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Abstract 
 

Circadian rhythms optimise health by ensuring that the internal rhythms of 

metabolism and cardiovascular physiology are synchronised to daily variations in 

the light/dark cycle and other recurrent environmental challenges. Disruption in 

in the light/dark cycle (photoperiod disruption; PD) which occurs during shift 

work has been associated with changes in metabolism or physiology, (e.g. 

hypertension, hyperglycaemia) that may influence outcome after stroke. 

Evidence from pre-clinical studies indicates that hyperglycaemia and 

hypertension are associated with increased lesion growth and final infarct after 

focal cerebral ischaemia. Therefore, it was hypothesised that PD would impact 

on physiological parameters and increase sensitivity to focal cerebral ischaemia.  

 

Investigating the effect of chronic photoperiod disruption on outcome 

following permanent focal cerebral ischaemia 

 

For this purpose, a PD protocol was employed to simulate shift work patterns of 

light/dark (LD) exposure. Male Wistar rats were exposed to either a 12:12 LD 

cycle or a 6-hour phase advance protocol for 9 weeks. This was done by 

switching the lights on 6 hours earlier than the previous photoperiod every 3 

days. T2-weighted MRI was performed at 48 hours after permanent middle 

cerebral artery occlusion. Chronic PD for 9 weeks did not significantly affect 

food intake, body weight and key physiological parameters such as blood glucose 

and blood pressure and did not increase sensitivity to ischaemic damage in 

young, normotensive rats. This suggests that light alone is not a single factor to 

induce circadian disruption. The potentially adverse impact of shift work on 

stroke outcome may require additional factors such as high fat/high sugar diet or 

pre-existing co-morbidities. 

 

Characterisation and optimisation of animal model for transient focal 

cerebral ischaemia  

 

Results from the previous study of permanent ischaemia raised the question as 

to on how PD impacts on stroke outcome in the presence of reperfusion. In 

addition, since the majority of stroke patients present with co-morbid factors, 
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subsequent studies aimed to determine the impact of PD in the presence of pre-

existing hypertension following transient focal ischaemia. Prior to this a pilot 

study was conducted to optimise the time of middle cerebral artery (MCA) 

occlusion and to characterise the associated neurological and functional 

outcomes. The following information was used to inform the subsequent studies; 

1) the optimal MCA occlusion time in spontaneously hypertensive rats (SHR) was 

30 min and 2) transient MCA occlusion resulted in reproducible functional 

impairments in both neurological score and the adhesive label test assessed at 7-

days.  

 

Impact of photoperiod disruption on sensitivity to focal cerebral ischaemia 

and microglia activation in spontaneously hypertensive rats 

 

Adult male SHR underwent 30 min transient MCAO following the 9-week PD 

protocol. Reperfusion resulted in significant tissue salvage. However, PD in the 

presence of pre-existing hypertension did not exacerbate ischaemic lesion 

evolution assessed by diffusion-weighted MRI, and by measuring the final infarct 

volume. Furthermore, PD alone did not induce significant changes in microglia 

activation in the brains of SHR that were not subjected to ischaemia. Poor 

collaterals and pre-existing hypertension in SHR may explained to lesser effect 

of PD on lesion evolution, as there may have been less penumbral tissue 

available for PD to exert its detrimental effect.  

 

Conclusion 

 

The studies presented in this thesis demonstrated that PD did not increase 

sensitivity to focal cerebral ischaemia in normotensive rats. Similarly, PD in the 

context of major stroke co-morbidity/risk factor did not exacerbate ischaemic 

damage. This suggest that the primary mechanism of cardiometabolic 

disturbances among shift workers may not primarily mediated by shifting in the 

light/dark cycle.  
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1.1 Stroke  

 

1.1.1 Stroke Facts and Figures  

 

The World Health Organization (WHO) defines stroke as “rapidly developing 

clinical signs of focal (or global) disturbance of cerebral function, with symptoms 

lasting 24 hours or longer or leading to death, with no apparent cause other than 

of vascular origin”. Therefore, transient ischaemic attack (TIA), which 

conventionally denotes complete resolution of all symptoms within 24 hours and 

patients presenting with stroke symptoms caused by head injury, subdural 

haemorrhage, tumours, and poisoning are excluded (Truelsen et al., 2001). 

Stroke is the second leading cause of death worldwide after cancer, heart 

disease and respiratory disease. There are approximately 150,000 stroke 

incidents annually in the UK leading to nearly 40,000 deaths with approximately 

1.1 million stroke survivors living in the UK (Stroke.org.uk, 2016). More than half 

of all stroke survivors are left dependent on others for everyday activities 

making stroke the most common disabling neurological disorder (Muir, 2013). 

Among survivors, 69% of 25-59 year olds were unable to return to work 

(Stroke.org.uk, 2016). Hence, the disease burden is great. The estimated 

economic costs of stroke in the UK from a societal perspective totals around 

£9 billion a year (Saka et al., 2009). Despite the huge economic burden, 

research resources have been disproportionately allocated to stroke research, 

compared to cancer and cardiovascular diseases. In total, the combined research 

funding into stroke, cancer, coronary heart disease and dementia by 

governmental and charity organisations was £856 million. Of this total, only 7% 

was devoted to stroke (Stroke Association, 2014).   

 

Stroke incidence as analysed within the UK General Practice Research 

Database has decreased between 1999 to 2008 (Lee et al., 2011). Advancement 

in acute stroke therapy either with reperfusion by means of thrombolysis or 

mechanical recanalization, as well as rigorous measures of stroke prevention has 

accounted for the improved survival and functional outcome among stroke 

victims (Hachinski et al., 2010). However, the efficacy and safety of current 

therapy (intravenous thrombolysis with recombinant tissue plasminogen 

activator; rTPA) is limited to a narrow therapeutic window (up to 4.5 hours) and 
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unfavourable side effects such as intra cerebral haemorrhage (Moskowitz et al., 

2010) (Hacke et al., 2008). Stroke incidence has been estimated to escalate by 

the year 2030 especially in the developed countries due to expansion in 

population size and increase in ageing population (Truelsen et al., 2006). There 

is no single method for preventing stroke. Reduction in stroke mortality and 

morbidity requires a multi-disciplinary approach that combines preventive 

measures, better control of stroke risk factors as well as safe thrombolytic and 

neuroprotective therapies to limit damage and promote repair to the injured 

brain. 

 

1.1.2 Classification of Stroke 

 

There are two major forms of stroke: ischaemic and haemorrhagic; the former 

being the most common. It is estimated that 85 to 90% of strokes are ischaemic. 

Most ischaemic strokes result from thromboembolism originating in extracranial 

vessels or the heart (Muir, 2013). Atherosclerosis which refers to the stiffening 

or hardening of the artery is characterised by an atheromatous plaque formation 

in the vessel wall. Plaque formation is a chronic process which is triggered by 

injury to the endothelial lining by disease conditions such as diabetes, 

hypertension and hypercholesterolemia. Complicated atherosclerotic plaques 

may rupture, leading to thrombus formation and occlusion of the artery 

(Hossmann and Heiss, 2014).  

 

Embolic stroke accounts for 14-30% of all cerebral infarction  and occurs 

following breakage of atherosclerotic plaque (Murtagh and Smalling, 

2006)(Dirnagl et al., 1999). Major sources of cardiac emboli are from atrial 

fibrillation (Figure 1.1) but they can also arise in many other conditions 

including; dilated cardiomyopathy, mechanical prosthetic valve and endocarditis 

(Arboix and Alió, 2010). The site of the cerebral arterial occlusion is often at 

bifurcation points of the arterial system due to a combination of turbulent flow 

and weakened vessel walls at these regions. Another small percentage of 

ischaemic strokes can be caused by lacunar or small vessel occlusion involving 

occlusion in one of the small deep penetrating arteries by microatheroma. 

Lacunar infarcts are commonly observed in diabetic and hypertensive patients, 

with the latter being the most important risk predisposing factor. The small 
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diameter (≤ 400μm) makes the vessel susceptible to occlusion and pathological 

changes induced by hypertension (Ogata, et al., 2011). Depending on the brain 

region affected, ischaemic stroke patients typically present with contralateral 

weakness of the face, arm and leg (i.e. with the involvement of internal capsule 

and corticospinal tract) and slurred speech (Muir, 2013). Patients with previous 

episode of TIA are at increased risk for stroke with 30-day stroke risk is around 

10%, mainly within the first 7 days (Muir, 2013).  

 

Haemorrhagic strokes are primarily caused by hypertension. Due to 

sudden rupture of the blood vessel, the majority of patients presented with 

more acute and severe symptoms such as loss of consciousness, and seizure 

(Andersen et al., 2009). About 10 to 15% of haemorrhagic strokes result from 

vessel ruptures either within the brain (intracerebral haemorrhage) or on the 

surface of the brain (subarachnoid haemorrhage) (Muir 2013).  
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Figure 1.1 Mechanism of ischaemic stroke arising from a cardiac embolus. The embolus 
ascends from the heart to the cerebral circulation via the aorta and the common carotid 
artery. Adapted from (Go, 2009).  
 

 

 

 

 

 

 

 



6 
 

1.1.3 Stroke Risk Factors  

 

A stroke risk factor as defined by Hankey is a characteristic of an individual that 

increases the risk for stroke compared to someone without that characteristic 

(Hankey, 2006). Some risk factors are potentially modifiable (i.e. high blood 

pressure, diabetes and obesity) which means intervention and treatment can 

reduce the chances of having a stroke. These risk factors, which often co-exist 

with the non-modifiable risk factors of age, sex, and ethnicity, contribute 

significantly to stroke incidence (Hankey, 2006). Primary stroke prevention 

includes identification of patient at risk of stroke, that may benefit from early 

intervention and treatment of modifiable risk factors (Goldstein et al., 2006). A 

summary of both non-modifiable and modifiable risk factors for stroke is 

presented in Table 1.  

 

1.1.3.1 Non-Modifiable Risk Factors 

 

Age is the single most important non-modifiable risk factor, and the risk of 

having a stroke doubles every decade after the age of 55. By the age of 75, 1 in 

5 women and 1 in 6 men will have a stroke (Stroke.org.uk, 2016). The number of 

people having strokes aged 20 to 64 increased by 25% from 1990 to 2010 

worldwide (Feigin et al., 2015). Together with diabetes, aging has been reported 

to enhance the intrinsic susceptibility of brain cells to injury, thereby increasing 

tissue damage produced by ischaemia (Biessels, Van der Heide, et al., 2002).  

 

 Sex has also been identified as an unmodifiable risk factor for stroke. 

Incidence and prevalence of stroke among women of childbearing age are low 

compared to men (Go et al., 2014). The prevalence however, increased 

substantially after the age of 50 due to decline in oestrogen levels associated 

with menopause, leading to increase susceptibility to cardiovascular risk factors 

(Go et al., 2014).  
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Non-Modifiable Risk Factors 
 

Modifiable Risk Factors 

Age Hypertension 

Sex Coronary heart disease 

Race Peripheral arterial disease 

 Cigarette smoking 

 Diabetes 

 Atrial fibrillation  

 Dyslipidaemia 

 Obesity 

 Physical inactivity  

 Post-menopausal  

 
Table 1.1 Non-modifiable and modifiable risk factors for stroke. Adapted from 
(Goldstein et al., 2006). 

 

1.1.3.2 Modifiable Risk Factors 

 

Hypertension is defined as systolic/diastolic blood pressures (BP) consistently 

greater than 140/90mmHg and is the leading modifiable risk factor for stroke. A 

specific cause for hypertension only presented in a minority of patients (2%-5%) 

with underlying adrenal and renal diseases. In the remainder, no identifiable 

cause is found hence the term “essential hypertension” (Beevers et al., 2001). 

Hypertension is responsible for 54% of strokes in the UK compared to diabetes 

(20%) (Stroke.org.uk, 2016). There is a linear relationship between blood 

pressure and stroke mortality in patients with treated hypertension; a 1 mmHg 

increase in systolic blood pressure increases stroke deaths by 2% (Palmer et al., 

1992). In the brain, the major deleterious effects induced by hypertension 

include structural changes in the cerebral vasculature and disruption in vascular 

regulatory mechanisms.  Such alterations compromise tissue perfusion in the 

event of cerebral ischaemia and therefore increase the susceptibility to 

ischaemic injury (Iadecola and Davisson, 2008).    

 

Diabetes is a complex metabolic syndrome with significant effects on 

systemic and cerebral vasculature (Baird et al., 2002). It is characterised by 
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persistently high blood sugar (hyperglycaemia) that results from defective insulin 

secretion, or resistance to insulin action (Gavin et al., 1997). Type 1 diabetes is 

the consequence of an autoimmune-mediated destruction of pancreatic Beta 

cells, leading to insulin deficiency. In this case, patients require lifelong insulin 

treatment. On the other hand, Type 2 diabetes occurs when the body is 

ineffective at using the insulin rather than absolute insulin deficiency (Biessels, 

van der Heide, et al., 2002). Increased stroke risk is predominantly associated in 

Type 2 diabetes as stroke incidence often overlaps within the same age group in 

which Type 2 diabetes commonly occurs  (Luitse et al., 2012). 

 

Chronic hyperglycaemia is associated with microvascular changes to the 

blood vessels in the eyes causing retinopathy, affecting functions of peripheral 

nerves (neuropathy) and kidneys (nephropathy). Macrovascular consequences 

lead to atherosclerotic plaque formation in larger arteries (Vithian and Hurel, 

2010). More importantly, the relationship between disturbed glucose metabolism 

and ischaemic stroke is often bidirectional. People with diabetes have more than 

double the risk of stroke (Sarwar et al., 2010). Conversely, acute stroke can give 

rise to abnormalities in glucose metabolism, and hyperglycaemia has been 

reported in 30–40% of patients with acute ischaemic stroke, and this was 

associated with poor functional outcome (Luitse et al., 2012). 

 

Patients with atrial fibrillation (AF) is associated with 4 to 5 folds of 

increased risk of cardioembolic stroke (Saposnik et al., 2013). Recent study has 

shown that patterns of atrial fibrillation, especially of the persistent and 

permanent subtypes double the risk for cardio-embolic stroke (Vanassche et al., 

2015). Identification of patient with AF and treatment with anticoagulant is 

highly effective in ischaemic stroke prevention (Saposnik et al., 2013). 

Meanwhile, obesity is particularly important as a risk factor for young onset 

ischemic stroke (Obesity increases risk of ischemic stroke in young adults). 

Mitchell and colleagues proposed that this association is partly explained by co-

existing stroke risk factors such as diabetes and hypertension in the same age 

group. (Mitchell et al., 2015).  
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1.2   Rodent Models of Focal Cerebral Ischaemia 

 

The experimental stroke research aims to develop greater understanding of 

stroke pathophysiology, identify potential neuroprotective mechanisms and test 

new therapeutic strategies. It can also aid in elucidating factors which influence 

stroke risk and susceptibility. Various in vivo stroke models have been developed 

over the past 30 years in small (mice, rats, rabbits) and larger animals. Rodents 

are the species of choice in the majority of experimental stroke research due to 

clear advantages such as low maintenance costs and being ethically more 

acceptable compared to larger animals. Rodents are widely used as stroke 

models and their relevance to human stroke is supported by similarities in the 

anatomy of the cranial circulation between rats and humans, with both species 

possessing a circle of Willis (Yamori et al., 1976)(Figure 1.2). Middle cerebral 

artery (MCA) occlusion model has been widely used in experimental stroke 

studies addressing pathophysiological processes or neuroprotective mechanism 

(Howells et al., 2010). The availability of rat strains with stroke co-morbidities 

(i.e. hypertension and diabetes) allow better understanding of how these co-

morbid factors impact on ischaemic damage.  
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Figure 1.2 Circle of Willis in human and rats. Diagram showing the organization of the 
major cerebral arteries in Circle of Willis of a human (A) and a rat (B). Adapted from 
(Lee 1995).   
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1.2.1 Distal Diathermy Method  

 

The distal diathermy method of inducing stroke involves removing the skull 

overlying the MCA which is then permanently occluded by diathermy of the 

artery (Figure 1.3A) (Tamura et al., 1981). Complete occlusion is visually 

confirmed by cutting the portion of the artery. The extent of ischaemic damage 

is dependent on the site of vessel occlusion in which occlusion distal to 

lenticulostriate arteries produces a smaller lesion confined to the cortex (Figure 

1.3B). Whereas proximal occlusion of the MCA produces bigger infarct 

encompasses both cortical and subcortical regions. The main advantages of this 

model are good reproducibility in infarct size and neurological deficits. 

Additionally, it has low post-surgical mortality as craniectomy reduces the 

deleterious effect of brain swelling, as well as visual confirmation of successful 

MCA occlusion. The main disadvantage is, with the craniectomy technique, it can 

cause injury to the underlying cortex or rupture of a vessel due to drilling or 

electrocoagulation. Therefore, this method demands a significant surgical skill in 

order to minimize surgical-induced tissue damage.   
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Figure 1.3 (A) Distal diathermy method of MCAO induced by electrocoagulation of the 

distal MCA (black spot). Pink shading denotes areas supplied by the distal branches of 

the MCA. Adapted from (Macrae, 2011). (B) T2-weighted MRI coronal brain images 

showing rostral (A) to caudal (B) distribution of ischaemic damage 72 hours after 

permanent MCAO induced by distal diathermy method in adult, male Wistar rats. 

Ischaemic damage appears hyperintense and is primarily restricted to the cortex.  
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1.2.2 Intraluminal Filament Method 

 

Middle cerebral artery and its branches are the most commonly affected 

cerebral vessels in human ischaemic stroke accounting for 70% of cases 

(Bogousslavsky et al.,1988). Therefore, the intraluminal methods for occluding 

this vessel are widely used. It was first described by (Koizumi et al., 1986) and 

later modified by (Longa et al., 1989). Technically, this method is less invasive 

and easier to master than craniectomy model (Macrae, 2011). The main 

advantages are the ability to precisely control the duration of ischaemia and 

avoids damage to the cranial structures. The access to MCA requires an exposure 

of the external and internal carotid artery via a midline incision in the neck. 

Suture is directly introduced into the internal carotid artery (ICA) and advances 

until it lodges at the proximal end of the anterior cerebral artery (ACA) and 

blocking the origin of the MCA (Figure 1.4A). Depending on the duration, 

blocking the origin of the MCA disrupts blood flow to its entire vascular territory 

and results in larger ischaemic lesions involving cortical and subcortical regions 

(Figure 1.4B). Since the lenticulostriate branches of the MCA are end arteries, 

the basal ganglia are exposed to severe ischemia. This technique may lead to 

inadequate MCA occlusion with highly variable lesion size. However, these can 

be solved by using a laser Doppler flowmetry to guide the placement of the 

suture. Vessel rupture and subsequent subarachnoid haemorrhage are also 

associated with this method, which can be minimised by using a silicone-coated 

suture (Schmid-Elsaesser et al., 1998).  
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Figure 1.4 (A) Intraluminal filament model in a rat where a filament (shown in red) is 

introduced into the internal carotid artery and progressed until it blocks the origin of 

the MCA. (B) T2-weighted MRI coronal brain images demonstrating rostral (A) to caudal 

(H) distribution of ischaemic damage 72 hours after a 90 min transient MCAO adult, 

male Sprague-Dawley rats. Ischaemic damage on T2 images appears hyperintense 

involving both cortical and subcortical region. MCA: middle cerebral artery, ICA: 

internal carotid artery.  
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1.2.3 The Ischaemic Cascades: From Ischaemia to Infarction  

 

Experimental stroke models have provided most of our knowledge on 

pathophysiological mechanisms involved in focal cerebral ischaemia. Recent 

developments suggest that stroke is not a purely vascular disorder. The 

pathophysiology of stroke involves complex interactions between components of 

the neurovascular unit namely; cerebral vasculatures, neurones, glia, and matrix 

components. Ischaemic brain injury involves a broad spectrum of 

pathophysiology and occurs as the manifestation of injury that evolves over 

space and time (Dirnagl et al.,1999). The major pathological mechanisms 

following cerebral ischaemia include excitotoxicity, peri-infarct spreading 

depolarisations, inflammation, necrosis and apoptosis (Figure 1.5). The primary 

injury in acute stroke is due to the early structural and biomechanical changes 

to the vasculature, neurones and their supporting cells, followed by secondary 

injury which is composed of more gradual cellular damage, that occurs in 

response to the primary injury (Dirnagl et al.,1999).   

 

The brain is highly susceptible to ischaemic insult due to its limited 

capacity to store energy and its reliance on a continuous blood supply to 

maintain normal function. Following focal ischaemia delivery of oxygen and 

glucose is restricted and this leads to the rapid failure of adenosine triphosphate 

(ATP) production by mitochondria. Energy depletion is the most severe in areas 

with the lowest residual flow (ischaemic core), in which cell death occurs 

rapidly. Energy depletion leads to loss in the membrane potential that results in 

depolarisation of neurones and glia. Subsequently, pre-synaptic Ca2+ channels 

are activated and excitatory amino acids such as glutamate are released to the 

extracellular space (Dirnagl et al.,1999). Glutamate accumulation in the pre-

synaptic space is further increased by a loss in energy dependent re-uptake 

processes (Choi and Rothman, 1990). These events lead to excitotoxicity.  

 

Excessive extracellular accumulation of glutamate is a major factor 

contributing to the demise of tissues in areas of less severe ischaemia; the 

ischaemic penumbra. Overactivation of both N-methyl-D-aspartate receptor 

(NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

glutamate receptors leads to significant influx of calcium, sodium and water into 
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neurones (cellular oedema) (Simard et al., 2007). Cellular oedema not only 

impairs local perfusion to the core region of ischaemic tissues but also affects 

other brain regions via increased intracranial pressure, vascular compression and 

herniation (Dirnagl et al.,1999). Meanwhile, calcium influx initiates cellular 

catabolic processes mediated by catalytic enzymes such as proteases, lipases 

and nucleases (Ankarcrona et al., 1995). Proteolytic enzymes degrade important 

cellular protein such as actin and spectrin that make up the cytoskeleton as well 

as extracellular matrix proteins, such as laminin (Furukawa et al., 1997). Cell 

membranes are damaged by lipid peroxidation due to the activation of 

phospholipase A2 and cyclooxygenase enzymes. The damage is exacerbated by 

the fact that brain tissue is more susceptible to radical-mediated attack due to 

poor antioxidant defence (Adibhatla and Hatcher, 2010). Calcium overload 

results in generation of free-radical species that further impairs endogenous 

free-radical scavenging system (Dirnagl et al.,1999).  

 

Ischaemia and reperfusion causes accumulation of reactive oxygen species 

(ROS) such as superoxide, hydrogen peroxide and hydroxyl; all are powerful 

mediators of ischaemic injury. Studies have shown that mitochondria and the 

enzyme NADPH oxidase (NOX) generates the majority of ROS during ischemia 

(Brennan et al., 2009). Another source of free radicals includes neurones which 

synthesize nitric oxide (NO), by the neuronal nitric-oxide synthase (NOS), that 

reacts with superoxide anions to form the highly reactive species, peroxynitrite 

that further promotes tissue damage (Iadecola et al. 1997).  

 

Acute ischaemia does not affect all brain regions homogeneously. In the 

core, where blood flow is at levels of less than 20% of baseline, cells have lost 

their membrane potential, there is failure of metabolism with rapid and 

irreversible neuronal death (Lo, Dalkara and Moskowitz, 2003). However, in the 

penumbra where some perfusion is preserved, the neurones are able to 

repolarise but at the expense of further energy consumption, and oxygen 

extraction levels are increased to compensate for the reduction in cerebral 

blood flow (CBF) (Dirnagl et al.,1999). Once repolarised, neurones are capable 

of further depolarisation in response to high extracellular glutamate and 

potassium concentrations. This repetitive process is termed peri-infarct 

depolarisation (PID) and accounts for secondary mechanisms that can contribute 
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to the expansion of the ischaemic lesion. The occurrence of PIDs has been well 

documented in animal stroke models where an increase in the frequency of PIDs 

is associated with greater infarct growth (Gill et al., 1992) (Strong et al., 2000). 

These events lead to necrosis or programmed cell death (apoptosis) depending 

on the severity of the ischaemic insult and the metabolic state of the neurones. 

Necrotic cell death predominates in the ischaemic core, while majority of cell  

death resemble apoptosis in ischaemic penumbra (Dirnagl et al.,1999).  

 

The release of ‘danger’ signals from dying and dead cells activates the 

immune system. A robust inflammatory response begins within a few hours of 

the onset of ischaemia. Both resident brain cells (microglia) and circulating 

leukocytes participate in the response (Benakis et al., 2014).  Microglia have 

been shown to contribute to post-ischaemic inflammation by producing tumour 

necrosis factor (TNF), interleukin-1 beta (IL-1b), ROS and other pro-

inflammatory mediators. Preventing microglial activation has been shown to 

significantly reduced the infarct volume and improve the neurological deficit 

scores following cerebral ischaemia in mice (Zhang et al., 2005). The expression 

of adhesion molecules on the endothelial cell surface initiates influx of 

peripheral leukocytes into the brain parenchyma causing microvascular 

obstruction. Furthermore, cytokines and ROS produced both in the vascular and 

parenchymal compartments, induce the disruption of the blood brain barrier 

(BBB) facilitating further infiltration of circulating monocytes, neutrophils and 

lymphocytes. Preclinical studies suggest that therapeutically targeting 

neuroinflammation, reduces the progression of brain damage that occurs during 

the late stages of cerebral ischemia (Iadecola et al., 2004). However, the 

concern is that although counteracting the inflammatory response to ischaemic 

injury may ameliorate the tissue damage in the acute phase, it may also 

compromise repair mechanisms and worsen the long-term outcome of the injury 

(Iadecola and Anrather, 2011).  
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Figure 1.5 Pathophysiological mechanisms following focal cerebral ischaemia. Major 

events following vascular occlusion includes energy and pump failure, which activates 

glutamate receptors and increase in intracellular Ca2+ and Na+, efflux of K+ and peri-

infarct depolarization. Cellular damage is potentiated by free radical production, 

release of catabolic enzymes and membrane degradation. Secondary events such as 

immune activation further exacerbate ischaemic injury, leading to cell death 

(apoptosis). Adapted from (Dirnagl et al.,1999).  
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1.3 The Ischaemic Penumbra  

 

The concept of the penumbra as tissue at risk, but potentially salvageable has 

been of a major target in neuroprotective studies. The ischaemic penumbra has 

been well characterised in animal studies and defines as “ischaemic tissue which 

is functionally impaired and is at risk of infarction and has the potential to be 

salvaged by reperfusion and/or other strategies. If it is not salvaged this tissue is 

progressively recruited into the infarct core which will expand with time into the 

maximal volume originally at risk”(Donnan et al., 2007). Nevertheless, 

identifying the factors that could hasten the penumbra demise is equally 

important. The following section will discuss on the factors that can potentially 

exert an adverse effect on penumbra tissues and thereby might provide the basis 

for risk identification and preventive strategies. 

