Werner, Johanna Dorothea Ursula (2022) Beyond taste and healthiness: establishing the importance and stability of diverse motives for eating and drinking. PhD thesis
http://theses.gla.ac.uk/83595/

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Beyond taste and healthiness:

Establishing the importance and stability of diverse motives for eating and drinking

Johanna Dorothea Ursula Werner (Bsc, Msc)

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

December 2022

School of Psychology and Neuroscience
University of Glasgow
62 Hillhead Street
Glasgow
G12 8QB

Declaration of Originality Form

This form must be completed and signed and submitted with all assignments． Please complete the information below（using BLOCK CAPITALS）．

Name	JOHANNA DOROTHEA URSULA WERNER
Student Number	XXXXXXX
Course Name	PHD PSYCHOLOGY－DOCTORAL THESIS
Assignment Number／Name	BEYOND TASTE AND HEALTHINESS：
	ESTABLISHING THE IMPORTANCE AND STABILITY
	OF DIVERSE MOTIVES FOR EATING AND DRINKING

A link to the University＇s Statement on Plagiarism is provided at the end of this form． Please read the Statement on Plagiarism carefully THEN read and sign the declaration below．

I confirm that this assignment is my own work and that I have：

Read and understood the guidance on plagiarism in the Student Handbook， including the University of Glasgow Statement on Plagiarism

Clearly referenced，in both the text and the bibliography or references，all sources used in the work

Fully referenced（including page numbers）and used inverted commas for all text quoted from books，journals，web etc．（Please check with your School which referencing style is to be used）

Provided the sources for all tables，figures，data etc．that are not my own work
Not made use of the work of any other student（s）past or present without acknowledgement．This includes any of my own work，that has been previously， or concurrently，submitted for assessment，either at this or any other educational institution，including school（see overleaf at 31．2）

Not sought or used the services of any professional agencies to produce this work
In addition，I understand that any false claim in respect of this work will result in conduct action in accordance with University regulations

DECLARATION：

I am aware of and understand the University＇s policy on plagiarism and I certify that this assignment is my own work，except where indicated by referencing，and that I have followed the good academic practices noted above

Signed

Abstract

To tackle some of the most pressing challenges of our time, the obesity epidemic and climate change, novel interventions, regulations and public policies are needed to help people shift towards healthier and more sustainable diets. To achieve this goal, it is essential to first fully understand how eating and drinking, both highly complex, multifaceted behaviours, are influenced by internal and external factors. Previous research has typically used unsituated self-report measures at a single timepoint to identify and establish the importance of diverse consumption motives (e.g., habit, health, liking etc.) by averaging across participants, simply presuming relative stability across individuals, eating occasion and time. Consequently, there is a gap in the literature of the underlying intra- and individual differences in food and beverage consumption motivation patterns and their stability across different domains. This thesis' objective is to add to the understanding of consumption motivations, by establishing diverse motives for food and beverage consumption, assessing their stability across eating occasion, time beverages and foods, and exploring intraand individual differences, using a situated measuring approach.

Chapter 2 establishes a seven-factor framework predicting the consumption frequency of alcoholic and non-alcoholic beverages. Findings show that predictive patterns remain remarkably stable across individual beverages. In contrast, large individual differences occur across participants' predictive patterns, although habit emerged consistently as important. Lastly, participants differ greatly in their perception of the different beverages.

Chapter 3 presents the results of three separate studies with the overarching aim to establish individual's predictive patterns for their consumption frequency and desire of situated foods and beverages and to assess the stability of those patterns across different eating occasions. Study 1 establishes an extensive sample of foods consumed in eight different eating situations in the UK. Study 2 identifies the relevant underlying motives predicting consumption frequency and desire. Lastly, Study 3's results demonstrate (again) large individual differences across individual's predictive patterns, again with the exception of automaticity
which was important for both consumption frequency and desire across participants. Remarkably, findings indicate that individual's predictive patterns remain stable across eating occasions. Little agreement was found between what participants believed to influence their consumption and SAM2s predictive profiles, potentially indicating that participants have little insight into what predicts their consumption.

The empirical work presented in Chapter 4 expands on the findings in Chapter 3 by assessing consumption motivations of diverse food groups across a two-week timespan. Findings show the occurrence of learning effects for some of the predictors, meaning the association between consumption and the predictors increases overtime. In contrast, consumption motivations remain stable over time. As in Chapter 3 and 4 large individual differences occur in predictive patterns as well as participants perception of the diverse food groups, although (again) automaticity emerges as most important across participants. Lastly, again little agreement was found between what participants believed to predict their consumption and $S A M^{2}$ s findings.

Finally, in Chapter 5 the key theoretical and practical implications of this work are discussed, particularly in how the findings relate back to the grounded cognition theory and the wider literature. Lastly, the strength and limitations of the empirical work are presented, and potential future research avenues reviewed.

Table of Contents

Abstract 4
Table of Contents 6
List of Tables 10
List of Figures 11
Acknowledgements 13
Research Output 14
Contributorship Statement 15
Abbreviations 16
Chapter 1 General introduction 17
1.1 Measuring consumption motives 20
1.2 Challenges of assessing consumption and consumption motives 22
1.3 Established associations of consumption motives with eating and drinking 23
1.3.1 Predictors of food consumption 23
1.3.2 Predictors of beverage consumption 25
1.4 Effect of situation on consumption motives. 26
1.5 Grounded Cognition Theory 28
1.6 A novel measuring approach: SAM ${ }^{2}$ 29
1.7 The current thesis 31
1.8 Note to readers 35
Chapter 2 Habit, health and socialising: New insights into diverse motives for alcoholic and non-alcoholic beverage consumption. 36
2. Abstract 37
2.1 Introduction 38
2.2 Methods 44
2.2.1 Participants 44
2.2.2 Design and materials 44
2.2.3 Procedure 47
2.3 Results 47
2.3.1 Inter-rater agreement for the 35 measures 47
2.3.2 Judgment means and variability 50
2.3.3 Factor analysis 52
2.3.4 Predictive relations between the seven factors and drink consumption 55
2.3.5 Explained variance in consumption frequency 59
2.3.6 Predictive patterns for individual participants and explained variance 59
2.3.7 Similarity of prediction profiles 62
2.3.8 Explained variance in predictive profiles 63
2.4 Discussion 63
2.4.1 Patterns of prediction for individual participants 63
2.4.2 Patterns of prediction for individual drinks 64
2.4.3 Strengths and limitations 66
2.4.4 Conclusion 69
2.5 Declarations 70
Chapter 3 Establishing Individual consumption motives and their stability across eating situations 71
3. Abstract 72
3.1 Introduction 73
3.2 Study 1 82
3.2.1 Method 82
3.2.2 Results 85
3.2.3 Discussion 87
3.3 Study 2 87
3.3.1 Method 88
3.3.2 Results 93
3.3.3 Discussion 97
3.4 Study 3 98
3.4.1 Methods 99
3.4.2 Results 103
3.4.3 Discussion 118
3.5 General discussion 118
3.5.1 Implications 120
3.5.2 Strengths and limitations 122
3.5.3 Conclusion 124
3.6 Declarations 125
Chapter 4 Assessing individual motivation for consuming diverse food groups over a two-week period 126
4. Abstract 127
4.1 Introduction 128
4.2 Methods 134
4.2.1 Participants 134
4.2.2 Materials 134
4.2.3 Procedure 138
4.3 Results 139
4.3.1 Consumption measure 139
4.3.2 Implicit learning effects 139
4.3.3 G Theory and ICC results 142
4.3.4 Variability for individuals and food groups 146
4.3.5 The individual by food group interaction for consumption 149
4.3.6 Individual correlation and regression analyses 152
4.3.7 Individual self-assessment 155
4.3.8 Individual study experience 158
4.4 Discussion 158
4.4.1 Implicit learning effects 159
4.4.2 Self-assessments of eating motives 161
4.4.3 Strengths and limitations 162
4.4.4 Conclusion 165
4.5 Declarations 165
Chapter 5 General discussion 166
5.1 Summary of findings 166
5.2 Thesis contribution and implications 169
5.2.1 Large individual differences in predictive patterns 169
5.2.2 Lack of intra-individual differences in predictive patterns 170
5.2.3 Difference between SAM^{2} prediction and participants self- assessment 172
5.2.4 Consistent importance of habit and the role of other motives 174
5.2.5 Practical implications 176
5.3 Strength and limitations 178
5.4 Future research directions 181
5.5 Conclusions 185
Appendix A Supplementary materials for Chapter 2 186
Supplementary material 1: Data exclusion 186
Supplementary material 2: Additional measures and demographic Information collected 187
Supplementary material 3: Detailed descriptions of the inter-rater agreement for the 35 measures 188
Supplementary material 4: Detailed description of the judgment means and variability 189
Supplementary material 5: Detailed descriptions of correlations of frequency with the predictive measures for individual drinks 190
Assessing the similarity of the predictive patterns for the 11 drinks 191
Appendix B Supplementary materials for Chapter 3 194
Supplementary material 1: Remaining Coding description and description of the resulting Norms 194
Supplementary material 2: Study 3 Dropout rate 195
Supplementary material 3: Data quality control 196
Supplementary material 4: Study 1 Norms 197
References 235

List of Tables

Table 1 - Factor names, variable names, rating questions, ICC2 values, and ICC2k values 46
Table 2 - Exploratory factor analysis 53
Table 3 - Variable names, rating questions including labelling, group size, ICC2, ICC2k, Median and IQR values 78
Table 4 - List of foods included in Study 2 and 3 organised by eating situation they were presented in 90
Table 5 - Results Exploratory factor analysis 95
Table 6 - Results from a simple linear regression analysis predicting consumption frequency with the factor scores from the factor analysis 96
Table 7 - Results from a simple linear regression analysis predicting desire with the factor scores from the factor analysis 96
Table 8 - Study 3 rating question, scoring range, scoring label, ICC2, ICC2k, Median and IQR 102
Table 9 - Food groups evaluated by participants and corresponding examples used to illustrate them 135
Table 10 - Dependent variables and predictors, including the judgment question, scale, labels, and ICC2 for each measure 137

List of Figures

Figure 1 - The Situated Action Cycle 40
Figure 2 - Heatmap of raw frequency judgments for each drink 49
Figure 3 - Each of the eleven drink's mean for each of the 35 ratings 51
Figure 4 - Correlation between seven predictive factors and consumption frequency ordered by factor 56
Figure 5 - Correlation between seven predictive factors and consumption frequency ordered by drink 58
Figure 6 - Individual correlations of the seven-factors with consumption frequency 61
Figure 7 - Mean and SD from the individual correlations for each factor (A) and distribution of the explained variance from the individual simple regression analysis (B) 62
Figure 8 - Number of foods listed by each participant for each eating situation 85
Figure 9 - Distribution of the frequency of how many participants listed the same basic food 86
Figure 10 - Distribution of mean judgment for individual foods (A) and participants (B) 104
Figure 11 - Group correlation results between the ten predictors and consumption frequency (A) and desire (B) 105
Figure 12 - Results of the individual correlations between the ten predictors and consumption frequency (A) or desire (B) 108
Figure 13 - Individual correlations between ten predictors and consumption frequency 110
Figure 14 - Individual correlation profiles of desire 111
Figure 15 - Individual linear regression's explained variance distribution 112
Figure 16-ICC2 assessing the stability of predictive profiles across the four eating situation within each individual 114
Figure 17 - Participants' self-assessment of how influential each of the tenpredictors are for their consumption frequency (A) and desire (B) .. 116
Figure 18 - Individual correlation results between what SAM^{2} predicted to influences a participant's consumption frequency and desire and their own self-assessment 117
Figure 19 - Individual learning effects 141
Figure 20 - G-Theory Results for original data and residuals from a simple linear regression 143
Figure 21 - Distribution of individual ICC2 values representing stability of each rating across 145
Figure 22A - Distribution of participants' average consumption for each food group 147
Figure 23 - For consumption, the Interaction between participants and food groups. 150
Figure 24 - Results of the individual correlation analysis showing general trends across the group 152
Figure 25 - Results of the individual correlation analysis visualising each participant's predictive profile for consumption 153
Figure 26 - Each participant's averaged self-rated importance of each of consumption motive 156
Figure 27 - Correlation between SAM ${ }^{2}$ prediction and participant's self- assessment 157

Acknowledgements

Over the course of my PhD, I was fortunate to have many amazing people by my side, who were equally there for me to celebrate my successes and personal highs, as they were there supporting and reassuring me through challenging times. To everyone who was there with me on this journey I would simply like to say: Thank you!

First and foremost, I would like to express my deep gratitude to my supervisor Prof Dr Lawrence W. Barsalou. Your infectious enthusiasm and scientific curiosity are an inspiration to me, and I will miss our meetings to discuss new and old results and their implications - your genuine excitement always re-ignited my own enthusiasm and motivation. Thank you for your all support, encouragement, guidance, and help.

A big thank you as well to my second supervisor Dr Esther K. Papies for all your invaluable input, insightful questions, and support with my research.

I would furthermore like to thank the Glasgow College of Science and Engineering for funding my research project.

Thank you to all my co-authors, office mates and members of the Barsalou and Healthy Cognition Lab (past and present). Your input, critical questions and our interesting discussions helped me immensely to improve my work and grow as a researcher.

Also, a big thank you to all my friends, who made my life so much richer, especially Aaryl, Anne, Betül, and Jannes for always being there for me, for all the laughs we shared, your encouragement and for all your help and support.

And finally, ein grosses Danke to my parents, sister-in-law and brother, I'm so grateful for having you by my side, for your constant support, encouragement and belief in me.

Research Output

Available as preprint:

Chapter 2 - Werner, J., Papies, E. K., Best, M., Scheepers, C., \& Barsalou, L. (2022, November 8). Habit, health and socialising: New insights into diverse motives for alcoholic and non-alcoholic beverage consumption.
https://doi.org/10.31234/osf.io/mqzhe

Chapter 3 - Werner, J., Papies, E. K., Gelibter, E., \& Barsalou, L. (2022, November 30). Why do you eat? - Establishing Individual consumption motives and their stability across eating situations.
https://psyarxiv.com/mjzf4

Chapter 4 - Werner, J., Kloidt, J., \& Barsalou, L. (2022, November 30). Assessing individual motivation for consuming diverse food groups over a two-week period. https://doi.org/10.31234/osf.io/4d9xq

Contributorship Statement

For each empirical chapter the contributions of each author in accordance with the Contributor Roles Taxonomy (CrediT) are listed below:

Key

CS: Christoph Scheepers; EG: Elena Gelibter; EKP: Esther K. Papies;
JW: Johanna Werner; JK: Juliane Kloidt; MB: Maisy Best;
LB: Lawrence Barsalou;

Chapter 2

CS: Formal analysis, Writing - Review \& Editing; EKP: Conceptualisation, Funding acquisition, Writing - Review \& Editing; MB: Conceptualisation, Investigation, Methodology, Writing - Review \& Editing; JW: Conceptualisation, Formal analysis, Data Curation, Resources, Visualization, Writing - Original draft, Writing - Review \& Editing; LB: Conceptualisation, Investigation, Methodology, Formal Analysis, Writing - Review \& Editing, Supervision;

Chapter 3

EG: Conceptualisation, Methodology, Data curation, Formal Analysis, Investigation, Writing - Review \& Editing; EKP: Conceptualisation, Methodology, Writing- Review \& Editing, Funding acquisition; JW: Conceptualisation, Formal analysis, Data Curation, Visualization, Writing - Original draft, Writing - Review \& Editing; LB: Conceptualisation, Methodology, Investigation, Data curation, Formal Analysis, Writing - Review \& Editing, Supervision;

Chapter 4

JK: Conceptualisation, Methodology, Writing - Review \& Editing;
JW: Conceptualisation, Methodology, Investigation, Formal analysis, Data curation, Visualisation, Writing - Original draft, Writing - Review \& Editing; LB: Conceptualisation, Methodology, Formal Analysis, Writing - Review \& Editing, Supervision;

Abbreviations

DFMQ-R	Drinking Motive Questionnaire Revised
FCMs	Food Choice Motives
G-Theory	Generalizability Theory
MCCQ	Motives for Caffeine Consumption Questionnaire
PEMS	Palatable Eating Motive Scale
SAM ${ }^{2}$	Situated Assessment Method
SUS-FCQ	Sustainable Food Choice Questionnaire
TEMS	The Eating Motive Survey

Chapter 1 General introduction

No matter where on the planet, no matter what time in history, from the day a human is born to the day of their death, one of the few universal constants of life that remain unchanged is the need to consume food and drink. Precise data still pending, it is estimated that the average human can only survive a few days without water and about a month without food. Indeed, even a continuous lack of just adequate nutrition (quantitative as well as qualitative deficiency) may lead to malnourishment or undernutrition. When experienced in childhood both, malnourishment or undernutrition, may cause severe and potentially long-lasting negative health problems in adulthood such as hypertension (Martins et al., 2011).

On the opposite extreme, consistent overconsumption of calories, through food or beverages, leads to an increase in body weight (Gibson, 2008) due to adipose cells acting as storage for the in excess consumed energy (Cohen \& Spiegelman, 2016). This once evolutionary beneficial process of preparing for times without a sufficient food supply, may lead in modern food environments, defined by constant access of highly palatable and caloric foods, to a continuous increase of bodyweight overtime, leading, without efficient counteractive measures such an increase in physical activity, to obesity (Gibson, 2008; Traversy \& Chaput, 2015). Obesity remains one of the major risk factors for various non-commutable diseases worldwide, e.g., cardiovascular diseases and certain kind of cancer (Calle \& Kaaks, 2004; World Health Organization, 2003). In 2015, obesity accounted for 6% of cancers in the UK, making it the second biggest preventablerisk factor after smoking (Brown et al., 2018). In their 2019 Health report, the NHS estimates that 68% of men and 60% of women aged over 16 in the UK are classified as either overweight or obese (Health Survey for England 2019 [NS], 2020). These extremely high numbers emphasize that obesity is not only a personal problem affecting an individual's health and life quality but moreover, through its associated diseases, a public health issue, putting extra pressure on health services (Allender \& Rayner, 2007).

To tackle obesity on the population level, the devolved UK governments have all implemented various public health policies, including campaigns to increase public health awareness by promoting the benefits of healthy foods and physical activity, combatting childhood obesity, e.g., banning advertisement of unhealthy foods during children's TV programs or setting quality standards for school meals), and financial incentive policies, e.g., the "sugar tax" on beverages (Musingarimi, 2009). However, these policies do not seem to result in the much needed, large scale changes, e.g., despite various health campaigns still not everyone's diet meets the recommended daily amounts of five handful of fruit and vegetables (Appleton et al., 2018; Stroebele-Benschop et al., 2018). Similarly, besides the large number of and variety of individual weight loss programs ranging from calorie restriction, to therapy, to group settings to, in extreme cases, surgery, most dieters struggle to maintain long-term weight loss (Wing \& Phelan, 2005).

Beyond having an effect on an individual's body weight, the types of foods people consume (or not consume) on a daily basis may affect their physical health (Willett, 1994) and may additionally impact their mental health (El Ansari et al., 2014; Firth et al., 2020) as well as their cognition (Spencer et al., 2017). A diet low in omega-3 polyunsaturated fatty acids, contained for instance in fish, has been identified as associated with an increased risk of depression (Spencer et al., 2017). Similarly, but on a more positive note, growing evidence also suggests that a high quality diet, rich in fruit and vegetables, might act as a protection against age related cognitive decline (Smyth et al., 2015; Spencer et al., 2017).

Lastly, food not only impacts an individual's health outcomes and life quality, but furthermore directly affects planetary health (Birt et al., 2017). Meat and dairy production in particular are important contributors to global greenhouse emissions (O'Mara, 2011). However, consumer research shows that there are some individuals still incredulous of the connection between climate change and animal farming (Malek et al., 2019). This is problematic as, in order to shift towards a sustainable diet, people will have to decrease their meat consumption in favour of plant-based diets (Sabaté \& Soret, 2014) e.g., by the adoption of alternative proteins such as pulses, algae and insects (Onwezen et al., 2021).

Consequently, a growing number of research attempts to identify motives related to sustainable behaviour, in the hope of developing new, and improving existing, behaviour change methods to help individuals to shift towards more sustainable diets, e.g., nudging (for a review see Abrahamse, 2020).

In summary to tackle both the obesity epidemic, poor nutrition outcomes and climate change on the individual and population level, novel interventions, regulations and public policies are required to facilitate and accelerate the required behaviour change towards healthier and more sustainable diets. To discover those new methods, it is first important to fully understand consumption behaviour together with all its influencing factors. This requires establishing the underlying motives of eating and drinking behaviour, how these might differ between individuals as well as other potentially important influences, e.g., individual differences (socio economic status, personality factors etc.) and situational context (food environment, eating occasion, etc.).

Intake of both food and beverages is regulated by physiological signals and orchestrated by several different hormones. The ability to recognize such physical signals appears to differ greatly between individuals and is associated with a general interoceptive awareness (Palascha et al., 2021), providing a first hint into how considerably people differ from one another in the domains of eating and drinking. Ghrelin, besides other important functions, acts as "hunger hormone", providing feedback on the body's current fuel level to the central nervous system to encourage, if needed, the consumption of food (Müller et al., 2015). The higher the Ghrelin level in the blood plasma, the greater the experienced physical hunger signals (Cummings et al., 2004). Leptin in turn, has the opposite effect, indicating to the nervous system to stop consumption when the ingested food reaches satiation level (Cousino Klein et al., 2004). Thirst in contrast is regulated by osmotic as well as hormonal influences (McKinley \& Johnson, 2004). Even a small drop in hydration level (2\% of the body weight) results in cognitive and physical performance drops (Grandjean \& Grandjean, 2007).

Although the presented physical signals might motivate food and beverage seeking behaviour, they are in themselves mostly unspecific in what precisely to
consume. The same physical feelings of hunger might motivate one person to prepare a salad while another orders a burger and chips. Similarly, the experience of thirst may encourage one person to consume water while another might help themselves to a sugar sweetened beverage. Moreover, people also consume food and drink in the absence of any physical signals to satisfy for instance feelings of boredom or emotional distress (Arnold et al., 2015) or adapt their behaviour based on perceived social norms (Higgs, 2015). In addition to these internal factors, there is a growing understanding of the important role situational context plays in consumption behaviour (Cohen \& Babey, 2012). In summary, food and beverage consumption are regulated by biological processes, however, additional internal and external factors appear to also influence eating and drinking.

1.1 Measuring consumption motives

To fully understand the motives underlying food and drink consumption, reliable measuring tools are required to capture the full complexity of these behaviours.

There is a range of diverse eating motives questionnaires, some capturing general eating motivations e.g., The Eating Motivation Survey (TEMS) developed by Renner et al. (2012), or the Food Choice Motives (FCMs) by Steptoe et al. (1995), whereas others have a more narrow focus, for instance on motives related to sustainability, e.g., the Sustainable Food Choice Questionnaire (SUSFCQ) by Verain et al. (2021) or motives related to eating tasty foods, e.g., the Palatable Eating Motive Scale (PEMS) by Burgess et al. (2014). In addition, researchers frequently generate and add other motives to these established questionnaires or create their own item pool, tailored to their specific research question.

Subsequently eating motive studies vary greatly in what motives they investigate. The FCMs for instance identified nine relevant eating motives, namely health, mood, convenience, sensory appeal, natural content, price, weight control, familiarity and ethical concern (Steptoe et al., 1995). Whereas the TEMS established a 15 eating motives structure including hunger, health concerns, convenience, pleasure, traditions, natural concerns, sociability, price
considerations, the visual appeal of foods, weight control concerns, to regulate negative affect, and because of social norms and social image concerns (Renner et al., 2012). The SUS-FCQ, in contrast, evaluates consumption motives on two main dimensions: 'general sustainability’, e.g., animal welfare, and 'local and seasonal’ (Verain et al., 2021). Whereas the Palatable Eating Motive Scale encompasses motives related to social aspects, coping with negative affect, enhancement of positive affect, and conformity of eating tasty foods (Burgess et al., 2014).

Compared to eating motivations there are far fewer specialised questionnaires measuring beverage consumption motives, especially for sugar sweetened beverages, water or hot beverages. A well-established tool to assess alcohol consumption motivations is the Drinking Motive Questionnaire Revised (DMQ-R), developed by Cooper, which comprises of four core motives centred around positive and negative reinforcement, and internal and external factors, namely social motivations, enhancement of positive affect, conformity and coping with negative affect (Cooper, 1994). In contrast, the Motives for Caffeine Consumption Questionnaire (MCCQ) developed by Ágoston et al. (2018) assesses motivations related to caffeine (e.g., coffee, energy drinks etc.) consumption, namely habit, alertness, social, mood, taste and symptom management.

In addition to the variety of quantitative approaches, researchers have also applied various qualitative methods to examine the role of different motives on eating and drinking, e.g., individual interviews (Askari Majabadi et al., 2016; Bisogni et al., 2002) or focus groups (e.g., Block et al., 2013).

Studies into consumption motivations not only differ greatly on the specific motives they investigate, but furthermore in whether they use situated or unsituated approaches. To assess unsituated consumption motivations, participants typically respond to the questions independent of specific eating situations, e.g., an online survey assessing consumption motivations with the TEMS. To assess motives in a situated manner, researchers can either situate their questions in specific eating occasions, e.g., "when choosing your daily breakfast how important is weight control", ask participants to specifically assess motives related to their last consumption occasion (e.g., Phan $\mathbb{\&}$

Chambers, 2016a) or use methods such as the Ecological Momentary Assessment (EMA) to repeatedly investigate consumption motivations in real eating situations (for an example see Wahl et al., 2020), e.g., recording the specific motives of why an individual had vegetable soup for their dinner.

1.2 Challenges of assessing consumption and consumption motives

One challenge that arises when requiring individuals to judge their consumption motivations is the fundamental question whether they actually know and understand all relevant motives that underlie their food and beverage consumption. Based on consumer goal pursuit theories (Laran, 2016) consumption is expected to be driven by both conscious (e.g., long-term health goals) as well as unconscious (e.g., goals prompted by situational factors) goals. Therefore even if individuals would be able to correctly report on their conscious motivations, they typically lack the understanding how much their consumption is driven by for example contextual cues (Cohen \& Babey, 2012). This means that explicit eating motive questionnaires (as presented in the previous section) omit an important source of influence on consumption behaviour which is likely to distort results. Consequently, novel measuring methods are needed to capture both conscious and unconscious motives of consumption.

A further challenge researchers face when assessing what predicts consumption behaviour is the question of how truthfully participants will report how much they consume specific foods and beverages. Research into alcohol consumption found that participants, especially specific groups such as middle aged women, are likely to underreport their alcohol consumption (Livingston \& Callinan, 2015). Additionally, participants may alter their responses to alcohol consumption questionnaires to fit a socially desirable consumption (Davis et al., 2010). Similarly, individuals tend to underreported what they eat (Connor, 2020), particularly for unhealthy foods (Lafay et al., 2000).

1.3 Established associations of consumption motives with eating and drinking

A large number of diverse motives associated with consumption of food and beverages has previously been identified. Following, the association of consumption with some of these motives, e.g., habit, coping with negative affect, self-identity etc., will be discussed first for food and then for beverage consumption.

1.3.1 Predictors of food consumption

First, it is important to note that across studies large differences emerge as to the relative importance of different motives for food choice, e.g., Renner et al. (2012) found liking, habits, needs $\&$ hunger and health as most important whereas in Steptoe et al.'s (1995) study sensory appeal, health, convenience and price were reported as most influential. These differences might occur due to multiple reasons, e.g., the inclusion (or omitting) of different eating motives or even the use of different question types.

As discussed earlier, food is not only consumed in response to physical hunger signals or in connection to attaining long-term health goals but furthermore plays an important, though admittedly maladaptive, role in emotion regulation for some individuals (Evers et al., 2018) and can act as a replacement for a lack of other basic needs, e.g., lack of love, self-esteem etc. (Timmerman \& Acton, 2001).

Habit emerges most consistently as important predictor for eating behaviour (Gardner et al., 2011; Ohtomo, 2013; Riet et al., 2011). Their relationship can best be explained in the framework of the dual processing theory (Hofmann et al., 2008). By repeating a behaviour consistently in a specific context, overtime so called 'context-action' associations are established (Gardner et al., 2021; Lally et al., 2010). The presence of relevant situational cues then automatically triggers the impulse to perform the behaviour (Gardner, 2015; Gardner et al., 2021). In other words, because eating and drinking behaviour is often repeated in the same context, e.g., eating salted nuts while playing computer games,
over time context-action associations are formed through repetition (repeatedly eating salted nuts while playing computer games). Consequently, when in the relevant context (playing computer games) the impulse to perform the associated action (eating salted nuts) is automatically triggered. The associated behaviour is then performed with little conscious thought (Ohtomo, 2013). It is important to stress that habits can have detrimental as well as beneficial consequences for an individual's health. On the one hand, habits may aid maintenance of a healthy diet (Lin et al., 2016), e.g., always eating porridge for breakfast, or, on the other hand, encourage unhealthy eating patterns (Verhoeven et al., 2012) , e.g., every time when drinking a cup of tea also consuming biscuits.

Once established, these context-action associations are difficult to break, requiring intentions (conscious control) to inhibit the impulse to perform the behaviour (Gardner et al., 2020; Wood \& Neal, 2009). Ironically, using negative implementation strategies (e.g., "I will not eat salted nuts when playing computer games") appears to further strengthen the context-action association (Adriaanse et al., 2011). Instead, it might be more promising to replace old habits with new, more beneficial ones, e.g., replacing the aforementioned salted nuts with eating raw fruit while playing computer games (Gardner et al., 2021). Other motives such as long-term health goals and self-control (McCarthy et al., 2017) may also help to interrupt the context-action association at least temporarily. For instance exposure to diet primes successfully reduced unhealthy eating habits (Ohtomo, 2017). Overall, habit yields great importance for eating behaviour though the context-action association can be modulated by other, conscious processes, e.g., intention, long-term health goals.

A further greatly important predictor for eating is an individual's self-identity. Individuals' identities related to their eating behaviour involve highly individualised types of identities, differing within as well as between participants (Bisogni et al., 2002) and have been found, among other things, to predict fruit and vegetable consumption (Carfora et al., 2016; Rise et al., 2010). Not only does thinking of oneself in terms of being a 'healthy eater' predict healthy eating (Strachan \& Brawley, 2009) but manipulating participants identity by inducing 'Self-as-a-Doer Identity’ (e.g., referring to oneself as a 'healthy
eater') results in maintenance of healthy eating over a six-week period (Brouwer \& Mosack, 2015), offering potential new avenues to help people shifting toward healthier diets. Moreover the perception of a food's taste has been shown to be associated with its association of a desired identity (Tal et al., 2022).

1.3.2 Predictors of beverage consumption

Research into the motivations behind the consumption of beverages often either exclusively focuses on alcoholic beverages, e.g., Anderson et al. (2013), nonalcoholic beverages in general, e.g., (Block et al., 2013), or one specific type of beverage such as water, e.g., Rodger et al. (2021).

In contrast to the broader approach when assessing what predicts eating, research into alcohol consumption typically concentrates on motives related to the functionality of consuming alcohol, e.g., enhancement of positive affect, coping with negative affect, conformity or social benefits or norms (Cooper, 1994; Grant et al., 2007; Halim et al., 2012). Problematic alcohol consumption, for instance, appears to be associated with greater importance of drinking motives related to changing one's internal states (enhancement of positive affect and coping with negative affect) (Moran \& Saliba, 2012). In contrast other, more general consumption motives, such as affordability and taste, are less often assessed - even though the previous success of increasing alcohol prices to reduce consumption, though only applied across all alcoholic beverages (Jiang \& Livingston, 2015), indicates that affordability is likely to influence alcohol consumption. Similarly, while rarely assessed, consumer research provides evidence that people themselves believe liking and taste to be the most important reason for their alcoholic beverage consumption (Charters $\mathbb{\&}$ Pettigrew, 2008; Moran \& Saliba, 2012)

The consumption of non-alcoholic beverages such as sugar sweetened beverages (beverages containing added sugar, e.g., soft-drinks, energy drinks etc. (Beaulieu et al., 2020)), water and hot beverages (e.g., tea and coffee) appears mainly driven by taste and price concerns (Block et al., 2013). Sugar sweetened beverage consumption has been furthermore associated with habit (Claassen et al., 2022), situational factors such as the presence of other people or eating out (McNaughton et al., 2020) and pleasure (Phan \& Chambers, 2016b). Whereas
coffee was mainly associated with habit (Phan \& Chambers, 2016b) and health concerns. The level of water consumption emerged as greatly influenced by expected reward and its association with one’s self-identity (Rodger \& Papies, 2022)

Overall, the results illustrate once more the enormous complexity of eating and drinking behaviour and how consumption is influenced by various diverse motives. Furthermore, consumption motives appear to differ between food and beverage types.

1.4 Effect of situation on consumption motives

In addition to the presented internal consumption motivations there is an increasing recognition in the literature of the role situational context, e.g., food and social environment, plays in eating and drinking behaviour. Adolescents consumption of unhealthy foods and drinks for instance is positively correlated to their mother's diet (Campbell et al., 2007), illustrating the great impact home environment, e.g., availability, and parental consumption, may have on their live-in dependents. Similarly, a food environment, e.g., access to supermarkets, shapes an individual's diet and health outcomes (Carroll et al., 2021). This might be at least part of an explanation for the inverse relationship between obesity and lower socio economic status in developed countries (McLaren, 2007), as food environments tend to differ greatly, between the most affluent and most deprived areas, e.g., on the number of available supermarkets (Molaodi et al., 2012).

Besides these global environmental factors, social norms and the presence of others during eating occasions have both been shown to additionally influence individual's eating behaviour (Higgs, 2015), e.g., people tend to adjust their consumption based on the present company (Herman et al., 2003). Comparably, social motivations are also associated with alcohol consumption, e.g., descriptive norms (Halim et al., 2012). For instance teenagers drinking habits are greatly influenced by the alcohol consumption of their peers (Ajilore et al., 2016).

Other external situational factors that may impact food and drink consumption include differences in eating situation (e.g., breakfast, lunch, dinner, snack), eating location (e.g., at home, at work, in a restaurant) and as illustrated in the previous section specific foods or beverages consumed (e.g., fruit, sweets, sugar sweetened beverages, alcohol). Cadario and Morewedge (2022) established that variety seeking, and hedonic goals were less important for breakfast compared to meals consumed later in the day. Comparably, responses to the FCMs have been found to differ depending on assessed eating occasion, location and social contexts (Verain et al., 2022). Similarly, although liking emerged as most important across eating occasions, differences were found across the other TEMS motives when assessing the reasons for foods consumed in specific eating situation (Phan \& Chambers, 2016a).

These findings challenge the underlying assumption of unsituated measures that eating and drinking motives are universal and therefore detached from situational context. For instance, the fictious question "When choosing a food, how important is it's healthiness for you" requires the participant to generalise their response across various different foods (e.g., pizza, salad, yoghurt), eating occasions (e.g., breakfast, snack, dinner), diverse contexts and environments (e.g., at home, at work, during the week, during the weekend, holidays etc.), and a completely unspecified timespan (yesterday, last week, months, years). However, based on the presented evidence it appears unlikely that individuals eating and drinking motives remain stable across diverse consumption situations, foods and beverages. In other words, eating a salad for dinner is likely predicted by a different pattern of motivations than having a cake as afternoon snack. Similarly drinking a beer in a pub is likely to differ on its consumption motives compared to drinking a coffee first thing in the morning. In summary, when assessing consumption motives, it appears important to assess their stability across different foods and beverages as well as diverse consumption contexts.

1.5 Grounded Cognition Theory

The grounded cognition theory (Barsalou, 2008; Papies et al., 2020) provides a theoretical framework to better understand the underlying reasons why situation is greatly important for consumption behaviours. It proposes that an individual's interactions with food or beverages, especially rewarding ones, are stored in memory as multi-modal 'situated conceptualisations’ (e.g., Barsalou, 2008; Papies et al., 2017, 2020), encompassing various information related to internal states, sensory features, contextual features, motor actions etc. (Papies et al., 2020). For instance, the memory of having coffee and a piece of cake with good friends in a nice café might include the visual appearance, smell and taste of the consumed food and drink items, as well as features such as the experience of social connectedness, feeling relaxed, experiencing pleasure, the café etc. Later exposure to relevant cues, e.g., walking by the same café, might activate the situated conceptualisation and leads to partially reenactment or simulations of the other stored features, e.g., simulating the taste and mouthfeel of the previously consumed cake, feeling of social connectedness which might lead to feelings of desire (Papies et al., 2017, 2020).

The theoretical framework is able to explain, among other phenomena, the aforementioned association between an individual's socio economic status and their likelihood to develop obesity (McLaren, 2007). The grounded cognition theory suggests, that as the number of fast-food restaurant is increased in deprived areas (Molaodi et al., 2012), the people living in this environment would be more regularly exposed to cues related to fast food consumption (e.g., the logo of the fast food restaurant). These cues trigger simulations of previous fast-food consumption experiences and initiate desire, which then has to either be inhibited or may result in fast food consumption. As a result, people living in deprived food environments are more likely to consume fast food, which may in consequence lead to the observed negative health outcomes (e.g., obesity). In contrast, more affluent areas with less fast-food restaurants contain fewer environmental cues related to fast food, and therefore make it easier for individuals not to consume them.

Evidence for these proposed situated conceptualisations and their activation through relevant cues have been found in behavioural as well as neuroimaging research. Using a feature listing task, Papies (2013) observed that tempting food words resulted in the a higher percentage of contextual features generated by participants compared to more neutral foods, indicating that it is possible to activate these different situated conceptualisations by merely presenting participants with an abstract cue (e.g., written words). Similarly, neuroimaging studies have shown that food cues lead to activations in brain areas connected to reward and pleasure (for a review see Chen et al., 2016).

Overall, the grounded cognition theory explains the previously presented findings that eating motivations differed depending on situational context. And further empathises the necessity to measure the relative importance of eating and drinking motives in their specific situational context (e.g., eating situation, social context, specific food and drink etc). The situation cue, e.g., food in a specific eating situation, activates the relevant conceptual representation, resulting in partial simulations. Differences between conceptual representation are then reflected in the participants judgments. While studies have assessed some situational differences between situations a more systematic and exhaustive approach is needed to fully understand eating and drinking motivations stability across eating occasions.

1.6 A novel measuring approach: SAM ${ }^{2}$

Based on the grounded cognition theory, the Situated Assessment Method (SAM ${ }^{2}$) has previously been used to investigate individual differences of various health behaviours, e.g., stress (Lebois et al., 2016) and habit (Dutriaux et al., 2021). It proposes that to measure and understand a behaviour and its individual differences, it is essential to assess it in the specific situations it occurs in. The superscripted two specifically refers to the two ways in which it situates measures: the situational experience and the Situated Action Cycle (Dutriaux et al., 2021). To investigate individual differences of behaviours such as eating or drinking, SAM ${ }^{2}$ would accordingly identify the relevant situations the behaviour occurs in, e.g., specific foods eaten (or not eaten) in specific eating situations (e.g., "how frequently do you consume bananas for breakfast?"). SAM² second
dimension of situatedness refers to the Situated Action Cycle, a framework that allows researchers to identify all relevant situational factors that might affect the target behaviour, e.g., for eating behaviour these might include availability of a food, affordability, perceived healthiness etc.

The Situated Action Cycle proposes five phases to ensure all potentially relevant situational factors are captured, namely environment, self-relevance, affect, action and outcome. Though the phases are often represented as occurring in a serial fashion, in actuality they might run parallel, overlap or omit (Dutriaux et al., 2021). The first phase involves environmental cues such as events or entities that set the Situated Action Cycle in motion. For eating (and drinking) such environmental factors may include social aspects, e.g., whether other people are present, food availability, monetary considerations, etc. This is followed by the self-relevance phase in which the individual establishes the relevance of these environmental factors, for instance how they relate to their long-term goals (e.g., weight control), norms (e.g., how acceptable is it to consume this food), values and their self-identity. In the third phase, the assessed self-relevance might have induced affect in the individual, e.g., social connectedness or feelings of conflict. The induced affect might then lead to actions (or inaction) in the fourth phase (action phase), e.g., automatic consumption or inhibiting consumption. The Cycle ends with the outcome, for example the experience of the anticipated positive taste (reward) (Barsalou, 2020; Dutriaux et al., 2021).

By using this approach, the $S A M^{2}$ creates extensive and detailed data sets, capturing intra- as well as individual differences. Connecting this back to the theoretical foundations of SAM ${ }^{2}$, the grounded cognition theory, SAM 2 situated questions serve as relevant situational cues and activate individual's situated conceptualisations, resulting in simulations which then inform participants judgment on the situational factors previously identified through the Situated Action Cycle. In other words, SAM ${ }^{2}$ measures the situated conceptualisations and their differences within and between individuals across relevant situations.

1.7 The current thesis

As illustrated throughout this chapter, a great limitation across previous research is the use of unsituated measures, only allowing to assess generalised eating motivations instead of also exploring how stable motives are across consumption occasions. Furthermore, while still greatly informative, a further recurring limitation is a general focus on group level results, generalising motives across participants, instead of assessing individual differences (beyond broad group categories such as gender or BMI (Renner et al., 2012)).

In summary, although motives associated with food and drink consumption have been studied extensively, there is still a lack of understanding of the individual differences in consumption motivation patterns as well as their stability across the domains of eating situation and time.

Building on the theoretical framework provided by the grounded cognition theory (Barsalou, 2008, 2020; Papies et al., 2020), the aim of this thesis is to use a situated measurement approach (SAM ${ }^{2}$) to establish diverse consumption motives, determine their importance for individuals' consumption, explore intraand individual differences and assess their stability across specific foods, food groups, and beverages, eating situations and time. In addition, this thesis will provide further evidence of the role situational conceptualisations play in predicting individuals' food and drink consumption. In addition, it will moreover assess individuals' insights into their own consumption motivations.

Chapter 1 first provided a brief overview of typical methodologies used to measure consumption motives and challenges researchers face when assessing consumption, before the association of previously established predictors of consumption was presented. Next the importance of situation on consumption behaviour was discussed and finally the theoretical framework underlying this work was presented, with a focus on the role situational conceptualisations play for consumption behaviour. Lastly, the methodology used across all three empirical chapters, the SAM ${ }^{2}$ was introduced and explained in the context of eating and drinking behaviour.

The second chapter focuses exclusively on the consumption of beverages. Previous research into drinking behaviour has often either exclusively concentrated on alcoholic (Källmén et al., 2019) or specific non-alcoholic drinks such as sugary beverages, or water (Block et al., 2010; Rodger et al., 2021). Furthermore, there often seems to be a focus on behaviour change, for example to reduce consumption of fizzy drinks (Langrial \& Oinas-Kukkonen, 2012). In contrast, very little is known about the similarities and differences of what drives the consumption of different beverages.

The primary aim of the study presented in Chapter 2 was to develop an overarching framework that would be able to explain drinking frequency of alcoholic as well as non-alcoholic beverages and to capture individual differences between drinks as well as participants. Within the model it was expected that the predictive patterns would vary greatly between different drink types, as well as between individuals. Nine hundred participants rated 11 alcoholic and non-alcoholic beverages on 34 drinking motives as well as frequency. An exploratory factor analysis established a seven-factor model of situated drinking behaviour including the motives of social/positive consequences, positive taste, negative consequences, habit, health/functionality, bitterness and regulation. The seven-factor model was able to explain frequency well on the individual drink as well as the individual participant level. In contrast to prior assumptions all eleven drinks showed very similar predictive patterns, potentially indicating that drinking motives are generalised across beverages. Individual participants, in contrast, differed from each other in how they experienced drinks as well as what predicted their consumption frequency, though habit emerged consistently as important. The results provided further evidence of the benefits of applying SAM ${ }^{2}$ to identify relevant situational features.

After first focusing exclusively on drinking behaviour in Chapter 2, the work presented in Chapter 3 expanded on this by including the closely related work of eating behaviour. A majority of previous eating motivation research used unsituated self-report questionnaires, which require participants to generalize their ratings over a variety of eating situations (breakfast, lunch, going out) and foods (e.g., cheese, sweets, lettuce), most likely using intuition, heuristics and
other factors such as self-identity or social norms, instead of an empirical approach based on their actual consumption behaviour. Additionally, this approach fails to capture potentially relevant intra- and individual information (e.g., differences between participants how tasty they perceive pizza to be or capturing within a participant that breakfast is greatly predicted by habit whereas lunch is more driven by convenience). To improve on this, SAM ${ }^{2}$ was applied to the prediction of eating and drinking, by assessing specific food and drink consumption frequency in specific situations (e.g., sandwich for usual dinner), as well as applying the situated action cycle to identify situationally relevant variables (e.g., healthiness, tastiness, affordability etc.).

Chapter 3 presents the results of three separate, but inter-connected studies. First, Study 1 established an extensive sample of foods consumed in the UK, to inform which foods and drinks to include in Study 2 and 3. Next, Study 2 used a between-participant design to assess and condense a large number of potentially relevant eating and drinking motivations, aiming to identify the underlying constructs predicting consumption frequency and desire.

In the crucial third study, a within participant design was used to assess individual differences in consumption frequency and desire prediction patterns, as well as intra-individual differences across four eating situations. Additionally, participants insight into what predicts their consumption frequency and desire was assessed. Participants $(n=204)$ were asked to rate a large sample of individual foods ($n=177$), each situated in one of four eating situations (usual breakfast, usual lunch, usual dinner, daytime snack) on two dependent variables (consumption frequency and desire) and ten predictors (healthiness, fillingness, sweetness, bitterness, affordability, automaticity, self-identity, social connectedness, emotional satisfaction, situational transport). As in Chapter 2, the motives were able to explain considerable variance when predicting consumption frequency as well as desire on the individual participant level. Again, individuals differed greatly in how much each predictor was associated with their consumption frequency and desire, although habit (again) emerged as consistently important. Within participants, the motives for consumption motivation and desire remained remarkably stable, potentially explained by generalised eating motivation patterns for "usual" eating occasions. Lastly
participants showed little insight into what predicts their consumption frequency and desire, questioning the validity of typically used consumption motives questionnaires. These results empathised again the importance to assess intraand individual differences of consumption motivations and provided evidence for SAM ${ }^{2}$'s ability to assess situated conceptualisations.

A question that had not been previously addressed in Chapter 2 and 3 was the stability of consumption motives across time. Building on and extending on the results of Chapter 3, Chapter 4 assessed individual consumption motives at five timepoints during a two-week period. Of particular interest was to evaluate whether individual consumption motives would remain stable across timepoints. Of further interest was to assess whether previously found implicit learning effects in the domain of distress and eustress (Pedersen et al., 2022) could be replicated in the domain of food consumption, specifically whether the strength of association between dependent variable and predictors would increase over time. Sixteen food groups were chosen to capture participants diet instead of a large number of specific foods (as in Chapter 3). Participants were instructed to judge the food groups based on the specific foods they had consumed in the past two days (e.g., food group "fruit" would include apples, strawberries etc.). Using a within participant design participants were asked to judge their experience with 16 diverse food groups (e.g., sweets, fruits, processed meat) on two dependent variables (consumption frequency and average portion size) as well as six predictors (enjoyment of taste, fillingness, healthiness, automaticity, emotional satisfaction, and self-identity) in the past two days.

As in the previous two chapters, the six predictors were able to explain a great amount of variance on the individual participant level and captured large individual differences between participants, similarly habit emerged as most important across participants. Remarkably consumption motives for the 16 food groups emerged as stable across timepoints. Small but significant predicted learning effects occurred for the association of consumption with healthiness, self-identity and fillingness, indicating an increase in reliability of the measures. Again, the majority of participants showed little insight into what predicts their consumption.

In summary Chapter 2 assesses the stability of drinking motives across different beverages and individual participants. Chapter 3 extends on this by additionally examining the stability of individuals' predictive patterns for consumption frequency and desire across eating situations. Finally, Chapter 4 assesses the stability of eating motives across time. In the fifth and final Chapter the theoretical and practical implications of the results of the three empirical chapters will be presented and discussed in regard to the grounded cognition theory and the wider literature. Finally, directions for future research will be presented.

1.8 Note to readers

The following empirical chapters of this thesis (Chapter 2-4) were written as separate journal articles, currently available as pre-print and soon to be submitted to peer-reviewed journals. Because the chapters are thematically connected there may be some overlap particularly in their introduction and in the description of SAM ${ }^{2}$. Furthermore, as chapter 4 builds on and extends on chapter 3 , there is a brief summary of the three studies and their results presented in chapter 3 in the introduction of chapter 4.

Chapter 2 Habit, health and socialising: New insights into diverse motives for alcoholic and non-alcoholic beverage consumption

This chapter is an exact copy of the following preprint manuscript:
Werner, J., Papies, E. K., Best, M., Scheepers, C., \& Barsalou, L. (2022, November 8). Habit, health and socialising: New insights into diverse motives for alcoholic and non-alcoholic beverage consumption.
https://doi.org/10.31234/osf.io/mqzhe

2. Abstract

Previous research into drinking behaviour has often focused exclusively on either alcoholic drinks, sugar-sweetened beverages, or water, usually with an emphasis on changing consumption. The primary aim of the present study was to develop and assess a situated framework of drinking behaviour that predicts the frequency of drinking alcoholic as well as non-alcoholic beverages. Within this situated framework, we originally expected that predictive patterns for drinking frequency would vary greatly for different drinks as well as for different individuals. To assess these predictive patterns, we used the Situated Assessment Method (SAM²), which has previously been used successfully to study other health domains such as stress and habits. To cover a broad range of drinking situations, we sampled 4 alcoholic beverages (beer, wine, cocktails, spirits) and 7 non-alcoholic beverages (tea, coffee, fruit juice, diet soft drink, regular soft drink, bottled water, tap water). We then used the Situated Action Cycle to identify 34 potential predictors of drinking frequency (e.g., liking the taste, thirst, socialising). A total of 900 UK participants completed an online survey, rating each of the 11 drinks on consumption frequency and on each of the 34 predictors. To reduce complexity and remove redundancies, we performed an exploratory factor analysis, decreasing the number of predictors to seven factors that we interpreted as habit, regulation, negative consequences, health/functionality, bitterness, positive taste and socialising/positive consequences. Across analyses, our seven-factor model was able to explain considerable variance in self-reported drink consumption, both for individual drinks (median $=65 \%$) and individual participants (median $=95 \%$). Surprisingly, we only detected subtle differences between the eleven different drinks' predictive patterns. In contrast, individual participants exhibited greater variability in the factors that predicted their drinking behaviour.

2.1 Introduction

Overconsumption of alcoholic, as well as some non-alcoholic drinks (e.g., sugarsweetened beverages) plays an important part in the development of obesity and diabetes (S. Gibson, 2008; Neelakantan et al., 2022), which have been linked to further negative health outcomes such as certain kinds of cancer (Calle \& Kaaks, 2004). To help people make healthier choices, it is important to first understand the underlying motives that motivate drinking behaviour. Previous research, however, has focused exclusively on either alcohol or non-alcoholic drinks, and little is known about similarities and differences between different drinks in the motivation to consume them. Additionally, previous research has tended to focus on one or a few consumption motives, rather than assessing motives more comprehensively. Here we examine a broad spectrum of drinking motives for both alcoholic and non-alcoholic drinks.

Alcohol consumption research often concentrates on alcohol-specific drinking motives such as enhancement, meaning, positive affect, coping, reducing negative states, and social benefits (Cooper, 1994; Halim et al., 2012; Hammarberg et al., 2017), while leaving out other potential factors such as taste and health. Furthermore, motives for alcohol consumption have mainly been studied in teenagers, college students (Bravo et al., 2015; Halim et al., 2012), and problematic drinkers (Hammarberg et al., 2017), less in the general population.

In a similar way, studies of non-alcoholic drinks such as sugary beverages are often just a small part of research into eating habits more generally (EspinozaOrtega et al., 2016), or associated with interventions to help people to reduce intake (Langrial \& Oinas-Kukkonen, 2012). Few studies focus on the reasons why non-alcoholic drinks are consumed, and when they do, again only assess a specific population, such as examining why US college students consume nonalcoholic beverages (Block et al., 2013). Other studies have focused specifically on water (e.g., Rodger et al., 2021; Rodger \& Papies, 2022), again while disregarding possible similarities with other drinks.

What appears to be missing in the literature is a comprehensive framework for studying drinking behaviour that assesses beverage consumption for a variety of alcoholic as well as non-alcoholic drinks together. Such a framework could provide insights into similarities as well as differences between consumption motives for different drinks at both the group and individual levels.

To establish a comprehensive framework, we started with motives that the previous literature has established for consuming alcoholic and non-alcoholic drinks. We also used the Situated Action Cycle (Barsalou, 2020), part of the Situated Assessment Method (SAM2), to establish further motives associated with drinking behaviour. SAM2 is a psychometric instrument based on the theory of grounded cognition (Barsalou, 2008) that aims to fully capture a behaviour in the context of situated action. It has previously been used to successfully study a variety of health behaviours such as stress (Lebois et al., 2016) and habits (Dutriaux et al., 2021). The SAM2 approach situates behaviour ratings within two dimensions of situatedness: (1) the Situated Action Cycle, which is a framework for comprehensively identifying potentially relevant situational factors that may affect a person's behaviour in a given situation; (2) situational experience of specific situations (for instance drinking in a pub).

The principal idea of the Situated Action Cycle is that to understand a target behaviour such as drink consumption, one has to understand how the situation influences the cognitive and affective processes that may contribute to the behaviour. Hence, the behaviour should be studied by assessing as many relevant situational factors as possible that may influence it, including factors from the environment, self-relevance, affect, action, and outcomes. From the perspective of the Situated Action Cycle, a behaviour such as drinking is triggered by cues in the environment or internal cues, guided by various forms of self-relevance, such as personal goals, values, norms, and identity, motivated through affective processes, and executed with bodily actions that result in a variety of outcomes. Figure 1 presents these five phases of the Situated Action Cycle. Based on the literature on drinking behaviour, we mapped a total of 34 factors onto these five phases, any of which could potentially motivate drink consumption (also shown in Figure 1). Table 1 presents the specific judgements

Figure 1 - The Situated Action Cycle
The five phases of the Situated Action Cycle adopted Barsalou (2008) and Dutriaux et al. (2021)
used to assess these 34 situational factors in the study to follow. Because we sampled situational factors from the Situated Action Cycle that potentially predict self-reported drinking behaviour, we will refer to the predictive framework we develop as the situated model of drink consumption. We next review these 34 factors briefly.

In the environment phase of the Situated Action Cycle, factors in the external world relevant to drink consumption are perceived by an agent and then initiate the extended process of situated action. For example, one important environmental factor is the affordability of a drink, which has been shown to positively influence the consumption for sugary (Block et al., 2010, 2013) as well as alcoholic drinks (Jiang \& Livingston, 2015). Similarly, availability in the home increases consumption for sugar-sweetened beverages in at least young adults (Haughton et al., 2018), and traveling and eating out are prominent situations for drinking sugar-sweetened beverages among English adults (Claassen et al., 2022). Furthermore, teenage consumption has been reported to be affected by both parental and peer alcohol consumption (Ajilore et al., 2016; O'Donnell et al., 2019; van den Eijnden et al., 2011). Having a reason to celebrate (e.g., Halloween) also increases the alcohol consumption of college students (Glindemann et al., 2007). Another external influence is whether a beverage complements and enhances food currently being consumed (Charters \&

Pettigrew, 2008). To assess such factors from the environment, the situated model of drink consumption included measures of affordability, calorie content, whether other people are present during consumption, whether the drink was used to celebrate, how often parents or guardians consumed the drink, whether the drink was consumed consistently in the same location, and how much it complements food (see Table 1 for further details).

In the self-relevance phase of the Situated Action Cycle, the agent assesses the self-relevance of factors perceived in the environment, including how they relate to the agent's long-term goals, norms, values, and identity. Consuming drinks consistent with one's self-identity can be a highly motivating factor in drink consumption. In a qualitative study Rodger et al. (2021) found that water drinking increased and was less dependent on specific situations when reported to be part of a participant's self-identity. Additionally, both descriptive norms (i.e., what others drink) as well as injunctive norms (i.e., what others expect a person to drink) influence drinking behaviour, with perceived approval increasing alcohol consumption (Lee et al., 2007). Based on those findings, we included self-identity, descriptive norms, and injunctive norms in the situated model of drink consumption, as well as how much other people approve of consuming each specific beverage.

A wide variety of other goals related to drink consumption may similarly be triggered during the self-relevance phase. Based on previous research we hypothesised that people may want to consume a drink to promote healthiness (e.g., (Rodger et al., 2021), to prevent weight gain, to reduce thirst, to increase alertness (e.g., Claassen et al., 2022), to increase relaxation, to reduce negative emotion (e.g., Salemink \& Wiers, 2014), to avoid negative bodily consequences, to achieve positive bodily consequences, and to ease socialising (Scott-Sheldon et al., 2012). Finally, people may want to consume a drink because of its taste, texture, or smell (Claassen et al., 2021). To explore as many potential motives for consuming a drink as possible, we included all these motives as predictive factors in the situated model of drink consumption.

Once the self-relevance of factors in the current situation has been established, it induces affect in the third phase of the Situated Action Cycle, including both
motivation and emotion. Most basically, people may experience the urge to consume a beverage (McGreen et al., 2022; Palfai, 2006; Rohsenow \& Monti, 1999). As the urge to drink emerges, it may be accompanied by conflict (Rohsenow \& Monti, 1999), for example because one may be aware that a drink is unhealthy. Following consumption, feelings of guilt and regret may temporarily decrease later consumption (Luoma et al., 2017). Finally, shared drink consumption can induce feelings of social-connectedness with others (Brown \& Murphy, 2020; Claassen et al., 2022). Because of their potential relevance for predicting drinking behaviour, all these affective factors were included in the situated model of drink consumption.

