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Abstract 

The development of wearable sensors has become a major area of interest due to their 

wide range of promising applications, including health monitoring, human motion 

detection, human-machine interfaces, electronic skin and soft robotics. Particularly, 

pressure sensors have attracted considerable attention in wearable applications. 

However, traditional pressure sensing systems are using rigid sensors to detect the 

human motions. Lightweight and flexible pressure sensors are required to improve the 

comfortability of devices. Furthermore, in comparison with conventional sensing 

techniques without smart algorithm, machine learning-assisted wearable systems are 

capable of intelligently analysing data for classification or prediction purposes, 

making the system ‘smarter’ for more demanding tasks. Therefore, combining flexible 

pressure sensors and machine learning is a promising method to deal with human 

motion recognition. 

This thesis focuses on fabricating flexible pressure sensors and developing wearable 

applications to recognize human gestures. Firstly, a comprehensive literature review 

was conducted, including current state-of-the-art on pressure sensing techniques and 

machine learning algorithms. Secondly, a piezoelectric smart wristband was 

developed to distinguish finger typing movements. Three machine learning algorithms, 

K Nearest Neighbour (KNN), Decision Tree (DT) and Support Vector Machine 

(SVM), were used to classify the movement of different fingers. The SVM algorithm 

outperformed other classifiers with an overall accuracy of 98.67% and 100% when 

processing raw data and extracted features. 
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Thirdly, a piezoresistive wristband was fabricated based on a flake-sphere composite 

configuration in which reduced graphene oxide fragments are doped with polystyrene 

spheres to achieve both high sensitivity and flexibility. The flexible wristband 

measured the pressure distribution around the wrist for accurate and comfortable hand 

gesture classification. The intelligent wristband was able to classify 12 hand gestures 

with 96.33% accuracy for five participants using a machine learning algorithm. 

Moreover, for demonstrating the practical applications of the proposed method, a real-

time system was developed to control a robotic hand according to the classification 

results. 

Finally, this thesis also demonstrates an intelligent piezoresistive sensor to recognize 

different throat movements during pronunciation. The piezoresistive sensor was 

fabricated using two PolyDimethylsiloxane (PDMS) layers that were coated with 

silver nanowires and reduced graphene oxide films, where the microstructures were 

fabricated by the polystyrene spheres between the layers. The highly sensitive sensor 

was able to distinguish throat vibrations from five different spoken words with an 

accuracy of 96% using the artificial neural network algorithm. 
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Chapter 1 

Introduction 

1.1. Background and Motivation 

A sensor is a device that detects and responds to a physical stimulus, such as light, 

heat, pressure, motion, or sound and converts it into a measurable electrical signal [1]. 

Due to the rapid development of the electronics industry in recent decades, various 

sensors along with their readout circuit became increasingly accurate, robust and 

miniaturised, thus enabling their wearable applications. Wearable sensing is a 

promising field that has received considerable attention in the 21st century. The global 

market size of wearable technology was estimated at USD 52.14 billion in 2021 and is 

expected to grow at a compound annual growth rate of 14.9% from 2022 to 2030 [2]. 

An increasing number of customers are using smart wearable technology products to 

track physiological information and human activities for healthcare monitoring [3-7], 

human-machine interaction [8, 9], assistive living [10], etc. Given the potential of 
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wearable electronics, the recent advances in Machine Learning (ML) further boost the 

application scenarios of the sensory system [11, 12]. Using ML algorithms can 

empower a sensing system with the capabilities of information extraction, pattern 

recognition and noise cancelling. Particularly, ML algorithms can properly process 

mass sensory signals in an intelligent and trainable manner. These novel 

functionalities make the sensor ‘smarter’ and thus enable more applications. For 

example, (i) the combination of optical sensor (camera) and convolutional neural 

network (a brain-inspired ML algorithm commonly used in image processing) can 

achieve face recognition and object detection [13], which has been massively 

deployed on our cell phone; (ii) the combination of radar sensor and recurrent neural 

network (a brain-inspired ML algorithm suitable for analysing time-dependent data) 

can protect elderly people by recognizing their activities in a privacy-preserving way, 

and even detecting their heartbeat rate wirelessly [14, 15]; (iii) in wearable domain, 

ML can indirectly access human activities and physical condition through processing 

the output of wearable sensors [16, 17]. Figure 1.1 gives examples about wearable 

sensors and signals in which bio-potential—electrical signals that are generated by 

philological processes occurring within the body, including Electromyography (EMG), 

Electroencephalograph (EEG), Electrocardiograph (ECG), has been well-studied for 

human-machine interface and health monitoring. In addition to bio-potential, there are 

various novel wearable sensing systems with ML algorithms that have been developed 

to work in recent years, such as Photoplethysmogram (PPG) [18].  
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Benefiting from a number of attractive features, such as light weight, good 

compliance, and desirable comfortability, pressure sensors have attracted much 

attention in wearable applications. Pressure sensing techniques are able to directly 

convert physical stimuli to measurable electrical signals such as the variation of 

resistance, capacitance or generation of charges. Hence, the conversion mechanism of 

electromechanical sensors can generally be divided into piezoresistive, 

piezocapacitive, piezoelectric and triboelectric types. With the fast development of 

wearables, higher requirements are placed on electromechanical sensors. High 

sensitivity, excellent flexibility, fast response time and good durability are some of the 

essential characteristics for wearable devices. Hence, researchers have made great 

efforts to explore new materials [19], structures [20] and fabrication processes [21] to 

improve the performance of sensors.  

The integration of pressure sensing techniques and ML algorithms enhance the 

intelligence of wearable systems. Researchers currently focus on developing 

lightweight, flexible and miniaturized wearable sensors and use ML algorithms to 

process sensory data. Assisted with ML algorithms, electromechanical sensing 

Figure 1.1 An overview of various sensing technologies used for human motions recognition 

assisted with ML. 
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systems can analyse the collected data more thoroughly and process more accurate 

classification results.  

1.2. Main Contributions 

This thesis focuses on the fabrication of high-performance wearable sensors and their 

combination with machine learning algorithms for novel applications. Thus, three 

wearable applications were designed based on the wearable pressure sensors to 

recognize different human activities. My work involves theoretical analysis, structural 

design, fabrication process, sensor characterization, experimental setup, data 

collection, data processing and human-machine interface exploration in each wearable 

device.  

The main contributions and innovations of this thesis are as follows: 

 A wristband was developed based on piezoelectric sensors to distinguish finger 

movements. Three ML algorithms, K Nearest Neighbour (KNN), Decision Tree 

(DT) and Support Vector Machine (SVM) were implemented to classify different 

finger movements. The SVM algorithm achieved the best performance with a 

classification accuracy of 98.35% for raw data and 100% for extracted features. 

 A highly flexible piezoresistive wristband was designed and fabricated. The 

wristband integrated five piezoresistive sensors based on Reduced Graphene 

Oxide (rGO). The total wristband weight was only 2.8 g, which is comfortable for 

users to wear. The flexible wristband was able to recognize 12 hand gestures of 

five subjects using an ML algorithm with a high accuracy of 96.33%. Moreover, a 

human-machine interface was developed to control a robotic hand in real time 
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followed by the user’s hand when wearing the smart wristband.  

 A new and simple approach was developed to fabricate microstructures for the 

piezoresistive sensor. Polystyrene (PS) microspheres were spray coated between 

two conductive layers, which acted as insulator microstructures to change the 

conductive pattern of the sensor. The microstructure can be changed simply by 

varying the weight ratio and size of the PS spheres. In comparison with other 

architecture design strategies, such as photolithography, which have complex 

preparation processes and high equipment requirements, this microstructure 

fabrication process has the advantage of one-step process and low-cost equipment.  

 A new approach to recognising speech using a wearable device was proposed. 

The wearable intelligent throat was attached to the user’s throat to detect muscle 

movement and vibration when the user spoke. The device was highly flexible and 

lightweight, which is more comfortable than the traditional hand-held 

electrolarynx. Moreover, the intelligent throat not only detects sounds but also 

classifies the pronunciation of different words. When attaching the sensor on the 

human throat, it can distinguish the throat vibrations of speaking five different 

words by the Artificial Neural Network (ANN) algorithm with a high accuracy of 

96%. As far as we know, this work achieves the highest accuracy in recognizing 

word pronunciations than recent publications. 

1.3. Thesis Overview 

The organisation and content of the thesis are as follows: 

Chapter 2 presents state-of-the-art pressure sensing techniques for wearable devices 
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to detect human motions, which include piezoresistive, piezoelectric, triboelectric and 

capacitive. The working mechanisms and structures of each electromechanical sensor 

are discussed in detail. In addition, ML algorithms are also introduced in this chapter. 

The recent progress in ML-assisted wearable applications for human gesture 

recognition is outlined. 

Chapter 3 provides a wristband consisting of piezoelectric sensors to classify 

different finger motions. A smart wristband based on lead zirconate titanate (PZT) 

sensors was fabricated to achieve hand gesture recognition, and the classification 

results of different ML algorithms were compared. 

Chapter 4 describes a flexible piezoresistive wristband system to classify different 

hand gestures. The fabrication process and characterization of the rGO/PS flexible 

sensor are provided in this chapter. Next, a flexible piezoresistive wristband with an 

array of five sensors was fabricated to recognize 12 different hand gestures using the 

SVM algorithm. Moreover, a human-machine interface was developed to control a 

robotic hand in real-time. 

Chapter 5 presents an intelligent throat to classify different word pronunciations. The 

fabrication processes and characterization of the flexible piezoresistive sensor are 

provided. With the help of the deep learning algorithm, the sensor was able to 

distinguish throat vibrations for five different spoken words. 

Chapter 6 summarizes the key outcome of the research work and provides 

suggestions for future works.  
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Chapter 2 

Literature Review 

Rapid development in wearable electronics has greatly changed the way people live. 

People have become accustomed to using smart wearable products, such as smart 

watch, fitness trackers and heart rate monitors to track physiological information and 

human activities for healthcare monitoring, assistive living and entertainment [22]. In 

this chapter, a brief overview of pressure sensing techniques is presented, including 

the material, structure and applications in smart wearables. The advantages and 

disadvantages of each sensing techniques are discussed. In addition, the current 

classification methods for human activities recognition are also shown in this chapter.  

2.1 Review of Pressure Sensing Techniques 

Recent advances in wearable pressure sensors have attracted great interest in the fields 

of wearable electronics, electronic skins, medical diagnosis and physical health 

detection. Traditional pressure sensors are generally based on metal or semiconductor 
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materials that are rigid and unsuitable for uneven surfaces. In this case, flexible 

pressure sensors have been extensively investigated due to their excellent sensitivity, 

simple structure and light weight. Nowadays, plenty of pressure sensing mechanisms 

have been explored to achieve the conversion between mechanical and electrical 

signals, which are mainly divided into four categories: piezoresistive, capacitive, 

piezoelectric and triboelectric, as shown in Figure 2.1. In the following parts, the 

working principle of each transduction method will be explained in detail.  

 

2.1.1 Piezoresistive Sensor  

Piezoresistive sensors detect pressure by changes in the resistivity of a material. When 

pressure is applied, the changing contact area or density of the conductive material 

leads to the variation of material resistance, and then the pressure is detected 

according to the change of resistance. Typically, the resistance of the conductor (𝑅) is 

Figure 2.1 Schematic illustrations of sensing mechanisms of pressure sensors (a) 

piezoresistive, (b) capacitance, (c) piezoelectric and (d) triboelectric. 
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given by: 

𝑅 =
𝜌𝐿

𝐴
                                                          (2.1) 

where 𝐿 represents the length, 𝜌 is the conductor’s resistivity, and 𝐴 represents the 

cross-sectional area of the sensor. Additionally, variations in contact resistance (𝑅𝑐) 

can also significantly affect resistance. 𝑅𝑐 varies with applied force due to changes in 

contact area or geometry between materials. The relationship between applied force 𝐹 

and 𝑅𝑐  for a piezoresistive sensor is defined as follows: 

𝑅𝑐 ∝ 𝐹−
1

2                                                      (2.2) 

The piezoresistive-based pressure sensors have advantages in simple construction and 

readout circuits, low power consumption and robustness of both static and dynamic 

pressure, which are widely used in wearable intelligent electronics. With the 

development of wearable systems, there are more requirements for piezoresistive 

sensors, for example, the excellent flexibility, high sensitivity, fast response time, 

wide detection range, outstanding mechanical durability and good biocompatibility. 

However, traditional piezoresistive pressure sensors made of metals or inorganic 

semiconductors are difficult to meet these requirements [23]. Therefore, new 

materials and architectures of piezoresistive sensors are being explored to achieve 

better performance.  

Flexible piezoresistive sensors can be divided into three types according to their 

structure characteristics:  

 Conductive polymer composite — polymer matrix dispersed with conductive 
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fillers.  

 Architected conductive material — conductive material system with carefully 

designed geometry.  

 Porous conductive material — conductive material with three-dimensional 

interconnected porous structure. 

 

 Conductive polymer composite 

Polymers are insulating matrices that are characterised by excellent optical and 

mechanical properties. Polymeric sensors doped with conductive fillers possess 

Figure 2.2 Schematic illustrations of structure strategies and transduction methods for 

piezoresistive sensors: (a) conductive polymeric composite, (b) porous conductive material, (c) 

architected conductive material. 

https://www.sciencedirect.com/topics/engineering/insulating-matrix
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both the excellent electrical properties of conductors and the remarkable 

mechanical properties of flexible polymers. Therefore, many attempts have been 

made on particle-incorporated polymeric sensors to study their electrical 

properties and conduction patterns.  

Many commercially available polymers are chosen as polymeric matrices, 

including PDMS [24, 25], Ecoflex, Polyurethane (PU) [26], Polyvinylidene 

Difluoride (PVDF) [27], Polymethyl Methacrylate (PMMA), Polylactic Acid 

(PLA), Polypropylene (PP) and epoxy. These polymers possess low Young’s 

modulus, intrinsic extensibility, high transparency, excellent stability, and easily 

preparation, which are advantageous in flexible wearable electronics. The 

conductive fillers used in the flexible piezoresistive polymeric sensors typically 

contain metallic materials (e.g. metal particles and metal nanowires), carbon-

based micro/nanophases (e.g. Carbon Nanotubes (CNTs), Carbon Black (CB), 

and graphene nanoplatelets [25, 28]), conductive polymers (e.g. Polypyrrole 

(PPy), Polyaniline (PANI) and Poly(3,4-ethylenedioxythiophene): Polystyrene 

Sulfonate (PEDOT:PSS) and liquid metals [29]. 

Conductive polymers are widely used in wearable electronics to detect human 

motions. For instance, a transparent conductive polymer composed of sea-urchin 

shaped metal nanoparticles and PU elastomer was demonstrated to detect minute 

movements of human muscles, such as finger bending and hand motion [26]. 

Besides, a novel piezoresistive sensor was prepared by graphene nanoplatelets 

and PDMS elastomer [25]. The obtained piezoresistive sensor showed tunable 

piezoresistivity under different graphene nanoplatelets concentrations. To 

demonstrate potential applications, the obtained sensor was able to distinguish the 
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finger motions accurately. 

Conductive polymer composites are commonly prepared by mixing the 

conductive fillers and polymers in low-frequency stirring, which is a quick, 

simple, and low-cost fabrication process. The large selection of materials and the 

weight ratios allows both electrical and mechanical properties of developed 

sensors to be tuned. However, the doped conductors are usually randomly 

orientated and distributed within the polymer matrix, which would limit the 

performance and functionality of the piezoresistive sensors. Moreover, the choice 

of the mix ratio of the conductive fillers and the polymer material needs to be 

careful, as the high ratio of fillers leads to the reduction of flexibility which will 

restrict the application of piezoresistive sensors in the field of wearable devices. 