 

1.3.1 Cerebral Blood Flow  

 

Early restoration of CBF is crucial in the management of acute ischaemic stroke. 

Therefore, understanding the physiological control of normal CBF and the 

pathophysiology of ischaemic injury is crucial for planning effective strategies to 

minimise the consequences of cerebral ischaemia. Under normal physiological 

conditions, CBF is kept constant and closely maintained within a narrow range in 

order to sustain a continuous energy supply. The process of maintaining CBF 

during physiological changes in blood pressure is termed autoregulation. 

Autoregulation refers to the physiological mechanisms (myogenic, neurogenic 

and metabolic) that maintain CBF at a constant level during changes in cerebral 

perfusion pressure (CPP) provided CPP is within the range of 50-150mm. 

Autoregulation modulates changes in cerebral vascular resistance with regards to 

variations in CPP. CPP is defined as the difference between mean arterial 

pressure (MAP) and intra cranial pressure (ICP). In normotensive adults, CBF is 

maintained at ~50 mL per 100g of brain tissue per minute, provided the CPP is 

within 60 to160 mmHg (Phillips and Whisnant, 1992). Compensatory mechanisms 

following reductions in CPP include: vasodilatation, increase in regional cerebral 

blood volume, increased oxygen extraction from blood and stimulation of 

anaerobic glycolysis (Kohno et al., 1995). Brain injury may occur when there is 
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significant failure of cerebral autoregulatory mechanisms due to severe 

reduction in CBF (Kendal et al., 2000).  

 

1.3.2 Ischaemic Core, Penumbra and Benign Oligaemia  

 

Positron emission tomography (PET) studies have identified three major 

compartments within the hypoperfused tissues following cerebral blood flow 

reduction (Heiss, 2012). The region with the most severe reduction in blood flow 

is referred to as the ischaemic core. In humans, this region corresponds to a 

region with CBF below a value of approximately 12ml/100g/min. Cells within the 

core are irreversibly damaged as permanent anoxic depolarization begins to 

develop within minutes of the onset of ischaemia. The penumbra defines the 

region surrounding the ischaemic core with less severe reduction in blood flow 

range from 12-22ml/100g/min. The penumbra is a highly dynamic region in 

which the tissue will be progressively recruited into infarct core if reperfusion 

and/or treatment strategies are not established within the critical time window 

(Touzani et al., 2001). Brain tissues in which CBF above 22ml/100g/min (benign 

oligemia) is the hypoperfused tissues that does not usually progress to infarction 

(Heiss 2000) (Figure 1.6). However, with pre-existing pathological conditions 

such as hypertension and hyperglycaemia, vascular response to ischaemia in this 

area may have been compromised, and tissues are susceptible to ischaemic 

injury despite modest reduction in CBF.  
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Figure 1.6 Threshold in cerebral blood flow and topographical brain regions following 
ischaemia. The fate of penumbra depends on rapid restoration of sufficient cerebral 
blood flow provided within a time window, without which the progression into 

ischaemic core is inevitable. Cerebral blood flow values adapted from (Heiss 2000). 
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1.3.3 Factors That Influence Penumbra Demise   

 

Factors influencing the penumbra evolution could exert damaging effects 

through mechanisms in the cerebral vasculature, brain parenchyma, or both. The 

knowledge of factors contributing to the evolution of the penumbra is of major 

interest in the clinical setting; information on penumbral volumes have been 

used to guide patient selection and therapeutic intervention in clinical practice 

(Jung et al., 2013).   

  

Many of the established stroke risk factors such as high blood pressure and 

diabetes have a profound effect on the structure and functions of the cerebral 

vasculature, such that without reperfusion these can further accelerate 

penumbra evolution into ischaemic core. Hypertension promotes formation of 

atherosclerotic plaques in cerebral arteries and arterioles, which predispose to 

arterial occlusion and ischaemic injury (Dahlöf, 2007). Moreover, hypertension 

also induces fibrinoid necrosis (lipohyalinosis) of penetrating arteries and 

arterioles supplying the white matter, resulting in small white matter infarcts 

(lacunes) or brain haemorrhage (Lammie, 2002). Chronic vascular injury and 

remodelling alter vascular structure by promoting atherosclerosis and stiffening 

of arteries, hence promote narrowing, thickening and tortuosity of arterioles and 

capillaries (Allen and Bayraktutan, 2008). In the brain, the changes in vascular 

morphology impair CBF autoregulation and its ability to maintain stable blood 

flow in the event of compromised cerebral circulation (Iadecola and Davisson, 

2008). Impaired autoregulation increases susceptibility to ischaemia and leads to 

more severe ischaemia after arterial occlusion. This is true in the case of middle 

cerebral artery occlusion in spontaneously hypertensive rats, which 

demonstrates larger infarcts compared to normotensive rats (Nishimura et al., 

2000).  

 

Experimental studies demonstrate that genetic hypertension can influence 

the amount and lifespan of penumbral tissue. The diffusion-perfusion mismatch 

method has been used to provide an index of the extent of the penumbra. 

Spontaneously hypertensive stroke-prone rats (SHRSP) had significantly more 

ischaemic damage and less penumbral tissue than did normotensive control, 

Wistar Kyoto Rats (WKY) within 1 hour of MCA occlusion (McCabe et al., 2009). 
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This finding has an important implication in the management of patients with 

pre-existing risk factors and suggests that ischaemic damage could progress at a 

faster rate in hypertensive individuals. In stroke-sensitive animals such as 

spontaneously hypertensive rats (SHR) and SHRSP, several anatomical and 

physiological factors have been implicated to increased stroke sensitivity. The 

impact of collaterals has been addressed by some studies and good collaterals 

are considered to protect the penumbra (Shuaib et al., 2011)(Zhang et al., 

2010). Smaller internal diameter of anastomoses between the anterior cerebral 

and middle cerebral artery has been identified in the SHRSP rat compared to its 

reference strain WKY. With increasing age (49-60 weeks old) larger branches of 

anterior and middle cerebral arteries become narrower. Hence, hypertensive 

rats are more susceptible to infarction than normotensive rats due to increase 

resistance in collateral vessels and impaired vasodilator reserve (Coyle and 

Heistad 1987).  

 

 High oxidative stress levels are also thought to contribute to increased 

sensitivity to experimental stroke in hypertensive rats. Higher production of 

vascular and brain superoxide anions have been observed in both SHR and SHRSP 

rats compared to normotensive control WKY rats contributing to increased 

oxidative stress (Suzuki et al., 1995) (Kishi et al., 2004). Furthermore, ROS such 

as superoxide anions and hydroxyl radicals have been implicated in the 

pathogenesis of hypertension (Kerr et al., 1999). In addition to increased levels 

of oxidative stress, exaggerated inflammatory responses have been reported in 

hypertensive rats following an immune challenge. Hypertensive rats produced 

more tumour necrosis factor-α (TNF-α) and platelet activating factor in 

circulating blood and cerebrospinal fluid in response to provocative doses of 

lipopolysaccharide than normotensive rats (Sirén et al., 1992). These pro-

inflammatory mediators lead to increased adhesion of circulating lymphocytes 

and transformed the endothelial surface from an actively anti-coagulant to a 

procoagulant state, thereby increasing stroke susceptibility.  

 

 With regards to hyperglycaemia, several mechanisms have been identified 

through which hyperglycaemia could aggravate cerebral damage in ischaemic 

stroke. Post-stroke hyperglycaemia is associated with higher mortality and poor 

functional outcome (Muir et al. 2011).  Hyperglycaemia at the time of ischaemic 
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stroke is associated with increased mortality and morbidity and blood glucose 

levels over the first 72 hours correlate with growth of the MRI-defined ischaemic 

lesion (Baird et al., 2003). In type 2 diabetic patients, Ribo and co-workers 

showed that acute hyperglycaemia at the time of stroke was associated with 

lower tissue-type plasminogen activator (TPA) recanalization rates, suggesting 

an impairment of the fibrinolytic system by hyperglycaemia (Ribo et al., 2005). 

Our in-house data demonstrated that clinically relevant level of hyperglycaemia 

increased final infarct size and exacerbated early ischaemic lesion growth after 

permanent middle cerebral artery occlusion in rats (Tarr et al., 2013). 

Hyperglycaemia also has a profound effect on reperfusion following transient 

focal cerebral ischaemia, indicated by poor restoration of cerebral blood flow; 

less than 50% of normoglycaemic rats (Kawai et al.,1997). Fructose-fed 

spontaneously hypertensive stroke-prone (SHRSP) rats, which exhibit features of 

metabolic syndrome, have shown larger diffusion-weighted imaging (DWI) lesions 

and final infarcts compared to controls (Tarr et al., 2013). In addition, obesity 

has been shown to potentiate brain microvascular disruption after experimental 

stroke causing increased infarct volume in obese mice as compared to lean 

littermate mice (McColl et al., 2010).  

 

Recently, studies have observed a common feature among co-morbidities 

presented in stroke patients (i.e. hypertension, diabetes, atherosclerosis, 

obesity); an elevated inflammatory profile (Dandona et al., 2004)(Hansson and 

Libby, 2006). Systemic concentrations of inflammatory markers such as C-

reactive protein (CRP)  and interleukin 6 (IL-6)  have been associated with stroke 

incidence (Muir et al. 2007)(Rodríguez-Yáñez and Castillo, 2008). A study in mice 

suggested that a systemic challenge with interleukin-1 (IL-1) just prior to MCAO 

affects reperfusion following transient cerebral ischaemia. Perfusion deficits 

were observed as early as 180 min after stroke compared to vehicle due to 

mechanical obstruction by platelet aggregation in the capillaries (Burrows et al., 

2016).  
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1.3.4 Stroke and Disruption of Circadian Rhythm 

 

Epidemiological studies have identified obesity, hypertension, diabetes, 

atherosclerosis and inflammation as significant risk factors for stroke onset and 

poor outcome (Baird et al., 2002; Murray et al., 2013). The incidence and 

overall disease burden of stroke is predicted to rise as these risk factors extend 

across the developing world (Feigin et al., 2014). In 2007 more than half the 

global population lived in a city and this is predicted to reach 70% by 2050. Risk 

factors for stroke are strongly associated with urbanisation mediated through a 

complex interaction of lifestyle factors including high-energy diets, pollution, 

sedentary lifestyles and disruption in circadian rhythmicity (Danaei et al., 2013).   

 

1.4 Circadian Rhythm  

 

Experimental studies in both humans and animals associate increased prevalence 

of cardiovascular and metabolic diseases with disruption in circadian rhythms. 

Circadian disruption occurs when the internal timing system of the body is 

asynchronous to the light/dark cycle. Shift work is one example where disruption 

in the light/dark cycle (photoperiod disruption, PD) occurs chronically and has 

been associated with principal risk factors for stroke: insulin insensitivity, 

obesity and hypertension (Scheer et al., 2009). Circadian disruption has a 

profound effect on the body and brain and induces a proinflammatory state 

comparable to that associated with diabetes and obesity (Gibson et al., 

2010)(Fonken et al., 2013). In addition, these metabolic or physiological changes 

(i.e. hypertension, hyperglycaemia) have the potential to adversely modify the 

ischaemic penumbra. To date, little is known about the impact of circadian 

disruption on sensitivity to stroke and how it influences outcome after stroke. 

The following section will discuss the impact of circadian disruption on 

cardiovascular and metabolic disturbances and the potential mechanism that can 

lead to increased stroke sensitivity. 
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1.4.1 The Body Clock  

 

The word circadian derives from the Latin circa (around) and dies (day). The 

term circadian rhythm was described by Hallberg and is defined as a rhythm in 

behavioural and physiological parameters that is generated endogenously and 

displays a length of approximately 24 hours. It persists in the absence of 

external stimuli, yet can be entrained to daily environmental cues such as light, 

food or activity (Rüger and Scheer, 2009). Circadian rhythms are present in 

prokaryotes, fungi, algae, plants and all mammals. Temporal organization within 

an organism is critical for maintenance of homeostasis as well as adaptation to 

changing environmental conditions. 

 

In mammals, the circadian timing system is comprised of a master and 

peripheral circadian clocks. Numerous aspects of physiological functions such as 

temperature regulation, hormonal control, autonomic tone, and metabolism are 

regulated by the master clock in interaction with peripheral oscillators (Buijs 

and Kalsbeek, 2001)(Hastings et al., 2003)(Figure 1.7). The master clock has 

been identified in the bilaterally paired suprachiasmatic nuclei (SCN) located in 

the anterior hypothalamus of the brain (Moore 1996). This master pacemaker has 

anatomical connections with other regions of the brain involved in the control of 

appetite, energy expenditure regulation and behavioural activity, namely with 

the supraventricular area, the arcuate nucleus and the lateral hypothalamic area 

(Saper et al., 2005). Under normal conditions, molecular and behavioural 

rhythms remain synchronized by the SCN to the light/dark cycle.  As the SCN is 

heavily reliant on the light stimuli as the cue giver, shifting the light exposure 

resets the clock mechanism in the SCN as well as its downstream molecular and 

behavioural output. In constant darkness when no time cues are available (i.e. 

from light) the SCN will autonomously cycle with a period of about 24 hours (e.g. 

23.5 – 24.5 hours).  

 

Peripheral clocks are molecular mechanisms that operate in a cell 

autonomous fashion in most, if not all peripheral tissues such as heart, lungs, 

adipose tissue, liver, muscle and an extra-SCN regions of the brain (Figure 1.7). 

(Nagoshi et al., 2004) (Yoo et al., 2003). Peripheral clock genes serve as critical 

regulators of cellular metabolism such as those involved in glucose and lipid 
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homeostasis (Marcheva et al., 2010). Despite the autonomous rhythm of the 

peripheral clocks, they are synchronised to the 24-hour day by the SCN. 

Nevertheless, recent studies have shown that behaviour such as feeding can 

directly influence the expression of circadian clock genes within peripheral 

tissues  and potentially overrides the input from SCN; acting as a stronger cue 

giver (Arble et al., 2010).  

 

At the molecular level, SCN output is generated by a cell autonomous 

transcriptional auto-regulatory feedback loop which is composed of the 

transcriptional activators CLOCK and BMAL1 and their target genes: Period (Per) 

and Cryptochrome (Cry). Briefly, clock proteins CLOCK and BMAL1 

heterodimerize to induce transcription of PER and CRY genes. Per and Cry 

proteins form a complex that translocate back to the nucleus to inhibit CLOCK: 

BMAL1-mediated gene expression to inhibit their own transcription. This 

feedback loop produces rhythmic outputs of neural and hormonal signals and 

gene transcripts and takes approximately 24 hours to complete (Richards et al., 

2014).  

 

Due to the earth’s rotation around its axis, the SCN is heavily reliant on 

the light signal as Zeitgeber or ‘time giver’. Light entrains the master 

pacemaker in the SCN, which in turn synchronizes extra-SCN and peripheral 

clocks. Therefore, light acts as the strongest Zeitgeber due to its direct 

influence on the neuronal activity in the SCN. Light information perceived by 

retina is captured by a specialised intrinsic photosensitive retinal ganglion cells 

(ipRGCs). The signal is directly transmitted to the SCN via the retino-

hypothalamic tract. Once activated, neuronal activity in the SCN coordinates 

multiple output signals by means of neuro-hormonal pathways to other brain 

structures and peripheral oscillators in the body (Figure 1.7)(Vosko et al., 2010).  

Brain clock outputs include behavioural rhythms (i.e. sleep and feeding), 

whereas peripheral clock outputs include metabolic rhythms such as glucose and 

lipid homeostasis (Bass and Takahashi, 2010). Together, they optimally regulate 

much of our physiology and behaviour across the 24 hours day and optimise 

survival by ensuring internal timings are synchronized to daily variations in the 

light/dark cycle (Arble et al. 2010).  
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Figure 1.7 Regulation of circadian rhythm by the central circadian clock in the 
suprachiasmatic nucleus (SCN) of the hypothalamus. Light signal from the retina gives 
information regarding time of the day. The SCN then synchronises the timing with other 
extra SCN region in the brain. These brain regions can then influence one another, 
cause behaviour changes and send timing cues to peripheral tissues via neuro-hormonal 
pathways. Feeding behaviour can also directly influence the expression of circadian 
clock and clock controlled genes within peripheral tissues. Hormones and neural signals 
originating from the periphery can then feedback to the SCN and other brain regions to 
influence circadian rhythms and genes. Adapted from (Arble et al. 2010). 
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1.4.2 Circadian Control of Metabolic Function  

 

Delivering adequate oxygen and nutrients to the body is a critical function of the 

cardiovascular system. Similarly, energy is kept in balance via metabolic 

processes in vital organs such as liver, pancreas and muscles. The demands on 

the heart and the local blood flow change dramatically based on our behaviour 

such as rest/activity, fasting/feeding, as well as with the postural changes. 

Circadian rhythms allow the cardiometabolic system to anticipate these changes 

and prepares the body to function effectively.  

 

Glucose homeostasis is subject to strong, endogenous circadian regulation 

(la Fleur et al. 2001). Nagai and Nakagawa first reported the involvement of SCN 

in regulation of plasma glucose and insulin daily rhythm, whereby lesioning the 

SCN abolished the circadian rhythm in both parameters (Yamamoto et al., 1987). 

Plasma glucose level peaks near the onset of activity in human and rodents. The 

role of the SCN in glucose homeostasis is further supported by the findings from 

studies using SCN-lesioned rats which demonstrate disrupted rhythm in 24-hour 

plasma glucose and insulin levels (La Fleur et al. 1999).  

 

Importantly, daily blood glucose homeostasis also involves control by 

peripheral clocks in the liver, pancreas, muscle and white adipose tissue (Eckel-

Mahan and Sassone-Corsi, 2013). Findings suggest role of food as the strongest 

cue to the peripheral clock. For example, the circadian clock within the 

pancreatic βeta cells directly regulates insulin gene and protein expression, 

likely in anticipation of increased requirement for insulin secretion upon feeding 

(Allaman-Pillet et al., 2004). A study in mice employing a restricted feeding 

protocol demonstrated that feeding time can affect the phase of circadian liver 

gene expression. Feeding restricted to during the resting phase (day for mice) 

uncoupled circadian liver gene expression from circadian gene expression in the 

SCN. In this case, when food is only available during the phase at which the 

animals are normally inactive (light phase in nocturnal animals), signals 

triggered by food processing act as dominant Zeitgebers on the oscillators of 

peripheral tissues (Damiola, 2000a).  The disturbed phase relationship between 

the SCN and peripheral oscillations is known as internal desynchronization and 

this mechanism has been associated with many metabolic related disorders.  
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1.4.3 Circadian Control of Cardiovascular Function 

 

Numerous markers of cardiac function and metabolism exhibit an endogenous 

circadian rhythm in humans. The presence of a daily rhythm in heart rate, blood 

pressure (BP), platelet function and endothelial function has been reported 

(Martino et al. 2008). Circadian variation in cardiovascular events including 

ischaemic strokes, myocardial infarction, sudden cardiac death and ventricular 

arrhythmia has been shown  to have peak incidence in the morning hours (Marsh 

et al., 1990). The SCN control of the cardiovascular rhythm has been suggested 

by the findings from Scheer et al which demonstrated multiple neural 

projections from SCN to the heart muscle that involved the autonomic nervous 

system (Scheer et al., 2003). The SCN also shares direct, reciprocal neuronal 

feedback circuits with the nucleus tractus solitarius (NTS), that have functional 

effects on the regulation of vascular reactivity and blood pressure regulation.  In 

this way, the SCN receive BP information directly from the NTS enabling it to 

react to haemodynamic perturbations, suggesting the role of SCN in BP 

homeostasis (Buijs et al. 2014).  

 

Despite the belief that SCN is the sole controller of the heart, various 

neurohumoral factors have been reported to entrain peripheral circadian clocks 

(Young and Bray, 2007). Recent developments propose that rhythmicity in 

cardiac processes is mediated by a complex interaction between extracardiac 

(i.e. behaviours and associated neural and humoral fluctuations) and 

intracardiac influences such as metabolism and contractile function of 

myocardium (Martino and Young 2015). Marked oscillations in the expression of 

circadian clock genes for hearts and blood vessels (i.e. aorta) isolated from 

rodents at different times of the day have been reported (Young, 2006). Studies 

have shown that the function of circadian clock within components of 

cardiovascular system such as vascular smooth muscles cells (VSMC) and 

cardiomyocytes are affected by different Zeitgebers. Nonaka et al. have shown 

that angiotensin II acts as a Zeitgeber for the circadian clock within VSMC in 

vitro, through an angiotensin II type 1 receptor-dependent mechanism. In this 

study, brief treatment of VSMC with angiotensin II induced a robust increase in 

clock gene expression (Nonaka et al., 2001).  
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1.4.4 Impact of Circadian Disruption on Cardiometabolic Function  

 

The world nowadays has transformed into a 24-hour society that demands late 

working hours and wakefulness during the night. Shifts in diurnal lifestyles to 

nocturnal ones has an impact on sleep/wake cycles (Wyse et al., 2014). 

Metabolic and physiological parameters showing circadian fluctuations such as 

BP and blood glucose could be affected by circadian misalignment. The latter 

occurs when the internal timing system is asynchronous with the behavioural 

cycle (sleep/wake, feeding/fasting) resulting in metabolic disturbances, loss of 

homeostasis and diseases (Wyse et al. 2011).  

 

Some studies demonstrated a relationship between circadian disruptions, 

such as occur as a consequence of shift work, with metabolic alterations. 

Rotating shift work involves photoperiod disruption such that exposure to 

light/dark cycles are regularly altered compared to normal day/night schedules. 

In this paradigm, circadian rhythm is chronically disrupted with intermittent 

periods of re-entrainment to the stable light/dark cycle (Deibel et al., 2014). 

Among shift workers the risk of developing metabolic syndrome, which 

represents a combination of metabolic disorders including central obesity, raised 

plasma glucose and triglycerides, increased blood pressure and reduced high 

density lipoprotein (HDL) cholesterol has been attributed to physiological 

maladaptation to sleeping and eating at abnormal circadian phases (Scheer et 

al., 2009).  

 

Recent epidemiological studies associate shift work with increased risk of 

cardiovascular and cerebrovascular disease such as myocardial infarction and 

ischaemic stroke (Vyas et al., 2012). Rotating shift work disrupts circadian 

rhythms and in humans; exposure to a light/dark cycle lengthened to 28 hours 

has been shown to increase blood glucose levels, insulin and mean arterial 

pressure (Scheer et al. 2009). Studies in Japanese male workers, also suggested 

a positive association between rotating night shift and increased risk of impaired 

glucose metabolism and diabetes compared with day workers (Morikawa et al. 

2005). Another longitudinal study investigating the effects of alternating shift 

work in male Japanese workers revealed a significant increase in blood pressure 

from baseline (Suwazono et al. 2008). It has been proposed that endothelial 
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dysfunction presented by reduced peripheral arterial tone observed in this 

population may explain the increased cardiovascular risk among shift workers 

(Suessenbacher et al., 2011).  

 

While epidemiological studies have established important associations 

between shift work and circadian disruption, in vivo studies demonstrated 

important mechanisms in cardio-metabolic disturbances associated with 

light/dark cycle manipulation (i.e. photoperiod disruption). Altering the 

light/dark cycle is one of the mechanisms to induce circadian disruption in 

experimental animals. In experimental studies modelling shift work or jet lag, 

animals are shifted and are re-entraining constantly to a new light/dark cycle 

(Arble et al., 2010). Studies in rodents subjected to experimental shift work 

showed diminished rhythms of glucose and locomotor activity, and increased 

body weight caused by food intake during the resting phase (Salgado-Delgado et 

al. 2010). However, shifting food intake back to the active phase restored 

metabolic rhythms and body weight in these same animals (Salgado-Delgado et 

al. 2010). Food intake in the rest phase leads to desynchronization, 

characterized by misaligned temporal patterns of clock genes and metabolic 

genes within the liver (Salgado-Delgado et al. 2013). These findings suggest that 

normal alignment of feeding in addition to the environmental light/dark cycle is 

critical to maintaining energy homeostasis and that the metabolic consequences 

of circadian disruption could be rescued by food timing. Furthermore, an 

experimental shift work in diabetic prone rats has resulted in hyperglycaemia 

secondary to pancreatic Beta cell loss and dysfunction (Gale et al., 2011). A 

summary of the metabolic consequences of photoperiod disruption is given in 

Figure 1.8.  
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Figure 1.8 Metabolic consequences of photoperiod disruption. Circadian and 
physiological system together with molecular clock functions are interconnected and 
synchronised to the changes in environmental light/dark cycles. Oscillations within 
some peripheral tissues, such as in the liver, fat, muscles and pancreas are largely 
affected by feeding as a stronger Zeitgeber. Wakefulness and night time feeding 
contributed to metabolic changes that leads to the development of insulin resistance, 
obesity and changes in metabolic gene expression. Adapted from (Kurose et al., 2014). 
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Several studies suggest that circadian clock gene mechanisms underlie 

cardiovascular pathology. For example, mice lacking the clock gene BMAL1, 

exhibit loss of diurnal variation in heart rate and BP and develop dilated 

cardiomyopathy (Curtis et al., 2007)(Lefta et al., 2012). In addition, BMAL1- 

knockout mice exhibited impairment of normal protective endothelial responses 

to vascular injury, and demonstrated intensified pathologic remodelling and 

predisposition to vascular thrombosis (Anea et al. 2009). Durgan and colleagues 

have shown that the circadian clock within cardiomyocytes is responsible for 

myocardial metabolic gene expression which mediates tolerance to myocardial 

ischemia/reperfusion (Durgan et al., 2011). Per2 knockout mice (Per-/-) showed 

impaired glycolytic capacity and myocardial adaptation to ischaemia, leading to 

larger infarct size after myocardial ischaemia/reperfusion compared to wild-

type mice (Eckle et al., 2012). Photoperiod disruption in mice has been reported 

to impair vascular adaptive response to pathological insult secondary to aortic 

constriction. In this instance, disrupted mice showed significantly less 

compensatory hypertrophy despite the increased in blood pressure than the 

control mice. Importantly, the adverse remodelling was alleviated upon 

returning the animals to their normal diurnal cycle (Martino et al. 2007).  This 

study also demonstrates the importance of synchrony between the intrinsic 

circadian period and the external light/dark cycles, implicating the role of 

circadian disruption in the pathogenesis of heart disease.  
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1.4.5 Circadian Disruption and Ischaemic Brain Damage  

 

The metabolic and physiological aberrations (such as hyperglycaemia and 

hypertension) induced by PD could exert damaging effects in the penumbra. 

Impairment of collateral vessel dilation after arterial occlusion is a potential 

mechanism leading to increased severity of ischaemia. Remarkably little 

information exists on the influence of PD on responses to brain ischaemia but 

effects in the cardiovascular system lend plausibility to the suggestion that 

cerebrovascular effects could occur. Furthermore, the role of SCN in the 

regulation of vascular reactivity and blood pressure (Buijs et al. 2014) provide 

physiological evidence that disruption of circadian clock function could affect 

vascular response following ischaemic stroke and support the hypothesis that PD 

will affect cerebrovascular response to ischaemic stroke.  