Motivation and emotion in the third phase of the Situated Action Cycle may in turn induce action in the fourth phase, such as consuming a beverage. A driving factor in this phase appears to be how habitually an action is executed. Albery et al. (2015) found that habitualness was positively associated with the amount of alcohol consumed, and Claassen and colleagues found that frequency of past consumption was a strong predictor of non-alcoholic beverage intake in the lab (Claassen et al., 2021). Additionally, preparatory states that enable actions contribute to their enactment, such as the required effort to obtain a beverage (e.g., Rodger \& Papies, 2022). Conversely, a variety of factors inhibit and regulate consumption, including how easy it is to stop consumption, along with the ability to resist temptation. Houben et al. (2011) found that by using a customised go/no go task to strengthen inhibition, heavy alcohol consumption decreased the following week. Building on those results, automaticity, effort to obtain at home, ease of resisting temptation, and ease of stopping consumption were added to our situated model of drinking.

In the final phase of the Situated Action Cycle, the action performed (or inhibited) produces outcomes, which in turn change the environment or the agent, such that the Cycle starts over and iterates (the return arrow at the top of Figure 1). Important possible outcomes include rewards, such as the experience of a positive taste. Not surprisingly, taste emerged as an uniquely important factor for college students when choosing beverages, along with calorie content to a lesser extent (Block et al., 2013). Other outcomes of consuming a beverage include functional consequences that change a person's
current state, for example, consuming water to quench thirst (Leib et al., 2016), consuming coffee to increase alertness (Ágoston et al., 2018), consuming alcohol both to relax (Peltier et al., 2019) and to regulate negative emotion (Paulus et al., 2021). Similarly, consumption might be inhibited in favour of pursing longterm goals such as weight maintenance. Because all these potential outcomes can be anticipated during the self-relevance phase before they actually occur in the outcome phase, Figure 1 includes them in both the self-relevance and outcome phases. Again, the situated model of drink consumption assessed all these motives related to outcomes as potential predictors of consumption frequency.

To simplify the study reported here, we applied the Situated Action Cycle to a variety of drinks but did not add the additional dimension of specific drinking situations. In other words, we did not tease apart the prediction of drinking in different situations, such as in the pub, at home, or at work. Instead, we asked participants to assess each of the 34 factors for each of 11 drinks, but without specifying or varying drinking situations. Building on the findings reported here, future work could add drinking situations as a dimension of situatedness, as has been done in other work using the Situated Assessment Method.

2.1.1.1 Overview and predictions

In the current study, we asked participants to evaluate their consumption of 11 drinks: 4 alcoholic (wine, beer, cocktails, spirits) and 7 non-alcoholic (regular soft drink, diet soft drink, fruit juice, tea, coffee, bottled water, tap water). Across 35 randomized blocks, participants evaluated each of the 11 drinks for consumption frequency (the dependent variable) and for each of the 34 motivational predictors sampled from the Situated Action Cycle (Figure 1, Table 1).

The primary aim of our study was to develop and assess a situated model of drink consumption that explained the consumption frequency of alcoholic as well as non-alcoholic beverages. Using a comprehensive predictive framework, we aimed to capture differences between drinks in the factors that predict their consumption. We also wanted to assess how much different individuals vary in the factors that predict their consumption frequency across drinks.

Because this was primarily an exploratory study, we did not formulate confirmatory hypotheses. Based on common assumptions in the literature, we generally expected, though, that predictive factors would vary greatly between different drink types, especially between alcoholic and non-alcoholic beverages. Whereas some drinks might be consumed mostly for pleasure (alcoholic drinks, sugar-sweetened beverages, and hot beverages), others would be consumed mostly for healthiness (water), and so forth. Similarly, we expected large individual differences in the factors that predict drinking behaviour.

2.2 Methods

2.2.1 Participants

A total of 1,068 UK residents were initially recruited online via the Prolific platform (www.prolific.co). To be considered eligible, participants had to consume alcohol at least occasionally, be between 18 and 70 years of age, not have any past or present alcohol-related disorders, nor any allergies to food or drink products, nor any learning disabilities, nor synaesthesia, psychological, psychiatric, or neurological conditions, nor any reason (medical, including pregnancy, religious or otherwise) why they cannot consume alcohol.
Participants were paid at a rate of $6 £$ per hour. Due to dropouts, resulting from incomplete data (129 participants) or low-quality data detected during initial screening prior to our analyses (39 participants), we included 900 participants in the analyses (551 female, age $M=38.28$ years, $S D=12.61$; $B M I M=27.09, S D=$ 6.9; highest level of education: no formal education $=1.22 \%$, Secondary school $=13.78 \%$, College $=27.78 \%$, Undergraduate degree $=38.44 \%$, Graduate degree $=$ 15.78%, Doctoral Degree $=3 \%$; residence: England $=69,33 \%$, Scotland $=7.22 \%$, Wales $=3.78 \%$, Northern Ireland 1.89%, Other $=17.78 \%$). Data quality was assessed using a combination of survey duration, diagnostic correlations, overall interrater agreement, and number of flatline analysis (see Appendix A (SM-1) for details).

2.2.2 Design and materials

Eleven drinks were chosen to represent a broad range of drinks typical in the UK, both alcoholic (wine, beer, cocktails, spirits) and non-alcoholic (sugary soft drink,
diet soft drink, fruit juice, tea, coffee, bottled water, tap water). As the dependent variable, the self-reported consumption frequency of each drink was assessed. Each drink was also assessed on the 34 SAM 2 predictors in Table 1 as described above.

The second column of Table 1 presents the specific questions used to collect judgments for the dependent variable and the 34 predictors. All judgments were made on a continuous 0 to 100 slider scale. Participants were only presented with the length of the slider scale but not made aware of the exact numeric range nor shown the numeric value of their choice. Instead, they were provided with three, question relevant labels (e.g., not at all (far left), somewhat (middle), very much (far right)) and asked to move the slider to wherever felt most accurate to them on the scale. Using this approach, instead of for instance likert scales, provided the benefit of allowing participants a greater response range, having interval data (instead of ordinal), which is more likely to be normally distributed as well as potentially increasing the observed variance (Chyung et al., 2018). The dependent variable consumption frequency was measured in the same way as the other measures (continous scale ranging from never, sometimes, very often) to ensure the previously mentioned benefits for later data analysis. As this measure differed considerably from more commonly used instruments, which usually assess specific consumption frequencies (e.g. once a month, twice a months etc.) and to assess the ecological validity of our measure, we furthermore collected participant's last month consumption on an 8 point Likert-scale (labels: never in the past month, once in the past month, 2-3 times in the past month, once per week, 2 to 3 times per week, once per day, more than once per day). To assess how comparable the two measures were, we correlated the two measures with each other. The result of this analysis was that the two measures were highly correlated (.82). Due to the benefits of having a continuous measure and the high association with a more standard measurement, we decided to use the continuous consumption measure in the further analysis.

Participants also filled out a variety of other individual difference measures and assessment instruments (presented in Appendix A (SM-2)). Results associated with these measures will be reported in a separate article and will not be considered further here.

Table 1 - Factor names, variable names, rating questions, ICC2 values, and ICC2k values
Factor names, variable names, rating questions, ICC2 values, and ICC2k values. Participants rated each of the eleven drinks on each of the 34 predictors and the dependent variable (Frequency) using a continuous 0 to 100 rating scale. A seven-factor solution emerged after running oblique factor analysis. The 34 predictive measures are organised below according to their highest factor loading (shown in Table 2).

Factor name	Variable name	Rating question	ICC2	ICC2k
DV	Frequency	How often do you consume this drink?	. 14	. 99
Socialising / Positive Consequences	SocialC onnectedness	When you consume this drink, to what extent do you experience 'social connectedness' (a feeling of togetherness) with others?	. 34	1.00
	EaseSocialising	To what extent do you consume this drink because it makes it easier to socialise with others?	. 26	1.00
	PeoplePresent	When you consume this drink, how often are there other people present?	. 23	1.00
	DescriptiveNorms	To what extent do you consume this drink because others are also consuming it?	. 16	. 99
	NegativeEmotions	To what extent do you consume this drink when you experience negative emotions?	. 08	. 99
	Celebration	To what extent do you consume this drink to celebrate happy events or occasions?	. 34	1.00
	Relaxation	To what extent do you consume this drink to help you relax?	. 15	. 99
	LikeSmell	How much do you like the smell of this drink?	. 17	. 99
	SituationalT ransport	When you imagine consuming this drink, how easy is it to feel transported to the situation in which you're consuming it?	. 04	. 97
	ComplementsFood	To what extent do you consume this drink because it fits or complements the food you are consuming?	. 09	. 99
	ImmedPosBodilyC onseq	After consuming this drink, how often do you experience immediate or short-term positive bodily consequences?	. 06	. 98
Negative Consequences	ImmedNegBodilyConseq	After consuming this drink, how often do you experience immediate or short-term negative bodily consequences?	. 21	1.00
	Conflict	How conflicted do you feel about wanting vs. not-wanting to consume this drink?	. 06	. 98
	RegretGuilt	After consuming this drink, how often do you feel regret or guilt about consuming it?	. 19	1.00
	ApprovalO fothers	To what extent do you approve of other adults consuming this drink?	. 13	. 99
Positive Taste	LikeTaste	How much do you like the taste of this drink?	. 06	. 98
	LikingTexture	How much do you like the texture or 'mouthfeel' of this drink?	. 05	. 98
Healthyl Functionality	Healthiness	How healthy do you consider this drink to be?	. 62	1.00
	Calories	How calorific do you think this drink is?	. 69	1.00
	PreventWeightG ain	To what extent do you consume this drink to prevent weight gain?	. 24	1.00
	Alertness	To what extent do you consume this drink to make you feel more alert?	. 27	1.00
Habit	Automaticity	How automatic is your decision to consume this drink?	. 16	99
	Affordability	How affordable is this drink?	42	1.00
	E ffortO btainH ome	How effortful is it for you to physically obtain this drink when you are at home?	. 20	1.00
	ParentsConsume	How often did you see your parent(s) or legal guardian(s) consume this drink when you were a child?	. 30	1.00
	LocationConsistency	How consistently do you consume this drink in the same location?	. 08	. 97
Regulation	ResistTemptation	How easy is it to resist the temptation to consume this drink?	. 04	. 98
	EasyToStop	Once you start consuming this drink, how easy is it to stop?	. 04	. 97
	Selfidentity	To what extent is consuming this drink part of your self-identity?	. 05	. 98
Bitterness	Bitterness	How bitter do you find this drink?	. 31	1.00
Excluded from factor analysis due to crossloadings	Sweetness	How sweet do you find this drink?	61	1.00
	UrgeF requency	How often do you experience the urge to consume this drink?	. 07	. 99
	Thirst	To what extent do you consume this drink because you are thirsty?	. 43	1.00
	InjunctiveNorms	To what extent do you think people approve of consuming this drink?	. 27	1.00

2.2.3 Procedure

All data was collected online using the Qualtrics survey platform (Qualtrics, Provo, UT). Once informed consent was obtained, participants were first asked about their current state (happy, calm, hunger, thirst, excitement), how strong their current urge was to consume each drink, whether they had any prior experience of consuming the eleven drinks (yes/no), and when the last time was that they consumed alcohol. These measures are addressed in a separate article and will not be addressed further here.

Next the 35 measures were collected in 35 blocks, one each for consumption frequency and its 34 predictors. For each participant, the order of these 35 blocks, as well as the order of the 11 drinks within each block, were randomized. Finally, participants filled out a variety of additional individual difference instruments and demographic information (again in Appendix A (SM2)). Participants were debriefed, thanked for their participation, and paid through Prolific. On average, participation took around 45 minutes.

2.3 Results

2.3.1 Inter-rater agreement for the 35 measures

We used the intra-class correlation to assess how much the 900 participants agreed in their judgments for each of the 35 measures across the 11 drinks. Specifically, we used ICC2 from Shrout and Fleiss (1979) to establish the interrater agreement for each judgment. Intuitively, ICC2 estimates the average correlation between all possible pairs of participants in the 900 participant sample, thereby estimating the average agreement in their judgments of the 11 drinks. ICC2 values less than .5 are considered poor, between .5 and .75 moderate, between .75 and .9 good and above .9 excellent (Koo \& Li, 2016). Because ICC2 considers random variation across participants, the values shown in Table 1 are likely to generalize across other samples from the same population.

As the values for ICC2 in Table 1 illustrate, interrater agreement for the 35 judgments varied considerably, ranging from . 04 to .69. Perhaps most importantly, interrater agreement for consumption frequency was only .14,
demonstrating low agreement in how frequently the 900 participants consumed the 11 drinks. In other words, considerable individual differences exist in selfreported drink consumption frequency.

Figure 2 visualises this variability in drink consumption. In this heatmap, each row displays one participant's raw frequency rating for each of the 11 drinks. As can be seen, large individual differences exist between participants in their drink consumption, as quantified by the .14 agreement just presented.

The most frequently consumed beverages were coffee, tea, tap water and bottled water, followed by fruit juice and wine. When comparing coffee and tea consumption, there appear to be four distinguishable groups. Specifically, the majority of participants consumed both coffee and tea very regularly; a smaller group only consumed coffee but rarely tea; a third only consumed tea but no coffee; and a small minority consumed neither regularly. Tap water was reported by a majority to be consumed very frequently, while a small minority never consumed it. For the alcoholic beverages, wine was consumed most regularly, followed by beer. While wine was reported to be consumed moderately to very frequently across most participants, beer was reported to be never consumed by a considerable group of participants, while the rest consumed it moderately to very frequently. Cocktails and spirits emerged overall as the least frequently consumed beverages across participants. Fruit juice was reported to be consumed more frequently than diet soft drinks and regular soft drinks overall, with about half of the participants reporting drinking it very frequently. For diet soft drinks, there appears to be an almost even split between people who never consumed them and people who consumed them very frequently. In contrast, regular soft drink consumption was relatively typical for most participants with few drinking very often or rarely/never. For a detailed description of the remaining ICC2 results please see Appendix A (SM-3).

Figure 2 - Heatmap of raw frequency judgments for each drink
Heatmap displaying the raw frequency judgment for each of the eleven drinks for each of the 900 participants. As the cells in a row become increasingly white, they represent ratings approaching zero; as they become increasingly red, they represent ratings approaching 100.

2.3.2 Judgment means and variability

Figure 3 presents the mean value for each of the 35 judgments for each drink across the 900 participants, along with bars for the standard deviation of each judgment. The values for ICC2k in Table 1 present the reliability of these means, which can be interpreted as how well they would correlate with means from another sample of 900 participants from the same population (Shrout $\&$ Fleiss, 1979). Because ICC2k considers random variation across participants, the values shown in Table 1 are likely to generalize across other samples from the same population. As can be seen, these values are extremely reliable (reflecting $n=900$), with values ranging from .97 to 1.00 .

These means exhibit a number of notable patterns. Firstly, large standard deviations emerged across the majority of the 35 judgments (median SD = 28.80), indicating considerable individual differences in how participants experienced and evaluated the eleven drinks. SM-4 in Appendix A provides a detailed description of these results, while SM-5 in Appendix A provides a detailed description of how the 34 predictors correlated with consumption frequency. Overall, Figure 3 shows the richness of 35 measures assessed in the situated model of drink consumption sampled from the Situated Action Cycle (Figure 1). These results further illustrate the considerable variability of judgments across both drinks (variability in means) and participants (standard deviations). Together, these results provide a detailed picture of how beverages are consumed and experienced in a large UK sample.

Figure $\mathbf{3}$ - Each of the eleven drink's mean for each of the $\mathbf{3 5}$ ratings
Forest plots that visualise the mean raw judgment for each of the 35 judgments across the 900 participants. Error bars are one standard deviation in each direction around the mean, providing a measure of the variability across participants. Colours correspond to each drink's typical association with a beverage category (alcohol, hot beverages, sugary drinks, water).

2.3.3 Factor analysis

We performed an exploratory factor analysis with the oblique oblimin rotation on the 34 predictors for two reasons. First, we wanted to further explore the underlying structure of the predictors, assessing whether they load on an underlying set of latent dimensions (factors). Second, we wanted to regress consumption frequency onto the 34 predictors at both the group and individual levels. With 34 predictors, collinearity would no doubt have been a problem in these regressions. By reducing the 34 predictors to a smaller set of factors, we avoided this problem.

Informed by parallel analysis, we selected a seven-factor model with an oblique (oblimin) rotation. Oblique factors were chosen as it was expected that the factors would correlate. Four variables either did not load significantly on any of the seven factors (urge frequency) or showed considerable cross-loadings (sweetness, injunctive norms and thirst). As the affected factors had even without the four variables at least three high loading variables, we decided, based on the recommendation of Costello and Osborne (2019), to drop the four items from the analysis to strengthen the seven factors. As the cross-loadings could have affected the number of factors extracted by parallel analysis (Li et al., 2020), we repeated the analysis with the remaining 30 factors. Parallel analysis still suggested a seven-factor solution as best fit for our data. Table 2 displays the resulting factors and factor loadings across predictors. The column headings in Table 2 present our interpretations of the seven factors. The bottom row in Table 2 presents the variance that each factor explained across the 30 measures, with the total variance explained by all 7 factors being 49%.

A potential problem of the seven-factor solution could have been the single item factor bitterness. Though as parallel analysis suggested this solution, bitterness did not load strongly on any other factor, and it is conceptually interesting we decided to keep the seven factor solution in line with Beavers et al.'s (2019) recommendation.

Table 2 - Exploratory factor analysis
Results from an exploratory factor analysis with seven factors and an oblique rotation (oblimin). Table 1 and the text provide details about the measures in the left column, which have been grouped according to their highest loading on the seven factors.

	Socialising / Positive Conseq.	Positive Taste	Health / Functionality	Habit	Negative Cons eqences	Regulation	Bitternes s	h2	u2
EaseSocialising	. 77	-. 08	. 03	-. 02	. 04	-. 09	. 07	. 65	. 35
SocialConnectedness	. 76	. 06	-. 07	-. 01	-. 05	-. 04	. 12	. 71	. 29
DescriptiveNorms	. 71	-. 05	. 10	-. 02	. 11	. 04	-. 01	. 50	. 50
Cele bration	. 68	. 09	-. 18	. 01	. 05	-. 10	-. 08	. 65	. 35
PeoplePresent	. 60	. 15	-. 03	-. 13	-. 02	23	-. 05	. 39	. 61
Relaxation	49	. 13	. 01	. 15	. 02	-22	. 04	. 56	. 44
SituationalTran sport	. 34	29	. 03	. 15	-. 02	. 01	-. 01	. 35	. 65
NegativeEmotions	. 32	. 06	. 07	. 14	. 15	-29	. 10	. 46	. 54
ComplementsFood	. 30	20	. 11	. 28	. 11	-. 03	-. 09	. 38	. 62
LikeT aste	. 04	. 81	0	0	-. 03	-. 09	-. 10	. 79	. 21
LikeSmell	-. 02	. 75	-. 09	. 01	. 02	. 01	. 16	. 53	. 47
LikeTexture	. 06	. 74	. 08	. 03	-. 02	-. 05	-. 10	. 70	. 30
ImmedPosBodilyConseq	. 19	. 31	. 29	-. 06	. 02	-. 11	. 14	. 37	. 63
Healthiness	-. 07	. 15	. 67	. 07	-. 14	. 06	0	. 66	. 34
PreventWeightGain	. 06	-. 05	. 66	. 06	. 12	-. 03	-. 07	. 45	. 55
Alertness	-. 11	25	. 37	. 17	. 14	-. 15	. 16	. 45	. 55
Calories	. 10	. 16	-. 64	0	. 24	. 07	. 01	. 61	. 39
Affordability	-. 12	-. 02	. 11	. 63	-. 05	. 11	-. 08	. 49	. 51
ParentsConsume	. 01	. 01	0	. 50	0	-. 02	. 22	. 33	. 67
Automaticity	. 06	22	. 24	. 35	. 01	-26	-. 03	. 62	. 38
LocationConsistency	. 09	22	. 04	. 33	. 01	. 03	. 04	. 24	. 76
EffortObtainHome	0	. 05	. 07	-. 48	. 26	. 13	. 01	. 34	. 66
RegretGuilt	-. 01	-. 03	-. 07	-. 01	. 77	. 01	0	. 63	. 37
Conflict	. 07	. 04	. 05	-. 03	. 52	-. 12	-. 01	. 35	. 65
ImmedNegBodilyConseq	. 16	-. 03	-. 07	-. 09	. 47	. 02	. 20	. 47	. 53
ApproveOthers	. 17	. 18	. 11	23	-. 35	. 01	. 06	. 36	. 64
ResistTemptation	. 03	-. 09	-. 03	-. 03	. 03	. 73	0	. 61	. 39
EasyToStop	-. 12	-. 02	. 06	. 13	-. 08	. 62	. 01	. 45	. 55
Selfidentity	. 19	. 16	. 16	. 23	. 07	-. 33	. 05	. 54	. 46
Bitterness	. 17	-20	-. 06	0	. 06	. 04	47	. 36	. 64
Proportion Variance	. 13	. 10	. 07	. 06	. 06	. 06	. 02		

As Table 2 illustrates, the first most important factor captured socialising and positive consequences, with high loadings for how much consumption triggers feelings of social connectedness and eases socialising, as well as for how much it is drunk to celebrate, relax and cope with negative emotions. The second most important factor captured positive taste, with high loadings for how much the taste, smell and texture are liked. The third most important factor combined health and functionality, with high loadings for how much consumption reflects weight gain prevention, perceived healthiness, and perceived calorie content. The fourth most important factor captured habitual behaviour, with high loadings for affordability, how often one observed their guardians consuming the drink during childhood, how automatic consumption is and how consistently a drink is consumed in the same location. The fifth most important factor captured negative consequences, with high loadings for regret, guilt, and the experience of short term negative physical consequences. The sixth most important factor captured regulation, along with how easy it is to stop consumption and resist the temptation. Interestingly self-identity loaded highest on this factor and negatively. This pattern of loadings indicates that as someone's identity was increasingly associated with a drink, they found it increasingly difficult to resist and stop consumption. Finally, as seventh factor bitterness emerged, having only the single item load significantly on it, namely how bitter participants find the drink.

To test whether the factor solution could have reflected sampling bias, a bootstrapping analysis was performed. By manipulating the sample on which the factor analysis was performed, we were able to assess stability of the factor loadings. On each of 10,000 bootstrapped repetitions, we randomly sampled participants with replacement from the 900 original participants. For each sample, we recomputed the same seven-factor analysis and stored its factor loadings. The results show that the factor loadings were extremely stable across bootstrapped samples, exhibiting exceedingly small variability (see Appendix A (SM-5) for the results of this analysis).

2.3.4 Predictive relations between the seven factors and drink consumption

To explore relations between the seven factors and consumption frequency, we computed correlations between factor scores and frequency. How well does each of the 7 factors predict the frequency of consuming each of the 11 drinks? To perform this analysis, we simply correlated the factor scores for one factor at a time with consumption frequency for one drink at a time across all 900 participants simultaneously. Figure 4 presents these results, with each panel showing the correlations for one factor at a time across the 11 drinks.

As can be seen, habit tended to show the most consistently high correlation across the 11 drinks, except for cocktails and spirits. Socialising / positive consequences was also strongly correlated with consumption frequency for all drinks except tap water and bottled water, particularly for beer. The correlations for regulation with frequency were all moderately to strong negative and tended to be strongest for tea and coffee, wine and beer, and diet soft drinks, while being considerably lower though still moderate, for fruit juice. Health/functionality tended to correlate with consumption frequency strongly for the non-alcoholic drinks, especially for diet soft drinks and tap water. Negative consequences and bitterness were only weakly associated with consumption frequency across all eleven drinks. For negative consequences most non-alcoholic drinks consumption frequencies were negatively correlated with consumption frequency whereas the alcoholic drinks and tea were positively associated. For bitterness only cocktails, spirits, regular soft drink, fruit juice and bottled water showed weak positive associations whereas the other drinks showed weak negative correlations. The highest variability in correlation strength occurred for the positive taste factor, being very strong for coffee, tea, diet-soft drink, wine and beer, but only moderate for cocktails.

Figure 5 presents the same correlations for the 11 drinks shown in Figure 4, but reorganised, with all 7 correlations for each drink shown together. Organising the correlations in this manner makes it possible to see the correlation profile for each drink individually. What is most striking about this organisation of the results is how qualitatively similar the correlation profile is across drinks.

Figure 4 - Correlation between seven predictive factors and consumption frequency ordered by factor

Forest plots visualise the results for correlations of factor scores from the seven predictive factors with the dependent variable, consumption frequency. Each of the seven plots shows one factor's results for each of the eleven drinks. Colours correspond to each drink's typical association beverage category (alcohol, hot beverages, sugary drinks, water

Although minor numerical differences appear, the same general pattern can be observed. Across all drinks, regulation (except for bottled water and tap water), socialising/positive consequences, habit and positive consequences emerged as the most strongly correlated factors.

To further establish the similarity between the prediction profiles for individual drinks in Figure 5, the ICC2 was used again (as for the 34 predictors earlier). How similar are these prediction profiles to each other across the eleven drinks? The value of the ICC2 for this analysis was .94. Again, the pattern of prediction was surprisingly high across drinks. On average, the average correlation of the predictive profiles between individual pairs of drinks was .94 , indicating a highly stable pattern of prediction.

Figure 5 - Correlation between seven predictive factors and consumption frequency ordered by drink

Results from Figure 4 reorganized so that the correlations for the seven predictive factors are grouped together for each individual drink. Of interest is establishing the most predictive factors for each drink. The R2 value below each panels name shows how much variance in consumption frequency the seven factor scores explain for the drink across the 900 participants (from a simple linear regression with no random effects or interactions)

2.3.5 Explained variance in consumption frequency

Of interest in these next analyses was how much variance the predictive patterns in Figures 5 and 6 explain in consumption frequency. To establish the explained variance, a simple linear regression was performed for each drink at the group level. In each regression, consumption frequency was regressed onto the 7 factor scores for the 900 participants for 1 of the 11 drinks. No random intercepts or interactions were included. All regression analyses were performed on standardized scores for the dependent variable and for the seven predictors.

Of primary interest in these regression analyses was how much variance the seven predictive factors explain in drink consumption. As the R^{2} value above each panel in Figure 5 indicates, the variance that the seven factors explained in drink consumption varied from 54% to 81% across drinks, with a median value of 65\%. As can further be seen, the model's predictive ability was especially high for tea, coffee, and beer, but reduced for spirits and cocktails, perhaps indicating larger individual differences for some drinks than for others. Nevertheless, the seven predictive factors are highly successful in explaining drink consumption across participants.

2.3.6 Predictive patterns for individual participants and explained variance

Finally, we assessed factors that predict consumption frequency at the individual level. Of interest was whether the predictive patterns at the group level held at the individual level, and also how much the predictive profiles varied across individuals. We were also interested in how much variance the seven-factor model predicts in individual regressions.

To investigate predictive patterns at the individual level, we computed the Spearman rank correlation between an individual's consumption frequency across the 11 drinks with their 7 factor scores from the group factor solution. The heat map in Figure 6 shows the pattern of prediction for each of the 900 participants. Specifically, each row shows the pattern of prediction for a single participant, with each cell in the row visualising the correlation between the
participant's scores for a factor from the seven-factor solution and consumption frequency across the 11 drinks.

Each column in Figure 6 visualises how much variability exists across participants for how much a factor was associated with consumption frequency. Figure 7A presents the mean value of the correlations in each column, along with the error bars that represent one standard deviation in each direction.

As Figure 6 and Figure 7 illustrate, substantial individual differences existed in how well each of the 7 factors predicted consumption frequency across the 11 drinks. Habit and positive taste emerged as the only factors that were consistently positive and of high magnitude across participants. In contrast, negative consequences varied considerably, highly negative for around half of the participants but neutral or positive for the other half. Unsurprisingly, most participants exhibited a negative correlation between consumption and regulation, though even here a minority of participants emerged who exhibited a positive association, indicating that the more they find it easy to regulate, the more they consume it. The factors of socialising/positive, bitterness and health functionality, again exhibit considerable individual differences.

Figure 6 - Individual correlations of the seven-factors with consumption frequency

Heatmap displays the correlations of the seven factors with consumption frequency for each the 900 participants. As the cells in a row become increasingly red, they represent increasingly positive correlations; as they become increasingly blue, they represent increasingly negative correlations; as they become increasingly white, they increasingly approach 0 .

Figure 7 - Mean and SD from the individual correlations for each factor (A) and distribution of the explained variance from the individual simple regression analysis (B)

On the left, the forest plot presents the mean and standard deviation of the individual correlations for each factor across all 900 participants in the Figure 7 heatmap present earlier. On the right, the box plot represents the median and IQR of the explained variance (R2) from 900 individual regressions that used only the seven factors to explain frequency, together with a violin plot for the overall distribution.

2.3.7 Similarity of prediction profiles

To assess the similarity of the prediction profiles across individuals, we again used the ICC2 (with the 7 correlations for a participant constituting their prediction profile). Of interest was how much participants agreed in their prediction profiles. For this analysis, the value of the ICC2 was .70, indicating that, on average, one participant's prediction profile correlated .70 with another participant's profile. Although this illustrates considerable agreement, it is much less than the agreement we observed between predictive profiles for different drinks earlier.

To assess this agreement further, hierarchical clustering was used to explore whether distinct groups having similar predictive patterns could be identified (see the hierarchical clustering solution on the left of Figure 6). Overall, the proposed clusters do not appear to be very distinct from each other. Nevertheless, interesting clusters emerge. One contains roughly the bottom tenth of participants, who appeared mostly to exhibit strong negative correlations for negative consequences, strong positive for health/functionality and habit and weak positive or negative correlation with regulation (whereas most other participants generally showed negative correlations for regulation).

Another cluster up from the bottom, which seems similar in size, exhibited highly positive correlations for negative consequences and strong positive ones for socialising/positive consequences. The top third of the participants generally showed highly negative correlations for negative consequences, along with low to moderate correlations for both regulation and habits. At the column level, habit, positive taste and health/functionality clustered together, as did socialising/positive consequences, negative consequences and bitterness.

2.3.8 Explained variance in predictive profiles

Finally, to assess how well the seven factors explained consumption frequency for specific individuals, we computed a simple linear regression for each individual, using their factor scores from the group-level seven factor solution to predict their consumption frequencies. As Figure 7B illustrates, the median explained variance across the 900 participants was $95 \%\left(R^{2}=.95\right)$, indicating that the individual factor scores tended to explain nearly all the variance in an individual's frequency of consumption.

2.4 Discussion

We developed and assessed a situated model of drink consumption to explain the drinking frequency of alcoholic as well as non-alcoholic beverages (Figure 1). A large UK sample rated 11 alcoholic and non-alcoholic drinks on 34 predictors, identified through the Situated Action Cycle (Barsalou, 2020) and previous research on drink consumption. Using factor analysis to simplify and reduce the 34 predictors, a seven-factor model emerged, with factors for social/positive consequences, negative consequences, positive taste, health/ functionality, habit, bitterness and regulation.

2.4.1 Patterns of prediction for individual participants

The seven-factor model explained considerable variance in consumption frequency for each individual drink at the group level (54\% to 81\%). The model performed even better when explaining individual participant's drinking behaviour, explaining a median of 95% of the variance in individual regressions.

Although predictive patterns differed between participants (Figure 6), stable tendencies could nevertheless be observed (Figure 7A).

The differences in individual prediction profiles could be especially useful when creating interventions. Instead of using one-size-fits-all public health interventions, such as posters noting the dangers of alcohol, it might be more beneficial and successful to instead focus on individualised approaches to tackling the motives most relevant for each individual. For example, if a participant's consumption is greatly predicted by taste, a possible easy-to-follow recommendation to decrease alcohol consumption might be to replace alcoholic beer with an alcohol-free beer. Future research is needed to compare different strategies that take the kind of prediction profiles found here into account.

2.4.2 Patterns of prediction for individual drinks

Perhaps most surprisingly, the pattern of prediction was remarkably similar across the 11 drinks (Figures 4 and 5). When predictive profiles were assessed for the 34 predictors, the predictive profiles for the 11 drinks exhibited . 85 agreement (as measured by the ICC2). In other words, if a predictor was important for one drink, it tended to be similarly important for all drinks. Across all 34 predictors, the pattern of prediction was highly similar for all drinks. High agreement was also found when the motives were reduced to 7 factors, with agreement in prediction profiles being . 94 for the 11 drinks.

The high agreement across drinks took the following specific form. Habit, regulation, positive taste, and, to a slightly lesser extent, Socialising/positive consequences showed similar patterns and correlation strength across all 11 drinks. Perhaps this consistency reflects the usefulness of the Situated Action Cycle as a tool for understanding drinking behaviour. Because drinking tends to become repetitive, processes related to conditioning, habits, and reward operate as central mechanisms. Once a habit has developed, relevant extrinsic or intrinsic cues generate strong incentives (cravings) to perform and obtain expected rewards, such as positive (social) consequences and positive taste. These cravings and their expected rewards could become associated with consuming specific drinks and make it difficult for people to regulate their consumption.

Nevertheless, some interesting differences appeared in the patterns of prediction as well, especially when comparing alcoholic and non-alcoholic beverages. In the 34 predictors, all alcoholic drinks were highly associated with socially relevant predictors, along with liking taste and habit. Similarly, in the seven-factor model, the socialising/positive consequences factor emerged as strong predictor for all alcoholic beverages, whereas the negative consequence factor and the health/functionality factor were less important for the alcoholic drinks than for the non-alcoholic drinks. These differences might indicate that, for alcoholic beverages, people are relatively undeterred by possible negative consequences or health/functionality concerns, while socialising/positive consequences and positive taste outweigh them.

Not surprisingly social/positive consequences factor correlated highly with the consumption frequency of all alcoholic beverages, especially beer. This factor combines social predictors as well as subjective enhancement-two of the three conventional motives for consuming alcohol (Halim et al., 2012). What was surprising was that liking of taste and regulation for wine and beer, and habit for cocktails and spirits emerged as almost equally important.

These findings suggest that interventions and public health advertisements should focus less on educating people about health risks or other negative consequences associated with alcohol consumption. Instead, it might be more beneficial to tackle social aspects and drinking culture. In light of the importance of the taste factor, especially for beer and wine, a further solution to aid individuals who want to reduce their alcohol consumption might be to promote and ensure wide availability of alcohol-free alternatives such as nonalcoholic beer.

Sugary drink consumption appeared to be mainly associated with positive taste, habit (especially soft drinks and fruit juice), together with health/functionality (mainly diet soft drinks) and socialising/positive consequences. These findings partly fit with Block et al.(2010), who also found that selecting these beverages was driven primarily by taste though add further motivations. Perhaps the difference reflects a discrepancy between what people consciously believe drives their behaviour (and therefore report subjectively) versus less conscious
factors that actually control it (perhaps reflected in the more implicit approach to assessment performed here). Similar mismatches have been found in habit motives (Dutriaux et al., 2021). Based on our results, research on non-alcoholic drink consumption would benefit from including both social factors as well as habit, thereby capturing the drinking experience more comprehensively.

Tea and coffee consumption were highly correlated with the regulation factor, followed by taste and habit, and to a lesser extent socialising/positive consequences and health/functionality. Similar findings were reported by Ágoston et al. (2018). The importance of regulation could potentially be driven by caffeine dependency (Striley et al., 2011), making it difficult for people to regulate their consumption.

Interestingly, very subtle differences emerged between the motives for tap water and bottled water. In contrast to tap-water, bottled water was slightly less associated with positive taste and more strongly with socialising/ positive consequences. Again, this hints at the importance of studying specific water drinks instead of water consumption in general.

2.4.3 Strengths and limitations

A strength of the present study was the large size and heterogeneity of our sample, varying considerably in age, education level, and region of UK residency. Furthermore, we were able to include a broad range of beverages together with a broad range of potential motives.

A first limitation of the studies generalisability was our consumption measure. Studies typically assess consumption frequency of alcoholic or non-alcoholic beverages by asking participants to rate their consumption on a Likert-scale, defining specific amounts of consumption within a defined timeframe (e.g., once a month, twice a day, six times per week etc) (for examples see Barbosa et al. (2021; Cravero et al. (2020)). We, in contrast, measured consumption frequency in our study on a continuous scale asking participants to judge their frequency from not at all to very much (representing values from 0 to 100), which was beneficial for the later statistical tests. While the measure did show a high correlation with a standard instrument (judging consumption frequency in the
last month on an 8 point Likert-scale) more research is admittedly needed to validate our measure further, e.g., whether it would capture similar population consumption levels as standard instruments. A further limitation was to only focus on consumption frequency while disregarding consumed amount which might be especially relevant for alcohol consumption, e.g., to assess binge drinking (Kuntsche et al., 2004). In summary, in future studies it would be important to also record and assess consumed amount and to further validate our consumption measure, e.g., for alcohol consumption what value range might indicate problematic drinking behaviour.

A further possible limitation of the factor analysis was the inclusion of the single item factor bitterness. Although the recommendation is to keep factors if conceptually sensical (Beavers et al., 2019) a strong factor should have at least 3 high loading items (Costello \& Osborne, 2019). Due to the parallel analysis results, the lack of cross-loadings, the lack of high loadings on any other factor and due to the factor being conceptually interesting it was decided not to drop the single item factor, though the later analysis showed that bitterness was only weakly associated with consumption frequency for all eleven drinks as well as most participants. Therefore, in future research it might be preferable to drop the factor.

A limitation for the generalisability of our study were the extensive exclusion criteria, excluding any participants who did not consume alcohol at least occasionally (e.g., for medical reasons), had past or present alcohol-related disorders, any allergies to food or drink products, any learning disabilities, synaesthesia, psychological, psychiatric, or neurological conditions. The aim of these exclusions was to avoid potentially not fully representing the motives for alcoholic drink consumption for these groups, e.g., religious reasons. Furthermore, for people with past or present alcohol related disorders it would have been unethical to expose them to alcohol related stimuli without being able to provide support. In hindsight problematic was using the term "learning disabilities" instead of intellectual impairment. The reason for including the criteria was to ensure that participants would be able to understand and respond to our questions and/or have the ability to give consent, not to exclude for instance participants with high functioning autism or adhd. By referring to
learning disabilities some participants might have mistakenly thought they were excluded and dropped out which further limits the generalisability of our study. In the future it would be important to specifically refer to intellectual impairment or make it clear what abilities are needed to take part in the study. To allow for greater generalisability it would also be important to replicate the study to include individuals who do not consume alcohol and to compare their consumption motives for non-alcoholic drinks with the results of alcohol consuming individuals.

A further limitation of our study was to not include the first dimension of the SAM2 assessment framework, namely, contextualising the consumption of specific drinks in specific drinking situations (e.g., drinking beer in the pub, drinking coffee at work). As a consequence, participants had to generalize their judgments for a given drink across a variety of situations, which could have negatively impacted the accuracy of our results.

Phan and Chambers (2018) found differences in importance of eating motives across different meals and snacks which might indicate similar patterns for drink consumption. In contrast, our recent research into eating behaviour indicates that there would be little change in predictive profiles if we took drinking situations into account (Werner et al., 2022). Therefore, in the future, it could be useful to explore whether including specific situations increases prediction. Findings from Blevins et al. (2018), who found that situations were associated with different motives, suggests that including specific situations might well be important.

A further limitation of the study was its reliance on self-reported consumption frequency. Even though the data was collected anonymously online there might still be potential biases affecting participants' responses. For instance, alcohol consumption has been found to be underreported (Livingston \& Callinan, 2015). Future studies would benefit from additionally using other approaches, such as the ecological momentary assessment (EMA) approach, to compare self-reported and more objective measures of consumption frequency.

Finally, future studies could further benefit from expanding the drinks selection to include different brands of the same beverage, and to test whether the associated consumption motives vary across these specific drinks. Additionally, future research could investigate whether people are aware of what drives their drink consumption and explore if reflecting about the underlying motives aids behaviour change.

2.4.4 Conclusion

Overall, our situated framework of drink consumption demonstrated the value of taking a comprehensive approach to understanding drinking behaviour. Our approach captured the similarities and differences of 11 typical UK beverages on 35 measures drawn from the Situated Action Cycle (Figure 1). The similarity of predictive profiles across the 11 drinks suggests that drinking behaviour might be driven by generalized motives that are relatively independent of beverage type. Nevertheless, individual differences exist as well, especially for individual people and to some extent drinks. These differences indicate the potential importance of individual-specific motives as well.

The distinction between general and specific motives may be relevant for future research, as well as for the development of interventions. Habit, socialising/positive consequences, positive taste, and regulation appear to be strong general factors that are strongly related to consumption frequency, thereby offering a possible starting point for working with unhealthy drinking behaviours. From this starting point, other individual-specific factors could be taken into account. For example, the negative correlation of consumption frequency with negative consequences that was exclusive to sugar-sweetened beverages might motivate related tools that can reduce their consumption. Similarly, the considerable individual differences in prediction profiles point towards an individualisation of interventions instead of a one-size-fits-all approach.

2.5 Declarations

Funding

This work was supported by a grant (VENI-451-10-027) from the Netherlands Organization for Scientific Research.

Conflicts of interest / competing interests

The authors declare no conflict of interests/competing interests.

Availability of data and material

Please find the data, all analysis scripts and ethics on the Open Science Framework (OSF https://osf.io/dctbe/).

Ethics

This study was approved by the University of Glasgow College of Science $\mathbb{\&}$ Engineering Ethics Committee (Date: 10/07/2017, no: 300160183).

Chapter 3 Establishing Individual consumption motives and their stability across eating situations

This chapter is an exact copy of the following preprint manuscript:
Werner, J., Papies, E. K., Gelibter, E., \& Barsalou, L. (2022, November 30).
Why do you eat? - Establishing Individual consumption motives and their stability across eating situations.
https://psyarxiv.com/mjzf4

3. Abstract

This article examines individual consumption motives and explores their stability across eating situations. Study 1 established an extensive sample of foods consumed in the UK in different eating situations and informed which foods to include in Study 2 and 3. Study 2 evaluated potentially relevant eating motives for food consumption. Using a between participant design, each of 885 participants rated a subset of 341 situated foods from Study 1 on consumption frequency or desire, or on one of 30 possible consumption motives (e.g., food availability, automaticity, food sweetness etc.). An exploratory factor analysis reduced redundancies and established underlying eating motives, with five factors emerging (habitualness, unhealthiness/healthiness, fullfillingness, saviourness/sweetness, bitterness/sourness). Using a within-participant design ($\mathrm{n}=204$), Study 3 then established individual differences in eating motives, their stability across eating situations, and participants' insights into these motives. Each participant evaluated a subset of foods from Study 1 in a specific eating situation (e.g., "usual breakfast") on consumption frequency and desire, and on 10 central eating motives: healthiness, fillingness, sweetness, bitterness, affordability, automaticity, self-identity, social connectedness, emotional satisfaction, situational transport (e.g., "How affordable do you find cheese for usual dinner?"). We found that the ten predictors explained a large amount of variance in both consumption frequency (median $=.59$, $\mathrm{IQR}=.19$) and desire (median = .66, IQR = .17). Between participants, large individual differences emerged in predictive profiles, although within participants these profiles remained remarkably stable across eating situations. Lastly, participants showed little insight into the motives predicting their consumption frequency and desire. These results have implications for measuring eating behaviour and the development of interventions.

3.1 Introduction

Eating behaviour has important implications for individual, public and for planetary health. For the individual it has an impact on their physical health as well as cognition and mood as well. The consumption of ultra-processed foods, which are usually high in calories, sugar, trans fats and salt, has been connected to faster cognitive decline in later life (Weinstein et al., 2022), as well as to mood disorders (Lane et al., 2022). In contrast, a high quality diet may help to protect people from cognitive decline (Smyth et al., 2015). This makes it even more alarming that few people meet the recommended daily amount of fruit and vegetables (Stroebele-Benschop et al., 2018). The high numbers of overweight and obese individuals (Health Survey for England 2019 [NS], 2020) mean that eating behaviour is not only relevant for an individual's health and life quality but furthermore, through its associated diseases, a public health concern, putting extra pressure on health services (Allender \& Rayner, 2007). Lastly, food production, especially animal agriculture greatly contributes to the emission of greenhouse gases and has therefore a direct effect on planetary health (O'Mara, 2011). However, our understanding of consumption motives, and how these may differ between and within individuals, as well as situations, is limited, which may hinder our ability to successfully influence behaviour to improve public and planetary health. Hence, the present research aims to establish individual consumption motives.

3.1.1.1 Eating motives

While hormones such as ghrelin and leptin regulate our physical hunger signals (Cousino Klein et al., 2004; Higgins et al., 2007), they are unspecific in what to consume. The same hunger signal might lead to one person eating a salad whilst another orders a pizza. Furthermore, people consume food and drink, especially very palatable ones, for a number of other, unrelated, reasons such as stress and emotional needs (Boggiano et al., 2015) or social factors (Higgs, 2015). Previous research has identified a multitude of environmental, cognitive, motivational, emotional, and social motives that predict eating behaviour (Boggiano et al., 2015; Brug et al., 2006; Renner et al., 2012; Steptoe et al., 1995; StroebeleBenschop et al., 2018). Brug et al. (2006) for instance found that fruit consumption was best predicted by sex, subjective norms, attitudes, and habit.

The importance of habit was further shown by Stroebele-Benschop et al. (2018), who again found it emerging as strongest predictor for the consumption of various food groups. Steptoe et al. (1995), in contrast, found that sensory appeal, health, convenience, and price ranked highest as motives for food choice. Similarly, Honkanen \& Frewer (2009) observed that consumer food choice was driven the most by sensory factors, availability, and price.

A striking observation about the previous assessment of eating motives is how little agreement there appears to be in the relative importance of specific motives. There are several potential explanations for this observation. One issue might arise through the use of different questionnaires, focusing on only a few specific motives of interest instead of a more exhaustive approach. Furthermore, most studies assess eating motives in an unsituated manner, meaning that participants judge motivations independent of specific foods or specific situations, e.g., "how much do you eat foods because they are healthy". When confronted with those unsituated questions it is then up to the participant to decide how to generalise the importance of different motives across foods and eating occasions. How this generalisation exactly occurs is likely to differ depending on how rating questions are worded. Wahl et al. (2020) for instance compared trait and state eating motives and found large differences in what people reported generally influenced their eating behaviour (trait) versus what influenced their eating behaviour during an eating occasion (state). A further limitation of these approaches is that they assume that people have a good insight into what motivates their eating behaviour.

3.1.1.2 The Situated Assessment Method (SAM ${ }^{2}$)

Thus, to further our understanding of consumption motives, it is important to find ways to capture individual differences in consumption motives, assess their stability across consumption situations, and assess how much insight people have into them. A novel approach to investigate complex behaviours such as eating and drinking is the use of the Situated Assessment Method (SAM²; for an in depth description see Dutriaux et al., 2021). Building on the theory of situated cognition (Barsalou, 2008) SAM² proposes that to fully understand and capture a complex behaviour such as eating and its individual differences, it is crucial to measure it in the situation where it occurs, as well as to assess all potential
factors that might influence the behaviour in these situations (Dutriaux et al., 2021). In practice, this means that instead of using very general questions, e.g., "how much do you think price influences your eating behaviour" SAM² would situate the question, e.g., "how affordable do you find eating a sandwich for lunch".

To assess consumption behaviour using the SAM^{2} method, the first step is to identify the relevant situations where the behaviour occurs, along with the foods and drinks (to simplify presentation, "foods" will be used to mean "foods and drinks" from this point on) consumed (and not consumed) in them, e.g., identify foods consumed for breakfast. In a second step, all relevant situational motives are identified that could potentially explain consumption of foods in these situations. In SAM ${ }^{2}$, the Situated Action Cycle is used to help identify possible motives, including factors related to the environment, self-relevance, affect, action and outcomes (for detailed information on the Situated Action Cycle see Dutriaux et al., 2021).

A key assumption of the SAM 2 approach is the importance of assessing the target behaviour of interest-in this case eating-in the relevant situations where it occurs, rather than assessing it in a generalised unsituated manner across situations. Situated assessments make it easier for participants to evaluate their behaviour and furthermore preserves complexities in it. Specifically, instead of establishing one general measure for each participant about how much they think taste influences their eating behaviour, the SAM ${ }^{2}$ approach instead establish how much taste is associated with a person's consumption of different foods in different situations. This also allows to assess whether individual eating motivations vary across eating situations or are stable.

3.1.1.3 Variability in eating motives

Previous results suggest variability in eating motives across eating situations. Cadario and Morewedge (2022) and Phan and Chambers (2018), for example, both found that variety seeking and hedonic goals were less important for breakfast than for meals consumed later in the day. Similarly, Verain et al. (2022) found that food choice motives differed depending on meal moment, location, and social context. Phan and Chambers (2016) similarly observed
different motives for different foods, providing evidence that eating motives are food specific. These kinds of results suggest that eating motives do not generalise across situations or foods but are instead context specific. To understand such differences more comprehensively, it would be useful to measure eating motives with regard to specific situations for specific foods.

3.1.1.4 Using $S A M^{2}$ to assess variability in eating motives across situations and individuals

To comprehensively assess eating motives in the current article, we first established an extensive sample of foods consumed in the UK in different eating situations (Study 1). We then established a broad set of possible eating motives, assessed their relations to food consumption, and reduced them to an underlying set of factors (Study 2). Finally, we extracted the most important motives from Study 2 and used them to assess individual eating motives across eating situations (Study 3). We wanted to establish how much eating motives vary across individuals; at the same time, we also wanted to know how much eating motives vary across situations within individuals.

To assess eating motives as comprehensively as possible, we used two approaches to identify potentially relevant motives. First, we drew heavily on previous literature, including as many relevant motives as possible that we could identify there. Second, we used the Situated Action Cycle to also help us identify other potentially relevant motives (Barsalou, 2020; Dutriaux et al., 2021). We next describe the Situated Action Cycle and how we used it to identify possible eating motives.

The Situated Action Cycle proposes that behaviour in specific situations consists of five basic phases: environment, self-relevance, affect, action, and outcomes. For previous applications of this, see a review by Barsalou (2020). From this perspective, understanding action in specific situations one must assess all phase of the Situated Action Cycle. For our purposes here, it's essential to understand the motives for action that can originate in all its phases. We next describe a few examples of motives that can be associated with each phase. Table 3 contains a complete list of all the motives established in Study 2 from both examination of previous literature and the Situated Action Cycle. For each
motive in Table 3, our assignment of it to a phase of the Situated Action Cycle is shown in the left column.

In the environment phase of the Situated Action Cycle, relevant environmental cues often trigger an individual's eating behaviour (Marteau et al., 2012). Possible environmental factors that motivate eating include food availability and food affordability, which both have been found to be important for food choice in consumers (Honkanen \& Frewer, 2009). Aggarwal et al. (2016) similarly found that the convenience of food was perceived as highly important for consuming it.

In the self-relevance phase of the Situated Action Cycle, an individual evaluates the self-relevance of the environmental cues with respect to the individual's long-term goals, norms, values, and identity. Important factors here include how much an agent likes the taste of a food (Aggarwal et al., 2016), social factors such as norms that influence eating behaviour (Higgs, 2015), emotion regulation goals, or weight management goals (Sproesser et al., 2011).

In affect phase of the Situated Action Cycle, affect results from establishing selfrelevance to environmental factors in the previous two phases. Individuals, for example, may experience desire to consume a food (Papies et al., 2022), perhaps accompanied by feelings of conflict (Zhang et al., 2019).

In the action phase of the Situated Action Cycle, the affect generated in the previous phase may result in the individual acting (or not acting) to consume a food in the current situation. Relevant motives here can be associated with consumption habitualness (Stroebele-Benschop et al., 2018) and with the difficulty of limiting consumption (Higgs et al., 2012).

Table 3 - Variable names, rating questions including labelling, group size, ICC2, ICC2k, Median and IQR values
Underneath the rating question the scoring range as well as the question labelling can be found. Participants rated each of the 341 foods and drinks on one of the 32 motives. Group size started with a minimum of 20 participants for each motive and was gradually increased until ICC2k reached at least .79. Motives are organised based on the Situated Action Cycle.

Situated Action Cycle Phase	Motive	Question Score range, label	N	ICC2	ICC2k	Median (IQR)
Environment.	Food availability	How easy/difficult is it for you to obtain this food or drink for [situation]? (-3 to 3) (extremely difficult, neither difficult nor easy, extremely easy)	20	. 18	. 81	1.6 (2.8)
	Food convenience	In terms of overall time and effort, how convenient is it to consume this food or drink for [situation]? (1 to 7) (not convenient at all, moderately convenient, extremely convenient)	33	. 14	. 84	5.9 (2.3)
	Food affordability	How affordable do you find consuming this food or drink for [situation]? (1 to 7) (not affordable at all, moderately affordable, extremely affordable)	20	. 17	. 80	5.5 (2.4)
	Calories	How high/low in calories do you find this food or drink? (1 to 7) (low, medium, high)	20	. 45	. 94	4.0 (2.9)
	Fatteningness	How fattening (due to fat and sugar) do you find this food or drink? (1 to 7) (not fattening at all, moderately fattening, extremely fattening)	20	. 60	. 97	3.6 (3.7)
Self-relevance	Emotional satisfaction	How emotionally satisfied/dissatisfied do you feel after consuming this food or drink for [situation]? (-3 to 3) (extremely dissatisfied, neither satisfied nor dissatisfied, extremely satisfied)	34	. 11	. 82	0.7 (2.5)
/ Outcomes	Food fillingness	How filling do you find this food or drink for [situation]? (1 to 7) (not filling at all, moderately filling, extremely filling)	20	. 24	. 87	4.0 (2.8)
	Self-identity	How much is this food or drink related to your identity and self-concept? (1 to 7) (not at all, moderately, extremely)	20	. 16	. 80	3.2 (4.0)
	Descriptive norms	How many people do you think consume this food or drink for [situation]? (1 to 7) (none, someone, everyone)	20	. 27	. 88	4.4 (2.6)
	Injunctive norms	How much do you think people approve/disapprove of consuming this food or drink for [situation]? (-3 to 3) (disapprove a lot, neither approve nor disapprove, approve a lot)	20	. 17	. 81	1.3 (2.7)
	Like	How much do you like/dislike this food or drink for [situation]? (1 to 7) (extremely dislike it / neither like it nor dislike it /extremely like it)	33	. 12	. 82	0.9 (0.3)

Situated Action Cycle Phase	Motive	Question Score range, label	N	ICC2	ICC2k	Median (IQR)
	Tastiness	How tasty do you find this food or drink? (1 to 7) (not tasty at all, moderately tasty, extremely tasty)	34	. 11	. 81	4.8 (2.8)
	Healthiness	How healthy and nutritional do you find this food or drink? (1 to 7) (not healthy at all, moderately healthy, extremely healthy)	20	. 52	. 96	4.6 (3.0)
	Mood change goal	How often do you consume this food or drink for [situation] to change your mood or how you're feeling emotionally? (1 to 7) (never, sometimes, always)	42	. 12	. 86	2.4 (3.8)
	Energy level goal	How often do you consume this food or drink for [situation] to change your energy level? (-3 to 3) (always to decrease my energy level, never to change my energy level, always to increase my energy level)	41	. 09	. 80	0.0 (1.0)
	Weight change	How often do you consume this food or drink for [situation] to change your weight? $(-3$ to 3$)$ (always to decrease my weight, never to change my weight, always to increase my weight)	26	. 18	. 85	0.0 (1.4)
	Visual appeal	How visually appealing do you find this food or drink for [situation]? (1 to 7) (not appealing at all, moderately appealing, extremely appealing)	25	. 16	. 82	4.6 (3.2)
Affect	Choice conflict	How conflicted do you typically feel about consuming this food or drink for [situation]? (1 to 7) (not conflicted at all, moderately conflicted, extremely conflicted)	28	. 12	. 79	2.1 (3.4)
	Connectedness	When consuming this food or drink for [situation], how much social connectedness do you typically experience with other? (1 to 7) (not at all, moderate, a lot)	51	. 09	. 84	3.7 (3.5)
	Desire	How weak/strong is your desire to consume this food or drink for [situation]? (-3 to 3) (extremely weak, neither weak nor strong, extremely strong)	20	. 18	. 81	0.5 (3.6)

Situated Action Cycle Phase	Motive	Question Score range, label	N	ICC2	ICC2k	Median (IQR)
Action	Resisting temptation	How easy/difficult is it for you to resist the temptation to consume this food or drink for [situation]? (-3 to 3) (extremely difficult, neither difficult nor easy, extremely easy)	33	. 11	. 80	0.8 (4.2)
	Consumption habitualness	How habitual is your consumption of this food or drink for [situation]? (1 to 7) (not habitual at all, moderately habitual, extremely habitual)	20	. 17	. 80	2.1 (3.7)
	Consumption automaticity	How automatically do you consume this food or drink for [situation]? (1 to 7) (never automatically, sometimes automatically, always automatically)	35	. 14	. 85	1.8 (3.7)
	Limiting consumption	Once you start consuming this food or drink for [situation], how easy/difficult is it to limit its consumption? (-3 to 3) (extremely difficult, neither difficult nor easy, extremely easy)	58	. 07	. 81	0.2 (3.5)
	Frequency	How frequently do you consume this food or drink for [situation]? (1 to 7) (never, monthly, weekly, daily)	26	. 19	. 86	2.2 (3.5)
Basic Taste Dimension	Savouriness	How savoury do you find this food or drink? (1 to 7) (not savoury at all, moderately savoury, extremely savoury)	20	. 36	. 91	3.5 (4.1)
	Saltiness	How salty do you find this food or drink? (1 to 7) (not salty at all, moderately salti, extremely salti)	20	. 35	. 91	2.1 (3.5)
	Sweetness	How sweet do you find this food or drink? (1 to 7) (not sweet at all, moderately sweet, extremely sweet)	20	. 61	. 97	2.8 (4.0)
	Bitterness	How bitter do you find this food or drink? (1 to 7) (not bitter at all, moderately bitte, extremely bitte)	21	. 16	. 80	1.3 (1.5)
	Sourness	How sour do you find this food or drink? (1 to 7) (not sour at all, moderately sour, extremely sour)	20	. 17	. 80	1.6 (2.4)
Meta-cognition	Consumption imagery	How vivid is the imagery that you have of consuming this food or drink for [situation]? (1 to 7) (not vivid at all, moderately vivid, extremely vivid)	37	. 11	. 81	4.1 (3.5)
	Situational transport	When you imagine consuming this food or drink for [situation], how easy difficult is it to feel transported to the situation where you're consuming it? (-3 to 3) (extremely difficult, neither difficult nor easy, extremely easy)	27	. 15	. 82	0.6 (3.4)

In the outcome phase of the Situated Action Cycle, actions performed in the previous phase may result in a variety of outcomes e.g., receiving a reward for an action. Relevant factors in this phase match the ones in the self-relevance phase. For instance, in the self-relevance phase the reward of consuming a food e.g., its tastiness, might have been anticipated and the consumption of said food in the action phase would then lead to experiencing the anticipated taste in the outcome phase.

