will be used to demonstrate the accuracy and stability of the three-dimensional
implementation through comparisons against published results for various computa-
tional methods. Then in Section 7.5 a torus floor impact problem is investigated for
both elastic and plastic material models. The next problem investigated, in Section 7.6,
is the three-dimensional impact of two nearly incompressible bars with non-matching
contact interfaces. Finally to demonstrate a practical application, a simplified car wall
impact is investigated in Section 7.7.

112
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7.2 Compressible Ring Impact

7.2.1 Problem Description

The first objective was to explore more complex two dimensional geometry, in this
case a curved surface, and compare with standard FEMs using commercial software
Abaqus/Explicit [16]. This problem considered two identical compressible rings trav-
elling at equal but opposite initial velocity v0 of ±[0.59, 0]Tm/s with an initial gap δn

of 8mm as depicted in Figure 7.1. The rings were modelled using a hyperelastic neo-
Hookean constitutive model with material properties presented in Table 7.1.

Figure 7.1: Compressible Ring Impact - Problem description

Table 7.1: Compressible Ring Impact - Material parameters

Young’s modulus E0 1× 106 [N/m2]

Material density ρ0 1000 [kg/m3]

Poisson’s ratio ν 0.4
Lamé parameters µ 0.35714 [MN/m2]

λ 1.42857 [MN/m2]

This problem could have been simulated as a symmetrical problem but to explore the
proposed multi-body contact algorithm both rings were simulated to investigate the
accuracy of the proposed method. As with the one-dimensional scenarios, the first
step was to ensure consistency of the proposed method by conducting a mesh sensitiv-
ity study, using a CFL of 0.3 the four meshes investigated are as shown in Figure 7.2
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with mesh information as follows per ring: Mesh 1 had 1364 nodes and 2480 elements,
Mesh 2 had 5292 nodes and 10080 elements, Mesh 3 had 20828 nodes and 81280 ele-
ments, Mesh 4 had 82620 nodes and 163200 elements. The results from the proposed
method could then be compared against the results from two different standard FEMs,
in particular linear FEM using linear triangular elements and mean dilatation FEM us-
ing quadrilateral elements. The meshes used were as follows: the linear FEM mesh
consisted of 82944 nodes and 163840 elements per ring and the mean dilatation FEM
consisted of 82944 nodes and 81920 bi-linear quadrilateral elements per ring.

(a) (b) (c) (d)

Figure 7.2: Compressible Ring Impact - (a) Mesh 1 - 1364 nodes and 2480 elements (b)
Mesh 2 - 5292 nodes and 10080 elements (c) Mesh 3 - 20828 nodes and 81280 elements
(d) Mesh 4 - 82620 nodes and 163200 elements

7.2.2 Numerical Results

The first results presented are from the mesh sensitivity study as shown in Figure 7.3,
the consistency of the proposed method is again observed now in two dimensions. The
global pressure contour snapshots are then shown in Figure 7.4 and compared with
mean dilatation FEM. From the pressure contours it is clear that the solution using the
proposed method is globally stable and matches closely with the solution from mean
dilatation FEM. The next results presented are the local time evolution (velocity vx and
axial stress σxx) of Ring One at initial position X = [40, 0]Tmm for the mesh refinement
of the proposed method (Mesh 1 - 4) compared with mean dilatation FEM as a reference
solution. Figure 7.5 shows that as the mesh density of the proposed method using a
triangular mesh increases, the local results tend towards the solution using the mean
dilatation FEM, demonstrating the accuracy of the proposed scheme. This is further
proven through Figure 7.6 which shows the local result evolution for the proposed
method using a triangular mesh (Mesh 4), linear FEM and mean dilatation FEM. It
is clear that all three methods match closely for the local velocity and displacement
evolution, however the linear FEM for axial stress oscillates significantly throughout
the solution even during separation which violates the contact conditions while the
proposed method does not while using a similar triangular mesh.
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(a) Total system energy - Mesh refinement (b) Numerical error - Mesh refinement

(c) Energy history - Ring One (Mesh 4) (d) Energy history - Ring Two (Mesh 4)

Figure 7.3: Compressible Ring Impact - Energy time history comparing Mesh 1-4 for
the proposed method
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Figure 7.4: Compressible Ring Impact - Global pressure contour snapshots for the pro-
posed method Mesh 4 which uses triangular elements (left) and mean dilatation which
uses bi-linear quadrilateral elements (right) at 10ms, 20ms, 30ms and 40ms
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(a) Velocity vx - Mesh Refinement (b) Axial stress σxx - Mesh Refinement

Figure 7.5: Compressible Ring Impact - Comparison of local time evolution of Ring One
taken at X = [40, 0]Tmm for the proposed method Mesh 1-4 and mean dilatation FEM
using bi-linear quadrilateral elements
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(a) Velocity vx - Ring One (b) Velocity vx - Ring Two

(c) Axial stress σxx - Ring One (d) Axial stress σxx - Ring Two

(e) Displacement ux - Ring One (f) Displacement ux - Ring Two

Figure 7.6: Compressible Ring Impact - Comparison of local results of Ring One taken
at X = [40, 0]Tmm and Ring Two at X = [48, 0]Tmm for the proposed method, linear
FEM using triangular mesh and mean dilatation using bi-linear quadrilateral mesh
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7.3 Nearly Incompressible Bar Impact

7.3.1 Problem Description

The next problem investigated, considered the impact of two two-dimensional nearly
incompressible rectangular bars travelling at equal but opposite velocity, v0 = [±50, 0]Tm/s,
as depicted in Figure 7.7 with initial gap δn of 8mm, width w of 6.4mm and length L of
32.4mm for each bar. The bars were modelled using a hyperelastic neo-Hookean con-
stitutive model with material properties of each bar shown in Table 7.2. The objective
of this problem was to investigate the proposed method’s robustness when simulating
nearly incompressible materials by comparing the solution with linear FEM and mean
dilatation FEM using Abaqus/Explicit [16]. This problem was simulated using a CFL
of 0.3 and the meshes had the following mesh information per bar: Mesh 1 had 369
nodes and 640 elements, Mesh 2 had 1377 nodes and 2560 elements, Mesh 3 had 5313
nodes and 10240 elements and Mesh 4 had 20865 nodes and 40960 elements.

Figure 7.7: Nearly Incompressible Bar Impact - Problem description

Table 7.2: Nearly Incompressible Bar Impact - Material parameters

Young’s modulus E0 5.85× 108 [N/m2]

Material density ρ0 8930 [kg/m3]

Poisson’s ratio ν 0.495
Lamé parameters µ 0.19565 [GN/m2]

λ 19.3696 [GN/m2]

7.3.2 Numerical Results

As with previous examples presented in this research the first step was to prove the con-
sistency of the proposed method for this problem by examining the energy evolution
and numerical error, the consistency of the proposed method is again clearly observed
in Figure 7.8. This is reiterated in Figure 7.9, which shows the meshes and the im-
provement in the pressure contour resolution for each mesh at t = 90µs. An important
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observation from Figure 7.9 is that for the proposed method using a triangular mesh, a
smooth pressure contour is obtained for each mesh when modelling nearly incompress-
ible materials. In comparison as presented in Figure 7.10, when using a standard linear
FEM using a triangular mesh, pressure checker boarding is observed, while the pro-
posed method matches closely with the mean dilatation FEM solution using bi-linear
quadrilateral elements. For completeness the time evolution of the pressure contour
plots for the proposed method is presented in Figure 7.12.

(a) Total System Energy - Mesh Refinement (b) Numerical Error Mesh Refinement

(c) Energy - Bar One (Mesh 4) (d) Energy - Bar Two (Mesh 4)

Figure 7.8: Nearly Incompressible Bar Impact - Energy time history of nearly incom-
pressible bar impact comparing Mesh 1-4 for the proposed method
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(a) Mesh 1

(b)Mesh 2

(c)Mesh 3

(d)Mesh 4

Figure 7.9: Nearly Incompressible Bar Impact - Comparison of pressure contour plots
of the nearly incompressible bar impact at 90µs for Mesh 1-4
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(a)

Step: FinalTim Frame: 125

Total Time: 0.000125

(b)

Step: FinalTim Frame: 2361

Total Time: 0.000100

(c)

Figure 7.10: Nearly Incompressible Bar Impact - Comparison of pressure contour snap-
shots of the nearly incompressible bar impact at 100µs (a) proposed method using linear
triangular mesh (Mesh 4) (b) Linear FEM using a triangular mesh (Mesh 4) (c) Mean di-
latation using a bi-linear quadrilateral mesh (20865 nodes, 20480 elements per bar)