 

Disruption of cerebral blood flow triggers the onset of ischaemic cascades 

in which excitotoxicity and oxidative damage are major factors contributing to 

the demise of brain tissues (Dirnagl et al.,1999). The production of antioxidants 

and protective enzymes, have been reported to be regulated  and expressed in 

rhythmic fashions (Wilking et al., 2013). The circadian clock was recently shown 

to regulate a major antioxidant pathway (nuclear factor erythroid 2-related 

factor (NRF2)/glutathione), and disruption of this regulation induced oxidative 

stress and pulmonary fibrosis (Pekovic-Vaughan et al., 2014). Similarly, the clock 

gene BMAL1 regulates cerebral redox homeostasis and mice with BMAL1 deletion 

exhibit high ROS levels in brain and increased neuronal oxidative damage (Musiek 

et al., 2013). Similarly, increased oxidative stress in the brain has been observed 

in animals exposed to PD (Kishi and Sunagawa 2011). Taken together, such 

evidence lends plausibility to the concept that disruption of circadian clocks 

increases the sensitivity of brain tissue to ischaemia such that the ischaemic 

cascade is amplified, and tissue damage is greater.  
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1.4.6 Hypothesis Addressed in The Thesis 

 

Circadian rhythms optimise survival by synchronising physiology and behaviour to 

environmental variation. There is evidence from human associational studies of a 

link between circadian disruption and risk factors for stroke.  Many of the 

reported metabolic or physiological changes in PD, e.g. hypertension, diabetes, 

have potential to adversely modify the ischaemic penumbra. However, little is 

known on how PD could affect cardiovascular and metabolic parameters hence 

modify stroke sensitivity and severity. The studies in this thesis aimed to test 

the hypothesis that PD increases sensitivity to focal cerebral ischaemia. The 

information will raise awareness of how environmental conditions involving 

constantly changing patterns of light/dark cycles could influence the severity of 

stroke therefore, proper intervention can be implemented in a high-risk 

population.  

 

1.5 Thesis Aims 

 

1. To determine if photoperiod disruption induced in rats by recurrent phase 

advance of the light/dark cycle, influences the sensitivity of the brain to 

ischaemic damage induced by permanent MCAO. 

 

2. To characterise and optimise the animal model for transient focal cerebral 

ischaemia.  

 

3. To determine the impact of photoperiod disruption on sensitivity to focal 

cerebral ischaemia in spontaneously hypertensive rats and microglia activation.  

 

 

   

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Chapter 2 - Methods  
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2.1 Animals  

 

Adult male Sprague-Dawley, Wistar or spontaneously hypertensive rats (SHR) 

were obtained from Envigo (UK) and housed in an animal care facility at the 

University of Glasgow. On arrival to the University all rats were acclimatised for 

2 weeks before experimentation. Rats were housed in groups of 2-4 rats or singly 

(for studies in Chapter 3) per cage and were maintained on a 12:12 hour 

light/dark cycle. Water and food (standard rat chow) were available ad libitum. 

All experiments and surgical procedures in Chapter 5 were performed under 

license from the UK Home Office. Surgical procedures for Study 1 in Chapter 4 

were carried out by Lindsay Gallagher. Middle cerebral artery occlusion surgery 

in Chapter 3 was performed by Dr Lisa Roy. Animals were excluded from the 

study and data analysis following failed middle cerebral artery occlusion (MCAO) 

evident by no obvious infarct assessed by T2 magnetic resonance imaging, died 

during the MCAO surgery or within 24 hours of surgery.  

  

2.2 Surgery 

 

2.2.1 Animal Preparation 

 

All experiments in this thesis were performed with strict adherence to the 

National Centre for the Replacement, Refinement and Reduction of Animals in 

Research (NC3R’s) ARRIVE (Animal Research; Reporting In Vivo Experiments) 

guidelines (http://www.nc3rs.org.uk/arrive-guidelines). On the day of surgery 

rats were transferred from the animal housing unit to the operating theatre and 

weighed prior to induction of anaesthesia. Aseptic techniques were maintained 

throughout the surgery. Prior to the surgical procedure, operating table was 

properly cleaned and disinfected with chlorhexidine-containing disinfectants 

(Hibiscrub). Surgical instruments and consumables were sterilised in an 

autoclaved. All surgical equipment including surgical instruments, sutures and 

swabs, sterile saline, as well as other consumables required for surgery were set 

up in advance prior to the start of surgery.  

 

 

http://www.nc3rs.org.uk/arrive-guidelines
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2.2.2 Induction and Maintenance of General Anaesthesia 

 

Rats were initially anaesthetised in an anaesthetic chamber using 5% isoflurane 

(Baxter Healthcare Ltd, UK) in nitrous oxide: oxygen mixture (70:30). Once 

deeply anaesthetised the rat was removed from the chamber and immediately 

transferred to a designated area within the operation theatre where the fur 

overlying any planned incision sites was shaved using electric clippers (Wella, 

Germany) and cleared using a handheld vacuum (Black & Decker, USA). The 

depth of anaesthesia during surgical procedures was assessed at regular intervals 

by means of the withdrawal reflex, where the footpad of a hind limb is tightly 

squeezed to evoke withdrawal of the foot. Absence of withdrawal reflex ensured 

adequate depth of anaesthesia. 

 

2.2.3 Surgical Tracheotomy and Oral Intubation 

 

A surgical tracheotomy was performed in all experiments where animals were 

not allowed to recover following surgery. Following removal from the 

anaesthetic chamber, delivery of anaesthesia was continued via face mask at 

2.5%–3% isoflurane in the nitrous oxide: oxygen mixture (70:30). The neck area, 

was cleaned with 70% alcohol and a small incision was made through the skin and 

fascia of the neck. Blunt dissection technique was used to expose the trachea 

and separate the overlying connective tissue and musculature. The connective 

tissue surrounding the trachea was carefully isolated using small round forceps 

and two ligatures of 2-0 thread (Sofsilk, Tyco Healthcare, USA) were placed 

under the trachea and loosely tied around the proximal and distal ends 

approximately 1.5cm apart. An incision was made between rings of tracheal 

cartilage using micro scissors (World Precision Instruments, UK) and a ventilation 

tube (Linton Instruments, UK) was quickly inserted into the trachea 

approximately 2.0cm towards the bronchi.  The ventilation tube was then 

connected to the ventilator (Ugo Basile, Linton Instruments, UK) where the 

stroke volume was set to 2.5 to 3ml at a frequency of 45 strokes per minute to 

maintain anaesthesia. The ligatures at both ends of the trachea were tied firmly 

around the trachea and ventilation tube to hold it in place and the neck was 

stitched using 4-0 silk suture (SoftsilkTM, Covidien, USA). 
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In experiments where the animal was allowed to recover following 

surgery, artificial ventilation was maintained by oral intubation. Following the 

initial induction of anaesthesia, animals were transferred to a cork board. A loop 

of 4-0 silk thread (SoftsilkTM, Covidien, USA) pinned to the board was placed 

around the upper incisors of the animal and used to lift the animal into a 

vertical position. A fibre optic light (Schott, USA) was positioned over the neck 

of the animal to get a clear view of the vocal cords and trachea. The tongue was 

pulled to one side and a 16-gauge catheter (MillPledge Veterinary, UK) attached 

to a guide wire was then advanced into the trachea. Once passed the vocal cord, 

the guide wire was then removed and the catheter was attached to a ventilator 

at a stroke volume of 2.5-3ml and 60 strokes per minute. Correct placement of 

tube was confirmed by equal chest expansion. In order to ensure the intubation 

tube remained secure during anaesthesia and transfer to MRI scanner it was 

sutured to the side of the mouth using 4-0 silk suture. Depth of anaesthesia was 

regularly assessed throughout the duration of anaesthesia.  

 

2.2.4 Femoral Artery Cannulation  

 

In Chapter 4, cannulation of the right femoral artery was performed to allow 

continual monitoring of mean arterial blood pressure (MABP) and blood gases. 

The right groin region was shaved and sterilised with 70% alcohol. A small 

incision was made over the region of femoral vessel followed by blunt dissection 

and femoral artery was carefully isolated from the femoral vein and nerve by 

blunt dissection using small curved and straight-edged forceps. Two ligatures of 

4-0 silk thread were securely fastened around the distal end and loosely tied 

around the proximal end, approximately 2cm apart. The ligatures were gently 

pulled and secured to the corkboard by using a masking tape. Using a micro-

scissors, small incision on the artery was made at midway between the 2 

ligatures. With the aid of right-angled sharp forceps, a 30cm length of polythene 

catheter (external diameter 0.96mm; internal diameter 0.58mm, Smiths Medical 

International Ltd) attached to a 1ml syringe filled with 1% heparinised saline 

(1000units/ml, Wockhardt UK Ltd, UK) was inserted into the vessel. Tension on 

the proximal tie was released to allow catheter advancement of approximately 

2-3 cm along the vessel. Ligatures were secured tightly around the vessel and 

the inserted catheter. The catheter was connected to a pressure transducer 
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linked to a computer where physiological parameters including heart rate and 

blood pressure were recorded using Biopac software.  

 

2.3 Middle Cerebral Artery Occlusion 

 

2.3.1 Distal Diathermy Method  

 

The surgery for this was carried out by Dr Lisa Roy. Animal was placed in a 

lateral position with the side of head in clear view. The fur between the left eye 

and ear was shaved using electric clippers and the area was cleaned with alcohol 

swabs. The left eye was sutured closed (6-0 thread, Sofsilk, Tyco Healthcare, 

USA) to prevent it from drying out during surgery. A skin incision was made at 

the midpoint between the left eye and auditory canal with sharp-ended scissor 

and the temporalis muscle was carefully separated. Metal retractors were used 

to expose the skull area below the temporalis muscle. The surrounding 

connective tissue and muscle was further removed from area and protected from 

drilling using pieces of absorbent sponge (Surgiswabs, John Weiss International). 

Using a dental drill (Volvere Vmax, Nakanishi Inc) with a round diamond bur 

(Wright Cottrell, UK) the skull was thinned in order to expose the MCA. Drilling 

was performed across the entire area of exposed skull in an up and down 

motion, with regular application of sterile saline (0.9% Baxter Healthcare Ltd) to 

ensure the underlying brain was cooled throughout. Drilling was continued until 

the MCA and inferior cerebral vein (ICV) were visible through the skull. The 

remaining thin layer of bone was removed using needle point forceps. Direct 

access to the MCA was achieved by removing the dura mater using a modified 

dura hook (constructed in-house by bending the tip of 21-gauge needle), in a 

region where there were no visible blood vessels. Bleeding from small vessels 

was minimised and cleared by flushing the area with sterile saline. If bleeding 

failed to stop, gentle pressure with absorbent sponge was applied or the vessels 

were electrocoagulated with diathermy forceps or by reducing the mean arterial 

pressure to approximately 70-80mmHg via increasing the isoflurane 

concentration. The point at which the MCA crosses the ICV was identified and 

the portion of MCA, 2mm distal to the point was electrocoagulated with 

diathermy forceps (110mm angled, Eschmann, UK). This process was carried out 
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in saline to prevent diathermy forceps sticking to the vessels. Upon completion 

of electrocoagulation, the portion of MCA was cut with micro scissors to confirm 

complete occlusion. Following occlusion, the absorbent sponges and retractors 

were then removed from surgical area and haemostatic gauze (Surgicel, Ethicon, 

Johnson & Johnson Medical Ltd 2011) soaked in saline was used to cover the 

craniectomy site. The muscle was closed over and wound was then sutured using 

a 4-0 silk suture and the eye suture was removed.  

 

2.3.2 Intraluminal Filament Method 

 

Induction of focal cerebral ischaemia via this method was performed by Lindsay 

Gallagher for study in Chapter 4 and by me for study in Chapter 5. Transient 

occlusion of the MCA was performed according to the intraluminal filament 

model which was first described by Koizumi and co-workers 1986 (Koizumi et al., 

1986), with subsequent modifications (Longa et al., 1989) (Figure 2.1). All 

surgery was performed under a light operating microscope (Zeiss, Germany). In 

animals where a surgical tracheotomy was performed the common carotid artery 

(CCA) was isolated through the incision site used for exposing the trachea.  If the 

animals were orally intubated, then the neck area was shaved and sterilised with 

70% alcohol prior to midline incision being carried out through the skin and 

fascia overlying the trachea. The left CCA was exposed by carefully retracting 

the soft tissues. Curved and straight-edged forceps was used to isolate the left 

CCA from the surrounding nerves and tissues. Care must be taken to avoid injury 

to the vagal nerve, which runs next to the CCA. A 4-0 silk thread was securely 

tied around the CCA ~15mm below the bifurcation of the external carotid artery 

(ECA) and the internal carotid artery (ICA). A 4-0 silk thread was loosely tied 

around the CCA immediately below the bifurcation of the ECA and ICA. A loose 

tie was placed around the ECA above the occipital artery branch but below the 

ascending pharyngeal artery branch. Another loose tie was placed around the 

occipital artery and a separate tie was place around the ICA. The 

pterygopalatine artery was identified and a suture was placed and tied off at its 

bifurcation from the ICA using a 4-0 silk thread (Figure 2.1). Ties around ECA, 

ICA and occipital arteries was secured with enough tension to prevent flow. This 

was achieved by using masking tape to secure the ties to the corkboard. A small 

incision was made in the CCA just below the bifurcation.  The filament was 
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typically advanced at a distance of 20-22mm from carotid artery bifurcation in 

rat. The distance was measured from the tip of the filament and a bend was 

introduced at the point. Filament was gently advance into the vessel to avoid 

damage to the vascular endothelium. The CCA was cauterized prior to wound 

closure. For Study 1 in Chapter 4, the intraluminal filament was prepared from a 

length of 3-0 or 4-0 monofilament nylon suture (Dermalon, Sherwood Medical, 

USA). The filament was blunted at one end by creating a small bulb using a 

cauterising pen (Aaron Medical, FL, USA). The diameter of the bulb was 

measured and this was used to select filaments for use based upon the weight of 

the animal. For studies in Chapter 4 and Chapter 5, the intraluminal filament 

was purchased from Doccol (Doccol Corporation, CA, USA).  

 

2.3.3 Physiological Monitoring 

 

Physiological parameters such as heart rate, body temperature, MABP and blood 

gases were regularly monitored and recorded throughout the period of 

anaesthesia. Body temperature was maintained within physiological range at 

37±0.5 ºC using an angle poise heat lamp and recorded using a rectal thermal 

probe (Physitemp, New Jersey, USA). Blood gases (blood pH, arterial oxygen 

pressure (PaO2) and arterial carbon dioxide pressure (PaCO2) was taken after the 

induction of anaesthesia and at hourly interval for the duration of the 

experiment. Blood gases were maintained within physiological range by 

adjusting the ventilator setting (i.e. tidal volume and rate of respiration). Due to 

high percentage of oxygen ventilating the animal, a higher PaO2 value (80-

100mmHg) was expected. Mean arterial blood pressure and heart rate data was 

obtained by connecting the femoral artery catheter to a pressure transducer in 

combination with an MP150 Biopac system (Biopac systems Inc, USA) and 

AcqKnowledge software (Linton). The MABP was maintained within the range of 

85-100mmHg for normotensive rats by adjusting the isoflurane concentration.  
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Figure 2.1 The intraluminal filament model of MCAO. Secure ties (red) were placed at 
the proximal end of common carotid artery and pterygopalatine artery. Loose ties 
(green) were placed around the external carotid, internal carotid and occipital artery. 
Gentle tension was applied at these arteries to stop blood flow. A small incision was 
made on the common carotid artery and filament was advanced along the internal 
carotid artery until it lodges at the proximal end of the middle cerebral artery.   

Pterygopalatine 

artery 
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2.3.4 Recovery from Anaesthesia and Post-Operative Care 

 

Upon completion of surgical procedures, the femoral artery cannula was 

removed and the small incision in the artery was sealed using diathermy forceps 

in order to maintain patency of vessel. Surgical site was flushed with sterile 

saline. To ease pain and discomfort, subcutaneous Ropivacaine (Naropin; at 1-

2mg/kg) was given at the surgical before closing the wound with 4-0 suture.  

Isoflurane was switched off and rats were ventilated with 100% of oxygen until 

responsiveness to foot pinching was observed and breathing against the 

ventilator. At this point the animal was disconnected from the ventilator and the 

intubation tube was removed. The animal was supplemented with 100% oxygen 

via a facemask until breathing became steady and the animal started to regain 

consciousness.  

 

The animal was transferred to a clean cage lined with soft absorbent pads 

containing softened food and water available ad libitum. The cage was 

transferred to a recovery room maintained at ~25°C and the animal was housed 

there until it was killed. During the first 24 hours, animal may exhibit 

behavioural changes, lethargy, altered consciousness or seizure episode with 

large infarct. Therefore, animal was closely monitored 3 times per day, for the 

next 3 days and details of the condition was recorded on recovery sheet. To aid 

recovery, animal was kept adequately hydrated with subcutaneous fluid and soft 

diet. Subcutaneous sterile saline was administered at 5 ml/kg on each side of 

the body for 3 days and soft diet (softened rat chow, baby food or Complan) was 

given to aid recovery.  

 

2.4 Brain Processing  

 

2.4.1 2,3,5-triphenyltetrazolium Chloride (TTC) Staining and Quantification 

of Ischaemic Damage 

 

Tetrazolium salt such as 2,3,5-triphenyltetrazolium chloride (TTC) has become a 

convenient marker for detecting infarcts in tissue slices. TTC is a colourless 

water soluble salt which is reduced by dehydrogenase enzymes to a lipid soluble, 

bright red formazan. This staining method is easy to apply and is effective in 
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assessing the infarct volume at 24 hours after permanent and transient 

ischaemia (Hatfield et al. 1991; Popp et al. 2009). The staining properties based 

on the function of mitochondrial system. In undamaged tissue, TTC is oxidised by 

mitochondrial dehygrogenases to a lipid soluble bright red formazan. Whereas in 

damaged/infarcted tissue, TTC remains colourless so no staining is observed 

(Figure 2.2). Following decapitation, brain was removed and kept in a minus 20 

freezers for 20-30 minutes, to ease the slicing process.  The brain was removed 

from the freezer and using the matrix (World Precision Instruments, 

Hertfordshire, UK) as a guide the brain was sliced at 2mm apart, one slice at a 

time using a single razor blade. Slicing the brain with brain matrix was not 

performed as the fragile brain slices often fragment and difficult to remove 

intact. The brain sections were then immersed in 2% TTC (Sigma-Aldrich, 

Switzerland) prepared in phosphate buffered saline in a cell culture dish. As the 

TTC is light-sensitive, the dish was covered with an aluminium foil and incubated 

in the oven at 37°C for 15 min. TTC staining after 24 hours of focal ischaemia 

displays deep red staining of normal brain tissue and pale non-staining of 

ischaemic brain tissue with a distinct border. The slices were transferred into 

fixative solution 4 % paraformaldehyde (PAM) for 24 hours before quantification 

of ischaemic damage. Digital photographs of both sides of the slices were taken 

with a Canon Camcoder Mv750i. The areas of the infarct, ipsilateral (ischaemic) 

and contralateral (non-ischaemic) hemispheres were measured on both sides of 

each slice using image analysis software (ImageJ, http://rsb.info.nih.gov.ij). 

Infarct volume was calculated by summing the individual areas and multiplying 

by the slice thickness. Infarct volume was corrected for ipsilateral brain swelling 

(Swanson et al., 1990).  Volume of each hemisphere calculated as follows:  

 

Corrected infarct= 

volume 

Volume of contralateral -

hemisphere 

(Volume of ipsilateral - 

hemisphere 

Lesion volume) 
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Figure 2.2 Representative coronal brain slice stained with TTC, 24 hours after 
permanent MCAO. Image depicts coronal level 3 (Osborne et al., 1987). The infarct is 
well demarcated and represents by pale area in cortical and subcortical regions.  
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2.4.2 Perfusion Fixation  

 

Prior to opening of chest cavity, animals were deeply anaesthetised with 4-5% 

isoflurane in anaesthetic chamber delivered in a 30:70 mixture of oxygen and 

nitrous oxide. Animal was transferred to an absorbent tray and anaesthesia was 

continued via a face mask. An incision was made below the sternum and the 

ribcage was cut on both sides to expose the viscera of the chest cavity. Using 

forceps, the beating heart was held gently and pulled down to allow visualisation 

of the aorta. A blunt-ended 16-gauge needle, connected via a pressurised system 

to a sphygmomanometer and three-way taps to either a flask of 0.9% saline 

containing heparin (10ml/Litre) or a flask containing 4% PAM (in 50mM phosphate 

buffer), was inserted into the base of left ventricle and advanced into the aorta. 

The needle was clamped to secure it in place and the right atrium was cut to 

allow blood to drain out of the heart. Perfusion was carried out via a 

sphygmomanometer and was maintained at physiological levels (around 100-

120mmHg) with approximately 200-250ml of heparinised saline. Once the blood 

ran clear from the body, PAM was perfused at the same pressure. Spontaneous 

movement and a lightened colour of the liver were indicative of a successful 

perfusion fixation. After fixation rats were decapitated and the heads post-fixed 

in 4 % PAM for 24 hours.  After 24 hours of post-fixation brains were removed and 

subsequently post-fixed in 4% PAM for a further 24 hours before tissue 

processing.  

 

2.4.3 Tissue Processing, Embedding and Sectioning 

 

Following perfusion fixation brains were transferred to an automatic tissue 

processor (Tissue-Tek VIP, Miles Scientific). The process involves multiple 

dehydration cycles through alcohols and then into xylene which acts as a 

clearing reagent. Brains were then submerged in liquid paraffin wax at 60°C. 

The entire process takes 59 hours to complete (Table 2.1). The brains were then 

removed from the processor and individually housed in small containers where 

they were embedded in liquid paraffin wax and left to cool. Once the paraffin 

had set, the embedded brains were removed from their containers and mounted 

onto wooden blocks. Each brain was cut coronally into 5μm sections using a 

microtome (Leica, UK). The sections were stretched by surface tension on a 
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water bath (approximately 40°C) and mounted onto poly-l-lysine coated glass 

slides. Slides were dried on a hot-plate and then sorted at room temperature in 

protective cases until required for Iba-1 immunohistochemistry staining as 

described in Chapter 5.  
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Stage Solution Temperature Time 

(hours) 

1 70% alcohol 35ºC 2 

2 80% alcohol 35ºC 3 

3 96% alcohol 35ºC 4 

4 Absolute alcohol 35ºC 4 

5 Absolute alcohol 35ºC 5 

6 Absolute alcohol 35ºC 5 

7 Absolute alcohol 35ºC 6 

8 Xylene/Absolute alcohol 35ºC 4 

9 Xylene 1 35ºC 5 

10 Xylene 2 35ºC 5 

11 Paraffin wax 1 60ºC 5 

12 Paraffin wax 2 60ºC 5 

13 Paraffin wax 3 60ºC 6 

 

Table 2.1 Tissue processing schedule for rat brains. 
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2.5 Magnetic Resonance Imaging (MRI)  

 

2.5.1 Magnet Specifications  

 

MRI scanning took place at the Glasgow experimental MRI centre (GEMRIC) based 

within the University of Glasgow. All animals were scanned in a Bruker 

Pharmascan 7T system equipped with a 4-channel phased array surface coil and 

a 72mm birdcage resonator for brain imaging. MRI scanning was performed by 

staff within the centre: Jim Mullin, Dr Chris McCabe and Lindsay Gallagher. 

  

2.5.2 Physiological Monitoring During MRI Scan 

 

Animals were transferred to the MRI scanner and put in prone position a Perspex 

rat cradle and the head was restrained using tooth and ear bars. A 4-channel 

phased array surface receiver coil was placed on the rat’s head before the 

cradle was placed inside the scanner. During MRI scanning, anaesthesia was 

either maintained via face mask for animals which have been recovered from 

MCAO or via a ventilator for acute MRI scanning during MCAO.  Anaesthesia was 

delivered at 2-2.5% isoflurane in a 70:30 mixture of nitrous oxide: oxygen 

throughout the scanning. Respiratory rate was monitored with a pressure 

sensitive pad placed under the rat’s chest and connected to a Biopac system. A 

rectal thermocouple probe was inserted for continuous temperature monitoring 

and the body temperature was maintained within physiological range (37±0.5°C) 

using a temperature controlled water jacket.  

 

2.5.3 Diffusion-Weighted Imaging (DWI) 

 

Technical Specifications 

 

In Chapter 5.2.2, diffusion-weighted imaging was performed at 25 min post-

MCAO to assess the early ischaemic lesion. Spin Echo-Echo Planar Imaging (SE-

EPI) diffusion-weighted scans consisted of eight contiguous coronal slices of 

1.5mm thickness which were generated with an in-plane resolution of 260μm. 

The field of view was 25 x 25mm2 and the matrix size was 96 x 96mm. The 

gradient strengths (B values) were 0 and 1000s/mm2 and gradient directions 
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were x, y and z. The repetition time (TR) was 4000.3ms and the echo time (TE) 

was 22.9ms. The DWI scan took approximately 3 mins.  

 

Post Processing  

 

Quantitative ADC (apparent diffusion coefficients) maps (mm2/sec) were 

generated for each of the 8 continuous coronal brain slices (Figure 2.3A). Raw 

datasets were initially processed using Paravision v5 software (Bruker Biospin). 

Subsequent analysis of ADC maps was carried out using ImageJ 

(http://rsb.info.nih.gov.ij) software. To calculate ADC lesion volume an 

abnormal diffusion threshold was applied to all ADC maps (Figure 2.3B). ADC 

threshold values are described in detail in Chapter 5.  
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Figure 2.3 (A) Quantitative ADC (apparent diffusion coefficient) maps on 8 contiguous 
coronal slices of the rat brain (caudal to rostral) and (B) strain-specific ADC thresholds 
(coloured in red) for hypertensive rats was applied to each of ADC maps obtained 
following 25 minutes MCAO for assessment of acute ischaemic injury.  

  

A B 
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 2.5.4 RARE T2 Weighted Imaging  

 

In all experiments, infarct volume was determined using MRI RARE (rapid 

acquisition with refocused echoes) T2 weighted imaging. A coronal RARE T2 

weighted sequence (effective TE: 100ms, TR: 6000ms; in plane resolution of 

97um; 16 slices of 0.75mm thickness) was used to determine final infarct volume 

at 7 days post MCAO (Figure 2.4A).  

