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Abstract

Solar energy has the potential to enhance the operation of electronic devices profoundly
and is the solution to the most important challenge facing humanity today. Such devices
primarily rely on rechargeable batteries to satisfy their energy needs. However, since
photovoltaic (PV) technology is a mature and reliable method for converting the Sun’s vast
energy into electricity, innovation in developing new materials and solar cell architectures is
becoming more important to increase the penetration of PV technologies in wearable and IoT
applications. Moreover, artificial intelligence (AI) is touted to be a game changer in energy
harvesting. The thesis aims to optimize solar cell performance using various computational
methods, from solar irradiance and solar architecture to cost analysis of the PV system.
The thesis explores the PV cell architectures that can be used for optimized cost/efficiency
trade-offs. In addition, machine learning (ML) algorithms are incorporated to develop
reconfigurable PV cells based on switchable complementary metal-oxide-semiconductor
(CMOS) addressable switches, such that the output power can be optimized for different
light patterns and shading.

The first part of the thesis presents a critical literature review of a range of ML techniques
applied for estimating solar irradiance, followed by a review on accurately predicting the
levelized cost of electricity (LCOE) and return on investment (ROI) of a PV system and lastly,
presents a systematic review (SR) on the discovery of solar cells. Furthermore, the literature
review consists of a thorough systematic review that reveals that ML techniques can speed up
the discovery of new solar cell materials and architectures. The review covers a broad range of
ML techniques that focus on producing low-cost solar cells. Additionally, a new classification
method is introduced based on data synthesis, ML algorithms, optimization, and fabrication
process. The review finds that Gaussian Process Regression (GPR) ML technique with
Bayesian Optimization (BO) is the most promising method for designing low-cost organic
solar cell architecture. Therefore, the first part of the thesis critically evaluates the existing
ML techniques and guides researchers in discovering solar cells using ML techniques. The
literature review also discusses the recent research work done for predicting solar irradiance
and evaluating the LCOE and ROI of the PV system using various time-series forecasting
techniques under ML algorithms.



x

Secondly, the thesis proposes an ML algorithm for accurately predicting solar irradiance
using the wireless sensor network (WSN) relying on batteries that need constant replacement
and are hazardous waste. Therefore, WSNs with solar energy harvesters that scavenge energy
from the Sun are proposed as an alternative solution. Consequently, the ML algorithms
that enable WSN nodes to accurately predict the amount of solar irradiance are presented
so that the node can intelligently manage its energy. The nodes use the panel’s energy to
power its internal electronic components, such as the processor and transmitter, and charge
its battery. Accordingly, this helps the node access an exact amount of solar irradiance
predictions to plan its energy utilization more efficiently, thereby adjusting the operation
schedule depending on the expected solar energy availability. The ML models were based on
historical weather datasets from California, USA, and Delhi, India, from 2010 to 2020. In
addition, the process of data pre-processing, followed by feature engineering, identification of
outliers, and grid search to determine the most optimized ML model, is evaluated. Compared
with the linear regression (LR) model, the support vector regression (SVR) model showed
accurate solar irradiance forecasting. Moreover, from the predicted output calculated results,
it was also found that the models with time duration of 1 year and 1 month have much better
forecasting results than 10 years and 1 week, with both root square mean error (RMSE) and
mean absolute error (MAE) less than 7% for California, USA.

Consecutively, the third part of the thesis evaluates the parameter LCOE using demo-
graphic variables. Moreover, LCOE facilitates economic decisions and quantitative compar-
isons between energy generation technologies. Previous methods for calculating the LCOE
were based on fixed singular input values that do not capture the uncertainty associated with
determining the financial feasibility of a PV project. Instead, a dynamic model that considers
important demographic, energy, and policy data that include interest rates, inflation rates, and
energy yield is proposed. All these parameters will undoubtedly vary during a PV system’s
lifetime and help determine a more accurate LCOE value. Furthermore, comparisons between
different ML algorithms revealed that the ARIMA model gave an accuracy of 93.8% for
predicting the consumer price of electricity. Moreover, the proposed model with two case
studies from the United States and the Philippines is evaluated in detail. Results from these
case studies revealed that LCOE values for the State of California could be almost 30%
different (5.03 ¢/kWh for singular values in comparison to 7.09¢/kWh using our ML model),
which can distort the risk or economic feasibility of a PV power plant. Additionally, the
ML model predicts the ROI of a grid-connected PV plant in the Philippines to be 5.37 years
instead of 4.23 years which gives a clear indication to the client for making an accurate
estimation for the cost analysis of a PV plant.
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Chapter 1

Introduction

1.1 Background

Current miniature portable and implantable devices rely on batteries that need replacement
and are hazardous to patients [1–3]. Surgical removal is required when replacing batteries in
implantable devices, which may be inconvenient for patients [4, 5]. Moreover, implantable
biomedical devices are often powered using wires, which may cause discomfort, skin infec-
tions, and other hazards to patients [6]. The key issues with implanting batteries include metal
poisoning for patients due to battery degradation, thus leading to malfunction in generating
signals and the damage of electronic circuits [7].

Due to their high energy density, scavenging solar energy using photovoltaic (PV) cells
has emerged as a potential and feasible solution to power miniature portable devices [8, 9]. In
general, the architecture of these solar cells can be designed as regular, inverted, mesoporous
or planar structures. Furthermore, solar cells combine various materials to enable efficient
photon absorption, electron transport, and electron extraction to an external circuit. This
means there are vast opportunities for discovering solar cell materials and architectures. In
fact, solar cell fabrication techniques involve optimizing different coating materials, thermal
annealing conditions, encapsulation methods, etc., which often takes place in the research
laboratory [10].

However, despite their benefits, these harvesters still suffer from poor efficiency, weak
stability, rigidity, and a relatively high cost [11]. Promising PV technologies that aim to
overcome issues with rigidity and high cost include Perovskite Solar Cells (PSC), Organic
Solar Cells (OSC), and Dye-Sensitized Solar Cells (DSSCs) [12]. Despite rapid progress in
the PSC and OSC field, the stability and efficiency of these low-cost, thin-film solar cells
are still poor due to the effects of moisture and temperature [13]. Consequently, machine
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learning (ML) and artificial intelligence (AI) can be used to improve the performance and
accelerate the discovery of these low-cost solar cells [14].

From the systems perspective, ML algorithms can also help develop reconfigurable PV
cells based on switchable CMOS addressable switches [5] by developing an optimization
method of switchable CMOS addressable switches, followed by prediction of PV cell
behavior and real-time control of the operation of reconfigurable PV cells in the real-time.
In addition, conjugation is a key characteristic of organic materials, which are frequently
used in such devices, and it plays a crucial part in low-cost solar cells. Conjugated polymers
or tiny molecules with alternate single and double bonds frequently make up the organic
components in solar cells. For the effective conversion of solar energy, conjugation enables
the organic materials to absorb light in the visible region of the spectrum. An exciton, which
is an excited state produced when a conjugated substance absorbs light, can be split into
electrons and holes to produce an electrical current. The performance of low-cost solar
technology depends highly on conjugated materials’ capacity to transport these electrons and
holes through the device effectively [15].

Innovation in developing new low-cost solar cells is needed, which can be achieved
with the help of experimentally validated finite element modelling using software tools such
as Sentaurus TCAD. However, this is a time-consuming effort, and leveraging the power
of AI can be a game changer in discovering new materials and fabrication techniques to
help expedite the process of selection, design, and optimization [16]. Furthermore, the
distribution of electron density in the energy levels of materials used in solar cell architecture,
known as the HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied
Molecular Orbital) pattern, is a crucial factor that affects the solar cell’s efficiency in capturing
photons and producing electrical energy. Matching the HOMO and LUMO levels of different
materials used in the cell is a significant challenge in solar cell design to optimize charge
separation efficiency and minimize recombination, which results in energy loss and decreased
efficiency [17, 18].

To investigate the characteristics of charge carriers (electron and hole) in solar cell
materials, researchers use a method called Transient Decays Measurements (TDM) analysis.
This analysis involves monitoring the decay rate of photo-generated carriers over time
following a transient pulse of light. When the material absorbs sunlight, it creates electron-
hole pairs that produce a photocurrent in the solar cell. The TDM analysis tracks the time it
takes for the photocurrent, which is related to the recombination of electron-hole pairs, to
decay. During the recombination process, charge carriers combine and cancel each other out,
causing energy loss and reducing the efficiency of the solar cell [19].
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Furthermore, in the literature, ML relates to the development and ability of the model to
learn to adapt, forecast, and predict the independent variables [20]. ML algorithms consist of
3 types: Supervised learning, Unsupervised learning, and Reinforcement learning [21]. The
supervised ML approach takes the input data from the user to learn from past experiences
and, accordingly, trains the model [22]. However, the unsupervised ML train model depends
upon the real-time data generated and outputs depending on the information given by the
user. In contrast, reinforcement learning is the subset of ML that enables an AI-driven system
(also known as an agent) to learn by performing tasks and receiving feedback from its trials
and errors [23]. Herein, various ML techniques are discussed in-depth to find an optimized
structure for solar cells [24].

Examples of ML techniques reported in the literature include linear regression, logistic
regression, k-nearest neighbours (KNN), random forest (RF), etc., [25, 26] however; every
problem requires a unique ML algorithm [27]. Every algorithm has unique abilities and data
requirements. For instance, linear regression would not be very helpful due to nonlinear
relations in solar cells. For logistic regression, an assumption that factors are independent of
each other is made, which might not be the case in solar cells. Similarly, KNN aims to locate
the nearest neighbours with the best possible value. So, the use of ML in optimizing solar
cells depends upon the type of experiment, optimizing variables, and data type.

Since the fabrication of OSCs is cheap, most experimental work is carried out via trial
and error, which does not guarantee the best performance [28]. Instead, researchers are
now turning their attention to data-driven techniques for material design and discovery [29].
ML is one of the vital data-driven techniques that is rising to prominence in discovering
new solar cells, forecasting electrical characteristics, and performance prediction without
any experimentation [30, 31]. ML uses algorithms to visualize and analyze data that has
several advantages over traditional programming techniques [32]. Chapter 3 systematically
reviews the different ML algorithms used to find an optimized structure of a low-cost solar
cell. The output power can be optimized for different light conditions and shading depending
on the positioning of the solar cells [33]. The integration of ML methods for designing
low-cost solar cells is thoroughly discussed and, consecutively, explores the literature on
using different ML techniques for the advanced discovery of solar cells.
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1.2 Aim and Objectives

1.2.1 Aim

The thesis aims to present a critical literature review, followed by implementing the most
recent ML algorithms that could be applied to predict the amount of solar irradiance on a
WSN device and, lastly, to develop an ML framework for estimating the LCOE and ROI of a
PV system.

1.2.2 Objectives of the thesis

The following are the key objectives of the MPhil thesis:

1. To present a literature review of the ML techniques for predicting solar irradiance and
estimating a PV system’s LCOE and ROI. Also, to present an SR of research articles
discussing the discovery of low-cost solar cells.

2. To propose an ML model capable of accurately predicting the amount of solar irradiance
from WSNs with solar energy harvesters that scavenged energy from the sun.

3. To propose a dynamic ML model that accurately estimates the LCOE and ROI of a
PV system considering important demographic variables and energy policy data and
includes interest rates, inflation rates, and the energy yield and validate the ML models
with two case studies.

1.3 Motivation of the thesis

The traditional batteries used in miniaturized portable and implantable devices need frequent
change over time and pose a risk to patients. When batteries in implantable devices need
to be changed, surgical removal is necessary, which may be uncomfortable for patients.
Furthermore, wires used to power implantable biomedical devices frequently put patients at
risk for discomfort, skin infections, and other problems. The main problems with battery
implants are metal poisoning in patients brought on by battery deterioration, which results in
signal generation problems and electronic circuit damage. Solar energy harvesting methods
are thus one of the most important battery substitutes. Additionally, WSN nodes also rely
on dangerous batteries that require regular replacement. So, solar energy harvesters on
WSNs scavenge energy from the Sun. The main problem with these harvesters is that solar
power is sporadic. Furthermore, the earlier approaches for figuring out the LCOE relied on
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fixed, singular input values that failed to account for the uncertainty of whether a PV project
would be financially feasible. Therefore, to address these problems, a dynamic model that
incorporates crucial demographic, energy, and policy data, such as interest rates, inflation
rates, and energy yield, is proposed in this thesis.

1.4 Contributions to the thesis

Following are the key contributions that are made to the thesis:

1. Conducted a literature review of research articles involving the prediction of solar
irradiance and estimation of LCOE and ROI of a PV system.

2. Systematically review the literature on low-cost solar cells using ML techniques to
investigate the techniques used for optimizing solar cells with the help of ML.

3. Proposed ML algorithms to accurately predict the amount of solar irradiance so that
node can intelligently manage its own energy and determine the most optimized ML
model for the prediction.

4. Proposed an ML model that accurately estimates the LCOE and ROI of a PV system
using a dynamic model that takes into account important demographic, energy, and
policy data that includes interest rates, inflation rates, and energy yield.

5. Validated the proposed model with two case studies from the United States and the
Philippines to compare various ML models to measure the accuracy and loss function.

1.5 Organisation of the thesis

The organization of the thesis is as follows. Chapter 1 of the thesis discusses the background
of the study under consideration, followed by aims, objectives, motivations, contributions,
and the overall organization of the thesis. A critical literature review for solar irradiance and
LCOE of PV systems, along with the adopted methodology in reviewing the literature for
an SR, is critically discussed in Chapter 2, which also includes the overall results of the SR
in response to the research questions. Consecutively, Chapter 3 showcases ML algorithms
for accurately predicting renewable energy resources and the amount of solar irradiance
that enables WSN nodes. The chapter includes an introduction, a system model, a model
training process, results, and discussions of the proposed ML model. In addition to this,
Chapter 3 also discusses areas of further study, future outlook, recommendations, and open
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research issues. Followed by Chapter 4 presents an ML framework for accurately predicting
the LCOE and ROI of the PV system. Chapter 4 incorporates an introduction, literature
review, methodology, data explanation, results, and discussions of the various ML models.
Lastly, Chapter 5 is the conclusions and future work of the thesis, where the conclusion, open
questions, and future outlook of the thesis are thoroughly discussed.



Chapter 2

Literature Review: Machine learning for
solar cells and PV systems

2.1 Introduction

During the past 5 years, there has been a surge in the use of ML and AI techniques for
designing new solar cells [34, 35]. In this chapter, previously published review papers are
reviewed on this field using ML techniques, and further, discuss their limitations as well as
the contributions that this chapter provides to the literature.

Qiuling et al. [36] reviewed the ML techniques for only perovskite materials design
and discovery. However, their review lacks a comprehensive comparison of ML techniques
for other low-cost solar cells, such as organic, inorganic, hybrid, and DSSCs. Additionally,
Hannes et al. [37] discussed the challenges of ambient hybrid solar cells for IoT devices,
while the paper presented by Hannes et al. [38] reveals the study on solar cell cracks
using statistical parameters of electroluminescent images using ML. However, both studies
presented limited ML algorithms to explore solar cell electrical characteristics.

Furthermore, Yongjie et al. [39] reviewed recent advances in computational chemistry for
OSC discovery and mentioned the DFT, time-dependent DFT, all atomic molecular dynamics,
and coarse-grained molecular dynamics. Although their review covered OSCs, it lacked
the ML techniques to expedite the process. Next, Florian et al. [40] reviewed the literature
on designing light-harvesting devices using ML, but the review was limited to only OSCs.
Likewise, a review paper presented by Sheng et al. [41] covered only ML optimization of
PCSs. The studies presented by Anton et al.[42], Min-Hsuan et al. [43], and Cagla et al.
[16] explored ML approaches to discover solar cell performance analysis. However, a major
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drawback in these studies was that limited ML approaches were discussed and did not involve
the scope for optimization as well as the fabrication of solar cells in the real environment.

Therefore, based on the above, state-of-the-art review articles on ML for solar cell discov-
ery focused mainly on a single ML technique with a set of input data. This chapter initially
presents a thorough literature review of research papers that incorporate ML techniques
for predicting solar irradiance and then reviews the previously published research articles
consisting of ML algorithms for the estimation of LCOE and ROI of a PV system. Lastly,
the chapter aims to systematically review the range of ML techniques for developing solar
cells. These ML techniques include the procedure to pre-process the input data, various
ML algorithms, optimization, and fabrication of the solar cell in a real environment. In this
context, the review goes beyond existing literature, showcasing how various ML techniques
can accelerate the discovery of high-performance, low-cost solar cells.

2.2 ML for Predicting Solar Irradiance

In order to optimize the use of renewable energy sources in WSNs, which are necessary
for long-term network functioning, Sharma et al. [44] suggested an ML-based solution.
The authors provide a model that forecasts future patterns of energy availability and use
using previous meteorological information and sensor readings. Then, in order to reduce the
energy deficit in the network, they utilize a reinforcement learning algorithm to assign energy
sources based on the projected energy availability and consumption patterns. Simulations are
used to assess the suggested strategy, and the results show that it can successfully balance
energy supply and demand while ensuring long-term network operation.