 Architected conductive material 

To achieve higher sensitivity, the architectural design has been incorporated into 

sensor development. The designed microstructures could amplify mechanical 

loading effects, and the resulting resistance change in the material system can be 

enlarged which leads to better sensitivity. 

One of the most common strategies is the template-assisted method to develop 

microstructures. Silicon templates are usually prepared by photolithography, and 

the size and shape of the microstructure can be controlled according to actual 

needs [30]. Furthermore, the template-assisted method enables mass production 

and reuse of templates [31]. Typically geometry structures such as dome [32], 

wave [33], pillar [34, 35], fibres [36] and pyramid [37] shapes are involved. The 

regular and uniform microstructure offers piezoresistive sensors better 
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performance and small sizes. For example, a highly sensitive piezoresistive 

sensor was built by rGO/PDMS pyramid microstructure array affixed to a flat 

conductive Indium Tin Oxide (ITO)-coated flexible Polyethylene Terephthalate 

(PET) film face-to-face [38]. The microstructured piezoresistive sensor achieved 

the sensitivity of -5.5 kPa−1 at low pressure range (<100 Pa), which is more than 

50 times higher than that of the unstructured counterpart. However, the 

procedures of micro/nanofabrication technologies are always complex, high cost, 

and high equipment requirements. Moreover, the designed microstructures 

usually have single shapes and are mostly periodic, making it difficult to use 

them for multi-level structures [31]. 

In addition to the artificial designed template method, much research has been 

inspired by nature architectures to obtain various microstructures. Living 

organisms in nature have developed a great number of materials with abundant 

microstructures. Sensors with bionic patterns are proven to present excellent 

performance. Leaves are the functional organs for plants that are rich in natural 

micro/nanostructures after long-term evolution, which can be used as low-cost 

and eco-friendly templates to prepare microstructural sensors with high sensitivity. 

For example, the hierarchical microstructure was obtained by mimicking banana 

leaves and improved the sensor sensitivity to 10 kPa−1 [39]. Other bionic pattern 

of plants such as petals of rose [40], mimosa [41] and lotus leaves [42] are also 

reported as good moulds for preparing microstructures to enhance device 

performance. Compared with the template-based methods, the manufacturing 

process for bioinspired sensors is simple and has less requirement for the 

equipment.  
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 Porous conductive material 

The porous structures present an alternative approach to realise the dynamic 

conductive pathway of flexible piezoresistive sensors with excellent stability. The 

3D interconnected architectures endow the pressure senor with large surface area, 

low density, high porosity and high flexibility. For example, a soft porous 

composite pressure sensor was fabricated by 3D printing technology [43]. The 

printing ink was prepared by mixing silicone elastomer polymer with conductive 

CNTs and insulating silica nanoparticles SiNP fillers, where SiNPs were used to 

change the rheological properties and piezoresistive mechanism of the sensor. 

The piezoresistive coefficient can be tuned by changing the weight ratios of CNTs 

and SiNPs. At low CNT content and high SiNP content, the printed sensor 

showed a positive piezoresistive coefficient, resulting in high sensitivity and a 

large pressure detection range. The obtained pressure sensor was demonstrated to 

be used in grasp sensing and gait monitoring systems. 

Commercially available sponges have been used to fabricate the pressure sensors, 

and various conductive fillers are chosen to decorate 3D microporous material, 

such as rGO [44], multiwalled carbon nanotubes (MWNT)–rGO [45] and Au [46]. 

For example, a simple and low-cost CB @ PU sponge was proposed [47]. The 

CB was uniformly coated on PU sponges by natural polymer-mediated water-

based layer-by-layer assembly. The conductive CB@PU sponges exhibit 

excellent sensitivity and fast response time which can monitor various human 

activities such as pronouncing, coughing, swallowing, pulse, breathing, joint 

bending, etc. besides the commercial sponges based, various conductive sponges 

https://www.sciencedirect.com/topics/materials-science/macrostructure
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have been realized by a variety of routes, including chemical vapor deposition, 

cellulose nanofiber sponges, and carbonization of hybrid (metal–polymer) 

nanocable sponges to develop piezoresistive sensors.  

Aerogels and hydrogels are other forms of 3D porous structures that a 

considerable number of studies have focused on piezoresistive aerogel sensors. 

For example, a piezoresistive sensor based on hybrid MXene/rGO aerogel was 

fabricated by a simple ice-template freezing technique [48]. The sensor with 

highly ordered hierarchical architectures is advanced in sensitivity and durability, 

and it can recognize subtle human activities such as throat movements and pulse 

beating. Besides, another MXene-based aerogel was constructed by MXene 

nanosheets and Cellulose Nanocrystals (CNCs) [49]. The interaction between 

MXene and CNCs produces a wave-shaped lamellar architecture that shows an 

ultrahigh sensitivity of 114.6 kPa−1 in low-pressure range. In [50], a novel 

microsphere-structured hydrogel was proposed by in situ synthesizing 

Polyacrylamide (PAM) and Polyaniline (PANI) in closely packed swollen 

chitosan microspheres. Due to the mismatch between the hard microspheres and 

the soft substrate, the surface of the hydrogel is self-wrinkling, conferring a wide 

pressure detection range (100 Pa-6 MPa) to the sensor.  

Category Material Structure Sensitivity 
Response 

time 
Durability 

Detect

ion 

limit 

Human motion 

monitoring 
Ref 

Conductive Metal Conductiv 2.46 kPa−1 30 ms 200 cycles N/A Finger bending [26] 

Table 2.1 State-of-the-art flexible piezoresistive sensor for human motion. 
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polymeric 

composite 

nanoparticles/

PU 

e polymer and hand motion 

Architected 

conductive 

material 

CNT/PDMS Dome −15.1 kPa–1 40 ms N/A 0.2 Pa 

Finger bending, 

human breathing, 

voice monitoring 

[32] 

Architected 

conductive 

material 

CNT/PDMS 
Pillar–

wrinkle 
20.9 kPa−1 24 ms 

10000 

cycles 
2 Pa 

Finger bending, 

foot postures 
[35] 

Architected 

conductive 

material 

rGO/PDMS/I

TO-PET 

Pyramid 

Microstruc

ture 

–5.53 kPa−1 0.2 ms 5000 cycles 1.5 Pa Finger touch [38] 

Architected 

conductive 

material 

Ag/PDMS 

Banana 

leaves 

microstruc

ture 

10 kPa–1 36 ms 
10000 

cycles 
1 Pa 

Pronouncing, 

wrist pulses, 

forearm muscle 

contraction, 

breathing 

[39] 

Architected 

conductive 

material 

Cu–Ag 

NWs/PDMS 

Rose petal 

microstruc

ture 

1.35 kPa−1 36 ms 5000 cycles 2 Pa 
Voice recognition, 

wrist pulse 
[40] 

Architected 

conductive 

material 

Ti/Au/PDMS 

Mimosa 

leaves 

microstruc

ture 

50.17 kPa−1 20 ms 
10000 

cycles 

10.4 

Pa 
Finger touch [41] 

Porous 

conductive 

material 

MXene/rGO Aerogel 22.56 kPa–1 <200 ms 
>10000 

cycles 
10 Pa 

Pronouncing, 

jugular venous 

pulse of neck, 

arterial pulse of 

[48] 
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wrist 

Porous 

conductive 

material 

CB@PU Sponge 0.068 kPa−1 <20 ms 
>50 000 

cycles 
91 Pa 

Pronouncing, 

coughing, 

swallowing, 

pulse, breathing, 

joint bending 

[47] 

Porous 

conductive 

material 

CNTs/ SiNPs/ 

Ecoflex 

silicone 

rubber 

Porous 0.096 kPa–1 N/A 
10000 

cycles 
N/A 

Grasp sensing and 

gait monitoring 
[43] 

Porous 

conductive 

material 

rGO@PU Sponge 0.26 kPa–1 N/A 
>10000 

cycles 
9 Pa Heartbeat [44] 

Porous 

conductive 

material 

MWNT–

rGO@PU 
Foam 0.088 kPa–1 30 ms 5000 cycles 3.7 Pa 

Pronouncing, 

pulsing of blood, 

blowing of air 

through the 

cheeks, and 

bending and 

extension of 

fingers 

[45] 

Porous 

conductive 

material 

Au@PU Sponge 0.122 kPa–1 9 ms 1000 cycles 
0.568 

Pa 

Speech 

recognition 

systems, heart 

monitoring 

[46] 

Porous 

conductive 

material 

MXene 

+CNCs 
Aerogel 114.6 kPa−1 189 ms 

10000 

cycles 
1.0 Pa 

Finger clicks; 

bending finge; 

Pulse signal 

detection, 

[49] 
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pronouncing, 

Porous 

conductive 

material 

PAAm+ 

PANI+ 

chitosan 

microspheres 

Hydrogel 0.35 kPa−1 N/A 5000 cycles 
100 

Pa 
Hand grasping [50] 

2.1.2 Piezoelectric Sensor 

Piezoelectric materials have the ability to directly convert changes in mechanical 

stimuli into voltage signals without any further external input. Piezoelectric sensors 

are constructed by piezoelectric materials and electrodes, as shown in the Figure 

2.1(c). Hence, the architecture of the piezoelectric sensor is simple, which is 

particularly advantageous in small-scale wearable devices. As shown in Figure 2.3.  

The direct piezoelectric effect is the ability of certain crystalline materials to develop 

an electric charge proportional to the mechanical stress, which was first discovered in 

quartz by Pierre and Jacques Curie in 1880 [51].  Equation 2.3 shows the basic 

principle of the direct piezoelectric effect.   

𝐷 𝑖 = 𝑑𝑖𝑗  ·  𝑇𝑗  +  𝜀𝑖𝑘
𝑇 ·  𝐸𝑘                                           (2.3) 

where 𝐷 𝑖  is the electric displacement, 𝑇𝑗 is the stress tensor, 𝐸𝑘 is the electric field, 

𝜀𝑖𝑘
𝑇  is the dielectric permittivity under zero or constant stress, 𝑑𝑖𝑗  is the direct 

piezoelectric charge coefficient [52]. Where i and k vary from 1 to 3, and j varies from 

1 to 6. The detailed constitutive matrix is described in Equation 2.4. 
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[
𝐷1

𝐷2

𝐷3

] = [

𝑑11 𝑑12 𝑑13
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𝑑31 𝑑32 𝑑33
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𝑇 𝜀12

𝑇 𝜀13
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𝑇 𝜀22
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𝑇

] [
𝐸1

𝐸2

𝐸3

]   (2.4) 

where subscripts 1, 2 and 3 present x, y and z directions in the cartesian coordinate 

system, and subscripts 4,5 and 6 indicate the rotational stress and strains along the x, y 

and z directions. There are two general modes 33 and 31 of piezoelectric materials. 

The first number (3) means the voltage generated along the Z-axis for both modes. 

The electrodes are attached to the top and bottom sides of the piezoelectric material. 

Figure 2.3 Various piezoelectric energy harvesting techniques from different locations on the 

human body including (a) The shoulder [53], (b) Elbows, (c) The wrist, (d) Fingers [54], (e) 

Eyes, (f) Chest, (g) Knees [55], and (h) Feet [56]. 
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The second number indicates the direction of the applied force. In 33 mode (Figure 

2.4(b)), the applied pressure is the same direction as the generated voltage, while 31 

mode (Figure 2.4(a)) shows the force is applied along the x-axis. 

According to the literature [57], there are three major steps associated with the 

piezoelectric sensor in an electromechanical system, as shown in Figure 2.4(c): 

(i) Mechanical-mechanical transfer, which includes mechanical stability and 

mechanical impedance matching. 

(ii) Mechanical-electrical transfer, which includes electromechanical coupling in a 

piezoelectric element. Electromechanical coupling is an important factor, 

where high coupling means a large amount of mechanical energy can be 

converted into useful electricity.  

(iii) Electrical-electrical transfer, which includes electrical impedance matching.  

In the second phase, part of the mechanical force through the piezoelectric transducer 

is converted into electrical output due to electromechanical coupling. The induced 

voltage in this transducer can be determined using: 

𝑉 =
𝑔𝐹𝑡

𝐴
                                                   (2.5)                                                           

where 𝑔 is the piezoelectric voltage constant, 𝐹 is the applied force, 𝑡 is the thickness 

of the piezoelectric transducer, and 𝐴 is the area of the surface [58]. 

The phenomenon of piezoelectricity occurs in naturally occurring single crystals such 

as quartz (SiO2), Lithium Niobate (LiNbO3) and Lithium Tantalate (LiTaO3). 

Moreover, it also occurs in polycrystalline ceramics such as Barium Titanate 
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(BaTiO3), PZT [Pb (Zr1–xTix) O3)] and Potassium Niobate (KNbO3), polymers such 

as PVDF, PLA and piezo-composites.  

 

 

 Ceramics 

It is noteworthy to mention that the materials used during the fabrication of 

piezoelectric sensors have evolved tremendously since World War II [59]. Desirable 

material properties and characteristics for wearable applications include high 

flexibility, high time stability, high insulation resistivity and low cost of production 

[59]. Ceramic materials today are more economical and can be fabricated to achieve 

high, consistent and reliable performance for a variety of applications. PZT is the 

most well-known piezoceramic material based on solid solutions of PbZrO3 (PZ) and 

Figure 2.4 Piezoelectric material operated in (a) 31 mode, and (b) 33 mode. (c) 

Electromechanical equivalent circuit of the piezoelectric sensor. 
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PbTiO3 (PT) [59]. Due to their excellent piezoelectric properties and wide 

commercial availability, PZT ceramics are preferred materials to detect human 

motions. For example, PZT sensors were used to monitor gait patterns [60], hand 

gestures [61] and atrial pulse [62]. 

 Polymers 

Piezopolymers are also attracting plenty of interest due to their desirable properties in 

flexible piezoelectric generators. The typical commercial piezoelectric polymer of 

choice is PVDF, which was discovered by Kawai and Kureha in 1969 [62]. PVDF is 

made from long chains of the repeating monomer (-CH2 -CF2 -), and it has small 

permittivity, leading to a high piezoelectric voltage constant g [83]. The piezoelectric 

charge coefficient of poled PVDF thin film is 6–7 pC/N, which is higher than quartz 

crystals, but much lower than for PZT ceramics [62, 82]. Due to their mechanical 

flexibility, it could be produced as a very thin film and attached to a curved structure. 

Additionally, PVDF sheets possess the ideal characteristics to be easily formed into 

the desired shape of a wearable device and are therefore suitable for pressure/stress 

sensor applications [62].  

For example, a device was consisted of two curved piezoelectric sensors connected 

back-to-back [63]. Each sensor comprised a curved PI substrate and two PVDF 

piezoelectric films arranged in a sandwich structure. The output voltage of the curved 

piezoelectric sensor, with all PVDF films connected in parallel, was measured to be 

up to around 155 V for finger tapping motions. A single layer of the curved 

piezoelectric device can be attached on the watch strap to detect various wrist motions. 

It was recorded that most wrist motions could generate output voltages in excess of 5 
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V. The superior performance of the curved piezoelectric device made it possible to 

monitor human activities and body movements. 

 Composite 

The piezoelectric nanocomposite‐based sensor has gained more attention in wearable 

applications. Piezoelectric-based composites were first proposed in 1972 [62]. The 

composite was made by hot rolling PZT powder and PVDF, which resulted in both 

high piezoelectricity and high flexibility. To combine the advantages of both 

constituent materials, the improvement method involved mixing the ceramic particles 

into the polymer. In order to obtain ideal piezoelectric properties for these composite 

materials, many researchers have investigated variations in parameters such as 

ceramic content and particle size, shape and configurations.  