 

Image J was used to measure the areas of infarct by manually delineating 

the hyperintense area on all 16 coronal slices (Figure 2.4B).  Infarct volume was 

calculated by summing the total area across all 16 slices and multiplying by the 

slice thickness (0.75mm). The areas of the ipsilateral and contralateral 

hemispheres on each slice were also measured and these were used to calculate 

the volume of each hemisphere. Infarct volume was corrected for oedema using 

published equations (see below) that take into account both the compression of 

the contralateral hemisphere (Gerriets et al., 2004) and swelling of the 

ipsilateral hemisphere (Swanson et al., 1990).   
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Following equation was used for calculation of infarct volume corrected for 

swelling of ipsilateral hemisphere:  

 

         
      Corrected Lesion = volume of contralateral – (volume of ipsilateral – lesion volume) 
              Volume                 hemisphere                     hemisphere 
 

 

A correction factor which accounts for compression of the contralateral 

hemisphere is calculated by the following equation:  

 

 
   Compression Factor = (ipsilateral volume + contralateral volume)/(2 x  contralateral) 
                                                                                                                 volume 
 

 

For calculation of final infarct volume that is corrected for both ipsilateral 

swelling and contralateral compression, the follow equation was used:  

 

 

Infarct Volume = corrected lesion volume x compression factor 
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Figure 2.4 MRI RARE T2 images from a representative SHR rat acquired at 7 days 

following transient occlusion of the middle cerebral artery. Column (A) shows 8 coronal 

slices and ischaemic damage appears hyperintense within the ipsilateral hemisphere. 

Extensive swelling of the ipsilateral hemisphere and compression of contralateral 

hemisphere was also noted. Image J software was used to delineate the infarcted 

tissue, as shown in column (B). Infarct volume was corrected for both ipsilateral 

swelling and contralateral compression using published equations by (Swanson et al., 

1990; Gerriets et al., 2004). 

 

 

 

 

A B 
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2.6 Neurological score 

 

An 18-point composite neurological score was used to assess the functional 

outcome in rats following MCAO. The score includes 6 neurological tests that 

assessed spontaneous activity, symmetry in limb movement, forepaw 

outstretching, body proprioception, response to vibrissae touch and climbing 

ability. Test was conducted 3 days prior to induction of cerebral ischaemia for 

assessment of baseline performance and then at different time point post MCAO 

(i.e. day 1, 3 and 7) for the assessment of neurological deficits. Scores for each 

test were summed up to generate the overall neurological core. The maximum 

score of 18 indicates no obvious deficit and the minimum score of 3 indicates the 

most severe neurological impairment (Table 2.2).  

 

2.6.1 Spontaneous Activity  

 

This was assessed with the rat in its own home cage with the cage top removed 

and rat was observed for a period of 5 minutes. The rat’s spontaneous activity 

was scored from 0 to 3 based on its ability to approach walls of the cage. A score 

of 3 indicates that rats has moved around in the cage and approached at least 

three walls of the cage. A score of 2 was given when rat did not approach all 

four walls but has moved around although it eventually reached at least one 

upper rim of the cage. A score of 1 indicates that the rat barely moved in the 

cage and did not rise up on his hind limbs to approach any of the cage walls and 

a score of 0 was given if the rat did not move at all during the observation 

period.  

 

2.6.2 Symmetry in The Movement of Four Limbs  

 

The test was carried out by suspending the rat in the air by holding the base of 

its tail. A score of 3 was given if all four limbs extended symmetrically and score 

of 2 was given when the limb of the affected side (contralateral) extended less 

or more slowly than the unaffected side (ipsilateral). A score of 1 was assigned if 

minimal movement was observed on contralateral limb and 0 if the contralateral 

limb did not move at all.  
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Table 2.2 A composite 18-Point Neurological Score is performed to assess neurological deficit following transient focal cerebral ischaemia in rodent. 
Six tests comprise of sensory and motor component are each given a score up to 3. Overall score is each test scores added up where minimum of 3 
indicates severe neurological impairment and the maximum score of 18 indicate no obvious neurological deficit. Adapted from (Garcia et al., 1995)

 
Test 

 
Neurological Score 

0 1 2 3 

Spontaneous activity 
(in cage for 5 min). 

No Movement Barely Moves Moves and reaches at 
least 1 upper rim of the 

cage 

Moves and approaches 
at least 3 sides of cage 

Symmetry of 
movements (four 
limbs). 

Contralateral side: no 
movement 

Contralateral side: slight 
movement and splays to 

side a lot resulting in 
sideways movement 

Contralateral side: 
moves slower & splays to 
side. General movement 

still forward 

Both sides:  Move 
symmetrically 

Symmetry of 
forelimbs 
(outstretching to 
bench-top while 
held by tail). 

Contralateral side: no 
movement, no 
outreaching 

Contralateral side: slight 
movement to outreach 

 

Contralateral side: 
moves & outreaches less 

than ipsilateral side 

Symmetrical outreach 
 

Reaction to touch on 
either side of trunk. 

 
… 

Contralateral side: no 
response 

Weak response on 
contralateral side 

Symmetrical response 

Response to 
vibrissae touch. 

 
… 

Contralateral side: no 
response 

Weak response on 
contralateral side 

Symmetrical response 

Climbing wall of 
wire cage 

… Fails to climb Contralateral side is 
weak 

Normal climbing 
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2.6.3 Forepaw Outstretching  

 

The rat was held by its tail so that it had to walk along the surface of the table 

using its forelimb only. The hind limbs were kept in the air and the symmetry in 

the outreaching of both forelimbs was observed. Scores were assigned as 

follows; 3, both forelimbs were outstretched and rats walked symmetrically on 

forepaws; 2, contralateral forelimbs outstretched less than ipsilateral forelimbs, 

indicating impaired forelimb walking; 1, was given when contralateral forelimb 

exhibited minimal movement; and 0, when no movement was observed on 

contralateral forelimb.  

 

2.6.4 Climbing  

 

The rat was placed on grid wire and was then pulled off the wire by gripping the 

base of the tail and the strength of attachment was noted. A score of 3 was 

given if rat climbed easily and gripped tightly to the wire. The rat scored 2 if the 

grip on contralateral side was impaired and weaker than the ipsilateral side. 

Score of 1 indicates that the rat failed to climb or tended to circle instead of 

climbing.  

 

2.6.5 Body Proprioception  

 

The test assessed the rat’s ability to react to stimulus when each side of the 

body was prodded with a blunt wooded pencil. A score of 3 was given when the 

rat reacted by turning its head and was equally startled by the stimulus on both 

sides. A score of 2 indicates that the rat reacted slowly to the stimulus on the 

contralateral side and score of 1 was given if the rat did not respond at all to the 

stimulus on contralateral side.  
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2.7 Adhesive Label Test  

 

Adhesive label test was used to determine the extent of forelimb-use asymmetry 

displayed by the animal (Schallert and Whishaw, 1984).  During this test, the rat 

was removed from the home cage and a circular adhesive test label (1.3cm 

diameter, Avery International, USA) was placed on the hairless radial aspect of 

each wrist as shown in Figure 2.5. To prevent order of attachment from biasing 

motor behaviour, label placement was changed for 3 separate trials and the 

experimenter touched each forepaw simultaneously immediately after the 

stimuli was attached. The animal was then placed in the observation cage and 

behaviour was recorded using a video camera (Sony). The trial has to restart if 

the label fell off without directly being removed by the rat. Each trial ended 

when both labels have been removed or when the animal failed to 

contact/remove each label within the 3 minutes’ time period. The latency to 

contact and remove each label by the mouth was assessed by observing the 

video. For each trial, the difference in contact/removal time between the 

affected (right) and non-affected (left) paw was calculated to prevent overall 

activity of the rat from affecting the performance (Stroemer et al., 2009). The 

rat was returned to home cage for 5 minutes between each trial. This test was 

performed prior to MCAO (day 0) and post operatively on days 1,3, and 7.  
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Figure 2.5 An adhesive label was placed on the distal-radial region of each wrist. The 
latency to contact or remove each label was recorded to assess whether the rat showed 
bias for the affected or unaffected forelimb.  
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2.8 Blood Pressure Determination  

 

The tail-cuff method of systolic blood pressure is a non-invasive technique which 

was developed by the west of Scotland’s Department of Clinical Physics and 

Bioengineering, based at the Southern General Hospital in Glasgow (Evans et al., 

1994). An occluding cuff was placed around the proximal end of the rat’s tail 

which is then inflated with air until the vessel was transiently occluded at the 

point where the pressure in the cuff matches of the tail artery. The absence of 

pulse then is detected by a pneumatic pulse sensor which is attached to the tail 

distal to an occluding cuff (Figure 2.6C). The signal is relayed to a central 

monitoring system which is connected to a laptop (Dell, UK) which then displays 

the systolic blood pressure reading in mmHg and the cuff is then deflated (Figure 

2.6A). The advantage of this technique is that does not involve arterial 

catheterization as required for direct methods of blood pressure measurement 

and has been validated against direct measures of blood pressure measurement 

(Feng et al., 2008). Furthermore, this method enables BP measurements in 

conscious animals without the influence of anaesthesia on BP, as is the case with 

invasive methods. However, mild restraint during the procedure may contribute 

to stress in the animal which will be reflected in the blood pressure 

measurements but this can be minimised by incorporating a thorough 

acclimatisation and training period into the regime.  

 

2.8.1 Tail Cuff Apparatus 

 

Prior to BP measurement, the animals must be pre-warmed to induce maximal 

vasodilatation of the tail artery. This is achieved by placing the animals in an 

insulated heat box (dimensions 37cm x 35cm x 40cm) (Figure 2.6B) to which the 

animals had been previously conditioned. The upper surface of the box has a 

circular opening (diameter 7cm) to allow the box to be warmed to a 

temperature of 34ºC using a hairdryer (Boots, UK). Once the desired 

temperature was reached it was maintained by positioning an angle poise lamp 

over the opening of the box and this was monitored using a thermometer 

situated on the inner wall of the chamber. The door on the front panel of the 

heat box allowed easy access to the rat in the chamber and the removable 

insulating tile on the door could be removed to observe the animal. If the 
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temperature rose above 35ºC, the insulating tile and angle poise lamb over the 

upper opening shall be removed to facilitate heat loss.  

 

 The tail cuff was constructed by cutting the medial portion of a 5ml 

syringe (Plastipak, UK) to a length of 2cm. A latex tubing (length 6cm, width 

1.5cm) was then inserted into the syringe. A 10-gauge catheter, cut to 4cm in 

length was inserted into the latex tubing and secured in place by tying 5-0 

thread around the tubing. This needs to be done meticulously to prevent any air 

leak if the seal was incomplete. The opposite end of the latex tubing was turned 

over to the outer face of the syringe and was secured using a plastic O-ring 

(1.7cm diameter) (Figure 2.6C).  
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Figure 2.6 The tail cuff plethysmography apparatus.  (A) Blood pressure monitoring 

system connected to a laptop, where the systolic blood pressure measurements are 

displayed and recorded. A heat mat was used to keep the rat warm and a towel was 

used to gently restrain the rat. (B) The heat box used to pre-warmed the rats prior to 

BP measurement. (C) The tail cuff (left) which is placed on the base of the tail and 

transducer which relays the blood pressure signal to the central blood pressure 

monitoring system.  

 

 

A 
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2.8.2 Animal Training Procedure 

 

All rats were subjected to an intensive 5 days training period to acclimatise 

them to handling and the tail cuff apparatus. On day one of training rats were 

taken to the room where the tail cuff apparatus was set up in their home cage. 

The animals were then handled for a period of 20-30 minutes and were allowed 

to explore the table where the tail cuff apparatus was set up. They were also 

wrapped in a towel to accustom them to mild restraint. On day two, rats were 

subjected to the same handling procedure as the previous day, with the addition 

of being placed in the heat box for 10 minutes, which had not been pre-warmed. 

The training on day 3 was the same as day two, except that the heat box was 

pre-warmed to 34ºC prior to the animals entering it. On day 4, the training 

procedure was as described for day 3 and then the tail cuff and transducer were 

positioned on the rat’s tail (Figure 2.7A) whilst the rat was being mildly 

restrained within a towel. On the final day of training, the tail cuff apparatus 

was again positioned on the rat’s tail following 10 minutes in the heat box and 

the cuff was inflated and deflated to allow the rat to acclimatise to the pressure 

of the tail cuff. At the end of each training day, rats were rewarded with a treat 

of Multi-Cheerios.  

 

2.8.3 Systolic BP Measurement Protocol 

 

The tail cuff method was used to measure systolic blood pressure in Sprague-

Dawley and Wistar rats prior to stroke and on specific days following stroke in 

Chapter 3 and 4 respectively. In Chapter 5 BP measurement was taken 2 weeks 

prior to the commencement of PD protocol in SHR rats to ensure that rats were 

hypertensive. BP measurement was performed in the morning between 1000 to 

1200, by the same experimenter. BP measurement was not performed on a 

Monday afternoon, as the rats tended to be more stressed on this day as their 

cages were cleaned out every Monday.  

 

Rats were placed in the pre-warmed heat box with their cage-mates for 

10-15 minutes and no longer than 20 minutes. Care was taken to regularly assess 

the temperature in the box by looking at the thermometer attached to the inner 

wall of the box. If the temperature was above 36ºC, then the front panel of the 
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box was removed to aid heat loss. The front panel of the heat box also allowed 

the animals to be observed. The rats were deemed to be warm enough when 

there was very little spontaneous movement and the ears looked very pink. At 

this stage the rat was removed from the box and swiftly wrapped in a towel with 

only the tail exposed. The rat was placed onto the heat mat to keep it warm and 

the tail cuff and the signal transducer were positioned on the tail (Figure 2.7A). 

Once the rat was settled and was sitting on the heat mat, the restrain was 

release and BP measurement was taken while the rat wrapped in the towel. The 

laptop was used to inflate and deflate the cuff in cycles to obtain measurements 

of systolic blood pressure. This was repeated until 8-10 consistent measurements 

of systolic BP were acquired and the mean and standard deviation were then 

calculated. Only the most consistent measurements were used to calculate the 

mean systolic BP for each animal. Measurements which were acquired when an 

animal was visibly stressed were excluded. After the tail cuff procedure, the rats 

were returned to their home cage and were rewarded with Multi-Cheerios.  
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Figure 2.7 Non-invasive blood pressure measurement via tail-cuff method. (A) The 
positioning of the tail cuff and the signal transducer on the tail of the rat, where the 
cuff is positioned at the base and the transducer is placed distal to the cuff. (B) The 
computer screen as displayed when blood pressure measurements are being recorded. 
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2.9 Photoperiod Disruption Protocol 

 

In Chapter 3 and 5, photoperiod disruption by manipulating the timing for light 

exposure was used to modulate shift work in rats.  Control rats were housed in a 

room with a standard 12:12 light/dark cycle for 9 weeks. Light intensity in the 

room housing the control rats was measured with a lux meter at the beginning of 

the study (~150 lux). PD rats were housed singly in a well-ventilated light-tight 

box that accommodated 2 cages per shelf; and allowed for alterations in the 

light/dark cycle using a digital timer. Lights in the box were switched on 6 hours 

earlier than in the previous photoperiod every 3 days for 9 weeks as has been 

described previously to simulate shift work, where it was shown to induce 

perturbations of circadian biomarkers (melatonin) and changes in blood glucose 

and insulin in diabetic-prone rats (Gale et al., 2011). A schematic representation 

of photoperiod disruption protocol employed in the study is illustrated in Figure 

2.8. With this protocol rats in the PD group returned to the “original” baseline 

LD cycle (lights on at 0700 hour, lights off at 1900 hour) every 15 days. Light 

intensity in the box was maintained at ~150 lux similar to that experienced by 

the control animals. The temperature and humidity in the light-tight box were 

closely monitored and maintained at 20-21°C and 35%-40% respectively during 

the duration of study.  
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Figure 2.8 Schematic representation of 2 light/dark cycles employed in this study; 12:12 LD cycle (lights on at 0700 h, lights off at 1900 h) for 9 

weeks and 6 h phase advance of the LD cycle every 3 days for 9 weeks. Red rectangle represents under what light conditions food intake, and 

body weight measurement were performed both experimental groups, * and ** indicates the day for first and second batch of rats (n=2-3/group) 

entering the protocol respectively. Surgery for MCAO was performed at the end of 9 weeks during the light phase.  
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2.10 Locomotor Activity Monitoring 

 

Rat’s locomotor activity for studies done in Chapter 3 and 5 was monitored to 

demonstrate disruptions of circadian rhythms as well as to determine patterns of 

activity in response to LD cycle. Activity monitoring was conducted only in the 

PD rats due to limited access to sufficient number of activity monitors. Baseline 

locomotor activity was recorded 2 weeks prior to the commencement of 9 

weeks’ phase advance protocol, in which the rats were maintained under 

standard 12:12 light/dark cycle and for the subsequent 9 weeks period of PD. 

Therefore, the activity analysis was based on intra-subject design comparing 

baseline activity (during normal LD cycle) with activity in PD period in the PD 

group.  

 

Activity was measured in each individual cage using a passive infra-red 

sensor connected to a relay and then to a PC via a 56 channel interfaces 

(ClockLab CL200) that counted events on the relays in 1 min bins. The sensors 

were positioned above the cage at a distance that was optimised for detection 

of movement in all quadrants and for insensitivity to movements outside the 

cage (Figure 2.9). Data were acquired using ClockLab software (Actimetrics, 

Illinois, United States) and were expressed in units of beam breaks per min. 

Disruption of circadian rhythmicity in locomotor activity was quantified using 

parameters described for assessment of fragmentation of human rhythmicity.  
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Figure 2.9 The room set up for circadian study. (A) Light/dark box which 

accommodate 2 singly housed rats per shelf with maximum capacity of the unit is for 

10 rats. (B) Infra-red movement sensor positioned at distance optimised for 

detection of movement in all quadrants and (C) double-plotted actogram presenting 

locomotor activity data. 
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Chapter 3-The Effect of Chronic Photoperiod 

Disruption on Outcome Following Permanent 

Focal Cerebral Ischaemia 
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3.1 Introduction 

 

Epidemiological studies have identified obesity, hypertension, diabetes, 

atherosclerosis and inflammation as significant risk factors for stroke onset 

and poor outcome (Baird et al., 2002; Murray et al., 2013). The incidence and 

overall disease burden of stroke is predicted to rise as these risk factors 

extend across the developing world (Feigin et al., 2014, 2015). In 2007 more 

than half the global population lived in a city and this is predicted to reach 

70% by 2050. Risk factors for stroke are strongly associated with urbanisation 

mediated through a complex interaction of lifestyle factors including high-

energy diets, pollution, sedentary lifestyles and disrupted circadian 

rhythmicity (Danaei et al., 2013).   

 

Circadian rhythms optimises health by ensuring that the internal 

rhythms of metabolism and cardiovascular physiology are synchronised to 

daily variations in the light/dark cycle (Arble et al., 2010). Erratic cycles in 

the light/dark cycle, food availability or social interaction can affect the 

alignment between endogenous clocks and the environment, a condition 

associated with detrimental effects on metabolic and mental health.  Around 

20% of workers in the developed world are required to undertake shift work 

which involves chronic disruption of circadian rhythms and shift work is 

strongly associated with metabolic dysfunction and increased risk of cardio 

and cerebrovascular diseases (Scheer et al., 2009). 

 

Animal studies suggest potential links between disrupted rhythmicity 

and ischaemic stroke. The spontaneously hypertensive rat (SHR) showed a 

disrupted circadian phenotype with impaired capacity to maintain robust 

rhythms (Sládek et al., 2012) while a progressive desynchronization of 

rhythms in behaviour and drinking was reported to be a prodromal sign of 

impending stroke in these animals (Minami et al., 1985). In healthy 

individuals, blood pressure and vascular contractility show strong daily 

rhythmicity which indicates underlying clock control, and disruption of these 

rhythms is an early sign of cardiovascular diseases in humans (Gönenç et al., 

2013) and animals (Shimamura et al., 1999). Disruption of clock function by 

exposure of animals to disrupted photoperiods is used as a model of circadian 



74 
 
disruption, and negatively affects vascular rhythmicity, function and 

vulnerability to ischaemia in organs other than the brain. For example, PD 

decreased survival in a hamster model of cardiomyopathy (Penev et al., 1998) 

and a mouse model of myocardial infarction (Alibhai et al., 2014) and 

compromised vascular adaptive responses to aortic constriction in mice 

(Martino et al., 2007). Furthermore, mice with genetic clock lesions (BMAL1 

knockout) had impaired pathological remodelling in response to ligation of 

the carotid artery, enhanced vascular injury and impaired endothelial 

function (Anea et al., 2009) and importantly, increased cell death in the 

hippocampus following transient forebrain ischaemia (Wiebking et al., 2013). 

Together with the increased vulnerability of clock disrupted animals to 

cardiovascular ischaemic injury, this suggests that PD might have an adverse 

impact on cerebral ischaemic damage.  

 

Some of the reported metabolic or physiological changes associated 

with PD such as hypertension and diabetes have the potential to adversely 

impact on stroke. The adverse effect of hyperglycaemia on outcome after 

stroke or infarct size after MCAO in rodents is well documented (MacDougall 

and Muir, 2011; Tarr et al., 2013) while co-morbidities such as genetically 

determined hypertension, diabetes or insulin resistance hasten the demise of 

the penumbra and increased infarct volume(McCabe et al., 2009),(Tureyen et 

al., 2011). We therefore hypothesise that PD will alter key physiological 

variables such as blood pressure and blood glucose, and increase vulnerability 

to focal cerebral ischaemia. The primary objective of the present study was 

to determine if rats subjected to recurrent phase advance of the light/dark 

cycle for 9 weeks had larger infarcts compared to animals maintained on a 

normal light/dark cycle following permanent MCAO. 

 

3.1.1 Study Aims 

 

The primary objective of the present study was to determine if PD induced in 

rats by recurrent phase advance of the light/dark cycle for 9 weeks, 

influences the sensitivity of the brain to ischaemic damage induced by 

permanent MCAO. 
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3.2 Methods 

 

3.2.1 Animal  

 

All animals were obtained from Envigo (UK) and housed in Veterinary 

Research Facility (VRF) at the University of Glasgow. Experiments were 

carried out under license from the UK Home Office and were subject to the 

Animals (Scientific Procedures) Act, 1986. The report was carried out in 

accordance with the ARRIVE guidelines (http://www.nc3rs.org.uk/arrive). A 

total of 24 male, adult Wistar rats (8-10 weeks) weighing 210-290g were 

entered into the study. Rats were singly housed under a standard 12:12 

light/dark cycle (lights on at 0700, lights off at 1900) for two weeks prior to 

allocation into one of two experimental groups. All rats had ad libitum access 

to water and standard rat chow. 
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3.2.2 Sample Size Calculation and Blinding 

 

Sample size calculation was performed using equation for sample size 

calculation for continuous variable (Snedecor and Cochran, 1989) as provided 

in Table 3.1. Group sizes were based on previously published data from our 

research group that used the same model of MCAO and was able to detect 

50% change in infarct volume due to acute hyperglycaemia (Roy, 2015). In 

previous experiments, the difference in mean (d) T2-derived infarct volume 

between vehicle and glucose treated was 33mm3, with a standard deviation 

(s) of 22mm3. Given the sample size calculation was based on an 80% power 

(1-ß) and 95% significance level (α), the number of animals needed for each 

group is 7 to detect the difference in infarct volume. From this, it was 

decided that the optimum group size would be 12 rats per group, which is 

necessary to detect a 39% increase in infarct volume. 

 

It was not possible to randomise rats to the two groups due to the 

limited number of stroke surgeries that could be carried out per day at the 

end of the 9 weeks’ protocol. All animals were allocated to control and PD 

groups in equal numbers when batches of 4 rats were entered into the 9 

weeks’ protocol described below with the total number of 12 animals per 

group. Surgery for MCAO was carried out by a surgeon (Dr Lisa Roy) who was 

blinded to the experimental groups. Similarly, data analysis for infarct 

volume was carried out in a blinded manner.  
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Table 3.1 (A) Sample size calculation using equation for an experiment that 
designed to measure continuous variables. (B) C is dependent on values chosen for 
significance level (α) and power (1-ß)   

𝒏 = 𝟏 + 𝟐𝑪 
𝒔

𝒅
 
𝟐

 

 

A 

B 
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3.2.3 Photoperiod Disruption Protocol and Locomotor Activity Monitoring 

 

Photoperiod disruption and locomotor activity monitoring were carried out as 

described in detail in Chapter 2.9 and 2.10.  

 

3.2.4 Food Intake and Body Weight 

 

Weekly food intake and body weight of rats were measured every Monday at 

regular time point (from 0900-1000). For PD rats, if the measurement of food 

intake and body weight of rats was during the dark cycle then this was 

conducted under the red light in the dark room. In all rats, body weight and 

food intake were measured at baseline (week 0) and thereafter on a weekly 

basis for 9 weeks. Food intake was calculated by weighing the amount of food 

given each week and calculating the difference from the previous week. Both 

measurements were performed at the same time of the day in each group as 

illustrated by red rectangle in Figure 2.8 on Chapter 2.  

 

3.2.5 Tail Cuff Plethysmography 

 

In all rats, systolic BP was recorded by tail cuff plethysmography at baseline 

and at the end of 9 weeks’ protocol prior to MCAO.  All animals had been 

previously conditioned to the indirect blood pressure set up prior to the study 

as described in Chapter 2.8. Blood pressure was measured by same 

experimenter at approximately the same time of the day on every occasion. 

To facilitate vasodilatation, animals were placed in an insulated heat box at 

35-36°C for 10 min. Eight to ten successive BP readings at each session were 

recorded and the average calculated.  

 

3.2.6 Surgical Procedures 

 

At the end of 9 weeks, all rats in control and PD groups were subjected to 

permanent MCAO by the same experimenter who was blinded to the animal 

identity. Animals were initially anaesthetised in an induction chamber with 

5% isoflurane in a 70% nitrous oxide and 30% oxygen mixture. Oral intubation 

was performed and animals were mechanically ventilated with 2% to 3% 

isoflurane in a nitrous oxide: oxygen mixture (70:30). A digital blood glucose 
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meter (Accu-Check Aviva, Roche, Germany) was used to measure blood 

glucose (non-fasting) sampled from the tail vein immediately following 

induction of anaesthesia.  Body temperature was monitored by a rectal probe 

and maintained at 37±0.5°C using a heat lamp throughout surgery. 

Permanent focal cerebral ischemia was induced by distal occlusion of the 

MCA using diathermy method adapted from Tamura et al. 1981 as described 

in detail in Chapter 2.3.1. After recovery from anaesthesia, animals were 

returned to their home cage and kept in the recovery area where their 

general well-being and body weight were closely monitored 3 times daily. 

Animals received soft diet and fluid, in order to aid recovery. 

 

3.2.7 Blood Glucose Measurement 

 

Blood glucose was sampled from rat tail vein following induction of 

anaesthesia and intubation. The tail vein was heated using a single head 

poised lamp to facilitate vasodilatation and identification of sampling point. 

