
 
 
 
 
 
 
 
 

 

Bigley, Christopher J. (2023) The application of artificial intelligence and 

image analysis to novel prognostic classification systems of colorectal cancer. 

PhD thesis. 

 

 

https://theses.gla.ac.uk/83703/ 

 

 

 

Copyright and moral rights for this work are retained by the author  

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge  

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author  

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author  

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 
 
 
 

 
 
 
 
 
 
 

Enlighten: Theses  

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 
 

https://theses.gla.ac.uk/83703/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


I 

 

The Application of Artificial 

Intelligence and Image Analysis to 

Novel Prognostic Classification 

Systems of Colorectal Cancer 

By 

Christopher J. Bigley  

BSc (Hons) 

 

Thesis submitted in fulfilment of the requirements for 

the degree of Doctor of Philosophy  

To 

The School of Cancer Sciences 

College of Medical, Veterinary and Life Sciences 

The University of Glasgow 

September 2022 

 



II 

 

The work presented in this thesis was performed by the author except where acknowledged. 

This thesis has not been submitted for a degree or diploma at this or any other institution. 

Christopher James Bigley 

September 2022 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 

 

Acknowledgements  

Firstly, I would like to thank my primary supervisor, Dr Antonia Roseweir, and my second 

supervisor, Professor Joanne Edwards. Your expertise, mentorship, guidance, and 

unwavering support has carried me through this process. Working with the both of you over 

the past four years has been an immense pleasure and I cannot begin to thank you enough 

for seeing me through my PhD.  

Thank you to my family, my mother Alison, this thesis could never have been realised 

without your unparalleled expertise in digital pathology as well as constant emotional 

support throughout everything, my father Graham and my brother Michael, thank you for 

always believing in me, I hope I have made you proud. And to my now extended family, 

Leah and Teddy, thank you for always supporting me and welcoming me so warmly. 

To everyone in the Edwards Lab, thank you for your support, comic relief and keeping me 

grounded, you are the reason I came in every day, and I do not believe I will ever work with 

such an enjoyable group of people again. 

Thank you to Dr John Waller and everyone at OracleBio for your support on all things 

technical and making me feel welcome when I was there.  

Thank you to Professor Karin Oien not only for your pathology tutorship, but your pastoral 

support when it was needed most. 

To all my friends both in Glasgow and afar, thank you for all the pub – based group therapy 

sessions. 

Finally to Hannah, it would take more than this thesis to detail everything you have done, 

and continue to do for my life, you are my rock, everything I do is for you and for us. Thank 

you.  

 

  

  



IV 

 

Summary 

Colorectal cancer (CRC) is the third most common form of cancer in the world and 

the second most common cancer related mortality. Adequate staging of CRC is important 

for understanding patient prognosis and determining appropriate therapy regimens. CRC 

staging is currently performed according to the Tumour, Node, Metastasis (TNM) staging 

criteria, which has remained the gold standard around the world since its introduction. 

However, the variable prognosis of Stage II / node negative disease and uncertainty around 

best therapeutic practices for these patients has been a continuing issue with the TNM system, 

one that is still yet to be adequately addressed. Through extensive research, novel prognostic 

features, assessed on diagnostic Haematoxylin & Eosin (H&E) sections and through simple 

Immunohistochemistry (IHC), have been shown to supplement the TNM criteria and address 

this unmet clinical need. Furthermore, novel classification systems that incorporate multiple 

features of the Tumour Microenvironment (TME) and assign patients to independent groups 

have been developed and often stratify patients for prognosis better than the TNM system, 

as well as providing additional prognostic and theragnostic information.  The adoption of 

these novel factors and classification systems into clinical pathology has been hindered by 

persistent interobserver variability and a lack of clear and standardised assessment criteria.  

Image analysis presents a means to reduce the subjectivity of these criteria and 

increase their potential clinical utility. With the advent of artificial intelligence and its 

continued development within image analysis, the automated assessment of novel features 

on clinical sections is becoming increasingly reliable and reproducible. Therefore, this thesis 

aims to utilise image analysis and artificial intelligence to automate the assessment of 

specific features of the CRC TME, assess the prognostic utility of novel TME features 

individually and in combination, and compare the performance of digital assessment to 

human assessment. 

 The Glasgow Microenvironment Score (GMS) is a combined assessment of the 

stromal density of the tumour, quantified through the Tumour Stroma Percentage (TSP), and 

the peritumoural inflammatory response, assessed using the Klintrup – Mäkinen (KM) 

criteria, that assigns patients to one of three individually prognostic groups. Using a 

Convolutional Neural Network (CNN) to semantically segment H&E Whole Slide Images 

(WSI) and quantify the tumour associated stroma demonstrated that image analysis is able 

to reliably conduct TSP assessment across multiple retrospective patient cohorts and a large 

clinical trial cohort, prognostically stratify these patients according to the TSP criteria, and 

outperform human assessment for prognostic significance. Image analysis quantification of 
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peritumoural lymphocyte density on H&E WSI with manually annotated invasive margins 

showed a significant association with prognosis, comparable to that seen in manual KM 

assessment, again across multiple cohorts. Combining both image analysis approaches 

according to the GMS criteria outperformed pathologist assessment for survival stratification, 

highlighting the ability of image analysis algorithms to reliably perform individual 

assessments and retain the prognostic significance when used in combination.  

The Phenotypic Subtypes of CRC are a translation of the phenotypic signatures of 

the Consensus Molecular Subtypes (CMS) to tissue – based assessment, incorporating Ki67 

IHC into the GMS criteria with the TSP and KM. Ki67 expression is utilised to further 

stratify the GMS group with intermediate prognosis, providing additional information about 

the TME. To quantify Ki67 expression, a CNN was again used to semantically segment 

Tissue MicroArray (TMA) cores stained for Ki67 via IHC and the percentage of Ki67+ 

tumour cells was determined using an automated, CNN – based cell detection algorithm. 

Ki67 expression determined through automated analysis was significantly associated with 

prognosis individually, and when combined with the TSP and KM criteria, the Phenotypic 

Subtypes determined through image analysis were highly prognostic again across multiple 

cohorts. Furthermore, the image analysis subtypes identified a group of patients with a 

chemotherapy dependent improvement in survival, demonstrating the clinical utility of 

image analysis for determining patient prognosis and potentially guiding therapy regimens. 

The data presented in the current thesis demonstrates that image analysis is able to 

reliably and reproducibly assess novel features of the TME from clinical WSI, perform these 

assessments across multiple independent patient cohorts, significantly stratify patients for 

prognosis, and has the potential to be utilised in clinical pathology to aid therapeutic 

decisions and improve patient outcomes.   
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1.1 Colorectal Cancer Epidemiology 

Colorectal Cancer (CRC) is the third most common form of cancer in the world, with 

1,148,515 new cases arising in 2020, accounting for 10.6% of cancer incidence in men; the 

third most common after lung and prostate, and 9.4% of cancer incidence in women; the 

second most common after breast (Sung et al., 2021). In both sexes worldwide, CRC 

accounts for 9.4% of all cancer related mortalities, totalling ~930,600 deaths in 2020 (Sung 

et al., 2021). CRC incidence and mortality vary between socioeconomic regions across the 

world, with a notably higher incidence in developed countries. In countries with a high or 

very high Human Development Index (HDI), incidence of CRC is ~24.5 cases per 100,000 

of the population, however, this is markedly lower in countries with a medium or low HDI, 

with an incidence of ~6.4 cases per 100,000 of the population. Some regions with a 

historically low and medium HDI, Eastern Europe, Asia, and South America most notably, 

have shown an increasing CRC incidence since 1980, likely due to the adoption of western 

lifestyle factors such as lack of exercise leading to obesity, and tobacco and alcohol 

consumption (Vabi et al., 2021).  

In the UK, CRC is the third most common cancer and second most common cause 

of cancer death representing around 11% of all cancer incidence with 42,885 diagnoses 

between 2016 – 2018, 56% of which occurred in males, and 16,807 cancer deaths, 55% of 

which occurred in males (Caul & Broggio, 2017). In Scotland, a bowel screening program 

was piloted between 2000 – 2007 and fully rolled out to the whole population aged 50 – 74 

in 2009, in which guaiac faecal occult blood tests (gFOBT) were performed biennially on 

the eligible population. The gFOBT test was however later replaced with a quantitative 

faecal immunochemical test (qFIT) as it demonstrated greater detection sensitivity, a patient 

with a positive result from either test was then referred for colonoscopy to identify polyps 

or CRC. Between 2000 – 2007, 1,487,999 individuals participated at least once in the 

screening programme with an average uptake of 55%, and 24,817 CRCs were diagnosed 

through screening and non – screening pathways. In the screening age range of 50 – 74 years, 

incidence decreased from 154.4 cases per 100,000 in 2000, the first year the bowel screening 

programme was piloted in three of the fourteen Scottish NHS Health Boards, to 123.9 cases 

per 100,000 in 2017, however, an increase in incidence in individuals aged <50 years was 

observed in the same time period, from 5.3 cases per 100,000 in 2000 to 6.8 cases per 

100,000 in 2017 (Clark et al., 2020).  
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1.2 Colorectal Cancer Pathogenesis 

The mechanisms underpinning sporadic CRC carcinogenesis are complex and 

heterogeneous, involving multiple genetic pathways and cellular processes. The key driver 

of the development of CRC is genomic instability, which arises through three distinct 

pathways: the Chromosomal Instability (CIN) pathway, the Microsatellite Instability (MSI) 

pathway, and the CpG Island Methylator Phenotype (CIMP). 

 

1.2.1 Chromosomal Instability Pathway 

Fearon and Vogelstein first proposed the multi – hit hypothesis of CRC 

carcinogenesis in 1990, detailing the accumulation of genetic and epigenetic alterations that 

contribute to the initiation, promotion, and progression of the adenoma – carcinoma 

sequence, which gives rise to 65 – 75% of CRC carcinomas (Fearon & Vogelstein, 1990). 

The adenoma – carcinoma sequence describes the relatively linear sequence of mutational 

events occurring in the colonic epithelium, that initially leads to the formation of pre – 

malignant precursor lesions, most commonly adenomatous polyps, and then over the course 

of more than 10 years leads to the development of CRC (Jass, 2007). An early event in this 

sequence is loss of the Adenomatous Polyposis Coli (APC) tumour suppressor gene through 

inactivating somatic mutation, which occurs in 70 – 80% of sporadic CRC (Kinzler & 

Vogelstein, 1996), or loss of heterozygosity of chromosome 5q, which is reported in 30 – 

40% of CRC tumours (Rowan et al., 2000). This loss of APC function results in constitutive 

activation of the canonical Wnt signalling pathway, of which APC is a key negative regulator, 

leading to up – regulation of downstream oncogenic targets such as Myc and Cyclin D1 

which have roles in proliferation and apoptosis (He et al., 1998; L. Zhang & Shay, 2017). 

The next key oncogenic event in the CIN sequence, generally thought to occur during or 

immediately preceding late adenoma development, is activating mutations of the K – ras 

oncogene, which are present in 35 – 42% of sporadic CRCs (Vogelstein et al., 1988). KRAS 

is a GTP binding protein involved primarily in EGFR signal transduction through the Raf – 

Mitogen Activated Protein Kinase (MAPK) pathway, resulting in cellular proliferation and 

survival (Fernández-Medarde & Santos, 2011). Activating mutations of KRAS inhibit the 

innate GTPase activity that regulates the conversion of active KRAS – GTP to inactive 

KRAS – GDP, leading to constitutively sustained MAPK signalling (Liu et al., 2021; Uprety 

& Adjei, 2020). The last major event in the adenoma – carcinoma sequence, is mutation of 

the TP53 gene, the most frequently altered gene in human cancers. The p53 protein is 

involved in control of cell cycle arrest, facilitating DNA damage repair, and inducing 
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apoptosis when necessary, therefore its functional inactivation has clear implications for 

carcinogenesis (Armaghany et al., 2012). The finding that p53 alteration or 17p allelic loss 

is present in only 4 – 26% of adenomas but 50 – 75% of carcinomas has established the 

belief that this is the initiating for factor of the transition from precursor lesion to invasive 

carcinoma and that functional inactivation of p53 occurs around this time (Leslie et al., 2002).   

 

1.2.2 Microsatellite Instability Pathway 

During normal DNA replication, errors in nucleotide assembly by DNA polymerase 

are detected and corrected by the Mismatch Repair (MMR) machinery, of which there are at 

least seven constituent proteins in human cells (Bateman, 2021). In CRC, genetic alterations 

in four key MMR machinery protein coding genes; MLH1, MSH2, MSH6, and PMS2, 

results in a breakdown of the normal MMR processes, causing genomic instability that 

contributes to disease progression. This can occur through somatic mutation or in the case 

of MLH1, hypermethylation of the gene promoter (Kane et al., 1997). Clinical detection of 

MMR deficient (dMMR) tumours is conducted via immunohistochemistry (IHC) for the four 

MMR proteins, with dMMR tumours showing complete loss of expression of at least one. 

Deficiency in the MMR process leads to the expansion or contraction of Short Tandem 

Repeats (STRs) known as microsatellites; stretches of hundreds of nucleotides of mono, di, 

tri, and tetranucleotide repeats, that is the result of strand slippage and DNA polymerase 

Figure 1.1 The Adenoma – Carcinoma Sequence. The chromosomal instability pathway 

or adenoma – carcinoma sequence of CRC development proposed by Fearon & Vogelstein, 

detailing disease progression from normal colonic mucosa to carcinoma and the genetic 

alteration landmarks promoting this transition.  
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stutter, which is passed on to the daughter cells following mitosis (Ionov et al., 1993). This 

change in microsatellite repeat length is termed Microsatellite Instability (MSI). Diagnosis 

of MSI is performed through Polymerase Chain Reaction (PCR) testing of a panel of 5 gene 

loci, known as the Bethesda Panel: two mononucleotide loci – BAT – 25 & BAT – 26, and 

three dinucleotide loci – D2S123, D5S346, & D17S250, with tumours harbouring alterations 

at ≥2 of these loci classified as MSI – High (Murphy et al., 2006). Though MSI initially 

contributes to the progression of the disease, stage I – III patients with MSI tumours have a 

significantly better disease specific 5 – year prognosis than those with microsatellite stable 

(MSS) tumours (Benatti et al., 2005; Popat et al., 2005a).  

 

1.2.3 CpG Island Methylator Phenotype Pathway 

Epigenetic regulation of gene expression involves modifications to the DNA strand 

without alteration to the nucleotide sequence. Silencing of tumour suppressor gene function 

via aberrant hypermethylation of gene promoter regions is common in CRC, accounting for 

~20% of sporadic tumours, and involves the binding of methyl groups to cytosine residues 

in areas rich in cytosine repeats. These areas are known as CpG islands, so called due to the 

presence of long dinucleotide repeats of Cytosine (C) and Guanine (G) residues linked by a 

phosphodiester bond (p), which are normally maintained in a non – methylated state 

permitting gene expression (Bird, 1986; Issa, 2004).  Patients harbouring tumours with 

prominent CpG island hypermethylation are termed as possessing the CpG Island 

Methylator Phenotype (CIMP) – positive and are diagnosed as such through positive 

methylation detection at a panel of specific gene loci, originally MINT1, MINT2, MINT31, 

CDKN2A, and hMLH1 though subsequent studies have suggested expanding upon this 

panel to include more genetic loci, granting a more complete overview of the tumour’s 

methylation status (Chan et al., 2002; Weisenberger et al., 2006). Dependent upon the panel 

used and the methylation status findings, CRC tumours can be categorized into three CIMP 

epigenotype groups, CIMP – High, CIMP – Low, and CIMP – Negative (Kaneda & Yagi, 

2011).  

It has long been understood that CIMP – High or CIMP – 1 tumours are characterized 

by transcriptional inactivation of the MMR gene MLH1 through promoter hypermethylation 

and show an extremely strong association with activating BRAF mutations, predominantly 

BRAFV600E (Toyota et al., 1999; Weisenberger et al., 2006). This is due to sustained MEK / 

ERK signalling mediated by constitutively active BRAFV600E resulting in phosphorylation 

of MAFG, a transcriptional repressor that when bound to DNA recruits a co – repressor 
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complex leading to promoter methylation. ERK directed phosphorylation of MAFG prevents 

polyubiquitination and subsequent proteasomal degradation, facilitating MAFG mediated 

hypermethylation of the MLH1 promoter region (Fang et al., 2014). Given the myriad of 

clinical factors associated with CIMP that can influence patient survival, such as an 

increased immunological response, the effect of the genes silenced by promoter 

hypermethylation, and the inconsistency in criteria with which CIMP is defined, no 

definitive association of CIMP with prognosis has yet been elucidated. However, meta – 

analyses have identified a general trend towards CIMP – High tumours conferring a poorer 

prognosis than CIMP – Low tumours (Advani et al., 2018; Jia et al., 2016). 

 

1.2.4 Serrated Pathway 

Neoplastic serrated polyps are morphologically distinct entities that were long 

believed to be benign, but it is now understood that these lesions harbour malignant potential. 

Carcinomas arising from these lesions, through what is termed the serrated pathway, may 

account for up to 20% of sporadic CRC cases and can possess a morphology similar to that 

of their precursor lesion, known as serrated adenocarcinoma. However, most tumours arising 

from serrated polyps do not resemble their precursor lesion and are characterised through 

their molecular signatures (Jass & Smith, 1992; Mäkinen, 2007; Yamane et al., 2014). These 

precursor lesions, known as serrated adenomas, are morphologically characterised by a saw 

– toothed appearance of the epithelial glands and can be histologically classified into three 

categories: hyperplastic polyps (HP), sessile serrated adenomas (SSA) and traditional 

serrated adenomas (TSA) (Pai et al., 2019). Furthermore, three morphologically distinct HPs 

are recognized: Microvesicular HP (MVHP), Goblet Cell HP (GCHP), and Mucin Poor HP 

(MPHP) (Torlakovic et al., 2003). The molecular pathogenesis of these lesions is notably 

different from those of the traditional adenoma – carcinoma sequence, which routinely 

harbour and may indeed be initiated by APC mutations, whereas APC mutations are 

relatively rare in the serrated pathway. Activating mutations in the BRAF gene, namely 

V600E, are present in ~80% of SSAs and are frequently associated with high levels of CIMP, 

the latter of which is considered the driving factor towards malignancy in the serrated 

pathway (O’Brien et al., 2006). While BRAF mutations are also present in 20 – 40% of TSAs, 

the primary driving mutations are in the KRAS gene, found in 50 – 70% of TSAs, which are 

also found in concurrence with CIMP though at lower levels than those found in SSAs 

(Wiland et al., 2014). In MVHP, the predominant driver mutation is again BRAFV600E 

occurring in ~70% of these polyps, with KRAS mutations occurring less frequently, ~15% 
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(S. Yang et al., 2004). An inverse incidence is seen in GCHP, where ~20% harbour BRAF 

mutations but ~45% harbour KRAS mutations. Due to their frequent occurrence with 

activating mutations in prominent oncogenes, carcinomas arising from the serrated pathway 

typically confer a significantly worse 5 – year prognosis than conventional carcinomas 

(García-Solano et al., 2010). 

 

1.2.5 Hereditary Colorectal Cancer 

Sporadic CRC, accounting for 70 – 80% of cases, is influenced by the interaction of 

the colonic environment and the genetic constitution of the patient with modifiable risk 

factors such as diet, smoking, alcohol consumption, and sedentary lifestyle leading to obesity. 

The remaining 20 – 30% of cases arise from genetically inherited disorders, of which two 

are particularly noteworthy, Familial Adenomatous Polyposis and Lynch Syndrome. 

 

1.2.5.1 Familial Adenomatous Polyposis 

Familial Adenomatous Polyposis (FAP) is an inherited, autosomal dominant, 

colorectal cancer predisposition syndrome accounting for less than 1% of CRC cases and is 

caused by deleterious germline mutations, of which ~800 have been identified (Béroud & 

Soussi, 1996), in the APC gene located on chromosome 5q21 – 22. There are two 

characterized forms of FAP both with identical genetic causes: classic and attenuated. 

Classic FAP is characterized by the development of hundreds to thousands of colorectal 

adenomata at diagnosis and beginning in early adolescence, with a near certain incidence of 

CRC by the late fourth decade of life (Bussey, 1975). Attenuated FAP is a less severe form 

of the disorder, with patients developing an average of 30 adenomata at diagnosis, though 

still with a highly variable range that can go into the high hundreds, and conferring an 

average CRC incidence risk of 69% by age 80 (Burt et al., 2004). It is additionally 

hypothesized that around 25% of FAP cases are the result of de novo germline mutations in 

the APC gene (Zeichner et al., 2012). Treatment of FAP initially revolves around 

prophylactic surgical intervention which, depending on specific phenotype and presentation, 

is performed between the ages of 15 – 25 for classical FAP patients but can be later for 

attenuated FAP patients. There are three surgical procedures undertaken for FAP cases: total 

proctocolectomy, colectomy with an ileorectal anastomosis, and restorative proctocolectomy 

(Guilherme Campos, 2014). The chosen procedure is dependent upon the patient’s genetic 

lineage and colonoscopic findings, but all involve the removal of as much colonic mucosa 
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as possible coupled with thorough follow up to prevent the risk of additional adenomata and 

subsequent CRC. In addition to FAP, another inherited polyposis involving germline 

mutations of the MUTYH gene termed MAP has been identified, with patients averaging 

diagnosis at 48 years of age and presenting between 10 and 500 polyps at diagnosis. 

Although 60% of MAP patients are diagnosed with CRC at first presentation, the penetrance 

is 43% at 60 years of age (M. Nielsen et al., 2011).  

1.2.5.2 Lynch Syndrome 

The second key hereditary predisposition syndrome conferring susceptibility to CRC 

is Lynch Syndrome (LS), formerly known as Hereditary Non – Polyposis Colorectal Cancer 

(HPNCC). LS is the autosomal dominant inheritance of pathogenic germline mutations in 

one of the four genes encoding the DNA MMR machinery: MLH1, MSH2, MSH6, and PMS2, 

and accounts for 2 – 5% of CRC cases with a lifetime risk of developing CRC of 70 – 80% 

generally occurring before the age of fifty (Stoffel et al., 2010). While the majority of LS 

associated cancer diagnoses are of CRC, LS confers susceptibility to a variety of 

malignancies, including those occurring in additional sites of the GI tract, neurological 

cancers such as astrocytoma and oligodendroglioma, melanoma, and sex specific cancers 

such as endometrial, ovarian, and prostate (Helder-Woolderink et al., 2016; Koornstra et al., 

2009; Raymond et al., 2013; Ryan et al., 2019; Therkildsen et al., 2015). Given that LS is a 

cancer predisposition syndrome and not a hereditary polyposis, wherein diagnosis can be 

made at the occurrence of pre – malignant lesions and prophylactic interventions with follow 

up colonoscopies can be implemented, diagnosis of LS is generally made synchronously to 

the diagnosis of CRC. Loss of immunohistochemical staining for one of the MMR proteins 

indicates LS, however, it is estimated that between 3 – 12% of LS associated CRC present 

with MMR competent tumours through IHC (Bartley et al., 2012). Diagnosis is further 

indicated through additional mutational testing, such as for BRAFV600E which is generally 

only present in sporadic CRC (Capper et al., 2013), and confirmed through sequencing of 

specific gene loci to identify the pathological variant (Berg et al., 2009) In the setting of 

CRC, colonic tumours and rectal tumours are diagnostically distinct for LS as sporadic 

MMR deficient colonic tumours are predominantly right sided, sporadic MMR deficient 

rectal lesions are by comparison extremely rare. Therefore, they are recommended to be 

assumed to be LS and undergo immediate germline testing with subsequent lifelong follow 

up for colonic and extracolonic malignancies if LS diagnosis is positive (De Rosa et al., 

2016).  
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1.3 Colorectal Pathology 

1.3.1 Gross Anatomy of the Large Bowel 

The large bowel is the terminal organ of the digestive system and gastrointestinal 

tract, it begins at the terminus of the small intestine and ends at the rectum, encompassing 

an average of 5’ in length. The main function of the large bowel is water absorption and 

peristaltic movement of faeces towards expulsion at the anus. The origin of the large bowel 

that joins to the small intestine is the caecum, attached at the ileocaecal valve, around 1” 

inferior to which is the appendix. Superior to the caecum is the ascending (right) colon which 

rises to the hepatic (right colic) flexure where it turns 90° to become the transverse colon. 

The transverse colon is the longest segment of the colon, averaging ~20” in length and 

forming an arc from the hepatic flexure to the splenic (left colic) flexure, where it again turns 

90° and proceeds inferiorly as the descending (left) colon. The terminal segment of the 

descending colon is the sigmoid colon, an “S” shaped section of the bowel that connects to 

the rectum, where the organ terminates at the anus (Figure 1.2). 
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1.3.2 Site of Primary Tumour Development 

The gross anatomy of the large bowel plays a key role in the pathogenesis and 

progression of CRC. Beginning in 1990, discordance in incidence and prognosis between 

right sided and left sided disease led to the routine reporting of anatomical site of disease at 

diagnosis of CRC (Bufill, 1990). Since this study, research into the clinical importance of 

primary tumour site of CRC has elucidated the distinct differences in pathogenesis, 

prognosis, and management of right vs left sided tumours to the extent they may now be 

considered distinct pathological entities. This distinction may originate during development 

as the anatomical sites have different embryological origins; the proximal (right) colon 

develops from the midgut and the distal (left) colon and rectum from the hindgut (Sadler, 

2018). Epidemiologically, there is a greater incidence of left sided CRC than right sided 

CRC, with a 30 – year study in the US demonstrating nearly a 10% greater occurrence of 

left sided disease, however, there are conflicting arguments as to the prognostic difference 

between the disease sites which could be dependent upon the stage at diagnosis (Cheng et 

al., 2011; Patel et al., 2018; C. B. Wang et al., 2019; Warschkow et al., 2016). Site dependent 

pathological assessment of CRC highlights that right sided disease is generally associated 

with factors indicating poorer prognosis, such as poor histological differentiation, mucinous 

Figure 1.2 Anatomy of the Large Bowel. Gross anatomy of the colon and rectum detailing 

the subdivisions, important anatomical structures, and global anatomical orientation. 

Adapted from (Ellis & Mahadevan, 2014).  
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differentiation, venous invasion, and a greater systemic inflammatory response (Nawa et al., 

2008; Patel et al., 2018). Additionally, disease site has been shown to correlate with the 

presence of oncogenic mutations, with right sided disease harbouring significantly more RAS, 

KRAS, and BRAF mutations (Bylsma et al., 2020).  

1.3.3 Microscopic Anatomy of the Large Bowel 

The microscopic anatomy of the large bowel is organised into the same general 

structure as the rest of the gastrointestinal tract, an arrangement of concentric layers of 

tissues with individual structures and functions. Beginning at the innermost layer, 

immediately adjacent to the lumen is the mucosa, comprising the colonic epithelial crypts 

(crypts of Lieberkühn) and associated connective tissue, the lamina propria which harbours 

a varied population of immune cells and separates the crypts from the muscularis mucosae, 

the thin band of smooth muscle forming outer layer of the mucosa. Beneath the mucosa is 

the submucosa, a layer of loose connective tissue providing support to the mucosa during 

peristalsis, which is conducted by the next layer, the muscularis propria. The muscularis 

propria is a double layer of smooth muscle with the inner (circular) layer fibres wrapped 

round the long axis of the bowel and the outer (longitudinal) layer fibres running parallel to 

the long axis of the bowel. The muscularis propria is innervated by the myenteric 

(Auerbach’s) plexus, which lies between the two muscle layers. The outermost layer of the 



12 

 

bowel is the subserosa, a layer of fibroadipose tissue that is lined by the serosa, a layer of 

cuboidal mesothelial cells. Detailed in Figure 1.3. 
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Figure 1.3 Microscopic Anatomy of the Colon. Light micrograph of Haematoxylin and 

Eosin stained section of the colon, detailing key anatomical structures. NB image taken from 

section of T3 CRC and as such, structures may not be identical to those seen in healthy 

bowel.  
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1.3.4 Pathological Grading 

Pathological assessment of the tumour and its microenvironment is essential for 

predicting patient prognosis, guiding therapeutic regimens, and determining follow up to 

prevent recurrence. There are an ever – increasing number of pathological factors that can 

affect these clinical outcomes, therefore, systems that grade tumours based on the 

combination of multiple factors have long been seen as the clinical gold standard in 

pathology. Two such multifactorial systems have been implemented in routine diagnosis of 

CRC: Dukes’ Staging Criteria and the TNM Staging Criteria.  

1.3.4.1 Dukes’ Staging of CRC 

C. E. Dukes first described his system of classification of rectal tumours in 1932, 

noting that the criteria could be applied to all intestinal carcinomas, which it later was to 

clinically stage colonic tumours (Dukes, 1932). Based on an analysis of 215 cases, Dukes’ 

system grouped patients into three categories according to the extent the tumour had spread 

through the rectal parenchyma and extra – rectal tissues. Tumours are classified Dukes’ A 

where tumour growth is limited to the bowel wall and there is an absence of nodal 

involvement, Dukes’ B in cases where the tumour has extended beyond the wall into the 

extra – rectal (or extra – colonic in the case of colon tumours) tissues but again with no 

involvement of regional nodes, and Dukes’ C in cases where the tumour has extended 

beyond the bowel wall and there is involvement of regional nodes (Figure 1.4A). Three – 

year survival based on this system of classification was 80% for Dukes’ A, 73% for Dukes’ 

B, and 7% for Dukes’ C (Dukes, 1932). A follow up study published in 1935 updated these 

criteria to subgroup Dukes C cases into two subdivisions based on the extent of regional 

node involvement (Figure 1.4B). Cases were now to be graded C1 if the spread of the tumour 

was isolated to the lymph nodes below the point of ligature of the blood vessels, and C2 if 

nodal involvement had reached or exceeded the point of ligature (Gabriel et al., 1935). An 

additional modification to these criteria was made by Turnbull and Colleagues in 1967, with 

the addition of a fourth group, Dukes’ D, identified by the presence of distant metastases or 

where tumour is unresectable due to spread to adjacent organs (Turnbull et al., 1967).  
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1.3.4.2 Tumour, Node, Metastasis Staging of CRC 

The staging criteria that become the gold standard for CRC prognosis and has seen 

universal implementation is the Tumour, Node, Metastasis (TNM) staging criteria. A 

preliminary iteration of this criteria was originally published in 1946, however, it was not 

until 1987 that an internationally standardised format was determined, addressing 

discrepancies between the Union for International Cancer Control (UICC) and the American 

Joint Committee on Cancer (AJCC) versions of the criteria (Denoix, 1946; Sobin et al., 1988). 

The premise of this criteria is to address and subdivide each component of tumour invasion 

individually, with T Stage examining the extent of local tumour spread through each layer 

of the bowel, N Stage examining both the presence and extent of nodal involvement, and M 

Stage examining the extent of both local and distant metastatic spread.  

The AJCC published the most recent update to the TNM criteria in 2018, and it 

defines T stage as such: T0 or Tis (in situ) – the presence of non – invasive carcinoma only 

in the mucosa, T1 – tumour is invasive into the submucosa, T2 – tumour is invasive into 

either layer of the muscularis propria, T3 – tumour is invasive into but has not extended 

beyond the subserosa, T4 is subdivided into two stages: T4a – tumour is invasive into the 

peritoneum, T4b – tumour has grown into or attached to surrounding organs. To accurately 

determine N stage and prevent under – staging, it is recommended that a minimum of 12 

lymph nodes be excised during resection (Shia et al., 2012). If this number is achieved, then 

A B 

Dukes A 

Dukes B 

Dukes C 

Figure 1.4 Dukes’ Classification of CRC. The classification of CRC according to Dukes’ 

original study (A, adapted from Dukes, 1932) and assessment of nodal involvement for 

classifying Dukes’ C1 and C2 (B, adapted from Gabriel et al., 1935).   
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N stage is graded as such: N0 – no presence of cancer in any lymph nodes, N1 is subdivided 

into three stages: N1a – presence of cancer in 1 regional node, N1b – presence of cancer in 

2 / 3 nodes, N1c – no presence of cancer in regional nodes but isolated tumour foci are found 

in the pericolic / perirectal fat or adjacent mesentery. N2 is subdivided into 2 stages: N2a – 

cancer present in 4 to 6 regional nodes, N2b – cancer present in ≥7 nodes. M Stage is graded 

M0 if there is no evidence of distant or local metastatic spread and M1 is subdivided into 3 

stages: M1a – cancer has spread to 1 distant site / organ but not into peritoneal cavity, M1b 

metastatic spread to 2 or more distant sites but again not into the peritoneal cavity, and M1c 

– metastatic spread to distant sites and into the peritoneal cavity (Weiser, 2018). In clinical 

practice, the T, N, and M stages are amalgamated into grouped stages that are used for 

prognosis and therapeutic decision making (Table 1.1).  
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Stage Dukes’ 

Stage 
T N M 

5 – Year 

DFS Rate 

(%) 

0  –  Tis / T0 N0 M0 100 

I A T1 – 2 N0 M0 93.1 

IIa B T3 N0 M0 78.3 

IIb B T4a N0 M0 73.2 

IIc B T4b N0 M0 61.3 

IIIa C 

T1 – 2 

T1 

N1 / N1c 

N2a 

M0 

M0 

65.4 

IIIb C 

T3 – 4a 

T2 – 3  

T1 – 2 

N1 / N1c 

N2a 

N2b 

M0 

M0 

M0 

56.3 

IIIc C 

T4a 

T3 – 4a 

T4b 

N2a 

N2b 

N1 – 2 

M0 

M0 

M0 

 

37 

 

IVa D Any T Any N M1a 8.3 

IVb D Any T Any N M1b 0 

IVc D Any T Any N M1c 0 

Table 1.1 TNM Staging Criteria. The grouped TNM staging criteria according to the 

AJCC 8th Edition and comparison to Dukes’ stages. 5 – year DFS survival rates pertain to 

TNM stages (Tong et al., 2018).  

 

1.3.4.3 Prognosis of Stage II Disease 

While the AJCC / UICC TNM staging criteria has remained the gold standard for 

pathological reporting and staging since its inception, it has received long standing criticism 

for the variable prognosis of Stage II disease, which has persisted even with further sub 

stratification of Stage II and Stage III. In the 8th edition of the TNM staging criteria, patients 

with Stage IIIa disease have a notably better 5 – year DFS prognosis than patients with Stage 

IIc disease (65.4% and 61.3%, respectively, Table1.1, Tong et al., 2018). This is likely due 

to the use of the staging criteria to guide chemotherapeutic decisions, whereby adjuvant 

chemotherapy is given to all patients with Stage III disease following surgical resection but 

the failure to distinguish Stage II patients at high risk or recurrence and death in the setting 

of node negative disease has led to conflicting opinions on how appropriate adjuvant 

chemotherapy is for these patients (Morris et al., 2007). A number of studies have now 
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developed methodologies based on the consideration of additional criteria to supplement 

TNM staging, such as prognostic pathological characteristics and measures of systemic 

inflammation, that are able to identify patients with high – risk Stage II disease that may 

benefit from adjuvant chemotherapy (Park, Watt, et al., 2016; Petersen et al., 2002).  

 

1.3.5 High – Risk Pathological Features 

1.3.5.1 Tumour Differentiation 

The pathology of tumour differentiation is based on microscopic assessment of gland 

structure and organization within the tumour and is traditionally defined by three grades: 

well, moderate, and poor. Well differentiated (low grade) tumours architecturally and 

cytologically resemble normal or only slightly dysplastic epithelium, moderately 

differentiated (average grade) tumours are intermediate with more pronounced cytological 

and architectural abnormality than well differentiated tumours, poorly differentiated (high 

grade) tumours are characterized by irregularly folded, distorted, small glands (Morson & 

Sobin, 1976). A fourth grade of differentiation, undifferentiated, is defined by the WHO 

(Bosman et al., 2010a), to describe tumours of such poor differentiation that there is little 

morphological indication the tumour is of epithelial origin. These grades can additionally be 

defined by the percentage of gland formation within the tumour, with well differentiated 

tumours exhibiting >95% glandular structures, moderate 50 – 95% glandular structures, poor 

5 – 50 % glandular structures, and undifferentiated <5% glandular structures (Bosman et al., 

2010a). These morphologies are not distinct and in the majority of tumours, multiple foci of 

varying differentiations will be present, and the tumour is graded according to the 

predominating morphology. It is understood that poorly differentiated tumours confer a 

poorer prognosis than well and moderately differentiated tumours (Halvorsen & Seim, 1988; 

Marks et al., 2018).  

 

1.3.5.2 Histological Type  

Adenocarcinomas of the colon may present with uncommon histomorphological 

characteristics that define them as distinctly differentiated subtypes of tumour. Two of the 

most common of these subtypes are Signet Ring Cell Carcinoma (SRCC) and tumours with 

mucinous differentiation. SRCC is defined as an adenocarcinoma exhibiting signet ring cell 

differentiation, cells with mucinous vacuolation of the cytoplasm pressing the nucleus to the 

cell periphery producing a morphology akin to a signet ring, in >50% of the tumour area. 
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First described in 1951 by Laufman and Saphir, primary SRCC of the colon is rare, 

accounting for <1% of cases and is most commonly found in tumours of the stomach 

(Laufman & Saphir, 1951). SRCC carries a markedly poor prognosis likely due to the 

frequently delayed onset of symptoms, with up to 80% diagnosed at Stage III / IV (compared 

to 50% for conventional adenocarcinoma), although it is paradoxically diagnosed with 

greater frequency in patients younger than the age of 40 (Belli et al., 2014; Kang et al., 2005; 

Tawadros et al., 2015; Yun et al., 2017).  

Carcinomas with a prominent mucinous component are subdivided based on the 

tumour area covered by extracellular mucinous pools; tumours with extracellular mucin 

covering >50% of the lesion area are designated mucinous adenocarcinoma, and those with 

<50% extracellular mucin by area are designated adenocarcinoma with a mucinous 

component (Bosman et al., 2010a). Mucinous tumours are more common than SRCC, with 

both subtypes accounting for 10 – 15% of CRC cases (Hugen et al., 2015) but are again 

generally diagnosed at a later stage, likely due to the pliability of the tumours ameliorating 

the severity of symptoms until the disease has progressed to a later stage. Mucinous tumours 

present with a different distribution of occurrence than conventional adenocarcinoma, with 

the majority (54.3%) forming in the proximal colon and 24.4% in the rectum whereas 30.6% 

of adenocarcinomas form in the proximal colon and 38% in the rectum (Hugen et al., 2013). 

Prognosis of mucinous tumours is variable and stage dependent; however, mucinous 

differentiation seems to generally confer a worse prognosis, with evidence suggesting this is 

due to aberrant patterns of metastasis, higher chance of recurrence from incomplete surgical 

resection due to the high likelihood of rupture and spillage during removal, and variable 

response to neoadjuvant and adjuvant chemotherapies and radiotherapy (Hugen et al., 2015; 

Langner et al., 2012). 

1.3.5.3 Tumour Budding 

The premise of tumour budding was first described in 1954 by Imai, theorizing that 

a sprouting pattern of tumour infiltration represented a more rapidly growing tumour (Imai, 

1954). Expanding upon this, Gabbert and Colleagues studied murine colonic tumour 

invasion through a combination of light and electron microscopy, noting that there was a 

marked dissociation of the tumour morphology at the invasive front coupled with a loss of 

most cytological features of differentiation that potentially enabled single cells to expedite 

the invasive process (Gabbert et al., 1985). In modern practise, tumour budding is defined 

as single tumour cells or clusters of four or less tumour cells present at the invasive margin 

and distinct from the contiguous tumour nests. Tumour budding has been rigorously studied 
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and shown to be significantly prognostic marker in a wide variety of solid tumours, such as 

colorectal (van Wyk et al., 2015), lung (Thakur et al., 2022), breast (Gujam et al., 2015), 

pancreatic (O’Connor et al., 2015), endometrial (Rau et al., 2020), and head and neck cancers 

(Almangush et al., 2017). In the setting of CRC, budding is used to stratify patients into three 

prognostic groups based on assessment of a single 0.785mm2 field of view; patients with 0 

– 4 buds classified as low budding (BD1), 5 – 9 buds as intermediate budding (BD2), and 

≥10 buds as high budding (BD3) (Lugli, Kirsch, Ajioka, Bosman, Cathomas, Dawson, El 

Zimaity, et al., 2017). Use of this criteria has repeatedly demonstrated budding to hold 

significant prognostic value across all stages of disease, with high budding patients 

possessing a significantly worse prognosis, being at greater risk of nodal metastasis in early 

– stage disease, and greater risk of recurrence and death in stage II disease, highlighting its 

potential use to identify high risk stage II patients (Bosch et al., 2013; Cappellesso et al., 

2017; Lugli, Kirsch, Ajioka, Bosman, Cathomas, Dawson, El Zimaity, et al., 2017; van Wyk 

et al., 2019). This body of data has resulted in tumour budding being included in the WHO 

classification of tumours as an additional prognostic factor to be considered during the 

diagnostic procedure (Bosman et al., 2010b).  

 

1.3.5.4 Venous Invasion 

Venous invasion (or vascular invasion) is defined as tumour present within an 

endothelium lined space that is either surrounded by a rim of muscle or contains erythrocytes 

(Talbot et al., 1981). It is additionally advised that the presence of tumour deposits in close 

proximity to an artery raise suspicion of venous invasion but is only indicative and not 

diagnostic without identification of a venous wall (Loughrey et al., 2022). This poses a 

continuous problem for the use of assessment of venous invasion in routine clinical practice 

as it is often difficult to determine with an acceptable degree of certainty that venous invasion 

is present despite these criteria, and indeed, due to this venous invasion is often missed or 

under reported in the clinical setting, leading to extremely varied reporting of incidence 

ranging from 9 – 90% (Messenger et al., 2012; Stewart et al., 2007). Detection of venous 

invasion can be bolstered by the use of special staining, such as elastic Verhoeff – Van 

Gieson stain that identifies elastic fibres in the adventitia of veins and arteries but not 

lymphatic vessels, that have been shown to significantly improve pathologists’ rate of 

detection and improve the prognostic significance of the assessment (Howlett et al., 2009; 

C. S. D. Roxburgh et al., 2010, 2014). However, the use of elastica staining is not widely 

implemented in routine pathology and, while venous invasion is acknowledged as a 



20 

 

prognostic factor, not recommended for routine use by the AJCC. Venous invasion is a 

significantly negative prognostic factor in all stages of CRC, having initially been examined 

in the extramural context, subsequent studies showed that assessment of intramural venous 

invasion also held prognostic significance, determining that patients with venous invasion 

had a lower disease specific survival and were at greater risk of metastatic spread, 

particularly hepatic metastases (Betge et al., 2012; Howlett et al., 2009; C. S. D. Roxburgh 

et al., 2010, 2014; Stewart et al., 2007; Vass et al., 2004).  

