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Abstract

Fluorescence microscopy offers unrivalled insight into the inner workings of dynamic
biological processes across many temporal and spatial scales, with innovations such as
light-sheet and confocal microscopy extending this imaging ability into all three spatial
dimensions. When performed with these methods, however, 3D imaging lacks the high
temporal resolution of 2D imaging. This is because acquisition of a volume requires
the sequential acquisition of many individual 2D planes, with volumetric acquisition
times often spanning multiple seconds. This means that such methods are unsuited to

the 3D imaging of dynamic processes that occur over shorter timescales.

Ideally, it would be possible to perform full 3D imaging in a single snapshot, in a
similar fashion to 2D imaging. Yet, while snapshot volume-imaging methods do exist,
they typically require a significant compromise in spatial resolution. We see, therefore,
that with existing methods there is a trade-off: for 3D fluorescence imaging we must
choose between techniques that provide high-resolution in space, but slow, plane-by-
plane 3D imaging; or those that provide fast 3D imaging but at the cost of spatial

resolution.

In this thesis we introduce imaging techniques that overcome these limitations.
Through the development of an image processing pipeline that offers volumetric re-
construction from 2D projection images, we demonstrate how 3D fluorescence imaging
may be performed while maintaining high resolution in both time and space. We apply
the volume reconstruction framework to both simulated and experimental images ac-
quired via two distinct projection imaging modalities, demonstrating the versatility of
the technique. Additionally, we explore the benefits provided by the volumetric recon-
struction pipeline in the context of single-molecule localisation microscopy. Because of
the high temporal resolution offered by the volumetric imaging techniques introduced
in this thesis, the methods are applicable to a wide range of dynamic biological samples
and have the potential to offer new insight into dynamic biological processes. To the
best of the author’s knowledge, the snapshot volume imaging methods introduced here

are the first such methods that maintain the resolution of the parent imaging system.
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Chapter 1

Introduction

Ever since its inception at the end of the 16th century, optical microscopy has played
a fundamentally important role in scientific discovery. In its infancy, the compound
microscope piqued the interest of large parts of the scientific community through its
ability to make visible the otherwise unobservable microscopic detail of everyday items,
captured famously in Robert Hooke’s 1665 publication of Micrographia [1]. In the
ensuing years optical microscopy continued to enable key scientific discoveries, including
those of cells and bacteria. The 19th century brought key technical and theoretical
advancements: Joseph J. Lister’s innovation in lens combination saw vast improvements
in image quality, while Ernest Abbe linked the resolving power of a microscope to
the wavelength of the light being observed. Mass production began, which continued
into the 20th centrury and enabled the wider uptake of optical microscopy across
the sciences. Since then, it has been adopted across a broad array of fields, including
material science, pharmaceutical research and medicine; and remains perhaps the most

widely used tool in the life sciences to the present day.

Several types of optical microscopy exist, each exploiting different optical phenom-
ena to address specific challenges. Fluorescence microscopy, the focus of this thesis,
has emerged as an especially powerful technique because of its ability to isolate specific
structures of interest through targeting distinct fluorescent dyes or proteins, offering
unrivalled insight into cellular structure and function. As such, it has become a staple
tool in bio-imaging with applications spanning plant and animal biology across scales

ranging from the single molecule through to whole organisms.

That said, fluorescence microscopy remains an imperfect practice and continues to
be advanced through current and ongoing research. This is because the performance of
fluorescence microscopy is fundamentally limited by the influence of several distinct but
important phenomena. The ideal fluorescence imaging system would possess a number
of key characteristics. For instance, it would acquire images that feature excellent
contrast while providing a high spatial resolution across a large field of view (FoV).
It would image many fluorophores simultaneously while maintaining a high optical

throughput. Importantly, it would acquire images over a large depth range and in all
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Figure 1.1: Motion during light-sheet acquisition introduces significant artefacts. Im-
age shows a zzr maximum-intensity projection of a 3D light-sheet image of a beating
zebrafish heart. The motion of the heart during normal light-sheet acquisition causes
significant artefacts and seriously degrades the image. Image acquired on a light-sheet
system, courtesy of Dr Jonathan M. Taylor. Scale-bar 25 pm.

three spatial dimensions, with contributions from only in-focus light so as to provide
optical sectioning. And finally, it would acquire images quickly in order to properly

capture the dynamics of rapidly-moving scenes.

However, each of these characteristics is, in practice, restricted by one or more
limiting factor. For example, acquisition speed is often limited by the typically low
photon budget in fluorescence imaging experiments, or the requirement to scan during
acquisition. The achievable spatial resolution is governed by the laws of diffraction,
which state that the resolution is both proportional to the emission wavelength and
inversely proportional to the numerical aperture (NA) of the objective lens. The spec-
tral range that can be imaged simultaneously is restricted by the available laser lines,

fluorophores and fluorescence filters.

This thesis focuses on the challenges associated with performing 3D imaging of
highly dynamic samples. These challenges arise from the fact that conventional fluo-
rescence microscopy is limited to the fast acquisition of 2D images, with volumes being
imaged by repeating this process while moving the sample relative to the illumination
in order to image at different depths. However, this process breaks down if the sam-
ple is undergoing motion during acquisition, since the acquired volume is not a true
reflection of the sample at any single point in time. When imaging rapidly-moving
scenes, this can lead to two issues in the acquired data. Firstly, the temporal sampling
interval between volumes acquired with scan-based methods mean that the dynamics
of the sample may not be properly captured. Secondly, motion artefacts may be intro-
duced into acquired volumes resulting from slow acquisition speeds, possibly leading
to erroneous sample measurements been made. An example of this type of motion

artefact is displayed in figure 1.1.

Faster volumetric acquisition speed in a z-scanned system may somewhat solve
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this problem for slow-moving samples, providing the Nyquist sampling criterion is
met in the time domain as well as space. However, for highly dynamic scenes where
motion occurs over much shorter timescales, for instance the beating hearts of small
organisms or the flow of blood, conventional scan-based acquisition methods are no
longer suitable: indeed, any temporal delay between imaging different regions of the
sample is likely to introduce this type of artefact. For these purposes, scan-free, ideally
snapshot volume-acquisition methods are desirable, that image the entire sample depth
at the same time-point. While some scan-free volume imaging methods do exist, e.g.
light-field microscopy (LFM) [2], they typically require a significant compromise in
spatial resolution compared to that offered by the parent imaging system. This raises
the question: is it possible to acquire a 3D image in a single snapshot while maintaining
high spatial resolution? By combining various optical techniques with custom image
processing frameworks, several imaging pipelines are proposed in this thesis that offer
fast volumetric imaging while maintaining high spatial resolution. Chapters 2 and
3 focus on the development of a snapshot volume imaging technique that combines
point-spread function (PSF) engineering methods with a custom image deconvolution
framework. In chapters 4 and 5, we then demonstrate how this framework may be
applied to various other image acquisition methods, illustrating its versatility in the

reconstruction of volumes from few projection views.

1.1 Thesis organisation

This thesis is organised as follows. The current chapter contains a brief theoretical
background to concepts that are central to the work presented in this thesis, including
optical transfer functions (OTFs), image deconvolution and PSFs. This is followed by
a review of relevant literature and related optical methodologies. In chapter 2, we de-
velop a general mathematical framework that forms the basis of the image processing
used in the imaging methods introduced later in this thesis. This mathematical frame-
work, based on Richardson-Lucy (RL) deconvolution [3, 4], enables full 3D volumetric
reconstruction from 2D projection images, providing certain conditions are met. In
chapter 3, we introduce 3D engineered point-spread function microscopy (3D-EPM), a
technique that combines this mathematical framework with PSF engineering to enable
high-resolution snapshot 3D fluorescent imaging. Chapter 4 demonstrates the appli-
cation of 3D-EPM to the specific challenge of 3D point localisation in fluorescence
microscopy, where we see its application introduces significant advantages over exist-
ing approaches. Finally, chapter 5 demonstrates the application of the mathematical
framework developed in chapter 2 to different imaging modalities including multi-angle
projection imaging [5], enabling 3D reconstruction from few projection images, as well
as a tomographic implementation of 3D-EPM, enabling snapshot 3D imaging with a

isotropic 3D resolution.
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1.2 Background information

In this section we introduce some theoretical background material to topics that are
relevant to this thesis. We begin with the working principles of fluorescence microscopy,
before discussing how a microscope may be characterised in terms of its OTF or PSF.
We also discuss some theoretical performance limits of an optical microscope, describe
image formation in terms of an optical convolution, before finally introducing image
deconvolution, an image processing technique that underpins the methods developed

in later chapters of this thesis.

1.2.1 Principle of fluorescence microscopy

We start our discussion with an introduction to the type of imaging that is the focus of
this thesis: fluorescence microscopy. This type of microscopy exploits the principle of
fluorescence, a process where certain fluorescent molecules, known as fluorophores, emit
light of a characteristic spectrum upon excitation with incident light, also of a char-
acteristic spectrum or wavelength. The fluorescence process can be described in two
stages: excitation and emission. Excitation occurs when an incident photon is absorbed
by the fluorophore, elevating it to an excited electron state. The fluorophore remains
in an excited state for a short period of time, known as its excited lifetime, after which
time a photon is emitted, returning the fluorophore to its ground energy state. Due to
energy dissipation that occurs during the excited state, the emitted photon is of longer
wavelength than the excitation photon!. Fluorescence microscopy exploits the char-
acteristic nature of the emission and excitation spectra of fluorophores. By labelling
a certain structure within the sample with a known fluorophore, that structure is im-
aged by illuminating the sample with light of the required excitation wavelength and
detecting fluorescence at the corresponding emission wavelength through use of appro-
priate spectral filters. Therefore, fluorescence microscopy offers molecular specificity
and is able to target specific sample components and isolate them from other structures
within the sample, where other microscopy methods might suffer from poor contrast.
This is especially useful in, for instance, the study of individual organelles within cells.
Fluorescence microscopy may also be used to image samples expressing proteins that
fluoresce, for instance green fluorescent protein [6], or the auto-fluorescence emitted by

samples under certain irradiation wavelengths.

Fluorescence microscopes come in a number of different varieties. Figure 1.2 dis-
plays a schematic of a simple widefield epi-fluorescence microscope. Here, the fluores-
cence excitation light is delivered to the sample through the same objective lens used
for imaging. Other types of fluorescence microscopes, e.g. light-sheet microscopes,
decouple the illumination and detection, delivering the illumination via a second ob-

jective lens. In the epi-illumination configuration displayed in figure 1.2, the sample

! Assuming single photon excitation.
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Excitation
filter

Objective
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Figure 1.2: Schematic of a fluorescence microscope.

is illuminated with collimated light, formed by focusing the illumination laser beam
onto the back pupil plane of the objective lens. The desired excitation wavelength is
passed by the excitation filter, before the beam is reflected towards the objective lens
with a dichroic mirror. Fluorescence (green) is excited at the sample and collected
by the same objective lens. The fluorescence passes the dichroic filter and the target
wavelength is filtered with an emission filter. The tube lens then focuses the detected

fluorescence to an image plane, where an image may be recorded with a camera.

1.2.2 Microscope and image characteristics

The characteristics of an image recorded by such an optical microscope depend on a
number of factors. The purpose of any microscope is to produce a magnified image of
the sample in question. The magnification of the image depends primarily on the choice
of objective lens, as well as the other lenses in the imaging path. The magnification
alone, however, does not completely describe the imaging system. Other important
features include the resolution and contrast achieved by the microscope. Here we
explore some of these characteristics and their influence on imaging performance in

fluorescence microscopy.

Resolution

The resolution of a microscope, or any imaging system, is defined as the minimum
distance two points must be separated in object space for them to be resolved as
distinct points in the image. Again, the resolution is determined primarily by the
choice of objective lens used for imaging, or more specifically, its numerical aperture
(NA). The NA of an objective lens indicates the range of angles it can accept and is
defined as:

NA =nsinf (1.1)

where n is the refractive index of the medium between the sample and the objective




1.2. BACKGROUND INFORMATION CHAPTER 1. INTRODUCTION

lens (known as the immersion medium), and € is the half-angle of the cone of light
that the objective lens can accept. The resolution of a perfectly-aligned microscope
was found in 1873 by Ernest Abbe to be [7]:

A

Tx,y = m (]_2)

Therefore, to resolve smaller sample features, higher NA lenses are required. Increasing
the NA above 1 requires use of an immersion medium with a refractive index greater
than 1, such as water, glycerol or oil. Similarly, the Abbe definition of resolution in

the axial direction is given by:

2
EE

(1.3)

T

The Abbe resolution limits given in equations 1.2 and 1.3 were defined in terms of
the size of the Airy disk formed when imaging a single point-emitter (discussed further
in section 1.2.3). Rayleigh later refined the definition of resolution to require that two
points are separated such that the central, or principal diffraction maximum in the
Airy disk from one point-source coincides with the first diffraction minimum of the
Airy disk from the other point source in order for them to be resolved. The Rayleigh

definition for lateral resolution is given by:

~0.61)

rx,y = W (14)

Both definitions of resolution are common in microscopy and differ only by a con-
stant, reflecting different interpretations of what separation is needed for two points
to be resolved. The key point to note, however, is that lateral resolution is inversely

proportional to the objective NA, whereas axial resolution is inversely proportional to
NAZ

Sampling

To achieve a resolution approaching the theoretical maximum determined by equation
1.2, in addition to the microscope being perfectly aligned, the image formed at the
image plane must also be sampled correctly. In modern fluorescence microscopes,
images are recorded on scientific cameras which feature arrays of discrete pixels of
certain dimensions. This means the continuous image signal is sampled in a discrete
fashion and therefore the size of the pixels must be considered. For instance, if the
theoretical resolution of a microscope is 1 pm, but the pixel dimensions are greater than
this value, the theoretical resolution will not be achieved in practice, since two points
separated by the theoretical minimum resolvable distance will be imaged in the same
or neighbouring pixels. The Nyquist-Shannon sampling criterion requires the sampling

interval to be less than half the period of highest frequency passed by the microscope
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Figure 1.3: Simulated imaging of point-sources where the image is Nyquist-sampled
(left) and undersampled (right). Grid lines are visible (when zoomed in to the PDF
version) to emphasize the pixel dimensions. Scale-bar is 1pum.

for the signal, or resolution, to be preserved [8]. If the image is undersampled, i.e. the

r
29

image quality, an example of which is illustrated in figure 1.3.

pixel dimensions exceed %, aliasing of high-frequency features may occur, degrading

Noise

The above sampling criterion places an upper limit on the pixel dimensions for optimal
imaging performance. The magnification of the microscope should therefore be chosen
such that this criterion is met. However, the pixel dimensions should not be decreased
far beneath this limit for two reasons. Firstly, the detector has a finite number of pixels
and therefore finite dimensions. Since the NA places an upper limit on the resolution of
the imaging system, no resolution is gained by increasing the sampling rate. Therefore,
to maximise the dimensions of the field imaged without sacrificing resolution, the pixel
dimensions should be as close to the sampling requirement as possible. The second
factor is the influence of noise on acquired images. Scientific cameras are imperfect
measuring devices that convert the number of photons detected by individual pixels
within a given exposure time to an electronic charge. At the end of the exposure, the
accumulated charge in each pixel is quantified during a process known as readout, and
converted to a final pixel value. However, as well as quantifying the signal photons
detected at each pixel, images are also susceptible to multiple sources of noise, the
exact nature of which depends on the type of camera used. There are generally two
primary sources of camera-induced noise present in images: read noise and dark current
noise. Read noise is the accumulation of charge generated by all electronic components
during readout. In charge-coupled device cameras read noise is typically characterised
by a Gaussian distribution [9]. Dark current noise, on the other hand, results from
thermally-generated electrons that are independent of the incident light. Dark current
noise is reduced through sensor cooling and is often negligible for high-performance
cameras. Other sources of noise include clock-induced charge and pattern noise. In
addition to the camera-induced noise, the stochastic nature of fluorescence emission and
the discrete nature of photon detection mean that fluorescence images follow a Poisson
noise profile. This type of noise is commonly referred to as photon shot noise and is

quantified by the square root of the measured signal [10]. The influence of shot noise

7.
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Figure 1.4: Simulated imaging of point-sources with decreasing signal-to-noise ratio
(l-r). Scale-bar is 2 pm.

is therefore reduced at higher incident photon fluxes, and is a sample-dependent noise,
independent of the choice of camera. Shot noise is a key consideration in fluorescence
microscopy where there is typically a limited photon budget, owing to the sensitivity

of biological samples to harmful laser excitation light.

The combination of the camera noise and the sample noise mean that an acquired
fluorescence image is a noise-corrupted estimate to the true underlying fluorophore
distribution. Noise acts to degrade image contrast, introducing a grainy appearance
into images that worsens with decreasing levels of signal photons. This is illustrated in
figure 1.4, which shows fluorescence images of a sample of point-sources being simulated
at decreasing signal levels, where the mean and standard deviation of the readout noise
distribution is kept constant. Additionally, noise can inhibit the performance of many
of the image processing methods discussed in this thesis. The level of signal above
the noise in the image is quantified by the signal-to-noise ratio and should be kept as
high as possible for optimal image quality and image processing results. Fluorescence
imaging is typically subject to low levels of signal photons, owing to the sensitivity
of biological samples to excitation light and the bleaching of fluorophores. Therefore,
to maintain the highest-possible signal-to-noise ratio, the pixel dimensions should be
kept as large as possible while still sampling the image adequately, so that the signal

photons are spread between the fewest possible pixels.

1.2.3 The microscope optical transfer function

In the above section we saw that the resolution limit of a perfectly aligned microscope
can be calculated from theoretical predictions. The ability to characterise an optical
system is important in understanding its theoretical performance limits, as well as in
the design of new imaging systems. One such method for characterising an imaging
system in the spatial domain is through measurement of its response to a single point-
source of light. The response of a system to a single point-source is known as its
PSF. Its Fourier transform, the OTF, equivalently characterises the imaging system
in the spatial frequency domain [11]. In this section we describe the OTF, the PSF,
and a closely related quantity, the modulation transfer function (MTF). It is worth

noting that the following discussion is limited to incoherent imaging systems, such as
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Figure 1.5: Diffraction limited PSF and MTF.

a fluorescence microscope.

Point-spread function

The PSF is a function that describes the impulse response of an imaging system in
the spatial domain [11]. The theoretical 3D PSF represents represents the noise-free
image that a perfect detector would record of a single sub-diffraction point source
being translated through the focus along the optical axis. In this thesis, the optical
axis is assigned the coordinate z. When a single point-source at the focal plane of a
fluorescence microscope is imaged, a portion of the emitted light is collected by the
objective lens and focused to an image at the image plane. For a typical, well-aligned
microscope, the in-focus 2D PSF takes the form of an Airy disk, the size of which is
determined by the NA of the objective lens. A 3D PSF estimate may be obtained by
stacking sequentially acquired images as the point-source is translated along the optical
axis. A 3D image formed in this fashion is herein referred to as a z-stack. As the point
source is moved away from the focal plane, the size of the Airy-disk increases and its
peak intensity drops. A PSF recorded in this fashion corresponds to the intensity PSF,
which is the squared magnitude of the complex-valued amplitude PSF. The amplitude-
PSF contains both a phase term and a magnitude term. Often in microscopy, the phase
terms are disregarded, with the system instead being described in terms of its intensity-
PSF (the squared magnitude of the amplitude term of the PSF), or the magnitude of
the OTF, the MTF. To avoid confusion in this thesis, unless otherwise noted, PSF
is taken to mean the intensity-PSF (i.e. |amplitude-PSF|?), not the complex-valued

function.

Optical transfer function

The OTF is a similar function that characterises the imaging system in the spatial
frequency domain [11]. Similar to how the intensity PSF is the squared-magnitude
of the complex-valued amplitude PSF, the intensity OTF is calculated as the auto-
correlation of the complex-valued amplitude OTF [12]. Again, in this thesis, OTF is
taken to mean the intensity-OTF. The OTF shares a Fourier transform relationship
with the PSF:
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2
PSF(z,y,2) = ‘ / / OT F(ky, ky, ko )e'Femthov k=g dy dy, (1.5)

Here, x,y, 2z represent the 3D spatial coordinates, and k,, k,, k. represent the corre-
sponding coordinates in the frequency domain. The Fourier relationship between the
OTF and the PSF means that the information content is equivalent between the two
functions. Because both functions lack phase information, the OTF and PSF are con-
sidered incomplete descriptions of an optical system, however are sufficient analysis
tools in many cases. Since the OTF is calculated as the Fourier transform of the
PSF, it is a complex-valued function, whose absolute value, or modulation transfer
function (MTF), describes the systems ability to transfer contrast from object-space to
image-space as a function of spatial frequency, whereas the complex argument describes
translation as a function of spatial frequency. Often, the complex argument is disre-
garded, with the MTF being used to characterise the imaging system. In many cases,
for instance a diffraction-limited system, the OTF is real and therefore equivalent to
the MTF [11].

Modulation transfer function

The MTF describes how well different spatial frequencies are modulated by the imaging
system. At the focus, low spatial frequencies are well modulated, representing good
information transfer through the imaging system, while those above a certain frequency

are not modulated at all. This is known as the cutoff frequency f. and is given by:

A
Je= 2NT (1.6)

The cutoff frequency is observed to be the inverse of the lateral resolution r defined in
equation 1.2. Away from the focus, however, the MTF drops much faster and contains
zeros at lower spatial frequencies, corresponding to information loss (figure. 1.5). The
depth range over which the MTF remains useful, and indeed the cutoff frequency, is
limited by the NA of the microscope objective, and for the highest NA lenses becomes
the diffraction limit. As shall be seen later in this chapter, consideration of the system

MTF is essential in PSF design and engineering.

The problem of the missing cone

Inspection of the 3D OTF for a widefield microscope reveals a toroidal shape with
missing regions of frequencies above and below the focal plane, see figure 1.6. The
highest spatial frequency that can be passed by the imaging system is limited by the
objective NA. However, the limited acceptance angle of the objective lens means that
lower spatial frequencies are not as well modulated by the imaging system away from

the focal plane as they are at its focus. This phenomenon gives rise to the toroidal shape
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of the 3D OTF, with the frequency voids above and below the focal plane known as the
missing cones, indicated by the dashed red lines in figure 1.6b. The missing cones are
responsible for the relatively poor axial resolution of widefield systems and the presence
of significant out-of-focus light in 2D images. The ideal microscope, therefore, would
collect fluorescence from only a small depth-region close to the native focal plane,
rejecting out-of-focus light and effectively filling the missing cone. A microscope that
is capable of rejecting out-of-focus light is said to achieve optical sectioning, since it
images only a narrow depth-region of the sample at any one time. Optical sectioning is
the key to acquiring high-quality 3D images, which are otherwise severely degraded by
out-of-focus light and suffer severe resolution anisotropy. As shall be seen later in this
chapter there are a number of ways to achieve optical sectioning, including confining
the excitation light to only a narrow depth region close to the focal plane, or through

use of pinholes to reject out-of-focus light.

1.2.4 PSF simulation

As well as estimating the PSF experimentally, the ability to simulate a PSF is im-
portant in the design and comparison of optical systems. Simulating a PSF requires
mathematical description, or model, of the PSF. Numerous PSF models exist: in this
thesis, all PSF simulation is performed using the PSF model described in refs. [12, 13].
This model describes how, for monochromatic light, the amplitude OTF is non-zero
only at the cap of a spherical shell, with a radius k£ determined by the ratio of the re-
fractive index of the microscope immersion medium n to the wavelength of the emitted
light, A\. Therefore, by expressing the axial Fourier coordinate k, as a function of the

lateral coordinates k, k, [13]:

ko (koo k) = \/(27r§>2 - <k2 + k;) (1.7)

the Fourier relationship in (1.5) can instead be expressed as the 2D integral [13]:

2

PSF(Q;7 Y, z) = ‘ //P(kxq ky)ei27r(kzx+kyy)eiQﬂ'k'z(k'z,ky)dexdky (18)

over the 2D pupil function P(k,, k,), which is non-zero over a domain determined by
the acceptance angle of the system (equivalently NA). The pupil function is a complex-
valued function that describes both the phase and magnitude of the wavefront produced
by a single point-source in the sample. Because it contains both phase and magnitude
information, the pupil function is a complete description of the imaging system. Hanser
et al. note that it is necessary to express k., in the form given by equation 1.7 because
while low-NA systems have an OTF that can be approximated as flat, at high NA the

surface takes on a spherical shape [13]. The second exponential term in this description

11.
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(a) (b)
Figure 1.6: Simulated PSF (a) and OTF (b) of the widefield microscope.

of the PSF serves as a defocus term acting to shift the focus of the pupil function along

the optical axis by a distance z [12, 13].

As shall be seen in chapter 3, this description of the PSF is especially useful, as the
PSF is calculated through the Fourier transform of a simple multiplication, between a

complex-valued pupil function P(k,, k,) and a defocus term.

1.2.5 Image convolution and deconvolution

Images acquired via fluorescence imaging systems follow a linear image formation pro-
cess. That is, the image of many points is equivalent to the summed images of each
individual point, owing to the temporal incoherence of fluorescence emission and result-
ing lack of interference effects. Additionally, a widefield fluorescence microscope can
be approximated as spatially shift-invariant, meaning the image of an object does not
change as the object moves across the FoV. With these two assumptions, and the fact
that the image of a point source is the PSF, image formation can thus be modelled as
the summed intensity resulting from the shifted and intensity-scaled images of many
instances of the PSF. Mathematically, this is equivalent to a convolution operation,
and when extended to all 3 spatial dimensions, formation of a 3D image I(z,y, z) of a

3D object O(z,y, z) can be modelled as the 3D convolution given by:

I(z,y,2) = O(x,y,2) ® PSF(x,y, 2) (1.9)

By convolution theory, this can be equivalently represented as a multiplication in

the Fourier domain:

F{l(x,y,2)} = F{PSF(z,y,2)} x F{O(z,y,2)} (1.10)

where .# denotes a Fourier transform. Equation 1.10 clearly illustrates how information
loss can occur during imaging: if the MTF contains zeros then all information at
the corresponding spatial frequencies is irretrievably lost. Convolution is inherently a
blurring operation: the image of a point-source is blurred by the optical convolution

and appears as the PSF. Therefore, fluorescence images are a blurred estimate of the
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true underlying fluorophore distribution at the sample. This raises the question: given
the image formation model in equation 1.9, and the fact that the microscope PSF
can be measured, can this blur be reversed during image processing to reveal the true

underlying sample?

Image deconvolution

The most obvious method to attempt this blur removal is through simple inversion
of the Fourier-domain multiplication in equation 1.10. If the Fourier transform of the
image can be calculated as the product of the respective Fourier transforms of the
PSF and object, then it follows that the object should be restored through the inverse
operation. However, as seen earlier in this chapter, MTF's often contain zeros, or very
small values close to the cutoff frequency, causing amplification of these frequency
components during image restoration. This is problematic, since fluorescence imaging
experiments suffer the characteristic noise degradation discussed in section 1.2, with
numerous contributions from background and readout sources as well as the stochastic
nature of fluorescence emission. Therefore, if noise contributions dominate the spatial
frequencies that are close to zero in the MTF, noise amplification occurs during inverse

filtering, seriously degrading image reconstruction.

Instead, many image restoration frameworks exist that are designed to not amplify
noise in this fashion. Collectively these are known as deconvolution algorithms and
can be separated into two general categories: those that are linear, and those that are
non-linear. Linear deconvolution algorithms search for a solution that is a linear combi-
nation of the Fourier components of the recorded image whereas non-linear algorithms
do not share this constraint. Linear algorithms are generally quicker to implement than

their non-linear alternatives and include the popular Wiener filter, Hjener, defined as:

y__ F{PSF(y.2)}
wiener — |Lo;{pSF(x, Y, Z)}|2 + k

(1.11)

where the asterisk denotes the complex conjugate and k is a small constant, typi-
cally the noise-to-signal rate of the image data. Non-linear algorithms include the
RL algorithm [3, 4], which is perhaps the most widely-used image restoration method
in fluorescence microscopy. The RL algorithm forms the basis of much of the image

processing in this thesis, and is discussed further in chapter 2.

1.3 Literature review

In this section we take a closer look at existing fluorescence microscopy methods that
are able to acquire 3D images. We start with techniques that require scanning to image
a volume, before moving on to techniques that do not share this requirement. For each

technique, we comment on the resolution they provide in both the temporal and spatial
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domains, as well as their optical sectioning abilities and other relevant strengths and

weaknesses.

Scan-based volumetric imaging

We begin by considering volumetric imaging techniques that require the scanning of
either the sample or illumination to acquire a 3D image. These methods form 3D
images by stacking sequentially-acquired 2D images in the course of a z-stack. While
such methods are generally able to provide high resolution in the spatial domain, the
requirement to scan during acquisition fundamentally limits the resolution offered in
the temporal domain. Nonetheless, these methods are widely used in bio-imaging and

each provide their own benefits and drawbacks.

1.3.1 Epi-fluorescence focal stacks

The simplest method to image a volume via fluorescence microscopy is to sweep the
sample through the focus while imaging on a widefield fluorescence microscope, where
the entire sample is illuminated simultaneously via the same objective lens used for
imaging with, for instance, a laser beam that is collimated at the sample. Imaging may
either be performed during the course of a single camera exposure-window, leading
to a z-projection of the sample volume [14, 15], or acquiring one image per z-step,
yielding a 3D image. The time needed to acquire a 3D image is determined by the
number of z-slices the user wishes to acquire and the exposure-time needed per slice,
whereas the spatial resolution of images is determined by the choice of objective lens.
However, as we discussed in the previous section, the epi-fluorescence microscope does
not inherently reject out-of-focus light and therefore does not achieve optical sectioning,
meaning acquired volumes suffer blurring from out-of-focus light, reducing contrast and

3D image quality.

1.3.2 Confocal microscopy

Confocal microscopy [16] is perhaps the most popular method for 2D and 3D fluores-
cence imaging in the study of cell biology. Instead of illuminating the sample with a
collimated laser beam, as in widefield epi-fluorescence microscopy, the confocal micro-
scope illuminates only a small region of the sample with a laser beam that is focused
to a diffraction-limited spot. The fluorescence excited within this small region is then
imaged through a conjugate pinhole aperture placed at the image plane. The pinhole
acts to minimise detection of out-of-focus fluorescence, meaning the confocal micro-
scope achieves optical sectioning, resulting in high-contrast optically-sectioned images.
The illumination is then scanned across the sample in a raster fashion to construct

either a 2D or 3D image. The combined confocal illumination and detection mean the

14.
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Figure 1.7: OTFs for a widefield (left) and confocal (right) microscope. Both OTFs
are shown with a quadrant removed so that their 3D shape is apparent.

confocal PSF' is more compact than its widefield equivalent, and the missing cone in the
OTF is largely filled [17]. A visualisation of the confocal and widefield OTF is provided
in figure 1.7. The temporal resolution of the confocal microscope is limited by both
the sensitivity of biological samples to the illumination intensity (which determines the
acceptable excitation intensity) and the requirement to scan the illumination relative
to the sample during acquisition. Vast improvement in temporal resolution is realised
via parallel-acquisition modalities such as spinning-disk [18] or line-scanning confocal
microscopy [19], however scanning is still required in the axial direction to achieve 3D

imaging.