The right or left tail vein on either side of the artery (that was located on the 

mid dorsal side of tail vein) was identified and the target area was wiped 

with 2% chlorhexidine antiseptic solution. A small gauge needle (25G, BBraun 

Sterican) was used to puncture the vein. A test strip (Accu-Chek® Aviva) was 

placed in the meter, and a drop of blood from tail vein was placed at the tip 

of the test strip. The glucose value in mmol/L was displayed on the meter 

and was recorded. Gentle pressure was applied to the vena puncture area for 

1-2 mins with sterile gauze to stop the bleeding. To ensure reliability of the 

results, the glucose meter machine was calibrated regularly using Accu-

Chek® Aviva control solutions in accordance with the manufacturer’s 

instructions. 

 

3.2.8 MRI Scanning Protocol 

 

At 48 hours after MCAO rats were re-anaesthetized and placed in Bruker 

Pharmascan 7T MRI scanner. Rats were maintained under anaesthesia with 2% 

to 3% isoflurane in nitrous oxide–oxygen (70:30) using a face mask throughout 

the scanning process. Rats were placed into a rat cradle, the head secured 

and a phased array surface coil was positioned above the head. Body 
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temperature was maintained at 37±0.5°C during scanning using a 

temperature-controlled water jacket. A RARE (rapid acquisition with 

refocused echoes) T2-weighted sequence was acquired (TE=100ms, 

TR=6000ms, matrix=256x256, 16 coronal section slices; 0.75mm thick) to 

image the infarct. 

 

3.2.9 Infarct Volume Measurement  

 

Infarct volume was measured at 48 hours following permanent MCAO as 

described in Chapter 2.5.4. Infarct volume analysis was performed using 

Image J software (NIH, Bethesda, MD, USA) and the assessor was blinded to 

the experimental group. Infarct area was calculated by manually delineating 

the hyper-intense regions on T2-weighted images. Infarct volume was 

calculated by summing the infarct area on each slice and multiplying by slice 

thickness (0.75 mm). Correction for oedema was performed to account for 

brain swelling at 48 hours after stroke using previously described method 

(Gerriets et al., 2004).  

 

3.2.10 Plasma Fructosamine  

 

The bonding of glucose to plasma proteins produces fructosamine and plasma 

fructosamine levels are proportional to the average glucose concentration 

over the previous 2-3 weeks prior to the measurement. Blood for 

measurement of plasma fructosamine was collected at 48 hours after MCAO. 

Whole blood was withdrawn from the heart (via cardiac puncture) and 

collected into EDTA-treated tubes (1.5ml). Samples were processed 

immediately by centrifugation for 10 min at 1,000xg using a refrigerated 

centrifuge. Samples were stored at -80ºC and analysed at the end of the 

study. The fructosamine assay uses the rate of formation of formazan from 

nitrotetrazolium blue in an alkaline environment at 546nm(Johnson, Metcalf 

and Baker, 1983). Reagents were provided by Horiba ABX and the analysis was 

performed on the Olympus AU 640 chemistry analyser. 
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3.2.11 Hair Corticosterone  

 

Hair corticosterone levels have been validated as reliable biomarker for 

chronic stress. Study by (Scorrano et al., 2015) demonstrated that hair 

corticosterone level in male rats properly reflects their plasma level after 

exposure to chronic stress protocol (intermittent restraint) for 14 days. This 

method is less intrusive compared to blood and saliva corticosterone 

measurement that could be confounded by stress secondary to sampling 

procedure. 

 

Hair samples taken from dorsal aspect of the body at the termination 

of the experiment was weighed, placed in a sterile plastic wrap and kept at 

room temperature until further analysis. On the day of analysis, hair samples 

from each rat (70mg) were transferred into 2.5 ml tubes and labelled. Sample 

was washed twice with 1000ul isopropanol (Sigma) to remove surface 

contaminants, using a mini Rocker-Shaker (PMR-30, Grant Instruments 

(Cambridge) Ltd UK) for 3 minutes at room temperature. Excess isopropanol 

was discarded.  Samples were then left to dry under clean protected fume 

hood at room temperature for 5 days, to allow evaporation of isopropanol.  

 

Dried hair was grinded to fine powder using a Retsch ball mill (mixer 

mill MM 200; 5.0 ml stainless steel grinding jars; single 5.0 mm stainless steel 

grinding balls) for ~4 min in bead mill at 30 Hertz (4 x 50s; 20s rest in 

between). Approximately 50 mg of powdered hair was weighed out and 

carefully placed into a 2ml micro centrifuge tube and 1.5 ml of methanol was 

added to each sample. Tubes were incubated at room temperature for 24 

hours with slow rotation for the extraction of steroids. Following extraction, 

samples were spun at 10,000 rpm (Jouan BR4i, DJB Labcare ltd, England) for 

5 min and 1 ml supernatant was transferred to clean 1.5ml tube. Supernatant 

was spun again at 10,000 rpm for 5 min. 900ul supernatant was transferred to 

clean tube and placed in vacuum evaporator (Thermo-Scientific) to remove 

methanol. Following evaporation of the solvent, extract was reconstituted in 

assay buffer, and corticosterone concentration was determined by using 

Corticosterone ELISA Kit (Enzo Life Sciences ltd, Exeter, UK) according to 
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manufacturer’s instruction. ELISA plates were read at 405nm on a plate 

reader.  

 

3.2.12 Statistical Analysis 

 

Data are expressed as mean ± standard deviation (SD). All statistical analyses 

were performed using GraphPad Prism software v6 (GraphPad, La Jolla, CA). 

Food intake data were plotted over time and area under the curve was 

calculated. Data were analysed using a 2-way ANOVA and an unpaired 

Student’s t-test, respectively. An unpaired Student’s t test was used to 

compare final infarct volume, blood glucose, % increase in body weight, % 

change in BP, plasma fructosamine and hair corticosterone level between the 

groups. A probability value of 0.05 or less was considered statistically 

significant. 

 

3.3 Results 

 

3.3.1 Mortality  

 

A total of 24 Wistar rats that were included in the study completed the entire 

experimental protocol.  There was no mortality following MCAO in both either 

PD or control groups. 

 

3.3.2 Photoperiod Disruption Results in Disruption in Locomotor Activity 

and Rhythmicity for The Duration of PD Intervention 

 

Rats showed a strong circadian rhythm for locomotor activity in the baseline 

12:12 light/dark period that was disrupted on commencement of the phase 

advance protocol (Figure 3.1A).  Loss of circadian rhythmicity during the PD 

period was confirmed by changes in the rhythmicity parameters; inter-daily 

stability (IS) and intra-daily variability (IV) between these periods.  

 

The inter-daily stability was calculated as the ratio between the 

variance of the average 24-hour pattern around the mean and the overall 

variance, and reflects the predictability of the diurnal pattern over 

sequential days. The IS was significantly decreased in the PD period 
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compared to baseline; 0.76 ± 0.08 and 0.06 ± 0.04 (arbitrary units), mean ± 

SD for baseline and PD periods respectively (P < 0.0001, Student paired t-test; 

Figure 3.1C).  

 

The intra-daily variability index was measured as an indicator of the 

fragmentation of the rhythm, with high values indicative of multiple 

transitions between periods of rest and activity. Variability within days was 

increased by PD as indicated by significant increases in the IV compared to 

the baseline period; (0.75 ± 0.16 and 1.18 ± 0.09 (arbitrary units), mean ± SD 

for baseline and PD periods respectively (P < 0.0001, Student paired t-test; 

Figure 3.1C). The mean effect of PD on the rhythmicity of all animals is 

illustrated in Figure 3.1B which shows that both IS and IV deviated from 

baseline values when PD commenced, and that baseline values were not 

recovered. Therefore, locomotor activity rhythmicity remained profoundly 

disrupted for the duration of the PD intervention. 
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Figure 3.1 (A) Actogram from a single animal showing disrupted rhythmicity in locomotor activity during chronic photoperiodic phase advance. 

(B) Mean rhythmicity indices (IS and IV) calculated over the duration of the baseline and PD periods for all animals, shows significant increase in 

IV from baseline (C) indicates increased fragmentation of the daily rhythm in locomotor activity. The IS was decreased from baseline indicating 

disrupted stability of rhythmicity between days (Student’s paired t-test, P<0.000, n=12). 

*** *** 
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3.3.3 Food Intake and Body Weight  

 

Control and PD groups consumed 21 ± 0.3 and 19.5 ± 0.9 g/day respectively 

(daily food intake was calculated by averaging the weekly intake). Weekly 

food intake in control and PD rats over 9-week period is shown in Figure 3.2A. 

As a summative measure for food intake from baseline to week 9, an area 

under the curve was calculated for each rat. Despite statistically significant 

reduction of food intake in PD rats (control, 1331 ± 96.4 g; PD,1227 ± 100.5 g 

P= 0.02, Figure 3.2B), the reduction was not biologically significant as the % 

increase in body weight from baseline was comparable in both groups at the 

end of 9 weeks (control, 41.39 ± 17.16%; PD, 37.37 ± 15.03%, P= 0.60, (Figure 

3.3B). Body weight data also shows that both groups were matched for body 

weight at baseline (control, 247.8 ± 18.6 g; PD, 243.3 ± 18.3 g) and the % 

increase of body weight increased steadily over time (Figure 3.3A). 
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Figure 3.2(A) Weekly food intake in control and PD rats over the entire 9-weeks 

protocol and (B) the weekly food intake calculated as area under the curve for each 

individual rat for the control and PD groups. The data in (A) expressed as mean ± 

standard deviation. The data in (B) are expressed as AUC for each animal. Horizontal 

bar indicates the mean.  Data in (B) analysed using a Student’s unpaired t-test, 

P=0.02, n=12.  
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Figure 3.3 (A) Weekly % increase in body weight from baseline in control and PD 

groups. (B) Scatter plot showing the % change in body weight from baseline to week 

9 for both control and PD group. Data points indicate individual rats and the 

horizontal bar represents the mean, and analysed using Student’s unpaired t-test 

P=0.20, n=12. 

 

 

 

 

 

 

 

A 

B 



88 
 

3.3.4 Blood Pressure Were Unchanged by PD Intervention 

 

The baseline systolic BP for control and PD groups was 99 ± 9.5 mmHg and 

106 ± 13.2 mmHg respectively. At 9 weeks, no significant difference in BP 

was observed when compared to baseline measurements in either group 

(control: 99 ± 13.5 mmHg and PD: 104 ± 11.2 mmHg). There was no 

difference between control and PD groups in the degree of change in BP over 

9-week period (Figure 3.4). Therefore, PD did not significantly alter BP.  

 

3.3.5 PD Did Not Alter Blood Glucose and Plasma Fructosamine Level 

 

Blood glucose was sampled immediately following induction of isoflurane 

anaesthesia prior to MCAO. Rats were not fasted prior to stroke surgery and 

blood glucose was sampled from the tail vein. Despite a slightly higher mean 

blood glucose level in the PD group in comparison to the control group the 

difference was not statistically significant (Control, 9.783 ± 2.107mmol/L; 

PD,11.26 ± 1.418mmol/L, P=0.056, Figure 3.5A). As compared to blood 

glucose, plasma fructosamine is a measure of glycated protein which 

indicates the average glucose concentration over the previous 2-3 weeks, 

based on the half-life of the plasma proteins. The fructosamine level at 48 

hours after MCAO was not significantly different between control and PD rats 

(188.9 ± 13.6 µmol/L and 184.5 ± 15.9 µmol/L respectively, P= 0.47 (Figure 

3.5B). 
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Figure 3.4 Systolic blood pressure at both baseline and at week 9 in individual rats 

for control (A) and PD groups (B), Student paired t-test, Control: P=0.9729, PD: 

P=0.71. (C) Scatterplot showing the % change in BP from baseline to week 9 for both 

control and PD groups. Data points indicate individual rats and the horizontal bar 

represents the mean, Student unpaired t-test, P=0.90, n=12.  
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Figure 3.5 (A) Scatter plot showing the individual blood glucose values taken 

immediately prior to MCAO for both control and PD groups, Student’s unpaired t-

test, P=0.056, n=12. (B) Scatter plot showing the plasma fructosamine level at 48 

hours after MCAO in both control and PD groups, Student’s unpaired t-test, P=0.47, 

n=12. Data points indicate individual rat and the horizontal bar represents the mean.  
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3.3.6 Hair Corticosterone  

 

Hair corticosterone taken at 48 hours after stroke was comparable between 

groups. Control: 13.58 ± 3.46ng/ml, PD: 11.96 ± 4.40 ng/ml, P=0.33, 

Student’s unpaired t-test (Figure 3.6) 

 

3.3.7 Infarct Volume Was Not Significantly Larger in PD Group 

 

Infarct volume was assessed by T2-weighted MRI at 48 hours following MCAO. 

Representative T2-weighted MR images from the median animal of each group 

are presented in Figure 3.7A. The area of infarct is represented by hyper-

intense region on each slice. In both groups, infarct was located within the 

cortex with no subcortical damage. The mean infarct volume for control and 

PD rats was 77.44 ± 34.20mm3, and 88.36 ± 27.98mm3 respectively and T2-

derived infarct volume was not significantly different in PD rats at 48 hours 

following permanent MCAO (P=0.34, Figure 3.7B). The correlation between 

infarct volume at 48 hours post-MCAO and blood glucose levels immediately 

prior to MCAO was also evaluated (Figure 3.8A) and no significant correlation 

was noted (r2=0.08, P=0.18).  
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Figure 3.6 Hair corticosterone levels measured from hair samples taken at 48 hours 

after MCAO in both control and PD groups. Student’s unpaired t-test, P=0.33, n=12 

for each group. 
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Figure 3.7 (A) T2-weighted MRI images taken at 48 hours post MCAO showing hyper-

intense (highlighted) region as infarcted area. Representative slices from median animal 

demonstrate comparable ischaemic damage in both groups. (B) Scatter plot illustrating 

infarct volume at 48 hours post MCAO. Data points indicate individual rats and the 

horizontal bar represents the mean (Student unpaired t-test, P= 0.34, n=12).
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Figure 3.8 (A) The correlation between physiological parameters immediately prior to MCAO and T2-

derived infarct volume at 48 hours post MCAO. No significant correlation was found between blood 

glucose and infarct volume in all animals, r2=0.08, P=0.18. (B) Similar observation noted in blood 

pressure with infarct volume, r2= 0.03, P=0.42.  

r2=0.08 r2=0.03 
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3.4 Discussion  

 

Rotating shift work results in photoperiod disruption such that exposure to 

light/dark cycles are regularly altered compared to normal day/night schedules. 

In this paradigm, circadian rhythms are chronically disrupted with intermittent 

period of re-entrainment to the stable light/dark cycle (Deibel et al., 2014). 

Altering the light/dark cycle is one of the mechanisms to induce circadian 

disruption in experimental animals. In this instance, light stimulation on SCN 

results in rapid changes in physiology and behaviour (Arble et al., 2010). To 

elucidate the potential impact of PD on outcome after ischaemic stroke, we 

examined two groups of animals under different light/dark conditions. Based on 

associations made between shift work and metabolic dysfunction in humans 

(Scheer et al., 2009) we hypothesised that a chronic period of PD would have an 

adverse effect on infarct size after permanent MCAO in rats.  

 

Locomotor activity is one of the most commonly used measures of 

circadian rhythmicity (Deibel et al., 2014). Under baseline conditions consisting 

of the standard 12:12 light/dark cycle, PD rats exhibited clear rhythms that 

were entrained to the light/dark cycle. When these light/dark cycles were 

adjusted during the phase advance protocol there was a clear disruption of 

circadian rhythmicity as could be seen when assessing locomotor activity. 

However, our data clearly demonstrate that while PD rats exhibited chronic 

disruption of locomotor activity rhythms over 9 weeks, this did not result in an 

increased sensitivity to ischaemic damage following MCAO when compared to 

control rats. Consistent with the lack of effect of PD on infarct size was the lack 

of effect on physiological parameters which can influence stroke outcome: body 

weight; blood pressure and blood glucose.  

 

3.4.1 PD Did Not Alter Food Intake and Body Weight  
 

The metabolic effects of PD in experimental studies are notably inconsistent. 

This study and others (Bartol-Munier et al., 2006; Gale et al., 2011)  did not 

observe changes in metabolic parameters reported previously such as increased 

body weight gain and food intake (Tsai et al., 2005). Differences in the protocols 

used to induce PD could partly account for the heterogeneity of the study 
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results; it is likely that phase advance/delay, constant light and photoperiod less 

than 24 hours affect both circadian rhythms and metabolism in different ways 

and it is not clear which intervention most closely represents disrupted 

rhythmicity in humans. Furthermore, the impact of PD on cardiometabolic 

function might further depend on the wavelength and intensity of light exposure 

(Turin et al., 2012) that are not easily compared between studies. This is 

supported by a study employing different light/dark manipulations in diabetic 

prone rats which demonstrated various degrees of metabolic disturbances. 

Higher mean blood glucose level was observed in diabetic prone rats exposed to 

constant darkness protocol as compared to 6 hour phase advance protocol for 10 

weeks (Gale et al., 2011). In similar experiment, 5% increase in body weight was 

observed in rats exposed to a constant darkness. Dose dependent stimulatory 

effect of light has been elicited in another study such that subjects exposed to 

higher light intensity (800 lux) developed larger increase in heart rate (Scheer, 

van Doornen and Buijs, 1999). 

 

Environmental entrainment is a complex parameter and differences in the 

degree of secondary disruption of food and social rhythmicity might further 

contribute to these discrepancies between studies. Indeed, PD is just one 

component of the multiple conflicting social, stress and food-related disruptions 

to the lifestyle of the shift worker.  In addition to light-entrainment through the 

SCN, emerging evidence supports a strong impact of food intake on the control 

of peripheral rhythms (Salgado-Delgado, Nadia, et al., 2010; Salgado-Delgado et 

al., 2013). In nocturnal animals, restricting the time for food intake to the rest 

phase changed clock gene expression in liver and pancreas but not in the SCN 

(Damiola, 2000) and caused increased in body weight (Salgado-Delgado et al., 

2013). In this case, weight gain is due to uncoupling between peripheral clocks 

and light signal from the central pacemaker (Patton and Mistlberger, 2013). In 

the present study, animals had free access to food at all times of the day and it 

is possible that they maintained synchronization of food intake to the disrupted 

light/dark cycles, and that enabled them to accommodate the challenge of PD 

without comprised metabolic function.  

 

Animals subjected to PD in the laboratory may maintain overall 

synchronisation if food rhythms remain intact, and further studies that measure 
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temporal aspects of food mediated cues are required to resolve this issue. The 

rhythmicity of the shift worker is different to that of their family and friends, 

while in rats, all of the animals share the same (disrupted) photoperiod. This 

important difference between circadian disruption in the laboratory, and in real 

life might account for the inconsistent reports of the impact of PD on metabolic 

health. The findings that animals in some laboratories were able to maintain 

metabolic health despite PD indicate that unidentified factors may protect 

animals from the detrimental effects of light disruption. Future studies should 

focus on identifying if entrainment to social or food-related zeitgebers can help 

animals to accommodate PD, and if similar interventions can attenuate the risks 

of shift work for metabolic and vascular health in humans. 

 

3.4.2 PD Did Not Alter Physiological Parameters; Blood pressure, Blood 

Glucose and Plasma Fructosamine 

 

Significant time-of-day-dependent variations are observed in multiple 

cardiovascular parameters, such as blood pressure and heart rate suggesting 

circadian rhythmicity (Molcan et al. 2013). Young, normotensive Wistar rats 

were used in the present study and chronic PD had no impact on BP which is 

concordant with similar findings in normotensive Wistar rats subjected to 8 hours 

photoperiod disruption for 12 weeks (Molcan et al., 2013). Their study 

demonstrated dampening of circadian rhythms in BP, interpreted as diminished 

spectral circadian power. Nevertheless, PD for 12 weeks did not result in any 

increase in blood pressure. The study also concludes that circadian rhythms in BP 

are less sensitive to photoperiod disruption than heart rate (evidenced by 

smaller decrease in spectral power for circadian rhythm in BP as compared to 

heart rate). Circadian rhythm of the heart rate is controlled mainly via sinoatrial 

node pacemaker cells and autonomous nervous system branches (Mighiu and 

Heximer, 2012) which are under direct influence by the SCN (Buijs et al., 2003) 

and therefore is more sensitive to light/dark manipulation.  

 

While light is the primary zeitgeber for the central clock in SCN, 

peripheral clocks in the heart and blood vessels are mainly influenced by neuro-

humoral factors; namely changes in autonomic, sympathetic, and adrenergic 

stimulation, nutrients (i.e. glucose, fatty acids, lipoproteins), circulating 
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hormones (i.e. insulin, cortisol, adipokines)(Young and Bray, 2007). To date, 

investigators reported several zeitgebers exist for different types of cells in 

cardiovascular system. Nonaka and colleagues have shown that Angiotensin II, 

the primary vasoconstrictor in BP regulation acts as a zeitgebers for the 

circadian clock within vascular smooth muscle cells through an Angiotensin II 

type 1 receptor-dependent mechanism (Nonaka et al., 2001). Durgan and 

colleagues reported that norephinephrine acts as a zeitgeber for the circadian 

clock within the cardiomyocyte, suggesting the influence of sympathetic 

stimulation (Durgan et al., 2005). This observation suggests that BP is partially 

regulated by peripheral clock mechanism, thus less strongly influenced by light-

dark manipulation.  

 

One of the advantages of the above-mentioned study by Molcan and 

colleagues was the usage of radio-telemetry that provides continuous monitoring 

of blood pressure and heart rate thereby allowing assessment of the daily 

rhythms of these variables. With regards to our experiment, tail cuff 

measurement of systolic BP provided a single measure at a specific time of day 

and therefore did not provide any information on the daily changes in the 

rhythm parameters (amplitude or loss of rhythmicity) that might be missed 

during the duration of PD intervention. The outcome measure in this study 

however, was to investigate the cumulative effect of PD on blood pressure near 

the time of stroke, which was shown to have no effect.  

 

Gale et al. in 2011 suggest that the interaction of genetic predisposition 

with an environmental trigger (such as PD) further accelerates early 

development of hyperglycaemia in diabetic prone rats compared to the wild type 

(Gale et al., 2011). Other studies demonstrate that 12 hours phase shift in the 

light/dark cycle on a weekly basis causes a significant reduction in survival time 

in cardiomyopathic hamsters (Penev et al., 1998) and a higher mortality rate in 

aged mice (Davidson et al. 2006). Thus, the adverse effects of PD on health may 

be manifested in the context of existing factors such as advanced age, 

hypertension, insulin resistance or genetic variation.  

 

Blood glucose and plasma fructosamine data obtained from this study 

indicates that PD for 9 weeks was not associated with increased glucose level. 



99 
 
Blood glucose measured immediately prior to MCAO reflects an acute glycaemic 

status prior to stroke, whereas plasma fructosamine measurement taken at 48 

hours after stroke indicates the average glucose concentration over the previous 

2-3 weeks. Since blood glucose was measured at a single time point in this study 

that was immediately prior to MCAO, the level could be influenced by various 

factors such as stress-induced hyperglycaemia secondary to handling (i.e. 

intubation) and Isoflurane anaesthesia. 

 

 Rats were not fasted prior to glucose measurement and anaesthesia was 

induced by inhalation of Isoflurane. Saha and colleagues reported two important 

factors which could affect blood glucose level in animal models under 

anaesthesia; choice of anaesthesia and fasting/feeding states of the animal. 

They reported that administration of Isoflurane (1.5% to 2%) for 3 h produced 

acute and sustained hyperglycaemia in non-fasted rats. In contrast, fasted rats 

displayed normal and stable blood glucose level during the 3 h study period 

(Saha et al., 2005). In view of this, plasma concentration of fructosamine was 

measured to reflect blood glucose level over the past 2-3 weeks prior to MCAO, 

which was not increase in PD group.   

 

3.4.3 Hair Corticosterone  

 

Single housing of rats for long periods is not ideal due to possible confounding 

effects (e.g. stress-induced by social isolation). In this experiment, rats were 

housed individually for measurement of rat activity in the PD group. Since all 

rats in the study were housed singly, any adverse effects would have been 

experienced by both PD and control groups and our data have shown that hair 

corticosterone was indifference between groups. It is possibly explained by the 

fact that auditory and olfactory social contacts were still present among 

animals. Despite being singly housed, the rats were not totally isolated as rats 

were kept in the same shelf in the pair of 2.  

 

The rhythmic release of glucocorticoids are under control of the SCN, and 

bilateral lesion of the SCN has been shown to abolish the rhythms (Cascio et al., 

1987). Since corticosterone secretion in rats was driven by SCN, manipulation in 

light-dark cycle has been reported to disrupt its diurnal variation. Deibel and co-
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workers had shown that plasma corticosterone was elevated following 64 days of 

photoperiod shifting in female rats (Deibel et al., 2014). With regards to our 

data, hair corticosterone level was not elevated in PD groups. However, this 

finding does not exclude the possibility of any changes in rhythm parameters 

(i.e. dampening or shifting of the rhythm) since the temporal data for 

corticosterone level over the period of 24 hours was not demonstrated. 

Perturbation in the circadian patterns of corticosterone is best demonstrated by 

timed blood sampling over 24 hours period. This pointed to our study limitation 

in which regular blood sampling in the same animal would have compromised the 

animal’s physiology (i.e. by lowering blood volume and possibly on the outcome 

after stroke). The purpose of the study however, was to examine the cumulative 

effect of PD on physiology at the time of MCAO which was unaffected.   

 

3.4.4 PD Did Not Exacerbate Ischaemic Damage  

 

This study demonstrates that PD alone was not sufficient to increase 

vulnerability to stroke in young rats without stroke co-morbidities. Previous 

laboratory studies reported the presence of co-morbid factors in experimental 

animals such as genetically determined hypertension, diabetic prone, or rats 

modelling metabolic syndrome have increased sensitivity to ischaemic damage 

and less potentially salvageable ischaemic penumbra (McCabe et al., 2009). In 

the case of stroke-prone spontaneously hypertensive rats (SHRSP) an increased 

sensitivity to experimental stroke may be attributed in part to increase oxidative 

stress and poor collateral flow (Coyle and Jokelainen, 1983). Another study 

found that hyperglycaemia at clinically relevant levels increased early lesion 

volume following MCAO in both normal rats and those with the features of 

metabolic syndrome (Tarr et al., 2013). 

 

Study by Earnest and colleagues however reported conflicting findings; 

photoperiod shifting for 8 weeks exacerbated stroke outcomes in both male and 

female rats (Earnest et al., 2016). In contrast to our experiment, this study 

employed slightly different photoperiod shifting protocol; 12 hours phase 

advance every 5 days for 8 weeks duration. As mentioned in the early part of the 

discussion, differences in PD protocols could partly account for the 

heterogeneity in the study results. However, the striking difference was in the 
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model of MCA occlusion. Adult male rats were used in both studies, and rats 

were 21-23 weeks old and 30-38 weeks old at the time of MCAO (our study vs 

Earnest’s respectively). In Earnest and colleagues’ MCAO was induced by 

endothelin-1 injection which stated longer reperfusion time (16 hours in cortex 

and 7 hours in striatum). The exact time of reperfusion however was not 

confirmed in this study as they utilised prior information from previously 

published paper by (Biernaskie et al. 2001). Apart from increased in infarct 

volume, higher mortality rate in male rats (70%) was also reported in shifted 

group.  

