
 
 
 
 
 
 
 
Adamson, Carly  (2023) Personalisation of heart failure care using clinical 
trial data. PhD thesis. 
 
 
 
https://theses.gla.ac.uk/83737/ 
 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 
obtaining permission from the author 

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 
title, awarding institution and date of the thesis must be given 

 
 
 
 
 
 

Enlighten: Theses 
https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

mailto:research-enlighten@glasgow.ac.uk


   
 

 
 
 
 
 
 
Personalisation of Heart Failure Care using 

Clinical Trial Data 
 
 
 
 

Dr Carly Adamson 
BMSc, MBChB, MRCP (UK) 

 
 
 
 

Submitted for the fulfilment of the requirements for the degree of 
Doctor of Philosophy 

 
 
 
 

BHF Glasgow Cardiovascular Research Centre 
College of Medical, Veterinary and Life Sciences 

Faculty of Medicine 
University of Glasgow 

 
 

April 2023 
  



  2 
 

Abstract 

Heart failure is a common, debilitating and life limiting disease, resulting in a 

large burden for both the individual patient and healthcare provision.  

Therefore, optimisation of treatments for these patients is of prime importance.  

Heart failure with reduced ejection fraction has a large evidence base for 

effective treatments, and more recently effective treatments have started to be 

identified for those with preserved ejection fraction.  The effectiveness of these 

treatments is calculated at a population level, and there is a great deal of 

interest to try and identify if different patients may benefit more from certain 

treatments.  In addition, we wish to understand more about different 

phenotypes in heart failure, to help understand what the patient might expect 

for the trajectory of their illness and potentially develop targeted treatments. 

To explore these issues further, this thesis presents several approaches using 

heart failure clinical trial data to try and further understand the patient journey 

and explore how treatment may be delivered in a more personalised fashion. 

The first analyses look at the patterns of heart failure hospitalisations, including 

the timing of admissions, and the relationship with different modes of death.  

This was examined in both heart failure with preserved and reduced ejection 

fraction.  The accepted trajectory of recurrent admissions falling closer together 

over time was confirmed, and admissions closer together were linked to a higher 

risk of cardiovascular death, particularly due to progressive pump failure.  

Sudden death did appear to be truly sudden and not strongly linked to 

hospitalisations. 

The next approach was to perform latent class analysis to try and identify 

clusters of patients, or phenotypes, within heart failure with preserved and 

reduced ejection fraction separately using a data driven method.  Phenotypes 

were identified with consistency across different data and using different 

approaches.  These phenotypes were clinically recognisable.  Identifying 

phenotypes in this way may be a route to looking for differential responses to 

treatments.  

Lastly, supervised machine learning methods were used to predict outcomes in 

patients with heart failure and reduced ejection fraction.  These techniques 
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provide more analytical flexibility, but did not show performance benefit 

compared with prognostic models based on survival analysis methods.  Overall, 

the predictive abilities were modest. 

In conclusion, several avenues were explored to help understand the patient 

journey in heart failure, aiming to give more detail about the expected patient 

trajectory and exploring methods to examine for differential treatment 

responses in phenotypes of patients in heart failure. 
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Chapter 1 Literature review 

1.1 Introduction to Heart Failure 

1.1.1 Definition and epidemiology 

Heart failure is a syndrome caused by failure of the heart to pump blood 

efficiently enough to meet the peripheral tissues metabolic requirements 

causing typical signs and symptoms including breathlessness, ankle swelling, 

fatigue, elevated jugular venous pressure and pulmonary crepitations.1 This can 

be caused by any abnormality in structure or function of the heart, with left 

ventricular systolic function being an important distinction with implications for 

treatment options.  The diagnosis of heart failure is only that of the syndrome 

described, and evaluation for the underlying aetiology is required to understand 

the pathology involved and again the associated implications for treatment 

options.  A core investigation for making a diagnosis of heart failure is the 

finding of elevated natriuretic peptides, which is found universally through 

different subgroups and aetiologies of heart failure. 

Sub-classification of heart failure is primarily dependent on the left ventricular 

ejection fraction, as determined by echocardiography or cardiac magnetic 

resonance imaging, which is associated with differing aetiologies and pathologies 

underlying the syndrome of heart failure.  Reduced ejection fraction (HFREF) is 

defined as an ejection fraction of ≤40%, and the vast weight of evidence for 

heart failure treatment is in this population.  The other main subgroup is heart 

failure with preserved ejection fraction (HFPEF), usually defined as an ejection 

fraction ≥50%. These patients have other cardiac abnormalities, such as dilated 

atria, diastolic dysfunction and raised filling pressures, as well as elevation in 

natriuretic peptides.  More recently, the subgroup of mildly reduced ejection 

fraction (HFMREF) with an ejection fraction between 41 and 49% have been 

defined, with some evidence of similarities in response to treatments as those 

with reduced ejection fraction.2  

Heart failure is common and, despite stable or declining incidence rates, the 

absolute number of patients with heart failure and overall prevalence is 

increasing, likely reflecting an aging population and improved survival with 
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modern treatments.3,4 It is thought the prevalence of heart failure is 1-2% of 

adults, although as these estimates only include diagnosed cases the likely true 

total is higher.5–8  The care of patients with heart failure is costly, and accounts 

for 1 million bed days per year in the NHS and 2% of the NHS budget.9  Heart 

failure is associated with a low quality of life and high symptom burden, and 

high mortality rates across the world.4 Therefore any increased understanding of 

how our patients might be expected to behave in future in terms of 

hospitalisations can be helpful in service planning and provision. 

1.1.2 Aetiology  

Common causes of heart failure in the developed world include ischaemic heart 

disease, hypertension, arrhythmia, idiopathic, toxins (including alcohol and 

chemotherapy) and genetic causes, with less common causes including valve 

disease, infections (including viral infections and Chagas disease), congenital 

heart disease, metabolic causes such as haemochromatosis, infiltrative disease 

such as amyloid and pericardial diseases.  In relation to this research, data 

regarding aetiology is often gathered in a less granular way, for example 

ischaemic or non-ischaemic aetiology, and data on some relevant comorbidities 

will also be included.  However, some aetiologies are underrepresented in 

clinical trial data due to exclusion criteria and the countries that enrolled 

patients in the trials.  This is important when we consider phenotyping of 

patients, as phenotypes created by any machine learning method can only 

include the data included in the model. 

1.1.3 Classification of heart failure 

Classification of heart failure into phenotypes has largely been based on left 

ventricular ejection fraction.  Most trials for original treatments in heart failure 

enrolled patients with an ejection fraction of 40% or below and this phenotype 

has the largest evidence base for effective treatments, these patients are 

designated as heart failure with reduced ejection fraction (HFREF).  Many 

patients with heart failure have a normal ejection fraction (50% or above) with 

evidence of other structural or functional abnormalities in cardiac function and 

are classified as heart failure with preserved ejection fraction (HFPEF).  More 

recently, the area between these phenotypes including an ejection fraction of 
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41 to 49% have been classified as heart failure with mildly reduced ejection 

fraction (HFMREF), who behave similarly to patients with HFREF.1 Although these 

cut-points are useful to understand phenotypes of patients and which treatments 

they might benefit from, they remain somewhat arbitrary, and it is important to 

consider that ejection fraction is a continuous variable. Although these are 

recognised as important subdivisions in heart failure, in reality there are many 

more facets of clinical differences that create the recognisable phenotypes that 

are encountered in patients with heart failure. Treatments are now being 

identified that are effective across the spectrum of ejection fraction, and 

perhaps we need more sophisticated ways to identify different phenotypes to 

help us understand their likely trajectory of illness or likely response to 

treatment.10 

1.1.4 Diagnosis of heart failure 

A diagnosis of chronic heart failure can be made when there is a combination of 

typical clinical signs and symptoms, elevation in natriuretic peptides and 

objective evidence of cardiac dysfunction. Suspicion of heart failure is raised 

when there are risk factors for development of the disease, for example prior 

myocardial infarction, hypertension, diabetes or a family history of heart failure.  

An abnormal electrocardiogram may be the trigger for further investigation.  The 

next stage in the diagnostic algorithm from the European Society of Cardiology is 

measurement of natriuretic peptide level, either N-terminal pro-B type 

natriuretic peptide (NT-proBNP) or B-type natriuretic peptide (BNP).1  The 

primary stimulus for secretion of these hormones is through myocyte stretch and 

neurohormonal activation. If natriuretic peptide levels are elevated, or not 

available and the clinical suspicion of heart failure is high, an echocardiograph is 

required to examine for evidence of cardiac dysfunction and to group patients 

into heart failure with preserved, mildly reduced or reduced ejection fraction. 

Further investigations to elucidate aetiology include coronary angiography 

(invasive or by computed tomography scan), prolonged electrography monitoring 

for arrhythmia, more detailed imaging by magnetic resonance scan, genetic 

testing or on rare occasions by myocardial biopsy. 
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1.1.5 Management 

The major goals in treatment of heart failure are reduction in mortality, 

prevention of recurrent hospitalisations due to worsening heart failure and 

improvement in clinical status, functional capacity and quality of life.1  All 

medications should be up titrated to the maximum tolerated dose. 

1.1.5.1 Heart failure with reduced ejection fraction 

Most of the evidence for pharmacological therapies in heart failure is in patients 

with heart failure and reduced ejection fraction, for which there are four core 

treatments that all patients should be established on if tolerated. Angiotensin 

converting enzyme inhibitors (ACEI)/angiotensin receptor-neprilysin inhibitor 

(ARNI), beta blockers and mineralocorticoid receptor antagonists (MRA) act by 

modulating the renin-angiotensin-aldosterone system (RAAS) and sympathetic 

nervous system.  The fourth treatment is sodium-glucose co-transporter 2 

inhibitors (SGLT2i). 

ACEI act on the angiotensin converting enzyme in the lungs, preventing the 

conversion of angiotensin 1 to angiotensin 2. Angiotensin 2 has many actions 

throughout the body which in a physiological condition increase blood pressure 

and improve perfusion in response to low renal perfusion pressure; these actions 

include peripheral vasoconstriction, sodium and water retention through direct 

action on the kidneys and by stimulating aldosterone secretion and stimulating 

vasopressin release.  In heart failure, there is over-activation of these pathways, 

resulting in inappropriate systemic vasoconstriction and sodium/water retention 

contributing to the cycle of worsening cardiac function.  ACEI were one of the 

first established treatments in heart failure to reduce mortality, with 

angiotensin receptor blockers being shown to be an appropriate alternative in 

those who could not tolerate ACEI due to cough.11–13 Natriuretic peptide 

hormones act in opposition to the RAAS system, causing vasodilation, natriuresis 

and diuresis, and is degraded through the action of neprilysin.  By inhibiting 

neprilysin as well as the angiotensin receptor, the action of the natriuretic 

peptides is prolonged providing additional mortality and morbidity benefits 

compared to ACE inhibition in isolation.14 
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Beta blockers have the largest evidence base of benefit in heart failure and act 

through inhibition of beta-adrenergic stimulation of the heart therefore 

decreasing inotropy and chronotropy.15–17  Mineralocorticoid receptor antagonists 

also act on the RAAS system and provide benefit in addition to ACEI.18,19 

SGLT2i were first developed as treatment for diabetes and act by reducing 

glucose reabsorption in the kidneys therefore increase the excretion of excess 

glucose in the urine. Cardiovascular outcome studies in diabetic patients 

suggested reduction in heart failure hospitalisation in diabetic patients therefore 

these drugs were studied in patients with heart failure with and without 

diabetes and found to provide morbidity and mortality benefit.20–24 

Other pharmacological treatments include: loop diuretics, primarily to reduce 

symptom burden; ivabradine for patients in sinus rhythm where rate is not 

controlled to 70 beats per minute or less with beta blocker or in patients with 

contraindication to beta blocker therapy; soluble guanylate cyclase receptor 

stimulator (vericiguat) in patients who have had worsening HF despite optimised 

therapies to reduce risk of hospitalisation; hydralazine and isosorbide dinitrate 

in patients self-identified as black with ejection fraction 35% or below on 

optimised medical therapy or if ACEI, ARB or ARNI are not tolerated; and digoxin 

in patients who remain symptomatic despite optimised medical therapy and 

remain in sinus rhythm to reduce hospitalisation. 

Non pharmacological therapies include device therapies such as cardiac 

resynchronisation therapy and implanted cardioverter-defibrillator.  Many 

patients with heart failure die suddenly with modes of death including brady- 

and tachy-arrhythmia as well as acute vascular events, and implantation of a 

defibrillation device can allow treatment of these arrhythmias. If a patient 

survives a ventricular tachyarrhythmia causing haemodynamic instability, a 

device can be inserted as a secondary prevention intervention.  Otherwise, 

primary prevention in patients who have never had an arrhythmic event is 

considered when the LVEF remains low despite optimised pharmacological 

therapy with ongoing symptoms, and the strength of evidence depends on the 

aetiology of heart failure being ischaemic or non-ischaemic. Cardiac 

resynchronisation therapy can be considered in patients with ongoing symptoms, 
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reduced ejection fraction and prolonged QRS duration on electrocardiogram 

testing despite optimised pharmacological therapies.1 

1.1.5.2 Heart failure with mildly reduced ejection fraction 

There are not specific trials of patients in this range of ejection fraction 

therefore there are not strong recommendations for pharmacological therapies 

in these patients, but the same drug treatments should be considered as for 

HFREF based on some subgroup analyses and likely clinical comorbidity and 

indications for treatment.  Device therapy is not recommended in guidelines. 

1.1.5.3 Heart failure with preserved ejection fraction 

Many treatments found to be effective in heart failure with reduced ejection 

fraction have been trialled in patients with HFPEF with neutral results (including 

ACEI, ARB, MRA and ARNI).25–29 There is evidence from the TOPCAT trial including 

patients enrolled in the Americas that MRAs may reduce CV death and HF 

hospitalisation in HFPEF (perhaps reflecting patients with ‘true’ HFPEF) and 

pooled analysis of the PARADIGM-HF and PARAGON-HF studies suggested ARNI 

are beneficial in higher ejection fraction.30 It should be acknowledged that many 

of these patients will have a separate indication for these treatments due to co-

existing comorbidity. 

More recently, SGLT2i have been studied in patients with heart failure with 

preserved and mildly reduced ejection fraction and in two drugs of the class 

have been found to reduce the incidence of the primary endpoint of worsening 

heart failure events and CV death.31,32 These findings are not yet reflected in 

guidelines. 

HF is a heterogenous condition.  Treatments that have proven efficacy are 

assessed at a population level, and there may be underlying patterns of 

differential responses between phenotype groups that are not fully explored.  

This is particularly of interest in HFPEF where effective treatments have 

remained more elusive. 
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1.1.6 Prognosis 

With improving treatments in heart failure, prognosis has improved over time 

but remains poor, with a 5-year age adjusted mortality in a population-based 

cohort study between 1996 and 2000 of 52%.33 Improvements in survival have 

been primarily seen in patients with HFREF rather than HFPEF, likely reflecting 

the improved therapies available over the last few decades.34 Another difference 

between HFREF and HFPEF is the different proportion of patients with 

cardiovascular compared with non-cardiovascular deaths; more individuals with 

HFREF died of cardiovascular rather than non-cardiovascular causes whereas the 

opposite was true of patients with HFPEF.35 

1.1.6.1 The patient journey in heart failure 

The typical trajectory of functional status in a patient diagnosed with heart 

failure is often described graphically with several deteriorations, incomplete 

recovery of function and accelerating frequency of deterioration until death 

with sudden deaths occurring at any point along this trajectory (Figure 1-1).36  

These deteriorations often result in hospital admissions, which can act as 

warning flags to the treating physician for risk of further deterioration and 

death. 
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Figure 1-1. The heart failure patient journey 
Reproduced from Cowie et al., 2014 with permission. 36 Typical progression of acute heart 
failure, showing a range of clinical courses. A, good recovery after first episode followed by 
stable period of variable length; B, first episode not survived; C, poor recovery after first 
episode followed by deterioration; D, ongoing deterioration with intermittent crises and 
unpredictable death point. 

 
 

It would be of clear utility to the treating physician and patient to have a good 

understanding of which patients are at higher risk of recurrent hospitalisation or 

at higher risk of death following an admission, however, determining which 

patients are at particularly high risk of readmission remains difficult.37–39  In 

addition, it is recognised that the greater burden of other comorbidity in 

patients with heart failure and preserved ejection fraction will likely result in 

high rates of hospitalisation for non-cardiovascular reasons therefore an 

understanding of how much heart failure hospitalisations are responsible for 

morbidity for these patients is important. 

1.2 Machine learning in heart failure populations 

Machine learning is an umbrella term for different analytical techniques that aim 

to utilise data to gain insight into a quantity of interest and involves aspects of 

statistics, computer science and artificial intelligence.  Machine learning differs 

from some statistical analytical techniques with increased flexibility and less 

requirement for prior assumptions of the data and is well suited to analysis of 
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big data.  These attributes make machine learning an area of research interest 

given the increasing amounts of data available in many areas, including 

healthcare.  At a very high level, machine learning can be subdivided into 

supervised and unsupervised techniques.   

In supervised machine learning, data has a known ‘label’.  The label is the 

ground truth answer to the question the machine learning method is going to try 

and address, and will be the output of the machine learning method. For 

example, a label might be whether the patient is alive at 1 year after diagnosis, 

or could be a label of a diagnosis assigned to a chest x-ray image.  The aim of 

the machine learning technique is to map the inputs (i.e. variables or factors) to 

the output.  Inputs can be a variety of different types of data, including 

spreadsheets of values for different laboratory results, demographic data about 

the patient, binary variables for presence/absence of a comorbidity or a data 

representation of a chest x-ray image.  Performance of the model can be 

assessed by how well the predicted label using the machine learning model 

matches the ground truth, or pre-existing label. 

The aim of unsupervised machine learning is to find unknown patterns or clusters 

within data.  For these analyses, data is not labelled with any known outcome or 

grouping variable, and the aim of the analysis is to first identify the number of 

groups and then to describe them. 

1.2.1 Unsupervised machine learning in heart failure 

In the field of heart failure, unsupervised machine learning of analysis is most 

commonly used to identify phenotypically similar groups of patients using data 

collected during clinical trials or extracted from routine electronic health 

records. This emulates the way clinicians recognise clinical symptoms, 

characteristics and diagnoses that commonly appear together, and learn how 

different types of patients might behave.  However, each individual is limited by 

their own experience and exposures; machine learning may provide a tool to 

describe a group of patients or indeed identify new, or less apparent, phenotype 

groups .  This could be particularly useful for more junior clinicians and non-

specialists who do not have the same wealth of individual experience 

encountered in clinical work as an aid to understanding the patient’s prognosis 
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and behaviour. This could ultimately improve personalisation of heart failure 

care if physicians can have a better understanding of the likely patient course 

and prognosis depending on the phenotype subgroup. 

As well as possible benefits in our ability to describe the phenotype of the 

patient, and explore their likely prognosis, another area of interest is to look for 

difference in treatment response in different phenotype groups.  Finding 

effective treatments for patients with heart failure and preserved ejection 

fraction continues to be elusive, this may be due to the highly heterogeneous 

population.  Perhaps by effectively identifying phenotypes of patients, therapies 

may be targeted to patients in whom it is believed the treatments may be more 

effective – again another avenue to increasing personalisation of care. 

In this thesis, phenotype groups are identified using latent class analysis as an 

unsupervised machine learning technique to define subgroups in heart failure 

populations.  However, an overview of prior research in different clustering 

techniques will be reviewed for both HFPEF and HFREF prior to discussing latent 

class analysis specifically.  

1.2.1.1 Machine learning identified subgroups in heart failure with reduced 
ejection fraction 

The most commonly utilised techniques for clustering include K-means clustering 

and hierarchical clustering.  Karwart et al.40 utilised combined data from trials 

of beta blocker therapy in HFREF resulting in a large dataset of 15659 patients, 

with which they performed cluster analysis for patients with atrial fibrillation 

and sinus rhythm separately. Data was pre-processed for dimensionality 

reduction, meaning the number of variables were reduced by creating new 

inputs combining information from several variables while minimising loss of 

information.  In this study, variational autoencoders were used for 

dimensionality reduction as they can be used for mixed data types including 

factor and numeric variables.  Other more simple examples of dimensionality 

reduction techniques include principle component analysis.  In this very large 

population, five phenotypes were identified in those with atrial fibrillation and 

six for those in sinus rhythm, with some signal of differing responses to beta 

blocker therapy in subgroups. 
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Most studies have involved smaller populations, with several aiming to find 

phenotypes of patients with differing response to cardiac resynchronisation 

therapy using clinical trial data and data collected in routine practice, again 

with some signal of differing response to treatment.41,42 Others have described 

phenotype groups using finite mixture model based clustering, identifying three 

phenotype subgroups with differing risk of adverse outcome.43 

Cluster analysis has been carried out in patients enrolled in the HF-ACTION trial 

(Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training) 

using a large number of variables.44  Four clusters were identified, with differing 

responses to exercise therapy.  Two groups had predominant ischaemic 

cardiomyopathy, with the main difference being degree of angina. Interestingly 

the left ventricular ejection fraction did not vary significantly between groups, 

this being a commonly used measure to describe patients with heart failure. 

1.2.1.2 Machine learning identified subgroups in heart failure with preserved 
ejection fraction 

The greater level of heterogeneity in patients with HFPEF has resulted in a 

larger pool of research using clustering techniques to help understand different 

phenotypes in this population. Inputs to clustering models range include data 

from echocardiography, clinical examination, laboratory results and biomarkers, 

with range of phenotype subgroups varying from three to six.45–54 Although each 

clustering study uses different types of input variables, there are some subgroup 

descriptions that appear quite consistently, including: obese patients with high 

levels of comorbidity such as hypertension and diabetes and often younger age; 

older patients with atrial fibrillation; patients with high burden of chronic 

obstructive pulmonary disease (COPD). 46,47,52,53 Use of biomarkers for clustering 

suggested some groups of high levels of inflammation, and use of 

echocardiographic measurements identified groups of patients with specific 

abnormalities such as stiff right ventricle or left ventricular relaxation 

abnormality.50,51,54 
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1.2.1.3 Machine learning identified subgroups in heart failure with mixed or 

unspecified ejection fraction 

Given left ventricular ejection fraction is a measure of left ventricular 

contractile function, and division into HFPEF and HFREF could be seen as an 

arbitrary split, it might be expected that phenotypes would be found across the 

spectrum of ejection fraction in heart failure.  Gevaert et al. 55 explored this 

using hierarchical clustering in patients hospitalised for heart failure, identifying 

6 subgroups with key defining features including: atrial fibrillation; coronary 

artery disease; COPD; obstructive sleep apnoea. This was in a relatively small 

group of patients, with no confirmation of similar phenotypes in other 

populations. 

Others have used supervised machine learning techniques to distinguish between 

HFPEF and HFREF i.e., to phenotype broadly into these two groups using 

baseline data, however more advanced machine learning techniques such as 

random forests, boosted trees or support vector machine did not provide 

significant benefit over logistic regression models.56 

1.2.2 Latent class analysis 

One unsupervised machine learning method that can be utilised with the aim of 

identifying phenotypic subgroups is latent class analysis. Latent class analysis is 

an approach aiming to use multiple measured observations, hypothesised to be 

an expression of the underlying patient subgroup, to work backward to identify 

and describe underlying phenotypic subgroups (Figure 1-2).57 
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Figure 1-2. Illustration of the process of latent class analysis 
Simplified illustration of a latent class analysis.  Input variables are hypothesised to express 
the underlying phenotype group.  Latent class analysis aims to best describe the 
unmeasured phenotype group using the measured input variables.  Each individual data 
point can then be allocated to the best fitting phenotype group. 

 

1.2.2.1 Latent class analysis in heart failure with reduced ejection fraction 

Latent class analysis has been utilised in evaluation of the EMPHASIS-HF trial 

(Eplerenone in Mild Patients Hospitalisation and Survival Study in Heart Failure) 

with validation in the EPHESUS trial (Eplerenone Post–Acute Myocardial 

Infarction Heart Failure Efficacy and Survival Study).58  Subgroups included: 

patients with high prevalence of hypertension and diabetes; patients with low 

weight, anaemia and lower potassium; patients with low weight, anaemia, poor 

renal function, previous revascularisation and higher potassium; and male 

patients with higher potassium. The second and third subgroup were observed to 

have a poorer response to eplerenone treatment.  

Retrospective analysis of patients with non-ischaemic aetiology of HFREF in the 

β-blocker Evaluation of Survival Trial (BEST) using latent class identified groups 

with differing outcomes and response to treatment.59 Two separate analyses 

were conducted – the first using variables thought to be related to heart failure 

pathogenesis and the other to markers of heart failure severity and progression.  

The first analysis generated better differentiated groups, summarised as: non-

Caucasian, males, hypertension, atrial fibrillation; middle age, female, anaemia, 

obesity, diabetes, hypertension and hyperlipidaemia; middle age, female, 

Caucasian, hyperlipidaemia, anaemia, left bundle branch block; younger 

patients, non-Caucasian, obesity, anaemia, less risk factors for cardiac disease; 

older, Caucasian, atrial fibrillation, mitral and aortic valve disease.  
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1.2.2.2 Latent class analysis in heart failure with preserved ejection fraction 

Latent class analysis has been used to help understand different phenotypes in  

heart failure with preserved ejection fraction, making use of both registry and 

clinical trial data.60–62  Some phenotypes appear consistently through different 

populations and analytical techniques, while others appear more specific to the 

population studied. 

Latent class analysis has been utilised to explore phenotype groups in the 

Swedish Heart Failure Registry, with validation of results using data from 

patients in the CHECK-HF (Chronisch Hartfalen ESC-richtlijn Cardiologische 

praktijk Kwaliteitsproject HartFalen) registry by applying the clustering model 

and comparing the sizes of clusters and the median probabilities of group 

membership.60 Subgroups included: young patients with low comorbidity; 

patients with atrial fibrillation and hypertension; older patients with atrial 

fibrillation and cardiovascular comorbidity; patients with hypertension and 

diabetes; and patients with poor renal function, hypertension and ischaemic 

heart disease. There was variation in prognosis between these subgroups in age 

and sex adjusted analysis, with those in cluster 3 and 5 having worst outcomes, 

as well as variation in treatments for heart failure. 

Another latent class analysis in heart failure with preserved ejection fraction 

was carried out in the Treatment of Preserved Cardiac Function Heart Failure 

with an Aldosterone Antagonist (TOPCAT) trial, which randomised patients with 

heart failure and preserved ejection fraction to spironolactone or placebo. 61  

Three phenotypes were described: younger patients with low levels of 

comorbidity; older patients with atrial fibrillation; and multimorbidity patients 

with diabetes, obesity and renal impairment.  There was variation in prognosis 

and response to spironolactone, with greater benefit seen with spironolactone in 

group 3.  

Kao et al. used data from patients enrolled in the Irbesartan in Heart Failure 

with Preserved Ejection Fraction Study (I-PRESERVE) and Candesartan in Heart 

failure: Assessment of Reduction in Mortality and morbidity (CHARM)-Preserved 

trials to perform latent class analysis.62  Development of the latent classes was 

in the I-PRESERVE trial and identified six subgroups: younger, male patients with 
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higher levels of alcohol intake; younger female patients with more anaemia; 

multimorbid patients with obesity, diabetes and hyperlipidaemia; a class made 

mainly of female patients with middling levels of comorbidity; males with atrial 

fibrillation and coronary artery disease; and older patients with low BMI, high 

levels of atrial fibrillation, valvular disease, renal dysfunction and anaemia. 

Differing prognosis was found between latent class subgroups. 

Two analyses by another research group have looked at latent class analysis of 

patients with heart failure and preserved ejection fraction in the context of 

hospitalisation.63,64  In the first, four phenotypes were identified: arrhythmia 

triggering (predominantly atrial fibrillation); hypertensive and worse 

echocardiographic features of HFPEF; systemic congestion; and infection 

triggered hospitalisation.63  In the second analysis, they looked to limit the 

number of variables required to accurately assign patients to these latent classes 

to make the method more appealing to use in a clinical setting and were able to 

reduce from 32 to 16 variables with consistent grouping results.64 

1.2.2.3 Latent class analysis in heart failure with mixed or unspecified 
ejection fraction 

Analysis of a mixture of HFPEF and HFREF patients in Asian regions enrolled in 

the Asian Sudden Cardiac Death in Heart Failure (ASIAN-HF) registry found five 

subgroups.65 Subgroups had geographical differences in prevalence and 

differences in the primary outcome of all-cause mortality and HF hospitalisation.  

The subgroup of lean diabetic patients was novel in this analysis, found 

predominantly in Southeast Asia. Other groups included a metabolic syndrome 

and a subgroup with young patients and low rates of ischaemic aetiology. 

1.2.3 Supervised machine learning in heart failure 

Supervised machine learning, where the aim is to develop an algorithm to map 

features (or variables) to a known output and assess performance when applied 

to new data, has also gained popularity in heart failure research. This approach 

can be used to develop methods to make a diagnosis from an image, for example 

diagnose heart failure from an electrocardiogram or for automated 

interpretation of an echocardiogram.66,67 In terms of personalisation of heart 

failure care, there is great interest in whether machine learning methods may 
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provide more accurate prediction of adverse events as these methods benefit 

from increased flexibility compared with traditional statistical methods utilised 

to create heart failure risk models.68–70 

1.2.3.1 Established risk models in heart failure 

As highlighted, rates of mortality and morbidity are high in heart failure but it 

remains difficult to predict individual patient prognosis.71,72 It is important to 

understand which patients are at higher risk to guide decision making around 

intensification of treatments, monitoring requirements or decisions about end of 

life care.  There are several individual factors that are associated with prognosis 

in heart failure, such as NYHA class and ejection fraction, but using each 

individual marker in isolation does not well inform us of the overall risk.73,74  

Using multiple variables together in a regression model can allow risk to be more 

accurately estimated. There are many published heart failure risk models, which 

can be used as benchmarks to compare the performance of supervised machine 

learning models for adverse outcomes in heart failure.  All the models below 

have online calculators to support the use of the risk prediction model in clinical 

practice. 

MAGGIC risk score 

The Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) risk score was 

developed using an international database including multiple cohort studies and 

patient level data of 39372 participants. 69 Patients with both preserved and 

reduced ejection fraction were included.  Thirty-one candidate variables were 

available at baseline which were used in Poisson regression models with forward 

stepwise variable selection to include the most powerful predictive variables in 

the final models.  Thirteen independent predictor variables were identified. An 

integer score was created from the risk coefficients which are summed to give 

the 1- or 3-year probability of death. 

Get With The Guidelines-Heart Failure risk score 

The Get With The Guidelines (GWTG) score utilised data from 39783 patients 

participating in the GWTG registry across 198 hospitals and was built to predict 
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in-hospital mortality.75  A multivariable logistic regression model was used to 

assess candidate variables.  Like the MAGGIC risk score, an integer score was 

calculated from coefficients in the regression model.  The C-statistic for 

discrimination was 0.75 in both derivation and validation data. 

PREDICT-HF risk score 

The PARADIGM Risk of Events and Death in the Contemporary Treatment of Heart 

Failure (PREDICT-HF) models for the composite of HF hospitalisation and CV 

death, for CV death alone and for all-cause mortality were created using data 

from the Prospective comparison of ARNI with ACEI to Determine Impact on 

Global Mortality and morbidity in Heart Failure (PARADIGM-HF) trial, with 

validation using patients from the Aliskiren Trial to Minimize Outcomes in 

Patients with Heart Failure Trial (ATMOSPHERE) and the Swedish Heart Failure 

registry (SwedeHF).68  An important addition in this model was natriuretic 

peptide levels.  Sixty-three variables were considered, and variables were 

selected using a Cox proportional hazards model with stepwise selection.  The C-

statistics for the composite outcome in the PARADIGM-HF data at 1 and 2 years 

were 0.74 (95%CI 0.71–0.76) and 0.71 (95%CI 0.70-0.75) respectively, and in 

validation in ATMOSPHERE the C-statistics were 0.71 (95% CI, 0.69-0.72) and 0.70 

(95%CI 0.68-0.71) respectively. 

Barcelona Bio-Heart Failure Risk Calculator (BCN Bio-HF Calculator) 

The BCN Bio-HF calculator uses a combination of clinical data, routine laboratory 

test and biomarkers to risk stratify patients with heart failure.76  The enrolled 

patients were ambulatory patients in a multidisciplinary heart failure unit.  

