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Abstract

This thesis presents three studies focusing on boosted topologies that utilise machine
learning techniques for boosted H → bb̄ reconstruction using the ATLAS detector. The
measurement of the tt̄H cross-section is a direct way of accessing the Higgs top Yukawa
coupling (yt). Firstly, an all-hadronic feasibility study is shown, aimed at assessing boosted
topologies in the all-hadronic tt̄H decay channel. It was found to have low statistical
significance, with considerable efforts and data driven techniques required to reduce the
QCD-multijet background. Secondly, the boosted contribution to the recent tt̄H, H → bb̄

measurement using the full Run-2 ATLAS data set, 139fb−1 at
√
s = 13 TeV, is analysed.

There is a considerable contribution from the boosted region to this result, particularly
to the differential cross-section measurement of the Simplified Template Cross-Section
(STXS) bins [300, 450) and [450,∞) GeV. The result of the inclusive profile-likelihood
fit is µ = 0.35+0.36

−0.34, which corresponds to σ = 1.0(2.7) observed(expected) significance
compared to the background-only hypothesis. Thirdly work on retraining the boosted
H → bb̄ reconstruction deep neural network (DNN) is shown for the Run-2 Legacy re-
analysis. The bespoke DNN trained for the analysis showed some improvements over
the previous round due to the updated analysis algorithms. It also outperformed the
general purpose H → bb̄ Xbb tagger. The final motivation for use of the bespoke DNN is
that it allows the choice of boosted jet collection (RC-jets vs LR-jets). RC-jets re-cluster
“small” (∆R = 0.4) jets with ∆R = 1.0 while LR-jets directly cluster the calorimeter
clusters with ∆R = 1.0, both using the anti-kt algorithm. The RC-jets jets are found to
be advantageous. This is due to the ease of propagating systematics for combining with
resolved regions and the good modelling observed using samples made with the Atlfast-2
detector simulation.
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Chapter 1

Introduction

Creating, detecting and then identifying particles is the primary goal in particle physics.
This allows us to probe the Standard Model (SM) which models the physical world in
terms of particles, including three of the fundamental forces of nature (electromagnetic,
weak and strong nuclear forces), which are the force propagators between particles. More
specifically the SM is a quantum field theory (QFT) where each fundamental particle has
an associated quantum field with it, of which a particle is in-fact an excitation, alluding to
the wave-particle duality of quantum mechanics. Unification of quantum mechanics and
special-relativity requires a quantum field theory in order to describe phenomena such as
the creation and annihilation of particles and insuring causality.

In order to test the SM volumes of space with an extremely high energy density are
required. This is to replicate certain conditions after the big bang when more exotic
matter existed. In our current every day world the energy density is relatively low and so
only the lightest particles are stable enough to exist day to day. However, as particles are
the excitations of fields an observation of a specific particle, that matches the predicted
properties, is a direct proof of the existence of that field. The particle properties that
can be predicted from theory are: spin, electric charge, colour charge and to some degree
“generation”. The masses of the particles are not, although can be constrained to some
degree.

In order to properly probe the SM a reliable way of producing particles is required,
which is where colliders come into play. Because the SM is inherently probabilistic all
matter may spontaneously be created and then annihilate as long as it doesn’t violate the
uncertainty principle. In order to observe a particle it needs to be created in a detector and
live long enough to become “real” (on-shell). For this to happen there must be enough
energy in a region of space to satisfy said particles rest mass, which in our low energy
density universe will not produce any heavy particles. To get around this colliders are
used which smash particles together at extremely high energies to create a localised region
of space with a high energy density. This then allows, due to Einstein’s energy mass
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relation (e = mc2) , to produce particles of higher rest mass. Which in turn provides
evidence of the associated quantum field. The probability of creating a given particle
(cross-section) depends on a number of things, including the particles mass (m) and the
centre of mass energy (

√
s) of the collision, and is a measurable quantity.

The Large Hadron Collider (LHC) is a 27 km ring which accelerates protons (hadrons)
to collide at 4 primary interaction points: ATLAS, LHCb, ALICE and CMS. It accelerates
protons in bunches to speeds of 99.999999%c and produces collisions every 25ns. In order
to produce the heavier particles in the SM a centre of mass energy higher than the rest mass
of said particles must be achieved

√
s > m. Due to the circular shape the limiting factor,

for the LHC, in the achievable centre of mass energy is the magnet technology and its
achievable field strength. This limits the inward acceleration of the particles required for
a given radius. To precisely know the centre of mass energy of the collision, the momentum
fraction of the colliding constituents must be known. In the case of point like particles
this is simple (100%) and is why initially electrons and positrons were used by LEP (Large
electron positron collider). However, due to the electrons light mass, the maximum centre
of mass energy that the LEP could achieve was 209 GeV. Switching to proton-proton
collisions allows to achieve higher energies, 13 TeV in Run-2, but carries an additional
uncertainty as the proton is not a point like particle and is made up of constituent partons.
Because of this the precise momentum fraction of each parton colliding is not known. DIS
(deep inelastic scattering) experiments are used to probe the structure of the proton.

The ATLAS detector, along with CMS, is one of the two general purpose detectors at
the LHC. Their primary goals were to discover new particles, which at the time included
the Higgs boson, as well as to be able to probe particularly high energy sectors of the SM,
specifically the Higgs sector. This was because lighter masses of the Higgs had been ruled
out from previous colliders such as LEP and the Tevatron.

One aspect of the Higgs sector that is of particular interest is the coupling strength
to the top field (top Yukawa coupling yt). It is particularly hard to access due to the
top quark having a high mass. Typically the Yukawa coupling strengths can be accessed
through the Higgs decay and their branching ratios, which is not a possibility for the top
quark. Instead it can accessed by measuring the cross-section of an associated production
process, where both the top-quark and Higgs boson are produced. The best process for
this with the highest cross-section is the associated production of a pair of top quarks and
the Higgs boson (tt̄H).

The rest of this document is laid out as follows: Chapter 2 gives a brief overview of
the SM; Chapter 3 gives an overview of the LHC and the ATLAS detector; Chapter 4
gives details on Strip Module Metrology for the ITk Inner Detector upgrade for ATLAS
targeting the High Luminosity Run-4; Chapter 5 gives an overview of how theoretical
predictions are made via Monte-Carlo Simulation; Chapter 6 explains the collection of
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statistical methods and machine learning techniques utilised in the analysis; Chapter 7
describes the algorithms utilised by ATLAS to reconstruct the non-analysis specific objects;
Chapter 8 describes the analyses targeting the tt̄H process with the H → bb̄ decay mode;
and Chapter 9 gives a conclusion. The analysis chapter, Chapter 8, is split into three
separate studies: an all-hadronic feasibility study, an overview of the recently published
Lepton + Jets tt̄H, H → bb̄ paper using the full Run-2 ATLAS data set and work for the
re-analysis Legacy paper which uses the same Run-2 ATLAS data set but incorporates
updated analysis techniques.
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Chapter 2

The Standard Model

The SM is the theory that describes the fundamental particles and the forces between
them. It is a relativistic quantum field theory (QFT) and makes use of the axioms of both
special relativity and quantum mechanics. The elementary particles in the SM can be seen
in Figure 2.1 and consist of three generations of fermions (quarks and leptons), four force
mediating gauge bosons (g, γ, Z0 and W±) and an additional scalar boson (Higgs).

Figure 2.1: The Standard Model of elementary particles [2].

Their interactions are described by the SM Lagrangian:

LSM = LGauge + LFermions + LHiggs + LY ukawa
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which can be decomposed into various sectors. There are a total of 19 free parameters
in the SM that are not predicted theoretically and need to be experimentally measured
via pp collisions at the LHC.1 The SM is a gauge theory meaning it is invariant under
non-local (gauge) transformations. Its gauge symmetry group is:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

Noether’s theorem [3] broadly states that for every symmetry there is a corresponding
conserved quantity. For the SM gauge symmetry shown above the conserved quantities
are the colour charge C SU(3), weak isospin L SU(2) and weak hypercharge Y U(1).

2.1 Electroweak Unification

The electroweak force (EW ) is the unified description of the electromagnetic (EM) and
weak nuclear (W ) forces. It was developed Glashow, Weinberg and Salam [4–7] and is
known as the Weinberg-Salam theory. Above the unification energy ∼ 246 GeV (temper-
ature 1015K) the two forces merge into one. The gauge bosons are W = (W1,W2,W3)

for SU(2) and B for U(1), which are initially massless. The generators for the groups are
weak isospin (L) and hypercharge (Y ) which, due to the Higgs mechanism and sponta-
neous symmetry breaking, gives rise to the electric charge which can be expressed as a
linear combination of the two Q = 1

2
Y − Lz, where Lz is the third component of weak

isospin. The helicity of a particle is determined by the axis of spin being in either the
same (right handed) or opposite (left handed) direction to its momentum. It was exper-
imentally observed that weak charged currents (mediated by the W± boson) only couple
to left-handed fermions thus only left handed fermions carry isospin. The fields of the
physical bosons: W±, Z0 and γ expressed in terms of W and B are:

W± =
1√
2
(W1 ∓ iW2),

Z0 = −B sin(θw) +W3 cos(θw),

γ = B cos(θw) +W3 sin(θw),

where θw is the weak mixing angle and can be defined in terms of the mass ratio of the
W± and Z boson cos θw = mw

mz
. The W± and Z0 bosons acquire mass from the Higgs

mechanism and as a result of spontaneous symmetry breaking.
1This can be extended with the addition of the parameters related to neutrinos to 26.
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2.2 The Higgs Mechanism

LHiggs = (Dµφ)
†(Dµφ)− V (φ†φ)

The Higgs Mechanism [8] is responsible for generating the masses of particles. The massive
vector gauge bosons gain mass due to the spontaneous symmetry breaking of SU(2)L ⊗

U(1)Y . A complex scalar field φ =

(
φ+

φ0

)
is introduced with a potential of the form

V (φ†φ) = µ2(φ†φ) + λ(φ†φ)2, where µ2 and λ are free parameters. When µ2 < 0 and
λ > 0 then the minimum value is ν = −µ2/2λ and is known as the vacuum expectation
value of the field. Due to the Mexican hat like shape of the potential (see Figure 2.2) this
minimum value ν is not at the origin (φ = 0), which is in fact an unstable local maximum,
but has a circle (with radius r =

√
−µ2/2λ) of possible values that φ can take. Due to

the field arbitrarily “selecting” a value of φ to reach the minimum its symmetry becomes
spontaneously broken. Because of this mass terms appear for the W± and Z0 vector gauge
bosons along with another massive scalar boson. It is this complex scalar field that is the
Higgs field and it is this extra massive scalar boson, that appears as an excitation of this
field, that is the Higgs boson. The Higgs boson has a mass mH =

√
−2ν2 and the observed

vacuum expectation value of the Higgs field is ν ≈ 246 GeV. It is through this symmetry
breaking and the interactions with the fermions that the fermions, also gain mass. The
mechanism that describes this is the Higgs fields interaction with the LY ukawa piece of
the SM Lagrangian. The fermion masses are proportional to their Yukawa couplings
yf =

√
2mf/ν, which are their couplings to the Higgs field.

Figure 2.2: The Mexican hat shaped Higgs potential [9].

6



2.2.1 The Higgs boson

The Higgs boson is the mediating particle of the scalar Higgs field. It was discovered
in 2012 by both ATLAS [10] and CMS [11] with its mass being measured to be mH =

125.25±0.17 GeV [12], and is consistent with the limits placed on it by other experiments
i.e. Tevatron. The four primary Higgs production modes in pp collisions at the LHC
are gluon-gluon fusion (ggF ), vector boson fusion (V BF ), associated production with a
vector boson (V H) and associated production with a top quark pair (tt̄H), their Feynman
diagrams can be seen in Figure 2.4. The Higgs boson production cross-sections as a
function of the centre of mass energy

√
s can be seen in Figure 2.3. It primarily decays to

two b quarks (∼ 58%) but was detected through its H → γγ (∼ 0.23%), H → ZZ∗ → 4l

(∼ 2.6%) and H → WW ∗ → eνµν (∼ 21%) 2 decays due to them providing a particularly
clean signal. The branching fractions can be seen in Figure 2.5 which shows the probability
for Higgs bosons decays through various processes at different mass values.

Figure 2.3: The SM Higgs boson production cross-sections as a function of centre of mass
energy

√
s [13].

2WW ∗ and ZZ∗ decays are only possible if one of the vector bosons is produced off shell and so are
suppressed
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Figure 2.4: Feynman diagrams for the main Higgs production modes at the LHC: (a)
gluon-gluon fusion (ggF ), (b) vector boson fusion (V BF ), (c) associated production with
a vector boson (V H) and (d) associated production with a top quark pair (tt̄H).

Figure 2.5: The SM Higgs boson decay branching ratios and widths as a function of Higgs
mass [13].
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2.3 Fermions

Fermions are spin 1/2 particles that make up matter we see in our universe and are
described by LFermions part of the Lagrangian. They follow the Pauli exclusion principle
which states that no two spin 1/2 particles may occupy the same state (e.g. electron
orbitals in an atom) in a quantum system. Typical matter (comprising of atoms) is made
up solely out of the first generation of fermions (up and down quarks, electrons forming
protons and neutrons). The three generations of fermions have the same properties in
terms of colour, weak and electromagnetic charges and only vary in terms of their masses.
Each fermion has a specific flavour associated with it, with only charged weak interactions
(mediated by theW± boson) allowing a fermion to change from one flavour to another. The
Cabibbo-Kobayashi-Maskawa (CKM) matrix [14, 15] contains the transition probabilities
for quarks from one flavour to another. There are three mixing angles that represent the
rotation of the mass eigenstate vector space into the weak eigenstate vector space. The
mixing angels can be defined in terms of the ratio of the transition probabilities. The
CKM matrix also accounts for the observed CP violation in weak decays, introducing a
fourth free parameter.

2.3.1 Top quark

The top quark is the heaviest particle in the SM and is part of the third generation
of fermions. It was discovered in 1995 at the Tevatron by the CDF [16] and D0 [17]
collaborations. Because it is so heavy (mt = 173.1 GeV) it is extremely unstable and
decays almost instantaneously (τ ∼ 10−25 s) and doesn’t undergo hadronisation (τ ∼ 10−22

s), which allows the study of a bare quark. Its typical production mode is a pair of top
quarks (tt̄) via gluon-gluon fusion and decays into a b quark and W boson. Given the
larger mass of the top quark, the Higgs boson will (almost) never decay to the tt̄ final
state. Measuring the branching ratios of the Higgs is one way to access the Yukawa
couplings. However, since this is not possible for the top Yukawa coupling the best way
to access this parameter is through the study of the tt̄H cross-section.

2.4 Strong Interaction

The strong nuclear interaction is described by QCD and governs the interaction between
the quarks and gluons. The colour charge C is the conserved quantum number with there
being a total of three colour charges. The theory follows the SU(3)C gauge symmetry
with there being a total of 8 generators of the group. Quarks carry one colour charge each
with the interaction being mediated by the massless gluon boson. The strong coupling
“constant” αs depends on energy (so is not a constant) and describes the strength of the
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interaction. The gluons carry two colour charges and as a result can interact with them-
selves. It is due to this self interaction that quark confinement exists where particles with
colour charge bind together to form colour neutral states. At low energy the gluons self
interaction creates an anti-screening effect which amplifies the strength of the interaction.

2.5 Parameters of the Standard Model

The free parameters of the SM (19 + 7 in total) can be defined in some different ways.
Either the 9 fermion masses or their Yukawa couplings yf =

√
2mf/ν can be used. The

three mixing angles (θ12, θ23, θ13) from the CKM matrix as well δ the CP violating phase.
The three gauge couplings (g1, g2, g3) can be used with alternatives for g1, g2 being the weak
mixing angle tan θw = g1

g2
= mw

mz
and the fine-structure constant α = 1

4π
(g1g2)2

g21+g22
of QED. The

final 3 parameters are the QCD vacuum angle θQCD, the Higgs vacuum expectation value
ν and the Higgs mass mH .

The 7 extra parameters related to neutrinos are the 3 neutrino masses, the 3 flavour
mixing angles and δCP which is the CP violating term. This information is contained in
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [18,19] which is analogues to the
CKM matrix and describes neutrino mixing.

2.6 Beyond the Standard Model

There are a number of phenomena not yet explained by the SM with extensions to the
theory being referred to as Beyond the Standard Model (BSM) theories. The most obvious
of which is gravity for which no quantum theory currently exists and is best described by
general relativity. Other than that there is no a priori reason in the SM for the masses of
the fermion generations to have such different scales. It also doesn’t explain dark matter
nor dark energy as well as the matter-antimatter asymmetry.
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2.7 tt̄H and the top Yukawa coupling yt

Figure 2.6: Example of a tree-level Feynman diagram of the tt̄H t-channel process.

The Higgs top Yukawa coupling yt is one of the fundamental parameters of the standard
model and needs to be measured. It is directly accessible at tree level with tt̄H (Figure
2.6) and tH (Figure 2.7) or indirectly with a virtual top quark loop e.g H → γγ (Figure
2.8) corresponding to the Higgs-top vertex in the Feynman diagram amplitude. The tt̄H
process was discovered by both ATLAS [20] and CMS [21] in 2018 by combining various
Higgs decay channels.

(a) tH t-channel process with the Higgs
coupling to the top quark.

(b) tH t-channel process with the Higgs
coupling to the W boson.

Figure 2.7: Leading order Feynman diagrams for t-channel tH production in the 5 Flavour
Scheme.

Measuring the tt̄H cross-section is a direct way to access and measure the Higgs top
Yukawa coupling yt. The tt̄H process is preferable for measuring the magnitude |yt|
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because it has a higher predicted cross-section than tH. On the other hand tH gives
access to the sign of the coupling due to the interference of the W and top couplings.

(a) GGF Higgs production
mediated through a virtual top

quark loop.

(b) H → γγ decay mediated
through a virtual top quark

loop.

Figure 2.8: Examples of indirect yt couplings through virtual top quark loops.

The predicted cross-sections of tt̄H and tH can be seen in Figure 2.9, where the SM
Lagrangian has been extended such that the effective Lagrangian for Higgs-top quark
interactions below the EWSB scale is

Lt
0 = − yt√

2
ψ̄t(cos(α)κHtt + i sin(α)κAttγ5)ψtX0.

Where X0 labels a generic spin-0 particle (i.e the Higgs) with CP-violation couplings, α
is the CP-mixing phase, κHtt, κAtt are real dimensionless rescaling parameters. With the
above approach a CP-even case would be (cos(α) = 1, sin(α) = 0), CP-odd case would be
(cos(α) = 0, sin(α) = 1) and the SM case (cos(α) = 1, κHtt = 1). For more details of the
approach taken see [22].

Figure 2.9: The NLO cross-sections (with scale uncertainties) for tt̄X0 and t-channel tX0

productions at the 13-TeV LHC as a function of the CP-mixing angle α, where κHtt and
κAtt are set to reproduce the SM GF cross section for every value of α [22].
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From Figure 2.9 we can see that tt̄H is not sensitive to the sign of the coupling (i.e
yt → −yt) because it depends quadratically on yt. However, it is sensitive to a CP-odd
/ CP-mixed scenario in which case its cross-section would be reduced. We can also see
that tH is clearly sensitive to the sign of yt due to the interference between the diagrams
where the Higgs couples to the top quark and W boson as can be seen in Figure 2.7. The
above also highlights the interplay between the two channels (tt̄H and tH) at different
values of α and how important it is to separate the two as tt̄H alone is also not sensitive
to α→ π−α while tH is predicted to have an order of magnitude increase in cross-section
in that case.

Decay channel Approximate branching ratio

H → bb̄ 5.8× 10−1

H → W+W− 2.1× 10−1

H → τ+τ− 6.3× 10−2

H → ZZ 2.6× 10−2

H → γγ 2.3× 10−3

H → Zγ 1.5× 10−3

H → µµ 2.2× 10−4

Table 2.1: Table of H decays and corresponding branching ratios, values taken from [13].

The H → bb̄ is the dominant decay mode (see Table 2.1). However, it is also one of the
hardest decay channels to analyse because it does not give a clear signal to trigger on like
H → γγ or H → ZZ → 4l. The H → γγ decay channel, whilst being one of the smallest
branching ratios, has actually provided one of the cleanest signals so far and drove the
initial Higgs discovery.

There have been a few dedicated tt̄H → bb̄ results by both ATLAS and CMS. In the
initial observations these dedicated results were combined with other decays to reach the
required 5σ observed significance. These used the collaborations respective 2016 Run-
2 data subsets with ATLAS using 36.1fb−1 [23] and CMS using 35.9fb−1 [24]. Since
then both collaborations have released updated results using larger data sets. ATLAS
released a full Run-2 result using 139fb−1 [1] and is the analysis in Section 8.2 where my
contributions to the boosted region are detailed. CMS released a 2016/17 combined result
using 77.4fb−1 [25].
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Chapter 3

The ATLAS detector and the LHC

The LHC based at CERN is the worlds highest energy particle accelerator built to date. It
re-uses the same 27 km tunnel used by LEP and houses four LHC experiments: ATLAS,
CMS, ALICE and LHCb. They are spaced along the ring at the four primary interaction
points. Protons bunches are accelerated and collided together at the primary interaction
points at ∼ 14 TeV every 25ns. This is achieved through several sub-accelerators which
sequentially accelerate the bunches till they are fast enough to be injected into the primary
LHC ring. The bunches are bent into curved trajectories through the use of supercon-
ducting magnets which can produce magnetic fields of up to 7.7 T. The primary limiting
factor for the LHC, in the achievable centre of mass energy is the magnet technology and
its achievable field strength. This limits the inward acceleration of the particles required
for a given radius. LEP initially used leptons (electrons/positrons) which are lighter and
so limited by synchrotron radiation. Leptons are more precise but achieve a lower centre
of mass energy than hadrons. Thus switching to hadrons (protons) provides a natural
progression whilst making use of the same tunnel which due to their greater mass will nat-
urally produce a higher centre of mass energy. The inherent downside to this is that the
exact momentum fraction in a given hard scattering event is unknown due to the partons
of the protons being the actual collision constituents. This leads to hadron colliders having
inherently larger uncertainties than lepton colliders but allows the probing of significantly
higher energies. As such lepton colliders are beneficial for precision measurements whilst
hadron colliders are advantageous for discovering new particles. This was the primary
goal of the LHC with the discovery of the Higgs boson in 2012.

The LHC experiments are organised around the detector and the beam. Collaborations
of physicists work on designing the detectors, operating them during data taking and
finally analysing the data. Since experiments with general purpose detectors such as
ATLAS and CMS are supposed to verify each others results, physicists working on data
analysis are only allowed to be members of one LHC experiment. The LHC and its
experiments are organised into data taking run periods, with breaks in-between to allow
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for maintenance of both the ring and the various detectors. This allows for the continuous
ongoing development of both the accelerator ring and detectors to be installed. This
chapter is organised into two subsections. The first section focuses on the LHC run
periods, specifically Run-2. The second section explains the ATLAS detector in its Run-2
configuration.

3.1 LHC runs

The LHC currently has four planned operational runs, with the first two (Run-1 and Run-
2) having successfully been completed as of 03/12/2018. Run-3 commenced on 05/07/2022
and was delayed due to the COVID pandemic. Run-1 took place between 2009 and 2013
and operated at centre of mass energies of

√
s = 900 GeV,

√
s = 7 TeV and

√
s = 8 TeV.

Run-2 started approximately two years later in 2015 and gathered data till the end of 2018
and achieved a centre of mass energy of

√
s = 13 TeV and a bunch spacing every 25ns. The

data taking periods in ATLAS refer to 2015/16, 2017 and 2018 with the matching Monte
Carlo campaign labels being mc16a, mc16d and mc16e respectively. The Monte Carlo
campaigns are designed to match the run conditions specific to those periods including
luminosity and detector radiation damage. Luminosity L is a measure of the number of
events being produced at a given moment and is defined as:

L =
kN2

4πsahav
,

where s is the bunch spacing, k is the number of bunches per beam, N is the number
of protons per bunch and ah and av are the effective beam sizes in the horizontal and
vertical directions. Integrating this quantity over the whole data taking period defines the
integrated luminosity and is measured in inverse femtobarns (fb−1) with 1fb = 10−39cm2.

The analyses performed here utilise the full Run-2 ATLAS data set of 139fb−1 at
√
s = 13 TeV. This is because while a total of 156fb−1 was delivered by the LHC, 147fb−1

was recorded by ATLAS of which 139fb−1 was usable for physics, where all the subsystems
were fully operational. The breakdown of delivered and recorded luminosity by year for
ATLAS can be seen in Figure 3.1 with the total luminosity for Run-2 shown in Figure 3.2
where the delivered, recorded and good for physics data are detailed.

For a given bunch crossing in ATLAS the chance for more than one pp collision per
crossing is rather high and leads to an effect called pile-up (µ). This increases with luminos-
ity and has the effect of increasing “noise” making it harder to reconstruct the interesting
hard scattering events. With the original design luminosity of the LHC (1034cm−2s−1) be-
ing exceeded in 2016 and a maximum luminosity of 2.1×1034cm−2s−1 achieved in 2018 led
to an average pileup, µ = 33.7 compared to the expected value of µ = 23. This difference
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(d)

Figure 3.1: The luminosity delivered by the LHC and recorded by ATLAS for each year
during Run-2 [26].
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Figure 3.2: The total luminosity delivered by the LHC, the total luminosity recorded by
ATLAS and the total luminosity of data usable for physics analysis for Run-2 [26].
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has primarily been dealt with through continuous improvements in reconstruction algo-
rithms. A breakdown of the average number of interactions per crossing and associated µ
for each run period and the whole of Run-2 can be seen in Figure 3.3.
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Figure 3.3: The average number of pp interactions per bunch crossing in ATLAS for each
given year and the whole of Run-2 [26].

Run-3 is now ongoing with a centre of mass energy of
√
s = 13.6 TeV which maximises

what is possible with the current magnet technology. The plan is to deliver ∼ 280fb−1 [27]
which will approximately triple the ATLAS data set available for physics analysis. The
next run (Run-4) plans to be a high luminosity (HL) run where extra performance is
squeezed out of the available tunnel not by increasing the centre of mass energy but by
increasing the bunch sizes. This will lead to an increase in luminosity and by extension
an increase in pile-up. To mitigate this a substantial redesign of the ATLAS detector is
ongoing with an all new fully silicon tracker being implemented called ITk. As part of
service work for the ATLAS collaboration some modelling for the wire-bonding process
during manufacturing for the ITk strips was performed. This is detailed in Chapter 4.
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3.2 The ATLAS detector

Figure 3.4: A cutaway of the ATLAS detector [28].

The ATLAS detector [28], depicted in Figure 3.4, is one of the two general purpose detec-
tors at the LHC, with the other being CMS. The name ATLAS is derived from A Toroidal
LHC ApparatuS and the experiment can probe both proton-proton collisions as well as
heavy ion collisions. Its primary purpose is to identify and reconstruct particles that
emerge from proton-proton collisions and its initial design was heavily influenced by the
then theorised and now discovered Higgs boson. To do this the particles’ trajectories and
energies are recorded from which basic kinematic variables can be derived. A particles’
charge and momentum can be inferred from the bending direction and curvature of its tra-
jectory. This information is then used for both particle identification and reconstruction.
The coordinates used are defined with the nominal interaction point (IP) as the origin.
The z-axis runs parallel to the beam line with the x-y plane being transverse to it. The
azimuthal angle φ is measured around the beam line and the polar angle θ is measured
from the beam line. Due to the particles being relativistic in the direction parallel to the
beam pseudorapidity η = − ln tan(θ/2) is used which is an approximation of the Lorentz
invariant quantity rapidity for m� pT .

