

Alhaizaey, Yousef (2023) Optimizing task allocation for edge compute micro-
clusters. PhD thesis.

https://theses.gla.ac.uk/83734/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

mailto:research-enlighten@glasgow.ac.uk

OPTIMIZING TASK ALLOCATION FOR

EDGE COMPUTE MICRO-CLUSTERS

YOUSEF ALHAIZAEY

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

JULY 2023

© YOUSEF ALHAIZAEY

Abstract

There are over 30 billion devices at the network edge. This is largely driven by the unprece-
dented growth of the Internet-of-Things (IoT) and 5G technologies. These devices are being
used in various applications and technologies, including but not limited to smart city systems,
innovative agriculture management systems, and intelligent home systems. Deployment is-
sues like networking and privacy problems dictate that computing should occur close to the
data source at or near the network edge.

Edge and fog computing are recent decentralised computing paradigms proposed to augment
cloud services by extending computing and storage capabilities to the network’s edge to en-
able executing computational workloads locally. The benefits can help to solve issues such
as reducing the strain on networking backhaul, improving network latency and enhancing
application responsiveness. Many edge and fog computing deployment solutions and in-
frastructures are being employed to deliver cloud resources and services at the edge of the
network — for example, cloudless and mobile edge computing.

This thesis focuses on edge micro-cluster platforms for edge computing. Edge computing
micro-cluster platforms are small, compact, and decentralised groups of interconnected com-
puting resources located close to the edge of a network. These micro-clusters can typically
comprise a variety of heterogeneous but resource-constrained computing resources, such as
small compute nodes like Single Board Computers (SBCs), storage devices, and networking
equipment deployed in local area networks such as smart home management. The goal of
edge computing micro-clusters is to bring computation and data storage closer to IoT devices
and sensors to improve the performance and reliability of distributed systems. Resource man-
agement and workload allocation represent a substantial challenge for such resource-limited
and heterogeneous micro-clusters because of diversity in system architecture. Therefore,
task allocation and workload management are complex problems in such micro-clusters.

This thesis investigates the feasibility of edge micro-cluster platforms for edge computation.
Specifically, the thesis examines the performance of micro-clusters to execute IoT applica-
tions. Furthermore, the thesis involves the evaluation of various optimisation techniques
for task allocation and workload management in edge compute micro-cluster platforms.
This thesis involves the application of various optimisation techniques, including simple
heuristics-based optimisations, mathematical-based optimisation and metaheuristic optimi-
sation techniques, to optimise task allocation problems in reconfigurable edge computing
micro-clusters.

The implementation and performance evaluations take place in a configured edge realistic
environment using a constructed micro-cluster system comprised of a group of heteroge-
neous computing nodes and utilising a set of edge-relevant applications benchmark. The re-
search overall characterises and demonstrates a feasible use case for micro-cluster platforms
for edge computing environments and provides insight into the performance of various task
allocation optimisation techniques for such micro-cluster systems.

Acknowledgements

The first and foremost acknowledgement goes to my PhD supervisor, Dr. Jeremy Singer. I
would like to express my deepest gratitude for him for the invaluable guidance, unlimited
support, and continuous encouragement I received throughout my research journey. The
constant weekly meetings and discussions, in person and virtually over Zoom during the
Covid-19 pandemic, have helped me to learn research and move forward. I am very grateful
for the opportunity to study under his supervision and for believing in me to complete my
PhD study. This work would not have been possible without his unlimited support and
constant encouragement during tough times.

I would also like to extend my appreciation to my second supervisor, Dr. Anna Lito Michala,
for her feedback, input, and suggestions on my research. The input and feedback are appre-
ciated.

My deepest thanks go to my wife, Halimah, and my daughters, Danah and Wed, for their
unaccountable support and patience and for accompanying me to the United Kingdom during
my PhD study. I am forever grateful for your unwavering support and love.

I would also like to extend my grateful thanks to my family in Saudi Arabia, to my parents
for their patience, to my sisters and my brothers for their support. A particular thank goes to
my brother, Abdulrahim Alhaizaey, for the friendship and for keeping me motivated.

I would also like to thank my friends and officemates at the University of Glasgow. Without
any particular order, I would like to thank Adrian Ramsingh, Dejice Jacob, Haruna Umar
Adoga, Ibrahim Alghamdi, Kyle Simpson, Saad Alahmari, and Yosuef Alotaibi for their
friendship, support, and feedback throughout this journey. All kinds of your support are
appreciated.

Thanks also to Dr. Jose Cano for reviewing my work during the annual progress reviews,
Dr. Blesson Varghese for the valuable suggestions and recommendation, and the anonymous
reviewers for feedback on all published papers.

I acknowledge King Khalid University in Saudi Arabia and the Saudi Arabian Cultural Bu-
reau in the UK for providing the financial and logistical support that made this research
possible. I am grateful for their support and for the opportunities they have provided me. I
also acknowledge the University of Glasgow’s School of Computing Science for accommo-
dating me and providing me with the research equipment and support during my research
journey.

Finally, I acknowledge and extend my appreciation to my PhD examiners, Professor Hua-
glory Tianfield [Glasgow Caledonian University] and Dr. Lauritz Thamsen [University of
Glasgow], for their time, effort, and invaluable feedback in evaluating my research work.
Your constructive feedback and insightful comments have undoubtedly enriched the quality
of my thesis. I would not forget to thank my PhD viva convener, Dr. Wagar Nabi [University
of Glasgow], for the exceptional organisation and guidance before, throughout, and after the
viva examination.

Thank you all for your invaluable contributions to this work.

Dedication

This work is dedicated to my wife Halimah Al Hiza and my daughters Danah & Wed.

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation for Micro-Clusters in Edge Computing 2

1.2.1 Edge Micro-Clusters . 3

1.2.2 Workloads for Micro-Clusters . 3

1.3 Research Focus . 4

1.4 Thesis Statement . 5

1.5 Research Questions . 5

1.6 Contributions . 7

1.7 Publications . 8

1.8 Thesis Outline . 8

2 Literature Review 11

2.1 Background . 11

2.2 Cloud Computing . 13

2.3 Fog Computing . 14

2.4 Edge Computing . 15

2.4.1 Cloudlet Data Centres (Cloudlet) 15

2.4.2 Mobile Edge Computing (MEC) 16

2.4.3 Content Delivery Networks (CDNs) 16

2.4.4 Edge Micro-Cluster Platforms . 16

2.4.5 Other Edge Computing Technologies 17

2.5 Edge Computing Micro-Clusters . 18

2.5.1 Introduction . 18

2.5.2 Review of Edge Micro-Cluster Systems 18

2.5.3 Limitations and Research Directions 24

2.6 Resource Management in Edge Computing 27

2.6.1 Introduction to Resource Management 27

2.6.2 Task Allocation in Edge Computing 29

2.6.3 Other Resource Management Aspects 35

2.7 Optimisation Techniques . 38

2.7.1 Mathematical Optimisation . 38

2.7.2 Metaheuristics Optimisation . 39

2.7.3 Heuristics Optimisation . 40

2.8 Discussion against Related Work . 41

2.9 Summary . 42

3 Experimental Evaluation of Feasibility and Task Allocation of Edge Micro-Clusters 43

3.1 Introduction . 43

3.2 Experimental Infrastructure . 44

3.2.1 Rationale . 45

3.2.2 Micro-Cluster Testbed . 45

3.2.3 Software Benchmarks . 46

3.2.4 Networking Structure in Micro-Cluster Setup 49

3.2.5 Tasks Launching and Execution in Micro-Cluster System 50

3.3 Assumptions and Observations for the System Models 51

3.4 Task Allocation Formulation . 52

3.4.1 Objective Function . 52

3.4.2 Systems Constraints . 53

3.5 Task Allocation Optimisation Techniques for Micro-Clusters 54

3.5.1 Heuristic-based Techniques . 55

3.5.2 Mixed Integer Programming Allocation Technique 56

3.6 Performance Evaluation . 57

3.6.1 Minimising Makespan Time . 57

3.6.2 Allocation Overhead . 61

3.6.3 Discussion . 61

3.7 Summary . 62

4 A Linear Model for Task Allocation in Edge Micro-Clusters 64

4.1 Introduction . 64

4.2 Linear Model for Task Allocation in Micro-Clusters 65

4.2.1 Individual Node Performance Characterisation 65

4.2.2 Formulation of the Linear Model for Task Allocation 68

4.3 Task Allocation Using Particle Swarm Optimisation Metaheuristic 69

4.3.1 PSO Logic . 69

4.3.2 Representation Process . 71

4.4 Evaluation . 73

4.4.1 Optimisation Techniques . 73

4.4.2 Performance Evaluation . 74

4.5 Summary . 82

5 Multi-Objective Optimisation for Edge Micro-Clusters 83

5.1 Introduction . 83

5.2 Preliminaries . 84

5.3 Analytical Model for Energy Consumption 86

5.3.1 Energy Consumption Analytical Model 86

5.3.2 Performance Analysis . 87

5.4 Multi-Objective Optimisation for Micro-Clusters 90

5.4.1 Multi-Objective Optimisation Model 90

5.4.2 Performance Analysis . 91

5.5 Summary . 93

6 Conclusions and Future Directions 96

6.1 Overview . 96

6.2 Review of the Thesis . 97

6.3 Reflection on Research Questions . 97

6.3.1 Reflection on Research Question RQ1 97

6.3.2 Reflection on Research Question RQ2 98

6.3.3 Reflection on Research Question RQ3 99

6.3.4 Reflection on Research Question RQ4 99

6.3.5 Reflection on Research Question RQ5 100

6.4 Research Contributions . 100

6.4.1 Micro-Cluster Prototype for Edge and IoT Environments 101

6.4.2 Analytical Models for Edge Micro-Clusters 101

6.4.3 Multi-Objective Optimisation Model for Micro-Clusters 101

6.4.4 Comparative Evaluation of Optimisation Techniques
for Edge Micro-Clusters . 102

6.5 Limitations and Future Directions . 102

6.5.1 Generalising System Heterogeneity 102

6.5.2 Expanding System Scale . 103

6.5.3 Evaluating Complex Metaheuristics 103

6.5.4 Optimising Other Resource Management and Performance Metrics 103

6.5.5 Evaluating More Deployment Settings 104

6.5.6 Developing Edge Benchmarks for Micro-Clusters and IoT Environ-
ments . 104

6.6 Final Summary . 105

A Glossary 106

Bibliography 110

List of Tables

2.1 Comparison of hardware, software, and deployment context of various edge
cluster platforms. 26

2.2 A summary of task allocation in edge and fog computing. 34

3.1 Raspberry Pi devices specifications in micro-cluster prototype. The 4-node
micro-cluster comprises one of each model. The 8-node cluster comprises
three RPi2B, three RPi3B and one of each other model. 46

3.2 List of notations and related descriptions 53

4.1 Exemplar hardware specification of typical nodes deployed in edge-micro
clusters and in centralised cloud data centres 66

4.2 Values of the gradients (m) and y-intercepts (c) 69

4.3 PSO hyperparameters description and related values. 72

4.4 Exemplar workloads mapping on an eight-node micro-cluster with estimated
makespan time calculated by the linear model. Heterogeneous workload
is represented as: Image Detection (40%), Audio-Text Synch (30%), and
Audio-Text Converting (30%). 72

5.1 Micro-cluster nodes hardware specifications and power consumption char-
acteristics in idle and active states. 86

List of Figures

1.1 Mapping the Thesis’s RQs with Ogundoyin’s Framework RQs 6

1.2 Diagram illustrating the structure of the thesis 10

2.1 Venn diagram visualises the computing landscape. 12

2.2 Chapter 2 outline. 13

2.3 Hierarchical framework for edge, fog, cloud computing [30]. 14

2.4 Edge computing architectures and related computing paradigms [21]. . . . 17

2.5 Examples of various edge compute micro-cluster systems for edge and IoT
networks [7, 8, 41] . 19

3.1 Prototype of heterogeneous edge micro-cluster system with Raspberry Pi
nodes. 47

3.2 Network topology diagram for micro-cluster system. 50

3.3 Makespan Time required to process of 32 concurrent tasks based on different
allocation techniques running on 4-nodes micro-cluster (confidence intervals
indicate one standard deviation). 60

3.4 Makespan Time required to process of 32 batched concurrent tasks based on
different allocation techniques running on 8-nodes micro-cluster (confidence
intervals indicate one standard deviation) approaches running on 8-nodes
edge micro-cluster (confidence intervals indicate one standard deviation). . 60

3.5 A limit study shows the allocation overhead time required by MIP-based
allocation technique for different batch sizes and different cluster sizes. . . 62

4.1 Line graphs showing the performance trends of micro-cluster nodes for pro-
cessing concurrent workloads from different applications workloads. 67

4.2 Comparison between the estimated makespan time calculated by the linear-
based model and the actual makespan time (mean of 15 runs) on a physical
edge micro-cluster for different workloads and batch sizes. 75

4.3 Crossover graphs representing the allocation overhead time required by the
exponential complexity MIP-based and linear complexity PSO-based for dif-
ferent batch sizes and workload types. The Random-based allocation is ex-
cluded from this comparison as its overhead time is always minimal and
never exceeds a few msec. 77

4.4 Quality of solutions obtained by different allocation techniques for image-
detection workloads. 80

4.5 Quality of solutions obtained by different allocation techniques for audio-
recognition workloads . 80

4.6 Quality of solutions obtained by different allocation techniques for audio-
text synchronisation workloads . 81

4.7 Quality of solutions obtained by different allocation techniques for hetero-
geneous workloads . 81

5.1 Characteristics of power consumption of micro-cluster individual nodes in
idle and active states. The active state represents nodes’ power consumption
for 100% CPU. 85

5.2 Analytical model for the predicted and the actual Makespan Time for micro-
cluster platforms. Makespan Time is in (sec). All figures report the mean of
10 runs for each experiment. 89

5.3 Analytical model for the predicted and the actual Energy Consumption for
micro-cluster platforms. Energy Consumption is in (Joules/sec). All figures
report the mean of 10 runs for each experiment. 89

5.4 Pareto front representing solutions and trade-offs between Makespan Time

and Energy Consumption for different workloads. 94

5.5 Pareto front representing solutions and trade-offs between Makespan Time

and Power Consumption for different workloads. 95

1

Chapter 1

Introduction

1.1 Overview

Edge computing is a distributed computing paradigm recently proposed to extend cloud ca-
pabilities to the edge of the network [1, 2, 3]. The underlying objective of edge computing
is to deliver cloud services to a variety of Internet of Things (IoT) applications by utilis-
ing computation and storage resources distributed across the edge of the network to process
workloads locally at or near the data sources. Edge computing demonstrates a compelling
computing paradigm that overcomes limitations related to latency, networking bandwidth
and jitters, energy consumption and data privacy [4].

Several edge-based architectures, systems, and solutions have been proposed to facilitate
the deployment of edge computing [5]. For example, Cloudlet data centres represent a core
example of edge computation, whereby resource-rich computers or clusters are deployed
in various locations to provide computation and storage services for nearby mobile devices
[1]. Furthermore, Content Delivery Networks (CDNs) are another form of edge computa-
tion proposed to distribute and cache content in different locations in order to minimise the
response time of applications [3]. These edge-based solutions are generally equipped with
sufficient computational resources to deliver cloud services at the edge of the network near
data sources.

In this thesis, the focus is on edge micro-cluster platforms. Edge micro-clusters represent
pragmatic components of edge computing infrastructure. Such micro-clusters demonstrate
practical solutions that can enable edge computation for various IoT applications and use
cases [6]. For example, such micro-clusters can be used in Road Side Units (RSUs) to de-
liver computation services to vehicles on roads [7]. They also provide practical solutions for
smart cities applications to provide citizen-facing services such as smart parking manage-
ment systems [8]. Furthermore, edge micro-clusters provide useful testbeds for research and

1.2. Motivation for Micro-Clusters in Edge Computing 2

education in universities that can enable students and researchers to experiment in a physical
edge computing environment [6, 9].

Edge micro-clusters may consist of multiple heterogeneous compute nodes with different
hardware capabilities. These relate to the hardware specifications such as Central Process-
ing Unit (CPU) speed and the Random Access Memory (RAM) size. For example, micro-
clusters may include resource-limited nodes, such as Single Board Computers (SBCs), e.g.,
Raspberry Pi devices, Odroid devices, Google Coral Boards, or more powerful compute
devices with server capabilities such as Mini-ITX. Edge micro-clusters can provide energy-
efficient systems that can be powered using battery packs or renewable energy. Furthermore,
edge micro-cluster systems represent compact solutions as they require a small physical foot-
print, that can enable such micro-clusters to be easily portable to deliver computation services
to new locations where conventional computing solutions such as traditional servers would
be challenging [7]. Because of differences in infrastructure, architecture, resource connec-
tivity and capacity, and workload characteristics, task allocation and optimisation need to be
reexamined for such edge computing systems [10].

Edge micro-cluster platforms will likely receive and process workloads in batch-arrival ex-
ecution mode. The batch execution mode requires the micro-cluster systems to receive het-
erogeneous workloads from different sources and collect workloads in batches based on
workload type or arrival time [11]. Batch execution consumes high resources and requires
extensive parallel computations [12]. Therefore, batch execution for edge micro-clusters
mandates effective and efficient task allocation optimisation techniques to meet the Qual-
ity of Service QoS requirements of the applications. For example, in a smart farming use
case, IoT devices such as sensors, actuators, and drones generate and gather farming-related
data, e.g., scan plants, capture images, or monitor animal movements. Those IoT devices
are typically not equipped with sufficient computing resources, and they subsequently may
require to offload workloads to nearby edge micro-clusters for processing and storage [13].
When utilising such edge micro-clusters, effective and efficient task allocation optimisation
techniques are required to meet the technical specifications for such compact and resource
constraint clusters.

1.2 Motivation for Micro-Clusters in Edge Computing

This section outlines the concept of edge compute micro-clusters and advocates that this
is a compelling demonstrator for a typical compact edge computing platform capable of
delivering and extending computing services to the edge of the network. In addition, it
discusses workload characteristics for such micro-cluster platforms in further detail.

1.2. Motivation for Micro-Clusters in Edge Computing 3

1.2.1 Edge Micro-Clusters

Edge micro-clusters are heterogeneous compact platforms. They will consist of multiple
computing devices that have different computing capabilities. This might be in terms of
CPU core count and clock speed or in terms of available RAM. Further, some devices might
feature specialized accelerator nodes, such as the Movidius Neural Compute Stick. Since a
micro-cluster is likely to be deployed for a long time, it is possible that upgraded nodes with
higher specifications may be added at a later date, or some nodes might need to be replaced.
This increases heterogeneity in micro-clusters.

A micro-cluster is located at the network edge. For this reason, it is end-user facing, deployed
at one hop from data sources. This allows micro-clusters to provide computing resources
and deliver content directly to consumers. Furthermore, this addresses the expectation of
minimal latency. In terms of connectivity, nodes in the cluster will have a regular, non-exotic
network topology, typically peers on a single Local Area Network (LAN).

A micro-cluster is micro-scale. This has implications for the power draw and energy con-
sumption. Micro-cluster platforms will be likely to run off renewable energy and a battery
pack. In terms of cost, electronic equipment must be commodity, cheap components since
they are so widely deployed. Further, in terms of physical footprint the micro-cluster should
be small enough to be compact and portable, perhaps occupying a road side unit cabinet or
embedded in the fabric of a building.

A micro-cluster platform is a compute cluster, consisting of a small number of nodes (per-
haps up to 10) with a small number of total cores (perhaps up to 100). The multiplicity of
nodes is important for (a) redundancy, given the commodity nature of the devices; and (b)
parallel throughput, given the nature of the workloads.

1.2.2 Workloads for Micro-Clusters

There is a wide range of use cases for edge computing. Generally, such applications are
presented as high-level abstract scenarios including, but not limited to, self-driving cars,
augmented reality tourism, and smart healthcare [2, 14, 15]. With respect to understand-
ing concrete compute resource requirements, it is more practical to consider specific usage
scenarios at a task processing level.

This research assumes that micro-clusters are likely to receive a set of related compute re-
quests as a batch-of-jobs, with a low-latency requirement for completion of all jobs in the
batch. This might be object detection in a set of still photo images or audio processing tasks.

In general, research literature in the field of edge computing describes high-level application
use cases. Popular examples include, but are not limited to, surveillance cameras in smart

1.3. Research Focus 4

cities [16], smart home sensors [17], support for autonomous vehicles [18], and voice-based
smart services [19, 20].

This trend of heterogeneity at the edge has been identified by the edge research community
[11]. This research, therefore, aims to tackle the lack of a real testbed for micro-cluster plat-
forms and characterise the deployment features and utility by modelling and experimenting
with a physical configured testbed instead of using simulation solutions, as presented in this
dissertation.

1.3 Research Focus

This thesis characterises and advocates the feasibility of heterogeneous edge micro-cluster
platforms for enabling practical and effective edge computation for several IoT use cases. In
addition, this research investigates and evaluates the performance of different optimisation
techniques for batch execution optimisation in edge micro-cluster systems. The evaluation
demonstrates a clear overlap in the performance of the metaheuristic Particle Swarm Op-
timisation (PSO) and the mathematical-based optimisation techniques for optimising batch
execution, which indicates the efficiency of optimisation techniques for edge deployment.
In particular, the metaheuristics-based task allocation optimisation is a viable and effec-
tive technique for optimising and executing large batches for large-scale clusters, while the
mathematical-based optimisation technique is effective and efficient for small-scale edge
micro-clusters. Effectiveness and efficiency relate to the performance metrics used to eval-
uate the applicability of the optimisation techniques for edge micro-clusters. Effectiveness
refers to the ability of the techniques to provide optimal or near-optimal solutions for the
optimisation problems, whereas efficiency refers to the scalability and overhead time of the
optimisation techniques. Furthermore, this research evaluates the developed task allocation
optimisation solutions in a physical edge environment using a realistic edge cluster testbed
and representative real-world benchmark application software. The work further helps to
characterise the performance of edge micro-cluster platforms and reflects on the performance
of the optimisation technique for optimising batch execution for such compact edge comput-
ing platforms.

1.4. Thesis Statement 5

1.4 Thesis Statement

Edge micro-cluster platforms are a key enabler for practical edge computing, since

they represent pragmatic instantiations of computing resources at the network edge.

A fundamental problem in utilising micro-cluster systems for executing edge-related

workloads is optimising task allocation for batch execution. This thesis argues that

edge micro-cluster platforms require efficient and effective task allocation optimisa-

tion techniques that satisfy the resource-constraints of micro-clusters, dynamic work-

loads at the edge, and strict QoS requirements of IoT-based applications. In partic-

ular, this could be achieved by modifying the task allocation optimization techniques

for the resource-constrained environment of edge computing micro-clusters.

1.5 Research Questions

This thesis aims to answer the following research questions related to optimising task allo-
cation for edge compute micro-clusters.

RQ1. Which task allocation optimisation methods provide effective solutions to opti-
mise makespan time for edge micro-cluster platforms for heterogeneous workloads in
batch-mode?

RQ2. Which optimisation methods are efficient and appropriate (i.e., sufficiently
lightweight) for edge micro-cluster platforms?

RQ3. Which task allocation optimisation methods provide effective solutions to opti-
mise both makespan time and energy consumption (i.e., multi objective optimisation)
for edge micro-clusters?

RQ4. Is it appropriate to use commodity Single Board Computers (SBCs) to model
edge micro-clusters to empirically evaluate task allocation techniques for batch-mode
execution?

RQ5. What kind of edge workloads provide real-world representative benchmarks for
evaluating task allocation methods for batch-mode execution on micro-cluster plat-
forms?

The research questions of this thesis are consistent with the research framework published in
a recent systematic literature review [21]. The authors reviewed 138 papers on fog and edge
computing and the related optimisation problems. Furthermore, they developed a framework
capturing the trends in edge research community.

1.5. Research Questions 6

Figure 1.1 represents a visual mapping linking the thesis’s research questions and frame-
work’s research questions. With respect to the framework’s RQ1, this thesis examines and
compares the performance of various optimisation techniques for optimising task allocation
in edge micro-cluster platforms. Regarding the framework’s RQ2, this thesis aims to en-
hance edge micro-clusters deployment in edge networks and optimise task allocation for
such resource-constraints systems. This requires examining the performance characteris-
tics of micro-clusters and evaluating the optimisation techniques accordingly. Furthermore,
concerning the framework’s RQ3, three edge-relevant performance metrics were targeted:
the makespan time metric, the allocation overhead time of optimisation techniques, and the
energy consumption. These performance metrics are significant for edge micro-cluster plat-
forms. Finally, regarding the framework’s RQ4, instead of using simulation-based tools, this
thesis aims to empirically evaluate the performance of different optimisation techniques on a
configured and realistic micro-cluster platform comprised of several single broad computers
and representative applications benchmarks suite.

RQ1: Which optimization
algorithms have been developed in
fog computing?

Ogundoyin’s Framework RQs

RQ2: What are the applications of
these algorithms to the pressing
problems in fog computing
environment?

RQ3: Which performance metrics
have been optimized in the
selected papers?

RQ4: Which evaluation
environments and programming
tools have been developed or
adopted to test the solutions of
these optimization algorithms?

RQ1 and RQ2

Thesis’s RQs

RQ5

RQ1, RQ2, and RQ3

RQ4 and RQ5

Figure 1.1: Mapping the Thesis’s RQs with Ogundoyin’s Framework RQs

1.6. Contributions 7

1.6 Contributions

The research presented in this thesis makes the following key contributions to the field of
edge computation:

1. The characterisation and the motivation of heterogeneous edge micro-cluster platforms
for facilitating practical edge computation. This thesis describes the underlying hard-
ware specifications and characteristics of edge micro-cluster systems and demonstrates
typical edge-related workloads for edge computing platforms.

2. The utilisation and experimentation with a physical edge micro-cluster testbed. Rather
than relying on simulation-based software solutions for reporting performance analysis
of the proposed optimisation techniques, the experiments and the evaluations are con-
ducted using a realistic configured edge micro-cluster testbed. This approach requires
building a physical and representative edge micro-cluster testbed, using representa-
tive benchmark applications software and wall-clock timing metrics for performance
evaluation.

3. The design and evaluation of analytical performance models for predicting makespan
time and energy consumption required by edge micro-cluster platforms for executing
heterogeneous edge-relevant applications in batch-execution mode.

4. The design and evaluation of a multi-objective optimisation model for edge micro-
cluster platforms. The model can provide a Pareto-optimal set of feasible solutions
representing the trades-off system’s competing performance.

5. The provision of the performance of various optimisation techniques for optimising
task allocation in edge micro-cluster platforms. The research demonstrates the related
effectiveness and efficiency of different optimisation techniques for orchestrating and
optimising workload allocation in edge micro-clusters.

These contributions help to enhance and extend the feasibility and usability of edge micro-
cluster platforms to be more efficient and practical deployment infrastructures for edge
computing. The aim is to push those edge micro-cluster platforms beyond their basic ap-
plications, use cases, and deployment scenarios by integrating efficient and effective opti-
misation techniques for such compact platforms. The experimental work and the analysis
were conducted in a realistic heterogeneous edge micro-cluster testbed built utilising several
heterogeneous Raspberry Pi devices drawn from different generations and using a repre-
sentative benchmark software suite. The results and the findings from this research could
be generalised to other comparable micro-cluster systems that deploy similar or equivalent
resource-constrained devices. The source code and materials related to this work can be

1.7. Publications 8

accessed in the GitHub repository available at https://github.com/yalhaizaey/
edge-micro-clusters.

1.7 Publications

The work described in this thesis has already been published in the following peer-reviewed
articles. Meanwhile, the plan is to publish the outcomes from Chapter 5 in edge and fog
computing-relevant venues in the near future.

• Y. Alhaizaey, J. Singer and A. L. Michala. Optimizing Task Allocation for Edge
Micro-Clusters in Smart Cities. In 2021 IEEE 22nd International Symposium on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM), Pisa, Italy, 2021,
pp. 341-347, doi: 10.1109/WoWMoM51794.2021.00062 [10].

• Y. Alhaizaey, J. Singer and A. L. Michala. Optimizing Heterogeneous Task Allocation
for Edge Compute Micro Clusters Using PSO Metaheuristic. In 2022 Seventh Interna-
tional Conference on Fog and Mobile Edge Computing (FMEC), Paris, France, 2022,
pp. 1-8, doi: 10.1109/FMEC57183.2022.10062755 [22].

1.8 Thesis Outline

This section provides an outline of the thesis chapters. The chapters of the thesis and their
main sections are depicted in Figure 1.2. The thesis overall is structured as follows:

• Chapter 1 − Introduction: This chapter presents an overview of the research by
providing the research scope, presenting the research focus and thesis statement, and
defining the research questions. In addition, it highlights the work contributions and
outlines the overall structure of the thesis.

• Chapter 2 − Literature Review: This chapter reviews relevant literature in the fields
related to edge, fog, and cloud computing technologies. It overviews the landscape
of cloud computing and the need for decentralising the technologies toward the edge
of the network. A particular emphasis is placed on exploring work related to edge
micro-cluster platforms and the related resource management problems and optimisa-
tion techniques.

• Chapter 3 − Experimental Evaluation of Feasibility and Task Allocation of Edge
Micro-Clusters: This chapter provides a comprehensive overview of edge compute

https://github.com/yalhaizaey/edge-micro-clusters
https://github.com/yalhaizaey/edge-micro-clusters

1.8. Thesis Outline 9

micro-cluster platforms and their potential deployment use cases. The chapter dis-
cusses edge micro-clusters and underneath technologies related to hardware specifica-
tions, configuration requirements, virtualisation technologies, and construction tech-
niques. It develops and evaluates the performance of a set of heuristic-based and
mathematical-based task allocation techniques for optimising the makespan time of
batch execution mode. The chapter also highlights the need to empirically evaluate
experiments using cluster testbed and practical benchmarking tools. Chapter 3 pro-
vides answers to RQ1, RQ4, and RQ5 and presents research contributions 1, 2, and
5.

• Chapter 4 − A Linear Model for Task Allocation in Micro-Clusters: This chapter
extends Chapter 3 by presenting a linear-based system model designed to predict the
makespan time of batch execution for edge micro-cluster platforms. It additionally
extends the optimisation techniques implemented in the previous chapter by examin-
ing the efficiency and effectiveness of the metaheuristics PSO optimisation technique.
Chapter 4 provides answers to RQ1 and RQ2 and presents research contributions 2, 3
and 5.

• Chapter 5 − Multi-Objective Optimisation for Edge Micro-Clusters: This chapter
extends Chapters 3 and 4 by evaluating and optimising energy consumption perfor-
mance metric in edge micro-cluster platforms. It proposes and evaluates an analytical
energy consumption model that provide energy prediction for micro-clusters. Fur-
thermore, the chapter designs and evaluates a multi-objective optimisation model for
optimising multi-objective optimisation problems in edge micro-clusters. Chapter 5
provides answers to RQ3 and presents research contributions 3 and 4.

• Chapter 6 − Conclusions and Future Directions: This chapter concludes the re-
search. It reviews the thesis statement in light of the conducted work. It provides
reflections upon the research questions and highlights the research contributions. The
chapter further discusses the limitations of the work and provides recommendations
for potential directions and future work.