To investigate the comparison of the three different methods further the local time
histories of the velocity, axial stress and displacement were plotted at initial position
X = [32.4, 0]Tmm for Bar One and X = [40.4, 0]Tmm for Bar Two (i.e the centre of the
contact interface), the results of which are presented in Figure 7.11. From the local time
histories for the velocity and displacement it can be observed that all three methods
agree well with some local oscillations in the solution during contact due to separation
and re-initiation of contact as the bars deform significantly. When comparing the axial
stress it can be observed that the standard linear FEM violates the contact conditions
with oscillations after separation, as seen in Section 7.2.
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(a) Velocity vx - Bar One (b) Velocity vx - Bar Two

(c) Axial Stress σxx - Bar One (d) Axial Stress σxx - Bar Two

(e) Displacement ux - Bar One (f) Displacement ux - Bar Two

Figure 7.11: Nearly Incompressible Bar Impact - Comparison of local time histories at
position X = [32.4, 0]Tmm for Bar One and X = [40.4, 0]Tmm for Bar Two
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Figure 7.12: Nearly Incompressible Bar Impact - Pressure contour time evolution for
Mesh 4 at 50 µs, 75 µs, 100 µs, 125 µs, 150µs, 200µs,250µs, 300µs and 325µs
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7.4 Three-Dimensional Taylor Bar Impact

7.4.1 Problem Description

The next problem considered was that of a three-dimensional bar impacting a rigid sur-
face. This problem is typically known as the Taylor bar impact [155] and is used as a
benchmark test case for plasticity to ensure the absence of locking. The bar has length L
of 32.4 mm, diameter D of 6.4 mm and initial velocity v0 of [0,−227, 0]T m/s as shown
in Figure 7.13. The purpose of this problem is to benchmark single body contact using
the purpose built OpenFOAM solver developed as part of this research against pre-
viously published results for various computational methods, including the previous
vertex centred solver using the first order framework presented in [114] which was im-
plemented in MATLAB. To compare these results the bar was modelled as a quarter
of the domain using appropriate symmetric boundary conditions and considered in
contact at t = 0 µs with material properties shown in Table 7.3.

Table 7.3: Taylor Bar Impact - Material parameters

Constitutive model von-Mises Plasticity
Young’s modulus E0 117 [GN/m2]

Material density ρ0 8930 [kg/m3]

Poisson’s ratio ν 0.35
Lamé parameters µ 43.333 [GN/m2]

λ 101.111 [GN/m2]

Yield stress σy,0 0.4 [GN/m2]

Hardening parameter H 0.1 [GN/m2]

Friction coefficient k 0
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Figure 7.13: Taylor Bar Impact - Problem description

The problem was simulated for three different structured tetrahedral meshes to investi-
gate the mesh sensitivity and to compare against other computational methods. These
meshes were as follows: Mesh 1 had 1887 nodes and 8100 elements; Mesh 2 had 9191
nodes and 45000 elements; Mesh 3 had 25519 nodes and 132300 elements. All simula-
tions were conducted with a CFL number of 0.3.

7.4.2 Numerical Results

Figure 7.14 shows the radius evolution for initial position X = [0, 0, 3.2]Tmm for each
mesh using the proposed method implemented in OpenFOAM. It is clear that as the
mesh density increases the results tend towards the expected final position of approx-
imately 7mm [155]. This final position can be compared with that of other computa-
tional methods summarised in Table 7.4.
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Figure 7.14: Taylor Bar Impact - Final Radius at initial position X = [0, 0, 3.2]Tmm

Table 7.4: Taylor Bar Impact - Summary of Final Radius for Various Computational
Methods

Method Mesh Type Final Radius [mm]

Standard FEM [34] Tetrahedral 5.55
Standard FEM [34] Hexahedral 6.95

Average Nodal Pressure FEM [34] Tetrahedral 6.99
First Order Framework CCFVM [112] Hexahedral 6.88− 7.11

First Order Framework VCFVM (MATLAB) [114] Tetrahedral ≈ 7.1
First Order Framework VCFVM (OpenFOAM) Tetrahedral 7.06

From the results in Table 7.4, it can be observed that the results using standard FEM
with a tetrahedral mesh experiences locking resulting in a lower final radius com-
pared with other methods. The proposed method in OpenFOAM, on the other hand,
matches closely to those presented using the same methodology in MATLAB [114] and
agrees well with previous results presented for locking free methodologies [34, 112].
To demonstrate clearly that the proposed method in OpenFOAM is locking free with a
smooth pressure contour, the results for the time evolution are presented in Figure 7.15.
Now that the proposed method has been benchmarked in OpenFOAM, more advanced
problems can be considered.
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(a) 0 µs (b) 10 µs (c) 20 µs (d) 30 µs

(e) 40 µs (f) 50 µs (g) 60 µs (h) 70 µs

Figure 7.15: Taylor Bar Impact - Pressure Time Evolution
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7.5 Torus Floor Impact

7.5.1 Problem Description

The next problem considered a three-dimensional torus impacting a rigid surface as
depicted in Figure 7.16. The torus had outer radius Ro of 40mm, inner radius ri of
30mm and diameter d0 of 1mm. The torus was travelling with initial velocity v0 of
[1.18, 0, 0]Tm/s towards the rigid surface with initial gap δn of 4mm. The problem was
simulated using two different constitutive models, first was an elastic model, nearly In-
compressible neo-Hookean, then the problem was repeated using a plastic constitutive
model, von-Misies plasticity with isotropic hardening. The material properties for both
cases are shown in Table 7.5. All simulations were conducted using a CFL number of
0.3.

Figure 7.16: Torus Impact - Problem description
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Table 7.5: Torus Impact - Material parameters

Elastic torus Plastic torus

Constitutive Model neo-Hookean von-Mises Plasticity
Young’s Modulus E0 1 · 106 1 · 106 [N/m2]

Material density ρ0 1000 1000 [kg/m3]

Poisson Ratio ν 0.45 0.45
Lamé parameters µ 0.34483 0.34483 [MN/m2]

λ 3.10345 3.10345 [MN/m2]

Yield stress σy,0 - 1 · 104 [N/m2]

Hardening parameter H - 10 [N/m2]

Friction coefficient k 0 0

7.5.2 Numerical Results

Global energy solution

First, to demonstrate consistency of the purpose built OpenFOAM solver, mesh sen-
sitivity study was conducted using the same meshes in both material models with the
global energy evolutions shown in Figure 7.17. The meshes used are unstructured tetra-
hedral meshes where Mesh 1 consisted of 3545 nodes and 12439 elements, Mesh 2 con-
sisted of 7606 nodes and 29748 elements, Mesh 3 consisted of 13497 nodes and 56955
elements and Mesh 4 consisted of 33744 nodes and 155300 elements.

From the results in Figure 7.17a-7.17d it is clear that as the number of nodes and el-
ements increases the accuracy of the simulation in both elastic and plastic cases im-
proves, demonstrated by the increase in total system energy and reduction in numeri-
cal error. By examining the results in Figures 7.17e and 7.17f the total system behaviour
for both cases can be described. In both cases, at the start of the simulation all energy
exists as kinetic energy as the torus is moving with the initial velocity until approxi-
mately 3.4ms where impact occurs. In the elastic case (Figure 7.17e) the kinetic energy
is mostly transferred into elastic potential energy, as demonstrated by the red line un-
til approximately 30ms when separation begins to occur and the potential energy is
mostly converted back to kinetic energy as the torus bounces off the rigid surface. For
the plastic case (Figure 7.17f) at impact the kinetic energy is partially converted into
potential energy (red line) while most of the kinetic energy is transferred into plastic
dissipation (black line) as a result the torus becomes nearly fully plastic and there is
no separation during the 50ms simulation. This is reiterated by examining the pres-
sure contour time evolutions in Figures 7.20 for the elastic torus and Figure 7.21 for the
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plastic torus.

Global pressure contour comparison

Figures 7.18 and 7.19 show the comparison of pressure contour snapshots for the three
different methods. Each figure compares the proposed method using a tetrahedral
mesh against the linear FEM with tetrahedral mesh (20427 Nodes, 101045 Elements)
and mean dilatation FEM with hexahedral mesh (33793 Nodes, 29441 Elements). It is
clear from these snapshots that the linear FEM experiences pressure checker boarding
in both elastic and plastic cases while the proposed method does not, matching closely
with the mean dilatation results. For completeness, Figures 7.20 and 7.21 show the time
evolutions for the elastic and plastic scenarios of the pressure contours respectively.

Local Results

The last results examined in this section are the local results taken at initial position
X = [40, 0, 0]Tmm for each material model. The local results for the elastic and plastic
torus simulations are presented in Figure 7.22. By examining the local results of both
the elastic and plastic torus it can be observed that there is good agreement between
the proposed method and the mean dilatation FEM solutions with no spurious oscilla-
tions while the linear FEM solution clearly has spurious oscillations in the axial stress
solutions of both material models and experiences locking when examining the veloc-
ity (Figure 7.22b) and displacement (Figure 7.22d) time evolutions. While the proposed
method shows good agreement with the mean dilatation FEM in the elastic case, the so-
lutions differ slightly suggesting the proposed method solution has not yet converged
requiring mesh refinement.