Overall, reviewing the literature and using the Situated Action Cycle, we identified a total of 30 potentially relevant motives for food consumption (Table 3). We assumed that this relatively comprehensive set would allow us to capture each individual's specific motives for consumption well, thereby enabling an assessment of individual differences in eating motivation. Additionally, because we examined all these motives across different eating situations, we could assess the stability of eating motives across eating situations within specific individuals.

Using a situated approach and capturing eating behaviour in this extensive manner preserves important individual and situational information, that would be lost with an unsituated assessment. For instance, it is possible to assess whether people who mainly eat very healthy foods for lunch even enjoy the taste of unhealthy foods. Understanding individual differences at this level of detail is likely to be useful for the understanding of peoples' eating behaviour and establishing precision interventions for changing it.

3.1.1.5 Overview and predictions

Using the SAM ${ }^{2}$ approach, three exploratory studies aimed to better understand the motives associated with food and drink consumption. Study 1 developed food and drink norms that captured the diversity of what people consume in the UK across eight eating situations (usual breakfast, usual lunch, usual dinner, brunch out, lunch out, dinner out, daytime snack and evening snack). We used these norms to sample the foods included in Studies 2 and 3. Using a between group design, Study 2 assessed 30 possible eating motives and performed exploratory factor analysis to establish the underlying consumption motives for consumption frequency and eating desire between individuals across eating
situations. Using a within-individual design, Study 3 then focused on a central subset of these motives across eating situations within individuals. In this final study, we expected to see large individual differences in what predicts individual participants consumption frequency and desire. Study 3 also aimed to establish the importance and stability of consumption motives across different eating situations. We predicted that eating situations would play an important role in eating motivation, with motives varying considerably across situations. Lastly, we expected a participant's subjective self-assessment of their eating motives would differ considerably from the profile for eating motivation that SAM ${ }^{2}$ established implicitly for each individual.

3.2 Study 1

Study 1 was designed to establish a database of food and drinks consumed in the UK across different eating situations. Participants were asked to list foods consumed in eight different eating situations. The resulting food pool would later inform the foods we include in Studies 2 and Study 3. Additionally, the results are available online to other researchers and provide detailed information about the foods people consume in different eating situations, along with how frequently people consume them, and how healthy and tasty they perceive them to be (https://osf.io/anpmx/). From the original foods collected, four different food norms were created, differing in their level of detail, to support different research needs. The complete norms (including all details) are included here in Appendix B (SM-4).

3.2.1 Method

3.2.1.1 Participants

100 UK participants (51 female) were invited via the University of Glasgow subject pool to participate in an online survey. On average it took participants 52 min to complete it. Participants were paid at a rate of $6 £$ per hour.

3.2.1.2 Material and Procedure

After informed consent was obtained, participants were presented with the first of the eight eating situations: usual breakfast, usual lunch, usual dinner, daytime snack, evening snack, brunch out, lunch out, dinner out. For each
situation, participants were asked to imagine themselves in the situation as much as possible, before listing foods they consume in it. For each situation participants were asked to fully immerse themselves in the situation and generate up to ten foods for each of four categories: "Tasty, but not so healthy, consumed frequently", "Tasty, but not so healthy, consumed only occasionally", "Relatively healthy, consumed frequently" and, "Relatively healthy, consumed only occasionally". These four food categories were probed to help activate memories of foods consumed and to increase variability in reported foods, as well as to evaluate how participants categorise the generated foods. Participants were instructed to list individual foods instead of meals, and to also include all associated condiments. For each of the eight situations a participant could consequently generate up to 40 items (a maximum of 10 per category). The situations were presented one at a time to the participant, with the order of situations randomised across participants.

3.2.1.3 Coding

To structure the large number of food items and to create informative norms, the foods were furthermore coded on seven dimensions. Appendix B (SM-Table 1) presents the coding results. Each row presents the results for one food within one eating situation.

The coding process proceeded as follows: First the foods were coded based on the eating situation in which they were generated (usual breakfast, usual lunch, usual dinner, daytime snack, evening snack, brunch out, lunch out, dinner out). Second, the items were coded based on their general food category (e.g., flourbased product, fish protein, starchy vegetable etc.). Third, each item was coded based on its 'basic food' type, nested with the broader general food categories (e.g., all different types of bread were coded as bread). Fourth, the more specific types listed for each 'basic food' category were further coded into more specific 'types' (e.g., scone was further coded as scone, fruit scone, and cinnamon). Fifth, possible 'accompaniments were listed (e.g., for scones, butter was mentioned as an accompaniment).

The last two coding dimensions were specific for foods in the 'complex foods' group (e.g., curry). The sixth dimension specified the 'main ingredient type' of
a complex food, meaning whether it included meat or fish or was vegetarian. The seventh dimension then specified the 'main ingredient subtype' (e.g., for vegetarian curry, lentils).

For each food, the norms include the 'overall consumption frequency' of how many participants generated the food, along with the relative percentage of the four categories (Tasty but not so healthy, consumed frequently, Tasty but not so healthy consumed occasionally, Relatively healthy consumed frequently, Relatively healthy consumed occasionally) in which it was generated (for further details on the coding and the resulting norms see Appendix B (SM -1 and SM-4).

3.2.2 Results

Participants generated 1,494 unique foods, with many being listed in multiple variations. Combining the multiple variations into "basic foods" reduced the number to 1,374 unique basic foods. The total number of listed foods across the 8 situations differed greatly across participants, with a maximum of 40 being listed in each situation, for a total maximum of 320 (median = 115, range: 32309 , IQR = 51.5). Figure 8 presents the distribution of how many foods each participant listed for each of the eight eating situations. The spread is comparable across situations, each including a few participants who listed an enormous number of items and some who listed few. Across participants the most items were listed for usual dinner (236), dinner out (216), and usual lunch (215).

Figure 8 - Number of foods listed by each participant for each eating situation
Boxplots represents the median and IQR of the total number of foods listed by each participant for each of the eight-eating situation. The violin plot shows the distribution of the total number of listed foods while each dots represent a single participant's total number of listed foods. The number below the X-Axis label shows the total number of basic foods listed for each eating situation across all 100 participants

Figure 9 - Distribution of the frequency of how many participants listed the same basic food.

Histogram plots show the distribution of how many of the 100 participants listed the same basic food for each eating situation and how often that particular number of participants occurred across the basic foods in each eating situation. Plotted on the X -axis is the number of participants who listed a food. If a food has an X -axis value of " 1 " it indicates that only one single participant listed the food while 10 indicates that a food was listed by 10 individual participants. The maximum \times Axis value would be 100, indicating that all 100 participants listed a food. In contrast the Y axis represents how many basic foods were listed by that specific number of participants (X -Axis value). A Y axis value of 10 and a X axis value of 20 would indicate that for that eating situation 10 basic foods were listed by 20 of the 100 participants.

Figure 9 visualises how many foods were listed by multiple participants within each eating situation. The X axis indicates how many participants listed a food (ranging from 1 to a possible 100), and the y axis indicates how many foods were listed by this number of participants (for instance how many foods were listed by just one single participant within the usual dinner eating situation). It's apparent that across eating situations, most foods were only listed by one to four participants. Beyond one or two foods that the majority of participants
mentioned there is little agreement in what they consume in each of the eight eating situations.

3.2.3 Discussion

The richness of the foods and drinks generated across situations and coding categories offers insight into the general diet of UK residents. These results illustrate how diverse people's diets tend to be. These results furthermore highlight the importance of including a great variety of different foods and beverages in research studies to ensure that most people's diets are sufficiently captured. The norms established here will be used as basis for sampling foods in Studies 2 and 3. And again, their publication here makes them available for use by researchers in their work.

3.3 Study 2

Study 2 aimed to comprehensively establish motives associated with food consumption. Thirty potentially relevant consumption motives were identified from previous research (e.g., Arnold et al., 2015; Boggiano et al., 2015; Burgess et al., 2014; Pollard et al., 1998). These motives were also chosen based on the Situated Action Cycle as described earlier to reflect the relevant factors for each of the five phases. As a result, motives related to the environment were sampled (e.g., food availability, food affordability), as were motives related to self-relevance (e.g., self-identity, healthiness), affect (e.g., choice conflict, connectedness), action (e.g., consumption habitualness, difficulty to resist temptation), and basic taste dimensions (e.g., savouriness, sweetness). Several additional measures related to metacognition were sampled as well, based on their relevance in our previous research (e.g., situational transport, consumption imagery) as well as measures related to basic taste dimensions (e.g., sweetness, saltiness).

Each participant rated a sample of the foods obtained in Study 1 on 1 of the 30 motives or on one of the 2 dependent variables (consumption frequency and desire). Table 3 presents the 32 measures assessed. Importantly, these assessments were made between groups. In other words, 32 different groups each evaluated 1 of the 32 different measures across the entire sample of foods.

On each judgment trial, participants assessed a food in one of the eight eating situations, but on each of the 32 measures. The study was designed to later select the consumption motives included in Study 3, which were then examined within each individual.

3.3.1 Method

3.3.1.1 Participants

885 UK Participants (524 female; age $M=35.00, S D=11.69$, range $=18-64$) were recruited via the Prolific platform (www.prolific.co) and invited to take part in an online Qualtrics survey. Participants were randomly assigned to 1 of the 32 measures and only rated all foods on this one measure. We started with a minimum of 20 participants in each group, and gradually sampled additional participants until ICC2k, a measure of the stability of the mean reached, around .80, indicating a good stability of the mean (Koo \& Li, 2016). When the initial ICC2k fell below .79, the Spearman-Brown formula was used to estimate the number of additional participants needed to reach this threshold. The number of participants per group varied therefore ranging from 20 to 58. Participants took an average of 28.52 min to complete the survey and were paid at a rate of £6 per hour.

3.3.1.2 Material: Foods

In total, 341 foods were included in Study 2 (Table 4). Using the food norms collected in Study 1, we included all foods that were listed by at least 10 of the 100 participants. Foods were excluded if they were not specific enough (e.g., the generic "vegetables" instead of a specific vegetable such as "broccoli"), even if it had been generated more than ten times. To increase variability and ensure capturing people's diets to the fullest extent, an extra ten foods were chosen manually for each of the eight eating situations, which were listed in Study one by between one and nine participants. As a result, a total of 341 foods were included. Table 4 presents all these foods, each associated with one of the eight eating situations, along with their overall listing frequency in Study 1 and their mean consumption frequency here in Study 2.

All foods were presented within the Study 1 eating situation in which they were generated (usual breakfast, usual lunch, usual dinner, daytime snack, evening snack, brunch out, lunch out, dinner out). Some foods were included more than once as they were generated for multiple situations.

Table 4 - List of foods included in Study 2 and 3 organised by eating situation they were presented in

The Table shows all 341, in study 2, included foods organised in their eating situation. Frequency study 1 shows the absolute number of participants generating the food for the eating situation. Frequency study 2 shows the mean consumption frequency across participants in study 2 (rated on a continuous scale ranging from 0 to 10). In study 3 we included a subset of 177 foods, consisting of all foods from usual breakfast, usual lunch, usual dinner and daytime snack.

Usual Breakfast			Usual Lunch				Usual Dinner	
Food	Frequency Study 1	Frequency Study 2	Food	Frequency Study 1	Frequency Study 2	Food	Frequency Study 1	Frequency Study 2
bread	83	4.44	sandwich	59	5.44	pasta dish	74	4.81
breakfast cereal	69	4.15	pasta dish	57	3.55	chicken	70	4.77
coffee	66	3.98	water	56	5.82	pizza	53	4.12
eggs (only)	55	3.16	bread	51	4.17	side rice	52	3.58
tea	52	4.57	soup	45	4.06	side potatoes	52	4.45
fruit juice	51	3.58	chicken	41	3.54	fries/chips	49	4.30
banana	43	3.29	side salad	41	3.04	water	46	5.73
oats	39	2.84	soft drink	38	2.52	bread	45	3.24
sandwich	36	2.37	side rice	35	2.68	beef	39	3.66
yogurt	33	2.99	tea	30	4.12	burger and bun	38	2.93
bacon	31	2.79	cheese	29	4.06	curry dish	37	4.10
water	31	4.74	chips/fries	27	3.29	side salad	36	3.66
milk	31	3.53	coffee	26	2.99	soup	34	3.37
sausage	28	2.59	chocolate	25	3.01	salmon	28	2.66
croissant	23	2.48	pizza	25	2.93	cheese	28	4.26
cheese	20	2.66	eggs (only)	24	2.55	tomatoes	28	3.97
sweet pancake	18	2.25	tomatoes	24	3.57	broccoli	26	4.34
apple	18	2.68	banana	24	3.68	soft drink	25	3.32
muesli	17	2.22	burger and bun	24	2.69	wine	24	2.35
granola	15	2.13	crisps	22	3.38	beer	24	2.13
egg dish	15	3.25	fruit juice	22	3.18	pepper/capsicum	23	4.10
beans	13	2.49	side potatoes	21	2.32	tea	23	3.00
strawberries	13	2.22	tuna	20	3.32	noodle dish	22	3.37
biscuit	13	2.36	apple	19	2.97	meal salad	21	2.94
chocolate	12	1.89	salmon	17	1.85	sausage	20	3.49
snack bar	12	2.48	beef	16	2.52	carrot	20	4.60
blueberries	11	2.13	eqg dish	16	3.02	sandwich	20	2.98
grapes	11	2.12	meal salad	16	2.91	eggs (only)	18	2.53
cake	8	1.85	pepper/capsicum	15	3.00	rice dish	18	4.26
smoothie	7	2.15	noodle dish	14	2.73	pork	17	2.97
fruit salad	6	2.27	beans	13	2.57	beans	16	3.57
nuts	6	2.39	lettuce	13	3.33	mushrooms	16	2.83
avocado	6	1.80	carrot	13	2.74	wrap	16	2.85
scone	5	1.76	mushrooms	12	2.11	onion	15	4.54
sweet waffle	4	1.87	broccoli	11	2.27	stir fry	15	3.35
watermelon	3	1.93	strawberries	11	2.22	fruit juice	15	2.80
doughnut	2	1.83	grapes	11	2.44	mashed potato	14	3.79
quinoa	1	1.31	sausage	9	2.69	egg dish	14	3.01
			curry dish	9	2.27	peas	14	4.12
			side couscous	6	2.04	ice cream	13	2.53
			olives	6	2.04	spinach	12	2.91
			cod	6	1.91	stew	12	3.28
			wine	3	1.62	yogurt	11	2.37
			nachos	2	1.81	cake	11	2.36
			split peas	1	1.78	milk	11	2.35
			potato bake	1	2.07	chilli dish	9	2.87
			casserole	1	1.67	savoury pie	8	2.79
						fish cake	6	2.21
						Quorn/mycoprotein	6	2.30
						coffee	6	2.81
						moussaka	2	1.72
						squid	1	1.51
						cocktail	1	1.57
						tiramisu	1	1.71
						fennel	1	1.56

Table 4 (continued)

Day time Snack			Evening Snack		
Food	Frequency Study 1	Frequency Study 2	Food	Frequency Study 1	Frequency Study 2
chocolate	71	4.67	chocolate	60	4.51
crisps	53	4.25	bread	48	3.24
banana	53	3.82	crisps	45	3.98
apple	46	3.49	banana	38	2.66
water	43	6.04	tea	37	3.31
bread	41	3.28	biscuit	35	3.52
coffee	41	4.08	apple	32	2.95
biscuit	40	4.30	water	29	5.38
nuts	36	3.31	nuts	26	2.68
snack bar	36	3.67	cheese	25	3.73
tea	33	4.76	ice cream	25	2.93
yogurt	26	3.44	yogurt	22	2.66
sandwich	26	3.33	milk	22	2.44
cheese	23	3.52	sandwich	21	2.62
cake	21	3.30	cake	20	3.08
soft drink	21	3.13	fruit juice	20	3.12
fruit juice	21	3.50	soft drink	19	3.04
ice cream	19	2.47	breakfast cereal	18	2.55
carrot	18	2.33	grapes	18	3.13
grapes	18	3.19	cookie	17	3.87
sweets (candies)	18	3.23	fries/chips	16	2.48
cookie	16	3.51	coffee	16	2.62
milk	16	2.52	beer	14	2.06
orange	15	3.20	wine	14	2.77
oatcake	14	1.80	carrot	13	2.14
fries/chips	11	2.52	popcorn	12	2.23
shake	11	2.18	strawberries	12	2.94
breakfast cereal	9	2.58	snack bar	12	2.85
rice cake	7	1.93	crackers	10	2.85
muffin	8	3.04	pizza	10	2.24
mango	6	2.10	oats	6	1.52
energy drink	6	1.65	eggs (only)	6	1.86
dried fruit	4	2.78	smoothie	6	2.05
popcorn	4	1.92	salmon	2	1.58
celery	1	1.50	dates	2	1.65
coconut water	1	1.38	spirit/liquor	2	1.99
scone	1	2.10	coconut	1	1.62
			mousse	1	1.82

Table 4 (continued)

Brunch Out			Lunch Out			Dinner Out		
Food	Frequency Study 1	Frequency Study 2	Food	Frequency Study 1	Frequency Study 2	Food	Frequency Study 1	Frequency Study 2
bread	57	3.17	fries/chips	56	3.45	fries/chips	80	3.75
coffee	55	3.43	burger and bun	56	3.09	pizza	77	3.18
eggs (only)	53	2.28	pasta dish	54	3.27	burger and bun	64	3.06
sandwich	49	3.07	sandwich	54	3.88	pasta dish	62	3.70
tea	45	2.97	pizza	51	2.68	beef	53	2.79
fruit juice	41	3.01	water	50	4.73	chicken	52	3.35
bacon	38	2.89	side salad	42	2.67	water	52	4.39
water	37	4.50	soup	42	2.61	wine	52	2.67
sausage	29	2.80	soft drink	41	3.32	curry dish	49	2.82
sweet pancake	27	2.51	bread	30	3.31	soft drink	45	3.36
egg dish	25	2.61	chicken	30	3.09	beer	42	2.12
cheese	23	2.38	coffee	30	3.40	side rice	40	3.23
tomatoes	23	2.79	tea	27	3.55	side salad	39	2.79
soft drink	21	2.50	beer	27	1.78	bread	37	2.78
chips/fries	18	2.30	fruit juice	24	2.90	cheese	33	3.60
mushrooms	18	2.08	cheese	22	3.24	side potatoes	28	3.02
salmon	17	1.35	beef	18	2.42	soup	26	2.27
side salad	16	2.06	wrap	18	2.88	noodle dish	23	2.93
beans	15	2.77	meal salad	18	2.58	meal salad	23	2.53
cake	15	2.47	side rice	17	2.28	sandwich	21	2.62
croissant	15	2.79	cake	17	2.87	salmon	20	1.97
sweet waffle	15	2.00	tomatoes	16	2.54	cake	20	3.40
banana	14	1.83	wine	16	1.57	rice dish	19	3.28
granola	13	1.55	crisps	15	3.27	sushi	19	1.90
yogurt	13	2.08	noodle dish	15	2.22	wrap	19	2.35
avocado	12	1.80	sushi	15	1.63	fruit juice	18	2.53
burger and bun	12	2.22	side potatoes	14	2.42	ice cream	17	2.19
muffin	11	2.13	curry dish	14	2.34	pork	16	2.23
smoothie	11	2.39	salmon	12	1.79	tomatoes	16	2.98
hot chocolate	11	3.02	pastry/bake/pasty	12	3.53	tea	14	2.45
soup	10	2.02	eggs (only)	11	1.97	prawns	13	1.89
apple	10	2.05	ice cream	11	2.17	spirit/liquor	12	2.58
oats	6	1.57	prawns	7	1.55	mushrooms	11	2.58
spinach	6	1.57	falafel	7	1.77	pakora	11	1.66
cookie	6	2.34	dumplings	7	1.44	chocolate	5	2.52
cocktail	3	1.49	milk	7	1.87	broccoli	8	2.62
quiche/tart	2	1.43	apple	7	2.14	savoury pie	8	2.43
meal salad	2	1.76	seabass	2	1.52	fruit salad	7	1.75
fritters	1	1.39	green beans	1	1.65	egg dish	6	2.10
savoury crepe	1	1.72	tofu	1	1.41	oysters	5	1.51
			kebab	1	2.13	lentils	2	1.71
			samosa	,	2.11	crème brulee	2	1.87
						venison	1	1.65
						ratatouille	1	1.57

3.3.1.3 Material: Motives

As described earlier, motives were included that have been addressed in previous literature and that are also motivated by the Situated Action Cycle. Table 3 presents these 30 predictors, along with the 2 dependent variables (consumption frequency and desire). Table 3 also presents the number of participants who evaluated each measure, relevant intraclass correlations discussed later, and the median of each judgment across participants and foods (along with the IQR).

3.3.1.4 Procedure

After providing informed consent, participants were randomly assigned to one of the 32 measures. Participants then judged each of the 341 foods on their measure using a 7-point continuous scale. Each food item was presented in the context of its specific eating situation (Table 4). The order of situations as well as the order of foods within each situation was randomised across participants. At the end of the survey participants were asked to provide demographic information (age, gender, residency, student status, accommodation, education, height, weight, eating following specific diet, eating disorders, food allergies, dietary restraint).

3.3.2 Results

3.3.2.1 Factor analysis

To reduce redundancies, simplify the 30 motives, and further understand the underlying structure of the data, an exploratory factor analysis was performed. First, for each of the 341 foods, the means for each of the 30 motives were calculated across the participants in each rating group (e.g., mean 'like' for each of the 341 foods across the 33 participants in the Like group). These means were then used in the exploratory factor analysis. Parallel analysis suggested that a five-factor solution would be the best fit for the data. As factors were expected to correlate, an oblique rotation (promax) was selected. Table 5 displays the resulting factors and each motive's factor loadings.

As can be seen in Table 5, many variables show considerable cross loadings across at least two of the five factors. As a consequence it is possible that the parallel analysis suggested a underfactored solution (Li et al., 2020). To explore this further we also ran the factor analysis with six factors. The same five factors described earlier emerged with the additional single variable sixth factor "affordability". Because affordability showed a significant cross-loading on the habitualness factor (Beavers et al., 2019), and had a high communality with the other variables in the five-factor solution (Costello \& Osborne, 2019), we decided to drop the factor and instead keep the original five-factor solution proposed by the parallel analysis. A possible solution for the considerable crossloadings would have been to exclude all crossloading items and re-running the factor analysis with only the remaining items (Beavers et al., 2019), though this
would have had the undesirable outcome that many items that were conceptually likely to be important would not have been included in the factoranalysis (Beavers et al., 2019). As the main point of this exploratory analysis was to better understand the underlying structure of the 30 motives instead of creating a reliable measurement instrument and to identify which motives to include in Study 3, we therefore decided to keep the cross-loading items in the factor solution.

The first factor captured items related to habitualness. Both consumption habitualness (.95) and consumption automaticity (.91) loaded very highly on this factor. Additionally, the motives for mood change goal (.92), availability (.92), self-identity (.90), consumption imagery (.88) and situational transport (.88), and all related to habit formation and maintenance, emerged with high loadings.

The second factor combined multiple facets of unhealthiness / healthiness' related to eating motives. The highest loadings included healthiness (-1.02), choice conflict (.91) weight change (.91) and fatteningness (.88).

The third factor combined multiple aspects of fulfillingness related to eating motives. The highest loadings were for fillingness (.70) and emotional satisfaction (.57).

The fourth factor combined three of the five taste dimensions that could motivate eating: savouriness (.89), saltiness (.67) and sweetness (-.94). To reflect the two facets, we called this factor savouriness / sweetness.

The fifth factor combined the other two taste dimensions, bitterness (.88) and sourness (.75). To reflect both facets, we called it bitterness / sourness.

In total, the five-factor model explained 81% of the overall variance in the food means. Table 5 presents the proportion of the variance that each factor explained.

Table 5 - Results Exploratory factor analysis

Results from the exploratory factor analysis resulting in a five-factor solution with an oblique rotation (promax). Measures are organised based on the factor they load highest on.

Motive	Habitualness	Unhealthiness / Healthineess	Fullfilligness	Saviourness / Sweetness	Bitterness / Sourness	h2	u2
Consumption habitualness	. 95	-. 11	-. 17	. 08	. 08	. 84	. 16
Descriptive norms	. 93	. 01	. 02	0	. 07	. 86	. 14
Mood change goal	. 92	. 07	. 02	. 04	-. 05	. 87	. 13
Food availability	. 92	. 19	-. 34	-. 01	-. 02	. 73	. 27
Consumption automaticity	. 91	-. 01	-. 02	-. 06	-. 09	. 85	. 15
Self-identity	. 90	-. 15	-. 03	. 25	. 09	. 84	. 16
Consumption imagery	. 88	. 12	. 13	. 07	. 13	. 86	. 14
Situational transport	. 86	-. 08	. 14	. 02	-. 04	. 86	. 14
Food convenience	. 77	. 12	-. 23	-. 26	. 02	. 63	. 37
Like	. 68	-. 08	. 42	. 11	-. 08	. 86	. 14
Visual appeal	. 63	. 13	. 48	-. 06	0	. 88	. 12
Tastiness	. 58	. 16	. 48	-. 05	. 01	. 80	. 20
Connectedness	. 49	. 53	. 06	. 07	. 34	. 65	. 35
Food affordability	. 44	-. 25	-. 19	. 07	-. 42	. 56	. 44
Energy level goal	. 41	-. 40	. 10	-. 14	-. 18	. 46	. 54
Resisting temptation	-. 80	-. 13	-. 20	. 02	. 09	. 82	. 18
Choice conflict	-. 24	. 91	-. 13	-. 06	-. 06	. 86	. 14
Weight change goal	. 11	. 91	. 09	-. 02	-. 09	. 89	. 11
Fatteningness	. 01	. 88	. 22	0	-. 08	. 94	. 06
Calories	-. 03	. 80	. 34	-. 02	-. 08	. 94	. 06
Limiting consumption	-. 39	-. 55	-. 40	. 12	. 03	. 82	. 18
Injunctive norms	. 41	-. 66	. 34	. 03	. 19	. 69	. 31
Healthiness	-. 15	-1.02	. 15	. 01	. 03	. 93	. 07
Food fillingness	-. 16	. 12	. 70	. 29	-. 20	. 71	. 29
Emotional satisfaction	. 54	. 05	. 57	. 10	-. 04	. 87	. 13
Savouriness	. 07	-. 08	. 28	. 89	. 01	. 96	. 04
Saltiness	-. 01	. 23	. 37	. 67	-. 07	. 78	. 22
Sweetness	-. 13	. 26	. 22	-. 94	. 01	. 95	. 05
Bitterness	. 10	-. 01	-. 33	. 12	. 88	. 83	. 17
Sourness -	-. 08	-. 26	. 03	-. 27	. 75	. 68	. 32
Proportion Variance	. 36	. 20	. 11	. 09	. 06		

Table 6 - Results from a simple linear regression analysis predicting consumption frequency with the factor scores from the factor analysis

Factor	Estimate	Std Error	\boldsymbol{t}	p
Habitualness	.87	.028	30.88	$<.001^{* * *}$
Unhealthiness / Healthineess	-.08	.029	-3.02	$<.001^{* * *}$
Saviourness/Sweetness	.01	.028	1.61	.62
Bitterness/Sourness	-.14	.029	-4.89	$<.001^{* * *}$
Fullfillingness	-.15	.031	-4.92	$<.001^{* * *}$
$* * *>.001$				

Table 7 - Results from a simple linear regression analysis predicting desire with the factor scores from the factor analysis

Factor	Estimate	Std Error	t	p
Habitualness	.69	.022	29.60	$<.001^{* * *}$
Unhealthiness / Healthineess	-.19	.023	-9.30	$<.001^{* * *}$
Saviourness/Sweetness	.12	.023	.86	$<.001^{* * *}$
Bitterness/Sourness	-.19	.024	-5.47	$<.001^{* * *}$
Fullfillingness	.36	.026	16.73	$<.001^{* * *}$
$* * *>.001$				

3.3.2.2 Linear regression

We next performed simple linear regressions to determine how well the five factors explained the two dependent variables (consumption frequency and desire), as well as to establish each factor's importance in predicting the two dependent variables. The estimated factor scores for each food from the exploratory factor analysis were used to predict the standardized consumption frequency and desire ratings. The regression model did not include any interaction or random effects. Because all measures were standardized, regression coefficients are standardized as well, thereby being interpretable in standard deviation units.

As Table 6 and Table 7 illustrate, the five factors explained 76% of variance when predicting self-reported consumption frequency and 84% of variance when predicting desire. The most important predictor for consumption frequency was habitualness ($B=.87, t=30.188, p>0.001$). The standardised coefficient of .87 indicates that for every standard deviation change in habitualness, consumption
frequency increased by .87 of a standard deviation. This is very large effect. The other significant predictors were unhealthiness / healthiness ($B=-.08, t=-$ 9.30, $p>0.001$), bitterness/sourness ($B=-.14, t=-4.89, p>0.001$) and fullfillingness ($B=-.15, t=-4.92, p>0.01$), indicating that consumption frequency increased as habit increased and decreased as unhealthiness / healthiness, bitterness / sourness and fulfillingness inrease. Together, these four factors explained 76% of the variance in consumption frequency. Saviourness / sweetness did not explain significant variance above and beyond the variance explained by habitualness, unhealthiness / healthiness, bitterness / sourness and fullfillingness.

Desire was also most highly predicted by habitualness ($B=.69, t=29.60$, $p>$ 0.001). Additionally, however, desire was also predicted significantly by unhealthiness / healthiness ($B=-.19, t=-7.89, p>0.001$), fulfillingness ($B=.36$, $t=13.93, p>0.001$), bitterness / sourness ($B=-.19, t=-7.83, p>0.001$), and saviourness/sweetness ($B=.12, t=5.30, p>0.01$). In other words, desire increased as habitualness, fullfillingness, and saviourness / sweetness increased, but decreased as unhealthiness and bitterness increased. Together, these five factors explained 84% of the variance in consumption desire. Again, the standardised coefficient of .65 for habitualness indicates that it has a very large effect on consumption desire.

3.3.3 Discussion

The aim of Study 2 was to comprehensively establish eating motives that predict consumption frequency and desire. Participants rated 341 foods each situated in 1 of 8 eating situations for either 1 of 30 different eating motives or for 1 of the 2 dependent variables.

To simplify and eliminate redundancies, the 341 food means of the 30 eating motives were submitted to an exploratory factor analysis. A five-factor solution emerged, consisting of factors for habitualness, unhealthiness / healthiness, saviourness / sweetness, fullfillingness, and bitterness / sourness.

The corresponding factor scores were then used in simple linear regressions to predict consumption frequency and desire. Both consumption frequency and
desire were most highly predicted by habitualness. Furthermore, both were significantly predicted by unhealthiness/healthiness, bitterness / sourness and fullfillingness. Desire was also significantly predicted by saviourness / sweetness. These factors allowed us to comprehensively explain variance in consumption frequency ($\mathrm{R}^{2}=.76$) and in consumption desire $\left(\mathrm{R}^{2}=.85\right)$.

A limitation of the resulting factor model were the considerable cross loadings, which means the factors should be interpreted carefully, as well as that two factors (fulfilling and bitterness / sourness) were only weak as they only had included two, albeit strong, items (Beavers et al., 2019). Though, despite these limitations, the resulting factor model is still informative as a reference point to choose which motives to include in Study 3. Because the predictors in Study 2 captured consumption motives at the group level comprehensively, we believed that they would also capture consumption motives at the individual level as well, including individual differences in them. We therefore used the results of Study 2 to inform the motives to examine in Study 3.

3.4 Study 3

Using a between-participants design, Study 2 allowed us to comprehensively establish important motivational predictors associated with food consumption. Of primary interest in Study 3 was evaluating these predictors in a withinparticipants design. As some of the factors emerging from the exploratory factor analysis appeared to reflect multiple facets, we decided to split those factors into multiple motives, resulting in a total of ten predictors of interest in Study 3: automaticity, self-identity, situational transport, social connectedness, healthiness, sweetness, bitterness, emotional satisfaction, fillingness, and affordability. To maintain a manageable study duration and still allow for all participants to rate all foods on all relevant predictors and dependent variables, we further needed to limit the number of included foods. Using the food pool from Study 2, we decided to include only foods from four of the original eating situations instead of the original eight: usual breakfast, usual lunch, usual dinner, daytime snack. Doing so reduced the number of foods evaluated in Study 3 to 177. The same foods for these four situations from Table 4 assessed in Study 2 were also assessed in Study 3.

Several issues were of interest in Study 3. First, were the same motivational predictors important in Study 2 at the group level also important at the individual level? For example, did habitualness continue to be the most important factor for both consumption frequency and desire? Second, how much do motivational predictors vary between individuals? Do individuals vary widely in the motives that predict their consumption frequency and desire. Third, how stable are these individual patterns of motivational prediction across eating situations? Do an individual's motives for eating vary widely across eating situations, or do they remain relatively constant? Finally, how much awareness do participants have of the motives associated with their consumption frequency and desire? Do self-assessments of their motivation correspond to the predicted patterns implicit in their SAM ${ }^{2}$ judgments?

3.4.1 Methods

3.4.1.1 Participants

230 UK residents were recruited via the Prolific platform (www.prolific.co). Participants were included if they were between the ages of 18 and 70 , fluent English speakers, and had taken part in at least 10 previous prolific studies with a 95% acceptance rate. Participants were excluded if they had taken part in Study 2. Because the study took 135 min in total, it was split into three sessions only after successfully completing all three sessions were participants paid £20 for their participation. In total 212 Participants completed all three sessions (see Appendix B (SM-2) for dropout rate information). To ensure data quality, each individual's data was assessed by evaluating study duration, number of flatlines, and two diagnostic correlations (see Appendix B (SM-3) for details). Based on these data quality assessments, 8 participants were excluded from the final data set, resulting in 204 participants (152 female, 51 male, 1 other; age M $=35.91, S D=10.4$, range $=18-63$).

3.4.1.2 Material: Foods

Because participants rated all foods on the ten predictors as well as on the two dependent variables, we needed to reduce the number of foods evaluated, thereby making the overall time needed to perform the study manageable. As a result, participants evaluated a total of 177 foods situated in 1 of 4 eating situations. As in the previous studies some foods were presented in multiple
eating situations. In other words, all foods were included for each situation in Study 1 that were generated by at least 10 of those 100 participants, as well as ten extra foods that were generated by 1 to 10 participants to increase variability. The foods for these four eating situations can be found in Table 4.

3.4.1.3 Material: Dependent variables and predictors

We used the results of the Study 2's exploratory factor analysis to choose which consumption motives to include in the study. All five factors were represented, with some of the more complex factors represented multiple times to ensure that its diverse facets were represented. To capture the first factor, habitualness, we included automaticity as well as self-identity, situational transport, affordability and social connectedness. The second factor, unhealthiness / healthiness was represented by healthiness. As taste dimensions from the third and fifth factors, sweetness and bitterness were both included, respectively. To fully capture the fullfillingness factor, we included both emotional satisfaction and fillingness. In total, ten consumption motives, along with the two dependent variables, consumption frequency and desire, comprised the 12 measures assessed in Study 3. For the full set of judgment questions, scales, labels and ICC2, ICC2k, median and IQR across foods and participants, see Table 8.

3.4.1.4 Procedure

Participants were invited via Prolific to take part in an online survey that assessed how they perceive specific food and drinks. It was explained that the study would consist of three separate sessions and that participants would only be paid if successfully completing all three sessions.

For each session, participants received a four-day window to start and complete its respective survey. Once started, a session had to be completed in a single attempt and could not be saved and returned to later. In session one, after informed consent was obtained, participants evaluated the 177 foods on consumption frequency, desire, connectedness, and fillingness. In session two, they evaluated the 177 foods on self-identity, affordability, emotional satisfaction, and sweetness. In session three, they evaluated the 177 foods on automaticity, situational transport, healthiness, and bitterness. At the end of
the third session, participants provided meta-cognitive judgments about their eating motives, completed additional individual difference questionnaires, and provided demographic information.

Table 8 - Study 3 rating question, scoring range, scoring label, ICC2, ICC2k, Median and IQR

	Motive	Question Score range, label	ICC2	ICC2k	Median (IQR)
DV	Frequency	How frequently to you consume this food or drink for [situation]? (1 to 7) (never/monthly/weekly / daily)	22	98	2.4 (4.0)
	Desire	How strong/weak is your desire to consume this food or drink for [situation]? (-3 to 3) (extremely weak / neither weak nor strong / extremely strong)	15	97	-. 4 (4.4)
Predictors	Healthiness	How healthy and nutritional do you find this food or drink? (1 to 7) (not healthy at all, moderately healthy, extremely healthy)	53	1.00	4.2 (3.6)
	Filligness	How filling do you find this food or drink for [situation]? (1 to 7) (not filling at all, moderately filling, extremely filling)	28	99	3.6 (3.5)
	Sweetness	How sweet do you find this food or drink? (1 to 7) (not sweet at all, moderately sweet, extremely sweet)	. 56	1.00	2.3 (4.0)
	Bitterness	How bitter do you find this food or drink? (1 to 7) (not bitter at all, moderately bitte, extremely bitte)	13	97	1.0 (1.2)
	Affordability	How affordable do you find consuming this food or drink for [situation]? (1 to 7) (not affordable at all, moderately affordable, extremely affordable)	20	98	4.9 (2.5)
	Automaticity	How automatically do you consume this food or drink for [situation]? (1 to 7) (never automatically, sometimes automatically, always automatically)	14	. 97	2.4 (3.9)
	Self-Identity	How much is this food or drink related to your identity and self-concept? (1 to 7) (not at all, moderately, extremely)	. 07	94	3.4 (4.2)
	Social Connectedness	When consuming this food or drink for [situation], how much social connectedness do you typically experience with others? (1 to 7) (not at all, moderate, a lot)	13	97	2.4 (4.0)
	Emotional satisfaction	How emotionally satisfied/dissatisfied do you feel after consuming this food or drink for [situation]? (-3 to 3) (extremely dissatisfied, neither satisfied nor dissatisfied, extremely satisfied)	11	. 96	4 (2.9)
	Situational transport	When you imagine consuming this food or drink for [situation], how easy difficult is it to feel transported to the situation where you're consuming it? (-3 to 3) (extremely difficult, neither difficult nor easy, extremely easy)	. 09	95	4 (3.6)

The order of the four judgment blocks within each session was fixed in the order described above. The two dependent variables-consumption frequency and desire-were collected first, followed by the 10 predictive measures. Within a session, predictive measures were ordered in a manner to diversify the measures assessed within a session as much as possible. Within each judgment block for a measure, the order of the 4 eating situations was randomized for each participant, as was the order of the 177 foods. Each time when starting to evaluate foods within a new eating situation, participants were instructed to completely immerse themselves in the situation and to visualise it before making their judgments (see Best et al., 2018).

3.4.2 Results

3.4.2.1 Descriptive means for foods and individuals

For each of the 12 measures, we first present the mean judgments for each food and each individual to provide a sense of how each measure behaved. Panel A of Figure 10 presents the mean for each of the 177 foods across the 204 participants for each of the 10 predictors as well as for the 2 dependent variables (consumption frequency, desire). Considerable variability emerged across foods for each measure, reflecting the wide variety of foods included in the study. Healthiness, sweetness, and situational transport exhibited the greatest range, while self-identity varied least. Bitterness in contrast was rated as low for the vast majority of foods.

Panel B of Figure 10 presents the mean for each of the 204 participants across the 177 foods for each predictor and dependent variable. Again, considerable variability emerged across participants for each measure, especially for consumption frequency and situational transport. Overall, the results establish that large individual differences exist in how participants evaluated the same set of 177 foods on the 12 measures.

Figure 10 - Distribution of mean judgment for individual foods (A) and participants (B)

Violin plots visualise the distribution of average judgments for each of the 177 foods across the 204 participants (Panel A) and average judgment for each of the 204 participants across the 177 foods (Panel B). Consumption frequency, Healthiness, Fillingness, Sweetness, Bitterness, Affordability, Automaticity, SelfIdentity, and Connectedness were rated on a continuous scale from 0 to 7 while Desire, Emotional Satisfaction and Situational Transport were rated on a continuous scale from -3 to 3. Each dot represents either the mean judgment of a food (A) or participant (B). The box plot presents the median and IQR for each rating.

3.4.2.2 Group level correlation and regression analysis

Of interest in this next analysis was how strongly each of the ten predictors was associated with each dependent variable at the group level. We will later compare these results at the group level with the analogous results at the individual participant level, as well as with findings from the literature.

To perform this analysis, we first computed each participant's mean judgment for each of the 10 predictors and for each of the 2 dependent variables across the 177 foods. This resulted in 12 values for each participant. In the next step, those participant means were used to perform two group-level correlation analysis, each assessing the association of the ten predictors with the two dependent variables. Figure 11 presents the results.

Figure 11 - Group correlation results between the ten predictors and consumption frequency (A) and desire (B)

Figure visualises the group correlation results between participants' mean ratings across foods and the two dependent variables. Panel A shows the correlation between consumption frequency and the ten predictors while Panel B shows the correlation between desire and the ten predictors.

The strongest correlation for consumption frequency was with automaticity (.59), followed by connectedness (.53) and fillingness (.45). Consumption frequency was also moderately associated with emotion (.43), self-identity (.42), emotional satisfaction (.4) healthiness (.42), connectedness (.37), and transport (.3). Sweetness only correlated weakly with consumption frequency (.25).

The strongest correlation for desire was with fillingness (.65) followed by connectedness (.63), automaticity (.57), healthiness (.50), self-identity (.43), transport (.41), and sweetness (.31). In comparison to consumption frequency, desire exhibited stronger associations than consumption frequency across most motives. Affordability and bitterness only correlated weakly with both consumption frequency (.18, .14) and desire (.19, .14).

Simple linear regressions assessed how well the ten predictors explained the variability in consumption frequency and desire. These analyses were again performed on the individual participants' means for each predictor and dependent variable across the 177 foods. Each regression model only included the ten motives without any interactions or random effects. For consumption frequency, the ten predictors explained 47% of the variance. For desire, the variance explained was 63%.

3.4.2.3 Individual correlations and regression analyses

Analogous to the group-level correlation and linear regression analysis just presented, we performed comparable analyses at the individual participant level. Of particular interest was, first, how much correlations between the ten predictors and two dependent variables varied across individuals, and second, how the overall pattern across individuals compared to the pattern at the group level.

For each participant, we calculated 10 correlations between consumption frequency and each of the 10 predictors across the participant's raw judgments for each measure across the 177 foods. We then calculated the analogous 10 correlations between desire and each predictor. Figure 12 Panels A and B visualise the results, with each dot representing the correlation for a single participant.

For both consumption frequency and desire, large individual differences emerged. Individuals differed considerably in how strongly each of the ten motives correlated with consumption frequency and desire. The most consistently strong correlations across participants for both consumption frequency and desire was automaticity, followed by self-identity and situational transport, although the latter two show considerable individual differences across participants. Consumption frequency and healthiness were weakly to moderately positively correlated for the vast majority of participants, with only a minority of participants exhibiting weak negative correlations. In contrast the correlations between desire and healthiness appeared split, with about half the participants showing positive and half negative correlations. For desire, a handful of extreme outliers emerged for automaticity, self-identity, connectedness, emotional satisfaction, and situational transport. All these participants exhibited strong negative correlations between these predictors and desire, while the majority of participants exhibited moderate to strong positive correlations. For both taste-related motives, sweetness and bitterness, correlations across the majority of participants ranged from weakly positive to weakly negative for both consumption frequency and desire, again with the exception of a few outliers in either direction.

As these results illustrate, large individual differences exist in the motivational factors that predict consumption frequency and desire. Nevertheless, the overall patterns at the individual level correspond to the overall patterns we saw earlier at the group level. For both consumption frequency and desire, strong associations with automaticity, self-identity, and transport again emerged. Healthiness again only moderately and positively correlated with consumption frequency, although a small group of participants exhibited strong positive correlations. As for the group-level correlations, the two taste dimensions sweetness and bitterness correlated only weakly with consumption frequency and desire. In summary, the general pattern across participants mirrored the results of the group correlations, although large individual differences in correlation strength emerged for all predictors, highlighting the importance of assessing motivation at the individual level.

Figure 12 - Results of the individual correlations between the ten predictors and consumption frequency (A) or desire (B)

Violin plot that visualises the results for individual correlations between the ten predictors and the two dependent variables: Consumption frequency (Panel A) and Desire (Panel B). Each dot represents the correlation of one participant between one the DVs with one of the predictors.

Next, to examine each participant's individual prediction profiles for consumption frequency and desire, we visualised their individual correlations in Figure 12 as heatmaps in Figure 13 and Figure 14, respectively. Each row of each figure presents the correlation profile for a single participant across the 10 predictors, where each column presents the correlations for a single measure across the 204 participants. As a cell becomes redder, a correlation approaches 1; as it becomes bluer, it approaches -1; as it becomes whiter, it approaches 0 .

On the left of each heatmap, a dendrogram from hierarchical clustering using the Ward D measure clusters participants by the similarity of their prediction profiles. On the top of each heatmap, an analogous dendrogram clusters the 10 predictors by how similarly they order participants.

As Figure 13 and Figure 14 illustrate, considerable differences exist in prediction profiles across participants, and no clear groups with similar predictive profiles emerged for either consumption frequency nor desire when taking all motives into account. Within each motive there are large individual differences in correlation direction and strength, with the exception of automaticity which consistently emerged across participants as positively correlated, with the exemption of an extremely small minority at the bottom of the heatmap.

For consumption frequency, it appeared that the participants with high correlations for situational transport also tended to exhibit the highest correlation for automaticity (Figure 13). A different group of participants showed a similar pattern for self-identity and emotional satisfaction. The greatest differences within a motive appeared again for healthiness, which exhibited a large spread between negative and positive correlations.

The greatest differences in correlations with desire could be detected in its association with healthiness (Figure 14). Participants appeared split, with half of the participants showed positive correlations while the other half showed negative correlations. Furthermore, two extreme groups emerged for this motive, with a few participants presenting high to moderate correlations, while in contrast another group presenting moderate negative correlations. At the bottom emerged a couple of participants who presented with highly negative correlations across most eating motives except bitterness and sweetness.

Figure 13 - Individual correlations between ten predictors and consumption frequency

Heatmap shows the individual correlation results between consumption frequency and the ten predictors. Each row presents the correlation profile of one participant across the ten predictors. Each column presents all of one predictors correlation. The more the correlation approaches zero the whiter the cell, the more the correlation approaches one the redder the cell. The more the correlation approaches minus one the bluer a cell.

Figure 14 - Individual correlation profiles of desire
Heatmap shows the individual correlation results between desire and the ten predictors. Each row presents the correlation profile of one participant across the ten predictors. Each column presents all of one predictors correlation. The more the correlation approaches zero the whiter the cell, the more the correlation approaches one the redder the cell. The more the correlation approaches minus one the bluer a cell.

Analogous to the group-level analysis, simple linear regression models were used to assess how much variance the ten motives were able to explain when predicting consumption frequency and desire for each individual participant. Specifically, we computed two simple regressions for each participant by predicting their consumption frequency or desire ratings with the 10 predictors across the 177 foods. No random effects or interactions were included. All included values were first standardized on the individual participant level.

Generally, these regression models explained considerable variance in consumption frequency and desire for most participants. For consumption frequency, the median R^{2} across the 204 individual regressions was .59 (IQR = .19). For desire, median R^{2} was $.66(I Q R=.17)$. Figure 15 presents R^{2} values for consumption frequency and desire for each of the 204 participants, each illustrated by a single point. Although considerable variability exists across participants, the ten predictors explained large amounts of variance in consumption frequency and desire for most.

Figure 15 - Individual linear regression's explained variance distribution
Violin plots that visualise the distribution of explained variance when predicting consumption frequency and desire with the ten predictors. For each participant a simple linear regression analysis was performed to predict consumption frequency and desire with the ten predictors. Each dot represents the explained variance for one of the 204 participants.

3.4.2.4 Individual consistency in motivational patterns across eating situations

As the previous two sections have shown, the 10 predictors do an excellent job of explaining variance in consumption frequency and desire at both the group and individual levels. Of interest in this next analysis is how stable these patterns of prediction are at the situational level. Specifically, do the individual patterns of prediction in Figure 13 and Figure 14 vary much across the four eating situations: typical breakfast, typical lunch, typical dinner, and daytime snack? Or does the pattern of prediction remain relatively constant across situations?

To evaluate this issue, we used the intraclass correlation to assess agreement within an individual for their four prediction profiles across the four eating situations (Shrout \& Fleiss, 1979). Specifically, for each individual, we computed the correlation between each of the ten predictors and consumption frequency across only the foods in each situation (and analogously for desire). In other words, we computed four prediction profiles for each participant, one for each situation (i.e., four sets of ten predictive correlations). Each set can be viewed as the predictive profile for how strongly the ten predictors predicted an individual's consumption frequency in one of the four situations (and analogously desire). Of primary interest was the question: How similar are the four predictive profiles? How similar is the pattern of prediction for an individual across the four eating situations?

The intraclass correlation offers a means of addressing this question. Specifically, it measures how much similarity exists between each set of individual-specific prediction profiles. From the perspective of the Shrout and Fleiss (1979) framework for understanding intraclass correlations, the four situations serve as judges, and the ten predictive correlations serve as the judged objects. From this perspective, the question is how much do the four situations (judges) agree on the pattern of ten predictive correlations (judged objects). If the pattern of prediction varies considerably across situations, the intraclass correlation should approach 0. If the pattern of prediction is highly stable across situations, the intraclass correlation should approach 1. Intuitively, an intraclass correlation estimates the average correlation between all pairs of
situations in their pattern of prediction across the 10 predictive correlations. Because we have only sampled a subset of eating situations, we have used the random effects form of the intraclass correlation, thereby allowing the agreement observed to generalize across other eating situations as well (i.e., the ICC2 in Shrout \& Fleiss, 1979).

Figure 16 presents the results of this analysis. The violin-boxplot on the left presents the results for consumption frequency; the violin-boxplot on the right presents the results for desire. Each of the 204 points in a plot represents the ICC2 for a single individual. As these results illustrate, considerable agreement existed in the patterns of prediction across eating situations for consumption frequency and desire. For consumption frequency, median agreement was .74, and for desire it was .78. Intuitively, these values indicate that the average correlation in the pattern of prediction across pairs of eating situations averaged .74 consumption frequency and .78 for desire. For the typical participant, the pattern of prediction varied little across eating situations. Or in other words, the eating situation had relatively little impact on the pattern of prediction for most participants. Within an individual, the pattern of motivation, as reflected in the 10 predictive correlations, remained remarkably stable across situations.

Figure 16-ICC2 assessing the stability of predictive profiles across the four eating situation within each individual

Violin-boxplots visualising the distribution of explained variance when predicting consumption frequency and desire with the ten predictors. For the analysis simple linear regression analysis were run separately for each individual. Each dot represents the explained variance for one participant.

3.4.2.5 Individual self-assessment

How much awareness do participants have of their predictive profiles in Figure 13 and Figure 14? If they were asked how much each of the ten predictors influences their eating consumption frequency or desire, how well would their subjective estimates match the correlations computed from their judgments across foods? These next analyses addressed this question (across all four situations together).

As described in the Methods, participants estimated how much they believed that each of the 10 motivational predictors influences their consumption frequency, along with how much the 10 predictors influence their desire. The two left panels in Figure 17 visualise these self-assessments (consumption frequency on the top, desire on the bottom). The estimates of consumption frequency and desire were highly correlated, with a median correlation of .82 and an IQR of . 25 .

Once again, considerable individual variability emerged across individuals. Nevertheless, participants generally believed that some motivational factors were more likely to influence their consumption frequency and desire than others. In particular, emotional satisfaction and fillingness were rated as most influential, whereas bitterness and situational transport were rated as the least. Affordability was rated as more important for consumption frequency than for desire, whereas sweetness exhibit the opposite pattern. Healthiness and emotional satisfaction were generally judged important for both, whereas selfidentity and situational transport were generally judged unimportant for both.

Notably the general patterns of prediction in Figure 17 departed considerably from the patterns of prediction observed in Figure 12, Figure 13, and Figure 14. Although participants believed that emotional satisfaction, affordability, fillingness and healthiness were the most important influences on consumption frequency as well as desire (Figure 17), their implicit judgments in Figure 12, Figure 13, and Figure 14 showed instead that automaticity was the most important predictor for consumption frequency as well as desire, followed by self-identity and situational transport. The greatest difference occurred for sweetness, which by the participants themselves was overall rated as yielding

Figure 17 - Participants' self-assessment of how influential each of the ten predictors are for their consumption frequency (A) and desire (B)

Violin plots show participant's self-assessment of how much each of the ten predictors predicts their consumption frequency (A) and desire (B). Participant rated the importance on a continuous scale ranging from 0 to 10 . The boxplots present the median and IQR of the distribution while each dot represents the correlation result of one single participant.
great influence especially for desire, while in our prediction sweetness only very weakly correlated with consumption frequency and desire.

To assess the agreement between an individual's predictive correlations for consumption frequency and their self-assessments of them we calculated the correlation between their prediction profile in Figure 13 and their selfassessments in Figure 17 Panel A. Agreement for desire was computed analogously, using the prediction profiles in Figure 14 and their self-assessment in Figure 17 Panel B. Figure 18 visualises the distribution of agreement across participants, with the median correlation for consumption frequency being .14 $(\mathrm{IQR}=.48)$ and for desire .11 ($\mathrm{IQR}=.50$). As these results illustrate, agreement was only weak to moderate for most participants. Participants exhibited relatively little awareness of the factors that predict their consumption frequency and desire as measured by their judgments for specific foods in specific eating situations.

Figure 18 - Individual correlation results between what SAM ${ }^{2}$ predicted to influences a participant's consumption frequency and desire and their own self-assessment

Violin plots shows the distribution of the individual correlation between what we predict influences a participant's consumption frequency and desire and their own self-assessment. The boxplots present the median and IQR of the distribution while each dot represents the correlation result of one single participant.

3.4.3 Discussion

The purpose of Study 3 was to expand on the results of Study 2 by assessing consumption motivation within individuals, allowing us to explore individual prediction patterns, their stability across eating situations and compare our predictions with participants self-assessment.

On the group level we found both, consumption frequency and desire, to be highly correlated with automaticity, connectedness and fillingness. Desire was furthermore strongly associated with emotional satisfaction and healthiness (Figure 11). On the individual level our ten predictors were able to explain large amount of variance in consumption frequency and desire (Figure 15), though the correlation patterns differed greatly between participants (Figure 12, Figure 13, and Figure 14). Only automaticity consistently emerging as strongly correlated with consumption frequency and desire across participants. Within participants we found little variation in motivation patterns across eating situations. Lastly, we found little agreement between the implicit prediction of SAM ${ }^{2}$ and participants' self-assessment.

3.5 General discussion

The overarching aim of the work presented here was to gain a better understanding of people's eating and drinking behaviour. Study 1 produced an extensive dataset of foods and drinks consumed in different eating situations, revealing the wide variety of foods that people consume in different eating situations, as well as large individual differences. Using a between-group design, Study 2 identified five factors that underlie a diverse set of possible consumption motives, namely, habitualness, unhealthiness / healthiness, savouriness / sweetness, fullfillingness, and bitterness/sourness.

Study 3 built on both previous studies and examined consumption motivation within individuals, assessing individual patterns of prediction and their stability across situations. At the group level, automaticity, connectedness, and fillingness emerged as the strongest predictors for both consumption frequency and desire, with emotional satisfaction and healthiness also being strong (Figure 11). These results were partly mirrored at the individual level (Figure 12, Figure

13, and Figure 14). Across participants, automaticity consistently emerged as most highly associated with consumption frequency and desire. Next highest were situational transport, self-identity, and emotional satisfaction, again for both consumption frequency and desire. Next highest for both were connectedness, affordability, and fillingness. Healthiness was on average relatively unimportant for both, though its importance differed greatly between participants. Similarly, the two taste dimensions bitterness and sweetness were only weakly correlated. Although minor differences occurred in the individual prediction of consumption frequency and desire, their general patterns of prediction were quite similar, with predictions overall tending to be higher for desire than for consumption frequency.

Complementing these overall trends at the group level, considerable individual differences occurred at the individual level (Figure 12, Figure 13, and Figure 14). Healthiness especially differed considerably across participants, ranging from highly positive to weakly negative for consumption frequency and highly positive to moderately negative for desire.

Despite these large individual differences in predictive patterns, the predictors generally explained large amounts of variance when explaining consumption frequency and desire for individual participants. Across the 204 participants at the group level, the 10 motivational predictors explained a median . 59 (IQR = .19) of the variance for consumption frequency and a median 66 (IQR $=17$) of the variance for desire. These large values of R^{2} indicate that the 10 motivational predictors offer a relatively comprehensive account of consumption frequency and desire.

Within most participants, little variation in predictive patterns emerged across the four eating situations, indicating that eating situation had little impact on the profile of eating motivations (Figure 16). Nevertheless, we also found substantial individual differences in the motivational factors that predict their consumption frequency and desire. Putting these two findings together, large individual differences exist in individual motivations for consumption, but these large differences are highly stable within individuals. Finally, participants showed little insight into the motivational factors associated with their
consumption, with their self-assessments departing considerably from their actual judgments of consumption.

