
 
 
 
 
 
 
 
 
Ryan, Jessica Laurette (2023) Parameterised algorithms for counting 
subgraphs, matchings, and monochromatic partitions. PhD thesis 
 
http://theses.gla.ac.uk/83568/   
 
 
 
    

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the author 

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 
title, awarding institution and date of the thesis must be given 

 
 
 
 
 
 

Enlighten: Theses 
https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://theses.gla.ac.uk/83568/
mailto:research-enlighten@glasgow.ac.uk


PARAMETERISED ALGORITHMS FOR

COUNTING SUBGRAPHS, MATCHINGS,
AND MONOCHROMATIC PARTITIONS

JESSICA LAURETTE RYAN

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW





Abstract

Counting the number of solutions to a computational problem is at least as hard as deciding
whether a solution exists. In fact, it is often much harder. However, in theory, as well
as in practice, it is often of interest to determine the number of solutions to computational
problems. In this thesis, we take advantage of the structure of some hard computational
counting problems to develop efficient parameterised algorithms for the kinds of problem
instances which we expect to see in practice.

The subgraph counting problem asks for the number of times that a “pattern graph” appears
as a subgraph of a larger “host” graph. The subgraph counting problem is computationally
hard for general pairs of host and pattern graphs. Our first result describes an efficient al-
gorithm for counting small subgraphs in host graphs with a bounded number of high-degree
vertices. Our work is motivated by practical applications of subgraph counting which involve
counting copies of small pattern graphs in large host graphs with this structure.

Stable matching problems arise when we wish to match together a set of agents in such a way
that no pair of agents would mutually prefer to deviate from the assignment. The problem
of counting stable matchings is computationally hard even in the most basic stable marriage
setting where agents’ preference lists are strict and complete. Here, we study stable matching
problems in the setting where agents belong to groups of similar agents called “types”. We
describe efficient parameterised algorithms for counting stable matchings in a number of
different settings parameterised by the number of agent types.

Our final result concerns the problem of partitioning a large edge-coloured host graph into a
small number of monochromatic subgraphs. Monochromatic partitioning problems are well-
studied for specific classes of host graphs. Here, we consider the complexity of monochro-
matic partitioning problems for more general classes of host graphs. Specifically, we provide
an efficient algorithm for counting partitions of edge-coloured graphs which are “tree-like”
into monochromatic paths.



Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Kitty Meeks, whose vast knowl-
edge and consistent encouragement and guidance have been invaluable throughout my PhD.
I would also like to thank my second supervisor, Prof. David Manlove, for his support and
helpful discussions on my research. I am extremely grateful to my viva examiners, Prof. Puck
Romback and Dr Andrew Elliot, and my viva convenor Dr Kevin Bryson, for their thoughtful
questions on my thesis, and for making the viva an enjoyable experience. Thank you also to
Prof. David Manlove, Prof. Alice Miller and Dr. Angelos Marnerides for taking the time to
conduct my annual progress reviews.

I am grateful to have been part of such a friendly and motivated research group. I would
like to extend a special thanks to William for his friendship, and for sharing his wisdom on
graph theory and algorithms with me, and also to Ciaran for sharing his expertise in search
algorithms. Thank you to my officemates Blair and Simon for making the office such an
enjoyable place to work. Thank you also to Stephen for providing much coffee, wit and
proofreading throughout the final stages of thesis writing. Finally, I would like to thank my
family and friends for their support and patience throughout this journey. I would like to
especially thank my niece Ivy and my nephew Noah for bringing me so much joy.



Table of Contents

List of Figures

1 Introduction 1

2 Preliminaries 5

2.1 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Computational Complexity Theory . . . . . . . . . . . . . . . . . . . . . . 8

3 Subgraph Counting 15

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Real-World Networks with Few High-Degree Vertices . . . . . . . . . . . . 18

3.6 An FPT Subgraph Counting Algorithm . . . . . . . . . . . . . . . . . . . 22

3.7 Remarks and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Counting Stable Matchings 37

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 #TYPED SMTI is in XP . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 #TYPED SRTI is in XP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



4.7 Super-Stability and Strong Stability . . . . . . . . . . . . . . . . . . . . . 96

4.8 Remarks and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Approximately Counting Stable Matchings 107

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 An FPTRAS for Union of Sets . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 An FPTRAS for #TYPED SMTI . . . . . . . . . . . . . . . . . . . . . . . 123

5.7 TYPED MAX SMTI with 2 Deletions is W[1]-Hard . . . . . . . . . . . . . 130

5.8 Remarks and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Monochromatic Partitioning Problems 137

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.5 An FPT Algorithm for Partitions into Monochromatic Paths . . . . . . . . 147

6.6 Remarks and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Conclusion 169

8 Bibliography 171



List of Figures

2.1 An illustration of an injection, a surjection, and a bijection . . . . . . . . . 6

2.2 An example of a simple graph . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 An example of a graph G and a subgraph H of G . . . . . . . . . . . . . . 8

2.4 An illustration of the P versus NP debate [1] . . . . . . . . . . . . . . . . . 9

3.1 A plot of the maximum degree of a graph formed from data on co-purchased
products on Amazon.com as vertices are removed from the graph in descend-
ing order of degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 A visualisation of a network formed from co-purchased products on Ama-
zon.com in August 2003 [2] . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 A plot of the maximum degree of a graph formed from Wikipedia adminis-
trator voting data as vertices are removed from the graph in descending order
of degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Plots of the maximum degree of web graphs representing the Stanford Uni-
versity (top) and University of Notre Dame (bottom) websites as vertices are
greedily removed from the graph . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 An example of an intersection (I, f) of graphs C = {C1, C2, C3, C4}. . . . . 27

6.1 A 2-edge-coloured K4 with monochromatic path partition number 2 . . . . 141

6.2 An example of a single monochromatic path in the union of a partition σt1 of
Vt1 into monochromatic paths and a partition σt2 of Vt2 into monochromatic
paths where σt1 and σt2 satisfy a joinable pair of states st(t1) and st(t2) of
Xt1 and Xt2 respectively given some valid state st(t) of Xt . . . . . . . . . 160





1

Chapter 1

Introduction

A computational problem is any problem that, in principle, can be solved by a computer.
Each such problem can be seen as a collection of problem instances, with a solution for each
particular instance. A decision problem is a computational problem for which the solution
is always “yes” or “no”. For example, the problem “is x a prime number?” is a decision
problem that has the set of all integers as problem instances. A solution to this problem for
a particular value of x is “yes” if x is prime, and “no” otherwise.

Computational complexity theory aims to classify computational problems according to their
inherent difficulty. At the most basic level, problems are categorised into those which can be
solved efficiently by an algorithm and those which cannot. A problem is considered tractable

if there exists an algorithm that solves any instance of size n using at most a number of steps
which is proportional to a polynomial function of n, written as O(nc) where c is a fixed
constant. Such problems are said to be solvable in polynomial time. The class P contains all
decision problems which can be solved in polynomial time. The class NP (nondeterministic

polynomial time) contains decision problems for which a proposed solution can be verified in
polynomial time. Many natural problems in computer science belong to this class. Observe
that the class P is a subset of the class NP. Whether the complexity class P is equal to the
class NP is a major open problem in computer science, with a prize of $1 million offered
to the person who solves it. It is a standard assumption in the literature that P ̸= NP, and
that is what will be assumed here. An NP-complete problem is at least as hard to solve as
any problem in NP. Unless P = NP, any problem which is NP-complete cannot be solved
in polynomial time in general. Such problems are considered intractable, since we do not
expect to find a polynomial-time algorithm to solve any of these problems for all possible
inputs.

A criticism of classical complexity theory is that there exist many computational problems
which are classed as intractable but are efficiently solvable on many real-world data sets. This
is usually because the problem instances that we face in practice have some specific structure



CHAPTER 1. INTRODUCTION Page 2

which means that they can be solved more quickly than the upper bound provided by classical
complexity theory. Motivated by this shortcoming, parameterised complexity theory offers a
more refined classification of intractable problems. Specifically, the parameterised approach
investigates how the structure of a problem instance influences how easily it can be solved.
A parameterised problem takes as input an instance x of a computational problem, together
with the value of some parameter of the problem for the instance x. A parameterised problem
is considered tractable if any instance of the problem can be solved in time nO(1)f(k), where
n is the size of the instance, k is the value of the parameter, and f is any computational
function. Such problems are said to be fixed parameter tractable (FPT) parameterised by k.

Computational counting problems are concerned with determining the number of different
solutions to an instance of a computational problem. Solving a counting problem is at least
as hard as solving its decision counterpart since if we know the number of solutions to a
problem, then we immediately know whether or not a solution exists. Counting complex-

ity theory describes the computational difficulty of counting the number of solutions to an
instance of a computational problem. A counting problem is solvable in polynomial time
if we can count the number of solutions to an instance of the problem in time depending
polynomially upon the size of the instance. A counting problem is said to belong to the class
#P (pronounced “number P” or “sharp P”) if its decision version belongs to NP. A counting
problem that is #P-hard is at least as difficult as any counting problem belonging to #P.
No #P-hard counting problem can be solved in polynomial time unless P = NP. We can
also parameterise counting problems. A parameterised counting problem takes as input an
instance of a computational problem, together with the value of a parameter of the problem
for the instance. A parameterised counting problem is said to belong to the complexity class
FPT parameterised by k if an instance of size n with parameter value k can be solved in time
nO(1)f(k) for some computable function f .

This thesis is concerned with finding effective and useful parameterisations of well-known
computational counting problems. Namely, we consider computational counting problems
belonging to the following three families: subgraph counting, stable matching, and monochro-
matic partitions of edge-coloured graphs. In each setting, we describe efficient parameterised
algorithms for counting the number of solutions, or else indicate that such algorithms are un-
likely to exist.

The subgraph counting problem asks for the number of ways in which one graph appears as
a subgraph of another. Subgraph counting has many and varied applications in the analysis
of large real-world networks. For instance, in [3], methods for subgraph counting are used
to identify fraudulent tax claims, while in [4], the frequency of different small subgraphs in
a host graph is studied in the context of gene transcription in cells. The subgraph counting
problem is #P-hard in general [5]. In Chapter 3, we study subgraph counting in the setting
where the host graph contains a very small number of vertices with high degree, and the



CHAPTER 1. INTRODUCTION Page 3

subgraph is much smaller than the host graph. We provide examples of large real world
networks with this degree structure, and describe an FPT algorithm for subgraph counting
in this setting parameterised by the size of the pattern graph.

An instance of a stable matching problem consists of a set of agents, together with an or-
dinal preference ordering for each agent over the set of their available partners. A solution,
called a stable matching, is a way of matching the agents together so that no pair of agents
would mutually prefer to deviate from the assignment. Practical examples of stable matching
problems include the problem of assigning junior doctors to hospitals [6], or pairing children
with adoptive families [7]. The stable marriage problem involves assigning men and women
into man-woman pairs such that no man and woman would prefer to be together than with
their assigned partners in the matching. The stable roommates problem is a generalisation of
stable marriage in which agents may be matched with any other agent. Hospitals/residents is
a second well-known generalisation of stable marriage in which a set of residents is assigned
to a set of hospitals, and each hospital has a quota of how many residents it can admit.

In the basic model of stable matching, each agent considers all available partners as accept-
able, and ranks their available partners in strict order of preference. Under this model, many
important stable matching problems are solvable in polynomial time [8, 9]. A more real-
istic model of stable matching allows agents to declare some of their available partners as
unacceptable (preference lists are incomplete), and to regard subsets of their available part-
ners as equally desirable (preference lists contain ties). Under this model, even basic stable
matching problems are intractable in general [10]. Here, we study a parameterisation of
stable matching problems in which the set of agents belong to a small number of “types”,
where agents of the same type have identical preference lists and are regarded as equally
desirable by their available partners. Under this parameterisation, Meeks and Rastegari [11]
showed that several key stable matching problems which are computationally hard in general
belong to FPT parameterised by the number of types. Here, we extend the work of Meeks
and Rastegari in the counting setting. Counting stable matchings is computationally hard
in general [12], even when agents’ preference lists are complete and do not contain ties. In
Chapter 4, we show that the problem of counting stable matchings can be efficiently solved
for several key stable matching variants when we fix the number of allowable agent types.
In Chapter 5, we describe an algorithm for approximately counting stable matchings in the
stable marriage setting with a superior runtime bound to the exact algorithm described in
Chapter 4.

An edge-colouring of a graph is an assignment of labels called colours to its edge set.
An edge-coloured graph is called monochromatic if its edges all have the same colour.
Monochromatic partitioning problems ask about the number of monochromatic subgraphs
needed to partition the vertex set of a large edge-coloured host graph. Much of the literature
on monochromatic partitioning problems has focused on solving monochromatic partitioning



CHAPTER 1. INTRODUCTION Page 4

problems for very specific host graphs. Of particular interest has been to find the minimum
number of monochromatic subgraphs (specifically paths, cycles and trees) needed to parti-
tion the vertex set of a complete or complete bipartite graph whose edges have been coloured
using a fixed number of colours. The problem of deciding whether the vertices of any edge-
coloured graph can be partitioned into monochromatic paths is NP-complete even if only
two colours are used to colour the edges [13]. In Chapter 6, we describe an FPT algorithm
for counting partitions of edge-coloured graphs into k monochromatic paths parameterised
by both the number of colours used and a measure of how “tree-like” the host graph is.



5

Chapter 2

Preliminaries

This chapter provides the definitions of key terms and describes the notation that will be used
throughout this thesis. In Section 2.1, we describe the notation that will be used in relation
to sets. In Section 2.2, we provide some basic graph theoretic definitions and describe the
notation that will be used to describe graphs and their properties. In Section 2.3, we pro-
vide a brief introduction to the relevant areas of computational complexity theory, including
parameterised complexity and counting complexity.

2.1 Set Theory

A set S is an unordered collection of distinct elements. Two sets are equal if they contain
exactly the same elements. If a set S contains only elements a, b and c, then we may write
this as S = {a, b, c}. If S contains an element a, then we say that a is a member of S, written
a ∈ S. If an element d is not a member of S, then we write this as d /∈ S. The size of a finite
set S, denoted by |S|, is equal to the number of elements contained in S. A set S is said to
be empty, written S = ∅, if it does not contain any elements. We may also define a set by
stating the properties that each of its members must satisfy. Given a set X and property Φ,
we may define the set S = {x : x ∈ X and Φ(x)} containing all elements from the set X
which satisfy the property Φ. We denote the set containing each of the natural numbers from
1 to n by [n].

If every member of a set A is also a member of some set B, then we say that A is a subset

of B, written as A ⊆ B. Equivalently, we may say that B is a superset of A, written as
B ⊇ A. If B contains at least one element which does not appear in A, then we say that A
is a proper subset of B, written as A ⊂ B or B ⊃ A. The union of sets A and B, denoted
by A ∪ B, is the set containing all elements which are contained in either or both of A and
B. The intersection of A and B, written A ∩ B, is the set containing elements which are



CHAPTER 2. PRELIMINARIES Page 6

common to both A and B. We say that sets A and B are disjoint if A ∩ B = ∅. We use
A \ B to denote the set containing all elements of A which are not also contained in B. The
Cartesian product of A and B, written A × B, is the set containing all ordered pairs (a, b)
such that a ∈ A and b ∈ B. If A = B, then we may write this as A2.

A B

injection

A B

surjection

A B

bijection

Figure 2.1: An illustration of an injection, a surjection, and a bijection

Given sets A and B, a function f : A → B from A to B maps each element of the set A
to one or more elements of B. If f maps an element a in A to an element b in B, then we
write this as f(a) = b. If a is the only element which is mapped to b, then we may also write
f−1(b) = a. Otherwise, we write a ∈ f−1(b). We say that f is injective if each element of B
is mapped to by at most one element of A. We may also call f an injection. We say that f is
surjective (or a surjection) if each element of B is mapped to by at least one element of A.
If f is both injective and surjective (each element of B is mapped to by exactly one element
of A), then we say that f is bijective, or a bijection.

There are several infinte sets with mathematical significance. Here, we discuss only some of
these. The set N = {0, 1, 2, . . .} contains all natural numbers. The set Z contains all integers.
We use Z+ to denote the set containing all positive integers. The set Q is used to denote the
set of rational numbers (those which can be written as a fraction a/b for some a, b ∈ Z with
b ̸= 0).

2.2 Graph Theory

We note that the notation described in this section has been adopted predominantly from
Bollobás’ Modern Graph Theory [14]. In graph theory, a graph G = (V (G), E(G)) consists
of a finite set V (G) of vertices and a set E(G) of edges connecting pairs of vertices. We
denote the number of vertices in G by |V (G)| and the number of edges by |E(G)|. Two
vertices in a graph are said to be adjacent if they are connected by an edge. We write uv to



CHAPTER 2. PRELIMINARIES Page 7

denote the edge connecting vertices u and v. We call u and v the endpoints of the edge uv,
and we say that u and v are incident to the edge uv. If uv is an edge in G, then we write this
as uv ∈ E(G). A graph with n vertices is said to have order n. A graph is simple if it does
not contain multiple edges between a single pair of vertices, or any edges which start and
end at the same vertex. Figure 2.2 illustrates an example of a simple graph. In this thesis, all
graphs are assumed to be simple.

Figure 2.2: An example of a simple graph

Let G = (V (G), E(G)) be a graph. Any vertex which is adjacent to a vertex v ∈ V (G) is
called a neighbour of v. The set of neighbours of v in V (G) is referred to as the neighbour-

hood of v. The degree of a vertex v, denoted by deg(v), is equal to the number of neighbours
of v. If every vertex in G has degree at most ∆, then G is said to have maximum degree ∆.
An independent set of G is a subset U of V (G) such that no pair of vertices in U are adjacent
in G. The independence number α(G) of G is equal to the size of the largest independent set
in V (G). A vertex cover of G is a subset of V (G) such that every edge in E(G) is incident
to at least one vertex in the subset. The vertex cover number of G is equal to the size of its
smallest possible vertex cover. A path in G is a sequence of distinct adjacent vertices. A
path is called a cycle if the sequence starts and ends at the same vertex. The length of a path
is equal to the number of edges in the path. The endpoints of a path are the first and last ver-
tices on the path. The distance between two vertices u and v in a graph is equal to the length
of the shortest path from u to v. We say that a graph G = (V (G), E(G)) is connected if there
is a path between every pair of vertices in V (G). A tree is any graph which does not contain
a cycle. A forest is a collection of disjoint trees. We say that two graphs G = (V (G), E(G))

and G′ = (V (G′), E(G′)) are vertex-disjoint if V (G) ∩ V (G′) = ∅. In what follows, when
we say that two graphs are disjoint we mean that they are vertex-disjoint.

A subgraph of a graph G = (V (G), E(G)) is a graph formed from a subset V ′(G) of V (G)

and a subset E ′(G) of E(G) connecting pairs of vertices in V ′(G). We may use G \ V ′(G)

to denote the subgraph of G formed by removing the subset V ′(G) of vertices from V (G)

and all incident edges of the vertices in V ′(G) from E(G). An induced subgraph of G

is a graph formed from a subset V ′(G) of V (G) and a subset E ′(G) containing all edges
present in E(G) which connect pairs of vertices from V ′(G). A spanning subgraph of G



CHAPTER 2. PRELIMINARIES Page 8

contains all vertices in V (G). We say that a graph G = (V (G), E(G)) contains a graph

H = (V (H), E(H)) as a subgraph if there is an injection f : V (H) → V (G) such that if
uv ∈ E(H), then f(u)f(v) ∈ E(G). We say that G contains H as an induced subgraph

if the function f is such that uv ∈ E(H) if and only if f(u)f(v) ∈ E(G). Two graphs
G = (V (G), E(G)) and G′ = (V (G′), E(G′)) are said to be isomorphic if there is a bijection
f : V (G) → V (G′) such that, for each pair u, v ∈ V (G), we have that uv ∈ E(G) if
and only if f(u)f(v) ∈ E(G′). A graph G which contains an edge between every pair of

G H

Figure 2.3: An example of a graph G and a subgraph H of G

vertices is called a complete graph. We may denote the complete graph on n vertices by
Kn. A graph G = (V (G), E(G)) is called bipartite if there exists a partition of the vertices
in V (G) into disjoint sets U and V such that no pair of vertices within the same set are
adjacent. We may denote such a graph by G = ((U, V ), E(G)). If |U | = |V |, then we say
that G is balanced. A complete bipartite graph G = ((U, V ), E(G)) is a bipartite graph
containing an edge between every pair of vertices from U and V . A complete bipartite graph
G = ((V, U), E(G)) with |V | = n1 and |U | = n2 may be denoted by Kn1,n2 . The complete
balanced bipartite graph on 2n vertices is denoted by Kn,n.

2.3 Computational Complexity Theory

In this section, we provide an overview of the areas of computational complexity theory
which are relevant to this thesis. A comprehensive introduction to computational complexity
theory is provided in Garey and Johnson’s Computers and Intractability [15]. Both Fun-

damentals of Parameterized Complexity by Downey and Fellows [16] and Parameterized

Complexity Theory by Flum and Grohe [17] are excellent guides to parameterised complex-
ity theory. Parameterized Algorithms by Cygan et al. [18] is another popular introductory
text in this area.



CHAPTER 2. PRELIMINARIES Page 9

2.3.1 Classical Complexity Theory

Complexity theory provides a means of classifying computational problems according to
whether they can reasonably be solved by an algorithm. The time complexity (often simply
called the complexity) of a problem describes the amount of time required to solve any in-
stance of the problem using an algorithm. If any instance of the problem can be solved by
an algorithm in time O(nc), where n is the size of the instance and c is a fixed constant, then
we say that the problem is solvable in polynomial time. Any problem which is solvable in
polynomial time is considered tractable. The complexity class P contains all computational
problems which are solvable in polynomial time. The class NP contains the set of decision
problems for which a possible solution can be verified in polynomial time. A reduction is an

Figure 2.4: An illustration of the P versus NP debate [1]

algorithm that can be used to compare the complexity of two problems. For decision prob-
lems, a polynomial-time many-one reduction transforms any instance of one problem into an
instance of another problem in polynomial time. In addition, the output of the algorithm for
each instance of the first problem must be the same as the output for the corresponding in-
stance of the second problem. A polynomial-time algorithm for solving one problem would
then allow us to solve the other in polynomial time.

A decision problem is said to be NP-complete if it belongs to NP, and any other problem
in NP can be reduced to this problem via a polynomial-time many-one reduction. In other
words, NP-complete problems are at least as hard as all problems in NP since a polynomial-
time algorithm for any NP-complete problem would allow us to solve any problem in NP



CHAPTER 2. PRELIMINARIES Page 10

in polynomial time. The class of NP-hard problems contains the set of problems to which
any problem in NP can be reduced, but which do not necessarily belong to the class NP. In
other words, NP-hard problems are at least as hard as the hardest problem in NP. Note that
an NP-hard problem need not be a decision problem. Figure 2.4 illustrates the relationship
between these complexity classes in the case where we assume that P = NP, and in the case
where we assume that P ̸= NP.

An optimisation problem is a computational problem that asks for the “best’ solution in
some well-defined sense. An example of an optimisation problem is the problem of finding
a maximum size matching in a graph. Any optimisation problem can be recast as an (easier)
decision problem by fixing the size of a possible optimal solution. It follows that if the
decision counterpart to an optimisation problem is NP-hard then the optimisation problem
itself is NP-hard. In the other direction, a polynomial-time algorithm for an optimisation
problem also provides a polynomial-time solution to any corresponding decision problem.
Since the class NP contains only decision problems, an optimisation problem cannot belong
to NP, nor can it be NP-complete.

2.3.2 Parameterised Complexity Theory

Parameterised complexity theory describes the complexity of computational problems as a
function of the size of a problem instance, as well as one or more additional (computable)
parameters of each instance. The aim is to provide a fuller picture of the relationship be-
tween the instances of a computational problem, and the computational difficulty involved in
finding a solution. A parameterised problem consists of a collection of instances of a com-
putational problem, together with the value of one or more computable parameters for each
instance. A parameterised problem is said to be fixed parameter tractable (FPT) parame-

terised by k if any instance of size n with parameter value k is solvable in time f(k)nO(1),
where f is a computable function. The class FPT can be seen as the parameterised counter-
part to the class P from the classical complexity setting.

An FPT-reduction is the parameterised equivalent of a polynomial-time many-one reduction.
Specifically, an FPT-reduction from problem A to problem B is an FPT algorithm which,
for every instance and parameter pair (x, k) of A, returns a corresponding a pair (x′, k′) of
B in time |x|O(1)f(k) for some computable function f such that

• (x, k) is a yes-instance if and only if (x′, k′) is a yes-instance, and

• k′ ≤ g(k) for some computable function g.

It follows that if there exists an FPT-reduction from A to B, and B is known to belong to
FPT, then we can also solve A via an FPT-algorithm.



CHAPTER 2. PRELIMINARIES Page 11

The class W[1] of parameterised problems can be regarded as the parameterised counterpart
to NP. In fact, there exists an entire family of complexity classes W[t], for positive integers t,
which are known collectively as the W-hierarchy, where W[0] = FPT. It is widely believed
that W[i] is a strict subset of W[j] for all pairs i < j [17]. There are several equivalent formal
definitions of the W-hierarchy available, all of them quite technical. For more information,
see [19].

A parameterised problem which is W[i]-complete is at least as hard as any problem in W[i].
Formally, a problem that is W[i]-complete must belong to W[i], and can be reached via an
FPT-reduction from any problem in the class W[i]. A problem is W[i]-hard if it can be
reached via an FPT reduction by any problem in W[i] and may or may not belong to W[i].
Problems that are W[i]-hard are at least as difficult to solve as those belonging to W[i]. Many
natural parameterised problems which belong to the W-hierarchy fall into one of W[1] or
W[2]. For example, the problem of deciding whether a graph contains an independent set of
size at least k is W[1]-complete parameterised by k [19]. The problem of deciding whether a
graph contains a dominating set (a set of vertices such that all other vertices in the graph are
adjacent to at least one vertex in the set) of size at most k is W[2]-complete parameterised by
k [19].

A parameterised problem belongs to the class XP if an instance of size n with parameter
value k is solvable in time nf(k) for some computable function f . Problems belonging to
XP can be solved in polynomial time when the parameter is treated as a constant. The W-
hierarchy forms a subset of XP.

2.3.3 Approximation Algorithms

Approximation algorithms are used to find an approximately optimal solution to an optimi-
sation problem when finding an optimal solution is computationally hard. An approximation
algorithm is said to be an f(n)-approximation algorithm if the solution returned by the al-
gorithm for an instance of size n is guaranteed to be within a multiplicative factor of at most
f(n) times optimal. The value of f(n) is called the approximation ratio of the algorithm.
Note that if the function f(n) is constant, then the approximation algorithm may be called a
constant-factor approximation algorithm.

An optimisation problem is said to have a polynomial-time approximation scheme (PTAS) if
there exists an algorithm which, given a problem instance of size n and a real number ϵ > 0 as
input, returns a solution which is within a factor (1+ϵ) of optimal for minimisation problems,
and (1−ϵ) of optimal for maximisation problems, in time f(n) for some polynomial function
f of n. We call the value returned by such an algorithm an ϵ-approximation of the solution.

A fully polynomial-time approximation scheme (FPTAS) is an algorithm which takes an



CHAPTER 2. PRELIMINARIES Page 12

instance of an optimisation problem and a real number ϵ > 0 as input and returns an ϵ-
approximation of the solution in time f(n, 1/ϵ) where n is the instance size and f is a poly-
nomial function of n and 1/ϵ.

Randomised approximation algorithms offer a further tradeoff between certainty and effi-
ciency. A fully polynomial-time randomised approximation scheme (FPRAS) [20] is an
algorithm which takes an instance of an optimisation problem of size at most n and real
numbers ϵ > 0 and 0 < δ < 1 as input, and with probability at least (1 − δ) returns an
ϵ-approximation of the solution in time f(n, 1/ϵ, log(1/δ)) for some polynomial function f .
If the output of the algorithm is outwith the (1 ± ϵ) error bounds (note that this occurs with
probability at most δ), then we say that the algorithm has failed. Hence, it is standard to call
δ the failure probability of the algorithm.

A fixed parameter tractable randomised approximation scheme (FPTRAS) [21] is the param-
eterised analogue of an FPRAS. Given an instance of a parameterised optimisation problem
with size at most n and parameter value k, as well as real numbers ϵ > 0 and 0 < δ < 1 as
input, an FPTRAS returns an ϵ-approximation of the solution with probability at least (1−δ)

in time g(k)f(n, 1/ϵ, log(1/δ)) for some computable function g and a polynomial function
f .

2.3.4 Counting and Sampling

We begin by noting that, in the process of counting solutions to a computational problem, we
must often handle values which are exponentially larger than the size of the input. As such, it
is important to take into consideration the time needed to compute arithmetic operations on
intermediate values. The addition of an a-bit and a b-bit number takes time O(max(a, b)).
Multiplication or division involving an a-bit number and a b-bit number takes time O(ab).
Note that in this thesis, we shall use log to mean log2. We use ln to denote the natural
logarithm.

Like decision problems, counting problems are classified into a hierarchy of complexity
classes according to the computational effort required to reach a solution. Given a decision
problem A, we may use #A to denote the problem of counting the number of solutions
to an instance of A. A counting problem belongs to FP if the number of solutions can be
counted in time depending polynomially upon the size of the input. A counting problem
belongs to the class #P if its decision version belongs to NP. More formally, #P contains
the set of function problems f such that, for any input x, the value of f(x) (the solution to
the function problem f on x) is equal to the number of accepting paths of a nondeterministic
polynomial-time Turing Machine on x [5]. Note that if #P = FP, then P = NP.

Unlike reductions for decision problems, there is no singular definition of a reduction for



CHAPTER 2. PRELIMINARIES Page 13

counting problems. Two main definitions used in the literature are the following.

• Parsimonious reduction: There is said to be a parsimonious reduction from a count-
ing problem #A to another counting problem #B if there exists an algorithm which
transforms any instance x of #A into an instance y of #B. In particular, x and y must
have the same number of solutions in #A and #B respectively.

• Turing reduction: There is a Turing reduction from #A to #B if there is an algorithm
that can solve any instance of #A given access to an oracle for solving #B.

Since Turing reductions do not require that the number of solutions to the original and trans-
formed instance of the problem are maintained, this definition is less restrictive than parsi-
monious reductions and is therefore more commonly used in practice.

A counting problem is #P-complete if it can be reached from any problem in #P via a
polynomial-time counting reduction. Due to there being multiple methods for reductions
in counting problems, it is necessary to specify the kind of reduction with respect to which
a problem is #P-complete. Under both kinds of reduction, no #P-complete problems are
solvable in polynomial time unless P = NP. In fact, Valiant [5, 22] showed that there exist
problems whose decision version is solvable in polynomial time but for which the counting
version is #P-complete. A classic example is the problem of counting perfect matchings
in bipartite graphs [5], which is #P-complete under Turing reductions. A problem that
is #P-hard is at least as difficult as any problem belonging to #P (can be reached via a
polynomial-time counting reduction) but need not belong to the class #P itself.

Many interesting counting problems are #P-hard. As in the decision setting, this has mo-
tivated the search for a richer classification framework for problems that are intractable in
the classical sense. As in the decision setting, counting problems which can be solved in
time f(k)nO(1) for some parameter k belong to the class of fixed parameter tractable (FPT)
problems. The class #W[1] is the counting analogue of W[1] in the decision setting. The
classes #W[i], for each i > 1, are defined similarly.

Approximation algorithms can also be used to approximate the number of solutions to count-
ing problems. Note that for counting problems, a solution is always a positive number. It
follows that, for any ϵ > 1, a trivial algorithm outputs 0 for all inputs. As such, it is stan-
dard to restrict the value of ϵ to the range 0 < ϵ < 1 for counting problems. A PTAS for a
counting problem is an algorithm which, given a problem instance of size at most n and a
real number ϵ > 0 as input, returns an ϵ-approximation of the number of solutions in time
f(n) for some polynomial function f . Each of FPTAS, FPRAS and FPTRAS for counting
are defined analogously.

Counting and sampling are closely related problems computationally. Given an instance of
a computational problem, a sampling algorithm returns a solution from the set of all solu-



CHAPTER 2. PRELIMINARIES Page 14

tions according to some probability distribution. A uniform random sampler is an algorithm
which, given an instance of a computational problem as input, samples from the solution
set by selecting each solution with equal probability. An almost uniform random sampler is
an algorithm which takes as input an instance of a computational problem and a real num-
ber ϵ > 0, and selects each element from the solution set S with probability p such that
(1− ϵ)/|S| ≤ p ≤ (1 + ϵ)/|S|.

A fully polynomial-time almost uniform sampler (FPAUS) [20] is an algorithm which takes
as input an instance of a computational problem with solution set S and a real number ϵ > 0,
and selects an element s ∈ S with probability p such that (1 − ϵ)/|S| ≤ p ≤ (1 + ϵ)/|S|
in time f(n, log(1/ϵ)), where f is a polynomial function, and n is the size of the problem
instance.

A fixed parameter tractable almost uniform sampler (FPTAUS) is the parameterised ana-
logue of an FPAUS. An FPTAUS takes an instance of a parameterised problem and a
real number ϵ > 0 as input, and selects an element s ∈ S with probability p such that
(1−ϵ)/|S| ≤ p ≤ (1+ϵ)/|S|. The runtime of an FPTAUS is bounded by g(k)f(n, log(1/ϵ)),
where f is a polynomial function, g is any computable function of the parameter value k,
and n is the size of the problem instance.



15

Chapter 3

Subgraph Counting

3.1 Motivation

Given a pair of graphs H and G, the subgraph counting problem asks for the number of ways
in which H appears as a subgraph of G. The graphs G and H are commonly referred to as the
host graph and pattern graph respectively. The subgraph counting problem is a well-studied
computational problem with wide-ranging applications and as many variations. A recent
study by Sahu et al. [23] found that the problem of finding and counting fixed subgraphs was
the fourth most popular graph query used in practice.

The subgraph counting problem is #P-hard in general [5]. In fact, even the decision version
of the subgraph counting problem - subgraph isomorphism - is NP-complete, even when
restricted to planar host graphs [15]. It follows that we do not expect to find an efficient
algorithm for subgraph counting for all possible pairs of host and pattern graphs. However, in
important practical applications of subgraph counting, the pattern graph is often significantly
smaller than the host graph [24, 25, 26]. It is therefore reasonable to ask whether we can
attain tractability by parameterising the problem by the order of the pattern graph. However,
unless W[1] = FPT, there is no FPT algorithm for subgraph counting parameterised by the
order of the pattern graph in general [27].

In practice, many large real-world networks contain a very small number of vertices with
high degree (we present examples of such networks in Section 3.5). Here, we focus on
subgraph counting in host graphs containing a constant number of high-degree vertices. It
follows from a meta-theorem [28] that subgraph counting is in FPT parameterised by the or-
der of the pattern graph in host graphs with this structure. However, the time bound provided
by this meta-theorem contains impractically large constants. In this chapter, we describe a
more practical FPT algorithm for subgraph counting in host graphs with a constant number
of high-degree vertices, parameterised by the order of the pattern graph.



CHAPTER 3. SUBGRAPH COUNTING Page 16

3.2 Definitions and Notation

Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs. An embedding of H into G is
an injective function f : V (H) → V (G) such that if uv ∈ E(H) then f(u)f(v) ∈ E(G).
Note that such a function exists only if G contains H as a subgraph. We use #Emb(H,G) to
denote the number of embeddings of H into G. Automorphisms count symmetries within a
graph. Formally, an automorphism of a graph G is an embedding of G into itself. The number
of automorphisms of G is denoted by #Aut(G). The number of times that H appears as a
subgraph of G, written as #Sub(H,G), is equal to the number of embeddings of H into G

divided by the number of automorphisms of H . Thus, we have that

#Sub(H,G) =
#Emb(H,G)

#Aut(H)
.

Let G = (V (G), E(G)) and H = ({v1, . . . , vm}, E(H)) be graphs. Let Vvi,G be a subset of
V (G) for each i ∈ [m], and let VH,G = {Vvi,G, . . . , Vvm,G} be the set containing each of these
subsets. We call an embedding f : V (H) → V (G) of H into G an embedding of H into G

with lists VH,G if f(vi) ∈ Vvi,G for each i ∈ [m]. We denote the number of embeddings of H
into G with lists VH,G by #Emb(H,G, VH,G). Note that if Vvi,G = V (G) for each i ∈ [m],
then we have that #Emb(H,G, VH,G) = #Emb(H,G). We say that a class C of graphs has
almost-bounded degree if there exist constants ∆ and ℓ such that every graph G in C contains
at most ℓ vertices with degree exceeding ∆.

3.3 Literature Review

In this section, we survey existing results on the complexity of the subgraph counting prob-
lem. Due to the large volume of literature on this topic, we will cover only parameterised
results, where the order of the pattern graph is taken as a parameter. It is standard in the
subgraph counting literature to denote the pattern graph by H and the host graph by G. The
numbers of vertices in H and G are denoted by m and n respectively.

It follows from a seminal paper due to Valiant [5] that the subgraph counting problem is #P-
complete in general (with respect to Turing reductions), motivating the search for efficient
parameterisations of the problem. It is worth noting that the naive brute-force method of
checking all possible mappings of V (H) to V (G) gives an O(nm) solution. It follows that
the subgraph counting problem belongs to XP parameterised by the order of the pattern
graph. However, under the same parameterisation, subgraph counting is #W[1]-hard even if
the pattern graph is a cycle [29], path [29], clique [30] or matching [31]. In fact, the problem
of counting matchings of size k is #W[1]-hard parameterised by k even when the host graph



CHAPTER 3. SUBGRAPH COUNTING Page 17

is bipartite [27].

The cliquewidth [32] of a graph is a metric used to describe the complexity of the opera-
tions needed to construct the graph. Graph classes with constant cliquewidth include highly
structured dense graphs such as cliques and complete bipartite graphs. Nowhere dense graph
classes [33] are graph classes which are sparse in a well-defined sense. Nowhere dense graph
classes include planar graphs, bounded degree graphs, and graph classes of bounded expan-
sion [34]. First-order logic (also called FO logic) is a form of logic that allows us to express
certain computational problems as logical sentences containing variables x1, x2, . . ., and log-
ical symbols (such as ∃,∀,∧,∨,¬), as well as both functions and relations over the variables.
The subgraph counting problem can be written as a sentence in first-order logic [17] whose
length is independent of the size of the input. As such, it follows from two celebrated meta-
theorems that subgraph counting is in FPT parameterised by the order of the pattern graph
for host graphs which are nowhere-dense [28], or which have bounded cliquewidth [35].
Since graphs of bounded treewidth and bounded degree are nowhere dense, it follows that
subgraph counting is also tractable for host graphs from each of these classes.

Alon et al. [36] showed that counting cycles of length ≤ 7 can be achieved in time O(nω),
where ω is the exponent of matrix multiplication (known to be at most 2.37188 [37]). In a
breakthrough paper, Curticapean and Marx [27, 38] proved a dichotomy result for subgraph
counting parameterised by the order of the pattern graph - if H is drawn from a class of
graphs with bounded vertex cover number then subgraph counting is in FPT, otherwise it is
#W[1]-hard. Björklund et al. proved that the problem of counting connected subgraphs is
in FPT parameterised by the order of the pattern graph and the maximum degree of the host
graph for pattern graphs with a fixed-size “balancer” [39]. As a corollary, it is shown that the
problems of counting paths, trees and cycles are in FPT parameterised by the order of the
subgraph and the maximum degree of the host graph.

3.4 Contributions

It follows from a meta-theorem due to Grohe et al. [28] that any graph problem which can
be expressed in FO logic is in FPT parameterised by the length of the expression for any
class of graphs which is nowhere dense. The subgraph counting problem can be written as
a FO logic sentence whose length is a function of the size of the pattern graph (an example
for subgraph isomorphism is provided in [17]; a straightforward generalisation to counting
can be made using the generalised quantifiers ∃=c defined in [40]). Moreover, the class of
almost-bounded degree graphs is a member of the nowhere dense graph classes. It follows
that the subgraph counting problem is in FPT parameterised by the order of the pattern graph
in host graphs from the class of graphs with almost-bounded degree. However, the algorithm



CHAPTER 3. SUBGRAPH COUNTING Page 18

provided by the meta-theorem contains very large constants, which prevents it from being
useful in practice.

In Section 3.5, we provide examples of large real-world networks containing few vertices
with high degree, motivating the search for practical algorithms for subgraph counting in
this setting. In Section 3.6, we describe a practical FPT algorithm for subgraph counting in
host graphs from the class of graphs with almost-bounded degree parameterised by the order
of the pattern graph.

3.5 Real-World Networks with Few High-Degree Ver-

tices

In this section, we present examples of real-world networks containing only a small number
of vertices with high degree. The data set used to derive each of these networks has been
obtained from the Stanford Large Network data set Collection [41]. Each of the networks in
the data set is directed. For simplicity, here we regard the presence of one or more directed
edges between a pair of vertices as a single undirected edge. Note that the data sets discussed
here have been selected due to their diversity and degree distributions. Indeed, we do not
claim that all relational data sets are expected to have very few high-degree vertices.

The first data set which we examine contains information about items purchased together
(by the same customer at the same time) from Amazon.com on 12th March 2003 [41, 42].
Here, the vertices represent individual items available for purchase on Amazon; two vertices
are joined by a (directed) edge if one is frequently purchased with the other in a single
transaction. The second data set contains user voting data from Wikipedia [41, 43, 44, 45]
over a period of 7 years. Each time that a Wikipedia user is nominated for a promotion to
administrator, other users on the site are invited to vote for or against the candidate in an
election. In this setting, the vertices represent individual users on the site who participated
in an election either as a nominee or as a voter, and the edges represent votes between users.
The final two data sets discussed in this section are web graphs representing pages from the
Stanford University and University of Notre Dame websites, respectively [41, 45, 46]. In
this setting, each webpage is represented by a single vertex. Two vertices are connected by
an edge if one page contains a link to the other.

For each of the data sets, we present a plot (Figures 3.1, 3.3 and 3.4) of the maximum degree
of the network against the number of (highest degree) vertices removed from the graph.
In each case, we describe the structure of the curve produced from the data set and make
suggestions about the cause of the steep drop-off in the degree distribution.

We begin by examining the network representing co-purchased products on Amazon.com.



CHAPTER 3. SUBGRAPH COUNTING Page 19

Figure 3.1 shows a plot of the maximum degree of this network against the number of ver-
tices removed from the network in descending order of degree. This network has 400,727
vertices and 2,349,869 edges. The maximum degree of the network is 2,747. Removing the
10 highest degree vertices from the graph results in a decrease of 1,974, or 72%, of the origi-
nal maximum degree. In practice, this steep drop-off implies that a small number of products
are purchased very frequently, while most products available on the website are purchased
relatively infrequently - over 50% of the vertices in the graph have degree at most 10. As
can be seen in Figure 3.1, the steep drop-off of the curve plateaus after the 10 highest degree
vertices have been removed. The authors of [2] generated a visualisation (Figure 3.2) of a
network of products which were co-purchased from Amazon.com in August 2003. We can
see in this visualisation that the network contains a small number of vertices (most notably
those circled in red) which are connected to a very large number of others, and a very large
number of vertices (most notably those circled in green) with a very small number of neigh-
bours. In particular, the neighbourhood of each cluster of vertices circled in green is very
small, further supporting our suggestion that a small number of products appear in the vast
majority of purchases from Amazon.com.

Figure 3.1: A plot of the maximum degree of a graph formed from data on co-purchased
products on Amazon.com as vertices are removed from the graph in descending order of
degree

We will now discuss the structure of the network formed from Wikipedia voting data. The
voting data used to construct this network was obtained from a total of 2,794 elections of
Wikipedia administrators, with a combined total of 103,663 total votes made or received by
7,066 users. Figure 3.3 contains a plot of the maximum degree of this network as vertices are



CHAPTER 3. SUBGRAPH COUNTING Page 20

Figure 3.2: A visualisation of a network formed from co-purchased products on Ama-
zon.com in August 2003 [2]

removed in descending order of degree. The network contains 7,115 vertices1, and 100,762
edges. The maximum degree of the network is 1,065. In the plot, the curve is steepest
between values 0 and 1 on the x-axis. Removing the single highest degree vertex from this
graph reduces the maximum degree from 1,065 to 773, indicating that a single user received a
very large number of votes in many of the elections. Removing the 10 highest degree vertices
results in a decrease of 588, or 55%, in the maximum degree. As in the Amazon.com co-
purchasing network described above, the large majority (61%) of vertices in the network
have very low degree (10 or less). In this setting, this implies that the majority of users cast
and received very few votes.

Figure 3.4 contains plots of the maximum degree of two web graphs against the number of
high-degree vertices removed. The plot at the top of Figure 3.4 is derived from the Stanford
University website (domain stanford.edu) and the plot in the bottom of Figure 3.4 is derived
from the University of Notre Dame website (domain nd.edu). The web graph of the Stanford
University website contains 281,903 vertices and 1,992,636 edges. The maximum degree of
the graph is 38,625, and the average degree is 14. As in Figure 3.3, the greatest drop-off in the
maximum degree occurs when the single highest degree vertex is removed from the graph.
Specifically, removing the highest degree vertex from the stanford.edu webgraph decreases
the maximum degree from 38,625 to 21,923. Removing the 10 highest degree vertices from
the graph results in a drop of 19,694, or 51%, from the original maximum degree. Removing
another 6 vertices results in a reduction of over 78% of the original maximum degree.

1Note the discrepancy between the number of users participating in the elections and the number of vertices;
a possible explanation is that some users who appear in the network did not vote in any election.



CHAPTER 3. SUBGRAPH COUNTING Page 21

Figure 3.3: A plot of the maximum degree of a graph formed from Wikipedia administrator
voting data as vertices are removed from the graph in descending order of degree

The web graph of the Notre Dame university website contains 325,728 vertices and 1,117,563
edges. The maximum degree of this network is 10,721. Once again, a significant drop-off
in the maximum degree occurs when the highest degree vertex is removed. Specifically, the
maximum degree drops by 3097, or 29%, of the original maximum degree. Removing the
10 highest degree vertices from the network reduces the original maximum degree by 7157,
or 67%. In this setting, this structure of the webgraphs suggests that most webpages on each
website are linked to a very small collection of central pages.

A network is said to have a power-law degree distribution if the proportion of vertices in the
network having degree k is inversely related to k [47]. Note that a network with a power-law
degree structure necessarily has a (proportionately) very small number of vertices with high-
degree. It is well known [48] that the general webgraph formed from hyperlinks between
pages on the web follows a power-law degree distribution. In [49], Dill et al. observe that
“cohesive collections of Web pages” also tend to exhibit a power-law degree structure. It
follows then that we should expect many websites, including those studied here, to exhibit a
power-law degree distribution, and hence to have only a small number of vertices with high
degree.



CHAPTER 3. SUBGRAPH COUNTING Page 22

Figure 3.4: Plots of the maximum degree of web graphs representing the Stanford University
(top) and University of Notre Dame (bottom) websites as vertices are greedily removed from
the graph

3.6 An FPT Subgraph Counting Algorithm

Let G = (V (G), E(G)) be a graph of order n, and let H = (V (H), E(H)) be a graph of
order m. We define the subgraph counting problem parameterised by m as follows.

SUBGRAPH COUNTING

Input: A graph G = (V (G), E(G)) of order n and a graph H = (V (H), E(H))

of order m.

Parameter: m.

Question: How many times does H appear as a subgraph of G?

In what follows, we describe an FPT algorithm for subgraph counting in classes of host



CHAPTER 3. SUBGRAPH COUNTING Page 23

graphs with almost-bounded degree parameterised by the order of the pattern graph.

3.6.1 Algorithm Overview

Let G = (V (G), E(G)) be a graph of order n with at most c vertices with degree exceeding
∆. Let H = (V (H), E(H)) be a graph of order m. Our algorithm works by first considering
each possible way to embed a subgraph of H into the high-degree part of G. For each such
possibility, we then count the number of ways to assign the remaining vertices in V (H)

to the bounded degree part of G. This is done by splitting the remaining part of H into
its connected components, and counting non-overlapping copies of these components in the
bounded degree part of G with lists (determined by the assignment of a subset of V (H) to
the high-degree vertices in V (G)) via a careful inclusion-exclusion argument. We will see
that splitting H up in this way allows us to take advantage of the almost-bounded degree
structure of G in the runtime bound. This method so far counts the number of embeddings
of H into G. To obtain the number of times that H appears as a subgraph of G, we count the
number of automorphisms of H using a brute-force method, and then divide #Emb(H,G)

by #Aut(H).

3.6.2 Algorithm

The following two lemmas bound the complexity of counting embeddings with lists of a
connected graph in a bounded degree host graph. We will make use of these results when
counting embeddings of each of the connected components. We note that both results are
folklore, but we include a proof of each for completeness. Let H = (V (H), E(H)) be a
graph. A vertex ordering of V (H) is a bijective numbering σ : V (H) → {1, . . . , |V (H)|},
where the value of σ(i) provides the position of vi in the ordering. In the following lemma,
we prove that there exists an ordering over the vertices of a connected graph H such that
every vertex except the first is preceded (in the ordering) by one of its neighbours. Let
G = (V (G), E(G)) be a graph with maximum degree ∆. Recall that in any embedding f

of H into G, we require that f(u)f(v) ∈ E(G) for any pair u, v ∈ V (H) with uv ∈ E(H).
Hence, by assigning vertices from H to vertices in V (G) in this order, we can restrict the
number of potential embeddings that we need to consider.

Lemma 3.1. Let H = (V (H), E(H)) be a connected graph with order m. We can construct

a vertex ordering σ : V (H) → [m] of V (H) such that every vertex except the first is preceded

by one of its neighbours in the ordering in time O(m3).

Proof. We construct σ as follows. We may select the first vertex arbitrarily. We then add
the remaining vertices in V (H) one by one. At each stage, we select a vertex v from the



CHAPTER 3. SUBGRAPH COUNTING Page 24

set of vertices which are not already in the (partial) ordering such that the ordering contains
at least one neighbour of v. We can search for such a vertex in time O(m2) by checking,
for each available vertex, whether it has a neighbour among the vertices in the partial or-
dering. Suppose for a contradiction that there is no such vertex. It follows that the set of
vertices in V (H) which are contained in the (partial) ordering and those which are not, form
disconnected components in the graph. Since we assumed that H is connected, we have a
contradiction. Since there are at most m vertices in V (H), it follows that we can construct
the ordering in time O(m3).