A study focused on BaTiO3 nanowires through a comparably simple hydrothermal 

method embedded into a P(VDF-TrFE) matrix, forming a piezoelectric-hybrid 

nanocomposite [64]. The ability of the device to monitor human activities was then 

examined by attaching a patch-design device to the back of the hand. The maximum 

output voltage was approximately 8 V for grabbing and releasing motions. The 

composite film combined the advantages of both ceramics and polymers, exhibiting 

higher piezoelectric potential and larger local deformation. For example, the T-

ZnO/PVDF composite film was able to bend at 30◦, 45◦, 60◦ and 90◦ angle, and the 

output piezoelectric voltage of the piezoelectric sensor was 0.02, 0.03, 0.06 and 0.16 

V, respectively, so that the composite can be used to detect finger bending [65]. 

Moreover, a bio-compatible piezocomposite film without additional structures was 

adopted to monitor the biomechanical movements [66]. An energy source 
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0.5(Ba0.7Ca0.3)TiO3–0.5Ba(Zr0.2Ti0.8)O3 (BCTZ) and a filler material AgNWs 

were blended with a PDMS matrix to produce a flexible lead-free piezoelectric 

nanocomposite. The device was proven to monitor different human articular motions, 

for instance, wrist and elbow bending motions.  

Material Structure 
Output 

Voltage 
Place Motion Ref 

Ceramics      

PZT 
Sliding 

track 
40 V Hand Scratching [67] 

PZT 
Sliding 

track 
5.05 V Hand Hand shaking [68] 

AlN Stacked 0.7 V Finger Bending [69] 

PZT Film 0.6 V Wrist  Hand gestures [70] 

Polymer      

PVDF Film 2 V Finger Clicking [71] 

PVDF Curved 3 - 25 V Wrist 

Wrist twisting, wrist bending, 

elbow pivoting, running, tapping 

the watch, and grabbing 

[63] 

PVDF nanofiber Stacked 4.7 V Wrist  Palm impacting [72] 

Table 2.2  State-of-the-art flexible piezoelectric sensor for human motion. 
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Composite      

ZnO nanowire + 

PVDF 
Film 0.33 V Finger Folding [73] 

BaTiO3+ P(VDF-

TrFE) 
Film 8 V 

Back 

of hand 
Grabbing and releasing [64] 

PZNN-PLZT Cantilever 5 - 40V Wrist 

Slamming on table, shaking, 

cooking, running, walking, walking 

with hand hitting the body, typing 

on keyboard, hand clapping, 

jumping, gesticulating 

[74] 

BCTZ/AgNW+PDMS Film 10 V 
Wrist, 

elbow  
Wrist bending, elbow bending [66] 

2.1.3 Other Sensing Techniques 

 Triboelectric Sensor  

Triboelectrification is a well-known phenomenon that is the combined effect of 

contact electrification and electrostatic induction [75]. When two friction layers 

are in contact, induced electrical charges appear on the surfaces by contact rubbed 

motions, including sliding movement, vertical touch, and torsional stress. After 

separation, some charges tend to lose electrons, while others tend to retain excess 

electrons, which may generate triboelectric charges on the material's surface. 

These triboelectric charges produce an electrostatic field that could drive the 

electrons to flow from the external circuit [76, 77]. According to this effect, 

Wang’s group first proposed the triboelectric sensor in 2012 [78]. Since then, 

triboelectric sensors have experienced very rapid development and have provided 
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a new approach to pressure sensing techniques [79, 80].  

According to different working scenarios, triboelectric sensors are subdivided 

into four working modes: vertical contact-separation mode, contact-sliding mode, 

single electrode mode and freestanding triboelectric layer mode, as illustrated in 

Figure 2.5. Due to simple structure, wide material choice, and fast dynamic 

response, triboelectric-based wearable sensors are increasingly employed for 

human motion tracking and human-machine interfaces. For example, a smart 

triboelectric band looped around human body parts to track human mobility and 

recognize individual’s identity [81]. The flexible band was designed by a rubber 

tube that was filled with physiological saline. Based on the coupling of 

triboelectrification and electrostatic effect, the band successfully recognized six 

types of human motion, including swallowing, calf raising, jumping, squatting, 

breathing, and bicep curling, which inspired new thoughts in the human-machine 

interface.  

 

Figure 2.5 Four working modes of triboelectric effect-based electronics. 
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 Capacitive sensor 

Capacitive sensors are non-contact devices that the capacitance changes under 

external stimulation. A common capacitive sensor acts as a simple capacitor, 

which usually consists of an insulating dielectric layer sandwiched between a pair 

of conductive electrodes. The equation for the capacitance is as follows [82]: 

𝐶 =
𝜀𝐴

𝑑
                                                   (2.6)  

where d represents the distance between the conductive electrodes, A is the 

overlapping area of two electrodes, and ε is the permittivity of the dielectric 

material. When the external force is applied to the plates, the distance of the 

plates or the electrode area will change, resulting in the capacitance variation of 

the sensor. 

The main advantages of capacitive sensors are good stability, high measurement 

accuracy, simple structure and better temperature tolerance than resistive sensors. 

To date, much research has developed new types of flexible capacitive sensors to 

meet the requirements of wearable devices. For example, a flexible capacitive 

device was constructed by the micropatterned PDMS/Au electrodes duplicated 

from the lotus leaf coupled with PS microspheres as the dielectric layer [83]. The 

capacitive changes of the device are caused by enlarging the relative plate area, 

reducing distance, and rearranging dielectric materials after compression. Taking 

advantage of unique structures, the proposed devices present high sensitivity 

(0.815 kPa−1), wide dynamic response range (from 0 to 50 N), and fast response 

time (≈38 ms), which indicted its potential applications in electronic skins, 

wearable robotics, and biomedical devices. 
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2.1.4 Comparison Between Different Types of Pressure 

Sensors 

Different pressure sensing mechanisms have been used for wearable electronics. In 

particular, pressure sensors can be divided into four categories: piezoresistive, 

capacitive, piezoelectric and triboelectric, and their advantages and disadvantages are 

shown in Table 2.3.  

Piezoresistive sensors are widely used in wearable sensing systems due to the high 

sensitivity, simple construction, simple readout circuits and robustness of both static 

and dynamic pressure. However, the output of piezoresistive sensors is easily affected 

by external environmental conditions like temperature, and the response/recovery 

times are relatively slow. Capacitive sensors process good stability, high measurement 

accuracy and better temperature tolerance than piezoresistive sensors, but the 

crosstalk between sensing units is the typical limitation of capacitive sensors. 

Piezoelectric sensors and triboelectric sensors are self-powered sensors that can 

directly convert mechanical force into electrical signals without external power supply, 

and always have fast response time and more sensitive to dynamic stimuli. However, 

they require a specifically designed readout circuit. In comparison with piezoelectric 

sensors, triboelectric sensors produce larger output voltages and wider material 

choices. Furthermore, triboelectric sensors in the early research stage, there are still 

some fundamental understanding and technology problems that need to be studied, 

such as choice of materials, power management, durability, and stability [77]. 

In this thesis, piezoelectric sensors and piezoresistive sensors are chosen to detect the 
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human activities, including finger motions, hand gestures and throat movements. 

These human activities generate small tendon movements around the wrist or slight 

muscle motion of the throat. Typical capacitive sensors are composed of a dielectric 

layer sandwiched between two electrodes, whose thickness varies upon pressure, and 

triboelectric sensors are based on contact-separation mode, which require a gap 

between two electrode layers. When compared with piezoelectric sensors and 

piezoresistive sensors, the capacitive sensors and triboelectric sensors are more 

suitable for joint bending detection [84, 85] and tactile sensing [86, 87] based on their 

working principle. 

Therefore, piezoelectric sensors were chosen to recognize the finger tapping motions 

in Chapter 3, as the sensors are sensitive to the dynamic stimuli and responds quickly. 

However, piezoelectric sensors will miss the static information when detecting the 

hand gestures and throat movements. So piezoresistive sensors were used in Chapter 4 

and 5 to capture both static and dynamic information. 

Types Piezoresistive Piezoelectric Triboelectric Capacitive 

Working 

mechanisms 

Convert 

mechanical 

force into 

changes in 

resistance 

Convert 

mechanical force 

into electric 

signals by the 

internal electrical 

dipoles charges 

Convert 

mechanical force 

into electrical 

signals through a 

conjunction of the 

triboelectric 

effect and 

electrostatic 

induction 

Convert 

mechanical 

force into 

changes in 

capacitance 

Table 2.3 Comparison of the typical features of wearable pressure sensors. 
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Advantages 

High 

sensitivity, 

simple 

construction, 

simple readout 

circuits, 

robustness of 

both static and 

dynamic 

pressure 

High sensitivity, 

fast 

response/recover 

time, self-

powered ability, 

good stability 

High output 

voltage, fast 

response/recover 

time self- 

powered ability, 

simple 

fabrication, low 

sensing limitation 

Good stability, 

high 

measurement 

accuracy, fast 

response time 

Disadvantages 

Poor stability, 

temperature-

dependent, low 

response time 

Low output 

voltage, high 

matched 

impedance 

Susceptible to 

environmental 

influences, low 

output current, 

high matched 

impedance 

Relative 

complex 

structure, 

crosstalk 

between 

sensing units 

2.2 Review of Classification Methods 

Wearable sensing systems have rapidly developed in recent years. Researchers and 

scientists have made great efforts on new structures and materials to improve the 

sensitivity, flexibility, durability and stability of the pressure sensors, which are used 

to detect human motions. The collected data from sensors contain rich valuable 

information, including muscle movements [88], body temperature [89, 90], sweat 

detection [91] and other physiological parameters [92] . Therefore, ML algorithms are 

used to accurately analyse and classify the sensing data.  In the next sections, 

conventional classifiers and deep learning models are introduced. Next, state-of-the-

art pressure sensors for human motion recognition using ML algorithms are discussed. 
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2.2.1 Conventional Classifiers 

 K Nearest Neighbour 

K Nearest Neighbour (KNN) is a non-parametric classification method based on the 

supervised learning technique. For an unlabelled sample, its nearest neighbours k 

samples in the dataset, the majority vote of these k samples is usually used to decide 

the classification for the unlabelled sample with or without consideration of distance-

based weighting, as illustrated in Figure 2.6. The squares and triangles in the figure 

are labelled data, representing different labels. The black circle is data to be classified. 

If k=5, then there are 3 triangles and 2 squares closest to the circle. These 5 points 

vote, and the proportion of triangles accounts for 3/5, so the circle to be classified 

belongs to the triangle category. However, if k=10, then the circle is classified into 

square group as 6 squares are closest to the circle. 

The Euclidean distance is the most commonly used distance metric in KNN. It 

measures the true straight-line distance between two points in Euclidean space, as 

shown in the equation:  

𝑑(𝑥, 𝑦) = √∑  𝑛
𝑖=1 (𝑥𝑖 − 𝑦𝑖)2                                (2.7) 

KNN classification is a simple but effective method for human motion classification. 

In [93], the KNN algorithm successfully identified 10 American Sign Languages with 

97.86% accuracy by attaching stretchable strain sensors to the finger joints. Besides, 

an insole sheet integrated with force sensors was able to classify different gait phases 

by the KNN algorithm [94]. 
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 Decision Tree 

Decision Tree (DT) is a flowchart-like structure where each internal node represents a 

"test" on an attribute, each branch represents the results of the test, and each leaf node 

represents a classification label, as indicated in Figure 2.7. As can be seen from the 

figure, the decision tree starts from the root node, which does not have any incoming 

branches. The outgoing branches of the root node then feed the internal nodes. Both 

types of nodes perform evaluation based on available capabilities to form 

homogeneous subsets, which are represented by leaf nodes. Leaf nodes represent all 

possible outcomes within the dataset. DT is also a common method used to recognize 

human activities. For example, a flexible piezoresistive pressure foam was taped on 

the second knuckle of each finger to distinguish Arabic numeral gestures combined 

with the DT classifier [95]. Moreover, the DT classifier is also used to recognize 

different ambulatory activities by smart shoes [96, 97].  

Figure 2.6 Architecture of K nearest neighbour algorithm. 
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 Linear Discrimination Analysis 

Linear Discrimination Analysis (LDA) is a tool for classification, dimensionality 

reduction and data visualization [98]. The intuition behind the method is to project the 

training samples onto a straight line so that the projection points of similar samples 

are closed, and the projection points of different samples are far away. When 

classifying new samples, project them onto the same straight line, the category of the 

new sample is determined according to the position of the projected point. LDA can 

be used as the classifier for the purpose of hand gesture recognition. Combined with 

the machine-learning algorithm of the LDA model, the wristband constructed with 

piezoelectric sensors and triboelectric sensors was achieved letter-by-letter 

recognition of sign language actions, with a maximum recognition accuracy of 92.6% 

[99].  

Figure 2.7 Architecture of decision tree. 
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 Support Vector Machine 

Support Vector Machine (SVM) is a learning algorithm based on the optimization 

theory that is derived from statistical learning theory. An optimal decision hyperplane 

is established to maximize the distance between the two types of samples on the two 

sides of the plane that are closest to the plane, thus providing a good generalization 

ability for the classification problem. For a multi-dimensional sample set, the system 

randomly generates a hyperplane and moves continuously to classify the samples until 

the sample points belonging to different categories in the training sample are located 

on both sides of the hyperplane. There may be many hyperplanes that satisfy the 

condition. SVM officially finds such a hyperplane while ensuring classification 

accuracy, maximizing the white space on both sides of the hyperplane, thus achieving 

optimal classification of linear separable samples. 

In terms of a non-neural network-based classifier, SVM is one of the best choices for 

human activity recognition when the data size is relatively small. For example, a 

wristband with five capacitive sensors was able to recognize hand gestures in real-

time with the SVM algorithm [100]. Moreover, Chengkuo Lee’s group has developed 

a series of artificial devices based on pressure sensors combined with ML algorithms 

to recognize different human motions and interact with VR applications. In a recent 

article, tactile rings were developed that allow finger motion detection and object 

recognition based on triboelectric sensor via SVM analysis [101].  
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2.2.2 Deep Learning Model 

 Artificial Neural Network 

Artificial Neural Network (ANN) is a mathematical model that mimics the structure 

and function of biological neural networks. ANN is computed by connecting a large 

number of artificial neurons, and it consists of three types of processing layers: input 

layer, hidden layer and output layer. There can be one or multiple hidden layers where 

processing happens in them. The hidden layer refines the input by removing 

redundant information and sends the information to the next hidden layer for further 

processing, and computes the output based on the adjustable "weights". A variety of 

tasks use artificial neural networks for pattern recognition [102], material 

identification [103] as well as human motion recognition [104].  

 

 Convolutional Neural Network  

Another popular architecture for deep learning is Convolutional Neural Network 

Figure 2.8 Architecture of artificial neural network. 
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(CNN), which mainly used for visual data processing such as images and videos. 

CNN also consists of three different types of layers: convolutional layer, pooling layer, 

and fully connected layers. The convolution layers focus on learning significant 

features that may appear in the data with the help of filters/kernels whose coefficients 

are tuned during the training phase. The pooling layers reduce the dimensionality of 

feature maps and also introduce some degree of translation invariance in the network. 

The convolutional and pooling layer forms the features extraction pipeline of the 

network which detects local features in the input. The fully connected layers then 

combine the local features to obtain global features. In [105, 106], CNNs were applied 

for hand gesture recognition and object identity with different types of wearable 

sensors. Also, CNNs were popular in speech recognition [107] and gait phases [108]. 