 

1.3.5.5  Perineural Invasion 

Perineural invasion is characterised by invasion of neural tissue by the tumour along 

the nerve sheath and is of particular interest due to the proximity of invasive carcinoma to 

neural structures, notably Meissner’s plexus just beneath the muscularis mucosae and 

Auerbach’s (myenteric) plexus that lies between the circular and longitudinal layers of the 

muscularis propria. Similar to venous invasion, perineural invasion is very difficult to detect 

from routine H&E sections, with reported positivity rates often contingent on the number of 

blocks and fields of view assessed (Ueno, Hase, et al., 2002). Additionally, no histochemical 

staining has been thoroughly validated to aid in the detection of perineural invasion, though 

some studies have reported an improvement in detection rate from 14 – 70% and 30 – 50% 

through assessment on sections stained for S100 through IHC (Bellis et al., 1993; Conte et 

al., 2020; van Wyk et al., 2017). Despite this, reporting of perineural invasion positivity 

appears to be more consistent than that of venous invasion, with a meta – analysis study 

finding that positive rate varied from 2.83 – 54.86% (Y. Yang et al., 2015). While 

associations of perineural invasion with disease specific survival vary between studies, the 

general consensus is that the presence of perineural invasion is an adverse independent 

prognostic factor and indicative of a more aggressive tumour phenotype, with studies noting 

that patients with perineural invasion have significantly worse 5 – year disease free survival 

and have an increased risk nodal metastasis in early stage disease (Huh et al., 2010; Ueno et 

al., 2013; van Wyk et al., 2017; Y. Yang et al., 2015).  
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1.3.5.6 Tumour Associated Stroma 

The desmoplastic reaction, the activation of parenchymal fibroblasts into Cancer-

Associated Fibroblasts (CAFs) resulting in upregulation of normal fibrotic wound healing 

responses, is a key step in the carcinogenesis of solid tumours. Under normal conditions, 

fibroblasts are quiescent and reside in the interstitial matrix until activation by a variety of 

pro-inflammatory and growth factors, primarily TGF-ß, induces production of ECM, ECM 

remodelling, and eventual inactivation following restoration of homeostasis (Hinz et al., 

2012).  

As tumours develop, paracrine signalling mediated by factors such as TGF-ß, PDGF, 

VEGF, IL-6, and matrix metalloproteinases (MMPs), between fibroblasts and tumour cells 

forms a feedback loop that results in the eventual transformation of normal fibroblasts into 

CAFs (Heneberg, 2016). This process occurs in three key stages; initial recruitment of 

normal fibroblasts to the site of the developing tumour, re-programming of the precursor 

cells and subsequent transdifferentiation into CAFs, and persistence of CAF properties and 

propagation of activated CAFs (De Wever et al., 2014). Following the recruitment and 

activation of CAFs, the ECM in the tumour adjacent regions undergoes remodelling 

mediated by CAF secretion and modification of various ECM components. The most 

common ECM alteration is increased secretion of fibrillar collagen, which is known to have 

distinctly pro-tumourigenic properties in a variety of tumour types, for example, collagen V 

in carcinoma of the breast (Z. H. Zhou et al., 2017). Generally, ECM remodelling and 

desmoplasia has tumour enhancing properties and is correlated with an increased risk of 

metastasis, however, certain components of the ECM are known to have contradictory 

effects on tumour progression. Most notably, hyaluronan (HA) exhibits both tumour 

suppressive and pro-tumourigenic properties dependent on the molecular weight of the HA 

comprising the ECM (Bohaumilitzky et al., 2017). The primary ECM component of the 

famously tumour-resistant naked mole rat is a high molecular weight hyaluronan, which 

appears to exert anti-tumourigenic effects through increased cellular sensitization to contact 

inhibition (Tian et al., 2015). However, in the setting of colorectal cancer, dysregulation of 

hyaluronan synthetase and hyaluronidase leads to the accumulation of low molecular mass 

HA (LMM-HA) oligosaccharides, which directly modulate pro-tumourigenic signalling and 

is associated with an increased risk of metastasis (Ropponen et al., 1998; Schmaus et al., 

2014). In addition to alteration of its constituent components, ECM remodelling also occurs 

through post translational modifications such as glycosylation, degradation mediated by 

factors such as MMPs, and force mediated modification via integrin binding (Winkler et al., 

2020).  
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Given that the stromal content of various tumours has demonstrated clear links with 

prognosis, a tissue-based method of assessing the quantity and constitution of the stroma 

using diagnostic H&E sections has direct clinical utility. Multiple studies investigating the 

stroma on H&Es have shown that simply determining the ratio of stroma to tumour area, as 

measured via the percentage area using 50% stroma as a cut off for high vs low risk, is able 

to significantly stratify patients for prognosis independent of T-Stage and other 

clinicopathological features (Park et al., 2014; van Pelt et al., 2018; Smit et al., 2021).  

However, a 2002 study by Ueno & Colleagues examining the histological 

characteristics of fibrotic stroma at the invasive front of advanced rectal tumours, identified 

novel features pertaining to the maturity and composition of the stroma that prognostically 

stratified patients into three independent groups (Ueno, Jones, et al., 2002a). In this study, 

stroma comprised of well organised and stratified fine fibres was characterized as mature, 

stroma containing brightly eosinophilic hyalinized collagen bundles as seen in a keloid 

characterised as keloid-like or intermediate, and stroma comprising keloid-like collagen 

bundles surrounded by myxoid stroma as myxoid or immature, conferring good, 

intermediate, and poor prognosis, respectively. This method of assessment of stromal 

maturity was later validated for prognosis in colon cancer and demonstrated association with 

additional prognostic histopathological features, with more immature stroma showing 

significantly increased tumour budding counts and lower infiltration of lymphocytes (I. P. 

Nearchou, Kajiwara, et al., 2019; Ueno et al., 2004, 2017). Furthermore, studies examining 

nodal and hepatic metastases found a significant correlation between the stromal maturity of 

the primary lesion and metastatic lesion in both settings, with immature stroma perpetuating 

the association with poor prognosis (Ao et al., 2019, 2020).  

Molecular studies examining desmoplasia maturity found that immature stroma was 

significantly associated with IHC-based expression of the EMT markers Zinc finger E-box 

binding homeobox 1 (ZEB1) and Twist-related protein 1 (TWIST1), and expression at both 

the mRNA and protein levels of Periostin, which is known to contribute to colorectal 

carcinogenesis (Hashimoto et al., 2022; Ma et al., 2020; Sueyama et al., 2021). In Vivo 

studies demonstrated that CRC cells implanted with immature stroma derived CAFs had 

significantly greater tumour growth and metastasis compared to those implanted with mature 

stroma derived CAFs. Additionally, immature CAFs expressed significantly higher levels of 

the secreted form of A Disintegrin And Metalloproteinases 9 (ADAM9s), and shRNA 

knockdown of ADAM9s abrogated the pro-tumourigenic of immature CAFs (Ao et al., 

2022). 
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1.3.5.7 Multi – Feature Pathological Assessment  

A 2002 study by Petersen and Colleagues demonstrated that combining multiple high 

– risk pathological features into a single score could provide significant additional prognostic 

value (Petersen et al., 2002). In this study peritoneal involvement, intramural and extramural 

venous invasion, marginal involvement, and tumour perforation were identified as 

independent and highly prognostic risk factors on multivariate analysis and were therefore 

investigated as a combinatorial assessment. Each feature was assigned a score; 1 if 

peritoneum involved ± ulceration, + 1 if venous invasion detected, + 1 if surgical margin 

involved or inflamed, + 2 if tumour has perforated bowel wall, to produce a maximum score 

of 5, although anything ≥ 3 is amalgamated into a single category identifying the highest risk 

patients. The four categories (0, 1, 2, ≥3) were each individually prognostic with 5 – year 

survival estimates of 94.2%, 79.5%, 54.3%, and 30.4% respectively, but were combined into 

a low – risk group (0/1) with a 5 – year survival of 85.7% and a high – risk group (≥2) with 

a 5 – year survival of 49.8%. This high vs low risk grouping was able to significantly stratify 

Dukes’ B patients for prognosis, thus identifying high risk Stage II patients that could benefit 

from adjuvant chemotherapy and more rigorous surveillance.   

 

1.3.6 The CRC Microenvironment  

Early investigations into CRC pathogenesis focussed on the independent role of 

specific factors predominantly determined pathologically from diagnostic H&E sections. 

However, advancements in a plethora of techniques have revealed the symbiotic relationship 

that the tumour has with its microenvironment (TME) throughout the course of its 

development and progression. The TME is a conglomerate of extremely heterogeneous 

cellular types and processes that contribute to tumourigenesis through synergistic and 

antagonistic means. The primary component of the TME is the extracellular matrix (ECM), 

a collagenous matrix (desmoplastic stroma) that is deposited around the tumour following 

degradation of the basement membrane, which facilitates local invasion through 

architectural remodelling (Goetz et al., 2011). The primary cellular component of the TME 

is the Cancer Associated Fibroblast (CAF), activated forms of normal fibroblasts which not 

only maintain the ECM in response to tumour derived cytokine signalling, but also play an 

active role in tumour growth and invasion through secretome alterations. CAFs are known 

to secrete growth factors and cytokines, such as Wnt2, that promote tumourigenesis and 

invasion (Aizawa et al., 2019), and ultimately metastasis (Nakagawa et al., 2004). Host 

inflammatory cells also comprise a substantial part of the cellular component of the TME, 
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both those that are part of normal mucosal surveillance and those recruited to the site of 

carcinogenesis. The prognostic role of inflammatory cells is dependent upon the type and 

density of those present in the TME, some such as neutrophils are known to have broadly 

pro – tumourigenic effects whereas natural killer (NK) cells and the majority of lymphocytes 

prohibit tumour invasion, and indeed some cells such as macrophages have conflicting 

implications of their role in CRC progression (Flavell et al., 2010; Norton et al., 2015). The 

TME additionally comprises multiple other processes, such as angiogenesis (De Smedt et 

al., 2015; Rmali et al., 2007), and indeed organisms, derived from the gut microbiota (Wong 

& Yu, 2019), that play important roles in CRC development and invasion. 

1.4 Subtyping of CRC 

1.4.1 Omics Based Subtyping  

The TNM staging criteria remains the prognostic and theragnostic gold standard in 

routine diagnostic pathology for CRC around the world. However, as noted in 1.3.4.3, 

longstanding issues in accurately determining the prognosis of patients with Stage II node 

negative disease and administering appropriate therapy to these patients has directed 

research to identify additional prognostic characteristics and develop novel prognostic 

classification systems than can address this unmet need. Advances in genomic and 

transcriptomic analysis techniques coupled with increasingly large, open – source datasets 

generated from clinical patient cohorts has positioned gene expression analysis at the 

forefront of methods being used to generate novel subtyping methodologies of CRC. Two 

such methodologies have recently demonstrated significantly prognostic and reproducible 

results for stratifying CRC patients: the Consensus Molecular Subtypes and the CRC 

Intrinsic Subtypes.  

 

1.4.1.1 Consensus Molecular Subtypes of CRC  

The Consensus Molecular Subtypes (CMS) were developed by Guinney and 

Colleagues in 2015 following the formation of an international consortium, The CRC 

Subtyping Consortium (CRCSC), aimed at elucidating whether decipherable subtyping 

patterns existed in existing gene expression datasets and analysis algorithms (Guinney et al., 

2015). To generate these subtypes, the CRCSC applied six, independently developed and 

validated subtyping algorithms with varying numbers of subtypes (2 x 3, 3 x 5, 1 x 6) to 18 

independent CRC gene expression data sets, N = 4151 patients, generated from a variety of 

gene expression platforms (Affymetrix, Agilent) and sample types (fresh – frozen, FFPE), 

that were uniformly pre – processed and normalized to minimize technical variation 
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(Budinska et al., 2013; De Sousa E Melo et al., 2013; Marisa et al., 2013; Roepman et al., 

2014a; Sadanandam et al., 2013; Schlicker et al., 2012). The outputs from these subtyping 

methodologies assigned six individual subtype labels to each sample which were then 

analysed using a network – based clustering approach to identify associations between the 

different subtyping methodologies. The result of this was the four CMS groups (Table 1.2) 

designated; CMS1 – MSI Immune, CMS2 – Canonical, CMS3 – Metabolic, CMS4 – 

Mesenchymal, with 13% of samples not assigned to a subtype listed as non – consensus. 

CSM1, the immune subtype, is characterised by increased expression of genes associated 

with inflammatory response, MSI, MMR deficiency, high frequency of BRAF mutations, 

and hypermutated and hypermethylated status. CMS2, the canonical subtype is characterised 

by CIN, SCNA resulting in high copy number gains in oncogenes and copy number losses 

of TSGs, left sided disease, and upregulation of WNT and MYC signalling targets. CMS3, 

the metabolic subtype, is characterised by CIMP – low disease, activating KRAS mutations, 

and aberrant metabolism. CMS4, the mesenchymal subtype, is characterised by TGF-β 

activation, advanced stage at diagnosis, overexpression of genes associated with stromal 

infiltration, mesenchymal phenotype, and angiogenesis induction. In addition to each 

subtype possessing distinct molecular signatures, they are individually prognostic with 

CMS1 having a notably better prognosis than the other subtypes with CMS4 conferring a 

notably poorer prognosis (Dienstmann et al., 2017; Guinney et al., 2015). Furthermore, 

retrospective analysis of subtype dependent response to chemotherapy regimens in publicly 

available patient data sets and clinical trial data has elucidated strong evidence that response 

to different chemotherapy could be predicted by the CMS. Studies have postulated that 

CMS1 tumours, due to the strong immunogenic response associated with this subtype, are 

likely to respond to targeted immunotherapy (Becht et al., 2016a). CMS4 tumours have been 

shown to respond better to irinotecan – based chemotherapy than oxaliplatin – based 

chemotherapy (Okita et al., 2018). CMS2 and CMS3 patients have both been shown to 

respond positively to FOLFOX chemotherapy with CMS2 showing further positive 

outcomes when administered anti – EGFR therapies such as cetuximab (Lenz et al., 2019; 

Trinh et al., 2017).  
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CMS 1 

MSI Immune 

CMS 2 

Canonical 

CMS 3 

Metabolic 

CMS 4 

Mesenchymal 

14% 37% 13% 23% 

MSI, CIMP High, 

Hypermutation 
SCNA High 

Mixed MSI Status, SCNA 

Low, CIMP Low 
SCNA High 

BRAF Mutations  KRAS Mutations  

Immune Infiltration 

and Activation 

WNT and MYC 

Activation 
Metabolic Deregulation 

Stromal 

Infiltration, 

TGF-β 

Activation, 

Angiogenesis 

Good Prognosis, 

Worse Survival 

After Relapse 

  

Worse Relapse 

Free and Overall 

Survival  

Table 1.2 Characteristics of the Consensus Molecular Subtypes. Molecular and 

Phenotypic characteristics of the four CMS groups. Adapted from Guinney et al., 2015. 

1.4.1.2 CRC Intrinsic Subtypes 

Following the development of the CMS, multiple groups independently published 

studies highlighting that the genetic signatures used to define adversely prognostic, stromal 

infiltrate – associated subtypes in multiple subtyping methodologies contained a 

disproportionate number of genes expressed by stromal cells, notably cancer associated 

fibroblasts (CAFs), which intrinsically display mesenchymal traits. It was theorized 

therefore, that the use of whole tumour lysates to generate the gene expression data sets that 

established these subtyping criteria is introducing a large amount of non – tumour material 

originating from the tumour microenvironment into the analyses. These non – tumour 

derived transcriptomic signatures displaying mesenchymal characteristics are subsequently 

being used to define mesenchymal subtypes while masking signatures originating from 

tumour cells (Calon et al., 2015; Isella et al., 2015).  

To address this issue, Isella and Colleagues aimed to develop a transcriptomic – 

based, tumour specific subtyping methodology that removed the effect of stromal gene 

signatures present in previous subtyping systems (Isella et al., 2017a). This was achieved 

through the use of Patient Derived Xenografts (PDXs), wherein the stromal component of 

the primary tumour is gradually replaced with murine constituents during the 

xenotransplantation process (Yoshida, 2020). The transcriptomes of 515 PDX samples 
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generated from 244 patients were analysed using human – specific probes and a non – 

negative matrix factorization clustering algorithm, resulting in the five CRC Intrinsic 

Subtypes (CRIS) denoted A – E, generated from an optimized cluster number. The authors 

note that the five subtypes can be grouped into two families based on shared characteristics, 

with CRIS – A / B being enriched for MSI tumours, right sided disease, mucinous histology, 

CIMP, and hypermutator phenotype, while CRIS – C / D / E are enriched for specific focal 

amplifications of known oncogenes such as MYC and aberrant WNT signalling. Specifically, 

CRIS – A is highly enriched for both BRAF – mutated MSI tumours and KRAS – mutated 

MSS tumours displaying MSI – like features, and metabolic deregulation. CRIS – B is 

characterised by mesenchymal signatures and high TGF – β signalling conferring pro – 

invasive traits. CRIS – C is characterised by high EGFR pathway signalling, CRIS – D by 

IGF2 overexpression, and CRIS – E by frequent mutations in KRAS and TP53(Isella et al., 

2017a). This subtyping methodology is an independent predictor for prognosis and similarly 

to the CMS, are predictive for response to anti – EGFR therapies such as cetuximab.  
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1.4.2 Histopathological Subtyping of CRC 

The CMS and CRIS subtyping methodologies represent an important step forward in 

precision medicine, examining the individual’s unique genetic constitution and using it to 

determine prognosis and guide therapeutic decision making will inherently improve survival 

outcomes in the future. However, they have seen little implementation clinically and face 

important roadblocks prohibiting their routine use in diagnostic pathology. Both subtyping 

methods are determined by modern transcriptomic techniques and in the case of the CRIS 

requires a PDX to be grown which, at present, are far too costly to implement in a diagnostic 

pathology lab and carry out for each CRC patient. Additionally, Isella and Colleagues note 

that the xenotransplantation process involved in determining the CRIS subtypes may alter 

or drive certain cellular processes that define some characteristics of the subtypes, meaning 

that translation of this data may not be an accurate representation of the tumour in situ. This 

lack of clinical translatability has directed research towards developing subtyping 

methodologies that can be determined utilising routinely produced materials, such as 

diagnostic H&E and IHC sections, to produce a more clinically actionable means of 

stratifying patients. Investigations into developing histology – based subtyping systems have 

produced two highly prognostic classification systems, the Glasgow Microenvironment 

Score and The Phenotypic Subtypes of CRC. 

 

1.4.2.1 Glasgow Microenvironment Score 

Park and Colleagues first introduced the Glasgow Microenvironment Score (GMS) 

in 2015 as a prognostic measure of the interaction between the tumour and the 

microenvironment (Park et al., 2015a). The GMS is a combinatorial score comprising two 

histology – based assessments of the tumour microenvironment that have been validated in 

a number of patient cohorts: the Klintrup – Mäkinen (KM) grading criteria of peritumoural 

inflammatory response and the Tumour Stroma Percentage (TSP, elsewhere in the literature 

referred to as the Tumour Stroma Ratio or TSR) as a measure of the relative stromal 

component of the tumour microenvironment.  

The prognostic significance of a prominent peritumoural inflammatory response in 

colorectal tumours has long been understood, with studies examining this association dating 

back to the early 1930’s (Maccarty, 1931a). Evidence of this prognostic association was 

strengthened by a series of studies, beginning with Spratt and Spjut in 1967, using diagnostic 

H&E sections to semi – quantitatively grade the intensity of both the peritumoural and 

intratumoural lymphocytic infiltrate, frequently coupled with additional immune cell types, 



29 

 

across all stages of disease and correlate this with patient outcomes, though with somewhat 

conflicting results (C. S. D. Roxburgh & McMillan, 2012; Spratt & Spjut, 1967; Thynne et 

al., 1980). This culminated in the work of Jass, who published the first iteration of a 

reproducible system of assessment for lymphocytic infiltrate at the invasive margin 

following a study identifying this response as a stage – independent, favourable prognostic 

factor in 447 Duke’s A – C rectal tumours (Jass, 1986). A year later, Jass and Colleagues 

further expanded upon this assessment by incorporating the criteria into a novel prognostic 

classification system of rectal (and by extension colonic) tumours, that additionally assessed 

the involvement of tumour growth with the bowel wall, morphology of the invasive margin, 

and the extent of nodal involvement to produce a cumulative score that stratified patients 

into four independently prognostic groups (Figure 1.5, Jass et al., 1987).  

 

Figure 1.5 Jass Prognostic Classification System of Rectal Cancer. Assessment criteria 

and scoring methodology of Jass and Colleagues novel prognostic classification system of 

rectal cancer. Adapted from Jass et al., 1987.  
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Subsequent studies utilised advances in immunohistochemical techniques to examine the 

prognostic effect of specific immune cell subtypes, with a particular focus on lymphocyte 

subsets, and conduct more quantitative forms of assessment through positive cell counting 

and image analysis. The standout work resulting from these developments is the 

Immunoscore, developed by Galon and Colleagues in 2006, a quantitative measure of CD3+ 

and CD45RO+ lymphocyte densities both at the invasive margin and within the tumour core 

to produce a highly prognostic combination score able to outperform TNM staging for 

predicting survival outcomes (Galon et al., 2006, 2014). While assessment methodologies 

of this type have significant clinical and prognostic benefit, the cost associated with 

producing additional IHC sections for each patient coupled with the use of proprietary image 

analysis software has severely limited the use in routine diagnostics, and as such, more 

readily translatable measures of inflammatory infiltrate are required.  

In 2005, Klintrup and Colleagues sought to expand further upon the work of Jass and develop 

a more reproducible assessment criteria of the peritumoural lymphocyte infiltrate that can 

be performed on clinical H&E sections. This work resulted in a four – point scoring system 

qualitatively describing common morphological features of the peritumoural inflammatory 

response, ensuring reproducibility between observers and institutions, that is independently 

prognostic for 5 – year survival (Klintrup et al., 2005). To stratify patients for survival, the 

four – point score was amalgamated into a two – point, high vs low inflammatory response 

score (Table 1.3) with associated 5 – year survival rates of 87.6% and 47%, respectively, 

and moderate to substantial interobserver agreement, with Cohen’s κ scores ranging from 

0.504 – 0.794, averaging 0.672.  
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Two – Point Scale Four – Point Scale Description of Grade 

Low Grade Inflammation 

Absent (0) 
No increase of 

inflammatory cells 

Mild (1) 

Mild and patchy increase of 

inflammatory cells at the 

invasive margin, but no 

evidence of invasion of 

tumour nests 

High Grade Inflammation 

Moderate (2) 

Inflammatory cells form a 

band – like structure at the 

invasive margin with some 

destruction of tumour 

islands 

Strong (3) 

Very prominent 

inflammatory reaction, 

forming a cup – like zone at 

the invasive margin, 

destruction of tumour 

islands was frequent and 

invariably present 

Table 1.3 Assessment Criteria of Klintrup – Mäkinen Grading System. Assessment 

criteria of each grade of inflammatory response according to the Klintrup – Mäkinen system 

and amalgamation into two – point scale. Adapted from Klintrup et al., 2005. 

This method of assessing the peritumoural inflammatory response from routinely 

produced diagnostic H&E sections has yet to be surpassed in terms of reproducibility and 

ability to predict survival outcomes, and with subsequent validation in multiple independent 

cohorts and additional cancer types, is the most probable candidate for implementation in 

diagnostic pathology (Huh et al., 2012; Mohammed et al., 2013; Richards et al., 2012, 2014; 

C. S. Roxburgh et al., 2013; C. S. D. Roxburgh & McMillan, 2012; C. S. D. Roxburgh et al., 

2009a).  

The tumour associated stroma is a prominent feature of the tumour 

microenvironment, comprising a variety of cellular types and dynamic processes that are 

known to play a vital role in the development, progression, and eventual spread of multiple 

solid malignancies. The predominant cell type in the stroma is activated forms of fibroblasts, 

known as Cancer Associated Fibroblasts (CAFs), which secrete growth factors, pro – 

angiogenic factors, cytokines, and metabolites which ultimately act to induce epithelial – 

mesenchymal transition (EMT) in tumour cells, resulting in a stem cell – like phenotype that 

contributes to tumour invasion, subsequent relapse, and metastasis (Calon et al., 2012a; 

Freeman et al., 2013; Merlos-Suárez et al., 2011; Vermeulen et al., 2010; Waghray et al., 

2013). Given the number of vital roles played by the stroma in adenocarcinomas and the 

associated clinical implications, a means of readily assessing the potential impact of the 
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stroma for the individual patient would be of great clinical utility. Initial studies investigating 

a link between the tumour associated stroma and prognosis focussed on qualitative 

morphological assessment of the type and maturity of the stroma with some examining the 

potential impact of varying proportions of stroma at the invasive margin (Halvorsen & Seimt, 

1989; Ueno et al., 2004; Ueno, Jones, et al., 2002b).  

In 2007, Mesker and Colleagues conducted a study investigating the carcinoma 

percentage (CP), the percentage of the tissue area covered by tumour the complementary 

percentage of which is the stromal percentage, in 122 Stage I – III CRC patients finding that 

low CP was an independent adversely prognostic factor for both DFS and OS (Mesker et al., 

2007). This was the first study investigating the link between prognosis and what would later 

become known as the Tumour Stroma Percentage (TSP) / Tumour Stroma Ratio (TSR) in 

CRC. Of note, is the methodology of this paper establishes robust principles of the TSP 

assessment that would later go on to be confirmed and repeatedly validated in multiple 

studies and cancer types, such as the use of the section showing the deepest point of tumour 

invasion, utilising the highest TSP FOV with cancer cells at all four edges to characterise 

the tumour, exclusion of necrosis and mucin from assessment, and the use of 50% TSP (CP 

in the original paper) to stratify patients for high vs low stromal component. Since this study, 

the TSP has been validated in various types of malignancies, such as oesophageal (Che et 

al., 2018), hepatocellular (Lv et al., 2015), cervical (Liu et al., 2014), breast (Kramer et al., 

2019), pancreatic (Leppänen et al., 2019), and gallbladder cancer (H. Li et al., 2017) with 

remarkable methodological consistency across the tumour types. In the setting of CRC, the 

TSP has been validated as an independent, adverse prognostic factor across all stages of 

disease in multiple geographically independent cohorts (Hynes et al., 2017a; Mesker et al., 

2009; Park et al., 2014b; van Pelt et al., 2016; West et al., 2010), has been shown to 

outperform tumour budding both in terms of prognostic stratification and interobserver 

reliability (M. A. Smit et al., 2021b), and identify high risk Stage II patients to augment the 

criteria used to determine chemotherapy regimens and improve survival (Huijbers et al., 

2013). While features such as budding are closer to clinical implementation due to the 

establishment and validation of a consensus assessment criteria (Lugli et al., 2017), the 

breadth of prognostic and theragnostic information provided by the TSP assessment has 

made its clinical utility very clear, and efforts to standardize reporting for inclusion in routine 

diagnostics have resulted in a prospective international reproducibility study (M. Smit et al., 

2019). 
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 The combination of these two metrics as assessed through the GMS criteria (detailed in 

Table 1.4) provides a granular insight into the interaction of the tumour with constituents of 

its microenvironment, as such, efforts to validate its potential utility have yielded promising 

data. 

 GMS 0 GMS 1 GMS 2 

KM Grade 

0/1 vs 2/3 
High Low Low 

TSP Status 

</> 50% 
Any Low High 

Cancer Specific 

Prognosis 
Good Intermediate Poor 

Table 1.4 Assessment Criteria of the Glasgow Microenvironment Score. Components 

and scoring methodology of the GMS and associated cancer specific prognoses.  

Initial validation of the GMS in 307 Stage I – III patients demonstrated a strong association 

with CSS, independent of TNM stage. The GMS stratified patients into three individually 

prognostic groups, with GMS0 (high KM, any TSP) possessing a 5 – year survival rate of 

89% whereas GMS2 (low KM, High TSP) possessed a four – fold increased risk of cancer 

related death and a 5 – year survival rate of 51%, and GMS1 (low KM, low TSP) a 5 – year 

survival rate of 75% with a near two – fold risk of death (Park et al., 2015a). Subsequent 

validation of the GMS in larger patient cohorts further demonstrated this prognostic 

capability, significantly stratifying 862 Stage I – III patients for DFS and RFS from a 

retrospective clinical cohort and 2912 Stage III and high – risk Stage II patients for DFS 

from a clinical trial derived, translational cohort (Alexander et al., 2021a). Furthermore, in 

the clinical trial derived cohort the GMS showed a significant association with chemotherapy 

regimens, demonstrating that GMS0 patients receiving FOLFOX chemotherapy had a 5 – 

year DFS rate of 88% whereas those receiving CAPOX possessed a 5 – year DFS rate of 

62%, an effect that was not seen in the other two GMS groups. It is also of note that this 

association was not seen in terms of chemotherapy duration, leading the authors to conclude 

this effect must be of biological origin (Alexander et al., 2021).  
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1.4.2.2 Phenotypic Subtypes of CRC 

Transcriptomics based subtyping methodologies provide remarkable insight into the 

molecular landscape of individual tumours, yet none of these systems have been 

implemented into routine clinical pathology due to the costly and time – consuming 

techniques used to conduct the analyses. Therefore, subtyping systems utilising routine 

histology offer a much more readily translatable approach to subtyping patients. To this end, 

Roseweir and Colleagues conducted a study looking to translate the phenotypic signatures 

of each of the CMS subtypes to a tissue – based assessment that may be easily conducted by 

a pathologist during the diagnostic process while retaining the prognostic and theragnostic 

properties of the system (Roseweir et al., 2017).  

In CMS 1, the MSI immune subtype, Roseweir and Colleagues noted that MSI was 

a key feature of this subtype and one that has an extensive body of research examining its 

role in the development of tumours and association with multiple prognostic measures 

(Popat et al., 2005b). However, given that IHC for MMR protein expression is already 

somewhat routinely performed for certain subsets of patients to determine MSI, this would 

add little additional prognostic information. Furthermore, there are other transcriptomic 

characteristics associated with CMS 1, for example CIMP and activating BRAF mutations, 

and as such, simply testing for MSI status may not be sufficient to accurately delineate this 

subtype through histological means. Therefore, the relationship between MSI tumours and 

other phenotypic characteristics was explored to elucidate another means of identifying CMS 

1 patients. It is understood that MSI tumours are associated with prognosis due to the effect 

of prominent local inflammatory responses, with multiple studies identifying that the 

presence of lymphocyte populations at the invasive margin and within the tumour core 

confers a significantly improved prognosis over MSS and immunogenically cold tumours 

and indeed that CMS 1 and CMS 4 associated with inflammatory gene expression (Becht et 

al., 2016b; De Smedt et al., 2015; Deschoolmeester et al., 2011; Park, Powell, et al., 2016). 

From this, Roseweir and Colleagues postulated that a histology – based measure of the local 

inflammatory response would sufficiently classify CMS 1 patients and examined the 

possibility of using either the Immunoscore or the Klintrup – Mäkinen system. Park and 

Colleagues conducted a study comparing the prognostic efficacy of both systems in the same 

patient cohort and found that each stratified patients for high vs low immune response to an 

almost identical degree, with the Immunoscore stratifying patients for CSS from 93% to 61% 

and the KM grade 88% to 66% (Park, McMillan, et al., 2016). Given that the use of IHC and 

proprietary digital pathology software is required to determine an individual’s Immunoscore, 
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it was determined that the KM grade was the most appropriate means by which to identify 

CMS 1 – like patients through histopathological assessment.  

In CMS 4, the mesenchymal subtype, a high number of SCNAs are the identifying 

feature of this subtype, specifically in genes relating to TGFβ expression, induction of 

angiogenesis, and increased stromal infiltrate although as previously stated, this may be due 

to the use of whole tumour extracts introducing a large numbers of CAF derived genes into 

the analyses. Nonetheless, TGFβ secretion by CAFs has been linked to adverse prognostic 

outcomes through promotion of metastasis and may indeed be associated with subtypes 

possessing stromally dense tumours (Calon et al., 2012b, 2015). Therefore, following on 

from work conducted prior to the establishment of the GMS identifying patients at increased 

risk of cancer related death and metastasis resulting from a high stromal component within 

the tumour microenvironment, the TSP presented a clinically validated means by which to 

stratify patients with a poor prognosis independent of lymphocyte infiltrate through 

histopathological assessment, and was identified as the optimal way to identify CMS 4 – like 

patients.  

The transcriptomic characteristics identifying CMS 2 and CMS 3 patients proved 

notably difficult to translate to tissue – based analysis. As with CMS 4, CMS 2 is discernible 

through SCNA analysis which is only achievable through whole genome sequencing, a 

technique with a considerable associated time burden. Roseweir and Colleagues noted that 

the SCNAs primarily affected the WNT and MAPK pathways in CMS 2, alterations in which 

would be detectable through IHC – based expression analysis, although antibodies that could 

be used to evaluate components of these pathways have yet to be diagnostically validated. 

Aberrant WNT signalling is crucial to the development of pre – malignant lesions and 

subsequent carcinoma progression (Najdi et al., 2011), and is often succeeded by 

upregulation of nuclear localisation of β – catenin, mediated either through mutation of β – 

catenin itself or activating KRAS mutations promoting nuclear translocation (Lugli et al., 

2007). A notable phenotypic characteristic associated with aberrant β – catenin function is 

an increased proliferative rate, positing two possible means by which to identify this subtype 

through tissue – based analysis: mitotic figure indices and Ki67 IHC. Though both markers 

provide an indication of the proliferative activity of the tumour through tissue – based 

assessment, it has been well documented that practically the two do not correlate, likely due 

to Ki67 being expressed at all stages of the cell cycle of proliferating cells while mitotic 

figures are only identifiable during specific stages of mitosis (Bouzubar et al., 1989), and as 

such, could identify different subtypes of patients. Mitotic figure indexing is conducted on 
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H&E sections, as opposed to Ki67 which requires IHC staining, however the method by 

which this is assessed is extremely time consuming, open to significant interobserver 

variability due to the nature of identifying mitotic figures, and in the setting of telepathology, 

would require high resolution scans of appropriate quality to be able to accurately identify 

mitoses. While Ki67 requires an additional section to be cut from the diagnostic block for 

IHC, it is a diagnostically validated biomarker used in routine breast cancer pathology to 

distinguish between Luminal A and Luminal B molecular subtypes (Goldhirsch et al., 2013), 

has been shown to have prognostic significance in CRC (Melling, Kowitz, Simon, et al., 

2016; Reimers et al., 2014), and importantly, was identified as a marker to distinguish a 

CMS 2 – like subtype in one of the methodologies comprising the CMS (Roepman et al., 

2014a) as well as having been shown to correlate with KRAS mutations in CRC (Kocián et 

al., 2011; Nash et al., 2010a).  

It was therefore determined that Ki67 IHC posed the most readily translatable and 

reliably reproducible means of identifying CMS 2 – like patients in a clinical setting. CMS 

3, the metabolic subtype, proved the most difficult to identify a specific biomarker to classify 

this subtype. KRAS mutations were also a common characteristic of this subtype, with ~75% 

of CMS 3 tumours harbouring mutations to this gene, however, given the low number of 

cases assigned to CMS 3, KRAS mutant tumours would likely align with one of the other 

three subtypes as a priority. Roseweir and Colleagues identified metabolic deregulation as 

the most prominent feature of CMS 3 tumours, however, studies associating aberrant 

metabolism with prognosis in CRC did so through gene expression analyses similar to that 

used in the development of the CMS (Vargas et al., 2014). As such, no appropriate biomarker 

could be identified to classify CMS 3 – like tumours through clinically translatable means 

and given that CMS 3 is the only subtype to show low proliferative activity, it was decided 

that CMS 3 – like tumours would be identified through low expression of the markers used 

to identify the other subtypes.  

This review into histological characterization of the phenotypic signatures of the 

CMS resulted in the determination of the Phenotypic Subtypes of CRC, a novel classification 

system able to stratify patients into four, individually prognostic groups denoted Immune, 

Canonical, Latent, and Stromal. The criteria initially proposed to assess this subtyping 

method was a combination of the two – scale KM grade (1.4.2.1), which is assessed with 

highest priority, the TSP stratified at </> 50% stromal component and assessed with 

secondary priority, and the Ki67 % positivity index (or proliferation index, PI) assessed with 
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tertiary priority and initially stratified at </> 50% PI but later changed to </> 30% PI 

following subsequent analysis in later studies (detailed in Table 1.5). 

 

Consensus 

Molecular 

Subtype 

CMS 1 

MSI Immune 

CMS 2 

Canonical 

CMS 3 

Metabolic  

CMS 4  

Mesenchymal 

Phenotypic 

Subtype 
Immune Canonical Latent Stromal 

KM Grade 

0/1 vs 2/3 
High Low Low Low 

TSP Status 

</> 50% 
Any Low Low High 

Ki67 

Proliferation 

Index </> 30% 

Any High Low Any 

Cancer Specific 

Prognosis 
Best Good Poor Worst 

Table 1.5 Assessment Criteria of The Phenotypic Subtypes of CRC. Assessment criteria 

for KM grade, TSP, and Ki67 %PI to determine the Phenotypic Subtypes, as established by 

Roseweir et al., 2017. Also shown are the CMS subtypes from which the Phenotypic Subtypes 

are derived and their associated CSS prognoses.  

Roseweir and Colleagues conducted an initial pilot study following the translational 

review to investigate the association between the newly established subtypes and CSS. In a 

cohort comprising 237 Stage I – III CRC patients, the Phenotypic Subtypes significantly 

stratified patients for CSS (P < 0.001) with the Immune subtype showing the best prognosis, 

the Canonical subtype showing intermediate good prognosis, the Latent subtype showing 

intermediate poor prognosis, and the Stromal subtype showing the poorest prognosis for CSS. 

Additionally, the Phenotypic Subtypes showed a statistically significant association with OS, 

although to a lesser extent than with CSS (P = 0.043, Roseweir et al., 2017). The prognostic 

potential of this novel subtyping methodology was further demonstrated in a subsequent 

study, where the Phenotypic Subtypes significantly stratified an 893 Stage I – III patient 

cohort (HR 1.15, P = 0.002), a 146 Stage I – III patient cohort where the assessment was 

conducted by an external group (HR 1.41, P = 0.006), and a 1343 Stage II – III patient 

clinical trial cohort (HR 1.19, P = 0.008) all for DFS. Furthermore, in the clinical trial cohort, 

the Immune subtype showed a significant association with chemotherapy regime, whereby 
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patients of this subtype had a significantly improved prognosis when administered FOLFOX 

over CAPOX. These data demonstrate that histology – based subtyping is highly translatable 

as well significantly prognostic and theragnostic.  

1.5 Digital Pathology 

The concept of conducting pathological analysis on media other than a physical glass 

slide is not a novel concept. In 1986, Ronald Weinstein described Telepathology as “the 

practice of pathology by visualizing an indirect image on a television screen rather than 

viewing a specimen directly through a microscope”, noting that this practice that had already 

been thoroughly investigated in the setting of radiography, but television monitors had yet 

to be designed with the appropriate number of lines of resolution to move the field of 

telepathology out of its infancy (Weinstein, 1986). The continuing development of 

telepathology in the following decades led to the eventual validation and approval by the 

FDA of high – resolution digital image scanners, capable of generating Whole Slide Images 

(WSI) at 40x objective magnification, and various slide viewing software systems to allow 

pathologists to view, share, and diagnostically assess routinely produced histology slides 

remotely. With the advent of Artificial Intelligence for image segmentation tasks, the next 

step for the clinical application of digital pathology is the incorporation of targeted image 

analysis algorithms to aid in the diagnostic workflow, a notion that has been gaining traction 

over recent years. 

1.5.1 Traditional Image Analysis 

Investigations of the potential of cellular subtyping through automated morphometry 

date back to the mid – twentieth century, with characteristics such as cell area and nuclear 

diameter being examined to identify malignant cells in cervical smears (Spriggs, 1969). This 

paradigm of taking qualitative features used by pathologists to identify clinically relevant 

morphologies and translating them to quantitative assessment by assigning measurable 

values forms the backbone of traditional image analysis, although this methodology is still 

relevant and routinely utilised today. The development of histological staining techniques 

such as IHC (and later immunofluorescence, IF) provided ground truth for cellular subtyping 

and coupled with the high throughput medium of Tissue MicroArray (TMA), prompted the 

development of image analysis algorithms able to generate clinically relevant data (Camp et 

al., 2002).  

Early image analysis studies were reliant upon the use of handcrafted feature vectors 

and manual annotation of tissues and cells of interest to quantify meaningful morphologies 

on histology images (Gurcan et al., 2009), however, careful and targeted application of these 
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variables demonstrated the impact that image analysis could have on disease prognosis. 

