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Abstract 

This thesis focuses on modelling air pollution in Aberdeen. It takes into account how traffic and 

meteorological variables affect the Nitrogen Dioxide concentrations at a number of different 

sites throughout the city during the year 2014. The aim of the thesis is to build a regression 

model of spatial and temporal concentration variations and use inverse regression to develop a 

tool to identify control mechanisms that will help manage Nitrogen Dioxide concentrations in 

an urban setting. This is of particular importance to the Scottish Environment Protection Agency 

(SEPA). 

Chapter 1 focuses on the motivation for carrying out such a study, as well as the aims and 

objectives. The data are introduced in this Chapter. These include data from different AURN 

(Automatic Urban Road Network) sites in Aberdeen, as well as diffusion tube data, traffic counts 

from different locations as well as meteorological data recorded at Dyce Airport.  

Chapter 2 covers the temporal modelling of air quality in Aberdeen using time series analysis. 

Time series methodology is explored which includes an initial exploration of the model 

variables using linear regression; followed by residual diagnostics; time series regression; the 

definition of autocorrelation function (ACF), partial autocorrelation function (PACF) and 

stationarity; the exploration of seasonality and harmonic regression, and ends with generalized 

additive model methodology.  This spans from 2006-2015. 

Chapter 3 investigates the spatial modelling of air quality in Aberdeen. This is done through 

numerical and graphical summaries. Methods used to explore NO2 data are presented. This 

includes geostatistical modelling. Two different models are investigated. Model parameters are 

estimated, using maximum likelihood estimates and restricted maximum likelihood estimates. 

This is followed by prediction of future values, using a statistical technique known as Kriging.  

Chapter 4 uses inverse regression to estimate road traffic flows required to achieve compliance 

with national air quality objectives. This Chapter also presents the usefulness of inverse 

regression.  

Chapter 5 ends with a discussion on what further work can be done, and any conclusions for 

this thesis. It looks at the strengths and weaknesses of each Chapter in turn.   
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Chapter 1: Introduction 

1.1 Air pollution and standards already in place  

Air pollution can be categorized into airborne particles and gases, making it a challenge to 

monitor. There was an article [1] in 2014 which introduced the issue of air pollution on Scottish 

streets. This highlights the importance of the issue as well as the fact a respected media agency 

is taking an interest. Also highlighted are the adverse health effects which are associated with 

high levels of air pollution and the streets in Scotland which are most affected by said air 

pollution. The pollutants which are focused upon most are Nitrogen Dioxide and Particulate 

Matter 10 (NO2 [2] and PM10 respectively). Streets in Glasgow and Aberdeen are among the top 

of the list of the most polluted streets in Scotland according to 2014 article [1] and a 2016 article 

[3] by the BBC.  

Air pollution can be described as particulates and harmful materials which are introduced into 

Earth’s atmosphere (which in turn can be described as a layer of gases which surround the earth), 

leading to disease, allergic reaction, ill health/death in humans, damage to other living organisms 

such as plants and animals, and damage to the natural or built environment. It can be caused by 

natural sources, and may come from anthropogenic sources. Earth’s atmosphere is a naturally 

occurring system of gases which is essential to support and maintain life on Earth. Estimates 

from a 2014 World Health Organisation report and the International Energy Agency have air 

pollution causing approximately 7 million deaths worldwide in 2012 [4][5]. 

 

For the purpose of this thesis we look at Nitrogen Oxides, mainly NO2. NO2 is formed during 

high temperature combustion, as well being generated in the form of electric discharge during 

thunderstorms. NO2 is visible to the human eye in the form of a brown haze [6] dome above a 

city or a plume downwind of cities, although this is likely to be due to airborne particles than 

NO2. They also carry an odour which is known to be sharp.  

 

The main anthropogenic sources for NO2 are stationary sources such as power plants, factories 

for manufacturing and waste incinerators. There are also mobile sources which include motor 

vehicles, marine vessels and aircraft [7]. The main source of interest in this thesis is motor 

vehicles, and this is further broken down into different motor vehicle classes.  

 

Air pollution can have an adverse effect on human health [3][8][9]; this includes - and is not 
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exhaustive of - the following in the long term; mortality, ischaemic heart disease, stroke, chronic 

obstructive pulmonary disease (COPD), and lung cancer, as well as acute lower respiratory 

infections in children. Asthmatics in particular may be affected by short term exposure of high 

levels of air pollution although the general population may suffer to a lesser degree by 

experiencing a dry throat and sore eyes. There are also agricultural [10] and economic [11] 

effects which contribute to the argument that air pollution needs to be constantly monitored and 

reduced to levels which are healthy for humankind and the Earth.  

 

One of the most notable periods of air pollution in Scotland or England was in 1952 when what 

is known as The Great Smog or The Big Smoke took place in London [12]. A huge cloud of 

smoke descended over London for four days, which was so thick that people could not see more 

than a few feet in front of them. This caused the transport system to come to a halt and between 

4000 and 12,000 casualties [13]. It was this event which led to the monitoring and investigation 

of air pollution levels, and ultimately to an increase in public awareness of the health effects of 

pollution and the resulting research and regulation. After The Big Smoke occurred the UK 

government took reactionary measures and as a result the Clean Air Acts of 1956 and 1958 were 

drawn up and passed [12]. 

 

Throughout the world, there are various air pollution control technologies and strategies in place 

to reduce air pollution. These range from land-use planning to the development of the use of 

cleaner power sources such as wind, solar and hydro power, which do not cause air pollution. 

For mobile sources, conversion to cleaner fuels or electric vehicles is taking place. There is 

strong evidence to suggest that this is better than using fossil fuels and this transition is as a 

result of public opinion as well as that of the scientific community being firmly in favour that 

an increase in and long term exposure to air pollution can have a negative effect on health. 

Studies which have been done on air pollution show the effect it can have on human health. 

Some notable ones are that of Dockery et al. [14], Pope III et al. [15], and Dominici et al. [16]. 

These have respectively concluded that; air pollution is statistically significantly associated with 

mortality, and positively associated with lung cancer deaths and cardiopulmonary disease; air 

pollution was associated with cardiopulmonary and lung cancer mortality; and there is an 

increased risk of hospital admission for cardiovascular and respiratory diseases with short-term 

exposure to air pollution.  
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Across the world air pollution is being measured due to an increased level of awareness of air 

pollution and the effects it has on human health. Within Europe this is done by a partnership of 

two agencies or networks; the European Environment Agency (EEA) [17] and the European 

Environment Information and Observation Network (EIONET) [18]. The EIONET within any 

co-operating countries supports the collection and organization of available data. This is passed 

on to the EEA which provides information to government bodies and institutions as well as 

making it available to the general public; this is the case in Scotland for example. The EEA 

explores the data in the hope of understanding the environment it is related to and providing 

information which could be used in the change of policy. Relevant data are accessible to 

governing bodies and politicians, as well as the public, which means that there is available 

information regarding the state of the environment. It should also be mentioned that both the 

UK government and the environmental agencies monitor air quality.  

 

There are a number of regulations in place and different types of air quality standards. These 

include, although are not limited to, the U.S National Ambient Air Quality Standards, the E.U. 

Air Quality Directive, the North American Air Quality Index, the Air Quality Health Index 

(Canada), and TA Luft (Germany).  At a European level, the European Union sets regulations 

which its member states must adhere to. Within these countries they each have their own 

governing bodies that are subject to a fine from the EU if they do not comply with said 

regulations. Within Scotland, the Scottish Government has outlined a set of air quality guidelines 

derived from the EU, of which it tries to achieve across the country. At a UK level, the 

Department for Environment, Food and Rural Affairs (Defra) [19] and the Scottish government 

run Scottish Air Quality [20] each regulate and monitor air quality standards in the UK and 

Scotland respectively. These limits are given in terms of annual means, and are the same for the 

EU, the UK and Scotland. The NO2 concentration limit is 40𝜇𝑔𝑚−3 for each zone.Defra has 

responsibility for the Air Quality Strategy which has been set out in the different regions of 

England, Scotland, Wales and Northern Ireland.  

 

Table 1.1.1 below shows the air quality objectives i.e. metrics of compliance with standards. 

This is different to the air quality standards which are numerical concentration thresholds over 

specified averaging periods; 
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Pollutant Applies Objective Concentration 

measured as 

Data to be achieved by 

and maintained 

thereafter 

Nitrogen 

Dioxide 

UK 200µgm-3 not to be 

exceeded more than 18 

times a year 

1 hour mean 31 December 2005 

UK 40µgm-3 Annual mean 31 December 2005  

Table 1.1.1: National Air quality objectives for the protection of human health [24]  

This table is an extension of the fact that the UK has an NO2 annual concentration limit of 

40𝜇𝑔𝑚−3. 

There has been an established relationship between air pollution and meteorological data for a 

number of years. Air pollution studies which include meteorological effects tend to include as a 

covariate ambient temperature. It was meteorological effects which contributed to the Great 

London Smog [12] and it has been proven recently that the effect of temperature on morbidity 

rates is a continually important problem [21]. In light of this, temperature and other 

meteorological factors have been included when analyzing the NO2 data from diffusion tubes 

and AURN sites in a temporal sense.  

1.2 Introduction to the data 

1.2.1 Diffusion tube and AURN monitoring site data 

The NO2 monitoring site data are provided by SEPA, and can also be found on the Scottish Air 

Quality website (which is a government run website) [20]. This website is an easy-to-use, well 

developed interface and has real time data available for the user. Historically, the data date as 

far back as the mid-1980s for some sites, and although some sites are now closed, any running 

ones have data available for today. These data go through an encompassing system of 

verification and checking to ensure that the data are as accurate and close to real-time as 

possible. There are a number of different methods available for monitoring air quality, with 

automatic monitoring sites being one of the more accurate methods as it sets a limit on the 

amount of human error which can be included while providing a high temporal resolution. There 

are also summary statistics available to coincide with the real time data and there are a number 
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of pollutants which are also measured at over 90 different sites as well as NO2. These include 

PM10, PM2.5, Ozone, Carbon Monoxide (CO) and Sulphur Dioxide (SO2). All pollutants 

measured are measured in micrograms per cubic meter 𝜇𝑔𝑚−3. 

There are five Automatic Urban Road Network (AURN) sites which have available data from 

2006 to the present day in Aberdeen. These can be seen in the table below (Table 1.2.1). These 

sites are not uniformly distributed throughout the city, as can be seen from Figure 1.2.1, and 

hence may not give a representative spatial representation of NO2 pollution across Aberdeen. 

The sites are classified by the Scottish Air Quality website according to the environment in 

which they are situated, with the website having 12 different classifications and two of these 

being applicable to the five sites in Aberdeen. This is also shown in the table below (Table 1.2.1). 

The classification which is observed most often is the “roadside” classification. This is described 

by Scottish Air Quality as “a site sampling between 1 m of the kerbside of a busy road and the 

back of the pavement. Typically this will be within 5 m of the road, but could be up to 15 m.” 

The other environmental classification of interest which applies only to the station at Errol Place, 

is “urban background” classification. This is described as “an urban location distanced from 

sources and therefore broadly representative of city-wide background conditions e.g. urban 

residential areas.”   

Site Classification 

Anderson Drive Roadside 

Errol Place Urban Background 

King Street Roadside 

Union Street Roadside 

Wellington Road Roadside 

Table 1.2.1: Environmental Classification for each AURN site 

 

 

Below is a table with the basic summary of the actual concentrations (in 𝜇𝑔𝑚−3) for each site 

during 2014; 
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Site / Statistic Minimum 1st 

Quartile  

Median  Mean 3rd Quartile Maximum 

Anderson 

Drive 

0 10 19 25.75 36 316 

Errol Place -2 10 19 23.64 32 182 

King Street 0 15 25 29.81 40 172 

Union Street 0 26 46 52 72 411 

Wellington Rd 0 21 42 50.23 71 262 

 

Table 1.2.2: Basic Statistics of NO2 at AURN sites for 2014 (𝜇𝑔𝑚−3) 

 

The figure below shows the spatial distribution of the 5 AURN sites. It is clear that they are not 

distributed uniformly throughout the city, and they almost fall in a linear pattern from South to 

North, with the exception of Anderson Drive. In table 1.2.2 the minimum value at Errol Place 

is negative, this reflects some residual quality assurance issues.  

 

 

Figure 1.2.1: Map Showing locations of AURN sites in Aberdeen 
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Local authorities (LAQM) manage diffusion tubes. These diffusion tubes collect NO2 data, as 

well as other air pollutant data, although the focus in this thesis is on NO2 data. These data are 

looked at in this thesis alongside the AURN data. According to the LAQM website [25], 

diffusive samplers are widely used as an indicative monitor of ambient NO2 in the context of 

review and assessment. Diffusion tubes are particularly useful [25]:  

• when simple indicative techniques will suffice; 

• to give an indication of longer term average NO2 concentrations; 

• for indicative comparison with the Air Quality Strategy Objectives based on the annual 

mean; 

• for highlighting areas of high NO2 concentration. 

 

Some known limitations to passive diffusion tubes are that they have positive bias caused by in 

within tube chemical reactions. Positive bias is also caused by wind turbulence when using 

diffusion tubes. The diffusion tubes having this positive bias, although giving a “conservative” 

estimate of actual air concentrations, can also provide useful means for comparing the air quality 

in different areas [75].  

 

There are 51 locations in Aberdeen City which are diffusion tube monitoring sites. They are 

useful for identifying areas of high NO2, particularly when monitoring traffic emissions, where 

the concentration does not vary much from day to day.  A map showing the locations is found 

in section 3.2. It is also of interest the sites where the 51 loactions are located. The monitoring 

sites are in the locations that they are because of known links between air pollution and poor 

health. This is known as preferential sampling and can be used to assess environmental 

compliance in polluted areas [76]. 

 

The temporal frequencies of the AURN data and the diffusion tube data are an hourly and daily 

(although presented annually) frequency respectively i.e. the concentration of NO2 is recorded 

every hour of every day for the AURN sites while the concentration is recorded daily for the 

diffusion tube sites, and presented as an annual average. For time series analysis and modelling 

the data are aggregated to a daily level for the AURN sites i.e. an average is taken for each 24 

observations (corresponding to 24 hours in a day). For the spatial analysis and modelling, the 
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data for the diffusion tube sites are already at an annual level, while the AURN data are further 

aggregated to an annual level and one year is used for modelling, namely 2014.    

 

1.2.2 Meteorological Data 

In addition to the NO2 data there are meteorological data available, also from SEPA. This same 

data can be found on the Weather Underground website which is a commercial weather service 

founded in 1995 and is a part of The Weather Channel Companies. The data themselves consist 

of a number of meteorological variables, recorded hourly at Dyce airport, which is located to 

the North-West of Aberdeen. Not having meteorological recordings at each AURN site is a 

limitation to the analysis of the data, although the data recorded at Dyce can be applied to each 

site. These are the most accurate data available. There are data available at Dyce airport as far 

back as 2000 and is an hourly temporal format.  

 

From the meteorological variables which are available to analyse, the following are selected; 

wind speed, wind direction, cloud cover, rainfall, temperature, humidity, pressure at mean sea 

level. Meteorological variables have been shown to have an effect on air pollution and hence 

NO2 [26] [27]. Wind speed is measured in kilometer per hour (𝑘𝑚ℎ−1), wind direction in 

degrees; cloud cover in oktas; rainfall in millimetres (𝑚𝑚); temperature in ℃; humidity 

measures the amount of water vapour in the air and is taken as a percentage; and pressure is 

measured in pascals (𝑃𝑎).  

 

1.3.3 The traffic data 

The traffic data are taken from a data set provided by SEPA and were originally in the form of 

annual figures for different roads and at different road lengths. They are counts recorded at 

specific road links, and are known as ‘count points’. Having this in an annual format was not 

consistent with the aggregated data for the NO2 concentrations and the meteorological 

measurements such as wind speed or temperature. In order to have all variables on the same 

temporal level, the traffic count data are disaggregated, using figures from the Department for 

Transport, as well as figures from SEPA for different roads around Scotland. Each 

disaggregation process is described below and how these approaches are used in conjunction 

with one another to obtain the data in the format preferred for analysis is explained; 
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Data provided by SEPA  

– This data provided by SEPA depicts the average number of different vehicle types per day 

travelling past certain count points over a number of years. These data are manipulated so that 

instead of showing all count points in Scotland overall years between 2000 and 2015, they 

depicted the years 2006 – 2014 at Anderson Drive specifically. The vehicle types are as follows; 

motorcycles, cars and taxis, buses, light goods vehicles, and different types of heavy goods 

vehicles. A sample of the observations looks like the following: 

 

Year Motorcycles Cars 

Taxis 

Buses 

Coaches 

LGVs All 

HGVs 

All Motor 

Vehicles 

2006 41 7213 14 1659 228 9155 

2007 42 6931 14 1692 232 8912 

2008 44 7029 13 1790 216 9092 

2009 28 6181 11 787 430 7437 

2010 80 6460 8 1381 251 8179 

Table 1.3.3.1: Average Vehicle counts per day during different years in Aberdeen 

 

1st dataset from Department of Transport (tra0306) [28] 

 – These data (the 1st of two data sets from the Department of Transport) are the average 

distribution by day of the week, for Scotland i.e. these data are of values at or around 100. This 

value of 100 is taken as an index, that is, an average day is taken as 100. These data range from 

the years 2006 – 2014. A sample of these data can be seen in table 1.3.3.2: 

 

Day of the week  2006 2007 2008 2009 2010 

Sunday 82 81 78 81 80 

Monday 101 103 103 103 104 

…
 

…
 

…
 

…
 

…
 

…
 

Saturday 85 81 103 106 109 

 

Table 1.3.3.2: Sample of average distributions of traffic count by different days of the week for 

the years 2006 - 2010 
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2nd dataset from Department of Transport (tra0307) [28] 

– These data (the 2nd of two data sets from the Department of Transport) are the average daily 

traffic flows by month of the year, for Scotland. Similar to the previous data set it has values at 

or around 100. This value is taken as an index also, that is, the average daily traffic flow in a 

month is taken as 100. This data also ranges from the years 2006 – 2014.  A sample of these data 

can be seen in table 1.3.3.3: 

 

Month 2006 2007 2008 2009 2010 

January 91 90 90 90 90 

February 94 94 95 94 93 

…
 

…
 

…
 

…
 

…
 

…
 

December 93 93 92 92 91 

 

Table 1.3.3.3: Sample of average daily traffic flows by month of the year for the years 2006 - 

2010 

 

The datasets are used in conjunction to create the disaggregated data. It is possibly best to 

explain how they are used by using the previous three tables and providing an example.  

Let 𝛼 be the outcome of interest, i.e. a particular vehicle type during a particular day, month and 

year. It follows that; 

𝛼 =
(

𝑥𝑖,𝑗

100) ×𝑦𝑘,𝑙

100
×𝑧𝑚,𝑛 

         (1.3.3.1) 

where 𝑥𝑖,𝑗 is an entry from table 1.3.3.1, 𝑦𝑘,𝑙 is an entry from table 1.3.3.3, and 𝑧𝑚,𝑛 is an entry 

from table 1.3.3.2. Say the outcome of interest, 𝛼, is the number of motorcycles which passed 

the count point at Anderson Drive on the 1st January 2006. In this case; 𝑖 = 𝑗 = 𝑘 = 𝑙 = 𝑚 =

𝑛 = 1 i.e. the first entry in each of the respective tables is used in equation 1.3.3.1 (since 

𝑖, 𝑘 𝑎𝑛𝑑 𝑚 = row entries and 𝑗, 𝑙 𝑎𝑛𝑑 𝑛 = column entries) and 𝛼 can be found as the following; 

 

𝛼 =
(

41
100) ×91

100
×82 ≈ 31 
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So we can say 31 motorcycles passed the count point at Anderson Drive on the 1st January 2006. 

This process described is reiterated for every date between the 1st January 2006 and 31st 

December 2014, and for all vehicle classes. It is pseudo data in a sense, so it has its limitations, 

although it is useful still. 

 

1.3 Aims  

The aims of the thesis are as follows; 

• To model the temporal patterns in the NO2 data recorded at the AURN sites; 

• To model the spatial patterns in the data recorded at both the AURN sites and the 

diffusion tube for the year 2014; 

• To model the effects of covariates such as meteorology and traffic on NO2 

concentrations; 

• To use inverse regression to explore traffic conditions to meet certain NO2 conditions. 

The aims are carried out in chronological order. Chapter 2 covers the temporal patterns of the 

NO2 data and Chapter 3 the spatial patterns of the NO2 data. Both Chapters 2 and 3 model the 

effects of the covariates mentioned above and Chapter 4 focuses on inverse regression. Inverse 

regression explores under what conditions are the model covariates so that a set level of NO2 is 

not exceeded. This is a useful tool for advising on policy, and is discussed in more detail in 

Chapter 4.   
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Chapter 2: Temporal Modelling of Air Quality in Aberdeen 

At each of the AURN monitoring sites the NO2 concentration is recorded. This is recorded at an 

hourly rate, as mentioned previously. In this Chapter, these hourly data are aggregated to a daily 

level, followed by a temporal modelling and analysis on the data. The Chapter begins with 

numerical and graphical summaries of the data, then the data is modelled by a linear method 

followed by a general additive method.  