3.5.1 Implications

On both the group and individual levels, automaticity emerged consistently as one of the strongest predictors for consumption frequency as well as desire. Those results are in line with previous findings that habit strength strongly predicts the consumption of various food groups (Brug et al., 2006; StroebeleBenschop et al., 2018). Healthiness in contrast was only moderately correlated with both consumption frequency and desire at the group level, although considerable variability emerged for individuals, with some showing very high associations and others showing none or even highly negative correlations. Similar patterns emerged across all predictors, further substantiating the need to include individual level results when investigating eating behaviour or risk losing important information by aggregating results. The large individual differences in predictive patterns furthermore provide a starting point for the development of novel intervention methods, tailored to the individuals' unique motives.

Two other large sources of variability further suggest caution in conducting eating research and designing eating interventions. First, foods varied widely on factors related to eating motivation (Figure 10, Panel A). Second, individuals varied widely in how they perceive motivational factors in the same foods (Figure 10, Panel B). For these reasons, researchers must be careful when choosing foods and drinks to assess an individual eating behaviour. For instance, when trying to choose healthy or tasty foods for neuroimaging or intervention studies, it is important to record and take into account each participant's unique perception of the foods included.

One of the main findings in Study 3 was the surprising result that different eating situations had relatively little impact on the motivational factors associated with both consumption frequency and desire. This finding contrasts with other studies that found motives for breakfast differ from other meals (e.g., Cadario \& Morewedge, 2022). It furthermore diverges from what we would have expected based on SAM 2 's theoretical groundwork, the grounded
cognition theory (e.g., Barsalou, 2008; Papies et al., 2020). SAM²'s situated questions (e.g., "cake for usual breakfast"), were expected to activate the relevant situated conceptualisation and prompt (partial) simulations of eating the food in the situation (Papies, 2013a). As these situated conceptualisations are formed and updated through prior interaction with the food, they are consequently unique for individuals, foods and situations. These differences are then captured by SAM ${ }^{2}$, resulting in intra- as well as individual differences. One explanation for the lack of variability might be our use of 'usual' eating situations. Potentially this triggered generalized patterns that guide typical’ consumption, which is independent of eating situation. Potentially including other less common and more specific eating situations, such as eating out in a restaurant or ordering take away, might have engendered greater variability in predictive patterns across situations. Expanding on the eating situations assessed here could be an informative direction for future studies.

Another surprising finding was the lack of agreement between how much people believe each predictor influences their consumption frequency and desire and what their detailed judgments across foods actually predicted. For instance, affordability was rated as highly influential by most participants for consumption frequency as well as desire, whereas our analysis of detailed food judgments showed only moderate effects overall. This same pattern was even more pronounced for sweetness, which was rated as highly influential in the selfassessment, but together with bitterness, barely correlated with consumption frequency or desire for most participants in their food judgments. Though it is important not to overinterpret the observed difference as the SAM² value was aggregated across different foods whereas the self-assessment data was not aggregated. To further assess the difference between SAM ${ }^{2}$ and traditional instruments it would be important to use the aggregated results of for instance, TEMS to compare SAM ${ }^{2}$ to.

While greatly differing from the SAM ${ }^{2}$ measure, the trends across the selfassessment questions fit in well with the Food Choice Questionnaire's (Steptoe et al., 1995), findings that affordability, sensory appeal and health were on average reported to be most important for food choice. Similarly, the relative importance of Liking and Health was mirrored as well in the The Eating Motive

Survey (Renner et al., 2012), although here, in contrast to our self-assessment, habit was rated as highly important as well. The similarities between the established questionnaires and our self-assessment questions are perhaps unsurprising as all require participants to generalise their ratings across eating situations and foods, likely basing their judgments on intuitions and stereotypical thinking instead of actual 'empirical data' capturing their consumption. Consequently, the findings that the relative importance of motives differ greatly between SAM ${ }^{2}$ and self-assessment might indicate that the latter is less reflective of participants actual motives for consumption frequency and desire when consuming specific foods and more informative about participants self-image ("I am a healthy eater") and potentially social norms ("people eat because they like the taste") concerning food choice. This might furthermore explain findings by Wahl et al.'s (2020), that when assessing trait eating motives, participants, on average, overestimate the importance of most motives on their eating compared to state motives. Overall, these results emphasize the great importance of including specific eating occasions when researching eating behaviour instead of relying on generalised judgments.

3.5.2 Strengths and limitations

One strength of the presented studies was the inclusion of Studies 1 and 2 to inform the design of Study 3. Instead of choosing foods for Studies 2 and 3 using experimenter intuition, we collected a large food pool by asking 100 participants to list what they consume typically and occasionally in different eating situations. Similarly, Study 2 allowed us to identify the most relevant consumption motives out of 30 potential candidates. The inclusion of 177 foods in Study 3 helped to ensure large variability in the foods sampled, thereby capturing most people's diets, while remaining manageable for participants to evaluate on 10 predictors and 2 dependent variables.

Perhaps the most significant limitation of the current studies is the assessment of only one time-point for the 12 measures. Consequently, we were unable to examine the stability of the predictive patterns across time. In the future, at least repeating the ratings once after a delay would enable assessing the stability of predictive patterns over time. A further limitation was that participants rated the foods outside of actual eating occasions, e.g., before their
dinner and were instead asked to immerse themselves into the four eating situations (e.g., "usual breakfast"). The majority of questions then aimed to capture participants general / pre-consumption perception of the foods within the situation (e.g., how healthy do you think food is for usual dinner) though some question (e.g., emotional satisfaction) were chosen to judge postconsumption experience instead (" how emotional satisfied to you feel after consuming this food) instead of anticipatory (e.g., " how emotionally satisfactory do you think food is for a snack"). Capturing post-hoc instead of anticipatory emotional satisfaction might have been affected by judgment biases, e.g., food guilt, rationalisation and negative health outcomes and might have skewed (reduced) the reported emotional satisfaction for some eaters (van Strien et al., 2019) and might have therefore not been representative of the actually experienced (potentially higher) nor the anticipated (potentially higher) emotional satisfaction. Though it is important to note here that SAM ${ }^{2}$ did find high associations with the emotional satisfaction rating and consumption frequency as well as desire. This indicates that the measured construct does appear to be relevant for both dependent variables. Nevertheless, in the future it would be important to assess this question further and evaluate how the SAM ${ }^{2}$ food perception measures change before and after consumption - for instance does the expected emotional reward match the later experienced emotional satisfaction, and, if there is a difference, to assess which one has more impact on later consumption frequency.

A second limitation was the oversight in Study 1 to record all potentially relevant demographic information of our participants, meaning that it was not possible to assess how representative the participants, and consequently the sampled foods, are for the general UK population. A further limitation was the inclusion of only four eating situations in Study 3, all of which covered usual eating situations. As mentioned earlier, only including these four situations might explain the lack of differences in predictive patterns across eating situations. We hasten to add, however, that it's nevertheless interesting, informative, and perhaps counterintuitive that eating motivations appear relatively stable across usual eating situations. Future studies could include more eating situations to test whether this stability holds more generally. Similarly, it would be interesting to include ecological momentary assessment methods in addition to our questionnaires.

Lastly, even though we were able to explain a great amount of variance with our consumption predictors for the majority of participants, there appear to be a number of participants whose consumption frequency and desire were not explained well by our predictors. In the future it could be helpful to use qualitative methods, such as qualitative interviews, to further explore what might predict these individuals' consumption and potentially add other motives in a replication of Study 3. One option might be, for instance, to first ask participants to complete the SAM^{2} measure with the previously identified motives and afterwards to interview them and asking them directly which other motives they think might be relevant and how they think these motives might influence their food consumption (e.g., sustainability), whether they think those motives are context-specific etc. Future studies could then add these measures to the existing SAM ${ }^{2}$ and assess how relevant they are for the general population to further refine and improve the $S A M^{2}$ measure.

3.5.3 Conclusion

Automaticity emerged consistently as the most important predictor for consumption frequency and desire at both the group and individual levels. Overall, we found considerable individual differences in predictive patterns while being able to explain great amounts of variance for the majority of participants when predicting consumption frequency and desire. Furthermore, eating situation did not appear to alter the predictive patterns within participants. Lastly, there was little agreement between what participants believe influences their eating consumption and what we found to predict it.

3.6 Declarations

Funding

This work was supported by a grant (VENI-451-10-027) from the Netherlands Organization for Scientific Research.

Conflicts of interest / competing interests

The authors declare no conflict of interests/competing interests.

Availability of data and material

Please find the data, all analysis scripts and ethics on the Open Science Framework (OSF https://osf.io/anpmx/).

Ethics

This project was approved by the University of Glasgow College of Science \mathbb{A} Engineering Ethics Committee (Date: 29/06/2016, no: 300150156).

Chapter 4 Assessing individual motivation for consuming diverse food groups over a twoweek period

This chapter is an exact copy of the following preprint manuscript:
Werner, J., Kloidt, J., \& Barsalou, L. (2022, November 30). Assessing individual motivation for consuming diverse food groups over a two-week period.
https://doi.org/10.31234/osf.io/4d9xq

4. Abstract

When attempting to lose weight or adopt a more sustainable diet, most people struggle considerably to permanently change their eating behaviour. To develop novel interventions needed to help participants achieve their goals, it is first necessary to understand what motivates individual consumption. In the present study, we assessed individual consumption motivation in 70 participants for 16 diverse food groups across 5 time points over a two-week period. Participants were recruited to take part in an online survey. Across time points, participants rated the 16 food groups 5 times, first, on 2 dependent variables (consumption frequency and portion size), and second, on 6 potential motives that could predict consumption (enjoyment of taste, fillingness, healthiness, automaticity, emotional satisfaction, and self-identity). The two dependent variables were later combined by calculating their product to create a single dependent variable for consumption. Of interest was firstly to assess whether implicit learning effects emerged, specifically an increase in correlation strength between dependent variable and predictors from timepoint 1 to timepoint 5. Second, using G-Theory and intraclass correlations, we assessed the stability of each individual's consumption motives over time. We also established the motives that best explained each individual's consumption and how much variance they explained. Lastly, we assessed how much insight individuals have into their consumption motives. We found significant implicit learning effects in the association of consumption with healthiness, self-identity and fillingness. Across the five time points, participants consumption motives remained remarkably stable. We observed large individual differences in motivation for consumption across participants. Finally, participants exhibited little awareness of their consumption motives as captured by their implicit motivation judgments. To our knowledge this is the first study to establish the stability of situated consumption motivation over time. Our results furthermore provide possible starting points for novel interventions, empathising the importance of individualised instead of 'one size fits all' approaches.

4.1 Introduction

Food has a unique place in our life. The specific kinds of food we consume have an impact not only on our physical health (Ignarro et al., 2007; Willett, 1994), but also on our mental health (El Ansari et al., 2014) and even our cognition (Spencer et al., 2017). Consistently overconsuming foods results in excessive body fat, which is further associated with numerous negative health outcomes, including various forms of cardiovascular disease and cancer (Calle \& Kaaks, 2004).

Although the hormones ghrelin (Higgins et al., 2007) and leptin (Cousino Klein et al., 2004) act as physical signals to motivate food consumption, eating is a much more complex process than the pure satisfaction of physical signals. For example, other motivators not related to hunger such as stress (Groesz et al., 2012), emotion (Reichenberger et al., 2020), norms (Higgs, 2015), and identity (Bisogni et al., 2002) can influence eating behaviour extensively.

Food production in general, and especially meat production, is a substantial contributor to global greenhouse emissions (O'Mara, 2011), that play a major role in global warming (Al-Ghussain, 2019). Consequently, food choice not only shapes an individual's long-term health and wellbeing but can furthermore affect planetary health (Birt et al., 2017). To make their eating more sustainable, people will have to decrease their meat consumption in favour of a more plantbased diet (Sabaté \& Soret, 2014). Despite a considerable increase in media attention, most people remain largely unaware of the link between their individual food choices and climate change, again especially related to their meat consumption (Macdiarmid et al., 2016; Tobler et al., 2011).

Furthermore, when people try to shift towards more sustainable diets, numerous obstacles, such as negative social feedback (Wehbe et al., 2022), must be overcome. Novel interventions are needed to help people adopt more sustainable diets. One possible starting point for developing such interventions can be found in establishing an individual's motivations for eating. Vainio et al. (2016), for instance, found that the importance of eating motives was different
for people actively changing their diet compared to those with established diets, implicating the importance of eating motives in behaviour change.

In summary, novel eating interventions are needed to help people achieve their dietary goals. To work towards this aim, it is fundamental to first fully understand the underlying motives, not only for meat consumption, but for consuming all types of food. It is also important to assess how much eating motivation varies across individuals, how stable it is over time, and how much insight people have into it.

4.1.1.1 The Situated Assessment Method (SAM ${ }^{2}$)

The Situated Assessment Method (SAM ${ }^{2}$) is a psychometric approach that evaluates individual differences in a target behaviour along two dimensions of situatedness (Dutriaux et al., 2021). First, SAM ${ }^{2}$ assesses the target behaviour in the situations where it occurs, rather than abstracting across situations as in most psychometric instruments. Second, it evaluates the target behaviour across all phases of the Situated Action Cycle, including the environment, selfrelevance, affect, action, and outcomes (for a detailed description of the Situated Action Cycle see Barsalou, 2020; Dutriaux et al., 2021). To understand eating, for example, a SAM ${ }^{2}$ approach would assess food consumption in the situations where they occur and would assess it across all phases of the Situated Action Cycle.

SAM ${ }^{2}$ has previously been used to study a range of diverse target behaviours such as habits (Dutriaux et al., 2021), eating behaviour (Werner et al., 2022), and stress (Pedersen et al., 2022). The Pedersen et al. (2022) study is of particular interest here. In Pedersen et al. (2022), stress was assessed once a week at three timepoints over a two-week period. At each time point, participants received covid-related situations (e.g., worrying about catching the virus, taking public transport) and evaluated each one on two dependent variables (eustress and distress) and on potentially relevant factors from the Situated Action Cycle known to influence stress (e.g., expectation violation, threat, coping effectiveness). As expected, based on previous SAM² studies, participants showed large individual differences in the factors that predicted their distress and eustress. Remarkably, however, and surprisingly, both distress and eustress
became increasingly correlated with the stress predictors across timepoints. For example, judgments of both distress and eustress correlated more highly with expectation violation at the third timepoint than at the first. Similar increases in predictive strength occurred for the other predictors as well.

These results implicate implicit learning effects across timepoints as participants evaluate stress and its predictors. In the process of evaluating stressful situations for distress, eustress, and predictive factors from the Situated Action Cycle, relations between these measures grow stronger. Building on those results, one aim of the current study was to assess whether the same implicit learning effects occur when people assess their food consumption over time. Do motivational factors that predict consumption (e.g., healthiness, taste) correlate with consumption increasingly as participants evaluate them across multiple timepoints?

4.1.1.2 Previous $S A M^{2}$ work on consumption motives

The current study also built on previous SAM ${ }^{2}$ work that investigated motives for food consumption, such as healthiness, fillingness, and sweetness (Werner et al., 2022). For this previous project, we used $S A M^{2}$ to establish individual differences in consumption motives at a single timepoint. Our first aim was to assess how much consumption motives varied across individuals, along with how much variance they explained in their consumption frequency and desire. We were also interested, however, in how stable these motives were across different eating situations (breakfast, lunch, dinner, snack).

In the last of three studies, 204 participants rated 177 foods, each situated in 1 of 4 eating situations. Specifically, each participant evaluated each food on two dependent variables (consumption frequency and desire) and on ten consumption motives sampled from the Situated Action Cycle (healthiness, fillingness, sweetness, bitterness, affordability, automaticity, self-identity, social connectedness, emotional satisfaction, and situational transport).

Large individual differences emerged in motivational profiles (i.e., in the specific motives that predicted consumption frequency and desire) for each individual). Nevertheless, the ten predictors tended to explain large amounts of
variance for each individual's consumption frequency and desire (median explained variance across individuals of 59% and 66%, respectively). Surprisingly an individual's motives tended to be highly stable across the four eating situations. In other words, an individual's motives in one eating situation tended to predict their motives in another eating situation. Lastly, we assessed how much insight participants showed into what predicted their behaviour and found little agreement between these assessments and prediction profiles in their SAM ${ }^{2}$ data. Participant's beliefs about their eating motives diverged considerably from their situation- and food-specific judgments of eating motives.

4.1.1.3 Design of the current study

A remaining question we had been unable to address in our previous study was how stable eating motives are over time. To assess stability over time, it is necessary to have participants repeatedly assess eating motives at multiple time points. Thus, a primary purpose of the current study was to assess eating motives on multiple occasions, in this case, over five time points every few days across a two-week period. Doing so further allowed us to assess the implicit learning effects observed in the multi-timepoint stress study described earlier (Pedersen et al., 2022).

We couldn't, however, simply repeat Werner et al.'s (2022) study design at multiple time points, because its design was much too large. Specifically, it assessed 177 foods in 4 eating situations on 2 dependent variables and 10 predictors, with all this data collection requiring 3 sessions of 45 minutes over the course of 2 weeks. In the study here, we needed to distil this original assessment into a single session taking participants only about 15 minutes to complete.

We therefore decided to try a new approach. Instead of asking individuals to evaluate a large number of specific foods ($n=177$), we asked people to evaluate how much food they consumed for each of 16 food groups that cover all foods comprehensively (e.g., fruits, vegetables, breads, unprocessed meat). For each food group, participants were asked to remember the foods they had consumed from the group over the past few days, and then to estimate how frequently they'd consumed these foods and the typical number of portion sizes consumed.

To further distil the study design, we decided not to include specific eating situations. This was further supported by the observed lack of variation in an individual's eating motivation across situations in Werner et al. (2022). Based on those results, measuring motivation in specific situations here would not have been a good use of time and resources. So, we simply asked participants to evaluate how much they had consumed each of the 16 food groups across eating situations over the previous two days.

Finally, we further distilled the study design by reducing the number of motives assessed. Results from Werner et al. (2022) informed the motives included in the current study. Because automaticity, emotional satisfaction, and selfidentity strongly predicted consumption frequency and desire in Werner et al., we included them here. In contrast, sweetness and bitterness only correlated weakly with consumption frequency and desire in Werner et al. (2022), although participants believed that they were strongly associated with their consumption behaviour. To capture the taste dimension in the current study, we therefore decided to simply include a measure of how much participants had enjoyed the taste of each food group over the past two days. Although healthiness and fillingness did not correlate with consumption frequency and desire as highly as automaticity, emotional satisfaction, and self-identity in Werner et al. (2022), they tended to be moderately important, and participants again believed that they were highly associated with their consumption. For these reasons, we decided to also include them in the present study. In summary, we included six predictors of consumption frequency here: enjoyment of taste, fillingness, healthiness, automaticity, emotional satisfaction, and self-identity.

To measure our dependent variable-consumption of a food group over the past two days-we assessed two facets of consuming the food group: frequency and typical portion size. Specifically, we first asked people to estimate how many times they had consumed the food group over the past two days (consumption frequency). Across these occasions, we then asked them to estimate the typical number of portions consumed at each, where a portion was defined as the amount equivalent to one hand-full (a widely used method in dietary recommendations; (Brown et al., 2021)). To compute the consumption amount for the food group at this time point, we simply took the product of an
individual's frequency and typical portion size estimates. If, for example an individual had consumed sweets on three occasions over the past two days with a typical portion size of two handfuls, their consumption of sweets at this time point was specified as six portions.

4.1.1.4 Overview and predictions

The aim of the present study was to assess individual differences in consumption motives of diverse food groups, to measure the stability of consumption motives over time, and to explore whether we could detect implicit learning effects. The study built on and extended our previous findings into individual differences in eating motivation (Werner et al., 2022), as well as implicit learning effects over time for stress (Pedersen et al., 2022).

At 5 separate time points during the two-week study duration, participants were asked to evaluate 16 diverse food groups on 6 eating motives as well as the 2 facets of our dependent variable (consumption frequency and typical portion size), whose product constituted our dependent variable of consumption. Three of the five timepoints assessed consumption over two weekdays (Tuesday and Wednesday), with the remaining two timepoints assessing consumption over the weekend (Saturday and Sunday). The length of two days was chosen to ensure the entirety of the weekend (Saturday and Sunday) was captured, whereas the two weekdays (Tuesday and Wednesday) were chosen to be of an equivalent length to the weekend but in the middle of the week. At each timepoint, we also asked participants to self-assess how much they believed that each of the six predictors had influenced their food consumption over the previous two days. Notably, at each time point, participants were repeatedly instructed to only recall their experience of the past two days when making their judgments.

Based on previous results, we expected to observe implicit learning effects, namely, the association of consumption with the six predictors was predicted to increase from timepoint 1 to timepoint 5 . We furthermore expected to observe large individual differences in the motives associated with consumption. Furthermore, we predicted the consumption motives that were important for each individual would explain a large amount of variance in their consumption. Lastly, we expected little agreement between an individual's beliefs about their
consumption motives and their actual motives associated with their consumption in the $S^{2}{ }^{2}$ data.

4.2 Methods

4.2.1 Participants

A total of 79 UK residents (48 Female, age $M=37.94, S D=12.7$, $B M I M=26.91 S D$
= 6.42) were recruited via the Prolific platform (https://www.prolific.co). Participants were eligible to take part if they were between the ages of 18 and 70, spoke English fluently, and had previously taken part in at least 10 other Prolific studies with an acceptance rate of 95\%. Participants were informed that they should only participate in the study if they could complete all five sessions (failing to complete any session would lead to exclusion from the remaining study and without monetary compensation for previous participation). Only the 70 participants who completed all five sessions were included in the analyses to follow. Eight out of the original 71 participants failed to complete all five timepoints in the first collection cycle, despite multiple attempts by the researcher to reach out via email during the data collection timepoints, indicating that participants either simply forgot to respond in time or decided not to continue with the study (2 dropouts in T2, 4 dropouts in T3, 1 dropout in T4, 1 dropout in T5). The missing participants then replaced with 8 new participants during a second collection cycle during which one participant dropped out after T3, resulting in complete data sets for 70 participants. After successfully completing all five sessions, participants were paid $15 £$ for their participation (for a total of about 1.5 hours time across the 5 sessions).

4.2.2 Materials

4.2.2.1 Food groups

To fully capture participants' eating experiences, whilst also keeping the duration of the survey manageable, participants were asked to report their consumption of food groups instead of specific foods. Informed by nutritional websites and other relevant studies, we identified 16 distinct food groups that we expected would cover most individual diets (Table 9). The food groups included both meats and plant-based products to cover carnivore, vegetarian,
and vegan diets. When participants were asked to assess a food group on one of the dependent variables or on any of the six predictors, they were always presented with the food group's name, along with a few examples of foods belonging to it (as Table 9 illustrates). For instance, the food group "Nuts / Seeds" was illustrated with "raw almonds, walnuts, sunflower seeds, chia, etc." Examples like these ensured that participants understood what foods were included in each food group and aided memory of foods consumed from it over the past two days.

4.2.2.2 Dependent variables

Instead of measuring the dependent variable, consumption, directly by asking how much of a food group participants had consumed during the past two days, we measured two of its facets separately (consumption frequency and portion size). Doing so allowed us to preserve potentially interesting individual differences (eating small portions frequently on multiple occasions versus eating one large portion in a single sitting). Furthermore, we thought that having participants remember all eating occasions first before judging the typical portion size might facilitate accuracy.

Table 9 - Food groups evaluated by participants and corresponding examples used to illustrate them

Food Group	Examples
Fruit	apples, strawberries, bananas, oranges, dates etc.
Vegetables	broccoli, tomatoes, lettuce, potatoes, carrots etc.
Beans Pulses Legumes	kidney beans, lentil, chickpeas etc.
Nuts Seed	raw almonds, walnuts, sunflower seeds, chia etc.
Unprocessed Meat	unprocessed chicken, beef, pork turkey etc.
Processed Meat	ham, sausages, bacon, salami etc.
Fish Seafood	salmon, tuna, cod, mussels, squid, prawn etc.
Dairy Egg	cheese, butter, yogurt, cream cheese, sour cream etc
Plant-based Meat	tofu, tempeh, quorn, meat-free sausages, mince etc.
Plant-based Dairy Egg	vegan cheese, egg, yogurt etc.
Bread	toast, bread rolls, Yorkshire pudding, wraps etc.
Pasta Rice	spaghetti, couscous, white rice, brown rice, rice noodles etc.
Cereal	oatmeal, granola, cornflakes, etc.
Sweets	chocolate, chocolate bar, toffee, ice cream, cake, pie, biscuits, cookies etc.
Salt Snack	crisps, salted nuts, crackers etc.
Fried Food	chips / fries, fried fish, fried chicken, onion rings etc.

Specifically, at each time point, participants first indicated on how many occasions they had consumed a food group (a discrete scale ranging 0 to 10 occasions) over the past two days. Participants then estimated the typical portion size consumed across these occasions in handfuls (a continuous scale ranging from 0 to 5 handfuls). For the typical portion size, it was explained to participants that if they had consumed a food group on two occasions in total, and that on the first occasion their portion size was two handfuls whereas on the second occasion their portion size was four handfuls, they should report a typical portion size of three. Finally, to create our dependent variable, consumption, we took the product of consumption frequency and typical portion size. If, for example, a person had consumed sweets on 6 occasions during the past two days and reported a typical portion size of 2 handfuls during the past 2 days, their consumption score for sweets was scored as 12 handfuls.

4.2.2.3 Predictors

The six predictors included were informed by our previous study on individual differences in eating motivation (Werner et al., 2022), and, as previously discussed, chosen to cover a broad range of eating motivations. In total six predictors were included: enjoyment of taste, fillingness, healthiness, automaticity, emotional satisfaction, and self-identity (Table 10). Importantly, when assessing a predictor, it was stressed to the participant that they should only think of their experience the past two days (e.g., "how much did you enjoy the taste of fruits and nuts the past two days?"). Table 10 presents the eight judgment questions (two dependent variables and six predictors). Predictors were always presented in the same order to all participants across the five timepoints, whereas the order of the 16 food groups within a predictor's rating block were randomised. Participants responded to all predictors on a continuous scale, ranging from 0 to 10 (see Table 10 for the corresponding scale labels).

Table 10 - Dependent variables and predictors, including the judgment question, scale, labels, and ICC2 for each measure
Dependent variables (DV) and predictors, together with their corresponding evaluative question. Shown underneath each question is the scoring range and corresponding labelling. The ICC2 establishes participants' agreement on their judgments for an evaluative question across the 16 food groups in Table 9. Because the ICC2 estimates random effects, these values can be generalized to other individuals from the same population. The two DVs, frequency and portion, were combined by calculating their product to create an overall measure of consumption. For each judgment question, FOOD GROUP refers to 1 of the 16 food groups assessed in Table 9.

Variable name	Evaluative question	ICC2
Frequency (DV)	On how many occasions did you consume FOOD GROUP the past 2 days? (Discrete 0 to 10) ($0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10)$. 40
Portion Size (DV)	Across those occasions what was the typical number of portions you consumed? [1 portion = 1 cupped hand] (Continuous 0 to 5) ($0 ; 1 ; 2 ; 3 ; 4 ; 5$)	. 32
Consumption (DV)	Product of frequency and portion size	. 30
Enjoy Taste	How enjoyable was the taste of FOOD GROUP for you the past 2 days? (Continuous 0 to 10) (Not at all enjoyable; somewhat enjoyable; moderately enjoyable; highly enjoyable; extremely enjoyable)	. 23
Fillingness	How filling was consuming FOOD GROUP for you the past 2 days? (Continuous 0 to 10) (Not at all filling; somewhat filling; moderately filling; highly filling; extremely filling)	. 24
Automaticity	How automatic was consuming FOOD GROUP for you the past 2 days? (Continuous 0 to 10) (Not at all automatic; somewhat automatic; moderately automatic; highly automatic; extremely automatic)	. 24
Healthy	How healthy was consuming FOOD GROUP for you the past 2 days? (Continuous 0 to 10) (Not at all healthy; somewhat healthy; healthy; highly healthy; extremely healthy)	. 62
Emotional Satisfaction	How emotionally satisfying was consuming FOOD GROUP for you the past 2 days? (Continuous 0 to 10) (Not at all satisfying; somewhat satisfying; moderately satisfying; highly satisfying; extremely satisfying)	. 22
Self-Identity	How related was consuming FOOD GROUP to your self-identity the past 2 days? (Continuous 0 to 10) (Not at all related; somewhat related; moderately related; highly related; extremely related)	. 12

4.2.3 Procedure

The study was part of a larger project investigating eating and covid stress, running online over a two-week period. Over this period, participants performed five sessions at five time points, each assessing the eating experience of the previous two days. Timepoints one, three, and five took place on Thursdays and captured the previous two weekdays (Tuesday and Wednesday). Timepoints two and four took place on Monday and captured the weekend (Saturday and Sunday).

Participants were informed that we were interested in their eating and covid stress over a two-week period, without disclosing our exact research questions. Then, without participants knowing, we randomly assigned them to one of the two groups, "the eating group" or "the covid stress group". The covid-stress group was a follow-up to Pedersen et al. (2022) and will be reported elsewhere. During the first and last timepoints, both groups filled out the exact same surveys, differing only on whether the eating survey came first (eating group) or after the covid stress survey (covid stress group). The main difference between the two groups were in timepoints two, three and four, when the eating group only assessed their eating behaviour and the covid stress group only assessed their covid stress experience.

Both groups filled out the same questionnaires in differing orders on timepoints one and five, plus additional questions at the end that collected demographic information and individual difference measures (age, gender, education, household, religious affiliation, current dieting status, diet restrictions, food responsibility in the household, past eating disorders, covid related measures and survey experience). In this article, only the 70 previously described participants from the eating group and their eating behaviour results are reported.

4.3 Results

All following data analyses reported next were conducted using R (R Core Team, 2019) and R Studio version R-3.6.1 (RStudio Team, 2020) and all data and analysis scripts for this study will be made available online.

4.3.1 Consumption measure

As described earlier, participants judged how frequently they consumed each of the 16 food groups at each of the 5 time points and also estimated the typical portion size (in handfuls) consumed across those occasions. We then combined these two measures for each food group at each time point by taking their product, thereby establishing the overall amount consumed. All following analyses were performed on this combined measure of consumption, except where noted otherwise. Interested researchers can access the raw data online if they wish to analyse consumption frequency and/or typical portion size separately.

4.3.2 Implicit learning effects

Of interest in the first analysis was to assess whether the same implicit learning effects, observed previously for stress in Pedersen et al. (2022), would also occur for food consumption here. Across time points, did the correlation between consumption and each consumption motive increase? To assess this issue, we computed the difference between timepoint one and timepoint five in the correlation between consumption and each consumption motive.

Specifically, we used the raw judgments at time point one to compute the correlation between consumption and each consumption motive across the 16 foods for each participant, resulting in 6 correlations for each of the 70 participants. We then repeated this procedure for time point 5, again resulting in 6 correlations for each of the 70 participants. For each consumption motive, we then subtracted its correlation at timepoint one from its correlation at time point five. A positive value indicated that the strength of correlation increased across time points, implying an implicit learning effect. In contrast a negative value indicated a decrease in correlation strength across timepoints.

Figure 19 presents the results for each consumption motive, with each dot representing the increase in correlation strength for a single participant from timepoint 1 to timepoint 5 for a single motive. Although, large individual differences emerged, overall, the median difference for each consumption motive was positive, suggesting the presence of implicit learning across timepoints.

To assess these possible effects statistically, we used bootstrap one-sample ttests with 10000 repetitions, to determine whether the differences in correlations for each consumption motive were significantly larger than 0 , indicating that the strength of correlation had increased from timepoint one to timepoint five across participants. For one-tailed bootstrap t-tests that predicted an increase in correlation strength from timepoint 1 to timepoint 5, these increases were significantly greater than 0 for healthiness ($p=.015$, bootstrap mean $=.086$), self-identify $(p=.034$, bootstrap mean $=.057)$, and fillingness $(p=.039$, bootstrap mean $=.067)$. Although the increases were in the predicted direction for taste, automaticity and emotional satisfaction, they did not reach significance (for enjoyment of taste, $p=.166$, for automaticity, $p=$.139; for emotional satisfaction, $p=.053$).

Lastly, for each participant, we computed a combined measure of the difference in correlation strength between timepoint one and five across all six consumption motives together. Specifically, we computed the sum of the six differences in correlation for each participant (shown in Figure 19), resulting in one value for each of the 70 participants (median $=.47$, $I Q R=1.25$, range $=-1.85$ to 1.84). Analogous to the significance analysis for the individual consumption motives, we performed a bootstrap one-sample t-test with 10000 repetitions, which found that the mean of the combined correlation difference score was significantly greater than $0(p=.002$, bootstrap mean $=0.31)$.

In summary, we found large individual differences in how the strength of association between consumption and consumption motives changed from timepoint one to timepoint five. Nevertheless, three of our six consumption motives exhibited significant evidence for implicit learning. Furthermore, when all six consumption motives were combined, a highly significant learning effect emerged across participants. Analogous to Pedersen et al. (2022), when participants evaluated their consumption motives across timepoints, correlations between these motives and consumption increased. Possible explanations of this implicit learning effect are addressed later.

Figure 19 - Individual learning effects
Violin-boxplot represents the distribution of how much the correlation in timepoint 1 and timepoint 5 differed from each other for each participant. Each dot represents the difference for a single participant

4.3.3 G Theory and ICC results

Of interest in this next analysis was assessing the relative importance of different sources of variance in our data related to consumption, including food groups, participants, timepoints, their interactions, and residuals. Of particular interest was assessing the stability of consumption for the 16 food groups across the 5 timepoints.

Generalizability Theory ("G theory") offers a method for both breaking out important sources of variance in consumption and for assessing its stability (reliability). Another way of stating this is that G Theory allows one to distinguish how much variance in a measure, such as consumption, is explained by the different random effects (Monteiro et al., 2019). In our study, the random effects included food groups, participants, timepoints, and all the twoway interactions between them (participant x food group; participant x timepoint; food group x timepoint). A final variance component for the residuals was also estimated.

We first assessed the relative sizes of these variance components. As Panel A in Figure 20 illustrates, large differences emerged between them. As can be seen, the largest variance component was for the interaction between participants and food groups, followed by the variance components for food groups and participants. In other words, the variability in consumption observed at the group level largely reflected systematic differences across the 16 food groups, across the 70 participants, and, most significantly, in the interaction between food groups and participants. Surprisingly, timepoint barely explained any variance in consumption (nor did any of its interactions), providing a first indication of how stable the ratings remained across the five timepoints.

In terms of consumption, these results first indicate that consumption hardly varied across timepoint. Consumption somewhat varied across individuals, with some individuals consuming more than others. Consumption varied much more across food groups, with different food groups (not surprisingly) being consumed much more often than others (as illustrated in detail later).

Figure 20 - G-Theory Results for original data and residuals from a simple linear regression

Results from the G-Theory analysis. Panel A shows the variance in consumption from each of the possible sources when explaining the raw original data. Panel B shows the same results when explaining the residuals of a simple linear regression analysis performed on the group data.

Perhaps most notably, the largest variance component was for the interaction between participants and food groups, indicating tremendous individual differences in how much different participants consumed different food groups (also illustrated and quantified in detail later).

As we just saw, consumption appeared to be remarkably stable across time points. To examine this finding more closely, we next computed intraclass correlation coefficients (ICCs) for individual participants that assessed how stable their consumption estimates were across time points. We also computed ICCs for each of the six consumption motives as well, to examine how stable these judgments were across time points.

In general, ICCs provide researchers with a means of assessing how much different judges agree in their judgements for a set of judged objects (Koo \& Li, 2016; Shrout \& Fleiss, 1979). Applying this general framework here, the 5 timepoints for a single participant served as judges and the 16 food groups
served as the judged objects. For a given measure, such as consumption, the resulting ICC estimated how much the 5 time points agreed in an individual's judgments for the 16 food groups. In other words, the ICC assessed the stability of an individual's judgments for the 16 food groups across the 5 time points. To generalise whether these ICCs for the 5 timepoints assessed here to larger population of time points for each individual, we used the random effects version of the ICC, the ICC2 (Shrout \& Fleiss, 1979).

For each participant, we computed a total of nine ICC2s: Three ICCs related to the dependent variable for consumption (frequency, typical portion size, and their product); six ICCs for the six motives used to predict consumption. ICC2s approaching 1 can be interpretated as illustrating high stability across the five time points (i.e., participants rated the 16 food groups consistently across timepoints). Conversely, ICC2s approaching 0 imply no stability across time points (i.e., participants rated the different food groups with no consistency across the timepoints).

Figure 21 presents the results. Consistent with the findings from G Theory in Figure 20A, we observed high stability across time points for the majority of participants. Overall, the highest agreement was observed for healthiness (median ICC2 = .84, IQR = .13), followed by self-identity (median ICC2 = .76, IQR $=.31$), emotional satisfaction (median ICC2 = .76, IQR = .20), and automaticity (median ICC2 $=.75$, $\mathrm{IQR}=.15$). Agreement was somewhat lower across timepoints for the three dependent measures, although still remaining quite high: consumption (median ICC2 = .59, IQR = .20), frequency (median ICC2 = .67 , $\operatorname{IQR}=.14$), typical portion size (median ICC2 $=.53$, IQR = .15). The overall median ICC2 across all measures (dependent variables and predictors) and individuals was $.70(\mathrm{IQR}=.22)$. Interestingly, agreement for typical portion size varied the most, suggesting that individuals varied somewhat in the portion sizes consumed on different occasions.

Figure 21 - Distribution of individual ICC2 values representing stability of each rating across

Violin-Boxplots showing the distribution of individual ICC2 values for each rating question. Separately for each participant the agreement of how they rated the sixteen food groups was assessed for each rating question across the five timepoints (5 timepoints were used as judges and 16 food groups as judged objects). Each dot represents the ICC2 of one participant for one rating question.

In summary, both the G-Theory and ICC2 results demonstrated a surprising lack of intraindividual variability across the five time points, disconfirming our original prediction that variability would be higher. In other words, participants were remarkably stable in how they evaluated the 16 food groups across the 5 timepoints for both the dependent variables related to consumption and for the six predictors for consumption motivation. One implication of this result is that it may typically be sufficient to assess an individual's consumption for a single time point, rather than at multiple time points, unless implicit learning is of interest.

It's perhaps worth noting in this regard that the implicit learning effects noted in the previous section are not inconsistent with the stability of consumption motives observed here. Implicit learning, for example, could have occurred across patterns of consumption motives that remained relatively stable across time points. Although the relative importance of the six consumption motives remained relatively constant for an individual across timepoints, their correlations with consumption could have simultaneously increased.

Based on these results, we removed timepoint from all later analyses. Doing so greatly simplified the results reported and allowed us to focus on other patterns in the data. Specifically, to simplify the data set for each of the 70 participants, we computed their average judgment across timepoints for each of the 16 food groups, once for consumption and once for each of the six consumption motives. Doing so further removed the small variant components for timepoint as well as their interactions observed in the G-Theory results, leaving only food group and participants as the remaining random effects. Researchers interested in examining the analyses to follow on individual time points can do so by accessing the complete raw data set online.

4.3.4 Variability for individuals and food groups

As we just saw, little variability occurred for timepoints, with consumption judgments remaining remarkable consistent across them. Here we next look at two further variance components in Figure 20A for which there was much larger variability: participants and food groups.

Figure 22A and Figure 22B visualise the variability for participants and food groups. Figure 22A plots participant means for consumption across timepoints for each food group. Each of the six panels in Figure 22B similarly plots participant means for one of the six consumption motives across timepoints for each food group.

Figure 22A - Distribution of participants' average consumption for each food group
Violin-boxplots show the distribution of how many handful participants reported to have consumed. Each participant's consumption was calculated by taking their average across the five timepoints. Each dot represents the average consumption for a single participant.

Figure 22B - Distribution of participants' average predictor rating for each food group

Violin-boxplots show the distribution of how participants rated each food group on the six predictors. Each participant's score was calculated by taking their average score across the five timepoints. Each dot represents the average score for one participant.

As Figure 22A illustrates, consumption varied greatly across food groups and participants (0 to a maximum of 26.5 handfuls consumed), with a median value of 1.24 handfuls $(I Q R=2.92)$. Specifically, median consumption varied widely between food groups, with participants varying widely within food groups as well. These findings further illustrate the large variance components seen earlier for food groups and participants in Figure 20A. The highest median consumption, along with the highest variability across participants, emerged for vegetables (median $=5.20, \mathrm{IQR}=4.01$), bread (median $=3.54, \mathrm{IQR}=3.08$), dairy and egg (median $=3.00, I Q R=3.50)$. and fruit (median $=2.90$ handful, $I Q R=$ 3.00).

Figure 22B presents analogous results for the six consumption motives. Again, large amounts of variance emerged across both food groups and participants. Variability across participants tended to be especially high for self-identity, automaticity, and emotional satisfaction across food groups, demonstrating large individual differences on these measures. Even for the measures commonly assumed to be more objective such as healthiness and fillingness, large individual differences emerged, even though some agreement emerged for foods considered healthy (i.e., lower variability across individuals for fruit, vegetables, fish and seafood) and for foods considered unhealthy (sweets, salty snack, fried food). When comparing food groups across consumption motives, fruit and vegetables were consistently judged high on all predictors, whereas plant-based foods were consistently judged low (with the exception of healthiness).

4.3.5 The individual by food group interaction for consumption

As we saw earlier in Figure 20A, the largest variance component for consumption was the participant by food group interaction. Figure 23 visualises this variance component. Specifically, each row visualises 1 of the 70 participant's consumption for the 16 food groups shown across the 16 columns. As a cell becomes darker, the participant consumed more of the food group (averaged across the five time points). As a cell becomes lighter, the participant consumed less of the food group. As the legend on the upper left illustrates, the unit of consumption is the number of handfuls consumed over the past two days, ranging from 0 to more than 21.

Figure 23 - For consumption, the Interaction between participants and food groups.

Heatmap shows consumption (product of consumption frequency and portion size) in handfuls that each participant consumed on average (across the five timepoints) within two days. Each row represents one participant's values for each food group. Each column shows the consumption across participants for one food group. For simplification the exact number of handfuls was further coded as 0 , between 0 and 1, between 1 and 3, between 3 and 6, between 6 and 11, between 11 and 16, between 16 and 21 and above 21). White tiles represent 0 handfuls consumed (no consumption). The darker the tiles the greater the amount of handful consumed.

To increase the legibility of this figure, discrete bins of handfuls were plotted instead of the continuous measure (e.g., 11 < handfuls < 16).

Figure 23 visualizes the variance components for both food groups and participants. For food groups, the darkest columns indicate the foods consumed most often. For participants, the darkest rows indicate the participants who consumed the most food overall. Hierarchical clustering of the columns clusters food groups consumed similarly across individuals. Similarly hierarchical clustering of the rows clusters individuals who consumed the food groups similarly.

Most importantly, Figure 23 visualises the participant by food group interaction as differences between the rows for individuals. If all individuals had exhibited the same pattern of consumption across the 16 food groups, all 70 rows should look identical. To the extent that the pattern of consumption across columns varies for different individuals, this reflects the individual by food group interaction. As the clusters of participants along the left of Figure 23 illustrate, participants differed considerably in their patterns of consumption across food groups.

The ICC2 can be used to quantify this interaction. In this context, the judges are the 70 participants, and the judged objects are the 16 food categories. Of interest is how much the participants (the judges) agree in their consumption of the 16 food categories (the judged objects). As Table 10 illustrates, the ICC2 for consumption was only .30 , indicating that, on average, one participant's consumption of the 16 food categories only correlated .30 with another participant's consumption of them. This low value for this ICC2 explains why the largest variance component in Figure 20A was for the participant by food group interaction.

Table 10 also provides ICC2 values for the six consumption motives, establishing how much participants agreed in these judgments across the 16 food categories. As can be seen, the agreement tended to be low across all 6 consumption motives (median $=.24, I Q R=.09)$, although agreement was relatively high for judgments of healthiness, as it often is (ICC2 = .62; see Werner et al., 2022).

In summary, we observed large differences between the 16 food groups, along with large individual differences in how the 70 participants evaluated them. These results provide evidence that using the 16 food groups (instead of a much larger number of individual foods) still allowed us to capture large individual differences in both food groups and participants.

4.3.6 Individual correlation and regression analyses

We next explored how well the six consumption motives predicted consumption for participants. In this analysis, we again used each participant's average scores across time points for both consumption and the consumption motives. For each participant, we computed the correlation between consumption and each consumption motive across the 16 food groups, resulting in 6 correlations. Figure 24 presents the distribution of correlations for each consumption motive, with each point being a correlation for one participant. Correlations approaching 1 or -1 indicate that a consumption motive predicts consumption highly, whereas correlations approaching 0 indicate a lack of prediction.

Figure 24 - Results of the individual correlation analysis showing general trends across the group

Violin-boxplots present the results of the individual correlation analysis. Correlations were performed on the average participant scores across the five timepoints. For each of the 70 participants the correlation between consumption and the six predictors across the sixteen food groups were computed. Each dot represents the correlation of one single participant.

Figure 25 - Results of the individual correlation analysis visualising each participant's predictive profile for consumption

Heatmap presenting the same results as Figure 24. Each row represents the correlation profile of one participant. Each column shows all participants' correlations for one predictor. The colour of each tile reflects the correlation result. The more a correlation approaches 1 the redder the cell, the more it approaches zero the whiter the cell and the more the correlation approaches -1 the bluer the cell.

Figure 25 presents the same results as Figure 24 but as a heatmap that visualises each participant's prediction profile. Specifically, each row visualises the six predictive correlations for a single participant, with increasingly red cells representing increasingly positive correlations and increasingly blue cells representing increasingly negative correlations.

Hierarchical clusters on the left capture groups of participants with similar prediction profiles; clusters along the top capture similarity in prediction across consumption motives. Across the majority of participants, automaticity most strongly predicted consumption, followed by self-identity and enjoyment of taste (Figure 24 and Figure 25). Healthiness and fillingness, in contrast, exhibited the weakest correlations with consumption across participants. Finally, all six predictors exhibited considerable variability across participants, indicating large individual differences in consumption motives. Correlations of healthiness, for instance, ranged from highly negative to highly positive across individuals. Similarly, fillingness ranged from weakly negative to highly positive.

How much variance do the six consumption motives explain in an individual's consumption? To assess this question, we regressed an individual's consumption scores onto their judgments for the 6 motives across the 16 food groups.

Again, these analyses used mean judgments across the five time points. All measures were standardized and entered into a simple linear regression for each participant, with no random effects or interactions. Across these 70 individual regressions, the median R^{2} was .71 , indicating that the 6 consumption motives did an excellent job of explaining consumption variance in individual participants (IQR=.15, range= .36 to .98). As in Werner et al. (2022), we sampled a relatively comprehensive set of consumptions motives that was sufficient to explain consumption well for most participants.

One final analysis further demonstrates how well the six consumption motives explain the consumption variance in this study. We performed a simple linear regression at the group level on the original data set assessed with G Theory in Figure 20A. Specifically, we simultaneously regressed consumption for each participant for each food group for each timepoint onto the six consumption
motives, again for each participant for each food for each timepoint. No random effects or interactions were included.

After performing this regression, we obtained the residuals that remained after predicting consumption with the six consumption motives and submitted them to a second G Theory analysis. Figure 20B presents the results. Of interest was how much the six consumption motives were able to explain the original variance components in Figure 20A. If the six consumption motives are sufficient to explain the original variance components for participants, foods, participants X foods, and the original residuals, then all these variance components should decrease significantly after regressing consumption onto the six consumption motives. Figure 20B illustrates that this was indeed the case. By in large, all the original variance components almost disappeared entirely, indicating that the six consumption motives captured most of the variance in them. These results further demonstrate that the six consumption motives are sufficient for comprehensively explaining the variance in consumption for participants, foods, and the participants by foods interaction.

4.3.7 Individual self-assessment

Lastly, we addressed the question of how much insight participants have into what predicts their consumption (as measured with their judgments of consumption and the six consumption motives: Figure 24 and Figure 25). To do so, we asked participants at the end of each session to judge how much they believed each of the six predictors had influenced their food consumption the past two days.

We again assessed the stability in the self-assessment ratings across the five time points (i.e., how much did participants self-assessment judgments vary across timepoints). Analogous to earlier assessments of stability, we used the ICC2 to quantify how much each participant agreed on average with their own self-assessment judgments across the five timepoints. In other words, the five timepoints were treated as judges and the six consumption motives were treated as judged objects. Overall, participants ratings were again quite stable across timepoints (median $=.64$, IQR $=.35$) though the level of stability differed greatly across participants (range $=.03$ to .94). Stability here was slightly lower than
observed earlier for participants' consumption and consumption (median =.70, $I Q R=.22$). Again, though, their judgments showed considerable stability across time points. Taking into account the considerable stability across timepoints, we again decided to compute the average for each rating across the five timepoints separately for each participant and use these averages in all later analyses.

Across participants, taste emerged as the consumption motive that they believed had most influenced their consumption, followed by emotional satisfaction, automaticity, and fillingness. In contrast, self-identity was rated the least influential. These results diverge considerably from the pattern of prediction in their SAM ${ }^{2}$ judgments of consumption motives (Figure 24 and Figure 25). Although enjoyment of taste did appear as a strong predictor in those judgments, automaticity emerged as a much stronger predictor. The largest difference emerged for self-identity. Although it emerged as highly predictive of consumption in participants' SAM² judgments (Figure 24 and Figure 25), participant did not believe intuitively that it had influenced their consumption behaviour recently (Figure 26).

Figure 26 - Each participant's averaged self-rated importance of each of consumption motive

Violin-boxplots present participants' average self-assessed importance of each of the six predictors. Participants rated importance on a continuous scale from 0 to 10. Each dot represents one single participant's rating. Mirroring our previous results, we observed large individual differences in what participants believed to have influenced their food consumption.

Finally, we assessed how much the $S A M^{2}$ judgments of consumption motives matched the self-assessed motives that participants believed had influenced their recent consumption. Based on previous studies, we expected to see little agreement between the implicit and explicit measures. To enable a comparison for each participant, we took their correlations for the 6 consumption motives in Figure 25 and correlated them with their average self-assessment judgments in Figure 26. If a participant had insight into the consumption motives that influence their consumption, then these correlations should be high. Motives that participants believe influence their consumption should be highly correlated with consumption in their $S A M^{2}$ data, whereas motives they believe are uninfluential should be exhibit weak correlations. Although the SAM ${ }^{2}$ judgments only capture correlations between consumption and the consumption motives, if a participant's explicit self-assessments of what influenced their consumption are correct, then the correlational SAM ${ }^{2}$ data should be consistent with their causal judgments.

Figure 27 presents the results of this analysis. As can be seen, these correlations tend to be low, with a median of .0 .02 (IQR = .8). In general, participants had little insights into their consumption motivation associated with their eating

Figure 27 - Correlation between SAM ${ }^{2}$ prediction and participant's selfassessment

Figure shows the correlations between what we predicted to be important for each participant's consumption and the participant's self-assessment. Each dot represents the correlation for one single participant.
behaviour. Although a subgroup of participants demonstrated moderate to high level insight into their consumption motivations, another subgroup demonstrated the opposite. It is difficult to tell from these data whether some participants actually have high insight, or whether they're simply on the upper end of random variability.

4.3.8 Individual study experience

Lastly, we were interested in gaining a better understanding of how participants experienced taking part in our study and completing our eating motive questionnaire. To assess this, we asked participants at the end of timepoint five to judge their experience on three rating questions using a continuous scale from zero to 10.

First, we asked participants whether they had learned something interesting/useful about their eating behaviour from participating in the study ($M=6.02$, $S D=2.62$). Second, we asked whether participants felt they learned something about the factors that influence their eating behaviour $(M=5.61$, $S D=2.64$). Third, we asked whether they had learned to better regulate their eating behaviour ($M=4.26, S D=2.74$). Overall, from these responses, it appears that most participants felt that taking part in our study resulted in increased knowledge about themselves. Although as discussed previously, this was not reflected in changes to their self-assessment. Interestingly, about 10\% of participants reported, unprompted in the open feedback section, that they and enjoyed the study and that it had helped them with their eating behaviour (e.g., "The questions regarding my feelings and eating really made me think about what I eat;" "You've made me keep a better note of the food I eat \& I'm more aware of my reasons for eating at times.")

4.4 Discussion

In this study, we assessed individuals' motivation for consuming sixteen food groups over a two-week period, exploring implicit learning effects as well as individual differences in what predicts an individual's consumption and the stability of these motives across timepoints. We also assessed participants' insights into their eating motives.

4.4.1 Implicit learning effects

Comparing the difference in correlation strength between timepoint one and five for each of the six consumption motives revealed large individual differences in change across time-points. Nevertheless, implicit learning effects emerged (Figure 19). Significant implicit learning effects occurred for three of the six measures (healthiness, self-identity and filligness), and also for the combined measure (summed up differences in correlation across all 6 measures) of difference.

As noted earlier, Pedersen et al. (2022) observed similar implicit learning for eustress and distress (i.e., correlations with stress predictors increased over time). The attenuation of correlation offers a potential explanation for all these effects (Schmidt \& Hunter, 1996). As is well known, when a true correlation in nature is measured, the observed correlation is attenuated by the reliability of the two measures being correlated. As the reliabilities of these measures decrease, the observed correlation is attenuated, relative to the true correlation in nature. Though it is important to stress here, that the potential increase in reliability in the measurement does not equate evidence of its validity, an invalid measurement could still be reliable and/or become more reliable overtime (Bannigan \& Watson, 2009).

The implicit learning effects that Pedersen et al. (2022) observed and that we observed may reflect a decrease in attenuation across timepoints. The observed correlations at each timepoint can be described as dependent on the correlation of the 'true scores' and the reliability of the measured variables (Schmidt $\mathbb{\&}$ Hunter, 1996). By asking participants to repeat the measures five times, their measurement reliability might have increased. This effect might have been especially pronounced for portion size. Although participants might have initially been unfamiliar with measuring their foods in handfuls and might have consequently been not very reliable in their estimates during timepoint one (Gibson et al., 2016), knowing they will have to report their portion size again in the subsequent timepoints might have made them more aware of their portion size, thereby increasing their accuracy at later time points. Similar effects might have occurred for the predictors. Across measures, as their reliability increased over time, correlations between them may have increased. Although more
research is needed, this account offers one way to understand the implicit learning effects observed here and in Pedersen et al. (2022). Individual differences in consumption motives

Individual correlation analysis established large individual differences in consumption motives, although automaticity emerged as consistently high in importance across participants (Figure 24 and Figure 25). Additionally, the six consumption motives explained large amounts of variance in individual consumption (median $=.71$, $\mathrm{IQR}=.15$). Even though large individual differences emerged in consumption motives, G Theory and ICC2 results revealed that an individual's motives tended to remain highly stable across five timepoints over a two-week period (Figure 20 and Figure 21). Lastly, we observed little agreement (Figure 27) between a participant's predictive profile in their SAM ${ }^{2}$ judgments of consumption motives (Figure 23 and Figure 24) and their explicit self-assessment of what they believe influences their food consumption (Figure 26).

Our findings furthermore provide insight into the consumption behaviour of UK residents. We found large individual differences in participants patterns despite assessing the consumption of relatively broad food groups (instead of assessing individual foods). As Figure 21 illustrated, peoples' diets differed greatly from each other in the food groups they consumed most often (Figure 23) and how they perceived the 16 food groups with respect to the consumption motives (Figure 22). The only agreement that emerged was that most (but not all) participants appeared to consume fruit and vegetables the most and agreed that they are relatively high in healthiness. Plant based products appeared to be rarely eaten by most of the participants. Both of the plant-based food groups were rated the lowest on self-identity, automaticity, and taste, despite being judged as especially healthy food groups.

These particular results are in line with previous findings in Danish consumers, where taste was a barrier for increasing plant-based food consumption in meat eaters (Reipurth et al., 2019). Even though some questions about the healthiness and sustainability of plant based alternatives remain (Choudhury et al., 2020), their benefit compared to animal agriculture is evident (Mäkiniemi $\mathbb{\&}$ Vainio, 2014) and they play an important role in making diets more sustainable
to effectively address climate change (Sabaté \& Soret, 2014). Our results point towards possible new starting points for interventions, such as focusing on changing people's perception of plant-based products' taste and increasing their association with people's self-identity.

In line with previous findings (Werner et al., 2022), automaticity, emerged as the most important motive for consumption of the 16 food groups across participants. This result mirrored other findings such as Brug et al. (2006) and Riet et al. (2011) who both found habit to be most predictive for consumption. In contrast participants differed greatly on how important the other five motives were for their consumption. Furthermore, the same pattern was not reflected in participants' self-assessments, who, with some exceptions, judged taste to be most influential for their food consumption. Similar we found healthiness to be rated as highly influential for consumption across participants, whereas the same importance did not emerge from the SAM ${ }^{2}$ data for the majority of participants.

The observed stability of consumption motivation across time matched previous findings showing the stability of eating motivations across eating situations (Werner et al., 2022). These results might be again reflective of the aforementioned importance of habit for predicting consumption - since habitual consumption would be expected to emerge as consistently important over time. These findings also indicate that, in future research, a single assessment at one timepoint would be enough to reliably establish individual consumption motives.