In another study, Sharma et al. [45] evaluated a method for predicting the production
of daily global solar irradiance. The amount of solar energy that can be produced in a
specific place on a given day is predicted by the authors using historical meteorological data
and satellite photos. To create predictive models, they combine feature engineering and
ML techniques like random forest and gradient boosting. The suggested method is tested
on a dataset of solar irradiance measurements obtained from an Indian solar power plant,
and the findings demonstrate that it can predict daily solar irradiance generation with high
accuracy. According to the authors, this strategy can be used to increase the effectiveness
and dependability of solar power generation systems, which can have major positive effects
on the environment and the economy.

Furthermore, to estimate the power production of solar panels in a WSN utilized in
precision agriculture, Dhillon et al. [46] suggested a neural network-based solar energy
forecast model. The amount of solar energy that can be produced by the solar panels is
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predicted by the authors using historical weather data and satellite pictures. The predictive
model is then constructed using a neural network technique, specifically a feed-forward
neural network with backpropagation. The results demonstrate that the suggested method
can estimate solar power generation accurately using data gathered from a WSN installed in
a precision agriculture area. According to the authors, this method can be used to reduce the
amount of energy that WSNs in precision agriculture utilize.

Additionally, the power production was estimated for the solar panels in a WSN utilized
in precision agriculture, Ghuman et al. [47] suggested a neural network-based solar energy
forecast model. The amount of solar energy that can be produced by the solar panels is
predicted by the authors using historical weather data and satellite pictures. The predictive
model is then constructed using a neural network technique, specifically a feed-forward
neural network with backpropagation. The results demonstrate that the suggested method
can estimate solar power generation accurately using data gathered from a WSN installed in
a precision agriculture area. According to the authors, this method can be used to reduce the
amount of energy that WSNs in precision agriculture utilize.

2.3 ML for LCOE of PV System

Numerous examples in the literature describe the statistical and probabilistic models for
calculating the Levelized cost of electricity (LCOE) and energy return on investment (ROI).
For example, K. Branker et al. [48] argued that there is a lack of understanding of the
calculations involving assumptions and justifications for the estimation of LCOE, thus
proving that poor assumptions lead to contradictory results for the calculations of energy
return on investment of a PV system. In their paper, they calculated the LCOE to reduce
the assumptions-based model and represent a more accurate one; however, the study was
limited to singular inputs for calculating the LCOE. In addition, a more detailed calculation
of LCOE by Chul-Yong Lee et al. [49] represented a stochastic model for calculating LCOE
for solar PV systems installed in the Philippines. Their results depicted that for a commercial
solar panel, the LCOE ranged from a minimum of 10 ¢/kWh to 18 ¢/kWh, and they did a
sensitivity analysis to validate their results. However, the study lacks the optimized value of
the LCOE and only discussed a range of possible LCOE values in their model.

Another study for a utility-based system installed in IESCO, Pakistan, conducted by
Ahsan et al. [50] showed an analysis for forecasting day ahead load demand using the Auto-
Regressive (AR), Moving Average (MA) and Auto-Regressive Integrated Moving Average
(ARIMA) model for the statistical modeling for the load demand. In addition, they did the
comparative analysis using the ML techniques like Artificial Neural Networks (ANN) and
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Bagged Regression Tree (BRT). However, their results for forecasting the load demand using
various ML techniques are precise but lack the estimation of LCOE and hence, the energy
return of investment of the model. Furthermore, Geissmann et al. [51] showed a probabilistic
approach for computing the LCOE of a nuclear plant and a gas power project. Furthermore,
they implemented a Monte Carlo simulation to determine the dependency of singular input
parameters on the model’s final results. However, their study used singular inputs and lacked
dependency on demographic variables. Further, Georgitsioti et al. [52] discussed the formula
used to calculate the LCOE based on singular values for domestic PV systems in the UK,
and the financial benefits that can be gained from a domestic PV system under the “Feed in
Tariff (FiT)” PV supporting policy in the UK.

2.4 ML for the Discovery of Solar Cells

This section of the chapter presents a systematic review (SR) of the discovery of low-cost
solar cells using ML techniques. Firstly, the methodology of SR elaborates the process of
shortlisting the research articles depending on the data-driven approach, ML techniques used,
optimization processes, and fabrication techniques.

2.4.1 SR Methodology

This section discusses the research objectives and the methodology in collecting and synthe-
sizing the SR on ML algorithms for designing and fabricating low-cost, high-performance
solar cells. The four key objectives of the SR are: (1) To review the range of ML techniques
for designing low-cost solar cells using historical data.; (2) To identify the ML techniques
used specifically for discovering new PV materials.; (3) From a device perspective, identify
the specific ML and optimization techniques used for designing efficient solar cell architec-
tures. ; and (4) To identify ML algorithms specifically used for fabricating low-cost PV cells
from the circuits and systems perspective.

Figure 2.1 maps the four research objectives and the process of shortlisting the research
articles. Initially, the chapter focuses on extracting and pre-processing the historical data,
followed by discovering new materials and optimising solar cells. Lastly, the research articles
that discuss the integration of ML for fabricating solar cells are reviewed. Accordingly, for
the SR, the research objectives are defined to target a set of questions that are the need for
the study. Additionally, a set of research articles are shortlisted using the search engines
available on Google for extracting the recent research articles published in this domain.
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Fig. 2.1 The research objectives for the systematic review.

The SR aims to answer four research questions: (1) What are the data-driven approaches
for designing low-cost, high-performance solar cells? ; (2) How can ML algorithms facilitate
the discovery of new low-cost solar cell materials? ; (3) What optimisation techniques are
used for designing an efficient, low-cost solar cell architecture? ; and (4) What ML algorithms
are used for fabricating low-cost solar cells from a circuits and systems perspective?

A proper review protocol is instigated for structuring the SR, and the following are the
perquisites of the adopted analogy. This section discusses the search strategy, inclusion
criteria, exclusion criteria, and screening mechanisms for selecting relevant research papers.
The review considered the latest research articles from major publishing houses that include
IET, Science Direct, Nature, AIP, Wiley, IEEE Explorer, IoP science, ACS publications,
and MDPI. The search also included non-pre-reviewed articles from arXiv. Thus, a critical
appraisal is performed using the AACODS (Authority, Accuracy, Coverage, Objectivity,
Date, Significance) checklist as an evaluation and critical appraisal tool of grey literature
(publications and research created by groups not affiliated with conventional academic or
commercial publishing institutions).

The search began with queering all the repositories with different research items. The
keywords were defined such as "Machine Learning", "Data-driven approach", "PV cell
architecture", "Solar cells", "Low-cost", "Optimization" and "fabrication" for extracting the
research articles. Articles were scanned based on their title and abstract as well as a full-text
read of the publications. In addition, search strings are developed using Boolean operators
(AND, OR) to connect these keywords.
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Inclusion Criteria of SR

The following are the parameters used in the inclusion criteria. (1) Included only English-
language articles involving the data-driven approaches of designing solar cells using ML
techniques and were pertinent to the study issues such as poor data quantity and data quality.;
(2) Included the pertinent articles facilitating the discovery of only low-cost solar cells using
ML methods before determining their eligibility.; (3) Included comparative studies involving
the optimization and robustness of solar cells designed from ML services.; and (4) Targeted
only articles that discussed ML for solar cells, solar cell optimization, and publications on
ML integration on solar cells.

Exclusion Criteria of SR

The following is a list of the exclusion criteria for shortlisting the research papers based
on the research objectives and targeted research questions. (1) Research articles published
in languages other than English.; (2) Research papers that are not available in full text.;
(3) Editorials, survey reviews, abstracts, and brief papers involving secondary studies are
excluded.; (4) Articles that did not address the integration of ML approaches with solar cells
and the ones that involved the expensive manufacturing of solar cells.; and (5) The research
articles published before 2018 were also excluded due to the unavailability of quality input
data that resulted in poor implementation of ML techniques.

2.4.2 Results and Analysis of SR

In this chapter, the shortlisted research articles are discussed, and how they are aligned with
the research objectives and questions. Figure 2.2 shows the workflow of the planning (data
extraction and data pre-processing), training (applying various ML techniques and comparing
the model’s accuracy), testing (optimization), and execution (fabricating solar cells in the
laboratory) for discovering new solar cell architectures. As previously mentioned, the review
focuses on low-cost solar cells such as PSCs, OSCs, and hybrids.

• Data Extraction for Solar Cells

Solar cells are typically designed with specific objectives, such as reliability, affordability,
efficiency, and stability. To predict the structure of low-cost solar cells, research is ongoing
to gather and analyze data from previous solar cell fabrication experiments in real-world
environments. The quantity and quality of the extracted dataset are crucial to the effectiveness
of ML algorithms. Based on the literature, larger input datasets generally result in higher
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Fig. 2.2 The figure demonstrates the general workflow of the process of discovering low-cost
solar cells using ML algorithms.

accuracy and lower functional error values. Consequently, this section focuses on addressing
RQ1.

Perovskite Solar Cells
Jino et al. [53] investigated how the Gradient Boost Regression Trees (GBRT) ML

method [54] can be used for designing Pb-free perovskites. They developed a dataset
containing the electronic structures of candidate halide double perovskite. Using the dataset,
the GBRT ML model was implemented to predict the values of heat formation and bandgap.
Initially, they generated the dataset using two space groups of the crystal structure with
540 hypothetical chemical compounds of A2B1+B3+X6. Finally, they conducted statistical
analysis on the attributes that were chosen to determine design principles for the development
of fresh lead-free perovskites.

Moreover, a study presented by Jinxin et al. [55] showed how 333 data points from nearly
2000 peer-reviewed papers were used to build ML models for designing PSCs. Their ML
models included Linear Regression, KNN, RF and Artificial Neural Networks (ANN) for
building two forecasting models, material property characteristics and device performance
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prediction. The higher R-value proves that the expected trend is consistent with actual
experiments and PSC physics. The highest theoretically computed solar cell efficiency curve
depending on the solar spectrum has a bandgap area in the range of 1.15-1.35 eV, and this
bandgap region predicts a PCE of above 25%.

Moreover, Felipe et al., [28] demonstrated a new data-driven optimization framework
to bridge the mismatch between R&D and industrial production of solar cells. Further,
their framework incorporated scalable inference and techno-economic analysis using ML
approaches to predict the root cause of the underperformance in PSCs. They also compared
traditional R&D optimization vs their proposed total revenue optimization framework using
linear, binned and non-linear functions. Consequently, they presented a case study for
fabricating 144 PSCs choosing 12 various combinations of dominant processes. In addition,
they proposed a surrogate-based black-box model such as Gaussian Process Regression
(GPR) and Bayesian Optimization (BO) [56].

In a conference, Maniell et al. [57] demonstrated how the optoelectronics properties of
PSCs can be predicted using ML methods. A model was developed for testing the bandgap
of new different types of PSCs, and the bandgap was capable of predicting the chemical
properties and material composition. CSxMA1−xPbI3, CsPb(IxBr1−x)3 and MAPb1−xSnxI3

were the perovskite materials used for testing and resulted in bandgaps ranging from 1.3-2.3
eV. In addition, their study presented a curve showing the predicted PCE values from the ML
model vs the actual PCE from fabricated samples. Moreover, another result showed that the
predicted value of the fabricated CsSnI3 was 1.15 eV whereas the fabricated sample had a
bandgap of 1.25 eV. Lastly, their research article discussed various ML models such as ANN,
Random forest algorithm, and Support Vector Regression.

In addition, the robot accelerated discovery and investigation of PSCs were demonstrated
by Zhi Li et al. [58]. The article presented an automated, high-throughput method for evalu-
ating single crystals of metal halide perovskites based on inverse temperature crystallization
(ITC) in order to quickly pinpoint and perfect the conditions for the synthesis of high-quality
single crystals. Using 45 organic ammonium cations, a total of 8172 metal halide perovskite
synthesis processes were carried out. The screening enhanced the number of metal halide per-
ovskite materials by five times and resulted in designing a new combination of PSCs such as
[C2H7N2][PbI3] and [C7H16N2][PbI4]. In addition, to enable experiment generation and data
management, they used a software pipeline called ESCALATE (Experiment Specification,
Capture and Laboratory Autonomous Technology). Further, their research added 17 new
materials (a 400% increase) of metal halide perovskites, which are accessible via ITC. This
helped identify conditions that lead to the formation of perovskite single crystals consisting
of 19 of 45 target perovskite compositions.
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In 2020, Yun et al. [30] investigated the ML lattice constants for cubic perovskite A2XY6

compounds. Their dataset included a broad spectrum of Fmm group perovskite halides and
a total of 79 samples. With lattice constants ranging from 8.109 A to 11.790 A, 79 cubic
perovskite compounds were investigated. The ionic radii of [K, Cs, Rb, Tl], [Ge, Mn, Ni,
Pd, Pt, Si, Cr, Pd, Ir, Mo, Pb, Re, Se, Ta, Sn, Te, Ti, W, Zr, Ru, Tc, Po, U, Os, Hf], and [F,
Cl, Br, I] were among those used as descriptors. The GPR was used for determining the
relation between the ionic radii and the lattice constants for cubic perovskites. They used
MATLAB for the computational exploration of the model and achieved CC, RMSE, and
MAE of 99.72%, 65%, and 0.44%, respectively.

In addition, Chenglong et al. [59] presented a two-step ML approach for PSC design,
which was based on 2006 PSCs data points taken from peer-reviewed articles published
between 2013 and 2020. The authors developed heuristics for high-efficiency PSC and
thus, improving PCE dependent on doping of the ETL. The main characteristic of their
study was to determine the development of high-performance PCE of PSCs. Their research
showed that using SnO2 and TiO2 ETLs, mixed-cations perovskites, dimethyl sulfoxide, and
dimethylformamide, as well as anti-solvent treatment, led to even higher PCEs. Lastly, they
predicted that FA-MA-based PSC with a Cs-doped TiO2 ETL and a Cs-FA-MA-based PSC
with an S-doped SnO2 ETL were also expected to show PCEs of up to 30.47% and 28.54%.

To expedite the identification of prospective PV cells from 2D perovskites, Hong-Jian et
al. [60] integrated atomic-level prediction with ML and DFT. Their model implemented a
gradient boosting regressor (GBR), a random forest regressor (RF), and an extra tree regressor
(EXTR) ML for training a dataset of 2303 perovskite materials. Further, the trained model
screened out 4828 materials and also pre-screened using DFT structural relaxation validation
from 29,285 artificial perovskites. In fact, a maximum PCE of 30.35% and 26.03% was
achieved for (Sr2VON3 and Ba2VON3).

Likewise, Elif et al. [61] predicted the overall performance and bandgap in PSCs. In
her analysis, she used eight different PSCs to forecast the bandgap and PCE of perovskites.
Initially, they performed the bandgap estimation of perovskites from Tauc plots on a UV-vis
spectroscopy using the RF regression ML model with more than one decision tree and
experimental approach. Later, they developed a model showing the J-V spectra predicted
values for calculating the PCE. Their results showed that perovskites with bandgaps exceeding
0.99 eV could be used to model various new lead halide structure perovskites depending on
the accurately predicted value of the bandgap.

Another case study presented by Xia et al. [62] combined ML techniques with an efficient
forward-inverse method to research MASnxPb1xI3 material and explored high-performance
PSCs. With 14 physicochemical parameters and the Sn-Pb ratio as inputs, the Eg model
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of MASnxPb1xI3 was first developed for forward analysis, and the asymmetrically bowing
relationship between the Sn-Pb ratio and the Eg of OMHP was used. The established NN-
based models for PSC performance models showed good predictions for the data points
and offered significant insights for PSC devices. Further, for the performance model, a
comparison of the prediction model was made with the ML algorithms such as LR, SVR,
KNR, RFR, and GBR. In fact, ML models with GBR performed best with values of R2,
RMSE, and MAE reaching 0.9172, 0.0386, and 0.0325.
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Organic Solar Cells
A rigorous framework involving the classification of the chemical structures in materials

discovery was presented by Shinji et al.[63]. Further, the dataset of 249 Organic donor-
acceptor pairs was computed based on equilibrium geometries and electronic properties
such as DFT simulations. Initially, their study discussed predictions using Scharbar’s
model and resulted in a small energy bandgap of 1.5 eV between the experimental and the
computational energy bands. Moreover, they implemented k-NN regression for predicting
OSCs characteristics and their PCEs. Finally, the study concluded that k-NN results in
correlations of 0.6, which were further improved to 0.7 by implementing non-linear kernel
methods.