1.8. Thesis Outline 10

Chapter 4

Chapter 1: Introduction

Chapter 6: Conclusion and Future Work

Thesis Contributions

Edge Micro-ClustersBackground Resource Management
and Task Allocation

Optimisation
Techniques

Chapter 2: Literature Review

Preliminaries

Multi-Objective Optimsation
for Micro-Clusters

Analytical Model for Energy
Consumption

Chapter 5

A Linear Model for Micro-
Clusters

Performance Evaluation

Task Allocation using PSO
Metaheuristics

Chapter 4

Experimental Infrastructure

Performance Evaluation

Task Allocation for Micro-
Clusters

Chapter 3

Figure 1.2: Diagram illustrating the structure of the thesis

11

Chapter 2

Literature Review

Nowadays, with the presence of the Internet-of-Things (IoT) and smart environments, such
as smart cities and smart industries, there is a coexistence of various emerging computing
technologies and paradigms that underpin the computing landscape. This chapter presents an
overview of the computing landscape, defines the background of different edge computing-
related technologies, and discusses work specifically related to edge micro-cluster platforms,
task allocation and workload management, and the related optimisation techniques.

2.1 Background

The Internet-of-Things (IoT) revolution plays an essential role in changing the Internet from
its conventional paradigm, where the client-server architecture is deployed, to becoming a
heterogeneous network that enables everything to connect, communicate, generate data, and
share resources. This new revolution sparks a massive surge of communication and data at
the edge of the network as the number of connected devices is expected to be 50 billion by
2020 [17, 23] and reach over 80 billion by 2025 [3].

There are several interconnected technologies behind the development of IoT. Cloud com-
puting is considered a key enabler or catalyst of this revolution. Cloud efficiently provides
on-demand computational and storage resources for IoT applications and users. Cloud re-
quires offloading data to centralised data centres located far from data sources for processing
and storage purposes. However, this would not always be an efficient choice for IoT applica-
tions when billions of devices and sensors are connected and request services simultaneously.
Significant concerns are related to latency, power consumption, and data privacy, which are
already becoming apparent to end users [2, 3, 5, 24].

Considering the cloud deployment concerns mentioned above, extending cloud resources to
the edge of the network becomes a recent practicable solution, introducing new emerging

2.1. Background 12

Cloud Computing Edge Computing

Internet of Things

Fog
Computing

Figure 2.1: Venn diagram visualises the computing landscape.

distributed paradigms known as fog computing or edge computing. The overall objective is
to leverage resources at the edge of the network to execute applications locally near or at
data sources instead of offloading computational logic to cloud data centres [24, 25, 26, 27].

Overall, the computing model has become more complex and diverse, with many intercon-
nected technologies and computing paradigms. This chapter will first discuss recent emerg-
ing technologies capturing the trend in decentralising the computing landscape before delv-
ing into discussing the work-related edge micro-cluster platforms, resource management and
relevant optimisation. Figure 2.1 depicts the overall picture of the current computing models.

The remainder of this chapter is structured as follows. Sections 2.2, 2.3, and 2.4 provide
high-level overviews edge-related computing paradigms. Section 2.5 discusses micro-cluster
systems and the related deployment contexts in detail. Section 2.6 studies resource man-
agement in edge computing with a particular emphasis on task allocation in Section 2.6.2.
Section 2.7 discusses the optimisation techniques employed in solving orchestration and
management-related problems in edge computing. Section 2.8 and 2.9 provide discussion
against the related work and the conclusion. Figure. 2.2 presents the outline of this chapter.

2.2. Cloud Computing 13

Heuristics
Optimisation

Chapter 2

Background

Cloud Computing

Fog Computing

Edge Computing

Edge Micro-Clusters

Introduction

Review of Existing
Edge Micro-Clusters

Limitations &
Research Directions

Resource
Management

Introduction to
Resource Management

Task Allocation

Additional Resource
Management

Optimisation
Techniques

Metaheuristics
Optimisation

Mathematical
Optimisation

Discussion, Research Directions, & Summary

Figure 2.2: Chapter 2 outline.

2.2 Cloud Computing

Cloud computing is a computing paradigm relying on massive, complex, and centralised
computing infrastructures that provide unlimited virtualised computing and storage resources
over the Internet. It facilitates on-demand services such as Platforms as a Service (PaaS) and
Software as a Service (SaaS) for end users. Cloud computing is provided by centralised data
centres operated by providers such as Google Cloud Platform, Amazon Elastic Compute
Cloud (EC2), and Microsoft Azure. Cloud is a key enabler for new applications, such as
Smart Cities, Artificial Intelligence, and the IoT [28].

However, IoT allows billions of devices to connect, generate, and offload data to the cloud,
which subsequently brings new challenges to cloud providers [23]. These challenges are
generally characterised by high latency, networking jitters, non-responsiveness, security con-
cerns, data privacy issues, and high power consumption and carbon emissions. These chal-
lenges have led to revisiting the cloud conventional computing model by pushing computing
resources towards the edge of the network introducing new emerging computing paradigms
known as edge computing, fog computing, and cloudlet computing [3, 28, 29].

2.3. Fog Computing 14

2.3 Fog Computing

Fog computing is a hierarchical virtualised computing paradigm that deliver computing, stor-
age, and networking resources across the networking path between cloud data centres and
the edge of the networks. Fog computing hierarchically distributes resources across three
or more tiers of architectures, including edge, fog, and cloud computing. Resources in fog
computing are characterised to be rich and powerful to offer cloud services to mobile and
end users. The overall objective of fog computing is to enable IoT applications and mobile
users to utilise available computing resources outside centralised cloud data centres to im-
prove networking latency, data privacy, and application responsiveness [2, 17, 21]. Figure
2.3 shows the network hierarchy description and the location of the emerging computing
paradigms.

Figure 2.3: Hierarchical framework for edge, fog, cloud computing [30].

2.4. Edge Computing 15

2.4 Edge Computing

Edge computing is a distributed computing model in which computation and storage pro-
cesses are deployed at or near the edge of a network, where end devices like sensors and IoT
devices are located. Edge computing allows for faster data computation and decision-making
by reducing latency, energy consumption, and application responsiveness [17, 21, 31].

It has become a mainstream computing paradigm, driven by growth in the adoption of 5G
and Internet-of-Things (IoT) technology. Many end-user applications require low-latency
data processing and interactive responses, motivating the provision of highly available edge
compute capability. Edge computing can bring several advantages to end users and appli-
cations, including low latency, high bandwidth, high security, improved privacy, low energy
consumption and monetary cost [23, 32].

Edge computing and fog computing are used interchangeably in the research literature to
generally refer to the utilisation of computing and storage resources distributed between
cloud and edge. However, fog computing is a more hierarchical computing paradigm with
rich resources and a wide coverage range. In contrast, edge computing is limited in comput-
ing resources and geographical coverage [17].

Overall, edge computing and fog computing are not competitors to cloud computing. In-
stead, these paradigms represent methods to augment cloud computing by decentralising
resources across the edge of the network to support mobile and end users to reduce deploy-
ment problems related to latency, energy consumption, and privacy issues [4, 5].

2.4.1 Cloudlet Data Centres (Cloudlet)

One core technology behind the advancements in edge and fog computing is the Cloudlet
technology. Cloudlet is a customised resource-rich cloud data centre typically located near
the edge of the network to support mobile and stationary devices. The objective of Cloudlet
data centres is to reduce the latency and energy consumption in cloud data centres by allow-
ing appellations and end users to offload computation tasks and deliver application services
near data sources. Cloudlets are limited to cover a wide range of end devices at the edge
[1, 21]. To address the coverage challenge, end devices may be utilise either centralised
cloud data centres or use more devices at the extreme edge such as edge micro-cluster plat-
forms or edge computing.

2.4. Edge Computing 16

2.4.2 Mobile Edge Computing (MEC)

Mobile Edge Computing (MEC) is a form of Edge Computing. MEC is based on a dis-
tributed computing paradigm that can bring computing and storage resources close to end
users. MEC consists of virtualised servers deployed in various locations, typically in cellular
networks, such as base stations, access points, and networking infrastructures, to support mo-
bile users and devices and to enable real-time applications and low-latency communication.
Overall, MEC extends edge computing and fog computing but is more limited to mobile and
cellular network infrastructure. [14, 24, 33, 34, 35, 36].

2.4.3 Content Delivery Networks (CDNs)

Content Delivery Networks (CDNs) are distributed networks of servers that are utilised to
cache and deliver application and web content to end users based on geographical locations.
CDN servers are deployed in strategic locations, such as using Internet Service Providers’
cellular networks and data centres, to enable fast and reliable content delivery to users. The
main goal of CDNs is to improve the availability and responsiveness of applications and
websites. However, the increment in the number of devices and users is a significant obstacle
to CDN servers. In the context of edge computing, edge computing is an extension to CDN
technology where computing and storage infrastructures that are located in close proximity
to end users are utilised for various kinds of applications and not limited to web content as
like in CDN technology [3, 11, 37, 38].

2.4.4 Edge Micro-Cluster Platforms

Edge micro-clusters are dedicated computing units deployed very close to IoT devices at
the extreme edge of the network. A micro-cluster system can comprise various heteroge-
neous but resource-limited computing nodes mounted in a mini rack case and controlled by
a head node. These kinds of edge systems feature several advantages, including low power
consumption, small-physical footprint, low cost, and easy configuration. Micro-cluster plat-
forms represent feasible edge systems to extend computing services to remote environments
located at the extreme edge of the network. However, resource capacity and node limitations
in such edge micro-clusters platforms require effective and efficient management to optimise
their deployment in IoT and edge environments [6, 11, 21, 39]. Section 2.5 provides a sys-
tematic review of these micro-clusters and their related deployments and management in the
context of edge computing. It further highlights the research gap related to task allocation
and optimisation required for such edge systems.

2.4. Edge Computing 17

2.4.5 Other Edge Computing Technologies

In addition to the systems mentioned above, there are many edge computing-related tech-
nologies, including but not limited to Mobile Cloud Computing (MCC), Mist Computing,
Dew Computing, mobile Ad hoc Cloud (Ad hoc computing), and Volunteer Cloud. These
distributed edge-related technologies are generally proposed to enable and facilitate perform-
ing computing and storage logic outside centralised cloud data centres and to extend cloud
services near IoT devices and users. Overall, the standard objective of these systems is to
facilitate IoT communications and computation and mitigate deployment concerns related to
network latency, application responsiveness, and energy consumption. On the other hand,
they are different in computing capacity, geographic coverage, connectivity, and deployment
context [3, 21, 40]. Figure. 2.4 represents a high-level overview of different edge computing-
related technologies.

Figure 2.4: Edge computing architectures and related computing paradigms [21].

2.5. Edge Computing Micro-Clusters 18

2.5 Edge Computing Micro-Clusters

2.5.1 Introduction

As mentioned above, micro-cluster systems represent promising computing infrastructure
for practical edge computing. Such edge systems are being introduced by the edge and IoT
research community for various research objectives. Recent studies establish the need for
such compute clusters for edge applications and demonstrate the feasibility and suitability
of using Single Board Computers (SBCs), such as Raspberry Pi devices, to build micro-
cluster systems for performing edge-related workloads. Figure 2.5 presents exemplar edge
micro-cluster platforms built by utilising SBCs for edge computing and IoT-related research.

This section systematically reviews existing work related to edge computing micro-clusters,
with a particular focus on use cases, applications, and related performance evaluations of
micro-cluster computing systems. Section 2.5.2 provides a high-level systematic review
of the literature related to edge micro-clusters. Section 2.5.3 provides a discussion of the
limitations in current studies and highlights the knowledge gap.

2.5.2 Review of Edge Micro-Cluster Systems

This section provides a high-level systematic review of research related to edge compute
micro-clusters. The section presents a taxonomy focusing on various primary edge clus-
ter projects, use cases and applications of micro-clusters, performance-related evaluation
of micro-clusters, and studies that utilised alternative SBC-based edge systems. The review
highlights initial research projects on micro-cluster systems, which aim to build experimental
SBC cluster testbeds for students and researchers in cloud-related areas. It further explores
studies that showcase various applications and use cases of micro-cluster systems. The sec-
tion additionally provides performance analysis and evaluation studies that aim to investigate
different capabilities of edge micro-clusters in terms of energy consumption, efficiency, and
benchmarking of SBC clusters to evaluate their performance capabilities. The review finally
examines alternative SBC-based edge micro-cluster solutions for potential edge computing
applications.

2.5.2.1 Primary Research Projects and Initiatives

Recent research in the literature motivates and establishes building edge clusters by utilising
SBCs such as Raspberry Pi devices. The Glasgow Pi Cloud [9], Iridis-Pi Cluster [41], and
Bolzano Cloud Cluster [42] represent leading research projects for building edge SBC-based
clusters. These clusters are proposed to motivate utilising small-factor computers, such as

2.5. Edge Computing Micro-Clusters 19

Figure 2.5: Examples of various edge compute micro-cluster systems for edge and IoT
networks [7, 8, 41]

2.5. Edge Computing Micro-Clusters 20

Raspberry Pi devices, to build physical edge data centres. The primary aim of these projects
is to enable students and researchers to access physical clusters for education and research
purposes, as the access to real cloud data centres is not affordable and represents a significant
obstacle to many educational institutions.

The Glasgow Raspberry Pi Cloud (PiCloud) [9] is a scale model of cloud data centres com-
posed of a cluster of 54 Raspberry Pi devices developed at the University of Glasgow. Pi-
Cloud is constructed to replicate the architecture of centralised data centres. PiCloud aims
to provide students and researchers with hands-on experience and implement practical ex-
periments related to cloud computing. The work represents an essential contribution that
motivates the construction of physical micro data centres by utilising the hardware features
and capabilities of Raspberry Pi devices.

Iridis-Pi cluster [41] is another project with SBC-based clusters constructed at the Univer-
sity of Southampton for educational purposes to enable students to learn high-performance
computing. Iridis-Pi is a homogeneous micro-cluster consists of 64 Raspberry Pi Model
B nodes mounted using a chassis built from Lego and interconnected via Ethernet. The
work describes the overall architecture of micro-clusters in terms of both hardware and soft-
ware and evalautes the performance of the cluster nodes using High Performance LINPACK
(HPLINPACK) benchmarks.

Bolzano Cloud Cluster [42] is an early work that utilises Raspberry Pi devices to build an
edge cloud cluster consisting of 300 Raspberry Pi 1 nodes. Similar to PiCloud and Iridis-
Pi clusters, the primary purpose of the Bolzano Cloud Cluster is to provide experimental
infrastructure for education and research related to cloud environments.

Furthermore, authors in [43] design a homogeneous SBC-based cluster consisting of 64
nodes using Raspberry Pi 3 Model B. The cluster was built for research and teaching pur-
poses. The primary objectives are to enable students to understand high-performance clusters
and to provide a testbed for researchers to implement and test algorithms.

In addition, Pi-Crust [44] is a medium-sized Raspberry Pi cluster composed of ten nodes of
Raspberry Pi 2 Model B. The aim of the project is to discuss the equipment and configuration
required for building SBC-based clusters. The work compares the performance of a new
version of the Raspberry Pi cluster with old Raspberry Pi clusters and with a supercomputer
machine available at Texas A& M university using a matrix multiplication problem.

Overall, these primary projects and initiatives motivate the feasibility and usability of con-
structing edge SBC-based cluster systems for experiments, education, and research into
cloud and edge computing.

2.5. Edge Computing Micro-Clusters 21

2.5.2.2 Applications and Use Cases of Edge Micro-Clusters

Several research works provide compelling use cases and applications of edge SBC-based
clusters for edge and IoT environments. [6] discusses potential applications of SBC-based
clusters. The article investigates different applications of SBC clusters that span various
domains, including education, IoT, smart cities and edge computing. The authors conclude
that the SBC clusters are ‘enablers for edge computing’ and consider such micro-clusters
to be ‘the game changers’ in pushing computation intelligence toward the network edge.
Furthermore, the work presents several examples of Raspberry Pi-based clusters developed
for research and educational applications.

Qureshi et al. [8] provide the design and implementation of an SBC-based cluster for smart-
parking management systems in smart cities. They constructed a medium-size SBC cluster
using Raspberry Pi, Odroid Xu-4 and Latte Panda devices. The cluster communicates with
parking sensors to monitor car parking systems and analyse daily data. The work presents a
practical use case for SBC-based clusters and demonstrates the applicability of such micro-
cluster for edge computing and smart cities applications.

Elkhatib et al. [45] provide Raspberry Pi-based micro-cloud (rPi-based micro-cloud) to de-
liver Web-related services. The work examines four evaluation metrics: service latency,
hosting capacity, I/O overhead and system startup latency. Generally, the work demonstrates
the usability of such micro-clusters to host Web services and notes several performance lim-
itations related to responsiveness when the number of concurrent users is high. Therefore,
more efforts are required to evaluate resource management and optimisation to cope with the
noted performance limitations.

Further work demonstrating the applicability of SBC clusters in edge environments and soft-
ware defined networks has been conducted in [46]. The work designed a small SBC-based
cluster comprised of four homogeneous Raspberry Pi devices and developed an energy mon-
itoring application for SBC clusters. The application basically profiles nodes’ energy con-
sumption for performing containerised services. The work generally presents a use case of
SBC clusters as a component of edge and fog computing.

The work presented in [47] proposes tactical edge cloudlets that can be hosted on vehicles
or other platforms to provide edge infrastructures for computation offload for military users.
Tactical cloudlets offer general purpose, discoverable and forward-deployed cloudlets lo-
cated in one single hop in near proximity of mobile devices. The work presents a use case
for edge systems to extend computation to more critical edge scenarios, such as the military.

Authors in [48] present an architecture for cloudlet computing based on a Single Board
Computer cluster. They deploy a small Raspberry Pi cluster to act as a cloudlet edge server
to provide data to simulated drivers. They show that Raspberry Pi clusters can be suitable

2.5. Edge Computing Micro-Clusters 22

deployment solutions for IoT applications that require low computation power. The work
demonstrates a use case for an edge cloudlet server based on SBC to act as a component
of edge computing. However, more complex resource management and task allocation are
required for inter-cluster management.

Overall, the research mentioned above showcases how edge micro-clusters are being utilised
in different fields and demonstrates their deployment applicability for edge and IoT net-
works. However, performance-related analysis and additional complex management tech-
niques and optimisation are still required.

2.5.2.3 Performance Analysis and Evaluation of Edge Micro-Clusters

Performance-related evaluations of edge micro-clusters are considered in several related re-
search works. This includes evaluation of edge-related performance metrics such as energy
consumption, resource utilisation, and containerisation applicability for such edge clusters.

The performance of various SBC-based clusters was analysed in [39]. The study analysed
and compared the performance, energy efficiency, memory usage, and scalability of three 16-
node SBC clusters constructed using Raspberry Pi 3 Model B, Raspberry Pi 3 Model B+, and
Odroid C2, respectively. The paper, furthermore, presents a new SBC clusters construction
technique (i.e., Pi Stack) using Printed Circuit Boards (PCBs) developed to enable edge
computing deployment by allowing efficient control and easy configuration. Generally, the
results from this work reveal significant performance improvement in SBC clusters compared
with 64-node SBC clusters from 2013, giving natural improvements in the SBC industry. The
study concludes that SBC clusters can perform extensive tasks and open new computational
opportunities. Although the study provides meaningful technical analysis of SBC clusters
and their promising future, the evaluation of complex resource management techniques was
overlooked and still missing.

Rausch et al. [7] investigated energy and resource consumption characteristics of portable
edge micro-clusters. They provided a prototype of a micro-cluster composed of four Mini-
ITX form-factor hardware as computing nodes and used a Raspberry Pi-based cluster to
generate clients’ workloads. The work examined nodes’ resource consumption and provided
an analysis of related power characteristics. Overall, the work highlighted the applicability
of edge micro-clusters for several edge computing use cases; however, further experiments
are required to involve and examine complex management techniques related to workload
allocations for such micro-cluster systems.

Morabito [49] conducted extensive experiments to evaluate the performance of different
SBCs to run container technologies. The work benchmarks different SBCs, including Rasp-
berry Pi 2 Model B, Raspberry Pi 3 Model B, Odroid C1, Odroid C2, and Odroid XU4 using

2.5. Edge Computing Micro-Clusters 23

micro-benchmark tools, such as Sysbench and Linpack. The results from this work reflect
that container technologies have minimal impact on the performance of the SBCs. However,
clustering and workload management are not provided. The paper used micro-benchmark
tools, which might not provide realistic performance. However, computer science bench-
marks need to be realistic, representative and reflective of real-world scenarios to generate
reliable, accurate results [50, 51]. Therefore, further evaluation for node clustering using
realistic benchmark applications that represent real-world scenarios is recommended.

Furthermore, Pahl et al. [52] investigate the suitability of recent lightweight containerisation
technologies and container cluster management solutions, such as Docker [53] and Kuber-
netes [54], to meet edge clouds based on SBC clusters. The study concludes that edge SBC-
based clusters represent affordable Platform as a Service (PaaS) and can connect IoT and
cloud data centres. In addition, lightweight virtualisation technologies demonstrate feasible
solutions for such small clusters, giving lightweightness and interoperability features.

Authors in [55] constructed an edge compute cluster of eight Raspberry Pi devices for de-
veloping a lightweight auto-scaling for edge architecture. A fuzzy logic-based solution is
proposed for auto-scale systems. The study overall shows a use case for SBC cluster plat-
forms for edge computing. However, task allocation management and comparison with other
techniques are not included in the work.

Miori et al. [56] examine deploying OpenStack Swift software platform on a Raspberry Pi-
based cluster to increase the cluster performance for more potential edge applications. How-
ever, the study reveals some deployment limitations related to nodes performance and load
balancing and suggests using lightweight container solutions such as Docker to distribute
workloads.

Overall, the above mentioned performance-related research substantially contributes to eval-
uate various capabilities features of edge micro-cluster systems. However, further research
for complex scenarios of workloads allocation and optimisation is required.

2.5.2.4 Other SBC-based Edge Micro-Clusters

Alternative to Raspberry Pi-based cluster systems, which are mostly used in SBC-based
related studies, a few further research studies have utilised different forms of SBC-based
edge clusters [7, 39, 57, 58]. As mentioned earlier, authors in [7] provide a prototype of
a micro-cluster edge computer composed of four Mini-ITX form-factor hardware boards,
investigate energy consumption and evaluate its applicability for edge environment.

Basford et al [39] build a SBC-based cluster constructed using 16 nodes of Odroid C2 de-
vices. The cluster’s performance was evaluated and compared with the performance of com-
parable SBC cluster systems configured using Raspberry Pi 3 (Model B) and Raspberry Pi 3

2.5. Edge Computing Micro-Clusters 24

(Model B+). The results show that the Odroid C2 SBC-based cluster outperforms the Rasp-
berry Pi SBC-based clusters in terms of performance, value for money, and energy efficiency.

Furthermore, in [57], the NVIDIA Jetson Nano Developer Kit is used and evaluated. The
study explores the deployment of the NVIDIA Jetson Nano Developer Kit, a powerful Single
Board Computer (SBC) capable of running artificial intelligence algorithms, in the construc-
tion of a small SBC-based cluster for smart grid applications. The performance of the cluster
is compared with a single-node platform and a remote cloud server. The study presents alter-
native SBC-based clusters utilising various commodity SBCs for edge computing. However,
necessary resource management is not addressed.

In [58], the authors integrate the Raspberry Pi 3 Model B with the Intel Movidius Neural
Compute Stick, an embedded deep learning device, to enable deep learning and real-time
image processing in vehicular edge computing systems. The study demonstrates that the
combined system of Raspberry Pi 3 Model B and Intel Movidius Neural Compute Stick is
capable of processing image applications in real time. This highlights the promising potential
of Single Board Computers for edge computing applications. Yet, the evaluation of the
concurrent workloads is required to identify the system’s limitations.

These studies overall showcase various micro-cluster systems that utilise alternative forms
of SBC devices to build and experiment with edge-clusters for edge computing applica-
tions. While these research demonstrate the feasibility and performance of other SBC-based
micro-cluster solutions, further research work is necessary to investigate the complexity of
workload allocation and optimisation in these systems.

2.5.3 Limitations and Research Directions

The existing research demonstrates that edge micro-clusters platforms, such as Raspberry
Pi stacks and SBC-based micro data centres, represent practical ‘cloud-in-box’ infrastruc-
tures for edge computing and IoT environments. Such edge clusters are recognised as a
‘game changer’ for decentralising computing resources and a ‘key enabler’ for edge and
fog computing [6]. These edge systems can provide deployment features such as low-cost,
low-energy consumption, small physical footprints, and sufficient collective computing re-
sources. Ongoing research aims to further improve feasibility of micro-cluster platforms for
edge computing and IoT networks [59].

Table 2.1 summarises research related to edge micro-clusters and their use cases. Overall,
edge micro-cluster systems have been utilised in the literature for education, research, IoT,
smart cities, and edge computing applications. Generally, they are employed in simple edge
application use cases without considering the complexity of edge scenarios for micro-clusters
such as multitasking execution and the resource-constrained nature of micro-clusters.

2.5. Edge Computing Micro-Clusters 25

There is an absence of deployment of such micro-clusters to address complex compute-
intensive edge and IoT workloads. The majority of studies in this field discuss hardware
specifications, software and virtualisation technologies, and construction methods for such
edge systems. However, there is a lack of integration and evaluation for complex multitask-
ing edge scenarios, which require efficient and effective workload management and optimi-
sation techniques that are necessary for these micro-clusters platforms.

Optimisations and resource management represent core components of distributed infras-
tructures. They encompass different management aspects to address problems and enable
efficient task allocation and resource utilisation to meet different application QoS require-
ments. Therefore, further research is still required in this direction to investigate different
workload management aspects and re-examine the performance of optimisation techniques
for such micro-cluster platforms. By integrating appropriate optimisation techniques for
task allocation in micro-clusters, we could enhance the functionally and capabilities of such
micro-cluster systems for edge and IoT environments.

This thesis, therefore, aims to address this knowledge gap by investigating task allocation
and evaluating optimisation techniques necessary for edge micro-cluster systems. This can
be achieved by utilising appropriate optimisation techniques that can provide effective and
efficient optimised task allocation for edge micro-cluster deployment. The following sections
discuss resource management aspects and optimisation techniques in the context of edge
computing.

2.5. Edge Computing Micro-Clusters 26

Table 2.1: Comparison of hardware, software, and deployment context of various edge clus-
ter platforms.

Papers Nodes Qty Node Type Deployment
Context

Resource
Management

Abrahamsson
et al. [42]

300 node Raspberry Pi
Model B

Education and
Research

NA

Alhaizaey et al.
[10]

8 node Raspberry Pi
Heterogeneous

Edge Comput-
ing

Task Allocation

Basford et al.
[39]

3 clusters 16
nodes each

Raspberry
P Model B,
Raspberry Pi
Model B+, and
Odroid C2

Edge Cluster
Construction
using Pi Stack

NA

Bourhnane et
al. [57]

3 node NVIDIA Jetson
Developer Kit

Machine
Learning

NA

Cox et al. [41] 64 node Raspberry Pi
Model B

Education NA

Fabian et al. et
al. [55]

8 node Raspberry Pi 2
Model B

Edge Comput-
ing

Auto-Scaling

Damián et al.
[48]

4 node Raspberry Pi 3
Model B

Edge Comput-
ing

NA

Johnston et al.
[6]

NA Raspberry Pi Edge, Educa-
tion, IoT

NA

Miori et al.
[56]

NA Raspberry Pi1
model B

Edge Comput-
ing

NA

Mikhail et al.
[43]

64 Raspberry Pi 3
Model B

Multipurpose
Clusters

NA

Qureshi et al.
[8]

8 node Raspberry Pi
3B+, Odroid
Xu-4, and
LattePanda 4G

Smart Cities
Management
Systems

Kubernetes en-
vironment

Rausch et al.
[7]

4 node Mini-ITX Edge Comput-
ing

Simple Load
Balancing

Sagkriotis et al.
[46]

4 node Raspberry Pi
Model B

Power con-
sumption

NA

Tso et al. [9] 56 node Raspberry Pi 1
Model B

Education NA

Wilcox et al.
[44]

10 node Raspberry Pi 3
Model B

Education NA

2.6. Resource Management in Edge Computing 27

2.6 Resource Management in Edge Computing

This section discusses resource management in edge and fog computing paradigms. It first
highlights several systematic literature review articles that comprehensively review edge re-
source management from different perspectives. After that, the section discusses various
resource management-related studies, with a particular focus on task allocation in edge com-
puting. Finally, the section provides a high-level overview of different optimisation tech-
niques that are being utilised to solve orchestration-related problems in in distributed envi-
ronments.

2.6.1 Introduction to Resource Management

Resource management in distributed environments can be defined as an ‘umbrella’ term that
covers different resources and workload management aspects. This includes hardware com-
ponents, systems software, and orchestration techniques that manage resources and work-
load. The overall objective of resource management is to run systems effectively in order
to meet various applications’ Qualitty of Service (QoS) requirements and systems’ Service
Level Agreements (SLA) [60].

Resource management is a critical concern in edge and fog computing. Research states the
complexity and difficulty of managing resources in edge computing. This complexity might
be attributed to several co-dependent factors, including 1) the dynamicity of the workloads
at the network edge, 2) the heterogeneous nature of devices deployed at the edge, and 3) the
resource constraints at the network edge [11].

With the ongoing trends in edge and fog computing as promising distributed computing
paradigms for IoT applications, several literature survey articles and review papers have been
published to discuss and review edge computing-related concepts from different points of
view, including preliminaries, such as definitions, architectures and frameworks to advance
management and orchestration-related issues, such as resource management, virtualisation
solutions, and optimisations techniques.

Hong and Varghese [11] provide a comprehensive survey on resource management and chal-
lenges in fog and edge computing. The survey investigated resource management from three
perspectives: architecture, infrastructure, and algorithmic perspectives. (1) The architec-
ture perspective described the overall fog and edge systems and were classified into data
flow architectures, which deal with data flow directions. It defines the data flow direction,
whether systems offload data from the edge to the cloud. Controlling architectures describe
mechanisms that manage the overall environment and are defined as: centralised and dis-
tributed control. Tenancy architectures describe the type of tenancy, whether systems host a

2.6. Resource Management in Edge Computing 28

single tenancy or be shared by multiple tenancies. (2) The infrastructure perspectives iden-
tify hardware and software facilities used to deploy and manage resources in Fog and Edge
computing. (3) The algorithm perspective identifies management techniques that underpin
fog and edge and is classified into discovery, benchmarks, load balancing, and placement
algorithms.

Ghobaei-Arani et al. [61] review resource management approaches in edge and fog com-
puting. They conducted a comprehensive systematic review of resource management ap-
proaches in edge and fog and classified resource management into six main categories: appli-
cation placement, resource scheduling, task offloading, load balancing, resource allocation,
and resource provisioning. The survey categorises the techniques utilised to solve manage-
ment problems into heuristic-based algorithms, metaheuristic-based and mathematical-based
methods. Furthermore, the survey finds that the majority of works used simulation-based
tools for solution implementations, including iFogSim, CloudSim, and Matlab environments.