4.4.2 Self-assessments of eating motives

In general, we found participants' explicit self-assessments of how much the six consumption motives influenced their consumption (Figure 26) were largely unrelated to the most predictive consumption motives in their SAM ${ }^{2}$ data (Figure 23 and Figure 24). In other words, the results from the more explicit (Selfassessment) and the more implicit (SAM ${ }^{2}$) approach differed substantially. Potentially this might indicate that participants do not have much insight into what actually motivates their behaviour. Though admittedly it is important not to overinterpret this difference as the measures were differing in their aggregation level. SAM ${ }^{2}$ was aggregated across the dimensions of food groups
and time whereas the self-assessment was only aggregated across time (Ostroff, 1993). In a future study it would be more informative to compare $S A M^{2}$ to a similarly aggregated measure, e.g., the TEMS whose motives are aggregated across multiple items. Nevertheless, the difference might further provide an explanation for the difficulty people encounter when trying to change their eating behaviour or maintain weight loss (Wing \& Phelan, 2005), or when they try to establish a more sustainable diet. Because of this poor insight, individuals may often adopt ineffective approaches to changing their diet. If participants received more accurate accounts of their eating motives, such as from a SAM ${ }^{2}$ analysis, perhaps they would be more successful in altering their diets. If, for example, an individual mistakenly believes that healthiness motivates their consumption when, in actuality, automaticity does, focusing on healthiness to change a diet may be ineffective, whereas focusing on automaticity and habits may be more effective.

The survey experience questions in timepoint five, along with the open comments, pointed towards the possibility of using a SAM ${ }^{2}$ approach to help people gain a better understanding of what drives their food consumption, potentially even using it as a brief intervention by providing participants with feedback about their consumption motives. Further research, however, is needed to systematically assess whether SAM ${ }^{2}$ may be useful in helping change people's eating behaviour.

4.4.3 Strengths and limitations

A strength of the present study was the inclusion of multiple timepoints, allowing us to investigate the stability of consumption motives across a twoweek period. Further research into temporal stability would be needed to assess whether longer-term stability exists over month and years, and to understand how motives possibly evolve over time.

A second strength of this study was to situate all measures in the past two days, allowing us to assess potential differences across time. A further strength of our study was additionally recording participants self-assessment, allowing us to compare those to our SAM ${ }^{2}$ measure and providing an insight into participants own beliefs as to what motivates their consumption.

One limitation of our study, due to considerable time constraints, was to not ask participants to judge the food groups within specific eating situations (e.g., sweets for breakfast). Although our previous work suggested that eating motives remain remarkably stable across eating situations (Werner et al., 2022), other research has shown differences in motives across situations (Cadario \mathbb{A} Morewedge, 2022). In future studies it would be useful to include diverse eating situations and assess their time-stability.

A further limitation might have been the use of the broad categories of food groups. Although the sixteen chosen food groups appeared to capture individuals' diets well and generated large individual differences in judgments of consumption motivation, in the future, it would be useful to additionally record the specific foods participants consumed within these food groups. Similarly, while our six predictors explaining consumption well for most participants, there were some participants whose consumption our motives appeared to not explain well. In future studies, it would therefore be useful to use a multi-method approach that includes qualitative interviews to help identify which additional motives might be relevant for some participants, for example, by asking participants to first complete the $S A M^{2}$ measure and, in a separate qualitative interview, ask them to elaborate how different motives influence the consumption of different food groups and what other motives and factors they think additionally influence their consumption (e.g., other people, sustainability). Another option might be to use a feature listing task (for an example see Papies et al., 2020), asking participants to freely list features of the food groups, then identify underlying motives via text analysis, additionally record consumption of the food groups and finally assess the association of the identified motives with consumption and compare these results to SAM².

The greatest limitation of our study was our reliance on self-reported, retroactively collected data, as, due to practicalities, it had not been possible to measure participants right before, during or after the eating occasion, for instance via mobile phone apps. Consequently our measures are purely based on participants memory of their consumption and their consumption motives during the past two days and therefore vulnerable to biases (e.g., recency, post-hoc feelings of guilt (Steenhuis, 2009) etc.). The aim in this study was to ensure that
participants would only take into account their experiences in the past two days and to measure how they experience the food groups, though admittedly this might have meant that the judgments were more representative of how participants felt retroactively about the food groups instead of how they felt before, during or after consumption. For instance, in hindsight some participants might have over (to justify having eaten unhealthy sweets) or under (due to feelings of guilt (Steenhuis, 2009)) reported how emotionally satisfying sweets were for them the past two days. The collected $S A M^{2}$ value therefore might not reflect either anticipated emotional satisfaction nor experienced satisfaction. In summary as judgments were taken post-hoc, they were vulnerable to various kind of complex biases (e.g., recency effects, food guilt etc.). Additionally, these judgments might potentially tap into more general judgments about consumption and motives instead of actual judgments at specific timepoints. An account along these lines might offer an alternative explanation of why we found little variation across timepoints. In the future it would be beneficial to use ecologic momentary assessment methods to assess consumption motivation before (anticipated value) and/or straight after (experienced value) eating occurs, thereby gaining more accurate measures and being able to further assess how both values are associated with consumption frequency and desire.

Furthermore, even though we provided participants with brief explanations for each predictor, it would be beneficial in future studies to assess, especially for the more complex predictors such as self-identity and automaticity, how exactly participants made their judgments. A possible method might be to include qualitative interviews in addition to our quantitative approach, asking participants to verbalise their thought and judgment processes when completing SAM ${ }^{2}$ as well as asking participants to provide and explain their own definition of what each predictor means. This would enable us to compare participant's definitions with our own as well as compare between participants and help with judging the validity of our motives.

Lastly, we collected our data in early 2021 while the UK was in a nationwide lockdown due to the COVID pandemic. A replication of the study in the future
would allow to assess whether consumption motivation had been affected by the pandemic e.g., by participants spending more time in their homes.

4.4.4 Conclusion

In summary we observed evidence for implicit learning effects across timepoints, potentially indicating an increase in reliability of measures across time. Furthermore, we found consumption motivation across participants to be remarkably stable across time. Our six predictors were able to explain large amounts of variance on the individual participant level for the majority of participants. We found large individual differences between what predicts consumption in individuals, although automaticity emerged as a strong predictor across participants. Lastly, we found that most participants had little insight into the motives associated with their consumption.

4.5 Declarations

Funding

This work was funded by the Institute of Neuroscience and Psychology at the University Glasgow (58 Hillhead Street, Glasgow G12 8QB).

Conflicts of interest / competing interests

The authors declare no conflict of interests/competing interests.

Availability of data and material

Please find the data and all analysis scripts on the Open Science Framework (OSF https://osf.io/4fcw7/).

Ethics

This project was approved by the University of Glasgow College of Science $\mathbb{\&}$ Engineering Ethics Committee (Date: 07/01/2021, no: 300200092).

Chapter 5 General discussion

The overarching objective of this thesis was to gain a better understanding of individual differences in consumption motivation by using a situated assessment method. This included firstly identifying diverse motives for food and drink consumption (Chapter 2 and 3) and their importance (Chapter 2, 3 and 4) before, secondly specifically assessing their stability in the domains of drink types (Chapter 2), across eating situations (Chapter 3) and across time (Chapter 4). Additionally, I assessed the occurrence of implicit learning effects (Chapter 4) and how much insight participants have into what motivates their consumption (Chapter 3 and 4). In the following, I will first summarise the key findings of each empirical chapter and explain the overall contribution of this work, by discussing the theoretical and practical implications deriving from the results. Lastly, I will describe the strengths, and limitations of the presented work and end with a discussion of future research directions.

5.1 Summary of findings

Chapter 2 focused on developing a framework to explain consumption frequency of alcoholic as well as non-alcoholic beverages. I identified and assessed seven consumption motivations, regulation, bitterness, habit, health/ functionality, negative consequences, positive taste and socialising/positive consequences, which predicted consumption frequency well for all eleven beverages. Notably, the patterns of prediction were remarkably similar across the beverages, e.g., habit showed a consistently strong influence on consumption frequency across all beverages with only minor variations.

Individual participants on the other hand, exhibited a remarkable variability in their perception and consumption frequency of the eleven beverages. Indeed, in contrast to the individual drinks, participants' motivation patterns showed large individual differences in how much influence each of the seven factors yielded for consumption frequency. Though overall and in line with the individual drinks' results, the seven factors predicted consumption frequency well across participants, with habit consistently as one of the most important factors. The
results suggest that consumption frequency of alcoholic as well as non-alcoholic beverages is influenced by generalised motivations for drinking instead of drink specific motivations.

Chapter 3 presented a series of three studies with the overarching goal to establish individual differences in motivations for consumption frequency and desire of food and drinks as well as their stability across eating situations. Study 1 established extensive food norms, which captured the diversity of the UKs diet and informed which foods to include in Study 2 and 3. Next, Study 2 established and five factors that underlie a diverse range of previously identified consumption motives, namely, habitualness, unhealthiness / healthiness, savouriness / sweetness, fullfillingness, and bitterness/sourness.

The final Study 3 in Chapter 3 subsequently assessed individual differences in consumption motivation patterns across participants and examined their stability across eating situations as well as investigated participants insight into their own consumption motivations. I assessed participants consumption frequency, desire and ratings on ten diverse predictors (healthiness, fillingness, sweetness, bitterness, affordability, automaticity, self-identity, social connectedness, emotional satisfaction, situational transport) of 177 foods, each situated in one of four eating situations (usual breakfast, usual lunch, usual dinner, daytime snack). Additionally, I asked participants to judge the importance of each of the ten predictors for their consumption frequency and desire. As in Chapter 2, I observed large individual differences in how participants perceived the individual foods as well as how much influence each of the ten predictors yielded for consumption frequency and desire. Furthermore, again in line with Chapter 2, habit emerged consistently as greatly important for consumption frequency as well as desire across participants. Again, I found that the ten predictors consistently explained consumption frequency and desire well across the large majority of participants. Remarkably, the individual predictive patterns did not vary across eating situations. Lastly, little agreement emerged between what SAM² found to predict consumption and desire and participants’ self-assessment.

Chapter 4 built on and extended the findings from Chapter 3, focusing on assessing implicit learning effects as well as individual differences in consumption motivations (automaticity, healthiness, enjoyment of taste, selfidentity, fillingness and emotional satisfaction) for 16 diverse food groups and their stability across a two-week period, as well as participants insight into their own consumption motivations. I observed small but significant implicit learning effects for the association between consumption and healthiness, self-identity and fillingness. This was reflected in an increase of their associative strength from the first to the final timepoint even though participants were not instructed to become more aware of their consumption motivation nor were provided with any kind of feedback. While participants differed greatly from each other in their consumption and perception of the sixteen food groups, their judgments and consumption remained remarkably stable across the five timepoints. This was also reflected in the stability of how important participants themselves judged the six predictors for their consumption. As in Chapter 2 and 3, large individual differences emerged in predictive patterns, again illustrating the importance of automaticity across participants. Furthermore, the six predictors were able to predict consumption well across participants. Finally, as previously found in Chapter 3, there was little agreement between participants self-assessment and what SAM2 found to predict participants consumption.

In summary, across the three empirical chapters I found large individual differences in participant's perception of beverages, foods, and food groups. Furthermore, I observed large individual differences in which motives most strongly correlated with consumption across participants, though automaticity emerged consistently as an important motivation across participants in all three empirical studies. Remarkably, the individual patterns emerged as stable across eating situations. Similarly, judgements of the food groups appeared stable across time. Lastly, I found little agreement between participants selfassessment of what predicts their consumption and what SAM ${ }^{2}$ found to predict consumption.

5.2 Thesis contribution and implications

The main contribution of the present work was to add knowledge about individual and intra-individual differences of consumption motivations to the existing literature, namely I found large interindividual difference though a lack of intra-individual variability. Secondly, the thesis illustrated the value of researching complex behaviours such as eating and drinking in a situated manner, first by situating participants' judgments in specific beverage type (Chapter 2), second by situating foods in specific eating situations (Chapter 3) and fourth by situating in specific food groups in a limited timeframe (Chapter 4). The presented results show the benefit of preserving relevant intraindividual as well inter-individual differences and furthered the understanding of individual difference in consumption motivations.

For beverages, I also showed the benefits of including a range of different beverages instead of focusing on one specific beverage type such as sugar sweetened beverages, which allowed me to assess drinking behaviour more comprehensively. The situated approach offers an alternative to traditional unsituated measures for researchers interested in assessing specific individual differences in consumption motivations. The observed lack of agreement between participants own judgment and SAM ${ }^{2}$ predictions, presented in Chapter 3 and 4, raises important questions whether traditional unsituated eating motivation tools measure actual consumption motivations or might potentially be more reflective of participants' self-image and social norms. In the following I will discuss some of results theoretical and practical implications in more detail.

5.2.1 Large individual differences in predictive patterns

In contrast to the typical focus of eating motivation research, e.g., broad group level results (the general population) or group comparisons (e.g., overweight vs normal weight), this thesis examined individual and intra-individual differences of consumption and consumption motivation for eating and drinking behaviour. Across all three empirical chapters, SAM² captured large individual differences, showing the uniqueness of each individual's prediction patterns.

While my focus in the empirical chapters was largely on capturing and exploring these differences, and not addressing their origin, grounded cognition theory does provide the theoretical framework to explain them. Based on the grounded cognition theory previous learning experiences are stored in a multi modal fashion (including taste, situational context, social), being combined into situated conceptualisations (Barsalou, 2008). These conceptualisations remain dynamic, flexible and are continuously updated. In relevant situations, the best fitting situated conceptualisation is being activated and may lead to desire, which can consequently motivate consumption (Papies \& Barsalou, 2015). Therefore, to understand consumption behaviour it is necessary to measure and understand these situated conceptualisations. By situating its measures, SAM ${ }^{2}$ activates and captures these individual situated conceptualisations. As individual's learning experiences with different foods and drinks differ greatly (e.g., due to socioeconomic or environmental differences (e.g., Pechey et al., 2015; Thompson et al., 2013)) from one another, the resulting situated conceptualisations are therefore unique for each individual.

Consequently, when measuring these situated conceptualisations with SAM^{2}, large individual differences emerge, as individuals differ in how much a food in a specific situation is represented by for instance feelings of social connectedness, positive taste, other internal states, e.g., long-term goals such as health, sustainability or their relevance for their self-identity etc. These different situated conceptualisations then result in differences in consumption frequency of different foods. In summary the individual differences captured with SAM ${ }^{2}$, and presented across the empirical chapters, provide further empirical evidence for the, by grounded cognition theory proposed, individualised situated conceptualisations and illustrate the large individual differences in activated situated conceptualisations.

5.2.2 Lack of intra-individual differences in predictive patterns

As previously discussed, across studies the expected large inter-individual differences emerged, though this was not mirrored within participants and instead participants showed little variability in their eating motive patterns across the four eating situations in Chapter 3 (Study 3) as well as across time (Chapter 4). These results are in contrast to grounded cognition theory's
prediction of the importance of situation and instead point towards generalised, decontextualised eating motives, meaning eating motives are the same across eating occasions. In other words, across studies, it appears that the used food and/or beverage cues activated situated conceptualisations for specific foods though these appear not to differ across eating contexts. These results are in contrast with other studies that observed differences in anticipated liking of food depending on whether the provided situational context was congruent or incongruent to typical eating situations, indicating that the perception of food is dependent on the context (van Bergen et al., 2021) as well as other research observing differences in eating motives across different eating occasions on the group level (Cadario \& Morewedge, 2022; Phan \& Chambers, 2018).

One possible explanation for the observed lack of differences could have been that the cues used in Chapter 3 ("usual breakfast" in Chapter 3 Study 3) were not specific enough to activate situation specific situated conceptualisations and more situational cues are needed, e.g., people present, specific location, to activate situation specific situated conceptualisations. This would furthermore explain why Phan and Chambers (2018) found differences, as they assessed the motives for participants most recent eating occasion. To further assess situated conceptualisations, it would be therefore important to repeat the study with the addition of more context specific eating situations ("pancakes for breakfast on a Sunday with your family") to test whether greater intra-individual differences would be observed in the eating motive patterns. This would additionally further our understanding of the nature of situated conceptualisations.

Another possible explanation might be that although participants were being specifically instructed to really immerse themselves into the eating situation, we did not check how faithfully participants followed the instructions, e.g., by recording immersion level. Consequently, when being presented with a food cue it might have activated the most relevant situated conceptualisation for the food and not for the food in the presented eating situation or activated decontextualised eating motive patterns and consequently no situation specific differences emerged. To further assess the importance of eating situation it would be necessary to have manipulation checks by asking participants to report their level of immersion or use alternative methods such as pictures of the
situation (e.g., the typical place they have their breakfast), sensory or experience rooms (for an example see van Bergen et al. (2021) or even VRC (for a review see Xu et al. (2021) to ensure strong immersion into the situation. In summary the lack of intra-individual variability is in contrast to the grounded cognition theory and more research is needed to better understand situated conceptualisations and assess the relationship between situated conceptualisations and their uniqueness across eating situations further.

5.2.3 Difference between SAM 2 prediction and participants selfassessment

Both Chapter 3 and 4 showed considerable differences between the factors that according to SAM ${ }^{2}$ would predict participant's consumption and participants own self-assessments. These self-assessment questions were similar, though not as in depth, to typically used unsituated eating motive questionnaires (e.g., FCMs (Steptoe et al., 1995)). One possible explanation of these results might be that participants have little insight into what predicts their actual consumption and consequently the lack of agreement might suggest more generally that the situated vs unsituated assessment methods assess different research questions, namely what motivates someone's consumption vs what someone believes to motivate their consumption.

As previously described, SAM^{2} is based on the grounded cognition theory (Barsalou, 2008, 2020) and measures situated conceptualisations. By situating all questions (e.g., in specific beverage types or the situation they occur in), SAM 2 measures these situated conceptualisations, e.g., in Chapter 3 by asking participants to immerse themselves in the situation, e.g., "usual breakfast". Presumably, these situated questions act as cues and automatically activate the relevant situated conceptualisation. The ability for cues such as food pictures to activate situational conceptualisations has previously been demonstrated by Papies (2013) showing that especially tempting foods were described by participants with features related to eating simulations and contextual and hedonic features. Further evidence for these activations comes from neuroimaging studies, showing that exposure to food cues appeared to induce eating simulations, again likely related to the situational conceptualisation (Chen et al., 2016).

In contrast to SAM^{2}, during their self-assessment ratings participants were only asked to judge how much their eating is influenced by the previously assessed predictors, e.g., healthiness. This method is unlikely to activate any specific situated conceptualisation and instead participants have to use their intuition and heuristics to generalise across diverse foods and eating situations. The resulting judgements might therefore be less driven by empirical data and more reflective of for instance their own self-image ("I am a health-conscious person), social norms (everyone eats because something tastes good), long-term goals ("I want to be healthy") (Dutriaux et al., 2021) or based only on their most recent experiences. Wahl et al., (2020) for instance found that individuals appear to overestimate the importance of most eating motives when assessing eating motives unsituated, compared to using a situated eating motive assessment. A further limitation of these explicit approach is the underlying assumption that participants understand themselves and what predicts their behaviour which is in contrast to previous research showing that individuals have a lack of understanding of how situational cues influence their eating behaviour (Cohen $\mathbb{\&}$ Babey, 2012).

While the unsituated explicit approach still captures important individual differences of participants' self-beliefs and self-image, it appears less likely to accurately capture what predicts actual consumption than the more implicit situated approach used throughout the three empirical chapters. Though, as previously discussed, it is important not to overinterpret the observed lack of agreement as the two measures differ in their aggregation levels. SAM ${ }^{2}$ is aggregated across foods (chapter 3) and foods and time (chapter 4) whereas the self-assessment data, was either a single value for each motive (chapter 3) or only aggregated across time (chapter 4) (Ostroff, 1993). To further assess the relationship between SAM2 and traditional instruments, such as the TEMS (which aggregates its motives across multiple items), it is important to collect both measures in a future study to conclusively compare their results.

In summary more research is needed to assess both approaches' exact underlying processes, e.g., neuroimaging studies could further assess whether the theorised activations emerge when using a situated assessment approach in contrast to traditional instruments. It would be expected that if situated conceptualisation
are activated while completing the SAM ${ }^{2}$ assessment, various areas across the brain (visual, olfactory, tactile, emotional, memory, cognitive etc. (for a review see Chen et al. (2016)) should be activated. In contrast while completing the traditional instruments it would be expected to mainly observe activations in areas associated with higher cognitive functions. Similarly, qualitative methods such as semi-structured interviews should be used to assess how participants approach each of the two methods, e.g., by asking participants to verbalise their thought and judgment process while completing each method. Lastly both methods should be assessed in connection to real life behavioural outcomes such as the consumption of healthy vs unhealthy foods, weight maintenance, blood pressure, diabetes risk etc.

5.2.4 Consistent importance of habit and the role of other motives

The importance of habit on eating behaviour has been well established (Gardner et al., 2011; Riet et al., 2011) and unsurprisingly emerged as a recurring theme across all the three empirical chapters of this thesis. Specifically, automaticity and habit appeared consistently as highly positively associated with consumption on the individual beverage level (Chapter 2), as well as on the participant group level for consumption frequency as well as desire (Chapter 3) and the individual participant level (Chapter 2,3 and 4). The presented results add further support to the growing evidence of how eating and drinking behaviour are driven substantially by habit (e.g., Albery et al., 2015; Brug et al., 2006; Riet et al., 2011). As habit can be defined as automatic behaviour triggered by relevant situational cues (Gardner, 2015), it is therefore unsurprising that using a situated measuring approach would be successful in capturing the importance of habit on consumption in specific situations. In contrast, participants might be unaware of how much their behaviour is driven by (unconscious) habits (Cohen \& Babey, 2012), which is reflected in participant's self-assessments generally judging enjoyment of taste to be most influential for their consumption. This furthermore fits with results from Phan and Chambers (2016), that liking as food motive was chosen by participants most consistently across eating occasions. The overestimation of taste as a an important influence of eating behaviour
compared to, for instance habit, furthermore emphasizes the need of more implicit approaches when measuring and assessing eating motives.

The evident importance of habit might furthermore explain why eating motivations were stable across the four different eating situations (Chapter 3) which was in contrast to Phan and Chambers' (2016) findings that daytime snacking was more motivated by health and weight related motivations while night time snacks were more driven by pleasure. A possible explanation might be that Phan et al. (2016) measured the motivations of the participant's last eating occurrence, whereas here participants were asked to situate their ratings in "usual" eating situations (usual breakfast, usual lunch, usual dinner, daytime snack) - those "usual" situations are more likely to occur often and repeatedly in the same location (e.g., breakfast at home) and are therefore likely to create situational conceptualisations including a strong automatic (habitual) response which was captured by SAM ${ }^{2}$. To further investigate this, it would be important to use a range of diverse eating situations, e.g., going to a new restaurant, ordering food etc., to assess whether situations without ingrained habitual responses would show a greater importance of other motivations, e.g., taste, healthiness as compared to habit.

Similarly, the stability observed in Chapter 4 might also have been driven by the eating situations covered during the measuring timepoints, as the data was collected during a Covid lockdown. It is therefore likely that people had spent most of their time during the two-week study duration at home. Consequently, the eating occurrences captured during the study would not have differed greatly from each other (e.g., including going to a restaurant, going to a friend's house for dinner), and due to their specific nature (continuously repeated behaviour in the same situation) would have been greatly driven by automaticity. Again, here it would be important to further assess whether the same stability could be found without lockdown or if people would have differed more under normal circumstance, e.g., going back to work, going out during the weekend and eating out. An alternative explanation in this context might be that thinking back over the eating occasions during the past two days would have activated various different situational conceptualisation. Consequently, to condense all of them into a single judgment participants would have had to generalise across all
of them, potentially leading to the loss of vital information related to specific eating occasions.

Even though habit emerged consistently as important, most other motives showed strong associations with consumption for at least some of the participants, e.g., healthiness, taste, self-identity etc. indicating that habit does not explain consumption behaviour alone and fit in with previous research, e.g., the importance of self-identity for consumption (Carfora et al., 2016; Strachan $\&$ Brawley, 2009), the importance of taste e.g., for consuming non-alcoholic beverages (Block et al., 2013) and the importance of social factors e.g., for alcohol consumption (Halim et al., 2012). These findings can also be explained with the dual processing theory (Cohen \& Babey, 2012), proposing that behaviour can arise either through unconscious (habitual) process or conscious (controlled) processes. In other words, while habit is important, other motives related to short or long-term goals such as healthiness or emotional satisfaction can affect behaviour especially in "weak" situations (e.g., going on holiday). This furthermore fits into findings that intentions can override habit (Gardner et al., 2020). Again, studying less habit driven situations would provide more insight into the specific role of the other predictors.

In summary results presented in this thesis fit into the broader research context of behaviour regulation, providing further evidence for the important role habit plays in eating but extend them by providing evidence for the varying role other diverse eating motivations possess across individual participants.

5.2.5 Practical implications

A first practical implication of the presented results involves choosing eating stimuli for future studies. A recurring theme across all three empirical chapters was the observed large individual differences in participants' judgments of beverages (Chapter 2), specific foods (Chapter 3) and food groups (Chapter 4), not only for "subjective" measures such as tastiness or how relevant they are to participants' self-identity but also for more "objective measures" such as healthiness or caloric content. These results have important implications for eating research in general. Currently, when choosing food stimuli for psychological studies researchers mostly depend on their own intuition and
experience in what foods to include, often choosing relatively randomly, relying on stereotypical thoughts of what constitutes a tasty and unhealthy food etc. and only present participants with a limited range of different foods in a unsituated manner, e.g., a food picture with a white background (Smeets et al., 2019)., Based on this work, an approach with a possibly better ecological validity would be to include a large number of diverse foods, situate them in various, specific eating situations and collect participants' perception of those foods to control for individual differences in the latter analysis. An alternative to this approach would be to either use relatively broad categories such as food groups and ask participants to imagine foods that are relevant for them or individualise stimuli by specifically asking participants beforehand which foods they deem tasty, healthy, consume often etc. However, systematic research will be required to assess the utility of those suggestions.

Another overarching theme arising across all three chapters was a lack of distinct groups or clusters of participants emerging from their predictive profiles. Instead, it appeared that participants' predictive patterns for consumption varied so strongly from one participant to another that grouping them would have been superficial and would have led to the loss of crucial information. As previously discussed this observation can be explained by the uniqueness of individuals situated conceptualisations (Papies et al., 2020). These results put into question how informative it is for researchers to assess and rely on broad group comparisons, e.g., between different BMI brackets, gender or age (e.g., Rosenfeld, 2020) instead of focusing on intra-and individual differences. While significant differences in motivation have been shown to arise across groups (Renner et al., 2012), based on the presented results it would be expected that also people within each group would differ greatly from one another on the researched domain as well as various other potentially relevant motivations. Therefore, it is questionable how much insight and ecological validity group comparisons have when assessing consumption motivations.

Lastly, the presented results have practical implications for the development of eating interventions and public policies, aimed to decrease or increase consumption of specific drinks or food, or aid people eat healthier in general, lose weight or adapt a more sustainable diet. Despite a large number of
different available behaviour change methods, ranging from health education to surgical solutions, individuals appear to struggle to change their diet long-term (Greaves et al., 2017). Based on the presented results, a potential explanation for these difficulties might lie in their reliance on so called "one-size-fits-all" approaches, which furthermore rarely tackle habitual behaviour (Vainio et al., 2016b) and which are therefore unlikely to be in line with an individual's specific eating motivations. This approach is especially apparent in public health policies which often either build on educational advertisements or use of financial incentives, e.g., "sugar tax" to nudge people towards the desired behavioural change (Allcott et al., 2019; Block et al., 2010). Another reason for the difficulty people face when trying to change their diet might be their lack of insight into what motivates their consumption. This is further supported by promising evidence that increasing people's self-insight might aid in behaviour regulation (Kersten-van Dijk et al., 2017). A potential reason for this effect might be that a lack of insight causes people to choose behaviour-change interventions that are not beneficial for them personally, e.g., an individual educating themselves on the health benefits of a plant-based diet when their consumption is mainly driven by taste. As a solution to those problems, the previously presented results point towards the development of personalised interventions that specifically target an individual's consumption motivations in a holistic manner by first using a situated assessment to establish the implicit motivations of an individual and then suggesting and tailoring interventions based on these results. Here again it is important to first fully understand the role eating motives seem to play in behaviour change (Vainio et al., 2016).

5.3 Strength and limitations

A key strength across all empirical chapters is the novel, situated approach used to assess consumption motivations, namely SAM². Eating and drinking are both very complex, multifaceted behaviours, presenting a challenge for researchers to capture in a meaningful way while preserving occurring individual differences. Instead of relying on explicitly asking participants to generalise their eating behaviour across all foods and eating situations into one single value representing for instance how important health is for their consumption, SAM ${ }^{2}$ captures behaviour in a situated manner. Across the empirical chapters multiple
different domains of situatedness were assessed, e.g., beverage type, individual foods in specific eating situations and food groups within a specific time frame.

Each of the empirical chapters furthermore had its own particular strength. A key strength of Chapter 2 was to assess drinking behaviour for both alcoholic as well as non-alcoholic beverages in a single study, allowing the observation of differences and similarities in what predicts both their consumption. Chapter 3 greatly benefitted from the inclusion of Study 1, the creation of extensive food norms instead of relying on the researcher's own intuition and secondly Study 2, which assessed a large number of potential consumption motives and established their underlying structure, making it possible to choose the most relevant motives for Study 3. A strength of Study 3 was the use of a within-participant design to explore intra-as well as individual differences in consumption motivation. Lastly, Chapter 4's key strength was the adoption of a longitudinal design, allowing for exploring potential learning and time effects.

A further strength was the inclusion of the self-assessment of the included predictors in Chapter 3 and 4. This allowed to compare the implicit SAM ${ }^{2}$ results with participants' own explicit beliefs of what motivates their consumption and allowed to assess of how much insights participants have into their motivations.

Lastly, by using the online prolific platform for all presented studies, instead of relying on the internal university subject pool, it was possible to include a more diverse sample of the UK population, with larger diversity in age, education level, BMI etc. making the results applicable to the wider population.

The presented studies also have various recurrent limitations. Firstly, all three empirical chapters relied purely on self-report measures, vulnerable to various potential biases e.g., recency effects, social desirability etc. Furthermore, across and within studies' motives differed in whether they aimed to capture pre-consumption perceptions (e.g., anticipated taste in Study 3) or capturing post-consumption perception (e.g., the multi-timepoint Study in Chapter 4 which exclusively relied on post-hoc judgments - participants' experience of the food groups during the past two days). While both approaches are very informative, more research is needed to fully understand how either affects
consumption and whether SAM 2 should continue to include both question types or would benefit from exclusively focusing on, for instance, the anticipated experience. For example, is the anticipated emotional satisfaction more important for consumption frequency or the actual experienced emotional satisfaction right after consumption or the, at a later stage, re-called emotional satisfaction (which might be affected at least for some individuals based on various complex factors such as feeling guilt for consuming specific foods (e.g., Steenhuis, 2009)). Here it would be important to systematically compare how the phrasing of the questions, as well as the measurement timepoint (retroactive, pre-consumption, post-consumption) affect the judgments, e.g., comparing anticipated (before consumption), experienced (after consumption) and retroactive judgmement (independent of the esting occasion) taste, fillingness or emotional satisfaction and assessing whether and how they differ and each of them individually influences consumption frequency and amount. This would enable us to further refine and improve SAM². Additionally, despite the data being collected anonymously and online it still might not have captured participants diet and drinking behaviour hundred percent reliably. For instance certain populations, e.g. middle aged females, have been previously found to underreport their alcohol consumption (Livingston \& Callinan, 2015). Similarly food consumption has been shown to suffer from underreporting (Gibson et al., 2017; Lafay et al., 2000). Furthermore, the data was not collected right before or after the foods or beverages were actually consumed, instead participants were asked to immerse themselves into the situation and rate the foods accordingly (Chapter 3). Additionally, in Chapter 2 and 3 the timeframe participants should base their judgments on was not specified, meaning it is unclear whether their scores reflect a general opinion across many timepoints or their most recent consumption experience. Furthermore, while there was some explanation given as to what each predictor was meant to represent, especially in Chapter 3, I still relied on participants own understanding and heuristics of how to respond to each rating questions, e.g., what does self-identity in the context of food mean for each participant? Overall, the limitations reflect the complexity of researching consumption behaviour and consumption motives and show the limitation SAM ${ }^{2}$ approach has, e.g., not taking into account other facets that might influence the motives (e.g., guilt, self-control, etc.).

As previously discussed, a specific limitation to Chapter 2 was the use of a continuous rating scale ranging from not at all to very much instead of the typical more concrete measuring approach of numbers of occasions withing a specific timeframe (e.g., twice a month). While our measure does offer some benefits (higher precision, interval data) and correlated highly with consumption in the past month, it does need further validation. Additionally, Chapter 2 focuses exclusively on consumption frequency while disregarding consumption amount. An additional limitation specific to Chapter 3 was the use of only four different situations capturing "usual" eating situations instead of a broader range of more diverse situations. The lack of observed differences in consumption motivation pattern across eating situations might have reflected a generalised pattern active in those "usual" situations, mainly driven by habit, while in more diverse eating situations other motivations (e.g., healthiness, social norms etc.) might play a more prominent rule for the prediction of consumption.

Lastly, data for all three empirical chapters were exclusively collected from UK participants, therefore not allowing generalising across other populations.

5.4 Future research directions

The results of the present thesis point towards multiple avenues for future research. While consumption motivations emerged as remarkably stable across different types of drinks, eating situations and time, a question I was unable to address in this thesis is how exactly those motivations develop, and how flexible those motives are, e.g., are they developed during childhood, are they stable or do they change slowly over time and do they change when circumstances change, e.g., a person moving to a new country. To address this, it would be important to use large scale longitudinal studies, ideally starting to assess a group of individuals during childhood and measure their own as well as their parents' consumption motives to assess how similar they are and continue to repeatedly measure them as they grow older over the following years/decades. This kind of study would provide information about how much influence parental consumption motives have on their offspring's as well as how stable consumption motives are overtime. An alternative design would be to assess people before
and after great changes in life circumstance, e.g., moving out of their guardians home or to a different city or country (e.g., first year university students) and compare if and how their predictive patterns change overtime. Another important question to address would how, if at all, it might be possible to actively change consumption motive patterns long-term. In other words, can a person whose consumption is greatly motivated by taste, actively "re-invent" themselves and change towards their consumption being greatly motivated by for instance health reasons. Results from Vainio et al. (2016) potentially indicate that eating motivations change when actively changing diets though to address this in the future, longitudinal designs, e.g., observing the same cohort of participants before, during and after actively changing their diets (e.g., becoming vegetarians or vegans or losing weight) are needed to gain further insights into the long-term changeability of consumption motives and their role in behaviour change. Answers to those questions would furthermore have crucial implications for behaviour change programs, indicating whether interventions should aim to change eating motivations or work within the constraints of an individual's eating motivation pattern, e.g., nudge towards a greater importance of healthiness for consumption vs. finding healthy foods that the participant enjoys the taste of.

Across empirical Chapter 3 and 4, I found little agreement between what people thought predicted their consumption and what SAM ${ }^{2}$ predicted. As previously discussed, this might be due to the differences in what SAM ${ }^{2}$ measures compared to the purely self-assessment approach. In the future it would be beneficial to add qualitative interviews to the existing quantitative approach to address the observed differences between participants' assessment and the SAM ${ }^{2}$ predictions further, e.g., by presenting participants with the results of both assessments and asking them to evaluate and elaborate on their $S A M^{2}$ results. Here it would be interesting whether participants feel SAM 2 provides them with further insight into their eating motives and increases their understanding of themselves. This would furthermore provide researchers with the opportunity to assess which motives participants feel are still missing (e.g., sustainability) and should potentially be added when assessing eating motives with SAM ${ }^{2}$ in the future. Furthermore, instead of exclusively asking participants to complete SAM ${ }^{2}$ and/or traditional measurement online, it would be informative to instead modify the
measures and conduct them via a face to face or online qualitative interviews allowing to additionally ask participants to verbalise their judgment process to better understand how participants make their judgments on each measure.

Furthermore, future research should assess whether increasing participants' understanding of their consumption motivations can have an impact on their actual behaviour for instance by increasing their own self-control, e.g., if a person understand that they eat chocolate for emotional satisfaction would they be able to stop said consumption and substitute it with a less mal-adaptive behaviour such as exercise to achieve the same emotional effect. A future intervention study could provide SAM 2 's predictive profile as feedback to participants and assess whether having this information changes individual's consumption in the following days/weeks. This leads to a further un-addressed question, namely whether the $S^{2} M^{2}$ method itself could potentially be used as an intervention tool. In Chapter 4 participants reported to have learnt about their eating behaviour and how to regulate it and while I did find implicit learning effects, the learning was not reflected in changes to their self-assessment, which remained remarkably stable. A mix of qualitative and quantitative methods could be used in the future to assess this further by using qualitative interviews to ask participants whether and, if at all, what exactly they think they learnt and how they think this might affect their behaviour. Potentially repeatedly completing SAM² (for example weekly) and receiving feedback about which factors predicted their consumption might help individuals to better understand themselves, choose behaviour interventions that fit with their motivations and empower them to change their behaviour.

Another limitation across all empirical chapters was a lack of knowledge and control of how exactly participants understand the different predictors and what timespan and experiences they based their judgments on. In the future the use of a multi-method approach, including quantitative as well as qualitative measures might allow for assessing how people understand and rate the predictors by asking them to provide their own definitions of the predictors. This would especially be beneficial for complex predictors such as self-identity and would allow us to assess whether participants base ratings on fixed identities, such as being a vegan, following a healthy lifestyle, coming from a
specific culture, or on previous experiences, e.g., a food eaten in childhood, with family, very frequently consumed etc. The rich information captured by such an approach has previously been shown by Bisogni et al., (2002) when assessing eating identities. This would furthermore allow to compare between participants and assess whether some identities have comparatively stronger/ weaker associations with consumption as well as comparing whether food identities change depending on the eating situation, as would be expected based on Bisogni et al. (2002). Qualitative approaches would furthermore allow to assess which eating motivations (e.g., sustainability) and relevant situational factors (e.g., with friends vs family, outside the home vs at home) I was missing in the studies. This might be especially relevant for factors such as ethical, environmental and sustainability concerns, which were not included in any of the empirical chapters discussed here but have been shown to be of special importance for people who follow vegetarian and vegan diets (Gallenti et al., 2019; Hopwood et al., 2021).

Furthermore, as mentioned above, a key limitation was the reliance on selfreport measures across all three empirical chapters, which were collected outside of the context the behaviour had occurred in (the eating situation). In the future the use of ecological momentary assessments, for instance mobile phone apps, to measure consumption motives right before or after food consumption would allow to assess how eating motivations differ when collected in the moment compared to retroactively. Using EMA approaches would furthermore, as previously discussed, allow to compare anticipated food properties (such as taste, emotional satisfaction) and actual experienced food properties (how did the food taste, how emotional satisfying was it) and how each influences later food choices, e.g., if chocolate was anticipated as highly rewarding but the actual eating experience is only rated as low to moderately rewarding (e.g. because of feelings of guilt) does this experienced difference reduce anticipated emotional satisfaction of chocolate and/or consumption frequency the next day/week. Additionally, this approach would allow to more comprehensively investigate the variability of consumption motives across eating situations as well as across time. Finally, EMAs would potentially increase the reliability of the consumption measure as participants could be asked to provide
visual evidence of what they consumed instead of being dependent on participants memories and their retroactive judgment of the amount consumed.

Lastly, future research is needed to establish the ecological validity of the SAM ${ }^{2}$ measure, for instance by connecting it to long-term health. In other words, do people whose consumption emerged as highly predicted by healthiness also follow a healthier diet and have better long-term health outcomes such as low blood pressure, reduced risk of developing diabetes etc. Similarly, based on the previously established connection between consumption motives and personality (e.g., Anderson et al., 2013; Hopwood et al., 2021; Keller \& Siegrist, 2015; Pfeiler \& Egloff, 2020), e.g., personality and meat consumption rationalisation (Hopwood et al., 2021), the association between SAM ${ }^{2}$ and other individual differences such as self-control or the Big 5 should be investigated.

5.5 Conclusions

This thesis provided an extensive account of individual differences in consumption motivations, by establishing diverse individual motives for food and drink consumption, their importance and stability across multiple dimensions, e.g., different beverages, eating situations and time and added to the understanding of what predicts individuals' consumption. Using a novel situated measuring approach allowed to capture large individual differences in food and beverage consumption motivation illustrating the great variability across individuals in what motivates their consumption. Within participants, consumption motivations emerged as remarkably stable across both eating situations and time. In line with previous research, habit emerged consistently as important for consumption. The results furthermore possibly indicate that participants lack insight into what motivates their consumption. Lastly, the presented results further highlighted the importance to assess complex behaviour such as eating and drinking in a situated manner and to focus on the individual participant level instead of the typically reported condensed group results.

Appendix A Supplementary materials for Chapter 2

Supplementary material 1: Data exclusion

All participants' data quality was checked on six pre-decided measures to ensure that participants had not responded randomly to the questions. Participants were only excluded if they showed problematic results on at least three of the six measures. First survey duration length was reviewed, and participants flagged as potentially problematic if they took less than 25 minutes. Next, flatlines were assessed by calculating the standard deviation of each measure and comparing it to zero. A standard deviation of zero in a measure was seen as problematic as it indicates that the participants rated all drinks as exactly the same on this measure. Participants were flagged for further review when showing more than three flatlines and excluded if they had six or more flatlines. Next, two diagnostic correlations were calculated for each participant, first between healthiness and calorie, which was expected to be negative, and second between general consumption frequency and frequency during the last month, which was expected to be positive. Additionally average standard deviation across all ratings and average correlation to other participants were calculated. A participant's data was flagged as potentially low quality for any of the four measures if their value fell below the lower bound threshold. After computing all six quality control measures, a total of 39 participants who were either flagged as problematic on three or more measures and/or had six or more flatlines were excluded from further analysis.

Supplementary material 2: Additional measures and demographic Information collected

The following measures were collected in this study but will be reported elsewhere:

- Desire for alcohol questionnaire (DAQ)
- Drinking motive
- Obsessive compulsive drinking scale (OCDS)
- Alcohol expectancies
- Uncontrollability thought action scale (UTAS)
- Temptation restraint
- Adult use disorder Identification test (AUDIT)
- Timeline alcohol consumption last month
- Attitude to being drunk
- Current restriction alcohol consumption
- Age first alcohol consumption

Supplementary material 3: Detailed descriptions of the inter-rater agreement for the 35 measures

The highest inter-rater agreements were for Calories (.69), Healthiness (.62) and Sweetness (.61), demonstrating moderate levels of agreement for the calorie content, healthiness, and sweetness of drinks. There appeared to be only poor agreement for Thirst (.43) and Affordability (.42). Virtually no agreement existed for ResistingTemption, EaseToStop (once consuming how easy is it to stop), and SituationalTransport (how easy is it to feel transported into the consumption situation) (all .04), or for Selfldentity and LikeTexture (both .05), or for LikeTaste, Conflict, and PositiveBodilyConsequences (immediately after consumption experienced short-term positive bodily consequences) (all .06), demonstrating considerable individual differences in these measures. Interestingly while the agreement for Sweetness was high, Bitterness was considerably lower (.31) indicating that sweetness was experienced more similarly across participants than bitterness. Similarly, while agreement for the two questions about the experience of immediate bodily consequences was relatively low, the agreement for short term negative bodily consequences was considerably higher (.21) than agreement for short term positive bodily consequences (.06). Interestingly, agreement for whether other people approve of consumption was also poor (.27), with agreement for participants approval of others' consumption being even lower (.16).

Supplementary material 4: Detailed description of the judgment means and variability

The greatest variability (implying large individual differences) occurred for tap water, bottled water and diet soft drinks within the question of Prevent Weight Gain, with SDs ranging from 37.84 to 41.23 . The lowest variability (implying small inter-individual differences) was observed for the Affordability of tap water (10.41), along with the Calories of tap water (13.00) and bottled water (13.31). Perhaps unsurprisingly, all four alcoholic beverages were rated higher than the seven non-alcoholic drinks on the socially relevant factors, including SocialConnectedness (experience of feeling socially connected to others during consumption), EaseSocialising (extent to which drink is consumed to make socialising easier), PeoplePresent (how often are other people present during consumption), Celebration (extent consumption to celebrate happy events and occasions), and DescriptiveNorms. Interestingly, when asked to what extent a drink is consumed during the experience of NegativeEmotions, tea and coffee emerged as highly rated, together with the alcoholic drinks. A similar pattern was observed for Relaxation. Both types of water were rated as highest for Healthiness, Thirst, and Prevention of Weight Gain (extent consumption to prevent weight gain), while being rated lowest for Calories, Bitterness, Sweetness, and Regret/Guilt. Across all socially relevant judgments, both types of water were rated consistently low. Tap water was furthermore rated highest for affordability, consistency of consumption location lowest for effort to obtain at home (how effortful to physically obtain when at home). Sugar-sweetened beverages were rated, together with cocktails, as highest in Sweetness. tea, coffee and tap water emerged as highest rated for automaticity, Self-Identity, and frequency of seeing legal guardians consuming the drink, while being rated lowest for how easy it is to resist temptation.

Supplementary material 5: Detailed descriptions of correlations of frequency with the predictive measures for individual drinks

To explore the relationship between consumption frequency and the 34 predictive measures, correlations were calculated for each drink individually. Specifically, the correlation between the raw ratings for frequency and the raw ratings for each predictor was computed across the 900 participants. Each panel in Appendix Figure 5-1 presents the correlations for one of the 34 predictors across the 11 drinks. Due to the large sample size $(\mathrm{n}=900)$ it can be assumed that these correlation are highly stable (Schönbrodt \& Perugini, 2013).

Three of the four alcoholic drinks were most strongly correlated with LikeTaste (beer $=.84$; wine $=.74$; spirits $=.57$), Additionally all four alcoholic drinks showed strong to moderate associations with Celebration (beer $=.75$, wine $=$.60 , cocktails $=.56$, spirits $=.55$). For beer, LikeTexture (.76) and Relaxation (.75) also emerged as strongly correlated with frequency. Overall, within the alcoholic beverage group, beer showed the strongest correlations across all predictive measures, except for PreventWeightGain, ImmedNegBodyyConseq, RegretGuilt, InjuncitiveNorms, Affordabiltiy, and ParentConsume, which predicted either wine, cocktails or spirits higher than beer.

Both types of water exhibited similar patterns, having strong correlations of Frequency with Automaticity (tap water $=.71$ and bottled water $=.70$), together with moderate correlations with Thirst (tap water $=.61$, bottled water $=.53$) and LikeTaste (tap water $=.61$, bottled water $=.50$). The two hot beverages group also emerged as similar in their predictive patterns. Both showed strong correlations with LikeTaste (coffee $=.84$, tea $=.83)$, Automaticity (coffee $=.80$, tea $=.79$) and LikeTexture (coffee $=.78$, tea $=.75$). Perhaps surprisingly, for the sugar sweetened beverage group, Automaticity emerged as strongest predictor of consumption frequency across all three sugar-sweetened beverages (diet soft drink $=.79$, regular soft drink $=.69$, fruit juice $=.63$), followed by LikeTaste (diet soft drink $=.79$, regular soft drink $=.55$, fruit juice $=.68$), Thirst (diet soft
drink $=.72$, regular soft drink $=.66$, fruit juice $=.58$), and LikeTexture (diet soft drink $=.69$, regular soft drink $=.60$, fruit juice $=.51$).

Assessing the similarity of the predictive patterns for the 11

 drinksAs can be seen from examining the individual panels of Appendix Figure 5-1, most predictors exhibited a relatively stable pattern of prediction across drinks. The ICC2 was used to assess this stability. In this analysis, each drink's 34 correlations between the 34 predictors and frequency was treated as a vector that constitutes the drink's prediction profile (i.e., the pattern of prediction for drink consumption across the 34 predictors). The ICC2 was then used to establish the similarity of the prediction profiles for the 11 drinks. In other words, we tried to answer the question how similar the pattern of prediction was across drinks. For this analysis, the ICC2 was .85 , indicating that the detailed pattern of prediction for the 34 predictors across the 11 drinks was very similar. Following a common interpretation of the ICC2 (Shrout \& Fleiss, 1979), the average correlation in the predictive profiles between individual pairs of drinks was .85 , indicating a highly stable pattern of prediction.

Appendix Figure 5-1 - Correlation results of the 34 predictive measures with consumption frequency

Forest plots that visualise the correlation results of the 34 predictive measures with the dependent variable, consumption frequency. Each of the 34 plots shows one predictive measure's results for each of the 11 drinks. Colours correspond to each drink's typical association beverage category (alcohol, hot beverages, sugary drinks, water)

Results of the bootstrapping analysis to test the stability of the factor analysis loadings. For each of the 10.000 analysis 900 participants were randomly selected with replacement, meaning one participant could be included multiple times in the analysis. The in this way created data set was used to compute a seven-factor factor analysis with a oblimin rotation (based on the original factor analysis). The table shows the aggregated results for each rating and each of the seven factors." _orig" presents each original Factor analysis factor loadings." _Cl_lower" and "_Cl_upper" present the lower and upper limit of the 95% confident interval of the bootstrapped mean. _bootstrapping shows the mean of each factor across the 10.000 bootstrapped factor analysis.

		$\begin{aligned} & \frac{\overline{3}}{3} \\ & \frac{0_{1}^{\prime}}{\bar{U}_{1}} \end{aligned}$				$\begin{aligned} & \frac{\vdots}{3} \\ & \frac{\vdots}{訁_{1}^{\prime}} \\ & \bar{U}_{1}^{\prime} \end{aligned}$								$\begin{aligned} & \frac{b}{3} \\ & \frac{b}{\prime} \\ & \bar{I}_{U}^{\prime} \end{aligned}$												$\begin{aligned} & \frac{b}{3} \\ & \frac{b}{\prime} \\ & \bar{O}_{1}^{\prime} \end{aligned}$		
Affordabiliy		-19	-. 07	- 12	-02	-.05	. 04	-01	11	. 07	. 17	. 12	${ }^{63}$	${ }^{53}$. 69	.61	11	. 07	14	11	-05	- 12	-01	-06	-08	12	. 01	. 07
Alerness	11	- 14	-. 06	-1	. 26	. 19	29	24	${ }^{37}$	${ }^{33}$	${ }^{41}$	${ }^{37}$. 17	. 12	${ }^{24}$. 18	- 15	- 19	-1	- 15	. 14	1	. 17	. 13	. 16	. 08	24	. 16
Approveothers	. 17	. 12	. 22	. 17	. 18	. 13	. 24	. 18	. 11	. 07	. 15	. 11	. 23	. 17	${ }^{28}$. 23	0	-. 04	. 05	0	-.35	${ }^{-4}$	-3	-.35	. 06	0	. 12	. 06
Automaticity	. 06	. 01	. 09	. 05	22	. 18	${ }^{27}$. 22	. 24	2	28	. 24	34	. 29	. 39	. 34	-26	-3	-22	-.26	. 01	-.03	. 04	0	-.03	-.09	. 03	-.03
Bitteress	. 17	. 08	${ }^{3}$	18	-2	-.32	- 14	- 22	-.06	- 12	-02	-.06	0	-.06	13	. 01	. 04	-. 02	. 08	. 03	. 06	. 02	14	. 07	. 47	${ }^{31}$	${ }_{56}$. 4
Calories	. 1	. 06	. 13	1	. 16	. 12	. 2	. 16	-.64	-. 69	-. 6	-.64	0	-. 04	. 04	0	. 07	. 02	11	. 07	24	. 18	28	23	. 01	-.06	. 06	0
Celebration	. 68	. 61	. 72	${ }^{67}$. 09	. 05	. 16	1	- 18	-21	- 15	- 18	. 01	-. 05	. 04	0	-1	- 14	-.05	-1	. 05	0	. 08	. 04	-.08	- 17	0	-. 08
ComplementsFood	. 3	. 23	. 34	. 29	.	. 15	26	21	. 11	. 07	. 15	. 11	. 28	. 22	. 32	${ }^{27}$	-. 03	-.08	. 01	-03	. 11	. 06	. 15	. 11	-. 09	- 2	-01	-. 09
Confict	. 07	. 02	12	07	. 04	0	09	. 04	. 05	01	. 08	. 05	-. 03	-. 08	. 03	-03	- 12	- 18	-07	-12	. 52	${ }^{46}$. 58	. 52	-01	-. 09	. 04	-01
Descripitivenorms	. 71	. 67	. 75	. 71	-.05	-.08	0	-04	. 1	. 07	. 13	.1	-. 02	-. 06	. 02	-. 02	. 04	0	. 08	. 04	.1	. 07	. 14	. 11	-. 01	-. 06	. 03	-.02
Easesocialising	. 77	. 73	. 8	. 77	-. 08	- 11	-.05	-. 08	. 03	0	. 05	. 03	-02	-. 05	. 01	-02	-09	- 12	-.05	-.09	. 04	. 02	. 07	. 04	. 07	. 03	1	. 07
EasyTostop	12	- 16	-. 08	-12	-01	-06	. 02	-. 02	. 06	. 03	. 08	. 06	. 13	. 09	. 16	. 12	. 62	. 57	. 66	. 61	-. 08	- 11	-.05	-.08	. 01	-. 02	. 04	01
Efforotobainhome	0	-.03	. 06	. 01	. 05	-01	1	. 04	. 07	. 01	1	. 06	-48	-.56	-.39	-47	${ }^{13}$. 06	. 18	. 12	26	. 18	. 33	. 26	. 01	-.05	. 07	. 01
Healthiness	. 07	-1	-. 04	-. 07	. 15	. 11	. 18	. 15	. 67	.64	. 71	. 67	. 07	. 04	1	. 07	. 06	. 03	. 08	. 06	- 14	- 17	-11	- 14	0	-.03	. 04	0
ImmedNegBodiliconseq	. 16	. 1	. 24	. 17	-.03	-. 09	. 01	-04	-07	- 11	-.03	-. 07	-. 09	- 13	-02	-.08	. 02	-02	. 06	. 02	. 47	. 42	. 54	${ }^{48}$	2	. 11	. 26	. 19
$1 m m e d P$ PsBodily ${ }^{\text {consea }}$. 19	. 11	. 27	. 19	.1	${ }^{24}$. 36	3	29	. 25	. 3	29	-06	-11	. 01	-. 05	-11	- 17	-.06	-11	. 02	-02	. 08	. 03	. 14	. 06	. 24	. 14
Likesmell	. 02	-.04	. 03	-. 01	. 74	. 66	. 78	. 73	-. 09	-. 13	-06	- 1	. 01	-. 02	. 09	. 02	. 01	-03	. 04	. 01	. 02	-. 01	. 06	. 02	. 16	1	${ }^{2}$. 15
Liketaste	. 04	. 01	. 06	. 03	81	. 76	85	81	0	-02	. 02	0	0	-. 02	. 02	0	-1	- 12	-07	-1	-.03	-05	-01	-03	-1	- 13	-. 05	-09
LikeTexture	. 06	. 02	. 09	. 05	. 74	. 69	. 78	. 74	. 08	. 06	1	. 08	. 03	0	. 06	. 03	-. 05	-.08	-02	-.05	-.03	-. 05	0	-02	-1	- 14	-04	-. 09
Locationconsistency	. 09	. 03	.13	. 08	. 22	. 16	28	. 22	. 04	. 01	. 08	. 04	${ }^{33}$. 27	. 39	${ }^{3}$. 03	-.02	. 08	. 03	. 01	-. 03	. 06	. 01	. 04	-.03	. 11	. 04
NegativeEmotions	. 32	. 25	. 38	. 32	. 06	. 01	.11	. 06	. 07	. 03	1	. 07	. 14	. 08	. 19	. 14	-29	${ }^{-34}$	-23	-29	. 15	1	. 19	. 15	1	0	. 17	1
ParentsConsume	. 01	-.03	. 05	. 01	. 01	-04	05	0	0	-.03	. 03	0	. 5	. 44	. 56	. 5	-02	-06	. 01	-02	0	-04	. 03	0	. 22	. 13	. 28	${ }^{21}$
PeoplePresent	. 6	. 53	. 65	. 59	. 16	.1	. 22	. 16	-.03	-06	0	-.03	- 13	- 19	-.08	- 13	${ }^{23}$. 18	${ }^{26}$. 22	-. 02	-. 05	. 03	-01	-05	- 12	. 05	-04
PreventweightGain	. 06	. 03	. 1	. 06	-. 05	-.08	-01	-04	. 66	. 62	71	${ }^{67}$. 06	. 01	. 1	. 06	${ }^{-03}$	-.08	. 01	-03	. 12	. 08	. 15	. 12	-.07	- 13	-. 02	-.07
Regreituilt	. 01	-. 04	. 01	-. 02	-.03	-.06	0	-.03	-. 07	-1	-. 04	-. 07	-. 01	-.03	. 01	-. 01	. 01	-.02	. 03	. 01	.77	. 72	. 82	. 77	0	-.03	. 03	0
Relaxation	. 48	. 42	. 54	. 48	. 13	. 08	. 19	. 13	. 01	-02	. 04	. 01	. 15	1	2	. 15	- 22	-27	- 18	- 22	. 01	-. 02	. 05	. 01	. 04	-.05	. 12	. 04
Resistremplation	. 03	. 01	. 06	. 03	-.09	${ }_{-14}$	-. 06	-1	-. 03	-. 07	-. 01	-. 04	-03	${ }^{-06}$	0	-. 03	. 73	. 67	. 77	. 72	. 04	. 01	. 05	. 03	0	-.03	. 02	0
Seffidenity	. 19	. 14	${ }^{23}$. 19	. 16	. 12	${ }^{21}$. 17	. 16	. 12	. 19	. 16	. 23	. 18	. 27	${ }^{23}$	-33	-.38	-.27	${ }^{-33}$. 07	. 03	. 11	. 07	. 05	-.03	. 11	. 04
Situationalransport	. 34	. 27	${ }^{38}$. 33	. 29	23	${ }^{37}$	${ }^{3}$. 03	-. 01	. 07	. 03	. 15	. 09	${ }^{21}$. 15	. 01	-. 04	. 06	. 01	-02	-.06	. 02	-.02	-01	-. 08	. 08	0
Socialconnectedesess	. 76	. 73	. 8	. 76	. 06	. 03	. 09	. 06	-. 07	- 1	-. 05	-.07	-01	-.03	. 02	0	-. 04	-. 07	-. 01	-. 04	-. 04	-. 07	-. 01	-. 04	. 12	. 08	. 14	. 11

Appendix B Supplementary materials for Chapter 3

Supplementary material 1: Remaining Coding description and description of the resulting Norms

Specifically, the latter frequencies are labelled: '\%TF' (Tasty, but not so healthy, consumed frequently), ‘\%TO’ (Tasty, but not so healthy, consumed only occasionally), ‘\%HF' (Relatively healthy, consumed frequently) and ‘\%HO’ (Relatively healthy, consumed only occasionally). These percentage were furthermore condensed to show the percentage a food was generated as tasty (\%tasty) and to what percentage it was generated as healthy (\%healthy). Lastly, to enable other researchers to rebuild an individual participant's full food profiles, the norms show which participant generated each individual food response, such that responses can be aggregated by individuals across categories and situations.