2.1 Methodology 

One general approach which is taken to modelling data has three stages, these are; 

1. Model identification and selection 

2. Parameter estimation 

3. Model checking e.g. assumptions including independence of residuals.  

If at this last step the model is not useful i.e. the estimation is inadequate, the process is repeated 

in order to build a better model. Stationarity and seasonality (as discussed below) must be 

identified, and an autocorrelation plot is used for this. 

2.1.1 Exploring model variables using linear regression  

A brief outline of a simple regression model is given where 𝑦𝑡 is the response variable which in 

this case is log(NO2)t, where 𝑡 = 1, … , 𝑇 is an index for time. The log transformation is taken 

due to the nature of the data – it is slightly skewed and so a transformation is needed to help 

normalise it. This is discussed in more detail later. Assuming that the response variable is being 

influenced by a series of explanatory variables 𝑥𝑘,𝑡 where 𝑘 = 1, … , 𝐾 and 𝑡 = 1, … , 𝑇, the 

relationship between NO2 and the explanatory can be described by a linear regression model; 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + ⋯ + 𝛽𝐾𝑥𝐾,𝑡 + 𝜀𝑡        (2.1.1.1) 

In this model (𝛽1, … , 𝛽𝐾) are unknown and fixed regression parameters and {𝜀𝑡} is the random 

error term which is assumed to have a mean of zero 𝜀~𝑁(0, 𝜎2). One popular approach for 

fitting such a model is through Ordinary Least Squares (OLS) whereby the linear model above 

can also be written in matrix notation: 

𝑌 =  𝑋𝑇𝛽 + 𝜀          (2.1.1.2) 
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and the least squares estimate of 𝛽 is given by the following;  

𝛽̂ =  (𝑋𝑇𝑋)−1𝑋𝑇𝑌         (2.1.1.4) 

When a standard linear regression model which uses the OLS estimation technique is used, there 

are a number of assumptions made, and these assumptions must hold if parameter estimates are 

to be accurate. The first assumption is one of homoscedasticity, which means that the errors 

have constant variance. Other assumptions include a linear relationship between response and 

covariates; multivariate normality i.e. the data is normally distributed; minimum 

multicollinearity; and no autocorrelation. Each of these assumptions are checked in the next 

section, and there is more discussion surrounding them.  

2.1.2 Time Series Regression 

A time series can be described as a set of observations 𝑦𝑡, with each 𝑦 being observed at a 

specified point in time 𝑡. Although a time series can be either discrete or continuous, given the 

nature of the recorded NO2 concentrations at sites in Aberdeen, a discrete time series is used 

here. This time series of a discrete nature can be described as one in which the set 𝑇0 of times 

at which observations are made is a discrete set, which is also the case when observations are 

recorded at fixed time intervals, for example annual recordings, or monthly recordings.  

It is necessary, in order to understand time series regression, that a hypothetical mathematical 

model is created to represent the data. Once a model is chosen, it is then possible to estimate 

parameters, check for goodness of fit to the data and then possibly use the fitted model to 

develop our mutual understanding of the process generating the time series, in this case traffic 

and meteorological factors in Aberdeen. Once a satisfactory model has been built, it may be 

used in a variety of ways. This includes separating noise from signals, predicting future values 

of the time series, and controlling future values.  

A model may be used to represent a compact description of data, for example for NO2 

concentrations at Union St, Aberdeen, and coming in the form of a sum of a specific trend {𝑚𝑡}, 

seasonal {𝑠𝑡} and random {𝜀𝑡} terms. For this data, it is important to implement seasonal 

adjustment. That is to recognise the presence of seasonal components and to remove them from 

the model so they are not confused with long-term trends. An example of an additive model 
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with a trend component and a seasonal component is below (it also includes a remainder or error 

term); 

𝑦𝑡 = 𝑚𝑡 + 𝑠𝑡 + 𝜀𝑡        (2.1.3.1) 

Autocorrelation plots are useful, particularly in time series modelling, since failing to account 

for said autocorrelation can lead to the use of incorrect standard errors. Autocorrelation is the 

correlation between elements in a series and elements in that same series, separated by a given 

time interval. Using the sample autocorrelation function (acf) and the partial autocorrelation 

function (pacf) plots are the most common ways for checking if autocorrelation is present in the 

residuals. These are discussed in more detail below.  

There is a class of time series models called autoregressive processes, which are the most 

common models for correlated data [29]. An autoregressive process can be seen below;  

𝑦𝑡 = 𝛽1𝑦𝑡−1 + ⋯ + 𝛽𝑝𝑦𝑡−𝑝 + 𝜀𝑡       (2.1.2.1) 

where 𝑦𝑡 is the observation, 𝜀𝑡 is the (unobservable) random disturbance (noise) at time 𝑡, 𝑝 is 

the order of the process and 𝛽1, … , 𝛽𝑝 are the parameters of the model. These processes are used 

for looking at the residuals of the models and seeing how they may be correlated.  

2.1.2 Model Diagnostics and Evaluation 

Examining the results after the model has been fit, which are defined by 𝑟𝑡 = 𝑦𝑡 − 𝑦𝑡̂ where 𝑦𝑡̂ 

is the fitted value at time t, we can assess the model assumptions. Plotting the residuals against 

time t, the residuals should have a 0 mean with an equal spread above and below the mean with 

constant variance. Checking for non-constant variance is done by looking for the presence of a 

fanning out of the residuals. The assumption of normality must also hold, and this is checked 

using a histogram or a QQ plot. Finally, assuming that errors are uncorrelated with one another 

must hold true – which is not the usual case for time series data. These residuals of the model 

can highlight problems related to assumptions made when modelling.  

The AIC stands for Akaike Information Criteria and is a measure of the relative usefulness of 

statistical models created for a single set of data. When the AIC is provided with a set of models 

for the data, it compares them with one another. Hence, it is a method of model selection.  
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R-squared explains the proportion of the variation of the response explained by the independent 

variables for a linear regression model like the ones created for the AURN sites. Adjusted R2 

adjusts that statistic depending on the number of independent variables in the model. 

2.1.4 ACF/PACF and stationarity 

A time series {𝑌𝑡, 𝑡 = 0, ±1, … } loosely speaking, can be said to be stationary if it has statistical 

properties similar to those of a certain “time-shifted” series {𝑌𝑡+ℎ, 𝑡 = 0, ±1, … }, for each 

integer ℎ. Focusing attention to the properties which only depend on the first- and second-order 

moments of  {𝑌𝑡}, we can make this idea precise by defining the following; 

Let {𝑌𝑡} be a time series with 𝐸{𝑌𝑡}2 < ∞. The mean function of {𝑌𝑡} is: 

𝜇𝑌(𝑡) = 𝐸(𝑌𝑡)          (2.1.4.1) 

The covariance function of {𝑋𝑡} is  

𝛾𝑌(𝑟, 𝑠) = 𝐶𝑜𝑣(𝑌𝑟 , 𝑌𝑠) = 𝐸[(𝑌𝑟 − 𝜇𝑌(𝑟))(𝑌𝑠 − 𝜇𝑌(𝑠))]     (2.1.4.2) 

For all integers 𝑟 and 𝑠.  

{𝑌𝑡} is (weakly) stationary if  

(i) 𝜇𝑌(𝑡) is independent of 𝑡. 

(ii) 𝛾𝑌(𝑡 + ℎ, 𝑡) is independent of 𝑡 for each ℎ. This can also be written as 𝛾𝑌(ℎ). 

It should be noted that there also occurs strict stationarity in time series although, generally 

speaking, any time series which is strictly stationary, is also weakly stationary. This is because 

the strict stationarity of a time series applies to at least two variables, whereas the weak 

stationarity (or just stationarity) of a time series applies to just one variable.  

Let {𝑌𝑡} be a stationary time series. The autocovariance function (ACVF) of {𝑌𝑡} is 

𝛾𝑌(ℎ) = 𝐶𝑜𝑣(𝑌𝑡+ℎ, 𝑌𝑡)        (2.1.4.3) 

The autocorrelation function (ACF) of {𝑌𝑡} is 

𝜌𝑌(ℎ) ≡
𝛾𝑌(ℎ)

𝛾𝑌(0)
= 𝐶𝑜𝑟(𝑌𝑡+ℎ, 𝑌𝑡)       (2.1.4.4) 
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The ACVF and ACF provide a very useful measure of the degree of (in)dependence between 

values recorded in a time series at different times and for this reason are useful for assessing 

assumptions made of time series models. 

2.1.5 Seasonality/Harmonic Regression 

Data can be represented as a realisation of the process, i.e. the classical decomposition model; 

𝑦𝑡 = 𝑚𝑡 + 𝑠𝑡 + 𝜀𝑡         (2.1.5.1) 

where 𝑚𝑡 is a slowly changing function known as a trend component, 𝑠𝑡 is a function with 

known period 𝑑 referred to as the seasonal component, and 𝜀𝑡 is a random noise component 

which is stationary as defined by definition 2.1.2.  

There is not always an obvious trend component 𝑚𝑡 present for data, sometimes there is only a 

seasonal component and a random noise component, 𝑠𝑡, 𝜀𝑡 respectively, visibly present. It is 

also of interest, in order to determine the stationarity of the random noise component, to estimate 

and extract the trend and seasonal component. The theory for these processes can be used to 

find a suitable probabilistic model for the random noise process 𝜀𝑡, to analyse the properties of 

the process, and to use it in conjunction with the trend and seasonal components for possible 

predicting and emulating of {𝑌𝑡}. There is another approach [30] which applies differencing 

operators repeatedly to the series {𝑌𝑡} until the differenced recordings resemble a realisation of 

a stationary time series {𝑊𝑡}.  

Harmonic regression is described in more detail here. When the case arises that there appears to 

be a cyclical or seasonal patterns across time, one or more harmonic functions can be used to 

capture this seasonality. The equation below, discussed in [31], is the basis for basic harmonic 

regression;  

𝑦𝑡 = 𝛽0 + 𝐴𝑐𝑜𝑠(2𝜋𝑤𝑡 + 𝜓) +  𝜀𝑡       (2.1.5.2) 

 where 𝑦𝑡 is the response variable which in this case is log(NO2), 𝑤 is the cycle 

component which determines the frequency of the wave, 𝑡 is the time index, 𝛽0 is the intercept 

term, 𝐴 is the magnitude of the wave and 𝜓 location of the start of the phase. It is assumed that 

𝑤 and 𝑡 are known parameters and 𝐴 and 𝜓 are unknown. Using the angle sum trigonometric 

identity in the following equation 
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𝑐𝑜𝑠(𝛼 ±  𝛽) = 𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽) ∓ 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)      (2.1.5.3) 

the harmonic regression can be written in terms of the following equation; 

𝑦𝑡 = 𝛽0 + 𝛽1 cos(2𝜋𝑤𝑡) + 𝛽2 sin(2𝜋𝑤𝑡) +  𝜀𝑡     (2.1.5.4) 

Other terms such as linear ones can be included in the model, for example taking the 

meteorological factors of wind speed and humidity we could have;  

𝑦𝑡 =  𝛽0 + 𝛽1 cos(2𝜋𝑤𝑡) + 𝛽2 sin(2𝜋𝑤𝑡) + 𝛽3(𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑) + 𝛽4(𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦) +  𝜀𝑡  

           (2.1.5.5) 

2.1.6 Generalised Additive Model Methodology  

It may be of use to initially fit a linear model. A generalised additive model may be of use to fit 

to the data if the linear model has been proven to not be a good fit for the data since the trend is 

not linear. It is useful to describe the relationship between the response (log NO2) and the 

explanatory variables by some function or functions which take the following form; 

𝑓(𝑋, 𝛽)          (2.1.6.1) 

This is a function of the covariates 𝑋 and their respective coefficients 𝛽. The idea of such a 

model arises from the fact that in many real life situations, effects are not linear [31]. A 

generalized additive model is described as a generalized linear model with a linear predictor 

involving smooth functions of covariates [32] [33]. The general structure of the model is 

something of the following; 

𝑔(𝜇𝑖) =  𝑿𝑖
∗𝜃 + 𝑓1(𝑥1𝑖) + 𝑓2(𝑥2𝑖) + 𝑓3(𝑥3𝑖, 𝑥4𝑖) + ⋯    (2.1.6.2) 

where 

𝜇𝑖 ≡ 𝔼(𝑌𝑖) and 𝑌𝑖 ~ some exponential family distribution. 

𝑌𝑖 is a response variable, 𝑿𝑖
∗is a row of the model matrix for any strictly parametric model 

components, 𝜽 is the corresponding parameter vector, and the 𝑓𝑗 are smooth functions  of the 

covariates, 𝑥𝑘. This model allows for relatively flexible specification of the dependence of the 

response term on the covariates, using only ‘smooth functions’ to specify the model, instead of 

detailed parametric relationships. Any flexibility and convenience comes at the cost of two new 
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theoretical problems. It is necessary to represent both the smooth functions and to choose their 

level of smoothness. [34] 

GAMs can be represented using penalized regression splines and estimated by penalized 

regression methods, while using cross validation to estimate the appropriate degree of 

smoothness for 𝑓𝑗. 

Consider a model containing one smooth function and one covariate; 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀𝑖         (2.1.6.3) 

where 𝑦𝑖 is a response variable, 𝑥𝑖 a covariate, 𝑓 a smooth function and the 𝜀𝑖 are i.i.d. 𝑁(0, 𝜎2) 

random variables.  

To estimate 𝑓, this above equation (2.1.6.3) needs to be represented as a linear model [34], 

which is done by choosing a basis i.e. defining the space of functions which 𝑓 (or a close 

approximation to it) is an element. If 𝑏𝑗(𝑥) is the 𝑗𝑡ℎ such basis function, then 𝑓 is expected to 

have a representation  

𝑓(𝑥) =  ∑ 𝑏𝑗(𝑥)𝛽𝑗
𝑞
𝑗=1 ,        (2.1.6.4) 

for some values of the unknown parameters, 𝛽𝑗. Substituting 2.1.6.4 into 2.1.6.3 yields a linear 

model. For a model containing a smooth function a smoothing parameter must be chosen. The 

smoothing parameter determines how much of the data is used to fit a model. It follows that this 

smoothing parameter, 𝜆 needs to be chosen often by cross validation. If 𝜆 is too high then the 

data will be over-smoothed, and if it is too low then the data will be under smoothed: in both 

cases the result is that the spline estimate 𝑓 will not be as close to the true function 𝑓 as it can 

be.  Ideally we want to choose 𝜆 so that 𝑓 is as close as possible to 𝑓, a suitable criterion may 

be to choose 𝜆 to minimise  

𝑀 =  
1

𝑛
∑ (𝑓𝑖 − 𝑓𝑖)2𝑛

𝑖=1         (2.1.6.5) 

𝑀 can be found from the following equation, according to [34]; 

𝜈𝑔 =
𝑛 ∑ (𝑦𝑖−𝑓̂𝑖)2𝑛

𝑖=1

[𝑡𝑟(𝑰−𝑨)]2         (2.1.6.6) 
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Where 𝑓 is the estimate from fitting all the data, and 𝑨 is the corresponding influence matrix (a 

matrix which yields the fitted value vector when post multiplied by the data vector). This above 

equation is known as the generalised cross validation score (GCV). This score is known to be 

computationally efficient and more crucially in this case it can also be shown to minimise 𝔼(𝑀) 

in the large sample limit. This is of importance since, 𝑓[−𝑖] ≈ 𝑓 with equality in the large sample 

limit, so 𝔼(𝜈𝑔) ≈ 𝔼(𝑀) +  𝜎2 also with equality in large sample limit. Hence choosing 𝜆 in 

order to minimise 𝜈𝑔 is a reasonable approach when the ideal is to minimise 𝑀. This is all 

explained much more thoroughly in [34].  

A final note of GCV – if GCV is in place, the model needs to be fitted once with the full data 

for each value of the smoothing parameter, λ. Plots of the sequence number for different values 

of λ versus GCV can be used to determine an optimal value of λ. It should also be noted that the 

presence of correlation between errors can cause automatic smoothing selection methods such 

as GCV to break down. 

2.2 Site-by-Site Exploratory Data Analysis 

This section discusses the different trends, features and patterns of the NO2
 monitoring site data 

for all sites in Aberdeen between 2006 and 2014. There are 5 sites being investigated for time 

series analysis. These sites all belong to the AURN (Automatic Urban Road Network).  

Site % of days with no data available 

Anderson Drive 8 

Errol Place 11 

Union St 8 

King St 5 

Wellington Road 11 

Table 2.2.1: Percentage of days with no data available, by site 

Also in this section any characteristics of the data are highlighted which might pose an issue 

when modelling the data. One such issue with data can be the proportion missing. This is evident 
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when one looks at a particular month where there are no data available. The previous table 

shows the percentage of missing days with no data available for each site.   

 

Missing Data 

Environmental data does not usually come with all data in place, with sometimes seemingly 

large sections of a data frame missing. As the data we are using comes from automatic network 

sites, it is natural that there are perhaps proportions of the data missing. This missingness could 

be due to any number of reasons, including malfunctioning instruments, incorrect calibrations, 

communication failure across the network monitoring system and in some cases, the locations 

have become disused for monitoring purposes. Given that there is some missing data across a 

period of time, the representativeness of the data could be questionable when inference is being 

made on a model. In reality, this proportion of missing data is relatively small i.e. approximately 

<11% for each of the sites. The following plot shows the amount of missing data for Anderson 

Drive. This plot is representative of the amount of missing data at the other sites, relatively little. 

The white gaps are where 100% of the data for that period is missing. Where there is possible 

an issue of the site not being functional, this is represented by a white gap over longer period of 

time. For all of the sites, there is at least some missing data. Quantifying the plots, the x-axis 

shows the time period from 2006 to 2015, while the y-axis shows the percent of the observed 

data available for that day. These are in units of days.  

From looking at the following plot, it is fair to conclude that there is very little missing data, 

and there does not appear to be a pattern in those data which are missing. The plot itslf is 

reflective of the amount of data missing at other sites.  
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Figure 2.2.1: Bar plot of proportion of observed data at Anderson Drive 

Outliers  

Outliers may occur in the data, and according to [34] [35], an outlier is an observation point that 

is distant from other observations. An outlier is usually due to one of two causes; one of these 

causes is an error in the experiment and the other cause is variability in the data [34]. Outliers 

can be dealt with by either removing them from the dataset if they are due to experimental error, 

or by taking a log transformation, which shows the stabalisation in the variance in the 

distribution of the data. This stabalisation of the variance can be seen in the following 

histograms; figures 2.3.1 and 2.3.2 respectively. This was the case for the NO2 datum recorded 

at the AURN sites. This is discussed further in the next section.  

2.3 Graphical summaries of Nitrogen Dioxide Monitoring Site Data 

To gain an impression of how the NO2 data behave over time, the data are plotted against time 

to give an insight into the overall trend of the data and obtain a subjective comparison between 

each of the sites and across the years. There appears to be a non-constant variance issue for the 

time series corresponding to each site, with most of the values clustered around low NO2 

concentrations, with some seasonal effects present at certain sites. This non – constant variance 

%
 o

f 
av

ai
la

b
le

 d
at

a 



32 

 

issue was addressed by applying different transformations to each site such as a log 

transformation, a square root transformation and an exponential transformation. The log 

transformation adequately addressed this issue by distributing the distribution in a fashion which 

more closely resembles a normal distribution.  This can be seen by a comparison of the NO2 

data recorded at the different AURN sites before and after a logarithmic transformation was 

taken, which is shown in Figures 2.3.3 and 2.3.4 respectively.  

As mentioned previously regarding outliers, when these log transformations were applied, it 

was the case for most extreme values that they became integrated into the main body of the 

distribution. 

 

 

Figure 2.3.1: Histogram depicting the untransformed NO2 data recorded at Anderson Drive 

over the years 2006 – 2014. It can be seen from this histogram that the data are heavily 

skewed.  
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Figure 2.3.2: Histogram showing the log transformed NO2 data at Anderson Drive for the 

years 2006 – 2014. The histogram shows, from a comparison with Figure 2.3.1, that a log 

transformation of the data stabalises the variance.  
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Figure 2.3.3: Time Series of NO2 for each site between 2006 and 2014 (no transformation) 
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Figure 2.3.4: Time series of log transformed NO2 for each site between 2006 and 2014  
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Overall, looking at both Figures 2.3.3 and 2.3.4, depicting both the transformed and 

untransformed time series data, NO2 would appear to follow a wave like seasonality with the 

peaks and dips of each site differing slightly. The wave-like sinusoidal seasonality could be due 

to weekly or daily variations in log NO2 concentrations or it could be linked to a covariate effect.  