In addition, Harikrishna et al. [64] investigated the PCE of OSCs using ML techniques.
They developed a dataset of 280 small molecule OSCs with 270 distinct donors. Firstly,
they analyzed the significance of orbitals in the energy conversion process and developed
ML models using the characteristics of organic compounds to estimate the PCE for high
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throughput virtual screening. In another study, they implemented ML methods to study the
correlations between the molecular properties and the device characteristics of an OSC [65].
The authors designed ML methods based on 13 molecular properties as descriptors to predict
the three device parameters such as (VOC, JSC, and the fill factor). In addition, the calculations
were carried out on Gaussian 09 package for a computational server having Intel Xeon 5115
CPUs. They combined multiple regression trees along with RF and GBRT to incorporate the
ML methods. Further, screening of the potential compounds by these models results in high
predictive ability (r = 0.7).

Moreover, Daniele et al. [66] performed the computer-aided screening of polymers-based
OSCs using RF and ANN-based ML supervised-learning models. The dataset involved 1000
experimental characteristics such as PCE, the molecular weight of each organic compound,
and other electronic properties. The results showed that the correlation coefficient of ANN
was low. However, the RF model achieved better accuracy than the predictive model.
Subsequently, Min-Hsuan et al. [67] also performed the RFT regression for the analysis
of the non-fullerene-based OSCs to predict the overall efficiency of the solar cells. A
dataset of 135 non-fullerene acceptor/donor pairs based on OSCs (117 non-fullerene acceptor
materials and 30 donor materials) was gathered to examine its electronic properties and
device performances. Therefore, their ML model resulted in the highest predictive power by
achieving the coefficient of determination (R2) of 0.85 for the training and 0.80 for testing
sets of the ML algorithm.

Furthermore, Xiaoyan et al. [68] demonstrated an optimization technique to assess the
potential of organic photovoltaic (OPV) materials and solar cell devices for industrial produc-
tion. They presented an automated characterization of OPV materials, device performance
and photostability. The GPR ML technique drove the optimization method with optical
absorption characteristics and indicated better prediction accuracies for PV electrical charac-
teristics. Moreover, the efficiency and photostability screening for 100 process conditions
were completed in 70 hours. They also proposed a model material system of PM6:Y6,
completely automated device fabrication in air resulted in a maximum PCE of 14%.

In one of the latest papers published by Ahmad et al. [69], they discuss the implementation
of ML to screen small molecule donors for OSCs and molecular descriptors feed ML methods.
The co-authors collected a dataset of 340 OSCs devices with donors represented as small
molecules while acceptors as fullerenes for the ML-assisted pipeline suitable for small
molecule donors for Y6 (an electron acceptor). In addition, they performed ML analysis on
an open-source platform called Konstanz Information Miner (KNIME). Further, for training
the model, the dataset was divided into training sets, validating sets and external test sets.
Also, the descriptors and experimental PCE were used as input to the ML model. They
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compared the result depending on various regression techniques, such as RF, LR, SVM and
k-NN, for the prediction of PCE. Using data from small donors paired with fullerenes, the
SVM model was trained and showed higher prediction ability. The PCE of a few small
molecule donors linked with Y6 was predicted using their approach and developed are more
than 1000 new small molecule donors. Accordingly, the PCEs were anticipated, and the top
10 applicants with a PCE of over 13% were chosen in their study.

Figure 2.2 demonstrates the general workflow of the process of discovering low-cost solar
cells using ML algorithms. The block diagram is divided into four block diagrams, (a) data
synthesis, (b) ML algorithms, (c) optimization, and (d) fabrication. For (a) data synthesis,
(i) Discusses the data extraction in a statistical form, (ii) Pearson’s correlation coefficient
matrix, (iii) Solar cell architecture with layer combinations, [70], (iv) data-preprocessing for
classification problems [71] and (v) Gradient-based extraction of data. [72] The second block
(b) represents the ML algorithms used, (i) Classification, (ii) Regression, (iii) Clustering, [73]
(iv) KNN, (v) Linear regression, (vi) SVM, (vii) ANN. [74] The third block (c) discusses the
optimization techniques, (i) Bandgap Vs PCE curve, [61] (ii) Ternary contour plots, [75] (iii)
Predicted Vs Calculated PCE, (iv) Predicted Vs Ground truth curve, (v) Predicted accuracy
of ML model, (vi) Total energy dissipation Vs Time curve. [76] The fourth block discusses
the fabricated solar cells. (vi) [77] [78] [79].

Hybrid Solar Cells
Another article presented by Min-Hsuan et al. [43] investigated the performance and

matching band structure for Tandem OSCs by implementing two ML methods, RF and the
SVR. The ML techniques were initially developed using 70 tandem OSCs (37 conventional
and 33 inverted tandem OSCs), which were used as the data points. Furthermore, to under-
stand the structure, they calculated Pearson’s correlation coefficient. Among the two ML
methods, the efficient method for forecasting solar efficiency was the RF Regression having
eight electronic features of selection.

Moreover, to address the stability concerns with PSCs, Tianmin et al. [80] used a progres-
sive ML algorithm to investigate the impact of input data by providing a reliable and accurate
approach for deep mining of the hidden hybrid organic-inorganic solar cells. To predict the
electronic bandgaps of HOIP perovskites, they implemented GBR, SVR, and kernel ridge
regression (KRR) using material property. The best results from six hyperparameters were
chosen. They also used DFT calculations for the chosen HIO perovskites and incorporated
them into the Vienna Ab-initio simulation package (VASP). Their results show that the GBR
model performs with the highest level of accuracy (R2 = 0.943, MAE = 0.203, MSE = 0.086)
when compared to the SVR (R2 = 0.826, MAE = 0.367, MSE = 0.276) and KRR (R2 = 0.819,
MAE = 0.387, MSE = 0.288) models.
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The effect of enhancing the descriptors using ML prediction for small molecule-based
OSCs was discussed by Zhi-Wen et al. in his study. [81] The dataset consists of a total of 566
organic donor-acceptor (D/A) pairs found from the literature search, with 513 unique donors
and 33 unique acceptors (including C60, PC61BM, PC71BM, ITIC, IDTBR, IDIC, PDIs, etc.)
among the donors. Further, they implemented k-NN, KRR and SVR ML models to predict
the PCE of hybrid solar cells. Also, the study examined Pearson’s correlation coefficient for
all combinations of descriptors, including donor molecules and device parameters.

In another study presented by Yao et al., [82] five different ML algorithms were used and
gave 565 donor-acceptor combinations for training the dataset. Furthermore, to implement
the material design and donor-acceptor pairs, the screening of non-fullerene in OSCs was
performed. They used 565 donor/acceptor (D/A) combinations as training data sets in their
study to assess the viability of these ML algorithms for use in directing material design
and the screening of D/A pairs. Therefore, the ML techniques RF and BRT offer the best
prediction capacities. Additionally, RF and BRT models are screened and estimated to be
more than 32 million D/A pairs, respectively. Lastly, six photovoltaic D/A couples are picked
and synthesized so that their experimental and predicted PCEs for critical comparison.

In an investigation presented by Kakaraparthi et al. [83], the co-authors used the RF
model on an experimental dataset consisting of 0.85 correlation coefficient for the ML of
non-fullerene and polymer OSCs. Moreover, 200,932 conjugated polymers produced by the
combinatorial coupling of acceptor and donor units were screened virtually. Additionally,
a number of conjugated polymers centred on benzodithiophene and thiazolothiazole were
created, produced, and studied using various alkyl chains in order to assess the efficacy of
the ML model. In terms of the selection of alkyl chains, PBDTTzEH: IT-4F demonstrated a
PCE of 10.10% and, thus, shows good predictions while using ML techniques.

One of the primary concerns with perovskites is their stability. As a result, Shijing et
al. [84] demonstrated how to discover the most stable organic-inorganic alloyed perovskites
using a sequential learning framework. They introduced a data-fusion approach for esti-
mating Gibbs Free Energy of mixing from DFT and experimentally analyzed degradation
using aging tests. Moreover, they applied ML probabilistic constraints in an end-to-end
BO approach to combine data from high-throughput degradation testing and first-principle
simulations of phase thermodynamics. The results showed that perovskites centered at
Cs0.17MA0.03FA0.80PbI3 exhibit low optical change with increased temperature, moisture,
and light having more than17-fold stability improvement over MAPbI3 by sampling 1.8%
of the discretized CsxMAyFA1xyPbI3 compositional space (MA, methylammonium; FA, for-
mamidinium; PbI3, lead halide).

• ML to Facilitate the Discovery of Solar Cells
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This section discusses the research articles and peer-reviewed journals related to the
discovery of solar cells using ML techniques.

Discovery of Organic Structures
A target-driven approach was provided by Tianmin et al. [85] to accelerate the discovery

of HOIPs for PV applications from 230808 HOIP candidates. Also, they combined the
ML method with DFT calculations. 686 orthorhombic-like HOIPs with the appropriate
bandgap were chosen after possible HOIP candidates are subjected to the two criteria of
charge neutrality condition and stability condition, followed by an ML screening. In ML
screening, ensemble learning was used to forecast the bandgap of 38086 HOIPs candidates
using three ML models, including GBR, SVR, and KRR. Finally, 132 stable and non-toxic
orthorhombic-like HOIPs (free of Cd, Pb, and Hg) were confirmed by DFT calculations with
the proper band gap for solar cells.

Oleksandr et al. [86] used ML in-the-loop to learn from the experimental data, suggested
experimental parameters to explore, and indicated regions of synthetic parameter space
that would permit record-monodispersity PbS quantum dots. Their results show that the
technique that produces record-large bandgap (611 nm exciton) PbS nanoparticles with a
well-defined excitonic absorption peak (half-width at half-maximum (hwhm) of 145 meV)
permits nucleation to triumph overgrowth by adding a growth-slowing precursor (oleylamine).
With a hwhm of 55 meV at 950 nm and 24 meV at 1500 nm, respectively, as opposed to
the best-published values of 75 and 26 meV, they also improved monodispersity at longer
wavelengths.

Double chalcogenide perovskites were investigated in a study presented by Michael
et al. [87] to find new photovoltaic absorbers that can take the place of CH3NH3PbI3.
ML approaches were used to categorize materials as potential photovoltaic absorbers using
information from the periodic table, thus avoiding unnecessary computation due to the wide
range of possible compounds. On the created data set, a random forest method obtains a
cross-validation accuracy of 86.4%. Traditional and statistical approaches are used to identify
over 450 potential alternatives, with Ba2AlNbS6, Ba2GaNbS6, Ca2GaNbS6, Sr2InNbS6,
and Ba2SnHfS6 emerging as the most promising options when thermodynamic stability,
kinetic stability, and optical absorption are taken into account.

Nastaran et al. [88] in a study showed that ML techniques used by computationally
intensive DFT simulations to quickly and precisely estimate the properties of OPV materials.
One-hot descriptors, OPV power conversion efficiency (PCE), open circuit potential (Voc),
short circuit density (Jsc), highest occupied molecular orbital (HOMO) energy, lowest unoc-
cupied molecular orbital (LUMO) energy, and the HOMO-LUMO gap were all quantified in
the study. With a standard error of 0.5 for a percentage of PCE for both the training and test
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Table 2.1 Literature Discussing the ML for facilitating the discovery of solar cells

Data Extraction Machine Learning
Used

Solar Cell Architecture Ref

230808 HOIP, 686 or-
thorhombic

GBRT, SVR, KRR Non-toxic orthorhombic-like
HOIPs (free of Cd, Pb, Hg)

[81]

Double chalcogenide
perovskites, 450 alterna-
tives

ML with DFT simula-
tions

Ba2AlNbS6, Ba2GaNbS6,
Ca2GaNbS6, and Ba2SnHfS6

[83]

Organic Photovoltaic
Materials, one hot
descriptor

Intensive DFT simula-
tions

Design of OPVs pre-screening
possible donor and acceptor
materials

[84]

21 organic halide salts Supervised ML and
Shapley values

Phenyltriethylammonium io-
dide (PTEAI)

[85]

3880 unknown spinels XGBoost method CaAl2O4 [86]
227 experimental
dataset

RF, XGBoost, LR, k-
NN, SVR and MLP

PC61BM and PC71BM [87]

250 OSCs dataset RF model ABX3-type perovskites [88]
28 million double-
perovskite

- - - 17 sodium-, potassium-, and
ammonium-based tin-halide
perovskites

[89]

N-annulated perylene
sensitizers

MLR and QSPR model C281 [90]

Metal halide per-
ovskites (MHPs)

CNN 0.01 eV, 5 degrees, and 0.01 [91]

10,000 candidates Quantitative Structure-
Property

eight promising organic dyes [92]

Lead-free halide per-
ovskite material

RF, RR, SVR, and
GBRT

Lead-free halide double PSC [93]

78,400 DHOIPs Integrating ML tech-
niques

19 promising ones, HSE06
calculations

[94]
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sets, the most reliable and predictive models were able to predict PCE (computed by DFT).
Their methodology helps to expedite the design of OPVs for use in green energy applications
by pre-screening possible donor and acceptor materials.

An ML framework introduced by Noor et al. [89] involved optimizing the capping layer
of perovskite degradation. They featured 21 organic halide salts, used them as capping
layers on (MAPbI3) films, aged them rapidly, and implemented supervised ML and Shapley
values to identify factors determining stability. They discovered a correlation between higher
MAPbI3 film stability and organic molecules’ limited number of hydrogen-bonding donors
and tiny topological polar surface area. Phenyltriethylammonium iodide (PTEAI), the best
organic halide, successfully increases the stability lifespan of MAPbI3 by 4 2 times over bare
MAPbI3 and 1.3 0.3 times over cutting-edge octylammonium bromide (OABr).

Zhilong et al. [90] created a target-driven approach that makes use of ML to speed up the
ab initio predictions of unidentified spinels from the periodic table. Eight spinels with direct
band gaps and thermal stabilities at room temperature are successfully selected out of 3880
unknown spinels using this method (CaAl2O4, CaGa2O4, SnGa2O4, CaAl2S4, CaGa2S4,
CaAl2Se4, CaGa2Se4, CaAl2Te4). A semiconductor classification model is developed based
on the XGBoost method, and it has a strong structure-property link. It has a high prediction
accuracy of 91.2% and a low computational cost of a few milliseconds. The suggested
target-driven strategy enables the discovery and design of a wide variety of energy materials
while cutting the research cycle of spinel screening by about 3.4 years.

The accuracy for predicting the bandgap of an OSC is a vital factor in terms of the
characterization of solar cell devices. Accordingly, Yiming et al. [75] used ML algorithms to
predict the performance of different architectures for the compound ABX3-type in PSCs. Also,
they gathered 227 experimental datasets consisting of the bandgap of perovskites extracted
from recently published 1254 publications. For their model, they used ML methods such as
RF, XGBoost, LR, k-NN, SVR, and Multilayer perceptron (MLP). Their prediction analysis
from ML models showed that B-site metal and the X-site halogen ion have a significant
impact on bandgaps of the ABX3-type perovskites from SHAP explanations.

Muhammad et al. [91] did the critical analysis of the small-molecule donors for OSCs
such as Fullerene using the ML methods. In order to train the ML model, they used molecular
descriptors as an input and consecutively, they implemented a number of ML techniques
to measure the best ML algorithm for the desired outcome. The dataset used in the study
consists of 250 OSCs having a combination of acceptors and donors as fullerenes (PC61BM
and PC71BM). They used the platforms like Konstanz Information Miner (KNIME) and
Weka platforms to implement the ML model and thus, the Random Forest model resulted
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the best predictive model with Pearson’s coefficient as 0.93. Lastly, to determine the most
efficient materials, the PCE values for the small-molecular donor was predicted.

Discovery of Hybrid Halide Structures

With multiple newly developed, computationally economical, and high-performing (Pearson’s
correlation coefficient = 0.7-0.8) ML models employing pertinent descriptors, Harikrishna et
al. [92] carried out high-throughput virtual screening of 10,170 candidate compounds, as-
sembled from 32 distinct building blocks. Furthermore, to create effective molecules, crucial
building elements are recognized, and new design principles are implemented. Additionally,
126 candidates are suggested for synthesis and device fabrication with theoretically projected
efficiency >8%.

A high-throughput material search scheme based on materials informatics was devised
and carried out for PSC materials after Shohei et al. [93] explored the existence of viable
alternative perovskites. More than 28 million double-perovskite-like compounds were
screened using this method. Five well-known organic-inorganic tin-halide perovskites and 17
sodium-, potassium-, and ammonium-based tin-halide perovskites were among the 24 most
promising possibilities found. Promising solar cell materials included two perovskites based
on transition metals.

Further, Lifei et al. [94] constructed N-annulated perylene sensitizers and put forth
one goal-directed approach that combined quantum chemical analysis with data mining
approaches. By using MLR to build the robust quantitative structure-property relationship
(QSPR) model, they were able to identify the key characteristics using a genetic algorithm
(GA). The potential dyes were then created using the model’s recommendations. The
proposed molecules’ overall power conversion efficiencies (PCEs) were anticipated by the
model to be 15.7%, up 22.0% from reference dyes C281.

For the electrical characteristics of metal halide perovskites (MHPs), which have a
billions-range materials design space, Wissam et al. [95] employed CNN to create a predictive
model. Furthermore, they demonstrated that as compared to simple techniques, a well-
designed hierarchical ML strategy offers a higher degree of predictability in terms of MHP
features. The bandgap for the MHPs’ lattice constants, octahedral angle, and RMSE were all
calculated using the hierarchical ML scheme, and the corresponding RMSE values were 0.01
eV, 5 degrees, and 0.01.