Patients were required to have at least one heart failure hospitalisation and/or 

reduced left ventricular ejection fraction, meaning there are patients with both 

HFREF and HFPEF.  23 candidate variables were considered. A Cox regression 

analysis was utilised to create the model, with outcomes of 1, 2 and 3 year 

mortality.  Generalisation was tested using multiple cross validated samples, 

with no separate validation cohort, giving an average C statistic of 0.79. 
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1.2.3.2 Common supervised learning techniques in heart failure analysis 

On review of current supervised machine learning models, commonly used 

techniques included penalised linear regression, K-nearest neighbours, random 

forests, support vector machines, gradient boosted trees and artificial neural 

networks. 

1.2.3.3 Supervised machine learning for outcome prediction in heart failure 
with reduced ejection fraction 

Many studies utilise several different machine learning techniques in the same 

population and compare predictive performance between methods, with no 

consistent signal that one method outperforms others.77–84 Often, logistic 

regression was found to have similar performance to more complex machine 

learning models. Outcomes assessed include: all-cause mortality; response to 

cardiac resynchronisation therapy (10% increase in left ventricular ejection 

fraction at 1 year); composite of hospitalisation for heart failure and mortality; 

and readmission to hospital within 30 days of discharge.  Populations studied 

include clinical trial data, routine data collected from electronic records, and 

registry data, and the size of population ranges from a few hundred patients to 

several thousand.  Almost all include a split of the data into training and testing 

groups appropriately, but few have external validation in fresh, unconnected 

data meaning the results may not be generalisable to other populations.  The 

most common metric used to assess model performance is area under the 

receiver operating characteristic curve, generated by plotting sensitivity and 

specificity at different thresholds, equivalent to the C-statistic in a binary 

outcome. 

1.2.3.4 Supervised machine learning for outcome prediction in heart failure 
with preserved ejection fraction 

Similar approaches have been taken for prediction of outcome in patients with 

heart failure and preserved ejection fraction.45,85–87 Populations were primarily 

patients in clinical trial data, with outcomes examined including composite of 

heart failure hospitalisation or mortality. There were much fewer studies in this 

area, but in one analysis of data from patients enrolled in the TOPCAT trial, 

random forest was found to be the best performing model for all-cause mortality 
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and heart failure hospitalisation, with modest C statistics (0.72 and 0.76 

respectively). 

1.2.3.5 Supervised machine learning for outcome prediction in heart failure 
with mixed or unspecified ejection fraction 

The majority of studies examining risk prediction using machine learning 

methods either do not specify whether the population had preserved or reduced 

ejection fraction or include a mixture of both.38,88–120  This is particularly 

common when data has been extracted from routine data collected in electronic 

records, where ejection fraction may not be recorded. There is not consistency 

in which method provided the best performing model across these studies, 

including whether machine learning outperformed logistic regression in 

prediction of a binary outcome.  Gradient boosting algorithms performed best in 

several analyses, but prediction performance overall remains modest.  
88,89,93,95,97,100,110–113.  In addition, not all analyses report model performance 

statistics in a separate test dataset, meaning performance measures may be 

erroneously inflated, and even fewer had external validation in another cohort 

of patients raising questions about generalisability.  

1.2.4 Summary 

Prognosis in heart failure remains challenging to quantify, despite multiple 

carefully developed risk prediction models.  There is therefore a need to try new 

techniques to explore where progress can be made to improve prognostication.  

Supervised machine learning presents an opportunity to try new more flexible 

modelling to explore whether the well-established techniques can be improved 

upon. Machine learning has become more accessible to researchers across 

different fields as programmes which require less specialist coding knowledge 

become available.  This creates the opportunity to explore the use of machine 

learning in clinical trial data in heart failure.  It should be acknowledged that 

there is a fast rise in the number of publications relating to machine learning 

techniques with similar aims in different populations and settings.  The 

complexity of analysis possible with machine learning can bring challenges in 

terms of critical analysis of results.  The most common issue is lack of external 

validation of risk models, so even those with apparent strong performance 

measures might be erroneously inflated due to overfitting in the training data 
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and lack of generalisability.  In addition, users of prediction models may be less 

comfortable with the use of machine learning due to the ‘black box’ processing 

involved, meaning we often do not know what the prognostic decision is 

dependent on.  As a general principle, a more parsimonious solution is preferred 

therefore if a simpler model has similar performance capability this would be 

the preferred option.  Despite these acknowledged issues, there is value in 

exploring these approaches further. 

Another potential data driven method to better understand the prognosis and 

treatment responses of patients is phenotyping.  Although there have been 

phenotype groups identified by different methods, one key question is 

consistency identification of groups.  Another is exploring groups in different 

clinical trial datasets to explore for any other differences in treatment effects 

across phenotype groups.  This could be explored further by looking at latent 

class analysis in the PARADIGM-HF and PARAGON-HF trials to examine both 

HFREF and HFPEF. 

We widely accept the patient trajectory as previously described, with some 

deaths occurring suddenly with other patients having repeated deteriorations in 

functional status, mainly through our clinical experience of looking after these 

patients.  However, the risk of cardiovascular death associated with clustered 

admissions has not been fully quantified and using clinical trial data we have 

accurate recordings of serial admissions and outcomes, including cause of death.  

This provides the data required to explore this further and aim to quantify the 

increased risk associated with hospitalisations. 

In conclusion, machine learning is being utilised in a variety of settings in heart 

failure care, including supervised and unsupervised techniques.  There is a large 

and growing interest in this area given the great flexibility in methods to address 

wide ranging aims. Many have found machine learning to perform better than 

other statistical approaches, but this certainly not always the case therefore 

critical review of methods and results is vital in this expanding field. 
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1.3 Aims and Objectives 

1.3.1 Aims 

Following review of the literature, the following aims were developed for this 

thesis: 

• To describe the contemporary patient journey in patients with HFREF and 

HFPEF and explore the relationship between time between HF admissions 

and risk of cardiovascular death. 

• To explore whether consistent phenotype groups can be identified using 

different latent class analysis techniques in different sets of data. 

• To explore the ability of supervised machine learning techniques to 

predict adverse outcome in HFREF. 

1.3.2 Objectives 

These aims will be explored by addressing the following objectives: 

• To use data from PARADIGM-HF and ATMOSPHERE trials to describe the 

time between adjacent HF hospitalisations in HFREF patients. 

• To use data from the PARAGON-HF trial to describe the time between 

adjacent HF hospitalisation in HFPEF patients. 

• To use time updated Cox regression models to describe how the risk of 

cardiovascular death is affected by admissions occurring at short intervals 

in both HFREF and HFPEF. 

• To develop a latent class model using data from PARADIGM-HF and 

validated in ATMOSPHERE trials for patients with HFREF and compare with 

previously identified classes. 
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• To use the same variables as prior latent class analyses in HFREF in data 

from the PARAGON-HF trial to examine if consistent groups are identified 

using two different latent class analysis (LCA) approaches. 

• To create machine learning models to predict cardiovascular death using 

data in the PARADIGM-HF trial and the variables used to create the 

PREDICT-HF prognostic model. 
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Chapter 2 Methods 

2.1 Summary of datasets 

This research made use of multiple large trials for various analyses aiming to 

explore greater personalisation of care for patients with heart failure.  In heart 

failure with reduced ejection fraction, the included trials were ATMOSPHERE and 

PARADIGM-HF.  In heart failure with preserved ejection fraction the trial was the 

Prospective Comparison of ARNI with ARB Global Outcomes in HF with Preserved 

Ejection Fraction (PARAGON-HF) trial. 

2.1.1 ATMOSPHERE 

The trial aimed to examine the effect of blockade of the renin-angiotensin-

aldosterone system using a direct renin inhibitor (aliskiren) either alone or in 

combination with an angiotensin converting enzyme (enalapril) on cardiovascular 

death or heart failure hospitalisation in patients with HFREF, with single agent 

enalapril as comparator. 

2.1.1.1 Population 

The Aliskiren Trial to Minimize OutcomeS in Patients with Heart failure 

(ATMOSPHERE) trial recruited patients globally with heart failure and reduced 

ejection fraction.121 Patients were recruited in 41 countries in around 800 

centres.  The protocol was developed by the Executive Committee of the trial 

with collaboration with clinical scientists from the sponsoring company Novartis.  

Approval was granted from Ethic Review Committees at each participating 

centre and all patients provided written informed consent. 

Inclusion criteria for the trial where outpatients with: New York Heart 

Association class II-IV symptoms; age over 18 years; left ventricular ejection 

fraction of ≤ 35%; elevation of natriuretic peptide levels (BNP ≥150pg/ml or NT-

proBNP >600pg/ml at screening visit OR BNP ≥100pg/ml or NT-proBNP >400pg/ml 

with an unplanned hospitalisation for heart failure within the preceding 12 

months); be on a stable dose of ACE inhibitor for at least four weeks; and beta 

blocker (unless contraindicated or not tolerated) for at least four weeks. 
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Exclusion criteria included: history of hypersensitivity or allergy to the trial drug 

or other ACE inhibitors; patients on both angiotensin receptor blocker and 

aldosterone antagonist in addition to trial drug; current decompensation of heart 

failure; symptomatic hypotension or blood pressure less than 95mmHg systolic at 

baseline; recent (within 3 month) acute coronary syndrome, stroke, transient 

ischaemic attack, vascular surgery, percutaneous coronary intervention; 

coronary or carotid disease likely to need intervention within six months; right 

heart failure due to severe pulmonary disease; previous peripartum or 

chemotherapy induced cardiomyopathy; certain history of cardiac arrhythmias; 

recent implantation of cardiac resynchronisation therapy; significant valve 

disease; elevated serum potassium; chronic use of NSAIDS; current use of 

cyclosporine or itraconazole; and recent use of a direct renin inhibitor or 

intravenous vasodilators or inotropic drugs. 

2.1.1.2 Trial intervention 

There were three trial arms; enalapril alone, aliskiren alone and combination 

therapy with enalapril and aliskiren.  The trial was performed as a randomised, 

double-blind trial. 

Prior to randomisation, patients entered an active run-in period.  Patients were 

switched from their baseline ACE inhibitor to enalapril, and the dose updated to 

the maximum tolerated then aliskiren added as a combination therapy, while 

monitoring for hyperkalaemia, symptomatic hypotension, renal dysfunction or 

symptoms of postural hypotension. Randomisation to the trial drug was stratified 

based on maximum tolerated dose then further up-titration was carried out as 

tolerated. 

Follow up was event driven, with an initial plan for follow up to continue until 

2318 events. During the trial, safety concern of treatment with aliskiren in 

patients with diabetes meant diabetic patients were switched to conventional 

therapy during the trial.122,123 Diabetic patients were censored at the date this 

protocol amendment was carried out.  
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2.1.1.3 Analysis 

The primary outcomes of the trial were to investigate whether combination 

therapy was superior to enalapril monotherapy in delaying time to first heart 

failure hospitalisation or cardiovascular death and to investigate whether 

aliskiren monotherapy was superior or non-inferior to enalapril monotherapy. 

The primary analysis was a time to first event analysis (heart failure 

hospitalisation or cardiovascular death) using a Cox proportional hazards model.  

The model was stratified by high or low dose tolerance in run-in period and 

NYHA class, and baseline BNP was included as a covariate. 

2.1.1.4 Primary results 

8835 patients entered the run-in period, 1771 did not fulfil criteria for 

randomisation or were enrolled in sites subsequently closed due to violations of 

Good Clinical Practice guidelines.  7016 patients were randomised and included 

in the intention to treat analysis.124 The median follow up was 36.6 months. 

The overall result of the trial was neutral. There was no significance in the 

hazard of the primary outcome with combination therapy compared with 

enalapril monotherapy, with a hazard ratio of 0.93 (95% confidence interval 

0.85-1.03, p =0.17).  The hazard ratio for aliskiren monotherapy compared with 

enalapril monotherapy was 0.99 (95% confidence interval 0.90-1.10, p = 0.91 for 

superiority).  Aliskiren monotherapy did not fulfil the prespecified requirement 

for non-inferiority compared with enalapril monotherapy.  Patients randomised 

to combination therapy (compared to enalapril monotherapy) had more 

symptomatic hypotension, more renal impairment and more hyperkalaemia. 

2.1.2 PARADIGM-HF 

The Prospective comparison of ARNI with ACEI to Determine Impact on Global 

Mortality and morbidity in Heart Failure trial (PARADIGM-HF) investigated the 

addition of neprilysin inhibition to ACE inhibition in patients with heart failure 

and reduced ejection fraction.14,125 The trial was an active comparator 

(enalapril), randomised, double blind trial with patients randomised to either 
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sacubitril valsartan or enalapril. The trial was approved by ethics centres at 

each participating centre, and all patients provided written informed consent. 

2.1.2.1 Population 

The recruitment criteria for the PARADIGM-HF trial were very similar to that for 

ATMOSPHERE.  Entry criteria included: ambulant patients with New York heart 

association class II-IV symptoms; age 18 and over; LVEF ≤ 35% (originally ≤ 40% 

changed by protocol amendment); elevated BNP or NT-proBNP at the same levels 

as for ATMOSPHERE; on stable dose of ACE inhibitor or ARB for at least 4 weeks; 

on stable dose beta blocker (unless contraindicated or not tolerated) for at least 

4 weeks.125 

Exclusion criteria included: hypersensitivity to the trial drug or similar classes of 

drug; previous intolerance of ACE inhibitor or ARB at recommended target doses; 

history of angioedema; acute decompensated heart failure; symptomatic 

hypotension; reduced estimated glomerular filtration rate to < 

30mL/min/1.73m2; elevated serum potassium; acute coronary syndrome, stroke, 

transient ischaemic attack, major cardiovascular surgery, percutaneous coronary 

intervention or carotid angioplasty within 3 months; coronary or carotid disease 

likely to require intervention within six months; left ventricular assist device or 

heart transplantation; severe pulmonary disease; peri-partum or chemotherapy 

induced cardiomyopathy; certain ventricular arrhythmias; significant valvular 

disease; diseases altering absorption, distribution, metabolism or excretion of 

trial drug; or presence of other disease with life expectancy expected to be less 

than 5 years. 

2.1.2.2 Trial intervention 

Prior to randomisation, patients had a single-blind run-in period to assess 

whether they were able to tolerate both trial drugs with up titration with 

monitoring for hypotension, renal dysfunction and hyperkalaemia.  Patients were 

then randomised 1:1 to sacubitril valsartan or enalapril with further up titration 

as tolerated. 
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2.1.2.3 Analysis 

The primary endpoint was to investigate the effect of sacubitril valsartan, as 

compared to active comparator enalapril, on delaying time to first heart failure 

hospitalisation or cardiovascular death.   

The trial was event driven and was stopped early by the data safety and 

monitoring committee due to overwhelming evidence of benefit with sacubitril 

valsartan. Results were analysed by intention to treat principle.  Time to event 

data was analysed using Kaplan-Meier estimates and Cox proportional hazard 

models. 

2.1.2.4 Primary results 

In total, 10521 patients entered the run-in period, 2079 did not fulfil criteria for 

randomisation, another 43 were erroneously randomised or recruited in sites 

closed for violation of Good Clinical Practice guidelines.  In total 4187 patients 

were randomised to receive sacubitril valsartan and 4212 to receive enalapril.  

The median follow up was 27 months. 

The primary result of the PARADIGM-HF was positive. The hazard ratio for the 

primary composite outcome of time to first heart failure hospitalisation or 

cardiovascular death for sacubitril valsartan as compared to enalapril was 0.80 

(95% confidence interval 0.73-0.87, p <0.001).  There were no safety concerns.  

Less patients randomised to sacubitril valsartan stopped the trial medication.  

Symptomatic hypotension was more common with sacubitril valsartan, but this 

did not lead to an excess in trial drug discontinuation. Renal dysfunction was less 

common with sacubitril valsartan. 

2.1.3 PARAGON-HF 

The PARAGON-HF trial investigated the addition of neprilysin inhibition to 

angiotensin receptor blockade in patients with heart failure with preserved 

ejection fraction.29 There were similarities in trial design with PARADIGM-HF for 

patients with HFREF.  PARAGON-HF was a randomised, double-blind, active 

controlled event driven trial comparing effect of sacubitril valsartan with 
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valsartan on heart failure hospitalisation or cardiovascular death in patients with 

HFPEF. 

2.1.3.1 Population 

Inclusion criteria for the trial included: age of 50 years or over; left ventricular 

ejection fraction of ≥ 45%; New York heart association functional class II-IV; on 

diuretic therapy for at least 30 days prior to screening; elevation of natriuretic 

peptides (>200 pg/ml if patient had been hospitalised for heart failure in the last 

9 months or >300 pg/ml if no recent hospitalisation, triple these values if the 

patient was in atrial fibrillation); and evidence of structural heart disease 

including left ventricular hypertrophy or left atrial enlargement. 126 

Exclusion criteria included prior left ventricular ejection fraction of <40%; any 

alternative diagnosis that may explain the patient’s symptoms and systolic blood 

pressure of <100 mmHg or ≥180mmHg (or >150mmHg unless on three 

antihypertensive medications). 

2.1.3.2 Trial intervention 

Patients had a pre-trial single blind run-in period to assess ability to tolerate 

both trial medications with up titration, with monitoring of systolic blood 

pressure, renal function, and potassium levels.  Patients were then randomised 

1:1 to either sacubitril valsartan or valsartan and followed up until a target 

number of events occurred or 26 months after randomisation of the last patient, 

whichever occurred later. 

2.1.3.3 Analysis 

The primary outcome was the effect of sacubitril valsartan as compared to 

valsartan on rate of hospitalisation for heart failure (total events- first and 

recurrent) and cardiovascular death.  To model recurrent events, a semi-

parametric proportional rates model (the LWYY method) was used.127 
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2.1.3.4 Primary results 

A total of 4822 patients were randomised to receive either sacubitril valsartan or 

valsartan, with 26 patients excluded from analysis due to sites with violations of 

Good Clinical Practice guidelines. 

PARAGON-HF was a neutral trial.  The rate ratio for the primary composite 

outcome of total heart failure hospitalisation and cardiovascular death was 0.87 

(95% confidence interval 0.75-1.01, p = 0.06).29 

2.2 Analysis of the patient journey 

For this analysis examining time between admissions, data from PARADIGM-HF 

and ATMOSPHERE trials were included to examine HFREF, and data from 

PARAGON-HF to examine HFPEF.   

2.2.1 Identification of in trial hospitalisations 

Dates of admission to hospital for worsening heart failure were extracted from 

the trial data.  HF hospitalisations from the PARADIGM-HF trial and PARAGON-HF 

trial were adjudicated by a clinical events committee according to standardised 

definitions.128 Hospitalisations on the same day as the patient died were 

excluded. In PARAGON-HF, non-HF hospitalisations were also analysed, 

information about these was collected at each trial visit but events were not 

adjudicated. 

2.2.2 Statistical analysis 

2.2.2.1 Descriptive statistics 

Baseline characteristics were compared between patients with no HF 

hospitalisation, one HF hospitalisation and two or more HF hospitalisations.  

Normally disturbed continuous variables were summarised using mean and 

standard deviation, non-normally distributed continuous variables were 

summarised using median and interquartile range and categorical variables were 

summarised by counts and percentages.  Differences between groups were 

examined using ANOVA for continuous variables, chi-square test for categorical 

variables and Kruskal-Wallis for non-normally distributed continuous variables. 
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2.2.2.2 Survival analysis and time-updating variables 

This analysis was based on survival analysis techniques; therefore, an overview 

of the statistical approaches is presented here. 

Survival analysis includes data on the amount of time each patient is observed in 

the trial, ending with either the event of interest or a censoring event. This 

includes more data than simply including whether the event of interest occurred 

at any point.  Data of this structure is often called survival data, or time-to-

event data.129 Censoring is a key component of survival analysis and marks the 

end of the follow up time where the event of interest has not occurred, or the 

patient is no longer followed up for another reason.  The censoring event may be 

the end of trial follow up, loss to follow up or withdrawing of consent.  This type 

of censoring is “right-censoring”. These patients do not provide information 

about when the event occurs as follow up ended before the event could be 

observed, but still provide useful information for the time they are involved in 

the trial without experiencing an event. 

The survival function [S(t)] is given as the probability of a patient being event 

free at follow up time (t).  The Kaplan-Meier (KM) estimate is commonly used to 

estimate the survival function and to display this graphically.  The survival 

function can be expressed as: 

𝑆(𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑠𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔	𝑙𝑜𝑛𝑔𝑒𝑟	𝑡ℎ𝑎𝑛	𝑡

𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑠𝑡𝑢𝑑𝑖𝑒𝑑  

This formula only includes patients who are uncensored, or at risk, at time t.  

The hazard function is another important concept in survival analysis, which 

gives the instantaneous rate of occurrence of event of interest in patients still at 

risk of the event at time t, which is commonly derived from the Cox proportional 

hazards regression model.129 The underlying assumption of this model is that 

baseline hazard remains consistent over time and allows covariates in the model 

to influence the hazard.  Each covariate in the model has a corresponding 

coefficient which describes the relationship between the covariate and the 

hazard of event.    
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The formula can be expressed as: 

ℎ(𝑡) = ℎ0(𝑡)exp	(b𝑋) 

where h0 is the baseline hazard, b is the coefficient and X is a covariate. The 

hazard ratio (HR) for a covariate is calculated by the exponentiation of the b 

coefficient.  This means the HR from a Cox regression model can be interpreted 

as the extent by which a covariate is associated with the rate of the outcome of 

interest, holding other covariates constant.  A HR of 1 denotes no association 

between the covariate and rate of outcome, a HR <1 denotes a reduction in rate 

of the outcome associated with the covariate and a HR >1 denotes an increase in 

rate of the outcome associated with the covariate.  

In most Cox-regression models, the value of the covariate of interest is included 

as the value measured at baseline, be that as a continuous value (e.g., the level 

of a biomarker at baseline) or as a categorical variable (e.g., presence or 

absence of diabetes at baseline).  However, clearly these values can change over 

time, which is where time updating covariable analysis can be used for more 

accurate modelling.  This is the method used in this analysis to examine the 

effect of number of days between HF hospitalisation and risk of cardiovascular 

death. 

Time varying covariates can be used in several different ways.  At a simple level, 

a binary variable can be used to signify the development of a feature of interest, 

such as a comorbidity, during the course of follow up.  Each person in the 

analysis has the follow up time split into before the development of the feature 

of interest, and the period after the feature develops (if that patient does 

develop that feature).  The association between development of the feature of 

interest and the outcome in the time to event analysis can be described. 

Another way in which this method can be used is as a continually updating 

variable.  An example may be results from a blood test that is measured 

repeatedly through follow up.  A time updating covariable can change at each 

visit date to the new recording of the blood test.  This approach was used to 

include the number of days between hospital admissions as a time updating 

variable in a Cox regression model.  The time updating variable started as the 
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value of the number of days between the first hospitalisation and second, giving 

a value for baseline risk.  This was heavily influenced by how long before 

randomisation the first hospitalisation took place, giving a reflection of how 

stable the patient was.  At each subsequent hospitalisation, the value for the 

variable updated to be the number of days from the prior hospitalisation to the 

current admission.  Patients with zero or one heart failure hospitalisations could 

not be included in this analysis as it is not possible to assign an appropriate 

baseline value for the variable.  Further details are given in additional methods 

in Chapter 3. 

2.3 Latent class analysis (unsupervised machine 
learning) 

Latent class analysis (LCA) is a form of unsupervised machine learning, meaning 

the aim is to find patterns within the data without the data being labelled with 

an outcome.  More specifically, latent class analysis aims to divide data in 

subgroups, called latent classes, which describe an unobserved and unmeasured 

construct in the data.  In this context, the latent construct being investigated is 

the phenotype of patients with heart failure.  Latent class analysis can be 

viewed as a form of cluster analysis. 

As the data is not prelabelled with a phenotype group, and the underlying 

construct of the phenotype group is not known, we assume variables included in 

the data (for example age, sex or presence of comorbidity) reflect the 

underlying latent class construct.  A visual summary of this concept is given in 

Figure 2-1.  These variables can be used as indicators to which latent class group 

the data belongs too.  As there is a degree of measurement error, the true class 

membership remains unknown and data is allocated to the best fitting latent 

class group.  Patients can only be allocated to one latent class, and all data 

measurements are included in a latent class. 
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Figure 2-1. Visual illustration of underlying concept of latent class analysis 
A visual description of the unobserved latent class influencing other variables that can be 
used to define and describe the underlying latent class. 

 

The solution to a latent class analysis includes two main components.  The first 

is the latent class prevalences, or the probability of membership in each class.  

This is sometimes known as the gamma parameter and gives an indication of the 

size of each latent class subgroup.  The second set of parameters are the 

probability of reporting an indicator variable based on membership of that class, 

called item-response probabilities.  For example, class A may report a 90% 

probability of reporting female sex while class B might report a 5% probability of 

reporting female sex. 

2.3.1 LCA with categorical indicator variables 

Latent class analysis uses categorical indicator variables to build the latent class 

construct.  This is in contrast to latent profile analysis, which can be used to 

describe latent class models using continuous indicator variables.  I will use the 

language latent class analysis to include both types of indicator variables and 

will specify the type of variables utilised in each analysis.  Given latent class 

with categorical indicators is the most established, I will discuss this technique 

first. 

Analyses of latent class groups was carried out using Stata software (StataCorp. 

2021. Stata Statistical Software: Release 17. College Station, TX: StataCorp 

LLC).  Latent class analysis using categorical indicator variables was carried out 

using the LCA Stata Plugin from Penn State university.130  

HF 
phenotype

Blood 
pressure Age Sex Co-morbidity
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When the included indicator variables are categorical variables, the item 

response probabilities for each indicator will be a probability between 0 and 1, 

giving the probability that a person belonging to that latent class will report that 

indicator variable.  An item response probability near 1 can be interpreted that 

persons belonging to that group are very likely to report that indicator variable, 

whereas near 0 means they are very unlikely to report the indicator variable.   

Item response parameters close to the extremes indicate that the variable is 

strongly related to the latent class subgroup and is useful in discriminating 

between classes to create highly homogenous subgroups.  A variable with 

middling item response parameters is less useful in discriminating between 

groups and can lead to groups with lower homogeneity. 

Another important concept is the degree of separation between latent classes.  

Latent classes are highly separated if they have high or low item response 

probabilities in different indicator variables, essentially suggesting different 

indicator variables are strongly associated with each underlying latent class. 

2.3.2 LCA with continuous indicator variables 

Analysis using a mixture of continuous and categorical variables was completed 

using the inbuilt generalised structural equation modelling capabilities of Stata.  

Item response parameters for continuous variables are given as the expected 

mean value in each LCA subgroup.  To avoid issues with differing scales of 

continuous variables, each was standardised to a mean of zero and standard 

deviation of one prior to entering the model.  The parameter means are allowed 

to vary across different LCA subgroups.  If there is difficulty in model 

identification, variances can be constrained to be equal across the subgroups, 

greatly lessening the number of ‘unknowns’ in the model; this approach is the 

default in Stata inbuilt programming. 

2.3.3 Determining the optimum number of LCA groups 

With latent class analysis, the first problem is identifying the number of 

subgroups which best fit and describe the data, with the number of classes being 

unknown at the start of the analysis.  Often there is not a clearly defined best 
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fitting model, and several aspects of the model need to be considered and a 

decision made as to which model to present. 

The most important attribute in accurately describing the latent construct of 

LCA subgroups is selection of appropriate indicator variables that give a strong 

reflection of the underlying subgroups.  In this context, variables for each 

analysis were selected clinically as factors that are known to affect prognosis, or 

that are clinically used to separate important subgroups (such as ischaemic 

aetiology of heart failure).  In the analysis of latent class subgroups in HFPEF, 

variables were selected that had been used in prior LCA analyses and results 

compared with the analysis carried out in a different population and using 

different LCA techniques, namely continuous and categorised variables. 

Firstly, latent class models with a range of number of subgroups (2 to 7) are fit, 

and model fit criteria compared.  Each LCA model is fit using maximum 

likelihood estimation.  The likelihood function gives the likelihood of the 

observed data given the model being fit as a function of all parameter 

estimates.  The best parameter estimates are those which maximise the 

likelihood.  Problems with under-identification of the model can occur if the 

number of ‘unknown’ parameters that are to be estimated come close to or 

exceed the numbers of ‘knowns’ i.e., the data itself.  Therefore, under-

identification becomes more problematic with greater number of indicator 

variables or greater number of latent classes as both of these increase the 

number of parameters to be estimated. 

2.3.3.1 Relative model fit 

Although methods exist to examine absolute model fit in some cases of latent 

class analysis, this is not available when continuous variables are included in the 

programming languages utilised for this analysis.  Therefore, model fit criteria 

were assessed in terms of relative model fit to compare LCA models with 

differing number of latent classes to inform which best described the data. 

Information criteria were used to describe the models.  Both Akaike information 

criteria (AIC) and Bayesian information criteria (BIC) were considered.  

Information criteria use penalised log-likelihood, which adds a penalty for 
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increasing complexity of the models to find a balance between model fit and 

parsimony.  Models with smaller AIC or BIC indicate better model fit. 

In models containing only categorical indicator variables, it is not uncommon 

that a clear minimum of the information criteria is seen, then both increase 

again with increasing number of LCA classes.  When continuous variables are 

included, commonly the information criteria will continue to fall with increasing 

number of latent classes, however at a point increasing number of latent classes 

will only provide small decreases in information criteria.  In these instances, a 

judgement can be made, for better model parsimony, where increased number 

of classes does not result in significant improvement in information criteria and 

this number of classes can be selected.  An illustration is given in Figure 2-2. 

Figure 2-2. BIC to identify appropriate number of latent class groups 
An example of information criteria for latent class models with increasing number of 
subgroups.  Although BIC continues to fall with increasing number of classes, there is only 
marginal improvement after 4 classes.  Therefore, for model parsimony a 4-class solution 
may be selected. 

 
 
2.3.3.2 Multiple starting seeds 

One indication of lack of identification of the model is that different starting 

estimates for parameters lead to different model solutions, with differing 

likelihoods.  This suggests the model solution is finding differing local minima, 

meaning the model result is less reliable as it does not consistently come to the 

same global minimum solution.  The Penn State university program reports the 

percentage of 100 random starting seeds that come to the same solution which 
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can be used to inform the best model selection. There is no specific cut-off for 

the percentage of seeds coming to the same solution to be satisfied that the 

solution is stable but should be a factor of the decision of the number of latent 

classes. 

2.3.3.3 Proportion of patients assigned to each class 

A key output from the latent class model is the proportion of the data assigned 

to each latent class, or the gamma parameter.  A group of too small a size, for 

example <5% of the population, is unlikely to be a genuine group of interest and 

LCA solutions with very small latent classes can be rejected.  However, this is 

not an absolute rule, and if a smaller class is associated with a model with good 

fit statistical criteria and the small group is conceptually plausible the result can 

be accepted.  

2.3.3.4 Entropy 

Entropy is a measure of how well classes are delineated and gives a value 

between zero and one.  Values approaching one indicate a clear delineation of 

latent classes.131  Entropy should not be used to choose the solution to the latent 

class problem, but when a solution is identified from information criteria, latent 

class size and stability of solution entropy can be used to further evaluate the 

model.  It is a simple measure of how easy it is to tell the latent subgroups apart 

from each other.  A model can perform well statistically but still have a 

relatively low (poor) entropy and can be partly viewed as a measurement of how 

well indicators define the latent class groups.  At lower entropy, the confidence 

in which patients can be allocated to the most likely LCA subgroup using modal 

probability, falls.  In general, an entropy level of >0.8 is considered to be good, 

and entropy <0.6 indicates some difficulty in separating the latent class 

groups.132 

Another way to examine certainty of class membership, and how well the classes 

are delineated, is to examine the mean posterior probability of class 

membership for each class.  For example, for patients allocated to class A, 

examine the mean posterior probability of membership of class A, B, C and D.  A 

good solution would have a high average posterior probability for class A (i.e., 



Chapter 2  57 
 
close to 1) and low posterior probability for other class membership (i.e., close 

to 0).  This would support clear delineation between classes. 

2.3.3.5 Allocating patient to most likely LCA group 

The probability of an individual belonging to each latent class can be calculated 

using Bayes theorem using the combination of the parameter estimates for each 

LCA class and the individual responses to the indicator variables. The probability 

of membership on each class is calculated, termed the posterior probability, and 

the patient allocated to the class with the highest posterior probability. 