The following lemma uses Lemma 3.1 to bound the time needed to count labelled embed-
dings of a connected graph into a graph with bounded degree.

Lemma 3.2. Let H = ({v1, . . . , vm}, E(H)) be a connected graph, and let G = (V (G), E(G))

be a graph of order n with maximum degree ∆. Let VH,G = {Vv1,G, . . . , Vvm,G} be a set of

m subsets of V (G). We can count the number #Emb(H,G, VH,G) of embeddings of H into

G with lists VH,G in time O(n2m∆m).

Proof. We count the number of embeddings of H into G with lists VH,G using a depth-first
search. Specifically, each node in the search tree (excluding the root node) corresponds to a
possible assignment of a vertex in V (H) to a particular vertex in V (G). The depth of the tree
is at most one more than the size m of V (H), and the number of embeddings of H into G

with lists VH,G is equal to the number of leaves in the tree at depth m+1. By Lemma 3.1, we
can construct an ordering σ : V (H) → [m] of V (H) such that every vertex except the first
is preceded by one of its neighbours in time O(m3). The order in which we assign vertices
from V (H) along any branch of the search tree is then given by σ. Suppose that at some
node of the search tree we assign a vertex vH in V (H) to an available vertex vG from the
list VvH ,G. We must now update the lists of each unassigned neighbour of vH to include only
neighbours of vG. We must also remove vG from the lists of all unassigned vertices in V (H).
Since H has order m and G has order n, there are at most m lists to update, and each list has
length at most n. Since G has degree at most ∆, it follows that vG has at most ∆ neighbours.
Hence, we can remove all elements in the lists of unassigned neighbours of vH which are
not neighbours of vG in time O(mn∆). We can remove vG from the lists of all unassigned
vertices in V (H) in time O(mn). Hence, updating the lists takes time O(mn∆). Note that
this updating lists operation occurs once at each non-root node of the search tree.

We now bound the number of nodes in our search tree. Since there are n vertices in G,
it follows that there are at most n ways to assign the first vertex v in V (H) (according to
the ordering σ) to vertices from Vv,G. For each other vertex vH ∈ V (H), when we come to
assign vH , we will have already assigned at least one neighbour of vH . Since G has maximum
degree ∆, it follows that there are at most ∆ elements remaining in the list VvH ,G, and hence



CHAPTER 3. SUBGRAPH COUNTING Page 25

there are at most ∆ ways to assign vH . Since H has order m, it follows that there are at most
n∆m−1 nodes in the search tree. It follows that we can count the number of embeddings of
H into G with lists VH,G in time

O(m3 + n∆m−1 × (mn∆+ ((m− 1) log∆ + log n))

= O(n2m∆m).

In the next lemmas, we describe how to count non-overlapping embeddings with lists of
a set of connected components into a graph with bounded degree. We first describe how
to count the total number of embeddings. Let C = {C1, . . . , Cℓ} be a set of disjoint con-
nected graphs Ci = (V (Ci), E(Ci)), and let G = (V (G), E(G)) be a graph. For each
Ci ∈ C, let VCi,G be a set of |V (Ci)| subsets of V (G) (one for each vertex in V (Ci)).
Let VC,G = {VC1,G, . . . , VCℓ,G}. An embedding of C into G with lists VC,G is a function
f :
⋃

i∈[ℓ] V (Ci) → V (G) such that the restriction of f to each Ci is an embedding of Ci into
G with lists VCi,G. Note that f is not necessarily an injection i.e. we do allow f(u) = f(v)

for a pair u ∈ V (Ci) and v ∈ V (Cj) with i ̸= j. We denote the number of embeddings of
C into G with lists VC,G by #Emb(C, G, VC,G). In the following lemma, we show that the
number of embeddings of C into G with lists VC,G is equal to the product, over all graphs
Ci ∈ C, of the number of embeddings of Ci into G with lists VCi,G.

Lemma 3.3. Let C = {C1, . . . , Cℓ} be a set of ℓ disjoint connected graphs, and let G =

(V (G), E(G)) be a graph. Let VCi,G be a set of |V (Ci)| subsets of V (G) for each i ∈ [ℓ],

and let VC,G = {VC1,G, . . . , VCℓ,G}. We have that

#Emb(C, G, VC,G) =
∏
i∈[ℓ]

#Emb(Ci, G, VCi,G).

Proof. By definition, the value of #Emb(C, G, VC,G) is equal to the number of functions
from the set

⋃
i∈[ℓ] V (Ci) to the set V (G) which meet the definition of an embedding of Ci

into G with lists VCi,G. Since V (Ci) ∩ V (Cj) = ∅ for all pairs i ̸= j, the result follows.

We now use the relationship described in Lemma 3.3 to bound the time needed to count
embeddings with lists of C into G.

Lemma 3.4. Let m be a positive integer and let C = {C1, . . . , Cℓ} be a set of ℓ disjoint

connected graphs with
∑

i∈[ℓ] |V (Ci)| ≤ m and ℓ ≤ m. Let G = (V (G), E(G)) be a graph

of order n with maximum degree ∆. Let VCi,G be a set of |V (Ci)| subsets of V (G) for each



CHAPTER 3. SUBGRAPH COUNTING Page 26

i ∈ [ℓ], and let VC,G = {VC1,G, . . . , VCℓ,G}. We can compute the value of #Emb(C, G, VC,G)

in time O(n2m2∆m).

Proof. By Lemma 3.3, we have that

#Emb(C, G, VC,G) =
∏
i∈[ℓ]

#Emb(Ci, G, VCi,G).

Since |V (Ci)| ≤ m for each i ∈ [ℓ], it follows from Lemma 3.2 that we can compute
the value of #Emb(Ci, G, VCi,G) in time O(n2m∆m) for each i ∈ [ℓ]. The value of
#Emb(C, G, VC,G) is at most nm, and hence can be represented using at most m log n bits.
Since ℓ ≤ m, it follows that we can compute the value of #Emb(C, G, VC,G) in time

O(m× (n2m∆m + (m log n)2))

= O(n2m2∆m).

We now describe how to count the number of overlapping embeddings (with lists) of the
components. We can then subtract this value from the total number of embeddings to obtain
the number of non-overlapping embeddings. We first define formally what it means for a set
of components to overlap.

Let C = {C1, . . . , Cℓ} be a set of ℓ disjoint connected graphs, and let G = (V (G), E(G))

be a graph. Let VCi,G be a set of |V (Ci)| subsets of V (G) for each i ∈ [ℓ], and let VC,G =

{VC1,G, . . . , VCℓ,G
}. Let f be an embedding of C into G with lists VC,G. We say that f

is an overlapping embedding of C into G with lists VC,G if f(u) = f(v) for some pair
u ∈ V (Ci) and v ∈ V (Cj) with i ̸= j. We denote the number of such embeddings by
#Emb-overlap(C, G, VC,G). We call f a non-overlapping embedding of C into G with lists

VC,G if there are no pairs of vertices u ∈ V (Ci) and v ∈ V (Cj) with i ̸= j such that
f(u) = f(v). The number of such embeddings is denoted by #Emb-none(C, G, VC,G). We
make the following observation.

Observation 3.5. Let C = {C1, . . . , Cℓ} be a set of disjoint connected graphs, and let G =

(V (G), E(G)) be a graph. Let VCi,G be a set of |V (Ci)| subsets of V (G) for each Ci ∈ C,
and let VC,G = {VC1,G, . . . , VCℓ,G

}. We have that

#Emb-none(C, G, VC,G) =#Emb(C, G, VC,G)−#Emb-overlap(C, G, VC,G).

Informally, we extract the number of non-overlapping embeddings of the components from
the total number of embeddings by considering each way that the components can be “merged”



CHAPTER 3. SUBGRAPH COUNTING Page 27

together to form a new set of connected components. We then subtract the number of over-
lapping embeddings of each set of these merged components from the total number of em-
beddings.

C1

v1,1

v1,2

v1,3

C2

v2,1

v2,2

C3

v3,1

v3,2

v3,3

C4

v4,1

I

u1 = f(v1,1)

u2 = f(v1,2) = f(v2,1)

u3 = f(v1,3) = f(v2,2) = f(v3,1)

u4 = f(v3,2)

u5 = f(v3,3) = f(v4,1)

u1

u2

u3
u5

u4

Figure 3.5: An example of an intersection (I, f) of graphs C = {C1, C2, C3, C4}.

Formally, let C = {C1, . . . , Cℓ} be a set of ℓ disjoint connected graphs. Let VCi,G be a
set of |V (Ci)| subsets of V (G) for each i ∈ [ℓ], and let VC,G = {VC1,G, . . . , VCℓ,G

}. Let
P = {P1, . . . , Pℓ′} be a partition of C into ℓ′ sets for some ℓ′ < ℓ. Note that we say that a
partition P = {P1, . . . , Pℓ′} of C is finer than a partition P ′ = {P ′

1, . . . , P
′
ℓ′′} if ℓ′ > ℓ′′ and,

for each i ∈ {1, . . . , ℓ′′}, we have that P ′
i =

⋃
j∈s Pj for some subset s of [ℓ′].

Let P = {P1, . . . , Pℓ′} be a partition of C, and let {Ca, . . . , Cb} be the components in some
part Pi of P . An intersection of {Ca, . . . , Cb} is a pair (I, f) where I = (V (I), E(I)) is a
connected graph, and f :

⋃
i∈{a,...,b} V (Ci) → V (I) is a function such that

• for each i ∈ {a, . . . , b}, if uv ∈ E(Ci) then f(u)f(v) ∈ E(I), and

• if uv ∈ E(I) then there exists some i ∈ {a, . . . , b} and some pair u′, v′ ∈ V (Ci) such
that u′ ∈ f−1(u) and v′ ∈ f−1(v), and u′v′ ∈ E(Ci).

Figure 3.5 illustrates an example of an intersection of a set of disjoint connected graphs.
We define the set VI,G of subsets of V (G) from {VCa,G, . . . , VCb,G} as follows. For each
v ∈ V (I), we set Vv,G =

⋂
u∈f−1(v) Vu,G. We say that two intersections (I, f) and (I ′, f ′)

of {Ca, . . . , Cb} are equal if and only if |V (I)| = |V (I ′)| and there exists a bijection h :

V (I) → V (I ′) such that, for all v ∈
⋃

i∈{a,...,b} V (Ci), we have that f ′(v) = h(f(v)).



CHAPTER 3. SUBGRAPH COUNTING Page 28

Let (Ii, fi) be an intersection of the graphs in Pi for each Pi ∈ P . We call the set I =

{(I1, f1), . . . , (Iℓ′ , fℓ′)} an intersection set of C. By construction, the set of graphs in I
are disjoint, and each graph is connected. We call ℓ′ the size of the intersection set. Two
intersection sets of C are equal if they contain exactly the same intersections.

In the following lemma, we describe an upper bound on the number of possible intersection
sets of C.

Lemma 3.6. Let m be a positive integer, and let C = {C1, . . . , Cℓ} be a set of ℓ disjoint

connected graphs with ℓ ≤ m and
∑

i∈[ℓ] |V (Ci)| ≤ m. There are at most mm intersection

sets of C.

Proof. The number of intersection sets of C is at most the number of functions from the
set of (at most m) vertices in

⋃
i∈[ℓ] V (Ci) to a set of size m. It follows that the number of

intersection sets is at most mm.

Let C = {C1, . . . , Cℓ} be a set of disjoint connected graphs, and let G = (V (G), E(G))

be a graph. Let VCi,G be a set of |V (Ci)| subsets of V (G) for each i ∈ [ℓ], and let VC,G =

{VC1,G, . . . , VCℓ,G
}. In the following lemma, we describe a relationship between the number

of overlapping embeddings of C into G with lists VC,G, and the number of non-overlapping
embeddings of the graphs in each intersection set I of C with lists VI,G.

Lemma 3.7. Let C = {C1, . . . , Cℓ} be a set of disjoint connected graphs, and let G =

(V (G), E(G)) be a graph. Let VCi,G be a set of |V (Ci)| subsets of V (G) for each i ∈ [ℓ],

and let VC,G = {VC1,G, . . . , VCℓ,G
}. We have that

#Emb-overlap(C, G, VC,G) =
∑

I={(I1,f1),...,(Iℓ′ ,fℓ′ )}

#Emb-none({I1, . . . , Iℓ′}, G, VI,G).

Proof. In what follows, we describe a bijection between the set of overlapping embeddings
with lists of C into G, and the set of non-overlapping embeddings with lists of the graphs in
each of the intersection sets of C into G.

In the first direction, let g be an overlapping embedding of C into G with lists VC,G. Let
{I1, . . . , Iℓ′} be the set of connected graphs formed from C and g as follows. Let P =

{P1, . . . , Pℓ′} be the (unique) finest partition of C such that there are no pairs u ∈ V (Ci) and
v ∈ V (Cj) with Ci ∈ Pi′ and Cj ∈ Pj′ such that i′ ̸= j′ and g(u) = g(v). Since g is an
overlapping embedding, it follows that ℓ′ < ℓ. For each i ∈ [ℓ′], we construct the intersection
set (Ii, fi) of the graphs in Pi from g as follows. Let {Ca, . . . , Cb} denote the set of graphs in
Pi. Let t denote the size of the codomain of g for the subset

⋃
i∈{a,...,b} V (Ci) of

⋃
i∈[ℓ] V (Ci).

Let Ii = (V (Ii), E(Ii)) be a connected graph on t vertices, and let fi :
⋃

i∈{a,...,b} V (Ci) →
V (I) be a function such that



CHAPTER 3. SUBGRAPH COUNTING Page 29

• for each j, k ∈ {a, . . . , b}, and each pair u ∈ V (Cj) and v ∈ V (Ck), we have that
g(u) = g(v) if and only if fi(u) = fi(v), and

• for each j ∈ {a, . . . , b}, if uv ∈ E(Cj) then fi(u)fi(v) ∈ E(Ii), and

• if uv ∈ E(Ii) then there exists some j ∈ {a, . . . , b} and some pair u′, v′ ∈ V (Cj) such
that u′ ∈ f−1

i (u) and v′ ∈ f−1
i (v), and u′v′ ∈ E(Cj).

Observe that (Ii, fi) is an intersection of {Ca, . . . , Cb}. Moreover, (Ii, fi) is the only in-
tersection which meets these requirements. To construct the lists VIi,G from VC,G, we set
Vv,G =

⋂
u∈f−1

i (v) Vu,G for each v ∈ V (Ii). Finally, we construct an embedding h : V (Ii) →
V (G) of Ii into G for each i ∈ [ℓ′] as follows. For each v ∈ V (Ii), set hi(v) = g(u) for
arbitrary u ∈ f−1(v) (we may choose arbitrarily since it follows from our construction that
g(u) = g(u′) for any u, u′ ∈ f−1(v)). Let I = {(I1, f1), . . . , (Iℓ′ , fℓ′)} be the intersec-
tion set formed from the pairs (Ii, fi), and let VI,G denote the set of lists {VI1,G, . . . , VIℓ′ ,G

}.
Let h :

⋃
i∈[ℓ′] V (Ii) → V (G) be the embedding of the graphs in I into G with lists VI,G

formed by applying hi to V (Ii) for each i ∈ [ℓ′]. It follows from our construction that h is a
non-overlapping embedding of the graphs in I into G with lists VI,G.

In the other direction, let I = {(I1, f1), . . . , (Iℓ′ , fℓ′)} be an intersection set of C for some
ℓ′ < ℓ, and let h be a non-overlapping embedding of the graphs {I1, . . . , Iℓ′} into G with
lists VI,G. We construct an overlapping embedding g of C with lists VC,G from h as follows.
For each Ci ∈ C, let j ∈ [ℓ′] be the value such that fj(v) = u for some v ∈ V (Ci) and some
u ∈ V (Ij). For each v ∈ V (Ci), set g(v) = h(fj(v)). It follows directly from the definition
of an intersection set that g is an overlapping embedding of C into G with lists VC,G. The
result follows.

We say that an intersection set I ′ = {(I ′1, f ′
1), . . . , (I

′
ℓ′ , f

′
ℓ′′)} of C is contained in another

intersection set I = {(I1, fi), . . . , (Iℓ, fℓ′)}, written as I ′ ⊂ I, if ℓ′′ < ℓ and, for each
i ∈ [ℓ′], there exists some j ∈ [ℓ′′] and a function gj : V (Ii) → V (I ′j) such that for every
u ∈ V (Ii) and every v ∈ f−1(u) we have that gj(fi(v)) = f ′

j(v). Observe that the set
{(I ′1, g1), . . . , (I ′ℓ′ , gℓ′′)} is an intersection set of the graphs {I1, . . . , Iℓ′}.

The following result describes how to obtain the number of non-overlapping embeddings of
the graphs in an intersection set of C into G. In particular, we describe a relationship between
the number of non-overlapping embeddings of the graphs in a particular intersection set I of
C, and the number of non-overlapping embeddings of the graphs in each intersection set I ′

of C contained in I.

Lemma 3.8. Let C = {C1, . . . , Cℓ} be a set of ℓ disjoint connected graphs, and let G =

(V (G), E(G)) be a graph. Let VCi,G be a set of |V (Ci)| subsets of V (G) for each i ∈ [ℓ],

and let VC,G = {VC1,G, . . . , VCℓ,G
}. Let I = {(I1, f1), . . . , (Iℓ′ , fℓ′)} be an intersection set of



CHAPTER 3. SUBGRAPH COUNTING Page 30

C. We have that

#Emb-none({I1, . . . , Iℓ′}, G,VI,G) =
∏
i∈[ℓ′]

#Emb(Ii, G, VIi,G)−∑
I′={(I′1,f ′

1),...,(I
′
ℓ′′ ,f

′
ℓ′′ )}⊂I

#Emb-none({I ′1, . . . , I ′ℓ′′}, G, VI′,G).

Proof. It follows from Observation 3.5 that

#Emb-none({I1, . . . , Iℓ′}, G, VI,G) = #Emb({I1, . . . , Iℓ′}, G, VI,G)−

#Emb-overlap({I1, . . . , Iℓ′}, G, VI,G).

By Lemma 3.3, we have that

#Emb({I1, . . . , Iℓ′}, G, VI) =
∏
i∈[ℓ′]

#Emb(Ii, G, VIi,G).

Finally, it follows from Lemma 3.7 and from the definition of containment among intersec-
tion sets that

#Emb-overlap({I1, . . . , Iℓ′},G, VI,G) =∑
I′={(I′1,f ′

1),...,(I
′
ℓ′′ ,f

′
ℓ′′ )}⊂I

#Emb-none({I ′1, . . . , I ′ℓ′′}, G, VI′,G).

The result follows.

The following lemma uses the relationships described in Lemmas 3.7 and 3.8 to bound the
time needed to count the number of overlapping embeddings of the components in C.

Lemma 3.9. Let m be a positive integer, and let C = {C1, . . . , Cℓ} be a set of ℓ graphs

with ℓ ≤ m and
∑

i∈[ℓ] |V (Ci)| ≤ m. Let G = (V (G), E(G)) be a graph of order n with

maximum degree ∆. Let VCi,G be a set of |V (Ci)| subsets of V (G) for each i ∈ [ℓ], and let

VC,G = {VC1,G, . . . , VCℓ,G
}. We can compute the value of #Emb-overlap(C, G, VC,G) in time

O(n2m2m∆m).

Proof. By Lemma 3.7, we have that

#Emb-overlap(C, G, VC,G) =
∑

I={(I1,f1),...,(Iℓ′ ,fℓ′ )}

#Emb-none({I1, . . . , Iℓ′}, G, VI,G).

(3.1)



CHAPTER 3. SUBGRAPH COUNTING Page 31

Let I = {(I1, f1), . . . , (Iℓ, fℓ)} be an intersection set of C. By Lemma 3.8, we have that

#Emb-none({I1, . . . , Iℓ′}, G,VI,G) =
∏
i∈[ℓ′]

#Emb(Ii, G, VIi,G)−∑
I′={(I′1,f ′

1),...,(I
′
ℓ′′ ,f

′
ℓ′′ )}⊂I

#Emb-none({I ′1, . . . , I ′ℓ′′}, G, VI′,G).

(3.2)

By definition, each intersection set that is contained in I is smaller than I. It follows that if
we compute the number of non-overlapping embeddings for each intersection set in ascend-
ing order of the size of the intersection set, then we know the value of
#Emb-none({I ′1, . . . , I ′ℓ′′}, G, VI′,G) for each I ′ ⊂ I when we come to compute the value
of #Emb-none({I1, . . . , Iℓ′}, G, VI,G). Note that the value of both the sum and the product
in (3.2) have value at most nm each since they are each at most the number of embeddings of
C in G. It follows from the definition of an intersection set that

∑
i∈[ℓ′] V (Ii) <

∑
j∈[ℓ] V (Ci).

Hence, it follows from Lemma 3.4 that we can compute the value of the product in (3.2) in
time

O(n2m2∆m). (3.3)

It follows from Lemma 3.6 that there are at most mm intersection sets contained in I. It
follows that once we know the value of #Emb-none({I ′1, . . . , I ′ℓ′′}, G, VI′,G) for each I ′ ⊂
I, then we can compute the value of the sum in (3.2) in time

O(mm × (m log n))

= O(mm+1 log n). (3.4)

It follows from (3.3) and (3.4) that, once we know the value of #Emb-none({I ′1, . . . , I ′ℓ′′},
G, VI′,G) for each I ′ ⊂ I, we can compute the value of #Emb-none({I1, . . . , Iℓ′}, G, VI,G)

in time

O(n2m2∆m +mm+1 log n+m log n)

= O(n2mm∆m). (3.5)

Finally, it remains to bound the time needed to compute the value of the sum in (3.1). By
definition, the value of the sum in (3.1) is at most nm. Hence, it follows from (3.5) that we



CHAPTER 3. SUBGRAPH COUNTING Page 32

can compute the value of the sum in time

O(mm × (n2mm∆m +m log n))

= O(n2m2m∆m).

The result follows.

Using Lemmas 3.5 and 3.9, we can now bound the time needed to compute the number of
non-overlapping embeddings of the components.

Lemma 3.10. Let m be a positive integer, and let C = {C1, . . . , Cℓ} be a set of ℓ graphs

with ℓ ≤ m and
∑

i∈[ℓ] |V (Ci)| ≤ m. Let G = (V (G), E(G)) be a graph of order n with

maximum degree ∆. Let VCi,G be a set of |V (Ci)| subsets of V (G) for each i ∈ [ℓ], and let

VC,G = {VC1,G, . . . , VCℓ,G
}. We can compute the value of #Emb-none(C, G, VC,G) in time

O(n2m2m∆m).

Proof. By Observation 3.5, we have that

#Emb-none(C, G, VC,G) =#Emb(C, G, VC,G)−#Emb-overlap(C, G, VC,G).

It follows from Lemma 3.4 that we can compute the value of #Emb(C, G, VC,G) in time
O(n2m2∆m). By definition, the value of #Emb(C, G, VC,G) is at most nm. It follows
from Lemma 3.9 that we can compute the value of #Emb-overlap(C, G, VC,G) in time
O(n2m2m∆m). The value of #Emb-overlap(C, G, VC,G) is also at most nm. It follows
that we can compute the value of #Emb-none(C, G, VC,G) in time

O(n2m2∆m + n2m2m∆m +m log n)

= O(n2m2m∆m).

We are now ready to prove our main result.

Theorem 3.11. Let H = (V (H), E(H)) be a graph of order m, and let G = (V (G), E(G))

be a graph of order n which contains at most c vertices with degree exceeding ∆. We can

count the number of times that H appears as a subgraph of G in time O(ccn2m2m+c∆m).

Proof. We first count the number of embeddings of H into G. This is achieved by taking
the sum, over each subset Vc(H) of V (H) (including the empty subset) with size at most
c, of the number of embeddings of H into G in which exactly those vertices in Vc(H) are



CHAPTER 3. SUBGRAPH COUNTING Page 33

assigned to the set of vertices of V (G) with degree exceeding ∆. We then divide this value
by #Aut(H) to obtain the number of times that H appears as a subgraph of G.

We will use Vc(H) to denote the set of all subsets Vc(H) of V (H) with size at most c.
Let Vc(H) be a set in Vc(H). We will use #Emb(Vc(H), H,G) to denote the number of
embeddings of H into G in which exactly those vertices in Vc(H) are assigned to the set of
vertices of V (G) with degree exceeding ∆. We have that

#Emb(H,G) =
∑

Vc(H)∈Vc(H)

#Emb(Vc(H), H,G). (3.6)

Let Vc(H) be a subset of V (H) of size at most c, and let Vc(G) denote the set of at most c
vertices in V (G) with degree exceeding ∆. We denote the subgraph of H formed from the
subset V (H) \ Vc(H) of V (H) and all edges in E(H) joining pairs of vertices in V (H) \
Vc(H) by H \ Vc(H). Similarly, we denote the subgraph of G containing the vertices in
V (G) \ Vc(G) and all corresponding edges from E(G) by G \ Vc(G). We count the number
of embeddings of H into G such that exactly the vertices in Vc(H) are assigned to vertices
in Vc(G) as follows. For each assignment of Vc(H) to Vc(G) such that pairs of neighbours
in Vc(H) are assigned to pairs of neighbours in Vc(G), we count the number of embeddings
of H \ Vc(H) into the bounded degree subgraph G \ Vc(G) of G. In particular, we must
count the number of embeddings of H \ Vc(H) into G \ Vc(G) with lists, where the lists
are determined by the assignment of Vc(H) to Vc(G). The value of #Emb(Vc(H), H,G) is
then equal to the sum, over each possible assignment of Vc(H) to Vc(G), of the number of
embeddings with lists of H \ Vc(H) into G \ Vc(G).

Let f : Vc(H) → Vc(G) be an assignment of Vc(H) to Vc(G). Since |Vc(H)| ≤ c and
|Vc(G)| ≤ c, we can check that all pairs of neighbours in Vc(H) are assigned to pairs of
neighbours in Vc(G) in time O(c2). Moreover, there are at most cc such assignments. Given
f , we must now count the number of ways to embed the remaining part H \ Vc(H) of H
into the remaining part G \ Vc(G) of G. We first edit the lists Vv,G\Vc(G) for each v ∈
V (H) \ Vc(H) so that pairs of neighbours in Vc(H) and V (H) \ Vc(H) are matched only to
pairs of neighbours from Vc(G) and V (G)\Vc(G) respectively. For each v ∈ V (H)\Vc(H),
let Uv denote the set of neighbours of v in Vc(H). For each u ∈ Uv, let Uf(u) denote the
neighbours of f(u) in V (G) \ Vc(G). We set Vv,G\Vc(G) =

⋂
u∈Uv

Uf(u). Let VH\Vc(H),G\Vc(G)

denote the set containing the subsets Vv,G\Vc(G) for each v ∈ V (H) \ Vc(H). Note that the
graph H \Vc(H) may not be connected. Thus, in order to take advantage of the degree bound
∆ of the vertices in V (G) \ Vc(G), we count embeddings of H \ Vc(H) into G \ Vc(G) by
splitting H \ Vc(H) into its connected components C = {C1, . . . , Cℓ}, and counting non-
overlapping embeddings of these components into G \ Vc(G) with lists VC,G\Vc(G). Observe
that since H contains at most m vertices, we have that

∑
i∈[ℓ] V (Ci) ≤ m and ℓ ≤ m. It



CHAPTER 3. SUBGRAPH COUNTING Page 34

follows from Lemma 3.10 that we count non-overlapping embeddings of C into G \ Vc(G)

with lists VC,G\Vc(G) in time O(n2m2m∆m). The number of such embeddings is at most nm.
It follows that we can compute the value of #Emb(Vc(H), H,G) in time

O(cc × (c2 + n2m2m∆m +m log n))

= O(ccn2m2m∆m). (3.7)

The number of ways to select a subset of size at most c from a set of size m is at most mc.
It follows that |Vc(H)| ≤ mc. It then follows from (3.6) and (3.7) that we can compute the
value of #Emb(H,G) in time

O(mc × (ccn2m2m∆m +m log n))

= O(ccn2m2m+c∆m).

The brute-force approach to counting automorphisms of H takes time O(mm). The total
number of embeddings of H into G is at most nm, while the number of automorphisms of H
is at most mm. It follows that we can compute the value of #Sub(H,G) in time

O(ccn2m2m+c∆m +mm +m log n ·m logm)

= O(ccn2m2m+c∆m).

3.7 Remarks and Open Problems

In this chapter, we described an FPT algorithm for subgraph counting in host graphs with
almost-bounded degree parameterised by the order of the pattern graph. We note that the
same runtime bound applies when the host graph G can be partitioned into a graph with order
at most c and a graph with maximum degree ∆. Note that in this setting the subgraph with
bounded degree ∆ may contain vertices with degree exceeding ∆ in G. Many applications of
subgraph counting [50, 51, 52] involve comparing large networks by analysing the frequency
with which all k-vertex connected pattern graphs appear in each network for small values of
k. Since our algorithm does not place any restrictions on the structure of the pattern graph,
we expect that our algorithm could be usefully applied in such settings.

A variant of the subgraph counting problem asks for the number of induced copies of a
pattern graph in a host graph. It seems highly likely that our algorithm can be extended
with some small modifications to count induced subgraphs. Particular care must be taken to
check that the method of counting non-overlapping embeddings of the components in our



CHAPTER 3. SUBGRAPH COUNTING Page 35

algorithm carries over into the induced setting.

In Section 3.5, we presented examples of real-world networks with relatively few high-
degree vertices. We note that in each of these networks, the degree drop-off seen when
removing the high-degree vertices is insufficient for our algorithm to be practical. However,
the structure observed in these networks suggests that there may exist real-world networks
with the necessary structure for practical subgraph counting using our algorithm.



CHAPTER 3. SUBGRAPH COUNTING Page 36



37

Chapter 4

Counting Stable Matchings

4.1 Motivation

The problem of counting stable matchings first appeared in a monograph by Donald Knuth
on stable marriage in 1976 [53]. Irving and Leather [12] have since shown that counting so-
lutions to even the most basic stable matching problems is computationally hard in general.
In light of this, it is natural to ask whether efficient algorithms exist for counting solutions to
parameterised variants of stable matching problems. In many practical applications of stable
matching, it is reasonable to assume that agents who are deemed as “similar” in some im-
portant way may be regarded as equally desirable by their available partners. For instance,
consider the problem of matching university graduates to available graduate jobs. Here the
type of the job is defined by its field (software engineering, banking, teaching), and the type
of the graduate is defined by the subject which they studied. Firms hiring for software en-
gineering roles typically most prefer graduates in computer science, but also have a strong
preference for graduates in subjects such as mathematics or physics. Meanwhile, gradu-
ates in mathematics are likely to prefer graduate jobs (accountancy, software engineering,
finance) that require their logical reasoning skills.

In [11], Meeks and Rastegari introduce the notion of agent “types”, where the type of an
agent determines his/her preferences, and agents of the same type are considered equally
desirable by their available partners. It is shown that a number of important stable matching
problems which are computationally hard in general are efficiently solvable when we param-
eterise by the number of agent types. Here we extend the work of Meeks and Rastegari in the
computational counting setting. We will see that, as in the decision setting, parameterising
by the number of agent types creates tractability for several key stable matching problems.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 38

4.2 Definitions and Notation

The stable marriage problem (SM) consists of a set of men and a set of women, each of
whom has a strict preference ordering over the set of agents of the opposite gender. We
typically use n to denote the number of agents in an instance of stable marriage. Given an
instance I of SM, a matching M admitted by I is an assignment of the agents into man-
woman pairs. The size of a matching M , denoted by |M |, is equal to the number of man-
woman pairs in M . A complete matching is a matching containing all available agents. We
write M(w) = m to mean that woman w is matched to man m in the matching M . We may
also write this as (m,w) ∈ M . If woman w has no partner in M , we write M(w) = ∅.
We say that woman w strictly prefers man m1 to m2, written m1 ≻w m2, if m1 appears
earlier in the preference list of w than m2. A blocking pair in M is a pair of agents who
would strictly prefer to be matched together (according to their preference lists) than with
the respective partners assigned to them in the matching. A weakly stable matching is a
matching containing no blocking pairs. Unless otherwise specified, we shall use the term
“stable matching” to mean a weakly stable matching. Given an instance I of SM, the stable
marriage problem asks whether there exists a stable matching of the agents in I .

The stable roommates problem (SR) is a generalisation of SM consisting of a single set of
n agents, each of whom ranks all other agents in strict order of preference. In this setting,
a stable matching is a partition of the set of agents into pairs such that no two agents would
(strictly) prefer to be matched together than with their assigned partners.

Hospitals/residents (HR) is a many-one generalisation of stable marriage in which agents
are labelled as either “residents” (junior doctors) or hospitals. In this setting, many residents
may be assigned to the same hospital subject to the capacity constraints of the hospital. We
denote the capacity of hospital h by q(h), and we assume without loss of generality that
q(h) > 0 for all h. In this setting, agents on both sides may declare a subset of their available
partners as unacceptable matches. Let I be an instance of HR. We say that a matching M

of the agents in I is stable if there is no hospital/resident pair (h, r) who find each other
acceptable such that r is unmatched or prefers h to M(r), and either h has spare capacity or
else prefers r to the least desirable resident assigned to h under M .

A relaxation of agents’ preference lists allows agents to express indifference between avail-
able partners. We say that agent a is indifferent between agents b and c, written b ≃a c, if
a finds b and c equally desirable as partners. We write b ⪰a c if a either strictly prefers b

to c or is indifferent between them. If a is indifferent between b and c then we may say that
b and c are tied in the preference list of a. If agents b and c are tied in the preference list
of a, we may write this as {b, c} in the preference list (this notation extends in the obvious
way to include ties involving more than two agents). Note that preference lists which contain
ties are not considered strict. We refer to the variant of SM which allows agents to express



CHAPTER 4. COUNTING STABLE MATCHINGS Page 39

indifference between their available partners as stable matching with ties (SMT). Equivalent
generalisations of stable roommates and hospitals/residents are denoted by SRT and HRT
respectively.

In the presence of ties, we may define two additional notions of stability. Let I be an instance
of SMT. We say that a matching M admitted by I is strongly stable if there is no pair of
agents x and y such that x strictly prefers y to their assigned partner under M , and y is
indifferent between x and their partner in the matching. A matching of the agents in I is
super-stable if there is no pair of agents each of whom each either strictly prefers the other
to the partner he/she has been assigned or is indifferent between the two candidates. Observe
that any super-stable matching is also strongly stable, and any strongly stable matching is
weakly stable.

A second relaxation of the standard stable matching model allows agents to declare some
of their available partners as unacceptable in any matching i.e. they would prefer to be un-
matched than to be matched with such a partner. If an agent declares one or more other
agents as unacceptable, then we say that the agent’s preference list is incomplete. Recall
that the standard hospitals/residents problem already allows for incomplete preference lists.
The generalisation of stable marriage which allows incomplete preference lists is referred
to as stable marriage with incomplete preference lists (SMI). The equivalent generalisation
in the stable roommates setting is known as stable roommates with incomplete preference

lists (SRI). We refer to the relaxation of stable marriage which allows for both ties and in-
complete preference lists by SMTI. Equivalent abbreviations for the hospitals/residents and
stable roommates problems in this setting are HRT and SRTI respectively.

In some stable matching problems, there may exist problem instances that admit stable
matchings of different sizes. An example is the stable marriage problem with ties and in-
complete preference lists. In such settings, we may wish to find the maximum cardinality
stable matching. We denote the problem of finding a stable matching of maximum cardi-
nality admitted by an instance of SMTI by MAX SMTI. Equivalent abbreviations are used
when we seek a maximum cardinality stable matching in other settings.

In typed variations of stable matching problems, we say that agents are of the same type if
their preference lists are identical and all available partners are indifferent between them. We
write type(x) = i to mean that agent x has type i. In this setting, preference lists are declared
by agent types rather than by individual agents. We write j ≻i ℓ, or equivalently ℓ ≺i j, if
agents of type i strictly prefer agents of type j to agents of type ℓ. We write j ≃i ℓ to denote
that agents of type i are indifferent between agents of type j and agents of type ℓ, and we
write j ⪰i ℓ if agents of type i either strictly prefer agents of type j to those of type ℓ or are
indifferent between the two types. If types i and j are tied in the preference list of type ℓ,
then we may write this as {i, j} in the preference list of type ℓ.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 40

A typed instance of stable marriage contains a set of n men and women, and a set of k agent
types 1, . . . , k such that each agent belongs to exactly one type. In this setting, each agent
type has a preference list over the set of types of agents of the opposite gender. Notice that if
we assign each individual agent a different type then we arrive at the standard stable marriage
problem. Let I be a typed instance of stable marriage with k agent types. A matching M

admitted by I is weakly stable if there is no man/woman pair (m,w) with types (i, j) such
that (m,w) /∈ M and j ≻i type(M(m)) and i ≻j type(M(w)). Analogous definitions are
given for strong and super-stability in this setting. Typed instances of stable roommates and
hospitals/residents are defined similarly. We prefix stable matching problems with “TYPED”
to indicate that problem instances are expected to be typed. For example, we denote the
problem of finding a maximum size stable matching in a typed instance of SMTI by TYPED
MAX SMTI.

Any instance I of a stable matching problem can be represented using a graph G = (V (G),

E(G)) - sometimes called the acceptability graph of I - where the vertices in V (G) repre-
sent the set of agents in I , and the edges in E(G) represent acceptability between pairs of
agents. A matching of the agents in I corresponds to a matching in G. A complete matching
of the agents in I corresponds to a perfect matching in G. We will require the following
definitions on structural properties of graphs. Let G = (V (G), E(G)) be a graph. Two
vertices u, v ∈ V (G) are said to have the same type if N(u) \ {v} = N(v) \ {u}. We say
that G has neighbourhood diversity w [54] if w is the smallest number such that there exists
a partition of V (G) into w sets such that all the vertices in a set have the same type. The
neighbourhood diversity of a graph can be computed in polynomial time [54]. Each graph
G = (V (G), E(G)) on n vertices has an associated n × n (0,1)-matrix called an adjacency

matrix A = (ai,j), where ai,j = 1 if vivj ∈ E(G), and ai,j = 0 otherwise. The rank of a
matrix is defined as the maximum number of linearly independent rows in the matrix.

4.3 Literature Review

In this section, we survey the literature on stable matching problems. A comprehensive
study of the structural and algorithmic aspects of stable matching is provided by Gusfield
and Irving in [55]. A more recent monograph on the subject is given by Manlove in [56].

In Sections 4.3.1 to 4.3.4, we survey the literature on finding (weakly) stable matchings in
instances of stable matching problems with and without ties and incomplete preference lists.
In Section 4.3.5, we cover results on finding super-stable and strongly stable matchings. In
Section 4.3.6, we survey approximation results for hard variants of stable matching. Sec-
tions 4.3.7 and 4.3.8 cover results on parameterised stable matching problems. In particular,
Section 4.3.8 contains results on typed stable matching problems. In Section 4.3.9, we sur-



CHAPTER 4. COUNTING STABLE MATCHINGS Page 41

vey the small number of results on stable matching problems in which preference lists are
restricted in other ways. Finally, in Section 4.3.10, we examine what is known about count-
ing stable matchings.

4.3.1 Stable Matching

Matching problems first appeared in the literature in a seminal paper of David Gale and
Lloyd Shapley in 1962 [8]. In their paper, the authors describe an O(n2) algorithm - now
known as the Gale-Shapley algorithm - for finding a stable matching admitted by an instance
of SM containing at most n agents. Note that an instance of SM always admits at least one
stable matching [8]. In addition, since preference lists are complete, every stable matching is
complete. In their paper [8], Gale and Shapley also introduce the stable roommates problem,
and describe an example instance which does not admit a stable matching. A paper due to
Irving [9] describes an O(n2) algorithm for finding a stable matching admitted by an instance
of SR, or else reporting that no such matching exists. An O(n log3 n) parallel algorithm for
finding a stable matching (if one exists) in an instance of SR is given by Feder et al. in [57].

4.3.2 Stable Matching with Ties

Every instance of SMT admits at least one stable matching [58]. Given an instance of SMT, a
stable matching can be obtained in polynomial time by breaking ties arbitrarily and then ap-
plying the Gale-Shapley algorithm [58]. In [59], Ronn showed that the problem of deciding
whether an instance or SRT admits a stable matching is NP-complete.

4.3.3 Stable Matching with Incomplete Preference Lists

In their seminal paper, Gale and Shapley also show that every instance of HR (and hence
SMI) admits at least one stable matching [8]. In their book, Gusfield and Irving [55] show
that a polynomial-time variation of the Gale-Shapley algorithm finds a stable matching ad-
mitted by an instance of SMI. A well-known “cloning technique” [55] can be used to trans-
form an instance of HR into an instance of SMI in polynomial time. It follows that the
extended Gale-Shapley algorithm due to Gusfield and Irving can also be used to find a stable
matching admitted by an instance of HR.

The Rural Hospitals Theorem [60, 6, 61] states that for any instance of HR, the same set
of residents are assigned in all stable matchings, each hospital is assigned the same number
of residents in all stable matchings, and any hospital that has spare capacity in one stable
matching is assigned exactly the same set of residents in all stable matchings. It follows



CHAPTER 4. COUNTING STABLE MATCHINGS Page 42

that the set of stable matchings admitted by an instance of HR (or SMI) all have the same
cardinality.

We saw that an instance of SRI need not admit a stable matching [8]. However, if a stable
matching exists, then all stable matchings have the same cardinality and match the same set
of agents [55]. In [55], Gusfield and Irving generalised Irving’s polynomial-time algorithm
for finding a stable matching (or reporting that none exists) in an instance of SR [9] to the
setting with incomplete lists.

4.3.4 Stable Matching with Ties and Incomplete Preference Lists

An instance of SMTI always admits a stable matching, and one can be found in polynomial
time using an extension of the Gale-Shapley algorithm [62]. The cloning technique described
previously can be used to transform an instance of HRT into an instance of SMTI. It follows
that we can find a stable matching admitted by an instance of HRT in polynomial time. It
is shown in [59] that the problem of deciding whether an instance of SRTI admits a stable
matching is NP-hard.

An instance of SMTI (and hence both HRT and SRTI) may admit stable matchings of differ-
ent sizes [63]. As such, it is of interest to find a maximum cardinality stable matching in this
setting. The problem of finding a maximum size stable matching admitted by an instance
of SMTI is NP-hard even in the severely restricted case where ties are present in the men’s
preference lists only, the ties are all at the end of lists, there is at most one tie per list, and
each tie is of length 2 [10]. It follows that MAX SRTI and MAX HRT are also NP-hard in
general.

4.3.5 Super-Stable and Strongly Stable Matchings

There exist instances of SMT such that no super-stable or strongly stable matching ex-
ists [58]. Given any instance of HRT such that a super-stable matching exists, the Rural
Hospitals Theorem applies to the set of all super-stable matchings [64]. In [65], it was shown
that all strongly stable matchings admitted by an instance of HRT are of equal cardinality. It
follows from [66] that for instances of SRTI (and hence SMTI) which admit a super-stable
matching, all super-stable matchings match exactly the same set of agents. In [67], it is
shown that the same is true under strong stability.

The problem of finding a strongly stable matching admitted by an instance of SRTI (or
reporting that none exists) is solvable in time O(nm) [68] where n and m are the number
of vertices and edges respectively in the acceptability graph constructed from the problem
instance. It was shown in [66] that the problem of finding a super-stable matching (if one



CHAPTER 4. COUNTING STABLE MATCHINGS Page 43

exists) in an instance of SRTI is solvable in time O(m). It follows that the problems of
finding a (maximum-cardinality) strongly stable or super-stable matching admitted by an
instance of SMTI are solvable in time O(nm) and O(m) respectively. An O(m) algorithm
for finding a super-stable matching or reporting that none exists for an instance of HRT was
given by Irving et al. in [64]. The same authors describe an O(nm) algorithm in [69] for
finding a strongly stable matching admitted by an instance of HRT.

4.3.6 Approximation Algorithms for Stable Matching

Given that many of the key stable matching problems are NP-hard, it is natural to ask about
the existence of efficient approximation algorithms for these problems. Given an instance
of MAX HRT, two stable matchings can differ in size by a factor of at most two [10]. As a
consequence, a variant [10] of the Gale-Shapley algorithm can be used to approximate MAX
HRT within a factor of two. In [70], it is shown that MAX SMTI cannot be approximated
within a factor of less than 21/19 unless P = NP, even if ties occur only in the men’s pref-
erence lists [70]. In [71], McDermid proved the existence of a 3/2-approximation algorithm
for MAX SMTI. A 3/2-approximation algorithm for MAX HRT is described in [72]. In [66],
Irving and Manlove prove that MAX SRTI is also approximable within a factor of two.

4.3.7 Parameterised Stable Matching Problems

An alternative approach to tackling NP-hard stable matching problems is to search for pa-
rameterisations of these problems which yield efficient parameterised algorithms. In [73],
Adil et al. prove that MAX SMTI is in FPT with respect to solution size, and that MAX
SRTI belongs to XP parameterised by the treewidth [74] of the acceptability graph. Marx
and Schlotter [75] have established that MAX SMTI is in FPT parameterised by the total
length of the ties in agents’ preference lists. On the other hand, they showed that MAX
SMTI is W[1]-hard parameterised by the number of ties, even if the ties are only on one side.

In [76], Bredereck et al. study the parameterised complexity of MAX SRTI with respect to
several structural parameters of the acceptability graph. They show that MAX SRTI is W[1]-
hard when the acceptability graph has bounded treedepth [77], bounded tree-cut width [78],
or disjoint paths modulator number [76]. On the other hand, it is shown that MAX SRTI is
in FPT parameterised by the vertex cover number or feedback edge set number [76] of the
acceptability graph. It is also shown that SRTI belongs to FPT parameterised by the tree-cut
width of the acceptability graph, but is W[1]-hard parameterised by the treedepth or disjoint
paths modulator number of the acceptability graph. In [79] Gupta et al. showed that MAX
SMTI is W[1]-hard parameterised by the treewidth of the acceptability graph.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 44

4.3.8 Typed Stable Matching Problems

Meeks and Rastegari [11] consider the parameterised complexity of stable matching prob-
lems when the set of agents can partitioned into a small number of types. In their paper,
Meeks and Rastegari show that TYPED MAX HRT and TYPED MAX SRTI (and thus
TYPED MAX SMTI) belong to FPT parameterised by the number of agent types. The
authors also consider several generalisations of the notion of agent types. The first general-
isation allows agents of the same type to order their preference lists differently, as long as
the set of available partners of the same type occur consecutively. Under this generalisation,
each of TYPED MAX SRTI, TYPED MAX SMTI and TYPED MAX HRT remain in FPT

parameterised by the number of types. Moreover, if we enforce that preferences over types
are strict, then each of these problems become polynomial-time solvable.

A second generalisation of agent types examined in the paper allows individual agents to
rank a small number of “exceptional” candidates in their preference list without regard to the
candidate’s type. In this setting, TYPED MAX SMTI belongs to FPT when each individual
agent may place at most one exceptional candidate at the top of their preference list. How-
ever, the problem becomes NP-hard if agents are allowed to place two or more exceptional
candidates anywhere in their preference lists when the number of types in the instance is
bounded by a constant. It follows that the problem is not in XP unless P = NP. In addition,
both TYPED MAX SRTI and TYPED MAX HRT are also NP-hard in this setting.

4.3.9 Restrictions on Preference Lists

Models of stable matching in which groups of agents have very similar preferences were first
considered by Scott [67], who introduced a variant of the stable marriage problem called
stable marriage with master lists. In this setting, all agents with the same gender share the
same “master list” of preferences except for unacceptable partners, which may be declared
by individual agents. This variant of stable marriage has also been studied by Irving et
al. in [80]. It is shown that MAX SMTI and many other variants of stable marriage remain
NP-hard in this setting even under severe restrictions [67, 80]. On the other hand, several
variants of stable marriage that are solvable in polynomial time in the original setting can be
solved by faster or simpler algorithms in the setting with master lists.

4.3.10 Counting Stable Matchings

In [12], Irving and Leather show that the problem of counting the number of (weakly) sta-
ble matchings admitted by an instance of stable marriage is #P-complete with respect to
parsimonious reductions. It follows that there can be no polynomial-time algorithm which



CHAPTER 4. COUNTING STABLE MATCHINGS Page 45

counts the number of solutions to an instance of SM in general unless P = NP. Since
counting matchings exactly is hard, it is natural to ask whether we can approximate the
number of stable matchings efficiently. However, it has been shown that the problem of
counting solutions to an instance of SM belongs to a class of problems for which we do not
expect to find efficient approximation algorithms [81, 82]. In particular, we do not expect
to find an FPRAS (defined in Section 2.3.4) for approximately counting stable matchings
in general. In [83], Bhatnagar et al. introduce a model of stable matching whereby agents’
preferences are formed using the k-attribute model, in which agents assign weights to a list
of k attributes. Candidates are then ranked according to their strength in the most important
(highly weighted) attributes. The authors of [81, 84] show that even approximate counting
is hard in this setting, subject to appropriate complexity-theoretic assumptions.

4.4 Contributions

In Section 4.5, we describe an XP algorithm for counting the number of weakly stable match-
ings admitted by an instance of TYPED SMTI parameterised by the number of agent types
needed to describe the instance. Our algorithm broadly involves reducing our problem to
the problem of counting perfect matchings in balanced bipartite graphs with bounded neigh-
bourhood diversity. That the latter problem belongs to XP follows from a result due to Barvi-
nok [85] on the complexity of computing the “permanent” of a square matrix with bounded
rank.

In Section 4.6, we extend the result from Section 4.5 to the stable roommates setting. The
different structure of the acceptability graph in this setting means that we cannot employ
exactly the same approach as in the stable marriage setting. However, with some careful
modifications to this method, we reduce our problem to that of counting perfect matchings in
a general graph. Our result then follows from the existence of an XP algorithm for computing
the “Hafnian” of a square matrix parameterised by the rank of the matrix.