The detector is comprised of several subsystems akin to an onion with each specialised
at measuring different properties. The main subsystems listed in increasing distance from
the IP are: Inner Detector (ID), Calorimeters, Muon Spectrometer (MS) and the magnet
systems. On-top of these the trigger and data acquisition systems (TDAQ) are integral for
maximising the amount of useful data collected and are further split into three levels: L1,
L2 and event-filter. Due to both the Run-2 detector design and data taking having been
completed prior to any of the studies described here commencing, only a brief outline will
be given of each subsystem and TDAQ as there was no scope to be involved in these steps.
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However, details of the ITK strips for ATLAS ID upgrade designed for Run-4 HL-LHC
will be given in Chapter 4 as part of service work for the ATLAS collaboration to qualify
for ATLAS authorship. The detector has a cylindrical geometry with components divided
into barrel and endcap, where barrel components typically have strip geometries and are
positioned parallel to the beam while endcap components typically have petal geometries
and are positioned perpendicular to the beam.

Different particles interact differently with each subsystem and so can be identified
through combining their unique signatures from each subsystem. A depiction of this can
be seen in Figure 3.5.

Figure 3.5: An illustration of how different particles interact with the various ATLAS
sub-detectors [29].

3.2.1 Inner Detector (ID)

The Inner Detector (ID) [28], depicted in Figure 3.6, is the subsystem closest to the
beam and is used to measure the trajectories of charged particles. As it is closest to the
interaction point it operates in the busiest particle environment and so requires the highest
resolution out of all the subsystems. It is comprised of three separate technologies: Pixel,
Semiconductor Tracker (SCT) and Transition Radiation Tracker (TRT). The whole ID is
immersed in a 2T magnetic field from the magnet systems. The tracks are used to measure
the momentum of the charged particles (due to the bending from the magnetic field) as
well as primary and secondary vertices.
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Figure 3.6: A close-up cross section of the ATLAS ID tracking subsystems [28].

Pixel detector

The Pixel detector is the closest to both the beam pipe and IP. It consists of 4 barrel
(including the IBL) and 3 endcap layers of silicon sensors providing up to |η| < 2.5 coverage
with tracks hitting at least 3 layers, see Figure 3.7. The insertable b-layer IBL [30] was
added between Run-1 and Run-2 to improve b-hadron identification and was inserted at
a radius of ≈ 33mm [30]. The IBL has pixels of size 50 × 250µm2 with the rest of the
pixels, in the other layers, having a size of 50 × 400µm2. The spatial resolution achieved
in R− φ (beam perpendicular) is 10µm and in z is 115µm (beam parallel), with the IBL
having spatial resolutions of 8µm and 75µm respectively.

Semiconductor Tracker (SCT)

The next set of sensors are the Semiconductor Tracker (SCT) which also uses silicon
sensors but with a notable difference in readout. The sensors consist of strips with each
hit giving a 1 dimensional measurement. Because of this each SCT layer consists of sets of
stereo strips to measure both coordinates, with a space-point requiring 2 hits on either side
of the layer. The SCT consists of 4 barrel layers and 9 endcap disks giving it a |η| < 2.5

coverage. This ensures that there are at least 4 space-points (8 hits) per track in this
region, see Figure 3.7, with a spacial resolution of 17µm and 580µm in the transverse and
longitudinal directions respectively.

Transition Radiation Tracker (TRT)

The Transition Radiation Tracker (TRT) is the outermost part of the ID. It uses 4mm
diameter straw tubes filled with a gas mixture (predominantly Xenon) and only provides
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measurements in R − φ. While it only has |η| < 2.0 coverage, see Figure 3.7, it does
provide a large number of hits per track ≈ 36 with a spatial resolution of 130µm. Its
primary use is to aide in electron identification by aiding in tracking and identifying the
resultant bremsstrahlung radiation.

Figure 3.7: A schematic layout of the ID tracking sub-detectors for both barrel and end-cap
sections depicting various η ranges [28].

3.2.2 Calorimeters

The next layer of the ATLAS onion after the inner tracking detectors are the calorime-
ters [28] that measure the energies of particles. They do this using a dense metal plate
called an absorber that effectively has a high interaction cross-section with incident par-
ticles. Once the incident particles hit the absorber they causes a resultant shower of
particles that slowly propagates through the sensing elements dissipating energy thus al-
lowing for the measurement of the incident particles energy. There are two distinct shower
types electromagnetic (EM) showers, that are induced by high energy photons/electron-
s/positrons and cause a cascade via pair production and bremsstrahlung, and hadronic
showers induced by high energy hadrons and have more processes inducing the resultant
shower.

An important consideration is to design the calorimeters to be thick enough to capture
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the whole cascade of particle showers and limit punch-through of charged particles into the
muon subsystems. Because of the different nature of the EM and hadronic showers there
are two distinct calorimeter systems designed for each respective particle shower type. The
combined calorimeter systems are designed such that there is almost no punch-through of
ionising radiation with the exception of the minimum ionising muons which are detected
by the dedicated muon systems. A depiction of the ATLAS calorimeter systems can be
seen in Figure 3.8.

Figure 3.8: A cutaway of the ATLAS detector depicting the various calorimeter systems
and sections [28].

LAr Electromagnetic Calorimeter

The first calorimeter layer encountered by incident particles is the EM calorimeter which
uses lead as the material for the absorber plates and liquid argon as the sensing material.
It is configured to provide the highest resolution (≈ 0.025×0.025 in ∆η×∆φ) for |η| < 2.5,
inline with the ID, but covers the region up to |η| < 3.2. It consists of both barrel and
endcap sections as can be seen in Figure 3.8. Due to the solenoid magnet’s position in
front of the EM calorimeter they share a common vacuum vessel thereby eliminating two
extra vacuum walls. For the high precision region (|η| < 2.5) the calorimeter has sensor
segments three layers deep. The rest of the calorimeter only has sensor segments two
layers deep and a coarser granularity (≈ 0.1 × 0.1 in ∆η × ∆φ). In addition there is a
pre-sampler that covers the |η| < 1.8 region that consists of an active LAr layer and is
used to correct the energy lost by electrons and photons prior to the calorimeter.

Hadronic Calorimeters

Next in line are the hadronic calorimeters which consist of tile calorimeters in the barrel,
LAr hadronic end-cap calorimeter and the LAr forward calorimeter. The tile calorimeter
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use steel as the absorber and scintillating tiles as the active medium. It consists of two
sections: barrel covering |η| < 1.0 and extended-barrel covering 0.8 < |η| < 1.7. Similarly
it has three layers of sensing tile segments with the initial two layers having a granularity of
0.1×0.1 in ∆η×∆φ and 0.2×0.1 in the final layer. The LAr hadronic endcap calorimeter,
similarly to the EM calorimeter, uses lead as the absorber and LAr as the sensing element
and shares the cryostat of the EM calorimeter. It covers a region of 1.5 < η < 3.2 in order
to overlap both with the tile calorimeters in the barrel and the LAr forward calorimeter.
It has a granularity of 0.1× 0.1 for 1.5 < |η| < 2.5 and 0.2× 0.2 for 2.5 < |η| < 3.2.

The LAr forward calorimeter

The LAr forward calorimeter extends the calorimeter coverage up to |η| < 4.9 and is
integrated into the endcap cryostat. Due to the high radiation levels present due to neutron
albedo the forward calorimeter is recessed by 1.2 m with respect to the EM calorimeter, see
Figure 3.8. As a result and to prevent punch through a high density design is necessitated.
It consists of three modules with the first made of copper and optimised for electromagnetic
showers. Tungsten is used for the other layers and optimised for hadronic showers. Each
module forms a metal matrix of electrodes with small gaps of LAr acting as the sensing
medium. This design, while more complex, avoids problems caused by ion build up.

3.2.3 Muon Spectrometer (MS)

The outermost layer of the ATLAS onion is the muon spectrometer (MS) [28] and is
designed to measure the momentum of charged particles that pass through the previous
ATLAS-subsystems (ID and calorimeter), which predominantly tend to be muons. Sim-
ilarly to the ID the momentum and charge are inferred from the bending of the muons
trajectories present due to the magnetic field. The trajectories are reconstructed as tracks
using hits in the various MS-subsystems. The four main MS-subsystems are: Monitored
Drift Tubes (MDT), Cathode Strip Chambers (CSC), Resistive Plate Chambers (RPC)
and Thin Gap Chambers (TGC). With the MDT and CSC providing precision tracking
and the RPC and TGC providing fast tracking used by the trigger system. An illustration
of the MS-subsystems can be seen in Figure 3.9.
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Figure 3.9: A cutaway of the ATLAS detector depicting the various MS-subsystems [28].

Monitored Drift Tubes (MDT)

Precision tracking is provided primarily by the MDT chambers arranged in three layers
(for both barrel and endcap). It covers the |η| < 2.7 region with the exception of the
inner most endcap layer which only covers |η| < 2.0. Each MDT chamber is made up of
3-8 layers of drift tubes giving a chamber resolution of 35 µm. A schematic of the MDT
chambers can be seen in Figure 3.10 and are green for barrel and teal for endcap sections.

Cathode Strip Chambers (CSC)

In the innermost endcap layer, due to the higher rate and time resolution requirements,
the CSC provides precision tracking for 2.0 < |η| < 2.7 region. These are multi-wire
proportional chambers with cathodes segmented as strips in orthogonal directions with a
chamber resolution of 40 µm. The CSC can be seen in yellow in Figure 3.10.

Trigger Chambers

In order to be able to trigger on muons, information on their tracks must quickly be sent
to the L1 trigger logic. In addition the muon trigger system aims to fulfil four specific
criteria: provide bunch-crossing identification, provide well defined pT thresholds, provide
robustness from random hits due to n/γ-background and provide a second coordinate mea-
surement in the non-bending φ-projection to complement the precision tracking chambers.
For the barrel this is provided by Resistive Plate Chambers (RPC) in the |η| < 1.05 region
and provide a time resolution of 1.5ns, in white in Figure 3.10. In the endcap Thin Gap
Chambers (TGC) are used covering the 1.05 < |η| < 2.4 region and have a time resolution
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of 4ns, in purple in Figure 3.10. Both chamber types have a response time of 15-25ns
which enables them to be used to tag the beam crossing.

Figure 3.10: A schematic view of the MS and its subsystems [28].

3.2.4 Magnet Systems

The ATLAS detector employs a set of four superconducting magnets [28] consisting of one
solenoid magnet surrounding the ID, and three toroid magnets (with one dedicated to the
barrel and one for each endcap) that provide the magnetic field for the MS. These can be
seen in Figure 3.11.

The solenoid surrounding the ID provides a 2T magnetic field for bending charged
particles. Due to its position in the detector careful consideration was given so as not to
introduce too much material in-front of the calorimeters. To achieve superconductivity it
is cooled to 4.5K with liquid helium.

The barrel and endcap toroids provide the magnetic field for the MS, providing mag-
netic fields of 0.5T and 1T respectively for their given regions. They both consist of eight
coils, with the barrels coils each being housed in their own vacuum vessel. Similarly they
are all cooled with liquid helium to around 4.5K to achieve superconductivity.
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Figure 3.11: Geometries of the magnet systems [28].

3.2.5 Trigger and data acquisition (TDAQ)

Since all the LHC experiments share the same accelerator they all receive the same amount
of bunch crossings, dictated by the bunch spacing, which is 25ns. That is an equivalent rate
of ∼ 40 MHz. However, not every bunch crossing will yield an interesting hard scattering
event. Moreover, it is simply not possible to initially store, analyse and then discard such
a large amount of data. Thus a way of quickly determining events of interest in real-time
is required. This is achieved through the use of a “trigger” which selects interesting events
to store through some pre-defined criteria. This is done in two stages with the Level-1
(L1) trigger reducing the event rate to ∼ 100 KHz and the High-Level Trigger (HLT),
which is the combination of the Level-2 (L2) trigger and event filter, reducing the event
rates to ∼ 3.5 KHz and ∼ 200 Hz respectively [28].

L1 trigger

The L1 trigger is based on custom electronics and uses information from the muon trigger
systems (RPC and TGC) as well as the calorimeter. It searches for high pT muons,
electrons, photons, jets, hadronically decaying taus and pmiss

T . The overall decision is
made by the Central Trigger Processor (CTP) which selects events if they pass one of
the 256 programmable options of the trigger “menu”. Each option is essentially just a
combination of criteria on the various objects it is trying to select for. Once an event
is accepted by the L1 trigger it is passed to the slower HLT where more complex event
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selection can be performed using conventional CPUs. In the meantime event information
is temporarily stored while the HLT makes a decision. In addition the L1 trigger identifies
Regions of Interest (RoI’s) in terms of η-φ space that contain combinations of features
that meet their given criteria which are then passed on to the HLT.

HLT trigger

The HLT uses more conventional CPUs to reconstruct events using all the information
available to the L1 trigger as well as tracking information from the ID. Overall it consists of
many algorithms organised sequentially in increasing complexity and CPU intensity. This
has the obvious benefit that should a candidate fail to pass at an early stage, unnecessary
CPU resources are not wasted on reconstructing it in greater detail. The HLT consists
of two parts, the L2 trigger and the event filter. The L2 trigger is initially seeded with
information from the RoI’s, determined by the L1 trigger, using the coordinate, energy
and signature-type information to reduce the amount of data. The event filter then makes
the final selection on which events are permanently stored. To that end events passing
the L2 are initially fully reconstructed with the event builder, from the data acquisition
systems cache, and then filtered with the use of offline analysis techniques.
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Chapter 4

ITk Strip Module Metrology

My Qualification task was focused on helping with ITk Strip module metrology for the
ITk upgrade. The current ID is designed to operate for 10 years and would have a number
of limitations operating in the HL-LHC. There would be bandwidth saturation for the
Pixels and SCT, there would be increased occupancies in the TRT and SCT and there
would be significant radiation damage to the Pixels and SCT.

The ITk will be an all silicon design with a complex geometry to minimise surface area
and cost. It will cover |η| < 4.0 with 5 Pixel barrels and 4 Strip barrels, see Figure 4.1.
The strip end-caps will be made from 6 disks each side. While the Pixels, at higher η, will
initially be laid out in a complex geometry at various inclines and then in rings. Together
the Pixels and Strips will provide a minimum of 9 hits (5 Pixel and 4 end-cap).
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Figure 4.1: The ATLAS ITk layout [31].

The Strip upgrade consists of 11 types of modules for the two types of geometries barrel
(2 modules) and end-cap (9 modules). They are made up from a few principle components
apart from the silicon sensors themselves. These are :

• Hybrids - a low power PCB hosting the readout ASICs and controllers,

• ABCStar the readout electronics (ASICs).

• HCCStar hybrid controller chip,

• power-board.

The modules are summarised below in Table 4.1.
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Table 4.1: Table of ITk Strip modules [31].

The end-caps are made from 6 petals each made up from 9 modules as shown in Figure
4.2 and so have a curved geometry. Unlike the barrel modules not every module will have
its own power board or controller chip.

Figure 4.2: The ATLAS ITk end-cap petal layout [31].

Assembly of the modules requires several gluing steps to take place. The ASICs are
glued onto the hybrids which are then glued onto the sensor. This needs to happen in
such a way that allows for the readout electronics on the hybrids (the ASICs) to be wire
bonded to the rest of the sensor. The power-boards are also glued onto the sensor but are
less of an issue.
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Figure 4.3: The ATLAS ITk SS module gluing of assembly step [31].

The wire bonding from ASIC to sensor can be tricky as tails can form during the
process. These tails extend out in-line with the wire-bond and can short to other bond-
pads or wire bonds (Figure 4.4). This puts a limit on the maximum wire-bond angle (22◦)
and puts a constraint on the maximum x-y error allowed during component placement.
Module measurements will be taken to ensure wire-bondability.
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Figure 4.4: The bond angle with the vertical [31].

My qualification task description was to:

• Finalise a way that all the 22 module assembly sites can output (for all module
types) a set of module metrology measurements for the production database.

• Collect and share information on what systems all the module building groups have.

• Calculate a set of envelopes allowed for x-y placement of hybrids and power-boards
on modules.

• Automate the outputs of the metrology systems to the database.

The ≈ 22 module building sites will have to take metrology measurements and to ensure
that all building sites have adequate machinery to take the required measurements; a list
was gathered of all the metrology systems at the various sites. The building sites were
split into barrel and end-cap with the UK effort focused on the barrel modules.

The main focus was then shifted to developing measurements for the x-y placement
of the components. As well as rotations/translations in the x-y plane there could also be
issues with the z placement, both in glue thickness and in variations of the thickness, but
these were left to another study. Rather than calculate all the possible envelopes a software
package was written that calculates the placement of the components and outputs a pass
fail criteria. The output can then be uploaded to the production database as a JSON file.

The Short Strip (SS) module (see Figures 4.3, 4.5) was then used as a test case to
set-up and validate the software. The modules are defined in configuration files that can
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be loaded when performing the relevant module metrology. The bottom left corner was
chosen as the coordinate system as shown in (Figure 4.5). The hybrid, ASICs, ASIC
bond-pads and HCCs can all be defined in coordinates relative to the hybrid, which is
then also defined in the global coordinate system of the sensor. This then allows for the
creation of compound objects on which translations and rotations can be applied.

The measurements are taken of fiducials located on the hybrids and ASICs, these are
then fed into the script which then calculates the transformation between the measured
and ideal points. It calculates the rotation directly as sin and cos values to avoid rounding
errors, with the translation being a simple subtraction operation. Then the module is
constructed in memory and transformed through the measured transformation. It is then
checked for a series of criteria: wire bonding angles, overhangs and collisions.

Figure 4.5: An SS module with ideal component placement, only the outermost wire bonds
were modelled as these would have the most extreme angles, x-y axis are in mm.
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Figure 4.6: An SS module with the bottom hybrid placed 1 mm to the left.

A debug feature was added, a visualisation tool, used for testing and creating configu-
ration files for modules. With it we can see the ideal placement of components for the SS
module (Figure 4.5). If there is an error of 1 mm in the x-axis during assembly (Figure
4.6), then the module would not pass. This is because the bottom hybrid would overhang
the sensor (Figure 4.6 at (0.0,43.80) and (0.0,26.78)) and in this case each ASICs right
most wire bond-angle would be to large. For the ideal placement the min/max wire-bond
angle is 18.43◦/18.43◦ while in this case the min/max wire-bond angle is 5.73◦/87.84◦.

This information is then uploaded to the production database, used to keep track of
the numerous parameters for each produced module, for both current manufacturing needs
and for potential future reasons. The task was signed off on the bases of a report in the
form of a readme for the software package developed; this can be seen in Appendix A.
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Chapter 5

Monte-Carlo Simulation

In order to compare the data to theory Monte-Carlo (MC) integration is extensively used
in simulating the processes involved. This is because of the theories inherently stochas-
tic nature and is utilised throughout the simulation stages including the matrix element
calculation and the detector simulation. The full simulation chain starts with the matrix
element (ME) calculation which describes the hard scattering process of interest. The
next step is to simulate the resulting soft interactions which, are far too numerous to
calculate explicitly and is done with a parton shower (PS). After this the hadronisation
of the resulting particles is simulated with a non-perturbative model. Following this the
remnants of the proton can also enter the detector and will need to be accounted for in a
process referred to as the underlying event (UE). On average there are 30-40 interactions
present in one bunch crossing resulting in signals contaminating the hard scattering event
of interest. These processes are referred to as pileup (PU). The final stage is to simu-
late the detector effects, with its specific geometry, and the various interactions particles
undergo as they propagate through it. These stages are depicted in Figure 5.1.

5.1 Matrix Element Generation

Hard scattering events from the pp collision lead to the interesting processes that one looks
for to test the SM. In order to make a prediction one must calculate the cross-section of
the given process, which essentially is the probability that it will occur. In order to do this
one typically uses perturbation theory and expands around the relevant coupling constant.
However, when dealing with QCD interactions the strong coupling constant as decreases
with energy meaning that when as → 1 approaches unity an expansion will no longer
converge and perturbation theory becomes unreliable. Because we are dealing with pp

collisions they naturally contain a mix of high and low energy interactions resulting from
the colliding partons and the internals of the protons respectively. To get around this one
uses the factorisation theorem.
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Figure 5.1: Depiction of a tt̄H event decaying semi-leptonically produced with an event
generator. The incoming partons of the protons are represented by dark green blobs with
three parallel arrows pointing towards the centre. The hard scattering event is represented
by the big red blob and is induced via gluon-gluon fusion. The parton shower is shown
in blue. The decay of the tops/Higgs are represented with small red blobs with the
tt̄H → bqq̄, b̄lµ, bb̄ decay mode. Additional hard QCD radiation is shown in red and
secondary interactions are shown in purple. The light green shows the particles prior to
hadronisation and the dark green represents the hadrons decaying. Photon radiation is
depicted in yellow [32].

5.1.1 Factorisation Theorem

The factorisation theorem [33] states that when calculating a cross-section one can define a
factorisation scale (µf ) at the boundary where perturbation theory can accurately describe
the phenomena. This allows the the calculation to be factorised into high and low energy
parts which can be solved independently. Given two hadrons with momentum P1 and P2

its cross-section can be factorised into:

σ(P1, P2) =
∑
ij

∫
dx1 dx2 fi(x1, µ

2
f ) fj(x2, µ

2
f ) σ̂ij(p1, p2, αs(µ

2
f ), Q

2/µ2
f ).

Where pi = xiPi denotes the hard scattering parton’s momentum fraction and Q denotes
the interaction scale. Thus the perturbative piece only contains interactions with energies
above µ2

f and is dependant on the coupling constant αs. All the other interactions, with
energies below µ2

f , are gathered into the parton distribution functions (PDFs) f(x, µ2
f ),
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which are summed over the indices i, j. Thus perturbation theory can be used to calculate
the cross-section and decays of a process such as tt̄H due to the hard scattering partons,
with the effects from the parton-parton interactions internal to the proton being described
by the PDFs.

5.1.2 Parton Distribution Functions

The internals of a proton are described by Parton Distribution Functions (PDFs), con-
sisting of three valance quarks (uud) and a quark-gluon sea. Each parton carries some
fraction of the protons total energy. It is this distribution that the PDFs describe, with the
DGLAP [33] equations describing the PDFs energy dependence. The momentum fraction
of each parton (x) cannot be calculated analytically and is instead fit from experimen-
tal data. Deep inelastic scattering (DIS) experiments such as ZEUS and H1 [34, 35] use
electron-proton collisions to probe the structure of protons and provide the experimental
data for the PDF fits. These fits can then be further refined with the use of additional
LHC experimental data.

5.1.3 Fixed Order Expansion

Typically the hard scattering processes of interest are calculated via a fixed order pertur-
bative expansion in αs. It must take into account both ultraviolet (UV) and infrared (IR)
divergent effects. UV divergences are caused by high energy loops and IR divergences are
caused by low energy collinear radiation. In order to address UV divergences, which can
appear at any order, a renormalisation scale (µr) should be chosen taking into account
the specific hard scattering process of interest [36]. As such a reasonable choice for both
µr and µf , both of which are freely chosen, would be µr = µf = Q2.

Expansions beyond leading order become increasingly complex while providing ever
decreasing contributions. Once the magnitude of the contribution becomes comparable
to the uncertainties in the measurement there is little to be gained by including them.
This together with the fact that higher order corrections require more computational
resources gives rise to a fixed order to expand to for a given measurement. Typically tt̄H
predictions are available up to next to leading order (NLO) [37]. In order to create a more
representative prediction a parton shower is used to simulate additional radiation.

5.2 Parton Shower

Once the hard process has been generated at a fixed order its evolution is modelled with
a parton shower. It is used to simulate the higher order effects due to lower energy
emissions. There is a probability of a parton spontaneously splitting into two, each carrying
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momentum fractions z and (z − 1) with an angular separation of θ. The parton shower
is calculated independently of the original hard scattering calculation using the outgoing
particles final states and applying the relevant splitting probabilities. The parton splittings
are ordered by momentum or angle and calculated with MC. It is controlled with the
Sudakov Form Factor which describes the probability of a particle evolving from state t0
to t:

∆(t0, t) = exp

[
−
∫ t0

t

dt′

t′

∫ zmax

zmin

dzP (z)

]
,

where p(z) is the splitting function for quark/gluon splitting. In order to avoid IR and
collinear divergences a cut-off energy scale must be defined typically around ∼ 1 GeV.
Care must be taken when matching the PS to the result of the fixed order expansion at
NLO in order to avoid double counting. There are two general strategies used at NLO
either: emissions from the PS are only taken below a certain threshold energy, ensuring
that the additional higher emissions originate from the NLO ME expansion; or by finding
the highest energy emissions in the PS and subtracting them from the NLO ME expansion,
thus avoiding any overlap.

5.3 Hadronisation

After the PS has been applied the remaining particles will undergo hadronisation due to
quark confinement with the resultant hadrons being colour neutral states. Due to the
process being below the energy scale where a perturbative expansion is convergent it is
approximated with models driven by experimental data. The two primary approaches
are: the Lund string model [38] and the cluster model [39]. In the Lund string model the
quarks are connected by a string of gluons with colour charge. As the quarks move further
apart the potential energy of the string grows until it becomes energetically favourable
for the string to break and pull a qq̄ pair out of the vacuum, attaching to the newly
formed ends of the string. Because of this the two newly formed strings are shorter and
have lower energies, thus dissipating the overall energy. This process is repeated until
the initial quarks no longer have the energy to stretch the strings to a breaking point.
Alternatively the cluster model takes the gluons left over from the parton-shower to decay
into qq̄ pairs, which together with the other final state quarks form colour singlet clusters
due to preconfinement. These clusters will then further decay until stable hadrons are
produced.
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5.4 Underlying Event / Multi-parton Interactions

The remaining partons from the initial protons, not involved in the hard scattering pro-
cess, also undergo secondary interactions which will create additional particles that will
be detected and is known as the Underlying Event (EV). Additional interactions between
remnant partons are referred to as Multi-parton Interactions (MPI). The remnant parti-
cles will also undergo hadronisation. To account for these effects in the MC simulation
dedicated MPI models are used with their parameters being tuned to experimental data.

5.5 Detector Simulation

The final step in recreating the final stage events as seen by the detector is simulating how
the final state hadrons / particles (e.g. electrons, photons and stable hadrons) propagate
through the detector so as to make a direct comparison with data. As these particles prop-
agate through the detector they undergo various interactions with the detector subsystems
resulting in processes such as hadronic showers, EM showers from electrons/photons etc.
In order to do this, precise modelling of the detector geometry is required to account for
the known resolutions of the detector. Typically the GEANT 4 [40] framework is used
for ATLAS detector simulation. This is referred to as Full Simulation (FS) and uses MC
methods to simulate individual particles as they propagate through the detector. While
this method is rather accurate it is extremely CPU intensive with it requiring the majority
of ATLAS’ CPU time, especially for analyses that require large statistics and by exten-
sion involve a large number of particles. It is the simulation of the ATLAS calorimeter
that is particularly CPU intensive, to get around this a dedicated tool called Atlfast-2
(AF2) [41] was developed by ATLAS where the calorimeter description is parametrised,
with the FastCaloSim package [42], which drastically reduces the CPU overhead by an or-
der of magnitude. However, this is accompanied by a somewhat poorer description of the
calorimeter response and thus poorer agreement with data. This effect can be mitigated
to some degree by dedicated calibrations resulting in an overall good agreement with data
for the high level objects of interest.
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Chapter 6

Analysis Techniques

Many analyses share techniques and strategies that are commonly used in LHC analyses.
For the analyses described in Chapter 8 the signal is measured with a profile likelihood fit
that is described in Section 6.1. Machine learning algorithms are used in many different
stages of the analysis from simulation to reconstruction. Two common models used in
particle physics are Boosted Decision Trees (BDTs) and Deep Neural Networks (DNNs),
they are commonly used as particle and event classifiers but can also aide in other aspects
such as detector simulation. These algorithms are discussed in Section 6.2.