 

Nevertheless, in our study distal end of MCA was permanently occluded by 

electrocoagulation that resulted in small cortical infarct. It is likely that less 

severe stroke outcome was partly explained by smaller initial lesion and MCAO 

model used in our study. The fact that chronic PD did not significantly increase 

infarct size in our study fits in our finding on blood pressure and blood glucose 

such that PD did not result in alteration that could potentially increase the 

sensitivity to ischaemic damage. On the other hand, changes in the parameters 

that could potentially impact on stroke outcome were not demonstrated by 

Earnest’s and colleague. Furthermore, the increase in infarct volume observed in 

shifted female rats in their study was proposed due to the loss of 

neuroprotective effect evident by abolished oestrous cyclicity and decrease in 

IGF-1 levels. These examples may indicate that depending on the ischaemic 

model used, strain, age and gender differences, the observable effect of PD can 

be largely different.  

 

One potential caveat of the present study is that it was not sufficiently 

powered to detect an effect of PD on infarct volume.  When designing the study 

the original sample size was calculated based on previous data from our 

laboratory using the same model of MCAO and strain of rat which detected a 50% 

increase in infarct volume associated with hyperglycaemia (Roy, 2015). Using the 

data obtained from control group in the current study a group size of 14 is 

predicted necessary to detect a 50% increase in infarct volume and so it does not 

appear likely that an effect of PD was missed due to a Type II error.  
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3.4.5 Summary  

 

In summary, the present study demonstrated that PD for 9 weeks did not impact 

on physiological parameters near the time of stroke and increase infarct size in 

young normotensive rats. We conclude that young healthy individuals may be 

resilient to any impact PD, as a consequence of shift work or other 

environmental influences, may have on sensitivity to stroke. However, the 

potential adverse impact of PD on stroke outcome in the context of concomitant 

disruption of food or social zeitgebers or additional pathological challenges from 

a sedentary lifestyle, a high fat/high sugar diet, ageing or pre-existing co-

morbidities warrant future investigation.  
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4.1 Introduction 

 

In the previous Chapter the effects of PD on permanent focal cerebral 

ischaemia were examined. Permanent MCAO is a good approach for 

investigating potential influences on the evolution of ischaemic damage when 

reperfusion, either spontaneous or therapeutically-induced, does not occur. 

The choice of stroke model for a particular study must consider the strength 

and weaknesses of the different models in relation to the experimental aims 

and research question (Howells et al., 2010). Human stroke generally involves 

a degree of reperfusion either spontaneously or following thrombolysis. 

Increasingly in the future, more patient will benefit from reperfusion 

following mechanical thrombectomy as this therapy becomes more widely 

available (Muir, 2016). Therefore, a question arising from the permanent 

MCAO study described in the previous Chapter was: does PD exacerbate 

damage after transient MCAO? Before embarking on a study to address that 

question a study was performed to characterise the effects of the model of 

focal cerebral ischaemia with reperfusion in terms of the size, anatomical 

location and measurable neurological and behavioural deficits. 

 

For this study, occlusion of the proximal MCA was achieved via the 

intraluminal filament method (Longa et al., 1989). Technically, this method 

is less invasive and does not require craniectomy and therefore avoids 

damage to cranial structures (Macrae, 2011). Importantly, the filament can 

be withdrawn at any time to permit restoration of blood flow after defined 

periods of occlusion (Carmichael, 2005). With the intraluminal filament 

model, reproducible ischaemic infarcts have been reported following arterial 

occlusion times ranging from 20 min to 2 hours. Depending upon the duration 

of ischaemia, this method has been shown to induce ischaemic damage in 

basal ganglia and cortical regions with severe and consistent functional 

deficits (Liu et al., 2009). In the first part (Study 1) of this characterisation 

study, a 90 min MCA occlusion time was selected and this was applied in the 

first instance to normotensive Sprague-Dawley rats. The duration of 

ischaemia could be altered in future studies depending upon mortality rate, 

infarct size, distribution and functional deficits.   
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As human stroke often co-exists with other co-morbid factors, 

incorporating recognised risk factors for stroke (i.e. hypertension) into animal 

models provides increased clinical relevance to human stroke. Study 2 of this 

Chapter was therefore conducted to determine the optimal MCA occlusion 

time for transient focal ischaemia in spontaneously hypertensive (SHR) rats. 

The information gained will be used to determine the condition applied in the 

subsequent study in Chapter 5, investigating the impact of PD on sensitivity 

to transient focal cerebral ischaemia in the context of existing hypertension. 

It is hypothesised that PD would increase stroke sensitivity and infarct size in 

hypertensive rats. Our previous in-house studies of transient focal ischaemia 

in spontaneously hypertensive stroke-prone rats (SHRSP) demonstrated large 

areas of ischaemic damage and very little penumbra defined by diffusion-

perfusion mismatch, incorporating almost the entire ipsilateral hemisphere as 

early as 1 hour post occlusion (Reid et al., 2012). Such large initial lesions 

could therefore restrict the ability to detect a detrimental effect of PD. 

Therefore, shorter occlusion times (30 min and 45 min) were chosen in this 

pilot study to determine which was optimal for subsequent study.  

 

4.1.1 Study Aim  

 

Study 1: Characterise the effect of transient focal cerebral ischaemia in 

terms of infarct size and distribution and functional deficits in normotensive 

rats. 

 

Study 2: To determine the optimal MCA occlusion time for transient focal 

cerebral ischaemia in SHR rats.  
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4.2 Methods 

 

4.2.1 Study 1:  Characterization of the Transient Focal Cerebral Ischaemia 

Model in Normotensive Sprague-Dawley Rats 

 

4.2.1.1 Animals 

 

All animals were obtained from Envigo (UK) and housed in an animal care 

research facility at the University of Glasgow. Experiments were carried out 

on adult male Sprague-Dawley rats, weighing 296-340g (on the day of surgery) 

and all animals were maintained on a 12:12 hour light/dark cycle. Water and 

food were freely available.  

 

4.2.1.2 Surgical Procedure 

   

The rats were anaesthetised initially in an induction box (5% isoflurane) and 

then endotracheally intubated, ventilated and maintained between 2-2.5% 

isoflurane with a mixture of nitrous oxide and oxygen (70:30). Cannulation of 

the right femoral artery was performed as described in Chapter 2.2.2 to allow 

continual monitoring of blood pressure and arterial blood gases. Cerebral 

ischaemia and reperfusion was achieved by 90 min MCAO with an intraluminal 

filament (3-0 to 4-0 nylon monofilament) as described in Chapter 2.3.2. The 

filament was introduced from the bifurcation of internal carotid artery and 

advanced until resistance (20-22 mm). In the present study, filament 

diameter was carefully matched to a defined body weight range to ensure 

adequate occlusion of the origin of the MCA.  It was removed after a pre-

determined period, depending on the study to establish reperfusion. During 

anaesthesia, all physiological parameters were maintained within 

physiological range. Body temperature was maintained throughout the 

procedure using an angle poise heat lamp and recorded using a rectal thermal 

probe (Physitemp, New Jersey, USA).  
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4.2.1.3 Animal Recovery from Surgery  

 

Animals were recovered from surgery as previously described in Chapter 

2.3.4. The animal was closely monitored hourly post-operatively for the next 

3 hours and details of the animal condition were recorded on the recovery 

sheets.  

 

4.2.1.4 MRI Scanning Protocol 

 

At 7 days after MCAO rats were re-anaesthetized and placed in a Bruker 

Pharmascan 7T MRI scanner. Rats were maintained under isoflurane 

anaesthesia with 70:30 of nitrous oxide: oxygen mixture using a face mask 

throughout the scanning process. Body temperature was maintained at 37±0.5 

°C. The rats were placed into a rat cradle, secured and a surface coil was put 

above the head before placing them in the MRI scanner. A RARE T2 weighted 

sequence was acquired (TE=100ms, TR=6000ms, matrix=256x256, 16 coronal 

section slices; 0.75mm thick) to allow calculation of final infarct volume. 

 

4.2.1.5 Infarct Volume Measurements 

 

Cerebral infarct volume analyses were performed using Image J software 

(NIH, Bethesda, MD, USA), in which the assessor was blinded to the 

experimental groups. Final infarct at day 7 post-stroke was defined as a 

hyperintense area on T2-weighted images. The hyperintense area was 

manually delineated on the T2 slices and infarct volume was calculated by 

software as described in Chapter 2.5.4.  

 

4.2.1.6 Neurological Score  

 

Neurological scoring was performed to evaluate sensory and motor functions 

and the overall neurological deficits. Neurological abnormalities were 

evaluated with the use of a modified Garcia Score (Garcia et al., 1995) prior 

to surgery for their baseline performance and then on day 1, 3 and 7 post 

MCAO. The score given to each rat at the completion of the evaluation is the 

summation of all six individual tests which separately evaluate spontaneous 

activity, symmetry in limb movement, forepaw outstretching, climbing, body 
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proprioception, response to vibrissae touch, resistance to lateral push. The 

minimum neurological score is 3 and the maximum is 18. 

 

4.2.1.7 Adhesive Label Test 

 

The adhesive label test that was previously used to evaluate the degree of 

forelimb sensory motor impairment in animals following unilateral lesion 

involving the sensorimotor cortex, the corticospinal tract, and the striatum 

was employed in this study (Schallert et al. 2000; Metz 2010). Animals were 

removed from their home cage and adhesive dots (1.3cm, Avery 

International) were attached on the hairless aspect of the right and left paw. 

To prevent bias, the adhesive dots were touched simultaneously before the 

recording of 3 separate trials and dot placement was alternated after each 

trial. In the assessment cage, latency to contact and latency to remove the 

adhesive dot by mouth was recorded by a video camera (Sony). Each trial 

ended when 3 minutes has elapsed or contact and removal of the adhesive 

dots had been accomplished. The trial was re-started if the dots came off 

without prior contact by the animal. Animals were returned to their home 

cage for 5 minutes before the beginning of next trial.  
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4.2.2 Study 2: Optimisation of Occlusion Time for Transient Focal Cerebral 

Ischaemia In Spontaneously Hypertensive Rats 

 

Adult, male spontaneously hypertensive rats obtained from Envigo (UK) and 

age between 10-12 weeks were randomly assigned to 2 groups with 2 

different MCA occlusion times: 30 min (n =8) or 45 min (n=6). Non-invasive 

blood pressure measurement was performed prior to the commencement of 

the study to confirm that rats were hypertensive (data not shown). Animals 

were anaesthetised with 5% isoflurane in a Perspex chamber and then orally 

intubated. They were then mechanically ventilated with 2.5% isoflurane in a 

nitrous oxide: oxygen mixture (70:30). A rectal thermocouple probe provided 

continual monitoring of core body temperature that was maintained at 

37±0.5°C via angle poise heat lamp. Animals were recovered as described in 

Chapter 2.3.4. and were re-anaesthetised for determination of final infarct 

volume via MRI scanning at day 3.  

 

4.2.3 Statistical Analysis 

 

Statistical analyses were performed using GraphPad Prism software v6 

(GraphPad, La Jolla, CA). All data are expressed as mean ± SD or scatterplots 

with the mean indicated, with the exception of the neurological scores which 

are expressed as medians. Repeated measures (RM) 1 way analysis of variance 

(ANOVA) and Dunnett’s post hoc test were applied to compare data at each 

post-MCAO time point with day 0 (pre-MCAO) and assessment of neurological 

deficits. Non-parametric Spearman’s correlation was used to examine 

associations between infarct volume and neurological score at day 7 post 

MCAO. Differences are considered significant when P < 0.05.  
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4.3 Results 

 

4.3.1 Study 1: Characterization of the Transient Focal Cerebral Ischaemia 

Model in Normotensive Sprague-Dawley Rats 

 

4.3.1.1 Mortality  

 

A total of 17 rats were included in Study 1. Five died during the first 24 hours 

after MCAO. Post mortem examination of the brain revealed large infarcts OR 

the presence of subarachnoid haemorrhages. Therefore, the final group sizes 

for analysis was n=12. 

 

4.3.1.2 Physiological Variables  

 

During anaesthesia, the physiological variables were all within the normal 

physiological range, except for PaO2 which was elevated. This is likely to be 

attributed to the anaesthetic gas mixture, where 30% oxygen is used rather 

than the 21% oxygen found in air.  

 

Physiological variables 

Body weight (g) 308.4 ± 13  

Body temperature (ºC) 37 ± 0.5 

Mean arterial blood pressure (MABP) (mmHg) 86 ± 4 

Arterial PaCO2 (mmHg) 43 ± 5 

Arterial PaO2 (mmHg) 121 ± 18 

Blood pH 7.4 ± 0.1 

  

Table 4.1 Physiological variables in Sprague-Dawley rats from Study 1. Body weight 
was taken prior to the surgery, MABP and temperature expressed as mean over the 
entire surgical period; blood pH, arterial PaCO2 and PaO2 as measured at the onset 

of MCAO. Values expressed as mean ± standard deviation. 
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4.3.1.3 Infarct Volume  

 

Mean infarct volume defined by MRI T2-weighted imaging at day 7 after MCAO 

was 100.2 ± 60.7 mm3 (ranging from 8.91 to 245.8 mm3). There was notable 

variation in infarct volumes between rats (Figure 4.1). A caudal to rostral 

distribution of ischaemic areas of a representative animal defined by T2-

weighted MRI is presented in Figure 4.2A and 4.2B. The hyperintense and 

highlighted region on each slice in Figure 4.2A represents the area of 

ischaemic damage which encompasses mainly the subcortical region.  
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Figure 4.1 Infarct volume from Study 1. Scatterplot illustrating infarct volume at 
day 7 following 90 min transient MCAO, in individual Sprague-Dawley rats. The 
horizontal line represents the mean.  
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Figure 4.2 The infarct areas at 7 days after 90 min intraluminal-induced transient 
MCAO in Sprague-Dawley rats. Sixteen coronal slices of T2-weighted MRI images from 
the animal with the median infarct volume are shown to illustrate the spatial 
distribution of the infarct (caudal to rostral). (A) The infarct areas were determined 
by manually delineating the hyperintense area on each of 16 coronal T2 slices. (B) 
The distribution of infarct area in each slice for all 12 rats. Data presented as mean 
± standard deviation. 
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4.3.1.4 Neurological Score 

 

The 18-point neurological score was conducted prior to MCAO with all animals 

scoring the maximum score of 18. Figure 4.3A shows the mean neurological 

scores. All animals scored significantly worse than the baseline performance 

following MCAO. Repeated measures 1 way ANOVA and post hoc comparisons 

(Dunnett’s) revealed that the mean score for each post-MCAO days (day 1, 3 

and 7) was significantly reduced (P<0.001) compared to the baseline (day 0). 

However, the mean score at day 7 was higher compared to day 1 post-MCAO 

indicating a degree of recovery. Using the non-parametric Spearman’s 

correlation, an r value of -0.65 demonstrates that there is an inverse 

relationship between infarct volume and neurological score; as infarct 

volume decreases, neurological score increases (Spearman r= -0.65, P=0.02, 

Figure 4.3B).  
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Figure 4.3 (A) 18-point neurological score for individual animals. Prior to MCAO (day 
0) all rats obtained the maximum score of 18, after which the scores were reduced. 
(B) Spearman’s correlation between infarct volume and neurological score indicates 
significant association at 7 days post-MCAO (Spearman r=-0.65, P=0.02, n=12).  
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4.3.1.5 Adhesive Label Test  

 

For both the time to remove and contact the adhesive dot, the difference 

between the time for each forepaw (affected-non affected) was calculated to 

ensure the outcome measures were not affected by overall activity of the 

animals (Stroemer et al., 2009). The mean differences in contact time 

between the affected and unaffected paws for each individual rat are shown 

in Figure 4.4A. Prior to MCAO, all rats exhibited contact difference times 

close to zero which indicates symmetrical limb contact (and removal) 

latencies. RM 1 way ANOVA and post hoc (Dunnett’s) test showed that the 

contact difference time was significantly increased at all time point after 

MCAO compared to their baseline performance (day 0) (P<0.05). 

 

Figure 4.4B shows the mean removal difference times for each 

individual rat. Transient MCAO for 90 min resulted in an increased removal 

difference time. RM 1 way ANOVA and post hoc (Dunnett’s) test showed that 

the removal difference time was significantly increased at all time points 

after MCAO compared to baseline (day 0) (P<0.05). Although the contact (and 

removal) difference time was lessened by day 7 compared to day 1, the 

majority of rats exhibited marked deficits and did not reach their baseline 

performance (Figure 4.4C and 4.4D). 

 

It was noted that some rats exhibited a complete lack of activity 

(freezing behaviour) on day 1 and day 3 post MCAO, and remained in the 

same position for the duration of the trial (180s). Such behaviour would have 

confounded experimental results (rats have shown zero contact/removal 

difference time). Therefore, in experiments described in Chapter 5, it was 

decided not to perform the adhesive label test at those time points and data 

was only collected at 7 days as freezing behaviour was not observed. 
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Figure 4.4 Effect of 90 min MCAO on contact (and removal) difference times over 7 
days. A scatterplot showing the mean contact (A) and removal (B) difference times 
data for individual animals which was significantly increased at each time point post 
MCAO compared to their baseline (RM 1-way ANOVA and Dunnett’s post hoc test, 
P<0.05, n=12). The mean difference in contact (C) and removal (D) times at day 7 is 
highly variable, with the majority of animals showing persistent deficits. The dotted 
horizontal line indicates zero, which denotes symmetrical limb contact (and 
removal) latencies. Data points indicated individual rats. Horizontal bar represents 
the mean.  
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4.3.2 Study 2: Optimisation of MCA Occlusion Time for Transient Focal 

Cerebral Ischaemia in Spontaneously Hypertensive Rats  

 

4.3.2.1 Mortality and Excluded Animals  

 

There was no mortality following 30 min or 45 min MCAO. However, 3 animals 

were excluded from the analysis due to failed MCAO (no evident of infarct 

assessed by T2 weighted MRI at day 7). 

 

4.3.2.2 Infarct Volume  

 

The extent of ischaemic damage from representative animals following 30 or 

45 min transient MCAO are shown in Figure 4.5A. Infarct area distribution for 

each coronal slice of T2 weighted MRI images, from all animals is shown in 

Figure 4.5B. Data presented as mean ± standard deviation. A 45 min occlusion 

resulted in more extensive ischaemic damage involving almost the entire 

ipsilateral hemisphere, in the region supplied by the MCA (Figure 4.5A). 

Figure 4.6 shows the impact of different occlusion times and rat strains 

(normotensive vs hypertensive) on the extend of ischaemic damage. The 

mean infarct volume for 30 min vs 45 min MCAO was 161.2±63 mm3 and 

212.1±55 mm3, respectively. In hypertensive rats, the ischaemic damage was 

extensive within 30 min of MCAO suggesting an increased sensitivity to focal 

ischemia compared with the normotensive rats, such that shorter occlusion 

time is sufficient to induce a bigger size infarct.  
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Figure 4.5 (A) Final infarct volume at day 3 after transient MCAO in SHR rats. T2 MRI images from representative 
animals following either 30 min or 45 min MCAO showing ischaemic damage across 8 coronal sections. (B) 
Distribution of infarct areas defined by T2 MRI, across 16 coronal slices for both MCA occlusion times. Data 
presented as mean ± standard deviation.  
 

30 min 
MCAO 
  

45 min 
MCAO  

A 

B 



120 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Final infarct volume for 3 different MCAO occlusion times in Sprague-Dawley 
rats (90 min, n=12) and SHR (30 and 45 min; n=8 and n=6 respectively). Each data point 
represents individual animals and horizontal bar represents the mean.  
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4.4 Discussion 

 

Pilot studies conducted in this Chapter generated 2 important results in the 

selection of an appropriate stroke model for subsequent studies of the effects of 

transient MCAO in animals subjected to PD. Firstly, intraluminal transient MCAO 

for 90 min in Sprague-Dawley rats resulted in ischaemic lesions involving mainly 

subcortical areas and behavioural deficits which persisted for 7 days which could 

be detected by the adhesive label test and neurological scoring. Secondly, 

intraluminal transient MCAO in SHR rats resulted in more extensive ischaemic 

damage with only 30 min of MCAO involving both subcortical and cortical 

regions. 

 

4.4.1 Ischaemic Damage  

 

Since vessel occlusion is seldom permanent in human stroke, many pre-clinical 

studies incorporate reperfusion (following ischaemia) into the design of the 

animal model (Macrae 1992). The Sprague-Dawley rat is an outbred strain most 

commonly used in pre-clinical stroke studies which is considered a standard 

normotensive rat strain (Howells et al., 2010; O’Collins et al., 2013). Therefore, 

this strain of rat was selected for Study 1 which aimed to characterise the 

transient model of focal cerebral ischaemia. One of the major strengths of 

experimental stroke research is the ability to closely monitor and control the 

factors that can influence the magnitude of an ischaemic lesion. However, 

infarct volume data from this study shows that there was substantial variation in 

ischaemic lesion size within strain. This is in agreement with other studies which 

have shown that Sprague-Dawley rats displayed a much greater range of infarct 

sizes following intraluminal MCAO than other strains such as SHR or WKY (Aspey 

et al., 2000; Howells et al., 2010). Anatomical variation within strain has been 

shown to contribute to the variability in lesion size (Howells et al., 2010). Fox 

and colleagues reported that the potential source of variation in Sprague-Dawley 

rats is due to  highly variable origin and branching pattern of the MCA found in 

this strain (Fox et al., 1993).  

 

Apart from anatomical variation, several other experimental factors can 

also account for the differences in lesion size induced by intraluminal MCAO. 
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Physiological variables such as body temperature and arterial blood gases (i.e. 

PaCO2, PO2) significantly affect infarct volume and should be kept within a 

narrow range (Browning et al., 1997; Zausinger et al., 2002). Hyperthermia 

following cerebral ischaemia is commonly encountered when vessels supplying 

the thermoregulatory centre in the hypothalamus are affected by infarction (Li, 

Omae and Fisher, 1999). A brain temperature of 39°C significantly increased the 

brain infarct volume as compared to the normothermic controls (37°C) (Noor et 

al., 2003). In view of this, physiological variables and body temperature were 

closely monitored and maintained within the normal limits throughout the 

duration of surgery.   

 

Properties of the filament used to occlude the MCA, such as the filament 

dimension, insertion length and filament coating can have a major influence on 

infarct size. In Study 1, the intraluminal filament was constructed from a length 

of 3-0 to 4-0 nylon monofilament. A small diameter bulb was then created using 

a cauterising pen. This process is operator dependant and therefore may result 

in inconsistent bulb size and shape. In order to reduce variability, bulb diameter 

should be matched to the animal weight and also strains (Howells et al., 2010). 

Silicon coated filaments have been shown to reduce the incidence of 

subarachnoid haemorrhage and premature reperfusion (Belayev et al., 1996) and 

produce more reproducible infarcts (Shimamura et al., 2006). Another source of 

variability is due to the inadequate reduction of cerebral blood flow following 

filament occlusion. It was unknown whether blood flow reduction induced by 

intraluminal filament in this study was sufficient to induce infarction as 

successful occlusion of MCA was not confirmed (i.e. by Laser Doppler flowmetry 

or MRI angiography). Therefore, it is possible that there will have been some 

partial occlusions of the MCA, which may explain some of the small infarcts 

observed at day 7 post MCAO.  This would account for the increased variability 

and is a particular problem in studies where an intervention (i.e. PD or 

pharmacological treatment) is being assessed between groups. 

 

Data from Study 2 in this Chapter demonstrates the effect of co-

morbidities on stroke outcome (infarct volume). A greater susceptibility of 

hypertensive strains to brain ischemia is well documented in other studies 

compared to their control strain, WKY (Duverger and MacKenzie, 1988; Reid et 
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al., 2012). In hypertensive rats, a shorter duration of MCAO is sufficient to 

induce a bigger infarct than in normotensive animals. This has an important 

clinical implication for management of stroke patients with hypertension and 

suggests that with pre-existing hypertension, ischaemic damage could progress 

at a faster rate (McCabe et al., 2009). This pilot study was conducted to 

optimise the MCAO occlusion time for SHR rats study in Chapter 5. It is 

hypothesized that adding another factor such as photoperiod disruption (PD), 

would increase stroke sensitivity in hypertensive rats. The infarct volume data 

shows that 45 min MCAO resulted in ischaemic damage encompassing almost the 

entire ipsilateral hemisphere in the MCA territory. Larger infarcts induced by 45 

min MCAO in SHR could present a problem as the ability to detect any harmful 

effects of PD on infarct size may be restricted due to a “ceiling effect”. This 

means that the level of ischaemic damage may be at its maximum and it would 

be impossible to detect an adverse impact of PD. Therefore, it was decided that 

30 min MCAO is the optimal occlusion time to be used for future study in Chapter 

5.  

 

4.4.2 Neurological and Sensory Motor Outcome 

 

The effect of focal cerebral ischaemia on functional outcome represents an 

important component in the pre-clinical setting. The choice of neurological and 

behavioural tests which involves the assessment of skilled motor functions is of 

clinical importance as motor deficit after stroke is common, and has a 

considerable influence on quality of life (Shelton et al., 2001; Macrae, 2011). In 

the present study, intraluminal occlusion of the proximal end of the MCA induces 

contralateral limb sensorimotor deficits manifested as impaired detection and 

removal of adhesive labels placed on the forepaw. This test has previously been 

shown to detect sensorimotor deficits up to 12 weeks following 60 min transient 

ischaemia (Modo et al., 2000). Similar functional deficits have been reported in 

stroke patients and therefore there is a high validity in relating experimental 

findings to the clinical condition (Rose et al., 1994). In Study 1, MCAO for 90 min 

was found to induce a measurable sensorimotor deficit that partially recovered 

over 7 days. The initial loss of function following ischaemia is caused by neuronal 

death within the infarct core and cellular dysfunction in the hypoperfused 

ischaemic penumbra (Kriz and Lalancette-Hébert, 2009), which explained the 
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significant neurological and sensory motor deficits observed on day 1. However, 

the functional impairment at this acute time point may also be due to lack of 

activity as animals become very sick following MCAO surgery and anaesthesia, 

may confound interpretation of the results. As most of the animals demonstrated 

freezing behaviour on day 1, it was decided that the neurological and sensory 

motor assessment not be performed until 7 days after MCAO in Chapter 5.  