The focus of Section 4.7 is on the complexity of finding and counting strongly stable and
super-stable matchings in the typed setting. Under super-stability, we show that the set of
super-stable matchings for each of TYPED SMTI, TYPED SRTI and TYPED HRT have
strong structural properties when we restrict the number of allowable agent types needed to
describe an instance. In each setting, we will see that these structural properties allow us to
find and count super-stable matchings efficiently. Under strong stability, we show that the
algorithm described in Section 4.6 can be extended to count the number of strongly stable
matchings admitted by an instance of TYPED SRTI.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 46

4.5 #TYPED SMTI is in XP

In this section, we describe an algorithm for counting the number of weakly stable matchings
admitted by an instance of TYPED SMTI. This problem is defined as follows.

#TYPED SMTI

Input: An instance I of TYPED SMTI containing at most n agents with at most k
agent types.

Parameter: k.

Question: How many stable matchings does I admit?

Recall that the problem of counting stable matchings admitted by an instance of stable mar-
riage is #P-complete [12] even when preference lists are complete and do not allow ties.
In what follows, we show that the problem of counting stable matchings admitted by an in-
stance of TYPED SMTI belongs to XP parameterised by the number of agent types needed
to describe the instance. We begin by giving a high-level overview of our proof.

4.5.1 Proof Overview

The main idea of our proof is to reduce our problem to that of counting perfect matchings
in a balanced bipartite graph parameterised by the neighbourhood diversity of the graph.
We first show that the number of matchings admitted by an instance of TYPED SMTI is
equal to the number of matchings meeting certain restrictions on the pairs of types present
in the matching. We will see that the number of matchings meeting these restrictions can
be obtained via an inclusion-exclusion argument from the number of perfect matchings in
(a bounded number of) balanced bipartite graphs constructed from the problem instance.
We show that the neighbourhood diversity of each such graph is bounded by a function of
the number of agent types. In addition, the rank of the adjacency matrix corresponding to
each graph has value at most the neighbourhood diversity of the graph. There exists a well-
known relationship between the number of perfect matchings in a balanced bipartite graph
and the value of the permanent of its biadjacency matrix. Our result then follows from an
XP algorithm due to Barvinok [85] for computing the permanent of a matrix parameterised
by its rank.

Our proof is divided into the following sections. Section 4.5.2 provides some preliminary
definitions and basic lemmas needed to describe our result. Obtaining the reduced row eche-
lon form of the input matrix is the first step of Barvinok’s algorithm. Section 4.5.3 describes
a variation of the Gaussian Elimination method for transforming a matrix into reduced row
echelon form. We provide a specific upper bound on the runtime of this method in order to



CHAPTER 4. COUNTING STABLE MATCHINGS Page 47

obtain a precise bound on the runtime of Barvinok’s algorithm in Section 4.5.4. Finally, in
Section 4.5.5 we describe how to reduce our problem to that of counting perfect matchings in
a bounded number of balanced bipartite graphs each with bounded neighbourhood diversity.

4.5.2 Preliminaries

This section contains some definitions and basic lemmas needed to describe our algorithm.

Definition 4.1. Let G = ((U, V ), E(G)) be a bipartite graph with parts U = {u1, . . . , um}
and V = {v1, . . . , vn}. The biadjacency matrix associated with G is an m × n matrix
B = (bi,j) such that bi,j = 1 if uivj ∈ E(G), and bi,j = 0 otherwise.

Lemma 4.2. Let G = ((U, V ), E(G)) be a bipartite graph with biadjacency matrix B =

(bi,j). The rank of B is at most the neighbourhood diversity of G.

Proof. Let w denote the neighbourhood diversity of G. Since G is bipartite, vertices of the
same type in fact have exactly the same neighbourhood in G. Thus, the rows in B corre-
sponding to vertices of the same type are identical. It follows that there can be a maximum
of w linearly independent rows in B.

Note that it is possible that rows in B corresponding to vertices of different types in V (G)

may be linearly dependent. In this case, the rank of B is less than the neighbourhood diversity
of G. We use Sn to denote the symmetric group containing all permutations of the numbers
in the [n]. Let s ∈ Sn be a permutation of 1, . . . , n. We use s(i) to denote the number at
position i in s for each i ∈ [n].

Definition 4.3 ([86]). Let A = (ai,j) be a real n× n matrix. The permanent of A is defined
as

per(A) =
∑
s∈Sn

n∏
i=1

ai,s(i).

4.5.3 Gaussian Elimination with Complete Pivoting

Barvinok’s algorithm takes as input an n × n matrix A = (ai,j) and an upper bound r on
the rank of A, and returns the value of the permanent of A. As an intermediary step of the
algorithm, we must obtain the reduced row echelon form of the matrix. In this section, we
describe a variant of the Gaussian elimination method, known as Gaussian elimination with
complete pivoting, used for transforming a matrix into reduced row echelon form. Note that
this variant of the Gaussian elimination method is chosen as it is known to prevent large
growth of intermediary values in the reduction process [87]. We provide a detailed analysis



CHAPTER 4. COUNTING STABLE MATCHINGS Page 48

of the runtime of this method, which will be used later to give an explicit upper bound on the
runtime of Barvinok’s algorithm.

Let A = (ai,j) be a matrix. We say that row i of A is a zero-row if all entries in ai are zeros.
If ai contains at least one non-zero entry, then we call the leftmost non-zero entry in ai the
leading coefficient of row i. If all entries in A are zeros then we call A the zero matrix. We
say that A is in row echelon form if all pairs of rows ai and aj in A with i < j are such that

• if ai is a zero-row, then aj is also a zero-row, and

• if neither ai nor aj is a zero-row, then the column ci of the leading coefficient of ai and
the column cj of the leading coefficient of aj are such that cj > ci.

A square matrix (containing the same number of rows as columns) satisfying these condi-
tions is said to be an upper triangular matrix, as all non-zero entries lie on or above the
leading diagonal. We say that a matrix A is in reduced row echelon form if A is in row
echelon form and also

• the leading coefficient of any row which is not a zero-row is equal to one, and

• the leading coefficient of any row which is not a zero-row is the only non-zero entry
in its column.

The following operations on the rows/columns of a matrix are known collectively as elemen-

tary row operations:

• multiplying a row/column by a non-zero constant;

• adding a constant multiple of one row/column to another;

• swapping two rows/columns;

Two matrices are said to be equivalent if one can be transformed into the other via a sequence
of elementary row operations.

Gaussian elimination is a method for transforming any matrix into its equivalent reduced row
echelon form using a sequence of elementary row operations. The first stage of Gaussian
elimination - called forward elimination - reduces the matrix into row echelon form. The
second stage - known as backward substitution - transforms the reduced matrix into reduced
row echelon form. Note that every matrix has a unique reduced row echelon form.

Here we shall use a variation of Gaussian elimination known as Gaussian elimination with

complete pivoting [87]. Let A = (ai,j) be a matrix. The forward elimination of Gaussian
elimination with complete pivoting involves repeatedly selecting an element p, called the
pivot, from the lower right submatrix of A whose entries are not yet in reduced row echelon
form, and rearranging rows and columns of A so that p is the top left element of the subma-
trix. Multiples of the row containing p are then subtracted from every row beneath so that
each of these rows have a zero in the column containing p. This process is repeated until A is



CHAPTER 4. COUNTING STABLE MATCHINGS Page 49

in row echelon form. The first step of the backward substitution stage involves dividing each
row in A containing at least one non-zero entry by the value of its leading coefficient. This
ensures that all leading coefficients are equal to 1. Finally, for each row of A with a leading
coefficient p, we subtract a multiple of this row from each row above to ensure that p is the
only non-zero entry in its column.

In what follows, we describe the Gaussian elimination method with complete pivoting. In
our setting, we apply Barvinok’s algorithm only to binary square matrices. Hence, we shall
assume that the input to our Gaussian elimination algorithm is a binary square matrix A =

(ai,j). We also assume without loss of generality that A is not the zero matrix. In what
follows, we will see that the runtime of our algorithm depends upon the value of the rank
of A. In particular, we will see that the number of “rounds” of both forward and backward
substitution needed are each at most the rank of A. Note that the algorithm also returns the
new positions of the columns from the original matrix in the matrix returned by the algorithm
- this information will be required by the Barvinok algorithm.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 50

Algorithm 1: Gaussian elimination with complete pivoting
input : a non-zero binary n× n matrix A = (ai,j)
output: the reduced row echelon form of A and the new positions p = [p0, . . . , pn−1] of

the columns in A in its reduced row echelon form
1 //Transform A into row echelon form
2 Let p = [p0, . . . , pn−1] contain the current positions in A of the columns from the input

matrix;
3 for 0 ≤ k < n do
4 Find the element x with largest absolute value in the lower right (n− k)× (n− k)

submatrix of A;
5 if x ̸= 0 then
6 Swap rows and columns of A so that x is at position (k, k) and update p;
7 for k < i < n do
8 Subtract ai,k

ak,k
multiples of row k from row i so that ai,k = 0;

9 end
10 else
11 //k is the rank of A;
12 Set r = k;
13 break;
14 end
15 If r has not been assigned a value then set r = n;
16 //Transform A into reduced row echelon form
17 for 0 ≤ k < r do
18 if ak,k ̸= 0 then
19 Divide all entries in row k by ak,k;
20 end
21 end
22 for 1 ≤ k < r do
23 foreach 0 ≤ i < k do
24 Subtract ai,k multiples of row k from row i so that ai,k = 0;
25 end
26 end
27 return A,p;

Observe that since Algorithm 1 performs only elementary row operations on A, the matrix
returned by the algorithm is indeed equivalent to A. In what follows, we prove that Al-
gorithm 1 transforms the input matrix A into reduced row echelon form in time depending
polynomially on the number of rows in A and also on the rank of A.

Lemma 4.4. Let A = (ai,j) be the input to Algorithm 1. The value of r set at either Line 12

or Line 15 is equal to the rank of A.

Proof. Suppose first that we set r = k at Line 12 for some 0 ≤ k < n. It follows that all
elements in the lower right (n − k) × (n − k) submatrix of A are zeros. In addition, the
previous k iterations of the loop at Line 3 have ensured that



CHAPTER 4. COUNTING STABLE MATCHINGS Page 51

• the first k entries in rows k to n− 1 are zeros, and

• for each 0 ≤ i < k, row i has a leading coefficient in column i.

It follows that the first k rows of A are linearly independent and that rows k to n− 1 are zero
rows. Thus, the rank of A is equal to k.

Now suppose that we set r = n at Line 15. Since the loop at Line 3 did not break, we know
that, for all 0 ≤ i < n, the leading coefficient of row i is in column i. It follows that every
row in A is linearly independent. The result follows.

The following lemma proves that the first stage (Lines 3 to 15) of the algorithm transforms
A into row echelon form. The next lemma then proves that the second stage (Lines 17 to 27)
of the algorithm then transforms the reduced matrix into reduced row echelon form.

Lemma 4.5. Let A = (ai,j) be the input to Algorithm 1, and let r denote the rank of A. Let

ℓi denote the column of the leading coefficient in row i of A. Once Line 15 of Algorithm 1 is

reached, the following hold:

• ℓi = i for all 0 ≤ i < r, and

• rows r to n− 1 of A are zero-rows.

Proof. Let ℓi denote the column of the leading coefficient in row i. It follows from Lemma 4.4
that exactly r iterations of the loop at Line 3 complete without breaking. In what follows,
we prove via induction on k, for each 0 ≤ k < r, that after iteration k of the loop at Line 3,
we have that

• ℓi = i for all 0 ≤ i ≤ k, and

• ai,j = 0 for all pairs 0 ≤ i < n and 0 ≤ j ≤ k with j < i.

If r = n then at this point we are done. Otherwise, we show that after iteration r of the loop
at Line 3, we have that

• ℓi = i for all 0 ≤ i < r, and

• rows r to n− 1 are zero-rows.

The result follows.

First consider the base case k = 0. Since A is not the zero matrix, we have that x ̸= 0 at
Line 5. After Line 6 of the first iteration, we have that a0,0 ̸= 0 and hence ℓ0 = 0. In addition,
the loop at Line 7 ensures that ai,0 = 0 for all 0 < i < n and does not change the values of
the elements in the first row of A.

Now suppose that after iteration k, for some 0 ≤ k < r − 1, we have that

(1) ℓi = i for 0 ≤ i ≤ k, and



CHAPTER 4. COUNTING STABLE MATCHINGS Page 52

(2) ai,j = 0 for all pairs 0 ≤ i < n and 0 ≤ j ≤ k such that j < i.

We now consider iteration (k+ 1). Since k < r− 1, and we know that r iterations complete
without breaking, we must have that x ̸= 0 at Line 5 in this iteration. Observe that none of
rows zero to k are altered in iteration (k + 1). Hence, it follows from (2) that ak+1,j = 0

for each 0 ≤ j ≤ k. Thus, after Line 6 of iteration (k + 1), we have that ℓk+1 = (k + 1).
In addition, after subtracting row (k + 1) from all rows beneath, it follows from (1) that we
have ai,j = 0 for all pairs 0 ≤ i < n and 0 ≤ j ≤ k + 1 such that i > j.

It remains to show that, if r < n, then after the final (rth) iteration of the loop at Line 3, we
have that

• ℓi = i for all 0 ≤ i < r, and

• rows r to n− 1 of A are zero-rows.

By Lemma 4.4, since r < n, we must have that x = 0 in the final iteration, so that the loop
breaks immediately. The first condition then follows from the inductive argument above. We
also have that ai,j = 0 for all pairs 0 ≤ i < n and 0 ≤ j < r with j < i. Since ℓi = i

for all 0 ≤ i < r, it follows that the first r rows of A are linearly independent. Suppose for
a contradiction that aq is not a zero-row for some r ≤ q < n. Since ai,j = 0 for all pairs
0 ≤ i < n and 0 ≤ j < r with j < i, we must have that ℓq ≥ r. It follows that row aq is
linearly independent from all of rows a0, . . . , ar−1, a contradiction of the fact that A has rank
r.

It follows from Lemma 4.5 that once Line 15 of Algorithm 1 is reached, the input matrix A

has been transformed into row echelon form. The following lemma proves that Algorithm 1
transforms A into its (unique) reduced row echelon form.

Lemma 4.6. Let A = (ai,j) be the input to Algorithm 1, and let r denote the rank of A. Once

Line 27 of Algorithm 1 is reached, the following hold:

(1) ai,i = 1 for all 0 ≤ i < r, and

(2) ai,j = 0 for all pairs 0 ≤ i < r and 0 ≤ j < r such that i ̸= j, and

(3) rows r to n− 1 of A are zero-rows.

Proof. Let ℓi denote the column of the leading coefficient in row i of A. We consider each
of (1), (2) and (3) in turn. By Lemma 4.5, once Line 15 of Algorithm 1 is reached, the
following hold:

(i) ℓi = i for each 0 ≤ i < r, and and

(ii) rows r to n− 1 of A are zero-rows.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 53

It follows from (i) that ai,i ̸= 0 for each 0 ≤ i < r at Line 15. Hence, after the final iteration
of the loop at Line 17, we have that ai,i = 1 for each 0 ≤ i < r. That is, condition (1) holds
for A at Line 21. Since the loop at Line 22 only subtracts multiples of row i from row j

where i > j, it follows that condition (1) still holds for A at Line 27.

For each 0 ≤ i < r and each 0 ≤ j < i, the loop at Line 23 subtracts sufficiently many
multiples of row i from row j to ensure that aj,i = 0. It follows from (i) and (ii) that row i is
now the only row in A containing a non-zero entry in column i. Since row i is not subtracted
from row j again in the algorithm, it follows that condition (2) holds for A at Line 27.

Finally, since rows r to n− 1 of A are zero-rows at Line 15, and the loop at Line 22 does not
alter any of rows r to n− 1, it follows that condition (3) holds for A at Line 27.

The following corollary follows directly from Lemma 4.6.

Corollary 4.7. Given an n × n non-zero binary matrix A = (ai,j) as input, Algorithm 1

transforms A into reduced row echelon form.

Let A = (ai,j) be the input to Algorithm 1. The following lemmas bound the number of bits
needed to store the elements of A at each stage of the algorithm. We show that all non-zero
intermediate values can be represented as a fraction whose numerator and denominator are
sufficiently small. It follows that we can store each such value using a sufficiently small
number of bits by storing the value of the numerator and the denominator separately. This
will allow us to bound the time required to compute arithmetic operations on such values.
Note that if we instead computed the division of the numerator and denominator then, if the
denominator is not equal to a power of two, we may require a very large number of bits to
store the value. Since the number of perfect matchings in a graph is always an integer, we
do not have to be concerned with returning a non-integer value as the output of our overall
algorithm.

Lemma 4.8. Let A = (ai,j) be the input to Algorithm 1, and let r denote the rank of A.

Between Lines 3 and 15 of the algorithm, the elements of A are such that, for all 0 ≤ i, j <

n, we have that either ai,j = 0 or else ai,j = bi,j/ci,j for some bi,j, ci,j ∈ Z such that

0 < |bi,j| ≤ 24
2(r−1)

and 0 < |ci,j| ≤ 24
2(r−1)

.

Proof. Since the input matrix is binary, the elements of A satisfy the stated bounds prior to
the first iteration of the loop at Line 3. Moreover, it follows from Lemma 4.4 that the values
of the elements change in only the first r iterations of the loop at Line 3. In what follows, we
prove by induction on k for 1 ≤ k ≤ r that, throughout iteration k of the loop at Line 3, for
all pairs 0 ≤ i, j < n such that ai,j ̸= 0, we have that ai,j = bi,j/ci,j for some bi,j, ci,j ∈ Z
such that 0 < |bi,j| ≤ 24

2(k−1) and 0 < |ci,j| ≤ 24
2(k−1) . The result then follows immediately.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 54

First, consider the base case k = 1. Since the input matrix contains at least one non-zero
value, we have that x ̸= 0 at Line 5 in the first iteration. After the swapping of rows and
columns, for each 0 < i < n and each 0 ≤ j < n, we set

ai,j = ai,j −
ai,k
ak,k

ak,j.

Since the input matrix is binary, it follows that the new value of ai,j is such that ai,j ∈
{−1, 0, 1}, so we are done.

Now suppose that, throughout iteration k for some 1 ≤ k ≤ r − 1, for all pairs 0 ≤ i, j < n

such that ai,j ̸= 0, we have that ai,j = bi,j/ci,j for some bi,j, ci,j ∈ Z such that 0 < |bi,j| ≤
24

2(k−1) and 0 < |ci,j| ≤ 24
2(k−1) . We now consider iteration (k + 1). After the swapping

of rows and columns at Line 6, the element ak+1,k+1 has the largest absolute value among
all elements in the lower right (n − k − 1) × (n − k − 1) submatrix of A. Then, for each
k + 1 < i < n and each 0 ≤ j < n, we set

ai,j = ai,j −
ai,k+1

ak+1,k+1

ak+1,j. (4.1)

Note that since x ̸= 0 in this iteration, it follows that ak+1,k+1 ̸= 0, and hence the fraction in
(4.1) is defined. If any of the other values in (4.1) is equal to zero, then the upper bounds on
the numerator on the denominator of the new value of ai,j are lower than they are otherwise,
so we may assume without loss of generality that this is not the case. Then, by our inductive
assumption, we may rewrite (4.1) in fractional form as

bi,j
ci,j

=
bi,j
ci,j

− bi,k+1

ci,k+1

ck+1,k+1

bk+1,k+1

bk+1,j

ck+1,j

=
bi,jci,k+1bk+1,k+1ck+1,j − bi,k+1ck+1,k+1bk+1,jci,j

ci,jci,k+1bk+1,k+1ck+1,j

.

It follows from our inductive assumption that the new value of ai,j is such that either ai,j = 0,
or else ai,j = bi,j/ci,j for some bi,j, ci,j ∈ Z such that 0 < |bi,j| ≤ 24×42(k−1)+1 < 24

2k and
0 < |ci,j| ≤ 24×42(k−1)

< 24
2k .

Lemma 4.9. Let A = (ai,j) be the input to Algorithm 1, and let r denote the rank of A.

Between Lines 17 and 27 of the algorithm, the elements of A are such that for all 0 ≤
i, j < n we have that either ai,j = 0 or else ai,j = bi,j/ci,j for some bi,j, ci,j ∈ Z such that

0 < |bi,j| ≤ 24
3(r−1)

and 0 < |ci,j| ≤ 24
3(r−1)

.

Proof. By Lemma 4.5, once Line 15 of Algorithm 1 is reached, rows r to n − 1 of A are
zero-rows. Observe that Lines 17 to 27 change only the values of the elements in the first r
rows of A. Hence, we only need to show that the elements in the first r rows of A satisfy the
stated bounds. By Lemma 4.8, once Line 15 of Algorithm 1 is reached, for all 0 ≤ i < r



CHAPTER 4. COUNTING STABLE MATCHINGS Page 55

and 0 ≤ j < n such that ai,j ̸= 0 we have that ai,j = bi,j/ci,j for some bi,j, ci,j ∈ Z such that
0 < |bi,j| ≤ 24

2(r−1) and 0 < |ci,j| ≤ 24
2(r−1) .

First consider the loop at Line 17. For each 0 ≤ k < r and each 0 ≤ j < n, we set ak,j =
ak,j/ak,k. It follows from Lemma 4.8 that, after the loop at Line 17, either ak,j ̸= 0 or else
ak,j = bk,j/ck,j for some bk,j, ck,j ∈ Z such that 0 < |bk,j| ≤ 24

2r−1 and 0 < |ck,j| ≤ 24
2r−1 .

We now consider the loop at Line 22. Since the loop at Line 22 only subtracts multiples
of row k from row j with k > j, it follows that between Lines 22 and 27 we continue to
have that ai,i = 1 for all 0 ≤ i < r. In what follows, we prove by induction on k, for
1 ≤ k < r, that throughout the kth iteration of the loop at Line 22, for all pairs 0 ≤ i < r

and 0 ≤ j < n such that ai,j ̸= 0, we have that ai,j = bi,j/ci,j for some bi,j, ci,j ∈ Z such
that |bi,j| ≤ 24

(k−1)+2r−1 and 0 < c ≤ 24
(k−1)+2r−1 . Since k < r, the result follows.

The base case k = 1 follows from the bound provided above on the values of the elements
after the loop at Line 17. Now suppose that throughout the kth iteration of the loop at
Line 22, for some 1 ≤ k < r − 1, for all pairs 0 ≤ i < r and 0 ≤ j < n such that ai,j ̸= 0,
we have that ai,j = bi,j/ci,j for some bi,j, ci,j ∈ Z such that 0 < |bi,j| ≤ 24

(k−1)+2r−1 and
0 < |ci,j| ≤ 24

(k−1)+2r−1 . We now consider the (k + 1)th iteration. For each 0 ≤ i < k + 1

and each 0 ≤ j < n, at Line 24 we set

ai,j = ai,j − ai,kak+1,j. (4.2)

If any of the values on the right-hand side of (4.2) are nonzero, then the upper bounds on the
numerator and denominator of the new value of ai,j are lower than they would be otherwise,
so we may assume without loss of generality that this is not the case. Then, we may rewrite
(4.2) in fractional form as

bi,j
ci,j

=
bi,jci,k+1ck+1,j − bi,k+1bk+1,jci,j

ci,jci,k+1ck+1,j

.

It follows from our inductive assumptions that the new value of ai,j is such that either ai,j = 0

or else ai,j = bi,j/ci,j for some bi,j, ci,j ∈ Z such that

0 < |bi,j| ≤ 2× (24
(k−1)+2r−1

)3 < 24
k+2r−1

and

0 < |ci,j| ≤ (24
(k−1)+2r−1

)3 < 24
k+2r−1

.

The result follows.

The following corollary follows from Lemmas 4.8 and 4.9.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 56

Corollary 4.10. Let A = (ai,j) be the input to Algorithm 1, and let r denote the rank of A.

The matrix B = (bi,j) returned by the algorithm is such that, for all 0 ≤ i, j < n, we have

that either bi,j = 0 or else bi,j = b/c for some b, c ∈ Z such that 0 < |b| ≤ 24
3(r−1)

and

0 < |c| ≤ 24
3(r−1)

.

We are now ready to describe an upper bound on the runtime of Algorithm 1. The first lemma
bounds the time required to transform the matrix into row echelon form. The second lemma
then bounds the runtime of the overall algorithm.

Lemma 4.11. Let A = (ai,j) be an n × n binary matrix with rank r. Given A as input,

Lines 3 to 15 of Algorithm 1 take time O(rn244r).

Proof. It follows from Lemma 4.4 that there are r iterations of the loop at Line 3 which do not
break. For each 0 ≤ k ≤ r, at Line 4 we find the element in the lower right (n−k)× (n−k)

submatrix of A with the largest absolute value. By Lemma 4.8, between Lines 3 to 15 of
Algorithm 1, the elements of A are such that, for all pairs 0 ≤ i, j < n such that ai,j ̸= 0,
we have that ai,j = bi,j/ci,j for some bi,j, ci,j ∈ Z such that 0 < |bi,j| ≤ 24

2(r−1) and
0 < |ci,j| ≤ 24

2(r−1) . We can compare the value of two such elements by multiplying the
numerator of each by the denominator of the other and comparing the values of the products.
This can be achieved in time

O(2× (42(r−1) × 42(r−1)))

= O(44(r−1)) (4.3)

Since finding the largest element in an n × n matrix involves at most n2 comparisons, it
follows from (4.3) that Line 4 takes time

O(n244(r−1)) (4.4)

for each 0 ≤ k < r.

For each 0 ≤ k < r, at Line 8, we set

ai,j = ai,j −
ai,k
ak,k

ak,j (4.5)

for each k < i < n and each 0 ≤ j < n. Since ak,k ̸= 0, the fraction in (4.5) is valid. If
any other term on the right-hand side is zero, then the equation simplifies and the runtime of
computing the new value is reduced, so we may suppose without loss of generality that this
is not the case. It then follows from Lemma 4.8 that we can rewrite (4.5) as

ai,j =
bi,jci,k+1bk+1,k+1ck+1,j − bi,k+1ck+1,k+1bk+1,jci,j

ci,jci,k+1bk+1,k+1ck+1,j

(4.6)



CHAPTER 4. COUNTING STABLE MATCHINGS Page 57

where, for all 0 ≤ i′, j′ < n, we have that bi′,j′ , ci′,j′ ∈ Z where 0 < |bi′,j| ≤ 24
2(r−1) and

0 < |ci′,j′| ≤ 24
2(r−1) . It follows that each of the products in (4.6) is an integer a such that

0 < |a| ≤ (24
2(r−1)

)4 = 24
2r−1

.

It follows that computing all three products in (4.6) takes time

O(3× 3× (42(r−1) × 42r−1))

= O(44r).

In addition, the subtraction in (4.6) can be computed in time O(42r). It follows that comput-
ing the new value of ai,j (and storing the numerator and denominator separately) takes time
O(44r). Hence, the loop at Line 7 takes time

O(n244r). (4.7)

Finally, it follows from (4.4) and (4.7) that Lines 3 to 15 of Algorithm 1 take time

O(r × (n242(r−1) + n244r))

= O(rn244r).

The following lemma bounds the runtime of Algorithm 1.

Lemma 4.12. Let A = (ai,j) be an n × n binary matrix with rank r. Given A as input,

Algorithm 1 returns the reduced row echelon form of A in time O(r2n246r).

Proof. By Corollary 4.7, given A = (ai,j) as input, Algorithm 1 returns the reduced row
echelon form of A. By Lemma 4.11, Lines 3 to 15 of Algorithm 1 take time O(rn244r). In
what follows, we show that Lines 17 to 27 take time O(r2n46r). The result follows.

By Lemma 4.9, between Lines 17 and 27 of Algorithm 1, each element ai,j is such that
either ai,j = 0 or else ai,j = bi,j/ci,j for some bi,j, ci,j ∈ Z such that 0 < |bi,j| ≤ 24

3(r−1) and
0 < |ci,j| ≤ 24

3(r−1) . It follows that between Lines 17 and 27 of Algorithm 1, the numerator
and denominator of each element of A can be represented using O(43(r−1)) bits each.

We first consider the runtime of the loop at Line 17. For each 0 ≤ k < r and each 0 ≤ j < n,
calculating the new value of ak,j requires multiplying the numerator of (the old value of) ak,j
by the denominator of ak,k, and multiplying the numerator of ak,k by the denominator of (the



CHAPTER 4. COUNTING STABLE MATCHINGS Page 58

old value of) ak,j . It follows that calculating the new value of ak,j takes time

O(2× (43(r−1))2)

= O(46(r−1))

for each 0 ≤ k < r and each 0 ≤ j < n. Hence, the loop at Line 17 takes time

O(46(r−1)rn). (4.8)

We now consider the runtime of the loop at Line 22. For each 1 ≤ k < r, each 0 ≤ i < k

and each 0 ≤ j < n, we set

ai,j = ai,j − ai,kak,j. (4.9)

Note that if either ai,k = 0 or ak,j = 0, then we do not change the value of ai,j , so we may
suppose without loss of generality that this is not the case. It follows from Lemma 4.9 that
we can rewrite (4.9) in fractional form as

bi,j
ci,j

=
bi,jci,kck,j − bi,kbk,jci,j

ci,jci,kck,j
(4.10)

where, for each 0 ≤ i′, j′ < n, we have that bi′,j′ , ci′,j′ ∈ Z where 0 < |bi′,j′| ≤ 24
3(r−1) and

0 < |ci′,j′| ≤ 24
3(r−1) . It follows that the value of each product in (4.10) is an integer a such

that 0 < |a| ≤ (24
3(r−1)

)3 < 24
3r . Hence, calculating all three products in (4.10) takes time

O(3× 3× (43(r−1) × 43r))

= O(46r).

Computing the subtraction in (4.10) takes time O(43r). Hence, computing the new value of
ai,j takes time O(46r). It follows that the loop at Line 22 takes time

O(r2n46r). (4.11)

It follows from (4.8) and (4.11) that Lines 17 to 27 of Algorithm 1 take time

O(rn46(r−1) + r2n46r)

= O(r2n46r).



CHAPTER 4. COUNTING STABLE MATCHINGS Page 59

4.5.4 Computing the Permanent

In this section, we describe Barvinok’s XP algorithm [85] for computing the permanent of a
square matrix parameterised by the rank of the matrix. The original runtime bound for the
algorithm provided in [85] contains an unknown constant in the exponent of n. Here, we
bound the runtime precisely.

Let A = (ai,j) be an n× n matrix with rank r. A matrix factorisation is a factorisation of a
matrix into a product of matrices. Since A has rank r, there exists a matrix factorisation of
A into a product CB, where C = (ci,j) is an n× r matrix, and B = (bi,j) is an r×n matrix.
We may then define two polynomials L and R, whose coefficients are entries from B and
C respectively. Barvinok’s algorithm computes the value of per(A) from the values of the
coefficients in the expansions of each of L and R. We note that in [85], the input matrix is
factorised into two n × n matrices P and Q. However, the algorithm uses terms from only
the top left r × n submatrix of P , and the top left n × r submatrix of Q. Hence, we may
instead factorise A into an r × n and an n× r matrix.

Let A = (ai,j) be an n × n matrix with rank r. Since we will apply Barvinok’s algorithm
only to binary matrices, we shall assume that A is binary. We also assume without loss
of generality that A is not the zero matrix. We note that no specific factorisation of A is
provided in [85]. Here, we use the following factorisation described by Piziak and Odell
in [88]. Let D = (di,j) be the reduced row echelon form of A, and let p = [p0, . . . , pn−1]

denote the order in which the columns of A appear in D. Let B = (bi,j) be the r × n matrix
obtained from D by removing all zero-rows. Let C = (ci,j) be the n × r matrix containing
those columns of A which correspond (via p) to columns containing leading coefficients in
D. Note that the columns in C should appear in the same relative order in which they appear
in A. We have that CB = A.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 60

Let αn
r denote the set containing all sets α = {α1, . . . , αr} of r non-negative integers whose

sum is equal to n. The following algorithm describes Barvinok’s method for computing the
permanent of an n× n binary matrix A with rank r using the factorisation of A provided by
Piziak and Odell. Note that we obtain the reduced row echelon form of A using Algorithm 1
from Section 4.5.3.

Algorithm 2: Computing the Permanent
input : a binary square matrix A = (ai,j) with rank r

output: the value p of the permanent of A
1 Let (D = (di,j),p) be the output of Algorithm 1 with input A;
2 Let B = (bi,j) be the matrix obtained from D by removing all zero-rows;
3 Let C = (ci,j) be the matrix obtained from A by removing all columns that do not

contain a leading one in D;
4 Set L(x1, . . . , xr) =

∏n−1
j=0

∑r−1
i=0 bi,jxi+1;

5 Set R(x1, . . . , xr) =
∏n−1

i=0

∑r−1
j=0 ci,jxj+1;

6 Set per(A) = 0;
7 foreach α ∈ αn

r do
8 Let λα be the coefficient of xα1

1 . . . xαr
r in L;

9 Let ρα be the coefficient of xα1
1 . . . xαr

r in R;
10 Increment per(A) by α1! · · ·αr! · λα · ρα;

11 end
12 return per(A);

In the remainder of this section, we describe bounds on the runtime and the size of the
output produced by Algorithm 2. The following lemma describes an upper bound on the
time needed to compute the expansion of L in Algorithm 2, as well as upper and lower
bounds on the values of the coefficients in the expansion.

Lemma 4.13. Let A = (ai,j) be a binary n×n matrix, and let r denote the rank of A. Given

A as input, expanding L at Line 4 of Algorithm 2 takes time

O((n+ r − 1)rn4r346(r−1))

and produces a polynomial

L =
∑

α={α1,...,αr}∈αn
r

bαx
α1
1 . . . xαr

r

such that, for all α ∈ αn
r , we have that either bα = 0, or else bα = b/c for some b, c ∈ Z

such that 0 < |b| ≤ 24
3(r−1)rn(n−1)r(n−1) and 0 < |c| ≤ 24

3(r−1)rn(n−1).

Proof. By Corollary 4.10, the elements of the matrix B = (bi,j) in Algorithm 2 are such that,



CHAPTER 4. COUNTING STABLE MATCHINGS Page 61

for all 0 ≤ i, j < n, we have that either bi,j = 0 or bi,j = b/c for some b, c ∈ Z such that
0 < |b| ≤ 24

3(r−1) and 0 < |c| ≤ 24
3(r−1) . We can write the expansion of L in Algorithm 2 as

L = (b0,0x1 + b1,0x2 + . . .+ br−1,0xr)× · · · × (b0,n−1x1 + b1,n−1x2 + . . . br−1,n−1xr).

(4.12)

In what follows, we prove by induction on k, for 1 ≤ k ≤ n, that multiplying out the first k
brackets of (4.12) takes time

O

(∑
1≤i≤k

(
(i+ r − 1)ri3r346(r−1)

))

and produces a polynomial ∑
α={α1,...,αr}∈αk

r

bαx
α1
1 . . . xαr

r

such that, for all α ∈ αk
r , we have that either bα = 0, or else bα = b/c for some b, c ∈ Z such

that 0 < |b| ≤ 24
3(r−1)rk(k−1)rk−1 and 0 < |c| ≤ 24

3(r−1)rk(k−1). The result follows.

First consider the base case k = 1. In this case, our expansion simply includes the first
bracket of (4.12). It follows from Corollary 4.10 that the values of the coefficients in the
first bracket of (4.12) are such that, for all 1 ≤ i ≤ r, we have that either bi,0 = 0, or else
bi,0 = b/c for some b, c ∈ Z such that 0 < |b| ≤ 24

3(r−1) and 0 < |c| ≤ 24
3(r−1) .

Now suppose that multiplying out the first (k − 1) brackets of (4.12) takes time

O

( ∑
1≤i≤k−1

(
(i+ r − 1)rr3i346(r−1)

))
(4.13)

and produces a polynomial ∑
α={α1,...,αr}∈αk−1

r

bαx
α1
1 . . . xαr

r (4.14)

such that for each α ∈ αk−1
r we have that either bα = 0, or else bα = b/c for some b, c ∈ Z

such that 0 < |b| ≤ 24
3(r−1)r(k−1)(k−2)r(k−2) and 0 < |c| ≤ 24

3(r−1)r(k−1)(k−2). We now
consider the expansion of the first k brackets of (4.12). Expanding the first k brackets of
(4.12) is equivalent to multiplying (4.14) by

(b0,k−1x1 + . . .+ br−1,k−1xr). (4.15)

The first step involves multiplying together pairs of terms from each of (4.14) and (4.15).



CHAPTER 4. COUNTING STABLE MATCHINGS Page 62

By the stars and bars argument, the number of ways to select r non-negative integers whose
sum is equal to (k − 1) is at most

(
k+r−2
r−1

)
. It follows that the number of elements in the

set αk−1
r - and hence the number of distinct terms in the expansion of (4.14) - is at most

(k + r − 2)r. There are at most r terms in (4.15). It follows from Corollary 4.10 that the
numerator and the denominator of each coefficient in (4.15) can each be represented using
O(43(r−1)) bits. By our inductive assumption, the numerator and the denominator of each
coefficient in (4.14) can be represented using O(43(r−1)r(k− 1)(k− 2) + (k− 2) log r) bits
and O(43(r−1)r(k− 1)(k− 2)) bits respectively. It follows that multiplying together a single
pair of terms from each of (4.14) and (4.15) takes time

O((43(r−1)r(k − 1)(k − 2) + (k − 2) log r)× 43(r−1) + 43(r−1)r(k − 1)(k − 2)× 43(r−1))

= O(46(r−1)r(k − 1)(k − 2)).

Hence, multiplying all pairs of terms from (4.14) and (4.15) takes time

O(r × (k + r − 2)r × (46(r−1)r(k − 1)(k − 2)))

= O((k + r − 2)rr2(k − 1)(k − 2)46(r−1)). (4.16)

In addition, each coefficient a of the multiplied terms is such that either a = 0 or else a = b/c

for some b, c ∈ Z such that

0 < |b| ≤ 24
3(r−1)(r(k−1)(k−2)+1)rk−2 (4.17)

and

0 < |c| ≤ 24
3(r−1)(r(k−1)(k−2)+1). (4.18)

The second step of the expansion involves collecting like terms. The number of ways to
select r non-negative integers whose sum is equal to k - and hence the number of distinct
terms in the expansion of the first k brackets of (4.12) - is at most (k + r − 1)r. For each of
these terms, there are up to r like terms in the multiplication of (4.14) and (4.15). To sum
the coefficients of each of the like terms, we must first determine a common denominator
between them. The expansion of the first k brackets of (4.12) involves using at most rk
distinct elements from the matrix B. It follows that to produce a common denominator
among the coefficients of the (at most) r like terms, we need to multiply (the numerator and
denominator of) the coefficient of each of the (at most r) like terms by the denominator of
at most rk distinct elements from B. It follows from Corollary 4.10, (4.17) and (4.18) that,
once we have established a common denominator among the coefficients of the like terms,



CHAPTER 4. COUNTING STABLE MATCHINGS Page 63

each new coefficient a is such that either a = 0 or else a = b/c for some b, c ∈ Z where

0 < |b| ≤ 24
3(r−1)(r(k−1)(k−2)+1)r(k−2) × (24

3(r−1)

)rk

≤ 24
3(r−1)rk(k−1)r(k−2) (4.19)

and

0 < |c| ≤ 24
3(r−1)(r(k−1)(k−2)+1) × (24

3(r−1)

)rk

≤ 24
3(r−1)rk(k−1). (4.20)

Hence, for a particular (distinct) term in the multiplication of (4.14) and (4.15), creating a
common denominator among the coefficients of the like terms takes time

O(r × rk × 43(r−1) × ((43(r−1)rk(k − 1) + (k − 2) log r) + 43(r−1)rk(k − 1)))

= O(r3k2(k − 1)46(r−1)). (4.21)

Finally, we must sum each of the (numerators of) the at most r like terms. It follows from
(4.19) that this takes time

O(r × (43(r−1)rk(k − 1) + (k − 2) log r))

= O(r2k(k − 1)43(r−1)) (4.22)

and, in each case, produces a new numerator b′ such that b′ = 0 or else b′ ∈ Z and

0 < |b′| ≤ r × 24
3(r−1)rk(k−1)r(k−2)

= 24
3(r−1)rk(k−1)r(k−1). (4.23)

Since there are at most (r + k − 1)r distinct terms in the expansion of the first k brackets of
(4.12), it follows from (4.21) and (4.22) that collecting like all terms requires time

O((r + k − 1)r × (r3k2(k − 1)46(r−1)) + (r2k(k − 1)43(r−1)))

= O((r + k − 1)r46(r−1)r3k2(k − 1)). (4.24)

It follows from (4.16) and (4.24) that multiplying (4.14) and (4.15) takes time

O((k + r − 2)rr2(k − 1)(k − 2)46(r−1) + (r + k − 1)r46(r−1)r3k2(k − 1))

= O((r + k − 1)r46(r−1)r3k2(k − 1)). (4.25)

Finally, it follows from (4.13) and (4.25) that multiplying out the first k brackets of (4.12)



CHAPTER 4. COUNTING STABLE MATCHINGS Page 64

takes time

O

(∑
1≤i≤k

(
(i+ r − 1)rr3i346(r−1)

))
.

In addition, it follows from (4.20) and (4.23) that that the value of the coefficient of any term
in the expansion of the first k brackets of (4.12) is either equal to zero or can be written
in the form b/c for some b, c ∈ Z such that 0 < |b| ≤ 24

3(r−1)rk(k−1)r(k−1) and 0 < |c| ≤
24

3(r−1)rk(k−1).

We now consider the time needed to expand the polynomial R in Algorithm 2. Since we
have assumed that the input matrix A is binary, it follows that C is also binary. Hence, we
can use Lemma 4.13 to obtain a rudimentary upper bound on the time needed to expand R

and also on the values of the coefficients in the expanded polynomial.

Lemma 4.14. Let A = (ai,j) be a binary n×n matrix, and let r denote the rank of A. Given

A as input, expanding R at Line 5 of Algorithm 2 takes time

O((n+ r − 1)rn4r346(r−1))

and produces a polynomial

R =
∑

α={α1,...,αr}∈αn
r

cαx
α1
1 . . . xαr

r

such that, for all α ∈ αn
r , we have that either cα = 0, or else cα = a/b for some a, b ∈ Z

such that 0 < |a| ≤ 24
3(r−1)rn(n−1)r2(n−1) and 0 < |b| ≤ 24

3(r−1)rn(n−1).

In the following lemma, we bound the time needed to compute the value added to p at Line 10
of Algorithm 2 at each iteration.

Lemma 4.15. Let A = (ai,j) be a binary n × n matrix with rank r. For each α ∈ αn
r , the

value of α1! . . . αr! · λα · ρα can be computed in time O(46rr2n2(n − 1)2). In addition, the

value is either equal to zero or else can be written in the form b/c for some b, c ∈ Z such

that 0 < |b| ≤ 24
3rrn(n−1)r2(n−1)nn and 0 < |c| ≤ 24

3rrn(n−1).

Proof. Observe that if, for any α ∈ αn
r , we have that λα = 0 or ρα = 0, then we do nothing

in that iteration. Thus, we may suppose without loss of generality that this is not the case. It
follows from Lemmas 4.13 and 4.14 that, for each α ∈ αn

r , we have that

• λα = b/c for some b, c ∈ Z such that 0 < |b| ≤ 24
3(r−1)rn(n−1)r(n−1) and 0 < |c| ≤

24
3(r−1)rn(n−1), and



CHAPTER 4. COUNTING STABLE MATCHINGS Page 65

• ρα = b/c for some b, c ∈ Z such that 0 < |b| ≤ 24
3(r−1)rn(n−1)r(n−1) and 0 < |c| ≤

24
3(r−1)rn(n−1).

It follows that, for each α, computing the value of the product λα · ρα takes time

O(2× ((43(r−1)rn(n− 1) + 2(n− 1) log r)2)

= O(46(r−1)r2n2(n− 1)2) (4.26)

and produces a value a such that either a = 0 or else a = b/c for some b, c ∈ Z such that

0 < |b| ≤ 22×43(r−1)rn(n−1)r2(n−1)

< 24
3rrn(n−1)r2(n−1) (4.27)

and

0 < |c| ≤ 22×43(r−1)rn(n−1)

< 24
3rrn(n−1). (4.28)

For each α, we have that 0 ≤ αi ≤ n for all 1 ≤ i ≤ r. It follows from [89] that we can
compute the value of αi! in time O(n2) for each 1 ≤ i ≤ r. In addition, for each α, we have
that

α1 + . . .+ αr ≤ n

and hence

α1! . . . αr! ≤ nn. (4.29)

It follows that, for each α ∈ αn
r , we can compute the value of α1! . . . αr! in time

O(r × (n2 + (n log n)2)) = O(rn2 log2 n). (4.30)

It follows from (4.27) and (4.29) that computing the product of α1! . . . αr! and λα · ρα takes
time

O((43rrn(n− 1) + 2(n− 1) log r)× n log n)

= O(43rrn2(n− 1) log n). (4.31)

It follows (4.26), (4.30) and (4.31) that, for each α ∈ αn
r , the value of α1! . . . αr! · λα · ρα can



CHAPTER 4. COUNTING STABLE MATCHINGS Page 66

be computed in time

O(46(r−1)r2n2(n− 1)2 + rn2 log2 n+ 43rrn2(n− 1) log n)

= O(46rr2n2(n− 1)2).

Finally, it follows from (4.27), (4.28) and (4.30) that, for each α ∈ αn
r , either α1! . . . αr! ·

λα · ρα = 0, or else its value can be expressed as a fraction b/c for some b, c ∈ Z such that
0 < |b| ≤ 24

3rrn(n−1)r2(n−1)nn and 0 < |c| ≤ 24
3rrn(n−1).

In the next lemma, we use the bounds from Lemma 4.15 to bound the runtime of the loop at
Line 7 of Algorithm 2.

Lemma 4.16. Let A = (ai,j) be a binary n×n matrix with rank at most r. Given A as input,

the loop at Line 7 of Algorithm 2 takes time O(46rr2n2(n− 1)2(n+ r − 1)3r).

Proof. There are at most
(
n+r−1
r−1

)
sets in the set αn

r . It follows that there are at most (n +

r − 1)r iterations of the loop at Line 7. Let K denote the number of iterations of the loop at
Line 7, where K ≤ (n + r − 1)r. In order to bound the runtime of the loop at Line 7, we
must first bound the value of the summation. By Lemma 4.15, for each α ∈ αn

r , the value
of α1! . . . αr! · λα · ρα is either is equal to zero or else can be written as a fraction b/c for
some b, c ∈ Z such that 0 < |b| ≤ 24

3rrn(n−1)r2(n−1)nn and 0 < |c| ≤ 24
3rrn(n−1). In what

follows, we prove by induction on k, for 1 ≤ k ≤ K that, after the kth iteration of the loop at
Line 7, the value of per(A) is such that either per(A) = 0 or else per(A) = bk/ck for some
bk, ck ∈ Z such that 0 < |bk| ≤ 24

3rrn(n−1)k(k−1)+kr2(n−1)nn and 0 < |ck| ≤ 24
3rrn(n−1)k.

It then follows that the final value of per(A) - if nonzero - can be written as a fraction b/c

for some b, c ∈ Z such that 0 < |b| ≤ 24
3rrn(n−1)(n+r−1)2r+(n+r−1)rr2(n−1)nn and 0 < |ck| ≤

24
3rrn(n−1)(n+r−1)r .

The base case k = 1 follows immediately from the bounds provided in Lemma 4.15. Now
suppose that after the kth iteration, for some 1 ≤ k < K, we have that either per(A) = 0 or
else per(A) = bk/ck for some bk, ck ∈ Z such that 0 < |bk| ≤ 24

3rrn(n−1)k(k−1)+kr2(n−1)nn

and 0 < |ck| ≤ 24
3rrn(n−1)k. It follows from Lemma 4.15 that, during the (k+ 1)th iteration,

we increment the value of per(A) by some value a such that either a = 0 or else a = b/c

for some b, c ∈ Z such that 0 < |b| ≤ 24
3rrn(n−1)r2(n−1)nn and 0 < |c| ≤ 24

3rrn(n−1). After
the summation the new value of per(A) is such that either per(A) = 0 or else per(A) =

bk+1/ck+1 where bk+1 = (bkc + bck) and ck+1 = cck, and hence bk+1, ck+1 ∈ Z. It follows
that

0 < |bk+1| ≤ 2× bkck ≤ 2× 24
3rrn(n−1)k(k−1)+kr2(n−1)nn × 24

3rrn(n−1)k

≤ 24
3rrn(n−1)(k+1)k+(k+1)r2(n−1)nn



CHAPTER 4. COUNTING STABLE MATCHINGS Page 67

and

0 < |ck+1| ≤ 24
3rrn(n−1)k × 24

3rrn(n−1)

= 24
3rrn(n−1)(k+1).

Making use of the above bounds, we now evaluate the runtime. For each α ∈ αn
r , it follows

from Lemma 4.15 that the value of α1! . . . αr! · λα · ρα can be computed in time

O(46rr2n2(n− 1)2). (4.32)

It remains to determine the time needed to add α1! . . . αr! ·λα ·ρα to per(A) at each iteration.
We may assume without loss of generality that α1! . . . αr! · λα · ρα is nonzero (otherwise, we
do nothing in that iteration). It follows from Lemma 4.15 that the value of α1! . . . αr! ·λα ·ρα
at any iteration can be written as a fraction b1/c1 where b1, c1 ∈ Z and the value of each of
b1 and c1 can be stored using O(43rrn(n − 1)) bits. It follows from the above arguments
that the value of per(A) (if nonzero) at any iteration can be written as a fraction b2/c2 where
b2, c2 ∈ Z and the value of each of b2 and c2 can be stored using O(43rrn(n−1)(n+r−1)2r)

bits. The new value of per(A) can then be written as

per(A) =
b1c2 + b2c1

c1c2
.