6.1 Statistical Methods

When searching for a new process one can have two outcomes, signal discovery or limit
setting. When trying to discover a new process the null hypothesis (H0) is regarded
as all currently known (background) processes and the alternative hypothesis (H1) is
regarded as the combination of the background and signal processes. However, when
setting constraints H0 becomes the signal plus background and the hypothesis H1 becomes
the background only hypothesis.

To quantify the level of agreement between the observed data and the hypothesis H one
needs to calculate the p-value which, gives the probability that one can find data of equal
or grater incompatibility than is predicted by H. To determine the level of incompatibility
a likelihood ratio test may be used.

The reason for the 5σ convention is that in that past 3σ “discoveries” have turned out
to be statistical fluctuations due to the fact that if you look at an ever increasing data
set then the number of possibilities also increases. This is called the look elsewhere effect
(LEE) [43] and can have up to a 100 fold boost in probability depending on the channel.
With this effect in mind the 5σ convention was set as it was deemed rare enough that this
would not be a problem and corresponds to a probability (p-value) of 0.0000003 (1 in 3.5
million). Here σ is used to refer to standard deviations of the normal distribution and can
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be used to define statistical significance (Z) as in equation 6.14.

6.1.1 Preliminaries

Take an experiment where some kinematic variable x is to be measured such that the data
is represented in a histogram ~n = (n1, . . . , nN), with N bins and ni being the number of
entries in each bin. Then the expectation value of the nith bin is

E [ni] = µsi + bi, (6.1)

where si and bi are the mean number of entries in each bin such that:

si = stot.

∫
bini

fs

(
x; ~θs

)
dx, (6.2)

bi = btot.

∫
bini

fb

(
x; ~θb

)
dx. (6.3)

Here stot. / btot. are the total mean number of events for signal/background and fs / fb
are the probability density functions (PDFs) for signal/background which are dependent
on the variable x and are characterised by parameters ~θs and ~θb respectively. The µ

parameter above represents the strength of the signal model i.e µ = 0 implies a background
only hypothesis and µ = 1 implies the signal plus background hypothesis.

Nuisance parameters are parameters whose values are not known a priori and must
be fitted from data. These terms are gathered together as ~θ =

(
~θs, ~θb, btot

)
. It should

be noted that stot., the signal normalisation, is not a nuisance parameter but is predicted
from the signal plus background hypothesis.

In order to constrain the nuisance parameters one often makes a control measurement
in a region where the background process dominates. This can give information on the
background normalisation parameter btot. and potentially some of the other nuisance pa-
rameters as well. This is denoted as histogram ~m = (m1, . . . ,mM) with an M number of
bins and expectation value

E [mi] = ui(~θ), (6.4)

where ui refers to a specific background process and depends upon the nuisance param-
eters ~θ. Typically one would construct the control measurement to fit the background
normalisation (btot) and shape (~θb) parameters.

6.1.2 Likelihood ratio test

The likelihood function of the above mentioned measurements (for both N and M) is a
product of the Poisson probabilities:
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L(µ, ~θ) =
N∏
j=1

(µsj + bj)
nj

nj!
e−(µsj+bj)

M∏
k=1

umk
k

mk!
e−uk , (6.5)

which gives the likelihood of observing the expectation values E[ni] and E[mk] given ni

and mk events.
In the testing of a hypothesised value of µ one can employ the likelihood ratio test:

λ(µ) =
L(µ,

ˆ̂
~θ)

L(µ̂, ~̂θ)
, (6.6)

where the parameters
ˆ̂
~θ are chosen such that they maximises L for a given µ. The

parameters µ̂, ~̂θ are chosen to maximise L. So the numerator is a conditional (on µ)
maximum likelihood (ML) estimator and the denominator is an unconditional maximum
likelihood (ML) estimator.

From Wilk’s theorem [44] this can be related to a chi-squared distribution (χ2
0) allowing

for the calculation of a p-value through numerical methods. The relation is:

− 2 lnλ ≈ χ2
0, (6.7)

with one degree of freedom.

6.1.3 Distribution of the likelihood ratio test

When testing a hypothesised value for µ it is convenient to use a test statistic tµ =

−2 lnλ(µ). So the lower the value of tµ the more agreement there is between data and
hypothesis. The p-value for an observed value of tµ,obs then is

pµ =

∫ ∞

tµ,obs

f (tµ|µ) dtµ, (6.8)

with f (tµ|µ) being the PDF of tµ.
A low p-value may be obtained if the estimated signal strength µ̂ is found to be greater

or less than the hypothesised value of µ. From this one can reject values of µ, given a
required p-value, resulting in a two sided confidence interval.

When looking at a test for a hypothesised value of µ (from equation (6.1)) and given
that the data is distributed according to µ′ the distribution f(tµ|µ′) can be approximated
by the Wald approximation [45]:

− 2 lnλ(µ) =
(µ− µ̂)2

σ2
+O(1/

√
N). (6.9)

This holds in the limit of a large sample size (e.g. N → ∞). To use equation (6.9)
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one needs to calculate the standard deviation σ of the Gaussian distribution µ̂ with mean
µ′. From this it can be shown that tµ = −2 lnλ(µ) follows a non-central chi-squared
distribution for one degree of freedom:

f (tµ; Λ) =
1

2
√
tµ

1√
2π

[
exp

(
−1

2

(√
tµ +

√
Λ
)2)

+ exp

(
−1

2

(√
tµ −

√
Λ
)2)]

, (6.10)

with the non-centrality parameter λ being

Λ =
(µ− µ′)2

σ2
. (6.11)

In the case of µ′ = µ one has Λ = 0 and −2 lnλ ≈ χ2
0 as shown by Wilks [44].

Generalising to more than one parameter of interest (~θr = (θ1, . . . , θr)) the distribu-
tion −2 lnλ(~θr) then approaches a non-central chi-squared distribution with r-degrees of
freedom. The non non-centrality parameter then becomes

Λr =
r∑

i,j=1

(θi − θ′i) Ṽ
−1
ij

(
θj − θ′j

)
, (6.12)

where Ṽ −1
ij is the inverse of the sub-matrix of the full covariance matrix. The covariance

matrix (Vij = cov[θ̂i, θ̂j]) of the ML estimators is the standard deviations of the parameters
(both of interest and nuisance). It’s inverse is given by

V −1
ij = −E

[
∂2 lnL

∂θi∂θj

]
, (6.13)

which holds in the large sample limit.

6.1.4 Standard deviation and significance

The p-value for a test statistic tµ is the area under its curve, as given by equation (6.8),
from this a significance of Z standard deviations can be obtained with,

Z = Φ−1(1− p), (6.14)

where Φ−1 is the quantile of the standard Gaussian. This is illustrated in Figure 6.1
below. Quantiles are divisions of a probability distribution into equally probable sections.

6.1.5 Asimov data set

The Asimov data set is an artificial data set which can be very useful in estimating σµ̂

(where µ̂ is assumed to be a Gaussian distribution with mean µ′). It is defined such that
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(a) (b)

Figure 6.1: Shows the p-value (shaded) for the observed test statistic tµ,obs on the left
(a) and its equivalent Gaussian significance for the standard normal distribution ϕ(x) =
(1/

√
2π) exp (−x2/2) on the right (b) [46].

each of the bins in its histogram is its expectation value. In other words it would be the
“perfect experiment” with no statistical variation, for a simple coin flipping experiment
of 100 flips the histogram of the Asimov data set would consist of two bins each with the
expected value of 50 in them.

More formally let νi = µ′si + bi and θ0 = µ, the strength parameter, so θi encompasses
all the parameters. Then the ML estimators can be found by setting the derivatives of
lnL given in equation (6.5) to zero:

∂ lnL

∂θj
=

N∑
i=1

(
ni

νi
− 1

)
∂νi
∂θj

+
M∑
i=1

(
mi

ui
− 1

)
∂ui
∂θj

= 0. (6.15)

This will be true because the Asimov data is equal to its expectation values:

ni,A = E [ni] = νi = µ′si(~θ) + bi(~θ), (6.16)

mi,A = E [mi] = ui(~θ). (6.17)

From results shown in [46] the Asimov likelihood is approximately

− 2 lnλA(µ) ≈
(µ− µ′)2

σ2
= Λ, (6.18)

which is the non-centrality parameter that characterises the PDF, thus giving a relation
between the Asimov likelihood and the variance (σ2).

44



6.1.6 Test statistics

When looking at the test statistic tµ and the likelihood ratio test λ(µ) in equation (6.6) it
can be seen that the ML estimator can take on negative values (µ̂ ≤ 0). However, when
looking for a new signal one often assumes that the new signal will increase the event rate
over the already known background. To this effect t̃µ is defined below with µ ≥ 0 from its
corresponding likelihood ratio λ̃(µ)

λ̃(µ) =


L(µ,

ˆ̂
~θ(µ))

L(µ̂,~̂θ)
µ̂ ≥ 0,

L(µ,
ˆ̂
~θ(µ))

L(0,
ˆ̂
~θ(0))

µ̂ < 0,
(6.19)

where
ˆ̂
~θ is the conditional ML estimator given a strength parameter µ or 0. The corre-

sponding test statistic t̃µ is

t̃µ = −2 ln λ̃(µ) =


−2 ln L(µ,

ˆ̂
~θ(µ))

L(µ̂,~̂θ)
µ̂ ≥ 0,

−2 ln L(µ,
ˆ̂
~θ(µ))

L(0,
ˆ̂
~θ(0))

µ̂ < 0.
(6.20)

A specific example of the above mentioned test statistic t̃µ is used for the discovery of
a positive signal. In this case one is testing for µ = 0 when it is assumed that µ ≥ 0, if
one can reject the µ = 0 hypothesis then it can be said a new signal has been discovered.
This special case of µ = 0 will be denoted by q0 = t̃µ and is

q0 =

{
−2 lnλ(0) µ̂ ≥ 0,

0 µ̂ < 0.
(6.21)

When using this test statistic if µ̂ > 0 then it is to be read the same as tµ, however, if
µ̂ < 0 then it is inconclusive and while it may mean a disagreement with the background
only hypothesis it may also be from another systematic error.

When setting upper limits one could employ a similar test statistic

qµ =

{
−2 lnλ(µ) µ̂ ≤ µ,

0 µ̂ > µ,
(6.22)

where when µ̂ > µ it is inconclusive.
It should be noted that as the test statistics qµ and q0 are testing for different things

their inconclusive regions correspond to different things. For qµ (µ̂ > µ) corresponds to an
upward fluctuation in data but for q0 (µ < 0) corresponds to a downward fluctuation in
data. In both cases p-values and thus significances can be calculated however, to do this
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one must be able to approximate the distribution of the PDFs, as described in [46] and
gives

Z0 =
√
q0, (6.23)

and
Zµ =

√
qµ. (6.24)

6.1.7 Sensitivity of an experiment

When determining the sensitivity of an experiment one is not interested in the significance
of a specific data set or MC sample but rather would like to determine what is the expected
significance given an unlimited access to new data sets. To this end one wants to obtain
the median values of q0 and qµ for which the Asimov data set is used.

med [Z0|µ′] =
√
q0,A, (6.25)

med [Zµ|0] =
√
qµ,A, (6.26)

where med [Z0|µ′] and med [Zµ|0] are the median significance values from the test statistics
q0,A and qµ,A calculated from the Asimov data set.

It is also useful to be able to combine multiple channels so as to achieve the maximum
possible sensitivity for a given process (e.g. tt̄H). Given that for each channel i there
is a likelihood function Li

(
µ, ~θi

)
, where ~θi are the nuisance parameters for that channel.

Then if the channels are statistically independent the channels likelihood function is given
by

L(µ, ~θ) =
∏
i

Li

(
µ, ~θi

)
. (6.27)

So the profile likelihood ratio is

λ(µ) =

∏
i Li

(
µ,

ˆ̂
~θi

)
∏

i Li

(
µ̂, ~̂θi

) , (6.28)

since there are no statistical fluctuations in the Asimov data set µ̂ = µ′ for all the channels.
This combined with the fact that if channels share nuisance parameters then those pa-
rameters are equal in all the channels, one finds the profile likelihood ratio for all channels
given a strength parameter µ′ to be

λA(µ) =

∏
i Li(µ, ~̂θ)∏

i Li

(
µ′, ~θ

) =
∏
i

λA,i(µ). (6.29)
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When combining channels and finding the discovery significance or exclusion limits from
real data one needs to construct the full likelihood function with a single parameter µ
which can be used in a global fit to find the profile likelihood ratio.

6.1.8 Example of a counting experiment with a known back-
ground

Given an experiment with a known background that follows a Poisson distribution with
an expectation value for n events of E[n] = µs+b. Then since we can treat b as a constant
to obtain the likelihood function of

L(µ) =
(µs+ b)n

n!
e−(µs+b), (6.30)

so the test statistic in the case of a discovery is

q0 =

{
−2 ln L(0)

L(µ̂)
µ̂ ≥ 0,

0 µ̂ < 0,
(6.31)

with µ̂ = n − b. Assuming the asymptotic approximation of Feldman and Cousins [47]
then the significance is given by equation (6.23)

Z0 =
√
q0 =


√

2
(
n ln n

b
+ b− n

)
µ̂ ≥ 0,

0 µ̂ < 0.
(6.32)

To then get the median significance for the nominal signal hypothesis of µ = 1 one can
use the Asimov value for n of s+ b to obtain

med [Z0|1] =
√
q0,A =

√
2((s+ b) ln(1 + s/b)− s). (6.33)

This can be further reduced by expanding the logarithm in series around s/b to give

med [Z0|1] =
s√
b
(1 +O(s/b)). (6.34)

This approximation is widely used and is valid for s� b.

6.2 Machine Learning Techniques

Machine Learning is a branch of computer science that has its roots in statistics [48–50]. It
aims to create an algorithm that learns from its mistakes by minimizing an error metric.
There are three main categories: supervised, unsupervised and reinforcement learning.

47



Supervised learning is where the data is labelled, unsupervised learning makes use of
unlabelled data and reinforcement learning is a mixture of the two. Within supervised
learning there are two classes of problems: classification and regression. They both work on
the basis of fitting a function to the training data set, with classification using the function
to separate the classes whereas regression predicts unknown values of said function.

The two ML algorithms that will be focused on here are Boosted Decision Trees (BDTs)
and Deep Neural Networks (DNNs) with both of them being used in the classification
context. This can be either as a tagger to “tag” a jet i.e b-jets as coming from a specific
decay or as an event classifier where a specific event is being determined to have originated
from a specific hard scattering process. Typically event classifiers make use of information
from taggers.

6.2.1 Boosted Decision Trees

Boosted Decision Trees (BDTs) build upon the decision tree concept using so-called “weak
learners”. A decision tree makes use of the input features to separate the data and learns
by minimising a loss function. Each feature will have a corresponding level where the
tree applies a cut. The number of nodes in a level depends on the depth and branching,
each node will have its own cut value. It is through the adjustment of these cut values
that a decision tree learns. By themselves decision trees are considered “weak learners”
meaning that they only perform marginally better than pure chance. To improve their
performance an ensemble of trees can be used with two common strategies being random
forests and boosting. Boosting combines N trees and iteratively modifies the training data
set to ensure that the trees are not identical. Specifically successive trees are trained with
ambiguous events, as determined by the previous tree, being weighted up. An illustration
of this event weighting can be seen in Figure 6.2, with the final ensemble of trees being
combined into a “strong learner”. Two common boosting algorithms are AdaBoost [51]
and GradientBoost [52].

6.2.2 Deep Neural Networks

Deep Neural Networks (DNN) are neural networks (NN) with several layers (at least 3).
Typically there are 3 parts, the input layer, middle (hidden) layers and output layer.
Input features are fed into the first layer, as such their dimensions must match. Then the
hidden layers try to approximate the outputs of the function. This is done during training,
over several cycles of the data, by adjusting the weights of the activation functions of the
neurons. The aim of the algorithm is to minimize a loss function and with each new
cycle the loss function is compared to see if progress has been made. Each neuron takes
in the previous layers outputs as inputs. This is a weighted sum of all the outputs of
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Figure 6.2: An illustration of the boosting algorithm successively weighting events and
the ensemble of trees they create [53].

the previous layer. Each output has a specific weight it gets multiplied by, unique to that
specific connection. It is through the adjustments of these weights that a NN learns. Then
it has some activation function to see if it has been given a high enough value to activate
itself. A neuron will only output a value if it has been “activated”.

Input #1

Input #2

Input #3

Input #4

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Output

Input
layer

Output
layer

Figure 6.3: An example of a Deep Neural Network.

In the case of a simple Neural Network (NN) as in Figure 6.4, it can be seen that
for each node (h1i ) in the hidden layer h1i = a(

∑
j xjw

1
ji + b1i ), where a is the activation

function, xj is an element of the input vector, w1
ji is an element of the first weight matrix

(one for each connection) and b1i is the bias for that node. Here the upper indices are
used to denote the layer of the network for matrix elements. So the output vector (Y ) is
((XW1 + B1)aW2 + B2)a = Y , in this example W1 is a 2x3 matrix, W2 is a 3x1 matrix,
B1 is 1x3 matrix and B2 is a 1x1 matrix.

As previously stated during training a network learns through the adjustment of the
elements of these weight and bias matrices, in this case there are a total of 13 elements
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for the network to play with. Although this is a fairly simple network it can easily be seen
that the more complex a network gets the more elements the network has to adjust and
the more computational power it requires to do so. However, once trained a NN simply
has to multiply the input vector X by W a combined matrix of the weights matrices
W = an(W1 + B1)(W2 + B2) . . . (Wn + Bn). Here it is a 2x1 matrix, to make predictions
and so is computationally inexpensive.

Input 1

Input 2
Output

Hidden
layer

Input
layer

Output
layer

Figure 6.4: A simple Neural Network.

When creating a NN a number of parameters need to be defined, these are called the
hyper-parameters. Although there is no clear way to chose these and typically trial and
error is used, some insight can be gained. These parameters are as follows: the activation
function, the optimization algorithm, the loss function, the initialization of the weights,
the number of iterations it is trained for, the batch size of the input data and the width
and the depth of the network.

Activation functions

In general activation functions are functions which activate when given an input large
enough. Three of the most common activation functions are hyperbolic tangent (tanh),
sigmoid (S) and ReLU (R), where tanh (x) = 1−e−2x

1+e−2x , S(x) = 1
1+e−x and R(x) = max (0, x)

respectively. Up until recently the tanh and sigmoid activation functions were the most
common however recently ReLU has become the standard. In practice ReLU can provide
precision equal to that of the others provided the network is deep enough even when
modelling non-linear processes. However, it is much faster to train [54] especially on deeper
networks. If one is simply looking at how many operations are required to compute an
activation function, then it can be seen that ReLU requires less than the others.

The ReLU activation function helps a NN obtain sparse (some 0 values in the matrix)
representations of the data [55] which can be favourable because it helps isolate the pa-
rameters responsible for the variations in the data. Another advantage of ReLU is that it
has a non-saturated gradient (has no upper limit on the image of the function) compared
to the other functions which can saturate (the upper limit of the image being 1). When a
node is saturated it becomes very difficult for that node to learn and consequently learns
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very slowly [56]. Looking at the simple case in Figure 6.4 if a node was to become satu-
rated then hki = a(

∑
j xjw

k
ji + bki ) would have a value close 1. So any subsequent change

in the weights wk
ji or bias bki would result in a very small change in hki as the gradient of

the functions in this region would be very small. A potential disadvantage may be that
when x < 0 the activation function will also be 0, then these nodes would not be able to
learn as any back-propagation of a gradient would not be possible subsequently hurting
training. Experimental evidence seems to contradict this [55] with their hypothesis being
that as long the gradient is able to back-propagate through some path the network can
still learn.

The Softmax activation function is often used in the final layer of a classification
DNN. It ensures that the total output probabilities sum to 1 i.e for a 3 class problem
P1 + P2 + P3 = 1. It is defined as:

f(s)i =
esi∑C
j e

sj
,

and applies a normalisation by taking the exponential of each input element si and then
divides them with the sum of the exponentials. When using this in conjunction with
the Cross-Entropy loss function it will provide an approximately linear loss function in si
allowing it to learn quickly and avoid a vanishing gradient.

Optimization

Back-propagation [57] is the process off updating the weights after each iteration. Initially
a batch of input data is fed into the NN and is propagated through the network to calculate
an output Y = XW keeping each individual weight matrix Wk (if it’s the first batch then
these weights and biases will have to be initialized to some values), where X is the input
batch, W is the combined weight matrix and Y is the output batch. Then the output Y is
compared to the correct values Ŷ with a loss function L and an error is calculated. These
errors are then propagated back through the network so that each node has an associated
error value eki , where i is the index for nodes in a layer and k is the index of layers. In
the case of Figure 6.4 the error is first fed into the W2 + B2 then the W1 + B1 matrix
and would get error matrices E2 (1x1) and E1 (1x3). Once the error matrices have been
computed the weights and biases can be adjusted through gradient descent, in order to
minimize said loss function.

In general, gradient descent is the minimization of some function through several it-
erations. The derivative is taken at a point then a step is taken in the direction of the
negative gradient (down) and the process is repeated at the new point. So the general
algorithm for back-propagation for a network is:

1. Input a batch X, let X = H0.
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2. Feed the batch forward calculating Zk = Hk−1Wk +Bk and Hk = aZk.

3. Calculate the error En = ∇HL� a
′
(Zn).

4. Back-propagate the error Ek = (Ek+1(Wk+1)
T )� a

′
Zk

5. Update weights and biases by wk
i → wk

i −
η
m

∑
x e

k
x(h

k−1
x ) and bki → bki −

η
m

∑
x e

k
x

Here � is the Hadamard product,(
a11 a12

a21 a22

)
�

(
b11 b12

b21 b22

)
=

(
a11b11 a12b12

a21b21 a22b22

)
,

k is the layer index and n is the total number of layers, MT is the transpose of M , a′ is the
derivative of a, η is the learning rate and m is the batch size. The learning rate determines
how big a step is taken and is an important consideration because if it’s too small then
learning will be unnecessarily slow but too large then the minimum may be over stepped.
Stochastic gradient descent is when some noise is added to the gradient which can jerk the
model out of a local minimum. A momentum term can also be added which, combined
with the gradient updates the weights, has the effect of helping the model not get stuck
in steep ravines and flat plateaus.

Of course, this is only a simple case and many more variations exist, more recently the
Adaptive Momentum Estimation (Adam) optimization algorithm [58] has enjoyed great
success. It combines the benefits of two other extensions of stochastic gradient descent
Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp).
AdaGrad’s main advantage is that it maintains a per-parameter learning rate which helps
with sparse gradients. RMSProp also maintains a per-parameter learning rate which is
adapted by the average variance in the steepness.

Initialization, iterations and batch sizes

When initializing the weights and biases of a network typically they are set randomly [56]
although it is important to make sure that they are within certain bounds dependent on
the activation function. For example, if ReLU is being used a whole layer should never
be set to 0 as this would block all back propagation and not allow the network to learn.
Typically, its best to set the bounds within the ’active’ region of the activation functions
as this allows for quick learning. The ’active’ region for a function would be a region where
| df
dx
| > 0 and is relatively large.
As it is generally not possible to pass the entire data set into the network at once we

pass small batches of data to the network for it to learn from. The smaller the batch size
the longer training will take, and the more updates will be done often gaining a factor
of 2 in training time [59]. However, with larger batch sizes it is the convergence rate
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that decreases [60] so a general sweet spot between training time and convergence time is
needed to be found.

The number of iterations i depends on both the batch size b and the size of the data
set d. Typically iterations i ≥ b

d
as the network should at least be trained over all the

data points. However, training over the same point repeatedly can lead to over fitting.
Over fitting is when a network has learned a data set too well and no longer represents the
general problem. This is a problem that can arise for several reasons one of them being
the number of iterations being too high so picking a value of i = b

d
or only marginally

greater is a safe bet. Another way to help prevent over-fitting is by introducing a dropout
layer [61] into the middle of the NN. A dropout layer is one where for one iteration nodes
and their weights are essentially ignored (dropped) at random for that iteration and the
weight update is done without them. Those nodes and weights are then reinserted for the
next iteration.

Width and depth

A NN has both a width and a depth, where the width corresponds to the number of
nodes (neurons) in a layer and the depth corresponds to the number of hidden layers. A
wider NN will have better memorization capabilities [62] and a deeper NN will have better
generalization capabilities. A wide and deep NN will have properties of both but runs the
risk of having so many parameters that it can simply learn the test set over-fitting to it
and not generalize well. A dropout layer can also be used in this instance. Typically the
larger the NN the larger the data set needs to be in order to train it effectively.

Implementation

The DNNs trained for Higgs reconstruction discussed in Chapter 8 were implemented and
trained using the Keras/Tensorflow (developed by Google) [63, 64] python packages and
then converted to C++ using the LwTNN [65] package for use within the analysis. Another
common machine learning framework is PyTorch (developed by Facebook) and ONNX
(developed by Facebook/Microsoft) has recently been gaining ground for DNN inference
and can be used to convert a multitude of trained DNNs to C++ for fast inference and
supports custom layers which is not readily available with LwTNN.

6.2.3 Loss Functions

Choosing a loss function is highly problem dependent [66,67]. Often the same loss functions
can be used by both BDTs and DNNs. Typically loss functions for regression are mean
squared error (MSE) L = 1

n

∑n
i (yi−ŷi)2 and mean absolute error (MAE) L = 1

n

∑n
i |yi−ŷi|,

where yi is the predicted output and ŷi is the true value.
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For classification problems Cross-Entropy is commonly used. For multi-class prob-
lems implemented with DNNs Categorical Cross-Entropy is used and is combined with a
Softmax (activation function) final layer. Cross-Entropy (CE) is defined as:

CE = −
C∑
i

ti log (f(s)i).

6.2.4 Training

Both DNNs and BDTs are sensitive to over fitting whereby an algorithm (DNN/BDT)
learns the training data set too well, no longer representing the general problem. There
are various strategies to avoid this typically relying on either randomly varying training
data sets (known as bagging for BDTs) or by randomly dropping certain connections
(known as a dropout layer for DNNs). Stopping training at some “optimal” point before
the algorithms become over trained whilst maximising their performance is the primary
challenge in training ML algorithms. Cross validation is one method to gauge how well an
algorithm is doing by splitting the data into a training and test set. When the performance
of the algorithm starts to diverge between the training and test sets one can say that it’s
starting to over fit to the training set. k-fold cross validation takes this concept further
by splitting the data in k folds. The algorithm can then be trained k times on each
combination of k − 1 folds. With the kth fold in each instance being used for testing as
can be seen in Figure 6.5. This is particularly effective for hyper parameter optimisation
of DNNs, once the optimal configuration has been found it can then be trained on the
full data set for the final model. Another advantage of k-fold cross validation is that it
can isolate specific regions to which the algorithms may be sensitive to over fitting which
would show up as having significantly better performance in one instance and have a large
standard deviation compared to the other runs.

Figure 6.5: An example of k-fold cross validation with k set to 4 [68].
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6.2.5 Hyper-parameter Optimisation

Optimising the hyper-parameters of a DNN can often lead to performance improvements.
In order to do this some metrics evaluating the performance of the networks for comparison
are needed. Cross validation should also be employed in order to gauge any over fitting
and to help determine optimal stop conditions for the best results.

Metrics

The metrics used to evaluate the DNNs during training in the context of particle physics
are:

• The specific loss function being used,

• accuracy = TP
Class+Other

,

• precision = TP
TP+FP

,

• recall = TP
Class

.