Yaping et al. [96] combined ML with computational quantum chemistry results in the
establishment of an accurate, reliable, and interpretable QSPR model. Using this model,
virtual screening as well as the evaluation of synthetic accessibility are carried out to find
new effective and synthetically accessible organic dyes for DSSCs. Finally, out of almost
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10,000 candidates, eight promising organic dyes with high power conversion efficiency and
synthetic accessibility were eliminated.

Moreover, Zongmei et al. [97] investigated the discovery of PSC materials via ML
stability and calculated the bandgap of lead-free halide perovskite materials. They performed
a comparative analysis of four different ML techniques such as the random forest, ridge
regression, support vector regression, and the gradient boost regression tree. Among these
four ML techniques, XGBoost gave the highest predictive performance i.e. R2:0.9935 and
MAE:0.0126 in terms of thermodynamic stability, and accordingly, the random forest gave
the highest predictive performance i.e. R2:0.9410 and MAE:0.1492 for bandgap analysis of
the lead-free halide double PSCs. Moreover, their study showed an interesting result that
XBoost performs best when considering the thermodynamic stability and electronegativity’s
linear correlation.

By integrating ML techniques, high-throughput screening, and density functional theory,
Jialu et al. [98] showed the ability to speed up the discovery of double hybrid organic-
inorganic perovskites (DHOIPs). In contrast to other studies, the anisotropy of organic
cations of DHOIPs was first assessed, and then the properties were predicted using an ML
technique using low-level calculations to predict the properties of DHOIPs accurately. From
78,400 DHOIPs, 19 promising ones with suitable bandgaps for solar cells were selected and
verified using HSE06 calculations.

John et al. [99] investigated the bias, temperature, light, and H2O, O2, and air pressure af-
fected device performance and recovery. They first talked about important studies that assess
the 3R cycle’s capabilities of perovskites and how ML algorithms may help determine the
best values for each operating parameter. They then looked at perovskite dynamics and degra-
dation, highlighting the difficulties in understanding this 3R cycle. Finally, they suggested an
ML paradigm with a shared knowledge library for improving long-term performance and
forecasting device performance recovery.

Discovery of Solar Cells using NLP

In another study, a framework related to the high-throughput synthesis of the PSCs was
discussed with ML image recognition used for automated characterization by Jeffrey et al.
[100]. Perovskite single-crystal synthesis was carried out at high throughput, and the results
were identified using convolutional neural network-based image recognition. Also, they
quickly created 96 distinct crystallization environments using a protein drop setter and then
examined the crystals. On the other hand, trained a convolutional neural network (CNN) was
used to determine if crystals had been produced using a dataset of 7,000 photographs. Then,
a larger dataset of 25,000 photos was employed with this classifier. The first synthesis of
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(3−PLA)2PbCl4 was then achieved after they employed ML modeling to predict the ideal
conditions for synthesizing a novel perovskite single crystal.

A study presented by Lei et al. [101] showed ML techniques based on natural language
processing (NLP) to predict the properties of solar cell materials, which were then examined
using first-principle calculations. The aim of the study was to reduce the amount of human
interaction and enable computers (without supervision) to learn the latent knowledge about
solar cell materials depending on the textual data and generate predictions about the compo-
sition of solar cells. The first-principles calculations were used to determine the projected
material’s density of states, UV–vis absorption spectra, as well as band structures in order to
assess their suitability for photovoltaic applications. The formula and targeted keywords for
solar cells were represented as vectors in the ML process, which facilitated the successful
relationship extraction of the materials and their applications. The ML model was validated
using first-principles calculations on the unusual solar cell materials included in the list, and
the projected candidates, such as As2O5 have good electrical and optical characteristics that
are suitable for solar cell applications.

• ML for Solar Cell Optimization

The focus of this section is RQ3, which involves examining the optimization techniques
used with machine learning algorithms to develop optimized and reconfigurable solar cells.
The technical research articles that showed experimental work for implementing the ML
algorithms for discovering the optimized solar cells are included.

Moreover, Figure 2.4 displays multiple layered internal architectures of solar cells and the
necessary chemical components for creating reconfigurable solar cells. Specifically, Figure
2.4 (a) depicts the perovskite’s chemical structure with a carbon composition, whereas Figure
2.4 (b) shows the arrangement of the chemical components in a solar cell and Figur 2.4 (c)
shows the various layers of a solar cell that have been sliced for clarity in depicting the solar
cell architecture. Finally, Figure 2.4 (d) showcases the outer layer of a solar cell, including
Ag, BCP, PCBM, Perovskite, Poly-TPD, ITO, and glass.

Donor/Acceptor Ratio for Higher PCE

Most scientific advancements in the field of materials have been produced experimentally,
frequently using one variable at a time testing. However, neither are the properties of
materials-based systems straightforward nor related [102]. Authors in [103], claim that
the optimization of OSCs has a high level of complexity due to the high complexity and
interconnectivity of different components. Changing one component can have an unforeseen
impact on other components. Hence ML can play a vital role in the optimization process of
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Fig. 2.4 The figure displays multiple layered internal architectures of solar cells and the
necessary chemical components for creating reconfigurable solar cells.

OSCs. They used PDCT BT : PC71 solar cell and observed the effect of donor/acceptor ratio,
total concentration, spin speed, and additive volume on PCE(%). The authors applied SVM
using the radial basis function. They conducted two sets of experiments, where they used
optimized results of the first experiment in the second experiment and found a significant
increase in PCE of fabricated devices [104]. In the first set of the experiment, only three out
of fifteen devices were above the threshold (PCE 6.3%); however, in the second, all thirteen
devices produced PCE above the threshold.

Conductivity Optimization of Solar Cells

SVM regression was used in [72] for the optimization of p−CZS/n− si, p−CZS/p+n−Si
heterogeneous solar cells. SVM was implemented with a radial-based function using Scikit-
learn [105] in python. They used ten-fold cross-validation to tackle the problem of over-fitting.
They predicted the figure of merit (FOM) from film conductivity and optical transmission
in desired transmission range. Optimization results show that FOM has increased from
14.8µ to 173µ . Furthermore, current density has increased from 11.8 to 17.9 mA/cm2 for
p−CZS/n− si solar cells and from 13.8 to 18.0mA/cm2 p−CZS/p+n−Si for solar cell.
The authors claimed their approach is valid for any general application to any material
synthesis process with multiple parameters [106].

Selection of Donor/Acceptor Pairs

From 2010 to 2017, 320 organic donor and acceptor pairs (hetero-junction solar cells) were
reported in the literature. These 320 donors and acceptors can make 19912 combinations.
Authors in [107] applied distanced-based ML techniques KNN and SVM to optimize PCE.
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They have provided a list of unexplored donor and acceptor combinations that can be helpful
in the future in fabricating highly efficient solar cells. The use of back propagation neural
network, deep neural network, SVM, and the random forest is reported in [108] to predict
highly efficient OSCs. The data set contained 1719 realistic donor materials of OSCs. The
authors used images, ASCII strings, and fingerprints as input, and out that fingerprints with
1000 bits can provide higher conversion efficiency. The authors also proposed ten new
materials.

Stability optimisation

Stability is a good indicator of the life span of a solar cell. Multiple parameters can affect
the stability of OSCs. Authors in [109] optimized these parameters using sequential min-
imal optimization regression on a data set obtained from the website of Danish Technical
University (DTU) [110]. Authors have presented shortlisted layer-wise materials with the
highest weights in sequential minimal optimization regression. These materials are the most
influential materials governing the stability and performance of OPV devices [111].

Copper Content Optimization in CdTe Solar Cells

Cu is essential in CdTe solar cells as back contact and doping agent. Diffusion depth
optimization of Cu resulted from diffusion annealing, and cool-down in the fabrication of
CdTe solar cell was reported in [112]. ANN predicts data generated from software simulation
using the Keras library in python. ANN was fed with temperature and duration of diffusing
process time. Results show that the predicted and actual depths are only 0.009µm apart.

Optimization of Diode Model for Solar Cell Simulations

A bio-inspired Modified spotted hyena optimization algorithm was implemented in [113], to
compare one diode model, two diode modes, and three diode model solar cells in MATLAB.
The authors obtained I-V and P-V curves. They found that the three-diode model is the most
accurate model.

Optimisation of Spray Plasma Processing

Optimization is a common theme in materials research when synthesizing a particular material
or determining the ideal processing conditions to obtain the desired attribute. The difficulties
emerge from the fact that there are several parameters whose weights might influence the
outcomes. Additionally, gathering experimental data takes time and money. Authors in



28 Literature Review: Machine learning for solar cells and PV systems

[114], presented the work of [115], where BO was used to optimize the rapid plasma process.
The authors used six different parameters are input that affect PCE: linear speed of pray,
substrate temperature, the flow rate of precursor, gas flow rate into plasma nozzle, the height
of plasma nozzle, and plasma duty cycle, while some other parameters were kept constant
such as precursor formulation, concentration, etc. The optimization result showed that PCE
increased from 15% to 17 %.

• ML for the Efficient Fabrication of Solar Cells

Most research articles cover various ML algorithms used to fabricate PSCs effectively.
However, in this section, an emphasis is given on RQ4, which examines the most optimal ML
algorithms that have proven effective in identifying efficient techniques for fabricating PSCs.

PSCs are cheap to fabricate and as a result, most researchers fabricate these low-cost
solar cells by trial and error. Also, fabricating a solar cell consists of a large percentage
of permutations and combinations of various physical parameters such as materials used,
doping layers, the thickness of the different layers, meshing, contacts, bulkiness, etc. In addi-
tion, solutions-based techniques for fabricating solar cells require less time to manufacture.
However, they exhibit stability concerns. Therefore, a critical SR using the ML methods for
designing a reconfigurable PSC is evaluated.

Zhe et al. [116] demonstrated a sequential learning architecture for producing PSCs that
are guided by ML. They applied different methods to create open-air perovskite devices
using the rapid spray plasma processing (RSPP) method. Further, showed the best outcome
from a device made by RSPP was an efficiency improvement of 18.5% with a limited
experimental budget of screening 100 process scenarios. They achieved this mainly due the
three innovations such as flexible knowledge transfer between experimental processes by
using prior experimental data as a probabilistic constraint, incorporation of both subjective
human observations and ML insights when choosing the next experiments, and adaptive
strategy of locating the region of interest using BO before conducting local exploration for
high-efficiency devices.

Another research article presented by Vincent et al. [117] discussed a quick and simple
tool for identifying the primary losses in PSCs. To comprehend the light intensity dependency
of the open-circuit voltage and how it relates to the main recombination mechanism, their
model used large-scale drift-diffusion simulations. The ML algorithm was developed using
more than 2 million simulations and resulted in a prediction accuracy of up to 82%.

In addition, Xabier et al. [118] in their study used big data for the discovery of OSCs, such
as non-fullerene acceptors and low-bandgap donors-based polymers. Also, they discussed
the computational techniques used to choose the most promising chemical molecules from
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the online material libraries. Secondly, their work provided an overview of the primary
high-throughput experimental screening and characterization methodologies applicable to
OSCs, specifically those based on lateral parametric gradients (measuring-intensive) and
automated device prototyping (fabrication-intensive). In both scenarios, unequalled rates
for the generation of experimental datasets have been achieved that leading to enhancing
big data preparedness. Lastly, they used ML algorithms to locate a lucrative application to
retrieve quantitative structure-activity connections and extract molecular design reasoning,
which is projected to maintain the rate of material discovery in OPV.

Aaron et al. [119] proposed the design of experiments (DOE) and ML techniques
optimizing all-small-molecule OPV cells depending on small-molecule donor, DRCN5T,
and non-fullerene acceptors, ITIC, IT-M, and IT-4F. The combination was quick, efficient,
and valuable resources enabled sparse but mathematically intentional reasonable sampling
of huge parameter spaces. The bulk heterojunction, which is the OPV device’s core layer,
was optimized in this work. The optimal values of the experimental processing parameters
with regard to PCE were then determined using the maps of the PCE landscape that were
derived using the ML-based approach for the first and second rounds of optimization. Cagla
et al. [120] discussed the effects of cell manufacturing materials, deposition techniques, and
storage conditions on PV cell stability using a dataset containing long-term stability data
for 404 organolead halide PSCs. The dataset was created from 181 published papers and
analyzed using association rule mining and decision trees-based ML techniques.

Nahdia et al. [121] proposed an efficient method for analyzing device and material
performance incorporating experimental, device modeling, and ML algorithms. The ability
to implement manufacturing conditions to device performance by providing a set of electrical
device characteristics results in an enlarged and faster improvement of solar energy harvesting
devices. Thus, they considered parameters such as annealing temperature, surfactant selection,
and charge carrier dynamics in OSCs. Followed by, Bart et al. [122] presented the predictions
related to the bandgap of Organic Crystal Structures with the help of ML techniques. They
extracted a consistent dataset of 12,500 crystal structures and the related DFT band gap
properties were freely downloaded from a website. The two cutting-edge models combined
yield a mean absolute error (MAE) of 0.388 eV, or 13% of the average band gap of 3.05 eV,
for the ensemble. The band gap for 2,60,092 materials in the Crystallography Open Database
(COD) is predicted using the trained models.

Fan et al. [123] presented the ML-assisted designing and fabrication of solar cells. The
elements can be divided into four sub-categories: Data measurement, material properties,
optimization of device architectures, and optimization of fabrication processes. The typical
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types of ML techniques discussed involve ANN, GA, PSO, SA, RF, etc. Among them, ANN
and GA are the two ML techniques that are most frequently used.

2.5 Summary

In summary, a critical literature review is presented regarding the prediction of solar irradiance
using ML techniques and the ML framework of the LCOE and the ROI of a PV system. The
presented literature review tends to cover the summary of case studies of the research articles
that used various ML techniques to forecast the LCOE and ROI parameters. Moreover,
the literature review summarises that previous studies attempted to use singular inputs for
calculating the LCOE and ROI of a PV system which resulted in poor estimation of the key
parameters of the PV system. This information is vital in suggesting the gap to accurately
predict the LCOE and ROI of a PV system to indicate these parameters to the client.

This chapter also evaluated a broad range of ML techniques for optimizing the perfor-
mance of low-cost solar cells. The SR in this chapter indicates that a significant proportion of
research focuses on data-driven approaches and ML techniques for discovering low-cost solar
cells, with a third of publications targeting ML algorithms in the fabrication process. The SR
suggests that ML techniques can potentially accelerate the discovery of new solar materials
and architectures. Future research can expand on these findings by exploring and developing
new ML techniques for solar cell optimization. Additionally, addressing the scalability and
sustainability of low-cost solar cell technologies to enable large-scale commercialization is
essential. Ultimately, applying ML techniques in solar energy can revolutionize the industry
and pave the way for a cleaner and more sustainable future.

It is worth mentioning here that the SR presented in the thesis reviews the research papers
that use ML techniques to discover low-cost, high-performance solar cells. Moreover, the
review results presented in the SR are of significant importance to the researchers in building
an ML model capable of predicting an efficient solar cell architecture. Accordingly, in this
thesis, the SR is presented; however, the following next two chapters predominantly discuss
the ML models that are capable of predicting solar irradiance and the provide an accurate
method of estimation of LCOE and ROI parameters of a PV system.



Chapter 3

Machine Learning for Predicting Solar
Irradiance

3.1 Introduction

Over the decade, there has been rapid growth in the field of the Internet of Things (IoT) due to
its improved connectivity, data-driven decision-making, and enhanced customer experiences.
The IoT has transformed the lives of people to a large extent by efficiently connecting people
across the world and turning the planet into a much smarter and more advanced globe [124].
In addition, IoT has the potential to profoundly enhance wireless networking technologies
due to its increased bandwidth, connectivity, improved network coverage, increases use of
network resources, enhanced security, and greater scalability.

One of the subsets of IoT is the Wireless Sensor Network (WSN) which uses a combina-
tion of sensors to wirelessly interact and communicate with other sensor nodes. Moreover,
the architecture of a WSN comprises a gateway node (central) connected with multiple sensor
nodes (branches) to share information in the form of data packets from the transmitter to
the receiving end [125]. The WSN with the help of sensor nodes, senses, gathers, processes,
and transmits information such as weather sensing, the healthcare industry, smart grids and
robotics.

The energy consumption in a WSN is due to sensing energy (sensors), computing energy
(data processing) and communication energy (a short radio-frequency circuit that performs
data transmission and reception) [126]. The WSNs rely on batteries to feed power to the
sensor nodes and gateway. However, battery capacity is limited due to a mismatch between
supply and demand. In addition, WSN nodes are installed in remote locations such as deserts,
forests, war zones and in seas, [127] where human access is often restricted or limited.
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Moreover, frequent replacement of the battery is not possible in these remote locations [128]
and thus, the energy management of the WSN nodes plays a vital role in maintaining the
prolonged operation with minimal investments. Therefore, the proposed model aims to
develop solar energy harvesters that scavenge renewable energy from the surroundings and
predict the solar irradiance ahead of time [129].