 

 Recurrent Neural Network 

A new type of architectures was developed to detect patterns in time series data was 

known as Recurrent Neural Network (RNN). Each unit in RNN contains recurrent 

connections so that the network can retain information for a longer period of time, 

which enables RNNs to recognize patterns in sequential data such as speech, video, 

and text. The architecture of the RNN is shown in Figure 2.10, where “xt” is the input 

layer, “A” is the hidden layer, and “ht” is the output layer. At any given time t, the 

Figure 2.9 Architecture of convolutional neural network.  
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current input is a combination of input at xt and xt-1. The output at any given time is 

fetched back to the network to improve on the output. A more advanced form of RNN 

is known as Long Short-Term Memory (LSTM) which improves the pattern 

recognition capabilities of RNN.  

 

 

Sensor Classifier Motion Number 

of 

sensors 

Number of 

participants 

Accuracy Ref 

Strain sensors 

LDA 

KNN 

SVM 

10 Hand 

gestures 
5 6 

97.8 ± 2.3%, 

97.9 ± 1.7%, 

97.9 ± 1.7% 

[93] 

FSR KNN 
7 Gait 

phases 
5 5 81.43% [94] 

Piezoresistive 

sensor 
DT 

10 Hand 

gestures 
5 2 98.9% [95] 

Figure 2.10 Architecture of recurrent neural network. 

Table 2.4 State-of-the-art pressure sensor for human motions with ML algorithm. 
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Triboelectric sensor SVM 
14 Hand 

gestures 
5 N/A 99.821% [101] 

Triboelectric sensor 

+ piezoelectric 

sensor 

LDA 
26 hand 

gestures 
8 N/A 92.6% [99] 

Piezoresistive 

sensor 
SVM 

5 hand 

gestures 
6 1 97% [61] 

Capacitive sensor SVM 
3 hand 

gestures 
5 1 90% [100] 

Triboelectric sensor ANN 
gait 

phase 
2 5 98.4% [104] 

Triboelectric sensor CNN 
50 hand 

gestures 
15 N/A 91.3% [105] 

Triboelectric sensor CNN 
5 gait 

phases 
3 1 96.67% [108] 

Triboelectric sensor RNN 
20 Lip 

motions 
2 1 94.5% [109] 

2.3 Summary 

This chapter summarises the recent progress in wearable pressure sensing techniques 
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over the past few years. Pressure sensors can be divided into four categories based on 

their working principle. Piezoresistive and capacitive sensors are none self-powered 

sensors which require the external power supply to provide bias voltage. Compared 

with capacitive sensors, piezoresistive sensors are widely used in wearable devices 

due to their simple structure, simple readout circuit and wide detection range. Besides, 

piezoelectric and triboelectric sensors are self-powered sensors which can directly 

convert mechanical force into electric signals without any external input. Piezoelectric 

sensors are suitable for detecting small-scale motions because of their simple structure, 

fast response time, high sensitivity and good stability. The advantages and 

disadvantages of the four sensing techniques are discussed in this chapter. Meantime, 

the state-of-art using pressure sensors to detect human motion are also summarized in 

the context. 

Besides the advancement in pressure sensing techniques, wearable devices have made 

great progress with the help of machine learning algorithms to process the data and 

make decisions. Recent advances in human motion recognition are summarized in this 

chapter. The ML algorithm-assisted wearable systems are able to accurately predict 

and classify the collected data. Therefore, the combination of pressure sensors and 

ML algorithms enhances the intelligence of pressure-sensing systems. Different 

machine-learning algorithms are introduced in this chapter, and the recent progress in 

machine-learning-assisted systems for human motion recognition has been discussed. 
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Chapter 3 

Piezoelectric Sensor for Finger Motions 

Finger gestures are important nonverbal communication for conveying information 

through visual perception. With the burgeoning demand for interfaces that enable 

humans to seamlessly interact with machines, gesture recognition systems have been 

fast developed, including telerobotic surgery [110], virtual reality [111, 112], health 

rehabilitation and human-robot collaboration [113]. Many techniques have been 

developed to detect finger motions. There are four main technologies for finger 

motion recognition, which are based on cameras, accelerometers (ACC), EMG and 

pressure sensors.  

Camera-based technologies directly capture the gesture video or picture information, 

followed by processing the depth images of the pixel point to the lens distance [114]. 

High accuracy, efficiency and robustness make it become a commonly used method in 

human-computer interaction applications. In [115], CNN algorithm achieved the high 

accuracy of 91.41% to recognize sign language of MNIST dataset. However, 



Piezoelectric Sensor for Finger Motions 

43 

 

limitations related to viewing angle, sensitivity to lighting conditions and noisy 

background restrict application scenarios in which cameras can be used [116].  

As for ACC-based technology, it is comfortable to wear without disturbing natural 

hand gestures, and it could provide rich information about hand movements. However, 

the drawback of the accelerometer-based method is that the detected signal is mixed, 

and it is always challenging to identify the performance of individual sensor setups. 

Thus, they cannot receive a separate signal from the palm and finger movements 

simultaneously [117].  

In contrast to other solutions for hand gesture recognition, EMG-based technology 

provides an important opportunity to achieve natural human-computer interaction by 

directly sensing and decoding subtle muscle activities [118]. Due to the small 

electrodes attached to the arm, any subtle wearing position change will strongly 

influence the accuracy [119]. Meantime, signal and noise will be synchronously 

collected so that it will increase the complexity of signal processing and analysis.  

Pressure-based finger motion recognition has recently attracted increased attention. 

Gloves [120-122], armbands [123-125], and wristbands [99, 126] become the main 

applications for collecting the pressure signal for hand gestures. The smart gloves 

require sensors attached to the knuckles of the fingers which are cumbersome and 

interfere with normal activities. Armbands are required a large number of sensors 

based on the EMG method. For example, 64 electrodes were attached to the forearm to 

detect flexion and extension of different finger degrees of freedom [127]. Compared 

with gloves and armbands, wristbands reduce the number of sensors to recognize 

gestures in a more comfortable way.  
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Piezoelectric sensors are sensitive to the dynamic motion base on the piezoelectric 

effect, as illustrated in chapter 2.1.2. When attaching the piezoelectric sensors to the 

wrist skin, the response of the sensors can be used to detect the finger motions. In this 

case, a wristband based on piezoelectric sensors was developed to achieve the finger 

motion recognition.  

Figure 3.1 shows the basic functions of the wristband system. The bracelet device is 

designed to recognize finger motions. Piezoelectric sensors convert mechanical 

pressure to electrical signals. These transducers sense tendon movements around the 

wrist. The active signals are processed through the signal conditioning circuit to 

amplify the signals and remove the noise. The useful information is transmitted to 

microcontroller (Arduino UNO) and then transmitted to the computer terminals. The 

wristband was able to achieve finger gesture recognition with different ML algorithms.  

 

3.1   Experimental Setup and Data Collection 

Herein, a piezoelectric wristband with an array of 6 PZT ceramic disks (AB1290B-

Figure 3.1 Building block of a typical wearable device.  
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LW100-R) was used to distinguish different finger motions. The photograph of PZT 

ceramic disks and the wristband are shown in Figure 3.2.  

Piezoelectric sensors generate electrical signals in response to tendon movements 

around wrist. However, finger movements generate small tendon movements, the 

sensors output needs a moderate amount of amplification so that the desired signal 

levels are in the 5 V range for full scale to fit the microcontroller analog-to-digital 

converter ports. Thus, the charge amplifier is configured to serve the dual purpose of 

conversion to voltage as well as amplification. Herein, a charge mode amplifier circuit 

was used to buffer and amplify the piezoelectric sensor. The charge mode amplifier 

circuit is made of several components: a current source, a piezoelectric sensor 

resistance and a piezoelectric sensor capacitance are acted as piezoelectric sensor 

model, an input resistance (𝑅𝑖 =6 KΩ), a feedback resistor (𝑅𝑓 =100 MΩ), a feedback 

capacitor (𝐶𝑓=15nF) and a bias voltage (1/2 𝑉𝑐𝑐=2.5V). The circuit diagram and the 

frequency response are provided in Figure 3.3. 

 

Figure 3.2 Photograph of the piezoelectric sensors and the wristband. 
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The response signal of a piezoelectric sensor based on wrist muscle extraction induces 

a very small charge. The charge amplifier used in the proposed work is an operational 

amplifier configured as an integrator, where the circuit’s output is given by:  

𝑉𝑜 = −
𝑞𝑝

𝐶𝑓
+

𝑉𝑐𝑐

2
                                                  (3.1) 

where 𝑉𝑜 is the output voltage, 𝑞𝑝 is the charge source, 𝐶𝑓 is feedback capacitance 

and 1/2 𝑉𝑐𝑐  is the bias voltage that was added to the ground of the piezoelectric 

sensor. Meantime, the signal conditional circuit is also analogous to a first-order high-

pass RC filter when the feedback resistor and capacitor are placed in parallel across 

the input and output of the operational amplifier, where the lower cutoff frequency is 

calculated by: 

𝑓𝐿 =
1

2𝜋𝑅𝑓𝐶𝑓
                                                    (3.2) 

Besides, the readout circuit also acts as a low-pass filter, where the higher corner 

cutoff frequency is derived by: 

Figure 3.3 (a) Schematic of signal conditioning circuit for piezoelectric sensor. (b) Frequency 

response plot of the charge mode amplifier circuit. 
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𝑓𝐻 =
1

2𝜋𝑅𝑖(𝐶𝑝+𝐶𝑐)
                                                (3.3) 

The signal conditioning circuit was designed to amplify the piezoelectric signals in 

the 0-5 V range and filter the undesired signals. As mentioned previously, human 

motion often occurs around 1Hz. Therefore, we chose a 100 MΩ feedback resistor Rf 

and a 10 nF feedback capacitor Cf to build the high-pass filter. At the same time, the 

low pass filter also eliminates noise from the human body and environment. Hence, a 

6 kΩ resistor was chosen as the input resistance Ri. Piezoelectric sensors generate 

both positive and negative signals when pressing and releasing the pressure. Therefore, 

1/2 Vcc (2.5 V) was added to the ground of the piezoelectric sensor so that the output 

would swing above and below this DC level. The signal conditioning circuit design 

and its PCB layout are shown in Figure 3.4. 

 

The wristband was put on the left hand of a subject under comfortable tightness without 

blood restriction, pain and movement limitation. The substrate of the wristband is a soft 

elastic fastening wire with a Buckle of 3.8 cm width and 41 cm length. Six commercial 

ceramic disks with 12 mm diameter were chosen in this project since the wrist 

Figure 3.4 (a) The signal conditioning circuit design. (b) PCB layout. 
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circumference of the subject is 152 mm, and 6 disks could fully cover the wrist and get 

comprehensive muscle contraction information at the underside of the wrist. To ensure the 

place of sensors is fixed for multiple wearing, they are pasted by hot glue inside of the 

band.  

The subject sat in front of a desk and placed the forearm and elbow in a comfortable 

position on the desk, and the wrist was raised above the desk to eliminate the external 

pressure. The total experiment time was 15 minutes. The participant was required to 

perform the tapping gesture for five fingers. The recording contains three times put on 

and takes off with around 50 repetitions for each finger. The tapping gesture repeated 

every two seconds, and the beginning 6 seconds and ending 5 seconds were kept 

stable. Figure 3.5 shows examples of the collection repetition tapping gesture by the 

middle finger.  

 

Figure 3.5 Example piezoelectric voltage signal for middle finger tapping. 



Piezoelectric Sensor for Finger Motions 

49 

 

3.2   Data Processing and Feature Extraction 

Piezoelectric sensors convert the pressure from the tendon movement to the voltage 

reading. The output signals from piezoelectric sensors were connected to the analog to 

digital input ports of the microcontroller (Arduino UNO based on the ATmega328). 

Data was collected by MATLAB (2020 version) and stored in the computer for the 

following offline processing. 

The output signal of piezoelectric sensor is usually oscillating between high positive 

values to negative values, so that there is one noticeable peak generated by a hand 

motion. Due to this characteristic, ‘findpeaks’ code is used to detect the local maxima 

and find their locations of the input vector. To avoid discovered peaks being very 

close to each other and the same data being intercepted multiple times, restricting the 

acceptable peak-to-peak separations to values greater than 2s. The whole signal is cut 

into small segments according to the maxima of different gestures. An example of row 

signals collected from the piezoelectric sensors for five fingers is shown in Figure 3.6. 

Every gesture is presented by six channels which are the six sensors. The amplitude of 

the output voltage ranges from 0 to 5 V.  

 

Figure 3.6  Examples of piezoelectric sensor output for five fingers. 
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ML techniques are widely used for hand gesture recognition (See chapter 2.2). In this 

chapter, KNN, DT and SVM are chosen to classify the finger motions, as they are 

good at dealing with the small dataset.  

In supervised learning, Polynomial-kernel SVM is first chosen to process the 

recording values and reconstruct gestures. A kernel function of the 2-polynomial order 

is used to map the information to a higher dimension. In order to train the SVM 

classifier, an SVM template was applied in MATLAB to design and build the 

classifier.  

KNN and DT are also commonly used ML algorithms for hand gesture 

recognition [118]. KNN is classified by measuring the distance (e.g. Euclidean 

distance) between different eigenvalues. The idea is that if most training points of the 

k closest in the distance to a query point belong to a certain category, the tested 

sample also belongs to that category [128]. Therefore, the number of adjacent samples 

k is the vital parameter in the algorithm. In this chapter, we considered k=7 as the best 

performance to discriminate between the gestures. 

DT classify the new query sample by starting from the root, testing the corresponding 

feature attributes in the item to be classified, and selecting the output variable 

according to its value. Eventually, it reaches a leaf, using the category of the leaf as 

the decision result. A decision tree model was created with two branch nodes and ten 

observations per leaf. The model was used to train gestures using sample data. 

The raw dataset was divided into a 200 samples training set and 75 samples test set. 

The raw dataset was fed to the three classifiers to recognize different fingers for 

tapping gestures. The confusion matrixes of KNN, DT and SVM are shown in Figure 
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3.6, where the SVM algorithm presented the best performance. Figure 3.7(d) shows 

the clustering result of five fingers realized by T-Distributed Stochastic Neighbour 

Embedding (t-SNE), and the boundaries between these five categories are clear.  

 

Feature extraction was involved in distinguishing five different finger motions and 

compared with the original signal to find a better data type for higher classification 

accuracy. Sixty different features were extracted from piezoelectric sensors, which are 

summarized in Table 3.1, including the voltage mean, maximum, minimal, peak-to-

peak, standard deviation, variance and the location of maximum and minimal value, 

Figure 3.7 Classification confusion matrix for the raw data of five tapping fingers (a) by using 

KNN algorithm with 94.67% accuracy; (b) by using DT algorithm with 88% accuracy; (c) by 

using SVM algorithm with 98.67% accuracy. (d) Cluster results for five fingers. 
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which are extracted to evaluate the deviation of the signal, and cross correlation-based 

features show great potential in classifying activities with significant change on signal 

magnitude along two dimensions.  

Feature extraction Number 

Mean of the voltage amplitude 6 

Maximum of the voltage amplitude 6 

Location of maximum amplitude 6 

Minimum of the voltage amplitude 6 

Location of minimum amplitude 6 

Peak-to-peak 6 

Mean of the cross-correlation 6 

Standard deviation of the voltage amplitude 6 

75th percentiles 6 

Variance of the voltage amplitude 6 

Table 3.1 Features extracted from the piezoelectric sensors in time domains.    
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Total number of features 60 

 

Table 3.2 shows the result of all three algorithms with original data and feature 

extraction by using six piezoelectric sensors. SVM dealing with feature extraction 

dataset was the best choice for tapping gesture recognition with 100% accuracy, 

which was higher than using the original dataset. While KNN processing feature 

extraction data has the lowest accuracy with 77.33%, which had a significant decrease 

than that of the raw dataset. The classification accuracies were low when using the 

DT algorithm to classify raw data and extracted features. Feature extraction, in this 

case, failed to increase the accuracy of classification.  