Mitmaker and Colleagues in 1991, demonstrated that nuclear shape factor derived from 

colorectal histology images was able to stratify 100 Dukes’ A – C patients for survival to a 

greater significance than Dukes’ grade and histological differentiation, with a hazard ratio 

of 11.40 (Mitmaker et al., 1991). This study had a significant drawback however, in that 

generating the nuclear shape data to conduct the analysis required manual annotation of fifty 

interphase cells per patient, taking 20 – 30 minutes to annotate a single case, thus not 

delivering on the promise of image analysis to reduce the time burden of generating 

clinically relevant quantitative data. Subsequent developments made in automated nuclear 

segmentation vastly reduced the annotation requirement for image analysis studies and 

improved the quality of association of outputs from algorithms with clinical outcomes 

(Bamford & Lovell, 2001). Automated cell detection permitted investigation into the 

prognostic role of a variety of biomarkers based on sub cellular localization. In the setting 

of CRC, elevated levels of nuclear β – catenin quantified through automated assessment of 

IF labelled TMA sections from 310 patients, showed an association with increasingly poor 

prognosis where pathologist assessment failed to significantly stratify the same patients 

(Camp et al., 2002). A similar study in 583 CRC patients investigating the effect of MET 

localisation, quantified automatically on IF labelled TMA sections, identified the ratio of 

membranous to cytoplasmic expression as an independent prognostic factor in Stage I and 

II disease (Ginty et al., 2008). Interestingly, when the same study utilised IHC stained TMA 

sections instead of IF, no significant association was found between MET expression and 

prognosis, highlighting the importance of appropriate staining modalities for image analysis 

applications. The next task faced by image analysis in furthering its clinical utility is global 

tissue segmentation and classification, the ability of algorithms to automatically distinguish 

important tissue morphologies to further reduce the need for manual annotation of regions 

of interest (ROI) for analysis. Some studies utilising machine learning algorithms such as 

support vector machines (SVM) and random forest coupled with additional feature 

descriptors such as texture measurements showed promise in certain classification tasks 

(Kather et al., 2016; Komura & Ishikawa, 2018), however, it would not be until the 

widespread application of deep learning methodologies to digital pathology that reliably 

accurate tissue segmentation translatable across large numbers of patients became a reality.  
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1.5.2 Deep Learning in Pathology Image Analysis 

The theory underpinning neural networks, the foundation of modern deep learning 

research, is not a novel concept. The studies of McCulloch and Pitts in 1943 and Rosenblatt 

in 1958 describe the fundamental principles of artificial neurons that are able to learn from 

data through self – adjusting weights and thresholds, conceptually derived from the function 

of biological neurons (McCulloch & Pitts, 1943; Rosenblatt, 1958). However, it would take 

another 50 years of theoretical and technological development to begin to realise the 

potential of neural networks. The performance superiority of neural networks was first 

actualised in 2012 with the development of AlexNet, a GPU implementation of a neural 

network architecture utilising convolutional functions (termed convolutional neural 

networks, CNNs) first described in the work of Fukushima and expanded upon with the 

development of LeNet (Fukushima & Miyake, 1982; Krizhevsky et al., 2012; LeCun et al., 

1998). While AlexNet was not the first CNN, its architecture incorporated novel features 

that would become standard approaches in subsequent models, such as the use of Rectified 

Linear Units (ReLU) instead of the traditional tanh function which drastically reduced 

training time and the use of dropout, whereby the output of hidden neurons with a given 

probability (usually 0.5) is set to 0, which reduces model overfitting by only activating a 

subset of neurons that contribute positively to the classification (Hinton et al., 2012). These 

developments resulted in AlexNet comprehensively winning the 2012 ImageNet Large Scale 

Visual Recognition Challenge, an image classification competition involving 15 million 

images labelled with 22000 classes, with a top – 5 error rate of 15.3% compared to the second 

– place top – 5 error rate of 26.2%. Following the development of AlexNet, CNNs were soon 

being applied to histology image tasks, concurrent with the development of biomedical 

image specialised network architectures that were able to better handle the gigapixel WSI 

images, such as U-net (Ronneberger et al., 2015a). These later network architectures would 

eventually be included in off the shelf image analysis software packages such as Visiopharm 

(Watson et al., 2020)and HALO (I. P. Nearchou, Lillard, et al., 2019a), enabling tissue – 

based deep learning studies to be conducted without high level programming requirements 

in settings. 

Early studies utilising CNNs in histology image analysis focussed primarily on 

survival prediction, slide – level classification, and computer – aided diagnosis (CAD). One 

of the first disease modalities thoroughly studied through deep learning was that of prostate 

cancer. This is likely due to the availability of a vast quantity of needle core biopsies and the 

fact that the Gleason grading system, used as the primary prognostic tool, is a subjective 

morphological pattern – based assessment with notoriously variable interobserver agreement 
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that would therefore lend itself well to interpretation by neural networks. Initial attempts to 

automate Gleason grading through deep learning yielded promising results although on 

limited datasets with homogenous grades (N. Zhou et al., 2017). A 2018 study by Arvaniti 

and Colleagues comparing the best performing network architectures of the time showed 

that MobileNet (Howard et al., 2017) based assessment of Gleason grading on TMA cores 

could accurately grade cases concurrently with specialist pathologists, identify relevant 

morphologies to determine grade, and prognostically stratify patients for DFS to a greater 

significance than pathologist’s assessment (Arvaniti et al., 2018). In the field of CAD, a 

seminal work published by Campanella and Colleagues, a model trained and validated on 

44,732 prostate, skin, and axillary lymph node slides from 15,187 patients, totalling a pixel 

count 88.4x that of the ImageNet dataset, without any prior curation or annotation achieved 

an unprecedented level of accuracy for detection of potentially malignant abnormalities, with 

a AUCs >0.98 for all cancer types tested (Campanella et al., 2019a). Sections were binarily 

labelled at the slide – level for the presence or absence of cancer for training, tiled into 224 

x 224 – pixel images, and sections classified as positive if a single tile was positive for cancer, 

the potential clinical impact of which is a 65 – 75% reduction in the number of sections 

assessed by a pathologist while retaining 100% sensitivity. This study resulted in the 

production of the first FDA approved, deep learning – based CAD system.  In the setting of 

breast cancer, an important prognostic assessment is that of identifying metastatic foci in 

axillary sentinel lymph node resections, however, this is time – consuming and difficult even 

for experienced pathologists. Therefore, in 2016 the CAMELYON16 competition was 

launched to assess the ability of deep learning models to identify metastatic breast cancer on 

node resection slides (Bejnordi et al., 2017). On 129 nodal WSI (38% positive), the top 

performing algorithm achieved an AUC = 0.994, outperforming time – constrained 

pathologist assessment (AUC = 0.810). Subsequent studies have shown that CAD in this 

task significantly improves the detection rate for lymph nodes positive for metastatic breast 

cancer (Steiner et al., 2018). 

In the setting of CRC, initial studies involving deep learning were primarily targeted 

towards prediction of disease specific survival from WSI, establishing the paradigm of 

neural networks acting as biomarkers themselves, as opposed to assessing known biomarkers. 

In these types of studies, no annotation of known pathological morphologies is performed, 

instead, slide – level annotation such as in Campanella et al., 2019, is performed for known 

survival outcomes to then allow the network to extract prognostically significant 

morphologies without supervision. This approach has shown promise in predicting survival, 

with Bychkov and Colleagues showing that a dichotic digital risk score determined from 
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TMA cores was able to significantly stratify 420 Dukes’ A – D patients, outperforming 

pathologist assessment of a patient being at high or low risk based on just the information 

available to them on the TMA core (Bychkov et al., 2018a). Similarly, Skrede and 

Colleagues developed a novel deep learning biomarker that significantly stratified 1122 

patients for cancer specific survival and was correlated with known prognostic markers but 

outperformed them in terms of prognostic stratification (Skrede et al., 2020). While deep 

learning biomarkers have the potential to amalgamate the prognostic information from all 

morphologies available to them on WSI and weight their importance in a single model, 

theoretically providing a more accurate prognosis, the question of patient trust is consistently 

raised whenever new studies are published. Indeed, techniques such as gradient – weighted 

class activation mapping, Grad – CAM (Selvaraju et al., 2016; Yosinski et al., 2015), do 

exist to aid in removing the “black – box” label that biomarkers of this nature have, deep 

learning has yet to see implementation in clinical pathology and it is likely that the first 

algorithms to see use will be targeted towards known biomarkers with high interobserver 

variability.  

To this end, more recent deep learning studies in CRC have turned to established 

biomarkers as inputs for model training. One biomarker that has seen a recent resurgence in 

interest is that of MSI. It is well known that MSI tumours possess distinct morphological 

characteristics that have long been used by pathologists to identify patients to put forward 

for molecular testing (Greenson et al., 2003; Halvarsson et al., 2008). Multiple studies have 

now demonstrated that deep learning models are able to predict MSI status from H&E WSI 

to an extremely accurate degree, with AUROC values up to 0.931, often outperforming 

pathologists in the same task (Kather, Pearson, et al., 2019; Yamashita et al., 2021). Studies 

such as these demonstrate the synergistic way in which pathologists could work with deep 

learning algorithms to aid in directing patients for additional molecular testing with greater 

confidence. As such, future work in this field is becoming more directed towards 

strengthening the interpretability of more novel biomarkers that have yet to see clinical 

implementation, such as tumour – associated stroma quantification (Geessink et al., 2019; 

Hacking et al., 2022), immune cell subtyping (Vayrynen et al., 2020), semantic tissue 

segmentation for interrogating prognostic morphologies (Graham et al., 2019; Pai et al., 

2021), studying the spatial relationships between the tumour and its microenvironment (I. 

Nearchou et al., 2021; I. P. Nearchou, Lillard, et al., 2019b), and translating molecular 

subtypes to clinical specimens (Sirinukunwattana et al., 2021).  
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1.5.3 Translation of Digital Pathology to Clinical Practice 

The use of digital pathology in the diagnostic setting offers a range of benefits to 

pathologists, such as decentralization, which is of particular interest in clinical trials and 

could aid in bridging socioeconomic gaps in countries where it is difficult to deliver timely 

specialist histopathological diagnosis (Pell et al., 2019). Despite initial resistance to the 

adoption of WSI assessment over traditional glass slides as the standard for routine diagnosis, 

many pathology departments worldwide are making the transition to digital pathology.  

In 2013, the College of American Pathologists (CAP) produced a set of 12 guidelines 

for validating WSI for diagnostic purposes via assessment of interobserver agreement 

between glass slides and WSI, which were subsequently reaffirmed in 2022 (Evans et al., 

2022; Pantanowitz  L et al., 2013). These guidelines formed the basis of multiple validation 

studies that established non-inferiority of WSI assessment to glass slide assessment in a 

variety of diagnostic settings, with studies additionally noting that in cases where clinically 

significant discordance was observed, the root cause was easily identifiable, predictable, and 

avoidable (Snead et al., 2016; Thrall et al., 2015). While some data has shown that WSI 

assessment incurs an increased time burden, it does not significantly impact turnaround times 

and is indeed ameliorated following training and adjustment (Hanna et al., 2019; Mills et al., 

2018). In the UK, this body of evidence demonstrating non-inferiority of pathological 

reporting from WSI in the clinical setting led to the Royal College of Pathologists (RCPath) 

issuing best practice recommendations for the implementation of digital pathology, resulting 

in the widespread adoption of digital pathology as the standard for primary diagnosis in 

pathology departments (Cross et al., 2018). Indeed, this move towards primary reporting 

from WSI and decentralization paid dividends during the COVID-19 pandemic, where the 

necessity of remote work prompted an increased uptake of digital pathology for primary 

diagnosis within pathology departments, as well as for pathology teaching in academic 

departments. The use of digital pathology, coupled with appropriate guidelines for remote 

work, during this time facilitated continuing diagnostic practice, while easing workforce 

crises and mitigating the impact to reporting turnaround times (Browning et al., 2021; 

Williams et al., 2020).  

While adoption of digital pathology for primary diagnosis has become more 

commonplace in recent years, the use of image analysis algorithms in the diagnostic setting 

has yet to see widespread implementation. By removing the need for pathologists to 

labouriously and time consumingly count hundreds of positive cells from IHC slides, an 

image analysis algorithm using a standardized staining and assessment protocol would be of 
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considerable benefit to already stretched pathology departments. Such algorithms, and 

indeed the regulatory approval thereof, are not a recent invention. In breast cancer, 501(k) 

clearance from the US FDA for image analysis algorithms able to clinically analyse the five 

key IHC based markers for molecular subtyping; ER, PR, HER2, Ki67, and p53, was granted 

to Roche Ventana a decade ago (Nassar et al., 2011; Welsh et al., 2013). Since then, 

subsequent image analysis algorithms have also gained FDA approval for clinical use with 

HER2 scoring after demonstrating non-inferiority to manual assessment and have been 

accompanied by best practice guidelines from the College of American Pathologists (CAP) 

(Bui et al., 2019; Qaiser et al., 2018; Trahearn et al., 2017). Furthermore, in addition to 

reducing equivocal HER2 cases, the HER2-Connect image analysis algorithm produced by 

Visiopharm has demonstrated accurate and reliable assessment of HER2 IHC in both breast 

and gastro-oesophageal adenocarcinomas, highlighting the potential translatability of such 

algorithms to a range of clinical applications (Brügmann et al., 2012; Koopman et al., 2018). 

Despite the fact that there are now more than 30 image analysis algorithms with regulatory 

approval and best practice guidelines for their implementation, validation, and maintenance, 

their use is yet to become routine and is often at the discretion of the pathologist and 

pathology department (Lara et al., 2021).  

The advent of AI has the potential to expedite the adoption of image analysis in 

clinical practice and transform the diagnostic histopathology workflow. The most imminent 

application of AI to diagnostic pathology is the refinement of existing image analysis 

algorithms to assuage the tedium of counting individual cells and meaningfully link the 

outputs of these algorithms to clinical decision making. However, it is the image rich nature 

of pathology as a specialty that is of particular interest to those looking to implement AI in 

clinical practice. The move towards a fully digitised diagnostic workflow over the past 

decade has created a vast repository of training data for AI-based computer vision models, 

laying the foundation for pathology to become an AI integrated specialty. This is clearly 

evidenced by the surge in publications combining AI with pathology with 3398 studies being 

published between 2010-2020, over 500 more than radiology, the next most frequently 

published specialty looking to integrate AI (Meskó & Görög, 2020).  

Although interest in AI within the clinical setting is ever increasing, there are still 

significant barriers, both regulatory and in terms of infrastructure, to making it part of the 

routine diagnostic workflow. There are currently few, if any, protocols in place for the initial 

and continuing validation of any clinically implemented AI system, validation of any 

training and reference datasets notwithstanding, but steps are being taken to address this. In 
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2018, the UK Research and Innovation (UKRI) agency awarded £50 million through the 

Innovate UK scheme to create 5 centres of excellence for Digital Pathology and clinical AI 

(GOV.UK, 2018). The aim of these centres is to establish the infrastructure and regulatory 

framework to enable the NHS to capitalise on advances in AI technology while ensuring its 

safe and effective implementation. These centres are set up to address individual components 

of the implementation process, for example, the Industrial Centre for AI Research in Digital 

Diagnostics (I-CAIRD) based in Scotland is focussed on using a collaborative network of 

clinicians, academics, and industry partners to identify clinical questions that would benefit 

from AI and develop the means by which to address them. While PathLAKE, based at the 

University Hospitals Coventry and Warwickshire NHS Trust, is focussed on the systems 

infrastructure to create a depository for the vast quantities of data required for clinical facing 

AI, while ensuring adherence to patient data confidentiality regulations and securities. 

Additionally, in 2019, the National Cancer Research Institute (NCRI) Cellular & Molecular 

Pathology Initiative (CM-PATH) organised a joint conference with the British In Vitro 

Diagnostics Association (BIVDA) to understand the current landscape of AI-based 

pathology tools and establish guidelines for all stages of the development and deployment 

lifecycle of such tools within clinical practice (Colling et al., 2019).  

While opinions on when and how it will be applied within clinical practice are still 

mixed, it is clear that AI will inevitably play a role in the future of medicine, with pathology 

appearing to be the frontrunner as the first specialty to undergo revolution. The consensus 

amongst subject matter experts is, that by 2030, AI will increase the accuracy and aid in the 

standardization of diagnoses, improve detection of rare events, make assessments more 

quantitative, and improve the completeness and quality of pathological reporting, all of 

which will fundamentally bolster the quality of treatment that patients receive (Berbís et al., 

2023).  
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1.6 Aims 

This thesis aims to investigate the application of various image analysis approaches 

to novel histological biomarkers associated with prognosis in CRC. While the TNM staging 

criteria remains the gold standard for clinical prognosis of CRC, research is continually 

identifying novel features of the CRC microenvironment with prognostic and theragnostic 

significance that can be assessed from routinely produced, diagnostic H&E sections or with 

supplementary IHC. However, these microenvironment features have seen little clinical 

implementation due to variable interobserver agreement arising from non – standardised 

assessment criteria. It would therefore benefit the clinical application of these assessments 

to be conducted through image analysis, to ensure their reliability and reproducibility. To 

investigate potential of using image analysis for this task, the objectives of this study are as 

follows: 

1. Develop image analysis methodologies to translate three novel, histological 

biomarkers to quantitative, digital pathology – based assessment: the Klintrup – 

Mäkinen grading criteria of peritumoural inflammatory response, the Tumour – 

Stroma Percentage assessment of stromal density, and the Ki67 Proliferative 

Index.  

2. Validate digital pathology assessments for prognostic significance and determine 

the translatability of the algorithms across multiple, independent patient cohorts. 

3. Investigate the extent to which image analysis can faithfully recreate the manual 

histopathological assessment and statistically analyse the agreement between the 

two. 

4. Investigate the use and prognostic significance of applying combinations of 

multiple image analysis algorithms to stratify patients according to novel CRC 

classification system criteria.
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2. Materials and Methods 
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2.1 Patient Cohorts 

2.1.1 Norway Cohort 

The Norway Cohort consisted of 299 Stage II -III CRC patients undergoing 

potentially curative resection between 2005 and 2015 at Kristiansand, Arendal, Flekkefjord, 

and Oslo Hospitals. Tumours were staged using the sixth edition of the AJCC / UICC TNM 

Staging criteria, and clinicopathological data was obtained from pathology reports. Follow 

up data was last collected in 2017, and at this time 25 (8.4%) patients had died from primary 

disease, 51 (17.1%) patients had died from other causes, and 222 (74.3%) patients were still 

alive of which 8 (2.7%) had recurrent disease. Cancer specific survival (CSS) as measured 

from date of surgery to date of death from cancer was used as the primary survival outcome 

and the mean survival time was 45 months. (Park et al., 2020). 

2.1.2 Glasgow Development Cohort  

The Glasgow Development Cohort consisted of 272 stage II – III CRC patients 

undergoing potentially curative resection between 1997 – 2007 at the Glasgow Royal 

Infirmary Hospital. Tumours were staged using the fifth edition of the AJCC / UICC TNM 

Staging criteria, and clinicopathological data was taken from the pathology reports issued 

following resection. Follow up data was last collected in 2013, and at this time 95 (34.9%) 

patients had died of primary disease, 68 (25.0%) had died of other causes, and 109 (40.1%) 

were still alive. CSS as measured from the date of surgery to the date of death from cancer 

was used as the primary survival outcome and the mean survival time was 87 months. 

Safehaven Number: GSH / 18 / ON / 007. (Park et al., 2015a) 

2.1.3 Glasgow Validation Cohort 

The Glasgow Validation Cohort consisted of 758 stage I – IV CRC patients 

undergoing potentially curative resection between 2000 – 2007 at the Glasgow Western 

Infirmary and Stobhill Hospitals. Tumours were staged using the fifth edition of the AJCC / 

UICC TNM staging criteria and clinicopathological data was taken from the pathology 

reports issued following resection. Follow up data was last collected in 2017 and at this time 

229 (30.2%) of patients had died of primary disease, 264 (34.8%) had died of other causes, 

and 246 (32.5%) were still alive. Follow up data was missing for 19 (2.5%) of patients. CSS 

as measured from the date of surgery to the date of death from cancer was used as the primary 

survival outcome and the mean survival time was 83 months. Safehaven Number: GSH / 18 

/ ON / 007. (Park et al., 2015a).  
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2.1.4 Glasgow Screening Cohort 

The Glasgow Screening Cohort consisted of 159 T Stage I – II CRC patients who 

underwent surgical resection following screen-detection by faecal occult blood test (FOBT) 

under the Greater Glasgow and Clyde (GGC) NHS board between 2009 – 2011. Tumours 

were staged using the seventh edition of the AJCC / UICC TNM staging criteria and 

clinicopathological data was taken from the pathology reports issued following resection. 

Follow up data was last collected in 2018 and at this time 16 (10.1%) patients had died of 

primary disease, 13 (8.2%) had died of other causes. CSS as measured from date of surgery 

to the date of death from cancer was used as the primary survival outcome and the mean 

survival time was 85 months. (Mansouri et al., 2016).  

2.1.5 Glasgow Royal Infirmary Cohort 

The Glasgow Royal Infirmary (GRI) Cohort consisted of 787 Stage I – III CRC 

patients undergoing potentially curative resection at the Glasgow Royal Infirmary Hospital 

between 1997 – 2012. Tumours were staged according to the fifth or sixth edition of the 

AJCC / UICC TNM staging criteria and clinicopathological data was taken from the 

pathology reports issued following resection. Patients were followed up for at least 3 years 

and the last follow up data was recorded in 2020, at this time 231 (29.4%) patients had died 

of primary disease, 277 (35.2%) had died of other causes, and 277 (35.2) were still alive, 

with survival data missing for 2 patients. CSS as measured from date of surgery to the date 

of death from cancer was used as the primary survival outcome and the mean survival time 

was 93 months. Safehaven Number: GSH / 21 / ON / 009. (Alexander et al., 2021b) 

2.1.6 TransSCOT Clinical Trial Cohort 

The TransSCOT Clinical Trial Cohort consisted of 2913 high risk Stage II or Stage 

III patients from the SCOT international, randomised, phase 3, non-inferiority trial, who 

underwent surgical resection between 2008 – 2013 within the UK. Patients were staged using 

the seventh edition of the AJCC/UICC TNM Staging criteria. Patients received either 3 or 6 

months of adjuvant chemotherapy via random allocation. Chemotherapy given was either a 

CAPOX (capcitabine/oxaliplatin) or FOLFOX (bolus with 5-flurouracil with oxaliplatin) 

regimen determined by the clinician. Patients were followed up for at least 3 years and at 

last follow up, with disease-free survival as measured from the date of randomization to date 

of recurrence at any location or death from any cause being the primary survival outcome. 

At last follow up, 755 (25.9%) patients had recurrence / died, 2157 (74.0%) patients were 

still alive, and follow up data was missing for 1 patient, with the mean survival time being 

35 months. NHSGGC Biorepository 16/WS/0207. (Roseweir et al., 2018a) 



50 

 

2.2 Histochemical Staining 

2.2.1 Haematoxylin and Eosin Staining 

2.2.1.1 Dewaxing and Rehydration  

Formalin Fixed Paraffin Embedded (FFPE) CRC tissue sections were deparaffinized 

in Histoclear, then rehydrated through a descending alcohol gradient consisting of absolute 

EtOH, 95% EtOH, 90% EtOH, 80% EtOH, 70% EtOH, 50% EtOH, 30% EtOH, and washed 

in deionized water. 

2.2.1.2 Staining and Mounting 

Sections were stained in Harris Haematoxylin for 3 minutes and rinsed initially in 

deionized water, and then washed in running tap water. Sections were then dipped in acid 

alcohol (3% HCl in 70% EtOH), rinsed in tap water, and then in deionized water. Sections 

were then stained in Eosin and dehydrated in an ascending alcohol gradient consisting of: 

30% EtOH, 50% EtOH, 70% EtOH, 80% EtOH, 90% EtOH, 95% EtOH and absolute EtOH. 

Sections were then placed in Histoclear and coverslipped using Omnimount Histological 

Mounting Medium (National Diagnostics, Atlanta, GA, USA).  

 

2.2.2 Ki67 Staining 

2.2.2.1 Dewaxing and Rehydration 

FFPE CRC sections were dewaxed in Histoclear and rehydrated through a 

descending alcohol gradient of absolute EtOH, 90% EtOH, 70% EtOH. Sections were then 

washed in running tap water. 

2.2.2.2 Antigen Retrieval  

Antigen retrieval was conducted via heat induced epitope retrieval (HIER) in pH8 

Tris-EDTA buffer. HIER buffer was pre-heated prior to addition of the sections, brought to 

pressure with sections added, and heated under pressure. HIER vessel was depressurised, 

allowed to cool, and the sections were washed in running water.  

2.2.2.3 Blocking Procedures 

Sections were then blocked for endogenous peroxidase activity in 3% H2O2 and 

rinsed in running tap water. Sections were then blocked for non-specific antibody binding 

using a 10% Casein solution made up in antibody dilution buffer at room temperature, after 

which the blocking solution was blotted from the slides. 
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2.2.2.4 Antibody Conditions 

The sections were incubated with the mouse anti-human Ki67 primary antibody 

(Dako, Agilent Technologies, Cheadle, UK) at 4°C overnight. Following primary 

incubation, sections were washed in Tris Buffered Saline (TBS), then incubated with 

ImmPRESS anti-rabbit/mouse secondary antibody (MP-7500, Vector Laboratories, 

Burlingame, CA, USA) at room temperature, and washed in TBS. 

2.2.2.5 Staining and Counter Staining 

Sections were stained using DAB chromogenic substrate (SK4001, Vector 

Laboratories, Burlingame, CA, USA) until brown precipitate formed, then washed in 

running tap water. Sections were counterstained in Harris haematoxylin, rinsed in running 

tap water, dipped in 1% acid alcohol (HCl in EtOH), and blued in Scott’s Tap Water 

Substitute (80mM Magnesium Sulphate, 40mM Sodium Hydrocarbonate in distilled water), 

before rinsing in running tap water. 

2.2.2.6 Dehydration and Mounting 

Sections were dehydrated in an alcohol gradient of 70% EtOH, 90% EtOH, absolute 

EtOH, cleared in Histoclear, and coverslipped using Omnimount Histological Mounting 

Medium (National Diagnostics, Atlanata, GA, USA). 

 

2.3 Histopathological Assessment 

2.3.1 Klintrup-Makinen Grading  

The Klintrup-Makinen (KM) grade was used as the assessment of the local 

inflammatory response at the invasive margin of the tumour taken from the deepest point of 

invasion. Briefly, grading was conducted using a four-point scale at the invasive margin as 

follows(Klintrup et al., 2005): 0 – no evidence of increase in inflammatory cells, 1 – patchy 

immune response along invasive margin, 2 – inflammatory response forming a band like 

structure across a significant portion of the invasive margin, 3 – florid cup-like infiltrate at 

margin with evidence of tumour island destruction. Subsequently, the four-point score was 

amalgamated into weak or strong immune responses with grades 0-1 being classed as “weak” 

immune response and grades 2-3 classed as “strong” immune response.  
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2.3.2 Tumour – Stroma Percentage 

The relationship between the tumour and associated desmoplastic stroma was 

assessed via the Tumour-Stroma Percentage (TSP) on whole H&E sections from the deepest 

point of invasion as previously described(Park et al., 2014b). A representative intratumoural 

area was selected and assessed for the percent of the area covered by desmoplastic stroma, 

excluding areas of necrosis, in 5% increments. Patients were graded as TSP-Low if the 

stromal area was <50% and TSP-stroma if the stromal area was >50% (Park et al., 2014b).  

Figure 2.1 Klintrup-Makinen Grading. H&E sections demonstrating low (left) vs high 

(right) KM grade. High KM grades show a band or florid cup like structure of lymphocytes 

at the invasive margin of the tumour and confer a better prognosis, low KM grades show 

little to no evidence of lymphocyte infiltrate.  

Figure 2.2 Tumour Stroma Percentage. H&E sections demonstrating high (> 50%, left) TSP 

and low (<50%, right) TSP. Patients with stromal dense tumours have a worse disease specific 

prognosis.  
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2.3.3 Proliferation Assessment via Ki67 IHC 

Assessment of the proliferative capacity of the tumour was determined using 

quantitative assessment of Ki67, a marker expressed only in proliferating cells, via % 

positivity on IHC stained sections (detailed in 2.2). On full sections, this was assessed by 

selecting 3 fields of view within the tumour core, counting 100 cells at random and averaging 

the % positivity across the three areas. On TMAs, the same assessment was carried out but 

with one area assessed per core, if multiple cores per patient were present, then the scores 

were averaged across the cores per patient.  

  

 

 

 

 

 

 

 

 

Figure 2.3 Ki67 Positivity Index. Tissue Micro-Array cores stained via IHC showing low 

(<30%, left) and high (>30%, right) Ki67 %Positivity Index. In the context of CRC, patients 

with low Ki67 %PI have a greater disease specific prognosis.  
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2.3.4 Glasgow Microenvironment Score 

The relationship between the tumour, local inflammatory response, and stromal 

component was assessed via the Glasgow Microenvironment Score (GMS) on H&E – 

stained sections as previously described (Park et al., 2015a). Briefly, sections were initially 

assessed for the KM Grade, and patients with high local inflammatory response were 

assigned to GMS0, then patients with low local inflammatory response were assessed for the 

TSP and stratified so that high-stroma patients were assigned GMS2, and low stroma patients 

were assigned GMS1.  

 

 GMS 0 GMS 1 GMS 2 

KM Grade 

0/1 vs 2/3 
High Low Low 

TSP Status 

</> 50% 
Any Low High 

Cancer Specific 

Prognosis 
Good Intermediate Poor 

Table 2.1 Glasgow Microenvironment Score. Categorization of each GMS group in 

relation to the KM Grade and TSP Score. Patients with high (2/3) KM grade are assigned 

GMS0 with priority, patients with high (>50%) TSP are then assigned GMS2 and patients 

low for both scores are assigned GMS1. 
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2.3.5 Colorectal Cancer Phenotypic Subtypes 

The relationship between the tumour, local inflammatory response, stromal 

component, and proliferative activity was assessed via the Phenotypic Subtypes as 

previously described by Roseweir et al(Roseweir et al., 2017) and outlined in table 2.2. 

Patients were first assessed for the KM grade and those with a high local inflammatory 

response were assigned to the Immune subtype. Patients with a low KM grade were then 

assessed for the TSP and those with a high TSP were assigned to the Stromal subtype, with 

the remaining patients being assigned to the Canonical subtype if Ki67% positivity was 

>30%, and the Latent subtype if Ki67 positivity was <30%. 

 Phenotypic Subtype 

 Immune Canonical Latent Stromal 

KM Grade 

0/1 vs 2/3 
High Low Low Low 

TSP Status 

</> 50% 
Any Low Low High 

Ki67 Proliferation 

Index 

</> 30% 

Any High Low Any 

Cancer Specific 

Prognosis 
Best Good Poor Worst 

Table 2.2 Phenotypic Subtypes. Categorization of each CRC Phenotypic Subtype in 

relation to the KM Grade, TSP, and Ki67PI. KM grade is assessed with priority, followed 

by TSP, then Ki67PI. 
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2.4 Image Processing 

2.4.1 Software 

All image processing, including section annotation for training, tissue segmentation, 

and calculation of output variable measures pertaining to the histological assessments was 

conducted using the Visiopharm Oncotopix Software Version 2020.06.0.7872 (Visiopharm, 

Hoersholm, Denmark). 

2.4.2 Training Data 

Three sets of image training data for tissue segmentation were created over the course 

of the studies conducted for this work; two H&E based and one IHC based.  

2.4.2.1 Training Data Set 1 

Training Data Set 1 was created from sixteen WSI from the Norway cohort of 

patients and annotated manually by a single observer. To ensure as much histological 

variation was accounted for in the training data, slides were selected based on the patients’ 

pathological report, ensuring that all T-Stages, differentiations including mucinous, stromal 

and lymphocyte densities, necrotic component, and stain intensity variation were represented. 

Annotations were created for 9 Classes; Tumour, Stroma, Lymphoid, Normal, Mucin, 

Muscle, Adipose, Necrosis, and Background, with particular attention drawn to the spatial 

relationship between classes to improve boundary detection.  

2.4.2.2 Training Data Set 2 

Training Data Set 2 was created from the publicly available CRC-VAL-HE-7K 

image database, originally created as a validation set for the NCT-CRC-HE-100K image 

database, it was used for training in this study due to computational limitations (Kather, 

Krisam, et al., 2019). This dataset consists of 7180 224 x 224 pixel at 0.5 microns per pixel 

image patches selected from N = 50 CRC patients, unevenly distributed between the same 9 

tissue classes used in Training Data Set 1, with each image patch having undergone 

Macenko’s colour-normalization(Macenko et al., 2009). Prior to training, all pixels were 

assigned the patch class for semantic segmentation output and all whitespace (Eosin colour 

deconvolved channel > 200) from each image patch was removed to reduce computation 

time and improve boundary detection.  

2.4.2.3 Training Data Set 3 

Training Data Set 3 was used exclusively for IHC with Haematoxylin and DAB 

segmentation tasks. This data set was constructed by a single observer exhaustively 

annotating 55 TMA cores and associated slide whitespace from an independent CRC patient 
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cohort TMA section stained with Ki67 IHC, for Tumour, Stroma, Necrosis, and Background 

classes, ensuring a close to even distribution of annotations of all classes on intensely and 

weakly stained cores to reduce network reliance on stain vectors and intensity for tissue 

classification.   

 

2.4.3 Tissue Isolation 

2.4.3.1 Background and Processing Artefacts   

Variations in background and artefacts in tissue sections can cause stochastic 

outcomes during analysis processes, therefore, an initial image processing step was 

performed in all cases to remove scanning whitespace i.e., glass slide with no tissue section, 

and histological processing artefacts from the area of analysis. This was achieved by creating 

a feature, in RGB colour space, by subtracting the Green intensity values from the Red 

intensity values (i.e. Contrast Red-Green) to remove ink marks and debris. The resultant 

grey level image was smoothed using a stringent 53 x 53 kernel median filter, with resultant 

background being removed at a value of less than 10 (original scale 0-255). Post processing 

was used to remove small areas <1x107µm2 of tissue artefacts not contiguous with the main 

resection tissue followed by a hole filling process to produce a single, continuous outline of 

the tissue for analysis. 

2.4.3.2 Lymph Node Isolation 

During initial testing, it was found that the presence of lymph nodes resected with 

the tissue in the images was a common area of misclassification during image processing. 

Therefore, to remove the nodes from the analysis area, a grey level scale feature was 

produced based on hue and saturation of the blue staining (B’ in (1)). By selecting the lesser 

of the two values for B’ in combination with a Contrast Red-Blue feature to determine areas 

of high blue intensity coupled with low red intensity this enabled the haematoxylin-stained 

nuclei to be enhanced in relation to eosin staining. 

(1)B’ =  
(1−r−g)G

g
  where r = 

R

R+G+B
  and g = 

G

R+G+B
 in RGB colour space  

 

Following this step, a 55 x 55 kernel median filter and 21 x 21 kernel standard 

deviation filter were applied to smooth the resultant feature and improve boundary detection, 

respectively. Post processing involving circularity and size constraints;  
4 · 𝜋· 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 > 0.5, 

area > 3x106µm2, followed by hole filling was used to selectively discard lymph nodes in 
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adipose tissue whilst retaining tertiary lymphoid structures closer to the tumour necessary 

for subsequent analysis. 

2.4.4 Tissue Segmentation using Machine Learning 

2.4.4.1 Training Parameters and Features  

A decision forest algorithm was trained utilising 80 decision trees to a max depth of 

16 per tree, with an input image of 2048 x 2048 pixels fields of view at 10x magnification. 

The algorithm was trained on 3 main grey level features that included combinations and 

transformations from 19 sub features generated from Haematoxylin and Eosin colour 

deconvolutions. The first feature (F1) was based on an initial haematoxylin colour 

deconvolution layer and utilised red-blue contrast and B’ of (1) to enhance the blue values 

within the haematoxylin against the eosin colour deconvolution. The second feature (F2) 

was based on the eosin colour deconvolution and utilised contrast transformations against 

the haematoxylin to remove blue impurities remaining after colour separation. This 

enhanced differences in grey level values between the tumour and stroma. The third feature 

(F3) removed a combination of red-green and blue-green spectral impurities in F2, to further 

reduce any overlap in grey level values to distinguish between the Tumour and Stroma 

regions. Finally, a smoothening filter over a range of kernel sizes was applied to each feature 

(F1 & F3 = mean 11 x 11, F2 = median 5 x 5) to reduce the noise arising from single pixel 

anomalies.  

2.4.4.2 Post Classification Processing 

Post processing steps were used to remove areas of small, misclassified tissue and 

generate more contiguous classes for further analysis by converting them to the class with 

which they shared the longest neighbouring interface length. In addition, during initial 

reviews of analysis outputs areas of heavily stained stroma, misclassified as tumour, were 

identified. To correct for this, a new feature was generated using a grey level normalisation 

factor against the darkest 10% pixels of the tissue within the analysis area. This allowed for 

misclassified Stroma to be identified and converted to the correct class.  

2.4.5 Tissue Segmentation using Deep Learning 

2.4.5.1 Network Architecture and Training Parameters 

Tissue segmentation using deep learning was conducted using a U-

NET(Ronneberger et al., 2015b) Convolutional Neural Network (CNN) with pre-determined 

weights generated from network pre-training on the ImageNet dataset(Deng et al., 2010). 

The UNET network was further trained on study specific images in RGB colour space in 

512 x 512 pixel fields of view at scanning resolution (20x) with a learning rate of 1x10-4 
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with Adam Optimization(Kingma & Lei Ba, n.d.) and mini-batch size 8. Training length was 

determined by monitoring cross entropy + Intersection Over Union (IOU) loss function until 

a consistently low (<0.5) rate was achieved, meaning training length ranged from ~100,000 

to ~300,000 iterations dependent upon the task, in order to achieve optimal network 

performance. For all segmentation tasks, random rotations (90°, 180°, 270°), vertical and 

horizontal flipping, and brightness and contrast perturbation operations were carried out with 

a probability set at 0.5 for each operation. For H&E based segmentation tasks, images 

underwent additional hue and saturation, and Haematoxylin and Eosin colour deconvolution 

vector perturbation operations again each with probability 0.5. For H-DAB based 

segmentation tasks, the same hue, saturation, and Haematoxylin and DAB stain vector 

perturbation operations were performed with the same probabilities (Bándi et al., 2019). 

2.4.5.2 Post Classification Processing 

As all H&E and H-DAB segmentations underwent subsequent, computationally 

intensive image class object conversions to Regions Of Interest (ROI) to enable further 

analysis, pre- and post-classification operations were performed to reduce the computational 

burden and running times. Pixel wise tissue segmentation was performed with a 

classification probability of 100 / N training classes meaning each pixel was assigned the 

tissue class of highest probability so no pixel was left unclassified, as unclassified pixels 

would create a substantial number of empty ROI, which exponentially increases times 

required for subsequent analysis. A post segmentation class simplification operation was 

performed by converting clusters of pixels belonging to the same class with area <1000µm2 

to a new intermediate class and converting this class to the tissue class with which it shared 

the largest neighbouring boundary interface length.  

2.4.6 Cellular Detection Algorithms 

2.4.6.1 Lymphocyte Detection  

Lymphocytes were detected from H&E-stained sections through a stepwise, 

threshold based image processing algorithm that initially detected all nuclei, and then 

selectively removed nuclei based on morphology and colour derived criteria. Firstly, a 

second order 5 x 5 / 11 x 11 Laplacian of Gaussian filter at 20x magnification was applied 

to a Haematoxylin colour deconvolved layer to isolate intensity peaks of haematoxylin 

staining corresponding to nuclei centroids. Following which all extraneous pixels were 

removed from further classification  by applying a threshold of >25 to the LoG filtered layer. 

Dilation and hole filling functions were then used to further isolate relevant pixels into 

nuclear shapes, following which all resultant pixel clusters of >50µm2 and <10µm2 were 
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excluded. This function removed most large objects relating to tumour and stromal cell 

nuclei, and small areas / errant pixels not belonging to nuclear areas. Elongated nuclei were 

then excluded by applying an isoperimetric quotient, given by 
4 · 𝜋· 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2 ,  threshold of <0.7 

to each pixel cluster, given that the isoperimetric quotient would be 1 for a perfect circle. 

The resultant classification contained a mix of lymphocytes and eosinophils, the latter of 

which was excluded by applying an eosin stain content threshold of <150 from a 5 x 5 

maximum filtered, eosin colour deconvolved layer, encompassing >50% of the pixel cluster 

area.  

2.4.6.2 Ki67 Positive Cell Detection 

Cells positive for IHC stained Ki67 on both TMAs and full sections were detected 

using an algorithm adapted from a deep learning-based, brightfield nuclei detection 

algorithm developed by Visiopharm. The initial nuclei detection algorithm was developed 

by training a UNET CNN for 3 classes: Background, Nuclei, and Boundaries, in RGB colour 

space, and then removing the Background and Boundary classes, and objects <10µm2 

following tissue classification. The resultant Nuclei class was then separated into positive 

and negative cell classes by applying a to a DAB colour deconvolved layer threshold value 

of <150, encompassing >10% of the nuclear object area. 

2.5 Statistical Analysis 

Statistical analyses of survival metrics and comparative measures of statistical 

agreement were conducted in IBM SPSS version 25 (IBM, New York, USA). Processing of 

Visiopharm output files, data cleaning, generation of cut off values for all metrics and 

production of final figures was conducted in R Studio version 1.1.463 (RStudio, Boston, 

MA, USA). 
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3. Quantification of the Tumour 

Associated Stroma by Image Analysis 

in CRC 
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3.1 Introduction 

In recent years, studies looking to elucidate methods for a precision medicine, 

patient-based approach to prognosis, have moved from studying the tumour in isolation to 

studying its symbiotic relationship with the Tumour Microenvironment (TME). The TME 

encompasses a variety of cell types and processes known to affect the development and 

spread of the tumour, such as tumour recruited neovasculature (Rmali et al., 2007) and host 

inflammatory cells (C. S. D. Roxburgh & McMillan, 2012). An element of the TME known 

to hold prognostic significance in multiple carcinomas is the tumour associated stroma, the 

supporting tissue of the tumour comprised of cancer associated fibroblasts (CAFs) and the 

extracellular matrix (ECM) they secrete (Freeman et al., 2013; Hasebe et al., 2001; Waghray 

et al., 2013).  