2.3.3.6 Describing the latent class analysis solution 

Once the final parameters have been determined by evaluating the aspects of 

the model as described above, these parameters can be used to describe the 

groups.  The most descriptive indicator variables were highlighted for each 

parameter estimate, for example categorical indicators with values closest to 

zero and one.  These form the basis by which to describe each latent class model 

in a human-readable way. 

Further descriptive statistics for variables not included in the construction of the 

latent class groups can be summarised by assigning each patient to the most 

likely latent class and describing using percentages or mean and median as 

appropriate, with comparison between groups using tests such as chi-square or 

ANOVA.  However, it is important to recognise this modal probability assignment 

does not account for the uncertainty of class membership therefore may not 

describe the group accurately. 

2.3.4 Distal outcomes in LCA groups 

Once LCA groups have been defined, examining outcomes in each latent class 

group is of interest.  The simplest approach is to allocate each patient to the 

latent class they are most likely to belong to, then use the latent class variable 

in a Cox time to event analysis.  Benefits of this approach include the ability to 

perform a time to event analysis.  The main disadvantage to the approach is the 

degree of uncertainty of class membership is lost when the patient is allocated 

to their most likely latent class, meaning some relationships between latent 
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class group and outcome can be lost. For example, a patient with a 90% 

probability of belonging to the latent class contributes the same amount of data 

as someone with less certain class membership, for example 60%.  A relationship 

between the latent class and outcome can be lost due to this uncertainty in class 

membership. This approach is known as maximum probability assignment, or 

modal probability assignment. 

Another approach to prediction of a distal outcome is to account for 

classification error using specialised weights, often termed the “BCH” approach.  

This can be implemented in Stata using the Penn State plugin, which means the 

approach is limited to categorical indicator variables.  The outcome of interest 

is analysed using logistic regression, and time to event analyses are not possible. 

In my analysis, I focus on modal probability assignment and Cox regression for 

time to event analysis, accepting this is a conservative approach and some 

relationships between the latent class group and outcome may be lost due to 

uncertainty in class membership.  However, this approach is applicable in 

analyses using continuous and categorical indicator variables in the software I 

have available, and benefits from time to event analysis rather than logistic 

regression for the outcome of interest. 

2.4 Supervised machine learning 

Supervised machine learning uses data with a known label, or outcome, and aims 

to map the input variables, or features, to the known outcome.  An example 

might be chest x-ray images as an input with an attached known diagnosis as the 

output.  The machine learning algorithm could then be trained to predict the 

diagnosis by learning patterns in the input images. Another example could be 

data regarding a patient with heart failure, such as age, sex, laboratory results 

and echocardiography parameters, with the outcome being mortality at two 

years of follow up.  A machine learning model could be trained to predict the 

probability of mortality and could also be used to try and understand 

relationships between predictor features and the output (mortality). 

Ultimately, the aim of all prediction models is to take readily available inputs 

(or variables) and use them in a function to generate an output, in the case of 
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risk prediction models the probability of adverse outcome.  The true function 

relating the inputs to outputs is unknown and the prediction model aims to 

estimate the true function using the observed data.  The observed data includes 

random error and may not include all important variables (for example, some 

aspect of the patient’s physiology that has not been [or cannot be] measured), 

therefore a prediction model can never fully estimate the true function. 

This is closely related to the concept of over-fitting.  If a model becomes 

overfit, it may be able to predict outcome very accurately in the data used to 

develop the model as it has been fit to the underlying true function and the 

random error incorporated in the data.  As a result, performance statistics may 

appear extremely positive when evaluated in the training data, but when the 

model is applied to fresh data model performance declines.  Overfitting is a 

particular hazard in machine learning where the high degree of flexibility needs 

to be controlled to create a generalisable model. 

2.4.1 Common supervised learning techniques used for 
prediction of outcome 

In machine learning methods for event prediction, generally the outcome is a 

binary (i.e., event or no event at 1 year follow up) and the methods utilised are 

therefore classification models.  The alternative is regression models, where the 

outcome is a numeric value (a simple example of this might be prediction of 

weight given inputs of height, sex and physical activity level).  This can be 

contrasted with survival model, where time to event as well as event occurrence 

or censoring is modelled.  General principles of each machine learning method 

used in this research is given in turn. 

Logistic regression 

Logistic regression is an extension of a linear regression which gives a probability 

of the outcome lying in each classification (i.e., probability of event or no event 

with “event” coded as 1 and “no event” coded as 0). Multiple linear regression 

gives a numerical output based on the equation: 

  Y = β0 + β1A + β2B + β3C … 
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where Y is the output, β0 is the constant, A, B and C are input variables or 

predictors and β1-3 are coefficients for each predictor.  The output is a numeric 

value. The formula for a logistic regression model, giving the probability of a 

binary outcome, is: 

 p = exp(β0 + β1A + β2B + β3C …) 

where p is the probability of the outcome.  The output of this model is a 

value between 0 and 1 for the probability of “event”.  Usually, probability of 0.5 

or above would be classified as “event” and below 0.5 be classified as “no 

event”, however this threshold can be altered depending on the relative 

importance of false positives and false negatives in the context of the model. 

Penalised logistic regression 

Penalised regression techniques aim to penalise a model for high numbers of 

predictor variables.  This can be desirable to lessen the impact of variables that 

have large variances or are highly correlated, or to lessen the number of 

predictors to make an easier to interpret and use model.  These models include 

a regularisation parameter which controls the relationship between model fit 

and the penalty term.  There are different functions that can be used for 

regularisation.  In ridge regression, regression coefficients further from 0 are 

penalised favouring smaller coefficients, known as shrinkage.  Coefficients can 

approach zero but can never be shrunk to zero.  Lasso regression is similar but 

uses a different penalty function which will allow coefficients to be shrunk to 

exactly 0.  Elastic net regression uses a mixture of ridge and lasso penalty 

formulas.  The optimum value of the penalty and the optimum mixture of ridge 

and lasso regression is not known prior to fitting the model and must be 

identified by tuning the model, as discussed later. 

K-nearest neighbours 

K-nearest neighbours (KNN) can be used to classify points into groups, whether 

that be binary or multiple groups.  The number of neighbours must be decided 

(k), this is usually done iteratively in a tuning process.  Each data point has a 

location within the feature space, dependent on the input variables, and has a 
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known label.  A new datapoint is analysed, if k = 5 then the classification of the 

5 nearest data points is reviewed and the datapoint allocated to the most 

commonly occurring class, defining a boundary between classifications.  A small 

value of k will lead to a very flexible decision boundary with low bias but high 

variance, and be prone to overfitting, however a very large value of k will have 

more linear decision boundaries with high bias and low variance. 

Random forest 

There are several tree-based machine learning methods, with random forests 

being a commonly used method.  Random forests are based on decision trees, 

which include multiple decision points which ultimately will allocate a patient to 

the most likely class, as illustrated simply in Figure 2-3. 

Figure 2-3. Example decision tree 
A simplified illustration of a decision tree. 

 

An issue with using a single decision tree is there is a large amount of variance 

depending on which sample of data is used to grow the decision tree.  For 

example, if the data were split in half and a tree grown using data in each half, 

the resultant trees are likely to be very different from each other.  There are 

several ways to circumvent this issue, including bootstrap aggregation.  In this 

method, multiple bootstrap samples (multiple samples of data taken from the 

master data with resampling) are generated then decision trees grown in each, 
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with the final output being an average of all the bootstrapped trees.  Taking an 

average result like this reduces variance. 

Random forests are a further development on bagged trees.  Again, multiple 

trees are grown, the primary difference being only a limited selection of 

predictors are considered at each split in the decision tree, the number of which 

is a tuneable parameter.  If there is a strong predictor and for every tree all 

predictors are considered, the strong predictor will decide an early split in all 

the decision trees, resulting in highly correlated trees.  By controlling the 

number of predictors considered at each split, this problem is reduced and there 

is less correlation between trees, resulting in less variable predictions. 

Random forests have several benefits in that they do not require data pre-

processing (such as normalising continuous variables to a mean of zero and 

standard deviation of one) and are not prone to overfitting. 

Gradient boosting 

Gradient boosted trees are a further development on random forests, where the 

result of each tree depends on the results of the trees grown prior and is 

classified as an ensemble method.  In essence, many weakly performing trees 

are combined in an iterative fashion, with each iteration trying to improve on 

the performance of the previous model under regulation of the loss function. 

This method can often out-perform random forests. 

Artificial neural network 

Artificial neural networks (ANN) aim to mimic the function of a neuron in the 

nervous system.  There are several inputs to the perceptron (the computational 

neuron) and an activation function, these are processed in the perceptron and 

an output generated with an output transformation dependent on whether it is a 

classification or regression problem.  Neural networks can have several layers (or 

“hidden layers”) of perceptrons, in this research single layer neural networks are 

utilised.  To prevent overfitting, a penalty term is applied, usually termed back-

propagation in ANN.  ANN are very flexible and can derive complex relationships 

in a model with high numbers of input variables, making them a valuable tool.   
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2.4.2 Outcome 

In the analysis of data from the PARADIGM-HF trial, the outcome of interest is 

cardiovascular death at 2 years follow up to allow comparison with the PREDICT-

HF model.  Cardiovascular death is a relevant outcome in heart failure, occurs 

commonly enough to model and is modifiable by various treatments.  The 

machine learning methods utilised, namely penalised logistic regression, random 

forest, gradient boosted trees and a single layer neural network, aim to predict 

a binary outcome i.e., presence or absence of the adverse outcome.  Therefore, 

all models were classification models, rather than regression. To increase 

interpretability, and relevance in the clinical setting, the occurrence of each 

outcome was calculated after set times of follow up rather than whether the 

outcome occurred at all during the trial.  The predicted risk of experiencing an 

outcome at one year or five years rather than over the median trial follow up is 

easier to interpret for the physician and patient. 

2.4.3 Training and test data 

Supervised machine learning techniques use the input variables to learn to 

predict the labelled output or seek to infer information about the relationships 

between the input features and the output.  Machine learning techniques have 

advantages in behaving flexibly without the required constraints of some 

statistical analysis techniques. This has clear benefits, however, can also have 

negative implications.  Any machine learning method is trying to define a 

function that transforms the input to the output.  However, the true underlying 

data which is used to define the function also includes an unknown amount of 

error.  Therefore, an algorithm trained on the data can also flexibly model 

including the degree of error, and ultimately be over-fit to the training data.  

This can be reflected in over-optimistic estimates of model performance if this is 

evaluated in the same data on which the algorithm was trained.  A core 

component of any supervised machine learning technique is once the method is 

optimised in the training data, best practice is that it be applied to unseen 

“test” data and model performance evaluated in this analysis. 

For each type of model, the same train/test split was used.  An 80:20 split was 

used for training and testing data.  The split in data was stratified by the 
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outcome variable of interest to ensure there was an equal spread of positive and 

negative cases in the test and train data.  The same training and test split was 

used for all model development. 

2.4.4 Hyperparameter tuning 

Each machine learning method has different hyperparameters which control an 

aspect of how the machine learning algorithm works.  For example, in a random 

forest classification supervised learning problem, one hyperparameter is 

deciding the minimum number of data points to be included in a terminal node.  

If this is too small, the model would be prone to overfitting.  If too large, the 

model will not discriminate well between different outputs as many observations 

are included together in the terminal node.  The optimum value for these 

parameters then needs to be searched for by repeatedly running the algorithm 

and assessing model performance using cross-validated or bootstrapped samples 

of data.  Once the optimum parameters which give the best model performance 

are identified, these are applied to create the final model.  Machine learning 

packages provide helper functions to generate a range of possible 

hyperparameter combinations and iteratively assess each. Regular grids were 

used initially for exploration with further evaluation of models carried out using 

space filling grids generated using a maximum entropy design with 20 candidate 

values. 

Ten-fold cross validation was used to tune hyperparameters.  Ten subgroups of 

the training data are formed.  Different values for the hyperparameters are used 

to train models in nine of the samples, using the last sample to test the model 

and provide model performance measures.  This is repeated iteratively, with the 

fold used to assess model performance changing at each iteration (Figure 2-4). 
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Figure 2-4. Five fold cross validation 
A simplified diagram illustrating fivefold cross validation used for hyperparameter tuning in 
machine learning models.  The model is trained in 4 folds of the data, and model 
performance assessed in the other fold.  The testing fold changes with each iteration.   
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2.4.5 Assessment of model performance 

Classification analysis is interested in mapping the input features to a 

categorical or binary output variable.  Analysis of model performance can use 

metrics including accuracy, sensitivity and specificity.  Sensitivity and specificity 

can be displayed succinctly in the confusion matrix.  Firstly, the algorithm is 

applied to new data, and the predicted classification is compared to the true 

classification. 

Accuracy is simply the percentage of predictions that are in the correct 

category, with a higher accuracy (closer to 100) indicating better model 

performance.  Accuracy is less reliable if the outcome is imbalanced, for 

example if the number of “Yes” responses greatly outnumber the number of 

“No” responses.  Even if the model predicted every outcome as “Yes”, which is 

clearly a very poorly performing model, the accuracy for the prediction of “Yes” 

would still be very high, given at baseline many more of the correct responses 

are yes. 

A confusion matrix compares the true responses with the predictions from the 

model (Figure 2-5).  From this, sensitivity and specificity can be calculated.  

Sensitivity, or the true positive rate, is the rate that the event of interest is 

correctly predicted calculated as; 

true positive / (true positive + false negative) 
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Specificity, or true negative rate, is the rate at which non-events are correctly 

predicted, given as; 

true negative / (true negative + false positive) 

A very well performing model would have both sensitivity and specificity 

approaching 1.  

Figure 2-5. Confusion matrix 
An example of a confusion matrix.  The true classification is compared with the predictions 
from the model.  Sensitivity and specificity can be calculated from the confusion matrix. 

 Truth 

Prediction No Yes 

No True negative False negative 

Yes False positive True positive 

 

Model discrimination is a measure of how well the model is able to separate 

patients who have an event from those who did not.  This is commonly described 

using the concordance (C) statistic for binary outcomes.  A value of 0.5 equates 

to a model no better at discrimination than a 50:50 “play of chance”, and a 

value of 1 equates to perfect discrimination.  For a binary outcome, the C 

statistic equates to the area under the receiver operating characteristic curve 

(ROC AUC).  The ROC AUC is plotted as the sensitivity against 1-specificity over 

the range of cut points for the probability of the outcome.  An example of a ROC 

AUC is plotted in Figure 2-6.   
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Figure 2-6. Example ROC AUC plot 
An example of a ROC AUC plot.  Sensitivity is plotted on the y-axis with 1-specificity on the 
x-axis.  The area below the curve equates the ROC AUC and for a binary outcome is 
equivalent to the C statistic. 

 

 
 
2.5 Statistical software packages 

For analysis of time between heart failure hospitalisations using a time updating 

variable, Stata software (version 17) (StataCorp. 2021. Stata Statistical 

Software: Release 17. College Station, TX: StataCorp LLC) was used. 

Latent class analysis using categorical indicator variables was carried out using 

the LCA Stata Plugin from Penn State university within Stata software.130 LCA 

using mixture of categorical and continuous variables was using inbuilt Stata 

generalised structural equation modelling. 

Supervised machine learning techniques were performed using R software 

(version 4.2.1) and R studio (version 2022.07.1).133  The main packages used for 

machine learning were in the tidymodels package.134 For neural network 
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analysis, keras package using Python was utilised within R using the tidymodels 

framework. 
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Chapter 3 Identifying the features of the patient 
journey in HFREF 

3.1 Introduction 

The aim of this analysis is to explore the contemporary patient journey with 

regards recurrent heart failure hospitalisations in patients with heart failure and 

reduced ejection fraction.  The accepted trajectory is of recurrent declines, 

which might be associated with a hospitalisation for heart failure, with declines 

remaining unpredictable but occurring closer together as the patient approaches 

death with sudden death occurring at any point along the trajectory.36 The 

associated risk of cardiovascular events following discharge is increased, and 

there is a trend to be more hospitalisations toward the end of life.135,136  The 

degree of increased risk after a hospitalisation with acute heart failure can be 

difficult to quantify, and there are risk stratification tools available to 

specifically assess risk of mortality at seven days following admission to the 

emergency department.137 In addition, what is less understood is the impact of 

the proximity of adjacent hospitalisations and the degree of increased risk in the 

post hospitalisation period, therefore this analysis aims to address this question. 

Another aspect of this issue is the type of death that is more common after a 

hospitalisation.  Cardiovascular death is a common cause of death in patients 

with heart failure, particularly those with HFREF and lower ejection fraction, 

and sudden death accounts for a large proportion of these deaths.138,139 

Established treatments for heart failure reduce cardiovascular mortality and 

specifically sudden cardiac deaths.140–142 This is reflected in the finding that rates 

of sudden death in patients with heart failure enrolled in clinical trials as 

continued to decline over time.143 It would therefore be interesting to look at 

the patterns of repeated hospitalisations and in patients with different modes of 

death to examine whether sudden deaths are truly ‘sudden’ or if a relationship 

between hospitalisations and sudden death becomes apparent.  This could have 

implications in treatment choices for patients, particularly device therapies. 

This analysis aims to explore these issues using contemporary, geographically 

diverse data from clinical trials and explore the associated risk of cardiovascular 
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death with admissions which are close together chronologically.  The data 

utilised is from the PARADIGM-HF and ATMOSPHERE studies. 

3.2 Methods 

3.2.1 Identification of hospitalisations, worsening outpatient 
events and patient reported symptom scores 

3.2.1.1 In trial heart failure hospitalisations 

Information on in-trial HF hospitalisations (HFH) was extracted from adjudicated 

endpoints and hospitalisation records. Hospitalisations where the patient died on 

the same day as admission were excluded. Discharge date was imputed if not 

available using the average days of hospitalisation per region as per the trial 

statistical analysis plan. Other causes of hospitalisation were not recorded as a 

trial endpoint therefore the focus in this analysis is on HF hospitalisation only.  

The main outcome examined was CV death with breakdown of different causes 

of death (pump failure, sudden and other CV deaths).  Secondary outcomes 

considered are all cause mortality and non-CV mortality. 

In a sensitivity analysis, HFH where the patient did not survive to discharge were 

excluded, regardless of length of admission. 

3.2.1.2 In trial outpatient worsening events 

To further enrich the data, in trial outpatient worsening events were added to 

the hospitalisation data.  These were defined as an emergency room visit for HF 

or intravenous (IV) treatment for heart failure. 

3.2.1.3 Pre-trial hospitalisation 

Patients in both trials had date of most recent HFH before enrolment recorded 

at screening.  To facilitate analysis of time between admissions, date of prior 

HFH were added to in-trial HFH if recorded with sufficient accuracy (i.e., day, 

month and year) as well as hospitalisations occurring between screening and 

randomisation. In the analysis of time between admissions, patients were 

included if they had at least two heart failure hospitalisations. 
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This analysis was repeated excluding hospitalisation where the patient died 

during the admission in a sensitivity analysis. 

3.2.1.4 KCCQ 

Although declines in function are primarily assessed through marked declines 

resulting in hospitalisation in this analysis, there are also patient reported 

symptom scores measured repeatedly during study follow up that have been 

analysed to further expand and explore the trajectory of functional status, split 

by both mode of death and number of hospitalisations.   

The Kansas City Cardiomyopathy Questionnaire (KCCQ) is a self-administered 

questionnaire validated in HF with both reduced and preserved ejection fraction 

which measures quality of life over several domains including symptoms, 

physical limitations, social limitations, quality of life and self-efficacy.144–147 

Symptom burden and functional status was examined using the Kansas City 

Cardiomyopathy Questionnaire Clinical Summary Score (KCCQ-CSS).  In 

PARADIGM-HF KCCQ was measured at randomisation visit, then at 4, 8, 12, 24, 

36 and 48 months.  In ATMOSPHERE it was measured at randomisation, 4, 8, 12 

and 24 months.   

3.2.2 Statistical analysis 

3.2.2.1 In trial hospitalisations 

Patient demographics comparing patients with no HFH, 1 HFH or more than 1 HF 

hospitalisation during trial follow up were compared using ANOVA for continuous 

variables, chi square test for categorical variables and Kruskal-Wallis for non-

normally distributed continuous variables. The number of HFH per patient was 

calculated was cross tabulated with the cause of CV death.  The Lin, Wei, Ying 

and Yang (LWYY) method was used to calculate rates for recurrent HF 

hospitalisation and calculated in groups of patients with different causes of CV 

death.127 

Recurrent event plots to visualize patterns of HFH were plotted using reReg 

package in R.133 In these plots, each individual patient has a follow up time 

illustrated with a grey line.  The time at which a hospitalisation happens is 
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marked with a green circle.  At the end of follow up time, the occurrence of CV 

death is marked with a red triangle.  Due to the large number of patients 

included, the grey follow up timelines appear merged.  The density of green 

circles can be visually appreciated, as well as the pattern at which they are 

occurring.  A simplified example of 10 random patients is given in Figure 3-1. 

Figure 3-1. Example of recurrent event plot 
A recurrent event plot for 10 random patients.  Each grey line is the duration of follow up for 
one patient.  A green circle marks the timing of a heart failure hospitalisation.  If the follow 
up ends with a CV mortality, this is marked with a red triangle. 

 

In a sensitivity analysis, the above analysis was repeated excluding HFH where 

the patient died in hospital regardless of length of admission.  The above 

analysis was also repeated including outpatient worsening HF events. 

3.2.2.2 Time between admissions analysis 

Patients were included in this analysis if they had at least 2 recorded HFH 

(including previously described pre trial hospitalisations).  The median number 

of days between each HFH hospitalisation was cross tabulated with cause of CV 

death.  
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Time between admissions was examined as a time updating covariate.  Patients 

entered the analysis on the date of their second hospitalisation.  The time 

varying covariate value started as the time between first and second HFH.  At 

each HFH, the variable updated to the time between the prior admission to 

current admission.  The time updated variable was entered in a restricted cubic 

spline analysis using 5 knots in a Cox regression for cardiovascular (CV) 

mortality, all-cause mortality and non-CV mortality. 

3.2.2.3 KCCQ 

A mixed model for repeated measurement was used to examine change in KCCQ-

CSS over time (adjusted for randomized treatment, number of HF 

hospitalisations, and interaction of number of HF hospitalisations and visit, with 

a random intercept and slope per patient).   

3.3 Results 

3.3.1 In-trial heart failure hospitalisations 

Of the 15415 patients enrolled, 2518 had at least 1 hospitalisation after 

randomization and between them these 2518 participants accrued a total of 

4318 admissions. There were 2872 CV deaths which accounted for 83% of all 

deaths. Of the 2872 CV deaths, 1332 (46%) occurred suddenly, and 735 (26%) 

were due to worsening heart failure.  The maximum number of HF 

hospitalisations experienced by a patient was 18. 

Table 3-1 gives baseline demographic information for patients with no HF 

hospitalisations, 1 hospitalisation and >1 hospitalisation.  Patients with recurrent 

HFH have several differences including older age, greater proportion patients of 

black race, lower systolic BP, higher heart rate, lower ejection fraction, higher 

NT-proBNP, worse NYHA scores, greater prevalence of comorbidity including 

diabetes, atrial fibrillation and more patients had a history of HFH prior to trial 

enrolment.  More patients who had recurrent admissions were prescribed a 

diuretic and digoxin, while less were prescribed beta blockers.  More patients 

with recurrent HFH had ICDs or CRTs implanted. 
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Table 3-1. Baseline data by number of HFH (HFREF) 
Baseline demographic table by number of in follow-up heart failure hospitalisations.  
Continuous variables are expressed as mean ± standard deviation, or median [interquartile 
range], as appropriate. 

 No HFH 
N=12,897 

1 HFH 
N=1,603 

≥2 HFH 
N=915 

p-
value 

Age (years) 63.4±11.5 64.1±11.8 64.8±11.9 <0.001 
Female sex  (%) 2,897 (22.5) 317 (19.8) 143 (15.6) <0.001 
Race or ethnic group  (%)    <0.001 
   Caucasian 8,427 (65.5) 1,088 (68.2) 621 (68.5)   
   Black 421 (  3.3) 69 (  4.3) 47 (  5.2)   
   Asian 2,755 (21.4) 326 (20.4) 192 (21.2)   
   Other 1,255 (  9.8) 113 (  7.1) 47 (  5.2)   
Region (%)    <0.001 
   North America 588 (  4.6) 112 (  7.0) 79 (  8.6)   
   Latin America 2,225 (17.3) 221 (13.8) 106 (11.6)   
   Western Europe 3,193 (24.8) 454 (28.3) 255 (27.9)   
   Central Europe 4,027 (31.2) 478 (29.8) 265 (29.0)   
   Asia/Pacific 2,864 (22.2) 338 (21.1) 210 (23.0)   
Systolic blood pressure (mmHg) 122.7±16.6 121.5±17.7 120.3±17.2 <0.001 
Heart rate (beats/min) 71.8±12.1 73.1±13.0 73.4±13.0 <0.001 
Body mass index (kg/m2) 27.7±5.4 28.2±5.6 28.2±5.9 <0.001 
eGFR (mL/min/1.73m2) 33.2±40.1 37.4±39.5 39.1±38.8 <0.001 
Ischaemic cardiomyopathy (%) 6,811 (52.8) 807 (50.3) 504 (55.1)   0.057 
Left ventricular ejection fraction  
(%) 29.2±5.9 28.2±6.1 27.7±6.3 <0.001 

Median NT pro BNP (pg/ml) 
1337.0 
[739.0-
2575.0] 

1796.0 
[973.0-
3720.0] 

2168.5 
[1095.0-
4417.0] 

<0.001 

NYHA class III/IV (%) 4,427 (34.4) 675 (42.1) 405 (44.3) <0.001 
Hypertension (%) 8,562 (66.4) 1,106 (69.0) 604 (66.0)   0.10 
Diabetes (%) 3,945 (30.6) 567 (35.4) 339 (37.0) <0.001 
Atrial fibrillation (%) 4,456 (34.6) 650 (40.5) 375 (41.0) <0.001 
Hospitalisation for heart failure 
(%) 7,634 (59.2) 1,111 (69.3) 717 (78.4) <0.001 

Loop diuretic (%) 10,130 
(78.5) 1,386 (86.5) 820 (89.6) <0.001 

Digitalis (%) 2,130 (29.6) 259 (33.0) 150 (36.6)   0.002 

Beta-blocker (%) 11,955 
(92.7) 1,459 (91.0) 829 (90.6)   0.006 

Mineralocorticoid antagonist (%) 6,069 (47.1) 762 (47.5) 442 (48.3)   0.73 
Implantable cardioverter-
defibrillator (%) 985 (13.7) 166 (21.1) 92 (22.4) <0.001 

Cardiac resynchronization 
therapy (%) 720 ( 5.6) 143 ( 8.9) 104 (11.4) <0.001 

Number of HF hospitalisations 0.0 (0.0-0.0) 1.0 (1.0-1.0) 2.0 (2.0-3.0) <0.001 
CV death  (%) 1,882 (14.6) 542 (33.8) 448 (49.0) <0.001 
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The number of HFH was cross-tabulated with cause of CV death (Table 3-2 and 

Figure 3-2).  Due to small numbers of patients with more than 5 admissions these 

were combined into one category.  Of patients that die of progressive heart 

failure (“pump failure”), 77% had at least 1 HFH during trial follow up.  In 

contrast, 15% of those with sudden death had at least 1 admission, 27% of those 

with other types of CV death and 12% of those who did not have CV death.  The 

pattern was similar in a sensitivity analysis where hospitalisations where the 

patient died the same admission were excluded, however the proportion of 

patients with pump failure death who had at least 1 HFH falls to 56% (Table 3-3).  

Examining this another way, of the 1882 patients with no HFH who have CV 

death, 59% die of sudden CV death and 8.8% die of pump failure; of 448 patients 

with two or more HFH who die of CV causes, the proportion having sudden CV 

death falls to 15%, with 65% dying of progressive heart failure. When outpatient 

HF worsening events are added to the hospitalisation data, the results were 

similar (Table 3-3). 

Table 3-2. Mode of CV death and number of HFH (HFREF) 
Mode of CV death cross tabulated with number of HF hospitalisations during trial follow up. 
Percentages are given within each column. 

Number 
of  HFH 

Pump 
failure 
(n=735) 

Sudden 
death 

(n=1332) 

Other CV 
death 

(n=805) 

Non-CV 
death 

(n=569) 

Alive/ 
Censored 
(n=11974) 

Total 

0 166 
(22.6%) 

1,127 
(84.6%) 

589 
(73.2%) 

477 
(83.8%) 

10,538 
(88.0%) 

12,897 
(83.7%) 

1 278 
(37.8%) 

137 
(10.3%) 

127 
(15.8%) 

63 
(11.1%) 

998 
(8.3%) 

1,603 
(10.4%) 

2 150 
(20.4%) 

39 
(2.9%) 

51 
(6.3%) 

18 
(3.2%) 

254 
(2.1%) 

512 
(3.3%) 

3 62 
(8.4%) 

15 
(1.1%) 

15 
(1.9%) 

8 
(1.4%) 

102 
(0.9%) 

202 
(1.3%) 

4 29 
(4.0%) 

7 
(0.5%) 

7 
(0.9%) 

2 
(0.4%) 

43 
(0.4%) 

88 
(0.6%) 

5 or more 50 
(6.8%) 

7 
(0.5%) 

16 
(2.0%) 

1 
(0.2%) 

39 
(0.3%) 

113 
(0.7%) 
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Figure 3-2. Proportion of patients experiencing multiple HFH (HFREF) 
Proportion of patients who experienced 0, 1, 2, 3, 4 or 5 or more HF hospitalisations by 
mode of CV death (%). 
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Table 3-3. CV death and HFH in sensitivity analyses (HFREF) 
Cross tabulation of cause of CV death and number of HF hospitalisations in sensitivity 
analysis with [A] admissions removed where patient was not discharged alive and [B] with 
outpatient worsening events added to all HF hospitalisations [B]. 

A      

Number of 
HFH 

Pump 
failure 

(n = 735) 

Sudden 
death 

(n = 1332) 

Other CV 
death 

(n = 805) 

Alive/ 
Censored 

(n = 12543) 
Total 

0 322 
(43.8%) 

1128 
(84.7%) 

605 
(75.2%) 

11022 
(87.9%) 

13077 
(84.8%) 

1 213 
(29.0%) 

136 
(10.2%) 

118 
(14.7%) 

1055 
(8.4%) 

1522 
(9.9%) 

2 91 
(12.4%) 

39 
(2.9%) 

44 
(5.5%) 

272 
(2.2) 

446 
(2.9) 

3 51 
(2.0%) 

15 
(1.1%) 

15 
(1.9%) 

109 
(0.9%) 

190 
(1.2%) 

4 15 
(2.0%) 

7 
(0.5%) 

8 
(1.0%) 

45 
(0.4%) 

75 
(0.5%) 

5 or more 43 
(5.9%) 

7 
(0.5%) 

15 
(1.9%) 

40 
(0.3%) 

105 
(0.7%) 

B      

Number of 
HF events 

Pump 
failure 

(n = 735) 

Sudden 
death 

(n = 1332) 

Other CV 
death 

(n = 805) 

Alive/ 
Censored 

(n = 12543) 
Total 

0 122 
(16.6%) 

1085 
(81.5%) 

546 
(67.8%) 

10715 
(85.4%) 

12468 
(80.9%) 

1 277 
(37.7%) 

156 
(11.7%) 

148 
(18.4%) 

1163 
(9.3%) 

1744 
(11.3%) 

2 152 
(20.7%) 

50 
(3.8%) 

57 
(7.1%) 

381 
(3%) 

640 
(4.2%) 

3 76 
(10.3%) 

20 
(1.5%) 

26 
(3.2%) 

152 
(1.2%) 

274 
(1.8%) 

4 46 
(6.3%) 

11 
(0.8%) 

6 
(0.8%) 

68 
(0.5%) 

131 
(0.9%) 

5 or more 62 
(8.4%) 

10 
(0.8%) 

22 
(2.7%) 

64 
(0.5%) 

158 
(1%) 

 

Rates of HFH in patients with different modes of CV death are given in Table 3-

4. Rates of HFH were highest in patients who went on to die of progressive heart 

failure.  The rate for sudden death, other CV death and non-CV death was lower, 

with the lowest rate in patients who were alive or censored at trial end.  The 

pattern was similar in the sensitivity analysis excluding HF admissions where the 

patients did not survive to discharge (Table 3-4) with a reduction in rate in the 

patients with progressive heart failure as the cause of death.  Rates of events 
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increased with the addition of outpatient worsening events, but the pattern was 

similar across groups by type of CV death (Table 3-4). 