7.5. TORUS FLOOR IMPACT 132

(a) Total system energy - Mesh refinement (b) Total system energy - Mesh refinement

(c) Numerical error - Mesh refinement (d) Numerical error - Mesh refinement

(e) Energy history (Mesh 4) (f) Energy history (Mesh 4)

Figure 7.17: Torus Floor Impact - Elastic (left) and plastic (right) torus impact global
energy evolutions
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Figure 7.18: Torus Impact - Time evolution comparison of the elastic torus for the pro-
posed method with a tetrahedral mesh (left), linear FEM with a tetrahedral mesh (cen-
tre) and mean dilatation FEM with a hexahedral mesh (right) at 0.5ms, 1ms, 1.5ms, 2ms
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Figure 7.19: Torus Floor Impact - Time evolution comparison of the plastic torus for the
proposed method with a tetrahedral mesh (left), linear FEM with a tetrahedral mesh
(centre) and mean dilatation FEM with a hexahedral mesh (right) at 0.5ms, 1ms, 1.5ms,
2ms
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Figure 7.20: Torus Impact - Time evolution of the elastic torus for the proposed method
with a tetrahedral mesh at 2.5ms, 5ms, ..., 47.5ms, 50ms



7.5. TORUS FLOOR IMPACT 136

Figure 7.21: Torus Floor Impact - Time evolution of the plastic torus for the proposed
method with a tetrahedral mesh at 2.5ms, 5ms, ..., 47.5ms, 50ms
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(a) Velocity vx (b) Velocity vx

(c) Displacement ux (d) Displacement ux

(e) Axial stress σxx (f) Axial stress σxx

Figure 7.22: Torus Floor Impact - Comparison of local results of elastic torus (left) and
plastic torus (right) taken at X = [40, 0, 0]Tmm for the proposed method (tetrahedral
mesh), Linear FEM (tetrahedral mesh) and mean dilatation (hexahedral mesh)
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7.6 Non-Matching Nearly Incompressible Bar Impact

7.6.1 Problem Description

This problem considered the impact of two three-dimensional rectangular bars as de-
picted in Figure 7.23, similar to that presented in Section 7.3 for two dimensions. Both
bars have width w and height h of 3.2mm with a length L of 32.4mm. The bars were
travelling with initial velocity v0 of [50, 0, 0]Tm/s and [−50, 0, 0]Tm/s respectively with
initial gap δn of 0.4mm. The objective of this problem was to investigate the accuracy
of the proposed method when considering a non-matching contact interface. All simu-
lations were conducted using a CFL number of 0.3.

Figure 7.23: Non-Matching Nearly Incompressible Bars - Problem description

The problem was simulated for two scenarios, the first scenario was where both bars
had identical meshes resulting in a matching (conforming) contact interface and then
the second scenario was where one bar had a different mesh resulting in a non-matching
(non-conforming) contact interface. The material properties for the bars are in Table 7.6.

Table 7.6: Non-Matching Nearly Incompressible Bars - Material parameters

Constitutive Model neo-Hookean
Young’s Modulus E0 5.85 · 108 [N/m2]

Material density ρ0 8930 [kg/m3]

Poisson’s ratio ν 0.495
Lamé parameters µ 0.35714 [MN/m2]

λ 1.42857 [MN/m2]

Friction coefficient k 0

To accurately investigate the accuracy of the non-matching contact interfaces, two sets
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of mesh refinements were conducted. First, four matching meshes increasing in mesh
density were analysed, these consist of structured tetrahedral meshes where the contact
interface for Mesh 1 is 4 by 4 elements, Mesh 2 is 6 by 6 elements, Mesh 3 is 8 by 8
elements and Mesh 4 is 10 by 10 elements. Following this analysis four non-matching
meshes were analysed where Bar One is a constant mesh size with contact interface
of 10 by 10 elements, while Bar Two has increasing elements at the contact interface
starting with Mesh 1 4 by 4 elements, Mesh 2 with 6 by 6 elements, Mesh 3 with 8 by
8 elements then Mesh 4 with 12 by 12 elements. The resulting number of nodes and
elements for each bar as summarised in Table 7.7 for the matching meshes and Table
7.8 for the non-matching meshes with a comparison of the different meshes shown in
Figure 7.24.

Table 7.7: Non-Matching Nearly Incompressible Bars - Matching contact interface mesh
information

Bar One Bar Two
Nodes Elements Nodes Elements

Mesh 1 525 1920 525 1920
Mesh 2 1519 6480 1519 6480
Mesh 3 3321 15360 3321 15360
Mesh 4 6171 30000 6171 30000

Table 7.8: Non-Matching Nearly Incompressible Bars - Non-matching contact interface
mesh information

Bar One Bar Two
Nodes Elements Nodes Elements

Mesh 1 6171 30000 525 1920
Mesh 2 6171 30000 1519 6480
Mesh 3 6171 30000 3321 15360
Mesh 4 6171 30000 10309 51840

7.6.2 Numerical Results

The global energy results for the matching contact interface using the meshes in Table
7.7 are shown in Figure 7.25. Similarly for the global energy results for a non-matching
contact interface using the meshes in Table 7.8 are shown in Figure 7.26.
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The results in both Figure 7.25 and 7.26 demonstrate the consistency of the proposed
method as the mesh density increases the global energy improves and the numerical er-
ror decreases. From the individual energy plots for each bar, the simulation can clearly
be described through the evolution of kinetic and potential energies. Both bodies ini-
tially are travelling at their respective initial velocity and are completely undeformed
resulting in all energy existing as kinetic energy (blue). The bars then contact at ap-
proximately 5µs this shock results in significant elastic deformation as demonstrated
by the transfer of kinetic energy to potential energy (red) producing an internal pres-
sure wave. Once the pressure wave reflects off the free end of the bars and returns to
the contact interface the bars separate at approximately 245µs, where a proportion of
the elastic potential energy is converted back to kinetic energy and the bars will travel
in opposite directions away from each other. From the figures it can be seen that not all
elastic potential energy is transferred to kinetic energy at separation resulting in elastic
potential and kinetic energy oscillations, as the bar expands and contracts after sepa-
ration. Through comparing the results of the matching and non-matching meshes the
results agree well for the various levels of conformity of the contact interfaces. To visu-
ally demonstrate this agreement, the pressure contour snapshots comparing matching
contact interface Mesh 4 against each non-matching mesh is presented in Figure 7.27 at
t = 120µs and in Figure 7.28 at t = 260µs.

To further examine these results for non-matching meshes, the local nodal time evolu-
tions taken at the centre of the contact interface in terms of global coordinates from Fig-
ure 7.23 for Bar One, X = [32.4, 3.2, 3.2]Tmm and for Bar Two, X = [32.8, 3.2, 3.2]Tmm
were examined. The results for both bars are shown in Figure 7.29, comparing matching
Mesh 4 against non-matching Mesh 1 to 4. By examining Figure 7.29 it can be observed
that for the local results for Bar One, all five simulation results match closely. This was
to be expected as the mesh for this bar is identical for all five simulations therefore the
slight difference in results is produced purely as result of the mesh density of Bar Two
interpolated to Bar One. This is clearly observed in the results for Bar Two as the non-
matching Mesh 1 (red) results produce the results that differ the most from the other
simulations due to this mesh having the lowest number of nodes and elements. While
the matching Mesh 4 and non-matching Mesh 4 have results that match closely and
only differ in resolution as these have a similar mesh density. To further examine the
difference in the solutions for the various meshes, the results along the centreline of Bar
Two1 (X = [32.8, 1.6, 1.6]TtoX = [65.2, 1.6, 1.6]T) at t = 260µs are shown in Figure 7.30
demonstrating clear convergence of the meshes with mesh refinement along the length
of the bar. For completeness the time evolutions of the non-matching contact interface
using Mesh 1 are shown in Figure 7.31. Lastly with the proposed methods demonstrat-

1Only Bar Two results are presented here as the Bar One mesh remains constant for each simulation.
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ing good agreement across various meshes, the global total energy from Figure 7.26 is
compared in Figure 7.32 to an equivalent problem setup using linear FEM and mean
dilatation. The linear FEM simulation used 30,778 elements and 6267 nodes for Bar
One and 50,261 elements and 9976 nodes for Bar Two, while the mean dilatation simu-
lation used 5,000 elements and 6171 nodes for Bar One and 8,640 elements and 10,309
nodes for Bar Two. It is observed that the total energy decreases over time and that
the proposed method is more dissipative than mean dilatation with no spurious modes
(pressure checker boarding) which are observed in the linear FEM pressure contour.
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(a) Non-matching contact interface (Mesh 1)