It is probable that sites which are closer to one another would be more correlated than others 

which are further away. This will be explored later in the Chapter using spatial statistics.  

It is also of interest to look at how the data behaves over the course of a year. This is done by 

numbering the days of the year 1- 366 and plotting them against their respective log NO2 value. 

This is done at each site and the plots are as follows in Figure 2.3.5. It can be said, that at 

Anderson Drive and Wellington Road, there is no upwards or downwards trend, while at Errol 

Place, King St and Union St there is a quadratic shape running through the data – more so at 

Errol Place and King St than Union St. This could be due to less traffic on these particular roads 

in the summer months and this is evidence for seasonal patterns.  
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Figure 2.3.5: Daily averages recorded at each site for the years 2006 – 2014.  
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Looking at the log values of NO2 over each day of the week is also of interest. Each day is 

taken individually and a boxplot is created from the log NO2 values. This is done at each 

AURN site; 
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Figure 2.3.6: Daily averages recorded during 

2006 – 2014, presented as the daily averages 

for each day of the week for each site. 

 

 

 

 

It can be seen from these plots in Figure 2.3.6 that for every site, Sunday has a lower median 

concentration than any other day of the week, and the same can be said for Saturday at every 

site - except for King Street, which has a median concentration similar to those of the weekdays 

(Monday – Friday that is). This is indicative of less traffic being on the roads during the 

weekend, especially on Sundays. There are also outliers shown in each plot, they tend to be low 

rather than high.  

The following Figures show the log NO2 concentrations at each of the AURN sites, this time 

focussing on the hour of the day. Doing this can show when, during the day, there are higher 

concentrations of NO2, if there are any.  
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Figure 2.3.7: Boxplots showing the daily average NO2 concentrations for each of the different 

sites for the years spanning 2006 – 2014.  
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As can be seen from all of the plots in Figure 2.3.7, log NO2 concentrations are higher during 

the day than they are at night, particularly between the hours of 07:00 and 20:00 for most sites. 

There are peaks at rush hour times (08:00 - 09:00 and 17:00 – 18:00) for most sites. 

2.4 Graphical and Numerical Summaries of Meteorological Data 

The meteorological data which are described in section 1.3.2 consist of daily mean values of 

temperature, humidity, pressure at mean seas level, total rainfall, cloud cover, wind speed, and 

wind direction at one site in Aberdeen, namely the airport at Dyce, Aberdeen. The table below 

summarises each of the potential covariates with a number of summary statistics. The summary 

statistic values are recorded for the time period 2006 – 2014.  

 

Variable Min Q1 Median Mean Q3 Max St. Dev 

Wind Speed (kmh-1) 0.34 2.98 4.18 4.50 5.72 13.93 1.99 

Wind Direction 28.0 168 208 211 254 351 62 

Cloud Cover (oktas) 0 4 6 5 7 8 2 

Rainfall (mm) 0.00 0.00 0.01 0.10 0.10 2.56 0.20 

Temperature (°C) -10.4 5.2 8.5 8.7 12.4 22.7 4.7 

Relative Humidity 

(RH) 

34 73 81 80 88 100 11 

Pressure at MSL 

(Pa) 

955 1002 1011 1010 1019 1043 13 

 

Table 2.4.1: Summary Statistics for Meteorological factors 

The plots of the meteorological factors can be seen in Figures 2.4.1 and 2.4.2 below. These 

explore the individual trends of each of the meteorological factors. Temperature, Humidity and 

pressure all seem to follow a yearly sinusoidal pattern, while a wind speed, wind direction, cloud 

cover and rainfall seem to follow a less distinguishable distribution i.e. the points on the plot are 

more randomly scattered. Rainfall should go through a transformation, possibly log, as the time 

series suggests the data are clustered around extremely low values.   
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Figure 2.4.1: Time series of meteorological factors for 2006 – 2014 at Dyce, Aberdeen. The 

four panels correspond to the following variables; wind speed; wind direction; cloud cover 

and rainfall respectively.  
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Figure 2.4.2: Time series of meteorological factors for 2006 – 2014 at Dyce, Aberdeen. The 

three panels correspond to the following variables; temperature; relative humidity and 

pressure at mean sea level respectively.  
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2.5 Graphical and Numerical Summaries of Traffic Data  

The traffic data as described in section 1.3.3 consist of daily mean values of all motor vehicles 

(which is the total number of motor vehicles, not including LGVs, HGVs and Buses and 

coaches), light goods vehicles, all HGVs (heavy goods vehicles), and buses and coaches, at 5 

sites in Aberdeen. The table below (Table 2.5.1) summarises each of the potential explanatory 

variables with a number of summary statistics. The median and mean values for the different 

vehicles differ between vehicle class within each site as well as between sites. The highest 

number of vehicles is recorded at Wellington Road, with 15,489 total motor vehicles (this is not 

including LGVs, HGVs, or buses and coaches). The highest standard deviation for all motor 

vehicles (not including the other aforementioned classes) also occurs at Wellington Road, with 

a standard deviation of 1656.  

The plots of the different vehicle classes at Union Street over time in the following Figures 

explore the individual trends. From the plots it is clear that there are different levels of vehicle 

counts on weekdays and non-weekdays. There is also a consistent quadratic shape from year to 

year for all of the potential variables. Although not seen here in full, as only Union Street is 

shown, the explanatory variable all motor vehicles have been consistent for all sites except for 

Errol Place and Union Street which decrease significantly after 2007 and 2011 respectively. 

Again, although not shown here, all sites have seen an exponential trend for the number of buses 

and coaches except for Union Street and Anderson Drive, which show a decrease after 2011, 

and a completely different pattern due to the relatively low numbers, respectively. The following 

plots are useful in that they show the layout of the data created from the tables in section 1.3.3, 

as discussed previously. This is the pattern of the data which are created using the disaggregated 

approach described in the same section. The data in the following plots reflect the man-made 

approach to creating the data, as opposed to collecting the data naturally from the respective 

sites.  
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 Min Q1 Median  Mean Q3 Max St. Dev 

Errol Place  

All Motor Vehicles 3478 4715 5394 5420 5773 8353 1029 

Light Goods Vehicles  463 719 831 932 1019 1753 313 

All HGVs 414 578 655 650 708 919 103 

Buses and Coaches 138 217 284 296 349 567 96 

Anderson Drive  

All Motor Vehicles 4761 6405 7399 7204 7964 9194 967 

Light Goods Vehicles  647 945 1077 1067 1179 1470 164 

All HGVs 310 414 482 468 516 586 62 

Buses and Coaches 7 11 12 12 14 17 2 

Wellington Rd  

All Motor Vehicles 8916 11435 13376 12888 14195 15489 1656 

Light Goods Vehicles  1718 2444 2761 2730 3024 3646 400 

All HGVs 1112 1661 1859 1925 2272 2799 390 

Buses and Coaches 57 87 98 103 114 174 25 

King Street  

All Motor Vehicles 3698 4795 5601 5402 5968 6565 698 

Light Goods Vehicles  590 791 914 892 991 1129 120 

All HGVs 301 420 477 477 525 646 77 

Buses and Coaches 111 165 192 202 234 340 52 

Union Street   

All Motor Vehicles 1042 1533 1714 1720 1958 2226 267 

Light Goods Vehicles  144 230 267 272 316 420 58 

All HGVs 24 43 72 67 87 100 22 

Buses and Coaches 126 185 213 211 233 294 24 

Table 2.5.1: Summary statistics for traffic variables at 5 different sites in Aberdeen. Vehicle 

units are vehicles per day or vehicles day-1 
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Figure 2.5.1: Time series plots of traffic variables at Union Street between 2006 and 2014. 

The top left panel shows all motor vehicles, the top right panel shows the Light Goods 

Vehicles, the bottom left hand panel represents All HGVs, and the bottom right panel shows 

buses and coaches.  
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The abrupt change in each of the vehicle class levels at 2012 can be estimated, given the public 

data available, to be due to a change in the counting method for the number of vehicles before 

and after 2012. Although these plots show the relationship between different vehicle classes and 

time, they do not show how the vehicle classes are related to the variable of interest, NO2. This 

is looked at in the following section. 

2.6 Relationships between NO2 and potential explanatory variables 

NO2 and the vehicle classes mentioned have a relationship which can be seen from the 

scatterplots in this section. These relationships are also reflective of the NO2 relationship with 

the vehicle classes which are found at other sites such as Anderson Drive, King Street and so 

on. The scatterplots don’t show any relationship between NO2 and the vehicle class variables, 

apart from perhaps the HGVs which is in two clusters, although this is more a comment on the 

HGV class - particularly at Union Street - than it is on the relationship between HGVs and NO2. 

i.e. the HGV class is in two clusters as that is how the data happened to be recorded. Also in this 

section, the relationships between NO2 and meteorological variables are looked at in 

scatterplots. 

2.6.1 Meteorological covariates  
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Figure 2.6.1.1: Figures show meteorological 

variables plotted against log NO2 data. They 

are as follows; Wind Speed (kmh-1); Wind 

Direction; Cloud Cover (oktas); Rainfall 

(mm); Temperature (°C); Relative Humidity 

(%); Pressure at MSL (Pa). All variables are 

recorded at Anderson Drive during 2014. 
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Looking at Figure 2.6.1.1 the relationships between log NO2 and the meteorological factors are 

shown as a visual aide. As wind speed increases, log NO2 concentration decreases to the first 

plot, and the relationship can be described as linear. The second plot shows that log NO2 

concentration does not seem to have a clear relationship with wind direction. The change in the 

concentrations of NO2 can be put down to more observations being recorded between 100 and 

300 degrees, than there are recorded between 0 and 100 degrees, and 300 and 360 degrees. 

In the top left plot on the previous page, cloud cover does not seem to have a significant 

relationship with log NO2 since as cloud cover increases there does not seem to be any visible 

change in log NO2 values. There are lower values of log NO2 as at cloud cover levels higher 

than 2 oktas, although this could be due to the fact there are more observations at cloud cover 

levels higher than 2 oktas. The plot on the top right of the previous page, rainfall and log NO2 

does not have a visible relationship, although rainfall is notoriously difficult to model as there 

are many low values i.e. days when there were no rain and even with a log transformation the 

relationship between rainfall and the response is difficult to interpret in comparison to say, 

temperature and log NO2. This can be seen from the large amount of low values and very few 

values of rainfall above 0.5mm.  

The third plot on the previous page (depicting temperature) shows as temperature increases there 

does not seem to be a visible change in log NO2 concentrations. The scatterplot showing relative 

humidity shows that as relative humidity increases so too does the log NO2 concentration. It 

looks like the relationship could be linear. The final plot in figure 2.6.1.1 shows the relationship 

between log NO2 and pressure at mean sea level. This relationship could be described as linear 

and from the plot, it can be concluded that as pressure increases so too does log NO2.   

It is also of interest to explore collinearity between the explanatory variables. Collinearity occurs 

when two or more variables in the data set are highly correlated with one another. In order to 

have the best model possible, it is hopeful that the variables have relatively little collinearity. A 

pairs plot is seen below of the meteorological variables, and their collinearity (or lack of) can 

be seen from this in Figure 2.6.1.2.  
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Figure 2.6.1.2: Pairs plot of meteorological variables with labels. It can be seen from these plots that there is not much, if any, collinearity 

present between the meteorological variables.   
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2.6.2 Traffic covariates 

The following Figures (Figure 2.6.2.1 and Figure 2.6.2.2) shows the collinearity between the 

traffic explanatory variables, and the relationship between log NO2 concentration and each of 

the vehicle classes at Anderson Drive respectively. This is similar to the previous section 

regarding meteorological variables. From looking at Figure 2.6.2.1 it is clear that there is 

multicollinearity present for the traffic variables at Anderson Drive and this must be dealt with 

in an appropriate manner by only including some of the variables. This is done to reduce the 

amount of noise in the model when it is being built.  

 

 

Figure 2.6.2.1: Pairs plot showing the collinearity between the traffic explanatory variables at 

Anderson Drive for the years 2006 – 2014. The bottom left-hand panels show the visual 

representation of the data and the top right-hand panels show the correlation between the two 

variables. The variables are named on the diagonal panels.  

 

The following Figure (Figure 2.6.2.2) shows the traffic explanatory variables relationship with 

the response variable of interest – log NO2 concentration. Each of these variables, from this 

initial look, can be said to have no linear relationship with log NO2 concentration.  
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Figure 2.6.2.1: Log NO2 concentrations vs the diffferent vehicle classes. The panels are 

labelled as their corresponding vehicle classes. This is recorded at Anderson Drive.  
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This section and the previous section have covered the exploratory analysis in mostly informal 

ways, in order to assess the relationship between NO2 and traffic covariates across a temporal 

domain. The meteorological variables which will potentially be included in the final model have 

also been explored in a temporal context, and collinearity between variables has been discussed. 

Multicollinearity has also been explored and it has shown that some meteorological explanatory 

variables are correlated with one another. The same has been done for traffic factors which will 

potentially be included in the final model. Multicollinearity for traffic variable has shown that 

traffic variables are highly correlated with one another.  The next section quantifies to a more 

accurate degree if and to what extent NO2 is related to the time, meteorological and traffic 

factors using more effective and appropriate regression assumptions.  

 

2.7 Exploring Trends and Seasonality using Linear Regression Modelling 

This section determines the relationship between log NO2 and the meteorological and traffic 

variables, using linear regression. This linear regression technique uses the daily means 

available for each of the covariates, from each of their respective sites.  

The first step is to fit a linear model, assuming that the observations are uncorrelated. Following 

this a check is carried out of the assumptions and this process is repeated if there is evidence of 

correlation. The linear regression models are fit using OLS and it is assumed that the errors are 

uncorrelated and have mean zero.  

As shown in the previous section, a sinusoidal pattern was present across the year with a possible 

weekly effect in log NO2. In order to model this, harmonic regression is used, which is a type 

of regression. A harmonic function included regression terms for the pattern over the year as 

well as the pattern over the week, known as day within year (DWY) and day within week 

(DWW) respectively. These variables, as well as a continuous year variable, are coupled with 

the meteorological and traffic explanatory variables and different combinations are fit in order 

to gain an idea of what variables are related to the NO2 and if this differed between sites. The 

models are described in Table 2.7.1. The model equations are then explained as follows: 
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𝑦𝑡 = 𝛽0 +  𝛽1(𝑦𝑒𝑎𝑟)𝑡 + 𝛽2 cos (
2𝜋(𝐷𝑊𝑌)𝑡

365
) +  𝛽3 sin (

2𝜋(𝐷𝑊𝑌)𝑡

365
)

+  𝛽4 cos (
2𝜋(𝐷𝑊𝑊)𝑡

7
) + 𝛽5 sin (

2𝜋(𝐷𝑊𝑊)𝑡

7
) + 𝛽6(𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑)𝑡

+  𝛽7(𝑊𝑖𝑛𝑑 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)𝑡 + 𝛽8(𝐶𝑙𝑜𝑢𝑑 𝐶𝑜𝑣𝑒𝑟)𝑡 + 𝛽9(𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙)𝑡

+ 𝛽10(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)𝑡 +  𝛽11(𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦)𝑡 + 𝛽12(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)𝑡

+ 𝛽13(𝐵𝑢𝑠𝑒𝑠 𝑎𝑛𝑑 𝐶𝑜𝑎𝑐ℎ𝑒𝑠)𝑡 +  𝛽14(𝐿𝑖𝑔ℎ𝑡 𝐺𝑜𝑜𝑑𝑠 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠)𝑡

+ 𝛽15(𝐴𝑙𝑙 𝐻𝐺𝑉𝑠)𝑡 +  𝛽16(𝐴𝑙𝑙 𝑀𝑜𝑡𝑜𝑟 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠)𝑡 +  𝜀𝑡 

Equation 2.7.1: All factors included in a non-specific site model 

 

where 𝑦 = log NO2 concentration, and 𝑡 = 1, … 3287 since there are 3287 days spanning the 

years 2006 – 2014.  

Statistically significant variables are selected to be in the model for each site, following a 

process. The process is of the following nature; the statistically insignificant variables are 

dropped with the most insignificant being dropped first and the least insignificant (while still 

being classified as statistically insignificant with a p-value < 0.0.5) being dropped from the 

model last. Different variables being dropped from different locations can be interpreted as them 

(the variables) not being statistically significant. They may not have an effect on NO2 

concentration, according to the models and tests carried out on the models. The fact there are 

different variables dropped from different locations means that there may some variance 

between sites for the same variables.  
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Model Site Model Description Variable(s) 

removed 

n 

Full Model 

at all sites 

Year, DWY, DWW, Wind Speed, Wind Direction, 

Cloud Cover, Rainfall, Temperature, Humidity, 

Pressure, Buses and Coaches, Light Goods Vehicles, All 

HGVs, All Motor Vehicles 

NA 3287 

Anderson 

Drive 

Year, Wind Speed, Wind Direction, Cloud Cover, 

Rainfall, Temperature, Humidity, Pressure, Buses and 

Coaches, Light Goods Vehicles, All HGVs, All Motor 

Vehicles 

DWY, DWW 3287 

Errol 

Place 

Year, DWY, DWW, Wind Speed, Wind Direction, Cloud 

Cover, Rainfall, Humidity, Pressure, Buses and Coaches, 

Light Goods Vehicles, All HGVs, All Motor Vehicles 

Temperature 3287 

King 

Street 

Year, DWY, Wind Speed, Wind Direction, Cloud Cover, 

Rainfall, Humidity, Pressure, Buses and Coaches, Light 

Goods Vehicles, All HGVs, All Motor Vehicles 

DWW, 

Temperature 

2191 

Wellington 

Road 

Year, DWY, DWW, Wind Speed, Cloud Cover, Rainfall, 

Temperature, Humidity, Pressure, Buses and Coaches, 

All HGVs, All Motor Vehicles 

Wind 

Direction, 

Light Goods 

Vehicles 

2557 

Union 

Street 

Year, DWY, DWW, Wind Speed, Wind Direction, 

Rainfall, Temperature, Humidity, Pressure, Buses and 

Coaches, Light Goods Vehicles, All HGVs, All Motor 

Vehicles 

Cloud Cover, 

Pressure 

3287 

 

Table 2.7.1: Description of the final linear models at each of the 5 sites 

 

2.8 Modelling Trend, Seasonality and Time Series Errors for Each Site 

The fitted model is summarised in this section. Parameter estimates, standard errors and p-values 

for each site are obtained. These are presented in table 2.8.1. 
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Union St Estimate Standard Error p-value 

Intercept -1.009e+02 1.479e+01 1.12e-11 

Year 5.205e-02 7.352e-03 1.83e-12 

DWW -5.125e-02 6.009e-03 <2e-16 

DWY 7.763e-02 9.342e-03 <2e-16 

Wind Speed -1.273e-01 2.956e-03 <2e-16 

Wind Direction  1.902e-03 9.668e-05 <2e-16 

Rainfall 2.294e-01 3.121e-02 2.59e-13 

Temperature -1.894e-02 1.914e-03 <2e-16 

Relative Humidity -3.410e-03 5.718e-04 2.78e-09 

Buses and Coaches -3.168e-03 4.005e-04 3.64e-15 

Light Goods 

Vehicles 

-4.818e-03 5.531e-04 <2e-16 

All HGVs  6.308e-03 1.638e-03 0.00012 

All Motor Vehicles 9.055e-04 7.301e-05 <2e-16 

Table 2.8.1: Estimates, Standard Errors and p-values for final model for Union St 

The table above can be summarised by taking individual parameter estimates and explaining 

their relationship with 𝑦, the log NO2 concentration. Taking year as the variable of interest, 

provided all other variables are held constant, log NO2 concentration will increase by 0.052𝜇gm-

3 for every year increase. Similarly, taking Wind Speed this time, provided all other variables 

are held constant, log NO2 concentration will decrease by 0.13𝜇gm-3 for every kilometre per 

hour increase in wind speed. One more interpretation from the model is taking the total number 

of all motor vehicles, provided every other variable is held constant, log NO2 concentration will 

increase by 0.0091𝜇gm-3 for every unit increase of all motor vehicles.  

Parameter estimates, standard errors and p-values are collected at the other AURN sites in 

Aberdeen.  

2.9 Model Diagnostics 

Here we can see the AIC values and R2 adjusted values for each of the AURN sites; 
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Site AIC value R2 Adjusted 

Errol Place 3998.662 0.3358 

Anderson Drive 3003.127 0.5083 

King St 698.653 0.5492 

Wellington Road 524.7395 0.6664 

Union St 789.086 0.5067 

Table 2.9.1: Summary of the AIC value and R2 Adjusted for each model corresponding to a 

specific site 

Looking at the R2 adjusted values for the models above, Wellington Road is the site for the 

model which has a response that has the most of its variation explained by the independent 

explanatory variables.  