Hence, for each α ∈ αn
r , computing the new value of per(A) at Line 10 (and storing the

numerator and denominator of the result separately) takes time

O(3× 43rrn(n− 1)× 43rrn(n− 1)(n+ r − 1)2r)

= O(46rr2n2(n− 1)2(n+ r − 1)2r). (4.33)

Finally, it follows from (4.32) and (4.33) that the loop at Line 7 takes time

O((n+ r − 1)r × (46rr2n2(n− 1)2 + 46rr2n2(n− 1)2(n+ r − 1)2r))

= O(46rr2n2(n− 1)2(n+ r − 1)3r).

In the final lemma of this section, we establish an upper bound on the runtime of Barvinok’s
algorithm.

Lemma 4.17. Let A = (ai,j) be a binary non-zero n × n matrix with rank r. Given A as

input, Algorithm 2 returns the permanent of A in time O(46rr2n2(n− 1)2(n+ r − 1)3r).



CHAPTER 4. COUNTING STABLE MATCHINGS Page 68

Proof. By Lemma 4.12, Line 1 of Algorithm 2 takes time

O(r2n246r). (4.34)

It follows from Lemmas 4.13 and 4.14 that Lines 4 and 5 each take time

O((n+ r − 1)rn4r346(r−1)). (4.35)

It follows from Lemma 4.16 that the loop at Line 7 takes time

O(46rr2n2(n− 1)2(n+ r − 1)3r). (4.36)

Finally, it follows from (4.34), (4.35) and (4.36) that Algorithm 2 returns the value of the
permanent of A in time

O(r2n246r + 2× (n+ r − 1)rn4r346(r−1) + 46rr2n2(n− 1)2(n+ r − 1)3r)

= O(46rr2n2(n− 1)2(n+ r − 1)3r).

4.5.5 Reducing Typed Stable Matching to Counting Perfect
Matchings

In this section, we prove that #TYPED SMTI is in XP parameterised by the number of
agent types. To achieve this, we use observations made in the preceding sections to show
that the problem of counting perfect matchings in a balanced bipartite graph belongs to XP

parameterised by the neighbourhood diversity of the graph. We then show that the number
of solutions to an instance of TYPED SMTI can be written in terms of the number of perfect
matchings in each of a bounded number of balanced bipartite graphs whose neighbourhood
diversity is bounded by the number of agent types.

Observe that the biadjacency matrix associated with a balanced bipartite graph is a square
matrix. The following result describes a well-known relationship between the number of
perfect matchings in a balanced bipartite graph and the permanent of its biadjacency matrix.

Theorem 4.18 ([90]). Let G = ((U, V ), E) be a balanced bipartite graph with biadjacency

matrix B. Let P denote the number of perfect matchings in G. We have that

per(B) = P.

By Lemma 4.2, the rank of the biadjacency matrix associated with a bipartite graph is at



CHAPTER 4. COUNTING STABLE MATCHINGS Page 69

most the neighbourhood diversity of the graph. In Lemma 4.17, we described a precise
upper bound on the runtime of Barvinok’s algorithm for computing the permanent of a binary
square matrix with bounded rank. The following corollary follows from Theorem 4.18, as
well as Lemmas 4.2 and 4.17.

Corollary 4.19. Let G = (V (G), E(G)) be a balanced bipartite graph with at most n ver-

tices and neighbourhood diversity at most r. Let P denote the number of perfect matchings

in G. We can determine the value of P in time

O(46rr2n2(n− 1)2(n+ r − 1)3r).

The following lemma due to Meeks and Rastegari [11] shows that the stability of a matching
admitted by an instance of TYPED SMTI depends only upon the pairs of types present in
the matching. Let I be an instance of TYPED SMTI with at most k agent types, and let M
be a matching admitted by I . Let worstM(i) denote the least desirable type of agent (from
the perspective of type i) matched to any agent of type i in M . If a woman w with type i is
unmatched in M , then for notational convenience we will say that w is matched to a “dummy
man” of type (k + 1). Similarly, we say that an unmatched man is matched to a “dummy
woman” of type (k+2). Note that type (k+1) (respectively type (k+2)) is considered less
desirable to each type of woman (respectively man) than any other type.

Lemma 4.20 ([11]). Let I be an instance of TYPED SMTI with at most k agent types. A

matching M in I is stable if and only if there is no pair of types (i, j) ∈ [k]2, with i ̸= j,

such that j ≻i worstM(i) and i ≻j worstM(j).

We call a set T of pairs (i, j) of agent types in I a type set. The size of a type set T , denoted
by |T |, is equal to the number of distinct pairs of types contained in T . We use worstT (i) to
denote the least desirable type (from the perspective of type i) such that the pair (worstT (i), i)
is contained in the type set T . We call a type set T a stable type set if it does not contain any
pair of types (i, j) such that j ≻i worstT (i) and i ≻j worstT (j). We will use T to denote the
set of stable type sets in an instance of TYPED SMTI. The following corollary follows from
Lemma 4.20.

Corollary 4.21. Let I be an instance of TYPED SMTI with at most k agent types. The

stability of a type set in I can be determined in time O(k2).

The following lemma bounds the number of possible type sets in an instance of TYPED
SMTI.

Lemma 4.22. Let I be an instance of TYPED SMTI with at most k agent types. There are at

most 2k(k+1) type sets in I .



CHAPTER 4. COUNTING STABLE MATCHINGS Page 70

Proof. Since there are at most (k + 1) types of women (including the type used to represent
an unmatched man), there are at most 2k+1 ways to select a subset of types of women from
I . Thus, for each type i of the men in I , there are at most 2k+1 ways to choose which types
of women are matched to type i men. Since there are at most k types of men (not including
the type used to represent an unmatched woman), there can be at most 2k(k+1) type sets.

The following corollary follows directly from Corollary 4.21 and Lemma 4.22.

Corollary 4.23. Let I be an instance of TYPED SMTI with at most k agent types. The set T
of stable type sets can be obtained in time O(2k(k+1)k2).

We say that a matching M satisfies a type set T if, for each pair of agents (x, y) ∈ M , we
have that (type(x),type(y)) ∈ T . Note that there may be some pairs (t1, t2) ∈ T such that
there are no pairs (x, y) ∈ M with type(x) = t1 and type(y) = t2. We make the following
observation.

Observation 4.24. Let I be an instance of TYPED SMTI, and let T be a stable type set in
I . Let M be a matching which satisfies T . For any i ∈ [k], we have that

worstM(i) ⪰i worstT (i).

We use MT to denote the set of all matchings which satisfy a type set T . The number of
matchings that satisfy T is denoted by |MT |. We say that a matching M satisfies a type set
T precisely if M satisfies T and, for each pair of types (t1, t2) ∈ T , there is at least one pair
of agents (x, y) ∈ M such that type(x) = t1 and type(y) = t2. We use MT

P to denote the set
of matchings precisely satisfying a type set T . The number of matchings precisely satisfying
T is denoted by |MT

P |. Notice that MT
P is a subset of MT . The following corollary follows

from Observation 4.24.

Corollary 4.25. All matchings precisely satisfying a stable type set are stable.

The following observation follows directly from definitions.

Observation 4.26. Each stable matching precisely satisfies exactly one stable type set.

Corollary 4.25 and Observation 4.26 can be combined to give the following.

Corollary 4.27. Let I be an instance of TYPED SMTI. The number of solutions to I is equal

to
∑

T∈T |MT
P |.

We will see that the problem of calculating the value of |MT | for each T ∈ T can be
reduced to the problem of counting perfect matchings in a balanced bipartite graph whose



CHAPTER 4. COUNTING STABLE MATCHINGS Page 71

neighbourhood diversity is bounded by a function of the number of agent types. However,
since a matching may satisfy more than one stable type set, the sum∑

T∈T

|MT |

over-counts the number of solutions. In the next lemmas, we describe how to efficiently
obtain the number of stable matchings admitted by I given the value of |MT | for each
T ∈ T .

We say that a type set T is contained in another type set T ′ if the pairs of types in T form
a proper subset of the pairs of types in T ′. We write this as T ⊂ T ′. The following lemma
describes the relationship between MT

P and MT for any T ∈ T .

Lemma 4.28. Let I be an instance of TYPED SMTI, and let T be a type set in T . We have

that

MT
P = MT \

⋃
T ′⊂T

MT ′

P .

Proof. We proceed by showing that any matching M in I belongs to the set MT
P if and only

if it belongs to the set MT \
⋃

T ′⊂T MT ′
P . In the first direction, suppose that M precisely

satisfies T . By definition M satisfies T , so suppose for a contradiction that M ∈ MT ′
P for

some T ′ ⊂ T . By definition, there exists at least one pair of types (t1, t2) ∈ T which are not
contained in T ′. Since M precisely satisfies T ′, it follows that M does not contain any pair
of matched agents with types t1 and t2, a contradiction.

In the other direction, suppose that

M ∈ MT \
⋃

T ′⊂T

MT ′

P .

Suppose for a contradiction that M does not precisely satisfy T . By Observation 4.26, there
exists a stable type set T ′ which is precisely satisfied by M . Since M satisfies T , it follows
that T ′ ⊂ T . Hence, M is contained in the set

⋃
T ′⊂T MT ′

P , a contradiction.

The following corollary follows from Lemma 4.28 and Observation 4.26.

Corollary 4.29. Let I be an instance of TYPED SMTI, and let T be a type set in T . We have

that

|MT
P | = |MT | −

∑
T ′⊂T

|MT ′

P |.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 72

The following lemma uses the relationship described in Corollary 4.29 to bound the time
needed to extract the number of matchings precisely satisfying a stable type set from the
number of matchings satisfying the type set.

Lemma 4.30. Let I be an instance of TYPED SMTI with at most n agents and k agent types.

Given T and the value of |MT | for each T ∈ T , we can count the number of solutions to I

in time O(2k
2(k+1)2n log n).

Proof. By Corollary 4.27, the number of solutions to I is equal to
∑

T∈T |MT
P |. We first

consider the time needed to extract the value of |MT
P | from the value of |MT | for each

T ∈ T . By Corollary 4.29, we have that

|MT
P | = |MT | −

∑
T ′⊂T

|MT ′

P |. (4.37)

For any T ∈ T , we have that |T ′| < |T | for each T ′ ⊂ T . It follows that if we compute the
value of |MT

P | for each T ∈ T in ascending order of size, then we know the value of |MT ′
P |

for each T ′ ⊂ T when we compute |MT
P |.

Let T be a stable type set in I . Since the number of solutions in I is at most nn, it follows
that the value of each of |MT

P | and |MT | can be represented using at most n log n bits. Since
each stable matching satisfies exactly one stable type set, it follows that the value of the sum
in (4.37) is at most nn. By Lemma 4.22, there are at most 2k(k+1) type sets T ′ such that
T ′ ⊂ T . It follows that computing the value of |MT

P | from the value of |MT | and each
|MT ′

P | takes time O(2k(k+1)n log n). Since there are at most 2k(k+1) stable type sets in T ,

and at most nn solutions in I , it follows from Corollary 4.27 that we can compute the number
of solutions to I in time O(2k

2(k+1)2n log n).

We now describe how to reduce the problem of computing the values |MT | for each T ∈ T
to the problem of counting perfect matchings in a balanced bipartite graph. Let I be an
instance of TYPED SMTI with at most n agents and at most k agent types, and let T be a
stable type set in I . We use nm and nw to denote the number of men and women respectively
in I . Observe that a matching M in I has size in the range 0 ≤ |M | < min(nw, nm).
We will use c to denote the number of unmatched agents in the smaller set. Observe that
0 ≤ c < min(nw, nm). We construct a balanced bipartite graph GT

c = ((U, V ), E) from I ,
T and c as follows. For each man m in I , we add a vertex um to U , and for each woman
w in I , we add a vertex vw to V . We add an additional c + (max(nw, nm) − nm) vertices
to U and c + (max(nw, nm) − nw) vertices to V corresponding to dummy agents. Notice
that |U | = |V |, so GT

c is indeed balanced. Two vertices um and vw are adjacent in GT
c if

and only if the corresponding man-woman pair are such that type(m)type(w) ∈ T . A vertex
is adjacent to the set of dummy agents (of the opposite gender) if the corresponding agent



CHAPTER 4. COUNTING STABLE MATCHINGS Page 73

has type t and either (t, k + 1) ∈ T if the agent is a woman, or (t, k + 2) ∈ T if the agent
is a man. Note that there are no edges in GT

c with both endpoints corresponding to dummy
agents since pairings of such agents are meaningless. We will refer to the graph GT

c as a type

set graph, and we will use |MGT
c
| to denote the number of perfect matchings in GT

c .

Notice that the number of possible type set graphs for an instance of TYPED SMTI with at
most n agents and at most k agent types is bounded by the number of stable type sets in T
(there are at most 2k(k+1), and the number of possible values of c (which is at most n). In
what follows, we show that the number of matchings admitted by I can be obtained directly
from the number of perfect matchings in each possible type set graph. We first make the
following observation of the neighbourhood diversity of a type set graph.

Lemma 4.31. Let I be an instance of TYPED SMTI with at most k agent types, and let T be

a type set in T . For each 0 ≤ c < min (nw, nm), the type set graph GT
c has neighbourhood

diversity at most (k + 2).

Proof. Let Vi denote the set of vertices corresponding to type i agents (including the set of
male and female dummy agents) for each i ∈ [k + 2]. Observe that the neighbourhood of
each vertex in Vi is the same for every such vertex. The result follows.

Let I be an instance of TYPED SMTI and let T be a stable type set in I . The following
lemma describes the relationship between the number of solutions admitted by I of a certain
size which satisfy T , and the number of perfect matchings in the corresponding type set
graph.

Lemma 4.32. Let I be an instance of TYPED SMTI with nw women and nm men, and let T

be a stable type set in T . There are

|MGT
c
|

c!(|nw − nm|+ c)!

matchings of size min(nw, nm)− c which satisfy T .

Proof. In what follows, we show that the set of perfect matchings in GT
c correspond to

c!(|nw − nm| + c)! matchings of size min(nw, nm) − c satisfying T . Let MG be a perfect
matching in GT

c , and let M be the matching admitted by I formed by adding the pair (m,w)

to M if umvw is an edge in MG. By construction, M is a stable matching which satisfies T .
Since GT

c contains (c + (max(nw, nm) − nm) vertices in U and (c + (max(nw, nm) − nw)

vertices in V corresponding to dummy agents (and no pairs of dummy agents are matched



CHAPTER 4. COUNTING STABLE MATCHINGS Page 74

in MG), it follows that M has size

nw + nm − (c+ (max(nw, nm)− nm))− (c+ (max(nw, nm)− nw))

2

=
2nw + 2nm − 2c− 2max(nw, nm)

2

= nw + nm − c−max(nw, nm)

= min(nw, nm)− c.

If each of the dummy agents were distinct, then each perfect matching in GT
c would corre-

spond to a unique matching admitted by I . However, we are not concerned about which of
the dummy agents an agent is matched with. Since there are (c+(max(nw, nm)−nm) male
dummy agents, and (c + (max(nw, nm) − nw) female dummy agents, a unique matching
admitted by I will correspond to

(c+ (max(nw, nm)− nw))!(c+ (max(nw, nm)− nm))!

= c!(|nw − nm|+ c)!

distinct perfect matchings in GT
c .

The following corollary follows directly from Lemma 4.32.

Corollary 4.33. Let I be an instance of TYPED SMTI with nw women and nm men, and let

T be a stable type set in T . We have that

|MT | =
∑

0≤c<min(nw,nm)

|MGT
c
|

c!(|nw − nm|+ c)!
.

The following lemma uses the relationship described in Corollary 4.33 to bound the time
needed to count the number of matchings satisfying a particular stable type set.

Lemma 4.34. Let I be an instance of TYPED SMTI with at most n agents and at most k

agent types, and let T be a stable type set in T . The value of |MT | can be calculated in time

O((n+ k + 1)3(k+2)n3(n− 1)2k246k)).

Proof. By Corollary 4.33, we have that

|MT | =
∑

0≤c<min(nw,nm)

|MGT
c
|

c!(|nw − nm|+ c)!
. (4.38)

We first bound the time needed to calculate the value of each individual term in the sum.
Since c ≤ n − 1, we can compute the value of c! in time O(n2) [89]. Similarly, since



CHAPTER 4. COUNTING STABLE MATCHINGS Page 75

|nw − nm| ≤ n, we can compute the value of (|nw − nm| + c)! in time O(n2). We can
represent the value of each of c! and (|nw − nm| + c)! using O(n log n) bits. It follows that
computing the value of c!(|nw − nm|+ c)! takes time

O(2n2 + n2 log2 n)

= O(n2 log2 n) (4.39)

and produces an integer value in the range

1 ≤ c!(|nw − nm|+ c)! ≤ nn(2n)2n.

Thus, the value of c!(|nw − nm|+ c)! can be represented using O(n log n) bits.

We construct the graph GT
c from T and c by first adding a vertex to GT

c for each agent in
I , as well as at most 2n vertices corresponding to dummy agents. Hence, constructing the
vertex set of GT

c takes time O(n). For each man-woman pair (m,w) in I , we add the edge
umvw to GT

c if and only if (type(m)type(w)) ∈ T . Since T contains at most (k + 1)2 pairs
of types (including dummy types), it follows that for each such pair (m,w), we can decide
whether to add the edge umvw to GT

c in time O(k2). There can be at most 2n pairs of agents.
Hence, adding the edges to GT

c takes time O(nk2). Thus, constructing GT
c takes time

O(n+ nk2)

= O(nk2).

By Corollary 4.19, we can count the number of perfect matchings in a balanced bipartite
graph with at most n vertices and neighbourhood diversity at most r in time

O((n+ r − 1)3rn2(n− 1)2r246r).

By Lemma 4.31, for each 0 ≤ c < min(nw, nm), the graph GT
c has neighbourhood diversity

at most (k + 2). Hence, we can count the number of perfect matchings in GT
c in time

O((n+ k + 1)3(k+2)n2(n− 1)2k246k). (4.40)

Since there are at most nn perfect matchings admitted by any n vertex graph, we have that
0 ≤ |MGT

c
| ≤ nn for any 0 ≤ c < min(nw, nm). Hence, the value of |MGT

c
| can be

represented using O(n log n) bits. It then follows from (4.39) to (4.40) that, for each 1 ≤



CHAPTER 4. COUNTING STABLE MATCHINGS Page 76

c < min(nw, nm), the value of

|MGT
c
|

c!(|nw − nm|+ c)!

can be determined in time

O(n2 log2 n+ nk2 + (n+ k + 1)3(k+2)n2(n− 1)2k246k + n2 log2 n)

= O((n+ k + 1)3(k+2)n2(n− 1)2k246k). (4.41)

It remains to consider the time needed to compute the sum in (4.38). By definition, the
value of |MT | is a positive integer with value at most nn. By definition, all values in the
summation are positive integers and must therefore also have value at most nn. Since c takes
up to n distinct values, it follows from (4.41) that calculating the value of |MT | takes time

O(n× ((n+ k + 1)3(k+2)n2(n− 1)2k246k + n log n))

= O((n+ k + 1)3(k+2)n3(n− 1)2k246k).

We are now ready to prove our main result.

Theorem 4.35. Let I be an instance of TYPED SMTI with at most n agents and at most k

agent types. We can count the number of stable matchings admitted by I in time O(2k
2(k+1)2(n+

k + 1)3(k+2)n3(n− 1)2k246k).

Proof. By Corollary 4.23, we can obtain the set T of stable type sets in time

O(2k(k+1)k2). (4.42)

By Lemma 4.30, given the value of |MT | for each T ∈ T , we can count the number of
solutions to I in time

O(2k
2(k+1)2n log n). (4.43)

By Lemma 4.22, the set T of stable type sets has size at most 2k(k+1). Thus, it follows from
Lemma 4.34 that we can calculate the value of |MT | for every T ∈ T in time

O(2k(k+1)(n+ k + 1)3(k+2)n3(n− 1)2k246k). (4.44)



CHAPTER 4. COUNTING STABLE MATCHINGS Page 77

Finally, it follows from (4.42), (4.43) and (4.44) that solving #TYPED SMTI takes time

O(2k(k+1)k2 + 2k(k+1)(n+ k + 1)3(k+2)n3(n− 1)2k246k + 2k
2(k+1)2n log n)

= O(2k
2(k+1)2(n+ k + 1)3(k+2)n3(n− 1)2k246k).



CHAPTER 4. COUNTING STABLE MATCHINGS Page 78

4.6 #TYPED SRTI is in XP

In this section, we consider the problem of counting solutions to an instance of TYPED
SRTI. We define this problem as follows.

#TYPED SRTI

Input: An instance I of TYPED SRTI containing at most n agents with at most k
agent types.

Parameter: k.

Question: How many stable matchings does I admit?

In what follows, we prove that #TYPED SRTI belongs to XP parameterised by the number
of types needed to describe an instance. The proof of this result follows a broadly similar
approach to that of Theorem 4.35.

4.6.1 Proof Overview

As in the SMTI setting, our result is achieved via a reduction to the problem of counting
perfect matchings in graphs with bounded neighbourhood diversity. However, due to the
different definition of stability in this setting, we cannot determine the stability of a matching
by looking only at the pairs of types of agents in the matching - we also need to know how
many pairs of types are realised by more than one pair of agents. Moreover, since agents may
be matched with a partner of the same type, it follows that the acceptability graph associated
with an instance does not necessarily have bounded neighbourhood diversity.

In this setting, a “stable type function” describes the number of pairs of agents that may be
realised by each pair of types in a stable matching. The number of stable type functions in
an instance of TYPED SRTI is bounded by a function of the number of agent types. We will
see that we can count solutions to an instance of TYPED SRTI by counting the number of
matchings which “satisfy” a stable type function. For this, we first count the number of ways
to match together pairs of agents of the same type. We then count the number of ways to
select a single pair of agents (from the remaining set) for each pair of types which can be
realised by at most one pair of agents. It remains to count the number of matchings of the
remaining set of agents by counting perfect matchings in the reduced acceptability graph.
We will see that this graph has bounded neighbourhood diversity.

For general graphs, counting the number of perfect matchings is computationally equivalent
to computing the “hafnian” of the associated adjacency matrix. Our result then follows from
a result due to Björklund et al. [91], who demonstrated that the problem of computing the
hafnian of a square matrix belongs to XP parameterised by the rank of the matrix. Note that



CHAPTER 4. COUNTING STABLE MATCHINGS Page 79

we do not analyse the time needed to compute the hafnian at the same level of detail as we
did for computing the permanent in Section 4.5. As a consequence, in this setting our final
runtime bound contains an unknown constant.

In Section 4.6.2, we show that the number of solutions to an instance of TYPED SRTI can
be written in terms of the number of matchings satisfying each stable type function. In Sec-
tion 4.6.3, we show how to count the number of matchings satisfying a stable type function.
Finally, in Section 4.6.4 we use these results to describe a reduction from #TYPED SRTI to
the problem of counting perfect matchings in a graph parameterised by the neighbourhood
diversity of the graph.

4.6.2 Stable Type Functions

In this section, we show that the stability of a matching admitted by an instance of TYPED
SRTI can be described by a function from the set of pairs of types to the number of pairs of
matched agents with these types. Akin to the role of stable type sets from the stable marriage
setting, type functions allow us to describe the number of solutions in terms of the number
of matchings satisfying each possible stable type function.

Let I be an instance of TYPED SRTI with at most k agent types, and let M be a matching
admitted by I . If an agent x with type i is unmatched under M , then for notational conve-
nience we may say that x is matched to a dummy agent of type (k+1). Note that type (k+1)

is considered less desirable to each type of agent than any other type in their preference list.
Let worstM(i) and second worstM(i) denote the types of the least desirable and second least
desirable agents matched to any agent of type i in M . If there is only one agent of type i, then
we set second worstM(i) = ∅. Note that if there are two (or more) pairs (x, y) and (x′, y′)

in M such that type(x) = type(x′) = i and type(y) = type(y′) = worstM(i) then we have
that worstM(i) = second worstM(i). The following result due to Meeks and Rastegari [11]
defines the stability of a matching admitted by I in terms of the values of worstM(i) and
second worstM(i) for each i ∈ [k].

Lemma 4.36 ([11]). Let I be an instance of TYPED SRTI with at most k agent types. A

matching M in I is stable if and only if

• there is no pair of types (i, j) ∈ [k]2 with i ̸= j such that j ≻i worstM(i) and i ≻j

worstM(j), and

• there is no type i ∈ [k] such that second worstM(i) ̸= ∅ and i ≻i second worstM(i).

It follows from Lemma 4.36 that to determine whether a matching is stable, we need to know
which pairs of types of agents are present in the matching, and also which pairs of types are
realised by more than one pair of agents in the matching. In this setting, we define a type



CHAPTER 4. COUNTING STABLE MATCHINGS Page 80

function as a function f : [k + 1]2 → {0, 1, 2} where, for each (t1, t2) ∈ [k + 1]2, we have
that f(t1, t2) = f(t2, t1) and

• f(t1, t2) = 0 if there are to be no pairs of matched agents with types t1 and t2 respec-
tively, and

• f(t1, t2) = 1 if there may be at most one pair of matched agents with types t1 and t2

respectively, and

• f(t1, t2) = 2 if there may be any number of pairs of matched agents with types t1 and
t2 respectively.

Note that f(k + 1, k + 1) = 0 for any type function f since the type (k + 1) is used to
represent dummy agents. For each type i ∈ [k], we define worstf (i) as least desirable type
of agent from the perspective of type i such that f(i,worstf (i)) ̸= 0. If f(i,worstf (i)) = 1,
then let second worstf (i) be the second least desirable type (from the perspective of type i)
such that f(i, second worstf (i)) ̸= 0. Otherwise, set second worstf (i) = worstf (i). We call
f a stable type function if

• there are no pairs (i, j) ∈ [k]2 with i ̸= j such that j ≻i worstf (i) and i ≻j worstf (j),
and

• there is no type i ∈ [k] such that second worstf (i) ̸= ∅ and i ≻i second worstf (i).

The following observation follows from the fact that we can determine the stability of a type
function by comparing each pair (i, j) of types to the values of worstf (i) and second worstf (i),
and worstf (j) and second worstf (j).

Observation 4.37. Let I be an instance of TYPED SRTI with at most k agent types. The
stability of a type function can be determined in time O(k2).

In the following lemma, we bound the number of possible type functions in terms of the
number of agent types needed to describe an instance.

Lemma 4.38. Let I be an instance of TYPED SRTI with at most k agent types. There are at

most 3k(k+1) type functions over the set of types in I .

Proof. Let f be a type function in I . By definition, we have that f(k + 1, k + 1) = 0. For
each i ∈ [k] and each j ∈ [k + 1], there are at most 3 possible values of f(i, j). It follows
that there can be at most 3k(k+1) type functions.

We use F to denote the set of stable type functions in an instance of TYPED SRTI. The
following corollary bounds the time needed to obtain the set F in an instance of TYPED
SRTI with at most k types, and follows directly from Observation 4.37 and Lemma 4.38.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 81

Corollary 4.39. Let I be an instance of TYPED SRTI with at most k agent types. The set F
of stable type functions can be obtained in time O(3k(k+1)k2).

Let I be an instance of TYPED SRTI. We say that a matching M in I satisfies a type function
f if, for each (t1, t2) ∈ [k]2, we have that

• if f(t1, t2) = 0, then there are no pairs of agents with types t1 and t2 respectively who
are matched together under M , and

• if f(t1, t2) = 1, then there is at most one pair of agents with types t1 and t2 respectively
who are matched together under M .

In addition, for each t ∈ [k], we have that

• if f(t, k + 1) = 0, then all agents of type t are matched under M , and

• if f(t, k + 1) = 1, then there is at most one unmatched agent of type t under M .

We have the following lemma.

Lemma 4.40. Let I be an instance of TYPED SRTI, and let f be a type function in F . Let

M be a matching satisfying f . For any i ∈ [k], we have that

worstM(i) ⪰i worstf (i).

In addition, if second worstM(i) = ∅, then second worstf (i) = ∅. If second worstM(i) ̸=
∅, then

second worstM(i) ⪰i second worstf (i).

Proof. We first consider the values of worstM(i) and worstf (i) for each i ∈ [k]. Suppose
for a contradiction that worstM(i) ≺i worstf (i) for some i ∈ [k]. By definition, the value of
worstM(i) is equal to the least desirable type (from the perspective of type i) such that a pair
of agents of types (i,worstM(i)) are matched together under M . Since we have assumed
worstM(i) ≺i worstf (i), it follows from the definition of f that f(i,worstM(i)) = 0, a
contradiction of the assumption that M satisfies f .

Now suppose that second worstM(i) ≺i second worstf (i), so we must have that second worstf (i)
̸= worstf (i) and second worstM(i)worstM(i) = worstf (i). Since second worstf (i) ̸= worstf (i),
it follows from the definition of f that f(i,worstf (i)) = 1. However, since second worstM(i)

= worstM(i), there must be at least two pairs of matched agents in M with types (i,worstM(i)),
a contradiction of the assumption that M satisfies f .

We shall use Mf to denote the set of matchings admitted by I which satisfy the stable
type function f . The number of matchings satisfying f is denoted by |Mf |. We say that a



CHAPTER 4. COUNTING STABLE MATCHINGS Page 82

matching M in I precisely satisfies a stable type function f if, for each (t1, t2) ∈ [k]2, we
have that

• if f(t1, t2) = 0 then there are no pairs of agents with types t1 and t2 respectively who
are matched together under M , and

• if f(t1, t2) = 1 then there is exactly one pair of agents with types t1 and t2 respectively
who are matched together under M , and

• if f(t1, t2) = 2 then there is more than one pair of agents with types t1 and t2 respec-
tively who are matched together under M .

In addition, for each t ∈ [k], we have that

• if f(t, k + 1) = 0 then there are no unmatched agents of type t under M , and

• if f(t, k + 1) = 1 then there is exactly one unmatched agent of type t under M , and

• if f(t, k + 2) = 2 then there is more than one unmatched agent of type t under M .

We use Mf
P to denote the set of matchings precisely satisfying a stable type function f . The

number of matchings precisely satisfying f is denoted by |Mf
P |. The following Corollary

follows from Lemma 4.40.

Corollary 4.41. All matchings precisely satisfying a stable type function are stable.

The following observation follows directly from definitions.

Observation 4.42. Each stable matching precisely satisfies a unique stable type function.

We can combine Corollary 4.41 and Observation 4.42 to obtain the following relationship
between the number of solutions to instance of TYPED SRTI and the number of matchings
precisely satisfying each stable type function.

Corollary 4.43. Let I be an instance of TYPED SRTI. The number of solutions to I is equal

to
∑

f∈F |Mf
P |.

Let I be an instance of TYPED SRTI. We say that a type function f1 in I is contained in
another type function f2 if, for each pair (t1, t2) ∈ [k+1]2 we have that f1(t1, t2) ≤ f2(t1, t2),
and there exists at least one pair (t1, t2) ∈ [k + 1]2 such that f1(t1, t2) < f2(t1t2). We write
this as f1 ⊂ f2. We say that a type function f1 is smaller than a type function f2 if∑

(t1,t2)∈[k+1]2

f1(t1, t2) <
∑

(t1,t2)∈[k+1]2

f2(t1t2).

Note that each type function f1 contained in a type function f2 is smaller than f2. The
following results describe how to obtain the value of |Mf

P | from the value of |Mf | for each
f ∈ F . We will then show that the problem of calculating the value of |Mf | belongs to XP

parameterised by the number of agent types.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 83

Lemma 4.44. Let I be an instance of TYPED SRTI and let f be a type function in F . We

have that

Mf
P = Mf \

⋃
f ′⊂f

Mf ′

P .

Proof. We proceed by showing that any matching M in I belongs to the set Mf
P if and only

if it belongs to the set Mf \
⋃

f ′⊂f M
f ′

P . In the first direction, suppose that M precisely
satisfies f . By definition M satisfies f , so suppose for a contradiction that M ∈ Mf ′

P for
some f ′ ⊂ f . Since f ′ ⊂ f , there exists at least one pair of types (t1, t2) ∈ [k]2 such that
f ′(t1, t2) < f(t1, t2). It follows that M does not precisely satisfy f , a contradiction.

In the other direction, suppose that M ∈ Mf \
⋃

f ′⊂f M
f ′

P . Suppose for a contradiction that
M does not precisely satisfy f . By Observation 4.42, there exists a type function f ′ which is
precisely satisfied by M . Since M satisfies f , it follows from the definition of containment
that f ′ ⊂ f . Hence, M is contained in the set

⋃
f ′⊂f M

f ′

P , a contradiction.

The following corollary follows from Lemma 4.44 and our earlier observation (Observa-
tion 4.42) that every stable matching precisely satisfies a unique stable type function.

Corollary 4.45. Let I be an instance of TYPED SRTI, and let f be a stable type function in

F . We have that

|Mf
P | = |Mf | −

∑
f ′⊂f

|Mf ′

P |.

The following lemma uses the relationship described in Corollary 4.45 to bound the time
needed to extract the number of matchings precisely satisfying a particular stable type func-
tion from the number of matchings satisfying each stable type function.

Lemma 4.46. Let I be an instance of TYPED SRTI with at most n agents and at most k

agent types. Given F and the value of |Mf | for each f ∈ F , we can count the number of

solutions to I in time O(3k
2(k+1)2n log n).

Proof. By Corollary 4.43, the number of solutions to I is equal to the sum∑
f∈F

|Mf
P |. (4.45)

We first consider the time needed to obtain the value of |Mf
P | for each f ∈ F . By Corol-

lary 4.45, we have that

|Mf
P | = |Mf | −

∑
f ′⊂f

|Mf ′

P |. (4.46)



CHAPTER 4. COUNTING STABLE MATCHINGS Page 84

For any f ∈ F , each type function f ′ contained in f is smaller than f . It follows that if we
compute the value of |Mf

P | for each f ∈ F in ascending order of size, then we know the
value of |Mf ′

P | for each f ′ ⊂ f when we compute |Mf
P |.

The number of solutions in I is at most nn. It follows that the value of each of |Mf
P | and

|Mf | can be represented using at most n log n bits. Since each stable matching precisely
satisfies a unique stable type function, it follows that the value of the sum in (4.46) is at most
nn, and so can also be represented using at most n log n bits. By Lemma 4.38, there are at
most 3k(k+1) stable type functions f ′ such that f ′ ⊂ f . It follows that computing the sum
in (4.46) takes time O(3k(k+1)n log n), and computing the subtraction takes time O(n log n).
Hence, we can compute the value of |Mf

P | in time

O(3k(k+1)n log n+ n log n)

= O(3k(k+1)n log n). (4.47)

Since there are at most 3k(k+1) stable type functions in F , and at most nn solutions in I , it
follows from (4.45) and (4.47) that we can compute the number of solutions to I in time

O(3k(k+1)(3k(k+1)n log n+ n log n))

= O(3k
2(k+1)2n log n).

4.6.3 Counting Matchings Satisfying a Stable Type Function

In this section, we describe how to count the number of matchings satisfying a stable type
function. Let I be an instance of TYPED SRTI with at most n agents and at most k agent
types, and let f be a stable type function in F . To count the number of matchings satisfying
f , we first count the number of ways to assign a subset of agents in I to a partner of their
own type. We then count the number of ways to match together at most one pair of agents
(from the remaining set of agents) of types i and j respectively for each pair (i, j) ∈ [k+1]2

such that i < j and f(i, j) = 1. Finally, we show that the problem of counting the number of
matchings of the remaining set of agents can be reduced to the problem of counting perfect
matchings in a graph with bounded neighbourhood diversity. In the next section, we will
make use of these observations to show that the problem of counting the number of solutions
to I belongs to XP parameterised by the number of agent types.

Let I be an instance of TYPED SRTI with at most n agents and at most k agents types, and
let f be a stable type function in F . We first describe how to count the number of ways in
which a subset of agents in I could be matched with a partner of their own type in a matching



CHAPTER 4. COUNTING STABLE MATCHINGS Page 85

satisfying f . We will require some additional notation. Let ni denote the number of type i

agents in I for each i ∈ [k]. Let d ∈ {0, . . . , n − 1} denote the number of unmatched
agents. Note that a matching in which d agents are unmatched has cardinality (n − d)/2,
so we require that (n − d) is even. For each i ∈ [k], we use mi to denote the number of
pairs of agents of type i who are matched with a partner of their own type. We require that
mi ≤ ⌊ni/2⌋ and mi ≤ f(i, i). In addition, we must have that

∑
i∈[k] mi ≤ (n − d)/2. For

each d ∈ {0, . . . , n − 1} such that (n − d) is even, we define the set M f
d to contain all sets

m = {m1, . . . ,mk} which meet these requirements. Given some m ∈ M f
d , the following

lemma describes the number of ways that we can match a subset of the agents in I to a
partner of their own type.

Lemma 4.47. Let I be an instance of TYPED SRTI with at most n agents and at most k

types, and let f be a stable type function in F . Let d ∈ {0, . . . , n− 1} be such that (n−d) is

even, and let m be a set in M f
d . The number of ways to select

∑
i∈[k] mi pairs of same-type

agents from I containing mi pairs of type i for each i ∈ [k] is equal to

∏
i∈[k]

ni!

(ni − 2mi)!(mi)!2mi

Proof. For each i ∈ [k], we must choose 2mi agents of type i from a set of size ni, and
assign them into unordered pairs. The number of ways to select 2mi items from a set of size
ni is equal to ni!/(ni − 2mi)!. Since we are not interested in the order of the mi pairs, or
the order of the agents within each pair, we must divide this value by (mi)!2

mi . The result
follows.

In the following lemma, we describe an upper bound on the time needed to count the number
of ways to select

∑
i∈[k] mi pairs of same-type agents from I with mi pairs of type i for each

i ∈ [k].

Lemma 4.48. Let I be an instance of TYPED SRTI with at most n agents and at most k

types. Let f be a stable type function in F . Let d ∈ {0, . . . , n − 1} be such that (n − d) is

even, and let m be a set in M f
d . We can count the number of ways to select

∑
i∈[k] mi pairs

of same-type agents from I with mi pairs of type i for each i ∈ [k] in time O(kn2 log2 n).

Proof. By Lemma 4.47, the number of ways to select
∑

i∈[k]mi pairs of same-type agents
from I with mi pairs of type i for each i ∈ [k] is equal to

∏
i∈[k]

ni!

(ni − 2mi)!(mi)!2mi
. (4.48)

Since ni,mi ≤ n, it follows that each of ni!, (ni − 2mi)! and (mi)! can be computed in time
O(n2) [89] and can be represented using at most n log n bits. Computing the value of 2mi



CHAPTER 4. COUNTING STABLE MATCHINGS Page 86

takes time O(n2), and the value can be represented using at most n bits. It follows that the
value of the product (ni − 2mi)!(mi)!2

mi can be represented using O(n log n) bits, and can
be computed in time O(n2 log2 n). It follows that computing the value of each term in (4.48)
takes time O(n2 log2 n). Since each of the at most k terms in (4.48) is a positive integer, and
the overall product has value at most nn, it follows that we can compute the value of (4.48)
in time O(kn2 log2 n).

We now describe how to count the number of ways to match together types of agents from the
remaining set when at most one such pair of allowed. Specifically, let m = {m1, . . . ,mk}
be a set in M f

d . Let Im be the instance formed from removing (any) 2mi agents of type i

from I for each i ∈ [k]. For each pair (i, j) ∈ [k]2 such that i ̸= j and f(i, j) = 1, we
wish to count the number of ways to match together a single pair of agents of type i and
j respectively, given that we have already matched 2mi agents of type i and 2mj agents of
type j. In addition, for each i ∈ [k] such that f(i, (k+1)) = 1, we wish to count the number
of ways to choose at most one agent of type i who will not be unmatched.

For each pair (i, j) ∈ [k + 1]2 with i < j, let pi,j denote the number of pairs of agents
of types i and j respectively who are matched together in a matching of size n− d. For each
i ∈ [k], we require that pi,j ≤ f(i, j). In addition, since we have already matched mi agents
of type i to a partner of their own type, we require that∑

j<i

pj,i +
∑
j≤k

pi,j + 2mi ≤ ni.

We also require that ∑
(i,j)∈[k]2

pi,j +
∑
i∈[k]

2mi ≤ n− d

and ∑
i∈[k]

pi,k+1 ≤ d.

Let pm = {p1,2, p1,3, . . . , pk,k+1}. We use Pm to denote the set containing all sets pm which
meet the above requirements. Given some pm ∈ Pm, the following lemma describes the
number of ways to select pi,j pairs of agents of types i and j respectively from Im for each
(i, j) ∈ [k + 1]2 such that f(i, j) = 1.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 87

Lemma 4.49. Let I be an instance of TYPED SRTI with at most n agents and at most k

types. Let f be a stable type function in F , and let d ∈ {0, . . . , n − 1} be a value such that

(n− d) is even. Let m = {m1, . . . ,mk} be a set in M f
d , and let pm = {p1,2, . . . , pk−1,k} be

a set in Pm. The number of ways to select pi,j pairs of agents of types i and j respectively

from Im for each (i, j) ∈ [k + 1]2 such that f(i, j) = 1 is equal to∏
i∈[k]

(ni−2mi)!
(ni−2mi−

∑
j<i pj,i−

∑
j≤k+1 pi,j)!

2
∑

1≤i<j≤k pi,j(
∑

1≤i<j≤k+1 pi,j)!
.

Proof. The total number of agents of type i that we wish to select is equal to∑
j<i

pj,i +
∑

j≤k+1

pi,j.

Since there are a total of (ni − 2mi) agents of type i to choose from, it follows that the
number of ways to select the type i agents is equal to

(ni − 2mi)!

(ni − 2mi −
∑

j<i pj,i −
∑

j≤k+1 pi,j)!
.

It follows that the total number of ways to select the agents is equal to

∏
i∈[k]

(ni − 2mi)!

(ni − 2mi −
∑

j<i pj,i −
∑

j≤k+1 pi,j)!
. (4.49)

The total number of pairs of (non-dummy) agents selected is equal to
∑

1≤i<j≤k pi,j . The
total number of pairs of agents (including each agent matched to a dummy agent) selected
is equal to

∑
1≤i<j≤k+1 pi,j . Since we are not interested in the order of the agents within

each pair of agents, or the ordering of the pairs of agents (including each agent matched to a
dummy agent), it follows that we must divide (4.49) by 2

∑
1≤i<j≤k pi,j(

∑
1≤i<j≤k+1 pi,j)!. The

result follows.

Let pm be a set in Pm. In the following lemma, we describe an upper bound on the time
needed to compute the number of ways to select pi,j pairs of agents of types i and j respec-
tively from Im for each (i, j) ∈ [k + 1]2 such that f(i, j) = 1.

Lemma 4.50. Let I be an instance of TYPED SRTI with at most n agents and at most k

types. Let f be a stable type function in F , and let d ∈ {0, . . . , n − 1} be a value such that

(n− d) is even. Let m = {m1, . . . ,mk} be a set in M f
d , and let pm = {p1,2, . . . , pk−1,k} be

a set in Pm. The number of ways to select pi,j pairs of agents of types i and j respectively

from Im for each (i, j) ∈ [k + 1]2 with f(i, j) = 1 can be computed in time O(k3n2 log2 n).

Proof. By Lemma 4.49, the number of ways to select pi,j pairs of agents of types i and j



CHAPTER 4. COUNTING STABLE MATCHINGS Page 88

respectively from Im for each (i, j) ∈ [k + 1]2 such that f(i, j) = 1 is equal to∏
i∈[k]

(ni−2mi)!
(ni−2mi−

∑
j<i pj,i−

∑
j≤k+1 pi,j)!

2
∑

1≤i<j≤k pi,j(
∑

1≤i<j≤k+1 pi,j)!
. (4.50)

We first consider the time needed to compute the value of

(ni − 2mi)!

(ni − 2mi −
∑

j<i pj,i −
∑

j≤k+1 pi,j)!
(4.51)

for each i ∈ [k]. By definition, we have that 0 ≤ pi,j ≤ 1 for any (i, j) ∈ [k + 1]2. It
follows that the sums

∑
j<i pj,i and

∑
j≤k+1 pi,j have value at most k each, and so can be

computed in time O(k2). Computing the value of 2mi takes time O(log n). Since each of
the values in (ni − 2mi −

∑
j<i pj,i −

∑
j≤k+1 pi,j) is at most n, it follows that computing

every subtraction takes time O(log n). Since (ni − 2mi −
∑

j<i pj,i −
∑

j≤k+1 pi,j) ≤ n, it
follows that computing the factorial (ni−2mi−

∑
j<i pj,i−

∑
j≤k+1 pi,j)! takes time O(n2).

Hence, computing the value of (ni − 2mi −
∑

j<i pj,i −
∑

j≤k+1 pi,j)! takes time

O(k2 + 2 log n+ n2)

= O(k2n2).

Note that the value of (ni − 2mi −
∑

j<i pj,i −
∑

j≤k+1 pi,j)! is at most nn. The value of
(ni − 2mi)! is also at most nn, and can be computed in time O(n2). Hence, computing the
value of (4.51) takes time

O(k2n2 + n2 + n2 log2 n)

O(k2n2 log2 n)

for each i ∈ [k]. This value is at most nn for each i ∈ [k]. Thus, the value of

∏
i∈[k]

(ni − 2mi)!

(ni − 2mi −
∑

j<i pj,i −
∑

j≤k+1 pi,j)!

is at most nnk, and can be computed in time

O(k × (k2n2 log2 n+ nk log n× n log n))

O(k3n2 log2 n). (4.52)



CHAPTER 4. COUNTING STABLE MATCHINGS Page 89

We now consider the time needed to compute the value of

2
∑

1≤i<j≤k pi,j

( ∑
1≤i<j≤k+1

pi,j

)
!. (4.53)

Since there are at most k2 values in the sum
∑

1≤i<j≤k pi,j , and each value is at most 1, it
follows that we can compute the sum in time O(k3). The value of 2

∑
1≤i<j≤k pi,j is at most

2k
2 so, (once the value of

∑
1≤i<j≤k pi,j is known) computing it takes time O(k4). Hence,

computing the value of 2
∑

1≤i<j≤k pi,j takes time

O(k3 + k4)

= O(k4). (4.54)

The value of
∑

1≤i<j≤k+1 pi,j is at most k(k + 1), so computing it takes time O(k3). Com-
puting the value of (k(k + 1))! takes time O(k4). It follows that computing the value of
(
∑

1≤i<j≤k+1 pi,j)! takes time

O(k3 + k4)

= O(k4). (4.55)

The value of (
∑

1≤i<j≤k+1 pi,j)! is at most (k(k + 1))k(k+1). It follows that computing the
product in (4.53) takes time

O(k2 log(k2)× k2))

= O(k5). (4.56)

It follows from (4.54), (4.55) and (4.56) that computing the value of (4.53) takes time

O(2× k4 + k5)

= O(k5). (4.57)

Moreover, the value of (4.53) is at most 2nk(k+1). Finally, it follows from (4.52) and (4.57)
that computing the value of (4.50) takes time

O(k3n2 log2 n+ k5 + nk log n× (n+ log(k(k + 1))))

= O(k3n2 log2 n).

Let I be an instance of TYPED SRTI with at most k agent types, and let f be a stable type



CHAPTER 4. COUNTING STABLE MATCHINGS Page 90

function in F . Using the above observations, we now describe how to count the number
of matchings admitted by I which satisfy f . Since agents of the same type have identical
preferences and are considered equally desirable by their set of available partners, we can
count the number of such matchings by separately computing

• the number of ways to select a subset of agents and assign them into same-type pairs,
and

• the number of ways to choose at most a single pair of agents of types i and j respec-
tively for each 1 ≤ i < j ≤ k + 1 with f(i, j) = 1 from among the remaining set of
agents, and

• the number of matchings of the remaining number of agents of each type into pairs of
different types which satisfy f .

In Lemma 4.47, we described how to compute the number of ways to select a subset of agents
from I and assign them into same-type pairs. In Lemma 4.49, we described how to count
the number of ways to match together a single pair of agents of types i and j respectively for
each 1 ≤ i < j ≤ k + 1 with f(i, j) = 1 from among the remaining set of agents.

In what follows, we describe how to count the number of stable matchings of the remaining
set of agents of each type into pairs of different types. As in the stable marriage setting,
this is achieved by counting the number of perfect matchings in a graph constructed from
a problem instance and a stable type function. We will see that the graph formed from the
(remaining) set of agents has bounded neighbourhood diversity. As a consequence, we can
efficiently count the set of perfect matchings in the graph. Since all agents of the same type
have identical preference lists and are seen as equally desirable by all agents, our “reduced”
instance can be formed by removing any subset of the agents which meet the constraints
given by m and pm. As such, we are able to break down the problem of counting stable
matchings admitted by an instance of TYPED SRTI into three efficiently solvable problems.

Let I be an instance of TYPED SRTI with at most n agents and at most k types. Let f be a
stable type function in F , and let d ∈ {0, . . . , n − 1} be a value such that (n − d) is even.
Let m = {m1, . . . ,mk} be a set in M f

d , and let pm = {p1,2, p1,3, . . . , pk,k+1} be a set in
Pm. We construct the (unique) type function graph Gf

m,pm
associated with m,pm, f and d

as follows. For each type i ∈ [k], we add (ni − 2mi −
∑

j<i pj,i −
∑

j≤k+1 pi,j) vertices to
Gf

m,pm
corresponding to agents of type i. We also add an additional d−

∑
i∈[k] pi,k+1 vertices

to Gf
m,pm

corresponding to dummy agents. As in the stable marriage setting, the presence of
dummy agents allows agents to be unmatched. Note that since we already have

∑
i∈[k] pi,k+1

unmatched agents, we must add exactly d −
∑

i∈[k] pi,k+1 vertices to Gf
m,pm

corresponding
to dummy agents to ensure that exactly (n− d) agents are unmatched in total. Two vertices
(va, vb) are adjacent in Gf

m,pm
if the corresponding pair of agents (a, b) in I are such that

f(type(a), type(b)) = 2 and type(a) ̸= type(b). A vertex is adjacent to the set of dummy



CHAPTER 4. COUNTING STABLE MATCHINGS Page 91

agents if the corresponding agent has type i and f(i, k + 1) = 2.

The following observation on the neighbhourhood diversity of a type function graph follows
from the fact that agents of the same type have identical preferences, and there are no edges
in the type function graph between any pairs of agents of the same type. Note that the bound
on the neighbourhood diversity is lower than that in the stable marriage setting since here we
do not have dummy agents of different genders.