Another limitation of energy harvesting is the intermittent nature of renewable resources.
Though the sensor nodes are expected to consume less amount of energy, however, the main
concern is the energy fluctuation and variable DC output from the solar cells. Not only does
the energy vary in sensor nodes but also it varies within the renewable energy resources due
to their intermittent nature [130]. For instance, solar energy is available during the day only
and wind energy varies with the wind speed. Hence, the chapter proposes a model aiming
to harvest renewable energy adequately from the environment overcoming the variations in
renewable energy availability. Thus, predicts the amount of renewable energy using machine
learning (ML) algorithms.

ML is a field of research that allows the machine to learn using past experiences and
thus, train the machine to predict the future or possible outcomes. The ML comprises three
types, supervised learning, unsupervised learning, and reinforcement learning. Also, the
model uses supervised ML to predict the amount of solar irradiance generated on the WSN
using historical data. Further, divided the data to train and test the model using multiple solar
irradiance parameters such as global horizontal irradiance, direct normal irradiance, ambient
temperature, humidity, and latent heat of flux of the chosen location for ten years.

Also, performed feature extraction using correlation analysis of several parameters of
solar irradiance such as global horizontal irradiance, ambient temperature, humidity, latent
heat of flux, and normal direct irradiance. Further, analysis of the model is done with the
help of feature scoring of the multiple features representing their dependency on each other
using correlation analysis and heat map. In addition, to estimate the hyper-parameters in
multiple output support vector regression (SVR), the model performed the grid search to find
the optimized values of each hyper-parameter, i.e., (C, Gamma, and Kernel). Moreover, the
results represent a reduced computational complexity for determining the hyper-parameters
for varied time series. In the last section, a comparison of the results from Linear Regression,
Single Output SVR, and Multiple-Output SVR in terms of R2-Squared value, Root Mean
Square Error (RMSE), and Mean Absolute Error (MAE) performances are conducted.

From this chapter, an attempt has been made to accurately predict the amount of solar
irradiance using the WSN installed at remote locations and forecast the availability of solar
irradiance using two ML algorithms i.e., linear regression model and the SVR model.
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Fig. 3.1 The block diagram of the solar powered WSN and its constituent components.

3.2 System Model

Figure 3.1 represents the block diagram of the WSN and its constituent components.
The solar-powered WSN scavenges energy from the surrounding, here from the sun.

Then, the amount of solar energy generated (in the form of data packets) communicates with
input regulation (indicating the WSN about the input solar energy), battery storage, prediction
algorithm and output regulation (indicating the amount of output energy after charging the
battery) to intelligently predict the amount of solar irradiance in the Power Management
Unit of the Intelligent Solar Energy Harvesting Unit. Further, the output from the power
management unit is fed to the connected WSN node and antenna to share information with
other sensor nodes. In addition, the next sections of the chapter discuss the prediction
algorithms for accurately forecasting solar irradiance using ML techniques.

Figure 3.2 represents the working model of the proposed WSN architecture using ML
techniques. The vector X = {X1,X2, ...,Xn} is the input to the ML algorithm, which is used
to train and test the model to predict the solar irradiance, h = {h1,h2, ...,hn} is weight vector
of the SVR hidden layers, and Y is the final forecasted solar irradiance that is the input to the
main node of the WSN.

3.2.1 Data Processing

For the study, the dataset is extracted for two locations, Sacramento, California, USA, and
Delhi, India having global coordinates as (38.58, -121.35) and (28.58, 77.16,) respectively.
The dataset for 2010 to 2020 is collected and divided so that the analysis is performed on the
time interval of 1 week, 1 month, 1 year, and 10 years having an hourly time resolution. The
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Fig. 3.2 Working Model of the proposed WSN architecture using ML techniques.

dataset is accessed from the licensed version of the software Polysun [131] which provides
solar irradiance values using the appropriate sensors installed at some particular locations in
hourly resolution for a period of 1 year (randomly chosen year between 1996 to 2015).

Figure 3.3, depicts the information on statistical as well as historical graphs of the dataset
and scattered data plot depicting the correlation of parameters to each other. The dataset
consists of parameters such as global horizontal irradiance (Wh/m2), ambient temperature
(ºC), latent heat of flux (W/m2), humidity (%), and direct normal irradiance (Wh/m2) for the
location Sacramento, California, the USA for the year 2015.

3.2.2 Identification of Outliers in the dataset

For the SVR problems, the outliers play a significant role in determining the best fit line
or hyperplane, thus it is important to identify the outliers in the dataset for each parameter.
The proposed model evaluated four input parameters, global horizontal irradiance, latent
heat of flux, ambient temperature, and humidity for the location California, the USA for
1 year. Figure 3.4 represents the box-plot of outliers in the SVR for each input parameter
independently.

In addition, the parameter global horizontal irradiance has the maximum number of
outlier which means that there is alot of noise in the dataset. Hence, it is useful to neglect the
values of global horizontal irradiance which are greater than 300 W/m2. Moreover, there is
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Fig. 3.3 Statistical representation for the solar irradiance dataset for California, USA.

some noise in the parameter latent heat of flux and ambient temperature, however, there are
significantly lower values and thus, will not affect variance in the dataset.

3.2.3 Feature Engineering

Further, the feature engineering is performed to determine the importance of each parameter
with respect to each other. The feature selection consists of correlation analysis and principle
component analysis (PCA). For the study analysis, the correlation analysis using the heat
map is performed as shown in the figure 3.5. The direct normal irradiance has the maximum
percentage of importance on output results, followed by ambient temperature and latent heat
of flux. Further, the humidity has the least importance on the output results, hence, in the ML
algorithm does not considers humidity as an input variable.
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Fig. 3.4 Identification of outliers in the dataset for the parameters global horizontal irradiance,
latent heat of flux, ambient temperature and humidity.

3.3 Model Training

3.3.1 Linear Regression Model

Mathematically, the linear regression model is a statistical approach of predicting the value
of the cost function depending upon another variable. The linear regression model uses
past experiences of the parameter as an input and predicts the outcome having a linear
relationship between the cost function and output variables [132]. The linear regression
model is implemented because of the inter-dependency of multiple features on the prediction
of solar irradiance.

For the proposed model, linear regression with multiple features is used for forecasting
solar irradiance. The 4 parameters were processed from the dataset of the location California,
the USA for 1 year and further divided into training (80%) and testing (20%) for the machine
to learn in Python.

3.3.2 Suppport Vector Regression Model

The Support Vector Machine (SVM) is an ML algorithm that consists of two types of
paradigms, classification and regression problems. After analysing the results from linear
regression, an attempt has been made to implement the SVR algorithm to predict global
solar irradiation for making critical comparisons between varied ML techniques. Like linear
regression, the SVR is also classified as a Supervised ML algorithm that is used to determine
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Fig. 3.5 Heat Map determining the correlation of the feature with respect to each other.

the best possible fit line (linear) or a hyperplane (non-linear) containing the maximum points
in a dataset [133].

Further, the optimized decision boundary for a line or a hyperplane can be calculated
considering the values of the most appropriate hyperparameters. In general, there are three
hyper-parameters C, kernel, and gamma. First, the C, also known as the punishment factor of
the error term, helps to evaluate the significance of outliers in the dataset. Second, the kernel
is decided based on the dimensions of the dataset, for instance, if the decision boundary under
consideration is linear or non-linear (radial basis function is used for multi-dimension kernel).
Third, the gamma hyper-parameter for a non-linear function (uses radial basis function)
influences the distance from a single train point in the dataset.

Similar to the linear regression model, the dataset is divided into the train (80%) and test
(20%) and implemented the SVR model to forecast global solar irradiance. However, SVR is
also used for estimating the values of C, gamma, and kernel. Accordingly, the values of C
are assumed initially to be in the range of 0.01, 0.1, 1, and 10. On the contrary, the values of
gamma were assumed to be 0.001, 0.01, 0.1, and 1 as well as for the kernel; it was linear or
rbf. The SVR uses the Grid Search function to determine the most optimized values for C,
gamma, and kernel.
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3.4 Results and Discussion

3.4.1 Forecasting Solar Irradiance using LR Model

Figure 3.6 depicts the plot of predicted global solar irradiance (orange curve) to the actual
values (blue curve) of the solar irradiance for the location CA, USA. The overall accuracy
of the model was 81.92%. In addition, linear regression with multiple features was also
incorporated for another location i.e. Delhi, India, and the overall accuracy was 87.30%.

Fig. 3.6 Predicted solar irradiance using Linear regression for multiple parameters and zoom
image of actual vs predicted curve.

3.4.2 Forecasting Solar Irradiance using SVR Model

Further, implementing the grid search for the calculations of optimized values of hyper-
parameters, the results obtained were, C = 10, Gamma = 0.001 and kernel = rbf. Further,
incorporating these hyper-parameters as input to the SVR model, the dataset was divided
into train and test of 80% and 20% respectively.

Likewise, figure 3.7 represents the actual values vs forecasted solar irradiance using the
SVR model. Here, the model under consideration observed that training the dataset precisely,
following the trend, and thus, forecasted the solar irradiance with an accuracy of 81.6% (also
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Fig. 3.7 Predicted solar irradiance using Multiple Parameter SVR and zoom image of actual
vs predicted curve

known as the R-Square Performance value). The RMSE and MAE of the model are 6.9%
and 3.1% respectively.
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Table 3.1 Comparison of results based on RMSE, R-Squared value and the MAE for a dataset
of 10 Years.

Hyperparameter California, USA Delhi, India

"C" 10 10
"Gamma" 0.001 0.001
"Kernel" rbf rbf
"R-Squared (%)" 39.68 40.21
"RMSE (%)" 21.7 24.12
"MAE (%)" 13.07 17.9

Table 3.2 Comparison of results based on RMSE, R-Squared value and the MAE for a dataset
of 1 Year.

Hyperparameter California, USA Delhi, India

"C" 10 10
"Gamma" 0.01 0.01
"Kernel" rbf linear
"R-Squared (%)" 81.6 82.11
"RMSE (%)" 6.9 8.2
"MAE (%)" 3.1 4.6

Followed tables, 2.1, 2.2, 2.3, and 2.3, represent the optimized values of hyper-parameters
(C, gamma, and kernel) calculated using the grid search for the data sets of 10 years, 1 year,
1 month and 1 week, respectively. Also, the tables include the R-squared value, RMSE, and
MAE for the locations Sacramento, California, USA, and Delhi, India, for 10 years, 1 year, 1
month, and 1 week. According to the achieved results, the SVR model is expected to perform
well if the R-square value is above 80% and RMSE, as well as the MAE value of the model,
is less than 10% and 5%, respectively. Therefore, the Multiple output SVR for 1 year and 1
month of California, USA, and Delhi, India, has much better forecasting results as compared
to the duration of 10 years and 1 week.

3.5 Summary

In summary, the chapter introduces an efficient method to power WSN devices by developing
WSNs with energy harvesters that are capable to scavenge solar energy. Further, the amount
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Table 3.3 Comparison of results based on RMSE, R-Squared value and the MAE for a dataset
of 1 Month.

Hyperparameter California, USA Delhi, India

"C" 10 10
"Gamma" 0.001 0.001
"Kernel" rbf linear
"R-Squared (%)" 76.47 84.13
"RMSE (%)" 5.6 9.2
"MAE (%)" 2.4 6.8

Table 3.4 Comparison of results based on RMSE, R-Squared value and the MAE for a dataset
of 1 Week.

Hyperparameter California, USA Delhi, India

"C" 1 10
"Gamma" 0.01 0.001
"Kernel" linear linear
"R-Squared (%)" 82.59 72.16
"RMSE (%)" 14.9 15.95
"MAE (%)" 7.9 8.3

of solar irradiance is predicted using the ML algorithms, so that the node can intelligently
manage its energy independently. The chapter analyzes data by executing data processing,
identifying outliers, and feature engineering to determine the most significant values of
solar irradiances and respective parameters for two locations, i.e. California, USA, and
Delhi, India. Also, a grid search approach was performed to find an optimized value of
hyper-parameters, such as C=10, gamma = 0.001, and kernel = rbf for California, USA.
Therefore, performing these optimization techniques helps to improve the overall prediction
performance for estimating the amount of solar irradiance. Moreover, the ML model showed
that the output results from the SVR model predicted the solar irradiance more accurately as
compared to the linear regression model. In addition, the compelling results were that the
models with a time duration of 1 year and 1 month have much better forecasting results than
10 years and 1 week, with both RMSE and MAE less than 7% for Sacramento, California,
USA.





Chapter 4

Machine learning framework for LCOE
of PV System

4.1 Introduction

World’s energy demand is growing fourfold and accordingly, most of the world’s energy is
consumed by China and the United States of America and is followed by India. [134, 135]
Subsequently, these escalating energy needs can be achieved using solar energy, which can
potentially improve the lives of communities profoundly worldwide [136, 137]. Harnessing
the Sun’s renewable, sustainable and low-carbon energy source can be achieved using PV
systems [138]. The PV systems convert sunlight directly into electricity and can often do so
with high efficiency [139]. Among the challenges in achieving widespread adoption of this
technology is the price of solar electricity in comparison to conventional sources of energy
[140].

Grid-connected PV systems are cost-effective renewable energy solutions that do not
require batteries and mainly consist of a PV array generator and an inverter for converting
DC electricity to AC [141, 14]. Furthermore, they can be configured to supply energy to
primary loads, with all excess electricity being sold to the grid or even bought back from the
grid when the PV supply is insufficient [142]. Alternatively, all the energy generated from
the PV system can be sold directly to the grid [143]. In all cases, the difference between the
price of buying electricity from the grid and that of selling to the grid from the PV system is
a substantial factor in determining the optimal size of grid-connected PV systems [144].

Therefore, evaluating the economic feasibility of a PV system is extremely important
[145]. For example, users need to know their expected return on investment (ROI), and
funding agents need means to analyze proposed technology development [146]. Similarly,
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technology developers need to understand how they will compete relative to other technolo-
gies [147]. Moreover, regulators and policymakers (who help define the economics of energy
production) require reliable information [148]. The capital cost of a PV system, its operation
and maintenance costs and its expected energy yield must be considered systematically so
that a comparison with conventional fossil fuels can be made [149]. Consequently, one needs
a method to compare energy costs fairly. Therefore, a generalised framework is developed
for predicting the feasibility of a grid-connected PV system for utility-scale applications.
The prediction framework considers the amount of electricity consumption using several
metrics, including Gross Domestic Product (GDP), prices of electricity, population growth
and weather data.

The chapter of the thesis is divided into 6 sections. Section 4.2 reviews the literature on
calculating the LCOE of grid-connected PV systems. Section 4.3 describes the methodology
for calculating the LCOE and ROI of a grid-connected PV system using various ML algo-
rithms and briefly discusses the proposed model. Section 4.4 includes the data explanation
and steps of data pre-processing. Section 4.5 presents the results of the energy prediction
models using various ML techniques and provides comparisons with singular input demo-
graphic variables. Next, section 4.6 includes a discussion of the results, and lastly, section 4.7
concludes the results from the various ML algorithms that are applied throughout the chapter.

4.2 Methodology

The methodology section of the chapter demonstrates all the necessary calculations for
calculating the LCOE and ROI. Moreover, the section includes information on the ML
algorithms used for forecasting the LCOE using demographic variables. In addition, an ML
model is applied for estimating the LCOE and, therefore, the ROI of the utility-based grid-
connected solar home system installed in Sacramento, California, USA and the Philippines.

4.2.1 Calculating the LCOE

A valuable parameter for comparing the cost of electricity production from any energy
generation system over its lifetime is the Levelized Cost of Electricity (LCOE) [150]. This is
typically defined as the average cost ($) per kWh of useful electrical energy generated by the
system throughout its years of operation. Mathematically, the LCOE can be calculated as
follows:

LCOE =
System Lifetime Cost, Lt

Lifetime Energy Production Cost, Et
(4.1)
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Lt = It +Ct +St (4.2)

Et = Eo(1−d)t (4.3)

where, It represents the initial costs, including expenses related to equipment, land and
other setup necessities. The total costs paid at the beginning of the project, such as annual
operation and maintenance costs, are denoted as Ct . Lastly, St signifies the salvage value,
which is the use value of the project at the end of its lifetime. Similarly, the Lifetime Energy
Production Cost (Et) is defined as Et = E0(1−d)t , where E0 refers to the initial rated energy
output and the system degradation factor is represented by (1−d)t . This formula accounts
for the gradual decrease in energy output over time due to factors such as aging and wear of
the PV system components.