To make the food norms as informative as possible and to support a wide variety of research needs, we organised them in four different ways, differing in their level of detail and in the order of foods (for the full norms see Appendix B (SM 4)). All norms are available online (https://osf.io/anpmx/). SM Table 1 includes all original responses, including the information necessary to recreate individual participant's complete response set. SM Table 2 shows the same results as SM Table 1 but without the participant specific information, thereby simplifying them significantly. Table SM 3 and Table SM 4 present the results in still more condensed ways, only including the eating situation, basic food category, overall consumption frequency of the basic food, and whether the food was listed as healthy/unhealthy and consumed frequently/occasionally. SM Table 3 shows the foods in the same order as table SM 1 and SM 2, whereas table SM 4 reordered the foods within each eating situation based on their overall consumption frequency (starting with foods having the highest consumption frequency). Together, these four tables allow researchers and clinicians to obtain a variety of perspectives on the foods generated in this study.

Supplementary material 2: Study 3 Dropout rate

Data Collection 1 samples and drop-out rates

- Session 1 contained 200 complete participants
- Session 2 completed 191 of these participants (9 dropped out)
- Session 3 completed 183 of these participants (another 8 dropped out for a total of 17)

Data Collection 2 samples and drop-out rates

- Session 1 contained 30 complete participants
- Session 2 completed 29 of these participants (1 dropped out)
- Session 3 completed 29 of these participants (another 0 dropped out for a total of 1)

Supplementary material 3: Data quality control

Participants' data quality was checked on six pre-decided measures to assess whether participants followed the task instructions or replied randomly. Showing problematic results on three of the six measures indicated low quality data and therefore resulted in exclusion from the study. Criteria were firstly study duration. Second and thirdly two diagnostic correlations (expected positive correlation: Frequency and Automaticity; expected negative correlation: Healthiness and Filligness). Fourthly the number of flatlines was determined by computing the standard deviation of each measure across the 177 foods and testing whether it differed from zero. Fifthly the average correlation to other participants.

Supplementary material 4: Study 1 Norms

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline alosoter \& esingstutaion \& exingestutan \& geneat toodateear \& basictood \& trees \& trefereuener \& \& \& accomenemens \& cemen \& coin \& ＊F \& ＊то \& 8nf \& ＊но \& $x_{\text {sasat }}$ \& \％heathy

\hline ， \& usalumanh \& \& shproten \& hadolock \& $$
\begin{aligned}
& \text { (haddock)/1 } \\
& (\text { eggs)/10 }
\end{aligned}
$$ \& 1 \& \& \& \& \& \& 0.00 \& 0，00 \& 0，00 \& 100，00 \& 0，00 \& 100，00

\hline 202 \& ueatumb \& ${ }^{47}$ \& veseresin proten \& （nooterefiesesemem） \& \& ${ }^{27}$ \& \& \& （meathen \& 3 \& ${ }^{24}$ \& ${ }_{19,58}$ \& 20，83 \& 47，92 \& 16.67 \& ${ }_{3,51}$ \& 64.58

\hline 203 \& ueal unen \& ${ }^{48}$ \& veseremin proten \& bens \& \& ${ }^{14}$ \& \& \& \& \& ${ }^{13}$ \& 7，69 \& 0，00 \& ${ }^{3846}$ \& 53，85 \& 7,69 \& 92，31

\hline $\substack{208 \\ 206 \\ 206}_{\substack{\text { and }}}$ \& \& （is \& \& \& cose \& ${ }_{6}^{6}$ \& \& \& \& \& ${ }_{5}^{5}$ \& \& a \& $$
\begin{gathered}
20,00 \\
\text { coicoo } \\
0.000 \\
\hline
\end{gathered}
$$ \& （enco \& coion \& $$
\begin{aligned}
& 100,00 \\
& 100,00 \\
& 100,00
\end{aligned}
$$

\hline \& \& \& \& \& ，lamomish \& \& \& \& \& \& \& \& \& \& \& \&

\hline 207 \& usal lunch \& 52 \& veserain proten \& nuts \& $$
\begin{gathered}
\text { (pistachio_nuts)/1 } \\
\text { (salted_pistachio_nuts)/1 } \\
\text { (pecan_nuts)/1 } \\
\text { (cashew_nuts)/2 }
\end{gathered}
$$ \& － \& \& \& \& \& 4 \& 0.00 \& ${ }_{12,50}$ \& 75，00 \& 1250 \& 12.50 \& 87，50

\hline 208 \& usalunh \& ${ }^{3}$ \& vesearain protein \& dant \& \& 3 \& \& \& \& \& 3 \& 0，00 \& 0，00 \& 66，67 \& ${ }_{33,3}$ \& 0.00 \& 100，0

\hline 299 \& usalunct \& ${ }_{56}$ \& veserain protein \& toiu \& \& 2 \& \& \& \& \& 2 \& 50，00 \& 0，00 \& 0，00 \& 59，0 \& 50，0 \& 50，00

\hline ${ }^{210}$ \& usalunch \& ${ }_{5} 5$ \& veseation poteien \& legmes \& \& 1 \& \& \& \& \& 1 \& 0，00 \& 0，00 \& 100，00 \& 0．00 \& 0，00 \& 100，00

\hline $\underset{212}{211}$ \& $\underset{\substack{\text { vesalunt } \\ \text { usal lunch }}}{ }$ \& ${ }_{56}^{56}$ \& vestainporeten \& 为 \& \& $\stackrel{2}{2}$ \& \& \& \& \& 1 \& 100000 \& 0，00 \& ${ }^{0.00}$ \& 0，00 \& ${ }^{100000}$ \& 0，00

\hline ${ }_{213}^{212}$ \& \& ${ }_{58}^{57}$ \& vesearain pooten \& \& cil \& ${ }_{2}^{1}$ \& \& \& \& \& ${ }_{1}^{1}$ \& 0.00
0.00 \& 0,00
0.00 \& co， \& $\substack{\text { 100，00 } \\ \text { so，0 }}$ \& ${ }_{0}^{0.00} 0$ \& 100，00

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline ${ }^{219}$ \& vealumb \& s9 \& dinfroseatasaternat \& cheose \& \& ${ }^{37}$ \& \& \& （thenomel／ \& 1 \& ${ }^{29}$ \& ${ }_{3621}$ \& 22，41 \& ${ }^{29,31}$ \& 12.07 \& ${ }_{58,62}$ \& ${ }_{41,38}$

\hline ${ }^{215}$ \& uealumh \& ${ }^{60}$ \& dinur \& vount \& \& ${ }^{11}$ \& \& \& \& \& ${ }^{10}$ \& 10，00 \& 0.00 \& 6，00 \& 30.00 \& 10，00 \& 90，00

\hline 216 \& usalume \& 61 \& aterative \& Staseaf egit \& $$
\begin{gathered}
(\text { greek_yogurt)/1 } \\
\text { (alpro_yogurt)/1 } \\
\text { (salad) } / 32
\end{gathered}
$$ \& 1 \& \& \& \& \& 1 \& 100，00 \& 0，00 \& 0，00 \& 0.00 \& 100，00 \& 0，00

\hline 217 \& ueal unen \& 6 \& emearavesabe \& Sealad \& \& ${ }^{41}$ \& \& \& $$
\begin{gathered}
\text { (balsamic_vinegar)/1 } \\
\text { (evoo)/1 } \\
\text { (vinegar)/2 } \\
\text { (olive_oil)/1 }
\end{gathered}
$$ \& 5 \& ${ }^{4}$ \& 0.00 \& 0.00 \& 6，95 \& 33,15 \& 0.00 \& 100，00

\hline 218 \& ueatumb \& ${ }^{6}$ \& avesembe \& Eetare \& \& ${ }^{10}$ \& \& \& \& \& ${ }^{10}$ \& 0.00 \& 0，00 \& 50，00 \& 50，00 \& 0.00 \& 100，00

\hline ${ }_{220}^{220}$ \& \& ${ }_{65}^{66}$ \& \& \& 为 \& ${ }_{1}^{1}$ \& \& \& \& \& 1 \& ${ }_{\substack{\text { a } \\ 0.000}}^{\text {0，00 }}$ \& 0，00 \& ${ }_{0}^{0.00}$ \& $\xrightarrow{\text { a }}$（0，000000 \& $\underbrace{}_{\substack{\text { apo，00 } \\ 0.00}}$ \& a

\hline ${ }^{22}$ \& veal unch \& ${ }^{6}$ \& eble \& tomases \& （tomatoes）／23
（cherry＿tomatoes）／1
（sundried＿tomatoes）／1 \& ${ }^{25}$ \& \& \& \& 2 \& ${ }^{24}$ \& 4.17 \& ${ }^{0.00}$ \& ${ }_{68,5}$ \& 2，08 \& 4.7 \& 95,83

\hline 22 \& vealumh \& ${ }^{6}$ \& stovergond degestule \& perepopicum \& \& 15 \& \& \& \& \& ${ }^{15}$ \& 0，00 \& 6.67 \& 6，000 \& ${ }_{3,3}$ \& 6.67 \& ${ }^{93,33}$

\hline ${ }^{23}$ \& usalumen \& ${ }^{68}$ \& stovesoundegeable \& letuse \& \& ${ }^{14}$ \& \& \& （inegers／ \& 1 \& ${ }^{13}$ \& 0，00 \& 0,00 \& 69，3 \& 30.77 \& 0.00 \& 100，00

\hline 224 \& usalunh \& ${ }^{69}$ \& stovegoundeeferble \& mustrom \& \& ${ }^{13}$ \& \& \& cen \& 2 \& ${ }^{12}$ \& ${ }^{8,33}$ \& 8，3 \& ${ }_{41,67}$ \& ${ }^{4.1,67}$ \& 16.67 \& ${ }^{833} 3$

\hline 225 \& usal lunch \& 70 \& dotoegoundegersile \& brocalif \& \& ${ }^{11}$ \& \& \& \& \& 11 \& 0，00 \& 0,00 \& ${ }^{22,7}$ \& 27，27 \& 0.00 \& 10，00

\hline 226

227 \& \& ${ }_{72}$ \& \& \& \& ； \& \& \& \& \& \％ \& 0.00
0,00 \& 0,00

0.00 \& lis， \& 2500 \& | 0，00 |
| :--- |
| 0.00 |
| 0 | \& 100，00

100，00

\hline ${ }^{28}$ \& usalunch \& ${ }^{13}$ \& Stoversoundegesile \& olive \& conem \& 6 \& \& \& \& \& － \& 0，00 \& ${ }_{0}^{0,00}$ \& \& ${ }_{\text {283，}}^{28,}$ \& ${ }_{0}^{0,00}$ \& coion

\hline ${ }^{229}$ \& usalunch \& ${ }^{74}$ \& \& cuermer \& cele \& ${ }^{6}$ \& \& \& \& \& ${ }^{6}$ \& 0，00 \& 0，00 \& 50，00 \& 50，00 \& 0.00 \& 100，00

\hline ${ }^{230}$ \& usal lunch \& ${ }^{5}$ \& ${ }^{\text {abowegunus degestale }}$ \& cabber \& cosk \& 5 \& \& \& geniric／2 \& 1 \& 5 \& 20，00 \& 20，00 \& 6，000 \& 0.00 \& 40，00 \& 60，00

\hline ${ }^{231}$ \& uaxalunh \& ${ }^{76}$ \& atomegund degestule \& ${ }^{\text {ceer }}$ \& come \& 2 \& \& \& （tap）／ \& 1 \& ＊ \& 0，00 \& 0，00 \& 50，00 \& 50，00 \& 0，00 \& 100，00

\hline ${ }_{238}^{232}$ \& \& ${ }_{78}^{71}$ \& \& $\underset{\substack{\text { pess } \\ \text { rocee }}}{ }$ \& comem \& ${ }_{3}$ \& \& \& \& \& $\stackrel{4}{3}$ \& 0.00
0.00 \& 0,00
0,00 \& 25，00 \& 75，00
33,3 \& 0.00
0.00 \& 100，00
10，000

\hline ${ }^{238}$ \& usalunch \& ${ }^{79}$ \& \& courste \& （cenestel） \& 3 \& \& \& loysuare／l \& 1 \& 3 \& 0.00 \& 0，00 \& ${ }_{33,3}^{60,}$ \& ${ }_{6,67}$ \& 0.00 \& ciow，

\hline ${ }_{236}^{235}$ \& usalumh \& ${ }^{80}$ \& atovegund \& greenbens \& \& ${ }^{3}$ \& \& \& \& \& 3 \& 0.00 \& ${ }^{0.00}$ \& ${ }_{66,77}$ \& ${ }^{33,3}$ \& 0.00 \& 10000

10000

\hline （ \& \& 哏81 ${ }_{8}^{81}$ \& \& cit \& \& ${ }_{1}^{2}$ \& \& \& \& \& ${ }_{1}^{2}$ \& （oide \& co， \& cose \& coicle \& coion \& （100，

\hline ${ }^{239}$ \& Useme \& ${ }_{85}^{88}$ \& \& ctile eper \& \& ${ }_{1}^{1}$ \& \& \& \& \& 1 \& a \& coion \& co， \& coiod \& coion \& coion

\hline $\underset{\substack{24 . \\ 24}}{2,1}$ \& Useal \& ${ }^{86}$ \& \& butemuts suash \& \& 1 \& \& \& \& \& $\frac{1}{1}$ \& \& coioc \& coiou \& cose \& a， \& coin

\hline $\underset{\substack{2,3 \\ 245 \\ 24.5}}{24}$ \& \& ¢ \& coly \& cos \& cosk \& $\frac{1}{1}$ \& \& \& \& \& 1 \& （oico \& coios \& coios \& coicle \& coion \& （100，

\hline \& \& \& \& \& \& 1 \& \& \& \& \& $\frac{1}{1}$ \& （oico \& coio \& （o．aso \& coiole \& coion \&

\hline \& \& ¢980 \& \& \& comen \& 1 \& \& \& \& \& 1 \& \& \& \& \& \&

\hline 250 \& uealunh \& 95 \& bolowsoundugesale \& crose \& \& ${ }^{15}$ \& \& \& mummus／ \& 1 \& ${ }^{13}$ \& 0.00 \& 0.00 \& 46，15 \& 53，85 \& 0,00 \& 100，00

\hline ${ }_{252}^{251}$ \& \& ${ }_{97}^{96}$ \& \& onion ${ }_{\text {onetron }}$ \& \& 3_{3}^{3} \& \& \& \& \& 3_{3}^{3} \& 0 \& ${ }_{\substack{0,00 \\ 0,00}}^{\substack{\text { a }}}$ \& $\underbrace{\substack{10,00 \\ 66,9}}_{\text {cose }}$ \& ${ }_{\substack{0,00 \\ 3,33}}$ \& ${ }_{0}^{0.00}$ \&

\hline
\end{tabular}

aloserer	exirssatation	estingsistaion	Eneat atodateeory	bsastood	tres	trefereweny			acompenimens			＊F	＊\％	＊nf	＊no	xtast	xhatuty
${ }_{\substack{585 \\ 585}}^{\text {sit }}$	cele	永215	disasme	$\substack{\text { chilisuce } \\ \text { chemmace }}$								$\xrightarrow[\substack{\text { O．，} \\ \text { joios }}]{\text { a }}$			0，00	$\xrightarrow[\substack{\text { a，o } \\ \text { 1000 }}]{ }$	
		${ }^{217}$	dismed		Semerememen							Hotion	ciono	（ion	0.00	coin	（oico
$\substack{\text { cis } \\ 590 \\ 590}_{50}$						1					1	a0．00 toion ion	，	$\begin{gathered} 0,00 \\ 0,0,0 \\ 0,00 \end{gathered}$	这	coin	（0，00
$\underset{\substack{59 \\ 592}}{\substack{59 \\ 5}}$		$\underset{\substack{221 \\ 222}}{20}$				${ }_{1}^{1}$					1	coinco	coiou	$\begin{gathered} 0,0,0 \\ 0.0 .0 \\ 0,00 \end{gathered}$		（10，	（o，
		${ }^{223}$	desmelsime			＋											0,00
59	usuad dinem	${ }^{224}$	dipipmeath	mome		6					6	16.67	6 6，7	0，00	16,67	${ }^{83,3}$	16，67
${ }_{595}^{595}$	Usun	${ }^{225}$	Sill	mot		$\stackrel{5}{4}$					${ }_{4}^{5}$		${ }_{\text {coide }}^{\substack{\text { ci，} \\ \text { 2，0 }}}$	coion	0，00		${ }_{\text {cose }}^{\text {a } 2,00}$
59	vand dmoes	${ }^{228}$	diclen			${ }^{3}$					${ }_{2}^{3}$	${ }_{0}^{0,00}$	（0，00			${ }_{0}^{0,00}$	
599	usandmme	${ }^{22}$	dip／pereat／opone	amandour	隹	2					2	0.00	50，00	0，00	50，00	50，00	50，00
$\underset{\substack{600 \\ 600}}{601}$		$\underset{\substack{231 \\ 23}}{23}$		cest	Momem	${ }_{1}^{2}$					1	50，00	so，0	（o，00	o．oo	coion	co．a
	ces	${ }^{232}$	city			${ }_{1}^{1}$					${ }_{1}^{1}$					（10000	$\underset{\substack{0,00 \\ 0,0}}{0.0}$
604	usum dinea	234	nenolope	neab		，					3	0，00	0，00	66，67	${ }^{3,3} 3$	0.00	100，00
605	usasamme	235	other	cram	cis	6					6	${ }^{16,67}$	66,67	0，00	16.67	${ }^{83,3}$	15.67
${ }_{606}$	Sodime	236	other	sock	cheme	2					2	50.00	50，0	0，00	0.00	100，00	0.00
					che												
					隹				butarelic								
									men								
${ }^{607}$	davimenas	1	seefobetiof	bread	Lhemeth	${ }_{56}$			comel	${ }^{31}$	${ }^{41}$	${ }_{4}^{4.67}$	${ }_{31,91}$	16.67	9，76	${ }^{7} 3,58$	26，92
					come												
					cole				coicle								
${ }^{608}$	dorymenex	2	nourbesed baced tod	orateo		${ }^{15}$				6	${ }^{14}$	0.00	12，86	46,4	${ }^{35,71}$	${ }^{17,86}$	${ }^{8,24}$
69	dariment		Aourbened bied tood	crader		10					8	31.25	25，00	25，00	${ }_{18,75}$	55.25	${ }^{63,75}$
					and												
610	duprimensack	¢		necoute	tire emety／	，					7	0.00	1123	22.57	57， 4	1429	85，71
${ }_{611}^{611}$		${ }_{6}$				2			mommes／	1	2				50，00		
${ }_{613}^{612}$		；	fout	bitestitice	cimed．	$\stackrel{1}{1}$			mommus／1	1	${ }_{1}^{1}$	0，000	100，00	（0，00	0，00	coion	$\underbrace{\text { a }}_{\substack{0,00 \\ 0,00}}$
${ }_{614}$	dospinesask	8	grin	popoem		－					－	0．00	75，0	25，00	0.00	75，00	25，00
615	dosimimenack	，	gain	tortilatios	comele	4					¢	0.00	100，0	0，00	0，00	10000	0，00
6_{16}	doxtimenaxk	${ }^{10}$	gain	${ }_{\text {com maxa }}$		2					$\stackrel{2}{2}$	0，00	0.00	0.00	100，00	0.00	100，00
617	duprimenack	${ }^{11}$	${ }_{\text {gain }}$	starece		1			（thicems soos）／	1	1	0.00	0.00	100，00	0.00	0.00	100，00
${ }_{618}$	daytimena	${ }^{12}$	coeal	teastarateal	come	10			come	5	，	0，00	22,22	${ }_{333}$	4，4，4	22.22	77，78
					，												
${ }_{619}$	daprimenak	${ }^{13}$	cear	oas	come	5			（momel	2	5	0．00	0.00	s000	60，0	0，00	100，00
${ }^{220}$	davime	${ }^{14}$	creal	grana $^{\text {a }}$		2					2	0，00	0．00	so，0	50，00	0，00	00，00
${ }^{621}$	davimenax	${ }^{15}$	startw wesate	${ }_{\text {cips }}$	Weites	${ }^{56}$					${ }_{53}$	${ }_{\text {4，70 }}$	53，30	0，00	0.00	10000	0.00
					＿cheese＿onion＿crisps）／／1 e＿chips＿salt＿vinegar）／／1 Kettle＿chips＿BBQ）／1												
62	daptimenax	${ }^{16}$	stathwesatele	mieethips	Hex	，			coicle	5	11	${ }_{45,45}$	${ }_{45,45}$	0，00	9，09	0，91	9，09
${ }^{23}$	darimenema	${ }^{17}$	stathwestabe	potatoecone	，bouero somel3	3					${ }^{3}$	${ }^{33,33}$	6，67	0，00	0.00	100，00	0，00
			Stanseme		proled domames／	2						0，00		50，00			
${ }^{25}$	daytimenak	${ }^{19}$	startw wesabale	mastestotato	［masededesotalo／2	2				2	1	0.00	50，00	0，00	5000	50，00	50，00
626	daptime	${ }^{20}$	meat poeten	hmm	chemen	6					6	S0，00	16，67	${ }^{333}$	0，00	${ }_{6,67}$	${ }^{33,3}$
627	davimimenak	${ }^{21}$	meatrosein	cricen		4					¢	0．00	50，0	0，00	50，00	50，0	50，00
628	dasimimesack	${ }^{22}$	meatrosein	susge		＊					3	0,00	333	16.67	0.00	${ }^{83} 3$	${ }_{16,67}$
${ }^{62}$	dramene	${ }^{23}$	met pooten	baxon	（vilidememen	4					3	${ }_{6,67}$	15，67	${ }^{16,67}$	0，00	${ }_{83,33}$	15.67

alosoter	estirsstutaion	exirssumation	Eneatiodoctateor	basitood	trees	Setrewener			ens	comen		＊F	＊\％	xtr	＊no	\％tast	neative
50	daytimenax		ctrus tut	bage		${ }^{15}$											
69	dospimensack	${ }^{55}$	ctirstutut	smalorase		12					10	0，00	0，00	65，0	3500	0．00	100，00
692	dastimenack	${ }_{86}$	toporat muit	bana		${ }^{54}$					${ }_{5}$	0.00	0，00	77，36	${ }^{22,64}$	0，00	100，00
693	dopitimenak	87	troperatur	mango		${ }^{6}$					${ }^{6}$	0，00	0，00	${ }_{8,3}{ }^{3}$	15.67	0.00	
${ }_{69} 98$	dastiresaxak	${ }^{88}$	topictatut	pinepple		4					＊	0，00	${ }^{0.00}$	50，00	50，00	0.00	10，90 1000e
	den	¢	cot			$\stackrel{2}{1}$					${ }_{1}^{2}$		coion	100，00 0.00 200	andeo	coion	（ionoc
69	deritmenox		dinat tuit	masi	cemen	，					；	0.00	14，29	42，86	42，86	${ }^{14,29}$	${ }_{85,71}$
69	daytimenak	${ }^{9}$	dieief fut	dite	cill	5					5	0.00	20，0	40，00	s，00	20.00	so，00
700	dostimensak	$\stackrel{4}{ }$	${ }_{\text {diesef fuit }}$	${ }_{\text {dirat fuit }}$		4					4	0，00	0.00	75，00	25，00	0.00	100，00
					cill												
					$\begin{gathered} \text { (sweet_biscuits)/1 } \\ \text { (butter_biscuits)/1 } \\ \text { (breakfast_biscuits)/3 } \end{gathered}$												
					（tea＿biscuits）／1 （chocolate＿biscuits）／5												
${ }^{201}$	domimemack	${ }^{5}$	bined deaset	bisut		${ }^{4}$					${ }^{\circ}$	56,25	2.50	5，00	6.25	88，75	11，25
					（cutisidicemm deme												
					coick												
${ }^{202}$	doptrimenack	96	baldedeast	cate	cita	${ }^{24}$					${ }^{21}$	25.40	7，40	0.00	0.00	100，00	0，00
					（cheese＿cake）／3 $/ 3$												0，00
${ }^{03}$	davimemax	9	biadadease	conde	eanut＿butter＿cookies）／1	${ }^{17}$					${ }^{16}$	37，50	$6_{2,50}$	0，00	0.00	100，00	0.00
${ }^{20} 8$	dmprimenack	9	bocedesere	dousmut	为	8					8	${ }_{12,50}$	8，50	${ }_{0} .00$	0.00	120000	0，00
${ }^{2} 5$	detimenex		buedeet	\％	䢒	s											0，00
S	．		ber	mant	chooliememini／	\bigcirc					8	50，00	50，00	0，00	0.00	100，00	0，00
${ }^{206}$	doprimensak	100	bicedsager	coisome		4					4	50，00	5．00	0，00	0，00	100，00	0，00
707	darimenemak	101	butadeserat	boome	（chocolatebebommen／1	3					3	0，00	100，0	0，00	0，00	100，00	0，00
${ }_{\text {708 }}^{\text {708 }}$		cos				${ }_{1}^{2}$			frimen		${ }_{1}^{2}$	${ }_{\substack{0.00 \\ 0.00}}$	100，	o， 0	9．00	（100，	${ }_{\text {a }}^{0.00}$
$\xrightarrow{710}$					cele	1					1		（eatemo	（o，	，		coiol
72	doprimenax	${ }_{106}$	conledesest	iceceem	（1acesem／17	19					19	${ }_{15,79}$	88,21	0.00	0.00	100，00	0，00
${ }_{13}$	darim	107			Mans．												
${ }_{715}^{72,}$	deatimenak	cos	colied desert	icelaly	为	1					1	100，00	0，00	0，00		，0000	$\underset{\substack{100,00 \\ 0,00}}{\substack{\text { a }}}$
${ }_{71}^{715}$	deme	（109	cole chiodesest		cole						${ }_{1}^{1}$	－a，0， 100．00	coioc	0，00	0，00	coincos	${ }_{\text {a }}^{0.00} 0$
${ }^{17}$	dospimenack	${ }^{111}$	contationer	thocolie		${ }^{3}$			（seenesesomeme）／	1	71	${ }_{4}^{4}, 48$	50，94	0．00	2.11	97，a2	${ }_{2}^{2.1}$
					Coternh												
					为												
				maxtar							${ }^{36}$	25，00	11，14	25，00	38，89	${ }_{36,11}$	${ }_{6,38}$
					comele												
					（linest）												
					ctamememets												
${ }_{79}$	dayimensak	${ }^{113}$	conetationer	swets		${ }^{22}$					${ }^{18}$	${ }^{28,89}$	2，14	0，00	0.00	100，00	${ }^{0.00}$
					$\begin{gathered} \text { (polo_mints)/2 } \\ \text { (M\&Ms)/1 } \\ \text { (tic_tacs)/1 } \end{gathered}$												
					Stememex												
${ }_{721}^{720}$		${ }_{115}^{114}$				${ }_{1}^{2}$					${ }_{1}^{2}$		$\substack{\text { 100，00 } \\ 0,00}$	${ }_{\substack{0,00 \\ 0,00}}^{\text {a }}$	0.000		${ }_{\substack{0,00 \\ 0,00}}$

aloser	exirsstation	emins istuion	geneat toodateoer	basitood	trees	trefereweny			${ }^{\text {accompenimens }}$	ciction		*F	**o	shf	**0	\%taty	Shenelty
${ }^{75}$	dositimenak	197	daindorivastemative	milk		${ }^{17}$					${ }^{16}$	${ }_{9} 98$	6,25	62.50	21.88	${ }^{15,63}$	88,38
754	dastimenack	${ }^{148}$	dainderinustenative	${ }^{\text {panat besemmik }}$	(tax mixile	3			cocosomenels ${ }^{\text {a }}$	1	3	0,00	${ }_{33,3}$	${ }_{33,3}$	${ }_{333}$	${ }^{333}$	66,67
${ }_{756}^{755}$	destimenak	129 150 1	cotaratiok	Sminwar		${ }_{3}^{1}$					${ }_{3}^{1}$	$\xrightarrow{0.00}$		como10,00 0.00	coion	co.00	100,00 0.00 c,
${ }_{75}$	davimeneak	${ }_{151}$	basic condiment	a		2					1	50,00	0.00	0,00	50,00	50,00	0,00 s0,00
${ }^{758}$	davitimenak	${ }_{152}$	desenisesure	gav	comen	1					1	0,00	0.00	100,00	0,00	0,00	100,00
${ }^{59}$	dospimensak	${ }^{153}$	sprestififopenins	buter	(satematute)/	5						80.00	20,00	0,00	0.00	100,00	0,00
${ }_{761}^{760}$		${ }_{155}^{158}$		hemms	(timmesile	${ }_{5}$					4	${ }^{\text {d }} \mathrm{j}, 000$	${ }_{\text {d,00 }}^{0.00}$	${ }_{\text {25, }}^{2500}$	${ }_{\text {7 }}^{7.00}$	$\xrightarrow{\text { a }} 1.50000$	$\underbrace{\substack{\text { a }}}_{\substack{10,00 \\ 25,00}}$
76	dovitimenack	${ }^{156}$	speatdificopenins	chaosesespead		3					3	${ }^{33,33}$	66,57	0,00	0.00	100,00	0,00
$\underset{\substack{768 \\ 768}}{768}$		$\substack{\text { 157 } \\ \text { 158 } \\ 150}$	Spend			1					1	${ }_{\text {coion }}^{\substack{\text { a0, } \\ 0.00}}$	coio	coo	品,	$\xrightarrow{100,00} 0$	co,00
$\underset{\substack{765 \\ 765}}{7}$	dind	${ }_{1}^{159}$			(nut tutere)/	${ }_{1}^{1}$					1	0	coion	0,00	(10000	-	$\xrightarrow{100,00}$ a,0
${ }_{768}^{767}$	din	$\substack{161 \\ 162}_{168}$	spredidiopopis	moey		1					${ }_{1}^{1}$	${ }_{\substack{0 \\ 0.00}}^{0.00}$	(0,00	co,	coion	co,00	
			Iourbeadt beat tood			${ }_{66}$					48						
${ }^{5}$	maminmax			brad	coin	${ }^{66}$			coicle	${ }^{45}$	${ }^{48}$	3,93	17,88	12.15	26,94	57,81	${ }^{4,29}$
									come								
					Stiche				come								
770	mmonesmex	2	Rourbsest batect too	crader	(crackers)/9 (cheese_crackers)/1 (salted_crackers)/1	${ }^{11}$			(butey/2	3	${ }^{10}$	15,90	50,00	10,00	2500	65,00	35,00
71	emensmax	${ }^{3}$	Sourbsesed beatefod	orcate	(bataseis)	'			(latiol	${ }^{3}$	7	0.00	0,00	12,43	${ }_{28,57}$	0,00	100,0
${ }_{72}$	ememissarak	4	Aourbsesed biedet od	xone	[somel/	4			ciole	4	${ }^{3}$	${ }_{33,3}$	66,57	0,00	0,00	100,00	0,00
${ }^{73}$	everingsmak	5	Rourbesed bleded tood	necose		3			Smond buter) 1	2	3	0,00	0.00	${ }^{33,3}$	${ }_{6657}$	0,00	${ }^{\text {200,00 }}$
${ }_{77}^{774}$	emenimsmax	;		citiveed	cin	2				1	1	0,00	co,	coion	${ }_{0}^{0,00}$	-0,00	100,00 0,00
${ }^{776}$	everingmak	8	fourbeedtief tod	wet poncte	bencarel/	2			(mopesmup/1	1	2	0,00	100,00	0,00	0,00	100,00	0,00
$" 7$	ememinsmak	,	gain	bratasteceal		${ }^{21}$			(min) ${ }^{\text {a }}$	${ }^{6}$	${ }^{18}$	${ }^{13,89}$	${ }_{33,3}$	${ }^{43,52}$	926	${ }^{4722}$	52,78
					Shedise												
${ }^{78}$	meminsmax	${ }^{10}$	gain	poporn	(oidecemin	${ }^{13}$			cen	2	12	${ }_{8,3}$	50,00	16,67	25,00	58,33	${ }^{4.1,67}$
79	mmingenex	11	gain	ous		2			[mank/	1	6	0,00	0,00	55,00	55,00	0,00	100,00
$\underset{\substack{780 \\ 781}}{ }$		${ }_{13}^{12}$				2					2	s50,00 0.00		S000	0.00 0.00	sa,0 5000	so,00 s.000
			gan	Lortlastins	(Doritos)/1 (crisps)/33	2						0,00	50,00	50,00	0.00	50,00	50,00
					$\underset{\text { (salted_crisps)/ } / 1}{\text { (salnesar_crisps)/2 }}$												
${ }^{88}$	emeringsaxk	${ }^{14}$	startwesabale	cips		${ }^{47}$					${ }^{45}$	${ }_{51,11}$	48,89	0.00	0,00	100,00	0,00
					(Kettle_salt_vinegar_chips)//1 (Kettle_BBQ_flabour_chips)/1												
78	everinsmaxk	${ }^{15}$	startwesable	friective		${ }^{17}$				3	${ }^{16}$	${ }^{34,38}$	${ }_{6250}$	0,00	${ }^{3,13}$	98.88	3,3
${ }_{78} 8$	everingnakk	${ }^{16}$	saratwestabe	Sideposioses	cemen	3			(thees/2	1	3	${ }^{33,33}$	0,00	6,67	0,00	${ }^{333}$	6.67
${ }^{785}$	everingsack	${ }^{17}$	stathweseate	potasosone	(posiotesmen/	1			nectrov/2	1	1	100,00	0.00	0.00	0.00	100,00	0,00
${ }^{786}$	everinsmak	${ }^{18}$	meatprotein	${ }^{\text {ham }}$	cos	,					'	${ }^{4,286}$	${ }^{28,57}$	${ }^{12,29}$	${ }^{1429}$	${ }^{12,43}$	22,57
787	emerissmak	19	meatrotein	criom		5					4	${ }^{6,50}$	0,00	0.00	3,50	${ }^{62,50}$	37,50
${ }_{78} 8$	everissmak	${ }^{20}$	meatrotein	susge		2					2	50,00	0,00	50,00	0,00	50,00	50,00
${ }_{7}^{789}$		${ }_{22}^{22}$	$\substack{\text { meat poiter } \\ \text { mex fouen }}$		cemen	1					1	co.an	coion	0,00	coom	coin	${ }_{\substack{\text { po,0 } \\ 0,00}}^{\text {a }}$
$\underset{791}{79}$		23 28 28			(taeijempl/	1			lapole anoed	1	1	co,oo 0.00 0.00	coinco	(oin	coiol	coin	co,0 S0.00
${ }_{79} 7$	ememinsmak	${ }_{25}^{25}$	meat proien	bason	comel	4					4	25.00	25,00		0.00	100,00	0.00
${ }_{795}$	amememex	${ }_{27}^{26}$			(taraiz/	${ }_{2}^{3}$					${ }_{2}^{3}$	0,000		${ }_{\substack{33,3 \\ 5000}}^{\substack{\text { cosen }}}$	${ }_{\substack{33,3 \\ 5000}}^{\substack{\text { a }}}$	$\xrightarrow{33,3} \mathbf{0 , 0}$	
${ }^{796}$	memingmax	${ }^{28}$	Sthpoten	smmon	(smextammon	2					2	0,00	0,00	0.00	100,00	0,00	100,00
$\underset{798}{797}$		${ }_{30}^{29}$	Stinetein	Eeneal	comel	1			(mat)/	1	${ }_{1}^{1}$	coion	coion	coion	coion		(0,00
${ }_{800}$	Nominemex	${ }_{32}^{31}$		cien	max)/	${ }_{1}^{1}$					${ }_{1}^{1}$			$\xrightarrow[\substack{\text { a,00 } \\ 0.00}]{ }$	(10,	${ }_{0}^{0.00} 0$	(100,

aloreter	exirsstutaion		aear	basitood	trpes	treetegeneny			scompmemens		Nuentitemeney	＊F	＊ 0	sHf	＊＊	\％taty	xhentury
${ }^{801}$	meminsmak	${ }_{3}$	Sorinpotein	nus		${ }^{35}$			（mash／1	1	${ }_{26}$	3，95	8，9	5，77	${ }^{3,41}$	${ }^{12,82}$	87，18
802	meminesmak	${ }^{34}$	vesememeroteten	Sinpeese		${ }^{7}$			butere）／	1	${ }^{6}$	0.00	0,00	${ }^{2} 22$	27，78	0.00	100，0
${ }^{83}$	eveins smak	${ }^{35}$	vegesainepotein	seas		5					5	0，00	0.00	60，00	a0，0	0，00	100，00
${ }_{804}^{809}$		${ }_{37}^{36}$	vestaiasporeien	bens		4					－	0，00	so，00	25，00	25，00	50，00	50，00
${ }^{805}$	memirsmak	${ }^{37}$	vegerainaposen	tand		1					1	100.00	0，00	0，00	0.00	100，00	0，00
${ }^{80}$	maminsmax	${ }^{38}$		foese		${ }^{30}$			neactup／2	1	${ }^{25}$	32，00	30，00	30，00	8.00	62.00	38，00
${ }^{807}$	meminesmak	${ }^{39}$		vegut		${ }^{23}$			monen／1	1	${ }^{22}$	0.00	0.00	${ }^{2,73}$	${ }^{2727}$	0，00	100，0
${ }^{80}$	everissmakk	8	diarporesionatemative	part beser fogit	为	1					1	120000	0.00	0.00	0.00	100，00	0，00
${ }^{89}$	emains same	${ }^{41}$	${ }^{\text {geneasurgesale }}$	stesead	comele	3					3	0，00	0，00	${ }^{333}$	66，7	0，00	100，00
${ }_{\substack{810 \\ 810}}$		${ }_{48}^{42}$		veeable	（Vemestiele）	${ }_{1}^{1}$					${ }_{1}^{1}$	${ }_{\substack{\text { a } \\ 0.00 \\ 0.00}}^{\text {a }}$	（o，00	a，		anom	$\underset{\substack{\text { 100，00 } \\ 0,00}}{ }$
${ }_{813}^{812}$		${ }_{45}^{48}$		cueumer		5					5	${ }^{0.00}$	${ }^{0.00}$	20.00	80，00	0，00	100，00
${ }_{814}^{813}$		${ }_{46}^{45}$		coive		${ }_{3}^{4}$					${ }_{3}^{4}$	${ }_{\substack{\text { a，00 } \\ 0,00}}^{0}$	$\underbrace{\text { 20，}}_{\substack{2500 \\ 0,0}}$	${ }_{\substack{0,00 \\ 66,97}}^{\text {a }}$	${ }_{\substack{\text { 57，00 } \\ 333}}$	$\underbrace{\substack{\text { a，}}}_{\text {2500 }}$	（55，00
${ }^{15}$	ememinsmak	${ }^{47}$	abovegund everate	pepea	ctiche	4			fuemus／2	2	${ }^{3}$	0，00	0，00	${ }^{333}$	${ }_{6,67}$	0，00	100，00
${ }_{816}^{816}$	meminemax	${ }_{88}^{48}$	abovesondenematele	boceoll	（biscoivl／	2					2	${ }^{0.00}$	0.00	50，00	s．000	0.00	${ }^{\text {100，00 }}$
，		${ }_{\substack{49 \\ 50 \\ 51}}$	and	coly	coick	$\stackrel{1}{1}$					1			coin ano		（oico	（100，
${ }_{880}^{820}$		${ }_{52}^{52}$		Spers	（tamen	$\stackrel{1}{1}$					${ }_{1}^{1}$	${ }_{\substack{0,00 \\ 0,00}}^{0}$	0，00	100，00	（0．000	0，000	（100，
${ }_{822}^{82}$	${ }_{\text {enemingsaxk }}$	5		${ }_{\text {arose }}^{\text {crobe }}$	come	${ }^{13}$			fummus／2	2	${ }^{13}$	0．00	0，00	30，7	6923	0，00	100，00
${ }_{823}^{822}$		${ }_{55}^{54}$		enion	（matemen	${ }_{2}^{1}$					${ }_{12}^{12}$	${ }_{\substack{0.00 \\ 0.00}}^{\text {a }}$	0，000	0.00 50,00	${ }_{\substack{10000 \\ 50,00}}$	0.00 0.00	100，00 10，00
${ }_{825}^{824}$		${ }_{57}^{56}$	$\substack{\text { Eneas thit } \\ \text { berruut }}$			${ }_{12}^{12}$			（crem／1	1	${ }_{12}^{12}$		年，	（0，0		$\underset{\substack{\text { ono } \\ 8,3}}{ }$	
		${ }_{\substack{58}}^{59}$		come	cole	${ }_{6}^{12}$					${ }_{5}^{16}$	coion	（o，		${ }_{\substack{\text { a } \\ \text { and } \\ \text { and }}}$	coion	coicle
${ }^{28}$	everinsmak	${ }^{60}$	berrtut	bery	（mmedememeses／1／	2					2	0.00	0，00	100，00	0.00	0，00	100，00
${ }_{880}^{829}$		${ }_{62}^{61}$	$\underset{\substack{\text { meden fuit } \\ \text { menonuut }}}{ }$	${ }_{\text {maden }}^{\text {memen }}$	（mememem）／	4					${ }_{8}^{8}$	${ }_{\substack{\text { a，00 } \\ 0.00}}^{\text {a }}$	0，00	25，00	${ }_{\substack{\text { fisoo } \\ \text { so，0 }}}$	$\xrightarrow{0.00} 0$	（100，
${ }^{83}$	emeins smak	${ }^{63}$	pitrosetutut	spple		32					32	0.00	0，00	${ }_{4.88}$	${ }_{51,13}$	0.00	100，00
${ }_{833}^{832}$		${ }_{65}^{66}$	pitcore	${ }_{\substack{\text { peax } \\ \text { peat }}}$	（lame	${ }_{4}^{5}$					${ }_{4}$	${ }_{\text {don }}^{\text {d，00 }}$	0．00	yonco	${ }^{\text {a }} 0$	${ }_{0}^{0.000}$	（10，00
$\substack{\begin{subarray}{c}{83 \\ 835} }} \\{8,54} \end{subarray}$		\％${ }^{66}$		coicy		${ }_{2}$					${ }_{2}$	${ }_{\substack{0.00 \\ 0.00}}^{0.0}$	0，00	So，00	S0，00	0.000	
		（is ${ }_{\substack{68 \\ 60}}$	（ex		ceiche	${ }_{2}^{2}$					2	${ }_{\substack{\text { a，00 } \\ 0.00}}$	0，000	So，	S0，00	0	coin
${ }_{889}^{888}$		${ }_{71}^{70}$		gex	ciseme	${ }_{9}^{18}$					${ }_{9}^{18}$	0，000	0，000	${ }_{\text {a }}^{\substack{4,48 \\ 7,78}}$	${ }_{\substack{\text { S5，56 } \\ 2225}}$	0，000	cion
880	ememinsmak	2	cirsstuit	smalorase		＇					＇	0.00	14,29	57，4	28.57	${ }^{14,29}$	85，71
84	everinsmak	${ }^{13}$	${ }^{\text {ctresturut }}$	Ienon	cilemol／	，					${ }^{1}$	0，00	0，00	100，00	0，00	0，00	100，00
${ }^{882}$	menins sama	${ }^{74}$	topical fut	${ }^{\text {banana }}$	tuen	${ }^{38}$			（benest，butere／1	1	${ }^{38}$	${ }^{0.00}$	2,63	${ }^{\text {r1，05 }}$	26.32	2.63	9737
${ }^{883}$	everinsmak	${ }^{5}$	topicat futut	sinepple	（inemepenelies	5					5	$0^{0.00}$	0，00	20，00	88.00	0，00	100，00
$\underset{\substack{84 \\ 895}}{ }$		${ }_{7}^{76}$				＊					¢	${ }^{0.00}$	0.00	75，00	${ }^{2500}$	0.00	100，00 100．0
				coicce	ditieleme	1					${ }_{1}^{1}$		越0，0	（10000	（o．00	coion	
89	emenissmak	${ }_{81}^{80}$	diret	dried fut	dratamin	5							0，00				cois
${ }_{85}$	meminsmak	82	dinetruit	dine	Unememen	2					2	0.00	0.00	100，00	0.00	0.00	
${ }_{85}$	everissmak	${ }^{83}$	dinet fuit	misin		2					2	0，00	0.00	0，00	100，90	0，00	100，00
					cole												
${ }_{85}$	menirsmaxk	${ }^{84}$	bated desent	bisut	（burbon＿biscuits）／1 ocolate＿bourbon＿biscuits）／1 （digestives）／9	${ }^{46}$					${ }^{35}$	53.81	${ }^{66,19}$	0.00	0.00	${ }^{10000}$	0.00
					didememe												

alorater	Eatirsstutaion	eximestutaion	Eseneat tooctateorv	basticood	tres	treetreamen		maningederenebmee	xcompmimens	zcomenimens	Ouestratemency	*F	\%	\%HF	**0	\% xamy	xnotaty
					(axel) 3												
${ }^{85}$	memingmak	${ }^{85}$	bsaedede	cote	cole	${ }^{21}$			(cemm/2	1	${ }^{20}$	25,00	75,00	0,00	0,00	10000	0,00
					(mug_cake)/1 (vegan_cake)/ $/ 1$												
${ }_{85} 8$	memingmak	${ }^{86}$	botedeseat	cooke		${ }^{17}$					${ }^{17}$	${ }_{3529}$	69,71	0.00	0.00	100,00	0,00
${ }^{85}$				doumbut	cine				(mam/2	1	5	20.00				10000	
$\underbrace{85}_{\text {85 }}$		${ }_{\substack{88 \\ 88}}$			comel	${ }_{3}^{4}$				1	\%	$\xrightarrow[\substack{20,00 \\ 0.00 \\ 0.00}]{\substack{\text { a }}}$	coino		co.o.	(iono	(o,
${ }_{85} 8$	memissmak	${ }^{9}$	biededeset	cupore		2			(taren/1	1	2	0.00	100,00	0.00	0,00	100,00	0.00
859	eveins sam	9	bidededsest	lost	cimel	2					2	so,00	50,0	0.00	0,00	100,00	0,00
86	memissmak	${ }^{2}$	batedesest	spetasary	ciseme	2					2	0.00	100,0	0,00	0,00	100,00	0,00
${ }_{862}^{81}$	${ }_{\text {aminemax }}^{\text {ajememax }}$	${ }_{9}^{3}$	bitedesest	crosemt	cheot	1					1	(0,00	10000	a	0,00	(10000	${ }_{\substack{0.00 \\ 0,00}}^{\text {a }}$
		${ }_{96}^{96}$		speateme		1					1	coicle	coion	,	(0,00	(en	(oind
${ }^{865}$	mominsmak	9	ctuledeseart	crem	illa_chocolate_ice_cream_cone)/1 cookies_chocolate_icecream)/1	${ }^{25}$					${ }^{25}$	32,00	6,90	0.00	0.00	100,00	0.00
${ }_{86} 6$	meminsmak	9	dotaser	putating	Uemememe	5				2	5	0,00	6,000	20,00	20.00	60,00	a0,00
${ }_{\substack{887 \\ 868}}$		${ }_{100}^{190}$				${ }_{1}^{1}$					$\stackrel{1}{1}$		$\xrightarrow{\text { 1a0,00 }} 0$	0,000	$\substack{\text { a,om } \\ 0.00}^{\text {a }}$	(10000	${ }_{\substack{\text { a } \\ 0,000}}$
					chatialion												
					cill												
${ }_{86} 9$	mominsmak	101	conteritione	chacalae		${ }^{74}$					${ }_{60}$	\%8,89	50,28	0,00	${ }_{0}^{0.83}$	99,7	${ }^{0.8}$
80	maninemex	102	aterataen		chare.anin ashan)												
8		102	concosoner	maxtar		14					12	5,00	20,83	20,8	${ }^{33,3}$	4, ${ }^{3}$	${ }_{54,17}$
					cimet												
${ }^{87}$	memingsmak	103	Itetioner	sweas	comem	7					7	14,29	85,1	0.00	0,00	100,00	0.0
${ }_{872}$	eminesam	${ }^{109}$	conteritaner	Iquorice		2					2	0,00	50,00	0,00	50,00	50,00	so,0
${ }^{87}$	esmingen	${ }^{105}$	casbbead	piza		${ }^{11}$	(mes/2				${ }^{10}$	so,00	40,00	0,00	10.00	90,00	10,00
					(eamemil/			locome/1									
${ }^{874}$	meminsmak	${ }^{106}$	crabsomed dish	pratasist	(macaroni)/1 (spaghetti)/2	,	(meatemen/2	(cheese)/1 (tomato_sauce)/1 cetta_tomato_cheese)/1	come	2	6	5,56	36,11	25,00	${ }^{33,3}$	${ }^{4.67}$	${ }_{58,3}$
875	meninsmax	107	bamasan	mourpie	(soctichere/	5	(men)/5	$\begin{gathered} (\text { mince)/1 } \\ (\text { chicken)/1 } \\ \text { (pork)/1 } \end{gathered}$			3	${ }^{3,3} 3$	66,7	0.00	0.00	100,00	0.00
				cathet	ceatrol)	3					${ }^{3}$						
	and	(110				$\frac{1}{1}$	(ent				$\stackrel{1}{1}$		co.oo	coion	(oico		coion
${ }_{881}$	emenissmak	${ }_{13}$	proenen besed dish	emath		2	meat				2	0,00	so,0	so,0	0,00	so,0	so,0
${ }_{88}^{82}$	eximesm	${ }^{114}$	protern besed	menb		2	(mase)/2				2	so,00	50,00	0,00	,00	100,00	${ }_{0}^{0,0}$
								and									
${ }^{83}$	mominsmak	${ }^{115}$	piedim	wh	comem	${ }^{30}$		cheme	(mmomomes/3	${ }^{3}$	${ }^{21}$	${ }^{6,98}$	${ }^{1921}$	16,19	17,62	66.19	${ }^{3,3,8}$
								che									
${ }^{884}$	everissama	${ }^{116}$	Cominemitio	weremotbun		5	(men)/5		(ketchup)/1 (mustard)/1 (cheese)/ $/ 1$	3	5	${ }_{60,0}$	a0,00	0,00	0,00	100,00	${ }_{0} 000$
${ }^{885}$	everiss sam	${ }^{117}$,	soup			Uexemisis	coicle			${ }^{3}$	0,00	0,00	${ }_{66,67}$	${ }^{33,3}$	0.00	100,00

alooser	estinstutaion		Emenestodoctateov	tood	trees	trefereuener			scommeminens	comen	come	**	*\%	*HF	*но	*tast	xnotur
${ }^{93}$	bunchout	1	Aourbesed batat tood	bread		${ }^{78}$				${ }^{37}$	57	${ }^{29,9}$	28,10	${ }_{35,7}$	5,0	5s,04	${ }^{1,37}$
935	bunchout	2	Aourbesef basedtod	sone	(somels	5			fouteram/2	2	5	60,00	40,00	0,00	0,00	100,00	0,00
936	bunchout	3	Aourbesed based tod	osate	(torecteas)/	4					s	25,00	25,00	25,00	25,00	50,00	50,00
$\begin{gathered} 987 \\ 988 \\ 989 \\ 9.90 \\ \hline 9 . \end{gathered}$	bunchout buncou bund		flour-based baked food flour-based baked food flour-based baked food			1			(buterel/	1	+1	$\begin{gathered} 0,00 \\ 0,0,0 \\ 0,00 \\ 0,00 \end{gathered}$	$\begin{gathered} \text { co,0, } 0,0 \\ \text { ano.o. } \\ 0.000 \end{gathered}$	$\begin{gathered} \text { o,00 } \\ \substack{0,00 \\ 0.00 \\ 0,00} \\ \hline, 0 \end{gathered}$	$\begin{gathered} \text { a.0.0.0. } \\ \text { ano } \\ \text { ano. } 0.0 .0 \end{gathered}$		(o.00
94	${ }^{\text {bunchatut }}$	8	Aurbesed fiest toed	smeat prasale	(laremeth	${ }^{30}$				${ }^{13}$	${ }^{27}$	${ }^{\text {a4,44 }}$	${ }_{5}^{5,56}$	0,00	${ }_{0}^{0.00}$	${ }^{100,00}$	${ }^{0.00}$
${ }_{9}^{94}$	$\underbrace{\substack{\text { bunchout }}}_{\text {bunchout }}$	${ }_{10}$		Smectree	(tamem)/	${ }_{2}^{1}$			(tosocaiel/	1	1	0,00 0.00	100,00 0.00	${ }_{\text {0,00 }}^{\text {noo,0 }}$	0.00 0.00	100,00 0.00 a	$\xrightarrow{\text { 0,00 }}$ 100,
${ }_{995}^{994}$		${ }_{12}^{11}$				1					$\stackrel{1}{1}$	$\underset{\substack{\text { 100,00 } \\ 0,00}}{ }$	co,00	0,00	0		$c000000$
96	bunchout	${ }^{13}$	ceald	genola	Gsanol/ ${ }^{\text {a }}$	${ }^{13}$			come	*	${ }^{13}$	0,00	0,00	${ }_{46,15}$	${ }_{53,55}$	0,00	100,00
997	bunchout	${ }^{16}$	ceeal	oss	Comel	,					¢	0,00	0,00	50,00	50,00	0,00	100,00
98	bunchout	${ }^{15}$	ceast	breatsateseal	cter	4					*	0.00	${ }^{0.00}$	25,00	${ }^{5500}$	0.00	100,00
99	bunchout	${ }^{16}$	craer	mueat	$\begin{gathered} \text { (muesli)/3 } \\ \text { (crunchy_muesli)/1 } \\ \text { (fries)/5 } \end{gathered}$	*			mmink 1	${ }^{1}$	*	0,00	25,00	25,00	50,00	25,00	25,00
950	bunchout	${ }^{17}$	starivereabe	crisytries	(french_fries)/4 (sweet_potat0_fries)/1	${ }^{19}$				5	${ }^{18}$	${ }_{38,9}$	58,33	2,78	0,00	97,2	2,78
${ }_{952}^{951}$	$\underset{\substack{\text { bunchout } \\ \text { buncrout }}}{\text { ate }}$	${ }_{19}^{18}$		Sotas sone	(potato_scone)/ $/ 11$ (hash_browns)/8 (crisps)/3	${ }_{8}^{11}$					${ }_{8}^{11}$	${ }_{\substack{45,55 \\ 6,50}}^{5}$	${ }_{\text {St, }}^{5 / 50}$	${ }_{0}^{0.00}$	0		${ }_{\substack{\text { 0,00 } \\ 0.00}}^{\text {and }}$
953	bunctout	${ }^{20}$	statroveremele	crips		${ }^{7}$					${ }^{6}$	${ }_{583}$	${ }_{4}^{4,57}$	0.00	0,00	100,00	0.00
959	bunchout	${ }^{21}$	Startivestale	stopopatas		5			(chilisminich	1	5	20,00	40,00	20,00	20,00	60,00	80,00
${ }_{\substack{955}}^{955}$	$\substack{\text { bunchout } \\ \text { buncout }}$	${ }_{23}^{22}$				1			Hescrup/2	${ }^{1}$	${ }_{1}^{1}$	${ }_{\text {a }}^{\text {a,00 }} 0$	coion	${ }_{\text {a }}^{\text {a, }}$ 000	a,00	(100,00	${ }_{\substack{\text { a,00 } \\ 0,00}}$
957	boncrout	${ }^{24}$	mentroete	bson	coicle	${ }^{39}$			neectup/2	1	${ }^{38}$	60,5	39,7	0,00	0,00	100,00	0.00
958	bunchout	${ }^{25}$	meatrotein	sumge		${ }^{31}$			neactuol/	2	${ }^{29}$	${ }_{55,17}$	${ }_{41,38}$	0,00	3,45	96.55	3,5
959	bunchout	${ }^{26}$	meatposies	baxatudidis		8					8	50,00	50,00	0,00	0,00	100,00	0.00
so	bunchout	${ }^{27}$	mentrosein	hmm		8					,	64.29	2,1,3	${ }^{1429}$	0.00	${ }^{85,71}$	${ }_{12,29}$
961	bunchout	${ }^{28}$	meatporesin	sheep		5					5	20,00	80,00	0.00	0.00	100,00	0.00
962	boncrout	${ }^{29}$	metrosein	cricen	$\begin{aligned} & \text { (fried_chicken)/1 } \\ & \text { (chinese_steamed_chicken)/1 } \\ & \text { (grilled_chicken)/1 } \end{aligned}$	*					${ }^{2}$	${ }_{16,57}$	15,67	50,00	16,67	${ }^{33} 33$	66,7
		$\begin{array}{l}30 \\ 32 \\ 38 \\ 38 \\ 34 \\ 35 \\ 3\end{array}$									2 2 1 1 1 1 17			$\begin{gathered} \text { o,00 } \\ \substack{0,00 \\ 0.00 \\ j \\ j, 00 \\ 0,00} \\ 0,0 \end{gathered}$	$\begin{aligned} & 0,00 \\ & 0,00 \\ & 0,00 \\ & 0,00 \\ & 0,00 \\ & 0,00 \end{aligned}$		
97	bunchout	${ }^{37}$	strporeien	semeatan		${ }^{17}$					${ }^{17}$	${ }_{\text {5,988 }}^{\text {33,3 }}$	5,88 0,00	47,06 0,00	${ }^{41,18}$	${ }_{\text {33,33 }}^{11,76}$	88,24 66,67
${ }_{972}^{97}$	$\substack{\text { bunch out } \\ \text { bunchat }}$	${ }_{39}^{38}$		$\substack{\text { pamm } \\ \text { fuma }}$		$\stackrel{2}{1}$					${ }_{1}^{2}$	${ }_{\text {a }}^{\text {a,00 }}$	0,00	${ }_{\text {a }}^{\text {a,oo }}$		${ }_{\text {a }}^{0.00}$	(10,000
973	bunchout	${ }^{40}$	veserain prosein	simpeesems		71			Molurasiesenese/1	1	${ }_{53}$	${ }^{23,4}$	${ }_{11,95}$	as,a4	${ }_{1887}$	33.69	${ }_{6431}$
974	bunchout	${ }^{4}$	vegemainporean	bens		15					${ }^{15}$	${ }^{33,3}$	20,0	a0,0	${ }_{6,67}$	${ }_{53,3}$	46,67
975	buncrout	42	vesearain poreien	nus	chen	3					3	0,00	0,00	${ }_{66,7}$	${ }^{333} 3$	0,00	100,00
$\substack{9,9 \\ 9.7 \\ 9.7 \\ 9.7}$		$\begin{gathered} 43 \\ \left.\begin{array}{c} 43 \\ 45 \\ 46 \\ 46 \end{array} \right\rvert\, \end{gathered}$		$\begin{gathered} \text { vegetarian sausage } \\ \text { falafel } \\ \text { mycoprotein/Quorn } \\ \text { tofu } \end{gathered}$							$\begin{aligned} & 2 \\ & x_{2}^{2} \end{aligned}$		$\begin{gathered} \text { s.o,0, } \\ \text { sion } \\ 0,00 \\ 0,00 \end{gathered}$				