 

4.4.3 Summary  

 

The data from these characterisation experiments were used to inform the 

design of the subsequent experiments described in this thesis. The optimal MCA 

occlusion time to produce infarcts in SHR that was not so anatomically 

extensive, that they could not be made larger by the adverse influence of PD 

was 30 min. The functional consequences of transient MCAO could be detected 

using neurological scoring and the adhesive label test at 7 days after MCAO; a 

time when animals had recovered from the acute effects of the surgical 

procedure and the initial effects of ischaemia. In order to overcome any issues 

relating to variability in infarct volume we opted to carry out acute MRI scanning 

during MCAO allowing us to confirm successful occlusion of the MCA and to assess 

the impact of PD on growth of lesion in individual animals. These parameters 

were applied in the subsequent study described in Chapter 5.  
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5.1 Introduction  

 

In our previous study, we have demonstrated that PD in young healthy rats did 

not increase sensitivity to permanent focal cerebral ischaemia (Ku Mohd Noor et 

al., 2016). Circadian disruption has been associated with the pathogenesis of 

many of the features of metabolic syndrome (i.e. hypertension, obesity, 

diabetes) (Rüger and Scheer, 2009)(Scheer et al. 2009). Therefore, we 

hypothesize that PD in the presence of pre-existing hypertension will exacerbate 

outcome following transient focal cerebral ischaemia. In humans, stroke 

typically occurs as a result of the cumulative effects of pre-existing risk factors 

such as hypertension, diabetes, and obesity. A population-based study reported 

that 37-42% of ischaemic stroke patients presented with diabetes alone or in 

combination with hypertension (Kissela et al., 2005). Moreover, the incidence 

rate of ischaemic stroke is now taking a reversing trend: despite a substantial 

decrease in stroke incidence in the older population, incidence in younger age 

group (less than 55 years old) is on the rise. In addition, atrial fibrillation, 

diabetes and hypertension; the leading risk factor for stroke, have also been 

steadily increasing in younger individuals (Swerdel et al., 2016).  

 

In the setting of acute cerebral ischaemia, many of the reported 

metabolic or physiological changes in circadian disruption, i.e. hypertension, 

diabetes, have potential to adversely modify the ischaemic penumbra, and 

hasten its demise. In preclinical studies, SHR rats has been widely used to 

evaluate the effect of hypertension on ischaemic stroke (Yao and Nabika, 2012) 

as it shares many features of human essential hypertension (Amenta et al., 

2003). Greater susceptibility to stroke in SHR rats is frequently explained by a 

deficit in collateral circulation compared to normotensive rats (Grabowski et al., 

1993). Moreover, hypertrophic remodelling of cerebral arteries are well known 

features of vascular changes present in SHRs (Mulvany et al., 1978). Chronic 

arterial hypertension, genetically determined or renovascular-induced, has been 

shown to accelerate the evolution of diffusion-weighted imaging (DWI) lesions 

and increase infarct size after permanent focal cerebral ischaemia (Letourneur 

et al., 2011) (McCabe et al., 2009). The differences in evolution of ischaemic 

penumbra observed between SHR and normotensive control, WKY could be 
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explained by chronic hypertension-induced functional and structural alterations 

of the brain vasculature (Letourneur et al 2011).  

 

Apart from hypertension, clinical studies indicate that persisting 

hyperglycaemia influences stroke evolution. For example, post-stroke 

hyperglycaemia is associated with higher mortality and poor functional outcome 

(Muir et al., 2011) and blood glucose levels over the first 72 hours after stroke 

correlate with growth of the MRI-defined ischaemic lesion (Baird et al., 2003). 

Our in-house data demonstrated that  clinically relevant levels of 

hyperglycaemia increased final infarct size and exacerbate early ischaemic 

lesion growth after permanent middle cerebral artery occlusion in rat (Tarr et 

al., 2013). Fructose-fed spontaneously hypertensive stroke-prone (SHRSP) rats, 

which exhibit features of metabolic syndrome, have shown larger DWI lesions 

and final infarcts compared to controls (Tarr et al., 2013). Hyperglycaemia also 

has a profound effect on reperfusion following transient focal cerebral 

ischaemia, indicated by poor restoration of cerebral blood flow; less than 50% of 

normoglycaemic rats (Kawai, Keep and Betz, 1997). Given that alterations in 

circadian rhythm have been shown to be implicated in the pathogenesis of 

disease such as metabolic syndrome, we hypothesize that cumulative effect of 

PD in the presence of co-morbid factor (hypertension) will exacerbate damage 

following stroke. 

 

We also proposed that the downstream mechanism for increased 

sensitivity to stroke could involve inflammation, as these stroke co-morbidities 

share a common feature; elevated inflammatory profile (Hansson and Libby 

2006). There is emerging evidence that inflammatory events outside the brain 

occurring prior to, during, and after stroke markedly influence stroke 

susceptibility and outcome (McColl et al., 2009). In a rat model of transient focal 

cerebral ischaemia, systemic immune challenge with lipopolysaccharide (LPS) 

markedly exacerbates ischaemic damage and the severity of neurological deficit 

(McColl et al., 2007). In fact, systemic inflammation has been shown to 

significantly increases reperfusion deficits via enhanced platelet aggregation in 

microvessels and microglial activation following transient ischaemia (Burrows et 

al., 2016).  
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A number of immune processes namely toll-like receptor function, 

cytokine gene expression, lymphocyte proliferation and microglia exhibit daily 

variations in circadian rhythm (Scheiermann et al., 2013)(Fonken et al., 2015). A 

role for circadian disruption in brain inflammation has been implicated in mice 

studies whereby exposure to a dim light at night showed enhanced microglia 

activation and pro-inflammatory cytokine expression in mice (Fonken et al., 

2013)(Phillips et al., 2015). Because the immune and circadian systems are 

related, it is likely that there are inflammatory consequences of photoperiod 

disruption. Therefore, in this study we also looked at the impact of PD on the 

principal immune cell of the brain, microglia.  

 

Microglia, the primary immune cells in the brain, has been shown to 

possess circadian clock mechanisms that display rhythmic fluctuations in pro-

inflammatory cytokines including IL-1β, TNF-α, IL-6, and IL-1R1 (Fonken et al., 

2015). In a setting of acute stroke, activation of microglia is the key initial event 

for post stroke inflammation (Patel et al., 2013). Animals with higher number of 

activated microglia displayed greater degree of ischaemic damage, suggesting 

the role of increased microglial activation in stroke sensitivity (Marks et al., 

2001). The importance of microglial activity after ischaemic stroke has been 

reported in number of studies. In studies where microglia have been ablated, 

mice had larger infarctions and a doubling of apoptotic neurones after ischemia 

(Lalancette-Hébert et al., 2012). Furthermore, suppression of microglia 

activation by Edaravone; a free radical scavenger (Zhang et al., 2005) and 

hyperbaric oxygen (Günther et al., 2005) resulted in reduction in infarct volume 

and improvement in functional outcome following MCAO.  

 

We have shown in previous study that PD did not impact on outcome after 

permanent focal cerebral ischaemia (Chapter 3). Compared to permanent 

occlusion, transient models better correlate with clinical stroke whereby 

recanalization was achieved either with treatment-induced or spontaneous 

thrombolysis. The ischaemic injury following transient ischaemia is an evolving 

process, therefore the model is suitable for studying the impact of PD on lesion 

evolution (Williams et al, 2004). In addition, the impact of PD on ischaemic 

damage may be different in the absence and presence of reperfusion. Having 
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both transient and permanent models allow us to draw comparison on the effect 

of PD on both model of focal cerebral ischaemia.  

 

5.1.1 Study Aims  

 

The primary aim was to investigate the impact of PD in the presence of a co-

morbid factor (hypertension) on sensitivity to stroke in terms of ischaemic lesion 

growth and functional outcome (Study 1). In addition, in order to examine a 

potential mechanism induced by PD alone: increased brain inflammation, the 

extent of microglia activation was measured in a cohort of SHRs that were 

subjected to PD but not MCAO (Study 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



130 
 

5.2 Methods 

 

5.2.1 Animals  

 

Spontaneously hypertensive rats (SHR) were obtained from Envigo (UK) and 

housed in Veterinary Research Facility (VRF) at the University of Glasgow. 

Experiments were carried out under license from the UK Home Office and were 

subject to the Animals (Scientific Procedures) Act, 1986. The report was carried 

out in accordance with the ARRIVE guidelines (http://www.nc3rs.org.uk/arrive). 

All rats had ad libitum access to water and standard rat chow. 

  

5.2.2 Impact of PD on Sensitivity to Stroke (Study 1) 

 

A total of 40 male adult SHR rats age 10-12 weeks were entered into the study. 

Rats were kept under a standard 12:12 light/dark cycle (lights on at 0700, lights 

off at 1900) for two weeks prior to allocation into one of two experimental 

groups. Rats were grouped housed (3 rats per cage) throughout the duration of 

study. Timeline of the experimental procedure for Study 1 is illustrated in Figure 

5.1.  

 

5.2.2.1 Sample Size Calculation and Blinding 

 

To calculate the number of animals required in each group a sample size 

calculation was based on infarct volume data in SHR rats obtained from our pilot 

study optimising the MCAO occlusion time (Chapter 4). The sample size 

calculation was based on a formula described in Chapter 3.2.2, and an 80% 

power and 95% significance level. The number of animals required per group was 

calculated to be 16 allowing a 40% change in lesion volume to be detected. 

Based on this, the number of rats per group entered into the study was decided 

to be 20, which allows for a minimum of 34% change in lesion volume (see Table 

5.1). Randomisation of rats to groups was not possible due to the limited number 

of stroke surgeries that could be carried out at the end of the 9-week protocol. 

All animals were allocated to control and PD groups in equal numbers. Batches 

of 3 rats were entered into the 9-week protocol as previously described in 

http://www.nc3rs.org.uk/arrive


131 
 
Chapter 2.9, with the total number of 20 animals per group. Therefore, the 

surgeon was not blinded to the experimental groups. However, all measurements 

of lesion volume were carried out in a blinded manner. Each rat was given a 

numbered code which was only broken on the completion of all data analysis.  

 

 

 

 

 

Figure 5.1 Timeline of the experimental procedure for Study 1.  
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Table 5.1 Power calculation using T2 infarct volume following 30 min MCAO from pilot 
study (Chapter 4), based on 80% power and 95% significance level (α=0.05).  
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5.2.2.2 Photoperiod Disruption Protocol 

 

Photoperiod disruption was carried out using 6-hour phase advance protocol as 

previously described in Chapter 2.9. Light intensity was measured by a lux meter 

at the beginning of the study for the room housing the control rats (~150 lux). 

The light/dark cycle for the room was controlled by a digital timer that was 

programmed for the lights to switch on 6 hours earlier than in the previous 

photoperiod, every 3 days for 9 weeks. Light intensity in the room housing PD 

rats was maintained at ~150 lux similar to that experienced by the control 

animals. 

 

Based on our sample size calculation for the SHR rats, a higher number of 

rats were required per experimental group. Therefore, it was decided that the 

PD rats should be group housed (3 rats per cage) and rather than use the 

light/dark box (as in the previous study of normotensive rats) the PD rats were 

housed in a separate room in which the lights could be programmed with a 

timer. Rats were entered into the PD protocol in batches of 3 per group. Due to 

a limited number of MCAO surgeries that can be performed within the MRI 

facility per day, a total of 6 rats were kept longer in either 12:12 LD or PD 

protocol (extended protocol; >11 weeks) before MCAO.  

 

5.2.2.3 Activity Monitoring 

 

Locomotor activity was monitored to demonstrate disruptions of circadian 

rhythms as well as to determine patterns of locomotor activity in response to LD 

cycle as previously described in Chapter 2.10. Activity monitoring was conducted 

only in the PD rats due to limited access to sufficient number of activity 

monitors. Activity was measured in each individual cage that housed 3 rats per 

cage using a passive infra-red sensor. The sensor was positioned above the cage 

at a distance that was optimised for detection of movement in all quadrants and 

for insensitivity to movements outside the cage, a piece of cardboard was placed 

around the individual cage.  
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5.2.2.4 Surgical Procedures 

 

Induction of anaesthesia was carried out in a Perspex induction chamber with 5% 

isoflurane in 70:30 of nitrous oxide: oxygen mixture. Fur overlying the surgical 

site was shaved prior to transfer to the operating table, and skin cleaned with 

antiseptic prior to incision. Rats were intubated and mechanically ventilated and 

maintained with 1.5-2% Isoflurane, in a mixture of 70:30 nitrous oxide: oxygen. 

Non-responsive to toe pinch indicated adequate surgical anaesthesia. Body 

temperature was monitored continuously with a rectal probe and maintained at 

37±0.5 ºC throughout the surgery. Transient focal cerebral ischaemia was 

achieved via intraluminal filament model of MCAO as described in Chapter 2. 

Transient focal ischaemia was induced using coated monofilament (diameter 

0.35-0.37mm, length 3.0-5.0mm, Doccol). The filament was introduced via small 

incision on common carotid artery, and advanced along the internal carotid 

artery to occlude the proximal end of middle cerebral artery. DWI scan was 

performed at 25 minutes of MCAO, and the filament was slowly withdrawn at 30 

min of MCAO and the incision point was electro-coagulated by diathermy forceps 

as previously described. Surgical area was cleaned with sterile saline before 

closure. 

 

5.2.2.5 MRI Scanning Protocol 

 

MRI scanning was performed as described in Chapter 2. Immediately following 

MCAO rats were transferred under anaesthesia to a Bruker 7T Pharmascan MRI 

scanner. After transferring the animal into MRI rat cradle, anaesthesia was 

maintained via a ventilator for acute MRI scanning during MCAO or a via face 

mask for final infarct scanning at day 7 (2-2.5% Isoflurane in a 70:30 mixture of 

nitrous oxide: oxygen). Respiration and body temperature was monitored 

throughout the MRI scanning protocol. A 4-channel phased array surface receiver 

coil was placed on the rat’s head before the cradle was placed inside the 

scanner. The rat cradle was then secured inside the scanner and a pilot 

sequence was obtained to ensure the correct geometry. 
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Diffusion Weighted Imaging (DWI)  

 

DWI was performed to quantify the early ischaemic lesion in 8 coronal slices 

within the MCA territory using the sequence described in Chapter 2.5.3. Scans 

were acquired immediately and this was followed by an MR angiography scan 

(field of view = 4cm, matrix = 256, TE = 3.8ms, TR = 15ms, 50 slices of 0.4 mm 

thickness) to ensure that the middle cerebral artery had been completely 

occluded. Scans were repeated at 25 min post MCAO, prior to reperfusion. DWI 

scans consisted of 8 contiguous coronal slices (1.5mm thick) and quantitative 

ADC maps were generated for each slice using Paravision software.  

 

T2 weighted Imaging at Day 7 

 

At 7 days following transient MCAO, rats were re-anaesthetised for 

determination of final infarct volume by T2 weighted imaging. Anaesthesia was 

maintained via face mask that delivered 2-2.5% isoflurane. The animal’s head 

was restrained using tooth and ear bars and body temperature was maintained 

for the duration of the scanning protocol using a closed circuit thermal jacket. 

Core body temperature was monitored by a rectal thermocouple. A coronal RARE 

T2 sequence (effective TE: 46.8 ms, TR: 5000 s; in plane resolution of 97 um; 16 

slices of 0.75 mm thickness) was acquired at 7 days after stroke onset for final 

infarct volume determination.  

 

5.2.2.6 Animal Recovery 

 

At the end of the MRI scanning protocol the rat cradle was removed from the MRI 

scanner and after removing the water jacket, rectal thermocouple, the rat was 

disconnected from the ventilator and transferred to the operating theatre. Once 

in the operating theatre the rat was reconnected to the ventilator and 

anaesthesia was maintained with 2% isoflurane in a nitrous oxide: oxygen 

mixture (70:30). Rats were recovered from anaesthesia as described in Chapter 

2.3.4 for 7 days.  
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5.2.2.7 MRI Data Analysis  

 

ADC Lesion Volume Calculation 

 

Using ImageJ software, ADC lesion volume as calculated by applying an ADC 

threshold of 0.59 x 10-3 mm2/sec previously established for hypertensive rats 

(Reid et al., 2012) to the ADC maps generated at 25 min of MCAO.  Lesion 

volume was calculated by multiplying the total area by slice thickness (1.5mm).  

 

T2 Infarct Volume 

 

ImageJ was used to separate the 16 images and the hyper-intense region that 

represented the infarct was manually delineated using the freehand function. 

Measurement of individual images gave the infarct areas in mm2, and infarct 

volume was calculated by summing the 16 areas and multiplying by the slice 

thickness (0.75 mm). As shown in this study, reperfusion induced extensive brain 

swelling in hypertensive rats that was still present at day 7 post MCAO (Figure 

5.13). Therefore, the infarct volume was corrected for brain swelling as 

previously described in Chapter 2.3.2. The percentage of tissue salvage was 

calculated from the difference between the acute lesion and final infarct 

volume divided by the final infarct volume. Following T2-weighted imaging the 

animals were deeply anaesthetised by increasing the Isoflurane concentration to 

5% for five minutes. Animals were then removed from the MRI scanner and killed 

by decapitation.  

 

5.2.2.8 Adhesive Label test 

 

The adhesive label test was performed in all animals before MCAO, and at day 7 

post MCAO as described in detail in Chapter 2.7. The pilot study in Chapter 4 

revealed that rats often exhibited lack of activity and freezing behaviour at day 

1 post MCAO. This was likely due to the rats’ general state of well-being at this 

acute time point post stroke where they would be more lethargic and unwell. 

Testing on day 3 also revealed no significant difference from performance on day 

7 (see Chapter 4). Based on this observation, assessments were made only to 

determine the difference between groups at Day 7 post MCAO.  
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5.2.2.9 Neurological Score 

 

An 18-point neurological score, as described in Chapter 2.6 was carried out at 

pre-stroke, day 3 and prior to the MRI scanning for final infarct determination at 

day 7 post MCAO. 

 

5.2.2.10 Study Exclusion Criteria 

 

Animals were excluded from the study if they have died during the surgery to 

induce focal cerebral ischaemia, or had a small subcortical lesion on acute DWI 

scan (evidenced by MCA patency by MR angiography), or have small final infarct 

volume (<5mm3) at day 7. 

 

5.2.3 The Impact of PD on Microglia Activation (Study 2) 

 

This study used 12 male SHR rats aged 10-12 weeks old at the beginning of the 

study. Rats were allocated to one of two groups: PD (n=6) and naïve (n=6). Both 

groups were age-matched. PD rats were exposed to 6-hour phase advance and 

naïve rats were maintained under 12:12 LD cycle for 9 weeks. Rats were grouped 

house (3 rats per cage) and locomotor activity was monitored only in PD rats via 

cage-top infrared movement sensors (as described above). At the end of 9 

weeks, rats were deeply anaesthetised using 4-5% isoflurane delivered in a 

mixture of oxygen and nitrous oxide (30:70) administered via a face mask. Rats 

were transcardially perfused with 0.9% saline containing heparin (10ml/Litre) 

and 4% paraformaldehyde (PFA) and the brain were processed for 

immunohistochemistry as described in Chapter 2.  
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5.2.3.1 Photoperiod Disruption Protocol and Activity Monitoring  

 

Photoperiod disruption and locomotor activity monitoring were carried out as 

previously described in Chapter 2.9 and 2.10.  Rats in this study were group 

housed (3 rats per cage) throughout the phase advance protocol and continuous 

activity monitoring was performed in rats subjected to PD via cage-top infra-red 

movement sensors.  

 

5.2.3.2 Iba-1 Immunohistochemistry 

 

This section of the study was performed and analysed by a masters and 

undergraduate student as part of their research project. Rats brain were 

processed in paraffin wax and cut in 5μm coronal brain slices using a microtome 

and sections were mounted on Poly-L-lysine-coated slides. Microglia were 

detected by immunohistochemistry using antibodies against Iba-1 (Wako, 

Catalogue No. 019-19741). Sections were deparaffinised and antigen retrieval 

was achieved by immersion of slides in boiling citric acid (10mM, pH 6.0) for 4 

minutes in a pressure cooker. After being cooled in cold water, sections were 

immersed in 3% H2O2 for 20 minutes at room temperature then incubated in a 

blocking solution containing 5% normal horse serum (Vector Lab, USA) in Triton 

X-100 (TBX, pH 7.40) for one hour at room temperature. Polyclonal anti-Iba-1 

(rabbit, catalogue number: 019 19741, Wako) (1:10,000 in 2% normal horse 

serum and TBX) was added to the sections and incubated overnight at 4ºC. 

Sections were then incubated for one hour at room temperature in secondary 

antibody (biotinylated horse anti-rabbit IgG (Catalogue number: BP-1400, Vector 

Lab, USA) 1:400 in Tris-buffer (TB, pH 7.40). To visualise the antibody binding, 

sections were incubated in a streptavidin-biotinylated horseradish peroxidase 

complex (ABC Elite kit, Vector Lab, USA) for 30 minutes at room temperature. 

Sections were incubated in DAB (DAB, Vector Lab, UK) for 7 minutes. Sections 

were dehydrated in alcohol before being cleared in Histoclear and mounted for 

light microscopic analysis. 
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5.2.3.3 Quantification of Microglia 

 

Sections were viewed using a light microscope (Leica Biosystems, UK) attached 

to a CCD camera and a PC and all images were captured on the same day. The 

observer was blinded to experimental group. Sections were viewed using x20 

objective and defined regions of interest captured using QCapture Pro 6 

(QImaging, Surrey, Canada). Three pre-determined coronal brain levels; Bregma 

-0.40mm, -1.30mm, and -1.80mm for level 3, 4, and 5, respectively from each 

animal were selected from the eight coronal levels previously described by 

Osborne et al. 1987. From each level, three areas in the cortex (green box) from 

each hemisphere were selected as region of interest (ROI) (Figure 5.2). The 

rationale of choosing these areas was that the selected ROI are supplied by MCA. 

ImageJ (NIH, Bethesda, MD) was then used to subtract the light background. The 

observer set an optimal level of threshold which would only include the area of 

Iba-1 immunostaining in the measurement. The area of Iba-1 immunopositivity 

was presented as percentage of the ROI.  
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Figure 5.2 (A) Coronal sections of rat brain are at the level of Bregma -0.40mm, -

1.30mm, and -1.80mm for level 3, 4, and 5, respectively (Paxinos & Watson (2006). 

The ROI of Iba-1 immunopositivity were selected from the area of sensorimotor 

cortex, as defined in green boxes. (B) The highlighted region on T2-weighted images 

showing infarcted areas following MCAO. The association between MR images and the 

level of rat’s brain is depicted in this diagram to show that the chosen ROI lie within 

the possible infarct areas. Images courtesy of Daniel Agriva Tamba(Tamba, 2016).  
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5.2.4 Statistical Analysis 

 

The difference statistical analysis between 2 experimental groups were analysed 

using a Student’s unpaired t-test in:  Iba-1 immunopositive area, ADC lesion 

volume, T2-weighted infarct volumes, Day 7 neurological score, and Day 7 

adhesive label test. Changes in IS and IV from baseline to PD period, evolution of 

lesion volume, difference in pre-stroke and day 7 data for neurological score and 

adhesive label test were assessed using a paired Student’s t-test. All statistical 

analyses were done using GraphPad Prism 6.0 (GraphPad Software, Inc., USA) 

and using p< 0.05 as the level of significance. 

 

5.3 Results 

 

5.3.1 Mortality and Excluded Animals 

 

A total of 40 animals were initially entered into experimental stroke study 

(Study 1). Out of the 40 rats, 5 rats were excluded: 2 rats from control group 

and 3 rats from PD group. Out of 5 rats, 3 showed a small subcortical lesion on 

DWI, indicating incomplete occlusion of the middle cerebral artery as evidenced 

by MR angiography that eventually resulted in no infarct on T2-weighted images. 

One rat was excluded due to the presence of pre-existing brain lesion on the 

opposite hemisphere shown on DWI scan. One rat died during the surgery to 

induce focal cerebral ischaemia. Included animals demonstrated complete 

occlusion of the left middle cerebral artery, and infarct was evident on T2 

weighted MRI on day 7 (Figure 5.3). Therefore, the final group sizes for data 

analysis were n=18 in the control group and n=17 in the PD group (Figure 5.4). 
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Figure 5.3 Excluded animal showed an evidence of left middle cerebral artery patency 
(arrow) on MR angiography during MCAO, which resulted in small acute lesion on DWI 
scan and no obvious infarct on T2-weighted MRI. 
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Figure 5.4 Data breakdown showing total number of animals entered into the study 
and the final n number for data analysis. The extended protocol refers to animals 
subjected to phase advance protocol for more than 11 weeks.  
  

Rats entered into the study  

(n=40) 

Control (n=20) PD (n=20) 

9 weeks Phase 
Advance (n=16) 

Extended 
Protocol (n=4) 

9 weeks Phase 
Advance (n=18) 

Extended 
Protocol 

(n=2) 

DWI SCAN + MR ANGIOGRAPHY + T2 WEIGHTED MRI 

Excluded (n=2) Excluded (n=3) 

 

Final group size (n=18) 

 

Final group size (n=17) 
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5.3.2 Impact of PD on Sensitivity to MCAO (Study 1) 

 

5.3.2.1   Activity Monitoring 

 

Photoperiod Disruption Results in Disruption in Locomotor Activity and 

Rhythmicity in PD Rats 

 

Baseline activity recording was conducted over 4 days prior to 

commencement of PD protocol. Activity recording in the baseline 12:12 

light/dark period showed rats in the LD cycle maintained robust diurnal 

activity rhythms; in which majority of the animal activity was confined to the 

dark phase. These activity patterns were disrupted on commencement of the 

phase advance protocol (Figure 5.5). Disruption in circadian rhythmicity 

during the PD period compared to the baseline period was confirmed by 

changes in the rhythmicity parameters; inter-daily stability (IS) and intra-

daily variability (IV) between these periods.  

 

The IS was significantly decreased in the PD period compared to 

baseline; 0.77 ± 0.10 and 0.25 ± 0.02 (arbitrary units), mean ± SD for baseline 

and PD periods respectively (paired Student’s t-test, P<0.0001). Variability 

within days was increased by PD as indicated by significant increases in the IV 

compared to the baseline period; (0.45 ± 0.08 and 0.78 ± 0.08 (arbitrary 

units, mean ± SD for baseline and PD periods respectively (Figure 5.6B, paired 

Student’s t-test, P= 0.0002). 

 

The mean effect of PD on the rhythmicity of all animals is illustrated in 

Figure 5.6A which shows that both IS and IV deviated from baseline values 

when PD commenced, and that baseline values were not recovered. 