 

Algorithm KNN DT SVM 

Raw data 94.67% 88% 98.67% 

Feature extraction 77.33% 81.33% 100% 

 

Furthermore, the number of sensors and their locations were also studied to find the 

best performance of the classification, as illustrated in Figure 3.8. Sensors at different 

locations collect tendon movements in different parts of the wrist. When the number 

and location of sensors are reduced, the effective signals collected from the wrist will 

decrease, making it challenge to classify the different tapping fingers. The results 

Table 3.2 Classification results of different algorithms by using six piezoelectric sensors. 
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indicate that using more sensors exhibited a more accurate classification performance. 

In practical implementation, the devices prefer to reduce size, weight and cost so that 

fewer sensor is needed to satisfy the classification requirements. In this figure, two 

sensors attached to the ulnar styloid of the wrist are already sufficient to classify the 

present gestures, as the accuracy is over 90%. It is worth noting that the most 

important place was roughly at the ulnar styloid of the wrist for tapping gestures. 

Therefore, the future device will be considered to put at least one sensor at the ulnar 

styloid to make sure classification accuracy. 

 

3.3 Summary 

In this chapter, a wristband with six PZT piezoelectric ceramic disk sensors was used 

to distinguish tapping gestures for five different fingers. A comparison between three 

ML algorithms (KNN, DT, and SVM) to classify the fingers with raw data and 

extracted features are discussed. The SVM algorithm achieved the best performance 

Figure 3.8 Classification accuracy for all five hand gesture using SVM with between 1 and 6 

sensors. 
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with a classification accuracy of 98.35% for raw data and 100% for extracted features. 

Moreover, the number and place of sensors were also optimized for practical 

implementation. Two piezoelectric sensors attached to the ulnar styloid of the wrist 

were sufficient to classify the tapping motion of the different fingers. 
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Chapter 4  

Piezoresistive Sensor for Hand Gesture 

Recognition 

In this last chapter, piezoelectric sensors are used to recognize the finger motions. 

However, there are some improvements can be used to further increase the accuracy 

and wearability of the bracelet. First, the commercial piezoelectric sensor is a ceramic 

disk and not bendable. Thus, it is hard to fully fit to the wrist. Flexible sensors seem 

more suitable for hand gesture recognition. Secondly, design a more comfortable 

substrate for the wristband, which could also fix the placement of sensors to ensure 

each sensor able to capture the same muscle movement for various users so that the 

input signal is much more reliable for data processing. Finally, piezoelectric sensor 

was sensitive to dynamic motions, while the information on static gestures was lost. 

Therefore, piezoresistive sensors can be used to capture both dynamic motions and 

static gestures.  
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Piezoresistive sensors, whose resistance can be tuned by the mechanical forces 

imposed on the surfaces, have been widely investigated and used in gesture 

recognition due to their excellent sensitivity and continuous detection capabilities 

[126]. Various piezoresistive materials and structures have been investigated in recent 

years. It was previously demonstrated that the nano/ micro-geometrical structures 

yield a greater sensitivity [39, 129-131]. However, these micro-structures are 

expensive and require complex fabrication procedures. In contrast, the low cost and 

less complex fabrication processes involving Reduced Graphene Oxide (rGO), which 

has a two-dimensional nanosheet layer structure, exhibit high conductivity and robust 

mechanical strength, making it a promising candidate for flexible piezoresistive 

sensors [25, 132-135]. This chapter proposes a piezoresistive sensor based on a flake-

sphere composite configuration in which rGO fragments are doped with PS spheres to 

achieve both high sensitivity and flexibility. The resistance change under pressure was 

related to the size and weight ratio of the doping PS sphere. Our flexible rGO/PS 

sensors achieved 66% resistance change when doped with 2 µm PS spheres. The 

rGO-based sensor also promises high mechanical durability (1000 times) and fast 

response time (186 ms), which offers excellent potential in wearable devices. 

This chapter proposes a piezoresistive sensor based on a flake-sphere composite 

configuration in which rGO fragments are doped with PS spheres to achieve both high 

sensitivity and flexibility. Furthermore, a wearable hand gesture recognition system 

was developed based on two parts: a flexible piezoresistive wristband that measures 

the pressure distribution around the wrist, as well as an interface for intelligent gesture 

classification. The high-performance wristband consisted of an array of five rGO/PS 

sensors for detecting subtle wrist movement information. In the meantime, the 
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developed system was successfully demonstrated to realise the recognition of 12 

different hand gestures with an accuracy of 96.33% with the help of SVM algorithm. 

Furthermore, an Human-Machine Interface (HMI) application was also designed to 

showcase that our system can wirelessly control a robotic hand.  

4.1 Structure Design of Piezoresistive Sensor 

The structure of the fabricated rGO/PS sensor is shown in Figure 4.1. The 

piezoresistive sensor was constructed with a PDMS substrate, AgNW electrodes and a 

functional film with deposited rGO and PS spheres mixing solutions. The sensor was 

encapsulated by a thin PU film to maintain the integrity of the functional layer 

structure and a PDMS layer to prolong the durability of the sensor.  

 

 

Figure 4.1 The structure of the fabricated rGO/PS sensor.   
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Figure 4.2(a) and (b) shows the photographs of the developed flexible piezoresistive 

sensor. The fabricated sensor exhibits excellent flexibility and can be folded 180° 

without damaging the performance of the device, which further shows the excellent 

feasibility of the sensors for wearable applications. From Figure 4.2(c) and (d), we 

can see that the thickness of the whole device is around 500 µm, and the rGO/PS 

functional layer is about 20 µm. 

4.2 Fabrication Process of Piezoresistive Sensor 

The fabrication procedure of the rGO/PS piezoresistive sensor is schematically shown 

Figure 4.2 (a) and (b) Photographs of the fabricated rGO/PS sensor with the dimension of 

20 mm × 20 mm × 0.5 mm, which shows outstanding flexibility of the developed sensor. (c) 

and (d) Cross sectional SEM images of the piezoresistive sensor. 



Piezoresistive Sensor for Hand Gesture Recognition 

60 

 

in Figure 4.3. Firstly, the PDMS substrate was prepared. The PDMS monomer and 

curing agent (Sylgard 184) were mixed for 15 minutes with a weight ratio of 10:1 and 

then degassed in a vacuum chamber for 30 minutes. The bubble-free PDMS slurry 

was poured into the prepared mould and cured at 70 °C for an hour. The prepared 

PDMS film was treated with air plasma for 30 seconds to remove the dust and 

improve the surface adhesion. 

The next step involved preparing the flexible AgNW electrodes, as shown in Figure 

4.3(a). The AgNW solution (Nanjing XFNANO Materials Tech Co., Ltd. Diameter: 

50 nm, length: 20-60 µm) was first diluted to 2.0 mg/ml with ethyl alcohol by 300 

r/min magnetic stirring for 30 minutes. The AgNW solution was sprayed on the 

PDMS substrate every 30 seconds through a 3D-printed mask for a total of 20 times. 

Afterwards, the AgNW/PDMS film was thermally annealed in the oven at 150 ℃ for 

30 minutes to allow junctions to form between AgNWs, thereby increasing the 

electrical conductivity. 

The functional layer of the piezoresistive sensor consisted of rGO fragments and PS 

spheres. The 2 mg/ml GO solution was prepared by adding 16 mg GO powder 

(Suzhou Tanfeng Graphene Technology Co., Ltd. Lamella diameter: 0.2-10 μm, purity: 

96%) into 8 ml of deionized water. The solution was exposed to a 50 W ultrasonic 

transducer (bisafer250up, 19-25 kHz) for 15 minutes. Then PS spheres (Tianjin 

BaseLine ChromTech Research Centre. 2.5 % w/v) were added into the GO solution, 

followed by leaving the mixture in an ultrasonic bath for another 15 minutes. Next, 

the 300 µL mixed solution was dropped on PDMS and AgNW in an area of 15 × 8 

mm2. The sample was placed in the oven at 50 ℃ for 3 hours to get a thin GO/PS film 

(Figure 4.3(b)). The film was patterned by a laser engraving machine (Ruijie RJ-4040) 
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which directly converted the GO film to rGO by Joule heat (Figure 4.3(c)). Finally, a 

PU film was placed on the surface of the rGO/PS layer to isolate the uncured PDMS 

from destroying the rGO interlayer structure, and also fix the wire on the AgNW 

electrodes. In the end, the whole sensor was encapsulated by PDMS (Figure 4.3(d)). 

 

 

 

Figure 4.3 Schematic illustration of the fabrication process of the flexible rGO/PS 

piezoresistive sensor. (a) 2 mg/ml AgNW ethanol-based solution was spray coated on the as-

prepared PDMS film. (b) Doped the mixed GO/PS solution on the AgNW electrodes and the 

PDMS film, and heat for 3 hours until it obtained the dry film. (c) The GO/PS film was 

patterned by laser-induced reduction that directly converted GO into rGO. The color of the 

functional layer changed from dark brown to black. (d) Finally, the sensor was encapsulated 

by a thin PU film and a PDMS layer.  
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The functional layer of the piezoresistive sensor consisted of rGO fragments and PS 

spheres. The 2 mg/ml GO solution was prepared by adding 16 mg GO powder 

(Suzhou Tanfeng Graphene Technology Co., Ltd. Lamella diameter: 0.2-10 μm, purity: 

96%) into 8 ml of deionized water. The solution was exposed to a 50 W ultrasonic 

transducer (bisafer250up, 19-25 kHz) for 15 minutes. Then PS spheres (Tianjin 

BaseLine ChromTech Research Centre. 2.5 % w/v) were added into the GO solution, 

followed by leaving the mixture in an ultrasonic bath for another 15 minutes. Next, 

the 300 µL mixed solution was dropped on PDMS and AgNW in an area of 15 × 8 

mm2. The sample was placed in the oven at 50 ℃ for 3 hours to get a thin GO/PS film 

(Figure 4.3(b)). The film was patterned by a laser engraving machine (Ruijie RJ-4040) 

which directly converted the GO film to rGO by Joule heat (Figure 4.3(c)). Finally, a 

PU film was placed on the surface of the rGO/PS layer to isolate the uncured PDMS 

from destroying the rGO interlayer structure, and also fix the wire on the AgNW 

electrodes. In the end, the whole sensor was encapsulated by PDMS (Figure 4.3(d)). 

4.3 Characterization  

4.3.1 Characterization of AgNW  

In order to find the optimal performance of the flexible electrode, four types of 

fabrication processes have been discussed： cured PDMS film with the plasma 

treatment; cured PDMS film without the plasma treatment; uncured PDMS film with 

the plasma treatment; and uncured PDMS film without the plasma treatment. As 

shown in Table 4.1, uncured PDMS with 60s plasma treatment achieved the best 

conductivity and stability. However, this plasma treatment changes the stoichiometry 

and morphology of the polymer surface, and it was difficult to obtain repeatable 
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results. In this case, cured PDMS with plasma treatment may be a better substrate for 

coating AgNWs, and the resistance is as low as 3.2 Ω/cm.  

The surface morphologies of the AgNW electrodes are shown in Figure 4.4(a and b), 

indicating the formation of a conductive surface. The detailed morphologies of single 

AgNW were undertaken by TEM and AFM, shown in Figure 4.4(c and d) and 4.3(f 

and e), where the diameter of AgNW is around 50 nm. The excellent electrical 

conductivity and flexibility make AgNW a good material for flexible electrodes in this 

sensor. 

 

Type Plasma Treatment Resistance(Ω/cm) Stability* 

Cured PDMS + + AgNW No 100 Low 

Cured PDMS + + AgNW Yes 3.2 Medium 

Uncured PDMS + AgNW No 46 Medium 

Uncured PDMS + AgNW Yes 2.2 High 

*Stability describes interaction between the PDMS layer and AgNW. Low stability means that AgNW falling off 

from the PDMS layer after using 5 times. Medium stability means that AgNW falling off from the PDMS layer 

after using 20 times. High stability means that AgNW falling off from the PDMS layer after using 50 times. 

 

 

Table 4.1 The comparison of different fabrication processes of AgNW. 
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Figure 4.4 (a,b) Surface SEM images of AgNW electrodes in different magnifications. (c,d) 

TEM images of AgNW electrodes in different magnifications. (e) AFM image of AgNW. (f) 

Cross-sectional analysis of AgNW. 
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4.3.2 Characterization of GO and rGO 

In this chapter, the GO film was treated using a CO2 laser through a programmable 

patterning manner. In comparison with other reduction techniques such as chemical 

reduction or oven treatment, laser scribing is a convenient and fast way to formulate 

rGO and allows patterning of the conducting channels [33]. By laser scribing, GO was 

reduced to rGO according to the photothermal effect. With the increasing local 

temperature in the patterned laser location, water was evaporated, and Oxygen-

Containing Groups (OCG) were removed from the GO film [35], as illustrated in 

Figure 4.5.  

 

The rapid release of OCG made rGO form a highly porous structure. The surface 

morphologies of GO and rGO are shown in Figure 4.6(a) and (b), indicating that the 

surface of rGO becomes much rougher compared to that of GO. The cross-sectional 

SEM images of GO film (Figure 4.6(c)) and rGO film (Figure 4.6(d)) demonstrate 

Figure 4.5 GO converted to rGO after laser reduction, where most of the oxygen functional 

groups were removed. 
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that laser reduction has successfully reduced GO into rGO and confirm that the rGO 

surface is composed of stacked layers. Besides, TEM is also used to detect the 

morphologies of GO and rGO since it is the tool that is frequently applied to nano-

size materials. Figure 4.6(e) presents the surface morphology of GO that is flat and 

smooth, while it appears wrinkled after laser reduction (Figure 4.6(f)). 
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Furthermore, the morphologies of GO and rGO were characterized in detail by AFM. 

AFM images of GO and rGO are shown in Figure 4.7(a) and (b). The height of the 

rGO sheets is around 6.18 nm, thinner than the GO sheets (6.77 nm). Compared with 

the previous report [36], the tested samples are multilayer. In this case, the reduction 

in the thickness of rGO could be due to the removal of OCG.  

 

Figure 4.6 (a) Surface SEM image of GO. (b) Surface SEM image of rGO. (c) Cross-sectional 

SEM image of GO. (d) Cross-sectional SEM image of rGO. (e) TEM images of GO. (f) TEM 

images of GO. 

Figure 4.7 AFM images and cross-sectional analysis of (d) GO, (e) rGO. 
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To further prove the reduction of the GO film, Raman spectroscopy was conducted to 

characterize the surface of the sensing film. Raman spectroscopy is a widely used 

technique for studying structural information of carbon-based materials. The main 

features in the Raman spectra of graphitic carbon-based materials are the G and D 

peaks, where the D band is applied to characterize structural defects, amorphous 

carbon, or edges that split the symmetry and selection rule [37, 38], and G-band is 

associated with graphitic carbon [35]. The D/G intensity ratio (ID/IG) ratio is an index 

of the disorder in graphene. From Figure 4.8, the decreasing ID/IG from 0.80 to 0.78 

demonstrates the removal of the oxygen-functional groups and the restoration of sp2 

domain, so that most GO have converted to the rGO through the laser reduction 

process. 
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Figure 4.8 Raman spectra of GO and rGO. 
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4.3.3 Working Principle and Sensing Performance 

The resistance of the rGO sensor is mainly attributed to two parts: the intrinsic 

resistance (Ri) of rGO fragments and the contact resistance (Rc) of stacked rGO 

layers, as shown in Figure 4.9. The total resistance is given by RTotal =Ri + ΔRc. When 

the sensor is under pressure, the distance between two neighbouring interlayers in the 

rGO will decrease, resulting in a decrease in the internal resistance Rc and an increase 

in conductivity. As a result, the total resistance of the sensor will decrease. For non-

doped rGO, the fragments are stacked closely due to deposition and thermal 

expansion, which leads to small contact resistance.  