Traditional methods of calculating LCOE relied on using singular input values for
each of the variables above [151]. For instance, using the benchmark prices reported for
2017, a 50 MW utility-scale PV power plant installed in California would cost $56 million,
corresponding to $1.12/W (31% module, 69% balance of systems). This system would
produce approximately 86 GWh of energy in the first year. Assuming that the discount rate
is 5.5%, the federal tax rate is 30%, the state tax rate is 8%, the evaluation period is 25 years,
and the system degradation is 0.5%, then the LCOE of this system is 5.83 c/kWh. A careful
consideration of these numbers, as mentioned above, shows that many assumptions have
already been made to determine the LCOE of this system.

Nevertheless, a case study of a PV system installed in Spain indicates that estimating
the LCOE using traditional methods may lead to inaccurate estimations. This is particularly
relevant as factors such as inflation rate, discount rate, degradation rate, and Consumer
Price of Electricity (CPE) are likely to vary during the lifetime of a PV project (typically 25
years). In Spain, LCOE analysis proved inadequate when an excessive number of projects
were developed based on overly optimistic assumptions regarding panel failure rates and
other performance factors [152]. A more comprehensive examination of the uncertainties
associated with these assumptions might have averted significant losses.

4.2.2 Calculating the ROI

After determining the LCOE, the next step is to calculate the ROI for the PV system. To do
this, it is necessary to compare the LCOE with conventional electricity prices [153]. However,
this parameter is likely to change over the project’s lifetime. As the input parameters
continuously change and are strongly dependent on the system’s location, accordingly, ML
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techniques are proposed to determine the ROI of a PV system accurately. ML techniques can
effectively capture the complex relationships between various factors and adapt to changing
input conditions, making them well-suited for predicting the ROI of the PV system with
higher accuracy.

Mathematically, the ROI of a PV system can be calculated using,

ROI = TC/BI (4.4)

where TC represents the Total Cost of the PV System, and BI denotes the annual benefit
from the installation of the PV system. Here, the Total Cost of the PV system refers to the
initial investment required for the PV system, including costs related to equipment, land,
installation and other setup necessities. It is also sometimes called the Capital Expenditure
(CAPEX) cost. Therefore, the ROI parameters estimate the number of years a client can
expect to achieve a return on investment for installing a PV system. A review of the literature
reveals that the methods for calculating the ROI used by researchers worldwide often rely
heavily on assumptions, leading to imprecise cost analysis estimations [154].

4.2.3 Machine Learning Implementation

Due to the above-mentioned factors, several ML techniques for calculating the LCOE and
ROI of the PV system are examined. Subsequently, in this subsection, the ML techniques
discussed can be applied to forecast the LCOE accurately. ML is a branch of computer
science that involves computational training algorithms to make predictions based on a known
input data set [155]. Furthermore, ML can be divided into three main categories named
Supervised ML, Unsupervised ML, and reinforcement ML algorithms [25]. In supervised
ML, the computer learns from the input provided by the user, whereas in unsupervised ML,
the computer learns patterns from untagged data [156]. Moreover, reinforcement ML is
the technique of the computer to learn from the hit-trial-error method [20]. For the study
under consideration, the proposed model mainly relies on Supervised ML using regression
techniques to predict the LCOE of PV systems, followed by the calculations for the ROI
of the PV system shown. Lastly, the LCOE calculated by different approaches is compared
using fixed input values for the various parameters.

4.2.4 Long Short-Term Memory (LSTM) Model

Long Short-Term Memory, often known as LSTM, is a sort of recurrent neural network
(RNN) that was created expressly to deal with long-term dependencies and prevent the
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vanishing gradient problem that can happen in conventional RNNs. A popular deep learning
architecture called an LSTM model is employed in many sequence-based prediction appli-
cations, including natural language processing (NLP), speech recognition, and others. An
LSTM model, at its most basic level, is made up of a series of LSTM cells that are linked to
one another in a chain-like fashion. Three major parts make up an LSTM cell: a memory
cell, an input gate, and an output gate. The input and output gates, respectively, control the
flow of information into and out of the cell, while the memory cell is in charge of storing
data about the prior inputs [157].

The output gate determines what data should be output from the memory cell, and the
input gate determines what data should be admitted into the memory cell. Both gates are
managed by activation functions, which are masterable by training. Additionally, each
memory cell includes a set of activation functions that control how it updates its state in
response to input from the present and information from the past. The input sequence is
fed into an LSTM model’s forward pass one element at a time, and each cell’s output is
given to the cell after it in the sequence. A prediction about the sequence as a whole is then
made using the output of the last cell. The LSTM model’s parameters are altered during the
training phase using an optimization technique like stochastic gradient descent (SGD) or
Adam. For each input sequence in the training set, the objective is to reduce the discrepancy
between the projected output and the actual output.

4.2.5 Autoregressive Integrated Moving Average (ARIMA) Model

A statistical model called ARIMA (AutoRegressive Integrated Moving Average) is used for
time series analysis and forecasting. It is a class of models that are frequently used in finance,
economics, and other disciplines where time series data is prevalent to depict a variety of
time series patterns. The moving average (MA), integrated (I), and autoregressive (AR)
components are the three parts that makeup ARIMA models.

The AR component simulates the relationship between the time series’ historical values
and the current value. In particular, the AR component makes the assumption that the time
series’ present value is a linear function of its earlier values, with the linear function’s weights
assessed during model fitting. The time series’ differencing, which is employed to make it
stationary, is modeled by the I component. A stationary time series is simpler to model and
analyze since it has a constant mean and variation across time. To get rid of any pattern or
seasonality in the data, differencing includes subtraction of the prior value from the present
value. The MA component simulates how the present value depends on the historical time
series mistakes.
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The theory underlying this component is that past forecasting errors, which can be
represented as a weighted sum of past errors, have an impact on the current value of the time
series. Three parameters—p, d, and q—are generally used to define ARIMA models. The
q parameter denotes the order of the MA component, the p parameter denotes the order of
the AR component, and the d parameter denotes the order of differencing required to keep
the time series stationary. The model parameters must be determined using a procedure
known as parameter estimation in order to fit an ARIMA model to a time series. This entails
determining the values of p, d, and q that best match the time series data using a statistical
technique like maximum likelihood estimation or least squares. The model can be employed
to predict future values of the time series once the parameters have been evaluated [158].

Return 
On 

Investment 
Years

Fig. 4.1 The proposed model for determining the LCOE and ROI for a utility-connected solar
home system.

4.2.6 Proposed Model

In a majority of previous studies, researchers have calculated the LCOE and ROI using
singular input values, typically assuming that the CPE will increase by 5-10% over the lifetime
of the solar plant. On the contrary, the chapter argues that the estimation of LCOE should
account for variations in CPE due to factors such as population growth, inflation rate and
interest rate over time [159]. Consequently, an algorithm is proposed that accurately considers
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these dynamic variables. Using historical data, various ML algorithms are incorporated to
estimate the LCOE, considering the aforementioned factors. To validate the proposed model,
the historical data is extracted from two regions, California in the USA and Butuan City in
the Philippines and compute the error function of various ML techniques to identify the most
suitable ML model. Figure 4.1 illustrates the proposed system, encompassing the required
input parameters, relevant variables and ML algorithms used to determine the ROI of a PV
plant.

4.3 Data Explanation

This section of the chapter explains detailed information about the selected dataset values for
accurately estimating the LCOE and ROI of utility-based grid-connected solar home systems.
The data extraction step is initially thoroughly discussed, followed by a plot of datasets and
heatmap for independent and dependent variables determining the correlation matrix.

4.3.1 Data Extraction

To predict the LCOE and ROI, it is crucial to obtain real-time data from reputable sources such
as the Environmental Investigation Agency (EIA) [160], International Renewable Energy
Agency (IRENA) [161], Bureau of Economic Analysis (BEA) [162], and International
Energy Agency (IEA) [163]. Moreover, the consumer price of electricity data was extracted
from EIA, followed by the statistical data on population growth and the gross domestic
product extracted from the websites BEA and IRENA. It is worth mentioning that some of
the data were available on a quarterly or annual scale; however, to maintain the unity in the
data comparison, the data was extrapolated using Python’s Generative adversarial networks
(GAN) framework to obtain the complete data on an annual scale. For the study, historical
data for Sacramento, California, USA, is collected. The datasets comprise independent
demographic variables such as the Consumer Price Index (CPI) as a measure of the inflation
rate (X1), population growth (X2), and Gross Domestic Product (GDP) (X3). In contrast,
the dependent variable (Y) is represented by the average CPE (cents/kWh) [164]. The
timescale for the extracted dataset is monthly. Table 1 presents the respective dependent
and independent variables’ dataset of demographic values, ranging from January 2005 to
December 2021.
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Table 4.1 The table showcases an example of data extracted from various online websites
such as EIA, IRENA, BEA, IEA, etc.

Date Inflation
(X1)

Population
Growth (X2)

Gross Domestic
Product (X3)

CPE (Y)

01/01/2005 200.35 294957.00 128234.50 12.19
01/02/2005 201.20 295167.33 128717.47 12.33
01/03/2005 201.85 295377.67 129200.43 12.12
01/04/2005 202.50 295588.00 129683.40 12.57
01/05/2005 201.85 295838.67 130635.33 13.4
01/06/2005 201.20 296089.33 131587.27 13.16
01/07/2005 202.10 296340.00 132539.20 13.43
01/08/2005 203.00 296588.67 133226.70 12.14
01/09/2005 204.45 296837.33 133914.20 11.3
01/10/2005 205.90 297086.00 134601.70 11.28
01/11/2005 204.65 297302.67 136682.93 12.8
01/12/2005 203.40 297519.33 138764.17 12.91
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
01/01/2021 303.67 331949.00 312120.20 21.43
01/02/2021 304.39 331973.00 310499.27 22.53
01/03/2021 306.90 331997.00 308878.33 23.37
01/04/2021 309.42 332021.00 307257.40 22.75
01/05/2021 309.46 332113.00 309934.50 23.11
01/06/2021 309.50 332205.00 312611.60 22.46
01/07/2021 310.33 332297.00 315288.70 23.34
01/08/2021 311.17 332392.67 319178.13 23.44
01/09/2021 312.22 332488.33 323067.57 21.97
01/10/2021 313.27 332584.00 326957.00 22.77
01/11/2021 314.54 332639.00 327936.67 23.83
01/12/2021 315.81 332694.00 328916.33 23.22
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4.3.2 Statistical representation of Dataset

Initially, the collected raw dataset is non-uniform and has noise, disturbances, irregularities,
seasonality, trends or patterns associated with them. Therefore, it is essential to understand
these parameters before inputting them into the ML model. Subsequently, Figure 4.2 depicts
the plot of dependent and independent variables used to estimate the dependent variable, i.e.
the CPE. The dataset plot shows that the parameters such as population growth, the consumer
price of the index, the GDP and the CPE have a linear relationship. However, parameter
CPE has seasonality, noise, and irregularities associated. The range of chosen dataset is from
January 2005 to December 2021.

Fig. 4.2 The statistical representation of the dataset for independent variables.

4.3.3 Heat-map for the Correlation Matrix

In ML, feature selection is a method that considers only those independent features in the
model that contribute significantly to estimating the dependent variable. Accordingly, the heat
map of the correlation matrix is investigated to distinguish between the independent variables
and the dependent variables. Figure 4.3 shows the heatmap for the parameters of the inflation
rate, population, GDP, and CPE. The consumer price of electricity (CPE) and gross domestic
product (GDP) has a correlation value of 0.91, indicating a strong relationship between these
variables and their importance in estimating CPE. However, the GDP parameter exhibits
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a correlation value lower than 0.85, suggesting a weaker relationship with CPE. In fact,
including the population growth data led to no change in the final outcome of the results;
however, it did lead to an increased computational time of the proposed model.
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Fig. 4.3 The correlation matrix showcases the heatmap for evaluating the inter-dependency
of variables concerning each other.

4.4 Results

This section discusses the implementation of various ML techniques using the aforementioned
datasets and parameters to train and test the proposed model for accurately forecasting the
LCOE and ROI of utility-based solar home systems. Additionally, the results are compared
from the ML models with time series forecasting models such as ARIMA, LSTM, and
Seasonal Autoregressive Integrated Moving Average (SARIMA). The results presented here
focus on two locations: Sacramento, California, USA, and Butuan City, Philippines. These
two locations are specifically chosen due to the availability of high-quality datasets for
demographic variables. Furthermore, parameters such as CPE are consistent in these regions
and do not vary based on rates determined by the government or industry. This consistency
allows for a more reliable evaluation of the proposed model and its performance in predicting
the LCOE and ROI for solar home systems.
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Fig. 4.4 The scattered plot of the predicted values to the actual values for the CPE (¢/kWh).

4.4.1 LR Model

For predicting the dependent variable CPE ($), the supervised learning ML model is applied
initially and, precisely, the Linear Regression (LR) model. The LR model determines
the best fit linear line between the independent and dependent variables. Moreover, the
terms dependent and independent variables are already defined in the methodology section;
subsequently, for implementing the LR model with input (dependent) variables such as
population growth, the consumer price of index and GDP to calculate the dependent variable,
i.e. CPE. Figure 4.4 shows the scattered plot of actual values concerning the predicted CPE
in a linear relation. Accordingly, the LR model predicts the output values for the CPE over
the next ten years.

The actual vs predicted plot for the CPE showed an accuracy of less than 85%, and
the error loss function showed a root mean square error (RMSE) value of more than 10%.
Therefore, according to the literature [165], the Accuracy should have a value of more than
90%, and RMSE should be less than 10% for the LR model to predict the values accurately.
The limitation of such poor accuracy is that the input data for the independent variables was
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limited and consisted of only three independent variables. Accordingly, good-quality data is
used and added several independent variables.

4.4.2 LR Model with Multiple Variables

To improve the accuracy of the LR model, multiple independent variables are used and
increased the duration of each variable, i.e. from January 2005 to December 2021. It is
worth mentioning that there were some stances where the data was available in quarterly
or annual resolutions. However, to enhance the accuracy of the LR model, the input data
should be consistent and have the same time resolution. Accordingly, a tool called Generative
adversarial networks (GAN) is used, a sub-class of ML in which two neural networks are
considered.

Consequently, the GAN model results in the best ML model among these two neural
networks. One of the advantages of the GAN model is to improve the quality of the model
even with poor datasets. In addition, to predict the dependent variable CPE, the dataset is
divided into 80% and 20% to train and test the LR model with multiple variables. Figure
4.5 showcases the results for the predicted values vs the actual values after executing the
LR model with multiple variables. The overall accuracy for the LR model with multiple
variables is 87%.

The accuracy achieved using the aforementioned model is within the limit of more than
85%. However, the model under consideration is not fruitful for accurately forecasting the
LCOE and ROI parameters of the utility-based solar home system because it will still lead
to ambiguity regarding the exact assumption of the ROI in terms of the year. Therefore,
it is essential to appropriately determine an ML method with an accuracy of more than at
least 90% [166]. In this regard, LSTM time series forecasting is incorporated to improve the
accuracy of the ML model and reduce the loss error function.

4.4.3 LSTM Model

Another ML model, the Long Short-Term Memory (LSTM) model, was applied to enhance
accuracy. The LSTM method belongs to a subset of ANNs within the domains of AI and
deep neural networks. Additionally, the LSTM model is a Recurrent Neural Network (RNN)
used for analyzing time series forecasting. Additionally, the model aims to predict the energy
ROI, making time series forecasting crucial for accurately predicting the ROI of the installed
system. Consequently, the results are extended by applying the LSTM Model with multiple
independent variables.
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Fig. 4.5 The scattered plot shows the result of forecasting the dependent variable CPE
(¢/kWh) using the LR model with Multiple input independent variables.

The results, demonstrated in Figure 4.6, show the dataset divided into 70% for training
and 30% for testing. The LSTM model with multiple variables achieves an RMSE of 3.237%
and an accuracy of 91%. The larger error in the early years of the LSTM model can be
attributed to several factors. As mentioned earlier, the LSTM model is a type of RNN
designed to capture long-term dependencies in sequential data. Initially, the model may
struggle to capture these dependencies, leading to higher errors in the early stages of the
time series. As the LSTM model progresses through the time series and continues to train, it
gradually learns the underlying patterns and relationships in the data. This learning process
enables the model to better capture long-term dependencies and adapt to the time series
dynamics. Consequently, the model’s predictions become more accurate over time, leading
to a convergence of the error.

Figure 4.6, demonstrates the plot of the train and test of the LSTM model with multiple
variables for predicting the dependent variable CPE (¢/kWh) for Sacramento, California,
USA. Moreover, the predicted values of the CPE from the model are incorporated to calculate
the LCOE and ROI of the utility-based solar home system. Though the LSTM model with
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Fig. 4.6 The curve describes the plot of actual vs predicted values of the CPE (¢/kWh) using
the LSTM model with multiple variables.

multiple variables achieved an accuracy of 91%, however, to obtain a more accurate model,
the ARIMA model is further applied to test as discussed in the following subsection.

4.4.4 ARIMA Model

Next, the ARIMA model is applied to forecast the dependent variable, i.e. CPE. In general,
an ARIMA model is a model that is fitted to the dt h order differenced time series that the
resulting differenced time series needs to be stationary. Herein, the stationary time series
is one in which the mean, variance, autocorrelation, and other statistical features remain
constant across time. The ARIMA model is applied for time series forecasting for the study
under consideration. In addition, it is worth mentioning that a similar dataset as an input is
used to train and test the ARIMA model.