1.3.3 Two-photon scanning microscopy

Two-photon fluorescence microscopy is another technique that provides optical sec-
tioning and is similar to confocal microscopy in that the sample is most commonly
illuminated with focused laser light [20]. In conventional fluorescence microscopy tech-
niques, fluorescence is generated via single photon excitation, where a single excitation
photon generates a single emission photon of slightly greater wavelength. Both photons
typically fall in the visible region of the spectrum. However, single photon excitation
with visible light cannot penetrate far into thick tissue samples, so is not suited to
deep-tissue imaging. Two-photon microscopy is based on the principle of two-photon
excitation, where two almost-simultaneous excitation photons generate a single emis-
sion photon [21]. Through energy conservation arguments, the two incident photons
must be of longer wavelength than that needed for single-photon excitation (and the
emission wavelength); typically two-photon excitation is in the near infra-red, allowing
far deeper penetration into tissue than single-photon microscopy. Two-photon excita-
tion is a non-linear process?: fluorescence emission only occurs within a region very
close to the focus of the illumination spot, meaning the PSF is more compact than the
widefield microscope and optical sectioning may be achieved without a confocal pinhole

present, allowing for higher optical throughput, albeit at a reduced lateral resolution

2Two photon excitation is proportional to the square of the illumination intensity.
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compared with a comparable confocal microscope because of the longer emission wave-
length [22]. The non-linearity is also beneficial in light-sensitive experiments since the
sample undergoes less photobleaching during acquisition compared with single-photon
excitation as fluorescence is excited within a smaller region. However while widefield
two-photon excitation has been demonstrated [23, 24|, two-photon microscopy is more
commonly implemented as a point-scanning technique that requires the illumination
spot to be scanned across the sample in a raster fashion, limiting the temporal resolu-

tion and rendering it unsuitable for imaging highly dynamic scenes in 3D.

Multi-photon imaging

Extending the concepts of two-photon imaging, fluorescence microscopy techniques
have been developed that exploit three-photon [25, 26] and even four-photon [27] exci-
tation. Three-photon excitation requires a longer excitation wavelength to excite the
same fluorophore compared with single or two-photon excitation. This means that
scattering is reduced and deeper penetration into turbid or scattering media, e.g. bio-
logical tissue, is facilitated [28]. Further benefits of three-photon microscopy compared
with two-photon microscopy include lower background excitation and better optical

sectioning [29] owing to an axially-smaller excitation spot [28].

1.3.4 Light-sheet fluorescence microscopy

Light-sheet fluorescence microscopy (LSFM) is another 3D imaging technique that
provides optically-sectioned volumes [30]. Here, the illumination is delivered in the
form of a light-sheet, formed either by the rapid unidirectional scanning of a laser
beam [31, 32] or by focusing a beam along one axis via a cylindrical lens (figure. 1.8).
Volumes are then constructed by sequentially imaging zy planes while scanning the
sample relative to the light-sheet. Traditional LSFM implementations delivered the
light-sheet illumination via a second objective in an orthogonal orientation compared
with the imaging objective. While decoupling the excitation and imaging optical paths
is beneficial in enabling optical sectioning, the requirement for the launch objective to
be in the same plane as the sample and orthogonal to the imaging objective means
that the application of conventional LSFM to samples prepared by some common
means, for instance those mounted on glass microscope slides, is more challenging [33].
The orthogonal geometry also limits the objective lenses that can be used for imaging,
largely restricting the resolution of conventional light-sheet imaging to the cellular level.
Additionally, there exists a trade-off between axial resolution and FoV: a higher axial
resolution requires a thinner, more tightly-focused light-sheet, which in turn features
a shorter Rayleigh-range and therefore limits the FoV. Various methods have been
proposed to extend the FoV including exciting the sample with Airy [34] or Bessel
beams [35] (the latter of which benefits from combination with two-photon excitation

[36]). While LSFM enables rapid acquisition of zy planes, the temporal resolution is
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Figure 1.8: Light sheet fluorescence microscopy.
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still limited by the requirement to scan the sample or illumination in order to acquire

a 3D image.

Oblique Plane Microscopy (OPM)

Oblique-plane microscopy OPM has emerged as an especially powerful fluorescence
imaging modality that shares the advantages of light-sheet imaging while enabling
samples mounted by conventional means to be imaged [33]. In OPM, a tilted light-sheet
is delivered through the same objective used for imaging, with additional corrective
optics employed in the imaging path that allow the tilted plane to be imaged. The
plane imaged by the primary objective is relayed to the back of a secnd objective,
which reforms the tilted image in a remote-focused volume at its focus. This plane is
then imaged onto a camera via a tertiary objective, tilted at the angle of the light-
sheet. Volumes are acquired by scanning the light-sheet or sample relative to each
other. Computational post-processing is then applied to acquired volumes to remove
the shear introduced from the tilt of the light-sheet. A limitation of OPM is that some
lateral resolution is compromised owing to the tilt of the tertiary objective, as high-
angle rays are not captured. This can be mitigated, however, through use of refractive-
index mismatching at the interface between the secondary and tertiary objectives and

custom-designed tertiary objectives [37, 38, 39].

Scan-free volumetric imaging

We now consider volumetric imaging methods that do not require scanning during
acquisition. The requirement to scan in order to acquire a 3D image via confocal
or light-sheet microscopy fundamentally limits the temporal resolution they can pro-
vide, making them unsuitable for capturing 3D dynamics that occur over millisecond
timescales. For such applications, scan-free volumetric-imaging techniques are desir-
able.

17.
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1.3.5 Bi/multi-plane imaging

Multiplane imaging is perhaps the simplest way of acquiring volumetric information
without scanning during acquisition. Here, multiple focal planes at different depths
within the sample volume are imaged simultaneously. This may be performed using
beamsplitters, which project images of the different focal planes either onto different
cameras [40], or onto the same large camera sensor [41, 42]. Alternatively, diffractive
optical elements can be used to separate the different images onto different regions of
the camera sensor [43], which have been demonstrated to image up to 25 focal planes
simultaneously. Multi-plane imaging does not inherently provide optical sectioning,
since the planes that are imaged in-focus at one sensor/sensor region contribute out-of-
focus light to all others, although this can be suppressed post-acquisition with image
deconvolution [42]. Additionally, the axial separation between imaged focal planes
typically far exceeds the lateral pixel dimensions, potentially leading to multi-plane
focal stacks that are undersampled in the axial direction and feature highly anisotropic

voxel dimensions.

1.3.6 Light-field microscopy

Light-field microscopy (LFM) is a scan-free volumetric imaging technique that per-
mits the acquisition of a 3D image within a single snapshot [2, 44]. By inserting a
microlens array (MLA) into the imaging path of a widefield microscope, the light-field
microscope samples angular as well as lateral information about the observed scene.
Originally, plenoptic treatments of the acquired data allowed computational refocussing
of the observed scene to be performed post-acquisition, which, when stacked and de-
convolved, yielded a 3D image [2]. More recently, a wave optics model of the light-field
microscope was developed, permitting volumetric reconstruction from the acquired 2D
light-field data at increased resolution compared to the original methods [45]. This
work demonstrated how RL deconvolution can be adapted to map between a volume
and a 2D image in a similar context to the volume-reconstruction framework developed
in chapter 2 of this thesis. However, LEM requires a fundamental sacrifice to spatial
resolution, owing to the way the light field is sampled by the MLA [45]. This has
mostly limited the application of LFM to imaging sample structure at the cellular level
or above. While sub-cellular LFM has been demonstrated, it was limited to use with
extremely high-NA objective lenses and sample structure confined to a small depth
region close to the coverslip [46]. Additionally, reconstructed LFM volumes suffer from
characteristic reconstruction artefacts, owing to a non-uniform sampling pattern across
the sample depth, with a particularly information-lacking region at the native focus
[45]. Efforts have been made to suppress/avoid these artefacts, through e.g. imaging on
only one side of the focal plane, combining with wavefront coding [47], and compressive
sensing methods. Despite these drawbacks, LFM has found use in a broad array of

biological applications, including imaging neuronal activity [48], calcium imaging [49],
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Figure 1.9: Schematic of a conventional light-field microscope (not to scale) [44]. A
microlens array (MLA) is placed at the native image plane. The detector (not shown)
images the back focal plane of the MLA. Schematic illustrates a ray-optics depiction
of a single point-source centered in the FoV at the native object plane. Fr and Fya
are the focal lengths of the tube lens and MLA respectively.

FT FMLA

and imaging medaka heart beat and blood flow [50].

Fourier-plane LFM

Conventional LFM placed the MLA at the native image plane of the microscope [2].
This leads to a PSF that is spatially variant, meaning the convolutional model of image
formation given by equation 1.9 cannot be applied, and therefore LFM deconvolution
is extremely computationally burdensome. Recently, Fourier LFM was introduced,
where there MLA was instead placed at a Fourier plane [51]. This yields a PSF that
is spatially invariant, simplifying the volume reconstruction process, as well as signifi-
cantly reducing reconstruction artefacts. Fourier LEM also offers improved resolution
compared with conventional LFM, although there is still a significant loss of resolution

compared with that provided by the parent imaging system.

1.3.7 PSF engineering

PSF engineering, or pupil plane engineering, is another technique that has found pop-
ularity in fast 3D imaging. Here, additional optical elements are introduced into the
imaging path of the microscope such that its PSF becomes altered to better suit the
needs of a particular experiment. Originally termed wavefront coding, the technique
was first introduced in [52], where the authors demonstrated that by introducing a
cubic phase term at the exit pupil of an incoherent imaging system, the PSF and
MTF became less sensitive to defocus, effectively providing an extension to the depth
of field (DoF) (the depth range over which an imaging system can form an in-focus
image, measured in object-space) with no reduction to the NA. However, the PSF
of a wavefront coded imaging system is typically larger and of a different form than
that of an unaltered system (figure 1.11), meaning acquired images must be restored
via computational post-processing (typically deconvolution). This combination of op-
tical and computational techniques is termed hybrid imaging [52]. PSF engineering
techniques, as well as computational post-processing, underpin the work presented in

this thesis. Therefore, it is worth exploring the field a little more in-depth than the
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Figure 1.10: Pupil-engineering is typically implemented through the addition of a 4f
lens relay behind the native image plane.
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above-mentioned microscopy methods. The following sections provide a brief theoret-
ical background to the techniques and explore its application in various experimental

settings.

Engineering the pupil

The exit pupil represents an ideal location to adjust the characteristics of an imaging
system because of the Fourier relationship it shares with the image plane, see equa-
tion 1.8. Additionally, the PSF model discussed in section 1.2.3 demonstrates how a
defocused PSF can be modelled as the the Fourier transform of a 2D pupil function
multiplied by a defocus term [13]. Therefore, the 3D properties of a system with a
given pupil function P(k,,k,) can be easily predicted, providing scope to design a
PSF based on particular experimental requirements. However, the exit pupil of most
microscope objective lenses (especially infinity-corrected lenses) is located inside the
lens housing and therefore not easily accessible. Therefore, in PSF engineering tech-
niques the exit pupil is typically accessed through the addition of a 4f relay behind
the primary image plane, see figure 1.10. The PSF is then altered through placement
of some phase-modulating device, e.g a glass phase mask, a digital micro-mirror de-
vice or a spatial light modulator (SLM), at the re-imaged pupil. Both the phase and
amplitude can be modulated at the pupil (the pupil-function is complex-valued); glass
masks are typically designed to modulate only phase, whereas SLMs may also serve as

an amplitude mask.

Cubic phase-mask

Dowski and Cathey [52] first introduced pupil-engineering in their seminal 1995 work
which demonstrated the resulting MTF of a system with a cubic phase mask (CPM) at
the exit pupil is free of zeros across an extended DoF. Such a system therefore exhibits
less information loss than an equivalent system with no phase-mask present. The cubic

phase mask corresponds to a phase-only pupil function given by

Oks, ky) = (kS + k) (1.12)

where ¢ denotes the pupil phase and « is a constant that determines the strength of
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the CPM. A visualisation of the cubic phase function, as well as other phase functions
is provided in figure 1.11. The resulting PSF of such a system exhibits a distinct
“L” shape, with a prominent lobe structure and strong asymmetry, see figure 1.11b.
Extended depth of field EDoF imaging using the cubic PSF was first demonstrated

experimentally in [53] in a macroscopic setting.

While the cubic PSF does retain a compact shape over an EDoF, it also occupies a
larger lateral footprint than the equivalent in-focus unaltered PSF, which acts to blur
acquired images by the convolution relationship given in equation 1.9. This means
that raw cubic-encoded?® images appear blurred and feature repetition-like artefacts
owing to its lobe-structure. Through image deconvolution, however, this blur can be
successfully reversed throughout the EDoF to restore a high-qualty image, owing to a
lack of zeros in the cubic MTF. Originally performed using a simple inverse filter [53],
this is more commonly implemented with Wiener deconvolution. [54]. However, while
the appearance of the cubic PSF remains largely unchanged over the EDoF, it does
exhibit a lateral translation across the FoV, owing to a term in the cubic OTF that
is linear with defocus [52]. Additionally, a phase-shift term in the cubic OTF leads to
image artefacts being introduced if image restoration is performed using only a single
deconvolution kernel, manifesting as replication artefacts in restored images [55]. The
cubic OTF is explored further in chapter 3. While attempts have been made to improve
deconvolution algorithms to find an optimal kernel to reduce image artefacts [56],
performing image restoration with only a single deconvolution kernel is fundamentally
unsuitable for cubic-encoded images because convolution with a single kernel is an
incomplete description of image formation. Despite these problems, however, the CPM
has found use in many different imaging applications, including in conjunction with
other imaging modalities such as light-field imaging [47] and light-sheet microscopy
[57]. For the same reasons the CPM has found popularity in imaging optics, it has also
found applications in the illumination path of light-sheet microscopy, offering a larger

FoV and lower peak irradiance than conventional Gaussian light-sheets [34].

Complimentary kernel matching

Complimentary kernel matching (CKM) was introduced as a method to avoid the
replication artefacts introduced during image restoration [58]. By imaging the scene
simultaneously with a pair of PSFs that respond differently to defocus, an optimal de-
convolution kernel for local image regions could be found by varying the kernel defocus
until artefacts in both deconvolved image regions were minimised. As well as restor-
ing an artefact-free image, this method also benefited from providing a depth-map of
small patches within the image; extracting latent depth-information contained in the
acquired images through their disparity. Because the method sub-divides the images

into smaller patches, it is optimal for scenes containing smooth surfaces, however does

3Raw images acquired on a system exhibiting a cubic PSF are said to be “cubic-encoded”.
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Figure 1.11: Phasemask and corresponding PSF's over an axial range of +15um. Left
column shows the phase function for (a) the unaltered, diffraction-limited PSF; (b) the
cubic PSF; (c¢) the Twin-Airy PSF and (d) the COSA psf. Center 3 columns show
the PSFs at —151um, Opm and 15pm. Right column displays a maximum intensity
projection of each PSF over the full 30 pm range, colour-coded for depth.

not work as well for more sparse scenes that feature large depth discontinuities within
the smaller image regions. Additionally, since the method provides only a 2D depth-
map rather than a full 3D volume, it can not be described as a volumetric imaging
technique. However, the method for encoding depth information into snapshot images
embodied by CKM forms the basis of the snapshot volumetric imaging technique pre-
sented in chapter 3 of this thesis. By applying the mathematical framework developed
in the following chapter to images encoded in this way, we demonstrate how full 3D
volume reconstruction is possible by exploiting the depth-information encoded into

PSF-engineered images.

Point localisation

Point localisation and single molecule localisation microscopy (SMLM) applications
are perhaps the most common use of PSF engineering techniques in the life sciences.
Here, the spatial coordinates of individual molecules or point-emitters are determined

from the acquired 2D PSF-engineered images. In SMLM, localisation precisions of
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beneath 50 nm are possible [59]. Hence, SMLM is said to achieve super-resolution. Of-
ten, SMLM is used alongside fluorophores that undergo photo-switching in techniques
such as (fluorescence) photo-activated localisation microscopy (fPALM) [60, 61] and
stochastic optical reconstruction microscopy (STORM) [62]. Here, fluorophores ran-
domly switch between an “on” state and an “off” state. Consequently, only a sparse
subset of the fluorophores labelling a sample are emitting fluorescence photons at any
given time-point. This helps ensure sparsity in images, allowing the coordinates of
spatially-separated PSF's to be calculated. In 2D, this is often performed by fitting
e.g. Gaussian profiles to PSFs. However, performing SMLM in only two dimensions
is often insufficient, since most biological samples of interest exhibit 3D structure and
dynamics. It is therefore desirable to also obtain the axial position of fluorophores in

addition to the coordinates in x and y.

Determining the axial coordinate of fluorophores introduces significant additional
challenges to SMLM experiments for a number of reasons. Firstly, super-resolution
(SR) imaging of this kind typically requires extremely high NA lenses, with an associ-
ated DoF of just a few-hundred nanometeres either side of the focal plane. Additionally,
the diffraction-limited PSF is approximately symmetric about the focal plane and con-
tains very little information about depth, meaning it is not possible to extract the axial
coordinate of emitters. PSF engineering has been implemented as a tool to solve both
these challenges and enable 3D SMLM. Early implementations exploited astigmatic
PSFs, formed by inserting a cylindrical lens into the imaging path, yielding an asym-
metric PSF whose shape is indicative of depth [63]. However, while the astigmatic
PSF remains compact, it does not inherently extend the system DoF, meaning the
depth range over which 3D-SMLM could be performed was limited to approximately
600nm. More recently, several other PSFs have been designed that simultaneously
extend the DoF while encoding depth information, thus permitting 3D-SMLM to be
performed over an extended depth range. The earliest example of such a PSF was
the double-helix (DH), that exhibited a pair of lobes whose orientation is indicative
of depth [64]. The DH PSF effectively doubled the available DoF to approximately
2 pm while maintaining strong localisation performance. Since then, several other PSFs
have been proposed which further extend the DoF. These include the Tetrapod [65],
Cropped-oblique secondary astigmatism (COSA) [66], Airy/self-bending PSFs [67] and
the twin-Airy PSF [68].

Performing 3D localisation from PSF-engineered image data presents significant
additional challenges compared with performing 2D point-localisation. This is because
(i) a Gaussian profile may no longer be an adequate description of the PSF, and (ii)
the image domain lateral footprint of engineered PSF's is typically far greater than a
diffraction-limited PSF, meaning signal-to-noise ratio in images is typically far worse,
and samples must be labelled less densely to avoid overlapping PSFs in images. This is
explored further in chapter 4 of this thesis, where the volume reconstruction methodol-

ogy developed in the following chapter is applied to SMLM, where we see it introduce
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significant improvements to localisation performance.

Extended depth-of-field and projection imaging

The final method for obtaining 3D fluorescence information that we consider in this
chapter is through EDoF or projection imaging, where an extended depth-region within
the sample is projected into a single 2D acquisition. This type of imaging may be im-
plemented by extending the DoF with, for instance, PSF engineering where no axial
scanning is required to image throughout an extended axial range [52]. The CKM
method discussed above falls into this category [58]. Alternatively, projection images
may be acquired by rapidly sweeping the focus of the imaging system axially through
the sample during the course of a single camera exposure-window. Such focus-sweeping
may be implemented with, for instance, a tunable lens in the imaging and/or illumi-
nation paths [69, 70], or with deformable mirrors used to rapidly adjust the focus of
the imaging system [71]. While projection imaging methods do not enable fast 3D
imaging, they do permit 2D imaging through entire sample depths within the course of
a single camera exposure-window, offering video-rate imaging speeds. However, images
acquired in this way contain no information about the position of sample features along
the projection axis. Recently, multi-angle projection imaging was introduced, where it
was demonstrated that by incorporating a scan-unit into the imaging path of any mi-
croscope capable of optical-sectioning, the angle at which the sample is projected could
be be varied [5]. This enables real-time viewing of projections of the sample from vary-
ing angular perspectives, as well as allowing a projection-series to be acquired where
the sample is optically rotated during an acquisition. While it remains true that a
single projection contains no information about the position of sample features along
the projection-axis, we shall see in chapter 5 that two or more projections do capture
3D information about the sample, providing scope to perform a full 3D reconstruction

of the sample volume.

1.4 Chapter 1 summary

In this chapter we've discussed image formation on a fluorescence microscope and
introduced topics that are central to the methods developed in the remainder of this
thesis, including PSF engineering and image deconvolution. We then discussed methods
that are available to acquire 3D fluorescence images. Broadly, these techniques fall into
two categories: those that require some form of scanning to capture 3D information,
and those that do not. Scan-based methods such as light-sheet and confocal imaging
offer high spatial resolution, yet the temporal resolution is fundamentally limited by
the requirement to scan. Conversely, scan-free volumetric imaging methods such as
LFM offer fast volume-imaging, at the expense of spatial resolution. In the remainder

of this thesis we develop imaging methods that overcome this trade-off: offering high
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resolution in both the spatial and temporal domains by performing full 3D volume
reconstruction from rapidly-acquired projection images, obtained via various imaging
modalities. We start in the next chapter by modelling projection image formation and
developing a mathematical framework that allows us to perform 3D reconstruction

from such projection images, providing certain criteria are satisfied.

25.



Chapter 2

2D-3D volume reconstruction

In the previous chapter we discussed a number of methods for acquiring 3D image data
via fluorescence microscopy. Confocal microscopy remains the most popular method
for volumetric imaging in the life sciences owing to its resolution, versatility, and ease-
of-use, in-part due to the large number of commercial systems available. Yet, its slow
acquisition speed fundamentally prevents its application to dynamic scenes. Light-sheet
microscopy offers some improvement by acquiring entire zy planes simultaneously, how-
ever scanning is still required along the axial direction, again preventing its application
to highly dynamic scenes. Conversely, LFM enables 3D imaging of fast-moving samples
through its snapshot volumetric imaging capability. However, this capability is pro-
vided at the expense of significant spatial resolution loss, limiting the type of sample it
can be applied to, as well as characteristic artefacts being introduced into reconstructed

volumes [45].

The goal of this thesis is to overcome some of these limitations by developing an
imaging pipeline that enables high-resolution volume reconstruction from 2D projection
data, with the reconstruction process extracting depth information that is encoded into
the acquired 2D projection images. In doing so, this permits fast volumetric imaging
by requiring only a few projection images, rather than an entire z-stack or raster scan
to image a 3D sample. We will see in later chapters that if these projection images
are acquired simultaneously, this enables high-resolution snapshot volumetric imaging.
In the current chapter, we develop a general mathematical framework that enables
3D reconstruction from 2D projection images. This framework underpins the volume-
imaging techniques that are presented in the rest of this thesis. In chapters 3-5 we then
apply this framework to different imaging scenarios including SMLM, PSF-engineered
microscopy [72] and multi-angle projection imaging [5]. We begin this chapter by
outlining the challenges associated with imaging an entire volume in a snapshot that

we must solve in order to achieve high-resolution snapshot volumetric imaging.
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2.1 Snapshot volume imaging

Acquiring a 3D fluorescence image of an entire volume in a single snapshot introduces
two key challenges. Firstly, the depth-range over which a microscope can form an
in-focus image, known as its DoF!, will typically be far smaller than the thickness of
the sample of interest. The DoF is defined as the depth, measured in object space,
between the nearest and farthest planes that simultaneously appear sharply in focus

[10] and is calculated as:

A e
DOF_n(NA2+M-NA> (2.1)

where M is the lateral magnification of the system and e is the pixel size of a given
detector placed at the image plane [73]. Any fluorescence contributing to images that
originates from outside this region will be imaged out-of-focus. The diffraction-limited
DoF of a microscope is primarily determined by the objective lens used for imaging
and shares an inverse square relationship with the NA, meaning that as the NA of
the lens is increased, the associated DoF becomes smaller. For instance, the high-
NA lenses commonly used in live-cell imaging have an associated DoF of just a few
hundreds of nanometers. There is, therefore, a trade-off between spatial resolution and
depth-of-field. We saw in section 1.2 how significant contribution to images from out-
of-focus light will degrade image quality, particularly when the sample is imaged with
conventional widefield illumination. A system that enables snapshot volume imaging,
therefore, should extend the DoF so that entire samples can be imaged in-focus. Ideally,
this should avoid a reduction in the system NA so that spatial resolution and optical

throughput aren’t compromised.

The second challenge associated with imaging an entire volume in a single snapshot
is more fundamental than the first. Data acquired in a single snapshot (or camera
exposure-window) is, at best, going to be 2D. The data that we wish to reconstruct,
however, is 3D. This means that the depth of image features must be extracted during
the computational reconstruction process to return to a 3D volume. For this to be
possible, depth information must first be present within the 2D snapshot data. Images
acquired on widefield systems do not meet this requirement: the PSF of an unaberrated
widefield microscope is approximately symmetric about the focal plane, as illustrated
in figure 2.1, and does not change significantly within the DoF, meaning that depth in-
formation is not effectively encoded into images. Consequently, the calculation of depth

from snapshot images acquired with standard widefield microscopes is not possible.

We see, therefore, that to effectively perform snapshot volumetric imaging, addi-
tional steps must be taken to (i) extend the DoF of our microscope, and (ii) effectively

encode depth information into acquired images. We saw in chapter 1 how one method

lwhen measured in object-space. The equivalent quantity measured in image space is the depth-
of-focus.
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Intensity

Figure 2.1: zzx projection of a simulated 0.8NA widefield PSF, showing approximate
axial symmetry about the focal plane, indicated by the dashed white line. Scale-bar is
2 pm.

to solve both of our challenges was through use of PSF engineering techniques. For
example, CKM encodes depth information across an EDoF into snapshot images by
imaging simultaneously with a pair of engineered PSFs that respond differently to de-
focus [58]. However, the image processing employed in CKM yielded a artefact-free
2D image and localised 2D depth-map, not a 3D volume. Since we wish to reconstruct
an entire 3D volume from the acquired 2D data, a new image processing framework is

required.

In the remainder of this chapter, a general methodology for full 3D volume recon-
struction from 2D projection data is developed. At this point, we make no assumptions
regarding how the required projection images are acquired; we simply state that both
challenges outlined in this section have been addressed, i.e. our chosen imaging modal-
ity effectively encodes depth information into the acquired projection data across the
necessary DoF. We shall see in later chapters that the volume-reconstruction pipeline
developed here is not limited to any particular imaging scenario: it represents a gen-
eral result, applicable to data acquired via any projection imaging modality, providing
our two challenges are addressed. In chapters 3 and 4 we employ it alongside PSF-
engineering; whereas in chapter 5 we explore its use alongside other imaging modalities
and geometries. The volume-reconstruction framework is based on iterative RL decon-

volution, and that is where our discussion starts.

2.2 Richardson-Lucy deconvolution

As we saw in chapter 1, the RL algorithm is a non-linear image restoration process,
derived independently by William H. Richardson in 1970 [3] and Leon B. Lucy in
1974 [4] through Bayesian statistical considerations, treating the image and PSF as

probability density functions. Since the volume reconstruction pipeline developed in
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this chapter is based on RL deconvolution, it is worth summarising the derivation here.

For simplicity, we constrain our initial discussion to one dimension.

We start with the fact that fluorescence imaging is characterised by Poisson noise
statistics. That is to say, if we have a perfect noise-free detector, then the probability

p of a pixel detecting a given number of photons n is given by

pln) = < (2.2)

where ! is the factorial operation and A is the expected (mean) number of photons.
This is because fluorescence emission occurs stochastically, and fluorescence detection
is a discrete process. The probability of recording the photon count observed across

an entire image [ (x) is the product of these probabilities for every pixel in the image:

e M@\ (1)@

p(I(z)) = 1;[ Ty (2.3)
Here, x is the pixel index and A(x) is the expected value for each pixel (i.e. the
underlying object). In Bayesian statistical terms, the probability of recording an image
I(x) given an underlying object O(x) is expressed p(I(z)|O(x)) and is known as the
likelihood function. The posteriori probability, p(O(z) | I(z)), is the probability a given
object is the true underlying object given (i) the recorded (image) data I(z), and (ii)
the prior model (in our case, the Poisson distribution in equation 2.3). To solve the
inverse imaging problem, we wish to estimate the most probable underlying object
O(z) (the maximum likelihood solution), such that I(x) is explained by our prior
model. To achieve this, we see by equation 2.3 that we need to maximise the likelihood
function p(I(x)). We observe that maximising the likelihood function (equation 2.3) is

equivalent to finding the maximum of its natural logarithm:

np(I() = > (I (e XA@)'@) —In (I(2)!))

N (2.4)
-3 ( — Mz) + I(z)In (A(z)) — In (1(55)!))
where > denotes discrete summation. As we saw in section 1, if our system PSF
is spatially invariant, our image formation can be modelled as a convolution opera-
tion between the true underlying object O(z) and the PSF. Therefore, the expected

distribution A(z) can be written with this convolution, and our log-likelihood becomes

Y ( — (O(x) ® PSF(x)) + I(z)In (O(z) ® PSF(m))) (2.5)

where the last constant term in Equation 2.4 has been dropped since it is constant
and therefore does not affect the position of a maximum. At this point we note that

maximimsing the log-likelihood is equivalent to minimising the negative-log likelihood.
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The negative likelihood, which is a convex function, then becomes our loss function,
and is conventionally given the symbol J. In solving the inverse problem, therefore,

we wish to find the object O(x) that minimises:

J(O@) =Y (O(x) ® PSF(z) — I(z)In (O(z) ® PSF(a:))) (2.6)

T

To find the minimum of this function we calculate its gradient and set to zero:

I(x)

L~ o e PSF()

VJ(O(z)) = ® PSF(—z)=0 (2.7)

A full calculation of this derivative can be found in [74]. Assuming the PSF is nor-
malised to unity, the RL deconvolution algorithm attempts to solve for O(z) in a

multiplicative fashion through iterative updates to an estimate of the object O(x)

I(z)

0" (@) = 0"(@) On(x) ® PSF(x)

® PSF(—xz) (2.8)

where n is the iteration index. The RL implementation given in Equation (2.8) is appli-
cable only when the PSF is spatially invariant. A more general description, applicable

to any PSF is given by

O =0T .0 (2.9)
HO

where I is a column vector of the recorded image pixel values, H is a transfer matrix,
describing the mapping between image space and object space; O is a column vector
of estimate at iteration n of the true underlying object, and the superscript 1" denotes
the matrix transpose. The matrix operation HO is known as the forward operation,
mapping the true object to the recorded image. Conversely, the backward operation
maps image space back to object space, and is described by the matrix H*. For
a system that is spatially invariant (for example, many microscopy platforms), the
transfer matrix H takes on a diagonal-constant (Toeplitz) form, the effect of which is
to perform a discrete convolution [75]. This means that equation 2.9 can be written

instead with the operations described by convolutions, as given in equation 2.8.