Where TP is True Positive, FP is False Positive, Class is the total number of true
elements and Other is the total number of false elements not belonging to the class. The
combination of TP + FP is the total number of elements classified and Class+Other is
the total number of elements seen. An example for these definitions can be seen in Figure
6.6.

Figure 6.6: An illustration of true positive TP and false positive FP . Class elements are
indicated by blue stars and Other elements are indicated by red stars.
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Bayesian Optimisation

Bayesian Optimisation uses Bayes Theorem to direct the search in order to maximise the
objective function, in this case the performance of our DNN. Bayes Theorem states that
a conditional probability of an event is P (A|B) = P (B|A) × P (A)/P (B). Dropping the
normalisation quantity P (B) simplifies things but this then is no longer a probability, but
a proportional quantity P (A|B) = P (B|A)×P (A), which we want to maximise/minimise.
Typically the conditional probability is referred to as the posterior probability, the reverse
conditional probability is referred to as the likelihood and the marginal probability as
the prior giving: posterior probability = likelihood × prior. The prior is defined as a
sequence of points xn and their results f(xn) when evaluated by the objective function
giving D = {x0, f(x0), ..., xn, f(xn)}. The likelihood function is defined as P (D|f) and
will continually be updated as new points are selected, evaluated and added to D. So
the posterior probability = P (f |D) = P (D|f)× P (f) is used as an approximation of the
objective function which means it is used as a surrogate objective function. A surrogate
function should be relatively cheap to evaluate with a popular model being the Gaussian
Process. The final piece is the acquisition function which is a technique used to select the
next point xn+1 from the search space. The objective function is then evaluated at this
point f(xn+1) with both the point and result being added to D and used to updated the
posterior. In summary:

1. Select a point by optimising the acquisition function.

2. Evaluate the point with the objective function.

3. Update D and the surrogate function.

4. Repeat.

Generally this process is repeated until some stop criteria are reached.

6.2.6 Feature Engineering

Feature engineering makes use of high level information in order to increase the perfor-
mance of ML algorithms. General examples include taking the log of a variable or One-hot
encoding which assigns each element e a unique value.

e ∈ [0, 3] → 0 = (0, 0, 0, 1); 1 = (0, 0, 1, 0); 2 = (0, 1, 0, 0); 3 = (1, 0, 0, 0)

Particle physics examples include substructure variables and b-tagging. Feature engineer-
ing has the advantage of not treating DNNs as black boxes as domain knowledge is used
to create the new features. However it is also hoped that the models can learn some new
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high level features using this strategy. However, this typically requires huge data sets.
Data preprocessing is important for DNNs to learn correctly. Networks require that each
of the input features are normalised so as to have similar magnitudes and variance. This
is to avoid unintentional biasing of certain features with higher values.
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Chapter 7

Object Definitions

The objects used in the analysis chapter are shared by the various studies described in
sections 8.1, 8.2, and 8.3. The basic principle is to use information from the detector to
build low level objects, which can then be combined into higher level objects with some
physical meaning such as leptons and jets. Depending on the regime of the analysis in
question these objects can be directly combined, through the use of combinatorics, to
re-create the analysis dependent physical objects that are being searched for or measured,
to give context for studies mentioned later on these objects would be originating from
massive particles e.g. top quarks (173 GeV), W bosons (80 GeV) and Higgs boson (125
GeV) decays. The pT regime being considered is a further factor in building “high”-level
objects as when re-constructing objects originating from resolved decays there tends to
be larger ∆R separation between the constituents as such, combinatoric matching and
multivariate algorithms are employed for reconstruction. However, there are cases when
the objects decaying have a high pT which will have highly collimated decay products with
low ∆R separation, and in these cases boosted objects can be employed which effectively
use larger jets. Because the two general purpose detectors at the LHC are ATLAS and
CMS which are used to check and corroborate the physics searches and measurements
between themselves physicists are not allowed to work on both. However, as they share
the primary physics goals and have some similarities between their detectors there are
some similarities between the two for example in how the objects are reconstructed e.g
particle flow jets. The rest of this chapter will focus on how ATLAS reconstructs its
objects and other algorithms it develops centrally for use by analyses. These algorithms
are used to identify specific objects for example jets originating from b-hadron decays
referred to as b-tagging. The ATLAS detector itself can’t detect neutrinos (ν) however,
the missing transverse momentum (Pmiss

T ) can be used to help identify particles that escape
the detector such as neutrinos.
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7.1 Low Level Objects

The low level objects described in this section are used to reconstruct both leptons and
jets, where leptons typically refer to electrons (e) and muons (µ) and jets are the hadronic
decay products typically from hadrons.

7.1.1 Calorimeter Topological Clusters

Energy deposits in the calorimeters are clustered together with ATLAS employing a topo-
logical clustering algorithm with them being referred to as Topo-clusters. The clusters are
calibrated both on the electro-magnetic (EM) scale or on the continuous “local hadronic
cell weighting” (LCW) scale. The former (EM) aims to reconstruct electrons and pho-
tons with the latter (LCW) aims to reconstruct signals with significant hadronic content
such as jets and τ -leptons. The LCW calibrates clusters jointly using both the EM and
hadronic scales weighting them with an EM likelihood for the given cluster.

Topo-clusters

Topological clusters are calorimeter cells grouped into clusters based on the neighbouring
cells to the seed cell having a certain energy compared to the expected noise. It is split into
two steps, the cluster maker and the cluster splitter. The cluster maker initially identifies
all the possible seed cells with a threshold energy above four times the standard deviation
of the expected noise referred to as cell signal significance.

ZEM
cell =

EEM
cell

σEM
noise,cell

> 4

Where, EEM
cell and σEM

noise,cell are measured on the EM scale. The expected noise is from
both the electronics and pile-up which is dependent on the run conditions. Then adjacent
cells are iteratively added, in both the lateral and longitudinal direction, if their energy
exceeds two times the standard deviation of the expected noise (ZEM

cell > 2). Finally all
cells neighbouring the currently selected cells are also added to ensure that the tails of the
energy deposits are included. This is then followed by the cluster splitting step which is
designed to split clusters in half containing two local maxima. The clustering algorithm
employed here aims to separate energy deposits of a different nature i.e electromagnetic
and hadronic rather than identify deposits originating from particles [69].

7.1.2 Tracks

As a charged particle such as an electron travels through the detector it creates “hits”
in the various subsystems thus leaving a “track” of its trajectory. Due to the magnetic
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field present in the detector charged particles will have a curved trajectory from which
both the charge and momentum can be inferred. The two main subsystems in the ATLAS
detectors used for measuring tracks are the Inner Detector, located around the centre of
the interaction point, and the muon systems which are the furthest sub-systems from the
interaction point.

Inner Detector (ID) Tracks

Tracks in the inner detector are reconstructed from three dimensional “space-points” and
are the result of combinatorial matching algorithms with each “proto-track” being seeded
by at least three space-points. Space-points are the reconstructed hits in the various layers
of the ID. In the pixel layers a space-point is defined from a single ID-cluster. In the SCT
layers a space-point is defined from ID-clusters located on both sides of the strip in order
to obtain a three dimensional measurement. The previously mentioned ID-clusters are
formed from the energy deposits left by passing charged particles hitting a ID layer and
are grouped with connected component analysis [70] where the energy deposits surpass a
certain threshold energy.

The proto-tracks are then iteratively combined using a Kalman filter [71]. Clusters
used by multiple tracks - are either identified as merged or shared but not both. With
proto-tracks being ranked in terms of purity: SCT space-points only, pixel space-points
only and mixed using space points from both. The final track candidates must then satisfy
the following criteria:

• pT > 400 MeV,

• |η| < 2.5,

• ≥ 7 pixel and SCT space-points,

• ≤ 1 shared pixel space-point or 2 shared SCT pixel space-point,

• ≤ 2 holes where the track passes through a layer (pixel or SCT) but there is no
matching space-point,

• ≤ 1 hole in the pixel detector,

• |dBL
0 | < 2.0 mm,

• |ZBL
0 sin(θ)| < 3.0 mm.

Where dBL
0 is the transverse impact parameter calculated with respect to the measured

beam-line position, ZBL
0 is the longitudinal difference along the beam line between between

dBL
0 and the primary vertex and θ is the polar angle of the track.
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Ambiguities arising from multiple track candidates sharing space-points are resolved
by assigning each candidate a score and ranking them. Track scores are defined with: the
number of matched space-points, the number of holes, a χ2 track fit and the log(pT ) of the
track. Holes negatively effect the track score while space-point multiplicity positively effect
it, priority is given to high pT tracks both to suppress incorrect space-point assignment
prevalent at low pT and because they are more likely to be interesting candidates for the
physics analyses being conducted. In cases where space-points are matched to multiple
tracks limits are placed on the number of shared space-points, if it’s a pixel space-point a
NN is used to separate and identify merged space-points from shared space-points. Due to
the pixel being closest to the interaction point it is common for multiple charged particles
to hit the same/neighbouring pixels creating merged ID-clusters which can be matched
to multiple track candidates without penalty as is the case with shared space-points. For
more details see [72].

Primary and Secondary Vertices

Vertices form an important part of reconstructing the underlying physics and are defined
with the ID tracks. The primary vertex refers to the reconstructed hard proton-proton
scattering event and is defined as the vertex candidate with the highest

∑
p2T . Vertex

candidates are identified through an iterative procedure and are seeded from the beam spot
in the transverse plane. Combinations of tracks are selected to find the best possible vertex
position identified through χ2 minimisation. The process is repeated until all possible
vertices are found and all tracks are associated with a vertex where possible. For more
details about the primary vertex identification see [73].

Secondary vertices are aimed at jet flavour identification and are a key input to the
b-tagging algorithms. Because of this only tracks contained within a specific jet cone are
considered as the secondary vertex finder (SVF) algorithm finds all two track vertices,
then tries to merge these two track vertices that are close together to create multi-track
vertices. For full details about the SVF algorithm see [74].

Muon Spectrometer (MS) Tracks

In order to identify muons information is combined from several different subsystems
namely: ID, MS and calorimeters. Tracks form a vital role in muon reconstruction with ID
tracks (described previously) being combined with MS tracks. Tracks in the MS are built
from hits in the MDT, RPC and TGC subsystems. Hits in the MDT are combined into
segments using a straight line fit. Hits are identified using a Hough transform [75] which
searches each MDT and adjacent trigger chamber for hits aligned on the bending plane of
the detector. Hits in the RPC and TGC are used to measure the coordinate orthogonal to
the bending plane. Segments in the CSC detectors are built with a different combinatorial
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search algorithm in the η − φ plane and loosely requires tracks to be compatible with the
luminous region.

The track candidates are then built from the hits segments in the different MS sub-
systems. They are seeded with segments from the middle layers and then combined with
segments from the outer and inner layers. The segments are ranked based on hit multi-
plicity and fit quality with track candidates requiring at least two matched segments to
build a track. An overlap removal algorithm is used to resolve tracks sharing segments
which allows for tracks matched to three segments to share two of those segments as long
as the outer layer segments for both share no hits. This is to ensure that close-by muons
are still identified. The hits associated with each track candidate are fitted using a global
χ2 fit. For more details see [76].

7.2 Leptons

In ATLAS the two primary leptons reconstructed are electrons (e) and muons (µ). Al-
though taus (τ) can be reconstructed it is not so straightforward to do so and in general
require dedicated analyses. Neutrinos (ν) can’t be directly detected by the ATLAS de-
tector but the missing transverse momentum (Pmiss

T ) from the event can be used as an
estimate and is described in Section 7.7. In the analyses described in Chapter 8 all tracks
used in lepton identification must match the primary vertex of the event, |ZBL

0 sin(θ)| < 0.5

mm.

7.2.1 Electrons

Electrons are reconstructed by matching ID tracks with the topological clusters in the
calorimeters, the path of an electron through the detector can be seen in Figure 7.1 illus-
trating this. If several track candidates can be matched to one cluster then the candidate
is selected such that: its extrapolated trajectory is closest in η − φ space to the match-
ing cluster barycentres, as measured in the 2nd layer of the calorimeter; the number of
space-points in silicon layers, prioritising space-points in the innermost layer. A successful
electron candidate will have a track with at least four space-points in silicon layers, a
matching topological cluster in the calorimeter and no association with a vertex from a
photon conversion.
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Figure 7.1: An illustration of an electron’s trajectory (solid red line) through the detector’s
various sub-systems. The dashed red line shows a photon produced from the resultant EM
shower [77].

To separate electrons from photons the topological clusters are initially tagged before
track matching to either be a seed cluster for an electron or photon candidate with electron
candidates requiring a cluster energy of ≥ 1 GeV and match to a satisfactory track. These
candidate clusters are then combined with satellite clusters if they are within proximity
in order to capture the full EM shower produced by bremsstrahlung radiation with these
being referred to as superclusters.

To further aid the purity with which electrons are reconstructed the electrons are
further assigned a tag indicating the confidence in their identification. It is based on a
likelihood discriminant with information from the primary electron track, the lateral and
longitudinal shape of the EM shower in the calorimeter and the spacial matching of the
track to the cluster. It has three operating points Loose, Medium and Tight defined in
terms of efficiency with targets of 93%, 88% and 80%. For more details see [77, 78].

Electrons used in the analyses described in chapter 8 are required to have pT > 10 GeV,
|η| < 2.47 with candidates from the barrel-endcap transition region (1.37 < η < 1.52) being
excluded. They are also required to pass the Medium likelihood identification criteria.

7.2.2 Muons

Muons are reconstructed using information from ID, MS and the calorimeter. There are
broadly 5 different strategies dubbed: combined (CB), inside-out combined (IO), muon-
spectrometer extrapolated (ME), segment-tagged (ST) and calorimeter-tagged (CT).
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For the CB muons MS tracks are matched to the ID tracks and fitted together based
on the combined ID and MS hits while allowing for energy loss in the calorimeters. The
trajectory from the combined track is used to further refine the hits in the MS. For |η| >
2.5 a subset of CB muons exists where MS tracks are matched to short track segments
reconstructed purely from hits in silicon layers (pixel / SCT) called Silicon-associated
forward muons (SiF).

IO muons are reconstructed using a complementary inside-out algorithm with the aim
of finding muons where the MS has limited coverage or for muons with low pT that don’t
reach the middle layers. It therefore doesn’t use the full MS tracks described previously,
instead it extrapolates the ID tracks to the MS and searches for ≥ 3 loosely aligned MS
hits. These extrapolated ID MS tracks are then fitted together with the energy loss in the
calorimeter.

ME muons are in a sense the reverse strategy, MS tracks that can’t be matched to
an ID track are extrapolated back to the beam line defining them. The aim is to take
advantage of the full MS coverage of |η| = 2.7 which is outside of the ID coverage.

ST muons are defined by extrapolating ID tracks to the MS and requiring that they
satisfy tight angular matching to ≥ 1 MS segment. If successfully matched it is used to
define a muon with its parameters being defined directly from the ID track fit.

CT muons are identified by extrapolating ID tracks through the calorimeters and
searching for energy deposits consistent with a minimum-ionising particle. It is this in-
formation that is used to tag the ID track as a muon with the muon parameters taken
directly from the ID track fit. There is a pT criteria of 5 GeV for the ID tracks used here
to account for background contamination at low pT as opposed to 2 GeV for the previous
methods.

On top of these several Working Points (WPs) are defined based on information from
their reconstruction, namely: hit multiplicity in both the ID and MS subsystems, the
track fit properties and the variables used to assess the individual hits in either the ID
or MS. There is a distinction to be made between prompt and non-prompt muons, where
prompt muons originate from the primary vertex and non-prompt muons are the result of
some hadron decaying in-flight. Distinguishing non-prompt muons originating from heavy
hadron flavour decays (b, c) from those of lighter flavours is important as these can be
well separated from prompt muons.

The standard WPs for the muon identification criteria are Loose, Medium and Tight
and are designed with different purposes. The term “precision station” refers to the number
of MS stations where the candidate has at least 3 hits in the MDT or CSC sub-systems.

The Loose WP accepts CB and IO muon definitions as well as ST and CT muon
definitions in the |η| < 0.1 range to account for the gap in the MS. To extend outside
the ID coverage ME and SiF muons are also included in the range 2.5 < |η| < 2.7 and
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are required to have at least three precision stations. It was optimised for H → µµµµ

reconstruction which due to the multiplicity benefits from higher efficiency at the cost of
larger systematics and less purity.

The Medium WP accepts primarily CB and IO muons which are required to have at
least two precision stations apart from candidates in the |η| < 0.1 range where only one is
required. It also accepts ME and SiF muons in similar fashion to the Loose requirement in
order to extend the coverage. It is suitable for most physics analyses and was optimised to
keep the systematic uncertainties in the prompt-muon efficiency and background rejection
small.

The Tight WP uses only CB and IO muons with at least 2 precision stations. It then
further requires that their combined tracks normalised χ2 fit is less than 8 in order to
reject tracks due to in-flight hadron decays. It was optimised for analyses that are limited
by backgrounds from non-prompt muons therefore it has an even higher purity with only
a slight efficiency lost compare to the Medium WP. For more information see [79].

The muons used in the analyses described in chapter 8 are required to have pT > 10

GeV and |η| < 2.5 and only use the CB, IO, ST and CT muon definitions. They are also
required to satisfy the Loose identification criteria and have |dBL

0 | < 3.0.

7.3 Jets

When quarks and gluons are produced at the LHC they will almost immediately hadronise
due to colour confinement, that is with the exception of the top quark which due to its
large mass decays even faster than it can hadronise. Because of this and the subsequent
interactions with the detector, the initial hadrons end up producing a collimated spray
of hadrons that are reconstructed as jets. Due to the messy signatures left by hadrons
especially when compared to electrons, muons and photons there are many strategies that
can be used to reconstruct them. Because of this the “Snowmass accord” [80] was set
which requires that jet definitions adhere to the following requirements:

• Simple to implement in an experimental analysis,

• Simple to implement in the theoretical calculation,

• Defined at any order of perturbation theory,

• Yields finite cross-sections at any order of perturbation theory,

• Yields a cross section that is relatively insensitive to hadronisation.

An important consequence of the last point is that jet algorithms must be both infra
red and collinear safe, which means that if an event is modified by either an additional
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soft emission or a collinear splitting, the overall set of hard jets found in the event remains
unchanged.

(a) Example of an infra-red emission and modifiocation of jet multiplicity.
[81]

(b) Example of a collinear splitting and modifiocation of jet multiplicity.
[81]

Figure 7.2

Cone type jet algorithms notoriously suffer from one or both of these issues. From
Figure 7.2 we can see how a soft divergence 7.2a or a collinear emission 7.2b can modify
the overall number of jets found in the event. Sequential recombination algorithms be-
have much better but can produce irregular jet shapes. The three most commonly used
algorithms can be generalised as such:

• dij = min(p2pti , p
2p
tj )

∆R2
ij

R2 ,

• diB = p2pti ,

• ∆R2
ij = (yi − yj)

2 + (φi − φj)
2.

The parameter p can take one of three values 1, 0, -1 with the algorithms being known as
the: kt (p = 1) and clusters from the softest candidates first; Cambridge Aachen (p = 0)
where the energy dependence has been removed [82]; and anti-kt (p = −1) which clusters
from the hardest candidates first [83]. Their basic steps are the same:

1. Find all dij and diB.

66



2. Iterating through each candidate check which satisfies min(dij, diB).

3. If it’s dij combine i and j into one and return to step 1.

4. Else if it’s diB, than declare i to be a final state jet and remove it from the set of
candidates.

5. Stop when no candidates remain.

The anti-kt algorithm has the useful property of producing regular shaped jets as well as
being IRC safe. Because of this it is the default jet clustering algorithm used in the analysis
chapter 8. However, due to it clustering from the hardest candidates first its clustering
history is not particularly useful for deriving substructure variables. The shapes of the
various algorithms can be seen in Figure 7.3.

(a) (b)

(c)

Figure 7.3: A parton level event and soft emissions generated with Herwig, clustered with
the three sequential clustering algorithms to illustrate their shapes. With kt in Figure
7.3a, Cambridge / Aachen in Figure 7.3b and anti-kt in Figure 7.3c [81].
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7.3.1 EMtopo jets

EMtopo jets are the primary type of jet being referred to throughout this text as either
jets or small-jets and are used by the studies in sections 8.1 and 8.2, they are required to
have pT > 25 GeV and |eta| < 2.5. EMtopo jets are reconstructed solely using calorimeter
information. They are defined with the anti-kt algorithm with a radius parameter R = 0.4

implemented with the FastJet 3.2.2 software package [84, 85]. It uses calorimeter energy
deposits, whose cells are first clustered into topo-clusters described in Subsection 7.1.1, as
inputs. These clusters are calibrated at the EM-scale and are origin corrected.

7.3.2 Particle Flow (PFlow) jets

PFlow-jets use an alternative algorithm to the EMtopo-jets previously described, it is the
new recommended jet collection by ATLAS and is used in the Legacy analysis studies in
Section 8.3, as with EMtopo-jets they are clustered with the anti-kt algorithm (R = 0.4)
and are required to have pT > 25 GeV and |η| < 2.5. It combines information from the
momentum measurements in the ID (ID tracks) and energy deposits in the calorimeter
(topo-clusters). The main advantages of the PFlow algorithm is that it reduces the effects
of “pile-up” particularly at lower pT thus improving energy and angular resolution as well as
its reconstruction efficiency compared to EMtopo-jets. It also maintains the performance
at high pT achieved by the EMtopo algorithm due to the excellent calorimeter performance
at high energies.

Pile-up is the term used to describe the resulting signals from other interactions typi-
cally not of interest resulting from either soft-scattering interactions from the same bunch
crossing or residual signal remnants from other bunch crossings.

The PFlow algorithm uses a subtraction algorithm to remove overlaps for an object
between its momentum and energy measurements made by the ID and calorimeter respec-
tively, this avoids double counting a particles energy. Initially a set of well-measured tracks
are created from the inner-detector. These are then matched to topological-clusters in the
calorimeter. Then once the optimal configuration of matchings for tracks to clusters is
found (one track can be matched to many clusters) the energy of the track is removed cell
by cell from the set of matched clusters. Finally if an objects (matched track to clusters)
energy remnants are consistent with the expected shower fluctuations of a single particle
then it is assumed that these energy deposits came from a single particle, are a result of
showering in the calorimeter, and are also removed. After this the set of selected tracks
and remaining topological-clusters should ideally represent the reconstructed event. A flow
chart of the PFlow algorithm and how ID-tracks and calorimeter clusters are combined
can be seen in Figure 7.4, for more details see [86].
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Figure 7.4: Flow chart of the PFlow algorithm showing how tracks and clusters are com-
bined [86].

It should be noted that the PFlow algorithm has been updated since [86] using the
updated simulation for Run 2. Both the expected mean value of the energy deposited by
pions and the shower profiles were recalculated. In addition an update to the transition
algorithm between track and calorimeter energies targeting high pT jets. Previously a
simple pT < 40 GeV cut on a track was used where in those cases it was not subtracted
from the calorimeter cluster. This is due to these cases predominantly falling in the centre
of the jet which has the consequence that they are poorly isolated from the surrounding
clusters which make it difficult to accurately subtract their energies from that of the
calorimeters. However, now a more sophisticated approach is used with tracks selected if
pT < 100 GeV then if the energy Eclus in a cone (∆R = 0.15) around the extrapolated
particle satisfies:

Eclues − 〈Edep〉
σ(Edep)

> 33.2× log10(40 GeV/ptrkT )

then the subtraction is not performed. This takes into account the energy density of the
clusters and effectively slowly truncates the algorithm but still allows for some subtraction
at high energies where the calorimeter performs well, for further details see [87].

7.3.3 Jet Energy Calibration and Resolution

The resultant jet collections are then calibrated as well as having their energy resolutions
measured. Both of these quantities and their associated systematic uncertainties are im-
portant to understand for physics analyses and are derived by matching the reconstructed
jets to particle level jets, derived from the MC truth information, with a ∆R < 0.3 re-
quirement and using 36− 81fb−1 of data collected between 2015-2017.

Jet energy scale (JES) calibration

The purpose of the jet energy scale calibration is to restore the jet collections energy so
that they match particle level jets derived from the MC truth information. The sequence
of corrections is shown in Figure 7.5 and is the same for EMtopo and PFlow jets. For JES
calibrations dijet MC events are used.
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Figure 7.5: Flow chart of the sequence of correction for the jet energy scale (JES) calibra-
tions [87].

The initial pT based pile-up correction removes the excess energy in the event from ad-
ditional pp collisions from the same bunch crossing (in-time) or from nearby (out-of-time)
bunch crossings. The pile-up corrections can be summarised in two steps corresponding
to the green and yellow bubbles seen in Figure 7.5.

The pT density based pile-up correction initially uses the area A of a jet to assess the
degree to which it is affected by pile-up. It is determined by counting how many ghost
tracks [88] are associated with a jet after clustering. After, the pile-up contribution is
estimated using the median pT density ρ = pT/A. For this jets are clustered with the kt
algorithm (R = 0.4) in the range |η| < 2 which limits the computation to the central region
of the detector in order to better measure pile-up activity due to ρ → 0 for |η| > 2. The
kt algorithm is used because it naturally reconstructs jets as well as the soft background.
The variable ρ is used because it reduces the bias from high pT events that populate the
tails.

The residual pile-up correction is aimed at describing the pile-up effects present in the
forward calorimeter region and in the busy cores of high pT jets where ρ doesn’t perform
well. Because of this, without the residual corrections, there is an observable dependence
of the anti-kt jet pT on pile-up activity. To address this the residual dependence is defined
to be the difference between the reconstructed jet’s pT and the particle level jets pT derived
from the MC truth information and is defined below:

P corr
T = precoT − ρ× A− α× (NPV − 1)− β × µ,

where precoT is defined before any pile-up corrections, NPV is the number of primary vertices
in the event and µ is the mean number of interactions per bunch crossing. Here α and β

are coefficients derived from a separate linear fits binned in-terms of ptrueT and |ηdet|.
The absolute JES and η calibrations correct the jets four-momentum to the particle-
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level energy scale which accounts for non-compensating calorimeter response, energy losses
in passive material, out-of-cone effects and biases in the reconstructed jets η. These biases
are typically a result of the different calorimeter technologies being stitched together. For
this calibration anti-kT (R = 0.4) jets are from a Pythia 8 dijet MC sample post pile-up
corrections. Once the particle-level jets are matched to the reconstructed jets the average
jet energy response R is defined by fitting a Gaussian to the Ereco/Etrue distribution
measured in bins of Etrue and ηdet. The jet calibration factor is derived from the inverse
of the average energy response.

A further η bias can be observed in the reconstructed jets when compared to the
particle-level jets derived from the MC truth information. It is most observable in jets
that span two different calorimeter regions with different energy responses due to either
a different geometry or technology. The effect of this is that the reconstructed jet will
have an energy imbalance internally thus altering its four-momentum. Jets reconstructed
around the barrel-endcap transition region (|η| ≈ 1.4) and the endcap-forward region
(|η| ≈ 3.1) are particularly effected. So a correction is derived between the reconstructed
jet’s η and the particle-level jet’s η. This correction only alters the the reconstructed jet’s
pT and η and does not effect the full four-momentum.