To improve the sensitivity of the sensor, the PS spheres were doped as insulators to 

change the stacking pattern of the rGO fragments. SEM images of prepared rGO/PS 

piezoresistive sensors are shown in Figure 4.10. In the high magnified figure (Figure 

4.10(f)), we can see the PS spheres were sandwiched between the rGO layers, 

enhancing the gap between the stack layers, which led to the increasing contact 

resistance of the developed sensor. The between-layer fragment conduction channel is 

the dominant working principle in this case. Under pressure, the spaces between the 

rGO fragments become narrow, which results in the formation of multiple conductive 

channels. The conducting network makes the resistance of the rGO/PS sensor 

sensitive to pressure.  
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Figure 4.10 (a) Cross-sectional SEM image of the fabricated GO/PS sensor. (b) Cross-

sectional SEM image of the fabricated rGO/PS sensor. (c) Surface SEM image of GO/PS 

structure. (d) Surface SEM image of rGO/PS structure. (e) Cross-sectional SEM image of 

fracture surface of the rGO/PS sensor. (f) A magnified SEM image of the fracture surface, 

showing that the PS spheres are sandwiched between the rGO layers.  

 

Figure 4.9 Working principle of rGO/PS piezoresistive sensor. 
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To investigate the role of the PS spheres, a series of experiments were conducted to 

study the pressure behaviour of the sensors by adjusting the doping size and doping 

ratio of PS spheres. The sensing performance of the device was tested under an 

external mechanical force from 0 N to 10 N. First, different PS spheres diameters 

varied from 80 nm to 2 µm were investigated. From Figure 4.11(a), the maximum 

resistance change is over 47% with 2 µm doping PS spheres at 0.2 wt% doping ratio 

under 10 N, which is almost three times larger than the non-doped rGO sensor. At the 

small size of the doping spheres (80 nm), the maximum resistance decreases to 35%. 

When the large size spheres are placed between the rGO fragments, the more 

significant gap makes the between-layer conducting channels would partially 

disconnect, thereby introducing a high resistance value at the initial state. When 

applying external mechanical stresses on the sensor, the resistance of the sensor 

significantly decreases since the rGO fragments own closer contacts and more 

contacting sites. Therefore, the sensitivity of the device increases with larger size 

doping PS spheres. 

 

Figure 4.11 The relationship between applied force and resistance changes with (a) different 

doping PS spheres sizes, (b) different doping PS sphere weight ratios. 
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To further study the effect of PS spheres on the sensor, the resistance changes of rGO 

film doped with 2 µm PS spheres of different weight ratios (0.1 wt%, 0.2 wt% and 0.4 

wt%) were also investigated. At a small doping ratio (0.1wt%), the space between 

adjacent PS spheres was large, which makes it difficult for rGO fragments to separate. 

Thus, the remaining contacting points will influence the sensitivity of the device. A 

lower doping ratio results in small spacings between adjacent PS spheres, which leads 

to fewer device contacting points in the initial state. Sufficient space between 

fragments allows the device to create more contacting channels under external forces. 

As a result, the resistance change of the sensor increases as the weight ratio of PS 

spheres increases, as shown in Figure 4.11(b). However, the proportion of PS spheres 

cannot consistently be increased. When the weight ratio of spheres is larger than 0.4 

wt%, the surface of the rGO film arises some small cracks (Figure 4.12 (b) and (c)). 

Therefore, the 0.4 wt% doping PS sphere performs best as the resistance change 

reaches 66% under 10 N pressure. 

 

Figure 4.12 The photographs of the flexible sensor: (a) non-doped GO film; (b) 2 μm PS 

spheres doped GO film at 0.5 wt%; (c) 2 μm PS spheres doped GO film at 1 wt%; (d) 2 μm 

PS spheres doped GO film at 0.4 wt%; (e) 2 μm PS spheres doped GO film at 0.4 wt%, and 

half part is reduced by laser, which shows the color of the film changes from the dark brown 

to black; (f) 2 μm PS spheres doped rGO film at 0.4 wt%. 
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Moreover, to estimate the detection limit, the resistance change of the rGO/PS device 

is measured as the load decreases. Figure 4.13(a) shows the pressure dependence of 

the resistance change ratio of the rGO/PS sensor, where the resistance changes about 

6% under 2 g weight, which is a testament to the outstanding sensitivity of our 

piezoresistive sensor. Furthermore, the piezoresistive sensor shows rapid response and 

relaxation properties to instantaneous pressure with good reproducibility. The test was 

repeated three times, and the minimum response and relaxation times were about 186 

ms and 378 ms, respectively (Figure 4.13(b)). In addition, the durability of the 

rGO/PS sensor was tested using a stable vibration platform. To evaluate the 

mechanical durability of the fabricated sensor, the loading-unloading test was 

performed under 3 N force and 0.3 Hz frequency. After 1000 cycles, the total 

resistance and waveform were almost unchanged (Figure 4.13(c)).  

Since the developed flexible piezoresistive sensor can work as a wearable device, the 

stability of the sensor in different humid environments is necessary for practical 

applications. Herein, the resistance of the sensor under different humidity (from 40.46% 

to 93.2%) was tested. Although the relative humidity changed by over 40%, the 

resistance of the developed sensor remained stable (Figure 4.14(a)). Besides, the 

responses of the sensor during finger tapping movements in air and water at room 

temperature were also evaluated. As shown in Figure 4.14(b), it is clearly seen that the 

resistance changes of the sensor in air and water were similar. All the above results 

show that the sensor exhibits good waterproof performance. Therefore, high 

sensitivity, fast response, excellent stability, outstanding flexibility and 

waterproofness give the sensor great advantages in wearable systems. 
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Figure 4.13 (a) The resistance change of the rGO/PS sensor depends on different weights. (b) 

The piezoresistive sensor shows rapid response and relaxation time. (c) Test the repeatability 

performance of 1000 cycles under a pressure of 3 N.  
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4.4 Sensor-Machine Interface Design and Analysis 

4.4.1 Experimental Setup and Data Collection 

The superior performance results of fabricated rGO/PS sensors enabled us to integrate 

them in a wristband device. Photographs of the wristband consisting of an array of 

five flexible rGO/PS piezoresistive sensors are shown in Figures 4.15, which shows 

excellent flexibility. Besides, the weight of the whole wristband is only 2.8 g. Thus, 

high flexibility and lightweight make the wristband comfortable to wear. 

Figure 4.14 (a) The resistance value of the developed sensor under different humidity 

environments. (b) A comparison of the resistance changes of the sensor during finger tapping 

movements in air and water at room temperature. 
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Figure 4.15 Photographs of flexible piezoresistive wristband. 

Figure 4.16 (a) Circuit schematic diagram and (b) PCB board layout for piezoresistive 

wristband signals transfer.   
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The rGO/PS piezoresistive smart wristband converted pressure signals from tendon 

movements around the wrist to resistance variations that were then transferred to the 

voltage readings accordingly through the voltage divider circuit with an additional 5 

kΩ resistor, according to the sensors’ initial resistance. The circuit schematic diagram 

and PCB board layout are shown in Figure 4.16.  

The voltage calculated between the piezoresistive sensor is: 

𝑉𝑜𝑢𝑡 =
𝑉

1+
𝑅𝑠𝑒𝑛𝑠𝑜𝑟

𝑅

                                                (4.1) 

Afterwards, the five-channel output voltage signals were transmitted wireless using an 

Arduino Nano Bluetooth module to a computer terminal. Data was collected using a 

LabVIEW interface with a sampling rate of 40 Hz and stored as a five-dimensional 

vector in the computer for post processing, including the remove baseline drift, find 

active signal, feature selected and using SVM algorithm to classify the gestures in the 

MATLAB. The schematic diagram of hand gesture recognition system is shown in 

Figure 4.17. 

 

 

Figure 4.17 Schematic diagram of hand gesture recognition system. 
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The flexible wristband was placed on the left wrist of the subjects under comfortable 

tightness without blood restriction, pain and movement limitation. Three sensors were 

placed on the underside of the wrist because of the high density of tendons in this 

location, while the other two sensors were fixed on the backside. For hand gesture 

recognition, five healthy subjects (3 female and 2 male) aged between 23 to 27 were 

invited to take part in this experiment. The average wrist circumference of the five 

subjects was 161 ± 9 mm, and two of them were used to wearing a mechanical watch 

during their daily life. Before the experiment, all subjects were provided informed 

written consents and the experiments had been approved by the Ethics Committee of 

university.  

All subjects were instructed in advance about the data collecting process and the way 

of wearing the wristband. The subjects sat in front of a desk and put their elbow on 

the desk with their forearm raised. The subjects were asked to perform 12 different 

hand gestures, including both finger flexion and wrist movements. Each subject 

conducted two trials on one gesture: one record contains 10 repetitive gestures as a 

training set to train the classification model, and the other record contains 5 

repetitions to test the accuracy of the classification algorithm in the recognition step. 

During the test, the subjects held each gesture for 2 seconds and rested for 5 seconds 

between gestures. The subjects rested for 2 minutes between each trial to avoid 

fatigue. The total experiment time for each subject was around 1 hour.   

Figure 4.18 presents the corresponding signals and their pressure maps on the 

wristband for 12 hand gestures. Figure 4.18 also shows the pressure level on each 

sensor and demonstrates the relationship between the gestures and their corresponding 

pressure values at the wristband locations. 
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4.4.2 Classification Results of Hand Gestures 

The acquired data is a mixture of output data from the rGO/PS sensors, time-varying 

offset and noise. This noise was challenging to completely eliminate using the 

analogue conditioning circuit, since it may come from sensors, equipment, power 

lines or electrical radiation from the environment. A low pass filter was used to 

remove undesirable noise in this case. In the meantime, the baseline drift was also 

removed. The output signal of the piezoresistive sensor usually showed one noticeable 

mutation generated by the motion. Due to this characteristic, peak finding was used to 

detect mutations and their locations for the input vector. After finding peaks in the 

signal, 200 points were taken before and after the peak to get a complete dynamic 

gesture signal. To avoid intercepting the same data multiple times, the spacing 

between adjacent peaks should be more than 300 points. Herein, the whole signal was 

truncated to small segments according to the maxima of gesture signals. 

The numerical data from the piezoresistive sensor varied significantly from one 

Figure 4.18 Generated signal patterns for different hand gestures, and the corresponding 

pressure maps on the smart wristband. 
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participant to another. Notably, the difference in wrist size, tendon strength, sensor 

location and gesture habit for subjects would affect the overall dataset. In this case, 

instead of using raw data to feed the SVM classifier, 35 statistical features were 

chosen as more compact and representative information to characterize the data, 

including mean, maximum, minimum, peak to peak, variance, percentiles, as well as 

the mean of the cross-correlation function contains the autocorrelation sequences for 

each channel of the dataset. The details of the feature extraction can be found in Table 

4.2. 

Feature extraction Number of features 

Mean  5 

Maximum 5 

Minimum 5 

Peak to peak 5 

Variance 5 

75th percentiles 5 

Cross correlation (Mean) 5 

Table 4.2 Features extracted from the wristband signals. 
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Total number of features 35 

A polynomial-kernel SVM was implemented to train the pre-processed features and 

reconstruct hand gestures. A kernel function of the 3-polynomial order was used to 

map the information to a higher dimension. The overall classification accuracy of the 

trained model for hand gesture recognition was 96.33%. The confusion matrix of the 

classification result is shown in Figure 4.19(a). The matrix row represents the test 

samples in an actual class, while the column represents a predicted class. The frequent 

misclassification occurred between Gesture 7 and Gesture 12, where they have similar 

pressure patterns on the wristband.  

For only the finger flexion, the accuracy reached 97%. Meanwhile, the accuracy of 

the wrist movements can achieve 100% because movements are more distinguishable. 

The confusion matrixes are shown in Figure 4.19(c) and (d). For visualization 

purposes, t-distributed Stochastic Neighbour Embedding (t-SNE) was performed on 

the feature vectors. t-SNE is a popular nonlinear dimensionality reduction method that 

is well-suited to visualizing high-dimensional datasets. Using data visualization 

methods, Figure 4.19(b) demonstrates the feature clustering result of 12 gestures for 

the input layer in a two-dimensional space, where each colour represents a single 

gesture group.  
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4.4.3 Control Robot Hand in Real Time 

A proof-of-concept was developed that allowed humans to interact with a robotic 

hand in real-time by using the SVM algorithm. The schematic diagram of the for HMI 

is shown in Figure 4.20. The rGO/PS wristband was bound to the user’s wrist to 

capture the tendon movements for different hand gestures. Moreover, signals 

generated by the piezoresistive sensors were transmitted wirelessly to the computer. 

Figure 4.19 (a) Classification confusion matrix for all 12 hand gestures, the accuracy was 

96.33%. (b) t-SNE analysis for all 12 gestures. (c) Classification confusion matrix for 8 finger 

flexion, the accuracy was 97%. (d) Classification confusion matrix for 4 wrist movements, the 

accuracy was 100%. 
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After the pre-processing, each gesture signal was windowed to perform feature 

extraction. A LabVIEW interface displayed the real-time signals and the recognition 

results (Figure 4.21). The results were transmitted to the robotic hand for real-time 

control. The experimental setup is shown in Figure 4.22. As shown in the Figure 4.23, 

different hand gestures were successfully translated from the human hand to the 

robotic hand. There is about 1 second delay in the system. This real-time HMI 

application, which has been integrated with flexible rGO/PS sensors, shows excellent 

capability in continuous human motion monitoring and robot control, which have a 

promising potential for the use in remote robot-assisted precision operations. 

 

 

 

 

Figure 4.20 The schematic diagram of the proof-of-concept real-time control for HMI. 
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Figure 4.21 LabVIEW interface of collecting gesture signals and showing recognition results 

to control a robotic hand in real-time. 

Figure 4.22 Real-time robotic hand control with flexible piezoresistive wristband.  
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4.5 Summary 

A flexible and highly sensitive piezoresistive sensor has been demonstrated, as well as 

its application in a wearable hand gesture recognition system. The sensor was 

deposited with a mixed solution of rGO and PS spheres, where the spheres acted as 

insulators to separate the rGO fragments, resulting in a larger contact resistance 

change under pressure. We observed that doping different sizes and weight ratios of 

spheres influenced the sensing performance of the device. Therefore, by optimizing 

our design, a maximum resistance change of 66% was achieved when doping 2 µm 

spheres at 0.4 wt%, which is more than 4 times higher than non-doped rGO sensors.  

Therefore, a highly flexible wristband was designed based on rGO/PS sensors to 

Figure 4.23 Robotic hand controlled by flexible wristband. 
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capture pressure distribution around the wrist. Data processing methods were used to 

truncate signal segments and extract feature information. In combination with an 

SVM classifier, 12 hand gestures were successfully recognized with a classification 

accuracy of 96.33%. To further support the use of our wristband device in an HMI 

application, we developed a real-time system that allows the user to control a robotic 

hand. The above results suggest that the flexible rGO/PS piezoresistive sensor offers 

excellent characteristics to assemble smart learning algorithms for next-generation 

wearable HMI. 

A detailed comparison of our system with existing state-of-the-art wristband devices 

is shown in Table 4.3. The selected publications are the state-of-the-art studies with 

the following criteria: 1) published in recent 5 years, 2) wrist-worn sensors for gesture 

recognition, 3) machine learning algorithms were used for classification and 4) 

yielded acceptable results. Our custom-designed wristband is fully flexible and 

lightweight, which is essential for device wearability. In comparison with other wrist-

worn methods, the rGO/PS flexible wristband demonstrated in this chapter has fewer 

sensor channels while achieving higher classification results. 