The following plots are the standardised residuals vs fitted values. The plot of the residuals is 

reasonably symmetrical, is distributed around zero, and there is no obvious pattern. The normal 

Q-Q plot shows that the distribution of the data follows the normal distribution with some 

skewness at the lower tail. This is shown on the 2nd plot in the Figure 2.9.1 as the points mostly 

follow the normal Q-Q line, with deviations at either end.  

 

Figure 2.9.1: Log NO2 Residuals at Union St, residuals vs fitted and normal Q-Q plots 
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Given the evidence of non linearity in the relationships between log NO2 and covariates for the 

model built at Union St, as well as the low R2 adjusted values for all of the models, it would 

serve well to ensure independence of the model for Union St, as well as plot some 

autocorrelation plots to see if there is any correlation present.  

Figure 2.9.2 below shows the autocorrelation plot for the residuals from Union St, which 

indicates that there is some correlation remaining in the residuals at Union Street. The 

seasonality looks to be a weekly one as the ACF peaks approximately every 7 lags. 

There is almost a cyclical trend as at lag 7 there is another peak of an autocorrelation of 0.267, 

which then decreases from lag to lag until it increases again to an autocorrelation of 0.219 at lag 

14. As mentioned previously, this suggests that seasonality is present and NO2 concentrations 

are more similar from week to week than they are from day to day. This acf plot also leads to 

the conclusion that the data come from an underlying autoregressive model. The next step is to 

estimate the parameters for the autoregressive model which can be found from the “time-

shifted” series {𝑌𝑡+ℎ, 𝑡 = 0, ±1, … }, which is mentioned in section 2.3.1. Looking at the PACF 

of the residual series below (Figure 2.9.4) and Figure 2.9.3, the suggestion of using an AR(7) 

series may be appropriate.  

 

Figure 2.9.2: Autocorrelation plot for Log NO2 concentrations recorded at Union Street. 
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Figure 2.9.3: PACF of residuals from linear model at Union St  
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Plotting the residuals to ensure independence, we find that an AR(7) process is appropriate as 

there are no significant lags in either the ACF or PACF plot of the residual series and so the data 

does not need to be remodelled: 

 

Figure 2.9.4: Time Series, ACF, and PACF of residuals from Union St linear model 

 

2.10 General Additive Models 

In this section general additive models are looked at for each site with plots to follow. This is 

needed as linear models have been proven to not be a good fit to the data. This methodology 

arises from most effects in real life not being linear. Hence, continuing on from the methodology 

in section 2.1.6, the results of the general additive models are as follows (in table 2.10.1 below). 

There are different n’s here for the models at different sites than the n’s at the same sites for 

linear models since there are different variables removed for the different models. 
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Model Site Model Description Variable(s) 

removed 

N 

Full Model 

at all sites 

Year, DWY, DWW, Wind Speed, Wind Direction, 

Cloud Cover, Rainfall, Temperature, Humidity, 

Pressure, Buses and Coaches, Light Goods 

Vehicles, All HGVs, All Motor Vehicles 

NA 3287 

Anderson 

Drive 

Year, DWY, Wind Speed, Wind Direction, Cloud 

Cover, Rainfall, Temperature, Humidity, Pressure, 

Buses and Coaches, Light Goods Vehicles, All 

HGVs, All Motor Vehicles 

DWW, Buses 

and Coaches, 

Light Goods 

Vehicles, All 

HGVs 

2749 

Errol 

Place 

Year, DWY, DWW, Wind Speed, Wind Direction, 

Cloud Cover, Temperature, Humidity, Pressure, 

Buses and Coaches, All Motor Vehicles 

Rainfall, Light 

Goods 

Vehicles, All 

HGVs 

2726 

King 

Street 

Year, DWY, Wind Speed, Wind Direction, Cloud 

Cover, Humidity, Pressure, Buses and Coaches, 

Light Goods Vehicles, All HGVs, All Motor 

Vehicles 

DWW, 

Temperature, 

Rainfall 

2893 

Wellington 

Road 

Year, DWY, DWW, Wind Speed, Wind Direction, 

Cloud Cover, Rainfall, Temperature, Humidity, 

Pressure, Buses and Coaches, All HGVs, All Motor 

Vehicles 

Pressure, Buses 

and Coaches, 

All HGVs, 

Light Goods 

Vehicles 

2015 

Union 

Street 

Year, DWY, DWW, Wind Speed, Wind Direction, 

Cloud Cover, Rainfall, Temperature, Humidity, 

Pressure, Light Goods Vehicles, All HGVs, All 

Motor Vehicles 

Buses and 

Coaches 

2794 

Table 2.10.1: Description of the Generalised Additive models at each of the 5 sites 



62 

 

Site R2 Adjusted value GCV score AIC value 

Errol Place 0.631 0.14384 2451.385 

Anderson Drive 0.65 0.12586 2104.82 

King Street 0.622 0.064905 195.3558 

Wellington Road 0.744 0.059111 20.14053 

Union Street 0.649 0.056252 -111.2433 

Table 2.10.2: Summary of R2 Adjusted, GCV, and AIC for each model corresponding to a 

specific site 

The following plots show the smooth fit for the explanatory variables and a 95% confidence 

interval for each. These are shown for each variable for each final model created for each site. 

The dashes along the x axis are known as the “rug” and indicate where the sample observations 

occurred.  

An example of the models being used is that which is created for Errol Place. This is seen below; 

𝑦𝑡 = 𝛽0 + 𝑓1(𝑦𝑒𝑎𝑟)𝑡 + 𝑓2 cos (
2𝜋(𝐷𝑊𝑌)𝑡

365
) +  𝑓3 sin (

2𝜋(𝐷𝑊𝑌)𝑡

365
) + 𝑓4 cos (

2𝜋(𝐷𝑊𝑊)𝑡

7
)

+ 𝑓5 sin (
2𝜋(𝐷𝑊𝑊)𝑡

7
) + 𝑓6(𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑)𝑡 + 𝑓7(𝑊𝑖𝑛𝑑 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)𝑡

+  𝑓8(𝐶𝑙𝑜𝑢𝑑 𝐶𝑜𝑣𝑒𝑟)𝑡 + 𝑓9(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)𝑡 +  𝑓10(𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦)𝑡

+ 𝑓11(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)𝑡 + 𝑓12(𝐵𝑢𝑠𝑒𝑠 𝑎𝑛𝑑 𝐶𝑜𝑎𝑐ℎ𝑒𝑠)𝑡 +  𝑓13(𝐴𝑙𝑙 𝑀𝑜𝑡𝑜𝑟 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠)𝑡

+  𝜀𝑡 

where 𝑦 = log NO2 concentration, and 𝑡 = 1, … 2726 since there are 2726 days with available 

data spanning the years 2006 – 2014 for Errol Place. Each 𝑓𝑥 is some smoothing function for 

𝑥 = 1, … , 13.  

Similarly to the linear models, variables are removed in order of the most statistically 

insignificant variable being removed first, followed by the next most statistically insignificant 

variable and so on. This is done until only statistically significant variables are remaining in 

each model for each site. 
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Errol Place 

The following plots are for the generalised additive model which was created for Errol Place. 
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Figure 2.10.1: Plots of the fit of the explanatory variables in the GAM for Errol Place  

From the first plot in Figure 2.10.1 (the plot for year) it looks as if there is a decline of the NO2 

concentration between 2006 and the end of 2007, followed by an increase of NO2 concentration 

until around the start of 2009, followed by a steady decrease until 2015. The next plot (depicting 

the day within week variable) suggests that the NO2 concentration does not vary much from day 

to day within the week. 

The third plot in Figure 2.10.1 (showing the day within year variable) suggests that there is a 

lower concentration of NO2 in the middle of the year, between May and August while there is a 

higher concentration of NO2 at the start and end of the year, during the Winter months – 

November to February. The plot following this one (showing wind speed) suggests that as wind 

speed increases, the concentration of NO2 decreases, almost linearly.  

The fifth plot (showing wind direction) suggests that the concentration of NO2 is higher when 

the wind is blowing in a southernly direction compared to any other direction. Most observations 
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are recorded between East, South and West. The following plot (cloud cover) shows that as 

cloud cover increases, NO2 concentration decreases. This relationship is almost linear.  

The plot showing temperature suggests a quadratic relationship between temperature and NO2 

concentration, with the concentration being relatively low between temperatures of 0 and 10°C. 

This occurrence could be due to less observations being recorded out with these temperatures 

and NO2 concentrations are not, in fact higher at temperatures lower than 0°C. The plot also 

suggests that from 5°C and higher the NO2 concentration increases. The plot showing relative 

humidity suggests that as relative humidity changes, the NO2 concentration does not change 

much, when compared to other covariates in this model.  

The second last plot (showing pressure) suggests that the pressure at mean sea level does not 

have much of an effect on the NO2 concentration. This may be due to the small range of the 

pressure at mean sea level covariate. The final plot in Figure 2.10.1 shows that the NO2 

concentration increases as the number of buses and coaches increases. This shows that the NO2 

produced by the buses and coaches does increase the amount of NO2 recorded by the measuring 

instruments.  

Anderson Drive 

The following plots are for the generalised additive model created for Anderson Drive.  
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Figure 2.10.2: Plots of the fit of the explanatory variables in the model for Anderson Drive 

The first plot of Figure 2.10.2 (showing year) shows that the NO2 concentration does not change 

from year to year for the years 2006 – 2012 approximately, whereas after 2012 there is a decrease 

until 2014, and an increase of the NO2 concentration after 2014. The plot showing day within 

year suggests that the NO2 concentration does not change much depending on the day of the 

year at Anderson Drive, apart from maybe a slight decrease of NO2 concentration in the Autumn 

months.  

The third plot of figure 2.10.2 showing wind speed suggests that as wind speed increases, the 

concentration of NO2 decreases. This could be due to the NO2 being dispersed into the wider 

troposphere.  Similar to the plot for wind direction at Errol Place, the next plot suggests the 

concentration of NO2 is lower when there is a southern wind when compared to when there is a 

northern wind for the NO2 concentration recorded at Anderson drive. This could be due to the 

weather variables being recorded at the one station of Dyce, instead of multiple recording sites.  

The plot showing cloud cover at Anderson Drive suggests that although there is not much of a 

difference in NO2 concentration at different cloud cover levels, there is a small increase in NO2 

as cloud cover increases. The next plot (depicting temperature) suggests the temperature at 

Anderson Drive has a negative effect on the NO2 concentration i.e. as temperature increases, the 

NO2 concentration decreases. This is up until approximately 15°C, where higher than 15°C the 

NO2 concentration increases.  

Showing relative humidity, the next plot suggests that NO2 concentration increases as relative 

humidity increases. The relationship could be described as linear. The following plot (showing 
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pressure at mean sea level) shows that there does not seem to be much of a change in NO2 

concentration as pressure at mean sea level changes, although the same plot does suggest that 

NO2 concentration increases up until a point before levelling off as the pressure increases.  

The final plot of figure 2.10.2 shows the total number of all motor vehicles, and it tends to 

suggest that as the total number of all motor vehicles increases so too does the NO2 

concentration. This could almost be described as a linear relationship given this final plot.  

 

King Street 

The next figure shows the plots for the generalized additive model created for King Street. 

The first plot in Figure 2.10.3 shows that the NO2 concentration increases from year to year. 

This is similar to the recordings taken at Errol Place. Also similar to Errol Place and different 

to Anderson Drive, as suggested by the next plot, is that the NO2 concentration is lower in 

Summer months compared to Winter months.  
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Figure 2.10.3: Plots of the fit of the explanatory variables in the model for King St 

Similar to both Anderson Drive and Errol Place, the plot showing wind speed indicates that NO2 

concentration deceases at King St as the wind speed increases. The plot showing wind direction 

shows that the wind direction has a different effect on the NO2 concentration when compared to 

the wind direction on NO2 concentration at Anderson Drive or Errol Place – between North and 
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South (travelling around the compass in a North, Northeast, East, Southeast, South direction) 

the NO2 concentration stays approximately at the same concentration. Then between South and 

North (travelling around the compass through West) the NO2 concentration is a little higher, 

although still stays around the same concentration between South and North.  

The plot showing temperature suggests as temperature increases, the NO2 concentration stays 

at approximately the same concentration for King St. The plot which shows pressure at mean 

sea level for King St suggests that as pressure at mean sea level increases, there is very little 

change in the NO2 concentration at King St.  

Counter-intuitively the plot showing buses and coaches suggests that as the number of buses 

and coaches increases, the NO2 concentration decreases. This is different from the buses and 

coaches plot at Errol Place, which suggest the converse – as the number of buses and coaches 

increases, the NO2 concentration increases. Similar to the buses and coaches plot, the showing 

the number of HGVs suggests that as the number of HGVs increases, the concentration of NO2 

decreases. This is also counter-intuitive like the buses and coaches plot and is different to those 

plots for vehicle classes and NO2 concentration at Anderson drive or Errol Place.  

Union St 

The next figure of plots shows the meteorological and traffic variables and their relationship 

with log NO2 at Union St.  
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Figure 2.10.4: Plots of the fit of the explanatory variables in the model for Union St 

At Wellington Road, from looking at the first plot in Figure 2.10.4, it can be seen that the NO2 

concentration is approximately the same between 2010 and 2013. Between 2009 and 2010 the 

NO2 concentration takes on a quadratic shape, with similar behaviour between 2013 and 2015. 

According to the second plot in the same figure the NO2 concentration does not change 
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according to the day of the week for Wellington Road. This is similar to the day within week 

variable for Errol Place – not much change from day to day in the NO2 concentration.  

The day within year variable plot of Figure 2.10.4 shows that similar to Errol Place and King 

St, there is a lower concentration of NO2 in the summer months while there is a higher 

concentration in the winter months. The next plot in the figure (wind speed) shows wind speed 

increasing has the effect of a lower NO2 concentration at Wellington Road. This is consistent 

with the wind speeds effect on NO2 concentration at all other sites.  

The wind direction from East around to North doesn’t seem to affect a change in the NO2 

concentration much according to the above plot. In saying that there is a decrease in NO2 

concentration as the wind direction goes from North to East. This is seen in the plot depicting 

wind direction. The plot in Figure 2.10.4 showing rainfall suggests that as rainfall increases so 

too does NO2 concentration at Wellington road. This relationship can be described as almost 

linear. It should be noted that most observations of rainfall are recorded between 0.0mm and 

0.5mm, which makes rainfall relatively difficult to model.  

At Wellington Road, the plot showing all motor vehicles suggests that as the number of all motor 

vehicles increases, so too does the NO2 concentration, which is in conjunction with other vehicle 

plots from Errol Place.  

Wellington Road 
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Figure 2.10.5: Plots of the fit of the explanatory variables in the model for Union St 

At Union St the NO2 concentration rises steadily from 2006 to 2011 and after 2011 it decreases 

up until 2015. This can be seen above in the first plot of Figure 2.10.5. Similar to other sites, the 
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NO2 concentration does not change much from day to day at Union St as can be seen from the 

second plot of Figure 2.10.5.   

Similar to other sites for the day within year covariate, the NO2 concentration is lower in summer 

months compared to winter months for Union St. This is seen in the plot with the day within 

year covariate. Consistent with all other sites, the NO2 concentration at Union St decreases 

almost linearly as wind speed increases as can be seen with the plot showing wind speed. 

The plot in Figure 2.10.5 which shows wind direction suggests that from Northeast to West, the 

NO2 concentration increases. The next plot (showing relative humidity) suggests that the NO2 

concentration changes only slightly as relative humidity increases. This is similar to other sites.  

As with Anderson Drive, Errol Place and King St, NO2 concentration changes only slightly as 

the Pressure at mean sea level changes. This can be seen in the plot showing Pressure for Union 

Street. From the plot showing the number of HGVs, it can be said that NO2 concentration 

decreases as the number of HGVs increases before levelling off. This is different to other sites. 

As the number of all motor vehicles increases, the NO2 concentration also increases for Union 

St. This is seen in the final plot of Figure 2.10.5 and this is similar to other sites throughout 

Aberdeen.  

All of these models have been fitted using software R Studio, and using the R package “mgcv”, 

and hence the R command “gam”. Using the “mgcv” package means the smoothing parameters 

are estimated using the GCV (Generalised Cross Validation) criterion;  

𝑛
𝐷

(𝑛 − 𝐷𝑜𝐹)2
 

Or an Unbiased Risk Estimator (UBRE) criterion; 

𝐷

𝑛
+ 2 𝑠

𝐷𝑜𝐹

𝑛
− 𝑠 

where 𝐷 is variance, 𝑛 is the number of data, 𝑠 is the scale parameter and 𝐷𝑜𝐹 is the effective 

degrees of freedom of the model. There are other ways of estimating the smoothing parameter 

– namely using maximum likelihood or restricted maximum likelihood [73]. These methods are 

discussed in more detail in the next chapter. 
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It is also of interest to see how a GA model with an autoregressive error process implemented 

may have an effect on parameter estimates. This checks the assumptions of the gams, the 

assumptions being that the data and also the errors should be independent. Plots of the 

autocorrelation function of the GAM with an AR (1) process can be seen below. This was done 

for Union St and the methodology is reflective of the methodology for GAMs at other sites.  

 

 

Figure 2.10.6: The AR(1) process for the GAM built at Union St and standardizd residual ACF 



76 

 

2.11 Conclusions for time series modelling using covariates  

Carrying out linear and generalised additive modelling at all sites leads to the conclusion that a 

generalised additive model is more appropriate for all of the 5 site locations. This can be seen 

by comparing the R2 adjusted values and the AIC values from tables 2.9.1 and 2.10.2. It is also 

conclusive from looking at summaries of the different models that the more accurate models 

contain explanatory variables related to time, meteorological factors, and traffic factors (again 

comparing tables 2.9.1 and 2.10.2). It is of interest that some of the models differ from site to 

site, that different explanatory variables are statistically significant at some sites, and are 

statistically insignificant at other sites. For example, the DWW variable is significant at Errol 

Place, Wellington Road and Union Street and insignificant at Anderson Drive and King Street. 

Buses and Coaches are significant at 2 out of the 5 sites, namely Errol Place and King Street, 

whilst Light Goods Vehicles and All HGVs are significant at King Street and Union Street, 

whereas they are not significant at all other sites. Rainfall, Temperature and Pressure also come 

under this category of being significant at some sites whilst not significant at others.  

Comparing the R2 Adjusted values of the generalised additive models with the corresponding 

values from the linear models show that the GAMs are better models in the sense that more 

variance is explained by the GAMs. It is also a conclusion that the GAMs are more appropriate 

than the linear models at each site due to the nature of the data – time series data of this nature 

cannot be assumed to consist of independent observations, which is one of the assumptions 

needed for the linear models to hold true.  

From comparing the covariate day within year at each site with one another, there seems to be 

a difference between them – different shapes. These can be seen in Figures 2.10.1 – 2.10.5, these 

Figures also display the smooth function of each covariate included in the corresponding model 

to each site. These are accompanied by a rug plot on the same plot as the smooth function and 

95% confidence intervals. These confidence intervals can be seen to be spanning outwards at 

either end of the curve for most covariates. This is due to a lack of data, before or after the 

respective start or end of the curve. Some of the plots show that the terms are almost linear, and 

that these should be included in the final model, only not as a smooth function term, but as a 

regular covariate i.e. a covariate which has a linear relationship with the response. Some of the 

variables in the model are treated with cyclic smoothing, meaning that the start and end of the 
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curves would meet if they were to be put end to end. This can be seen in any model which has 

day within year or day within week as a covariate.  

It has been proven from this work that some variables which would be expected to have an 

adverse effect on NO2 concentrations, namely different vehicle classes, do not have as much of 

an expected effect in comparison to weather factors, which are uncontrollable. Take for 

example, the models built for Wellington Road and Anderson Drive – these particular models 

only consist of the one vehicle class “All motor vehicles”, whereas one would expect, 

intuitively, that other vehicle classes would help explain the concentration of NO2. In 

comparison these models consist of a number of meteorological variables which explain the 

NO2 concentrations (in conjunction with the other explanatory variables) reasonably well – this 

according to AIC and R2 adjusted values. This is vital when considering a model, since although 

we can control for the number of vehicles travelling down a particular road on any given day, 

we cannot control for the speed the wind is travelling or how warm that particular day is. This 

is why other avenues must be explored to see what other factors are affecting the NO2 

concentrations in Aberdeen, namely spatial factors. The vehicle variables themselves are in fact 

model as discussed in a previous section. This means that the data may not be truly reflective of 

the relationship between vehicle classes and NO2 concentration. Further work which can be 

done is research into methods of modelling data so that the traffic data can be modelled in an 

improved way, or perhaps even include uncertainty and see how the models will change. 

What is next in the model building stage is to move in to the spatial dimension and model the 

data in this way – sole temporal analysis has been completed, and the next logical step is to see 

how sites depend on one another in relation to space, and in relation to their location.  
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Chapter 3: Spatial Modelling of Air Quality in Aberdeen 

3.1 Introduction 

The previous Chapter focuses on time series analysis of NO2 at 5 sites across Aberdeen. It was 

shown that the NO2 concentrations were not uniform across space, and in fact, varied from site 

to site. These monitoring sites are not located uniformly through space, but fall at different 

locations across the city. This Chapter, focussing on the spatial aspect of the data, takes into 

account the 5 sites mentioned previously, as well as 51 diffusion tube monitoring sites which 

are also located throughout space within Aberdeen City. This is the same diffusion tube data 

that are described in Chapter 1. The locations of the monitoring sites are included in this Chapter 

in a later section (section 3.3).  