Global sequential calibration aims to reduce fluctuations in reconstructed jets caused
by either being initiated by a quark or gluon and improve the jet energy resolution whilst
maintaining the average jet energy response. Jets initiated by quarks have a tendency to
consist of hadrons that possess a higher fraction of the jet pT and so penetrate further into
the calorimeter. On the other hand jets initiated by gluons tend to consist of more hadrons
with a lower pT fraction which has the effect that these jets have a lower calorimeter
response and a wider transverse profile. The corrections are based on jet observables:
the longitudinal structure of the energy deposits in the calorimeter, associated tracking
information and information from the MS directly behind the jet. The corrections to the
four-momentum, derived as a function of ptrueT and |ηdet|, improve six observables that
improve the JES with each observable being corrected independently of each other. The
six observables are:

• (PFlow only) fcharged the fraction of the jet pT measured from ghost-associated tracks
with pT > 500 MeV (|ηdet| < 2.5);

• ftile0 the fraction of jet energy measured in the first layer of the hadronic Tile
calorimeter (|η|) < 1.7;

• fLAr3 the fraction of jet energy measured in the third layer of the electromagnetic
LAr calorimeter (|ηdet| < 3.5);

• ntrk the number of tracks with pT > 1 GeV ghost-associated with the jet (|ηdet| <
2.5);
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• wtrk a measure of the track width done by taking the transverse distance in the η−φ
plane, weighting it by the mean pT , between the jet axis and all tracks of pT > 1

GeV ghost-associated with the jet (|ηdet| < 2.5);

• nsegments, the number of muon track segments ghost-associated with the jet (|ηdet| <
2.7).

The residual in situ calibration is the final step and aims to account for differences
between jet response in data and simulation. These are primarily due to imperfect simula-
tions of the initial hard scattering process along with the rest of the event, jet formation,
pile-up and the particle interactions within the detector. Corrections are applied in three
stages with the initial η calibration correcting the energy scale of jets in the forward region
(0.8 ≤ |η| < 4.5) to match jets in the central region (|η| < 0.8). This is done by balancing
the pT of a jet against a well defined object using dijet events. Secondly, the hadronic
recoil in an event is balanced against that of a well calibrated Z boson or photon, which
are the standard candles of particle physics, using Z+jet and γ+jet events respectively.
Finally, high pT jets are calibrated with multijet events using well calibrated low pT jets.
For more details see [87].

Jet energy resolution (JER) measurement

When analysing physics observables that decay to jets such as Higgs decays, top quarks and
W/Z bosons having an accurate understanding of the jet energy resolution is important.
The JER also has an affect on the missing transverse momentum in an event and can
affect physics searches / measurements using neutrinos. It depends on the noise from the
electronics and pile-up; the stochastic fluctuations in the amount of energy being deposited;
and fluctuations in the amount of energy being deposited in passive material, which is not
a function of pT as opposed to the first two. To measure the JER the momentum must
first be precisely measured which is done using a well understood dijet system where jets
can be balanced against each other in similar fashion to how JES corrections are derived.
The noise due to electronics and pile-up is measured from data using random unbiased
triggers. For more details see [87].

7.4 b-tagging

Identifying b-hadron decays within ATLAS is important for many analyses, because of this
algorithms are developed centrally by ATLAS. The two algorithms used in chapter 8 are
MV2c10 used in Sections 8.1 and 8.2, paired with EMtopo jets described in Subsection
7.3.1, and DL1r used in Section 8.3, paired with PFlow jets described in Subsection 7.3.2.
Both algorithms are machine learning based with MV2c10 using a boosted decision tree
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(BDT) while the newer DL1r uses a feed forward neural network (DNN) that makes use
of a recurrent neural network (RNNIP). However, the input features and fundamental
identification criteria being used to identify b-hadrons are broadly similar. The algorithms
work on 3 key aspects unique to b-hadrons. The first is the relatively long life time of
b-hadrons which can cause a distinctive separation between the secondary vertex (from
the b-hadrons decay) and the primary vertex (from the hard scattering event). The second
is that b-hadron decays can have 2 vertexes themselves (excluding the primary vertex from
the hard scattering event), where the inclusive vertex would be within the reconstructed
jet itself. The third bit of information used is the topological structure of weak b-hadron
and c-hadron decays and tries to reconstruct the full b-hadron decay chain.

The algorithms that exploit these features of b-tagging are outlined in the following
from which these high level b-tagging algorithms (MV2c10 / DL1r) are trained. For the
studies in Section 8.1 the algorithms were used in the 2016 configuration [89]. For the
studies outlined in sections 8.2 and 8.3 the algorithms were updated with the availability
of more data (2015-2017) [90,91].

Impact Parameter Algorithms (IP2D) and (IP3D)

The IP2D and IP3D algorithms aim to exploit the long lifetime of b-hadrons to identify
them. To do this they make use of the IBL added between run 1 and 2 specifically to
improve b-tagging performance. The IP2D tagger makes use of the transverse impact pa-
rameter significance, d0/σd0 , while the IP3D also utilises the longitudinal impact parameter
significance, z0 sin(θ)/σz0 sin(θ), along with the transverse impact parameter significance.

Secondary Vertex Finding Algorithm (SV1)

The secondary vertex algorithm aims to reconstruct the secondary displaced vertex within
a jet leveraging the fact that b-hadrons can have 2 decay vertices. This is done through a
χ2 fit of all potential two-track vertices compatible with the jet. For details see [74].

Decay Chain Multi-Vertex Algorithm (JetFitter)

The JetFitter algorithm exploits the topological structure of weak b-hadron and c-hadron
decays inside the jet and uses a modified Kalman filter [71] to find a line which passes
through the primary, b and c decay vertices thus approximating the b-hadron flight path.
For details see [92].

7.4.1 MV2c10

The MV2c10 algorithm [89] uses the previously outlined lower-level algorithms (IP2D,
IP3D, SV1 and JetFitter) utilising the unique properties of b-hadron decays. The outputs
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of these algorithms are then combined in a BDT along with the kinematic jet variables
pT and η for the best performance. MV2c10 stands for multivariate algorithm, second
iteration, where the c10 indicates the c-hadron background fraction used in training (here
7% and rounded up). This is important as the performance of the c- verses light-flavour jet
rejection rate directly depends upon the background sample composition. It was trained
on a sample of jets from tt̄ events with b-jets set as the signal and the background consist-
ing of c- and light-flavoured jets (with a composition of 7% and 93% respectively). There
has been an improvement over the 2015 configuration MV2c20 algorithm in the c-jet re-
jection rate of approximately +40% with the light-jet rejection rate staying approximately
constant (see Figure 7.6).

(a) (b)

Figure 7.6: Comparison of light-flavour jet rejection (7.6a) and c-jet rejection (7.6b) of
the 2015 and 2016 MV2 configurations, taken from [89].

Working points are defined in terms of b-jet efficiency and have been set so that the
loose has an efficiency of 85%, medium (77%), tight (70%) and very tight (60%). These
are shown in Table 7.2 along with the BDT output and c-/light-jet rejection rates. The
overall performance of the MV2c10 algorithm can be seen in Figures 7.7 and 7.8. In Figure
7.7 the jet composition per BDT output is shown. In Figure 7.8 the c-/light-jet rejection
as a function of pT is shown. At high BDT output scores light-flavour jets (consisting of
up down and strange hadrons) are strongly suppressed (well separated), however, this is
not the case for c-jets where the separation power is not as good meaning that c-jets are
more likely to be mistagged as b-jets.
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BDT Cut Value b-jet Efficiency (%) c-jet Rejection Light-jet Rejection
0.9349 60 34 1538
0.8244 70 12 381
0.6459 77 6 134
0.1758 85 3.1 33

Table 7.1: Working points for the MV2c10 b-tagging algorithm along with the BDT cut
values and c-/light-jet rejection taken from [89].

Figure 7.7: MV2c10 BDT output for b-, c- and light-flavoured jets evaluated with tt̄ events,
taken from [89].
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(a) (b)

Figure 7.8: Light-flavour (7.8a) and c-jet (7.8b) rejection as a function of jet pT , with each
bin of the pT set to the b-tagging efficiency of 77%, taken from [89].

7.4.2 DL1r

The DL1r b-tagging algorithm [90, 91] is the updated version and the current ATLAS
recommendation that makes use of the same input features as MV2c10 with a few key
differences and is the combination of the DL1 (DNN) and the RNNIP (RNN). The DL1
DNN is a simple feed forward network using the same inputs as the MV2 algorithm: IP2D,
IP3D, SV1 and JetFitter as well as the kinematic variables jet pT and η. It also makes use
of the JetFitter c-tagging algorithm, which helps with c-jet rejection and was not included
in the training of MV2.

The RNNIP is a recurrent neural network (RNN) track-based tagger that combines
the two impact parameter algorithms IP2D and IP3D which use likelihood templates
to compute per-flavour conditional likelihoods. The IP3D algorithm is limited by the
assumption that each track is independent from all other tracks which is necessitated
by the large sample sizes required to calculate it. The use of RNNs can overcome this
challenge because they can learn the sequential dependencies between the tracks in a
given jet. The transverse and longitudinal impact parameters along with the track /
jet pT fraction, angular distance between the track and jet-axis and the track-grade are
fed into the network. A performance comparison of the RNNIP and IP3D can be seen
in Figure 7.9 in terms of b-jet efficiency using tt̄ events which shows a clear increase in
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performance for RNNIP for c-jet and light-jet rejection.

(a) (b)

Figure 7.9: Comparison of RNNIP vs IP3D for light-flavour jet 7.9a and c-flavour jet 7.9b
rejection as a function b-tagging efficiency for tt̄ events [91].

DL1r uses all the previously mentioned DL1 inputs as well as the 3 output probabilities
Prob(b), Prob(c) and Prob(light) from the RNNIP for training, with both it and the
RNNIP being trained separately on the same jet collection. This combination gives DL1r
a slight performance gain over DL1.

Both DL1 and DL1r have similarly defined WP to the MV2 algorithms in terms of b-jet
efficiency: loose has an efficiency of 85%, medium (77%), tight (70%) and very tight (60%).
The performance comparisons between DL1 and MV2 can be seen below with: their WP
for c-jet and light-jet rejection being shown in Table 7.2; their output discriminant being
shown in Figure 7.10; and their b-tagging rejection of c-jets and light-jets distributions in
Figure 7.11.

Table 7.2: Output discriminant cuts used to define b-jet tagging efficiencies and their
corresponding c-, light and τ -jet rejection for DL1 and MV2 [90].
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(a) (b)

Figure 7.10: Distributions of the output discriminant of 7.10a MV2c10 and 7.10b DL1
b-tagging algorithms for b-, c- and light-flavour jets [90].

(a) (b)

Figure 7.11: The 7.11a light-flavour jet and 7.11b c-jet rejections versus the b-jet tagging
efficiency for the IP3D, SV1, JetFitter, MV2 and DL1 b-tagging algorithms [90].
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7.5 Boosted Jets

When dealing with high pT objects it can be beneficial to model them with a single “big”
jet due to the collimated nature of their decay products. To do this the same jet clustering
algorithms are used (such as anti-kt), as with standard jets previously described in Section
7.3, with ∆R = 1 (rather than ∆R = 0.4) so as to encapsulate their decay products. The
primary benefit of this method is that various substructure type variables may be derived
and assigned to these “big” jets which provide a certain discrimination power and aid in
jet identification. There are two primary methods employed to model “big” jets they can
either directly be clustered using the calorimeter information, similarly to EMtopo jets,
referred to as Large Radius jets (LR-jets) or they can be reclustered using the standard
(∆R = 0.4) jets as input constituents, these could either be the EMtopo jets in Subsection
7.3.1 or the PFlow jets in Subsection 7.3.2, and are referred to as reclustered jets (RC-
jets). These jets are typically used to reconstruct boosted heavy objects such as the top
quark, Higgs boson, W and Z boson with a boosted top quark candidate being shown in
Figure 7.12. Because the decays of these objects are collimated to other relatively heavy
objects (i.e not leptons and light quarks) there can be certain structures that show up in
the energy deposits in the calorimeter which is what is referred to as substructure.

Figure 7.12: Resolved (left) vs collimated boosted top decays (right). The individual decay
products of the resolved top decay are reconstructed as separate jets while the collimated
boosted top decay is encompassed in one large jet.

7.5.1 Large Radius Jets (LR-jets)

Large radius jets are clustered directly from the calorimeter topo-clusters, in similar fash-
ion to the standard ∆R = 0.4 EMtopo jets, with the anti-kt algorithm with ∆R = 1.0

and are calibrated to the LCW-scale. LCW stands for the local cluster weighting cali-
bration method which classifies the topological clusters on a continuous scale to be either
electromagnetic or hadronic using their shower shapes and densities. An extra step that
is required compared to the standard jets is a trimming procedure which removes soft
radiation present from either the underlying event, pile-up or initial state radiation. This
is done by taking the jet constituents (topo-clusters) and clustering them with the kt al-
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gorithm into constituent jets with ∆R = 0.2 which will then be removed from the LR-jet
if their momentum fraction is less than the threshold (pT/pLRT < 0.05).

The JES calibration for LR-jets is done similarly to the standard ∆R = 0.4 jets, using
a PYTHIA MC sample, with a key difference being that no explicit off-set correction
for pile-up contributions based on the number of primary vertices is done. LR-jets have
a different set of systematics ascribed to them compared to the standard jets. They are
calculated by comparing the LR calorimeter jets to LR track jets (whose systematics come
from the ID) which overall show good spatial agreement between the two indicating no
misalignment between the ID and calorimeters. Relative uncertainties are calculated from
the ratio (r), for a given variable, between the track and calorimeter jets matched with
∆R < 0.3. In the case of pT (done for mass as well) the ratio would be:

rpT =
pjetT

ptrackjetT

,

then a double ratio (rr) is computed between data and MC in order to evaluate the
agreement, for pT :

rrpT =
rpTdata
rpTMC

.

The mean values for the ratio r are expected to be well described, assuming that the
detector is well modelled, because potential unaccounted for physics effects should affect
the track and calorimeter jets similarly. The double ratio rr are used to test the data /
MC agreement for jet pT and m and allows for the calculation of an uncertainty associated
with the calibration.

LR-jets are typically required to have a pT > 200 GeV, |η| < 2.0 and m > 50 GeV
although specific analyses may require tighter constraints. The tighter η constraints are
to ensure that the whole jet is fully contained within the ID.

7.5.2 Reclustered Jets (RC-jets)

Reclustered jets are one of the methods used to model boosted objects. They use the
standard ∆R = 0.4 jets as inputs to the anti-kt algorithm and reclusters them with
∆R = 1.0 into a “big” jet. Doing this has several advantages, the primary being it allows
direct propagation of the systematic uncertainties from the standard jets thus making
combined measurements with resolved regions straight forward. It also leverages all the
work that has gone into calibrating the standard jets and requires no extra studies. Because
the jet algorithms rely on calorimeter information the detector simulation (see Section 5.5)
used is important with full detector simulation being required for accurate substructure
modelling. However, requiring full detector simulation is rather CPU costly and is a
limiting factor for many analyses. Another advantage of RC-jets is that it provides a
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way to have some substructure type variables available while using the AF2 fast detector
simulation which utilises FastCaloSim for the calorimeter simulation. Because of this the
true substructure variables of both standard ∆R = 0.4 jets and ∆R = 1.0 LR-jets that
rely on precise calorimeter clustering are poorly modelled. Using RC-jets circumvents this
to a degree as the the standard ∆R = 0.4 jets four-vector is calibrated for AF2 meaning
that any variables that can be defined with these inputs and so do not directly rely on the
calorimeter clusters can be used. On top of this associating b-tagging information with
the RC-jets is simple and requires only using the RC-jet’s constituent sub-jets for which
the b-tagging information is already available.

Reclustered jets are typically required to have a pT > 200 GeV, |η| < 2.0 and m >

50 GeV although specific analyses may require tighter constraints. They also have the
trimming procedure applied similarly to the LR-jets (∆R = 0.2 and pT/p

RC
T < 0.5) but

this has little effect since the subjets already have pile-up suppression applied as described
in Section 7.3.

7.5.3 Jet Substructure

The clustering history of jets reconstructed with the anti-kt algorithm is not particularly
useful for deriving substructure variables. This is because the recombination sequence
used will expand gradually through a soft subjet instead of the soft subjet being ini-
tially reconstructed before combination with the primary hard jet. Because of this the
constituent clusters of the jets are also clustered with the kt algorithm whose clustering
history is then used to derive substructure variables with. Overall “substructure” is a
loosely defined term and is used to describe variables that can help identify a jet using
information from the constituents. They can be defined for both “big” (∆R = 1.0) and
standard (∆R = 0.4) jets. However, typically they are more useful for identifying “big”
jets as these can be used to reconstruct a wide variety of exotic high pT candidates with
collimated decays such as W, Z, Higgs bosons and top quarks as well as particles predicted
by BSM theories. Standard jets would typically not encapsulate the decay products of
more exotic particles e.g a Higgs unless the decay was ultra collimated (referred to as ultra
boosted) requiring an extremely high pT which would be extremely rare as it would only
reconstruct candidates present in the very tail of the pT distribution. Typically standard
jets would represent jets originating from b-hadrons or lighter for which ATLAS produces
dedicated tagging algorithms described in Section 7.4. Broadly speaking substructure
variables can be separated into two categories: cluster based variables, these are derived
directly from the calorimeter based cluster information; and non-cluster based variables
which can either re-defined in terms of the constituent jets four-vectors (RC-jets) or use
other information entirely such as b-tagging or ∆R.

Although many substructure variables exist the focus will be on ones useful for Higgs
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(H → b̄b) and top tagging which are the particles of interest for studies in Chapter 8.
Classically substructure is used to refer to the cluster based variables : splitting-scale,
N-subjettiness, energy correlation functions (ECF) and Qw.

The variables
√
d12 and

√
d23 are defined from the splitting scales of the clustering

algorithm [93]. In the case of an anti-kt jet directly clustered from the calorimeter, such as
the standard jet or LR-jet, the clustering history of the kt algorithm is used as mentioned
earlier and so are defined with dij = min(p2T,i, p

2
T,j) (see Section 7.3). They have units of

mass with
√
d12 referring to the final clustering step and

√
d23 referring to the 2nd to last

clustering step. In the case of RC-jets the input subjets are used to define the clustering
history (but in kt order) assuming the required subjet multiplicity is present (i.e >= 3

subjets for
√
d23).

Qw is another invariant mass quantity similar to the more general splitting scale vari-
ables. It’s defined as the minimum invariant mass of a pair of subjets when decomposing
an anti-kt jet into 3 exclusive kt jets. It is used to identify W boson decays inside of a
“big” jet as would be the case for a top decay. For LR-jets it’s defined from the calorimeter
clustering information and for RC-jets it’s defined directly from invariant masses of the
subjets.

N-subjettiness (τN) [94] is used to measure “prong-like” structures in the calorimeter
energy deposits that would result from i.e a collimated top decay (3 prong) or a collimated
H → b̄b decay. The τN series used to define N candidate subjets is:

τN =
1

d0

∑
k

pT,k min{∆R1,k,∆R2,k, . . . ,∆RN,k},

with k running over the constituent particles in a given jet, pT,k are their given transverse
momenta and ∆Rj,k =

√
(∆η)2 + (∆φ)2 is the distance in the rapidity-azimuthal plane

between a candidate subjet j and a constituent particle k. The normalization factor d0 =∑
k(pT,kR0) makes use of the original jet radius R0. The τN variable can be interpreted

as a measure of how well a given jet can be decomposed to N constituent kt jets. The
N-subjettiness variables commonly used are in-fact ratios of these with τ3,2 = τ3/τ2 and
τ2,1 = τ2/τ1 having the best discrimination power for identifying 3 and 2 prong decays
respectively. The defined ratios τN,N−1 = τN/τN−1 give a measure of how N prong vs
N−1 prong-like a given jet is and take values τN,N−1 ∈ [0, 1]. Using τ3,2 and top decays as
an example we would expect the top-jet to have a lower value of τ3,2 compared to some
competing 2 body decay.

Energy correlation functions (ECFs) are another class of substructure observables used
to find prong-like structures in jets, unlike the N-subjettiness it however doesn’t require
a subjet finding procedure. Similarly to N-subjettiness it has a general form definable for
N prongs. However, focus will be on the D2 variable which is defined as a ratio (like τ2,1)
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and used to identify 2-prong like structures. It is derived from the calorimeter clustering
information, for more information see [95].

Because the cluster based variables described above are typically derived directly from
the calorimeter cluster information analyses need to consider how much MC statistics
they require with how much extra discrimination/separation power these variables pro-
vide. This is because unless there are alternate ways to derive the variables, full detector
simulation using Geant4 [40] would be required which is extremely CPU intensive. The
alternate fast detector simulation uses AF2 [41] which makes use of the FastCaloSim [42]
package for calorimeter simulation. This has a big impact as it is the most CPU intensive
step reducing the simulation time from several minutes to a few seconds. However, the
draw back of this is that only the four-vectors of jets are properly calibrated and the
direct clustering history is poorly modelled and not usable. Because of this only Qw and
splitting-scales such as

√
d12 and

√
d23 as defined with the RC-jets are usable. For more

information about detector simulation see Section 5.5.

7.6 Overlap Removal

To ensure that objects are reconstructed without any double counting of the calorimeter
energy deposits / ID tracks overlap removal procedures are implemented to separate elec-
trons (e), muons (µ) and jets. This is done based on the angular separation between two
objects using ∆R =

√
(∆η)2 + (∆φ)2. The general procedure and order is:

1. If an e and µ share a track then the e is removed.

2. If a standard jet and e are within ∆R < 0.2 of each other the jet is removed.

3. If a standard jet and e are within 0.2 ≤ ∆R < 0.4 of each other the e is removed.

4. If a standard jet and µ are within ∆R < 0.4 of each other and the jet has < 3 tracks
the jet is removed.

5. If a standard jet and µ are within ∆R < 0.4 of each other and the jet has ≥ 3 tracks
the µ is removed.

The big-jets, either LR-jets or RC-jets, mentioned previously may also overlap with
standard jets or leptons. However, this may be desirable i.e for ascribing b-tagging in-
formation to LR-jets etc. and is therefore not implemented ATLAS wide and left to the
specific analyses to take into account. For the semi-leptonic tt̄H studies in sections 8.2
and 8.3 the RC/LR-jet is only used to describe the boosted Higgs and potential boosted
hadronic top candidates with the single lepton (e / µ) coming from the leptonic top decay.
Therefore for the RC/LR-jets an overlap removal requirement of ∆R > 1.0 is required
removing the RC/LR-jets in that case.
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7.7 Missing Transverse Momentum

The ATLAS detector is not able to detect every particle that passes through it, with
neutrinos ν being a frequent example as they pass through the detector without any
interactions. There is also the possibility that some exotic particle, predicted by BSM
theories, to pass through undetected. Because of this the missing momentum from an event
may be used as a proxy to gauge what might have been present in a given event. However,
due to to the exact proton momentum fraction of the partons in the hard scattering event
being unknown the expected momentum sum of the produced particles is not known.
This is because only the centre of mass energy of the protons is known. Despite this it is
expected that the transverse momentum to the beam line would sum to 0 assuming that
the partons collide head on in the z direction. It is then assumed that if the transverse
momentum in an event doesn’t sum to 0 that it’s the result of an undetected particle and
is referred to as “missing transverse momentum” (pmiss

T ) and is a vector with magnitude
“missing transverse energy” (Emiss

T ). This could be cause by both a mismeasurement of
detected particles or from some undetected particle.

The measurement of pmiss
T is difficult because it requires every detector subsystem and

requires a complete unambiguous representation of the hard scattering. It is reconstructed
by summing the momentum transverse to the beam-line of every reconstructed object
post overlap removal which includes: leptons, photons, standard jets as well as any tracks
associated with the primary vertex that could originate from soft scattering.

Uncertainties on Pmiss
T come from propagating the scale and resolution uncertainties

from the reconstructed objects used to determine it including additional scale and resolu-
tion uncertainties associated with the soft terms. Because the semi-leptonic tt̄H analyses
in sections 8.2 and 8.3 don’t use Pmiss

T for event selection and only use it to aid in event
reconstruction, as BDT inputs, these uncertainties have a minimal impact on them.
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Chapter 8

tt̄H Analyses

This chapter focuses on the tt̄H cross-section analyses with the H → bb̄ decay mode (see
Figure 8.1). It is split into 3 sections: In Section 8.1 a boosted all-hadronic feasibility
study is carried out to see if a region can be found with enough statistical significance
for signal sensitivity. In Section 8.2 an overview of the lepton + jets analysis [1] results
using the full Run-2 ATLAS data set is given, which is a combination of resolved di-lepton,
resolved semi-leptonic and boosted semi-leptonic channels. This is accompanied by a more
detailed explanation of the boosted region and its analysis techniques. In Section 8.3 the
ongoing studies for the boosted region of lepton + jets legacy analysis are described. The
Legacy analysis is a re-analysis of the full Run-2 ATLAS data set with updated techniques.

Figure 8.1: Example of a tree-level Feynman diagram of the tt̄H t-channel process.

When analysing tt̄H with H → bb̄, events can be further split into 3 distinct de-
cay channels depending on the top decaying hadronically or leptonically (see Figure 8.1)
into: all-hadronic where both tops decay hadronically giving an 8-jet 4-b final state, semi-
leptonically where only one of the tops decay leptonically giving a 6-jet 4-b final state and
di-lepton where both of the tops decay leptonically giving a 4-jet 4-b final state. The pri-
mary challenge in these channels is separating the tt̄H signal from the primary background
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tt̄+b-jets which, when produced in conjunction with a pair of b-quarks can reproduce the
final states mentioned above. Gluon induced backgrounds can be differentiated either
through their spins, as gluons are spin 1 while the Higgs is spin 0, or via their colour
charges as gluons carry C = 2 while the Higgs has no colour charge.

There is a further separation to be made based on the pT of the jets, as decay products
with a high pT will have collimated decay products (see Figure 8.2). Because of this
substantially different analysis techniques can be employed compared to resolved decays
such as clustering all the decay products into one big jet with ∆R = 1 either with LR-
jets (see Subsection 7.5.1) or RC-jets (see Subsection 7.5.2). Since all the objects decay
products are encapsulated into one big jet another tool that can be used in jet identification
are sub-structure variables (see Subsection 7.5.3). Additionally the high pT regime is more
sensitive to BSM physics which is an additional motivation for boosted (high pT ) studies.

Figure 8.2: Resolved vs boosted top decays.

8.1 All hadronic feasibility studies

The aim of this study is to assess the feasibility of an all-hadronic tt̄H analysis in the
boosted region. It was conducted using the POWHEG + Pythia 8 [96–101] tt̄H and tt̄

mc16a MC samples matching a luminosity of 36fb−1. This mirrors the nominal samples
used in the Lepton + Jets Analysis [1]. An all-hadronic tt̄H decay (see Figure 8.3) has
an 8 jet final state of which 4 jets originate from b decays. The 2 b-jets originating from
the Higgs decay will provide the signature for identification so correctly separating b-jets
originating from Higgs and top decays is important. Because of this identifying the b-jets
is paramount for the analysis and the MV2c10 b-tagging algorithm developed centrally by
ATLAS was used for these studies, the performance of which can be seen in Sections 7.4.1.
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Figure 8.3: Feynman diagram of tt̄H decaying all-hadronically. This is the most common
final state as top quarks decay to b-jets sim100% while W bosons decay to u, d or c, s
∼ 50/50.

The primary challenge in this analysis is to separate the signal from the background
processes with tt̄ + jets being the largest known background that can be modelled. From
Figure 8.4 we can see that tt̄ + bb̄ can have the exact same final state (8 jet 4 b) as our
signal. There is also a large QCD-multijet background which can’t be modelled well with
MC.
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Figure 8.4: Feynman diagram of tt̄+ bb̄.

To gauge the feasibility of this study the statistical significance Z ≈ s/
√
b is used. This

approximation is valid when s << b (see Section 6.1). Because of the large unknown QCD-
multijet background two metrics are used s/

√
b where b is approximated by tt̄ + jets, the

dominant background, and data/b which is used to gauge how much of the QCD-multijet
background exists in a given region. With these two metrics sets of cuts are proposed
which are used to define regions in order to maximise s/

√
b and minimise data/b.
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A purely boosted strategy is used where both Higgs and top candidates are modelled
with boosted objects, in this case RC-jets (see Section 7.5.2) with Higgs and top tags
initially defined through cuts on the subjets b-tags:

• top tag requires an RC-jet with pT > 250 GeV, containing 1 b-tagged and 1 untagged
subjet.