(b) Non-matching contact interface(Mesh 2)

(c) Non-matching contact interface (Mesh 3)

(d) Non-matching contact interface (Mesh 4)

(e) Matching contact interface (Mesh 4)

(f) Close up of each contact interface, from left to right: Non-matching
contact interface (Mesh 1), Non-matching contact interface (Mesh 2),
Non-matching contact interface (Mesh 3), Non-matching contact inter-
face (Mesh 4), Matching contact interface (Mesh 4)

Figure 7.24: Non-Matching Nearly Incompressible Bars - Comparison of mesh contact
interfaces
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(a) Total system energy - Mesh refinement (b) Numerical error - Mesh refinement

(c) Energy history - Bar One (Mesh 4) (d) Energy history - Bar Two (Mesh 4)

Figure 7.25: Non-Matching Nearly Incompressible Bars - Energy time history compar-
ing matching contact interface Mesh 1-4 for the proposed method
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(a) Total system energy - Mesh refinement (b) Numerical error - Mesh refinement

(c) Energy history - Bar One (Mesh 4) (d) Energy history - Bar Two (Mesh 4)

Figure 7.26: Non-Matching Nearly Incompressible Bars - Energy time history compar-
ing non-matching contact interface Mesh 1-4 for the proposed method
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Figure 7.27: Non-Matching Nearly Incompressible Bars - Comparison of global pres-
sure contours at 120µs for each mesh from top to bottom: non-matching Mesh 1, non-
matching Mesh 2, non-matching Mesh 3, non-matching Mesh 4, matching Mesh 4
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Figure 7.28: Non-Matching Nearly Incompressible Bars - Comparison of global pres-
sure contours at 260µs for each mesh from top to bottom: non-matching Mesh 1, non-
matching Mesh 2, non-matching Mesh 3, non-matching Mesh 4, matching Mesh 4
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(a) Velocity vx - Bar One (b) Velocity vx - Bar Two

(c) Axial Stress σxx - Bar One (d) Axial Stress σxx - Bar Two

(e) Axial Displacement ux - Bar One (f) Axial Displacement ux - Bar Two

Figure 7.29: Non-Matching Nearly Incompressible Bars - Comparison of local results
for matching Mesh 4 and non-matching Mesh 1 to 4
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(a) (b)

(c) (d)

Figure 7.30: Non-Matching Nearly Incompressible Bars - Comparison of Meshes along
centreline X = [32.8, 1.6, 1.6]TtoX = [65.2, 1.6, 1.6]T of Bar Two
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Figure 7.31: Non-Matching Nearly Incompressible Bars - Time Evolution of non-
matching Mesh 1 at 0µs, 50µs, 75µs, 100µs, 150µs, 200µs, 250µs and 300µs
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Figure 7.32: Non-Matching Nearly Incompressible Bars - Global total energy compari-
son of the proposed method, linear FEM and mean dilatation for non-matching Mesh 4
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7.7 Car Wall Impact

7.7.1 Problem Description

This problem considers a simplified car travelling at an initial velocity of -8.94 m/s (20
MPH) towards a wall with an initial gap δn of 0.0894 m and is subjected to a gravita-
tional body force of 9.81 N, where the car cross-section (XY-Plane) is depicted in Figure
7.33 with total length LT of 2.6 m, total height HT of 1 m, total width WT of 1 m and
the detailed dimensions in Table 7.9. In this problem the car model is simplified to
be considered as a single solid homogeneous material with the material properties in
Table 7.10 for two different material models, nearly incompressible neo-Hookean and
von-Mises plasticity with isotropic hardening. The purpose of this problem was to in-
vestigate the robustness of the proposed method and compare with classical FEM for
more complex geometries in relation to a practical real world application.

Figure 7.33: Car Wall Impact - Problem description

Table 7.9: Car Wall Impact - Dimensions

Length [m] Height m Radius m

L1 0.4 H1 0.5 R1 0.2
L2 0.8 H2 0.4 R2 0.3
L3 0.6
L4 1.35
L5 0.4
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Table 7.10: Car Wall Impact - Material parameters

Elastic car Plastic car

Constitutive Model neo-Hookean von-Mises Plasticity
Young’s Modulus E0 195 · 106 195 · 106 [N/m2]

Material density ρ0 8000 8000 [kg/m3]

Poisson Ratio ν 0.3 0.3
Lamé parameters µ 75.38 75.38 [MN/m2]

λ 113.077 113.077 [MN/m2]

Yield stress σy,0 - 2 · 106 [N/m2]

Hardening parameter H - 20 · 106 [N/m2]

Friction coefficient k 0 0

7.7.2 Numerical Results

This problem was simulated for the proposed method using a CFL of 0.3 and for four
different tetrahedral meshes with the following mesh statistics: Mesh 1 had 2391 nodes
and 9772 elements, Mesh 2 had 8582 nodes and 44911 elements, Mesh 3 had 17496
nodes and 92479 elements, Mesh 4 had 96359 nodes and 554190 elements. The resulting
total system energy history, numerical error history and energy history for each mesh
and material model are shown in Figure 7.34 to demonstrate consistency.

Figure 7.35 and 7.36 show the local time history of axial velocity, axial stress, axial
displacement and pressure at initial position X = [0, 0.5, 0]T, for the elastic car impact
(left) and plastic car impact (right), comparing the proposed method using Mesh 4,
linear FEM using a tetrahedral mesh consisting of 84921 nodes and 458757 elements and
mean dilatation FEM using a hexahedral mesh consisting of 157563 nodes and 148040
elements. Through comparing the local results, each methodology matches closely in
the elastic car impact while for the plastic car impact example the axial velocity and
axial displacement match closely but for the axial stress and pressure the linear FEM
has oscillations in the solution while the proposed method matches closely with the
mean dilatation FEM.

Figure 7.37 shows the pressure contour snapshots for each methodology of the elastic
car impact at various time intervals. Each methodology demonstrates a smooth pres-
sure contour with good agreement across each methodology with slight differences
in resolution. For completeness the entire time evolution for the proposed method is
shown in Figure 7.38.

Figure 7.39 shows the pressure contour snapshots for each methodology of the plastic
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car impact at various time intervals. The pressure contour using the linear FEM with
a tetrahedral mesh results in pressure checker boarding in the vicinity of high stress
concentrations which are plasticly deforming. While the proposed method and mean
dilatation FEM produce a smooth pressure contour which match closely with a slight
difference in resolution. For completeness the entire time evolution for the proposed
method is shown in Figure 7.40.
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(a) Total system energy - Mesh refinement (b) Total system energy - Mesh refinement

(c) Numerical error - Mesh refinement (d) Numerical error - Mesh refinement

(e) Energy history (Mesh 4) (f) Energy history (Mesh 4)

Figure 7.34: Car Wall Impact - Energy time histories for the elastic car impact (left) and
plastic car impact (right)
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(a) Velocity vx (b) Velocity vx

(c) Axial Stress σxx (d) Axial Stress σxx

Figure 7.35: Car Wall Impact - Comparison of local axial velocity and axial stress for
the elastic car (left) and plastic car (right) using linear tetrahedral FEM, mean dilatation
hexahedral FEM and tetrahedral proposed method
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(a) Axial Displacement ux (b) Axial Displacement ux

(c) Pressure (d) Pressure

Figure 7.36: Car Wall Impact - Comparison of local axial displacement and pressure for
the elastic car (left) and plastic car (right) using linear tetrahedral FEM, mean dilatation
hexahedral FEM and tetrahedral proposed method
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Figure 7.37: Elastic Car Impact - Pressure Time Evolution of proposed method using a
tetrahedral mesh (left), linear FEM using a tetrahedral mesh and mean dilatation FEM
using a hexahedral mesh 100ms, 125ms,150ms, 200ms, 250ms, 300ms, 350ms, 400ms,
450ms
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Figure 7.38: Elastic Car Impact - Pressure Time Evolution of proposed method using a
tetrahedral mesh (from left to right and top to bottom) at 0ms, 100ms, 125ms, 150ms,
200ms, 250ms ... 900ms, 950ms, 1000ms
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Figure 7.39: Plastic Car Impact - Pressure Time Evolution of proposed method using a
tetrahedral mesh (left), linear FEM using a tetrahedral mesh and mean dilatation FEM
using a hexahedral mesh 100ms, 125ms,150ms, 200ms, 250ms, 300ms, 350ms, 400ms,
450ms
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Figure 7.40: Plastic Car Impact - Pressure Time Evolution of proposed method using
a tetrahedral mesh (from left to right and top to bottom) at 0ms, 100ms, 125ms,150ms,
200ms, 250ms ... 900ms, 950ms, 1000ms
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis has presented a novel vertex centred finite volume method for the dynamic
solution of non-smooth contact problems, where a mixed system of first order con-
servation equations, in combination with the associated jump conditions was used. By
utilising the jump condition for the conservation of linear momentum, several dynamic
contact models were derived ensuring the preservation of the hyperbolic characteristic
structure across the contact interface, this included two types of solver based on the
acoustic material wave speed and Hugoniot shock wave speed. This novel approach
was able to enforce both kinematic and kinetic contact constraints at a continuum level
and was demonstrated at a discrete level, first through a one-dimensional implementa-
tion in MATLAB followed by multi-dimensional implementations in two-dimensions
through MATLAB and three-dimensions through open source software "OpenFOAM".
The numerical examples presented in this thesis, prove the proposed algorithm per-
forms extremely well in dynamic contact-impact problems without requiring any ad-
hoc algorithmic regularisation. The proposed method, by construction, also overcomes
several numerical drawbacks commonly found in traditional methodologies. Specif-
ically, no spurious oscillations or hour-glassing was observed and a smooth pressure
solution was obtained unlike the traditional linear tetrahedral finite element method.
The proposed algorithm, crucially ensures long-term stability through monitoring the
global entropy production via the Hamiltonian energy of the system.