The preliminary investigation of the spatial aspects of the data is relevant to checking whether 

assumptions made by a potential model are relatively satisfied. Also of interest is how the NO2 

concentrations change over space – this is done using Eastings and Northings i.e. coordinates. 

Later in the Chapter, in addition to spatial locations, variables that are used to model the NO2 

concentrations at each location are included in the data set. This included traffic and 

meteorological variables, which are the same as the traffic and meteorological variables 

described in previous Chapters. 

Chapter 3 starts with highlighting the main methods that are used to analyse the data in a spatial 

context. Potential spatial patterns of the annual mean NO2 values are explored initially, and then 

a more formal investigation is undergone using a full spatial model. This is discussed in further 

detail later. In conclusion, the Chapter finishes with some final thoughts, discussion and further 

work on the spatial trends of NO2 across Aberdeen City. The annual mean NO2 is used as the 

available data are limited to an annual concentration for all of the sites investigated in this 

Chapter – although there are daily and hourly values of NO2 available for the AURN sites, the 

data from the LAQM diffusion tube sites are at an annual concentration (and a monthly 

concentration – for the purposes of this paper, the annual mean is used, which also falls in line 

with the regulations which are phrased in terms of an annual mean). To be consistent, a log 

transformation of the NO2 values has been taken.  

The aims of this Chapter are to (spatially) map the NO2, interpolate and predict future values of 

NO2 concentrations; generate a map of the NO2 concentrations across Aberdeen city while 
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locating hotspots and evidence of spatial patterns; and finally to investigate change of the NO2 

concentrations through space.  

3.2 Geostatistical Modelling Methods 

3.2.1 Spatial Process 

Since NO2 is recorded at a specific geographical location, and the fact NO2 is everywhere, the 

NO2 concentration can be described by a geostatistical process. The prefix “geo” appears to 

refer to statistics pertaining to the earth, and this was indeed its original meaning, although now 

geostatistics has taken on a much more universal role, one which is concerned with statistical 

theory and applications for processes with continuous spatial index [35].  

Defining a spatial process helps explain geostatistical modelling. Take a stochastic process, 𝑋 

the spatial data can be thought of as being generated from this process [36] but instead of a time 

index, a spatial index is being used, which indicates locations.  

If 𝑆 is taken as the stochastic process, then 𝑆(𝑥) describes the concentration of NO2 as a function 

of location, 𝑥, of said stochastic process. Taking a Gaussian model, and keeping it as simple as 

possible while still meeting the requirements of 𝑆(𝑥), the model can be seen below in equation 

3.2.1.1 [36]. In its simplest form, a set of geostatistical data is denoted by (𝑥𝑖, 𝑦𝑖) ∶ 𝑖 = 1, … , 𝑛 

where 𝑥𝑖 are spatial locations and 𝑦𝑖 is the measured value associated with the location 𝑥𝑖. The 

assumptions underlying this model are as follows; 

• {𝑆(𝑥) ∶ 𝑥 ∈  ℝ2} is a Gaussian process with mean 𝜇, variance 𝜎2 = 𝑉𝑎𝑟{𝑆(𝑥)} and 

correlation function 𝜌(𝑢) = 𝐶𝑜𝑟𝑟{𝑆(𝑥), 𝑆(𝑥′)}, where 𝑢 =  ‖𝑥 − 𝑥′‖ and ‖⋅‖ denotes 

distance; 

• Conditional on {𝑆(𝑥) ∶ 𝑥 ∈  ℝ2}, the 𝑦𝑖 are realisations of mutually independent random 

variables 𝑌𝑖, normally distributed with conditional means 𝐸[𝑌𝑖|𝑆(⋅)] = 𝑆(𝑥𝑖) and 

conditional variances 𝜏2. 

Equivalently, the model can be defined as  

𝑌𝑖 = 𝑆(𝑥𝑖) +  𝑍𝑖 ∶ 𝑖 = 1, … , 𝑛       (3.2.1.1) 

where {𝑆(𝑥) ∶ 𝑥 ∈  ℝ2} is defined by the first assumption above, and the 𝑍𝑖 are mutually 

independent 𝑁(0, 𝜏2) random variables.  
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The correlation function 𝜌(𝑢) must be positive definite for a legitimate model to be defined 

[35]. This condition imposes non-obvious constraints to ensure that, for any integer 𝑚, of 

locations 𝑥𝑖, and real constants 𝑎𝑖, the linear combination ∑ 𝑎𝑖𝑆(𝑥𝑖)
𝑚
𝑖=1  will have non-negative 

variance. The focus is primarily on a flexible, two-parameter class of correlation functions 

which, due to Matèrn [37], takes the form; 

𝜌(𝑢;  𝜙, 𝜅) = {2𝜅−1Γ(𝜅)}−1 (
𝑢

𝜙
)

𝜅

𝐾𝜅(
𝑢

𝜙
)      (3.2.1.2) 

Where 𝐾𝜅(⋅) denotes the modified Bessel function of the second kind, of order 𝜅. The 

parameters 𝜙 > 0 determines the rate at which the correlation decays to zero with increasing 𝑢. 

The parameter 𝜅 > 0 is called the order of the Matèrn model, and determines the 

differentiability of the stochastic process 𝑆(𝑥) [35].  

The notation used here for 𝜌(𝑢) presumes that 𝑢 ≥ 0. However, the correlation function of any 

stationary process must be symmetric in 𝑢, hence  𝜌(−𝑢) = 𝜌(𝑢). 

The stochastic variation in a physical quantity is not always well described by a Gaussian 

distribution. One of the simplest ways to extend the Gaussian model is to assume that the model 

holds after applying a transformation to the original data. For positive-valued response variable, 

a useful class of transformation is that of the Box-Cox family [38]. Although for the nature of 

the NO2 data, a log transformation will suffice.  

3.2.2 Stationary and Isotropy 

In spatial analysis, by saying stationary here, it should be understood as the following: the 

distribution of the random process has certain properties which are the same everywhere, 

including the covariance, and it has no spatial trend or spatial periodicity [39]. Since 𝑆 is a 

random process, it can be said to be strictly stationary if the joint distribution of 𝑆(𝑥𝑖) is the 

same as 𝑆(𝑥𝑖 + ℎ) for 𝑥1, … , 𝑥𝑘 i.e. every 𝑆(𝑥) in the spatial domain in question is identically 

distributed and the locations do not affect the distribution, only the distance between said 

locations.  When this is the case, and only distance is of importance then the process is known 

as isotropic.  

The covariance function of the 𝑆(𝑥) (assuming stationary and isotropic) can be described as the 

following; 
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𝐶(ℎ) = 𝑐𝑜𝑣 (𝑌(𝑠), 𝑌(𝑠 + ℎ))        

  

= 𝐸((𝑌(𝑠) −  𝜇)(𝑌(𝑠 + ℎ) −  𝜇))       (3.2.2.1) 

Naturally, it follows that if 𝑌(𝑠) = 𝑌(𝑠 + ℎ)then the above equation defines the variance 

(which is assumed to be finite and the same everywhere). The above covariance function stands 

true for the two positions 𝑠 and 𝑠 + ℎ, where ℎ is the  distance between the two positions [40]. 

The process is described as weakly stationary if the above equation has 𝜇 as a constant which 

does not depend on 𝑠 and the covariance function is a finite constant which depends on ℎ but 

not on 𝑠. This covariance function is a function of the lag [40].  

 

The correlation function of a stationary process is defined as: 

𝜌(ℎ) =
𝐶(ℎ)

√𝐶(0)𝐶(0)
=

𝐶(ℎ)

𝐶(0)
        (3.2.2.2) 

3.2.3 Variograms 

Covariance functions are a usual statistical tool for quantifying and modelling the correlation 

between observations. In geostatistics, however, a slight variant called variograms are also 

commonly used [40]. The use of variograms is in fact more common than the use of covariance 

functions, in the case that one is trying to identify whether spatial correlation exists in the data, 

at least.  

The semi – variogram of a geostatistical process {𝑍(𝑠): 𝑠 ∈ 𝐷} is a function denoted by 𝛾𝑍(𝑠, 𝑡), 

and measures the variance of the difference in the process at two spatial locations 𝑠 and 𝑡. It is 

defined as  

𝛾𝑍(𝑠, 𝑡) =
1

2
𝑉𝑎𝑟[𝑍(𝑠) − 𝑍(𝑡)]       (3.2.3.1) 

Traditionally 2𝛾𝑍(𝑠, 𝑡) is called the variogram and 𝛾𝑍(𝑠, 𝑡) is called the semi – variogram.  
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It should be noted that when the relative variance of the difference 𝑍(𝑠) − 𝑍(𝑡) is small then 

𝑍(𝑠) and 𝑍(𝑡) are similar in the sense that they are spatially correlated [41]. When the difference 

between the two is large, they are more likely to be independent or less similar.  

And when 𝑍 is stationary as described above:  

𝐶(ℎ) =  lim
‖𝑢‖→ ∞

𝛾(𝑢) −  𝛾(ℎ)        (3.2.3.2) 

The variogram and the semi-variogram share the following descriptive parameters: the nugget 

(𝜙2), is the difference between the origin line and the limiting value of the variogram as 𝑡 → 0; 

the sill, is the limiting value of the variogram as 𝑡 → 0; the partial sill (𝜎2), which is equal to 

the sill minus the nugget; and the range (𝜆) which is the distance at which the variogram reaches 

the sill [38]. 

This is seen more clearly in the image of a generic variogram below; 

 

Figure 3.2.3.1: Generic Variogram [42] 

An empirical variogram is a method which can be used to estimate a theoretical variogram. A 

binned empirical variogram can also be used. This is another method which is used to estimate 

a theoretical variogram, and is named “binned” as the process divides the distances into a 

number of intervals, so that we have; 
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𝐼𝑙 = (𝑡𝑙−1, 𝑡𝑙], 𝑙 = 1, … , 𝐿        (3.2.3.3) 

Letting 𝑡𝑙
𝑚 =

𝑡𝑙−1+𝑡𝑙

2
 denote the midpoint of the pairs of distances for each of the L intervals, 

then the binned empirical variogram is given by; 

𝛾(𝑡𝑙
𝑚) =

1

2𝑗
𝑁(𝑡𝑙) ∑ [𝑦(𝑠𝑖) − 𝑦(𝑠𝑗)]

2

(𝑠𝑖,𝑠𝑗)∈𝑁(𝑡𝑙)        (3.2.3.4) 

where 𝑁(𝑡𝑙) = {(𝑠𝑖, 𝑠𝑗): ‖𝑠𝑖 − 𝑠𝑗‖ ∈ 𝐼𝑙}.  

When interpreting binned empirical variograms, caution should be used as the measures of 

uncertainty are relatively difficult to calculate [43]. It does occur that there are not enough pairs 

in the bins, particularly with the observations at a greater distance from one another, and 

consequently one should proceed with caution during inference.  

Cressie [40] argues that by construction, the empirical variogram is robust to the presence of 

trends (since only the differences are used), and that the estimator is unbiased. Although, 

according to Banerjee et al. basing an estimator on differences is not a direct measure of 

dependence. [36] 

Choosing a variogram model is of importance as not all models are useful for a variogram. It is 

a particularly special type of function as it must be negative semi-definite and for 2nd order 

stationary processes it must reach upper bounds. It must also hold true that such a function must 

monotonically increase with an increasing lag, while having a constant maximum or sill, as well 

as a positive intercept (i.e. nugget).  The most common parametric model used is the exponential 

variogram (𝛾(𝑡)) and covariance function (𝐶(𝑡)). These are expressed below, taking 𝑡 =

 ‖𝑠𝑖 − 𝑠𝑗‖; 

𝐶(𝑡) =  {
𝜎2 exp (−

𝑡

2
)    𝑖𝑓 𝑡 ≥ 0;

𝜙2 + 𝜎2              𝑖𝑓 𝑡 =  0,
      (3.2.3.5) 

and 

𝛾(𝑡) =  {
𝜙2 + 𝜎2 (1 − exp (−

𝑡

𝜆
))   𝑖𝑓 𝑡 ≥ 0;

0                                              𝑖𝑓 𝑡 = 0,
     (3.2.3.6) 
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This is only one example of a parametric model which can be used for covariances and 

variograms, which give an initial idea of how spatial distance and relationships between the 

parameters change as a function of distance. There are different types of variogram models, 

different from the exponential one. This is discussed solely because it is the most common 

model. Other models include the spherical variogram model and the Gaussian variogram model.  

3.2.4 Assessing Isotropy 

To use a variogram, isotropy (defined as describing a variogram which depends only on distance 

and not on direction) must be assumed; although this is not always applicable as it may not be 

reasonable to assume isotropy. A directional variogram can be used to test this assumption as 

this combines multiple differently angled variograms into a single, unified variogram. Isotropy 

can then be assumed if each of these variograms follow the same trend [38].  

There are numerous methods in the available literature which assess whether or not isotropy is 

a reasonable assumption for geostatistical data. The simplest method consists of, but is not 

limited to, restricting the pairs that appear in the empirical variogram so that only dependence 

in certain directions are measured [41]. These displays are called directional variograms. The 

directional variogram will look the same irrespective of the direction analysed, if the process is 

isotropic.  

3.2.5 Monte Carlo tests 

There exists a simulation-based method for the assessment of evidence for support of different 

hypothesis, known as Monte Carlo tests [44]. The comparison of a test statistic with a number 

of statistics computed from the null hypothesis is what is essentially involved in this method.  

One way of assessing spatial correlation is to plot the semi-variogram, and overlay on top the 

upper and lower limits for the set of semi-variograms that would have occurred under 

independence. These limits are computed using Monte Carlo tests and are also known as Monte 

Carlo envelopes. If the estimated semi-variogram from the data lies completely inside the 

envelope, then the data contain no substantial correlation. This can be seen in the example below 

– since no points lie out with the upper or lower limits, the data can be said to have no substantial 

correlation. Figure 3.2.5.1: 
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Figure 3.2.5.1: Example of data lying within Monte Carlo envelopes, or upper and lower 

limits. A semivariogram of this nature indicates that the data have no substantial correlation 

[45]. 

The Monte Carlo envelopes (or just envelops) are computed using the geoR package in R and 

the “variog.mc.env” command in R [74]. 

3.2.6 Multiple Covariates and regression models for the mean 

Suppose there are p spatially varying covariates, such that 

{𝑥𝑗(𝑠): 𝑠  ∈ 𝐷}, 𝑗 = 1, … , 𝑝.        (3.2.6.1) 

These covariates exist due to any number of reasons, some of these reasons are listed below; 

• Other phenomena measured in space, such as traffic variables 

• Functions of space, for example latitude and longitude (or Eastings and Northings) 

which are measured at a spatial location 𝑠, and are equal to 𝑥2(𝑠),  𝑥3(𝑠) respectively. 

• Non-linear functions of the spatial co-ordinates mentioned above. 

 

The spatially varying mean can then be modelled by the regression: 

𝜇𝑧(𝑠) =  ∑ 𝛽𝑗𝑥𝑗(𝑠)𝑝
𝑗=1         (3.2.6.2) 
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For each 𝑠 ∈ 𝐷 where 𝑥1(𝑠) = 1. The parameters 𝛽 = (𝛽1, … , 𝛽𝑝) can be estimated using least 

squares. 

This estimation process should be seen as having limitations. The limitation highlighted here is 

that the data are assumed to be independent, which is unrealistic since a spatial correlation is 

expected. Spatial correlation is expected as observations made close to one another are more 

likely to be correlated with one another than observations made further away from one another.  

3.2.7 Estimating Model Parameters – MLE and REML 

Writing a regression model: 

𝑦(𝑠) =  𝑥𝑇(𝑠)𝛽 +  𝜀(𝑠)       (3.2.7.1) 

and letting (𝑠): 𝑠 ∈ 𝐷 be a Gaussian geostatistical process with mean 𝜇(𝑠) =  𝑥𝑇(𝑠)𝛽, 

covariance 𝐶𝜃(𝑠, 𝑡) and 𝜀(𝑠) ~ 𝑁(0, 𝜎2). The likelihood of the data 𝑦 = (𝑦1, … , 𝑦𝑛)𝑇 at 

locations 𝑥𝑖(𝑖 = 1, … , 𝑛) is explained by the following equation, given the mean parameters 𝛽, 

covariance parameters 𝜃 and where 𝑛 equals the sample size and ∑𝜃 is the covariance matrix of 

𝑦(𝑠)with (𝑖, 𝑗) element 𝐶𝜃(𝑠𝑖, 𝑠𝑗): 

𝐿 (𝛽, 𝜃) = (2𝜋)(−
𝑛

2
)(𝑑𝑒𝑡∑𝜃)−1/2 exp (−

1

2
(𝑦 − 𝑋𝛽)

𝑇

𝛴𝜃
−1 (𝑦 − 𝑋𝛽))   (3.2.7.2) 

The log-likelihood is then calculated by taking the log of the expression 𝐿 (𝛽, 𝜃):  

𝑙 (𝛽, 𝜃) = −
1

2
log(2𝜋) −

1

2
(𝑑𝑒𝑡∑𝜃) −

1

2
(𝑦 − 𝑋𝛽)

𝑇

𝛴𝜃
−1 (𝑦 − 𝑋𝛽)   (3.2.7.3) 

Minimising 𝑙 (𝛽, 𝜃) and calculating the derivative with respect to 𝛽 leads to obtaining the GLS 

or Generalised Least Squares. Clearly, the MLE of 𝛽 is dependent on the spatial parameters 𝜃, 

and can be used in the equation for log-likelihood (seen above) and maximised with respect to 

𝜃. It should be noted that this method may introduce bias in 𝜃, due to the estimate of 𝛽. An 

alternative approach to this is to use the restricted maximum likelihood (REML), which 

minimises the bias when estimating the parameter 𝜃 [35].  
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Using Restricted Maximum Likelihood (REML) as an approach is using a form of maximum 

likelihood estimation, as it also requires that 𝑦 follows a multivariate normal distribution. This 

method is used to estimate the nugget, sill and the range which are denoted by the spatial model 

parameters in 𝜃 = (𝜙2, 𝜎2, 𝜆)𝑇. One difference between using REML and MLE is that REML 

allows the user to ensure less biased estimates of 𝜃, as it calculates the likelihood function from 

a transformed dataset, ensuring that the nuisance parameters have no effect on the estimates. 

When estimating model parameters, one model of interest is the Gaussian random fields model. 

The Gaussian random fields model is defined below; 

𝑌(𝑠) =  𝜇(𝑠) + 𝑍(𝑠) +  𝜀        (3.2.7.4) 

Using this model 𝐸[𝑌] = 𝑋𝛽, the data can be transformed linearly to 𝑌∗ = 𝐴𝑌 = 𝑋(𝑋𝑇𝑋)𝑇𝑋𝑇𝑌, 

where 𝑌∗ does not depend on 𝛽 [39]. Following the transformation, the model remains 

multivariate Gaussian. 𝑌∗  not depending on 𝛽 means that the dimensions of 𝑦 is reduced from 

𝑛 to 𝑛 − 𝑝, with 𝑝 denoting the rank of 𝑋. Maximising the likelihood for 𝜃 based on 𝑌∗, the 

REML estimates for 𝜃 are computed. 𝜃 is, as mentioned above (3.2.7), the covariance 

parameters.  

3.2.8 Spatial prediction (Kriging) 

The use of the word “Kriging” in spatial statistics has come to be synonymous with “optimal 

prediction” in space, using observations taken at known nearby locations. Linear and non linear 

observations are used for predicting, using kriging as a “method of interpolation for a random 

spatial process” [65]. Kriging was originally a linear predictor whereas in more recent 

developments in geostatistics methods of optimal nonlinear spatial prediction have become part 

of the kriging [66]. Practically implementing Kriging methods come in the form of estimating 

the variogram, which is discussed previously (section 3.2.3). From [66], Ordinary Kriging can 

be described as the following;  

“Prediction based on (ordinary) kriging is equivalent to spatial blup. The predictor minimizes 

the mean-squared prediction error over all linear unbiased predictors, for a given covariance 

function 𝐶( . , . ). “  

The spatial blup here is an abbreviation for the best linear unbiased predictor and the covariance 

function is of the kind discussed in section 3.2.2. Ordinary Kriging in a little more detail is seen 
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in [66] as the following. These sentences and equations are mathematical explanations of the 

spatial prediction which takes place later in the chapter. They explain unbiased predictors, and 

how to find the best predictor. 