Because RL deconvolution improves likelihood given a Poisson noise model, it has
become ubiquitous in the processing of fluorescence microscopy data. However, we see
from equation 2.8 that the convolutional implementation of RL deconvolution preserves
dimensionality between the image and the object, and is therefore not immediately
applicable to our problem of reconstructing a 3D volume from 2D image data. In the
following sections we adapt our model for image formation to reflect projection image
formation across an EDoF', mapping between the 3D sample and 2D projection images.

We will then see how the RL deconvolution algorithm may be modified to reflect this
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Figure 2.2: RL deconvolution improves contrast and removes blurring in fluorescence
images.(a) Simulated 2D 20X 0.3NA fluorescence image of sparse point-sources, subject
to both Poisson and Gaussian noise. (b) Restored image after 25 RL deconvolution
iterations. Insets show the same regions in both panels, indicated by the cyan boxes.
Plots show normalised traces along the dashed lines in (a) and (b). The restored
image shows increased contrast between the point-sources and background, as well as
reduction in the size of the points. Scale-bar is 10pm. The display ranges for both
images are set to their respective minimum and maximum values.

model for image formation, permitting the reconstruction of a 3D volume from our 2D

projection images.

2.3 Model for image formation

In chapter 1, we saw how the formation of a microscope image, providing the system
PSF does not vary across the FoV, can be modelled as the convolution between the
object and the PSF. This is also seen in equation 2.8, where the forward operation
at iteration n is the convolution between the PSF and the current estimate to the
underlying object on. Generally, a 2D fluorescence image recorded at the image plane

of such a system by a scientific camera can be modelled as:

I(x,y) = PoiS{O(:E, y) ® PSF(zx, y)} + N(z,vy) (2.10)

where Pois represents the Poission distribution describing fluorescence emission and
N(z,y) is a noise term reflecting multiple sources including background fluorescence,

dark current and readout noise, as discussed in chapter 1. This equation is easily ex-
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= Sum

Figure 2.3: Projection image formation can be modelled as the sum of 2D convolutions
between the PSF and object throughout the DoF.

tended into 3D for modelling volumetric image formation in modalities such as confocal
or light-sheet imaging. However, since the dimensionality of the acquired image and
object are the same in this description, it does not adequately describe the acquisition
of the type of EDoF image under consideration in this chapter. Instead, our model
must describe the projection of the 3D sample onto the 2D snapshot images. Again,
assuming spatial invariance of the PSF, this EDoF image formation can be modelled
as the incoherent summation of 2D convolutions between zy planes in the 3D object
and 3D PSF at each discrete axial position throughout the DoF:

I(z,y) = Pois{ ZO(I,y,z =k)® PSF(x,y,z= k)} + N(z,y) (2.11)
k

Figure 2.3 illustrates a visualisation of this model of image formation. Equation 2.3
describes how the 3D sample object is projected onto the 2D camera sensor during
snapshot volume acquisition with an EDoF. The noise term describes all sources of
noise present in acquired images, including those discussed in chapter 1 (readout and
dark current noise), as well as any background fluorescence that may originate from
outwith the DoF.

2.4 Volume reconstruction

Now we have described how the image of a 3D sample is formed onto a 2D camera,
we must consider how to invert this model in order to reconstruct the 3D sample and
achieve snapshot volume imaging. With this model of image formation, the standard
convolutional implementation of the RL algorithm is not applicable, since the dimen-
sionality of the object and image are different. Instead, we revert to the the matrix
description in equation 2.9. Generally, the model for image formation serves as the for-
ward operator in RL deconvolution and is described by the matrix equation I = HO.

In our case, the matrix H has a well-defined sub-structure:

I=[Hy, Hy, ..., Hy]O (2.12)
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where N is the number of discrete z planes we wish to reconstruct. Here, each sub-
matrix H, has a Toeplitz structure, the effect of which is to perform a 2D convolution.
This equation is an equivalent matrix representation of the model of image formation
given by equation 2.11, without the noise term present. The inverse operation, or
backward operator, must map the 2D snapshot images back to the 3D sample volume.
We see in equation 2.9 that in the matrix description of RL deconvolution, the backward
operator is given by H'. Indeed, that is is also true in our case, and we therefore see
that, in a similar fashion to the forward operation, the backward operation may be
implemented as a series of 2D convolutions. Therefore, our adapted RL deconvolution

scheme that reconstructs a 3D volume from 2D projection data is given by:

I(z,y)

YodPSF(z,y, 2 =k)®O"(z,y,2 =k)} (2.13)

O Nz, y,z=k)=O0"(x,y,z = k)

® PSF(—x,—y,z = k)

This equation demonstrates how a 3D sample volume may be reconstructed from snap-
shot image data and a 3D PSF, with the model of image formation described by equa-
tion 2.11.

2.5 Multi-view volume reconstruction

The next piece of our puzzle is to incorporate the information content from multiple
images into our deconvolution pipeline. We saw in the above sections, that in im-
age formation modalities such as that employed by CKM, two independent imaging
channels with PSFs that respond differently to defocus are required to encode depth
information into the snapshot images. Extracting this information, therefore, requires
the deconvolution to consider the information content from both snapshot images. RL
deconvolution has been shown to enable the information content from multiple views
to be combined together to improve the overall quality of the reconstructed object
[76, 77]. Examples of this application of RL deconvolution include improving the spa-
tial resolution of light-sheet microscopy [78, 79] and combining orthogonal views in
LFM [50]. Generally, the inclusion of multiple perspective views improves deconvolu-
tion performance by reducing the ill-posedness of the inverse problem. However, in the
case of, for instance, CKM, the multiple imaging channels are essential to encode the
information we need into images: without the two PSF's that respond differently to de-
focus, depth information is not present in our data and it is not possible to reconstruct
a volume. Therefore, it is crucial that our deconvolution considers the information
content of all imaging channels simultaneously. This is achieved through a joint decon-

volution scheme, where the back-projections from all imaging channels are averaged
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each iteration:

1 Im(z,y)

O Nz, y.2=k)=O0"(x,y, 2=k

® PSF,(—x,—y,z =k)
(2.14)

where m is the index of the imaging channel and M is the total number of imaging
channels present. For ease, if we define a back-projection B? (z,y, z) term for the m'"

imaging channel at iteration n to be:

Y APSFE (v, y,z2=Fk)® O"(x,y7 z=k)}

B (r,y,2 = k) ® PSE,(—x,—y,z=k)

(2.15)
then our volume-reconstruction algorithm can be expressed as:
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2.6 Edge artefacts

A key problem faced generally in deconvolution is the introduction of artefacts close
to edges of the reconstructed images. This type of artefact can be attributed to the
fact that convolution is inherently a blurring operation and causes the image of a point
to spread out. In fluorescence imaging, this leads to two specific issues that must be
considered by a deconvolution framework to prevent edge artefacts seriously degrading
the restored image: (i) some light emitted by regions of the sample close to the edges
of the imaging domain may exceed the camera FoV and therefore not be present in
images, and (ii) similarly, sample features located outwith the imaging domain may
emit light that is recorded within the FoV. This leads to large discontinuities at the
image boundaries. These factors become particularly problematic when imaging with
PSFs that exhibit a lateral footprint far larger than the diffraction-limited PSF, such
as the cubic PSF.

One strategy to reduce these types of artefact is to pad the acquired image data
with zeros prior to deconvolution [80]. This allows the image-restoration procedure
to reconstruct a larger domain than the acquired image, which can then be cropped
down to the required size post-deconvolution. This assumption of abrupt boundary
conditions, however, is a poor description of true imaging conditions and can lead to
poor deconvolution performance in these image regions. Different boundary conditions

that can instead be imposed are reflective or periodic, where the image outside the FoV
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(d)

Figure 2.4: Simulation demonstrating how edge artefacts can degrade the deconvolved
image. (a) Ground-truth image. (b) cubic-encoded image, formed by convolution of
the ground-truth with a 2D a = 3 0.5NA cubic PSF. (¢) Solution after 25 deconvolution
iterations. (d) Solution after 25 iterations, after zero-padding the image. (e) Solution
after 25 iterations, with reflective boundary conditions. (f) Solution after 25 iterations,
with the edge correction implemented during deconvolution. Panes above each plot
show zoomed-in versions of the regions bounded by the red boxes. Scale-bar is 20 pm.

is assumed to be either a mirrored or exact copy of the recorded data [81]. However,
while such boundary conditions do remove discontinuities at the image edges, they are
also a poor description of the true conditions and can again lead to the introduction
of artefacts. Fundamentally, the image outwith the FoV is unknown and therefore the

assumption of any boundary conditions should be avoided.

An alternative method for the reduction of edge artefacts was introduced in [82]
that makes no assumptions about conditions of the image outside the recorded image
domain. Instead, the RL algorithm is free to choose what happens at the boundary
according to the image data and the deconvolution kernel. Originally proposed for
the deconvolution of astronomical images, the method makes no prior assumptions
about the sample or image outside the FoV. For the 2D-3D volume reconstruction
algorithm employed in this thesis, a similar method to reduce edge-artefacts is applied
through modification to the joint deconvolution scheme given by equation 2.14. This

modification is discussed below.
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2.6.1 Edge correction

The modification made to reduce edge effects is designed to deal with the two spe-
cific scenarios mentioned above and takes the form of a corrective mask applied every

iteration. The corrective mask is formed as follows:

Firstly, the raw 2D images are zero-padded in z and y by a small number of pixels,
typically in the range 10-25. Then, for each imaging channel m, a binary mask G
is created that reflects the information content of the now-extended imaging domain:
everywhere we have information, the mask is set to one; elsewhere it is zero. For a
raw image with N, and N, pixels in the z and y directions respectively, this mask is
defined as:

1, if il < e |jl< e
e ) = i< 5l <5 (2.17)

0, otherwise

where ¢ and j are the pixel coordinates in x and y respectively, for a coordinate system
with the origin positioned at the centre of the image. This binary mask G is then
back-projected according to the back-projection operation defined in equation 2.14 to
form a 3D mask, with the same lateral dimensions as G and an axial dimension the
same as the volume we wish to reconstruct. The inverse of this mask is the corrective

weighting C,,, that is applied every iteration during deconvolution:

1

Cn(z,y,z=k) = (2.18)

The effect of this mask is to suppress the influence of discontinuities at the image
boundaries during deconvolution, allowing the deconvolution to reconstruct structure
outside the domain originally captured by the FoV of the camera. This region will,
however, be incomplete, since the information content in the acquired images about
this region is only the light that has leaked into the imaging domain. Therefore, the
final reconstructed volume is cropped in zy to match the domain that was originally
imaged. The effect of the edge correction modification discussed in this section is illus-
trated in figure 2.4. Here, a cubic-encoded image is deconvolved with different methods
of handling the artefacts introduced at the edges of the image domain. Significant arte-
facts at the edge of the reconstructed image are introduced with both an unmodified
RL deconvolution (figure 2.4c) and a scheme where the image is zero-padded prior to
deconvolution (figure 2.4d). While the artefacts are reduced when reflective boundary
conditions are assumed (figure 2.4e), the greatest improvement is seen in figure 2.4f,
where the edge modification discussed in this section is applied and artefacts at the

edges of the reconstructed image are mitigated almost entirely.

36.



CHAPTER 2. 2D-3D RECONSTRUCTION 2.7. REGULARISATION

2.7 Noise amplification and regularisation

RL deconvolution is a particularly attractive image restoration process in fluorescence
imaging for a number of reasons. For instance, inspection of equation 2.8 reveals that
there is an implicit non-negativity constraint “built-in” to the algorithm, providing
the input data does not contain any negative values. This is unlike, for instance,
Wiener deconvolution, which can introduce non-physical negative values into the re-
stored image. Other advantages include conservation of flux (providing the PSF is
normalised), and its convergence to the maximum likelihood solution for a Poisson
description of the data. However, there are a number of drawbacks to the algorithm
that must also be considered. Firstly, the computational burden of RL deconvolution is
significantly greater than other image restoration techniques such as Wiener or inverse
filtering. While this may be somewhat mitigated through use of graphics-processing
units for parallel computation, it remains a major drawback for the processing of large
multi-dimensional datasets. Another significant drawback of RL deconvolution is the
phenomenon of noise amplification. This occurs when the algorithm fits too closely to
noise fluctuations in the raw data. In order to replicate small pixel-to-pixel noise fluc-
tuations in the observed data via the forward operation, the deconvolution increases
the flux in the brightest pixels, while the surrounding pixels fall closer to zero as the
solution iterates. This is explained by considering the fact that convolution is a blur-
ring operation: to reproduce a small noise spike in the observed data, a larger spike in
the restored image is required. The effect worsens as the solution iterates further: the
bright pixels become brighter and, because of flux conservation, the surrounding pixels
fall closer to zero. This concept is particularly problematic for regions of extended
structure in a noisy image and can lead to a speckled appearance in the restored image
that is unrepresentative of any true sample structure, limiting how far the solution can
be left to iterate.

Several methods exist to attempt to reduce the effect of noise amplification during
RL deconvolution. The simplest involve attempting to prevent noise amplification by
removing noise fluctuations from the raw data, through median or Gaussian filtering
the raw images prior to deconvolution [83]. Other methods involve filtering the restored
images to remove the amplified noise [84]. However, neither of these solutions are op-
timal: filtering the raw data removes physical structure from images as well as noise,
whereas Gaussian filtering the deconvolved images causes resolution loss. Instead, mod-
ifications to the deconvolution scheme itself may be implemented, commonly derived

from additional terms in the opitmisation problem, in the process of regularisation.

Regularisation

Regularisation, in the context of RL deconvolution, refers to modifying the algorithm in
some way to avoid the introduction of undesirable effects or artefacts into the solution,

for instance those caused by noise amplification. Generally, regularisation is informed
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by the incorporation of some prior knowledge into the optimisation problem, meaning
the deconvolution process becomes one of maximum a posteriori estimation. In this
thesis, the total variation regularisation term derived in [74] is applied during RL
deconvolution to suppress noise amplification. Total variation regularisation benefits
from preserving edges in images while suppressing noise amplification, unlike other
methods such as those based on Tikhonov-Miller regularisation, which are known to
smooth out edges [85, 86]. The total variation regularisation term, applied at the n'"

iteration R, is given by [87]:
1
_ r VO"(m,y,z)
1 ATVdLU<—VOA"(a:7y,z)|>

where div denotes divergence, V is the vector differential operator and Apy is a small

constant. The final deconvolution algorithm, with the back-projection term B, the

edge-corrective term C' and regularisation term Ry, then becomes:
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(2.20)

2.8 Chapter 2 summary

In this chapter we developed a method for the full 3D volume reconstruction from one
or more projection images of the sample in question. We saw how the RL deconvolution
algorithm could be derived by maximising the likelihood function for data governed by
Poisson statistics. Furthermore, when the model for image formation was amended to
map between the 3D sample and 2D projection data, we saw how the RL algorithm
could also be amended to reconstruct the 3D sample from one or more 2D projection
images. Additionally, we introduced terms to regularise the deconvolution to limit the
effect of noise amplification and to avoid the introduction of edge artefacts arising from
fluorescent structure positioned in close proximity to the edge of the imaging domain.
However, up to this point, we made no assumptions about how our projection data
is acquired: we simply stated that our chosen projection method effectively encodes
depth information across an EDoF. In the following chapter, we see how the volume
reconstruction framework developed in this chapter may be applied to PSF-engineered
projection images that satisfy this criteria, enabling volume-reconstruction from cubic-

encoded images acquired in a single snapshot.
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Chapter 3
3D engineered PSF microscopy

In chapter 1 we saw a number of different methods for acquiring volumetric images
via fluorescence microscopy. While confocal, light-sheet and multi-photon scanning
imaging methods provide high-resolution optically-sectioned images, their acquisition
speeds are fundamentally limited by the requirement to scan the sample relative to
the illumination, or vice versa. This makes them unsuitable for the study of bio-
mechanics where the sample of interest undergoes motion during acquisition. LFM,
on the other hand, permits volumetric imaging from image data acquired in a single
snapshot, therefore providing the temporal resolution required for the study of highly
dynamic samples. However, the associated compromise in spatial resolution limits the
application of LEM to the cellular level, and the characteristic reconstruction artefacts

can degrade reconstructed volumes.

In chapter 2, we developed a mathematical framework for the computational recon-
struction of 3D volumes from an arbitrary number of 2D projection images. The two
main criteria for such a projection-imaging system are that (i) the DoF is extended
such that the entire sample can be imaged in-focus, and (ii) depth information is en-
coded into the acquired projection images. Light-field images might, at first, seem like
ideal candidates for this volume-reconstruction process. LFM achieves EDoF imaging
and effectively encodes depth through its parallel acquisition of angular and spatial
information. However, the light-field PSF (in its original implementation) is not spa-
tially invariant, meaning the convolutional image formation model in equation 1.9 can
not be applied. Fourier-LFM solves the issue of the spatially-variant PSF, however the
associated resolution-loss is still problematic. In this thesis we aim to develop volume-
imaging techniques that provide high resolution in both time and in space. Therefore,
the ideal imaging system would not require any decrease in spatial resolution in order

to provide snapshot volumetric imaging.

PSF-engineering seems, on the surface at least, a better candidate for tackling our
problem. While PSF-engineering can successfully encode depth information across
an EDoF, the introduction of a phase-mask at the exit pupil does not automatically

compromise the resolution of the imaging system. Indeed, its adoption in SMLM proves
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its capability of effectively addressing these two challenges. However, the uptake of the
technique in volumetric imaging has been more limited: instead it is more-often used as
a tool to enhance the performance of other imaging modalities, e.g. light-sheet imaging,
two-photon imaging or LFM [57, 88, 47], with a few notable exceptions. Zammit et al.
argued that this slow uptake is due to the artefacts introduced during image restoration
with e.g. Wiener deconvolution [58]. Yet, by varying the deconvolution kernel, the same
authors demonstrated artefact-free 2D EDoF image restoration from images in which

depth information was encoded with their technique of CKM.

In this chapter, we build on the concept of CKM and introduce a snapshot volumet-
ric imaging technique which we name 3D engineered point-spread function microscopy
(3D-EPM). We demonstrate how full 3D volumetric reconstruction is enabled by com-
bining PSF-engineered imaging methods with the mathematical framework developed
in chapter 2. By acquiring multiple images simultaneously with PSF's that respond dif-
ferently to defocus, we show how snapshot volumetric imaging can be achieved, while
maintaining high resolution in both time and space. We implement this across a range
of samples, and demonstrate the benefit of being able to perform snapshot volume
imaging by imaging a sample that undergoes continuous motion during acquisition.
We begin our discussion by exploring the CKM method in more detail, and determine

why the cubic PSF in particular is well-suited to this imaging modality.

3.1 Cubic PSF

For a given PSF to be useful for our purposes, it must extend the DoF while enabling
depth information to be encoded into images. To extend the DoF, the MTF must
contain no nulls away from the focus, thus enabling more complete information transfer
through the imaging system. We saw in chapter 1 how a cubic PSF is formed through
the introduction of a phase function p(x,y) = a(xz®+y?*) at the exit pupil, where x and
y are the pupil coordinates. This leads to a distinctly “L” shaped PSF that exhibits
a lobe structure, see figure 1.11. In this section, we take a closer look at the OTF of
a system with a cubic phase mask at the exit pupil, and examine how it provides an
extension to the DoF. In particular, we focus on two key aspects: (i) the insensitivity
of the MTF to defocus, and (ii) the lateral translation of the PSF.

3.1.1 The cubic OTF

For simplicity, we constrain the analysis of the cubic OTF to one-dimension. For low

numerical-aperture systems, the phase delay introduced by defocus is given by

Py = [l < o)
P = .
Undefined, otherwise
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where 1) is the defocus parameter and the pupil radius is normalised to 1. The cal-
culation of 1 is unimportant to our discussion, however it is worth noting that with
no defocus, i.e. when 1 = 0, the defocus phase term introduces no phase delay at the
pupil. With a cubic phase mask P.(z) = expiax® present at the pupil of strength a,

the pupil phase becomes the multiplication of these terms:

Pla) — exp [iz?| exp [iaz?], |z| <1 (3.2)
Undefined, otherwise
We saw in chapter 1 how the PSF is calculated as the Fourier transform of the pupil-
function, and that the OTF is defined as the Fourier transform of the PSF. There-
fore, by auto-correlation theorem, the defocused OTF may be calculated as the auto-
correlation of the pupil phase

Jul
-5

OTF(u, ) = /

—1+1d

exp [iz/z (x+ g)z] exp {z’a (x+ g)‘s]

exp [— 7?2/)(.% — 3)21 emp{ — 704(?" — g)gl dx

where u denotes spatial frequency. Expanding and simplifying the exponents containing

(3.3)

«, this integral becomes:

1_‘““

2 u3
OTF(u,¢) = /1 o &XP [ia3ux2] exp [z’ozz]
~iE (3.4)
exp {zw(x + g)ﬂ exp { —itp(x — g)z} dx

Repeating this process for the exponents containing 1 terms, and taking the constant

term outside the integral, this leaves us with:

2

l_m
OTF(u,v) = exp [z‘au—?)} / exp [é@bqu} exp [@'aiﬁumz} dx (3.5)

4 1+12l

which is a general expression for the OTF of a cubic-encoded imaging system [52].

Insensitivity to misfocus

Dowski and Cathey [52] and others used the stationary-phase approximation, assuming

large «, to approximate this integral as:

-3 2
OTF(u,) =/ 12|7;U| exp [za4u ] exp [ 231/; u] ,u 7 0. (3.6)

This description of the OTF contains two phase terms: one that is linear with spatial
frequency; the other being cubic. Importantly, the magnitude of the OTF (the MTF)
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Figure 3.1: Normalised z =0pm cubic PSFs at phase-mask strengths of a« = 3 (a),
a =6 (b) and a =9 (c). (d) shows a plot of peak signal with «, which decreases as
the strength of the phase-mask increases.

does not depend on : in this approximation, defocus only affects the phase of the
cubic OTF. It is this feature of the MTF that extends the DoF of our imaging system

and solves the first of our two challenges.

Defocus-dependent translation

The second phase term in equation 3.6 is a function of defocus and is linear with spatial
frequency u. This was observed in [52] to cause a lateral shift of the PSF with defocus.

For a separable rectangular aperture, this lateral shift was shown in [89] to equal

_ v

6ma’

s(¢) (3.7)

i.e. the lateral shift exhibits a quadratic relationship with defocus, but may be reduced
by increasing the phase-mask strength .. The authors of [52] suggested that the lateral
PSF-shift s(¢) is mitigated by use of a sufficiently high mask strength, and becomes
negligible for large . However, it is not always practicable to use a high-a phase-
mask, especially in fluorescence experiments where there is a limited photon budget.
This is because with increasing phase-mask strength, the lateral footprint of the PSF
becomes larger, meaning the signal is spread across a greater number of pixels. This
is demonstrated in figure 3.1a-c, where the z =0pum zy slices of a 0.5NA cubic PSF
with increasing phase-mask strength are displayed. Figure 3.1d displays a plot of the

42.



CHAPTER 3. 3D-EPM 3.2. ENCODING DEPTH INFORMATION

peak signal level of the normalised z =0 pm PSF's as the strength of the phase-mask
increases, which at a value of o = 2 falls to approximately 15% of the peak signal level of
the a = 0 (no phase-mask) PSF. It was shown in [55] that the characteristic artefacts
in Wiener-restored cubic-encoded images resulted from strong phase modulation on
the OTF resulting from the the phase terms in equation 3.6. Additionally, the noise
amplification phenomena discussed in section 1.2.5 becomes more severe with increasing

phase-mask strength as the signal-to-noise ratio worsens.

Since the translation of the PSF is dependent only on defocus and phase-mask
strength (and can be measured experimentally), it could, in principle, encode depth
information into images. If, for instance, the lateral coordinates of a point are known,
then the coordinates of the PSF in an image could be used to determine the point’s
axial position. However, generally this isn’t possible for two reasons. Firstly, the
lateral positions of points are generally unknown. Secondly, from equation 3.7 we see
that the depth-dependent translation is symmetric about the focus, i.e s(¢) = s(—v),
and therefore, unless the imaging domain is confined to only one side of the focal plane,

there is a sign ambiguity in the calculated z coordinate.

Strength of the cubic mask

We see from equation 3.6 that the strength of the phase-mask, «, influences both the
phase and magnitude of the PSF. Generally, a stronger phase-mask provides a larger
depth-of-field while reducing the defocus-dependent translation. It follows, therefore,
that a stronger phase-mask is better for imaging across a larger DoF. However, as we
saw in figure 3.1d, the peak signal drops with increasing phase-mask strength as a
greater number of lobes become apparent and the lateral extent of the PSF becomes
larger. In photon-limited experiments, such as many fluorescence imaging applications,
for instance, the choice of phase-mask strength becomes important: there exists a

trade-off between signal-to-noise ratio and the extension to the DoF.

3.2 Encoding depth information

The above sections demonstrate how the insensitivity of the cubic OTF to defocus
provides an extension to the DoF. While the second of our challenges, encoding depth
information into images, could in principle be helped by the defocus-dependent lateral
translation of thePSF, generally this alone does not solve the problem. In this section
we take a closer look at the technique of CKM, and how imaging instead with two

cubic PSFs can more-effectively encode depth information into images.

The general principle of CKM is centered on an imaging system that records two
images simultaneously, where the PSF corresponding to each imaging channel responds
differently to defocus. If the defocus-dependent response of each imaging channel is

known (through measurement of calibration 3D PSF z-stacks), the system effectively
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encodes depth information into the 2D images. The authors of [58] demonstrated this
principle initially with the cubic PSF, where the defocus-dependent response between
the two imaging channels was altered by means of rotating the CPM between cameras.
The method is explained by considering the following scenario. If a point source, which
is situated at some unknown distance z from the native focal plane, is imaged by such
an imaging system, the two images will appear as single cubic PSFs, translated from the
true zy coordinates by an amount determined by equation 3.7. If image restoration,
performed with a Wiener filter, is then implemented, the point in the the restored
images will be translated from its true position if the defocus of the recovery kernel
does not match the true defocus of the point in the object. The correct value for
defocus, therefore, can be found by varying the defocus of the deconvolution kernels

until the translation of the point between the two restored images is minimised.

While the example above considered only a single point-source, the technique is
generalizable to more extended structures and surfaces, varying the defocus of the
deconvolution kernels until the minimum disparity between restored images is found.
The method of CKM then repeats this process on small patches across the entire FoV,
yielding a map of locally-averaged defocus of the observed scene. Additionally, the
correctly defocused kernels are used to deconvolve each patch, which, when stitched

together, leave an artifact-free EDoF image.

While the disparity generated through rotation of the cubic phase mask was used
to initially demonstrate CKM, the authors noted that the method was not limited to
this implementation. Indeed, CKM may be implemented with any pair of point-spread
functions that respond differently to defocus, providing the DoF is adequate and the
MTF contains no nulls, ensuring maximal information transfer. In the application of
Airy-CKM in Ref. [54], the disparity was generated with a differential defocus between
the two cubic PSFs, generated by means of a custom prism beamsplitter placed in
the imaging path that directed the two images onto the same camera sensor. This
method is advantageous over the rotated CPM implementation since it requires only
one phase-mask in the imaging path for snapshot imaging. For the majority of the
experimental results presented in this chapter, the disparity was generated in a similar
fashion by means of differential defocus, however a conventional beam-splitter cube
and two separate relay lenses were used to instead focus the images onto two separate
cameras, see figure 3.2. In the remainder of this thesis, the overall PSF of such a
system is referred to as the differential-Airy PSF. Imaging onto two cameras instead of
a single camera is advantageous since it allows full use of the available FoV, allowing

larger samples to be imaged in a snapshot.

3.3 PSF phase retrieval

High quality deconvolution performance depends on having good-quality PSF mea-

surement. While several works report that the RL algorithm is robust against minor
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Figure 3.2: Generation of the differential-Airy PSF used for encoding depth information
across an extended depth of field. A 4f relay is placed behind the native image plane
of any microscope, with a cubic phase mask positioned at the re-imaged exit pupil.
A 50:50 beam-splitter then directs the light towards two relay lenses which focus an
image onto two separate camera sensors. The positions of the two cameras are adjusted
with respect to the two final relay lenses (L2 and L3) to introduce a differential defocus
between images.

Fr } Fr l F, F, t F, t F,

imperfections in the PSF [84], this argument is mostly limited to astronomical imag-
ing where the PSF can be approximated as an Airy disk. For EDoF imaging with,
for instance, the cubic PSF, it has been shown that use of an incorrect deconvolution
kernel introduces significant artefacts to the restored image [55]. In microscopy, PSF
estimates are either obtained from theoretical predictions, i.e. simulation, or from
experimental measurement. Generally, experimental PSFs are preferred, since they
capture the influence of any aberrations present, that would be missed in simulated
PSFs.

Acquiring an experimental estimate to the PSF is normally achieved by imaging a
sub-diffraction fluorescent bead. 3D PSF's are acquired by repeating this process as the
bead is translated in 2. Since the image recorded using such methods is not directly
the PSF, rather the convolution of the system PSF with the shape of the bead, a good
PSF estimate requires the size of the bead to be beneath the diffraction limit of the
microscope, ideally as small as possible. For the highest NA objective lenses, this means
the bead must have a diameter beneath 200 nm, which limits the volume of fluorescent
dye present and acquired images become corrupted by noise. The presence of noise
in a PSF used for deconvolution also significantly inhibits deconvolution performance,
introducing artefacts into restored images. There therefore exists a trade-off between
the signal-to-noise ratio of the bead image and the quality of the corresponding PSF
estimate: a larger bead will yield a better signal-to-noise ratio but provide a poorer
estimate to the PSF. The signal-to-noise ratio may be improved through averaging the
images of many beads, or through background signal removal with image processing
(for instance, a simple threshold to remove background noise), however these methods

may introduce non-physical structure into the PSF.
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Another issue that must be considered when measuring 3D PSFs is the bead un-
dergoing motion during acquisition. Inspection of large z-stacks of a single bead reveal
small translations, caused by Brownian or other random motion, as well as intensity
fluctuations between slices, see figure 3.4. This problem is especially noticeable in
imaging modalities that require the bead to be suspended in e.g. agarose gel during
acquisition, instead of being affixed to a coverslip. This type of artefact in PSF calibra-
tion data resulting from motion and intensity fluctuations also inhibits deconvolution

performance and therefore should be minimised in the calibration PSF z-stacks.

The alternative to using experimentally-acquired PSF's for deconvolution is to use
simulated PSFs, derived from a theoretical prediction of what the PSF should look
like based on a particular PSF model. However, theoretical PSFs do not capture any
system aberrations that are present, and there is therefore often a large discrepancy
between the simulated PSF and an experimentally acquired estimate. Simulated PSFs
do, however, benefit from being free of noise, which is advantageous for deconvolution.
Therefore, in this work, a combination of experimental and theoretical approaches are
employed to obtain a PSF estimate that both captures system aberrations while being
free of noise, maximising deconvolution performance. This involves employing phase-
retrieval methods to estimate the pupil function, capturing both the added phase-mask

as well as system aberrations, before filtering and re-simulating the PSF.