Various studies have been conducted to determine of a method of assessment able to 

link the tumour associated stroma to prognosis. Early studies demonstrated a prognostic link 

between qualitative assessment of the proportion of stroma at the invasive margin and 

morphologic characterisation of the maturity of the stromal component (Halvorsen & Seimt, 

1989; Ueno et al., 2004; Ueno, Jones, et al., 2002b). Recently however, the proportion of the 

stromal component to the tumour, the tumour-stroma ratio (TSR) or tumour-stroma 

percentage (TSP), has been repeatedly validated as an independent prognostic factor in CRC 

(Park et al., 2014b) and  forms the basis of a prospective international reproducibility study 

for inclusion in routine pathology alongside the TNM system (M. Smit et al., 2019).  

Assessment of the TSP on H&E sections is relatively uncomplicated; an FOV at 10x 

magnification representing the most stromally dense area with tumour cells at all four 

boundaries is graded in 5% (10% in some studies) increments, with a statistically determined 

cut off for high vs low patients at ~50%. Interobserver agreement in reporting high vs low 

stroma patients shows variable consistency, with Cohen’s κ scores ranging from 0.5-0.97/1 

for CRC, however, for clinical implementation, consistency in reporting is vital and thus 

further steps must be taken to ensure this.  

Developments in machine learning as applied to histopathological image analysis, 

specifically the advent of CNNs for tissue segmentation, provide a logical path to addressing 

the issue of interobserver reporting variability, and indeed, efforts have been made to 

conduct the TSP assessment digitally (Geessink et al., 2019; Martin et al., 2020; Zhao et al., 

2020). However, these studies utilise relatively low patient numbers and do not demonstrate 

translatability of the methodologies to geographical and process independent cohorts.  
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The aim of the present study, therefore, is to assess various image processing-based 

approaches to digitally conduct TSP assessment, namely traditional machine learning 

algorithms and deep learning CNN based methods, to assess the translatability of these 

methods to new cohorts, and to compare these methods to histopathological scoring, 

primarily in terms of ability to stratify patients by survival outcomes, and via statistical 

measures of inter-observer agreement.  

 

3.2 Materials and Methods 

3.1.1 Histopathological Assessment 

Histopathological assessment of the TSP was carried out on H&E slides / WSI as 

described in 2.3.2 for each patient cohort. Briefly, an intratumoural area on the slide showing 

the deepest point of tumour invasion was assessed for percent of the FOV covered by 

desmoplastic stroma and scored in 5% increments with a cut – off of </> 50% stroma for 

high vs low TSP. The Norway patient cohort was assessed using the same methodology but 

only the TSP status (high vs low) was entered into the database. Additionally, the Norway 

cohort was scored by the same observer conducting the image analysis, all other sections 

were scored by an independent observer and obtained from existing databases.  

3.2.2 Statistical Analysis 

Patient cohort clinicopathological characteristics and test of association with CSS / 

DFS were determined in IBM SPSS version 25 (IBM, New York, USA). P values of <0.05 

were considered to demonstrate a statistically significant association between 

clinicopathological features and clinical outcomes.  

All other statistical analyses for this study were conducted in RStudio (RStudio, 

Boston, MA). Optimal cut off values for TSP scores were determined by using CSS / DFS 

as the endpoint with the maxstat and survminer packages. Receiver operator characteristic 

curves and associated AUC were plotted and calculated using the pROC package. Survival 

analysis was conducted and associated Kaplan – Meier survival curves produced using the 

survival, survminer, and survMisc packages, with the log rank statistic used to assess 

association between TSP stratification and CSS / DFS. Hazard ratios and associated 95% 

confidence intervals for survival analysis were calculated using the univariate Cox 

proportional hazard model.  
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3.3 Results 

3.3.1 Automated Assessment of the Tumour Stroma Percentage by Machine 

Learning – Based Image Analysis  

The initial approach to digitally quantify the TSP was conducted via a decision 

forest-based image segmentation algorithm utilising operator determined feature vectors for 

training and segmentation. The algorithm was initially trained in RGB colour space and on 

colour deconvolved haematoxylin and eosin layers, however resultant poor segmentation 

performance necessitated the generation of feature vectors that provided additional 

quantitative distinction between tumour and stroma to aid decision forest class weighting. A 

variety of features were generated and visually assessed for suitability in terms of 

segmentation, of which three were determined to provide the best quality of segmentation 

using this algorithm. The feature vectors (denoted F1, F2, F3, Figure 3.1), were primarily 

built on Haematoxylin and Eosin colour deconvolutions, given that in adenocarcinoma these 

can be considered the primary stains of the tumour and stroma respectively, with F1 designed 

to accentuate and smooth Haematoxylin dense regions such as nuclei in the tumour 

compartment, F2 designed to darken and smooth clusters of Haematoxylin dense regions but 

negate isolated nuclei, and F3 designed to accentuate nuclei at the periphery of tumour nests 

to provide a distinct boundary between the tumour and stroma. Representative images of the 

three feature vectors are shown in Figure 3.2. 
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Figure 3.1 Features Utilised in Machine Learning TSP Algorithm. Schematic 

demonstrating components and transformations of the three feature vectors generated for 

the machine learning TSP algorithm. Transformation steps are shown as: (transformation), 

transforming feature vector. Filtering steps are shown as: kernel size x kernel size, filter 

type.  
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The algorithm was trained on training dataset 1 (detailed in 2.4.2.1) which comprised 

sixteen annotated WSI from the Norway cohort, 5% of the total cohort. A series of 

increasingly complex training parameters were tested on the three feature vectors detailed in 

Figure 3.1 to determine the optimum trade-off between manageable training times and 

quality of classification, the final parameters are detailed in 2.4.4.1.  

During initial quality assessment of classification, two notable instances of algorithm 

confusion arose. Firstly, areas of high stain intensity and immune infiltrate in the stroma 

were misclassified as tumour, likely due to the use of haematoxylin colour deconvolution as 

the foundation of the feature vectors used to segment the tumour and stroma. To address this, 

the classified tissue was temporarily segmented into 100 µm2 super pixels, F3 grayscale 

Figure 3.2 Representative Images of Feature Vectors Utilised in Machine Learning TSP 

Algorithm. Representative grayscale images of the three feature vectors demonstrating the 

intended utility within the ML-based segmentation task. (A) F1, (B) F2, (C) F3.  

A B 

C 
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values were normalized against the darkest 10% of the image, and super pixels with a mean 

intensity of lower than 500 of the normalized grayscale vectors were reclassified as stroma. 

Secondly, lymph node tissue particularly germinal centres, were consistently misclassified 

as tumour but proved more complicated to correct through post-classification processing. 

Therefore, prior to classification, lymph nodes in the subserosa were excluded (detailed in 

2.4.3.2) from the analysis area as they were not to be utilized in any subsequent analysis.  

In addition to automatic quantification of the TSP, the validated algorithm with the 

best clinical performance on all cohorts in this study was used to generate regions of interest 

for subsequent lymphocyte density analysis. Given that desmoplastic stroma can be present 

at a wide range of distances to the tumour on resection tissue, lymphocytes detected in these 

areas could not be guaranteed to be associated with an immunological response to the tumour. 

Nearchou and colleagues demonstrated that high densities of CD3+ cells up to 100µm from 

tumour buds and the invasive margin in stage II CRC conferred a statistically significant 

improvement in survival (I. P. Nearchou et al., 2021; I. P. Nearchou et al., 2019). In addition, 

histopathological assessment was conducted on intratumoural FOV, therefore, to standardize 

subsequent analysis, only pixels classified as stroma and lymphoid tissue within 100µm of 

the tumour was quantified and converted to ROI for lymphocyte density analysis. 

Finally, given that the algorithm conducts classification on a pixel-wise basis, the 

time required for conversions to ROI for subsequent analysis was augmented by non-

contiguous areas with large numbers of pixels of multiple classes. Therefore, small pixel 

clusters (<1000µm2) were converted to an intermediate class, then to the surrounding class 

with the largest neighbouring boundary interface length. The product of this operation was 

more homogenous classified areas but at a loss of some fine classification detail, notably 

intratumoural and stromal lymphoid areas where only a small number of lymphoid cells were 

present. However, given that intratumoural lymphocytes were not included in any 

subsequent analysis and stromal lymphocytes were to be quantified from the ROI generated 

by the validated TSP algorithm, this trade-off was considered acceptable and appropriate.  

Image analysis for this study was conducted on WSI of the same H&E used to 

perform histopathological assessment. All WSI used for image analysis in this study were 

initially processed to remove all background artefacts and slide glass white space to produce 

a single continuous area for analysis around all viable tissue on the slide, detailed in 2.4.3.1. 

No colour space transformations or manual annotations were performed on the WSI prior to 

analysis. The TSP for each patient was calculated using the equation: 
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(
𝐴𝑟𝑒𝑎 𝑆𝑡𝑟𝑜𝑚𝑎 (µ𝑚2)+ 𝐴𝑟𝑒𝑎 𝐿𝑦𝑚𝑝ℎ𝑜𝑖𝑑(µ𝑚2)

𝐴𝑟𝑒𝑎 𝑇𝑢𝑚𝑜𝑢𝑟(µ𝑚2) + 𝐴𝑟𝑒𝑎 𝑆𝑡𝑟𝑜𝑚𝑎(µ𝑚2) + 𝐴𝑟𝑒𝑎 𝐿𝑦𝑚𝑝ℎ𝑜𝑖𝑑(µ𝑚2)
) · 100. The final image 

processing workflow for this algorithm is detailed in Figure 3.3 with representative images 

of the classifier performance demonstrated in Figure 3.4. 
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Figure 3.3 Machine Learning TSP Algorithm Workflow. Workflow of ML TSP 

algorithm beginning with H&E WSI. Methods sections detailing operations are given in 

brackets.  
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Figure 3.4 Representative Images of ML TSP Classifier Performance. Images detailing 

the ML TSP classifier performance on sections from the Norway cohort. Tumour overlay is 

shown in red / orange and stroma in blue. 
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Training and initial validation of this algorithm was conducted using a cohort of 

patients from Norway containing a total of 299 samples from Stage II – III CRC patients 

undergoing potentially curative resection in Kristiansand, Arendal, Flekkefjord, and Oslo 

Hospitals between 2005 – 2015. Patients had predominantly right sided (59.9%), T-Stage III 

(91.3%), node negative (63.2%) disease split evenly between sexes, with 52.5% being 

female. No patient included in this cohort received neoadjuvant chemotherapy or 

neoadjuvant radiotherapy and the majority (79.3%) did not receive adjuvant chemotherapy. 

Of the remaining patients, 7% received 5-Fluorouracil (5 – FU) only treatment and 13.7% 

received 5-FU in combination with Oxaliplatin, however, the administration of adjuvant 

chemotherapy did not have a significant effect on cancer specific survival (P = 0.718). No 

exclusion criteria were applied to this cohort as received; however, H&E tissue was missing 

for a single patient. The primary clinical outcome was CSS defined as the time from the date 

of surgery to death from primary disease. Clinicopathological features significantly 

associated with CSS were T-Stage (P = 0.014) and N-Stage (P = 0.05) (Table 3.1). The 

sixteen sections from this cohort that comprised training dataset 1, which the algorithm was 

trained on, were included in the final analysis due to the low number of CSS events in the 

cohort. 
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Clinicopathological 

Characteristic 

N (%) Clinical Outcome 

Significance 

Sex 

Female 

Male 

 

157 (52.5) 

142 (47.5) 

 

0.556 

T Stage 

I 

II 

III 

IV 

 

2 (0.7) 

10 (3.3) 

273 (91.3) 

14 (4.7) 

 

 

0.014 

N Stage 

0 

1 

2 

 

189 (63.2) 

83 (27.8) 

27 (9.0) 

 

 

0.05 

Tumour Site 

Right 

Left 

Sigmoid 

 

179 (59.9) 

31 (10.4) 

89 (29.8) 

 

 

0.3 

Differentiation 

Well  

Moderate 

Poor 

 

3 (1.0) 

225 (75.3) 

57 (19.1) 

 

 

 

0.664 

Adjuvant Chemotherapy 

None 

5-Fluorouracil only 

5-FU + Oxaliplatin 

 

237 (79.3) 

21 (7.0) 

41 (13.7) 

 

 

0.718 

Table 3.1 Clinicopathological Characteristics of Norway Cohort. Number (and %) of 

patients with clinicopathological features in Norway Cohort and association with Cancer 

Specific Survival.  

To assess the capability of the traditional machine learning algorithm to 

automatically score clinical H&E sections for the TSP, the machine learning tissue 

segmentation algorithm described above was applied to the Norway patient cohort H&E 

WSI. The TSP scores generated by the algorithm underwent ROC curve analysis to assess 

the predictive performance compared to the binary high / low TSP manual histopathological 
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scores, which were determined by the same observer conducting the image analysis. The 

AUC of the ROC curve was 0.794 (Figure 3.5). 

To determine an optimal cut off value to stratify patients into high vs low stroma 

based on CSS, the TSP scores generated by the algorithm were analysed using the survminer 

and maxstat packages, and an optimal cut point for CSS of 40.46% was determined (Figure 

3.6). 

 

Figure 3.5 Receiver Operator Characteristic of ML generated TSP scores in Norway 

Cohort. Machine learning determined TSP scores for 299 patients of Norway cohort 

compared to outcome of high vs low TSP status determined by histopathological assessment, 

AUC = 0.794.    
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Given that manual histopathological TSP assessment is conducted in 5% increments, 

for consistency the cut off value of 40.46% was rounded to the nearest 5% and set at 40%. 

This value was used to group patients into high vs low stroma and Kaplan – Meier survival 

analysis was performed to assess the algorithm’s ability to stratify patients based on CSS. 

Consistent with previous work in other cohorts, manual histopathological TSP assessment 

(</> 50% Stromal Component) was significantly associated with CSS (HR 2.609, 95% CI 

1.126 – 6.046, P = 0.02). Automated TSP assessment via machine learning (</> 40% Stromal 

Component) was also significantly associated with CSS (HR 2.259, 95% CI 0.9969 – 5.12, 

P = 0.045). Cohen’s Kappa metric was utilised to assess the level of statistical agreement, 

showing moderate concordance between the two scores, κ = 0.443 (Figure 3.7). 

 

 

  

Figure 3.6 Determining optimal cut point for automated ML TSP in Norway Cohort. 

Distributions and optimal cut point for high vs low stroma from ML TSP algorithm based 

on cancer specific survival from patients from Norway cohort. For this algorithm, the 

optimal cut point for CSS was determined to be 40.46%. 
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Figure 3.7 Relationship between TSP and CSS in Norway Cohort. Association of cancer 

specific survival and TSP status determined via histopathological assessment (A) and 

machine learning based image analysis (B) in the Norway patient cohort. Cohen’s Kappa 

agreement, κ = 0.443. 

 

A 
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3.3.2 Translation of Machine Learning – Based Image Analysis TSP Algorithm to a 

Geographically Independent Patient Cohort 

Imperative to the clinical utility of image analysis is the ability of algorithms to 

perform on previously unseen slides and adapt to stochastic differences inherent to WSI from 

geographical and process independent cohorts. Therefore, to determine the ML algorithm’s 

efficacy of assessment on a novel patient cohort, the same validation approach used in the 

Norway patient cohort was utilized in the Glasgow Development and Glasgow Validation 

patient cohorts.  

The Glasgow Development Cohort comprised a total of 272 Stage I – III CRC 

patients undergoing potentially curative resection at the Glasgow Royal Infirmary Hospital 

between 1997 – 2007. The majority (68%) of patients presented with primary colon cancer 

split 39% and 29% between right sided and left sided tumours, respectively. There was a 

slightly larger proportion of males to females, 53.3% to 46.7% respectively, and a notably 

larger proportion over the age of 65 (63.7%). Primary disease was predominantly T-Stage 

III (61.0%) and node negative (56.4%), and the majority of patients (70.7%) did not receive 

adjuvant chemotherapy. Patients were excluded from survival analysis if they received 

neoadjuvant intervention or died within 30 days of surgery, leaving a total of 259 patients 

available for survival analysis. The primary clinical outcome was CSS defined as the time 

from the date of surgery to death from primary disease. Clinicopathological features 

associated with CSS were T-Stage (P = 0.004), and N-Stage (P <0.001) (Table 3.2). 
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Clinicopathological 

Characteristic 

N (%) Clinical Outcome 

Significance 

Age 

<65 

>65 

 

94 (36.3) 

165 (63.7) 

 

0.199 

Sex 

Female 

Male 

 

121 (46.7) 

138 (53.3) 

 

0.581 

T Stage 

I 

II 

III 

IV 

 

8 (3.1) 

17 (6.6) 

158 (61.0) 

76 (29.3) 

 

 

0.004 

N Stage 

0 

1 

2 

 

146 (56.4) 

85 (32.8) 

28 (10.8) 

 

 

<0.001 

Tumour Site 

Right 

Left 

Rectal 

 

101 (39.0) 

75 (29.0) 

83 (32.0) 

 

 

0.904 

Differentiation 

Well  

Moderate 

Poor 

 

10 (3.6) 

235 (86.4) 

26 (9.6) 

 

 

 

0.092 

Adjuvant Chemotherapy 

Yes  

No 

 

76 (29.3) 

183 (70.7) 

 

0.721 

Table 3.2 Clinicopathological Characteristics of Glasgow Development Cohort. Number 

(and %) of patients with clinicopathological features in Glasgow Development Cohort and 

association with Cancer Specific Survival. 
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The Glasgow Validation Cohort comprised a total of 758 Stage I – IV CRC patients 

undergoing potentially curative resection at the Glasgow Western Infirmary and Stobhill 

Hospitals between 2000 – 2007 identified from a retrospective database. Patients were 

predominantly over the age of 65 (71.4%), presenting primarily with right sided (43.3%), T-

Stage III (52.9%), node negative (65.3%) disease split evenly between sexes (50.5% male). 

Patients were excluded from survival analysis if they were administered neoadjuvant therapy, 

died within 30 days of surgery, or presented with Stage – IV disease. This left 654 patients 

available for survival analysis, of which, 23 had missing or inappropriate H&E tissue for 

image analysis, meaning 631 patients were included in the final study. The primary clinical 

outcome was CSS defined as the time from the date of surgery to death from primary disease. 

Clinicopathological features associated with CSS were T-Stage (P <0.001), and N-Stage (P 

<0.001) (Table 3.3). 
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Clinicopathological 

Characteristic 

N (%) Clinical Outcome 

Significance 

Age 

<65 

>65 

 

187 (28.6) 

467 (71.4) 

 

0.990 

Sex 

Female 

Male 

 

324 (49.5) 

330 (50.5) 

 

0.475 

T Stage 

I 

II 

III 

IV 

 

32 (4.9) 

92 (14.1) 

346 (52.9) 

184 (28.1) 

 

 

<0.001 

N Stage 

0 

1 

2 

 

425 (65.3) 

152 (23.3) 

74 (11.4) 

 

 

<0.001 

Tumour Site 

Right 

Left 

Rectal 

 

325 (43.3) 

263 (35.0) 

163 (21.7) 

 

 

0.544 

Differentiation 

Well  

Moderate 

Poor 

 

28 (3.7) 

650 (85.8) 

68 (9.0) 

 

 

 

<0.001 

Adjuvant Chemotherapy 

Yes  

No 

 

28 (48.3) 

30 (51.7) 

 

0.434 

Table 3.3 Clinicopathological Characteristics of Glasgow Validation Cohort. Number 

(and %) of patients with clinicopathological features in Glasgow Validation Cohort and 

association with Cancer Specific Survival. 
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Manual histopathological assessment of the TSP in the Glasgow Development 

Cohort was conducted by Jamie Park as part of the original study validating the TSP in this 

cohort (Park et al., 2014), and by Antonia Roseweir for the Glasgow Validation Cohort as 

part of a multiple cohort validation study (Roseweir et al., 2020). The predictive performance 

of the TSP values determined by the algorithm in the novel cohorts was assessed via ROC 

curve analysis, with the Glasgow Development Cohort producing an AUC of 0.590 and the 

Glasgow Validation Cohort 0.567 (Figure 3.8).  
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Figure 3.8 Receiver Operator Characteristic of ML generated TSP scores in Glasgow 

Development Cohort. Machine learning determined TSP scores for 259 patients of 

Glasgow Development Cohort (top) and 631 patients of the Glasgow Validation Cohort 

(bottom) compared to outcome of high vs low TSP status determined by histopathological 

assessment, AUC = 0.590 & 0.567 respectively.    
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To validate the cut off value of 40% stroma determined from the Norway cohort, 

prior to survival analysis the same maximally ranked statistics analysis was applied to the 

TSP scores generated in the novel cohorts, with a value of 40.67% stroma obtained for the 

Glasgow Development Cohort and 40.56% for the Glasgow Validation Cohort (Figure 3.9). 

 

 Given the similarity in cut off values and in the interest of translatability, the cut off 

value of </>40% defined in the Norway cohort was used in the Glasgow Development and 

Validation cohorts to stratify patients into high vs low stroma. Kaplan-Meier survival 

analysis showed a very strong trend towards association with CSS in the Glasgow 

Development cohort but failed to reach statistical significance (HR 1.559 95% CI 0.9657 – 

2.516 P = 0.067, Figure 3.10), and a moderate association with CSS in the Glasgow 

Validation cohort (HR 1.359 95% CI 0.8529 – 2.167 P = 0.2, Figure 3.11). Cohen’s Kappa 

metric was utilised to assess the level of statistical agreement, showing slight concordance 

between the two scores in both cohorts, Glasgow Development κ = 0.151 and Glasgow 

Validation κ = 0.11 (Figure 3.10 & 3.11, respectively).   

Figure 3.9 Validating optimal cut point for automated ML TSP in Glasgow 

Development and Validation Cohorts. Distributions and optimal cut point for high vs low 

stroma from ML TSP algorithm based on cancer specific survival from patients from 

Glasgow Development (top) and Validation (bottom) cohorts. For this algorithm applied to 

the novel patient cohorts, the optimal cut off value was 40.67% and 40.56% respectively. 
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Figure 3.10 Relationship between CSS and TSP in Glasgow Development cohort. 

Association of CSS and TSP determined via histopathological assessment (A) and machine 

learning based image analysis (B) in the Glasgow Development patient cohort. Cohen’s 

Kappa agreement, κ = 0.151. 

A 

B 
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Figure 3.11 Relationship between CSS and TSP in Glasgow Validation cohort. 

Association of CSS and TSP determined via histopathological assessment (A) and machine 

learning based image analysis (B) in the Glasgow Validation patient cohort. Cohen’s Kappa 

agreement, κ = 0.11. 

A 

B 
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3.3.3  Automated Assessment of The Tumour Stroma Percentage by Deep Learning 

– Based Image Analysis  

The advent of CNNs for semantic image segmentation, and the inherent capability 

of these algorithms to adapt to new data, has starkly increased the translational capacity of 

image analysis in a pathology setting. This offers a much more promising foundation to 

develop an image processing algorithm that is able to accurately classify tissue across 

multiple geographical and process independent cohorts, therefore, a series of CNN based 

methodologies were investigated to determine the optimum conditions for automated TSP 

assessment. Given the ability of CNNs to handle much larger and more complex data sets, a 

training data set comprised of 7180 224 x 224-pixel image patches of the CRC-VAL-HE-

7K dataset (Kather et al., 2019, 2.4.2.2) was constructed to provide a significantly greater 

number of data points for each tissue class. Additionally, the image patches from this dataset 

underwent Macenko’s colour normalization (Macenko et al., 2009) thus reducing the 

possible effect of any histological stain variation present in the manually annotated data.  

Given that all image analysis for this study was conducted in the Visiopharm 

software and for ease of use, the neural network architecture was selected from one of the 

three available in the deep learning module of the software; FCN-8s, DeepLabV3+, and U-

NET. FCN-8s is a fully convolutional implementation of the VGG-16 net architecture that 

combines predictions from the final output with progressively earlier pooling function 

outputs to predict fine detail while retaining high level semantic information (Shelhamer et 

al., 2017; Simonyan & Zisserman, 2015). DeepLabV3+ is an extension of the DeepLabV3 

model, that uses the DeepLabV3 as the encoder in an encoder-decoder structure. 

DeepLabV3+ employs the Xception model as the network backbone and adds a decoder 

module to improve the segmentation notably along object boundaries (Chen et al., 2018; 

Chollet, 2017). U-NET is a network architecture designed specifically for semantic 

segmentation of biomedical images, that utilises concatenation functions between the 

corresponding cropped images of the contracting and expansive paths to greatly improve 

boundary detection (Ronneberger et al., 2015c).  

Each network architecture was trained on Training Data Set 2 (2.4.2.2) with weights 

generated from pre-training on the ImageNet dataset, utilising the same hyperparameters 

(512 x 512 image input, mini-batch size = 8, learning rate = 10-4) with cross entropy + 

Intersection Over Union (IOU) loss monitored until a consistent low rate of <0.5 was 

achieved, meaning training ranged from 100 – 200 epochs dependent upon the network. The 

trained networks were then visually assessed for quality and speed of segmentation across 
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multiple sections; with U-NET consistently outperforming the other two networks it was 

chosen to be the model taken forward for validation of TSP assessment on the clinical 

samples. 

Following quantification of the TSP, the validated algorithm was to be used for 

subsequent cellular analysis that required class overlays generated by the algorithm to be 

converted into ROI. The process of pixel-wise segmentation produces non-homogenous 

overlay areas across the tissue that can substantially augment the time required to run overlay 

to ROI conversions, therefore, post-processing steps were included in the segmentation 

algorithm to smooth the overlay and reduce the subsequent computational burden. To do this, 

the same operation used in 3.3.1 was utilised in this algorithm, whereby pan – class pixel 

clusters of < 1000µm2 were converted into an intermediate class and then converted into the 

class with which they shared the largest neighbouring boundary interface length. The result 

of this was similar to the ML algorithm in that single lymphocytic cell detail was lost 

primarily to the stromal compartment, however, given that these areas were to be converted 

to ROI for subsequent lymphocyte cell density analysis and lymphocytes are part of the 

cellular component of the tumour microenvironment and associated stroma, this was 

considered acceptable. No further post-processing operations were performed but prior to 

the algorithm being applied to the sections, the same tissue isolation step used in the ML 

approach was applied (2.4.3.1), and under the same rationale as the ML algorithm, only 

stroma and lymphoid pixels within 100µm of the tumour was quantified as part of the TSP. 

The finalised DL TSP algorithm workflow is shown in Figure 3.12 and representative images 

of classifier performance are shown in Figure 3.13. 
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To validate the performance of the deep learning TSP algorithm, 10 sections were 

selected from the Norway, Glasgow Development and Glasgow Validation Cohorts and 

exhaustively annotated for the tumour and stroma. The TSP algorithm, including post 

processing, was then applied to the slides to determine the Intersection Over Union (IoU) 

score for both tissue compartments. The algorithm demonstrated excellent concordance with 

the tumour classification, with an average IoU of 0.911 and a maximum of 0.980, and good 

concordance with stroma classification, with an average IoU of 0.813 and a maximum of 

0.927. Overall, tumour classification showed greater consistency of classification, IoU range 

0.836-0.980, than stroma classification, IoU range 0.624-0.927, Table 3.4. 

Slide / 

Tissue 
1 2 3 4 5 6 7 8 9 10 Average 

Tumour 0.875 0.980 0.933 0.925 0.911 0.836 0.910 0.875 0.953 0.911 0.911 

Stroma 0.886 0.758 0.861 0.790 0.624 0.927 0.816 0.819 0.831 0.817 0.813 

Table 3.4 Intersection over Union for Tumour / Stroma Classification by Deep 

Learning TSP algorithm. IoU values for Tumour and Stroma classification on 10 

exhaustively annotated H&E WSI. Highest individual IoU for each tissue compartment in 

bold.  
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Figure 3.12 U-NET TSP Algorithm Workflow. Workflow of DL U-NET TSP algorithm 

beginning with H&E WSI. Methods sections detailing operations are given in brackets. 
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Figure 3.13 Deep Learning Classifier Performance on WSI. Continued on next page.  
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Figure 3.13 Deep Learning Classifier Performance on WSI. Representative images of 

deep learning algorithm performance. WSI (A) and classification overlay (B) demonstrating 

whole section segmentation. CEGIKMO, detail images of algorithm performance on Tumour 

/ Stroma (C), Benign Epithelium (E), Muscle (G), Mucin (I), Lymphoid Tissue (K), Necrosis 

(M), and Mucin (O). DFHJLNP, Algorithm classification overlay for respective images.  
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Initial validation of the DL TSP algorithm was conducted as per the ML TSP 

algorithm in the same Norway Patient cohort. The TSP value for each patient was calculated 

from the areas of each relevant class determined by the algorithm using the equation: 

(
𝐴𝑟𝑒𝑎 𝑆𝑡𝑟𝑜𝑚𝑎 (µ𝑚2)+ 𝐴𝑟𝑒𝑎 𝐿𝑦𝑚𝑝ℎ𝑜𝑖𝑑(µ𝑚2)

𝐴𝑟𝑒𝑎 𝑇𝑢𝑚𝑜𝑢𝑟(µ𝑚2) + 𝐴𝑟𝑒𝑎 𝑆𝑡𝑟𝑜𝑚𝑎(µ𝑚2) + 𝐴𝑟𝑒𝑎 𝐿𝑦𝑚𝑝ℎ𝑜𝑖𝑑(µ𝑚2)
) · 100.  The scores underwent 

ROC curve analysis to determine the predictive quality of the algorithm and produced and 

AUC of 0.834 for this cohort (Figure 3.14).  

 

 

Figure 3.14 Receiver Operator Characteristic of DL generated TSP scores in Norway 

Cohort. Deep learning determined TSP scores for 299 patients of Norway cohort compared 

to outcome of high vs low TSP status determined by histopathological assessment, AUC = 

0.834. 
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Algorithm generated TSP scores were analysed against CSS to determine an optimal 

cut off value to group patients into high vs low stroma. The maxstat and survminer packages 

were used to generate the cut off value, which was 41.35% for this algorithm in this cohort 

(Figure 3.15). 

As per the ML algorithm, the cut off value determined for the DL algorithm in the 

Norway cohort was rounded to the nearest 5% to stratify patients into high vs low stroma 

for survival analysis, meaning a cut off value of 40% was used again for this study. Kaplan 

– Meier survival analysis was performed on the stratified DL generated TSP scores to 

determine association with CSS and compare survival stratification performance against 

manual histopathological scores. The DL generated TSP showed a statistically significant 

association with CSS in the Norway cohort (HR 3.178 95% CI 1.269 – 7.96, P = 0.0091) 

(Figure 3.16), outperforming the TSP stratification generated by the ML algorithm. Cohen’s 

Kappa metric was utilised to assess the level of statistical agreement, showing improved 

moderate concordance between the two scores over the ML algorithm, κ = 0.471 (Figure 

3.16).     

  

Figure 3.15 Determining optimal cut point for DL automated TSP in Norway Cohort. 

Distribution of DL automated TSP scores and optimal cut point for high vs low stroma based 

on cancer specific survival in Norway patient cohort. For this algorithm in this cohort, the 

optimal cut off value was 41.35%. 
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Figure 3.16 Relationship between TSP and CSS in Norway Cohort. Association between 

CSS and TSP scores determined via histopathological assessment (A) and DL based image 

analysis (B) in Norway patient cohort. Cohen’s Kappa agreement, κ = 0.471. 
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3.3.4 Translation of Deep Learning – Based Image Analysis TSP Algorithm to 

Geographically Independent Patient Cohorts 

To assess the capability of the DL TSP algorithm to accurately assess the TSP in 

geographical and process independent cohorts, the algorithm was applied to the same two 

validation cohorts as the ML algorithm, the Glasgow Development and Validation cohorts. 

The TSP scores generated for each patient underwent ROC analysis against the 

histopathological assessment, with the Glasgow Development cohort producing and AUC = 

0.691 and the Glasgow Validation cohort AUC = 0.720 (Figure 3.17). 
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Figure 3.17 Receiver Operator Characteristics of DL Generated TSP in Geographically 

Independent Patient Cohorts. ROC curves for DL generated TSP scores against 

histopathological TSP status in two validation CRC patient cohorts. (top) Glasgow 

Development Cohort, AUC = 0.691. (bottom) Glasgow Validation Cohort, AUC = 0.720. 
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Validation of the DL TSP algorithm by Kaplan – Meier survival analysis showed a 

statistically significant association with CSS in the Glasgow Development Cohort (HR 2.265 

95% CI 1.439 – 3.566, P = 0.00034, Figure 3.18) and Glasgow Validation Cohort (HR 1.559 

95% CI 1.12 – 2.169, P = 0.0079, Figure 3.19). Cohen’s Kappa metric was utilised to assess 

the level of statistical agreement, showing fair concordance between the two scores in the 

Glasgow Development cohort, κ = 0.21, and slight concordance in the Glasgow Validation 

cohort, κ = 0.18 (Figure 3.18 and 3.19, respectively). This demonstrates that the DL 

algorithm translates between cohorts for survival prediction but does not significantly 

correlate with pathologists assessment.  
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A 

B 

Figure 3.18 Relationship between CSS and TSP in Glasgow Development Cohort. 

Association of CSS and TSP determined by (A) histopathological assessment (HR 2.144 95% 

CI 1.355 – 3.393, P = 0.00086) and (B) automated DL assessment (HR 2.265 95% CI 1.439 

– 3.566, P = 0.00034) in Glasgow Development Cohort. Cohen’s Kappa agreement, κ = 

0.21.  
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Figure 3.19 Relationship between CSS and TSP in Glasgow Validation Cohort. 

Association of CSS and TSP determined by (A) histopathological assessment (HR 1.865 95% 

CI 1.361 – 2.556, P <0.0001) and (B) automated DL assessment (HR 1.559 95% CI 1.12 – 

2.169, P = 0.0079) in Glasgow Validation Cohort. Cohen’s Kappa agreement, κ = 0.18. 
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Bland Altman plots were constructed for each cohort to assess the relationship 

between the manual histopathological and algorithm generated TSP scores, and to assess any 

potential systemic bias in the scoring (Figure 3.20).  
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Figure 3.20 Relationship and bias between histopathological and DL determined TSP. 

Bland Altman plots demonstrating the relationship and bias between histopathological TSP 

scores and DL algorithm generated TSP scores for the Glasgow Development Cohort (A) 

and Glasgow Validation Cohort (B). 
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3.3.5 Validation of Deep Learning TSP Algorithm in a Clinical Trial Cohort 

Given the improvement in performance of the deep learning algorithm over the 

machine learning algorithm in translating automated TSP scoring between independent 

patient cohorts, further validation of this algorithm was conducted in a substantially larger, 

clinical trial cohort of patients. A total of 2913 patients from the SCOT international, 

randomised, phase 3, non-inferiority trial (ISRCTN59757862) were selected to create a 

translational research cohort from the trial (TransSCOT cohort). Patients admitted to the trial 

had either high-risk Stage II or Stage III CRC and tissue was obtained from patients 

undergoing surgical resection between 2008-2013 within the UK prior to commencement of 

the trial. Patients were predominantly male (61%) with T – Stage III (58.2%) N – Stage 2 

(57.1%) colonic disease (82.5%). No clinical exclusion criteria were applied to this cohort, 

however, 13 patients died within 30 days of surgery and 12 patients had missing tissue or 

tissue inappropriate for image analysis in this study, meaning 2887 patients were included 

in the survival analysis. The primary clinical outcome was Disease Free Survival measured 

from the date of randomization in the trial to the date of recurrence or death from any cause. 

Clinicopathological features associated with disease free survival were T – Stage (P <0.001), 

N – Stage (P <0.001), and tumour site (P <0.001) (Table 3.5).  
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Clinicopathological 

Characteristic 

N (%) Clinical Outcome 

Significance 

Sex 

Female 

Male 

 

1135 (39.0) 

1778 (61.0) 

 

0.598 

T Stage 

I 

II 

III 

IV 

 

78 (2.7) 

250 (8.6) 

1696 (58.2) 

889 (30.5) 

 

 

<0.001 

N Stage 

0 

1 

2 

 

556 (19.1) 

1663 (57.1) 

694 (23.8) 

 

 

<0.001 

Tumour Site 

Colon 

Rectum 

 

2402 (82.5) 

511 (17.5) 

 

<0.001 

Chemotherapy Type  

FOLFOX 

CAPOX 

 

846 (29.0) 

2067 (71.0) 

 

0.322 

 

Table 3.5 Clinicopathological Characteristics of TransSCOT Clinical Trial Cohort. 

Number (and %) of patients with clinicopathological features in TransSCOT Clinical Trial 

Cohort and association with Disease Free Survival. 

Following the same analysis process as in the previous two validation cohorts, the TSP 

scores generated by the algorithm for each patient in this cohort underwent ROC analysis to 

determine the predictive capability given a substantial increase in patient numbers. ROC 

curve analysis against the high vs low histopathological TSP patients generated an AUC = 

0.828 (Figure 3.21).  

  



100 

 

Figure 3.21 Receiver Operator Characteristic of DL algorithm generated TSP in 

TransSCOT Clinical Trial Cohort. ROC curve of DL algorithm generated TSP scores 

against high vs low histopathological assessment in the TransSCOT cohort, AUC = 0.828. 

 

Survival characteristics of the DL generated TSP scores were compared to manual 

histopathological assessment via Kaplan – Meier analysis. The algorithm generated TSP was 

dichotomised into high and low stroma using the same 40% cut off generated in the Norway 

validation cohort using disease free survival as the primary outcome measure. Consistent 

with the previous validation cohorts, the DL generated high vs low stroma patient 

stratification showed a statistically significant association with disease free survival in the 

clinical trial cohort (HR 1.729 95% CI 1.474 – 2.029, P <0.0001, Figure 3.22). Cohen’s 

Kappa metric was utilised to assess the level of statistical agreement, showing moderate 

concordance between the two scores, κ = 0.452 (Figure 3.22). 
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Figure 3.22 Relationship between DFS and TSP in TransSCOT Clinical Trial Cohort. 

Association of DFS and TSP determined by (A) histopathological  and (B) automated DL 

based assessment (HR 1.729 95% CI 1.474 – 2.029, P <0.0001) in TransSCOT Clinical 

Trial cohort. Cohen’s Kappa agreement, κ = 0.452. 
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Bland – Altman plots were constructed to visualise any bias and assess agreement 

between the manual histopathological TSP and the DL generated scores in the clinical trial 

cohort (Figure 3.23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univariate and multivariate cox regression was performed to determine the relationship 

between the deep learning TSP assessment, clinicopathological features and disease-free 

survival (Table 3.6). On multivariate analysis, the TSP stratification produced by the deep 

learning algorithm was significantly associated with DFS (HR 1.359 95%CI 1.155-1.599, p  

< 0.001), independent of T-Stage (p < 0.001), N-Stage (p < 0.001), and tumour site (p = 

0.031). 

 

 

 

  

Figure 3.23 Bland – Altman Plot of Histopathological and DL Generated TSP Scores 

in TransSCOT Cohort.  Plots showing difference between measures and mean of measures 

for histopathological TSP and DL generated TSP scores for TransSCOT Clinical Trial 

Cohort.   
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Univariate Multivariate 

 HR 95% CI p-value  HR 95% CI p-value 

Sex        

Female 1.0   - - - - 

Male 1.040 0.898-1.205 0.599 - - - - 

T Stage    T Stage    

1 1.0   1 1.0   

2 1.013 0.498-2.060 0.973 2 1.116 0.548-2.271 0.762 

3 1.85 0.988-3.467 0.055 3 1.9 1.012-3.564 0.046 

4 3.217 1.715-6.037 <0.001 4 3.275 1.737-6.178 <0.001 

N Stage    N Stage    

0 1.0   0 1.0   

1 1.436 1.155-1.787 0.001 1 1.795 1.436-2.244 <0.001 

2 2.821 2.249-3.538 <0.001 2 3.032 2.411-3.814 <0.001 

Site    Site    

Left 1.0   Left 1.0   

Right 0.687 0.557-0.848 <0.001 Right 0.788 0.634-0.979 0.031 

Treatment        

FOLFOX 1.0   - - - - 

CAPOX 1.084 0.924-1.272 0.319 - - - - 

TSP    TSP    

Low 1.0   Low 1.0   

High 1.646 1.405-1.929 <0.001 High 1.359 1.155-1.599 <0.001 

Table 3.6 Relationship between TSP, Clinicopathological Features and Disease-Free 

Survival in the TransSCOT Cohort. Hazard ratios and 95% confidence intervals 

calculated via Cox proportional hazards regression and multivariate analysis conducted 

using backwards conditional method.  
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3.4 Discussion 

The TNM staging criteria of colorectal cancer remains the gold standard for clinical 

prognosis and patient stratification across the world. However, it has been shown that there 

is notable variation in survival outcomes for patients of a seemingly similar disease state, 

particularly in stage II disease where 5 – year survival outcomes for stage IIa vs stage IIb 

are 84.7% and 72.2%, respectively (O’Connell et al., 2004). This is likely due to the 

heterogeneous nature of the CRC microenvironment and the complex mechanisms 

underpinning its progression, indicators of which are conspicuously lacking in the TNM 

staging criteria. This has directed research to investigate readily assessable components of 

the TME that hold prognostic significance and could be translated to routine diagnostic 

pathology. One of these metrics is the Tumour Stroma Percentage (TSP) or Tumour Stroma 

Ratio (TSR), a semi – quantitative assessment of the relative stromal component of the 

tumour area that is assessable on a single H&E section generated during routine diagnosis. 

The TSP has demonstrated prognostic significance in a large number of studies across 

multiple stages of disease (Huijbers, 2013; Huijbers et al., 2013; Park et al., 2014b; Park, 

McMillan, et al., 2016; van Pelt et al., 2018b), however, it has seen little clinical 

implementation due to the inconsistency of measures of intra and interobserver agreement. 

Image analysis of H&E WSI presents possible solution to this issue by having a single, 

consistent observer conduct the assessment. In the present study, image analysis – based 

approaches to conduct TSP assessment on H&E WSI were evaluated in multiple, distinct 

cohorts of CRC patients to formulate a method that could reliably stratify patients for 

survival. 