This thesis outlined the governing equations for the kinematics of a single contin-
uum body in relation to solid dynamics. Followed by the kinematic description along
with the definitions for the Total Lagrangian description of the first order conserva-
tion framework first developed by Lee et al. [100]. In terms of the conservation linear
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momentum p and triplet of kinematic conservation equations {F ,H , J}. The solid dy-
namic system was closed by defining a polyconvex constitutive model and a classic
elastoplasticity model. To consider discontinuous problems as part of the first order
framework, such as contact-impact scenarios, the associated jump conditions were de-
rived and discussed. To evaluate these conditions, appropriate acoustic material wave
speeds and Hugoniot material wave speeds were derived.

By examining the linear momentum jump condition, expressions for the contact inter-
face conditions were derived for the acoustic material wave speed and Hugoniot shock
wave speeds, in the form of a Riemann solver, which directly enforce the contact con-
ditions. To demonstrate the application of these conditions, the exact solution to a one-
dimensional contact scenario was presented. The second law of thermodynamics was
introduced in the context of the Hamiltonian energy when considering the first order
conservation framework. It was demonstrated that at a continuum level the proposed
formulation satisfies the Coleman-Noll for entropy production.

In terms of numerical scheme, the first order conservation framework was discretised
in space using vertex centred finite volume method. In order to achieve a second order
accurate solution, the fluxes were reconstructed using a linear reconstruction proce-
dure with a Barth-Jespersen limiter. The entropy production was examined using the
Coleman-Noll procedure and demonstrated that the proposed method fulfils the sec-
ond law of thermodynamics at a semi-discrete level. The proposed method was discre-
tised in time using a time-variation diminishing two stage Runge-Kutta time integrator.
With this numerical scheme the proposed method was implemented as a purpose built
explicit multi-body contact solver in open-source software OpenFOAM with a custom
VCFVM library.

One-dimensional numerical examples were presented to demonstrate the accuracy and
consistency of the proposed algorithm, while monitoring the Hamiltonian energy to
ensure fulfilment of the second law of thermodynamics. These examples showed near
perfect agreement with the exact solutions and demonstrated the satisfaction of the
second law of thermodynamics. The influence of the Hugoniot wave speed using a
non-linear Riemann solver was also investigated showing good agreement with tradi-
tional FEMs. A parametric study was conducted that demonstrated the importance of
using the Hugoniot shock model for large velocity impacts, while the importance of
utilising a non-linear Riemann solver requires further investigation.

More advanced multi-dimensional problems were also presented and compared with
standard finite element methodologies, linear triangular and mean dilatation quadri-
laterals elements in two dimensions then linear tetrahedral and mean dilatation hexa-
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hedral elements in three dimensions. The proposed method again demonstrated good
agreement with the mean dilatation method across both dimensions, free from spu-
rious oscillations and pressure checker boarding which were observed in traditional
linear methods. The Hamiltonian energy was monitored and examined for each exam-
ple and demonstrated the satisfaction of the second law of thermodynamics for each
case.

The main contributions and novelties of this thesis are as follows:

Continuum Level

• Application of the first order conservation framework to multiple body contact
dynamics.

• Derivation of continuum contact conditions based on the jump conditions for two
types of wave speed in the form of an acoustic and non-linear Riemann solvers.

• This combination of methods directly enforces the contact conditions (impenetra-
bility and traction conservation) at a continuum level.

• The satisfaction of entropy production using a Coleman-Noll procedure at a con-
tinuum level for the proposed formulation.

Discrete Level

• The enforcement of both contact constraints at each node of the contact interface
across multiple bodies.

• The discrete satisfaction of local entropy production using a Coleman-Noll proce-
dure for the proposed method.

Computational Implementation

• Purpose built "OpenFOAM" implementation of the proposed method including
a vertex centred finite volume library and multiple body contact solver for pre-
defined matching and non-matching contact interfaces.

8.2 Future Work

Following this research there are several avenues for future work as follows:

• Non-linear Riemann Solver
The advantage of the non-linear Riemann solver, introduced in this thesis, is
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not yet clear requiring further investigation through multi-dimensional scenar-
ios such as fictional or angled contact.

• Constitutive models
This work was focused on the contact-impact of a small selection of large strain
constitutive models, further more complex constitutive models could be investi-
gated such as viscoelasticity [129, 130, 156] or viscoplasticity [157] as well as the
contact between bodies of different constitutive models.

• Thermo-mechanical contact
In this work only isothermal contact was considered, this can be extended to in-
clude thermal effects in contact scenarios such as friction or heat transfer requir-
ing additional contact constraints [158]. The addition of these contact constraints
can be investigated by the proposed method through an additional conserva-
tion equation for the first law of thermodynamics as demonstrated by Bonet et
al. in [117] with the required theory presented in Appendix A. Modelling Thermo-
mechanical contact would require more complex constitutive models such as thermo-
elasticity [159], thermo-plasticity [160] or thermo-viscoelasticity [161].

• Non-matching/Sliding Contact Interfaces
The investigation of methodologies in order to address non-matching/sliding
contact interfaces was outside the scope of this work as such further improve-
ments can be made to the proposed algorithm to address these scenarios. To fully
consider these types of scenarios an efficient search algorithm, as discussed in
Section 1.2.2, would be required to identify contact regions.

• OpenFOAM Integration and Extension to "preCICE"
The implementation of the proposed method in "OpenFOAM" for this thesis was
entirely purpose-built as such various improvements can be made to the imple-
mentation to improve the integration with OpenFOAM, and ultimately efficiency,
such as creating a complete template library for the vertex centred finite volume
algorithm following the coding guidelines. By doing so the proposed algorithm
could easily be scaled and adapted for different computational algorithms within
OpenFOAM and extended to integration with third party modules such as "pre-
CICE" [162] for the coupling of Fluid-Structure Interaction (FSI) problems.

• Computational Efficiency Comparison
The proposed method has a series of advantages over traditional displacement
based methods as discussed throughout this thesis, however to fully assess this
framework, a computational efficiency study can be undertaken in order to as-
sess whether the additional geometric conservation equations have an impact on
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overall efficiency in comparison to other methodologies.
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Appendix A

Governing Equations for
Thermo-Elasticity

A.1 Preliminaries

This thesis focused on isothermal processes, in this appendix, the relevant governing
equations to extend the proposed method to thermo-elastic scenarios is presented fol-
lowing the work of Ghavamian et al. [116] and Bonet et al. [117]. This appendix begins
with the introduction of the first law of thermodynamics in Section A.2 expressed in
terms of total energy and in terms of entropy. Two appropriate constitutive relations
are introduced in Section A.3 namely, Modified Entropic Elasticity (MEE) and Mie-
Grüneisen (MG) in order to close the system of equations. Lastly, the extension of the
proposed method to thermo-mechanical contact is briefly discussed in Section A.4.

A.2 First Law of Thermodynamics

A.2.1 Expressed in Terms of Total Energy

The first law of thermodynamics is expressed in terms of the total energy in global form
as [21]:

d
dt

∫
Ω0

ETdV =
∫

∂Ω0

t · vdA−
∫

∂Ω0

QBdA +
∫

Ω0

(ρ0b0) · vdV +
∫

Ω0

r0dV, (A.1)

where ET (X , t) is the total energy density per unit undeformed volume, t = PN is the
boundary traction vector, QB = Q ·N is the heat flow normal to boundary ∂Ω0, r0 is
the thermal heat source per unit reference volume. The local form of this conservation
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equation is expressed as:

∂ET

∂t
+ DIV

(
Q−P Tv

)
= (ρ0b0) · v + r0, (A.2)

with jump condition defined as [100]:

UJETK = JQK ·N − JP TvK ·N . (A.3)

where J·K = J·KR − J·KL is the jump across a discontinuous surface by unit normal N
propagating with wave speed U.