• Higgs tag requires an RC-jet with pT > 200 GeV, containing ≥ 2b-tagged subjets.

and later with a dedicated boosted Higgs DNN tagger, which was originally developed for
the lepton + jets analysis. The DNN tagger makes use of a fair amount of substructure
variables including the subjets b-tagging information among others, see Section 8.2 for
more details.

The initial selection, referred to as the pre-selection, made using the 85% b-tagging
WP is:

• 0 leptons with pT > 10 GeV

• 4 jets pT > 25 GeV

• ≥ 2b-tags

• ≥ 1 RC-jet with pT > 200 GeV

• 1 top tag.

The mass distributions of the Higgs and top candidates in this region are shown in Figure
8.5. From Figure 8.5a we can see two peaks: the expected one around 120 GeV, along
with an unexpected peak around 225 GeV.
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(a) RC-jet mass distribution of a Higgs candi-
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(b) RC-jet mass distribution of a top candidate.

Figure 8.5: Invariant mass distributions of boosted Higgs / top candidates using the cut
based definitions made with a POWHEG + Pythia 8 tt̄H MC sample using the initial
preselection mentioned above.
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This secondary anomalous peak was investigated using the truth information with
which the MC samples were generated. To that end the samples were split at 200 GeV
with truth information given for each bin as can be seen in Figure 8.6. From Figure 8.6a
we can see that the expected peak around 120 GeV does indeed come from an excess of
Higgs decays and from Figure 8.6b we can see that the anomalous mass peak at 220 GeV
comes from an excess of W decays which are being mistagged by our Higgs tag requirement
of an RC-jet with ≥ 2b-tagged subjets.
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Figure 8.6: Truth information for Higgs tagged RC-jets per invariant mass bin.

Since the W boson decays hadronically 67.4% of the time, with a cX final sate fraction
of 33.3% [13], it can be assumed that the mistagged W decays are due to c / light flavoured
jets being mistagged as b-jets by the MV2c10 algorithm. To gauge this effect the b-tagging
scores of these mistagged W jets is looked at in Figure 8.7 which does indeed show this
to be the case. However, it can also be seen that this effect can be mitigated by using
a tighter b-tagging WP due to the W decays being mistagged primarily at the 85% WP
where the MV2c10 algorithm suffers in c and light jet rejection (see Section 7.4.1 for
MV2c10 performance).
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Figure 8.7: b-tagging truth information for RC-jets origination from true W decays.

With the composition of the cut based Higgs tags understood attention was then
focused on defining a signal region with a high s/

√
b and low data/b. To that end the

jet multiplicity of both tt̄H and tt̄ + jets matching the MC16a campaign (see Chapter 5)
was looked at as well as the 2015/16 data (36fb−1), this can be seen in Figure 8.8. The tt̄
+ jets background was split by jet flavour, into tt̄ + b, tt̄ + c and tt̄ + light, to see how
these respond to b-tagging and jet multiplicity.
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Figure 8.8: Jet number in events of signal (tt̄H ), stacked backgrounds (tt̄ + b, tt̄ + c, tt̄
+ light) and 2015/16 data at 36fb−1 (marked with dark blue error bars). The signal and
data have both been scaled to the background for shape comparisons. All integral values
are calculated to match data with a luminosity of 36fb−1.

From Figure 8.8 a cut ≥ 7 jets was proposed along with cuts ≥ 1 Higgs tagged RC-jet
and ≥ 4 b-tagged jets. These were implemented using both the 85% and 60% b-tagging
WP. The event yields after each cut can be seen in Table 8.1 and Table 8.2. From Table
8.1 we can see that the full set of cuts provide an initial region with a decent significance

90



(s/
√
b = 2.00, s/b = 0.022) when only considering the tt̄+ jets background. However the

estimate of the QCD-multijet background data/b = 5.24 implies that although it has been
more than halved from the initial rate present at the pre-selection the true significance of
the current selection would be insignificant. From Table 8.2 we can see that tightening
the b-tagging WP from 85% to 60% did not improve things giving a final significance
(s/

√
b = 1.88, s/b = 0.126). We can see that while it did constrain the tt̄ + c and tt̄ +

light fractions of the tt̄ + jets background, as expected, it did not constrain the data to
the same degree implying that large fractions of the QCD-multijet background is made
up of true b-hadrons. This is highlighted by the effect of the cut requiring 4-b tagged jets.

tt̄H tt̄+ b tt̄+ c tt̄+ l tt̄ (all) data data/b s/
√
b

Pre-selection 1000 21200 46200 190000 257000 2950000 11.5 1.98
Higgs-tag req 337 5010 9360 38200 52600 256000 4.86 1.47
7-Jet req 271 3750 5910 16900 26600 137000 5.17 1.67
4 b-tags req 184 2360 2410 3650 8430 44100 5.24 2.00

Table 8.1: Cut flow table of initial cuts with b-tagging at 85% rounded to 3 s.f.

tt̄H tt̄+ b tt̄+ c tt̄+ l tt̄ (all) data data/b s/
√
b

Pre-selection 585 12200 16200 71800 100000 465077 4.64 1.84
Higgs-tag req 89.0 1020 446 1590 3060 18500 6.04 1.61
7-Jet req 71.2 769 264 661 1690 9800 5.78 1.73
4 b-tags req 27.9 205 10.3 5.97 221 1430 6.45 1.88

Table 8.2: Cut flow table of initial cuts with b-tagging at 60% rounded to 3 s.f.

Following these results, the Higgs and top tags were looked at with comparisons made
between cut based versions and a DNN developed for the lepton + jets boosted region,
which is described in Section 8.2. The shape distributions of Higgs / top tagged RC-jets for
both methods can be seen in Figures 8.9. The DNN was trained with the RC-jets invariant
mass as well as making use of substructure information, such as the subjet multiplicity
and the subjets b-tagging scores, among others. It can be seen that Higgs / tops selected
with the DNN exhibit mass sculpted peaks around both the Higgs and top mass when
compared to the cut based methods which have broader distributions. A new set of cuts
was proposed selecting ≥ 2 top tags, ≥ 1 Higgs tag and imposing mass requirements on
the top tagged RC-jets to be within 50 GeV of the top mass (|Mjet −Mtop| < 50 GeV),
the results of which can be seen in Tables 8.3 and 8.4.
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(c) Higgs tagged RC-jets using DNN.
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(d) Top tagged RC-jets using DNN.

Figure 8.9: Comparison of DNN vs cut based methods for Higgs / top identification. The
signal and data have both been scaled to the background for shape comparisons. All
integral values are calculated to match data with luminosity of 36fb−1.

cuts tt̄H tt̄b tt̄c tt̄l tt̄(all) data data/b s/
√
b

Pre-selection 585 12200 16200 71800 100000 465000 4.64 1.85
≥ 2 top-tag 68.3 1270 306 447 2020 8020 3.97 1.52
≥ 1 Higgs-tag 1.78 12.06 0.56 0.00 12.6 70 5.55 0.50
≥ 1 top-tag with mass req 1.54 9.71 0.32 0 10.0 51 5.08 0.49
≥ 2 top-tags with mass req 0.68 3.88 0.11 0 4 15 3.75 0.34

Table 8.3: Cut flow table of second iteration of cuts with cut based Higgs / top tagging
using the 60% b-tagging WP rounded to 3 s.f.

cuts tt̄H tt̄b tt̄c tt̄l tt̄(all) data data/b s/
√
b

Pre-selection (DNN tagger) 31.4 559 1560 7830 9950 25500 2.56 0.31
≥ 2 top-tag 31.4 559 1560 7830 9950 25500 2.56 0.31
≥ 1 Higgs-tag 1.5 12 6.7 7.5 26.2 98 3.74 0.29
≥ 1 top-tag with mass req 1.5 12 6.7 7.5 26.2 98 3.74 0.29
≥ 2 top-tags with mass req 1.5 12 6.7 7.5 26.2 98 3.74 0.29

Table 8.4: Cut flow table of second iteration of cuts with DNN Higgs / top tagging rounded
to 3 s.f.
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From Table 8.3, we can see that the significance drops dramatically giving an s/
√
b =

0.34, s/b = 0.17 unfortunately data/b = 3.75 is still high and so the region would not
provide signal sensitivity. The story is much the same when using the DNN for Higgs /
top tagging as can be seen in Table 8.4 with s/

√
b = 0.29, s/b = 0.057 and data/b = 3.74.

The most notable differences from the cut based tagging method are that the top mass
requirements have no effect, due to the mass sculpting by the DNN (see Figures 8.9c and
8.9d), and that the second top tag requirement (with the first being in the pre-selection)
has no effect, which implies a certain consistency in its tagging. Meaning that in all the
events that the DNN could identify one top in, it could also identify a second top which
is to be expected given that it’s a tt̄H sample. Graphs of the cut-flow Tables 8.1, 8.2, 8.3
and 8.4 can be found in Appendix B providing visual aides compared to the tables above.

Overall it was decided that an all-hadronic boosted analysis seems infeasible with
current techniques as the irreducible QCD-multijet background combined with the already
challenging signal like background process provided by tt̄ + jets yields little sensitivity
and is extremely difficult to separate from signal. Most likely data driven methods would
be needed such as the tag rate efficiency (TRF) method employed in [102] (a previous
resolved all-hadronic tt̄H analysis) to estimate the QCD-multijet background as well as
using a hybrid approach of resolved and boosted topologies with the hope of gaining some
performance from the extra boosted events.

8.2 Lepton + Jets Full Run-2 Analysis

This section focuses on my contribution to the boosted region of the Lepton + Jets Full
Run-2 Analysis. It is a measurement of the tt̄H production cross-section in the H → bb̄

channel using the full Run-2 ATLAS data set of 139fb−1 at
√
s = 13 TeV [1]. Initially an

overview of the analysis is given with subsections: 8.2.1, 8.2.2 and 8.2.3 focusing on the
boosted region. In Section 8.2.1 the boosted signal region is described. In Section 8.2.2
the boosted Higgs classification DNNs input features pre- and post-fit modelling is looked
at in a validation region. Finally in Section 8.2.3 the boosted signal regions contribution
to the combined fit result is shown. For full details of the analysis please see the original
paper [1].

The analysis makes use of semi-leptonic (see Figure 8.10) or dilepton top decays which
constrain the QCD-multijet background present in the all-hadronic decay channel. The
measurement is a combination of three separate regions: resolved dilepton, resolved single-
lepton and boosted single-lepton with events split between them based on the number of
leptons, the number of jets and the number of b-tagged jets (b-jets). Leptons (e / µ)
are reconstructed as ATLAS objects and are described in detail in Section 7.2, EMtopo
jet collections are used described in Subsection 7.3.1, b-jets are tagged with the MV2c10
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b-tagging algorithm described in Subsection 7.4.1 and boosted objects are modelled with
RC-jets described in Subsection 7.5.2. Events are further split into signal-rich and signal-
depleted regions, dubbed signal regions (SR) and control regions (CR) respectively, with
machine learning algorithms and are combined in a profile likelihood fit (see Section 6.1).
The outputs of these machine learning algorithms are used as the primary discriminant for
signal extraction and enter into the fit, which simultaneously determines the event yields
for signal and important background processes, while constraining the overall background
model with the given systematic uncertainties. Additionally the measurement is also
repeated by recombining events from all regions based on reconstructed Higgs pT , into
bins defined by the simplified template cross-section (STXS) formalism [37], with the
aim of separating the measurement and interpretation steps in order to reduce theory
dependencies being folded into measurements. Truth information from the MC events,
prior to their Higgs decay, is used to calculate the cross-section for each of the STXS bins,
defined to minimise correlations with different production processes between bins.

g

g

b νl

l+
b

b̄

d(s)

ū(c̄)b̄

t̄

t

t̄

t

W+

W−

H

Figure 8.10: tt̄H t-channel process, decaying semi-leptonically. One top quark decays
leptonically while the other decays hadronically.

After lepton reconstruction described in Section 7.2 they are also required to satisfy
additional identification and isolation criteria to increase background rejection: e / µ must
pass the Tight / Medium identification criteria and theGradient / FixedCutT ightTrackOnly
isolation criteria respectively [103,104].

The dilepton region requires events with exactly 2 leptons with opposite electric charge,
with at least one lepton having pT ≥ 27 GeV and match a corresponding object at trigger
level. In the ee and µµ channels, the leptons combined invariant mass must be > 15 GeV
and outside the Z-bosons mass window of 83−99 GeV. In order to maintain orthogonality
with other tt̄H channels [105], events are vetoed if they contain one or more τhad candidates.
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It has three CR defined, with the loosest criteria requiring only ≥ 3 jets and ≥ 3 b-jets.
The SR for the dilepton region requires ≥ 4 jets and ≥ 4 b-jets with Higgs candidates being
reconstructed with the same BDT used in the previous analysis [23]. The classification
BDT (used to identify tt̄H events) has been re-trained with the signal and components
of the nominal background model presented in the analysis and is trained only against
tt̄+bb̄ events. The SR is further split into the STXS bins of: [0, 120), [120, 200), [200, 300),
[300,∞) GeV where the final two STXS bins [300, 450) and [450,∞)) have been merged
due to the low number of events expected to be present. For the full details of the SR and
CR see Table 8.5 or the flow chart Figure C.1 in Appendix C.

The single-lepton region requires events to have exactly 1 lepton with pT > 27 GeV
and match a corresponding object at trigger level with events being vetoed if they contain
two or more τhad candidates to maintain orthogonality with other tt̄H channels as before.
Events are required to have ≥ 4 jets and ≥ 4 b-jets at the 85% WP. The region is split
into boosted and resolved categories with events being assigned to the boosted category if
a boosted Higgs candidate is found as well as containing 2 extra b-jets at the 77% WP not
contained within the RC-jet of the boosted Higgs candidate. A boosted Higgs candidate
is primarily identified through the use of a classifier DNN (see Subsection 8.2.1), filling the
same role as the reconstruction BDTs in the resolved regions. It requires an RC-jet with
pT > 300 GeV, have m ∈ [100, 140] GeV, a DNN score P (H) > 0.6 and exactly two b-jets
tagged at the 85% WP. Events are then further further classified into the boosted signal
region with a classification BDT score ≥ −0.05 which aims to reconstruct tt̄H events.
The boosted classification BDT is trained against all available background processes. The
boosted SR gets further split into the [200, 300), [300,∞) STXS bins. Events with a
boosted BDT score < −0.05 get pushed back into the resolved single-lepton category.
For the resolved single-lepton category the SR further requires ≥ 6 jets with ≥ 4 b-jets
tagged at the 70% WP. The resolved single-lepton region similar to the resolved dilepton
region also re-uses the Higgs reconstruction BDT from the previous analysis and has its
classification BDT trained against tt̄ + jets background. The resolved single-lepton SR
is again further split into the STXS bins of: [0, 120), [120, 200), [200, 300), [300, 450) and
[450,∞). For the full details of the SR and CR see Table 8.5 or the flow chart Figure C.1
in Appendix C.

The nominal signal MC sample is modelled with Powheg + Pythia 8 [96–101] in the
5 flavour scheme (FS) with all Higgs decay modes considered. Here Powheg provides the
matrix element calculation and Pythia 8 is used to shower the event simulating the “pile-
up type” interactions originating from soft scattering events. The primary background tt̄

+ jets is again modelled in the 5FS using Powheg + Pythia 8. The tt̄ + jets is further
split based on jet type into the b, c and light flavours. However, due to the 5FS vs
4FS modelling uncertainty arising in the case of tt̄ + ≥ b various other samples are also
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Table 8.5: Analysis region definition split by number of leptons, jets, b-jets with SRs
further split into STXS bins based on the reconstructed Higgs pT . In the boosted SR
b-jets with † means that those jets are not contained within the boosted Higgs candidate
RC-jet [1].

generated in order to apply a systematic uncertainty for this. For a full list of samples
used see Table C.1 Appendix C.

Overall the analysis strategy used in each region is broadly similar and makes use of
machine learning techniques in two main steps: reconstructing / identifying the Higgs
boson candidate, and classifying the tt̄H signal events.

For both resolved regions BDTs are employed for Higgs reconstruction, they are re-
used from the previous analysis [23] and match the reconstructed jets to partons emitted
from top-quark and Higgs boson decays. It reconstructs W, top and Higgs candidates
from combinations of jets and leptons making use of the b-tagging information to do so.
The combinations of jets with the highest BDT scores are assigned to these objects thus
allowing for the computation of the Higgs candidates kinematics (such as pT ) by summing
the four momenta of the two jets assigned to it. For the boosted region a DNN is employed
for Higgs identification described in detail in the next Section 8.2.1.

The tt̄H event classification BDTs for the resolved channels are trained with the kine-
matic variables of pairs of jets and leptons (m, ∆R separation), the reconstruction BDT
outputs as well as their b-tagging information for jets. In addition for the resolved single-
lepton channel a likelihood discriminant method describing the signal and background
probabilities of the jet combinatorics is also added. The boosted region also uses a BDT
for event classification which makes use of the DNNs output as before, again this will be
described in detail in the next Section 8.2.1.

The rest of this chapter will focus on the boosted region where the full Higgs identi-
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fication DNN will be described, as well as the boosted tt̄H event classification BDT. On
top of this the input variables to the DNN are also studied in a 1 top 0 Higgs validation
region to look at the Data/MC agreement of all of the input features it makes use of. A
summary of the results from all regions is then provided highlighting the major systematic
pulls in the final fit.

8.2.1 Boosted Region

As described before the boosted single-lepton region requires 1 lepton, 4 jets and 4 b-
jets at the 85% WP, with events being split between the boosted and resolved regions
on the requirements that: a boosted Higgs boson candidate is found, ≥ 2 additional b-
jets not contained within the RC-jet of the Higgs candidate and that it has a boosted
BDT score ≥ −0.05. It contributes to two STXS bins with reconstructed Higgs pT ∈
[300, 450) ∪ [450,∞).

Boosted objects are modelled with RC-jets (see Subsection 7.5.2) with pT ≥ 300 GeV,
m ≥ 50 GeV and η ≤ 2. Events with electrons found to be within ∆R ≥ 1 of an RC-jet
are removed so there is no overlap with RC-jets. Higgs candidates are modelled with
RC-jets and are required to have: 100 ≤ m < 140 GeV, contain exactly 2 b-tagged jets
tagged at the 85% WP and require a DNN score P (H) ≥ 0.6 which is in effect the defining
criteria as it implicitly, although not strictly, requires the above conditions. The DNN cut
of P (H) was chosen to maximise both s√

b
and selection efficiency ( sel. tt̄H

tot. tt̄H
) defined with

the MC truth information. If more than one Higgs candidate is found the one with the
closest mass to the Higgs mass is selected.

The classification DNN is trained to classify RC-jets into the three categories of: Higgs,
top and QCD and is the primary algorithm used to identify Higgs candidates. It was
trained with the Keras python package using tensorflow as a backend [63, 64]. The DNN
consists of 3 simply connected layers each with a width of 100 neurons, uses the “ReLU”
activation and has a softmax final layer. The softmax final layer ensures that the total
output probabilities P (H) + P (t) + P (QCD) = 1 where H and t correspond to the Higgs
and top categories. It uses categorical cross-entropy as the loss function and stochastic
gradient decent (SGD) as the optimiser. It was trained with 17 input features with all
jets being pT ordered in the event:

1. the invariant mass of the RC-jet,

2. the number of subjets in the RC-jet,

3. the b-tagging WP of the leading subjet,

4. the b-tagging WP of the sub-leading subjet,
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5. the maximum b-tagging WP of all subjets contained within an RC-jet,

6. the minimum b-tagging WP of all subjets contained within an RC-jet,

7. the remaining sum of b-tagging WP of subjets minus the WPs of the leading and
sub-leading subjets,

8. the pT of the leading subjet,

9. the pT of the sub-leading subjet,

10. the substructure variable d12,

11. the substructure variable d23,

12. the substructure variable Qw,

13. the invariant mass of all b-tagged subjets at the loosest 85% WP,

14. the invariant mass of all non b-tagged subjets,

15. the ∆R separation of the leading and sub-leading subjets,

16. the maximum ∆R separation between subjets in the RC-jet,

17. the minimum ∆R separation between subjets in the RC-jet.

As can be seen from the above list, it makes use of primarily RC-jet substructure
type information (see Section 7.5.3) with the only kinematic feature employed being the
invariant mass. Groupings are made of the most useful discriminators such as b-tagging
and ∆R separation such that they maximise the separation power between the classes
(Higgs, top and QCD), this can be seen in identical studies using the new jet collection
in Subsection 8.3.1 for the Legacy Analysis. Classically when deep learning techniques
are used these sort of groupings to create high separation features are not used because
it is hoped that the DNNs can generalize these sort of transformations from the data by
themselves. While this may be a possibility it tends to require a huge amount of data
which due to the limited training data available in this analysis is not a possibility, instead
this approach is taken which helps both increase the speed of convergence during training
to the “optimal” minima and the performance of the trained network achievable with the
given training data set. To further help maximise the use of the training MC available,
which is re-used from the analysis, it is trained on sub-sets of the samples split into odd
and even categories based on event number with the model trained on odd being applied
to even and vice versa. It is important to not arbitrarily split the MC samples because
events originating from different MC campaigns will have slightly different normalisations
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in order to account for the radiation damage sustained by the detector over time. Splitting
the data this way allows for an even distribution of events from each campaign to be seen
by the network during training.

The pre-fit P (H) distribution can be seen below for the boosted Higgs classification
DNN. Then its performance is compared to the Higgs classification BDTs used in the
resolved regions. This is achieved with confusion matrices, assessing the migration between
the truth and reconstructed Higgs-pT bins. Finally the pre-fit Data/MC agreements of
the SR reconstructed Higgs pT is shown.

(a) Data/MC agreement of the P (H) DNN out-
put in the pT ∈ [300, 450) GeV.

(b) Data/MC agreement of the P (H) DNN out-
put in the pT ∈ [450,∞) GeV.

Figure 8.11: Pre fit distributions of Data/MC agreement of the DNN Higgs tagger P (H)
distribution in the boosted SR STXS bins. The dashed red line shows the signal scaled
to the total background used to highlight shape preferences between the signal and back-
ground. The uncertainty band includes all uncertainties and correlations [1].

From Figure 8.11 we can see that there are no obvious shape disagreements in the
Data/MC agreement with all bins staying within the uncertainty bands. Interestingly tt̄H
events, as can be seen from the dashed red line, in the final bins of DNN P (H) behave
quite differently between the [300, 450) and [450,∞) GeV pT ranges.
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Figure 8.12: Performance comparison of the Higgs reconstruction algorithms for each
STXS bin split for each region using confusion matrices. Each row of “truth” p̂HT , the
matrix shows the percentage of all Higgs boson candidates with reconstructed pT in the
various bins of each region with left for dilepton, middle for resolved single-lepton and
right boosted single-lepton [1].

From Figure 8.12 we can see that compared to the resolved reconstruction BDTs the
boosted reconstruction DNN works exceptionally well albeit with a relatively large, but
expected, migration from the [450,∞) truth bin to the [300, 450) reconstruction bin which
implies that not all the decay products were captured by the RC-jet.

(a) Dilepton SR. (b) Semileptonic resolved SR. (c) Semileptonic boosted SR.

Figure 8.13: Pre fit Data/MC agreements of the various SR reconstructed Higgs pT [1].
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From Figure 8.13 we can see that there is some miss-modelling present in the Data/MC
of the reconstructed Higgs pT in each SR. This is corrected for collectively in each region
in the final fit and shows up as a large pull on the pbbT shape uncertainty in Figure 8.30.

Each region then uses a BDT to classify signal events and separate them from back-
grounds. With the boosted specific BDTs most important inputs being: the DNN output
P (H) for the Higgs candidate; the sum of the b-tagging WP for each candidate (Higgs,
hadronic top and leptonic top); the hadronic tops invariant mass; jet multiplicity and the
fraction between the sum of b-tagging WP excluding the Higgs and hadronic top candidates
over the total sum b-tagging WP.

Tops are reconstructed in a fall through scheme, with the preferred hadronic top candi-
date being reconstructed with an RC-jet that has been tagged using the DNN P (t) score.
In all cases candidates with the closest mass to the top mass will be selected from the
event. If no RC-jet candidate is found for the hadronic top then combinations of jets are
used along with the leptonic top, with the leptonic top taking preference and selecting the
combinations with the closest mass to the top mass. The leptonic top is reconstructed by
selecting the lepton in the event together with the ν candidate, which is modelled with
missing energy from the event (MET see Section 7.7), and applying a constraint based on
the W mass. Jet candidates are then selected such that mtotal is within a top mass window
where mtotal is the sum of the jet, lepton and ν masses. In the case that no leptonic top
jet candidate is found it is not set and then all jets are re-introduced to the pool of jets
available for the hadronic top. In the case that no hadronic top is found to satisfy the
mass criteria then the three hardest available jets are selected.

8.2.2 DNN VR studies

In this sub-section Data/MC comparisons are shown for DNNs input variables (17 in
total) and the output of P (t). The distributions are studied in a validation region that
is completely orthogonal to the boosted signal region. The aim of this study was to look
at the data/MC agreement of the DNN, not to probe tt̄ + b modelling, and to check
that discrepancies are covered by the fit model. The selection uses the standard ATLAS
jet/lepton definitioans and is defined as:

• = 1 lepton with pT > 27 GeV and |η| < 2.5,

• ≥ 4 jets with pT > 25 GeV and |η| < 2.5,

• ≥ 1 reclustered jet with pT > 200 GeV and |η| < 2.0,

• ≥ 1 boosted top,

• = 0 boosted Higgs,
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Here a tag by the boosted DNN means that the maximum class score is selected i.e
P (H) > P (t), P (H) > P (QCD) for Higgs candidates and P (t) > P (H), P (t) > P (QCD)

for top candidates, see previous Subsection 8.2.1 for details on the DNN.

The result of the background only combined fit on data for the total cross-section
was applied to this region (Subsection 8.2.3). Some of the smaller uncertainties were not-
included: no specific tt̄+1b, tt̄+2b, Higgs pT and no renormalisation of tt̄+b uncertainties.
The nominal tt̄+ b model used is a 5 flavour scheme sample with 4 flavour scheme sample
being used for the modelling uncertainties.

The validation region heavily selects tt̄ events (88.96%) with tt̄ + b = 5.74%, tt̄ + c =

13.92% and tt̄ + light = 69.31%. It is dominated by tt̄ + light which the fit does not
provide a strong handle on. Fakes are assumed to be negligible.

It can be seen that for all the DNN inputs the Data/MC agreement looks good and the
full list can be seen in Appendix C in Figures C.2-C.6 which show the pre-fit Data/MC
comparisons. However, for a few distributions, Mass (Figure 8.14a), d23 (Figure 8.16a)
and QW (Figure 8.18a), some shape effects can be observed and have been highlighted in
this section.

For the mass distribution (Figure 8.14a) peaks around the W and top masses can be
seen. However, a shape effect can be observed around 170 GeV. In order to investigate
this further distributions of the systematic uncertainties were looked at in Figure 8.15 for
tt̄ + light, the dominant MC sample. From this similar shape effects can be observed in
the tails of the distribtuions. Jet energy scale uncertainties are expected to be significant
because small-r jet energies largely define the mass of the reclustered jet.
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Figure 8.14: Pre-fit (a) and Post-fit (b) DNN input, RC-jet mass.
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Figure 8.15: Jet energy scale uncertainties for the reclustered jet mass distribution (Figure
C.2a): JES modelling 1 (8.15a), JES flavour composition (8.15b), JES flavour response
(8.15c) and JES pileup ρ topology (8.15b).