3.3.1 Estimating the pupil function

We saw from equation 1.8 how a the complex-valued PSF (i.e. the amplitude PSF) may
be calculated through the 2D Fourier Transform of a complex-valued pupil function.
The pupil function describes both the phase and magnitude of the wavefront at the
exit pupil produced by a point source in the sample. For a defocused PSF, the pupil
function contains a defocus phase term given by equation 1.7 that depends only on
the physical aperture. Since the pupil function shares a Fourier transform relationship
with the complex-valued amplitude PSF, it follows that that it completely describes
the imaging system, including system aberrations and the phase introduced through
additional phase-masks. Therefore, if the pupil function for a given imaging system is
known, or can be calculated, the system PSF can be simulated. However, calculating
the pupil function is not trivial. This is because the PSF that is recorded experimentally
is not the complex-valued amplitude PSF, but instead its squared magnitude, the real-

valued intensity PSF, meaning phase information is lost.

Hanser et al. demonstrated, however, that the pupil function could be estimated
via a modified Gerchberg-Saxton phase retrieval scheme [13, 90]. Originally designed
for estimating aberrations in diffraction-limited systems, it is applied here to estimate
the phase across the exit pupil of PSF-engineered systems. The Gerchberg-Saxton
algorithm is an iterative procedure that estimates the phase from two related planes,

e.g. the image and object plane. Hanser et al modified the scheme to incorporate the
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information from a number of defocused planes to calculate the phase across the exit
pupil (within the confines of the aperture), since the defocus phase is a known prior.
The modified scheme also allowed the magnitude to vary across the pupil, since it was
argued in [13] that the magnitude could not be assumed constant across the pupil. The

flowchart in figure 3.3 provides a summary of the phase-retrieval process.

START

Guess
complex-valued
pupil function

Calculate
defocus phase

\ 4

Calculate
complex-valued
amplitude-PSF

Replace magnitude
with measured
values

A

Use averaged pupil
for next
iteration

A

\

END

Estimated Apply numerical Average pupil Computationally

aperture constraint function refocus

pupil function

Figure 3.3: Flow chart summarising the phase retrieval algorithm.

The phase retrieval begins with an estimate to both the phase and magnitude of

the pupil function that is unity across the pupil aperture and zero elsewhere:

1, \/k§+k§§r (3.8)

P(k,, ky)"zo =
0, otherwise

where k, and k, are the pupil coordinates, n is the iteration index and r is the radius
of the pupil aperture. Next, the phase associated with the defocus of each slice in the

reference PSF stack is calculated:

, 2mn\ 2
O (ky, ky). = exp [zz\/(T) — (k2 + k;)

where z is the distance in front of the native focal plane, n is the refractive index of

, (3.9)

the immersion medium and A is the wavelength of the detected fluorescence emission.
The term in the exponent in equation (3.9) is the expression for k, given by equation
(1.7), which takes into account the spherical shape of the complex-valued amplitude
OTF surface, valid for any aperture [13]. At this point, the 2D Fourier transform of

each defocused pupil function is taken:

PSFa(x,y)7 = F{®(ka, ky)P (K, ky)" }. (3.10)

This yields the (complex) amplitude-PSF that our system would exhibit, if our guessed

pupil-function was correct. Next, the magnitude of the guessed amplitude PSF is
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n=1, magnitude n=5, magnitude n=100, magnitude

Figure 3.4: Retrieval of the pupil phase of an experimentally-acquired 0.5NA cubic
PSF. (a) and (b) show zz and zy maximum-intensity projections through the raw
PSF data. The PSF stack is corrupted by noise, motion artefacts and intensity fluc-
tuations, all of which inhibit deconvolution performance. (c-e) and (f-h) display the
recovered pupil phase and magnitude respectively after 1, 5 and 100 iterations of the
phase-retrieval procedure. After 100 iterations the pupil phase resembles a cubic phase
function, and the magnitude varies very little across the pupil as expected. The display
range of each panel is set to the min-max values of each image.

replaced with the measured value:

|PSFEa(x,y)s| =/ PSF(x,y). (3.11)

where PSF; denotes the measured intensity-PSF. Note the square root of the intensity-
PSF is taken to yield the magnitude of the system’s amplitude PSF. This inverse Fourier
transform of this amplitude-PSF is then calculated and the defocus removed to leave

an estimate to the pupil function for each slice in our PSF:

P(z,y): = F{PSFa(x,y)2}0(ky, ky) (3.12)

the final step of the phase-retrieval iteration is to average the pupil function across the
defocus range and constrain it to the numerical aperture of the system, to leave us

with a complex-valued 2D estimate to the pupil function:
1
n+1l __ n=0 n
P(ky, k)" = P(ky, ky) 7 EZ P(ky, ky)’ (3.13)

where Z is the total number of z planes in our calibration PSF stack. Figure 3.4
displays the convergence of the pupil function for an experimentally acquired 0.5NA
cubic PSF that suffers from the motion and intensity-fluctuation artefacts detailed in
the previous section. When phase-retrieval is applied, the cubic phase across the pupil

resulting from the phase-mask is apparent after 100 phase-retrieval iterations.
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3.3.2 Low pass filtering in the Zernike basis

While the pupil function can be found to a good approximation with the above method,
the solution may suffer minor degradation as a result of noise or imperfections in the
raw data, or slight miscalculations of defocus. In particular, it may exhibit a speckle-
like appearance that becomes more apparent the further the phase-retrieval iterates.
If this degraded pupil function is used directly to re-simulate the PSF, the reformed
PSF is also likely to suffer degradation.

To avoid these artefacts, the pupil function may be refined before being used to
re-simulate the system PSF. Using a method similar to that presented in [12], in this
work the pupil-refinement was performed via a Zernike decomposition, before low-pass
filtering in the Zernike basis. Zernike polynomials are orthogonal on the unit disk, and
are commonly used to describe aberrations in optical systems at the pupil plane, in
terms of deviation from a zero-mean. They are defined in radial coordinates (r,0) in
terms of two non-negative integers m,n, m < n. There are a number of conventions
for ordering Zernike polynomials; the Noll convention defines them in terms of a single

index 7 [91]:

V2(n+ DR (r)G™(0), m # 0

Zi(T, 09) =
RO(r), m =0

(3.14)

with R"(r) and G™(#) being the radial and angular terms respectively defined as:

Y

R = Y e o e (3.15)

p—r (n—;m _ 8>!(n—m _ S)'

sinm#, 7 odd
G™(0) = (3.16)

cosmd, 1 even

The conversion from the Noll index i to the m,n indices is complex and not given in
this thesis since the m and n indices are unimportant to our discussion, but a list of

the first 36 conversions and corresponding aberration names can be found in [92].

The refinement of the estimated pupil function implemented in this work is per-
formed in 2 distinct stages. Firstly, both the magnitude and the phase of the pupil
function are decomposed into the Zernike basis. This is achieved by performing a least

squares fit to find the coefficients of the first k& Zernike coefficients that minimises

k
|Pky ky) =Y CiZi(r,0)] (3.17)

1=1

where C; is the coefficient for the i'® Zernike polynomial. In this thesis all pupil

functions were decomposed into & = 200 modes. Once the coefficients have been found,
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the phase and magnitude of the pupil-function are regenerated with only the lowest
20 Zernike modes, leaving a smooth pupil function that captures low-order system
aberrations, without the high-frequency content left by the phase-retrieval procedure
detailed in the previous section. Figure 3.5 displays the Zernike decomposition of
the pupil function from figure 3.4, and figure 3.6 illustrates the improvement after

re-simulating the PSF.

3.4 Registration

The final pre-processing step we consider before implementing the 3D-EPM volume re-
construction is the registration of image data. When recorded on two separate cameras,
as shown in figure 3.2, the differential defocus introduced by the second relay lenses
(L2 and L3) can introduce small scale differences between the two images. Addition-
ally, optical misalignment may introduce small translations and/or rotations between
images. Such differences between images can introduce significant artefacts into re-
constructed volumes, since the deconvolution volume is inconsistent between imaging
channels. To mitigate this type of artefact, an affine transform that maps the field
recorded by the second camera to that recorded by the first is calculated prior to data
acquisition. All subsequent calibration and image data is then registered by warp-
ing the data acquired on the second camera according to this affine transform via a

third-order flux-conserving affine transform.

The affine transform is calculated from registration images acquired on both cam-
eras prior to data acquisition. The sample used for registration is unimportant, pro-
viding the acquired images feature regions of high contrast. For all experimental data
shown in this chapter, a sample of fluorescent beads, either embedded in an agarose
medium or affixed to a coverslip, was used for registration. However, because of the
differential defocus introduced between cameras, it is not possible to calculate from a
simple snapshot, since different features will appear in-focus in each image. Instead, a
maximum-intensity projection of a z-stack acquired over a depth-range larger than the
differential defocus is used, such that the same in-focus features are present in both
images. Additionally, the registration data should be acquired without the phase-mask
present, so that no depth-dependent lateral translation is introduced that may lead to

an incorrect affine transform being calculated.

From the registration data, features are identified and matched between images,
from which the affine registration that best describes the matched features is calcu-
lated. Because some features may be erroneously matched, the affine transform is
calculated via a random sample consensus (RANSAC) fitting approach. Due to the
random nature of such a fitting approach, this process is repeated several times, with
the affine transform that provides the lowest mean-square error (i.e. closest match)
between images after warping being chosen as the correct transform and used to cor-

rect all subsequent calibration and image data. The feature-matching, image warping
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Figure 3.5: Refinement of the recovered pupil function through Zernike decomposition
and low-pass filtering. Panels (a) and (b) display the pupil phase, before and after the
pupil refinement procedure respectively. Panels (¢) and (d) display the same but for
the pupil magnitude. Note how (b) and (d) appear cleaner and less grainy than the
unrefined results of the phase retrieval in (a) and (c). The blue bar chart shows the first
26 coefficients found by the least-squares Zernike decomposition of the pupil phase. The
inset plot shows the full decomposition into 200 Zernike modes. The vertical dashed line
displays the cut-off mode, above which the coefficients were ignored when regenerating
the pupil function. The orange plot displays the same for the pupil magnitude. Note
the difference in scale between the phase and magnitude: the magnitude varies far less
across the pupil than the phase does. The display range of each panel in (a)-(d) is set

to the min-max values of each image.
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(b) Refined x‘_‘ (c) Raw, z=-25um (d) Refined, z=-25um

z

(f) Refined z=0um

10 pm 10 pim

(h) Refined, z=+25pm

Figure 3.6: Improvement in the 3D PSF through phase-retrieval and Zernike filtering.
Panel (a) displays a zr maximum-intensity projection through the raw, unrefined PSF
stack. Panel (b) displays the same projection through the refined PSF after phase-
retrieval and Zernike filtering. The refined PSF exhibits fewer artefacts and intensity
fluctuations, as well as an improved contrast between lobes owing to better signal-to-
noise ratio. Panels (¢) and (d) display zy slices through the raw and refined PSFs
respectively at a depth of z = —25um. The same slices are displayed in panels (e) and
(f) at 2 =0pm, and in (g) and (h) at z = +25 pm. Note in particular the aberrated
appearance of the raw PSF in (g) is also present in (h), demonstrating the refined PSF
reflects system aberrations. Scale-bar is 10 pm.

and random-sample consensus fitting for all data in this thesis was performed using

functions from the scikit-image python library [93)].

3.5 Snapshot volume imaging with the cubic PSF

The previous sections laid the foundations for performing snapshot volumetric imaging
with the cubic PSF. We saw in chapter 2 how the RL deconvolution algorithm could
be modified to reconstruct a volume from M snapshot 2D images, providing depth
information is present. We saw in section 3.2 how depth information could be encoded
with the cubic PSF when imaged onto two detectors with a differential defocus, and
how experimentally measured PSFs may be refined for use with the 2D-3D volume
reconstruction. In this section, it is demonstrated how these processes are combined
to enable volumetric reconstruction from snapshot cubic-encoded images. We start
by demonstrating the process with simulated imaging of a single point-source, before

demonstrating the technique experimentally.
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Figure 3.7: Registration process for 3D-EPM. Features are identified and matched
between maximum-intensity projections of z-stacks acquired on each camera. Lines
indicate matched features between images. Random sample consensus fitting is then
used to calculate the affine transform that best describes the matched features. Plot
was generated using the scikit-image python library [93].

Multi-View Reconstruction
Calculate registration between cameras
Acquire experimental PSF z-stacks
Process and refine PSFs with phase-retrieval and Zernike filtering
Acquire snapshot data
Calculate edge corrections
Dark-field correct
Deconvolve data & reconstruct sample volume

ook e

Table 3.1: Data acquisition and calibration pipeline for 3D-EPM.

3.5.1 Simulated point source imaging

Figure 3.8 displays the results of a simulation where a 58 x 58x 58 pm (zyz) volume
containing a single point-source was imaged via the CKM imaging method, before
being reconstructed via the volume reconstruction method developed in the previous
chapter. Figures 3.8a and 3.8b display the simulated images via the image formation
model in equation (2.11). The imaging system was simulated to feature a 0.5NA
objective with an @ = 3 CPM at the exit pupil. The image detectors were simulated
to have a pixel size of 4.5 pm, corresponding to typical pixel dimensions in a scientific
charged-coupled device (CCD) camera, and the system had an overall magnification of
20 X (the object-space pixel size was therefore 0.225 pm). The detectors were simulated
to each detect 25000 signal counts from the point-source, and each image was subject
to both Poisson noise and a small Gaussian background (mean 5 photons, standard
deviation 2 photons). The detectors were simulated to have a baseline 100 counts
per pixel to avoid negative readout, and the differential defocus was £+ 7.5pm. The
resulting disparity between the simulated raw camera images in figure 3.8a and 3.8b
encodes the depth information necessary to reconstruct the volume. Figures 3.8c-e

display maximum-intensity projection (MIP)s through the reconstructed volume along
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Figure 3.8: Simulated 0.5NA snapshot volumetric imaging of a single point-source.
Panels (a) and (b) display the simulated raw snapshot images. The disparity between
images encodes the depth information necessary for volumetric deconvolution. Panels
(c-e) display maximum-intensity projections along each axis after 1 reconstruction it-
eration. The same projections after 50 iterations are shown in (f-h) and 100 iterations
in (i-k). Panel (1) shows a trace through the point along = after 100 iterations, and (m)
shows a plot along z, where we see full-widths at half-maximum of 0.3 pm and 4.3 pm
respectively.

each axis after the first deconvolution iteration. Inspection of the projections provides
some insight into the workings of the reconstruction algorithm: the back-projections of
the images along the curved 3D trajectory of the PSF-stacks is clearly visible. Where
the PSF trajectories intersect is where sample structure is present; in this case the
single point source. As the deconvolution iterates, the solution converges back to a
single point source. Each iteration the estimate of the object is updated such that
the forward projections of the multi-view deconvolution better matches the recorded
images. Maximum-intensity projections through the reconstruction after one iteration
are displayed in figure 3.8c-e; the same projections are shown after 50 iterations (f-
h) and 100 iterations (i-k). After 100 deconvolution iterations the reconstruction has
converged on a single point-source. Traces through the 100-iteration solution along
x and z are displayed in figures 3.8] and 3.8m respectively, where we see full-width
at half-maximum of 0.3pm in the x direction and 4.3pm along z It is emphasised
that the quantities quoted here do not directly correspond to the resolution of the
reconstruction, however we note that the size of the point in z is significantly larger
than that in zy, which is to be expected given the limited collection angle of the imaging

system. The resolution of the reconstruction is explored further in section 3.7.1.
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Figure 3.9: Experimental demonstration of 3D-EPM: snapshot volumetric imaging
of a sample of 0.19 pm diameter fluorescent beads suspended in agarose. Panels (a)
and (b) display the raw, snapshot differential-Airy images. Panel (c¢) displays a zz
maximum-intensity projection through the reconstructed volume after 200 deconvolu-
tion iterations. Panel (d) displays the same projection as (c) through a ground-truth
light-sheet z-stack of the same sample. Panels (e) and (f) display the same as (c)
and (d) but with zy projections. Scale-bar is 15 pm. Full experimental parameters are
detailed in table 3.2.

3.5.2 Experimental validation

Next, we experimentally validate the snapshot volume imaging system. Figure 3.9
displays the results of an imaging experiment where a sample of 0.19 pm diameter flu-
orescent beads (Bangs Laboratories) were imaged in a snapshot via the same method,
using a custom-built microscope based around a 0.8NA water-dipping objective lens.
The beads were suspended in an 0.5% agarose medium and mounted in fluorinated ethy-
lene propylene tubing, before being placed in a water-immersion chamber for imaging.
A Jf relay was placed behind the native image plane, with a beamsplitter placed be-
fore the second relay lenses, similar to the scheme in figure 3.2, which focused images
with a small differential defocus onto two cameras. The cameras acquired snapshot
images simultaneously with an exposure-length of 100 ms. The raw camera images are
displayed in figures 3.9a and 3.9b. There is a high background noise evident owing to
the thickness of the sample being illuminated. Prior to deconvolution, the calibration
steps detailed in this chapter were implemented: an affine registration between the
two cameras was calculated, and the PSFs were refined with the phase-retrieval and

Zernike decomposition steps.

Figures 3.9c and 3.9e show MIPs through the reconstructed volume after 200 de-
convolution iterations, where it is evident that each bead appears as a single point in
the reconstructed 3D volume. A ground-truth light-sheet z-stack image of the same
sample was then acquired via the same imaging path, with no phase-mask present.
Figures 3.9d and 3.9f display zx and zy MIPs through the ground-truth image. The
size of the beads appears larger in the light-sheet image than the reconstructed volume:
this is because the reconstruction has undergone deconvolution whereas the light-sheet

image has not. Nevertheless, the reconstruction is visually comparable to the light-
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sheet image (the image fidelity is explored below). The light-sheet image comprises
70 zy-planes, therefore it is reasonable to state that the snapshot volumetric imaging
displayed in this example represents a 70X acquisition-time speedup than the conven-
tional light-sheet imaging, although this speedup is greater when the scan-time is also

considered.

To explore the similarity between the reconstructed volume and the ground-truth
light-sheet image, the position of beads in each image was estimated and compared.
The top row of figure 3.10 displays the localisation error of points across the recon-
struction depth in z (blue), y (red) and z (black). We see that in z, the localisation
error is evenly distributed around 0, suggesting the localisation on average recovers
the correct z coordinate in the reconstruction, i.e. no systematic error is observed.
The standard deviation of the z localisation error from this analysis was calculated
to be 0.15um. In y, we see a very small systematic offset in the recovered coordinate
of 0.08 pm. This systematic error is most likely the result of the calibration PSF not
been completely centered in the volume: a small offset from the center would result
in a shift of the deconvolved volume by an equal amount. This is explained by the
sifting property of the convolution operation. In z, we see a trend in the localisation
error across the sample depth. The localisation error is negative at one side of the
volume depth, and positive towards the other, ranging from approximately —0.2 pm to
0.1um. This trend could be explained by a number of phenomena, most likely small
optical misalignment: for instance a small lateral translation as well as axial during
the PSF acquisition scanning, or a small rotation of the cameras with respect to the
image planes. However, both of these possibilities could in principle be identified and

corrected for with appropriate system calibration steps.

The bottom row of figure 3.10 shows plots of the recovered position of bead in the
reconstruction (z: red, y: blue and z: black), against the position of the corresponding
bead in the light-sheet image across the sample depth. The dashed diagonal line on
each plot indicates perfect localisation: if a point lies completely on this line then the
coordinate in each image matches. In z and g, the points all lie close to the line,
however in z there is more of a spread, indicating a larger uncertainty in the measured
coordinate. This is generally expected in point localisation experiments owing to the

lower sensitivity of the system to changes in z position than changes in z and y.

3.5.3 Extended structure

The results presented in the previous section confirm that volume reconstructed by
the snapshot volume imaging reconstruction pipeline closely match the ground-truth
volume. However, the results presented so far are not uniquely obtained by this method:
the coordinates of point-sources could also be acquired by 3D SMLM methods, albeit
without reconstructing the 3D volume. Indeed, this topic is the subject of the next

chapter, where we see that the method presented in this thesis does in fact introduce
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Figure 3.10: Fluorescent bead reconstruction analysis. Top row: plots localisation
error in z (blue), y (red) and z (black) throughout the sample depth. Bottom row:
plots of the estimated coordinates of each bead in the reconstructed volume against
the coordinates of the matched bead in the reconstruction. Colours are the same as
the top row.

significant advantages to point-localisation applications. However, many biological
samples are not well-suited to SMLM imaging, since they exhibit extended fluorescent
structure rather than discrete point-emitters. Therefore, the ability to image samples
exhibiting regions of extended fluorescent emission as well as those featuring sparser

point sources is crucial for a general microscopy technique.

In SMLM, the coordinates of point-sources are estimated directly from the acquired
image data. This requires the points to be spatially and/or temporally separated such
that individual PSFs can be identified. Substantial research effort has been directed at
increasing the density of point-sources that can be imaged with SMLM, with examples
including multi-fitting algorithms and deep-learning approaches. Deconvolution is of-
ten used as a tool in the processing of SMLM data to both increase image sparsity and
aid localisation. However, SMLM methods fundamentally aim to identify the spatial
coordinates of the imaged point-sources and therefore the application of these tech-
niques to more general biological structure, which is often extended in nature, is not
possible. Deconvolution, however, does not share this same constraint. The general
aim of image deconvolution is not to identify the coordinates of point-sources, rather
to improve image contrast through inversion of the optical blurring imposed by the
imaging system. The type of structure being imaged, therefore, is less important. This
makes the volume reconstruction method developed in this chapter, which is based on
deconvolution, well-suited to the imaging of more general fluorescent structure. While
there is still a modest requirement for sparsity, which is explored more later in this
chapter, the 3D-EPM volume reconstruction may be readily applied to samples exhibit-
ing more extended structure. In this section, the application of the 3D-EPM method
to this type of sample is explored.
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3.5.4 Simulated filaments

We begin with a simulated example of the application of 3D-EPM to sample exhibiting
regions of extended fluorescent structure. Figure 3.11 depicts the results of a simulation
where a network of computationally-generated filaments were simulated to be imaged in
a snapshot with the differential-Airy PSF. The sample volume was then reconstructed
with the volume-reconstruction pipeline. Figure 3.11a displays a 3D rendering of the
ground-truth volume, which is colour-coded for depth. The trajectory of each filament
was generated via 5" order polynomials with randomly generated coefficients, inside a
discretised volume with isotropic voxel dimensions of 0.2 ym. The overall volume size
was 102.4x102.4 x50 um (zyz). Each filament was created by marking its trajectory (to
the nearest voxel) with a value of one in the sample volume, which was otherwise zero.
The filaments were given a 3D shape through convolution with a small 3D Gaussian
kernel (0 =0.4pm). Snapshot differential-Airy images were simulated via the image
formation model in equation (2.11) with simulated 0.5NA « = 2 cubic PSFs with a
differential defocus of +£10pum. The images were subject to both a small Gaussian
background noise, reflective of background and readout sources. This proof-of-concept
simulation was performed with idealised high signal-to-noise imaging conditions: the
peak signal-to-noise ratio of the snapshot images was approximately 250:1. The images
were also subject to Poisson shot noise to reflect the noise statistics of fluorescence
emission. Figs 3.11c-d; e-f, and g-h display zz and zy maximum-intensity projections
through the reconstructed volume after 5, 50, and 150 iterations respectively. Due
to the high signal-to-noise ratio in the simulated images, no regularisation term was
required in the reconstruction. After 150 iterations, the reconstruction has converged:
figure 3.11 displays a 3D rendering of the reconstructed volume after 150 iterations,
which clearly resembles the ground-truth volume. Similar to the results displayed in
figure 3.9, the reconstructed filaments are thicker axially than they are laterally. Again,
this reflects the resolution of the imaging system, which is worse axially than laterally,
and is determined by the numerical aperture. The resolution provided by 3D-EPM is

explored further in section 3.7.1.

3.5.5 Lens-tissue

Next, the application of 3D-EPM to samples exhibiting extended fluorescent structure
is demonstrated experimentally. Figure 3.12 displays the results of an experiment where
a sample of lens-tissue was imaged and reconstructed via 3D-EPM. The lens-tissue was
prepared by dipping in a solution of fluorescein salts before being left to dry, such that
the fibrous structure would fluoresce under 488 nm laser illumination. Figures 3.12a
and 3.12b display the raw, 2D cubic-encoded snapshot data, which was acquired on
a custom-built upright microscope based around a 10X 0.3NA objective. While the
sample, at this magnification, is still relatively sparse, it does exhibit extended regions

of fluorescence emission. At a NA of 0.3, and with the CPM present, the entire sample
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Figure 3.11: Simulated 0.5NA 3D-EPM imaging of a network of filaments inside a
102 x 102x50 pm volume. Panels (a) and (b) display 3D renderings of the ground-
truth and reconstructed volumes respectively, colour-coded for depth. Panels (c¢) and
(d) display zz and zy maximum-intensity projections through the reconstruction after
5 iterations respectively, where the solution has clearly not yet converged. The same
projections through the solution after 50 iterations are displayed in (e) and (f), and
after 150 iterations in (g) and (h). Scale-bar is 15 pm.

depth could be imaged within the EDoF of the imaging system. The raw images
therefore contain little contributions from out-of-focus light, which is beneficial for
deconvolution performance. Figures 3.12¢-k display the reconstructed volume after 150
deconvolution iterations. To effectively visualise the full dynamic range of the solution,

the reconstructed volume was subject to a gamma intensity correction described by

Iout - [;;L (318)

where I,,; and I, are the input and output intensity values respectively, and ~ is the
gamma-correction parameter. In this case the value of v was selected empirically to be
0.8.

Figure 3.12c displays an zy summed-intensity projection through the reconstructed

volume, which has been color-coded to display depth. Here, the 3D nature of the
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Figure 3.12: Experimental 3D-EPM imaging of a sample of lens-tissue, demonstrating
how volumes of extended fluorescent structure are imaged in all three spatial dimensions
in a single snapshot. (a) and (b) display the raw cubic-encoded images, acquired
simultaneously in a single snapshot. Cyan insets show zoomed in versions of the region
bound by the dashed cyan boxes, highlighting the disparity between images. Panel (c)
shows a summed-intensity projection through the reconstructed volume, colour-coded
for depth. Panels (d) and (e) display zz and zy maximum-intensity projections through
the reconstruction respectively. (f) and (g) zy planes in the reconstructed volume at
depths of 2 =—36 pm and z =36 pm respectively. (h-k) zy planes in the reconstructed
volumes at the indicated positions in x. Scale-bar is 50 pm.

sample volume is evident, with filaments overlapping and running from one side of the
volume depth to the other. Max-intensity projections along the other axes through
the reconstruction are displayed in figure 3.12d and 3.12e. To further demonstrate the
3D-resolved structure in the reconstructed volume, figures 3.12f and 3.12g display xy
planes at depths of —36 pym and 36 pm respectively, where different sample features
are visible, with prominent examples indicated by the green arrows. Figures 3.12h-
k display zy slices through the reconstruction at different locations in x, where the
different depths of the various fibres is evident. To regularise the deconvolution, a
regularisation parameter of Ary = 0.001 was used according to equation 2.19. Full

details of the microscope and deconvolution parameters are provided in table 3.2.

3.6 Dynamic Samples

The results presented so far in this chapter demonstrate that the 3D-EPM imaging
modality is capable of extracting the depth-information encoded by a differential-Airy
PSF by reconstructing a volume of fluorescent-beads, and comparing their estimated

positions in the reconstructed volume to those in a light-sheet ground-truth image of
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the same volume. We’ve also demonstrated the capability of the method to reconstruct
extended fluorescent structure, as well as sparse point-sources. However, thus far, we
haven’t demonstrated the benefit of performing volumetric imaging in a snapshot.
Indeed, the reconstructed volumes displayed in both the beads and lens-tissue imaging
experiments could also have been acquired via the conventional methods of light-sheet
or confocal imaging, which naturally would have provided better optical sectioning. To
demonstrate the full benefit of snapshot volume imaging, we now turn our attention
to samples that undergo motion during acquisition, where scan-based volume-imaging

methods could not be applied.

3.6.1 Simulated filament growth

Again, we begin with a simulated example to demonstrate the application of 3D-EPM
to this type of sample. The filaments displayed in figure 3.13 were simulated to grow in
time throughout all three spatial dimensions. Differential-Airy images were simulated
at 60 discrete time-points. The acquired data-set, therefore was three-dimensional
(tzy). From each pair of differential-Airy images the sample volume was reconstructed
with 150 3D-EPM deconvolution iterations. Figure 3.13a-f displays the raw snapshot
differential-Airy images at three distinct time-points (t = 20,¢ = 35 and ¢ =50 AU).
Figures 3.13g-1 displays 3D renderings of the reconstructed volume at the same time-
points, which are colour-coded to display depth. The reconstructed data-set is four-
dimensional (tzzxy). The simulated example displayed in figure 3.13 demonstrates the
benefit provided by the snapshot imaging capability offered by 3D-EPM: if this simu-
lated motion occurred over sub-second timescales, this sample would not be possible
to probe with methods such as confocal or light-sheet microscopy. It is here that the
benefits of the imaging method developed in this chapter are most clear: by removing
the need to scan during acquisition of the 3D image, the temporal resolution of the sys-
tem is greatly increased, permitting the study of dynamic samples where the observed

motion occurs too quickly to probe with conventional scan-based methods.

3.6.2 Chloroplast motion in FEgeria densa.

The final result presented in this chapter is an experimental demonstration of the
application of 3D-EPM to a biological sample that undergoes motion during acqui-
sition. The 3D the rapid movements of chloroplasts in a sample of Egeria densa, a
type of pond-weed whose chloroplasts undergo fast motion resulting from cytoplasmic
streaming, were imaged via 3D-EPM. In a similar fashion to the other experimental
demonstrations presented in this chapter, the sample was imaged via a custom-built
upright microscope based around a 0.8NA water-immersion objective lens, with a CPM
placed at the re-imaged pupil plane. The sample was prepared by resting a leaf-cutting
on a bed of low gelling-point, 1% agarose in a petri-dish, which, when solidified, en-

sured the sample did not move during imaging. The immobilised sample was then
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Figure 3.13: Simulated 3D-EPM imaging of filament growth. Panels (a) and (b) display
the simulated snapshot images at ¢ =20 AU. The raw data at ¢t =35 AU and ¢t =50 AU
is displayed in (c,d) and (e,f) respectively. Panels (g-1) display 3D renderings of the
reconstructed volumes at the same time-points, colour-coded for depth. Scale-bar is
15 pm.

covered in water. Auto-fluorescence emission from the chlorophyll in the chloroplasts
was excited via illumination with a 488 nm laser illumination and detected via a 630 nm
narrow-band fluorescence emission filter in the imaging path. The sample was imaged
at a frequency of 5 Hz over a period of 80s. Figure 3.14 displays a 3D visualisation of
the reconstruction of a single time-point of the 4D-timelapse, as well as motion tracks
of the chloroplasts throughout the 80s acquisition, estimated using the TrackMate
ImageJ plugin [94] .