A.2.2 Expressed in Terms of Internal Energy and the Entropy

The total energy density in Equation (A.2) includes kinetic and internal energy con-
tributions. Therefore to obtain an expression in terms of the internal energy only, the
linear momentum balance principle in Equation (2.7) is multiplied by velocity v and
subtracted from Equation (A.2), after some algebra yields:

∂E

∂t
+ DIVQ = P : ∇0v + r0, (A.4)

where E (X , t) = ET − 1
2ρ0

(p · p) represents the internal energy per unit undeformed
volume. In strict thermo-elasticity, the internal energy E (X , t) will depend on the
triplet of deformation measures X = {F ,H , J} and entropy density (per unit of unde-
formed volume) η, defined as:

E (X , t) = E
(
X η

)
; X η = {X , η} = {F ,H , J, η}, (A.5)

where E denotes the same internal energy per unit undeformed volume as E but with
different functional dependency. The entropy density field η (X , t) is defined as the
energy dual conjugate variable to the temperature θ (X , t) as:

θ (X , t) =
∂E
(
X η

)
∂η

= Θ
(
X η

)
. (A.6)

Similarly, the notation θ and Θ are used to denote the same temperature with different
functional dependency. Similarly, energy conjugate fields can be defined to the three
deformation measures of the triplet X as:

ΣF =
∂E
(
X η

)
∂F

; ΣH =
∂E
(
X η

)
∂H

; ΣJ =
∂E
(
X η

)
∂J

. (A.7)
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By comparing the time rate of the internal strain energy E (X , t) to that of its equivalent
re-expression E

(
X η

)
and, using the properties of the tensor cross product [106], it

is possible to relate the conjugate stresses defined previously (Equation(A.7)) to the
standard first Piola-Kirchhoff stress tensor (refer to Section 2.5) as:

∂E (X , t)
∂t

=
∂E
(
X η

)
∂F

:
∂F

∂t
+

∂E
(
X η

)
∂H

:
∂H

∂t
+

∂E
(
X η

)
∂J

∂J
∂t

+
∂E
(
X η

)
∂η

∂η

∂t
; (A.8)

= ΣF : ∇0v + ΣH : (F ∇0v) + ΣJ (H : ∇0v) + θ
∂η

∂t
; (A.9)

= [ΣF + ΣH F + ΣJH ] : ∇0v + θ
∂η

∂t
, (A.10)

leading to:
P
(
X η

)
= ΣF + ΣH F + ΣJH . (A.11)

Now it is possible to re-write the first law of thermodynamics in terms of the entropy
η by combining Equations (A.4) and (A.8) to give a thermal expression in which the
mechanical terms have been eliminated to give [163]:

θ
∂η

∂t
+ DIVQ = r0. (A.12)

Alternatively, noting 1
θ DIVQ = DIV

(
Q
θ

)
+ 1

θ2Q ·∇0θ, a conservation type of law for
the entropy emerges as:

∂η

∂t
+ DIV

(
Q

θ

)
=

r0

θ
− 1

θ2Q ·∇0θ, (A.13)

where Q
θ represents the flux of entropy and the right hand side term is the entropy

source per unit of undeformed volume. The expression above for entropy, however, as-
sumes a smooth solution but is still an expression for the first law. The global form can
be obtained by integration over an arbitrary volume Ω0 with the use of the divergence
theorem to give:

∂

∂t

∫
Ω0

ηdV +
∫

∂Ω

(
QB

θ

)
dA =

∫
Ω0

(r0

θ

)
dV −

∫
Ω0

1
θ2Q ·∇0θdV. (A.14)

In relation to heat flux vector Q, the typical Fourier law is considered to hold and which
can be defined in Total Lagrangian fashion as:

Q = −K∇0θ; K = J−1HTkH . (A.15)

where k represents the positive semi-discrete second-order thermal conductivity tensor
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in the deformed configuration.

A.3 Thermal Constitutive Relations

In general, the Calorimetry relationships between internal energy E , temperature θ and
entropy η can be derived from the definition of the specific heat at constant volume
cv [117]. This requires the re-definition of the entropy η (X , t) and the internal energy
density E (X , t) in terms of the triplet of deformation measures X and the temperature
θ namely, X θ = {X , θ} = {F ,H , J, θ}. Defined as:

cv
def
= dE

dθ

∣∣∣
X=const

; Ẽ (X θ) = E (X , η̃ (X θ)) ; η (X , t) = η̃ (X θ) , (A.16)

with cv = ρ0Cv > 0, where ρ0 is the density at reference temperature θ0 and Cv the
specific heat per unit mass. As the internal energy E (X , t) can be expressed as a func-
tion of the set of arguments X η, Equation (A.5) and observing that from Equation (A.6)
that, ∂E

(
X η

)
/∂η = θ, a constitutive relationship between the temperature θ and the

entropy η at constant deformation can be established [117] by re-expressing Equation
(A.16) using the chain rule as:

∂η̃ (X θ)

∂θ
=

cv

θ
. (A.17)

Restricting the derivation to the simple constant heat coefficient case, allows Equation
(A.17) to be integrated analytically with respect to the entropy or temperature changes
as: ∫ η̃(X θ)

η̃0(X )
dη = cv

∫ θ

θ0

1
θ

dθ, (A.18)

which lead to a relationship between entropy and temperature as:

η̃ (X θ) = η̃0 (X ) + cv ln
θ

θ0
; η̃0 (X ) = η̃ (X , θ = θ0) , (A.19)

where η̃0 (X ) is the entropy at constant temperature θ0 and expressed as a function of
the deformation X (In other words, after deformation, the temperature is allowed to
return to the reference value θ0).

Using Equation (A.19), and noting the alternative functional representation from Equa-
tion (A.16), the reverse relationship yielding the temperature as a function of the defor-
mation and entropy is given as:

Θ
(
X η

)
= θ0e(η−η̃0(X ))/cv . (A.20)

Again, with the assumption of a constant specific heat coefficient cv, it is possible to
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write an explicit relationship for the internal energy E (X , t) as functions of deforma-
tions X and temperature θ, that is Ẽ (X θ), instead of E

(
X η

)
. This is achieved by

directly integrating Equation (A.16) with respect to temperature between the limits θ0

and a given value θ to give: ∫ Ẽ(X θ)

Ẽ0(X )
dE = cv

∫ θ

θ0

dθ, (A.21)

which then yields:

Ẽ (X θ) = Ẽ0 (X ) + cvϑ; Ẽ0 (X ) = Ẽ0 (X , θ = θ0) ; ϑ = θ − θ0; (A.22)

Here, ϑ represents the temperature change (with respect the reference temperature θ0)
and the term Ẽ0 (X ) represents the internal energy per unit reference volume caused by
the deformation after the temperature has been allowed to return back to the reference
value θ0. Since the terms E (X , t) and Ẽ (X θ) are used to denote the same energy (with
different functional dependency), and recalling E (X , t) = ET − 1

2ρ0
(p · p) rearrange-

ment of Equation (A.22) gives the temperature update as:

θ̂ (p,X E) = θ0 +
1
cv

(
Ẽ (X θ)− Ẽ0 (X )

)
; (A.23)

= θ0 +
1
cv

(
ET −

1
2ρ0

p · p− Ẽ0 (X )

)
, (A.24)

where X E = {X , ET}. Equation (A.23) provides an expression of the temperature
in terms of the linear momentum, the triplet of deformation measures and the total
energy density, namely, θ (X , t) = θ̂ (p,X E). Moreover, noticing Equation (A.19), it is
also possible to obtain a similar relationship between the entropy density η and the set
X E, namely, η (X , t) = η̂ (p,X E), that is:

η̂ (p,X E) = η̃0 (X ) + cv ln

(
θ̂ (p,X E)

θ0

)
. (A.25)

A final useful relationship necessary to compute the conjugate stresses {ΣF , ΣH , ΣJ} in
Equation (A.7) is that of the internal energy density, namely:

Ê (p,X E) = ET −
1

2ρ0
p · p, (A.26)

where Ê (p,X E) represents an alternative functional representation of the internal en-
ergy E

(
X η

)
. Finally, in order to complete the definition of the thermo-elastic consti-

tutive model (refer to Equations (A.23), (A.25) and (A.26)), it is necessary to provide
suitable functional expressions for Ẽ0 (X ) and η̃0 (X ), which will depend on the spe-
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cific material under consideration. Following [117], in order to guarantee the existence
of real wave speeds (hyperbolicity) in the material for the entire thermo-elastic defor-
mation process, that is regardless of the amount of deformation X and thermal state η