Apart from the high accuracy of the ARIMA model, there are several reasons for imple-
menting it. First, ARIMA is a parametric model that offers interpretable coefficients that
can be used to understand the underlying time series process. Second, the ARIMA model is
highly flexible, as it can be applied to a wide range of time series data, including stationary,
non-stationary, and seasonal data. Furthermore, ARIMA models can be extended to handle
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exogenous variables, making them valuable in forecasting scenarios where other factors may
impact the time series. Lastly, ARIMA models are robust to missing data and outliers, and
numerous libraries and software packages provide built-in ARIMA functions.

Before applying the ARIMA model, the Dickey-Fuller algorithm is tested, a parameter
to check the stationarity of the input dataset. The results of the Dickey-Fuller indicate if
the dataset is stationary or not under the condition that the p-value (probability of the null
hypothesis) should be very small. Accordingly, the results from the model gave a p-value of
0.23, which depicts that the dataset is stationary. In the ARIMA model, the AR part uses the
previous values to make a future prediction, the MA uses the past errors for making future
predictions, and the integrated here stands for the difference between the AR and MA.

Statistical tests were also incorporated to weigh each factor under consideration, such
as the t-test and F-test, for assessing the significance of the individual coefficients of the
AR, MA, and the constant term for each factor. The t-test determines the t-value for each
coefficient, which expresses how far from zero the coefficient is in terms of standard errors.
Indicating that the coefficient is statistically significant at the chosen level of significance
(often 5% or 1%), a high t-value (generally larger than 2 or 2.5) is required. On the contrary,
the combined significance of a set of model coefficients is evaluated using the F-test. The
F-test is specifically used to test whether a subset of the coefficients—typically all the
coefficients in a particular order—are equal to zero. When the p-value is low (often less than
0.05), the null hypothesis can be rejected and the subset of coefficients is jointly significant.

Furthermore, the model runs a set of interactions depending on the hit-and-trial method
for calculating the most appropriate values for p (number of autoregressive terms), q (number
of lagged forecast errors in the forecast equation) and d (number of nonseasonal differences
required for stationarity). The results are analysed using Akaike’s Information Criterion
(AIC), which helps determine the predictors for the regression model. Subsequently, the
model searches for the minimum AIC score and the (p,q, and d) values. Using these values
as input data to the ARIMA model gave the minimum AIC score of 3214.29 and (p, q, d)
values as (1, 0, 1), respectively.

In addition, the dataset was split into training (70%) and testing (30%) portions, along
with the order (1, 0, 1) to apply the ARIMA model. Figure 4.7 demonstrates the actual (blue
curve) vs predicted (orange curve) values for CPE, and the grey area highlights the confidence
interval of 95% using these input values in the ARIMA model. It is worth mentioning that a
confidence interval is a set of values surrounding a point estimate of a performance metric
for a model (such as accuracy, precision, recall, etc.) that encapsulates the range of values
in which the actual value of the performance metric is anticipated to reside with a given
degree of confidence. The yellow-coloured dotted lines indicate the range of the predicted
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Fig. 4.7 The curve depicts the actual vs forecasted values for CPE (¢/kWh) for Sacramento,
California, USA, using the ARIMA model.

values. Moreover, an accuracy of 93.8% is achieved and forecasted CPE values up to 2030.
Therefore, the proposed model achieved a maximum of 93.8% accuracy and was the most
appropriate model for predicting the LCOE parameter among other ML techniques.

Accordingly, after determining the most appropriate model for predicting one dependent
variable, i.e. CPE. Consecutively, the same procedure is integrated for calculating the
different other dependent variables (as mentioned in figure 4.1), such as solar panel cost
($), the balance of system cost ($), system lifetime (years), Operations and maintenance
cost ($), Energy yield (($/kWh) and incentives ($). Consecutively, the dataset was collected
for various independent variables, for example, type of solar panel, number of solar panels,
the area required, the life span of devices, energy consumption, solar energy generated,
associated breakdown costs, etc. From the literature, two case studies from Sacramento,
California, USA and the Philippines were considered so as to make a detailed comparison
of the proposed model. The dataset of the demographic variables ranges from a duration
between 2005 to 2021.
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4.5 Discussions

The results of applying ML for estimating the CPE show that the ARIMA model gave the
highest accuracy. Accordingly, the independent variables for other parameters such as solar
panel cost, the balance of system cost, system lifetime, operation and maintenance costs and
the energy yield were forecasted accurately for evaluating the LCOE of a utility-based grid-
connected solar home system. The dataset consisting of demographic variables is extracted
for two countries, California, the USA and the Philippines and compared the results from
the proposed model with the case studies. It is worth mentioning here that previously, the
case studies calculating the LCOE used singular inputs rather than multiple variables, and an
approach of ML is rarely shown in the literature. Therefore, the proposed model is the first
approach to accurately forecasting the LCOE using the ML framework.

The first case study under consideration involves the overall project lifetime of 25 years
for a grid-connected PV utility system of capacity 20MW installed in the city of Sacramento,
California, USA. The overall performance of the system is 197 peak Watts per square meter.
The estimated initial investment to install a PV system is $54 Million, and the contribution
is $2.7/W having 65% modules and a 35% balance of systems. The direct purchase cost of
the components involved in the PV utility system is $23.856 Million, and consecutively, the
calculated values for the operation and maintenance cost of the PV system is shown in Table
4.2 with a total of $6.50 Million for 25 years.

These values are forecasted using the ARIMA model and ML techniques. The chosen
PV module for the system is Monocrystalline-PERC (Passivated Emitter and Rear Cell),
having an efficiency of 19.1%. Incorporating these input values into equations mentioned in
the methodology section, the net energy production is calculated as 738.537GWh and the
net present value of Electricity as 383.169GWh. The forecasted value of the Levelized total
cost of electricity is $27.180 Million. Therefore, considering all the input values from the
literature but integrating the values of CPE from the proposed model, the value of LCOE is
obtained to be 7.09 ¢/kWh, whereas the LCOE using the singular inputs gives a value of 5.83
¢/kWh. Similarly, using the equations mentioned in the methodology section, the forecasted
ROI for the PV utility-based grid-connected system is 14 years.

In addition, to validate the proposed model, the dataset from another case study is used
for a solar PV farm in a specific location in Butuan City, Philippines [167]. Similar to the
previous, the initial dataset is extracted from the case study, such as the power capacity of
the solar farm was 5 MW with an investment of 300 Million Pesos (to make the comparison
with the first study, all the costs are converted to USD. Furthermore, the associated costs
and the energy yield are included in calculating the solar farm’s LCOE parameter and the
ROI. According to the results of the case study for a duration of 20 years, the valuable energy
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Table 4.2 The table showcases the calculation of the LCOE and the ROI of the PV system for
the duration of 25 years.

Year Production
(GWh)

NPV of
Electricity
(GWh)

Direct Pur-
chase Cost
(M$)

Operation
Mainte-
nance (M$)

Levelized
Total Cost
($)

0 − − 23.856 − 23.856
1 31.343 29.569 − 0.26 0.245
2 31.187 27.757 − 0.26 0.231
3 31.032 26.055 − 0.26 0.218
4 30.878 24.458 − 0.26 0.206
5 30.724 22.959 − 0.26 0.194
6 30.571 21.552 − 0.26 0.183
7 30.419 20.231 − 0.26 0.173
8 30.268 18.990 − 0.26 0.163
9 30.117 17.826 − 0.26 0.154
10 29.967 16.734 − 0.26 0.145
11 29.818 15.708 − 0.26 0.137
12 29.670 14.745 − 0.26 0.129
13 29.522 13.841 − 0.26 0.122
14 29.376 12.993 − 0.26 0.115
15 29.229 12.196 − 0.26 0.108
16 29.084 11.449 − 0.26 0.102
17 28.939 10.747 − 0.26 0.097
18 28.795 10.088 − 0.26 0.091
19 28.652 9.470 − 0.26 0.086
20 28.509 8.889 − 0.26 0.081
21 28.368 8.344 − 0.26 0.076
22 28.226 7.833 − 0.26 0.072
23 28.086 7.353 − 0.26 0.068
24 27.946 6.902 − 0.26 0.064
25 27.807 6.479 − 0.26 0.061
Total 738.537 383.169 23.856 6.50 27.180
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production is 4.18/kWh/day with an ROI of 4.23 years. However, their study used singular
inputs to calculate these values. Consecutively, applying the ARIMA based-ML model in the
proposed model, the resulting predicted value of the LCOE is 8.90¢/kWh while the ROI was
calculated as 5.37 years.

Accordingly, analyzing the two case studies reveals that the demographic variables of any
country will undoubtedly change over a period of time. Moreover, the discrepancy change in
values using the singular inputs and the proposed model indicates that the LCOE and ROI
calculated using the singular inputs results in errors and miscalculated estimation of the ROI
of solar home systems.

4.6 Summary

In summary, the CPE represents the average cost of electricity per unit (in kWh) for con-
sumers, which is influenced by various factors such as inflation rate, population growth,
and gross domestic product. On the other hand, the LCOE is a metric that calculates the
average cost of producing electricity per unit over the lifetime of a power generation system,
such as a PV system. The relationship between CPE and LCOE in the proposed model is
that the CPE serves as a reference point for estimating the LCOE of a PV system. In other
words, CPE provides the context for comparing the cost-effectiveness of a PV system with
the conventional prices of electricity. By considering the dynamic factors that influence CPE,
the model aims to provide a more accurate estimation of LCOE, which ultimately helps in
determining the ROI for installing a PV system. Incorporating the changing CPE in the
proposed model allows for a more realistic and accurate assessment of the LCOE, which in
turn contributes to a better understanding of the long-term financial viability of a PV system.
Therefore, most of the existing studies rely on singular values.

However, the argument emphasized in this chapter investigates that many of these pa-
rameters are dynamic. Factors such as population growth, average past cost of electricity,
inflation rate, gross domestic product, and other demographic variables significantly impact
the cost of electricity. As a result, a model was developed that allows for the calculation of
LCOE based on these dynamic input factors. Additionally, the results demonstrate a clear
difference in estimating the LCOE of a PV system using singular inputs, yielding an LCOE
of 5.83 ¢/kWh. In contrast, when applying the ML model, the LCOE increases to a value of
7.09 ¢/kWh. This comparison highlights the distinction between calculating the LCOE using
singular inputs and employing ML and AI-based algorithms. Ultimately, the study in this
chapter reveals a substantial difference in LCOE estimations, emphasizing the importance of
considering dynamic factors.





Chapter 5

Conclusions and Future Work

5.1 Conclusion

In conclusion, the thesis presents a critical literature review, examining and implementing
various ML techniques for predicting solar irradiance to enable WSNs. Lastly, the thesis also
includes an ML-based framework for estimating the CPE of a PV system. Accordingly, a
detailed conclusion of each of the chapters is presented below.

The literature review of recently published research articles was discussed that applied
various ML techniques for predicting solar irradiance. Additionally, another section included
the literature review for the ML algorithms that were previously used for the estimation of
LCOE and ROI of PV systems. Moreover, an SR is also presented in the second chapter of
the thesis, which covers a broad range of ML techniques for optimizing the performance of
low-cost solar cells. The review indicates that a significant proportion of research focuses
on data-driven approaches and ML techniques for discovering low-cost solar cells, with a
third of publications targeting ML algorithms in the fabrication process. Moreover, the SR
suggests that ML techniques can potentially accelerate the discovery of new solar materials
and architectures. Future research can expand on these findings by exploring and developing
new ML techniques for solar cell optimization. Additionally, addressing the scalability and
sustainability of low-cost solar cell technologies to enable large-scale commercialization is
essential. Ultimately, applying ML techniques in solar energy can revolutionize the industry
and pave the way for a cleaner and more sustainable future.

Moreover, the WSN nodes rely on hazardous batteries that need constant replacement.
Therefore, WSNs with solar energy harvesters that scavenge energy from the Sun are
proposed. The critical issue with these harvesters is that solar energy is intermittent. Conse-
quently, ML algorithms that enable WSN nodes to accurately predict the amount of solar
irradiance are proposed so that the node can intelligently manage its energy. The ML models



64 Conclusions and Future Work

were based on historical weather datasets from California (USA) and Delhi (India) from 2010
to 2020. In addition, data pre-processing, followed by feature engineering, identification of
outliers and grid search to determine the most optimized ML model is performed. Compared
with the linear regression model, the support vector regression (SVR) model showed accurate
solar irradiance forecasting. Moreover, it was also found that the models with time duration
of 1 year and 1 month has much better forecasting results than 10 years and 1 week, with both
root square mean error (RMSE) and mean absolute error (MAE) less than 7% for Sacramento,
California, USA.

In addition, most of the studies are based on singular values, and the argument here is
that many of these parameters are dynamic. So, the parameters that determine the Cost of
Electricity, like population growth, the average cost of electricity in the past, inflation rate,
gross domestic product, and other demographic variables, have a large impact on the cost of
electricity. Hence, a model that enables people to calculate the Levelized cost of electricity
based on these dynamic input factors is developed. The compelling results show a clear
difference in estimating the LCOE of a PV system using singular inputs; received the LCOE
to be 5.83 ¢/kWh. However, applying the ML model, the LCOE is increased to 7.09 ¢/kWh.
Thus, the study compares calculating the LCOE using the singular inputs and then the LCOE
based on Machine learning and Artificial Intelligence based algorithms. Moreover, it signifies
a big difference in estimating the LCOE values.

5.2 Open Questions

This section highlights some of the key insights and, consecutively, presents the future
outlook of the potential research incorporating ML and the discovery of new materials to
develop re-configurable solar cells. In addition, this section also includes the limitations and
pitfalls of the ongoing research that needs to be addressed for developing efficient, robust,
and stable solar cell architectures.

According to the review, few articles were published in the domain of using ML for
fabricating solar cells. Furthermore, our study revealed that input data was clustered around
PSCs, OSCs, and hybrid solar cells. Furthermore, most research used the ANN, GBRT,
XGBoost, EXTR, LR, DTR, KNN, RF, SVM, SVR, GPR, and BO algorithms to determine
output characteristics such as cost, PCE, the accuracy of the ML model, loss function and error.
Lastly, ML was used for optimizing the following solar cell parameters: donor/acceptor ratio,
conductivity, donor/acceptor materials, stability optimization, copper content optimization,
and spray plasma processing.



5.2 Open Questions 65

Although there are numerous advantages of using ML for solar cell discovery, there are
several open issues. From our systematic review, we came across multiple challenges that
need to be addressed with regard to the discovery of new low-cost solar cells. Key among
these challenges are:

• Vulnerability of the input data. As previously mentioned, most low-cost solar cells
were fabricated by trial and error, which leads to high input data vulnerability [168].
Therefore, model validation should be a necessary step [169]. Moreover, data scarcity
is a significant problem in the field of data-driven solar materials science [170]. Text
mining and picture recognition are considered solutions to overcome these issues of
small datasets [171].

• Stability of thin-film solar cells. One of the key concerns in designing low-cost solar
cells in the real environment is the stability of organic, inorganic, and hybrid solar
cells due to the different compositions of chemical components. These solar cells are
very unstable and have a short life period [172]. Previously, studies have shown that
solar cell efficiency and stability are inversely proportional. Also, the key stability
components that need to be addressed are thermal, moisture, and chemical composition
stability [173].

• Inaccurate predictions. Another key issue with using ML algorithms for discovering
solar cells is the inaccurate predictions and outcomes from the ML models [174].
In most cases, ML algorithms give the confidence interval of the forecasted and
predicted values of the solar cells. However, the predicted values for the discovery of
solar cells seem to approach up to a maximum of 95% using the GPR and Bayesian
optimization using the probability distribution, which sometimes proves to result in
the poor fabrication of solar cells. Therefore, the ML models’ prediction models need
to be classified properly to avoid such discrepancies [175].

• Rigorously fabricating solar cells in labs. The researchers are rigorously fabricating
solar cells depending upon the hit and trial methods, which wastes a lot of time,
resources, and materials. In addition, if the researchers follow the same procedure in
the upcoming years, it is noted that it will further delay the discovery of new materials
used to fabricate solar cells [176]. Moreover, using the permutation and combinations
of different layers, electrical characteristics, and other components required to design
the solar cells and fabricate solar cells in the laboratory will lead to other consequences
which can be avoided with the use of ML techniques and AI integration [177].
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• Lack of data availability and poor data analysis. Firstly, it is noted from the study
that there is a lack of data availability and, thus, poor data analysis. Second, it is
advised to integrate feature engineering, modeling, and domain technical expertise to
increase the effectiveness of the created ML model. In parallel, validation experiments
should be run to verify the analytical outcomes of the ML model, such as the high-
performing prediction candidate. Only a few research studies have used experiments
to validate their forecasted materials [178].