JES uncertainties were also found to be relevant for shape effects observed in the sub-
structure variables d23 (Figure 8.16a) and QW (Figure 8.18a). For d23 the 1st bin (at 0)
is filled with reclustered jets that have 2 subjets for which this variable is undefined. The
corresponding JES uncertainties (Figure 8.17). For QW the corresponding JES uncertain-
ties can be seen in Figures 8.19. In all cases no significant shape effects were found, with
them predominantly appearing in the tails of the distributions.
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Figure 8.16: Pre-fit (a) and Post-fit (b) DNN input, RC-jet substructure variable d23.
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(c)

Figure 8.17: Jet energy scale uncertainties for the substructure variable d23 distribution
(Figure C.3d): JES flavour response (8.17a), JES JES pileup ρ topology (8.17b) and JES
flavour composition (8.17c).
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(b)

Figure 8.18: Pre-fit (a) and Post-fit (b) DNN input, RC-jet substructure variable Qw.
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Figure 8.19: Jet energy scale uncertainties for the substructure variable QW distribution
(Figure C.4a):JES flavour composition (8.19a), JES flavour response (8.19b), JES pileup
ρ topology (8.19c) and JES pileup offset NPV (8.19d).
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For all the DNN inputs the pre- and post-fit plots can be seen in Appendix C.3 in
Figures C.7-C.11. Overall the Data/MC agreement for all distributions is within the
post-fit uncertainty bands.

The pre- and post-fit plots for the DNN output P (t) can be seen in Figure 8.20. Some
QCD tagged reclustered jets can be seen in the region taking P (t) values between 0 and
0.333. A slant in the Data/MC agreement can be seen from 0.4 → 1.0 but is within the
uncertainties. The largest contribution is from tt̄+ light with tt̄+c being scaled up ∼ 50%

by the fit. Again the Data/MC agreement is within these post-fit uncertainty bands.
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(b)

Figure 8.20: Pre-fit (a) and Post-fit (b) DNN output RC-jet P (t).

The modelling of tt̄ + light (Figure 8.21, 8.22) was looked at as it’s the largest MC
sample, we can see that these modelling uncertainties are some of the largest. The mod-
elling of tt̄+ c (Figure 8.23, 8.24)) was also included as this sample is both the 2nd largest
contribution and is scaled up by the fit. Overall it can be seen that these uncertainties
are not significant and do not show anything out of the ordinary.
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Figure 8.21: tt̄ + light systematic modelling uncertainties for the reclustered jet mass
distribution: initial state radiation (8.21a), final state radiation (8.21b), NLO generator
(8.21c) and parton shower (8.21d).
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(d)

Figure 8.22: tt̄+ light systematic modelling uncertainties for the DNN output P (t) distri-
bution: initial state radiation (8.22a), final state radiation (8.22b), NLO generator (8.22c)
and parton shower (8.22d).
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(d)

Figure 8.23: tt̄ + c systematic modelling uncertainties for the reclustered jet mass distri-
bution: initial state radiation (8.23a), final state radiation (8.23b), NLO generator (8.23c)
and parton shower (8.23d).
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Figure 8.24: tt̄+c systematic modelling uncertainties for the DNN output P (t) distribution:
initial state radiation (8.24a), final state radiation (8.24b), NLO generator (8.24c) and
parton shower (8.24d).

Overall the DNN input variables and output are well modelled in this validation region.
However, the χ2 values are not always good e.g. in the invariant mass of b-tagged subjet
distributions (Figures C.4b, C.9b) and both have a χ2prob = 0. In this case it is not much
of an issue as there is a low b-jet multiplicity in this region. Some shape effects can be
noticed for invariant mass quantities with them also showing up in the uncertainties.

8.2.3 Results

The tt̄H event classification BDT distributions for each SR, along with the event yields
and ∆Ravg

bb for the CRs (as defined in Table 8.5) are combined in a profile likelihood
fit using the TRex Fitter package [106] which uses implementations from the RooStat
framework [107, 108]. The pre-fit and post-fit event yields for the boosted region can be
seen in Table 8.6 with a breakdown for each nominal signal / background MC sample.
The fit dramatically scales down the tt̄H event yield while scaling up tt̄+ ≥ 1c. This is
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observed for both the boosted region (see Table 8.6) as well as for the resolved regions
(see paper [1]). The boosted region in particular is focused on because it is more sensitive
to new physics.

Table 8.6: Pre-fit and post-fit event yields for boosted single-lepton SRs. The post fit
yields are after the inclusive fit in all channels with all uncertainties being included in
both pre-fit and post-fit uncertainties apart from the k(tt̄+ ≥ 1b) normalisation factor
which is only defined for post-fit [1].

Post-fit values for each SR + CR (for both dilepton and single-lepton) are summarised
in Figure 8.25, it can be observed that the uncertainties increase as a function of Higgs pT .
The effectiveness of the single-lepton boosted region can be seen when looking at the two
STXS bins Higgs pT ∈ [300, 450) ∪ [450,∞) for both resolved and boosted single-lepton
regions. The boosted techniques utilised capture a good portion of the tt̄H events from
the resolved region with smaller uncertainties for equivalent bins.
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(a)

(b)

Figure 8.25: Predicted and observed event yield comparison between all regions defined
in Table 8.5 for dilepton (a) and single-lepton (b) [1].
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The boosted-single lepton post-fit DNN can be seen in Figure 8.26 for both STXS bins.
We can see from the dashed red line representing the signal scaled to the total background,
for shape comparisons, that for the STXS pt ∈ [300, 450) bin that the signal events heavily
drop off in the final DNN P (H) bin. This is mirrored by a drop in the Data/MC agreement
for that bin. In the STXS pt ∈ [450,∞) bin the opposite behaviour can be observed with
the signal events being maximally selected for the same final DNN P (H) and have good
modelling. This behaviour could be due to the DNN working better at higher pT where
the decay products are more collimated and so better encapsulated by the RC-jet. These
DNN P (H) distributions then enter into the boosted classification BDT.

(a) (b)

Figure 8.26: Data/MC agreement for boosted sing-lepton Higgs reconstruction DNN for
the two STXS bins Higgs pT ∈ [300, 450) ∪ [450,∞) [1].

The boosted-single lepton post-fit BDT can be seen in Figure 8.27 for both STXS bins.
We can see from the dashed red line representing the signal scaled to total background,
for shape comparisons, that it does indeed preferentially select signal events. In the final
bin the only significant background contamination comes from the signal-like tt̄ + ≥ 1b

background which is notoriously hard to separate. The overall Data/MC agreement for
the classification BDT is good post fit.
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(a) (b)

Figure 8.27: Data/MC agreement for boosted sing-lepton tt̄H event classification BDT
for the two STXS bins Higgs pT ∈ [300, 450) ∪ [450,∞) [1].

From Figure 8.28 we can see that the boosted Higgs candidates invariant mass is well
modelled and within the uncertainty bands. In both cases (Figure 8.14 for top candidates
mass) the fit corrected the Higgs / top candidates mass within uncertainties and shows
good modelling overall.
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Figure 8.28: Boosted single-lepton Higgs candidate invariant mass distribution [1].

The results of the inclusive fit and the fit for the dilepton, resolved and boosted single-
lepton regions can be seen in Figure 8.29. The fit is repeated for each signal channel: re-
solved single-lepton, boosted single-lepton and dilepton. Thus obtaining a signal strength
µ for each channel where µ = σtt̄H

obs /σ
tt̄H
SM . The best-fit value for µ = 0.35 with ±0.20 statis-

tical uncertainty and +0.30
−0.28 systematic uncertainty giving µ = 0.35+0.36

−0.34. This corresponds
to σ = 1.0(2.7) observed(expected) significance compared to the background-only hypoth-
esis. The global goodness of fit, which includes all the input variables to the classification
BDTs, is 92% indicating good post-fit modelling. The SM compatibility of 8.5% prediction
is made using the Asimov fit where µ is fixed to 1. Overall the result is compatible with
the [23] 36.1fb−1 result a subset of the full ATLAS Run-2 data set, with the impact of the
systematics being reduced by a factor of two.
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Figure 8.29: Fitted values of tt̄H signal strength for each region given both separately and
combined for the inclusive measurement [1].

The largest pulls on systematic observables by the fit can be seen in Figure 8.30 which
is dominated by tt̄+ ≥ 1b systematics. The largest pull ≈ 1.2σ is on the tt̄+ ≥ 1b ISR
uncertainty which is mostly driven by the renormalisation scale. This indicates that the
data favours a softer renormalisation scale in the ME calculation. It was shown that this
pull corrects the jet multiplicity (by adjusting the additional radiation) in the SRs, which
is shown for the boosted region in Figure 8.31. It was also shown that when decorrelating
this parameter between single-lepton and dilepton they both re-produced the same pull
with µ effectively unchanged.

The reconstructed shape uncertainty pbbT for the tt̄ + ≥ 1b background sample also ex-
hibits a large uncertainty, as previously mentioned and expected from the miss-modelling
present in the Higgs candidates pT present in the pre-fit Figure 8.13c. This uncertainty
is defined such that a +1σ variation corresponds to correcting the reconstructed Higgs pT
shape by adjusting the background model as can be seen in Figure 8.32 for the boosted
Higgs candidate. The effect of this was assessed by replacing this with decorrelated free-
floating tt̄+ ≥ 1b normalisation factors across the STXS bins (which have different sensi-
tivities to different decay modes) and regions with no bias being observed.

The normalisation factor for tt̄+ ≥ 1b background is left free floating in the fit and is
found to be k(tt̄+ ≥ 1b) = 1.28± 0.08 as can be seen in Figure 8.30. The tt̄+ ≥ 1b:NLO
match. dilep pHT ∈ [0, 120) GeV uncertainty is the final systematic with a pull close to 1σ

and is ranked 6th in its impact. To investigate this a fit was performed with an alternative
tt̄+bb̄ MC sample using the Sherpa 2.2.1 generator with no significant bias being observed.
Due to the number of nuisance parameters used in the fit there is a good chance that any
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of the tt̄+ ≥ 1b NLO matching uncertainties can be pulled to an extreme value when
looking from a purely statistically standpoint, this is calculated to be 17%.

Figure 8.30: Ranking plot of the 20 nuisance parameters with the largest post-fit impact
on µ in the fit. Statistical uncertainty nuisance parameters are not included. The blue
rectangles define the impact on µ with the blue outlines referring to pre-fit impact and
the solid blue referring to the post-fit impact. Impacts are calculated by fixing and then
fitting each nuisance parameter individually to its best fit value shifted by the pre(post)-fit
uncertainties and comparing to the nominal best-fit value of µ [1].
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(a) (b)

Figure 8.31: Pre-fit (a) and post-fit (b) jet multiplicity distributions for the boosted SR,
highlighting the tt̄+ ≥ 1b ISR correction [1].

Figure 8.32: Post-fit pT distribution for the boosted Higgs candidate [1].
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The combined fit is repeated for each combined STXS bin in order to obtain a µ

signal strength for each. The results of this can be seen in Figure 8.33 with the same
fit parameters entering into the fit as before with the inclusive fit but in the 11 STXS
bins defined for the regions. The free floating normalisation factor is found to be k(tt̄+ ≥
1b) = 1.28 ± 0.08 in agreement with the inclusive fit. The global goodness of fit is 88%
indicating good post-fit modelling with a SM compatibility of 45%, which in similar fashion
to before was obtained by fixing the µ in each final STXS bin to 1. Overall the fit has
similar behaviour to the inclusive fit, broadly matching the pulls and constraints on the
nuisance parameters. The first combined STXS bin (pT ∈ [0, 120) GeV) is dominated by
tt̄+ ≥ 1b modelling systematics with statistical uncertainties dominating in the rest.

Figure 8.33: Fitted values of tt̄H signal strength for each combined STXS bin and the
inclusive signal strength [1].

The cross-section upper limits are also derived for each combined STXS bins and can
be seen in Figure 8.34 where the 95% confidence levels are shown. For this the likelihood
function used for measuring the signal strengths is modified. The PDF and signal scale
uncertainties are omitted because they have no impact on the cross-section. Scale effects
are still present through the inclusion of ISR uncertainties but have no impact on the
overall cross-section. The inclusive cross-section of 507 fb−1 is used to calculate the limits
with the relevant fraction being used for each combined STXS pT bin to establish said
bins cross-section prediction.
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Figure 8.34: 95% CL simplified template cross-section upper limits for each of the com-
bined STXS pT bins as well as for the inclusive limit [1].

Overall systematic uncertainties are slightly more dominant for the inclusive measure-
ment with tt̄ modelling systematics dominating the ranking plot (see Figure 8.30). The
boosted region suffers slightly more from statistical uncertainties (see Figure 8.29). The
Lepton + Jets Legacy Analysis reuses the ATLAS Run-2 data set, so statistical uncer-
tainties are unexpected to change. However, it is expected to benefit from improved tt̄

modelling. The boosted region is also expected to benefit from an improved b-tagging al-
gorithm with better performance at high pT . Statistical uncertainties should also improve
once Run-3 data becomes available with the full combination expected to triple the data
available for analyses.

When comparing to the CMS tt̄H → bb̄ results using: 35.9fb−1 [24], 41.5fb−1 and
77.4fb−1 [25] of data. This corresponds to the 2016, 2017 and 2016-17 combination which
are subsets of the CMS full Run-2 data set of 137.24fb−1. They achieved significances σ =

1.6(2.2), σ = 3.7(2.6) and σ = 3.9(3.5) observed(expected) and measured µ = 0.72+0.45
−0.45,

µ = 1.49+0.44
−0.40 and µ = 1.15+0.32

−0.29 respectively. The previous ATLAS result [23] uses a
36.1fb−1 subset of the full Run-2 dataset and achieves a significance of σ = 1.4(1.6) and
measured µ = 0.84+0.64

−0.61. From this we can see that CMS had and up fluctuation in their
data while ATLAS had a down fluctuation.

8.3 Lepton + Jets Legacy Analysis

The ATLAS collaboration continuously develops its analysis techniques including the al-
gorithms and objects used in them. Because the previous result was ultimately dominated
by tt̄ modelling systematic uncertainties it was decided that a re-analysis of the existing
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Run-2 ATLAS data set, referred to as the tt̄H lepton + jets “Legacy” analysis, would
be beneficial as improvements in both tt̄ modelling and the analysis techniques used were
now available. It is not expected that any statistical uncertainties will change as there
will be no new data available due to the LHC run periods (Section 3.1).

The primary updates from ATLAS that would affect the analysis are the change in
jet collections from EMtopo (Subsection 7.3.1) to PFlow (Subsection 7.3.2) jets and the
updated b-tagging algorithm from MV2c10 (Subsection 7.4.1) to DL1r (Subsection 7.4.2).
PFlow jets should help reduce the pile-up, most pronounced with low pT jets, as such it
should most significantly impact the resolved regions. DL1r has better performance than
MV2c10 with the largest improvements at high pT which should help the boosted region in
particular. The b-tagging update also mirrors a more general shift in the particle physics
community from typical MVA based methods, such as BDTs, to more modern machine
learning neural network based techniques, such as DNNs, deep sets and graph networks
(Section 6.2). This is apparent in both standard ATLAS techniques (aimed for general
use by analyses) and analysis specific techniques (developed for specific use in tt̄H).

Overall many things are being re-developed for all the previous signal regions (dilepton,
semi-leptonic resolved and semi-leptonic boosted), from top / Higgs reconstruction to
signal classifiers. For top / Higgs reconstruction, new Higgs / top taggers were developed
for each region with deep-set [109], approaches being used in both the resolved dilepton
and single-lepton regions. The Higgs reconstruction for the boosted region, otherwise
referred to as boosted-jet tagging, was already DNN based and has been re-trained with
the new jet collections and b-tagging updates. A number of studies looking into different
network topologies, NN optimisers, extra features (in the form of sub-structure variables),
different jet-objects (namely RC-jets Subsection 7.5.2 and LR-jets Subsection 7.5.1) and
finally compared to other boosted Higgs-taggers developed centrally by ATLAS for more
general use cases. The rest of this section will focus on these studies done for the boosted
region.

8.3.1 DNN Model Optimisation

In the initial full Run-2 result the boosted Higgs-tagger was DNN based utilising a simply
connected feed-forward DNN with 3 hidden layers each with a width of 100, using the
ReLU activation with a softmax final layer giving the probabilities for each category,
P (H), P (t) and P (QCD) as an output, such that the sum P (H) + P (t) + P (QCD) = 1.
It was trained with only ttH data from the MC16a Monte-Carlo campaign which mirrors
the ATLAS 2015-2016 data taking periods of Run-2 (see Chapter 5). Because the physics
processes being simulated are stochastic in nature, Monte-Carlo simulations are either
over- or under- produced compared to the predicted cross-section. They are then either
weighted to the correct luminosity (139fb−1 for the full Run-2 data set), this is done either
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to conserve CPU power in the case of large samples or to ensure adequate statistics in
the case of small samples. In the case of tt̄H it is over produced and weighted down to
provide adequate statistics.

Acquiring training data is one of the major challenges when training DNNs, because
of this the same samples from the analysis were used. To avoid training and testing on
the same samples the samples were split into odd and even event numbers, with the DNN
trained on odd event numbers being applied to the even event numbers and vice versa.
Deep learning typically benefits from training with larger data sets so the full Run-2 MC
campaign (MC16a/d/e) was used for training, giving approximately 3 times the training
data. Adding in tt̄, the primary background, as training data was also investigated.
However, this only further unbalances the data set for training (see Figure 8.35b). For
classifiers the training data, for optimal results, should be equally balanced between classes.
This can be achieved in two ways by either weighting the loss or randomly oversampling
certain classes, with the former being chosen.

The class imbalance can be seen from Figure 8.35, which must be accounted for during
training as the network should “see” balanced classes. Otherwise for a correct guess the
network can simply pick the dominant class as it will be a correct guess the majority of the
time. MC samples are either over/under produced compared to the expected cross-section
for a given luminosity and then weighted to the expected cross-section. This is done in
order to either provide adequate statistical variation for small samples, such as tt̄H, or to
use less CPU cycles for large ones, such as the tt̄+jets background. These normalisation
weights were then built into the class weights used in training with

(WQCD,WHiggs,Wtop) =

∑N
n Wnormn

3× (
∑Nq

q Wnormq,
∑Nh

h Wnormh,
∑Nt

t Wnormt)
,

where the sum of these normalisation weights gives the total number of jets scaled to
luminosity with the subscript n denoting for all jet classes and q, h, t for Higgs,top and
QCD classes respectively. With this scheme it was decided that adding the tt̄ background
sample into training was not desirable because it would reduce the normalised Higgs
fraction too extremely (see Figure 8.35b) and cause rounding errors in the class weights
such that the classes would not be properly balanced.
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(a) Class distribution of jets in the tt̄H sample
weighted to luminosity.
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(b) Class distribution of jets in the tt̄H + tt̄
samples weighted to luminosity.

Figure 8.35: Class distributions for tt̄H and tt̄, from the AF2 sample using RC-jets.

While generating the new samples the hyper parameters of the network were tested
with the Bayesian optimisation algorithm described in Subsection 6.2.5 to see how optimal
they were. However, it is often the case that this approach can yield little to no results thus
it was only perused while the new samples were being generated. An implementation from
the Scikit-Optimize python library was used, with the surrogate function being a Gaussian
Process and using the default gp hedge acquisition function. The search space used was:
the width of hidden layers [50,100], the number of hidden layers [3,5], the optimisation
algorithm being used by the DNN [adam, stochastic-gradient-decent (SGD)] (typically
the popular adam algorithm converges faster than SGD), the learning rates [0.01:0.05]
(motivated by the modified class weighting). Some input parameters were also added to
the search space namely the substructure variables: d12, d23, Qw, the subjets inv.-mass of
b-jets and the subjets inv.-mass of light-jets. This was done because it was observed from
the previous analysis that these were the worst modelled distributions in terms of data/MC
agreement. The metric being minimised was 1−accuracy (see Subsection 6.2.5) which was
weighted with the class weights. The results of the hyper parameter optimisation can be
seen in Figures 8.36 with no real performance gain found. The iterations of the algorithm
did not surpass an accuracy of 0.70 (see Figure 8.36a), with its best variation using all
of the input features, a depth of 3, a width of 84, a learning rate of 0.01 and the adam
optimizer. The training history of the “best” model can be seen in Figure 8.36b and its
confusion matrix in Figure 8.36c. However, this performance was only marginally better
than the setup from the previous round which had an accuracy of 0.68. This is a small
enough difference to be accounted for by statistical variations between trainings and so it
can be concluded that the previous setup was already optimal.
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(a)

(b)
(c)

Figure 8.36: Overall performance of Bayesian hyper-parameter optimisation iterations
evaluated with the accuracy metric (a). Training history (accuracy) of the best

performing model (b) and its confusion matrix (c).

It was found that the popular adam optimiser (described in Section 6.2) converged
significantly faster so variations using both the adam and SGD optimisers were trained
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with the new samples. However, the variations trained with the adam optimiser started to
exhibit over-training at around 50 epochs where the training and validation sets started
to diverge in metrics such as accuracy and precision (see Figure 8.38), so a training epoch
of 50 was chosen. It was found that the SGD optimiser variations would exhibit larger
variations between successive trainings compared to the previous jet collection, this can
be seen from the training histories in Figure 8.37.
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Figure 8.37: Repeated training histories to evaluate performance and reproducibility of
the SGD optimiser upon re-training the network 3 times via metrics (loss, accuracy,

precision and recall) with Pflow-jets.
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Figure 8.38: Repeated training histories to evaluate performance and reproducibility of
the adam optimiser upon re-training the network 3 times via metrics (loss, accuracy,

precision and recall) with Pflow-jets.

Figure 8.39: Metrics, purity = selected tt̄H/tt̄ = TP/FP , tt̄H selection efficiency =
TP/tt̄H otherwise known as true positive rate.

The DNN variations were then compared with more analysis specific metrics, namely
the selected tt̄H/tt̄ referred to as purity, an approximation of s/b since b > tt̄ it wasn’t
refereed to as such, and the tt̄H selection efficiency as can be seen in Figure 8.39. When
comparing the P (H) distributions in a loose region selecting an event with ≥ 1 RC-jet
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with ≥ 2 subjets. It can be seen that the SGD variation has a higher selection efficiency
(0.484 vs 0.369) when selecting events with at least 1 Higgs tag, defined here as an RC-jet
with P (H) > P (t) and P (H) > P (QCD). This can be seen in Figures 8.40c and 8.40d
although the adam variation achieves a higher purity this can be adjusted with the cut
on P (H). It should also be noted that due to the large variations found with the SGD
optimiser between successive trainings (see Figure 8.37) the P (H) distribution (Figure
8.40a) is not particularly smooth. This is due to the final DNN being trained/validated
on odd/even samples (and vice versa) and then stitched together.

(a) (b)

(c) (d)

Figure 8.40: The Higgs probability P (H) DNN output distribution comparison for SGD
(a) and adam (b) DNN variations and their respective Higgs tagged events (c) and (d)

for AF2 tt̄H events using RC-jets.

Because of this the SGD algorithm was chosen for the next round of studies. These
included investigating the effectiveness of different boosted jet collections, namely RC-jets
and LR-jets described in Subsection 7.5.2 and Subsection 7.5.1, and if using additional
substructure variables, namely the n-subjetyness ratios τ32 and τ21 (described in Subsection
7.5.3), as features during training provides any additional benefit to the network. Because
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LR-jets are not re-clustered from small-r jets it is less trivial to associate small-r jets with
them. This is required because the ATLAS b-tagging algorithms are designed to work with
small-r jets and seeing as the H → bb decay mode is being investigated, matching two
b-tagged jets to a boosted object is one of the primary ways to identify a boosted Higgs
decay. This sort of substructure information, among others, is one of the reasons that
feature engineering (see Subsection 6.2.6) is used to try to improve the performance of
the network. The matching scheme used here to match small-r jets to LR-jets was simply
∆R matching described in Subsection 7.5.1, as opposed to using the more complicated
ghost-track jets. Then the various training features used for both sets of jet collections
were evaluated with separation power in terms of Higgs, top and QCD jets this can be
seen in Figure 8.41. It can be seen that for some features the separation power is more
pronounced with RC-jets as is the case with the n-subjetyness ratios τ32 and τ21. The use
of certain features and jet-collections requires the full simulation of the ATLAS detector as
opposed to the fast simulation algorithm (AF2). The details of this are laid out in Section
5.5, this is a key consideration when assessing the performance or potential modelling
benefits that must be kept in mind when designing the analysis as full simulation using
GEANT-4 [110] can be rather CPU intensive.

(a) Separation power of input features with RC-
jets.

(b) Separation power of input features with LR-
jets.

Figure 8.41: Separation power of input features between Higgs, top and QCD jets.

With the above mentioned in mind 4 new DNNs were trained using SGD and full
simulation and assessed, with tt̄H purity and tt̄H fraction to see if there was any benefit,
to including these features during training. Both LR-jets and the n-subjetyness ratios
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(a) (b)

(c) (d)

Figure 8.42: The Higgs probability P (H) DNN output distribution comparisons of
RC-jets (a,c) and LR-jets (b,d) trained with additional n-subjetyness variables, τ32 and

τ21, (a,b) for FS tt̄H events.

require full detector simulation. The output distributions can be seen in Figures 8.42d
with the additional τ variables creating an interesting looking hump in both jet collections
at around 0.65 in Figure 8.42a and 0.35 in Figure 8.42b. This is indicative of the lower
separation power achieved in these τ variables with the LR-jets (see Figure 8.41).

However, after selecting events with a Higgs tagged boosted-jet, it can be seen that
there was no performance gain from adding the τ variables. This can be seen in Figure
8.43, with the RC-jet DNN variations achieving the best selection efficiency. There is
no notable difference in selection efficiency or sample purity between the RC-jet DNNs
trained with or without the τ variables. A final comparison of these two metrics (selection
efficiency and sample purity) for the DNN variations can be seen in Figure 8.44 which
shows the RC-jet DNN variations performing better (achieving a higher sample purity for
a given selection efficiency) than the LR-jet variations, with similar performance observed
between RC-jet variations. Because of this the 3 DNNs using RC-jets were selected for
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further comparisons with the centrally available Xbb tagger using LR-jets. The training
histories for the final 3 variations can be seen in Figures 8.45 to 8.47 each trained for 200
epochs with the precision of both odd and even variations converging. Even though the
LR-jets and τ variables did not provide a reason to request full simulation samples they
also did not provide a reason not to request full simulation studies as the main benefit
for using full simulation would become apparent in the Data/MC agreement of the DNN
input features.

(a) (b)

(c) (d)

Figure 8.43: The corresponding Higgs tagged events for Figure 8.42 comparing the Higgs
probability P (H) DNN output distributions for RC-jets (a,c) and LR-jets (b,d) trained

with additional n-subjetyness variables, τ32 and τ21, (a,b) for FS tt̄H events.
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Figure 8.44: ROC curve between tt̄h selection efficiency and tt̄H purity for DNN variations
comparing: FS samples to AF2 samples with RC-jets and RC-jets to LR-jets with FS-
samples.
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Figure 8.45: Training history metrics (loss, accuracy, precision and recall) for the AF2
model using RC-jets.
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Figure 8.46: Training history metrics (loss, accuracy, precision and recall) for the FS
model using RC-jets.