 

 

 

 

 



Piezoresistive Sensor for Hand Gesture Recognition 

87 

 

Sensor type Number 
of 
sensors 

Number 
of 
gestures 

Number of 
Participants 

Algorithm Accuracy  Flexible  Weight  Ref 

Triboelectric
+Piezoelectir
c  

8 26 Not mention  LDA 92.6% No Not 
mention 

[136] 

sEMG+IMU 4 sEMG+ 
1 IMU 

8 air 
gesture +    
4 surface 
gesture  

4 LDA 92.8%/ 
88.8% 

No 56g [137] 

Piezoelectric 
sensor 

6 5 1 SVM 97% No 1.8g+ 
18.6g 

[61] 

Barometric 
Pressure 
sensor 

10 19 10 LDA/SVM/
KNN 

94% No 3.7g+ 
18.6g 

[138] 

Capacitive 
sensor  

5 3 1 SVM and 
DAG  

90% No Not 
mention 

[100] 

Electrical 
impedance 
tomography 

16 8 2 ANN 99.5% No Not 
mention 

[139] 

Microphones 40 36 10 LDA/SVM 91% No Not 
mention 

[140] 

Inertial 
sensor 

1 12 5 ADBA 99.2%  No 26g [141] 

Piezoresistiv
e sensor 

5 12 5 SVM 96.33% Yes 2.8g This 
work 

 

  

 

 

Table 4.3 Performance comparison of hand gesture recognition system with rGO/PS flexible 

wristband and similar wristband products. 
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Chapter 5 

Piezoresistive Sensor for Speech 

Recognition 

Vocal cords, as folds of pharyngeal tissue, are the main structures of human 

vocalization. During vocal actions such as speaking and singing, the vocal folds 

vibrate by interacting with the air. Lesions of the vocal cords can lead to hoarseness or 

even complete loss of voice, resulting in communication barriers [142]. In this case, 

speech-assistive devices have been proposed to help patients with language 

expressions. Traditionally, the hand-held electrolarynx requires the user to press the 

device firmly against the neck or inside the mouth when speaking, which causes 

significant distress when trying to speak while performing two-handed tasks such as 

driving or eating [143, 144]. Therefore, flexible and wearable artificial larynx devices 

would promote the convenience of communication for mute patients. 

Different flexible force-sensitive sensors show great potential in various fields such as 
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electronic skins [33], health monitoring [145] and artificial intelligent systems [126, 

146] since they can easily convert mechanical stresses into electrical signals. 

Nowadays, plenty of pressure sensing mechanisms have been explored including 

piezoresistive [147], capacitive [148], piezoelectric [149] and triboelectric [150, 151]. 

In particular, piezoresistive sensors stand out as promising candidates due to their 

low-cost, low power consumption and easy signal collection [152, 153]. To achieve 

higher sensitivity, the architectural design has been incorporated into sensor 

development. The microstructures are designed to amplify mechanical loading effects. 

Such microstructures include geometry structures such as the dome [32], wave [33], 

pillar [34], fibres [36] and pyramid [37] shapes, as well as bionic patterns such as 

banana leaves [39], petals of rose [40] and mimosa [41]. The resulting resistance 

changes in the material system can be enlarged and lead to better sensitivity. However, 

these template-assisted methods often require complex preparation processes and 

high-cost fabrication tools. For this reason, easy fabrication methods were required to 

build the microstructures. In this chapter, we demonstrate a new fabrication method 

that involves spraying PS spheres using an airbrush, which is a simple and time-

saving method for fabricating the microstructures. Unlike other design strategies, the 

microstructures can be changed simply by varying the weight ratio and size of the PS 

spheres. 

The selection of suitable conductive materials for the sensor was based on charge 

transport properties in piezoresistive sensors. In recent years, a variety of conductive 

materials, such as carbon nanotubes [154], carbon black [155], metal nanowires [156], 

and graphene [157], have been used in piezoresistive sensors. Generally, charge 

transport is easier and quicker in highly conductive materials such as AgNW, while it 
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is slower and less efficient in materials such as rGO which has defects and oxygen-

containing groups on the surfaces and edges[134, 158]. With the two materials 

combined, their electrical properties can be enhanced due to synergistic effects. 

Therefore, the variation in conductive pathways is crucial during our design of 

piezoresistive sensors.   

Besides, a significant body of research has been devoted to using flexible sensors to 

detect human neck muscle movements in recent years. For example, an intelligent 

artificial throat based on laser-induced graphene was able to generate sound and 

detect simple throat vibrations with different intensities or frequencies [159]. Another 

artificial graphene throat was proposed that also integrated both sound detection and 

emission in a single device, which can detect simple pronunciations when attaching 

the device to the human neck [160]. However, these devices only initially detected 

throat movements without further exploring the feasibility of implementing artificial 

intelligence for speech recognition. In this case, an MXene-based artificial throat 

device was developed to detect different pronunciations of several different words, 

and it can also recognize long vowels and short vowels of the syllable "a" with a 

deep-learning algorithm when the device is attached to the vibrating membrane of a 

loudspeaker [107]. However, this research still did not directly recognize human 

throat pronunciations to truly enable human-machine interaction. However, this 

research did not attach the sensor to human throat for experimental data collection. 

More recently, a graphene-based wearable sensor was attached to human throat to 

classify the words and throat movements with the accuracies of 55% and 85%, 

respectively, by using the neural network [161]. In this case, a more accurate system 

should be developed for speech recognition by wearable sensors. 
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Herein, we proposed a high-performance flexible piezoresistive sensor with a simple 

fabrication process that acts as an intelligent throat to recognize the different throat 

pronunciations. The sensor was constructed by two PDMS layers that coated by 

AgNWs and rGO films, respectively, where the microstructures were built by pray 

coating the PS spheres between the layers. Unlike other architecture design strategies, 

the microstructure can be changed simply by varying the weight ratio and size of the 

PS spheres. Compared with the piezoresistive sensor fabricated in Chapter 4, the as-

prepared piezoresistive sensor demonstrates excellent sensing performance under the 

subtle pressure range: high sensitivity (21.8 kPa-1), ultralow detection limit (2.1 Pa), 

quick response time (162 ms) and cycle stability (> 5000 times). The excellent 

properties make the sensor able to detect small physiological signals such as finger 

bending, eye blinking and throat movements. Moreover, an intelligent artificial throat 

has been realized by combining the flexible piezoresistive sensor with the ANN 

algorithm, which not only detects sounds but also classifies the pronunciation of 

different words. When attaching the sensor on the human throat, it can distinguish the 

throat vibrations of speaking five different words with a high accuracy of 96%. 

5.1 Structure Design of Piezoresistive Sensor 

The schematic diagram of the sensor is illustrated in Figure 5.1(a). Briefly, the sensor 

consists of two conductive layers of AgNWs and rGO, and PS spheres as the 

microstructures sandwiched between them. The simple device structure allows the 

proposed sensor to have an easy, convenient and low-cost manufacturing process, 

including spray coating technology for AgNWs and PS spheres (Figure 5.1(c) and (d)) 

and laser reduction technology for rGO preparation (Figure 5.1(e)). The laminar-
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structured device also possesses remarkable flexibility, as shown in Figure 5.1(b), 

where the sensor was folded at 180° in a bending state without any damage. The 

fabricated piezoresistive sensor with the dimension of 25 mm × 15 mm, where the 

area of the function layer is 15 mm × 8 mm. The thickness of the sensor was 0.65 mm. 

 

5.2 Fabrication Process of Piezoresistive Sensor  

First, two PDMS substrates were prepared by mixing PDMS monomer and curing 

agent (Sylgard 184) in a weight ratio of 10:1 for 15 min, and then the mixture was 

poured into two plastic petri dishes. The petri dishes were placed in a vacuum 

chamber to remove air bubbles at ~1×10-2 MPa for 30 min. After curing at 70°C for 1 

Figure 5.1 (a) Schematic diagram of the piezoresistive sensor. (b) Photograph of the 

fabricated sensor which shows outstanding flexibility. (c) AgNWs solution was sprayed onto 

the as-prepared PDMS film. (d) PS solution was sprayed onto the AgNWs film. (e) The rGO 

film was prepared by laser-induced reduction that directly converted GO into rGO.  
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h, the solid PDMS films were peeled off and placed on glass plates. 

The second step is to prepare the AgNWs layer and two AgNWs flexible electrodes. A 

2 mg/mL AgNWs solution was prepared by adding 1 mL of 20 mg/mL AgNWs stock 

solution (Diameter: 50 nm, length: 20-60 µm) to 19 mL of absolute ethanol. The 

diluted solution was stirred for 30 min to obtain a homogeneous solution. A 

rectangular 3D printed mask (15 mm x 8 mm) was placed on one solid PDMS film, 

and a 3D printed mask with two parallel slits was placed on the other PDMS film. The 

glass plates were placed on a hot plate to reduce the drying time of AgNWs solution 

during spraying and the temperature was set to 50°C to avoid deformation of the 3D 

printed masks. The exposed PDMS areas were sprayed with AgNWs solution using an 

airbrush with a 0.3 mm nozzle. The spraying was repeated every 30 s for a total of 20 

times to obtain a uniform AgNWs layer. The AgNWs/PDMS was then thermally 

annealed in an oven at 150°C for 30 min. 

The AgNWs/PMDS film with a rectangular shape worked as the functional layer. 

Different weight ratios (0.25 wt%, 0.025 wt% and 0.0025 wt%) of the PS spheres 

were prepared by diluting the original 2.5 wt% PS spheres (Diameter: 2 μm, 20 μm 

and 40 μm) with absolute ethanol, and magnetic stirred for 30 min. The PS spheres 

were sprayed on the AgNWs layer 2 times with an interval of 1 min for complete 

alcohol evaporation, then waiting for assembling.  

Meantime, a 2mg/mL GO solution was obtained by adding 1.6 mg GO powder into 8 

mL of deionized water. The prepared solution was exposed to a 50 W ultrasonic 

transducer (bisafer250up, 19-25 kHz) for 15 min to obtain a highly dispersed GO 

solution. The PMDS film with two AgNWs electrodes was covered by another 
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rectangular 3D printed mask (15 mm ⅹ 8mm), and 300 μL GO solution was dropped 

on the exposed area and then placed in an oven at 40℃ for 3 hours to get a dense film. 

Then the GO film was reduced by the laser engraving machine to get the rGO film. 

Finally, put the AgNWs/PS film on top of the rGO functional layer, and the whole 

sensor was encapsulated by the polyurethane film. 

5.3 Characterization and Working Principle 

To further investigate the morphology of the fabricated sensor, SEM images were 

taken after each step of the fabrication process. Figure 5.2(a) shows the surface 

morphology of the AgNWs on the PDMS substrate after spray coating 20 times, 

where a dense network of AgNWs is observed. The average diameter of the randomly 

oriented AgNWs is about 100 nm. The dense AgNWs film owns high conductivity, 

and the resistivity reaches 3 Ω/cm. Figure 5.2(b) shows the top view of PS spheres on 

the AgNWs film, where the microspheres are randomly scattered on the surface. 

Figure 5.2(c) is the cross-sectional view of the rGO film, where the stacked segments 

of rGO can be seen clearly. Compared to the GO film, the rGO becomes more porous 

after the laser reduction, and the resistivity is about 400 Ω/cm.  

 

Figure 5.2 SEM image of (a) AgNWs, (b) PS spheres on the AgNWs film and (c) rGO. 
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To understand the basic working principle of the device, we first prepared the 

AgNWs/rGO device without PS spheres. Figure 5.3(a) briefly depicts the sensing 

mechanism of the piezoresistive sensor without PS spheres. When external force is 

applied to the sensor, the AgNWs layer and the rGO layer will be in close contact and 

generate conduction channels. It is worth noting that the resistance of AgNWs 

network is much smaller than that of rGO, so the current tends to flow through 

AgNWs, resulting in a significant reduction in the total resistance of the device. 

However, from the cross-sectional SEM image of the device (Figure 5.3(b)), there are 

some contact points between the AgNWs layer and the rGO layer without external 

pressure. These existing conduction points lead the device to poor response under 

pressure. In order to evaluate the sensing performance of the device, an LCR meter 

was employed to record the real-time resistance when an external mechanical force 

(0-10 kPa) was applied to the sensor. Figure 5.4(a) indicated the resistance change of 

AgNWs/rGO device on various pressures. The relative resistance change of the device 

is defined as ΔR/R (%), where R is the resistance of the sensor under no pressure, and 

ΔR equals the resistance under pressure minus R. In addition, the sensitivity of a 

pressure sensor is the key parameter to evaluate the performance of a pressure sensor 

and is described by S = (ΔR/R)/ΔP. In this case, the resistance change of the 

AgNWs/rGO device is about 28% under 10 kPa, and the sensitivity is 0.161 kPa-1 in 

the low-pressure range. The minimum detection limit of the device was also tested by 

applying different pressure. From Figure 5.4(b), the sensor was still sensitive under 

20.6 Pa pressure, with a 4% change in resistance.  
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Figure 5.3 (a) Schematic diagram of the working principle of the AgNW/rGO piezoresistive 

sensor without PS microspheres during (i) release and (ii) pressure cycles. (b) Cross-sectional 

SEM image of AgNW/rGO piezoresistive sensor, indicating some contact points between the 

AgNWs layer and the rGO layer at release state. (d) Schematic diagram of the working 

principle of the AgNW/PS/rGO sensor during (i) release and (ii) pressure cycles. (d) Cross-

sectional SEM image of AgNW/PS/rGO piezoresistive sensor, where PS spheres separate the 

AgNWs layer from the rGO layer at release state. 

Figure 5.4 (a) The resistance changes of the AgNWs/rGO sensor without PS spheres under 

different pressure. (b) The resistance changes of the AgNWs/rGO sensor without PS spheres 

under different pressure. 
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To improve the device performance, PS spheres were involved between the AgNWs 

and rGO layers. The working principle is illustrated in Figure 5.3(c), that PS spheres 

are worked as insulators to separate the AgNWs layer from the rGO layer in a stress-

free state, thus increasing the resistance variation of the device under pressure, which 

is also identified by SEM image of piezoresistive sensor with 40 μm PS spheres 

(Figure 5.3(d)).To further investigate the role of PS spheres, the pressure-response 

behaviour of the piezoresistive sensor with 2 μm, 20 μm and 40 μm diameters of PS 

spheres under 10kPa pressure was studied by varying the weight ratios, as shown in 

Figure 5.5. At a small weight ratio of 0.0025 wt%, the device with 2 μm PS spheres 

exhibits a high resistance variation of more than 50%, while the devices doped with 

larger spheres (20 μm and 40 μm) possess poor response. This is because the number 

of 20 μm and 40 μm spheres is less than the same weight of 2 μm spheres, so a very 

small number of spheres are sprayed on the AgNW layer at a small weight ratio. The 

distribution of PS spheres is shown in Figure 5.7. The variation in the resistance of the 

device increases with the increase of the weight ratio. At 0.025 wt%, the resistance 

change is 78% for the device with 40 μm spheres, 57% for the device with 20 μm 

spheres, and 70% for the device with 2 μm spheres which is the best performance for 

doping the 2 μm spheres. The device with 40 μm spheres at 0.25 wt% reaches the best 

performance that the average resistance change is about 95%. Further increasing the 

weight ratio, the device showed a decrease in the resistance change because there 

were too many spheres between the AgNW and rGO layers, covering almost the entire 

bottom layer. Therefore, fewer contact points are created between the two conductive 

layers under external forces. As a result, there is an optimal doping ratio for different 

sizes of PS spheres.  
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Figure 5.5 The resistance changes of the sensor with different diameters of PS spheres at 0.25 

wt%,0.025 wt% and 0.0025 wt% under 10 kPa. 