Therefore, locomotor activity rhythmicity remained profoundly disrupted for 

the duration of the PD intervention. 
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Figure 5.5 Impact of LD and 6-hour phase advances on diurnal rhythms of locomotor 
activity in PD rats. Double-plotted actogram from representative animal displayed the 
typical circadian rhythm in locomotor activity (high activity during the dark phase and 
low activity in the light phase), that was disrupted in the PD period. Each line 
represents the days of recording and blue shading representing the locomotor activity. 
Values on the x-axis denotes the time of the day. Red dots represent the onset of 
locomotor activity. Dark and clear bars indicate the dark and light phase respectively. 
Arrow indicates the onset of the phase advance protocol. Star indicates the day animals 
reached re-entrainment to the new LD cycle. 
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Figure 5.6 (A) The mean effect of PD on the rhythmicity of all animals. Both IS and IV 

deviated from baseline values when PD commenced, and baseline values were not 

recovered. (B) Changes in IS and IV from baseline to PD period. The IS was significantly 

decreased in the PD period compared to baseline (Student’s paired t-test, P<0.0001, 

n=17). Variability within days was increased by PD as indicated by significant increases 

in the IV compared to the baseline period (Student’s paired t-test, P= 0.0002, n=17). 
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5.3.2.2 ADC Lesion Volume at 25 min After MCAO 

 

Mean ADC-derived lesion volume was not significantly different at 25 min of 

MCAO in control and PD groups (Control: 288.4 ± 35.87 mm3 and PD: 280.6 ± 

52.90 mm3, P= 0.6104, Student’s unpaired t-test, Figure 5.8A). ADC maps for 

both groups demonstrated a widespread ADC-derived lesion involving cortical 

and sub-cortical regions across all 8 coronal slices. A similar pattern was 

observed in the T2 infarct areas at day 7 with apparent reduction in lesion 

volume rostro-caudally in both groups (Figure 5.10). 

 

5.3.2.3 Final Infarct Volume  

 

At 7 days post MCAO, ipsilateral swelling and contralateral compression was still 

evident on T2 MRI images in both experimental groups.  Hemisphere volumes 

were measured in both groups (control; 652.5 ± 25.64 mm3 vs 709.1±42.12mm3 

& PD: 668.2 ± 36.38 mm3 vs 723.1±52.43mm3 for the contralateral and 

ipsilateral hemisphere respectively, as shown in Figure 5.7).  

 

In view of this, the correction for oedema was applied for the calculation 

of final infarct volume at day 7. At day 7, there was no significant difference in 

oedema corrected final infarct volume between experimental groups 

(191.0±70mm3 vs 172.3±74mm3, P=0.44, infarct volume of PD and control 

respectively, Figure 5.8B). Reperfusion resulted in significant tissue salvage 

when assessing the reduction in lesion volume from 30 min to day 7 within 

groups (33 ± 25% vs 37 ± 27%, control vs PD respectively, paired Student’s t-test, 

P<0.0001, Figure 5.9) however this was not significantly different between 

groups (P=0.62, unpaired Student’s t-test, Figure 5.10 and 5.11). 
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Figure 5.7 Volume of each hemisphere at day 7 after MCAO. Reperfusion in SHR rats 
following 30 mins MCAO induced significant increase in volume of ipsilateral hemisphere 
in both groups. (Control vs PD, ***P< 0.0001 vs**P=0.0012, Student’s unpaired t-test, 
n=17-18). Data points indicate individual rat and horizontal bar represents the mean. 
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                   Figure 5.8 (A) Scatter plot representing the ADC lesion volume at 25 min of MCAO and 

(B) infarct volume (corrected for swelling) at day 7 for all animals that completed 9-

week phase advance protocol. Data points indicate individual rats and horizontal bar 

represents the mean. Green data points represent animals from the extended protocol 

(>11 weeks). Since the data from animals in the extended protocol was not significantly 

different from the established protocol, the data were pooled together for analysis. The 

difference in ADC lesion volume and final infarct volume between the two groups were 

not statistically significant (unpaired Student’s t-test P=0.6 and 0.4 respectively, n=17-

18). 
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Figure 5.9 Evolution of lesion volume from 30 min of MCAO to day 7 in Control (A) 
and PD group (B). Reperfusion induced significant tissue salvage in both control and 
PD rats (paired Student’s t-test, **P<0.0001, n=17-18). Data points indicate individual 

rat.  
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Figure 5.10 Caudal to rostral distribution of ADC-derived lesion and 8 coronal slices of final T
2
 infarct from the same 

animal (median rat). The region highlighted in red depicts the ADC-derived lesion at 25 min post MCAO, and area 

highlighted in white indicates the infarct at 7 days.  
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Figure 5.11 % change in lesion volume from 30 min to day 7 after MCAO; unpaired 
Student’s t-test, P=0.64, n=17-18. Data points indicate individual rat and the horizontal 
bar represents the mean.  
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5.3.2.4 Neurological Score  

 

Functional outcome at day 7 post MCAO was assessed by an 18-point neurological 

score.  Prior to surgery, all animals demonstrated maximum scoring of 18 which 

indicates no obvious neurological deficits.  Neurological score was significantly 

reduced on day 3 for both experimental groups which is expected at this time 

point due to a combination of rats being unwell at this acute time point and the 

neurological deficit. Neurological deficits improved from day 3 to day 7 however 

it was still significantly reduced compared to baseline. Repeated measures one-

way ANOVA revealed a significant effect of day on score (P<0.0001, Figure 

5.12A). Post-test comparisons using the Dunnet test indicated that neurological 

score was significantly reduced at day 3 post MCAO compared to the pre-stroke 

(day 0) in both groups (Control and PD; P<0.0001). The score at day 7 was higher 

than the initial deficit on day 3, thereby indicating a degree of recovery.  

However, the improvement in neurological score between control and PD groups 

assessed at day 7 was not statistically significant (Control vs PD: median 

score=14 vs 14, P=0.65, Mann-Whitney test). Using the non-parametric 

Spearman’s correlation, an r2 value of -0.33 demonstrates that there is an 

inverse weak relationship between infarct volume and neurological score, 

whereby as infarct volume decreases, neurological score increases. The 

correlation between infarct volume and neurological score at day 7 was 

however, not significantly correlated with final infarct volume measured at the 

same time point (P>0.05, Figure 5.12B).  
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Figure 5.12 Assessment of functional outcome using 18-point neurological scoring 

system.  (A) Rats were assessed at pre-stroke (day 0), day 3, and day 7 post MCAO. A 

score of 3 indicates severe neurological impairment and maximum score of 18 

indicates no observable deficit. Data points indicate individual rat and the horizontal 

line denotes the median score. The neurological score between groups at day 7 was 

not statistically significant (Mann-Whitney test, P=0.65, n=17-18). (B) An inverse 

weak correlation was found between final infarct volume at 7 days post-MCAO and 

neurological score at the same time point for all rats. The correlation was not 

statistically significant.  Spearman’s non-parametric correlation, r=-0.33, P>0.05, 

n=35. 
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5.3.2.5 Adhesive Label Test 

 

Transient MCAO for 30 min resulted in a significant increase in both time to 

contact and to remove when assessed at day 7 post MCAO. Both control and 

PD rats exhibited a significant increase in the time to contact at day 7 post 

MCAO compared to their pre-stroke performance (Control: 88.33±47.35s vs -

1.32±12.43s, PD: 79.78±44.13s vs -2.15±11.7s, paired Student’s t-test, 

P<0.0001). Similarly, removal time for both groups at day 7 rats was severely 

affected (Control: 85.23±43.92s vs 3.29±17.37s, PD: 81.12±48.68s vs -

2.46±11.97, Student’s paired t-test, P<0.0001). This observation indicates a 

bias for contacting and removing stimuli from the unaffected paw that 

persisted for 7 days in both groups (Figure 5.13). Using unpaired Student’s t-

test, the difference in contacting and removal time for both groups at day 7 

were not statistically significant (difference in contact time: Control vs PD, 

P=0.58, difference in removal time: Control vs PD, P= 0.79).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



156 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Contact and removal difference times at baseline and at 7 days post 

MCAO. The mean contact and removal difference time was significantly increased at 

7 post MCAO compared to day 0 (pre-stroke) in both groups (Student’s paired t-test, 

***P<0.0001, n=17-18). The mean difference contact and removal times at day 7 is 

highly variable, with some animals showed a degree of recovery (A and B). The 

dotted horizontal line indicates zero, which denotes symmetrical limb contact (and 

removal) latencies. Data points indicated individual rats. 5.3.3 The impact of PD on 

Microglia Activation (Study 2). 
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5.3.3.1 Activity Monitoring  

 

Photoperiod Disruption Results in Disruption in Locomotor Activity and 

Rhythmicity in PD Rats 

 

In this study, the locomotor activity was monitored in rats exposed to PD 

protocol only. The total number of animal in PD group was 6 and were 

grouped housed (n=3/cages). Therefore, only two sets of locomotor activity 

data were collected at the end of the 9-week PD protocol. Due to the limited 

nature of the activity data obtained from this study, quantitative analysis was 

not performed and a double plotted actogram from a representative rat is 

shown of illustrative purposes only (Figure 5.14). 

 

5.3.3.2 The Expression of Microglial Marker in naïve and PD rats 

 

Both naive and PD rats demonstrated Iba-1 immunopositivity. Representative 

slides from both groups show microglia with typical morphology stained with 

the Iba-1 antibody (Figure 5.15A and 5.15B). Iba-1 immunostaining was not 

observed in the negative control slide (no primary antibody; Figure 5.15C). 

Figure 5.15D represents the % of Iba-1 immunopositivity in one ROI, and the 

mean % of ROI in individual animals are presented in Figure 5.15E. Unpaired 

t-test revealed no significant effect of PD on the % of Iba-1 immunopositivity 

(naïve: 4.8±1.3; PD: 4.7±1.6, Student’s unpaired t-test, P= 0.63, Figure 

5.15D). Similarly, there was no different between naïve and PD groups in the 

mean of % ROI in individual animals (naïve: 4.8±0.8, PD: 4.7±0.5, Student’s 

unpaired t-test P=0.842, Figure 5.15E). 

 

  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Double-plotted actogram from representative animal displayed the typical 

circadian rhythm in locomotor activity at baseline (high activity during the dark phase 

and low activity in the light phase), that was disrupted in the PD period. Each line 

represents the days of recording and blue shading representing the locomotor activity. 

Values on the x-axis denotes the time of the day. Red dots represent the onset of 

locomotor activity. Dark and clear bars indicate the dark and light phase respectively. 

Arrow and star indicate the onset of the phase advance protocol and the day animals 

reached re-entrainment to the new LD cycle, respectively. 
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Figure 5.15 Iba-1 immunopositivity in naive and PD group. (A) and (B) Iba-1 

immunopositivity was observed in both Naive and PD group. The thickness of each brain 

slice was 5μm. (C) No Iba-1 immunopositivity observed in negative control slide. (D) 

Each data point indicates percentage of Iba-1 immunopositivity in one ROI which shows 

comparable results; Student’s unpaired t-test, P= 0.63. (E) Mean of % ROI as expressed 

in individual animal was also not significantly different between groups; Student’s 

unpaired t-test, P=0.842, n=6. 
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5.4 Discussion  

 

Circadian disruption is associated with metabolic and physiological changes such 

as diabetes and hypertension that have potential to adversely modify the 

ischaemic penumbra, hence increased sensitivity to stroke. Impact of circadian 

disruption on cardiovascular functions and tolerance to injury raised the 

possibility of associated cerebrovascular pathology. In the present study, we 

aimed to determine the impact of PD in the presence of pre-existing 

hypertension. Transient ischaemia was chosen as this model allows us to study 

the impact of PD on ischaemic injury following ischaemia-reperfusion as well as 

on lesion evolution.  

 

5.4.1 PD Did Not Influence Lesion Evolution Following Focal Cerebral 

Ischaemia (Study 1) 

 

The data shown that PD had no effect on lesion evolution in hypertensive rats. In 

the present study, we determined the acute lesion volume during MCAO 

(immediately prior to reperfusion) in both experimental groups and then in the 

same rats measured the final infarct volume at day 7 following reperfusions. This 

allowed us to calculate the extent of tissue salvage induced by reperfusion and 

therefore assess whether PD influences the ability of reperfusion to recover 

brain tissue. We demonstrated that in SHR rats exposed to normal light/dark 

cycle, reperfusion when initiated 30 minutes following MCAO resulted in a 

reduction in lesion volume of 33%. This confirms that early reperfusion in the 

presence of hypertension can salvage brain tissue. The presence of hypertension 

has been previously shown to exacerbate damage following cerebral ischaemia 

(D Duverger and MacKenzie, 1988). In SHR that underwent 9-week phase advance 

to induce circadian disruption we demonstrated that reperfusion at 30 minutes 

resulted in a similar extent of tissue salvage; 37% compared to the control.  

Similarly, no differences in final infarct volume were observed between the two 

groups.   

 

This is in contrast to a recently published study by Earnest and colleagues 

(Earnest et al., 2016), which demonstrated that PD significantly enhanced the 

severity of focal cerebral ischaemia in Sprague-Dawley rats. With regards to our 
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study, MCA was transiently occluded by intraluminal filament. Vessel occlusion 

was confirmed by an acute MR angiography scan and reperfusion was established 

at an earlier time point (30 min). In the study by Earnest et al., transient focal 

ischaemia was achieved via injection of a vasoconstrictor peptide, endothelin-1 

(ET-1) onto the MCA in which rats were also subjected to a stereotaxic surgery. 

Moreover, no specific measurement was taken by Earnest and colleagues to 

confirm the exact time of reperfusion. Endothelin-1 is known to induce severe, 

sustained, but ultimately reversible occlusion of cerebral vessels in vivo (Macrae 

et al., 1993). In view of this, the methods of inducing transient MCAO as well as 

the nature of reperfusion (gradual versus rapid), may account for the 

discrepancies of results between the two studies.  

 

Pre-existing hypertension is one of the important factors that influence 

the rate of lesion growth (McCabe et al., 2009), hence increasing stroke 

severity. In this case, increased vascular resistance secondary to arterial 

remodelling and hypertrophy, impair cerebral vasodilation such that 

compensatory mechanism to ischaemic insult is compromised. Moreover, 

extensive evidence implicates inflammation in stroke susceptibility and poor 

outcome (Murray et al., 2014).  Stroke-sensitive rat strains such as the SHR and 

SHRSP have previously been shown to display an elevated response to 

inflammatory stimuli (Sirén et al., 1992). Our study was carried out in a highly 

pertinent stroke model, spontaneously hypertensive rats. It is apparent that 

hypertension may exacerbate the infarct volume (Hom et al., 2007; Möller et 

al., 2015).  Consequently, adding another damaging factor such as circadian 

disruption may increase the possibility of ‘ceiling effect’ such that damage is 

already elevated at baseline. Therefore, an increase resulting from additional 

pathophysiology will be arduous to be noticed. 

 

Lack of effect of PD may suggest that SHRs might have a level of 

resistance towards the phase advance protocol. The circadian system in the SHR 

has been characterised in a study by (Sládek et al., 2012). According to their 

study, the analysis of the SHR circadian clock at molecular level revealed that 

the clock genes expression from central clock SCN was phase advanced relative 

to 12:12 LD cycle, which means that SHRs exhibited a phase advance rhythm 

compared to that of a normotensive strain Wistar rats.  For instance, under 
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normal 12:12 LD cycle, SHR exhibited an early onset of locomotor activity, which 

started just before the light went off. Moreover, the output rhythm from the 

SCN in SHR was dampened that leads to impaired peripheral clock genes 

expression in the liver and heart (Cui et al., 2011). These observations also 

suggest that deficiencies in circadian timing are responsible for metabolic and 

cardiovascular phenotype in SHRs. Therefore, lesser impact of PD on SHRs might 

be due to pre-existing ‘disrupted’ rhythm.  

 

No significant differences in neurological score were seen between the 

control and PD groups at day 7 post MCAO. This suggests that PD does not worsen 

neurological scores in this study. This data was in agreement with infarct volume 

at day 7 in PD group which was comparable with the control group. Even though 

the correlation was not significant, the inverse correlation between neurological 

score and infarct volume shows that neurological function is improved in rats 

with smaller infarct volumes, as compared to rats with larger infarcts which are 

more severely functionally impaired. The extent of forelimb asymmetry 

evaluated by adhesive label test was also not affected by PD.  

 

5.4.2 PD Has No Impact on Microglial Activation in Non-Stroke SHR Brains 

(Study 2) 

 

Our data demonstrated that PD for 9 weeks did not alter activated microglial 

numbers in the brain. To date, no studies have investigated the impact of 

photoperiod disruption protocol on microglia response in the rat brain. However, 

there are several other studies employing different experimental shift work 

models which have linked circadian disruption with immune system alterations. 

Forced shift work in Wistar rats leads to enhanced TNF-α and IL-6 production by 

hepatic Kuppfer cells after LPS stimulation in comparison to control rats 

(Guerrero-Vargas et al., 2015). Additionally, mice exposed to circadian 

desynchronization by experimental jet-lag resulted in uncoordinated 

inflammatory responses to LPS challenge that led to increased mortality. 

Dysregulation of immune system was evident by upregulation of several key 

immune factors in serum of shifted mice, including IL-6, IL-1β, IL-12, IL-13 and 

decreased in anti-inflammatory mediator IL-10 (Castanon-Cervantes et al., 

2010).  
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The impact of circadian disruption on microglia response has previously 

been documented in a mouse model using a dim light at night (5 lux) protocol.  

This study demonstrated an enhanced expression of microglial markers Iba-1 in 

the arcuate nucleus after chronic exposure to dim light at night (Wyse et al., 

2016). This finding is in agreement with other study utilizing similar dim light 

paradigm, indicating enhanced microglial cytokines gene expression after LPS 

challenge (Fonken et al., 2013).  

 

There are a number of experimental factors that could explain the 

discrepancies between our results and findings from the previous study in mouse 

that have demonstrated increased microglia (Fonken et al., 2013). One potential 

explanation is related to differences in the protocols used to induce circadian 

disruption where the mouse studies have used a model of dim light at night 

whereas we used a phase advance protocol. As discussed in detail in chapter 4, 

the differences in the protocols used could partly account for the heterogeneity 

of the study results. Apart from light/dark protocols, another difference was the 

light intensity in which 5lux of night time light exposure was used in the mouse 

studies, compared with 150lux in the present study. Indeed, the intensity of the 

light signal has been shown to have different consequences on circadian rhythm. 

Dose dependent stimulatory effect of light has been elicited in another study 

such that subjects exposed to higher light intensity (800 lux) developed larger 

increase in heart rate (Scheer et al., 1999). Additionally, higher mean blood 

glucose level was observed in diabetic prone rats exposed to constant darkness 

protocol as compared to 6-hour phase advance protocol for 10 weeks (Gale et 

al., 2011). 

 

It is also evident that microglia activation was enhanced only after an 

episode of immune challenge (i.e. intraperitoneal injection with LPS). Fonken 

and colleagues found that there was no difference in microglia cytokine 

expression in mice exposed to dim light at night and control mice which did not 

receive immune challenge (Fonken et al., 2013). This finding suggests an 

important interaction between immune challenge and circadian disruption in 

which the impact of circadian disruption is apparent in the presence of 

inflammatory challenge (i.e. LPS). Master circadian clock in SCN conveys timing 
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information to the immune system and coordinate immune function via 

anticipatory state for optimal immune response (Buijs et al., 2008). Following 

circadian disruption, the critical state of anticipation and readiness to immune 

challenge is impaired, therefore in this case has increased vulnerability and 

severity to infection (Logan and Sarkar, 2012). 

 

5.4.3 Summary  

 

We demonstrated that stroke outcome was not exacerbated in SHR’s that had 

undergone photoperiod disruption when compared to SHR’s maintained under 

normal light/dark cycles. Similarly, PD did not induce any significant changes in 

microglia activation in the brains of SHR’s. Poor collaterals and pre-existing 

hypertension in SHR may explained to lesser effect of PD on lesion evolution, as 

there may have been less penumbral tissue available for PD to exert its 

detrimental effect. Even though PD rats exhibited significant disruption in 

behavioural rhythm, it was unclear if circadian desynchrony was established with 

this protocol. It is suggested for future study to include gene expression profile 

and circadian biomarker. Moreover, early chronotype in SHR might account for 

the lack of effect of PD on this strain due to pre-existing disrupted rhythm. It 

was therefore concluded that PD in context of major stroke co-morbidity/risk 

factor does not exacerbate ischaemic damage and that this fits with the lack of 

effect of PD on microglial activation.  
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6.1 Introduction 
 

Over the past 20 years, large epidemiological studies associate shift work with 

the development of a major stroke risk factors such as hypertension, diabetes 

and obesity (Karlsson, 2001; Morikawa et al., 2005). The mechanism underlying 

the impact shift work on health has been attributed to desynchronization 

between external changes in the environmental with the internal circadian 

system (Rüger and Scheer, 2009). Stroke risk factors associated with PD such as 

hypertension and hyperglycaemia have been shown to increase sensitivity to 

stroke in human and animal studies (McCabe et al., 2009; Muir et al., 2011; Tarr 

et al., 2013) . However, little is known about the impact of PD on sensitivity to 

stroke and stroke outcome.  

 

Studies performed in this thesis presented one of the most relevant 

models that are being used to mimic human shift work; by shifting the light/dark 

cycle (Opperhuizen et al. 2015).  However, the result in this thesis demonstrates 

that PD did not increase stroke sensitivity in young, normotensive animals and 

did not interact with major stroke risk factor; hypertension to impact on lesion 

evolution following focal cerebral ischaemia. The findings from this thesis will be 

discussed in terms of study limitations and some of the future strategies with 

regards to animal models of shift work.  

 

6.2 Study Limitations  

 

One of the primary aims in this thesis is to determine the impact of disruption in 

the light/dark cycle on stroke outcome. In this study, photoperiod disruption 

was induced by 6-hour phase advance the light input every 3 days. A limitation 

of this approach is that it does not model all of the features of human shift 

work. Since the working schedules profoundly interfere with activity, sleep, 

timing of food and feeding pattern, available animal studies have been focused 

on the four most relevant models that are being used to mimic human shift 

work: altered timing of (1) food intake, (2) activity, (3) sleep, or (4) light 

exposure. These daily rhythms are strongly interconnected such that disturbance 

of one aspect impacts on the others (Opperhuizen et al., 2015).  

 



167 
 

Photoperiod disruption protocol as employed in this thesis, is only one 

aspect of modelling shift work in animal studies and may not truly represents 

human shift work. The predominant theory underlying health consequences of 

shift work stresses on the concept of desynchronization which can occur at 

different levels; from changes in behaviour (activity, feeding and sleep pattern) 

to altered gene expression and hormone secretion (Salgado-Delgado et al., 

2013). One potential caveat concerning the present experiment is that no 

measure of circadian desynchronization was provided or assessed in the PD and 

control rats. Despite changes in locomotor activity pattern following PD 

protocol, it is yet to be determined if PD has resulted in desynchronization at 

organ and molecular level. Therefore, it is suggested in the future study to 

confirm that circadian desynchronization is manifested by PD protocol by 

assessing the metabolic gene expression at peripheral organs, disruption in 

physiological rhythms of blood glucose, blood pressure, body temperature and 

circadian biomarkers. In addition, these additional parameters will allow us to 

draw comparisons with regards to outcome measures with different types of 

manipulations used in shift work studies.  

 

Despite the known primary event leading to stroke that is the disruption 

in cerebral blood flow, pre-clinical stroke research is still struggling with 

translational issues (Dirnagl et al., 2013). To date, the exact mechanisms 

underpinning cardiometabolic disturbances among shift workers are poorly 

understood (Vyas et al., 2012) making modelling shift work in animals a very 

challenging exercise. It is reasonable to postulate that shifting the light/dark 

cycle may not be the primary event leading to cardiometabolic disturbance 

among shift workers. Experimental studies employing feeding at rest phase in 

rodents appears to have more detrimental effect on metabolism (Ribas-Latre 

and Eckel-Mahan, 2016). In this case, food acts as a ‘stronger’ zeitgeber for 

peripheral clock (Damiola, 2000) and several studies supported the ideas that 

timing of food intake have an important impact on metabolism (Arble et al. 

2009)(Garaulet et al., 2013)(Hibi et al., 2013). Moreover, shifting the time of 

food intake is of relevance to human shift work as changed dietary habits is one 

of the characteristics in shift workers (Lowden et al., 2010).  

 

 



168 
 

6.3 Future Strategies for Animal Shift Work Studies 

 

To date, there are no standardised protocols established for modelling shift work 

in animals. The difference in the protocols across laboratories may partly 

account for the heterogeneity of the results (Gale et al, 2011)(Tsai et al., 2005). 

A review on animal models of shift work have identified various protocols with 

none of the protocols being replicated by other research groups. Furthermore, 

there appears to be no standardized procedures for assessing circadian 

parameters such as clock gene expression in peripheral organs, activity rhythm, 

hormones, body temperature, sleep disturbances and metabolic parameters 

making it difficult to compare results between models (Opperhuizen et al., 

2015). The inconsistencies of pre-clinical data concerning shift work will 

compromise the strength and quality of the studies and therefore they need of 

critical re-evaluation. The pre-clinical groups working on shift work studies 

should therefore work within networks and agree on standardize protocols for 

inducing circadian disruption in animal models, and come up with recommended 

guidelines in order to improve quality and reproducibility of animal model of 

shift work.  Standardization would reduce the heterogeneity between studies for 

both methods and outcome parameters and provide high quality study to inform 

the process of translation.  

 

Using animal models by manipulating only one aspect of shift work 

allowed us to focus on studying the impact of one particular aspect of shift work 

(i.e. shifting the light) on health. However, given the complexity and 

interconnection of all aspects of human shift work, future studies in animal 

models could address some of these issues by incorporating more than one 

aspects of human shift work. For instance, a protocol employing shifting the 

light/dark cycle and restricted feeding during active phase provide more 

accurate representation of the human shift work (Arble et al., 2010). In 

principle, using diurnal rodent models (i.e. the Nile rat) would be a clinically 

relevant model to study shift work, as day-active animals are more similar to 

human and therefore of better choice when it comes to circadian studies 

(Opperhuizen et al., 2015). Future research should also include more animal 

studies incorporating the effects of interventions to alleviate the negative 

impact of shift work. For example, feeding during the rest phase has been shown 
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to induce obesity and internal desynchrony in a rat model of night work which 

was restored by restricting food intake to activity phase in the same model 

(Salgado-Delgado et al., 2010). Data on the impact of interventions could be 

useful for proposing new occupational health and safety guidelines to counter 

health risks among shift workers.  

 

6.4 Conclusion  

 

Population-based studies on detrimental effect of shift work are mainly 

associational and the pathophysiology underlying this association is poorly 

understood. The primary aim of the available animal models of shift work is to 

uncover the links between circadian disruption and cardiometabolic diseases. 

Due to complexity of human shift work, mimicking all aspect of human shift 

work in one animal model is a key challenge in this area. The findings reported 

in this thesis demonstrated that PD does not exacerbate ischaemic damage by 

increasing the severity of the ischaemic insult in both normotensive and 

hypertensive animals. The results further suggest that shifting the light/dark 

cycle may not be the primary event leading to cardiometabolic disturbances. 

Future experimental shift work studies should incorporate standardized 

guidelines and protocols in the study design and use animal models that better 

mirror human shift work population.  
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