(or θ), a sufficient condition is that of selecting Ẽ0 (X ) and η̃0 (X ) to be convex in X ,
that is both functions shall be polyconvex. For further details, refer to [117]. Two well-
established thermo-elastic models derived from universally polyconvex strain energy
functions will be introduced, namely modified entropic elasticity and Mie-Grüneisen.
1

A.3.1 Modified Entropic Elasticity (MEE) Model

The internal energy density at reference temperature θ0 for this material is typically
given by a purely volumetric function as [117] :

ẼMEE
0 (J) = cvΓ0θ0 (J − 1) , (A.27)

here Γ0 is a positive material constant. In addition, the entropy function at reference
temperature θ0 is given by:

η̃MEE
0 (X ) =

1
θ0

(
ẼMEE

0 (J)− ψMEE
0 (X )

)
, (A.28)

where ψMEE
0 (X ) is the Helmholtz’s free energy function at reference temperature θ0,

where a possible deviatoric-volumetric expression of the Mooney-Rivlin type is:

ψMEE
0 (X ) = ζ0

(
J−2/3 (F : F )− 3

)
+ ξ0

(
J−2 (H : H)3/2 − 3

√
3
)
+

κ0

2
(J − 1)2 ,

(A.29)
where {ζ0, ξ0, κ0} are material parameters. Notice that if ξ0 = 0, the material degen-
erates to a neo-Hookean type of model (refer to Section 2.5). Typically, these material
parameters and Γ0 introduced above, are calibrated against those of linear elasticity,
namely, shear modulus µ, bulk modulus κ and thermal expansion coefficient α as [108]:

µ = 2ζ0 + 3
√

3ξ0; κ = κ0; α =
cvΓ0

3κ
. (A.30)

1Refer to Bonet et al.[117] where hyperbolicity is demonstrated for the two thermo-elastic constitutive
models presented here where the closed-form computation of bounds for the propagating wave speeds
is also shown.
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A.3.2 Mie-Grüneisen (MG) Model

A plausible deviatoric-volumetric expression for the internal energy density of the
Mooney-Rivlin type at reference temperature θ0 for this material can be given as:

ẼMG
0 = ζ0

(
J−2/3 (F : F )− 3

)
+γ0

(
J−2 (H : H)3/2 − 3

√
3
)
+

χ0

2
(J − 1)2 + cvθ0Γ0 (J − 1) ,

(A.31)
where {ζ0, γ0, χ0} are material parameters (if γ0 = 0, the material degenerates to a neo-
Hookean type of model) and the entropy function at reference temperature θ0 is given
by:

η̃MG
0 (X ) = cvΓ0

(
Jq − 1

q

)
, (A.32)

where q is a dimensionless coefficient that varies from zero (for a perfect gas) to one
(for solid materials). The material parameters can be calibrated against those of linear
elasticity, namely, shear modulus µ, bulk modulus κ and thermal expansion coefficient
α as:

µ = 2ζ0 + 3
√

3γ0; κ = χ0 + cvθ0Γ0 (1− q) ; α =
cvΓ0

3κ
. (A.33)

A.4 Extension to Thermo-Mechanical Contact

With the theory presented in this Appendix, the proposed method can be extended
to thermo-elasticity by introducing the conservation of energy from Equation (A.2)
into the first order framework from Section 2.4 as an additional conservation equation
and the system is then closed by using an appropriate thermo-mechanical constitutive
model such as those presented in Section A.3 as presented by Ghavamian et al. [116]
and Bonet et al. [117]. To extend this to thermo-mechanical contact, a new set of derived
contact conditions are required to determine the temperature interaction between mul-
tiple bodies and would be expanded expressions of those from Section 3.3 to include
temperature effects for the contact fluxes. Furthermore, the second law of thermody-
namics presented in Section 3.5, used to assess the entropy production of the numerical
scheme, would now be expressed in terms of the so called ballistic free energy. This bal-
listic energy is simply the total energy presented in Equation (3.46) plus an additional
thermal conduction term [21]. This addition would therefore require a reassessment
of the entropy production of the semi-discrete system of equations to ensure discrete
satisfaction of the second law of thermodynamics.



Appendix B

Mesh Generation Example

B.1 Preliminaries

In Chapter 5, the computational implementation of the proposed method in open-
source software OpenFOAM was discussed. This included an example problem setup
for the purpose built OpenFOAM solver for explicit multi-body contact dynamics. This
appendix contains the source code required to generate the mesh for this example prob-
lem setup, for full details refer to Chapter 5. Listing B.1 defines the geometry and mesh
for body 1 while Listing B.2 defines the geometry and mesh for body 2 which can be
opened in open-source mesh generator gmsh [145] in order to create the relevant mesh
(*.msh) files. Once created, the mesh files can be converted to the OpenFOAM format
by using the executable utility in Listing B.3, which requires the two createPatchDict

files in Listings B.4 and B.5 to be saved in the relevant system sub-directories.

B.2 Source Code
// Define geometry

2 SetFac tory ( "OpenCASCADE" ) ;
Box ( 1 ) = { 0 , −0.5 , −0 .5 , 10 , 1 , 1 } ;

4

// Define s t r u c t u r e d l i n e s
6 T r a n s f i n i t e Line { 3 , 4 , 1 , 2 } = 9 Using Progress ion 1 ;

T r a n s f i n i t e Line { 6 , 8 , 5 , 7 } = 9 Using Progress ion 1 ;
8 T r a n s f i n i t e Line { 1 1 , 12 , 10 , 9 } = 81 Using Progress ion 1 ;

10 // Define s t r u c t u r e d s u r f a c e s
T r a n s f i n i t e Surface { 1 } = { 4 , 3 , 2 , 1 } ;

12 T r a n s f i n i t e Surface { 2 } = { 7 , 5 , 6 , 8 } ;
T r a n s f i n i t e Surface { 6 } = { 3 , 1 , 5 , 7 } ;

14 T r a n s f i n i t e Surface { 4 } = { 8 , 4 , 3 , 7 } ;
T r a n s f i n i t e Surface { 3 } = { 5 , 6 , 2 , 1 } ;

16 T r a n s f i n i t e Surface { 5 } = { 4 , 8 , 6 , 2 } ;
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18 // Define s t r u c t u r e d volume
T r a n s f i n i t e Volume { 1 } = { 2 , 4 , 3 , 1 , 6 , 8 , 7 , 5 } ;

20

// Assign volume name
22 Phys ica l Volume ( " body1 " ) = { 1 } ;

Listing B.1: gmsh script - Body 1

// Define geometry
2 SetFac tory ( "OpenCASCADE" ) ;

Box ( 1 ) = { 1 0 . 0 1 , −0.5 , −0 .5 , 10 , 1 , 1 } ;
4

// Define s t r u c t u r e d l i n e s
6 T r a n s f i n i t e Line { 3 , 4 , 1 , 2 } = 9 Using Progress ion 1 ;

T r a n s f i n i t e Line { 6 , 8 , 5 , 7 } = 9 Using Progress ion 1 ;
8 T r a n s f i n i t e Line { 1 1 , 12 , 10 , 9 } = 81 Using Progress ion 1 ;

10 // Define s t r u c t u r e d s u r f a c e s
T r a n s f i n i t e Surface { 1 } = { 4 , 3 , 2 , 1 } ;

12 T r a n s f i n i t e Surface { 2 } = { 7 , 5 , 6 , 8 } ;
T r a n s f i n i t e Surface { 6 } = { 3 , 1 , 5 , 7 } ;

14 T r a n s f i n i t e Surface { 4 } = { 8 , 4 , 3 , 7 } ;
T r a n s f i n i t e Surface { 3 } = { 5 , 6 , 2 , 1 } ;

16 T r a n s f i n i t e Surface { 5 } = { 4 , 8 , 6 , 2 } ;

18 // Define s t r u c t u r e d volume
T r a n s f i n i t e Volume { 1 } = { 2 , 4 , 3 , 1 , 6 , 8 , 7 , 5 } ;

20

// Assign volume name
22 Phys ica l Volume ( " body2 " ) = { 1 } ;

Listing B.2: gmsh script - Body 2

# !/ bin/bash
2 cd $ {0%/*} || e x i t 1 # Run from t h i s d i r e c t o r y

4 # Remove old Meshes
echo −e "\n

6 Remove old meshes
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 "
rm −r constant/polyMesh

10 rm −r 0/polyMesh
rm −r constant/body1/polyMesh

12 rm −r constant/body2/polyMesh

14 # Generate mesh
# Body1

16 echo −e "\n
Generate body1 mesh

18 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
"

20

gmshToFoam body1 . msh > log . mesh
22 autoPatch 90 −overwrite >> log . mesh

mv constant/polyMesh constant/body1/polyMesh
24 c r e a t e P a t c h −overwrite −region body1 >> log . mesh
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26 # Body2
echo −e "\n

28 Generate body2 mesh
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

30 "