By restricting the class of linear predictors to the so-called homogeneous linear predictors; 

∑ 𝜆𝑖
𝑛
𝑖=1 𝑆(𝑥𝑖)         (3.2.8.1) 

Further restriction of uniform unbiasedness yields the condition; 

∑ 𝜆𝑖
𝑛
𝑖=1 = 1         (3.2.8.2) 

Thus, one could look for the best linear unbiased predictor (blup), obtained by minimizing; 

𝐸(𝑆(𝑥0) − ∑ λ𝑖𝑆(𝑥𝑖)
𝑛
𝑖=1 )2       (3.2.8.3) 

Over 𝜆1, … , 𝜆𝑛, subject to equation 3.2.8.2.  

By the method of Lagrange multipliers, the optimal values are  

𝜆′ = (𝑐 + (1 − 𝑐′𝐶−11)(1′𝐶−11)−11)′𝐶−1     (3.2.8.4) 

where 𝑐 and 𝐶 are given as 𝑐 ≡ (𝐶(𝑥0, 𝑥1), … , 𝐶(𝑥0, 𝑥𝑛))′ and 𝐶 ≡ (𝐶(𝑥𝑖, 𝑥𝑗)) respectively. 

Thus the optimal linear predictor of 𝑆(𝑥0) is; 

𝑆̂(𝑥0) =  𝑐′𝐶−1𝑆 + (1 − 𝑐′𝐶−11)(1′𝐶−11)−1(1′𝐶−1𝑆)    (3.2.8.5) 

The ordinary kriging predictor. The mean squared prediction error is; 

𝐸(𝑆(𝑥0) − 𝑆̂(𝑥0))2 = 𝐶(𝑥0, 𝑥0) − 𝑐′𝐶−1𝑐 + (1 − 𝑐′𝐶−11)2(1′𝐶−11)−1  (3.2.8.6) 

3.3 Spatial Trend Analysis of Annual Mean NO2 Data 

The spatial distribution of NO2 data collected at AURN and diffusion tube locations throughout 

Aberdeen in 2014 is explored in this section. A preliminary idea of the minimum and maximum 

values as well as the spatial trend of NO2 across the city is given in the table 3.3.1. This table 

gives a summary of the log transformed values of NO2 at 51 locations in Aberdeen. 
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Min 1st 

Quantile 

Median Mean 3rd 

Quantile 

Max Std. Dev 

2.351 3.292 3.503 3.503 3.820 4.059 0.392 

 

Table 3.3.1: Summary Statistics of log NO2 values throughout Aberdeen 

The following histogram shows the distribution of the distances between the locations where 

NO2 was recorded.  

 

Figure 3.3.1: Histogram showing the frequency of the distances at which NO2 concentrations 

are recorded 

 

In this Chapter, the data which are looked at are from 2014, and the data are measured at a 

number of locations throughout Aberdeen. Again, as with the previous Chapter, NO2 is taken as 

the response variable, with meteorological and traffic variables taken as the explanatory 

variables. In addition to the traffic and meteorological variables, there are Eastings and 

Northings which are used to describe the monitoring sites location. Since there are not traffic 
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counts available at the exact locations of the monitoring sites for NO2, an approximation was 

made using two separate maps, with two separate data sets – one consisting of the NO2 

monitoring sites (included as AURN and diffusion tubes), and the other consisting of traffic 

counts, known as count points. The Eastings and Northings included in a model are the 

coordinates of the NO2 monitoring sites, while the traffic counts are taken from the nearest, or 

most appropriate, as measured by Euclidean distance, count point to the relative monitoring site. 

This distance is a limitation to the analysis. The map with the count points which was used can 

be found at [46], and it was this map which was used in conjunction with [47] (using the Eastings 

and Northings of the diffusion tube and AURN sites) to match traffic counts with monitoring 

sites. It is expected that the observed points which are closer together will be more alike than 

the observed points which are farther away from one another – this a basic concept in geography 

[48].  

The image below (image 3.3.1) shows a sub-section of a larger map which has NO2 monitoring 

sites and count points for monitoring traffic. The image shows the limitations of the locations 

of the monitoring sites i.e. the NO2 and traffic monitoring sites are in different locations meaning 

the NO2 recorded doesn’t match spatially exactly with the traffic recorded.  

 

Image 3.3.1: Sub – section of full map which shows NO2 monitoring sites (in red) and count 

points for traffic (in blue). This map shows that sites are located at relatively far distances in 

some cases and so is a limitation when modelling the data.  
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Unlike the previous Chapter, the data are recorded as an annual Figure, as space is of primary 

interest here, as opposed to time. This annual Figure is obtained as a mean NO2 value for each 

location, with meteorological Figures being consistent from site to site, as the only location 

monitoring weather was Dyce airport – no other monitoring location for meteorological 

variables exist.  

As will be shown later, the weather variables are in fact degenerate, as they are repeated values 

for each location and can be described as singularities. This is a slight problem in the spatial 

modelling phase, although the model can still be built, only without meteorological factors.  

3.3.1 Exploratory spatial analysis 

Using the “geoR” library in R [49], geostatistical analysis of the NO2 concentrations in Aberdeen 

is possible. Useful questions to ask when conducting spatial analysis include the following; what 

is the average NO2 concentration across Aberdeen? What is the spatial pattern in the NO2 

concentration across Aberdeen, that is which areas have high NO2 concentrations and which 

have low NO2 concentrations? What is the difference between the minimum and maximum NO2 

concentrations in Aberdeen?  Looking at the spatial locations of the NO2 monitoring sites, using 

the Eastings and Northings, we can see that they are not spatially distributed uniformly. The 

exploratory plots of the log NO2 data with the Eastings and Northings is below 3.3.1.1; 
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Figure 3.3.1.1: Initial exploratory plots of NO2 concentrations, their geographical locations, 

and a histogram showing the density of the distribution of NO2 concentrations.  

Looking at the top left panel it can be seen that these monitoring sites have different colours. 

These colours represent the different concentrations of NO2. The following colours represent 

NO2 concentrations from highest to lowest concentrations – red, yellow, green, blue. Looking 

at the top right hand plot, there is a decreasing linear trend with the NO2 and Y coordinate, with 

an increasing variance i.e. going from North to South in Aberdeen the NO2 concentration 

decreases. Looking at the plot in the bottom left hand side, it shows that going from West to 

East in Aberdeen there is not a distinguishable change in the concentrations of NO2, with the 

possibility of a slight increase in NO2 further East, although there are more points to the East of 

the central point of all monitoring sites. When additional covariates are included in the model 

there needs to be an additional question asked of the model – what impact do these covariates 

have on NO2 concentration in Aberdeen? 

3.4 Spatial Trend Analysis of traffic data 

It is of use to explore the traffic data in a spatial context to see how it relates to the NO2 data 

from the AURN and diffusion tube monitoring sites, as well as to get an idea of the traffic data 

recorded at the count points in a spatial context. This can be seen from the histograms, and 

scatterplots, which are shown in Figures 3.4.1 - .2. Since the vehicle classes consist of more than 

just the total number of motor vehicles, two models and two methods of exploratory analysis 
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need to be implemented. One analysis takes place consisting of “All motor vehicles” at each of 

the air quality monitoring sites. The All Motor Vehicles class consists of 7052 vehicles. When 

other classes of vehicles are included in the analysis (for example Buses and Coaches, All 

HGVs, Light Goods Vehicles) the all motor vehicles class needs to be adjusted so that vehicles 

are not counted twice i.e. the 7052 units of the All Motor Vehicles class are broken down into 

other classes as well. This is shown in the example below (table 3.4.1);  

 

Location Buses and 

Coaches 

LGVs All HGVs All Motor 

Vehicles 

Errol Place 478 890 595 5089 

Table 3.4.1: The number of vehicles for each class at Errol Place in 2014. This is the annual 

average daily flow, which is discussed in more detail later.  

 

Focussing on the spatial aspect of the traffic data, an exploratory analysis shows the following 

results in Figure 3.4.1. These plots in Figure 3.4.1 show the total number of vehicles in relation 

to the locations of the AURN and diffusion tube sites. They also show (in the top left hand plot) 

where the most and least vehicles are recorded, going from high to low they are red, yellow, 

green and blue. From the top right and bottom left plots we can tell that, on a map, the locations 

with the highest number of vehicles would be found in the South-Eastern part of the map.  

The histogram showing the density of the total number of motor vehicles is seen in Figure 3.4.1, 

including a curve depicting the density of the data. Another plot of interest is the log NO2 values 

plotted against the total number of motor vehicles, regardless of class. One can conclude that 

there is a weak relationship. This is seen in Figure 3.4.2; 
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Figure 3.4.1: Summary plots of Motor Vehicles – the number and location of. Also included is 

a histogram showing the density of the motor vehicle data. 

 

Figure 3.4.2: Total Number of motor vehicles, regardless of class vs the log values of NO2. 

These values correspond to the year 2014 at all locations in Aberdeen for the AURN and 

diffusion tube sites.  
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The traffic values, for the different classes are measured as AADF, or annual average daily flow. 

This is the average in a full year of the number of vehicles passing a point on a road in both 

directions. This can be seen more clearly in the image below, which is taken from a webpage 

related to road traffic estimates on the UK government website [50]. 

 

Figure 3.4.3: Map showing the average annual daily flow for major roads in Scotland, 

including definitions [50]. 

 

3.5 Spatial Trend Estimation of the NO2 Data 

A more formal exploration of the NO2 data takes place in this section, in order to explain clearly 

the spatial distribution of NO2. This model, initially, will be a simple one, consisting of only the 

response (log transformed NO2 values); the intercept; the covariates (latitude and longitude 

represented as Eastings and Northings respectively). Later in the Chapter more covariates are 

introduced, these include meteorological and traffic count variables, which lead to a second 

model.  

3.5.1 Initial Model 

The model is explained in more detail below;  

log 𝑦(𝑠𝑖) =  𝛽0 + 𝛽1𝑒𝑎𝑠𝑡𝑖𝑛𝑔(𝑠𝑖) + 𝛽2𝑛𝑜𝑟𝑡ℎ𝑖𝑛𝑔(𝑠𝑖) + 𝜀(𝑠𝑖)   (3.5.1.1) 
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where 𝑦(𝑠𝑖) corresponds to the value of NO2 at each spatial location 𝑠, where 𝑖 = 1, … ,56; each 

𝛽 are regression parameters and 𝜀(𝑠𝑖) represents the residuals which are assumed to be normally 

distributed such that 𝜀(𝑠𝑖)~𝑁(0, 𝜎2).  

After fitting the linear model above the Easting term is removed as it is not statistically 

significant, the analysis of the summary statistics of the model are that the Northing term is 

statistically highly significant; approximately 34% of the variance in the model is explained as 

the adjusted R2 term is 0.3393; and the model itself is statistically significant as the p-value is 

less than 0.05. These can be seen in the table 3.5.1.1; 

 Estimate  Standard Error p-value 

Intercept 9.124e+01 3.114e+01 0.00496 

Northing  -1.156e-04 2.631e-05 5.25e-05 

Easting 1.412e-05 3.608e-05 0.69711 

AIC value 37.1384 

R2 Adjusted value 0.3393 

Table 3.5.1.1: estimates, standard errors and p-values of intercept Northing and Easting, with 

measures of goodness of fit 

Taking the residuals from the initial model, that is the model with both the Northings and 

Eastings included, the following residual plots can be obtained. The plots include the residuals 

against the Eastings, the residuals against the Northings, as well as the Normal Q-Q plot.  These 

highlight how well (or not so well, as the case seems to be) the model estimates the NO2 

concentrations at the recorded sites. The Easting term is not statistically significant although I 

decided to leave it in the model as it describes the location of each monitoring site. 

It is clear from this Normal Q-Q plot (Figure 3.5.1.1) that the residuals do not, in fact, follow a 

normal distribution as there is deviation from the Q-Q line. Although the data follows the line 

almost entirely, there is some deviation in the tails. This may be the case because the data is not 

entirely normally distributed, there is some skewness in the tails. There is not much more that 

can be done to normalise the data, as a log transformation of the data has already taken place.  
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Figure 3.5.1.1: Normal Q-Q plot of the residuals of the initial model in Aberdeen 

 

Figure 3.5.1.2: Residual plots of the initial model against the Eastings (left panel) and 

Northings (right panel) 
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The residual plots in Figure 3.5.1.2 show that there may be some bias in the data and 

heteroscedasticity may be present. Bias in the model means the independence assumption of the 

observations may be violated. The heteroscedasticity means that there is not constant variance.  

3.5.1.1 Estimating empirical variogram for residuals 

Estimating the semivariogram with a variogram cloud initially gives an indication of the spatial 

structure of the NO2 as measured at AURN and diffusion tube sites, although it is quite noisy, 

and hence difficult to interpret, as can be seen below;  

 

Figure 3.5.1.1.1: Variogram cloud for model containing only Easting and Northing 

As expected, observations which are closer together have a smaller semivariance and points 

which are further to the right of the x-axis have a higher semivariance. This is more of the rule 

rather than the exception as there are quite a few points which are between the distance of 2000 

and 9000 which have a relatively high semivariance and a mid – range distance.  

Using the empirical variogram to gain a better idea of the spatial structure of the data, an estimate 

can be produced. Although, due to the limited amount of sites, how “good” this estimate is, is 

questionable. This leads to the use of a binned empirical variogram, which is considered to be 

more robust [35].  

Distance (metres) 
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Figure 3.5.1.1.2: Empirical variogram (left panel) and more robust binned empirical 

variogram (right panel) for model containing Eastings and Northings only 

From looking at both variograms above, the presence of trend is obvious, as neither seem to 

stabilise anywhere on the plot, and definitely not anywhere close to the sample variance. This 

leads on to assessing the presence of isotropy. The semivariance seems to be oscillating in both 

variograms, with increasing variance as distance increases. Further work could be to use the 

median instead of the mean in each of the bins, as the median is a more robust estimator than 

the mean. Furthermore the bin size could be varied so that a stronger mean may be obtained i.e. 

noise in the model may be reduced. 

 

 

Figure 3.5.1.1.3: Empirical 

variogram with Monte Carlo 

envelopes for model containing 

Eastings and Northings only as 

covariates 
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The previous Figure (3.5.1.1.3) has values lying outside of the Monte Carlo envelopes. This 

suggests that there is spatial correlation between observations, which is explained in section 

3.2.5. There could also be the case that the points lying outside of the Monte Carlo envelopes 

are lying outside of it by chance and there is only very limited spatial correlation, if any at all.  

3.5.1.2 Estimating model parameters  

This section starts by estimating the variogram model parameters for an exponential model. 

Selecting an exponential model (or any model) influences the prediction of the unknown values. 

This is more the case if the curve when near the origin is relatively steep. A steeper curve near 

the origin means the closest neighbours have a greater influence on the value of the prediction. 

Estimating the model parameters initially by using weighted least squares results in the 

following (Figure 3.5.1.2.1), and showing the fitted variogram over the binned estimator (Figure 

3.5.1.2.2);  

 

Figure 3.5.1.2.1: Fitted variogram over robust binned estimator with nugget (bottom line) and 

sill (top line) included for model containing Easting and Northing coordinates exclusively 

The semivariogram above shows that there is a progressive decrease in spatial autocorrelation 

i.e. an increase in semivariance, almost continually with a slight arc shape appearing. This shape, 

and model, can be described as exponential.  

Estimating the covariance parameters using maximum likelihood, while assuming the residuals 

are Gaussian, followed by estimating the covariance parameters using restricted maximum 
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likelihood, the following plot (Figure 3.5.1.2.2) is obtained. This shows the fitted maximum 

likelihood and the restricted maximum likelihood based variograms over the robust estimator; 

 

Figure 3.5.1.2.2: Fitted ML (blue) – and REML (red) – based variograms over the robust 

binned estimator 

The actual parameter estimates for the exponential model are summarised in the table below; 

Model Nugget Partial Sill Range 

MLE 0.0204 0.0754 596 

REML 0.021 0.0837 726.5 

 

Table 3.5.1.2.1: Covariance parameters for the exponential model, for both the MLE and 

REML methods. 

 

3.5.1.3 Spatial prediction (Kriging)  

In this section predictions of the NO2 field are shown using an exponential variogram. Firstly, 

the ordinary kriging predictor is shown, (as discussed in section 3.2.8) followed by its standard 

error. This is done first for the model containing only Easting and Northing as explanatory 

variables, and in a later section kriging for the model containing all explanatory variables. The 
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kriging procedure is often described as optimal [51] as it produces optimal predictions when the 

covariance structure is known. For parameter estimates for model, and measures of goodness of 

fit see table 3.5.1.1. 

 

Figure 3.5.1.3.1: Predicted field of NO2 values for simple model  

 

Figure 3.5.1.3.2: Standard errors of predictions for simple model 
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Figure 3.5.1.3.1 shows that the log NO2 concentration is predicted to be highest closest to the 

city centre and in the North West of the map, further away from the city centre. The 

concentrations of NO2 may also be predicted to be higher in the city centre because there is more 

traffic or more congested traffic. Also, it should be noted that there are more recording 

instruments in the city centre and so the recordings may be more accurate compared to the 

recordings made outside of the city centre.  

It is clear from the field of standard errors of predictions that there is more uncertainty where 

there are fewer sites and more certainty where there are more sites, which is to be expected, 

intuitively. Although the expected outcome of locations closer to one another being more similar 

in NO2 concentrations is tested here as it seems there are groupings of predicted field values 

which are the same as other, not necessarily neighbouring, groups. This can be seen in Figure 

3.3.2.1.8, where the most North-West and South-East groups are similar but are at opposite ends 

of the City. These are the areas with the lowest predicted NO2 concentration.  

 

3.5.2: Full linear model, including all covariates 

Including the meteorological variables and traffic variables in the model it is shown that the 

meteorological variables are redundant as they are singularities, i.e. the variables become 

degenerate. This is due to the same value being repeated at each site, for any given 

meteorological variable. This is an unavoidable issue for the data at hand as the weather recorded 

at Dyce airport is the only meteorological data available for Aberdeen in 2014. So, even though 

weather is probably important, it has to be left out of this model. This is discussed further in the 

final Chapter. The spatial model including all of the variables can be seen below; 

log 𝑦(𝑠𝑖) =  𝛽0 + 𝛽1𝑒𝑎𝑠𝑡𝑖𝑛𝑔(𝑠𝑖) + 𝛽2𝑛𝑜𝑟𝑡ℎ𝑖𝑛𝑔(𝑠𝑖) + 𝛽3(𝐵𝑢𝑠𝑒𝑠 𝑎𝑛𝑑 𝐶𝑜𝑎𝑐ℎ𝑒𝑠)(𝑠𝑖)

+ 𝛽4(𝐿𝑖𝑔ℎ𝑡 𝐺𝑜𝑜𝑑𝑠 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠)(𝑠𝑖) +  𝛽5(𝐴𝑙𝑙 𝐻𝐺𝑉𝑠)(𝑠𝑖)

+  𝛽6(𝐴𝑙𝑙 𝑀𝑜𝑡𝑜𝑟 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠)(𝑠𝑖) +  𝜀(𝑠𝑖) 

Equation 3.5.2.1 

 

Standard errors, p-values and estimates can be seen for the variables in the table below; 
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Variable Estimate Standard Error p-value 

Intercept 7.498e+01 3.331e+01 0.02901 

Easting 1.143e-05 4.173e-05 0.78539 

Northing -9.401e-05 3.127e-05 0.00419 

Buses and Coaches 2.302e-04 3.550e-04 0.51977 

Light goods vehicles  -4.241e-04 2.190e-04 0.05872 

All HGVs 2.908e-04 3.284e-04 0.38022 

All motor vehicles 1.994e-05 3.305e-05 0.54918 

 

Table 3.5.2.1: The estimates, standard errors and p-values of all variables for the model 

 

From the p-values it can be seen that the statistically significant variables are limited to the 

Northing and Light goods vehicles. This full model, has the following diagnostics, and can be 

seen to be a better fit to the data than the model with only the Northings and Eastings as 

covariates – this can be seen given the normal Q-Q plot and the plot of the residuals. The 

residuals plot of the model show random scatter around the dashed line (zero line). The normal 

Q-Q plot (Figure 3.5.2.2) shows the residuals following a straight line, mostly, as the points 

deviate from the line a little in the middle, and at the tails. The adjusted R2 value for this model 

is 0.29, so the model does not explain much of the variation in log NO2.  
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Figure 3.5.2.1: Residuals plot from the full model, showing a distribution which seems to be 

following a pattern which is not random. 

 

Figure 3.5.2.2: Normal Q-Q plot of full model. Follows the normal line mostly but deviates at 

the tails.  
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3.5.2.1: Estimating empirical variogram for residuals 

The semivariogram cloud for the residuals from the full model of all of the sites can be seen 

below (Figure 3.5.2.1.1);  

Empirical variogram and binned empirical variogram for the model containing all of the 

covariates available can be seen below (Figure 3.5.2.1.2). This is different to the model 

containing only Eastings and Northings as there is a smaller maximum semivariance for this 

model. This can also be seen from the empirical variogram with Monte Carlo envelopes below 

(Figure 3.5.2.1.3).  