3.7 Performance and limitations

The previous sections demonstrated the application of 3D-EPM to a variety of different
samples. In this section, we further explore the performance of the imaging method,
focusing on the achievable resolution, factors affecting the convergence of the decon-
volution and the effect of signal-to-noise ratio and regularisation. We also address the

limitations of the method and explore where it might fall down.

3.7.1 Resolution

The goals set out at the start of this chapter were to develop an imaging method that
could image a volume in a single snapshot, while maintaining high spatial resolution.
The first of these goals has been addressed with the development of 3D-EPM, which we

have seen to be capable of imaging both point-like and extended structure in a single
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Figure 3.14: 3D-EPM imaging of chloroplasts undergoing cytoplasmic streaming in a
sample of Egeria Densa. Snapshot imaging was performed at a frequency of 5 Hz over a
duration of 80s. Left: a 3D rendering of the ¢ =0s reconstructed volume, colour-coded
for depth. Right: estimated motion tracks of chloroplasts over the 80s.

snapshot. However, the second of these aims, maintaining high spatial resolution, has
not yet been addressed. We saw in figure 3.9 that traces through the reconstructed
points had full-widths at half-maximums of 0.3 pm laterally and 4.3 pm axially. How-
ever, it is important to note that these quantities do not directly correspond to the
resolution of the reconstructed image, or indeed the resolution provided by the imag-
ing system, in terms of its ability to distinguish closely-spaced points. This is because
RL deconvolution will, if left to iterate, continue to shrink the appearance of a single
point; increasing the intensity of the central pixel(s) while decreasing the intensity of
the neighbouring pixels. This behaviour is exemplified in figure 3.15, where the size of
a single reconstructed point is shown to decrease as the solution is left to iterate, and
explained by the noise amplification phenomena discussed in chapter 2. Therefore, the
size of a single point in a deconvolved image tells us almost nothing about the resolu-
tion of the imaging system, which is the closest distance two points can be spaced while
still being identifiable as two distinct points. The Rayleigh criterion requires two such
points to be separated such that the first diffraction minimum of one point coincides
with the first diffraction maximum of the other: separations beneath this distance are
not resolved!. Therefore, to determine the resolution of a snapshot volumetric imaging
system, the separation between two points must be increased until they are resolved
in the reconstructed volume. In 2D, resolution test-targets make this process trivial,
however in 3D fluorescence imaging it is more challenging, especially when the method
benefits from sample sparsity: to my knowledge no suitable 3D fluorescent resolution
test target exists for such a method. Therefore, to assess the resolution offered by

3D-EPM, this process of separating two points was performed in simulation.

laccording to the Rayleigh Criterion. Other definitions of resolution exist, however Rayleigh is the
most common.
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Figure 3.16 displays the results of a simulation where the resolution of a recon-
structed volume was explored by increasing the distance between two points in the
ground-truth image until they were clearly resolved in the reconstruction. The simu-
lation was performed at a NA of 0.5 and with an emission wavelength of A=525nm.
Figure 3.16a shows the results as the lateral separation is increased, were is is clear
that at a separation distance of 0.5 nm, the points are not resolved in the reconstructed
volume, however at a separation of 0.6 pym the points are clearly resolved as two dis-
tinct points. Therefore, the lateral resolution of the reconstructed volume falls between
0.5 pm and 0.6 pm. The theoretical lateral resolution limit R, of a 0.5NA system at this
wavelength, calculated by (1.6) is Ry, is 0.525 pm. It is apparent, therefore, that when
resolving two points, the lateral resolution of the reconstructed volume approaches that
of the parent imaging system. Figure 3.16b shows the results of the same simulation,
but where the points were separated axially instead of laterally. Here, we require a
separation of approximately 4.5 um to resolve the points. The Abbe resolution limit

for the axial direction, R, is given by

_2)
- NA?

R. (3.19)

which, in this simulation, gives a value of R, =4.2 pym.

The fact that 3D-EPM can approach the resolution of the parent imaging sys-
tem represents a major advantage over LEM. LFM also enables snapshot volumetric
imaging, however the volumetric imaging capabilities are provided at the expense of
a significant loss of lateral resolution. To date, the highest-resolution implementation
of conventional LFM reported the ability to resolve structure separated by 757 nm,
711nm and 790 nm in zyz respectively [46]. However, these results were obtained with
an emission wavelength of 680nm on a system with a primary NA of 1.45, which
according to the Abbe resolution limit is capable of achieving a lateral resolution of
230nm and an axial resolution of 650 nm, representing a reduction in lateral resolu-
tion by a factor of approximately three compared with the parent microscope. With
3D-EPM, because the achievable resolution is similar to that of the parent microscope,
sub-micron resolution is available at far lower NA, representing a far more versatile

high-resolution imaging technique.

3.7.2 Sample sparsity

It was mentioned in section 3.5.3 that while 3D-EPM is able to reconstruct samples
exhibiting extended fluorescent structure, there remains a modest requirement for spar-
sity in the sample for the reconstruction to be effective. This raises the question: what
is the upper limit on how dense a sample can be before the 3D-EPM reconstruction
no longer works? This question is somewhat answered through consideration of how
depth information becomes encoded into the snapshot differential-Airy images. The

differential defocus between imaging channels manifests as disparity between images.
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Figure 3.15: Convergence of a single point-source with increasing iterations. Images
show normalised zy planes through a simulated reconstruction of a single point-source
with increasing iterations. Plots show y=0pm traces through the images, which show
the full-width at half-maximum continues to decrease while the intensity of the central
pixel increases as the solution iterates. This does not necessarily correspond to an
improvement in resolution of the reconstructed image: it is instead related to the
overfitting of high-frequency components in the image data.

It follows, therefore, that if a certain sample appears the same in both imaging chan-
nels, the reconstruction will be unable to extract depth information and is unlikely to
work effectively. An example of such a sample includes one that features large areas
of smooth, uniform fluorescence emission that are larger than the cubic PSF. Imaging
such a sample with a differential-Airy PSF will yield images with large regions that
appear broadly similar. This lack of disparity causes the 3D-EPM reconstruction to

break down.

The challenges associated with a lack of disparity in projection images are not
unique to 3D-EPM: instead it is a general problem associated with the calculation
of 3D information from 2D images. In the differential-Airy implementation of 3D-
EPM, as with CKM, depth information is encoded through image disparity, related
to the lateral translation of the cubic PSF. In LFM, on the other hand, disparity
is generated from the varying angular perspectives provided by the MLA. Similarly,
we shall see in chapter 5 that 3D reconstruction from multi-angle projection data is
made possible by exploiting the information from projecting the sample at different
angles. Because each of these methods exploit image disparity to calculate depth,
they all share the same limitations with respect to sample sparsity, with none being
able to accurately reconstruct extremely dense fluorescent structures, or samples with
large regions of uniform fluorescence emission. The acceptable density of the sample
could, in principle, be increased by either acquiring a greater number of projection
images, or by artificially introducing structure onto the sample with e.g. structured
laser illumination. The effect of reconstructing from a greater number of projection
images is explored quantitatively in chapter 5 in the context of multi-angle projection
imaging [5]. The concept of using structured illumination to improve the versatility of
3D-EPM is discussed at the end of this thesis in the context of possible future work.
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Figure 3.16: Simulated resolution test of 3D-EPM reconstruction. Images show z=0
(top) and y=0 (bottom) slices through a reconstructed volume containing two point

sources separated laterally (top) and axially (bottom).
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Figure 3.17: Plot of convergence with varying differential defocus.

3.7.3 The influence of differential defocus

We have seen that the differential defocus between the two cubic PSFs is central to
the imaging method presented in this chapter, through its introduction of disparity
into the differential-Airy images. However, thus far, there has been no theoretical
guidance provided as to what the magnitude of the difference should be for optimal 3D
reconstruction. Figure 3.17 shows the results of a simulation where the mean-square
error between the solution and ground-truth was measured with increasing iterations,
at different defocus separations between the two 0.5NA cubic PSFs. The ground-truth
was a volume densely seeded with point-sources, and the cubic PSFs were simulated
such that the overall DoF was approximately 40 pm. The plot demonstrates that in
this particular imaging scenario, which was simulated to be free of noise, a differential
defocus 0z = =8 pm yielded the best solution after 50 deconvolution iterations. At
much larger values of 0z, the solution stopped converging after very few iterations
and quickly began to diverge. This behaviour is explained by considering the scenario
where a differential defocus is used that is too large, leading to sample features that
are imaged within the DoF of one of the imaging channels being positioned outwith the
DoF of the other channel, and therefore different features being imaged by each camera.
The deconvolution, therefore, is unable to effectively reconstruct the sample volume
because depth information has not been effectively encoded into images. Conversely, at
defocus separations that are too small, minimal disparity between images is introduced,
again not effectively encoding depth. In practice we find a differential defocus of
approximately 25% of the EDoF to be optimal for encoding depth into differential-
Airy images: this value is sufficiently large such that enough substantial disparity
between images is introduced, but not so large that the two cameras image entirely

different volumes.

3.7.4 Convergence and regularisation

The number of iterations required to reconstruct the sample volume depends on a num-

ber of factors including the signal-to-noise ratio of the raw data and the type of sample
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being imaged. Denser samples generally require a greater number of iterations before
convergence is reached. However, the deconvolution should be stopped before the noise
amplification discussed in chapter 2, caused by overfitting to high frequencies domi-
nated by noise, starts to degrade the solution. Since the solution generally converges
faster laterally than it does axially, the total variation regularisation term described in
chapter 2 is used to suppress the noise amplification, allowing the deconvolution to iter-
ate further. Generally, for experimental data we find the optimal number of iterations
to lie in the range 50-500. The number of iterations used for all of the experimental
results shown in this chapter, as well as details of all other experimental parameters

including the strength of the total-variation regularisation, are listed in table 3.2

3.8 Chapter 3 summary

In this chapter we developed 3D-EPM, a microscopy method that is able to image
entire volumes in a single snapshot at high resolution. We saw that when the imaging
method of CKM is used to simultaneously extend the DoF and encode depth infor-
mation into images, the volume-reconstruction pipeline developed in chapter 2 may be
applied to the snapshot-acquired data to reconstruct a full 3D volume. We validated
the method by comparing a reconstructed volume to a light-sheet ground-truth image
of the same sample, where we saw good agreement. We then demonstrated the appli-
cation of 3D-EPM to samples that were extended in nature and therefore could not
be imaged with SMLM methods, as well as dynamic samples that could not be im-
aged with conventional scan-based volumetric imaging techniques. Finally, we explored
the performance and limitations of 3D-EPM, where we demonstrated that the native
resolution of the microscope in both time and space is preserved under ideal imaging
conditions, offering significant advantages over LEM, which requires a significant com-
promise in lateral resolution. In summary, 3D-EPM is a general microscopy technique
that can be performed on any widefield microscope through simple modification of the
imaging path, which enables volumetric imaging at a temporal resolution far greater

than scan-based methods, while maintaining high spatial resolution.
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Experiment
Parameter Beads Lens Tissue E. densa
Microscope Objective Nikon CFI Apo | Nikon CFI Plan | Nikon CFI Apo
NIR 40X W Fluor 10X NIR 40X W
Tube Lens
focal length 150 100 200
()
L1
focal length 100 75 100
(mm)
L2
focal length 100 150 100
()
Emission
Filter 525 525 630
peak (nm)
Excitation 488 488 488
wavelength
Excitation
Power (mW) o0 20 o0
Ximea Andor Andor
Camera MD%S;\/?UO gy Zyla Zyla
CCD ) sCMOS sCMOS
Bangs- Bangs- Mesolight
PSF Laboratories, Laboratories, Quantum Dots
Measurement Bead 0.19 pm Dragon- | 0.4pm Dragon- | FWHM 26 nm
Green, Volume- | Green, Volume- | Peak emission
Labelled Labelled 623 nm
Fxposure 200 400 400
Time (ms)
Z-mterval 150 1000 200
(nm)
Num
Zernike 20 20 20
Modes
Snapshot Exposure
Acquisition Time (ms) 100 o0 o0
Frame 5
Rate (Hz)
Deconvolution [terations 200 500 300
Ay 0 0.001 0.0005

Table 3.2: Acquisition parameters for each experiment detailed in this chapter.
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Chapter 4

3D-EPM localisation

In the previous chapter 3D-EPM was introduced, where the volume reconstruction
framework developed in chapter 2 was applied to PSF-engineered images. This en-
abled the snapshot volumetric imaging of both point-like and extended fluorescent
structures, which we saw to be beneficial in the 3D imaging of dynamic samples. In
this chapter, we turn our attention away from extended fluorescent structures, instead
focusing on the benefits that the volume-reconstruction pipeline can introduce to point-
localisation applications. Additionally, where up to now our discussion has focused on
implementing the volume-reconstruction from cubic-encoded images, in this chapter we
demonstrate its implementation with other PSFs. Indeed, we shall see that the method
is applicable to any engineered PSF, providing certain key criteria are met. We explore
through simulation the application of 3D-EPM to point-localisation and demonstrate
significant advantages over similar localisation frameworks. We begin by discussing the
concepts of point-localisation in microscopy, before setting out how 3D-EPM localisa-
tion works. We then assess its performance and compare it to a previously-developed

point-localisation routine designed for the twin-Airy PSF [68].

4.1 Point localisation in microscopy

Accurately and precisely determining the spatial coordinates of point-like emitters un-
derpins several different microscopy methods across different spatial scales. At the
organ to organism scale, example applications include mapping cardiovascular blood-
flow in the embryonic zebrafish [54, 95], mapping zebrafish heart-wall trajectories [96]
as well as blood-plasma velocity measurement in the embryonic avian heart [97]. To-
wards the cellular level, traction-force microscopy exploits point localisation to enable
the study of the traction, or force, at the interface between a cell and the surrounding
medium [98, 99|, providing insight into cellular mechanics in both two and three dimen-
sions [100]. Perhaps the most powerful application of point localisation in microscopy,
however, is seen at the sub-cellular scale, where SMLM methods permit the nano-

scale imaging of fluorescent structure through the localisation of individual fluorescent

70



CHAPTER 4. 3D-EPM LOCALISATION 4.1. POINT LOCALISATION

molecules. In SMLM, the spatial coordinates of individual fluorescent molecules are
determined from sparse diffraction-limited images. The localisations of many individ-
ual molecules are then combined into a single reconstructed image, with a resolution
surpassing that dictated by the optical diffraction limit [60, 61, 62]. To enable ef-
fective localisation from PSFs, SMLM requires either temporal or spatial separation
between neighbouring points in images to ensure PSFs do not significantly overlap. In
fluorescence microscopy, this is commonly achieved by exploiting the concepts of photo-
switching or photo-activation. Photoswitchable fluorophores stochastically switch be-
tween emitting (on) and non-emitting (off) states under irradiation at an appropriate
excitation wavelength [62]. Photoactivatable fluorophores, on the other hand, irre-
versibly change from a non-emitting state to an emitting state, and therefore must be
bleached prior to new fluorophores changing to an “on” state to ensure temporal sep-
aration between images of neighbouring fluorophores being acquired [60, 61]. In both
cases, the lifetime of emitting fluorophores and number of fluorophores active simul-
taneously may be controlled through choice of appropriate dyes and/or modulation of

the chemical/irradiation conditions [59].

Individual fluorophores are imaged as individual PSFs, with raw SMLM images fea-
turing a resolution determined by the diffraction limit, related to the size of the PSF.
By estimating the positions of the underlying molecules, however, single molecules
may be localised with a precision far better than this limit, thus SMLM methods are
said to achieve super-resolution. Position estimation may be performed in a number of
ways: for instance in 2D-SMLM, the position of fluorophores may be estimated through
least-squares fitting of 2D Gaussian profiles to PSFs identified in images [60, 61, 62].
Alternatively, maximume-likelihood estimation-based approaches may be used to de-
termine the position of a point-emitter [101]. The resolution of SMLM then becomes
associated with the uncertainty of the measurement, or the localisation precision, rather
than being solely determined by the optical diffraction limit. Quantifying the resolu-
tion achieved by SMLM is not a trivial task: there exists a theoretical upper limit
to the achievable localisation precision, determined by the Cramer-Rao lower bound
(CRLB), discussed further in section 4.5. However, in practice, experiments may not
achieve this upper limit for several reasons including optical aberrations or imperfect
localisation routines. Estimating the resolution from super-resolved images directly,
therefore, is a more informative approach: example methods include measuring the
uncertainty associated with repeated position measurements of a single fluorophore, or
through calculation of e.g. the Fourier ring correlation [102]. Alternatively, imaging
nano-ruler samples, which feature fluorophores spaced at regular intervals, offer direct
measurement of image resolution, albeit from a different sample [103]. Despite these
complexities, lateral resolutions of a few tens of nanometers are possible with SMLM.
For this reason, SMLM has become a pivotal tool in the life sciences through its ability
to resolve structure that otherwise is too small to resolve with conventional microscopy

methods, with notable applications including the mapping of nanoscale protein archi-
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tecture in focal adhesions [104], imaging chromatin organisation and conformity [105],
and discovery of periodic ringlike actin structures around the circumference of axons
[106].

4.2 3D-SMLM

While super-resolution is easily achieved in two dimensions through SMLM, obtain-
ing images that are super-resolved in all three spatial dimensions is more challenging
because of the requirement for additional optical components and more sophisticated
image processing. This is problematic, since most biological structures and processes
of interest are inherently three dimensional. SMLM methods generally require imag-
ing with extremely high NA objective lenses for optimal light collection and image
resolution. However, a compromise that must be made when imaging with high-NA
lenses is that the associated DoF in constrained to just a few hundred nanometers.
Additionally, as we saw in the previous chapter, the shape of the diffraction limited
PSF is approximately symmetric about the focal plane, meaning that without combin-
ing SMLM with other optical techniques, the axial coordinate of fluorophores is not

possible to determine from SMLM image data.
Several methods exist that extend the super-resolution capability of SMLM into all

three spatial dimensions. For instance, bi-plane fPALM combines bi-plane imaging with
photo-activated fluorophore imaging to achieve sub-100 nm resolution in each spatial
dimension [107]. Here, the 3D spatial coordinates of fluorophores are estimated by
fitting an experimentally-measured 3D PSF to PSFs in the 3D image data (formed by
axially stacking the two imaged planes). Similar methods include biplane spectroscopic
SMLM [108] and multi-plane spectrally-resolved SMLM [109]. Alternatively, astigmatic
imaging may be combined with point-localisation through the introduction of a weak
cylindrical lens into the imaging path. This results in a depth-dependent change in the
ellipticity of the PSF owing to a different axial focus in x and y, allowing 3D particle
tracking [110, 111] and, when combined with STORM imaging, three dimensional
super-resolved imaging [63]. Here, the position of fluorophores may be estimated again
through fitting a 2D Gaussian profile to PSF's in images, however unlike in conventional
SMLM, the axial coordinate may be estimated through the difference between the
Gaussian widths in = and y [63].

A limitation of these methods, however, is the limited depth-range over which
fluorophores can be localised. Without scanning the sample axially, both methods
provide 3D super-resolution over a depth-range of less than approximately 1 pm, which
is insufficient when imaging typical 3D samples such as mammalian cells. To image
beyond this depth range, the DoF of the imaging system must be extended. While
this has been demonstrated with, for instance LFM [112], PSF engineering is the most
common strategy for 3D SMLM across an EDoF'. Several pupil functions have been

developed for these purposes including the double-Helix [64], Corkscrew [113], Tetrapod
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[65], and twin-Airy [68]. PSF engineering methods extend the depth over which 3D-
SMLM may be performed: for instance, a precision of 30 nm over a depth range of

7pm was reported in [68].

3D position estimation from PSF engineered images may be performed in a num-
ber of ways, e.g. maximum-likelihood estimation [65], custom algorithms exploiting
particular features of given PSFs, for instance the rotation or separation of PSF lobes
(64, 68], and neural network or deep-learning based methods [114, 115]. However, sim-
ilar to 2D-SMLM, most methods require either temporal or spatial separation between
images of neighbouring points for effective localisation. Since the lateral footprint of
engineered PSF's is typically far larger than their diffraction-limited equivalents, the
constraints on emitter density are often far stricter in 3D-SMLM. While various meth-
ods have been reported to enable the localisation from overlapping PSFs, they are
each restricted for use with only a single type of engineered PSF [114, 68]. There is,
therefore, a requirement for a general localisation method that is not limited to a sin-
gle type of engineered PSF, that can cope with overlapping emitters. Such a method
would offer both versatility in terms of PSF choice and an improvement in achievable
temporal resolution for 3D-SMLM methods by allowing samples to be imaged with

higher labelling densities than is currently possible.

4.3 Localising with volume reconstruction

In this section, the process of point-localisation performed via the volume reconstruc-
tion method embodied by 3D-EPM is outlined. For simplicity, we initially restrict our
discussion to the high signal-to-noise ratio regime, although the influence of signal-to-
noise ratio is investigated later in this chapter. We also restrict our initial discussion
to the case of imaging with the twin-Airy PSF, although it will be shown later that we

can in fact use any PSF that uniquely encodes depth information into images.

The localisation procedure begins with acquisition of the raw data. Data acquisi-
tion is performed in the same fashion as other 3D point-localisation techniques that
utilise PSF engineering: typically using epi-illumination on a commercial microscope,
although we are not limited to this case. Usually, SMLM experiments are performed us-
ing extremely high NA objective lenses that meet the resolution requirements, although
some other point-localisation experiments, e.g. particle-tracking applications may not
share this requirement. The objective lens and phase-mask should be chosen such that
the EDoF is large enough to cover the depth-range that is to be imaged. The choice of
camera used for imaging should be appropriate to the experiment: typically for single-
molecule imaging an electron-multiplying charge-coupled device (EMCCD) camera,
capable of single-photon detection, is used; for particle-tracking experiments where the
photon-budget is higher a charged-coupled device (CCD) camera may be used instead.
In addition to the raw data, a calibration PSF z-stack should be acquired, which may

be refined via the same phase-retrieval and Zernike filtering procedures outlined in the
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Figure 4.1: Schematic of localisation performed with 3D-EPM localisation. (a) PSF-
engineered images are acquired of the sample, which comprises point-emitters that
appear as PSFs in the raw images. Scale-bar is 10 pm. (b) The volume reconstruction
employed in 3D-EPM is applied to reconstruct the 3D sample volume. (c) Points are
identified and localised within the reconstructed 3D volume.

previous chapter.

Once the raw data and calibration PSF have been acquired, the 3D-EPM localisa-
tion differs from the norm of localising from the raw 2D data. Instead, the 3D sample
volume is reconstructed according to equation 2.14, where the encoded depth informa-
tion is extracted during deconvolution and the PSFs in the raw image data converge
back to points in 3D space. Localisation is then performed in the reconstructed 3D
volume, by fitting 3D Gaussian profiles to points identified within the reconstructed
volume. For the simulations and analysis performed in this chapter, the 3D localisation
was performed using the trackpy python library [116], however use of more sophisti-
cated fitting regimes may further improve localisation performance by, for instance,
more effectively identifying closely-spaced points as separate. Figure 4.1 displays a

schematic outlining the reconstruction and localisation procedure.

In statistical terms, a procedure for estimating underlying parameters (for instance
the spatial coordinates of point-emitters) from raw data is called an estimator. In our
case, the estimator is the procedure of 3D-reconstruction and localisation. A good
estimator should exhibit a number of features. Firstly, it should be unbiased: i.e,
on average, it should recover the true underlying parameters. Additionally, it should
be precise: there should be a small variance in repeated measurements of the same
parameter. There is a theoretical limit to the precision of an estimator, given by
the CRLB, which depends on the information content of a given system about the
parameter(s) of interest; this is discussed further in section 4.5. A good estimator
of a parameter of interest should, therefore, estimate the parameter with a precision
approaching the theoretical limit dictated by the CRLB. In the following sections these

characteristics are explored further.
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Figure 4.2: Reconstruction-localisation, on average, recovers close to the true value of
position for a single point-source.

4.4 3D-EPM localisation as an unbiased estimator

Figure 4.2 displays the results of 1000 repeats of a noise-free simulation where the
3D spatial coordinates of a single point source, imaged with a twin-Airy PSF, were
estimated with the method outlined in figure 4.1. The simulation was performed at
0.5NA with an emission wavelength of A=660nm. In each repeat, a 65 x 65x 15num
volume was seeded with a single point at randomly determined coordinates. To allow
sub-pixel coordinates, the point was simulated as a 3D Gaussian distribution with a
standard deviation o =32.5nm. The point was then simulated to be imaged with a
twin-Airy PSF according to equation 2.10. For this initial discussion, no noise was
added to the images. The 3D sample volume was then reconstructed with 10 iterations
of the 3D-EPM reconstruction algorithm, before the 3D position of the point was
estimated using trackpy software. Only 10 iterations were required in this simulation
since the images were free of noise and the sample comprised only a single point-source.
Figure 4.2 shows histograms of the error in recovered position, defined as true position -
estimated position, along each axis. We see that, on average, the localisation procedure
estimates the position of the point with close to zero error: in this simulation we
saw mean errors of -9.2nm, 4.8 nm and —12.6 nm along zyz respectively, which are far
beneath the diffraction-limited PSF width of such a system (as determined by equations
1.2 and 1.3). Since these error values are far beneath the theoretical resolution limit
of such a microscope, we can conclude from the results shown in this section that
estimating the 3D position of a point-emitter from within the 3D reconstructed volume

does not introduce significant bias into the estimated spatial coordinates.
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Figure 4.3: E3D-EPM localisation approaches the theoretical limit on precision set out
by the CRLB. Plots show the theoretical limit (solid line) on precision along z (blue), y
(red) and z (green), as determined by the CRLB for a simulated oil-immersion 1.4NA
a = 5 COSA PSF, assuming the Poisson data model [117]; a detector with 13 pm
pixels; system magnification of 60x; 3500 signal photons per localisation and mean 50
background photons per pixel. Each point shows the standard deviation on the error
of 50 measurements of the position of a single point via 3D-EPM localisation over a
depth range of 7pum, under the same imaging conditions.

4.5 Fisher Information and the Cramer-Rao Lower
Bound

As well as providing accurate measurements to the position of point-sources, an esti-
mator should also be precise. The CRLB is a statistical framework that provides a
theoretical maximum to the precision that may be achieved by a given estimator when
measuring a parameter of interest. The CRLB is related to the Fisher information,
a metric that quantifies the sensitivity of a given system to changes in its underlying
parameters. In point-localisation applications, Fisher information can be used to as-
sess the information content of a given PSF about parameters of interest, for instance
spatial coordinates [117]. Because the Fisher information and CRLB of a given PSF
are independent of the estimator used in data analysis, they can be used as compari-
son metrics to compare the theoretical performance of different PSFs. For this reason,
the CRLB is often used in the field of PSF engineering, both in the design of PSF's
[65, 118, 119] and in assessing the performance of existing PSFs [66, 68, 113].

While PSF design is not the topic of this thesis, the CRLB is still important to
our discussion. Regardless of the PSF chosen for imaging, a good estimator should
estimate the coordinates of a point-emitter with a precision approaching the theoretical

maximum imposed by the CRLB. Strictly speaking, the CRLB is the lower bound on
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the variance that an unbiased estimator may achieve when estimating an underlying
parameter ¢ from the data. In the context of our discussion, the parameters of interest
are the spatial coordinates of a single molecule. The square root of the CRLB is
therefore the lowest achievable standard deviation of repeated measurements of the

spatial coordinates of a point.

The CRLB is calculated from the Fisher information matrix for a given PSF, which
requires the probability distribution for the pixel count on the k** pixel to be calculated.
The exact form of the probability distribution depends on the mathematical model used
to characterise the imaging system: Chao et al. described a number of such models
including the idealised Poisson data model as well as models for image detection with
charged coupled devices and EMCCD cameras [117]. Nevertheless, regardless of the
data model chosen, the Fisher information matrix I for a parameter # € ® from data

7 is calculated as [117]:

10) = B[ (5 fox(0) (510 faulr))] (4.1)
where E denotes the expected value, © is the set of underlying parameters (in our
case ® = [x,y,z2]) and T denotes transpose. In this discussion, in line with other
works in the field, the Poisson data model is considered when calculating the CRLB.
The Poisson data model accounts for the shot noise of fluorescence emission and a
pixelated detector [117]. However, it does not account for noise introduced during the
readout process, and as such is an idealised data model. In the following sections, a
data model that does account for readout noise is used for all simulations. However,
for this general discussion, the Poisson data model is considered adequate. For this

description of image formation, the probability distribution for the k™ pixel is given
by

—Vo,k

Pe,k(N) = T (4.2)

where N denotes the photon count and I/éYk is the expected photon count at the kg,
pixel. The expected photon count is the sum of the expected signal photon count g j

and expected background photon counts By j:

Vo = Bog + 1ok (4.3)

With this data model, and assuming a constant value for the background photon count,

the Fisher information matrix for a K pixel image is then given by [117]:

K
1(0) = ; o i ™ (852”“)T(ag§’f) (4.4)

The best-achievable precision, i.e. standard deviation of a set of repeated measure-
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ments of the parameter 6;, that an unbiased estimator can make is then bounded by
the CRLB, which is calculated as the inverse of the diagonal element of the Fisher

information matrix:

CRLBy, =

1067 (4.5)

To test the precision of 3D-EPM localisation, the CRLB for a simulated oil im-
mersion 1.4NA o = 5 COSA PSF was calculated, assuming the Poisson data model,
imaged onto a detector with a pixel size of 13 pm at 60x magnification and an emis-
sion wavelength of A =660nm. The CRLB for ® = [z,y, z] was calculated across an
axial range of 12 pm. The calculated CRLB for each coordinate is plotted in figure 4.3
(solid lines). A point-emitter was then simulated to be imaged throughout the central
6.5 nm, before the position of the point was estimated with 3D-EPM localisation. The
number of signal photons per localisation event was 3500, and the background photon
count was 50. This process was repeated 50 times at each z position. The standard
deviation in the error between the true and estimated position for each coordinate is
plotted on the same graphs as the theoretical limit as determined by the CRLB for
each axis. We see that throughout the tested depth-range, when measuring the 3D
position of a single point-emitter with this PSF and under the tested noise conditions,

the standard deviation along each axis approaches the limit imposed by the CRLB.

Various studies have shown that maximum-likelihood estimation techniques can
achieve the CRLB when estimating the position of a single point [101]. However,
maximum-likelihood approaches rely on identifying individual PSFs from the raw 2D
image data and as such are fundamentally unsuited for dense images that feature
significantly overlapping PSFs. While some other approaches enable localisation of
overlapping PSFs in 2D [120, 121], the progress in 3D has been more limited, with
existing approaches tailored to use with specific types of PSF [114, 68].

In the following sections we will see that 3D-EPM localisation introduces significant
advantages when images feature overlapping PSFs. We also explore in simulation its
performance as other imaging parameters are varied, including signal-to-noise ratio and
the proximity of point-emitters to the edges of the imaging domain. We start, however,
by setting out the parameters used for the simulations performed in the results section

of this chapter.