Observation 4.51. Let I be an instance of TYPED SRTI with at most n agents and at most k
types. Let d be a value from the set {0, . . . , n− 1} such that (n− d) is even. For each stable
type function f ∈ F , each m ∈ M f

d and each pm ∈ Pm, the type function graph Gf
m,pm

has
neighbourhood diversity at most (k + 1).

The following observation follows from Observation 4.51 and describes a bound the rank of
the adjacency matrix associated with each type function graph.

Observation 4.52. Let I be an instance of TYPED SRTI with at most n agents and at most
k types. Let f be a stable type function in F , and let m be a set in M f

d for some d ∈
{0, . . . , n − 1} such that (n − d) is even. Let pm be a set in Pm, and let Gf

m,pm
be the type

function graph associated with f,m and pm. The rank of the adjacency matrix A = (ai,j)

associated with Gf
m,pm

is at most (k + 1).

We will use |MGf
m,pm

| to denote the number of perfect matchings in the type function graph
Gf

m,pm
. The following lemma describes the relationship between the number of perfect

matchings in Gf
m,pm

, and the number of stable matchings admitted by I with cardinality
(n − d)/2 which satisfy f and contain mi pairs of type i, and pi,j pairs with types i and j

respectively for each (i, j) ∈ [k + 1]2 such that i < j and f(i, j) = 1.

Lemma 4.53. Let I be an instance of TYPED SRTI, and let f be a stable type function in F .

Let d be a value in the set {0, . . . , n− 1} such that (n−d) is even, and let m be a set in M f
d .

Let pm be a set in Pm, and let Gf
m,pm

be the type function graph constructed from f,m and

pm. The number of matchings admitted by I with cardinality (n− d)/2 which satisfy f and

contain mi pairs of type i for each i ∈ [k], and pi,j pairs with types i and j respectively for

each (i, j) ∈ [k + 1]2 such that i < j and f(i, j) = 1 is equal to

|MGf
m,pm

|
(d−

∑
i∈[k] pi,k+1)!

∏
i∈[k]

ni!

(ni − 2mi)!(mi)!2mi

∏
i∈[k]

(ni−2mi)!
(ni−2mi−

∑
j<i pj,i−

∑
j≤k+1 pi,j)!

2
∑

1≤i<j≤k pi,j(
∑

1≤i<j≤k+1 pi,j)!
.

Proof. By construction, any perfect matching in Gf
m,pm

corresponds to a matching of the
corresponding set of agents in which d−

∑
i∈[k] pi,k+1 agents are unmatched and no agent is

matched to a partner of the same type. Since dummy agents are indistinguishable, the number



CHAPTER 4. COUNTING STABLE MATCHINGS Page 92

of perfect matchings in Gf
m,pm

overcounts the number of matchings of the corresponding set
of agents by a factor of (d −

∑
i∈[k] pi,k+1)!. By Lemma 4.47, the number of ways to select

2mi agents of type i agents from I and assign them into same-type pairs for each i ∈ [k] is
equal to

∏
i∈[k]

ni!

(ni − 2mi)!(mi)!2mi
.

By Lemma 4.49, the number of ways to select pi,j pairs of agents of types i and j respectively
from the reduced instance Im for each (i, j) ∈ [k + 1]2 such that i < j and f(i, j) = 1 is
equal to ∏

i∈[k]
(ni−2mi)!

(ni−2mi−
∑

j<i pj,i−
∑

j≤k+1 pi,j)!

2
∑

1≤i<j≤k pi,j(
∑

1≤i<j≤k+1 pi,j)!
.

It follows from the definition of the sets M f
d and Pm, and from the construction of the type

function graph Gf
m,pm

, that for any perfect matching in Gf
m,pm

, the corresponding matching
of the set of agents satisfies f . The result follows.

The following corollary follows from Lemma 4.53, and describes how to obtain the number
of matchings satisfying a type function f from the number of perfect matchings in each type
function graph constructed from f .

Corollary 4.54. Let I be an instance of TYPED SRTI with at most n agents and at most k

types, and let f be a stable type function in F . We have that

|Mf | =
∑

{d:d∈{0,...,n−1}
and (n−d) mod 2≡0}

∑
m∈Mf

d

∑
pm∈Pm

(
|MGf

m,pm
|

(d−
∑

i∈[k] pi,k+1)!
×

∏
i∈[k]

ni!

(ni − 2mi)!(mi)!2mi
×

∏
i∈[k]

(ni−2mi)!
(ni−2mi−

∑
j<i pj,i−

∑
j≤k+1 pi,j)!

2
∑

1≤i<j≤k pi,j(
∑

1≤i<j≤k+1 pi,j)!

)
.

4.6.4 Reducing #TYPED SRTI to Counting Perfect Matchings

In this section, we describe a reduction from #TYPED SRTI to the problem of counting
perfect matchings in a graph parameterised by the neighbourhood diversity of the graph.
In Section 4.6.2, we saw that the number of solutions to an instance of TYPED SRTI can
be written in terms of the number of matchings satisfying each possible type function. In



CHAPTER 4. COUNTING STABLE MATCHINGS Page 93

Section 4.6.3, we showed that the number of matchings satisfying a particular type function
can be obtained from the set of perfect matchings in each graph constructed from the type
function. We also showed that the neighbourhood diversity of each type function graph is
bounded by a function of the number of agent types. Here, we will see that the problem of
counting perfect matchings in a graph belongs to XP parameterised by the neighbourhood
diversity of the graph. As a consequence, we show that the problem of counting stable
matchings admitted by an instance of TYPED SRTI is also in XP parameterised by the
number of agent types needed to describe the instance.

A perfect matching permutation [92] on a set of 2n elements is a function σ : [2n] → [2n]

such that σ(2i− 1) < σ(2i) and σ(2i− 1) < σ(2i+ 1) for all 1 ≤ i < n. We use PMP(2n)
to denote the set of all perfect matching permutations of a set of size 2n. The hafnian [91]
of an 2n× 2n symmetric matrix A = (ai,j) is defined as

haf(A) =
∑

σ∈PMP (2n)

n∏
i=1

Aσ(2i−1)−1,σ(2i)−1.

Theorem 4.55 ([92]). Let G = (V (G), E(G)) be a graph with 2n vertices, and let A = (ai,j)

be the 2n × 2n (symmetric) adjacency matrix associated with G. The number of perfect

matchings in G is equal to haf(A).

Theorem 4.56 ([91] (Appendix C)). Let A = (ai,j) be an 2n × 2n symmetric matrix with

rank at most r. We can compute haf(A) in time O((2n+ r − 1)(r+O(1))).

Let I be an instance of TYPED SRTI with at most n agents and at most k agent types. Let f
be a stable type function in F , and let d ∈ {0, . . . , n−1} be such that (n−d) is even. Let m
be a set in m ∈ M f

d , and let pm be a set in Pm. Let Gf
m,pm

be the unique type function graph
associated with f,m and pm. By construction, Gf

m,pm
contains at most 2n vertices and the

number of vertices in Gf
m,pm

is even. Moreover, the 2n × 2n adjacency matrix A = (ai,j)

associated with Gf
m,pm

is symmetric and (by Observation 4.52) has rank at most (k+1). We
can therefore apply Theorems 4.55 and 4.56 to the problem of counting perfect matchings in
Gf

m,pm
as follows.

Lemma 4.57 ([92, 91]). Let I be an instance of TYPED SRTI with at most n agents and at

most k types. Let f be a stable type function in F . For any d ∈ {0, . . . , n − 1} such that

(n − d) is even, any m ∈ M f
d , and any pm ∈ Pm, the number of perfect matchings in the

type function graph Gf
m,pm

can be counted in time O((2n+ k)(k+O(1))).

We now use Lemma 4.57 and the relationship described in Corollary 4.54 between the num-
ber of matchings satisfying a stable type function and the number of perfect matchings in the
corresponding graph to bound the time needed to count the number of matchings satisfying
a particular stable type function.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 94

Lemma 4.58. Let I be an instance of TYPED SRTI with at most n agents and at most k

agent types, and let f be a stable type function in F . The value of |Mf | can be calculated in

time O(2k(k+1)(2n+ k)(2k+O(1))).

Proof. By Corollary 4.54, we have that

|Mf | =
∑

{d:d∈{0,...,n−1}
and (n−d) mod 2≡0}

∑
m∈Mf

d

∑
pm∈Pm

(
|MGf

m,pm
|

(d−
∑

i∈[k] pi,k+1)!
×

∏
i∈[k]

ni!

(ni − 2mi)!(mi)!2mi
×

∏
i∈[k]

(ni−2mi)!
(ni−2mi−

∑
j<i pj,i−

∑
j≤k+1 pi,j)!

2
∑

1≤i<j≤k pi,j(
∑

1≤i<j≤k+1 pi,j)!

)
.

We first consider the time needed to compute the value of

|MGf
m,pm

|
(d−

∑
i∈[k] pi,k+1)!

. (4.58)

By Lemma 4.57, computing the value of |MGf
m,pm

| takes time

O((2n+ k)(k+O(1))). (4.59)

Since there are at most (2n)! perfect matchings in a 2n vertex graph, the value of |MGf
m,pm

|
can be represented using O(n log n) bits. To compute the value of

(d−
∑
i∈[k]

pi,k+1)! (4.60)

we must first compute the sum
∑

i∈[k] pi,k+1. Since pi,k+1 ∈ {0, 1} for each i ∈ [k], com-
puting the sum takes time O(k2). Since d < n and

∑
i∈[k] pi,k+1 ≤ k + 1, computing

the subtraction in (4.60) takes time O(log n). Computing the factorial in (4.60) takes time
O(n2). Hence, computing the value of (4.60) takes time

O(k2 + log n+ n2)

= O(n2). (4.61)

The value of (4.60) can be represented using O(n log n) bits. Thus, it follows from (4.59)



CHAPTER 4. COUNTING STABLE MATCHINGS Page 95

and (4.61) that computing the value of (4.58) takes time

O((2n+ k)(k+O(1)) + n2 + (n log n)2)

O((2n+ k)(k+O(1))). (4.62)

It follows from the construction of Gf
m,pm

that the value of (4.58) is a positive integer with
value at most (2n)!. By Lemma 4.48, the value of

∏
i∈[k]

ni!

(ni − 2mi)!(mi)!2mi

is a positive integer with value at most nn which can be calculated in time

O(kn2 log2 n). (4.63)

By Lemma 4.50, the value of∏
i∈[k]

(ni−2mi)!
(ni−2mi−

∑
j<i pj,i−

∑
j≤k+1 pi,j)!

2
∑

1≤i<j≤k pi,j(
∑

1≤i<j≤k+1 pi,j)!
.

is a positive integer with value at most nn which can be calculated in time

O(k3n2 log2 n). (4.64)

Thus, it follows from (4.62), (4.63), (4.64) that, for any d, m and pm, computing the value
of

|MGf
m,pm

|
(d−

∑
i∈[k] pi,k+1)!

∏
i∈[k]

ni!

(ni − 2mi)!(mi)!2mi

∏
i∈[k]

(ni−2mi)!
(ni−2mi−

∑
j<i pj,i−

∑
j≤k+1 pi,j)!

2
∑

1≤i<j≤k pi,j(
∑

1≤i<j≤k+1 pi,j)!

takes time

O((2n+ k)(k+O(1)) + kn2 log2 n+ k3n2 log2 n+ n3 log3 n)

= O((2n+ k)(k+O(1))).

There are at most (n−1) possible values of d. The number of ways to select k integers whose
sum is equal to n is at most (n + k)k. It follows that there are at most (n + k)k elements
in the set M f

d . Given some m ∈ M f
d , the number of different elements in Pm is at most

2k(k+1) (each pi,j has value 0 or 1). By definition, the value of |Mf | is at most nn. Hence,



CHAPTER 4. COUNTING STABLE MATCHINGS Page 96

computing the value of |Mf | takes time

O(n× (n+ k)k × 2k(k+1) × ((2n+ k)(k+O(1)) + n log n))

= O(2k(k+1)(n+ k)(2k+O(1))).

We are now ready to prove our main result.

Theorem 4.59. Let I be an instance of TYPED SRTI with at most n agents and at most k

agent types. We can count the number of stable matchings admitted by I in time O(3k
2(k+1)2(2n+

k)(2k+O(1))).

Proof. By Lemma 4.46, given the value of |Mf | for each f ∈ F , we can count the number
of solutions to I in time

O(3k
2(k+1)2n log n).

Let f be a stable type function in F . By Lemma 4.58, calculating the value of |Mf | takes
time

O(2k(k+1)(2n+ k)(2k+O(1))).

By Lemma 4.38, there are at most 3k(k+1) stable type functions in F . By Corollary 4.39, we
can obtain the set F of stable type functions in time O(3k(k+1)k2). It follows that we can
count the number of solutions to I in time

O(3k(k+1)k2 + 3k(k+1) × 2k(k+1)(2n+ k)(2k+O(1)) + 3k
2(k+1)2n log n)

= O(3k
2(k+1)2(2n+ k)(2k+O(1))).

4.7 Super-Stability and Strong Stability

In this section, we present results on the complexity of finding and counting super-stable
and strongly stable matchings in instances of typed stable matching problems with ties and
incomplete preference lists. In Section 4.7.1, we show that the number of super-stable match-
ings admitted by an instance of any of TYPED SMTI or TYPED SRTI is bounded by a func-
tion of the number of agent types needed to describe the instance. In the hospitals/residents



CHAPTER 4. COUNTING STABLE MATCHINGS Page 97

setting, we show that at most one hospital of each type is present in any super-stable match-
ing, and that all residents of the same type must be assigned to the same hospital. In each set-
ting, these observations will allow us to efficiently find and count the number of super-stable
matchings. To the best of our knowledge, the problem of counting super-stable matchings
has not previously appeared in the literature.

In Section 4.7.2, we extend the algorithm described in Section 4.6 to count strongly stable
matchings admitted by an instance of TYPED SRTI. It follows that the problem of count-
ing strongly stable matchings admitted by an instance of TYPED SRTI (and hence TYPED
SMTI) belongs to XP parameterised by the number of agent types needed to describe the in-
stance. We believe that ours is the first result on counting strongly stable matchings admitted
by an instance of SM or SR.

4.7.1 Finding and Counting Super-Stable Matchings

In this section, we consider the problems of finding and counting super-stable matchings in
typed instances of stable matching problems. The first result of this kind bounds the number
of super-stable matchings admitted by an instance of TYPED SMTI in terms of the number
of agent types.

Lemma 4.60. Let I be a typed instance of SMTI. If any type contains more than one agent,

then every agent of that type is unmatched in any super-stable matching.

Proof. Let M be a super-stable matching admitted by I . Suppose for a contradiction that
some type i contains two agents x and y, and suppose without loss of generality that x is
matched in M . By definition, all agents of the opposite gender to x and y are indifferent
between x and y. Suppose first that y is unmatched. Since type i finds type(M(x)) accept-
able, it follows that y would strictly prefer to be matched to M(x) than to be unmatched.
In addition, since x and y are of the same type, agents of type type(M(x)) are indifferent
between x and y. It follows that the pair (y,M(x)) forms a blocking pair. Now suppose that
both x and y are matched in M , and suppose without loss of generality that type(M(x)) ⪰i

type(M(y)). Again, since agents of type type(M(x)) are indifferent between x and y, the
pair (y,M(x)) forms a blocking pair. Thus, M cannot be super-stable.

The set of all super-stable matchings admitted by an instance of SMTI match exactly the
same set of agents [66]. It follows that any super-stable matching admitted by an instance
of TYPED SMTI is a maximum cardinality super-stable matching. Making use of the O(m)

algorithm described by Irving and Manlove [66] for finding a super-stable matching (if one
exists) in an instance of SRTI, the following lemma describes an O(k2) algorithm for finding



CHAPTER 4. COUNTING STABLE MATCHINGS Page 98

a maximum size super-stable matching admitted by an instance of TYPED SMTI or reporting
that no such matching exists.

Lemma 4.61. Let I be an instance of TYPED SMTI with at most k agent types. If I admits

a super-stable matching, then a maximum cardinality super-stable matching can be found in

time O(k2).

Proof. By Lemma 4.60, if any type contains more than one agent, then every agent of that
type is unmatched in any super-stable matching. Hence, if any type i contains more than
one agent then we know that no agents of type i are present in the matching, and we may
disregard all agents of type i. Since there are at most k types, this can be achieved in time
O(k). Since there are at most k remaining agents, we can now use the algorithm due to Irving
and Manlove to find a maximum cardinality super-stable matching in time O(k2).

Using similar logic to the proof of Lemma 4.61, the following result uses the observation
made in Lemma 4.60 to bound the time needed to count the number of super-stable matchings
admitted by an instance of TYPED SMTI.

Lemma 4.62. Let I be an instance of TYPED SMTI with at most k agent types. We can count

the number of super-stable matchings admitted by I in time O(kk+3).

Proof. By Lemma 4.60, if any type contains more than one agent, then every agent of that
type is unmatched in any super-stable matching. We can check whether any type contains
more than one agent (and disregard all agents of that type) in time O(k). There are at most
k remaining agents. It follows that there are at most kk+1 ways to match the set of agents
(including the possibility that any agent may be unmatched). For each such matching, since
there are at most k agents, we can check whether it is super-stable in time O(k2). The result
follows.

Note that since all super-stable matchings admitted by an instance of SMTI have equal car-
dinality, Lemma 4.62 in fact counts the number of maximum cardinality super-stable match-
ings. The next result describes an analogous result to Lemma 4.60 in the stable roommates
setting. Since a matching admitted by an instance of stable roommates may contain pairs of
agents with the same type, the presence of two matched agents of the same type in a match-
ing may no longer create a blocking pair as they may be matched to one another. However,
if there are more than two matched agents of the same type, then there will always be at
least two agents of the same type who are not matched together. We will see that such pairs
of agents form a blocking pair. As such, we are able to bound the number of super-stable
matchings admitted by an instance of TYPED SRTI in terms of the number of agent types.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 99

Lemma 4.63. Let I be a typed instance of SRTI. If any type contains more than two agents,

then every agent of that type is unmatched in any super-stable matching admitted by I .

Proof. Let M be a super-stable matching admitted by I , and suppose that some type i con-
tains three agents x, y and z. Suppose without loss of generality that x is matched. Suppose
first that at least one of y and z - say y - is unmatched. Since agents of type type(M(x))

are indifferent between x and y, and agents of type i would strictly prefer to be matched
with type(M(x)) than to be unmatched, it follows that the pair (y,M(x)) forms a blocking
pair. Now suppose that both y and z are matched in M . Suppose without loss of generality
that x and y and not matched to each other, and that type(M(x)) ⪰i type(M(y)). Since
(x, y) /∈ M , and M(x) is indifferent between x and y, it follows that the pair (y,M(x))

forms a blocking pair. Thus, M cannot be super-stable.

As in the stable marriage setting, if an instance of SRTI admits a super-stable matching, then
the set of all super-stable matchings match exactly the same set of agents [66]. It follows
that if we find a super-stable matching admitted by an instance of TYPED SRTI, then we
know it is of maximum size. The following bound on the complexity of finding a super-
stable matching admitted by an instance of TYPED SRTI (or reporting that none exists)
follows from Lemma 4.63 and the O(m) algorithm described in [66] for finding a super-
stable matching admitted by an instance of SRTI or reporting that none exists.

Lemma 4.64. Let I be a typed instance of SRTI with at most k agent types. If there exists a

super-stable matching M admitted by I , then a maximum cardinality super-stable matching

can be found in time O(k2).

The proof of the above result follows the same structure as that of Lemma 4.61 and so is
not included here. In the following lemma, we use the observation made in Lemma 4.63
to bound the time needed to count the number of super-stable matchings admitted by an
instance of TYPED SRTI.

Lemma 4.65. Let I be an instance of TYPED SRTI with at most k agent types. We can count

the number of super-stable matchings admitted by I in time O(k2k+3).

Proof. By Lemma 4.63, if any type of agent contains more than two agents, then every agent
of type i is unmatched in every super-stable matching. Hence, for each type i containing
more than two agents, we can disregard all agents of type i from consideration. Since there
are at most k types, this can be achieved in time O(k). Since there are at most 2k remaining
agents, it follows that there can be at most (2k)2k+1 ways to match them together (including
the possibility that any agent may be unmatched). We can check whether a matching is
super-stable in time O(k2). The result follows.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 100

In the stable marriage and stable roommates settings, a matching contains pairs of distinct
agents. In the hospitals/residents setting, a single hospital could be assigned to many resi-
dents in a matching. It follows that there could be many matched residents of a single type in
a matching without necessarily creating a blocking pair. However, we are able to show that in
any super-stable matching admitted by an instance of hospitals/residents, all residents of the
same type must be matched to the same hospital. In addition, if there is more than one hospi-
tal of the same type, then no hospital of that type can receive any residents in a super-stable
matching. These observations will allow us to find and count super-stable matchings in this
setting in time depending upon the number of agent types needed to describe an instance and
the natural logarithm of the number of agents in the instance.

Lemma 4.66. Let I be an instance of TYPED HRT, and let M be a super-stable matching

admitted by I . If I contains more than one hospital of the same type, then no hospital of that

type receives any residents in M .

Proof. Let h1 and h2 be hospitals of type i, and suppose for a contradiction that h1 is assigned
a resident r under M . Suppose first that h2 does not receive any residents under M . Since
q(h2) > 0, it follows that q2 would strictly prefer to receive r than to receive no residents.
Since r is indifferent between h1 and h2, the pair (h2, r) forms a blocking pair.

Now suppose that h2 receives at least one resident under M , and let worstM(h2) denote the
worst type of resident (from the perspective of type i) received by h2 under M . Suppose
without loss of generality that type(r) ⪰i worsti(h2). Again, since r is indifferent between
h1 and h2, the pair (h2, r) forms a blocking pair.

Lemma 4.67. Let I be an instance of TYPED HRT with at most k agent types, and let M

be a super-stable matching admitted by I . For each i ∈ [k], the set of residents of type i are

either all unassigned, or are all assigned to the same hospital in M .

Proof. Let r1 and r2 be residents of type i. Suppose first that r1 is matched to a hospital h
and r2 is unmatched. Since h is indifferent between r1 and r2, it follows that the pair (h, r2)
is a blocking pair. Now suppose that r1 and r2 are matched to distinct hospitals h1 and h2

under M . It follows from Lemma 4.66 that type(h1) ̸= type(h2). Suppose without loss of
generality that type(h1) ⪰i type(h2). Since h1 is indifferent between r1 and r2, the pair
(h1, r2) forms a blocking pair.

It follows from the above results that any super-stable matching admitted by an instance of
TYPED HRT is formed by pairing together resident types and hospital types. In addition, it
follows from the super-stability variant of the Rural Hospitals Theorem [64] that any super-
stable matching admitted by an instance of TYPED HRT matches exactly the same set of
agents. Hence, we have the following result.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 101

Lemma 4.68. Let I be an instance of TYPED HRT with at most n agents and at most k agent

types. We can find a maximum cardinality super-stable matching admitted by I or report that

no such matching exists in time O(kk+3 log n).

Proof. By Lemma 4.66, in any super-stable matching M of the agents in I , either all hospi-
tals of the same type are unmatched, or there is only one hospital of that type in I . We can
check whether any type of hospital contains more than one hospital in time O(k). If any type
of hospital type does contain more than one hospital, then we may disregard all hospitals of
that type. By Lemma 4.67, the set of agents of each type are either all unassigned or are all
assigned to a single hospital. It follows that a possible super-stable matching is formed by
assigning each type of resident to a single hospital type.

For each such matching M , we must first check whether any hospital is oversubscribed.
Since all residents of the same type must be assigned to the same hospital, this can be
achieved by comparing the quota of the hospital to the sum, over each type i assigned to
the hospital, of the total number of residents of type i. Since there are at most n residents
and at most k types, we can check whether any hospital is oversubscribed under M in time
O(k2 log n).

It remains to check whether any matching is super-stable. To determine whether a matching
M is super-stable, we must first determine the worst type of resident assigned to each hospital
under M , and also whether each hospital has spare capacity. To determine whether a hospital
h has spare capacity, it suffices to compare the capacity of h to the sum of the number of
agents of each type i assigned to h. This takes time O(k2 log n) for the set of all hospitals.
We can determine the worst type of resident assigned to each hospital under M in time
O(k2). We can now determine whether M is super-stable by comparing pairs of types of
hospitals and residents. Since there are at most k types, this can be achieved in time O(k2).

It follows from the above that we can determine whether a single matching M is super-stable
in time O(k2 log n). Since each type of resident can be assigned to a single hospital, there
are at most kk+1 possible pairings of types of hospitals to types of residents. It follows
that we can find a super-stable matching admitted by I or report that none exist in time
O(kk+3 log n).

Using an almost identical argument, we obtain an O(kk+3 log n) time algorithm for counting
super-stable matchings admitted by an instance of TYPED HRT.

Lemma 4.69. Let I be an instance of TYPED HRT with at most n agents and at most k

agent types. We can count the number of super-stable matchings admitted by I in time

O(kk+3 log n).



CHAPTER 4. COUNTING STABLE MATCHINGS Page 102

4.7.2 Counting Strongly Stable Matchings

In this section, we consider the problem of counting strongly stable matchings admitted by
an instance of TYPED SRTI. Under strong stability, indifference between two unmatched
agents no longer guarantees the presence of a blocking pair in a matching. As such, we
cannot obtain the same structural results given in Section 4.7.1 in this setting. Instead, we
extend the algorithm described in Section 4.6 for counting weakly stable matchings to the
problem of counting strongly stable matchings.

Under weak stability, we showed that a result of Meeks and Rastegari [11] allows us to
determine the stability of a matching by looking at only the pairs of types present in the
matching. Here, we use similar logic to prove an analogous result under strong stability.
Using this observation we then show that, as under weak stability, the set of strongly stable
matchings admitted by an instance of TYPED SRTI can be defined in terms of (strongly)
stable type functions. We then show that some analogous results to those given in Section 4.6
allow us to compute the number of strongly stable matchings admitted by an instance of
TYPED SRTI with at most n agents and at most k agent types in time O(3k

2(k+1)2(2n +

k)(2k+O(1))).

Let I be an instance of TYPED SRTI and let M be a matching of the set of agents in I .
Recall that we use worstM(i) and second worstM(i) to denote the types of the least desirable
and second least desirable agents (from the perspective of type i) matched to any agent of
type i under M . If there is only one agent of type i, then we set second worstM(i) = ∅. The
following is an analogous result to Lemma 4.36 from Section 4.6.

Lemma 4.70. Let I be an instance of TYPED SRTI with at most k agent types. A matching

M admitted by I is strongly stable if and only if

• there is no pair of types (i, j) ∈ [k](2), i ̸= j, such that j ≻i worstM(i) and i ⪰j

worstM(j), and

• there is no type i ∈ [k] such that i ⪰i second worstM(i).

Proof. Suppose first that M is not strongly stable. Then there exists a pair of agents (a, b)

with types (i, j) such that a and b are not matched together but type i strictly prefers type
j to type(M(a)) and type j either strictly prefers type i to type(M(b)) or is indifferent
between the two types. First suppose that i ̸= j. Then we have that j ≻i type(M(a)) ⪰i

worstM(i) and similarly i ⪰j type(M(b)) ⪰j worstM(j). Now suppose that i = j. We
have that either type(M(a)) ⪰i worstM(i) and type(M(b)) ⪰i second worstM(i), or else
type(M(b)) ⪰i worstM(i) and type(M(a)) ⪰i second worstM(i). In either case we have
that i ⪰i second worstM(i).

Now suppose that M is strongly stable, and suppose that at least one of the two conditions
in the lemma statement does not hold. Suppose first that there is some pair of types (i, j)



CHAPTER 4. COUNTING STABLE MATCHINGS Page 103

with i ̸= j such that j ≻i worstM(i) and i ⪰j worstM(j). Then there is some agent a of
type i who is matched with an agent of type worstM(i), and some agent b of type j who is
matched with an agent of type worstM(j). Since type i strictly prefers type j to worstM(j),
and type j either strictly prefers type i to worstM(j) or is indifferent between them, it follows
that (a, b) form a blocking pair, a contradiction. Now suppose that the second condition does
not hold. Then there exist agents a and b, both with type i, who are matched to agents of
types worstM(i) and second worstM(i) respectively. Thus a strictly prefers b to M(a) and b

either strictly prefers a to M(b) or else is indifferent between them. It follows that (a, b) is a
blocking pair, and so M is not strongly stable.

As under weak stability, it follows that to determine whether a matching is strongly stable,
we only need to know which pairs of types of agents are present in the matching, and whether
each pair of types is realised by more than one pair of agents. Let I be an instance of TYPED
SRTI. As in Section 4.6, we define a type function as a function f : [k + 1]2 → {0, 1, 2}
where f(k + 1, k + 1) = 0 and, for each (t1, t2) ∈ [k + 1]2, we have that f(t1t2) = f(t2t1)

and

• f(t1, t2) = 0 if there may be no pairs of agents with types t1 and t2 respectively, and

• f(t1, t2) = 1 if there may be at most one pair of agents with types t1 and t2 respectively,
and

• f(t1, t2) = 2 if there may be any number of pairs of agents with types t1 and t2

respectively.

For each type i ∈ [k], we define worstf (i) as least desirable type of agent from the perspective
of type i such that f(i,worstf (i)) ̸= 0. If f(i,worstf (i)) = 1, then let second worstf (i) be
the second least desirable type (from the perspective of type i) such that f(i, second worstf (i))
̸= 0. Otherwise, set second worstf (i) = worstf (i). We call f a strongly stable type function

if there are no pairs (i, j) ∈ [k]2 with i ̸= j such that j ≻i worstf (i) and i ⪰j worstf (j), and
there is no type i ∈ [k] such that second worstf (i) ̸= ∅ and i ⪰i second worstf (i). We will
require the following analogous observation to Observation 4.37 from Section 4.6.

Observation 4.71. Let I be an instance of TYPED SRTI with at most k agent types. We can
determine whether a type function is strongly stable in time O(k2).

The following lemma is an analogous result of Lemma 4.38 from Section 4.6. The proof of
each result is almost identical, so we do not include a proof here.

Lemma 4.72. Let I be an instance of TYPED SRTI with at most k agent types. There are at

most 3k(k+1) type functions over the set of types in I .

Let F denote the set of strongly stable type functions in an instance of TYPED SRTI. The
following corollary follows from Observation 4.71 and Lemma 4.72.



CHAPTER 4. COUNTING STABLE MATCHINGS Page 104

Corollary 4.73. Let I be an instance of TYPED SRTI with at most k agent types. The set T
of strongly stable type functions can be obtained in time O(3k(k+1)k2).

Let I be an instance of TYPED SRTI. As in Section 4.6, we use Mf to denote the set of
matchings admitted by I which satisfy a type function f . We use |Mf | to denote the number
of matchings which satisfy f . In Section 4.6, we showed that if we know the value of |Mf |
for each f ∈ F , then it is straightforward to compute the number of solutions to I . Here, we
will require the following analogous result. We note that the proof of Lemma 4.74 is almost
identical to that of Lemma 4.46 from Section 4.6.

Lemma 4.74. Let I be an instance of TYPED SRTI with at most n agents and at most k

agent types. Given F and the value of |Mf | for each f ∈ F , we can count the number of

solutions to I in time O(3k
2(k+1)2n log n).

In Section 4.6, we saw that the problem of computing the value of |Mf | for each f ∈ F can
be reduced to the problem of counting perfect matchings in a general graph parameterised
by the neighbourhood diversity of the graph. We apply the same reduction here. The proof
of the following lemma is almost identical to that of Lemma 4.58.

Lemma 4.75. Let I be an instance of TYPED SRTI with at most n agents and at most k

agent types, and let f be a strongly stable type function in F . The value of |Mf | can be

calculated in time O(2k(k+1)(2n+ k)(2k+O(1))).

It follows from the above results that, by applying the same logic as that used in the proof of
Theorem 4.59, we can obtain the following result.

Theorem 4.76. Let I be an instance of TYPED SRTI with at most n agents and at most k

agent types. We can count the number of strongly stable matchings admitted by I in time

O(3k
2(k+1)2(2n+ k)(2k+O(1))).

4.8 Remarks and Open Problems

In this chapter, we studied stable matching problems with ties and incomplete preference
lists in the setting where the set of agents can be partitioned into a small number of types. In
each case, we saw that restricting the number of allowable agent types in an instance results
in improved algorithmic efficiency.

In Section 4.5, we described an XP algorithm for the problem of counting stable matchings
admitted by an instance of TYPED SMTI parameterised by the number of agent types. This
was achieved by reducing our problem to that of counting perfect matchings in a bipartite



CHAPTER 4. COUNTING STABLE MATCHINGS Page 105

graph with bounded neighbourhood diversity. Since the problem of counting perfect match-
ings in a bipartite graph is equivalent to computing the permanent of its adjacency matrix,
our result follows from the existence of an XP algorithm due to Barvinok for computing the
permanent of a matrix parameterised by its rank. By performing a thorough analysis of the
complexity of Barvinok’s algorithm, we were able to describe a precise upper bound on the
runtime of our algorithm.

It remains an open question whether we can obtain an FPT algorithm for #TYPED SMTI
parameterised by the number of agent types, or whether the problem is #W[1]-hard. In Chap-
ter 5 (Section 5.6), we will describe an FPT approximate counting algorithm for #TYPED
SMTI parameterised by the number of agent types. It follows that we can certainly approx-
imate the number of stable matchings efficiently in instances of TYPED SMTI with a small
number of agent types.

In the decision setting, a standard “cloning technique” [55] can be used to transform an
instance of HRT into an instance of SMTI (each hospital h is cloned q(h) times), so that an
algorithm for finding a stable matching admitted by an instance of SMTI can be used to find
a stable matching admitted by an instance of HRT. We believe that the same technique can be
used to apply our algorithm for #TYPED SMTI to the problem of counting solutions to an
instance of TYPED HRT. To avoid over-counting (since each hospital may appear more than
once in the cloned instance), we require an additional step each time that we count perfect
matchings in a graph formed from a stable type set. Since each hospital h appears q(h)

times, we believe that dividing the current value by q(h)! for each hospital h should prevent
over-counting.

In Section 4.6, we showed that #TYPED SRTI belongs to XP parameterised by the number
of agent types. The algorithm for #TYPED SRTI follows a broadly similar approach to the
algorithm for #TYPED SMTI described in Section 4.5. In this setting, since we did not
perform such a thorough analysis of the complexity of computing the hafnian of a matrix
(as we did for computing the permanent in the stable marriage setting), our runtime contains
an unknown constant in the exponent. As in the stable marriage setting, it is of interest to
determine whether there exists an FPT algorithm for #TYPED SRTI parameterised by the
number of agent types.

In Section 4.7, we described new algorithmic results for finding and counting strongly stable
and super-stable matchings in instances of stable matching problems with ties and incom-
plete preference lists. Under super-stability, we saw that structural restrictions on the set
of super-stable matchings allow us to efficiently find and count super-stable matchings in
instances of TYPED SMTI, TYPED HRT and TYPED SRTI. Under strong stability, we
showed that the algorithm from Section 4.6 can be extended to count strongly stable match-
ings. It follows that the problem of counting strongly stable matchings admitted by an in-



CHAPTER 4. COUNTING STABLE MATCHINGS Page 106

stance of TYPED SRTI (and hence also TYPED SMTI) is in XP parameterised by the num-
ber of agent types. We suspect that the cloning technique described above can also be used to
extend this algorithm to the TYPED HRT setting. It would also be interesting to investigate
whether we can obtain similar structural results under strong stability as those described for
super-stability.



107

Chapter 5

Approximately Counting Stable
Matchings

5.1 Motivation

In Chapter 4, we described an algorithm for counting stable matchings in a typed instance
of stable marriage with ties and incomplete preference lists. We saw that if the number of
agent types needed to describe an instance is treated as a constant, then we can count the
number of matchings in time depending polynomially upon the number of agents. It remains
an open problem whether we can achieve tractability while allowing the number of agent
types to be included as part of the input. In this chapter, we show that we can compute an
arbitrarily-close approximation to the number of stable matchings admitted by an instance of
stable marriage in time depending polynomially upon the number of agents and the desired
error while allowing the number of agent types to be included as part of the input. As an
intermediary result, we provide a generalisation of a parameterised approximation scheme
due to Arvind and Raman [21] for computing the cardinality of a union of sets.

We also consider a generalisation of typed stable marriage in which individual agents may
declare a constant number of their available partners as unacceptable. We conjecture that
there exists an XP algorithm for approximately counting stable matchings in this setting
parameterised by the number of agent types, and provide evidence to suggest that an FPT

algorithm for exact counting is unlikely to exist.

5.2 Notation and Definitions

We carry over the notation and definitions for typed stable matching problems described in
Section 4.2 of Chapter 4. A generalisation of typed stable matching problems defined in [11]



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 108

allows individual agents to rank a small number of their available partners without regard to
their type. We say that an agent considers such candidates to be exceptional. In practice, this
may occur if agents have additional information about a subset of their available partners.
We say that an agent a has deleted an agent b from their preference list if type(a) considers
type(b) acceptable, but b does not appear in the preference list of agent a i.e. agent a finds
agent b unacceptable. We note that the notion of deletions in type stable matching problems
is similar to the notion of master lists [80] in the standard stable matching setting without
types.

5.3 Literature Review

We surveyed the literature on stable matching in Section 4.3 of Chapter 4. In this section,
we describe results relating to the union of sets problem. The first result of this kind (due to
Karp and Luby [93]) describes an FPRAS for the union of sets problem given polynomial-
time algorithms for computing the size of each set, sampling from a single set, and deciding
membership of a set. The second result is a parameterised version of the Karp-Luby result
provided by Arvind and Raman [21]. We will also describe some examples of approximation
algorithms for other computational problems which rely on either of these results.

Let m and n be positive integers, and let {D1, . . . , Dm} be a collection of m sets whose
elements are binary strings of length nO(1). In [93], Karp and Luby describe an FPRAS

for approximating the number of elements in the union
⋃

i∈[m] Di if each of the following
conditions are met for every i ∈ [m]:

1. the value of |Di| can be computed in time f1(n) for some polynomial function f1, and

2. there exists an algorithm for sampling elements uniformly at random from Di in time
f2(n) for some polynomial function f2, and

3. for any s ∈
⋃

i∈[m] Di, it is possible to determine whether s ∈ Di in time f3(n) for
some polynomial function f3.

We now describe a selection of results in the literature which rely on the existence of the
Karp-Luby algorithm. Let F = C1 ∨ . . . ∨ Cm be a logical formula in disjunctive normal
form (DNF) [94]. Let Di denote the set containing the truth assignments of the variables
in Ci which satisfy Ci for each i ∈ [m]. Observe that the cardinality of

⋃m
i=1Di is equal

to the number of solutions to F . It follows that there exists an FPRAS for the problem
of counting solutions to a DNF formula [93] subject to the above conditions on the sets
D1, . . . , Dm. The all-terminal network reliability problem asks for the probability of a graph
G = (V (G), E(G)) becoming disconnected due to edge failure, where each edge fails in-
dependently with some given probability. In [95], the Karp-Luby result is used to obtain



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 109

an FPRAS for computing an estimate for the overall failure probability. The 3-dimensional

matching problem is a generalisation of the problem of finding a matching in a bipartite
graph in which there are three sets X, Y and Z of vertices, and an edge contains exactly one
vertex from each set. As in the 2D setting, the size of the matching is equal to the number
of edges contained in the matching. In [96], Liu et al. use the Karp-Luby result to obtain an
FPTRAS for the problem of counting 3-dimensional matchings parameterised by the size of
the matching.

In [21], Arvind and Raman described a parameterised version of the Karp-Luby result. Let
n and k be positive integers with 0 ≤ k ≤ n. Let {D1, . . . , Dm} be a collection of m

sets whose elements are binary strings of length nO(1) for some m = h(k)nO(1) where h is
any computable function. There exists an FPTRAS for approximating the size of the union⋃m

i=1Di if, for each i ∈ [m], each of the following conditions are met:

1. the value of |Di| can be computed in time g1(k)f1(n) for some computable function
g1 and a polynomial function f1, and

2. there exists an algorithm for sampling elements uniformly at random from Di in time
g2(k)f2(n) for some computable function g2 and a polynomial function f2, and

3. for any s ∈
⋃

i∈[m] Di, it is possible to determine whether s ∈ Di in time g3(k)f3(n)

for some computable function g3 and a polynomial function f3.

In the same paper, the authors showed that their result can be used to obtain an FPTRAS

for counting copies of a subgraph with bounded treewidth in a graph parameterised by the
order of the subgraph. In [97], Jerrum and Meeks use the Arvind-Raman result to obtain an
FPTRAS for counting sets of k vertices in a graph which induce a connected subgraph.

Let n be a positive integer, and let S = {S1, . . . , Sn} be a collection of n sets containing
elements from some universe U . A k-packing P in S is a collection of k sets from S such
that no two sets in P have common elements. The authors of [98] use the Arvind-Raman
result to obtain an FPTRAS for the problem of counting k-packings in S parameterised by
k. The subgraph packing problem is a related problem on graphs. Let G = (V (G), E(G))

be a graph, and let H = (V (H), E(H)) be a connected graph. A subgraph packing of G
based on H is a set of k vertex-disjoint copies of H in G. A similar application [98] of the
Arvind-Raman result yields an FPTRAS for counting subgraph packings parameterised by
k.

5.4 Contributions

In Section 5.5, we describe an FPTRAS for the union of sets problem. Our algorithm is a
generalisation of the FPTRAS described by Arvind and Raman [21] for the same problem.



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 110

The FPTRAS described by Arvind and Raman relies on the existence of FPT subroutines
for counting and sampling from each set exactly. Our result instead relies on the existence
of more general FPT subroutines for approximately counting and sampling from the sets.

Section 5.6 uses our FPTRAS for union of sets to obtain an FPTRAS for the problem of
counting stable matchings admitted by an instance of TYPED SMTI. Recall from Section 4.5
of Chapter 4 that the stability of a matching admitted by an instance of TYPED SMTI can be
determined by looking at only the pairs of types - called a type set - present in the matching.
As a result, we showed that the set of stable matchings admitted by an instance of TYPED
SMTI is equal to the union, over all stable type sets, of the number of matchings satisfying
each type set. We saw that the problem of counting the number of matchings satisfying a
type set is equivalent to counting perfect matchings in the associated acceptability graph.
It follows from existing results in the literature that we can sample from and approximate
the cardinality of the set of perfect matchings in each such graph efficiently. The problem
of deciding whether a matching satisfies a type set is in FPT parameterised by the number
of agent types. It then follows directly from the main result of Section 5.5 that there exists
an FPTRAS for counting solutions to TYPED SMTI parameterised by the number of agent
types.

Finally, in Section 5.7, we consider the problem of counting stable matchings in instances
of TYPED SMTI in which agents may individually declare some of their available partners
as unacceptable. We conjecture that if the number of partners which individual agents may
delete from their preference lists is a constant, then we can efficiently approximate the num-
ber of stable matchings in this setting. Using a reduction from the problem of finding a
clique containing a vertex of each colour in a graph whose vertices are assigned colours, we
show that the problem of finding a maximum size stable matching admitted by an instance
of TYPED SMTI in which agents may delete up to 2 agents from their preference list is
W[1]-hard parameterised by the number of agent types. As a consequence, we argue that an
FPT algorithm for exactly counting stable matchings in this setting is unlikely to exist.



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 111

5.5 An FPTRAS for Union of Sets

In this section, we describe a generalisation of the FPTRAS given by Arvind and Raman [21]
for the following problem.

UNION OF SETS

Input: Positive integers n, k and m such that 0 ≤ k ≤ n and m = nh(k) for some
computable function h, and m sets Dn,k = {D1, . . . , Dm} whose elements
are binary string of length nO(1).

Parameter: k.

Question: What is the size of the set
⋃m

i=1 Di?

In what follows, we describe the existence of an FPTRAS for the union of sets problem
subject to the following more general set of conditions than those described by Arvind and
Raman [21]:

• there exists an FPTRAS with parameter k for approximating the size of |Di| for each
i ∈ [m], and

• there exists an FPTAUS with parameter k for sampling almost uniformly at random
from Di for each i ∈ [m], and

• for any element s ∈
⋃

i∈[m] Di, there exists an FPT algorithm parameterised by k for
deciding whether s ∈ Di.

In Section 5.6, we will use this result to obtain an FPTRAS for approximating the number of
stable matchings in an instance of TYPED SMTI. Our algorithm follows the same general
approach used in the FPTRAS given by Arvind and Raman [21], and the FPRAS due to
Karp and Luby [93]. Both algorithms are based on the following Monte-Carlo technique of
repeated random sampling. Let S be a set of known size, and let U be the subset of S whose
value we would like to approximate. Let f be the function defined on the elements of S such
that f(s) = 1 if s ∈ U , and f(s) = 0 otherwise. For sufficiently large N , we complete N

trials, where a single trial involves choosing an element s uniformly at random from S and
computing the value of f(s). The output of the algorithm is given by |S| ×

∑
j∈[N ] Xj/N ,

where Xj denotes the outcome of the jth trial. Note that in our setting, we do not have an
exact value of |S| - this value too must be approximated. Moreover, we do not have access to
an algorithm for selecting elements from S uniformly at random - instead, we rely on being
able to sample from S according to an almost uniform distribution.

We begin by defining the sets S and U for the union of sets problem. Let n, k and m be
positive integers such that 0 ≤ k ≤ n and m = nh(k) for some computable function h.
Let {D1, . . . , Dm} be a collection of m sets containing binary strings of length nO(1). We



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 112

use S to denote the multiset containing every element s ∈
⋃m

i=1 Di once for each set in
{D1, . . . , Dm} containing s. We define an element of S as a pair (s, i) where 1 ≤ i ≤ m and
s ∈ Di. We then define a function ρ : S → {0, 1} on the elements of S such that ρ(s, i) = 1

if i is the smallest index such that s ∈ Di, and ρ(s, i) = 0 otherwise. Let U be the subset of S
where f has value 1, and let |U | denote the size of U . Since, for each element s ∈

⋃m
i=1Di,

we have that ρ(s, i) = 1 for exactly one value of i, it follows that |U | = |
⋃m

i=1 Di|. As one
of the inputs to our algorithm, we will require a lower bound µ on the value of |U |/|S|. The
following lemma provides a rudimentary lower bound on this ratio in case a better bound is
not available.

Lemma 5.1. Let n, k and m be positive integers such that 0 ≤ k ≤ n and m = nh(k) for

some computable function h. Let {D1, . . . , Dm} be a collection of m sets containing binary

string of length nO(1). Let S denote the multiset containing every element s in
⋃m

i=1 Di once

for each set in {D1, . . . , Dm} containing s. Let f be a function on the elements of S such

that ρ(s, i) = 1 if i is the smallest index such that s ∈ Di, and ρ(s, i) = 0 otherwise. Let U

denote the subset of S on which f has value 1. We have that

1

m
≤ |U |

|S|
≤ 1.

Proof. Observe that each element s in U appears at least once as an element of S. In the
case where each element in S is a member of exactly one set in {D1, . . . , Dm}, we have
|U |/|S| = 1. Conversely, each element in U may appear once in every set in {D1, . . . , Dm}.
In this case, since there are m sets, we have that |U |/|S| = 1/m.

Suppose that, for each i ∈ [m], there exists an FPTRAS for approximating the size of Di. We
shall denote the output of such an algorithm with inputs Di, ϵ

′ and δ′ by approx(ϵ′,δ′)(Di).
Suppose also that there exists an FPTAUS for sampling almost uniformly at random from Di

for each i ∈ [m]. We denote the output of a single call to the FPTAUS with inputs Di and ϵ′

by approx sample(ϵ′)(Di). Given the sets {D1, . . . , Dm}, a lower bound µ on |U |/|S|, and
real numbers ϵ and δ such that 0 < δ, ϵ < 1 as input, we claim that the following algorithm
returns an ϵ-approximation of |

⋃m
i=1Di| with probability at least (1− δ).

In the remainder of this section, we prove that Algorithm 3 describes an FPTRAS for the
union of sets problem. We begin by bounding the value of the estimate of |S|. We then
bound the probability that a particular element (s, i) ∈ S is selected in a single “trial”. Using
these bounds, we are able to derive a bound on the probability that the output of the algorithm
exceeds the allowable bounds of (1± ϵ)|U |. This allows us to bound the probability that our
algorithm fails - we show that this occurs with probability at most δ. It then remains to show
that the runtime of our algorithm can be written in the form g(k)f(n, 1/ϵ, log(1/δ)) where f
is a polynomial function and g is any computable function.



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 113

Algorithm 3: An FPTRAS for Union of Sets
input : sets {D1, . . . , Dm}, real numbers ϵ and δ with 0 < ϵ, δ < 1, and a lower bound

µ on |U |/|S|
output: an ϵ-approximation of |

⋃m
i=1Di|

1 Set ϵ′ = ϵ/10;
2 Set δ′ = δ/(3m);
3 for 1 ≤ i ≤ m do
4 Let |Di|(ϵ′,δ′) = approx(ϵ′,δ′)(Di);
5 end
6 Set |S|(ϵ′,δ′) =

∑
i∈[m] |Di|(ϵ′,δ′);

7 for 1 ≤ i ≤ m do
8 Set pi =

|Di|(ϵ′,δ′)∑
j∈[m] |Dj |(ϵ′,δ′)

;

9 end
10 Set N =

⌈
39 ln(3/δ)

ϵ2µ

⌉
;

11 for 1 ≤ j ≤ N do
12 Randomly select i from [m] with probability pi;
13 Set s = approx sample(ϵ′)(Di);
14 if ρ(s, i) = 1 then
15 Set Xj = 1;
16 else
17 Set Xj = 0;
18 end
19 Set X =

∑
j∈[N ] Xj;

20 return Y = |S|(ϵ′,δ′) ×X/N ;

The following lemma bounds the value of the estimate |S|(ϵ′,δ′) of |S| made at Line 6 of the
algorithm. Note that if any call to approx(ϵ′,δ′)(Di) fails at Line 3 then our algorithm also
fails, so we shall assume otherwise at this stage.