Given the intrinsic ability of deep learning algorithms to adapt to novel data, these 

approaches are an obvious first choice for conducting high level tissue classification on 

heterogeneous data populations such as clinical H&Es. However, there is a significant cost 

associated with performing DL – based studies, notably high – performance graphics 

processing units that are required to handle convolutional neural network training and 

application, that presents a roadblock to use in developing nations and rural areas without 

substantial IT infrastructure. To address this, an initial approach was taken to develop an 

image analysis method for TSP assessment using traditional machine learning methods. The 

aim was to use a task specific approach whereby the decision forest algorithm was trained 

on manually crafted features (Figure 3.1) that provided high – level information on the 

relationship between the tumour and stroma that RGB colour space does not. When this 

algorithm was applied to the Norway cohort of patients, from which the training data set was 

constructed, it was able to significantly stratify patients for CSS based on a cut off value of 
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40% stromal component, performing comparably to manual histopathological assessment on 

the same sections (Figure 3.7). However, as is generally the case when applying machine 

learning – based image analysis algorithms to novel image data, the algorithm stratification 

did not show a significant association with CSS when translated to the Glasgow 

Development and Validation cohorts (Figure 3.10 & Figure 3.11). There are numerous 

possible causes for this inability to translate ML algorithms to new image data, within this 

study specifically it likely due to the use of non – standardized training data but could arise 

from lack of section QC, scanner age and type, or histological processing. The use of 

Training Data Set 2 (2.4.2.2) proved too computationally burdensome for the CPU – based 

ML algorithm, and while attempts were made to ameliorate the effect that using WSI from 

the same cohort through targeted section selection accounting for histological variance, this 

was evidently insufficient, and a larger training data set along with both the training and test 

data to undergo stain normalization is likely required (Bejnordi et al., 2016).  

Therefore, an alternative approach was adopted. Convolutional neural network – 

based approaches are a logical solution to the issues in translatability discussed above. To 

apply deep learning to this task, a UNET CNN trained on the colour – normalized Training 

Data Set 2 (2.4.2.2) for 9 tissue classes was used to segment the WSI and quantify the TSP 

for each patient. While studies utilising deep learning to classify the type of desmoplastic 

stroma and assess stromal cellular content have shown promise in regards to prognosis, the 

TSP is the most readily translatable stromal assessment to clinical practice and has been 

extensively validated in multiple cohorts, therefore, this was chosen as the most appropriate 

application of deep learning for this study (I. P. Nearchou et al., 2021). Initial validation in 

the Norway cohort demonstrated an improved prognostic stratification over the ML 

algorithm and outperformed manual histopathological assessment for patient survival 

(Figure 3.16). When applied to the Glasgow Development and Validation cohorts, the DL 

algorithm demonstrated the translational capacity lacking in the ML algorithms performance, 

significantly stratifying patients for cancer specific survival in both cohorts (Figure 3.18 & 

Figure 3.19), and outperforming manual histopathological assessment in the Glasgow 

Development cohort (Figure 3.18). This translational ability was further demonstrated when 

the algorithm was applied to the much larger TransSCOT Clinical Trial cohort; in 2875 stage 

II – III patients, the DL algorithm significantly stratified patients for disease free survival as 

well as again outperforming manual histopathological assessment (Figure 3.22).  

A notable limitation of the present study is the inconsistency in statistical measure of 

agreement through Cohen’s Kappa analysis. The ML algorithm demonstrated moderate 
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correlation with manual histopathological assessment (κ = 0.443) in the Norway cohort, from 

which the training data was derived, but this expectantly dropped when translated to novel 

cohorts (κ = 0.151 & 0.11). The DL algorithm showed moderate agreement with manual 

histopathological assessment in the Norway and TransSCOT cohorts (κ = 0.471 & 0.452, 

respectively) but the ML algorithm did not perform to the same level in the Glasgow 

Development and Validation cohorts showing fair and slight concordance (κ = 0.21 & 0.18, 

respectively) in those cohorts. It is noteworthy that while subjective interpretation of the 

Cohen’s Kappa thresholds would deem the algorithm performance in the Norway and 

TransSCOT cohorts as somewhat poor for a clinical assessment, there was still >80% 

concordance between the algorithm and manual histopathological assessment in both cohorts 

and all correlative statistical measures are substantially significant.  

The lower Kappa values in the two Glasgow cohorts is likely explainable through 

two hypotheses. Efficacious image processing of clinical WSI is contingent on slides being 

of good enough scanning and histological quality for image analysis to be appropriate, which, 

given the age of the sections used in these cohorts, the date they were scanned and the type 

/ age of the scanner used, and the fact that physical annotations made by a pathologist on the 

Glasgow Validation cohort section coverslips caused focussing issues during scanning, 

likely contributed to sub – optimal tissue classification on these cohorts’ WSI. The Norway 

and TransSCOT sections were stained and scanned much more recently lending credence to 

the hypothesis that adequate section QC prior to image analysis is a necessity for ensuring 

validity of the clinical data extracted from the WSI. Secondarily, there were multiple sections 

available for each patient in the Glasgow Validation cohort (N = 1 – 6) but it was unknown 

which section was used for the original manual histopathological assessment, meaning that 

taking the average of N sections per patient is likely the reason for the statistical agreement 

being lowest in this cohort.   

In summary, this chapter clearly demonstrates the efficacy of deep learning – based 

image analysis algorithms in conducting automated TSP assessment across multiple, 

geographical and process independent clinical cohorts, often outperforming manual 

histopathological assessment. Given the prognostic significance of assessing the tumour 

associated stroma, algorithms such as this could provide additional key information to 

pathologists for directing clinical decisions, and through this workflow, be able to assess 

algorithm performance on a case – by – case basis via visualization of the algorithm overlay 

for the specific WSI. Future work should be directed towards optimizing algorithms such as 

this for clinical application and determining the extent to which statistical measures of 
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agreement with manual histopathological assessment are used as the validatory endpoint for 

these studies when the aim is to address interobserver variability in the assessment. 
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4. Quantitative Assessment of the Local 

Immune Response to Colorectal 

Cancer by Image Analysis 
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4.1 Introduction 

One of the most well characterised, prognostic features of the CRC tumour 

microenvironment is the local host inflammatory response, with the survival benefit of a 

prominent lymphocytic infiltrate in gastric tumours having been first described in 1931 

(Maccarty, 1931b). Following this, a series of studies beginning in 1967 further 

demonstrated the significant improvement in prognosis conferred by a prominent 

lymphocyte response, both peritumourally and intratumourally, with Jass and colleagues 

identifying the response at the invasive margin as a stage independent factor in 1987 (Jass 

et al., 1987; C. S. D. Roxburgh & McMillan, 2012).  

These early studies utilised diagnostic H&E sections taken during routine pathology 

and characterised the generalised inflammatory response with a few studies investigating 

lymphocyte and plasma cell populations specifically (de Mascarel et al., 1981; Zamcheck et 

al., 1975). The advent of immunohistochemistry allowed more targeted investigation into 

the prognostic role of specific immune cell subtypes through molecular characterization, 

with cancer cell nest CD8+ cytotoxic T – lymphocytes soon being identified as another stage 

independent prognostic factor of the localised immune response (Naito et al., 1998). 

Subsequent studies utilizing IHC, confirmed initial interest in lymphocytes as the key 

immune cell type modulating survival through investigation into CD3+ cells (Nagtegaal et 

al., 2001), and further elucidated the prognostic role of specific lymphocyte sub populations, 

such as CD45RO+ memory T – cells (Öberg et al., 2001). Galon and colleagues’ 

investigation into the role of both cellular subtype and localisation within the tumour 

identified the presence of CD3+ CD8+ CD45RO+ Granzyme B+ lymphocytes associated with 

a TH1 adaptive immune response exerted a significantly beneficial effect on survival. This 

data ultimately culminated in the introduction of the Immunoscore (Galon et al., 2006), a 

combined assessment of CD8+ and CD45RO+ (later replaced with CD3 due to background 

and loss of antigenicity in stored sections) at the invasive margin and within the tumour core, 

quantified through image analysis that is able to outperform TNM staging for prognostic 

utility (Galon et al., 2014).  

Though molecular investigation into the prognostic role of lymphocytes has yielded 

significant data, there has been little clinical adoption of systems like the Immunoscore, due 

to the cost of routinely performing IHC as part of the diagnostic process. This has turned 

attention back towards earlier methods of prognostic stratification through semi – 

quantitative lymphocyte assessment, namely those performed on diagnostic H&E sections, 

such as that of Jass and colleagues, and Klintrup and Mäkinen (Jass et al., 1987; Klintrup et 
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al., 2005). The Jass system, originally established in rectal cancers, binarily assigns patients 

as possessing a high immune infiltrate (denoted conspicuous in the original study) when 

there is a scattering of lymphocytes within a distinctive connective tissue mantle at the 

invasive margin and low otherwise. The Klintrup – Mäkinen system expands upon Jass’ 

work by stratifying patients into four distinct groups based on the absence (0), patchy 

distribution (1), band – like reaction (2), and florid cup – like reaction (3) of lymphocytes at 

the invasive margin but is dichotomized into high (3/2) and low (1/0) by convention. While 

both systems hold significant prognostic value and have been validated in a number of 

studies, neither have been adopted into clinical practice due to notable issues with inter – 

and intra – observer agreement and the lack of a standardized assessment criteria (Hynes et 

al., 2017b).  

Image analysis, particularly with the growing application of deep learning, has begun 

to yield promising data that could bridge the gap between quantitative IHC and semi – 

quantitative H&E assessment of the inflammatory response. Prediction of survival by neural 

networks through unsupervised and semi – supervised training is a well – established method 

for deriving clinical information from routinely produced H&Es (Bychkov et al., 2018b; 

Campanella et al., 2019b). However, recent studies have utilized neural networks and 

traditional image processing to look to quantify both histological features and cell types in 

order to reproducibly obtain more pertinent data in the setting of CRC. Pai and colleagues 

demonstrated quantitative differences in the amount of inflammatory stroma and TILs 

between pMMR and dMMR tumours following global tissue segmentation on WSI using 

commercially available, neural network coupled digital pathology software (Pai et al., 2021). 

Using non – deep learning image analysis in the open source QuPath software (Bankhead et 

al., 2017), Väyrynen and colleagues quantitatively assessed the densities of stromal 

lymphocytes, plasma cells, neutrophils, and eosinophils in H&E TMAs showing all four cell 

types to be significantly associated with CSS (Vayrynen et al., 2020). 

The aim of the present study, therefore, is to assess combination image analysis 

techniques to translate the Klintrup – Mäkinen grading system to a quantitative, automated 

approach. Additionally, to investigate different image analysis algorithms to reliably and 

reproducibly automate the quantitative scoring of lymphocytes on routine clinical H&E WSI 

and compare these methods to histopathological grading in terms of patient stratification for 

disease specific survival. 
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4.2 Materials and Methods 

4.2.1 Histopathological Assessment 

Manual histopathological assessment of the Klintrup – Makinen grading criteria was 

carried out on H&E slides / WSI as described in 2.3.1 for each patient cohort using the 

criteria described in the original paper (Klintrup et al., 2005). Briefly, the lymphocyte density 

was assessed at the invasive margin of the tumour on a section taken from the deepest point 

of invasion using a four – point scale: 0 – No evidence of inflammatory response at the 

invasive margin, 1 – Patchy distribution of lymphocytes along the invasive margin, 2 – 

inflammatory response forming a band – like structure across a significant portion of the 

invasive margin, 3 – Prominent inflammatory response forming a florid cup – like structure 

across the invasive margin with evidence of tumour island destruction. Subsequently, as is 

done by convention, the four – point score was dichotomized with KM grades 0/1 being 

classed as “Weak” inflammatory response and KM grades 2/3 being classed as a “Strong” 

inflammatory response. All Klintrup – Mäkinen grading in this study was conducted by an 

independent observer not involved with image analysis, names of observers stated where 

relevant, and grades were obtained from existing databases. 

4.2.2 Statistical Analysis 

Patient cohort clinicopathological characteristics and test of association with CSS / 

DFS were determined in IBM SPSS version 25 (IBM, New York, USA). P values of <0.05 

were considered to demonstrate a statistically significant association between 

clinicopathological features and clinical outcomes.  

All other statistical analyses for this study were conducted in RStudio (RStudio, 

Boston, MA). Optimal cut off values for immune infiltrate scores were determined by using 

CSS / DFS as the endpoint with the maxstat and survminer packages. Receiver operator 

characteristic curves and associated AUC were plotted and calculated using the pROC 

package. Survival analysis was conducted and associated Kaplan – Meier survival curves 

produced using the survival, survminer, and survMisc packages, with the log rank statistic 

used to assess association between immune grade stratification and CSS / DFS. Hazard ratios 

and associated 95% confidence intervals for survival analysis were calculated using the Cox 

proportional hazard model.  
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4.3 Results 

4.3.1 Development of Image Processing Algorithms to Automatically Detect 

Lymphocytes on Clinical H&E Sections 

Automated detection of lymphocytes was conducted on H&E sections utilizing a 

threshold – based image processing algorithm, initially designed to be a pan – nucleus 

detector with additional processing steps to exclude non – lymphocyte cell types. To segment 

nuclei from other tissue morphologies, images in RGB colour space were colour 

deconvolved into the component stain layers of Haematoxylin and Eosin. From which an 11 

x 11 kernel, second order / 5 x 5 kernel second order Laplacian of Gaussian (LoG) filter was 

applied to the Haematoxylin colour deconvolved layer with a threshold value of >20 applied 

to the resultant greyscale feature vector to isolate Haematoxylin dense areas representing 

nuclei. The areas detected within this greyscale feature were used to generate centroids for 

each nucleus via a local intensity maxima marking function. Nuclear boundaries were 

generated from the nuclei centroids with an inferred maximum membrane distance of 4µm 

using the background from the initial LoG classification as a delimiter. Finally, a hole filling 

function was applied within the outlined nuclei to create a mask encompassing the nucleus 

of all cell types on the section.  

To isolate lymphocytes from other cell type nuclei, a series of size, shape, and stain 

intensity thresholds were applied to the nuclear mask. Large nuclei and small pixel clusters 

not belonging to nuclei were removed using a size exclusion threshold of <10 / >50µm2. 

Elongated nuclei were excluded by applying an isoperimetric quotient, given by 
4 · 𝜋· 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2, 

threshold of <0.7 to the nuclear mask, given the isoperimetric quotient of a perfect circle is 

1. The resultant classification consisted of lymphocytes and eosinophilic immune cells with 

haematoxylin dense nuclei; therefore, to isolate lymphocytes from other immune cell types, 

cells were excluded based the object eosin content by applying an exclusion intensity 

threshold of <150 to a 5 x 5 kernel, maximum filtered eosin colour deconvolved layer 

encompassing >50% of the nuclear object. Representative images are shown in Figure 4.1. 
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Figure 4.1 Lymphocyte Detection Algorithm Peformance. Images demonstrating 

lymphocyte detection algorithm classification at invasive margin (AB) and edge of germinal 

center of lymph node (CD) taken from a CRC H&E section. Detected lymphocytes are shown 

in blue. 10x magnification. 
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The lack of a standardised training data set of annotated H&E sections for 

lymphocytes necessitated the lymphocyte detection algorithm be developed through 

traditional image processing methodologies. Therefore, all threshold values described above 

were determined via visual assessment and validation across multiple sections throughout 

the development process to ensure accuracy and utility across histologically variant sections. 

To validate the accuracy of the threshold values chosen, two further algorithms were adapted 

from this initial lymphocyte detection algorithm with changes made to specific haematoxylin 

and eosin – based threshold values to alter the number and potential type of cells detected. 

The first algorithm relaxed the threshold value of the LoG filtered haematoxylin colour 

deconvolved layer to 15, allowing less haematoxylin dense nuclei to be detected, and the 

threshold value of the maximum filtered eosin colour deconvolved layer to 125 

encompassing >25% of the cell object. The second algorithm increased the threshold value 

of the LoG filtered haematoxylin colour deconvolved layer to 30, meaning only very 

haematoxylin dense nuclei were detected, and threshold value of the maximum filtered eosin 

colour deconvolved layer to 200 encompassing >50% of the cell object, aiming to ensure 

exclusion of all eosinophilic immune cells but potentially at the cost of detecting all 

lymphocytes. 
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All three algorithms underwent a two – step validation process, first to quantitatively 

assess the accuracy of the lymphocyte detection against sections stained via IHC for the pan 

– T lymphocyte marker CD3 via Dice Similarity Coefficient (DSC) analysis (Dice, 1945), 

and to compare the prognostic performance of each algorithm against the patient 

stratification produced by Klintrup – Mäkinen grading via Kaplan – Meier survival analysis. 

This was done based on the hypothesis that, given the conflicting prognostic effect of 

different infiltrating immune cell types, increasing the number and type of cells detected by 

the algorithm would be accompanied by a drop in prognostic significance whereas 

decreasing the number but potentially increasing the accuracy of lymphocyte detection 

would produce a similar or increased significance in prognosis compared to the initial 

algorithm. Additionally, DSC values could theoretically decrease with stricter cell 

segmentation thresholds or increase with more relaxed cell segmentation thresholds, 

therefore, the aim of the two – step validation process was to find the optimum balance 

between prognostic significance and cell detection accuracy, from which the most 

appropriate algorithm would be determined and applied to further patient cohorts. 

To assess the accuracy of the lymphocyte detection algorithms via DSC analysis, 20 

FFPE blocks were taken at random from either the Glasgow Development or Glasgow 

Validation cohorts by an independent researcher (Aula Ammar), and two sequentially cut 

sections were stained for H&E and CD3. Both sections were scanned at 20x objective 

magnification and the WSI aligned using the “Tissuealign” module in the Visiopharm 

software with the automatic alignment function, following which the tissue detection 

algorithm (detailed in 2.4.3.1) was applied to the H&E section, to remove slide glass 

background, and overlayed on to the aligned CD3 section. Cells were segmented and 

classified as positive or negative on the CD3 IHC sections via the same algorithm used to 

perform Ki67 %PI analysis described in 2.4.6.2 and later in 5.3.1, and DSC scores were 

generated by applying each lymphocyte detection algorithm to the respective overlayed 

H&E section. The high threshold algorithm showed the greatest accuracy of lymphocyte 

detection with a DSC of 0.67, with the low threshold algorithm showing the poorest cell 

detection accuracy (DSC = 0.47) and the initial algorithm showing intermediate accuracy 

(DSC = 0.58) (Figure 4.2). 
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In the second validation step, Kaplan – Meier survival analysis was used to compare 

the prognostic significance of each lymphocyte detection algorithm to the patient 

stratification produced by KM grading. Initially, each H&E section from the Glasgow 

Development Cohort (N = 226) was roughly annotated for the invasive margin by the 

researcher conducting the image analysis (CB) to produce an ROI for analysis, from which 

the lymphocyte densities (N cells / mm2) outputted by each detection algoirthm were 

determined. To assess the assocation of the image analysis algorithms with manual 

histopathological assessment, ROC analysis was conducted using the lymphocyte densities 

from each algorithm plotted against the patient stratification produced by KM grading. 

Following the same trend as the detection accuracy analysis, the high threshold algorithm 

showed the best association with KM grading (AUC = 0.771), the low threshold algorithm 

the poorest association (AUC = 0.762), and the initial algorithm intermediate association 

(0.765) (Figure 4.3).  

 

  

Figure 4.2 Distribution of Dice Similarity Coefficients of Lymphocyte Detection 

Algorithms. Distribution and means of DSC scores generated for each H&E lymphocyte 

detection algorithm against sequentially cut CD3 IHC sections.  
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To compare prognostic stratification by the algorithm determined cell densities to 

that of manual histopathological KM grading, optimal cut off values based on CSS were 

determined for each algorithm using the maxstat and survminer packages in R, which were 

used to stratify patients into high vs low inflammatory infiltrate for each algorithm. The cut 

off value determined for the initial, low threshold, and high threshold algorithm was 2.25, 

7.30, and 0.88 cells / mm2, respectively (Figure 4.4).  

  

Figure 4.3 Receiver Operator Characteristic of Image Analysis Determined 

Lymphocyte Densities. Lymphocyte densities (cells / mm2) determined by three image 

analysis lymphocyte detection algorithms compared to KM grading stratification in the 

Glasgow Development Cohort. 
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The cut off values determined via maximally ranked statistics analysis were used to 

stratify patients into high vs low immune infiltrate and assessed for CSS prognostic 

significance against manual KM grading by Kaplan – Meier survival analysis. Stratification 

by all three algorithms demonstrated statistically significant associations with CSS, with the 

high threshold algorithm producing the greatest prognostic significance and the most 

comparable to manual histopathological assessment, HR 2.1 95%CI 1.249 – 3.53 P = 0.0042 

and HR 2.459 95%CI 1.416 – 4.271 P = 0.00096, respectively. The initial lymphocyte 

detection algorithm demonstrated the poorest association with CSS (HR 1.718 95%CI 1.089 

– 2.71 P = 0.019) and the low threshold algorithm showed intermediate association with 

CSS (HR 1.73 95%CI 1.103 – 2.714 P = 0.016) (Figure 4.5). 

 

Figure 4.4 Determining Optimal Cut Off Values for Lymphocyte Detection Algorithms 

in Glasgow Development Cohort. Distribution of events and optimal cut off values for 

lymphocyte density determined by initial (top), low threshold (middle), and high threshold 

(bottom) lymphocyte detection algorithms based on cancer specific survival in Glasgow 

Development Cohort. 
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Figure 4.5 Relationship Between Lymphocyte Infiltrate and CSS in Glasgow 

Development Cohort. Association of CSS and lymphocyte infiltrate assessed by 

histopathological Klintrup – Mäkinen grading (A), initial lymphocyte detection algorithm 

(B), low threshold  lymphocyte detection algorithm (C), and high threshold lymphocyte 

detection algorithm (D) in the Glasgow Development Cohort. 
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To further assess the association of the image analysis algorithms with 

histopathological assessment through comparative statistical agreement, Cohen’s Kappa 

scores were generated between the stratified image analysis cell densities and the stratified 

high vs low KM grades for each patient. The high threshold algorithm showed the greatest 

statistical agreement with the histopathological assessment (κ = 0.48), the low threshold 

algorithm showed the poorest association (κ = 0.1), and the initial algorithm showed 

intermediate association (κ = 0.35) (Table 4.1). 

Table 4.1 Statistical Agreement of Lymphocyte Detection Algorithms and Klintrup – 

Mäkinen Grading. Confusion matrices and Cohen’s Kappa scores of statistical agreements 

between stratified image analysis lymphocyte densities and KM grade in the Glasgow 

Development cohort.  

  

  High KM 

Grade (2/3) 

Low KM 

Grade (0/1) 

Cohen’s 

Kappa 

Initial 

Algorithm 

High Immune 

Infiltrate 
64 18 

0.35 
Low Immune 

Infiltrate 
57 87 

Low 

Threshold 

Algorithm 

High Immune 

Infiltrate 
79 3 

0.1 
Low Immune 

Infiltrate 
122 20 

High 

Threshold 

Algorithm 

High Immune 

Infiltrate 
56 26 

0.48 
Low Immune 

Infiltrate 
29 114 
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 The accuracy of the invasive margin annotations performed by the researcher 

performing the image analysis (CB) were validated via statistical comparison to annotations 

made by a board – certified, specialist gastrointestinal pathologist blinded to the image 

analysis study who had performed KM grading in previous studies (Karin Oien). 35 sections 

from the TransSCOT clinical trial cohort were chosen at random and annotated for the 

invasive margin by the pathologist, with only the aim of the study and a brief description of 

how the invasive margin annotations had been performed by the image analysis researcher 

for other studies. The high threshold lymphocyte detection algorithm was then applied to 

both researchers’ annotations and patients stratified for high vs low immune infiltrate using 

the threshold determined in the Glasgow Development cohort (Figure 4.4). Cohen’s Kappa 

metric was used to determine the level of statistical agreement between the two researchers, 

producing a value of κ = 0.81, indicating excellent concordance (Table 4.2). 

 

Table 4.2 Statistical Agreement of Invasive Margin Annotations Between Researchers. 

Confusion matrix and Cohen’s Kappa score of agreement between invasive margin 

annotations stratified by image analysis lymphocyte density.  

 

 

 

 

  

  GI Pathologist (KO)  

  High Immune 

Infiltrate 

Low Immune 

Infiltrate 

Cohen’s 

Kappa 

Image 

Analysis 

Researcher 

(CB) 

High Immune 

Infiltrate 
22 2 

0.81 
Low Immune 

Infiltrate 
1 10 
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4.3.2 Validation of Image Processing Lymphocyte Detection Algorithm to the 

Glasgow Validation Cohort 

Given the superior performance of the High Threshold lymphocyte detection 

algorithm in cell segmentation accuracy, correlation with manual histopathological 

assessment, and association with CSS compared to the Initial and Low threshold algorithms, 

this algorithm was selected to be validated in further CRC patient cohorts, initially the 

Glasgow Validation Cohort. In this cohort, multiple sections were available in varying 

numbers for each patient (N = 1 – 6), but it was unknown which section from each patient 

was originally used for histopathological assessment. Therefore, the image analysis 

researcher reviewed all available sections for each patient and determined the section that 

showed the deepest point of tumour invasion as per the KM grading criteria (Klintrup et al., 

2005). However, as the sections had been marked up by a pathologist for teaching and TMA 

construction, the scanning quality of the sections was lacking due to focussing issues arising 

from the pen markings on the coverslips, meaning an additional consideration had to be 

made as to how appropriate the section was for image analysis. It was decided that if the 

section showing the deepest point of tumour invasion was not of appropriate quality for 

image analysis, another slide was chosen for that patient contingent on the slide being of the 

same T – Stage as the slide showing the deepest point of invasion, and if no slides met these 

criteria, the patient was excluded from analysis. This resulted in 521 patients being included 

in this study.  

The selected sections were annotated for the invasive margin by the image analysis 

researcher to generate analysis ROI and the high threshold lymphocyte detection algorithm 

detailed in 4.3.1 was applied within these ROI. The cell densities determined by the 

algorithm for each patient were compared to manual histopathological KM grading by ROC 

analysis. Plotting the algorithm determined cell densities against the KM grade stratification 

produced an AUC = 0.702 (Figure 4.6). 
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The cell densities determined by the lymphocyte detection algorithm were used to 

stratify patients into high vs low immune infiltrate based on the same threshold determined 

in the Glasgow Development cohort, 0.88 cells / mm2 (Figure 4.4). Kaplan – Meier survival 

analysis of the stratified cell densities showed a statistically significant correlation with CSS 

(HR 1.499 95% CI 1.034 – 2.175 P = 0.032, Figure 4.7). 

 

 

  

Figure 4.6 Receiver Operator Characteristic of Lymphocyte Density in Glasgow 

Validation Cohort. ROC curve for lymphocyte detection algorithm determined cell density 

against Klintrup – Mäkinen grading stratification in the Glasgow Development Cohort, 

AUC = 0.702. 
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Figure 4.7 Relationship between CSS and Lymphocyte Density in Glasgow Vadliation 

Cohort. Association of CSS and lymphocyte density determined by histopathological 

Klintrup – Mäkinen grading (A) and image analysis lymphocyte detection (B) in the Glasgow 

Validation Cohort. 
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4.3.3 Assessment of Peritumoural Lymphocyte Response via Image Analysis in 

TransSCOT Clinical Trial Cohort 

The lymphocyte detection algorithm was developed and initially validated in two 

geographical and process similar but chronologically independent cohorts, the Glasgow 

Development and Validation cohorts. Given the thresholding methods used to develop the 

algorithm, it is inherently susceptible to stochastic changes in stain vectors arising from a 

multitude of processing variations that can occur during section production, such as the use 

of different types of haematoxylin, FFPE block age and storage, and the slide scanning 

process. Therefore, the algorithm was further validated in a larger, geographically and 

process independent cohort, the TransSCOT Clinical Trial cohort (detailed in 2.1.6). The 

image analysis method employed was identical to that of the previous cohorts; the image 

analysis researcher (CB) annotated all H&E sections in the cohort for the invasive margin to 

produce an ROI for analysis, within which the high threshold lymphocyte detector was 

applied. The lymphocyte density for each patient was calculated and ROC analysis was used 

to assess the agreement with manual histopathological KM grading. The lymphocyte 

densities were plotted against the stratified KM grades and produced and AUC = 0.699 

(Figure 4.8).  
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The lymphocyte densities determined by the algorithm were used to stratify patients 

into high vs low immune infiltrate based on the same cut off value determined in the Glasgow 

Development cohort (0.88 cells / mm2, Figure 4.4). Kaplan – Meier survival analysis was 

used to determine the association of the stratified lymphocyte densities with DFS and to 

compare this association to that of histopathological KM grading. The algorithm determined 

lymphocyte densities showed a statistically significant association with DFS, performing 

comparably to manual KM grading (HR 1.46 95% CI 1.14 – 1.87 P = 0.0025, Figure 4.9). 

 

 

  

Figure 4.8 Receiver Operator Characteristic of Lymphocyte Density in TransSCOT 

Clinical Trial Cohort. ROC curve of image analysis determined lymphocyte densities 

against KM grade stratification in TransSCOT Clinical Trial cohort. 
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A 

B 

Figure 4.9 Relationship Between DFS and Lymphocyte Density in TransSCOT Clinical 

Trial Cohort. Association between DFS and lymphocyte density assessed via Klintrup – 

Mäkinen grading (A) and Image Analysis (B) in the TransSCOT Clinical Trial cohort.  
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Univariate and multivariate cox regression was performed to assess the relationship 

between the peritumoural inflammatory response determined via image analysis, 

clinicopathological features, and DFS (Table 4.3). On multivariate analysis, the peritumoural 

lymphocyte density was found to be significantly associated with DFS (HR 0.731 95%CI 

0.579-0.929, p = 0.01), independent of T-Stage (p < 0.001) and N-Stage (p < 0.001).  

Univariate Multivariate 

 HR 95% CI p-value  HR 95% CI p-value 

Sex        

Female 1.0       

Male 1.040 0.898-1.205 0.599     

T Stage    T Stage    

1 1.0   1 1.0   

2 1.013 0.498-2.060 0.973 2 3.799 0.906-15.927 0.068 

3 1.85 0.988-3.467 0.055 3 6.530 1.626-26.229 0.008 

4 3.217 1.715-6.037 <0.001 4 11.414 2.834 -45.960 <0.001 

N Stage    N Stage    

0 1.0   0 1.0   

1 1.436 1.155-1.787 0.001 1 1.858 1.472-2.346 <0.001 

2 2.821 2.249-3.538 <0.001 2 3.081 2.423-3.918 <0.001 

Site    Site    

Left 1.0   Left 1.0   

Right 0.687 0.557-0.848 <0.001 Right 0.827 0.659-1.038 0.101 

Treatment        

FOLFOX 1.0       

CAPOX 1.084 0.924-1.272 0.319     

Image 

Analysis 

Lymphocyte 

Density    

Image 

Analysis 

Lymphocyte 

Density    

Low 1.0   Low 1.0   

High 0.669 0.527-0.849 <0.001 High 0.731 0.576-0.929 0.01 

Table 4.4 Relationship between Peritumoural Lymphocyte Densty, Clinicopathological 

Features and DFS in TransSCOT Cohort. Hazard ratios and 95% confidence intervals 

determined via Cox proportional hazards regression and multivariate analysis conducted 

using backwards conditional method.  
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4.3.4 Development of a Fully Automated Image Analysis Approach to Tumour 

Infiltrating Lymphocyte Assessment  

The lymphocyte assessment workflow detailed and validated in 4.3.1 – 4.3.3 

demonstrated that image analysis detection of lymphocytes on clinical H&E sections can 

produce reliable, prognostically significant patient stratification. However, the workflow 

requires manual annotation of the invasive margin, demanding time from the researcher / 

pathologist and introducing a potential source of bias due to the subjective nature of invasive 

margin assessment, which would require additional time and a second observer to account 

for. Attempting to reduce subjectivity within the assessment and reduce the time requirement 

of the analysis, the aim of the present section is to develop a fully automated workflow for 

lymphocyte assessment on H&E sections utilising the deep learning TSP algorithm detailed 

in 3.3.3. This assessment would therefore be conducted across the whole of the tumour area 

within the tumour associated stroma instead of at the invasive margin, as it was not viable to 

reliably automate detection of the invasive margin without meticulous curation of the 

sections utilised in the analysis which would ultimately reduce the power of the study beyond 

an acceptable degree. While it is understood that lymphocyte infiltrate assessment within the 

tumour core can produce prognostically significant results when conducted through IHC 

based methods, H&E based assessment holds significantly more prognostic value when 

conducted at the invasive margin over the central tumour (Alexander et al., 2020). Therefore, 

it is of interest as to whether a quantitative image analysis approach to TIL assessment on 

CRC H&E sections could be used to reliably stratify patients for survival. 

Initially, the deep learning – based TSP workflow detailed in Figure 3.12 was applied 

to the H&E section, beginning with the tissue isolation algorithm (2.4.3.1) to remove 

processing artefacts and slide glass background, followed by the full TSP algorithm. The 

areas quantified as stroma by the algorithm were subsequently converted into ROI within 

which the high threshold lymphocyte detection algorithm was applied, and the cell densities 

in cells / mm2 were determined. The workflow for this algorithm is detailed in Figure 4.10. 
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To validate the TSP coupled lymphocyte detection algorithm for prognostic 

significance, the full workflow was applied to all H&E sections from the Glasgow 

Development cohort. CD3 immunohistochemistry had been previously performed and 

scored in this cohort and patient stratification for high vs low CD3+ cell infiltrate based on 

the median expression value was available in the database, therefore, the stromal TIL 

densities determined by the algorithm for each patient underwent ROC analysis against the 

median CD3 stratification to assess the association. The ROC analysis between H&E stromal 

TILs and CD3 IHC produced and AUC = 0.724 (Figure 4.11). 
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Figure 4.10 Automated Lymphocyte Detection Algorithm Workflow. Workflow of 

automated lymphocyte density image analysis algorithm coupling deep learning TSP and 

TIL assessment. Methods sections detailing operations are given in brackets. 
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To compare H&E stromal TILs density to CD3 IHC for prognostic significance, an 

optimal cut off value based on CSS was determined using the survminer and maxstat 

packages in R. The cut off value determined for this algorithm and cohort was 0.55 cells / 

mm2 (Figure 4.12).  

Figure 4.11 Receiver Operator Characteristic of Stromal TILs in Glasgow 

Development Cohort. ROC curve of stromal TIL density determined via fully automated 

image analysis on H&E sections against median stromal CD3+ cell count in the Glasgow 

Development Cohort. 
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The cut off value (0.55 cells / mm2) was used to stratify patients into high vs low 

immune infiltrate. Kaplan – Meier survival analysis was used to assess the association of the 

stratified TIL densities with CSS and compare this to the stratified CD3 IHC scores. The 

image analysis TIL density assessment showed a statistically significant association with 

CSS in this cohort (HR 1.637 95%CI 1.056 – 2.538 P = 0.026, Figure 4.13). 

 

 

 

 

 

 

 

 

  

Figure 4.12 Determining Optimal Cut Off Value For Stromal TILs in Glasgow 

Development Cohort. Distribution and optimal cut off value stromal TIL density 

determined via automated image analysis for cancer specific survival in Glasgow 

Development Cohort.  
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B 

Figure 4.13 Relationship Between Tumour Infiltrating Lymphocyte Density and CSS 

in the Glasgow Development Cohort. Association between CSS and TIL density assessed 

via CD3 IHC (A) and automated H&E based image analysis in the Glasgow Development 

Cohort.  
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4.3.5 Validation of Automated Image Analysis TIL Assessment in the Glasgow 

Validation Cohort 

To assess the performance of the automated lymphocyte detection algorithm in a 

larger cohort, the workflow was subsequently validated in the Glasgow Validation cohort. 

The algorithm was applied to the sections determined during validation of the annotated 

invasive margin analysis detailed in 4.3.2. CD3 immunohistochemistry had also been 

performed on full sections in this cohort and the median score for CD3+ cells was used to 

stratify patients for CSS. The cell densities determined for each patient by the automated 

algorithm underwent ROC analysis against the median stratified CD3 scores and generated 

and AUC = 0.688 (Figure 4.14). 
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The automated algorithm determined TIL densities were used to stratify patients for 

high vs low immune infiltrate based on the same cut off value determined in the Glasgow 

Development cohort in 4.3.4, 0.55 cells / mm2. Kaplan – Meier survival analysis was used 

to assess the relationship between the stratified TIL densities and CSS and to compare this 

association to that of manually assessed CD3 densities. The image analysis determined TIL 

densities showed a non – statistically significant association with CSS but with a hazard ratio 

of 1.183, suggesting an improved prognosis for high immune infiltrate patients. The 

automated image analysis did, however, show a marginally better association with CSS than 

histopathological CD3 assessment (HR 1.183 95%CI 0.8178 – 1.711 P = 0.37 vs HR 1.135 

95% 0.7967 – 1.616 P = 0.48, respectively, Figure 4.15). 

  

Figure 4.14 Receiver Operator Characteristic of TIL Density in Glasgow Validation 

Cohort. ROC curve of automated image analysis determined TIL densities against median 

stratified CD3 scores in the Glasgow Validation Cohort. 
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B 

Figure 4.15 Relationship Between Tumour Infiltrating Lymphocyte Density and CSS 

in the Glasgow Validation Cohort. Association between CSS and TIL density assessed via 

CD3 IHC (A) and automated H&E based image analysis in the Glasgow Validation Cohort.  
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4.3.6 Assessment of TIL Densities via Automated Image Analysis in a Previously 

Unscored Patient Cohort 

Clinical translation of image analysis algorithms is dependent on their ability to 

maintain classification performance and prognostic significance when presented with novel 

image data from new patient cohorts. While the TransSCOT Clinical Trial cohort has been 

previously assessed for the TSP and KM grade via manual histopathological assessment and 

image analysis using the components of the automated lymphocyte detection workflow 

(3.3.5 and 4.3.3 respectively), no previous assessment of the stromal TIL density had been 

conducted, on H&E sections or through IHC methods.  

To validate the automated TIL workflow in this cohort and to determine the 

prognostic effect of TILs in a clinical trial setting, the full lymphocyte detection workflow 

was applied to a single H&E section from each patient, totalling 2856 after thirty – day 

mortality exclusion. The cell densities determined by the algorithm for each patient were 

stratified into high vs low immune infiltrate using the same cut off value determined in the 

Glasgow Development Cohort, 0.55 cells / mm2. Kaplan – Meier survival analysis showed 

that the stratified TIL densities had statistically significant association with DFS in this 

cohort (HR 1.34 95%CI 1.159 – 1.549 P < 0.0001, Figure 4.16). 
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Univariate and multivariate cox regression was performed to assess the relationship 

between TILs determined via image analysis, clinicopathological features, and DFS (Table 

4.5). On multivariate analysis, TILs were found to be significantly associated with DFS (HR 

0.804 95%CI 0.696-0.994, p = 0.003), independent of T-Stage (p < 0.001) and N-Stage (p 

< 0.001).  

 

 

 

 

 

 

 

 

 

Figure 4.16 Relationship Between TIL Density and DFS in TransSCOT Cohort. 

Association of DFS and TIL density determined through automated image analysis in the 

TransSCOT Clinical Trial Cohort. 
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Univariate Multivariate 

 HR 95% CI p-value  HR 95% CI p-value 

Sex        

Female 1.0       

Male 1.040 0.898-1.205 0.599     

T Stage    T Stage    

1 1.0   1 1.0   

2 1.013 0.498-2.060 0.973 2 1.089 0.535-2.215 0.815 

3 1.85 0.988-3.467 0.055 3 1.867 0.995-3.504 0.052 

4 3.217 1.715-6.037 <0.001 4 3.364 1.784-6.342 <0.001 

N Stage    N Stage    

0 1.0   0 1.0   

1 1.436 1.155-1.787 0.001 1 1.825 1.458-2.285 <0.001 

2 2.821 2.249-3.538 <0.001 2 3.159 2.511-3.974 <0.001 

Site    Site    

Left 1.0   Left 1.0   

Right 0.687 0.557-0.848 <0.001 Right 0.800 0.644-0.994 0.044 

Treatment        

FOLFOX 1.0       

CAPOX 1.084 0.924-1.272 0.319     

TILs    TILs    

Low 1.0   Low 1.0   

High 0.779 0.675-0.900 <0.001 High 0.804 0.696-0.928 0.003 

Table 4.5 Relationship between TILs, Clinicopathological Features and DFS in 

TransSCOT Cohort. Hazard ratios and 95% confidence intervals determined via Cox 

proportional hazards regression and multivariate analysis conducted using backwards 

conditional method.  
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4.4 Discussion 

The local inflammatory response to CRC has long been understood to hold 

significant prognostic value. The effect of a conspicuous peritumoural immune cell infiltrate 

on patient survival was first described and characterised in 1931 in rectal tumours (Maccarty, 

1931a), however, little progress was made in further investigating the utility of this 

assessment until later in the 20th century. Though some studies sought to establish the host 

immune response to CRC as a meaningful criterion for diagnosis, it was not until the work 

of J.R. Jass that reproducible means of assessing the infiltration of immune cells would be 

developed (C. S. D. Roxburgh & McMillan, 2012). Jass semi quantitatively assessed 

lymphocytic infiltration of 447 H&E sections of rectal tumours, showing that a marked 

difference in peritumoural lymphocyte densities conferred a 5 – year survival difference of 

92% for patients with a pronounced response, and 36% for patients with a weak response 

independent of disease stage (Jass, 1986). Despite showing good reproducibility (κ = 0.72), 

being subsequently validated for prognosis in an independent cohort, and demonstrating 

further prognostic utility as part of a novel classification system, Jass’ criteria saw no 

attempts at incorporation into routine pathology (Jass et al., 1987; C. S. D. Roxburgh et al., 

2009a, 2009b).  