4.6 Simulation parameters

Now that we’ve seen 3D-EPM localisation is a viable position estimation routine, in
that (i) it is, to a good approximation, an unbiased estimator, and (ii) the precision
approaches the upper limit imposed by the CRLB, we can begin to assess its per-

formance in different imaging conditions. In the following section, we evaluate the
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performance of 3D-EPM localisation in simulation and, for context, compare it against
a previously-developed point-localisation routine. In the current section, the details of

the simulation are set out and the localisation routine used for comparison is described.

4.6.1 Performance metrics

The performance of a given localisation routine that estimates the 3D position of points
from raw point-localisation data may be assessed in a number of ways. This is because
a good localisation routine (estimator) should exhibit a number of key characteristics.
Firstly, the estimator should correctly identify a high proportion of points present in
the data. Points that are correctly identified are referred to as true positives, whereas
points that are present in the data that the estimator fails to identify are referred to as
false negatives. Secondly, the estimator should not incorrectly identify points that are
not present in the sample. Points that are incorrectly identified are false positives. A
metric that is often used in SMLM (e.g. in [122, 123]) that combines these quantities

is the Jaccard index J, defined as:

TP
/=100 TP+ FP+FN (46)

where TP, FP and FN are the number of true positives, false positives and false
negatives respectively. By this definition, a Jaccard index of 100 indicates perfect

localisation, a lower value reflects worse localisation performance.

In addition to these performance metrics that relate to the proportion of points
identified correctly, the accuracy of the coordinates assigned to localised points should
also be assessed. In the following analysis, the accuracy is quantified by calculating
the root mean-square error (RMSE) between the estimated location of points that
have been localised correctly, and the true location. Because the performance of point-
localisation routines is often different in z than it is in zy, the RMSE is separated into
(i) the lateral RMSE, and (ii) the axial RMSE. The lateral RMSE is defined as:

TP
1
1=1

where 2; and ¢; are the coordinates of the i point in z and y as estimated by a given
localisation routine, and x¢7" and y&” are the ground-truth (true) positions of the same
point. Similarly, the axial RMSE is defined as:

TP
1
_ 5 _ LGT\2
RMSE. = || 7 ;:1;(21 26T (4.8)

for the estimated and true positions for the i point in z, 3; and 257, respectively. To-

gether, the performance metrics outlined in this section quantify both the effectiveness
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and accuracy of a localisation routine in a given simulation.

The question of what qualifies as a “correct” localisation, or true positive, is an
important one, as each performance metric defined above depends on its the definition
of T P. For each simulation detailed in this chapter, the set of estimated coordinates of
point-emitters was compared against the set of true coordinates by means of a custom

nearest-neighbour searching algorithm, which was implemented as follows:

1. For each point in the set of true points, the separation distance between it and

each point in the set of estimated points was calculated.

2. The closest point in the set of estimated points was selected. If the separation
distance between this point and the point being considered in the set of true
points was beneath a given threshold value T', the points were deemed to have

been matched, i.e a true positive has been found.

3. Matched points were then removed from consideration for all future points to

avoid points being matched twice.

4. This process was then repeated for every point in the set of true points.

At the end of the point-matching process, points that were left unmatched in the set of
true points are false negatives (i.e. points that are present in the ground-truth data-set
but have been missed by the localisation routine), and points that were left unmatched
in the set of estimated points were false negatives (points that were estimated by the
localisation routine but were not present in the ground truth data). The threshold
separation value 71" that determines whether points are close enough to be matched
therefore affects the results and must be kept constant for a given test. Unless otherwise
specified in this section, the value used for T" was twice the width of a single pixel in

the image.

4.6.2 Twin-Airy comparison

In the following section, the performance of 3D-EPM localisation is evaluated in simu-
lation in varying imaging conditions. Imaging was simulated to be implemented using
either a twin-Airy PSF or a COSA PSF, since these PSFs both provide large extensions
to the native DoF [68, 66]. For context, the localisation results were compared against
those provided by the localisation routine designed for twin-Airy data described in [68],
using a python implementation of the routine with minor refinements made, written
by Michael Handley, a PhD student in the Imaging Concepts Group at the University
of Glasgow. This algorithm exploits the fact that the twin-Airy PSF is conceptually
similar to a pair of cubic PSFs that share a common axis and are oriented opposite

to one another, see figure 4.1 for an example. The lateral separation between the two
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sides of the twin-Airy PSF in images depends on the depth of the point-emitter. Lo-
calisation works by matching points between two Wiener-restored images that have
been deconvolved with either side of the z = 0 in-focus PSF. Full description of the

algorithm can be found in ref [68], however a summary of the algorithm is as follows:

1. The raw, PSF-engineered images are Wiener-deconvolved twice: once with each
half of the in-focus twin-Airy PSF (each deconvolution kernel corresponds to
approximately a cubic PSF). This restores PSFs to approximately point-sources:
those that were deconvolved with the correct side of the twin-Airy PSF are bright
spots, the shape of which depends on the mismatch in defocus between the PSF
and deconvolution kernel; whereas those that were deconvolved with the incorrect

side of the twin-Airy PSF are far less intense.

2. The restored images are then subject to an intensity threshold, where the lower-
intensity spots corresponding to points restored with the incorrect side of the
deconvolution kernel are disregarded. Gaussian fitting is then performed on the

points that remain.

3. Points are then matched between the two restored and thresholded images. For
two lobes to be matched, they must satisfy certain criteria including being located
on the same axis, sharing similar intensities and having a separation distance that

corresponds to a physically-possible value of defocus.

4. Matched points are then compared with calibration curves to calculate their 3D

position.

The calibration curves link the separation distance of deconvolved lobes with the
corresponding defocus, and the defocus with the translation of the PSF along the
other lateral axis. They are calculated in advance by deconvolving each zy slice in
a calibration PSF z-stack via the same method described above, where the defocus
is a known prior. The resulting change in separation and translation of the Wiener-
restored lobes as defocus is varied serves as the necessary calibration data. A schematic
demonstrating the workings of this algorithm is shown in figure 4.4. It should be
emphasized, however, that this twin-Airy lobe-matching algorithm is not the only
choice of localisation routine: several different frameworks to estimate 3D position
from PSF-engineered data exist, each with their own merits and drawbacks. However,
to my knowledge it is the only estimator that has been demonstrated to be capable of

localising from twin-Airy data where the PSFs overlap.

4.6.3 Image formation model

The final part of this section is to introduce the model of image formation used in

the simulations detailed in the remainder of the chapter. While point-localisation
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Figure 4.4: Schematic of the point-matching approach for twin-Airy point localisation.
Full details can be found in [68]. The raw, PSF-engineered image (a) is Wiener-
deconvolved separately with the upper (b) and lower (c) halves of the z =0pm PSF.
The corresponding Wiener-restored images (d-e) are subject to an intensity threshold
to remove dimmer lobes caused by deconvolution with the wrong side of the PSF, before
being summed to recombine into a single restored image (f). Points are then identi-
fied in this image and matched according to several criteria, including their intensity,
x position and ellipticity. Finally, matched points are compared with pre-determined
calibration curves that measure both the translation and separation of lobes with de-
focus, to calculate the 3D position of the corresponding point. Scale-bar 10 pm.
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has applications across many spatial scales in microscopy, it is perhaps at the single-
molecule level where it has had the most impact in the life sciences through its ability
to image structure with a resolution surpassing the diffraction limit. For this reason,
the simulations listed in this chapter are performed at the spatial scales associated
with single-molecule imaging. However, single-molecule imaging is often subject to
relatively low numbers of signal photons, which, when combined with PSF engineer-
ing techniques, may be spread over a much larger area than the diffraction-limited
PSF. This means that ordinary charged-coupled device cameras, for instance, are not
well-suited to single molecule imaging since the noise introduced during readout can
overwhelm the weak signal. Advances in single-molecule imaging have been aided by
the improvement of detector technology; for instance the EMCCD camera, which is
able to detect single photon events and offer improved imaging performance in ex-
tremely low-light imaging conditions. EMCCD cameras feature on-chip multiplication,
where the number of electrons generated from a single photon is amplified prior to be-
ing read out, thereby elevating the signal level above the noise floor. EMCCD cameras
are widely used in SMLM and therefore the simulations discussed in this chapter also
consider image detection with an EMCCD camera. However, because single-molecule
imaging is typically performed in such a low-light regime, the influence of noise plays a
crucial role in the performance of SMLM. As such, it is necessary to amend our model

of image formation to reflect the noise characteristics of EMCCD image detection.

EMCCD data model

For consistency with the literature, the model used for EMCCD image formation in
the remainder of this section is the same as that used in [122] and derived in [124].
The model describes how EMCCD images are subject to numerous noise contributions
including the shot noise of fluorescence emission from both the sample and any fluo-
rescent background, described by a Poisson noise distribution; the read noise of the
camera, described by a Gaussian noise distribution; and the noise introduced during
the electron multiplication, described by a Gamma distribution. The value recorded
by a given pixel during image formation is described in terms of the number of input
photons, npy, the resulting number of input electrons, ng;, and the number of output
electrons after on-chip multiplication and readout, npo. The number of input electrons

is calculated as:

ngr = Pois{QFE - np; + ¢} (4.9)

where QF is the quantum efficiency of the camera, ¢ is the number of spurious charge
electrons introduced per pixel (that are multiplied during the on-chip amplification)
and Pois denotes the Poisson distribution. The number of output electrons, after

electron-multiplication, is then:
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Npo = F(TLE'[7 E]w—gam) + Gaus(07 O'R) (410)

where E Mgy, is the electron-multiplying gain, I" denotes the Gamma distribution, og
is the root mean-square noise and Gaus denotes the Gaussian distribution. The final
pixel count P is then determined by the camera baseline BL and the analog-to-digital

conversion factor E4py:

P = floor (BL 4 1EO ) (4.11)
Eapu

where the “floor” operation replaces the input value with the greatest integer beneath
the value in the brackets. The model is completed by clipping the maximum pixel
value according to the bit-depth of the camera: e.g. for a 16-bit image the maximum

value is capped at 65,535.

For consistency with the literature, the values used for the parameters in this model
in the simulations described in this chapter are the same as those used in [122], which
were taken as the manufacturer-quoted values for the Photometrics Evolve Delta 512
EMCCD camera. The exact values used are listed in table 4.1.

Parameter Value
QF 0.9
OR 74.4e”
EMgqin 300
BL 100
Eipu 45e~
c 0.002e~

Table 4.1: EMCCD camera parameters used in simulation. Values are the same as those
used in [122] and are the manufacturer-quoted values for the Photometrics Evolve Delta
512 EMCCD camera.

4.6.4 Iterations used for 3D-EPM localisation

Determining the optimal number of iterations used for RL deconvolution is not trivial
when the ground-truth solution is not known. This is because the convergence of the
solution depends on several factors including the signal-to-noise ratio of both the image
and the deconvolution kernel. When deconvolving noisy images of extended fluorescent
structure, the noise amplification phenomenon discussed in section 1.2.5 limits how far
the deconvolution can be left to iterate, unless controlled with regularisation. How-
ever, when reconstructing volumes comprising point-emitters, as implemented in the
current chapter, the phenomenon of noise amplification becomes less problematic, since
the reconstructed volume is an intermediate result and further processing is required
to localise each point. For optimal localisation performance, a sufficient number of

iterations is required to ensure that each PSF has converged back to a point in the
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Figure 4.5: 3D-EPM localisation performs well with increasing emitter density. (a)
The number of true positives identified with increasing emitter density by 3D-EPM lo-
calisation (blue) and the point-matching approach from [68] (orange). (b) The Jaccard
index from the same set of results.

reconstructed 3D volume. The localisation can then be instructed to ignore points
identified within the reconstructed volume that are smaller than the diameter of a de-
convolved PSF, which are likely to be artefacts of noise amplification. Unless otherwise
stated in this chapter, 250 deconvolution iterations were employed in the intermediate

volume-reconstruction step.

4.7 Results

In this section, the performance of 3D-EPM localisation is assessed. In each case, twin-
Airy EMCCD images are simulated using the model described in the previous section.
The performance of 3D-EPM localisation is compared against that achieved with the
twin-Airy point-matching localisation procedure [68]. Imaging is simulated with an
oil-immersion 1.4NA objective lens, a fluorescence emission wavelength of 660 nm and

an « = 5 twin-Airy phase-mask at the exit pupil.

4.7.1 Emitter density

The first results we discuss are the performance of 3D-EPM localisation with increas-
ing emitter density. Figure 4.5 shows the results of a simulation that was performed
where the number of points present within a 52 x 52x 8 pm ground-truth volume was
increased. The ground-truth sample volume was seeded with point-emitters by adding
a 3D Gaussian spot with a full-width at half-maximum of 150 nm at randomly gen-
erated sub-pixel coordinates. EMCCD images of the ground-truth volume were then
simulated according to the EMCCD image formation model in equation 4.11. The total
system magnification was 100x and the EMCCD pixel size was simulated to be 13 um,
with a 100% fill factor. To ensure the entire lateral extent of PSFs was captured within

the FoV, the points were confined to a smaller central lateral region of the ground-truth
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volume, half the dimensions of the larger volume. Points were localised from the sim-
ulated EMCCD images using the 3D-EPM localisation method described in section
4.3, and then for comparison the twin-Airy point-matching localisation approach sum-
marised in section 4.6.2 was used to localise the same data. The set of coordinates of
the localised points from both localisation approaches was then compared against the
set of true coordinates of point-emitters in the ground-truth images. This process was

then repeated as the number of points in the ground-truth volume was increased.

Figure 4.5a shows how the number of true positives identified via 3D-EPM locali-
sation (blue) and the point-matching approach (orange) as the density of emitters in
the ground-truth volume is increased. Figure 4.5b shows the Jaccard index for the
same data. Each point is the mean of ten repeats at the corresponding emitter density.
We see that the number of true positives identified by the point-matching approach
increases with the number of points at the start of the tested range, but then begins
to fall again once the emitter density increases above a density of approximately 0.6
emitters per square micron. With 3D-EPM localisation, however, the number of true
positives continues to rise with emitter density and does not see the same drop in per-
formance above a given threshold. This same trend is observed in the Jaccard index J
displayed in figure 4.5b: J falls much quicker with the point-matching approach than
with 3D-EPM, where J remained significantly higher as the emitter density increased,
reflecting better localisation performance. The value of J fell to and remained at ap-
proximately 0 with the point-matching approach above emitter densities of 0.12 points
per square micron, whereas with 3D-EPM it remained above 35 throughout the entire
test range. This means that 3D-EPM localisation performs significantly better than

the point-matching approach as the fluorophore density is increased.

The improved performance at higher emitter density of 3D-EPM localisation when
compared with the point-matching approach can be attributed to several factors.
Firstly, 3D-EPM localisation performs the localisation of points in the reconstructed
3D volume, whereas the point-matching approach localises within the Wiener-restored
2D images. This means that in 3D-EPM localisation, the effective sparsity of the
fitting domain is increased and therefore points are less likely to coincide. Secondly,
while Wiener restoration of the twin-Airy PSFs in the point-matching approach yields
a bright spot when the correct side of the in-focus PSF is used as the deconvolution
kernel, restoration with the incorrect side of the PSF introduces deconvolution arte-
facts in the form of several dimmer spots in the restored image, see figure 4.4d and
4.4e. Despite steps being taken to remove these artefacts from consideration when
matching points, such as the application of an intensity threshold and checks on e.g.
the ellipticity of any matched points [68], such artefacts can inhibit the performance
of the localisation routine through the identification of false positives, especially when

significant variation in the intensity of PSFs is observed in the raw images.
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Emitter density definition

Defining the metric used to quantify emitter density in 3D SMLM is not trivial. This
is because an acquired 2D image in 3D-SMLM implemented with engineered PSFs
is a projection of the 3D sample volume. However, the depth of the volume being
projected will vary between different experiments and different PSFs. An obvious
choice of metric, for instance, might be the number of emitters per cubic micron in the
ground-truth volume. Yet, an important feature of PSF's designed for 3D SMLM is the
depth-range over which they can be used, with PSFs such as the tetrapod and twin-
Airy being designed to maximise this range [65, 68]. However, a deeper volume with
the same emitter density as quantified by this metric will lead to a greater number
of emitters being imaged. In other words, a PSF that provides a greater extension
to the DoF will yield denser projection images than a PSF that provides a smaller
extension for the same number of emitters per cubic micron. This choice of emitter
density metric, therefore, does not adequately reflect the challenge of localising points
from images acquired with engineered PSFs. For this reason, a custom metric that
calibrated the emitter density based on the lateral extent of a given PSF with respect
to that of the diffraction-limited PSF was used in [114]. However, since the focus of this
chapter is on the localisation routine rather than PSF design a metric that quantified
2D density of emitters in projection images was deemed sufficient. The definition of
emitter density used in this chapter, therefore, is the number of emitters present within
a volume divided by the lateral area of the projected volume, giving units of emitters per
square micron. This is deemed an appropriate unit for the comparisons shown in this
chapter since the imaging depth range was kept constant in each simulation, however
care should be taken before directly comparing these results with those presented in

other works.

4.7.2 Signal-to-noise ratio

The next factor we consider is the influence of signal-to-noise ratio on localisation
performance. A versatile localisation routine should perform well at varying noise
levels. This is because while some point-localisation applications, e.g. particle-tracking
experiments, are not photon limited, the photon budgets associated with SMLM are
typically much lower. To verify 3D-EPM localisation performs well at varying signal-
to-noise ratio, a simulation was performed where a volume seeded with a constant
number (15) of point-sources was imaged while varying the number of signal photons
associated with each localisation event. Imaging was simulated again with a twin-Airy
PSF onto an EMCCD camera, with a relatively high background of 50 photons per
pixel also incident. Localisation from the twin-Airy images was then performed with
both the point-matching approach and 3D-EPM localisation. Figure 4.6a shows the
Jaccard index of the resulting localisations, and figure 4.6b shows the number of true

positives achieved as the number of signal photons per localisation event was increased.
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Figure 4.6: 3D-EPM localisation performs well with varying signal-to-noise ratio. (a)
the Jaccard index achieved by 3D-EPM localisation (blue) and the point-matching
approach (orange) as the number of signal photons per localisation event was increased.
(b) The number of true positives identified by each estimator. Images were formed
using the EMCCD data model with a background photon count of 50 photons per
pixel. Inset panels show example images at various signal-to-noise ratios in the tested
range. At the lowest signal levels no PSFs are evident in the simulated images.

Each point in figures 4.6a and b is the mean of ten repeats. The insets panels at the

top of figure 4.6 display example frames at various numbers of signal photons.

At the lowest-tested signal photon levels, neither localisation routine achieves a
high Jaccard index (both score close to zero). This is not unexpected, since the signal
is lost in the background noise (see left inset panel, for instance). Yet, the number of
true positives with 3D-EPM is not zero at these low signal levels. Indeed, figure 4.6b
seems to suggest that 3D-EPM is performing better in this region. How can it be, then,
that 3D-EPM localisation still identifies some correct coordinates of points at such low
signal levels? This is explained by inspection of a reconstructed volume from a low
signal-to-noise ratio image. Figure 4.7a displays an zy maximum intensity projection
through a reconstructed volume at the lowest-tested number of signal photons per
localisation event. We see that the volume appears to consist of only noise artefacts.
The point-detection algorithm, therefore, identifies many thousands of points when
applied to such a reconstructed volume. Figure 4.7b displays a plot of the number of
false positives localised with varying signal levels. At low signal-to-noise ratio, we see
many thousands of false positives identified with 3D-EPM localisation. The apparent
success in identifying true positives at these signal levels, therefore, can be attributed
to a proportion of these many thousands of noise artefacts in the reconstructed volume
being within the distance threshold to the true location of a point in the sample volume

and therefore being identified as true positives.
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Figure 4.7: 3D-EPM localisation identifies lots of false positives at extremely low signal-
to-noise ratio. (a) ry maximum-intensity projection through a reconstructed volume
at the lowest-tested signal levels. Noise artefacts are evident, which the localisation
routine treats as points. (b) Plot of the number of false positives identified with
increasing signal photons. At the lowest signal levels, thousands of false positives are
identified in the reconstructed volume.

As the number of signal photons increases, the Jaccard index of both localisation
routines rises, as does the number of true positives identified. Above the lowest signal
levels, 3D-EPM localisation on average identifies almost all 15 points correctly, while
the point-matching approach identifies marginally fewer. The Jaccard index for 3D-
EPM localisation rises faster than the point-matching localisation routine, suggesting
better performance at intermediate signal levels. From the results presented in this
section, therefore, we see that 3D-EPM localisation performs well at all but the lowest

signal levels, where the signal is lost in the background noise.

4.7.3 3D-EPM localisation is not limited to a single PSF

The next results we show in this section concern the choice of PSF used for imaging.
So far in this chapter, we have demonstrated 3D-EPM localisation using the twin-Airy
PSF. However, when implemented with the twin-Airy PSF, our 3D-EPM deconvo-
lution algorithm requires only a calibration PSF stack and the raw PSF-engineered
image data to perform volumetric reconstruction. Does this mean, therefore, that any
engineered PSF is suitable for 3D-EPM localisation? In chapter 3, we demonstrated
3D-EPM using the differential-Airy PSF because it effectively encoded depth infor-
mation into projection images through disparity. This imaging modality required us
to image simultaneously with two cubic PSFs that differed by a small defocus off-
set. The differential defocus was necessary because although the cubic PSF exhibits
a lateral translation with defocus, its appearance remains largely unchanged over the
EDoF, and the depth-dependent translation is symmetric about the focal plane. To

determine the 3D position of a point, therefore, two projections were needed. The
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Twin-Airy

Figure 4.8: 3D-EPM localisation requires images to be acquired with a PSF that
effectively encodes depth information across the EDoF. Top row: simulated images of
a volume seeded with point-sources using a twin-Airy PSF (left), a COSA PSF (middle)
and cubic PSF (right). Bottom row: ZX maximum-intensity projections through the
respective reconstructed volumes after 50 3D-EPM deconvolution iterations. Insets
show the same region in each. From the twin-Airy and COSA images, the PSFs
converge back to points in 3D space. This is not possible from the cubic-encoded
image, however, owing to the lack of depth information in a single cubic PSF.

twin-Airy PSF, on the other hand, effectively encodes depth information without re-
quiring multiple perspectives. This is because, unlike the cubic PSF, the appearance of
the twin-Airy PSF does change throughout the EDoF and is asymmetric abut the focal
plane. When compared with a reference PSF z-stack, therefore, the image of a single
point does contain enough information to determine its 3D position. This concept is
illustrated in figure 4.8, where a simulation was performed in which a volume seeded
with point-sources was imaged with a twin-Airy PSF (left), a COSA PSF (centre), and
a cubic PSF (right). In each case, the projection image and corresponding PSF stack
were used to attempt to reconstruct the sample volume. The bottom row of figure 4.8
displays zz maximum-intensity projections through the reconstructed volumes after
50 deconvolution iterations, with the insets showing zoomed-in versions of the same
region. We see that with the twin-Airy and COSA PSFs, the deconvolution is able to
successfully extract the encoded depth information and the PSFs in the raw projection
data converge back to points in 3D space. With the cubic PSF, however, the PSFs do
not converge back to a single point, instead reconstructing to curved streaks, owing to

the lack of depth information contained in a single cubic PSF. Therefore, just as with
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Figure 4.9: 3D-EPM localisation performs well when point-emitters are allowed close
to the edges of the image domain. Plot shows the Jaccard index achieved by 3D-EPM
localisation (blue) and point-matching (orange), as the minimum distance from the
edges of the image domain that points are allowed to be randomly seeded. 3D-EPM
localisation achieves a higher Jaccard index when points are allowed closer to the edge
of the imaging domain. Each point is the mean of ten repeats.

3D-EPM in the previous chapter, for a PSF to be effective in 3D-EPM localisation
it must effectively encode depth information across the required EDoF. If imaging is
performed with only a single PSF| rather than the dual-PSF differential-Airy approach,
the appearance of the PSF must change over the required depth range and be asym-
metric about the focus to avoid a sign ambiguity. As well as the twin-Airy PSF, other
suitable PSF's that satisfy these requirements include the Tetrapod [65], double-Helix
[64] and astigmatic PSFs.

4.7.4 3D-EPM localisation performs well close to the edges of

the imaging domain

The final results we consider in this chapter concern the performance of 3D-EPM lo-
calisation with point-sources that are located close to the edges of the imaging domain.
So far in this chapter, the points have been confined to a central region of the sam-
ple volume, to ensure the lateral extent of the PSFs does not exceed the edges of the
image. However, in practice this is difficult to achieve: the sample is likely to fill the
entire FoV of the microscope, and therefore it is likely that some PSF's won’t be imaged
entirely within the lateral confines of the imaging domain. How then, does this affect

the performance of point localisation?

Let us first consider the point-matching localisation approach for the twin-Airy
PSF [68]. Here, a point is localised by deconvolving both sides of the PSF with the
respective side of the in-focus twin-Airy PSF. This leaves a pair of lobes, the separation
between which allows us to determine the points 3D coordinates. However, if a point

is positioned such that its image extends beyond the lateral confines of the imaging
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domain, this becomes problematic. Consider, for instance, a PSF that is positioned
such that only one half of the twin-Airy PSF is present in the image, with the other
half falling beyond the image boundary. When deconvolved with the respective sides
of the deconvolution kernel, only one bright lobe will be present in the deconvolved
images. This means the localisation routine will be unable to match the two lobes
necessary for localisation, and the point will therefore not be localised. This is also
true for PSFs that only partially spill over the edges of the imaging domain: if the
deconvolution doesn’t yield two bright deconvolved lobes, the point-matching approach
will be unable to successfully localise the point. With 3D-EPM localisation, however,
we made explicit allowances in the deconvolution algorithm to account for the fact
that some light emitted by points located within the imaging volume may not be
recorded within the lateral confines of the FoV. It follows, therefore, that a point should
still be reconstructed even if some of its image extends beyond the image boundaries.
Therefore, we expect 3D-EPM to perform better when points are located close to the

edges of the imaging domain.

To test this hypothesis, a further simulation was performed where the distance
from the edge of the image domain that points were allowed to be placed was varied.
For each test, a volume was seeded with 15 points placed at randomly generated co-
ordinates, above a certain minimum distance from the edges of the imaging domain.
This minimum distance was increased and the performance of 3D-EPM localisation
and the point-matching approach was assessed. Figure 4.9 displays the Jaccard index
of both methods as the minimum distance was increased. At smaller distances, i.e.
when points were allowed closer to the edges of the image domain, 3D-EPM achieves
a significantly higher Jaccard index than the point-matching approach, confirming our
hypothesis that 3D-EPM better handles points that are close to the edge of the image,
where some of the PSF may extend beyond the FoV.

4.8 Discussion

We have seen in this chapter how the theme of this thesis, 3D reconstruction from 2D
projection data, introduces significant advantages when localising points in all three
spatial dimensions from PSF-engineered images. Because the localisation is performed
in the reconstructed 3D volume, as opposed to the raw 2D projection images, the
effective sparsity of the fitting domain is increased. We saw in section 4.7.1 how this
enables localisation to be performed in dense images featuring significantly overlapping
PSFs, as well as sparser images of isolated points. Additionally, we saw how 3D-EPM
performs well with varying signal-to-noise ratio and performs better than the point-

matching algorithm when emitters are located close to the edge of the fitting domain.

These findings demonstrate that 3D-EPM localisation is an effective, versatile lo-
calisation method for 3D point localisation applications in microscopy where PSF en-

gineering is employed to extend the DoF and encode the axial coordinate of emitters
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Figure 4.10: 3D-EPM takes longer to implement than the twin-Airy point-matching
approach.

into images. By offering improved localisation performance at higher emitter densities,
the localisation method developed in this chapter offers the ability to image samples
that are more densely labelled than permitted by other analysis frameworks. This has
major implications for 3D-SMLM, where experiments typically suffer from poor time
resolution, requiring long exposures and high laser intensities, raising the likelihood of
photodamage in live biological samples. By localising more emitters per frame with
3D-EPM localisation, the temporal resolution of 3D-SMLM may be improved, requir-
ing fewer frames, shorter acquisitions, and less exposure to harmful laser excitation
illumination for a reconstructed SR image. Additionally, the generality of the volume-
reconstruction method offers flexibility in the choice of PSF used for imaging, allowing

the user to choose a phase function that best suits their experiment.

A potential drawback of 3D-EPM localisation, however, is the compuatational time
needed to perform volume reconstruction and localisation within the 3D volume, com-
pared with the time needed to perform localisation by other methods. Because the
volume reconstruction is implemented as a series of 2D convolutions, the time needed
to reconstruct scales with image size, the depth of the volume being reconstructed
and the number of RL iterations required. The twin-Airy localisation routine, on the
other hand, is implemented through non-iterative Wiener deconvolution followed by
least-squares fitting of points in the deconvolved images, which is far quicker to im-
plement. Figure 4.10 displays a plot of the time needed to localise 15 points within a
volume as the number of pixels increases, using a maximum 100 RL iterations, on a
machine equipped with a single Nvidia GeForce GTX 1080 GPU. In this test, all the
convolutions required for 3D-EPM localisation were accelerated using GPU, whereas
the twin-Airy localisation code is implemented entirely on the CPU. Despite this, the
3D-EPM localisation routine required approximately an order of magnitude greater
run-time to implement when localising the largest-tested frames. While this does not

affect the time needed for data acquisition (3D-EPM localisation permits faster data
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acquisition through its ability to localise dense images), this may be a potential limi-

tation of the technique if real-time data processing is required.

For the results presented in this chapter, the open-source trackpy python library was
used to detect and localise points within the reconstructed 3D volumes. This software
is quick to implement and user-friendly, performing initial feature identification and
then least-squares fitting to further refine the sub-pixel coordinates of points in images
[116]. However, it is thought that further performance gains may be achieved if fitting
routines that use some prior knowledge of the shape of the reconstructed point is used

instead.

4.9 Simulated microtubule imaging

We conclude this chapter with a demonstration of the application of 3D-EPM local-
isation to simulated SMLM images of a sample of synthetic microtubules. Each mi-
crotubule in the ground-truth volume was simulated with three 5th order polynomials
with randomly generated coefficients for the true zyz coordinates. A total of 1 x 10°
fluorophore coordinates were then generated along the trajectory of the microtubules.
A SMLM dataset compirising 2500 individual frames was then generated, with a ran-
domly selected subset of the fluorophores “active” each frame. Each frame, a new
sample volume was generated comprising the active fluorophores, each a 3D Gaussian
spot with 0,,, =100 nm placed at its corresponding coordinates. From each sample vol-
ume, an EMCCD image was simulated according to the EMCCD data model described
earlier in this chapter, with 7000 signal photons per localisation event. Imaging was
simulated with a 1.4NA o = 6 twin-Airy PSF, a magnification of 100x, an emission
wavelength of 660 nm over a depth range of 8um. An example frame is displayed in
figure 4.11a. From each EMCCD image, 3D-EPM localisation was then implemented
to localise the active fluorophores. In total, 170196 emitters were localised, an average
of 68 per frame. The localised fluorophore coordinates were then used to render a final
3D image, see 4.11b-d.