alorater	esirssstution	estingstutation	Eeatood catean	basitood	tros	treetegeneny			nens	cemen	comelitameny	*F	**	sHf	**	\%taty	Xhentity
88	bnnchout	${ }^{47}$	datrposerafolemat	chese		25					${ }_{23}$	3,96	19,57	${ }^{32,61}$	${ }^{10,87}$	56,52	43,48
${ }^{81}$	bmencout	${ }^{48}$	diurpootetabatemative	vogut	,	${ }^{13}$			thout/2	2	${ }^{13}$	0.00	0.00	${ }_{3,46}$	${ }_{6} 6,54$	0.00	100,00
98	bmancout	${ }^{49}$	dinvoresinderemenive	Plaribesadeosur	(wesmomenil/	1					1	0.00	100,00	0.00	0.00	10000	0,00
${ }^{83}$	bnorchout	so	Esesas weatule	Steselad	coiche	${ }^{16}$				1	${ }^{16}$	0.00	0.00	37,50	6250	¢,00	${ }^{100,0}$
${ }^{84}$	bunchout	51	Emenalvesatele	vestable		2					2	0,00	0,00	50,0	50,00	0.00	100,0
95	bnnchout	52	Stonesoundiegeable	Emmoes		${ }^{23}$					${ }^{23}$	8.70	0.00	${ }_{\text {18,26 }}$	13,04	8,0	${ }^{9,1,30}$
${ }^{96}$	buncrout	${ }^{53}$	somengoundegerable	mustrom		${ }^{18}$				2	${ }^{18}$	16.67	11,11	50,0	${ }^{222}$	27,8	${ }^{2} 22$
¢87	$\underbrace{}_{\substack{\text { bunchout } \\ \text { buncrout }}}$	${ }_{55}^{56}$		ancaso	为	${ }_{6}^{12}$					${ }_{6}^{12}$	0.00 0.00	0,00 0.00 0.0	66,67 100,00	$\substack{33,3 \\ \text { 0.00 }}$	0,00 0.00	
gs	btonctout	${ }_{56}$	atowegoundereabale	catose		3					3	0,00	66,57	33,33	0,00	66,7	3,33
99	bmancout	5		peperelessicum	(easicu)/	2					2	0.00	0,00	50,00	50,00	0.00	100,00
${ }_{\text {912 }}^{992}$	$\underset{\substack{\text { buncrout } \\ \text { bunctout }}}{\text { a }}$	${ }_{\substack{58 \\ 59}}$	semen	letue	cole	${ }_{1}^{2}$					${ }_{1}^{2}$	0,00	a,o	So.0	$\substack{\text { somo } \\ \text { Iopos }}$	\%oos	coione
¢9,		¢				1			Gestosamel/	1	1		coion	(oind	(iolen	a,	
${ }_{995}^{995}$		${ }_{6}^{62}$	come	cos	cole	$\stackrel{1}{1}$					1		coio	(o.a	coicle	coiol	
${ }_{\substack{997 \\ 988}}^{98}$		${ }_{65}^{66}$	ciol	come	cil	$\stackrel{1}{1}$					1		coion	coio	coion	(o.ao	(tane
99909	bunctiout	${ }_{66}$	denemsund	${ }_{\text {come }}$		2					$\frac{1}{2}$	0,00	coion	s.00	S.0.00	0,000	(00,00
${ }^{1000}$	bunchout	${ }^{67}$		orion	,	$\stackrel{2}{2}$					2	${ }^{0.00}$	50,00	50,00	0,00	so,00	50,00
${ }_{\substack{1001 \\ 1002}}^{\text {10, }}$	bunction	${ }_{68}^{68}$		$\underbrace{\text { a }}_{\substack{\text { betroot } \\ \text { turup }}}$	(Biced bextooth						$\frac{1}{1}$	${ }_{\text {a }}^{0.00} 0$	${ }_{\substack{\text { a,00 } \\ \text { a, }}}$	(0,00		${ }_{\text {a, }}^{0.00}$	(100,
1003	buncrout	2	gemenat tuet	tututad	(fruit_salad)//11 (fruit)/6	11				2	10	0,00	5,00	25,00	20.00	5.00	95,00
${ }^{1009}$	bunchout	71	Emenat tuit	tuitriese eftut		8					8	0.00	${ }^{0.00}$	${ }_{6}$ 2,50	37,50	0,00	100,00
${ }_{\substack{1005 \\ \text { 106 }}}^{\text {coid }}$		${ }_{73}^{72}$	beernuit	citabery	cick	${ }^{10}$					${ }_{3}^{10}$	${ }_{\text {a }}^{0.00}$	${ }_{\substack{\text { a,00 } \\ \text { a, }}}^{\text {a }}$	$\underbrace{\substack{\text { a }}}_{\substack{\text { coos } \\ 3,33}}$	${ }_{\substack{\text { s.00 } \\ 6067}}$	${ }_{0}^{0.00}$	
${ }^{1007}$	$\underbrace{\text { a }}_{\substack{\text { bunchout } \\ \text { bunctout }}}$	${ }_{75}^{74}$	berentuit berrytut	${ }_{\text {ber }}^{\text {bery }}$	minememenel/	2					2	0.00	${ }^{0,000}$	120,00	0.00	0.00	100,00
(1008	bunctiout	,	Somerstut	come	come	1					1	coion	coion	coico	(o.00	coion	coin
(1010	Sunction	${ }_{78}^{78}$	coin	spor	comen	${ }_{2}^{11}$					${ }_{2}^{10}$	co, 0	coide	S.0,	So,	0,000	coin
		(${ }_{\substack{78 \\ 81 \\ 81}}$				$\stackrel{2}{1}$					${ }_{1}^{2}$	$\begin{gathered} 0.00 \\ 0.000 \\ 0 \end{gathered}$	coio	Soin	Soin	0,000	
(1014			moder			$\stackrel{1}{3}$					$\stackrel{1}{1}$	$\xrightarrow[\substack{\text { 0.00 } \\ \text { 0,00 } \\ 0,00}]{ }$	coio			coion	
(1017		${ }_{\substack{88 \\ 88 \\ 88}}$		city		${ }_{2}^{14}$					${ }_{2}^{16}$		coion	cos		coion	
1020	bunchout	${ }^{87}$	stecdesert	${ }^{\text {cote }}$		${ }^{17}$					${ }^{15}$	${ }^{\text {a3, }} 3$	50,00	0,00	6.67	${ }^{93,3}$	${ }_{6,67}$
1021	bnencout	${ }^{8}$	batedsasert	cospast	chemen	${ }^{18}$			chemen	3	${ }^{15}$	50,00	45,57	0,00	${ }^{3,3}$	96,67	${ }_{3,3}$
1022	bonerout	${ }^{89}$	bicadeseat	mex weme		${ }^{15}$			$\begin{gathered} \text { (ice_cream)/1 } \\ \text { (cmaple_syrup)/3 } \\ \text { (chocolate_sauce)/2 } \\ \text { (nutella)/1 } \end{gathered}$,	${ }^{15}$	22.67	${ }^{73,3}$	0,00	0,00	100,00	0.00
${ }_{103}$	branchout	9	bated desent	mutin	$\begin{aligned} & \text { (chocolate_muffin)/2 } \\ & \text { (breakfast_muffin)/1 } \\ & \text { (blueberry_muffin)/1 } \\ & \text { (cookie)/3 } \end{aligned}$	${ }^{11}$					${ }^{11}$	9,9	${ }_{81,82}$	0,00	909	90,91	9,09
1024	bunctout	9	batedsesert	sote	(chocolate_cookie)/1 $\begin{gathered}\text { (milk_chocolate_cookie)/1 } \\ \text { (belgian_chocolate_cookie)/1 }\end{gathered}$	6					6	${ }^{3,3} 3$	66,67	0,00	0.00	100,00	0,00
1025	bsoncout	92	bisediseser	${ }^{\text {bisucut }}$	(digestives)/2 (d.atsocolate_biscuits)/1	5					5	80,00	60,00	0,00	0.00	100,00	0,00
${ }^{1026}$	buncrout	${ }^{3}$	batedesest	swetrastr	come	*					4	100,00	0,00	0,00	0.00	100,00	${ }^{0.00}$
${ }_{1027}^{1028}$	bunchout	${ }_{9}^{96}$	${ }_{\text {bited deser }}$	$\underbrace{}_{\substack{\text { dousmut } \\ \text { binate }}}$		2					2	So,00	50,00	0.00	0.00	100,00	0.00
${ }_{1029}^{1029}$	bunchout	${ }_{96}^{95}$		bincie	Chocosite inicare/1	${ }_{2}^{2}$					${ }_{2}^{2}$	S0,00 so,0	0,00 5000		coon	50,00 10000	S0,00 0.00
$\underset{\substack{1030 \\ 1031}}{\text { a }}$	buncheut	${ }_{98}^{97}$		bumpe		$\frac{1}{1}$					1	coion	coin	(o,	coin	coicle	(in
$\underset{\substack{1032 \\ 103}}{ }$	$\underset{\substack{\text { bunchout } \\ \text { buncrout }}}{\text { ate }}$	${ }_{10}^{190}$		comen	leinemen	${ }_{3}^{1}$					${ }^{1}$	${ }_{\substack{0.00 \\ 33,3}}^{\text {a }}$	${ }_{\substack{100,00 \\ 66,97}}$	coom	coion	coicle	$\xrightarrow[\substack{0.00 \\ 0,00}]{ }$
${ }^{1034}$	bnencout	${ }^{101}$	coinedseset	pudiding		2					2	0,00	100,00	0,00	0.00	100,00	0,00
1035	bmancour	102	conterioneer	ctacolie	(chocolate)/3 (chocolate_bar)/2 (breakfast_bar)/1	5					5	20.00	80,00	0,00	0,00	100,00	0,00
1036	bunctout	${ }^{103}$	betioner	Snaxkar		5					4	25,00	50,00	0,00	25,00	25,00	25,00
1037	bunctout	${ }^{106}$	arsboxad dish	${ }^{\text {pastadish }}$	cosk	,					5	0.00	${ }^{3,33}$	40,00	26.67	${ }^{33,3}$	66,9

alorater	eminstsumaton	estastastatan	Seeor	basticood	tros	treetroueny			mens	comen	cremen	＊F	＊\％	«nt	＊но	xatay	Yheattry
${ }^{1063}$	buncout	${ }^{30}$	wowernotatink	${ }^{\text {cos }}$	（tea）／34 （black＿tea）／4 （black＿english＿tea）／1 （english＿breakfast＿tea）／$/ 1$ （black＿earl＿gray）／1 （fruit＿tea）／1 （green＿tea）／3 （herbal＿tea）／1 （peppermint＿tea）／1 （wate）／28	${ }^{47}$				${ }_{16}$	${ }_{45}$	20.00	4.4	56,7	${ }_{18,89}$	${ }^{24,44}$	25，56
1064	bnentout	${ }^{131}$	waterosotatak	weer		${ }^{38}$					${ }^{37}$	0.00	0，00	${ }^{78,38}$	21，62	0．00	100，00
1065	bnnetout	${ }^{132}$	wesemotationk	nothocolise		${ }^{11}$			（crem）／	1	11	27，27	${ }^{2,73}$	0.00	0.00	100，00	0，00
1066	bunchout	${ }^{133}$	acolonictionk	wine		5					5	0，00	80,00	20，00	0.00	88.00	20，00
${ }^{1067}$	bnentout	${ }^{134}$	atomolictionk	coctait		－					3	${ }_{16,67}$	${ }^{833}$	0，00	0.00	100，00	0.00
${ }_{1068}$	branchout	${ }^{135}$	atonolicdidink	ber	（tael｜	3					2	S0，00	sp，00	0，00	0，00	100，00	0,00
${ }^{1069}$	out	${ }^{136}$	atherctink			2					2		100，00			100，00	
$\underset{\substack{1020 \\ 1020}}{\substack{\text { coid }}}$	ciment			y／fmemem	（menemer	${ }_{1}^{2}$					${ }_{1}^{2}$		So，	0,00 0,00 0	0,00 0,00 0	coiche	${ }_{\substack{0 \\ 0.000 \\ 0.00}}$
$\xrightarrow{1012}$	Somet	（139	coin		（tapeorl／	$\stackrel{1}{1}$					1		， 0.000	0.00 0.00 0.0	0,00 0,00 0	coicle	$\xrightarrow[\substack{0.00 \\ 0.00}]{ }$
$\underset{\substack{1074 \\ 1075}}{ }$	$\substack{\text { bunct out } \\ \text { bunch out }}$	$\underset{\substack{13 a \\ 192}}{ }$	ditasinemee		Sole	$\stackrel{4}{1}$					$\stackrel{4}{4}$	$\xrightarrow{2500}$		，	a，	coin	$\begin{gathered} 0,00 \\ 0,0,00 \\ 0,0,0 \end{gathered}$
$\underset{\substack{106 \\ 107}}{\text { 107 }}$	bunctiout	$\underset{\substack{13, 14}}{194}$			cill	$\stackrel{1}{1}$					$\stackrel{1}{1}$	${ }_{\text {cose }}^{0.008}$	${ }_{\text {120，}}^{\text {120，}}$	0，00			$\xrightarrow[\substack{0.00 \\ 0,00}]{ }$
1078	bmancour	145	spreadidiofoping	smp	（mmpesmp／s	，					6	${ }_{3,3}$	66，7	0．00	0，00	100，00	0，00
109	brancout	${ }_{16} 16$	spreadidifopepins	buter		5					5	20.00	60，00	20，0	0，00	80，00	20，0
1880	bnochout	${ }^{197}$	sprestidifopoping	Socalesper	（eateme	4					－	25，00	75，00	0，00	0.00	100，00	0,00
1081	bsuncour	${ }^{148}$	speasdifiopopins	Samadelem	隹	5					4	3，50	${ }_{6250}$	0，00	0.00	100，00	0，00
${ }^{1082}$	bmontout		spratalifopoping	numus		2											
${ }_{\text {cose }}^{1085}$		${ }_{\substack{\text { I } \\ 151 \\ 151}}$	Spers			${ }_{1}^{2}$					2	s．0．00	100，	0，00	coom		0，000
	city			hone	（omemetement	${ }_{1}^{2}$						0.000 0.00	0，00	100，	yo．00	${ }_{\substack{0.00 \\ 0.00}}$	cion
			${ }_{\text {cosem }}$	Somememb		1						${ }_{\substack{\text { a，00 } \\ \text { 0，0，}}}$	0，00	cose	aion	${ }^{0.00}$	
$\underset{\substack{\text { 1099 } \\ \text { 1090 }}}{ }$		${ }^{1565}$		cost		1							0，00	0，00	（100，	coiou	$\xrightarrow{\text { 100，00 }} 0$
					Cleath												
					cita												
109	Imenout	1	noutbesed bated tod	${ }_{\text {bread }}$	cole	${ }^{45}$			coin	，	${ }^{30}$	45，00	${ }_{18,89}$	${ }^{222} 2$	${ }^{13,89}$	$6_{6,89}$	${ }^{36,1}$
					come												
					lubsement												
					Statay												
					citum												
1092	Unchout	2	fourbsesed beed tod	sone	（exomel／	3			lutater	3	3	0，00	100，00	0，00	0，00	100，0	0，00
	luen	${ }_{4}^{3}$	fatiol	（tatilatios	comer	${ }_{1}^{2}$				1	${ }_{1}^{2}$	so．00	como	co．o	a，	（10，00$\substack{\text { 100，}}$	${ }_{\substack{0.00 \\ 0.00}}$
$\underset{\substack{1095 \\ \text { 1096 }}}{\text { cos }}$	lutamout	${ }_{6}$		cock		1				1	1	¢， 0	como	coion	0，00	coiol	$\substack{\text { loas } \\ \text { a，ood }}$
${ }^{1097}$	lunhout	\％	fourbsesed beeed ood	patry	（bastr）／	1			city	1		${ }_{0}^{0,00}$	${ }_{0} 0,00$	10，00	0.00	0,00	10，000
\％				smetorate					coin				a	20，0			100，00
${ }_{100}$	Usachout	10	fourbesed tiestiod	sweatcree	（creon／	1			（amm／2		1	0，00	100，00	0.00	0.00	100，00	0.00 0.00
	Iuch out	${ }_{11}^{11}$	${ }_{\text {grin }}^{\text {gain }}$	Stiete		${ }_{3}^{17}$					${ }^{17}$	17，65	${ }^{11,76}$	47，06	${ }^{23,33}$	${ }^{29,9}$	${ }^{20,59}$
				Ste		3_{3}^{3}					［ $\begin{aligned} & 3 \\ & 1\end{aligned}$				$\underbrace{\substack{\text { a }}}_{\substack{33,3 \\ 38,00}}$		$\underset{\substack{10,00 \\ 30,5 \\ 0,0}}{\text { and }}$
					ctick				隹								
${ }_{105}$	luncout	${ }^{15}$	stachrvegenale	triecthes	ctitament	${ }^{66}$			coin	${ }^{18}$	56	${ }^{99,11}$	ง9，1	1，9	0,00	98，21	${ }^{1,7}$
					Sele												
1106	Unchout	${ }^{16}$	actrvesable	（ips	baked＿salt＿vingear＿crisps）／／1	15					${ }^{15}$	${ }_{46,67}$	${ }^{5333}$	0，00	0.00	10000	${ }_{0} 00$
					（moteseosis												
1107	Unerout	${ }^{17}$	startwvesalae	stepotases	隹	${ }^{14}$			边	3	${ }^{19}$	17，86	${ }_{32,4}$	${ }^{12,86}$	${ }^{7,14}$	50，0	so，0
cine	luer hout	${ }_{19}^{18}$				${ }_{2}^{3}$					${ }_{2}^{3}$	0，00	${ }_{6}^{6,90}$		somo	${ }_{\substack{6.6 .5 \\ 0.00}}$	
${ }_{\substack{1100 \\ 111}}$	luen lumbut	${ }_{21}^{20}$	Ster sartyefate	poitese					Smstheem	1	；	$\xrightarrow{\text { 100，00 }} 0$	$\xrightarrow{\text { a }}$（0，00000	$\xrightarrow[\substack{0.00 \\ 0,00}]{ }$	coion		${ }_{0}^{0.00}$

alorater	Exinsastution	estangstution	Eneastoosateeor	basitiod	mpes	treetereieny		miningedien eniose	scomomemens			＊F	＊\％	xHF	＊но	xtaray	xnoutiv
1162 1163	lent	${ }_{73}^{712}$	ateme	smenter	comen	${ }_{2}^{2}$							（0，00	s．000	So，00		
1164 1165 1	ctuct	${ }_{7}^{74}$				1				1		cion	coside	coioo	coion	cois	cion
$\underset{\substack{1166 \\ 1169}}{1.0}$	come	$\underset{\substack{76 \\ \\ 7}}{ }$			cole	1			（butabesmeal	1	1	coioc	10000	aioios	（oiol	coicios	coion
	lutareot	${ }_{78}^{78}$			cen	1					1	¢0，	coio	coio		\％oio	cione
${ }^{11700}$	lucheot	${ }_{81}^{80}$		come	cole	5					5	\％oid	\％oos	cion	coind	0，000	cione
${ }^{11712}$	luch out	${ }_{8}^{82}$	为	betarot	（beersorl／	2						${ }_{0}^{0.00}$				0.00	100，
${ }_{\text {c }}^{11174}$	lumb lumbout	${ }_{88}^{83}$				$\frac{1}{1}$					$\frac{1}{1}$	${ }_{\substack{0,00 \\ 0,00}}^{0}$	0，00		0，00	0，000	coin
1715	Lencout	${ }^{85}$	Esenaltuit	tuit		，					，	0，00	0，00	778	${ }^{222}$	0.00	100，00
177	Uurchout	${ }^{86}$	Esenat tuit	tuitstad		5					5	0.00	0，00	60，00	40，00	0，00	100，00
${ }_{\text {l17 }}^{117}$	luer out	${ }_{88}^{87}$	bentruit	ctatemer		$\stackrel{1}{1}$					1	${ }_{\substack{\text { o．o．} \\ \text { oios }}}$	9，00	¢，00	（1000	\％o．0	$\substack{\text { 100，} \\ \text { loios }}$
$\underset{\substack{1179 \\ 1180}}{ }$	lumb	${ }_{\text {80 }}^{80}$		mpreo	（hememenon／2	2					\％	0,00	，	cind	cise	a，	cincon 10，000
$\substack{1188 \\ 1182}$	luer	${ }_{9}^{91}$	medem tut	第mem	（tmeorl／	$\frac{1}{2}$					$\frac{1}{2}$	0.00	，	coion		（0，00	cincon
cine	luer out	${ }_{94}^{93}$	citist		Lenemenel	$\frac{1}{5}$					${ }_{5}$	coion	，	10000	（0，00	，0，00	cincon
（1184	luen	$\underset{\substack{95 \\ 96}}{ }$			（minememes	$\stackrel{5}{1}$			mimen／	1	1	coion		cois	coicle	（oicos	（iol
${ }^{187}$	lunchout	9	bimed desert	ces		18					${ }^{17}$	47，06	${ }_{5}^{52,94}$	0.00	0.00	100，00	0，00
1188	Luscout	\because	bised desert	boume		5					5	${ }^{0.00}$	80，00	0.00	20，0	80.00	20.00
1189	Unstout	9	basedseset	mutin	边	3					¢	0．00	100，00	0．00	0，00	100，00	0.00
1190	Unchout	${ }^{100}$	bimed desest	tat		2					2	0.00	100，00	0．00	0.00	100，00	${ }^{0.00}$
${ }_{1191}^{1192}$	Lunchout	101 102		doushout coite cose		2					2	${ }^{0.00}$	${ }^{100,00}$	0，00	0.00	100，00	${ }^{0.00}$
	linction			cieceememed		1					${ }_{1}^{2}$	So．00	So，00	o，om	0，00		como
${ }_{\substack{1195 \\ 1195}}$	$\substack{\text { lunchout } \\ \text { luncout }}$	（105				$\stackrel{1}{1}$					1	${ }_{\substack{\text { a，00 } \\ 0.00}}^{0.0}$	（100，	0．00	0，00		coion
${ }_{196}$	Inchout	${ }^{106}$	cminedsasat	recteam	coicle	12					11	22，73	7，27	0，00	0.00	${ }^{10000}$	0，00
$\substack{1197 \\ 1198}$		（108	cot cine desest			$\stackrel{1}{1}$					1	coiono	${ }_{\text {a，oo }}^{\text {a，oos }}$	0．00	0．00	cose	${ }_{\substack{0}}^{0.00}$
$\substack{1190 \\ 1200}$	$\substack{\text { lancout } \\ \text { lambout }}$	（109	chine desert			${ }_{1}^{1}$					1	coion	coioco	a， 0	0，000	coicle	coion
${ }^{1201}$	Inchout	${ }^{111}$	conteratony	chocolie	cole	8					8	12．50	8，50	0.00	0.90	100，00	0，00
${ }^{1202}$	lumbout	${ }^{112}$	conctationy	maxt bar		2					2	0.00	100，00	0．00	0.00	100，00	${ }^{0.00}$
${ }_{1204}$	Inctout	114	other	${ }_{\text {cosematem }}$	为	2					${ }_{2}^{1}$	${ }_{\substack{0}}^{0.00}$	100，	0，000	0，000	（100，00	enomo
1205	Uncrout	${ }^{15}$	cabsomed	${ }_{\text {pasataidh }}$		${ }^{5}$	cex	cose			${ }^{54}$	35,19	${ }_{4,38}$	${ }^{16,56}$	4，3	79,01	20,9
					col			Uememb									
								magheril3									
1206	Unercout	${ }_{16}$	crabsamd dish	${ }_{\text {plaz }}$		55					51	44.12	so98	3，92	${ }_{0.98}$	95.10	4，90
					Hoodest／10												
${ }^{1207}$	Uncrout	${ }^{117}$	casbibeed	noodedesth		${ }^{15}$	$\begin{aligned} & \text { (fish)/1 } \\ & \text { vegetarian)/ } \end{aligned}$		Suwe）／	1	${ }^{15}$	${ }^{13,33}$	${ }^{26,67}$	26.67	33，3	a0，00	${ }^{60,00}$
					cein												
					coil												
128	Unchout	${ }^{118}$	cabsbaxd dish	Ethatepant		${ }^{16}$					${ }^{12}$	3750	62.50	0.00	0.00	10，00	0，00
1209	uncout	${ }^{119}$	cosbbsad dish	necedis	cos	8	Mestis／1／	totusegetabes／			8	37，50	3，50	1250	1250	5，00	25，0
					Lemming／2												
1210	Uncrout	${ }^{120}$	corbsamadth	dumpling	den	，	Wextiol／	Somen		4	，	${ }^{2,86}$	${ }_{29,57}$	${ }^{12,29}$	${ }_{12,29}$	${ }^{12,43}$	${ }^{28,57}$
${ }_{121}^{121}$	Unenhout	${ }^{121}$	beaduch	smouypie	（mel／	，						50.00					
							（tay／n	，			6	50.00	50，00	0，00	0.00	100，00	0，00

alorater	exinstrutuion	emins Stustion	geneat tooctateorv	basitiod	tres	treeteruenery			sccomenimens	$\underset{\substack{\text { scomeneminemis } \\ \text { treumer }}}{ }$	come	＊F	＊то	shr	＊＊	\％tatay	shaetity
${ }^{1212}$	Imentout	${ }^{122}$	carbsead dish	nathes	mater	${ }^{4}$	${ }_{\text {Namem }}$				＊	5，00	50，00	0,00	0，00	10000	0，00
${ }^{1213}$	Incrout	${ }^{123}$	Cambibesadish	auicreatat		3	（N／N／3				3	66,7	${ }^{33,3}$	0，00	0，00	100，00	0，00
$\underset{\substack{1214 \\ 1215}}{\text { dit }}$	\pm	${ }_{\substack{125}}^{125}$	cen			1		（samon veremaber／1			1	0，00	coo，	（o，00	0，00	$\substack { \text { 100，00 } \\ \begin{subarray}{c}{\text { a }{ \text { 100，00 } \\ \begin{subarray} { c } { \text { a } } } \end{subarray}$	（0，00
$\underbrace{}_{\substack{1216 \\ 1217}}$	lenem	$\xrightarrow{126}$	coicle	buek		1	vememinil				1	coioco	coio	coice	coios	coiol	coicle
$\underset{\substack{1218 \\ 1219}}{ }$	comat	（128	come	senem	cil	1	mesemin）／	Nesemele／			$\stackrel{1}{1}$	coion	coion	cose	coion	（ion	
1220	Lunchout	${ }_{130}$	cmatbesedist	deetblect potaio		，		chamen／									
${ }^{122}$	Unchout	${ }^{13}$	prosen besed dish	egsath		8	cosm				，	21，43	7，24	${ }_{4}^{12,86}$	28.87	28,57	${ }^{21,43}$
${ }^{1222}$	luncout	${ }_{13}$	prosele besed dish	Sthand ${ }^{\text {chips }}$	（masc．cosiol／	5	（sath 1			3	5	60，00	a0，00	0，00	0，00	100，00	0，00
${ }^{1223}$	Imentout	${ }^{133}$	promen beadish	rast		2	Imear／2				2	0．00	100,0	0.00	0.00	100，0	
${ }_{\substack{1224 \\ 1225}}^{125}$	cter	$\substack { \text { cis } \\ \begin{subarray}{c}{135 \\ 1,15{ \text { cis } \\ \begin{subarray} { c } { 1 3 5 \\ 1 , 1 5 } } \end{subarray}$		cemem	边	1					1	coino	coin	a，	a，		coion
			vegembebsesedish	隹	ceime	1		chev／s			1						
${ }^{1227}$	out	${ }^{137}$	mpax	menton	loter	${ }^{68}$	（mexl／	为	$\begin{gathered} \text { (mayonnaise)/1 } \\ \text { (mustard)/1 } \\ \text { (ketchup)/1 } \end{gathered}$	3	56	${ }^{22,86}$	55，36	1，9	0.00	98.21	1.79
								等	（samati／								
					（tamed）			边									
								con									
								Anemememe	（manombive								
${ }^{122}$	Inchout	${ }^{138}$		smawnh		${ }^{101}$			cose	${ }^{14}$	54	3，95	19，51	35，4	7,90	56,36	${ }^{3,64}$
					che		（menk	（ex mexmmex									
								Sex									
					cole			成									
					den												
								comen									
								（mades．amon）									
${ }^{1229}$	Unchout	${ }^{139}$	compex did	sup		${ }^{4}$	Netaminu	$\begin{gathered}\text {（lentil＿mushrooms）／1 } \\ \text { ken＿chilli＿vegetables＿coconut＿milk）／1 } \\ \text {（minted＿pea）／1 } \\ (\text { pumpkin）} / 1\end{gathered}$		2	${ }^{12}$	4，76	4，76	60，7	${ }^{29,76}$	9，52	90，4
								ceime									
								chiticemen）									
			Compledih		comen			cose									
${ }^{133}$	Incrout	${ }^{120}$	Promen wemet	wap	$\begin{aligned} & \text { (tacos)/1 } \\ & \text { (burrito)/9 } \\ & \text { rn_flour_tortilla)/1 } \end{aligned}$	${ }^{24}$			Soucstram／2	2	${ }^{18}$	${ }^{31,94}$	30，56	5，56	31，94	${ }^{62} 50$	${ }^{37,50}$
								（falafel）／1 falafel＿hummus＿halloumi）／1									
								comem									
${ }^{1231}$	Incrout	${ }^{194}$		meat ind	（spenesman）	${ }^{30}$		cin	coil	＇	${ }^{18}$	${ }^{1,11}$	0.00	${ }^{13,33}$	55，56	${ }^{1,11}$	${ }^{93,8}$
								边									
								（munol／									
${ }_{123}$	Unchout	122		susi		${ }^{19}$			loy samel／2	2	${ }^{15}$	0.00	6.67	${ }^{21,33}$	${ }^{2} 2.00$	6.67	${ }^{93,3}$
					（remebul		Megeranem										

alorser	eatirsstutaion	eatiostusation	geneatitodatesery	basitood	tros	tretereveny	maningesient tree (meat tat, westation)		mens			*F	**	shf	** 0	\%taty	Y heatity
${ }^{123}$	Unenout	${ }^{133}$		cury		${ }^{16}$					${ }^{16}$	25,00	53,57	2,14	14,29	${ }^{78,57}$	${ }^{21,43}$
1234	Inchout	${ }^{194}$		mome	(manel/3	3	(mas)/2	$\substack{\text { cheon } \\ \text { beon } \\ \text { noond }}$			3	0,00	6,67	0,00	${ }_{\text {33,3 }}$	66,67	${ }_{3,33}$
${ }^{1235}$	Incrout	${ }^{145}$		strity	Stitury	4					3	${ }^{3,33}$	${ }^{33,3}$	${ }^{333} 3$	0.00	66,67	${ }^{33,3}$
${ }^{1236}$	Lernout	${ }^{146}$		prese	(tase) ${ }^{\text {a }}$	3	(meas)/				3	${ }^{33,3}$	${ }^{33,3}$	0,00	${ }^{33,3}$	${ }_{66,67}$	${ }_{33,3}$
${ }^{1237}$	Lornout	${ }^{197}$		${ }^{\text {patara }}$	(matoral/	2	(uextain)/2	vesersel/			2	0,00	100,0	0.00	0,00	100,00	0,00
${ }^{1238}$	Unentout	${ }^{148}$		chili	(samile ${ }^{\text {a }}$	1	(veseation/1				1	120000	0.00	0,00	0.00	10000	0,00
${ }^{1239}$	Luncout	${ }^{199}$		encribless	(ematibusas)/	1	(wa/n ${ }^{1}$				1	100,00	0,00	0,00	0.00	100,90	0,00
${ }^{1220}$	Inenout	${ }^{150}$		crovetes	(crowetes/1	1	(Na//				1	0.00	100,0	0,00	0,00	100,00	0,00
$\begin{aligned} & 1241 \\ & 1242 \end{aligned}$		$\begin{gathered} 151 \\ \substack{152} \\ \hline 18 \end{gathered}$		chinese KFC	chinese_style_dish)/1 $(\mathrm{KFC}) / 1$	$\stackrel{1}{1}$	(meat)//1 (meat)/1	(seon/			1	100,00 0,00	$\begin{gathered} \text { ano } \\ \text { Hoion } \end{gathered}$	(oid	0,00 0,00	(ioneo	,
${ }^{124}$	Unchout	154	coldraink	sottrink		${ }_{58}$			mime/1	1	${ }^{41}$	${ }^{41,46}$	52,3	4,07	2.48	${ }_{93,50}$	${ }_{6.50}$
1245	lunchout	155	coldifink	sersadiok		3					3	0,00	100,00	0,00	0.00	100,00	0,00
${ }^{126}$	Inchout	${ }^{156}$	jute	tututuce		${ }^{27}$					${ }^{24}$	4.17	4.17	${ }_{60,4}$	${ }^{31,25}$	${ }_{8}^{83}$	91.67
${ }^{124}$	Incrout	${ }^{157}$	juice	cosont weer	lecomi neeiel/	2					2	0.00	0.00	0.00	100,0	0,00	100,00
${ }^{1248}$	Iuchout	${ }^{158}$	bend	state	$\begin{gathered}\text { (protein_shake)/ } 1 \\ \text { (chocolate_milkshake)/1 } \\ \text { (caramel_Frappuccino)/ } / 1\end{gathered}$	8					8	25,00	62,50	12,50	0,00	8,50	${ }^{12,50}$
129	Uncrout	${ }^{159}$	bend	smoatie		8					8	0,00	${ }^{12,50}$	50,00	37,50	12.50	87,50
${ }^{1250}$	Imenout	${ }^{160}$	waterototink	weter		51					${ }^{50}$	0,00	4.00	80,00	16,00	4,00	96.00
${ }^{1251}$	Incrout	${ }^{161}$	wewerforotank	cothe	(coffee)/24 (plain_coffee)/1 (black_coffee)/2 (cold_brew_filter_coffee)/1 (cappuccino)/2 (latte)/3 (mocha)/1 (tea) $/ 17$ (green_tea)/4 (black_tea)/1	${ }^{34}$				${ }^{14}$	${ }^{30}$	${ }^{1222}$	${ }^{3,67}$	${ }^{18,3}$	${ }^{278}$	13,89	26,11
${ }^{152}$	Inchout	162	wowethor otink	te		${ }^{30}$			cimem	${ }^{7}$	${ }^{27}$	${ }_{1,8,81}$	5.56	57,41	22.22	20.37	${ }^{79,6}$
${ }^{1253}$	Luntrout	${ }^{163}$	wiethorotionk	botacocolie	comele	3			(crem/2	1	3	0,00	100,00	0,00	0.00	100,00	0,00
${ }^{1254}$	Lunnout	169	atconolicrink	beer		${ }^{27}$					${ }^{27}$	40,74	59,26	0.00	0,00	100,00	0,00
${ }_{1255}$	Luntout	165	asololicidink	wine		${ }^{19}$					${ }^{16}$	${ }^{31,25}$	62.50	6,25	0.00	93,75	6,25
${ }^{1256}$	Imenout	${ }^{166}$	atcolorictarink	coctatat		5					4	0,00	75,00	25,00	0,00	7500	25,00
$\underset{\substack{1257 \\ 1258 \\ \hline}}{ }$		${ }_{\substack{167 \\ 168}}$		$\underset{\substack{\text { cide } \\ \text { milk }}}{\text { a }}$		${ }_{8}^{1}$					1	100,00 21,3 1,3	${ }_{\substack{0,00 \\ 19,29}}$	0,00 s.00	0,00	100,00 35,71	0,00 60,29
${ }_{125}$	Loncout	${ }_{169}$	bsiccondimet	oi	cole	,					-	25,00	0,00	75,00	0.00	25,00	55,00
${ }^{1260}$	Lenchout	${ }^{170}$	${ }^{\text {basiciconimeatt }}$	${ }^{\text {vingara }}$		2					2	so,00	50,0	0,00	0,00	100,00	0,00
$\substack{1261 \\ 1262}$	limat	${ }_{172}^{171}$		Sersmenemer	, inemarn/	${ }_{3}^{1}$					1		0.00 3,33	a,00 333	0,00	10000	¢,000
${ }_{123}$	Luncout	${ }^{173}$	dresingsasue	peperecomate		2					${ }_{2}$	(3,3,	3,3,	3,00	0,00	-6,61	${ }_{\text {3, }}$
${ }^{1268}$	Inernout	${ }^{174}$	dresingsowe	cinlisace	Inemicemer	2					2	0.00	100,0	0,00	0,00	100,00	0,00
${ }_{\substack{1265 \\ 1265}}$	cent	$\underset{\substack{175 \\ 176}}{ }$	ditasingee	cose sorume	comer	${ }_{1}^{1}$					${ }_{1}^{1}$	$\xrightarrow{\text { a,000 }}$ 10,000	0,000	$\substack{\text { 0.00 } \\ 0.00}$	$\substack{\text { 100,00 } \\ \text { a,o }}$	co.o.	$\xrightarrow[\substack{\text { 100,00 } \\ 0,00}]{\text { a }}$
						1					1	$\substack{\text { coiono } \\ \text { loion }}$	coiou	coion	coiou		coico
$\underset{\substack{1299 \\ 1220}}{ }$	lemen	$\underset{180}{179}$	disisisuce	geatereme	musam	1					${ }_{1}^{1}$	¢0,	100,00	0,00	0,00		(0,00
$\underset{\substack{1271 \\ 1272}}{ }$		(181		coume		,								(100		(10000	(0,00
					(vememmomomenel/												

aloster	estinsturution	Extingstustion		basitiod	tres	treetequeny			nens	ceimen		＊F	＊ro	xnf	x＋0	xtaty	shaestry
1273 1274 1	\pm	cise	Spedtificoping		comen	${ }_{6}^{8}$					$\stackrel{7}{6}$	${ }_{\substack{0.00 \\ 16,67}}^{\text {a }}$	${ }_{\substack{0,00 \\ 66,7}}^{\text {a }}$	${ }_{12,86}^{1268}$	${ }_{\substack{51.14 \\ 0,00}}$	${ }_{\substack{\text { c，00 } \\ 8,3}}$	$\xrightarrow{\text { 100，00 }}$（16，
1275	Lunnout	${ }^{125}$	speatatiotomi	mutare	come	1					1	0，00	100，00	，oom		100，0	cis，
$\underset{\substack{1276 \\ 127}}{127}$	lat	$\xrightarrow{186}$	Sticte	bubamemin	（tamememush／1／	1							0，000	品，	（100，	co，	coiche
$\underset{\substack{1278 \\ 1219}}{120}$			spey		（tarkel／	1						（10，00	（o，00	coion	coion	（ione	$\xrightarrow{0.00}$
					（tamem／1／												
${ }^{1281}$	dineoout	1	nourbesed bosed tood	${ }^{\text {bread }}$	隹	${ }^{2}$					${ }^{37}$	${ }^{4.459}$	${ }^{24,32}$	2027	${ }^{10,81}$	${ }^{6892}$	${ }^{31,08}$
1282	dinere out	2	fourbseef beater fod	cracer	（lexises）／	5					5	a0，00	40，00	20，00	0，00	88.00	20，00
$\substack{1283 \\ 1284}$	$\underset{\substack{\text { dinene out } \\ \text { dineout }}}{\text { a }}$	${ }_{4}^{3}$		popatem		3				2	${ }^{3}$		$\xrightarrow{33,38}$ 1000	${ }_{\substack{\text { a，o } \\ 0.00}}$	${ }_{\text {3，}}^{\substack{3,3}}$		${ }_{\substack{3,38 \\ 0.00}}$
${ }_{1285}$	dinere out	5	fourbeast tiet tod	swetemacase	Hicememe	3					3	0．00	66，77	0.00	33，33	${ }_{6667}$	${ }_{33,33}$
${ }^{1286}$	dineosut	6	fourbsest tiestood	speatcepe		1			（nuesela／2	1	1	0.00	100，00	0,0	5，00	200，0	0，00
${ }^{1287}$	dimeno out	，	gan	stetice	come	${ }^{0}$					${ }^{0}$	25，00	1500	42.50	17，50	0	60，00
$\underset{\substack{1288 \\ 1289}}{ }$	$\xrightarrow{\text { dimene out }}$ dimeout	\％	$\underbrace{\text { and }}_{\substack{\text { grin } \\ \text { gan }}}$		$\xrightarrow{\text { latamen }}$	${ }_{1}^{3}$					，	${ }_{\text {cose }}^{\text {0．00 }}$	0，00	coion	$\xrightarrow[\substack{\text { cooos } \\ 0,00}]{ }$	$\xrightarrow[\substack{\text { a，oo } \\ 0.00}]{ }$	（100，
1230			gain	Sorsichins							，	${ }_{\substack{\text { a } \\ \text { a，o，00 }}}^{\text {a }}$	0，00	，	0	${ }_{\text {coiol }}^{\substack{\text { a0，} \\ \text { 10，}}}$	${ }_{\text {coin }}^{\substack{10000}}$
					ctimer				\％omatomacel2								
${ }_{129}$	dineout	${ }^{11}$	stactuvemetue	mexthps	theidetios／1	9				${ }^{28}$	${ }^{80}$	$6_{6,93}$	31，88	1，94	1,25	97，7	229
					comem												
					（Sill				cen								
${ }^{1292}$	dineosut	${ }^{12}$	Stactryesable	ssepotatos		${ }^{34}$			（sueel／	1	${ }^{28}$	30，36	3，57	3329	26,79	${ }^{33,3}$	${ }^{66,97}$
					comele												
${ }^{123}$	dinere out	${ }^{13}$	statruveaber	maxemopato	（maxtsonataesi／h	＇					＇	14，29	4286	2857	14.29	57，24	4285
${ }_{1298}^{1298}$	dinesout	${ }_{15}^{14}$	starwvereabe	${ }_{\text {cise }}$ cras	（tisisp／2	2				2	2	so，00	50，00	0.00	0，00	10000	0，00
${ }_{1295}^{1295}$		${ }_{16}^{15}$	Staty		（entiole	$\stackrel{2}{1}$					${ }_{1}^{2}$	0，000	（100，00	${ }_{\text {d，0，}}^{0.00}$	o，000	（100，00	0，000
					Gsuldedeen／												
${ }^{1297}$	dinere out	${ }^{17}$	ment posetin	beet	cex	56			ceeny merel／	，	${ }^{53}$	${ }^{33,96}$	${ }^{27,36}$	20,75	17，92	${ }_{61,32}$	${ }^{38,68}$
					letimerns												
${ }^{1298}$	dineocout	${ }^{18}$	meet potan	crickn	comele	${ }^{6}$				2	52	16.9	23.99	${ }^{3718}$	1635	4647	${ }_{5,3,3}$
					atemed												${ }_{3,3,}$
					（hicen mimelic												
1299	dinercout	${ }^{19}$	meatrosete	pork		${ }^{16}$			Emeetendesoul／	2	${ }^{16}$	${ }_{18,75}$	3，50	18，75	25，00	56,25	${ }^{3,75}$
${ }^{1300}$	dinemout	${ }^{20}$	mentrosat	susge	chememe	${ }_{10}$			gram／1	1	${ }^{10}$	40，00	50，0	10，00	0，00	90，00	${ }^{10,00}$
${ }_{130}$	dinerout	${ }^{21}$	meatrosein	lamb	隹	，					，	${ }^{11,11}$	${ }^{22,22}$	22,22	ata，	${ }_{3,3}$	66,67
1302	dinemeout	${ }^{22}$	meerpostan	nm	cosm	6					5	10，00	80，00	0，00	10，00	90，00	10，00
${ }_{133}$	dinerout	${ }^{23}$	meatrotese	broon	coick	5					5	60，00	40，00	0，00	0.00	100，00	${ }^{0.00}$
${ }^{1394}$	dineacout	${ }^{24}$	meat potein	duck	coly	5					5	a0，00	40，00	0，00	20.00	0	20.00
1305	dineocout	${ }^{25}$	men posean	ribs		4			（8asamuel／2	2	4	50，00	50，00	0.00	0，00	100，00	${ }^{0.00}$
	dinorout				（ex				mament			000	12000	000	000	1000	0，00
139	，	，	meat	ame	comen												
	dinaeo																${ }^{0.00}$
1399	dinereout	${ }^{29}$	meatroten	bota	comer	1					1				100，00	0，00	（100，00
${ }_{\substack{1310 \\ 131}}^{10}$	dinden out	${ }_{\substack{30 \\ 30}}$		dome	ciome	${ }_{1}^{1}$					1	co，	100，00	${ }_{\substack{\text { a，oo } \\ 0.00}}$	coom	coicle	${ }_{0}^{0.00} 0$
		${ }_{\substack{32 \\ 38 \\ \\ 3}}$		coicle		1					1	0.00	100，	coion	oion	coione	${ }_{0}^{0.00}$
${ }_{1315}^{1315}$	dindeme	${ }_{35}^{36}$				${ }_{1}^{1}$					1	0，000	co，	${ }_{\substack{\text { a，00 } \\ 0.00}}^{\text {a }}$	coion	（0，00	${ }_{\text {coin }}^{\substack{\text { 20，00 } \\ 0.00}}$

aloserer	exirssturaion	${ }^{\text {exingisusiosion }}$	Eeat toodateory	tood	wres	treetegeneny			acompenimens	comen	Nusititemeny	*F	**	* HF	*но	*tata	xhentury
${ }^{1316}$	dinerout	${ }^{36}$	sthposean	gematath		52				3	${ }^{37}$	25,00	22,62	31,76	${ }^{21,62}$	46,62	$5_{5,38}$
137	dimenout	${ }^{37}$	sthpooten	samm		${ }^{22}$			(tatemel/	2	${ }^{20}$	0,00	0.00	60,00	40,00	0.00	10,00
${ }^{1318}$	dinerout	${ }^{38}$	sthpoten	mostrimp/same		${ }^{17}$			(tomatsesel/	2	${ }^{13}$	2.56	${ }_{15,58}$	3590	${ }_{4,15}$	17,95	${ }_{82} 25$
1319 1320	dinere out	${ }^{39}$	${ }_{\text {minforotes }}$	setass	(semasal/5	5					5	${ }^{0.00}$	0.00 2000	60,00	40,00	0.00	100,00 cooc
${ }_{132}$	dimeno out	${ }_{4}$	msproves	opyer	(moseses/5	5			(rammenel/	-	5	0,00	40,00	a000	20,00	4000	${ }_{\text {co,0, }}$
${ }^{132}$	dimeout	42	sthpoetein	ssalop	(salosp)/5	5				2	5	0,00	20,00	20,00	60,00	20.00	80,00
${ }^{1323}$	dimeout	${ }^{43}$	sthrovein	tuna	tumath	3					3	0,00	0,00	${ }_{333}$	66,67	0,00	100,00
${ }^{1324}$	dimerout	${ }^{4}$	sthporese	cod		2					2	0,00	${ }^{0.00}$	0,00	100,00	0.00	100,00
${ }^{1325}$	dineme	${ }_{46}^{45}$			(labsei/2	2			fouter)/2	1	${ }_{2}^{2}$	${ }_{\text {a }}^{0.00}$		${ }_{\substack{0.00 \\ \text { 0,00 }}}$	cone	$\underbrace{\substack{\text { a,0 }}}_{\text {s.0.00 }}$	So,00
${ }^{1327}$	dinereout	${ }^{47}$	sthrosesin	sum	(treedidemanil/	2					2	${ }^{0.00}$	50,0	0,00	50,0	50,00	50,00
${ }_{\substack{1328 \\ 1329}}$	dine ${ }_{\text {dinereut }}^{\text {dineout }}$	${ }_{4}^{48}$		Sters	coin	1				${ }_{1}^{1}$	1	$\xrightarrow{\text { 100,00 }}$	coion	co,	coio	100,000	¢o.as
${ }_{\substack{\text { ci30 } \\ 139}}^{139}$	dineat dimeo out	${ }_{\substack{50 \\ 51}}$		sememm	(sememem/	$\stackrel{1}{1}$					$\stackrel{1}{1}$	${ }_{\text {0, }}^{0.00}$	coio	co.00	10,000	${ }_{\text {coion }}^{\substack{0.00 \\ 0.00}}$	
${ }_{\substack{1332 \\ 133}}$	dinere	${ }_{53}^{52}$				${ }_{1}^{1}$					${ }_{1}^{1}$		100,0	,	${ }_{\text {doioc }}^{0.00}$	$\xrightarrow{\text { 1oo,00 }}$	- 10.000
${ }_{\substack{1334 \\ 135}}$	dineat	${ }_{56}^{56}$	Sthrotern	$\underbrace{\text { a }}_{\substack{\text { maxeed } \\ \text { ancouede }}}$		$\stackrel{1}{1}$					1	${ }_{\text {don }}^{0.00}$	coion	0,00		${ }_{0}^{0.00}$	
${ }^{1336}$	dinere out	${ }_{56}$	vesearainporeien	${ }^{\text {damb }}$	cent	4			(sinasty/2	1	c	0.00	0,00	75,00	25,00	0,00	100,00
$\underbrace{}_{\substack{1337 \\ 138}}$	dine ${ }_{\substack{\text { dine out } \\ \text { dine out }}}$	${ }_{58}^{58}$	Vesedian potein	$\underbrace{\text { det }}_{\substack{\text { tatate } \\ \text { toue }}}$		${ }_{3}^{3}$					${ }_{3}^{3}$	${ }_{\text {a }}^{0.00} 0$	$\substack{33,3 \\ 0,00}$	${ }_{\substack{333 \\ 66,67}}^{\substack{\text { a }}}$	${ }_{\substack{3333 \\ 333}}^{\text {3, }}$	$\underset{\substack{33,0 \\ 0,0}}{\substack{\text { a }}}$	
${ }^{139}$	dinere out	59	veseremin porean	smpeese	(exese	2					2	0.00	0,00	50,0	50,00	0,00	100,90
${ }^{1330}$	dinereout	6	vegeremerepoten	bens	${ }_{\text {cosem }}^{\text {comen }}$	2					2	0,00	0,00	50,00	50,00	0,00	100,00
${ }^{1391}$	dinere out	${ }_{6}$	Serinporeten	lentus	Hemitl/	2					2	0,00	0,00	100,00	0,00	0,00	100,00
1332	norout	6	Sinnpotien	nuts		2					1	0,00	0.00	0,00	0,00	0,00	0,00
${ }^{133}$	dinerout	${ }^{6}$		chese	(cheese_platter)/2 (parmesan_cheese)/1 (mozzarella_cheese)/1 (yellow_cheese)/1 (brie)/1 (cheddar_cheese)/1 (paneer)/1 (palak_paneer)/1 (fondue)/ (mozzarella_sticks)/1 (salad)/33	${ }^{38}$			chemen	2	${ }^{33}$	${ }^{22,7}$	4,3,4	25,6	7,58	66,67	${ }_{33,}$
${ }^{134}$	dinocout	${ }^{64}$	smenalugetabe	stestad	coid	${ }^{\circ}$					${ }^{39}$	0.00	5,13	64,10	30,7	5.13	99,87
${ }^{1345}$	dinerout	${ }^{65}$	smenalvesabe	veratale		${ }^{17}$					${ }^{18}$	0.00	11,14	${ }^{6,111}$	27,78	${ }^{11,11}$	88,89
$\underbrace{\substack{\text { a }}}_{\substack{136 \\ 134}}$	dineme	${ }_{\substack{66 \\ 67}}^{\text {¢ }}$			$\underset{\text { (ratatouille)/1 }}{\text { (kimchi)/1 }}$	${ }_{1}^{1}$					${ }_{1}^{1}$	${ }_{0}^{0.00} 0$	${ }_{\substack{\text { a,00 } \\ \text { a, }}}^{\text {a }}$		o.0,	${ }_{\substack{0.00 \\ 0.00}}$	
${ }^{138}$	dinere out	${ }^{68}$		tonaes		${ }^{16}$					${ }^{16}$	${ }_{6}, 25$	0,00	${ }_{68,5}$	25,00	${ }_{6,25}$	93,75
${ }^{139} 9$	dinere out	${ }_{6} 9$		mustrom	coil	${ }_{11}$			(saricol/	1	${ }^{11}$	${ }_{18,18}$	${ }^{18,18}$	${ }^{27,27}$	${ }^{36,36}$	${ }^{36,36}$	${ }_{6,54}$
${ }^{1350}$	dinere out	70	Stowegonesuegetble	1 letuse	liturelin	${ }^{10}$					${ }^{10}$	10,00	0,00	50,00	40,00	10,00	90,00
${ }_{1351}$	dimerout	7	${ }^{\text {atamegounderembeble }}$	seperecsesicum	cosem	${ }^{10}$					10	0,00	0.00	50,00	50,0	0,00	100,0
${ }^{1352}$	dimere out	2	Stowesonotregetble	brocolif	city	,			comen	2	8	${ }^{12,50}$	0,00	75,00	${ }^{1250}$	${ }^{12.50}$	8,50
$\underset{\substack{1353 \\ 1354}}{ }$	dineme	${ }_{78}^{73}$	dole	ajuber	cily	${ }_{3}^{5}$					${ }_{3}^{5}$	${ }_{\text {deom }}^{0.00}$	${ }_{\substack{\text { a,00 } \\ 0.00}}$	$\underbrace{\substack{\text { a }}}_{\substack{20,00 \\ 3,3}}$	${ }_{\substack{\text { en, } \\ 6,69}}^{\text {c, }}$	${ }_{0}^{0.00}$	