 

 

Figure 3.5.2.1.1: Variogram cloud for full model containing all covariates 

The following Figure (Figure 3.5.2.1.2) shows an empirical variogram and the more robust 

binned empirical variogram for the full model. As can be seen from these panels, the two 

methods used for estimating the empirical variogram compute similar sample variograms. 
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Figure 3.5.2.1.2: Empirical variogram (left panel) and more robust binned empirical 

variogram (right panel) for model containing all covariates available 

 

Figure 3.5.2.1.3: Empirical variogram with Monte Carlo envelopes for model containing all 

covariates available  
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3.5.2.2: Estimating model parameters 

Since the empirical variogram with Monte Carlo envelopes shows evidence of some spatial 

dependence, it could be argued that a simple variogram model could be chosen. The model 

parameters are estimated for the model containing all covariates. This can be seen in the 

following plots, which show fitted variogram (Figure 3.5.2.2.1) which is exponential and the 

fitted maximum likelihood and restricted maximum likelihood based variograms (Figure 

3.5.2.2.2). The semivariogram model is very uncertain given the data available. 

The maximum likelihood and the restricted maximum likelihood are seen below (Figure 

3.5.2.2.2) and these show the estimated values of the parameter at different distances. The 

maximum likelihood is represented by the blue solid line while the restricted maximum 

likelihood is represented by the dashed red line. Between 0 and 2000 the curve takes on a 

logarithmic shape and after of which it levels off somewhere around the 0.1 mark for 

semivariance.   

 

Figure 3.5.2.2.1: Fitted variogram over robust binned estimator with nugget (bottom line) and 

sill (top line) included for full model containing all covariates 
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Figure 3.5.2.2.2: Fitted ML (blue) – and REML (red) – based variograms over the robust 

binned estimator for the full model, containing all covariates 

3.6: Replacing explanatory variables with emission factors for 2014 

Now emission factors are going to be introduced, since it is the emissions which are of concern, 

more so than the total number of vehicles. Emissions, which may be precursors of air pollutants, 

have an adverse effect both on the environment and human health. According to [67] “The 

principal air-quality pollutant emissions from petrol, diesel, and alternative-fuel engines are 

carbon monoxide, oxides of nitrogen, un-burnt hydrocarbons and particulate matter”. The 

emission focused on here is principally oxides of nitrogen, more specifically NO2. Emissions 

are also described in [68] as “gases or particles which are put into the air by various sources”. 

One of these various sources is vehicles, which is what is analysed in this section – vehicle 

emissions. In this section, rather than vehicle counts emission factors are used, which are 

available from the Department for Environment, Food and Rural Affairs website. These figures 

for the emission factors are the same unit of volume and are available for different years 

(including 2014) and for different vehicle classes. These emission factors are obtained from the 

naei website [52]. The emission factors used in the models in the next section (section 3.7) are 

created by taking the respective emission factor for each vehicle classes and dividing it by the 
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emission factor for buses and coaches. The emission factor for buses and coaches is used as a 

base line. These figures are then multiplied by their respective vehicle count. The reason for 

doing this is so that all of the emissions are on the same scale and can be used in a model. These 

values are shown in table 3.6.1; 

Vehicle class Buses and Coaches LGVs All HGVs 

Emission factor 0.118 0.424 0.115 

Table 3.6.1: Emission factors for different vehicle classes. These are the fractions of Nitrogen 

Oxides emitted by vehicles as NO2 

The model used here is a linear one, with the emissions factors as well as Northings and Eastings 

used as covariates, with an intercept term, parameter coefficients and an error term.  

The model that these emission factors are used in are similar to the previous linear model with 

vehicle classes included in it, although this time there are different estimates, standard-errors 

and p-values which are summarised in the table below (table 3.6.2).  

 

Variable Estimate Standard Error p-value 

Intercept 7.498e01 3.331e+01 0.02901 

Northing -9.401e-05 3.127e-05 0.00419 

Easting 1.143e-05 4.173e-05 0.78539 

Buses and Coaches 1.180e-01 3.550e-04 <2e-16 

LGVs 4.240e-01 2.190e-04 <2e-16 

All HGVs 1.150e-01 3.284e-04 <2e-16 

All motor vehicles 1.994e-05 3.305e-05 0.54918 

Table 3.6.2: Estimates, standard errors and p-values of linear model using emission factors 

Table 3.6.2 shows that provided all other covariates are kept constant, a unit increases in buses 

and coaches emissions will increase the log NO2 value by 0.118𝜇𝑔𝑚−3. If all other covariates 
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are kept constant, and LGVs increase by a unit then log NO2 increases by 0.424𝜇𝑔𝑚−3 and 

similarly a unit increase in HGVs will increase log NO2 by 0.115𝜇𝑔𝑚−3.   

3.7: Using Linear models and GAMs for the NO2 emissions data, without the 

spatial information 

Similar to the section 2.10, generalised additive models are used in this section for the spatial 

NO2 data. This is due to the reasonable assumption that some of the relationships between log 

NO2 and the explanatory variables of the models in section 3.3 may not be linear. This is also 

reasonable due to the low adjusted R2 values of previous (linear) models. The model diagnostics 

can be seen below for a model containing only emission factors for HGVs and an average for 

all motor vehicles.  

 

Figure 3.7.1: Diagnostic plots of GA model containing HGV emissions LGV emissions and 

Buses and Coaches emissions as explanatory variables 

The residual plots display heteroscedasticity. This does mean that the model is inherently poor, 

although it could still be improved. This improvement is usually through a transformation of the 

response, which has already been done, or by including other variables. The inclusion of other 

variables is reasonable as we know already that there are missing meteorological variables due 
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to the lack of data available. It should be noted that the sample size is quite small. The 

Generalised additive model for the NO2 and traffic data is as follows; 

log 𝑁𝑂2 = 𝜇 + 𝛽1(𝐵𝑢𝑠𝑒𝑠 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠) + 𝛽2(𝐿𝐺𝑉 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠) + 𝑠(𝐻𝐺𝑉 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠) +  𝜀 

          Equation 3.7.1 

Where 𝜇 is an intercept term and the 𝜀 term is an identical and independent error term, assumed 

to be from the normal distribution.  

Looking at the relationships of these covariates with the response variable, taking, say the LGV 

emissions and plotting against the log NO2 values, the following plot (Figure 3.7.2) is obtained; 

 

Figure 3.7.2: Log NO2 vs LGV emissions for 2014 at locations in Aberdeen 

A generalised additive model is created, with linear terms included in it. These linear terms are 

the buses emissions and the LGV emissions. The other term of HGV emissions is taken as a 

smooth term in the model, and the plot of this covariate is seen in Figure 3.7.3. 

From this plot (Figure 3.7.3), one can tell that as HGV emissions increase, so too does the log 

NO2 concentration. From 0 to 500 there is a cyclical behaviour of the NO2 concentration and 

after 500 the NO2 concentration steadily increases. The cyclical behaviour could be due to the 
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relatively low number of observations recorded. With the relationship between NO2 and HGV 

emission. a GAM model is fit with Northing and Easting terms and found to be statistically not 

significant. 

 

 

Figure 3.7.3: Plot of HGV emissions  
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Figure 3.7.4: Variogram cloud of locations of monitoring stations  

 

Figure 3.7.5: Robust estimator and binned estimator of the data 
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Figure 3.7.6: Semivariogram using binning and a robust estimator. 

 

Using this plot to estimate parameters, the following results are obtained; 

Model Nugget Partial Sill Range 

MLE 0.046 0.0459 0.4606 

REML 0.047 0.0469 0.4606 

Table 3.7.1: Parameter estimates obtained from MLE and REML methods 

 

Although the generalised additive model is seen to be a better modelling approach than that of 

the linear model, it is still worthwhile taking a look at the linear modelling approach as was 

done in section 3.5. the genealised additive model is a better modelling approach as it has a 

higher R2 adjusted value and a lower AIC than the linear model for the same data. The R2 

adjusted is 0.34 (.07 higher than the linear model) and the AIC is 27.2 (also lower than the linear 

model).   

 

 

3.8 Conclusion and further work 
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In conclusion to this Chapter, spatial patterns have been modelled in the data recorded at both 

the AURN sites and the diffusion tube for the year 2014. The effects of the traffic covariates 

have been modelled also. It has been shown that a linear regression model works for the data 

i.e. that there are statistically significant variables when log NO2 is modelled linearly with 

different vehicle classes as covariates. It has also been shown that the model parameters for the 

variogram can be estimated by restricted maximum likelihood and that any concentrations of 

NO2 in the future are predicted with a higher degree of accuracy where there are a number of 

monitoring stations in a small area, compared to a larger area with fewer monitoring stations 

(see Figure 3.5.1.3.1). Further work which could be done on the spatial modelling of the 

Aberdeen air quality and traffic data is to compare the spatial data from year to year, instead of 

a single year analysis, and then make a spatial temporal model, as analysing one year does have 

certain limitations. Also, the spatial analysis would benefit from more monitoring stations so 

that a higher degree of accuracy i.e. a lower standard error would be obtained.  

The traffic effects on the data show that as HGV emissions increase, so too does the NO2 

concentrations. It can also be noted that although statistically significant in the model both buses 

emissions and LGV emissions have a relatively small effect on NO2 concentrations (-0.0008155 

and -0.0002343 respectively) when all other covariates are held constant and a unit increase in 

the variable of interest is incorporated.  

Generalised additive modelling is better than linear modelling for the spatial data as the model 

obtained from generalised additive has a higher adjusted R2 value as well as a lower AIC value 

than the model made from linear modelling for the same data. This is because relationships 

between the response and covariates, and between covariates themselves, are more complex 

than linear.  

The linear regression modelling approach had Easting and Northing used in it, and was shown 

to be a good fit to the data, with spatial autocorrelation modelled exponentially in a kriging 

framework. Once this was done I introduced additional covariates and the model improved. It 

was found the R2 adjusted value increased as more variance in the model was explained. The 

small sample size may be the reason for the weak indication of spatial covariance.  

For reference, the model used in the next Chapter, the linear model that is, is the same as the 

one looked at in section 3.5.2 although for easier inverse regression, less covariates are used. 

The covariates used in the linear model discussed in the next Chapter are only HGV emissions 
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and LGV emissions, the emissions of the vehicle classes which are discussed in detail in section 

3.6.  

Using the values and the model described in section 3.6, with the exception of some of the 

variables, it is of interest to see what concentrations the emissions must be at if a certain level 

of air quality - a “good” level of air quality - is to be attained i.e. what range of values can the 

traffic emission take to give a certain confidence of meeting an air quality target? This is 

discussed in the next Chapter, inverse regression.  

In this next Chapter, which covers inverse regression, two models are looked at; a linear and a 

generalised additive model. These models contain the covariates in table 3.5.2, excluding all 

motor vehicles and the Easting and Northing covariates. These models are discussed in more 

detail in the next section, with plots showing the relationships between the response and the 

covariates.  
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Chapter 4: Inverse Regression 

4.1 Introduction 

In this Chapter I will examine how the models I have developed in Chapters 2 and 3 might be 

used to help in decision making concerning management of vehicles to ensure (with a given 

confidence) a certain NO2 concentration. This Chapter will look at certain methods that are 

available to calculate the explanatory variables given we know the NO2 concentration, or that 

we want the NO2 concentration to be. Some of these include graphical procedures [53]. This 

type of statistical method is known as statistical calibration or inverse regression. For example, 

if we know the NO2 concentration at a given place and a given time, we should be able to say 

how many Motor Vehicles are at this place in time, or how many Light Goods vehicles and so 

on. In other words, if it is possible to regress 𝑦 on 𝑥, then it is possible to regress 𝑥 on 𝑦 [54]. 

Although there are a number of variables available for our data, there are examples in the 

literature with fewer covariates and which are advisable method(s) to use [53].  

In context to this Chapter, NO2 is used to determine LGV emission and later the NO2 

concentration is used to determine HGV emission, given an LGV emission, or an LGV emission 

given an HGV emission. The first is done by using a 2D plot and a line, the latter by using a 3D 

plot and a plane. These are seen in Figures 4.3.1 and 4.3.2 respectively.  

For managing air pollution, a local authority has limited tools – primarily they can manage 

traffic, for example, by banning certain types of vehicles or restricting the days that certain areas 

can be entered. This strategy of restricting the days that certain areas can be entered was 

implemented after the Beijing Olympics [69].  

4.2 Inverse Regression and Calibration 

4.2.1 Calibration 

Calibration in statistics can mean a reverse process to regression, instead of having a future 

response variable being predicted from explanatory variables which are already known, a known 

observation of the response variables is used to predict a corresponding explanatory variable 

[55].  

The calibration problem in regression is the use of known data on the observed relationship 

between a response variable and an explanatory variable to make estimates of other values of 
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the explanatory variable from new observations of the response variable. This is also known as 

inverse regression. 

An example of inverse regression is that of dating objects, using observable evidence such as 

tree rings in dendrochronology. The observation estimated the age of the object, rather than the 

converse, and the aim is to use the method for estimating calendar ages based on new measured 

ages [53]. A thorough overview of the calibration problem, which also includes Bayesian 

approaches and multivariate calibration, can be found in a review by Osborne. [55] 

The objective in this thesis is to identify the conditions in the explanatory variables that would 

guarantee conditions in the response, for example the annual average does not exceed 

40𝜇𝑔𝑚−3, which is equal to a log NO2 value of 3.69𝜇𝑔𝑚−3. This value of 40𝜇𝑔𝑚−3 is used 

as it is the NO2 concentration limit of the EU, the UK and Scotland, as seen in table 1.1.1.  

4.2.2 Inverse Linear Regression 

Inverse regression looks at an already established relationship between a response 𝑌 and a 

covariate 𝑥 using a set of training data (𝑥1, 𝑌1), … , (𝑥𝑛, 𝑌𝑛). This relationship is then used to 

calculate the covariate value 𝑥0 corresponding to an observed response 𝑌0. A more extensive 

summary is provided in the theory given by Brown [56]. This theory can be very shortly 

summarised as approximating graphical methods to estimate some unknown covariate given a 

relationship between a known set of responses and covariates has been established. 

This Chapter focusses on the inverse linear regression of a linear model with initially one 

explanatory variable, followed by a linear model with two explanatory variables. This theory 

could be continued on to p – explanatory variables. When there is only one explanatory variable 

one can find the unknown covariate by using a graph – from reading the desired value of the 

response across to a diagonal line (which describes the linear relationship between the response 

and covariate) and down to the covariate value on the x axis. This can be seen in 4.3 and Figure 

4.3.1.  

As more covariates are introduced, this inverse linear regression by approximating graphical 

methods becomes more difficult as it is more difficult to plot the relationships of more 

explanatory variables with a response. This can be seen as one needs a 2-dimensional plot if one 

is modelling a response against some covariate, and needs a 3-dimensional plot if one is 

modelling a response against two covariates, and so one would need a 𝑝 + 1 dimensional plot 
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if one was modelling a response against some 𝑝 covariates. Section 4.3 shows up to a 3-

dimensional plot.   

4.2.3 Nonlinear calibration  

Since many of the relationships observed between logarithmic transformed NO2 and the 

explanatory variables are nonlinear, an inversion interval described in [56] provides an 

approximate 100(1 − 𝛼)% confidence interval for 𝑥0. This is also seen in Schwenke et al. [58].  

Consider the following regression model; 

𝑌𝑖 = 𝑓(𝑥𝑖;  𝜃) + 𝜖𝑖    (Equation 4.2.3.1) 

where 𝑖 = 1, … , 𝑛 and 𝑓 may or may not be linear in 𝜃. The goal is to solve 𝑥0 i.e. the estimate, 

given an observation 𝑦0, then the point estimate 𝑥̂0 can be found by solving 𝑦0 = 𝑓(𝑥; 𝜃) for 

𝑥. This solution should be unique in theory, as long as we have an 𝑓 which is monotonic in the 

region of interest [59]. Since we are trying to find a value of an explanatory variable at a given 

point in time and space, we can use the above equation (equation 4.2.3.1) to compute 𝑥̂0 while 

using the relevant software to solve 

𝑦0 − 𝑓(𝑥; 𝜽̂) = 0    (Equation 4.2.3.2) 

numerically for x [60]. This can be used for a linear result or a non-linear one.  

A summary of this method of using the above equations is that these are methods for analysing 

data. The models themselves can be multinomial non – linear models and the software 

implemented is “nls2” (implemented in R Studio). This package also includes the tools which 

allow for confidence regions to be calculated for function of parameters or calibration intervals. 

4.2.4 Inversion Interval 

An exact 100(1 − 𝛼)%  confidence interval for 𝑥0 can be given by; 

𝑥̂0 +

(𝑥̂0 − 𝑥̅)𝑔 ± (
𝑡𝜎̂

𝛽̂1

) √
(𝑥̂0 − 𝑥̅)2

𝑆𝑥𝑥
+ (1 − 𝑔) (

1
𝑚 +

1
𝑛)

1 − 𝑔
 

(Equation 4.2.4.1) 



121 

 

where 𝑆𝑥𝑥 =  ∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 , 𝑔 =

𝑡2𝜎̂2

𝛽1
2𝑆𝑥𝑥

𝑎𝑛𝑑 𝑡 = 𝑡𝛼

2
,𝑛+𝑚−3 is the upper 1 − 𝛼 percentile of a 

Student’s t-distribution with 𝑛 + 𝑚 − 3 degrees of freedom. This inversion interval is also seen 

in [57]. Having this confidence interval allows for us to say with a 100(1 − 𝛼)% probability of 

being correct that the value of an explanatory variable lies within some range of values [58].  

The literature uses graphical methods for illustrating and evaluating the process of inverse 

regression [58] [61]. The graphical methods cover inverse regression for the case of a bivariate 

response, which is the case with the NO2 data and the traffic data collected at the count points, 

as there are multiple vehicle classes.  

4.3 Data output and plots 

In this section, two models are considered. These are two models which are discussed in the 

previous Chapter, one a linear model, the other a general additive model. These models have 

one exact explanatory variable and one approximate explanatory variable respectively. The 

models are those which use the emission factors as opposed to the actual vehicle counts. These 

are explored in section 3.5 and 3.6. There are two different plots which can be used to interpret 

the relationship between log NO2 and LGV and HGV emissions. These are the following plots 

(4.2.1 and 4.2.2) and are similar to those seen in section 3.6. Within this section there are two 

subsections, one concerning a single explanatory variable and the other concerning two 

explanatory variables.  

4.3.1 The single explanatory variable 

When using inverse regression I chose to model log NO2 against LGV emission. I chose this 

covariate as it was the most statistically significant covariate in the spatial model created in 

section 3.4. This simple case of inverse regression with one explanatory variable can be seen in 

Figure 4.3.1 and it will be developed into a case of two explanatory variables which can be seen 

in Figure 4.3.2. 
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Figure 4.3.1 Linear plot showing the confidence interval for LGV emissions 

This plot shows log NO2 against LGV emissions, and suggests a general trend that as LGV 

emissions increase, log NO2 decreases. It should be kept in mind that other variables might be 

needed. Also this is intuitively incorrect according to much literature and the general consensus 

of the scientific community – as the converse is accepted to be true – as emissions increase, so 

does log NO2. The plot also shows confidence intervals which provide a guide to room for error 

in the relationship between the two variables. The horizontal line at 3.5𝜇𝑔𝑚−3 represents the 

mean log NO2 value. The horizontal line intersects the upper and lower bounds for the 

confidence interval and the mean.  

From looking at Figure 4.3.1 it is likely that when LGV emissions are less than or equal to 

1500 g/km or more than or equal to 6200 g/km that the log NO2 concentration will exceed the 

limit. Less than 6200 g/km and there is a chance that the limit is exceeded.  
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4.3.2 Two explanatory variables  

Creating a linear model which consists of log NO2 as the response and LGV and HGV emissions 

as the explanatory variables, leads to the creation of another plot – this one 3D. These two 

covariates are chosen as they are the most statistically significant covariates of the model 

described in section 3.6 and 3.7, hence they have the most statistically significant effect on the 

NO2 concentration. The 3D plot (Figure 4.3.2) shows how log NO2 at each of the 55 sites is 

related to these emission factors for these particular vehicle classes. Figure 4.3.2 can be seen 

below; 

 

Figure 4.3.2: 3D plot showing the plane of linear model and the response values 

4.3.2 shows a plane which represents the following linear model; 

𝑦 =  𝛽0+ 𝛽1𝑥1+ 𝛽2𝑥2 + 𝜀    (Equation 4.3.1) 

In this model 𝑦 is log NO2
 value, 𝛽0 is the intercept, 𝛽1, 𝛽2 are coefficient terms, 𝑥1, 𝑥2 are LGV 

and HGV emissions respectively, and 𝜀 is an error term.  
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The points on the plot are the 𝑦 values of the model, with the black points being the values 

which lie above the plane, and the red points being the points which lie below the plane. The 

plot shows that some of the points are below the plane and some above, which means some 

recorded observations are higher than the models estimate and some observations are lower than 

the models estimate, as we would expect, given particular emission factor values.  