Authors in [21] provide a comprehensive survey of optimisation techniques and their applica-
tions in the context of edge computing. They first discuss various deployment infrastructures
related to edge and fog computing, followed by a taxonomy of the optimisation algorithms
employed to solve optimisation problems in edge paradigms. The paper furthermore presents
a classification of orchestration techniques and their attributed evaluation metrics. The sur-
vey classifies optimisation algorithms into integer programming, heuristic, and heuristics
optimisation. Similar to [61], optimisation problems were categorised into scheduling, al-
location, placement, offloading, load balancing, and provisioning, whereas the performance
metrics were grouped according to the orchestrations techniques, including but not limited
to makespan time, latency, cost, and energy consumption. Finally, the authors discuss eval-
uation environments employed to evaluate optimisation techniques, including simulation,
analytical and testbeds tools. The survey designs a research guideline framework, which
helps in designing and solving optimisation problems in the fog and edge computing re-
search community.

Aslanpour et al. [62] shed light on performance evaluation metrics in cloud, fog, and edge
computing. The authors re-classify evaluation metrics as the computing model becomes
more complex with the proliferation of the Internet of Things and emerging distributed
paradigms. They analysed various performance metrics used to evaluate cloud, fog, and edge
computing orchestration techniques. They provided a comprehensive taxonomy and detailed
definitions of relevant metrics and their applications. They categorise metrics according
to the MAPE-K orchestration process standard provided by IBM, in which orchestration
techniques are defined according to four deployment phases: Monitoring phase, Analysing
phase, Planning, and Execution phases. This classification aims to support developers and
researchers in selecting and evaluating the most relevant metrics for optimisation techniques.

2.6. Resource Management in Edge Computing 29

From another perspective, Mansouri et al. [36] review cloud and edge computing with a
particular focus on resource virtualisation techniques, which are fundamental technologies
in both paradigms. They investigate different virtualisation solutions deployed in cloud and
edge and state that cloud classical virtualisation, such as hypervisors-based and Xen, cannot
be effectively deployed in edge environments as edge naturally utilise more heterogeneous
and resource-constrained devices that are not capable enough to run heavyweight virtualisa-
tion and consequently require lightweight-virtualisation techniques like containerisation and
docker. The article thus recommends that combining classical and lightweight virtualisation
techniques, for example, Xen and containerisation, might yield efficient deployment plans
for different IoT applications. However, selecting appropriate virtualisation solutions still
depends on three main factors: virtualisation techniques features, devices capabilities, and
IoT application requirements.

Overall, this section provides a high-level overview on resource management concepts and
highlights several systematic literature review articles related to resource management in
edge, fog, and cloud computing paradigms. The survey articles addressed the topic from
different viewpoints covering management aspects, optimisation techniques, and evaluation
environments in edge computing-related paradigms. The following sections discuss those
resource management aspects, focusing on task allocation concepts.

2.6.2 Task Allocation in Edge Computing

In the context of edge computing, task allocation techniques are applied to produce optimal
or near-optimal allocation decisions for mapping IoT-related workloads to edge devices. The
overall objective is to generate effective allocation solutions that meet different QoS require-
ments of IoT applications. This typically involves minimising edge-related performance met-
rics, such as makespan time, energy consumption, and latency. Task allocation is a complex
optimisation problem in edge computing due to resource heterogeneity and the distribution
of edge infrastructures. Researchers have proposed task allocation solutions by utilising var-
ious optimisation techniques. Solutions generally can be classified into categories, including
heuristic-based solutions, metaheuristics-based solutions, mathematical-based solutions, and
machine-learning solutions [11, 21, 61].

Heuristic-based solution are utilised in [30, 63, 64]. Taneja et al. [30] develop a heuristic-
based algorithm to deploy applications for the fog-cloud paradigm. The proposed technique
is composed of three-integrated algorithms to find allocation solutions. The algorithms it-
erate from fog nodes toward cloud nodes, placing application modules on the most eligible
fog nodes. If no fog nodes are available or eligible for processing appellations, contact is
made with cloud nodes. The evaluation is conducted using iFogSim considering different
networking typologies with varied workloads.

2.6. Resource Management in Edge Computing 30

The authors in [63] develop a heuristic-based solution to manage users and cloudlet servers
association in fog computing and mobile cloud computing. The authors formulated the prob-
lem as an integer linear programming and developed a heuristic-based solution to optimise
cost metrics. The developed solution is solved using the Gurobi optimiser, examined using
simulation, and compared with various techniques, including best-first, random and optimal
solutions. Overall, the work addressed how mobile users can select an appropriate cloudlet
server to deploy services. Empirical evaluations are recommended to examine the solution’
precision.

Rausch et al. [64] provide scheduling workloads in edge systems. The work presents a
container scheduling system based on a greedy heuristic multi-criteria decision-making al-
gorithm, i.e., Skippy. Skippy interacts with container management systems, like Kubernetes,
and schedules containers to system nodes according to the edge system state. The system
presents a method to enhance container management systems to allow such container man-
agement systems to support edge systems. However, the paper does not consider edge work-
load dynamic, multi-tasking and multi-tenancy scenarios in edge nodes, which might require
involving and evaluating relevant optimisation techniques.

A few research works employed metaheuristics-based optimisations [65, 66, 67, 68, 69, 70].
The authors in [65] developed a genetic algorithm-based solution to optimise service allo-
cation in fog computing. They compared the proposed solutions with the greedy first fit,
exact-based solution, and cloud solutions using iFogSim simulation. The study shows that
their genetic-based solution outperforms other techniques by not violating application dead-
lines. However, the complexity of the proposed solutions requires further investigation .

Azimi et al. [66] compared two metaheuristic-based optimisation techniques, Particle Swarm
Optimisation (PSO) and BAT algorithm, to optimise application allocations in edge environ-
ments. They developed a Particle Swarm Optimisation-based solution to optimise applica-
tions execution time in edge architecture that is comprised of three layers: the things layer,
the edge layer, and the cloud layer, where the edge layer contains multiple edge clusters. The
proposed PSO-based solution is compared with the BAT algorithm, another swarm-based op-
timisation technique. The experimental simulation results show that PSO outperforms BAT
optimisation in finding the best fitness value across the proposed scenarios. An extended
version of the work with technical implementation detail is presented by the same authors in
[67]. However, the works require further evaluation in realistic edge environments.

Gill et al. [68] proposed a Particle Swarm Optimisation solution for scheduling task in smart
home environments to optimise various QoS metrics including energy consumption, latency,
bandwidth, and response times. They implemented the proposed solution using iFogSim and
compared it with two algorithms, namely: round robin and first come first serve scheduling.

A Genetic Algorithm-based solution is proposed for scheduling applications in a cloud-fog

2.6. Resource Management in Edge Computing 31

computing environment in [69]. The developed solution is compared with Bee Life Algo-
rithm, Modified Particle Swarm Optimization, and Round Robin using iFogSim simulation
for a cloud environment and a fog environment. The work provides an overall performance
comparison of various evolutionary algorithms for a cloud-fog environment. However, the
study does not consider other performance metrics and evaluate realistic cloud-fog systems.

Cano et al. [70] consider the problem of variant task allocation for distributed robotics sys-
tems using constraint programming, greedy heuristic, and local search metaheuristics show-
ing that constraint programming outperforms other techniques. They evaluated the proposed
solution in a multi-agent navigation environment. The system’s complexity requires further
evaluation.

Mathematical-based solutions are utilised in [71, 72, 73, 74]. Skarlat et al. [71] developed a
mathematical-based optimisation model to optimise application mapping and resource utili-
sation for a fog landscape. The developed mathematical-based model is implemented using
IBM CPLEX solver. The Fog computing environments and the involved entities, such as
applications and fog nodes, are implemented using iFogSim simulation software. The devel-
oped mathematical-based solution is compared with first-fit heuristic-based and cloud-based
solutions for different application scenarios. The work requires further evaluations of the
complexity of the developed optimisation model and an evaluation in a realistic fog environ-
ment.

Yin et al. [72] present task scheduling based on containers for fog computing manufacturing
systems. They proposed optimise scheduling tasks in smart manufacturing systems by a
mathematical-based solution. The solution optimises the task execution time and reallocates
tasks to reduce delay. The system is evaluated using simulation, and the complexity of the
system is not provided and requires further evaluation.

Authors in [73] extended the framework presented in [65] to address the fog service place-
ment problem (FSPP) in a fog environment, which aims to find an optimal mapping between
IoT applications and fog computational resources. The objective is to optimise fog resource
utilisation while satisfying the QoS requirements of IoT applications. The FSPP is mathe-
matically modelled and evaluated using benchmarking different target platforms representing
fog and cloud implementation. However, the solution’s complexity is provided. In addition,
evaluation in a realistic fog environment is required to validate the estimated performance.

Wang et al. [74] consider the network dynamicity, such as users’ mobility and load changing,
to dynamically decide which mobile micro-cloud should perform the incoming computations
offload from mobile users in mobile edge computing environments. They proposed two
algorithms, offline and online algorithms, to find the allocation decisions. The proposed
solution is evaluated by simulation using a real-world data set of user mobility traces of
taxis.

2.6. Resource Management in Edge Computing 32

Machine learning is utilised in the literature to address several resource management prob-
lems in edge computing [13, 75, 76, 77, 78, 79]. Liu et al. [13] proposed a Machine learning-
based solution to optimise resource allocation in IoT networks for smart farming as a use
case. The proposed to optimise resource allocation by classifying the IoT devices into differ-
ent clusters according to defined priorities using a centralised K-means clustering algorithm
running at edge gateways. After performing clustering, the cluster with the highest priority
is allocated to the edge server, and the cluster with the lowest priority is allocated to compute
tasks locally at IoT devices. The work is analysed using simulations and compared with local
computing, edge computing server, and greedy scheme. Further work is required to evaluate
multiple concurrent users in a realistic edge environment.

Authors in [75] developed a reinforcement learning mechanism to address application dis-
tribution in multi-layer fog-cloud computing systems. The work addresses the questions of
which and how many services are to be deployed in fog resources instead of cloud resources.
A deep reinforcement learning-based solution is developed to dynamically learn the optimal
deployment solution without prior knowledge of fog resource states. The model is vali-
dated using face detection and mobile game use cases. The evaluation is conducted using an
Odroid-XU4 board, a laptop machine, and an Amazon t2.micro cloud machine.

Xiaolan Liu et al. [76] addressed resource allocation in edge computing and IoT networks
using reinforcement learning. The proposed solution decides whether to execute tasks lo-
cally or offload tasks to edge devices for processing. The system objective is to minimise a
weighted sum of the task executing latency and power consumption. The solution is evalu-
ated using simulations and compared with local computing, where tasks are executed at local
end devices and in edge computing, where tasks are offloaded to the edge server. The study
shows the effectiveness of RL in addressing resource management. The work only evaluates
for one edge server to offload tasks, while edge computing typically has several local edge
servers. Considering the availability of several edge servers and the comparison with other
techniques to examine the solution’s complexity and the overhead on the system in realistic
edge environments is recommended.

Furthermore, Mao et al. [77] utilised deep reinforcement learning to build a system to man-
age resources from experience for large-scale systems. They simulated a system environment
comprised of various resources where tasks arrive online. Overall the study shows that RL
performs comparably to ad-hoc heuristics to optimise the task’s average slowdown time, de-
fined as the task completion time divided by the task’s ideal duration time, in large-scale
systems. The work requires more experiments to validate in realistic environments.

An edge cloud architecture (ECO) based on Machine Learning is presented in [78]. The
authors developed the ECO to train machine learning models and evaluated it on several use
cases like federated learning, transfer learning and stage model deployment. Overall, the

2.6. Resource Management in Edge Computing 33

study shows applicability of the developed model to train ML at the edge.

Bian et al. [79] develop online task scheduling for fog computing environment using deep
reinforcement learning to achieve multi-resource fairness among tasks and reduce task la-
tency. The proposed technique is compared with random-based and shortest execution time.
Similar to the RL-related papers, the work demonstrates the viability of RL techniques for
resource management. However, the complexity and practical evaluation require further
evaluation.

Table 2.2 provides a summary of task allocation research in edge and fog computing systems.
Overall, task allocation concept covers techniques for producing optimal or near-optimal de-
cisions of mapping IoT tasks to edge or fog resources in order to optimise various QoS
deployment requirements. The above section examined studies in task allocation in edge
computing with a particular emphasis on the utilised optimisation techniques, evaluation
environments, and deployment contexts. As aforementioned, the techniques utilised in the
literature largely fall under categories including heuristics, metaheuristics, mathematical-
based, and machine-learning techniques. Furthermore, it is noted that simulations and an-
alytical tools are mostly utilised for experimental evaluations, and there is an absence of
using realistic edge environments for empirical evaluation, which is necessary for generating
meaningful results. In this research, the experimental evaluations will be conducted using a
configured edge micro-cluster testbed.

2.6. Resource Management in Edge Computing 34

Table 2.2: A summary of task allocation in edge and fog computing.

Papers Optimisation
Technique

Experimental En-
vironment

Deployment Con-
text

Azimi [66] Metaheuristic-based MATLAB Software Fog Computing
Bian [79] Reinforcement

Learning
Simulation Fog Computing

Cano [70] Constraint Pro-
gramming and
Metaheuristics

Robotics Systems Distributed Systems

Gill [68] Metaheuristic-based iFogSim Simulation Smart Home Envi-
ronment

Hongzi Mao [77] Reinforcement
Learning

Simulation and Data
Set

Cloud Computing

Hong Yao [63] Heuristic-based Simulation Fog Computing and
Mobile Cloud Com-
puting

Liu [13] Machine Learning Simulation Edge Computing for
Smart Farming

Nan Wang [75] Reinforcement
Learning

A computer ma-
chine and a cloud
instance

Fog and Cloud com-
puting

Nguyen [69] Evolutionary Algo-
rithms

iFogSim Simulation Cloud-Fog Environ-
ment

Nisha Talagala [78] Machine Learning Edge Server Edge-Cloud Com-
puting

Rausch [64] Heuristic-based Edge Testbed IoT, Edge, and
Cloud Environment

Skarlat [71] Mathematical-based iFogSim Simulation Fog Computing
Skarlat [65] Metaheuristic-based iFogSim Simulation Fog Computing
Taneja [30] Heuristic-based iFogSim Simulation Fog-Cloud Comput-

ing
Venticinque [73] NA A workstation ma-

chine and a Rasp-
berry Pi 3

Fog Computing

Wang [74] Mathematical-based Simulation Mobile Edge Com-
puting

Xiaolan Liu [76] Reinforcement
Learning

Simulation Edge Computing
and IoT Networks

Yin [72] Mathematical-based Simulation Fog Computing and
Smart Manufactur-
ing

2.6. Resource Management in Edge Computing 35

2.6.3 Other Resource Management Aspects

This section provides a high-level overview of relevant resource management concepts in the
context of edge, fog and cloud computing. It briefly reviews studies related to load balancing,
offloading and migration, resource provisioning, and energy consumption, with a focus on
the employed optimisation techniques and evaluation environments.

2.6.3.1 Load balancing

Load balancing is a significant concept in edge and fog computing. Load balancing tech-
niques are used to balance workloads over system nodes and monitor the system to avoid
overloading certain nodes while other nodes are idle. [11, 61, 80, 81, 82, 83].

Song et al. [80] construct a fog computing system model using graph theory and proposed
a dynamic load balancing techniques based on graph repartitioning to address load balanc-
ing in fog computing. The proposed system model and solution were evaluated using a
distributed system Hadoop to simulate a fog environment.

The work in [81] proposes a mathematical-based model to address load balancing between
two edge data centres by a cooperation-based solution. The proposed cooperation-based
technique allows two edge data centres to cooperate and balance the load in case of overload-
ing to reduce the execution time of tasks. The work was mathematically optimised. Further
additional experiments are required to consider more than two edge servers and evaluate the
solution complexity.

Authors in [82] propose a load balancing solution for Edge Data Centers (EDCs) in fog
computing paradigms that enhances security and load balancing in EDCs. The solution first
authenticates EDCs prior to offloading workloads in order to avoid unauthenticated edge
servers. EDCs broadcast their overloaded workloads along with their ID number to other
EDCs. The proposed technique obtained the fastest response time compared with other
techniques, such as random, proportional, and static allocation. However, authenticating
EDC could prolong the response time since this could add an extra job. This could affect
QoS and QoE as well. The work is conducted and evaluated using MATLAB Simulation.

Authors in [83] optimise the problem of load balancing in distributed Internet of Vehicles
(IoV). The authors presented a centralised modified constrained particle swarm optimiza-
tion (MPSO-CO) to improve the latency performance and load balancing in fog and cloud
environments. The experiments results show that the MPSO-CO outperforms other load bal-
ancing algorithms such as PSO-CO, greedy load balancing algorithm, and Max-Min Load
balancing algorithm. The proposed algorithm was implemented using simulation.

2.6. Resource Management in Edge Computing 36

2.6.3.2 Offloading and Migration

Offloading and migration concepts cover techniques that deal with how and where to of-
fload and migrate services in edge and fog computing. This generally can be either from
end devices to edge nodes, between cloudlet and edge servers in edge network, or between
edge nodes and remote cloud data centres. Offloading and migration allow the resource-
constrained end devices to offload their intensive-computational tasks to more powerful re-
sources located in the near edge or centralized cloud centres. It also provides migration of
services between edge nodes to maintain proximity to the mobile or stationary end devices
[11, 61, 84, 85, 86, 87].

Barbalace et al. [84] study service migration between heterogeneous edge nodes to support
mobile users in keep physical proximity to edge servers. The paper proposes a solution, i.e.,
H-Container, allowing migration of containerised applications between compute nodes with
different CPU architectures. The system is evaluated using a variety of ARM 64-bit and x86
64-bit computers.

Authors in [85] investigate different Machine Learning approaches to predict offloading time
required to offload stateless and stateful docker containers in cloud and fog computing. State-
less means offloading container images without preserving the application state, while state-
ful deals with live migration of application states with the container images. They compare
four different Machine Learning prediction approaches, namely Multivariate Linear Regres-
sion (MLR), Polynomial Multivariate Regression (PMR), Random Forest Regression (RFR),
and Ridge regression (RR). The results from the study show that RFR outperforms MLR,
RMR, and RR. They evaluated the solution using lab-based systems. However, further work
is to consider and address resource limitations in fog nodes.

A latency-aware workload offloading to allow mobile users to offload workloads in dis-
tributed edge cloudlets is proposed in [86]. The technique is based on a mathematical model
to minimise workload response times. The work is evaluated using simulation and compared
with two other offloading strategies. The first one considers offloading to the nearest cloudlet
to the mobile user measured by the round trip time between users and the cloudlet. The sec-
ond strategy offloads to a remote cloud data centre with sufficient resources. The solution
complexity and evaluation in realistic environments are required.

The work in [87] proposed a seamless offloading mechanism to support the migration of web
applications in edge cloud environments. The authors proposed a serialization algorithm,
which captures, saves and restores the web worker states after the mobile user is migrated
to another edge or cloud server. The evaluation experiments are conducted using three web
applications and evaluated in one mobile worker (Odroid-XU4), two edge servers (source
and destination servers) and one cloud server. The solution complexity when several edge
servers are available requires investigation.

2.6. Resource Management in Edge Computing 37

Generally, offloading and migration techniques support mobile users in decision-making re-
lated to how, when and where to offload their intensive-computational workloads in edge
computing. In addition, it supports edge servers to collaborate and migrate services between
them.

2.6.3.3 Resource Provisioning

Resource provisioning covers management approaches that determine the required resources
in edge computing. It dynamically manages resources to enable effective and dynamic re-
source auto-scaling features to cope with workload characteristics and network dynamics at
the edge. [11, 55, 61, 88].

Authors in [55] proposed an algorithm using fuzzy logic to enable edge cluster systems to
dynamically auto-scale resources to deal with dynamic changes in the edge environment.
The algorithm was evaluated using an edge compute cluster composed of several Raspberry
Pi devices.

Le Tan et al. [88] propose a load prediction technique based on edge data centres locations
to enable effective auto-scaling in mobile edge computing. They propose a solution based
on Vector Auto Regression (VAR), a statistical model for calculating changes in data over
time, to predict load in edge data centres. The solution is evaluated using simulation and real
mobility traces of the taxis data set and compared with unknown-location load prediction.

Overall, resource provisioning provides techniques that enable auto-scaling in edge systems.
Resource provisioning techniques can support edge systems to automatically cope with net-
work dynamics and uncertainties in edge environments. It can help to avoid resource over-
provisioning, which leads to increased cost and energy consumption, or resource under-
provisioning, which might negatively affect the QoS requirement of applications.

2.6.3.4 Energy and Power Management in Edge Computing

Energy consumption and power management are critical for edge computing and IoT net-
works due to factors such as resource constrained of edge devices, hardware heterogeneity,
limited power sources, and increasing demands of workload execution at the edge. However,
little work has been conducted to model, manage, and optimise energy consumption for edge
micro-cluster systems [7, 46, 49, 89, 90].

As mentioned and discussed in Section 2.5.2, Rausch et al. [7] investigate power consump-
tion characteristics of edge-based computer clusters. The work employs a simple load bal-
ancing technique to investigate the relation and between resource utilisation and energy con-
sumption in edge-based computer clusters. Sagkriotis et al. [46] develop an energy monitor-
ing application for SBC-based edge clusters. The application profiles energy consumption of

2.7. Optimisation Techniques 38

nodes. In addition, [49] investigates power consumption for various SBCs that are utilised in
edge-cluster systems. The work utilised systems benchmarks to examine the impact of de-
ploying docker containers on energy consumption on several SBC devices, including Rasp-
berry Pi and Odroid. Furthermore, Wiesner and Thamsen [89] develop an edge simulator
tool, i.e., LEAF simulator, for modeling energy consumption and determining power usage
of nodes in fog computing environments. A survey on energy aware edge computing is pro-
vided [90]. The survey provides a systematic review that reviews existing efforts on energy
efficiency in edge computing.

As mentioned above, not much work addresses and optimises energy consumption for edge
micro-clusters. In addition, as stated in [90], most of the existing research focuses on a single
objective, such as latency, privacy, power, or energy efficiency. Therefore, there is a need to
model and optimise multi-objective optimisation of energy efficiency and execution times in
edge systems.

2.7 Optimisation Techniques

Optimisation techniques are algorithms designed to solve complex optimisations problems
in several domains like cloud computing, edge and fog computing. Optimisations are a core
component in cloud computing and becomes more essential in fog and edge computing [62].
They play an essential role in solving complex orchestration and optimisation problems in
these distributed and heterogeneous environments. This section briefly presents different
optimisation techniques that are being employed to solve orchestration-related problems in
edge, fog and cloud, specifically focusing on their reasoning, advantages, and disadvantages.
These techniques generally fall under three main categories: mathematical optimisation,
metaheuristic-based optimisation, and heuristic-based optimisation [21, 61, 59].

2.7.1 Mathematical Optimisation

Mathematical optimisations are deterministic techniques that can provide optimal solutions
for complex optimisation problems. Mathematical-based optimisations systematically solve
the optimisation problems by minimising or maximising the system’s objective functions.
Overall, mathematical optimisation can be classified into 1) integer programming, 2) mixed-
integer programming, 3) non-linear integer programming, and 4) non-linear mixed-integer
programming. Mathematical optimisation generally features advantages, such as providing
the best optimal solutions and allowing for specifically modelling optimisation problems by
defining systems variables and constraints. However, several disadvantages make mathemat-
ical optimisations not suitable for complex management problems. Mathematical optimisa-

2.7. Optimisation Techniques 39

tions can be computationally expensive, and the system complexity can grow exponentially
for large and complex optimisation problems with many systems variables and constraints.
Furthermore, they might require intensive computations and consume the systm computing
resources. In addition, mathematical optimisations require expert system engineers to model
optimisation problems and define system constraints mathematically [21].

Generally, it seems that mathematical-based optimisations are inappropriate optimisation
techniques for resource management in large distributed environments, such as in huge cen-
tralised data centres. This is because of the complexity and computation time for large and
complex distributed systems [91, 92, 93, 94]. Therefore, heuristics-based and metaheuristics-
based solutions are more effective and efficient optimisation techniques to cope with such
complexity [36].

2.7.2 Metaheuristics Optimisation

Metaheuristics optimisations are stochastic-based techniques in which a degree of random-
ness is employed to find optimal or near-optimal solutions for complex optimisation prob-
lems. Metaheuristics Optimisation find an optimal or near-optimal solution by iteratively
optimising solutions for several iterations. Metaheuristic-based techniques are successfully
used in software engineering and cloud environments where optimal solutions are challeng-
ing to obtain and require a trade-off between several conflicting objectives [21, 95, 96, 97].

Authors in [98] and [99] review metaheuristic optimisations resource management in cloud
settings. In [98], Comparative analysis of six metaheuristic techniques has been conducted
using the CloudSim simulator to evaluate workload scheduling in a cloud environment. The
authors analysed the performance of six different metaheuristic techniques: Ant Colony Op-
timisation (ACO), Particle Swarm Optimisation (PSO), Genetic Algorithm (GA), Artificial
Bee Colony (ABC), Crow Search Algorithm (CSA), and Penguin Swarm Optimization (Pe-
SOA), to optimise makespan time and cost metrics. They implemented experiments using
the CloudSim simulation tool and provided knowledge on the performance of metaheuristics
for scheduling tasks in cloud environments. In [99], a review of various metaheuristics-based
optimisation techniques used for optimising Virtual Machine Placement (VMP) in cloud data
centres is presented. The review described the logic of different metaheuristics techniques
and discussed their implementation for VMP in cloud environments. The paper, specifically,
reviewed Simulated Annealing (SA), Genetic Algorithm (GA), Ant Colony Optimisation
(ACO), Particle Swarm Optimisation (PSO) and Biogeography-Based Optimisation (BBO).

Metaheuristics optimisation features several advantages, including 1) easy implementation,
2) fast convergence time compared with exponentially complex mathematical optimisations,
3) the ability to find optimal or near-optimal solutions for complex optimisation problems,

2.7. Optimisation Techniques 40

and 4) the ability to avoid local-optimum solutions. However, optimal solutions are not
always guaranteed and premature convergence might occur due to the difficulty in adjusting
the variables.

2.7.3 Heuristics Optimisation

In contrast to metaheuristics-based optimisations, where techniques follow nature or swarm
dynamics to search spaces to find optimal or near optimal solutions, heuristics-based opti-
misation techniques are stochastic algorithms that follow specific instructions to solve com-
plex optimisation problems in feasible computational time. Because many edge computing-
related orchestration problems, such as task allocations and resource scheduling, are complex
optimisation problems, the exact optimisation might not be applicable to solving the prob-
lems in a feasible time. Heuristics-based optimisation features easy implementation and fast
computation time. However, optimal solutions are not guaranteed. They generally can be
classified into 1) construction heuristics, in which the algorithm follows specific rules for
searching for the optimal solution, and 2) improvement heuristic, in which the solution is
iterative and slightly improve or change the candidate solutions [21]. For example, greedy-
based techniques are examples of heuristic optimisations that finds best local choice at each
time.

2.8. Discussion against Related Work 41

2.8 Discussion against Related Work

This section provides a critical analysis of the related work, identifying gaps in the field
which will be addressed through this research contribution.

Micro-clusters have been introduced in the research areas related to edge computing and
IoT networks. These edge computing systems facilitate practical deployment solutions for
edge and IoT applications by leveraging their deployment features such as low latency, low
energy consumption, and high networking bandwidth. However, existing research efforts are
largely limited to high-level management aspects, such as construction techniques, use cases
and applications, without considering the complexity of task allocation and optimisation
techniques necessary for operating such resource-constrained edge systems.

Despite the progress made in researching micro-cluster systems for edge computing, it is
noted that there is an absence of work involving complex management problems related to
task allocation and optimisation for edge micro-cluster systems. In addition, the literature
review reveals that most studies investigating edge-related resource management rely on
simulation-based solutions and analytical tools, such as CloudSim, iFogSim, or Matlab; in
contrast, there is an absence of utilising realistic edge environments for empirical evaluation,
which is necessary to generate meaningful results.

Task allocation techniques aim to provide optimal or near-optimal decisions of mapping IoT
tasks to edge or fog resources in order to optimise various QoS deployment requirements.
Task allocation solutions in the context of cloud and edge computing are based on opti-
misation techniques including heuristics, metaheuristics, mathematical-based, and machine-
learning techniques. These optimisation techniques differ in 1) their effectiveness in finding
optimal or near-optimal solutions for complex optimisation problems, and in 2) their effi-
ciency in terms of computation time and the number of iterations required to converge or
find feasible solutions. The No Free Lunch Theorem (NFLT) states that no single optimisa-
tion technique can be most applicable to all optimisation problems [21, 100]. This mandates
further examination for micro-cluster systems. Because of the differences of edge micro-
cluster systems in terms of (for example) resource availability, node capabilities, networking
connectivity, and power management, it is imperative to reexamine the performance of rele-
vant optimisation techniques to capture their effectiveness and efficiency for task allocation
optimisation in edge micro-cluster settings.

In comparison to existing research efforts, this research aims to address and optimise task
allocation for edge micro-cluster systems. The experimental evaluations in this research
will be conducted by utilising a configured physical edge micro-cluster testbed to address
the lack of empirical performance evaluation observed in existing studies. By addressing
these research gaps and leveraging a realistic testbed, this research contributes to enhance

2.9. Summary 42

the applicability of micro-clusters in edge computing and IoT environments. The empiri-
cal evaluations will provide valuable insights into the performance of different optimisation
techniques in real-world edge micro-cluster scenarios.

2.9 Summary

This chapter has laid down the background and theoretical framework for this thesis. It
comprehensively reviewed literature related to emerging edge computing technologies, task
allocation and resource management at the edge of the network, and the relevant optimisation
techniques.

The chapter provided a high-level overview of edge-related systems and an in-depth review
of existing micro-cluster systems for edge computing and IoT networks. Specifically, it
first presented a general overview of the computing landscape and the emerging distributed
paradigms that have been proposed to facilitate edge computing. It highlighted several edge
computing systems constructed for enabling edge computing with technical-related config-
uration and use cases. Furthermore, the chapter presented an overview of resource manage-
ment in edge computing with a particular focus on task allocation and optimisation tech-
niques for edge computing. Figure. 2.2 demonstrates the overall picture of the related work.

As described in Section 2.5, edge micro-cluster systems have been introduced in the con-
text of edge computing as practical solutions for decentralising resources toward the edge
of the network. However, the literature review revealed that the related work around such
micro-clusters are limited to high-level management issues, such as construction techniques,
hardware and software specifications, high-level scenarios and use cases. There is an ab-
sence of evaluating significant management issues related to complex task allocation and
optimisation techniques necessary for such edge micro-cluster systems.

To address these research directions, this thesis presents and evaluates the applications of var-
ious task allocation optimisation techniques to allocate and optimise task allocation in edge
micro-cluster platforms. Chapter 3 provides and characterises a realistic edge micro-cluster
system for edge and IoT environments and empirically evaluates various task allocation op-
timisation techniques for solving task allocation. Chapter 4 develops an analytical linear
model for predicting the execution time for processing workloads in edge micro-clusters and
provide an evaluation of PSO-based metaheuristic optimisation technique for micro-clusters.
Chapter 5 extends the work by modelling and evaluating energy consumption for micro-
clusters and develops a multi-objective optimisation framework that facilitates optimising
other edge-relevant performance metrics in such edge systems.

43

Chapter 3

Experimental Evaluation of
Feasibility and Task Allocation of
Edge Micro-Clusters

This chapter characterises and advocates the feasibility of edge micro-cluster systems as
practical deployment solutions for edge computation. It presents and discusses the tech-
nical requirements of micro-clusters including device specifications, software systems and
virtualisation features, and workload characteristics. Furthermore, various task allocation
optimisation techniques were explored and evaluated for optimising the execution of hetero-
geneous workloads for batch-arrival execution in micro-clusters. This chapter is based on
the work that has been published and presented in the IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks [10].