Table 3-4. Rate of HFH by mode of CV death (HFREF) 
Rate of heart failure hospitalisations by different causes of CV death. *Admissions excluded 
where the patient was not discharged alive. § ER visits for HF and IV treatment for HF 
included. † Includes non-CV deaths, alive at trial end and otherwise censored patients. 

Mode of CV death Rate (per 100 
patient years) 95% confidence interval 

Pump failure death 92.6 87.5 – 98.0 

Sudden death 16.9 15.2 – 18.8 

Other CV death 24.7 22.4 – 27.3 

Non-CV death 13.2 11.2 – 15.6 

Alive/censored at trial end 6.5 6.3 – 6.8 

Sensitivity analysis * 

Pump failure death 67.9 63.5 – 72.5 

Sudden death 16.8 15.1 – 18.7 

Other CV death 23.2 21.0 – 25.7 

Alive/censored at trial end † 6.7 6.4 – 7.0 

Non hospitalized HF events added to all HF hospitalisations § 

Pump failure death 110.2 104.7 – 116.1 

Sudden death 21.6 19.6 – 23.7 

Other CV death 31.0 28.4 – 33.8 

Alive/censored at trial end † 8.7 8.4 – 9.0 
 

Recurrent event plots stratified by occurrence of CV death suggest a greater 

number of HF hospitalisations in patients who go on die of CV causes and is 

suggestive of a greater density of hospitalisations close to the time of death 

(Figure 3-3). Examining different types of CV death separately suggests greatest 

density of HFH in patients who die of progressive heart failure with a 

concentration of admissions near the time of death (Figure 3-3).  The 

appearance is similar in the sensitivity analysis (Figure 3-4). 
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Figure 3-3. Recurrent event plots (HFREF) 
Recurrent event plots split by (A) occurrence of CV death and (B) by difference modes of CV death. 
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Figure 3-4. Recurrent event plot in sensitivity analysis (HFREF) 
Recurrent event plot for the sensitivity analysis. 
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3.3.2 Analysis of days between heart failure hospitalisations 

After identifying dates of HFH prior to trial randomisation then selecting 

patients with at least 2 known HF admissions gave a population of 1928 patients 

with 5424 admissions.  The demographics of these patients are given in Table 3-

5.  They are similar to patients in the main analysis who have at least 1 

hospitalisation during trial follow up. 

Table 3-5. Baseline data in patients with at least 2 HFH (HFREF) 
Patient demographics in those with at least 2 HF admission identified (including pre-
randomisation admissions). Data are presented as mean ± SD or median (IQR) for 
continuous measures, and n (%) for categorical measures. 

 Total 
N=1,928 

Age (years) 64.0±11.7 
Female sex (%) 328 (17.0) 
Race or ethnic group (%)  
   Caucasian 1,285 (67.1) 
   Black 89 (  4.6) 
   Asian 428 (22.4) 
   Other 112 (  5.9) 
Region (%)  
   North America 148 (  7.7) 
   Latin America 219 (11.4) 
   Western Europe 509 (26.4) 
   Central Europe 602 (31.2) 
   Asia/Pacific 450 (23.3) 
Systolic blood pressure (mmHg) 120.9±17.4 
Heart rate (beats/min) 73.9±13.1 
Body mass index (kg/m2) 28.3±5.8 
eGFR (mL/min/1.73m2) 36.9±38.9 
Ischaemic cardiomyopathy (%) 1,010 (52.4) 
Left ventricular ejection fraction (%) 28.0±6.3 
Median NT pro BNP (pg/ml) 1988 [1042-4305] 
NYHA class group III/IV (%) 878 (45.5) 
Hypertension (%) 1,314 (68.2) 
Diabetes mellitus (%) 734 (38.1) 
Atrial fibrillation (%) 819 (42.5) 
Loop diuretic (%) 1,718 (89.1) 
Digitalis (%) 731 (37.9) 
Beta-blocker (%) 1,739 (90.2) 
Mineralocorticoid antagonist (%) 980 (50.8) 
Implantable cardioverter-defibrillator (%) 407 (21.1) 
Cardiac resynchronization therapy (%) 199 (10.3) 
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The median number of days between each HFH hospitalisation was cross 

tabulated with cause of CV death (Table 3-6).  In all groups, including patients 

who do not experience CV death, time between subsequent admissions 

progressively shortens.  In patients who go on to die of progressive heart failure, 

more have recurrent admissions and time between admissions is shorter than all 

other groups. 

Table 3-6. Median days between adjacent HFH in different modes of CV death (HFREF) 
Median number of days between subsequent HF hospitalisations stratified by mode of CV 
death. 

  Days from 
HFH 1-2 

Days from 
HFH 2-3 

Days from 
HFH 3-4 

Days from 
HFH 4-5 

  
    

Pump failure 
death 

Number 
(%) 469 239 (51) 118 (25) 72 (16) 

N = 469 Median 
(IQR) 

547 
(234-1058) 

84 
(28-197) 

49 
(22-133) 

42.5 
(17-134) 

      

Sudden death Number 
(%) 167 63 (38) 22 (13) 11 (7) 

N = 167 Median 
(IQR) 

487 
(212-895) 

112 
(34-285) 

72.5 
(43-98) 

89 
(42-343) 

      

Other CV 
death 

Number 
(%) 174 72 (41) 36 (21) 21 (12) 

N = 174 Median 
(IQR) 

532.5 
(282-966) 

115 
(39-280) 

106.5 
(34-211) 

32 
(19-84) 

      

No CV death Number 
(%) 1118 390 (35) 173 (15) 83 (7) 

N = 1118 Median 
(IQR) 

613 
(304-1156) 

176 
(66-340) 

119 
(38-291) 

98 
(27-216) 

 

The number of days between HF hospitalisations was considered as a time 

updating variable in a Cox regression, with the value updated at each HF 

admission.  Outcomes examined were CV death, all-cause mortality and non-CV 

mortality.  The HR for an increase in 1 month in time between admissions 

(adjusted for randomised treatment only) for cardiovascular death was 0.99 (95% 

CI 0.99 – 1.00, p = 0.001).  The time updating variable was examined as a 

restricted cubic spline (Figure 3-5).  The baseline spline has adjustment for 

randomised treatment only.  The adjusted spline includes adjustment for 

randomised treatment, (log transformed) NT-proBNP, age, sex, race, region, 
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systolic blood pressure, heart rate, body mass index, eGFR, ejection fraction, 

diabetes and atrial fibrillation.  The shorter the time between admissions, the 

greater the hazard of CV death, with a plateau in risk at around 1 year (the 

reference point for the spline).  This is unchanged with adjustment for the 

variables listed above.  The pattern was similar for all-cause mortality, however 

the degree of increased risk at was attenuated; there was no significant 

relationship between time between HF hospitalisation and non-CV mortality 

(Figure 3-6). 

Figure 3-5. Restricted cubic spline of number of days between HFH and risk of CV death 
(HFREF) 
Restricted cubic spline examining days between HFH as a time varying covariate (includes 
pre-randomisation HF hospitalisations) with the relative HR for cardiovascular death on the 
left axis.  The bar chart (right axis) gives the percent of patients with the corresponding 
number of days between admissions to show distribution. 

 

 

 adjusted for randomised treatment only 

 adjusted for randomised treatment, (log transformed)NT-proBNP, 
age, sex, race, region, systolic blood pressure, heart rate, body 
mass index, eGFR, ejection fraction, history of diabetes and atrial 
fibrillation 
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Figure 3-6. Restricted cubic splines for all cause mortality and non-CV mortality (HFREF) 
Restricted cubic spline examining days between HFH as a time varying covariate (includes 
pre-randomisation HF hospitalisations) and hazard of all-cause mortality and non-CV 
mortality. 

 

 

 

 adjusted randomised treatment only 
 adjusted for randomised treatment, (log transformed)NT-

proBNP, age, sex, race, region, systolic blood pressure, heart 
rate, body mass index, eGFR, ejection fraction, history of 
diabetes and atrial fibrillation 
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3.3.3 KCCQ 

KCCQ-CSS over time in groups of patients with different number of HF 

hospitalisations is given in Figure 3-7.  Patients with higher number of 

hospitalisations have a greater decline in KCCQ over follow up (Table 3-7). 

Figure 3-7. Change in KCCQ score over time according to number of HFH (HFREF) 
Change in KCCQ-CSS over time in groups of patients by number of HF hospitalisations 
during the trial. 

 

Table 3-7 Slope of change in KCCQ by number of HFH (HFREF) 
Slope in KCCQ-CSS over time in patients grouped by number of HFH. 

No. HF 
admissions Slope (95%CI) 

P for difference between 
slopes 

0 0.01 (-0.01-0.02) 

<0.001 

1 -0.21 (-0.26--0.17) 
2 -0.36 (-0.45--0.28) 
3 -0.46 (-0.58--0.34) 
4 -0.46 (-0.64--0.28) 
5 or more -0.52 (-0.66--0.38) 

 

Change in KCCQ-CSS in groups of patients by different causes of CV death are 

given in Figure 3-8 and Table 3-8.  Patients who go on to have a CV death 

attributed to pump failure death have a greater decline in KCCQ score during 
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follow up.  Patients who do not have CV death have the highest and most stable 

KCCQ score.  The slope of decline in sudden death is less than that for other CV 

deaths. 

Figure 3-8. KCCQ over time by mode of CV death (HFREF) 
KCCQ-CSS over duration of follow up in patients split by mode of CV death. 

 

Table 3-8. Slope in KCCQ over time in patients grouped by mode of death (HFREF) 
Slope in KCCQ-CSS over time in patients grouped by mode of CV death. 

Mode of CV death Slope (95%CI) P for difference in slopes 
Pump failure death -0.59 (-0.67--0.51) 

<0.001 Sudden death -0.07 (-0.14--0.01) 
Other CV death -0.21 (-0.29--0.14) 
No CV death -0.01 (-0.03-0) 
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3.4 Discussion 

Despite improvements in heart failure care and reduction in 30-day mortality 

and readmission rates over time, recurrent hospital admissions are a significant 

burden.148  This analysis shows that the accepted patient trajectory in HFREF is 

true for individuals who die from progressive worsening of heart failure but not 

for sudden death where only a minority of patients experience preceding HF 

hospitalisation. With increasing numbers of HFH, patients were more likely to 

die of progressive heart failure and less likely to have a sudden CV death.  

Patients with pump failure as the cause of death had a steeper decline in 

symptom scores over follow up.  These results are summarised graphically in 

Figure 3-9. 
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Figure 3-9. Visual summary of the patient journey in patients with HFREF 
The KCCQ symptom score declines more steeply in patients with pump failure death (blue 
line).  The trajectory is less steep in patients with sudden death (orange).  Heart failure 
hospitalisations are depicted as worsening in KCCQ score and occur more commonly in 
patients with pump failure death.  These trend to fall closer together with recurrent 
hospitalisations.  Red arrows depict patient deaths, which can occur at any stage in patients 
who die suddenly but are more common (higher risk) after heart failure hospitalisation. 

 

For patients admitted with decompensation of heart failure, particularly 

clustered admissions, a priority should be up-titration of HF therapies.  

Conventional sequencing of HF treatment titration in a euvolemic patient may 

take several months.1,149  More recently quicker sequencing has been suggested 

with the focus on initiation of multiple therapies in the first four weeks with up 

titration of doses later, alternatively with aim to initiate evidence based oral 

medication prior to discharge in patients hospitalised with heart failure.150–152 

These results support the view that HF hospitalisation is a significant and 

concerning prognostic sign for patients, and in addition to core HF treatments 

further optimisation aiming to reduce HF hospitalisation including vericiguat, 

ivabradine, digoxin, hydralazine and isosorbide dinitrate should be considered as 

well as interventional and device approaches dependent on the cause of HF.153–

156 
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Some healthcare systems apply a penalty if a patient is readmitted within 30 

days of a HF hospitalisation which naturally places greater interest on how to 

reduce 30 day readmission rates.157–161  Potential strategies have included 

telemonitoring, improving information sharing between primary and secondary 

care, comprehensive discharge planning with post discharge support and 

specialized multidisciplinary follow up.158–161  While no comment is made in this 

analysis regarding whether readmissions were avoidable, a more patient centred 

metric may be to flag readmissions over a longer time frame, perhaps even up to 

six months, as being of particular concern and broaden efforts to enhance 

outpatient care and reduce rehospitalisation in this population. 

Recurrent admissions appear to only highlight a select population of at-risk 

patients.  Almost half of CV deaths are attributed to sudden death, and most of 

these patients did not have a HF hospitalisation during the trial follow up.  

Although recurrent admissions, and particularly clustered admissions, can bring a 

more unwell patient with heart failure to the attention of the treating team it is 

not as strong an indicator for risk of sudden CV death emphasising the need to 

optimise medical treatments and device therapies promptly in apparently stable 

outpatient HF patients. 

In the sensitivity analysis, with admissions excluded where the patient was not 

discharged alive, the number of patients with prior admissions fell, confirming 

that many patients that die of progressive heart failure are admitted for 

treatment prior to death. Despite this, when these admissions are excluded the 

rate of HFH during the trial remains significantly higher than other types of CV 

death. 

Patterns in change in KCCQ score mirror patterns the burden of HF 

hospitalisations.  In patients with higher numbers of HF hospitalisations, patient 

reported symptom burden increases over time.  The change in KCCQ score is 

notably different when examining groups by type of CV death, with a mirroring 

of greater symptom burden and greater number of hospitalisations in the pump 

failure group.  Patients with sudden CV death had a lesser decline in symptom 

score.  
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3.4.1 Limitations 

This study has several limitations. There is difficulty in separating the risk 

associated with a HF admission at any time and the specific property of the 

number of days between admissions given the magnitude of increased risk 

associated with an admission.  Information about hospitalisation prior to trial 

enrolment may not have been recorded accurately. 

3.4.2 Conclusions 

In conclusion, these findings support the conventional view of the patient 

journey with heart failure, with decompensations and admissions occurring with 

increasing frequency as the patient approaches death and with sudden death 

occurring at any stage.  Clustered admissions should be regarded as a marker for 

a period of increased risk, and taken as an opportunity to optimise HF 

medications, including those that reduce HF admissions, or to start 

conversations with the patient about their end-of-life care wishes.  Recurrent 

hospitalisations are not strongly linked to sudden cardiovascular death further 

reinforcing the need to promptly optimise treatments and device therapy in 

outpatient HF patients. 
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Chapter 4 Identifying the features of the patient 
journey in HFPEF 

4.1 Introduction 

Heart failure with preserved ejection fraction (HFPEF) is a common disease 

associated with substantial morbidity and mortality.162  It is more common in the 

older population as compared with heart failure with reduced ejection fraction 

(HFREF), and reflective of this is often associated with a high degree of 

comorbidity.163  The number of HF hospitalisations has been shown to be similar 

in HFPEF and HFREF, with the associated significant burden for both the patient 

and service provision.164 

When we consider HFREF and HFPEF and broad phenotypes of heart failure, we 

consider how they might behave similarly in terms of patterns of hospitalisation 

and risk of death following these hospitalisations.  The proportion of patients 

with HFPEF that die from cardiovascular causes, sudden cardiovascular death 

and progressive heart failure is slightly lower than patients with HFREF, with a 

higher proportion of non-cardiovascular deaths.165 This likely reflects the higher 

degree of other co-morbidity, therefore competing risk of other modes of death 

is higher.  However, cardiovascular deaths remain the mode of death in the 

majority of patients with HFPEF, being the mode of death of 51-60% of deaths in 

epidemiological studies and around 70% in clinical trials.165  Therefore, 

understanding similarities and differences in the patient trajectory between 

HFREF and HFPEF is of value to help understand risk and prioritise interventions 

and monitoring. 

As discussed in Chapter 2, treatment of HFPEF remains challenging.  Recently, 

SGLT2i have been shown to reduce the combined risk of cardiovascular death 

and hospitalisation for heart failure in HFPEF, largely driven by reduction in HF 

hospitalisation.31,32  Patients with HFPEF may not be under routine outpatient 

cardiology follow up, as most management (e.g. optimisation of blood pressure 

control and weight loss) is carried out in primary care.  Therefore, if the period 

after hospitalisation is associated with higher risk of CV death, a hospitalisation 

episode should be prioritised as a time to add an SGLT2i for a patient with 

HFPEF. Given the burden of HF hospitalisation in patients with HFPEF and 
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evidence of treatments that effect rates of HF hospitalisation, understanding 

patterns of HF hospitalisation and the relationship between clustered admissions 

and the risk of CV death is of value. 

Patients with HFPEF in general have a higher burden of other comorbidity, 

therefore it could be hypothesised that they would have significant burden of all 

cause hospitalisation.  The proportion of HF hospitalisation compared with all 

cause hospitalisations can give an indication of how valuable it is to reduce one 

type of hospitalisation for these multimorbid patients.   

To help understand these issues, the number and timing of both HF 

hospitalisations and all cause hospitalisations in the PARAGON-HF trial in 

patients with HFPEF were examined to understand the pattern of 

hospitalisations and the relationship between timing of HF admissions and risk of 

CV death.29	

4.2 Methods 

4.2.1 Trial population 

The design and results of PARAGON-HF have been described in more detail in 

Chapter 2.29,126  In summary, patients with heart failure and preserved ejection 

fraction were randomised to either sacubitril/valsartan or valsartan after an 

active run-in phase to assess tolerance to both treatments.  Key inclusion 

criteria included left ventricular ejection fraction (LVEF) ≥ 45%, NYHA class II to 

IV, elevated NT-proBNP (value dependent on history of HF hospitalisation within 

past 9 months and presence of AF), and evidence of structural heart disease.  

Exclusion criteria included any previous LVEF <40%; recent acute coronary 

syndrome, cardiac surgery or percutaneous coronary intervention; acute 

decompensated heart failure at the time of screening; intolerance of either trial 

medications or history of angioedema; blood pressure >180mmHg or <110mmHg; 

eGFR <30 mL/min/1.73m2; and serum potassium level >5.2mmol/L. 
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4.2.2 Identification of hospitalisations and patient reported 

symptom scores 

4.2.2.1 In trial heart failure hospitalisations 

Information on HF hospitalisations was collected as a trial endpoint. 

Hospitalisations where the patient died on the same day as admission were 

excluded.  Data on any cause hospitalisation were also collected during follow 

up but not adjudicated as an endpoint. 

The main outcome examined was CV death, with all cause death and non-CV 

death analysed as secondary outcomes.  Mode of CV death was broken down 

further into heart failure (or “pump failure”), sudden CV death and other. 

4.2.2.2 Pre-trial HF hospitalisation 

The most recent date of HF hospitalisation was recorded as part of the patient 

screening visit.  To facilitate analysis of time between admissions, date of prior 

HFH were added to in-trial HFH if recorded with sufficient accuracy (i.e., day, 

month and year) as well as hospitalisations occurring between screening and 

randomisation. In the analysis of time between admissions, patients were 

included if they had at least 2 known heart failure hospitalisations. 

4.2.2.3 KCCQ 

Symptom burden and functional status was examined using the KCCQ score 

including use of validated translations.  The self-administered assessment was 

undertaken during treatment run-in, at randomisation, and follow up weeks 16, 

32, 48 then every 48 weeks until end of trial.  

4.2.3 Statistical analysis 

4.2.3.1 In trial hospitalisations 

Patient characteristics were examined in patients with no HFH, 1 HFH or more 

than 1 HFH and compared using ANOVA for continuous variables, chi square test 

for categorical variables and Kruskal-Wallis for non-normally distributed 

continuous variables. The number of HFH per patient was calculated and cross 

tabulated with the cause of death.  The Lin, Wei, Ying and Yang (LWYY) method 
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was used to calculate rates for recurrent HF hospitalisation in groups of patients 

with different modes of death.127  Recurrent event plots were used to visualise 

patterns of HFH, constructed in the same way as in Chapter 3. 

4.2.3.2 Time between admissions analysis 

Patients were included in this analysis if they had at least 2 recorded HFH 

(including previously described pre-trial hospitalisations).  The median number 

of days between each HFH hospitalisation was cross tabulated with cause CV 

death.  

Time between admissions was examined as a time updating covariate.  Patients 

entered the analysis on the date of their second hospitalisation.  The time 

varying covariate value started as the time between first and second HFH.  At 

each HFH, the variable updated to the time between the prior admission to 

active admission.  The time updated variable was entered in a restricted cubic 

spline analysis using 5 knots in a Cox regression for CV mortality, all-cause 

mortality and non-CV mortality. The baseline spline has adjustment for 

randomised treatment only.  The adjusted spline includes adjustment for 

randomised treatment, (log transformed) NT-proBNP, age, sex, race, region, 

systolic blood pressure, heart rate, body mass index, eGFR, ejection fraction, 

diabetes and atrial fibrillation.   

4.2.3.3 KCCQ 

A mixed model for repeated measurement was used to examine change in KCCQ 

over time (adjusted for randomised treatment, number of HF hospitalisations, 

and interaction of number of HF hospitalisations and visit, with a random 

intercept and slope per patient).  This was repeated with number of 

hospitalisations replaced with mode of CV death. 

4.3 Results 

4.3.1 HF hospitalisations 

Of the 4796 patients randomised in the trial, 838 (17%) patients had a hospital 

admission with heart failure during follow up.  In total, there were 1487 HF 
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hospitalisations.  691 patients died, with 416 deemed to be due to 

cardiovascular causes meaning 60% of all deaths were due to cardiovascular 

causes.  Of the 416 cardiovascular deaths, 154 (37%) were due to sudden cardiac 

death and 118 (28.6%) were due to progressive heart failure, or “pump failure”. 

The maximum number of HF hospitalisations experienced by a patient was 18. 

Table 4-1 describes the baseline characteristics split by number of HF 

hospitalisations.  Patients with multiple hospitalisations were older, more likely 

to be from North America, had higher systolic blood pressure and heart rate, 

higher body mass index, lower eGFR, higher NT-proBNP, were more likely to be 

diabetic, had greater burden of atrial fibrillation, were more likely to have a 

history of HF hospitalisation, were more likely to be treated with a diuretic  and 

more likely to be prescribed a beta blocker.  Ejection fraction was not 

significantly different between groups. 
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Table 4-1. Baseline data by number of HFH (HFPEF) 
Baseline demographic table by number of heart failure hospitalisations during trial follow 
up. Continuous variables are expressed as mean ± standard deviation, or median 
[interquartile range], as appropriate. 

 No HFH 
N=3,958 

1 HFH 
N=517 

≥2 HFH 
N=321 

 p-
value 

Age (years) 72.5±8.4 73.8±8.6 74.3±8.6 <0.001 
Female sex (%) 2,062 (52.1) 261 (50.5) 156 (48.6)   0.41 
Race (%)      0.001 
   Asian 499 (12.6) 71 (13.7) 37 (11.5)   
   Black or African 
American 74 (  1.9) 13 (  2.5) 15 (  4.7)   

   Other 164 (  4.1) 11 (  2.1) 5 (  1.6)   
   White 3,221 (81.4) 422 (81.6) 264 (82.2)   
Region (%)    <0.001 
   Asia/Pacific and other 618 (15.6) 86 (16.6) 58 (18.1)   
   Central Europe 1,490 (37.6) 162 (31.3) 63 (19.6)   
   Latin America 334 (  8.4) 25 (  4.8) 11 (  3.4)   
   North America 380 (  9.6) 86 (16.6) 93 (29.0)   
   Western Europe 1,136 (28.7) 158 (30.6) 96 (29.9)   
Systolic BP (mmHg) 130.4±15.2 130.4±15.6 132.7±18.2   0.035 
Heart rate (bpm) 70.3±12.2 71.2±12.5 71.4±13.0   0.098 
Body mass index (kg/m2) 30.1±4.9 30.3±5.3 31.2±5.2 <0.001 
Creatinine (mg/dL) 1.1±0.3 1.1±0.3 1.2±0.3 <0.001 
Estimated glomerular 
filtration rate 
(mL/min/1.73m2) 

63.2±19.1 60.3±18.9 58.0±19.1 <0.001 

Ischaemic aetiology (%) 1,392 (35.2) 201 (39.0) 130 (40.5)   0.051 
Ejection fraction (%) 57.6±7.9 57.4±7.8 56.8±7.8   0.20 

NT-proBNP (pg/mL) 
861.5 

(451.0-
1523.5) 

1096.0 
(536.0-
1982.0) 

1403.5 
(634.0-
2558.0) 

<0.001 

NYHA class III/IV (%) 737 (18.6) 135 (26.1) 79 (24.6) <0.001 
Past medical history     
Hypertension (%) 3,780 (95.5) 496 (95.9) 308 (96.0)   0.85 
Diabetes (%) 1,632 (41.2) 242 (46.8) 188 (58.6) <0.001 
Atrial fibrillation (%) 1,249 (31.7) 187 (36.3) 116 (36.2)   0.035 
Stroke (%) 403 (10.2) 68 (13.2) 37 (11.6)   0.096 
Prior HF hospitalisation 
(%) 1,738 (43.9) 324 (62.7) 244 (76.0) <0.001 

Myocardial infarction (%) 872 (22.0) 130 (25.1) 81 (25.2)   0.14 
Treatments     
Loop diuretic (%) 3,018 (87.1) 438 (84.9) 318 (98.8) <0.001 
ACEi/ARB (%) 3,446 (87.1) 432 (83.6) 261 (81.3)   0.002 
MRA (%) 984 (24.9) 161 (31.1) 94 (29.3)   0.003 
Beta blocker (%) 3,149 (79.6) 411 (79.5) 261 (81.3)   0.75 
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The number of HFH was tabulated with mode of death.  Due to small numbers, 

patients with 5 or more admissions were combined into one group.  59% of 

patients who died of CV causes had no HF admissions, compared with 73% who 

died of non-CV death and 87% in those with unknown cause of death. Splitting 

further by mode of CV death, patients who died of progressive HF (“pump 

failure”) generally had at least 1 HFH during the trial with only 20% having no 

admissions, while of patients dying suddenly 76% had no in trial HF 

hospitalisations.  Of patients alive or censored, 85% had no HF hospitalisations 

(Table 4-2, Figure 4-1). Examining this another way, of the 245 patients with no 

HFH who have CV death, 48% die of suddenly and 10% die of pump failure; of 81 

patients with two or more HFH who die of CV causes, the proportion having 

sudden CV death falls to 10%, with 70% dying of progressive heart failure. 
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Table 4-2. Mode of CV death and number of HFH (HFPEF) 
Mode of death cross tabulated with number of HF hospitalisations during trial follow up. Percentages are given within each column. 

No. HF 
admissions CV death Pump failure Sudden death Non-CV death Unknown cause Alive/censored Total 

0 245 (58.9%) 24 (20.3%) 117 (76.0%) 161 (73.2%) 48 (87.3%) 3504 (85.4%) 3958 (82.5%) 

1 90 (21.6%) 37 (31.4%) 29 (18.8%) 44 (20.0%) 4 (7.3%) 378 (9.2%) 516 (10.8%) 

2 45 (10.8%) 29 (24.6%) 5 (3.3%) 11 (5.0%) 2 (3.6%) 131 (3.2%) 189 (3.9%) 

3 13 (3.1%) 9 (7.6%) 2 (1.3%) 1 (0.5%) 1 (1.8%) 41 (1.0%) 56 (1.2%) 

4 12 (2.9%) 8 (6.8%) 1 (0.7%) 1 (0.5%) 0 (0%) 18 (0.4%) 31 (0.7%) 

5 or more 11 (2.6%) 11 (9.3%) 0 2 (0.9%) 0 (0%) 33 (0.8%) 46 (1.0%) 
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Figure 4-1. Proportion of patients experiencing multiple HFH (HFPEF) 
Proportion of patients who experienced 0, 1, 2, 3, 4 or 5 or more HF hospitalisations by 
mode of CV death (%). 

 
Rates of HFH by different modes of death showed a higher rate of 

hospitalisations in patients who die of CV causes (48.3 [95%CI 43.3 – 53.7]) 

compared with non-CV causes (19.7 [95%CI 15.9 – 24.4]) (Table 4-3). The highest 

rate of HFH was found in patients who died of pump failure at 99.5 (95% CI 87.2 

– 113.6). 

Table 4-3. Rate of HFH by mode of CV death (HFPEF) 
Rates of HF hospitalisations by different causes of death. 

Mode of CV death Rate (per 100 
patient years) 95% confidence interval 

CV 48.3 43.4 – 53.7 

 Pump failure 99.5 87.2 – 113.6 

 Sudden death 19.4 14.6 – 25.6 

Non-CV 19.7 15.9 – 24.4 

Unknown 9.5 5.3 – 17.2 

Alive/censored at trial end 8.4 7.9 – 8.9 
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Examining recurrent event plots, there was a higher density of HF 

hospitalisations in patients who went on to die of cardiovascular causes 

compared to those who were alive or censored for cardiovascular death (Figure 

4-2).  Further breaking down different types of CV death, patients with pump 

failure death had a higher concentration of HF hospitalisations compared to 

those who died suddenly or from other cardiovascular causes (Figure 4-3).
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Figure 4-2. Recurrent event plots (HFPEF) 
Recurrent event plots split by occurrence of CV death. 
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Figure 4-3. Recurrent event plots in different modes of CV death (HFPEF) 
Recurrent event plots split by difference modes of death. 
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4.3.1.1 Analysis of days between heart failure hospitalisations 

For analysis of time between admissions, pre-randomisation hospitalisations 

were added and patients with at least 2 recorded HF hospitalisations were 

included, giving a population of 643 patients with 1859 hospitalisations.  The 

baseline characteristics are given in Table 4-4. 

Table 4-4. Baseline data in patients with at least 2 HFH (HFPEF) 
Baseline characteristics in patients with at least 2 recorded HFH for analysis of days 
between HF admissions. Data are presented as mean ± SD or median (IQR) for continuous 
measures, and n (%) for categorical measures. 

 Total 
N=643 

Age (years) 73.6±8.8 
Female sex (%) 320 (49.8) 
Race (%)  
   Asian 85 (13.2) 
   Black or African American 26 (  4.0) 
   Other 13 (  2.0) 
   White 519 (80.7) 
Region (%)  
   Asia/Pacific and other 119 (18.5) 
   Central Europe 175 (27.2) 
   Latin America 25 (  3.9) 
   North America 141 (21.9) 
   Western Europe 183 (28.5) 
Systolic Blood Pressure (mmHg) 131.5±17.0 
Heart rate (bpm) 71.5±12.8 
Body mass index (kg/m2) 30.7±5.3 
Creatinine (mg/dL) 1.1±0.3 
Estimated glomerular filtration rate (mL/min/1.73m2) 59.7±19.3 
Ischaemic aetiology (%) 260 (40.4) 
Ejection fraction (%) 56.9±7.8 
NT-proBNP (pg/mL) 1216.5 (577.0-2180.0) 
NYHA class III/IV (%) 170 (26.4) 
Past medical history  
Hypertension (%) 616 (95.8) 
Diabetes (%) 347 (54.0) 
Atrial fibrillation (%) 242 (37.8) 
Stroke (%) 84 (13.1) 
Prior HF hospitalisation (%) 566 (88.0) 
Myocardial infarction (%) 156 (24.3) 
Treatments  
Loop diuretic (%) 582 (90.5) 
ACEi/ARB (%) 532 (82.7) 
MRA (%) 203 (31.6) 
Beta blocker (%) 517 (80.4) 
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The median number of days between subsequent HF hospitalisations was cross 

tabulated with cause of death. For patients who died of CV causes, the time 

between hospitalisations tended to shorten with recurrent admissions.  For 

patients who died of other causes or were censored, the time between 

admissions also trended downwards but was much longer than those who died of 

CV causes with around a 100-day difference between groups (Table 4-5).  This 

was not further split into mode of CV death, as in the analysis of HFREF, due to 

smaller numbers. 

Table 4-5. Median days between adjacent HFH in CV death (HFPEF) 
Median days between subsequent HF hospitalisations in patients with CV death during 
follow up and those censored for CV death (other cause death, end of follow up or censor 
for other reasons). 