Lemma 5.2. Let {D1, . . . , Dm}, ϵ, δ and µ be the input to Algorithm 3. Assuming that no

call to approx(ϵ′,δ′)(Di) fails, the value of |S|(ϵ′,δ′) set at Line 6 is such that

(1− ϵ′)|S| ≤ |S|(ϵ′,δ′) ≤ (1 + ϵ′)|S|.

Proof. By definition, for each i ∈ [m], as long as the call to approx(ϵ′,δ′)(Di) does not fail,
we have that

(1− ϵ′)|Di| ≤ |Di|(ϵ′,δ′) ≤ (1 + ϵ′)|Di|.

Since we set |S|(ϵ′,δ′) =
∑

i∈[m] |Di|(ϵ′,δ′) at Line 6, the result follows.

In the following lemma, we bound the probability p(s,i) of an element (s, i) ∈ S being



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 114

selected in a single iteration of the loop at Line 11.

Lemma 5.3. Let {D1, . . . , Dm}, ϵ, δ and µ be the input to Algorithm 3. Assuming that no call

to approx(ϵ′,δ′)(Di) fails, the probability p(s,i) of choosing a particular element (s, i) ∈ S in

a single iteration of the loop at Line 11 lies in the range

(1− ϵ′)2

(1 + ϵ′)
∑

j∈[m] |Dj|
≤ p(s,i) ≤

(1 + ϵ′)2

(1− ϵ′)
∑

j∈[m] |Dj|
.

Proof. In what follows we derive an upper bound on the value of p(s,i). The lower bound
on p(s,i) can be derived using the same logic. Let ps|i denote the conditional probability of
choosing s from Di given that i has been chosen from [m]. We have that

p(s,i) = ps|i × pi.

It follows that to obtain an upper bound on p(s,i), it suffices to derive upper bounds on each
of ps|i and pi. At Line 11 of Algorithm 3, we set

pi =
|Di|(ϵ′,δ′)∑

j∈[m] |Dj|(ϵ′,δ′)
.

It follows that the value of pi is greatest when the value of |Di|(ϵ′,δ′) overestimates the value
of |Di| as much as possible, and the value of |Dj|(ϵ′,δ′) underestimates the value of |Dj| as
much as possible for each j ̸= i. Since we have assumed that the call to approx(ϵ′,δ′)(Di)

does not fail, we may overestimate |Di| by a factor of at most (1 + ϵ′). Similarly, we may
underestimate each |Dj| by a factor of at most (1− ϵ′). Thus, we have that

pi ≤
(1 + ϵ′)|Di|

(1− ϵ′)
∑

j∈[m] |Dj|
. (5.1)

The probability ps|i of choosing s from Di given that we have chosen i is equal to the prob-
ability that the call to approx sample(ϵ′)(Di) selects the element s from Di. Thus, by defi-
nition we have that

ps|i ≤
(1 + ϵ′)

|Di|
. (5.2)

It follows from (5.1) and (5.2) that

p(s,i) ≤
(1 + ϵ′)2

(1− ϵ′)
∑

j∈[m] |Dj|
.



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 115

In the following lemma, we use the bounds from Lemma 5.3 on the probability of picking a
specific element from the set S to bound the probability of picking any element (s, i) from
S with ρ(s, i) = 1.

Lemma 5.4. Let {D1, . . . , Dm}, ϵ, δ and µ be the input to Algorithm 3. Assuming that no

call to approx(ϵ′,δ′)(Di) fails, at any single iteration of the loop at Line 11, the probability p

of choosing an element (s, i) from S such that ρ(s, i) = 1 lies in the range

(1− ϵ′)2

(1 + ϵ′)

|U |
|S|

≤ p ≤ (1 + ϵ′)2

(1− ϵ′)

|U |
|S|

.

Proof. By Lemma 5.3, the probability p(s,i) of picking the pair (s, i) from S lies in the range

(1− ϵ′)2

(1 + ϵ′)
∑

j∈[m] |Dj|
≤ p(s,i) ≤

(1 + ϵ′)2

(1− ϵ′)
∑

j∈[m] |Dj|
. (5.3)

By definition, we have that
∑

j∈[m] |Dj| = |S|, and that the number of elements in S such
that ρ(s, i) = 1 is equal to |U |. The probability p of selecting a pair (s, i) from S such that
ρ(s, i) = 1 is equal to the sum

∑
ρ(s,i)=1 p(s,i). Hence, it follows from (5.3) that the value of

p lies in the range

(1− ϵ′)2

(1 + ϵ′)

|U |
|S|

≤ p ≤ (1 + ϵ′)2

(1− ϵ′)

|U |
|S|

.

A poisson trial Xi is a random variable which takes value 1 with probability pi and 0 with
probability 1− pi. We say that the trials X1, . . . , XN are independent if

P (X1 = k1, . . . , XN = kN) = P (X1 = k1)× · · · × P (XN = kN).

A random variable X is said to stochastically dominate [20] a random variable Y if Pr(X ≥
a) ≥ Pr(Y ≥ a) for all a. As a consequence, we have that E[X] ≥ E[Y ]. The following
corollary follows directly from Lemma 5.4.

Corollary 5.5. Let {D1, . . . , Dm}, ϵ, δ and µ be the input to Algorithm 3. Suppose that no

call to approx(ϵ′,δ′)(Di) fails. The random variable X =
∑

j∈[N ] Xj at Line 19 stochastically

dominates a random variable Xlow which is the sum of N independent Poisson trials with

E[Xlow] =
(1− ϵ′)2N |U |
(1 + ϵ′)|S|

and is stochastically dominated by a random variable Xhigh which is the sum of N indepen-



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 116

dent Poisson trials with

E[Xhigh] =
(1 + ϵ′)2N |U |
(1− ϵ′)|S|

.

The following theorem follows directly from Theorems 4.4 and 4.5 of [20] and is known as
a Chernoff Bound.

Theorem 5.6 ([20]). Let X1, . . . , XN be independent Poisson trials and let X =
∑N

i=1 Xi.

For any 0 < γ < 1 we have that

(1)

Pr(X ≥ (1 + γ)E[X]) ≤ e−(γ2E[X])/3

and

(2)

Pr(X ≤ (1− γ)E[X]) ≤ e−(γ2E[X])/2.

The following lemmas describe an upper bound on the probability that the output of Algo-
rithm 3 lies outside of the allowable limits even when no call to approx(ϵ′,δ′)(Di) fails. In
both cases, we use the Chernoff bound in Theorem 5.6 to bound the probabilities. These
bounds will later be used to bound the total probability that our algorithm fails.

Lemma 5.7. Let {D1, . . . , Dm}, ϵ, δ and µ be the input to Algorithm 3, and let Y denote the

output. Assuming that no call to approx(ϵ′,δ′)(Di) fails, the probability with which Y exceeds

that of |U | by more than a factor of (1 + ϵ) is at most δ/3.

Proof. At Line 20, we set Y = |S|(ϵ′,δ′) ×X/N . By Lemma 5.2, we have that

|S|(ϵ,δ′) ≤ (1 + ϵ′)|S|,

It follows that

Pr(Y ≥ (1 + ϵ)|U |) ≤ Pr

(
X ≥ |U |(1 + ϵ)N

|S|(1 + ϵ′)

)
.

By Corollary 5.5, the random variable X is stochastically dominated by a random variable
Xhigh with

E[Xhigh] =
(1 + ϵ′)2N |U |
(1− ϵ′)|S|

. (5.4)



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 117

Thus, it suffices to show that

Pr

(
Xhigh ≥

|U |(1 + ϵ)N

|S|(1 + ϵ′)

)
≤ δ/3. (5.5)

In what follows, we show that we can apply the Chernoff bound to the left-hand side of (5.5)
to obtain a value that is at most the right-hand side. To apply the Chernoff bound, we must
first write the left-hand side of (5.5) in the form Pr(Xhigh ≥ (1 + γ)E[Xhigh]), so let

|U |(1 + ϵ)N

|S|(1 + ϵ′)
= (1 + γ)E[Xhigh]. (5.6)

Rearranging (5.6) gives

γ =
|U |(1 + ϵ)N

|S|(1 + ϵ′)E[Xhigh]
− 1.

It follows from (5.4) that

γ =
(1 + ϵ)(1− ϵ′)

(1 + ϵ′)3
− 1.

In order to apply the Chernoff bound, it remains to show that 0 < γ < 1. Suppose for a
contradiction that this is not the case. Suppose first that γ < 0. Since 0 < ϵ < 1, and we set
ϵ′ = ϵ/10, we have that

(1 + ϵ)(1− ϵ′)

(1 + ϵ′)2
− 1 < 0

→(1 + ϵ)(1− ϵ/10) < (1 + ϵ/10)2

→ 1

10
(1 + ϵ)(10− ϵ) <

1

100
(10 + ϵ)2

→100 + 90ϵ− 10ϵ2 < 100 + 20ϵ+ ϵ2

→70/11 < ϵ.

Since we have assumed that ϵ < 1, we have a contradiction. Now suppose that γ > 1, so we
have that

(1 + ϵ)(1− ϵ′)

(1 + ϵ′)2
− 1 > 1

→(1 + ϵ)(1− ϵ/10) > 2(1 + ϵ/10)2

→ 1

10
(1 + ϵ)(10− ϵ) >

1

50
(10 + ϵ)2

→50 + 45ϵ− 5ϵ2 > 100 + 20ϵ+ ϵ2

→50− 25ϵ+ 6ϵ2 < 0.



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 118

Again, since ϵ < 1, we have a contradiction. It follows that 0 < γ < 1. Now applying the
Chernoff bound to Pr(Xhigh ≥ (1 + γ)E[Xhigh]) gives

Pr(Xhigh ≥ (1 + γ)E[Xhigh]) ≤ e
−
(
γ2 (1+ϵ′)2N|U|

(1−ϵ′)|S|

)
/3
.

Since ϵ′ = ϵ/10 and ϵ < 1, we have that

γ =
(1 + ϵ)(1− ϵ′)

(1 + ϵ′)3
− 1

=
ϵ− 4ϵ

10
+ ϵ2

10
− 3ϵ2

100
− ϵ3

1000

1 + 3ϵ
10

+ 3ϵ2

100
+ ϵ3

1000

≥
ϵ− ϵ( 5

10
+ 3

100
+ 1

1000
)

14
10

>
4/10

14/10
ϵ

=
2ϵ

7
.

It follows that γ2 > ϵ2/13. Since 0 < ϵ′ < 1, we have that (1 + ϵ′)2/(1 − ϵ′) > 1. Thus,
since µ ≤ |U |/|S|, we have that

e
−
(
γ2 (1+ϵ′)2N|U|

(1−ϵ′)|S|

)
/3

≤ e
− ϵ2

13
· 39 ln(3/δ)

3ϵ2µ
·µ ≤ δ/3.

The result follows.

We now prove that an identical bound holds for the probability that the value of the output
of Algorithm 3 is more than a factor of (1− ϵ) smaller than |U |.

Lemma 5.8. Let {D1, . . . , Dm}, ϵ, δ and µ be the input to Algorithm 3, and let Y denote the

output. Assuming that no call to approx(ϵ′,δ′)(Di) fails, the probability with which Y is more

than a factor of (1− ϵ) smaller than |U | is at most δ/3.

Proof. The proof of this result follows the same logic as that of Lemma 5.7. By Lemma 5.2,
we have that (1− ϵ′)|S| ≤ |S|(ϵ,δ′). Since we set Y = |S|(ϵ′,δ′) ×X/N . It follows that

Pr(Y ≤ (1− ϵ)|U |) ≤ Pr

(
X ≤ (1− ϵ)N |U |

(1− ϵ′)|S|

)
.

By Corollary 5.5, the random variable X stochastically dominates a random variable Xlow

with

E[Xlow] =
(1− ϵ′)2N |U |
(1 + ϵ′)|S|

. (5.7)



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 119

Thus, it suffices to show that

Pr

(
Xlow ≤ (1− ϵ)N |U |

(1− ϵ′)|S|

)
≤ δ/3. (5.8)

To apply the Chernoff bound to the left-hand side of (5.8), we must write it in the form
Pr(Xlow ≤ (1− γ)E[Xlow]), so let

(1− ϵ)N |U |
(1− ϵ′)|S|

= (1− γ)E[Xlow]. (5.9)

Rearranging (5.9) gives

γ = 1− (1− ϵ)N |U |
(1− ϵ′)|S|E[Xlow]

.

It follows from (5.7) that

γ = 1− (1− ϵ)(1 + ϵ′)

(1− ϵ′)3
.

We must now show that 0 < γ < 1. Suppose for a contradiction that γ < 0. Since ϵ′ = ϵ/10,
we have that

1− (1− ϵ)(1 + ϵ′)

(1 + ϵ′)3
< 0

→(1 + ϵ/10)3 < (1− ϵ)(1 + ϵ/10)

→ 1

1000
(10 + ϵ)3 <

1

10
(1− ϵ)(10 + ϵ)

→1000 + 300ϵ+ 30ϵ2 + ϵ3 < 1000− 900ϵ− 100ϵ2

→ϵ3 + 130ϵ2 + 1200ϵ < 0.

Since ϵ > 0, we have a contradiction. Now suppose that γ > 1. We have that

1− (1− ϵ)(1 + ϵ′)

(1 + ϵ′)2
> 1

→(1− ϵ)(1 + ϵ′)

(1 + ϵ′)2
< 0.

Since 0 < ϵ, ϵ′ < 1, we have a contradiction. Applying the Chernoff bound to Pr(Xlow ≤
(1− γ)E[Xlow]) gives

Pr(Xlow ≤ (1− γ)E[Xlow]) ≤ e
−
(
γ2 (1−ϵ′)2N|U|

(1+ϵ′)|S|

)
/2
.



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 120

Since ϵ′ = ϵ/10 and ϵ < 1, we have that

γ = 1− (1− ϵ)(1 + ϵ′)

(1− ϵ′)3

= 1−
1− 9ϵ

10
− ϵ2

10

1− 3ϵ
10

+ 3ϵ2

100
− ϵ3

1000

≥ 1−
1− 9ϵ

10

1− 4ϵ
10

=
5ϵ

10− 4ϵ
.

It follows that γ > 5ϵ/6, and hence γ2 > 25ϵ2/36. In addition, we have that

(1− ϵ′)2

(1 + ϵ′)
=

1− 2ϵ
10

+ ϵ2

100

1 + ϵ
10

> 8/11.

Thus, since µ ≤ |U |/|S| and N =
⌈
39 ln(3/δ)

ϵ2µ

⌉
, we have that

e
−
(
γ2 (1−ϵ′)2N|U|

(1+ϵ′)|S|

)
/2

≤ e
− 25ϵ2

36
· 8
11

· 39 ln(3/δ)

2ϵ2µ
·µ ≤ δ/3

as required.

The following lemma describes an upper bound on the probability that any internal call to
approx(ϵ′,δ′)(Di) fails.

Lemma 5.9. Let {D1, . . . , Dm}, ϵ, δ and µ be the input to Algorithm 3. The total probability

of any call to approx(ϵ′,δ′)(Di) failing is at most δ/3.

Proof. At Line 2, we set δ′ = δ/(3m). By definition, a single call to approx(ϵ′,δ′)(Di) fails
with probability at most δ′. Since there are m iterations of the loop at Line 3, the result
follows by a union bound.

We are now ready to bound the total probability of failure of our algorithm.

Lemma 5.10. Let {D1, . . . , Dm}, ϵ and δ be the input to Algorithm 3. The algorithm fails to

output a value within the required range with probability at most δ.

Proof. Algorithm 3 fails if and only if at least one of the following events occurs:

(i) the value of Y exceeds that of |U | by more than a factor of (1 + ϵ), or

(ii) the value of Y is smaller than that of |U | by more than a factor of (1− ϵ), or



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 121

(iii) any call to approx(ϵ′,δ′)(Di) fails.

It follows from Lemma 5.7 that (i) occurs with probability at most δ/3. It follows from
Lemma 5.8 that (ii) occurs with probability at most δ/3. Finally, it follows from Lemma 5.9
that (iii) occurs with probability at most δ/3. The result then follows by a union bound.

It remains to bound the runtime of our algorithm. We first obtain bounds in terms of n, δ, ϵ
and k for the time taken by each internal call to approx(ϵ′,δ′)(Di) and approx sample(ϵ′)(Di).

Lemma 5.11. Let ϵ, δ, µ and {D1, . . . , Dm} be the input to Algorithm 3. Each call to

approx(ϵ′,δ′)(Di) takes time g1(k)f1(n, 1/ϵ, log(1/δ)) for some computable function g1 and

a polynomial function f1.

Proof. By definition, given Di, ϵ
′ and δ′ as input, a single invocation of approx(ϵ′,δ′)(Di)

takes time g(k)f(n, 1/ϵ′, log(1/δ′)) for some computable function g and a polynomial func-
tion f . Since ϵ′ = ϵ/10 and δ′ = δ/(3m), where m = nh(k) for some computable function
h of k, the result follows.

The proof of the following lemma follows the same logic as that of Lemma 5.11.

Lemma 5.12. Let ϵ, µ and {D1, . . . , Dm} be the input to Algorithm 3. Each call to

approx sample(ϵ′)(Di) terminates in time g2(k)f2(n, log(1/ϵ)) for some computable func-

tion g2 and a polynomial function f2.

The following lemma uses Lemma 5.11 and Lemma 5.12 to derive a bound on the runtime
of our algorithm.

Lemma 5.13. Let ϵ, δ, µ and {D1, . . . , Dm} be the input to Algorithm 3. Algorithm 3 ter-

minates in time g(k)f(n, 1/ϵ, log(1/δ)) for some computable function g and a polynomial

function f .

Proof. There are 2nO(1) possible binary strings of length nO(1). It follows that if any interme-
diate value in our algorithm cannot be represented using O(nO(1)) bits, then our algorithm
has failed, so we may assume that this is not the case.

By Lemma 5.11, each call to approx(ϵ′)(Di) takes time g1(k)f1(n, log(1/ϵ)) for some com-
putable function g1 and a polynomial function f1. Since m = nh(k) for some computable
function h, it follows that we can compute the estimates |Di|(ϵ′,δ′) in time

nh(k)× g1(k)f1(n, 1/ϵ, log(1/δ)).



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 122

We can then compute the sum

|S|(ϵ′,δ′) =
∑
i∈[m]

|Di|(ϵ′,δ′)

in time

O(h(k)nO(1)).

We now bound the time needed to compute the probability estimates pi for each 1 ≤ i ≤ m

at Line 8. We have already computed the value of |Di|(ϵ′,δ′) for each i ∈ [m], as well as the
sum

∑
i∈[m] |Di|(ϵ′,δ′). It follows that computing the values of the probability estimates takes

time

O(h(k)nO(1)).

It remains to bound the runtime of the loop at Line 11. By Lemma 5.12, each call to
approx sample(ϵ′)(Di) terminates in time g2(k)f2(n, log(1/ϵ)) for some computable func-
tion g2 and a polynomial function f2. We have assumed that deciding membership of any
element s ∈

⋃
i∈[k] Di i a set Di takes time g3(k)f3(n) for some polynomial function f3 and

a computable function g3. Hence, computing the value of Xj takes time

nh(k)g3(k)f3(n).

By Lemma 5.1, we have that

1

m
≤ µ ≤ 1.

Thus, since

N =

⌈
39 ln(3/δ)

ϵ2µ

⌉
it follows that the loop at Line 11 takes time at most

nh(k)1/ϵ log(1/δ)× (g2(k)f2(n, 1/ϵ, log(1/δ)) + g′3(k)f
′
3(n))

= g′2(k)f
′
2(n, 1/ϵ, log(1/δ))

for some polynomial function f ′
2 and some computable function g′2.

Finally, given the value of |S|(ϵ′,δ′), as well as the value of Xj for each j ∈ [N ], computing



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 123

the output Y takes time

O(nO(1)nh(k)1/ϵ log(1/δ)).

The result follows.

We are now ready to prove that Algorithm 3 describes an FPTRAS for the union of sets
problem.

Theorem 5.14. Let n,m and k be positive integers such that m = nh(k) for some com-

putable function h, and let D1, . . . , Dm be a collection of m sets whose elements are binary

strings of length nO(1). Suppose that each of the following conditions holds.

1. There exists an FPTRAS for estimating the size of |Di| for each i ∈ [m], and

2. There exists an FPTAUS for sampling elements almost uniformly at random from Di

for each i ∈ [m], and

3. For any element s ∈
⋃

i∈[m] Di, there exists an FPT algorithm parameterised by k for

deciding whether s ∈ Di.

Then, for any real numbers ϵ and δ such that 0 < ϵ, δ < 1, there exists an algorithm which,

with probability at least (1−δ), approximates the size of |
⋃

i∈[m] Di| within a factor of (1±ϵ)

in time g(k)f(n, 1/ϵ, log(1/δ)) for some computable function g and a polynomial function

f .

Proof. By Lemma 5.10, with probability at least (1− δ), Algorithm 3 returns a value within
a factor of (1±ϵ). By Lemma 5.13, the algorithm terminates in time g(k)f(n, 1/ϵ, log(1/δ))
for some computable function g and a polynomial function f . The result follows.

5.6 An FPTRAS for #TYPED SMTI

In this section, we describe an FPTRAS for the problem of counting (weakly) stable match-
ings admitted by an instance of TYPED SMTI. Our algorithm is based on the FPTRAS for
the union of sets problem described in Section 5.5. Note that we will rely on the definitions
and notation used in relation to TYPED SMTI given in Chapter 4 (Section 4.5.5). We will
also make use of some of the results described in Section 4.5.5.

Let I be an instance of TYPED SMTI. Recall that a stable type set in I is a set of pairs of
types in I which guarantees stability. Let T = {T1, . . . , T|T |} denote the set of stable type
sets in I . Recall that we use MT to denote the set of (stable) matchings admitted by I which



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 124

satisfy (i.e. contain only the pairs of types in) the stable type set T . We begin by showing
that the problem of counting stable matchings admitted by I is equivalent to computing the
size of the union of the sets {M1, . . . ,M|T |}. We then show that each of the conditions in
Theorem 5.14 hold for these sets, and hence there exists an FPTRAS for #TYPED SMTI.
The following observations follow directly from definitions.

Observation 5.15. Let I be an instance of TYPED SMTI, and let T denote the set of stable
type sets in I . Each stable matching admitted by I satisfies at least one type set in T .

Observation 5.16. Let I be an instance of TYPED SMTI, and let T be a stable type set in
T . Each matching that satisfies T is stable.

Thus we have the following.

Corollary 5.17. Let I be an instance of TYPED SMTI. The number of stable matchings

admitted by I is equal to
∣∣⋃

T∈T MT
∣∣.

It remains to prove that each of the conditions in Theorem 5.14 hold for the sets {M1, . . . ,M|T |}.
The following lemma proves the existence of an FPT algorithm for deciding membership in
each of the sets M1, . . . ,M|T | parameterised by the number of agent types.

Lemma 5.18. Let I be an instance of TYPED SMTI with at most n agents and at most k

agent types. Let M be a matching admitted by I , and let T be a type set in T . We can

determine whether M ∈ MT in time O(nk2).

Proof. A matching admitted by I contains at most ⌊n/2⌋ pairs of agents, and a type set
contains at most (k+1)2 pairs of types. It follows that we can check if the types of each pair
of agents in M form a pair in T in time O(nk2).

Corollary 4.33 from Section 4.5 describes a relationship between the number of matchings
satisfying a stable type set and the number of perfect matchings in each of at most n balanced
bipartite graphs constructed from the problem instance. In [90], Jerrum et al. describe an
FPAUS for sampling from the set of perfect matchings in a bipartite graph almost uniformly
at random. As a consequence, they also obtain an FPRAS for approximating the number of
perfect matchings in a bipartite graph.

Theorem 5.19 ([90]). Let G = (V (G), E(G)) be a balanced bipartite graph on n vertices,

and let ϵ and δ be real numbers such that 0 < ϵ, δ < 1. There exists an algorithm which takes

G, ϵ and δ as input, and with probability at least (1 − δ) returns an ϵ-approximation of the

number of perfect matchings in G in time f(n, 1/ϵ, log(1/δ)) for some polynomial function

f .



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 125

Theorem 5.20 ([90]). Let G = (V (G), E(G)) be a balanced bipartite graph on n vertices,

and let ϵ > 0 be a real number. Let MG denote the set of all perfect matchings in G. There

exists an algorithm which takes G and ϵ as input and selects a perfect matching MG from

MG with probability p such that (1 − ϵ)/|MG| ≤ p ≤ (1 + ϵ)/|MG| in time f(n, 1/ϵ) for

some polynomial function f .

Using Theorems 5.19 and 5.6, we are able to obtain an FPRAS and an FPAUS for approxi-
mating and sampling from each set MT .

Lemma 5.21. Let I be an instance of TYPED SMTI with at most n agents and at most k

agent types, and let T be a stable type set in T . There exists an FPRAS for approximating

the size of MT .

Proof. By Corollary 4.33, we have that

|MT | =
∑

0≤c<min(nw,nm)

|MGT
c
|

c!(|nw − nm|+ c)!

where |MGT
c
| is the number of perfect matchings in the type set graph GT

c (defined in Sec-
tion 4.5). Let ϵ and δ be real numbers such that 0 < ϵ, δ < 1, and let ϵ′ = ϵ and δ′ = δ/n.
Observe that ϵ′ and δ′ are real numbers, and that 0 < ϵ′, δ′ < 1. By Theorem 5.19, there
exists an algorithm which takes GT

c , ϵ
′ and δ′ as input and, with probability at least (1− δ′),

returns a value |MGT
c
|(ϵ′,δ′) within a factor of (1± ϵ′) of |MGT

c
| in time f(n, 1/ϵ′, log(1/δ′))

for some polynomial function f . Let

|MT |(ϵ′,δ′) =
∑

0≤c<min(nw,nm)

|MGT
c
|(ϵ′,δ′)

c!(|nw − nm|+ c)!
. (5.10)

The probability with which |MT |(ϵ′,δ′) lies outside of the range (1 ± ϵ)|MT | is at most the
probability with which any one of the values |MGT

c
|(ϵ′,δ′) lies outside the range (1±ϵ′)|MGT

c
|.

Since c ≤ n, this occurs with probability at most δ′n. Since δ′ = δ/n, it follows that
with probability at least (1 − δ), the value of |MT |(ϵ′,δ′) is an ϵ-approximation of |MT |. It
remains to show that computing the value of |MT |(ϵ′,δ′) takes time g(n, 1/ϵ, log(1/δ)) for
some polynomial function g. Computing the approximations |MGT

c
|(ϵ′,δ′) takes time

n× f(n, 1/ϵ, log(1/(δ/n)))

= f ′(n, 1/ϵ, log(1/δ)) (5.11)

for some polynomial function f ′. Since c < min(nw, nm), it follows that we can compute
each of c! and (|nw − nm| + c)! in time O(n2), and that each value is at most nn. It follows



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 126

that the denominator of the fraction in (5.10) can be computed in time

O(2n2 + n log n)

= O(n2)

and has value at most n2n. If the value of |MGT
c
|(ϵ,δ′) exceeds (2n)(2n) (the largest possible

number of perfect matchings in GT
c ), then we may instead set its value to (2n)(2n). This can

be checked in time O(n log n). Hence, computing the value of each term in the sum in (5.10)
takes time

O(n2 + n log n+ 2n log n× n log n)

= O(n2 log2 n).

If the value of the sum is more than nn (the largest possible number of matchings in MT ),
then we may immediately return nn. This can be checked in time O(n log n). Otherwise, the
sum can be computed in time

O(n× (n2 log2 n+ n log n))

= O(n3 log2 n). (5.12)

It follows from (5.11) and (5.12) that our algorithm takes time

O(f ′(n, 1/ϵ, log(1/δ)) + n3 log2 n)

= O(g(n, 1/ϵ, log(1/δ)))

for some polynomial function g. The result follows.

Lemma 5.22. Let I be an instance of TYPED SMTI with at most n agents and at most k

agent types, and let T be a stable type set in T . There exists an FPAUS for sampling almost

uniformly from the set MT .

Proof. We begin by noting that each matching in the set MT of size min(nw, nm) − c cor-
responds to an equal proportion of the perfect matchings in the type set graph MGT

c
. It is

therefore sufficient to describe a method which, given MT and a real number 0 < ϵ < 1,
samples from the set of perfect matchings among all type set graphs GT

c in such a way that
the probability pMG

of picking a particular perfect matching MG lies in the range

(1− ϵ)∑
0≤c<min(nm,nw) |MGT

c
|
≤ pMG

≤ (1 + ϵ)∑
0≤c<min(nm,nw) |MGT

c
|
.

Informally, we proceed by choosing a value c such that c is selected with probability close to



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 127

|MGT
c
|/
∑

0≤c<min(nm,nw) |MGT
c
|, and then selecting a perfect matching from the set MGT

c

with close to equal probability.

Let ϵ be a real number such that 0 < ϵ < 1, and let ϵ1 = ϵ2 = ϵ/n2 and δ = ϵ/(2n)3n.
Observe that ϵ1, ϵ2 and δ are real numbers with 0 < ϵ1, ϵ2, δ < 1. By Theorem 5.6, there
exists an algorithm which, given GT

c and ϵ1 as input, samples from the set MGT
c

in time
f1(n, 1/ϵ1) for some polynomial function f1 such that each perfect matching is selected with
probability p where (1− ϵ1)/|MGT

c
| ≤ p ≤ (1 + ϵ1)/|MGT

c
|. Suppose that we have already

chosen a value of c, and let pMG|c denote the probability that we then choose the perfect
matching MG from MGT

c
by applying the FPAUS from Theorem 5.6 to GT

c and ϵ1. We have
that

(1− ϵ1)

|MGT
c
|
≤ pMG|c ≤

(1 + ϵ1)

|MGT
c
|
. (5.13)

By Theorem 5.19, there exists an algorithm which, given GT
c , δ and ϵ2 as input, approxi-

mates the value of |MGT
c
| within a factor of (1± ϵ2) with probability at least (1− δ) in time

f2(n, 1/ϵ2, log(1/δ)) for some polynomial function f2. Let |MGT
c
|(ϵ2,δ) denote the approxi-

mation of |MGT
c
| provided by a single invocation of this algorithm, and set

pc =
|MGT

c
|(ϵ2,δ)∑

0≤c<min (nw,nm) |MGT
c
|(ϵ2,δ)

.

Observe that the probabilities pc can be obtained using at most n invocations of the algorithm.
Thus, it follows from Theorem 5.19 that

(1− ϵ2)|MGT
c
|

(1 + ϵ2)
∑

0≤c<min (nw,nm) |MGT
c
|
≤ pc ≤

(1 + ϵ2)|MGT
c
|

(1− ϵ2)
∑

0≤c<min (nw,nm) |MGT
c
|

(5.14)

with probability at least (1− nδ).

Now, let pMG
denote the probability of selecting a perfect matching MG from any one of

the graphs GT
c . We first obtain a lower bound on the probability. With probability at least

(1−nδ), every invocation of the algorithm for estimating each |MGT
c
| succeeds. In this case,

we have that

pc ≥
(1− ϵ2)|MGT

c
|

(1 + ϵ2)
∑

0≤c<min (nw,nm) |MGT
c
|
.

In addition, by (5.13) we have that

pMG|c ≥
(1− ϵ1)

|MGT
c
|
.



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 128

It follows that the probability pMG
is such that

pMG
≥ (1− δ)(1− ϵ1)(1− ϵ2)

(1 + ϵ2)
∑

0≤c<min (nw,nm) |MGT
c
|
. (5.15)

We must show that (5.15) is at least (1− ϵ)/
∑

0≤c<min (nw,nm) |MGT
c
|. Since ϵ1 = ϵ2 = ϵ/n2

and δ = ϵ/(2n)3n, we have that

(1− δ)(1− ϵ1)(1− ϵ2)

(1 + ϵ2)
− (1− ϵ) =

(1− ϵ/(2n)3n)(1− ϵ/n2)(1− ϵ/n2)− (1 + ϵ/n2)(1− ϵ)

(1 + ϵ/n2)

≥(1 + ϵ2/n4 − 3ϵ/n2)− (1− ϵ+ ϵ/n2)

(1 + ϵ/n2)

=
ϵ(n2(n2 − 4) + ϵ)

(1 + ϵ/n2)n4
.

Since ϵ > 0, it follows that if n ≥ 2 then pMG
≥ (1 − ϵ)/

∑
0≤c<min (nw,nm) |MGT

c
|. If

n < 2, then counting the number of matchings is trivial, so we may assume without loss of
generality that this is not the case.

We now obtain an upper bound on the value of pMG
. With probability at most nδ, the prob-

ability pc lies outside of the bounds given in (5.14). In this case, the most we can say is that
pc ≤ 1. Otherwise, by (5.14) we have that

pc ≤
(1 + ϵ2)|MGT

c
|

(1− ϵ2)
∑

0≤c<min (nw,nm) |MGT
c
|
.

By (5.13), we have that

pMG|c ≤
(1 + ϵ1)

|MGT
c
|
.



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 129

It follows that

pMG
≤ nδ × (1 + ϵ1)

|MGT
c
|
+

(1 + ϵ2)|MGT
c
|

(1− ϵ2)
∑

0≤c<min (nw,nm) |MGT
c
|
× (1 + ϵ1)

|MGT
c
|

= nδ × (2n2n)

(2n2n)
× (1 + ϵ1)

|MGT
c
|
+

(1 + ϵ2)(1 + ϵ1)

(1− ϵ2)
∑

0≤c<min (nw,nm) |MGT
c
|

≤ ϵ(1 + ϵ1)

2×
∑

0≤c<min (nw,nm) |MGT
c
|
+

(1 + ϵ2)(1 + ϵ1)

(1− ϵ2)
∑

0≤c<min (nw,nm) |MGT
c
|

=
ϵ(1 + ϵ1)(1− ϵ2) + 2(1 + ϵ2)(1 + ϵ1)

2(1− ϵ2)
∑

0≤c<min (nw,nm) |MGT
c
|

=
ϵ(1 + ϵ/n2)(1− ϵ/n2) + 2(1 + ϵ/n2)(1 + ϵ/n2)

2(1− ϵ/n2)
∑

0≤c<min (nw,nm) |MGT
c
|

=
ϵ− ϵ3/n4 + 2 + 4ϵ/n2 + 2ϵ2/n2

2(1− ϵ/n2)
∑

0≤c<min (nw,nm) |MGT
c
|
. (5.16)

It remains to show that (5.16) is at most (1 + ϵ)/
∑

0≤c<min (nw,nm) |MGT
c
|. Since

2(1− ϵ/n2)(1 + ϵ)− (ϵ− ϵ3/n4 + 2 + 4ϵ/n2 + 2ϵ2/n2)

=ϵ(1− 6/n2 − 4ϵ/n2 + ϵ2/n4),

it follows that, if 6/n2 + 4ϵ/n2 < 1, then pMG
is at most (1 + ϵ)/

∑
0≤c<min (nw,nm) |MGT

c
|.

This occurs as long as n ≥ 4. If n < 4, then exactly counting matchings admitted by I is
trivial, so we may suppose that this is not the case. It follows that our algorithm provides an
ϵ-approximation of |MT |.

It remains to prove that our algorithm terminates in time f(n, 1/ϵ) for some polynomial
function f . Our algorithm makes at most n calls to the FPRAS from Theorem 5.19. It
follows that this component of the algorithm requires time at most

n× f2(n, 1/(ϵ/n
2), log(1/(ϵ/(2n)3n)))

= f ′
2(n, 1/ϵ)

for some polynomial function f ′
2. The algorithm also makes a single call to the FPAUS from

Theorem 5.6. It follows that this component of the algorithm takes time

f1(n, 1/(ϵ/n
2))

= f ′
1(n, 1/ϵ)

for some polynomial function f ′
1.

If the output of the FPRAS from Theorem 5.19 cannot be represented using O(n log n)



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 130

bits, then the algorithm has failed. Hence, we can calculate the probabilities pc in time
O(n2 log2 n). The result follows.

We are now able to prove our main result.

Theorem 5.23. There exists an FPTRAS for #TYPED SMTI.

Proof. Let I be an instance of TYPED SMTI. By Corollary 5.17, the number of stable
matchings admitted by I is equal to

∣∣⋃
T∈T MT

∣∣. It follows from Lemma 4.22 that 1 ≤
|T | ≤ 2k(k+1). Thus, by Theorem 5.14, if the following conditions hold for the sets M1, . . . ,MT

then there exists an FPTRAS for estimating the number of stable matchings admitted by I .

(1) There exists an FPTRAS for estimating the size of |MT | for each T ∈ T , and

(2) There exists an FPTAUS for sampling elements almost uniformly at random from MT

for each T ∈ T , and

(3) There exists an algorithm for determining whether a matching M admitted by I be-
longs to the set MT for any T ∈ T in time nO(1)f(k) for some computable function
f .

That (1) holds follows from Lemma 5.21. That (2) holds follows from Lemma 5.22. Finally,
Lemma 5.18 confirms that (3) holds.

5.7 TYPED MAX SMTI with 2 Deletions is W[1]-Hard

In this section, we consider whether we can extend the approximation result from Section 5.6
to the setting where agents may individually declare a small number of their available part-
ners as unacceptable. If we allow deletions in agents’ preference lists then the neighbourhood
diversity of the acceptability graph associated with an instance may no longer be bounded by
the number of agent types, since the neighbourhood of two vertices corresponding to a pair
of agents of the same type may differ. It follows that we cannot use the same approach as
in Section 4.5 to obtain an XP algorithm for exact counting in the setting with deletions. In
what follows, we describe how the FPTRAS from Section 5.6 might be extended to obtain
an “XP randomised approximation algorithm” in the setting with deletions when the number
of deletions is treated as a constant. We then prove that the problem of finding a maximum
size stable matching in this setting is W[1]-hard parameterised by the number of agent types.
As a consequence, we argue that it is unlikely that there exists an FPT algorithm for exactly
counting stable matchings in this setting.

Once we allow deletions in agents’ preference lists, the stability of a matching cannot be
determined by looking at only the pairs of agent types in the matching. As in the setting



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 131

without deletions, any matching which satisfies a stable type set is stable. However, in this
setting, there may be pairs of agents (m,w) who are not matched, and whose types are
preferable to the types of their respective partners, but who do not form a blocking pair as
long as at least one of them has deleted the other from their preference list. Generalising this
notion, a set Mi of men of type i and a set Mj of women of type j can be matched with agents
of types less desirable than j and i respectively, so long as in each man-woman pair, at least
one agent finds the other unacceptable. Thus, in addition to counting matchings satisfying a
stable type set, we must now also count matchings with additional pairs of types which do
not break stability due to the presence of deletions.

We can approximate the number of matchings satisfying each stable type set using the same
approach as in the setting without deletions. To count the set of stable matchings satisfying
each type set T which is not stable, we must consider, for each of the additional “unstable”
pairs of types in T , the number of ways that a subset of agents could be matched into pairs
of these types without breaking stability. In an instance of TYPED SMTI with at most n
agents, at most k types, and at most r deletions per agent, there are nf(r,k) possible subsets for
some function f . The number of matchings of the remaining agents satisfying the remaining
“stable” set of pairs of types in T can then be approximated as before. Let I be an instance of
TYPED SMTI with at most n agents, at most k agent types, and at most r deletions, and let
ϵ and δ be real numbers with 0 < ϵ, δ < 1. Given I , ϵ and δ as input, we conjecture that our
algorithm returns an (1± ϵ) approximation of the number of stable matchings admitted by I

with probability at least (1− δ) in time nf(r,k)g(k)h(n, 1/ϵ, log(1/δ)) for some computable
function g and a polynomial function h.

In the remainder of this section, we prove that computing the size of a maximum cardinality
stable matching admitted by an instance of TYPED SMTI with 2 deletions per agent is W[1]-
hard parameterised by the number of agent types needed to describe the instance.

TYPED MAX SMTI WITH 2 DELETIONS

Input: An instance I of TYPED SMTI containing at most n agents with at most k
agent types, where each agent may declare up to two agents from the other
set as unacceptable.

Parameter: k.

Question: What is the size of a maximum cardinality stable matching admitted by I?

In what follows, we show that TYPED MAX SMTI WITH 2 DELETIONS is W[1]-hard param-
eterised by the number of agent types. This is achieved via a reduction from a well-known
W[1]-hard problem, MULTICOLOURED CLIQUE. Given a graph G = (V (G), E(G)) and
a partition of V (G) into colour classes, we say that a clique in G is multicoloured if it con-
tains one vertex in each colour class. We define the MULTICOLOURED CLIQUE problem



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 132

as follows.

MULTICOLOURED CLIQUE

Input: A graph G = (V (G), E(G)) on n vertices and a partition V = {V1, . . . , Vk}
of V (G) into colour classes such that vertices in Vi have colour i for i ∈ [k].

Parameter: k.

Question: Does G contain a multicoloured clique on k vertices?

The W[1]-hardness of MULTICOLOURED CLIQUE can be demonstrated via a reduction
from CLIQUE [99]. We note that reducing a parameterised problem from MULTICOLOURED
CLIQUE is a common technique used to prove W[1]-hardness.

Theorem 5.24. TYPED MAX SMTI WITH 2 DELETIONS is W[1]-hard parameterised by the

number of agent types.

Proof. In what follows, we prove that the problem of deciding whether an instance of
TYPED SMTI WITH 2 DELETIONS admits a complete stable matching is W[1]-hard param-
eterised by the number of agent types via a reduction from MULTICOLOURED CLIQUE.
It follows that the problem of finding a maximum size stable matching is also W[1]-hard.

Let G = (V (G), E(G)) and V = {V1, . . . , Vk} be an instance of MULTICOLOURED
CLIQUE with |V (G)| = n and |E(G)| = m. In what follows, we construct an instance
I of TYPED MAX SMTI WITH 2 DELETIONS from G and V such that G contains a multi-
coloured clique on k vertices if and only if I admits a complete stable matching. The set of
women in I contains:

• a woman wv of type i for each vertex v ∈ Vi and each i ∈ [k], and

• a set of
(
k
2

)
“bad” women of type Bw, and

• a set of m−
(
k
2

)
“good” women of type Gw.

Observe that I contains a total of n+m women with k + 2 distinct types. The set of men in
I contains:

• a man mu,v of type (i, j) for each edge uv ∈ E(G) such that u ∈ Vi, v ∈ Vj and
1 ≤ i < j ≤ k, and

• a “bad” man of type Bm,i for each i ∈ [k], and

• a set of n− k “good” men of type Gm.

Observe that I contains a total of n + m men with
(
k
2

)
+ k + 1 distinct types. We now

construct the preference lists for each type. Note that we write {(i, j) : 1 ≤ i < j ≤ k} to
mean that all types of the form (i, j) are contained in a single tie in the preference list.



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 133

Women Men

Type i: Gm, {(i′, j) : 1 ≤ i′ < j ≤ k}, Bm,i Type (i, j): Gw, i, j, Bw

Type Gw: {(i, j) : 1 ≤ i < j ≤ k} Type Gm: {1, . . . , k}
Type Bw: {(i, j) : 1 ≤ i < j ≤ k} Type Bm,i: i

We only allow men that correspond to edges in G to declare available partners from their
preference lists as unacceptable. In particular, the man mu,v corresponding to edge uv ∈
E(G) finds the two women wu and wv unacceptable. Observe that I can be constructed from
G and V in time O(n2). We now prove that G contains a multicoloured clique on k vertices
if and only if I admits a complete stable matching.

In the first direction, we prove that the existence of a multicoloured clique in G implies the
existence of a complete stable matching of the agents in I . Let U = {u1, . . . , uk} be a set
of k vertices in G which form a multicoloured clique. We may assume that the vertex ui has
colour i for each 1 ≤ i ≤ k. We construct a complete matching M of the agents in I as
follows. For each ui ∈ U , we assign woman wui

to the man of type Bm,i in I . The remaining
n− k women corresponding to vertices in G are assigned to men of type Gm. Let W denote
the set of

(
k
2

)
edges in E(G) with both endpoints in U . Each man corresponding to an edge

in W is matched with a woman of type Bw. The remaining m −
(
k
2

)
men corresponding to

edges in E(G) are matched with women of type Gw. Observe that M matches all agents in
I and that the matched pairs are of the following four pairs of types:

• (i, Bm,i), 1 ≤ i ≤ k

• (i, Gm), 1 ≤ i ≤ k

• ((i, j), Bw), 1 ≤ i < j ≤ k

• ((i, j), Gw), 1 ≤ i < j ≤ k

We now argue that M is stable. No man of type Gm or Bm,i nor any woman of Bw or Gw

can form a blocking pair since these agents are all matched with their most preferred type.
Similarly, a blocking pair cannot involve a woman of type i who is matched with a man of
type Gm or a man of type (i, j) who is matched with a woman of type Gw. It follows that any
blocking pair must involve a man m of type (i, j) whose partner is of type Bw, and a woman
w of type i (or j) whose partner is of type Bm,i (or Bm,j). It follows from the construction of
M that the edge em corresponding to m is contained in W and the vertex vw corresponding to
w is in U . Since m is matched with an agent of type Bw, he would prefer to be matched with
any woman of type i or j except the two women he has declared unacceptable. However, by
our construction, vw is an endpoint of em and so m has deleted w from his preference list. It
follows that (m,w) does not form a blocking pair, and so M is stable.

In the other direction, we show that if there is a complete stable matching M admitted by



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 134

I , then G contains a multicoloured clique. Since all agents are matched under M , it follows
from the construction of the agents’ preference lists that all women of types Gw and Bw

must be matched with men of types (i, j) for pairs 1 ≤ i < j ≤ k, and all men of types
Gm and Bm,i, for each 1 ≤ i ≤ k, must be matched with women of types in [k]. Recall that
there are

(
k
2

)
women of type Bw. Let W denote the set of

(
k
2

)
edges corresponding to the

men of types (i, j) for pairs 1 ≤ i < j ≤ k who are matched with women of type Bw, and
let U denote the set of k vertices corresponding to women of types in [k] who are matched
with men of types Bm,i for 1 ≤ i ≤ k. Since I contains only one man of type Bm,i for each
i ∈ [k], and men of type Bm,i find only type i women acceptable, U must contain exactly one
vertex corresponding to a woman of type i for each 1 ≤ i ≤ k. We shall use wui

to denote
the woman (of type i) corresponding to the vertex ui ∈ U . It follows from our construction
that wui

must be matched with the single man of type Bm,i for each 1 ≤ i ≤ k, and that U
contains exactly one vertex of each colour.

We will now argue that the vertices in U and the edges in W form a multicoloured clique
in G. We begin by proving that all edges in W have both endpoints in U . Suppose for a
contradiction that this is not the case. Then there is a man m of type (i, j) who is matched
with a woman of type Bw and who has not deleted both of the women wui

and wuj
from

his preference list. Suppose without loss of generality that m has not deleted wui
from

his preference list. Then m and wui
mutually prefer each other to their partners in M , a

contradiction. Finally, since W contains
(
k
2

)
edges, all with both endpoints in U , and U

contains k vertices, each of a different colour, it follows that the vertices in U and the edges
in W form a multicoloured clique in G.

To prove Theorem 5.24, we showed that there exists a multicolour clique in the graph con-
structed from an instance of TYPED SMTI WITH 2 DELETIONS if and only if there exists
a stable matching that matches all men of type Bm,i and all women of type Bw. There
are O(k2) agents in the sets Bm,i and Bw. Suppose that there exists an FPT algorithm for
counting solutions to an instance of TYPED SMTI WITH 2 DELETIONS parameterised by
the number of agent types. By running the counting algorithm once with each subset of
Bm,i ∪Bw removed from the instance, we can use an inclusion-exclusion argument to deter-
mine whether there exists a stable matching that matches all men of type Bm,i and all women
of type Bw. Since we have shown that the latter problem is W[1]-hard, it seems unlikely that
there exists an FPT algorithm for counting stable matchings in this setting.

5.8 Remarks and Open Problems

In this chapter, we asked about the complexity of approximately counting solutions to typed
stable matching problems. In Section 5.6, we described an FPTRAS for efficiently comput-



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 135

ing an arbitrarily close approximation to the number of solutions to an instance of TYPED
SMTI for instances with a small number of agent types. Our FPTRAS for #TYPED SMTI
relied upon the FPTRAS for the union of sets problem described in Section 5.5. It is an open
problem whether there exists an FPTRAS for #TYPED SRTI or #TYPED HRT. We believe
that the cloning technique described in Chapter 4 can be used to extend the FPTRAS for
#TYPED SMTI to the hospitals/residents setting. Recall that the FPTRAS for #TYPED
SMTI relied on the existence of an FPRAS for counting perfect matchings in a bipartite
graph. In [100], it is observed that there is no known FPRAS for counting perfect matchings
in general graphs, so we cannot immediately use the same approach to obtain an FPTRAS in
the stable roommates setting.

In Section 5.7, we proved that under a relaxation of TYPED MAX SMTI in which individ-
ual agents may declare up to 2 of their available partners as unacceptable, the problem of
finding a maximum size stable matching is W[1]-hard parameterised by the number of agent
types. We argued that the existence of an FPT algorithm for exact counting in this setting is
unlikely. However, we believe that there exists an XP algorithm for approximately counting
solutions parameterised by the number of agent types for any constant number of deletions.
The existence of an FPTRAS, or an exact XP algorithm, for counting solutions to instances
of TYPED SMTI with a constant number of deletions is an open question.



CHAPTER 5. APPROXIMATELY COUNTING STABLE MATCHINGS Page 136



137

Chapter 6

Monochromatic Partitioning
Problems

6.1 Motivation

The problem of partitioning a large edge-coloured graph into a small number of monochro-
matic subgraphs is a well-studied problem in combinatorics. Of particular interest has been
to determine the minimum number of monochromatic paths or cycles needed to partition the
vertex set of a graph G whose edges have been coloured using a fixed number of colours.
When G is a complete graph or complete bipartite graph, the problem is particularly well-
understood. For instance, if G is a complete graph whose edges are coloured red and
blue, then the vertex set of G can always be partitioned into a red cycle and a blue cy-
cle [101, 102, 103].