3.1 Introduction

Edge micro-clusters are used to extend and provide computing and storage services locally
or at edge of the network. Such micro-cluster systems are composed of a small number of
resource-constrained computing nodes that are interconnected to execute complex computa-
tions in a decentralised mode. The design of edge micro-clusters depends on various factors,
including node specifications, resource availability, and workload characteristics.

The focus of this chapter is on the design of the experimental framework and the evaluation
of the feasibility and task allocation techniques for micro-cluster systems. We first design
and describe the experimental framework that we use to evaluate the feasibility and opti-
misation performance for edge micro-clusters. This framework includes the design of the

3.2. Experimental Infrastructure 44

experimental micro-cluster testbed, the selection of computing nodes, the development of
edge-representative workloads, and the evaluation of task allocation optimisation techniques.

In detail, this chapter characterises and motivates the concept of micro-cluster systems for
edge computing and IoT environments. It describes and presents a useful micro-cluster
testbed that represents a concrete instantiation of micro-clusters and demonstrates the char-
acteristics of edge-relevant workloads for such compact platforms. Additionally, it provides
lightweight resource management that executes at the edge, implementing task allocation
among cluster nodes. Furthermore, several task allocation optimisation techniques are ex-
plored and evaluated, including randomised-based allocation, heuristic-based approaches,
and mathematical optimisation by integer programming.

The implications of findings for the design and deployment of edge micro-clusters are iden-
tified. Results highlight the feasibility of micro-cluster systems for executing edge and IoT
applications. We empirically demonstrate the feasibility and benefits of utilising micro-
cluster systems for edge computing and IoT environments. Specifically, we show that edge
micro-clusters using heterogeneous and resource-limited devices can effectively execute
edge-relevant workloads in batch execution. In addition, we investigate and evaluate various
task allocation techniques and demonstrate their impact on the overall performance of edge
micro-clusters. Findings demonstrate a need for further research to advance micro-cluster
systems, particularly in terms of task allocation and optimisation techniques. Overall, this
chapter provides the structure of the experimental evaluation of feasibility and optimisation
techniques for micro-clusters and contributes to the feasibility and advancement of such sys-
tems for edge computing.

The remainder of this chapter is structured as follows. Section 3.2 describes the experi-
mental framework, including micro-cluster system setup, testbed configuration, benchmark
software, and the networking structure. Sections 3.3 and 3.4 present the research assump-
tions and formulates task allocation problem for micro-cluster systems. Section 3.5 develops
and evaluates various task allocation techniques for optimising task allocation. Section 3.6
presents results analysis and evaluation. Finally, the conclusion and future directions are
discussed in Section 3.7.

3.2 Experimental Infrastructure

This section advocates the need to empirically evaluate experiments and optimisation tech-
niques in a physical representative edge environment instead of using simulation software. It
discusses the experimental infrastructures, including the system setup, device specifications
and the used benchmark applications.

3.2. Experimental Infrastructure 45

3.2.1 Rationale

The majority of studies in edge resource management utilise simulation-based software, such
as CloudSim [101], iFogSim [102], MATLAB, LEAF simulator [89], or use frameworks to
synthesize or emulate edge infrastructure [18, 103] to conduct and evaluate experiments.
Simulation tools are affordable tools for researchers to evaluate their work as conducting
experiments in real-world infrastructures can be expensive and might not be affordable for
many researchers and institutions. However, simulations provide an high-level abstraction
of the edge computing environment, which may not be representative of the full scope of
uncertainties [62, 36].

Furthermore, sole dependence on simulation software might not be sufficient for evaluating
experiments and techniques. As stated in [50], methodology in computing science research
is crucial and plays a significant role in establishing a baseline for evaluating ideas and
techniques. Methodology needs to be solid enough to generate trustworthy results and draw
a meaningful conclusion. It requires relevant workloads, solid experimental design, and
rigorous analysis.

Therefore, this research considers an empirico-realist approach for evaluation, which re-
quires the use of a physical micro-cluster testbed, representative benchmark applications
software, and wall-clock timing metrics for performance reporting. The scale of the micro-
cluster testbed is limited; however, the findings will be more tangible and translatable to
near-term pragmatic edge deployment scenarios. Section 3.2.2 describes the micro-cluster
testbed configuration, while Section 3.2.3 presents the workload and applications bench-
marks.

3.2.2 Micro-Cluster Testbed

To experiment with a physical representative edge micro-cluster, a micro-cluster testbed is
constructed by utilising Raspberry Pi devices to represent a minimal instantiating of a micro-
cluster, featuring heterogeneous resources that are capable of processing typical edge com-
putation and storing relevant data.

As this framework is a distributed system, there is an intelligent resource management com-
ponent that monitors the micro-cluster performance and maintains a profile of cluster nodes
related metrics, such as CPU load, memory, network, and bandwidth. This functionality
helps in creating appropriate task allocation plans that meet QoS requirements in each appli-
cation scenario.

The configured edge micro-cluster comprises eight single-board computers (SBCs) that rep-
resent heterogeneous edge nodes, with 32 available compute cores and total of 11 GB mem-

3.2. Experimental Infrastructure 46

ory. SBCs are drawn from different generations of the Raspberry Pi device. The micro-
cluster testbeds are limited to Raspberry Pi devices; however, in the principle, such edge
micro-clusters include comparable Single Board Computers, such as Odroid or BeagleBone.
Table 3.1 presents the specific Raspberry Pi devices used in this paper.

While the devices share the same Arm architecture, they are heterogeneous in that they have
different chipsets with differing cache sizes and clock speeds. The nodes are connected in a
flat topology with a gigabit Ethernet switch. Each node is running the latest instance of the
Raspberry Pi OS. Figure 3.1 presents the developed micro-cluster testbed setup.

In addition to the performance, reliability, portability, and energy efficiency requirements
for edge systems recognised in [7], the micro-cluster framework is characteristically re-
configurable and additionally facilitates the following key features:

1. Expandability, micro-cluster platforms could be easily expandable to allow for accom-
modating a variety of nodes. This is specifically relevant for provisioning requirements
like scaling micro-cluster sizes.

2. Distributability, micro-cluster platforms can be distributable to allow splitting plat-
forms across several locations, allowing minimises communication latency and ex-
tending computation services to new environments.

3. Portability, similar to [7], micro-cluster platforms can be compact enough to be easily
portable to enable easy movement of the testbed to another location.

Table 3.1: Raspberry Pi devices specifications in micro-cluster prototype. The 4-node micro-
cluster comprises one of each model. The 8-node cluster comprises three RPi2B, three
RPi3B and one of each other model.

Cluster
Node

max CHz Core Count Memory OS Qts

Raspberry
Pi 2B

0.9 4 1 GB Raspberry
Pi OS

3

Raspberry
Pi 3B

1.2 4 1 GB Raspberry
Pi OS

3

Raspberry
Pi 3B+

1.4 4 1 GB Raspberry
Pi OS

1

Raspberry
Pi 4B

1.5 4 4 GB Raspberry
Pi OS

1

3.2.3 Software Benchmarks

Benchmarks should be realistic, representative and reflective of real-world scenarios in com-
puting science experiments. This is to enable researchers to reach valid conclusions [50].

3.2. Experimental Infrastructure 47

Figure 3.1: Prototype of heterogeneous edge micro-cluster system with Raspberry Pi nodes.

Therefore, for a pragmatic empirical characterisation approach, this research identifies real-
istic benchmark-based compute workloads that can execute directly on micro-cluster nodes
and report meaningful performance metrics. [104] reports and reviews several benchmarks
developed for edge computing. Two types of benchmarks are reported, namely: micro-
benchmarks and macro-benchmarks. Micro benchmarks are specialised to test system-level
performance metrics like CPU, memory, network, and storage. However, these types of
benchmarks might not be sufficient to fully understand the related system’s performance for
applications. In contrast, macro benchmarks are developed to understanding application sys-
tem performance. The DeFog [19] and EdgeBench [20] suites are macro benchmarks that
are generic, i.e., not dedicated for specific application types, and consist of idealized example
tasks relating to edge applications that may be executed by edge devices.

DeFog [19] is a benchmark software suite developed to capture and understand the perfor-
mance of different deployment platforms in Edge, Fog, and Cloud. The DeFog aims to
compare applications deployments in three different deployment modes, namely a cloud de-
ployment mode using Amazon Elastic Compute Cloud instance (Amazon EC2), an edge
deployment mode using two different Single Board Computers, i.e., Raspberry Pi 3 model
B and Odroid XU4, and a fog deployment mode that enables hierarchical deployment across
cloud and edge, by using relevant performance metrics such as communication metrics and
computational metrics.

Furthermore, the DeFog suite incorporates six applications benchmarks that might benefit

3.2. Experimental Infrastructure 48

from edge and fog computing deployment, including image processing, audio processing,
and game-based applications. DeFog is developed in the bash scripting language and utilises
Docker containerisation technology which facilities instant application initialisation and task
offloading.

DeFog benchmark suite is ideally suited for evaluating edge micro-cluster platforms, as it
provides the following key features:

1. a representative set of pre-configured, containerised workloads with a straightforward
script-based deployment model.

2. benchmarks that take common file formats (e.g. JPEGs, WAVs) as input.

3. realistic small-scale tasks that could be aggregated to produce large-scale use cases
such as the edge applications outlined above.

In addition, there are key differences and inputs in how the DeFog benchmark suite is utilised
to evaluate the performance of edge micro-cluster platforms. The reasoning of the DeFog
benchmark had to be modified to suit edge micro-clusters deployment and enable running
multiple concurrent workloads in nodes. Therefore, the benchmark codes are modified to
enable task-level parallelism for benchmark applications across a cluster of heterogeneous
nodes.

First, the original developers developed the DeFog benchmark suite to run and compare indi-
vidual task execution in three deployment platforms, i.e., a cloud instance, an edge instance,
and a fog instance. Instead, this research focuses on edge deployment mode, and the bench-
mark applications were re-developed to enable running multiple containerised tasks to study
batch execution in edge micro-cluster systems.

In addition, DeFog compared the performance of cloud instances and edge platforms by ex-
ecuting independent application runs. The benchmark functionality is extended to model
workloads heterogeneity characteristics to enable running multiple heterogeneous and con-
current workloads originating from different applications in an edge micro-cluster.

Furthermore, the DeFog framework only supplied limited input data for each benchmark.
Supplementary input data were provided to allow the observation of batch execution of mul-
tiple concurrent instances of an application with different inputs.

Three DeFog benchmark applications were re-targeted and adapted to generate workloads
for micro-cluster systems.

1. Object detection application (YOLO): This application deploys deep learning to pro-
vide a real time object classification for image processing. The application receives

3.2. Experimental Infrastructure 49

image files in .jpg format, runs a pre-trained neural network model to provide an esti-
mation of the objects inside the image, and then returns the result files as image files
with overlaid object classifications and corresponding confidence level.

2. Speech to text conversion application (PocketSphinx): This application converts audio
files to text files. The application receives audio files in .wav format and uses a pre-
trained model to generate .txt files that contain the recognized text.

3. Text-audio synchronization application (Aeneas): This is a forced alignment applica-
tion works to automatically generate a synchronization file that maps text fragments
and audio clips. This application takes paired audio files and text files as input (.wav
and.txt) and generates textual output files with embedded timing metadata.

These particular workload types are likely to become increasingly popular for edge end-users
given the growing need for environment awareness and digital accessibility.

3.2.4 Networking Structure in Micro-Cluster Setup

The management and task allocation techniques are implemented using a MacBook machine
directly connected to the micro-cluster testbed via a flat LAN. The MacBook machine is a
2.4 GHz Dual-Core Intel Core i5 processor and 4 GB of memory. The MacBook’s hardware
capabilities are limited and relatively compared to a head node of the micro-cluster, that is
a Quad-Core A72 1.5GHz Arm processor and 4 GB of memory in Raspberry Pi 4 model
B in the micro-cluster testbed. The development is implemented on the MacBook machine
instead of using a cluster head node because the Google OR framework for optimisation,
which we used for in task allocation techniques, does not work on Raspberry Pi devices due
to dependency issues.

The communication structure between the MacBook machine and the micro-cluster is facili-
tated using a flat LAN with Secure Shell (SSH) and Secure Copy (SCP) protocols for secure
and efficient communication and task transferring. The MacBook acts as a controller for the
micro-cluster and communicates with nodes using SSH to remotely access and control the
micro-cluster nodes. Task data are transferred between the MacBook and the micro-cluster
using SCP.

The connection structure between the MacBook and the micro-cluster is a flat LAN topology,
as shown in Figure 3.2. As illustrated in the diagram, all nodes are connected to the same
local IP block. The MacBook communicates with each node in the micro-cluster directly
over LAN, rather than through a cluster head node. This communication topology simplifies
network management and reduces the complexity and overhead of routing and switching,
making it an effective approach for smaller-scale networks like micro-clusters.

3.2. Experimental Infrastructure 50

The network communication overhead for the micro-cluster is minimal, as the connection
is done using the LAN. This means that the communication latency and bandwidth are ap-
propriate to support the required data transfer. This enables efficient task allocation for the
micro-cluster without significant communication overhead affecting the overall performance.
Figure 3.2 illustrates the network topology used for the micro-cluster setup.

x

Outside Internet
Raspberry
Pi device

Outside
Internet

Ethernet
Cable

MAC
Laptop

Switch

Wireless
Router

Wireless
Connect

SS
H

 /
SC

P

Micro-Cluster Testbed

Figure 3.2: Network topology diagram for micro-cluster system.

3.2.5 Tasks Launching and Execution in Micro-Cluster System

The system setup is facilitated using several interconnected technologies for task dispatching,
distribution and execution. The MacBook machine establishes connections with the micro-
cluster system through a LAN and security mechanisms to ensure secure communication and
access to the micro-cluster system. In particular, the MacBook machine communicates with
the micro-cluster testbed using LAN network and offload tasks into the micro-cluster using
SSH and SCP protocols. The system topology is described in Section 3.2.4.

Tasks are distributed to the micro-cluster’s nodes according to the allocation decisions pro-
vided by the allocation techniques. The allocation decisions determine which node within
the micro-cluster is responsible for executing each task. The decisions are provided by al-
location techniques using metrics such as resource capacity in the allocation solution. The

3.3. Assumptions and Observations for the System Models 51

allocation techniques are explained in Section 3.5.

Upon task arrival to the micro-cluster system, each task is allocated to one node according
to the allocation decision. Tasks are processed in parallel execution across multiple nodes,
leveraging the collective computational power of the micro-cluster system in order to en-
able efficient task execution. Tasks are packaged up into different Docker containers inside
nodes to ensure execution isolation and avoid interference. A fresh container for each task
is created to avoid overlapping or inadvertent data sharing. When a node finishes a task
execution, the corresponding Docker container is terminated. This ensures that each task
is completed independently without any interference from concurrent tasks. The overhead
related to Docker setup does not affect the execution time as applications’ Docker images
have already been installed on the node storage media (SD card) in the experimental setup
phase.

Overall, this system setup allows the MacBook machine to efficiently offload tasks to the
micro-cluster system through a LAN network, leveraging the collective processing through
parallel execution while ensuring secure and isolated task execution using container technol-
ogy.

3.3 Assumptions and Observations for the System

Models

This section outlines the assumptions and observations underpinning the edge micro-clusters,
the system models, and the optimisation techniques implemented in Chapters 3, 4 and 5.

1. Edge micro-clusters are built using heterogeneous and resource-constrained devices, such
as SBCs. We observe that such nodes have very limited resources which can be fully con-
sumed for concurrent task execution. Therefore, we assume that each node has resource
capacity limits, determining the number of tasks that can be executed concurrently on each
node type. These resource capacity limits are determined using the system constraints for
task allocation.

2. The assumption is that edge micro-clusters receive and execute tasks in batch execution
mode. This means that tasks arrive simultaneously at the micro-cluster and are executed in
parallel on multiple nodes. The execution of tasks in parallel execution across all nodes al-
lows for concurrent execution leveraging the available resources efficiently.

3.4. Task Allocation Formulation 52

3. System objective functions are modelled differently in Chapter 3 and 4, based on obser-
vations from the experiments, where the system objective function is an abstraction function
that estimates the task execution time, while in Chapters 4 and 5, the system objective func-
tion follows a linear model.

• For Chapter 3, the system model provides an abstract system model that assumes the
makespan time for executing a set of tasks is the sum of task execution times. We as-
sume the task execution time on nodes based on ahead-of-time task profiling in which
task-node execution time is defined by empirical measurement, coupled with some
controlled statistical noise.

• For Chapters 4 and 5, we observe that task execution time linearly increases in relation
to the number of concurrent tasks being executed in the node. Therefore, a new linear
model is developed to estimate the required makespan time more effectively. This
observation involves task profiling that determines the interpolation values required
for different tasks in the linear model.

3.4 Task Allocation Formulation

3.4.1 Objective Function

In the context of edge micro-clusters, the system model is developed for executing a batch of
tasks in a parallel execution mode across multiple nodes. The task allocation is formulated
as an allocation problem of a set of tasks T to a set of heterogeneous nodes N within a
micro-cluster. The objective is to minimise the makespan time required for executing all
tasks.

The system model considers task allocation of a set of tasks T , in which each task has an
estimated execution time that represents the execution time task t requires on node n; and
a set of cluster’s processing nodes N with different capabilities, in which each node has a
capacity limit, defined in constraint 1. The objective is to effectively allocate tasks to nodes
within the micro-cluster such that the makespan time is minimised.

Equation 3.1 defines the system objective function. The objective function is to minimise the
makespan time of task allocation for micro-clusters. Thus, the decision is how to allocate task
t to node n such that the makespan time of a set of tasks is minimised and nodes capacities
are maintained.

Minimize
∑
n∈N

∑
t∈T

cost[n][t] ∗ xnt (3.1)

3.4. Task Allocation Formulation 53

Where, cost[n][t] is a matrix element represents the cost, i.e., the estimated execution time,
associated with allocating task t to node n. The matrix rows and columns represent nodes
and tasks, respectively. Data in the cost matrix represents the estimated task execution time
required for allocating a particular task t on a node n. The matrix is populated in this model
by systematically varying task execution time values. We assume a normal distribution with
coefficient of variation cv = 0.5, where mean value µ is based on observed execution times
that are profiled ahead-of-time in the experiment setup phase.

The variable xnt is a decision variable defining a binary integer variable 0 or 1, which denotes
whether a cluster node n is assigned to a task t or not. Note that this is an abstract system
model, and an alternative objective function based on linear model is developed in Chapter
4.

xnt =

1, if node n allocated to task t

0, otherwise
(3.2)

The overall objective is to find an allocation plan that effectively utilises cluster’s nodes such
that node capacities are maintained (constraint-1) and ensuring that each task t is assigned
to at least one cluster node n (constraint-2). Meanwhile, the makespan time to complete all
tasks is minimised. Table 3.2 outlines the notations used in the task allocation formulation
for micro-clusters. Section 3.4.2 defines the system constraints.

Table 3.2: List of notations and related descriptions

Notation Description
T set of tasks to be allocated
N set of cluster nodes
t individual task
n individual node
xnt decision variable (indicating whether node n executes task t)
capn processing capacity of node n

cost[n][t] cost matrix (indicating cost of node n executing task t)

3.4.2 Systems Constraints

Two systems constraints are defined to represent the heterogeneity and resource-constrained
expected in the edge micro-clusters:

Constraint-1: This constraint defines a node capacity constraint capn, in which each
cluster node has a maximum capacity. The total number of tasks allocated to each node

3.5. Task Allocation Optimisation Techniques for Micro-Clusters 54

should not exceed the upper bound capacity of the node. Otherwise the node’s compute
resources will become saturated, and the task execution time will be prolonged.(∑

t∈T

xnt

)
<= capn , ∀ n ∈ N (3.3)

Constraint-2: each task t must be allocated to exactly one node. n This is to ensure
that all tasks are allocated. ∑

n∈N

xnt == 1 , ∀ t ∈ T (3.4)

3.5 Task Allocation Optimisation Techniques for Micro-

Clusters

This section explores various task allocation techniques developed for optimising workload
execution in batch for micro-cluster platforms. The objective is to allocate compute tasks
on the most eligible node, by generating an effective and efficient allocation decision based
on the current condition of the cluster. The main objective is to minimise the makespan
of workloads in batch arrival, that is the total execution time of tasks, by efficiently using
resources of micro-clusters.

The computing resources in micro-clusters are heterogeneous and limited. Therefore, they
need to be utilised effectively and efficiently. Efficient allocation of applications workloads
on the most suitable edge node is critical. Failure to efficiently manage workloads on cluster
nodes could impact the overall micro-clusters performance and consequently affects Quality
of Service requirements of applications.

Furthermore, such micro-clusters might be deployed in remote fields, making human man-
agement not available. Thus, micro-clusters should be configured to be ‘self-managed’. In
addition, workloads are expected to be heterogeneous and highly dynamic, and edge clusters
should be able to self-adapt to deal with workload variations.

As mentioned earlier, management techniques could be executed on an elected head node of
the micro-cluster system. Task allocation techniques are developed and implemented on a
MacBook machine that directly connects and communicates with the micro-cluster over a flat
LAN. The networking and communication between the MacBook machine and the micro-
cluster testbed is illustrated in Section 3.2.4. Sections 3.5.1 and 3.5.2 present the developed
task allocation techniques. Section 3.6 evaluates their performance in terms of efficiency and
effectiveness.

3.5. Task Allocation Optimisation Techniques for Micro-Clusters 55

3.5.1 Heuristic-based Techniques

3.5.1.1 Cluster Election Technique

The cluster election technique is a greedy-based heuristic that allocates tasks to nodes ac-
cording to current CPU loads average of nodes. The cluster-election technique monitors
CPU loads on nodes by polling the Linux OS in each node using a command like /proc/load-
avg and allocate tasks to the node that has the minimum CPU load. This technique considers
nodes CPU load average as nomination criteria. This technique can be enhanced by inte-
grating other metrics like node power level or memory. Algorithm 1 presents pseudocode of
cluster-election task allocation technique.

Algorithm 1 Heuristic Cluster Election Technique
Input: T (set of offloaded tasks); N (set of nodes in micro-cluster)
for task t in T do

for n in N do
measure current CPU load of n;
n′ be the node in N with lowest CPU load;

end
Assign t to n′;

Commence immediate execution of t;

end

3.5.1.2 Best Node Selection Technique

The best-node selection technique is another greedy-based heuristic technique that prioritises
nodes based on their memory resources. This technique considers memory capacity of nodes
as a a primary selection criteria. Specifically, tasks are always allocated to the node with
higher memory capacity, which is node Raspberry Pi 4 Model B in the micro-cluster testbed.
The devices in the micro-cluster testbed are heterogeneous in terms of CPU clock speeds,
however, Raspberry Pi 4 model B is more powerful than other nodes in term of the memory
capacity. Algorithm 2 presents pseudocode of best node selection allocation technique.

3.5. Task Allocation Optimisation Techniques for Micro-Clusters 56

Algorithm 2 Heuristic Best Node Selection Technique
Input: T (set of offloaded tasks); N (set of nodes in micro-cluster)
for task t in T do

for node n in N do
Check memory of n;

end
let n′ be the node in N with the maximum memory;
Assign t to n′;
Commence immediate execution of t;

end

3.5.1.3 Random Allocation Technique

The random-based allocation is a heuristic technique that randomly allocates tasks to nodes.
Specifically, tasks are forwarded to any arbitrary node without any resource or capacity con-
sideration. All nodes are equally targeted in this technique. This technique is used as a
baseline for comparison purposes. Algorithm 3 presents pseudocode of random-based tech-
nique.

Algorithm 3 Random-based Allocation Technique
Input: T (set of offloaded tasks); N (set of nodes in micro-cluster)
for task t in T do

select n from N randomly;
Assign t to n;
Commence immediate execution of t;

end

3.5.2 Mixed Integer Programming Allocation Technique

The heuristic-based techniques mentioned above show that when nodes become overloaded,
processing capabilities decrease and tasks’ execution time increase. In this technique, bal-
ancing workloads between the cluster nodes is considered, taking into account both nodes ca-
pabilities and the workload requirements. The problem is, therefore, formulated as a combi-
natorial assignment problem and solved using mixed-integer programming technique (MIP).
MIP allocates tasks based on a pre-estimated cost matrix that estimates the task execution
time task on different nodes within the micro-cluster and considers nodes processing capac-
ities, that is, how many tasks each node can process simultaneously without consuming its

3.6. Performance Evaluation 57

resources. This technique, therefore, forwards tasks based on allocation solutions produced
by the MIP allocation solver. This technique is implemented using the Google open soft-
ware suite for optimisation, OR-Tools [105]. Algorithm 4 presents pseudocode for mixed
integer-based allocation technique.

3.6 Performance Evaluation

This section analyses the performance of allocation techniques developed in Section 3.5 and
discusses on the overall functionality of micro-cluster platforms for handling edge-relevant
applications in the context of edge computing and IoT environment.

3.6.1 Minimising Makespan Time

The empirical evaluation considers the makespan time metric to evaluate and compare the
effectiveness of different task allocation techniques to complete a batch of benchmark invo-
cations.

The makespan is defined as the wall-clock time for the edge micro-cluster to complete pro-
cessing a set of tasks, defined from the time when the first request is generated to the time
that all cluster nodes complete processing their assigned tasks. In particular, the makespan
time includes, (1) the communication time C, which is the time to offload tasks to the cluster
nodes and to receive final results back through a communication medium, (2) the allocation
time D, which is the time to required by allocation techniques to generate solutions, and (3)
the execution time E, which is the actual time each node takes to process the assigned tasks.

The experiments were conducted on two edge micro-cluster configurations. Each cluster
comprises a set of heterogeneous compute nodes. The first micro-cluster comprises four
nodes, whilst the second micro-cluster comprises eight nodes. Table 3.1 shows the devices
specifications and the quantity deployed in each cluster.

As mentioned above, the overall objective is to minimise the batch execution makespan time,
measured as wallclock-time, while efficiently utilising the resources in micro-clusters. The
performance of the task allocation techniques explained in Section 3.5 were evaluated on
three benchmarks software developed from DeFog benchmark suite 3.2.3, that is the image-
detection (Yolo), audio-to-text converting (PocketSphinx), and audio-text synchronisation
(Aeneas), respectively. Tasks distribution, launching and execution in the micro-cluster are
explained in Section 3.2.5.

Results show the makespan time of executing 32 concurrent tasks for each benchmark. Fig-
ures 3.3 and 3.4 represent the makespan time required by 4-nodes and 8-nodes micro-cluster
configurations, respectively. The graphs show results based on the mean of 15 runs.

3.6. Performance Evaluation 58

Algorithm 4 Mixed-Integer Programming Allocation
Input: T (set of tasks); N (set of nodes in micro-cluster);
cost (cost matrix); capn (node capacity)
Output: Allocation Decision
solver = solver.MIP
x = {}
for n in N do

for t in T do
x [n, t] = solver.IntV ar(0, 1)

end
end
// Constraint 1: Total tasks for each node is less than node capacity
for n in N do

for t in T do
solver.Add(solver.Sum(x[n, t]) <= cap[n])

end
end
// Constraint 2: Each task is assigned to one node
for t in T do

for n in N do
solver.Add(solver.Sum ([x[n, t]) == 1)

end
end
objective = []
for n in N do

for t in T do
objective.append(cost[n, t] ∗ x[n, t])

end
end
solver.Minimize(solver.Sum(objective))
status = solver.Solve()
for n in N do

for t in T do
if (status == Optimal) then

allocate n to t
end

end
end
Return Allocation Decision;

3.6. Performance Evaluation 59

Analysis demonstrates that the MIP-based allocation technique efficiently utilises the clus-
ter’s resources and optimises the batch execution for computation-intensive applications (i.e.,
image-detection and audio-text converting benchmarks), while it achieves a comparable per-
formance to other greedy approaches for the audio-text synchronisation benchmark.

The two heuristic-based techniques, i.e., cluster-election and the best-node selection, achieve
comparable performance for all benchmarks. The cluster-election technique successfully re-
flects the nodes CPU load averages and efficiently nominates nodes. The best-node selec-
tion optimises for memory resources of nodes. This technique allocates tasks to the node
type Raspberry Pi 4 model B because of the high memory capacity of the node in compar-
ison with other nodes. Although the best-node selection technique performs better than the
random-based technique, the relative performance of the best-node could vary depending on
the workload characteristics and systems resources. Therefore, it is not a typical technique
as results should generalise for other clusters configurations in which allocating everything
to the one node will not be appropriate as the node resource will be consumed leading to
poor performance. Finally, results indicate that the random-based allocation is an inappro-
priate technique because it consume nodes resources leading high high execution times for
all benchmarks.

Overall, the MIP-based technique effectively represents task computation times and node
capabilities. It optimises the makespan execution time and outperforms other techniques for
computation-intensive applications, i.e., image- detection and audio-to-text converting. Fur-
thermore, the MIP-based technique shows a stable performance when cluster nodes increase.
The cluster-election technique demonstrates a good performance to reflect the clusters con-
ditions and nominates capable nodes. The cluster-election achieves a better performance
than the best-node selection for computation-intensive benchmarks. However, this tech-
nique could be further enhanced by integrating other metrics like node connections or power
requirements. The selection of the best node is not always an intelligent choice for the edge-
micro clusters, as nodes execution time increase when resources overloaded. Finally, for
light-computation applications (i.e., audio-text synchronisation), the MIP-allocation tech-
nique performs as well as the best node selection.

3.6. Performance Evaluation 60

Figure 3.3: Makespan Time required to process of 32 concurrent tasks based on different
allocation techniques running on 4-nodes micro-cluster (confidence intervals indicate one
standard deviation).

Figure 3.4: Makespan Time required to process of 32 batched concurrent tasks based on
different allocation techniques running on 8-nodes micro-cluster (confidence intervals indi-
cate one standard deviation) approaches running on 8-nodes edge micro-cluster (confidence
intervals indicate one standard deviation).

3.6. Performance Evaluation 61

3.6.2 Allocation Overhead

Another relevant evaluation metric is the allocation overhead time, which is defined to be
the computation time an allocation technique requires to generate a solution. Allocation
overhead is a critical metric in edge computing. Allocation techniques are required to be
lightweight, not adding expensive overhead, as most IoT-based applications and manage-
ment techniques are being deployed in resource-constrained devices and require lightweight
management techniques. If the allocation techniques require expensive resources in terms of
CPU, memory or energy, they would not be applicable in the context of edge computing.

Therefore, it is imperative to consider the lightness and the overhead of the technique when
designing task allocation for edge context [62]. All makespan times reported above include
the time for task allocation calculations, i.e. solution time for the MIP approach, live metric
query time for the greedy heuristics, and pseudo-random function evaluation time for the
random technique.

There is limited complexity for the MIP constraints meaning solution times are very short
for the micro-cluster setup with these workloads. For the MIP-based technique, the alloca-
tion overhead never exceeds 1 second, which in the worst case is still below 2% of overall
makespan time. The limits study experiment shows that MIP allocation for typical edge
workloads and clusters remains below 1 second, for up to 1000 tasks (see Figure 3.5). How-
ever, overhead time grows exponentially for larger-scale micro-clusters, which requires fur-
ther investigation.