  Days from 
HFH 1-2 

Days from 
HFH 2-3 

Days from 
HFH 3-4 

Days from 
HFH 4-5 

  
    

CV death Number 138 68 34 21 

N = 138 Median 
(IQR) 

414 
(217-772) 

82 
(33-237) 

58 
(26–157) 

47 
(18–130) 

      
Censored for 
CV death Number 505 199 88 48 

N = 505 Median 
(IQR) 

577 
(273–952) 

176 
(57-394) 

155 
(55-257) 

133 
(23–282) 

 

The number of days between HF hospitalisations was considered as a time 

updating variable in a Cox regression, with the value updated at each HF 

admission.  Outcomes examined were CV death, all-cause mortality and non-CV 

mortality.  The time updating variable was examined as a restricted cubic spline 

(Figure 4-4). At a shorter time between admissions, there is an increased hazard 

of cardiovascular death; the 95% confidence interval first falls above 1 at 64 

days.  The shorter the time between admissions, the greater the hazard of CV 

death, with a plateau in risk at around 1 year (the reference point for the 

spline).  This is similar with adjustment for the variables listed above.  The 

pattern was similar for all-cause mortality, however the degree of increased risk 

was attenuated; there was no significant relationship between time between HF 

hospitalisation and non-CV mortality (Figure 4-5). 
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Figure 4-4. Restricted cubic spline of number of days between HFH and risk of CV death 
(HFPEF) 
Restricted cubic spline examining days between HFH as a time varying covariate (includes 
pre-randomisation HF hospitalisations) with the relative HR for cardiovascular death on the 
left axis.  The bar chart (right axis) gives the percent of patients with the corresponding 
number of days between admissions to show distribution. 
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Figure 4-5. Restricted cubic splines for all cause mortality and non-CV mortality (HFPEF) 
Restricted cubic spline examining days between HFH as a time varying covariate (includes 
pre-randomisation HF hospitalisations) and hazard of all-cause mortality and non-CV 
mortality. 

  
 adjusted for randomised treatment only 
 adjusted for randomised treatment, (log transformed)NT-proBNP, age, sex, 

race, region, systolic BP, HR, BMI, eGFR, ejection fraction, history of 
diabetes and AF 

 

1.1.1.1 KCCQ 

KCCQ over the course of follow up in groups of patients defined by number of 

heart failure hospitalisations is given in Figure 4-6 and Table 4-6.  Patients with 

greater number of HF hospitalisations had a greater decline in KCCQ score over 

time.  KCCQ grouped by cause of death is given in Figure 4-7 and Table 4-7, 

patients who survived or were censored had a higher baseline KCCQ with lesser 

decline compared with all causes of death, where the decline was similar in all 

groups. 
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Figure 4-6. Change in KCCQ score over time according to number of HFH (HFPEF) 
Change in KCCQ-CSS over time in groups of patients by number of HF hospitalisations 
during the trial. 

 
Table 4-6. Slope of change in KCCQ by number of HFH (HFPEF) 
Slope in KCCQ over time in patients grouped by number of HFH. 

No. HF 
admissions Slope (95%CI) 

P for difference between 
slopes 

0 -0.04 (-0.04, -0.03) 

<0.001 

1 -0.09 (-0.11, -0.07) 
2 -0.15 (-0.19, -0.12) 
3 -0.18 (-0.25, -0.12) 
4 -0.12 (-0.22, -0.02) 
5 or more -0.20 (-0.28, -0.12) 
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Figure 4-7. KCCQ over time by cause of death (HFPEF) 
Change in KCCQ-CSS over time in groups of patients by mode of death. 

 

Table 4-7. Slope in KCCQ over time in patients grouped by mode of death (HFPEF) 
Slope in KCCQ over time in patients grouped by mode of death. 

Mode of death Slope (95%CI) 
P for difference between 
slopes 

Alive/censored -0.04 (-0.05, 0.04) 

<0.001 
CV death -0.15 (-0.18, -0.11) 
Non-CV -0.15 (-0.20, -0.10) 
Unknown -0.18 (-0.28, 0.08) 

 

4.3.2 All cause hospitalisations 

When all hospitalisations are included, 2648 patients have a hospitalisation, with 

4800 total admissions. 

Baseline characteristics split by number of all cause hospitalisations is given in 

Table 4-8.  Like HF hospitalisations, patients with multiple hospitalisations were 

older and were more likely to be from North America.  They have lower eGFR, 

higher ejection fraction and higher NT-proBNP.   Those with more admissions 

were more likely to be diabetic. 
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Table 4-8. Baseline data by number of all cause hospitalisations (HFPEF) 
Baseline demographics by number of all cause hospitalisation during trial follow up. Data 
are presented as mean ± SD or median (IQR) for continuous measures, and n (%) for 
categorical measures. 

 
0 hospital 
admissions 
N=2,148 

1 hospital 
admission 
N=1,546 

≥ 2 hospital 
admissions 
N=1,102 

 p-
value 

Age (years) 71.3±8.5 73.7±8.4 74.2±8.0 <0.001 
Female sex (%) 1,103 (51.4) 825 (53.4) 551 (50.0)   0.21 
Race (%)    <0.001 
   Asian 251 (11.7) 202 (13.1) 154 (14.0)   
   Black or African 
American 39 (  1.8) 30 (  1.9) 33 (  3.0)   

   Other 105 (  4.9) 51 (  3.3) 24 (  2.2)   
   White 1,753 (81.6) 1,263 (81.7) 891 (80.9)   
Region (%)    <0.001 
   Asia/Pacific and other 304 (14.2) 247 (16.0) 211 (19.1)   
   Central Europe 941 (43.8) 506 (32.7) 268 (24.3)   
   Latin America 224 (10.4) 107 (  6.9) 39 (  3.5)   
   North America 150 (  7.0) 196 (12.7) 213 (19.3)   
   Western Europe 529 (24.6) 490 (31.7) 371 (33.7)   
Systolic Blood Pressure 
(mmHg) 130.8±14.6 130.6±15.7 130.1±16.8   0.52 

Heart rate (bpm) 70.0±11.9 70.9±12.5 70.6±12.7   0.081 
Body mass index (kg/m2) 30.1±4.9 30.2±5.1 30.5±5.0   0.062 
Creatinine (mg/dL) 1.1±0.3 1.1±0.3 1.1±0.3 <0.001 
Estimated glomerular 
filtration rate 
(mL/min/1.73m2) 

64.8±18.9 61.5±19.3 59.8±18.7 <0.001 

Ischaemic aetiology (%) 774 (36.0) 533 (34.5) 416 (37.7)   0.23 
Ejection fraction (%) 57.3±7.9 57.6±7.9 58.0±7.8   0.049 

NT-proBNP (pg/mL) 
828.0 

[440.0-
1496.0] 

978.0 
[508.0-
1770.0] 

938.0 
[485.0-
1650.0] 

<0.001 

NYHA class III/IV (%) 360 (16.8) 349 (22.6) 242 (22.0) <0.001 
Past medical history     
Hypertension (%) 2,044 (95.2) 1,482 (95.9) 1,058 (96.0)   0.43 
Diabetes (%) 823 (38.3) 699 (45.2) 540 (49.0) <0.001 
Atrial fibrillation (%) 668 (31.2) 526 (34.2) 358 (32.7)   0.16 
Stroke (%) 203 ( 9.5) 174 (11.3) 131 (11.9)   0.058 
Prior HF hospitalisation 
(%) 912 (42.5) 790 (51.1) 604 (54.8) <0.001 

Myocardial infarction (%) 475 (22.1) 348 (22.5) 260 (23.6)   0.63 
Treatments     
Loop diuretic (%) 1,559 (74.4) 1,252 (81.0) 901 (81.8) <0.001 
ACEi/ARB (%) 1,906 (88.7) 1,313 (84.9) 920 (83.5) <0.001 
MRA (%) 535 (24.9) 430 (27.8) 274 (24.9)   0.097 
Beta blocker (%) 1,707 (79.5) 1,242 (80.3) 872 (79.1)   0.71 
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Tabulating the number of hospitalisations with cause of death, patients with 

non-CV death mostly had at least one admission, with only 5% having no 

admissions.  In the CV death group 26% had no hospitalisations, 25% in the 

unknown cause of death group and 49% in the alive/censored patients (Table 4-

9).  Further breaking down CV death into pump failure and sudden death, 0.9% 

of patients with pump failure death had no hospital admissions as compared with 

55% of those with sudden CV death.
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Table 4-9 Mode of CV death and number of all cause hospitalisations (HFPEF) 
Mode of death cross tabulated with number of all cause hospitalisations during trial follow up. 

Number of 
hospitalisations 

CV death Pump Failure Sudden death Non-CV death Unknown 
cause of death 

Alive/ 
censored 

Total 

0 108 (25.96%) 1 (0.9%) 84 (54.6%) 12 (5.45%) 14 (25.45%) 2014 (49.06%) 2148 (44.79%) 

1 184 (44.23%) 57 (48.3%) 48 (31.2%) 104 (47.27%) 28 (50.91%) 1230 (29.96%) 1546 (32.24%) 

2 70 (16.83%) 31 (26.3%) 11 (7.1%) 55 (25%) 10 (18.18%) 483 (11.77%) 618 (12.89%) 

3 23 (5.53%) 10 (8.5%) 6 (3.9%) 18 (8.18%) 1 (1.82%) 186 (4.53%) 228 (4.75%) 

4 18 (4.33%) 8 (6.8%) 5 (3.3%) 15 (6.82%) 1 (1.82%) 86 (2.1%) 120 (2.5%) 

5 or more 13 (3.12%) 11 (9.3%) 0 16 (7.27%) 1 (1.82%) 106 (2.58%) 136 (2.84%) 
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Rates of all cause hospitalisation by different causes of death showed an 

increased rate of hospitalisations in patients who die of non-CV causes (99.0 

[95%CI 90.0 – 108.9]) compared with CV causes (78.5 [95%CI 72.1 – 85.3]) (Table 

4-10). Within CV death, the highest rate was in patients with pump failure 

deaths at 111.7 (95%CI 98.6 – 126.5). 

Table 4-10. Rate of all cause hospitalisations by mode of CV death (HFPEF) 
Rates of all cause hospitalisations by different modes of death. 

All cause hospitalisations   

CV 78.5 72.1 - 85.3 

 Pump failure 111.7 98.6 – 126.5 

 Sudden death 42.7 35.3 – 51.5 

Non-CV 99.0 90.0 - 108.9 

Unknown 53.7 41.8 – 68.8 

Alive/censored at trial end 29.9 28.9 – 30.8 

 

4.4 Discussion 

The proportion of deaths attributed to cardiovascular causes in the PARAGON-HF 

trial was similar to that of previous clinical trials and epidemiological studies of 

HFPEF at around 60%.165,166 The burden of hospitalisation for patients in HFPEF is 

high, with 20% having an admission due to heart failure over the course of follow 

up and 55% having a hospitalisation for any cause.  This is slightly different in 

the EMPEROR-Preserved trial, where 10% of patients had a hospitalisation for 

heart failure during trial follow up and 90% had a hospitalisation for any 

reason.31  The overall rate of HF hospitalisation was 10.7 per 100 patient years in 

the PARAGON-HF trial.  This is comparable to rates in the DELIVER trial; rates for 

total HFH and CV death are given as 15.3 and 11.8 per 100 years in the placebo 

and dapagliflozin arms respectively.167  This reflects the high degree of morbidity 

in these patients. 

Patients with more HF admissions had markers of higher risk for cardiovascular 

mortality , including higher NT-proBNP, older age, lower eGFR and had greater 

degree of comorbidity including diabetes and atrial fibrillation.  They were more 

likely to have had a heart failure hospitalisation prior to trial enrolment.  
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Interestingly, ejection fraction did not vary significantly between groups.  

Patterns were similar when all cause hospitalisation was considered, with older 

age and greater comorbidity as well as higher BNP being seen in patients with 

multiple all-cause admissions. 

A greater proportion of patients who died of CV causes had HF hospitalisation 

during the trial than those who died of non-CV causes (41% and 27% 

respectively).  When examining all cause hospitalisations, a greater proportion 

of patients with non-CV death had a hospitalisation for any reason (95% for non-

CV death, 74% with CV death).  This reflects that although HFPEF patients tend 

to be multimorbid, and are likely to have hospitalisations for many reasons, 

there remains an underlying link between HF hospitalisations and risk of 

cardiovascular death.  Cardiovascular death remains a common mode of death in 

patients with HFREF, with 60% percent of deaths in the PARAGON-HF trial being 

attributed to cardiovascular causes.166 

Similar to the proportions of patients experiencing events, examining rates of 

hospitalisations gives a similar picture.  Rates of HF hospitalisations were highest 

by a large margin in the patients who died of CV causes.  Further subdivision 

showed the highest rate was in patients who died of progressive pump failure.  

Rates of HF hospitalisation were similar in patients with sudden CV death and 

non-CV death.  Looking at all cause hospitalisations, rates were highest in those 

with non-CV death and were slightly lower in patients with cardiovascular death.  

Patients who died of pump failure also had high rates of all cause 

hospitalisation, but this largely reflects high rates of hospitalisation for HF 

(111.7 all-cause hospitalisation per 100 patient years, compared with 99.5 per 

100 patient years for heart failure hospitalisations).  

The risk of cardiovascular death was higher in the period immediately following 

a heart failure hospitalisation.  Due to the competing risk of cardiovascular 

death, the comparative risk of non-CV death appears unchanged or lower in the 

post HF hospitalisation period. 

When examining types of CV death in more detail, patients who died of 

progressive heart failure were more likely to have had HF hospitalisations during 

the trial than those who died suddenly.  This would be reflective of the accepted 
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trajectory of patients with heart failure, with recurrent declines in function, 

often resulting in hospitalisation, and incomplete recovery before death with 

sudden death occurring at any point.36 The number of patients with each cause 

of death is quite small in this post-hoc analysis however it does suggest patients 

with HFPEF behave similarly to patients with HFREF and this accepted trajectory 

is true in this contemporary analysis. 

The change in KCCQ, and trajectory in symptom burden, was also similar in 

pattern to that of the HFREF analysis. Patients with HFPEF had a lower baseline 

KCCQ overall with patients with increasing number of hospitalisations for heart 

failure having a more rapid decline in KCCQ score. 

Recently, SGLT2i have been shown to be effective treatments in heart failure 

and mildly reduced and preserved ejection fraction in reduction in heart failure 

hospitalisations and cardiovascular death as a composite endpoint, and have 

included patients randomised during a hospitalisation with a good safety 

profile.31,32  In subgroup analysis, initiation during or shortly after a 

hospitalisation has been shown to be both safe and effective.168 Therefore 

although treatment options are more limited in patients with heart failure and 

preserved ejection fraction, the risk of cardiovascular death is increased after a 

hospitalisation for heart failure and therefore it may be an opportune time to 

initiate treatment with an SGLT2i. 

In summary, the trajectory with regards symptom score and heart failure 

hospitalisations over time is overall similar between HFREF and HFPEF.  Although 

patients with HFPEF have high burden of both all cause hospitalisation and all 

cause mortality, the relationship between heart failure hospitalisation and risk 

of CV death remains closely linked.  An admission with HF should alert the 

physician to a period of higher risk of outcome and treatments, such as SGLT2i 

can be considered for optimisation.
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Chapter 5 Latent class analysis in heart failure 
with reduced ejection fraction 

5.1 Introduction 

Chapters 3 and 4 have examined one approach to better understanding prognosis 

in patients with heart failure through examining patterns of heart failure 

hospitalisations and the risk of cardiovascular death, including by different 

modes of cardiovascular death.  Overall, the results regarding the relationship 

between timings of heart failure hospitalisation and CV death were similar in 

HFREF and HFPEF.  This adds an extra layer of understanding patient risk and 

prognostication by describing the average patient journey from the clinical trial 

data. 

Ejection fraction is only one factor of the patient phenotype that determines 

prognosis and likely response to treatments and, given the very different 

evidence base for treatments in between these populations, remains an 

important distinction.  However, the heterogeneity of patients within these 

broad groups is well recognised clinically.  As summarised in Chapter 1 there are 

several approaches aiming to find clusters of similar patients in a data-driven 

fashion and describe their characteristics, prognosis and responses to 

treatments. 

There appear to be several phenotypes that appear consistently in previous 

machine learning unsupervised clustering techniques utilising different types of 

data, including clinical trial and routine databases.  The focus in this analysis is 

latent class analysis, the method for which is described in more detail in Chapter 

2.  Previous LCA in HFREF have shown some success in both identifying groups 

and some signal to different treatment responses.58,59 To increase the utility of 

this approach, finding consistent groups in analysis of different data, and 

including contemporary and geographically diverse data, is key. 

This analysis uses patient level data from the PARADIGM-HF and ATMOSPHERE 

trials to determine if latent class analysis, a cluster analysis based approach, can 

identify phenotypic subgroups of patients with HFREF.  These subgroups will 
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then be examined for any differential treatment effects using modal class 

assignment. 

5.2 Methods 

5.2.1 Phenotype identification 

Patients were characterised according to 14 prospectively selected clinical 

features: age, sex, race, ischaemic aetiology of heart failure, duration of heart 

failure, left bundle branch block (LBBB) on ECG, estimated glomerular filtration 

rate, body mass index (BMI), clinical history of hypertension, diabetes, 

hyperlipidaemia, valvular heart disease, atrial fibrillation and presence of 

anaemia (haematocrit < 39% for men and < 35% for women). Haematocrit was 

selected rather than haemoglobin to allow comparison with other LCA analysis 

and in keeping with established reference ranges.59,169 Variables were considered 

as continuous where possible (age, BMI and eGFR) with heart failure duration 

split into three categories (<1 year, 1-5 years, >5 years). Otherwise variables 

were categorical or binary. 

Latent class analysis (LCA) was performed using Stata with the generalised 

structural equation modelling function (Stata Statistical Software: Release 16. 

College Station, TX: StataCorp LLC).  Latent class definitions were derived using 

maximum-likelihood estimation to identify the most common patterns of the 14 

variables for a range of 1-7 subgroups. The optimal number of subgroups was 

determined using Information Criterion and reproducibility of maximum 

likelihood estimation using different random seeds.   

Probabilities of membership in each LCA group were used to determine the most 

likely subgroup for each patient.  The median probability of patients being 

allocated to each class was calculated, as well as the proportion of patients who 

had a >50% and >70% chance of being allocated to the LCA class to evaluate the 

discrimination between groups. 

5.2.2 Association between HFREF phenotype and outcomes 

The primary composite outcome was analysed according to the intention-to-

treat principle using Kaplan-Meier estimates and Cox proportional-hazards 
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models.  Phenotype was treated as a categorical covariate in a model adjusted 

for treatment to explore differences in outcome by phenotype group.  Rates of 

events within each phenotype group according to randomised treatment were 

examined and interaction between treatment effect and subgroup investigated. 

5.2.3 External validation (ATMOSPHERE) 

HFREF phenotype classification derived from PARADIGM-HF were applied to 

ATMOSPHERE subjects.  Associations between phenotype, outcome, and 

interaction with treatment group were analysed using Kaplan-Meier estimates 

and Cox proportional hazards models as in PARADIGM-HF.  

5.3 Results 

5.3.1 Developing the latent class model 

Latent class models were created for one to seven classes.  A model for seven 

classes could not be identified and was disregarded.  AIC was considered for 

each model, with a 6 class solution found to have lowest AIC (Figure 5-1).  The 

process of developing the model was repeated using 10 random seeds and the 

log-likelihoods compared.  Several different log-likelihoods were identified for 

different starting seeds, suggesting difficulty in identifying the global minimum 

and a less stable solution.  Therefore the 5 class model was examined in the 

same manner.  10 random starting seeds came to the same log likelihood 

therefore the 5 class model was taken forward.  The probability of patients 

belonging to each class was evaluated, and each patient allocated to the class 

with the highest probability.  The median probability of group allocation was 

calculated in each phenotype, as well as the proportion with >50% and >70% 

change of being allocated to each group, to assess the ability of the latent class 

model to discriminate between subgroups (Table 5-1). 
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Figure 5-1. AIC for different LCA models in PARADIGM-HF 
AIC of latent class models with 1 – 7 subgroups in PARADIGM-HF.

 

Table 5-1. Probability of class membership in PARADIGM-HF 
Probability of class membership, PARADIGM-HF. 

 1 2 3 4 5 
Number 2220 1209 848 3026 1096 
Number >50% 
probability of 
belonging to class 
(%) 

2047 
(92.2) 

1127 
(93.2) 

764 
(90.1) 

2895 
(95.7) 

1027 
(93.7) 

Number >70% 
probability of 
belonging to class 

1406 
(63.3) 

848 
(70.1) 

576 
(67.9) 

2389 
(78.9) 

845 
(77.1) 

Median probability 
of belonging to 
class [IQR] 

0.790 
[0.619-
0.931] 

0.859 
[0.660-
0.969] 

0.848 
[0.631-
0.968] 

0.892 
[0.743-
0.944] 

0.880 
[0.718-
0.959] 

 

5.3.2 Patient characteristics within LCA groups  

Subgroups are summarised in Table 5-2 and described below. 

5.3.2.1 Phenotype 1 –Non-ischaemic cardiomyopathy in older patients 

Phenotype 1 subjects were older (70.0±8.3 years) and most likely to be female 

(31.2%).  The majority of subjects had a non-ischaemic aetiology (66.7%). 

Phenotype 1 had the highest rate of BBB (25.8%).  Rates of diabetes (21.8%) were 

lower than most other groups whereas valvular heart disease (10.1%) and atrial 

fibrillation (45.0%) were more common than other phenotypes. Phenotype 1 

subjects had the highest NT-proBNP (2018 [1124-4066] pg/mL). 
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5.3.2.2 Phenotype 2 – Idiopathic dilated cardiomyopathy  

Phenotype 2 were by far the youngest (age 48.2±9.1 years).  The rate of non-

ischaemic cardiomyopathy was the highest (83.3%) of any phenotype. Phenotype 

2 had low rates of hypertension (40.5%), diabetes (12.8%), valvular heart disease 

(4.1%), and COPD (3.1%) with the highest eGFR (84.0 [72.0-99.0] ml/min/1.73 

m2).  Patients were less likely to have NYHA class III/IV symptoms (14.9%).  

5.3.2.3 Phenotype 3– Metabolic cardiomyopathy of obesity 

Phenotype 3 was intermediate in age (59±8.9), primarily Caucasian (84.8%) and 

similar rates of ischaemic (46.2%) and non-ischaemic aetiology.  BMI was the 

highest of any phenotype (38.5±4.8), and rate of hypertension (92.6%) and 

diabetes (59.9%) were highest of any phenotype, although proportion taking lipid 

lowering therapies was lower (56.6%).  Phenotype 3 had significant prevalence of 

atrial fibrillation (41.4%) and had the greatest proportion of patients with COPD 

(17.5%).  Subjects were most likely to have had a prior HF hospitalisation (69.1%) 

and the highest proportion of NYHA class III/IV (36.7%).   

5.3.2.4 Phenotype 4 – Ischaemic cardiomyopathy in older patients 

Phenotype 4 subjects were older (age 67.9±8.6 years) and predominantly 

Caucasian (89.7%). There was a high rate of ischaemic cardiomyopathy (94.6%), 

and the longest overall duration of HF (81% > 1 year).  Proportion with 

hypertension and diabetes were moderately high (79.6% and 42% respectively) 

and the majority of patients were taking lipid lowering therapies (93.7%). 

5.3.2.5 Phenotype 5 – Ischaemic cardiomyopathy, Asian subtype 

Phenotype 5 was had predominantly ischaemic CM (76.7%).  It was comprised 

almost entirely of Asian subjects (90.5%) despite Asian subjects comprised only 

18.0% of the trial population. Phenotype 5 subjects had a comparatively high 

rate of diabetes mellitus (44.6%) and high rates of lipid lowering therapy (64.4%) 

with a relatively low rate of hypertension (50.6%) and the lowest BMI (23.5±3.6 

kg/m2). Otherwise, they had the lowest rates of atrial fibrillation (4.4%), COPD 

(4.7%) and LBBB (4.7%) but had among the highest rates of anaemia (39.3%). 
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Duration of HF was relatively low (88.6% < 5 years). Interestingly, the rate of 

device therapy was much lower than all other phenotypes.  
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Table 5-2. Baseline characteristics of phenotype groups in PARADIGM-HF 
Baseline characteristics and outcomes by subgroup, PARADIGM-HF. 

 1 2 3 4 5 P=value 
Number 2,220 1,209 848 3,026 1,096  

LCA variables       

Age (years) 70.0 
(8.3) 

48.2 
(9.1) 

59.1 
(8.9) 

67.9 
(8.6) 

60.8 
(9.0) <0.001 

Female sex 692 
(31.2%) 

229 
(18.9%) 

256 
(30.2%) 

432 
(14.3%) 

223 
(20.3%) <0.001 

Race       
Caucasian 1,690 

(76.1%) 
421 

(34.8%) 
719 

(84.8%) 
2,714 

(89.7%) 0 (0.0%) <0.001 

Black 98 
(4.4%) 

209 
(17.3%) 

75 
(8.8%) 

31 
(1.0%) 

15 
(1.4%) 

 

Asian 97 
(4.4%) 

384 
(31.8%) 

6 
(0.7%) 

30 
(1.0%) 

992 
(90.5%) 

 

Other 335 
(15.1%) 

195 
(16.1%) 

48 
(5.7%) 

251 
(8.3%) 

89 
(8.1%) 

 

Ischaemic 
aetiology (%) 

739 
(33.3%) 

202 
(16.7%) 

392 
(46.2%) 

2,862 
(94.6%) 

841 
(76.7%) <0.001 

Duration of HF       

<1 year 599 
(27.0%) 

586 
(48.5%) 

210 
(24.8%) 

575 
(19.0%) 

553 
(50.5%) <0.001 

1-5 years 895 
(40.3%) 

451 
(37.3%) 

346 
(40.8%) 

1,122 
(37.1%) 

418 
(38.1%) 

 

>5 years 726 
(32.7%) 

172 
(14.2%) 

292 
(34.4%) 

1,329 
(43.9%) 

125 
(11.4%) 

 

Body Mass 
Index (kg/m2)  

27.0 
(3.9) 

27.0 
(4.5) 

38.5 
(4.8) 

28.3 
(3.9) 

23.5 
(3.6) <0.001 

Hypertension  1,700 
(76.6%) 

490 
(40.5%) 

785 
(92.6%) 

2,410 
(79.6%) 

555 
(50.6%) <0.001 

Diabetes 483 
(21.8%) 

155 
(12.8%) 

508 
(59.9%) 

1,272 
(42.0%) 

489 
(44.6%) <0.001 

Lipid lowering 
therapy 

403 
(18.2%) 

305 
(25.2%) 

480 
(56.6%) 

2,835 
(93.7%) 

706 
(64.4%) <0.001 

Valvular heart 
disease 

225 
(10.1%) 

49 
(4.1%) 

46 
(5.4%) 

259 
(8.6%) 

25 
(2.3%) <0.001 

Atrial 
fibrillation 

986 
(45.0%) 

157 
(13.3%) 

344 
(41.4%) 

502 
(16.8%) 

47 
(4.4%) <0.001 

COPD 346 
(15.6%) 

37 
(3.1%) 

148 
(17.5%) 

498 
(16.5%) 

51 
(4.7%) <0.001 

LBBB 573 
(25.8%) 

179 
(14.8%) 

133 
(15.7%) 

596 
(19.7%) 

172 
(15.7%) <0.001 

eGFR 
(mL/min/1.73m2)  

62 
(51-73) 

84 
(72-99) 

70 
(58-83) 

62 
(51-74) 

69 
(56-81) <0.001 

Anaemia 398 
(17.9%) 

134 
(11.1%) 

72 
(8.5%) 

630 
(20.8%) 

431 
(39.3%) <0.001 
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Table 5-2 continued. 

Non LCA variables      

Ejection 
fraction (%) 

31 
(26-35) 

28 
(24-
32.6) 

32 
(27-35) 

30 
(25-35) 

29 
(24-33) <0.001 

NYHA class 
III/IV  

660 
(29.8%) 

180 
(14.9%) 

311 
(36.7%) 

785 
(26.0%) 

142 
(13.0%) <0.001 

Prior HF 
hospitalisation 

1,375 
(61.9%) 

811 
(67.1%) 

586 
(69.1%) 

1,854 
(61.3%) 

648 
(59.1%) <0.001 

Heart rate 
(bpm)  

73 
(12) 

74 
(12) 

76 
(13) 

70 
(11) 75 (11) <0.001 

Systolic blood 
pressure 
(mmHg) 

123 
(15) 

117 
(14) 

125 
(16) 

122 
(15) 

117 
(15) <0.001 

NT-proBNP 
(pg/ml) 

2018 
(1124-
4066) 

1463 
(845-
3108) 

1219.5 
(722-
2254) 

1497.5 
(840.5-
2909.5) 

1778 
(933-
3750) 

<0.001 

Treatments       

Beta blocker 2,032 
(91.5%) 

1,138 
(94.1%) 

804 
(94.8%) 

2,869 
(94.8%) 

968 
(88.3%) <0.001 

MRA 

 
1,187 

(53.5%) 
816 

(67.5%) 
504 

(59.4%) 
1,598 

(52.8%) 
566 

(51.6%) <0.001 

Digoxin 

 
783 

(35.3%) 
495 

(40.9%) 
274 

(32.3%) 
553 

(18.3%) 
434 

(39.6%) <0.001 

Diuretic 

 
1,832 

(82.5%) 
968 

(80.1%) 
766 

(90.3%) 
2,380 

(78.7%) 
792 

(72.3%) <0.001 

ICD 

 
221 

(10.0%) 
107 

(8.9%) 
148 

(17.5%) 
742 

(24.5%) 
25 

(2.3%) <0.001 

CRT 

 
140 

(6.3%) 
55 

(4.5%) 
57 

(6.7%) 
298 

(9.8%) 
24 

(2.2%) <0.001 

Endpoints       
Composite 
primary 
outcome 

519 
(23.4%) 

261 
(21.6%) 

219 
(25.8%) 

757 
(25.0%) 

275 
(25.1%) 0.088 

All cause death 434 
(19.5%) 

194 
(16.0%) 

124 
(14.6%) 

571 
(18.9%) 

223 
(20.3%) 0.001 

CV 
death 

 338 
(15.2%) 

168 
(13.9%) 

102 
(12.0%) 

442 
(14.6%) 

201 
(18.3%) 0.002 

HF 
hospitalisation 

263 
(11.8%) 

132 
(10.9%) 

139 
(16.4%) 

432 
(14.3%) 

119 
(10.9%) <0.001 

 

5.3.3 Validation 

The classification developed in PARADIGM-HF was applied to patients in 

ATMOSPHERE.  Patients were allocated to the class with the maximum predicted 

probability of class membership.  The probabilities of belonging to each class 
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were lower when applied to ATMOSPHERE suggesting a lesser ability to 

discriminate between different latent classes (Table 5-3). 

Table 5-3. Probability of latent class membership, ATMOSPHERE 
Probability of class membership, PARADIGM-HF criteria applied to ATMOSPHERE. 

 1 2 3 4 5 
Number 2648 1287 699 1211 1171 
Number >50% 
probability of belonging 
to class (%) 

2365 
(89.3) 

1163 
(90.4) 

612 
(87.6) 

1003 
(82.8) 

1098 
(93.8) 

Number >70% 
probability of belonging 
to class 

1503 
(56.8) 

826 
(64.2) 

444 
(63.5) 

505 
(41.7) 

829 
(70.8) 

Median probability of 
belonging to class [IQR] 

0.741 
[0.583-
0.874] 

0.773 
[0.615-

950] 

0.805 
[0.605-
0.950] 

0.653 
[0.534-
0.821] 

0.840 
[0.665-
0.939] 

 

Baseline characteristics by LCA class in PARADIGM-HF were overall very similar 

to baseline characteristics in ATMOSPHERE when validated (Table 5-4).  

Proportionally, group sizes were similar. 
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Table 5-4. Baseline characteristics of phenotype groups in ATMOSPHERE 
Baseline characteristics and outcomes by subgroup, PARADIGM-HF coefficients applied to 
ATMOSPHERE. 