32 gmshToFoam body2 . msh >> log . mesh
autoPatch 90 −overwrite >> log . mesh

34 mv constant/polyMesh constant/body2/polyMesh
c r e a t e P a t c h −overwrite −region body2 >> log . mesh

36

echo −e "\n
38 Meshing complete

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing B.3: createRegionMeshes

*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |

\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O perat ion | Website : h t tps : //openfoam . org

\\ / A nd | Version : 6
6 \\/ M anipula t ion |

\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
8 FoamFile

{
10 vers ion 2 . 0 ;

format a s c i i ;
12 c l a s s d i c t i o n a r y ;

o b j e c t c r e a t e P a t c h D i c t ;
14 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

18

// Patches to c r e a t e .
20 patches

(
22 {

name f r e e ;
24 patchInfo

{
26 type patch ;

}
28 constructFrom patches ;

patches ( auto0 auto1 auto2 auto4 auto5 ) ;
30 }

{
32 name c o n t a c t ;

patchInfo
34 {

type patch ;
36 }

constructFrom patches ;
38 patches ( auto3 ) ;

}
40 ) ;
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42 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Listing B.4: createPatchDict - Body 1

*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |

\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O perat ion | Website : h t tps : //openfoam . org

\\ / A nd | Version : 6
6 \\/ M anipula t ion |

\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
8 FoamFile

{
10 vers ion 2 . 0 ;

format a s c i i ;
12 c l a s s d i c t i o n a r y ;

o b j e c t c r e a t e P a t c h D i c t ;
14 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

18 // Patches to c r e a t e .
patches

20 (
{

22 name f r e e ;
patchInfo

24 {
type patch ;

26 }
constructFrom patches ;

28 patches ( auto0 auto1 auto3 auto4 auto5 ) ;
}

30 {
name c o n t a c t ;

32 patchInfo
{

34 type patch ;
}

36 constructFrom patches ;
patches ( auto2 ) ;

38 }
) ;

40

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Listing B.5: createPatchDict - Body 2



Appendix C

OpenFOAM Input Files Example

C.1 Preliminaries

In Chapter 5, the computational implementation of the proposed method in open-
source software OpenFOAM was discussed. This included an example problem setup
for the purpose built OpenFOAM solver for explicit multi-body contact dynamics. This
appendix contains the relevant files in order to define the problem. Listing C.1 defines
the initial linear momentum for body 1, while Listing C.2 defines the initial linear mo-
mentum for body 2. The required regionProperties file, which defines the region
names, is provided in Listing C.3. The materialProperties file for both bodies is pro-
vided in Listing C.4 and must be stored in both region sub-directories. The source
files for the system directory are provided in Listing C.5 for the control dictionary, List-
ing C.6 for the finite volume solution dictionary and Listing C.7 for the finite volume
schemes. Lastly, the run executable file is provided in Listing C.8 which runs the pur-
pose built OpenFOAM solver.

C.2 Source Code
/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\

2 ========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O perat ion | Website : h t tps ://openfoam . org
\\ / A nd | Version : 6

6 \\/ M anipula t ion |
\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

8 FoamFile
{

10 vers ion 2 . 0 ;
format a s c i i ;

12 c l a s s po in tVec torF ie ld ;
l o c a t i o n " 0 " ;

179
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14 o b j e c t lm ;
}

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

18 dimensions [1 −2 −1 0 0 0 0 ] ;

20 i n t e r n a l F i e l d uniform ( 0 . 0 0 1 0 0) ;

22 boundaryField
{

24 f r e e
{

26 type zeroGradient ;
}

28

c o n t a c t
30 {

type c a l c u l a t e d ;
32 }

}
34

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Listing C.1: lm.orig - Body 1

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |

\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O perat ion | Website : h t tps ://openfoam . org

\\ / A nd | Version : 6
6 \\/ M anipula t ion |

\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
8 FoamFile

{
10 vers ion 2 . 0 ;

format a s c i i ;
12 c l a s s po in tVec torF ie ld ;

l o c a t i o n " 0 " ;
14 o b j e c t lm ;

}
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

18 dimensions [1 −2 −1 0 0 0 0 ] ;

20 i n t e r n a l F i e l d uniform (0 0 0) ;

22 boundaryField
{

24 f r e e
{

26 type zeroGradient ;
}

28

c o n t a c t
30 {

type c a l c u l a t e d ;
32 }

}
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34

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Listing C.2: lm.orig - Body 2

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |

\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O perat ion | Website : h t tps ://openfoam . org

\\ / A nd | Version : 6
6 \\/ M anipula t ion |

\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
8 FoamFile

{
10 vers ion 2 . 0 ;

format a s c i i ;
12 c l a s s d i c t i o n a r y ;

l o c a t i o n " constant " ;
14 o b j e c t r e g i o n P r o p e r t i e s ;

}
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

18 regions
(

20 bodies ( body1 body2 )
) ;

22

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Listing C.3: regionProperties

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |

\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O perat ion | Website : h t tps ://openfoam . org

\\ / A nd | Version : 6
6 \\/ M anipula t ion |

\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
8 FoamFile

{
10 vers ion 2 . 0 ;

format a s c i i ;
12 c l a s s d i c t i o n a r y ;

l o c a t i o n " constant " ;
14 o b j e c t mechanica lPropert ies ;

}
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

materialModel neoHookean ;
18

rho rho [1 −3 0 0 0 0 0] 0 . 0 1 ;
20 E E [1 −1 −2 0 0 0 0] 1 0 0 ;

nu nu [0 0 0 0 0 0 0] 0 . 0 ;
22 s s [0 0 0 0 0 0 0] 0 . 0 ;

f r i c t i o n C o e f f r i c t i o n C o e f [0 0 0 0 0 0 0] 0 . 0 ;
24

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Listing C.4: materialProperties
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/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |

\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O perat ion | Website : h t tps ://openfoam . org

\\ / A nd | Version : 6
6 \\/ M anipula t ion |

\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
8 FoamFile

{
10 vers ion 2 . 0 ;

format a s c i i ;
12 c l a s s d i c t i o n a r y ;

l o c a t i o n " system " ;
14 o b j e c t c o n t r o l D i c t ;

}
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

18 a p p l i c a t i o n solidVertexMBFoam ;

20 startFrom l a t e s t T i m e ;

22 s tar tTime 0 ;

24 stopAt endTime ;

26 endTime 0 . 7 ;

28 t imeStepping v a r i a b l e ;

30 RKstages 2 ;

32 c f l 0 . 3 ;

34 deltaT 0 ;

36 writeControl runTime ;

38 w r i t e I n t e r v a l 1e −3;

40 purgeWrite 0 ;

42 writeFormat a s c i i ;

44 w r i t e P r e c i s i o n 8 ;

46 writeCompression o f f ;

48 timeFormat general ;

50 t i m e P r e c i s i o n 6 ;

52 graphFormat raw ;

54 runTimeModifiable f a l s e ;

56 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Listing C.5: controlDict
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/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 ========= |

\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O perat ion | Website : h t tps ://openfoam . org

\\ / A nd | Version : 6
6 \\/ M anipula t ion |

\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
8 FoamFile

{
10 vers ion 2 . 0 ;

format a s c i i ;
12 c l a s s d i c t i o n a r y ;

l o c a t i o n " system " ;
14 o b j e c t f v S o l u t i o n ;

}
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

18 JconservationLaw on ;
HconservationLaw o f f ;

20 angularMomentumConservation o f f ;
l i m i t e r on ;

22 reconstructContactBoundary on ;
q u a s i s t a t i c o f f ;

24

26

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Listing C.6: fvSolution

2 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
========= |

4 \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
\\ / O perat ion | Website : h t tps ://openfoam . org

6 \\ / A nd | Version : 6
\\/ M anipula t ion |

8 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
FoamFile

10 {
vers ion 2 . 0 ;

12 format a s c i i ;
c l a s s d i c t i o n a r y ;

14 l o c a t i o n " system " ;
o b j e c t fvSchemes ;

16 }
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

18

gradSchemes
20 {

d e f a u l t l e a s t S q u a r e s ;
22 }

24 divSchemes
{

26 d e f a u l t none ;
}

28



C.2. SOURCE CODE 184

laplacianSchemes
30 {

d e f a u l t none ;
32 }

34 in terpolat ionSchemes
{

36 d e f a u l t l i n e a r ;
}

38

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Listing C.7: fvSchemes

# !/ bin/bash
2 cd $ {0%/*} || e x i t 1 # Run from t h i s d i r e c t o r y

4 # OpenFOAM f u n c t i o n s
. $WM_PROJECT_DIR/bin/ t o o l s /RunFunctions

6 s o l v e r = ‘ getAppl icat ion ‘

8 # Run s o l v e r
$so lver > log . $so lver &

10 t a i l − f log . $so lver

Listing C.8: run
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