Continuing research into defining how the local inflammatory response impacts 

cancer progression led subsequent studies to develop yet more reproducible methodologies 

for tissue – based immune assessment. The Immunoscore, developed by Galon and 

Colleagues, showed excellent prognostic utility by subtyping lymphocyte populations 

through IHC and quantification through digital pathology, however, the costly 

implementation of diagnostic IHC for each patient coupled with proprietary image analysis 

software prohibited clinical use of the system (Galon et al., 2006, 2014). The most clinically 

translatable method of lymphocyte assessment is the criteria developed by Klintrup, 

Mäkinen and Colleagues, whereby lymphocytic infiltrate is semi quantitatively assessed on 

H&E sections according to a four – point grading system (Klintrup et al., 2005). The KM 

grading system as it became known, is highly prognostic for survival, is reproducible 

between both observers and institutions, has no additional associated cost, and has been 

validated in a number of independent studies (Park et al., 2017; Park, McMillan, et al., 2016; 

Richards et al., 2012, 2014; C. S. D. Roxburgh et al., 2009b), however, it too has seen no 

clinical implementation to date with the lack of a robust, comprehensive, and standardised 

assessment criteria cited as the primary reason. It is of interest therefore, to investigate the 

utility of image analysis to conduct these assessments as a single observer with the aim of 

ensuring their reliability.  
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Image analysis has been utilised in prior studies to quantify immune cell densities 

and determine their prognostic effect; however, this has primarily been conducted on IHC 

labelled sections. While conducting reliable image analysis on H&E sections is difficult due 

to the histological variability between labs, the recent push towards histological 

standardization associated with routine diagnostic reporting from WSI has resulted in an 

ever – increasing number of slides of sufficiently consistent quality to make H&E WSI an 

appropriate modality for image analysis. Therefore, to somewhat retrospectively assess the 

feasibility of translating the KM criteria to an image analysis – based assessment, the present 

study assessed the prognostic capacity of image analysis utilising H&E sections produced 

during routine diagnosis.  

Given that a training data set of pathologist annotated lymphocytes was not available 

to train an artificial intelligence algorithm, this study was conducted using traditional, 

threshold – based image analysis on operator crafted features to detect lymphocytes. An 

initial algorithm was produced using thresholds determined by the image analysis researcher 

to isolate lymphocytes based on visual assessment of the algorithm’s performance across a 

series of histologically variable H&E sections until satisfactory lymphocyte detection was 

achieved. This approach was validated using two methodologies; DSC analysis against IHC 

sections stained for CD3 and for patient prognosis against manual KM assessment.  

The initial algorithm was comparatively validated against two additional algorithms, 

infra and supra optimisations; one where the detection thresholds were reduced resulting in 

more cell types and numbers to be detected, and one where the same thresholds were 

increased resulting in fewer cells being detected. The theory behind this being that detecting 

more cells of more types would reduce the prognostic significance of the algorithm and could 

either increase or decrease the DSC values depending on the ratio of additional cells detected 

and increasing the thresholds would produce an identical or better prognosis and again, 

produce an unknown effect on the DSC values. Indeed, in patients from the Glasgow 

Development cohort, increasing the threshold values to reduce the number of detected cells 

produced the best DSC value against the initial and low threshold algorithms (Figure 4.2), 

the greatest association with CSS (Figure 4.5), and the best statistical agreement with manual 

KM assessment (Figure 4.3, Table 4.1), and was therefore chosen as the optimal algorithm 

to conduct assessment in subsequent cohorts. Prior to applying the lymphocyte detection 

workflow to subsequent cohorts, the accuracy of the researcher’s invasive margin 

annotations made to validate the lymphocyte detection algorithm was determined against 

those of a specialist pathologist. Ideally, DSC values would have been generated to directly 
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compare the annotations, however this was not possible, therefore, the high threshold 

algorithm (hereafter referred to simply as the lymphocyte detection algorithm) was applied 

within both observers IM annotations and the kappa metric for the stratified lymphocyte 

densities showed excellent concordance between the two observers, κ = 0.81. It cannot be 

definitively stated that this was due to the annotations being in identical locations on the 

section, however, if the annotations were in differing sites this did not appear to have a 

significant effect on the analysis, suggesting that annotation of a prognostically appropriate 

area by an experienced observer is equally sufficient for conducting this analysis.  

While the lymphocyte detection algorithm coupled with invasive margin annotation 

demonstrated prognostic significance in the Glasgow Development cohort in which it was 

developed (Figure 4.5 D), though to a lesser degree than manual histopathological 

assessment (Figure 4.5 A), traditional threshold – based image analysis algorithms utilising 

colour – derived features do not translate well between independent cohorts. Data from the 

Glasgow Validation cohort demonstrated the lymphocyte detection algorithm still 

maintained a statistically significant association with CSS, (Figure 4.7), although again to a 

notably lesser degree than manual histopathological assessment (Figure 4.7). This could 

potentially be due to issues discussed in 3.4 regarding the quality of sections from this cohort, 

as data from the TransSCOT clinical trial cohort, the largest cohort and the one with the most 

recently produced WSI, demonstrated that the lymphocyte detection algorithm performed 

comparably to manual histopathological assessment in terms of patient stratification for DFS 

(Figure 4.7).  

These data demonstrate the feasibility of semi – automated image analysis for 

conducting peritumoural lymphocytic infiltrate assessment to prognostically stratify patients. 

However, it is noteworthy that in each instance that the image analysis underperforms for 

CSS stratification compared to manual histopathological assessment, though the underlying 

reasons for this are not immediately apparent, the most likely explanation is in the translation 

of a qualitative morphology – based assessment to a quantitative density – based assessment. 

Klintrup, Mäkinen and Colleagues conducted an exhaustive study of the patterns of 

peritumoural lymphocyte response and the relation to prognosis, however, the criteria 

describing the patterns of a “patchy”, “band – like”, and “florid cup” response do not directly 

translate to cell density analysis, which serves to act only as a surrogate for these measures. 

It is highly likely that the profound prognostic significance of the KM grading system lies 

within the nuances of these criteria which is not recapitulated through the current image 

analysis approach, hence why image analysis comparatively underperforms for survival 
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stratification. Recent studies have identified the prognostic significance of the spatial 

relationships between the tumour and its microenvironment, particularly infiltrating 

lymphocytes, which could provide a means by which to more directly translate the KM 

grading criteria to an image analysis – based assessment (Corredor et al., 2019; I. Nearchou 

et al., 2021; I. P. Nearchou, Lillard, et al., 2019b).  

The semi – automated lymphocyte detection workflow demonstrates good prognostic 

significance for survival but only partially addresses the requirements of a clinically 

translatable image analysis algorithm. While the cell detection and quantification are not 

subject to inter observer variability, there is still a time requirement and level of subjectivity 

associated with the analysis in the annotation of the invasive margin. Therefore, a fully 

automated approach to lymphocyte density analysis utilising the TSP algorithm developed 

in Chapter 3 was applied to the same sections as the semi – automated approach to assess 

the level to which it addressed these issues. Data from the Glasgow development cohort 

demonstrated that the fully automated approach to TIL assessment significantly stratified 

patients for CSS (Figure 4.13 B), though to a lesser degree than that of CD3 IHC manual 

histopathological assessment (Figure 4.13 A). This is most likely because CD3 IHC isolates 

T lymphocytes which are known to have the greatest effect on prognosis, whereas the H&E 

– based image analysis detects all lymphocytes thus diluting the prognostic effect. In the 

Glasgow Validation cohort however, the automated image analysis outperformed the CD3 

IHC assessment for CSS stratification though neither reached statistical significance (Figure 

4.15). Given the data from the Glasgow Development Cohort, it would be expected that the 

CD3 IHC significantly stratified patients to a similar degree in the Glasgow Validation 

cohort, the fact that it did not is likely due to the use of the median CD3+ cell density value 

to dichotomize patients as opposed to a cut off value optimised for CSS. The prognostic 

ability of automated lymphocyte analysis was shown however in the TransSCOT clinical 

trial cohort, which had not been assessed for CD3, where the algorithm demonstrated a 

significant association with DFS (Figure 4.16).  

While the automated assessment showed associations with survival, it failed to reach 

the same significance as the semi – automated assessment, most likely due to the fact that 

H&E based assessment of lymphocytic infiltrate is most prognostic at the invasive margin 

and assessment within the tumour core requires IHC subtyping of lymphocytes to elucidate 

the effect individual populations have on prognosis (Alexander et al., 2020). Deep learning 

could provide a solution to the limitations of the present study, in the case of the semi – 

automated assessment a CNN could be trained to not only identify lymphocytes from H&E 



145 

 

sections but also delineate specific immune cell subtypes to isolate their prognostic effect. 

Additionally, automated detection of the invasive margin to further reduce the subjectivity 

of the assessment could be achievable without deep learning but would require significant 

curation of the WSIs utilised to be applicable across multiple patient cohorts, therefore, deep 

learning would be a logical solution to both issues.  

In summary, these data demonstrate the feasibility of using multiple image analysis 

methodologies to assess lymphocytic infiltrate from clinical H&E sections and their use in 

predicting survival outcomes across multiple cohorts. Although requiring additional time to 

conduct, semi – automated assessment of the peritumoural immune response yields 

prognostic stratification comparable to that of manual histopathological assessment but will 

need further investigation to determine the specific prognostic relationships described by the 

KM criteria. Fully automated assessment requires no input from the pathologist but reduces 

the prognostic ability of the assessment. Thus, a determination of the trade – off between 

time and quality of stratification is necessary when deciding which methodology should be 

implemented in a given study.  
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5. Automated Assessment of Ki67 

Expression via Image Analysis in CRC
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5.1 Introduction 

Immunohistochemistry is a quick and relatively inexpensive technique routinely 

used in diagnostic pathology to provide additional information to clinicians about the nature 

of the specific malignancy. In colorectal cancer, IHC is regularly performed to assess the 

mismatch repair (MMR) status of the patient by staining for four proteins known to be 

involved in the MMR process (Richman, 2015). While IHC has been implemented in routine 

pathology across the world, there are many prognostic and predictive biomarkers that are 

readily assessable through IHC that have yet to be incorporated into diagnostic criteria.  

Ki67 is a nuclear antigen that is detectable only in proliferating cells and is present 

at all stages of the cell cycle (G1 – M) but is absent in resting cells in G0. It was identified 

in 1982 as a proliferation associated biomarker via monoclonal antibody generation in mice 

immunized with the nuclei of the Hodgkin’s Lymphoma cell line L428, with the specific cell 

cycle characteristics determined two years later. (Schwab et al., 1982, Gerdes et al., 1984). 

Given the importance of cellular proliferation in tumour development and progression, in 

addition to its ease of assessment, Ki67 has been studied for prognostic utility in a wide 

variety of cancers, but has seen limited implementation clinically. In gastroenteropancreatic 

neuroendocrine neoplasms, Ki67 positivity index forms the basis of a tiered grading system 

based and is used to predict recurrence and survival in PanNENs (Genç et al., 2018; Klöppel 

& la Rosa, 2018). In melanoma, Ki67 expression in combination with other IHC based 

markers has been shown to distinguish melanocytic nevi from tumours, as well as correlate 

with prognosis in stage I – III disease (Falkenius et al., 2017; Nielsen et al., 2013; Uguen et 

al., 2018). Most importantly, Ki67 expression (</> 14% positivity) is utilised in breast cancer 

along with HER2 and ER / PR, to distinguish between two molecular subtypes, Luminal A 

and Luminal B, which guide subsequent chemotherapeutic regimes (Goldhirsch et al., 2013). 

Additionally, due to the need to standardise assessment for clinical use, image analysis 

approaches to Ki67 scoring have been shown to be superior to manual histopathological 

assessment and highly reproducible between platforms and observers (Acs et al., 2018; 

Mohammed et al., 2012; Stålhammar et al., 2018).  

In the setting of colorectal cancer, Ki67 has been well studied both in the context of 

primary disease as well as in patients with liver metastasis. In primary CRC, high Ki67 

expression has been repeatedly shown to be associated with a better disease specific and 

overall prognosis (Fluge et al., 2009; Melling, Kowitz, & Simon, 2016; Reimers et al., 2014; 

C. S. Roxburgh et al., 2013). Interestingly, in CRC liver metastases, this prognostic 

relationship appears to be inverted, with high Ki67 expression being associated with a poorer 



148 

 

prognosis following colonic resection, and not associated with prognosis following resection 

of both primary and metastatic disease (Nash et al., 2010b). The association between Ki67 

expression and prognosis does appear to depend, however, on the cut off value that is used 

to stratify patients into high vs low expression groups, with values being determined by 

various methods ranging from 5% to 60% positivity (Luo et al., 2019). 

The aim of the present study is chiefly to investigate automated image analysis 

approaches to reliably assess Ki67 expression in CRC tissue, and determine its association 

with survival in independent patient cohorts. Additionally, Roseweir and colleagues 

proposed a cut off value of 30% Ki67 positivity to stratify patients into high vs low 

proliferation, therefore, this study also aims to validate this cut off value for prognostic 

stratification following automated Ki67 expression assessment (Roseweir et al., 2020). 
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5.2 Materials and Methods 

5.2.1 Histopathological Assessment 

Immunohistochemical staining of all CRC tissue for Ki67 utilised in this study was 

conducted according to the methodology described in 2.2.2. Manual histopathological 

assessment of Ki67 positivity for all cohorts was conducted as described in 2.3.3. Briefly, 

for TMAs, 100 cells were counted at random and the % positivity was determined for each 

individual core, where multiple cores were available for a single patient, the % positivity 

was counted across all cores where sufficient tissue was available and averaged to determine 

the % positivity for each patient. All histopathological Ki67 assessment was conducted by 

an observer not involved with the image analysis and scores made available in the respective 

patient cohort database.  

5.2.2 Statistical Analysis 

Patient cohort clinicopathological characteristics and test of association with cancer 

specific / DFS were determined in IBM SPSS version 25 (IBM, New York, USA). P values 

of <0.05 were considered to demonstrate a statistically significant association between 

clinicopathological features and clinical outcomes.  

All other statistical analyses for this study were conducted in RStudio (RStudio, 

Boston, MA). Confirmation of cut off values for Ki67 %PI scores were determined by using 

CSS / DFS as the endpoint with the maxstat and survminer packages. Receiver operator 

characteristic curves and associated AUC were plotted and calculated using the pROC 

package. Survival analysis was conducted and associated Kaplan – Meier survival curves 

produced using the survival, survminer, and survMisc packages, with the log rank statistic 

used to assess association between Ki67 %PI stratification and CSS / DFS. Hazard ratios 

and associated 95% confidence intervals for survival analysis were calculated using the Cox 

proportional hazard model.  
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5.3 Results 

5.3.1 Optimizing Automated Assessment of Ki67 Proliferation Index by Multiple 

Image Processing Techniques 

To determine the Ki67 % Positivity Index (%PI) of CRC tumours, the sections must 

first be segmented for appropriate tissue morphologies. Given that this study was conducted 

on TMA cores, a training data set (Training Data Set 3, 2.4.2.3) consisting of manual 

annotations for four classes: Tumour, Stroma, Necrosis, and Background, was constructed 

from a single TMA slide from a CRC patient cohort not utilised in the final survival analysis. 

To conduct tissue segmentation, a U-NET CNN was trained on the data set according to the 

parameters detailed in 2.4.5.1 and 2.4.5.2, utilising the network performance information 

and parameters obtained from the H&E TSP algorithm development conducted in Chapter 

3, with classifier performance being assessed visually across a range of cores in the initial 

validation cohort. Representative images of the tissue segmentation algorithm performance 

are shown in Figure 5.1.  

 

Prior to the tissue segmentation algorithm and subsequent cellular analysis 

algorithms being applied to the TMA cores, the raw TMA images were de-arrayed using the 

“Tissuearray” module within the Visiopharm software. An N x N grid was generated for 

each individual TMA using the TMA maps available for manual histopathological scoring 

purposes, the grid was then coarsely overlayed on the TMA and each core was finely aligned 

manually. The de-arrayed cores were then exported back to the “Image Analysis” module 

Figure 5.1 Tissue Segmentation of Ki67 IHC TMA Core. Tissue segmentation algorithm 

performance for segmenting Ki67 IHC TMA cores into Tumour (orange), Stroma (blue), 

Necrosis (none present), and Background (white).  
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where missing cores and cores with insufficient quality or quantity of tissue for analysis 

were manually excluded by deleting the ROI but maintaining the image, so the final exported 

data retained the same coordinate layout as the original TMA. The tissue segmentation 

algorithm was then run on the TMA core image directed at the ROI surrounding only the 

remaining viable cores, following which, the tissue class overlays were converted into ROI 

for subsequent cellular analysis.  

In order to determine the optimal method by which to segment and quantify tumour 

cells stained for Ki67, two cell segmentation algorithms were developed and compared for 

performance, one utilising traditional image processing methods and one utilising AI. To 

segment the image via threshold-based processing, the image was initially colour 

deconvolved into its constituent Haematoxylin and DAB layers, the values of which were 

multiplied together to generate a single, combined intensity greyscale layer, which was 

scaled to a range of 0 - 1. A 0 – 1 scaled, 61 x 61 kernel, 7th order Laplacian filter was then 

applied to the combined intensity layer to distinguish cell boundaries and a threshold value 

of >0.35 from this filtered layer was coupled with a threshold value of <0.7 applied to the 

initial combined intensity layer to mark the cell boundaries against the background. Due to 

the stark increase in intensity of DAB positive cells compared to DAB negative cells, not all 

negative cells were classified in this initial step, therefore, a 0 – 1 scaled, 71 x 71 kernel, 5th 

order Laplacian filter was applied to the Haematoxylin colour deconvolved layer and a 

threshold value of >0.6 was applied to this filtered layer to incorporate the remaining DAB 

negative cells into the classification. The classified image was then processed to remove any 

small, misclassified areas (<15µm2). The cell centroids were isolated from the combined 

intensity Laplacian filtered layer and expanded to the boundaries detected by the initial 

classification step to recapitulate the cellular morphology. Following which, a 500µm 

watershed object separation function with a 6µm wide boundary determined using the 

combined intensity Laplacian filtered layer heatmap was utilised to distinguish cells from 

one another at the inferred point of the cellular membrane. Finally, objects <20µm2 were 

removed and the remaining cells distinguished as Ki67 positive / negative cells using a 

threshold of </> 150 applied to the DAB colour deconvolved layer encompassing >5% of 

the resultant cell objects.  

The AI based cell segmentation algorithm was adapted from the “Nuclei Detection, 

AI (Brightfield)” Analysis Protocol Package (APP) included in the Visiopharm AI Author 

package. This algorithm was trained on 3 classes: Nuclei, Boundary, and Background from 

brightfield images of both H&E and IHC sections, with a U-NET CNN utilising unknown 

training parameters, and no additional training was performed to adapt this algorithm to the 
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current data set. To categorize detected cells as positive or negative for DAB Ki67 staining, 

the same threshold function of </> 150 applied to the DAB colour deconvolved layer 

encompassing >5% of cellular objects utilised in the image processing algorithm was utilised 

in this algorithm. The output variables from each algorithm were the number of positive and 

negative cells within the tumour ROI and the Ki67 %PI as calculated by 

(
𝑁 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑒𝑙𝑙𝑠

𝑁 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑒𝑙𝑙𝑠 + 𝑁 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐶𝑒𝑙𝑙𝑠 
) · 100 . The cell segmentation performance of each 

algorithm was visually assessed across multiple weakly and strongly DAB positive cores to 

determine both quality of segmentation and determine any colour-based bias towards DAB 

positive cells. Representative images of the performance of both algorithms are shown in 

Figure 5.2.  
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To assess the performance of each approach against manual histopathological 

assessment, a TMA constructed from the Glasgow Development Cohort (clinicopathological 

features detailed in 3.3.2) stained for Ki67, was initially classified using the AI-based tissue 

segmentation algorithm described above and the class overlays converted to ROI. The 

tumour ROI generated by this algorithm were then analysed for Ki67 %PI using both cell 

segmentation algorithms on all viable cores in the TMA and the average of the cores taken 

to generate a Ki67 %PI for each patient, the final workflow for this algorithm is shown in 

Figure 5.3. The scores were compared to manual histopathological assessment via ROC and 

Intraclass Correlation Coefficient (ICC) analysis. The threshold – based algorithm generated 

an AUC = 0.926 and an ICC3 = 0.78 (95% CI 0.73 – 0.83), and the AI – based algorithm 

produced an AUC = 0.947 and an ICC3 = 0.83 (95% CI 0.78 – 0.86) (Figure 5.4). 

 

 

Figure 5.2 Cell Segmentation Algorithms on Ki67 IHC. Performance of image processing 

(A) and AI (B) based cell segmentation algorithms on Ki67 stained CRC tissue (C). 

A 

C 

B 
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Figure 5.3 Ki67 % Positivity Index Algorithm Workflow. Workflow to determine 

Ki67 %PI from IHC TMA WSI. Workflow is identical between image processing and AI – 

based algorithms.  
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Figure 5.4 Receiever Operator Characteristic of Ki67 %PI Algorithms in Glasgow 

Development Cohort. ROC analysis of Ki67 %PI scores generated by an image processing 

(A) and an AI – based (B) cell segmentation algorithm assessed against histopathological 

Ki67 %PI scores with 30% PI cut off in Glasgow Development Cohort. Image processing 

algorithm AUC = 0.926 and ICC3 = 0.78. AI – based algorithm AUC = 0.947 and ICC3 = 

0.83.  
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Bland – Altman plots were constructed for each image analysis algorithm against the 

histopathological Ki67 %PI scores to assess the relationship between the image analysis and 

manual approaches, and to determine whether any systemic bias is present in either image 

analysis algorithm (Figure 5.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Relationship between histopathological and image analysis determined 

Ki67 %PI in Glasgow Development Cohort. Bland – Altman plots demonstrating the 

relationship and bias between Ki67 %PI determined by manual histopathological 

assessment and an image processing (A) and an AI – based (B) cell segmentation algorithm 

in the Glasgow Development Cohort. 
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The Ki67 %PI scores generated by each algorithm were assessed for prognostic 

performance against CSS in the Glasgow Development cohort. Initially, the cut off values 

for the scores generated by each algorithm were determined using the maxstat and survminer 

packages in R against the CSS for each patient. Given that the cut off value utilised in all 

histopathological Ki67 survival analysis within our lab is 30%, the aim of generating a cut 

off for each algorithm was to determine their respective distances from this value and assess 

the utility of the 30% cut off for CSS prognosis by each algorithm. The cut off values 

determined for the image processing and AI – based algorithms were 18.65% and 29.57% 

respectively (Figure 5.6).  
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Figure 5.6 Determining Optimal Cut Off Values For Ki67% PI Cell Segmentation 

Algorithms In Glasgow Development Cohort. Distribution and optimal cut off values of 

Ki67 %PI scores determined by an image processing (A) and AI – based (B) cell 

segementation algorithm for CSS in the Glasgow Development Cohort. The cut off values 

for the image processing and AI – based algorithms in this cohort were 18.65% and 29.57% 

respectively.  
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Kaplan – Meier survival analysis was performed to assess the association between 

CSS and the two image analysis approaches. The Ki67 %PI scores generated by each 

algorithm were used to stratify patients into high vs low Ki67 expression utilising the 30% 

PI cut off value determined via manual histopathological assessment. Histopathological 

Ki67 assessment in this cohort showed a non – statistically significant association with CSS 

but an increased hazard ratio for low Ki67 expression (HR 1.34 95% CI 0.7827 – 2.294, P 

= 0.29, Figure 5.7). Ki67 expression determined by the image processing algorithm showed 

a slightly increased hazard ratio for CSS but did not show a statistically significant 

association (HR 1.136 95% CI 0.6933 – 1.861 P = 0.61, Figure 5.7), whereas the AI – based 

algorithm showed a comparable association with CSS to the manual histopathological 

assessment (HR 1.236 95% CI 0.7681 – 2.1.989, P = 0.38, Figure 5.8).  
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Figure 5.7 Relationship Between Image Processing Determined Ki67 Expression and 

CSS in Glasgow Development Cohort. Association between CSS and Ki67 %PI 

determined by manual histopathological assessment (A) and an image processing cell 

segmentation algorithm (B) in the Glasgow Development Cohort.  
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Figure 5.8 Relationship Between AI Determined Ki67 Expression and CSS in Glasgow 

Development Cohort. Association between CSS and Ki67 %PI determined by manual 

histopathological assessment (A) and an AI – based cell segmentation algorithm (B) in the 

Glasgow Development Cohort.  
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5.3.2 Validation of Ki67 Cell Segmentation Algorithms in The Glasgow Validation 

Cohort  

As detailed in 5.3.1, the AI – based Ki67 cell segmentation algorithm demonstrated 

improved performance over the traditional image processing algorithm in terms of faithful 

cell segmentation (Figure 5.2), statistical measures of agreement with manual 

histopathological assessment (Figure 5.4), and in terms of association with CSS (Figure 5.8). 

To confirm these findings, both algorithms underwent the same analysis in the Glasgow 

Validation Cohort (clinicopathological features detailed in 3.3.2, Table 3.2), which had 

previously been histopathologically assessed for Ki67 expression by an independent 

observer (5.2.1). The application of the algorithms to this cohort followed an identical 

workflow to that used in the initial validation in the Glasgow Development Cohort (Figure 

5.3) and was applied over 4 cores per patient, with the final Ki67 %PI for each patient 

determined by averaging the score of all viable cores in the TMA. The Ki67 %PI for each 

patient from each algorithm initially underwent ROC analysis and ICC analysis against the 

histopathological Ki67 assessment stratified and percentage scores respectively to determine 

the statistical agreement. In this cohort, the threshold based algorithm produced an AUC = 

0.928 and ICC3 = 0.74 and the AI – based cell segmentation algorithm produced an AUC = 

0.929 and an ICC3 of 0.83 (Figure 5.9). 
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Bland – Altman plots were constructed to assess the relationship and determine any 

systemic bias between the cell segmentation algorithms’ generated Ki67 %PI and the manual 

histopathological assessment (Figure 5.10).  

Figure 5.9 Receiver Operator Characteristic of Ki67 %PI in the Glasgow Validation 

Cohort. ROC curve of Ki67 %PI determined by a threshold – based (top) AI – based 

(bottom)  cell segmentation algorithm against manual histopathological assessment. 

Threshold AUC = 0.928 and ICC3 = 0.74, AI – based AUC = 0.929 and ICC3 = 0.83. 



164 

 

 

 

Figure 5.10 Relationship Between Histopathological and Image Analysis Determined 

Ki67 %PI in the Glasgow Validation Cohort. Bland – Altman plots demonstrating the 

relationship and bias between histopathological and threshold – based cell classification 

algorithm (top) and AI – based cell classification (bottom) determined Ki67 %PI in the 

Glasgow Validation Cohort.  
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Cut off values for the Ki67 %PI scores determined by the algorithms for CSS were 

generated using the maxstat and survminer packages in R to determine the level of 

discrepancy with the 30% cut off value used in manual histopathological assessment. The 

CSS cut off value for the threshold algorithm generated scores in this cohort was 59.37% 

and 34.51% for the AI – based algorithm (Figure 5.11). 

The algorithm generated scores were used to stratify the patients into high vs low 

Ki67 expression using the </> 30% cut off value utilised in manual histopathological 

assessment. Kaplan – Meier analysis was performed on the stratified scores to assess the 

relationship with CSS and compare survival stratification to manual histopathological 

assessment. The AI – based algorithm generated Ki67 %PI showed a stronger statistical 

association with CSS in this cohort than the threshold algorithm determined indices, which 

failed to reach significance, HR 1.473 95% CI 1.066-2.036 P = 0.018 and HR 1.271 95% 

CI 0.9321 – 1.734 P = 0.18, respectively (Figure 5.12 & Figure 5.13). Additionally, the AI 

– based algorithm outperformed manual histopathological assessment for CSS stratification 

(Figure 5.13). 

Figure 5.11 Determining an optimal cut off value for CSS by Ki67 %PI determined by  

image analysis cell classification algorithms in Glasgow Validation Cohort. Distribution 

of AI – based image analysis determined Ki67 %PI scores and optimal cut off value for high 

vs low expression based on CSS in the Glasgow Validation Cohort. For this algorithm in 

this cohort, the optimal cut off value was 59.37% for the threshold algorithm and 34.51% 

for the AI – based algorithm.   



166 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

Figure 5.12 Relationship between Ki67 %PI and CSS in Glasgow Validation Cohort. 

Relationship between CSS and Ki67 %PI determined by manual histopathological 

assessment (A) and threshold – based image analysis (B) in the Glasgow Validation Cohort.  
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Figure 5.13 Relationship between Ki67 %PI and CSS in Glasgow Validation Cohort. 

Relationship between CSS and Ki67 %PI determined by manual histopathological 

assessment (A) and AI – based image analysis (B) in the Glasgow Validation Cohort.  
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5.3.3 Automated Ki67 Expression Assessment by Image Analysis Predicts Disease 

Specific Survival in a Previously Unscored Patient Cohort 

Validation of the two image analysis approaches in the Glasgow Validation cohort 

confirmed the superior performance of the AI – based algorithm over the threshold algorithm 

demonstrated in the Glasgow Development cohort. The AI – based algorithm showed a 

greater association with CSS than both the threshold algorithm and manual histopathological 

assessment (Figure 5.12 & 5.13), and again produced a cut off value close to the 30% 

determined manually (Figure 5.11), whereas the threshold produced inconsistent thresholds 

significantly above and below the accepted value (Figure 5.6 & 5.11). The AI – based 

algorithm was therefore selected as the most appropriate algorithm to conduct novel analyses 

in subsequent cohorts. As stated in previous chapters, it is vital to the clinical translatability 

of image analysis algorithms that their application to image data from novel patient cohorts 

retains performance in terms of both segmentation and clinical outcomes. Development and 

validation of the automated Ki67 approaches was conducted on well – established patient 

cohorts that had previously been histopathologically scored for Ki67 %PI. Therefore, to 

validate image analysis Ki67 assessment in a completely novel setting, the same workflow 

used in the Glasgow Development and Validation patient cohorts was applied to tissue from 

a cohort recently established at the Glasgow Royal Infirmary hospital, that had not been 

previously scored for Ki67.  

 The Glasgow Royal Infirmary (GRI) cohort comprised 787 stage I – III colorectal 

cancer patients undergoing potentially curative resection at the GRI hospital between 1997 

– 2012. Patients were predominantly male (55.2%) over the age of 65 (62.3%) and presenting 

with primarily T – Stage III (56.9%), node negative disease (60.3%) with a relatively even 

distribution of right, left, and rectal disease (38.5%, 31.1%, 30.4%, respectively). Patients 

were excluded from final survival analysis if they were administered neoadjuvant therapy, 

died within 30 days of surgery, or presented with Stage IV disease, and if there was 

insufficient tissue for image analysis. Following exclusion criteria, 638 patients remained 

and were included in the final analysis. The primary clinical outcome was CSS defined as 

the time from the date of surgery to the date of death from primary disease. 

Clinicopathological characteristics associated with CSS were Age (P = 0.012), T Stage (P 

< 0.0001), and N Stage (P < 0.0001) (Table 5.1). 

 

 



169 

 

Clinicopathological 

Characteristic 

N (%) Clinical Outcome 

Significance 

Age 

<65 

>65 

 

296 (37.7) 

489 (62.3) 

 

0.012 

Sex 

Female  

Male 

 

352 (44.8) 

433 (55.2) 

 

0.201 

T Stage 

I 

II 

III 

IV 

 

34 (4.3) 

84 (10.7) 

447 (56.9) 

219 (27.9) 

 

 

 

<0.0001 

N Stage 

0 

1 

2 

 

473 (60.3) 

223 (18.5) 

89 (7.4) 

 

 

<0.0001 

Tumour Site 

Right 

Left 

Rectal 

 

302 (38.5) 

244 (31.1) 

239 (30.4) 

 

 

0.259 

 

Differentiation 

Well  

Moderate 

Poor 

 

23 (1.9) 

681 (86.5) 

72 (6.0) 

 

 

0.234 

Adjuvant Chemotherapy 

Yes  

No 

 

200 (25.5) 

583 (74.5) 

 

 

0.744 

Table 5.3 Clinicopathological Characteristics of Glasgow Royal Infirmary Cohort. 

Number (%) of patients with clinicopathological characteristic and association with CSS in 

GRI patient cohort. 

An identical workflow used in the previous cohort TMAs was applied to the GRI 

cohort TMA, composed of three cores per patient from which the resultant Ki67 %PI scores 

were averaged. The scores were then analysed using the survminer and maxstat packages in 

R to generate a cut off value based on CSS and determine the level of discrepancy with the 
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30% cut off used in manual histopathological assessment. The cut off value determined for 

this cohort with the image analysis generated Ki67 scores was 30.4% (Figure 5.14). 

 

The algorithm generated scores were used to stratify patients into high vs low 

expression based on the 30% cut off value used in manual histopathological assessment and 

validated by the maximally selected rank statistics analysis in Figure 5.14, following which, 

the stratified scores underwent Kaplan – Meier survival analysis to determine the association 

between the Ki67 %PI and CSS. The stratified AI – determined Ki67 scores were 

significantly associated with CSS in this previously unscored cohort (HR 1.626 95% CI 

1.125 – 2.352 P = 0.009, Figure 5.15). 

 

 

 

 

  

Figure 5.14 Determining an optimal cut off value for CSS by Ki67 %PI determined by 

AI – based image analysis algorithm in GRI Cohort. Distribution of AI – determined 

Ki67 %PI and optimal cut off value for high vs low expression based on CSS in the GRI 

patient cohort. The cut off value for this cohort is 30.4%. 
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Univariate and multivariate cox regression was performed to assess the relationship 

between the Ki67 %PI determined via image analysis, clinicopathological features, and CSS 

(Table 5.2). On multivariate analysis, Ki67 index was found to be significantly associated 

with CSS (HR 0601 95%CI 0.411-0.879, p = 0.009), independent of Age (p = 0.003), N-

Stage (p < 0.001), and Tumour Budding (p = 0.001).  

 

 

 

 

 

 

 

 

 

Figure 5.15 Relationship Between CSS and AI – Determined Ki67 %PI in GRI Cohort. 

Association between CSS and AI – determined Ki67 expression in the Glasgow Royal 

Infirmary patient Cohort. 



172 

 

Univariate Multivariate 

 HR 95% CI p-value  HR 95% CI 

p-

value 

Age    Age    

<65 1.0   <65 1.0   

65-75 0.942 0.636-1.396 0.766 65-75 0.975 0.634-1.499 0.908 

>75 1.605 1.119-2.302 0.01 >75 1.826 1.228-2.714 0.003 

Sex        

Female 1.0       

Male 1.320 0.969-1.797 0.078     

T Stage    T Stage    

1 1.0   1 1.0   

2 1.362 0.375-4.950 0.639 2 1.173 0.251-5.473 0.840 

3 2.690 0.851-8.500 0.092 3 2.034 0.494-8.380 0.326 

4 5.166 1.624-16.431 0.005 4 3.002 0.718-12.548 0.132 

N Stage    N Stage    

0 1.0   0 1.0   

1 2.521 1.801-3.528 <0.001 1 1.877 1.296-2.718 <0.001 

2 4.137 2.736-6.254 <0.001 2 2.825 1.781-4.482 <0.001 

Site        

Right 1.0       

Left 1.021 0.714-1.459 0.909     

Rectal 1.138 0.784-1.650 0.497     

Differentiation    Differentiation    

Well 1.0   Well 1.0   

Moderate 3.143 0.779-12.686 0.108 Moderate 3.450 0.850-14.006 0.083 

Poor 4.728 1.101-20.300 0.037 Poor 3.364 0.754-14.996 0.112 

Tumour 

Budding    

Tumour 

Budding    

Low 1.0   Low 1.0   

High 1.871 1.370-2.555 <0.001 High 1.752 1.254-2.447 0.001 

Ki67 PI    Ki67 PI    

Low 1.0   Low 1.0   

High 0.539 0.373-0.778 <0.001 High 0.601 0.411-0.879 0.009 

Table 5.2 Relationship between Ki67 PI, Clinicopathological Features and CSS in GRI 

Cohort. Hazard ratios and 95% confidence intervals determined via Cox proportional 

hazards regression and multivariate analysis conducted using backwards conditional method.  
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5.3.4 Automated Assessment of Ki67 Expression at the Invasive Margin and 

Tumour Core in a Clinical Trial Cohort 

Following validation of automated Ki67 expression assessment using the AI – based 

cell classification algorithm in the previously scored Glasgow Development and Validation 

cohorts, and the previously unscored GRI cohort, the algorithm was further validated in the 

TransSCOT clinical trial cohort (detailed in 3.3.5, Table 3.4). The TransSCOT cohort 

comprises 2913 patients with full section data, from which 1317 sections were 

immunohistochemically stained for Ki67 to be utilised in a study validating the Phenotypic 

Subtypes and its components for prognostic significance. The Ki67 full sections were then 

analysed in a single, pre – determined field of view at 400x magnification using an automated 

hotspot – based positive cell counter that was part of the SlidePath (Leica, UK) digital image 

hub (Roseweir et al., 2020). A secondary aim of the full section analysis was to ensure that 

areas selected to be taken for a TMA constructed from this cohort were biologically 

representative of the whole tumour. The TMA was constructed from 2352 of the 2913 

patients utilising two 0.8mm cores per patient, one from the Tumour Core (TC) and one from 

the Invasive Margin (IM). Following exclusion of patients with missing data and those that 

died within 30 days of surgery, 2079 patients with both IM and TC data remained for survival 

analysis. In order to derive as much clinically relevant data as possible from the cohort, the 

TMA was selected as the mode of analysis for Ki67 expression and subsequently stained via 

IHC.  

It has been previously shown that there is a marked difference in expression levels 

and prognostic effect of Ki67 assessed at the luminal edge / tumour core and invasive margin. 

A study investigating proliferation in Dukes’ B tumours demonstrated that proliferative 

activity was significantly higher at the luminal border compared to the invasive margin, and 

that low proliferative activity at the invasive margin was correlated with a worse prognosis 

but no correlation with survival was seen when Ki67 was assessed at the luminal border  

(Palmqvist et al., 1999). A later study investigating apoptosis and proliferation in adenoma 

and carcinoma confirmed that proliferative activity was higher in the central part of the 

tumour compared to the invasive margin in CRC. Additionally, this study showed a trend 

towards significantly increased proliferative activity at the IM in the right vs left colon 

(Hörkkö & Mäkinen, 2003). Therefore, to further investigate this phenomenon of difference 

in expression and its correlation with prognosis in this cohort, the AI – based cell 

classification algorithm, previously validated in three CRC cohorts, was applied to both IM 

and TC cores from each patient using an identical workflow to the validation studies. The 
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Ki67 %PI scores generated for each patient at the IM and TC were compared in terms of 

expression level and the effect on DFS.  

To determine the discrepancy with the 30% cut off value used in histopathological 

Ki67 assessment, an optimal cut off value for the Ki67 %PI scores generated by the AI cell 

classification algorithm was generated against DFS status, for both the IM and TC for each 

patient, using the survminer and maxstat packages in R studio. The optimal cut off values 

determined for DFS, for the IM and TC, in this cohort were 13.41% and 10.16%, respectively 

(Figure 5.16).  
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A 

B 

Figure 5.16 Determining Optimal Cut Off Values For Ki67 in TransSCOT Cohort. 

Distributions and optimal cut off values for Ki67 %PI determined by AI cell classification 

at the invasive margin (A) and tumour core (B) in the TransSCOT cohort.  
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The AI algorithm generated scores were used to stratify patients into high vs low 

expression based on the 30% cut off value used in manual histopathological assessment, and 

Kaplan – Meier analysis was performed to assess the association of the stratified scores with 

DFS at the invasive margin and tumour core. In both cases, high Ki67 expression (>30% PI) 

conferred a better DFS prognosis however, Ki67 expression at the invasive margin showed 

a greater hazard ratio and correlation with DFS in this cohort than within the tumour core, 

correlating with previous studies that Ki67 expression carries greater prognostic significance 

at the invasive margin (IM = HR 1.281 95% CI 1.085-1.513 P = 0.0035, TC = HR 1.236 

95% CI 1.032-1.481 P = 0.021, Figure 5.17).  
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A 

B 

Figure 5.17 Relationship Between Ki67 Expression and DFS in TransSCOT Cohort. 

Association between AI – determined Ki67 expression and DFS at the invasive margin (A) 

and tumour core (B) in the TransSCOT clinical trial cohort. 
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To evaluate any potential difference in Ki67 expression levels between the invasive 

margin and tumour core, and if sidedness influenced expression, a Wilcoxon matched pairs 

signed – rank test was performed on the paired Ki67 %PI scores from the IM and TC cores 

for each patient grouped by the disease site. In both left and right sided disease, there was 

significantly higher Ki67 expression in the tumour core, further correlating with previous 

studies, with left – sided disease showing a slightly greater difference in expression level 

than right – sided disease (P < 2.2x10-16 vs P = 2.8x10-14, respectively) (Figure 5.18). To 

further investigate the difference in expression levels, a Wilcoxon signed – rank test was 

performed on the Ki67 %PI scores at each disease site grouped by the TMA core location. 

While no statistically significant difference was seen between left and right – sided disease 

at the invasive margin (P = 0.4), right – sided disease showed a trend towards a significantly 

increased proliferative rate within the tumour core (P = 0.082, Figure 5.18). 
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B 

D 

Figure 5.18 Ki67 Expression at the Invasive Margin and Tumour Core in the 

TransSCOT Cohort. AI determined Ki67 expression in the IM and TC in left – sided (A) 

and right – sided disease (B). Ki67 expression in right and left – sided disease at the IM (C) 

and TC (D). P values are Wilcoxon Matched Pairs Signed – Rank Test (AB) and Wilcoxon 

Signed – Rank Test (CD).  
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Kaplan – Meier survival analysis was used to determine whether site dependent 

variation in Ki67 expression affected the prognostic significance of the assessment. Ki67 

expression retained a statistically significant association with DFS at both the tumour core 

and invasive margin in left – sided disease with a slight increase in hazard ratio at the tumour 

core, HRTC = 1.241 vs HRIM = 1.233, although the association with DFS was more significant 

at the invasive margin, PTC = 0.022 vs PIM = 0.018 (Figure 5.19). In right – sided disease 

however, Ki67 expression did not show a significant association with DFS at either the 

tumour core or the invasive margin and both locations showed and identical hazard ratio, 

HR = 1.138 (Figure 5.20).  
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B 

Figure 5.19 Relationship Between Ki67 Expression and DFS in Left – Sided Disease in 

the TransSCOT Cohort. Association between AI – determined Ki67 expression and DFS at 

the invasive margin (A) and tumour core (B) in left – sided disease in the TransSCOT clinical 

trial cohort. 
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B 

Figure 5.20 Relationship Between Ki67 Expression and DFS in Right – Sided Disease 

in the TransSCOT Cohort. Association between AI – determined Ki67 expression and DFS 

at the invasive margin (A) and tumour core (B) in right – sided disease in the TransSCOT 

clinical trial cohort. 
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5.4 Discussion 

Molecular markers of disease progression and response to treatment form the basis 

of personalised medicine, by providing ever greater insight to the individual’s specific 

condition. Currently, only a few molecular biomarkers are employed in routine pathology of 

CRC, mainly to assess MMR status through immunohistochemical staining of the four 

mismatch repair proteins. Recent research has led to the development of a multitude of 

biomarkers that hold both prognostic and theragnostic significance that are readily 

translatable to the diagnostic process, notably the proliferation associated antigen Ki67. 