 1 2 3 4 5 p-value 

Number 2,648 1,287 699 1,211 1,171  

LCA variables       

Age 70.4 
(8.1) 

48.5 
(9.7) 

59.6 
(8.7) 

66.9 
(8.2) 

61.5 
(9.6) <0.001 

Female sex 685 
(25.9%) 

196 
(15.2%) 

184 
(26.3%) 

172 
(14.2%) 

288 
(24.6%) <0.001 

Race       

Caucasian 2,255 
(85.2%) 

565 
(43.9%) 

642 
(91.8%) 

1,130 
(93.3%) 

0 
( 0.0%) <0.001 

Black 27 
(1.0%) 

50 
(3.9%) 

19 
(2.7%) 

8  
(0.7%) 

5  
( 0.4%) 

 

Asian 114 
(4.3%) 

537 
(41.7%) 

4  
(0.6%) 

12 
(1.0%) 

1,097 
(93.7%)  

Other 252 
(9.5%) 

135 
(10.5%) 

34 
(4.9%) 

61 
(5.0%) 

69 
(5.9%) 

 

Ischaemic 
aetiology 

886 
(33.5%) 

664 
(51.6%) 

251 
(35.9%) 

680 
(56.2%) 

605 
(51.7%) <0.001 

Duration of HF       

<1 year 690 
(26.1%) 

654 
(50.9%) 

178 
(25.5%) 

236 
(19.5%) 

603 
(51.5%) <0.001 

1-5 years 1,050 
(39.7%) 

443 
(34.5%) 

283 
(40.5%) 

406 
(33.6%) 

411 
(35.1%) 

 

>5 years 908 
(34.3%) 

188 
(14.6%) 

238 
(34.0%) 

568 
(46.9%) 

156 
(13.3%) 

 

BMI (kg/m2) 26.8 
(3.8) 

26.1 
(4.3) 

37.3 
(4.1) 

28.4 
(3.6) 

23.0 
(3.4) <0.001 

Hypertension  1,859 
(70.2%) 

436 
(33.9%) 

628 
(89.8%) 

898 
(74.2%) 

511 
(43.6%) <0.001 

Diabetes 489 
(18.5%) 

134 
(10.4%) 

368 
(52.6%) 

538 
(44.4%) 

415 
(35.4%) <0.001 

Hyperlipidaemia 1,087 
(41.0%) 

448 
(34.8%) 

441 
(63.1%) 

1,125 
(92.9%) 

618 
(52.8%) <0.001 

AF 1,471 
(55.6%) 

210 
(16.3%) 

309 
(44.2%) 

302 
(24.9%) 

98 ( 
8.4%) <0.001 

COPD  382 
(14.4%) 

43 ( 
3.3%) 

117 
(16.7%) 

193 
(15.9%) 

52 ( 
4.4%) <0.001 

LBBB  1,020 
(38.5%) 

330 
(25.6%) 

221 
(31.6%) 

442 
(36.5%) 

304 
(26.0%) <0.001 

eGFR 
65.0 

(53.0-
76.0) 

93.0 
(79.0-
107.0) 

74.0 
(63.0-
87.0) 

68.0 
(56.0-
80.0) 

72.0 
(59.0-
85.0) 

<0.001 

Anaemia 556 
(21.0%) 

169 
(13.1%) 

76 
(10.9%) 

274 
(22.6%) 

543 
(46.4%) <0.001 
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Table 5-4 continued 

Non LCA 
variables       

LVEF (%) 30 (25-
34) 

28 (23-
32) 

30 (26-
34) 

30 (25-
33) 

30 (25-
33) <0.001 

NYHA III/IV 899 
(34.0%) 

259 
(20.1%) 

284 
(40.6%) 

320 
(26.4%) 

241 
(20.6%) 

 

Heart rate  

82.6635
2 

(16.7245
2) 

87.0722
6 

(18.7053
8) 

88.1473
5 

(16.6153
1) 

80.2502
1 

(14.5001
9) 

86.7574
7 

(16.5338
1) 

<0.001 

Systolic BP 
(mmHg) 

126.224 
(17.8481

) 

117.761 
(17.1953

) 

128.792 
(18.0632

) 

125.985 
(18.4846

) 

118.816 
(17.2478

) 
<0.001 

NT-proBNP 
(pg/ml) 

1522 
(861-
2705) 

859 
(444-
1674) 

917.5 
(508-
1682) 

1085 
(616-
2064) 

1191 
(608.5-
2379.5) 

<0.001 

Treatments       

Beta-blocker  2,416 
(91.2%) 

1,197 
(93.0%) 

662 
(94.7%) 

1,139 
(94.1%) 

1,018 
(86.9%) <0.001 

Spironolactone 821 
(31.0%) 

471 
(36.6%) 

255 
(36.5%) 

363 
(30.0%) 

397 
(33.9%) <0.001 

Digoxin 821 
(31.0%) 

491 
(38.2%) 

192 
(27.5%) 

274 
(22.6%) 

464 
(39.6%) <0.001 

Diuretic 2,114 
(79.8%) 

975 
(75.8%) 

606 
(86.7%) 

974 
(80.4%) 

929 
(79.3%) <0.001 

ICD 388 
(14.7%) 

138 
(10.7%) 

132 
(18.9%) 

292 
(24.1%) 

35 ( 
3.0%) <0.001 

CRT 175 
(6.6%) 

31 
(2.4%) 

44 
(6.3%) 

118 
(9.7%) 

25 
(2.1%) <0.001 

Outcomes       
Composite 
primary 
outcome 

994 
(37.5%) 

393 
(30.5%) 

227 
(32.5%) 

377 
(31.1%) 

378 
(32.3%) <0.001 

All cause death 871 
(32.9%) 

298 
(23.2%) 

160 
(22.9%) 

279 
(23.0%) 

287 
(24.5%) <0.001 

CV death 720 
(27.2%) 

269 
(20.9%) 

137 
(19.6%) 

228 
(18.8%) 

267 
(22.8%) <0.001 

HF 
hospitalisation 

525 
(19.8%) 

217 
(16.9%) 

153 
(21.9%) 

241 
(19.9%) 

188 
(16.1%) 0.003 

 

5.3.4 Outcomes 

In the LCA identified in PARADIGM-HF there was no significant difference in the 

primary composite outcome between the phenotype subgroups [adjusted for 

randomised treatment] (Figure 5-2 and Table 5-5).  When validated in 
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ATMOSPHERE class 2 (idiopathic dilated cardiomyopathy) had the lowest rate of 

primary composite outcome with the other groups having similar rates of event 

(Figure 5-3 and Table 5-6). 

Figure 5-2. Primary endpoint by phenotype group in PARADIGM-HF 
Kaplan-Meier curves for the primary endpoint by phenotype subgroups, PARADIGM-HF. 

 
 

Table 5-5. Primary endpoint by phenotype group in PARADIGM-HF 
Number of events and hazard ratio for the primary outcome in LCA subgroups for 
PARADIGM-HF.  HR is adjusted for the randomised treatment. 

Subgroup Total Events % HR 95% CI 

1 2220 519 23.4 1.05 0.91 – 1.22 

2 1209 261 21.6 REFERENCE REFERENCE 

3 848 219 25.8 1.17 0.98 - 1.40 

4 3026 757 25.2 1.13 0.98 - 1.30 

5 1096 275 25.1 1.17 0.99 – 1.39 
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Figure 5-3. Primary endpoint by phenotype group in ATMOSPHERE 
Kaplan-Meier curves for the primary endpoint in phenotype subgroups, PARADIGM 
definitions applied to ATMOSPHERE. 

 

Table 5-6. Primary endpoint by phenotype group in ATMOSPHERE 
Number of events and hazard ratio for the primary outcome in LCA subgroups for 
ATMOSPHERE.  HR is adjusted for the randomised treatment. 

Subgroup Total Events % HR (95%CI) 

1 2648 994 37.5 1.36 (1.21-
1.53) 

2 1287 393 30.5 REFERENCE 

3 699 227 32.5 1.33 (1.13-
1.56) 

4 1211 377 31.1 1.21 (1.05-
1.39) 

5 1171 378 32.3 1.20 (1.04-
1.38) 

 

5.3.5 Randomised treatment effect 

Treatment effect of sacubitril valsartan as compared with enalapril was 

consistent across phenotype subgroups (p for interaction 0.97) (Figure 5-4). 
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Figure 5-4. Treatment effect in each phenotype group in PARADIGM-HF 
Kaplan-Meier curves and hazard ratios for sacubitril-valsartan as compared to enalapril in 
each phenotype subgroup in PARADIGM-HF.

 

 

In ATMOSPHERE there was no significant variation in treatment effect for either 

combination vs. enalapril or aliskiren vs. enalapril by LCA group (p for 

interaction 0.39) (Figure 5-5). 

Figure 5-5. Treatment effect in each phenotype group in ATMOSPHERE 
Kaplan-Meier curves and hazard ratios for aliskiren as compared to enalapril and 
combination therapy as compared with enalapril alone in each phenotype subgroup in 
ATMOSPHERE. 

 
 

  

p for 
interaction 

= 0.97 

p for 
interaction 

= 0.39 
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5.4 Discussion 

In this chapter, I have identified multiple latent classes within these large global 

clinical trials in HFREF, representing groups of patients with clusters of 

similarities across a range of commonly measured variables.  This means patients 

are classified into groups based on multiple different variables with no one 

feature determining class.  The complex multi-levelled nature of this clustering 

adds additional information about the patient above single variable 

classifications such as ischaemic and non-ischaemic heart failure.   

Several of these latent groups are recognisable as frequently encountered 

clinical phenotypes.  These include younger patients with features suggestive of 

idiopathic dilated cardiomyopathy, older patients with ischaemic aetiology and 

obese patients with multimorbidity.  Although in this study there was no 

significant difference in prognosis or treatment response identified, it is 

valuable that unsupervised latent class analysis was able to identify clinically 

recognisable phenotypes.  Further work may be able to further differentiate 

phenotypes and explore deeper into prognostic differences and treatment 

responses.  

Retrospective analysis of patients with non-ischaemic aetiology of HFREF in the 

β-blocker Evaluation of Survival Trial (BEST) using latent class analysis has 

previously been able to identify groups with differing outcomes and response to 

treatment.59  This analysis cannot be directly compared to the current study 

given the different patient populations.  However, there are some similarities 

between group 3 of the current study and two groups in the BEST analysis 

including patients with high BMI, hypertension, hyperlipidaemia and diabetes.   

Latent class analysis has been utilised in evaluation of the EMPHASIS-HF trial 

with validation in the EPHESUS trial.58  Four subgroups were identified. The 

subgroup with the worst outcome (composite CV mortality and heart failure 

hospitalisation) shared similarities to group 4 of this study including older age, 

higher proportion male patients and prevalence of ischaemic aetiology.  

Variation in response to eplerenone was demonstrated between subgroups, with 

two subgroups experiencing less events, however this only remained true for one 

subgroup when tested in validation data. 
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Latent class analysis of the ASIAN-HF registry found five subgroups.  Subgroups 

had geographical differences in prevalence and differences in the primary 

outcome of all-cause mortality and HF hospitalisation.65  The subgroup of lean 

diabetic patients was novel, found predominantly in Southeast Asia.  The 

presence of these characteristics may influence group 5 of this trial, as this 

subgroup consists of majority Asian patients and has the lowest BMI of any 

subgroups and the second highest rate of diabetes.  Other groups appear similar 

to those found in this study, for example a metabolic group and a subgroup with 

young patients and low rates of ischaemic aetiology (similar to 2). 

Latent class analysis provides the tools to use data driven techniques to identify 

phenotypes, and reassuringly there appear to be both clinically recognisable and 

reproducible across different patient populations.  Strengths of this analysis 

include the number of patients included in creation and validation of the latent 

classes and the global recruitment of patients to the trials.  These phenotypes 

can help us understand our patients with heart failure and contribute towards 

more personalised care. 

Although there have not yet been any consistent signals in terms of different 

treatment responses in latent classes, LCA remains a potential pathway to 

identify this.  As discussed in Chapter 2, the signal for any difference in 

treatment effect can be hard to detect when patients are split into the latent 

classes as there is always a degree of uncertainty of class membership.  

Therefore, it is unlikely study protocols would be made incorporating allocation 

to latent class in the randomisation process until improved techniques for linking 

latent classes with distal outcomes are developed.  Another avenue to using 

these defined phenotypes to look for responses in phenotypes would be to use 

the phenotype descriptions to inform recruitment criteria to a study to 

specifically recruit a certain phenotype hypothesised to respond preferentially 

to the treatment. 

5.4.1 Limitations 

Success and accuracy of latent class analysis is dependent on selection of 

variables for analysis.  In this study, clinically pertinent and readily recorded 

variables were selected but it is possible other variables may provide greater 
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discrimination between groups.  Other variables that were not recorded, for 

example exercise capacity, may improve performance of the model.  Given the 

greater recruitment of men to the trials, all latent class groups have a higher 

proportion of men than women and differences in behaviour of male compared 

with female patients may be missed.  Sex disaggregated analysis is limited by 

the number of patients but might provide an interesting avenue of exploration.  

Similarly, it may be of interest to analyse separately by aetiology of HF, as was 

done in analysis of the BEST trial, however this is restricted by reduced patient 

numbers for analysis. 



Chapter 6  133 
 

Chapter 6 Latent class analysis in heart failure 
with preserved ejection fraction 

6.1 Introduction 

In Chapter 5, a new latent class analysis was carried out in PARADIGM-HF with 

validation in the ATMOSPHERE trial, identifying clinically recognised phenotypes 

with groups that were similar to those identified in previous latent class 

analyses.  HFPEF is thought to have a wider variation in phenotypes, particularly 

given the high degree of comorbidity associated with the condition.  Identifying 

these phenotypes is a potential avenue to identify effective treatments in HFPEF 

which remains challenging.  The lack of effective treatments is assessed in the 

broad category of heart failure with preserved ejection fraction, but perhaps 

some subgroups respond either to treatments we already have available or new 

treatments might have differential responses. 

There have been several previous latent class analyses of patient populations 

with heart failure and preserved ejection fraction.60–62  These have identified 

several consistent phenotypes in different data.  There are some slight 

differences in approaches used, in addition most are ‘traditional’ latent class 

analyses using only categorical/factor variables rather than continuous versions 

of the variable where possible.  Each analysis based the construction of the 

latent classes on different observed variables. 

I then became interested in whether consistent groups could be identified by 

using different input variables in the same patient population.  Latent class 

analysis depends on the input variables selected therefore it was hypothesised 

that the core phenotypes that appear throughout different analyses could be 

identified using different input variables.  In addition, these strong phenotypes 

should be identified using both categorical and continuous variables, providing 

reassurance that phenotypes are genuine clinical phenotypes and not random 

patterns within the data being identified by the data analysis process itself. 

This analysis uses patient level data from the PARAGON-HF trial to generate 

latent class analysis solutions. The aims of this analysis are to investigate 

whether identified groups appear consistently using different variable selection 
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based on those used in previous trials, and examining whether these remain 

consistent when slightly different techniques are used – namely categorising 

continuous variables or using the continuous variable. 

6.2 Methods 

6.2.1 Analysis of prior latent class analysis results 

For each prior analysis, the variables entered into the latent class analysis were 

identified, and where continuous variables were categorised the cut-point for 

defining groups were extracted. A summary of the variables, and categorisation, 

used in each prior trial is given in Table 6-1.  
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Table 6-1. Summary of variables used in creation of latent classes in each prior research 
1 2 3 

Uijl et al.60 Cohen et al.61 Kao et al.62 

Sex Sex Sex 

Age (years) Age (years) Age (years) 

<65 <65 <70 

65-74 65-74 70-80 

75-85 75-85 >80 

>85 >85  

Body mass index (kg/m2) Obesity (BMI ≥ 30 kg/m2) Body mass index (kg/m2) 

<25  <18.5 

25-30  18.5-25 

>30  25-30 

  >30 

eGFR (mL/min/1.73m2) Chronic kidney disease 

(eGFR <60 

mL/min/1.73m2) 

eGFR (mL/min/1.73m2) 

>60  >90 

30-60  60-90 

<30  30-60 

  15-30 

Atrial fibrillation Atrial fibrillation Atrial fibrillation 

Ischaemic heart disease  Coronary artery disease 

Diabetes Diabetes Diabetes 

NYHA I/II vs III/IV NYHA I/II vs III/IV  

Chronic obstructive 

pulmonary disease 

Race Dyslipidaemia 

Hypertension Asian Alcohol 

 Black or African 

American 

Haematocrit (%) 

 Other >0.5 

 White 0.4-0.5 

  0.3-0.4 

  0.2-0.3 
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6.2.2 Labelling latent class groups in prior research 

As latent classes are built and defined using all the input variables, it can 

become difficult to succinctly describe each group.  The description of the group 

also becomes inherently linked to the input variables, adding to the challenge of 

comparing identified groups between different analyses.  In each published 

analysis, the identified latent class groups were reviewed and descriptions 

summarised to be as concise as possible, while not removing key distinguishing 

features. A summary is presented in Table 6-2. 

Table 6-2. Description of core characteristics of latent classes in prior research 

Model Uijl et al.  Cohen et al.  Kao et al.  
Model number  1 2 3 
Population Swedish HF registry 

and CHECK-HF 
TOPCAT I-PRESERVE & 

CHARM 
Descriptors Younger, low 

comorbidity 
Younger, low 
comorbidity 

Male, alcohol, 
younger 

 AF, HTN Older, more 
women, AF, CKD 

Female, anaemia, 
younger 

 Older, AF Diabetes, obesity Obesity, diabetes, 
hyperlipidaemia 

 HTN, diabetes, 
obesity 

 
Women 

 IHD, poor renal 
function, older 

 
Male, AF, CAD 

 
  

Older women, AF, 
renal dysfunction, 
anaemia 

 

6.2.3 Validating Model 1 in PARAGON-HF trial data 

To evaluate whether groups identified in model 1 appeared consistently in the 

PARAGON-HF population, latent class analysis was repeated using the same 

variables as used in the prior analysis. Firstly, analysis using categorisation of 

continuous variables with the same cut-points was carried out using the LCA 

Stata Plugin from Penn State university.130 The same categories were used as had 

been done previously.  Secondly, the same variables were used but continuous 

variables were preserved and analysed using the generalised structural equation 

modelling (GSEM) capabilities inbuilt in Stata.  
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6.2.3.1 LCA using categorised variables 

Solutions for LCA with 1-7 groups were defined using maximum likelihood 

estimation, and relative model fit compared using AIC and BIC (Figure 6-1). 

Lower BIC and AIC indicate better model fit, and the preferred number of latent 

classes, in this case a 4 or 5 class solution appeared best.  However, the number 

of random starting seeds associated with a 4 and 5 class solution was low (20% 

and 40% respectively, compared with 71% for 3 class solution), suggesting the 4 

and 5 class solutions did not identify a global minima and the solution could be 

unstable. Beyond 3 classes, there was minimal benefit in BIC with addition of 

extra classes, and 3 classes offered a more stable solution. Therefore, the 3-

class solution was selected.  The median posterior probability of belonging to 

the allocated class was reasonably high (all ~80%), giving further support to this 

solution (Table 6-3). 

Figure 6-1. Model fit statistics for Model 1 with categorical variables 
AIC and BIC for latent class solution using categorised variables for Model 1. 

  

 

Table 6-3. Median posterior probability of class membership for Model 1 with categorical 
variables 
Median posterior probability of class membership.  The diagonal gives the median posterior 
probability of class membership for the patients allocated to that class.   

 
Probability class 1 Probability class 2 Probability class 3 

Class 1 0.793 [0.63 - 0.911] 0.104 [0.0355 - 0.257] 0.028 [0.00782 - 
0.122] 

Class 2 0.0806 [0.0186 - 0.218] 0.789 [0.63 - 0.881] 0.0696 [0.0333 - 0.17] 
Class 3 0.0247 [0.00489 - 0.0877] 0.123 [0.00164 - 0.229] 0.825 [0.634 - 0.952] 

 

The model was then described using the item response probabilities.  The most 

homogenous variables in each group (i.e., with item response probabilities 
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closest to 0 or 1) were highlighted to aid interpretation, and used to create a 

description of each group (Table 6-4). 

Table 6-4. Phenotype characteristics for Model 1 with categorical variables 
Description of groups in model 1 (categorised variables) using item response probabilities, 
with variables most different between groups highlighted to aid interpretation. 

Class 1 2 3 

Descriptors 

Male 
Young 

Ischaemic 
Good renal 

function 

Female 
Obesity 

Hypertension 
COPD 

Diabetes 

Older 
Atrial fibrillation 

Low BMI 

Proportion 0.28 0.38 0.34 
Female sex 0.37 0.60 0.55 
Age    

<65 0.48 0.08 0.02 
65-75 0.46 0.43 0.22 
75-85 0.07 0.46 0.59 

>85 0.0001 0.03 0.16 
NYHA III/IV 0.15 0.26 0.16 
BMI    

<25 0.13 0.0006 0.36 
25-30 0.35 0.20 0.53 

>30 0.52 0.80 0.11 
eGFR    

>60 0.82 0.35 0.43 
30-60 0.18 0.64 0.56 

<30 0.002 0.02 0.01 
Ischaemic aetiology 0.58 0.40 0.37 
AF 0.17 0.37 0.40 
HTN 0.95 0.98 0.92 
COPD 0.11 0.17 0.12 
Diabetes 0.49 0.54 0.26 

 

Outcomes of time to cardiovascular death and time to first heart failure 

hospitalisation were examined in the 3 phenotype groups.  The lowest rate for 

both outcomes was in phenotype 1 (younger patients with predominant 

ischaemic aetiology). The hazard ratio, adjusted for randomised treatment, for 

phenotype 3 (older patients, high proportion AF and low BMI) compared to 

phenotype 1 for cardiovascular death was 1.57 [95%CI 1.20-2.05] (Table 6-5). 

There was a significant interaction between randomised treatment and 

phenotype group for the outcome of first heart failure hospitalisation.  Patients 
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in phenotype 2 (greater proportion female, with multimorbidity) appeared to 

benefit more from treatment with sacubitril valsartan (p for interaction 0.01) 

Table 6-5). 

Table 6-5. Outcomes according to phenotype group for Model 1 with categorical variables 
Outcomes according to phenotype group for model 1 (categorical variables) and effect of 
randomised treatment in each phenotype subgroup.  1 adjusted for randomised treatment 

Phenotype 1 2 3 interaction 
p-value 

Cardiovascular death     

Rate 2.26 
(1.83 - 2.8) 

3.12 
(2.68 - 3.62) 

3.47 
(2.97 - 4.04) 

 

Hazard ratio1 REF 1.42 
(1.08-1.85) 

1.57 
(1.20-2.05) 

 

Treatment effect in each 
phenotype group 

1.49  
(0.96 - 2.30) 

0.92 
(0.68-1.25) 

0.79 
(0.58-1.07) 0.06 

1st HFH     

Rate 5.2 
(4.49 - 6.01) 

7.57 
(6.84 - 8.38) 

6.73 
(6 - 7.56) 

 

Hazard ratio1 REF 1.34 
(1.11-1.60) 

1.19 
(0.99-1.44) 

 

Treatment effect in each 
phenotype group 

1.03  
(0.77-1.38) 

0.72 
(0.58-0.88) 

1.11 
(0.88-1.40) 0.01 

 

6.2.3.2 LCA using continuous variables 

LCA models using continuous variables were fit using the GSEM command inbuilt 

in Stata software. Age, body mass index and eGFR were entered as continuous 

variables after being standardised to a mean of 0 and standard deviation of 1. 

Models were evaluated for 1-7 classes to compare model fit, with initial models 

fit with relaxation of convergence rules using the ‘nonrtolerance’ option to allow 

convergence in models with greater number of latent classes. However, final 

fitted models used default convergence criteria. A five-class solution appeared 

best by model fit criteria (Figure 6-2), however there were several different 

solutions with random starting seeds, and some starting seeds would not allow 

the model to converge therefore this solution appeared unstable. Given the 

‘elbow’ at the three-class solution, where additional classes result in minor 

benefit in BIC, and the finding that a 3 class solution fit best using the simpler 

categorical analysis, the 3 class solution was explored further. A 3-class solution 

came to the same solution with 10 starting seeds with good median posterior 
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probability of class membership (Table 6-6), therefore a 3 class solution was 

selected. 

Figure 6-2. Model fit statistics for Model 1 with continuous variables 
Model fit criteria for Model 1 using continuous variables. 

  

 

Table 6-6. Median posterior probability of class membership for Model 1 with continuous 
variables 
Median posterior probability of class membership.  The diagonal gives the median posterior 
probability of class membership for the patient allocated to that class.   

 Probability class 1 Probability class 2 Probability class 3 
Class 1 0.795 [0.636 - 0.917] 0.0208 [0.00361 - 0.107] 0.105 [0.0294 - 0.256] 

Class 2 0.0632 [0.0136 - 0.193] 0.835 [0.636 - 0.956] 0.0335  
[0.00557 - 0.139] 

Class 3 0.0645 [0.0167 - 0.194] 0.00547 [0.000872 - 0.0365] 0.895 [0.738 - 0.972] 
 

The model was then described using the item response probabilities as described 
previously (Table 6-7). 
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Table 6-7. Phenotype characteristics for Model 1 with continuous variables 
Description of groups in model 1 (continuous variables) using item response probabilities, 
with variables most different between groups highlighted to aid interpretation. 1Continuous 
variable item response are on a standardised scale (mean of 0 and standard deviation of 1); 
values above 1 infer the mean value in that phenotype is higher than the population mean. 

Phenotype 1 2 3 

Descriptors 

Female 
Hypertension 

Diabetes 
Obesity 

Male 
Ischaemic 
Good renal 

function 

Atrial fibrillation 
Older 

Proportion 0.33 0.19 0.49 
Female sex 0.58 0.32 0.55 
NYHA III/IV 0.27 0.15 0.17 
Ischaemic aetiology 0.43 0.59 0.40 
Atrial fibrillation 0.32 0.16 0.39 
Hypertension 0.99 0.94 0.94 
COPD 0.17 0.11 0.13 
Diabetes 0.59 0.45 0.32 
Age1 -0.18 -1.12 0.54 
BMI1 0.84 -0.08 -0.53 
eGFR1 -0.25 1.07 -0.24 

 

Rates of cardiovascular death and time to first heart failure hospitalisation were 

calculated in each phenotype group.  Phenotype 2, younger males with high 

proportion ischaemic aetiology, had the lowest rates of both outcomes.  

Phenotype 3 (older, atrial fibrillation) had the highest rate of CV death with a 

HR of 1.86 [95%CI 1.37-2.52] as compared with phenotype 2.  Phenotype 1 had 

the highest rate of heart failure hospitalisation with a HR of 1.64 (95%CI 130-

2.07) compared with phenotype 2.  There was no interaction between 

randomised treatment and phenotype group on the occurrence of either 

outcome (Table 6-8). 
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Table 6-8. Outcomes according to phenotype group for Model 1 with continuous variables 
Outcomes according to phenotype group for model 1 (continuous variables) and effect of 
randomised treatment in each phenotype subgroup.  1 adjusted for randomised treatment 

Phenotype 1 2 3 interaction 
p-value 

Cardiovascular death     

Rate 2.54 
(2.11 - 3.05) 

2.04 
(1.55 - 2.68) 

3.65 
(3.23 - 4.14) 

 

Hazard ratio1 1.28 
(0.91 - 1.78) REF 1.86 

(1.37 - 2.52) 
 

Treatment effect in each 
phenotype group 

1.05  
(0.73-1.52) 

1.15  
(0.66-2.00) 

0.89  
(0.69-1.13) 0.59 

1st HFH     

Rate 7.55 
(6.75 - 8.45) 

4.16 
(3.42 - 5.08) 

6.97 
(6.35 - 7.66) 

 

Hazard ratio1 1.64 
(1.3 - 2.07) REF 1.5 

(1.2 - 1.88) 
 

Treatment effect in each 
phenotype group 

0.79  
(0.63-0.99) 

1.08  
(0.72-1.30) 

0.95 
(0.78-1.14) 0.30 

 

6.2.4 Validating Model 2 in PARAGON-HF trial data 

6.2.4.1 LCA using categorised variables 

Solutions for LCA with 1-7 groups were fitted, and model fit criteria compared 

(Figure 6-3). There was an ‘elbow’ at 3-4 classes, with BIC not improving beyond 

this point. The number of starting seeds coming to the same solution was higher 

for the 4-class solution compared to 3 (96% and 61% respectively), therefore a 4 

class solution was selected as this appeared more reliable and stable.  The 

median posterior probability of class membership was high (Table 6-9). 

Figure 6-3. Model fit statistics for Model 2 with categorical variables 
AIC and BIC for latent class solutions using categorised variables for Model 2. 
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Table 6-9. Median posterior probability of class membership for Model 2 with categorical 
variables 
 

 Probability class 1 Probability class 2 Probability class 3 Probability class 4 

Class 
1 0.787 [0.652 - 

0.899] 
0.0335 [0.0212 - 
0.0577] 

0.000104 
[0.0000286 - 
0.000301] 

0.15 [0.0516 - 
0.325] 

Class 
2 0.0771 [0.0379 - 

0.126] 0.883 [0.793 - 0.93] 
0.0212 [0.00625 - 
0.0761] 

0.000596 
[0.000223 - 
0.00173] 

Class 
3 

0.00163 [0.0000742 
- 0.022] 

0.115 [0.00237 - 
0.285] 0.881 [0.688 - 0.988] 

0.00622 [0.00169 - 
0.0113] 

Class 
4 

0.147 [0.000757 - 
0.258] 

0.00518 [0.000118 - 
0.0128] 

0.00163 [0.001 - 
0.00251] 

0.837 [0.725 - 
0.996] 

 

The model was described using item response probabilities, with the most 

homogenous variables highlighted to aid interpretation (Table 6-10). 
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Table 6-10. Phenotype characteristics for Model 2 with categorical variables 
Description of groups in model 2 (categorised variables) using item response probabilities, 
with variables most different between groups highlighted to aid interpretation. 

Class 1 2 3 4 

Descriptors 

Female 
White race 

High 
symptom 

burden 

Older 
Atrial 

fibrillation 

Male 
Younger 

Asian race 
Non-obese 

Diabetes 
Obesity 

Gamma 0.27 0.34 0.15 0.25 

Female sex 0.63 0.54 0.37 0.46 

Age 
    

<65 0.0006 0.001 0.49 0.39 

65-75 0.36 0.23 0.47 0.51 

75-85 0.58 0.62 0.04 0.10 

>85 0.06 0.15 0.0007 0.0004 

Race 
    

Asian 0.02 0.18 0.32 0.05 

Black or African American 0.02 0.01 0.02 0.03 

Other 0.03 0.04 0.02 0.05 

White 0.92 0.77 0.63 0.87 

Diabetes 0.48 0.32 0.40 0.55 

AF 0.37 0.40 0.18 0.26 

Obese 0.87 0.04 0.004 0.99 

NYHA 3/4 0.28 0.17 0.15 0.18 

CKD 0.71 0.57 0.23 0.30 

 

Risk of outcomes were compared in each phenotype group.  The lowest rate of 

cardiovascular death was for phenotype 4 (diabetes and obesity).  The hazard 

ratio for phenotype 2 (older, AF) with phenotype 4 as reference was 1.89 [95%CI 

1.43 - 2.5).  For heart failure hospitalisation, the lowest rate was for phenotype 

3 (male, younger, Asian race).  The hazard ratio for phenotype 1, with 3 as 

reference, was 1.72 [95%CI 1.33 – 2.22].  There was no significant interaction 

between phenotype group and randomised treatment on the occurrence of 

either outcome (Table 6-11). 
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Table 6-11. Outcomes according to phenotype group for Model 2 with categorical variables 
Outcomes according to phenotype group for model 2 (categorical variables) and effect of 
randomised treatment in each phenotype subgroup.  1 adjusted for randomised treatment 

Phenotype 1 2 3 4 interaction 
p-value 

Cardiovascular 
death     

 

Rate 3.02 
(2.49 - 3.65) 

3.74 
(3.23 - 4.32) 

2.88 
(2.23 - 3.72) 

2.03 
(1.6 - 2.56)  

Hazard ratio1 1.53 
(1.12 - 2.07) 

1.89 
(1.43 - 2.5) 

1.39 
(0.98 - 1.98) REF 

 
Treatment effect 
in each 
phenotype group 

0.88  
(0.60 - 1.30) 

0.78  
(0.58-1.05) 

1.52  
(0.90-2.58) 

1.26 
 (0.79-2.03) 0.13 

1st HFH      

Rate 7.97 
(7.04 - 9.02) 

7.03 
(6.29 - 7.86) 

4.34 
(3.51 - 5.38) 

6.14 
(5.33 - 7.07)  

Hazard ratio1 1.72 
(1.33 - 2.22) 

1.55 
(1.21 - 1.98) REF 1.45 

(1.12 - 1.88)  

Treatment effect 
in each 
phenotype group 

0.84  
(0.66-1.08) 

0.99 
 (0.79-1.24) 

1.06  
(0.69-1.63) 

0.81  
(0.61-1.07) 0.49 

 

6.2.4.2 LCA using continuous variables 

LCA solutions were found for 1-7 classes using the same variables, but treated as 

continuous variables where possible, using the inbuilt STATA generalised 

structural equation modelling capabilities.  A 7-class solution could not be 

identified and was abandoned.  There was a loss of benefit after a 4-class 

solution (Figure 6-4). The 4-class solution was found to be stable with 17 of 20 

random starting seeds coming to the same solution therefore the 4 class solution 

was taken forward.  There was a fair to good median posterior probability of 

class membership (Table 6-12). 