4.10 Chapter 4 summary

In this chapter, we applied the 2D-3D volume reconstruction pipeline that was devel-
oped in chapter 2 and embodied by the 3D-EPM snapshot volumetric imaging method
introduced in chapter 3 to the different application of point localisation, where we saw
the combination of 3D-EPM reconstruction with 3D fitting (which we named 3D-EPM
localisation) to be beneficial. We saw how 3D-EPM localisation performed better
than a previously-developed localisation routine when localising from dense images
with significantly overlapping PSFs. We also saw how 3D-EPM performs with varying

signal-to-noise ratio, and saw further benefits when emitters were in close proximity
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Figure 4.11: Simulated microtubule imaging with 3D-EPM localisation. (a) an example
raw frame, featuring a subset of active fluorophores imaged with a twin-Airy PSF. (b)
3D rendering of the reconstructed 3D volume, colour-coded for depth. (c) Zoomed-
in version of the region bound by the blue box in (b). (d) zy maximum-intensity
projection of the region bound by the blue box in (c). Scale-bars for (a-c) are 10 pm,
scale-bar for (d) is 2 pm.

to the edges of the image domain. Finally, we demonstrated the method by simu-
lating SMLM imaging of a sample of synthetic microtubules. In the next chapter,
we turn our attention away from the field of PSF-engineering, and instead apply the
volume-reconstruction method to projection images acquired with a different imaging

modality.
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Chapter 5

Other applications of volumetric

reconstruction

In the previous chapters we’ve seen how the volume reconstruction pipeline developed
in chapter 2 may be combined with PSF-engineering methods to perform snapshot
volumetric imaging, enabling the 3D study of samples exhibiting extended fluorescent
structure. We saw how this is particularly beneficial for samples that undergo motion
during acquisition, such as the FEgeria densa imaged in section 3.6.2. Additionally,
we saw how the process of volume reconstruction embodied by 3D-EPM is beneficial
in the field of 3D point-localisation, where the acceptable density of emitters can be
increased when localisation is performed in the reconstructed volume, compared with
the convention of localising directly from the acquired image data. However, up to
this point, there remain some limitations of 3D-EPM that we have not yet addressed.

These include:

e The depth of sample that can be imaged via 3D-EPM is limited by the DoF of
the imaging system. While this may be extended by using an engineered PSF,
there still remains a finite limit to the depth range over which the MTF remains

useful.

e The resolution of the reconstructed image is fundamentally limited by the nu-
merical aperture of the objective lens. This leads to an anisotropic resolution:
by equations 1.2 and 1.3, the axial resolution is always worse than the lateral

resolution.

e The density of the sample remains a limiting factor to the effectiveness of the
reconstruction. For instance, when imaging with the differential-Airy PSF as im-
plemented in chapter 3, dense samples lead to minimal depth-dependent disparity

between the two snapshot images.

What happens, therefore, if we wanted to image a sample that is deeper than the
EDoF provided by a cubic PSF? In a light-sheet system this is achieved by simply
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extending the depth range over which the sample is scanned. In our snapshot imaging
modality, however, this problem is not solved as easily. Of course, the DoF may be
extended by decreasing the numerical aperture, but the associated loss of resolution
means this solution is far from ideal. Alternatively, increasing the strength of the CPM
also extends the DoF, however we saw in figure 3.1d that this extension is provided
at the cost of a decreased peak signal-to-noise ratio, as well as a larger PSF footprint,
which acts to decrease sparsity in the raw snapshot data. Is this it then? Have we
reached the limitations of the method? Fortunately this is not the case. In chapter 2,
we developed a generalised mathematical framework for volumetric reconstruction from
2D data. We noted that for the reconstruction to work effectively, depth information
must be effectively encoded into the image data across the required DoF. However, up
to this point, we have only applied the reconstruction pipeline to data acquired using
PSF-engineering methods. In the current chapter, we explore other imaging modalities
where the reconstruction pipeline developed in chapter 2 can be applied, where we will

see that the above limitations can be addressed.

5.1 Projection imaging as a general description

To begin this discussion, we initially turn our attention back to the model introduced
in chapter 2 that describes EDoF image formation. For ease, the equation describing

the formation of such an image I is repeated here:

I(z,y) = Pois{ Z Oz, y,z=k)® PSF(z,y,z = k)} + N(z,y) (5.1)

where x,y and z are 3D coordinates, O is the 3D sample object, N is a noise term,
® denotes convolution, and Pois denotes the Poisson noise statistics that describe the
detection of fluorescence emission, as described in section 1.2. In chapter 3, this model
was used to describe the image formed on an epi-fluorescence system with an engineered
pupil function. However, equation 5.1 is not unique to this particular imaging modality.
In fact, it describes any imaging format where an extended depth is projected into a
single image, providing the PSF can be approximated as spatially invariant across the
FoV. That is to say, providing the 2D image formation of an infinitely thin zy plane
can be approximated as a 2D convolution, the above relationship holds for an EDoF

projection image.

Many different techniques exploit projection imaging as a concept to improve tem-
poral resolution [52, 71]. By projecting the entire sample depth onto a single 2D
image, the entirety of the sample can be imaged within the course of a single camera
exposure. Notable applications include calcium imaging in the zebrafish brain using
a scanned light-sheet and cubic-encoded detection [125], and functional brain-imaging
using elongated Bessel focus [126]. The disadvantage of projecting the entire sample

depth into a 2D image, however, is that no information about the position of individ-
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Figure 5.1: Schematic of a multi-angle projection microscope, introduced by Chang et
al [5], which enables real-time viewing of samples from different projection angles. A
scan unit, comprising a pair of galvanometric mirrors, is introduced into the imaging
path of a microscope capable of optical sectioning. As the focus is swept along the
optical axis during acquisition of a z-projection, the angle of the mirrors 6 is changed,
introducing a shear at the image. The resulting projection is a stretched version of the
projection that would be acquired if one was to physically rotate the sample.

ual features along the optical axis is obtained, therefore any analysis is constrained
to two dimensions. While this may not be too problematic for e.g. functional brain
imaging, projection imaging methods are not normally a viable solution wherever 3D
information about the sample is needed, e.g. in the study of 3D cell morphology [127]
or mapping blood-flow in 3D [128, 129].

However, using the deconvolution framework developed in chapter 2, we demon-
strated in chapter 3 how a 3D volume may be reconstructed from projection images,
providing depth information is present in the acquired projection data. It follows,
therefore, that if another projection image modality existed where this requirement is
satisfied, the same mathematical framework could be applied to that imaging method
also. In the following section we examine one such imaging modality, multi-angle pro-
jection imaging [5], and demonstrate how the volumetric reconstruction may also be
applied to data acquired on a multi-angle projection imaging system, permitting the

reconstruction of larger sample depths across a broad range of microscope systems.

5.2 Multi-angle projection imaging

Multi-angle projection imaging is a recently-developed imaging modality that enables
3D samples to be rapidly interrogated from varying angular perspectives [5]. By in-
corporating a scan-unit, comprising a pair of galvanometric mirrors, into the imaging
path of any microscope that inherently provides optical sectioning, the system is trans-
formed into a multi-angle projection microscope capable of interrogating the sample
from varying projection angles without physically rotating the sample. A schematic of

the imaging path of a multi-angle projection microscope is shown in figure 5.1.
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In conventional projection imaging modalities, images are acquired by rapidly
sweeping the focus through the sample depth during the course of a single camera
exposure, resulting in a 2D projection of the 3D sample along the optical axis. This
focal-sweep may be achieved with, for instance, a tunable lens in the optical path
that rapidly adjusts the axial focus of the microscope [69, 70]. Alternatively, phase-
modulating devices such as deformable mirrors that are placed at a conjugate pupil
plane may be used to rapidly sweep the focal plane through the sample [71]. In the
absence of noise, the resulting projection image is numerically equivalent to the image
that would result from summing the intensity along z in a 3D image of the sample ac-
quired on the same microscope. Such imaging modalities benefit from fast acquisition
speeds and reduced data overheads compared with 3D z-stacks acquired via confocal
or light-sheet microscopy. However, as mentioned in the previous section, projection
images acquired in this fashion suffer from a lack of any information about the position
of sample features along the optical axis, constraining any further image processing or

analysis to two dimensions.

Multi-angle projection imaging, on the other hand, overcomes this limitation by
enabling the sample to be optically projected from varying angular perspectives [5].
By controlling the angles of the galvanometric mirrors, which are synchronised to step
with the axial sweeping of the focal plane, the angle at which the sample is projected
may be adjusted. This enables information about the 3D structure of the the sample
to be captured by means of a projection series, where the sample is optically rotated
between frames, representing a conceptually different way of interrogating a 3D sample
compared with conventional z-stack imaging. Probing a sample by means of a projec-
tion series is likely to benefit from reduced acquisition times compared with z-stack
imaging, since fewer projection images are likely to be required than the number of zy
slices necessary for a z-stack. Additionally, while it remains true that a single projec-
tion image contains no information about position along the projection axis, acquiring
two or more projection images from different angular perspectives does provide 3D
information, in much the same way that stereoscopic imaging enables calculation of a
depth map of the observed scene [130]. Indeed, the authors of ref. [5] demonstrated
3D particle tracking performed on a multi-angle projection microscope by imaging the
sample from just two angular perspectives. However, this analysis was constrained to
the localisation of sparse point-sources rather than a full 3D volume reconstruction.
Nonetheless, this raises the question: since depth information is present in multi-angle
projection data, can the volume-reconstruction framework developed in chapter 2 also
be applied here? We shall see in the following sections that the answer to this question
is yes: volumetric reconstruction is possible from a small number of angular projections
acquired via multi-angle projection imaging. We demonstrate this across a number of
samples, microscopes and spatial scales in the following sections. However, just as was
the case with 3D-EPM, before we can begin reconstructing a volume from multi-angle

projection data, we require a model for image formation that we can then attempt to
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invert.

5.2.1 Multi-angle projection image formation

Image formation on a multi-angle projection microscope can be treated as two distinct
steps: shearing and projection. In practice, the shearing and the projection happen
in synchrony, however in this section we treat them independently. The shearing is
performed by introducing a depth-dependent lateral translation of the image, i.e. as
the focus is swept through the sample, the image at the camera is translated laterally
along one axis. For our analysis, we constrain this translation to the y axis. This
translation is introduced by rotating the galvanometric mirrors in synchrony with the
sweeping of the focus. The translation must be performed in a way that does not
impart an angular change on the rays incident on the camera: the authors of ref. [5]
implemented this using a dual-mirror approach where both mirrors move with equal
velocity, a schematic of which is shown in figure 5.1, however they noted is is also
possible to perform using only a single galvanometric mirror at the Fourier plane of
a 4f relay lens system. The result of the depth-dependent image translation is to
optically shear the volume: for instance, if a z-stack was acquired in this fashion, with
a z-step-size AZ and an angular increment imposed by the scan unit of 6,,,;, through
simple geometric arguments each zy plane in the resulting volume would be translated

in the y direction by an amount AY given by:

AY = AZ tan(8,05) (5.2)

compared with the previous zy plane, see figure 5.2 for a schematic of the associated

geometry. The number of pixels this translation corresponds to is calculated as ﬁ—Y,
Ty

where P, is the dimension of the camera pixels in object space.

AY
proj

AZ

Figure 5.2: Geometry of optically-induced shear in multi-angle projection imaging.

The second step in multi-angle projection image formation is then the projection
of the sheared volume into a single 2D image. Again, this projection is performed
optically, by stepping the focus through the sample as the galvanometric mirrors are
rotated. Multi-angle projection angle image formation can thus be described by the

amended model for image formation given by:
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where AY is the shear increment given by equation 5.2 and N, is the total number of
zy planes in the volume. N(x,y) corresponds to a noise term reflecting background and
readout sources, as described in section 1.2, approximated by a Gaussian distribution.
Equation 5.3 has been constructed such that regardless of the projection angle 0,,;,
no shear is introduced to the central xy plane within the sample volume. We shall see

that this corresponds to a sample rotation where the axis of rotation is centered in .

In a multi-angle projection microscope, the shearing and projection are synchronised
to occur simultaneously and rapidly, sweeping the entire sample depth within the time-
window of a single camera exposure. Therefore, in the absence of noise, the acquired
image is equivalent to the summed z-projection of the sheared volume. The effect of
projecting a sheared volume in this fashion is understood by considering the shear-
warp transform, derived and described in full in [131]. The shear-warp transform
demonstrates that the projection acquired from a volume that has been sheared by a
plane-wise shear increment AY', as defined by equation 5.2, is identical except for a
scaling factor to a summed projection of the volume that has been rotated by an angle

fr. The scaling factor S is given by:

1
= 4
o cos O (5-4)

Therefore, under projection and after correcting for the scale factor, the operations
of rotating a volume and shearing a volume yield the same result. The scale factor
S imposes physical limits on the angular range that can be achieved by projection
imaging, such that the image of the sheared volume does not exceed the lateral extent
of the camera sensor. For instance, a projection angle of 70° introduces a stretch factor
of almost three along the shear axis; as the projection angle approaches 90° the stretch
factor approaches infinity. The exact limitations of the angular range depend on the
camera chip dimensions and the size of the sample being imaged: for the samples
considered in this chapter an angular range limit of +60° was deemed appropriate,
which introduces a maximum stretch factor of two. The volumetric reconstruction from
multi-angle projection data discussed in the following sections requires this stretching
to be present in the raw data, as the deconvolution attempts to invert the sheared
volume image formation rather than the rotated volume image formation. However,
in conventional multi-angle projection imaging, the stretching may be computationally
removed post-acquisition to return the rotated projection image by means of an scaling

operation, implemented via an affine transform defined by the matrix A:
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Rotated 45°

Sheared, 1 pixel increment Sheared and scaled

Figure 5.3: Equivalence of shearing and rotation after projection and scaling. (a) shows
an example sample volume with isotropic voxel dimensions. (b) shows an zy summed-
intensity projection of the volume in (a). (c) shows a summed-intensity projection
after rotating the volume by 45° about the = axis. (d) shows an zy summed projection
after shearing the volume by a shear-increment of 1 pixel per zy plane. (e) shows the
projecton in (d) after stretching in the y direction by a scale factor cos(45°) . (e) and
(c) are equivalent images.

1 0 0
A= 10 cosfp O (5.5)
0 0 1

Figure 5.3 depicts a schematic demonstrating the equivalence between the projec-
tions acquired from a rotated volume and a scaled projection of the same volume that

has been sheared.

5.2.2 Multi-angle projection reconstruction

In the previous sections we modelled image formation on a multi-angle projection
imaging system and discussed the 3D information content contained in two or more
angular projections of the same sample. In this section we modify the volumetric
reconstruction pipeline developed and applied in the previous chapters for application
to multi-angle projection data. To reconstruct a volume from multi-angle projection

data, we require at least two projection images to encode the necessary 3D information.
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We shall see in later sections, however, that for most samples other than those that
are extremely sparse, we generally require a higher number. When reconstructing
a 3D volume from the 2D projection data, we are free to decide the number of zy
planes we wish to reconstruct, as well as the voxel depth in the reconstructed volume.
A convenient choice is often to match the voxel depth with the pixel dimensions in
the image, however we are not confined to this choice. Indeed, it often makes sense to
choose a larger voxel depth, since the resolution of any single projection image is limited
by the system NA and therefore the axial component of the resolution is worse than
the lateral, meaning the sampling requirements are different in a 3D image. The total
reconstructed depth range should be at least as large as the focus sweep-range in the

projection data to ensure the entire sample depth is accounted for in the reconstruction.

To begin considering the volumetric reconstruction, it is convenient to rewrite equa-
tion 5.3 using the sifting property of the unit impulse response function to represent
the shear introduced [132]. The image of an object zy plane O(x,y) that is translated
t kAY

Py

in the y direction by some amoun , may be written as the discrete convolution
Yy

given by:

O('T? Yy —

)=0(x,y) ®0(x =0,y = ) (5.6)

Py

where d(z =0,y = —kPATj) is a 2D function defined by

1

S =0,y — Yy _

Py 0, otherwise

) .'I:ZO,y:—

Pay (5.7)

Using the associativity of the convolution operation, the model of image formation can

then be written as:

I(z,y) = Pois( Z [(O(w,y, z=k)® PSF(z,y,z=k))
k

® 6z = 0,y = —’“M>D L N(z,y) (5.8)

Py

This amended definition of image formation is beneficial in multi-view reconstruction,
since it allows volume reconstruction to be performed while attempting to invert only
the second convolution operation rather than both convolutions in equation 5.8. This
is advantageous, since by equation 5.6, we see that the reconstruction process may be
implemented through a series of 2D image translation operations instead of convolution
operations. Image translation operations are computationally less burdensome to im-
plement than convolutions, speeding the reconstruction process. However, it is worth

noting that if the reconstruction is implemented in this fashion, the optical blurring
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of the PSF is not inverted, since our processing does not consider the first convolution
operation in equation 5.8 and therefore the algorithm should no longer be described as
a deconvolution in the conventional sense'. However, the depth information encapsu-
lated in the multiple angular perspectives may still be extracted to reconstruct a full

3D volume.

To reconstruct a 3D volume from multi-angle projection data, the same RL decon-
volution framework is used that is effective in reconstructing volumes in 3D-EPM. As
with 3D-EPM, this requires a forward operation, that maps the 3D volume to the 2D
projection image, and a backward operation, that maps the 2D projection image back
to the 3D volume.

The forward operation

The forward operation for the adapted RL volume reconstruction, just like in 3D-EPM,
consists of our model for image formation. Since we are, for now, only concerned with
inverting the second convolution in equation 5.8, we can define the quantity O'(z,y, z),

the object we wish to reconstruct, as:

O'(z,y,2) = O(x,y,2) ® PSF(r,y, 2). (5.9)
We can rewrite the forward projection for multi-angle projection imaging as

N
: _kAY

I(z,y) = Z O(z,y,2=k)®d(x =0,y = 5 ) (5.10)

k=—1

2

where the Poisson and Gaussian noise terms have been removed?. Since this operation
represents a translation in one direction, it is computationally more efficient to imple-
ment this as a simple image translation operation instead of a convolution. In this
thesis the image translation is implemented using a third-order flux-conserving spline
interpolation to calculate the pixel values for an image shifted by a non-integer number
of pixels, using functions from the scipy and cupy python libraries [133]. This shifting

of a single 2D frame can be represented by the affine transform matrix:

0

10
A=10 1 —’;éTj (5.11)
0 0

1

since deconvolution typically refers to inverting the blur induced by the system PSF.

2Tt is not necessary to include the Poisson term in the forward projection of the RL algorithm, since
the forward operation should yield the expected (mean) pixel values in the image for a given image
formation model and the current estimate to the sample object. See chapter 2 for a full description
of the RL algorithm.
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The backward operation

Similarly, the backward operation is also implemented by translating a 2D image to
map the 2D projection back to the 3D sample volume. In 3D-EPM, the backward
projection consisted of convolving the discrepancy ratio between the recorded data and
the forward projection with the flipped PSF at every z position across the sample depth,
see equation 2.15. The same is true in this case, except instead of convolving with the
flipped PSF, we instead use the shifted impulse function §(x = 0,y = kAY'), such that
the back-projected volume at iteration n and corresponding to the m* projection view

B is formed by the series of 2D operations given by:

Y
Bl (.. = K) = Inlny) @3(r =0,y = 2T
20 =0,y=—-5")®0"(z,y,2 = k) Fay
(5.12)

where O™ is the estimate to O’ at iteration n. We see that the denominator of the
fraction in equation 5.12 is the forward projection defined above. Just like the forward
projection, the second convolution operation in equation 5.12 performs a 1D shift along
the y axis, and therefore may also be implemented as a 2D image translation operation

which can be represented by the affine transform matrix:

10 0
A= 10 1 ’fPA—Y (5.13)
00 1

The reconstruction algorithm, adapted for multi-angle projection data, from M 2D

projections and expressed in terms of convolution operations, is then:

m

Oz, y.z=k)""' =O0(z,y, 2 = k)" - %B(:ﬂ,y, z=k) (5.14)

The deconvolution may also be subject to the total variation regularization term defined
in equation 2.16, however the multi-angle reconstruction typically converges faster than
3D-EPM deconvolution and therefore, at least in the high signal-to-noise ratio regime,

noise-amplification is not as problematic.

5.2.3 Simulated HeLa cell organelles

We first demonstrate volumetric reconstruction applied to multi-angle projection imag-
ing with synthetic projection data, generated from a 3D confocal image of labelled
mitochondria in a HeLa cell. The confocal image serves as a ground-truth volume
against which the reconstructed volume can be compared. The ground-truth volume
has isotropic voxel dimensions of 64 nm. A projection series was simulated by shearing

the volume in y according to equation 5.2 before summing the sheared volume into a
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single xy plane. For the initial case, no noise was added to the simulated projection
images. The data shown here was simulated by James D. Manton and is used in this
thesis with permission. Initially, five projection views were selected for reconstruction,
at angles of —60°, —30° , 0°, +30°, and +60° with respect to the ground-truth volume.
Figures 5.4a-e display the raw 2D projections used for reconstruction, where the ap-
parent rotation of the sample around the z axis is evident, as well as the shear-induced
stretching in y. The sample volume was then reconstructed according to equation 5.14
using 25 reconstruction iterations. Figures 5.4f-h show maximum-intensity projections
through the reconstructed volume along each axis, where the 3D structure of the mito-
chondrial networks is apparent. Figures 5.4i-k show the same projections through the
ground-truth volume, where we see a high degree of similarity between the five-view
reconstruction and the confocal stack. This simulation demonstrates how it is possible
to perform 3D reconstruction using the same mathematical framework developed for
3D-EPM, using multi-angle projection data. In this example, only five 2D projection
images were used to perform the 3D reconstruction, compared to 100 zy planes in the
ground-truth data stack, representing a possible 20x speedup in acquisition time for
the full 3D volume.

5.2.4 Varying the number of angular projections used for re-

construction

The reconstruction displayed in figure 5.4 was performed using five raw projection im-
ages. However, it has not yet been discussed how this number is determined, or the
effect on the reconstruction if a different number are used. Obviously, the number used
should be far less than the number of xy slices in a conventionally-acquired z-stack for
there to be some benefit in temporal resolution. The number should be as low as pos-
sible, since for sequentially acquired projections, the temporal resolution drops linearly
with the number needed for reconstruction. While two projections is the theoretical
minimum needed to encode the 3D position of a single point, we find that for most
samples this is not enough to perform a good reconstruction, with ghost artefacts and
elongation of image features being introduced into the reconstructed volume. Ghost
artefacts are introduced into the solution when there is ambiguity about the position
of a particular feature and the RL deconvolution algorithm is unable to distinguish
between possible solutions. An example of such ambiguity is illustrated in figure 5.5,
where a two-view reconstruction of a simulated sample volume containing two point-
sources introduces ghost artefacts into the reconstructed volume. Figures 5.5a and 5.5b
display xy and yz maximum-intensity projection of the ground-truth sample volume,
which is then projected at angles of +45°. The projection angles are indicated with
the green and magenta dashed lines in figure 5.5b, and the resulting projections are
displayed in 5.5¢ and d. Figures 5.5e and 5.5f display zy and yz maximum-intensity

projections through the reconstructed sample volume using only these two angular pro-
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Figure 5.4: Simulated multi-angle projection imaging and volume reconstruction of
mitochondria in a HeLa cell. (a-e) Simulated multi-angle projection images from real
confocal data used for reconstruction, at angles ranging from -60°to +60°. (f-h) Maxi-
mum intensity projections along each axis in the reconstructed volume after 25 volume-
reconstruction iterations. (i-k) same projections as (f-h) but through the ground-truth
data. Scale bar is 10 pm. Input projection data was simulated by James D. Manton
from a ground-truth confocal z-stack and used here with permission. The reconstruc-
tion was performed by myself according to equation 5.14.

jections. We see that ghost artefacts, or repeated sample features, are introduced into
the reconstruction. These are the result of ambiguity in the problem: either pair of
beads indicated by the cyan and light-green circles could form the projections displayed
in figures 5.5¢-d, and the deconvolution is therefore unable to correctly reconstruct the
sample. However, we see in figures 5.5g-h that by including a third projection angle
(indicated by the white line in 5.5b), this ambiguity is completely removed, and the

reconstruction is able to reconstruct the correct sample volume.

To further explore the influence of the number of projections used to reconstruct,
the mitochondria sample reconstructed in section 5.2.3 was again reconstructed while
the number of projections used was varied. Figure 5.6 displays xy maximum-intensity
projections of the reconstructed volume after 25 iterations using two, three and five
projection views (top, I-r), as well as a plot of the convergence of the solutions with
increasing iterations. We see in the two-view solution that the reconstructed volume
features lots of artefacts; features appear elongated and the structure of the sample
is not well-resolved. Here, two angular-projections (-60°and +60°) did not provide

enough 3D information for the reconstruction to perform well. In the three-view so-
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Ground-truth Projection +45° 2-view solution 3-view solution

(b) ' ‘ (h)

Figure 5.5: Ghost artefacts may be introduced into the reconstructed volume when
reconstructing with only two projections because of ambiguity in the inverse prob-
lem. (a) and (b) show zy and yz maximum-intensity projection through simulated
volume containing two point-sources. (c) and (d) show the projections that would
be recorded if the sample was projected and angles of 45° and —45°. The projection
angles are indicated by the magenta and green dashed lines in (b). (e) and (f) show
maximum-intensity projection through the reconstructed sample volume if only these
two projections are used to reconstruct. Ghost features are introduced because of am-
biguity in the problem: either pair of points indicated by the green and cyan circles
in (f) would produce the projections in (c) and (d), and the deconvolution is therefore
unable to reconstruct the correct sample. (g) and (h) show the reconstructed volume
when an additional projection is used (0°, indicated by the white dashed line in (b)).
Including a third projection completely removes this ambiguity. This figure was in-
spired by helpful discussion with James D. Manton who pointed out this issue.

lution, the sample structure is much-better resolved and the reconstruction features
far fewer artefacts. The solution converges faster than the two-view solution and the
mean-square error after 25 iterations is lower, representing a solution that is closer
to the ground-truth. The extra 3D information provided by introducing the third
angular projection (0°), therefore, significantly improves the performance of the decon-
volution. With five views (-60°, -30°, 0°, +30°and +60°), the solution improves further
still, though the improvement is not as significant as that seen between two and three
projection views. For most samples that are well-suited for volumetric reconstruction
from multi-angle projection imaging, we find five projections across a similar angular
range to that used here to be a good compromise between imaging speed and recon-
struction quality: generally, not much benefit is seen by using a greater number of
projections. However, as we will see, some samples are fundamentally not well suited
for reconstruction with this method. Similar to the limitations of 3D-EPM, projection
images of samples that are particularly dense, or those that feature large regions of

texture-free uniform fluorescence emission, do not reconstruct well. Samples that are
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Figure 5.6: Reconstruction performance with increasing numbers of projection angles.
Scale bar is 10 pm.

best suited to this method, therefore, are those that are reasonably sparse (such as
the mitochondria shown in figure 5.4). An example of a sample that is too dense for
reconstructing with this method is provided in figure 5.7. The sample shown here is
chromatin, imaged in the same cell as the mitochondria shown in figure 5.4. Figure 5.7
displays maximum-intensity projections through the 3D ground-truth volume, as well
as the same projections through the reconstructed sample volume using both five and
ten projections to reconstruct. Even when using ten projections, this sample did not
reconstruct well: while the general shape of the sample is apparent, the finer sample

structure is not well resolved in the reconstruction.

5.3 OPM Multi-angle projection imaging

Next, we demonstrate the reconstruction of multi-angle projection images with exper-
imental data, acquired on an oblique-plane microscopy (OPM) system. The imaging
modality used to acquire this data introduces additional complexity into the volume
reconstruction pipeline, owing to the geometry of an OPM. Processing multi-angle
projection data that has been acquired in this fashion, therefore, requires us to take a

closer look at the geometry of an OPM system.
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Figure 5.7: xy planes from a 3D reconstruction of simulated multi-angle projection im-
ages where the sample is too dense to reconstruct effectively. The sample is chromatin
imaged in the same cell as shown in figure 5.4 and the raw data was also provided by
James D. Manton. Top-left panel shows a single zy plane in the ground-truth image.
Top-right panel shows the same plane in a volume reconstructed from five angular pro-
jections, and the bottom panel shows the same plane in a ten-view reconstruction. The
finer sample features are not well-resolved in either the five or ten view reconstruction.
Scale-bar is 10 pm.

5.3.1 OPM Geometry

OPM is a form of light-sheet imaging that overcomes some of the limitations of conven-
tional light-sheet microscopy [33]. In OPM, the light-sheet is delivered to the sample
at an oblique angle, launched from the same primary objective lens that is used to
image the sample, thereby removing the requirement to have two objective lenses ar-
ranged perpendicular to one another. This allows OPM to image samples, such as
those mounted on glass slides, that could not be imaged with conventional light-sheet

microscopy due to constraints on how samples must be mounted.

OPM relies on the principle of remote refocusing to form an intermediate 3D replica
of the fluorescence collected by the primary imaging objective that is free of spherical

aberrations [134]. The remote-refocused image is formed by de-magnifying the image
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Figure 5.8: Schematic of an oblique plane microscope (not to scale). The light sheet is
delivered to the sample through the primary imaging objective at an angle 6 from the
y axis in the normal coordinate system, Y. The first microscope (M1) forms an image
of the illuminated oblique plane, which is then demagnified by the second microscope
(M2) to form a remote image at the focus of objective 2. A third microscope (M3),
aligned along Z,,,, then re-magnifies the remote image onto a detector placed at the
final image plane. To acquire a 3D image the sample is scanned along Yy during
acquisition.

formed at the native image plane with a second microscope, see figure 5.8. Finally,
a third microscope, tilted from the optical axis shared by the primary and secondary
objectives by an angle 6, is then used to re-magnify and image the remote volume onto
a detector. Unlike conventional light-sheet imaging, in OPM the light-sheet is delivered
at an angle that is not perpendicular to the optical axis of the primary imaging objec-
tives. Instead, the light-sheet is launched along the Y, direction, tilted by the angle
6 from the conventional launch direction Yy. 3D images are then acquired by stacking
sequential 2D acquisitions while scanning along Y. The scanning is implemented by
translating the sample through the light-sheet, or by moving the light-sheet across the
FoV, or via a hybrid approach [39]. A schematic of the geometry of an OPM system

at the sample is shown in figure 5.9.