Figure 5.6 (a) The resistance changes of the sensor with 40 μm PS spheres at 0.25 wt% and 

the sensor without PS spheres under different pressure. (b) The resistance changes of the 

sensor with 40 μm PS spheres at 0.25 wt% under different pressure. 
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Figure 5.7 SEM images of (a) 2 μm PS spheres at 0.0025 wt%. (b) 2 μm PS spheres at 0.025 

wt%. (c) 2 μm PS spheres at 0.25 wt%. (d) 2 μm PS spheres at 2.5 wt%. (e) 20 μm PS spheres 

at 0.0025 wt%. (f) 20 μm PS spheres at 0.025 wt%. (g) 20 μm PS spheres at 0.25 wt%. (h) 20 

μm PS spheres at 2.5 wt%. (i) 40 μm PS spheres at 0.0025 wt%. (j) 40 μm PS spheres at 0.025 

wt%. (k) 40 μm PS spheres at 0.25 wt%. (l) 40 μm PS spheres at 2.5 wt%. 
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To further investigate the pressure sensing performances of the device, Figure 5.6(a) 

shows the dependence of the resistance change of the device with 40 μm spheres at 

0.25 wt% on various pressures. The pressure sensitivities were calculated by dividing 

the resistance response–pressure curves into three linear parts. The AgNW/PS/rGO 

device was sensitive to a low-pressure range, where the device presented a high 

sensitivity of 21.8 kPa-1 in the range of 0–33 Pa, which is more than 135 times higher 

than AgNW/rGO sensor. The pressure sensitivities of the device were 0.2 kPa-1 in the 

range of 33 Pa –833 Pa and 0.007 kPa-1 in the range of 833 Pa–10 kPa. The reduced 

sensitivity can be attributed to the contact between the top layer and the bottom layer 

gradually approaching saturation in the high-pressure range. 

To further investigate the pressure response of the device in the low-pressure range, 

different pressure were applied on the device. In Figure 5.6(b), the resistance change 

increase in accordance with the increase of applied pressure, indicating the device is 

capable of distinguishing different levels of pressure. It is worth mentioning that the 

device can detect ultra-light weight. The resistance drops 1.7% when 2.1 Pa pressure 

applied on it. Moreover, the device shows a rapid response and recovery time of 162 

ms in Figure 5.8(a). The device also shows excellent durability and stability during 

long-term operation. As shown in Figure 5.8(b), the change in resistance of the 

fabricated device remained fairly stable (only dropped by 1.38%) after 5000 cycles of 

continuous press-release process. The distribution of the PS spheres also observed 

before and after the durability test, as shown in Figure 5.9. The density of PS spheres 

on the AgNW layer decreased after the test, while some PS spheres were observed on 

the rGO layer. Thus, the PS spheres were not fixed on the AgNW layer. Indeed, they 

were also attached to the rGO layer when two layers connected by applying pressure.  
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Figure 5.8 (a) The response and recovery time of the prepared sensor. (b) Test of the 

repeatability performance over 5000 cycles under 10 kPa.  

Figure 5.9 (a) The PS sphere on the AgNW layer before testing. (b) The PS spheres on the 

AgNW layer after testing. (c) The PS spheres on the rGO layer after testing. 
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Furthermore, the sensor’s performance for changes in ambient temperature and 

humidity were studied. As shown in Figure 5.10(a), the resistance change decreased 

by 4% when temperature increased from 20 °C to 50 °C. As shown in Figure 5.10(b), 

when the relative humidity changed by about 30%, the resistance of the developed 

sensor remained stable. Thus, the temperature and humidity have little influence on 

the response of the sensor in comparison to the effects of pressure. 

 

The device can also respond to different mechanical forces, such as compression and 

bending, as illustrated in Figure 5.11(a) and (b), indicating the multi-functionalities 

and versatilities of the device. The resistance response of the fabricated sensor before 

and after multiple bending (20 times, 50 times and 100 times) was tested, and the 

bending angle was larger than 90°. As shown in Figure 5.12, the resistance response 

of the sensor was stable, and the resistance change was about 87% before bending 

tests. After 20 times bending, the resistance response of the sensor fluctuated slightly 

Figure 5.10 (a) The resistance value of the developed sensor under temperatures.The 

resistance change decreased by 0.04 when temperature increased from 20 °C to 50 °C.  

(b) The resistance value of the developed sensor under different humidity 

environments. The resistance of the developed sensor remained stable when the 

relative humidity changed by about 30%. 
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when pressure was applied. The initial resistance of the sensor was increased, while 

the resistance under pressure was almost unchanged. Thus, the resistance changes of 

the sensor increased after 20 bending times. The same situation also happened after 

the sensor bent 50 and 100 times, the signal fluctuations got bigger and bigger, and 

the initial resistance of the sensor also continually increased. It is because the rGO 

structure became porous after bending. Some connections between rGO fragments 

were broken, which resulted in the resistance of the rGO layer to increase. As shown 

in Figure 2(c), the initial resistance of the sensor relied on the rGO resistance. 

Therefore, the initial resistance of the sensor increased as the rGO resistance 

increased after bending. 

Meantime, benefiting from the remarkable sensitivity and stability of the fabricated 

AgNW/PS/rGO sensor, it can be used as a wearable device for human motion 

detection. The device can be easily mounted on different body parts due to its small 

size, lightweight and excellent flexibility. As shown in Figure 5.11(c), the pressure 

sensor was placed on the finger to detect the finger-bending movements. Figure 

5.11(d) illustrates the resistance response of the eye blinking. Moreover, the different 

wrist bending angles of 30°, 60° and 90°can be observed, and the resistance change 

was 38%, 50% and 88%, respectively. The results illustrate that the detected 

waveform positively correlates with muscle contraction intensity. When attaching the 

device to the human throat (Figure 5.11(f)), different throat movements are able 

distinguished based on the unique characteristic waveforms. Consequentially, the 

device shows attractive potential in the field of wearable applications. 
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Figure 5.11 The prepared sensor was used to monitor different mechanical forces (a) 

compression and (b) bending, as well as various human body activities (c) finger movements, 

(d) eye blinking, (e) wrist flexion at different angles and (f) throat movements. 

Figure 5.12 The resistance changes of the sensor before and after repeated bending. 
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5.4 Sensor-Machine Interface Design and Analysis 

Due to the high sensitivity of the piezoresistive sensor in low pressure range, 

detection of small vibration and muscle motions are more suitable for this sensor. In 

this case, a speech recognition system was established based on the fabricated device 

to distinguish different pronunciations to help patients with communication. The 

system contains an ultra-sensitive flexible piezoresistive device, a microcontroller 

(Arduino Nano) with a Bluetooth module and a computer terminal. The device was 

attached to the throat of a participant to detect muscle movements during different 

pronunciations. The detected resistance data were transferred to the corresponding 

voltage readings through a voltage divider circuit. Then the readings were wirelessly 

transmitted to the computer terminal for post-processing.  

A total of five words were collected, which are high frequency comes up in the health 

monitoring situation, including two monosyllabic words: "sick" and "help" and three 

disyllabic words "doctor", "patient", and "covid". The detection waveforms of the five 

words are shown in the Figure 5.13(a), and the corresponding peaks of the syllabic of 

each word can be seen clearly. For both monosyllabic words, the valley value of 

"help" is lower than that of "sick", which is probably attributed to the wider mouth 

opening when this word is pronounced, resulting in stronger laryngeal muscle 

stretching and contraction. Meanwhile, for disyllabic words, the waveforms contain 

two valleys according to the syllabic. The first valley of the "doctor" and "patient" is 

higher than the second one, while both valleys of "covid" are almost at the same level. 

This is because the shape of the mouth changes obviously for both syllabics of 

"covid" when pronouncing. Thus, the associated laryngeal muscle movement becomes 
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more pronounced. For post data-processing algorithm, a large amount of data was 

required. Therefore, the participant repeated each word 100 times to demonstrate 

reliability for a total of 500 times acquisition waveforms, in which 80% of the 

collected data are used as the training set and the remaining 20% as the test set. 

 

To classify the throat movements more precisely, an ANN deep learning algorithm 

was involved with good performance. The ANN network was constructed with three 

hidden layers, and each hidden layer had 10 neurons. More parameter settings of 

ANN can be found in Table 5.1, and the performance plot of the ANN mode is shown 

in Figure 5.14. Besides the collected signals, features including mean, minimum, peak 

Figure 5.13 (a) Schematic diagram of the speech recognition process. (b) Cluster results of 

word signals. (c) Classification confusion matrix for 5 different pronunciations. 
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to peak, variance, percentiles, standard deviation as well as kurtosis, width and 

prominence of each curve are extracted from the time domain and also supplied to the 

classifier. To better understand the clustering performance of the dataset, t-distributed 

Stochastic Neighbour Embedding (t-SNE) is utilized to reduce the dimensionality, and 

the visualization results are shown in Figure 5.13(b). The classification accuracy 

reaches 96% for speech recognition by using the fabricated device. The confusion 

matrix of the prediction result is shown in Figure 5.13(c). The classifiers precisely 

separate two monosyllabic words from the others but are confused by " patient " and 

"covid". 

The number of hidden layers 3 

The number of neurons in hidden layers 10 × 10 × 10 

Nonlinear function of the three hidden layers Symmetric sigmoid transfer function,  

Logarithmic sigmoid transfer function, 

Symmetric sigmoid transfer function 

Training goal 10-5 

Training cycles 100 

 

Table 5.1 Parameters for the ANN training. 
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5.5 Summary 

In summary, a new type of piezoresistive sensor was fabricated using PS spheres as 

microstructures that were sandwiched between asymmetric layers of AgNW and rGO. 

An optimisation of the microsphere diameter and weight ratio resulted in an ultra-

sensitive device in the low-pressure range (21.8 kPa−1), which is more than 135 times 

better than the same device without PS spheres. Moreover, the prepared sensor 

exhibits fast response and recovery time properties (162 ms), ultralow detection limit 

(2.1 Pa) and excellent stability (>5000 loading/unloading cycles). These promising 

performance characteristics enable the sensor to monitor subtle human body activities 

and words as a wearable intelligent artificial throat to detect throat vibrations during 

speaking. The device successfully recognizes five different pronunciations by 

incorporating the deep learning algorithm with an accuracy of 96%, which further 

Figure 5.14 Training epoch of the ANN classifier. 
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demonstrates that it can be a valuable tool that facilitates communication for mute 

people. 

A detailed comparison of our system with existing intelligent throats is shown in 

Table 5.2. In comparison with sensors, the flexible piezoresistive sensor with ANN 

algorithm developed in this chapter has achieved a higher classification result. 

 

Sensor type Number of 
sensors 

Number of 
gestures 

Algorithm Accuracy  Flexible  Ref 

Strain sensor 1 13 CNN 86.5% Yes [162] 

Sound detector 1 2 CNN 76.7% Yes [107] 

Strain sensor 1 15 LSTM 55%  Yes [161] 

Piezoresistive 
sensor 

1 5 ANN 96% Yes This 
work 

 

 

  

Table 5.2 Performance comparison of developed flexible sensor and similar intelligent throat 

products. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

This thesis focuses on smart wearable devices based on electromechanical sensors to 

detect different human motions. Compared with traditional wearable applications with 

rigid sensors, the developed devices have advantages in comfortability by using the 

flexible sensors and they are “smarter” by combining with the ML algorithms. 

This research has successfully developed three wearable applications to achieve 

human activities recognition. The thesis firstly introduces different types of pressure 

sensing techniques and provides an overview of current developments in materials 

and structures of wearable electromechanical sensors. Next, ML algorithms were also 

reviewed and the latest ML-assisted wearable pressure sensing systems with 

applications in terms of gesture recognition are highlighted. 

Human hand is an attractive place that can convey rich information when human-



Conclusions and Future Work 

111 

 

human interaction or human-machine interaction. In this case, piezoelectric sensors 

were used to detect finger motions since piezoelectric sensors are sensitive to dynamic 

stimuli. An array of six PZT ceramics were bounded on the human wrist to distinguish 

five fingers when tapping. Different ML algorithms (KNN, BT and SVM) were used 

to classify the collected data from sensors. The classification results of different ML 

algorithms are compared, and it is shown that the SVM algorithm achieved the best 

performance with 100% accuracy when dealing with extracted features.  

Furthermore, to collect more information from the human hand, piezoresistive sensors 

were chosen to collect both static and dynamic information. Herein, a flake-sphere 

hybrid structure of rGO doped with PS spheres was fabricated to develop the highly 

sensitive, fast response and flexible piezoresistive sensor array, which is ultra-light 

(only 2.8 g) and demonstrates remarkable curved-surface conformability. The flexible 

wrist-worn device with a five-sensing array is used to measure pressure distribution 

around the wrist for accurate and comfortable hand gesture recognition. The 

intelligent wristband is able to classify 12 hand gestures with 96.33% accuracy for 

five participants using an ML algorithm. Furthermore, for demonstrating the practical 

applications of the proposed method, a real-time system was developed to control a 

robotic hand according to the classification results. 

In addition, the thesis provides a new approach to achieving speech recognition based 

on the wearable device. In this case, a novel piezoresistive sensor is demonstrated, 

which consists of PS spheres as microstructures sandwiched between AgNWs and 

rGO layers. In fact, changes in the device’s conducting patterns were obtained by 

varying the weight ratio and size of the PS microspheres, which is a fast and 

convenient way to establish microstructures for improved sensitivity. The wearable 
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artificial throat device also exhibits high sensitivity, fast response time and ultralow 

intensity level detection. Moreover, the device’s excellent mechanical-electrical 

performance allows it to detect subtle throat vibrations that can be converted into 

controllable sounds. In this case, an intelligent artificial throat was achieved by 

combining a deep learning algorithm with a highly flexible piezoresistive sensor to 

successfully recognize five different words (help, sick, patient, doctor and COVID) 

with an accuracy exceeding 96%. 

6.2 Future Work 

 Firstly, high performance and flexible electromechanical sensors are vital for 

future wearable electronics. Thus, novel materials, structures and manufacturing 

technologies should be developed to make the electromechanical sensor reliable 

and enduring in operation.   

 Secondly, a multimodal sensing system can be realized by integrating various 

types of functional wearable sensors. Human motions are complex tasks that 

require multiple sensory elements rather than just one type. Each sensing 

technology has advantages and disadvantages. Thus it is possible to leverage the 

strengths of the sensors by integrating them. The fusion of various wearable 

sensors can acquire multimodal sensing data about temperature, pressure, pictures 

or optical information from the human body and the environment. This 

comprehensive information makes it possible to achieve robotic hand and skeletal 

myotubes.  

 Thirdly, data processing of current studies is carried out on the computer after 
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sensor data transmitting wirelessly by the Bluetooth module. This out-sensor 

computation always spends extra time and energy to transmit the data. Therefore, 

in-sensor computing is highly required. Compared with transferring raw signals 

to an external computational device, local processing of collected data from 

wearables has the advantage of reducing the reaction delay and energy usage by 

decreasing the data transmission distance and the computing unit.  

 Finally, widespread adoption of wearable technology is hindered by the duration 

time that they can be used without recharging. To ensure uninterrupted operation, 

wearable devices need a constant and battery less energy supply. Scavenging 

energy from the wearable's surroundings is, therefore, an essential step towards 

achieving genuinely autonomous and self-powered devices. Energy harvesting is 

a promising and efficient technique to generate electricity for powering wearable 

devices in response to body movements. 
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