In the bivariate case it is of interest to evaluate for each possible pair (x1, x2) if the NO2 limit is 

exceeded or not. Figure 4.2.3 shows that as LGV emissions are between 2000 and 6500 g/km, 

and HGV emissions are between 290 and 1550 g/km then the limit will be exceeded.  

It is now useful to try and explain how, empirically, it is possible to derive the conditions on 

two explanatory variables. The following plots (Figures 4.3.3 – 4.3.5) can be described as 

indicator plots. They show that some values of log NO2 are above the threshold of 3.69𝜇𝑔𝑚−3 

and some are below this threshold, which is log(40) = 3.69 𝜇𝑔𝑚−3. The latter plots (Figures 

4.3.4, 4.3.5) depict plus and minus the confidence band of the linear model which is created and 

described above.  In other words, these are three plots showing for which values of the LGV 

emissions and HGV emissions, the log NO2 values which are above (in black) the log NO2 value 

of 3.69𝜇𝑔𝑚−3 and which are below (in white) the log NO2 value of 3.69𝜇𝑔𝑚−3. The first plot 

is completed using the modelled log NO2 values, while the second and third plots are the log 

NO2 values with +2𝜎 and −2𝜎, respectively.  
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Figure 4.3.3 – 4.3.5: (From L to R) Observed log NO2 values; log NO2 values +2𝜎; log NO2 values −2𝜎. White values are below a certain 

value and black values are above a certain value. The value is 3.69𝜇𝑔𝑚−3.
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A plot showing values which are above and below the threshold of 3.69𝜇𝑔𝑚−3, minus 2 

standard deviations, shows that most values for different combinations of HGV and LGV 

emissions are below the value of 3.69𝜇𝑔𝑚−3. These plots (Figures 4.3.3 – 4.3.5) indicate that 

the log NO2 value will be below 3.69𝜇𝑔𝑚−3 at all times, (provided other variables are kept 

constant), if LGV emissions are above 3577𝜇𝑔𝑚−3 and HGV emissions are kept below 

1495𝜇𝑔𝑚−3. This is simply counter intuitive.  

The approach used for the general additive model is an approximate one, modelled on the linear 

case. Namely, we consider the confidence band for the smooth functions, and then project where 

our NO2 limit crosses the upper and lower band. These plots below (Figures 4.3.6 – 4.3.8) shows 

the more flexible nature of the NO2 surface that has been fit. An observation could be that as 

the values of emissions increases then the log NO2 value is more likely to be above than below 

3.69𝜇𝑔𝑚−3
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Figure 4.3.6 – 4.3.8: (From L to R). Observed log NO2 values; log NO2 values +2𝜎; log NO2 values −2𝜎. White values are below a certain 

value and black values are above a certain value. The value is 3.69𝜇𝑔𝑚−3. This is for a generalised additive model.
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Interpreting these 3 previous plots for the GA model; Figure 4.3.5 suggest that when HGV 

emissions are low, LGV emissions can take any value up to 10675 𝑔𝑘𝑚−1 and log (𝑁𝑂2) will 

stay below 3.69𝜇𝑔𝑚−3. This is the case, according to the Figure, for HGV emission values up 

to approximately 850𝑔𝑘𝑚−1. HGV emissions higher than this, with a relatively low LGV 

emission level (about 3300𝑔𝑘𝑚−1) will result in log (𝑁𝑂2) values being above the value of 

3.69𝜇𝑔𝑚−3. Notice how that when LGV emissions increase that there needs to be a higher level 

of HGV emissions to maintain a log(𝑁𝑂2) value. This is counter-intuitive. This behaviour may 

arise due to any number of reasons; perhaps the data wasn’t recorded appropriately, or maybe 

the data could be modelled better, or it may be the case that there are other variables which are 

not being accounted for. The other plots of plus or minus 2 standard deviations show a similar 

pattern only that they have more and less (respectively) combinations of HGV emissions and 

LGV emissions which indicate a log NO2 value above 3.69𝜇𝑔𝑚−3.  

The GAM model has a smooth surface in terms of LGV and HGV emissions meaning the 

regions are no longer bounded by straight lines but rather by curves. There may also be the case 

that LGV and HGV emissions are correlated since one would expect that where there are more 

LGVs there may also be more HGVs and vice versa. Although I have mentioned that the results 

are counter intuitive in nature regarding the relationship between NO2 and LGV emissions, a 

relationship is still discovered. It has also been mentioned that it is reasonable to assume that 

there are missing confounding variables, including meteorology which are important. That said, 

the method is valuable (even if the actual results are not) as it allows us to explore under what 

conditions in the covariates we would or would not exceed the limit value. 

4.4 Conclusions for Inverse Regression 

Inverse regression is a useful tool for finding out the conditions which need to be met if a 

particular log NO2 value is to not be exceeded. It was shown that the more complicated a model 

i.e. the more covariates in the model, the more difficult it is to plot that model and get accurate 

results. From the four models made, two with only one explanatory variables and two with two 

explanatory variables, it was clear that there are some missing confounding factors as the 

relationship between the response and the covariate(s) was not as expected. These models are 

similar to those discussed in Chapters 2 and 3 and can be seen in section 3.6.  
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A simple linear model with only LGV emissions showed, when put under inverse regression, 

that when LGV emissions are less than 6200 units, there was a chance that the log NO2 limit 

exceeds the limit in place. Adding other covariates (namely HGV emissions) makes the model 

more complicated although yields more informative results. The inverse regression of this model 

yields the result that the limit will be exceeded when LGV emissions are between 2000 and 

6500 g/km, and HGV emissions are between 290 and 1550 g/km. 

The reason why the conclusions are limited and the results unexpected could be due to the small 

number of observations that are being modelled. More observations would allow for more 

accurate results. Another reason could be that the data that is recorded is not reliable enough i.e. 

the data could be cross referenced with other data recorded to ensure that the information which 

is recorded is accurate.   
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Chapter 5: Conclusions and further work 

5.1 Conclusions 

In this thesis, I have examined the utility of readily available air quality, traffic and 

meteorological data to inform the public and policy related understanding of drivers of air 

quality in Aberdeen. I have developed a series of linear and smooth regression models to model 

NO2 temporally over 5 years at the AURN sites, and spatially (for the annual mean) using an 

additional 51 diffusion tube sites. I have incorporated traffic data in the form of traffic counts 

(derived from the department of transport data) and also using emission factors.  

These models have shown some counter-intuitive results arising from artefacts – particularly in 

the traffic data. The meteorological data while only being available from the single site at the 

airport, will introduce confounding effects.  

5.1.1 Air Pollution and Health affects 

Air pollution is known to have negative effects on the environment, welfare and human health. 

More recently it has been shown to also have a negative effect on well – being [70], so one could 

say air pollution has negative effects on both the physiological and psychological states. The 

World Health Organisation estimates that every year 7million people worldwide die prematurely 

because of air pollution [3], in London the annual death toll is at 9500 deaths [71], and in 

Scotland it is 2500.   

5.1.2 Work being done in UK cities to improve air quality 

In cities throughout the UK, through DEFRA and the devolved administrations of Scotland, 

Northern Ireland and Wales, work is being done to mitigate the negative effects of air pollution. 

Some of this work consists of annual reports which summarise the measurements from national 

monitoring networks, more funding being used for the monitoring of air quality, and by 

introducing “Clean Air Zones”. These Clean Air Zones ensure that more modern vehicles which 

have relatively clean engines are the only vehicles allowed into certain parts of the cities in 

which the zones are implemented, whereas vehicles which are suspected of contributing to a 

greater deal of air pollution are not allowed in without incurring a charge.  

Other measures in place to reduce air pollution include using cleaner fuels or cutting edge 

technology in vehicles such as taxis and buses. These types of vehicle would be the kind allowed 
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entry into London’s ULEZs or Ultra-Low Emission Zones, which are to be implemented by 

2020. In Scotland a similar plan is in place to reduce the amount of traffic and hence, air 

pollution, by introducing low emission zones. The first low emission zone is to be introduced in 

Scotland by 2020.  

There are many local campaign groups in Scotland who campaign for cleaner air. These are 

similar to those seen working with Friends of the Earth. There are EPAs (or Environmental 

Protection Agencys) set up in England, Scotland, Northern Ireland and Wales who monitor and 

collect data on air quality such as NO2.  

5.1.3 The data 

Some of these data are seen in this thesis in the form of NO2, traffic counts, vehicle emissions, 

and meteorological observations. The NO2 data are available within the desired time frame from 

2006 – 2015, and during this period there is relatively little missing data and no notable outliers. 

The data followed a seasonal pattern with a higher concentration of NO2 in the winter compared 

to the summer, as well as a higher concentration of NO2 during weekdays compared to the 

weekend. At all sites there was seen to be a higher concentration of NO2 between 6am and 6pm 

compared to the concentration of NO2 between 6pm and 6am. These data are collected by 

AURN sites and diffusion tubes located throughout Aberdeen, and although these sites and tubes 

are not at uniform locations throughout the city they do give a good spatial representation of the 

NO2 concentration during 2014. NO2 is seen to be gradually increasing over time, and also it is 

clear that there is a higher concentration of NO2 where there is more traffic. This is reflective of 

a higher NO2 concentration in the city of Aberdeen compared to on the outskirts of the city.  

The data for traffic are relatively more difficult to work with, as it needs to be disaggregated 

before it can be used in a temporal or spatial context. These data show issues which it was not 

possible to fully resolve but reflect data made available on official sites. There are 4 vehicle 

classes found to be of interest and these are HGVs, LGVs, all motor vehicles and buses and 

coaches. The data in all of the vehicle classes makes a sudden change in 2012 and this can be 

put down to a different counting method.  

The data for meteorological variables are all collected at Dyce airport thus limiting their usage 

to only temporal modelling i.e. they are not useful in spatial modelling. The covariates included 

in the meteorological variables are wind speed and direction, cloud cover, rainfall, temperature 
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relative humidity and pressure. Over time wind speed had a strong seasonal pattern, with higher 

wind speeds in winter compared to Summer, whereas wind direction did not seem to follow a 

seasonal pattern. Cloud cover was mostly quite high with a lot of variation while rainfall was 

consistently between 0.0 mm hour-1 and 1.0 mm hour-1 with the exception of a few observations. 

Temperature had the strongest seasonal affect which is present in Figure 2.4.2 with higher 

temperatures in the summer months while there are lower temperatures in the winter months, as 

to be expected. Pressure follows a similar seasonal pattern although there is more variation in 

the observations compared to temperature. Relative humidity does not seem to have any strong 

seasonal affect although there may be one present. Plots of the meteorological data against the 

NO2 concentrations at Anderson Drive showed how NO2 changed corresponding to different 

meteorological variables. As wind speed increased it was clear that NO2 decreased, while there 

was a quadratic relationship between wind direction and NO2 concentration. Cloud cover and 

rainfall had no obvious relationship with NO2 concentration while temperature had a negative 

relationship with NO2 at Anderson drive. Relative humidity and pressure both had a positive 

relationship with NO2 so as they both increased so too did NO2 concentration, for Anderson 

Drive.  

5.1.4 Modelling the data 

Fitting a linear model, it is found that not all of the variables are statistically significant for all 

sites. This is seen as some variables are removed for the linear models such as day within week 

and day within year for the linear model at Anderson Drive, or Cloud cover and pressure are 

removed from the model built for Union Street while other variables are left in such as wind 

speed, humidity and buses and coaches at Union Street. It is found from these linear models that 

a unit increase in the total number of motor vehicles travelling on Union St results in a 

0.0091𝜇𝑔𝑚−3 increase in log NO2 concentration provided every other variable is held constant.  

Fitting generalised additive models showed non-linear relationships between NO2 and some 

covariates. For example, at Union St NO2 increased from 2006 to 2011 and thereafter decreased 

up until 2015. The day within year showed that the NO2 concentration was lower in Summer 

months compared to Winter months at Union St. A higher wind speed resulted in a lower log 

NO2 concentration – this was shown to be the case at all sites. It was shown at Wellington Road 

that more motor vehicles resulted in a higher concentration of NO2. There are some surprises in 

the generalised modelling of an increase in the number of vehicles resulting in a lower NO2 
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concentration, although this could be due to confounding factors. It could also be because of the 

monitoring of both metrics being in different locations. There is also shown to be a positive 

relationship between the number of buses and coaches and NO2 concentration at Errol Place in 

Aberdeen.  

From modelling the data spatially it was found that a linear regression model is suited to the 

data i.e. modelling log NO2 linearly with different vehicle classes as covariates shows that there 

are statistically significant variables. Concentrations of NO2 can be predicted with a higher 

degree of accuracy where there are more monitoring stations, compared to where there are less 

monitoring stations. Including traffic covariates in this model shows that as HGV emissions 

increase so too does the NO2 concentration. A unit increase in buses emissions and LGV 

emissions have a relatively small effect on NO2 concentration when all other covariates are held 

constant – these concentrations are -0.0008155 and -0.0002343 respectively.  

Incorporating general additive modelling to the spatial data results in a relatively high R2 

adjusted value when compared to the linear model, as well as a lower AIC value. The linear 

model approach was still a good one as it was shown to be a good fit to the data, and adding in 

more covariates showed that the R2 adjusted value only increased as more variance in the model 

was explained.  

The air quality in Aberdeen is generally good, although there are some sites which have 

exceedances of the annual average limit of NO2 which is  40𝜇𝑔𝑚−3. This annual average is 

from the European Commission and there are sites in Aberdeen which have an NO2 

concentration as high as 59𝜇𝑔𝑚−3 at some times. These sites include Union St and Anderson 

Drive.  

5.1.5 Inverse Regression 

Inverse regression is a tool which might allow a model to be used for management. It can be 

used under certain conditions that may allow for a reasonable probability that standards would 

not be exceeded. Although in this thesis using inverse regression provided results of a counter-

intuitive nature, where it described the relationship between NO2 and the LGV emissions 

covariate, it is still a tool which can be used to explore under different conditions covariates 

would need be if the NO2 concentration was to exceed, or not exceed as may be the case, a limit.  
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One limit to inverse regression is that it becomes more complicated as more covariates are used 

in the model. This can lead to important confounding variables being left out of a model and 

some results being produced which are not as valuable as the method of inverse regression is 

itself.  

5.1.6 Chapter analysis and limitations 

Chapter 1 gives a short summary on air pollution. It has also introduced the data; for NO2, 

meteorological variables and traffic variables. The NO2 is introduced at the different sites for 

both AURN sites and diffusion tube sites. Finally, this Chapter discusses the aims of the thesis. 

The main overall aim was to build a model (or models) which show the behaviour of NO2 over 

time, and then over space. Limitations of the data for the traffic variables - these are limited and 

had to be disaggregated. 

The model was built and discussed in Chapter 2. Both a linear model and a generalised additive 

model were built for each of the 5 AURN sites. It was found that at each of these sites the 

generalised additive model proved to be the better model when compared to the linear model 

corresponding to the same site. The generalised additive model proved to be a better model in 

each case as more variance was captured as well as having a lower AIC value compared to the 

corresponding linear model. These methods are discussed in [62] and have links with extensive 

information. From plots in section 2.7 one can conclude that there is no overall trend but there 

are strong seasonality and day of the week effects. Limitations to the temporal modelling were 

that only 5 sites could be modelled temporally, given the nature of the diffusion tube data. Only 

the AURN sites could be used. This is a limitation of the work carried out in the thesis as 

opposed to the limitation of the methodology. The methodology itself can be carried out at other 

locations and during other years if this was of interest. 

Chapter 3 looked at the data in the spatial dimension, focussing on the year 2014 for 

approximately 50 locations. Two models were made in this Chapter; one with only spatial 

variables such as Easting and Northing, and a second with the same variables used that were 

used in Chapter 2, namely traffic variables consisting of different vehicle classes and 

meteorological variables also. In this Chapter, it was quickly shown that weather variables were 

not useful as there was only one site where the data could be collected, namely Dyce Airport, 

thus resulting in there being no data to model any spatial variation from NO2 monitoring site to 

NO2 monitoring site. Other variables like the traffic variables were useful when it came to 
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building a linear model, and the conclusion is that the traffic variables LGV emissions and HGV 

emissions are both statistically significant, albeit that LGV emissions were proven to be 

unintuitively negatively correlated with NO2 concentrations. One would expect that as LGV 

emissions increased, so too would NO2 concentrations, although the work done in this thesis 

suggests otherwise. This is not to say that the work here is incorrect, or indeed that it is correct, 

it is there to be disproven. It is possible to do further work on the sites by collecting more data, 

establishing weather monitoring stations at different locations, and carrying out other statistical 

methods for modelling on the same data. The results from Chapter 3 confirmed that areas which 

were closer in space were more like one another, for example that the areas which had the 

highest NO2 concentration was in the city centre, whereas rural areas had a lower concentration 

of NO2. The results presented corresponded only to the year 2014 as this was used as an 

illustrative example of the analysis which could be undertaken.  

Chapter 4 focused on the inverse regression methods used to show, given a particular 

concentration of NO2 concentration, what the number of a particular vehicle class had to be 

equal to, for a specific place during a specific year. For example during 2014 at Anderson Drive, 

given we want the log NO2 value to be below 3.69𝜇𝑔𝑚−3, the level of HGV emissions must be 

below 200𝑔𝑘𝑚−1 approximately, with other variables kept constant. This is for the model 

containing only an intercept, an HGV term, and an LGV term as discussed in sections 3.5, 3.6 

and 4.3. The basic idea that NO2 can be predicted given other covariates are known is presented 

in this Chapter. It is limited as the results are specific to Anderson Drive i.e. if inverse regression 

were carried out at more sites the results would be more interesting. Inverse regression in this 

Chapter was also limited o analysing only two covariates. 

5.2 Further work 

Moving forward with this work in mind, further work could be done to include a similar analysis 

to the likes that has been done, only this time including other pollutants (such as PM10 and 

PM2.5) also. This is in the sense of spatially and temporally analysing pollutants in Aberdeen. 

This, in theory, could be carried out in other cities in Scotland (as seen in the work by Allison 

[63]), and indeed carried out in other cities internationally.  

An ideal set up would be to have a number of count points, weather monitors, and pollutant 

monitors (for monitoring traffic, meteorological and pollutant variables respectfully) located 

throughout the city, at equal distances from one another so that a grid of monitors may be 
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established, say each square of the grid being 1km2. This would allow, in theory, for high 

resolution monitoring of NO2 and other pollutants, and as a direct result high resolution 

modelling for the relationships between pollutants and other parameters. The same modelling 

methods employed in this thesis could be used for the modelling of data in this ideal set up. This 

set up would also overcome the key limitation that the measurements of NO2 and traffic were 

not made in the same places. As can be seen from previous figures some of the locations are 

quite far away from one another. 

This problem of varying distances between locations measuring pollution and traffic could be 

responsible for, or at least a major contributor, to the non – intuitive relationships discovered 

between NO2 and some vehicle emission classes. With measuring locations not being in the 

exact same location, and with air pollution changing measurably over the distance of a few 

metres, the observed data are not as accurate as one would like. The resulting data is slightly 

misclassified. This problem of misclassification could perhaps be overcome by simply moving 

the diffusion tubes to the count point locations. Another way of overcoming this problem of 

distance between monitoring locations is by using land use regression as is done in [77]. Other 

variables (as well as emission factors) are used. For example, traffic intensity. This paper also 

highlights the problems with traffic data as it is not available throughout cities, usually the 

availability is restricted to major roads only. To overcome this problem, some land use 

regression studies have explored successfully the use of the length of specific road types when 

traffic intensity data is lacking [78]. It would be wise to have all monitoring locations, whether 

for NO2 or traffic on the same map, for clearer comparison.  

Further work which could be done on the spatial modelling of the Aberdeen air quality and 

traffic data is to compare the spatial data from year to year, instead of a single year analysis, and 

then make a spatial temporal model, as analysing one year does have certain limitations. Also, 

with the few numbers of monitoring stations, the spatial analysis would benefit from more 

stations so that a higher degree of accuracy i.e. a lower standard error would be obtained.  

A more realistic set up is to continue with inverse regression using the models described in 

sections 3.4 – 3.6. The difference being between the work already done, and the further work to 

be done is that there are a number of parameters which have yet to be used in inverse regression 

i.e. there are a number of combinations which need to be set so that one can find how many of 

a certain vehicle type need to be going down a particular road at a particular time so that log 
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NO2 can be below a certain concentration. This is the same use of the tool that is described in 

Chapter 4, only this time for other variables.  

Another logical next step which could be done is to build a spatio-temporal model so that air 

pollution in Aberdeen is modelled across space and time simultaneously. This would be similar 

to the work done by Lindstrӧm et al. [64]. This is a natural progression from building separately 

both a spatial model and a temporal model.  
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