Very little is currently known about the complexity of monochromatic partitioning problems.
What is known suggests that such problems are hard to solve in general - the problem of
deciding whether the vertices of an edge-coloured graph can be partitioned into c monochro-
matic paths for some positive integer c is NP-complete, even when only 2 colours are used
and the host graph is complete or complete bipartite [13]. Here, we ask about the complex-
ity of counting the number of ways to partition an edge-coloured graph into monochromatic
subgraphs. Counting the number of partitions of an edge-coloured graph into monochro-
matic subgraphs is at least as difficult as deciding whether such a partition exists. Hence, we
do not expect to find a polynomial-time algorithm for counting monochromatic partitions in
general. The treewidth of a graph is a measure of how “tree-like” the graph is. Many graph
problems that are intractable in general admit polynomial-time algorithms when restricted
to graphs with bounded treewidth. In this chapter, we achieve tractability for the problem
of counting monochromatic partitions of edge-coloured graphs with small treewidth into
monochromatic paths.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 138

6.2 Notation and Definitions

In this section, we provide the notation and definitions needed to describe our and others’
results in the area of monochromatic partitioning problems. In Section 6.2.1, we define the
terms and notation that we will use to describe monochromatic partitioning problems. In
Section 6.2.2, we define terms relating to treewidth and tree decompositions which will be
needed in the proof of our main result.

6.2.1 Monochromatic Partitioning Problems

Let G = (V (G), E(G)) be a graph. An edge-colouring of G is an assignment of integer
labels called colours to the elements of the set E(G). If at most r distinct colours are used,
then we say that G is r-edge-coloured. Note that an r-edge-colouring need not be a proper
edge-colouring. If each vertex in G is incident to edges with at most r distinct colours, then
we say that G is r-locally edge-coloured. Note that we do not restrict the total number of
colours in this case. It follows that every r-edge-coloured graph is r-locally edge-coloured,
but that the converse is not necessarily true. A subgraph H = (V (H), E(H)) of an edge-
coloured graph G is called monochromatic if every edge in the set E(H) receives the same
colour in G.

Let G = (V (G), E(G)) be an edge-coloured graph. A vertex partition of V (G) into c

monochromatic paths is a set of c paths such that each path is monochromatic, and every
vertex in V (G) is contained in exactly one path. A vertex cover of V (G) by c monochromatic
paths is a set of c paths such that each path is monochromatic, and every vertex in V (G) is
contained in at least one path. Note that in a vertex cover the paths need not be disjoint. The
existence of a partition of G into c monochromatic paths implies the existence of a vertex
cover by c monochromatic paths.

The monochromatic path partition number of an edge-coloured graph is equal to the min-
imum number of disjoint monochromatic paths required to partition its vertex set. The
monochromatic path cover number of a graph is equal to the minimum number of (not nec-
essarily disjoint) monochromatic paths needed to cover its vertex set. Analogous terms are
used to describe the minimum number of monochromatic trees or cycles required to parti-
tion or cover the vertex set of G. We regard singletons and single edges as monochromatic
subgraphs in each case so that these numbers are well-defined. Note that if we can partition
the vertex set of an edge-coloured graph into c monochromatic cycles then we can certainly
partition its vertex set into c monochromatic paths.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 139

6.2.2 Tree Decompositions and Treewidth

A tree decomposition [74] of a graph G = (V (G), E(G)) is a pair (T, {Xt}t∈V (T )) where
T = (V (T ), E(T )) is a tree with vertex set V (T ) (also called the nodes of T ) and edge set
E(T ), and {Xt}t∈V (T ) is a collection of non-empty subsets of V (G) satisfying the following
properties:

• V (G) =
⋃

t∈V (T ) Xt, and

• for each uv ∈ E(G), there is some t ∈ V (T ) such that u, v ∈ Xt, and

• for each v ∈ V (G), let T (v) = {t ∈ V (T ) : v ∈ Xt} - the set T (v) induces a
connected subtree in T .

The width of the tree decomposition is defined as (maxt∈V (T ) |Xt|)−1. The treewidth of G is
equal to the minimum width over all tree decompositions of G. Intuitively, the treewidth of
a graph can be thought of as a measure of how close the graph is to being a tree. A graph has
treewidth 1 if and only if it is a tree or a forest. Other examples of graphs with low treewidth
include cactus graphs (graphs in which every edge is contained in at most one cycle), pseudo-
forests (multigraphs in which every connected component contains at most one cycle), and
series-parallel graphs [104]. Every complete graph on n vertices has treewidth n− 1.

Let (T, {Xt}t∈V (T )) be a tree decomposition of a graph G. We may designate an arbitrary
vertex in T as the root node r of T . We then define a parent-child relationship between
adjacent pairs of nodes in T according to their relative distance from the root node. A node
t in T is the parent of a node t′ if t is the neighbour of t′ on the unique path from r to t′. We
say that t′ is the child of t. The leaves of T are the nodes whose set of children is empty.
We say that (T, {Xt}t∈V (T )) is a nice tree decomposition [105] of G if Xr = ∅, and every
non-root node t ∈ V (T ) is of one of the following four types.

• Leaf node: a leaf node t is such that Xt = ∅.

• Introduce node: an introduce node t has exactly one child t′ and is such that Xt =

Xt′ ∪ {v} for some vertex v ∈ V (G). We say that the vertex v is introduced at t.

• Forget node: a forget node t has exactly one child t′ and is such that Xt = Xt′ \ {v}
for some vertex v ∈ V (G). We say that the vertex v is forgotten at t.

• Join node: a join node t has exactly two children t1 and t2, and is such that Xt =

Xt1 = Xt2 .

Let t be a node of T . We use Tt to denote the subtree of T containing t and all the nodes in T

which are connected to r by a path containing t. We shall use Vt to denote the set of vertices
in G which are contained in bags indexed by the nodes in Tt.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 140

6.3 Literature Review

In this section, we survey the literature on monochromatic partitioning problems. In Sec-
tion 6.3.1, we cover results on monochromatic partitioning problems for complete edge-
coloured host graphs. We then move onto monochromatic partitioning problems for graphs
other than the complete graph. Specifically, we survey results on monochromatic parti-
tioning problems for complete bipartite graphs (Section 6.3.2), graphs with large minimum
degree (Section 6.3.3), and host graphs with fixed independence number (Section 6.3.4). In
Section 6.3.5, we survey the small number of results on partitioning locally edge-coloured
graphs into monochromatic subgraphs. Finally, in Section 6.3.6, we survey the literature on
the computational complexity of monochromatic partitioning problems. An excellent sur-
vey on these and other monochromatic partitioning problems was provided by Gyárfás in
2016 [106].

6.3.1 Partitioning Complete Edge-Coloured Graphs into Monochro-
matic Subgraphs

The most well-studied monochromatic partitioning problems ask about the minimum num-
ber of monochromatic paths or cycles needed to partition the vertices of a complete r-edge-
coloured host graph into monochromatic paths and cycles. The first result of this kind ap-
peared as a footnote of a paper due to Gerencsér and Gyárfás in 1967 [107].

Theorem 6.1 ([107]). Any 2-edge-coloured Kn can be partitioned into two disjoint monochro-

matic paths of different colours.

In a later paper, Gyárfás [108] asked whether their result can be extended to include complete
graphs whose edges have been coloured using more than two colours.

Conjecture 6.2 ([108]). The monochromatic path partition number of an r-edge-coloured

Kn is equal to r.

Conjecture 6.3 ([108]). The monochromatic path cover number of an r-edge-coloured Kn

is equal to r.

Figure 6.1 contains an example of a 2-edge-coloured K4 which demonstrates that both con-
jectures are optimal i.e. we cannot cover the vertex set using fewer than two monochromatic
paths or cycles.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 141

Figure 6.1: A 2-edge-coloured K4 with monochromatic path partition number 2

The r = 3 case of Conjecture 6.2 (and hence Conjecture 6.3) was eventually settled by
Pokrovskiy in 2012 [109]. The r ≥ 4 case of both conjectures remains open. In 1991, Erdős
et al. [110] asked whether the following stronger version of Conjecture 6.2 holds.

Conjecture 6.4 ([110]). The monochromatic cycle partition number of an r-edge-coloured

Kn is equal to r.

Again, Figure 6.1 shows that the conjecture is optimal. The r = 2 case of Conjecture 6.4 was
first verified only for sufficiently large host graphs [101, 102]. The conjecture was settled in
full by Bessy and Thomassé [103], who made the following stronger observation.

Theorem 6.5 ([103]). The vertex set of any 2-edge-coloured Kn can be partitioned into two

disjoint monochromatic cycles of different colours.

It follows that the monochromatic cycle cover number of a 2-edge-coloured Kn is also equal
to 2. In 2014, Pokrovskiy [109] described a counterexample to Conjecture 6.4 for r = 3.
However, each of Pokrovskiy’s counterexamples admits a partition into four monochromatic
cycles. Moreover, Letzter [111, 112] showed that three disjoint monochromatic cycles parti-
tion all but at most 60 vertices of any 3-edge-coloured Kn. Hence, it is possible that a weaker
version of Conjecture 6.4 holds. In [109], Pokrovskiy proposed the following.

Conjecture 6.6. ([109]) For each r, there exists a constant cr such that at most r monochro-

matic cycles are needed to partition all but cr vertices of any r-edge-coloured Kn.

The best known upper bound on the monochromatic cycle partition number of an r-edge-
coloured Kn for general r is ⌈25r2 log r⌉ [110, 113]. For large enough n, this has been im-
proved to 100r log r [114]. The problem of partitioning complete edge-coloured graphs into
monochromatic trees was first examined by Erdős et al. in [110]. Note that the monochro-
matic tree partition (respectively cover) number of a graph is less than or equal to its monochro-
matic path partition (respectively cover) number, since any path is a tree.

Conjecture 6.7 ([110]). The monochromatic tree cover number of any r-edge-coloured Kn

is equal to r − 1.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 142

Conjecture 6.8 ([110]). The monochromatic tree partition number of any r-edge-coloured

Kn is equal to r − 1.

The authors of [110] showed that the monochromatic tree cover number of an r-edge-
coloured Kn is at least r− 1 (so both conjectures are best possible) and at most r. It follows
from a result of Tuza [110, 115] that Conjecture 6.7 is true for all r ≤ 5. The conjecture
remains open for r > 5. The r = 2 case of Conjecture 6.8 follows from the fact that either
a graph or its complement is connected, an old remark of Erdős and Rado [110]. The r = 3

case is settled in [110]. The conjecture remains open for all r ≥ 4 but has been verified in
part by Haxell and Kohayakawa [116] on the set of sufficiently large graphs.

6.3.2 Partitioning Complete Bipartite Graphs into Monochromatic
Subgraphs

Initially explored as a stepping stone towards solving related problems on complete graphs,
recent years have seen significant progress in solving monochromatic partitioning problems
on complete bipartite host graphs. The first result of this kind appeared in a paper due to
Erdős et al. [110] in 1991.

Theorem 6.9 ([110]). The monochromatic cycle cover number of an r-edge-coloured Kn,n

is O(r2).

In the same paper, it was asked whether a similar bound exists for the monochromatic cycle
partition number.

Conjecture 6.10 ([110]). The monochromatic cycle partition number of an r-edge-coloured

Kn,n is a function of r.

A positive answer to Conjecture 6.10 was given by Haxell [117], who showed that O(r2 log2 r)

cycles suffice. In addition, Haxell showed that 1695 disjoint monochromatic cycles partition
the vertices of any 3-edge-coloured Kn,n. For sufficiently large host graphs, Lang et al. [118]
showed that at most 18 cycles are needed. They also showed that there is a partition of all but
o(n) vertices of a 3-edge-coloured Kn,n into five disjoint monochromatic cycles. In 2014,
Pokrovskiy [109] proved the following result.

Theorem 6.11 ([109]). The monochromatic path partition number of a 2-edge-coloured

Kn,n is equal to 3.

In the same paper, Pokrovskiy asked whether his result can be generalised to more than two
colours.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 143

Conjecture 6.12 ([109]). The monochromatic path partition number of an r-edge-coloured

Kn,n is equal to 2r − 1.

Conjecture 6.12 is optimal [109], and remains open for all r ≥ 3. The best known bound
on the monochromatic cycle and path partition numbers of an r-edge-coloured Kn,n is
O(r2 log r) [119]. In [110], Erdős et al. described the following bound on the monochro-
matic tree partition number of an r-edge-coloured Kn,n.

Theorem 6.13 ([110]). The monochromatic tree partition number of an r-edge-coloured

Kn,n is O(r2).

For sufficiently large n, the monochromatic tree partition number of an r-edge-coloured Kn,n

is at most 2r [116, 117]. It follows from Theorem 6.13 that the monochromatic tree cover
number of an r-edge-coloured Kn,n is O(r2). The authors of [120] suggested the following
improvement on this value.

Conjecture 6.14 ([120]). The monochromatic tree cover number of an r-edge-coloured Kn,n

is at most 2r − 2.

In the same paper, it was shown that Conjecture 6.14 is best possible and holds for all r ≤ 5.
In addition, the authors gave the following upper bound.

Theorem 6.15 ([120]). The monochromatic tree cover number of an r-edge-coloured Kn,n

is at most 2r − 1.

6.3.3 Minimum Degree Conditions for Monochromatic Subgraph
Partitioning

Balogh et al. [121] asked about a generalisation of the above monochromatic partitioning
problems where the host graph has large minimum degree. Results of this kind ask about
the relationship between the minimum degree of an edge-coloured graph and the number of
monochromatic subgraphs needed to partition its vertices. We use δ(G) to denote the mini-
mum degree of a graph G. The following conjecture is an analogue of the result due to Bessy
and Thomassé [103] on partitioning complete 2-edge-coloured graphs into monochromatic
cycles.

Conjecture 6.16 ([121]). The vertices of any graph G with δ(G) ≥ 3/4n whose edges have

been coloured in red and blue can be partitioned into a red cycle and a disjoint blue cycle.

Conjecture 6.16 is best possible [112] and has been verified asymptotically [121]. In [122],
Pokrovskiy asked about the number of monochromatic cycles needed to partition the vertices
of an even sparser 2-edge-coloured graph.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 144

Conjecture 6.17. [[122]] The monochromatic cycle partition number of any sufficiently

large 2-edge-coloured graph G with δ(G) ≥ 2n/3 is equal to 3.

Conjecture 6.18 ([122]). The monochromatic cycle partition number of any sufficiently large

2-edge-coloured graph G with δ(G) ≥ n/2 is equal to 4.

Both conjectures are best possible [122]. Conjecture 6.17 has been answered approximately
by Allen et al. [123]. For general r, the following observation was made in [112].

Theorem 6.19 ([112]). The monochromatic cycle partition number of an r-edge-coloured

graph G of order n with δ(G) ≥ n/2 + cr log n for some constant c is O(r2).

The authors of [112] also provided a construction showing that Theorem 6.19 is best possibl.

6.3.4 Partitioning Graphs with Bounded Independence Number
into Monochromatic Subgraphs

The independence number α(G) of a graph G is equal to the size of its largest independent
set. The following two results describe all that is currently known about the relationship
between the independence number of an edge-coloured graph and the number of monochro-
matic subgraphs needed to partition its vertices.

Theorem 6.20 ([124]). An r-edge-coloured graph G with independence number α(G) has

monochromatic cycle partition number at most 25(α(G)r)2 log(α(G)r).

Theorem 6.21 ([121]). At most 2α(G) monochromatic cycles are needed to partition the

vertices of any sufficiently large 2-edge-coloured graph G.

6.3.5 Partitioning Locally Edge-Coloured graphs into Monochro-
matic Subgraphs

Generalisations of monochromatic partitioning problems to locally edge-coloured host graphs
were first considered by Conlon and Stein in [125]. The following is an analogous result to
Theorem 6.5 for r-locally edge-coloured complete host graphs.

Theorem 6.22 ([125]). The vertex set of any 2-locally edge-coloured Kn can be partitioned

into two disjoint monochromatic cycles of different colours.

The authors of [125] also provide an upper bound on the monochromatic cycle number of
r-locally edge-coloured complete host graphs, generalising a result of Erdős et al. [110].



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 145

Theorem 6.23 ([125]). The vertex set of any r-locally edge-coloured Kn can be partitioned

into O(r2 log r) disjoint monochromatic cycles.

In [126], Lang and Stein improve upon the bound in Theorem 6.23.

Theorem 6.24 ([126]). The vertex set of any r-locally edge-coloured Kn can be partitioned

into O(r2) disjoint monochromatic cycles.

In the same paper, the authors provide an analogous result to Theorem 6.11 for 2-locally
edge-coloured complete bipartite host graphs. They also provide a bound on the monochro-
matic cycle partition number of an r-locally edge-coloured Kn,n.

Theorem 6.25 ([126]). The vertex set of any 2-locally edge-coloured Kn,n can be partitioned

into three disjoint monochromatic paths.

Theorem 6.26 ([126]). The vertex set of any r-locally edge-coloured Kn,n can be partitioned

into O(r2) disjoint monochromatic cycles.

The radius of a graph G = (V (G), E(G)) is equal to the minimum, over all vertices v in
V (G), of the maximum distance from any other vertex in V (G) to v. In a recent paper,
Sárközy [127] provided the following upper bounds on the number of monochromatic trees
or cycles needed to partition an r-locally edge-coloured graph.

Theorem 6.27 ([127]). The vertex set of any r-locally edge-coloured Kn with n ≥ r2(r+2)

can be partitioned into r monochromatic trees of radius at most 2, such that each tree is of a

different colour.

Theorem 6.28 ([127]). The monochromatic cycle partition number of an r-locally edge-

coloured Kn is O(r log r).

6.3.6 Complexity Results on Monochromatic Partitioning Prob-
lems

We use PMP to denote the computational problem of deciding whether an edge-coloured
input graph can be partitioned into c or fewer monochromatic paths for some positive integer
c. The equivalent problems of counting partitions into monochromatic cycles or trees are
denoted by PMC and PMT respectively. If the number r of colours used to label the edges
is fixed, then we denote each of these problems by r-PMP, r-PMC and r-PMT respectively.
It follows from the above results that, for certain types of input graphs, we already have
bounds on the value of c for which the answer to these problems is definitely “yes”. If the
input graph is a complete graph then the answer to each of r-PMP and r-PMC is “yes” for all



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 146

c ≥ ⌈25r2 log r⌉ [110, 113]. It follows from [107, 103] that the answer to each of 2-PMP and
2-PMC is “yes” for any c ≥ 2 when the input graph is complete, and the answer to 3-PMP
is “yes” whenever c ≥ 3 [109]. For partitions of complete graphs into trees, the answer to
r-PMT is “yes” for all c ≥ r [110].

Given a set S, and a collection of m subsets C1, . . . , Cm of S whose union is equal to S,
the set cover problem asks whether there exist k sets from among the sets C1, . . . , Cm whose
union is S. It was shown by Jin and Li [128] that PMP and PMC are NP-complete in general
via a reduction from the set cover problem. They also showed that PMT is NP-complete
for bipartite host graphs using a reduction from set cover. In addition, it was shown that
there is no constant factor approximation algorithm for any of PMP, PMC or PMT unless
P = NP [128].

Given a graph G, the Hamiltonian path problem asks whether G contains a spanning path.
The Hamiltonian cycle problem asks whether G contains a spanning cycle. Both problems
are NP-complete in general [15]. It follows that for c = 1, even 1-PMP and 1-PMC are NP-
complete. In [129], it is shown that r-PMP, r-PMC and r-PMT are NP-complete for any fixed
r ≥ 5. A more recent paper due to Jin et al. [13] showed that both 2-PMP and 2-PMC are
NP-complete for complete graphs via a reduction to the Hamiltonian path and Hamiltonian
cycle problems respectively. It was shown by Golumbic [130] that the Hamiltonian path and
Hamiltonian cycle problems are NP-complete even for bipartite graphs. In [13], it is shown
that 2-PMP and 2-PMC are NP-complete for complete bipartite host graphs via a reduction
to the Hamiltonian path (respectively Hamiltonian cycle) problem in bipartite graphs. In
the same paper, it is shown that 2-PMT is NP-complete for bipartite host graphs for c = 2

via a reduction to 3SAT. Conversely, it is shown that 2-PMT is polynomial-time solvable for
complete multipartite graphs (including complete bipartite graphs but not including complete
graphs).

6.4 Contributions

In Section 6.5, we describe an FPT algorithm to count the number of ways to partition an
r-locally edge-coloured graph into at most c monochromatic paths for any integer c, param-
eterised by r and the treewidth of the input graph. Our algorithm follows a standard dynamic
programming approach for solving problems on graphs with bounded treewidth. As a conse-
quence of our result, we obtain an FPT algorithm for counting partitions of r-edge-coloured
graphs under the same parameterisation. We also obtain an XP algorithm for counting parti-
tions of any edge-coloured graph into monochromatic paths parameterised by the treewidth
of the input graph.

It is natural to ask whether our FPT result is a corollary of Courcelle’s famous meta-theorem



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 147

on solving problems on graphs with bounded treewidth. Monadic second-order logic (MS2

logic) [17] is an extension of first-order logic which allows quantification over sets of vari-
ables as well as over individual variables. Many important graph properties are expressible
in MS2 logic. The following statement is known as Courcelle’s theorem.

Theorem 6.29 ([131]). Let G = (V (G), E(G)) be a graph with n vertices and treewidth

w. Let Φ be an MS2 sentence of length |Φ| describing some graph property. We can decide

whether G has property Φ in time nf(w, |Φ|) for some computable function f .

It follows that if a graph property can be written as an MS2 sentence whose length is inde-
pendent of the size of the graph, then the graph property is decidable in linear time for graphs
of bounded treewidth. A counting variant of Courcelle’s theorem is provided in [35]. Note
that the underlying algorithm of Courcelle’s theorem has an extremely large dependence on
|Φ| and w [132], and so is rarely useful in practice. Our FPT result does not enforce that
the number of monochromatic paths partitioning the vertices of the input graph should be
independent of the order of the graph. Hence, it seems unlikely that our problem can be
written as an MS2 formula whose length is independent of n. As such, we do not believe that
our result follows from Courcelle’s theorem.

6.5 An FPT Algorithm for Partitions into Monochro-

matic Paths

Let G = (V (G), E(G)) be an r-locally edge-coloured graph. Recall that a partition of V (G)

into c monochromatic paths is a set of c paths such that each path is monochromatic, and
every vertex in V (G) is contained in exactly one path. We define the following problem.

LOCAL-#PMP

Input: An r-locally edge-coloured graph G = (V (G), E(G)) with at most n
vertices, and a positive integer c.

Parameters: The treewidth w of G, and r.

Question: In how many ways can we partition the set V (G) into at most c (vertex-
disjoint) monochromatic paths?

In what follows, we describe an FPT dynamic programming algorithm for local-#PMP
parameterised by r and w. We begin by providing a summary of our method.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 148

6.5.1 Proof Overview

Let G = (V (G), E(G)) be an r-locally edge-coloured graph with at most n vertices and
treewidth at most w. We use existing results to efficiently obtain a nice tree decomposition
(T, {Xt}t∈V (T )) of G with width at most w and O(n) nodes. Our algorithm then works by
recursively computing the number of partial solutions (i.e. partitions into monochromatic
paths) for the subset of V (G) present in the bags indexed by each subtree of T , starting with
the subtrees containing only the leaves. A “valid state” of a bag describes how a partial
solution might interact with the set of vertices in the bag. We will see that the number of
valid states of any bag is bounded by a function of c, r and w. The “signature” of a bag maps
each valid state to the number of partial solutions which interact with the bag in the way
described by the state. For each type of node t in T , we show how to efficiently compute the
signature of t from the signature(s) of its child(ren). The number of partitions of V (G) into
at most c monochromatic paths can then be obtained directly from the signature of the root
node of T .

In Section 6.5.2, we provide the definitions and preliminaries needed to describe our algo-
rithm, including an observation on the time needed to compute the signature of a leaf node.
In Sections 6.5.3 to 6.5.5, we describe how to compute the signature of an introduce, for-
get and join node respectively from the signature(s) of their child node(s). In Section 6.5.6,
we bring together the observations from the previous sections to obtain an FPT dynamic
programming algorithm for local-#PMP parameterised by r and the treewidth of the input
graph.

6.5.2 Preliminaries

In this section, we provide some additional definitions and preliminary results needed to
describe our algorithm. The following results describe the complexity of obtaining a nice
tree decomposition of a graph with bounded treewidth.

Theorem 6.30 ([133]). Let G = (V (G), E(G)) be a graph with at most n vertices and

treewidth at most w. There exists an algorithm for finding a tree decomposition of G with

width at most w and O(n) nodes in time O(wO(w3)n).

Note that the runtime bound in Theorem 6.30 is not specified in the original paper, but
is given in [134]. The following result describes the complexity of obtaining a nice tree
decomposition of a graph when a tree decomposition with width at most w is provided.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 149

Theorem 6.31 ([105]). Let G = (V (G), E(G)) be a graph with at most n vertices and with

treewidth at most w. There exists an algorithm which, given a tree decomposition of G with

width at most w and O(n) nodes, outputs a nice tree decomposition of G with width at most

w and O(n) nodes in O(w2n) time.

Again, the runtime bound in Theorem 6.31 does not appear in [105], but is given in Lemma
7.4 of [18]. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth at
most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.
Note that there can be at most rn different coloured edges in E(G). Let t be a node in V (T ),
and let σt be a partition of Vt into monochromatic paths. Let p be a path in σt. We call any
edge uv on p such that u, v ∈ Xt a true-edge of p in Xt. Note that any true-edge uv on p is
also an edge in E(G). If p contains a (u, v)-subpath of colour i containing at least one vertex
that is not u or v, whose intersection with Xt is only u and v, then we call uv a pseudo-edge

of colour i on p in Xt. In addition, if p contains a subpath of colour i whose intersection
with Xt is a single vertex v ∈ Xt, and the subpath contains at least one other vertex, then
we may also call vv a pseudo-edge of colour i on p in Xt. Note that a pseudo-edge need
not be an edge in E(G). We call the sequence of true- and pseudo-edges on p formed from
vertices in Xt a pseudo-path. We say that a pseudo-path is a monochromatic pseudo-path if
every true-edge and every pseudo-edge on the path have the same colour. A monochromatic
pseudo-path in Xt describes how a single monochromatic path in the partition σt interacts
with the set of vertices in Xt.

A state of a bag Xt describes how a partition of Vt into monochromatic paths might interact
with Xt. Formally, a state of Xt is a pair st(t) = (f, k) where

• f : X2
t → {−rn, . . . , 0, 1} is a surjective function describing the pairs of vertices in

Xt which are on monochromatic pseudo-paths. For each pair (u, v) ∈ X2
t we have

that f(uv) = f(vu), where

– f(uv) = 1 if uv is a true-edge on a monochromatic pseudo-path in Xt, and

– f(uv) = −i if uv is a pseudo-edge of a monochromatic pseudo-path of colour i
in Xt, and

– f(uv) = 0 if uv is neither a true-edge nor a pseudo-edge of any monochromatic
pseudo-path in Xt.

• k ∈ Z+ describes the number of “completed” paths so far i.e. the number of monochro-
matic paths in the partition of Vt which do not use any vertices in Xt. Note that we
require that k ≤ c since we are allowed at most c paths in total.

A state st(t) = (f, k) of Xt is said to be valid if

• for each (u, v) ∈ X2
t such that f(uv) = 1, the edge uv is present in E(G), and



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 150

• the subgraphs formed from pairs (u, v) ∈ X2
t such that f(uv) ̸= 0 partition Xt into at

most k monochromatic pseudo-paths.

Considering only valid states prevents us from counting false partial solutions. We denote
the set of all valid states of Xt by ST (t). We denote the size of this set by |ST (t)|. We
say that a partition σt of Vt into monochromatic paths satisfies a state st(t) = (f, k) if the
following hold:

• for each pair (u, v) ∈ X2
t we have that

– if uv is a true-edge of a monochromatic pseudo-path of σt in Xt then f(uv) = 1.

– if uv is a pseudo-edge of colour i on a monochromatic pseudo-path of σt in Xt

then f(uv) = −i.

– if uv is not an edge of any path in σt then f(uv) = 0.

• there are exactly k paths in σt which do not have any vertices in Xt

Observe that a single partition of Vt into monochromatic paths satisfies exactly one valid
state of Xt. It follows that to determine the number of partial solutions at a particular node
t ∈ V (T ), it suffices to know the number of partitions satisfying each valid state of Xt. We
will use S(st(t)) to denote the set of all partitions of Vt into monochromatic paths satisfying
st(t). We use |S(st(t))| to denote the number of such partitions. The signature sig(t) of
a node t is a mapping from each valid state st(t) of Xt to the number of partitions of Vt

into monochromatic paths satisfying the state st(t). Observe that the number of partitions of
V (G) into at most c monochromatic paths can be obtained from the signature sig(r) of the
root node r of T . Given any node t ∈ V (T ), the following lemma describes the complexity
of deciding whether a state st(t) = (f, k) of Xt is valid.

Lemma 6.32. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth

at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.

Let t be a node in T , and let st(t) = (f, k) be a state of Xt. We can determine whether st(t)

is a valid state of Xt in time O(w2).

Proof. In order to check whether st(t) is a valid state of Xt, we must check whether the
subgraphs formed from pairs (u, v) ∈ X2

t such that f(uv) ̸= 0 partition Xt into at most
k monochromatic pseudo-paths. To achieve this, we first obtain the set of connected com-
ponents formed from pairs (u, v) ∈ X2

t such that f(uv) ̸= 0. By definition, since G has
treewidth at most w, the set Xt contains at most (w + 1) vertices. Hence, we can obtain
the set of components in time O(w2) using a standard depth-first search. It then remains
to check that these components form non-intersecting monochromatic pseudo-paths. Since
Xt contains at most (w + 1) vertices, there can be at most (w + 1) components, and each
component can contain at most (w + 1) vertices. It follows that we can verify that no two



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 151

components share a vertex in time O(w2). In addition, we can verify that every component
forms a monochromatic pseudo-path in time O(w2). The result follows.

The following lemma describes an upper bound on the number of valid states of a bag.

Lemma 6.33. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth

at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.

For any t ∈ V (T ), we have that |ST (t)| ≤ c(r + 2)(w+1)2 .

Proof. Let st(t) = (f, k) be a valid state of Xt. By definition, there are at most (w + 1)2

pairs in X2
t . Since each vertex is incident to at most r edges of different colours, it follows

that for each pair (u, v) ∈ X2
t , the function f(uv) can take one of at most (r + 2) different

values. Since we also require that k ≤ c, it follows that there can be at most c(r + 2)(w+1)2

possible valid states of Xt.

The following lemma bounds the time needed to construct the set of valid states of a bag.

Lemma 6.34. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth

at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.

For any t ∈ V (T ), we can construct the set ST (t) of valid states of Xt in time O(cw2(r +

2)(w+1)2) .

Proof. For any valid state st(t) = (f, k) of Xt we require that k ≤ c. It follows that we
should only consider states such that k ≤ c. Since there are at most (w + 1) vertices in
Xt, and each vertex is incident to edges of at most r different colours, it follows that there
are at most c(r + 2)(w+1)2 possible states. For each of these possibilities, it follows from
Lemma 6.32 that we can check if the state is valid in time O(w2). The result follows.

It follows from the definition of a nice tree decomposition that any bag indexed by a leaf
node is empty. As such, it is straightforward to compute the signature of a leaf node.

Lemma 6.35. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth

at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.

Let t be a leaf node in T . We can compute the signature sig(t) of t in time O(c).

Proof. By definition, we have that Xt = ∅. It follows that there can be at most c states of Xt

(one for each value of k), and that each such state is valid. Moreover, the only state which
corresponds to a non-zero number of partitions is the state with k = 0. For this particular
state, we have that |S(st(t))| = 1. The result follows.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 152

6.5.3 Introduce Nodes

In this section, we describe how to compute the signature of an introduce node from the
signature of its child. Let t be an introduce node in T , and let st(t) = (f, k) be a valid state
of Xt. Let t′ denote the child of t in T . In the following lemma, we describe how to construct
a state st(t′) = (f ′, k′) of Xt′ such that the number of partitions of Vt into monochromatic
paths satisfying st(t) is equal to the number of partitions of Vt′ into monochromatic paths
satisfying st(t′).

Lemma 6.36. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth at

most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w. Let

t be an introduce node in T , and let t′ be the child of t in T . Let v be the vertex introduced

at t, and let st(t) = (f, k) be a valid state of Xt. Let st(t′) = (f ′, k′) be the state of Xt′ such

that k′ = k and f ′(uu′) = f(uu′) for each (u, u′) ∈ X2
t′ . We have that

|S(st(t))| = |S(st(t′))|.

Proof. In what follows, we describe a bijection between the set S(st(t)) and the set S(st(t′)).
Specifically, we show that for each partition σt ∈ S(st(t)), removing v from σt produces a
partition σt′ ∈ S(st(t′)). Conversely, we show that for each partition σt′ ∈ S(st(t′)) we can
add v (and one or more edges incident to v according to the value of f(uv) for each u ∈ Xt)
to σt′ to obtain a partition σt ∈ S(st(t)).

In the first direction, let σt be a partition of Vt into monochromatic paths satisfying st(t). Let
σt′ be the partition of Vt′ into monochromatic paths formed by removing v (and its incident
edges) from σt. Note that σt′ is indeed a partition of Vt′ into monochromatic paths since
removing a vertex and its incident edges from a path produces one or more disjoint paths. We
must now show that σt′ satisfies st(t′). It follows from the definition of a tree decomposition
that there can be no path in σt which contains v and vertices in Vt \ Xt but which does not
intersect Xt′ . Hence, the number of paths in σt without a vertex in Xt is equal to the number
of paths in σt′ without a vertex in Xt′ . By construction, we have that f ′(uu′) = f(uu′) for
all pairs (u, u′) ∈ X2

t′ . It follows that σt′ satisfies st(t′).

In the other direction, let σt′ be a partition of Vt′ into monochromatic paths satisfying st(t′).
Let σt be the partition of Vt into monochromatic paths formed by adding v to σt′ and, for
each u ∈ Xt such that f(uv) = 1, adding the edge uv to the path p in σt′ containing u so
that v is adjacent to u on p. Since v is not contained in Xt′ , there can be no path in σt on
which v is adjacent to some vertex u ∈ Vt \ Xt. It follows that v cannot be incident to a
pseudo-edge, so we do not need to consider edges such that f(uv) < 0. Since st(t) is valid
and σt′ partitions Vt′ into monochromatic paths, it follows that σt is indeed a partition of Vt

into monochromatic paths. In addition, our construction does not increase the number of



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 153

paths without a vertex in the current bag. It follows that the partition σt satisfies st(t).

The following lemma uses the relationship described in Lemma 6.36 to bound the time
needed to compute the signature of an introduce node from the signature of its child.

Lemma 6.37. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth

at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.

Let t be an introduce node in T , and let t′ be the child of t. Suppose that the signature of t′

is known. We can compute the signature of t in time O(cw2(r + 2)(w+1)2).

Proof. By Lemma 6.33, there are at most c(r + 2)(w+1)2 valid states of Xt. It follows from
Lemma 6.34 that we can obtain the set of valid states of Xt in time O(cw2(r + 2)(w+1)2)).
For each valid state st(t) = (f, k), it follows from Lemma 6.36 and the fact that Xt contains
at most (w + 1) vertices that we can construct a valid state st(t′) = (f ′, k′) of Xt′ such that
|S(st(t))| = |S(st(t′))| in time O(w2). Hence, we can compute the signature of Xt in time
O(cw2(r + 2)(w+1)2).

6.5.4 Forget Nodes

In this section, we describe how to compute the signature of a forget node from the signature
of its child. We will first require some further definitions. Let t be a forget node in T , and
let t′ be the child of t in T . Let v denote the vertex forgotten at t, and let st(t) = (f, k) be a
valid state of Xt. We say that a partition σt′ of Vt′ into monochromatic paths satisfies st(t)
in Xt if the following hold:

• for each pair (u, u′) ∈ X2
t we have that

– if f(uu′) = 1 then uu′ is a true-edge of a monochromatic pseudo-path in σt′ in
Xt

– if f(uu′) = −i then uu′ is a pseudo-edge of colour i on a monochromatic pseudo-
path in σt′ in Xt

– if f(uu′) = 0 then uu′ is not an edge on any path in σt′

• there are exactly k paths in σt′ which do not have any vertices in Xt

We shall use S(t′|st(t)) to denote the set of partitions of Vt′ into monochromatic paths which
satisfy st(t) in Xt. We will use |S(t′|st(t))| to denote the number of such partitions. We use
ST (t′|st(t)) to denote the set of valid states of Xt′ such that a partition of Vt′ into monochro-
matic paths satisfying some state st(t′) ∈ ST (t′|st(t)) also satisfies st(t) in Xt. We call the
set ST (t′|st(t)) the set of forget-inherited states of Xt′ given st(t).

In what follows, we describe the set of forget-inherited states of Xt′ given st(t) exactly. We
then show that the number of partitions of Vt into monochromatic paths satisfying st(t) in Xt



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 154

can be obtained directly from the number of partitions of Vt′ satisfying each possible forget-
inherited state of Xt′ given st(t). The following lemma describes the set of forget-inherited
states of Xt′ given st(t) in the case where v is the only vertex on its path which is contained
in Xt′ .

Lemma 6.38. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth

at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.

Let t be a forget node in T , and let t′ be the child of t in T . Let v denote the vertex forgotten

at t. Let st(t) = (f, k) be a valid state of Xt, and let st(t′) = (f ′, k′) be any valid state of

Xt′ such that

• k = k′ + 1, and

• f ′(uu′) = f(uu′) for all (u, u′) ∈ X2
t′ such that u, u′ ̸= v, and

• f ′(uv) = 0 for all u ∈ Xt′ such that u ̸= v, and

• f ′(vv) ≤ 0.

We have that

S(st(t′)) ⊆ S(t′|st(t)).

Proof. We must show that any partition of Vt′ into monochromatic paths satisfying st(t′) in
Xt′ also satisfies st(t) in Xt. Let σt′ be such a partition. Since f ′(uv) = 0 for all u ∈ Xt′

such that u ̸= v, it follows that v is the only vertex in Xt′ on its path in σt′ . Hence, the
number of paths in σt′ which do not have any vertices in Xt is equal to (k′ + 1). Since all
other paths in σt′ form the same set of monochromatic pseudo-paths in Xt′ as in Xt, and we
have that f ′(uu′) = f(uu′) for all (u, u′) ∈ X2

t , it follows that σt′ satisfies st(t) in Xt.

The next lemma describes the set of forget-inherited states of Xt′ given st(t) in the case
where v is not the only vertex on its path which is contained in Xt′ .

Lemma 6.39. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth

at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.

Let t be a forget node in T , and let t′ be the child of t in T . Let v be the vertex forgotten at

t. Let st(t) = (f, k) be a valid state of Xt, and let st(t′) = (f ′, k′) be any valid state of Xt′

such that

• k = k′, and

• there exists some pair (z, z′) ∈ X2
t′ with z, z′ ̸= v and some i ∈ [rn] such that

– f(zz′) = −i, and

– f ′(zz′) = 0, and

– f ′(zv) = 1 and zv has colour i in E(G), or f ′(zv) = −i, and



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 155

– f ′(z′v) = 1 and z′v has colour i in E(G), or f ′(z′v) = −i, and

• f ′(uv) = 0 for all u ∈ Xt′ such that u ̸= z, z′, and

• f ′(uu′) = f(uu′) for all pairs (u, u′) ∈ X2
t such that {u, u′} ≠ {z, z′}.

We have that

S(st(t′)) ⊆ S(t′|st(t)).

Proof. As for Lemma 6.39, we proceed by showing that any partition of Vt′ into monochro-
matic paths satisfying st(t′) in Xt′ also satisfies st(t) in Xt. Let σt′ be such a partition. Since
there exists some pair (z, z′) ∈ X2

t′ such that f ′(vz) ∈ {1,−i} and f ′(vz′) ∈ {1,−i}, it
follows that v is not the only vertex in Xt′ on its path in σt′ . In particular, v is adjacent
to z and z′ (where possibly z = z′) on a monochromatic pseudo-path of colour i in Xt′ .
It follows that the number of paths in σt′ which do not have any vertices in Xt is equal to
k′. The removal of v from the monochromatic pseudo-path of colour i in Xt′ containing v

creates a pseudo-edge zz′ of colour i in Xt in both the case where z = z′ and the case where
z ̸= z′. It follows that σt′ satisfies the state st(t) = (f, k) in Xt with f(zz′) = −i. Since
f ′(uv) = 0 for all u ̸= z, z′, it follows that σt′ satisfies the state st(t) = (f, k) in Xt where
f(uu′) = f ′(uu′) for all pairs (u, u′) ∈ X2

t such that {u, u′} ≠ {z, z′}.

In the following lemma, we prove that the set of states of Xt′ described in Lemmas 6.38
and 6.39 form the set of forget-inherited states of Xt′ given st(t).

Lemma 6.40. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth at

most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w. Let

t be a forget node in T , and let t′ be the child of t in T . Let v be the vertex forgotten at t, and

let st(t) = (f, k) be a valid state of Xt. Let ST (t′|st(t)) be the set of states st(t′) = (f ′, k′)

of Xt′ such that either

• k = k′ + 1, and

• f ′(uu′) = f(uu′) for all pairs (u, u′) ∈ X2
t′ such that u, u′ ̸= v, and

• f ′(uv) = 0 for all u ∈ Xt′ such that u ̸= v, and

• f ′(vv) ≤ 0,

or else

• k = k′, and

• there exists some pair (z, z′) ∈ X2
t′ and some i ∈ [rn] such that f(zz′) = −i and

f ′(zz′) = 0 and

• f ′(zv) = 1 and zv has colour i in E(G), or f ′(zv) = −i, and

• f ′(z′v) = 1 and z′v has colour i in E(G), or f ′(z′v) = −i, and



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 156

• f ′(uv) = 0 for all u ∈ Xt′ such that u ̸= z, z′, and

• f ′(uu′) = f(uu′) for all pairs (u, u′) ∈ X2
t such that {u, u′} ≠ {z, z′}.

We have that

S(t′|st(t)) =
⋃

st(t′)∈ST (t′|st(t))

S(st(t′)).

Proof. In what follows, we show that any partition of Vt′ into monochromatic paths satis-
fying st(t) in Xt must satisfy a state of Xt′ contained in the set ST (t′|st(t)). Since each
partition of Vt′ into monochromatic paths satisfies exactly one valid state of Xt′ , the re-
sult follows. Let σt′ be a partition of Vt′ into monochromatic paths satisfying st(t), and let
st(t′) = (f ′, k′) be the state satisfied by σt′ in Xt′ .

Suppose first that v is a singleton in σt′ . We must have that f ′(uv) = 0 for all u ∈ Xt′ . In
addition, since Xt = Xt′ \ {v}, we have that f ′(uu′) = f(uu′) for all pairs (u, u′) ∈ X2

t .
Since v is a singleton in Xt′ , the number of paths in σt′ without a vertex in Xt is one greater
than the number of paths without a vertex in Xt′ . That is, we have that k = k′ +1. It follows
that st(t′) ∈ ST (t′|st(t)).

Now suppose that v is not a singleton in σt′ , but that v is the only vertex on its path in σt′

which is also contained in Xt′ . Thus, v is an endpoint of a monochromatic pseudo-path
of colour i in Xt′ for some i ∈ [rn]. It follows that f ′(vv) = −i and that f ′(uv) = 0

for all u ∈ Xt′ such that u ̸= v. In addition, we must have that f ′(uu′) = f(uu′) for all
pairs (u, u′) ∈ X2

t . Finally, since Xt = Xt′ \ {v} and v is the only vertex on its path in
Xt′ , it follows that the number of paths in σt′ without a vertex in Xt is one greater than the
number of paths without a vertex in Xt′ . That is, we have that k = k′ + 1. It follows that
st(t′) ∈ ST (t′|st(t)).

Now suppose that v is not the only vertex on its path in σt′ which is also contained in Xt′ .
Suppose first that v is an endpoint of a path p of colour i in σt′ , and let z be the vertex next
to v on the corresponding pseudo-path in Xt′ . Since Xt = Xt′ \ {v}, we have that z ∈ Xt.
Hence, we must have that f(zz) = −i. If v is next to z on p then we have that f ′(zv) = 1

and, since p is of colour i, the edge zv must be assigned the colour i in E(G). Otherwise we
have that f ′(zv) = −i. It follows that f ′(zv) ∈ {1,−i} and f ′(uv) = 0 for all u ∈ Xt′ such
that u ̸= z. In addition, we must have that f(uu′) = f ′(uu′) for all (u, u′) ∈ X2

t such that
{u, u′} ≠ {z, z}. Finally, since v is not the only vertex on p in σt′ which is also contained in
Xt′ , the number of paths in σt′ without a vertex in Xt is equal to the number of paths without
a vertex in Xt′ . That is, we have that k′ = k. It follows that st(t′) ∈ ST (t′|st(t)).

Finally, suppose that v is not the only vertex on its path p of colour i in σt′ which is also
contained in Xt′ and that v is also not an endpoint of the corresponding monochromatic
pseudo-path p′ in Xt′ . Let z and z′ be the vertices on either side of v on p′. Since Xt =



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 157

Xt′ \ {v}, we have that (z, z′) ∈ X2
t and, since v is not an endpoint of p′, we have that

z ̸= z′. The edge zv on p′ may be either a true-edge (in which case f ′(zv) = 1 and zv has
colour i in E(G)) or a pseudo-edge (in which case f ′(zv) = −i). Similarly, edge z′v on
p′ may be either a true-edge (in which case f ′(z′v) = 1 and z′v has colour i in E(G)) or a
pseudo-edge (in which case f ′(z′v) = −i). In addition, since v cannot be next to any other
vertices on p′, we have that f ′(uv) = 0 for all u ∈ Xt′ such that u ̸= z, z′. Since v lies
between z and z′ on the monochromatic pseudo-path p′ in Xt′ , but is not present in Xt, we
have that f(zz′) = −i and f ′(zz′) = 0. In addition, we have that f(uu′) = f ′(uu′) for all
pairs (u, u′) ∈ X2

t such that {u, u′} ̸= {z, z′}. Finally, since v is not the only vertex on its
path in σt′ which is also contained in Xt′ , the number of paths in σt′ without a vertex in Xt is
equal to the number of paths without a vertex in Xt′ . That is, we have that k′ = k. It follows
that st(t′) ∈ ST (t′|st(t)).

Given a valid state st(t) of Xt, the following lemma bounds the time needed to obtain the
set of forget-inherited states of Xt′ given st(t).

Lemma 6.41. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth

at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.

Let t be a forget node in T , and let t′ be the child of t in T . Let v be the vertex forgotten

at t. We can obtain the set ST (t′|st(t)) of forget-inherited states of Xt′ given st(t) in time

O(cw2(r + 2)(w+1)2).

Proof. By Lemma 6.33, there are at most c(r + 2)(w+1)2 valid states of Xt′ . Let st(t′) =

(f ′, k′) be a valid state of Xt′ . To determine whether st(t′) is a forget-inherited state of
Xt′ given st(t), we must check whether st(t′) meets either of the conditions described in
Lemma 6.40. We can check whether k′ = k − 1 or k′ = k (or neither, in which case st(t′)

is not a forget-inherited state) in time O(1). It remains to check whether the values of the
functions f ′ and f meet the relevant set of conditions described in Lemma 6.40. Since there
are at most (w + 1)2 pairs in each of X2

t′ and X2
t , it follows that this takes time O(w2). The

result follows.

In the following lemma, we use the relationship given in Lemma 6.40 to obtain the number
of partitions of Vt into monochromatic paths satisfying st(t) from the number of partitions of
Vt′ into monochromatic paths satisfying each forget-inherited state of Xt′ given st(t). This
will allow us to compute the signature of t from the signature of t′.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 158

Lemma 6.42. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth

at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.

Let t be a forget node in T , and let t′ be the child of t in T . Let v be the vertex forgotten at t,

and let ST (t′|st(t)) denote the set of forget-inherited states of Xt′ given st(t). We have that

|S(st(t))| =
∑

st(t′)∈ST (t′|st(t))

|S(st(t′))|.

Proof. Since t is a forget node, each vertex contained in Vt is also contained in Vt′ . It follows
that the number of partitions of Vt into monochromatic paths satisfying st(t) in Xt is equal
to the number of partitions of Vt′ into monochromatic paths which satisfy st(t) in Xt. That
is, we have that

|S(t′|st(t))| = |S(st(t))|.

By Lemma 6.40, we have that

S(t′|st(t)) =
⋃

st(t′)∈ST (t′|st(t))

S(st(t′)).

Since a partition can only satisfy one state, it follows that

|S(st(t))| =
∑

st(t′)∈ST (t′|st(t))

|S(st(t′))|.

Using the relationship described in Lemma 6.42, we can now bound the time needed to
compute the signature of a forget node from the signature of its child.

Lemma 6.43. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with at most

n vertices and treewidth at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition

of G with width at most w. Let t be a forget node in T , and let t′ be the child of t in

T . Suppose that the signature of t′ is known. We can compute the signature of t in time

O(c2w2(r + 2)2(w+1)2n log n).

Proof. Let st(t) = (f, k) be a valid state of Xt. By Lemma 6.41, we can obtain the set
ST (t′|st(t)) of forget-inherited states of Xt′ given st(t) in time O(cw2(r + 2)(w+1)2). By
Lemma 6.42, we have that

|S(st(t))| =
∑

st(t′)∈ST (t′|st(t))

|S(st(t′))|. (6.1)



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 159

By Lemma 6.33, there are at most c(r + 2)(w+1)2 states in ST (t′|st(t)), so there are at most
c(r + 2)(w+1)2 values to sum in (6.1). For any state st(t′) ∈ ST (t′|st(t)), there can be at
most nn partitions of Vt′ which satisfy st(t′). It follows that at most n log n bits are needed
to represent the value of |S(st(t′))| for each st(t′) ∈ ST (t′|st(t)). Moreover, since the sum
in (6.1) is equal to |S(st(t))|, its value is also at most nn. Hence, at most n log n bits are
needed to represent its value. It follows that computing the sum in (6.1) takes time O(c(r +

2)(w+1)2n log n). Hence, computing the number of partitions of Vt into monochromatic paths
which satisfy a particular valid state st(t) of t takes time

O(c(r + 2)(w+1)2n log n). (6.2)

By Lemma 6.33, there are at most c(r+2)(w+1)2 valid states of Xt. By Lemma 6.34, we can
obtain the set of valid states of Xt in time

O(cw2(r + 2)(w+1)2). (6.3)

For each valid state st(t) of Xt, it follows from Lemma 6.41 that we can obtain the set of
forget-inherited states of Xt′ given st(t) in time

O(cw2(r + 2)(w+1)2). (6.4)

Finally, it follows from (6.2), (6.3) and (6.4) that we can compute the signature of t in time

O(cw2(r + 2)(w+1)2 + c(r + 2)(w+1)2 × (cw2(r + 2)(w+1)2 + c(r + 2)(w+1)2n log n))

= O(c2w2(r + 2)2(w+1)2n log n).