3.6.3 Discussion

Overall, the experimental work discussed in this chapter demonstrates that micro-cluster
platforms are capable of handling heterogeneous workloads in real-world edge application
scenarios.

This requires lightweight and efficient task allocation techniques to effectively manage work-
loads, orchestrate nodes, and improve micro-cluster functionality. The deployment of lightweight
but effective task allocation techniques for batched task execution is straightforward and can
yield mathematically optimal solutions for tractable cluster sizes.

The work further presents a significant comparison between various lightweight task alloca-
tion techniques that are capable of improving workload allocations in micro-clusters. The
evaluations reveal that the mixed-integer programming task allocation with respect to nodes
capacities outperforms other heuristic-based task allocation and efficiently utilise the cluster
resources.

3.7. Summary 62

10
0

50
0

10
00

15
00

20
00

30
00

40
00

50
00

10
00

0

Number of Tasks

10 2

10 1

100

101

102

Al
lo

ca
tio

n
Ti

m
e

(s
ec

)

MIP Allocation Overhead

4-Nodes Heterogeneous Cluster
8-Nodes Heterogeneous Cluster
16-Nodes Heterogeneous Cluster
20-Nodes Heterogeneous Cluster

Figure 3.5: A limit study shows the allocation overhead time required by MIP-based alloca-
tion technique for different batch sizes and different cluster sizes.

Furthermore, the experimental infrastructure, including the micro-cluster testbed and the
benchmarks software, could be used to extend this work and to implement further research.
The need for investigating other complex task allocation techniques for edge micro-clusters
will be considered in Chapter 4.

3.7 Summary

This chapter characterises the configuration and setup of edge micro-cluster platforms for
in context of edge computation. This includes devices and hardware, systems software, and
benchmarks software representing real-world workloads. In addition, it presents and charac-
terises an approach to workloads management and task allocation for micro-clusters based
on batch arrival of containerised edge workloads. Specifically, various task allocation op-
timisation techniques were evaluated for batch execution for edge micro-clusters. These
optimisation techniques include common optimisation techniques in edge and cloud com-
puting deployment, including heuristic-based, mathematical-based, and metaheuristic-based
techniques.

Overall, the micro-cluster design concept has the potential to make edge computing more
affordable and more accessible to everyday end-users and edge computation. Such micro-
clusters will likely comprise commodity single board computer devices, including but not

3.7. Summary 63

limited to Raspberry Pi nodes. Results demonstrate empirically that such an execution
paradigm is highly amenable to mathematically optimised workload management using inte-
ger programming, with this approach giving optimal or near-optimal makespan performance
even when the overhead of integer programming is included.

The evaluation demonstrates that mathematical-based optimisation is both effective and ef-
ficient for task allocation optimisation for batch execution for micro-clusters, proving both
lightweight overhead computation time and optimal makespan time. However, for large
clusters and large batch Sizes, mathematical-based overhead time grows exponentially, indi-
cating that this approach might not be fully appropriate for large micro-clusters. This indi-
cates that alternative optimisation techniques, such as metaheuristic-based, would be more
appropriate for large-scale micro-cluster and large batch sizes.

The experiments conducted in this chapter were based on an abstract objective function that
estimates task execution times and models the makespan time as the total execution time.
However, micro-clusters execute batch workloads in parallel execution mode as task execu-
tion is parallelised across cluster nodes. Chapter 4 will extend Chapter 3 by presenting a
alternative system objective function based on a linear model that was developed for edge
micro-clusters; and will further evaluate more task allocation optimisation techniques.

64

Chapter 4

A Linear Model for Task Allocation in
Edge Micro-Clusters

The resource constraints of micro-cluster platforms mandate a customised task allocation
system model. This chapter examines and characterises the performance of nodes in micro-
cluster platforms and thereby develops an analytical-based linear model for optimising task
allocation for such micro-cluster systems. In addition, a metaheuristic Particle Swarm Op-
timisation (PSO) technique is proposed and evaluated to minimise the makespan time and
the allocation overhead time of heterogeneous workloads in batch execution. The chapter
further provides a detailed comparative performance evaluation of the metaheuristic PSO,
mixed-integer programming and randomised-based allocation for optimising task allocation
in micro-clusters. This chapter is based on the work published and presented at the IEEE
Seventh International Conference on Fog and Mobile Edge Computing (FMEC 2022) [22].

4.1 Introduction

The work presented in Chapter 3 characterises micro-cluster functionality in terms of hard-
ware devices and workload management in the context of edge computing. The chapter
provides a physical micro-cluster testbed by deploying several Raspberry Pi devices to form
a prototype for micro-cluster platforms and explores various optimisation techniques that
permit effective workload allocation for such micro-cluster systems based on an abstract
system model.

This chapter examines node performance characteristics in micro-cluster platforms and de-
velops a linear-based system model for optimising task allocation. In addition, it incorporates
a metaheuristic-based optimisation technique to overcome allocation overhead complexity
and generate feasible allocation decisions.

4.2. Linear Model for Task Allocation in Micro-Clusters 65

The remainder of this chapter is structured as follows. Section 4.2 outlines micro-cluster
specifications and presents a linear-based system model for task allocation in edge micro-
cluster systems. Section 4.3 describes the logic behind PSO and demonstrates the adoption of
this metaheuristic-based technique for task allocation. Section 4.4 evaluates the performance
of the PSO-based technique in comparison to other techniques. Finally, Section 4.5 provides
the conclusion.

4.2 Linear Model for Task Allocation in Micro-Clusters

This section characterises node performance in micro-cluster platforms for executing concur-
rent representative benchmarks and presents a linear-based model for task allocation specif-
ically for such compact platforms. The individual node performance is examined and eval-
uated in Section 4.2.1, and the linear-based system model is thereafter presented in Section
4.2.2.

4.2.1 Individual Node Performance Characterisation

The computing resources of nodes in edge micro-cluster systems differ from those deployed
in centralised cloud data centres. Nodes in micro-clusters are typically integrated with tiny to
moderate computing resources in terms of processors, memory, and storage, built-in small-
size boards. For example, Raspberry Pi devices are integrated with ARM-based processors
with clock speed ranging from 0.9 GHz to 1.8 GHz and memory size ranging from 1GB to
8GB. In contrast, cloud data centre providers deploy high performance server machines capa-
ble of delivering unlimited resources upon users requirements. Table 4.1 presents exemplar
hardware specifications of nodes in edge micro-clusters and nodes in cloud data centres.

Therefore, in order to develop effective task allocation techniques for micro-cluster plat-
forms, it is necessary to examine nodes performance characteristics for executing concurrent
tasks by using representative benchmarks. Existing work benchmarked similar edge de-
vices using micro-benchmark tools like Sysbench and Linpack [49], [104]. However, micro-
benchmarks might not be sufficient to capture meaningful performance of micro-cluster
nodes. We therefore use real-world holistic benchmarks to represent a balanced mixture
of micro-behaviours for edge applications and capture relevant node performance metrics.

Below are experiments to characterise the performance of typical nodes used in micro-
clusters when executing edge representative workloads. The main objective of these experi-
ments is to capture performance characteristics of nodes when executing concurrent realistic
workloads. This is necessary to model a realistic system objective function for micro-cluster
platforms.

4.2. Linear Model for Task Allocation in Micro-Clusters 66

Table 4.1: Exemplar hardware specification of typical nodes deployed in edge-micro clusters
and in centralised cloud data centres

Machine CPU Cores Memory OS Virtualisation Technology
RPi 3B ARM Cortex-A72 with 1.2GHz 4 1GB RaspberryPi OS Containers (e.g.,Docker)
RPi 4B ARM Cortex-A72 with 1.5GHz 4 4GB RaspberryPi OS Containers (e.g.,Docker)
Amazon EC2 Intel core i7 with 3.2 GHz 2 8GB Linux VMs (e.g.,Xen)

The performance of different nodes are examined for executing concurrent workloads. Dif-
ferent generations of Raspberry Pi nodes that represent typical nodes heterogeneity in edge
micro-clusters are benchmarked using concurrent and heterogeneous workloads from three
different applications, image-detection (Yolo), audio-text converting (PocketSphinx), and
audio-text synchronisation (Aeneas). These applications are drawn from extensions of the
DeFog benchmark suite [19].

Figure 4.1 shows the performance trend of micro-cluster nodes for concurrent task execu-
tion. The graphs illustrate that node performance is correlated with the number of concur-
rent tasks, demonstrating linear increases in task execution times for all benchmarks in all
nodes in the micro-cluster testbed. The observed linear increases in the execution time of
concurrent tasks might be attributed to task contention, such as for the limited computa-
tional resource, memory bandwidth, or file-system contention. As mentioned above, nodes
in micro-clusters are inherently resource-constrained. These limitations in nodes’ hardware
capabilities slow the execution of concurrent tasks, leading to increased execution time as
concurrent tasks compete for limited resources. When a node executes multiple tasks concur-
rently, the resources like CPU and memory are shared among tasks, decreasing the available
resources for each task.

The experiments, in addition, reveal node capacity limits for handling concurrent tasks. For
example, Raspberry Pi devices RPi 2 model B, RPi 3 model B, and RPi 3 model B+ were
not able to accommodate multiple concurrent tasks that require intensive-processing (i.e.,
image detection and audio-text converting) where some tasks fail when sending more than
four concurrent tasks for image-processing workloads. Furthermore, those nodes were not
responsive for more than eight concurrent tasks. The node performance limits are defined
by node capacity constraints in system model as explain in the following section. Analysing
task failure data is beyond the scope of this research and is subject to future work.

Based on results from the pre-experimental work mentioned above, a linear-based task allo-
cation for edge micro-cluster platforms is developed, as presented in the following subsection
4.2.2.

4.2. Linear Model for Task Allocation in Micro-Clusters 67

1 2 3 4 5 6 7 8 9 10
Number of Concurrent Tasks

20

40

60

M
ak

sp
an

 T
im

e
(s

ec
)

Benchmarking Cluster Node (RPi-4B)
Image Detection
Audio-Text Converting
Audio-Text Synch

1 2 3 4 5 6 7 8 9 10
Number of Concurrent Tasks

20

40

60

80

100

M
ak

sp
an

 T
im

e
(s

ec
)

Benchmarking Cluster Node (RPi-3B+)

(a) (b)

1 2 3 4 5 6 7 8 9 10
Number of Concurrent Tasks

20

40

60

80

100

M
ak

sp
an

 T
im

e
(s

ec
)

Benchmarking Cluster Node (RPi-3B)

1 2 3 4 5 6 7 8 9 10
Number of Concurrent Tasks

20

40

60

80

100

120

M
ak

sp
an

 T
im

e
(s

ec
)

Benchmarking Cluster Node (RPi-2B)

(c) (d)

Figure 4.1: Line graphs showing the performance trends of micro-cluster nodes for process-
ing concurrent workloads from different applications workloads.

4.2. Linear Model for Task Allocation in Micro-Clusters 68

4.2.2 Formulation of the Linear Model for Task Allocation

Edge micro-clusters represent heterogeneous edge platforms. A micro-cluster comprises
several physical nodes equipped with different resource capabilities in terms of processors
and memory. As mentioned earlier, edge micro-clusters are assumed to receive and process
workloads in a batch-execution mode, in which different tasks are offloaded from various
applications and aggregated into batches. The challenge is to effectively allocate tasks to
micro-cluster nodes such that the makespan time of the entire batch is minimised and nodes
resources are effectively utilised.

The objective is to effectively allocate tasks to the micro-cluster nodes in order to minimise
the total execution time for a full batch of tasks (i.e. the makespan time) by effectively allo-
cating tasks to nodes. Equation 4.1 describes the system objective function developed based
on observations from the nodes performance experiments presented in Section 4.2.1. The
system model is therefore formulated as a linear model using the standard form (y = mx +
c).

Equation 4.1 evaluates candidate solutions provided by allocation techniques, where T is
the makespan time, mn is a constant represents the scaling reference of node n, numTaskn

represents the total number of tasks assigned to node n, and cn is a constant represents the
y-intercept of node n. As the cluster processes tasks in parallel execution, the makespan time
is effectively the maximum execution time across all nodes.

Table 4.2 presents the values of the gradients (m) and the y-intercepts (c) for different nodes
and different workloads. These data are derived based on analysis from node individual
performance experiments discussed in Section 4.2.1. The values of the gradients (m) and
y-intercepts (c) are calculated using the slope and intercept functions in Microsoft Excel
to compute the linear regression from the data obtained from Figures 4.1. One node from
each generation is evaluated and the obtained values are then generalised for the remaining
nodes from the same generation. Note that a more sophisticated model could be deployed
for complex use cases, but this was not necessary in these experiments.

T = max
n∈N

(
mn ∗ numTaskn + cn

)
(4.1)

where:

T : denotes Makespan Time

mn: is a constant value for the gradient of node n

numTaskn: is number of tasks assigned to node n

cn: is a constant value for y-intercept of node n

4.3. Task Allocation Using Particle Swarm Optimisation Metaheuristic 69

As a micro-cluster is a heterogeneous platform and nodes have different capabilities, two
system constraints are introduced to model these features. First, the node capacity constraint
is represented in Equation 4.2, in which node n has a defined capacity and should not receive
more than its defined capacity. capn is a non-negative integer value that represents node n

capacity, xnt is a binary matrix of 0, 1 values indicating whether task t is allocated to node
n. N and T represent a set of cluster nodes and a set of tasks, respectively. In addition,
constraint 2 is represented in Equation 4.3 to make sure that each task t is assigned to only
one node n and avoid assigning the same task to multiple nodes.

(∑
t∈T

xnt

)
<= capn , ∀ n ∈ N (4.2)

(∑
n∈N

xnt

)
== 1 , ∀ t ∈ T (4.3)

Table 4.2: Values of the gradients (m) and y-intercepts (c)

Workload Image Detection Audio-Text Converting Audio-Text Synch
m-value c-value m-value c-value m-value c-value

Node RPi 2B 8.6 50.21 13.55 18.10 7.07 5.66
Node RPi 3B 8.73 33.25 10.79 7.78 5.27 4.2
Node RPi 3B+ 8.94 27.64 11.21 3.53 4.66 3.66
Node RPi 4B 6.54 2.4 5.06 10.06 2.49 5.4

4.3 Task Allocation Using Particle Swarm Optimisa-

tion Metaheuristic

This section describes the logic behind the Particle Swarm Optimisation (PSO) metaheuris-
tic and provides the representation process demonstrating the mapping of PSO particles to
micro-cluster nodes and tasks.

4.3.1 PSO Logic

Particle Swarm Optimisation (PSO) is a well-known metaheuristic-based optimisation tech-
nique inspired by the collaboration of bird swarms. PSO is utilised in substantial cloud data
centres to optimise various resource management problems, such as issues related to opti-
mising virtual machine placement or minimising energy and monetary cost [98] [99] [106].

In PSO, various particles are randomly initialised to discover the search space. The PSO
system dynamic iteratively controls particles to optimise candidate solutions and gradually

4.3. Task Allocation Using Particle Swarm Optimisation Metaheuristic 70

converges towards near-optimal solutions for several iterations or upon meeting a pre-defined
termination condition [106], [107].

As illustrated below, velocity, position, and hyperparameters control PSO particles during
the search process. Velocity V t

i and particle position X t
i are initialised randomly at the start

of the search process. Thereafter, velocity factor (Equation 4.4) determines the distance to
next position of a particle. Specifically, velocity V t+1

i computes the distance from the current
position X t

i and the new position X t+1
i using information from current iteration and with the

help of hyperparameter values, defined in next paragraph. This prompts particles to re-locate
in direction of the best position. Furthermore, particle best positions PBesti and global
best positions of the swarm GBest are frequently updated and compared during the search
process to maintain the best found position.

PSO hyperparameters direct particles in the search for a global optimum. The inertia weight
parameter W is used to balance between exploration and exploitation, where a high W value
increases exploration, and a small value increases exploitation. Equation 4.6 balances explo-
ration and exploitation by assigning a large W value at the beginning of the search process
and gradually decreasing it throughout the search process. WMax and WMin are constants
representing upper and lower bounds, respectively, t is the current iteration, and MaxIter is
the total number of iterations. Equation 4.6 allows particles to discover the search space and
then converge towards the best-found solution. Typically W value ranges from 0.4 to 0.9. In
experiments, W = 0.79 is used because a high value led to premature convergence, whereas
a small value directed the particles to locally optimal solutions.

Furthermore, the inertia weight W , the acceleration coefficients c1 and c2, and the random
variables r1 and r2 help direct the velocity of the particles. Coefficient components c1 and c2

also impact exploitation and exploration in PSO. The individual component c1 is primarily
responsible for increasing exploration, while the coefficient social component c2 is used to
increase exploitation. Balancing between c1 and c2 helps PSO particles to converge toward
near-optimal solutions. The random variables r1 and r2 are used to add randomness to
particles in each iteration. Algorithm 5 represents the PSO-based task allocation. Table
4.3 summarises the hyperparameters used in PSO and the assigned values employed in this
implementation.

V t+1
i = W ∗ V t

i + c1 ∗ r1 ∗ (PBesti −X t
i)

+c2 ∗ r2 ∗ (GBest−X t
i)

(4.4)

X t+1
i = X t

i + V t+1
i (4.5)

4.3. Task Allocation Using Particle Swarm Optimisation Metaheuristic 71

W = WMax − t((WMax − WMin)/MaxIter) (4.6)

4.3.2 Representation Process

This section demonstrates the representation process by which PSO particles are converted
to represent tasks and nodes. In PSO-based task allocation representation, PSO particles
represent candidate allocation solutions. A PSO particle is effectively a function that maps
tasks to micro-cluster nodes. PSO Particles are represented by length and range. The
length of particles represents the total number of tasks to be allocated, and the range of
particles represents the total number of nodes in a micro-cluster.

For example, to allocate a batch of 10 tasks on an eight node micro-cluster. In PSO repre-
sentation, the length of particles represents the total number of tasks, i.e., 10. The range of
particles equals 8 (i.e., the number of nodes in a micro-cluster) and is randomly set between
0 to 7 as the edge micro-cluster contains eight different nodes.

Table 4.4 presents illustrative examples of the representation process demonstrating the map-
ping of PSO particles to tasks and nodes. The examples showcase sample allocation solutions
for 10 tasks on an edge micro-cluster consisting of eight nodes. For example, in solution 1,
the PSO particle is represented as array [7, 7, 7, 4, 7, 5, 7, 3, 7, 6]. In representation pro-
cess, tasks t1, t2, t3, t5, t7, t9 are allocated to node n7; task t4 is allocated to node n4, task
t6 is allocated to node n5. For heterogeneous workloads, tasks are aggregated from vari-
ous workload types into one batch. In this example, the image-processing represent 4 tasks,
audio-text synchronization represent 3 tasks, and audio-text converting represents 3 tasks.
The estimated makespan is calculated using Equation 4.1.

Overall, the PSO system iteratively discovers the solution space during the search process.
Particles are randomly initialised and gradually directed toward the best-found solution by
updating the position using PSO velocity, position, and hyperparameters. PSO demonstrates
fast convergence and has the ability to avoid being trapped in local optima. Furthermore,
PSO is easy to implement without requiring the complexity of mathematical optimisation,
which yields PSO as a promising lightweight optimisation technique for edge computing
deployment.

The following section 4.4 evaluates and compares the performance of PSO-based optimisa-
tion technique with a mathematical-based technique and a randomised-based technique for
optimising task allocation in edge micro-cluster systems.

4.3. Task Allocation Using Particle Swarm Optimisation Metaheuristic 72

Algorithm 5 PSO-based Task Allocation
Initialise Particles X t

i Randomly;
Initialise Velocity V t

i Randomly ;
Initialise hyperparamters using table 4.3;
for t in Iteration do

for i in Particles do
Compute fitness using (Equation 4.1);
Compute Velocity V t+1

i using (Equation 4.4);
Compute Position X t+1

i using (Equation 4.5);
#Update Best Position (PBest)
if fitness < PBesti then

PBesti=fitness
Xi=PBesti

end
Update Global Position (GBest)
if fitness < GBest then

GBest=fitness
Xi=GBest

end
end

end
return Best Allocation Decision

Table 4.3: PSO hyperparameters description and related values.

Parameters Description Assigned Value
W inertia weight 0.79
c1 coefficient for individual component 1.49
c2 coefficient for social component 1.49
r1 random coefficient 0-1
r2 random coefficient 0-1
Particles Number of particles in each iteration 50
Iteration Number of generations 100

Table 4.4: Exemplar workloads mapping on an eight-node micro-cluster with estimated
makespan time calculated by the linear model. Heterogeneous workload is represented as:
Image Detection (40%), Audio-Text Synch (30%), and Audio-Text Converting (30%).

Workloads T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Est Makespan
Image-Detection 7 7 7 4 7 5 7 3 7 6 40
Audio-Text Synch 6 7 7 3 3 7 6 5 4 4 15
Audio-Text Converting 6 7 7 4 5 7 3 7 4 3 31
Heterogeneous 7 0 4 7 3 5 7 3 6 7 25

4.4. Evaluation 73

4.4 Evaluation

This section evaluates the performance of the proposed allocation techniques for optimising
task allocation for micro-cluster systems based on a linear model system.

The experiments were carried out utilising both modelling and empirical evaluations. Specif-
ically, the optimisation techniques were developed and executed via modelling on a Mac-
Book Pro machine (2.4 GHz dual-core i5 and 4GB RAM), while the performance evaluations
were empirically analysed using a configured physical micro-cluster testbed and representa-
tive workload benchmarks. The allocation techniques effectively should be run on a cluster
head node capable of performing the orchestration and management aspects; however, due
to dependency issues in Raspberry Pi devices, the optimisation techniques are implemented
via modelling on a MacBook machine connected to the same LAN network of micro-cluster
using a networking switch. The tasks are then allocated to cluster nodes according to the
obtained allocation decisions.

As mentioned earlier, the majority of work in the literature follows simulation-based ex-
periments using simulation tools, such as CloudSim or MATLAB. An empirical evaluation
approach using a physical micro-cluster testbed is implemented to capture realistic perfor-
mance.

4.4.1 Optimisation Techniques

To evaluate the related performance, the performance of the PSO metaheuristic allocation
technique for optimising task allocation in edge micro-cluster platforms is compared with the
performance of the Mixed-Integer Programming and a random-based technique. The PSO-
based optimisation and the random-based techniques were implemented in Python, while
the mixed-integer programming-based method was implemented using Google open source
software suite for optimisation, OR-Tool [105].

Similar to the work in Chapter 3, the Mixed-Integer Programming technique allocates tasks
to cluster nodes according to the optimal found allocation. It estimates batches makespan
time using values derived from Table 4.2 and takes into account the system’s constraints
defined in Equation 4.2 and Equation 4.3. This technique is implemented using Google open
source software suite for optimisation, OR-Tool [105]. The random-based allocation method
is a straightforward baseline allocation technique where workloads are randomly allocated
to cluster nodes without knowledge about nodes’ capabilities or workloads types.

4.4. Evaluation 74

4.4.2 Performance Evaluation

Similar to performance evaluation in Chapter 3, two edge-relevant performance metrics were
considered to capture the related performance. First is the allocation overhead time, which
is the runtime required by an allocation technique to complete the required computation and
produce an allocation decision. The second metric is makespan time, which reflects the
effectiveness of the optimisation techniques and quality of the solutions. Section 4.4.2.2 and
Section 4.4.2.3 provide further details on these metrics.

4.4.2.1 Accuracy of the Linear Model

This section evaluates the linear model. The accuracy of the proposed linear model is em-
pirically validated. The estimated makespan time generated by the linear model is compared
to the actual makespan time on an eight node heterogeneous micro-cluster testbed using
different application benchmarks.

Figure 4.2 presents results for different applications. The x-axis represents different batch
sizes, and the y-axis represents makespan time in seconds. Overall, results demonstrate that
the linear model is useful to estimate the required makespan time for batch execution in edge
micro-cluster platforms.

There are minor underestimations in the estimated makespan times. This might be attributed
to the networking contention when transferring multiple task inputs. In addition, the pa-
rameters of the linear model, i.e., the gradients (m) and y-intercepts (c), are obtained by
evaluating one device from each generation and the values are then generalised for the other
devices from the same generation in the testbed. Even though devices are from the same
generation, their performance might vary slightly.

4.4.2.2 Allocation Overhead Time

The allocation overhead time represents runtimes of allocation techniques to complete com-
putations and converge to produce a task allocation decision. Allocation overhead time
is a critical metric in edge computing because orchestration techniques run on resource-
constrained devices like single board computers [62]. In the context of edge micro-cluster
platforms, allocation techniques are anticipated to be deployed on one cluster node repre-
senting a cluster head node.

The allocation overhead times of the optimisation techniques are evaluated using two sce-
narios, homogeneous workloads and heterogeneous workloads. For the first scenario, tasks
are all the same types, representing homogeneous batches to be effectively allocated to the

4.4. Evaluation 75

5 10 15 20 25 30
Batch Size

0

10

20

30

40

50

60

70

M
a
k
e
sp

a
n
 T

im
e
 (

se
c
)

Image-Detection Application (Yolo)
Estimated Makespan
Actual Makespan

5 10 15 20 25 30
Batch Size

0

10

20

30

40

50

M
a
k
e
sp

a
n
 T

im
e
 (

se
c
)

Audio Recognition Application (PocketSphinx)
Estimated Makespan
Actual Makespan

(a) (b)

5 10 15 20 25 30
Batch Size

0

5

10

15

20

25

30

M
a
k
e
sp

a
n
 T

im
e
 (

se
c
)

Audio-Text Synch Application (Aeneas)
Estimated Makespan
Actual Makespan

6 12 15 24 27 30
Batch Size

0

10

20

30

40

50

M
a
k
e
sp

a
n
 T

im
e
 (

se
c
)

Heterogeneous Workloads (Yolo:33%, PS:33%, Aeneas:33%)
Estimated Makespan
Actual Makespan

(c) (d)

Figure 4.2: Comparison between the estimated makespan time calculated by the linear-based
model and the actual makespan time (mean of 15 runs) on a physical edge micro-cluster for
different workloads and batch sizes.

4.4. Evaluation 76

micro-cluster. In this scenario, tasks are generated from different applications and then clas-
sified into separate batches based on their task types. For the second scenario, batches com-
prise heterogeneous workloads, where tasks from different applications are aggregated in
heterogeneous batches and thus each batch contains a mix of tasks.

Figure 4.3 presents a comparison of allocation overhead times required for homogeneous
workloads and heterogeneous workloads, respectively. The figures overall show practical
crossover graphs indicating conventional overlapping between different task allocation opti-
misation techniques for edge micro-cluster platforms.

As seen in the graphs in Figure 4.3, the mixed-integer allocation technique demonstrate low
overhead time for homogeneous batches. It converges very quickly and obtains the optimal
allocation solution in less than 1 sec for up to 100 homogeneous tasks. The overhead time
grows exponentially and dominates the total execution time for large homogeneous batches.
Furthermore, the problem becomes more complex for the heterogeneous batches given the
increased number of constraints, which makes exponentially complex MIP-based allocation
an unfeasible technique for heterogeneous workloads.

On the other hand, the PSO-based technique demonstrates linear growth for both scenarios
and achieves near-optimal solution quality for homogeneous and heterogeneous batches. The
PSO-based technique shows faster computation time than the mixed-integer programming
technique and effectively produces near-optimal solutions for large-scale batches.

The allocation overhead time for the random-based technique never exceeds a few msec and
therefore was excluded from the above comparison for the poor performance results in terms
of solution quality.

4.4. Evaluation 77

10 20 30 40 50 10
0

15
0

Batch Size

10 1

100

101

102
Al

loc
at

ion
 O

ve
rh

ea
d

(se
c)

Allocation Overhead Time for
 Homogeneous Workloads

MIP-based Allocation
PSO-based Allocation

(a)

10 20 30 40 50
Batch Size

10 1

100

101

102

All
oc

at
ion

 O
ve

rh
ea

d (
se

c)

Allocation Overhead Time for
 Heterogeneous Workloads

 (Yolo:33%, PS:33%, Aeneas:33%)
MIP-based Allocation
PSO-based Allocation

(b)

Figure 4.3: Crossover graphs representing the allocation overhead time required by the ex-
ponential complexity MIP-based and linear complexity PSO-based for different batch sizes
and workload types. The Random-based allocation is excluded from this comparison as its
overhead time is always minimal and never exceeds a few msec.

4.4. Evaluation 78

4.4.2.3 Solution Quality

The proposed task allocation techniques optimise task allocation in edge micro-cluster plat-
forms. This could be achieved by identifying appropriate allocation solutions that can ef-
fectively distribute tasks to cluster nodes to minimise the makespan time of tasks in batch
execution.

Similar to the definition of makespan time provided in Chapter 3, the makespan time is
the total execution time required for micro-cluster systems to complete workloads in batch
execution. As micro-clusters process workloads in parallel execution across all nodes, the
makespan time effectively is the execution time required by the cluster node that requires the
maximum execution time to complete its allocated workloads. The makespan time includes
the time required by the allocation techniques to generate an allocation decision (i.e., allo-
cation overhead time), the time required for offloading tasks to the micro-cluster, the time
required for the nodes to process allocated workloads, and the time required to receive results
back from micro-cluster platforms.

Figures 4.4, 4.5, 4.6, and 4.7 present the quality of solutions generated by different alloca-
tion techniques and therefore demonstrate their effectiveness for edge micro-cluster systems.
These results show the makespan time required for the micro-cluster testbed to process differ-
ent workloads. The experiments evaluate the effectiveness of different task allocation tech-
niques, namely: PSO-based allocation, mixed integer-based allocation, and random-based
allocation. The evaluation examined different batches of homogeneous and heterogeneous
workloads to be allocated on a micro-cluster.

As mentioned in Section 4.4.2.2, two scenarios were considered, i,e., homogeneous batches
and heterogeneous batches. For homogeneous workloads, tasks are offloaded to a micro-
cluster platform from different applications and IoT appliances and classified into different
batches according to task types. Results indicate that mixed-integer programming-based and
PSO-based techniques both can achieve comparable solution quality, and the allocation over-
head times do not significantly impact the total makespan time as shown in Figure 4.3. These
findings overall indicate that the PSO-based technique is effective and performs as well as
mixed-integer programming in producing optimal or near-optimal allocation solutions.

For the heterogeneous workloads, three heterogeneous batches were examined. Workloads
were aggregated from different applications into batches. Batches descriptions are as fol-
lows: The image-detection workloads constitute (33%), audio-text synchronisation work-
loads constitute (33%), and audio-text converting workloads constitute (33%). Figure 4.7
presents the results. The analysis indicates the performance of mixed integer programming
outperforms the performance of both PSO-based and random-based techniques for small-
scale heterogeneous batches. However, the makespan time for large batch size (i.e., batch
size 45 tasks) is influenced by the allocation overhead time for MIP-based allocation tech-

4.4. Evaluation 79

nique as the experiments reveal that MIP-based technique overhead time for heterogeneous
workloads is growing exponentially and significantly influences the makespan time. It re-
quires around 18 seconds to produce an allocation decision for large batches.

On the other hand, the overhead time of the PSO-based does not significantly impact the
makespan time as it grows linearly in relation to the batch sizes. These findings indicate
that the PSO-based technique is viable and efficient for edge micro-cluster platforms and
maintain both near-optimal allocation decisions and minimal overhead time.