5.3 Future Outlook

The future goals and prospective outlook for discovering new low-cost solar cells are men-
tioned below. Initially, there was a large room for data collection and monitoring to provide in-
put to ML models. Moreover, the extracted data needs feature scaling and data-prepossessing
to be used effectively in ML algorithms. Therefore, an appropriate data selection technique
must be used to interpolate or extrapolate the data depending on various dependent and
independent variables in feature selection. In addition, since ML and AI techniques have
recently gained significant importance, adversarial robust ML techniques will play a vital
role in forecasting and predicting the design of solar cell architectures.

Moreover, ML can aid in predicting the performance of solar cells, leading to the
development of dependable and cost-effective solar cells. By predicting the performance of
solar cells before production, manufacturers can save resources and avoid producing poorly
performing cells. Additionally, ML is being utilized to create new materials for cost-effective
solar cells. By analyzing large amounts of data from various sources, ML can identify
materials with desired characteristics for solar cells, reducing the cost and time spent on
experimentation and speeding up the process of developing new materials.

Since low-cost solar cell fabrication in a research laboratory is cheap, most researchers
tend to retrospectively appreciate the performance of their design after first fabricating
the solar cell by trial and error. Instead, we believe it is more beneficial to perform these
predictions using robust ML algorithms, which will help design and fabricate more efficient
solar cells. Adopting this approach will expedite the solar cell design process. There is also
space for research related to the generalized explanations of data extraction and interpretation
and to achieve more accurate ML models. In general, the accuracy of the ML model depends
on the input data. Researchers across the globe should target to extract sufficient data and
make it available online to help the scientific community discover low-cost, high-performance
solar cells.
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[16] Çağla Odabaşı and Ramazan Yıldırım. Performance analysis of perovskite solar cells
in 2013–2018 using machine-learning tools. Nano Energy, 56:770–791, 2019.

[17] Asif Mahmood, Jing Yang, Junyi Hu, Xiaochen Wang, Ailing Tang, Yanfang Geng,
Qingdao Zeng, and Erjun Zhou. Introducing four 1, 1-dicyanomethylene-3-indanone
end-capped groups as an alternative strategy for the design of small-molecular non-
fullerene acceptors. The Journal of Physical Chemistry C, 122(51):29122–29128,
2018.

[18] Huaxing Zhou, Liqiang Yang, Samuel C Price, Kelly Jane Knight, and Wei You.
Enhanced photovoltaic performance of low-bandgap polymers with deep lumo levels.
Angewandte chemie, 122(43):8164–8167, 2010.

[19] Feng Chen, Mei-Hong Liu, Rui-Qi Piao, De-Long Zhang, and Yan Wang. Cross-
section spectra and transient characteristics of er3+ emissions in gd3 (al, ga) 5o12
garnet single crystal. Optical Materials, 136:113439, 2023.

[20] Issam El Naqa and Martin J Murphy. What is machine learning? In machine learning
in radiation oncology, pages 3–11. Springer, 2015.

[21] H Wang, ZeZXeZBePJ Lei, X Zhang, B Zhou, and J Peng. Machine learning basics.
Deep Learn, pages 98–164, 2016.

[22] Jude W Shavlik, Thomas Dietterich, and Thomas Glen Dietterich. Readings in
machine learning. Morgan Kaufmann, 1990.

[23] Foster Provost and Ron Kohavi. On applied research in machine learning. MACHINE
LEARNING-BOSTON-, 30:127–132, 1998.

[24] Asif Mahmood, Junyi Hu, Ailing Tang, Fan Chen, Xiaochen Wang, and Erjun Zhou. A
novel thiazole based acceptor for fullerene-free organic solar cells. Dyes and Pigments,
149:470–474, 2018.



Bibliography 69

[25] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015.

[26] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[27] David H Wolpert and William G Macready. No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

[28] Felipe Oviedo, Zekun Ren, Xue Hansong, Siyu Isaac Parker Tian, Kaicheng Zhang,
Mariya Layurova, Thomas Heumueller, Ning Li, Erik Birgersson, Shijing Sun, et al.
Bridging the gap between photovoltaics r&d and manufacturing with data-driven
optimization. arXiv preprint arXiv:2004.13599, 2020.

[29] Asif Mahmood, Ahmad Irfan, and Jin-Liang Wang. Machine learning for organic
photovoltaic polymers: A minireview. Chinese Journal of Polymer Science, pages
1–7, 2022.

[30] Lei Zhang, Mu He, and Shaofeng Shao. Machine learning for halide perovskite
materials. Nano Energy, 78:105380, 2020.

[31] Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh.
Machine learning for molecular and materials science. Nature, 559(7715):547–555,
2018.

[32] Nishi Parikh, Meera Karamta, Neha Yadav, Mohammad Mahdi Tavakoli, Daniel
Prochowicz, Seckin Akin, Abul Kalam, Soumitra Satapathi, and Pankaj Yadav. Is
machine learning redefining the perovskite solar cells? Journal of Energy Chemistry,
66:74–90, 2022.

[33] Maniell Workman, David Zhi Chen, and Sarhan M Musa. Machine learning for
predicting perovskite solar cell opto-electronic properties. In 2020 International
Conference on Data Analytics for Business and Industry: Way Towards a Sustainable
Economy (ICDABI), pages 1–5. IEEE, 2020.

[34] Harsh Rajesh Parikh, Yoann Buratti, Sergiu Spataru, Frederik Villebro, Gisele
Alves Dos Reis Benatto, Peter B Poulsen, Stefan Wendlandt, Tamas Kerekes, Dezso
Sera, and Ziv Hameiri. Solar cell cracks and finger failure detection using statistical
parameters of electroluminescence images and machine learning. Applied Sciences,
10(24):8834, 2020.

[35] Daniil Bash, Frederick Hubert Chenardy, Zekun Ren, Jayce J Cheng, Tonio Buonassisi,
Ricardo Oliveira, Jatin N Kumar, and Kedar Hippalgaonkar. Accelerated automated
screening of viscous graphene suspensions with various surfactants for optimal electri-
cal conductivity. Digital Discovery, 1(2):139–146, 2022.

[36] Qiuling Tao, Pengcheng Xu, Minjie Li, and Wencong Lu. Machine learning for
perovskite materials design and discovery. npj Computational Materials, 7(1):1–18,
2021.

[37] Hannes Michaels, Iacopo Benesperi, and Marina Freitag. Challenges and prospects of
ambient hybrid solar cell applications. Chemical Science, 12(14):5002–5015, 2021.



70 Bibliography

[38] Hannes Wagner-Mohnsen and Pietro P Altermatt. Machine learning for optimization
of mass-produced industrial silicon solar cells. In 2021 International Conference on
Numerical Simulation of Optoelectronic Devices (NUSOD), pages 51–52. IEEE, 2021.

[39] Yongjie Cui, Peipei Zhu, Xunfan Liao, and Yiwang Chen. Recent advances of
computational chemistry in organic solar cell research. Journal of Materials Chemistry
C, 8(45):15920–15939, 2020.

[40] Florian Häse, Loïc M Roch, Pascal Friederich, and Alán Aspuru-Guzik. Designing
and understanding light-harvesting devices with machine learning. Nature Communi-
cations, 11(1):1–11, 2020.

[41] Sheng Jiang, Cun-Cun Wu, Fan Li, Yu-Qing Zhang, Ze-Hao Zhang, Qiao-Hui Zhang,
Zhi-Jian Chen, Bo Qu, Li-Xin Xiao, and Min-Lin Jiang. Machine learning (ml)-
assisted optimization doping of ki in mapbi3 solar cells. Rare Metals, 40(7):1698–
1707, 2021.

[42] Anton O Oliynyk and Jillian M Buriak. Virtual issue on machine-learning discoveries
in materials science, 2019.

[43] Min-Hsuan Lee. Performance and matching band structure analysis of tandem organic
solar cells using machine learning approaches. Energy Technology, 8(3):1900974,
2020.

[44] Amandeep Sharma and Ajay Kakkar. Machine learning based optimal renewable en-
ergy allocation in sustained wireless sensor networks. Wireless Networks, 25(7):3953–
3981, 2019.

[45] Amandeep Sharma and Ajay Kakkar. Forecasting daily global solar irradiance genera-
tion using machine learning. Renewable and Sustainable Energy Reviews, 82:2254–
2269, 2018.

[46] Sukham Dhillon, Charu Madhu, Daljeet Kaur, and Sarvjit Singh. A solar energy
forecast model using neural networks: Application for prediction of power for wire-
less sensor networks in precision agriculture. Wireless Personal Communications,
112:2741–2760, 2020.

[47] Muhammad Faizan Ghuman, Adnan Iqbal, Hassaan Khaliq Qureshi, and Marios
Lestas. Asim: Solar energy availability model for wireless sensor networks. In
Proceedings of the 3rd International Workshop on Energy Harvesting & Energy
Neutral Sensing Systems, pages 21–26, 2015.

[48] Kadra Branker, MJM Pathak, and Joshua M Pearce. A review of solar photovoltaic
levelized cost of electricity. Renewable and sustainable energy reviews, 15(9):4470–
4482, 2011.

[49] Chul-Yong Lee and Jaekyun Ahn. Stochastic modeling of the levelized cost of
electricity for solar pv. Energies, 13(11):3017, 2020.



Bibliography 71

[50] Ahsan Raza Khan, Sohail Razzaq, Thamer Alquthami, Muhammad Riaz Moghal, Adil
Amin, and Anzar Mahmood. Day ahead load forecasting for iesco using artificial
neural network and bagged regression tree. In 2018 1st International Conference on
Power, Energy and Smart Grid (ICPESG), pages 1–6. IEEE, 2018.

[51] Thomas Geissmann and Oriana Ponta. A probabilistic approach to the computation of
the levelized cost of electricity. Energy, 124:372–381, 2017.

[52] T Georgitsioti, N Pearsall, and I Forbes. The simplified levelized cost of the domestic
pv energy in the uk: The importance of the feed-in tariff scheme. Proc. Photovoltaic
Science, Applications and Technology (PVSAT-9), pages 9–12, 2013.

[53] Jino Im, Seongwon Lee, Tae-Wook Ko, Hyun Woo Kim, YunKyong Hyon, and
Hyunju Chang. Identifying pb-free perovskites for solar cells by machine learning.
npj Computational Materials, 5(1):1–8, 2019.

[54] Caroline Persson, Peder Bacher, Takahiro Shiga, and Henrik Madsen. Multi-site solar
power forecasting using gradient boosted regression trees. Solar Energy, 150:423–436,
2017.

[55] Jinxin Li, Basudev Pradhan, Surya Gaur, and Jayan Thomas. Predictions and strategies
learned from machine learning to develop high-performing perovskite solar cells.
Advanced Energy Materials, 9(46):1901891, 2019.

[56] Pavlos Nikolaidis and Sotirios Chatzis. Gaussian process-based bayesian optimization
for data-driven unit commitment. International Journal of Electrical Power & Energy
Systems, 130:106930, 2021.

[57] Maniell Workman, David Zhi Chen, and Sarhan M. Musa. Machine learning for
predicting perovskite solar cell opto-electronic properties. In 2020 International
Conference on Data Analytics for Business and Industry: Way Towards a Sustainable
Economy (ICDABI), pages 1–5, 2020.

[58] Zhi Li, Mansoor Ani Najeeb, Liana Alves, Alyssa Z Sherman, Venkateswaran Shekar,
Peter Cruz Parrilla, Ian M Pendleton, Wesley Wang, Philip W Nega, Matthias Zeller,
et al. Robot-accelerated perovskite investigation and discovery. Chemistry of Materials,
32(13):5650–5663, 2020.

[59] Chenglong She, Qicheng Huang, Cong Chen, Yue Jiang, Zhen Fan, and Jinwei Gao.
Machine learning-guided search for high-efficiency perovskite solar cells with doped
electron transport layers. Journal of Materials Chemistry A, 9(44):25168–25177,
2021.

[60] Hong-Jian Feng and Ping Ma. Machine learning prediction of 2d perovskite pho-
tovoltaics and interaction with energetic ion implantation. Applied Physics Letters,
119(23):231902, 2021.

[61] Elif Ceren Gok, Murat Onur Yildirim, Muhammed PU Haris, Esin Eren, Meenakshi
Pegu, Naveen Harindu Hemasiri, Peng Huang, Samrana Kazim, Aysegul Uygun Oksuz,
and Shahzada Ahmad. Predicting perovskite bandgap and solar cell performance with
machine learning. Solar RRL, 6(2):2100927, 2022.



72 Bibliography

[62] Xia Cai, Fengcai Liu, Anran Yu, Jiajun Qin, Mohammad Hatamvand, Irfan Ahmed,
Jiayan Luo, Yiming Zhang, Hao Zhang, and Yiqiang Zhan. Data-driven design
of high-performance masnxpb1-xi3 perovskite materials by machine learning and
experimental realization. Light: Science & Applications, 11(1):1–12, 2022.

[63] Shinji Nagasawa, Eman Al-Naamani, and Akinori Saeki. Computer-aided screening
of conjugated polymers for organic solar cell: classification by random forest. The
Journal of Physical Chemistry Letters, 9(10):2639–2646, 2018.

[64] Harikrishna Sahu, Weining Rao, Alessandro Troisi, and Haibo Ma. Toward predict-
ing efficiency of organic solar cells via machine learning and improved descriptors.
Advanced Energy Materials, 8(24):1801032, 2018.

[65] Harikrishna Sahu and Haibo Ma. Unraveling correlations between molecular proper-
ties and device parameters of organic solar cells using machine learning. The journal
of physical chemistry letters, 10(22):7277–7284, 2019.

[66] Daniele Padula, Jack D Simpson, and Alessandro Troisi. Combining electronic and
structural features in machine learning models to predict organic solar cells properties.
Materials Horizons, 6(2):343–349, 2019.

[67] Min-Hsuan Lee. Robust random forest based non-fullerene organic solar cells effi-
ciency prediction. Organic Electronics, 76:105465, 2020.

[68] Xiaoyan Du, Larry Lüer, Thomas Heumueller, Jerrit Wagner, Christian Berger, Tobias
Osterrieder, Jonas Wortmann, Stefan Langner, Uyxing Vongsaysy, Melanie Bertrand,
et al. Elucidating the full potential of opv materials utilizing a high-throughput
robot-based platform and machine learning. Joule, 5(2):495–506, 2021.

[69] Ahmad Irfan, Mohamed Hussien, Muhammad Yasir Mehboob, Aziz Ahmad, and
Muhammad Ramzan Saeed Ashraf Janjua. Learning from fullerenes and predicting
for y6: Machine learning and high-throughput screening of small molecule donors for
organic solar cells. Energy Technology, page 2101096, 2022.

[70] Wei Chen, Yongzhen Wu, Youfeng Yue, Jian Liu, Wenjun Zhang, Xudong Yang,
Han Chen, Enbing Bi, Islam Ashraful, Michael Grätzel, et al. Efficient and stable
large-area perovskite solar cells with inorganic charge extraction layers. Science,
350(6263):944–948, 2015.

[71] Asif Mahmood and Jin-Liang Wang. Machine learning for high performance organic
solar cells: current scenario and future prospects. Energy & environmental science,
14(1):90–105, 2021.

[72] Lingfei Wei, Xiaojie Xu, Gurudayal, James Bullock, and Joel W Ager. Machine
learning optimization of p-type transparent conducting films. Chemistry of materials,
31(18):7340–7350, 2019.

[73] Junjie Peng, Elizabeth C Jury, Pierre Dönnes, and Coziana Ciurtin. Machine learning
techniques for personalised medicine approaches in immune-mediated chronic inflam-
matory diseases: applications and challenges. Frontiers in Pharmacology, page 2667,
2021.



Bibliography 73

[74] Atieh Hashemi, Majid Basafa, and Aidin Behravan. Machine learning modeling for
solubility prediction of recombinant antibody fragment in four different e. coli strains.
Scientific reports, 12(1):1–11, 2022.

[75] Yiming Liu, Wensheng Yan, Heng Zhu, Yiteng Tu, Li Guan, and Xinyu Tan. Study
on bandgap predications of abx3-type perovskites by machine learning. Organic
Electronics, 101:106426, 2022.

[76] Lei Zhang and Mu He. Prediction of solar cell materials via unsupervised literature
learning. Journal of Physics: Condensed Matter, 34(9):095902, 2021.

[77] Ian Mathews, Sai Nithin Reddy Kantareddy, Shijing Sun, Mariya Layurova, Janak
Thapa, Juan-Pablo Correa-Baena, Rahul Bhattacharyya, Tonio Buonassisi, Sanjay
Sarma, and Ian Marius Peters. Self-powered sensors enabled by wide-bandgap per-
ovskite indoor photovoltaic cells. Advanced Functional Materials, 29(42):1904072,
2019.

[78] Jason J Yoo, Sarah Wieghold, Melany C Sponseller, Matthew R Chua, Sophie N
Bertram, Noor Titan Putri Hartono, Jason S Tresback, Eric C Hansen, Juan-Pablo
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