6.5.5 Join Nodes

In this section, we describe how to compute the signature of a join node from the signatures
of its children. Let t be a join node in T , and let t1 and t2 be the children of t in T . Let
st(t) = (f, k) be a valid state of Xt. Let the set ST (t1, t2|st(t)) consist of all pairs st(t1) =
(f1, k1) and st(t2) = (f2, k2) of valid states of Xt1 and Xt2 respectively such that, for each
pair (st(t1), st(t2)) ∈ ST (t1, t2|st(t)), we have that

• k = k1 + k2 and,

• for each pair (u, v) ∈ X2
t , we have that if f(uv) ∈ {0, 1} then f1(uv) = f2(uv) =

f(uv); otherwise either f1(uv) = f(uv) and f2(uv) = 0, or else f2(uv) = f(uv) and
f1(uv) = 0.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 160

We call the set ST (t1, t2|st(t)) the set of joinable pairs of states of Xt1 and Xt2 given st(t).
In what follows, we show that each partition σt of Vt into monochromatic paths satisfying a
valid state st(t) of Xt is equal to the union of a partition σt1 of Vt1 and a partition σt2 of Vt2

which respectively satisfy a joinable pair of states st(t1) and st(t2) given st(t). Figure 6.2
illustrates an example of a single monochromatic path contained in such a union. We will
see that this allows us to determine the number of partitions of Vt which satisfy st(t) directly
from the number of partitions satisfying each pair of joinable pairs of states of Xt1 and Xt2

given st(t).

t

t1 t2

Figure 6.2: An example of a single monochromatic path in the union of a partition σt1 of Vt1

into monochromatic paths and a partition σt2 of Vt2 into monochromatic paths where σt1 and
σt2 satisfy a joinable pair of states st(t1) and st(t2) of Xt1 and Xt2 respectively given some
valid state st(t) of Xt

Given a valid state st(t) of Xt, the following two lemmas prove that the set of partitions
of Vt into monochromatic paths satisfying st(t) is equal to the set of unions formed from
partitions of Vt1 and Vt2 which satisfy a joinable pair of states of Xt1 and Xt2 given st(t).

Lemma 6.44. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth at

most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w. Let

t be a join node in T , and let t1 and t2 be the children of t in T . Let st(t) = (f, k) be a valid

state of Xt. Let st(t1) = (f1, k1) and st(t2) = (f2, k2) be a joinable pair of states of X1 and

X2 respectively given st(t). Let σt1 (respectively σt2) be a partition of Vt1 (respectively Vt2)

into monochromatic paths which satisfies st(t1) (respectively st(t2)). The partition σt of Vt

into monochromatic paths formed from the union of σt1 and σt2 satisfies st(t).

Proof. It follows from the definition of a joinable pair of states that if uv is a true-edge of a
monochromatic pseudo-path of σt1 in Xt1 and of σt2 in Xt2 for some pair (u, v) ∈ X2

t then



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 161

we must have that f(uv) = 1. In addition, since Xt = Xt1 = Xt2 , if uv is a true-edge in Xt1

and in Xt2 then it is also a true-edge of a monochromatic pseudo-path of σt in Xt.

If uv is not an edge of any pseudo-path of σt1 in Xt1 or σt2 in Xt2 then by the definition of
a joinable pair of states we must have that f(uv) = 0. In addition, uv is also not an edge of
any pseudo-path of the union σt of σt1 and σt2 .

If uv is a pseudo-edge on a pseudo-path of colour i in exactly one of σt1 in Xt1 and σt2 in Xt2

then by the definition of a joinable pair of states we must have that f(uv) = −i. In addition,
by construction, uv is a pseudo-edge on a pseudo-path of colour i in σt.

By the definition of a joinable pair of states, we must have that k = (k1 + k2). Finally, since
Vt \ Xt = (Vt1 \ Xt) ∪ (Vt2 \ Xt) and (by the properties of a tree decomposition) any path
with vertices in both Vt1 \ Xt and Vt2 \ Xt must intersect Xt, we have that the number of
paths in σt without a vertex in Xt is equal to (k1 + k2). It follows that σt satisfies st(t).

In the following lemma, we show that any partition of Vt into monochromatic paths satisfying
a valid state st(t) of Xt is the union of a partition of Vt1 and a partition of Vt2 which satisfy
a joinable pair of states of Xt1 and Xt2 respectively given st(t).

Lemma 6.45. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth

at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.

Let t be a join node in T , and let t1 and t2 be the children of t in T . Let st(t) = (f, k) be

a valid state of Xt, and let σt be a partition of Vt into monochromatic paths satisfying st(t).

There exists a joinable pair of states st(t1) = (f1, k1) and st(t2) = (f2, k2) of Xt1 and Xt2

respectively given st(t) such that σt is the union of a partition σt1 of Vt1 into monochromatic

paths satisfying st(t1) and a partition σt2 of Vt2 into monochromatic paths satisfying st(t2).

Proof. We first construct the states st(t1) and st(t2) from st(t). We will then construct
partitions σt1 and σt2 of Vt1 and Vt2 respectively into monochromatic paths and prove that
these partitions satisfy st(t1) and st(t2) respectively. For each (u, v) ∈ X2

t such that f(uv) ∈
{0, 1}, set f1(uv) = f2(uv) = f(uv). If f(uv) = −i for some i ∈ [rn], then set f1(uv) = −i

and f2(uv) = 0 if the (u, v)-subpath of σt contains vertices in Vt1 \ Xt, and set f2(uv) =

−i and f1(uv) = 0 if the (u, v)-subpath of σt contains vertices in Vt2 \ Xt. Observe that
st(t1) and st(t2) are a joinable pair of states of Xt1 and Xt2 given st(t). The partitions σt1

and σt2 are formed from the partition induced by σt in each of Vt1 and Vt2 . That σt1 and
σt2 satisfy st(t1), and st(t2) and that their union is equal to σt, follows directly from our
construction.

It follows from the previous two lemmas that the set of partitions of Vt into monochromatic
paths satisfying st(t) is equal to the set of unions of partitions of Vt1 and Vt2 respectively
which satisfy a joinable pair of states of Xt1 and Xt2 given st(t). We now show how this



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 162

relationship can be used to compute the number of partitions of Vt into monochromatic paths
satisfying st(t).

Lemma 6.46. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth

at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.

Let t be a join node in T , and let t1 and t2 be the children of t in T . Let st(t) = (f, k) be a

valid state of Xt, and let ST (t1, t2|st(t)) be the set of joinable pairs of states of Xt1 and Xt2

given st(t). We have that

|S(st(t))| =
∑

(st(t1),st(t2))∈ST (t1,t2|st(t))

|S(st(t1))| × |S(st(t2))|.

Proof. It follows from Lemmas 6.44 and 6.45 that the set of partitions of Vt into monochro-
matic paths satisfying st(t) is equal to the set of unions of partitions of Vt1 and Vt2 which
satisfy a pair st(t1) and st(t2) respectively such that (st(t1), st(t2)) ∈ ST (t1, t2|st(t)). Since
a partition satisfies exactly one state, it follows that the number of such unions is equal to

|S(st(t1))| × |S(st(t2))|.

The result follows.

In the following lemma, we bound the time needed to obtain the set of joinable pairs of states
of Xt1 and Xt2 given st(t).

Lemma 6.47. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with treewidth

at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at most w.

Let t be a join node in T , and let t1 and t2 be the children of t in T . Let st(t) = (f, k) be a

valid state of Xt. We can obtain the set ST (t1, t2|st(t)) of joinable pairs of states of Xt1 and

Xt2 given st(t) in time O(c2w2(r + 2)(w+1)2).

Proof. By Lemma 6.34, we can obtain the set of all valid states of Xt1 and Xt2 in time
O(cw2(r + 2)(w+1)2). Observe that a valid state st(t1) of Xt1 can form a joinable pair with
at most one valid state st(t2) of Xt2 . Hence, it follows from Lemma 6.33 that there are at
most c(r + 2)(w+1)2 pairs of valid states of Xt1 and Xt2 . For each such pair st(t1) = (f1, k1)

and st(t2) = (f2, k2), we must determine whether they form a joinable pair of states. We can
determine whether k = k1+k2 in time O(log c). Since there are at most (w+1)2 pairs in X2

t ,
it follows that we can check whether the functions f1 and f2 meet the conditions required for
a joinable pair in time O(w2). It follows that we can obtain the set ST (t1, t2|st(t)) in time

O(cw2(r + 2)(w+1)2 + c(r + 2)(w+1)2 × (w2 + log c))

= O(c2w2(r + 2)(w+1)2).



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 163

We now use the observations made in Lemmas 6.46 and 6.47 to bound the time needed to
compute the signature of a join node from the signatures of its children.

Lemma 6.48. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with at most n

vertices and treewidth at most w, and let (T, {Xt}t∈V (T )) be a nice tree decomposition of G

with width at most w. Let t be a join node in T , and let t1 and t2 be the children of t in T .

Suppose that the signatures of t1 and t2 are known. We can compute the signature of t in

time O(c2w2(r + 2)2(w+1)2n2 log2 n).

Proof. Let st(t) = (f, k) be a valid state of Xt. By Lemma 6.46 we have that

|S(st(t))| =
∑

(st(t1),st(t2))∈ST (t1,t2|st(t))

|S(st(t1))| × |S(st(t2))|. (6.5)

The value of each of |S(st(t1))| and |S(st(t2))| is at most nn for any st(t1) and st(t2). It
follows that the value of each can be represented using at most n log n bits. Hence, for each
pair (st(t1), st(t2)) ∈ ST (t1, t2|st(t)), the product

|S(st(t1))| × |S(st(t2))| (6.6)

can be computed in time O(n2 log2 n). It follows from the relationship in (6.5) that the
product in (6.6) has value at most nn. It follows from Lemma 6.33 and the definition of a
joinable pair that the set ST (t1, t2|st(t)) contains at most c(r+2)(w+1)2 pairs. By definition,
the value of the sum in (6.5) is at most nn. It follows that, given the set ST (t1, t2|st(t)), we
can compute the sum in (6.5) in time

O(c(r + 2)(w+1)2 × (n2 log2 n+ n log n))

= O(c(r + 2)(w+1)2n2 log2 n). (6.7)

By Lemma 6.47, we can obtain the set ST (t1, t2|st(t)) given st(t) in time O(c2w2(r +

2)(w+1)2). It then follows from (6.7) that we can determine the value of |S(st(t))| for any
st(t) ∈ ST (t) in time

O(c2w2(r + 2)(w+1)2 + c(r + 2)(w+1)2n2 log2 n)

= O(cw2(r + 2)(w+1)2n2 log2 n).

By Lemma 6.34, we can obtain the set of valid states of Xt in time O(cw2(r + 2)(w+1)2). It
follows from Lemma 6.33 that there are at most c(r + 2)(w+1)2 such states. Hence, we can



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 164

compute the signature of t in time

O(cw2(r + 2)(w+1)2 + c(r + 2)(w+1)2 × cw2(r + 2)(w+1)2n2 log2 n)

= O(c2w2(r + 2)2(w+1)2n2 log2 n).

6.5.6 Main Results

In this section, we describe our main result and its key corollaries. Let G = (V (G), E(G))

be an r-locally edge-coloured graph with at most n vertices and treewidth at most w, and let
c be a positive integer. Let (T, {Xt}t∈V (T )) be a nice tree decomposition of G with width at
most w. In the previous sections, we described how to compute the signature of each type of
node in T from the signature(s) of its child(ren). We now use these relationships to describe
an FPT dynamic programming algorithm for computing the number of partitions of V (G)

into at most c monochromatic paths parameterised by w and r.

Theorem 6.49. Let G = (V (G), E(G)) be an r-locally edge-coloured graph with at most n

vertices and treewidth at most w. We can count the number of ways to partition V (G) into

at most c monochromatic paths in time O(wO(w3)n+ c2w2(r + 2)2(w+1)2n3 log2 n).

Proof. It follows from Theorems 6.30 and 6.31 that we can obtain a nice tree decomposition
(T, {Xt}t∈V (T )) of G with width at most w and O(n) nodes in time

O(wO(w3)n). (6.8)

To compute the number of partitions of V (G) into at most c monochromatic paths, we must
first compute the signature sig(r) of the root node r of T . Recall that each partition of Vr

into (at most c) monochromatic paths satisfies exactly one valid state of Xr. It follows that
we can then compute the number of partitions of V (G) into at most c monochromatic paths
by taking the sum, over all valid states st(r) of Xr, of the number of partitions which satisfy
st(r). To compute the signature of r, we recursively compute the signature of every node
in T starting at the leaves. By Lemma 6.35, we can compute the signature of a leaf node in
time O(c). By Lemma 6.37, given the signature of its child, we can compute the signature
of an introduce node in time O(cw2(r+2)(w+1)2). By Lemma 6.43, computing the signature
of a forget node from the signature of its child takes time O(c2w2(r + 2)2(w+1)2n log n). By
Lemma 6.48, given the signatures of its children, computing the signature of a join node
takes time O(c2w2(r + 2)2(w+1)2n2 log2 n). Since there are O(n) nodes in V (T ), it follows



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 165

that we can compute the signature of the root node of T in time

O(n× c2w2(r + 2)2(w+1)2n2 log2 n)

= O(c2w2(r + 2)2(w+1)2n3 log2 n). (6.9)

It remains to compute the sum ∑
st(r)∈ST (r)

|S(st(r))|. (6.10)

By definition, the value of the sum in (6.10) is at most nn and hence can be represented using
at most n log n bits. By Lemma 6.33, there are at most c(r + 2)(w+1)2 valid states of r. It
follows that, once we have computed the signature of r, we can compute the sum in (6.10)
in time

O(c(r + 2)(w+1)2n log n). (6.11)

Finally, it follows from (6.8), (6.9) and (6.11) that we can count the number of ways to
partition V (G) into at most c monochromatic paths in time

O(wO(w3)n+ c2w2(r + 2)2(w+1)2n3 log2 n+ c(r + 2)(w+1)2n log n)

= O(wO(w3)n+ c2w2(r + 2)2(w+1)2n3 log2 n).

Note that from the above method we can also determine the number of ways to partition
V (G) into at most - or exactly - k paths for any k ≤ c by taking the sum in (6.10) over
only the set of states with the relevant number of paths. In addition, if we know the number
of ways that an edge-coloured graph can be partitioned into c paths, then we also know
whether such a partition exists. Since an r-edge-coloured graph is r-locally edge-coloured,
our algorithm can also be used to count partitions of an r-edge-coloured graph into at most
c monochromatic paths. Again, if we can count the number of such partitions, then we also
know whether such a partition exists. Finally, let G = (V (G), E(G)) be an edge-coloured
graph on n vertices. Each vertex in V (G) is incident to edges of at most n − 1 different
colours. Thus, it follows from Theorem 6.49 that the problem of counting partitions of
an edge-coloured graph into at most c monochromatic paths is in XP parameterised by the
treewidth of the input graph. In addition, the problem of deciding if such a partition exists is
in XP under the same parameterisation.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 166

6.6 Remarks and Open Problems

In this chapter, we described an FPT algorithm for counting the number of partitions of an
r-locally edge-coloured graph with treewidth at most w into c monochromatic paths param-
eterised by r and w. Our algorithm can also be used to solve the corresponding decision
problem, as well as both the decision and counting variants on r-edge-coloured graphs. The
same algorithm provides an XP solution parameterised by the treewidth of the input graph
for both counting and decision when the input is an edge-coloured graph (with no restriction
on the number of colours used). To the best of our knowledge, these are the first counting
results for monochromatic partitioning problems.

A possible direction for further research is to consider whether our algorithm can be extended
to count partitions of r-locally edge-coloured graphs, or even just r-edge-coloured graphs,
into other classes of subgraphs. When counting partitions into monochromatic cycles, we
note that a partial solution for a single bag might involve both monochromatic paths and
cycles, while the full solution may contain only monochromatic cycles. To avoid counting
(full) solutions containing monochromatic paths which are not cycles, we would need to
ensure that we do not count partial solutions in which a monochromatic path has an endpoint
“beneath” the bag. For this, it may be sufficient to ensure that we do not “forget” any vertex
which is the endpoint of a monochromatic path. We would need also to change the definition
of a state of a bag. Under the current definition, in the cycles setting there might be multiple
pseudo-edges between a single pair of vertices which are on a cycle. There may also be
both a true- and a pseudo-edge between a single pair of vertices. Nevertheless, it seems
likely that with these and perhaps some other modifications to our algorithm, we can count
partitions into monochromatic cycles. In the setting where we wish to count partitions into
monochromatic trees, it may be sufficient to redefine a pseudo-edge as a tree (instead of a
path) which intersects the bag on the specified vertices.

It would also be interesting to investigate whether our XP algorithm for counting partitions
of edge-coloured graphs can be replaced by an FPT algorithm, or whether the problem is
#W[1]-hard parameterised by treewidth and the number of colours alone. The bottleneck
in our approach is the number of possible states of each bag in the tree decomposition. It
might seem that since the number of vertices in each bag (and hence the neighbourhood of
any vertex within the bag) is bounded by the treewidth w, we can bound the number of states
of a bag in terms of some function of w. However, if a vertex v in the bag is the only vertex
in the bag on its path, then v might be on a path of one of at most n possible colours beneath
the bag. It follows that in order to obtain an FPT algorithm for this problem, we must find
a way to record these kinds of intersections of a partition within a bag that does not depend
exponentially upon the number of colours.

For any graph G, the vertex cover, pathwidth [135] and cutwidth [136] of G are each at least



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 167

the treewidth of the G. It follows that the problem of counting partitions of an r-locally
edge-coloured graph into c monochromatic cycles is also in FPT parameterised by r and any
one of these parameters. It is also possible that we might achieve fixed parameter tractability
for the same problem parameterised by these parameters alone (without r). It would also
be interesting to investigate whether we can obtain tractable parameterised algorithms for
counting monochromatic partitions of edge-coloured graphs using some more general pa-
rameter than treewidth. A possible candidate is cliquewidth. The cliquewidth [32] of a graph
is a similar graph parameter to treewidth. An FPT algorithm parameterised by cliquewidth
would allow us to count monochromatic partitions of dense graphs, such as complete or
complete bipartite graphs.



CHAPTER 6. MONOCHROMATIC PARTITIONING PROBLEMS Page 168



169

Chapter 7

Conclusion

In this thesis, we studied the parameterised complexity of counting subgraphs, stable match-
ings, and monochromatic partitions of edge-coloured graphs. In each setting, we described
tractable algorithms for parameterised variants of these problems, or provided evidence sug-
gesting that such algorithms are unlikely to exist.

In Chapter 3, we studied the subgraph counting problem in the setting where the host graph
has a small number of vertices with high-degree. In Section 3.5, we gave examples of real-
world networks with this structure, motivating the search for an efficient subgraph counting
algorithm in this setting. In Section 3.6, we described an FPT algorithm for subgraph count-
ing parameterised by the order of the pattern graph in host graphs with few high-degree ver-
tices. We conjectured that our algorithm can be easily extended to efficiently count induced
copies of subgraphs in the same setting.

In Chapter 4, we studied stable matching problems in the setting where agents’ preferences
can be described by a small number of types. In Section 4.5, we described an XP algorithm
for counting stable matchings admitted by an instance of TYPED SMTI parameterised by
the number of agent types. Section 4.6 extended this result to the stable roommates setting.
We conjectured that the algorithm from Section 4.5 can also be easily extended to handle
instances of hospitals/residents. It remains an open problem whether we can achieve fixed
parameter tractability in any of these settings. In Section 4.7, we described algorithms for
the problems of counting super-stable and strongly stable matchings in instances of stable
matching problems with ties and incomplete preference lists. For TYPED SMTI and TYPED
SRTI, we obtained parameterised algorithms for counting and finding super-stable matchings
in time depending solely upon the number of agent types needed to describe an instance. For
TYPED HRT, we described algorithms for finding and counting super-stable matchings in
time depending upon the number of agent types and the natural logarithm of the number
of agents. Under strong stability, we extended the XP result from Section 4.6 to count the
number of strongly stable matchings admitted by an instance of TYPED SRTI.



CHAPTER 7. CONCLUSION Page 170

In Chapter 5, we asked about the complexity of approximating the number of solutions to
typed stable matching problems. In Section 5.5, we extended a well-known algorithm due to
Arvind and Raman [21] for approximating the cardinality of the union of a collection of finite
sets to allow for a weaker set of conditions on the sets. In Section 5.6, we used this result
to obtain an efficient algorithm for approximating the number of solutions to an instance of
TYPED SMTI. We conjectured that a straightforward extension of this algorithm can be used
to approximate the number of stable matchings admitted by an instance of TYPED HRT. It is
an open problem whether such an algorithm exists for approximating the number of solutions
to an instance of TYPED SRTI. In Section 5.7, we considered a generalisation of TYPED
SMTI in which individual agents may declare a constant number of their available partners
as unacceptable. We conjectured that the algorithm from Section 5.6 can be extended to
approximately count stable matchings in this setting, and provided evidence suggesting that
exact counting in this setting is computationally hard.

Finally, in Chapter 6, we described an efficient algorithm for counting partitions of edge-
coloured graphs with small treewidth into monochromatic paths. We believe that this is the
first parameterised result in the area of monochromatic partitioning problems. We conjec-
tured that variants of our approach can be used to efficiently count partitions of edge-coloured
graphs into monochromatic cycles and trees.



171

Chapter 8

Bibliography

[1] B. Esfahbod, “Euler diagram for P, NP, NP-complete, and NP-hard set of problems,”
2007. CC license: https://creativecommons.org/licenses/by-sa/3.0.

[2] A. Clauset, M. E. Newman, and C. Moore, “Finding community structure in very large
networks,” Physical review E, vol. 70, p. (Art. 066111) 6, 2004.

[3] E. Bloedorn, N. J. Rothleder, D. DeBarr, and L. Rosen, “Relational Graph Analysis
With Real-World Constraints: An Application in IRS Tax Fraud Detection,” in Pro-

ceedings of the AAAI-05 Workshop on Link Analysis, pp. 30–39, The AAAI Press,
2005.

[4] E. Wong, B. Baur, S. Quader, and C.-H. Huang, “Biological network motif detec-
tion: principles and practice,” Briefings in Bioinformatics, vol. 13, no. 2, pp. 202–215,
2012.

[5] L. G. Valiant, “The Complexity of Computing the Permanent,” Theoretical Computer

Science, vol. 8, no. 2, pp. 189–201, 1979.

[6] A. E. Roth, “The Evolution of the Labor Market for Medical Interns and Residents: a
Case Study in Game Theory,” Journal of Political Economy, vol. 92, no. 6, pp. 991–
1016, 1984.

[7] M. Delorme, S. Garcı́a, J. Gondzio, J. Kalcsics, D. Manlove, and W. Pettersson,
“Mathematical models for stable matching problems with ties and incomplete lists,”
European Journal of Operational Research, vol. 277, no. 2, pp. 426–441, 2019.

[8] D. Gale and L. S. Shapley, “College Admissions and the Stability of Marriage,” Amer-

ican Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.



CHAPTER 8. BIBLIOGRAPHY Page 172

[9] R. W. Irving, “An Efficient Algorithm for the “Stable Roommates” Problem,” Journal

of Algorithms, vol. 6, no. 4, pp. 577–595, 1985.

[10] D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita, “Hard variants
of stable marriage,” Theoretical Computer Science, vol. 276, no. 1-2, pp. 261–279,
2002.

[11] K. Meeks and B. Rastegari, “Solving hard stable matching problems involving groups
of similar agents,” Theoretical Computer Science, vol. 844, pp. 171–194, 2020.

[12] R. W. Irving and P. Leather, “The Complexity of Counting Stable Marriages,” SIAM

Journal on Computing, vol. 15, no. 3, pp. 655–667, 1986.

[13] Z. Jin, M. Kano, X. Li, and B. Wei, “Partitioning 2-edge-colored complete multipar-
tite graphs into monochromatic cycles, paths and trees,” Journal of Combinatorial

Optimization, vol. 11, no. 4, pp. 445–454, 2006.

[14] B. Bollobás, Modern Graph Theory, vol. 184 of Graduate Texts in Mathematics.
Springer, 1998.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman and Co., 1979.

[16] R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity. Texts
in Computer Science, Springer, 2013.

[17] J. Flum and M. Grohe, Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series, Springer, 2006.

[18] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms. Springer, 2015.

[19] R. G. Downey and M. R. Fellows, Parameterized Complexity. Monographs in Com-
puter Science, Springer, 1999.

[20] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms

and Probabilistic Analysis. Cambridge University Press, 2005.

[21] V. Arvind and V. Raman, “Approximation Algorithms for Some Parameterized Count-
ing Problems,” in Algorithms and Computation, vol. 2518 of Lecture Notes in Com-

puter Science, pp. 453–464, Springer, 2002.

[22] L. G. Valiant, “The Complexity of Enumeration and Reliability Problems,” SIAM

Journal on Computing, vol. 8, no. 3, pp. 410–421, 1979.



CHAPTER 8. BIBLIOGRAPHY Page 173

[23] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu, “The ubiquity of large
graphs and surprising challenges of graph processing: extended survey,” The VLDB

Journal, vol. 29, no. 2, pp. 595–618, 2020.

[24] S. Mangan and U. Alon, “Structure and function of the feed-forward loop network
motif,” Proceedings of the National Academy of Sciences, vol. 100, no. 21, pp. 11980–
11985, 2003.

[25] B. Gelbord, “Graphical techniques in intrusion detection systems,” in Proceedings of

the 15th International Conference on Information Networking, pp. 253–258, IEEE,
2001.

[26] P. Bajardi, A. Barrat, F. Natale, L. Savini, and V. Colizza, “Dynamical Patterns of
Cattle Trade Movements,” PLOS One, vol. 6, no. 5, p. (Art. e19869) 19, 2011.

[27] R. Curticapean and D. Marx, “Complexity of counting subgraphs: Only the bound-
edness of the vertex-cover number counts,” in Proceedings of the 2014 IEEE 55th

Annual Symposium on Foundations of Computer Science, pp. 130–139, IEEE, 2014.

[28] M. Grohe and N. Schweikardt, “First-Order Query Evaluation with Cardinality Con-
ditions,” in Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems, pp. 253–266, ACM, 2018.

[29] J. Flum and M. Grohe, “The parameterized complexity of counting problems,” SIAM

Journal on Computing, vol. 33, no. 4, pp. 892–922, 2004.

[30] R. G. Downey and M. R. Fellows, “Fixed-parameter tractability and completeness. II.
On completeness for W[1],” Theoretical Computer Science, vol. 141, no. 1-2, pp. 109–
131, 1995.

[31] R. Curticapean, “Counting Matchings of Size k is #W[1]-hard,” in Proceedings of

the International Colloquium on Automata, Languages, and Programming, vol. 7965
of Lecture Notes in Computer Science, pp. 352–363, Springer, 2013.

[32] B. Courcelle, J. Engelfriet, and G. Rozenberg, “Handle-Hewriting Hypergraph Gram-
mars,” Journal of Computer and System Sciences, vol. 46, no. 2, pp. 218–270, 1993.

[33] J. Nešetřil and P. O. de Mendez, “On nowhere dense graphs,” European Journal of

Combinatorics, vol. 32, no. 4, pp. 600–617, 2011.

[34] J. Nešetřil and P. O. de Mendez, “The Grad of a Graph and Classes with Bounded
Expansion,” Electronic Notes in Discrete Mathematics, vol. 22, pp. 101–106, 2005.



CHAPTER 8. BIBLIOGRAPHY Page 174

[35] B. Courcelle, J. A. Makowsky, and U. Rotics, “On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic,” Discrete

Applied Mathematics, vol. 108, no. 1-2, pp. 23–52, 2001.

[36] N. Alon, R. Yuster, and U. Zwick, “Finding and Counting Given Length Cycles,”
Algorithmica, vol. 17, no. 3, pp. 209–223, 1997.

[37] R. Duan, H. Wu, and R. Zhou, “Faster Matrix Multiplication via Asymmetric Hash-
ing,” arXiv:2210.10173, (Preprint) 2022.

[38] V. Vassilevska Williams and R. Williams, “Finding, Minimizing, and Counting
Weighted Subgraphs,” SIAM Journal on Computing, vol. 42, no. 3, pp. 831–854,
2013.

[39] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, “Counting Connected Sub-
graphs with Maximum-Degree-Aware Sieving,” in 29th International Symposium on

Algorithms and Computation, vol. 123 of Leibniz International Proceedings in Infor-

matics, pp. 17:1–12, Schloss Dagstuhl, 2018.

[40] H. Straubing, D. Thérien, and W. Thomas, “Regular Languages Defined with Gen-
eralized Quantifiers,” Information and Computation, vol. 118, no. 2, pp. 289–301,
1995.

[41] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset collec-
tion.” http://snap.stanford.edu/data, June 2014.

[42] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of viral marketing,”
ACM Transactions on the Web, vol. 1, no. 1, p. (Art. 5) 39, 2007.

[43] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and negative links
in online social networks,” in Proceedings of the 19th international conference on

World wide web, pp. 641–650, ACM, 2010.

[44] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in social media,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 1361–1370, ACM, 2010.

[45] R. Albert, H. Jeong, and A. L. Barabási, “Diameter of the World-Wide Web,” Nature,
vol. 401, no. 6749, pp. 130–131, 1999.

[46] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community Structure
in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined
Clusters,” Internet Mathematics, vol. 6, no. 1, pp. 29–123, 2009.

http://snap.stanford.edu/data


CHAPTER 8. BIBLIOGRAPHY Page 175

[47] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-Law Distributions in Empir-
ical Data,” SIAM Review, vol. 51, no. 4, pp. 661–703, 2009.

[48] L. A. Adamic and B. A. Huberman, “Power-Law Distribution of the World Wide
Web,” Science, vol. 287, no. 5461, pp. 2115–2115, 2000.

[49] S. Dill, R. Kumar, K. S. McCurley, S. Rajagopalan, D. Sivakumar, and A. Tomkins,
“Self-similarity in the web,” ACM Transactions on Internet Technology, vol. 2, no. 3,
pp. 205–223, 2002.

[50] P. Wang, J. Zhao, X. Zhang, Z. Li, J. Cheng, J. C. Lui, D. Towsley, J. Tao, and X. Guan,
“MOSS-5: A Fast Method of Approximating Counts of 5-Node Graphlets in Large
Graphs,” IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 1,
pp. 73–86, 2018.

[51] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield, “Efficient Graphlet Counting
for Large Networks,” in Proceedings of the 2015 IEEE International Conference on

Data Mining, pp. 1–10, IEEE, 2015.

[52] N. Pržulj, D. G. Corneil, and I. Jurisica, “Efficient estimation of graphlet frequency
distributions in protein–protein interaction networks,” Bioinformatics, vol. 22, no. 8,
pp. 974–980, 2006.

[53] D. E. Knuth, Stable Marriage and its Relation to Other Combinatorial Problems: An

Introduction to the Mathematical Analysis of Algorithms, vol. 10 of CRM Proceedings

and Lecture Notes. American Mathematical Society, 1997. Translated from the French
by Martin Goldstein and revised by the author.

[54] M. Lampis, “Algorithmic Meta-Theorems for Restrictions of Treewidth,” Algorith-

mica, vol. 64, no. 1, pp. 19–37, 2012.

[55] D. Gusfield and R. W. Irving, The Stable Marriage Problem: Structure and Algo-

rithms. Foundations of Computing Series, MIT Press, 1989.

[56] D. F. Manlove, Algorithmics of matching under preferences, vol. 2 of Series on Theo-

retical Computer Science. World Scientific, 2013.

[57] T. Feder, N. Megiddo, and S. A. Plotkin, “A Sublinear Parallel Algorithm for Stable
Matching,” Theoretical Computer Science, vol. 233, no. 1-2, pp. 297–308, 2000.

[58] R. W. Irving, “Stable marriage and indifference,” Discrete Applied Mathematics,
vol. 48, no. 3, pp. 261–272, 1994.



CHAPTER 8. BIBLIOGRAPHY Page 176

[59] E. Ronn, “NP-Complete Stable Matching Problems,” Journal of Algorithms, vol. 11,
no. 2, pp. 285–304, 1990.

[60] A. E. Roth, “On the Allocation of Residents to Rural Hospitals: a General Property of
Two-Sided Matching Markets,” Econometrica, vol. 54, no. 2, pp. 425–427, 1986.

[61] D. Gale and M. Sotomayor, “Some remarks on the stable matching problem,” Discrete

Applied Mathematics, vol. 11, no. 3, pp. 223–232, 1985.

[62] R. W. Irving, D. F. Manlove, and G. O’Malley, “Stable marriage with ties and bounded
length preference lists,” Journal of Discrete Algorithms, vol. 7, no. 2, pp. 213–219,
2009.

[63] D. F. Manlove, “Stable marriage with ties and unacceptable partners,” Technical Re-

port no. TR-1999-29, Department of Computing Science, University of Glasgow,
1999.

[64] R. W. Irving, D. F. Manlove, and S. Scott, “The Hospitals/Residents Problem with
Ties,” in Algorithm Theory – SWAT 2000, vol. 1851 of Lecture Notes in Computer

Science, pp. 259–271, Springer, 2000.

[65] R. W. Irving, D. F. Manlove, and S. Scott, “Strong Stability in the Hospitals/Residents
Problem,” in STACS 2003, vol. 2607 of Lecture Notes in Computer Science, pp. 439–
450, Springer, 2003.

[66] R. W. Irving and D. F. Manlove, “The Stable Roommates Problem with Ties,” Journal

of Algorithms. Cognition, Informatics and Logic, vol. 43, no. 1, pp. 85–105, 2002.

[67] S. Scott, A Study of Stable Marriage Problems with Ties. PhD thesis, University of
Glasgow, 2005.

[68] A. Kunysz, “The Strongly Stable Roommates Problem,” in 24th Annual European

Symposium on Algorithms, vol. 57 of Leibniz International Proceedings in Informat-

ics, p. (Art. 60) 15, Schloss Dagstuhl, 2016.

[69] T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch, “Strongly stable matchings in
time O(nm) and extension to the hospitals-residents problem,” ACM Transactions on

Algorithms, vol. 3, no. 2, p. (Art. 15) 18, 2007.

[70] M. M. Halldórsson, K. Iwama, S. Miyazaki, and H. Yanagisawa, “Improved Approx-
imation Results for the Stable Marriage Problem,” ACM Transactions on Algorithms,
vol. 3, no. 3, p. (Art. 30) 18, 2007.



CHAPTER 8. BIBLIOGRAPHY Page 177

[71] E. McDermid, “A 3/2-Approximation Algorithm for General Stable Marriage,” in
ICALP 2009: Automata, Languages and Programming, vol. 5555 of Lecture Notes in

Computer Science, pp. 689–700, Springer, 2009.

[72] Z. Király, “Linear Time Local Approximation Algorithm for Maximum Stable Mar-
riage,” Algorithms, vol. 6, no. 3, pp. 471–484, 2013.

[73] D. Adil, S. Gupta, S. Roy, S. Saurabh, and M. Zehavi, “Parameterized algorithms
for stable matching with ties and incomplete lists,” Theoretical Computer Science,
vol. 723, pp. 1–10, 2018.

[74] N. Robertson and P. D. Seymour, “Graph minors. III. Planar tree-width,” Journal of

Combinatorial Theory, Series B, vol. 36, no. 1, pp. 49–64, 1984.

[75] D. Marx and I. Schlotter, “Parameterized Complexity and Local Search Approaches
for the Stable Marriage Problem with Ties,” Algorithmica, vol. 58, no. 1, pp. 170–187,
2010.

[76] R. Bredereck, K. Heeger, D. Knop, and R. Niedermeier, “Parameterized complexity of
stable roommates with ties and incomplete lists through the lens of graph parameters,”
Information and Computation, vol. 289, Part A, p. (Art. 104943) 41, 2022.

[77] K. Kawarabayashi and B. Rossman, “A polynomial excluded-minor approximation of
treedepth,” Journal of the European Mathematical Society, vol. 24, no. 4, pp. 1449–
1470, 2022.

[78] P. Wollan, “The structure of graphs not admitting a fixed immersion,” Journal of Com-

binatorial Theory, Series B, vol. 110, pp. 47–66, 2015.

[79] S. Gupta, S. Saurabh, and M. Zehavi, “On Treewidth and Stable Marriage: Parameter-
ized Algorithms and Hardness Results (Complete Characterization),” SIAM Journal

on Discrete Mathematics, vol. 36, no. 1, pp. 596–681, 2022.

[80] R. W. Irving, D. F. Manlove, and S. Scott, “The Stable Marriage Problem with Master
Preference Lists,” Discrete Applied Mathematics, vol. 156, no. 15, pp. 2959–2977,
2008.

[81] P. Chebolu, L. A. Goldberg, and R. Martin, “The complexity of approximately count-
ing stable matchings,” Theoretical Computer Science, vol. 437, pp. 35–68, 2012.

[82] M. Dyer, L. A. Goldberg, C. Greenhill, and M. Jerrum, “The Relative Complexity of
Approximate Counting Problems,” Algorithmica, vol. 38, no. 3, pp. 471–500, 2004.



CHAPTER 8. BIBLIOGRAPHY Page 178

[83] N. Bhatnagar, S. Greenberg, and D. Randall, “Sampling Stable Marriages: Why
Spouse-Swapping Won’t Work,” in Proceedings of the Nineteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pp. 1223–1232, ACM, 2008.

[84] P. Chebolu, L. A. Goldberg, and R. Martin, “The complexity of approximately count-
ing stable roommate assignments,” Journal of Computer and System Sciences, vol. 78,
no. 5, pp. 1579–1605, 2012.

[85] A. I. Barvinok, “Two Algorithmic Results for the Travelling Salesman Problem,”
Mathematics of Operations Research, vol. 21, no. 1, pp. 65–84, 1996.

[86] T. Muir, “On a Class of Permanent Symmetric Functions,” Proceedings of the Royal

Society of Edinburgh, vol. 11, pp. 409–418, 1882.

[87] G. Meurant, Computer Solution of Large Linear Systems, vol. 28 of Studies in Math-

ematics and its Applications. Elsevier, 1999.

[88] R. Piziak and P. L. Odell, “Full Rank Factorization of Matrices,” Mathematics Maga-

zine, vol. 72, no. 3, pp. 193–201, 1999.

[89] P. B. Borwein, “On the Complexity of Calculating Factorials,” Journal of Algorithms,
vol. 6, no. 3, pp. 376–380, 1985.

[90] M. Jerrum, A. Sinclair, and E. Vigoda, “A Polynomial-Time Approximation Algo-
rithm for the Permanent of a Matrix with Nonnegative Entries,” Journal of the ACM,
vol. 51, no. 4, pp. 671–697, 2004.

[91] A. Björklund, B. Gupt, and N. Quesada, “A faster hafnian formula for complex matri-
ces and its benchmarking on a supercomputer,” ACM Journal of Experimental Algo-

rithmics, vol. 24, p. (Art. 1.11) 17, 2019.

[92] A. Barvinok, “Polynomial Time Algorithms to Approximate Permanents and Mixed
Discriminants Within a Simply Exponential Factor,” Random Structures & Algo-

rithms, vol. 14, no. 1, pp. 29–61, 1999.

[93] R. M. Karp, M. Luby, and N. Madras, “Monte-Carlo Approximation Algorithms for
Enumeration Problems,” Journal of Algorithms, vol. 10, no. 3, pp. 429–448, 1989.

[94] E. Mendelson, Introduction to mathematical logic. Chapman & Hall, fourth ed., 1997.

[95] D. R. Karger, “A Randomized Fully Polynomial Time Approximation Scheme for the
All-Terminal Network Reliability Problem,” SIAM Journal on Computing, vol. 29,
no. 2, pp. 492–514, 1999.



CHAPTER 8. BIBLIOGRAPHY Page 179

[96] Y. Liu, J. Chen, and J. Wang, “On counting 3-D matchings of size k,” Algorithmica,
vol. 54, no. 4, pp. 530–543, 2009.

[97] M. Jerrum and K. Meeks, “The parameterised complexity of counting connected sub-
graphs and graph motifs,” Journal of Computer and System Sciences, vol. 81, no. 4,
pp. 702–716, 2015.

[98] Y. Liu, S. Wang, and J. Wang, “Parameterized counting matching and packing: a fam-
ily of hard problems that admit FPTRAS,” Theoretical Computer Science, vol. 734,
pp. 83–93, 2018.

[99] M. Fellows, D. Hermelin, and F. Rosamond, “On the Fixed-Parameter Intractability
and Tractability of Multiple-Interval Graph Properties,” Theoretical Computer Sci-

ence, vol. 410, pp. 53–61, 2009.

[100] D. Štefankovič, E. Vigoda, and J. Wilmes, “On Counting Perfect Matchings in General
Graphs,” in LATIN 2018: Theoretical Informatics, vol. 10807 of Lecture Notes in

Computer Science, pp. 873–885, Springer, 2018.

[101] T. Luczak, V. Rödl, and E. Szemerédi, “Partitioning Two-Coloured Complete Graphs
into Two Monochromatic Cycles,” Combinatorics, Probability and Computing, vol. 7,
no. 4, pp. 423–436, 1998.

[102] P. Allen, “Covering two-edge-coloured complete graphs with two disjoint monochro-
matic cycles,” Combinatorics, Probability and Computing, vol. 17, no. 4, pp. 471–
486, 2008.

[103] S. Bessy and S. Thomassé, “Partitioning a graph into a cycle and an anticycle, a proof
of Lehel’s conjecture,” Journal of Combinatorial Theory, Series B, vol. 100, no. 2,
pp. 176–180, 2010.

[104] R. J. Duffin, “Topology of Series-Parallel Networks,” Journal of Mathematical Anal-

ysis and Applications, vol. 10, no. 2, pp. 303–318, 1965.

[105] T. Kloks, Treewidth: Computations and Approximations, vol. 842 of Lecture Notes in

Computer Science. Springer, 1994.

[106] A. Gyárfás, “Vertex covers by monochromatic pieces - A survey of results and prob-
lems,” Discrete Mathematics, vol. 339, no. 7, pp. 1970–1977, 2016.

[107] L. Gerencsér and A. Gyárfás, “On Ramsey-Type Problems,” Annales Universitatis

Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Mathematica,
vol. 10, pp. 167–170, 1967.



CHAPTER 8. BIBLIOGRAPHY Page 180

[108] A. Gyárfás, “Covering Complete Graphs by Monochromatic Paths,” in Irregularities

of partitions, vol. 8 of Algorithms and Combinatorics, pp. 89–91, Springer, 1989.

[109] A. Pokrovskiy, “Partitioning edge-coloured complete graphs into monochromatic cy-
cles and paths,” Journal of Combinatorial Theory, Series B, vol. 106, pp. 70–97, 2014.

[110] P. Erdős, A. Gyárfás, and L. Pyber, “Vertex coverings by Monochromatic Cycles and
Trees,” Journal of Combinatorial Theory, Series B, vol. 51, no. 1, pp. 90–95, 1991.

[111] S. Letzter, “Monochromatic cycle partitions of 3-coloured complete graphs.” In prepa-

ration, 2018.

[112] D. Korándi, R. Lang, S. Letzter, and A. Pokrovskiy, “Minimum degree conditions
for monochromatic cycle partitioning,” Journal of Combinatorial Theory, Series B,
vol. 146, pp. 96–123, 2021.

[113] R. Lang and A. Lo, “Monochromatic cycle partitions in random graphs,” Combina-

torics, Probability and Computing, vol. 30, no. 1, pp. 136–152, 2021.

[114] A. Gyárfás, M. Ruszinkó, G. Sárközy, and E. Szemerédi, “An improved bound for the
monochromatic cycle partition number,” Journal of Combinatorial Theory, Series B,
vol. 96, no. 6, pp. 855–873, 2006.

[115] Z. Tuza, “Some special cases of Ryser’s conjecture,” 1979. unpublished manuscript.

[116] P. E. Haxell and Y. Kohayakawa, “Partitioning by Monochromatic Trees,” Journal of

Combinatorial Theory, Series B, vol. 68, no. 2, pp. 218–222, 1996.

[117] P. Haxell, “Partitioning Complete Bipartite Graphs by Monochromatic Cycles,” Jour-

nal of Combinatorial Theory, Series B, vol. 69, no. 2, pp. 210–218, 1997.

[118] R. Lang, O. Schaudt, and M. Stein, “Partitioning 3-edge-coloured complete bipar-
tite graphs into monochromatic cycles,” Electronic Notes in Discrete Mathematics,
vol. 49, pp. 787–794, 2015.

[119] Y. Peng, V. Rödl, and A. Ruciński, “Holes in Graphs,” Electronic Journal of Combi-

natorics, vol. 9, no. 1, p. (Art. 1) 18, 2002.

[120] G. Chen, S. Fujita, A. Gyárfás, J. Lehel, and A. Tóth, “Around a biclique cover con-
jecture,” arXiv:1212.6861, (Preprint) 2012.

[121] J. Balogh, J. Barát, D. Gerbner, A. Gyárfás, and G. N. Sárközy, “Partitioning 2-edge-
colored graphs by monochromatic paths and cycles,” Combinatorica, vol. 34, no. 5,
pp. 507–526, 2014.



CHAPTER 8. BIBLIOGRAPHY Page 181

[122] A. Pokrovskiy, “Partitioning a graph into a cycle and a sparse graph,” Discrete Math-

ematics, vol. 346, no. 1, p. (Art. 113161) 21, 2023.

[123] P. Allen, J. Böttcher, R. Lang, J. Skokan, and M. Stein, “Partitioning a 2-edge-
coloured graph of minimum degree 2n/3 + o(n) into three monochromatic cycles,”
arXiv:2204.00496, (Preprint) 2022.

[124] G. Sárközy, “Monochromatic cycle partitions of edge-colored graphs,” Journal of

Graph Theory, vol. 66, no. 1, pp. 57–64, 2011.

[125] D. Conlon and M. Stein, “Monochromatic cycle partitions in local edge colorings,”
Journal of Graph Theory, vol. 81, no. 2, pp. 134–145, 2016.

[126] R. Lang and M. Stein, “Local colourings and monochromatic partitions in complete
bipartite graphs,” European Journal of Combinatorics, vol. 60, pp. 42–54, 2017.

[127] G. N. Sárközy, “Monochromatic Partitions in Local Edge Colorings,” Acta Mathemat-

ica Hungarica, vol. 161, no. 2, pp. 412–426, 2020.

[128] Z. Jin and X. Li, “The complexity for partitioning graphs by monochromatic trees,
cycles and paths,” International Journal of Computer Mathematics, vol. 81, no. 11,
pp. 1357–1362, 2004.

[129] Z. Jin and X. Li, “Vertex partitions of r-edge-colored graphs,” Applied Mathematics -

A Journal of Chinese Universities, vol. 23, pp. 120–126, 2008.

[130] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Computer Science
and Applied Mathematics, Academic Press, 1980.

[131] B. Courcelle and J. Engelfriet, Graph Structure and Monadic Second-Order Logic:

A Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications,
Cambridge University Press, 2012.

[132] J. Kneis and A. Langer, “A Practical Approach to Courcelle’s Theorem,” Electronic

Notes in Theoretical Computer Science, vol. 251, pp. 65–81, 2009.

[133] H. L. Bodlaender, “A linear time algorithm for finding tree-decompositions of small
treewidth,” SIAM Journal on Computing, vol. 25, no. 6, pp. 1305–1317, 1996.

[134] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof, “Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth,” Infor-

mation and Computation, vol. 243, pp. 86–111, 2015.

[135] N. Robertson and P. D. Seymour, “Graph minors. I. Excluding a forest,” Journal of

Combinatorial Theory, Series B, vol. 35, no. 1, pp. 39–61, 1983.



CHAPTER 8. BIBLIOGRAPHY Page 182

[136] F. R. K. Chung, “On the Cutwidth and the Topological Bandwidth of a Tree,” SIAM

Journal on Algebraic Discrete Methods, vol. 6, no. 2, pp. 268–277, 1985.


	List of Figures
	1 Introduction
	2 Preliminaries
	2.1 Set Theory
	2.2 Graph Theory
	2.3 Computational Complexity Theory

	3 Subgraph Counting
	3.1 Motivation
	3.2 Definitions and Notation
	3.3 Literature Review
	3.4 Contributions
	3.5 Real-World Networks with Few High-Degree Vertices
	3.6 An FPT Subgraph Counting Algorithm
	3.7 Remarks and Open Problems

	4 Counting Stable Matchings
	4.1 Motivation
	4.2 Definitions and Notation
	4.3 Literature Review
	4.4 Contributions
	4.5 #TYPED SMTI is in XP
	4.6 #TYPED SRTI is in XP
	4.7 Super-Stability and Strong Stability
	4.8 Remarks and Open Problems

	5 Approximately Counting Stable Matchings
	5.1 Motivation
	5.2 Notation and Definitions
	5.3 Literature Review
	5.4 Contributions
	5.5 An FPTRAS for Union of Sets
	5.6 An FPTRAS for #TYPED SMTI
	5.7 TYPED MAX SMTI with 2 Deletions is W[1]-Hard
	5.8 Remarks and Open Problems

	6 Monochromatic Partitioning Problems
	6.1 Motivation
	6.2 Notation and Definitions
	6.3 Literature Review
	6.4 Contributions
	6.5 An FPT Algorithm for Partitions into Monochromatic Paths
	6.6 Remarks and Open Problems

	7 Conclusion
	8 Bibliography