The results further illustrate that the random-based allocation is impractical and ineffective
for edge micro-cluster systems because the makespan times are high for both homogeneous
and heterogeneous batches compared to other techniques; even the allocation overhead time
remains constant and never exceeds a few msec. The experiments reveal task failure, specifi-
cally when nodes exceeded their capacities. The analysis and measurements for task failures
are not considered in this research and might involve techniques for load balancing or task
migration between the cluster nodes.

For large problem sizes (100 tasks of homogeneous workloads and 50 tasks of heteroge-
neous workloads), we found that the PSO-based optimisation yields near-optimal solutions
in comparison with the optimal solutions generated by MIP-based allocations (in terms of
makespan). In a limits study, we found that the quality of solutions generated by the PSO-
based allocation technique are within 4.84% for image-detection, 11.68% for audio-text con-
verting, 2% for audio-text synchronisation, and 20% of heterogeneous workloads of the op-
timal solutions generated by MIP-based allocation. These results indicate that PSO-based
allocation is able to generate effective and near-optimal solutions for large and complex
problem sizes.

Overall, analysis indicates that a necessary balance between obtaining high-quality solutions
and securing much faster ones is essential. It might be necessary to compromise between
solution quality and computational complexity in order to obtain faster allocation decisions.
This applies when the allocation overhead to find high-quality allocation solutions exceeds
the expected total computation time of the batch, particularly for large-scale clusters and
large batch sizes.

4.4. Evaluation 80

10-Tasks
20-Tasks

30-Tasks
40-Tasks

Batch Size

0

25

50

75

100

125

M
ak

es
pa

n
Ti

m
e

(s
ec

)

Makespan time for micro-cluster to process
 image-detection workloads based on

 different allocation techniques.
 Results include the allocation overhead time.

MIP-based Allocation
PSO-based Allocation
Random-based Allocation

Figure 4.4: Quality of solutions obtained by different allocation techniques for image-
detection workloads.

10-Tasks
20-Tasks

30-Tasks
40-Tasks

Batch Size

0

25

50

75

100

125

M
ak

es
pa

n
Ti

m
e

(s
ec

)

Makespan time for micro-cluster to process
 image-detection workloads based on

 different allocation techniques.
 Results include the allocation overhead time.

MIP-based Allocation
PSO-based Allocation
Random-based Allocation

Figure 4.5: Quality of solutions obtained by different allocation techniques for audio-
recognition workloads

4.4. Evaluation 81

10-Tasks
20-Tasks

30-Tasks
40-Tasks

Batch Size

0

20

40

60
M

ak
es

pa
n

Ti
m

e
(s

ec
)

Makespan time for micro-cluster to process
 audio-text sync workloads based on

 different allocation techniques.
 Results include the allocation overhead time.

Figure 4.6: Quality of solutions obtained by different allocation techniques for audio-text
synchronisation workloads

15-Tasks
30-Tasks

45-Tasks

Batch Size

0

50

100

150

M
ak

es
pa

n
Ti

m
e

(s
ec

)

Makespan time for micro-cluster to process
 heterogeneous workloads based on

 different allocation techniques.
 Results include the allocation overhead time.
 (Workloads=Yolo:33%,PS:33%, Aeneas:33%)

Figure 4.7: Quality of solutions obtained by different allocation techniques for heteroge-
neous workloads

4.5. Summary 82

4.5 Summary

This chapter extends the work presented in Chapter 3 with two fundamental contributions.
First, it develops an analytical performance model for optimising task allocation in edge
micro-cluster platforms. Secondly, it proposes metaheuristic optimisation based on the Par-
ticle Swarm Optimisation technique for optimising task allocation for micro-clusters.

The chapter investigates micro-cluster systems by specifically providing the following fun-
damental contributions. First, the performance characteristics of micro-cluster nodes are
empirically examined and evaluated for executing concurrent representative workloads. The
evaluation reveals the performance trends of nodes for processing various workload types.
Second, a linear-based model for batch execution is developed for micro-cluster systems.
Third, a task allocation optimisation based on metaheuristic optimisation is proposed and
evaluated to optimise workload allocation for micro-clusters. Finally, a comparative evalu-
ation of different optimisation techniques for optimising heterogeneous workloads in batch
execution for edge micro-clusters in terms of effectiveness and efficiency is reported.

Evaluations reflect the performance of metaheuristics-based optimisation and compare it
with mathematical-based allocation and randomised-based allocation. The evaluation pro-
vides an insightful overlapping indicating typical indicative limits for each optimisation tech-
nique for edge micro-clusters.

Results indicate that PSO-based and MIP-based techniques both achieve comparable solu-
tions for small-scale micro-clusters platforms. Moreover, the PSO-based optimisation tech-
nique scales better and finds effective solutions for large-scale micro-clusters, with linear
overhead time compared to the exponential overhead of the MIP-based technique for large-
scale clusters. Accordingly, we argue that mathematical-based optimisation is most suitable
for task allocation for limited-scale micro-clusters, while PSO-based optimisation demon-
strates lightweight and effectiveness for large-scale edge micro-cluster platforms.

The following chapter will explore developing and evaluating a multi-objective optimisation
framework to optimise other edge-relevant performance metrics for edge micro-clusters.

83

Chapter 5

Multi-Objective Optimisation for
Edge Micro-Clusters

The previous technical chapters focus on optimising task execution in edge micro-cluster
platforms by effectively allocating tasks and minimising the makespan time of applications
in batch execution mode. This chapter extends earlier work by investigating and optimising
energy consumption in micro-clusters. It first characterises per-node power consumption and
presents an analytical model that can effectively predict the energy consumption required for
performing edge-relevant workloads. Following on from this, a multi-objective optimisation
model is developed to optimise two edge-relevant performance metrics of energy consump-
tion and makespan time for workloads.

5.1 Introduction

Edge micro-clusters can be effective deployment solutions to extend computing resources
and deliver IoT applications to remote environments located at the edge of the network. For
example, micro-cluster platforms can be used in agricultural settings to deploy smart farm-
ing management systems that provide computation services like monitoring and executing
application workloads locally near IoT environmental sensors.

However, conventional power supply networks might not be always available in many remote
environments, which may represent a substantial barrier for IoT-based services. Thus, micro-
clusters might utilise alternative power systems, such as batteries and renewable energy.
Therefore, efficient power usage is essential in such deployment settings to enable delivering
applications and, in turn, minimise energy consumption.

In light of the aforementioned deployment conditions, micro-cluster resources need to be ef-
ficiently utilised to reduce energy consumption and ultimately extend their alternative power

5.2. Preliminaries 84

systems. In order to preserve power and cope with application requirements, an edge re-
source management mechanism is assumed to perform provisioning and scaling require-
ments in micro-clusters, where the system manager can turn nodes on and off to cope with
workload dynamics. Specifically, inactive nodes can be turned off to save power. Nodes can
be dynamically scaled up or down by turning them on or off to meet application require-
ments. Nodes like Single Board Computers (e.g., Raspberry Pi devices) can quickly boot in
∼ 20 seconds which might not substantially affect the overall system response time in batch
execution scenarios.

Work on power consumption for Single Board Computers has been presented in [49], where
the author conducted experiments to examine power characteristics for several devices, in-
cluding Raspberry Pi and Odroid. In addition, the power consumption characteristics of edge
computer clusters were investigated in [7] using a simple load balancing technique. Further-
more, authors in [46] developed energy monitoring power consumption for SBC clusters to
support edge cluster deployment. However, with the ongoing research efforts on edge com-
puting, no much work considers multi-objective optimisation for edge micro-cluster systems
for the edge-relevant performance metrics of energy consumption and execution time.

In this chapter, the energy consumption for edge micro-cluster systems is investigated. Sec-
tion 5.2 provides preliminary experiments to investigate and identify energy consumption
characteristics for micro-cluster platforms. Section 5.3 develops an energy consumption an-
alytical model that can effectively predict the energy consumption required for executing
workloads in micro-cluster platforms. Section 5.4 develops a multi-objective optimisation
model that can optimise makespan time and energy consumption for micro-clusters, where a
Pareto-Front optimisation is identified to balance between two competing objectives. Finally,
Section 5.5 provides conclusions and outlook for potential future directions.

5.2 Preliminaries

This section introduces preliminary experiments that were conducted to identify and charac-
terise the power consumption of micro-cluster platforms. The experiments were designed to
examine nodes’ power consumption characteristics under two fundamental operation states,
idle state and active state. The active state represents when nodes are in full operation where
node CPU usage is 100%. The idle state represents when micro-cluster nodes are on but not
being used by any application to execute computational tasks.

Motivated by [49], the active state is represented by stressing micro-cluster’s nodes CPU re-
sources. The Sysbench system benchmark was used to model micro-cluster active states by
stressing nodes CPU to 100%. Sysbench is basically a system software tool used to test CPU
to calculate prime numbers. On the other hand, Linux sleep command was used to model

5.2. Preliminaries 85

micro-cluster idle state. Linux sleep command was used to set nodes to idle state for 600
sec. Power consumption was empirically measured for each node individually and for the
entire micro-cluster by using a physical power meter monitoring device directly connected
to the micro-cluster testbed. The cluster testbed is isolated from other equipment, such as a
networking switch.

Figure 5.1 presents the preliminary power consumption of the micro-cluster nodes in active
and idle states. Specifically, analysis shows that node type Raspberry Pi 2B require 3.2 Watts,
Raspberry Pi 3B requires 4.8 Watts, Raspberry Pi 3B+ require 5.8 Watts, and Raspberry Pi
4B requires 6.2 Watts in full active states. The micro-cluster testbed overall consumes ∼ 36
Watts in full active state.

Furthermore, the preliminary experiments reveal that nodes in idle state consume a consid-
erable amount of energy. Specifically, nodes type Raspberry Pi 2B and Raspberry Pi 3B
consume 2.2 Watts in idle states, while Raspberry Pi 3B+ and Raspberry Pi 4B require 2.5
Watts and 3.3 Watts, respectively. The micro-cluster overall consumes ∼ 18 Watts in a full
idle state. Numbers indicate that the power consumption of the micro-cluster testbed in full
operation is increased by 100%. Table 5.1 presents raw data identifying micro-cluster nodes’
hardware specifications and power consumption data in detail.

RPi 2B
RPi 3B

RPi 3B+
RPi 4B

Micro-Cluster Nodes

0

2

4

6

Po
we

r C
on

sum
pti

on
 (W

att
s)

Power Consumption of Micro-Cluster Nodes
 in Idle and Active States

Idle State
Active State

Figure 5.1: Characteristics of power consumption of micro-cluster individual nodes in idle
and active states. The active state represents nodes’ power consumption for 100% CPU.

5.3. Analytical Model for Energy Consumption 86

Table 5.1: Micro-cluster nodes hardware specifications and power consumption characteris-
tics in idle and active states.

Compute
Node

CPU Speed Memory Power Con-
sumption
in Idle
state(Watts)

Power Con-
sumption in
Active State
(Watts)

Raspberry Pi
2 model B (3
nodes)

900 MHz 1 GB 2.2 3.2

Raspberry Pi
3 model B (3
nodes)

1200 MHz 1 GB 2.2 4.8

Raspberry Pi 3
model B+ (1
node)

1400 MHz 1 GB 2.5 5.8

Raspberry Pi
4 model B (1
nodes)

1500 MHz 4 GB 3.3 6.2

Micro-Cluster – – 18 36

5.3 Analytical Model for Energy Consumption

This section formulates an energy consumption analytical model to characterise energy con-
sumption for edge micro-cluster platforms for executing edge-related applications. Section
5.3.1 develops an analytical model used to predict how much energy an edge micro-cluster
system would require for performing edge-related workloads, and the performance is anal-
ysed in Section 5.3.2.

5.3.1 Energy Consumption Analytical Model

Energy Consumption is defined as the amount of power, measured in watts, consumed by
micro-clusters over a period of time, measured in seconds. Equation. 5.1 formulates the
Energy Consumption for micro-clusters.

Energy Consumption = Makespan Time ∗ Cluster Power (5.1)

Similar to the definition in Chapter 4, Makespan Time is defined as the execution time for a
micro-cluster system to complete processing a set of tasks in batch execution. Equation 5.2
defines the Makespan Time, where: mn is a constant of a gradient of node n, numTaskn is
the number of tasks assigned to node n, and cn is a constant value of y-intercept of node n.
The interpolation values for mn and cn are derived from Table 4.2 in presented Chapter 4.

5.3. Analytical Model for Energy Consumption 87

Makespan Time = max
n∈N

(
mn ∗ numTaskn + cn

)
(5.2)

Cluster Power is defined as the total amount of power required by a micro-cluster to execute
workloads. As the micro-cluster might not use all its nodes for executing applications, Clus-
ter Power effectively refers the power required by active nodes only, while inactive nodes
are turned off to reduce power consumption and preserve energy. The data related to power
consumption is obtained through empirical measurements using an energy monitor device,
as described in Section 5.2.

Cluster Power is the sum of power consumption of active nodes in their active states. Active
nodes are those within the cluster that are executing workloads based on the allocation solu-
tions. Inactive nodes within the cluster are turned off and do not consume energy. Equation
5.3 represents the sum of power consumption for active nodes, where powern is the power
consumption of node n in an active state, and N is the set of relevant active nodes.

Cluster Power =
∑
n∈N

powern (5.3)

In our energy consumption model, we assume that active nodes are fully utilised during
workload execution. More complex linear power models that estimate power consumption
based on resource utilisation may not be applicable for edge systems [7]. Section 5.3.2
presents the performance evaluation of the energy consumption analytical model.

5.3.2 Performance Analysis

This section evaluates the energy consumption analytical model developed in Section 5.3.1.
The developed model is empirically evaluated on a physical micro-cluster prototype testbed
and by utilising the DeFog benchmark suite extended version presented in Chapters 3 and 4.

More specifically, the micro-cluster testbed comprises several heterogeneous and resource-
constrained physical nodes compacted into a mini-rack case and connected using a network
switch. Figure 3.1 presents the configured micro-cluster prototype. The DeFog benchmark
suite [19] is extended to develop edge-related workloads by utilising four different appli-
cations scenarios, the image-detection application (Yolo), the audio-text recognition appli-
cation (PocketSphinx), the audio-text synchronisation application (Aeneas), and a hetero-
geneous workload scenario where computing tasks are offloaded from various applications
and thereby aggregated into heterogeneous batches. The Energy Consumption of the whole
micro-cluster testbed is monitored using an energy monitoring device. For further reference,
the experimental micro-cluster testbed configuration and the applications benchmarks were
explained in detail in Chapter 3.

5.3. Analytical Model for Energy Consumption 88

Figures 5.2 and 5.3 show the results. Figure 5.2 presents a comparison of the predicted
Makespan Time with the actual Makespan Time for executing various workloads in batch
execution in edge micro-cluster testbed. Figure 5.3 compares the predicted Energy Con-
sumption estimated by the analytical model with the actual energy consumed by the micro-
cluster for handling the application workloads. All figures report the mean of 10 runs for
each experiment.

The results overall illustrate that the analytical energy consumption model is quite accurate
and can effectively predict the required computation time for workloads and the Energy Con-
sumption for edge micro-clusters. Both the estimated Makespan Time and Energy Consump-
tion calculated by the analytical model are within 5% of the actual Makespan Time for all
benchmark applications and the actual Energy Consumption consumed by the micro-cluster
testbed.

There are minor overestimations in Energy Consumption calculations, which might be at-
tributed to the power consumption input data used in the analytical model. The per-node
power consumption data used in the energy consumption analytical model are based on 100%
CPU utilisation using the sysbench system benchmark, as explained in Section 5.2. How-
ever, the allocation decisions in the experiments effectively distribute workloads over the
nodes resulting in not fully stressing the node CPU and therefore reducing the actual power
consumption. Furthermore, as nodes in the micro-cluster system are heterogeneous, meaning
that the powerful nodes can complete executing their allocated workloads and return to their
idle states before other nodes. This will result in reducing the actual power consumption
required by the micro-cluster. For example, node type Raspberry Pi 4B might finish pro-
cessing its workloads early and return to its idle state before other nodes. This will reduce
the micro-cluster power consumption for executing the remaining workloads. The analytical
model predicts that the power consumption remains constant over the estimated makespan
time.

5.3. Analytical Model for Energy Consumption 89

Image-Detectio
n

Audio-Text C
onvertin

g

Audio-Text S
ynch

Heterogeneous0

10

20

30

40

50

60

70
Ma

ke
sp

an
 Ti

me
Estimated Time
Actual Time

Workloads

Figure 5.2: Analytical model for the predicted and the actual Makespan Time for micro-
cluster platforms. Makespan Time is in (sec). All figures report the mean of 10 runs for each
experiment.

Image-Detectio
n

Audio-Text C
onvertin

g

Audio-Text S
ynch

Heterogeneous0

500

1000

1500

2000

En
erg

y C
on

su
mp

tio
n

Estimated Energy
Actual Energy

Workloads

Figure 5.3: Analytical model for the predicted and the actual Energy Consumption for micro-
cluster platforms. Energy Consumption is in (Joules/sec). All figures report the mean of 10
runs for each experiment.

5.4. Multi-Objective Optimisation for Micro-Clusters 90

5.4 Multi-Objective Optimisation for Micro-Clusters

This section presents a multi-objective optimisation model developed for optimising two es-
sential performance metrics for edge micro-cluster systems, the Makespan Time and Energy
Consumption. In Section 5.4.1, a multi-objective optimisation model is formulated using a
weighted sum approach. Section 5.4.2 evaluates the performance of the model by defining
Pareto Front representation of the set of optimal solutions representing the best trade-off
between the conflicting objectives of the system.

5.4.1 Multi-Objective Optimisation Model

In the context of edge micro-cluster systems, the multi-objective optimisation aims to opti-
mise two critical edge-relevant metrics of the Makespan Time and Energy Consumption for
edge micro-cluster platforms. As defined earlier in Section 5.3, Makespan Time is the exe-
cution time required for a micro-cluster platform to execute application workloads in batch
execution mode, and Energy Consumption is the total amount of energy a micro-cluster con-
sumes for executing the required computation logic. These edge metrics are critical perfor-
mance metrics to optimise in deployment conditions where, for example, the power supply
resources are not available.

The multi-objective optimisation is modelled and normalised using a weighted sum ap-
proach. The weighted sum approach involves forming a composite objective function that
combines the individual objective functions and assigns weighting factors to each objective
function to determine its relative priority [108].

Because the objective functions in the system have different magnitudes, normalisation is
applied to scale the values of the objective functions between 0 and 1, regardless of their
original magnitudes. The normalisation facilitates fair comparison between the competing
objectives of the systems. The objective function values are normalised using minimum-
maximum normalisation, which subtracts the minimum value from the original value and
then divides it by the range value of the objective function.

The minimum-maximum normalisation is implemented as follows: NormalisedV alue =

(V alue −minV alue)/(rangeV alue), where, NormalisedV alue is the new scaled value,
V alue is the value obtained from the objective function, minV alue is the minimum value
of the objective function, maxV alue is the maximum value of the objective function, and
rangeV alue is the range calculated as (maxV alue−minV alue). Equation 5.4 models the
multi-objective function of the system.

Objective = (α ∗Makespan Time) + ((1− α) ∗ Energy Consumption) (5.4)

5.4. Multi-Objective Optimisation for Micro-Clusters 91

Alpha, α, is a weighting factor 0≤ α≤ 1. Alpha is used to determine the balance between the
conflicting system objectives, which are the Makespan Time and Energy Consumption in our
system model. Determining the appropriate α value is challenging and depends on various
deployment settings and application requirements. The general principle of determining α

depends on the system deployment settings, where it allows the system operator to adjust
the weights based on preferences and priorities. For example, in the case of a micro-cluster
that operates using limited power systems such as batteries, energy consumption in such
deployment settings is critical to optimise in order save power. On the other side, if IoT
applications have strict QoS expectations and require, for example, fast execution time for
critical application workloads like real-time image processing, the execution time is more
important to optimise.

As defined earlier, Makespan Time is total execution time required for a micro-cluster system
to execute application workloads in batch execution. Makespan Time is calculated based on
the linear model presented in Equation (5.2), where mn is the gradient of cluster node n,
numTaskn is the total number of tasks allocated to node n, and cn is the y-intercept value
for node n. The linear interpolation values for the gradient mn and the y-intercept cn are
defined in Table 4.2.

Energy Consumption is the amount of energy consumed by a micro-cluster platform over a
period of time required for executing application workloads. Energy Consumption is calcu-
lated according to the Energy Consumption equation presented in Equation 5.1.

As mentioned above, note that the Makespan Time and Energy Consumption are normalised
using min-max normalisation to provide standardised comparisons.

5.4.2 Performance Analysis

5.4.2.1 Experimental Setup

The experimental setup used for evaluating the designed multi-objective optimisation model
for micro-clusters is modelled according to the micro-cluster system models developed in
Chapters 3 and 4. Specifically, the evaluation involves examining the performance of the
developed multi-objective optimisation model for an edge micro-cluster platform comprised
of various heterogeneous worker nodes. In terms of the edge workloads, the interpolation
data related to edge applications and the number of tasks in batches are similar to edge
applications scenarios drawn from the DeFog benchmark suite [19]. Table 4.2 demonstrates
data for application scenarios in detail.

The multi-objective optimisation is solved by utilising the metaheuristic Particle Swarm Op-
timisation technique (PSO) developed in Section 4.3.2 with changing the system objective

5.4. Multi-Objective Optimisation for Micro-Clusters 92

function. PSO technique is selected for solving the developed optimisation for its features
for 1) providing fast allocation overhead time and 2) generating near-optimal effective allo-
cation decisions, as demonstrated in Chapter 4. The experiments were run for 100 runs for
each application scenario.

5.4.2.2 Results Analysis

To analyse the performance of the developed multi-objective optimisation model for micro-
cluster platforms, the Pareto front (PF) concept is employed to capture the model’s relative
performance and draw meaningful results. The Pareto front can help identify the set of best
optimal allocation solutions that represent potential trade-offs between the systems perfor-
mance metrics, the Makespan Time and Energy Consumption, in the current problem set-
tings. The PF can provide a comprehensive view of the trade-offs and potential solutions for
multi-objective optimisations, which, therefore, can enable effective decision-making and
optimisation.

Figures 5.4 depict the PF representing the relationship between Energy Consumption re-
quired by the micro-cluster system and the Makespan Time of workloads. The competing
objective functions are normalised here, where 0 and 1 on x-axis indicate the near-optimal
possible Makespan Time and a maximum Makespan Time respectively and numbers on y-
axis represent the Energy Consumption and are translated similarly.

Alpha α represents different priority weights for adjusting the trade-off. Increasing α value
is attributed to prioritising the Makespan Time, which yields minimising the execution time
of workloads over the Energy consumption. Decreasing α value prioritises the Energy Con-
sumption over the Makespan Time. Furthermore, Figure 5.5 shows the PF illustrating the
static Power Consumption an edge micro-cluster system would require for improving the
Makespan Time of various workloads.

Overall, the PF clearly demonstrates that improving the Makespan Time cannot be achieved
without increasing the Power Consumption of the micro-cluster system. Specifically, if the
primary system objective is the Makespan Time, the micro-cluster system needs to operate
at its maximum capacity, which requires high Energy Consumption.

Ultimately, in the context of edge micro-cluster deployment, Pareto front performance eval-
uation demonstrates a set of solutions that provide the best trade-off between the Makespan
Time and Energy Consumption. The solutions generally will depend on specific deployment
objectives and constraints for different use cases. For example, it may be more important to
prioritize minimizing Makespan Time over Energy Consumption in order to meet application
deadlines in some critical deployment scenarios. On the other side, prioritizing and minimiz-
ing Energy Consumption might be more important if micro-clusters operate on a secondary

5.5. Summary 93

power supply system to reduce costs, save power, or reduce environmental impact. Overall,
we argue that the developed multi-objective optimisation model is useful and applicable for
edge micro-cluster deployment.

The developed multi-objective optimisation model can benefit edge micro-cluster platforms
for edge deployment scenarios where several system objectives require optimisation. The
multi-objective optimisation model can support decision-making by generating a set of opti-
malities that represent trades-off for the competing objectives.

5.5 Summary

With the current global concerns related to energy consumption issues, ongoing research
aims to develop solutions for maintaining and optimising energy usage or developing alter-
native solutions like renewable ones. This chapter, therefore, investigated energy consump-
tion in edge micro-cluster platforms. The work extended the previous technical chapters
by developing an energy consumption analytical model for characterising, predicting and
optimising energy consumption in micro-cluster systems.

The preliminary experiments investigated per-node power consumption characteristics for
micro-clusters under two fundamental operation states, the idle and active state. Overall,
the data reveals that idle nodes consume a considerable amount of energy, which requires
effective management to save the overall system energy.

In addition, an energy consumption analytical model is developed for predicting energy con-
sumption in micro-clusters. The model can provide an accurate estimation of the execution
time and the relevant energy consumption required for executing application workloads. The
model can feasibly be integrated into the deployment of energy consumption predictions to
enable effective decision-making.

Furthermore, a generic multi-objective optimisation framework is designed to optimise two
essential performance metrics in edge platforms, makespan time and energy consumption.
A Pareto optimisation is introduced to balance and prioritise execution time and energy con-
sumption for micro-clusters. The multi-objective optimisation framework is limited to two
edge-relevant performance metrics in micro-cluster platforms. However, the framework can
be generalised to integrate and optimise additional metrics such as networking metrics and
monetary cost.

5.5. Summary 94

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Makespan Time (Normalised)

0.2

0.4

0.6

0.8

1.0

En
er

gy
 C

on
su

m
pt

io
n

 (N
or

m
al

ise
d)

Pareto Front Solutions - Image Processing Workloads
Alpha
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Makespan Time (Normalised)

0.0

0.2

0.4

0.6

0.8

1.0

En
er

gy
 C

on
su

m
pt

io
n

 (N
or

m
al

ise
d)

Pareto Front Solutions - Audio Recognition Workloads
Alpha
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Makespan Time (Normalised)

0.0

0.2

0.4

0.6

0.8

1.0

En
er

gy
 C

on
su

m
pt

io
n

 (N
or

m
al

ise
d)

Pareto Front Solutions - Audio-Text Sych Workloads
Alpha
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5
Makespan Time (Normalised)

0.2

0.4

0.6

0.8

En
er

gy
 C

on
su

m
pt

io
n

 (N
or

m
al

ise
d)

Pareto Front Solutions - Heterogeneous Workloads
Alpha
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 5.4: Pareto front representing solutions and trade-offs between Makespan Time and
Energy Consumption for different workloads.

5.5. Summary 95

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Makespan Time

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Po
we

r C
on

su
m

pt
io

n

Pareto Front Solutions- Image Processing Workloads
Alpha
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Makespan Time

20

22

24

26

28

30

32

34

36

Po
we

r C
on

su
m

pt
io

n

Pareto Front Solutions- Audio Recognition Workloads

Alpha
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Makespan Time

20

22

24

26

28

30

32

34

36

Po
we

r C
on

su
m

pt
io

n

Pareto Front Solutions- Audio-Text Sych Workloads
Alpha
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5
Makespan Time

22

24

26

28

30

32

34

36

Po
we

r C
on

su
m

pt
io

n

Pareto Front Solutions- Heterogeneous Workloads
Alpha
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 5.5: Pareto front representing solutions and trade-offs between Makespan Time and
Power Consumption for different workloads.

96

Chapter 6

Conclusions and Future Directions

6.1 Overview

Edge computing is fundamentally a method to utilise resources at the edge of the network
to locally perform computation and storage logic. The ultimate aim is to avoid or mitigate
deployment concerns related to networking latency, data privacy, and energy consumption.
Many solutions and computing paradigms have been proposed to accelerate edge computa-
tion, including MEC, Cloudlet, and Fog Computing. This thesis sheds light on edge micro-
cluster platforms in order to enhance their feasibility and usability for edge and IoT environ-
ments by improving and optimising task allocation for these edge computing systems.

This thesis presented the development of edge micro-cluster platforms; pragmatic, compact,
and low-cost edge infrastructures based on Single Board Computers for edge computing
and IoT environments. The research developed applicable linear analytical models based on
workload features, node performance trends and per-node power consumption. The models
can effectively predict the makespan time and energy consumption required by micro-cluster
systems to execute edge workloads in batch execution. Furthermore, a comparative perfor-
mance evaluation of various optimisation techniques is conducted to quantify their relative
effectiveness in finding optimal or near-optimal solutions and efficiency for providing allo-
cation decisions in a reasonable time for solving task allocation and workload management
in batch execution in such edge micro-clusters. Finally, the thesis developed a practical op-
timisation framework for optimising and addressing multi-objective trade-off scenarios for
edge micro-clusters.

This chapter concludes this research and outlines potential future directions identified in this
thesis. Section 6.2 revisits the thesis statement in light of the experiments and findings from
the research. Section 6.3 presents a comprehensive answers to the thesis research ques-
tions. Section 6.4 summarises the main contributions and findings of this thesis. Section 6.5

6.2. Review of the Thesis 97

presents the potential directions for future work derived from the limitations and the possi-
ble extensions to the current work. Finally, Section 6.6 provides concluding remarks on this
thesis.

6.2 Review of the Thesis

In light of the conducted research, experimental work, and the findings from this thesis, the
thesis statement of this work is now revisited to reflect the contributions and findings. The
following section provides answers and reflections on research questions accordingly.

This thesis asserts that edge micro-cluster platforms require effective and efficient task al-
location optimisation techniques that can satisfy resource constraints, dynamic workloads,
and the QoS requirements of IoT-based applications. To achieve this statement, this thesis
presents the design of a micro-cluster prototype for edge and IoT environments, develops an-
alytical system models for task allocation for micro-cluster systems, and presents empirical
evaluations of various optimisation techniques for optimising task allocation in edge micro-
cluster systems. The thesis demonstrates that mathematically-based optimisation techniques
can provide optimal or near-optimal decisions for small-scale micro-cluster systems, while
metaheuristics-based optimisation techniques are efficient and effective for optimising task
allocation for large and complex micro-clusters.

6.3 Reflection on Research Questions

6.3.1 Reflection on Research Question RQ1

RQ1. Which task allocation optimisation methods provide effective solutions to optimise

makespan time for edge micro-cluster platforms for heterogeneous workloads in batch

execution mode?

To answer this research question, the experiments conducted in Chapters 3 and 4 presented
comparative evaluations of various task allocation optimisation techniques for micro-cluster
platforms to optimise task allocation in batch execution. The makespan time performance
metric was used to measure the effectiveness of optimisation techniques. The makespan
time is effectively the maximum execution time micro-cluster systems require to complete
processing application workloads in batch execution. The optimisation techniques that suc-
cessfully minimise the required makespan time are considered optimal. The performance
analysis demonstrated that effective task allocation is essential in micro-clusters and can

6.3. Reflection on Research Questions 98

cause significant improvements in the overall performance of edge micro-clusters. The eval-
uations revealed that mathematical-based optimisation, i.e., using mixed-integer program-
ming, and metaheuristic-based optimisation, i.e., using PSO-based optimisation, with respect
to the nodes’ capacities constraints outperform other heuristic-based allocation by effectively
utilising the cluster resources and minimising the makespan time of edge applications. The
experiments show that mathematical-based optimisation and metaheuristic-based optimisa-
tion can achieve comparable solution quality, proving the viability of metaheuristic-based
optimisation to produce optimal or near-optimal solutions.