Given that sustained replicative potential is widely accepted as a hallmark of cancer 

(Hanahan & Weinberg, 2011), Ki67 aided assessment of the proliferative activity of 

neoplastic cell populations holds significant clinical relevance. In the setting of breast cancer, 

Ki67 labelling index is utilised clinically to distinguish between Luminal A and Luminal B 

intrinsic subtypes and can inform response to endocrine therapy, however, it is noteworthy 

that recommendations for using Ki67 for this purpose are predicated on good local control 

of staining quality and to be used diligently due to noted interobserver variability 

(Goldhirsch et al., 2011).  

Image analysis, while still beholden to histological processing quality control, could 

address the issue of interobserver variability and indeed studies have shown IA algorithms 

improve the accuracy and reproducibility of Ki67 assessment (Z. Li et al., 2022). 

Additionally, the time burden associated with Ki67 assessment across WSI renders it 

clinically impractical leading to the suggestion of conducting the assessment within multiple 

ROI, the selection of which is subjective in and of itself and has the potential to influence 

the outcome of the Ki67 indexing (Christgen et al., 2015). This too could be addressed 

through image analysis to provide an unbiased view of the proliferative activity of the 

tumour as a whole. In the present study, image analysis tissue and cell segmentation 

algorithms were utilised to develop a reproducible, automated assessment of the Ki67 

proliferative index and assess its efficacy in multiple, distinct CRC patient cohorts. 

As stated previously in this work, the use of deep learning on WSI necessitates 

considerable investment in IT systems that are not feasible everywhere and the benefit – cost 

trade off must be considered. Therefore, an initial comparative study between a traditional 

threshold – based cell segmentation algorithm and a deep learning – based cell segmentation 

algorithm was conducted to assess which approach performed the best in terms of both 

survival outcomes and statistical agreement with manual histopathological assessment, and 

if any improvement with deep learning was significant enough to justify its use. When both 
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algorithms were applied to the TMA constructed from the Glasgow Development Cohort, 

the Ki67 %PI generated by the deep learning algorithm showed greater agreement with 

manual histopathological assessment than the traditional algorithm (Figure 5.4) and showed 

greater association with CSS (Figure 5.8), however, both algorithms failed to outperform 

manual histopathological assessment for survival stratification (Figure 5.7 & 5.8). 

Furthermore, optimal cut off analysis of both algorithms showed near – perfect concordance 

of the deep learning algorithm’s cut off value (29.57%) with the 30% utilised in manual 

histopathological assessment, but notable deviation of the threshold – based algorithm with 

a value of 18.65% (Figure 5.6), likely a result of less accurate cell segmentation and 

classification skewing patient Ki67 positivity indices (Bankhead, 2022).  

These data were confirmed in the Glasgow Validation cohort, while both algorithms 

showed excellent and almost identical association with manual histopathological assessment 

via receiver operator characteristic analysis (Figure 5.9), the AI – based algorithm 

demonstrated almost perfect statistical concordance with manual histopathological 

assessment (ICC3 = 0.83) whereas the threshold algorithm demonstrated lower, albeit still 

substantial, statistical concordance (ICC3 = 0.74). Optimal cut off analysis for CSS again 

demonstrated the improved concordance of the AI – algorithm with manual 

histopathological assessment, generating a cut off of 34.51%, while the threshold algorithm 

showed large discrepancy with the accepted 30% cut off, generating a cut off of 59.37% 

(Figure 5.11). This discrepancy carried over into Kaplan – Meier survival analysis where the 

threshold algorithm failed to reach statistical significance for CSS stratification (Figure 5.12), 

whereas the AI – based algorithm outperformed manual histopathological assessment for 

patient survival (Figure 5.13). The fact that both algorithms followed an identical workflow 

until the application of the cell segmentation step likely indicates that the difference in 

performance is due to the ability of the algorithms to handle the morphological heterogeneity 

of cell nuclei both within the same cohort, for example high vs low grade dysplasia, and 

across independent cohorts. Both Glasgow cohort TMAs were of similar age, processed 

similarly, and of comparable scanning quality, however, the consistent performance of the 

deep learning algorithm between the cohorts demonstrates that this approach is able to 

handle histological variation better than traditional threshold – based approaches.  

As previously emphasized in this work, translatability of image analysis algorithms 

is vital to their use in research, as companion diagnostics in clinical trials, and indeed in 

aiding primary diagnosis. Reliance on manual histopathological assessment being conducted 

prior to image analysis poses a two – fold barrier to their continued development, in terms 
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of the time taken to produce a second score for the same patients and limiting the validity 

the performance of image analysis algorithms for survival prediction if statistical measures 

of agreement are subjectively considered suboptimal. Having validated the AI algorithm in 

two clinical cohorts, it was subsequently applied to two more clinical cohorts, one of which 

was previously unassessed for Ki67 and one where Ki67 assessment had been conducted on 

full sections but not on the TMA used in this study. In the previously unscored GRI cohort, 

the AI algorithm generated Ki67 %PI scores showed a statistically significant stratification 

for CSS using the 30% cut off value utilised in previously cohorts (Figure 5.15). Additionally, 

the novel cut off value generated for this cohort from the AI generated scores was nearly 

identical (30.4%) to the value manually determined in previous cohorts (Figure 5.14), further 

demonstrating that image analysis algorithms can reliably perform primary research for 

novel cohorts and data.  

Further validation in the TransSCOT clinical trial cohort demonstrated the AI 

algorithm’s ability to prognostically stratify patients on novel image data in a cohort where 

prior confirmation of Ki67 expressions association with DFS was performed on a subset of 

WSI. While the optimal cut off values generated for this cohort were notably lower than the 

30% PI determined in prior cohorts (Figure 5.16), the algorithm showed prognostically 

significant stratification using the 30% cut off at both the tumour core and invasive margin 

(Figure 5.17). This discrepancy between the generated cut offs and the accepted 30% value 

is likely due to the tendency of hazard ratios to increase with a large difference of patient 

numbers between the stratified patient groups. Closer inspection of the maximally ranked 

distribution of events within the two tumour subsites shows that the second highest 

association of events with Ki67 expression occurs closer to the 30% value (Figure 5.16).  

Previous studies have demonstrated variation in Ki67 expression between left and 

right – sided disease, tumour subsite, and within the crypts of pre – carcinomatous polyps, 

although with conflicting results (Davenport et al., 2003; De Jong et al., 1998; Gao et al., 

2017; Nayak et al., 2021). Investigation of this phenomenon in the TransSCOT cohort 

revealed that Ki67 expression analysis showed a marginal increase in prognostic significance 

when conducted at the invasive margin over the tumour core (Figure 5.17). Given that this 

study was conducted on a single TMA core taken at both tumour subsites for each patient, it 

would be of interest to further investigate this effect using WSI to establish a more complete 

understanding of the potential difference in prognostic significance, as the majority of 

current Ki67 assessment is conducted within the tumour core. Concurring with findings that 

Ki67 %PI values are significantly lower at the invasive margin (Brabletz et al., 2001; A. 
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Jung et al., 2001), evaluation of localization dependent Ki67 expression demonstrated a 

significantly higher mean Ki67 %PI in the tumour core in both left and right – sided disease 

(Figure 5.18 A, B), with the difference more pronounced in left – sided disease though this 

is likely due to the higher numbers of patients with left – sided disease. Analysis of Ki67 

expression localization by tumour site revealed no significant difference in %PI values 

between right and left – sided disease at the invasive margin however, Ki67 %PI values in 

the tumour core showed a trend towards significantly higher expression in right – sided 

disease. While some studies have noted no difference in site dependent Ki67 expression 

(Shin et al., 2014), others have demonstrated significantly increased proliferative activity in 

MSI tumours which are predominantly right – sided (Michael-Robinson et al., 2001; Takagi 

et al., 2002). Unfortunately, microsatellite stability status was not available for these patients, 

therefore it would be of interest in future work to investigate whether this effect is 

microsatellite stability or tumour site dependent and if this has a bearing on survival.  

Kaplan – Meier survival analysis of tumour subsite dependent Ki67 expression 

revealed an inverse pattern of correlation with DFS in left – sided disease than a combination 

of both disease sites, whereby Ki67 expression assessed within the tumour core 

demonstrated a greater hazard ratio than that of the invasive margin, however, the association 

was marginally statistically more significant at the invasive margin (Figure 5.19). In right – 

sided disease, neither analysis of Ki67 expression at the tumour core or invasive margin 

showed a statistically significant association with DFS and indeed produced identical hazard 

ratios (Figure 5.20). While this is likely due to the comparatively low number of patients 

with right – sided disease (N = 336, 11.53% of TransSCOT cohort), it does not negate the 

possibility that tumour site and subsite specific determination of optimal cut off values is 

required to adequately assess the association of Ki67 expression in these patients, given that 

optimal cut off values have been previously been determined in large, non – subsetted 

clinical cohorts that are skewed towards left – sided disease.  

A limitation of the present study that was unable to be addressed in the algorithm 

development process and one that could potentially improve the validity of this study and 

those like it is the appropriate determination of a DAB – colour deconvolution threshold 

value for positive cell classification. The threshold selected in this algorithm was determined 

by applying the work in progress algorithm to multiple TMA cores from the Glasgow 

Development cohort that exhibited variation in stain intensity and assigning a value that 

correctly classified the weakest Ki67 stained cell as positive, over and above any background 

non – specific staining levels. While the researcher has performed prior manual 
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histopathological assessment of Ki67 expression, this method of threshold selection is still 

conspicuously subjective in nature and was performed only in a single cohort, where section 

age, storage, and histological processing could affect the quality of staining and thus the 

prognostic outcome of the assessment. Therefore, to optimize the selection of a DAB 

threshold, multiple observers could be utilized to classify cells as positive or negative, across 

various cohorts that have undergone identical histological processing, to produce a 

consensus value for Ki67 positivity that would go some way to further reduce the 

subjectivity of the image analysis.  

In summary, this chapter demonstrates the reliability and reproducibility of deep 

learning – based image analysis for Ki67 expression assessment across multiple cohorts. 

Data from the Glasgow Development and Validation cohorts shows that image analysis is 

able to outperform manual histopathological assessment for prognostic patient stratification 

while maintaining excellent measures of statistical agreement. Applying the deep learning – 

based algorithm to the previously unscored GRI cohort confirms the ability of the algorithm 

to conduct primary research of novel image data and patient cohorts in concordance with 

expected outcomes determined in previous cohorts, which was further confirmed in the 

TransSCOT clinical trial cohort. In addition to prognostically stratifying patients for DFS, 

data from the TransSCOT cohort highlighted possible differences in Ki67 expression 

between tumour site and localization within the tumour that could provide more targeted risk 

stratification methods based on established prognostic criteria utilized in routine diagnosis. 

As discussed above, future work should be conducted to optimize the cell classification step 

of this algorithm to provide an increasingly less subjective method of Ki67 IHC assessment, 

potentially serving as a framework for developing and validating algorithms targeted 

towards other molecular markers of prognosis. 
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6. Image Analysis Approaches to 

Histological CRC Prognostic 

Classification Systems 



188 

 

6.1 Introduction 

The Tumour Node Metastasis (TNM) staging criteria is the gold standard for CRC 

prognosis and direction of therapeutic decisions, utilised in diagnostic pathology throughout 

the world. However, issues in determining prognosis and appropriate therapy regimens for 

Stage II disease has long presented an unmet need for additional criteria that is able to 

adequately direct care for these patients. An early study to address this was conducted by 

Petersen and colleagues who identified a combination of pathological features that were able 

to identify high – risk Stage II patients who could benefit from adjuvant chemotherapy 

(Petersen et al., 2002). This system assigned a point each to peritoneal involvement, 

submucosal and extramural venous invasion, marginal involvement, and two additional 

points if tumour perforation of the bowel was present, resulting in a five – point score that 

was dichotomized at ≥ 2 points for risk stratification.  

Since this study, the continued development of omics techniques for interrogating 

tumours in ever finer detail has steered research towards developing similar subtyping 

methodologies based on patients’ gene expression profiles. In 2015, the CRC Subtyping 

Consortium (CRCSC) performed network clustering on six independent, gene expression – 

based subtyping algorithms applied to over 3000 patients across multiple platforms and 

sample types, to study the association of the respective subtypes (Guinney et al., 2015). The 

result of this work was the four Consensus Molecular Subtypes (CMS) of CRC denoted; 

MSI Immune (CMS1), Canonical (CMS2), Metabolic (CMS3), and Mesenchymal (CMS4). 

The four subtypes were determined based on shared mutational characteristics but were 

subsequently found to share additional prognostic, theragnostic, and phenotypic attributes. 

While this subtyping approach demonstrated the importance of precision medicine 

methodologies in the continued development of CRC research, its costly and time – 

consuming implementation coupled with the issue that ~13% of patients remain unclassified 

as neither outliers nor a fifth subtype, has made implementation of the CMS in routine 

diagnostics unfeasible.   

In 2017, Isella and colleagues postulated that the use of whole tumour lysates in the 

datasets used to generate the CMS introduced a large number of genes of stromal origin in 

CMS4 likely masking the gene expression profiles of the tumour cells themselves (Isella et 

al., 2017b). To ameliorate the effect of stroma associated genes and generate a more tumour 

specific means of CRC subtyping, the transcriptomes of 515 samples (from 244 patients) of 

patient derived xenografts (PDXs), wherein the stromal component of the tumour is replaced 

with murine constituents as part of the xenotransplantation process, were analysed using 
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human – specific probes and a non – negative matrix factorization clustering algorithm to 

assign each sample to one of five classes. The result of this work was the CRC Intrinsic 

Subtypes (CRIS) denoted A – E, each of which are enriched for expression of genes / 

mutations conveying distinct phenotypes and prognoses in addition to carrying a greater 

classification rate than the CMS (94% vs 87%, respectively). While the use of PDXs to 

reduce the influence of stroma originated genes likely provides a more accurate 

interpretation of the mutational landscape of the tumour than the CMS, it goes no further to 

providing a clinically actionable subtyping methodology. The CRIS is still hamstrung by the 

use of expensive transcriptomic analyses and indeed the authors additionally acknowledge 

that the xenotransplantation process could alter and drive cellular processes that form some 

constitutive features of specific subtypes. 

Studies looking to establish histology – based subtyping systems that provide equal 

prognostic information as the CMS / CRIS but would inherently be more readily translatable 

to routine diagnostics have yielded two notable methodologies. Park and colleagues in 2015 

first described the Glasgow Microenvironment Score (GMS), a combinatorial score of two 

well established prognostic factors assessed on diagnostic H&E sections, the Tumour Stroma 

Percentage (TSP) and the Klintrup – Mäkinen (KM) grading system of peritumoural 

inflammatory response (Park et al., 2015b). This system significantly stratifies patients for 

prognosis into three distinct groups; patients with a high KM grade are assigned GMS 0 

conferring a good prognosis, patients with a low KM grade but high TSP are assigned GMS 

2 conferring the worst prognosis, and patients with low scores for both metrics are assigned 

GMS 1 with intermediate prognosis. In addition to prognosis, this system has recently been 

shown to hold theragnostic significance, with the inflammation dense GMS 0 possessing a 

significantly better prognosis when administered FOLFOX chemotherapy over CAPOX 

(Alexander et al., 2021a).  

In a study reviewing the CMS, aiming to translate the phenotypic features of each 

subtype to histological assessment, Roseweir and colleagues identified prominent immune 

infiltration and stromal density as concurrent characteristics of CMS 1 / 4 and GMS 0 / 2 

and additionally noted that increased proliferative activity was present in CMS 2. Given that 

other previous methodologies have identified subtypes aligning with CMS 2 that exhibit 

increased proliferation demonstrable through IHC – based Ki67 positivity indexing, this 

marker was used to separate GMS 1 into two prognostically distinct subtypes (Roepman et 

al., 2014b). This work yielded the four Phenotypic Subtypes of CRC, denoted Immune (high 

KM grade and best prognosis), Canonical (high Ki67 index and good prognosis), Latent (low 
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for all measures and poor prognosis), and Stromal (high TSP and worst prognosis). This 

subtyping methodology is independently prognostic, able to predict the risk of recurrence, 

and the Immune subtype still exhibits the same response to chemotherapeutics as GMS 0, 

thus offering significant clinical information about the TME in addition to being extremely 

translatable to routine diagnostic pathology.  

The aim of the present chapter, therefore, is to amalgamate the algorithms and data 

described and generated in previous chapters to digitally interpret these histology – based 

subtyping systems through image analysis, to compare their prognostic and theragnostic 

capacity to that of manual histopathological assessment, and to evaluate the clinical efficacy 

and applicability of different automation methods of the digital systems.  
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6.2 Materials and Methods 

6.2.1 Histopathological Assessment 

Manual Histopathological assessment of the TSP and KM grade was conducted on 

H&E WSI for all cohorts as previously described in 3.2.1 and 4.2.1, respectively. For the 

TSP briefly, on the slide showing the deepest point of tumour invasion, a representative 

intratumoural area was selected and an FOV with tumour cells at all four edges at 10x 

magnification was assessed for the percent (to the nearest 5%) of desmoplastic stroma 

occupying the field. A cut off of </> 50% stromal content was used to stratify patients for 

high vs low stromal component. For the KM grading, the invasive margin on the slide 

showing the deepest point of tumour invasion was assessed for lymphocyte response using 

a four point scale as follows: 0 – no evidence of inflammatory response, 1 – patchy 

distribution of lymphocytes across the invasive margin, 2 – notable inflammatory response 

forming a band – like structure across a significant portion of the invasive margin, 3 – 

prominent inflammatory response forming a florid cup – like structure across the invasive 

margin with possible evidence of tumour island destruction. To stratify patients for high vs 

low inflammatory response, the four – point scale was amalgamated into “weak” 

inflammatory response (KM grades 0/1) and “strong” inflammatory response (KM grades 

2/3). 

IHC staining of all CRC tissue for Ki67 utilised in this study was conducted 

according to the methodology described in 2.2.2. Histopathological assessment of Ki67 

positivity for all cohorts was conducted as described in 2.3.3. Briefly, for TMAs, 100 cells 

were counted at random and the % positivity was determined for each individual core, where 

multiple cores were available for a single patient, the % positivity was counted across all 

cores where sufficient tissue was available and averaged to determine the % positivity for 

each patient.  

6.2.2 Statistical Analysis 

Patient cohort clinicopathological characteristics and test of association with CSS / 

DFS were determined in IBM SPSS version 25 (IBM, New York, USA). P values of <0.05 

were considered to demonstrate a statistically significant association between 

clinicopathological features and clinical outcomes.  All other statistical analyses for this 

study were conducted in RStudio (RStudio, Boston, MA). Survival analysis was conducted 

and associated Kaplan – Meier survival curves produced using the survival, survminer, and 

survMisc packages, with the log rank statistic used to assess association between 

classification system stratification and CSS / DFS. Hazard ratios and associated 95% 
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confidence intervals for survival analysis were calculated using the Cox proportional hazard 

model.  

6.3 Results 

6.3.1 Image Analysis Approaches to the Glasgow Microenvironment Score in the 

Glasgow Development Cohort 

As described in 6.1, research into the development of novel prognostic systems for 

CRC has yielded promising results through both classical histology – based assessment and 

modern omics – based analyses, however, both have issues prohibiting their imminent 

translation to routine diagnostics. Omics – based analyses are extremely targeted, and in 

some cases provide an arguably more actionable overview of the nature of an individual’s 

tumour, but the methodologies used to determine patient grouping are at present too costly 

to implement in pathology labs. Histology – based systems for the most part do not require 

any additional assays or tissue to stratify patients, indeed in the cases where additional 

investigation is necessary, the only requirement is additional IHC sections from the 

diagnostic block, which is already part of routine diagnosis. Furthermore, the time required 

of the pathologist to conduct additional assessment beyond the AJCC staging criteria must 

be a consideration for implementing such novel classification systems. Therefore, in the 

present chapter, two classification systems determined via two approaches – one semi – 

automated requiring an invasive margin annotation and fully automated requiring no human 

input prior to analysis – were assessed for prognostic ability. 

The Glasgow Microenvironment Score (GMS) is a combinatorial score of the TSP 

and KM assessments conducted on a single H&E slide / WSI that stratifies patients into one 

of three prognostic groups. The assessment was developed by Park and colleagues in 2015 

(Park et al., 2015a), and has subsequently been independently validated in multiple 

retrospective clinical and clinical trial patient cohorts (Alexander et al., 2021a). Scoring is 

conducted by initially assessing patients for the KM grade and all patients with a high 

inflammatory response, regardless of TSP status, are assigned GMS 0. The TSP of the 

remaining patients is then used to assign the remaining two groups, with patients with a high 

TSP (>50%) assigned GMS 2 and patients with low scores for both metrics assigned GMS 

1. This method and associated prognoses are detailed in Table 6.1.  
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 GMS 0 GMS 1 GMS 2 

KM Grade 

0/1 vs 2/3 
High Low Low 

TSP Status 

</> 50% 
Any Low High 

Cancer Specific 

Prognosis 
Good Intermediate Poor 

Table 6.1 Overview of Glasgow Microenvironment Score. Components and scoring 

method of the Glasgow Microenvironment Score and associated cancer specific prognoses.  

 

Two methodologies were utilised to assess the GMS via image analysis, both 

utilising a single H&E WSI, and both applying the deep learning – based TSP algorithm 

(detailed in 3.3.3) to categorize patients as high and low for relative stromal component. The 

first methodology took a semi – automated approach to patient categorization for 

peritumoural inflammatory response, requiring annotation of the invasive margin to generate 

an ROI within which the lymphocyte detection algorithm was applied, following an identical 

workflow to that described in 4.3.1. The same cut off value was used to stratify patients into 

high vs low immune infiltrate as in 4.3.1 and the TSP algorithm was used to stratify patients 

as described in 3.3.3. These two stratified metrics were then used to generate a GMS group 

for each patient. The overall GMS algorithm workflow is detailed in Figure 6.1.  
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The primary outcome of all classification system studies was association with CSS / 

DFS and comparison thereof to survival outcomes determined by manual histopathological 

assessment. Therefore, Kaplan – Meier survival analysis was conducted on patients from the 

Glasgow Development Cohort that had been categorized using the GMS image analysis 

algorithm described above to determine its association with CSS. The GMS algorithm 

stratification showed a statistically significant association with GMS and additionally, 

demonstrated a greater hazard ratio than manual histopathological assessment for 

stratification (HR 2.031 95% CI 1.472-2.801 P < 0.0001 vs HR 1.901 95% CI 1.403-2.576 

P < 0.0001, respectively) (Figure 6.2). 
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Figure 6.1 Semi – Automated GMS Algorithm Workflow. Workflow of semi – automated 

image analysis GMS algorithm. Algorithm is a combination of deep learning TSP algorithm 

(3.3.3) and lymphocyte detection algorithm conducted in invasive margin annotations 

(4.3.1).  
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Figure 6.2 Relationship Between CSS and GMS in Glasgow Development Cohort. 

Association of CSS and GMS determined via manual histopathological assessment (A) and 

semi – automated image analysis assessment (B) in the Glasgow Development Cohort.  
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The second methodology used to stratify patients for the GMS criteria using image 

analysis took a fully automated approach to determine the GMS group from a single H&E 

WSI. This workflow again utilised the deep learning TSP algorithm coupled with the 

automated lymphocyte detection algorithm described in 4.3.4. To conduct the GMS 

assessment using this methodology, the deep learning TSP algorithm was initially applied to 

the WSI, and the stroma class overlays generated by the algorithm were converted to ROI 

for analysis, within which the same lymphocyte detection algorithm (4.3.1) was applied. The 

overall workflow for this algorithm is detailed in Figure 6.3. 

Kaplan – Meier survival analysis was used to assess the association of the 

stratification produced by the automated GMS algorithm and CSS. The automated image 

analysis demonstrated a statistically significant association with CSS however, this approach 

did not outperform the manual histopathological assessment (HR 1.651 95% CI 1.215-2.243 

P = 0.00033 vs HR 1.901 95% CI 1.403-2.576 P < 0.0001, respectively) (Figure 6.4).  
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Figure 6.3 Automated GMS Algorithm Workflow. Workflow of automated GMS image 

analysis algorithm coupling deep learning TSP and TIL assessment. Methods sections 

detailing operations are given in brackets. 
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Figure 6.4 Relationship Between CSS and GMS in Glasgow Development Cohort. 

Association of CSS and GMS determined via manual histopathological assessment (A) and 

fully automated image analysis assessment (B) in the Glasgow Development Cohort.   
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6.3.2 Validation of Image Analysis GMS Assessment in Glasgow Validation Cohort 

Having demonstrated that both the semi and fully automated image analysis 

approaches to the GMS criteria show statistically significant associations with CSS in the 

Glasgow Development Cohort, the same approaches were then assessed for prognostic 

ability in the Glasgow Validation Cohort. The semi – automated approach followed an 

identical workflow to that implemented in 6.3.1 on the same sections identified as 

appropriate for image analysis in 4.3.2. Kaplan – Meier survival analysis of the GMS 

stratification determined by image analysis showed a statistically significant association with 

CSS, but did not outperform the manual histopathological assessment (HR 1.365 95% CI 

1.089-1.711 P = 0.016 vs HR 1.928 05% CI 1.484-2.505 P<0.0001, respectively) (Figure 

6.5). 
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Figure 6.5 Relationship Between CSS and GMS in Glasgow Validation Cohort. 

Association of CSS and GMS determined via manual histopathological assessment (A) and 

semi – automated image analysis assessment (B) in the Glasgow Validation Cohort.   
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The fully automated GMS workflow detailed in 6.3.1 was applied to the same 

Glasgow Validation cohort sections as the semi – automated algorithm, identified in 4.3.2. 

Kaplan – Meier survival analysis of the GMS stratification produced by fully automated 

analysis again showed a statistically significant association with CSS, but again did not 

outperform the manual histopathological assessment (HR 1.31 95% CI 1.053-1.631 P = 

0.0077 vs HR 1.928 05% CI 1.484-2.505 P<0.0001, respectively) (Figure 6.6). 
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Figure 6.6 Relationship Between CSS and GMS in Glasgow Validation Cohort. 

Association of CSS and GMS determined via manual histopathological assessment (A) and 

fully automated image analysis assessment (B) in the Glasgow Validation Cohort.   
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6.3.3 Translation of Image Analysis GMS Assessment to TransSCOT Clinical Trial 

Cohort 

Final validation of the GMS algorithms was performed in the TransSCOT clinical 

trial cohort, comprising substantially more patients than the Glasgow Development and 

Validation cohorts. Although both the TSP and lymphocyte detection algorithms that 

constitute the GMS methodology have been previously validated in this cohort, it is difficult 

to predict the interaction of the two algorithms when stratifying for prognosis in a multi – 

stage system applied to large patient numbers. The translational ability of image analysis 

algorithms of this type is contingent on both the constituent components being individually 

prognostic and retaining the prognostic capacity when used in combination. To validate the 

GMS algorithm in this cohort, the semi and fully automated methods were applied to the 

H&E WSI using an identical workflow to that described in 6.3.1 and 6.3.2.  

Initially, the semi – automated algorithm was used to stratify patients into the GMS 

groups and analysed for survival prediction. Kaplan – Meier survival analysis of the GMS 

stratification generated by this algorithm showed a statistically significant association with 

DFS, performing comparably to manual histopathological assessment (HR 1.475 95% CI 

1.289-1.688 P < 0.0001 vs HR 1.494 95% CI 1.314-1.699 P < 0.0001, respectively) (Figure 

6.7). 
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Figure 6.7 Relationship Between DFS and GMS in TransSCOT Clinical Trial Cohort. 

Association of DFS and GMS determined via manual histopathological assessment (A) and 

semi – automated image analysis assessment (B) in the TransSCOT Clinical Trial Cohort.   
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The fully automated GMS algorithm was then applied to the same H&E WSI and 

analysed for DFS prediction. Kaplan – Meier survival analysis of the GMS stratification 

determined by this algorithm again demonstrated a statistically significant association with 

DFS but demonstrated a moderately lower hazard ratio than manual histopathological 

assessment (HR 1.312 95% CI 1.189-1.449 P < 0.0001 vs HR 1.494 95% CI 1.314-1.699 P 

< 0.0001, respectively) (Figure 6.8). 
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Figure 6.8 Relationship Between DFS and GMS in TransSCOT Clinical Trial Cohort. 

Association of DFS and GMS determined via manual histopathological assessment (A) and 

fully automated image analysis assessment (B) in the TransSCOT Clinical Trial Cohort.   
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As it was the most prognostic GMS model, the semi-automated algorithm underwent 

univariate and multivariate Cox regression analysis to determine the relationship with DFS 

and prognostic independence from other clinicopathological features. On multivariate 

analysis, the semi-automated GMS algorithm was found to be significantly associated with 

DFS (HR 1.722 95%CI 1.335-2.221, p < 0.001), independent of T-Stage (p < 0.001), N-

Stage (p < 0.001), and disease site (p = 0.029), Table 6.2. 

Univariate Multivariate 

 HR 95% CI p-value  HR 95% CI p-value 

Sex        

Female 1.0       

Male 1.040 0.898-1.205 0.599     

T Stage    T Stage    

1 1.0   1 1.0   

2 1.013 0.498-2.060 0.973 2 1.121 0.551-2.281 0.753 

3 1.85 0.988-3.467 0.055 3 1.923 1.025-3.608 0.042 

4 3.217 1.715-6.037 <0.001 4 3.290 1.745-6.205 <0.001 

N Stage    N Stage    

0 1.0   0 1.0   

1 1.436 1.155-1.787 0.001 1 1.783 1.426-2.229 <0.001 

2 2.821 2.249-3.538 <0.001 2 3.002 2.386-3.777 <0.001 

Site    Site    

Left 1.0   Left 1.0   

Right 0.687 0.557-0.848 <0.001 Right 0.785 0.632-0.975 0.029 

Treatment        

FOLFOX 1.0       

CAPOX 1.084 0.924-1.272 0.319     

GMS    GMS    

0 1.0   0 1.0   

1 1.342 1.070-1.683 0.011 1 1.310 1.044-1.644 0.02 

2 2.137 1.663-2.746 <0.001 2 1.722 1.335-2.221 <0.001 

Table 6.2 Relationship between GMS, Clinicopathological Features and DFS in 

TransSCOT Cohort. Hazard ratios and 95% confidence intervals determined via Cox 

proportional hazards regression and multivariate analysis conducted using backwards 

conditional method.  
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6.3.4 Image Analysis Approaches to the CRC Phenotypic Subtypes in the Glasgow 

Development Cohort 

A study by Roseweir and colleagues looking to translate the unique phenotypes 

associated with each CMS group initially identified notable parallels, namely the prominent 

inflammatory infiltrate and high stromal component, between CMS 1 / GMS 0 and CMS 4 / 

GMS 2 (Roseweir et al., 2018b). High proliferative activity was noted as a distinct 

phenotypic feature of CMS 2 and subsequently utilised Ki67, a proliferation marker that has 

been clinically validated in other tumour types, to differentiate between good and poor 

prognosis in GMS 1. This work established the Phenotypic Subtypes of CRC, a novel four 

– group prognostic system that is readily translatable to routine diagnostics. Manual 

histopathological assessment of the Phenotypic Subtypes initially follows the same steps as 

the GMS, whereby the H&E is first assessed for peritumoural inflammatory response by the 

KM grading criteria, with all patients with a high inflammatory infiltrate (KM 2/3) assigned 

the Immune subtype. The TSP is then used to stratify patients further, with all high TSP 

(>50% stromal content) assigned the Stromal subtype, and finally Ki67 is used to stratify the 

remaining patients with high Ki67 %PI (> 50% in the initial study but subsequent studies 

determined a consensus cut off value of > 30%) patients assigned the Canonical subtype, 

and the remaining patients with low scores for all metrics assigned the Latent subtype. The 

grading criteria and associated subtype prognoses are detailed in Table 6.2.  

 Phenotypic Subtype 

 Immune Canonical Latent Stromal 

KM Grade 

0/1 vs 2/3 
High Low Low Low 

TSP Status 

</> 50% 
Any Low Low High 

Ki67 Proliferation 

Index 

</> 30% 

Any High Low Any 

Cancer Specific 

Prognosis 
Best Good Poor Worst 

Table 6.2 Overview of CRC Phenotypic Subtypes. Assessment criteria and associated 

prognosis of CRC Phenotypic Subtypes established by Roseweir and Colleagues (Roseweir 

et al., 2018b).  
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To determine the Phenotypic Subtypes via image analysis, the initial steps were the same as 

those used to conduct the GMS assessment, using semi – automated and fully automated 

algorithms for lymphocyte infiltrate assessment (4.3.1 & 4.3.4) coupled with the deep 

learning TSP algorithm (3.3.3) to stratify patients for the Immune and Stromal subtypes. 

Given that Ki67 stained tissue was only available in the form of TMAs not full sections, the 

Ki67 %PI was determined for each patient from the TMA according to the methodology 

described in 5.3.1 and the resulting scores were used to stratify the patients for the Canonical 

and Latent subtypes post hoc within the SPSS database.  

The two methodologies for conducting the Phenotypic Subtype assessment via image 

analysis were initially validated in the Glasgow Development cohort. Kaplan – Meier 

survival analysis of the Phenotypic Subtypes determined through semi – automated image 

analysis showed a statistically significant association with CSS, performing comparably to 

manual histopathological assessment (HR 1.528 95% CI 1.236-1.888 P < 0.0001 vs HR 

1.545 95% CI 1.263-1.890 P < 0.0001, respectively) (Figure 6.9). 
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Figure 6.9 Relationship Between CSS and Phenotypic Subtype in Glasgow Development 

Cohort. Association of CSS and Phenotypic Subtype determined via manual 

histopathological assessment (A) and semi – automated image analysis assessment (B) in the 

Glasgow Development Cohort.   
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Kaplan – Meier survival analysis of the fully automated method for conducting 

Phenotypic Subtype assessment also showed a statistically significant association with CSS 

in the Glasgow Development cohort, though generating a notably lower hazard ratio and 

statistical significance than manual histopathological assessment (HR 1.345 95% CI 1.105-

1.638 P = 0.00072 vs HR 1.545 95% CI 1.263-1.890 P < 0.0001, respectively) (Figure 6.10). 
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Figure 6.10 Relationship Between CSS and Phenotypic Subtype in Glasgow 

Development Cohort. Association of CSS and Phenotypic Subtype determined via manual 

histopathological assessment (A) and fully automated image analysis assessment (B) in the 

Glasgow Development Cohort.   
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6.3.5 Validation of Image Analysis Phenotypic Subtype Assessment in Glasgow 

Validation Cohort 

Having demonstrated that the image analysis approaches were statistically 

significantly associated with CSS in the Glasgow Development cohort, the two approaches 

were then validated for prognosis in the Glasgow Validation cohort. The TSP and 

lymphocyte detections algorithms were applied to the H&E sections identified for image 

analysis in 4.3.2 and the Ki67 assessment was conducted on TMA. As per 6.3.4, the H&E 

TSP and immune infiltrate scores and TMA Ki67 scores were used to stratify patients into 

the Phenotypic Subtypes post hoc in the SPSS database.  

Kaplan – Meier survival analysis of the Phenotypic Subtypes determined via semi – 

automated image analysis showed a statistically significant association with CSS; however, 

this association was notably less significant than manual histopathological assessment (HR 

1.267 95% CI 1.097-1.463 P = 0.0026 vs HR 1.466 95% CI 1.247-1.724 P < 0.0001, 

respectively) (Figure 6.11). 
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Figure 6.11 Relationship Between CSS and Phenotypic Subtype in Glasgow Validation 

Cohort. Association of CSS and Phenotypic Subtype determined via manual 

histopathological assessment (A) and semi – automated image analysis assessment (B) in the 

Glasgow Validation Cohort.   
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Kaplan – Meier survival analysis of the fully automated image analysis approach to the 

Phenotypic Subtypes also showed a statistically significant association with CSS in this 

cohort, again however, the significance of this association was notably lower than that of 

manual histopathological assessment (HR 1.236 95% CI 1.077-1.419 P = 0.0033 vs HR 

1.466 95% CI 1.247-1.724 P < 0.0001, respectively) (Figure 6.12). 
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Figure 6.12 Relationship Between CSS and Phenotypic Subtype in Glasgow Validation 

Cohort. Association of CSS and Phenotypic Subtype determined via manual 

histopathological assessment (A) and fully automated image analysis assessment (B) in the 

Glasgow Validation Cohort.   
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6.3.6 Image Analysis of Phenotypic Subtypes and Association with 

Chemotherapeutic Response in TransSCOT Clinical Trial Cohort 

Final validation of the image analysis approaches to the Phenotypic Subtype 

assessment was conducted in the TransSCOT clinical trial cohort. As detailed in 5.3.4, Ki67 

assessment in this cohort was originally conducted on 1317 full sections as part of a study 

validating the Phenotypic subtypes and its components for prognostic significance, however, 

image analysis was performed on the TMA constructed from this cohort in the interest of 

consistency of assessment with previous cohorts and extracting as much clinically relevant 

data as possible, as the TMA was constructed from 2352 patients. Therefore, the manual 

histopathological assessment and image analysis could be considered too methodologically 

distinct to interpret information accurately and reliably from any measures of statistical 

comparison and / or agreement between the two, hence why no such analysis was conducted 

in Chapter 5. However, in the present study, it is of benefit for the validation of the image 

analysis approaches to the Phenotypic Subtypes to conduct a heuristic comparison between 

the two methods and the manual histopathological assessment. To perform this, the two 

image analysis algorithms were applied to the H&E WSI and Ki67 TMA core to stratify 

patients into their respective Phenotypic Subtype. Kaplan – Meier survival analysis was then 

performed on patients that had both an image analysis assigned and manually assigned 

Phenotypic Subtype for comparison, and on all available patients for the image analysis 

approaches.  

Survival analysis of the patients with an image analysis and manually assigned 

Phenotypic Subtype showed that semi – automated approach demonstrated a statistically 

significant association with DFS, outperforming manual histopathological assessment (HR 

1.261 95% CI 1.135-1.401 P = 0.00021 vs HR 1.197 95% CI 1.086-1.320 P = 0.0041, 

respectively) (Figure 6.13). The fully automated approach on these same patients showed an 

elevated hazard ratio and an association with DFS trending toward significance (HR 1.16 

95% CI 1.041-1.293 P = 0.059) (Figure 6.14). Survival analysis of all patients available for 

image analysis demonstrated that both Subtyping methods have a statistically significant 

association with DFS, with the semi – automated approach showing a stronger association 

than the fully automated approach (HR 1.332 95% CI 1.219-1.454 P < 0.0001 vs HR 1.227 

95% CI 1.113-1.328 P < 0.0001, respectively) (Figure 6.15). 
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Figure 6.13 Relationship Between DFS and Phenotypic Subtype in TransSCOT Clinical 

Trial Cohort. Association of DFS and Phenotypic Subtype determined via manual 

histopathological assessment (A) and semi – automated image analysis assessment (B) in the 

TransSCOT Clinical Trial Cohort.   
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Figure 6.14 Relationship Between DFS and Phenotypic Subtype in TransSCOT Clinical 

Trial Cohort. Association of DFS and Phenotypic Subtype determined via manual 

histopathological assessment (A) and fully automated image analysis assessment (B) in the 

TransSCOT Clinical Trial Cohort.   
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Figure 6.15 Relationship Between DFS and Phenotypic Subtype in TransSCOT Clinical 

Trial Cohort. Association of DFS and Phenotypic Subtype determined via semi – automated 

(A) and fully automated image analysis assessment (B) in the TransSCOT Clinical Trial 

Cohort.   
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As it was the most prognostic Subtype model, the semi-automated algorithm 

underwent univariate and multivariate Cox regression analysis to determine the relationship 

with DFS and prognostic independence from other clinicopathological features. On 

multivariate analysis, the semi-automated GMS algorithm was found to be significantly 

associated with DFS (HR 1.776 95%CI 1.360-2.321, p < 0.001), independent of T-Stage (p 

< 0.001) and N-Stage (p < 0.001), Table 6.4. 