0 50 100 150 200

0.0009

0.0010

0.0011

0.0012

model loss

0 50 100 150 200

0.4

0.5

0.6

model accuracy

train_odd
val_even
train_even
val_odd

0 50 100 150 200
epoch

0.2

0.3

0.4

0.5

0.6

0.7

model precision

0 50 100 150 200
epoch

0.0

0.1

0.2

0.3

0.4

model recall

Figure 8.47: Training history metrics (loss, accuracy, precision and recall) for the FS
model with additional n-subjetyness variables using RC-jets.
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8.3.2 Xbb tagger studies

Taking the most successful DNN variations (using RC-jets) comparisons are made with
the centrally produced Xbb Higgs tagger. This is done in two regions: a loose region
to assess the overall performance of jet tagging; and the boosted signal region, from the
previous analysis, to assess the performance in the region most sensitive to the signal.
These regions are defined below:

• Loose region: ≥ 4 jets & ≥ 1 RC-/LR-jet with ≥ 2 sub/∆R-jets.

• Boosted region: ≥ 4 jets & (≥ 4 b-tag @ 85 & ≥ 2 b-tag @ 77 jets) & (≥ 1 RC-
/LR-jet with pT ≥ 300 GeV & and ≥ 1 RC-/LR-jet with ≥ 2 sub/∆R-jets) ≥ 1

RC-/LR-jet with 100GeV ≤ M < 140 GeV and = 2 b-tag subjets @ 85 + ≥ 2

additional b-tag jets @ 77.

The main advantages of utilising this tagger would be that it was trained with a
different data set, so it could potentially have a larger training set as well as remove
potential sources of human error e.g training and running the network on the same subset
of data. It was trained using LR-jets pT and η information and the 3 leading sub-jets b-
tagging information in this case the outputs of the DL1r algorithm (P (b), P (c), P (light))
with the LR-jets “sub-jets” being defined with ghost associated track-jets scheme described
in Section 7.5.1. An RS graviton → hh→ bbbb was used as the signal sample and JZW dijet
+ Z ′ → tt was used as the background sample. Because the Xbb tagger was designed as a
general purpose tagger, intended for use both in searches e.g Higgs doublet models and for
SM measurements, there was a large emphasis put on decorrelating it from the invariant
mass of the Higgs and so no sub-structure variables or any invariant mass quantities
were used. Due to this only the LR-jet kinematics and the associated small-r jets b-
tagging information was used, as such feature engineering was not utilised to increase the
performance. Rather it was hopped that given a deep enough network with a large enough
data set it would be able to learn specific features from the data. It can be seen from
Figure 8.41 that the sub-jet type b-tagging information are the most important in terms
of Higgs/top separation (in green) with the boosted-jets invariant mass followed by Qw

which is the invariant mass of the W boson and indicative of a top decay. The invariant
mass of the sub-jets light-jets are still counted as b-tagging information since it uses the
DL1r algorithm to tag them as such. So overall apart from invariant mass quantities the
Xbb tagger is supplied with much the same information as the DNNs specifically trained
for tt̄H. The Xbb tagger also gives 3 output probabilities for each class P (H), P (top) and
P (light), these are then combined into a discriminant, D = ln

(
P (H)

(1−ftop)P (QCD)+ftopP (t)

)
,

with ftop being set to 0.25.
The main reason for including comparisons in the Loose region was to remove any bias

from ∆R matching small-r jets with LR-jets being introduced into the region definition
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prior to comparing the taggers themselves. The taggers were then assessed with similar
ROC curves comparing selection efficiency and sample purity described previously in Sub-
section 8.3.1. This was done both with the P (H) output and with the discriminant D,
with the DNNs definition mirroring the Xbb definition.

From the ROC curves in Figure 8.48 comparing the performance in the Loose region
we can see that the Xbb tagger performs comparably to the DNNs in both relative terms
(Figures 8.48a) and on a per event biases (Figure 8.48b). When looking at our sample
purity vs selection efficiency ROC (Figure 8.48a) there is little distinction to be made
however, the Xbb curve (red) fails to achieve a sample purity greater than 0.2 although
produces a slightly higher selection efficiency. The difference in selection efficiency disap-
pears when looking at the raw number of events numbers as can be seen in Figure 8.48b
and is due to the slight lower number of events with LR-jets. It can also be seen that if
selecting a tight cut then the DNN variations can achieve a selection with considerably
higher sample purity. The story is much the same when looking at the standard ROC
curve of true positive rate (TPR), in this case selection efficiency, and false positive rate
(FPR). Because they are inconclusive they have been included in Appendix D in Figures
D.1a and D.1b. Again the Xbb tagger performs comparably when looking at relative
events and slightly worse on raw events.
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Figure 8.48: ROC curves comparing DNN variations and the Xbb tagger in the Loose
region.

When comparing them in the boosted region, they are both compared to each other
as well as the results from the previous paper, where a DNN cut of P (H) = 0.6 was used.
As these new DNNs have been re-trained a DNN cut of P (H) = 0.6 used previously will
not behave the same and rather an appropriate cut should be chosen with similar perfor-
mance. This was done by selecting P (H) values with a similar number of tt̄ background
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events. For the ROC curves in Figure 8.49 the difference between the Xbb tagger and the
DNN variations are more pronounced showing clearly better performance with the DNN
variations in both TPR (selection efficiency) and sample purity.
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Figure 8.49: ROC curves comparing DNN variations and the Xbb tagger in the Boosted
region.

From Table 8.7 we can see that when selecting for a similar (or less) number of back-
ground events the DNNs perform better with a smaller number of background events
(460.6 for AF2) and a higher number of signal events (47.1 for AF2) using a P (H) cut
of 0.4 for the AF2 variation. This shows promising performance with a slight increase
compared to the last round.
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DNN var. DNN cut tt̄H purity tt̄H sel. eff. tt̄H tt̄ Data

paper 0.6 0.090 - 43.6 483 699

AF2 0.40 0.102 0.86 47.1 460.6 -
FS 0.45 0.099 0.84 44.7 451.0 -

FS + τ 0.40 0.097 0.85 45.7 469.1 -

Table 8.7: Comparison of DNN cuts with the previous analysis. The DNN variations
have a higher tt̄H signal yield when selecting for a similar number of tt̄ background

samples.

However, when comparing the Xbb tagger to the DNN variations it should be noted
that as it uses LR-jets it has to be calibrated as opposed to using a DNN trained with
RC-jets whos individual components are already calibrated. This is because RC-jets are
re-clustered from small-r jets which are already calibrated. Because of this the Xbb tagger
has to be used with one of its pre-defined W.P. which are defined with the discriminant
D = 3.09 (50%), D = 2.44 (60%), D = 1.76 (70%). As such in Figures 8.50 8.51, the
previous ROC curve comparisons are repeated using the discriminant D and tell the same
story as before. The artifacting that can be seen in Figure 8.51 is due to the discriminant
D being undefined for some points at low selection efficiencies.
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Figure 8.50: ROC curves comparing DNN variations and the Xbb tagger using the
discriminant D in the Loose region.

Because the Xbb taggers W.P. must be used a comparison of all 3 W.P. is outlined in
Table 8.8 with DNN D values selected with similar number of signal events for each. It can
be seen that for each of the Xbb W.P. the DNNs select a lower number of tt̄ background
events and achieve a higher sample purity.
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Figure 8.51: ROC curves comparing DNN variations and the Xbb tagger using the
discriminant D in the Boosted region.
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DNN D tt̄H purity tt̄H selection efficiency tt̄H tt̄

Xbb 3.10 0.163 0.51 25.1 153.8
Xbb 2.45 0.130 0.64 31.1 239.8
Xbb 1.75 0.103 0.76 37.2 361.0
AF2 1.85 0.214 0.47 25.5 119.3
FS 1.90 0.208 0.47 25.2 121.1

FS + τ 1.70 0.204 0.48 25.5 125.1
AF2 1.35 0.181 0.57 31.2 172.2
FS 1.40 0.160 0.59 31.5 196.7

FS + τ 1.25 0.158 0.58 31.3 197.9
AF2 0.80 0.143 0.68 37.3 261.4
FS 0.95 0.127 0.71 37.7 297.5

FS + τ 0.80 0.124 0.70 36.6 302.2

Table 8.8: Comparison of the DNN- with the Xbb-taggers. The DNNs have a lower tt̄
background yield when selecting for a similar number of tt̄H signal samples.

Overall from these studies there is no observed benefit from using full simulation sam-
ples and the extra τ n-subjetyness variables as training features. The Xbb tagger also
performs worse when looking in the Boosted Signal region as defined with the previous
analysis. For a similar performance to the previous paper a recommendation for using the
AF2 variation, with a P (H) = 0.4 cut, can be made as it provides the best performance
when compared to the previous paper, the other DNNs and the Xbb tagger selecting 47.1
tt̄H events with less background events and achieving a higher sample purity. In addition
it requires no full simulation samples. However, if full simulation samples are requested,
motivated by other studies, than it would be advantages to also use one of the DNNs
trained with those samples selecting a cut value from Table 8.7. It can be assumed that
the Xbb tagger performs worse than bespoke DNNs trained here because the features
used in the DNNs were specifically chosen for Higgs / top separation, the Xbb tagger has
been trained with a smaller top quark fraction and was designed to not make use of any
invariant mass quantities.

8.4 Summary

Overall there is promising performance shown for boosted topologies in tt̄H analyses with
significant contributions when combined with resolved topologies.

In the all-hadronic feasibility study in Section 8.1, it was shown that due to the high
QCD-multijet background boosted topologies suffer with low statistical significance. It is
assumed that this is because of the presence of real b-jets coming from the QCD-multijet
background that can’t discriminated against with b-tagging algorithms such as MV2c10.
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In the Lepton + Jets Full Run-2 Analysis in Section 8.2, the contribution of the boosted
region to the final measurement was shown. This includes its contributions to both the
inclusive fit and the differential cross-section (STXS) measurements. This was overall sig-
nificant and was extremely important for the final two STXS bins [300, 450) and [450,∞).

Finally in Section 8.3, on-going work re-developing the boosted DNN tagger for the
Lepton + Jets Legacy Analysis is shown. From this it can be seen that bespoke DNN-Higgs
taggers still outperform ones aimed for more general purposes. A slight performance im-
provement can also be observed when comparing the newly trained DNN to the previously
trained one used in the Lepton + Jets Full Run-2 Analysis.
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Chapter 9

Conclusions

Measurements of the tt̄H cross-section are the most direct way of accessing the top Yukawa
coupling (yt), one of the free parameters of the SM. Since the H → bb̄ decay mode is the
most prevalent it stands to reason for analyses to specifically target this decay, in order
to gain as much statistics as possible, given the already rare nature of tt̄H production at
the LHC.

Overall the work presented here was focused on applying ML techniques for boosted
Higgs reconstruction, with the H → bb̄ decay mode, for use in tt̄H analyses. There were
three separate studies presented:

• An all-hadronic feasibility study, which aimed to assess the statistical significance of
boosted topologies;

• Lepton + Jets Full Run-2 Analysis, which showed the contributions provided by the
semileptonic boosted region to the final result;

• Lepton + Jets Legacy Analysis, which described the retraining of the deep neural
network (DNN) used for boosted Higgs identification in the upcoming paper.

From the all-hadronic feasibility study it was seen that boosted topologies suffered with
low statistical significance. This was assumed to be because of real b-jets present in the
QCD-multijet background which are not rejected by b-tagging algorithms. This intern
led to the QCD-multijet background being irreducible thus making any contributions
statistically insignificant.

The Lepton + Jets Full Run-2 Analysis uses 139fb−1 of data at
√
s = 13 TeV. It

is the first tt̄H, H → bb̄ differential cross-section measurement by ATLAS. It can be
seen that the use of DNNs for boosted Higgs reconstruction yielded impressive results
when compared to the BDTs used in the resolved regions, see Figure 8.12. The result
of the inclusive profile-likelihood fit is µ = 0.35+0.36

−0.34 which corresponds to σ = 1.0(2.7)

observed(expected) significance compared to the background-only hypothesis. Overall the
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result is compatible with the previous 36.1fb−1 ATLAS result [23], which used a subset
of the data, with the impact of the systematics being reduced by a factor of two. The
boosted region was primarily defined through the selection of a boosted Higgs candidate
in the event, which was identified with the DNN tagger. The DNN primarily made use of
b-tagging, ∆R and kinematic information as well as some substructure variables that do
not use the clustering history of the jet algorithms. The contribution of the boosted region
to the inclusive result as well as to the differential cross-section, STXS bins [300, 450) and
[450,∞) GeV, are significant µ = 0.32+0.61

−0.57.
The Lepton + Jets Legacy Analysis is a re-analysis of the Run-2 ATLAS dataset with

updated jet collections, b-tagging algorithms, and analysis techniques. It is also set to
benefit from improved tt̄ modelling. The retraining of the DNN for boosted Higgs classi-
fication is shown, along with comparisons made between different boosted jet collections,
including re-clustered/large radius jets. It was found that the previously used re-clustered
jets were the more advantageous option due to their ease of region combination with re-
solved regions (since systematics directly propagate over), the fact that they don’t require
full detector simulation and can be used with Atlfast-2 samples, and that they overall have
smaller uncertainties than large radius jets. It was also shown that training bespoke DNNs
for boosted Higgs reconstruction was still advantageous for the analysis, especially as the
general-purpose boosted H → bb̄ (Xbb) taggers available in ATLAS are only trained for
large radius jets. Additionally, the heavy focus on mass decorrelation necessitated by the
general intended use of the Xbb tagger resulted in worse Higgs/top separation, resulting in
a lower yield of tt̄H events with a higher background contamination when applied to the
previously used signal region. As such, the advantages of the bespoke DNN are numerous
enough to warrant the additional time taken to train it.

With ATLAS having commenced taking data in Run-3, there will be ample statistics
available for improved measurements of tt̄H, H → bb̄. The anticipated Run-2 Legacy
result, currently awaiting unblinding, also benefits from considerable improvements to both
resolved regions, with DNN-based techniques now reconstructing the Higgs candidates in
the respective regions. The boosted and resolved semileptonic regions now share a common
deep set for event classification, which can help with edge cases where one event may be
better reconstructed in the resolved or boosted regions. There are also early indications
of improvements in tt̄+jets modelling when comparing to the previous result, which was
dominated by tt̄+jets modelling systematics.
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Appendix A

Qualification Task ReadMe

This appendix shows the ReadMe file made for the metrology script designed for the
ITk strip production, which served as my qualification task, detailed in Chapter 4. The
ReadMe served as the sign-off document for the task and details how to draw arbitrary
geometries of chips with the software package.
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readme.md 07/11/2022

1 / 4

METRO

This package provides a framework to perform checks on module metrology in the x-y plane. It is intended

to be used for the ATLAS ITK strip modules upgrade and will work for both the barrel and end-cap modules.

It primarily calculates the maximum and minimum wire bonding angles for hybrids given the measurement

of 2 of the fiducials on the hybrid. It also will calculate if there are any physical constraints (i.e. the hybrid is

overhanging the module). It then outputs the results into a JSON file.

Description

It is written in Python 2 and uses mostly standard python packages:

copy

json

As well as common non-standard packages:

matplotlib

numpy

Usage

To run:

./main.py 

The strip-modules will have to be added to the modules python package and added to the nested if

statement at the begging of the setup function in setup.py i.e.

elif str_module == "ls": 
from modules import ls as cfg  

The modules are defined as dictionaries in the modules directory and should be added as strip-
module.py (i.e. ls.py)

touch modules/ls.py 

Then a line should be added to the modules/__init__.py file importing the dictionary i.e.

from ls import ls 
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A module dictionary is defined with the a coordinate system that has the origin at the bottom left corner.

All objects on the module are defined in this way and their relative bottom left corners (blc) then define

their coordinates on the module. Objects are to be defined as a set of coordinates going anti-clockwise

starting from it's bottom left corner. Objects can be arrayed but the spacing must be specified.

The allowable objects that can be defined are:

module

hybrids

ASICs

strip pad

constraints (i.e. power board)

At the top level of the dictionary the module is defined with the keys:

module - containing it's name

def - the list of x,y coordinates given anti-clockwise

"str"_hybrid - where "str" is a unique string

strip_pad
bond_angle - giving the minimum wire bonding angle

"str"_constraint - where "str" is a unique string

A hybrid is defined in the module as a dictionary with the keys:

def - the list of x,y coordinates given anti-clockwise

blc - the x,y coordinates of the bottom left corner relative to the module

orientation - set as top or bot

ASIC
fid1 - the x,y coordinates of a fiducial to be measured

fid2 - the x,y coordinates of the other fiducial to be measured

An ASIC is defined in the hybrid as a dictionary with keys:

def - the list of x,y coordinates given anti-clockwise

blc - the x,y coordinates of the bottom left corner relative to the hybrid of the first ASIC in the array

(left to right)

array - the number of ASICs to be arrayed

spacing - the spacing between ASICs in the array

The strip pads are dignified by the most extreme (left/right most) ones in the module as a dictionary with

keys:

dim - the width and height of a strip pad

top_left_pad - the x,y coordinates of the pad relative to the ASIC

top_right_pad - the x,y coordinates of the pad relative to the ASIC

bot_left_pad - the x,y coordinates of the pad relative to the ASIC

bot_right_pad - the x,y coordinates of the pad relative to the ASIC

Constraints can be defined such as the power_board as a dictionary in the module with keys:
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def - the list of x,y coordinates given anti-clockwise

blc - the x,y coordinates of the bottom left corner relative to the module

All lists of coordinates (def) should be defined as tuples of (x,y) values in numpy arrays starting from the

bottom left corner (blc) and going anti-clockwise. i.e.

"def":np.array([ (0.0,0.0), (0.0,17.0), (20.5,17.0), (22.0,15.5), 
(97.5,15.5), (97.5,0.0) ]) 

A circle segment can be defined by adding and ("R",1000.0) in sequence between the two enclosing

points where the second number is the radius of curvature in mm. i.e.

"def":np.array([ (0.0,0.0), (0.0,17.0), (20.5,17.0), (22.0,15.5), 
(97.5,15.5), ("R",1000.0), (97.5,0.0) ]) 

The bottom left corner (blc), spacing, dim and top/bot_left/right_pad should be inputted as a tuple. i.e.

"blc" : (1.89,28.235) 

The fiducials fid1 and fid2 should also be inputted as a tuple in a numpy array. i.e.

np.array([1.0,1.0]) 

All numbers should be inputted as floats and are in mm.

An example can be found for the short strip module in modules/ss.py although it should be noted that

some values in this file are placeholders and should be changed/checked. This includes: fid1 , fid2,

strip_pad[dim], strip_pad[top_left_pad], strip_pad[top_right_pad],

strip_pad[bot_left_pad], strip_pad[bot_right_pad], bond_angle.

Measurements are to be fed in with a csv file in the measurements directory, with the input_file_name
path changed in main.py. It should have the structure: "str"_hybrid,x1,y1,fid1,x2,y2,fid2 with

no empty lines, an example is given in measurements/test_measurements.csv.

It's output is a JSON file in the measurements directory that will be uploaded to the database. It contains

the information: technician-name, measurements:number, pass, max bonding angle, min bonding angle,

collisions, collision points. An example can be seen measurements/test_output.json.

A drawing function has been included to draw the module however this is very slow and is only

recommended for debugging purposes. It can be uncommented at the bottom of the main function.

st.draw(temp_coord) 



Appendix B

Analysis: tt̄H All Hadronic

This appendix shows cut flows for the cuts shown in Tables 8.1 to 8.4 in Section 8.1. The
alternative representation shown here highlights the impact of each successive cut.

(a) (b)

(c) (d)

Figure B.1: Cut flows for the all hadronic feasibility study showing the s
√
b and data/b

metrics.
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Appendix C

Lepton + Jets Full Run-2 Analysis

This Appendix contains supporting material for the Lepton + Jets Full Run-2 Analysis in
Section 8.2.

C.1 Analysis Regions

Figure C.1 details the successive cuts the define the signal and control regions for the
Lepton + Jets analysis. Each signal region is split into the STXS bins which are defined
in terms of reconstructed Higgs pT using the given regions reconstruction algorithm.
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Figure C.1: Flow chart of the event selection for the Lepton + Jets Full Run-2 Analysis
signal and control regions.

C.2 MC samples

Table C.1 shows the nominal and alternate MC samples used in the Lepton + Jets Full
Run-2 Analysis in Section 8.2.
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Process ME generator ME PDF PS Normalisation

Higgs boson

tt̄H Powheg Box v2 NNPDF3.0NLO Pythia 8.230 NLO+NLO (EW) [37]
Powheg Box v2 NNPDF3.0NLO Herwig 7.04 NLO+NLO (EW) [37]

MadGraph5 @aMCNLO 2.6.0 NNPDF3.0NLO Pythia 8.230 NLO+NLO (EW) [37]
tHjb MadGraph5 @aMCNLO 2.6.2 NNPDF3.0NLO nf4 Pythia 8.230 -
tWH MadGraph5 @aMCNLO 2.6.2 [DR] NNPDF3.0NLO Pythia 8.235 -

tt̄ + jets and single-top

tt̄ Powheg Box v2 NNPDF3.0NLO Pythia 8.230 NNLO+NNLL [111–117]
Powheg Box v2 NNPDF3.0NLO Herwig 7.04 NNLO+NNLL [111–117]

MadGraph5 @aMCNLO 2.6.0 NNPDF3.0NLO Pythia 8.230 NNLO+NNLL [111–117]
tt̄+ bb̄ Powheg Box Res NNPDF3.0NLO nf4 Pythia 8.230 -

Sherpa 2.2.1 NNPDF3.0NNLO nf4 Sherpa -
tW Powheg Box v2 [DR] NNPDF3.0NLO Pythia 8.230 NLO+NNLL [118,119]

Powheg Box v2 [DS] NNPDF3.0NLO Pythia 8.230 NLO+NNLL [118,119]
Powheg Box v2 [DR] NNPDF3.0NLO Herwig 7.04 NLO+NNLL [118,119]

MadGraph5 @aMCNLO 2.6.2 [DR] CT10NLO Pythia 8.230 NLO+NNLL [118,119]
t-channel Powheg Box v2 NNPDF3.0NLO nf4 Pythia 8.230 NLO [120,121]

Powheg Box v2 NNPDF3.0NLO nf4 Herwig 7.04 NLO [120,121]
MadGraph5 @aMCNLO 2.6.2 NNPDF3.0NLO nf4 Pythia 8.230 NLO [120,121]

s-channel Powheg Box v2 NNPDF3.0NLO Pythia 8.230 NLO [120,121]
Powheg Box v2 NNPDF3.0NLO Herwig 7.04 NLO [120,121]

MadGraph5 @aMCNLO 2.6.2 NNPDF3.0NLO Pythia 8.230 NLO [120,121]

Other

W+jets Sherpa 2.2.1 (NLO [2j], LO [4j]) NNPDF3.0NNLO Sherpa NNLO [122]
Z+jets Sherpa 2.2.1 (NLO [2j], LO [4j]) NNPDF3.0NNLO Sherpa NNLO [122]

V V (had.) Sherpa 2.2.1 NNPDF3.0NNLO Sherpa -
V V (lep.) Sherpa 2.2.2 NNPDF3.0NNLO Sherpa -

V V (lep.) + jj Sherpa 2.2.2 (LO [EW]) NNPDF3.0NNLO Sherpa -
tt̄W MadGraph5 @aMCNLO 2.3.3 NNPDF3.0NLO Pythia 8.210 NLO+NLO (EW) [37]

Sherpa 2.0.0 (LO [2j]) NNPDF3.0NNLO Sherpa NLO+NLO (EW) [37]
tt̄ll MadGraph5 @aMCNLO 2.3.3 NNPDF3.0NLO Pythia 8.210 NLO+NLO (EW) [37]

Sherpa 2.0.0 (LO [1j]) NNPDF3.0NNLO Sherpa NLO+NLO (EW) [37]
tt̄Z(qq, vv) MadGraph5 @aMCNLO 2.3.3 NNPDF3.0NLO Pythia 8.210 NLO+NLO (EW) [37]

Sherpa 2.0.0 (LO [2j]) NNPDF3.0NNLO Sherpa NLO+NLO (EW) [37]
tt̄tt̄ MadGraph5 @aMCNLO 2.3.3 NNPDF3.1NLO Pythia 8.230 NLO+NLO (EW) [37]
tZq MadGraph5 @aMCNLO 2.3.3 (LO) CTEQ6L1 Pythia 8.212 -
tWZ MadGraph5 @aMCNLO 2.3.3 (DR) NNPDF3.0NLO Pythia 8.230 -

Table C.1: MC events used in the Lepton + Jets analysis Full Run-2 Analysis [1]. The
first row for each process shows the nominal sample. Additional rows contain the alternant
samples used to evaluate the modelling. The overlap between tt̄ and tW -like diagrams are
dealt with either through a diagram removal scheme [DR] [123] or diagram subtraction
scheme [DS] [124]. Unless otherwise stated the ME is calculated to NLO in QCD. The
last column refers to the normalisation used and is calculated in order of QCD. For V V
Sherpa samples (lep.) and (had.) refer to either both or one boson decaying leptonically.
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C.3 DNN VR Pre-/post-fit plots

Figures C.2 to C.11 show all the pre- and post-fit plots of the boosted Higgs reconstruction
DNNs input features. Overall it shows good modelling with the Data/MC ratio within
uncertainties. Please refer to Section 8.2.2 for a more detailed discussion of the worst (but
still good) modelled variables.
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(d)

Figure C.2: Pre-fit Data/MC comparisons for DNN inputs variables: reclustered jet mass
(C.2a), subjet 1 pT (C.2b), subjet 2 pT (C.2c), subjet 1 b-tagging score (C.2d).
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(d) Substructure variable d23.

Figure C.3: Pre-fit Data/MC comparisons for DNN inputs variables: subjet 2 b-tagging
score (C.3a), number of subjets (C.3b), substructure variable d12 (C.3c), substructure
variable d23 (C.3d).
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(c)
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(d)

Figure C.4: Pre-fit Data/MC comparisons for DNN inputs variables: substructure variable
QW (C.4a), invariant mass of b-tagged subjets (C.4b), invariant mass of light jets (C.4c),
sum of remaining subjets b-tagging score (C.4d).
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(d)

Figure C.5: Pre-fit Data/MC comparisons for DNN inputs variables: max b-tagging score
of subjets (C.5a), min b-tagging score of subjets (C.5b), max ∆R of subjets (C.5c), min
∆R of subjets (C.5d).
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Figure C.6: Pre-fit ∆R of subjets 1 and 2.
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(d)

Figure C.7: Post-fit Data/MC comparisons for DNN inputs variables: reclustered jet mass
(C.7a), subjet 1 pT (C.7b), subjet 2 pT (C.7c), subjet 1 b-tagging score (C.7d).
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(d) Substructure variable d23.

Figure C.8: Post-fit Data/MC comparisons for DNN inputs variables: subjet 2 b-tagging
score (C.8a), number of subjets (C.8b), substructure variable d12 (C.8c), substructure
variable d23 (C.8d).
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(d)

Figure C.9: Post-fit Data/MC comparisons for DNN inputs variables: substructure vari-
able QW (C.9a), invariant mass of b-tagged subjets (C.9b), invariant mass of light jets
(C.9c), sum of remaining subjets b-tagging score (C.9d).
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(d)

Figure C.10: Post-fit Data/MC comparisons for DNN inputs variables: max b-tagging
score of subjets (C.10a), min b-tagging score of subjets (C.10b), max ∆R of subjets
(C.10c), min ∆R of subjets (C.10d).
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Figure C.11: Post-fit ∆R of subjets 1 and 2.
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Appendix D

Lepton + Jets Legacy Analysis

This Appendix contains the classic ROC curves in both relative and absolute number of
events. They show the DNNs performances in both the Loose and Boosted regions as
defined in section 8.3.
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Figure D.1: ROC curves comparing DNN variations and the Xbb tagger in the Loose
and Boosted regions.
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