  



Chapter 6  146 
 
Figure 6-4. Model fit statistics for Model 2 with continuous variables 
Model fit criteria for Model 2 using continuous variables. 

  

 

Table 6-12. Median posterior probability of class membership for Model 2 with continuous 
variables 
 

 Probability class 1 Probability class 2 Probability class 3 Probability class 4 

Class 1 0.77 [0.611 - 0.9] 0.0268 [0.00408 - 
0.113] 

0.126 [0.0336 - 
0.272] 

0.0014 [0.000234 - 
0.00996] 

Class 2 0.0373 [0.00337 - 
0.155] 

0.793 [0.601 - 
0.948] 

0.00472 [0.000347 
- 0.0302] 

0.0495 [0.00851 - 
0.185] 

Class 3 0.0457 [0.00908 - 
0.149] 

0.00121 [0.00017 - 
0.00825] 

0.787 [0.624 - 
0.907] 

0.0662 [0.0128 - 
0.22] 

Class 4 
0.000481 
[0.0000517 - 
0.0038] 

0.00594 [0.000918 
- 0.0422] 

0.0492 [0.00846 - 
0.174] 

0.892 [0.713 - 
0.973] 

 

Classes were described as previously, with most homogenous characteristics used 

to create a group description (Table 6-13). 
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Table 6-13. Phenotype characteristics for Model 2 with continuous variables 
Description of groups in model 2 (continuous variables) using item response probabilities, 
with variables most different between groups highlighted to aid interpretation. 1Continuous 
variable item response are on a standardised scale (mean of 0 and standard deviation of 1); 
values above 1 infer the mean value in that phenotype is higher than the population mean. 

 1 2 3 4 

Descriptors 
Diabetic 
Younger 
Obese 

Male 
Asian race 
Low BMI 

Female 
High 

symptom 
burden 

White race 
Worse 
renal 

function 

Older 
Atrial 

fibrillation 
Low BMI 

Proportion 0.14 0.13 0.31 0.41 

Female sex 0.43 0.35 0.61 0.54 

Diabetes 0.59 0.37 0.52 0.32 

Age 0.22 0.18 0.34 0.39 

NYHA III/IV 0.18 0.15 0.28 0.16 

Race 
    

Asian 0.03 0.35 0.01 0.17 

Black or African American 0.05 0.01 0.03 0.01 

Other 0.06 0.02 0.03 0.04 

White 0.87 0.62 0.93 0.77 

Age1 -1.09 -1.08 0.16 0.60 

Body Mass Index1 0.92 -0.65 0.75 -0.67 

eGFR1 0.63 0.85 -0.36 -0.22 

 

The rate of CV death was highest in phenotype 4 (older, AF).  The HR for 

phenotype 4 compared with phenotype 1 (lowest rate of event) was 2.26 [95%CI 

1.57-3.26].  The highest rate of heart failure hospitalisation was in phenotype 3 

(female, high symptom burden, poor renal function) with a hazard ratio 

compared to phenotype 2 (lowest rate) of 2.09 [95%CI 1.57-2.80].  There was no 

interaction between treatment and phenotype group on occurrence of either 

outcome (Table 6-14). 
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Table 6-14. Outcomes according to phenotype group for Model 2 with continuous variables 
Outcomes according to phenotype group for model 1 (continuous variables) and effect of 
randomised treatment in each phenotype subgroup.  1adjusted for randomised treatment 

Phenotype 1 2 3 4 interaction 
p-value 

Cardiovascular death      

Rate 1.77 
(1.27 - 2.48) 

2.48 
(1.85 - 3.34) 

2.6 
(2.16 - 3.13) 

3.86 
(3.39 - 4.4)  

Hazard ratio1 REF 1.38 
(0.87 - 2.17) 

1.52 
(1.03 - 2.23) 

2.26 
(1.57 - 3.26)  

Treatment effect in 
each phenotype group 

1.20 
(0.61 - 2.37) 

1.30 
(0.71 - 2.36) 

0.86 
(0.59 - 1.24) 

0.93 
(0.72 - 1.21) 0.66 

1st HFH      

Rate 6.58 
(5.48 - 7.92) 

3.51 
(2.72 - 4.53) 

7.44 
(6.63 - 8.35) 

7.04 
(6.36 - 7.79)  

Hazard ratio1 2.05 
(1.48 - 2.83) REF 2.09 

(1.57 - 2.8) 
1.95 

(1.48 - 2.58)  
Treatment effect in 
each phenotype group 

1.00  
(0.69 - 1.44) 

1.04  
(0.62 - 1.74) 

0.78  
(0.62 - 0.98) 

0.96 
(0.79 - 1.18) 0.46 

 

6.2.5 Validating Model 3 in PARAGON-HF trial data 

6.2.5.1 LCA using categorised variables 

Model fit criteria were compared for LCA solutions of 1-7 classes.  There was a 

loss in benefit from 4 classes onward (Figure 6-5).  The number of seeds coming 

to the same solution was higher for the 5-class solution than for a 4 class 

solution (99% and 51% respectively), therefore a 5 class solution was selected. 

The median posterior probability of class membership was fair (ranging from 

0.69 to 0.82) (Table 6-15). 

Figure 6-5. Model fit statistics for Model 3 with categorical variables 
AIC and BIC for latent class solution using categorised variables for Model 2. 
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Table 6-15. Median posterior probability of class membership for Model 3 with categorical 
variables 
 

 Probability 
class 1 

Probability 
class 2 

Probability 
class 3 

Probability 
class 4 

Probability 
class 5 

1 0.722 [0.573 - 
0.862] 

0.0109 [0.0014 
- 0.0661] 

0.0368 
[0.00674 - 
0.147] 

0.0198 
[0.00562 - 
0.113] 

0.000414 
[0.000097 - 
0.0638] 

2 
0.0226 
[0.00524 - 
0.0909] 

0.718 [0.59 - 
0.864] 

0.00556 [0.001 
- 0.0349] 

0.0641 [0.0161 
- 0.171] 

0.000281 
[0.0000746 - 
0.08] 

3 0.0489 [0.0116 
- 0.159] 

0.000224 
[0.0000146 - 
0.00319] 

0.693 [0.555 - 
0.83] 

0.01 [0.00204 - 
0.0674] 

0.0723 
[0.000437 - 
0.22] 

4 
0.0272 
[0.00506 - 
0.0926] 

0.0191 
[0.00252 - 
0.093] 

0.0175 
[0.00399 - 
0.0879] 

0.828 [0.626 - 
0.932] 

0.000704 
[0.000335 - 
0.00146] 

5 
0.0219 
[0.00381 - 
0.0922] 

0.00578 
[0.000574 - 
0.05] 

0.0292 
[0.00989 - 
0.117] 

0.0183 
[0.00737 - 
0.0429] 

0.784 [0.628 - 
0.902] 

 

The five-class solution is described in Table 6-16 using item response 

probabilities. 
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Table 6-16. Phenotype characteristics for Model 3 with categorical variables 
Description of groups in model 3 (categorised variables) using item response probabilities, 
with variables most different between groups highlighted to aid interpretation.  

Phenotype 1 2 3 4 5 

Descriptors 

AF 
Alcohol 

High 
haemato-

crit 

Younger 
CAD 

Oldest 
Low BMI 

Low 
haemato-

crit 

Male 
Obese 
CAD 

Dyslipid-
aemia 

Diabetes 

Female 
Obese 

Diabetes 
Low 

haemato-
crit 

Proportion 0.19 0.15 0.20 0.20 0.27 
Female sex 0.36 0.32 0.60 0.07 0.99 
Age      

<60 0.32 0.80 0.07 0.32 0.28 
60-70 0.52 0.20 0.41 0.48 0.52 

>70 0.16 0.0006 0.52 0.20 0.20 
BMI      

<18.5 <0.00001 0.004 0.007 <0.00001 0.004 
18.5-25 0.15 0.14 0.43 0.05 0.05 

25-30 0.37 0.38 0.50 0.31 0.24 
>30 0.48  0.48 0.64 0.64 0.71 

AF 0.64 0.08 0.32 0.33 0.24 
CAD 0.13 0.70 0.42 0.68 0.36 
DM 0.15 0.48 0.26 0.73 0.50 
Dyslipidaemia 0.34 0.67 0.47 0.83 0.68 
Alcohol 0.70 0.59 0.46 0.67 0.31 
CKD      

eGFR >90 0.09 0.32 0.05 0.03 0.03 
60-90 0.52 0.64 0.32 0.32 0.38 
30-60 0.39 0.04 0.62 0.64 0.58 
15-30 0.003 <0.00001 0.01 0.01 0.02 

Haematocrit      

>0.5 0.16 0.09 0.003 0.08 0.01 
0.4-0.5 0.78 0.77 0.54 0.60 0.53 
0.3-0.4 0.07 0.14 0.44 0.32 0.45 

<0.3 <0.00001 0.002 0.01 0.002 <0.00001 
 

The highest rate of CV death was in phenotype 4 (male, multimorbidity including 

diabetes, dyslipidaemia and obesity).  Compared to the lowest rate phenotype 1 

(AF, high alcohol use, high haematocrit), the HR for CV death was 1.74 (95%CI 

1.24-2.44).  The highest and lowest rates for heart failure hospitalisation were 
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the same as CV death, with a HR of 1.64 (95%CI 1.29-2.09) between groups.  

There was no significant interaction between phenotype and randomised 

treatment on the occurrence of any outcome (Table 6-17). 

Table 6-17. Outcomes according to phenotype group for Model 3 with categorical variables 
Outcomes according to phenotype group for model 3 (categorical variables) and effect of 
randomised treatment in each phenotype subgroup.  1 adjusted for randomised treatment 

Phenotype 1 2 3 4 5 interac
tion p-
value 

Cardiovascular 
death 

   
  

 

Rate 2.21 (1.69 
- 2.9) 

2.56 (1.97 
- 3.33) 

3.81 (3.12 
- 4.65) 

3.86(3.16 
- 4.71) 

2.69(2.24 
- 3.23)  

Hazard ratio1 REF 1.13 (0.77 
- 1.65) 

1.7(1.21 - 
2.38) 

1.74(1.24 
- 2.44) 

1.21(0.87 
- 1.67)  

Treatment effect 
in each 
phenotype group 

0.99 (0.57 
- 1.69) 

1.43 (0.84 
- 2.44) 

0.87 (0.58 
- 1.30) 

0.79 (0.53 
- 1.18) 

0.96 (0.66 
- 1.39) 0.48 

1st HFH      
 

Rate 4.66 (3.85 
- 5.65) 

5.39 (4.47 
- 6.51) 

8.09 (7 - 
9.34) 

8.72 (7.57 
- 10.04) 

6.36 (5.61 
- 7.2)  

Hazard ratio1 REF 1.22 (0.93 
- 1.61) 

1.61 (1.26 
- 2.05) 

1.64 (1.29 
- 2.09) 

1.33 (1.05 
- 1.67)  

Treatment effect 
in each 
phenotype group 

0.96 (0.65 
- 1.41) 

1.11 (0.76 
- 1.62) 

1.07 (0.80 
- 1.43) 

0.94 (0.71 
- 1.24) 

0.70 (0.55 
- 0.91) 0.17 

 

6.2.5.2 LCA using continuous variables 

The variables used for model 3 were handled as continuous variables where 

possible (age, body mass index, estimated glomerular filtration rate and 

haematocrit) and latent class solutions for 2-7 classes fit using the generalised 

structural equation modelling capabilities in STATA.  There was a loss of benefit 

after 5 classes, therefore a 5-class solution was selected.  This was a stable 

solution with 97% seeds achieving the same solution (Figure 6-6).  Median 

posterior probability of class membership was good, ranging from 0.75 to 0.80 

(Table 6-18). 
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Figure 6-6. Model fit statistics for Model 3 with continuous variables 
AIC and BIC for latent class solution using continuous variables for Model 3. 

  

 

Table 6-18. Median posterior probability of class membership for Model 3 with continuous 
variables 
 

 

Probability class 
1 Probability class 2 

Probability 
class 3 

Probability 
class 4 

Probability 
class 5 

1 
0.786 [0.59 - 
0.917] 

0.000000121 
[0.0000000633 - 
0.000000271] 

0.0253 
[0.0055 - 
0.0937] 

0.0132 
[0.00234 - 
0.0752] 

0.0558 
[0.0138 - 
0.169] 

2 
0.0169 [0.00636 
- 0.0483] 0.759 [0.619 - 0.888] 

0.00397 
[0.000854 - 
0.0185] 

0.00453 
[0.000585 - 
0.0345] 

0.104 
[0.0323 - 
0.251] 

3 
0.0253 [0.00604 
- 0.0931] 

0.0000000226 
[0.00000000693 - 
0.000000106] 

0.749 [0.559 
- 0.893] 

0.0196 
[0.0032 - 
0.105] 

0.0512 
[0.011 - 
0.159] 

4 
0.0136 [0.00275 
- 0.0757] 

0.000000043 
[0.00000000609 - 
0.0477] 

0.0284 
[0.00614 - 
0.104] 

0.8 [0.601 - 
0.939] 

0.00503 
[0.000724 - 
0.0367] 

5 

0.00803 
[0.00174 - 
0.0479] 

0.0556 [0.000000102 
- 0.22] 

0.0132 
[0.00214 - 
0.0587] 

0.000889 
[0.000136 - 
0.0073] 

0.764 [0.604 
- 0.905] 

 

This model was described using item response probabilities, with key features 

highlighted and used to create the phenotype descriptions (Table 6-19). 
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Table 6-19. Phenotype characteristics for Model 3 with continuous variables 
Description of groups in model 3 (continuous variables) using item response probabilities, 
with variables most different between groups highlighted to aid interpretation. 1Continuous 
variable item response are on a standardised scale (mean of 0 and standard deviation of 1); 
values above 1 infer the mean value in that phenotype is higher than the population mean. 

 1 2 3 4 5 

Descriptors 

Male 
CAD 

Diabetes 
Dyslipidaemia 

Female 
High BMI 

Low 
haemato-

crit 

AF 
Alcohol 
Younger 

High 
haemato-

crit 

Young 
Not AF 

Good renal 
function 

Older 
Low BMI 
Female 

Proportion 0.18 0.24 0.14 0.140 0.31 

Female sex 0.07 1.00 0.17 0.35 0.63 

AF 0.27 0.23 0.64 0.08 0.40 

CAD 0.74 0.39 0.23 0.63 0.33 

Diabetes 0.75 0.54 0.23 0.48 0.23 

Dyslipidaemia 0.87 0.72 0.47 0.63 0.42 

Alcohol 0.67 0.31 0.72 0.56 0.50 

Age1 0.04 0.005 -0.33 -1.15 0.64 

BMI1 0.20 0.54 0.23 0.02 -0.63 

eGFR1 -0.32 -0.31 0.22 1.26 -0.26 

Haematocrit1 -0.07 -0.40 1.05 0.29 -0.26 

 

The highest rate of CV death was in phenotype 1 (male, diabetes, dyslipidaemia, 

poor renal function) with the lowest rate in phenotype 4 (young, good renal 

function).  The corresponding hazard ratio for phenotype 1 compared to 

phenotype 4 was 2.12 (95%CI 1.45-3.09).  The highest rate for HF hospitalisation 

was phenotype 1, with lowest rate in phenotype 3 (younger, AF, alcohol).  The 

corresponding hazard ratio was 1.95 (95%CI 1.48-2.57) (Table 6-20).  There is a 

suggestion of differential treatment effect between phenotype groups for the HF 

hospitalisation outcome (p for interaction 0.03) with the phenotype with high 

proportion of female patients gaining more benefit (phenotype 2). 
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Table 6-20. Outcomes according to phenotype group for Model 3 with continuous variables 
Outcomes according to phenotype group for model 3 (categorical variables) and effect of 
randomised treatment in each phenotype subgroup.  1 adjusted for randomised treatment 

Phenotype 1 2 3 4 5 interac
tion p-
value 

Cardiovascular 
death 

   
  

 

Rate 4.15(3.4 - 
5.06) 

2.83 (2.32 
- 3.43) 

2.26 (1.65 
- 3.08) 

2.03 (1.48 
- 2.78) 

3.27 (2.77 
- 3.86)  

Hazard ratio1 2.12 (1.45 
- 3.09) 

1.43 (0.99 
- 2.08) 

1.15 (0.74 
- 1.79) REF 1.66 (1.16 

- 2.39)  

Treatment effect 
in each 
phenotype group 

1.17 
(0.79-
1.75) 

1.07 
(0.73-
1.59) 

0.66 
(0.35-
1.25) 

1.22 
(0.65-
2.29) 

0.81 
(0.58-
1.13) 

0.42 

1st HFH       
Rate 9.31 (8.09 

- 10.72) 
7.06 (6.2 - 

8.05) 
4.2 (3.33 - 

5.31) 
4.57 (3.67 

- 5.68) 
6.82 (6.05 

- 7.69)  

Hazard ratio1 1.95 (1.48 
- 2.57) 

1.65 (1.26 
- 2.15) REF 1.13 (0.82 

- 1.55) 
1.51 (1.16 

- 1.97)  

Treatment effect 
in each 
phenotype group 

0.91 
(0.69-
1.21) 

0.68 
(0.52-
0.88) 

0.71 
(0.441.15) 

1.06 
(0.68-
1.64) 

1.16 
(0.91-
1.48) 

0.03 

 

6.3 Results 

6.3.1 Comparison between identified groups using categorised 
versus continuous data 

6.3.1.1 Model 1 

The variables for model 1 included variables describing patient demographics 

(age and sex), indicating severity of heart failure by symptom burden (NYHA 

class), and recording comorbidity in both cardiovascular disease as well as renal, 

metabolic, and respiratory illness. eGFR was the only laboratory value used. 

Both methods best fitted with a three-class solution.  The median probability of 

class membership was marginally higher for the model using continuous variables 

(range 0.80-0.90 for continuous variables, 0.79-0.83 with categorical variables). 

Both models strongly identified a phenotype of older patients with high 

prevalence of atrial fibrillation.  These phenotypes had similar crude rates of 

cardiovascular death (3.47 [95%CI 2.97-4.04] events per 100 patient years in the 
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categorical analysis: 3.65 [95%CI 3.23-4.14] in continuous analysis.  This 

phenotype had the middle rate for HF hospitalisation in both analyses. 

The class with the next highest median posterior probability of class membership 

(indicating good discrimination between classes) was similar in both studies.  

This phenotype was young male patients, with a higher number with ischaemic 

aetiology of heart failure and good renal function.  They had the lowest rate of 

both outcomes examined in both analyses. 

The third class had similar characteristics in both analyses.  These patients were 

more likely to be female and had high comorbidity burden in terms of 

hypertension, obesity, diabetes and COPD. 

Treatment effect of sacubitril-valsartan was examined in each phenotype group 

in both analyses.  The point estimate for the treatment effect on CV death was 

lowest in the older & AF phenotype.  The point estimate for the HF 

hospitalisation outcome was lowest in female patients with multimorbidity in 

both analyses.  The test for interaction between phenotype and randomised 

treatment was positive for the HF hospitalisation outcome in the categorical 

analysis only. 

6.3.1.2 Model 2 

This model includes more variables describing the patient demographics (age, 

sex and race), severity of HF symptoms (NYHA class) and comorbidity including 

diabetes, obesity, renal dysfunction and atrial fibrillation.   

Both methods found a four-class solution best described the data.  The median 

posterior probability was higher (better) in the categorical analysis (range 0.79-

0.88 for categorical analysis, 0.77-0.89 for continuous analysis).  

The class with the highest median probability, indicating a well differentiated 

class, was older patients with atrial fibrillation.  These patients had the highest 

crude rate of CV death in both analyses.  They had the second highest rate of HF 

hospitalisation in both analyses. 
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Both analyses identified a phenotype of younger male patients, more likely to be 

of Asian race and with low body mass index.  The crude rate of CV death for this 

phenotype was similar in both analyses.  The risk of CV death, compared with 

the other phenotypes, was middling in both analyses.  This phenotype had the 

lowest crude rate of HF hospitalisation in both analyses. 

Another identified class in both analyses were younger patients with diabetes 

and obesity.  This phenotype had the lowest crude rate of CV death in both 

analyses and middling risk (compared to other phenotypes) of HFH. 

The last identified class were predominantly female patients of White race with 

higher (worse) NYHA functional class scores.  Renal function tended to also be 

lower. 

The lowest point estimate for effect of randomised treatment on CV death was 

in the older/AF phenotype in the categorical analysis and for females with high 

symptom burden in continuous analysis.  The lowest point estimate for HF 

hospitalisation was in diabetic/obese phenotype in categorical analysis. 

6.3.1.3 Model 3 

Model 3 variables include those describing patient demographics, comorbidity 

(both cardiovascular and other significant diseases), history of alcohol intake and 

laboratory measurement of renal function and haematocrit.  Measurement of 

severity of heart failure is not included. 

The latent class solution using both techniques came to a 5-class solution, with 

slightly higher (better) posterior probability of class membership in the 

continuous variable solution. 

In the categorical analysis, the class with the highest posterior probability of 

class membership, indicating a well-defined group, was the phenotype of male 

patients with obesity, coronary artery disease, dyslipidaemia and diabetes 

(Group 4).  In the continuous analysis, a similar phenotype was identified and 

also had good posterior probability of class membership. This group had the 
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highest crude rates of cardiovascular death and first heart failure hospitalisation 

in both the categorical and continuous analysis. 

The phenotype with lowest rates of events in the categorical analysis were 

distinguished by high prevalence of atrial fibrillation and of alcohol use, of 

middling age, with a similar finding in the continuous analysis. 

There was no significant interaction between phenotype group and randomised 

treatment on the occurrence of cardiovascular death.  There was a significant p 

for interaction in the continuous variable analysis of model three for the HF 

hospitalisation outcome.  This should be interpreted with caution given the 

multiple testing in this analysis (p value for significance has not been adjusted 

for this).  The group that gained greater benefit were the female group with 

high body mass index (phenotype 2).  Those with less benefit were older patients 

with low BMI (phenotype 5). 

6.3.2 Identification of consistent subgroups 

Within each model, the continuous and categorical type of analysis found similar 

consistent phenotype groups.  Some phenotypes were identified with use of 

different variables across models. 

The first recurring phenotype is that of older patients with high prevalence of 

atrial fibrillation and low BMI.  This was clearly identified in models 1 and 2 

using both categorical and continuous techniques.  In model 3 (categorical 

variables), that has more phenotype groups, it is likely these patients are split 

between two phenotype groups, the first being high prevalence of AF (phenotype 

1) and the other being older patients with low BMI (phenotype 3). This group had 

the highest crude rate of cardiovascular death in model 1 and 2, but not the 

highest in first heart failure hospitalisation. 

The second consistently identified group is that of patients with multiple 

comorbidities including diabetes, dyslipidaemia and obesity.  How this group is 

described clearly varies by the included baseline variables, but this group 

appears to be identified consistently.  In model one, they are described with 

hypertension, diabetes and obesity. In model two, diabetes and obesity are 
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included. In model 3, there are two groups with obesity, dyslipidaemia and 

diabetes.  In model one and two, the phenotype is split fairly evenly between 

males and females.  In model 3, there are two similar groups with comorbidity, 

the main difference between them being one is predominantly female and the 

other being predominantly male.  These phenotype groups had relatively high 

rates of heart failure hospitalisation throughout the models. 

Another group that is often identified is younger patients with ischaemic 

aetiology of heart failure who are younger and predominantly male and 

generally have good renal function.  In model 2, there is no input variable to 

describe coronary disease, but there is a group of younger male patients 

identified. These groups tended to have lower rates of both outcomes. 

6.4 Discussion 

Identifying groups of phenotypically similar groups of patients has many 

potential benefits.  For the patient and treating physician, understanding 

different phenotype may enable clearer communication about likely prognosis.  

An area of great interest is precision medicine, potentially tailoring treatments 

to patients where the treatment is more likely to be efficacious and well 

tolerated.  Developing this knowledge would require data driven methods to 

define patient phenotypes, rather than relying on the impression of an individual 

researcher or treating physician.  What is reassuring in this analysis is that 

phenotypes that appeared consistently are clinically recognisable, suggesting 

this unsupervised method of clustering patients is effective at describing these 

patients.  In addition, variations in technique lead to similar clustering results.  

This is important, as the categorisation approach is simpler to implement and 

therefore is achievable and approachable by a wider range of researchers. 

An interesting difference between the models is the selection of types of 

variables utilised to generate the latent class solution.  For example, in model 2 

which includes NYHA score, in the output there is a phenotype which is 

predominately distinguished by high symptom burden and high proportion of 

female sex.  This phenotype has high rates of heart failure hospitalisation, which 

is perhaps not surprising.  The phenotype group itself does not add much to our 

understanding of the pathophysiology underlying the condition.  Perhaps high 
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NYHA score, as a reflection of severity and advanced state of illness, could be 

used alongside phenotype group to help understand risk rather than as a variable 

to define the phenotype groups themselves. 

Exploring differences in rates of outcomes across phenotype groups had some 

expected results and some that are more interesting.  It is not surprising that 

the phenotype groups with more older patients had higher rates of mortality 

outcomes, and this analysis cannot distinguish the relative importance of 

different variables used to make the phenotype groups and the risk of outcome 

and age may have a large effect on the rate of mortality outcomes.  However, it 

is interesting that younger patients with high morbidity burden had high rates of 

heart failure hospitalisation, both important to the individual and for healthcare 

provision and planning.  These patients are likely to live with this chronic 

disease for a long time, therefore interventions which result in reduced 

hospitalisations is of great value. 

The consistently identified phenotype groups share some similarities with 

phenotypes identified in patients with heart failure with reduced ejection 

fraction in Chapter 5, particularly those with multimorbidity/metabolic 

cardiomyopathy (diabetes, hypertension, obesity), predominantly ischaemic 

aetiology, and older patients with high burden of atrial fibrillation. Although 

there is a focus on the differences between HFPEF and HFREF, perhaps there 

should also be a greater focus on similarities throughout the ejection fraction 

spectrum.  This is of particular importance now we have treatments which have 

been shown to be effective across the spectrum of ejection fraction.31,32 

A question remains as to how to investigate potential differences in treatment 

effect across phenotype groups.  Any phenotype group allocation has a degree of 

uncertainty allocated to it.  This is minimised as far as possible when creating 

the latent class solution, but when applied to new data there will continue to be 

unmeasured uncertainty in class allocation.  Therefore, any true difference in 

treatment response between phenotype groups will be diluted by uncertainty in 

class membership.  There is ongoing research interest in exploring relationship 

between latent class and distal outcomes, but these do not generally 

incorporate treatment effect.170,171  Therefore a currently applicable approach 

would require subjects to be allocated on modal assignment, or most likely class 
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allocation, and would require a higher number of participants to detect a true 

difference in treatment response between phenotype groups.  This may not be 

easily applicable in a clinical trial setting, but may be possible using routinely 

collected data, particularly if variables required to create phenotype groups are 

kept reasonably simple. 

In conclusion, this analysis reinforces that consistent latent class groups can be 

identified using a variety of input variables and with slight differences in 

analytical techniques.  The identified phenotypes are clinically logical and 

recognisable.  A data driven method that can identify these phenotypes opens 

doors for further personalisation of heart failure care in terms of prognostication 

and in the future potentially personalised treatment strategies.
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Chapter 7 Supervised machine learning in 
HFREF 

7.1 Introduction 

Two broad approaches to personalisation of treatment of patients with heart 

failure have been presented in this thesis so far.  In the first, covered in 

Chapters 3 and 4, I have extracted additional information about future risk of 

adverse events following a heart failure hospitalisation and mapped the average 

patient journey for patients with HFREF and HFPEF.  This additional information 

equips us to prioritise treatments and have better informed discussions with 

patients about how their disease might progress.  Overall, there were more 

similarities between HFREF and HFPEF than differences.  HFPEF and HFREF are 

only very broad phenotypes of heart failure, therefore in chapter 5 and 6 I used 

latent class analysis to define phenotypes in patients with HFPEF and HFREF, 

showing some consistent results in terms of the groups identified in different 

analyses in different data.  The general risk of different outcomes can be 

described for these different phenotypes, and perhaps in the future phenotype 

specific treatments may be identified.  This approach still describes the average 

trajectory for similar patients within a cohort, rather than making a specific 

prediction for an individual patient.  In this last analysis, I use supervised 

machine learning methods to see if improved individual prediction for 

cardiovascular death can be made compared with previously developed risk 

prediction models. 

Supervised machine learning methods use data inputs with a known, or labelled, 

output and create a function to predict the output from the input.  This function 

is then applied to new data to assess the predictive performance of the model.  

In general, machine learning techniques can perform well in prediction of events 

but less well in causality as the function to predict the output from input maps 

both direct and indirect effects of the inputs on the outputs.  The general 

process of supervised machine learning is described further in Chapter 2. 

There are various types of supervised machine learning techniques which can be 

utilised, with commonly used methods in heart failure research including 

penalised linear regression, K-nearest neighbours, random forests, gradient 
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boosted trees and artificial neural networks.  The basis for these techniques is 

given in Chapter 2.  These models benefit from greater flexibility compared with 

statistical techniques that were used to create commonly used risk scores such 

as Poisson regression, multivariable logistic regression and Cox regression 

models.68,69,75  The usual requirements for analysis, such as the requirement for 

normal distribution, are relaxed. Supervised machine learning methods are also 

well suited to analysis of ‘big data’, or data with many participants and multiple 

measured variables. 

As discussed in Chapter 1, there is no approach that appears to be consistently 

superior in event prediction in heart failure, and often supervised machine 

learning performance is similar to more simple logistic regression approach. 

To explore the utility of supervised machine learning in a large clinical trial 

dataset, an analysis of the PARADIGM-HF trial was undertaken.14,172  This is the 

same data that was used to create the PREDICT-HF model and can be used as a 

comparison in performance of a model built using a Cox regression model and 

each supervised machine learning approach.68 

7.2 Methods 

7.2.1 Trial population 

The Prospective comparison of ARNI with ACEI to Determine Impact on Global 

Mortality and morbidity in Heart Failure trial (PARADIGM-HF) investigated the 

addition of neprilysin inhibition to ACE inhibition in patients with heart failure 

and reduced ejection fraction.  A total of 8399 patients were randomised.  As 

this was a positive trial, the randomised treatment allocation was included as an 

input in these analyses.  A more detailed description of the trial is given in 

Chapter 2. 

7.2.2 Software 

For these analyses, R was used with the tidymodels suite of packages designed 

to facilitate machine learning analyses.133,173 
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7.2.3 Inputs 

In order to provide a fair comparison of the techniques when compared with the 

PREDICT-HF model, all variables considered in the creation of the PREDICT-HF 

model were considered in the machine learning methods.  Many variables were 

considered for PREDICT-HF but not used in the final model.  As machine learning 

can generally handle big data, all the considered variables were included.  This 

was to mainly compare techniques, as the use of a very large number of 

variables in the input would make this a less usable risk prediction tool in the 

clinical setting. However, filtering the variables would result in an unfair 

comparison of techniques and may result in loss of benefit of the machine 

learning model which can tolerate a very high number of input variables.  A 

complete case analysis approach was utilised rather than an imputation 

technique as an acceptable number of datapoints were included in the complete 

case analysis approach (7395).  The included variables are listed in Table 7-1. 

Table 7-1. Input variables to the machine learning models 
Variables in the PARADIGM-HF dataset considered as inputs in supervised machine 
learning analyses. 