6.3.2 Reflection on Research Question RQ2

RQ2. Which optimisation methods are efficient and appropriate (i.e., sufficiently

lightweight) for edge micro-cluster platforms?

To answer this research question, Chapters 3 and 4 presented efficiency-related evaluations
of task allocation optimisation techniques for edge micro-clusters. The allocation overhead
time is the performance evaluation metric utilised to measure the efficiency of the optimisa-
tion techniques. Allocation overhead time basically is the computation time the employed
optimisation techniques required to solve the given optimisation problems. Allocation over-
head is a critical performance metric in edge micro-clusters as devices in such systems are
typically resource-limited, and complex optimisation may require powerful devices and yield
expensive computation time.

The performance analysis revealed that the mathematical-based optimisation technique pro-
vides light overhead time for small-scale micro-clusters, i.e., for micro-clusters with less
than ten nodes for up to 100 homogeneous tasks and 50 heterogeneous workloads. However,
the allocation overhead time of this technique increases exponentially, affecting the overall
makespan time of applications.

Furthermore, results demonstrate that metaheuristic-based optimisation overhead time keeps
linear overhead time for edge micro-clusters and therefore outperforms the mathematical-
based optimisations for larger problem sizes in micro-clusters, i.e., for workloads with more
than 100 homogeneous tasks and 50 tasks heterogeneous workloads (see Figures 4.3).

Overall, conclusions that can be drawn from the efficiency performance analysis are that
mathematical-based optimisation is only recommended for small-scale micro-cluster plat-
forms, while metaheuristic-based optimisation techniques are recommended for complex
and large-scale micro-cluster systems.

6.3. Reflection on Research Questions 99

6.3.3 Reflection on Research Question RQ3

RQ3. Which task allocation optimisation methods provide effective solutions to optimise

multi-objective optimisation for edge micro-clusters?

To answer this research question, Chapter 5 developed and evaluated a multi-objective opti-
misation framework for edge micro-cluster platforms. The work developed a multi-objective
optimisation framework by employing the weighted sum approach to optimise two edge-
relevant performance metrics of the makespan time and energy consumption required by
micro-clusters to execute application workloads. The experiments utilised metaheuristic-
based optimisation to solve the modelled multi-objective optimisation problem. Specifically,
the PSO-based optimisation is selected to address the developed multi-objective optimisation
problem for its functional features related to efficiency and effectiveness, which were demon-
strated in Chapter 4. The evaluation furthermore presented a Pareto front set of possible so-
lutions, providing a comprehensive overview of possible trade-offs between the competing
objectives of the system.

6.3.4 Reflection on Research Question RQ4

RQ4. Is it appropriate to use commodity Single Board Computers (SBCs) to model edge

micro-clusters in order to empirically evaluate task allocation techniques for batch-mode

execution?

To answer this question, the experiments performed in Chapter 3 developed a realistic edge
micro-cluster testbed configured using different Single Board Computers, i.e., Raspberry Pi
devices, connected by using a networking switch commodity and mounted in a mini racks
cluster case. The experiments empirically demonstrated that edge micro-cluster platforms
configuration are straightforward using Single Board Computers and can effectively handle
heterogeneous edge and IoT workloads by utilising appropriate and effective task allocation
optimisation techniques. The experiment contributed to empirically evaluating optimisa-
tion techniques in the physical environment instead of using simulation and analytical tools,
which merely provide an abstraction of the environments and might not reflect comprehen-
sive performance. Generally, micro-clusters will likely comprise several Single Board Com-
puters similar to Raspberry Pi nodes mounted into the mini-rack case to facilitate effective
deployment and easy movement in edge and IoT environments. The overall design con-
cept proves the possibility of micro-clusters to make edge computing more affordable and
available for various smart IoT and edge computing use cases.

6.4. Research Contributions 100

6.3.5 Reflection on Research Question RQ5

RQ5. What kind of edge workloads provide real-world representative benchmarks for

evaluating task allocation methods for batch-mode execution on micro-cluster platforms?

To answer this research question, the experiments conducted in Chapters 3 and 4 developed
edge representative workloads for edge micro-clusters based on the DeFog benchmark suite
[19]. The DeFog benchmark was initially developed to fill the gap in edge benchmark by
developing edge benchmarks to compare the performance of different edge and cloud plat-
forms for single task execution. The DeFog benchmark is recognised in the edge research
community because it provides representative edge applications by utilising containerisation
technology that may help researchers to perform the required evaluations. This research
further developed and extended the DeFog benchmark by: 1) modelling multitasking exe-
cution, 2) expanding the sets of workloads for selected benchmarks, and 3) modelling het-
erogeneous workload scenarios to model more representative edge environments. Therefore,
the extended version of the DeFog provided real-world representative edge applications sce-
narios that can be employed to empirically evaluate various management aspects in edge
micro-cluster systems.

6.4 Research Contributions

This thesis has addressed the problem of task allocation and workload management in edge
micro-cluster platforms for edge and IoT environments. The research focuses on task alloca-
tion decisions relating to batch execution in edge micro-cluster settings for optimising edge-
relevant performance metrics of makespan time and energy consumption. The work starts
by constructing a physical and realistic micro-cluster prototype configured using heteroge-
neous SBC computers to model edge micro-cluster platforms. The research further adopts
and develops edge representative applications based on DeFog edge benchmark suites for
evaluating the relevant performance of edge environments. The problem of task allocation in
micro-clusters was initially formulated utilising the general assignment problem before de-
veloping a linear-based system model customised for edge micro-clusters. The node perfor-
mance trends for handling edge-relevant workloads in concurrent execution is characterised.
The work further develops a multi-objective optimisation framework for optimising edge-
relevant performance metrics. The research conducted comparative performance evaluation
demonstrating the benefits of utilising the metaheuristic-based optimisation techniques over
mathematical-based and heuristic-based optimisation for large-scale micro-clusters. The
contributions of this thesis can be summarised as below.

6.4. Research Contributions 101

6.4.1 Micro-Cluster Prototype for Edge and IoT Environments

Chapter 3 presented a compelling prototype for edge micro-cluster platforms configured us-
ing a realistic micro-cluster testbed, representative benchmark applications and wall-clock
timing metrics. The work overall demonstrates a practical use case for micro-cluster plat-
forms for edge computation and IoT environments. The underlying hardware and software
specifications, edge workloads, features, and characteristics were described in detail. The
work further highlighted the importance of experimenting with a configured system tested for
reporting informative performance analysis of the proposed optimisation techniques instead
of utilising simulation-based software solutions. In addition, various optimisation techniques
were developed for optimising task allocation for such micro-clusters.

6.4.2 Analytical Models for Edge Micro-Clusters

Chapter 4 investigated micro-cluster nodes’ performance and thereby characterised the per-
formance trends of micro-cluster nodes for processing edge-relevant applications. The per-
formance evaluations demonstrate that micro-clusters nodes’ performance linearly increases
in relation to the number of tasks. Thereby, the chapter presented the design and evaluation
of an analytical performance model of micro-cluster platforms that can effectively predict
the makespan time required to process heterogeneous workloads in batch-execution mode.
By utilising a linear-based model, the model can accurately calculate the required makespan
time for workloads.

6.4.3 Multi-Objective Optimisation Model for Micro-Clusters

Chapter 5 contributes with the design and evaluation of 1) the energy consumption analytical
model for edge micro-clusters and 2) the multi-objective optimisation model for edge micro-
clusters. The chapter first characterised per-node power consumption under two fundamen-
tal operational states, i.e., the idle and active states, and designed the energy consumption
analytical model accordingly. The model can effectively predict the energy consumption
required for executing different edge applications. Secondly, a multi-objective optimisa-
tion model is designed to optimise multi-objective optimisation for micro-cluster platforms.
The model can generate a Pareto-optimal set of feasible solutions representing the trades-off
system’s competing performance objectives. The model was evaluated by employing two es-
sential edge performance metrics of the makespan time and energy consumption required for
executing edge applications. Moreover, the developed multi-objective model can be easily
extended to a generic multi-objective optimisation framework to involve and optimise other
performance metrics, such as operation cost and networking metrics.

6.5. Limitations and Future Directions 102

6.4.4 Comparative Evaluation of Optimisation Techniques
for Edge Micro-Clusters

This thesis overall provides comparative evaluations of various optimisation techniques for
optimising task allocation management problems in edge micro-cluster platforms. The opti-
misation techniques employed in this thesis involve standard optimisation categories utilised
in edge, fog, and cloud computing paradigms for solving related optimisation problems.
Specifically, the techniques involve mathematical, metaheuristic, and heuristic-based optimi-
sations. By conducting various empirical evaluations utilising a physical edge micro-cluster
testbed and representative-edge applications, the analysis provides relative performance of
the optimisation techniques for edge micro-cluster platforms and reveals informative over-
lapping attributed to the efficiency and effectiveness of different optimisation techniques for
orchestrating and optimising workload allocation in edge micro-clusters.

6.5 Limitations and Future Directions

This thesis has highlighted the potential of micro-clusters as lightweight and compact infras-
tructural platforms to deliver computing and storage services to various IoT applications in
edge computing and IoT environments. The work emphasised the importance of addressing
and optimising task allocation for such resource-limited platforms to make them more viable
for edge environments. This section outlines potential future research directions and discuss
limitations based on this thesis.

6.5.1 Generalising System Heterogeneity

The work in this thesis constructed and evaluated an edge micro-cluster platform comprised
of several heterogeneous Raspberry Pi devices clustered using a mini-rack cabinet and in-
terconnected using a networking switch. The configured system testbed overall can model
the system heterogeneity anticipated in such edge micro-cluster platforms. This can be in
terms of nodes’ hardware specifications and the modelled application workloads. The sys-
tem heterogeneity in this thesis is limited to a single device, that is, various generations of
Raspberry Pi devices. For future directions and to generalise the system settings, we can
suggest incorporating and involving other Single Board Computers, such as Odroid devices,
Arduino, and microcontrollers, to model a more heterogeneous edge system. This would be
more relevant to generalising edge micro-clusters concepts for IoT and edge settings.

6.5. Limitations and Future Directions 103

6.5.2 Expanding System Scale

The size of the edge micro-cluster system configured for this research may be arguably un-
dersized relative to the cluster size envisioned in real-world edge environments. Neverthe-
less, the system testbed can be feasible and useful to perform empirical experiments, handle
edge-relevant applications and generate meaningful results for performance evaluation. In
addition, the linear-based and multi-objective optimisation models developed in this thesis
can be efficiently generalised and adjustable to accommodate evaluating larger-scale micro-
clusters. In short, expanding the system scale and involving other SBC types can be potential
directions for future work.

6.5.3 Evaluating Complex Metaheuristics

The performance evaluation overall demonstrates that metaheuristic-based optimisations are
viable techniques for solving task allocation in micro-cluster settings. Specifically, this thesis
considers the metaheuristic Particle Swarm Optimisation (PSO) for solving the optimisation
settings in edge micro-cluster. However, the work in this thesis was limited to swarm-based
metaheuristic optimisation. For future directions, we can envision the applicability of eval-
uating other metaheuristic optimisations, including various metaheuristics themes such as
evolutionary algorithms, genetic algorithms, other swarm-based optimisation, or simulated
annealing. This is to evaluate the performance of different metaheuristic-based optimisations
for edge micro-cluster settings.

6.5.4 Optimising Other Resource Management and Performance
Metrics

This thesis focused on optimising task allocation in edge micro-cluster platforms, which is
fundamental resource management in such edge systems. Edge computing, however, comes
with several complex resource management aspects, including load balancing, task migra-
tion, resource provisioning, and more. We can recommend exploring and optimising other
resource management aspects for such edge compact systems for future direction. Further-
more, this thesis optimised the makespan time and energy consumption while other edge-
relevant performance metrics, such as networking metrics and monetary costs, can be an
area for future directions.

6.5. Limitations and Future Directions 104

6.5.5 Evaluating More Deployment Settings

This thesis experimented with representative edge-relevant applications including image-
processing workloads, audio-recognition workloads, audio-text synchronisation, and hetero-
geneous workloads in a controlled micro-cluster experimental testbed. The workloads are
recognised in the edge research community as representative edge benchmarks [19, 20, 104].
For future work, we recommend extending the deployment setting of edge micro-cluster
platforms in more realistic edge, and IoT environments [59]. For example, we can envision
deploying the edge micro-cluster to extend computing services to edge environments such
as agriculture or smart home environments.

6.5.6 Developing Edge Benchmarks for Micro-Clusters and IoT
Environments

This thesis adopted and enhanced the DeFog benchmark suite [19] to generate edge repre-
sentative workloads and IoT applications by the following key extensions.

• Modify the DeFog logic. The DeFog benchmark suite is developed to execute a single
task per time slot on each benchmark platform. This research extended the DeFog
logic to allow multitasking and parallel execution across a cluster of nodes.

• Harness the DeFog Payloads. DeFog comes with limited workloads and tasks for each
application. This research further harnesses the DeFog payloads with multiple and
heterogeneous workloads to enable parallel executions.

• Evaluate More SBC Devices and Edge Platforms. The DeFog benchmark evaluates
two single board platforms representing edge nodes and a an cloud platform. This
research extended the DeFog benchmark to evaluate an edge micro-cluster platform.

Further research is recommended in the area of edge benchmarks to develop customised edge
benchmarks [104, 109, 110] for micro-clusters and IoT systems. This can be executed by
building on the DeFog original version and the extended version developed in this research.

6.6. Final Summary 105

6.6 Final Summary

Edge computing has been drawing the attention of the distributed systems research commu-
nity and industry developers for several years given its benefits in augmenting cloud comput-
ing and IoT applications. Edge micro-cluster platforms are being utilised for edge computing
and IoT environments for their interesting deployment features like low-cost, small physical
footprints, and sufficient collective computing resources for edge and IoT applications.

This thesis aimed to enhance the feasibility and usability of such micro-cluster systems for
edge deployments. The thesis has presented a compelling design concept of edge micro-
cluster platforms for edge computing and IoT environments by characterising edge-relevant
applications, identifying node performance trends, and optimising task allocation and work-
load management for such edge computing platforms.

The findings show that incorporating and optimising task allocation for edge micro-clusters
can significantly improve the performance of edge applications. The thesis empirically
proved that metaheuristics optimisation tools using PSO-based techniques demonstrate vi-
able techniques for complex and large-scale micro-cluster systems by providing effective
and efficient decisions. In contrast, the mathematically-based techniques can only provide
optimal or near-optimal decisions for small-scale micro-cluster systems. The work can help
in future deployments of micro-clusters in edge and IoT environments.

106

Appendix A

Glossary

Batch-execution

Batch-execution is an execution technique by which a set of tasks are scheduled to be pro-
cessed in parallel. Each batch might contain homogeneous or heterogeneous workloads
offloaded from various IoT devices and applications.

Benchmarks

Benchmarks are software tools used to measure, characterise, and evaluate relative perfor-
mance of computer systems. Benchmarks that are used to test systems utilities are con-
sidered systems-related benchmarks. Benchmarks representing applications and workloads
characteristics are designed to understand and capture system performance for real-world
applications and workloads.

Cloud Computing

Cloud computing a system paradigm that provides on-demand and shared computing, stor-
age and networking services to the end user. Cloud Computing paradigm faces significant
challenges when support IoT-based applications, such as high latency, jitters, high response
time, energy consumption. This led to decentralizing the Cloud Computing introducing a
new recent computing paradigm known as, Edge Computing, Fog Computing, or Mobile
Edge Computing.

Cloudlet

Cloudlet is a resource-rich computer or cluster of powerful computers deployed near the
edge of network to provide computing services to mobile and stationary devices.

107

Cluster

A cluster is a computing system consists of a collection of inter-connected physical computer
machines working together as a single computer machine.

Compute Node

A compute node is a single independent compute machine in the cluster performs jobs as-
signed to it. In micro-cluster, nodes can be any Single Broad Computer like Raspberry Pi or
Odroid devices. In traditional cluster, compute node can be more powerful computer server.

Container Technology

Container technology is a lightweight virtualisation technology that enables lightweight iso-
lation by packaging all applications dependencies in containers.

Data Centre

A Data centre is large physical computing infrastructure comprised of ten of thousands of
powerful computing, storage, and network resources deployed far from end users and typi-
cally used for Cloud Computing.

Edge Computing

Edge computing is a recently distributed computing paradigm that utilises various resources
deployed near or at the network’s edge to provide computing and storage services to tiny end
devices like IoT sensors. Edge computing typically leverages resources located at the net-
work edge, such as networking routers, networking switches, and public/private micro-data
centres.

Edge Data Centre

Edge data centre is a small-scale data centre deployed at the edge of the network close to
the end-users (for example in shopping mall, stadium) to provide processing and storage
services instead of using traditional centralized data centres. Edge Data Centres are being
used interchangeably with Edge Node, Edge Cloud, and Cloudlet in the literature. Edge Data
Centres is expected to support limited number of applications due to the resource limitations.

108

Edge Node

Edge node is a compute node such as an individual server or sets of computing resources
deployed as a part of edge computing data centres and typically located in a close proximity
to the end users.

Fog Computing

Fog computing refers to a hierarchical computing paradigm proposed to utlise computing
and storage resources using resources scattered across the network between the IoT devices
and the remote Cloud servers. Fog Computing and Edge Computing are being used inter-
changeably in by the research community. However, Fog Computing makes use of resources
in Edge and Cloud, while Edge Computing makes use of resources deployed at the network
edge.

IoT device

An IoT device refers to a small-factor device that is not equipped with sufficient processing
and storage resources, such as sensors, gadgets, and wearable devices. An IoT device is
typically a resource-limited device that is not capable of executing intensive-computational
tasks. Various applications utilise IoT devices for generating data. For example, sensor de-
vices are used in smart farming applications to generate and offload environmental data like
soil humidity and temperatures.

Load Balancing

Load balancing is the process of distributing or re-scheduling load across resources to avoid
resources overwhelming or task failure to efficiently utilise resources.

Metaheuristics Optimisation

Metaheuristics optimisation is a category of optimisation techniques designed to search and
find near-optimal solutions for complex optimisation problems in linear time. Metaheuristics
optimisation is distinguished by its logic that simulates various natural features by which it
has the ability to find near-optimal solutions.

Micro-Cluster

A micro-cluster platform is a small, potable, and compact computing cluster composed of
heterogeneous resource-constrained compute nodes like Raspberry Pi or Odriod, mounted
in mini racks or housed in a cluster case to construct a standalone computing platform. A

109

micro-cluster is typically controlled by a head node. In contract to typical cluster deployed
in traditional cloud data centers, a micro-cluster might be equipped with limited computing
resources.

Resource Allocation

Resource allocation refers to the process of distribution of resources, such as CPU, memory,
and networking bandwidth, over tasks and users. Resource allocation can also involve de-
termining the required number of resources for executing computational tasks and managing
resources considering the network dynamics and workload characteristics.

Resource Management

Resource management is a comprehensive term that covers various management aspects and
techniques in cloud and edge environments, including hardware and devices, workloads or-
chestration techniques such as task allocation, load balancing, load migration and resource
provision, and optimisation techniques to handle complex management issues.

Resource Provisioning

Resource provisioning refers to the process of dynamically scaling up and scaling down sys-
tems’ resources to adapt to workload characteristics and networking dynamics to optimise
various QoS metrics and improve system performance metrics such as resource utilisation,
energy consumption, execution time and cost.

Single Board Computer

A Single Board Computer is a type of resource-constrained computer device, in which all
computing resources including processors, memory, storage, and input and output ports are
all build on a small size circuit board. There is a wide range of Single Board Computers
including, but not limited to, Raspberry Pi, and Odroid.

Task Allocation

Task allocation refers to the process of effectively assigning computational tasks to appropri-
ate computing nodes, considering factors such as QoS metrics, resource utilisation, execution
time, and energy consumption. The objective is to distribute tasks efficiently over computing
nodes to meet diverse QoS requirements.

110

Task Launching

Task launching refer to the process of the initiation and execution of tasks inside nodes
within the micro-cluster system. This process involves receiving task’s input data, executing
the task, and sending the results to the client node.

Task Scheduling

Task scheduling refers to the process of scheduling and controlling the execution of tasks
on predetermined nodes. Task scheduling considers factors such as task dependencies, time
sequence, task sequence, and resource availability. The goal is to optimise task ordering and
timing to meet QoS requirements such as resource utilisation, execution time, and energy.
Task scheduling is used interchangeably with task placement, task allocation, and resource
allocation in the literature. However, task allocation determines which node is responsible
for executing a task, while task scheduling determines the timing of task execution on the
allocated node.

Task Offloading

Task offloading refers to the process of enabling intensive-computation IoT-applications,
such as augmented reality, virtual reality, face recognition and multimedia delivery ap-
plications, to offload tasks to resource-rich edge or cloud nodes. IoT-devices are typi-
cally equipped with limited resources that are not capable enough to execute intensive-
computations. Task offloading is used to support IoT-resource constrained devices to transfer
their intensive-computational tasks to more resource-rich edge nodes or cloud nodes.

BIBLIOGRAPHY 111

Bibliography

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23,
2009. [Online]. Available: https://doi.org/10.1109/MPRV.2009.82

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role
in the Internet of Things,” in Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing (MCC 2012). New York, NY, USA:
Association for Computing Machinery, 2012, p. 13–16. [Online]. Available:
https://doi.org/10.1145/2342509.2342513

[3] B. Varghese, P. Leitner, S. Ray, K. Chard, A. Barker, Y. Elkhatib, H. Herry,
C.-H. Hong, J. Singer, F. P. Tso, E. Yoneki, and M.-F. Zhani, “Cloud
futurology,” Computer, vol. 52, no. 9, pp. 68–77, 2019. [Online]. Available:
https://doi.org/10.1109/MC.2019.2895307

[4] B. Varghese, E. de Lara, A. Y. Ding, C.-H. Hong, F. Bonomi, S. Dustdar, P. Harvey,
P. Hewkin, W. Shi, M. Thiele, and P. Willis, “Revisiting the arguments for edge
computing research,” IEEE Internet Computing, vol. 25, no. 5, pp. 36–42, 2021.
[Online]. Available: https://doi.org/10.1109/MIC.2021.3093924

[5] A. J. Ferrer, J. M. Marquès, and J. Jorba, “Towards the decentralised cloud: Survey on
approaches and challenges for mobile, ad hoc, and edge computing,” ACM Comput.

Surv., vol. 51, no. 6, jan 2019. [Online]. Available: https://doi.org/10.1145/3243929

[6] S. J. Johnston, P. J. Basford, C. S. Perkins, H. Herry, F. P. Tso, D. Pezaros, R. D.
Mullins, E. Yoneki, S. J. Cox, and J. Singer, “Commodity single board computer
clusters and their applications,” Future Generation Computer Systems, vol. 89, pp.
201–212, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167739X18301833

[7] T. Rausch, C. Avasalcai, and S. Dustdar, “Portable energy-aware cluster-based edge
computers,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC), 2018, pp.
260–272. [Online]. Available: https://doi.org/10.1109/SEC.2018.00026

https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/MC.2019.2895307
https://doi.org/10.1109/MIC.2021.3093924
https://doi.org/10.1145/3243929
https://www.sciencedirect.com/science/article/pii/S0167739X18301833
https://www.sciencedirect.com/science/article/pii/S0167739X18301833
https://doi.org/10.1109/SEC.2018.00026

Bibliography 112

[8] B. Qureshi, K. Kawlaq, A. Koubaa, B. Saeed, and M. Younis, “A commodity
sbc-edge cluster for smart cities,” in 2019 2nd International Conference on Computer

Applications & Information Security (ICCAIS), 2019, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/CAIS.2019.8769500

[9] F. P. Tso, D. R. White, S. Jouet, J. Singer, and D. P. Pezaros, “The glasgow raspberry
pi cloud: A scale model for cloud computing infrastructures,” in 2013 IEEE 33rd

International Conference on Distributed Computing Systems Workshops, 2013, pp.
108–112. [Online]. Available: https://doi.org/10.1109/ICDCSW.2013.25

[10] Y. Alhaizaey, J. Singer, and A. L. Michala, “Optimizing task allocation for edge
micro-clusters in smart cities,” in 2021 IEEE 22nd International Symposium on

a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2021, pp.
341–347. [Online]. Available: https://doi.org/10.1109/WoWMoM51794.2021.00062

[11] C.-H. Hong and B. Varghese, “Resource management in fog/edge computing: A
survey on architectures, infrastructure, and algorithms,” ACM Comput. Surv., vol. 52,
no. 5, sep 2019. [Online]. Available: https://doi.org/10.1145/3326066

[12] K. D. Kang, “Towards efficient real-time decision support at the edge,” in Proceedings

of the 4th ACM/IEEE Symposium on Edge Computing, ser. SEC ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 419–424. [Online]. Available:
https://doi.org/10.1145/3318216.3363380

[13] X. Liu, J. Yu, J. Wang, and Y. Gao, “Resource allocation with edge computing in iot
networks via machine learning,” IEEE Internet of Things Journal, vol. 7, no. 4, pp.
3415–3426, 2020. [Online]. Available: https://doi.org/10.1109/JIOT.2020.2970110

[14] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017. [Online]. Available:
https://doi.org/10.1109/COMST.2017.2745201

[15] J. Winkowska, D. Szpilko, and S. Pejić, “Smart city concept in the light of the
literature review,” Engineering Management in Production and Services, vol. 11,
no. 2, pp. 70–86, 2019. [Online]. Available: https://doi.org/10.2478/emj-2019-0012

[16] N. Chen, Y. Chen, E. Blasch, H. Ling, Y. You, and X. Ye, “Enabling
smart urban surveillance at the edge,” in 2017 IEEE International Conference

on Smart Cloud (SmartCloud), 2017, pp. 109–119. [Online]. Available: https:
//doi.org/10.1109/SmartCloud.2017.24

https://doi.org/10.1109/CAIS.2019.8769500
https://doi.org/10.1109/ICDCSW.2013.25
https://doi.org/10.1109/WoWMoM51794.2021.00062
https://doi.org/10.1145/3326066
https://doi.org/10.1145/3318216.3363380
https://doi.org/10.1109/JIOT.2020.2970110
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.2478/emj-2019-0012
https://doi.org/10.1109/SmartCloud.2017.24
https://doi.org/10.1109/SmartCloud.2017.24

Bibliography 113

[17] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.
[Online]. Available: https://doi.org/10.1109/JIOT.2016.2579198

[18] T. Rausch, C. Lachner, P. A. Frangoudis, P. Raith, and S. Dustdar, “Synthesizing
plausible infrastructure configurations for evaluating edge computing systems,”
in 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20).
USENIX Association, 2020. [Online]. Available: https://www.usenix.org/conference/
hotedge20/presentation/rausch

[19] J. McChesney, N. Wang, A. Tanwer, E. de Lara, and B. Varghese, “Defog: Fog
computing benchmarks,” in Proceedings of the 4th ACM/IEEE Symposium on Edge

Computing, ser. SEC ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 47–58. [Online]. Available: https://doi.org/10.1145/3318216.
3363299

[20] A. Das, S. Patterson, and M. Wittie, “Edgebench: Benchmarking edge computing
platforms,” in 2018 IEEE/ACM International Conference on Utility and Cloud

Computing Companion (UCC Companion), 2018, pp. 175–180. [Online]. Available:
https://doi.org/10.1109/UCC-Companion.2018.00053

[21] S. O. Ogundoyin and I. A. Kamil, “Optimization techniques and applications in fog
computing: An exhaustive survey,” Swarm and Evolutionary Computation, vol. 66,
p. 100937, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2210650221000985

[22] Y. Alhaizaey, J. Singer, and A. L. Michala, “Optimizing heterogeneous task
allocation for edge compute micro clusters using pso metaheuristic,” in 2022 Seventh

International Conference on Fog and Mobile Edge Computing (FMEC), 2022, pp.
1–8. [Online]. Available: https://doi.org/10.1109/FMEC57183.2022.10062755

[23] D. Evans, “The internet of things. how the next evolution of the internet is
changing everything,” Cisco White Paper, 2011. [Online]. Available: https:
//www.cisco.com/c/dam/en us/about/ac79/docs/innov/IoT IBSG 0411FINAL.pdf

[24] B. Varghese and R. Buyya, “Next generation cloud computing: New trends
and research directions,” Future Generation Computer Systems, vol. 79, pp.
849–861, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167739X17302224

[25] M. Satyanarayanan, W. Gao, and B. Lucia, “The computing landscape of the
21st century,” in Proceedings of the 20th International Workshop on Mobile

https://doi.org/10.1109/JIOT.2016.2579198
https://www.usenix.org/conference/hotedge20/presentation/rausch
https://www.usenix.org/conference/hotedge20/presentation/rausch
https://doi.org/10.1145/3318216.3363299
https://doi.org/10.1145/3318216.3363299
https://doi.org/10.1109/UCC-Companion.2018.00053
https://www.sciencedirect.com/science/article/pii/S2210650221000985
https://www.sciencedirect.com/science/article/pii/S2210650221000985
https://doi.org/10.1109/FMEC57183.2022.10062755
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.sciencedirect.com/science/article/pii/S0167739X17302224
https://www.sciencedirect.com/science/article/pii/S0167739X17302224

Bibliography 114

Computing Systems and Applications, ser. HotMobile ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 45–50. [Online]. Available:
https://doi.org/10.1145/3301293.3302357

[26] B. Varghese, “A History of the Cloud,” ITNOW, vol. 61, no. 2, pp. 46–48, 05 2019.
[Online]. Available: https://doi.org/10.1093/itnow/bwz049

[27] D. Kimovski, R. Mathá, J. Hammer, N. Mehran, H. Hellwagner, and R. Prodan,
“Cloud, fog, or edge: Where to compute?” IEEE Internet Computing, vol. 25, no. 4,
pp. 30–36, 2021. [Online]. Available: https://doi.org/10.1109/MIC.2021.3050613

[28] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing
as the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp.
599–616, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167739X08001957

[29] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
clouds: A berkeley view of cloud computing,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb 2009. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

[30] M. Taneja and A. Davy, “Resource aware placement of IoT application modules
in fog-cloud computing paradigm,” in 2017 IFIP/IEEE Symposium on Integrated

Network and Service Management (IM), 2017, pp. 1222–1228. [Online]. Available:
https://doi.org/10.23919/INM.2017.7987464

[31] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos,
“Challenges and opportunities in edge computing,” in 2016 IEEE International

Conference on Smart Cloud (SmartCloud), 2016, pp. 20–26. [Online]. Available:
https://doi.org/10.1109/SmartCloud.2016.18

[32] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mo-
bile edge computing—a key technology towards 5g,” ETSI white

paper, vol. 11, no. 11, pp. 1–16, 2015. [Online]. Available: https:
//infotech.report/Resources/Whitepapers/f205849d-0109-4de3-8c47-be52f4e4fb27
etsi wp11 mec a key technology towards 5g.pdf

[33] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds: Leveraging
mobile devices to provide cloud service at the edge,” in 2015 IEEE 8th

International Conference on Cloud Computing, 2015, pp. 9–16. [Online]. Available:
https://doi.org/10.1109/CLOUD.2015.12

https://doi.org/10.1145/3301293.3302357
https://doi.org/10.1093/itnow/bwz049
https://doi.org/10.1109/MIC.2021.3050613
https://www.sciencedirect.com/science/article/pii/S0167739X08001957
https://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.1109/SmartCloud.2016.18
https://infotech.report/Resources/Whitepapers/f205849d-0109-4de3-8c47-be52f4e4fb27_etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://infotech.report/Resources/Whitepapers/f205849d-0109-4de3-8c47-be52f4e4fb27_etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://infotech.report/Resources/Whitepapers/f205849d-0109-4de3-8c47-be52f4e4fb27_etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://doi.org/10.1109/CLOUD.2015.12