Univariate Multivariate 

 HR 95% CI p-value  HR 95% CI p-value 

Sex        

Female 1.0       

Male 1.040 0.898-1.205 0.599     

T Stage    T Stage    

1 1.0   1 1.0   

2 1.013 0.498-2.060 0.973 2 1.205 0.490-2.963 0.684 

3 1.85 0.988-3.467 0.055 3 2.088 0.930-4.691 0.074 

4 3.217 1.715-6.037 <0.001 4 3.760 1.669-8.471 <0.001 

N Stage    N Stage    

0 1.0   0 1.0   

1 1.436 1.155-1.787 0.001 1 1.914 1.508-2.430 <0.001 

2 2.821 2.249-3.538 <0.001 2 3.253 2.553-4.146 <0.001 

Site    Site    

Left 1.0   Left 1.0   

Right 0.687 0.557-0.848 <0.001 Right 0.817 0.647-1.032 0.089 

Treatment        

FOLFOX 1.0       

CAPOX 1.084 0.924-1.272 0.319     

Phenotypic 

Subtype    

Phenotypic 

Subtype    

Immune 1.0   Immune 1.0   

Canonical 1.414 1.116-1.791 0.004 Canonical 1.294 1.021-1.640 0.033 

Latent 1.720 1.318-2.245 <0.001 Latent 1.535 1.174-2.006 0.002 

Stromal 2.042 1.567-2.663 <0.001 Stromal 1.776 1360-2.321 <0.001 

Table 6.4 Relationship between Phenotypic Subtype, Clinicopathological Features and 

DFS in TransSCOT Cohort. Hazard ratios and 95% confidence intervals determined via 

Cox proportional hazards regression and multivariate analysis conducted using backwards 

conditional method.  
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In the study validating the Phenotypic Subtypes via manual histopathological 

assessment in the TransSCOT clinical trial cohort, Roseweir and Colleagues identified that 

the Immune subtype had a statistically significant improvement in survival when 

administered Folinic Acid + 5 – Fluorouracil + Oxaliplatin (FOLFOX) chemotherapy over 

Capecitabine + Oxaliplatin (CAPOX) (HR 1.67 P = 0.019), an effect that was not present in 

the other subtypes (Roseweir et al., 2020). To evaluate whether this effect could be 

recapitulated through image analysis, patients assigned a Phenotypic Subtype through both 

image analysis methods were stratified by chemotherapy regimen and Kaplan – Meier 

survival analysis was conducted on all four subtypes from both methods.  

The Immune subtype patients determined through semi – automated image analysis 

demonstrated a non – statistically significant association of chemotherapy regimen with DFS, 

however, the hazard ratio was comparable to that determined in the original study (HR 1.634 

95% CI 0.909-2.935 P = 0.09) (Figure 6.16). Additionally, no other subtype determined via 

this image analysis method showed a trend towards a significant association with DFS 

(Figure 6.16).  

In the Phenotypic Subtypes determined via fully automated image analysis, the Immune 

subtype did not demonstrate any notable association between DFS and chemotherapy 

regimen (HR 0.942 95% CI 0.750-1.183 P = 0.61, Figure 6.17), however, the Canonical 

subtype unexpectedly showed a statistically significant association between DFS and 

chemotherapy regimen (HR 1.526 95% CI 1.010-2.306 P = 0.043, Figure 6.16). Additionally, 

neither the Latent or Stromal subtypes showed any association between DFS and 

chemotherapy regimen (Figure 6.17). 
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Figure 6.16 Continued on next page.  
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Figure 6.16 Relationship Between DFS and Chemotherapy Regimen in TransSCOT 

Clinical Trial Cohort. Association of DFS and Chemotherapy Regimen in the Immune (A), 

Canonical (B), Latent (C), and Stromal (D) Phenotypic Subtypes determined via semi – 

automated image analysis assessment (B) in the TransSCOT Clinical Trial Cohort.   
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Figure 6.17 Continued on next page. 
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Figure 6.17 Relationship Between DFS and Chemotherapy Regimen in TransSCOT 

Clinical Trial Cohort. Association of DFS and Chemotherapy Regimen in the Immune (A), 

Canonical (B), Latent (C), and Stromal (D) Phenotypic Subtypes determined via fully 

automated image analysis assessment (B) in the TransSCOT Clinical Trial Cohort.   
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6.4 Discussion 

The persistent issue of determining best clinical practices for Stage II patients in 

terms of administering adjuvant chemotherapy and follow up regimens presents a 

continually unmet clinical need in the TNM staging criteria. Multiple studies have 

investigated the possible implementation of novel classification systems determined through 

a variety of modalities to address this issue. Early work by Jass and Colleagues sought to 

use novel pathological features, such as the peritumoural inflammatory response and 

characterisation of the morphology of the invasive margin, to provide a more complete 

picture of the pathology of the CRC TME (Jass et al., 1987). While this system was never 

taken forward to clinical practice due to a lack of reproducibly standardised criteria, it set 

the precedent of combining novel prognostic features into a classification system to better 

assess the outcomes of specific CRC cases. Petersen and Colleagues expanded upon this 

work in 2002 utilising peritoneal involvement, venous invasion, marginal involvement, and 

tumour perforation in a combinatorial score that could identify high – risk Stage II patients 

(Petersen et al., 2002). However, despite incorporating features that are routinely assessed 

in clinical practice and addressing the issue with the TNM criteria, this classification system 

again saw no clinical implementation since its inception.  

Advancements in genomic technologies saw a proliferation of studies using shared 

gene expression signatures of CRC to identify subtyping systems. From these studies, six of 

the most well characterised subtyping methodologies were amalgamated into a single 

combined subtyping system through clustering analysis by Guinney et al., 2015. This 

combined subtyping system, known as the Consensus Molecular Subtypes (CMS), identified 

four independent subtypes based on shared genetic and phenotypic characteristics across the 

six precursor systems. While this methodology showed that each subtype conferred an 

individual prognosis and could potentially direct targeted chemotherapy regimens, the 

expensive implementation of the genomic techniques used to generate the subtypes coupled 

with concerns over the masking effect of stromal – derived gene signatures in CMS4 meant 

that this too was not adopted clinically.  

Through a series of studies examining features of the CRC TME assessable on 

diagnostic H&E sections, Park and Colleagues identified the KM system of peritumoural 

inflammatory response grading and quantification of the tumour – associated stroma through 

the TSP as possible candidates for inclusion in a combinatorial assessment (Park et al., 2014b, 

2015a). The Glasgow Microenvironment Score (GMS) is an independently prognostic 

classification system grouping patients into three subtypes that has since been validated in 
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multiple independent cohorts (Alexander et al., 2021a). However, the subjective assessment 

criteria of its components has hindered its progress to clinical application. Following this 

work, Roseweir and Colleagues conducted a study aiming to translate the phenotypic 

characteristics of the CMS to routine histopathology, highlighting that the prominent 

inflammatory response of CMS1 correlated with GMS0 and as such could be identified 

through the KM criteria, and similarly the stromal infiltrate of CMS4 correlated with GMS2 

and could therefore be identified through the TSP criteria (Roseweir et al., 2017). Combining 

these two H&E – based assessments with Ki67 IHC to identify the CMS2 proliferative 

phenotype through histology, resulted in the Phenotypic Subtypes, a four group 

independently prognostic classification system that has been validated in independent 

cohorts and importantly, appears to predict response to chemotherapy in immunologically 

hot tumours (Roseweir et al., 2018b, 2020).  

The Phenotypic Subtypes possess the same issues of subjectivity in assessment 

criteria as the GMS, and as such, have also yet to see use in clinical practice. Therefore, 

applying image analysis to these classification systems could ensure the reproducibility 

needed for clinical adoption. To perform these assessments digitally, the image analysis 

algorithms for TSP quantification and lymphocyte infiltrate described in Chapter 3 and 

Chapter 4, respectively, were performed on a single H&E section to determine the GMS, 

and coupled with automated Ki67 assessment, described in Chapter 5, post hoc to determine 

the Phenotypic Subtypes.  

As described in Chapter 4, two approaches were used to quantify lymphocyte 

infiltrate, peritumourally through semi – automated image analysis and intratumourally 

through automated image analysis, therefore, both approaches were incorporated into the 

GMS and Phenotypic Subtype assessments to assess their interaction with the TSP and 

resulting prognostic significance. The algorithms were first validated in the Glasgow 

Development cohort where both methods showed significant associations with CSS and 

stratified patients for prognosis following the same pattern as manual histopathological 

assessment, with the high immune group GMS0 possessing the best prognosis, the stromally 

dense GMS2 the worst prognosis, the low for both group GMS1 intermediate prognosis 

(Figure 6.2 & 6.4). The semi – automated approach demonstrated the best association with 

CSS in terms of hazard ratio, outperforming manual histopathological assessment, and while 

there was a notable drop in association with CSS with the automated approach, it still 

retained statistical significance and indeed, this was to be expected as intratumoural 

assessment of lymphocytes on H&E is prognostically inferior to peritumoural assessment 
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(Alexander et al., 2020). This prognostic association was confirmed in the Glasgow 

Validation cohort where similarly, both approaches showed a significant association with 

CSS however, neither approach outperformed manual histopathological assessment (Figure 

6.5 & 6.6) and a marked drop in GMS0 prognosis was associated with automated assessment 

though again still retaining significance (Figure 6.6). The discrepancy in prognostic 

significance between manual histopathological assessment and image analysis in this cohort 

is likely due to the issues in section quality and discordance between the sections used to 

conduct each assessment described in 3.4 and 4.4, however, it is promising that the 

algorithms still prognostically perform in a multi – group system despite these issues. This 

pattern was similarly seen in the TransSCOT clinical trial cohort, where the semi – 

automated approach performed almost identically to manual histopathological assessment 

for DFS prognosis (Figure 6.7), and the automated approach still retained a significant 

association with DFS despite the poorer GMS0 prognosis (Figure 6.8). The WSI from this 

cohort are the most recently produced and of the highest quality of all the cohorts 

investigated, thus lending credence to the hypothesis that intratumoural lymphocyte 

assessment on H&E is prognostically inferior to peritumoural assessment, and that TIL 

assessment should be conducted through IHC to subset the lymphocytes and delineate their 

individual prognostic effect.  

Image analysis – based assessment of the Phenotypic Subtypes in the Glasgow 

Development cohort further strengthened the prognostic capability of digital pathology in 

multi – group grading systems. The semi – automated approach showed a near identical 

association with CSS to that of manual histopathological assessment and the automated 

approach still retained significance despite the predicted drop in prognosis for the Immune 

subtype. The discordance in the prognostic significance for the Subtypes through automated 

assessment is potentially due to the skew of patients to the Immune subtype produced 

through TIL assessment instead of peritumoural assessment. In the Glasgow Validation 

cohort, the semi – automated assessment shows some Immune subtype preference compared 

to manual histopathological assessment, but still broadly retains the same prognostic pattern. 

Interestingly, the patient distributions achieved through automated assessment in this cohort 

are similar to manual assessment, however, the Immune subtype possesses a poorer 

prognosis than the Canonical subtype (Figure 6.12), suggesting that in the absence of 

peritumoural inflammatory assessment, the proliferative activity of the tumour becomes the 

most prognostically significant factor.  
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In the TransSCOT Clinical Trial Cohort, the semi – automated approach to the 

Phenotypic Subtypes demonstrated a markedly better association with DFS than manual 

assessment. However, when utilising the fully automated assessment, the Immune subtype 

preference was again present, heavily impacting the association with DFS resulting in a non 

– significant prognosis. It is of note that the Canonical subtype appears to have a marginally 

better prognosis than the Immune subtype as was seen in the Glasgow Development cohort. 

However, image analysis subtyping in all available patients appears to restore the prognostic 

pattern in the automated assessment and the Immune subtype retains the best prognosis 

despite patient numbers again being skewed towards this subtype. The semi – automated 

approach again demonstrated the best association with DFS and produced a more marked 

prognostic difference between the subtypes.  

Roseweir and Colleagues further demonstrated that Immune subtype patients had a 

significantly improved outcome when administered FOLFOX over CAPOX chemotherapy 

in the TransSCOT cohort (Roseweir et al., 2020). While not significant, the Immune subtype 

determined through semi – automated assessment did show a trend towards a significant 

difference in prognosis between the two chemotherapy regimens (Figure 6.16 A), and indeed 

this was the only subtype to show any association between survival and chemotherapy 

regimen (Figure 6.16 B – D). Through automated analysis, the Canonical subtype 

demonstrated a significant improvement in survival for patients administered FOLFOX 

(Figure 6.17 B), where no association was seen in any other subtype (Figure 6.17 A, C – D). 

This could again suggest that tumour proliferation is the most important prognostic factor in 

the absence of peritumoural lymphocyte assessment and that there is a fundamental 

biological difference in lymphocyte response at the tumour’s invasive margin compared to 

an intratumoural response. It would be of interest to investigate whether lymphocyte subset 

analysis is able to define the response to chemotherapy from an intratumoural perspective 

and if so, whether it is just the means of assessment that defines this response or if a specific 

lymphocyte subtype is modulating the efficacy of the chemotherapy in situ.  

While this study shows the prognostic significance of image analysis, it falls short 

on some requirements of a clinically viable system. Notably the need to annotate the invasive 

margin to appropriately determine GMS0 / Immune subtype in order to recreate the nuances 

seen with this group of patients through manual histopathological assessment. This is not a 

particularly laborious task for an experienced pathologist; however, it still requires 

additional time and is a somewhat subjective task, which could be seen as sufficient to make 

it impractical for clinical use. As previously discussed, this could be addressed through deep 
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learning using a large training data set of annotated invasive margins to extract high level 

features that distinguish the most clinically relevant point of tumour invasion. Additionally, 

the Ki67 portion of this assessment was performed using TMA and was not validated for use 

in WSI, however, the means by which to do this through automation exists within the 

Visiopharm Tissuealign module, whereby the tumour class masks could be overlayed on a 

serially cut, Ki67 IHC section to distinguish the tumour, and then apply the previously 

validated Ki67 positive cell detection algorithm within these areas. This would further the 

clinical utility of the image analysis approaches as it would only necessitate an additional 

section to be cut, stained, and scanned, given that the immune infiltrate can be adequately 

assessed from the diagnostic H&E WSI via the KM criteria. However, if the assessment was 

to be conducted on a different histological modality, such as biopsies, then it would be more 

clinically appropriate to cut a second section for the purpose of CD3 staining. This is due to 

the fact that assessment of the immune infiltrate conducted on biopsy H&Es does not hold 

sufficient prognostic significance when compared to lymphocyte subtyping (Park et al., 

2019).  

In summary, this chapter clearly demonstrates that image analysis algorithms 

operating on multiple tissue modalities can be successfully applied in combination to 

accurately determine classification systems with multiple, individually prognostic groups, in 

independent clinical cohorts. Additionally, biological phenomena determined through 

histopathology can be recreated through image analysis with careful and methodical 

application to appropriate WSI. Future work focussing on reducing the input required from 

a pathologist prior to analysis while retaining the clinically relevant information produced 

by the algorithms would ensure the clinically translatability of image analysis approaches to 

these prognostic systems, providing important clinical information regarding treatment 

regimens, and ultimately improving patient outcomes.  
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7. Discussion 
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7.1 Discussion 

CRC is one of the most common malignancies in the world, accounting for an 

estimated 10% of all new cancer cases and mortalities. Imperative to the continued 

improvement of care of CRC patients is adequate determination of prognosis and appropriate 

therapeutic regimens. Despite continuing research into the identification of novel prognostic 

features and more effective treatments, the TNM staging criteria which has served as the 

gold standard for prognosis and directing therapeutic decisions for nearly four decades, has 

been slow to incorporate new biomarkers that could address shortcomings in its clinical 

utility. The most well documented issue with the TNM criteria is in staging node negative 

disease and determining appropriate therapy strategies and follow up for these patients. 

Around 30% of Stage II patients experience notably poorer survival outcomes than the TNM 

stage identifies, and indeed low T – Stage, Stage III / node positive patients experience better 

survival outcomes than these patients, with a ~5% difference in 5 – year survival rates 

(Petersen et al., 2002; Sung et al., 2021). Despite the introduction of sub – staging to further 

stratify these patients based on clinical presentation and improve the prognostic accuracy, 

the identification of high – risk Stage II patients and guidance on administering appropriate 

therapy regimens persists as an unmet clinical need.  

Studies identifying novel features of CRC holding prognostic significance that could 

supplement the TNM staging criteria date back nearly a century (Maccarty, 1931a), and a 

vast number of these features have been repeatedly validated in independent patient cohorts. 

One of the most well characterised factors known to modulate survival outcomes and 

response to chemotherapeutics in CRC, and the majority of other tumour types, is the host 

inflammatory response to the tumour. Indeed, it was this study by Maccarty in 1931 that first 

identified a prominent immune response to the tumour as a prognostically favourable factor 

as well as advocating for the grading of cancers based on the study of various criteria. The 

immunological response to CRC was further characterised in subsequent histopathological 

studies demonstrating the effect on prognosis and, in 1986, J.R. Jass introduced the first set 

of criteria for grading this response  (Jass, 1986; C. S. D. Roxburgh & McMillan, 2012). 

Jass’ work was further expanded upon by Klintrup and Colleagues in 2005, establishing a 

more comprehensive, four – part grading criteria for the perimtumoural lymphocyte infiltrate 

on H&E sections, which remains the most prognostic histological immune grading criteria 

and has been subsequently validated in multiple independent cohorts (Klintrup et al., 2005; 

Park, McMillan, et al., 2016; C. S. D. Roxburgh & McMillan, 2012; C. S. D. Roxburgh et 

al., 2009a, 2009b). Despite this, issues pertaining to interobserver variability have prohibited 

the clinical adoption of the KM grading system.  
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The relationship between the tumour and its microenvironment is one of the most 

important interactions governing survival outcomes. The tumour associated stroma has long 

been known to be the supporting tissue of the tumour, facilitating and modulating tumour 

growth and progression through a variety of heterogeneous processes, although isolating and 

interpreting its prognostic effect is a relatively recent development. Ueno and Colleagues 

initially identified a link between the stroma and prognosis through qualitative assessment 

of the type and maturity present in rectal tumours, showing that a more immature, less 

differentiated stroma conferred a significantly worse prognosis (Ueno et al., 2004; Ueno, 

Jones, et al., 2002b). Subsequent studies sought to investigate the amount of stroma present 

across the tumour area and establish a prognostic link, identifying the relative ratio of tumour 

to stroma, known as TSP / TSR, as the most effective way of quantifying the tumour 

associated stroma and stratifying patients for prognosis (Mesker et al., 2007, 2009). The TSP 

has since been prognostically validated in multiple CRC studies (Hynes et al., 2017c; Park, 

McMillan, et al., 2016; van Pelt et al., 2018b; West et al., 2010), multiple other cancer types 

(Kramer et al., 2019; Leppänen et al., 2019), and has been utilised to identify high – risk 

Stage II CRC patients that could benefit from adjuvant chemotherapy (Huijbers et al., 2013). 

Despite the breadth of supporting data, TSP assessment has also seen no implementation in 

clinical practice, however, an international reproducibility study now looking to standardise 

the assessment criteria for routine pathology (M. Smit et al., 2019).  

IHC is routinely utilised in diagnostic pathology to assess the status of biomarkers 

that provide additional, molecular information regarding the nature of the tumour, for 

example MMR proficiency in CRC. The proliferative activity of the tumour is an important 

prognostic factor, and a hallmark of cancer, and histological measures of this activity have 

been clinically implemented in the diagnosis of other cancer types. In breast pathology, the 

biomarker Ki67 is used to distinguish between Luminal A and Luminal B molecular 

subtypes and guide chemotherapy regimens (Goldhirsch et al., 2013). In CRC, high tumoural 

Ki67 expression has been shown in multiple studies to be a favourable prognostic factor in 

primary disease (Fluge et al., 2009; Melling, Kowitz, Simon, et al., 2016; Reimers et al., 

2014) and an unfavourable prognostic factor in metastatic disease (Nash et al., 2010a). 

Despite the availability of diagnostic Ki67 antibodies and optimization of the IHC protocol 

for assessing its expression, Ki67 has not been utilised in diagnostic pathology in CRC to 

date.  
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In Chapter 3, image analysis approaches to the TSP assessment were investigated for 

prognostic significance and translatability between patient cohorts. Although deep learning 

is becoming standard practice for tissue segmentation and classification in digital pathology, 

there is still a sizeable cost associated with its use, in the form of high – performance GPUs 

and associated IT infrastructure, that would prohibit its widespread use in remote areas and 

developing nations. While cloud computing may provide a potential solution to this, the 

security risk associated with the transfer of patient image data would preclude its use from 

settings such as clinical trials. Thus, in this study, an initial comparison between 

computationally less intensive, traditional machine learning algorithms and deep learning 

algorithms was conducted to identify the most appropriate means of conducting the TSP 

assessment through digital pathology.  

The decision forest TSP algorithm was trained using hand crafted features, on a 

manually annotated subset (~5%) of the Norway patient cohort WSI to semantically segment 

the tissue and determine the TSP for each patient. In the full cohort of 299 patients, the 

algorithm was able to determine the TSP and significantly stratify all patients for CSS at a 

cut off value of 40%, performing comparably to manual assessment. Although manual 

histopathological assessment is stratified at 50% TSP, an optimized value was generated for 

the image analysis approach as absolute quantitation of the TSP had not previously been 

performed in any of the available patient cohorts. All previous assessment and associated 

TSP values had been determined via consensus between observers according to the criteria 

described by Park et al., 2014, and while this criterion directs the observer to estimate the 

TSP to the nearest 5%, it is still a subjective measure and previous studies have shown 

discrepancy between histopathological TSP assessment and image analysis (Zhao et al., 

2020). It is also likely that analysing 50% of the image at random results in stochastic 

skewing of the TSP scores through not incorporating the whole tumour area in the 

assessment, whereas in manual histopathological assessment, an optimally representative 

area is chosen by the observer and thus this effect is not present.  

Translating the decision forest algorithm to novel patient cohorts, the Glasgow 

Development and Validation cohorts, drastically reduced the prognostic ability of the 

algorithm and it did not significantly stratify patients for survival. This was somewhat 

expected as machine learning algorithms do not usually adapt well to novel data. This could 

be improved by including sections from a variety of cohorts in the training data, as it is likely 

that the algorithm learned feature relationships specific to the Norway cohort WSI due to the 

reliance on colour of the features used for classification. Certainly, it is possible that more 
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readily translatable TSP algorithm could be built using machine learning techniques coupled 

with a training data set that is broader in scope.  

Utilising deep learning for this task resulted in a more prognostic and translatable 

algorithm. Data from the Norway and Glasgow Development cohorts show that deep 

learning is better suited to the task of semantic segmentation across multiple cohorts, as the 

image analysis outperformed manual histopathological assessment, which was performed by 

different observers, in both cohorts. The deep learning algorithm still translated significantly 

well to the Glasgow Validation Cohort however it did not perform as well as manual 

histopathological assessment. As previously stated, this is due to the quality of the WSI, 

which had been physically marked up by a pathologist thus the ink markings caused 

focussing issues during scanning. Additionally, there was notable variation in histological 

processing of the sections in this cohort, posing problems of variation in stain intensity and 

tissue artefacts, despite which the deep learning TSP approach was still able to significantly 

stratify patients for prognosis. Image analysis generally requires high quality WSI to perform 

optimally, and with modern histology labs are progressing towards digital pathology as the 

primary means of pathological reporting the quality of section processing and scanning is of 

the utmost importance. The routine clinical production of high – quality slides will inevitably 

act to bolster the application of image analysis to diagnostic use, as section quality will not 

need to be considered ensuring that the data produced by algorithms such as this will become 

increasingly more reliable. Evidence of this can be seen in data from the TransSCOT cohort, 

which produced the most recent and highest quality WSI. In this 2875 patient study, the deep 

learning algorithm again outperformed manual histopathological assessment for prognostic 

stratification.  

One notable issue of this chapter is the variability of interobserver agreement 

between the image analysis and pathologist assessment, which raises the question of whether 

these metrics are appropriate for this type of study and indeed, to what extent they should be 

used to validate image analysis performance. In previous work where the TSP was conducted 

only by human observers, measures of statistical agreement were imperative to ensure 

consistency of assessment and validate that observers were not inadvertently taking other 

prognostic factors into account when assessing sections. If the ultimate aim of image analysis 

is to address the recurrent issues in interobserver variability, then perhaps another means of 

validating algorithm performance is required. It could be argued that the present study goes 

some way to providing a possible alternative to statistical agreement. An omnipresent issue 

with the use of artificial intelligence is that algorithms are often seen as black boxes, whereby 
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an input is given and an output is received without indication of the processes and features 

of importance used to determine the result. In this setting, particularly when metrics such as 

5 – year survival outcomes are the only output, statistical measures of agreement are useful, 

if not imperative for ensuring algorithm reliability. However, with the approach and systems 

used in this study, the segmentation output of the algorithm can be mapped directly back to 

the section, allowing almost real time visualisation of the algorithms performance. It is 

conceivable therefore that in a clinical setting, a pathologist interested to determine the TSP 

of the current patient could apply the algorithm to the section, assess its performance, and 

ultimately decide whether to utilise the TSP as a prognostic or theragnostic factor in the 

pathological report. 

Chapter 4 examined the translatability of the KM grading system of peritumoural 

inflammatory response to image analysis, in addition to automated tumour infiltrating 

lymphocyte assessment utilising the output from the TSP algorithm. Data from the Glasgow 

Development cohort identified a threshold – based traditional image analysis algorithm that 

was able to preferentially detect lymphocytes on clinical H&E sections. When this algorithm 

was applied within manually annotated invasive margins, the resultant lymphocyte densities 

significantly stratified patients for CSS prognosis, performing comparably to the manual 

KM assessment. Despite being a threshold – based algorithm derived from colour 

deconvolution features developed in the Glasgow Development cohort, this approach 

translated well to novel cohorts, significantly stratifying patients in both the Glasgow 

Validation and TransSCOT cohorts. The algorithm performed comparably to manual KM 

assessment in the TransSCOT cohort but was again limited by the section selection and WSI 

quality issues in the Glasgow Validation cohort. The prognostic significance of the KM 

assessment is likely linked to the morphological characteristics of the inflammatory response 

at the invasive margin, as these features appear to be ubiquitously conserved throughout 

CRC cohorts. The distinction in morphological characteristics is lost through simple 

quantitation of the lymphocyte density at the invasive margin. It is conceivable however, 

that a study investigating this phenomenon could elucidate a quantitative means of 

distinguishing a patchy vs band – like vs florid cup response, by examining the spatial 

relationships between the individual lymphocytes and between the lymphocytes and tumour 

cells, through techniques such as Euclidean distance matrix analysis or unsupervised 

clustering to distinguish patches of lymphocytes from contiguous populations. Additionally, 

more weakly supervised deep learning methods could be applied to translating the KM 

criteria more directly to image analysis. Using annotated examples of the individual KM 

grade patterns as training data for a neural network could elucidate features that distinguish 
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the morphological signatures of the lymphocyte responses themselves and predict the KM 

grade without the need for cellular quantification. 

Stromal TIL quantification through automated image analysis also demonstrated 

prognostic significance in the Glasgow Development and TransSCOT cohorts, though failed 

to do so in the Glasgow Validation cohort. Quantification of TIL populations through image 

analysis is usually performed on sections stained for lymphocyte subset markers via IHC, as 

specific lymphocyte populations are most prognostic in this setting. This is evident through 

the comparison of H&E based TIL assessment with CD3 stained sections from the same 

cohorts, which show a greater association with survival. Deep learning has demonstrated 

proficiency in identifying cell types on H&E sections, such as tumour, fibroblast, immune, 

and parenchymal cells, following training on exhaustively annotated data sets. It is therefore 

possible that a large number of CRC sections stained for lymphocyte subsets could be used 

as ground truth for antibody directed learning, and high dimensional information extracted 

by a neural network be used to distinguish lymphocyte sub – populations based only on 

morphological features. This approach has seen some implementation in breast cancer, 

where pan – leukocyte CD45 IHC guided learning distinguished lymphocyte rich and poor 

areas when applied to H&E sections (Turkki et al., 2016).  

In Chapter 5, the prognostic effect of Ki67 expression was analysed through image 

analysis. As described in Chapter 3, deep learning is not readily implemented everywhere, 

thus an initial comparison between a traditional cell classification algorithm and a 

commercially available deep learning nuclei detection algorithm adapted to detect Ki67 

positive cells was conducted for prognostic significance. While both image analysis 

algorithms were highly correlated with manual Ki67+ cell counting through statistical 

measures of agreement, the deep learning algorithm performed better for prognostic 

stratification for CSS in both the Glasgow Development and Validation cohorts, however 

only the Glasgow Validation cohort showed significant stratification, outperforming manual 

cell counting. Visual comparison between the two algorithms revealed that the deep learning 

algorithm produced more faithful segmentation of the nuclei and was more adaptive to 

variation in cell size that is inherent to different stages and differentiation grades of CRC, 

thus the measures of agreement favoured utilising the deep learning algorithm in subsequent 

cohorts. The use of image analysis in fundamental research is generally coupled with some 

level of manual histopathological assessment to ensure reproducibility, however, in a clinical 

setting where the aim of using image analysis is to produce prognostically significant data 

without requiring additional time from the diagnosing pathologist. Hence any image analysis 
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algorithm that would be implemented in a clinical setting must be able to reliably adapt to 

novel image data and still produce accurate results.  

The GRI cohort is a newer patient cohort than the two cohorts used to validate the 

image analysis and had not been previously scored for Ki67 expression. Therefore, to 

simulate clinical application of this image analysis approach, the algorithm was used to 

assess Ki67 expression in the GRI cohort without adaptation to any histological processing 

variation, such as stain intensity, in this cohort and patients were stratified for high vs low 

expression using the same </> 30% PI cut off value that had been established in prior 

analyses. The deep learning algorithm significantly stratified these patients for CSS, 

confirming high Ki67 expression as a favourable prognostic factor and the accuracy of the 

</> 30% PI cut off value, and further demonstrating the ability of deep learning – based 

image analysis to translate to novel patient data. It is highly likely that the first image analysis 

algorithms to see clinical use will be for conducting relatively straightforward although time 

consuming assessments such as this, and in the setting of breast cancer, image analysis is 

currently under validation for assessing HER2 expression to distinguish molecular subtypes, 

thus this study adds to the growing evidence of the clinical applications of image analysis.  

The translational capacity of this approach was further confirmed in the large 

TransSCOT clinical trial cohort. A TMA was constructed for this cohort with the intention 

that it be used for translational studies, and as such, one core from the tumour core and one 

core from the invasive margin was included for each patient. It is understood that Ki67 

expression is variable between tumour subsites, and within the epithelial crypts depending 

on disease state, however the prognostic effect of this has yet to be fully elucidated, with 

studies producing conflicting results. To investigate further the effect of subsite dependent 

Ki67 expression, the deep learning algorithm was applied to both the tumour core and 

invasive margin cores for each patient in the TMA. Stratifying patients for high vs low 

expression using the </> 30% PI cut off revealed both sites to be prognostically significant 

for DFS, with Ki67 expression appearing to be more prognostic at the invasive margin. It is 

of note however, that the distribution of patients between high and low expression is more 

even at the invasive margin, and skewed towards high expression in the tumour core, which 

is likely affecting the measure of statistical significance. It is likely that further investigation 

of this phenomenon using full sections will elucidate the true effect of site dependent Ki67 

expression on prognosis. Ki67 expression is also known to vary between primary tumour 

site within the bowel although the effect this has on prognosis has also yet to be firmly 

established. Data from this cohort demonstrates that expression in the tumour core is 
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significantly higher in both left and right sided disease, and while there is no site dependent 

variation in expression at the invasive margin, there is a non – significant increase in tumour 

centre expression in right sided disease. This could be due to the higher proportion of right 

sided tumours that are MSI, which are known to be associated with a KRAS mediated 

increase in proliferative activity. Investigating the possible affect this may have on survival 

revealed that there is a greater risk associated with low Ki67 expression in the tumour core 

than at the invasive margin in left sided disease, but the risk is identical in right sided disease, 

suggesting that Ki67 expression may need to be assessed differently depending on disease 

site.  

These data further demonstrate that image analysis can be reliably used to conduct 

fundamental research in an unbiased manner without requiring additional human input to 

adapt the algorithms to novel data or counter score a subset of each new patient cohort to 

ensure reliability. This is of course dependent upon the task that the image analysis is set to. 

Positive cell counting has been conducted using image analysis almost since its inception 

and is therefore extremely reliable for certain markers such as Ki67, which is a well – defined 

nuclear stain produced using thoroughly validated diagnostic antibodies. However, more 

experimental biomarkers with variable expression patterns or markers which localise to 

cellular compartments that often prove difficult to accurately score, such as the membrane 

or nucleolus, would require rigorous validation through image analysis and possibly visual 

confirmation of classification accuracy by a diagnosing pathologist for each patient being 

assessed.  

In Chapter 6, the three prognostic features assessed in Chapters 3 – 5 were combined 

into established classification systems and assessed for prognostic significance against the 

manual histopathological counterparts. The GMS is a combinatorial score of the KM grade 

and TSP, therefore, to grade patients using these criteria though image analysis, the TSP 

algorithm, semi – automated lymphocyte quantification algorithm, and automated 

lymphocyte quantification algorithm were combined on a single H&E per patient. In the 

Glasgow Development, Glasgow Validation, and TransSCOT cohorts, GMS stratification 

using the semi – automated lymphocyte quantification and TSP algorithms significantly 

stratified patients for CSS and DFS following the same pattern as is found through manual 

histopathological assessment, with GMS0 possessing the best prognosis, GMS2 the worst 

prognosis, and GMS1 intermediate prognosis. Additionally, the image analysis approach 

outperformed manual histopathological assessment in the Glasgow Development cohort and 

near identically in the TransSCOT cohort. Previous studies have shown that combinations 
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of lymphocyte subset quantification through IHC and TSP assessment hold prognostic 

significance through image analysis, however, to the authors knowledge, a combination 

score of these metrics has not been performed on H&E WSI in large patient cohorts. While 

this assessment requires prior pathologist input in the form of annotation of the invasive 

margin, data from Chapter 4 shows this to be reliable between observers and does not require 

sufficient time to be prohibitive to use in a clinical setting, considering the significant 

association of this grading system with prognosis. Furthermore, automated assessment of 

the GMS through application of the lymphocyte detection algorithm to the stromal areas 

identified by the TSP algorithm retained a significant association with survival in all three 

cohorts in this study. It is therefore possible that with an improved lymphocyte detection 

algorithm, such as those previously discussed, that is able to identify specific lymphocyte 

populations through deep learning, automated assessment could provide equivalent 

prognostic information without the associated time requirement. This would be contingent 

on further investigation of the difference in prognostic and clinical significance of 

peritumoural vs intratumoural immune response.  

The algorithms used to produce the GMS classification system were further 

combined with the Ki67 assessment detailed in Chapter 5 to determine the Phenotypic 

Subtype of each patient through image analysis. Using this criteria, GMS1 patients with 

intermediate prognosis are stratified into good and poor prognostic groups dependent upon 

their Ki67 %PI, thus GMS0 / Immune subtype patients retain the best prognosis, GMS2 / 

Stromal subtype patients retain the worst prognosis, and high Ki67 expression GMS1 / 

Canonical subtype patients possess an intermediate good prognosis with low for all metrics 

GMS1 / Latent subtype patients possessing an intermediate poor prognosis. Phenotypic 

Subtypes determined through image analysis with semi – automated lymphocyte detection 

showed significant associations with survival in all three cohorts used in this study, as did 

Phenotypic Subtypes determined through automated image analysis. Although the 

disproportionate number of Immune subtype patients determined through automated image 

analysis resulted in Canonical subtype patients possessing the best prognosis in the Glasgow 

Validation cohort and a weakened association with survival in the Glasgow Development 

and TransSCOT cohorts. As described in Chapter 6, Roseweir and Colleagues derived the 

Phenotypic Subtypes from the phenotypic signatures of the individual CMS subtypes, and 

while previous studies have investigated the translation of the CMS to image analysis, the 

subtyping system did not retain association with survival (Roseweir et al., 2017; 

Sirinukunwattana, Domingo, Richman, Redmond, Blake, Verrill, Leedham, Chatzipli, 

Hardy, Whalley, Wu, Beggs, McDermott, Dunne, Meade, Walker, Murray, Samuel, 
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Seymour, Tomlinson, Quirke, Maughan, Rittscher, & Koelzer, 2021). This study therefore 

can serve as a framework for interpreting genomics data to image analysis, whereby 

pathologists interpret the morphological characteristics of subtypes derived from genomic 

analyses and image analysis approaches are developed to analyse these characteristics. This 

study demonstrates that through this method, the prognostic characteristics of specific 

genomic alterations can be carried forward to image analysis. Previous studies have 

demonstrated the utility of this kind of investigation through using image analysis to assess 

the unique histological features of the tumour associated with MSI status (Nguyen et al., 

2021).  

Further support to the clinical applicability of the image analysis algorithms was 

demonstrated through assessment of chemotherapy response. During validation of the 

Phenotypic Subtypes in the TransSCOT cohort, Roseweir and Colleagues identified that 

Immune subtype patients possessed a significantly improved prognosis when administered 

FOLFOX chemotherapy over CAPOX. It is imperative to the clinical validation of image 

analysis algorithms that they are able to identify the same biological phenomena as manual 

histopathological, particularly pertaining the theragnosis, as this would be of substantial 

utility to physicians when directing patient care. Determining the Phenotypic Subtypes using 

the semi – automated lymphocyte detection algorithm, Immune subtype patients showed an 

increased risk of poor prognosis when administered CAPOX over FOLFOX. While this 

difference was not significant, the hazard ratio for patients receiving CAPOX was 1.6 and 

no other difference in survival between chemotherapy regimens was seen in the other 

subtypes. It is possible that further investigation into the lymphocyte response at the invasive 

margin and development of a method by which to faithfully assess the KM grading criteria 

through image analysis, could elucidate the underlying mechanisms of improved 

chemotherapy – dependent prognosis and indeed, provide a means to reliably identify 

patients that could benefit from different chemotherapies. These data demonstrate that the 

concerted application of image analysis algorithms is able to accurately stratify patients 

according to novel classification criteria and potentially influence chemotherapeutic 

decisions to benefit patients.  

In summary, this thesis has demonstrated that image analysis can be successfully 

applied to novel prognostic features assessed on clinical H&E WSI, be reliably translated 

between independent patient cohorts, and reproducibly stratify patients for prognosis to a 

greater significance than manual histopathological assessment for certain criteria. 

Furthermore, combinations of image analysis algorithms can be applied to novel, multi – 
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stage classification criteria while retaining prognostic significance, with the potential to 

identify patient subsets that would benefit from targeted chemotherapy. 

7.2 Future Work 

This work outlines a framework for developing and validating image analysis for 

potential clinical use, as well as investigating preliminary image analysis algorithms to 

conduct novel assessments. Work following on from this thesis should be centred around 

ensuring the clinical translatability of the image analysis approaches to the novel prognostic 

features. 

The TSP algorithm performs well for patient stratification however, as shown in 

Chapter 3 the optimal cut off value for survival is 40%, markedly different from the 50% 

determined via manual assessment. It is likely that this is due to the fact that only 50% of 

the tumour area is analysed with the current algorithm due to computational limitations. This 

could be addressed as computing technology develops and is able to cope with whole section 

semantic segmentation via deep learning. In the immediate future however, Ho and 

Colleagues demonstrated that instigating a neural network training protocol operating at 

multiple objective magnifications is able to perform semantic segmentation of breast cancer 

WSI at lower magnifications while retaining classification accuracy (Ho et al., 2021). A 

similar methodology could be applied to the TSP assessment in CRC using the algorithm 

implemented in this study, allowing the whole tumour area to be classified thus improving 

the reliability of the image analysis assessment.  

As previously stated, the granular prognostic detail of the KM grading system is 

likely a result of the morphological nuances of the assessment, something which is evidently 

not recapitulated through lymphocyte density image analysis. There is a rich body of work 

detailing the spatial relationships between tumour infiltrating lymphocytes, neighbouring 

immune cell populations, the tumour, and other features of the CRC TME that can influence 

prognosis (Corredor et al., 2019; Elomaa et al., 2022; M. Jung et al., 2022; I. Nearchou et 

al., 2021; I. P. Nearchou, Lillard, et al., 2019c; Xu et al., 2022). Examining the spatial 

relationships of the TME cell types in the context of each KM grade would likely elucidate 

a means by which to more faithfully adapt the KM criteria to image analysis. Additionally, 

the distinct pattern of inflammatory response of each KM grade could also provide a means 

by which to adapt the criteria to deep learning – based image analysis, as patterns of 

lymphocytic infiltrate have previously been shown to modulate prognosis and response to 

chemo therapeutics in a variety of malignancies (Lu et al., 2020; Saltz et al., 2018; Shaban 

et al., 2019; X. Wang et al., 2022; B. Zhang et al., 2021). While a deep learning – based 
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approach such as this would be a more “black box” – like method than what was utilised in 

this study, it is plausible that a combination of a deep learning generated probability of the 

KM grade coupled with more transparent, traditional image analysis approaches would 

provide additional prognostic information and strengthen the reliability of the assessment.  

IHC is a routine part of diagnostic pathology, providing molecular information about 

the individual tumour and often guiding subsequent clinical decisions. While IHC is a 

relatively cost – effective method, any reduction in associated cost will contribute to the 

clinical utility of a novel methodology. It would therefore be of interest to elucidate a means 

by which to infer, or directly measure, the proliferative activity of a tumour from a single 

H&E slide without the need for a Ki67 IHC slide to be produced. Not only would this reduce 

the cost of determining the phenotypic subtypes, but it would also save precious tissue from 

the diagnostic block. A direct method of measuring tumour proliferation on H&E sections 

is through mitotic figure indexing, which is already a prognostic assessment in breast cancer 

pathology. Both traditional image analysis and deep learning approaches have showed 

excellent efficacy in detecting mitotic figures on H&E sections, subsequently relating them 

to chemotherapy response and prognosis (Balkenhol et al., 2019; Bigley et al., 2016; Romo-

Bucheli et al., 2017). However, it is an established principal that Ki67 indices and mitotic 

figure counts do not correlate well, if at all, therefore a study validating the efficacy of 

mitotic figures to stratify GMS1 patients into the Canonical and Latent subtypes would be 

necessary. An indirect method by which Ki67 positivity status could be measured on H&E 

slides is through antibody supervised deep learning, where IHC sections stained for specific 

markers are used as ground truth for neural network training which is then translated to H&E 

sections. This method has been proven to be effective for distinguishing lymphocyte 

populations and accurately segmenting epithelial tissue following training on pan – 

cytokeratin (CK) IHC sections (Bulten et al., 2019; Stenman et al., 2021; Turkki et al., 2016), 

and it is therefore plausible that Ki67 IHC guided deep learning could discern high 

dimensional features to detect cells likely to be Ki67+ on H&E slides. 
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