Variable Type of variable 
Age Numeric 
Sex Factor 
Race Factor 
Region Factor 
Body mass index Numeric 
Weight Numeric 
Hip: waist ratio Numeric 
Smoking history Factor 
Alcohol history Factor 
Randomised treatment Factor 
Past medical history 
Chronic obstructive pulmonary disease Factor 
Stroke or transient ischaemic attack Factor 
Valvular heart disease Factor 
Atrial fibrillation Factor 
Hypertension Factor 
Diabetes Factor 
Myocardial infarction Factor 
Previous percutaneous coronary 
intervention 

Factor 

Previous coronary artery bypass graft Factor 
Peripheral arterial disease Factor 
Asthma Factor 
History of cancer Factor 



Chapter 7  164 
 
Renal disease Factor 
Anaemia Factor 
Heart failure characteristics 
LBBB on ECG Factor 
QRS duration  Numeric 
Systolic blood pressure Numeric 
Diastolic blood pressure Numeric 
Pulse pressure Numeric 
Heart rate Numeric 
Left ventricular ejection fraction Numeric 
New York Heart Association class Factor 
Aetiology of heart failure Factor 
Prior history of heart failure 
hospitalisation 

Factor 

Rales Factor 
Peripheral oedema Factor 
Dyspnoea on effort Factor 
Fatigue Factor 
Paroxysmal nocturnal dyspnoea Factor 
Third heart sound Factor 
Laboratory variables 
N-Terminal Pro–B-Type Natriuretic 
Peptide 

Numeric 

Estimated glomerular filtration rate Numeric 
Serum creatinine Numeric 
Albumin Numeric 
Haemoglobin Numeric 
LDL cholesterol Numeric 
HDL cholesterol Numeric 
Triglycerides Numeric 
Total cholesterol Numeric 
Uric acid Numeric 
Sodium Numeric 
Potassium Numeric 
BUN Numeric 
Chloride Numeric 
Total bilirubin Numeric 
Alkaline phosphatase Numeric 
Total protein Numeric 
Calcium Numeric 
Platelet count Numeric 
Red blood cells Numeric 
Haematocrit Numeric 
Neutrophils Numeric 
Basophils Numeric 
Eosinophils Numeric 
Lymphocytes Numeric 
Monocytes Numeric 
Treatments 
Aldosterone antagonist Factor 
Beta blocker Factor 



Chapter 7  165 
 
Digoxin Factor 
Aspirin Factor 
Anticoagulant Factor 
Diuretic Factor 
Lipid lowering Factor 
Implantable cardioverter defibrillator Factor 
Cardiac resynchronisation therapy Factor 

 

7.2.4 Outcome 

The outcome of the assessed machine learning approaches utilised here is a 

binary outcome of “event” or “no event”.  Rather than using the binary censor 

for event/no event over the full trial follow up, a binary marker for event or no 

event was created for the 2 year follow up time point i.e., whether the patient 

had an event before 2 years or was censored.  The outcome of interest was 

selected as cardiovascular death, again allowing comparison with the PREDICT-

HF risk prediction model. 

7.2.5 Train/test split 

The same training and test split was used for all the machine learning 

approaches, controlled by using the same random seed.  The data was split in an 

80:20 fashion, 80% of data used for training and model development and 20% 

used for testing each model.  The split was stratified by the endpoint to ensure a 

proportional split of events and non-events in the training and test data. 

A ten fold cross validation approach was taken to split the training data for 

finding optimum hyperparameters in model tuning.  This again was stratified by 

the endpoint variable.  Cross validation for hyperparameter tuning is explained 

in more detail in Chapter 2.  In short, 9 of the folds are used to create the model 

using a range of hyperparameters and the model is tested on the 10th fold.  This 

is repeated multiple times, using a different fold of the data for testing each 

time. 

7.2.6 Hyperparameter tuning 

For each model, there are different hyperparameters that need to be tuned to 

optimise the performance of the machine learning model.  Tuning methods aim 



Chapter 7  166 
 
to minimise the test error of the method and bring the machine learning 

function as close as possible to the true (unknown) function that relates the 

inputs to outputs, while avoiding overfitting to the training data.  To facilitate 

tuning, tuning grids including a range of each hyperparameter were generated 

and the model fit iteratively over the cross validated folds using different 

combinations of the hyperparameters to find the best performing combination. 

7.2.7 Regularised logistic regression 

The first model tested in the PARADIGM-HF data was a regularised logistic 

regression model.  Pre-processing steps included creating dummy variables for 

factor variables, removing variables with only a single value or zero variance 

(this is possible for some splits in the data), and numeric predictors normalised 

to a mean of zero and standard deviation of 1. 

The tuning parameters in this analysis were the penalty term and the mixture 

term.  The penalty term, also called the lambda value, describes how much the 

coefficient for the variable is shrunk.  The mixture term determines how much 

of each of a lasso or ridge regression model is used.  A mixture term of 0 is a 

model that uses pure ridge regression, while a mixture term of 1 uses pure lasso 

regression.  Another term for models that use a mixture of lasso and ridge 

regression is elastic net.  Hyperparameter tuning was carried out using a range 

of 20 penalty measures and 6 mixture terms in a tuning grid.  Hyperparameter 

tuning was performed using the 10 cross validated folds of the training data, and 

the best fitting hyperparameters were selected based on the highest area under 

the receiver operator curve. The hyperparameter values corresponding to the 

highest AUC were then applied to generate the final model which was fit to all 

the training data and tested on the test data, giving the final AUC value. 

7.2.8 Random forest 

Random forest analysis was the next model assessed.  Random forests do not 

require any data pre-processing.  The first tuning parameter is the number of 

randomly selected parameters to be considered at each split in the decision 

tree.  The second is the minimum node size, or the smallest number of 

datapoints at the terminal nodes of the random forest.  Another hyperparameter 
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that can be controlled is the number of random trees to be grown, but this was 

not tuned.  A regular tuning grid with 5 levels for each hyperparameter, 

generated using the automated processes in the tidymodels suite, identified that 

lower numbers of both hyperparameters provided a higher ROC AUC.  Therefore, 

a manual tuning grid was created using five values over the lower range of both 

hyperparameters.  The best performing combination of hyperparameters was 

applied to the whole training data then tested on the test data to give a final 

ROC AUC. 

7.2.9 Single layer neural network 

For the neural network analysis, R and R studio was used to run the keras neural 

network software in Python.  Pre-processing steps were to create dummy 

variables for the factor input variables and continuous variables were normalised 

to a mean of zero and standard deviation of 1 after log transformation to 

normalise distribution if appropriate. The hyperparameters to be tuned are the 

number of units in the hidden model, the number of training iterations or 

‘epochs’, and the dropout or proportion of model parameters randomly set to 

zero during model training.  Again, the best performing hyperparameters in 

testing using the cross validated folds were applied and the final ROC AUC 

calculated in the test data. 

7.2.10 Gradient boosted machine 

Pre-processing for gradient boosted machine was to create dummy variables for 

factor variables as the method requires numeric input variables and remove 

variables with zero variance (or only one value).  There are multiple tuning 

parameters for gradient boosted machines.  Some overlap with random forests, 

namely the minimum size of the terminal node of the tree and the number of 

trees grown to make the random forest. There is a tuning variable for the depth, 

or complexity, of each tree. In gradient boosted trees, each new tree depends 

on the result of the previous trees and other parameters control the learning 

rate of that process. These tuning parameters are the learning rate and loss 

reduction. 
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7.3 Results 

7.3.1 Regularised logistic regression 

In the tuning step, iteratively fitting the model with different hyperparameters 

using the 10-fold cross validated data folds, the best performing 

hyperparameters were compared using the ROC AUC.  The best fitting model had 

a penalty term of 0.0298 and a mixture term of 0.05, meaning it was a greater 

proportion of ridge regression in the elastic net model. 

The final fitted model had an accuracy of 0.88 and a ROC AUC of 0.67.  The 

confusion matrix is shown in Table 7-2. It should be noted that confusion 

matrices in this analysis are less informative, as there is an imbalance in the 

outcome.  In a standard confusion matrix, the prediction for event/no event will 

be based on a cut point of 50% probability.  When the event is imbalanced, it 

may be beneficial to move the decision point to predict “event” if the 

probability is at a lower level, for example 20% probability, to create a greater 

proportion predicted as an event.  This lessens the chance of a false negative 

when the outcome is important not to miss.  However, to compare models, the 

focus in this analysis is comparing the ROC AUC which gives a measure of the 

ability to discriminate between positive and negative cases over a range of cut 

points and is more easily interpretable. 
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Table 7-2. Confusion matrix for penalised logistic regression model 
 

 Truth 

Prediction no event event 

no event 1625 215 

event 8 2 

 

7.3.2 Random forest 

The tuning stage for the random forest model suggested lower randomly 

selected parameters came to a higher ROC AUC solution, as shown in Figure 7-1. 

A manual tuning grid with values between 2 and 10 for number of randomly 

selected parameters and a range of 10 to 30 for the minimal node size was 

created and tuning repeated, the results of which are given in the right column 

of Figure 7-1.  The number of randomly selected parameters to give the best 

fitting model was 2 with a minimal node size of 30.  This gave an ROC AUC of 

0.68. 

Figure 7-1. Tuning hyperparameters of the random forest model 
 

  

7.3.3 Single layer neural network 

To create the tuning network for the neural network, a space filling parameter 

grid was utilised.  The initial tuning results are shown in Figure 7-2.  The number 
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of epochs was not tuned but was selected at 100 to provide sufficient iterations 

without excessive computational time.  By comparing the ROC AUC results, the 

best fitting model had 2 hidden units and a dropout rate of 0.284.  This was fit 

to the final model and gave a ROC AUC of 0.68. 

Figure 7-2. Tuning hyperparameters of the single layer neural network model 
 

 

7.3.4 Gradient boosted machine 

Given the larger number of tuneable hyperparameters for the gradient boosted 

tree model, a tuning grid created using default settings in the tidymodels suite 

was utilised.  The best fitting model had 1940 trees, minimal node size of 8, tree 

depth of 4, learn rate of 0.0018, loss reduction of 2.76e-10 and sample size of 

0.59. This is displayed graphically in Figure 7-3.  The final ROC AUC in the test 

data was 0.69. 
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Figure 7-3 Tuning hyperparameters of the gradient boosted machine model 
Hyperparameter tuning using grid search for the gradient boosted machine model.  Each 
panel demonstrates the ROC-AUC results for one of the tuning parameters. 

 

 

7.3.5 Comparison of model fit statistics 

The main comparison between models in this study was using the ROC AUC, 

which are given in Table 7-3.  There is little difference in the performance of 

the different approaches in predicting the outcome of cardiovascular death at 2 

years follow up as a binary event, with a minor improvement in ROC AUC using a 

gradient boosted machine. 
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Table 7-3. Comparison of model fit statistics from different machine learning models 

Model ROC AUC 

Regularised logistic regression 0.67 

Random forest 0.68 

Single layer neural network 0.68 

Gradient boosted trees 0.69 

PREDICT-HF 0.71 

0.70 in external 

validation 

 

7.4 Discussion 

As has been found in several other studies, there was little performance benefit 

in prediction for a binary outcome using the type of data collected in a clinical 

trial using more complex machine learning methods.  Although the input 

included a lot of detail about the patient demographics, past medical history, 

heart failure severity and characteristics and laboratory data, this was not 

sufficient to improve prediction despite more flexible modelling techniques.  

There are likely several reasons underlying this finding. 

Firstly, these analyses use only a binary outcome of event or no event at 2 years 

of follow up.  In the PREDICT-HF prognostic model, survival data was utilised. 

This provides more granular data about survival time rather than a binary 

variable to indicate event or no event at a set time of follow up.  The PREDICT-

HF prediction model was able to achieve a higher C-statistic of 0.71.  Although 

there are more advanced machine learning techniques that include the use of 

survival data, this is not yet available in a format approachable by a clinical 

researcher and requires more advanced programming experience.174 This is an 
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area that is undergoing development in the tidymodels packages and may soon 

be achievable by a clinical researcher without advanced programming 

background.175 

Consideration was given to repeating the models for different outcomes at 

different time points, however provisional outcomes for a 1 year endpoint were 

similar using basic models to those presented here.  Overall, the weight of 

evidence would suggest that, for this type of data, there is unlikely to be great 

improvements in prognostic performance over traditional risk models.  It should 

also be noted the large processing requirements required for each model.  Given 

the lack of suggestion of improved performance with these models, investigation 

of additional models was deemed futile.  In addition, this model was not truly 

validated in fresh unrelated data.  This means that the C-statistics are probably 

still over-estimated due to some overfitting to the training data i.e., fit 

specifically to the patients in the PARADIGM-HF trial.  Although some external 

validation would have been possible in the ATMOSPHERE trial, not all of the 

input variables would have been available.  Overall, there was no benefit to be 

expected from additional external validation due to the baseline modest 

performance of the models.  It should be reiterated that if the model was found 

to be better performing and worthy of further assessment it would be important 

to find a patient population in which to externally validate the model to be sure 

of consistent performance in new populations. 

Machine learning techniques are excellent when there is big data, or data with 

multiple measurements and multiple variables.  It may be that this data is not 

granular enough to be able to fully benefit from the flexibility of the analytical 

techniques to achieve improved prediction.  For example, recording of co-

morbidity is binary, for the presence of absence of disease.  However, it is clear 

that a patient with well controlled diabetes on a single pharmacological agent is 

expected to behave quite differently from a patient with poorly controlled 

diabetes despite multiple pharmacological agents.  In reality, this level of data 

input would not be practical to obtain for a clinical trial, as it would be 

extremely time consuming and therefore incur great expense.  It is also not the 

main aim of a trial data collection, as randomisation should control for the many 

differences we find between patients to allow detection of a treatment effect.  
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It would also be extremely impractical to have a risk score where all this data 

had to be manually inputted by the treating physician to generate a risk score as 

the effort and expense involved in collecting the vast amount of data would be 

an insurmountable barrier.  However, it could be imagined that in the future in a 

fully integrated electronic health record, this data could be automatically 

withdrawn to generate a risk score.  Clearly this has ethical implications 

surrounding access to the depth of potentially sensitive patient level data to 

both develop and use such a model.  Natural language processing, or extracting 

data from free text documents, could be a further avenue to extract useful data 

from free text of medical records.176 

Another area that is not addressed in this type of analysis is features of the 

patient that are more nebulous or subjective, such as frailty.  We do have tools 

to help the physician quantify frailty in patients177–180, but it is possible machine 

learning techniques may be able to identify generally unmeasured features from 

other sources, for example in imaging.  Machine learning has been used in 

imaging to help automate some of the processes in image analysis in a 

conventional sense (for example, calculating the left ventricular ejection 

fraction from an echocardiogram), but has also been used to predict 

outcomes.180 As it is not a requirement to “tell” the machine learning algorithm 

what it should be looking for, it is possible that the machine learning method 

may look both at the automated measurements of ejection fraction and other 

features of the imaging that relate to outcome.  Hypothetically, the algorithm 

may note the amount of adipose tissue, muscle mass or bone density from a CT 

scan as well as the expected measurements of left ventricular size and function.  

This again raises one of the core issues of machine learning that can limit use in 

this way – often the algorithm results in a ‘black box’ where the link between 

the input and output is not human interpretable which can make it unacceptable 

to the user or patient. 

In conclusion, the use of these machine learning approaches at a fairly basic 

level, accessible to a clinical researcher with interest in this area, did not 

provide better predictive ability than an established prognostic model utilising 

survival analysis in a Cox regression model.  Accurate event prediction in 

patients with heart failure remains challenging, and there are several avenues in 
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which machine learning may be further explored in this field to help achieve this 

elusive goal.  This will likely require close collaborative work between data 

scientists and clinicians with some fundamental understanding of the underlying 

techniques.
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Chapter 8 Final discussion 

Throughout this thesis, I have demonstrated several different approaches using 

data analysis to try and personalise the care of patients with heart failure.  

These have involved a wide range of analytical techniques to examine the 

question from different perspectives. 

Firstly, I used a data driven analysis aiming to examine whether the accepted 

trajectory of the patient journey for patients with heart failure holds true for 

contemporary patients with heart failure, both with reduced and preserved 

ejection fraction.  In the analysis of heart failure with reduced ejection fraction, 

the lack of relationship between heart failure hospitalisations and sudden death 

was confirmed, supporting that they are truly ‘sudden’, while there was a strong 

relationship between heart failure hospitalisations and risk of overall 

cardiovascular death as well as specifically pump failure death.  These findings 

can be acted on in two distinct ways.  A patient being admitted to hospital with 

heart failure does highlight a time of increased risk of adverse outcome and 

should be taken as an opportunity to optimise their heart failure 

pharmacological treatment and consider device therapies if appropriate, or 

indeed make advanced care plans if they appear to be approaching end of life.  

They may benefit from a period of enhanced outpatient monitoring. In contrast, 

finding that a patient with heart failure appears to be in a stable condition in 

terms of lack of hospitalisations when being reviewed in outpatient clinic does 

not predict the risk of sudden cardiovascular death, a major cause of 

cardiovascular death in this population.  Therefore, for patients in both settings, 

there should be continued up titration of medical therapies to the maximum 

tolerated, as per guidelines.  It could be argued that this does not provide an 

avenue for personalisation of care, and this might be true in terms of which 

treatments should be offered, but it can help the patient understand what their 

own ‘trajectory’ might look like and can facilitate discussions with their doctor 

about the aims and objectives of treatment. 

In the paired analysis of the patient trajectory in a heart failure with preserved 

ejection fraction population, there were similar findings.  Although patients with 

HFPEF tend to be older and to have multiple comorbidities, and therefore are at 

risk of hospitalisation for many causes other than heart failure, there remains a 
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strong link between heart failure hospitalisation and cardiovascular death.  This 

is important, as although treatment with SGLT2i has been found to be effective 

in heart failure and preserved ejection fraction, there is apprehension that this 

is driven by a reduction in hospitalisation events rather than mortality outcomes. 

The link between the two types of events, and reduction in rates of both events 

with treatment, would provide reassurance that these are globally effective.  In 

addition, although these patients did have a high burden of all cause 

hospitalisation, a considerable proportion of these were due to heart failure and  

around 60% of deaths were attributed to cardiovascular causes.  The patterns of 

repeated hospitalisation, pump failure deaths and sudden deaths mirrored what 

was found in the analysis of heart failure with reduced ejection fraction 

patients, therefore the same arguments could be made that all patients should 

be considered for optimisation of therapy with an SGLT2i regardless of setting.  

Again, this data might be found useful to help a patient understand the likely 

trajectory of their illness. 

It is important to recognise that heart failure hospitalisation is only one 

expression of a worsening heart failure event.  In the analysis of HFREF, a 

sensitivity analysis was included for heart failure hospitalisations and worsening 

outpatient HF events (defined as emergency room visit for heart failure or 

intravenous treatment for heart failure) with consistent results.  In general, 

there is no consensus in the definition of a worsening heart failure event and 

they are not routinely included in clinical trial endpoints.  Emergency 

department visits and observation stays have been reported to represent 

approximately one half of worsening heart failure events in routine electronic 

health record data.181 There is increased interest in reproducibly evaluating and 

recording these events to learn from them.182,183 A greater understanding of 

outpatient events where patients require intensification of treatments would 

greatly enrich the type of analysis carried out in this work with hospitalisation 

data. 

The next approach was to try a clustering technique, namely latent class 

analysis, to identify phenotypically similar groups of patients with heart failure 

and reduced ejection fraction.  This data driven approach was able to identify 

clinically recognisable phenotypes, and some phenotypes were similar to those 
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identified in previous analyses using different data.  Finding both recognisable 

and consistent groups provides reassurance that genuine phenotype groups are 

being identified rather than being an artificial finding by modelling error or 

overfitting of the model to the analysed data.  These analyses could be used to 

help understand the patient’s risk of heart failure and mortality outcomes.  An 

avenue for further exploration is to look for differential treatment responses, as 

was carried out in the analysis of the EMPHASIS-HF and EPHESUS trials.58   

A major limitation in this type of approach is the degree of uncertainty in 

allocating any one patient to a phenotype group.  Each patient is allocated to 

the most likely class, be that if they have a 90% probability of being in that class 

or a 50% probability if they do not closely fit the common characteristics of any 

phenotype.  It would then be extremely difficult to identify if there were a 

differential treatment effect as this would be diluted by the uncertainty in class 

membership.  It is recognised that allocating a patient to a group if there is a 

specific causal event (for example, a gene mutation) results in a phenotype that 

is easy to differentiate. This is in contrast to many chronic diseases where 

multiple factors build together (for example, low impact gene mutations and 

environmental exposures) to create a less clearly defined phenotype group.184  

Ultimately, phenotyping may be most useful to identify the core, most 

commonly seen groups first and understand their prognosis and response to 

treatment, while accepting patients on the fringes of groups are not as well 

served with this approach. To generate truly personalised care for the 

individual, perhaps an approach where a patient can be categorised in a 

multifaceted manner in a multidimensional space without need to allocate to 

one phenotype group over another may prove most effective.  There is interest 

in the analysis of distal outcomes together with degree of certainty or weighting 

of allocation to a latent class phenotype therefore this is something that may 

have the potential to be modelled more accurately in the future to be able to 

detect a signal of differential treatment response. 

In a similar analysis in heart failure with preserved ejection fraction, the 

persistence of latent class phenotype groups was assessed by using variables 

selected in prior analyses to examine whether these were identified again using 

data from the PARAGON-HF trial.  Two slightly different approaches to latent 
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class analysis were tested, again for consistency.  Several phenotypes appeared 

reliably, with similar outcomes and importantly were clinically recognisable.  

This would support the hypothesis that these are genuinely occurring phenotype 

groups in heart failure with preserved ejection fraction that can be identified 

using a data driven technique. 

Although no significant difference in treatment effect was found in these latent 

class analyses, it is an important method to bear in mind when we consider the 

development for specific treatments for heart failure of different causes.  For 

example, some specific aetiologies of heart failure now have directed 

treatments available, such as cardiac amyloidosis.185  As amyloid can affect 

other body systems, a phenotyping approach including a wider range of data 

about patients may be able to identify patients who had a higher likelihood of 

having amyloid heart disease to facilitate targeting of further investigation.  

More patients are being diagnosed with transthyretin cardiac amyloidosis over 

time, and at an earlier stage allowing earlier treatment.186  Identification of 

latent class phenotypes that have a higher proportion of patients with 

amyloidosis could aid in targeted investigation and support earlier treatment. In 

addition, patients within a latent class group do not always seem to fall in a 

group of a specific aetiology.  Hypothetically, finding of a particular phenotype 

of patient with heart failure may provide a route to understanding yet unknown 

aetiologies and pathologies of heart failure.  Three mechanistically distinct 

phenotypes of dilated cardiomyopathy have been identified using a combination 

of clinical, genetic, cardiac MRI and proteomic assessments analysed using 

machine learning techniques by Tayal et al.187 Although the number of patients 

was relatively small (426 in the derivation cohort), differences in prognosis were 

identified between phenotype groups and these groups are proposed as potential 

targets for targeted interventions.  Approaches allowing analyses of deep and 

complex data about patients to help our understanding of pathology, prognosis 

and treatment options provide exciting opportunities to further personalisation 

of care in heart failure. 

Another valuable aspect of phenotyping could be identifying groups of people 

who are at high risk of developing heart failure and consider screening.  It has 

been suggested that patients with diabetes, particularly with other risk factors 
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such as hypertension and obesity, should be screened for heart failure using 

natriuretic peptides or high sensitivity troponin given the high prevalence of 

heart failure in patients with diabetes of up to 22%.188  The phenotype of heart 

failure patients with comorbidities including diabetes, obesity, hypertension and 

hyperlipidaemia (summarised in Chapter 5 as metabolic cardiomyopathy of 

obesity) is found consistently through HFREF and HFPEF analyses and perhaps 

patients with these clusters of comorbidity without known heart failure should 

be a particular target for screening.  Health infrastructure improvements and 

significant funding would be required to screen all patients with diabetes for 

heart failure, therefore initially screening for patients fitting this phenotype 

group could be the initial focus. The same could be considered for older patients 

with atrial fibrillation, although the effect of AF on raising natriuretic peptide 

levels could mean an optimum cut-off becomes more difficult to define.189,190  

The question remains as to how to manage patients with elevation in natriuretic 

peptide levels and at risk of heart failure, without the syndrome of heart failure.  

In the HOMAGE trial191 patients at risk of developing heart failure due to known 

coronary disease or with risk factors for coronary disease with modest elevation 

in NT-proBNP were randomised to placebo or spironolactone.  Over follow up, 

there were changes in type 1 collagen synthesis and degradation in those 

randomised to spironolactone which was accompanied by favourable changes in 

left atrial size and left ventricular systolic function. In the PONTIAC trial192, 

patients with diabetes with increased risk of developing heart failure as 

identified by elevated NT-proBNP were randomised to standard care or addition 

of intensified CV risk modification with uptitration of beta blocker and RAS 

inhibitor.  Patients in the intensified treatment group had reduced rates of 

hospitalisation or death due to cardiac disease.  These results would both 

suggest there may be a role in treating “pre-HF” with conventional HFREF 

treatments which requires further investigation. 

Lastly, I created a range of supervised machine learning models to predict 

cardiovascular death at two years as a binary outcome using data from the 

PARADIGM-HF trial.  I was not able to identify any particularly well performing 

models, with all models having only modest C-statistics and overall performance 

was poorer than the PREDICT-HF prognostic model.  There was a lot of available 
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data for these patients, but perhaps not enough granularity to realise the 

benefit of increased flexibility provided by machine learning methods.  This is 

consistent with other studies that have compared machine learning methods 

with other statistical analytical techniques to predict outcome.  Sometimes the 

machine learning methods provide slight performance improvement, but this is 

marginal and often more basic methods can have similar or better performance.  

Perhaps this type of data is not how machine learning will be utilised in heart 

failure research going forward.  Machine learning has been effective in analysis 

of electrocardiograms and imaging, and perhaps combining this with clinical data 

may provide the additional granular data to allow for more accurate prediction 

of outcome, as discussed in Chapter 7.  It has already been demonstrated that a 

combination of ECG traces with some basic demographic data could be used to 

build an effective machine learning algorithm for diagnosis of clinically 

significant structural heart disease.193  Deep learning has also been utilised to 

analyse cardiac MRI imaging in tangent with a polygenic score from genome-wide 

association studies with respect to prediction of thoracic aortic aneurysm and 

aortic stenosis.194 A similar principle could be applied for risk prediction models 

in heart failure using a variety of different sources of input data.  A further 

potential source of gaining more detailed patient information could be by 

analysing unstructured data included in patient records, for example free text 

entries, using machine learning capabilities such as natural language 

processing.195  

Another potential future avenue for machine learning techniques could be in 

using data from devices such as smart watches to gain more granular data about 

patient physiology. Wearable devices have been used to identify atrial 

fibrillation in undiagnosed population and to measure amount of physical activity 

and are likely to be capable of more in depth data collection.196,197 Medical 

devices are capable of measuring various markers of congestion and the use of 

haemodynamic monitoring can be associated with improved clinical outcomes.198  

This additional depth of data generated using devices could be well suited to 

machine learning analytical techniques.  This links with the general move within 

all branches of healthcare delivery towards telemedicine driven by the Covid-19 

pandemic, perhaps the use of mobile phone apps and mobile diagnostic devices 
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may increase, requiring new approaches to handle, sort and understand the vast 

quantity of data generated. 

A growing area of research is genomic profiling, which also results in generation 

of large volumes of data.199–201  Although conventional statistical approaches can 

be used in these settings, it poses another option to optimise the use of more 

flexible machine learning methods to both identify patterns, or clusters, in data 

and to link data with outcomes.  Finding genetic loci may also be able to find 

clusters of patients with different treatment response, as has been 

demonstrated by finding genetic loci related to discontinuation of ACEI due to 

cough and polygenic response predictor score associated with differential 

response to beta blocker therapy.202,203 

As discussed in Chapter 7, there are many hurdles before these rich data sources 

could be used in complex machine learning predictive modelling.  Firstly, 

ethically gaining access to the vast quantities of data required is challenging, 

either through direct patient consent or robust anonymisation techniques.  It is 

extremely important to include a broad range of patients in terms of race, sex, 

age, and so on to ensure the resulting model does not inherit any biases because 

of unequally distributed input data.  Next, the computational processing power 

required could quickly become prohibitive, potentially requiring the use of cloud 

services to facilitate which adds complexity around data security.  Another 

challenge is the ‘black box’ processing of machine learning.  Often it is not 

possible to understand how the model creates the prediction in the same way we 

can with conventional statistical approaches, and we therefore cannot easily 

explain the model. This can result in healthcare providers and the general public 

finding the model unacceptable for use. 

8.1 Limitations 

This work was all carried out using clinical trial data, therefore findings may not 

be applicable to patients with heart failure in the general population due to the 

selection of patients for trial participation.  This is particularly important in 

latent class analysis, as other phenotypes may be prevalent in the population but 

excluded due to inclusion and exclusion criteria.  In general, older patients, 

minorities and female patients are underrepresented with little improvement in 
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these trends over time.204  Therefore these analyses likely only capture some 

prevalent phenotypes of heart failure, and use of routine data may identify 

other clusters with potential benefit for patient care in these patients. 

Supervised machine learning analysis was carried out within a framework of 

models designed to make machine learning accessible to more researchers, 

therefore better performance may have been achieved if a more advanced 

programmer was able to manipulate the models more extensively.  However, 

given the lack of consistent signal of machine learning outperforming statistical 

methods in this field it would be surprising if with further optimisation a 

significant improvement was made. 

Although clinical trial data is rich and of good population size, some analyses of 

‘big data’ involve many more data points and many more variables.  Therefore 

although a lot of data was utilised, some data scientists would consider this to 

still be on a relatively small scale. 

8.2 Future work 

This work has found consistent results in phenotyping patients using data driven 

techniques.  It is unlikely future randomised trials will include stratification of 

randomised treatment based on phenotype group due to the issue of underlying 

uncertainty in class membership.  However, clustering could remain as a post-

hoc technique to look for signal of differential treatment effect.  An alternative 

would be to try and target a particular phenotype that has been previously 

identified by latent class analysis in a trial by shaping the inclusion criteria to 

reflect the phenotype group of interest. 

Although in my analyses there was an early split between HFREF and HFPEF, 

perhaps a valuable area for further exploration would be phenotyping patients 

with heart failure regardless of ejection fraction.  The results of my analyses did 

suggest similar groups were identified in both populations. There is a move 

recently to think of heart failure more as a continuous spectrum rather than by 

cut-offs for ejection fraction.  This reflects the underlying issue with identifying 

groups of patients by one characteristic alone, as in reality phenotypes are much 

more complex than this.  It could be argued that phenotyping should then be 
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repeated using all patients with heart failure together, regardless of ejection 

fraction, to understand phenotypes that exist across the spectrum of ejection 

fraction.  Ejection fraction could provide one input into such a phenotyping 

analysis and be part of a more complex multilevel description of a patient with 

heart failure rather than being the primary difference defining heart failure 

groups. 

The issue of separating patients into HFREF and HFPEF would also hold true in 

the analysis of HF hospitalisations.  This was mainly driven by the expectation 

that these patients perhaps behave differently, however given results suggestive 

of more similarity than difference it would be interesting to repeat the analysis 

amalgamating patients with heart failure regardless of ejection fraction. 

Supervised machine learning using the type of data collected in the process of 

clinical trials is less likely to make steps forward in terms of predicting adverse 

outcomes in heart failure.  We do have many other types of data about patients 

available to us, such as ECGs and imaging, which paired with clinical data might 

be an avenue to try and improve event prediction. 

8.3 Conclusion 

This thesis presents several approaches to using clinical trial data to personalise 

the care of patients with heart failure.  I have explored the patient journey in 

terms of heart failure hospitalisation in greater depth in both HFREF and HFPEF, 

defined phenotypes of patients in heart failure and examined the associated 

prognosis and developed machine learning predictive models to try and better 

understand the individual’s risk of cardiovascular death.  The first two 

approaches help understand the average risks of adverse outcomes at a group 

level, for example in recently hospitalised patients or in certain HF phenotypes.  

The elusive area remains improved risk prediction at an individual level which 

was not achieved using supervised machine learning in this data.  Supervised 

machine learning remains an area of exciting potential for further research if 

other rich sources of data such as imaging or genomics are used as input 

variables. 
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