aloser	estigstutution	exiressumion	geneat toostateorer	basictood	trees	treetesemeny			nens			＊F	＊＊	shr	＊но	xtast	shatity
${ }_{\text {l }}^{1355}$	${ }_{\substack{\text { dineceut } \\ \text { dimeo out }}}$	75 76			come	3_{3}^{3}					${ }_{3}^{3}$	${ }_{\substack{0.00 \\ 33,3}}$	co，00	${ }_{\text {6，}}^{6,37}$	${ }_{3}^{33,33}$	${ }_{\substack{0,00 \\ 333}}$	
${ }^{1357}$	dimere out	＂	aboegoundegetale	roxe	comen	2					2	0，00	0，00	so，0	50，0	0，00	100，0
${ }_{\substack{1358 \\ 1350}}^{139}$	dine	0		Stin	，（bimex）／	2					${ }_{2}^{2}$	0.00 0.00 0．0．	0.00 0,00 0	So，	50，00	0，000	coicle
${ }_{\substack{1360 \\ 1361}}^{180}$	dineme	${ }_{81}^{80}$	ate	crean enteens	city	$\stackrel{1}{1}$					${ }_{1}^{2}$	0．0．00	0，00	S0，00	So，	0，000	coiche
${ }_{\substack{1362 \\ 1363}}^{18}$	dineat	${ }_{83}^{82}$			（atationel／	${ }_{1}^{1}$					1	0	0，00	coion	coicle	0，000	
	dineme	$\underbrace{}_{\substack{88 \\ 88 \\ 88}}$	ate			1					1	0.00 0.00 0	第， 0	coiciou	cioue	coiol	
$\underbrace{\substack{\text { che }}}_{\substack{1367 \\ 1385}}$	dineme oft	${ }_{88}^{87}$	ateme	cimempeas		${ }_{1}^{1}$					1	$\stackrel{\substack{\text { a，oo } \\ 0.00}}{\text { a }}$	0．00	coice	0，00	0．000	coincoin
${ }_{\substack{1359 \\ 137}}^{10}$	dine ${ }_{\text {dine out }}^{\text {dime out }}$	${ }_{\substack{89 \\ 98}}$	ateme		（lamatiol	${ }_{1}^{1}$					1	${ }_{\substack{\text { a，} \\ 0.00 \\ 0.00}}^{\text {a }}$	（0，00	$\substack{\text { 1a0，00 } \\ \text { o，00 }}$		e．a，	coicle
${ }^{1371}$	dinere out	9	beousound eeseate	onion	（momosimes	6			（saticmanol／	1	5	80，00	0，00	0.00	20，0	80，00	20，00
1372	dinaraut	92	beawsoundeemble	arot	comel	5					－	0．00	0，00	75，00	25.00	0．00	100，00
${ }^{133}$	dinerat	${ }^{9}$	beowsounderemale	pessip	Hosemesmesinem	2					2	0，00	0，00	50，0	50，0	0，00	100，0
${ }^{1374}$	dimene ut	9	veesabe	tumip		1					1	0，00	0，00	0.00	100，00	0，00	100，00
1375	dineout	${ }^{5}$	Esesat futit	tuit	trentruw	4					2	0.00	0，00	100，00	0，00	0，00	100，00
${ }_{\substack{1376 \\ 137}}$	dine ort	${ }_{97}^{96}$	Eeneat	turt tretater		：					${ }_{1}^{2}$		0，00	S0，00	cose	o．o．	（10，00
${ }_{\text {1378 }}^{1379}$	dineme out	${ }_{9}^{98}$	beerntuit	Statemer	che	$\frac{1}{1}$					1	$\begin{aligned} & 0.00 \\ & 0,000 \\ & 0,00 \end{aligned}$	（0，00	coion		a，	
${ }_{\substack{1380 \\ 1382}}^{\text {189 }}$	dineme or	$\xrightarrow{100}$		（spees	（tames）／	$\stackrel{1}{1}$					$\frac{1}{1}$	0,00 0,00 0．0．	0，000	coios	coioco	0，000	coincos
		$\substack{102 \\ 103 \\ 102}$	momet		limemol／	${ }_{3}^{1}$					$\frac{1}{3}$	coion	a，	coion	coin	0，000	cion
${ }_{1385}^{1385}$		${ }_{105}$	${ }_{\text {cosem }}$	cos	（tamama／	，					S	－0，		0.00	（100，00	${ }_{\substack{0.00 \\ 7500}}^{0}$	（100，00
${ }^{1386}$	dineosut	${ }^{106}$	bisedesesert	ate	cemem	${ }^{23}$			（tremm／2	2	${ }^{20}$	45500	55，00	0.00	0.00	10000	0，00
${ }^{1387}$	dineocout	107	bocedsesent	browie		5			nececemm／1	1	5	60,00	40，00	0.00	0.00	100，00	0，00
${ }_{\text {c }}^{\text {1388 }}$	dine or	$\underset{\substack{108 \\ 109}}{ }$	bited besest		（aple feil／	${ }_{2}^{2}$			liececam／1／	1	2	${ }_{\substack{\text { 50，00 } \\ 0.00}}$	So，00	0，00	0，00		${ }_{0}^{0.00}$
${ }^{1392}$	dimme out	${ }^{111}$	bitadesemert	come	dutumber	1						coioc	10，	0，00	0，00		a，
${ }_{\text {l }}^{1393}$	dime oft	${ }_{113}^{112}$			cimem	$\stackrel{1}{1}$					1	${ }_{\substack{0 \\ 0.00 \\ 0.00}}^{0.00}$	100，00	0，00	0.00		0
${ }_{134}$	dinerout	${ }_{114}$	crived desert	tectem	cesemendean	${ }^{18}$					${ }^{17}$	${ }^{29,91}$	20，5	0.00	0.00	100，00	0，00
${ }_{1395}$	dinareout	115	cminedeseat	tututad		1			vieceram／1	1	，	0.00	14，29	0，00	85，71	14，29	85，71
${ }_{139}$	dinareout	116	chiled deasert	poding	Hosudime	6					6	${ }_{3,33}$	66,7	0.00	0.00	10000	0.00
${ }^{1338}$	dinereout	${ }^{118}$	comededesert	cinemmix	creme biver	2					2	coiol	So，	等，	coio	coicle	（oico
${ }_{\substack{1000 \\ 1002}}^{\text {10，}}$	dinere out	$\underset{120}{120}$	chine desert		come	${ }_{1}^{1}$					，	${ }_{\substack{\text { ajom } \\ 0.00}}^{\text {poo }}$	co，00	0，000	00，00	co．os	$\xrightarrow[\substack{\text { 100，00 } \\ 0,00}]{ }$
${ }^{1002}$	dinacout	${ }^{122}$	other			1					1	120，00	0，00	0.00	0.00	100，00	0，00
${ }^{1003}$	dinere out	${ }^{123}$	ditoen	coise		5					5	20，00	80，00	0，00	0.00	100，00	0，00
1904	\％out	${ }^{124}$		${ }_{\text {praz }}$	comem	${ }^{82}$	cen				＂	57,7	3，36	4，55	1，30	99.16	5，84
					为		（men／										
								tumel									
								（sauce＿chorizo）／1 （carbonara）／10									
${ }^{1005}$	dinacout	${ }^{125}$	cmabbamdish	paradish	chemen	${ }^{5}$		$\begin{aligned} & \text { tomato_sauce)/7 } \\ & \text { hicken_carbonar } \\ & \text { (cheese)/6 } \end{aligned}$	（theoes／1	1	6	${ }_{4}^{2} 31$	27，10	22，15	${ }_{8,4}$	69，91	30，5
					lasmen／20												
								（tameshl／									
					comel			（ausel）									
${ }^{1006}$	dinamout	${ }^{126}$	carsbamadish	noondeaish		${ }^{27}$	（westainil／		（smeatscmilsmeol／	2	${ }^{23}$	${ }^{26,09}$	26,09	30，43	17，39	52.17	${ }_{4,78}$
								beout bent 1									

alosater	eatisstrution	estinstustion	geneat toodesteger	basitiod	trees	betreuenery			occompmimens	ceaminems	comelitameny	＊${ }^{\text {F }}$	＊${ }^{0}$	shf	＊＊	\％saty	Shatativ
${ }^{163}$	nerout	${ }^{133}$	dindindelenative	milk	（mimis）	5					＊	${ }^{12.50}$	0.00	50，0	3750	12.50	${ }^{87,50}$
${ }_{1464}$	dinere out	${ }^{188}$	diandorinusemative	${ }^{\text {ass }}$		3					3	0，00	100，00	0，00	0，00	100，90	0，00
$\underset{\substack{1465 \\ 1465}}{ }$	dine dineore	${ }_{\substack{185 \\ 185}}$		plant basem mik		${ }_{6}^{1}$					${ }_{6}^{1}$	¢，	co．a	${ }_{\substack{\text { cooo } \\ \text { s．0，0 }}}$	coiceo	（oom	
	dimene out		come	，		4					4	$\substack{\text { siono } \\ \text { soion }}$	2500	cois	（i，	ciso	
（1209	dimene out	迷189	ditesemsme	sessuce	coreseme	3					3	（10，	cisi	${ }^{33,33}$	300		cise
（1201	dinmeor	${ }^{191}$	disasimsmee	dereme	lemememel／	2					2	So．eo	coio	0，00	soioo	Soico	cion
1403	dimere out	${ }^{193}$	dessistsaue		theand．jesemel／	2					2					$\substack{\text { coion } \\ \text { sooo }}$	s．0．00
${ }^{1274}$	dinameor	${ }^{196}$	dressidesmee	＂rysuces	隹	2					2	50.00	50，00	0，00	0.00	${ }^{100,00}$	${ }^{0.00}$
${ }_{\substack{1975 \\ 1976}}$	dimere	${ }_{196}^{198}$		con thase		$\stackrel{1}{1}$					1	${ }_{\substack{\text { 0，00 } \\ \text { joid }}}^{\text {a }}$	come	coion	o， 0.00		（0，
${ }_{\text {che }}^{12478}$	dindeme	${ }_{198}^{198}$	dichemembere	bembesue	为	1					1	100，00	coiom	coio	coion		coion
$\underset{\substack{1293 \\ 1080}}{10}$	dineme dimeout	$\underset{\substack{199 \\ 200}}{ }$	disisifjuce	jome		1					$\stackrel{1}{1}$	${ }_{\substack{0 \\ 0.000 \\ 0.00}}$	10，000	coio	0．00	coin	$\xrightarrow[\substack{0.00 \\ 0,00}]{ }$
$\underset{\substack{1288 \\ 1082}}{\substack{\text { a }}}$	dineme dineout	${ }_{202}^{201}$	disesing sue	cinde	cin	$\frac{1}{1}$					$\stackrel{1}{1}$	${ }_{\substack{0 \\ 0.00 \\ 0.00}}$	10，00	co，	0，000	$\xrightarrow{\text { 120，00 }}$（0，	yo．00
	dimer		diesin jume	Sele		1					1	coion	coiol	coiol	（0，00	coion	（oino
	dineme	coin		comemememe		${ }_{8}^{8}$					${ }_{8}$		（ita	cois	8i，	cois	coin
	dineme	（inction		ctaud		${ }_{3}^{6}$					${ }_{3}^{6}$	${ }_{\text {cose }}^{66,67}$ 6，	$\xrightarrow{33,38}$	coion	${ }_{\substack{0.00 \\ \text { 0，0 }}}^{\text {a }}$		${ }_{\substack{\text { a，00 } \\ 3,3,3}}$
1490	dineo ut	${ }_{210}^{20}$	spreadidifopopins	ner								0，00	0，00	0.00	100，00	0,00	coin
$\underset{\substack{\text { 1a9 } \\ 1929}}{ }$	dine dimeo out	${ }_{212}^{211}$		$\underbrace{}_{\substack{\text { butee } \\ \text { hoey }}}$	边	2					2	So．		${ }_{\substack{\text { a，oo } \\ \text { a，}}}$	0，00		${ }_{\substack{\text { a，om } \\ 0,00}}$
1943	dimene out	${ }^{213}$	Sprediditiopopm									0.00	0，00		100，00	0.00	20，00
${ }^{1994}$	dinerout	${ }^{214}$	other	tem	cem／1	＇					1	0.00	100，00	0，00	0.00	100，00	

References

Abrahamse, W. (2020). How to Effectively Encourage Sustainable Food Choices: A Mini-Review of Available Evidence. Frontiers in Psychology, 11. https://www.frontiersin.org/articles/10.3389/fpsyg.2020.589674

Adriaanse, M. A., van Oosten, J. M. F., de Ridder, D. T. D., de Wit, J. B. F., \& Evers, C. (2011). Planning What Not to Eat: Ironic Effects of Implementation Intentions Negating Unhealthy Habits. Personality and Social Psychology Bulletin, 37(1), 69-81. https://doi.org/10.1177/0146167210390523

Aggarwal, A., Rehm, C. D., Monsivais, P., \& Drewnowski, A. (2016). Importance of taste, nutrition, cost and convenience in relation to diet quality: Evidence of nutrition resilience among US adults using National Health and Nutrition Examination Survey (NHANES) 2007-2010. Preventive Medicine, 90, 184-192. https://doi.org/10.1016/j.ypmed.2016.06.030
Ágoston, C., Urbán, R., Király, O., Griffiths, M. D., Rogers, P. J., \& Demetrovics, Z. (2018). Why Do You Drink Caffeine? The Development of the Motives for Caffeine Consumption Questionnaire (MCCQ) and Its Relationship with Gender, Age and the Types of Caffeinated Beverages. International Journal of Mental Health and Addiction, 16(4), 981-999. https://doi.org/10.1007/s11469-017-9822-3

Ajilore, O., Amialchuk, A., \& Egan, K. (2016). Alcohol consumption by youth: Peers, parents, or prices? Economics \& Human Biology, 23, 76-83. https://doi.org/10.1016/j.ehb.2016.07.003

Albery, I. P., Collins, I., Moss, A. C., Frings, D., \& Spada, M. M. (2015). Habit predicts in-the-moment alcohol consumption. Addictive Behaviors, 41, 7880. https://doi.org/10.1016/j.addbeh.2014.09.025

Al-Ghussain, L. (2019). Global warming: Review on driving forces and mitigation. Environmental Progress \& Sustainable Energy, 38(1), 13-21. https://doi.org/10.1002/ep. 13041

Allcott, H., Lockwood, B. B., \& Taubinsky, D. (2019). Should We Tax SugarSweetened Beverages? An Overview of Theory and Evidence. Journal of Economic Perspectives, 33(3), Article 3. https://doi.org/10.1257/jep.33.3.202

Allender, S., \& Rayner, M. (2007). The burden of overweight and obesity-related ill health in the UK. Obesity Reviews, 8(5), 467-473. https://doi.org/10.1111/j.1467-789X.2007.00394.x

Anderson, K. G., Briggs, K. E. L., \& White, H. R. (2013). Motives to Drink or Not to Drink: Longitudinal Relations Among Personality, Motives, and Alcohol Use Across Adolescence and Early Adulthood. Alcoholism: Clinical and Experimental Research, 37(5), 860-867. https://doi.org/10.1111/acer. 12030

Appleton, K. M., Krumplevska, K., Smith, E., Rooney, C., McKinley, M. C., \& Woodside, J. V. (2018). Low fruit and vegetable consumption is associated with low knowledge of the details of the 5-a-day fruit and vegetable message in the UK: Findings from two cross-sectional questionnaire studies. Journal of Human Nutrition and Dietetics, 31(1), 121-130. https://doi.org/10.1111/jhn. 12487

Arnold, T. A., Johnston, C. S., Lee, C. D., \& Garza, A. M. (2015). Eating in the absence of hunger in college students. Appetite, 92, 51-56.
https://doi.org/10.1016/j.appet.2015.05.010
Askari Majabadi, H., Solhi, M., Montazeri, A., Shojaeizadeh, D., Nejat, S., Khalajabadi Farahani, F., \& Djazayeri, A. (2016). Factors Influencing FastFood Consumption Among Adolescents in Tehran: A Qualitative Study. Iranian Red Crescent Medical Journal, 18(3), e23890.
https://doi.org/10.5812/ircmj. 23890
Bannigan, K., \& Watson, R. (2009). Reliability and validity in a nutshell. Journal of Clinical Nursing, 18(23), 3237-3243. https://doi.org/10.1111/j.13652702.2009.02939.x

Barsalou, L. W. (2008). Grounded Cognition. Annual Review of Psychology, 59(1), 617-645. https://doi.org/10.1146/annurev.psych.59.103006.093639

Barsalou, L. W. (2020). Challenges and Opportunities for Grounding Cognition. Journal of Cognition, 3(1), Article 1. https://doi.org/10.5334/joc. 116

Beaulieu, D., Vézina-Im, L.-A., Turcotte, S., Guillaumie, L., Boucher, D., Douville, F., \& Simard, D. (2020). Correlates of sugar-sweetened beverages consumption among adolescents. Public Health Nutrition, 23(12), 2145-2154. https://doi.org/10.1017/S1368980019005147

Beavers, A., Lounsbury, J., Richards, J., Huck, S., Skolits, G., \& Esquivel, S. (2019). Practical Considerations for Using Exploratory Factor Analysis in Educational Research. Practical Assessment, Research, and Evaluation, 18(1). https://doi.org/10.7275/qv2q-rk76

Best, M., Barsalou, L. W., \& Papies, E. K. (2018). Studying human eating behaviour in the laboratory: Theoretical considerations and practical suggestions. Appetite, 130, 339-343.
https://doi.org/10.1016/j.appet.2018.06.001
Birt, C., Buzeti, T., Grosso, G., Justesen, L., Lachat, C., Lafranconi, A., Mertanen, E., Rangelov, N., \& Sarlio-Lähteenkorva, S. (2017). Healthy and sustainable diets for European countries. http://hdl.handle.net/1854/LU8521128

Bisogni, C. A., Connors, M., Devine, C. M., \& Sobal, J. (2002). Who We Are and How We Eat: A Qualitative Study of Identities in Food Choice. Journal of Nutrition Education and Behavior, 34(3), 128-139. https://doi.org/10.1016/S1499-4046(06)60082-1

Blevins, C. E., Abrantes, A. M., \& Stephens, R. S. (2018). The relationship between situational determinants of use and drinking motives. Addiction Research \& Theory, 26(1), 28-34. https://doi.org/10.1080/16066359.2017.1309033

Block, J. P., Chandra, A., McManus, K. D., \& Willett, W. C. (2010). Point-ofPurchase Price and Education Intervention to Reduce Consumption of Sugary Soft Drinks. American Journal of Public Health, 100(8), 1427-1433. https://doi.org/10.2105/AJPH.2009.175687

Block, J. P., Gillman, M. W., Linakis, S. K., \& Goldman, R. E. (2013). "If It Tastes Good, I'm Drinking It": Qualitative Study of Beverage Consumption Among College Students. Journal of Adolescent Health, 52(6), 702-706. https://doi.org/10.1016/j.jadohealth.2012.11.017

Boggiano, M. M., Wenger, L. E., Turan, B., Tatum, M. M., Sylvester, M. D., Morgan, P. R., Morse, K. E., \& Burgess, E. E. (2015). Real-time sampling of reasons for hedonic food consumption: Further validation of the Palatable Eating Motives Scale. Frontiers in Psychology, 6. https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00744

Bravo, A. J., Prince, M. A., \& Pearson, M. R. (2015). Does the How Mediate the Why? A Multiple Replication Examination of Drinking Motives, Alcohol Protective Behavioral Strategies, and Alcohol Outcomes. Journal of Studies on Alcohol and Drugs, 76(6), 872-883. https://doi.org/10.15288/jsad.2015.76.872

Brouwer, A. M., \& Mosack, K. E. (2015). Motivating Healthy Diet Behaviors: The Self-as-Doer Identity. Self and Identity, 14(6), 638-653. https://doi.org/10.1080/15298868.2015.1043335

Brown, K. F., Rumgay, H., Dunlop, C., Ryan, M., Quartly, F., Cox, A., Deas, A., Elliss-Brookes, L., Gavin, A., Hounsome, L., Huws, D., Ormiston-Smith, N., Shelton, J., White, C., \& Parkin, D. M. (2018). The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. British Journal of Cancer, 118(8), Article 8. https://doi.org/10.1038/s41416-018-0029-6

Brown, R., Gray, A. R., Chua, M. G., Ware, L., Chisholm, A., \& Tey, S. L. (2021). Is a Handful an Effective Way to Guide Nut Recommendations? International Journal of Environmental Research and Public Health, 18(15), Article 15. https://doi.org/10.3390/ijerph18157812

Brown, R., \& Murphy, S. (2020). Alcohol and social connectedness for new residential university students: Implications for alcohol harm reduction. Journal of Further and Higher Education, 44(2), 216-230. https://doi.org/10.1080/0309877X.2018.1527024

Brug, J., de Vet, E., de Nooijer, J., \& Verplanken, B. (2006). Predicting Fruit Consumption: Cognitions, Intention, and Habits. Journal of Nutrition Education and Behavior, 38(2), 73-81. https://doi.org/10.1016/j.jneb.2005.11.027

Burgess, E. E., Turan, B., Lokken, K. L., Morse, A., \& Boggiano, M. M. (2014). Profiling motives behind hedonic eating. Preliminary validation of the Palatable Eating Motives Scale. Appetite, 72, 66-72.
https://doi.org/10.1016/j.appet.2013.09.016
Cadario, R., \& Morewedge, C. K. (2022). Why do people eat the same breakfast every day? Goals and circadian rhythms of variety seeking in meals. Appetite, 168, 105716. https://doi.org/10.1016/j.appet.2021.105716

Calle, E. E., \& Kaaks, R. (2004). Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nature Reviews Cancer, 4(8), Article 8. https: //doi.org/10.1038/nrc1408

Campbell, K. J., Crawford, D. A., Salmon, J., Carver, A., Garnett, S. P., \& Baur, L. A. (2007). Associations Between the Home Food Environment and Obesity-promoting Eating Behaviors in Adolescence. Obesity, 15(3), 719730. https://doi.org/10.1038/oby.2007.553

Carfora, V., Caso, D., \& Conner, M. (2016). The role of self-identity in predicting fruit and vegetable intake. Appetite, 106, 23-29.
https://doi.org/10.1016/j.appet.2015.12.020
Carroll, S. J., Turrell, G., Dale, M. J., \& Daniel, M. (2021). Associations between supermarket availability and body size in Australia: A cross-sectional
observational study comparing state and territory capital cities. BMC Public Health, 21(1), 407. https://doi.org/10.1186/s12889-021-10458-9

Charters, S., \& Pettigrew, S. (2008). Why Do People Drink Wine? A ConsumerFocused Exploration. Journal of Food Products Marketing, 14(3), 13-32. https://doi.org/10.1080/10454440801985894

Chen, J., Papies, E. K., \& Barsalou, L. W. (2016). A core eating network and its modulations underlie diverse eating phenomena. Brain and Cognition, 110, 20-42. https://doi.org/10.1016/j.bandc.2016.04.004

Choudhury, D., Singh, S., Seah, J. S. H., Yeo, D. C. L., \& Tan, L. P. (2020). Commercialization of Plant-Based Meat Alternatives. Trends in Plant Science, 25(11), 1055-1058.
https://doi.org/10.1016/j.tplants.2020.08.006
Claassen, M. A., Lomann, M., \& Papies, E. K. (2022). Situational shifts in habitual consumption: A longitudinal analysis of the effect of a COVID-19 lockdown on sugar-sweetened beverage consumption in England. PsyArXiv. https://doi.org/10.31234/osf.io/wdx5k

Cohen, D. A., \& Babey, S. H. (2012). Contextual influences on eating behaviours: Heuristic processing and dietary choices. Obesity Reviews, 13(9), 766-779. https://doi.org/10.1111/j.1467-789X.2012.01001.x

Cohen, P., \& Spiegelman, B. M. (2016). Cell biology of fat storage. Molecular Biology of the Cell, 27(16), 2523-2527. https://doi.org/10.1091/mbc.E15-10-0749

Connor, S. (2020). Underreporting of Dietary Intake: Key Issues for Weight Management Clinicians. Current Cardiovascular Risk Reports, 14(10), 16. https://doi.org/10.1007/s12170-020-00652-6

Cooper, M. L. (1994a). Motivations for alcohol use among adolescents: Development and validation of a four-factor model. Psychological Assessment, 6, 117-128. https://doi.org/10.1037/1040-3590.6.2.117

Cooper, M. L. (1994b). Motivations for alcohol use among adolescents: Development and validation of a four-factor model. Psychological Assessment, 6, 117-128. https://doi.org/10.1037/1040-3590.6.2.117

Costello, A., \& Osborne, J. (2019). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10(1). https://doi.org/10.7275/jyj1-4868

Cousino Klein, L., Corwin, E. J., \& Ceballos, R. M. (2004). Leptin, hunger, and body weight: Influence of gender, tobacco smoking, and smoking abstinence. Addictive Behaviors, 29(5), 921-927. https://doi.org/10.1016/j.addbeh.2004.02.023

Cummings, D. E., Frayo, R. S., Marmonier, C., Aubert, R., \& Chapelot, D. (2004). Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. American Journal of Physiology. Endocrinology and Metabolism, 287(2), E297-304.
https://doi.org/10.1152/ajpendo.00582.2003
Davis, C. G., Thake, J., \& Vilhena, N. (2010). Social desirability biases in selfreported alcohol consumption and harms. Addictive Behaviors, 35(4), 302311. https://doi.org/10.1016/j.addbeh.2009.11.001

Dutriaux, L., Clark, N., Papies, E. K., Scheepers, C., \& Barsalou, L. (2021). The Situated Assessment Method (SAM²): Establishing Individual Differences in Habitual Behavior. PsyArXiv. https://doi.org/10.31234/osf.io/k3mqj

El Ansari, W., Adetunji, H., \& Oskrochi, R. (2014). Food and Mental Health: Relationship between Food and Perceived Stress and Depressive Symptoms among University Students in the United Kingdom. Central European Journal of Public Health, 22(2), 90-97.
https://doi.org/10.21101/cejph.a3941
Espinoza-Ortega, A., Martínez-García, C. G., Thomé-Ortiz, H., \& Vizcarra-Bordi, I. (2016). Motives for food choice of consumers in Central México. British Food Journal, 118(11), 2744-2760. https://doi.org/10.1108/BFJ-04-20160143

Evers, C., Dingemans, A., Junghans, A. F., \& Boevé, A. (2018). Feeling bad or feeling good, does emotion affect your consumption of food? A metaanalysis of the experimental evidence. Neuroscience \& Biobehavioral Reviews, 92, 195-208. https://doi.org/10.1016/j.neubiorev.2018.05.028

Firth, J., Gangwisch, J. E., Borsini, A., Wootton, R. E., \& Mayer, E. A. (2020). Food and mood: How do diet and nutrition affect mental wellbeing? BMJ, 369, m2382. https://doi.org/10.1136/bmj.m2382

Gallenti, G., Troiano, S., Marangon, F., Bogoni, P., Campisi, B., \& Cosmina, M. (2019). Environmentally sustainable versus aesthetic values motivating millennials' preferences for wine purchasing: Evidence from an experimental analysis in Italy. Agricultural and Food Economics, 7(1), 12. https://doi.org/10.1186/s40100-019-0132-x

Gardner, B. (2015). A review and analysis of the use of 'habit' in understanding, predicting and influencing health-related behaviour. Health Psychology Review, 9(3), 277-295. https://doi.org/10.1080/17437199.2013.876238

Gardner, B., de Bruijn, G.-J., \& Lally, P. (2011). A Systematic Review and Metaanalysis of Applications of the Self-Report Habit Index to Nutrition and Physical Activity Behaviours. Annals of Behavioral Medicine, 42(2), 174187. https://doi.org/10.1007/s12160-011-9282-0

Gardner, B., Lally, P., \& Rebar, A. L. (2020). Does habit weaken the relationship between intention and behaviour? Revisiting the habit-intention interaction hypothesis. Social and Personality Psychology Compass, 14(8), e12553. https://doi.org/10.1111/spc3.12553

Gardner, B., Richards, R., Lally, P., Rebar, A., Thwaite, T., \& Beeken, R. J. (2021). Breaking habits or breaking habitual behaviours? Old habits as a neglected factor in weight loss maintenance. Appetite, 162, 105183. https://doi.org/10.1016/j.appet.2021.105183

Gayle M. Timmerman, G. J. A. (2001). The Relationship Between Basic Need Satisfaction and Emotional Eating. Issues in Mental Health Nursing, 22(7), 691-701. https://doi.org/10.1080/01612840119628

Gibson, A. A., Hsu, M. S. H., Rangan, A. M., Seimon, R. V., Lee, C. M. Y., Das, A., Finch, C. H., \& Sainsbury, A. (2016). Accuracy of hands v. Household measures as portion size estimation aids. Journal of Nutritional Science, 5, e29. https://doi.org/10.1017/jns.2016.22

Gibson, R. S., Charrondiere, U. R., \& Bell, W. (2017). Measurement Errors in Dietary Assessment Using Self-Reported 24-Hour Recalls in Low-Income Countries and Strategies for Their Prevention. Advances in Nutrition, 8(6), 980-991. https://doi.org/10.3945/an.117.016980

Gibson, S. (2008). Sugar-sweetened soft drinks and obesity: A systematic review of the evidence from observational studies and interventions. Nutrition Research Reviews, 21(2), 134-147.
https://doi.org/10.1017/S0954422408110976
Glindemann, K. E., Wiegand, D. M., \& Geller, E. S. (2007). Celebratory Drinking and Intoxication: A Contextual Influence on Alcohol Consumption. Environment and Behavior, 39(3), 352-366. https://doi.org/10.1177/001391650290949

Grandjean, A. C., \& Grandjean, N. R. (2007). Dehydration and Cognitive Performance. Journal of the American College of Nutrition, 26(sup5), 549S-554S. https://doi.org/10.1080/07315724.2007.10719657

Grant, V. V., Stewart, S. H., O’Connor, R. M., Blackwell, E., \& Conrod, P. J. (2007). Psychometric evaluation of the five-factor Modified Drinking Motives Questionnaire-Revised in undergraduates. Addictive Behaviors, 32(11), 2611-2632. https://doi.org/10.1016/j.addbeh.2007.07.004

Greaves, C., Poltawski, L., Garside, R., \& Briscoe, S. (2017). Understanding the challenge of weight loss maintenance: A systematic review and synthesis of qualitative research on weight loss maintenance. Health Psychology Review, 11(2), 145-163. https://doi.org/10.1080/17437199.2017.1299583

Groesz, L. M., McCoy, S., Carl, J., Saslow, L., Stewart, J., Adler, N., Laraia, B., \& Epel, E. (2012). What is eating you? Stress and the drive to eat. Appetite, 58(2), 717-721. https://doi.org/10.1016/j.appet.2011.11.028

Halim, A. , Hasking, P., \& Allen, F. (2012). The role of social drinking motives in the relationship between social norms and alcohol consumption. Addictive Behaviors, 37(12), 1335-1341. https://doi.org/10.1016/j.addbeh.2012.07.004

Hammarberg, A., Öster, C., \& Nehlin, C. (2017). Drinking motives of adult patients seeking treatment for problematic alcohol use. Journal of Addictive Diseases, 36(2), 127-135.
https://doi.org/10.1080/10550887.2017.1291052
Haughton, C. F., Waring, M. E., Wang, M. L., Rosal, M. C., Pbert, L., \& Lemon, S. C. (2018). Home Matters: Adolescents Drink More Sugar-Sweetened Beverages When Available at Home. The Journal of Pediatrics, 202, 121128. https://doi.org/10.1016/j.jpeds.2018.06.046

Health Survey for England 2019 [NS]. (2020). NHS Digital. https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/2019

Herman, C. P., Roth, D. A., \& Polivy, J. (2003). Effects of the Presence of Others on Food Intake: A Normative Interpretation. Psychological Bulletin, 129(6), 873-886. https://doi.org/10.1037/0033-2909.129.6.873

Higgins, S. C., Gueorguiev, M., \& Korbonits, M. (2007). Ghrelin, the peripheral hunger hormone. Annals of Medicine, 39(2), 116-136.
https://doi.org/10.1080/07853890601149179
Higgs, S. (2015). Social norms and their influence on eating behaviours. Appetite, 86, 38-44. https://doi.org/10.1016/j.appet.2014.10.021

Higgs, S., Robinson, E., \& Lee, M. (2012). Learning and Memory Processes and Their Role in Eating: Implications for Limiting Food Intake in Overeaters.

Current Obesity Reports, 1(2), 91-98. https://doi.org/10.1007/s13679-012-0008-9

Hofmann, W., Friese, M., \& Wiers, R. W. (2008). Impulsive versus reflective influences on health behavior: A theoretical framework and empirical review. Health Psychology Review, 2(2), 111-137. https://doi.org/10.1080/17437190802617668

Honkanen, P., \& Frewer, L. (2009). Russian consumers’ motives for food choice. Appetite, 52(2), 363-371. https://doi.org/10.1016/j.appet.2008.11.009

Hopwood, C. J., Rosenfeld, D., Chen, S., \& Bleidorn, W. (2021). An Investigation of Plant-based Dietary Motives Among Vegetarians and Omnivores. Collabra: Psychology, 7(1), 19010. https://doi.org/10.1525/collabra. 19010

Houben, K., Nederkoorn, C., Wiers, R. W., \& Jansen, A. (2011). Resisting temptation: Decreasing alcohol-related affect and drinking behavior by training response inhibition. Drug and Alcohol Dependence, 116(1), 132136. https://doi.org/10.1016/j.drugalcdep.2010.12.011

Ignarro, L. J., Balestrieri, M. L., \& Napoli, C. (2007). Nutrition, physical activity, and cardiovascular disease: An update. Cardiovascular Research, 73(2), 326-340. https://doi.org/10.1016/j.cardiores.2006.06.030

Jiang, H. , \& Livingston, M. (2015). The Dynamic Effects of Changes in Prices and Affordability on Alcohol Consumption: An Impulse Response Analysis. Alcohol and Alcoholism, 50(6), 631-638. https://doi.org/10.1093/alcalc/agv064
Källmén, H., Berman, A. H., Elgán, T. H., \& Wennberg, P. (2019). Alcohol habits in Sweden during 1997-2018: A repeated cross-sectional study. Nordic Journal of Psychiatry, 73(8), 522-526. https://doi.org/10.1080/08039488.2019.1660912

Keller, C., \& Siegrist, M. (2015). Does personality influence eating styles and food choices? Direct and indirect effects. Appetite, 84, 128-138. https://doi.org/10.1016/j.appet.2014.10.003

Kersten-van Dijk, E. T., Westerink, J. H. D. M., Beute, F., \& IJsselsteijn, W. A. (2017). Personal Informatics, Self-Insight, and Behavior Change: A Critical Review of Current Literature. Human-Computer Interaction, 32(5-6), 268296. https://doi.org/10.1080/07370024.2016.1276456

Koo, T. K., \& Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155-163. https://doi.org/10.1016/j.jcm.2016.02.012

Lafay, L., Mennen, L., Basdevant, A., Charles, M. A., Borys, J. M., Eschwège, E., \& Romon, M. (2000). Does energy intake underreporting involve all kinds of food or only specific food items? Results from the Fleurbaix Laventie Ville Santé (FLVS) study. International Journal of Obesity, 24(11), Article 11. https://doi.org/10.1038/sj.ijo. 0801392

Lally, P., van Jaarsveld, C. H. M., Potts, H. W. W., \& Wardle, J. (2010). How are habits formed: Modelling habit formation in the real world. European Journal of Social Psychology, 40(6), 998-1009. https://doi.org/10.1002/ejsp. 674

Lane, M. M., Gamage, E., Travica, N., Dissanayaka, T., Ashtree, D. N., Gauci, S., Lotfaliany, M., O’Neil, A., Jacka, F. N., \& Marx, W. (2022). Ultra-Processed Food Consumption and Mental Health: A Systematic Review and MetaAnalysis of Observational Studies. Nutrients, 14(13), Article 13. https://doi.org/10.3390/nu14132568

Langrial, S., \& Oinas-Kukkonen, H. (2012). Less Fizzy Drinks: A Multi-method Study of Persuasive Reminders. In M. Bang \& E. L. Ragnemalm (Eds.), Persuasive Technology. Design for Health and Safety (pp. 256-261). Springer. https://doi.org/10.1007/978-3-642-31037-9_23

Laran, J. (2016). Consumer goal pursuit. Current Opinion in Psychology, 10, 2226. https://doi.org/10.1016/j.copsyc.2015.10.015

Lebois, L. A. M., Hertzog, C., Slavich, G. M., Barrett, L. F., \& Barsalou, L. W. (2016). Establishing the situated features associated with perceived stress. Acta Psychologica, 169, 119-132.
https://doi.org/10.1016/j.actpsy.2016.05.012
Lee, C. M., Geisner, I. M., Lewis, M. A., Neighbors, C., \& Larimer, M. E. (2007). Social Motives and the Interaction Between Descriptive and Injunctive Norms in College Student Drinking. Journal of Studies on Alcohol and Drugs, 68(5), 714-721. https://doi.org/10.15288/jsad.2007.68.714

Leib, D. E., Zimmerman, C. A., \& Knight, Z. A. (2016). Thirst. Current Biology, 26(24), R1260-R1265. https://doi.org/10.1016/j.cub.2016.11.019

Li, Y., Wen, Z., Hau, K.-T., Yuan, K.-H., \& Peng, Y. (2020). Effects of Crossloadings on Determining the Number of Factors to Retain. Structural Equation Modeling: A Multidisciplinary Journal, 27(6), 841-863. https://doi.org/10.1080/10705511.2020.1745075

Lin, P.-Y., Wood, W., \& Monterosso, J. (2016). Healthy eating habits protect against temptations. Appetite, 103, 432-440.
https://doi.org/10.1016/j.appet.2015.11.011
Livingston, M., \& Callinan, S. (2015). Underreporting in Alcohol Surveys: Whose Drinking Is Underestimated? Journal of Studies on Alcohol and Drugs, 76(1), 158-164. https://doi.org/10.15288/jsad.2015.76.158

Luoma, J., Guinther, P., Potter, J., \& Cheslock, M. (2017). Experienced-Based Versus Scenario-Based Assessments of Shame and Guilt and Their Relationship to Alcohol Consumption and Problems. Substance Use \& Misuse, 52(13), 1692-1700.
https://doi.org/10.1080/10826084.2017.1305416
Macdiarmid, J. I., Douglas, F., \& Campbell, J. (2016). Eating like there's no tomorrow: Public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite, 96, 487-493. https://doi.org/10.1016/j.appet.2015.10.011

Mäkiniemi, J.-P., \& Vainio, A. (2014). Barriers to climate-friendly food choices among young adults in Finland. Appetite, 74, 12-19. https://doi.org/10.1016/j.appet.2013.11.016

Malek, L., Umberger, W. J., \& Goddard, E. (2019). Committed vs. uncommitted meat eaters: Understanding willingness to change protein consumption. Appetite, 138, 115-126. https://doi.org/10.1016/j.appet.2019.03.024

Marteau, T. M., Hollands, G. J., \& Fletcher, P. C. (2012). Changing Human Behavior to Prevent Disease: The Importance of Targeting Automatic Processes. Science, 337(6101), 1492-1495. https://doi.org/10.1126/science. 1226918

Martins, V. J. B., Toledo Florêncio, T. M. M., Grillo, L. P., Do Carmo P. Franco, M., Martins, P. A., Clemente, A. P. G., Santos, C. D. L., Vieira, M. de F. A., \& Sawaya, A. L. (2011). Long-Lasting Effects of Undernutrition. International Journal of Environmental Research and Public Health, 8(6), Article 6. https://doi.org/10.3390/ijerph8061817

McCarthy, M. B., Collins, A. M., Flaherty, S. J., \& McCarthy, S. N. (2017). Healthy eating habit: A role for goals, identity, and self-control? Psychology \& Marketing, 34(8), 772-785. https://doi.org/10.1002/mar. 21021

McGreen, J., Kemps, E., \& Tiggemann, M. (2022). Beyond thirst: Cravings for non-alcoholic beverages including soft drink. Eating Behaviors, 46, 101662. https://doi.org/10.1016/j.eatbeh.2022.101662

McKinley, M. J., \& Johnson, A. K. (2004). The Physiological Regulation of Thirst and Fluid Intake. Physiology, 19(1), 1-6.
https://doi.org/10.1152/nips.01470.2003
McLaren, L. (2007). Socioeconomic Status and Obesity. Epidemiologic Reviews, 29(1), 29-48. https://doi.org/10.1093/epirev/mxm001

McNaughton, S. A., Pendergast, F. J., Worsley, A., \& Leech, R. M. (2020). Eating occasion situational factors and sugar-sweetened beverage consumption in young adults. International Journal of Behavioral Nutrition and Physical Activity, 17(1), 71. https://doi.org/10.1186/s12966-020-00975-y

Molaodi, O. R., Leyland, A. H., Ellaway, A., Kearns, A., \& Harding, S. (2012). Neighbourhood food and physical activity environments in England, UK: Does ethnic density matter? International Journal of Behavioral Nutrition and Physical Activity, 9(1), 75. https://doi.org/10.1186/1479-5868-9-75

Monteiro, S., Sullivan, G. M., \& Chan, T. M. (2019). Generalizability Theory Made Simple(r): An Introductory Primer to G-Studies. Journal of Graduate Medical Education, 11(4), 365-370. https://doi.org/10.4300/JGME-D-1900464.1

Moran, C., \& Saliba, A. (2012). Reasons for drinking wine and other beverages \– comparison across motives in older adults. International Journal of Wine Research, 25. https://doi.org/10.2147/IJWR.S33323

Müller, T. D., Nogueiras, R., Andermann, M. L., Andrews, Z. B., Anker, S. D., Argente, J., Batterham, R. L., Benoit, S. C., Bowers, C. Y., Broglio, F., Casanueva, F. F., D’Alessio, D., Depoortere, I., Geliebter, A., Ghigo, E., Cole, P. A., Cowley, M., Cummings, D. E., Dagher, A., ... Tschöp, M. H. (2015). Ghrelin. Molecular Metabolism, 4(6), 437-460. https://doi.org/10.1016/j.molmet.2015.03.005

Musingarimi, P. (2009). Obesity in the UK: A review and comparative analysis of policies within the devolved administrations. Health Policy, 91(1), 10-16. https://doi.org/10.1016/j.healthpol.2008.11.004

Neelakantan, N., Park, S. H., Chen, G.-C., \& van Dam, R. M. (2022). Sugarsweetened beverage consumption, weight gain, and risk of type 2 diabetes and cardiovascular diseases in Asia: A systematic review. Nutrition Reviews, 80(1), 50-67. https://doi.org/10.1093/nutrit/nuab010

O’Donnell, R., Richardson, B., Fuller-Tyszkiewicz, M., Liknaitzky, P., Arulkadacham, L., Dvorak, R., \& Staiger, P. K. (2019). Ecological momentary assessment of drinking in young adults: An investigation into
social context, affect and motives. Addictive Behaviors, 98, 106019. https://doi.org/10.1016/j.addbeh.2019.06.008

Ohtomo, S. (2013). Effects of habit on intentional and reactive motivations for unhealthy eating. Appetite, 68, 69-75.
https://doi.org/10.1016/j.appet.2013.04.014
Ohtomo, S. (2017). Exposure to diet priming images as cues to reduce the influence of unhealthy eating habits. Appetite, 109, 83-92. https://doi.org/10.1016/j.appet.2016.11.022

O'Mara, F. P. (2011). The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Animal Feed Science and Technology, 166-167, 7-15.
https://doi.org/10.1016/j.anifeedsci.2011.04.074
Onwezen, M. C., Bouwman, E. P., Reinders, M. J., \& Dagevos, H. (2021). A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite, 159, 105058. https://doi.org/10.1016/j.appet.2020.105058

Ostroff, C. (1993). Comparing correlations based on individual-level and aggregated data. Journal of Applied Psychology, 78(4), 569-582. https://doi.org/10.1037/0021-9010.78.4.569

Palascha, A., van Kleef, E., de Vet, E., \& van Trijp, H. C. M. (2021). Selfreported sensitivity to physiological signals of satiation and hunger: Assessment of construct validity. Personality and Individual Differences, 182, 111054. https://doi.org/10.1016/j.paid.2021.111054

Palfai, T. P. (2006). Activating Action Tendencies: The Influence of Action Priming on Alcohol Consumption Among Male Hazardous Drinkers. Journal of Studies on Alcohol, 67(6), 926-933. https://doi.org/10.15288/jsa.2006.67.926

Papies, E. (2013a). Tempting food words activate eating simulations. Frontiers in Psychology, 4.
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00838
Papies, E. (2013b). Tempting food words activate eating simulations. Frontiers in Psychology, 4.
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00838
Papies, E. K., \& Barsalou, L. W. (2015). Grounding desire and motivated behavior: A theoretical framework and review of empirical evidence. In The psychology of desire (pp. 36-60). The Guilford Press.

Papies, E. K., Barsalou, L. W., \& Rusz, D. (2020). Understanding Desire for Food and Drink: A Grounded-Cognition Approach. Current Directions in Psychological Science, 29(2), 193-198. https://doi.org/10.1177/0963721420904958

Papies, E. K., Best, M., Gelibter, E., \& Barsalou, L. W. (2017). The Role of Simulations in Consumer Experiences and Behavior: Insights from the Grounded Cognition Theory of Desire. Journal of the Association for Consumer Research, 2(4), 402-418. https://doi.org/10.1086/693110

Papies, E. K., Claassen, M. A., Rusz, D., \& Best, M. (2022). Flavors of desire: Cognitive representations of appetitive stimuli and their motivational implications. Journal of Experimental Psychology: General, 151, 19191941. https://doi.org/10.1037/xge0001157

Papies, E., Tatar, B., Keesman, M., Maisy, B., Lindner, K., Barsalou, L., Rusz, D., \& Dutriaux, L. (2020). Measuring and interpreting cognitive representations of foods and drinks: A procedure for collecting and coding feature listing data. Under Review.
https://doi.org/10.31219/osf.io/ufpx8
Paulus, D. J., Heggeness, L. F., Raines, A. M., \& Zvolensky, M. J. (2021). Difficulties regulating positive and negative emotions in relation to coping motives for alcohol use and alcohol problems among hazardous drinkers. Addictive Behaviors, 115, 106781. https://doi.org/10.1016/j.addbeh.2020.106781

Pechey, R., Monsivais, P., Ng, Y.-L., \& Marteau, T. M. (2015). Why don't poor men eat fruit? Socioeconomic differences in motivations for fruit consumption. Appetite, 84, 271-279. https://doi.org/10.1016/j.appet.2014.10.022

Pedersen, C., Scheepers, C., Werner, J., \& Barsalou, L. W. (2022). Learning effects in better understanding eustress and distress during the covid pandemic. [Manuscript in Preparation]. School of Psychology and Neuroscience, University of Glasgow.

Peltier, M. R., Verplaetse, T. L., Mineur, Y. S., Petrakis, I. L., Cosgrove, K. P., Picciotto, M. R., \& McKee, S. A. (2019). Sex differences in stress-related alcohol use. Neurobiology of Stress, 10, 100149.
https://doi.org/10.1016/j.ynstr.2019.100149
Pfeiler, T. M., \& Egloff, B. (2020). Personality and eating habits revisited: Associations between the big five, food choices, and Body Mass Index in a representative Australian sample. Appetite, 149, 104607.
https://doi.org/10.1016/j.appet.2020.104607

Phan, U. T. X., \& Chambers, E. (2016a). Application of An Eating Motivation Survey to Study Eating Occasions. Journal of Sensory Studies, 31(2), 114123. https://doi.org/10.1111/joss. 12197

Phan, U. T. X., \& Chambers, E. (2016b). Motivations for choosing various food groups based on individual foods. Appetite, 105, 204-211. https://doi.org/10.1016/j.appet.2016.05.031

Phan, U. T. X., \& Chambers, E. (2018). Motivations for meal and snack times: Three approaches reveal similar constructs. Food Quality and Preference, 68, 267-275. https://doi.org/10.1016/j.foodqual.2018.03.018

Pollard, T. M., Steptoe, A., \& Wardle, J. (1998). MOTIVES UNDERLYING HEALTHY EATING: USING THE FOOD CHOICE QUESTIONNAIRE TO EXPLAIN VARIATION IN DIETARY INTAKE. Journal of Biosocial Science, 30(2), 165-179. https://doi.org/10.1017/S0021932098001655

Reichenberger, J., Schnepper, R., Arend, A.-K., \& Blechert, J. (2020). Emotional eating in healthy individuals and patients with an eating disorder: Evidence from psychometric, experimental and naturalistic studies. Proceedings of the Nutrition Society, 79(3), 290-299. https://doi.org/10.1017/S0029665120007004

Reipurth, M. F. S., Hørby, L., Gregersen, C. G., Bonke, A., \& Perez Cueto, F. J. A. (2019). Barriers and facilitators towards adopting a more plant-based diet in a sample of Danish consumers. Food Quality and Preference, 73, 288292. https://doi.org/10.1016/j.foodqual.2018.10.012

Renner, B., Sproesser, G., Strohbach, S., \& Schupp, H. T. (2012a). Why we eat what we eat. The Eating Motivation Survey (TEMS). Appetite, 59(1), 117128. https://doi.org/10.1016/j.appet.2012.04.004

Renner, B., Sproesser, G., Strohbach, S., \& Schupp, H. T. (2012b). Why we eat what we eat. The Eating Motivation Survey (TEMS). Appetite, 59(1), 117128. https://doi.org/10.1016/j.appet.2012.04.004

Riet, J. van’t, Sijtsema, S. J., Dagevos, H., \& De Bruijn, G.-J. (2011). The importance of habits in eating behaviour. An overview and recommendations for future research. Appetite, 57(3), 585-596. https://doi.org/10.1016/j.appet.2011.07.010

Rise, J., Sheeran, P., \& Hukkelberg, S. (2010). The Role of Self-identity in the Theory of Planned Behavior: A Meta-Analysis. Journal of Applied Social Psychology, 40(5), 1085-1105. https://doi.org/10.1111/j.15591816.2010.00611.x

Rodger, A., \& Papies, E. K. (2022). "I don't just drink water for the sake of it": Understanding the influence of value, reward, self-identity and early life on water drinking behaviour. Food Quality and Preference, 99, 104576. https://doi.org/10.1016/j.foodqual.2022.104576

Rodger, A., Wehbe, L. H., \& Papies, E. K. (2021). "I know it’s just pouring it from the tap, but it's not easy": Motivational processes that underlie water drinking. Appetite, 164, 105249. https://doi.org/10.1016/j.appet.2021.105249

Rohsenow, D. J., \& Monti, P. M. (1999). Does Urge To Drink Predict Relapse After Treatment? Alcohol Research \& Health, 23(3), 225-232.

Rosenfeld, D. L. (2020). Gender differences in vegetarian identity: How men and women construe meatless dieting. Food Quality and Preference, 81, 103859. https://doi.org/10.1016/j.foodqual.2019.103859

Sabaté, J., \& Soret, S. (2014). Sustainability of plant-based diets: Back to the future. The American Journal of Clinical Nutrition, 100(suppl_1), 476S482S. https://doi.org/10.3945/ajcn.113.071522

Salemink, E., \& Wiers, R. W. (2014). Alcohol-related memory associations in positive and negative affect situations: Drinking motives, working memory capacity, and prospective drinking. Psychology of Addictive Behaviors, 28, 105-113. https://doi.org/10.1037/a0032806

Schmidt, F. L., \& Hunter, J. E. (1996). Measurement error in psychological research: Lessons from 26 research scenarios. Psychological Methods, 1, 199-223. https://doi.org/10.1037/1082-989X.1.2.199

Schönbrodt, F. D., \& Perugini, M. (2013). At what sample size do correlations stabilize? Journal of Research in Personality, 47(5), 609-612. https://doi.org/10.1016/j.jrp.2013.05.009

Scott-Sheldon, L. A. J., Terry, D. L., Carey, K. B., Garey, L., \& Carey, M. P. (2012). Efficacy of expectancy challenge interventions to reduce college student drinking: A meta-analytic review. Psychology of Addictive Behaviors, 26, 393-405. https://doi.org/10.1037/a0027565

Shrout, P. E., \& Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420-428. https://doi.org/10.1037/0033-2909.86.2.420

Smeets, P. A. M., Dagher, A., Hare, T. A., Kullmann, S., van der Laan, L. N., Poldrack, R. A., Preissl, H., Small, D., Stice, E., \& Veldhuizen, M. G. (2019). Good practice in food-related neuroimaging. The American

Journal of Clinical Nutrition, 109(3), 491-503.
https://doi.org/10.1093/ajcn/nqy344
Smyth, A., Dehghan, M., O’Donnell, M., Anderson, C., Teo, K., Gao, P., Sleight, P., Dagenais, G., Probstfield, J. L., Mente, A., \& Yusuf, S. (2015). Healthy eating and reduced risk of cognitive decline: A cohort from 40 countries. Neurology, 84(22), 2258-2265. https://doi.org/10.1212/WNL. 0000000000001638

Spencer, S. J., Korosi, A., Layé, S., Shukitt-Hale, B., \& Barrientos, R. M. (2017). Food for thought: How nutrition impacts cognition and emotion. Npj Science of Food, 1(1), Article 1. https://doi.org/10.1038/s41538-017-0008-y

Sproesser, G., Strohbach, S., Schupp, H., \& Renner, B. (2011). Candy or apple? How self-control resources and motives impact dietary healthiness in women. Appetite, 56(3), 784-787.
https://doi.org/10.1016/j.appet.2011.01.028
Steenhuis, I. (2009). Guilty or not? Feelings of guilt about food among college women. Appetite, 52(2), 531-534.
https://doi.org/10.1016/j.appet.2008.12.004
Steptoe, A., Pollard, T. M., \& Wardle, J. (1995). Development of a Measure of the Motives Underlying the Selection of Food: The Food Choice Questionnaire. Appetite, 25(3), 267-284. https://doi.org/10.1006/appe.1995.0061

Strachan, S. M., \& Brawley, L. R. (2009). Healthy-eater Identity and Self-efficacy Predict Healthy Eating Behavior: A Prospective View. Journal of Health Psychology, 14(5), 684-695. https://doi.org/10.1177/1359105309104915

Striley, C. L. W., Griffiths, R. R., \& Cottler, L. B. (2011). Evaluating Dependence Criteria for Caffeine. Journal of Caffeine Research, 1(4), 219-225. https://doi.org/10.1089/jcr.2011.0029

Stroebele-Benschop, N., Dieze, A., \& Hilzendegen, C. (2018). Students’ adherence to dietary recommendations and their food consumption habits. Nutrition and Health, 24(2), 75-81. https://doi.org/10.1177/0260106018772946

Tal, A., Gvili, Y., \& Amar, M. (2022). To protect and support: Why would consumers find foods tastier if these foods help support a desired selfidentity. Psychology \& Marketing, 39(4), 701-714.
https://doi.org/10.1002/mar. 21614

Thompson, C., Cummins, S., Brown, T., \& Kyle, R. (2013). Understanding interactions with the food environment: An exploration of supermarket food shopping routines in deprived neighbourhoods. Health \& Place, 19, 116-123. https://doi.org/10.1016/j.healthplace.2012.10.003

Tobler, C., Visschers, V. H. M., \& Siegrist, M. (2011). Eating green. Consumers’ willingness to adopt ecological food consumption behaviors. Appetite, 57(3), 674-682. https://doi.org/10.1016/j.appet.2011.08.010

Traversy, G., \& Chaput, J.-P. (2015). Alcohol Consumption and Obesity: An Update. Current Obesity Reports, 4(1), 122-130. https://doi.org/10.1007/s13679-014-0129-4

Vainio, A., Niva, M., Jallinoja, P., \& Latvala, T. (2016a). From beef to beans: Eating motives and the replacement of animal proteins with plant proteins among Finnish consumers. Appetite, 106, 92-100.
https://doi.org/10.1016/j.appet.2016.03.002
Vainio, A., Niva, M., Jallinoja, P., \& Latvala, T. (2016b). From beef to beans: Eating motives and the replacement of animal proteins with plant proteins among Finnish consumers. Appetite, 106, 92-100.
https://doi.org/10.1016/j.appet.2016.03.002
van Bergen, G., Zandstra, E. H., Kaneko, D., Dijksterhuis, G. B., \& de Wijk, R. A. (2021). Sushi at the beach: Effects of congruent and incongruent immersive contexts on food evaluations. Food Quality and Preference, 91, 104193. https://doi.org/10.1016/j.foodqual.2021.104193
van den Eijnden, R., van de Mheen, D., Vet, R., \& Vermulst, A. (2011). AlcoholSpecific Parenting and Adolescents’ Alcohol-Related Problems: The Interacting Role of Alcohol Availability at Home and Parental Rules. Journal of Studies on Alcohol and Drugs, 72(3), 408-417. https://doi.org/10.15288/jsad.2011.72.408
van Strien, T., Gibson, E. L., Baños, R., Cebolla, A., \& Winkens, L. H. H. (2019). Is comfort food actually comforting for emotional eaters? A (moderated) mediation analysis. Physiology \& Behavior, 211, 112671. https://doi.org/10.1016/j.physbeh.2019.112671

Verain, M. C. D., Snoek, H. M., Onwezen, M. C., Reinders, M. J., \& Bouwman, E. P. (2021). Sustainable food choice motives: The development and crosscountry validation of the Sustainable Food Choice Questionnaire (SUSFCQ). Food Quality and Preference, 93, 104267. https://doi.org/10.1016/j.foodqual.2021.104267

Verain, M. C. D., van den Puttelaar, J., Zandstra, E. H., Lion, R., de Vogel-van den Bosch, J., Hoonhout, H. C. M., \& Onwezen, M. C. (2022). Variability of Food Choice Motives: Two Dutch studies showing variation across meal moment, location and social context. Food Quality and Preference, 98, 104505. https://doi.org/10.1016/j.foodqual.2021.104505

Verhoeven, A. A. C., Adriaanse, M. A., Evers, C., \& de Ridder, D. T. D. (2012). The power of habits: Unhealthy snacking behaviour is primarily predicted by habit strength. British Journal of Health Psychology, 17(4), 758-770. https://doi.org/10.1111/j.2044-8287.2012.02070.x

Wahl, D. R., Villinger, K., Blumenschein, M., König, L. M., Ziesemer, K., Sproesser, G., Schupp, H. T., \& Renner, B. (2020a). Why We Eat What We Eat: Assessing Dispositional and In-the-Moment Eating Motives by Using Ecological Momentary Assessment. JMIR MHealth and UHealth, 8(1), e13191. https://doi.org/10.2196/13191

Wahl, D. R., Villinger, K., Blumenschein, M., König, L. M., Ziesemer, K., Sproesser, G., Schupp, H. T., \& Renner, B. (2020b). Why We Eat What We Eat: Assessing Dispositional and In-the-Moment Eating Motives by Using Ecological Momentary Assessment. JMIR MHealth and UHealth, 8(1), e13191. https://doi.org/10.2196/13191

Wehbe, L. H., Banas, K., \& Papies, E. K. (2022). It’s Easy to Maintain When the Changes Are Small: Exploring Environmentally Motivated Dietary Changes From a Self-control Perspective. Collabra: Psychology, 8(1), 38823. https://doi.org/10.1525/collabra. 38823

Weinstein, G., Vered, S., Ivancovsky-Wajcman, D., Ravona-Springer, R., Heymann, A., Zelber-Sagi, S., Shahar, D. R., \& Beeri, M. S. (2022). Consumption of Ultra-Processed Food and Cognitive Decline among Older Adults With Type-2 Diabetes. The Journals of Gerontology: Series A, glac070. https://doi.org/10.1093/gerona/glac070

Werner, J., Papies, E. K., Gelibter, Elena, \& Barsalou, L. W. (2022). Why do you eat? Establishing Individual consumption motives and their stability across eating situations.

Willett, W. C. (1994). Diet and Health: What Should We Eat? Science, 264(5158), 532-537. https://doi.org/10.1126/science. 8160011

Wing, R. R., \& Phelan, S. (2005). Long-term weight loss maintenance. The American Journal of Clinical Nutrition, 82(1), 222S-225S. https://doi.org/10.1093/ajcn/82.1.222S

Wood, W., \& Neal, D. T. (2009). The habitual consumer. Journal of Consumer Psychology, 19(4), 579-592. https://doi.org/10.1016/j.jcps.2009.08.003

World Health Organization. (2003). Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation. World Health Organization.

Xu, C., Siegrist, M., \& Hartmann, C. (2021). The application of virtual reality in food consumer behavior research: A systematic review. Trends in Food Science \& Technology, 116, 533-544.
https://doi.org/10.1016/j.tifs.2021.07.015
Zhang, X., Luo, Y., Liu, Y., Yang, C., \& Chen, H. (2019). Lack of conflict during food choice is associated with the failure of restrained eating. Eating Behaviors, 34, 101309. https://doi.org/10.1016/j.eatbeh.2019.101309