The optical axis of the OPM, Z,,, is rotated from optical axis of the primary
objective lens Zy by the angle 0,,,. However, volumetric imaging is performed by
sequentially acquiring images while translating the sample or light-sheet laterally in the
normal coordinate system along Yy. Because the normal coordinate system is rotated
from the OPM coordinate system, this means a component of the scan direction lies
along Zp,. The resulting OPM volume, therefore, is sheared laterally in one direction
[33]. In a similar fashion to the shearing imposed by the multi-angle projection scan
unit, this means that each 2D xy slice in the acquired volume is laterally translated
along the shear axis with respect to the previous slice. For an OPM system with the
angle 0, defined as shown in figure 5.9 and a volume acquired by scanning along the
Yy direction with a step-size AYy, the resulting step-size along the OPM optical axis,
AZypm s given by:

AZ gy = AYy sin b, (5.15)
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Figure 5.9: Schematic illustrating the geometry of an opm system. Not to scale. The
light sheet (blue) is delivered through the primary objective at an oblique angle, per-
pendicular to the optical axis of the OPM (Z,,), which is rotated from the “normal”
optical axis of the primary objective Zy by an angle # . Volumes are acquired by
scanning the sample or light-sheet across Yy, which imposes an optical shear in the
OPM coordinate system.

and the shear introduced along Yppys is given by:

AYppm = AYy 08 Oopm, (5.16)

Therefore, if we wish to return a volume acquired using an OPM system to the (normal)
coordinate system of the primary objective, the OPM-induced shear must be removed

computationally. This is normally performed with a simple linear translation opera-
AYO m
By

[33]. What happens, however, if the OPM is converted into a multi-angle projection

tion, shifting each plane in the acquired volume by increasing increments of —

microscope?

OPM multi-angle projection imaging

We have seen how both OPM and the multi-angle projection imaging modality impose
lateral depth-dependent shears along one axis during volumetric acquisition. It follows,
then, that if the scan-unit is aligned such that the projection shear is imposed along the
same axis as the OPM shear, the two shears are combined. Indeed, the authors of Ref [5]
noted that the scan unit could be used to optically remove the OPM-imposed shear.
However, for volumetric reconstruction of multi-angle OPM projections we require
more than one angular perspective of the sample and therefore we need to calculate
the total shear imposed during imaging. The total lateral shear, AY},;, imposed during
volumetric acquisition is calculated as the sum of the shear imposed by the OPM,

AY,pn and that imposed by the projection scan-unit, AY,,;:

AY;tot = AY;)pm =+ AY;m*oj (517)

The volumetric reconstruction from M multi-angle projections acquired on an OPM

system can therefore by implemented, as before, according to equation 5.14, replacing

112.



CHAPTER 5. OTHER APPLICATIONS  5.3. OPM MULTI-ANGLE IMAGING

AY with AY;, to reflect the additional shear introduced by the OPM.

5.3.2 Reconstruction of experimental multi-angle projection
data

In this section we apply the theory developed in the previous section to reconstruct
experimentally-acquired multi-angle OPM projections. Multi-angle projection images
of the fluorescently-labelled vasculature and blood-cells in the tail of a fixed zebrafish
were acquired and used for reconstruction. The raw projection images were acquired
by Bingying Chen and used here with permission. The OPM used for data acquisition
featured a tertiary arm tilted by 6,,, = 45°. Alongside the raw projection data, an
OPM z-stack was acquired in the conventional fashion, which was computationally
de-sheared back to the normal coordinate system and used as a ground-truth image,
against which the reconstructed volume could be compared. The ground-truth z-stack
image was acquired with a step size of 500 nm, which, when de-sheared, gives a Zy step
size of 354nm. The OPM used for acquisition had a primary NA of 1.1. Figure 5.10a
shows maximum-intensity projections through the ground-truth image of the vascula-
ture, where the 3D structure of a section of the dorsal aorta and intersegmental vessels
is clear. The zebrafish was oriented approximately vertically, i.e. the dorsal aorta is
roughly parallel to the Xy axis. Figure 5.10b shows the five angular projections of
the vasculature used to reconstruct the sample. The angular projections were acquired
as described in section 5.2 and 5.4: for each projection, the focus was rapidly swept
through the sample during the course of a single camera exposure while the scan-unit
introduced the depth-dependent shearing in synchrony with the focus sweep. For the
reconstruction shown here, five projections were used at angles of —60°, —30°, 0°, 30°,
and 60°. Figure 5.10c shows the same projections as 5.10a but through the recon-
structed volume, after 25 iterations of equation 5.14. In the reconstruction, the 3D
nature of the sample is clear and the reconstructed volume appears of similar quality
to the ground-truth volume. Figure 5.10d shows maximum-intensity projections of the
ground-truth image of the blood cells, and figure 5.10e shows the same projections
through the reconstructed blood cell volume. The blood cell volume was also recon-
structed from five angular projections acquired at the same angles as the vasculature.
Figure 5.10f shows a composite zy maximum-intensity projection of both reconstructed
volumes, where the position of the blood cells is clearly in agreement with that of the
blood vessels, showing good agreement between the two reconstructed volumes. A
composite 3D rendering of the reconstructed volumes is shown in figure 5.10g, empha-
sizing the 3D dimensionality of the reconstructed volumes, compared with the raw 2D

projection data.
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Figure 5.10: Demonstration of multi-angle projection volume-reconstruction on ex-
perimental images of a biological sample, exhibiting extended regions of fluorescence
emission. Figure shows the reconstruction of fluorescence projection images of vas-
culature (yellow-green) and blood cells (red) in the same region of the tail of a fixed
zebrafish. (a) and (d): maximum-intensity projections along each axis in a light-sheet
ground truth image of the vasculature and blood-cells respectively. (b) shows the five
raw projection images used for reconstruction of the vasculature. (c) and (e) show
the same projections as (a) and (d) but through the reconstructed 3D volumes after
25 reconstruction iterations. (f) a composite zy projection through the reconstructed
volumes confirming agreement between the two channels. (g) composite 3D rendering
of the reconstructed volumes. Raw data acquired by Bingying Chen and used here
with permission. Scale-bar is 10 pum.

5.3.3 Live-cell multi-angle projection reconstruction

A further experimental example of volumetric reconstruction from multi-angle projec-
tion data is provided in figure 5.11. OPM multi-angle projection images, along with
ground-truth z-stacks, were acquired of single-cells from the COS7 line (labelled mi-
tochondria, blue), and A375 line (labelled tractin, orange). Data was acquired by
Bo-jui Chang and used here with permission. Figure 5.11a-e shows five angular projec-
tions of the mitochondria used for reconstruction, at angles ranging from —60° to 40°.
Figures 5.11f-h displays maximum-intensity projections along each axis through the
reconstructed volume, and figures 5.11i-k show the same projections through the com-
putationally de-sheared ground-truth z-stack. The high degree of similarity between
the reconstruction and ground-truth confirms that mitochondria projection images are
well-suited to volumetric reconstruction. Conversely, the tractin label was too dense to
properly reconstruct: figure 5.111-n shows maximum-intensity projections through the

reconstructed volume. While the general shape of the cell is apparent, some of the finer
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Figure 5.11: Multi-angle volume reconstruction of OPM images of organelles in live
cells, confirming the high-resolution capability of the method and its feasibility for live-
cell imaging. Raw data acquired by Bo-Jui Chang and used here with permission. (a-e):
raw multi-angle projection data of labelled mitochondria used for reconstruction. (f-h)
maximum-intensity projections through the reconstructed volume. (i-k): same projec-
tions as (f-h) but through a ground-truth z-stack image that has been computationally
de-sheared. (l-m) maximum-intensity projection though a reconstructed volume from
multi-angle projection images of a A375 cell with labelled tractin. (o0-q) maximum-
intensity projections through the de-sheared ground-truth image of the same sample.
Scale-bar is 20 pm.

structure visible in the ground-truth volume (figure 5.110-q) is not as apparent in the
reconstruction. This is particularly apparent in the zy projection and is a result of the
fluorescence emission being largely uniform across large areas of the sample, leading to

little disparity in the raw multi-angle projection data.

5.3.4 Discussion

So far in this chapter we have demonstrated the ability to perform volumetric recon-
struction from both simulated and experimental multi-angle projection data, acquired
via a number of different imaging modalities. The fact that the multi-angle scan unit
can be easily installed on any optical-sectioning-capable microscope means that the
method of image acquisition can be tailored to suit the needs of a particular experi-
ment. For instance, for live-cell imaging, where extremely high resolution is required, a
confocal imaging system may be the optimal choice, whereas for imaging at the multi-
cell to whole organism scale, a light-sheet imaging modality may be better suited.

Volume reconstruction from multi-angle projection data represents a general method
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where, providing the sample features a reasonable degree of sparsity, the exact choice
of image acquisition method is unimportant. Multi-angle projection data shares the
spatial resolution of the parent imaging system [5]: just as in 3D-EPM, no sacrifice in
resolution is required for encoding 3D information and performing volumetric recon-

struction, again offering significant advantages over LEM.

Performing 3D reconstruction from sequences of angularly-separated 2D projection
images underpins several imaging techniques, perhaps most notably in computed to-
mography (CT) imaging [135]. In CT imaging, a sequence of x-ray images is acquired
at varying projection angles, commonly implemented by rotating an x-ray tube and
detector array around a stationary sample. Tomographic projection image formation
more generally is described mathematically by the Radon transform [136], with the re-
sulting projection data referred to as a sinogram. Reconstructing the 3D sample from
an acquired sinogram, therefore, requires inversion of the Radon transform. This is
commonly approached via a filtered back-projection operation [136], or through appli-
cation of more complex iterative reconstruction algorithms [137, 138]. Such methods
could, in principle, be applied to the fluorescence projection images acquired via multi-
angle projection imaging, with appropriate consideration made for the differences in
which contrast is achieved in fluorescence imaging compared with x-ray imaging. How-
ever, these methods generally require many projection images to accurately reconstruct
the sample volume, with CT datasets often comprising several tens, hundreds or even
thousands of images [139]. We have seen in this chapter how, in principle, depth in-
formation may be encoded into far fewer projections of sparse fluorescent samples.
Indeed, the authors of [5] noted that just two projection images of the same sample
acquired from different projections does, in principle, encode 3D information and per-
mit 3D reconstruction. However, this concept was initially demonstrated with the 3D
localisation of sparse, point-like nano-particles in a fixed cell via a simple triangulation
approach [5], a method that is not applicable to the more general 3D reconstruction of
extended fluorescent structure. To the best of the authors knowledge, the results pre-
sented in this chapter represent the first full 3D reconstruction of fluorescence images
acquired via real-time multi-angle projection imaging. Additionally, the reconstruction
methods presented here are applicable to both extended fluorescent structure as well
as more sparse, point-like samples, while requiring fewer projection images than other

approaches used to reconstruct tomographic image data.

The temporal resolution of volumetric imaging performed by reconstructing multi-
angle projection data is limited by how quickly the necessary projections can be ac-
quired. Acquiring a single projection image requires the focus to be swept through the
entire sample depth, or vice versa. If this is implemented mechanically, e.g. with a
motorised stage scan, this process is likely to be slow. However, if the focus scanning is
implemented by other rapid means, the temporal resolution is significantly improved.
For instance, in OPM, the focus-sweeping may be performed by scanning the light-

sheet across the sample with a galvanometric mirror instead of translating the sample
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with a motorised stage. In this case, the entire sample depth can be imaged extremely
quickly (scan-rates of several kHz are possible), and the time required to acquire a
single projection becomes limited in principle only by the frame-rate of the camera. In
practice, the achievable signal-to-noise ratio may further limit the possible acquisition
speeds: in fluorescence imaging of live biological samples this is often determined by
the sensitivity of the sample to the laser excitation. For volumetric reconstruction,
the signal-to-noise ratio should be kept as high as possible to avoid the noise ampli-
fication phenomena discussed in section 1.2. Despite these considerations, the results
presented in this chapter still represent a major improvement in volumetric acquisition
speeds. For instance, in the OPM imaging of the zebrafish vasculature and blood-cells
displayed in figure 5.10, the ground-truth z-stack images comprised 300 stacked 2D
acquisitions. The volume reconstruction, on the other hand, required only five 2D ac-
quisitions, acquired sequentially at a speed limited by the camera frame-rate. For this
particular example, therefore, the process of performing volumetric imaging by means
of reconstructing multi-angle projection data represents an improvement in acquisition
speed of approximately 60x. However, if enough beam-splitters and galvanometric
mirrors are available, and for high-enough photon budgets, the five projection images
needed for volumetric reconstruction could, in principle, be acquired simultaneously.
This would mean that similar to the 3D-EPM method developed in chapter 3, the
volume-reconstruction from multi-angle projection imaging could also be implemented

as a snapshot volume-imaging technique.

The improvement in temporal resolution offered by performing volumetric recon-
struction from multi-angle projection data has significant implications in the field of
bio-imaging. The temporal resolution of volumetric imaging methods such as light-
sheet and confocal microscopy has thus far prevented their application to the 3D study
of dynamic samples where the dynamics occur over millisecond timescales, as the time
needed to acquire a volume is too great. However, by decreasing the time needed to ac-
quire a volume through combining projection-imaging with the volume reconstruction
pipeline developed in this thesis, the possibility of applying these methods to highly
dynamic 3D samples is opened, potentially offering 3D insight into biological events
that have previously only been possible to directly image in 2D. We therefore expect
the volumetric imaging methods developed here to find broad applicability across mul-
tiple scales, including the 3D study of cellular morphology, organelle dynamics and

interactions, and calcium signalling.

The ability to perform volumetric reconstruction from multi-angle projection im-
ages as well as PSF-engineered images demonstrates the generality of the mathematical
framework developed in chapter 2 of this thesis. The optimal choice of projection imag-
ing modality depends on the requirements of a particular experiment or sample. For
instance, if the sample moves extremely rapidly, where snapshot imaging is necessary
to properly capture the observed dynamics, 3D-EPM is better suited, as the temporal

resolution is in principle limited only by the frame-rate of the camera. On the other
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hand, for samples that are deeper than the EDoF provided by an engineered PSF,
multi-angle projection imaging modalities are better suited, where the depth-range

projected over can be chosen to meet the thickness of the sample.

At this point, we turn our attention back to the challenges set out at the start
of this chapter. For volumetric reconstruction from projection data, samples that are
very dense will, unfortunately, always present a challenge for the type of volume re-
construction developed in this thesis, since the reconstruction depends on extracting
3D information from disparity between projection images. Samples that feature large
areas of texture-free, uniform fluorescence emission will not work with the methods
presented here (although there is scope to artifically introduce texture onto such sam-
ples with structured illumination). But what about the other two challenges? The
first challenge, imaging samples that are deeper than the EDoF provided by the cubic
PSF is solved by using multi-angle projection imaging, where the scan-range can be
adjusted to capture the entire sample depth. However, we have not yet addressed the

other challenge of reconstructed volumes suffering from anisotropic spatial resolution.

In both the 3D-EPM and multi-angle projection imaging scenarios, the resolution of
the reconstructed volumes will, at best, be determined by the resolution of the parent
imaging system. This means that the lateral resolution will always exceed the axial
resolution in any reconstruction. For extremely high NA objective lenses, the axial
resolution approaches (but does not equal) the lateral resolution, however at lower NA

the anisotropy gets worse. This is because the lateral resolution is proportional to
1 1
NA> NAZ"
may be undesirable for certain samples. This raises the question: is there anything we

whereas the axial resolution is proportional to This resolution anisotropy
can do to improve the axial resolution, such that the resolution in the reconstructed
volume becomes isotropic? In the final section of this chapter, an imaging modality is
proposed that solves this problem, offering isotropic spatial resolution across all three

spatial dimensions.

5.4 Tomographic 3D-EPM

When imaging under normal diffraction-limited conditions (i.e. without the aid of
any “super-resolution” imaging techniques), the resolution of acquired 3D images is
always worse axially than it is laterally, because of the limited collection angle pos-
sible through a single objective lens. However, the effective collection angle may be
increased if information is fused together from two or more objective lenses imaging the
sample at different angles. This concept is exploited in imaging modalities such as 4-pi
microscopy [140], which features two opposing objective lenses along the same optical
axis, or dual/multi-view light-sheet microscopy [141, 78, 142]. If instead imaging is
performed simultaneously along orthogonal axes, it is possible to fuse images during
image processing to yield a deconvolved image featuring isotropic 3D spatial resolu-

tion. This has been demonstrated with several different imaging modalities including
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Figure 5.12: Schematic of tomographic EPM setup. The sample is probed by two
objectives simultaneously, arranged orthongonally to one another such that their focal
planes intersect. The sample is mounted such that it can be probed from multiple
directions simultaneously.

light-sheet imaging and LEM [50]. Isotropic 3D spatial resolution is possible in these
imaging modalities because of the orthogonality between acquired images: the z-axis of
one image becomes the z-axis in the other. However, while such techniques do provide
isotropic spatial resolution, they still suffer some limitations of their respective related
techniques. Multi-view light-sheet imaging, for instance, still requires the sample to
be scanned relative to the illumination, meaning the method is unsuited for highly
dynamic scenes. Dual-view LFM, on the other hand, requires a compromise in spatial
resolution compared to that of the parent imaging system. In chapter 3 we saw how
these drawbacks may be avoided with 3D-EPM, which enables snapshot volumetric
imaging without requiring a compromise in spatial resolution. Is it possible, there-
fore, to combine the benefits of 3D-EPM with those of orthogonal dual-view image

acquisition, to provide snapshot volume imaging with an isotropic 3D resolution?

Proposed design

Figure 5.12 displays a schematic of part of a proposed design for an experimental setup
that enables orthogonal PSF-engineered images to be acquired simultaneously. The
design images the sample through two objective lenses that are mounted orthogonally
to one another. To achieve isotropic resolution in a reconstructed 3D image, the ob-
jective lenses should feature the same NA. The sample is centered on a point that
coincides with the front focal plane of both objectives. Behind each objective is an
optical train similar to that shown in figure 1.10: a tube lens forms an image at an in-

termediate image plane, which is then re-imaged with a 4f relay, allowing a phase-mask
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to be introduced at a plane conjugate to the exit pupil. The objective arrangement is
analogous to that seen in light-sheet microscopy, however in this case both objectives
are used for imaging. The dual-objective imaging modality described here, where the
objectives are arranged orthogonally, is referred to as tomographic 3D-EPM. Figure
5.12 displays the illumination being delivered through only one objective in an epi-
illumination fashion, however the design is not limited to this choice: delivering the
illumination through both objectives may be advantageous in countering shadow arte-
facts. Alternatively, selective-volume illumination could be implemented to reduce the
contributions from out-of-focus fluorescence [50]. While there remains flexibility in the
design of such a tomographic experiment, the optical setup is subject to the following

additional constraints compared to 3D-EPM:

e The magnification must be chosen such that, in addition to properly sampling the
image, the FoV matches the EDoF provided by engineered PSF. This is because

the volume imaged by both cameras must be the same.

e The sample must be mounted such that it can be probed from multiple angles
simultaneously. This means that conventional sample-mounting methods, such
as on glass-slides, are not suitable for tomographic 3D-EPM. Instead, mounting
protocols common in light-sheet imaging, such as suspending the sample in an

agarose gel inside optically transparent fluorinated ethylene-propylene tubing,
should be used.

e The sample must be placed in the focal plane of both objective lenses, which re-
stricts the type of lens that can be used with 3D-EPM. For instance, high NA oil-
immersion lenses, which require the sample to be mounted within a few-hundred
microns of the front face of the objective lens, are not suited for tomographic

3D-EPM. Instead, lenses with a longer working distance must be used.

Deconvolution algorithm

Volumes may be reconstructed from data acquired on an experimental setup such as
that shown in figure 5.12 in the same way as in 3D-EPM, with the only required
modification being to reflect the orthogonal perspectives of the two images. This
modification is implemented by rotating the volume through 90° prior to calculating
the forward projection for the second snapshot image each iteration. All other aspects
of the deconvolution algorithm, including refining the PSF's and calculation of the edge

corrections, are identical to those implemented in 3D-EPM.

Proof of concept results

To demonstrate the potential of tomographic EPM to provide isotropic 3D resolution,
a simulation was performed where a volume containing two point-sources was recon-

structed from snapshot EPM images. The simulation was performed at 0.5NA with
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a = 3 cubic PSFs. The sample volume comprised two point-sources, separated axially
by 1.25pum; a separation distance far beneath the axial resolution limit of a 0.5NA
objective (which from equation 3.19, we see to be 4.2um for an emission wavelength
of 0.525um.) Therefore, if the sample was imaged via a widefield technique through a
single 0.5NA objective, we expect the two points to not be axially resolved. The sim-
ulation was performed in two distinct imaging scenarios: firstly, the synthetic sample
was imaged via a differential-airy system PSF, implementing 3D-EPM as described in
chapter 3, using only a single imaging objective. The simulation was then repeated,
where the sample was imaged via two objectives arranged orthogonally as shown in
figure 5.12.

Figures 5.13a and 5.13b show the raw images that would be acquired via a single-
objective differential-Airy PSF as described in chapter 3, with a differential defocus of
+7nm. From the raw zy images it is not apparent that there are two distinct points
being imaged. Figure 5.13c¢ displays a zx maximum-intensity projection through the
reconstructed volume after 25 deconvolution iterations. The inset in figure 5.12¢ shows
a zoomed-in version of the region bound by the cyan box, and the plot shows a z profile
along the dashed line. As expected, the two points are not resolved in the reconstructed
volume: the profile confirms only one point is apparent in the reconstruction. Figure
5.13 displays the snapshot images that would be acquired in tomographic fashion.
While the raw images are still 2D, in this imaging configuration one camera records an
xy image, while the other camera records an zy image. That is to say, the z axis of the
first camera becomes the z axis of the second. Figure 5.13f displays the reconstructed
volume from the tomographic imaging configuration, with the inset and plot showing
the same regions as in figure 5.13c. Here, the two points are clearly resolved in the
reconstruction, which is confirmed by the plot along the blue dashed lines. We see,
therefore, that by acquiring images from orthogonal perspectives, the resolution along

the axial dimension is increased.

5.5 Chapter 5 summary

In this chapter we have seen how the deconvolution methodology developed in chapter
2 to that enable the full 3D reconstruction of a volume from multiple projection images
represents a general framework, applicable to a multitude of projection imaging modal-
ities. In chapter 3 we applied the reconstruction framework to simultaneously-acquired
PSF-engineered images, enabling snapshot volumetric imaging of samples exhibiting
extended regions of fluorescence emission. However, there were a number of limitations
of the method, including the depth over which we were able to image, and the difference
between the axial and lateral resolution in the reconstructed volumes. In the current
chapter we attempted to overcome these limitations by exploring the application of the
volume-reconstruction framework to other projection-imaging modalities. In particu-

lar, we have applied the reconstruction to two distinct imaging methods, each of which
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offers different advantages. Firstly, we applied the volume-reconstruction pipeline to
data acquired via multi-angle projection imaging, where the sample is probed rapidly
from multiple different projection angles. By employing this imaging modality, the
depth-range over which we can image is increased beyond the EDoF provided by an
engineered PSF, while still offering volumetric imaging at a significantly improved tem-
poral resolution compared with conventional imaging modalities such as light-sheet or
confocal microscopy. We explored the performance of the method with varying numbers
of projection angles, and furthered the mathematical framework to allow its application
to multi-angle projection images acquired on an oblique-plane light-sheet microscope.
We also explored its limitations in terms of the density of the sample that the method
could be applied to. We then saw how the same volume-reconstruction framework
could be applied to a tomographic implementation of 3D-EPM, where the sample is
imaged simultaneously through two orthogonal objectives. In this implementation an
isotropic 3D resolution is possible, overcoming the resolution anisotropy seen in 3D-
EPM reconstructions and increasing the axial resolution beyond the native resolution

provided by a single-objective widefield system.
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Figure 5.13: Proof of concept results for tomographic EPM. (a) and (b) show simulated
differential-airy images of a volume containing a pair of point-sources, separated axially
by a distance of 1.25 pm. (c) the reconstructed volume after 25 deconvolution iterations.
The points are not resolved in the reconstructed volume. (d-f) show the same as (a-
c), but where the experiment was implemented via tomographic EPM. By imaging
from two orthogonal angles simultaneously we are able to resolve the points in the
reconstructed volume. Scale-bar is 15 pm.
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Conclusion and future Work

Computational post-processing has become an integral part of modern fluorescence
microscopy. In particular, deconvolution has become a staple tool, not only in its con-
ventional application of improving image contrast, but also in the restoration of fluores-
cence images acquired via unconventional methods. Broadly termed hybrid imaging,
this approach of acquiring intermediate images using non-conventional optics that ap-
pear inferior when compared with conventional images, but that contain additional
information that may be extracted through post-processing to restore an image of su-
perior quality, is now commonplace in fluorescence imaging. Its use spans applications
ranging from light-sheet microscopy, where non-conventional beam profiles are used
to improve various aspects of imaging performance, to single-molecule imaging, where
post-processing enables precise localisation of fluorophores from PSF-engineered im-
ages, yielding reconstructed images with a resolution surpassing the optical diffraction
limit.

We saw in chapter 1 how a particular limitation of fluorescence microscopy is its
inability to perform 3D imaging while maintaining high resolution in both the temporal
and spatial domains. This is significant, since the structure and dynamics of biological
samples is often 3-dimensional. The focus of this thesis has been on addressing this
limitation, through the application of novel computational processing pipelines that are
based on conventional deconvolution frameworks. In chapter 3, we sought to address
the question: is it possible to image an entire volume in a single snapshot, while
maintaining high spatial resolution? In answering this question, we saw how PSF
engineering techniques could be used to (i) extend the DoF of an imaging system, such
that in-focus light can be collected from a larger depth-range, and (ii) encode the depth
of sample features into images. By modelling image formation as a projection across
the EDoF, we demonstrated how the RL deconvolution algorithm could be amended to
map between a 3D sample and 2D projection images, allowing full 3D reconstruction
of the sample volume from snapshot 2D data. This microscopy technique, which we

named 3D-EPM, introduces the following key advantages:

1. Unlike other popular snapshot volume imaging techniques, 3D-EPM does not
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inherently require a compromise in the spatial resolution of the parent microscope.
Additionally, 3D-EPM may be implemented by the simple addition of a /f relay
behind the image plane of any standard fluorescence imaging system. These two
factors make 3D-EPM a versatile technique that can be applied across many

different spatial scales.

2. Where previously the application of PSF engineering to snapshot 3D imaging has
been largely focused on SMLM, 3D-EPM permits snapshot volumetric imaging of
samples with extended regions of fluorescent structure. We demonstrated this in

both simulation and experiment by imaging filament-like structures via 3D-EPM.

3. Because 3D-EPM provides true volumetric imaging in a single snapshot, it enables
the study of rapidly-moving scenes in all 3 spatial dimensions. We demonstrated
its application to the study of 3D dynamics by imaging the motion of chloroplasts

in a sample of Egeria densa.

In chapter 4, we turned our attention to the field of point-localisation, where the
spatial coordinates of individual point emitters are estimated from 2D image data.
PSF-engineering has found popularity in 3D-SMLM, however a fundamental limitation
is the inability of many localisation algorithms that estimate the 3D position of emitters
directly from the raw 2D images to cope with PSFs that significantly overlap. The
limits on acceptable density of emitters, therefore, places constraints on the number
of localisations that can be can be calculated per frame, which in turn restricts the
temporal resolution of 3D-SMLM where photo-switchable fluorophores are used. We
saw that when the volume-reconstruction process of 3D-EPM was applied to PSF-
engineered point-localisation data, performing the localisation within the reconstructed
3D volume as opposed to the raw 2D image data meant significantly higher densities
of emitters could be effectively localised per frame than with a previously-developed
point-matching approach. We also saw how 3D-EPM localisation performed better at
lower signal-to-noise ratios, and when emitters were positioned close to the edge of
the imaging domain. Additionally, in contrast with many localisation algorithms that
are designed to work with specific PSFs, 3D-EPM localisation is a versatile approach
that makes no prior assumptions about the nature of the PSF used for imaging. 3D-
EPM localisation will, therefore, work with any engineered PSF providing it effectively

encodes depth information over the required axial range.

Finally, in chapter 5, we saw how the mathematical framework used for volume-
reconstruction from 2D projection images in 3D-EPM could be applied to other pro-
jection imaging modalities, wherever some form of latent 3D information is present
within the raw projection data. We adjusted our model of image formation to reflect
image formation on a multi-angle projection imaging system, and saw how the model
could be inverted via our amended RL deconvolution framework to provide full 3D re-
construction from few projection views. We demonstrated its application to a number

of samples, both in simulation and with experimentally acquired data, including that
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Figure 6.1: Top-down view of an experimental setup designed to implement the
tomographic-EPM setup introduced in chapter 5. The experimental setup was de-
signed by myself and built by Katarzyna Glinka during a summer research project
within the Imaging Concepts Group.

acquired on an OPM system which introduced additional complexities to the recon-
struction process. Additionally, a design for a tomographic EPM system was proposed
that probes the sample via two objectives at orthogonal angles. Proof-of-concept re-
sults were presented that demonstrated how isotropic 3D resolution can be achieved
with such a system, overcoming the anisotropy between lateral and axial resolution

that exists when imaging solely through a single objective lens.

In summary, this thesis has presented a mathematical framework that enables the
3D reconstruction of a sample volume from 2D projection data, thereby removing the
need for many sequential 2D acquisitions in order to obtain high-resolution 3D images.
We have modified a model of image formation to describe image formation across a
number of different projection imaging modalities, and demonstrated the application
of the volume reconstruction framework to those imaging methods in both simulation
and experiment. By offering volumetric imaging with high resolution in time and in
space, it is hoped that the imaging methods developed in this thesis will find broad
applicability in the 3D study of fast biological dynamics.
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Ongoing work

While proof-of-concept results for the tomographic 3D-EPM implementation were pre-
sented in chapter 5 of this thesis, there was sadly not enough time available during my
PhD to implement this work experimentally. This work is in progress, and I hope to
obtain experimental results from this implementation in the near future. Figure 6.1
displays an experimental setup designed by myself to implement this experiment, built
by an undergraduate student, Katarzyna Glinka, during a summer research project
within the Imaging Concepts Group. With this setup we hope to image the beating

zebrafish heart with an isotropic 3D resolution.

Additionally, we have ongoing collaborations with the authors of [5], with whom
we hope to demonstrate the 3D reconstruction from multi-angle projection image se-
quences of dynamic biological processes that occur too quickly to probe with conven-

tional z-stack imaging.
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Contributions

Parts of the work presented in this thesis involve collaboration with others and their

contributions are detailed below.

Michael Handley wrote the python code for the twin-airy point-matching localisation
routine which was originally developed by Dr Yongzhuang Zhou, against which the

3D-EPM localisation routine was compared in chapter 4.

The results presented in chapter 5 form part of an ongoing collaboration with Professor
Reto Fiolka, Dr Bingying Chen and Dr James D. Manton. The raw projection images
shown in figures 5.4, 5.6 and 5.7 were simulated from ground-truth images by Dr James
D. Manton. The raw projection data shown in figure 5.10 was acquired by Dr Bingying
Chen. The raw projection data shown in figure 5.11 was acquired by Professor Bo-
Jui Chang. All data was used with permission, and all 3D reconstructions shown
were performed by myself. The phenomena of ghost artefacts being introduced into
reconstructed volumes when reconstructing multi-angle projection data using only two

views, discussed in section 5.5, was helpfully pointed out by Dr James D. Manton.

The tomographic 3D-EPM setup shown in figure 6.1 was designed by myself and built

by an undergraduate student, Katarzyna Glinka, as part of a summer research project.

The FEgeria densa sample imaged in chapter 3 was suggested by Professor Michael
Blatt.

All of the work presented in this thesis was carried out under the invaluable supervision

and guidance provided by Dr Jonathan M. Taylor and Professor Andrew R. Harvey.
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