Bibliography 115

[34] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” in 2015 IFIP Networking

Conference (IFIP Networking), 2015, pp. 1–9. [Online]. Available: https:
//doi.org/10.1109/IFIPNetworking.2015.7145316

[35] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey on
the edge computing for the internet of things,” IEEE Access, vol. 6, pp. 6900–6919,
2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2017.2778504

[36] Y. Mansouri and M. A. Babar, “A review of edge computing: Features and
resource virtualization,” Journal of Parallel and Distributed Computing, vol. 150, pp.
155–183, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0743731520304317

[37] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A.
Polakos, “A comprehensive survey on fog computing: State-of-the-art and research
challenges,” IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 416–464,
2018. [Online]. Available: https://doi.org/10.1109/COMST.2017.2771153

[38] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1,
pp. 30–39, 2017. [Online]. Available: https://doi.org/10.1109/MC.2017.9

[39] P. J. Basford, S. J. Johnston, C. S. Perkins, T. Garnock-Jones, F. P.
Tso, D. Pezaros, R. D. Mullins, E. Yoneki, J. Singer, and S. J. Cox,
“Performance analysis of single board computer clusters,” Future Generation

Computer Systems, vol. 102, pp. 278–291, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167739X1833142X

[40] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou, “A survey on edge computing
systems and tools,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1537–1562, 2019.
[Online]. Available: https://doi.org/10.1109/JPROC.2019.2920341

[41] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, and
N. S. O’Brien, “Iridis-pi: a low-cost, compact demonstration cluster,” Cluster

Computing, vol. 17, no. 2, pp. 349–358, 2014. [Online]. Available: https:
//doi.org/10.1007/s10586-013-0282-7

[42] P. Abrahamsson, S. Helmer, N. Phaphoom, L. Nicolodi, N. Preda, L. Miori,
M. Angriman, J. Rikkilä, X. Wang, K. Hamily, and S. Bugoloni, “Affordable
and energy-efficient cloud computing clusters: The bolzano raspberry pi cloud
cluster experiment,” in 2013 IEEE 5th International Conference on Cloud

Computing Technology and Science, vol. 2, 2013, pp. 170–175. [Online]. Available:
https://doi.org/10.1109/CloudCom.2013.121

https://doi.org/10.1109/IFIPNetworking.2015.7145316
https://doi.org/10.1109/IFIPNetworking.2015.7145316
https://doi.org/10.1109/ACCESS.2017.2778504
https://www.sciencedirect.com/science/article/pii/S0743731520304317
https://www.sciencedirect.com/science/article/pii/S0743731520304317
https://doi.org/10.1109/COMST.2017.2771153
https://doi.org/10.1109/MC.2017.9
https://www.sciencedirect.com/science/article/pii/S0167739X1833142X
https://www.sciencedirect.com/science/article/pii/S0167739X1833142X
https://doi.org/10.1109/JPROC.2019.2920341
https://doi.org/10.1007/s10586-013-0282-7
https://doi.org/10.1007/s10586-013-0282-7
https://doi.org/10.1109/CloudCom.2013.121

Bibliography 116

[43] M. E. Kryuchkov, A. V. Orlov, G. A. Mazurenko, A. B. Vavrenyuk, and Y. V.
Timofeev, “Design of multipurpose computational cluster based on arm single-board
computers,” in 2018 IEEE Conference of Russian Young Researchers in Electrical

and Electronic Engineering (EIConRus), 2018, pp. 322–324. [Online]. Available:
https://doi.org/10.1109/EIConRus.2018.8317097

[44] E. Wilcox, P. Jhunjhunwala, K. Gopavaram, and J. Herrera, “Pi-crust: a raspberry pi
cluster implementation,” Texas A&M University: College Station, TX, USA, Tech.
Rep., 2015. [Online]. Available: http://jorgehc.com/files/pi crust paper.pdf

[45] Y. Elkhatib, B. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir, and E. Rivière, “On using
micro-clouds to deliver the fog,” IEEE Internet Computing, vol. 21, no. 2, pp. 8–15,
2017. [Online]. Available: https://doi.org/10.1109/MIC.2017.35

[46] S. Sagkriotis, C. Anagnostopoulos, and D. P. Pezaros, “Energy usage profiling
for virtualized single board computer clusters,” in 2019 IEEE Symposium on

Computers and Communications (ISCC), 2019, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/ISCC47284.2019.8969611

[47] G. Lewis, S. Echeverrı́a, S. Simanta, B. Bradshaw, and J. Root, “Tactical
cloudlets: Moving cloud computing to the edge,” in 2014 IEEE Military

Communications Conference, 2014, pp. 1440–1446. [Online]. Available: https:
//doi.org/10.1109/MILCOM.2014.238

[48] D. Fernández-Cerero, J. Y. Fernández-Rodrı́guez, J. A. Álvarez Garcı́a, L. M.
Soria-Morillo, and A. Fernández-Montes, “Single-board-computer clusters for
cloudlet computing in internet of things,” Sensors, vol. 19, no. 13, p. 3026, Jul 2019.
[Online]. Available: http://dx.doi.org/10.3390/s19133026

[49] R. Morabito, “Virtualization on internet of things edge devices with container
technologies: A performance evaluation,” IEEE Access, vol. 5, pp. 8835–8850, 2017.
[Online]. Available: https://doi.org/10.1109/ACCESS.2017.2704444

[50] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffmann, A. M. Khan, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovik, T. VanDrunen,
D. von Dincklage, and B. Wiedermann, “Wake up and smell the coffee: Evaluation
methodology for the 21st century,” Commun. ACM, vol. 51, no. 8, p. 83–89, aug
2008. [Online]. Available: https://doi.org/10.1145/1378704.1378723

[51] J. v. Kistowski, J. A. Arnold, K. Huppler, K.-D. Lange, J. L. Henning, and P. Cao,
“How to build a benchmark,” in Proceedings of the 6th ACM/SPEC International

https://doi.org/10.1109/EIConRus.2018.8317097
http://jorgehc.com/files/pi_crust_paper.pdf
https://doi.org/10.1109/MIC.2017.35
https://doi.org/10.1109/ISCC47284.2019.8969611
https://doi.org/10.1109/MILCOM.2014.238
https://doi.org/10.1109/MILCOM.2014.238
http://dx.doi.org/10.3390/s19133026
https://doi.org/10.1109/ACCESS.2017.2704444
https://doi.org/10.1145/1378704.1378723

Bibliography 117

Conference on Performance Engineering, ser. ICPE ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 333–336. [Online]. Available:
https://doi.org/10.1145/2668930.2688819

[52] C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee, “A container-based edge cloud
paas architecture based on raspberry pi clusters,” in 2016 IEEE 4th International

Conference on Future Internet of Things and Cloud Workshops (FiCloudW), 2016,
pp. 117–124. [Online]. Available: https://doi.org/10.1109/W-FiCloud.2016.36

[53] D. Merkel, “Docker: Lightweight linux containers for consistent development
and deployment,” Linux J., vol. 2014, no. 239, mar 2014. [Online]. Available:
https://dl.acm.org/doi/10.5555/2600239.2600241

[54] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings of the

Sixth ACM Symposium on Cloud Computing, ser. SoCC ’15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 167. [Online]. Available:
https://doi.org/10.1145/2806777.2809955

[55] F. Gand., I. Fronza., N. El Ioini., H. R. Barzegar., S. Azimi., and C. Pahl.,
“A fuzzy controller for self-adaptive lightweight edge container orchestration,” in
Proceedings of the 10th International Conference on Cloud Computing and Services

Science - CLOSER, INSTICC. SciTePress, 2020, pp. 79–90. [Online]. Available:
https://doi.org/10.5220/0009379600790090

[56] L. Miori, J. Sanin, and S. Helmer, “A platform for edge computing based on
raspberry pi clusters,” in Data Analytics. Springer International Publishing, 2017,
pp. 153–159. [Online]. Available: https://doi.org/10.1007/978-3-319-60795-5 16

[57] S. Bourhnane, M. R. Abid, K. Zine-dine, N. Elkamoun, and D. Benhaddou,
“Cluster of single-board computers at the edge for smart grids applications,”
Applied Sciences, vol. 11, no. 22, p. 10981, Nov 2021. [Online]. Available:
http://dx.doi.org/10.3390/app112210981

[58] J. Hochstetler, R. Padidela, Q. Chen, Q. Yang, and S. Fu, “Embedded
deep learning for vehicular edge computing,” in 2018 IEEE/ACM Symposium

on Edge Computing (SEC), 2018, pp. 341–343. [Online]. Available: https:
//doi.org/10.1109/SEC.2018.00038

[59] D. Weikert, C. Steup, and S. Mostaghim, “Survey on multi-objective task allocation
algorithms for IoT networks,” Sensors, vol. 23, no. 1, 2023. [Online]. Available:
https://www.mdpi.com/1424-8220/23/1/142

https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1109/W-FiCloud.2016.36
https://dl.acm.org/doi/10.5555/2600239.2600241
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.5220/0009379600790090
https://doi.org/10.1007/978-3-319-60795-5_16
http://dx.doi.org/10.3390/app112210981
https://doi.org/10.1109/SEC.2018.00038
https://doi.org/10.1109/SEC.2018.00038
https://www.mdpi.com/1424-8220/23/1/142

Bibliography 118

[60] S. Singh and I. Chana, “A Survey on Resource Scheduling in Cloud Computing:
Issues and Challenges,” Journal of Grid Computing, vol. 14, no. 2, pp. 217–264,
2016. [Online]. Available: https://doi.org/10.1007/s10723-015-9359-2

[61] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource Management
Approaches in Fog Computing: a Comprehensive Review,” Journal of Grid

Computing, vol. 18, no. 1, pp. 1–42, 2020. [Online]. Available: https:
//doi.org/10.1007/s10723-019-09491-1

[62] M. S. Aslanpour, S. S. Gill, and A. N. Toosi, “Performance evaluation metrics for
cloud, fog and edge computing: A review, taxonomy, benchmarks and standards for
future research,” Internet of Things, vol. 12, p. 100273, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2542660520301062

[63] H. Yao, C. Bai, M. Xiong, D. Zeng, and Z. Fu, “Heterogeneous cloudlet deployment
and user-cloudlet association toward cost effective fog computing,” Concurrency and

Computation: Practice and Experience, vol. 29, no. 16, p. e3975, 2017, e3975
cpe.3975. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.
3975

[64] T. Rausch, A. Rashed, and S. Dustdar, “Optimized container scheduling for
data-intensive serverless edge computing,” Future Generation Computer Systems,
vol. 114, pp. 259–271, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X2030399X

[65] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, “Optimized
IoT service placement in the fog,” Service Oriented Computing and Applications,
vol. 11, no. 4, pp. 427–443, 2017. [Online]. Available: https://doi.org/10.1007/
s11761-017-0219-8

[66] S. Azimi., C. Pahl., and M. H. Shirvani., “Particle swarm optimization for
performance management in multi-cluster IoT edge architectures,” in Proceedings

of the 10th International Conference on Cloud Computing and Services Science

- CLOSER, INSTICC. SciTePress, 2020, pp. 328–337. [Online]. Available:
https://doi.org/10.5220/0009391203280337

[67] S. Azimi, C. Pahl, and M. H. Shirvani, “Performance management in clustered
edge architectures using particle swarm optimization,” in Cloud Computing and

Services Science, D. Ferguson, C. Pahl, and M. Helfert, Eds. Springer International
Publishing, 2021, pp. 233–257. [Online]. Available: https://doi.org/10.1007/
978-3-030-72369-9 10

https://doi.org/10.1007/s10723-015-9359-2
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1007/s10723-019-09491-1
https://www.sciencedirect.com/science/article/pii/S2542660520301062
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3975
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3975
https://www.sciencedirect.com/science/article/pii/S0167739X2030399X
https://www.sciencedirect.com/science/article/pii/S0167739X2030399X
https://doi.org/10.1007/s11761-017-0219-8
https://doi.org/10.1007/s11761-017-0219-8
https://doi.org/10.5220/0009391203280337
https://doi.org/10.1007/978-3-030-72369-9_10
https://doi.org/10.1007/978-3-030-72369-9_10

Bibliography 119

[68] S. S. Gill, P. Garraghan, and R. Buyya, “Router: Fog enabled cloud based
intelligent resource management approach for smart home IoT devices,” Journal

of Systems and Software, vol. 154, pp. 125–138, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121219300986

[69] B. M. Nguyen, H. Thi Thanh Binh, T. The Anh, and D. Bao Son, “Evolutionary
algorithms to optimize task scheduling problem for the IoT based bag-of-tasks
application in cloud–fog computing environment,” Applied Sciences, vol. 9, no. 9, p.
1730, Apr 2019. [Online]. Available: http://dx.doi.org/10.3390/app9091730

[70] J. Cano, D. R. White, A. Bordallo, C. McCreesh, A. L. Michala, J. Singer, and
V. Nagarajan, “Solving the task variant allocation problem in distributed robotics,”
Autonomous Robots, vol. 42, no. 7, pp. 1477–1495, 2018. [Online]. Available:
https://doi.org/10.1007/s10514-018-9742-5

[71] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-aware
fog service placement,” in 2017 IEEE 1st International Conference on Fog

and Edge Computing (ICFEC), 2017, pp. 89–96. [Online]. Available: https:
//doi.org/10.1109/ICFEC.2017.12

[72] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation in fog
computing based on containers for smart manufacturing,” IEEE Transactions on

Industrial Informatics, vol. 14, no. 10, pp. 4712–4721, 2018. [Online]. Available:
https://doi.org/10.1109/TII.2018.2851241

[73] S. Venticinque and A. Amato, “A methodology for deployment of IoT application in
fog,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 5, pp.
1955–1976, 2019. [Online]. Available: http://dx.doi.org/10.1007/s12652-018-0785-4

[74] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung, “Dynamic
service placement for mobile micro-clouds with predicted future costs,” IEEE

Transactions on Parallel and Distributed Systems, vol. 28, no. 4, pp. 1002–1016,
2017. [Online]. Available: https://doi.org/10.1109/TPDS.2016.2604814

[75] N. Wang and B. Varghese, “Context-aware distribution of fog applications using deep
reinforcement learning,” Journal of Network and Computer Applications, vol. 203,
p. 103354, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1084804522000236

[76] X. Liu, Z. Qin, and Y. Gao, “Resource allocation for edge computing in IoT
networks via reinforcement learning,” in ICC 2019 - 2019 IEEE International

Conference on Communications (ICC), 2019, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/ICC.2019.8761385

https://www.sciencedirect.com/science/article/pii/S0164121219300986
http://dx.doi.org/10.3390/app9091730
https://doi.org/10.1007/s10514-018-9742-5
https://doi.org/10.1109/ICFEC.2017.12
https://doi.org/10.1109/ICFEC.2017.12
https://doi.org/10.1109/TII.2018.2851241
http://dx.doi.org/10.1007/s12652-018-0785-4
https://doi.org/10.1109/TPDS.2016.2604814
https://www.sciencedirect.com/science/article/pii/S1084804522000236
https://www.sciencedirect.com/science/article/pii/S1084804522000236
https://doi.org/10.1109/ICC.2019.8761385

Bibliography 120

[77] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management
with deep reinforcement learning,” in Proceedings of the 15th ACM Workshop

on Hot Topics in Networks, ser. HotNets ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 50–56. [Online]. Available:
https://doi.org/10.1145/3005745.3005750

[78] N. Talagala, S. Sundararaman, V. Sridhar, D. Arteaga, Q. Luo, S. Subramanian,
S. Ghanta, L. Khermosh, and D. Roselli, “ECO: Harmonizing edge and cloud with
ML/DL orchestration,” in USENIX Workshop on Hot Topics in Edge Computing

(HotEdge 18). Boston, MA: USENIX Association, Jul. 2018. [Online]. Available:
https://www.usenix.org/conference/hotedge18/presentation/talagala

[79] S. Bian, X. Huang, and Z. Shao, “Online task scheduling for fog computing
with multi-resource fairness,” in 2019 IEEE 90th Vehicular Technology Conference

(VTC2019-Fall), 2019, pp. 1–5. [Online]. Available: https://doi.org/10.1109/
VTCFall.2019.8891573

[80] S. Ningning, G. Chao, A. Xingshuo, and Z. Qiang, “Fog computing dynamic
load balancing mechanism based on graph repartitioning,” China Communications,
vol. 13, no. 3, pp. 156–164, 2016. [Online]. Available: https://doi.org/10.1109/CC.
2016.7445510

[81] R. Beraldi, A. Mtibaa, and H. Alnuweiri, “Cooperative load balancing scheme
for edge computing resources,” in 2017 Second International Conference on Fog

and Mobile Edge Computing (FMEC), 2017, pp. 94–100. [Online]. Available:
https://doi.org/10.1109/FMEC.2017.7946414

[82] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y. Zomaya,
“Secure and sustainable load balancing of edge data centers in fog computing,” IEEE

Communications Magazine, vol. 56, no. 5, pp. 60–65, 2018. [Online]. Available:
https://doi.org/10.1109/MCOM.2018.1700795

[83] X. He, Z. Ren, C. Shi, and J. Fang, “A novel load balancing strategy
of software-defined cloud/fog networking in the Internet of Vehicles,” China

Communications, vol. 13, no. Supplement2, pp. 140–149, 2016. [Online]. Available:
https://doi.org/10.1109/CC.2016.7833468

[84] A. Barbalace, M. L. Karaoui, W. Wang, T. Xing, P. Olivier, and B. Ravindran,
“Edge computing: The case for heterogeneous-ISA container migration,” in
Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments, ser. VEE ’20. New York, NY, USA:

https://doi.org/10.1145/3005745.3005750
https://www.usenix.org/conference/hotedge18/presentation/talagala
https://doi.org/10.1109/VTCFall.2019.8891573
https://doi.org/10.1109/VTCFall.2019.8891573
https://doi.org/10.1109/CC.2016.7445510
https://doi.org/10.1109/CC.2016.7445510
https://doi.org/10.1109/FMEC.2017.7946414
https://doi.org/10.1109/MCOM.2018.1700795
https://doi.org/10.1109/CC.2016.7833468

Bibliography 121

Association for Computing Machinery, 2020, p. 73–87. [Online]. Available:
https://doi.org/10.1145/3381052.3381321

[85] A. A. Majeed, P. Kilpatrick, I. Spence, and B. Varghese, “Modelling fog
offloading performance,” in 2020 IEEE 4th International Conference on Fog

and Edge Computing (ICFEC), 2020, pp. 29–38. [Online]. Available: https:
//doi.org/10.1109/ICFEC50348.2020.00011

[86] X. Sun and N. Ansari, “Latency aware workload offloading in the cloudlet network,”
IEEE Communications Letters, vol. 21, no. 7, pp. 1481–1484, 2017. [Online].
Available: https://doi.org/10.1109/LCOMM.2017.2690678

[87] H.-J. Jeong, C. H. Shin, K. Y. Shin, H.-J. Lee, and S.-M. Moon, “Seamless offloading
of web app computations from mobile device to edge clouds via html5 web worker
migration,” in Proceedings of the ACM Symposium on Cloud Computing (SoCC

2019). New York, NY, USA: Association for Computing Machinery, 2019, p.
38–49. [Online]. Available: https://doi.org/10.1145/3357223.3362735

[88] C. N. L. Tan, C. Klein, and E. Elmroth, “Location-aware load prediction
in edge data centers,” in 2017 Second International Conference on Fog

and Mobile Edge Computing (FMEC), 2017, pp. 25–31. [Online]. Available:
https://doi.org/10.1109/FMEC.2017.7946403

[89] P. Wiesner and L. Thamsen, “LEAF: Simulating large energy-aware fog
computing environments,” in 2021 IEEE 5th International Conference on

Fog and Edge Computing (ICFEC), 2021, pp. 29–36. [Online]. Available:
https://doi.org/10.1109/ICFEC51620.2021.00012

[90] C. Jiang, T. Fan, H. Gao, W. Shi, L. Liu, C. Cérin, and J. Wan, “Energy
aware edge computing: A survey,” Computer Communications, vol. 151, pp.
556–580, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S014036641930831X

[91] Q. Li and Y. Guo, “Optimization of resource scheduling in cloud computing,”
in 2010 12th International Symposium on Symbolic and Numeric Algorithms

for Scientific Computing, 2010, pp. 315–320. [Online]. Available: https:
//doi.org/10.1109/SYNASC.2010.8

[92] Z. Ye, X. Zhou, and A. Bouguettaya, “Genetic algorithm based QoS-aware service
compositions in cloud computing,” in International Conference on Database Systems

for Advanced Applications, J. X. Yu, M. H. Kim, and R. Unland, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 321–334. [Online]. Available:
https://doi.org/10.1007/978-3-642-20152-3 24

https://doi.org/10.1145/3381052.3381321
https://doi.org/10.1109/ICFEC50348.2020.00011
https://doi.org/10.1109/ICFEC50348.2020.00011
https://doi.org/10.1109/LCOMM.2017.2690678
https://doi.org/10.1145/3357223.3362735
https://doi.org/10.1109/FMEC.2017.7946403
https://doi.org/10.1109/ICFEC51620.2021.00012
https://www.sciencedirect.com/science/article/pii/S014036641930831X
https://www.sciencedirect.com/science/article/pii/S014036641930831X
https://doi.org/10.1109/SYNASC.2010.8
https://doi.org/10.1109/SYNASC.2010.8
https://doi.org/10.1007/978-3-642-20152-3_24

Bibliography 122

[93] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and Y. Li, “Cloud
computing resource scheduling and a survey of its evolutionary approaches,”
ACM Comput. Surv., vol. 47, no. 4, jul 2015. [Online]. Available: https:
//doi.org/10.1145/2788397

[94] Y. Wang, Y. Xia, and S. Chen, “Using integer programming for workflow
scheduling in the cloud,” in 2017 IEEE 10th International Conference on

Cloud Computing (CLOUD), 2017, pp. 138–146. [Online]. Available: https:
//doi.org/10.1109/CLOUD.2017.26

[95] M. Harman, K. Lakhotia, J. Singer, D. R. White, and S. Yoo, “Cloud
engineering is search based software engineering too,” Journal of Systems

and Software, vol. 86, no. 9, pp. 2225–2241, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121212002853

[96] S. Luke, Essentials of Metaheuristics, 2009. [Online]. Available: https://cs.gmu.edu/
∼sean/book/metaheuristics/Essentials.pdf

[97] M. Harman and B. F. Jones, “Search-based software engineering,” Information

and Software Technology, vol. 43, no. 14, pp. 833–839, 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584901001896

[98] H. Singh, S. Tyagi, P. Kumar, S. S. Gill, and R. Buyya, “Metaheuristics for scheduling
of heterogeneous tasks in cloud computing environments: Analysis, performance
evaluation, and future directions,” Simulation Modelling Practice and Theory, vol.
111, p. 102353, 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1569190X21000678

[99] D. A. Alboaneen, H. Tianfield, and Y. Zhang, “Metaheuristic approaches to virtual
machine placement in cloud computing: A review,” in 2016 15th International

Symposium on Parallel and Distributed Computing (ISPDC), 2016, pp. 214–221.
[Online]. Available: https://doi.org/10.1109/ISPDC.2016.37

[100] D. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE

Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997. [Online].
Available: https://doi.org/10.1109/4235.585893

[101] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms,” Software: Practice and experience,
vol. 41, no. 1, pp. 23–50, 2011. [Online]. Available: https://doi.org/10.1002/spe.995

https://doi.org/10.1145/2788397
https://doi.org/10.1145/2788397
https://doi.org/10.1109/CLOUD.2017.26
https://doi.org/10.1109/CLOUD.2017.26
https://www.sciencedirect.com/science/article/pii/S0164121212002853
https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf
https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf
https://www.sciencedirect.com/science/article/pii/S0950584901001896
https://www.sciencedirect.com/science/article/pii/S1569190X21000678
https://www.sciencedirect.com/science/article/pii/S1569190X21000678
https://doi.org/10.1109/ISPDC.2016.37
https://doi.org/10.1109/4235.585893
https://doi.org/10.1002/spe.995

Bibliography 123

[102] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A toolkit for
modeling and simulation of resource management techniques in the internet of things,
edge and fog computing environments,” Software: Practice and Experience, vol. 47,
no. 9, pp. 1275–1296, 2017. [Online]. Available: https://doi.org/10.1002/spe.2509

[103] A. Luckow, K. Rattan, and S. Jha, “Exploring task placement for edge-to-
cloud applications using emulation,” in 2021 IEEE 5th International Conference

on Fog and Edge Computing (ICFEC), 2021, pp. 79–83. [Online]. Available:
https://doi.org/10.1109/ICFEC51620.2021.00019

[104] B. Varghese, N. Wang, D. Bermbach, C.-H. Hong, E. D. Lara, W. Shi, and C. Stewart,
“A survey on edge performance benchmarking,” ACM Comput. Surv., vol. 54, no. 3,
apr 2021. [Online]. Available: https://doi.org/10.1145/3444692

[105] L. Perron and V. Furnon, “Or-tools,” Google. [Online]. Available: https:
//developers.google.com/optimization/

[106] A. Salman, I. Ahmad, and S. Al-Madani, “Particle swarm optimization for task
assignment problem,” Microprocessors and Microsystems, vol. 26, no. 8, pp.
363–371, 2002. [Online]. Available: https://doi.org/10.1016/S0141-9331(02)00053-4

[107] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of

ICNN’95-international conference on neural networks, vol. 4. IEEE, 1995, pp.
1942–1948. [Online]. Available: https://doi.org/10.1109/ICNN.1995.488968

[108] K. Deb and K. Deb, Multi-objective Optimization. Boston, MA: Springer US, 2014,
pp. 403–449. [Online]. Available: https://doi.org/10.1007/978-1-4614-6940-7 15

[109] K. Toczé, J. Lindqvist, and S. Nadjm-Tehrani, “Characterization and modeling of an
edge computing mixed reality workload,” Journal of Cloud Computing, vol. 9, no. 1,
p. 46, 2020. [Online]. Available: https://doi.org/10.1186/s13677-020-00190-x

[110] Q. Yang, R. Jin, N. Gandhi, X. Ge, H. A. Khouzani, and M. Zhao, “EdgeBench:
A Workflow-based Benchmark for Edge Computing,” 2020. [Online]. Available:
http://arxiv.org/abs/2010.14027

https://doi.org/10.1002/spe.2509
https://doi.org/10.1109/ICFEC51620.2021.00019
https://doi.org/10.1145/3444692
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1016/S0141-9331(02)00053-4
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1186/s13677-020-00190-x
http://arxiv.org/abs/2010.14027

	Thesis cover sheet
	2023AlhaizaeyPhD
	1 Introduction
	1.1 Overview
	1.2 Motivation for Micro-Clusters in Edge Computing
	1.2.1 Edge Micro-Clusters
	1.2.2 Workloads for Micro-Clusters

	1.3 Research Focus
	1.4 Thesis Statement
	1.5 Research Questions
	1.6 Contributions
	1.7 Publications
	1.8 Thesis Outline

	2 Literature Review
	2.1 Background
	2.2 Cloud Computing
	2.3 Fog Computing
	2.4 Edge Computing
	2.4.1 Cloudlet Data Centres (Cloudlet)
	2.4.2 Mobile Edge Computing (MEC)
	2.4.3 Content Delivery Networks (CDNs)
	2.4.4 Edge Micro-Cluster Platforms
	2.4.5 Other Edge Computing Technologies

	2.5 Edge Computing Micro-Clusters
	2.5.1 Introduction
	2.5.2 Review of Edge Micro-Cluster Systems
	2.5.3 Limitations and Research Directions

	2.6 Resource Management in Edge Computing
	2.6.1 Introduction to Resource Management
	2.6.2 Task Allocation in Edge Computing
	2.6.3 Other Resource Management Aspects

	2.7 Optimisation Techniques
	2.7.1 Mathematical Optimisation
	2.7.2 Metaheuristics Optimisation
	2.7.3 Heuristics Optimisation

	2.8 Discussion against Related Work
	2.9 Summary

	3 Experimental Evaluation of Feasibility and Task Allocation of Edge Micro-Clusters
	3.1 Introduction
	3.2 Experimental Infrastructure
	3.2.1 Rationale
	3.2.2 Micro-Cluster Testbed
	3.2.3 Software Benchmarks
	3.2.4 Networking Structure in Micro-Cluster Setup
	3.2.5 Tasks Launching and Execution in Micro-Cluster System

	3.3 Assumptions and Observations for the System Models
	3.4 Task Allocation Formulation
	3.4.1 Objective Function
	3.4.2 Systems Constraints

	3.5 Task Allocation Optimisation Techniques for Micro-Clusters
	3.5.1 Heuristic-based Techniques
	3.5.2 Mixed Integer Programming Allocation Technique

	3.6 Performance Evaluation
	3.6.1 Minimising Makespan Time
	3.6.2 Allocation Overhead
	3.6.3 Discussion

	3.7 Summary

	4 A Linear Model for Task Allocation in Edge Micro-Clusters
	4.1 Introduction
	4.2 Linear Model for Task Allocation in Micro-Clusters
	4.2.1 Individual Node Performance Characterisation
	4.2.2 Formulation of the Linear Model for Task Allocation

	4.3 Task Allocation Using Particle Swarm Optimisation Metaheuristic
	4.3.1 PSO Logic
	4.3.2 Representation Process

	4.4 Evaluation
	4.4.1 Optimisation Techniques
	4.4.2 Performance Evaluation

	4.5 Summary

	5 Multi-Objective Optimisation for Edge Micro-Clusters
	5.1 Introduction
	5.2 Preliminaries
	5.3 Analytical Model for Energy Consumption
	5.3.1 Energy Consumption Analytical Model
	5.3.2 Performance Analysis

	5.4 Multi-Objective Optimisation for Micro-Clusters
	5.4.1 Multi-Objective Optimisation Model
	5.4.2 Performance Analysis

	5.5 Summary

	6 Conclusions and Future Directions
	6.1 Overview
	6.2 Review of the Thesis
	6.3 Reflection on Research Questions
	6.3.1 Reflection on Research Question RQ1
	6.3.2 Reflection on Research Question RQ2
	6.3.3 Reflection on Research Question RQ3
	6.3.4 Reflection on Research Question RQ4
	6.3.5 Reflection on Research Question RQ5

	6.4 Research Contributions
	6.4.1 Micro-Cluster Prototype for Edge and IoT Environments
	6.4.2 Analytical Models for Edge Micro-Clusters
	6.4.3 Multi-Objective Optimisation Model for Micro-Clusters
	6.4.4 Comparative Evaluation of Optimisation Techniques for Edge Micro-Clusters

	6.5 Limitations and Future Directions
	6.5.1 Generalising System Heterogeneity
	6.5.2 Expanding System Scale
	6.5.3 Evaluating Complex Metaheuristics
	6.5.4 Optimising Other Resource Management and Performance Metrics
	6.5.5 Evaluating More Deployment Settings
	6.5.6 Developing Edge Benchmarks for Micro-Clusters and IoT Environments

	6.6 Final Summary

	A Glossary
	Bibliography

